Search is not available for this dataset
text
string | meta
dict |
---|---|
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Discrete where
open import Categories.Category
open import Function
open import Relation.Binary.PropositionalEquality as ≡
Discrete : ∀ {a} (A : Set a) → Category a a a
Discrete A = record
{ Obj = A
; _⇒_ = _≡_
; _≈_ = _≡_
; id = refl
; _∘_ = flip ≡.trans
; assoc = λ {_ _ _ _ g} → sym (trans-assoc g)
; sym-assoc = λ {_ _ _ _ g} → trans-assoc g
; identityˡ = λ {_ _ f} → trans-reflʳ f
; identityʳ = refl
; identity² = refl
; equiv = isEquivalence
; ∘-resp-≈ = λ where
refl refl → refl
}
|
{
"alphanum_fraction": 0.5746388443,
"avg_line_length": 24.92,
"ext": "agda",
"hexsha": "8d724bfe22e4d5475e91b466d58067cfd5c97684",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Discrete.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Discrete.agda",
"max_line_length": 54,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Discrete.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 218,
"size": 623
}
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.ImplShared.Base.Types
open import LibraBFT.Abstract.Types.EpochConfig UID NodeId
open EpochConfig
open import LibraBFT.Concrete.System
open import LibraBFT.Concrete.System.Parameters
open import LibraBFT.ImplShared.Consensus.Types
open import LibraBFT.ImplShared.Util.Crypto
open import Optics.All
open import Util.Hash
open import Util.KVMap
open import Util.PKCS
open import Util.Prelude
open import Yasm.Base
-- This module contains definitions and proofs used by both the VotesOnce and PreferredRoundRule
-- proofs.
module LibraBFT.Concrete.Properties.Common (iiah : SystemInitAndHandlers ℓ-RoundManager ConcSysParms) (𝓔 : EpochConfig) where
open SystemTypeParameters ConcSysParms
open SystemInitAndHandlers iiah
open ParamsWithInitAndHandlers iiah
open import LibraBFT.ImplShared.Util.HashCollisions iiah
open import Yasm.Yasm ℓ-RoundManager ℓ-VSFP ConcSysParms iiah PeerCanSignForPK PeerCanSignForPK-stable
record VoteForRound∈ (pk : PK)(round : ℕ)(epoch : ℕ)(bId : HashValue)(pool : SentMessages) : Set where
constructor mkVoteForRound∈
field
msgWhole : NetworkMsg
msgVote : Vote
msg⊆ : msgVote ⊂Msg msgWhole
msgSender : ℕ
msg∈pool : (msgSender , msgWhole) ∈ pool
msgSigned : WithVerSig pk msgVote
msgEpoch≡ : msgVote ^∙ vEpoch ≡ epoch
msgRound≡ : msgVote ^∙ vRound ≡ round
msgBId≡ : msgVote ^∙ vProposedId ≡ bId
open VoteForRound∈ public
ImplObl-bootstrapVotesRound≡0 : Set
ImplObl-bootstrapVotesRound≡0 = ∀ {pk v}
→ (wvs : WithVerSig pk v)
→ ∈BootstrapInfo bootstrapInfo (ver-signature wvs)
→ v ^∙ vRound ≡ 0
ImplObl-bootstrapVotesConsistent : Set
ImplObl-bootstrapVotesConsistent = (v1 v2 : Vote)
→ ∈BootstrapInfo bootstrapInfo (_vSignature v1) → ∈BootstrapInfo bootstrapInfo (_vSignature v2)
→ v1 ^∙ vProposedId ≡ v2 ^∙ vProposedId
ImplObl-NewVoteRound≢0 : Set (ℓ+1 ℓ-RoundManager)
ImplObl-NewVoteRound≢0 =
∀{pid s' outs pk}{pre : SystemState}
→ ReachableSystemState pre
-- For any honest call to /handle/ or /init/,
→ (sps : StepPeerState pid (msgPool pre) (initialised pre) (peerStates pre pid) (s' , outs))
→ ∀{v m} → Meta-Honest-PK pk
-- For signed every vote v of every outputted message
→ v ⊂Msg m → send m ∈ outs
→ (wvs : WithVerSig pk v)
→ (¬ ∈BootstrapInfo bootstrapInfo (ver-signature wvs))
→ v ^∙ vRound ≢ 0
IncreasingRoundObligation : Set (ℓ+1 ℓ-RoundManager)
IncreasingRoundObligation =
∀{pid pid' s' outs pk}{pre : SystemState}
→ ReachableSystemState pre
-- For any honest call to /handle/ or /init/,
→ (sps : StepPeerState pid (msgPool pre) (initialised pre) (peerStates pre pid) (s' , outs))
→ ∀{v m v' m'} → Meta-Honest-PK pk
-- For signed every vote v of every outputted message
→ v ⊂Msg m → send m ∈ outs
→ (sig : WithVerSig pk v) → ¬ (∈BootstrapInfo bootstrapInfo (ver-signature sig))
→ ¬ (MsgWithSig∈ pk (ver-signature sig) (msgPool pre))
→ PeerCanSignForPK (StepPeer-post {pre = pre} (step-honest sps)) v pid pk
-- And if there exists another v' that has been sent before
→ v' ⊂Msg m' → (pid' , m') ∈ (msgPool pre)
→ (sig' : WithVerSig pk v') → ¬ (∈BootstrapInfo bootstrapInfo (ver-signature sig'))
-- If v and v' share the same epoch
→ v ^∙ vEpoch ≡ v' ^∙ vEpoch
→ v' ^∙ vRound < v ^∙ vRound
⊎ VoteForRound∈ pk (v ^∙ vRound) (v ^∙ vEpoch) (v ^∙ vProposedId) (msgPool pre)
module ConcreteCommonProperties
(st : SystemState)
(r : ReachableSystemState st)
(sps-corr : StepPeerState-AllValidParts)
(Impl-bsvr : ImplObl-bootstrapVotesRound≡0)
(Impl-nvr≢0 : ImplObl-NewVoteRound≢0)
where
open Structural sps-corr
open PerReachableState r
msgSentB4⇒VoteRound∈ : ∀ {v pk pool}
→ (vv : WithVerSig pk v)
→ (m : MsgWithSig∈ pk (ver-signature vv) pool)
→ Σ (VoteForRound∈ pk (v ^∙ vRound) (v ^∙ vEpoch) (v ^∙ vProposedId) pool)
(λ v4r → ver-signature (msgSigned v4r) ≡ ver-signature vv)
msgSentB4⇒VoteRound∈ {v} vv m
with sameSig⇒sameVoteDataNoCol (msgSigned m) vv (msgSameSig m)
...| refl = mkVoteForRound∈ (msgWhole m) (msgPart m) (msg⊆ m) (msgSender m)
(msg∈pool m) (msgSigned m) refl refl refl , msgSameSig m
VoteRound∈⇒msgSent : ∀ {round eid bid pk pool}
→ (v4r : VoteForRound∈ pk round eid bid pool)
→ Σ (MsgWithSig∈ pk (ver-signature $ msgSigned v4r) pool)
(λ mws → ( ver-signature (msgSigned mws) ≡ ver-signature (msgSigned v4r)
× (msgPart mws) ^∙ vRound ≡ round))
VoteRound∈⇒msgSent (mkVoteForRound∈ msgWhole₁ msgVote₁ msg⊆₁ msgSender₁ msg∈pool₁ msgSigned₁ msgEpoch≡₁ msgRound≡₁ msgBId≡₁)
= mkMsgWithSig∈ msgWhole₁ msgVote₁ msg⊆₁ msgSender₁ msg∈pool₁ msgSigned₁ refl , refl , msgRound≡₁
-- If a Vote signed for an honest PK has been sent, and it is not in bootstrapInfo, then
-- it is for a round > 0
NewVoteRound≢0 : ∀ {pk round epoch bId} {st : SystemState}
→ ReachableSystemState st
→ Meta-Honest-PK pk
→ (v : VoteForRound∈ pk round epoch bId (msgPool st))
→ ¬ ∈BootstrapInfo bootstrapInfo (ver-signature (msgSigned v))
→ round ≢ 0
NewVoteRound≢0 (step-s r (step-peer (step-honest stP))) pkH v ¬bootstrap r≡0
with msgRound≡ v
...| refl
with newMsg⊎msgSentB4 r stP pkH (msgSigned v) ¬bootstrap (msg⊆ v) (msg∈pool v)
...| Left (m∈outs , _ , _) = ⊥-elim (Impl-nvr≢0 r stP pkH (msg⊆ v) m∈outs
(msgSigned v) ¬bootstrap r≡0)
...| Right m
with msgSameSig m
...| refl
with sameSig⇒sameVoteDataNoCol (msgSigned m) (msgSigned v) (msgSameSig m)
...| refl = let vsb4 = mkVoteForRound∈ (msgWhole m) (msgPart m) (msg⊆ m) (msgSender m)
(msg∈pool m) (msgSigned m) refl refl refl
in ⊥-elim (NewVoteRound≢0 r pkH vsb4 ¬bootstrap r≡0)
NewVoteRound≢0 (step-s r (step-peer cheat@(step-cheat c))) pkH v ¬bootstrap r≡0
with ¬cheatForgeNewSig r cheat unit pkH (msgSigned v) (msg⊆ v) (msg∈pool v) ¬bootstrap
...| m
with msgSameSig m
...| refl
with sameSig⇒sameVoteDataNoCol (msgSigned m) (msgSigned v) (msgSameSig m)
...| refl = let vsb4 = mkVoteForRound∈ (msgWhole m) (msgPart m) (msg⊆ m) (msgSender m)
(msg∈pool m) (msgSigned m) refl refl refl
in ⊥-elim (NewVoteRound≢0 r pkH vsb4 ¬bootstrap (trans (msgRound≡ v) r≡0))
¬Bootstrap∧Round≡⇒¬Bootstrap : ∀ {v pk round epoch bId} {st : SystemState}
→ ReachableSystemState st
→ Meta-Honest-PK pk
→ (vfr : VoteForRound∈ pk round epoch bId (msgPool st))
→ ¬ (∈BootstrapInfo bootstrapInfo (ver-signature (msgSigned vfr)))
→ (sig : WithVerSig pk v)
→ v ^∙ vRound ≡ round
→ ¬ (∈BootstrapInfo bootstrapInfo (ver-signature sig))
¬Bootstrap∧Round≡⇒¬Bootstrap r pkH v₁ ¬bootstrapV₁ sigV₂ refl bootstrapV₂
= let v₁r≢0 = NewVoteRound≢0 r pkH v₁ ¬bootstrapV₁
in ⊥-elim (v₁r≢0 (Impl-bsvr sigV₂ bootstrapV₂))
|
{
"alphanum_fraction": 0.6209811707,
"avg_line_length": 48.1913580247,
"ext": "agda",
"hexsha": "86bc44dff63824d182e1c78cb9519a544d7942e4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Concrete/Properties/Common.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Concrete/Properties/Common.agda",
"max_line_length": 127,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Concrete/Properties/Common.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2465,
"size": 7807
}
|
module Issue249 where
postulate
A B : Set
module A where
X = A
Y = B
open A renaming (X to C; Y to C)
-- open A using (X) renaming (Y to X)
|
{
"alphanum_fraction": 0.6158940397,
"avg_line_length": 10.7857142857,
"ext": "agda",
"hexsha": "c0860108a41fcf184ae58f9439439b41a151382f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue249.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue249.agda",
"max_line_length": 37,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue249.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 54,
"size": 151
}
|
module Relator.Equals where
open import Logic
import Lvl
open import Type
open import Type.Cubical
open import Type.Cubical.Path
open import Type.Cubical.Path.Proofs
infix 15 _≡_
_≡_ = Path
-- _≢_ : ∀{ℓ}{T} → T → T → Stmt{ℓ}
-- _≢_ a b = ¬(a ≡ b)
{-# BUILTIN REWRITE _≡_ #-}
data Id {ℓ}{T : Type{ℓ}} : T → T → Stmt{ℓ} where
instance intro : ∀{x : T} → (Id x x)
{-# BUILTIN EQUALITY Id #-}
|
{
"alphanum_fraction": 0.612345679,
"avg_line_length": 16.875,
"ext": "agda",
"hexsha": "26c9344c987b06b3a99707ccb15650e82416a688",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "old/Mathematical/Relator/Equals.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "old/Mathematical/Relator/Equals.agda",
"max_line_length": 48,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "old/Mathematical/Relator/Equals.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 156,
"size": 405
}
|
{-# OPTIONS --type-in-type #-}
open import Data.Empty
open import Data.Unit
open import Data.Bool hiding ( T )
open import Data.Product hiding ( curry ; uncurry )
open import Data.Nat
open import Data.String
open import Relation.Binary.PropositionalEquality using ( refl ; _≢_ ; _≡_ )
open import Function
module ClosedTheory2 where
----------------------------------------------------------------------
data Tel : Set₁ where
Emp : Tel
Ext : (A : Set) (B : A → Tel) → Tel
Scope : Tel → Set
Scope Emp = ⊤
Scope (Ext A B) = Σ A λ a → Scope (B a)
----------------------------------------------------------------------
UncurriedScope : (T : Tel) (X : Scope T → Set) → Set
UncurriedScope T X = (xs : Scope T) → X xs
CurriedScope : (T : Tel) (X : Scope T → Set) → Set
CurriedScope Emp X = X tt
CurriedScope (Ext A B) X = (a : A) → CurriedScope (B a) (λ b → X (a , b))
curryScope : (T : Tel) (X : Scope T → Set) → UncurriedScope T X → CurriedScope T X
curryScope Emp X f = f tt
curryScope (Ext A B) X f a = curryScope (B a) (λ b → X (a , b)) (λ b → f (a , b))
----------------------------------------------------------------------
data Desc (I : Set) : Set₁ where
End : (i : I) → Desc I
Rec : (i : I) (D : Desc I) → Desc I
Arg : (A : Set) (B : A → Desc I) → Desc I
ISet : Set → Set₁
ISet I = I → Set
El : {I : Set} (D : Desc I) → ISet I → ISet I
El (End j) X i = j ≡ i
El (Rec j D) X i = X j × El D X i
El (Arg A B) X i = Σ A (λ a → El (B a) X i)
data μ {I : Set} (D : Desc I) (i : I) : Set where
init : El D (μ D) i → μ D i
----------------------------------------------------------------------
UncurriedEl : {I : Set} (D : Desc I) (X : ISet I) → Set
UncurriedEl D X = ∀{i} → El D X i → X i
CurriedEl : {I : Set} (D : Desc I) (X : ISet I) → Set
CurriedEl (End i) X = X i
CurriedEl (Rec i D) X = (x : X i) → CurriedEl D X
CurriedEl (Arg A B) X = (a : A) → CurriedEl (B a) X
curryEl : {I : Set} (D : Desc I) (X : ISet I)
→ UncurriedEl D X → CurriedEl D X
curryEl (End i) X cn = cn refl
curryEl (Rec i D) X cn = λ x → curryEl D X (λ xs → cn (x , xs))
curryEl (Arg A B) X cn = λ a → curryEl (B a) X (λ xs → cn (a , xs))
----------------------------------------------------------------------
record Data : Set₁ where
field
E : Set
P : Tel
I : Scope P → Tel
C : (p : Scope P) (t : E) → Desc (Scope (I p))
----------------------------------------------------------------------
UncurriedFormer : Set
UncurriedFormer =
UncurriedScope P λ p
→ UncurriedScope (I p) λ i
→ Set
FormUncurried : UncurriedFormer
FormUncurried p = μ (Arg E (C p))
Former : Set
Former = CurriedScope P λ p → CurriedScope (I p) λ i → Set
Form : Former
Form =
curryScope P (λ p → CurriedScope (I p) λ i → Set) λ p →
curryScope (I p) (λ i → Set) λ i →
FormUncurried p i
----------------------------------------------------------------------
InjUncurried : E → Set
InjUncurried t = UncurriedScope P λ p → CurriedEl (C p t ) (FormUncurried p)
injUncurried : (t : E) → InjUncurried t
injUncurried t p = curryEl (C p t)
(FormUncurried p)
(λ xs → init (t , xs))
Inj : E → Set
Inj t = CurriedScope P λ p → CurriedEl (C p t) (FormUncurried p)
inj : (t : E) → Inj t
inj t = curryScope P
(λ p → CurriedEl (C p t) (FormUncurried p))
(injUncurried t)
----------------------------------------------------------------------
open Data using ( Former ; Form ; Inj ; inj )
----------------------------------------------------------------------
data VecT : Set where
nilT consT : VecT
VecR : Data
VecR = record {
E = VecT
; P = Ext Set λ _ → Emp
; I = λ _ → Ext ℕ λ _ → Emp
; C = λ { (A , tt) → λ
{ nilT → End (zero , tt)
; consT → Arg ℕ λ n → Arg A λ _
→ Rec (n , tt)
$ End (suc n , tt)
} }
}
Vec : (A : Set) → ℕ → Set
Vec = Form VecR
nil : (A : Set) → Vec A zero
nil = inj VecR nilT
cons : (A : Set) (n : ℕ) (x : A) (xs : Vec A n) → Vec A (suc n)
cons = inj VecR consT
----------------------------------------------------------------------
data TreeT : Set where
leaf₁T leaf₂T branchT : TreeT
TreeR : Data
TreeR = record {
E = TreeT
; P = Ext Set λ _ → Ext Set λ _ → Emp
; I = λ _ → Ext ℕ λ _ → Ext ℕ λ _ → Emp
; C = λ { (A , B , tt) → λ
{ leaf₁T → Arg A λ _ → End (suc zero , zero , tt)
; leaf₂T → Arg B λ _ → End (zero , suc zero , tt)
; branchT
→ Arg ℕ λ m → Arg ℕ λ n
→ Arg ℕ λ x → Arg ℕ λ y
→ Rec (m , n , tt) $ Rec (x , y , tt)
$ End (m + x , n + y , tt)
} }
}
Tree : (A B : Set) (m n : ℕ) → Set
Tree = Form TreeR
leaf₁ : (A B : Set) → A → Tree A B (suc zero) zero
leaf₁ = inj TreeR leaf₁T
----------------------------------------------------------------------
|
{
"alphanum_fraction": 0.4611181169,
"avg_line_length": 27.1885714286,
"ext": "agda",
"hexsha": "1d68ce359e50bcedfea29569464fb859e9a223e5",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:31:22.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-02T08:56:15.000Z",
"max_forks_repo_head_hexsha": "832383d7adf37aa2364213fb0aeb67e9f61a248f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/generic-elim",
"max_forks_repo_path": "slides/ClosedTheory2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "832383d7adf37aa2364213fb0aeb67e9f61a248f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/generic-elim",
"max_issues_repo_path": "slides/ClosedTheory2.agda",
"max_line_length": 82,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "832383d7adf37aa2364213fb0aeb67e9f61a248f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/generic-elim",
"max_stars_repo_path": "slides/ClosedTheory2.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-09T08:46:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-02T14:05:20.000Z",
"num_tokens": 1611,
"size": 4758
}
|
------------------------------------------------------------------------
-- A README directed towards readers of the paper
-- "Correct-by-Construction Pretty-Printing"
--
-- Nils Anders Danielsson
------------------------------------------------------------------------
{-# OPTIONS --guardedness #-}
module README.Correct-by-Construction-Pretty-Printing where
------------------------------------------------------------------------
-- 2: Grammars
-- The basic grammar data type, including its semantics. Only a small
-- number of derived combinators is defined directly for this data
-- type. It is proved that an inductive version of this type would be
-- quite restrictive.
import Grammar.Infinite.Basic
-- The extended grammar data type mentioned in Section 4.3, along with
-- a semantics and lots of derived combinators. This type is proved to
-- be no more expressive than the previous one; but it is also proved
-- that every language that can be recursively enumerated can be
-- represented by a (unit-valued) grammar.
import Grammar.Infinite
------------------------------------------------------------------------
-- 3: Pretty-Printers
import Pretty
------------------------------------------------------------------------
-- 4: Examples
-- Reusable document combinators introduced in this section.
import Pretty
-- The symbol combinator and the heuristic procedure
-- trailing-whitespace.
import Grammar.Infinite
-- 4.1: Boolean literals.
import Examples.Bool
-- 4.2: Expressions, and 4.3: Expressions, Take Two.
import Examples.Expression
-- 4.4: Identifiers.
import Examples.Identifier
-- 4.5: Other Examples.
-- Some of these examples are not mentioned in the paper.
-- Another expression example based on one in Matsuda and Wang's
-- "FliPpr: A Prettier Invertible Printing System".
import Examples.Expression
-- An example based on one in Swierstra and Chitil's "Linear, bounded,
-- functional pretty-printing".
import Examples.Identifier-list
-- Two examples, both based on examples in Wadler's "A prettier
-- printer".
import Examples.Tree
import Examples.XML
-- The fill combinator.
import Pretty
-- A general grammar and pretty-printer for binary operators of
-- various (not necessarily linearly ordered) precedences.
import Examples.Precedence
------------------------------------------------------------------------
-- 5: Renderers
import Renderer
-- Unambiguous and Parser.
import Grammar.Infinite
|
{
"alphanum_fraction": 0.6261187958,
"avg_line_length": 25.6041666667,
"ext": "agda",
"hexsha": "3df64beea5a5a6f8a6baa96880476bba112fc292",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/pretty",
"max_forks_repo_path": "README/Correct-by-Construction-Pretty-Printing.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/pretty",
"max_issues_repo_path": "README/Correct-by-Construction-Pretty-Printing.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/pretty",
"max_stars_repo_path": "README/Correct-by-Construction-Pretty-Printing.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 478,
"size": 2458
}
|
module HC-Lec2 where
open import HC-Lec1
-- ==============================================================================
-- Lecture 4 : Sigma, Difference, Vector Take
-- https://www.youtube.com/watch?v=OZeDRtRmgkw
-- 43:14
data Vec (X : Set) : Nat -> Set where
[] : Vec X zero
_::_ : {n : Nat} -> X -> Vec X n -> Vec X (suc n)
infixr 4 _::_
vTake : (m n : Nat) -> m >= n -> {X : Set} -> Vec X m -> Vec X n
vTake m zero m>=n xs = []
vTake (suc m) (suc n) m>=n (x :: xs) = x :: vTake m n m>=n xs
vTake32 : Set
vTake32 = vTake 3 2 <> (1 :: 2 :: 3 :: []) == (1 :: 2 :: [])
-- 47:35 : taking ALL elements is an identity
vTakeIdFact : (n : Nat) {X : Set} (xs : Vec X n)
-> vTake n n (refl->= n) xs == xs
vTakeIdFact .0 [] = refl []
vTakeIdFact (suc n) (x :: xs) rewrite vTakeIdFact n xs = refl (x :: xs)
-- 48:17 : taking p elements from Vm is same as taking n elements from Vm, forming Vn
-- then taking p elments from Vn
vTakeCpFact : (m n p : Nat) (m>=n : m >= n) (n>=p : n >= p) {X : Set} (xs : Vec X m)
-> vTake m p (trans->= m n p m>=n n>=p) xs
== vTake n p n>=p (vTake m n m>=n xs)
vTakeCpFact m n zero m>=n n>=p _ = refl []
vTakeCpFact (suc m) (suc n) (suc p) m>=n n>=p (x :: xs)
rewrite vTakeCpFact m n p m>=n n>=p xs
= refl (x :: (vTake n p n>=p (vTake m n m>=n xs)))
-- 48:54
-- vTakeIdFact : reflexivity turns into identity
-- vTakeCpFact : transitivity turns into composition
-- ==============================================================================
-- Lecture 5 : How Rewrite Works
-- https://www.youtube.com/watch?v=b5salYMZoyM
-- 3:34
vTake53 : Vec Nat 3
vTake53 = vTake 5 3 <> (1 :: 2 :: 3 :: 4 :: 5 :: [])
-- 5:30
vTake' : ∀ {m : Nat} {X : Set}
-> (n : Nat) -> m >= n -> Vec X m
-> Vec X n
vTake' {m} zero m>=n xs = []
vTake' {suc m} (suc n) m>=n (x :: xs) = x :: vTake' {m} n m>=n xs
{-
-- 7:45
rigid symbols : constructors (value and type)
- if you are trying to tell if two usages of constructors match each other,
you can compare them component-wise
- no defined computational meaning - they are what they are
- e.g., Vec Nat 3
non-rigid
- e.g., >=
- can compute
-- 15:48
vTake : think of as turning a '>=' proof into a vector operation.
- In comes a proof on numbers, out comes an operation on vectors.
vTakeIdFact : identity proof on numbers turns into identity operation on vectors
vTakeCpFact : proof of transitivity on numbers turns into composition operation on vectors
-- 24:08 : best practice : use record (instead of data) when possible : agda is more aggressive
-- 24:28 : HOW REWRITE WORKS
Rewrite is shorthand for
- abstract the LHS of the equation using 'with'
- abstract the proof of the equation using 'with'
- then pattern matching on the proof
-}
------------------------------------------------------------------------------
-- Splittings (which bear some relationship to <= from ex1)
-- 39:00
data _<[_]>_ : Nat -> Nat -> Nat -> Set where
zzz : zero <[ zero ]> zero
lll : {l m r : Nat} -> l <[ m ]> r
-> suc l <[ suc m ]> r
rrr : {l m r : Nat} -> l <[ m ]> r
-> l <[ suc m ]> suc r
-- xzzz : Set
-- xzzz = zero <[ zero ]> zero
-- x1z1 : Set
-- x1z1 = 1 <[ zero ]> 1
-- x159 : Set
-- x159 = 1 <[ 5 ]> 9
-- x951 : Set
-- x951 = 9 <[ 5 ]> 1
-- 41:08
-- combine two vectors into one according to given instructions
-- this is kind of a "double-sided" '<='
{- collection
* <--- *
* ---> *
* ---> *
* <--- *
* ---> *
3 from left 2 from right
-}
_>[_]<_ : {X : Set} {l m r : Nat}
-> Vec X l
-> l <[ m ]> r -- instructions
-> Vec X r
-> Vec X m
-- why is rrr the first line?
-- 29:49 https://www.youtube.com/watch?v=RW4aC_6n0yQ
-- do NOT pattern match on vector first (LHS of first clause)
-- pattern match on instructions first
-- i.e., no pattern match on xl, so goes to try to match instruction : >[ rrr mmm ]<
xl >[ rrr mmm ]< (x :: xr) = x :: (xl >[ mmm ]< xr)
(x :: xl) >[ lll mmm ]< xr = x :: (xl >[ mmm ]< xr)
[] >[ zzz ]< [] = []
v6rl : Vec Nat 6
v6rl = (0 :: 2 :: 3 :: []) >[ rrr (rrr (rrr (lll (lll (lll zzz))))) ]< (7 :: 8 :: 9 :: [])
_ : v6rl == (7 :: 8 :: 9 :: 0 :: 2 :: 3 :: [])
_ = refl (7 :: 8 :: 9 :: 0 :: 2 :: 3 :: [])
v6 : Vec Nat 6
v6 = (0 :: 2 :: 3 :: []) >[ lll (rrr (lll (rrr (lll (rrr zzz))))) ]< (7 :: 8 :: 9 :: [])
_ : v6 == (0 :: 7 :: 2 :: 8 :: 3 :: 9 :: [])
_ = refl (0 :: 7 :: 2 :: 8 :: 3 :: 9 :: [])
-- 44:27
-- split a vector into two vectors according to given instructions
-- reverses '<[ m ]>' - instructions for taking things apart
data FindSplit {X : Set} {l m r : Nat}
(nnn : l <[ m ]> r) : (xs : Vec X m) -> Set where
splitBits : (xl : Vec X l) (xr : Vec X r) -> FindSplit nnn (xl >[ nnn ]< xr)
-- proves FindSplit
findSplit : {X : Set} {l m r : Nat} (nnn : l <[ m ]> r) (xs : Vec X m) -> FindSplit nnn xs
findSplit zzz [] = splitBits [] []
findSplit (lll nnn) (x :: xs) with findSplit nnn xs
-- FindSplit (lll nnn) (x :: (xl >[ nnn ]< xr))
findSplit (lll nnn) (x :: .(xl >[ nnn ]< xr)) | splitBits xl xr = splitBits (x :: xl) xr
findSplit (rrr nnn) (x :: xs) with findSplit nnn xs
-- FindSplit (rrr nnn) (x :: (xl >[ nnn ]< xr))
findSplit (rrr nnn) (x :: .(xl >[ nnn ]< xr)) | splitBits xl xr = splitBits xl (x :: xr)
-- ==============================================================================
-- https://www.youtube.com/watch?v=RW4aC_6n0yQ
-- 5:08
{-
The o' <= constructor : you can keep increasing the RHS
oz -- stop
os -- take this one and keep going
o' -- skip this one and keep going
Tabulating the ways of choosing N things from M things
A path is a way to get a specific embedding.
The numbers in parenthesis shows the number of paths to a specific embedding (Pascal's triangle).
oz
0<=0
(1)
/ \
/ \
/ \
o' os
0<=1 1<=1
(1) (1)
/ \ / \
/ \ / \
/ \ / \
o' os o' os
0<=2 1<=2 2<=2
(1) (2) (2)
/ \ / \ / \
/ \ / \ / \
/ \ / \ / \
o' os o' os o' os
0<=3 1<=3 2<=3 3<=3
(1) (3) (3) (1)
witnesses to M choose N
read a value in a set of this type as instructions for choosing
-}
-- 14:58
-- 'findSplit' (above)
-- 23:20
-- last clause of 'findSplit'
-- 29:49 : the same ERROR I had before changing order of clauses in _>[_]<_
-- 34:22 : rule of thumb
-- if there is one column of args, where on every line is a constructor then no change
-- otherwise, choose ordering carefully
-- 35:52 : final order of clauses of of _>[_]<_ -- tidy to have nil case at top or bottom
-- 40:15 shows how agda/haskell does case splitting on _>[_]<_
|
{
"alphanum_fraction": 0.4467813894,
"avg_line_length": 35.0223214286,
"ext": "agda",
"hexsha": "ccc52f366eb056b8d74befc718c4443b2951da93",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/course/2017-conor_mcbride_cs410/HC-Lec2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/course/2017-conor_mcbride_cs410/HC-Lec2.agda",
"max_line_length": 97,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/course/2017-conor_mcbride_cs410/HC-Lec2.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 2440,
"size": 7845
}
|
module Generic.Main where
open import Generic.Core public
open import Generic.Function.FoldMono public
open import Generic.Property.Eq public
open import Generic.Reflection.ReadData public
open import Generic.Reflection.DeriveEq public
|
{
"alphanum_fraction": 0.7748091603,
"avg_line_length": 32.75,
"ext": "agda",
"hexsha": "63b43003965a8fca1ffac8aef4bb1de175d03ae4",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z",
"max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "turion/Generic",
"max_forks_repo_path": "src/Generic/Main.agda",
"max_issues_count": 9,
"max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "turion/Generic",
"max_issues_repo_path": "src/Generic/Main.agda",
"max_line_length": 46,
"max_stars_count": 30,
"max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "turion/Generic",
"max_stars_repo_path": "src/Generic/Main.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z",
"num_tokens": 49,
"size": 262
}
|
{-# OPTIONS --universe-polymorphism #-}
module Issue441 where
open import Common.Level
postulate
C : ∀ ℓ → Set ℓ → Set ℓ
I : ∀ a b (A : Set a) (B : Set b) → (A → B) → B → Set (a ⊔ b)
E : ∀ a b (A : Set a) → (A → Set b) → Set (a ⊔ b)
c : ∀ a (A : Set a) → ((B : A → Set a) → E a a A B) → C a A
foo : (∀ a b (A : Set a) (B : A → Set b) → E a b A B) →
∀ a b (A : Set a) (B : Set b) (f : A → B) x →
C (a ⊔ b) (I a b A B f x)
foo e a b A B f x = c _ _ (λ B′ → e _ _ _ _)
infix 4 _≡_
data _≡_ {a} {A : Set a} : A → A → Set a where
refl : ∀ x → x ≡ x
elim : ∀ {a p} {A : Set a} (P : {x y : A} → x ≡ y → Set p) →
(∀ x → P (refl x)) →
∀ {x y} (x≡y : x ≡ y) → P x≡y
elim P r (refl x) = r _
cong : ∀ {a b} {A : Set a} {B : Set b}
(f : A → B) {x y : A} → x ≡ y → f x ≡ f y
cong f (refl x) = refl (f x)
bar : ∀ {a} {A : Set a} {x y : A}
(x≡y : x ≡ y) (f : x ≡ y → x ≡ y) →
f x≡y ≡ f x≡y
bar = elim (λ {x} {y} x≡y → (f : x ≡ y → x ≡ y) → f x≡y ≡ f x≡y)
(λ x f → cong {a = _} {b = _} f (refl (refl x)))
|
{
"alphanum_fraction": 0.3909774436,
"avg_line_length": 28,
"ext": "agda",
"hexsha": "6bd2744a176d06b27a7a8c5ab3b52f91b73c74fd",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue441.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue441.agda",
"max_line_length": 64,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue441.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 537,
"size": 1064
}
|
{-# OPTIONS --without-K --exact-split #-}
module 00-preamble where
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) public
UU : (i : Level) → Set (lsuc i)
UU i = Set i
|
{
"alphanum_fraction": 0.6538461538,
"avg_line_length": 18.2,
"ext": "agda",
"hexsha": "891c80dc7d5fa50295c967970f20e67ab8d210eb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "hemangandhi/HoTT-Intro",
"max_forks_repo_path": "Agda/00-preamble.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "hemangandhi/HoTT-Intro",
"max_issues_repo_path": "Agda/00-preamble.agda",
"max_line_length": 65,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "hemangandhi/HoTT-Intro",
"max_stars_repo_path": "Agda/00-preamble.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 59,
"size": 182
}
|
module Everything where
open import Oscar.Prelude public
-- meta-class
open import Oscar.Class public
-- classes
open import Oscar.Class.Amgu public
open import Oscar.Class.Apply public
open import Oscar.Class.Bind public
open import Oscar.Class.Category public
open import Oscar.Class.Congruity public
open import Oscar.Class.Fmap public
open import Oscar.Class.Functor public
open import Oscar.Class.HasEquivalence public
open import Oscar.Class.Hmap public
open import Oscar.Class.Injectivity public
open import Oscar.Class.IsCategory public
open import Oscar.Class.IsDecidable public
open import Oscar.Class.IsEquivalence public
open import Oscar.Class.IsFunctor public
open import Oscar.Class.IsPrecategory public
open import Oscar.Class.IsPrefunctor public
open import Oscar.Class.Leftstar public
open import Oscar.Class.Leftunit public
open import Oscar.Class.Map public
open import Oscar.Class.Precategory public
open import Oscar.Class.Prefunctor public
open import Oscar.Class.Properthing public
open import Oscar.Class.Pure public
open import Oscar.Class.Quadricity public
open import Oscar.Class.Reflexivity public
open import Oscar.Class.Setoid public
open import Oscar.Class.Similarity public
open import Oscar.Class.SimilarityM public
open import Oscar.Class.SimilaritySingleton public
open import Oscar.Class.Smap public
open import Oscar.Class.Smapoid public
open import Oscar.Class.Successor₀ public
open import Oscar.Class.Successor₁ public
open import Oscar.Class.Surjection public
open import Oscar.Class.Surjextensionality public
open import Oscar.Class.Surjidentity public
open import Oscar.Class.Surjtranscommutativity public
open import Oscar.Class.Symmetrical public
open import Oscar.Class.Symmetry public
open import Oscar.Class.Thickandthin public
open import Oscar.Class.Transassociativity public
open import Oscar.Class.Transextensionality public
open import Oscar.Class.Transitivity public
open import Oscar.Class.Transleftidentity public
open import Oscar.Class.Transrightidentity public
open import Oscar.Class.Unit public
open import Oscar.Class.[ExtensibleType] public
open import Oscar.Class.[IsExtensionB] public
-- individual instances
open import Oscar.Class.Amgu.Term∃SubstitistMaybe public
open import Oscar.Class.Congruity.Proposequality public
open import Oscar.Class.Congruity.Proposextensequality public
open import Oscar.Class.HasEquivalence.ExtensionṖroperty public
open import Oscar.Class.HasEquivalence.Ṗroperty public
open import Oscar.Class.HasEquivalence.Substitunction public
open import Oscar.Class.Hmap.Transleftidentity public
open import Oscar.Class.Injectivity.Vec public
open import Oscar.Class.IsDecidable.Fin public
open import Oscar.Class.IsDecidable.¶ public
open import Oscar.Class.Properthing.ExtensionṖroperty public
open import Oscar.Class.Properthing.Ṗroperty public
open import Oscar.Class.Reflexivity.Function public
open import Oscar.Class.Smap.ExtensionFinExtensionTerm public
open import Oscar.Class.Smap.ExtensionṖroperty public
open import Oscar.Class.Smap.TransitiveExtensionLeftṖroperty public
open import Oscar.Class.Surjection.⋆ public
open import Oscar.Class.Symmetrical.ExtensionalUnifies public
open import Oscar.Class.Symmetrical.Symmetry public
open import Oscar.Class.Symmetrical.Unifies public
open import Oscar.Class.Transextensionality.Proposequality public
open import Oscar.Class.Transitivity.Function public
open import Oscar.Class.[ExtensibleType].Proposequality public
-- instance bundles
open import Oscar.Property.Category.AListProposequality public
open import Oscar.Property.Category.ExtensionProposextensequality public
open import Oscar.Property.Category.Function public
open import Oscar.Property.Functor.SubstitistProposequalitySubstitunctionProposextensequality public
open import Oscar.Property.Functor.SubstitunctionExtensionTerm public
open import Oscar.Property.Monad.Maybe public
open import Oscar.Property.Propergroup.Substitunction public
open import Oscar.Property.Setoid.ProductIndexEquivalence public
open import Oscar.Property.Setoid.Proposequality public
open import Oscar.Property.Setoid.Proposextensequality public
open import Oscar.Property.Setoid.ṖropertyEquivalence public
open import Oscar.Property.Thickandthin.FinFinProposequalityMaybeProposequality public
open import Oscar.Property.Thickandthin.FinTermProposequalityMaybeProposequality public
-- data
open import Oscar.Data.Constraint public
open import Oscar.Data.Decidable public
open import Oscar.Data.Descender public
open import Oscar.Data.ExtensionṖroperty public
open import Oscar.Data.Fin public
open import Oscar.Data.List public
open import Oscar.Data.Maybe public
open import Oscar.Data.ProductIndexEquivalence public
open import Oscar.Data.ProperlyExtensionNothing public
open import Oscar.Data.Proposequality public
open import Oscar.Data.ṖropertyEquivalence public
open import Oscar.Data.Substitist public
open import Oscar.Data.Substitunction public
open import Oscar.Data.Surjcollation public
open import Oscar.Data.Surjextenscollation public
open import Oscar.Data.Term public
open import Oscar.Data.Vec public
open import Oscar.Data.¶ public
open import Oscar.Data.𝟘 public
open import Oscar.Data.𝟙 public
open import Oscar.Data.𝟚 public
-- class derivations
open import Oscar.Class.Leftunit.ToUnit public
open import Oscar.Class.Symmetry.ToSym public
open import Oscar.Class.Transleftidentity.ToLeftunit public
|
{
"alphanum_fraction": 0.5553968821,
"avg_line_length": 66.6904761905,
"ext": "agda",
"hexsha": "1dbb3e275400c1c3d392e0d90f277d21a2a05c71",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Everything.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Everything.agda",
"max_line_length": 103,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Everything.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1278,
"size": 8403
}
|
open import Relation.Nullary.Decidable using (False; map)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Binary using (Decidable)
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; sym; cong; module ≡-Reasoning)
open ≡-Reasoning
open import Function.Equivalence as FE using ()
open import Data.Unit using (⊤; tt)
open import Agda.Builtin.FromNat using (Number)
module AKS.Modular.Quotient.Base where
open import AKS.Nat using (ℕ; zero; suc; _<_; _∸_) renaming (_+_ to _+ℕ_; _*_ to _*ℕ_; _≟_ to _≟ℕ_)
open import AKS.Nat using (≢⇒¬≟; ∸-mono-<ʳ; 0<1+n; <⇒≤; <-irrelevant; 0≢⇒0<)
open import AKS.Nat.Divisibility using (_%_; n%m<m; 0%m≡0; 1%m≡1; [m+kn]%n≡m%n; m%n%n≡m%n; %-distribˡ-+; %-distribˡ-*)
open import AKS.Nat.GCD using (+ʳ; +ˡ)
open import AKS.Primality using (IsPrime; Prime; prime≢0; bézout-prime)
open Prime
record ℤ/[_] (P : Prime) : Set where
constructor ℤ✓
field
mod : ℕ
mod<p : mod < prime P
open ℤ/[_] public
module Operations {P : Prime} where
open Prime P using () renaming (prime to p; isPrime to p-isPrime)
open IsPrime p-isPrime using (1<p)
p≢0 : False (p ≟ℕ 0)
p≢0 = ≢⇒¬≟ (prime≢0 p-isPrime)
[_] : ℕ → ℤ/[ P ]
[ n ] = ℤ✓ ((n % p) {p≢0}) (n%m<m n p)
instance
ℤ/[]-number : Number (ℤ/[ P ])
ℤ/[]-number = record
{ Constraint = λ _ → ⊤
; fromNat = λ n → [ n ]
}
infixl 6 _+_
_+_ : ℤ/[ P ] → ℤ/[ P ] → ℤ/[ P ]
n + m = [ mod n +ℕ mod m ]
infix 8 -_
-_ : ℤ/[ P ] → ℤ/[ P ]
- (ℤ✓ zero 0<p) = ℤ✓ zero 0<p
- (ℤ✓ (suc n) 1+n<p) = ℤ✓ (p ∸ suc n) (∸-mono-<ʳ (<⇒≤ 1+n<p) 0<1+n)
infixl 7 _*_
_*_ : ℤ/[ P ] → ℤ/[ P ] → ℤ/[ P ]
n * m = [ mod n *ℕ mod m ]
ℤ/[]-irrelevance : ∀ {x y : ℤ/[ P ]} → mod x ≡ mod y → x ≡ y
ℤ/[]-irrelevance {ℤ✓ mod[x] mod[x]<p} {ℤ✓ .mod[x] mod[y]<p} refl = cong (λ z<p → ℤ✓ mod[x] z<p) (<-irrelevant mod[x]<p mod[y]<p)
n≢0⇒mod[n]≢0 : ∀ {n} → n ≢ 0 → mod n ≢ 0
n≢0⇒mod[n]≢0 {ℤ✓ zero _} n≢0 = contradiction (ℤ/[]-irrelevance (sym (0%m≡0 p))) n≢0
n≢0⇒mod[n]≢0 {ℤ✓ (suc n) _} n≢0 = λ ()
bézout-x∤p : ∀ n x y → 1 +ℕ x *ℕ n ≡ y *ℕ p → 0 ≢ (x % p) {p≢0}
bézout-x∤p n x y 1+x*n≡y*p 0≡x%p = contradiction 1≡0 (λ ())
where
1≡0 : 1 ≡ zero
1≡0 = begin
1 ≡⟨ sym (1%m≡1 1<p) ⟩
(1 +ℕ 0 *ℕ n) % p ≡⟨ cong (λ t → ((1 +ℕ t *ℕ n) % p) {p≢0}) 0≡x%p ⟩
(1 +ℕ (x % p) *ℕ n) % p ≡⟨ %-distribˡ-+ 1 ((x % p) *ℕ n) p ⟩
(1 % p +ℕ ((x % p) *ℕ n) % p) % p ≡⟨ cong (λ t → ((1 % p +ℕ t) % p) {p≢0}) (%-distribˡ-* (x % p) n p) ⟩
(1 % p +ℕ ((x % p % p) *ℕ (n % p)) % p) % p ≡⟨ cong (λ t → (1 % p +ℕ (t *ℕ (n % p)) % p) % p) (m%n%n≡m%n x p) ⟩
(1 % p +ℕ ((x % p) *ℕ (n % p)) % p) % p ≡⟨ cong (λ t → (1 % p +ℕ t) % p) (sym (%-distribˡ-* x n p)) ⟩
(1 % p +ℕ (x *ℕ n) % p) % p ≡⟨ sym (%-distribˡ-+ 1 (x *ℕ n) p) ⟩
(1 +ℕ x *ℕ n) % p ≡⟨ cong (λ t → (t % p) {p≢0}) 1+x*n≡y*p ⟩
(y *ℕ p) % p ≡⟨ [m+kn]%n≡m%n 0 y p {p≢0} ⟩
0 % p ≡⟨ 0%m≡0 p ⟩
0 ∎
-- x⁻¹ * x - 1 ≡ z * p
infix 8 _⁻¹
_⁻¹ : ∀ (n : ℤ/[ P ]) {n≢0 : n ≢ 0} → ℤ/[ P ]
(n ⁻¹) {n≢0} with bézout-prime (mod n) p (n≢0⇒mod[n]≢0 n≢0) (mod<p n) p-isPrime
... | +ʳ x y 1+x*n≡y*p = ℤ✓ (p ∸ (x % p) {p≢0}) (∸-mono-<ʳ (<⇒≤ (n%m<m x p)) (0≢⇒0< (bézout-x∤p (mod n) x y 1+x*n≡y*p)))
... | +ˡ x y 1+y*p≡x*n = [ x ]
infixl 7 _/_
_/_ : ∀ (n m : ℤ/[ P ]) {m≢0 : m ≢ 0} → ℤ/[ P ]
(n / m) {m≢0} = n * (m ⁻¹) {m≢0}
_≟_ : Decidable {A = ℤ/[ P ]} _≡_
ℤ✓ x x<p ≟ ℤ✓ y y<p = map (FE.equivalence ℤ/[]-irrelevance (λ { refl → refl })) (x ≟ℕ y)
open Operations public
|
{
"alphanum_fraction": 0.4843617921,
"avg_line_length": 36.96875,
"ext": "agda",
"hexsha": "ef7ebce401c1e4b511ea2c8d34f17f8579a74d7b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mckeankylej/thesis",
"max_forks_repo_path": "proofs/AKS/Modular/Quotient/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mckeankylej/thesis",
"max_issues_repo_path": "proofs/AKS/Modular/Quotient/Base.agda",
"max_line_length": 130,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mckeankylej/thesis",
"max_stars_repo_path": "proofs/AKS/Modular/Quotient/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z",
"num_tokens": 1893,
"size": 3549
}
|
-- Jesper, 2016-11-04
-- Absurd patterns should *not* be counted as a UnusedArg.
open import Common.Equality
data ⊥ : Set where
data Bool : Set where
true false : Bool
abort : (A : Set) → ⊥ → A
abort A ()
test : (x y : ⊥) → abort Bool x ≡ abort Bool y
test x y = refl
|
{
"alphanum_fraction": 0.6363636364,
"avg_line_length": 17.1875,
"ext": "agda",
"hexsha": "9be1e10ccf1b485e98e7994ad28bb6604133d3a7",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/AbsurdPatternNotUnused.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/AbsurdPatternNotUnused.agda",
"max_line_length": 58,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/AbsurdPatternNotUnused.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 93,
"size": 275
}
|
postulate
[_…_] : Set → Set → Set
|
{
"alphanum_fraction": 0.5405405405,
"avg_line_length": 9.25,
"ext": "agda",
"hexsha": "637c80e87c2d26397bd8fc72978cff6be0f93db7",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue3139.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue3139.agda",
"max_line_length": 25,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue3139.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 15,
"size": 37
}
|
module Issue1494.Helper where
record Record : Set₁ where
field _≡_ : {A : Set} → A → A → Set
module Module (r : Record) where
open Record r public
|
{
"alphanum_fraction": 0.6753246753,
"avg_line_length": 17.1111111111,
"ext": "agda",
"hexsha": "37d2b2326533017a620ddc363c565c735dbd0a6b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue1494/Helper.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue1494/Helper.agda",
"max_line_length": 37,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue1494/Helper.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 48,
"size": 154
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Finite.Fin.Instance.Span where
open import Data.Nat using (ℕ)
open import Data.Fin
open import Data.Fin.Patterns
open import Relation.Binary.PropositionalEquality using (_≡_ ; refl)
open import Categories.Category.Finite.Fin
open import Categories.Category
open import Categories.Functor using (Functor; _∘F_) renaming (id to idF)
open import Categories.NaturalTransformation using (ntHelper)
open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_)
open import Categories.Adjoint.Equivalence using (_⊣⊢_; ⊣Equivalence; withZig)
import Categories.Morphism as Mor
import Categories.Category.Instance.Span as Sp
private
variable
a b c d : Fin 3
-- The diagram is the following:
--
-- 1 <------- 0 -------> 2
--
SpanShape : FinCatShape
SpanShape = record
{ size = 3
; ∣_⇒_∣ = morph
; hasShape = record
{ id = id
; _∘_ = _∘_
; assoc = assoc
; identityˡ = identityˡ
; identityʳ = identityʳ
}
}
where morph : Fin 3 → Fin 3 → ℕ
morph 0F 0F = 1
morph 0F 1F = 1
morph 0F 2F = 1
morph 1F 1F = 1
morph 2F 2F = 1
morph _ _ = 0
id : Fin (morph a a)
id {0F} = 0F
id {1F} = 0F
id {2F} = 0F
_∘_ : ∀ {a b c} → Fin (morph b c) → Fin (morph a b) → Fin (morph a c)
_∘_ {0F} {0F} {0F} 0F 0F = 0F
_∘_ {0F} {0F} {1F} 0F 0F = 0F
_∘_ {0F} {0F} {2F} 0F 0F = 0F
_∘_ {0F} {1F} {1F} 0F 0F = 0F
_∘_ {0F} {2F} {2F} 0F 0F = 0F
_∘_ {1F} {1F} {1F} 0F 0F = 0F
_∘_ {2F} {2F} {2F} 0F 0F = 0F
assoc : ∀ {f : Fin (morph a b)} {g : Fin (morph b c)} {h : Fin (morph c d)} →
((h ∘ g) ∘ f) ≡ (h ∘ (g ∘ f))
assoc {0F} {0F} {0F} {0F} {0F} {0F} {0F} = refl
assoc {0F} {0F} {0F} {1F} {0F} {0F} {0F} = refl
assoc {0F} {0F} {0F} {2F} {0F} {0F} {0F} = refl
assoc {0F} {0F} {1F} {1F} {0F} {0F} {0F} = refl
assoc {0F} {0F} {2F} {2F} {0F} {0F} {0F} = refl
assoc {0F} {1F} {1F} {1F} {0F} {0F} {0F} = refl
assoc {0F} {2F} {2F} {2F} {0F} {0F} {0F} = refl
assoc {1F} {1F} {1F} {1F} {0F} {0F} {0F} = refl
assoc {2F} {2F} {2F} {2F} {0F} {0F} {0F} = refl
identityˡ : ∀ {f : Fin (morph a b)} → (id ∘ f) ≡ f
identityˡ {0F} {0F} {0F} = refl
identityˡ {0F} {1F} {0F} = refl
identityˡ {0F} {2F} {0F} = refl
identityˡ {1F} {1F} {0F} = refl
identityˡ {2F} {2F} {0F} = refl
identityʳ : ∀ {f : Fin (morph a b)} → (f ∘ id) ≡ f
identityʳ {0F} {0F} {0F} = refl
identityʳ {0F} {1F} {0F} = refl
identityʳ {0F} {2F} {0F} = refl
identityʳ {1F} {1F} {0F} = refl
identityʳ {2F} {2F} {0F} = refl
Span : Category _ _ _
Span = FinCategory SpanShape
module Span = Category Span
open FinCatShape SpanShape
SpanToF : Functor Span Sp.Span
SpanToF = record
{ F₀ = F₀
; F₁ = F₁
; identity = identity
; homomorphism = homomorphism
; F-resp-≈ = F-resp-≈
}
where F₀ : Fin 3 → Sp.SpanObj
F₀ 0F = Sp.center
F₀ 1F = Sp.left
F₀ 2F = Sp.right
F₁ : Fin ∣ a ⇒ b ∣ → Sp.SpanArr (F₀ a) (F₀ b)
F₁ {0F} {0F} 0F = Sp.span-id
F₁ {0F} {1F} 0F = Sp.span-arrˡ
F₁ {0F} {2F} 0F = Sp.span-arrʳ
F₁ {1F} {1F} 0F = Sp.span-id
F₁ {2F} {2F} 0F = Sp.span-id
identity : F₁ (id {a}) ≡ Sp.span-id
identity {0F} = refl
identity {1F} = refl
identity {2F} = refl
homomorphism : ∀ {f : Fin ∣ a ⇒ b ∣} {g : Fin ∣ b ⇒ c ∣} →
F₁ (g ∘ f) ≡ Sp.span-compose (F₁ g) (F₁ f)
homomorphism {0F} {0F} {0F} {0F} {0F} = refl
homomorphism {0F} {0F} {1F} {0F} {0F} = refl
homomorphism {0F} {0F} {2F} {0F} {0F} = refl
homomorphism {0F} {1F} {1F} {0F} {0F} = refl
homomorphism {0F} {2F} {2F} {0F} {0F} = refl
homomorphism {1F} {1F} {1F} {0F} {0F} = refl
homomorphism {2F} {2F} {2F} {0F} {0F} = refl
F-resp-≈ : ∀ {f g : Fin ∣ a ⇒ b ∣} → f ≡ g → F₁ f ≡ F₁ g
F-resp-≈ {0F} {0F} {0F} {0F} _ = refl
F-resp-≈ {0F} {1F} {0F} {0F} _ = refl
F-resp-≈ {0F} {2F} {0F} {0F} _ = refl
F-resp-≈ {1F} {1F} {0F} {0F} _ = refl
F-resp-≈ {2F} {2F} {0F} {0F} _ = refl
module SpanToF = Functor SpanToF
SpanFromF : Functor Sp.Span Span
SpanFromF = record
{ F₀ = F₀
; F₁ = F₁
; identity = identity
; homomorphism = homomorphism
; F-resp-≈ = F-resp-≈
}
where F₀ : Sp.SpanObj → Fin 3
F₀ Sp.center = 0F
F₀ Sp.left = 1F
F₀ Sp.right = 2F
F₁ : ∀ {A B} → Sp.Span [ A , B ] → Span [ F₀ A , F₀ B ]
F₁ {Sp.center} Sp.span-id = 0F
F₁ {Sp.left} Sp.span-id = 0F
F₁ {Sp.right} Sp.span-id = 0F
F₁ Sp.span-arrˡ = 0F
F₁ Sp.span-arrʳ = 0F
identity : ∀ {A} → F₁ (Category.id Sp.Span {A}) ≡ id
identity {Sp.center} = refl
identity {Sp.left} = refl
identity {Sp.right} = refl
homomorphism : ∀ {X Y Z} {f : Sp.Span [ X , Y ]} {g : Sp.Span [ Y , Z ]} →
F₁ (Sp.Span [ g ∘ f ]) ≡ F₁ g ∘ F₁ f
homomorphism {Sp.center} {_} {_} {Sp.span-id} {Sp.span-id} = refl
homomorphism {Sp.left} {_} {_} {Sp.span-id} {Sp.span-id} = refl
homomorphism {Sp.right} {_} {_} {Sp.span-id} {Sp.span-id} = refl
homomorphism {_} {_} {_} {Sp.span-id} {Sp.span-arrˡ} = refl
homomorphism {_} {_} {_} {Sp.span-id} {Sp.span-arrʳ} = refl
homomorphism {_} {_} {_} {Sp.span-arrˡ} {Sp.span-id} = refl
homomorphism {_} {_} {_} {Sp.span-arrʳ} {Sp.span-id} = refl
F-resp-≈ : ∀ {A B} {f g : Sp.Span [ A , B ]} → f ≡ g → F₁ f ≡ F₁ g
F-resp-≈ {Sp.center} {_} {Sp.span-id} {Sp.span-id} _ = refl
F-resp-≈ {Sp.left} {_} {Sp.span-id} {Sp.span-id} _ = refl
F-resp-≈ {Sp.right} {_} {Sp.span-id} {Sp.span-id} _ = refl
F-resp-≈ {.Sp.center} {.Sp.left} {Sp.span-arrˡ} {Sp.span-arrˡ} _ = refl
F-resp-≈ {.Sp.center} {.Sp.right} {Sp.span-arrʳ} {Sp.span-arrʳ} _ = refl
module SpanFromF = Functor SpanFromF
SpansEquivF : SpanToF ⊣⊢ SpanFromF
SpansEquivF = withZig record
{ unit = unit
; counit = counit
; zig = zig
}
where unit⇒η : ∀ a → Fin ∣ a ⇒ SpanFromF.₀ (SpanToF.₀ a) ∣
unit⇒η 0F = 0F
unit⇒η 1F = 0F
unit⇒η 2F = 0F
unit⇐η : ∀ a → Fin ∣ SpanFromF.₀ (SpanToF.₀ a) ⇒ a ∣
unit⇐η 0F = 0F
unit⇐η 1F = 0F
unit⇐η 2F = 0F
unit : idF ≃ SpanFromF ∘F SpanToF
unit = record
{ F⇒G = ntHelper record
{ η = unit⇒η
; commute = commute₁
}
; F⇐G = ntHelper record
{ η = unit⇐η
; commute = commute₂
}
; iso = iso
}
where open Mor Span
commute₁ : ∀ (f : Fin ∣ a ⇒ b ∣) → unit⇒η b ∘ f ≡ SpanFromF.₁ (SpanToF.₁ f) ∘ unit⇒η a
commute₁ {0F} {0F} 0F = refl
commute₁ {0F} {1F} 0F = refl
commute₁ {0F} {2F} 0F = refl
commute₁ {1F} {1F} 0F = refl
commute₁ {2F} {2F} 0F = refl
commute₂ : ∀ (f : Fin ∣ a ⇒ b ∣) → unit⇐η b ∘ SpanFromF.₁ (SpanToF.₁ f) ≡ f ∘ unit⇐η a
commute₂ {0F} {0F} 0F = refl
commute₂ {0F} {1F} 0F = refl
commute₂ {0F} {2F} 0F = refl
commute₂ {1F} {1F} 0F = refl
commute₂ {2F} {2F} 0F = refl
iso : ∀ a → Iso (unit⇒η a) (unit⇐η a)
iso 0F = record
{ isoˡ = refl
; isoʳ = refl
}
iso 1F = record
{ isoˡ = refl
; isoʳ = refl
}
iso 2F = record
{ isoˡ = refl
; isoʳ = refl
}
counit⇒η : ∀ X → Sp.Span [ Functor.F₀ (SpanToF ∘F SpanFromF) X , X ]
counit⇒η Sp.center = Sp.span-id
counit⇒η Sp.left = Sp.span-id
counit⇒η Sp.right = Sp.span-id
counit⇐η : ∀ X → Sp.Span [ X , Functor.F₀ (SpanToF ∘F SpanFromF) X ]
counit⇐η Sp.center = Sp.span-id
counit⇐η Sp.left = Sp.span-id
counit⇐η Sp.right = Sp.span-id
counit : SpanToF ∘F SpanFromF ≃ idF
counit = record
{ F⇒G = ntHelper record
{ η = counit⇒η
; commute = commute₁
}
; F⇐G = ntHelper record
{ η = counit⇐η
; commute = commute₂
}
; iso = iso
}
where open Mor Sp.Span
commute₁ : ∀ {X Y} (f : Sp.SpanArr X Y) →
Sp.span-compose (counit⇒η Y) (SpanToF.₁ (SpanFromF.₁ f)) ≡ Sp.span-compose f (counit⇒η X)
commute₁ {Sp.center} {.Sp.center} Sp.span-id = refl
commute₁ {Sp.left} {.Sp.left} Sp.span-id = refl
commute₁ {Sp.right} {.Sp.right} Sp.span-id = refl
commute₁ {.Sp.center} {.Sp.left} Sp.span-arrˡ = refl
commute₁ {.Sp.center} {.Sp.right} Sp.span-arrʳ = refl
commute₂ : ∀ {X Y} (f : Sp.SpanArr X Y) →
Sp.span-compose (counit⇐η Y) f ≡ Sp.span-compose (SpanToF.₁ (SpanFromF.₁ f)) (counit⇐η X)
commute₂ {Sp.center} {.Sp.center} Sp.span-id = refl
commute₂ {Sp.left} {.Sp.left} Sp.span-id = refl
commute₂ {Sp.right} {.Sp.right} Sp.span-id = refl
commute₂ {.Sp.center} {.Sp.left} Sp.span-arrˡ = refl
commute₂ {.Sp.center} {.Sp.right} Sp.span-arrʳ = refl
iso : ∀ X → Iso (counit⇒η X) (counit⇐η X)
iso Sp.center = record
{ isoˡ = refl
; isoʳ = refl
}
iso Sp.left = record
{ isoˡ = refl
; isoʳ = refl
}
iso Sp.right = record
{ isoˡ = refl
; isoʳ = refl
}
zig : ∀ {a} → Sp.span-compose (counit⇒η (SpanToF.₀ a)) (SpanToF.₁ (unit⇒η a)) ≡ Sp.span-id
zig {0F} = refl
zig {1F} = refl
zig {2F} = refl
SpansEquiv : ⊣Equivalence Span Sp.Span
SpansEquiv = record { L⊣⊢R = SpansEquivF }
module SpansEquiv = ⊣Equivalence SpansEquiv
|
{
"alphanum_fraction": 0.4689958786,
"avg_line_length": 35.7056856187,
"ext": "agda",
"hexsha": "9b702ac69c479f67a16751d8d9b05fee7f2b3ce7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Finite/Fin/Instance/Span.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Finite/Fin/Instance/Span.agda",
"max_line_length": 118,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Finite/Fin/Instance/Span.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4158,
"size": 10676
}
|
-- Basic intuitionistic modal logic S4, without ∨, ⊥, or ◇.
-- Gentzen-style formalisation of syntax, after Bierman-de Paiva.
-- Simple terms.
module BasicIS4.Syntax.Gentzen where
open import BasicIS4.Syntax.Common public
-- Derivations.
mutual
infix 3 _⊢_
data _⊢_ (Γ : Cx Ty) : Ty → Set where
var : ∀ {A} → A ∈ Γ → Γ ⊢ A
lam : ∀ {A B} → Γ , A ⊢ B → Γ ⊢ A ▻ B
app : ∀ {A B} → Γ ⊢ A ▻ B → Γ ⊢ A → Γ ⊢ B
multibox : ∀ {A Δ} → Γ ⊢⋆ □⋆ Δ → □⋆ Δ ⊢ A → Γ ⊢ □ A
down : ∀ {A} → Γ ⊢ □ A → Γ ⊢ A
pair : ∀ {A B} → Γ ⊢ A → Γ ⊢ B → Γ ⊢ A ∧ B
fst : ∀ {A B} → Γ ⊢ A ∧ B → Γ ⊢ A
snd : ∀ {A B} → Γ ⊢ A ∧ B → Γ ⊢ B
unit : Γ ⊢ ⊤
infix 3 _⊢⋆_
_⊢⋆_ : Cx Ty → Cx Ty → Set
Γ ⊢⋆ ∅ = 𝟙
Γ ⊢⋆ Ξ , A = Γ ⊢⋆ Ξ × Γ ⊢ A
-- Monotonicity with respect to context inclusion.
mutual
mono⊢ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢ A → Γ′ ⊢ A
mono⊢ η (var i) = var (mono∈ η i)
mono⊢ η (lam t) = lam (mono⊢ (keep η) t)
mono⊢ η (app t u) = app (mono⊢ η t) (mono⊢ η u)
mono⊢ η (multibox ts u) = multibox (mono⊢⋆ η ts) u
mono⊢ η (down t) = down (mono⊢ η t)
mono⊢ η (pair t u) = pair (mono⊢ η t) (mono⊢ η u)
mono⊢ η (fst t) = fst (mono⊢ η t)
mono⊢ η (snd t) = snd (mono⊢ η t)
mono⊢ η unit = unit
mono⊢⋆ : ∀ {Ξ Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢⋆ Ξ → Γ′ ⊢⋆ Ξ
mono⊢⋆ {∅} η ∙ = ∙
mono⊢⋆ {Ξ , A} η (ts , t) = mono⊢⋆ η ts , mono⊢ η t
-- Shorthand for variables.
v₀ : ∀ {A Γ} → Γ , A ⊢ A
v₀ = var i₀
v₁ : ∀ {A B Γ} → Γ , A , B ⊢ A
v₁ = var i₁
v₂ : ∀ {A B C Γ} → Γ , A , B , C ⊢ A
v₂ = var i₂
-- Reflexivity.
refl⊢⋆ : ∀ {Γ} → Γ ⊢⋆ Γ
refl⊢⋆ {∅} = ∙
refl⊢⋆ {Γ , A} = mono⊢⋆ weak⊆ refl⊢⋆ , v₀
-- Deduction theorem is built-in.
lam⋆ : ∀ {Ξ Γ A} → Γ ⧺ Ξ ⊢ A → Γ ⊢ Ξ ▻⋯▻ A
lam⋆ {∅} = I
lam⋆ {Ξ , B} = lam⋆ {Ξ} ∘ lam
lam⋆₀ : ∀ {Γ A} → Γ ⊢ A → ∅ ⊢ Γ ▻⋯▻ A
lam⋆₀ {∅} = I
lam⋆₀ {Γ , B} = lam⋆₀ ∘ lam
-- Detachment theorem.
det : ∀ {A B Γ} → Γ ⊢ A ▻ B → Γ , A ⊢ B
det t = app (mono⊢ weak⊆ t) v₀
det⋆ : ∀ {Ξ Γ A} → Γ ⊢ Ξ ▻⋯▻ A → Γ ⧺ Ξ ⊢ A
det⋆ {∅} = I
det⋆ {Ξ , B} = det ∘ det⋆ {Ξ}
det⋆₀ : ∀ {Γ A} → ∅ ⊢ Γ ▻⋯▻ A → Γ ⊢ A
det⋆₀ {∅} = I
det⋆₀ {Γ , B} = det ∘ det⋆₀
-- Cut and multicut.
cut : ∀ {A B Γ} → Γ ⊢ A → Γ , A ⊢ B → Γ ⊢ B
cut t u = app (lam u) t
multicut : ∀ {Ξ A Γ} → Γ ⊢⋆ Ξ → Ξ ⊢ A → Γ ⊢ A
multicut {∅} ∙ u = mono⊢ bot⊆ u
multicut {Ξ , B} (ts , t) u = app (multicut ts (lam u)) t
-- Transitivity.
trans⊢⋆ : ∀ {Γ″ Γ′ Γ} → Γ ⊢⋆ Γ′ → Γ′ ⊢⋆ Γ″ → Γ ⊢⋆ Γ″
trans⊢⋆ {∅} ts ∙ = ∙
trans⊢⋆ {Γ″ , A} ts (us , u) = trans⊢⋆ ts us , multicut ts u
-- Contraction.
ccont : ∀ {A B Γ} → Γ ⊢ (A ▻ A ▻ B) ▻ A ▻ B
ccont = lam (lam (app (app v₁ v₀) v₀))
cont : ∀ {A B Γ} → Γ , A , A ⊢ B → Γ , A ⊢ B
cont t = det (app ccont (lam (lam t)))
-- Exchange, or Schönfinkel’s C combinator.
cexch : ∀ {A B C Γ} → Γ ⊢ (A ▻ B ▻ C) ▻ B ▻ A ▻ C
cexch = lam (lam (lam (app (app v₂ v₀) v₁)))
exch : ∀ {A B C Γ} → Γ , A , B ⊢ C → Γ , B , A ⊢ C
exch t = det (det (app cexch (lam (lam t))))
-- Composition, or Schönfinkel’s B combinator.
ccomp : ∀ {A B C Γ} → Γ ⊢ (B ▻ C) ▻ (A ▻ B) ▻ A ▻ C
ccomp = lam (lam (lam (app v₂ (app v₁ v₀))))
comp : ∀ {A B C Γ} → Γ , B ⊢ C → Γ , A ⊢ B → Γ , A ⊢ C
comp t u = det (app (app ccomp (lam t)) (lam u))
-- Useful theorems in functional form.
dist : ∀ {A B Γ} → Γ ⊢ □ (A ▻ B) → Γ ⊢ □ A → Γ ⊢ □ B
dist t u = multibox ((∙ , t) , u) (app (down v₁) (down v₀))
up : ∀ {A Γ} → Γ ⊢ □ A → Γ ⊢ □ □ A
up t = multibox (∙ , t) v₀
distup : ∀ {A B Γ} → Γ ⊢ □ (□ A ▻ B) → Γ ⊢ □ A → Γ ⊢ □ B
distup t u = dist t (up u)
box : ∀ {A Γ} → ∅ ⊢ A → Γ ⊢ □ A
box t = multibox ∙ t
unbox : ∀ {A C Γ} → Γ ⊢ □ A → Γ , □ A ⊢ C → Γ ⊢ C
unbox t u = app (lam u) t
-- Useful theorems in combinatory form.
ci : ∀ {A Γ} → Γ ⊢ A ▻ A
ci = lam v₀
ck : ∀ {A B Γ} → Γ ⊢ A ▻ B ▻ A
ck = lam (lam v₁)
cs : ∀ {A B C Γ} → Γ ⊢ (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C
cs = lam (lam (lam (app (app v₂ v₀) (app v₁ v₀))))
cdist : ∀ {A B Γ} → Γ ⊢ □ (A ▻ B) ▻ □ A ▻ □ B
cdist = lam (lam (dist v₁ v₀))
cup : ∀ {A Γ} → Γ ⊢ □ A ▻ □ □ A
cup = lam (up v₀)
cdown : ∀ {A Γ} → Γ ⊢ □ A ▻ A
cdown = lam (down v₀)
cdistup : ∀ {A B Γ} → Γ ⊢ □ (□ A ▻ B) ▻ □ A ▻ □ B
cdistup = lam (lam (dist v₁ (up v₀)))
cunbox : ∀ {A C Γ} → Γ ⊢ □ A ▻ (□ A ▻ C) ▻ C
cunbox = lam (lam (app v₀ v₁))
cpair : ∀ {A B Γ} → Γ ⊢ A ▻ B ▻ A ∧ B
cpair = lam (lam (pair v₁ v₀))
cfst : ∀ {A B Γ} → Γ ⊢ A ∧ B ▻ A
cfst = lam (fst v₀)
csnd : ∀ {A B Γ} → Γ ⊢ A ∧ B ▻ B
csnd = lam (snd v₀)
-- Internalisation, or lifting, and additional theorems.
lift : ∀ {Γ A} → Γ ⊢ A → □⋆ Γ ⊢ □ A
lift {∅} t = box t
lift {Γ , B} t = det (app cdist (lift (lam t)))
hypup : ∀ {A B Γ} → Γ ⊢ A ▻ B → Γ ⊢ □ A ▻ B
hypup t = lam (app (mono⊢ weak⊆ t) (down v₀))
hypdown : ∀ {A B Γ} → Γ ⊢ □ □ A ▻ B → Γ ⊢ □ A ▻ B
hypdown t = lam (app (mono⊢ weak⊆ t) (up v₀))
cxup : ∀ {Γ A} → Γ ⊢ A → □⋆ Γ ⊢ A
cxup {∅} t = t
cxup {Γ , B} t = det (hypup (cxup (lam t)))
cxdown : ∀ {Γ A} → □⋆ □⋆ Γ ⊢ A → □⋆ Γ ⊢ A
cxdown {∅} t = t
cxdown {Γ , B} t = det (hypdown (cxdown (lam t)))
box⋆ : ∀ {Ξ Γ} → ∅ ⊢⋆ Ξ → Γ ⊢⋆ □⋆ Ξ
box⋆ {∅} ∙ = ∙
box⋆ {Ξ , A} (ts , t) = box⋆ ts , box t
lift⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ Ξ → □⋆ Γ ⊢⋆ □⋆ Ξ
lift⋆ {∅} ∙ = ∙
lift⋆ {Ξ , A} (ts , t) = lift⋆ ts , lift t
up⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ □⋆ Ξ → Γ ⊢⋆ □⋆ □⋆ Ξ
up⋆ {∅} ∙ = ∙
up⋆ {Ξ , A} (ts , t) = up⋆ ts , up t
down⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ □⋆ Ξ → Γ ⊢⋆ Ξ
down⋆ {∅} ∙ = ∙
down⋆ {Ξ , A} (ts , t) = down⋆ ts , down t
dist′ : ∀ {A B Γ} → Γ ⊢ □ (A ▻ B) → Γ ⊢ □ A ▻ □ B
dist′ t = lam (dist (mono⊢ weak⊆ t) v₀)
mpair : ∀ {A B Γ} → Γ ⊢ □ A → Γ ⊢ □ B → Γ ⊢ □ (A ∧ B)
mpair t u = multibox ((∙ , t) , u) (pair (down v₁) (down v₀))
mfst : ∀ {A B Γ} → Γ ⊢ □ (A ∧ B) → Γ ⊢ □ A
mfst t = multibox (∙ , t) (fst (down v₀))
msnd : ∀ {A B Γ} → Γ ⊢ □ (A ∧ B) → Γ ⊢ □ B
msnd t = multibox (∙ , t) (snd (down v₀))
-- Closure under context concatenation.
concat : ∀ {A B Γ} Γ′ → Γ , A ⊢ B → Γ′ ⊢ A → Γ ⧺ Γ′ ⊢ B
concat Γ′ t u = app (mono⊢ (weak⊆⧺₁ Γ′) (lam t)) (mono⊢ weak⊆⧺₂ u)
-- Substitution.
mutual
[_≔_]_ : ∀ {A B Γ} → (i : A ∈ Γ) → Γ ∖ i ⊢ A → Γ ⊢ B → Γ ∖ i ⊢ B
[ i ≔ s ] var j with i ≟∈ j
[ i ≔ s ] var .i | same = s
[ i ≔ s ] var ._ | diff j = var j
[ i ≔ s ] lam t = lam ([ pop i ≔ mono⊢ weak⊆ s ] t)
[ i ≔ s ] app t u = app ([ i ≔ s ] t) ([ i ≔ s ] u)
[ i ≔ s ] multibox ts u = multibox ([ i ≔ s ]⋆ ts) u
[ i ≔ s ] down t = down ([ i ≔ s ] t)
[ i ≔ s ] pair t u = pair ([ i ≔ s ] t) ([ i ≔ s ] u)
[ i ≔ s ] fst t = fst ([ i ≔ s ] t)
[ i ≔ s ] snd t = snd ([ i ≔ s ] t)
[ i ≔ s ] unit = unit
[_≔_]⋆_ : ∀ {Ξ A Γ} → (i : A ∈ Γ) → Γ ∖ i ⊢ A → Γ ⊢⋆ Ξ → Γ ∖ i ⊢⋆ Ξ
[_≔_]⋆_ {∅} i s ∙ = ∙
[_≔_]⋆_ {Ξ , B} i s (ts , t) = [ i ≔ s ]⋆ ts , [ i ≔ s ] t
-- Convertibility.
data _⋙_ {Γ : Cx Ty} : ∀ {A} → Γ ⊢ A → Γ ⊢ A → Set where
refl⋙ : ∀ {A} → {t : Γ ⊢ A}
→ t ⋙ t
trans⋙ : ∀ {A} → {t t′ t″ : Γ ⊢ A}
→ t ⋙ t′ → t′ ⋙ t″
→ t ⋙ t″
sym⋙ : ∀ {A} → {t t′ : Γ ⊢ A}
→ t ⋙ t′
→ t′ ⋙ t
conglam⋙ : ∀ {A B} → {t t′ : Γ , A ⊢ B}
→ t ⋙ t′
→ lam t ⋙ lam t′
congapp⋙ : ∀ {A B} → {t t′ : Γ ⊢ A ▻ B} → {u u′ : Γ ⊢ A}
→ t ⋙ t′ → u ⋙ u′
→ app t u ⋙ app t′ u′
-- TODO: What about multibox?
congdown⋙ : ∀ {A} → {t t′ : Γ ⊢ □ A}
→ t ⋙ t′
→ down t ⋙ down t′
congpair⋙ : ∀ {A B} → {t t′ : Γ ⊢ A} → {u u′ : Γ ⊢ B}
→ t ⋙ t′ → u ⋙ u′
→ pair t u ⋙ pair t′ u′
congfst⋙ : ∀ {A B} → {t t′ : Γ ⊢ A ∧ B}
→ t ⋙ t′
→ fst t ⋙ fst t′
congsnd⋙ : ∀ {A B} → {t t′ : Γ ⊢ A ∧ B}
→ t ⋙ t′
→ snd t ⋙ snd t′
beta▻⋙ : ∀ {A B} → {t : Γ , A ⊢ B} → {u : Γ ⊢ A}
→ app (lam t) u ⋙ ([ top ≔ u ] t)
eta▻⋙ : ∀ {A B} → {t : Γ ⊢ A ▻ B}
→ t ⋙ lam (app (mono⊢ weak⊆ t) v₀)
-- TODO: What about beta and eta for □?
beta∧₁⋙ : ∀ {A B} → {t : Γ ⊢ A} → {u : Γ ⊢ B}
→ fst (pair t u) ⋙ t
beta∧₂⋙ : ∀ {A B} → {t : Γ ⊢ A} → {u : Γ ⊢ B}
→ snd (pair t u) ⋙ u
eta∧⋙ : ∀ {A B} → {t : Γ ⊢ A ∧ B}
→ t ⋙ pair (fst t) (snd t)
eta⊤⋙ : ∀ {t : Γ ⊢ ⊤} → t ⋙ unit
|
{
"alphanum_fraction": 0.3757589911,
"avg_line_length": 26.4320987654,
"ext": "agda",
"hexsha": "bdab478e446efc09065c5df8900104420b951674",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/hilbert-gentzen",
"max_forks_repo_path": "BasicIS4/Syntax/Gentzen.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/hilbert-gentzen",
"max_issues_repo_path": "BasicIS4/Syntax/Gentzen.agda",
"max_line_length": 69,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/hilbert-gentzen",
"max_stars_repo_path": "BasicIS4/Syntax/Gentzen.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z",
"num_tokens": 4530,
"size": 8564
}
|
module Not-named-according-to-the-Haskell-lexical-syntax where
postulate
IO : Set -> Set
{-# BUILTIN IO IO #-}
{-# COMPILED_TYPE IO IO #-}
postulate
return : {A : Set} -> A -> IO A
{-# COMPILED return (\_ -> return :: a -> IO a) #-}
{-# COMPILED_EPIC return (u1 : Unit, a : Any) -> Any = ioreturn(a) #-}
data Unit : Set where
unit : Unit
{-# COMPILED_DATA Unit () () #-}
|
{
"alphanum_fraction": 0.5953002611,
"avg_line_length": 20.1578947368,
"ext": "agda",
"hexsha": "1e6f9021050f6c43f707e07aa9114e849856d993",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/compiler/Not-named-according-to-the-Haskell-lexical-syntax.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/compiler/Not-named-according-to-the-Haskell-lexical-syntax.agda",
"max_line_length": 70,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "examples/compiler/Not-named-according-to-the-Haskell-lexical-syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 118,
"size": 383
}
|
module examplesPaperJFP.NativeIOSafe where
open import Data.Maybe.Base using (Maybe; nothing; just) public
open import Data.String.Base using (String) public
record Unit : Set where
constructor unit
{-# COMPILE GHC Unit = () #-}
postulate
NativeIO : Set → Set
nativeReturn : {A : Set} → A → NativeIO A
_native>>=_ : {A B : Set} → NativeIO A → (A → NativeIO B) → NativeIO B
{-# BUILTIN IO NativeIO #-}
{-# COMPILE GHC NativeIO = IO #-} -- IO.FF-I.AgdaIO
{-# COMPILE GHC _native>>=_ = (\_ _ -> (>>=) :: IO a -> (a -> IO b) -> IO b) #-}
{-# COMPILE GHC nativeReturn = (\_ -> return :: a -> IO a) #-}
postulate
nativeGetLine : NativeIO (Maybe String)
nativePutStrLn : String → NativeIO Unit
{-# FOREIGN GHC import Data.Text #-}
{-# FOREIGN GHC import System.IO.Error #-}
{-# COMPILE GHC nativePutStrLn = (\ s -> putStrLn (Data.Text.unpack s)) #-}
{-# COMPILE GHC nativeGetLine = (fmap (Just . Data.Text.pack) getLine `System.IO.Error.catchIOError` \ err -> if System.IO.Error.isEOFError err then return Nothing else ioError err) #-}
|
{
"alphanum_fraction": 0.65,
"avg_line_length": 34.1935483871,
"ext": "agda",
"hexsha": "0bcf3dd2e515293b0bbbfac93711b877c7b53c13",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "examples/examplesPaperJFP/NativeIOSafe.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "examples/examplesPaperJFP/NativeIOSafe.agda",
"max_line_length": 185,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "examples/examplesPaperJFP/NativeIOSafe.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 298,
"size": 1060
}
|
module Data.String.Instance where
open import Agda.Builtin.String
open import Class.Equality
open import Class.Monoid
open import Class.Show
open import Data.String renaming (_≟_ to _≟S_)
instance
String-Eq : Eq String
String-Eq = record { _≟_ = _≟S_ }
String-EqB : EqB String
String-EqB = record { _≣_ = primStringEquality }
String-Monoid : Monoid String
String-Monoid = record { mzero = "" ; _+_ = _++_ }
String-Show : Show String
String-Show = record { show = λ x -> x }
|
{
"alphanum_fraction": 0.6949494949,
"avg_line_length": 23.5714285714,
"ext": "agda",
"hexsha": "24933f681daa492020cd97acd223d51b616c646d",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z",
"max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "WhatisRT/meta-cedille",
"max_forks_repo_path": "stdlib-exts/Data/String/Instance.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "WhatisRT/meta-cedille",
"max_issues_repo_path": "stdlib-exts/Data/String/Instance.agda",
"max_line_length": 52,
"max_stars_count": 35,
"max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "WhatisRT/meta-cedille",
"max_stars_repo_path": "stdlib-exts/Data/String/Instance.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z",
"num_tokens": 154,
"size": 495
}
|
module Numeral.Natural.Function.Proofs where
import Lvl
open import Data.Tuple
open import Functional
open import Logic.Propositional
open import Logic.Propositional.Theorems
open import Numeral.Natural
open import Numeral.Natural.Function
open import Numeral.Natural.Relation.Order as ≤ using (_≤_ ; _≥_)
open import Numeral.Natural.Oper
open import Numeral.Natural.Oper.Proofs
open import Numeral.Natural.Oper.Proofs.Order
open import Numeral.Natural.Relation.Order.Proofs
open import Relator.Equals
open import Relator.Equals.Proofs
open import Structure.Function.Domain
import Structure.Operator.Names as Names
open import Structure.Operator.Properties
open import Structure.Relator.Properties
open import Syntax.Transitivity
max-0ₗ : ∀{b} → (max 𝟎 b ≡ b)
max-0ₗ {𝟎} = [≡]-intro
max-0ₗ {𝐒 b} = [≡]-intro
{-# REWRITE max-0ₗ #-}
max-0ᵣ : ∀{a} → (max a 𝟎 ≡ a)
max-0ᵣ {𝟎} = [≡]-intro
max-0ᵣ {𝐒 a} = [≡]-intro
{-# REWRITE max-0ᵣ #-}
min-0ₗ : ∀{b} → (min 𝟎 b ≡ 𝟎)
min-0ₗ {𝟎} = [≡]-intro
min-0ₗ {𝐒 b} = [≡]-intro
{-# REWRITE min-0ₗ #-}
min-0ᵣ : ∀{a} → (min a 𝟎 ≡ 𝟎)
min-0ᵣ {𝟎} = [≡]-intro
min-0ᵣ {𝐒 a} = [≡]-intro
{-# REWRITE min-0ᵣ #-}
instance
min-idempotence : Idempotence(min)
min-idempotence = intro proof where
proof : Names.Idempotence(min)
proof{𝟎} = [≡]-intro
proof{𝐒 x} = [≡]-with(𝐒) (proof{x})
instance
max-idempotence : Idempotence(max)
max-idempotence = intro proof where
proof : Names.Idempotence(max)
proof{𝟎} = [≡]-intro
proof{𝐒 x} = [≡]-with(𝐒) (proof{x})
max-elementary : ∀{a b} → (max(a)(b) ≡ a + (b −₀ a))
max-elementary {𝟎} {𝟎} = [≡]-intro
max-elementary {𝟎} {𝐒(b)} = [≡]-intro
max-elementary {𝐒(a)} {𝟎} = [≡]-intro
max-elementary {𝐒(a)} {𝐒(b)} = [≡]-with(𝐒) (max-elementary {a} {b})
min-elementary : ∀{a b} → (min(a)(b) ≡ b −₀ (b −₀ a))
min-elementary {𝟎} {𝟎} = [≡]-intro
min-elementary {𝟎} {𝐒(b)} = [≡]-intro
min-elementary {𝐒(a)} {𝟎} = [≡]-intro
min-elementary {𝐒(a)} {𝐒(b)} = ([≡]-with(𝐒) (min-elementary {a} {b})) 🝖 (symmetry(_≡_) ([↔]-to-[→] [−₀][𝐒]ₗ-equality ([−₀]-lesser {b}{a})))
instance
min-commutativity : Commutativity(min)
Commutativity.proof(min-commutativity) = proof where
proof : Names.Commutativity(min)
proof{𝟎} {𝟎} = [≡]-intro
proof{𝟎} {𝐒(b)} = [≡]-intro
proof{𝐒(a)}{𝟎} = [≡]-intro
proof{𝐒(a)}{𝐒(b)} = [≡]-with(𝐒) (proof{a}{b})
instance
min-associativity : Associativity(min)
Associativity.proof(min-associativity) = proof where
proof : Names.Associativity(min)
proof{𝟎} {𝟎} {𝟎} = [≡]-intro
proof{𝟎} {𝟎} {𝐒(c)} = [≡]-intro
proof{𝟎} {𝐒(b)}{𝟎} = [≡]-intro
proof{𝐒(a)}{𝟎} {𝟎} = [≡]-intro
proof{𝟎} {𝐒(b)}{𝐒(c)} = [≡]-intro
proof{𝐒(a)}{𝟎} {𝐒(c)} = [≡]-intro
proof{𝐒(a)}{𝐒(b)}{𝟎} = [≡]-intro
proof{𝐒(a)}{𝐒(b)}{𝐒(c)} = [≡]-with(𝐒) (proof{a}{b}{c})
-- min(min(𝐒x)(𝐒y))(𝐒z)
-- = min(𝐒min(x)(y))(𝐒z)
-- = 𝐒(min(min(x)(y))(z))
-- = 𝐒(min(x)(min(y)(z)))
-- = min(𝐒x)(𝐒min(y)(z))
-- = min(𝐒x)(min(𝐒y)(𝐒z)
instance
min-orderₗ : ∀{a b} → (min(a)(b) ≤ a)
min-orderₗ {𝟎} {𝟎} = [≤]-minimum {𝟎}
min-orderₗ {𝐒(a)}{𝟎} = [≤]-minimum {𝐒(a)}
min-orderₗ {𝟎} {𝐒(b)} = [≤]-minimum {𝟎}
min-orderₗ {𝐒(a)}{𝐒(b)} = [≤]-with-[𝐒] ⦃ min-orderₗ {a}{b} ⦄
instance
min-orderᵣ : ∀{a b} → (min(a)(b) ≤ b)
min-orderᵣ {𝟎} {𝟎} = [≤]-minimum {𝟎}
min-orderᵣ {𝐒(a)}{𝟎} = [≤]-minimum {𝟎}
min-orderᵣ {𝟎} {𝐒(b)} = [≤]-minimum {𝐒(b)}
min-orderᵣ {𝐒(a)}{𝐒(b)} = [≤]-with-[𝐒] ⦃ min-orderᵣ {a}{b} ⦄
min-arg : ∀{a b} → (min(a)(b) ≡ a) ∨ (min(a)(b) ≡ b)
min-arg {𝟎} {𝟎} = [∨]-introₗ([≡]-intro)
min-arg {𝟎} {𝐒(b)} = [∨]-introₗ([≡]-intro)
min-arg {𝐒(a)}{𝟎} = [∨]-introᵣ([≡]-intro)
min-arg {𝐒(a)}{𝐒(b)} = constructive-dilemma ([≡]-with(𝐒)) ([≡]-with(𝐒)) (min-arg {a}{b})
min-defₗ : ∀{a b} → (a ≤ b) ↔ (min(a)(b) ≡ a)
min-defₗ {a}{b} = [↔]-intro (l{a}{b}) (r{a}{b}) where
l : ∀{a b} → (a ≤ b) ← (min(a)(b) ≡ a)
l {𝟎} {𝟎} _ = [≤]-minimum {𝟎}
l {𝟎} {𝐒(b)} _ = [≤]-minimum {𝐒(b)}
l {𝐒(_)}{𝟎} ()
l {𝐒(a)}{𝐒(b)} minaba = [≤]-with-[𝐒] ⦃ l{a}{b} (injective(𝐒) (minaba)) ⦄
r : ∀{a b} → (a ≤ b) → (min(a)(b) ≡ a)
r {𝟎} {𝟎} _ = [≡]-intro
r {𝟎} {𝐒(b)} _ = [≡]-intro
r {𝐒(_)}{𝟎} ()
r {𝐒(a)}{𝐒(b)} (≤.succ ab) = [≡]-with(𝐒) (r{a}{b} (ab))
min-defᵣ : ∀{a b} → (b ≤ a) ↔ (min(a)(b) ≡ b)
min-defᵣ {a}{b} = [≡]-substitutionᵣ (commutativity(min)) {expr ↦ (b ≤ a) ↔ (expr ≡ b)} (min-defₗ{b}{a})
instance
max-commutativity : Commutativity(max)
Commutativity.proof(max-commutativity) = proof where
proof : Names.Commutativity(max)
proof{𝟎} {𝟎} = [≡]-intro
proof{𝟎} {𝐒(b)} = [≡]-intro
proof{𝐒(a)}{𝟎} = [≡]-intro
proof{𝐒(a)}{𝐒(b)} = [≡]-with(𝐒) (proof{a}{b})
instance
max-associativity : Associativity(max)
Associativity.proof(max-associativity) = proof where
proof : Names.Associativity(max)
proof{𝟎} {𝟎} {𝟎} = [≡]-intro
proof{𝟎} {𝟎} {𝐒(c)} = [≡]-intro
proof{𝟎} {𝐒(b)}{𝟎} = [≡]-intro
proof{𝐒(a)}{𝟎} {𝟎} = [≡]-intro
proof{𝟎} {𝐒(b)}{𝐒(c)} = [≡]-intro
proof{𝐒(a)}{𝟎} {𝐒(c)} = [≡]-intro
proof{𝐒(a)}{𝐒(b)}{𝟎} = [≡]-intro
proof{𝐒(a)}{𝐒(b)}{𝐒(c)} = [≡]-with(𝐒) (proof{a}{b}{c})
-- max-[+]-distributivityₗ : Distributivityₗ(max)
-- max-[+]-distributivityᵣ : Distributivityᵣ(max)
instance
max-orderₗ : ∀{a b} → (max(a)(b) ≥ a)
max-orderₗ {𝟎} {𝟎} = [≤]-minimum {max(𝟎)(𝟎)}
max-orderₗ {𝐒(a)}{𝟎} = reflexivity(_≥_)
max-orderₗ {𝟎} {𝐒(b)} = [≤]-minimum {max(𝟎)(𝐒(b))}
max-orderₗ {𝐒(a)}{𝐒(b)} = [≤]-with-[𝐒] ⦃ max-orderₗ {a}{b} ⦄
instance
max-orderᵣ : ∀{a b} → (max(a)(b) ≥ b)
max-orderᵣ {𝟎} {𝟎} = [≤]-minimum {max(𝟎)(𝟎)}
max-orderᵣ {𝐒(a)}{𝟎} = [≤]-minimum {max(𝐒(a))(𝟎)}
max-orderᵣ {𝟎} {𝐒(b)} = reflexivity(_≥_)
max-orderᵣ {𝐒(a)}{𝐒(b)} = [≤]-with-[𝐒] ⦃ max-orderᵣ {a}{b} ⦄
max-arg : ∀{a b} → (max(a)(b) ≡ a)∨(max(a)(b) ≡ b)
max-arg {𝟎} {𝟎} = [∨]-introₗ([≡]-intro)
max-arg {𝟎} {𝐒(b)} = [∨]-introᵣ([≡]-intro)
max-arg {𝐒(a)}{𝟎} = [∨]-introₗ([≡]-intro)
max-arg {𝐒(a)}{𝐒(b)} = constructive-dilemma ([≡]-with(𝐒)) ([≡]-with(𝐒)) (max-arg {a}{b})
max-defₗ : ∀{a b} → (a ≥ b) ↔ (max(a)(b) ≡ a)
max-defₗ {a}{b} = [↔]-intro (l{a}{b}) (r{a}{b}) where
l : ∀{a b} → (a ≥ b) ← (max(a)(b) ≡ a)
l {𝟎} {𝟎} _ = [≤]-minimum {𝟎}
l {𝟎} {𝐒(_)} ()
l {𝐒(a)}{𝟎} _ = [≤]-minimum {𝐒(a)}
l {𝐒(a)}{𝐒(b)} maxaba = [≤]-with-[𝐒] ⦃ l{a}{b}(injective(𝐒) (maxaba)) ⦄
r : ∀{a b} → (a ≥ b) → (max(a)(b) ≡ a)
r {𝟎} {𝟎} _ = [≡]-intro
r {𝟎} {𝐒(_)} ()
r {𝐒(_)}{𝟎} _ = [≡]-intro
r {𝐒(a)}{𝐒(b)} (≤.succ ab) = [≡]-with(𝐒) (r{a}{b} (ab))
max-defᵣ : ∀{a b} → (b ≥ a) ↔ (max(a)(b) ≡ b)
max-defᵣ {a}{b} = [≡]-substitutionᵣ (commutativity(max)) {expr ↦ (b ≥ a) ↔ (expr ≡ b)} (max-defₗ{b}{a})
min-with-max : ∀{a b} → (min(a)(b) ≡ (a + b) −₀ max(a)(b))
min-with-max {a}{b} =
min(a)(b) 🝖-[ min-elementary{a}{b} ]
b −₀ (b −₀ a) 🝖-[ [−₀][+]ₗ-nullify {a}{b}{b −₀ a} ]-sym
(a + b) −₀ (a + (b −₀ a)) 🝖-[ [≡]-with((a + b) −₀_) (max-elementary{a}{b}) ]-sym
(a + b) −₀ max(a)(b) 🝖-end
max-with-min : ∀{a b} → (max(a)(b) ≡ (a + b) −₀ min(a)(b))
max-with-min {a}{b} with [≤][>]-dichotomy {a}{b}
... | [∨]-introₗ ab =
max(a)(b) 🝖-[ [↔]-to-[→] max-defᵣ ab ]
b 🝖-[ [−₀]ₗ[+]ₗ-nullify {a}{b} ]-sym
(a + b) −₀ a 🝖-[ [≡]-with((a + b) −₀_) ([↔]-to-[→] min-defₗ ab) ]-sym
(a + b) −₀ min(a)(b) 🝖-end
... | [∨]-introᵣ 𝐒ba with ba ← [≤]-predecessor 𝐒ba =
max(a)(b) 🝖-[ [↔]-to-[→] max-defₗ ba ]
a 🝖-[ [−₀]ₗ[+]ᵣ-nullify {a}{b} ]-sym
(a + b) −₀ b 🝖-[ [≡]-with((a + b) −₀_) ([↔]-to-[→] min-defᵣ ba) ]-sym
(a + b) −₀ min(a)(b) 🝖-end
[≤]-conjunction-min : ∀{a b c} → ((a ≤ b) ∧ (a ≤ c)) ↔ (a ≤ min b c)
[≤]-conjunction-min {a}{b}{c} = [↔]-intro (a≤bc ↦ [∧]-intro (a≤bc 🝖 min-orderₗ) (a≤bc 🝖 min-orderᵣ)) (uncurry r) where
r : ∀{a b c} → (a ≤ b) → (a ≤ c) → (a ≤ min b c)
r {.0} {b} {c} ≤.min ≤.min = ≤.min
r {.(𝐒 a)} {.(𝐒 b)} {.(𝐒 c)} (≤.succ {a} {b} ab) (≤.succ {y = c} ac) = [≤]-with-[𝐒] ⦃ r {a}{b}{c} ab ac ⦄
[≤]-conjunction-max : ∀{a b c} → ((a ≤ c) ∧ (b ≤ c)) ↔ (max a b ≤ c)
[≤]-conjunction-max {a}{b}{c} = [↔]-intro (ab≤c ↦ [∧]-intro (max-orderₗ 🝖 ab≤c) ((max-orderᵣ 🝖 ab≤c))) (uncurry r) where
r : ∀{a b c} → (a ≤ c) → (b ≤ c) → (max a b ≤ c)
r {.0} {b@(𝐒 _)}{c} ≤.min bc = bc
r {a} {.0} {c} ac ≤.min = ac
r {𝐒 a} {𝐒 b} {𝐒 c} (≤.succ ac) (≤.succ bc) = [≤]-with-[𝐒] ⦃ r {a}{b}{c} ac bc ⦄
[≤]-disjunction-min : ∀{a b c} → ((a ≤ c) ∨ (b ≤ c)) ↔ (min a b ≤ c)
[≤]-disjunction-min = [↔]-intro
(ab≤c ↦ [∨]-elim2
((_🝖 ab≤c) ∘ [≡]-to-[≤] ∘ symmetry(_≡_))
((_🝖 ab≤c) ∘ [≡]-to-[≤] ∘ symmetry(_≡_))
min-arg
)
([∨]-elim
(min-orderₗ 🝖_)
(min-orderᵣ 🝖_)
)
[≤]-disjunction-max : ∀{a b c} → ((a ≤ b) ∨ (a ≤ c)) ↔ (a ≤ max b c)
[≤]-disjunction-max = [↔]-intro
(a≤bc ↦ [∨]-elim2
((_🝖 a≤bc) ∘ [≡]-to-[≤])
((_🝖 a≤bc) ∘ [≡]-to-[≤])
max-arg
)
([∨]-elim
(_🝖 max-orderₗ)
(_🝖 max-orderᵣ)
)
min-order-max : ∀{a b} → (min(a)(b) ≤ max(a)(b))
min-order-max {𝟎} {b} = [≤]-minimum
min-order-max {𝐒 a} {𝟎} = [≤]-minimum
min-order-max {𝐒 a} {𝐒 b} = [≤]-with-[𝐒] ⦃ min-order-max {a}{b} ⦄
max-order-[+] : ∀{a b} → (max(a)(b) ≤ a + b)
max-order-[+] {a}{b} = [↔]-to-[→] [≤]-conjunction-max ([∧]-intro [≤]-of-[+]ₗ ([≤]-of-[+]ᵣ {a}{b}))
|
{
"alphanum_fraction": 0.474908329,
"avg_line_length": 36.5708812261,
"ext": "agda",
"hexsha": "6674d008ff7223f85161b50f5914d3e0c8a07cc6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Natural/Function/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Natural/Function/Proofs.agda",
"max_line_length": 139,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Natural/Function/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 5074,
"size": 9545
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.DStructures.Equivalences.XModPeifferGraph where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Functions.FunExtEquiv
open import Cubical.Homotopy.Base
open import Cubical.Data.Sigma
open import Cubical.Data.Unit
open import Cubical.Relation.Binary
open import Cubical.Structures.Subtype
open import Cubical.Algebra.Group
open import Cubical.Structures.LeftAction
open import Cubical.Algebra.Group.Semidirect
open import Cubical.DStructures.Base
open import Cubical.DStructures.Meta.Properties
open import Cubical.DStructures.Meta.Isomorphism
open import Cubical.DStructures.Structures.Constant
open import Cubical.DStructures.Structures.Type
open import Cubical.DStructures.Structures.Group
open import Cubical.DStructures.Structures.Action
open import Cubical.DStructures.Structures.XModule
open import Cubical.DStructures.Structures.ReflGraph
open import Cubical.DStructures.Structures.PeifferGraph
open import Cubical.DStructures.Equivalences.GroupSplitEpiAction
open import Cubical.DStructures.Equivalences.PreXModReflGraph
private
variable
ℓ ℓ' ℓ'' ℓ₁ ℓ₁' ℓ₁'' ℓ₂ ℓA ℓA' ℓ≅A ℓ≅A' ℓB ℓB' ℓ≅B ℓC ℓ≅C ℓ≅ᴰ ℓ≅ᴰ' ℓ≅B' : Level
open Kernel
open GroupHom -- such .fun!
open GroupLemmas
open MorphismLemmas
open ActionLemmas
module _ (ℓ ℓ' : Level) where
private
ℓℓ' = ℓ-max ℓ ℓ'
ℱ = Iso-PreXModule-ReflGraph ℓ ℓℓ'
F = Iso.fun ℱ
𝒮ᴰ-S2G = 𝒮ᴰ-ReflGraph\Peiffer
𝒮ᴰ-♭PIso-XModule-Strict2Group : 𝒮ᴰ-♭PIso F (𝒮ᴰ-XModule ℓ ℓℓ') (𝒮ᴰ-S2G ℓ ℓℓ')
RelIso.fun (𝒮ᴰ-♭PIso-XModule-Strict2Group (((((G₀' , H) , _α_) , isAct) , φ) , isEqui)) isPeif a b = q
where
-- G₀ = G₀', but the former is introduced in ReflGraphNotation as well
open GroupNotationᴴ H
-- open GroupNotation₀ G₀
f = GroupHom.fun φ
A = groupaction _α_ isAct
open ActionNotationα A using (α-assoc ; α-hom)
SG = F (((((G₀' , H) , _α_) , isAct) , φ) , isEqui)
-- H⋊G : Group {ℓℓ'}
H⋊G = snd (fst (fst (fst (fst SG))))
-- open GroupNotation₁ H⋊G
open ReflGraphNotation SG
-- σ : GroupHom H⋊G G₀
-- ι : GroupHom G₀ H⋊G
-- τ : GroupHom H⋊G G₀
u = fst a
v = snd a
x = fst b
y = snd b
abstract
-- alright folks, let's do some simple arithmetic with a `twist`, that is Peiffer identities and equivariance
r = ((0ᴴ +ᴴ (y α (u +ᴴ (v α ((-₀ ((f u) +₀ v)) α (-ᴴ 0ᴴ)))))) +ᴴ ((y +₀ (v +₀ (-₀ (f u +₀ v)))) α (((-₀ y) α (-ᴴ 0ᴴ)) +ᴴ ((-₀ y) α x)))) +ᴴ (((y +₀ (v +₀ (-₀ (f u +₀ v)))) +₀ ((-₀ y) +₀ y)) α 0ᴴ)
≡⟨ cong (((0ᴴ +ᴴ (y α (u +ᴴ (v α ((-₀ ((f u) +₀ v)) α (-ᴴ 0ᴴ)))))) +ᴴ ((y +₀ (v +₀ (-₀ (f u +₀ v)))) α (((-₀ y) α (-ᴴ 0ᴴ)) +ᴴ ((-₀ y) α x)))) +ᴴ_)
(actOnUnit A ((y +₀ (v +₀ (-₀ (f u +₀ v)))) +₀ ((-₀ y) +₀ y))) ⟩
((0ᴴ +ᴴ (y α (u +ᴴ (v α ((-₀ ((f u) +₀ v)) α (-ᴴ 0ᴴ)))))) +ᴴ ((y +₀ (v +₀ (-₀ (f u +₀ v)))) α (((-₀ y) α (-ᴴ 0ᴴ)) +ᴴ ((-₀ y) α x)))) +ᴴ 0ᴴ
≡⟨ rIdᴴ ((0ᴴ +ᴴ (y α (u +ᴴ (v α ((-₀ ((f u) +₀ v)) α (-ᴴ 0ᴴ)))))) +ᴴ ((y +₀ (v +₀ (-₀ (f u +₀ v)))) α (((-₀ y) α (-ᴴ 0ᴴ)) +ᴴ ((-₀ y) α x)))) ⟩
(0ᴴ +ᴴ (y α (u +ᴴ (v α ((-₀ ((f u) +₀ v)) α (-ᴴ 0ᴴ)))))) +ᴴ ((y +₀ (v +₀ (-₀ (f u +₀ v)))) α (((-₀ y) α (-ᴴ 0ᴴ)) +ᴴ ((-₀ y) α x)))
≡⟨ cong (_+ᴴ ((y +₀ (v +₀ (-₀ (f u +₀ v)))) α (((-₀ y) α (-ᴴ 0ᴴ)) +ᴴ ((-₀ y) α x))))
(lIdᴴ (y α (u +ᴴ (v α ((-₀ ((f u) +₀ v)) α (-ᴴ 0ᴴ)))))) ⟩
(y α (u +ᴴ (v α ((-₀ ((f u) +₀ v)) α (-ᴴ 0ᴴ))))) +ᴴ ((y +₀ (v +₀ (-₀ (f u +₀ v)))) α (((-₀ y) α (-ᴴ 0ᴴ)) +ᴴ ((-₀ y) α x)))
≡⟨ cong (λ z → (y α (u +ᴴ (v α ((-₀ ((f u) +₀ v)) α (-ᴴ 0ᴴ))))) +ᴴ ((y +₀ (v +₀ (-₀ (f u +₀ v)))) α (z +ᴴ ((-₀ y) α x))))
(actOn-Unit A (-₀ y)) ⟩
(y α (u +ᴴ (v α ((-₀ ((f u) +₀ v)) α (-ᴴ 0ᴴ))))) +ᴴ ((y +₀ (v +₀ (-₀ (f u +₀ v)))) α (0ᴴ +ᴴ ((-₀ y) α x)))
≡⟨ cong (λ z → (y α (u +ᴴ (v α ((-₀ ((f u) +₀ v)) α (-ᴴ 0ᴴ))))) +ᴴ ((y +₀ (v +₀ (-₀ (f u +₀ v)))) α z))
(lIdᴴ ((-₀ y) α x)) ⟩
(y α (u +ᴴ (v α ((-₀ ((f u) +₀ v)) α (-ᴴ 0ᴴ))))) +ᴴ ((y +₀ (v +₀ (-₀ (f u +₀ v)))) α ((-₀ y) α x))
≡⟨ cong (λ z → (y α (u +ᴴ (v α z))) +ᴴ ((y +₀ (v +₀ (-₀ (f u +₀ v)))) α ((-₀ y) α x)))
(actOn-Unit A (-₀ ((f u) +₀ v))) ⟩
(y α (u +ᴴ (v α 0ᴴ))) +ᴴ ((y +₀ (v +₀ (-₀ (f u +₀ v)))) α ((-₀ y) α x))
≡⟨ cong (λ z → (y α (u +ᴴ z)) +ᴴ ((y +₀ (v +₀ (-₀ (f u +₀ v)))) α ((-₀ y) α x)))
(actOnUnit A v) ⟩
(y α (u +ᴴ 0ᴴ)) +ᴴ ((y +₀ (v +₀ (-₀ (f u +₀ v)))) α ((-₀ y) α x))
≡⟨ cong (λ z → (y α z) +ᴴ ((y +₀ (v +₀ (-₀ (f u +₀ v)))) α ((-₀ y) α x)))
(rIdᴴ u) ⟩
(y α u) +ᴴ ((y +₀ (v +₀ (-₀ (f u +₀ v)))) α ((-₀ y) α x))
≡⟨ cong (λ z → (y α u) +ᴴ ((y +₀ (v +₀ z)) α ((-₀ y) α x)))
(invDistr G₀ (f u) v) ⟩
(y α u) +ᴴ ((y +₀ (v +₀ ((-₀ v) +₀ (-₀ (f u))))) α ((-₀ y) α x))
≡⟨ cong (λ z → (y α u) +ᴴ ((y +₀ z) α ((-₀ y) α x)))
(assoc-rCancel G₀ v (-₀ f u)) ⟩
(y α u) +ᴴ ((y +₀ (-₀ (f u))) α ((-₀ y) α x))
≡⟨ cong ((y α u) +ᴴ_)
(sym (α-assoc (y +₀ (-₀ f u)) (-₀ y) x)) ⟩
(y α u) +ᴴ (((y +₀ (-₀ (f u))) +₀ (-₀ y)) α x)
≡⟨ cong (λ z → (y α u) +ᴴ (((y +₀ z) +₀ (-₀ y)) α x))
(sym (mapInv φ u)) ⟩
(y α u) +ᴴ (((y +₀ (f (-ᴴ u))) -₀ y) α x)
-- apply equivariance here
≡⟨ cong (λ z → (y α u) +ᴴ (z α x))
(sym (isEqui y (-ᴴ u))) ⟩
(y α u) +ᴴ ((f (y α (-ᴴ u))) α x)
-- apply peiffer condition here
≡⟨ cong ((y α u) +ᴴ_)
(isPeif (y α (-ᴴ u)) x) ⟩
(y α u) +ᴴ (((y α (-ᴴ u)) +ᴴ x) +ᴴ (-ᴴ (y α (-ᴴ u))))
≡⟨ cong (λ z → (y α u) +ᴴ ((z +ᴴ x) +ᴴ (-ᴴ z)))
(actOn- A y u) ⟩
(y α u) +ᴴ (((-ᴴ (y α u)) +ᴴ x) +ᴴ (-ᴴ (-ᴴ (y α u))))
≡⟨ cong (λ z → (y α u) +ᴴ (((-ᴴ (y α u)) +ᴴ x) +ᴴ z))
(invInvo H (y α u)) ⟩
(y α u) +ᴴ (((-ᴴ (y α u)) +ᴴ x) +ᴴ (y α u))
≡⟨ assoc-assoc H (y α u) (-ᴴ (y α u)) x (y α u) ⟩
(((y α u) +ᴴ (-ᴴ (y α u))) +ᴴ x) +ᴴ (y α u)
≡⟨ cong (_+ᴴ (y α u))
(rCancel-lId H (y α u) x) ⟩
x +ᴴ (y α u) ∎
r' = ((y +₀ (v +₀ (-₀ (f u +₀ v)))) +₀ ((-₀ y) +₀ y)) +₀ (f u +₀ v)
≡⟨ cong (_+₀ (f u +₀ v))
(lCancel-rId G₀ (y +₀ (v +₀ (-₀ (f u +₀ v)))) y) ⟩
(y +₀ (v +₀ (-₀ (f u +₀ v)))) +₀ (f u +₀ v)
≡⟨ cong (λ z → (y +₀ (v +₀ z)) +₀ (f u +₀ v))
(invDistr G₀ (f u) v) ⟩
(y +₀ (v +₀ ((-₀ v) +₀ (-₀ f u)))) +₀ (f u +₀ v)
≡⟨ cong (λ z → (y +₀ z) +₀ (f u +₀ v))
(assoc-rCancel G₀ v (-₀ f u)) ⟩
(y +₀ (-₀ f u)) +₀ (f u +₀ v)
≡⟨ assoc⁻-assocr-lCancel-lId G₀ y (f u) v ⟩
y +₀ v ∎
q = ((is b +₁ (a +₁ -it a)) +₁ (-is b +₁ b)) +₁ it a
≡⟨ refl ⟩
((0ᴴ +ᴴ (y α (u +ᴴ (v α ((-₀ ((f u) +₀ v)) α (-ᴴ 0ᴴ)))))) +ᴴ ((y +₀ (v +₀ (-₀ (f u +₀ v)))) α (((-₀ y) α (-ᴴ 0ᴴ)) +ᴴ ((-₀ y) α x)))) +ᴴ (((y +₀ (v +₀ (-₀ (f u +₀ v)))) +₀ ((-₀ y) +₀ y)) α 0ᴴ)
, ((y +₀ (v +₀ (-₀ (f u +₀ v)))) +₀ ((-₀ y) +₀ y)) +₀ (f u +₀ v)
≡⟨ ΣPathP (r , r') ⟩
x +ᴴ (y α u) , y +₀ v
≡⟨ refl ⟩
b +₁ a ∎
RelIso.inv (𝒮ᴰ-♭PIso-XModule-Strict2Group (((((G₀' , H) , _α_) , isAct) , φ) , isEqui)) ♭isPeif h h' = q
where
open GroupNotationᴴ H
f = GroupHom.fun φ
A = groupaction _α_ isAct
open ActionNotationα A using (α-assoc ; α-hom ; α-id)
SG = F (((((G₀' , H) , _α_) , isAct) , φ) , isEqui)
-- H⋊G : Group {ℓℓ'}
H⋊G = snd (fst (fst (fst (fst SG))))
-- open GroupNotation₁ H⋊G
open ReflGraphNotation SG
-- σ : GroupHom H⋊G G₀
-- ι : GroupHom G₀ H⋊G
-- τ : GroupHom H⋊G G₀
-h = -ᴴ h
abstract
r₁ = ((0ᴴ +ᴴ (0₀ α (-h +ᴴ (0₀ α ((-₀ ((f -h) +₀ 0₀)) α (-ᴴ 0ᴴ)))))) +ᴴ ((0₀ +₀ (0₀ +₀ (-₀ (f -h +₀ 0₀)))) α (((-₀ 0₀) α (-ᴴ 0ᴴ)) +ᴴ ((-₀ 0₀) α h')))) +ᴴ (((0₀ +₀ (0₀ +₀ (-₀ ((f -h) +₀ 0₀)))) +₀ ((-₀ 0₀) +₀ 0₀)) α 0ᴴ)
≡⟨ cong fst
(♭isPeif (-h , 0₀) (h' , 0₀)) ⟩
h' +ᴴ (0₀ α -h)
≡⟨ cong (h' +ᴴ_)
(α-id -h) ⟩
h' +ᴴ -h ∎
r₂ = ((0ᴴ +ᴴ (0₀ α (-h +ᴴ (0₀ α ((-₀ ((f -h) +₀ 0₀)) α (-ᴴ 0ᴴ)))))) +ᴴ ((0₀ +₀ (0₀ +₀ (-₀ (f -h +₀ 0₀)))) α (((-₀ 0₀) α (-ᴴ 0ᴴ)) +ᴴ ((-₀ 0₀) α h'))))
+ᴴ (((0₀ +₀ (0₀ +₀ (-₀ ((f -h) +₀ 0₀)))) +₀ ((-₀ 0₀) +₀ 0₀)) α 0ᴴ)
≡⟨ cong (((0ᴴ +ᴴ (0₀ α (-h +ᴴ (0₀ α ((-₀ ((f -h) +₀ 0₀)) α (-ᴴ 0ᴴ)))))) +ᴴ ((0₀ +₀ (0₀ +₀ (-₀ (f -h +₀ 0₀)))) α (((-₀ 0₀) α (-ᴴ 0ᴴ)) +ᴴ ((-₀ 0₀) α h')))) +ᴴ_)
(actOnUnit A (((0₀ +₀ (0₀ +₀ (-₀ ((f -h) +₀ 0₀)))) +₀ ((-₀ 0₀) +₀ 0₀))))
∙ rIdᴴ _ ⟩
(0ᴴ +ᴴ (0₀ α (-h +ᴴ (0₀ α ((-₀ ((f -h) +₀ 0₀)) α (-ᴴ 0ᴴ)))))) +ᴴ ((0₀ +₀ (0₀ +₀ (-₀ (f -h +₀ 0₀)))) α (((-₀ 0₀) α (-ᴴ 0ᴴ)) +ᴴ ((-₀ 0₀) α h')))
≡⟨ cong (λ z → (0ᴴ +ᴴ (0₀ α (-h +ᴴ (0₀ α z)))) +ᴴ ((0₀ +₀ (0₀ +₀ (-₀ (f -h +₀ 0₀)))) α (((-₀ 0₀) α (-ᴴ 0ᴴ)) +ᴴ ((-₀ 0₀) α h'))))
(actOn-Unit A (-₀ ((f -h) +₀ 0₀))) ⟩
(0ᴴ +ᴴ (0₀ α (-h +ᴴ (0₀ α 0ᴴ)))) +ᴴ ((0₀ +₀ (0₀ +₀ (-₀ (f -h +₀ 0₀)))) α (((-₀ 0₀) α (-ᴴ 0ᴴ)) +ᴴ ((-₀ 0₀) α h')))
≡⟨ cong (λ z → (0ᴴ +ᴴ (0₀ α (-h +ᴴ z))) +ᴴ ((0₀ +₀ (0₀ +₀ (-₀ (f -h +₀ 0₀)))) α (((-₀ 0₀) α (-ᴴ 0ᴴ)) +ᴴ ((-₀ 0₀) α h'))))
(actOnUnit A 0₀) ⟩
(0ᴴ +ᴴ (0₀ α (-h +ᴴ 0ᴴ))) +ᴴ ((0₀ +₀ (0₀ +₀ (-₀ (f -h +₀ 0₀)))) α (((-₀ 0₀) α (-ᴴ 0ᴴ)) +ᴴ ((-₀ 0₀) α h')))
≡⟨ cong (λ z → (0ᴴ +ᴴ (0₀ α z)) +ᴴ ((0₀ +₀ (0₀ +₀ (-₀ (f -h +₀ 0₀)))) α (((-₀ 0₀) α (-ᴴ 0ᴴ)) +ᴴ ((-₀ 0₀) α h'))))
(rIdᴴ -h) ⟩
(0ᴴ +ᴴ (0₀ α -h)) +ᴴ ((0₀ +₀ (0₀ +₀ (-₀ (f -h +₀ 0₀)))) α (((-₀ 0₀) α (-ᴴ 0ᴴ)) +ᴴ ((-₀ 0₀) α h')))
≡⟨ cong (λ z → (0ᴴ +ᴴ z) +ᴴ ((0₀ +₀ (0₀ +₀ (-₀ (f -h +₀ 0₀)))) α (((-₀ 0₀) α (-ᴴ 0ᴴ)) +ᴴ ((-₀ 0₀) α h'))))
(α-id -h) ⟩
(0ᴴ +ᴴ -h) +ᴴ ((0₀ +₀ (0₀ +₀ (-₀ (f -h +₀ 0₀)))) α (((-₀ 0₀) α (-ᴴ 0ᴴ)) +ᴴ ((-₀ 0₀) α h')))
≡⟨ cong (_+ᴴ ((0₀ +₀ (0₀ +₀ (-₀ (f -h +₀ 0₀)))) α (((-₀ 0₀) α (-ᴴ 0ᴴ)) +ᴴ ((-₀ 0₀) α h'))))
(lIdᴴ -h) ⟩
-h +ᴴ ((0₀ +₀ (0₀ +₀ (-₀ (f -h +₀ 0₀)))) α (((-₀ 0₀) α (-ᴴ 0ᴴ)) +ᴴ ((-₀ 0₀) α h')))
≡⟨ cong (λ z → -h +ᴴ (z α (((-₀ 0₀) α (-ᴴ 0ᴴ)) +ᴴ ((-₀ 0₀) α h'))))
(lId-lId G₀ (-₀ (f -h +₀ 0₀))) ⟩
-h +ᴴ ((-₀ (f -h +₀ 0₀)) α (((-₀ 0₀) α (-ᴴ 0ᴴ)) +ᴴ ((-₀ 0₀) α h')))
≡⟨ cong (λ z → -h +ᴴ ((-₀ (f -h +₀ 0₀)) α (z +ᴴ ((-₀ 0₀) α h'))))
(actOn-Unit A (-₀ 0₀)) ⟩
-h +ᴴ ((-₀ (f -h +₀ 0₀)) α (0ᴴ +ᴴ ((-₀ 0₀) α h')))
≡⟨ cong (λ z → -h +ᴴ ((-₀ (f -h +₀ 0₀)) α z))
(lIdᴴ ((-₀ 0₀) α h')) ⟩
-h +ᴴ ((-₀ (f -h +₀ 0₀)) α ((-₀ 0₀) α h'))
≡⟨ cong (λ z → -h +ᴴ ((-₀ (f -h +₀ 0₀)) α z))
(-idAct A h') ⟩
-h +ᴴ ((-₀ (f -h +₀ 0₀)) α h')
≡⟨ cong (λ z → -h +ᴴ ((-₀ z) α h'))
(rId₀ (f -h)) ⟩
-h +ᴴ ((-₀ (f -h)) α h')
≡⟨ cong (λ z → -h +ᴴ (z α h'))
(cong -₀_ (mapInv φ h) ∙ invInvo G₀ (f h)) ⟩
-h +ᴴ (f h α h') ∎
q = f h α h'
≡⟨ sym (lIdᴴ (f h α h'))
∙∙ sym (cong (_+ᴴ (f h α h')) (rCancelᴴ h))
∙∙ sym (assocᴴ h -h (f h α h')) ⟩
h +ᴴ (-h +ᴴ (f h α h'))
≡⟨ cong (h +ᴴ_)
(sym r₂ ∙ r₁) ⟩
h +ᴴ (h' +ᴴ -h)
≡⟨ assocᴴ h h' -h ⟩
(h +ᴴ h') +ᴴ (-ᴴ h) ∎
RelIso.leftInv (𝒮ᴰ-♭PIso-XModule-Strict2Group _) _ = tt
RelIso.rightInv (𝒮ᴰ-♭PIso-XModule-Strict2Group _) _ = tt
Iso-XModule-PeifferGraph : Iso (XModule ℓ ℓℓ') (PeifferGraph ℓ ℓℓ')
Iso-XModule-PeifferGraph = 𝒮ᴰ-♭PIso-Over→TotalIso ℱ (𝒮ᴰ-XModule ℓ ℓℓ') (𝒮ᴰ-S2G ℓ ℓℓ') 𝒮ᴰ-♭PIso-XModule-Strict2Group
|
{
"alphanum_fraction": 0.3761212496,
"avg_line_length": 53.6597510373,
"ext": "agda",
"hexsha": "46fd70ab0addb62477a8c45adb6a820c2b03a674",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Schippmunk/cubical",
"max_forks_repo_path": "Cubical/DStructures/Equivalences/XModPeifferGraph.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Schippmunk/cubical",
"max_issues_repo_path": "Cubical/DStructures/Equivalences/XModPeifferGraph.agda",
"max_line_length": 226,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Schippmunk/cubical",
"max_stars_repo_path": "Cubical/DStructures/Equivalences/XModPeifferGraph.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6285,
"size": 12932
}
|
{-# OPTIONS --universe-polymorphism #-}
open import Level
open import Categories.Category
module Categories.Power.NaturalTransformation {o ℓ e : Level} (C : Category o ℓ e) where
open import Function using () renaming (_∘_ to _∙_)
open import Data.Fin using (Fin; inject+; raise)
open import Data.Sum using (_⊎_; [_,_]′; inj₁; inj₂)
open import Data.Product using (_,_)
import Categories.Power
module Pow = Categories.Power C
open Pow public
open import Categories.Bifunctor using (Bifunctor)
open import Categories.Bifunctor.NaturalTransformation renaming (id to idⁿ; _≡_ to _≡ⁿ_)
open import Categories.Functor using (module Functor) renaming (_∘_ to _∘F_)
flattenPⁿ : ∀ {D : Category o ℓ e} {n m} {F G : Powerfunctor′ D (Fin n ⊎ Fin m)} (η : NaturalTransformation F G) → NaturalTransformation (flattenP F) (flattenP G)
flattenPⁿ {n = n} {m} η = record
{ η = λ Xs → η.η (Xs ∙ pack)
; commute = λ fs → η.commute (fs ∙ pack)
}
where
private module η = NaturalTransformation η
pack = [ inject+ m , raise n ]′
reduceN′ : ∀ (H : Bifunctor C C C) {I} {F F′ : Powerendo′ I} (φ : NaturalTransformation F F′) {J} {G G′ : Powerendo′ J} (γ : NaturalTransformation G G′) → NaturalTransformation (reduce′ H F G) (reduce′ H F′ G′)
reduceN′ H {I} {F} {F′} φ {J} {G} {G′} γ = record
{ η = my-η
; commute = λ {Xs Ys} → my-commute Xs Ys
}
where
module F = Functor F
module F′ = Functor F′
module G = Functor G
module G′ = Functor G′
module φ = NaturalTransformation φ
module γ = NaturalTransformation γ
module H = Functor H
module L = Functor (reduce′ H F G)
module R = Functor (reduce′ H F′ G′)
my-η : ∀ Xs → C [ L.F₀ Xs , R.F₀ Xs ]
my-η Xs = H.F₁ ((φ.η (Xs ∙ inj₁)) , (γ.η (Xs ∙ inj₂)))
.my-commute : ∀ Xs Ys fs → C.CommutativeSquare (L.F₁ fs) (my-η Xs) (my-η Ys) (R.F₁ fs)
my-commute Xs Ys fs = begin
my-η Ys ∘ L.F₁ fs
↑⟨ H.homomorphism ⟩
H.F₁ ((φ.η (Ys ∙ inj₁) ∘ F.F₁ (fs ∙ inj₁)) , (γ.η (Ys ∙ inj₂) ∘ G.F₁ (fs ∙ inj₂)))
↓⟨ H.F-resp-≡ ((φ.commute (fs ∙ inj₁)) , (γ.commute (fs ∙ inj₂))) ⟩
H.F₁ ((F′.F₁ (fs ∙ inj₁) ∘ φ.η (Xs ∙ inj₁)) , (G′.F₁ (fs ∙ inj₂) ∘ γ.η (Xs ∙ inj₂)))
↓⟨ H.homomorphism ⟩
R.F₁ fs ∘ my-η Xs
∎
where
open C using (_∘_; _≡_)
open C.HomReasoning
reduceN : ∀ (H : Bifunctor C C C) {n} {F F′ : Powerendo n} (φ : NaturalTransformation F F′) {m} {G G′ : Powerendo m} (γ : NaturalTransformation G G′) → NaturalTransformation (reduce H F G) (reduce H F′ G′)
reduceN H {n} {F = f} {f′} F {m} {g} {g′} G = flattenPⁿ {F = a} {G = b} (reduceN′ H F G)
where
a : Categories.Bifunctor.Functor (Categories.Power.Exp C (Fin n ⊎ Fin m)) C
a = reduce′ H f g
b : Categories.Bifunctor.Functor (Categories.Power.Exp C (Fin n ⊎ Fin m)) C
b = reduce′ H f′ g′
overlapN : ∀ (H : Bifunctor C C C) {n} {F F′ : Powerendo n} (φ : NaturalTransformation F F′) {G G′ : Powerendo n} (γ : NaturalTransformation G G′) → NaturalTransformation (overlaps {C} {C} H F G) (overlaps {C} {C} H F′ G′)
overlapN H F G = overlapN-× {D₁ = C} {D₂ = C} H F G
|
{
"alphanum_fraction": 0.6142763589,
"avg_line_length": 43.6285714286,
"ext": "agda",
"hexsha": "5582c4643c0839c9ea92480fbae1e4f20194ef2b",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Power/NaturalTransformation.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Power/NaturalTransformation.agda",
"max_line_length": 222,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Power/NaturalTransformation.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 1197,
"size": 3054
}
|
{-# OPTIONS --erased-cubical #-}
open import Erased-cubical-Pattern-matching.Cubical
-- The following definition should be rejected. Matching on a
-- non-erased constructor that is treated as erased because it was
-- defined in a module that uses --cubical should not on its own make
-- it possible to use erased definitions in the right-hand side.
f : D → D
f c = c
|
{
"alphanum_fraction": 0.7432432432,
"avg_line_length": 30.8333333333,
"ext": "agda",
"hexsha": "6194cf36b7fd1135ccf8ae413fb31d8cea72bdaa",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Erased-cubical-Pattern-matching.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Erased-cubical-Pattern-matching.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Erased-cubical-Pattern-matching.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 93,
"size": 370
}
|
-- Andreas, 2014-09-01
-- This module exports a module M
module Imports.Module where
module M where
|
{
"alphanum_fraction": 0.7450980392,
"avg_line_length": 14.5714285714,
"ext": "agda",
"hexsha": "09f0f45d9301b5cef9f68fb7a4f06582fd118236",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Imports/Module.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Imports/Module.agda",
"max_line_length": 33,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Imports/Module.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 28,
"size": 102
}
|
{-# OPTIONS --allow-unsolved-metas #-}
module Avionics.Probability where
open import Data.Nat using (ℕ; zero; suc)
open import Relation.Unary using (_∈_)
open import Avionics.Real using (
ℝ; _+_; _-_; _*_; _÷_; _^_; √_; 1/_; _^2;
-1/2; π; e; 2ℝ;
⟨0,∞⟩; [0,∞⟩; [0,1])
--postulate
-- Vec : Set → ℕ → Set
-- Mat : Set → ℕ → ℕ → Set
record Dist (Input : Set) : Set where
field
pdf : Input → ℝ
cdf : Input → ℝ
pdf→[0,∞⟩ : ∀ x → pdf x ∈ [0,∞⟩
cdf→[0,1] : ∀ x → cdf x ∈ [0,1]
--∫pdf≡cdf : ∫ pdf ≡ cdf
--∫pdf[-∞,∞]≡1ℝ : ∫ pdf [ -∞ , ∞ ] ≡ 1ℝ
record NormalDist : Set where
constructor ND
field
μ : ℝ
σ : ℝ
dist : Dist ℝ
dist = record
{
pdf = pdf
; cdf = ?
; pdf→[0,∞⟩ = ?
; cdf→[0,1] = ?
}
where
√2π = (√ (2ℝ * π))
1/⟨σ√2π⟩ = (1/ (σ * √2π))
pdf : ℝ → ℝ
pdf x = 1/⟨σ√2π⟩ * e ^ (-1/2 * (⟨x-μ⟩÷σ ^2))
where
⟨x-μ⟩÷σ = ((x - μ) ÷ σ)
--MultiNormal : ∀ {n : ℕ} → Vec ℝ n → Mat ℝ n n → Dist (Vec ℝ n)
--MultiNormal {n} means cov = record
-- {
-- pdf = ?
-- ; cdf = ?
-- }
--Things to prove using this approach
--_ : ∀ (mean1 std1 mean2 std2 x)
-- → Dist.pdf (Normal mean1 std1) x + Dist.pdf (Normal mean2 std2) x ≡ Dist.pdf (Normal (mean1 + mean2) (...))
|
{
"alphanum_fraction": 0.4731098987,
"avg_line_length": 21.7457627119,
"ext": "agda",
"hexsha": "39a88769e3a876207b8d1af3b0f2fd860796400b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "896e67a2ad21041a1c9ef5f3ad6318c67d730341",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "RPI-WCL/safety-envelopes-sentinels",
"max_forks_repo_path": "agda/Avionics/Probability.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "896e67a2ad21041a1c9ef5f3ad6318c67d730341",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "RPI-WCL/safety-envelopes-sentinels",
"max_issues_repo_path": "agda/Avionics/Probability.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "896e67a2ad21041a1c9ef5f3ad6318c67d730341",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "RPI-WCL/safety-envelopes-sentinels",
"max_stars_repo_path": "agda/Avionics/Probability.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 568,
"size": 1283
}
|
module Isos.TreeLike where
open import Isos.Isomorphism
open import Trees
open import Tuples
open import Equality
open import Data.Product
open import Data.Unit
------------------------------------------------------------------------
-- internal stuffs
private
pattern ∅ = Empty tt
∅′ : BareBinTree
∅′ = Empty tt
_,,_ : BareBinTree → BareBinTree → BareBinTree
_,,_ = Node tt
infixl 4 _,,_
pattern [_,_] a b = Node tt a b
tree⁷->tree : BareBinTree ⁷ → BareBinTree
tree⁷->tree (∅ , ∅ , ∅ , ∅ , ∅ , ∅ , [ [ [ [ a , b ] , c ] , d ] , e ])
= ∅′ ,, a ,, b ,, c ,, d ,, e
tree⁷->tree (∅ , ∅ , ∅ , ∅ , ∅ , ∅ , a) = a
tree⁷->tree (∅ , ∅ , ∅ , ∅ , ∅ , t₅ , t₆)
= t₅ ,, t₆ ,, ∅′ ,, ∅′ ,, ∅′ ,, ∅′ ,, ∅′
tree⁷->tree (∅ , ∅ , ∅ , ∅ , [ a , b ] , t₅ , t₆)
= ∅′ ,, t₆ ,, t₅ ,, a ,, b
tree⁷->tree (t₀ , t₁ , t₂ , t₃ , t₄ , t₅ , t₆)
= t₆ ,, t₅ ,, t₄ ,, t₃ ,, t₂ ,, t₁ ,, t₀
tree->tree⁷ : BareBinTree → BareBinTree ⁷
tree->tree⁷ [ [ [ [ [ ∅ , a ] , b ] , c ] , d ] , e ]
= ∅ , ∅ , ∅ , ∅ , ∅ , ∅ , (a ,, b ,, c ,, d ,, e)
tree->tree⁷ [ [ [ [ [ t₆ , t₅ ] , ∅ ] , ∅ ] , ∅ ] , ∅ ]
= ∅ , ∅ , ∅ , ∅ , ∅ , t₅ , t₆
tree->tree⁷ [ [ [ [ ∅ , t₆ ] , t₅ ] , a ] , b ]
= ∅ , ∅ , ∅ , ∅ , (a ,, b) , t₅ , t₆
tree->tree⁷ [ [ [ [ [ [ t₆ , t₅ ] , t₄ ] , t₃ ] , t₂ ] , t₁ ] , t₀ ]
= t₀ , t₁ , t₂ , t₃ , t₄ , t₅ , t₆
tree->tree⁷ a = ∅ , ∅ , ∅ , ∅ , ∅ , ∅ , a
tree⁷<=>tree : BareBinTree ⁷ ⇔ BareBinTree
tree⁷<=>tree = ∧-intro tree⁷->tree tree->tree⁷
-- too hard
-- proofL : ∀ tree → tree⁷->tree (tree->tree⁷ tree) ≡ tree
-- proofL [ [ [ [ [ ∅ , a ] , b ] , c ] , d ] , e ]
-- = refl
-- proofL [ [ [ [ [ Node x t₆ t7 , t₅ ] , ∅ ] , ∅ ] , ∅ ] , ∅ ]
-- = {!!}
-- proofL [ [ [ [ ∅ , t₆ ] , t₅ ] , a ] , b ]
-- = refl
-- proofL [ [ [ [ [ [ t₆ , t₅ ] , t₄ ] , t₃ ] , t₂ ] , t₁ ] , t₀ ]
-- = {!!}
-- proofL _ = {!!}
------------------------------------------------------------------------
-- public aliases
iso-seven-tree-in-one : BareBinTree ⁷ ⇔ BareBinTree
iso-seven-tree-in-one = tree⁷<=>tree
|
{
"alphanum_fraction": 0.3645116919,
"avg_line_length": 32.0735294118,
"ext": "agda",
"hexsha": "656f7646957d2ffccff124aa7a04e0735ddc8918",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "ice1k/Theorems",
"max_forks_repo_path": "src/Isos/TreeLike.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "ice1k/Theorems",
"max_issues_repo_path": "src/Isos/TreeLike.agda",
"max_line_length": 73,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "ice1k/Theorems",
"max_stars_repo_path": "src/Isos/TreeLike.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z",
"num_tokens": 963,
"size": 2181
}
|
module Categories.Category.CartesianClosed.Bundle where
open import Categories.Category using (Category)
open import Categories.Category.CartesianClosed using (CartesianClosed)
open import Level
record CartesianClosedCategory o ℓ e : Set (suc (o ⊔ ℓ ⊔ e)) where
field
U : Category o ℓ e
cartesianClosed : CartesianClosed U
open Category U public
open CartesianClosed cartesianClosed public
|
{
"alphanum_fraction": 0.7892156863,
"avg_line_length": 27.2,
"ext": "agda",
"hexsha": "cdd9ca7b016ef86d4d99864c7fe2cfd3465ca4d9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "elpinal/exsub-ccc",
"max_forks_repo_path": "Categories/Category/CartesianClosed/Bundle.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "elpinal/exsub-ccc",
"max_issues_repo_path": "Categories/Category/CartesianClosed/Bundle.agda",
"max_line_length": 71,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "elpinal/exsub-ccc",
"max_stars_repo_path": "Categories/Category/CartesianClosed/Bundle.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T13:30:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-05T06:16:32.000Z",
"num_tokens": 93,
"size": 408
}
|
module String where
open import Common.IO
open import Common.List
open import Common.String
open import Common.Unit
testString : String
testString = "To boldly go where no man gone before"
printList : {A : Set} -> (A -> IO Unit) -> List A -> IO Unit
printList p [] = return unit
printList p (x ∷ xs) =
p x ,,
printList p xs
main : IO Unit
main =
putStrLn testString ,,
printList printChar (stringToList testString) ,,
putStrLn "" ,,
putStrLn (fromList (stringToList testString)) ,,
return unit
|
{
"alphanum_fraction": 0.6812144213,
"avg_line_length": 21.08,
"ext": "agda",
"hexsha": "591d54bb6a43c369069bb7c1d91322165abcef76",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Compiler/simple/String.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Compiler/simple/String.agda",
"max_line_length": 60,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Compiler/simple/String.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 141,
"size": 527
}
|
module SafetyProof where
open import Algebra
import Algebra.Properties.CommutativeSemigroup as CommutativeSemigroupProperties
open import Data.List
open import Data.List.Relation.Unary.All using (All; []; _∷_)
open import Data.Fin.Patterns using (0F; 1F)
open import Data.Nat using (z≤n; s≤s)
open import Data.Integer using (+≤+; +<+; +_)
open import Data.Vec using (_∷_)
import Data.Vec.Functional as Vector
open import Data.Product using (_×_; _,_; uncurry)
open import Data.Sum
open import Level using (0ℓ)
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary using (yes; no)
open import Vehicle.Data.Tensor
open import AbstractRationals
import WindControllerSpec as Vehicle
open ≤-Reasoning
------------------------------------------------------------------------
-- Setup
toTensor : ℚ → ℚ → Tensor ℚ (2 ∷ [])
toTensor x y = Vector.fromList (x ∷ y ∷ [])
roadWidth : ℚ
roadWidth = + 3 / 1
maxWindShift : ℚ
maxWindShift = 1ℚ
maxSensorError : ℚ
maxSensorError = + 1 / 4
roadWidth≥0 : roadWidth ≥ 0ℚ
roadWidth≥0 = *≤* (+≤+ z≤n)
maxWindShift≥0 : maxWindShift ≥ 0ℚ
maxWindShift≥0 = *≤* (+≤+ z≤n)
maxSensorError≥0 : maxSensorError ≥ 0ℚ
maxSensorError≥0 = *≤* (+≤+ z≤n)
------------------------------------------------------------------------
-- Model data
record State : Set where
constructor state
field
windSpeed : ℚ
position : ℚ
velocity : ℚ
sensor : ℚ
open State
record Observation : Set where
constructor observe
field
windShift : ℚ
sensorError : ℚ
open Observation
------------------------------------------------------------------------
-- Model transitions
initialState : State
initialState = record
{ windSpeed = 0ℚ
; position = 0ℚ
; velocity = 0ℚ
; sensor = 0ℚ
}
controller : ℚ → ℚ → ℚ
controller x y = Vehicle.controller (toTensor x y)
nextState : Observation → State → State
nextState o s = record
{ windSpeed = newWindSpeed
; position = newPosition
; velocity = newVelocity
; sensor = newSensor
}
where
newWindSpeed = windSpeed s + windShift o
newPosition = position s + velocity s + newWindSpeed
newSensor = newPosition + sensorError o
newVelocity = velocity s + controller newSensor (sensor s)
finalState : List Observation → State
finalState xs = foldr nextState initialState xs
------------------------------------------------------------------------
-- Definition of correctness
nextPosition-windShift : State → ℚ
nextPosition-windShift s = position s + velocity s + windSpeed s
-- The vehicle is on the road if its position is less than the
-- width of the road.
OnRoad : State → Set
OnRoad s = ∣ position s ∣ ≤ roadWidth
-- The vehicle is in a "safe" state if it's more than the maxWindShift away
-- from the edge of the road.
SafeDistanceFromEdge : State → Set
SafeDistanceFromEdge s = ∣ nextPosition-windShift s ∣ < roadWidth - maxWindShift
-- The vehicle's previous sensor reading is accurate if it is no more than the
-- maximum error away from it's true location.
AccurateSensorReading : State → Set
AccurateSensorReading s = ∣ position s - sensor s ∣ ≤ maxSensorError
-- The vehicle's previous sensor reading was not off the road
SensorReadingNotOffRoad : State → Set
SensorReadingNotOffRoad s = ∣ sensor s ∣ ≤ roadWidth + maxSensorError
-- A state is safe if it both a safe distance from the edge and it's sensor
-- reading is accurate.
SafeState : State → Set
SafeState s = SafeDistanceFromEdge s
× AccurateSensorReading s
× SensorReadingNotOffRoad s
-- An observation is valid if the observed sensor error and the wind shift
-- are less than the expected maximum shifts.
ValidObservation : Observation → Set
ValidObservation o = ∣ sensorError o ∣ ≤ maxSensorError
× ∣ windShift o ∣ ≤ maxWindShift
------------------------------------------------------------------------
-- Proof of correctness
-- Initial state is both a safe distance from the edge and on the road
initialState-onRoad : OnRoad initialState
initialState-onRoad = roadWidth≥0
initialState-safe : SafeState initialState
initialState-safe rewrite +-eq | *-eq | neg-eq =
*<* (+<+ (s≤s z≤n)) ,
*≤* (+≤+ z≤n) ,
*≤* (+≤+ z≤n)
-- Transitions are well-behaved
controller-lem : ∀ x y →
∣ x ∣ ≤ roadWidth + maxSensorError →
∣ y ∣ ≤ roadWidth + maxSensorError →
∣ controller x y + 2ℚ * x - y ∣ < roadWidth - maxWindShift - 3ℚ * maxSensorError
controller-lem x y ∣x∣≤rw+εₘₐₓ ∣y∣≤rw+εₘₐₓ rewrite +-eq | *-eq | neg-eq =
uncurry -p<q<p⇒∣q∣<p (Vehicle.safe (toTensor x y) (λ
{ 0F → ∣p∣≤q⇒-q≤p≤q x ∣x∣≤rw+εₘₐₓ
; 1F → ∣p∣≤q⇒-q≤p≤q y ∣y∣≤rw+εₘₐₓ
}))
valid⇒nextState-accurateSensor : ∀ o → ValidObservation o → ∀ s →
AccurateSensorReading (nextState o s)
valid⇒nextState-accurateSensor o (ε≤εₘₐₓ , _) s = let s' = nextState o s in begin
∣ position s' - sensor s' ∣ ≡⟨⟩
∣ position s' - (position s' + sensorError o) ∣ ≡⟨ cong ∣_∣ (p-[p+q]≡q (position s') (sensorError o)) ⟩
∣ sensorError o ∣ ≤⟨ ε≤εₘₐₓ ⟩
maxSensorError ∎
valid+safe⇒nextState-onRoad : ∀ o → ValidObservation o →
∀ s → SafeState s →
OnRoad (nextState o s)
valid+safe⇒nextState-onRoad o (_ , δw≤δwₘₐₓ) s (safeDist , _ , _) = begin
∣ position s + velocity s + (windSpeed s + windShift o) ∣ ≡˘⟨ cong ∣_∣ (+-assoc (position s + velocity s) (windSpeed s) (windShift o)) ⟩
∣ position s + velocity s + windSpeed s + windShift o ∣ ≤⟨ ∣p+q∣≤∣p∣+∣q∣ _ (windShift o) ⟩
∣ nextPosition-windShift s ∣ + ∣ windShift o ∣ ≤⟨ +-mono-≤ (<⇒≤ safeDist) δw≤δwₘₐₓ ⟩
roadWidth - maxWindShift + maxWindShift ≡⟨ p-q+q≡p roadWidth maxWindShift ⟩
roadWidth ∎
valid+safe⇒nextState-sensorReadingNotOffRoad : ∀ s → SafeState s → ∀ o → ValidObservation o →
SensorReadingNotOffRoad (nextState o s)
valid+safe⇒nextState-sensorReadingNotOffRoad s safe o valid@(ε≤εₘₐₓ , _) = begin
∣ position (nextState o s) + sensorError o ∣ ≤⟨ ∣p+q∣≤∣p∣+∣q∣ (position s + velocity s + (windSpeed s + windShift o)) (sensorError o) ⟩
∣ position (nextState o s) ∣ + ∣ sensorError o ∣ ≤⟨ +-mono-≤ (valid+safe⇒nextState-onRoad o valid s safe) ε≤εₘₐₓ ⟩
roadWidth + maxSensorError ∎
valid+safe⇒nextState-safeDistanceFromEdge : ∀ o → ValidObservation o →
∀ s → SafeState s →
SafeDistanceFromEdge (nextState o s)
valid+safe⇒nextState-safeDistanceFromEdge o valid@(ε-accurate , _) s safe@(safeDist , ε'-accurate , s-notOffRoad) = let
s' = nextState o s
y = position s; y' = position s'
v = velocity s; v' = velocity s'
w = windSpeed s; w' = windSpeed s'
p = sensor s; p' = sensor s'
ε = y - p; ε' = sensorError o
dw = windShift o
dv = controller p' p
∣dv+2p'-p∣ = ∣ dv + 2ℚ * p' - p ∣
s'-notOffRoad = valid+safe⇒nextState-sensorReadingNotOffRoad s safe o valid
in begin-strict
∣ y' + v' + w' ∣ ≡⟨ cong ∣_∣ (sym (p+q-q≡p (y' + v' + w') _)) ⟩
∣ y' + (v + dv) + w' + (y + ε' + ε' - p) - (y + ε' + ε' - p) ∣ ≡⟨ cong ∣_∣ (lem1 y' v dv w' y ε' p) ⟩
∣ dv + (y' + ε' + (y + v + w' + ε')) - p - (ε' + ε' + (y - p)) ∣ ≡⟨⟩
∣ dv + (p' + p') - p - (ε' + ε' + (y - p)) ∣ ≡⟨ cong ∣_∣ (cong₂ (λ a b → dv + a - p - (b + (y - p))) (sym (2*p≡p+p p')) (sym (2*p≡p+p ε'))) ⟩
∣ dv + 2ℚ * p' - p - (2ℚ * ε' + (y - p)) ∣ ≤⟨ ∣p-q∣≤∣p∣+∣q∣ (dv + 2ℚ * p' - p) (2ℚ * ε' + (y - p)) ⟩
∣ dv + 2ℚ * p' - p ∣ + ∣ 2ℚ * ε' + (y - p) ∣ ≤⟨ +-monoʳ-≤ _ (∣p+q∣≤∣p∣+∣q∣ (2ℚ * ε') (y - p)) ⟩
∣ dv + 2ℚ * p' - p ∣ + (∣ 2ℚ * ε' ∣ + ∣ y - p ∣) ≡⟨ cong (λ v → ∣dv+2p'-p∣ + v) (cong (_+ _) (∣p*q∣≡∣p∣*∣q∣ 2ℚ ε')) ⟩
∣ dv + 2ℚ * p' - p ∣ + (2ℚ * ∣ ε' ∣ + ∣ ε ∣) ≤⟨ +-monoʳ-≤ _ (+-mono-≤ (*-monoʳ-≤ 2ℚ _ ε-accurate) ε'-accurate) ⟩
∣ dv + 2ℚ * p' - p ∣ + (2ℚ * maxSensorError + maxSensorError) ≡⟨ cong (λ v → ∣dv+2p'-p∣ + v) (2p+p≡3p maxSensorError) ⟩
∣ dv + 2ℚ * p' - p ∣ + 3ℚ * maxSensorError <⟨ p<r-q⇒p+q<r _ _ _ (controller-lem p' p s'-notOffRoad s-notOffRoad) ⟩
roadWidth - maxWindShift ∎
safe⇒nextState-safe : ∀ s → SafeState s → ∀ o → ValidObservation o → SafeState (nextState o s)
safe⇒nextState-safe s safe o valid =
valid+safe⇒nextState-safeDistanceFromEdge o valid s safe ,
valid⇒nextState-accurateSensor o valid s ,
valid+safe⇒nextState-sensorReadingNotOffRoad s safe o valid
finalState-safe : ∀ xs → All ValidObservation xs → SafeState (finalState xs)
finalState-safe [] [] = initialState-safe
finalState-safe (x ∷ xs) (px ∷ pxs) = safe⇒nextState-safe (finalState xs) (finalState-safe xs pxs) x px
finalState-onRoad : ∀ xs → All ValidObservation xs → OnRoad (finalState xs)
finalState-onRoad [] [] = initialState-onRoad
finalState-onRoad (x ∷ xs) (px ∷ pxs) = valid+safe⇒nextState-onRoad x px (finalState xs) (finalState-safe xs pxs)
|
{
"alphanum_fraction": 0.5706480986,
"avg_line_length": 40.5869565217,
"ext": "agda",
"hexsha": "8be896ffb948b498ec4daa67d0ddddb993c23db1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "vehicle-lang/vehicle",
"max_forks_repo_path": "examples/windController/agdaProof/SafetyProof.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T20:49:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-07T14:09:13.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "vehicle-lang/vehicle",
"max_issues_repo_path": "examples/windController/agdaProof/SafetyProof.agda",
"max_line_length": 164,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "vehicle-lang/vehicle",
"max_stars_repo_path": "examples/windController/agdaProof/SafetyProof.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-17T18:51:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-10T12:56:42.000Z",
"num_tokens": 3259,
"size": 9335
}
|
------------------------------------------------------------------------------
-- First-order Peano arithmetic
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module PA.Inductive.README where
-- Formalization of first-order Peano arithmetic using Agda data types
-- and primitive recursive functions for addition and multiplication.
------------------------------------------------------------------------------
-- Inductive definitions
open import PA.Inductive.Base
-- Some properties
open import PA.Inductive.PropertiesATP
open import PA.Inductive.PropertiesI
open import PA.Inductive.PropertiesByInduction
open import PA.Inductive.PropertiesByInductionATP
open import PA.Inductive.PropertiesByInductionI
|
{
"alphanum_fraction": 0.5502183406,
"avg_line_length": 35.2307692308,
"ext": "agda",
"hexsha": "138593e91b1626bdc30726bbca96d1622785ac40",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/PA/Inductive/README.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/PA/Inductive/README.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/PA/Inductive/README.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 151,
"size": 916
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use `Data.Vec.Functional` instead.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
-- Disabled to prevent warnings from other Table modules
{-# OPTIONS --warn=noUserWarning #-}
module Data.Table.Relation.Equality where
open import Data.Table.Relation.Binary.Equality public
{-# WARNING_ON_IMPORT
"Data.Table.Relation.Equality was deprecated in v1.0.
Use Data.Vec.Functional.Relation.Binary.Pointwise instead."
#-}
|
{
"alphanum_fraction": 0.578099839,
"avg_line_length": 31.05,
"ext": "agda",
"hexsha": "23cf52a28a54b02ed942dfdfa316ef45d7cf672a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Table/Relation/Equality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Table/Relation/Equality.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Table/Relation/Equality.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 112,
"size": 621
}
|
-- Andreas, 2012-01-11
module Issue551b where
data Box (A : Set) : Set where
[_] : .A → Box A
implicit : {A : Set}{{a : A}} -> A
implicit {{a}} = a
postulate
A : Set
.a : A
a' : Box A
a' = [ implicit ]
-- this should succeed
f : {X : Set} → Box X → Box (Box X)
f [ x ] = [ [ implicit ] ]
-- this as well
|
{
"alphanum_fraction": 0.5301587302,
"avg_line_length": 15,
"ext": "agda",
"hexsha": "b9f87bc44e1bc3f35157b69a9a919ed4492d28f3",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/agda",
"max_forks_repo_path": "test/succeed/Issue551b.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/agda",
"max_issues_repo_path": "test/succeed/Issue551b.agda",
"max_line_length": 35,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/succeed/Issue551b.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 122,
"size": 315
}
|
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Algebra.GradedRing.Instances.CohomologyRing where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Nat
open import Cubical.Data.Sigma
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.Monoid.Instances.NatPlusBis
open import Cubical.Algebra.AbGroup
open import Cubical.Algebra.AbGroup.Instances.Unit
open import Cubical.Algebra.DirectSum.DirectSumHIT.Base
open import Cubical.Algebra.GradedRing.Base
open import Cubical.Algebra.GradedRing.DirectSumHIT
open import Cubical.ZCohomology.Base
open import Cubical.ZCohomology.GroupStructure
open import Cubical.ZCohomology.RingStructure.CupProduct
open import Cubical.ZCohomology.RingStructure.RingLaws
open import Cubical.ZCohomology.RingStructure.GradedCommutativity
private variable
ℓ : Level
open PlusBis
open GradedRing-⊕HIT-index
open GradedRing-⊕HIT-⋆
module _
(A : Type ℓ)
where
CohomologyRing-GradedRing : GradedRing ℓ-zero ℓ
CohomologyRing-GradedRing = makeGradedRingSelf
NatPlusBis-Monoid
(λ k → coHom k A)
(λ k → snd (coHomGroup k A) )
1⌣
_⌣_
(λ {k} {l} → 0ₕ-⌣ k l)
(λ {k} {l} → ⌣-0ₕ k l)
(λ _ _ _ → sym (ΣPathTransport→PathΣ _ _ ((sym (+'-assoc _ _ _)) , (sym (assoc-⌣ _ _ _ _ _ _)))) )
(λ _ → sym (ΣPathTransport→PathΣ _ _ (sym (+'-rid _) , sym (lUnit⌣ _ _))))
(λ _ → ΣPathTransport→PathΣ _ _ (refl , transportRefl _ ∙ rUnit⌣ _ _))
(λ _ _ _ → leftDistr-⌣ _ _ _ _ _)
( λ _ _ _ → rightDistr-⌣ _ _ _ _ _)
|
{
"alphanum_fraction": 0.60609358,
"avg_line_length": 38.2916666667,
"ext": "agda",
"hexsha": "e6bc75e22ff1d0b1258c21ab85a0f7975656ed1d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/GradedRing/Instances/CohomologyRing.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/GradedRing/Instances/CohomologyRing.agda",
"max_line_length": 128,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/GradedRing/Instances/CohomologyRing.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 547,
"size": 1838
}
|
module RandomAccessList.Redundant where
open import RandomAccessList.Redundant.Core
open import RandomAccessList.Redundant.Core.Properties
open import BuildingBlock.BinaryLeafTree using (BinaryLeafTree; Node; Leaf)
import BuildingBlock.BinaryLeafTree as BLT
-- open import Data.Fin
open import Data.Num.Nat
open import Data.Num.Redundant
open import Data.Num.Redundant.Properties
open import Data.Nat renaming (_<_ to _<ℕ_)
open import Data.Nat.DivMod
open import Data.Nat.Etc
open import Data.Product
open import Relation.Nullary using (Dec; yes; no)
open import Relation.Nullary.Negation using (contradiction; contraposition)
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; _≢_; refl; cong; trans; sym; subst; inspect)
--------------------------------------------------------------------------------
-- Operations
--------------------------------------------------------------------------------
consₙ : ∀ {n A} → BinaryLeafTree A n → 0-2-RAL A n → 0-2-RAL A n
consₙ a [] = a 1∷ []
consₙ a ( 0∷ xs) = a 1∷ xs
consₙ a (x 1∷ xs) = a , x 2∷ xs
consₙ a (x , y 2∷ xs) = a 1∷ consₙ (Node x y) xs
cons : ∀ {A} → A → 0-2-RAL A 0 → 0-2-RAL A 0
cons a xs = consₙ (Leaf a) xs
headₙ : ∀ {n A} → (xs : 0-2-RAL A n) → ⟦ xs ⟧ₙ ≉ zero ∷ [] → BinaryLeafTree A n
headₙ [] p = contradiction (eq refl) p
headₙ ( 0∷ xs) p = proj₁ (BLT.split (headₙ xs (contraposition (>>-zero ⟦ xs ⟧ₙ) p)))
headₙ (x 1∷ xs) p = x
headₙ (x , y 2∷ xs) p = x
head : ∀ {A} → (xs : 0-2-RAL A 0) → ⟦ xs ⟧ ≉ zero ∷ [] → A
head xs p = BLT.head (headₙ xs p)
tailₙ : ∀ {n A} → (xs : 0-2-RAL A n) → ⟦ xs ⟧ₙ ≉ zero ∷ [] → 0-2-RAL A n
tailₙ [] p = contradiction (eq refl) p
tailₙ ( 0∷ xs) p = proj₂ (BLT.split (headₙ xs (contraposition (>>-zero ⟦ xs ⟧ₙ) p))) 1∷ tailₙ xs (contraposition (>>-zero ⟦ xs ⟧ₙ) p)
tailₙ (x 1∷ xs) p = 0∷ xs
tailₙ (x , y 2∷ xs) p = y 1∷ xs
tail : ∀ {A} → (xs : 0-2-RAL A 0) → ⟦ xs ⟧ ≉ zero ∷ [] → 0-2-RAL A 0
tail xs p = tailₙ xs p
--------------------------------------------------------------------------------
-- Searching
--------------------------------------------------------------------------------
data Finite : Redundant → Set where
finite : ∀ {bound} -- # of elements
→ (a : Redundant) -- inhabitant
→ {a<bound : a < bound}
→ Finite bound
elemAt : ∀ {n A} → (xs : 0-2-RAL A n) → Finite ⟦ xs ⟧ → A
elemAt {n} {A} [] (finite a {a<[]}) = contradiction a<[] {! !}
-- elemAt {n} {A} [] (finite a {a<b}) = contradiction a<b (contraposition (map-≤ refl (to≡ (<<<-zero 0 ⟦ [] {A} {n} ⟧ {⟦[]⟧≈zero∷[] ([] {A} {n}) {refl}}))) (λ ()))
elemAt (0∷ xs) i = elemAt xs {! !}
elemAt (x 1∷ xs) i = {! !}
elemAt (x , y 2∷ xs) i = {! !}
{-
-- data Occurrence : Set where
-- here : ∀ {a n} → a * Fin (2 ^ n) → Occurrence
-- there : Occurrence
transportFin : ∀ {a b} → a ≡ b → Fin a → Fin b
transportFin refl i = i
elemAt : ∀ {n A} → (xs : 0-2-RAL A n) → Fin ⟦ xs ⟧ → A
elemAt {zero} [] ()
elemAt {suc n} {A} [] i = elemAt {n} ([] {A} {n}) (transportFin (⟦[]⟧≡⟦[]⟧ {m = suc n} {n = n} {A = A}) i)
elemAt ( 0∷ xs) i = elemAt xs (transportFin (⟦0∷xs⟧≡⟦xs⟧ xs) i)
elemAt {n} (x 1∷ xs) i with (1 * 2 ^ n) ≤? toℕ i
elemAt (x 1∷ xs) i | yes p rewrite splitIndex x xs = elemAt xs (reduce≥ i p)
elemAt {n} (x 1∷ xs) i | no ¬p with toℕ i divMod (2 ^ n)
elemAt (x 1∷ xs) i | no ¬p | result quotient remainder property = BLT.elemAt x remainder
elemAt {n} (x , y 2∷ xs) i with (2 * 2 ^ n) ≤? toℕ i
elemAt (x , y 2∷ xs) i | yes p rewrite splitIndex2 x y xs = elemAt xs (reduce≥ i p)
elemAt {n} (x , y 2∷ xs) i | no ¬p with toℕ i divMod (2 ^ n)
elemAt (x , y 2∷ xs) i | no ¬p | result zero remainder property = BLT.elemAt x remainder
elemAt (x , y 2∷ xs) i | no ¬p | result (suc quotient) remainder property = BLT.elemAt y remainder
-}
|
{
"alphanum_fraction": 0.5204991087,
"avg_line_length": 42.2258064516,
"ext": "agda",
"hexsha": "441d7e5ad265c1231fc2f1fac498b9fd61b93d10",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/numeral",
"max_forks_repo_path": "legacy/RandomAccessList/Redundant.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/numeral",
"max_issues_repo_path": "legacy/RandomAccessList/Redundant.agda",
"max_line_length": 163,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/numeral",
"max_stars_repo_path": "legacy/RandomAccessList/Redundant.agda",
"max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z",
"num_tokens": 1504,
"size": 3927
}
|
module examplesPaperJFP.Object where
open import Data.Product
open import Data.String.Base
open import examplesPaperJFP.NativeIOSafe
open import examplesPaperJFP.BasicIO hiding (main)
open import examplesPaperJFP.Console hiding (main)
record Interface : Set₁ where
field Method : Set
Result : (m : Method) → Set
open Interface public
record Object (I : Interface) : Set where
coinductive
field objectMethod : (m : Method I) → Result I m × Object I
open Object public
record IOObject (Iᵢₒ : IOInterface) (I : Interface) : Set where
coinductive
field method : (m : Method I) → IO Iᵢₒ (Result I m × IOObject Iᵢₒ I)
open IOObject public
data CellMethod A : Set where
get : CellMethod A
put : A → CellMethod A
CellResult : ∀{A} → CellMethod A → Set
CellResult {A} get = A
CellResult (put _) = Unit
cellJ : (A : Set) → Interface
Method (cellJ A) = CellMethod A
Result (cellJ A) m = CellResult m
CellC : Set
CellC = IOObject ConsoleInterface (cellJ String)
simpleCell : (s : String) → CellC
force (method (simpleCell s) get) =
exec′ (putStrLn ("getting (" ++ s ++ ")")) λ _ →
delay (return′ (s , simpleCell s))
force (method (simpleCell s) (put x)) =
exec′ (putStrLn ("putting (" ++ x ++ ")")) λ _ →
delay (return′ (unit , simpleCell x))
{-# TERMINATING #-}
program : IOConsole Unit
force program =
let c₁ = simpleCell "Start" in
exec′ getLine λ{ nothing → return unit; (just s) →
method c₁ (put s) >>= λ{ (_ , c₂) →
method c₂ get >>= λ{ (s′ , _ ) →
exec (putStrLn s′) λ _ →
program }}}
main : NativeIO Unit
main = translateIOConsole program
|
{
"alphanum_fraction": 0.6366863905,
"avg_line_length": 25.223880597,
"ext": "agda",
"hexsha": "ad6db68ea9c8a20712e0c5ae47896270475e3210",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "examples/examplesPaperJFP/Object.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "examples/examplesPaperJFP/Object.agda",
"max_line_length": 70,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "examples/examplesPaperJFP/Object.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 525,
"size": 1690
}
|
--
-- Created by Dependently-Typed Lambda Calculus on 2019-05-15
-- imports
-- Author: ice1000
--
{-# OPTIONS --without-K --safe #-}
import Relation.Binary.PropositionalEquality
open import Relation.Binary.PropositionalEquality
import Relation.Binary.PropositionalEquality using ()
import Relation.Binary.PropositionalEquality using (sym) hiding (cong)
import Relation.Binary.PropositionalEquality renaming (sym to symBla)
|
{
"alphanum_fraction": 0.7957746479,
"avg_line_length": 28.4,
"ext": "agda",
"hexsha": "5aa3e87d8f4fd8965c231074701522fd7857f14e",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-03-12T21:33:35.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-10-07T01:38:12.000Z",
"max_forks_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "dubinsky/intellij-dtlc",
"max_forks_repo_path": "testData/parse/agda/imports.agda",
"max_issues_count": 16,
"max_issues_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be",
"max_issues_repo_issues_event_max_datetime": "2021-03-15T17:04:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-03-30T04:29:32.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "dubinsky/intellij-dtlc",
"max_issues_repo_path": "testData/parse/agda/imports.agda",
"max_line_length": 70,
"max_stars_count": 30,
"max_stars_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "dubinsky/intellij-dtlc",
"max_stars_repo_path": "testData/parse/agda/imports.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-29T13:18:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-05-11T16:26:38.000Z",
"num_tokens": 96,
"size": 426
}
|
{-# OPTIONS --allow-unsolved-metas #-}
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.Data.List.PostulatesVersusDataTypes where
-- See Agda mailing list.
-- Subject: Agda's unification: postulates versus data types
module M₁ where
data D : Set where
_∷_ : D → D → D
data List : D → Set where
cons : ∀ x xs → List xs → List (x ∷ xs)
tail : ∀ {x xs} → List (x ∷ xs) → List xs
tail {x} {xs} (cons .x .xs xsL) = xsL
module M₂ where
postulate
D : Set
_∷_ : D → D → D
data List : D → Set where
cons : ∀ x xs → List xs → List (x ∷ xs)
tail : ∀ {x xs} → List (x ∷ xs) → List xs
tail l = {!!} -- C-c C-c fails
|
{
"alphanum_fraction": 0.5447667087,
"avg_line_length": 24.78125,
"ext": "agda",
"hexsha": "a92d8937ea91992f7dbd194b1a1dd15b79b875c1",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/Data/List/PostulatesVersusDataTypes.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/Data/List/PostulatesVersusDataTypes.agda",
"max_line_length": 60,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/Data/List/PostulatesVersusDataTypes.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 259,
"size": 793
}
|
------------------------------------------------------------------------
-- Some tactics aimed at making equational reasoning proofs more
-- readable for path equality
------------------------------------------------------------------------
{-# OPTIONS --erased-cubical --safe #-}
module Tactic.By.Path where
import Agda.Builtin.Cubical.Path
open import Equality.Path
open import Prelude
open import List equality-with-J as L
open import Maybe equality-with-J
open import Monad equality-with-J
open import Tactic.By equality-with-J as TB
open import TC-monad equality-with-J as TC hiding (Type)
open TB public using (⟨_⟩)
private
-- Constructs the type of equalities between its two arguments.
equality : Term → Term → TC.Type
equality lhs rhs = def (quote _≡_) (varg lhs ∷ varg rhs ∷ [])
-- An illustration of what the cong functions constructed by
-- make-cong-called look like.
cong₃′ :
∀ {a b c d : Level}
{A : Type a} {B : Type b} {C : Type c} {D : Type d}
{x₁ y₁ x₂ y₂ x₃ y₃}
(f : A → B → C → D) →
x₁ ≡ y₁ → x₂ ≡ y₂ → x₃ ≡ y₃ → f x₁ x₂ x₃ ≡ f y₁ y₂ y₃
cong₃′ f eq₁ eq₂ eq₃ = λ i → f (eq₁ i) (eq₂ i) (eq₃ i)
-- Constructs a "cong" function, with the given name, for functions
-- with the given number of arguments.
make-cong-called : Name → ℕ → TC ⊤
make-cong-called cong n = do
declareDef (varg cong) (type-of-cong equality n)
defineFun cong (the-clause ∷ [])
where
arguments : ℕ → List (Arg Term)
arguments zero = []
arguments (suc m) = varg (var (suc m) (varg (var 0 []) ∷ [])) ∷
arguments m
the-clause = clause
(("f" , varg unknown) ∷ replicate n ("eq" , varg unknown))
(varg (var n) ∷ L.map (varg ∘ var) (nats-< n))
(lam visible $ abs "i" $
var (n + 1) (arguments n))
unquoteDecl cong₃ = make-cong-called cong₃ 3
unquoteDecl cong₄ = make-cong-called cong₄ 4
unquoteDecl cong₅ = make-cong-called cong₅ 5
unquoteDecl cong₆ = make-cong-called cong₆ 6
unquoteDecl cong₇ = make-cong-called cong₇ 7
unquoteDecl cong₈ = make-cong-called cong₈ 8
unquoteDecl cong₉ = make-cong-called cong₉ 9
unquoteDecl cong₁₀ = make-cong-called cong₁₀ 10
-- Constructs a "cong" function (similar to cong and cong₂ in
-- Equality) for functions with the given number of arguments. The
-- name of the constructed function is returned (for 1 and 2 the
-- functions in Equality are returned). The cong functions for
-- functions with 3 up to 10 arguments are cached to avoid creating
-- lots of copies of the same functions.
make-cong : ℕ → TC Name
make-cong 1 = return (quote cong)
make-cong 2 = return (quote cong₂)
make-cong 3 = return (quote cong₃)
make-cong 4 = return (quote cong₄)
make-cong 5 = return (quote cong₅)
make-cong 6 = return (quote cong₆)
make-cong 7 = return (quote cong₇)
make-cong 8 = return (quote cong₈)
make-cong 9 = return (quote cong₉)
make-cong 10 = return (quote cong₁₀)
make-cong n = do
cong ← freshName "cong"
make-cong-called cong n
return cong
open Tactics
(λ where
(def (quote Agda.Builtin.Cubical.Path.PathP)
(arg _ a ∷ arg _ P ∷ arg _ x ∷ arg _ y ∷ [])) → do
A ← case P of λ where
(lam _ (abs _ A)) → case bound? 0 A of λ where
(definitely true) → return unknown
_ → return (strengthen-term 0 1 A)
_ → return unknown
return $ just (a , A , x , y)
_ → return nothing)
equality
(λ a A x → def (quote refl) (harg a ∷ harg A ∷ harg x ∷ []))
(λ p → def (quote sym) (varg p ∷ []))
(λ lhs rhs f p → def (quote cong)
(replicate 3 (harg unknown) ++
harg lhs ∷ harg rhs ∷ varg f ∷ varg p ∷ []))
false
make-cong
true
public
------------------------------------------------------------------------
-- Some unit tests
-- Test cases that are commented out fail (or at least they failed at
-- some point).
private
module Tests
(assumption : 48 ≡ 42)
(lemma : ∀ n → n + 8 ≡ n + 2)
(f : ℕ → ℕ → ℕ → ℕ)
where
g : ℕ → ℕ → ℕ → ℕ
g zero _ _ = 12
g (suc _) _ _ = 12
fst : ∀ {a b} {A : Type a} {B : A → Type b} →
Σ A B → A
fst = proj₁
{-# NOINLINE fst #-}
_≡′_ : {A : Type} → A → A → Type
_≡′_ = _≡_
{-# NOINLINE _≡′_ #-}
record R (F : Type → Type) : Type₁ where
field
p : {A : Type} {x : F A} → x ≡ x
open R ⦃ … ⦄ public
-- Tests for by.
module By-tests where
test₁ : 40 + 2 ≡ 42
test₁ = by definition
test₂ : 48 ≡ 42 → 42 ≡ 48
test₂ eq = by eq
test₃ : (f : ℕ → ℕ) → f 42 ≡ f 48
test₃ f = by assumption
test₄ : (f : ℕ → ℕ) → f 48 ≡ f 42
test₄ f = by assumption
test₅ : (f : ℕ → ℕ → ℕ) → f 42 48 ≡ f 48 42
test₅ f = by assumption
test₆ : (f : ℕ → ℕ → ℕ → ℕ) → f 42 45 48 ≡ f 48 45 42
test₆ f = by assumption
test₇ : f 48 (f 42 45 48) 42 ≡ f 48 (f 48 45 42) 48
test₇ = by assumption
test₈ : ∀ n → g n (g n 45 48) 42 ≡ g n (g n 45 42) 48
test₈ n = by assumption
test₉ : (f : ℕ → ℕ) → f 42 ≡ f 48
test₉ f = by (lemma 40)
test₁₀ : (f : ℕ → ℕ) → f 42 ≡ f 48
test₁₀ f = by (λ (_ : ⊤) → assumption)
test₁₁ : (f : ℕ × ℕ → ℕ × ℕ) → (∀ x → f x ≡′ x) →
fst (f (12 , 73)) ≡ fst {B = λ _ → ℕ} (12 , 73)
test₁₁ _ hyp = by hyp
test₁₂ : (h : ℕ → Maybe ℕ) →
((xs : ℕ) → h xs ≡ just xs) →
(xs : ℕ) → suc ⟨$⟩ h xs ≡ suc ⟨$⟩ return xs
test₁₂ h hyp xs =
suc ⟨$⟩ h xs ≡⟨ by (hyp xs) ⟩∎h
suc ⟨$⟩ return xs ∎
-- test₁₃ : (h : List ⊤ → Maybe (List ⊤)) →
-- ((xs : List ⊤) → h xs ≡ just xs) →
-- (x : ⊤) (xs : List ⊤) → _ ≡ _
-- test₁₃ h hyp x xs =
-- _∷_ ⟨$⟩ return x ⊛ h xs ≡⟨ by (hyp xs) ⟩∎
-- _∷_ ⟨$⟩ return x ⊛ return xs ∎
test₁₅ :
(F : Type → Type → Type)
(G : Bool → Type → Type) →
((A : Type) → F (G false A) A ≡ G false (F A A)) →
(A : Type) →
G false (F (G false A) A) ≡
G false (G false (F A A))
test₁₅ F G hyp A =
G false (F (G false A) A) ≡⟨ by hyp ⟩∎
G false (G false (F A A)) ∎
test₁₇ :
(P : ℕ → Type)
(f : ∀ {n} → P n → P n)
(p : P 0) →
f (subst P refl p) ≡ f p
test₁₇ P _ _ = by (subst-refl P)
test₁₈ :
(subst′ :
∀ {a p} {A : Type a} {x y : A}
(P : A → Type p) → x ≡ y → P x → P y) →
(∀ {a p} {A : Type a} {x : A} (P : A → Type p) (p : P x) →
subst′ P refl p ≡ p) →
(P : ℕ → Type)
(f : ∀ {n} → P n → P n)
(p : P 0) →
f (subst′ P refl p) ≡ f p
test₁₈ _ subst′-refl P _ _ = by (subst′-refl P)
-- test₁₉ :
-- {F : Type → Type} ⦃ r : R F ⦄ {A : Type} {x₁ x₂ : F A}
-- (p₁ p₂ : x₁ ≡ x₂) (assumption : p₁ ≡ p₂) →
-- trans p p₁ ≡ trans p p₂
-- test₁₉ p₁ p₂ assumption =
-- trans p p₁ ≡⟨ by assumption ⟩∎
-- trans p p₂ ∎
-- Tests for ⟨by⟩.
module ⟨By⟩-tests where
test₁ : ⟨ 40 + 2 ⟩ ≡ 42
test₁ = ⟨by⟩ refl
test₂ : 48 ≡ 42 → ⟨ 42 ⟩ ≡ 48
test₂ eq = ⟨by⟩ eq
test₃ : (f : ℕ → ℕ) → f ⟨ 42 ⟩ ≡ f 48
test₃ f = ⟨by⟩ assumption
test₄ : (f : ℕ → ℕ) → f ⟨ 48 ⟩ ≡ f 42
test₄ f = ⟨by⟩ assumption
test₅ : (f : ℕ → ℕ → ℕ) → f ⟨ 42 ⟩ ⟨ 42 ⟩ ≡ f 48 48
test₅ f = ⟨by⟩ assumption
test₆ : (f : ℕ → ℕ → ℕ → ℕ) → f ⟨ 48 ⟩ 45 ⟨ 48 ⟩ ≡ f 42 45 42
test₆ f = ⟨by⟩ assumption
test₇ : f ⟨ 48 ⟩ (f ⟨ 48 ⟩ 45 ⟨ 48 ⟩) ⟨ 48 ⟩ ≡ f 42 (f 42 45 42) 42
test₇ = ⟨by⟩ assumption
test₈ : ∀ n → g n (g n 45 ⟨ 48 ⟩) ⟨ 48 ⟩ ≡ g n (g n 45 42) 42
test₈ n = ⟨by⟩ assumption
test₉ : (f : ℕ → ℕ) → f ⟨ 42 ⟩ ≡ f 48
test₉ f = ⟨by⟩ (lemma 40)
test₁₀ : (f : ℕ → ℕ) → f ⟨ 42 ⟩ ≡ f 48
test₁₀ f = ⟨by⟩ (λ (_ : ⊤) → assumption)
test₁₁ : (f : ℕ × ℕ → ℕ × ℕ) → (∀ x → f x ≡′ x) →
fst ⟨ f (12 , 73) ⟩ ≡ fst {B = λ _ → ℕ} (12 , 73)
test₁₁ _ hyp = ⟨by⟩ hyp
test₁₂ : (h : ℕ → Maybe ℕ) →
((xs : ℕ) → h xs ≡ just xs) →
(xs : ℕ) → suc ⟨$⟩ h xs ≡ suc ⟨$⟩ return xs
test₁₂ h hyp xs =
suc ⟨$⟩ ⟨ h xs ⟩ ≡⟨ ⟨by⟩ (hyp xs) ⟩∎
suc ⟨$⟩ return xs ∎
test₁₃ : (h : List ⊤ → Maybe (List ⊤)) →
((xs : List ⊤) → h xs ≡ just xs) →
(x : ⊤) (xs : List ⊤) → _ ≡ _
test₁₃ h hyp x xs =
_∷_ ⟨$⟩ return x ⊛ ⟨ h xs ⟩ ≡⟨ ⟨by⟩ (hyp xs) ⟩∎
_∷_ ⟨$⟩ return x ⊛ return xs ∎
test₁₄ : (h : List ℕ → Maybe (List ℕ)) →
((xs : List ℕ) → h xs ≡ just xs) →
(x : ℕ) (xs : List ℕ) → _ ≡ _
test₁₄ h hyp x xs =
_∷_ ⟨$⟩ ⟨ h xs ⟩ ≡⟨ ⟨by⟩ (hyp xs) ⟩∎
_∷_ ⟨$⟩ return xs ∎
test₁₅ :
(F : Type → Type → Type)
(G : Bool → Type → Type) →
((A : Type) → F (G false A) A ≡ G false (F A A)) →
(A : Type) →
G false (F (G false A) A) ≡
G false (G false (F A A))
test₁₅ F G hyp A =
G false ⟨ F (G false A) A ⟩ ≡⟨ ⟨by⟩ hyp ⟩∎
G false (G false (F A A)) ∎
test₁₆ : 48 ≡ 42 →
_≡_ {A = ℕ → ℕ} (λ x → x + ⟨ 42 ⟩) (λ x → x + 48)
test₁₆ hyp = ⟨by⟩ hyp
test₁₇ :
(P : ℕ → Type)
(f : ∀ {n} → P n → P n)
(p : P 0) →
f ⟨ subst P refl p ⟩ ≡ f p
test₁₇ P _ _ = ⟨by⟩ (subst-refl P)
test₁₈ :
(subst′ :
∀ {a p} {A : Type a} {x y : A}
(P : A → Type p) → x ≡ y → P x → P y) →
(∀ {a p} {A : Type a} {x : A} (P : A → Type p) (p : P x) →
subst′ P refl p ≡ p) →
(P : ℕ → Type)
(f : ∀ {n} → P n → P n)
(p : P 0) →
f ⟨ subst′ P refl p ⟩ ≡ f p
test₁₈ _ subst′-refl _ _ _ = ⟨by⟩ subst′-refl
-- test₁₉ :
-- {F : Type → Type} ⦃ r : R F ⦄ {A : Type} {x₁ x₂ : F A}
-- (p₁ p₂ : x₁ ≡ x₂) (assumption : p₁ ≡ p₂) →
-- trans p p₁ ≡ trans p p₂
-- test₁₉ p₁ p₂ assumption =
-- trans p p₁ ≡⟨⟩
-- trans p ⟨ p₁ ⟩ ≡⟨ ⟨by⟩ assumption ⟩∎
-- trans p p₂ ∎
|
{
"alphanum_fraction": 0.4600793574,
"avg_line_length": 30.3911764706,
"ext": "agda",
"hexsha": "d25dba96491bb06752d33214690f3f92cfc50d02",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Tactic/By/Path.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Tactic/By/Path.agda",
"max_line_length": 73,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Tactic/By/Path.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 4036,
"size": 10333
}
|
{-# OPTIONS --without-K --safe #-}
open import Polynomial.Simple.AlmostCommutativeRing
open import Relation.Binary
open import Data.Bool using (Bool; false; true ; _∧_; _∨_; not; if_then_else_)
open import Data.String using (String)
open import EqBool
module Relation.Traced
{c ℓ}
(base : AlmostCommutativeRing c ℓ)
⦃ eqBase : HasEqBool (AlmostCommutativeRing.Carrier base) ⦄
(showBase : AlmostCommutativeRing.Carrier base → String)
where
open import Data.Sum
open import Relation.Binary.Construct.Closure.Equivalence
open import Relation.Binary.Construct.Closure.Symmetric
open import Relation.Binary.Construct.Closure.ReflexiveTransitive
open import Data.String
open import Relation.Nullary
open import Function
open import Level using (_⊔_)
open import Algebra.FunctionProperties
open import Data.String renaming (_==_ to eqBoolString)
open import Data.Maybe
open import Data.Nat using (ℕ)
open AlmostCommutativeRing base
open import Polynomial.Expr.Normalising rawRing showBase
open import Agda.Builtin.FromNat using (Number; fromNat) public
instance
numberVar : {{nc : Number Carrier}} → Number Expr
numberVar {{nc}} = record
{ Constraint = Number.Constraint nc
; fromNat = λ n → C ( (Number.fromNat nc n)) }
data BinOp : Set where
[+] : BinOp
[*] : BinOp
instance
eqBinOp : HasEqBool BinOp
EqBool._==_ ⦃ eqBinOp ⦄ [+] [+] = true
EqBool._==_ ⦃ eqBinOp ⦄ [+] [*] = false
EqBool._==_ ⦃ eqBinOp ⦄ [*] [+] = false
EqBool._==_ ⦃ eqBinOp ⦄ [*] [*] = true
liftBinOp : BinOp → Expr → Expr → Expr
liftBinOp [+] (C x) (C y) = normalise (C (x + y))
liftBinOp [+] (C x) (O y) = normalise (O (K x ⊕ y))
liftBinOp [+] (O x) (C y) = normalise (O (x ⊕ K y))
liftBinOp [+] (O x) (O y) = normalise (O (x ⊕ y))
liftBinOp [*] (C x) (C y) = normalise (C (x * y))
liftBinOp [*] (C x) (O y) = normalise (O (K x ⊗ y))
liftBinOp [*] (O x) (C y) = normalise (O (x ⊗ K y))
liftBinOp [*] (O x) (O y) = normalise (O (x ⊗ y))
⊟_ : Expr → Expr
⊟ C x = C (- x)
⊟ O x = normalise (O (⊝ x))
data Step : Set c where
[sym] : Step → Step
[cong] : Step → BinOp → Step → Step
[-cong] : Step → Step
[refl] : Expr → Step
[assoc] : BinOp → Expr → Expr → Expr → Step
[ident] : BinOp → Expr → Step
[comm] : BinOp → Expr → Expr → Step
[zero] : Expr → Step
[distrib] : Expr → Expr → Expr → Step
[-distrib] : Expr → Expr → Step
[-+comm] : Expr → Expr → Step
_==S_ : Step → Step → Bool
_==S_ ([sym] x) ([sym] y) = x ==S y
_==S_ ([cong] x x₁ x₂) ([cong] y y₁ y₂) = x ==S y ∧ x₁ EqBool.== y₁ ∧ x₂ ==S y₂
_==S_ ([-cong] x) ([-cong] y) = x ==S y
_==S_ ([assoc] x x₁ x₂ x₃) ([assoc] y y₁ y₂ y₃) = x EqBool.== y ∧ x₁ EqBool.== y₁ ∧ x₂ EqBool.== y₂ ∧ x₃ EqBool.== y₃
_==S_ ([ident] x x₁) ([ident] y y₁) = x EqBool.== y ∧ x₁ EqBool.== y₁
_==S_ ([comm] x x₁ x₂) ([comm] y y₁ y₂) = x EqBool.== y ∧ x₁ EqBool.== y₁ ∧ x₂ EqBool.== y₂
_==S_ ([zero] x) ([zero] y) = x EqBool.== y
_==S_ ([distrib] x x₁ x₂) ([distrib] y y₁ y₂) = x EqBool.== y ∧ x₁ EqBool.== y₁ ∧ x₂ EqBool.== y₂
_==S_ ([-distrib] x x₁) ([-distrib] y y₁) = x EqBool.== y ∧ x₁ EqBool.== y₁
_==S_ ([-+comm] x x₁) ([-+comm] y y₁) = x EqBool.== y ∧ x₁ EqBool.== y₁
_==S_ ([refl] x) ([refl] y) = x EqBool.== y
_==S_ _ _ = false
instance
eqStep : HasEqBool Step
EqBool._==_ {{eqStep}} = _==S_
record _≈ⁱ_ (x y : Expr) : Set c where
constructor ~?_
field
why : Step
open _≈ⁱ_
interesting : Step → Maybe Step
interesting ([sym] x) = interesting x
interesting ([-cong] x) = interesting x
interesting ([refl] x) = nothing
interesting ([assoc] x x₁ x₂ x₃) = nothing
interesting ([ident] x x₁) = nothing
interesting ([zero] x) = nothing
interesting ([cong] x x₁ x₂) with interesting x | interesting x₂
interesting ([cong] x x₁ x₂) | just res₁ | just res₂ = just ([cong] res₁ x₁ res₂)
interesting ([cong] x x₁ x₂) | just res₁ | nothing = just res₁
interesting ([cong] x x₁ x₂) | nothing | just res₂ = just res₂
interesting ([cong] x x₁ x₂) | nothing | nothing = nothing
interesting s@([comm] _ x y) with x EqBool.== y
interesting s@([comm] _ x y) | true = nothing
interesting s@([comm] o (C x) (C y)) | false = nothing
interesting s@([comm] [+] (C x) x₂) | false = if x EqBool.== 0# then nothing else just s
interesting s@([comm] [+] (O x) (C x₁)) | false = if x₁ EqBool.== 0# then nothing else just s
interesting s@([comm] [+] (O x) (O x₁)) | false = just s
interesting s@([comm] [*] (C x) x₂) | false = if (x EqBool.== 0# ∨ x EqBool.== 1#) then nothing else just s
interesting s@([comm] [*] (O x) (C x₁)) | false = if (x₁ EqBool.== 0# ∨ x₁ EqBool.== 1#) then nothing else just s
interesting s@([comm] [*] (O x) (O x₁)) | false = just s
interesting s@([distrib] (C _) (C _) (C _)) = nothing
interesting s@([distrib] (C x) x₁ x₂) = if (x EqBool.== 0# ∨ x EqBool.== 1#) then nothing else just s
interesting s@([distrib] x x₁ x₂) = just s
interesting s@([-distrib] x x₁) = nothing
interesting s@([-+comm] x x₁) = nothing
neg-cong : ∀ {x y} → x ≈ⁱ y → ⊟_ x ≈ⁱ ⊟_ y
neg-cong (~? reason) = ~? ( [-cong] reason)
zip-cong : BinOp
→ (f : Expr → Expr → Expr)
→ Congruent₂ (EqClosure _≈ⁱ_) f
zip-cong op f {x₁} {x₂} {y₁} {y₂} ε ε = ε
zip-cong op f {x₁} {x₂} {y₁} {y₂} ε (inj₁ (~? yr) ◅ ys) = inj₁ (~? ([cong] ([refl] x₁) op yr)) ◅ zip-cong op f ε ys
zip-cong op f {x₁} {x₂} {y₁} {y₂} ε (inj₂ (~? yr) ◅ ys) = inj₂ (~? ([cong] ([refl] x₁) op yr)) ◅ zip-cong op f ε ys
zip-cong op f {x₁} {x₂} {y₁} {y₂} (inj₁ (~? xr) ◅ xs) ε = inj₁ (~? ([cong] xr op ([refl] y₁))) ◅ zip-cong op f xs ε
zip-cong op f {x₁} {x₂} {y₁} {y₂} (inj₂ (~? xr) ◅ xs) ε = inj₂ (~? ([cong] xr op ([refl] y₁))) ◅ zip-cong op f xs ε
zip-cong op f {x₁} {x₂} {y₁} {y₂} (inj₁ (~? xr) ◅ xs) (inj₁ (~? yr) ◅ ys) = inj₁ (~? ([cong] xr op yr)) ◅ zip-cong op f xs ys
zip-cong op f {x₁} {x₂} {y₁} {y₂} (inj₁ (~? xr) ◅ xs) (inj₂ (~? yr) ◅ ys) = inj₁ (~? ([cong] xr op ([sym] yr))) ◅ zip-cong op f xs ys
zip-cong op f {x₁} {x₂} {y₁} {y₂} (inj₂ (~? xr) ◅ xs) (inj₁ (~? yr) ◅ ys) = inj₂ (~? ([cong] xr op ([sym] yr))) ◅ zip-cong op f xs ys
zip-cong op f {x₁} {x₂} {y₁} {y₂} (inj₂ (~? xr) ◅ xs) (inj₂ (~? yr) ◅ ys) = inj₂ (~? ([cong] xr op yr)) ◅ zip-cong op f xs ys
isZero : (x : Expr) → Maybe (EqClosure _≈ⁱ_ (C 0#) x)
isZero (C x) = if 0# EqBool.== x then just (inj₁ (~? [refl] (C x)) ◅ ε) else nothing
isZero _ = nothing
tracedRing : AlmostCommutativeRing c c
tracedRing = record
{ Carrier = Expr
; _≈_ = EqClosure _≈ⁱ_
; _+_ = liftBinOp [+]
; _*_ = liftBinOp [*]
; -_ = ⊟_
; 0# = C 0#
; 1# = C 1#
; 0≟_ = isZero
; isAlmostCommutativeRing = record
{ -‿cong = Relation.Binary.Construct.Closure.ReflexiveTransitive.gmap ⊟_ (Data.Sum.map neg-cong neg-cong)
; -‿*-distribˡ = λ x y → return (inj₁ (~? [-distrib] x y))
; -‿+-comm = λ x y → return (inj₁ (~? [-+comm] x y))
; isCommutativeSemiring = record
{ distribʳ = λ x y z → return (inj₁ (~? [distrib] x y z))
; zeroˡ = λ x → return (inj₁ (~? ([zero] x)))
; *-isCommutativeMonoid = record
{ identityˡ = λ x → return (inj₁ (~? [ident] [*] x))
; comm = λ x y → return (inj₁ (~? [comm] [*] x y))
; isSemigroup = record
{ assoc = λ x y z → return (inj₁ (~? [assoc] [*] x y z))
; isMagma = record
{ isEquivalence = Relation.Binary.Construct.Closure.Equivalence.isEquivalence _≈ⁱ_
; ∙-cong = zip-cong [*] (liftBinOp [*])
}
}
}
; +-isCommutativeMonoid = record
{ identityˡ = λ x → return (inj₁ (~? ([ident] [+] x)))
; comm = λ x y → return (inj₁ (~? ([comm] [+] x y)))
; isSemigroup = record
{ assoc = λ x y z → return (inj₁ (~? ([assoc] [+] x y z)))
; isMagma = record
{ isEquivalence = Relation.Binary.Construct.Closure.Equivalence.isEquivalence _≈ⁱ_
; ∙-cong = zip-cong [+] (liftBinOp [+])
}
}
}
}
}
}
open import Data.List as List using (List; _∷_; [])
record Explanation {a} (A : Set a) : Set (a ⊔ c) where
constructor _≈⟨_⟩≈_
field
lhs : A
step : Step
rhs : A
open Explanation
toExplanation : ∀ {x y} → x ≈ⁱ y → Explanation Expr
toExplanation {x} {y} x≈y = x ≈⟨ why x≈y ⟩≈ y
showProof′ : ∀ {x y} → EqClosure _≈ⁱ_ x y → List (Explanation Expr)
showProof′ ε = []
showProof′ (inj₁ x ◅ xs) = toExplanation x ∷ showProof′ xs
showProof′ (inj₂ y ◅ xs) = toExplanation y ∷ showProof′ xs
open import Data.String.Printf
open Printf standard
⟨_⟩ₛ : Step → String
⟨ [sym] x ⟩ₛ = printf "sym (%s)" ⟨ x ⟩ₛ
⟨ [cong] x [+] x₂ ⟩ₛ = printf "(%s) + (%s)" ⟨ x ⟩ₛ ⟨ x₂ ⟩ₛ
⟨ [cong] x [*] x₂ ⟩ₛ = printf "(%s) * (%s)" ⟨ x ⟩ₛ ⟨ x₂ ⟩ₛ
⟨ [-cong] x ⟩ₛ = printf "- (%s)" ⟨ x ⟩ₛ
⟨ [refl] x ⟩ₛ = "eval"
⟨ [assoc] [+] x₁ x₂ x₃ ⟩ₛ = printf "+-assoc(%s, %s, %s)" ⟨ x₁ ⟩ₑ ⟨ x₂ ⟩ₑ ⟨ x₃ ⟩ₑ
⟨ [assoc] [*] x₁ x₂ x₃ ⟩ₛ = printf "*-assoc(%s, %s, %s)" ⟨ x₁ ⟩ₑ ⟨ x₂ ⟩ₑ ⟨ x₃ ⟩ₑ
⟨ [ident] [+] x₁ ⟩ₛ = printf "+-ident(%s)" ⟨ x₁ ⟩ₑ
⟨ [ident] [*] x₁ ⟩ₛ = printf "*-ident(%s)" ⟨ x₁ ⟩ₑ
⟨ [comm] [+] x₁ x₂ ⟩ₛ = printf "+-comm(%s, %s)" ⟨ x₁ ⟩ₑ ⟨ x₂ ⟩ₑ
⟨ [comm] [*] x₁ x₂ ⟩ₛ = printf "*-comm(%s, %s)" ⟨ x₁ ⟩ₑ ⟨ x₂ ⟩ₑ
⟨ [zero] x ⟩ₛ = printf "*-zero(%s)" ⟨ x ⟩ₑ
⟨ [distrib] x x₁ x₂ ⟩ₛ = printf "*-distrib(%s, %s, %s)" ⟨ x ⟩ₑ ⟨ x₁ ⟩ₑ ⟨ x₂ ⟩ₑ
⟨ [-distrib] x x₁ ⟩ₛ = printf "-‿distrib(%s, %s)" ⟨ x ⟩ₑ ⟨ x₁ ⟩ₑ
⟨ [-+comm] x x₁ ⟩ₛ = printf "-+-comm(%s, %s)" ⟨ x ⟩ₑ ⟨ x₁ ⟩ₑ
showProof : ∀ {x y} → EqClosure _≈ⁱ_ x y → List String
showProof = List.foldr unparse [] ∘ List.foldr spotReverse [] ∘ List.mapMaybe interesting′ ∘ showProof′
where
unparse : Explanation Expr → List String → List String
unparse (lhs₁ ≈⟨ step₁ ⟩≈ rhs₁) [] = ⟨ lhs₁ ⟩ₑ ∷ printf " ={ %s }" ⟨ step₁ ⟩ₛ ∷ ⟨ rhs₁ ⟩ₑ ∷ []
unparse (lhs₁ ≈⟨ step₁ ⟩≈ rhs₁) (y ∷ ys) = if r EqBool.== y then l ∷ m ∷ y ∷ ys else l ∷ m ∷ r ∷ " ={ eval }" ∷ y ∷ ys
where
l = ⟨ lhs₁ ⟩ₑ
m = printf " ={ %s }" ⟨ step₁ ⟩ₛ
r = ⟨ rhs₁ ⟩ₑ
spotReverse : Explanation Expr → List (Explanation Expr) → List (Explanation Expr)
spotReverse x [] = x ∷ []
spotReverse x (y ∷ xs) = if lhs x EqBool.== rhs y then xs else x ∷ y ∷ xs
interesting′ : Explanation Expr → Maybe (Explanation Expr)
interesting′ (lhs ≈⟨ stp ⟩≈ rhs) with interesting stp
interesting′ (lhs ≈⟨ stp ⟩≈ rhs) | just x = just (lhs ≈⟨ x ⟩≈ rhs)
interesting′ (lhs ≈⟨ stp ⟩≈ rhs) | nothing = nothing
open import Agda.Builtin.FromString using (IsString; fromString) public
import Data.String.Literals
open import Data.Unit using (⊤)
open import Level using (Lift)
instance
stringString : IsString String
stringString = Data.String.Literals.isString
instance
lift-inst : ∀ {ℓ a} { A : Set a } → ⦃ x : A ⦄ → Lift ℓ A
lift-inst ⦃ x = x ⦄ = Level.lift x
instance
exprString : IsString Expr
exprString = record
{ Constraint = λ _ → Lift _ ⊤ ; fromString = λ s → O (V s) }
|
{
"alphanum_fraction": 0.5590494262,
"avg_line_length": 40.9888888889,
"ext": "agda",
"hexsha": "8fd092f813f36980828bab76f24ab7a7fd6e02ac",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-20T07:07:11.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-04-16T02:23:16.000Z",
"max_forks_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mckeankylej/agda-ring-solver",
"max_forks_repo_path": "src/Relation/Traced.agda",
"max_issues_count": 5,
"max_issues_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T01:55:42.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-17T20:48:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mckeankylej/agda-ring-solver",
"max_issues_repo_path": "src/Relation/Traced.agda",
"max_line_length": 133,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mckeankylej/agda-ring-solver",
"max_stars_repo_path": "src/Relation/Traced.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-15T00:57:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-25T16:40:52.000Z",
"num_tokens": 4493,
"size": 11067
}
|
module Pi-1 where
open import Data.Empty
open import Data.Unit
open import Data.Product
open import Relation.Binary.PropositionalEquality
open import Groupoid
import Pi-2 as P
--infixr 10 _◎_
--infixr 30 _⟷_
------------------------------------------------------------------------------
-- Level -1:
-- Types are -1 groupoids or equivalently all types are mere propositions
--
-- Types and values are defined without references to programs
-- Types include PATHs from the previous level in addition to the usual types
data U : Set where
ZERO : U
ONE : U
TIMES : U → U → U
PATH : {t₁ t₂ : P.U•} → (t₁ P.⟷ t₂) → U
data Path {t₁ t₂ : P.U•} : P.Space t₁ → P.Space t₂ → Set where
path : (c : t₁ P.⟷ t₂) → Path (P.point t₁) (P.point t₂)
⟦_⟧ : U → Set
⟦ ZERO ⟧ = ⊥
⟦ ONE ⟧ = ⊤
⟦ TIMES t₁ t₂ ⟧ = ⟦ t₁ ⟧ × ⟦ t₂ ⟧
⟦ PATH {t₁} {t₂} c ⟧ = Path {t₁} {t₂} (P.point t₁) (P.point t₂)
-- Proof that all types are mere propositions. Def. 3.3.1 in the HoTT book
isMereProposition : (t : U) → (v v' : ⟦ t ⟧) → (v ≡ v')
isMereProposition ZERO ()
isMereProposition ONE tt tt = refl
isMereProposition (TIMES t₁ t₂) (v₁ , v₂) (v₁' , v₂') =
cong₂ _,′_ (isMereProposition t₁ v₁ v₁') (isMereProposition t₂ v₂ v₂')
isMereProposition (PATH {t₁} {t₂} c) (path c₁) (path c₂) = {!!}
-- c₁ : t₁ ⟷ t₂ in Pi-2
-- c₂ : t₁ ⟷ t₂ in Pi-2
-- Proof that every type is a groupoid; this does not depend on the
-- definition of programs
isGroupoid : U → 1Groupoid
isGroupoid ZERO = discrete ⊥
isGroupoid ONE = discrete ⊤
isGroupoid (TIMES t₁ t₂) = isGroupoid t₁ ×G isGroupoid t₂
isGroupoid (PATH {t₁} {t₂} c) = {!!}
{--
------------------------------------------------------------------------------
-- Level -1:
-- if types are non-empty they must contain one point only like above
-- types may however be empty
--
-- We can prove that all types are either empty or equivalent to the unit
-- type (i.e., they are mere propositions)
module Pi-1 where
data U : Set where
ZERO : U
ONE : U
TIMES : U → U → U
⟦_⟧ : U → Set
⟦ ZERO ⟧ = ⊥
⟦ ONE ⟧ = ⊤
⟦ TIMES t₁ t₂ ⟧ = ⟦ t₁ ⟧ × ⟦ t₂ ⟧
------------------------------------------------------------------------------
-- Level 0:
-- types may contain any number of points (including none)
-- they are sets
--
-- We define isomorphisms between these sets that are reified to paths in the
-- next level (level 1). These isomorphisms are the combinators for a
-- commutative semiring structure which is sound and complete for sets.
module Pi0 where
infixr 10 _◎_
infixr 30 _⟷_
-- types
data U : Set where
ZERO : U
ONE : U
PLUS : U → U → U
TIMES : U → U → U
-- values
⟦_⟧ : U → Set
⟦ ZERO ⟧ = ⊥
⟦ ONE ⟧ = ⊤
⟦ PLUS t₁ t₂ ⟧ = ⟦ t₁ ⟧ ⊎ ⟦ t₂ ⟧
⟦ TIMES t₁ t₂ ⟧ = ⟦ t₁ ⟧ × ⟦ t₂ ⟧
-- pointed types
record U• : Set where
constructor •[_,_]
field
∣_∣ : U
• : ⟦ ∣_∣ ⟧
open U•
Space : (t• : U•) → Set
Space •[ t , v ] = ⟦ t ⟧
point : (t• : U•) → Space t•
point •[ t , v ] = v
-- examples
ONE• : U•
ONE• = •[ ONE , tt ]
BOOL : U
BOOL = PLUS ONE ONE
BOOL² : U
BOOL² = TIMES BOOL BOOL
TRUE : ⟦ BOOL ⟧
TRUE = inj₁ tt
FALSE : ⟦ BOOL ⟧
FALSE = inj₂ tt
BOOL•F : U•
BOOL•F = •[ BOOL , FALSE ]
BOOL•T : U•
BOOL•T = •[ BOOL , TRUE ]
-- isomorphisms between pointed types
data _⟷_ : U• → U• → Set where
unite₊ : {t : U•} → •[ PLUS ZERO ∣ t ∣ , inj₂ (• t) ] ⟷ t
uniti₊ : {t : U•} → t ⟷ •[ PLUS ZERO ∣ t ∣ , inj₂ (• t) ]
swap1₊ : {t₁ t₂ : U•} → •[ PLUS ∣ t₁ ∣ ∣ t₂ ∣ , inj₁ (• t₁) ] ⟷
•[ PLUS ∣ t₂ ∣ ∣ t₁ ∣ , inj₂ (• t₁) ]
swap2₊ : {t₁ t₂ : U•} → •[ PLUS ∣ t₁ ∣ ∣ t₂ ∣ , inj₂ (• t₂) ] ⟷
•[ PLUS ∣ t₂ ∣ ∣ t₁ ∣ , inj₁ (• t₂) ]
assocl1₊ : {t₁ t₂ t₃ : U•} →
•[ PLUS ∣ t₁ ∣ (PLUS ∣ t₂ ∣ ∣ t₃ ∣) , inj₁ (• t₁) ] ⟷
•[ PLUS (PLUS ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , inj₁ (inj₁ (• t₁)) ]
assocl2₊ : {t₁ t₂ t₃ : U•} →
•[ PLUS ∣ t₁ ∣ (PLUS ∣ t₂ ∣ ∣ t₃ ∣) , inj₂ (inj₁ (• t₂)) ] ⟷
•[ PLUS (PLUS ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , inj₁ (inj₂ (• t₂)) ]
assocl3₊ : {t₁ t₂ t₃ : U•} →
•[ PLUS ∣ t₁ ∣ (PLUS ∣ t₂ ∣ ∣ t₃ ∣) , inj₂ (inj₂ (• t₃)) ] ⟷
•[ PLUS (PLUS ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , inj₂ (• t₃) ]
assocr1₊ : {t₁ t₂ t₃ : U•} →
•[ PLUS (PLUS ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , inj₁ (inj₁ (• t₁)) ] ⟷
•[ PLUS ∣ t₁ ∣ (PLUS ∣ t₂ ∣ ∣ t₃ ∣) , inj₁ (• t₁) ]
assocr2₊ : {t₁ t₂ t₃ : U•} →
•[ PLUS (PLUS ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , inj₁ (inj₂ (• t₂)) ] ⟷
•[ PLUS ∣ t₁ ∣ (PLUS ∣ t₂ ∣ ∣ t₃ ∣) , inj₂ (inj₁ (• t₂)) ]
assocr3₊ : {t₁ t₂ t₃ : U•} →
•[ PLUS (PLUS ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , inj₂ (• t₃) ] ⟷
•[ PLUS ∣ t₁ ∣ (PLUS ∣ t₂ ∣ ∣ t₃ ∣) , inj₂ (inj₂ (• t₃)) ]
unite⋆ : {t : U•} → •[ TIMES ONE ∣ t ∣ , (tt , • t) ] ⟷ t
uniti⋆ : {t : U•} → t ⟷ •[ TIMES ONE ∣ t ∣ , (tt , • t) ]
swap⋆ : {t₁ t₂ : U•} → •[ TIMES ∣ t₁ ∣ ∣ t₂ ∣ , (• t₁ , • t₂) ] ⟷
•[ TIMES ∣ t₂ ∣ ∣ t₁ ∣ , (• t₂ , • t₁) ]
assocl⋆ : {t₁ t₂ t₃ : U•} →
•[ TIMES ∣ t₁ ∣ (TIMES ∣ t₂ ∣ ∣ t₃ ∣) , (• t₁ , (• t₂ , • t₃)) ] ⟷
•[ TIMES (TIMES ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , ((• t₁ , • t₂) , • t₃) ]
assocr⋆ : {t₁ t₂ t₃ : U•} →
•[ TIMES (TIMES ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , ((• t₁ , • t₂) , • t₃) ] ⟷
•[ TIMES ∣ t₁ ∣ (TIMES ∣ t₂ ∣ ∣ t₃ ∣) , (• t₁ , (• t₂ , • t₃)) ]
distz : {t : U•} {absurd : ⟦ ZERO ⟧} →
•[ TIMES ZERO ∣ t ∣ , (absurd , • t) ] ⟷ •[ ZERO , absurd ]
factorz : {t : U•} {absurd : ⟦ ZERO ⟧} →
•[ ZERO , absurd ] ⟷ •[ TIMES ZERO ∣ t ∣ , (absurd , • t) ]
dist1 : {t₁ t₂ t₃ : U•} →
•[ TIMES (PLUS ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , (inj₁ (• t₁) , • t₃) ] ⟷
•[ PLUS (TIMES ∣ t₁ ∣ ∣ t₃ ∣) (TIMES ∣ t₂ ∣ ∣ t₃ ∣) ,
inj₁ (• t₁ , • t₃) ]
dist2 : {t₁ t₂ t₃ : U•} →
•[ TIMES (PLUS ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , (inj₂ (• t₂) , • t₃) ] ⟷
•[ PLUS (TIMES ∣ t₁ ∣ ∣ t₃ ∣) (TIMES ∣ t₂ ∣ ∣ t₃ ∣) ,
inj₂ (• t₂ , • t₃) ]
factor1 : {t₁ t₂ t₃ : U•} →
•[ PLUS (TIMES ∣ t₁ ∣ ∣ t₃ ∣) (TIMES ∣ t₂ ∣ ∣ t₃ ∣) ,
inj₁ (• t₁ , • t₃) ] ⟷
•[ TIMES (PLUS ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , (inj₁ (• t₁) , • t₃) ]
factor2 : {t₁ t₂ t₃ : U•} →
•[ PLUS (TIMES ∣ t₁ ∣ ∣ t₃ ∣) (TIMES ∣ t₂ ∣ ∣ t₃ ∣) ,
inj₂ (• t₂ , • t₃) ] ⟷
•[ TIMES (PLUS ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , (inj₂ (• t₂) , • t₃) ]
id⟷ : {t : U•} → t ⟷ t
sym⟷ : {t₁ t₂ : U•} → (t₁ ⟷ t₂) → (t₂ ⟷ t₁)
_◎_ : {t₁ t₂ t₃ : U•} → (t₁ ⟷ t₂) → (t₂ ⟷ t₃) → (t₁ ⟷ t₃)
_⊕1_ : {t₁ t₂ t₃ t₄ : U•} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) →
(•[ PLUS ∣ t₁ ∣ ∣ t₂ ∣ , inj₁ (• t₁) ] ⟷
•[ PLUS ∣ t₃ ∣ ∣ t₄ ∣ , inj₁ (• t₃) ])
_⊕2_ : {t₁ t₂ t₃ t₄ : U•} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) →
(•[ PLUS ∣ t₁ ∣ ∣ t₂ ∣ , inj₂ (• t₂) ] ⟷
•[ PLUS ∣ t₃ ∣ ∣ t₄ ∣ , inj₂ (• t₄) ])
_⊗_ : {t₁ t₂ t₃ t₄ : U•} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) →
(•[ TIMES ∣ t₁ ∣ ∣ t₂ ∣ , (• t₁ , • t₂ ) ] ⟷
•[ TIMES ∣ t₃ ∣ ∣ t₄ ∣ , (• t₃ , • t₄ ) ])
-- examples
NOT•T : •[ BOOL , TRUE ] ⟷ •[ BOOL , FALSE ]
NOT•T = swap1₊
NOT•F : •[ BOOL , FALSE ] ⟷ •[ BOOL , TRUE ]
NOT•F = swap2₊
CNOT•Fx : {b : ⟦ BOOL ⟧} →
•[ BOOL² , (FALSE , b) ] ⟷ •[ BOOL² , (FALSE , b) ]
CNOT•Fx = dist2 ◎ ((id⟷ ⊗ NOT•F) ⊕2 id⟷) ◎ factor2
CNOT•TF : •[ BOOL² , (TRUE , FALSE) ] ⟷ •[ BOOL² , (TRUE , TRUE) ]
CNOT•TF = dist1 ◎
((id⟷ ⊗ NOT•F) ⊕1 (id⟷ {•[ TIMES ONE BOOL , (tt , FALSE) ]})) ◎
factor1
CNOT•TT : •[ BOOL² , (TRUE , TRUE) ] ⟷ •[ BOOL² , (TRUE , FALSE) ]
CNOT•TT = dist1 ◎
((id⟷ ⊗ NOT•T) ⊕1 (id⟷ {•[ TIMES ONE BOOL , (tt , TRUE) ]})) ◎
factor1
------------------------------------------------------------------------------
-- Level 1
-- types are 1groupoids; they consist of points with collections of
-- non-trivial paths between them; the paths are defined at the previous
-- level (level 0).
--
-- We define isomorphisms between these level 1 paths that are reified as
-- 2paths in the next level (level 2). These isomorphisms include groupoid
-- combinators and commutative semiring combinators
module Pi1 where
infixr 10 _◎_
infixr 30 _⟷_
-- types
data U : Set where
ZERO : U
ONE : U
PLUS : U → U → U
TIMES : U → U → U
PATH : {t₁ t₂ : Pi0.U•} → (t₁ Pi0.⟷ t₂) → U
-- values
data Path {t₁ t₂ : Pi0.U•} : (Pi0.Space t₁) → (Pi0.Space t₂) → Set where
path : (c : t₁ Pi0.⟷ t₂) → Path (Pi0.point t₁) (Pi0.point t₂)
⟦_⟧ : U → Set
⟦ ZERO ⟧ = ⊥
⟦ ONE ⟧ = ⊤
⟦ PLUS t₁ t₂ ⟧ = ⟦ t₁ ⟧ ⊎ ⟦ t₂ ⟧
⟦ TIMES t₁ t₂ ⟧ = ⟦ t₁ ⟧ × ⟦ t₂ ⟧
⟦ PATH {t₁} {t₂} c ⟧ = Path {t₁} {t₂} (Pi0.point t₁) (Pi0.point t₂)
-- pointed types
record U• : Set where
constructor •[_,_]
field
∣_∣ : U
• : ⟦ ∣_∣ ⟧
open U•
Space : (t• : U•) → Set
Space •[ t , p ] = ⟦ t ⟧
point : (t• : U•) → Space t•
point •[ t , p ] = p
_∘_ : {t₁ t₂ t₃ : Pi0.U•} →
Path (Pi0.point t₁) (Pi0.point t₂) →
Path (Pi0.point t₂) (Pi0.point t₃) →
Path (Pi0.point t₁) (Pi0.point t₃)
path c₁ ∘ path c₂ = path (c₁ Pi0.◎ c₂)
PathSpace : {t₁ t₂ : Pi0.U•} → (c : t₁ Pi0.⟷ t₂) → U•
PathSpace c = •[ PATH c , path c ]
-- examples
-- several paths between T and F; some of these will be equivalent
p₁ p₂ p₃ p₄ : Path Pi0.TRUE Pi0.FALSE
p₁ = path Pi0.swap1₊
p₂ = path (Pi0.swap1₊ Pi0.◎ Pi0.id⟷)
p₃ = path (Pi0.swap1₊ Pi0.◎ Pi0.swap2₊ Pi0.◎ Pi0.swap1₊)
p₄ = path (Pi0.uniti⋆ Pi0.◎
Pi0.swap⋆ Pi0.◎
(Pi0.swap1₊ Pi0.⊗ Pi0.id⟷) Pi0.◎
Pi0.swap⋆ Pi0.◎
Pi0.unite⋆)
-- groupoid combinators to reason about id, sym, and trans
-- commutative semiring combinators for 0, 1, +, *
data _⟷_ : U• → U• → Set where
-- common combinators
id⟷ : {t : U•} → t ⟷ t
sym⟷ : {t₁ t₂ : U•} → (t₁ ⟷ t₂) → (t₂ ⟷ t₁)
_◎_ : {t₁ t₂ t₃ : U•} → (t₁ ⟷ t₂) → (t₂ ⟷ t₃) → (t₁ ⟷ t₃)
-- groupoid combinators
lidl : {t₁ t₂ : Pi0.U•} {c : t₁ Pi0.⟷ t₂} →
PathSpace (Pi0.id⟷ Pi0.◎ c) ⟷ PathSpace c
lidr : {t₁ t₂ : Pi0.U•} {c : t₁ Pi0.⟷ t₂} →
PathSpace c ⟷ PathSpace (Pi0.id⟷ Pi0.◎ c)
ridl : {t₁ t₂ : Pi0.U•} {c : t₁ Pi0.⟷ t₂} →
PathSpace (c Pi0.◎ Pi0.id⟷) ⟷ PathSpace c
ridr : {t₁ t₂ : Pi0.U•} {c : t₁ Pi0.⟷ t₂} →
PathSpace c ⟷ PathSpace (c Pi0.◎ Pi0.id⟷)
invll : {t₁ t₂ : Pi0.U•} {c : t₁ Pi0.⟷ t₂} →
PathSpace (Pi0.sym⟷ c Pi0.◎ c) ⟷ PathSpace {t₂} {t₂} Pi0.id⟷
invlr : {t₁ t₂ : Pi0.U•} {c : t₁ Pi0.⟷ t₂} →
PathSpace {t₂} {t₂} Pi0.id⟷ ⟷ PathSpace (Pi0.sym⟷ c Pi0.◎ c)
invrl : {t₁ t₂ : Pi0.U•} {c : t₁ Pi0.⟷ t₂} →
PathSpace (c Pi0.◎ Pi0.sym⟷ c) ⟷ PathSpace {t₁} {t₁} Pi0.id⟷
invrr : {t₁ t₂ : Pi0.U•} {c : t₁ Pi0.⟷ t₂} →
PathSpace {t₁} {t₁} Pi0.id⟷ ⟷ PathSpace (c Pi0.◎ Pi0.sym⟷ c)
invinvl : {t₁ t₂ : Pi0.U•} {c : t₁ Pi0.⟷ t₂} →
PathSpace (Pi0.sym⟷ (Pi0.sym⟷ c)) ⟷ PathSpace c
invinvr : {t₁ t₂ : Pi0.U•} {c : t₁ Pi0.⟷ t₂} →
PathSpace c ⟷ PathSpace (Pi0.sym⟷ (Pi0.sym⟷ c))
tassocl : {t₁ t₂ t₃ t₄ : Pi0.U•}
{c₁ : t₁ Pi0.⟷ t₂} {c₂ : t₂ Pi0.⟷ t₃} {c₃ : t₃ Pi0.⟷ t₄} →
PathSpace (c₁ Pi0.◎ (c₂ Pi0.◎ c₃)) ⟷
PathSpace ((c₁ Pi0.◎ c₂) Pi0.◎ c₃)
tassocr : {t₁ t₂ t₃ t₄ : Pi0.U•}
{c₁ : t₁ Pi0.⟷ t₂} {c₂ : t₂ Pi0.⟷ t₃} {c₃ : t₃ Pi0.⟷ t₄} →
PathSpace ((c₁ Pi0.◎ c₂) Pi0.◎ c₃) ⟷
PathSpace (c₁ Pi0.◎ (c₂ Pi0.◎ c₃))
-- resp◎ is closely related to Eckmann-Hilton
resp◎ : {t₁ t₂ t₃ : Pi0.U•}
{c₁ : t₁ Pi0.⟷ t₂} {c₂ : t₂ Pi0.⟷ t₃}
{c₃ : t₁ Pi0.⟷ t₂} {c₄ : t₂ Pi0.⟷ t₃} →
(PathSpace c₁ ⟷ PathSpace c₃) →
(PathSpace c₂ ⟷ PathSpace c₄) →
PathSpace (c₁ Pi0.◎ c₂) ⟷ PathSpace (c₃ Pi0.◎ c₄)
-- commutative semiring combinators
unite₊ : {t : U•} → •[ PLUS ZERO ∣ t ∣ , inj₂ (• t) ] ⟷ t
uniti₊ : {t : U•} → t ⟷ •[ PLUS ZERO ∣ t ∣ , inj₂ (• t) ]
swap1₊ : {t₁ t₂ : U•} → •[ PLUS ∣ t₁ ∣ ∣ t₂ ∣ , inj₁ (• t₁) ] ⟷
•[ PLUS ∣ t₂ ∣ ∣ t₁ ∣ , inj₂ (• t₁) ]
swap2₊ : {t₁ t₂ : U•} → •[ PLUS ∣ t₁ ∣ ∣ t₂ ∣ , inj₂ (• t₂) ] ⟷
•[ PLUS ∣ t₂ ∣ ∣ t₁ ∣ , inj₁ (• t₂) ]
assocl1₊ : {t₁ t₂ t₃ : U•} →
•[ PLUS ∣ t₁ ∣ (PLUS ∣ t₂ ∣ ∣ t₃ ∣) , inj₁ (• t₁) ] ⟷
•[ PLUS (PLUS ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , inj₁ (inj₁ (• t₁)) ]
assocl2₊ : {t₁ t₂ t₃ : U•} →
•[ PLUS ∣ t₁ ∣ (PLUS ∣ t₂ ∣ ∣ t₃ ∣) , inj₂ (inj₁ (• t₂)) ] ⟷
•[ PLUS (PLUS ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , inj₁ (inj₂ (• t₂)) ]
assocl3₊ : {t₁ t₂ t₃ : U•} →
•[ PLUS ∣ t₁ ∣ (PLUS ∣ t₂ ∣ ∣ t₃ ∣) , inj₂ (inj₂ (• t₃)) ] ⟷
•[ PLUS (PLUS ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , inj₂ (• t₃) ]
assocr1₊ : {t₁ t₂ t₃ : U•} →
•[ PLUS (PLUS ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , inj₁ (inj₁ (• t₁)) ] ⟷
•[ PLUS ∣ t₁ ∣ (PLUS ∣ t₂ ∣ ∣ t₃ ∣) , inj₁ (• t₁) ]
assocr2₊ : {t₁ t₂ t₃ : U•} →
•[ PLUS (PLUS ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , inj₁ (inj₂ (• t₂)) ] ⟷
•[ PLUS ∣ t₁ ∣ (PLUS ∣ t₂ ∣ ∣ t₃ ∣) , inj₂ (inj₁ (• t₂)) ]
assocr3₊ : {t₁ t₂ t₃ : U•} →
•[ PLUS (PLUS ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , inj₂ (• t₃) ] ⟷
•[ PLUS ∣ t₁ ∣ (PLUS ∣ t₂ ∣ ∣ t₃ ∣) , inj₂ (inj₂ (• t₃)) ]
unite⋆ : {t : U•} → •[ TIMES ONE ∣ t ∣ , (tt , • t) ] ⟷ t
uniti⋆ : {t : U•} → t ⟷ •[ TIMES ONE ∣ t ∣ , (tt , • t) ]
swap⋆ : {t₁ t₂ : U•} → •[ TIMES ∣ t₁ ∣ ∣ t₂ ∣ , (• t₁ , • t₂) ] ⟷
•[ TIMES ∣ t₂ ∣ ∣ t₁ ∣ , (• t₂ , • t₁) ]
assocl⋆ : {t₁ t₂ t₃ : U•} →
•[ TIMES ∣ t₁ ∣ (TIMES ∣ t₂ ∣ ∣ t₃ ∣) , (• t₁ , (• t₂ , • t₃)) ] ⟷
•[ TIMES (TIMES ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , ((• t₁ , • t₂) , • t₃) ]
assocr⋆ : {t₁ t₂ t₃ : U•} →
•[ TIMES (TIMES ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , ((• t₁ , • t₂) , • t₃) ] ⟷
•[ TIMES ∣ t₁ ∣ (TIMES ∣ t₂ ∣ ∣ t₃ ∣) , (• t₁ , (• t₂ , • t₃)) ]
distz : {t : U•} {absurd : ⟦ ZERO ⟧} →
•[ TIMES ZERO ∣ t ∣ , (absurd , • t) ] ⟷ •[ ZERO , absurd ]
factorz : {t : U•} {absurd : ⟦ ZERO ⟧} →
•[ ZERO , absurd ] ⟷ •[ TIMES ZERO ∣ t ∣ , (absurd , • t) ]
dist1 : {t₁ t₂ t₃ : U•} →
•[ TIMES (PLUS ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , (inj₁ (• t₁) , • t₃) ] ⟷
•[ PLUS (TIMES ∣ t₁ ∣ ∣ t₃ ∣) (TIMES ∣ t₂ ∣ ∣ t₃ ∣) ,
inj₁ (• t₁ , • t₃) ]
dist2 : {t₁ t₂ t₃ : U•} →
•[ TIMES (PLUS ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , (inj₂ (• t₂) , • t₃) ] ⟷
•[ PLUS (TIMES ∣ t₁ ∣ ∣ t₃ ∣) (TIMES ∣ t₂ ∣ ∣ t₃ ∣) ,
inj₂ (• t₂ , • t₃) ]
factor1 : {t₁ t₂ t₃ : U•} →
•[ PLUS (TIMES ∣ t₁ ∣ ∣ t₃ ∣) (TIMES ∣ t₂ ∣ ∣ t₃ ∣) ,
inj₁ (• t₁ , • t₃) ] ⟷
•[ TIMES (PLUS ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , (inj₁ (• t₁) , • t₃) ]
factor2 : {t₁ t₂ t₃ : U•} →
•[ PLUS (TIMES ∣ t₁ ∣ ∣ t₃ ∣) (TIMES ∣ t₂ ∣ ∣ t₃ ∣) ,
inj₂ (• t₂ , • t₃) ] ⟷
•[ TIMES (PLUS ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , (inj₂ (• t₂) , • t₃) ]
_⊕1_ : {t₁ t₂ t₃ t₄ : U•} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) →
(•[ PLUS ∣ t₁ ∣ ∣ t₂ ∣ , inj₁ (• t₁) ] ⟷
•[ PLUS ∣ t₃ ∣ ∣ t₄ ∣ , inj₁ (• t₃) ])
_⊕2_ : {t₁ t₂ t₃ t₄ : U•} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) →
(•[ PLUS ∣ t₁ ∣ ∣ t₂ ∣ , inj₂ (• t₂) ] ⟷
•[ PLUS ∣ t₃ ∣ ∣ t₄ ∣ , inj₂ (• t₄) ])
_⊗_ : {t₁ t₂ t₃ t₄ : U•} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) →
(•[ TIMES ∣ t₁ ∣ ∣ t₂ ∣ , (• t₁ , • t₂ ) ] ⟷
•[ TIMES ∣ t₃ ∣ ∣ t₄ ∣ , (• t₃ , • t₄ ) ])
-- proof that we have a 1Groupoid structure
G : 1Groupoid
G = record
{ set = Pi0.U•
; _↝_ = Pi0._⟷_
; _≈_ = λ c₀ c₁ → PathSpace c₀ ⟷ PathSpace c₁
; id = Pi0.id⟷
; _∘_ = λ c₀ c₁ → c₁ Pi0.◎ c₀
; _⁻¹ = Pi0.sym⟷
; lneutr = λ _ → ridl
; rneutr = λ _ → lidl
; assoc = λ _ _ _ → tassocl
; equiv = record { refl = id⟷
; sym = λ c → sym⟷ c
; trans = λ c₀ c₁ → c₀ ◎ c₁ }
; linv = λ _ → invrl
; rinv = λ _ → invll
; ∘-resp-≈ = λ f⟷h g⟷i → resp◎ g⟷i f⟷h
}
------------------------------------------------------------------------------
-- Level 2
-- types are 2groupoids; they are points with non-trivial paths between them
-- and non-trivial 2paths between the paths
module Pi2 where
infixr 10 _◎_
infixr 30 _⟷_
-- types
data U : Set where
ZERO : U
ONE : U
PLUS : U → U → U
TIMES : U → U → U
PATH : {t₁ t₂ : Pi0.U•} → (t₁ Pi0.⟷ t₂) → U
2PATH : {t₁ t₂ : Pi1.U•} → (t₁ Pi1.⟷ t₂) → U
-- values
data Path {t₁ t₂ : Pi0.U•} : (Pi0.Space t₁) → (Pi0.Space t₂) → Set where
path : (c : t₁ Pi0.⟷ t₂) → Path (Pi0.point t₁) (Pi0.point t₂)
data 2Path {t₁ t₂ : Pi1.U•} : Pi1.Space t₁ → Pi1.Space t₂ → Set where
2path : (c : t₁ Pi1.⟷ t₂) → 2Path (Pi1.point t₁) (Pi1.point t₂)
⟦_⟧ : U → Set
⟦ ZERO ⟧ = ⊥
⟦ ONE ⟧ = ⊤
⟦ PLUS t₁ t₂ ⟧ = ⟦ t₁ ⟧ ⊎ ⟦ t₂ ⟧
⟦ TIMES t₁ t₂ ⟧ = ⟦ t₁ ⟧ × ⟦ t₂ ⟧
⟦ PATH {t₁} {t₂} c ⟧ = Path {t₁} {t₂} (Pi0.point t₁) (Pi0.point t₂)
⟦ 2PATH {t₁} {t₂} c ⟧ = 2Path {t₁} {t₂} (Pi1.point t₁) (Pi1.point t₂)
-- pointed types
record U• : Set where
constructor •[_,_]
field
∣_∣ : U
• : ⟦ ∣_∣ ⟧
open U•
Space : (t• : U•) → Set
Space •[ t , p ] = ⟦ t ⟧
point : (t• : U•) → Space t•
point •[ t , p ] = p
_∘1_ : {t₁ t₂ t₃ : Pi0.U•} →
Path (Pi0.point t₁) (Pi0.point t₂) →
Path (Pi0.point t₂) (Pi0.point t₃) →
Path (Pi0.point t₁) (Pi0.point t₃)
path c₁ ∘1 path c₂ = path (c₁ Pi0.◎ c₂)
_∘2_ : {t₁ t₂ t₃ : Pi1.U•} →
2Path (Pi1.point t₁) (Pi1.point t₂) →
2Path (Pi1.point t₂) (Pi1.point t₃) →
2Path (Pi1.point t₁) (Pi1.point t₃)
2path c₁ ∘2 2path c₂ = 2path (c₁ Pi1.◎ c₂)
PathSpace : {t₁ t₂ : Pi0.U•} → (c : t₁ Pi0.⟷ t₂) → U•
PathSpace c = •[ PATH c , path c ]
2PathSpace : {t₁ t₂ : Pi1.U•} → (c : t₁ Pi1.⟷ t₂) → U•
2PathSpace c = •[ 2PATH c , 2path c ]
-- examples
-- groupoid combinators to reason about id, sym, and trans
-- commutative semiring combinators for 0, 1, +, *
data _⟷_ : U• → U• → Set where
-- common combinators
id⟷ : {t : U•} → t ⟷ t
sym⟷ : {t₁ t₂ : U•} → (t₁ ⟷ t₂) → (t₂ ⟷ t₁)
_◎_ : {t₁ t₂ t₃ : U•} → (t₁ ⟷ t₂) → (t₂ ⟷ t₃) → (t₁ ⟷ t₃)
-- 1groupoid combinators
1lidl : {t₁ t₂ : Pi0.U•} {c : t₁ Pi0.⟷ t₂} →
PathSpace (Pi0.id⟷ Pi0.◎ c) ⟷ PathSpace c
1lidr : {t₁ t₂ : Pi0.U•} {c : t₁ Pi0.⟷ t₂} →
PathSpace c ⟷ PathSpace (Pi0.id⟷ Pi0.◎ c)
1ridl : {t₁ t₂ : Pi0.U•} {c : t₁ Pi0.⟷ t₂} →
PathSpace (c Pi0.◎ Pi0.id⟷) ⟷ PathSpace c
1ridr : {t₁ t₂ : Pi0.U•} {c : t₁ Pi0.⟷ t₂} →
PathSpace c ⟷ PathSpace (c Pi0.◎ Pi0.id⟷)
1invll : {t₁ t₂ : Pi0.U•} {c : t₁ Pi0.⟷ t₂} →
PathSpace (Pi0.sym⟷ c Pi0.◎ c) ⟷ PathSpace {t₂} {t₂} Pi0.id⟷
1invlr : {t₁ t₂ : Pi0.U•} {c : t₁ Pi0.⟷ t₂} →
PathSpace {t₂} {t₂} Pi0.id⟷ ⟷ PathSpace (Pi0.sym⟷ c Pi0.◎ c)
1invrl : {t₁ t₂ : Pi0.U•} {c : t₁ Pi0.⟷ t₂} →
PathSpace (c Pi0.◎ Pi0.sym⟷ c) ⟷ PathSpace {t₁} {t₁} Pi0.id⟷
1invrr : {t₁ t₂ : Pi0.U•} {c : t₁ Pi0.⟷ t₂} →
PathSpace {t₁} {t₁} Pi0.id⟷ ⟷ PathSpace (c Pi0.◎ Pi0.sym⟷ c)
1invinvl : {t₁ t₂ : Pi0.U•} {c : t₁ Pi0.⟷ t₂} →
PathSpace (Pi0.sym⟷ (Pi0.sym⟷ c)) ⟷ PathSpace c
1invinvr : {t₁ t₂ : Pi0.U•} {c : t₁ Pi0.⟷ t₂} →
PathSpace c ⟷ PathSpace (Pi0.sym⟷ (Pi0.sym⟷ c))
1tassocl : {t₁ t₂ t₃ t₄ : Pi0.U•}
{c₁ : t₁ Pi0.⟷ t₂} {c₂ : t₂ Pi0.⟷ t₃} {c₃ : t₃ Pi0.⟷ t₄} →
PathSpace (c₁ Pi0.◎ (c₂ Pi0.◎ c₃)) ⟷
PathSpace ((c₁ Pi0.◎ c₂) Pi0.◎ c₃)
1tassocr : {t₁ t₂ t₃ t₄ : Pi0.U•}
{c₁ : t₁ Pi0.⟷ t₂} {c₂ : t₂ Pi0.⟷ t₃} {c₃ : t₃ Pi0.⟷ t₄} →
PathSpace ((c₁ Pi0.◎ c₂) Pi0.◎ c₃) ⟷
PathSpace (c₁ Pi0.◎ (c₂ Pi0.◎ c₃))
-- resp◎ is closely related to Eckmann-Hilton
1resp◎ : {t₁ t₂ t₃ : Pi0.U•}
{c₁ : t₁ Pi0.⟷ t₂} {c₂ : t₂ Pi0.⟷ t₃}
{c₃ : t₁ Pi0.⟷ t₂} {c₄ : t₂ Pi0.⟷ t₃} →
(PathSpace c₁ ⟷ PathSpace c₃) →
(PathSpace c₂ ⟷ PathSpace c₄) →
PathSpace (c₁ Pi0.◎ c₂) ⟷ PathSpace (c₃ Pi0.◎ c₄)
-- 2groupoid combinators
lidl : {t₁ t₂ : Pi1.U•} {c : t₁ Pi1.⟷ t₂} →
2PathSpace (Pi1.id⟷ Pi1.◎ c) ⟷ 2PathSpace c
lidr : {t₁ t₂ : Pi1.U•} {c : t₁ Pi1.⟷ t₂} →
2PathSpace c ⟷ 2PathSpace (Pi1.id⟷ Pi1.◎ c)
ridl : {t₁ t₂ : Pi1.U•} {c : t₁ Pi1.⟷ t₂} →
2PathSpace (c Pi1.◎ Pi1.id⟷) ⟷ 2PathSpace c
ridr : {t₁ t₂ : Pi1.U•} {c : t₁ Pi1.⟷ t₂} →
2PathSpace c ⟷ 2PathSpace (c Pi1.◎ Pi1.id⟷)
invll : {t₁ t₂ : Pi1.U•} {c : t₁ Pi1.⟷ t₂} →
2PathSpace (Pi1.sym⟷ c Pi1.◎ c) ⟷ 2PathSpace {t₂} {t₂} Pi1.id⟷
invlr : {t₁ t₂ : Pi1.U•} {c : t₁ Pi1.⟷ t₂} →
2PathSpace {t₂} {t₂} Pi1.id⟷ ⟷ 2PathSpace (Pi1.sym⟷ c Pi1.◎ c)
invrl : {t₁ t₂ : Pi1.U•} {c : t₁ Pi1.⟷ t₂} →
2PathSpace (c Pi1.◎ Pi1.sym⟷ c) ⟷ 2PathSpace {t₁} {t₁} Pi1.id⟷
invrr : {t₁ t₂ : Pi1.U•} {c : t₁ Pi1.⟷ t₂} →
2PathSpace {t₁} {t₁} Pi1.id⟷ ⟷ 2PathSpace (c Pi1.◎ Pi1.sym⟷ c)
invinvl : {t₁ t₂ : Pi1.U•} {c : t₁ Pi1.⟷ t₂} →
2PathSpace (Pi1.sym⟷ (Pi1.sym⟷ c)) ⟷ 2PathSpace c
invinvr : {t₁ t₂ : Pi1.U•} {c : t₁ Pi1.⟷ t₂} →
2PathSpace c ⟷ 2PathSpace (Pi1.sym⟷ (Pi1.sym⟷ c))
tassocl : {t₁ t₂ t₃ t₄ : Pi1.U•}
{c₁ : t₁ Pi1.⟷ t₂} {c₂ : t₂ Pi1.⟷ t₃} {c₃ : t₃ Pi1.⟷ t₄} →
2PathSpace (c₁ Pi1.◎ (c₂ Pi1.◎ c₃)) ⟷
2PathSpace ((c₁ Pi1.◎ c₂) Pi1.◎ c₃)
tassocr : {t₁ t₂ t₃ t₄ : Pi1.U•}
{c₁ : t₁ Pi1.⟷ t₂} {c₂ : t₂ Pi1.⟷ t₃} {c₃ : t₃ Pi1.⟷ t₄} →
2PathSpace ((c₁ Pi1.◎ c₂) Pi1.◎ c₃) ⟷
2PathSpace (c₁ Pi1.◎ (c₂ Pi1.◎ c₃))
-- resp◎ is closely related to Eckmann-Hilton
resp◎ : {t₁ t₂ t₃ : Pi1.U•}
{c₁ : t₁ Pi1.⟷ t₂} {c₂ : t₂ Pi1.⟷ t₃}
{c₃ : t₁ Pi1.⟷ t₂} {c₄ : t₂ Pi1.⟷ t₃} →
(2PathSpace c₁ ⟷ 2PathSpace c₃) →
(2PathSpace c₂ ⟷ 2PathSpace c₄) →
2PathSpace (c₁ Pi1.◎ c₂) ⟷ 2PathSpace (c₃ Pi1.◎ c₄)
-- commutative semiring combinators
unite₊ : {t : U•} → •[ PLUS ZERO ∣ t ∣ , inj₂ (• t) ] ⟷ t
uniti₊ : {t : U•} → t ⟷ •[ PLUS ZERO ∣ t ∣ , inj₂ (• t) ]
swap1₊ : {t₁ t₂ : U•} → •[ PLUS ∣ t₁ ∣ ∣ t₂ ∣ , inj₁ (• t₁) ] ⟷
•[ PLUS ∣ t₂ ∣ ∣ t₁ ∣ , inj₂ (• t₁) ]
swap2₊ : {t₁ t₂ : U•} → •[ PLUS ∣ t₁ ∣ ∣ t₂ ∣ , inj₂ (• t₂) ] ⟷
•[ PLUS ∣ t₂ ∣ ∣ t₁ ∣ , inj₁ (• t₂) ]
assocl1₊ : {t₁ t₂ t₃ : U•} →
•[ PLUS ∣ t₁ ∣ (PLUS ∣ t₂ ∣ ∣ t₃ ∣) , inj₁ (• t₁) ] ⟷
•[ PLUS (PLUS ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , inj₁ (inj₁ (• t₁)) ]
assocl2₊ : {t₁ t₂ t₃ : U•} →
•[ PLUS ∣ t₁ ∣ (PLUS ∣ t₂ ∣ ∣ t₃ ∣) , inj₂ (inj₁ (• t₂)) ] ⟷
•[ PLUS (PLUS ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , inj₁ (inj₂ (• t₂)) ]
assocl3₊ : {t₁ t₂ t₃ : U•} →
•[ PLUS ∣ t₁ ∣ (PLUS ∣ t₂ ∣ ∣ t₃ ∣) , inj₂ (inj₂ (• t₃)) ] ⟷
•[ PLUS (PLUS ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , inj₂ (• t₃) ]
assocr1₊ : {t₁ t₂ t₃ : U•} →
•[ PLUS (PLUS ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , inj₁ (inj₁ (• t₁)) ] ⟷
•[ PLUS ∣ t₁ ∣ (PLUS ∣ t₂ ∣ ∣ t₃ ∣) , inj₁ (• t₁) ]
assocr2₊ : {t₁ t₂ t₃ : U•} →
•[ PLUS (PLUS ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , inj₁ (inj₂ (• t₂)) ] ⟷
•[ PLUS ∣ t₁ ∣ (PLUS ∣ t₂ ∣ ∣ t₃ ∣) , inj₂ (inj₁ (• t₂)) ]
assocr3₊ : {t₁ t₂ t₃ : U•} →
•[ PLUS (PLUS ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , inj₂ (• t₃) ] ⟷
•[ PLUS ∣ t₁ ∣ (PLUS ∣ t₂ ∣ ∣ t₃ ∣) , inj₂ (inj₂ (• t₃)) ]
unite⋆ : {t : U•} → •[ TIMES ONE ∣ t ∣ , (tt , • t) ] ⟷ t
uniti⋆ : {t : U•} → t ⟷ •[ TIMES ONE ∣ t ∣ , (tt , • t) ]
swap⋆ : {t₁ t₂ : U•} → •[ TIMES ∣ t₁ ∣ ∣ t₂ ∣ , (• t₁ , • t₂) ] ⟷
•[ TIMES ∣ t₂ ∣ ∣ t₁ ∣ , (• t₂ , • t₁) ]
assocl⋆ : {t₁ t₂ t₃ : U•} →
•[ TIMES ∣ t₁ ∣ (TIMES ∣ t₂ ∣ ∣ t₃ ∣) , (• t₁ , (• t₂ , • t₃)) ] ⟷
•[ TIMES (TIMES ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , ((• t₁ , • t₂) , • t₃) ]
assocr⋆ : {t₁ t₂ t₃ : U•} →
•[ TIMES (TIMES ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , ((• t₁ , • t₂) , • t₃) ] ⟷
•[ TIMES ∣ t₁ ∣ (TIMES ∣ t₂ ∣ ∣ t₃ ∣) , (• t₁ , (• t₂ , • t₃)) ]
distz : {t : U•} {absurd : ⟦ ZERO ⟧} →
•[ TIMES ZERO ∣ t ∣ , (absurd , • t) ] ⟷ •[ ZERO , absurd ]
factorz : {t : U•} {absurd : ⟦ ZERO ⟧} →
•[ ZERO , absurd ] ⟷ •[ TIMES ZERO ∣ t ∣ , (absurd , • t) ]
dist1 : {t₁ t₂ t₃ : U•} →
•[ TIMES (PLUS ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , (inj₁ (• t₁) , • t₃) ] ⟷
•[ PLUS (TIMES ∣ t₁ ∣ ∣ t₃ ∣) (TIMES ∣ t₂ ∣ ∣ t₃ ∣) ,
inj₁ (• t₁ , • t₃) ]
dist2 : {t₁ t₂ t₃ : U•} →
•[ TIMES (PLUS ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , (inj₂ (• t₂) , • t₃) ] ⟷
•[ PLUS (TIMES ∣ t₁ ∣ ∣ t₃ ∣) (TIMES ∣ t₂ ∣ ∣ t₃ ∣) ,
inj₂ (• t₂ , • t₃) ]
factor1 : {t₁ t₂ t₃ : U•} →
•[ PLUS (TIMES ∣ t₁ ∣ ∣ t₃ ∣) (TIMES ∣ t₂ ∣ ∣ t₃ ∣) ,
inj₁ (• t₁ , • t₃) ] ⟷
•[ TIMES (PLUS ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , (inj₁ (• t₁) , • t₃) ]
factor2 : {t₁ t₂ t₃ : U•} →
•[ PLUS (TIMES ∣ t₁ ∣ ∣ t₃ ∣) (TIMES ∣ t₂ ∣ ∣ t₃ ∣) ,
inj₂ (• t₂ , • t₃) ] ⟷
•[ TIMES (PLUS ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , (inj₂ (• t₂) , • t₃) ]
_⊕1_ : {t₁ t₂ t₃ t₄ : U•} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) →
(•[ PLUS ∣ t₁ ∣ ∣ t₂ ∣ , inj₁ (• t₁) ] ⟷
•[ PLUS ∣ t₃ ∣ ∣ t₄ ∣ , inj₁ (• t₃) ])
_⊕2_ : {t₁ t₂ t₃ t₄ : U•} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) →
(•[ PLUS ∣ t₁ ∣ ∣ t₂ ∣ , inj₂ (• t₂) ] ⟷
•[ PLUS ∣ t₃ ∣ ∣ t₄ ∣ , inj₂ (• t₄) ])
_⊗_ : {t₁ t₂ t₃ t₄ : U•} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) →
(•[ TIMES ∣ t₁ ∣ ∣ t₂ ∣ , (• t₁ , • t₂ ) ] ⟷
•[ TIMES ∣ t₃ ∣ ∣ t₄ ∣ , (• t₃ , • t₄ ) ])
-- proof that we have a 2Groupoid structure; this is 1Groupoid whose
-- equivalences are themselves a 1Groupoid
G : 1Groupoid
G = record
{ set = Pi1.U•
; _↝_ = Pi1._⟷_
; _≈_ = λ c₀ c₁ → 2PathSpace c₀ ⟷ 2PathSpace c₁
; id = Pi1.id⟷
; _∘_ = λ c₀ c₁ → c₁ Pi1.◎ c₀
; _⁻¹ = Pi1.sym⟷
; lneutr = λ _ → ridl
; rneutr = λ _ → lidl
; assoc = λ _ _ _ → tassocl
; equiv = record { refl = id⟷
; sym = λ c → sym⟷ c
; trans = λ c₀ c₁ → c₀ ◎ c₁ }
; linv = λ _ → invrl
; rinv = λ _ → invll
; ∘-resp-≈ = λ f⟷h g⟷i → resp◎ g⟷i f⟷h
}
-- examples
------------------------------------------------------------------------------
--}
|
{
"alphanum_fraction": 0.40714596,
"avg_line_length": 39.3504273504,
"ext": "agda",
"hexsha": "186017cce6aca0f27d43cb2fe517ce1782c5cba2",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/PiWithLevels/Pi-1.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/PiWithLevels/Pi-1.agda",
"max_line_length": 78,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/PiWithLevels/Pi-1.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 13479,
"size": 27624
}
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import cohomology.ChainComplex
open import cohomology.Theory
open import groups.KernelImage
open import cw.CW
module cw.cohomology.ReconstructedZerothCohomologyGroup {i : ULevel} (OT : OrdinaryTheory i) where
open OrdinaryTheory OT
import cw.cohomology.TipCoboundary OT as TC
import cw.cohomology.TipAndAugment OT as TAA
open import cw.cohomology.Descending OT
open import cw.cohomology.ReconstructedCochainComplex OT
import cw.cohomology.ZerothCohomologyGroup OT as ZCG
import cw.cohomology.ZerothCohomologyGroupOnDiag OT as ZCGD
private
≤-dec-has-all-paths : {m n : ℕ} → has-all-paths (Dec (m ≤ n))
≤-dec-has-all-paths = prop-has-all-paths (Dec-level ≤-is-prop)
private
abstract
zeroth-cohomology-group-descend : ∀ {n} (⊙skel : ⊙Skeleton {i} (2 + n))
→ cohomology-group (cochain-complex ⊙skel) 0
== cohomology-group (cochain-complex (⊙cw-init ⊙skel)) 0
zeroth-cohomology-group-descend {n = O} ⊙skel
= ap
(λ δ → Ker/Im δ
(TAA.cw-coε (⊙cw-take (lteSR lteS) ⊙skel))
(TAA.C2×CX₀-is-abelian (⊙cw-take (lteSR lteS) ⊙skel) 0))
(coboundary-first-template-descend-from-two ⊙skel)
zeroth-cohomology-group-descend {n = S n} ⊙skel
= ap (λ δ → Ker/Im δ
(TAA.cw-coε (⊙cw-take (inr (O<S (2 + n))) ⊙skel))
(TAA.C2×CX₀-is-abelian (⊙cw-take (inr (O<S (2 + n))) ⊙skel) 0))
(coboundary-first-template-descend-from-far ⊙skel (O<S (1 + n)) (<-+-l 1 (O<S n)))
zeroth-cohomology-group-β : ∀ (⊙skel : ⊙Skeleton {i} 1)
→ cohomology-group (cochain-complex ⊙skel) 0
== Ker/Im
(TC.cw-co∂-head ⊙skel)
(TAA.cw-coε (⊙cw-init ⊙skel))
(TAA.C2×CX₀-is-abelian (⊙cw-init ⊙skel) 0)
zeroth-cohomology-group-β ⊙skel
= ap
(λ δ → Ker/Im δ
(TAA.cw-coε (⊙cw-init ⊙skel))
(TAA.C2×CX₀-is-abelian (⊙cw-init ⊙skel) 0))
(coboundary-first-template-β ⊙skel)
abstract
zeroth-cohomology-group : ∀ {n} (⊙skel : ⊙Skeleton {i} n)
→ ⊙has-cells-with-choice 0 ⊙skel i
→ C 0 ⊙⟦ ⊙skel ⟧ ≃ᴳ cohomology-group (cochain-complex ⊙skel) 0
zeroth-cohomology-group {n = 0} ⊙skel ac = ZCGD.C-cw-iso-ker/im ⊙skel ac
zeroth-cohomology-group {n = 1} ⊙skel ac =
coe!ᴳ-iso (zeroth-cohomology-group-β ⊙skel)
∘eᴳ ZCG.C-cw-iso-ker/im ⊙skel ac
zeroth-cohomology-group {n = S (S n)} ⊙skel ac =
coe!ᴳ-iso (zeroth-cohomology-group-descend ⊙skel)
∘eᴳ zeroth-cohomology-group (⊙cw-init ⊙skel) (⊙init-has-cells-with-choice ⊙skel ac)
∘eᴳ C-cw-descend-at-lower ⊙skel (O<S n) ac
|
{
"alphanum_fraction": 0.6090775988,
"avg_line_length": 42.0307692308,
"ext": "agda",
"hexsha": "d75b2da861d0566983bbf4afdd302b90fa55df2f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "theorems/cw/cohomology/ReconstructedZerothCohomologyGroup.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "theorems/cw/cohomology/ReconstructedZerothCohomologyGroup.agda",
"max_line_length": 98,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "theorems/cw/cohomology/ReconstructedZerothCohomologyGroup.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1059,
"size": 2732
}
|
{-# OPTIONS --prop --without-K --rewriting #-}
module Calf.Types.Sum where
open import Calf.Prelude
open import Calf.Metalanguage
open import Data.Sum using (_⊎_; inj₁; inj₂) public
sum : tp pos → tp pos → tp pos
sum A B = U (meta (val A ⊎ val B))
sum/case : ∀ A B (X : val (sum A B) → tp neg) → (s : val (sum A B)) → ((a : val A) → cmp (X (inj₁ a))) → ((b : val B) → cmp (X (inj₂ b))) → cmp (X s)
sum/case A B X (inj₁ x) b₁ _ = b₁ x
sum/case A B X (inj₂ x) _ b₂ = b₂ x
|
{
"alphanum_fraction": 0.5849056604,
"avg_line_length": 29.8125,
"ext": "agda",
"hexsha": "6df17093b7747ebf761f4dddd8bc1ffab6a9f2d1",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z",
"max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "jonsterling/agda-calf",
"max_forks_repo_path": "src/Calf/Types/Sum.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "jonsterling/agda-calf",
"max_issues_repo_path": "src/Calf/Types/Sum.agda",
"max_line_length": 149,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "jonsterling/agda-calf",
"max_stars_repo_path": "src/Calf/Types/Sum.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z",
"num_tokens": 189,
"size": 477
}
|
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.FiniteMultiset.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.HITs.FiniteMultiset.Base
private
variable
A : Type₀
infixr 30 _++_
_++_ : ∀ (xs ys : FMSet A) → FMSet A
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ xs ++ ys
comm x y xs i ++ ys = comm x y (xs ++ ys) i
trunc xs zs p q i j ++ ys =
trunc (xs ++ ys) (zs ++ ys) (cong (_++ ys) p) (cong (_++ ys) q) i j
unitl-++ : ∀ (xs : FMSet A) → [] ++ xs ≡ xs
unitl-++ xs = refl
unitr-++ : ∀ (xs : FMSet A) → xs ++ [] ≡ xs
unitr-++ = FMSetElimProp.f (trunc _ _)
refl
(λ x p → cong (_∷_ x) p)
assoc-++ : ∀ (xs ys zs : FMSet A) → xs ++ (ys ++ zs) ≡ (xs ++ ys) ++ zs
assoc-++ = FMSetElimProp.f (propPi (λ _ → propPi (λ _ → trunc _ _)))
(λ ys zs → refl)
(λ x p ys zs → cong (_∷_ x) (p ys zs))
cons-++ : ∀ (x : A) (xs : FMSet A) → x ∷ xs ≡ xs ++ [ x ]
cons-++ x = FMSetElimProp.f (trunc _ _)
refl
(λ y {xs} p → comm x y xs ∙ cong (_∷_ y) p)
comm-++ : ∀ (xs ys : FMSet A) → xs ++ ys ≡ ys ++ xs
comm-++ = FMSetElimProp.f (propPi (λ _ → trunc _ _))
(λ ys → sym (unitr-++ ys))
(λ x {xs} p ys → cong (x ∷_) (p ys)
∙ cong (_++ xs) (cons-++ x ys)
∙ sym (assoc-++ ys [ x ] xs))
module FMSetUniversal {ℓ} {M : Type ℓ} (MSet : isSet M)
(e : M) (_⊗_ : M → M → M)
(comm-⊗ : ∀ x y → x ⊗ y ≡ y ⊗ x) (assoc-⊗ : ∀ x y z → x ⊗ (y ⊗ z) ≡ (x ⊗ y) ⊗ z)
(unit-⊗ : ∀ x → e ⊗ x ≡ x)
(f : A → M) where
f-extend : FMSet A → M
f-extend = FMSetRec.f MSet e (λ x m → f x ⊗ m)
(λ x y m → comm-⊗ (f x) (f y ⊗ m) ∙ sym (assoc-⊗ (f y) m (f x)) ∙ cong (f y ⊗_) (comm-⊗ m (f x)))
f-extend-nil : f-extend [] ≡ e
f-extend-nil = refl
f-extend-cons : ∀ x xs → f-extend (x ∷ xs) ≡ f x ⊗ f-extend xs
f-extend-cons x xs = refl
f-extend-sing : ∀ x → f-extend [ x ] ≡ f x
f-extend-sing x = comm-⊗ (f x) e ∙ unit-⊗ (f x)
f-extend-++ : ∀ xs ys → f-extend (xs ++ ys) ≡ f-extend xs ⊗ f-extend ys
f-extend-++ = FMSetElimProp.f (propPi λ _ → MSet _ _)
(λ ys → sym (unit-⊗ (f-extend ys)))
(λ x {xs} p ys → cong (f x ⊗_) (p ys) ∙ assoc-⊗ (f x) (f-extend xs) (f-extend ys))
module _ (h : FMSet A → M) (h-nil : h [] ≡ e) (h-sing : ∀ x → h [ x ] ≡ f x)
(h-++ : ∀ xs ys → h (xs ++ ys) ≡ h xs ⊗ h ys) where
f-extend-unique : h ≡ f-extend
f-extend-unique = funExt (FMSetElimProp.f (MSet _ _)
h-nil
(λ x {xs} p → (h-++ [ x ] xs) ∙ cong (_⊗ h xs) (h-sing x) ∙ cong (f x ⊗_) p))
|
{
"alphanum_fraction": 0.486202876,
"avg_line_length": 32.9871794872,
"ext": "agda",
"hexsha": "b9f6f14863e3c6d434f9b613edc58d74814dd532",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/HITs/FiniteMultiset/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/HITs/FiniteMultiset/Properties.agda",
"max_line_length": 107,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/HITs/FiniteMultiset/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1122,
"size": 2573
}
|
{-# OPTIONS --allow-unsolved-metas #-}
data C (A : Set) : Set where
c : (x : A) → C A
data D : Set where
data E (A : Set) : Set where
e : A → E A
postulate
F : {A : Set} → A → Set
G : {A : Set} → C A → Set
G (c x) = E (F x)
postulate
H : {A : Set} → (A → Set) → C A → Set
f : {A : Set} {P : A → Set} {y : C A} → H P y → (x : A) → G y → P x
g : {A : Set} {y : C A} {P : A → Set} → ((x : A) → G y → P x) → H P y
variable
A : Set
P : A → Set
x : A
y : C A
postulate
h : {p : ∀ x → G y → P x} → (∀ x (g : G y) → F (p x g)) → F (g p)
id : (A : Set) → A → A
id _ x = x
-- i : (h : H P y) → (∀ x (g : G y) → F (f h x g)) → F (g (f h))
-- i x y = id (F (g (f x))) (h y)
|
{
"alphanum_fraction": 0.3933717579,
"avg_line_length": 19.2777777778,
"ext": "agda",
"hexsha": "9ef546522c4d71a3540de4c0dfc3c44bc5142798",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue3672.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue3672.agda",
"max_line_length": 71,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue3672.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 336,
"size": 694
}
|
{-# OPTIONS --guardedness #-}
import Tutorials.Monday-Complete
import Tutorials.Tuesday-Complete
import Tutorials.Wednesday-Complete
import Tutorials.Thursday-Complete
|
{
"alphanum_fraction": 0.8284023669,
"avg_line_length": 24.1428571429,
"ext": "agda",
"hexsha": "f890566fd8ddf6808cf7897d5e70bdfdce19f042",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-11-24T10:50:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-23T08:50:13.000Z",
"max_forks_repo_head_hexsha": "ccd2a78642e93754011deffbe85e9ef5071e4cb7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "poncev/agda-bcam",
"max_forks_repo_path": "Everything.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ccd2a78642e93754011deffbe85e9ef5071e4cb7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "poncev/agda-bcam",
"max_issues_repo_path": "Everything.agda",
"max_line_length": 35,
"max_stars_count": 27,
"max_stars_repo_head_hexsha": "ccd2a78642e93754011deffbe85e9ef5071e4cb7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "poncev/agda-bcam",
"max_stars_repo_path": "Everything.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-03T22:53:51.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-09-23T17:59:21.000Z",
"num_tokens": 39,
"size": 169
}
|
open import Agda.Builtin.Equality
postulate
A : Set
B : A → Set
variable
a : A
b : B a
postulate
C : B a → Set
postulate
f : (b : B a) → {!!}
g : (c : C b) → {!!}
module _ (a′ : A) where
postulate
h : (b : B a) (b′ : B a′) → {!!}
j : (b′ : B a) (c : C b) (c′ : C b′) → {!!}
|
{
"alphanum_fraction": 0.4342105263,
"avg_line_length": 13.2173913043,
"ext": "agda",
"hexsha": "c22b87261b55a9572cb23395084bf76b68bbed50",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue3340.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue3340.agda",
"max_line_length": 47,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue3340.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 137,
"size": 304
}
|
{-# OPTIONS --copatterns --sized-types --without-K #-}
module Poly where
open import Level using (Level)
open import Data.Product
open import Data.Nat
open import Data.Fin
open import Data.Unit
open import Data.Empty
open import Data.Vec hiding (_∈_; [_])
open import Relation.Binary.PropositionalEquality
open import Function
open import Data.Sum
open import Size
infixr 2 _and_
Fam : Set → Set₁
Fam I = I → Set
Fam₂ : Set → Set → Set₁
Fam₂ I J = I → J → Set
-- | Morphisms between families
MorFam : {I : Set} (P₁ P₂ : Fam I) → Set
MorFam {I} P₁ P₂ = (x : I) → P₁ x → P₂ x
_⇒_ = MorFam
compMorFam : {I : Set} {P₁ P₂ P₃ : Fam I} →
MorFam P₁ P₂ → MorFam P₂ P₃ → MorFam P₁ P₃
compMorFam f₁ f₂ a = f₂ a ∘ f₁ a
_⊚_ = compMorFam
-- | Reindexing of families
_* : {I J : Set} → (I → J) → Fam J → Fam I
(u *) P = P ∘ u
-- | Reindexing on morphisms of families
_*₁ : {I J : Set} → (u : I → J) →
{P₁ P₂ : Fam J} → (P₁ ⇒ P₂) → (u *) P₁ ⇒ (u *) P₂
(u *₁) f i = f (u i)
-- | This notation for Π-types is more useful for our purposes here.
Π : (A : Set) (P : Fam A) → Set
Π A P = (x : A) → P x
_and_ = _×_
-- | Fully general Σ-type, which we need to interpret the interpretation
-- of families of containers as functors for inductive types.
data Σ' {A B : Set} (f : A → B) (P : Fam A) : B → Set where
ins : (a : A) → P a → Σ' f P (f a)
p₁' : {A B : Set} {u : A → B} {P : Fam A} {b : B} →
Σ' u P b → A
p₁' (ins a _) = a
p₂' : {A B : Set} {u : A → B} {P : Fam A} {b : B} →
(x : Σ' u P b) → P (p₁' x)
p₂' (ins _ x) = x
p₌' : {A B : Set} {u : A → B} {P : Fam A} {b : B} →
(x : Σ' u P b) → u (p₁' x) ≡ b
p₌' (ins _ _) = refl
ins' : {A B : Set} {u : A → B} {P : Fam A} →
(a : A) → (b : B) → u a ≡ b → P a → Σ' u P b
ins' a ._ refl x = ins a x
Σ'-eq : {A B : Set} {f : A → B} {P : Fam A} →
(a a' : A) (x : P a) (x' : P a')
(a≡a' : a ≡ a') (x≡x' : subst P a≡a' x ≡ x') →
subst (Σ' f P) (cong f a≡a') (ins a x) ≡ ins a' x'
Σ'-eq a .a x .x refl refl = refl
Σ-eq : {a b : Level} {A : Set a} {B : A → Set b} →
(a a' : A) (x : B a) (x' : B a')
(a≡a' : a ≡ a') (x≡x' : subst B a≡a' x ≡ x') →
(a , x) ≡ (a' , x')
Σ-eq a .a x .x refl refl = refl
×-eq : {ℓ : Level} {A : Set ℓ} {B : Set ℓ} →
(a a' : A) (b b' : B) →
a ≡ a' → b ≡ b' → (a , b) ≡ (a' , b')
×-eq a .a b .b refl refl = refl
×-eqˡ : {A B : Set} {a a' : A} {b b' : B} → (a , b) ≡ (a' , b') → a ≡ a'
×-eqˡ refl = refl
×-eqʳ : {A B : Set} {a a' : A} {b b' : B} → (a , b) ≡ (a' , b') → b ≡ b'
×-eqʳ refl = refl
-- | Comprehension
⟪_⟫ : {I : Set} → Fam I → Set
⟪_⟫ {I} B = Σ I B
⟪_⟫² : {I J : Set} → (J → Fam I) → Fam J
⟪_⟫² {I} B j = Σ I (B j)
π : {I : Set} → (B : Fam I) → ⟪ B ⟫ → I
π B = proj₁
_⊢₁_ : {I : Set} {A : Fam I} → (i : I) → A i → ⟪ A ⟫
i ⊢₁ a = (i , a)
_,_⊢₂_ : {I : Set} {A : Fam I} {B : Fam ⟪ A ⟫} →
(i : I) → (a : A i) → B (i , a) → ⟪ B ⟫
i , a ⊢₂ b = ((i , a) , b)
-- Not directly definable...
-- record Π' {A B : Set} (u : A → B) (P : A → Set) : B → Set where
-- field
-- app : (a : A) → Π' u P (u a) → P a
-- | ... but this does the job.
Π' : {I J : Set} (u : I → J) (P : Fam I) → Fam J
Π' {I} u P j = Π (∃ λ i → u i ≡ j) (λ { (i , _) → P i})
Π'' : {I J : Set} (u : I → J) (j : J) (P : Fam (∃ λ i → u i ≡ j)) → Set
Π'' {I} u j P = Π (∃ λ i → u i ≡ j) P
-- | Application for fully general Π-types.
app : {I J : Set} {u : I → J} {P : Fam I} →
(u *) (Π' u P) ⇒ P
app i f = f (i , refl)
-- | Abstraction for fully general Π-types.
abs : {I J : Set} {u : I → J} {P : Fam I} →
((i : I) → P i) → ((j : J) → Π' u P j)
abs {u = u} f .(u i) (i , refl) = f i
-- | Abstraction for fully general Π-types.
abs' : {I J : Set} {u : I → J} {P : Fam I} {X : Fam J} →
((u *) X ⇒ P) → (X ⇒ Π' u P)
abs' {u = u} f .(u i) x (i , refl) = f i x
-- | Abstraction for fully general Π-types.
abs'' : {I J : Set} {u : I → J} {P : Fam I} →
(j : J) → ((i : I) → u i ≡ j → P i) → Π' u P j
abs'' j f (i , p) = f i p
abs₃ : {I J : Set} {u : I → J} (j : J) {P : Fam (Σ I (λ i → u i ≡ j))} →
((i : I) → (p : u i ≡ j) → P (i , p)) → Π'' u j P
abs₃ j f (i , p) = f i p
-- | Functorial action of Π'
Π'₁ : {I J : Set} {u : I → J} {P Q : Fam I} →
(f : P ⇒ Q) → (Π' u P ⇒ Π' u Q)
Π'₁ {u = u} f .(u i) g (i , refl) = f i (app i g)
-- | Turn morphism into a family
toFam : ∀ {A B : Set} → (h : B → A) → Fam A
toFam {A} {B} h a = Σ[ b ∈ B ] (h b ≡ a)
-- | Turn family into a morphism
fromFam : ∀ {A B : Set} → (X : Fam A) → (Σ A X → A)
fromFam {A} {B} X = proj₁
-- | Set comprehension
record ⟪_⟫' {A : Set} (φ : A → Set) : Set where
constructor elem
field
a : A
.isElem : φ a
inc : {A : Set} {φ : A → Set} → ⟪ φ ⟫' → A
inc (elem a isElem) = a
compr-syntax : (A : Set) (φ : A → Set) → Set
compr-syntax A = ⟪_⟫'
syntax compr-syntax A (λ x → φ) = ⟪ x ∈ A ∥ φ ⟫
compr-syntax' : {A : Set} (φ ψ : A → Set) → Set
compr-syntax' φ ψ = ⟪ (λ a → φ a and ψ a) ⟫'
syntax compr-syntax' φ (λ x → ψ) = ⟪ x ∈ φ ∥ ψ ⟫'
-- | Subsets of A
Sub : Set → Set₁
Sub A = Σ[ φ ∈ (A → Set) ] ⟪ φ ⟫'
_∈_ : {A : Set} → A → (φ : A → Set) → Set
x ∈ φ = φ x
_⊆_ : {A : Set} → (φ₁ φ₂ : A → Set) → Set
φ₁ ⊆ φ₂ = φ₁ ⇒ φ₂
_≅_ : {A : Set} → (φ₁ φ₂ : A → Set) → Set
φ₁ ≅ φ₂ = (φ₁ ⊆ φ₂) × (φ₂ ⊆ φ₁)
predToFam : {I A : Set} → (A → I) → (A → Set) → Fam I
predToFam {I} {A} h φ = Σ' h φ
-- | Dependent polynomials
record DPoly
{I : Set} -- ^ Global index of constructed type
-- {N : Set} -- ^ Index set for parameters
-- {J : N → Set} -- ^ Index of each parameter
{J : Set}
: Set₁ where
constructor dpoly
field
-- J ←t- E -p→ A -s→ I
A : Set -- ^ Labels
s : A → I
E : Set
p : E → A
t : E → J
-- | Interpretation of polynomial as functor
T : {I : Set} {J : Set} →
DPoly {I} {J} →
(X : Fam J) → -- ^ Parameter
(Fam I)
T {I} {N} (dpoly A s E p t) X =
Σ' s (λ a →
Π' p (λ e →
X (t e)
) a )
-- | Functorial action of T
T₁ : {I : Set} {J : Set} →
(C : DPoly {I} {J}) →
{X Y : J → Set} →
(f : (j : J) → X j → Y j)
(i : I) → T C X i → T C Y i
T₁ {I} {J} (dpoly A s E p t) {X} {Y} f .(s a) (ins a v) =
ins a (Π'₁ ((t *₁) f) a v)
-- | Dependent, multivariate polynomials
record DMPoly
{I : Set} -- ^ Global index of constructed type
{N : Set} -- ^ Index set for parameters
{J : N → Set} -- ^ Index of each parameter
: Set₁ where
constructor dpoly₁
field
-- J ←t- E -p→ A -s→ I
A₁ : Set -- ^ Labels
s₁ : A₁ → I
E₁ : N → Set
p₁ : (n : N) → E₁ n → A₁
t₁ : (n : N) → E₁ n → J n
-- | Create multiparameter polynomial
paramPoly : {I : Set} {N : Set} {J : N → Set} →
DMPoly {I} {N} {J} →
DPoly {I} {Σ N J}
paramPoly {I} {N} (dpoly₁ A₁ s₁ E₁ p₁ t₁) =
dpoly
A₁
s₁
⟪ E₁ ⟫
(λ {(n , e) → p₁ n e})
(λ {(n , e) → (n , t₁ n e)})
-- | Functor on product category for multivariate polynomials.
TM : {I : Set} {N : Set} {J : N → Set} →
DMPoly {I} {N} {J} →
(X : (n : N) → J n → Set) →
(I → Set)
TM P X = T (paramPoly P) (λ {(n , j) → X n j})
{-
----- Example: Vectors seen fixed point of (A, X) ↦ Σ z ⊤ + Σ s (A × X)
------ in the second variable. Here, z is the zero map, s the successor and
------ A is implicitely weakend.
Vec-Cons = Fin 2
Vec-Loc-Ind : Vec-Cons → Set
Vec-Loc-Ind zero = ⊤
Vec-Loc-Ind (suc x) = ℕ
Vars : Set
Vars = Fin 2
Var-Types : Vars → Set
Var-Types zero = ⊤
Var-Types (suc m) = ℕ
C : DPoly {ℕ} {Vars} {Var-Types}
C = dpoly ⟪ Vec-Loc-Ind ⟫ f Dom pp g
where
f : ⟪ Vec-Loc-Ind ⟫ → ℕ
f (zero , tt) = 0
f (suc _ , k) = suc k
-- | Domain exponents
Dom' : Vars → Fam Vec-Cons
Dom' _ zero = ⊥
Dom' _ (suc _) = ℕ
Dom : Vars → Set
Dom zero = ⟪ Dom' zero ⟫
Dom (suc n) = ⟪ Dom' (suc n) ⟫
pp : (n : Vars) → Dom n → ⟪ Vec-Loc-Ind ⟫
pp zero (zero , ())
pp (suc n) (zero , ())
pp zero (suc c , k) = suc c ⊢₁ k
pp (suc n) (suc c , k) = suc c ⊢₁ k
Params : Vars → ⟪ Vec-Loc-Ind ⟫ → Set
Params x (zero , _) = ⊥
Params zero ((suc a) , k) = ⊤
Params (suc x) ((suc a) , k) = ⊤
g : (n : Vars) → Dom n → Var-Types n
g zero (zero , ())
g (suc n) (zero , ())
g zero (suc c , k) = tt
g (suc n) (suc c , k) = k
F : ((m : Vars) → Var-Types m → Set) → (ℕ → Set)
F = T C
-- Fix the variables, so that we can apply F.
Fix-Vars : Set → (ℕ → Set) → (p : Vars) → Var-Types p → Set
Fix-Vars A _ zero _ = A
Fix-Vars A X (suc n) = X
-- | Algebra structure on vectors, using the functor F.
in-vec : ∀ {A} → (n : ℕ) → F (Fix-Vars A (Vec A)) n → Vec A n
in-vec {A} .0 (ins (zero , tt) _) = []
in-vec {A} .(suc k) (ins ((suc i) , k) v) = a ∷ x
where
a : A
a = app (suc i ⊢₁ k) (v zero)
x : Vec A k
x = app (suc i ⊢₁ k) (v (suc zero))
-- | Recursion for F-algebras
rec-vec : {A : Set} {X : ℕ → Set} →
((n : ℕ) → F (Fix-Vars A X) n → X n) →
(n : ℕ) → Vec A n → X n
rec-vec {A} {X} u .0 [] = u 0 (ins (zero ⊢₁ tt) v₀)
where
v₀ : Π Vars (λ n → Π' (p C n) (λ e → Fix-Vars A X n (t C n e)) (zero ⊢₁ tt))
v₀ zero = abs'' (zero ⊢₁ tt) q₀
where
q₀ : (i : E C zero) → p C zero i ≡ zero ⊢₁ tt → A
q₀ (zero , ()) p
q₀ (suc d , _) ()
v₀ (suc n) = abs'' (zero ⊢₁ tt) q₁
where
q₁ : (d : E C (suc n)) → p C (suc n) d ≡ zero ⊢₁ tt → X (t C (suc n) d)
q₁ (zero , ()) p
q₁ (suc d , _) ()
rec-vec {A} {X} f (suc k) (a ∷ x) = f (suc k) (ins (suc zero ⊢₁ k) v')
where
v' : Π Vars (λ n →
Π' (p C n) (λ e →
Fix-Vars A X n (t C n e)) (suc zero ⊢₁ k))
v' zero = abs'' (suc zero ⊢₁ k) q₀
where
q₀ : (d : E C zero) → p C zero d ≡ suc zero ⊢₁ k → A
q₀ d p = a
v' (suc n) = abs'' (suc zero ⊢₁ k) q₁
where
q₁ : (d : E C (suc n)) →
p C (suc n) d ≡ suc zero ⊢₁ k → X (t C (suc n) d)
q₁ (zero , ()) p
q₁ (suc .zero , .k) refl = rec-vec f k x
--- Example 2: Partial streams
record ℕ∞ : Set where
coinductive
field
pred∞ : ⊤ ⊎ ℕ∞
open ℕ∞
suc∞ : ℕ∞ → ℕ∞
pred∞ (suc∞ n) = inj₂ n
PS-Vars : Set
PS-Vars = Fin 2
PS-Types : PS-Vars → Set
PS-Types zero = ⊤
PS-Types (suc n) = ℕ∞
PS-C : DPoly {ℕ∞} {PS-Vars} {PS-Types}
PS-C = dpoly ℕ∞ id Codom codom-dep var-reidx
where
Codom : PS-Vars → Set
Codom _ = ℕ∞
codom-dep : (n : PS-Vars) → Codom n → ℕ∞
codom-dep _ = suc∞
var-reidx : (n : PS-Vars) → Codom n → PS-Types n
var-reidx zero _ = tt
var-reidx (suc v) = id
PS-F : ((m : PS-Vars) → PS-Types m → Set) → (ℕ∞ → Set)
PS-F = T PS-C
-- Fix the variables, so that we can apply F.
PS-Fix-Vars : Set → Fam ℕ∞ → (p : PS-Vars) → Fam (PS-Types p)
PS-Fix-Vars A _ zero _ = A
PS-Fix-Vars A X (suc n) = X
record PStr {i : Size} (A : Set) (n : ℕ∞) : Set where
coinductive
field
out : ∀ {j : Size< i} → PS-F (PS-Fix-Vars A (PStr {j} A)) n
open PStr
P-hd : ∀ {A} {n : ℕ∞} → PStr A (suc∞ n) → A
P-hd {A} {n} s = q (out s)
where
q : PS-F (PS-Fix-Vars A (PStr A)) (suc∞ n) → A
q (ins .(suc∞ n) v) = app n (v zero)
P-tl : ∀ {A} {n : ℕ∞} → PStr A (suc∞ n) → PStr A n
P-tl {A} {n} s = q (out s)
where
q : PS-F (PS-Fix-Vars A (PStr A)) (suc∞ n) → PStr A n
q (ins .(suc∞ n) v) = app n (v (suc zero))
P-corec : {A : Set} {X : Fam ℕ∞} →
(c : X ⇒ PS-F (PS-Fix-Vars A X)) →
(∀{i} → X ⇒ PStr {i} A)
out (P-corec {A} {X} c n x) {j} = ins n (h n x)
where
h : (n : ℕ∞) → X n →
Π PS-Vars (λ v →
Π' (p PS-C v) (λ e →
PS-Fix-Vars A (PStr {j} A) v (t PS-C v e)) n)
h n x zero = abs'' n (q n x)
where
q : (n : ℕ∞) → (X n) → (d : E PS-C zero) → p PS-C zero d ≡ n → A
q .(suc∞ n) x n refl = r (c (suc∞ n) x)
where
r : PS-F (PS-Fix-Vars A X) (suc∞ n) → A
r (ins .(suc∞ n) ch) = app n (ch zero)
h n x (suc v) = abs'' n (q n x)
where
q : (n : ℕ∞) → (X n) →
(i : E PS-C (suc v)) →
p PS-C (suc v) i ≡ n →
PStr {j} A (t PS-C (suc v) i)
q .(suc∞ k) x k refl = P-corec c k (r (c (suc∞ k) x))
where
r : PS-F (PS-Fix-Vars A X) (suc∞ k) → X k
r (ins .(suc∞ k) ch) = app k (ch (suc zero))
------- End examples --------
-}
-- | Non-dependent polynomials in one variable
record Poly : Set₁ where
constructor poly
field
Sym : Set
Arit : Set
f : Arit → Sym
open Poly
-- | Interpretation as functors
⟦_⟧ : Poly → Set → Set
⟦ poly A B f ⟧ X = Σ A ((Π' f) (λ e → X))
⟦_⟧₁ : {P : Poly} {A B : Set} → (A → B) → (⟦ P ⟧ A → ⟦ P ⟧ B)
⟦_⟧₁ {poly Sym Arit f} {A} {B} f₁ (a , v) = (a , abs'' a (v' a v))
where
v' : (a' : Sym) (v' : Π' f (λ e → A) a') (b : Arit) → f b ≡ a' → B
v' ._ v' b refl = f₁ (app b v')
-- | Lifting to predicates
⟦_⟧' : (p : Poly) → ∀ {X} → Fam X → Fam (⟦ p ⟧ X)
⟦ poly A B f ⟧' P (s , α) = ∀ (x : toFam f s) → P (α x)
-- | Lifting to relations
⟦_⟧'' : (p : Poly) → ∀ {X Y} → Fam₂ X Y → Fam₂ (⟦ p ⟧ X) (⟦ p ⟧ Y)
⟦ poly A B f ⟧'' P (s₁ , α₁) (s₂ , α₂) =
Σ[ e ∈ (s₁ ≡ s₂) ] (∀ (x : toFam f s₁) →
P (α₁ x) (α₂ (proj₁ x , trans (proj₂ x) e)))
eq-preserving : ∀ {p X} (x y : ⟦ p ⟧ X) → x ≡ y → ⟦ p ⟧'' _≡_ x y
eq-preserving {p} x .x refl = refl , q
where
lem : ∀ {X : Set} {x y : X} (e : x ≡ y) → trans e refl ≡ e
lem refl = refl
q : (z : toFam (f p) (proj₁ x)) →
proj₂ x z ≡ proj₂ x (proj₁ z , trans (proj₂ z) refl)
q (s , e) = cong (λ u → proj₂ x (s , u)) (sym (lem e))
-- | Final coalgebras for non-dependent polynomials
record M {i : Size} (P : Poly) : Set where
coinductive
field
ξ : ∀ {j : Size< i} → ⟦ P ⟧ (M {j} P)
open M
ξ' : ∀ {P} → M P → ⟦ P ⟧ (M P)
ξ' x = ξ x
mutual
-- | Equality for M types is given by bisimilarity
record _~_ {P : Poly} (x y : M P) : Set where
coinductive
field
~pr : ⟦ P ⟧'' _~_ (ξ' x) (ξ' y)
open _~_ public
IsBisim : ∀{p X Y} → (X → ⟦ p ⟧ X) → (Y → ⟦ p ⟧ Y) → Fam₂ X Y → Set
IsBisim {p} f g _R_ = ∀ x y → x R y → ⟦ p ⟧'' _R_ (f x) (g y)
root : ∀ {P} → M P → Sym P
root = proj₁ ∘ ξ'
corec-M : ∀ {P : Poly} {X : Set} → (X → ⟦ P ⟧ X) → (∀{i} → X → M {i} P)
ξ (corec-M {poly Sym Arit f} {X} c x) {j} = (c₁ , abs'' c₁ (v x))
where
c₁ = proj₁ (c x)
v : (x : X) (b : Arit) → f b ≡ proj₁ (c x) → M {j} (poly Sym Arit f)
v x b p = corec-M c (proj₂ (c x) (b , p))
Bisim→~ : ∀{p X Y} {f : X → ⟦ p ⟧ X} {g : Y → ⟦ p ⟧ Y} {_R_} →
IsBisim f g _R_ → ∀ x y → x R y → corec-M f x ~ corec-M g y
~pr (Bisim→~ isBisim x y xRy) with isBisim x y xRy
~pr (Bisim→~ {p} {X} {Y} {f} {g} isBisim x y xRy) | (e , β) =
(e , (λ z →
Bisim→~ isBisim
(proj₂ (f x) z)
(proj₂ (g y) (proj₁ z , trans (proj₂ z) e))
(β z)))
{-
corec-M-hom : {P : Poly} {X : Set}
(c : X → ⟦ P ⟧ X) →
(x : X) → ξ' (corec-M c x) R~ ⟦ corec-M c ⟧₁ (c x)
sym≡ (corec-M-hom c x) = refl
arit~ (corec-M-hom {poly A B f} {X} c x) =
abs₃ (proj₁ (c x)) {!!} -- (pr x (c x) refl refl)
where
P = poly A B f
pr : (x : X)
(x' : ⟦ P ⟧ X)
(p₀ : x' ≡ c x)
(p : proj₁ (ξ' (corec-M c x)) ≡ proj₁ (⟦ corec-M c ⟧₁ x'))
(b : B)
(p₁ : f b ≡ proj₁ (ξ' (corec-M c x))) →
-- (p₁ : f b ≡ proj₁ x') →
arit~-pr (ξ' (corec-M c x)) (⟦ corec-M c ⟧₁ x') p (b , p₁)
pr x₁ (._ , ._) refl p₁ b p₂ = {!!}
-}
record PolyHom (P₁ P₂ : Poly) : Set where
constructor polyHom
field
SymMor : Sym P₁ → Sym P₂
AritMor : (SymMor *) (toFam (f P₂)) ⇒ toFam (f P₁)
coalg : {P₁ P₂ : Poly} →
PolyHom P₁ P₂ →
(∀ X → ⟦ P₁ ⟧ X → ⟦ P₂ ⟧ X)
coalg {poly Sym₁ Arit₁ f₁} {poly Sym₂ Arit₂ f₂} (polyHom α β) X (a , v)
= (α a , abs'' (α a) (v' a v))
where
v' : (a : Sym₁) (v : Π' f₁ (λ e → X) a) (b : Arit₂) → f₂ b ≡ α a → X
v' a v b p = v (β a (b , p))
-- | Functoriality
M₁ : ∀ {P₁ P₂} → PolyHom P₁ P₂ → M P₁ → M P₂
M₁ {P₁} h = corec-M (coalg h (M P₁) ∘ ξ')
-- | Product of maps
_⊗_ : {A B C D : Set} → (A → B) → (C → D) → (A × C → B × D)
(f ⊗ g) x = ((f (proj₁ x)) , (g (proj₂ x)))
⊗-eq : {A B C : Set} {f : A → C} {g : B → C}
(a : A) (b : B) (p : f a ≡ g b)→
(f ⊗ g) (a , b) ≡ (g b , g b)
⊗-eq {f = f} {g} a b p = ×-eq (f a) (g b) (g b) (g b) p refl
-- | Extend polynomial by index
I-poly : Poly → Set → Poly
I-poly P I = poly (Sym P × I) (Arit P × I) (f P ⊗ id)
_⋊_ = I-poly
{-
-- | Projects away the I from M (P × I)
u₁ : ∀ {i} → (P : Poly) (I : Set) → M (I-poly I P) → M {i} P
ξ (u₁ P I x) {j} = q (ξ x)
where
q : R (I-poly I P) (M (I-poly I P)) → ⟦ P ⟧ (M {j} P)
q (s , v) = (proj₁ s , abs'' (proj₁ s) (r (s , v)))
where
r : (u : R (I-poly I P) (M (I-poly I P))) (a : Arit P) →
f P a ≡ proj₁ (proj₁ u) → M {j} P
r ((.(f P a) , i) , v) a refl = u₁ P I (app (a , i) v)
-}
-- | Forget changes of dependencies of a polynomial in one variable.
simple : {I : Set} → DPoly {I} {I} → Poly
simple C = poly (DPoly.A C) (DPoly.E C) (DPoly.p C)
↓_ = simple
module MTypes {I : Set} (C : DPoly {I} {I}) where
open DPoly C
P = ↓ C
idx : M P → I
idx = s ∘ root
inj : (X : I → Set) → ⟪ T C X ⟫ → ⟦ ↓ C ⟧ ⟪ X ⟫
inj X (.(s a) , (ins a v)) = (a , abs'' a (u a v))
where
u : (a' : A)
(v' : Π' p (λ e → X (t e)) a')
(b : E) →
f (↓ C) b ≡ a' →
⟪ X ⟫
u ._ v' b refl = (t b , app b v')
-- | Applies r corecursively, thus essentially constructs an element of
-- M (P × I) where the second component is given by r.
u₁ : M P → M (P ⋊ I)
u₁ = M₁ (polyHom α β)
where
α : Sym (↓ C) → Sym ((↓ C) ⋊ I)
α = < id , s >
β : (α *) (toFam (f P ⊗ id)) ⇒ toFam p
β ._ ((b , ._) , refl) = (b , refl)
K : ⟦ P ⋊ I ⟧ (M (P ⋊ I)) → ⟦ P ⋊ I ⟧ (M (P ⋊ I) × E)
K (a , v) = (a , abs'' a (v' a v))
where
v' : (a : Sym (P ⋊ I))
(v : Π' (f (P ⋊ I)) (λ e → M (P ⋊ I)) a)
(bi : Arit (P ⋊ I)) →
f (P ⋊ I) bi ≡ a →
M (P ⋊ I) × E
v' ._ v₁ bi refl = (v₁ (bi , refl) , proj₁ bi)
φ : M (P ⋊ I) × Arit P → M (P ⋊ I)
φ = corec-M c
where
h : ⟦ P ⋊ I ⟧ (M (P ⋊ I)) × Arit P → ⟦ P ⋊ I ⟧ (M (P ⋊ I) × Arit P)
h (((a , i) , v) , b) =
((a , t b) ,
abs'' (a , t b) (v' (a , t b) b v))
where
v' : (ai' : Sym (P ⋊ I))
(b : Arit P)
(v : Π' (f (P ⋊ I)) (λ _ →
M (P ⋊ I)) (proj₁ ai' , i))
(i : Arit (P ⋊ I)) →
f (P ⋊ I) i ≡ ai' →
M (P ⋊ I) × Arit P
v' ._ b v₁ (b₁ , _) refl = (app (b₁ , i) v₁ , b)
c : M (P ⋊ I) × Arit P →
⟦ P ⋊ I ⟧ (M (P ⋊ I) × Arit P)
c = h ∘ (ξ' ⊗ id)
ψ : M (P ⋊ I) → M (P ⋊ I)
ψ = corec-M c
where
c : M (P ⋊ I) → ⟦ P ⋊ I ⟧ (M (P ⋊ I))
c = ⟦ φ ⟧₁ ∘ K ∘ ξ'
u₂ : M P → M (P ⋊ I)
u₂ = ψ ∘ u₁
{-
{-
-- | Same as u₂???
u₂' : ∀ {I} (C : DPoly {I}) →
M (↓ C) → M (↓ C ⋊ I)
u₂' {I} C x = M₁ (polyHom α β) x
where
α : Sym (↓ C) → Sym ((↓ C) ⋊ I)
α a = (a , t C {!!}) -- (root x)) -- (s C (root x)))
β : (α *) (toFam (f (↓ C) ⊗ id)) ⇒ toFam (p C tt)
β ._ ((a , ._) , refl) = (a , refl)
φ : {I : Set} (C : DPoly {I}) {i : Size} →
M {i} (↓ C ⋊ I) × Arit (↓ C) → M {i} (↓ C ⋊ I)
ξ (φ {I} C (x , b)) {j} = q (ξ x)
where
m : ⟦ ↓ C ⋊ I ⟧ (M {j} (↓ C ⋊ I)) → Sym (↓ C ⋊ I)
m ((a , i) , v) = (a , (t C b))
q : ⟦ ↓ C ⋊ I ⟧ (M {j} (↓ C ⋊ I)) →
⟦ ↓ C ⋊ I ⟧ (M {j} (↓ C ⋊ I))
q u = (m u , abs'' (m u) (v' u))
where
v' : (u : ⟦ ↓ C ⋊ I ⟧ (M {j} (↓ C ⋊ I)))
(b : Arit (↓ C ⋊ I)) →
f (↓ C ⋊ I) b ≡ m u →
M {j} (↓ C ⋊ I)
v' ((._ , i) , v) (b , ._) refl = φ C ((app (b , i) v) , b)
ψ : {I : Set} (C : DPoly {I}) {i : Size} →
M {i} (↓ C ⋊ I) → M {i} (↓ C ⋊ I)
ξ (ψ {I} C x) {j} = q (ξ x)
where
q : ⟦ ↓ C ⋊ I ⟧ (M {j} (↓ C ⋊ I)) →
⟦ ↓ C ⋊ I ⟧ (M {j} (↓ C ⋊ I))
q (a , v) = (a , abs'' a (v' (a , v)))
where
v' : (u' : ⟦ ↓ C ⋊ I ⟧ (M {j} (↓ C ⋊ I)))
(a' : Arit (↓ C ⋊ I)) →
f (↓ C ⋊ I) a' ≡ proj₁ u' →
M {j} (↓ C ⋊ I)
v' (._ , v) a' refl = φ C (app a' v , proj₁ a')
u₂ : ∀ {i} {I} (C : DPoly {I}) →
M (↓ C) → M {i} (↓ C ⋊ I)
u₂ C = ψ C ∘ u₁ C
-}
Vφ : (i : I) → (M P → Set)
Vφ i x = (s (root x) ≡ i) × (u₁ x ≡ u₂ x)
--V' : {I : Set} (C : DPoly {I} {I}) → Fam I
--V' C = ⟪ Vφ C ⟫²
{-
lem₂ : {I : Set} {C : DPoly {I} {I}} →
(x : M (↓ C))
(b : E C)
(v : Π' (p C) (λ e → M (↓ C)) (p C b)) →
ξ' x ≡ (_ , v) →
u₁ C x ≡ u₂ C x →
u₁ C (app b v) ≡ u₂ C (app b v)
lem₂ {I} {C} x b v pr≡ u₁≡u₂ = {!!}
where
w : (x : ⟦ ↓ C ⟧ (M (↓ C)))
(b : E C)
(v : Π' (p C) (λ e → M (↓ C)) (p C b)) →
x ≡ (_ , v) →
u₁ C (app b v) ≡ u₂ C (app b v)
w ._ b v refl = {!!}
-- bar : ξ' (u₁ C x) ≡ ⟦ ↓ C ⟧₁ u₁ (M₁
lem₁ : {I : Set} {C : DPoly {I} {I}} →
(x : M (↓ C))
(b : E C)
(v : Π' (p C) (λ e → M (↓ C)) (p C b)) →
ξ' x ≡ (_ , v) →
u₁ C x ≡ u₂ C x →
s C (root (app b v)) ≡ t C b
lem₁ x b v pr≡ u₁≡u₂ = {!!}
{-
ξV : ∀ {I} {C : DPoly {I} {I}} →
V' C ⇒ T C (V' C)
ξV {C = dpoly A s E p t} .(s (proj₁ (ξ x))) (x , refl , u₁≡u₂)
= ins (root x) (abs'' (root x) (v' (root x) (proj₂ (ξ' x)) refl))
where
C = dpoly A s E p t
v' : (a : A)
(v : Π' p (λ e → M (↓ C)) a)
(q : ξ' x ≡ (a , v))
(b : E) →
p b ≡ a →
Σ (M (↓ C)) (Vφ C (t b))
v' .(p b) v q b refl =
(app b v
, lem₁ x b v q u₁≡u₂
, (lem₂ x b v q u₁≡u₂))
-}
-}
V' : M P → Set
V' x = u₁ x ≡ u₂ x
Φ : (M P → Set) → (M P → Set)
Φ U x =
let (a , v) = ξ' x
in Π'' (f P) a (λ {(b , pr) →
Σ[ y ∈ M P ] (
U y and
idx y ≡ t b and
q b (a , v) pr y ) })
where
q : (b : E) (u : ⟦ P ⟧ (M P)) → f P b ≡ proj₁ u → M P → Set
q b (._ , v) refl y = app b v ≡ y
{-
q : (b : E) (u : ⟦ P ⟧ (M P)) → f P b ≡ proj₁ u →
(j : I) → U' j → Set
q b (._ , v) refl .(idx y) (ins y z) = app b v ≡ y
-}
{-
V'-postFP : V' ⊆ Φ V'
V'-postFP x x∈V' (b , fb≡ξx₁) = (r b (ξ' x) fb≡ξx₁ , {!!})
where
r : (b₁ : E) (u : ⟦ P ⟧ (M P)) →
f P b₁ ≡ proj₁ u →
predToFam idx V' (t b₁)
r b₁ (._ , v) refl = r' b₁ (app b₁ v)
where
r' : (b₂ : E) (x' : M P) → predToFam idx V' (t b₂)
r' b₂ x' = ins ? {!!}
-}
V'-final : (U : M P → Set) → U ⊆ Φ U → U ⊆ V'
V'-final = {!!}
-- | This predicate on M (↓ C) ensures that we can define a map
-- V → s a ≡ ⟦ ↓ C ⟧ (i × (t *) V.
record V-pred (i : I) (x : M P) : Set where
coinductive
field
-- | For ξ x = (a , v), we require s a = i
sigma-idx : s (proj₁ (ξ x)) ≡ i
-- | For ξ x = (a , v), we require ∀ b with p b = a that
-- idx (v b) = s a and v b ∈ V (t b)
reidx : Π'' (f P) (proj₁ (ξ x))
(λ {(e , eq) → idx ((proj₂ (ξ x)) (e , eq)) ≡ t e
× V-pred (t e) ((proj₂ (ξ x)) (e , eq)) })
open V-pred
{-
V : {I : Set} (C : DPoly {I} {I}) → Fam I
V C i = Σ (M (↓ C)) (V-pred C i)
Σ≡₁ : {I : Set} {A : Fam I} → {x y : Σ I A} → x ≡ y → proj₁ x ≡ proj₁ y
Σ≡₁ {x = i , a} {.i , .a} refl = refl
foofoo : {I : Set} {A : Fam I} → (x y : Σ I A) →
(p : x ≡ y) → A (proj₁ y)
foofoo x .x refl = proj₂ x
Σ≡₂ : {I : Set} {A : Fam I} → {x y : Σ I A} →
(p : x ≡ y) → foofoo x y p ≡ proj₂ y
Σ≡₂ {x = i , a} {.i , .a} refl = refl
out-V : {I : Set} {C : DPoly {I} {I}} →
V C ⇒ T C (V C)
out-V {I} {C = dpoly A s E p t} i (x , v-proof)
= foo i v-proof (sigma-idx v-proof)
where
P : DPoly
P = dpoly A s E p t
u : ⟦ ↓ P ⟧ (M (↓ P))
u = ξ x
-- uaie : (u' : ⟦ ↓ P ⟧ (M (↓ P))) → f (↓ P) e ≡ proj₁ u' → A → Set
-- uaie u' pr = Π' (p tt) (λ e → V-pred P (t e) ((proj₂ u') (e , {!!})))
foo : (i' : I) → V-pred P i' x → s (proj₁ u) ≡ i' → T P (V P) i'
foo .(s (proj₁ u)) pr refl =
ins (proj₁ u) (v'' u refl)
where
v'' : (u' : ⟦ ↓ P ⟧ (M (↓ P))) →
u' ≡ ξ x →
Π' p (λ e → V P (t e)) (proj₁ u')
v'' (.(p e) , v) u'=ξx (e , refl) = (x' , {!!}) -- bar x {!v!} {!!} {!!} pr)
where
x' : M (↓ P)
x' = v (e , refl)
aiu = proj₂ (reidx pr (e , {!!}))
bar : (x' : M (↓ P))
(v₁ : Π' (f (↓ P)) (λ e₁ → M (↓ P)) (proj₁ (ξ x'))) →
v₁ ≡ proj₂ (ξ x') →
(q : f (↓ P) e ≡ proj₁ (ξ x')) →
V-pred P (s (proj₁ (ξ x'))) x' → V-pred P (t e) (v₁ (e , q))
bar x'' .(proj₂ (ξ x'')) refl q pr' = proj₂ (reidx pr' (e , q))
tu : s (root (proj₂ (ξ x) (e , Σ≡₁ u'=ξx))) ≡ t e
tu = proj₁ (reidx pr (e , Σ≡₁ u'=ξx))
{-
bar : (v₁ : Π' (f (↓ P)) (λ e₁ → M (↓ P)) (proj₁ (ξ x))) →
v₁ ≡ proj₂ (ξ x) →
V-pred P (t e) x'
bar ._ refl = proj₂ (reidx pr ?)
-}
tiu : V-pred P (t e) (proj₂ (ξ x) (e , Σ≡₁ u'=ξx))
tiu = proj₂ (reidx pr (e , Σ≡₁ u'=ξx))
-- Want out-s : M (↓ C ⋊ I) → T C (M {i} (↓ C ⋊ I))
T' : {I : Set} →
DPoly {I} {I} →
(X : I → Set) → -- ^ Parameter
(I → Set)
T' C X = T C {!!}
{-
out-s' : ∀ {i} {I} {C : DPoly {I}} →
M (↓ C ⋊ I) → T' C (M {i} (↓ C ⋊ I))
out-s' = ?
-}
-- | Candidate for R C
out-s : ∀ {i} {I} {C : DPoly {I}} →
M (↓ C ⋊ I) → ⟦ ↓ C ⟧ (M {i} (↓ C ⋊ I))
out-s {i} {I} {C} x = (q (ξ x) , abs'' (q (ξ x)) (h (ξ x)))
where
q : ⟦ ↓ C ⋊ I ⟧ (M {i} (↓ C ⋊ I)) → Sym (↓ C)
q (a , _) = proj₁ a
h : (u : ⟦ ↓ C ⋊ I ⟧ (M {i} (↓ C ⋊ I)))
(a : Arit (↓ C)) →
f (↓ C) a ≡ q u → M {i} (↓ C ⋊ I)
h ((._ , b) , v') a refl = app (a , b) v'
-}
-}
|
{
"alphanum_fraction": 0.4048664049,
"avg_line_length": 27.8990332975,
"ext": "agda",
"hexsha": "bde99d2ac7b5ce1d7d8b4589894b084cbbad5642",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hbasold/Sandbox",
"max_forks_repo_path": "TypeTheory/Container/Poly.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hbasold/Sandbox",
"max_issues_repo_path": "TypeTheory/Container/Poly.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hbasold/Sandbox",
"max_stars_repo_path": "TypeTheory/Container/Poly.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 12418,
"size": 25974
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- An abstraction of various forms of recursion/induction
------------------------------------------------------------------------
-- The idea underlying Induction.* comes from Epigram 1, see Section 4
-- of "The view from the left" by McBride and McKinna.
-- Note: The types in this module can perhaps be easier to understand
-- if they are normalised. Note also that Agda can do the
-- normalisation for you.
module Induction where
open import Level
open import Relation.Unary
-- A RecStruct describes the allowed structure of recursion. The
-- examples in Induction.Nat should explain what this is all about.
RecStruct : ∀ {a} → Set a → (ℓ₁ ℓ₂ : Level) → Set _
RecStruct A ℓ₁ ℓ₂ = Pred A ℓ₁ → Pred A ℓ₂
-- A recursor builder constructs an instance of a recursion structure
-- for a given input.
RecursorBuilder : ∀ {a ℓ₁ ℓ₂} {A : Set a} → RecStruct A ℓ₁ ℓ₂ → Set _
RecursorBuilder Rec = ∀ P → Rec P ⊆′ P → Universal (Rec P)
-- A recursor can be used to actually compute/prove something useful.
Recursor : ∀ {a ℓ₁ ℓ₂} {A : Set a} → RecStruct A ℓ₁ ℓ₂ → Set _
Recursor Rec = ∀ P → Rec P ⊆′ P → Universal P
-- And recursors can be constructed from recursor builders.
build : ∀ {a ℓ₁ ℓ₂} {A : Set a} {Rec : RecStruct A ℓ₁ ℓ₂} →
RecursorBuilder Rec →
Recursor Rec
build builder P f x = f x (builder P f x)
-- We can repeat the exercise above for subsets of the type we are
-- recursing over.
SubsetRecursorBuilder : ∀ {a ℓ₁ ℓ₂ ℓ₃} {A : Set a} →
Pred A ℓ₁ → RecStruct A ℓ₂ ℓ₃ → Set _
SubsetRecursorBuilder Q Rec = ∀ P → Rec P ⊆′ P → Q ⊆′ Rec P
SubsetRecursor : ∀ {a ℓ₁ ℓ₂ ℓ₃} {A : Set a} →
Pred A ℓ₁ → RecStruct A ℓ₂ ℓ₃ → Set _
SubsetRecursor Q Rec = ∀ P → Rec P ⊆′ P → Q ⊆′ P
subsetBuild : ∀ {a ℓ₁ ℓ₂ ℓ₃}
{A : Set a} {Q : Pred A ℓ₁} {Rec : RecStruct A ℓ₂ ℓ₃} →
SubsetRecursorBuilder Q Rec →
SubsetRecursor Q Rec
subsetBuild builder P f x q = f x (builder P f x q)
|
{
"alphanum_fraction": 0.6058569371,
"avg_line_length": 35.3050847458,
"ext": "agda",
"hexsha": "0effa83c42c7f8a199c298b376605153a2b55009",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Induction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Induction.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Induction.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 633,
"size": 2083
}
|
-- {-# OPTIONS -v tc.constr.add:45 #-}
module _ where
open import Agda.Builtin.Nat
open import Agda.Builtin.Equality
==_] : ∀ {a} {A : Set a} (x : A) → x ≡ x
== x ] = refl
[ : ∀ {a} {A : Set a} (x : A) {y : A} → x ≡ y → A
[ x refl = x
case_of_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B
case x of f = f x
infixr 5 _∷_
data Vec {a} (A : Set a) : Nat → Set a where
[] : Vec A zero
_∷_ : ∀ {n} → A → Vec A n → Vec A (suc n)
infixr 5 _∷[_]_
pattern _∷[_]_ x n xs = _∷_ {n} x xs
module _ {a} {A : Set a} where
id : A → A
id x = x
len : ∀ {n} → Vec A n → Nat
len {n} _ = n
module _ {b} {B : Set b} where
map : ∀ {n} → (A → B) → Vec A n → Vec B n
map f [] = []
map f (x ∷ xs) = f x ∷ map f xs
const : A → B → A
const x _ = x
_!>_ : A → B → B
_ !> x = x
module SomeParameters {a} (n : Nat) (A : Set a) (xs : Vec A n) (ys : Vec A (n * 2)) where
simpleRefine : Vec A n → Nat
simpleRefine [] = [ n == 0 ]
simpleRefine (x ∷[ m ] xs) = [ n == suc m ]
moreComplex : Vec A n → Nat
moreComplex [] = 0
moreComplex (z ∷ zs) with map id xs
moreComplex (z ∷ zs) | x ∷ [] = [ n == 1 ] + [ 2 == len ys ]
moreComplex (z ∷ zs) | x ∷ x₁ ∷[ k ] xs′ with [ n == 2 + k ] !> map id zs
moreComplex (z ∷ zs) | x ∷ x₁ ∷ xs′ | z₁ ∷ [] = [ n == 2 ]
moreComplex (z ∷ zs) | x ∷ x₁ ∷ xs′ | z₁ ∷ z₂ ∷[ k ] zs′ =
let n+_ = λ m → [ n == 3 + k ] + m
n+k = n+ k
in case [ n+k == 3 + k + k ] of λ i →
let n+i = [ n == 3 + k ] + i in
case map id zs′ of λ where
[] → [ (n+ i) == 3 + i ] + [ n+k == 3 ] + [ n+i == 3 + i ]
(z₃ ∷[ j ] zs″) →
let _ = [ n == 4 + j ]
_ = [ k == 1 + j ]
_ = [ n+k == 4 + j + (1 + j) ]
_ = [ (n+ i) == 4 + j + i ]
in
[ (len xs′) == 2 + j ] +
[ (len ys) == (4 + j) * 2 ]
|
{
"alphanum_fraction": 0.3913270637,
"avg_line_length": 26.5833333333,
"ext": "agda",
"hexsha": "f7fbd76bba0e817eabfd85f00100c074f54c9662",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/RefineParam.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/RefineParam.agda",
"max_line_length": 89,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/RefineParam.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 837,
"size": 1914
}
|
{-# OPTIONS --without-K #-}
module FT-Fin where
import Data.Fin as F
import Data.Nat as N
open import FT
open import FT-Nat using (toℕ)
------------------------------------------------------------------
-- Finite Types and the natural numbers are intimately related.
--
toFin : (b : FT) → F.Fin (N.suc (toℕ b))
toFin b = F.fromℕ (toℕ b)
------------------------------------------------------------------
|
{
"alphanum_fraction": 0.4534313725,
"avg_line_length": 24,
"ext": "agda",
"hexsha": "010098bf999a43b7144c5ce5c079dca49fe95645",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/OldUnivalence/FT-Fin.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/OldUnivalence/FT-Fin.agda",
"max_line_length": 66,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/OldUnivalence/FT-Fin.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 93,
"size": 408
}
|
module Cats.Category.Cat.Facts where
open import Cats.Category.Cat.Facts.Initial public using (hasInitial)
open import Cats.Category.Cat.Facts.Terminal public using (hasTerminal)
open import Cats.Category.Cat.Facts.Product public using (hasBinaryProducts)
open import Cats.Category.Cat.Facts.Exponential public using (hasExponentials)
open import Cats.Category.Cat using (Cat)
open import Cats.Category.Constructions.Product using (HasFiniteProducts)
open import Cats.Category.Constructions.CCC using (IsCCC)
instance
hasFiniteProducts : ∀ lo la l≈ → HasFiniteProducts (Cat lo la l≈)
hasFiniteProducts _ _ _ = record {}
isCCC : ∀ l → IsCCC (Cat l l l)
isCCC _ = record {}
|
{
"alphanum_fraction": 0.7813411079,
"avg_line_length": 34.3,
"ext": "agda",
"hexsha": "bd44038a16136f90f812e96ed6801cbf158ebaf0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alessio-b-zak/cats",
"max_forks_repo_path": "Cats/Category/Cat/Facts.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alessio-b-zak/cats",
"max_issues_repo_path": "Cats/Category/Cat/Facts.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alessio-b-zak/cats",
"max_stars_repo_path": "Cats/Category/Cat/Facts.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 167,
"size": 686
}
|
open import Preliminaries
module Focusing where
data Tp : Set where
b : Tp
_⇒'_ : Tp → Tp → Tp
_×'_ : Tp → Tp → Tp
Ctx = List Tp
data _∈_ : Tp → Ctx → Set where
i0 : ∀ {Γ τ} → τ ∈ τ :: Γ
iS : ∀ {Γ τ τ1} → τ ∈ Γ → τ ∈ τ1 :: Γ
-- datatype of focused proofs for negative fragment of intuitionistic logic
data _,,_|-_ : Ctx → Maybe Tp → Tp → Set where
-- focus and init
focus : ∀ {Γ A P} →
A ∈ Γ → Γ ,, (Some A) |- P
-------------------------- focus
→ Γ ,, None |- P
init : ∀ {Γ P} →
------------------ init
Γ ,, (Some P) |- P
-- synchronous rules
arr-l : ∀ {Γ A B P} →
Γ ,, None |- A → Γ ,, (Some B) |- P
----------------------------------- impl-left
→ Γ ,, (Some (A ⇒' B)) |- P
conj-l1 : ∀ {Γ A B P} →
Γ ,, (Some A) |- P
--------------------------- conj-left1
→ Γ ,, (Some (A ×' B)) |- P
conj-l2 : ∀ {Γ A B P} →
Γ ,, (Some B) |- P
--------------------------- conj-left2
→ Γ ,, (Some (A ×' B)) |- P
-- asynchronous rules
arr-r : ∀ {Γ A B} →
(A :: Γ) ,, None |- B
----------------------- impl-right
→ Γ ,, None |- (A ⇒' B)
conj-r : ∀ {Γ A B} →
Γ ,, None |- A → Γ ,, None |- B
------------------------------- conj-right
→ Γ ,, None |- (A ×' B)
-- examples
i : ∀ {A} → [] ,, None |- (A ⇒' A)
i = arr-r (focus i0 init)
#2 : ∀ {A B} → [] ,, None |- (A ⇒' (B ⇒' B))
#2 = arr-r (arr-r (focus i0 init))
k : ∀ {A B} → [] ,, None |- (A ⇒' (B ⇒' A))
k = arr-r (arr-r (focus (iS i0) init))
s : ∀ {A B C} → [] ,, None |- ((A ⇒' (B ⇒' C)) ⇒' ((A ⇒' B) ⇒' (A ⇒' C)))
s = arr-r (arr-r (arr-r (focus (iS (iS i0)) (arr-l (focus i0 init) (arr-l (focus (iS i0) (arr-l (focus i0 init) init)) init)))))
#5 : ∀ {A B} → [] ,, None |- (A ⇒' (B ⇒' (A ×' B)))
#5 = arr-r (arr-r (conj-r (focus (iS i0) init) (focus i0 init)))
#6 : ∀ {A B} → [] ,, None |- (A ⇒' (A ×' (B ⇒' B)))
#6 = arr-r (conj-r (focus i0 init) (arr-r (focus i0 init)))
mp : ∀ {A B} → [] ,, None |- ((A ×' (A ⇒' B)) ⇒' B)
mp = arr-r (focus i0 (conj-l2 (arr-l (focus i0 (conj-l1 init)) init)))
|
{
"alphanum_fraction": 0.35670194,
"avg_line_length": 25.7727272727,
"ext": "agda",
"hexsha": "c071f80c8aa9fb39814cc52d78ca54ec375bc9ba",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "benhuds/Agda",
"max_forks_repo_path": "scraps/Focusing.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e",
"max_issues_repo_issues_event_max_datetime": "2020-05-12T00:32:45.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-03-23T08:39:04.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "benhuds/Agda",
"max_issues_repo_path": "scraps/Focusing.agda",
"max_line_length": 130,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "benhuds/Agda",
"max_stars_repo_path": "scraps/Focusing.agda",
"max_stars_repo_stars_event_max_datetime": "2019-08-08T12:27:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-04-26T20:22:22.000Z",
"num_tokens": 831,
"size": 2268
}
|
{-# OPTIONS --safe --warning=error --without-K --guardedness #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Setoids.Setoids
open import Rings.Definition
open import Rings.Lemmas
open import Rings.Orders.Partial.Definition
open import Rings.Orders.Total.Definition
open import Groups.Definition
open import Groups.Groups
open import Fields.Fields
open import Fields.Orders.Total.Definition
open import Sets.EquivalenceRelations
open import Sequences
open import Setoids.Orders.Partial.Definition
open import Setoids.Orders.Total.Definition
open import Functions.Definition
open import LogicalFormulae
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Addition
open import Numbers.Naturals.Order
open import Numbers.Naturals.Order.Lemmas
open import Semirings.Definition
open import Groups.Homomorphisms.Definition
open import Rings.Homomorphisms.Definition
open import Groups.Lemmas
open import Orders.Total.Definition
module Fields.CauchyCompletion.PartiallyOrderedRing {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) (F : Field R) where
private
lemma3 : {c d : _} {C : Set c} {S : Setoid {c} {d} C} {_+_ : C → C → C} (G : Group S _+_) → ({x y : C} → Setoid._∼_ S (x + y) (y + x)) → (x y z : C) → Setoid._∼_ S (((Group.inverse G x) + y) + (x + z)) (y + z)
lemma3 {S = S} {_+_ = _+_} G ab x y z = transitive +Associative (+WellDefined (transitive (ab {inverse x + y}) (transitive +Associative (transitive (+WellDefined invRight reflexive) identLeft))) reflexive)
where
open Setoid S
open Equivalence (Setoid.eq S)
open Group G
open Setoid S
open SetoidTotalOrder (TotallyOrderedRing.total order)
open SetoidPartialOrder pOrder
open Equivalence eq
open PartiallyOrderedRing pRing
open Ring R
open Group additiveGroup
open Field F
open import Fields.Lemmas F
open import Rings.Orders.Partial.Lemmas pRing
open import Rings.Orders.Total.Lemmas order
open import Fields.Orders.Lemmas {F = F} {pRing} (record { oRing = order })
open import Fields.Orders.Total.Lemmas {F = F} (record { oRing = order })
open import Fields.CauchyCompletion.Definition order F
open import Fields.CauchyCompletion.Addition order F
open import Fields.CauchyCompletion.Multiplication order F
open import Fields.CauchyCompletion.Approximation order F
open import Fields.CauchyCompletion.Group order F
open import Fields.CauchyCompletion.Ring order F
open import Fields.CauchyCompletion.Comparison order F
open import Fields.CauchyCompletion.Setoid order F
open import Groups.Homomorphisms.Lemmas CInjectionGroupHom
open import Setoids.Orders.Total.Lemmas (TotallyOrderedRing.total order)
private
productPositives : (a b : A) → (injection 0R) <Cr a → (injection 0R) <Cr b → (injection 0R) <Cr (a * b)
productPositives a b record { e = eA ; 0<e = 0<eA ; N = Na ; property = prA } record { e = eB ; 0<e = 0<eB ; N = Nb ; property = prB } = record { e = eA * eB ; 0<e = orderRespectsMultiplication 0<eA 0<eB ; N = Na +N Nb ; property = ans }
where
ans : (m : ℕ) → Na +N Nb <N m → ((eA * eB) + index (CauchyCompletion.elts (injection 0R)) m) < (a * b)
ans m <m = <WellDefined (symmetric (transitive (+WellDefined reflexive (identityOfIndiscernablesRight _∼_ reflexive (indexAndConst 0R m))) identRight)) reflexive (ringMultiplyPositives 0<eA 0<eB (<WellDefined (transitive (+WellDefined reflexive (identityOfIndiscernablesRight _∼_ reflexive (indexAndConst 0R m))) identRight) reflexive (prA m (inequalityShrinkLeft <m))) (<WellDefined (transitive (+WellDefined reflexive (identityOfIndiscernablesRight _∼_ reflexive (indexAndConst 0R m))) identRight) reflexive (prB m (inequalityShrinkRight <m))))
productPositives' : (a b : CauchyCompletion) (interA interB : A) → (0R < interA) → (0R < interB) → (interA r<C a) → (interB r<C b) → (interA * interB) r<C (a *C b)
productPositives' a b interA interB 0<iA 0<iB record { e = interA' ; 0<e = 0<interA' ; N = Na ; pr = prA } record { e = interB' ; 0<e = 0<interB' ; N = Nb ; pr = prB } = record { e = interA' * interB' ; 0<e = orderRespectsMultiplication 0<interA' 0<interB' ; N = Na +N Nb ; pr = ans }
where
ans : (m : ℕ) → (Na +N Nb <N m) → ((interA * interB) + (interA' * interB')) < index (CauchyCompletion.elts (a *C b)) m
ans m <m rewrite indexAndApply (CauchyCompletion.elts a) (CauchyCompletion.elts b) _*_ {m} = <Transitive (<WellDefined identRight (symmetric *DistributesOver+) (<WellDefined reflexive (+WellDefined *Commutative *Commutative) (<WellDefined reflexive (+WellDefined (symmetric *DistributesOver+) (symmetric *DistributesOver+)) (<WellDefined groupIsAbelian (transitive (transitive groupIsAbelian (transitive (symmetric +Associative) (+WellDefined *Commutative (transitive groupIsAbelian (transitive (+WellDefined reflexive *Commutative) (symmetric +Associative)))))) +Associative) (orderRespectsAddition (<WellDefined identRight reflexive (ringAddInequalities (orderRespectsMultiplication 0<iB 0<interA') (orderRespectsMultiplication 0<interB' 0<iA))) ((interA * interB) + (interA' * interB'))))))) (ringMultiplyPositives (<WellDefined identRight reflexive (ringAddInequalities 0<iA 0<interA')) (<WellDefined identRight reflexive (ringAddInequalities 0<iB 0<interB')) (prA m (inequalityShrinkLeft <m)) (prB m (inequalityShrinkRight <m)))
<COrderRespectsMultiplication : (a b : CauchyCompletion) → (injection 0R <C a) → (injection 0R <C b) → (injection 0R <C (a *C b))
<COrderRespectsMultiplication a b record { i = interA ; a<i = 0<interA ; i<b = interA<a } record { i = interB ; a<i = 0<interB ; i<b = interB<b } = record { i = interA * interB ; a<i = productPositives interA interB 0<interA 0<interB ; i<b = productPositives' a b interA interB (<CCollapsesL 0R _ 0<interA) (<CCollapsesL 0R _ 0<interB) interA<a interB<b }
cOrderRespectsAdditionLeft' : (a : CauchyCompletion) (b : A) (c : A) → (a <Cr b) → (a +C injection c) <C (injection b +C injection c)
cOrderRespectsAdditionLeft' a b c record { e = e ; 0<e = 0<e ; N = N ; property = pr } = <CWellDefined {a +C injection c} {a +C injection c} {injection (b + c)} {(injection b) +C (injection c)} (Equivalence.reflexive (Setoid.eq cauchyCompletionSetoid) {a +C injection c}) (GroupHom.groupHom (RingHom.groupHom CInjectionRingHom)) (<CRelaxR (record { e = e ; 0<e = 0<e ; N = N ; property = λ m N<m → <WellDefined (transitive (symmetric +Associative) (+WellDefined reflexive (ans m))) reflexive (orderRespectsAddition (pr m N<m) c) }))
where
ans : (m : ℕ) → (index (CauchyCompletion.elts a) m + c) ∼ index (apply _+_ (CauchyCompletion.elts a) (constSequence c)) m
ans m rewrite indexAndApply (CauchyCompletion.elts a) (constSequence c) _+_ {m} | indexAndConst c m = reflexive
l1 : (a : A) (b : CauchyCompletion) → a r<C b → 0R r<C (b +C injection (inverse a))
l1 a b record { e = e ; 0<e = 0<e ; N = N ; pr = pr } = record { e = e ; 0<e = 0<e ; N = N ; pr = λ m N<m → <WellDefined (transitive groupIsAbelian (transitive +Associative (+WellDefined invLeft reflexive))) (ans m) (orderRespectsAddition (pr m N<m) (inverse a)) }
where
ans : (m : ℕ) → (index (CauchyCompletion.elts b) m + inverse a) ∼ index (CauchyCompletion.elts (b +C injection (inverse a))) m
ans m rewrite indexAndApply (CauchyCompletion.elts b) (constSequence (inverse a)) _+_ {m} | indexAndConst (inverse a) m = reflexive
l1' : (a : A) (b : CauchyCompletion) → 0R r<C (b +C injection a) → (inverse a) r<C b
l1' a b record { e = e ; 0<e = 0<e ; N = N ; pr = pr } = record { e = e ; 0<e = 0<e ; N = N ; pr = λ m N<m → <WellDefined (transitive (+WellDefined identLeft reflexive) groupIsAbelian) (symmetric (ans m)) (orderRespectsAddition (pr m N<m) (inverse a)) }
where
ans : (m : ℕ) → (index (CauchyCompletion.elts b) m) ∼ (index (CauchyCompletion.elts (b +C injection a)) m + inverse a)
ans m rewrite indexAndApply (CauchyCompletion.elts b) (constSequence a) _+_ {m} | indexAndConst a m = transitive (symmetric identRight) (transitive (+WellDefined reflexive (symmetric invRight)) +Associative)
l2 : (a : CauchyCompletion) (b : A) → a <Cr b → 0R r<C (injection b +C (-C a))
l2 a b record { e = e ; 0<e = 0<e ; N = N ; property = property } = record { e = e ; 0<e = 0<e ; N = N ; pr = λ m N<m → <WellDefined (transitive (transitive (symmetric +Associative) (+WellDefined reflexive invRight)) groupIsAbelian) (ans m) (orderRespectsAddition (property m N<m) (inverse (index (CauchyCompletion.elts a) m))) }
where
ans : (m : ℕ) → (b + inverse (index (CauchyCompletion.elts a) m)) ∼ index (CauchyCompletion.elts (injection b +C (-C a))) m
ans m rewrite indexAndApply (CauchyCompletion.elts (injection b)) (CauchyCompletion.elts (-C a)) _+_ {m} | indexAndConst b m | mapAndIndex (CauchyCompletion.elts a) inverse m = reflexive
l2' : (a : CauchyCompletion) (b : A) → 0R r<C (injection b +C a) → (-C a) <Cr b
l2' a b record { e = e ; 0<e = 0<e ; N = N ; pr = pr } = record { e = e ; 0<e = 0<e ; N = N ; property = λ m N<m → <WellDefined (+WellDefined identLeft reflexive) (ans m) (orderRespectsAddition (pr m N<m) (index (CauchyCompletion.elts (-C a)) m)) }
where
ans : (m : ℕ) → (index (CauchyCompletion.elts (injection b +C a)) m + index (map inverse (CauchyCompletion.elts a)) m) ∼ b
ans m rewrite indexAndApply (CauchyCompletion.elts (injection b)) (CauchyCompletion.elts a) _+_ {m} | indexAndConst b m | equalityCommutative (mapAndIndex (CauchyCompletion.elts a) inverse m) = transitive (symmetric +Associative) (transitive (+WellDefined reflexive invRight) identRight)
invInj : (i : A) → Setoid._∼_ cauchyCompletionSetoid (injection (inverse i) +C injection i) (injection 0R)
invInj i = Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges (injection (inverse i) +C injection i) }} {record { converges = CauchyCompletion.converges ((-C (injection i)) +C injection i) }} {record { converges = CauchyCompletion.converges (injection 0R) }} (Group.+WellDefinedLeft CGroup {record { converges = CauchyCompletion.converges (injection (inverse i)) }} {record { converges = CauchyCompletion.converges (injection i)}} {record { converges = CauchyCompletion.converges (-C (injection i)) }} homRespectsInverse) (Group.invLeft CGroup {injection i})
cOrderMove : (a b : A) (c : CauchyCompletion) → (injection a +C c) <Cr b → a r<C (injection b +C (-C c))
cOrderMove a b c record { e = e ; 0<e = 0<e ; N = N ; property = property } = record { e = e ; 0<e = 0<e ; N = N ; pr = λ m N<m → <WellDefined (transitive (symmetric +Associative) (transitive (+WellDefined reflexive (transitive (+WellDefined (identityOfIndiscernablesRight _∼_ reflexive (indexAndApply (CauchyCompletion.elts (injection a)) (CauchyCompletion.elts c) _+_ {m})) reflexive) (transitive (symmetric +Associative) (transitive (+WellDefined (identityOfIndiscernablesRight _∼_ reflexive (indexAndConst a m)) invRight) identRight)))) groupIsAbelian)) (transitive (+WellDefined (identityOfIndiscernablesLeft _∼_ reflexive (indexAndConst b m)) (identityOfIndiscernablesRight _∼_ reflexive (mapAndIndex (CauchyCompletion.elts c) inverse m))) (identityOfIndiscernablesLeft _∼_ reflexive (indexAndApply (CauchyCompletion.elts (injection b)) (CauchyCompletion.elts (-C c)) _+_ {m}))) (orderRespectsAddition (property m N<m) (inverse (index (CauchyCompletion.elts c) m))) }
cOrderMove' : (a b : A) (c : CauchyCompletion) → (injection a +C (-C c)) <Cr b → a r<C (injection b +C c)
cOrderMove' a b c pr = r<CWellDefinedRight _ _ _ (Group.+WellDefinedRight CGroup {record { converges = CauchyCompletion.converges (injection b) }} {record { converges = CauchyCompletion.converges (-C (-C c)) }} {record {converges = CauchyCompletion.converges c }} (invTwice CGroup record { converges = CauchyCompletion.converges c })) (cOrderMove a b (-C c) pr)
cOrderMove'' : (a : CauchyCompletion) (b c : A) → (a +C (-C injection b)) <Cr c → a <Cr (b + c)
cOrderMove'' a b c record { e = e ; 0<e = 0<e ; N = N ; property = property } = record { e = e ; 0<e = 0<e ; N = N ; property = λ m N<m → <WellDefined (transitive (symmetric +Associative) (+WellDefined reflexive (transitive (+WellDefined (identityOfIndiscernablesRight _∼_ reflexive (indexAndApply (CauchyCompletion.elts a) _ _+_ {m})) reflexive) (transitive (transitive (symmetric +Associative) (+WellDefined reflexive (transitive (+WellDefined (transitive (identityOfIndiscernablesLeft _∼_ reflexive (mapAndIndex _ inverse m)) (inverseWellDefined additiveGroup (identityOfIndiscernablesRight _∼_ reflexive (indexAndConst b m)))) reflexive) invLeft))) identRight)))) groupIsAbelian (orderRespectsAddition (property m N<m) b) }
cOrderRespectsAdditionLeft'' : (a b : A) (c : CauchyCompletion) → (a < b) → (injection a +C c) <C (injection b +C c)
cOrderRespectsAdditionLeft'' a b c a<b with halve charNot2 (b + inverse a)
... | b-a/2 , prDiff with approximateAbove c b-a/2 (halvePositive' prDiff (moveInequality a<b))
... | aboveC , (c<aboveC ,, aboveC-C<e) = record { i = a + aboveC ; a<i = <CRelaxR' (SetoidPartialOrder.<WellDefined <COrder (Ring.groupIsAbelian CRing {record { converges = CauchyCompletion.converges c }} {record { converges = CauchyCompletion.converges (injection a) }}) (Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges (injection aboveC +C injection a) }} {record { converges = CauchyCompletion.converges (injection a +C injection aboveC) }} {record { converges = CauchyCompletion.converges (injection (a + aboveC)) }} (Ring.groupIsAbelian CRing {record { converges = CauchyCompletion.converges (injection aboveC) }} {record { converges = CauchyCompletion.converges (injection a) }}) (Equivalence.symmetric (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges (injection (a + aboveC)) }} {record { converges = CauchyCompletion.converges (injection a +C injection aboveC) }} (GroupHom.groupHom CInjectionGroupHom))) (cOrderRespectsAdditionLeft' c aboveC a c<aboveC)) ; i<b = cOrderMove' _ _ _ (<CRelaxR' (<CTransitive (<CRelaxR t) (<CInherited u))) }
where
g : ((injection aboveC +C (-C c)) +C injection a) <C ((injection b-a/2) +C (injection a))
g = cOrderRespectsAdditionLeft' _ _ a (<CRelaxR' aboveC-C<e)
g' : ((injection aboveC +C (-C c)) +C injection a) <C (injection (b-a/2 + a))
g' = <CWellDefined (Equivalence.reflexive (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges ((injection aboveC +C (-C c)) +C injection a) }}) (Equivalence.symmetric (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges (injection (b-a/2 + a)) }} {record { converges = CauchyCompletion.converges (injection b-a/2 +C injection a) }} (GroupHom.groupHom CInjectionGroupHom)) g
t : (injection (a + aboveC) +C (-C c)) <Cr (b-a/2 + a)
t = <CRelaxR' (<CWellDefined (Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges (((injection aboveC) +C (-C c)) +C injection a) }} {record { converges = CauchyCompletion.converges (injection a +C ((injection aboveC) +C (-C c))) }} {record { converges = CauchyCompletion.converges (injection (a + aboveC) +C (-C c)) }} (Ring.groupIsAbelian CRing {record { converges = CauchyCompletion.converges (injection aboveC +C (-C c)) }} {record { converges = CauchyCompletion.converges (injection a) }}) (Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges (injection a +C ((injection aboveC) +C (-C c))) }} {record { converges = CauchyCompletion.converges (((injection a) +C (injection aboveC)) +C (-C c)) }} {record { converges = CauchyCompletion.converges ((injection (a + aboveC)) +C (-C c)) }} (Group.+Associative CGroup {record { converges = CauchyCompletion.converges (injection a) }} {record { converges = CauchyCompletion.converges (injection aboveC) }} {record { converges = CauchyCompletion.converges (-C c) }}) (Group.+WellDefinedLeft CGroup {record { converges = CauchyCompletion.converges (injection a +C injection aboveC) }} {record { converges = CauchyCompletion.converges (-C c) }} {record { converges = CauchyCompletion.converges (injection (a + aboveC)) }} (Equivalence.symmetric (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges (injection (a + aboveC)) }} {record { converges = CauchyCompletion.converges (injection a +C injection aboveC) }} (GroupHom.groupHom CInjectionGroupHom))))) (Equivalence.reflexive (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges (injection (b-a/2 + a)) }}) g')
lemm : 0R < b-a/2
lemm = halvePositive' prDiff (moveInequality a<b)
u : (b-a/2 + a) < b
u = <WellDefined (transitive (+WellDefined (symmetric prDiff) reflexive) (transitive groupIsAbelian (transitive +Associative (transitive (+WellDefined (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invLeft) identRight)) reflexive) groupIsAbelian)))) (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invLeft) identRight)) (orderRespectsAddition (<WellDefined identLeft (transitive (transitive +Associative (transitive (+WellDefined (transitive groupIsAbelian (+WellDefined reflexive (symmetric (invTwice additiveGroup b-a/2)))) reflexive) (symmetric +Associative))) (+WellDefined reflexive (symmetric (invContravariant additiveGroup)))) (orderRespectsAddition lemm (b + inverse a))) (a + inverse b-a/2))
cOrderRespectsAdditionLeft''Flip : (a b : A) (c : CauchyCompletion) → (a < b) → (c +C injection a) <C (c +C injection b)
cOrderRespectsAdditionLeft''Flip a b c a<b = <CWellDefined ((Ring.groupIsAbelian CRing {record { converges = CauchyCompletion.converges (injection a) }} {record { converges = CauchyCompletion.converges c }})) (Ring.groupIsAbelian CRing {record { converges = CauchyCompletion.converges (injection b) }} {record { converges = CauchyCompletion.converges c }}) (cOrderRespectsAdditionLeft'' a b c a<b)
cOrderRespectsAdditionLeft''' : (a b : CauchyCompletion) (c : A) → (a <C b) → (a +C injection c) <C (b +C injection c)
cOrderRespectsAdditionLeft''' a b c record { i = i ; a<i = a<i ; i<b = i<b } = <CTransitive (cOrderRespectsAdditionLeft' a i c a<i) (<CWellDefined (Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges (injection (c + i)) }} {record { converges = CauchyCompletion.converges (injection c +C injection i) }} {record { converges = CauchyCompletion.converges (injection i +C injection c) }} (GroupHom.groupHom CInjectionGroupHom) (Ring.groupIsAbelian CRing {record { converges = CauchyCompletion.converges (injection c) }} {record { converges = CauchyCompletion.converges (injection i) }})) (Ring.groupIsAbelian CRing {record { converges = CauchyCompletion.converges (injection c) }} {record { converges = CauchyCompletion.converges b }}) (flip<C' {record { converges = CauchyCompletion.converges (injection (c + i)) }} {record { converges = CauchyCompletion.converges (injection c +C b) }} (<CWellDefined (Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges ((-C b) +C injection (inverse c)) }} {record { converges = CauchyCompletion.converges ((-C b) +C (-C (injection c))) }} {record { converges = CauchyCompletion.converges (-C (injection c +C b)) }} (Group.+WellDefinedRight CGroup {record { converges = CauchyCompletion.converges (-C b) }} {record { converges = CauchyCompletion.converges (injection (inverse c)) }} {record { converges = CauchyCompletion.converges (-C (injection c)) }} homRespectsInverse) (Equivalence.symmetric (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges (-C (injection c +C b)) }} {record { converges = CauchyCompletion.converges ((-C b) +C (-C (injection c))) }} (invContravariant CGroup {record { converges = CauchyCompletion.converges (injection c) }} {record { converges = CauchyCompletion.converges b }}))) homRespectsInverse' (cOrderRespectsAdditionLeft' (-C b) (inverse i) (inverse c) (flipR<C i<b)))))
cOrderRespectsAdditionRightZero : (a : CauchyCompletion) → (0R r<C a) → (c : CauchyCompletion) → c <C (a +C c)
cOrderRespectsAdditionRightZero a record { e = e ; 0<e = 0<e ; N = N1 ; pr = pr } c with halve charNot2 e
... | e/2 , prE/2 with approximateAbove c e/2 (halvePositive' prE/2 0<e)
... | c+ , (c<c+ ,, c+<c+e/2) with approximateBelow (a +C c) e/2 (halvePositive' prE/2 0<e)
... | α , (α<a+c ,, a+c<α+e/2) with totality c+ α
... | inl (inl c+<α) = record { i = α ; a<i = <CRelaxR' (<CTransitive (<CRelaxR c<c+) (<CInherited c+<α)) ; i<b = α<a+c }
-- The remaining cases can't actually happen, but it's easier to go this way
... | inr c+=α = record { i = α ; a<i = <CrWellDefinedRight c _ _ c+=α c<c+ ; i<b = α<a+c }
... | inl (inr α<c+) with cOrderMove'' (a +C c) α e/2 (<CRelaxR' a+c<α+e/2)
... | record { e = f ; 0<e = 0<f ; N = M ; property = pr2 } with CauchyCompletion.converges c e/2 (halvePositive' prE/2 0<e)
... | N3 , pr4 = record { i = α ; a<i = record { e = f ; 0<e = 0<f ; N = u ; property = ans } ; i<b = α<a+c }
where
u : ℕ
u = succ ((N1 +N M) +N N3)
help : (m : ℕ) → u <N m → index (CauchyCompletion.elts c) m < (e/2 + index (CauchyCompletion.elts c) u)
help m size with pr4 {m} {u} (lessTransitive (le (N1 +N M) refl) size) (le (N1 +N M) refl)
... | bl with totality 0G (index (CauchyCompletion.elts c) m + inverse (index (CauchyCompletion.elts c) u))
... | inl (inl 0<t) = <WellDefined (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invLeft) identRight)) reflexive (orderRespectsAddition bl (index (CauchyCompletion.elts c) u))
... | inl (inr cm-cU<0) = <Transitive (<WellDefined (transitive (transitive (symmetric +Associative) (+WellDefined reflexive invLeft)) identRight) reflexive (orderRespectsAddition cm-cU<0 (index (CauchyCompletion.elts c) u))) (orderRespectsAddition (halvePositive' prE/2 0<e) (index (CauchyCompletion.elts c) u))
... | inr (0=t) = <WellDefined (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invLeft) identRight)) reflexive (orderRespectsAddition bl (index (CauchyCompletion.elts c) u))
ans : (m : ℕ) → u <N m → (f + index (CauchyCompletion.elts c) m) < α
ans m size = <Transitive (<WellDefined reflexive +Associative (<WellDefined groupIsAbelian groupIsAbelian (orderRespectsAddition (<Transitive (<WellDefined reflexive (transitive (+WellDefined (symmetric (transitive (+WellDefined (transitive identLeft (symmetric prE/2)) reflexive) (transitive (transitive (symmetric +Associative) (+WellDefined reflexive invRight)) identRight))) reflexive) (symmetric +Associative)) (help m size)) (<WellDefined reflexive (transitive groupIsAbelian (transitive (symmetric +Associative) (+WellDefined reflexive groupIsAbelian))) (orderRespectsAddition (pr u (le (M +N N3) (applyEquality succ (transitivity (additionNIsCommutative _ N1) (Semiring.+Associative ℕSemiring N1 M _))))) (inverse e/2 + index (CauchyCompletion.elts c) u)))) f))) (<WellDefined (transitive groupIsAbelian (transitive +Associative (+WellDefined groupIsAbelian (identityOfIndiscernablesRight _∼_ reflexive (indexAndApply (CauchyCompletion.elts a) (CauchyCompletion.elts c) _+_ {u}))))) (transitive (transitive (symmetric +Associative) (+WellDefined reflexive invRight)) identRight) (orderRespectsAddition (pr2 u (le (N1 +N N3) (applyEquality succ (transitivity (equalityCommutative (Semiring.+Associative ℕSemiring N1 _ _)) (transitivity (applyEquality (N1 +N_) (additionNIsCommutative N3 M)) (Semiring.+Associative ℕSemiring N1 _ _)))))) (inverse e/2)))
cOrderRespectsAdditionLeft : (a : CauchyCompletion) (b : A) (c : CauchyCompletion) → (a <Cr b) → (a +C c) <C (injection b +C c)
cOrderRespectsAdditionLeft a b c a<b = <CWellDefined {record { converges = CauchyCompletion.converges (a +C c) }}{record { converges = CauchyCompletion.converges (a +C c) }}{record { converges = CauchyCompletion.converges (((-C a) +C injection b) +C (a +C c)) }}{record { converges = CauchyCompletion.converges (injection b +C c) }} (Equivalence.reflexive (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges (a +C c)}}) (lemma3 CGroup (λ {x} {y} → Ring.groupIsAbelian CRing {x} {y}) a (injection b) c) (cOrderRespectsAdditionRightZero ((-C a) +C injection b) (r<CWellDefinedLeft (inverse b + b) 0R ((-C a) +C injection b) invLeft (<CRelaxL' (<CWellDefined {record { converges = CauchyCompletion.converges (injection (inverse b) +C injection b) }}{record { converges = CauchyCompletion.converges (injection (inverse b + b)) }}{record { converges = CauchyCompletion.converges ((-C a) +C injection b) }}{record { converges = CauchyCompletion.converges ((-C a) +C injection b) }} (GroupHom.groupHom' CInjectionGroupHom) (Equivalence.reflexive (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges ((-C a) +C injection b) }}) (cOrderRespectsAdditionLeft''' _ _ b (<CRelaxL (flip<CR a<b)))))) (a +C c))
lemma2 : (a b : CauchyCompletion) → Setoid._∼_ cauchyCompletionSetoid (Group.inverse CGroup ((-C a) +C (-C b))) (a +C b)
lemma2 a b = tr {record { converges = CauchyCompletion.converges (-C ((-C a) +C (-C b))) }} {record { converges = CauchyCompletion.converges ((-C (-C b)) +C (-C (-C a))) }} {record { converges = CauchyCompletion.converges (a +C b) }} (invContravariant CGroup {record { converges = CauchyCompletion.converges (-C a) }} {record { converges = CauchyCompletion.converges (-C b) }}) (tr {record { converges = CauchyCompletion.converges ((-C (-C b)) +C (-C (-C a))) }} {record { converges = CauchyCompletion.converges (b +C a) }} {record { converges = CauchyCompletion.converges (a +C b) }} (Group.+WellDefined CGroup {record { converges = CauchyCompletion.converges (-C (-C b)) }} {record { converges = CauchyCompletion.converges (-C (-C a)) }} {record { converges = CauchyCompletion.converges b }} {record { converges = CauchyCompletion.converges a }} (invTwice CGroup b) (invTwice CGroup a)) (Ring.groupIsAbelian CRing {record { converges = CauchyCompletion.converges b }} {record { converges = CauchyCompletion.converges a }}))
where
open Setoid cauchyCompletionSetoid
open Equivalence (Setoid.eq cauchyCompletionSetoid) renaming (transitive to tr)
cOrderRespectsAdditionRight : (a : A) (b : CauchyCompletion) (c : CauchyCompletion) → (a r<C b) → (injection a +C c) <C (b +C c)
cOrderRespectsAdditionRight a b c a<b = <CWellDefined (Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges (Group.inverse CGroup (injection (inverse a) +C (-C c))) }} {record { converges = CauchyCompletion.converges (Group.inverse CGroup ((-C injection a) +C (-C c))) }} {record { converges = CauchyCompletion.converges (injection a +C c) }} (inverseWellDefined CGroup {record { converges = CauchyCompletion.converges (injection (inverse a) +C (-C c)) }} {record { converges = CauchyCompletion.converges ((-C (injection a)) +C (-C c)) }} (Group.+WellDefinedLeft CGroup {record { converges = CauchyCompletion.converges (injection (inverse a)) }} {record { converges = CauchyCompletion.converges (-C c) }} {record { converges = CauchyCompletion.converges (-C (injection a)) }} homRespectsInverse)) (lemma2 (injection a) c)) (lemma2 b c) (flip<C (cOrderRespectsAdditionLeft _ _ (Group.inverse CGroup c) (flipR<C a<b)))
cOrderRespectsAddition : (a b : CauchyCompletion) → (a <C b) → (c : CauchyCompletion) → (a +C c) <C (b +C c)
cOrderRespectsAddition a b record { i = i ; a<i = a<i ; i<b = i<b } c = SetoidPartialOrder.<Transitive <COrder (cOrderRespectsAdditionLeft a i c a<i) (cOrderRespectsAdditionRight i b c i<b)
CpOrderedRing : PartiallyOrderedRing CRing <COrder
PartiallyOrderedRing.orderRespectsAddition CpOrderedRing {a} {b} = cOrderRespectsAddition a b
PartiallyOrderedRing.orderRespectsMultiplication CpOrderedRing {a} {b} 0<a 0<b = <COrderRespectsMultiplication a b 0<a 0<b
|
{
"alphanum_fraction": 0.7112265451,
"avg_line_length": 152.9675675676,
"ext": "agda",
"hexsha": "e0d8229036cf708517f01885b899548f223759ba",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Fields/CauchyCompletion/PartiallyOrderedRing.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Fields/CauchyCompletion/PartiallyOrderedRing.agda",
"max_line_length": 1981,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Fields/CauchyCompletion/PartiallyOrderedRing.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 9278,
"size": 28299
}
|
{-# OPTIONS --cubical-compatible --show-implicit #-}
-- {-# OPTIONS -v tc.data:100 #-}
module WithoutK9 where
module Eq {A : Set} (x : A) where
data _≡_ : A → Set where
refl : _≡_ x
open Eq
module Bad {A : Set} {x : A} where
module E = Eq x
weak-K : {y : A} (p q : E._≡_ y) (α β : p ≡ q) → α ≡ β
weak-K refl .refl refl refl = refl
|
{
"alphanum_fraction": 0.5542857143,
"avg_line_length": 18.4210526316,
"ext": "agda",
"hexsha": "075df493cebb9904279beba12dff166d11653019",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Fail/WithoutK9.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Fail/WithoutK9.agda",
"max_line_length": 56,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Fail/WithoutK9.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 135,
"size": 350
}
|
module Generate where
open import Data.List
open import Data.Fin hiding (_+_)
open import Data.Nat
open import Data.Product
open import Data.Bool
open import Function using (_∘_ ; _$_ ; _∋_ ; id ; case_return_of_ ; flip )
open import Function.Injection hiding (_∘_)
open import Function.Surjection hiding (_∘_)
open import Function.Bijection hiding (_∘_)
open import Function.LeftInverse hiding (_∘_)
open import Relation.Binary using (Setoid ; Decidable)
open import Relation.Binary.PropositionalEquality hiding ( [_] )
open import Relation.Nullary.Negation
open import Relation.Nullary
open import Function.Equality using (_⟶_ ; _⟨$⟩_ ; Π )
open import Reflection
open import Level
open import Serializer
open import Helper.Fin
open import Helper.CodeGeneration
open import Serializer.Bool
open import Serializer.Fin
open import With hiding (subst) -- ; _+_ ; A)
open Serializer.Serializer {{...}}
--open Serializer.Serializer {{Fin 2}}
-------------------------
-- Generic from/to term's.
data Test : Set where
A : Bool -> Test
B : Bool -> Test
C : Bool -> Test
D : Bool -> Test
conSize : (n : Name) -> Term
conSize n with (definition n)
conSize n | constructor′ with (type n)
conSize n | constructor′ | el (lit n₁) (pi (arg i (el s t)) t₂) = def (quote size) [ a1 t ]
conSize n | constructor′ | el _ _ = quoteTerm 0
conSize n | _ = quoteTerm 0
sumTerms : List Name -> Term
sumTerms [] = quoteTerm 0
sumTerms (x ∷ ls) = def (quote _+_) (a (conSize x) ∷ a (sumTerms ls) ∷ [])
cons`` : (n : Name) -> List (_×_ Name (_×_ (List Name) (List Name)))
cons`` n = zipWith _,_ (cons n) (zipWith _,_ (inits (cons n)) (drop 1 (tails (cons n))))
{-
fromTest : Test -> Fin 4
fromTest (A z) = +₁ 2 (2 + 0) (fromBool z)
fromTest (B z) = +₂ 2 2 (fromBool z)
toTest : Fin 4 -> Test
toTest x = (Helper.Fin.[ (λ z₁ → A (toBool z₁)) , (λ z₁ → B (toBool z₁)) ] (⨁ 2 2 x))
-}
{-
fromTest : Test -> Fin 6
fromTest (A x) = +₁ 4 2 (+₁ 2 2 (from x))
fromTest (B x) = +₁ 4 2 (+₂ 2 2 (from x))
fromTest (C x) = +₂ 4 2 (from x)
toTest : Fin 6 -> Test
toTest x = Helper.Fin.[ (\y -> Helper.Fin.[ (\z -> A $ to z) , (\z -> B $ to z) ] (⨁ 2 2 y) ) , (\y -> C $ to y) ] (⨁ 4 2 x)
-}
cons` : Name -> List (_×_ Name (_×_ (List Name) (List Name)))
cons` n = zipWith _,_ (reverse (cons n)) (zipWith _,_ (inits (reverse (cons n))) (Data.List.map reverse (drop 1 (tails (reverse (cons n))))))
{-# TERMINATING #-}
genFrom : (n : Name) -> FunctionDef
genFrom n = fun-def (t0 $ fun_type) clauses
where
fun_type = pi (a ∘ t0 $ def n []) (abs "_" (t0 (def (quote Fin) [ a (sumTerms (cons n)) ])))
construct : (_×_ Name (_×_ (List Name) (List Name))) -> Term
construct (c , [] , []) = (def (quote from) [ a (var 0 []) ])
construct (c , x ∷ xs , []) = def (quote +₂) ((a (sumTerms (x ∷ xs))) ∷ (a (conSize c)) ∷ (a (construct (c , ([] , [])))) ∷ [])
construct (c , xs , y ∷ ys) = def (quote +₁) ((a (sumTerms (c ∷ (xs ++ ys)))) ∷ (a (conSize y)) ∷ (a (construct (c , (xs , ys)))) ∷ [])
clauses = Data.List.map (\{ (c , xs) -> clause [ a $ con c [ a (var "_") ] ] (construct (c , xs))}) (cons` n)
unquoteDecl fromTest = genFrom (quote Test)
genTo : (n : Name) -> FunctionDef
genTo n = fun-def (t0 $ fun_type) clauses
where
fun_type = pi (a (t0 (def (quote Fin) [ a (sumTerms (cons n)) ]))) (abs "_" (t0 $ def n []))
match : List Name -> Term
match [] = unknown
match (x ∷ []) = con x [ a (def (quote to) [ a (var 0 []) ]) ]
match (x ∷ x₁ ∷ cons) = def (quote [_,_])
( (a (lam visible (abs "_" (match (x₁ ∷ cons))))) -- (a (lam visible (abs "_" (con x [ a (def (quote to) [ a (var 0 []) ]) ]))))
∷ (a (lam visible (abs "_" (con x [ a (def (quote to) [ a (var 0 []) ]) ]))))
∷ (a (def (quote ⨁) ((a (sumTerms (x₁ ∷ cons))) ∷ (a (quoteTerm 2)) ∷ (a (var 0 [])) ∷ [])))
∷ [])
clauses = [ clause [ a (var "_") ] (match (cons n)) ]
unquoteDecl toTest = genTo (quote Test)
makePresEq : {T : Set} {n : ℕ} -> (T -> (Fin n)) -> setoid T ⟶ setoid (Fin n)
makePresEq f = record { _⟨$⟩_ = f ; cong = (\{ {i} {.i} refl → refl }) }
genPresEq' : (n : Name) -> Term
genPresEq' n = def (quote makePresEq) [ a (def (quote fromTest) []) ] -- [(a (genFrom' n))]
where
setoidFrom = def (quote setoid) [(a (def n []))]
setoidTo = def (quote setoid) [(a (def (quote Fin) [ a (sumTerms (cons n)) ]))]
fun_type1 = t0 (def (quote _⟶_) ( (a setoidFrom) ∷ (a setoidTo) ∷ []))
genPresEq : (n : Name) -> FunctionDef
genPresEq n = fun-def fun_type1 [(clause [] (genPresEq' n) ) ]
where
setoidFrom = def (quote setoid) [(a (def n []))]
setoidTo = def (quote setoid) [(a (def (quote Fin) [ a (sumTerms (cons n)) ]))]
fun_type1 = t0 (def (quote _⟶_) ( (a setoidFrom) ∷ (a setoidTo) ∷ []))
unquoteDecl genTest = genPresEq (quote Test)
t2 : {x y : Bool} → fromBool x ≡ fromBool y → x ≡ y
t2 = Bijective.injective (Bijection.bijective (bijection {Bool}))
bijection' : Term
bijection' = quoteTerm t2
refl' : Term
refl' = pat-lam [ clause ( (a1 (var "d1")) ∷ (a1 (dot)) ∷ ( a (con (quote refl) []) ) ∷ []) (con (quote refl) []) ] []
x₁≡x₂' : Term
x₁≡x₂' = def (quote _≡_) ((a $ var 1 []) ∷ (a $ var 0 []) ∷ [])
+-eq₁' : Term -> Term
+-eq₁' t = (def (quote +-eq₁) [ a t ])
+-eq₂' : ℕ -> ℕ -> Term -> Term
+-eq₂' n1 n2 t = (def (quote +-eq₂) ( a1 (lit (nat n1)) ∷ a1 (lit (nat n2)) ∷ a t ∷ [] ) )
¬+-eq₁' : Term
¬+-eq₁' = def (quote ¬+-eq₁) []
¬+-eq₂' : Term
¬+-eq₂' = def (quote ¬+-eq₂) []
_$'_ : Term -> Term -> Term
x $' y = def (quote _$_) ((a x) ∷ (a y) ∷ [])
contradiction' : Term -> Term -> Term
contradiction' t1 t2 = def (quote contradiction) ( (a t1) ∷ (a t2) ∷ [] )
genInjective : (n : Name) -> FunctionDef
genInjective n = fun-def fun_type1 [ (clause [] ( pat-lam (clauses 0 (var 0 []) (indexed_cons)) [] )) ]
where
fun_type1 = t0 (def (quote Injective) [ (a (def (quote genTest) [])) ] )
ncons = (length (cons n))
indexed_cons = zipWith (_,_) (cons n) ((downFrom (length (cons n))))
clause'' : Name -> Name -> Term -> Clause
clause'' l r t = clause ( (a1 $ con l [ a (var "x") ]) ∷ (a1 $ con r [ a (var "y") ]) ∷ (a (var "p")) ∷ [] ) t
clause' : ℕ -> Term -> (_×_ Name ℕ) -> (_×_ Name ℕ) -> Clause
clause' n t (n1 , i1) (n2 , i2) with (Data.Nat.compare i1 i2)
clause' n t (n1 , i1) (n2 , ._) | less .i1 k = clause'' n1 n2 (contradiction' (t) ¬+-eq₁')
clause' n t (n1 , ℕ.zero) (n2 , .0) | equal .0 = clause'' n1 n2 (with' x₁≡x₂' (bijection' $' (t)) refl')
clause' n t (n1 , ℕ.suc i1) (n2 , .(ℕ.suc i1)) | equal .(ℕ.suc i1) = clause'' n1 n2 (with' x₁≡x₂' (bijection' $' (+-eq₂' ((ncons ∸ n ∸ 1) * 2) 2 (t))) refl')
clause' n t (n1 , ._) (n2 , i2) | greater .i2 k = clause'' n1 n2 (contradiction' (t) ¬+-eq₂')
clauses : ℕ -> Term -> List (_×_ Name ℕ) -> List Clause
clauses n t [] = []
clauses n t (x ∷ cs) = (Data.List.map (clause' n t x) (x ∷ cs)) ++ (Data.List.map ((flip (clause' n t)) x) cs) ++ (clauses (ℕ.suc n) (+-eq₁' t) cs) -- Data.List.map clause' c
unquoteDecl testInjective = genInjective (quote Test)
makePresEqTo : {T : Set} {n : ℕ} -> ((Fin n) -> T) -> setoid (Fin n) ⟶ setoid T
makePresEqTo f = record { _⟨$⟩_ = f ; cong = (\{ {i} {.i} refl → refl }) }
genPresEqTo' : (n : Name) -> Term
genPresEqTo' n = def (quote makePresEqTo) [ a (def (quote toTest) []) ]
where
setoidTo = def (quote setoid) [(a (def n []))]
setoidFrom = def (quote setoid) [(a (def (quote Fin) [ a (sumTerms (cons n)) ]))]
fun_type1 = t0 (def (quote _⟶_) ( (a setoidFrom) ∷ (a setoidTo) ∷ []))
genPresEqTo : (n : Name) -> FunctionDef
genPresEqTo n = fun-def infer_type [ (clause [] (genPresEqTo' n) ) ]
unquoteDecl genTestTo = genPresEqTo (quote Test)
Fin+' : ℕ -> ℕ -> Term
Fin+' n1 n2 = def (quote Fin+) ((a (lit (nat n1))) ∷ (a (lit (nat n2))) ∷ (a $ var 0 []) ∷ [])
⨁' : ℕ -> ℕ -> Term
⨁' n1 n2 = def (quote ⨁) ((a (lit (nat n1))) ∷ (a (lit (nat n2))) ∷ (a $ var 0 []) ∷ [])
x₂≡x₁' : Term
x₂≡x₁' = def (quote _≡_) ( (a $ var 0 []) ∷ (a $ var 1 []) ∷ [])
right-inverse-of' : Term
right-inverse-of' = quoteTerm (Surjective.right-inverse-of (Bijective.surjective (Bijection.bijective (bijection {Bool}))))
fromToBool' : Term
fromToBool' = (def (quote fromBool) (arg (arg-info visible relevant) (def (quote toBool) (arg (arg-info visible relevant) (var 0 []) ∷ [])) ∷ []))
matchFin+ : Term -> Term -> Term
matchFin+ t1 t2 = pat-lam ((clause ( (a1 (dot)) ∷ (a (con (quote is+₁) [ a $ (var "u") ])) ∷ []) t1) ∷ (clause ( (a1 (dot)) ∷ (a (con (quote is+₂) [ a $ (var "u") ])) ∷ []) t2) ∷ []) []
step2 : Term
step2 = rewrite'' x₂≡x₁' (quoteTerm fromToBool') (quoteTerm (right-inverse-of' $' var 0 [])) refl'
⨁'' : ℕ -> ℕ -> Term
⨁'' m1 m2 = With.subst (quoteTerm (⨁' 1337 2)) (lit (nat 1337)) (lit (nat m1))
genRightInv' : (List Name) -> Term
genRightInv' [] = unknown
genRightInv' (x ∷ []) = step2
genRightInv' (x ∷ x₁ ∷ cons) = with'' (Fin+' l 2) (⨁'' l 2) (matchFin+ (genRightInv' (x₁ ∷ cons)) step2)
where
l = (length (x₁ ∷ cons) * 2)
right-inverse-of : genTestTo RightInverseOf genTest
right-inverse-of x = unquote (genRightInv' (cons (quote Test)))
{-
from-bijection : Bijection (setoid Test) (setoid (Fin 6))
from-bijection = record {
to = genTest
; bijective = record {
injective = testInjective
; surjective = record {
from = genTestTo
; right-inverse-of = right-inverse-of
}
}
}
instance
serializerTest : Serializer Test
serializerTest = record {
size = 6 ;
from = fromTest ;
to = toTest ;
bijection = from-bijection
}
-}
|
{
"alphanum_fraction": 0.5629228687,
"avg_line_length": 37.52734375,
"ext": "agda",
"hexsha": "b9828e112d7c6b75d3989e340951d858a99d0167",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cb95986b772b7a01195619be5e8e590f2429c759",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mathijsb/generic-in-agda",
"max_forks_repo_path": "Generate.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cb95986b772b7a01195619be5e8e590f2429c759",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mathijsb/generic-in-agda",
"max_issues_repo_path": "Generate.agda",
"max_line_length": 185,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "cb95986b772b7a01195619be5e8e590f2429c759",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mathijsb/generic-in-agda",
"max_stars_repo_path": "Generate.agda",
"max_stars_repo_stars_event_max_datetime": "2016-08-04T16:05:24.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-09T09:59:27.000Z",
"num_tokens": 3606,
"size": 9607
}
|
{-# OPTIONS --without-K #-}
module library.Basics where
open import library.Base public
open import library.PathGroupoid public
open import library.PathFunctor public
open import library.NType public
open import library.Equivalences public
open import library.Univalence public
open import library.Funext public
open import library.PathOver public
|
{
"alphanum_fraction": 0.8314285714,
"avg_line_length": 26.9230769231,
"ext": "agda",
"hexsha": "badafb97b5ca7049254cfb029dec121a2a713ddf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "nicolai/anonymousExistence/library/Basics.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "nicolai/anonymousExistence/library/Basics.agda",
"max_line_length": 39,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nicolaikraus/HoTT-Agda",
"max_stars_repo_path": "nicolai/anonymousExistence/library/Basics.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z",
"num_tokens": 72,
"size": 350
}
|
open import FRP.JS.Nat using ( ℕ ; _*_ )
open import FRP.JS.Bool using ( Bool )
open import FRP.JS.String using ( String )
open import FRP.JS.RSet using ( ⟦_⟧ ; ⟨_⟩ )
open import FRP.JS.Behaviour using ( Beh )
open import FRP.JS.Delay using ( Delay ) renaming
( _≟_ to _≟d_ ; _≠_ to _≠d_ ; _≤_ to _≤d_ ; _<_ to _<d_ ; _+_ to _+d_ ; _∸_ to _∸d_ )
module FRP.JS.Time where
open import FRP.JS.Time.Core public using ( Time ; epoch )
_≟_ : Time → Time → Bool
epoch t ≟ epoch u = t ≟d u
{-# COMPILED_JS _≟_ function(d) { return function(e) { return d === e; }; } #-}
_≠_ : Time → Time → Bool
epoch t ≠ epoch u = t ≠d u
{-# COMPILED_JS _≠_ function(d) { return function(e) { return d !== e; }; } #-}
_≤_ : Time → Time → Bool
epoch t ≤ epoch u = t ≤d u
{-# COMPILED_JS _≤_ function(d) { return function(e) { return d <= e; }; } #-}
_<_ : Time → Time → Bool
epoch t < epoch u = t <d u
{-# COMPILED_JS _<_ function(d) { return function(e) { return d < e; }; } #-}
_+_ : Time → Delay → Time
epoch t + d = epoch (t +d d)
{-# COMPILED_JS _+_ function(d) { return function(e) { return d + e; }; } #-}
_∸_ : Time → Time → Delay
epoch t ∸ epoch u = t ∸d u
{-# COMPILED_JS _∸_ function(d) { return function(e) { return Math.min(0, d - e); }; } #-}
postulate
toUTCString : Time → String
every : Delay → ⟦ Beh ⟨ Time ⟩ ⟧
{-# COMPILED_JS toUTCString function(t) { return require("agda.frp").date(t).toUTCString(); } #-}
{-# COMPILED_JS every function(d) { return function(t) { return require("agda.frp").every(d); }; } #-}
|
{
"alphanum_fraction": 0.6031434185,
"avg_line_length": 31.1632653061,
"ext": "agda",
"hexsha": "fc3b27d3f653e702bcb88628c81b10a14440245a",
"lang": "Agda",
"max_forks_count": 7,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z",
"max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_forks_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_forks_repo_name": "agda/agda-frp-js",
"max_forks_repo_path": "src/agda/FRP/JS/Time.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_issues_repo_name": "agda/agda-frp-js",
"max_issues_repo_path": "src/agda/FRP/JS/Time.agda",
"max_line_length": 102,
"max_stars_count": 63,
"max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_stars_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_stars_repo_name": "agda/agda-frp-js",
"max_stars_repo_path": "src/agda/FRP/JS/Time.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z",
"num_tokens": 543,
"size": 1527
}
|
module Lib.Logic where
infix 30 _∨_
infix 40 _∧_
infix 50 ¬_
data _∨_ (A B : Set) : Set where
inl : A -> A ∨ B
inr : B -> A ∨ B
data _∧_ (A B : Set) : Set where
_,_ : A -> B -> A ∧ B
data False : Set where
record True : Set where
¬_ : Set -> Set
¬ A = A -> False
|
{
"alphanum_fraction": 0.5415162455,
"avg_line_length": 14.5789473684,
"ext": "agda",
"hexsha": "fe5b3ee75b8d192ca31075f429d2dbec7823b7d7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/simple-lib/Lib/Logic.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/simple-lib/Lib/Logic.agda",
"max_line_length": 32,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/simple-lib/Lib/Logic.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 119,
"size": 277
}
|
------------------------------------------------------------------------
-- Lexicographic induction
------------------------------------------------------------------------
module Induction.Lexicographic where
open import Induction
open import Data.Product
-- The structure of lexicographic induction.
_⊗_ : ∀ {a b} → RecStruct a → RecStruct b → RecStruct (a × b)
_⊗_ RecA RecB P (x , y) =
-- Either x is constant and y is "smaller", ...
RecB (λ y' → P (x , y')) y
×
-- ...or x is "smaller" and y is arbitrary.
RecA (λ x' → ∀ y' → P (x' , y')) x
-- Constructs a recursor builder for lexicographic induction.
[_⊗_] : ∀ {a} {RecA : RecStruct a} → RecursorBuilder RecA →
∀ {b} {RecB : RecStruct b} → RecursorBuilder RecB →
RecursorBuilder (RecA ⊗ RecB)
[_⊗_] {RecA = RecA} recA {RecB = RecB} recB P f (x , y) =
(p₁ x y p₂x , p₂x)
where
p₁ : ∀ x y →
RecA (λ x' → ∀ y' → P (x' , y')) x →
RecB (λ y' → P (x , y')) y
p₁ x y x-rec = recB (λ y' → P (x , y'))
(λ y y-rec → f (x , y) (y-rec , x-rec))
y
p₂ : ∀ x → RecA (λ x' → ∀ y' → P (x' , y')) x
p₂ = recA (λ x → ∀ y → P (x , y))
(λ x x-rec y → f (x , y) (p₁ x y x-rec , x-rec))
p₂x = p₂ x
------------------------------------------------------------------------
-- Example
private
open import Data.Nat
open import Induction.Nat as N
-- The Ackermann function à la Rózsa Péter.
ackermann : ℕ → ℕ → ℕ
ackermann m n = build [ N.rec-builder ⊗ N.rec-builder ]
AckPred ack (m , n)
where
AckPred : ℕ × ℕ → Set
AckPred _ = ℕ
ack : ∀ p → (N.Rec ⊗ N.Rec) AckPred p → AckPred p
ack (zero , n) _ = 1 + n
ack (suc m , zero) (_ , ackm•) = ackm• 1
ack (suc m , suc n) (ack[1+m]n , ackm•) = ackm• ack[1+m]n
|
{
"alphanum_fraction": 0.4466019417,
"avg_line_length": 29.9032258065,
"ext": "agda",
"hexsha": "556236e647903d01f79c043b747a2d463a6a3efe",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Induction/Lexicographic.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Induction/Lexicographic.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Induction/Lexicographic.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 631,
"size": 1854
}
|
------------------------------------------------------------------------
-- Products (variants for Set₁)
------------------------------------------------------------------------
-- I want universe polymorphism.
module Data.Product1 where
open import Data.Function
open import Relation.Nullary
infixr 4 _,_
infixr 2 _×₀₁_ _×₁₀_ _×₁₁_
------------------------------------------------------------------------
-- Definition
data Σ₀₁ (a : Set) (b : a → Set₁) : Set₁ where
_,_ : (x : a) (y : b x) → Σ₀₁ a b
data Σ₁₀ (a : Set₁) (b : a → Set) : Set₁ where
_,_ : (x : a) (y : b x) → Σ₁₀ a b
data Σ₁₁ (a : Set₁) (b : a → Set₁) : Set₁ where
_,_ : (x : a) (y : b x) → Σ₁₁ a b
∃₀₁ : {A : Set} → (A → Set₁) → Set₁
∃₀₁ = Σ₀₁ _
∃₁₀ : {A : Set₁} → (A → Set) → Set₁
∃₁₀ = Σ₁₀ _
∃₁₁ : {A : Set₁} → (A → Set₁) → Set₁
∃₁₁ = Σ₁₁ _
_×₀₁_ : Set → Set₁ → Set₁
A ×₀₁ B = Σ₀₁ A (λ _ → B)
_×₁₀_ : Set₁ → Set → Set₁
A ×₁₀ B = Σ₁₀ A (λ _ → B)
_×₁₁_ : Set₁ → Set₁ → Set₁
A ×₁₁ B = Σ₁₁ A (λ _ → B)
------------------------------------------------------------------------
-- Functions
proj₀₁₁ : ∀ {a b} → Σ₀₁ a b → a
proj₀₁₁ (x , y) = x
proj₀₁₂ : ∀ {a b} → (p : Σ₀₁ a b) → b (proj₀₁₁ p)
proj₀₁₂ (x , y) = y
proj₁₀₁ : ∀ {a b} → Σ₁₀ a b → a
proj₁₀₁ (x , y) = x
proj₁₀₂ : ∀ {a b} → (p : Σ₁₀ a b) → b (proj₁₀₁ p)
proj₁₀₂ (x , y) = y
proj₁₁₁ : ∀ {a b} → Σ₁₁ a b → a
proj₁₁₁ (x , y) = x
proj₁₁₂ : ∀ {a b} → (p : Σ₁₁ a b) → b (proj₁₁₁ p)
proj₁₁₂ (x , y) = y
map₀₁ : ∀ {A B P Q} →
(f : A → B) → (∀ {x} → P x → Q (f x)) →
Σ₀₁ A P → Σ₀₁ B Q
map₀₁ f g p = (f (proj₀₁₁ p) , g (proj₀₁₂ p))
map₁₀ : ∀ {A B P Q} →
(f : A → B) → (∀ {x} → P x → Q (f x)) →
Σ₁₀ A P → Σ₁₀ B Q
map₁₀ f g p = (f (proj₁₀₁ p) , g (proj₁₀₂ p))
map₁₁ : ∀ {A B P Q} →
(f : A → B) → (∀ {x} → P x → Q (f x)) →
Σ₁₁ A P → Σ₁₁ B Q
map₁₁ f g p = (f (proj₁₁₁ p) , g (proj₁₁₂ p))
|
{
"alphanum_fraction": 0.4066168623,
"avg_line_length": 23.425,
"ext": "agda",
"hexsha": "f024668b7f3ea84891136f755bbc1f917e806c52",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Data/Product1.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Data/Product1.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Data/Product1.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 856,
"size": 1874
}
|
module Categories.Pushout where
|
{
"alphanum_fraction": 0.875,
"avg_line_length": 16,
"ext": "agda",
"hexsha": "4ed3dbb6e9c7c535e87a4e6f42af8a16412010c5",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Pushout.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Pushout.agda",
"max_line_length": 31,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Pushout.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 6,
"size": 32
}
|
open import Prelude
module Implicits.Syntax.MetaType where
open import Implicits.Syntax.Type
mutual
data MetaSimpleType (m ν : ℕ) : Set where
tvar : Fin ν → MetaSimpleType m ν
mvar : Fin m → MetaSimpleType m ν
_→'_ : (a b : MetaType m ν) → MetaSimpleType m ν
tc : ℕ → MetaSimpleType m ν
data MetaType (m ν : ℕ) : Set where
_⇒_ : (a b : MetaType m ν) → MetaType m ν
∀' : MetaType m (suc ν) → MetaType m ν
simpl : MetaSimpleType m ν → MetaType m ν
s-tvar : ∀ {ν m} → Fin ν → MetaType m ν
s-tvar n = simpl (tvar n)
s-mvar : ∀ {ν m} → Fin m → MetaType m ν
s-mvar n = simpl (mvar n)
s-tc : ∀ {ν m} → ℕ → MetaType m ν
s-tc c = simpl (tc c)
mutual
to-smeta : ∀ {m ν} → SimpleType ν → MetaSimpleType m ν
to-smeta (tc x) = (tc x)
to-smeta (tvar n) = (tvar n)
to-smeta (a →' b) = (to-meta a) →' (to-meta b)
to-meta : ∀ {m ν} → Type ν → MetaType m ν
to-meta (simpl x) = simpl (to-smeta x)
to-meta (a ⇒ b) = (to-meta a) ⇒ (to-meta b)
to-meta (∀' a) = ∀' (to-meta a)
mutual
from-smeta : ∀ {ν} → MetaSimpleType zero ν → SimpleType ν
from-smeta (tvar x) = tvar x
from-smeta (mvar ())
from-smeta (tc c) = tc c
from-smeta (a →' b) = from-meta a →' from-meta b
from-meta : ∀ {ν} → MetaType zero ν → Type ν
from-meta (simpl τ) = simpl (from-smeta τ)
from-meta (a ⇒ b) = from-meta a ⇒ from-meta b
from-meta (∀' x) = ∀' (from-meta x)
is-m∀' : ∀ {m ν} → MetaType m ν → Set
is-m∀' (simpl x) = ⊥
is-m∀' (a ⇒ b) = ⊥
is-m∀' (∀' x) = ⊤
|
{
"alphanum_fraction": 0.5731543624,
"avg_line_length": 27.0909090909,
"ext": "agda",
"hexsha": "a65fbd8b10f96baa1fb2847c32a46b6c74d32bd1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Implicits/Syntax/MetaType.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Implicits/Syntax/MetaType.agda",
"max_line_length": 59,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Implicits/Syntax/MetaType.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 601,
"size": 1490
}
|
{-# OPTIONS --cubical --safe #-}
module Subtyping where
open import Cubical.Core.Everything hiding (Type)
open import Cubical.Foundations.Prelude using (refl; sym; symP; cong; _∙_; transport; subst; transportRefl; transport-filler; toPathP; fromPathP; congP)
open import Cubical.Foundations.Transport using (transport⁻Transport)
open import Cubical.Data.Nat using (ℕ; zero; suc; _+_; +-comm; snotz; znots; +-suc; +-zero; injSuc; isSetℕ)
open import Cubical.Data.Nat.Order using (_≟_; lt; eq; gt; ≤-k+; ≤-+k; ≤-trans; pred-≤-pred; _≤_; _<_; ¬m+n<m; ¬-<-zero; suc-≤-suc; <-k+; <-+k; zero-≤; m≤n-isProp; <≤-trans; ≤-refl; <-weaken)
open import Cubical.Data.Fin using (Fin; toℕ; fzero; fsuc; Fin-fst-≡)
open import Cubical.Data.Sigma using (_×_; _,_; fst; snd; ΣPathP; Σ-cong-snd)
open import Cubical.Data.Sum using (_⊎_; inl; inr)
import Cubical.Data.Empty as Empty
open import Label using (Label; Record; nil; cons; _∈_; find; l∈r-isProp)
-- A term with at most `n` free variables.
data Term (n : ℕ) : Set where
var : Fin n -> Term n
abs : Term (suc n) -> Term n
_·_ : Term n -> Term n -> Term n
rec : forall {l} -> Record (Term n) l -> Term n
_#_ : Term n -> Label -> Term n
shift : forall {m : ℕ} (n : ℕ) (i : Fin (suc m)) (e : Term m) -> Term (m + n)
shiftRecord : forall {m : ℕ} (n : ℕ) (i : Fin (suc m)) {l : Label} (r : Record (Term m) l) -> Record (Term (m + n)) l
shift {m} n i (var j)
with toℕ i ≟ toℕ j
... | lt _ = var (toℕ j + n , ≤-+k (snd j))
... | eq _ = var (toℕ j + n , ≤-+k (snd j))
... | gt _ = var (toℕ j , ≤-trans (snd j) (n , +-comm n m))
shift n i (abs e) = abs (shift n (fsuc i) e)
shift n i (e · e₁) = shift n i e · shift n i e₁
shift n i (rec r) = rec (shiftRecord n i r)
shift n i (e # l) = shift n i e # l
shiftRecord n i nil = nil
shiftRecord n i (cons r l' x x₁) = cons (shiftRecord n i r) l' (shift n i x) x₁
subst′ : forall {m n : ℕ}
-> (e' : Term m)
-> (i : Fin (suc n))
-> (e1 : Term (suc (n + m)))
-> Term (n + m)
substRecord : forall {m n : ℕ}
-> (e' : Term m)
-> (i : Fin (suc n))
-> forall {l : Label}
-> (r1 : Record (Term (suc (n + m))) l)
-> Record (Term (n + m)) l
subst′ {m} {n} e' i (var j) with toℕ j ≟ toℕ i
... | lt j<i = var (toℕ j , <≤-trans j<i (pred-≤-pred (≤-trans (snd i) (suc-≤-suc (m , +-comm m n)))))
... | eq _ = transport (λ i₁ → Term (+-comm m n i₁)) (shift n fzero e')
... | gt i<j with j
... | zero , _ = Empty.rec (¬-<-zero i<j)
... | suc fst₁ , snd₁ = var (fst₁ , pred-≤-pred snd₁)
subst′ e' i (abs e1) = abs (subst′ e' (fsuc i) e1)
subst′ e' i (e1 · e2) = subst′ e' i e1 · subst′ e' i e2
subst′ e' i (rec r) = rec (substRecord e' i r)
subst′ e' i (e # l) = subst′ e' i e # l
substRecord e' i nil = nil
substRecord e' i (cons r1 l' x x₁) = cons (substRecord e' i r1) l' (subst′ e' i x) x₁
infix 3 _▷_
data _▷_ {n : ℕ} : Term n -> Term n -> Set where
beta/=> : forall {e1 : Term (suc n)} {e2 : Term n} -> abs e1 · e2 ▷ subst′ e2 fzero e1
cong/app : forall {e1 e1' e2 : Term n} -> e1 ▷ e1' -> e1 · e2 ▷ e1' · e2
beta/rec : forall {l'} {r : Record (Term n) l'} {l} {l∈r : l ∈ r} -> rec r # l ▷ find l r l∈r
cong/# : forall {e e' : Term n} {l} -> e ▷ e' -> e # l ▷ e' # l
data Base : Set where
Unit : Base
Int : Base
infixr 8 _=>_
data Type : Set where
base : Base -> Type
Top : Type
_=>_ : Type -> Type -> Type
rec : forall {l} -> Record Type l -> Type
data Context : ℕ -> Set where
[] : Context 0
_∷_ : forall {n} -> Type -> Context n -> Context (suc n)
data _[_]=_ : forall {n} -> Context n -> Fin n -> Type -> Set where
here : forall {n} A (G : Context n) -> (A ∷ G) [ 0 , suc-≤-suc zero-≤ ]= A
there : forall {n} {A} B {G : Context n} {i} -> G [ i ]= A -> (B ∷ G) [ fsuc i ]= A
lookup : forall {n} -> Context n -> Fin n -> Type
lookup [] (fst₁ , snd₁) = Empty.rec (¬-<-zero snd₁)
lookup (A ∷ G) (zero , snd₁) = A
lookup (A ∷ G) (suc fst₁ , snd₁) = lookup G (fst₁ , pred-≤-pred snd₁)
lookup-[]= : forall {n} (G : Context n) i -> G [ i ]= lookup G i
lookup-[]= [] (fst₁ , snd₁) = Empty.rec (¬-<-zero snd₁)
lookup-[]= (A ∷ G) (zero , snd₁) = subst (λ f -> (A ∷ G) [ f ]= A) (Fin-fst-≡ refl) (here A G)
lookup-[]= (A ∷ G) (suc fst₁ , snd₁) = subst (λ f -> (A ∷ G) [ f ]= lookup G (fst₁ , pred-≤-pred snd₁)) (Fin-fst-≡ refl) (there A (lookup-[]= G (fst₁ , pred-≤-pred snd₁)))
_++_ : forall {m n} -> Context m -> Context n -> Context (m + n)
[] ++ G2 = G2
(A ∷ G1) ++ G2 = A ∷ (G1 ++ G2)
++-[]= : forall {m n} {G : Context m} (G' : Context n) {j : Fin m} {A}
-> G [ j ]= A
-> (G' ++ G) [ n + toℕ j , <-k+ (snd j) ]= A
++-[]= [] l = subst (λ f → _ [ f ]= _) (Fin-fst-≡ refl) l
++-[]= {G = G} (C ∷ G') {A = A} l = subst (λ f → ((C ∷ G') ++ G) [ f ]= A) (Fin-fst-≡ refl) (there C (++-[]= G' l))
inserts : forall {m n} -> Fin (suc m) -> Context n -> Context m -> Context (m + n)
inserts {m} {n} (zero , snd₁) G' G = subst Context (+-comm n m) (G' ++ G)
inserts (suc fst₁ , snd₁) G' [] = Empty.rec (¬-<-zero (pred-≤-pred snd₁))
inserts (suc fst₁ , snd₁) G' (A ∷ G) = A ∷ inserts (fst₁ , pred-≤-pred snd₁) G' G
inserts-[]=-unaffected : forall {m n} (G : Context m) (G' : Context n) {j : Fin m} (i : Fin (suc m)) {A}
-> toℕ j < toℕ i
-> G [ j ]= A
-> inserts i G' G [ toℕ j , ≤-trans (snd j) (n , +-comm n m) ]= A
inserts-[]=-unaffected (A ∷ G) G' (zero , snd₁) j<i (here .A .G) = Empty.rec (¬-<-zero j<i)
inserts-[]=-unaffected (A ∷ G) G' (suc fst₁ , snd₁) j<i (here .A .G) = subst (λ f → inserts (suc fst₁ , snd₁) G' (A ∷ G) [ f ]= A) (Fin-fst-≡ refl) (here A (inserts (fst₁ , pred-≤-pred snd₁) G' G))
inserts-[]=-unaffected (B ∷ _) G' (zero , snd₁) j<i (there .B l) = Empty.rec (¬-<-zero j<i)
inserts-[]=-unaffected (B ∷ G) G' (suc fst₁ , snd₁) {A = A} j<i (there .B l) = subst (λ f → inserts (suc fst₁ , snd₁) G' (B ∷ G) [ f ]= A) (Fin-fst-≡ refl) (there B (inserts-[]=-unaffected G G' (fst₁ , pred-≤-pred snd₁) (pred-≤-pred j<i) l))
helper1 : forall m n (j : Fin m) -> PathP (λ i -> Fin (+-comm n m i)) (n + toℕ j , <-k+ (snd j)) (toℕ j + n , ≤-+k (snd j))
helper1 m n j = ΣPathP (+-comm n (toℕ j) , toPathP (m≤n-isProp _ _))
helper2 : forall m n (G : Context m) (G' : Context n) -> PathP (λ i → Context (+-comm n m i)) (G' ++ G) (subst Context (+-comm n m) (G' ++ G))
helper2 m n G G' = toPathP refl
inserts-[]=-shifted : forall {m n} (G : Context m) (G' : Context n) {j : Fin m} (i : Fin (suc m)) {A}
-> toℕ i ≤ toℕ j
-> G [ j ]= A
-> inserts i G' G [ toℕ j + n , ≤-+k (snd j) ]= A
inserts-[]=-shifted {m} {n} G G' {j} (zero , snd₁) {A} i≤j l = transport (λ i -> helper2 m n G G' i [ helper1 m n j i ]= A) (++-[]= G' l)
inserts-[]=-shifted (B ∷ G) G' (suc fst₁ , snd₁) i≤j (here .B .G) = Empty.rec (¬-<-zero i≤j)
inserts-[]=-shifted (B ∷ G) G' {j = suc fst₂ , snd₂} (suc fst₁ , snd₁) {A = A} i≤j (there .B l) =
subst (λ f → inserts (suc fst₁ , snd₁) G' (B ∷ G) [ f ]= A) (Fin-fst-≡ refl) (there B (inserts-[]=-shifted G G' (fst₁ , pred-≤-pred snd₁) (pred-≤-pred i≤j) l))
_+++_+++_ : forall {m n} -> Context m -> Type -> Context n -> Context (suc (m + n))
[] +++ A +++ G2 = A ∷ G2
(B ∷ G1) +++ A +++ G2 = B ∷ (G1 +++ A +++ G2)
++++++-[]=-unaffected : forall {m n} (G1 : Context m) (G2 : Context n) {A B} {j : Fin (suc (n + m))}
-> (j<n : toℕ j < n)
-> (G2 +++ A +++ G1) [ j ]= B
-> (G2 ++ G1) [ toℕ j , <≤-trans j<n (m , +-comm m n) ]= B
++++++-[]=-unaffected G1 [] j<n l = Empty.rec (¬-<-zero j<n)
++++++-[]=-unaffected G1 (C ∷ G2) j<n (here .C .(G2 +++ _ +++ G1)) = subst (λ f -> (C ∷ (G2 ++ G1)) [ f ]= C) (Fin-fst-≡ refl) (here C (G2 ++ G1))
++++++-[]=-unaffected G1 (C ∷ G2) {B = B} j<n (there .C l) =
let a = ++++++-[]=-unaffected G1 G2 (pred-≤-pred j<n) l
in
subst (λ f -> (C ∷ (G2 ++ G1)) [ f ]= B) (Fin-fst-≡ refl) (there C a)
-- Note that `j` stands for `suc fst₁`.
++++++-[]=-shifted : forall {m n} (G1 : Context m) (G2 : Context n) {A B} {fst₁ : ℕ} {snd₁ : suc (fst₁) < suc (n + m)}
-> (n<j : n < suc fst₁)
-> (G2 +++ A +++ G1) [ suc fst₁ , snd₁ ]= B
-> (G2 ++ G1) [ fst₁ , pred-≤-pred snd₁ ]= B
++++++-[]=-shifted G1 [] n<j (there _ l) = subst (λ f → G1 [ f ]= _) (Fin-fst-≡ refl) l
++++++-[]=-shifted {m} {suc n} G1 (C ∷ G2) n<j (there .C {i = zero , snd₁} l) = Empty.rec (¬-<-zero (pred-≤-pred n<j))
++++++-[]=-shifted {m} {suc n} G1 (C ∷ G2) {B = B} n<j (there .C {i = suc fst₁ , snd₁} l) =
let a = ++++++-[]=-shifted G1 G2 (pred-≤-pred n<j) l
in
subst (λ f → (C ∷ (G2 ++ G1)) [ f ]= B) (Fin-fst-≡ refl) (there C a)
++++++-[]=-hit : forall {m n} (G1 : Context m) (G2 : Context n) {A B} {j : Fin (suc (n + m))}
-> toℕ j ≡ n
-> (G2 +++ A +++ G1) [ j ]= B
-> A ≡ B
++++++-[]=-hit G1 [] j≡n (here _ .G1) = refl
++++++-[]=-hit G1 [] j≡n (there _ l) = Empty.rec (snotz j≡n)
++++++-[]=-hit G1 (C ∷ G2) j≡n (here .C .(G2 +++ _ +++ G1)) = Empty.rec (znots j≡n)
++++++-[]=-hit G1 (C ∷ G2) j≡n (there .C l) = ++++++-[]=-hit G1 G2 (injSuc j≡n) l
infix 2 _<:_
infix 2 _<::_
data _<:_ : Type -> Type -> Set
data _<::_ {l1 l2 : Label} : Record Type l1 -> Record Type l2 -> Set
data _<:_ where
S-Refl : forall {A} -> A <: A
S-Arr : forall {A1 B1 A2 B2} -> A2 <: A1 -> B1 <: B2 -> A1 => B1 <: A2 => B2
S-Top : forall {A} -> A <: Top
S-Record : forall {l1 l2} {r1 : Record Type l1} {r2 : Record Type l2} -> r1 <:: r2 -> rec r1 <: rec r2
data _<::_ {l1} {l2} where
S-nil : l2 ≤ l1 -> nil <:: nil
S-cons1 : forall {l1'} {r1 : Record Type l1'} {r2 : Record Type l2} {A} {l1'<l1 : l1' < l1}
-> r1 <:: r2
-> cons r1 l1 A l1'<l1 <:: r2
S-cons2 : forall {l1' l2'} {r1 : Record Type l1'} {r2 : Record Type l2'} {A B} {l1'<l1 : l1' < l1} .{l2'<l2 : l2' < l2}
-> r1 <:: r2
-> A <: B
-> l1 ≡ l2
-> cons r1 l1 A l1'<l1 <:: cons r2 l2 B l2'<l2
<::-implies-≥ : forall {l1 l2} {r1 : Record Type l1} {r2 : Record Type l2} -> r1 <:: r2 -> l2 ≤ l1
<::-implies-≥ (S-nil x) = x
<::-implies-≥ (S-cons1 {l1'<l1 = l1'<l1} s) = ≤-trans (<::-implies-≥ s) (<-weaken l1'<l1)
<::-implies-≥ (S-cons2 s x x₁) = 0 , sym x₁
helper/<::-∈ : forall {l1 l2} {r1 : Record Type l1} {r2 : Record Type l2}
-> r1 <:: r2
-> forall {l}
-> l ∈ r2
-> l ∈ r1
helper/<::-∈ (S-cons1 {l1'<l1 = l1'<l1} s) l∈r2 = _∈_.there {lt = l1'<l1} (helper/<::-∈ s l∈r2)
helper/<::-∈ (S-cons2 {r1 = r1} {A = A} {l1'<l1 = l1'<l1} _ x l1≡l2) (_∈_.here {lt = a} e) = transport (λ i -> (l1≡l2 ∙ sym e) i ∈ cons r1 _ A l1'<l1) (_∈_.here {lt = l1'<l1} refl)
helper/<::-∈ (S-cons2 {l1'<l1 = l1'<l1} s x l1≡l2) (_∈_.there l∈r2) = _∈_.there {lt = l1'<l1} (helper/<::-∈ s l∈r2)
infix 2 _⊢_::_
infix 2 _⊢_:::_
data _⊢_::_ {n : ℕ} (G : Context n) : Term n -> Type -> Set
data _⊢_:::_ {n : ℕ} (G : Context n) {l} : Record (Term n) l -> Record Type l -> Set
data _⊢_::_ {n} G where
axiom : forall {i : Fin n} {A}
-> G [ i ]= A
-> G ⊢ var i :: A
=>I : forall {A B : Type} {e : Term (suc n)}
-> A ∷ G ⊢ e :: B
-> G ⊢ abs e :: A => B
=>E : forall {A B : Type} {e1 e2 : Term n}
-> G ⊢ e1 :: A => B
-> G ⊢ e2 :: A
-> G ⊢ e1 · e2 :: B
recI : forall {l} {r : Record (Term n) l} {rt : Record Type l}
-> G ⊢ r ::: rt
-> G ⊢ rec r :: rec rt
recE : forall {l'} {r : Record Type l'} {e : Term n} {l : Label}
-> G ⊢ e :: rec r
-> (l∈r : l ∈ r)
-> G ⊢ e # l :: find l r l∈r
sub : forall {A B : Type} {e}
-> G ⊢ e :: A
-> A <: B
-> G ⊢ e :: B
data _⊢_:::_ {n} G {l} where
rec/nil : G ⊢ nil ::: nil
rec/cons : forall {l'} {r : Record (Term n) l'} {rt : Record Type l'} {e A} .{l'<l : (l' < l)}
-> G ⊢ r ::: rt
-> G ⊢ e :: A
-> G ⊢ cons r l e l'<l ::: cons rt l A l'<l
helper/∈ : forall {n} {G : Context n} {l} {r : Record (Term n) l} {rt : Record Type l}
-> G ⊢ r ::: rt
-> forall {l₁}
-> l₁ ∈ r
-> l₁ ∈ rt
helper/∈ (rec/cons D x) (_∈_.here {lt = y} e) = _∈_.here {lt = y} e
helper/∈ (rec/cons D x) (_∈_.there {lt = y} l₁∈r) = _∈_.there {lt = y} (helper/∈ D l₁∈r)
helper/∈′ : forall {n} {G : Context n} {l} {r : Record (Term n) l} {rt : Record Type l}
-> G ⊢ r ::: rt
-> forall {l₁}
-> l₁ ∈ rt
-> l₁ ∈ r
helper/∈′ (rec/cons D x) (_∈_.here {lt = y} e) = _∈_.here {lt = y} e
helper/∈′ (rec/cons D x) (_∈_.there {lt = y} l₁∈r) = _∈_.there {lt = y} (helper/∈′ D l₁∈r)
weakening : forall {m n} (i : Fin (suc m)) {G : Context m} (G' : Context n) {e : Term m} {A}
-> G ⊢ e :: A
-> inserts i G' G ⊢ shift n i e :: A
weakeningRecord : forall {m n} (i : Fin (suc m)) {G : Context m} (G' : Context n) {l} {r : Record (Term m) l} {rt}
-> G ⊢ r ::: rt
-> inserts i G' G ⊢ shiftRecord n i r ::: rt
weakening {m = m} {n = n} i {G = G} G' {e = var j} (axiom l)
with toℕ i ≟ toℕ j
... | lt i<j = axiom (inserts-[]=-shifted G G' i (≤-trans (1 , refl) i<j) l)
... | eq i≡j = axiom (inserts-[]=-shifted G G' i (0 , i≡j) l)
... | gt j<i = axiom (inserts-[]=-unaffected G G' i j<i l)
weakening {n = n} i {G = G} G' {e = abs e} {A = A => B} (=>I D) =
=>I (subst (λ f -> (A ∷ inserts f G' G) ⊢ shift n (fsuc i) e :: B) (Fin-fst-≡ {j = i} refl) (weakening (fsuc i) G' D))
weakening i G' (=>E D D₁) = =>E (weakening i G' D) (weakening i G' D₁)
weakening i G' (sub D s) = sub (weakening i G' D) s
weakening i G' (recI D) = recI (weakeningRecord i G' D)
weakening i G' (recE D l∈r) = recE (weakening i G' D) l∈r
weakeningRecord i G' rec/nil = rec/nil
weakeningRecord i G' (rec/cons x x₁) = rec/cons (weakeningRecord i G' x) (weakening i G' x₁)
helper3 : forall {n} -> (suc n , ≤-refl) ≡ (suc n , suc-≤-suc ≤-refl)
helper3 = Fin-fst-≡ refl
helper4 : forall m n (j : Fin (suc (n + m))) j<n
-> (toℕ j , <≤-trans j<n (m , +-comm m n)) ≡ (toℕ j , <≤-trans j<n (pred-≤-pred (≤-trans (0 , refl) (suc-≤-suc (m , +-comm m n)))))
helper4 m n j j<n = Fin-fst-≡ refl
helper5 : forall m n (G1 : Context m) (G2 : Context n)
-> PathP (λ i -> Context (+-comm n m (~ i))) (subst Context (+-comm n m) (G2 ++ G1)) (G2 ++ G1)
helper5 m n G1 G2 = symP {A = λ i -> Context (+-comm n m i)} (toPathP refl)
helper6 : forall m n (e : Term (m + n))
-> PathP (λ i -> Term (+-comm m n i)) e (transport (λ i -> Term (+-comm m n i)) e)
helper6 m n e = toPathP refl
helper' : forall m n -> +-comm m n ≡ sym (+-comm n m)
helper' m n = isSetℕ (m + n) (n + m) (+-comm m n) (sym (+-comm n m))
helper7 : forall m n (e : Term (m + n))
-> PathP (λ i -> Term (+-comm n m (~ i))) e (transport (λ i -> Term (+-comm m n i)) e)
helper7 m n e = subst (λ m+n≡n+m → PathP (λ i → Term (m+n≡n+m i)) e (transport (λ i -> Term (+-comm m n i)) e)) (helper' m n) (helper6 m n e)
substitution : forall {m n} (G1 : Context m) (G2 : Context n) (e1 : Term (suc (n + m))) {e2 : Term m} {A B}
-> G1 ⊢ e2 :: A
-> G2 +++ A +++ G1 ⊢ e1 :: B
-> G2 ++ G1 ⊢ subst′ e2 (n , ≤-refl) e1 :: B
substitutionRecord : forall {m n} (G1 : Context m) (G2 : Context n) {l} (r : Record (Term (suc (n + m))) l) {e2 : Term m} {A} {rt}
-> G1 ⊢ e2 :: A
-> G2 +++ A +++ G1 ⊢ r ::: rt
-> G2 ++ G1 ⊢ substRecord e2 (n , ≤-refl) r ::: rt
substitution G1 G2 e1 D' (sub D s) = sub (substitution G1 G2 e1 D' D) s
substitution {m} {n} G1 G2 (var j) {e2 = e2} {B = B} D' (axiom l) with toℕ j ≟ toℕ (n , ≤-refl)
... | lt j<n = axiom (transport (λ i -> (G2 ++ G1) [ helper4 m n j j<n i ]= B) (++++++-[]=-unaffected G1 G2 j<n l))
... | eq j≡n = let a = weakening fzero G2 D' in transport (λ i → helper5 m n G1 G2 i ⊢ helper7 m n (shift n fzero e2) i :: ++++++-[]=-hit G1 G2 j≡n l i ) a
... | gt n<j with j
... | zero , snd₁ = Empty.rec (¬-<-zero n<j)
... | suc fst₁ , snd₁ = axiom (++++++-[]=-shifted G1 G2 n<j l)
substitution G1 G2 (abs e1) {e2 = e2} D' (=>I {A} {B} D) = =>I (transport (λ i → (A ∷ (G2 ++ G1)) ⊢ subst′ e2 (helper3 i) e1 :: B) (substitution G1 (A ∷ G2) e1 D' D))
substitution G1 G2 (e · e') D' (=>E D D₁) = =>E (substitution G1 G2 e D' D) (substitution G1 G2 e' D' D₁)
substitution G1 G2 (rec r) D' (recI D) = recI (substitutionRecord G1 G2 r D' D)
substitution G1 G2 (e # l) D' (recE D l∈r) = recE (substitution G1 G2 e D' D) l∈r
substitutionRecord G1 G2 nil D' rec/nil = rec/nil
substitutionRecord G1 G2 (cons r l e _) D' (rec/cons D x) = rec/cons (substitutionRecord G1 G2 r D' D) (substitution G1 G2 e D' x)
S-Trans : forall {A B C}
-> A <: B
-> B <: C
-> A <: C
S-TransRecord : forall {l1 l2 l3} {r1 : Record Type l1} {r2 : Record Type l2} {r3 : Record Type l3}
-> r1 <:: r2
-> r2 <:: r3
-> r1 <:: r3
S-Trans S-Refl s2 = s2
S-Trans (S-Arr s1 s3) S-Refl = S-Arr s1 s3
S-Trans (S-Arr s1 s3) (S-Arr s2 s4) = S-Arr (S-Trans s2 s1) (S-Trans s3 s4)
S-Trans (S-Arr s1 s3) S-Top = S-Top
S-Trans S-Top S-Refl = S-Top
S-Trans S-Top S-Top = S-Top
S-Trans (S-Record s1) S-Refl = S-Record s1
S-Trans (S-Record s1) S-Top = S-Top
S-Trans (S-Record s1) (S-Record s2) = S-Record (S-TransRecord s1 s2)
S-TransRecord (S-nil x) (S-nil y) = S-nil (≤-trans y x)
S-TransRecord (S-cons1 {l1'<l1 = l1'<l1} x) x₁ = S-cons1 {l1'<l1 = l1'<l1} (S-TransRecord x x₁)
S-TransRecord (S-cons2 {l1'<l1 = a} x x₂ _) (S-cons1 x₁) = S-cons1 {l1'<l1 = a} (S-TransRecord x x₁)
S-TransRecord (S-cons2 {l1'<l1 = a} x x₂ l1≡l2) (S-cons2 x₁ x₃ l2≡l3) = S-cons2 {l1'<l1 = a} (S-TransRecord x x₁) (S-Trans x₂ x₃) (l1≡l2 ∙ l2≡l3)
inversion/S-Arr : forall {A1 B1 A2 B2}
-> A1 => B1 <: A2 => B2
-> (A2 <: A1) × (B1 <: B2)
inversion/S-Arr S-Refl = S-Refl , S-Refl
inversion/S-Arr (S-Arr s s₁) = s , s₁
helper/inversion/S-Record : forall {l1 l2} {r1 : Record Type l1} {r2 : Record Type l2}
-> (s : r1 <:: r2)
-> forall {l}
-> (l∈r2 : l ∈ r2)
-> find l r1 (helper/<::-∈ s l∈r2) <: find l r2 l∈r2
helper/inversion/S-Record (S-cons1 s) l∈r2 = helper/inversion/S-Record s l∈r2
helper/inversion/S-Record {l1} {r1 = cons r1 l1 A k} (S-cons2 {B = B} {l1'<l1 = l1'<l1} _ x l1≡l2) {l = l} (_∈_.here {lt = u} e) =
subst (λ z -> find l (cons r1 l1 A k) z <: B) (l∈r-isProp l (cons r1 l1 A k) (_∈_.here {lt = l1'<l1} (e ∙ sym l1≡l2)) (transport (λ i → (l1≡l2 ∙ sym e) i ∈ cons r1 l1 A k) (_∈_.here refl))) x
helper/inversion/S-Record (S-cons2 s x x₁) (_∈_.there l∈r2) = helper/inversion/S-Record s l∈r2
inversion/S-Record : forall {l1 l2} {r1 : Record Type l1} {r2 : Record Type l2}
-> rec r1 <: rec r2
-> forall {l} (l∈r2 : l ∈ r2) -> Σ[ l∈r1 ∈ (l ∈ r1) ] (find l r1 l∈r1 <: find l r2 l∈r2)
inversion/S-Record S-Refl l∈r2 = l∈r2 , S-Refl
inversion/S-Record (S-Record s) l∈r2 = helper/<::-∈ s l∈r2 , helper/inversion/S-Record s l∈r2
inversion/=>I : forall {n} {G : Context n} {e : Term (suc n)} {A}
-> G ⊢ abs e :: A
-> Σ[ B ∈ Type ] Σ[ C ∈ Type ] ((B ∷ G ⊢ e :: C) × (B => C <: A))
inversion/=>I (=>I D) = _ , _ , D , S-Refl
inversion/=>I (sub D s)
with inversion/=>I D
... | B , C , D' , s' = B , C , D' , S-Trans s' s
helper/inversion/recI : forall {n} {G : Context n} {l} {r : Record (Term n) l} {rt : Record Type l}
-> (D : G ⊢ r ::: rt)
-> forall {l₁}
-> (l₁∈r : l₁ ∈ r)
-> G ⊢ find l₁ r l₁∈r :: find l₁ rt (helper/∈ D l₁∈r)
helper/inversion/recI (rec/cons D x) (_∈_.here e) = x
helper/inversion/recI (rec/cons D x) (_∈_.there l₁∈r) = helper/inversion/recI D l₁∈r
inversion/recI : forall {n} {G : Context n} {l} {r : Record (Term n) l} {A}
-> G ⊢ rec r :: A
-> Σ[ rt ∈ Record Type l ] Σ[ f ∈ (forall {l₁} -> l₁ ∈ r -> l₁ ∈ rt) ] Σ[ g ∈ (forall {l₁} -> l₁ ∈ rt -> l₁ ∈ r) ] ((forall {l₁} (l₁∈r : l₁ ∈ r) -> (G ⊢ find l₁ r l₁∈r :: find l₁ rt (f l₁∈r))) × (rec rt <: A))
inversion/recI (recI D) = _ , helper/∈ D , helper/∈′ D , (helper/inversion/recI D) , S-Refl
inversion/recI (sub D s)
with inversion/recI D
... | rt , f , g , x , s' = rt , f , g , x , S-Trans s' s
preservation : forall {n} {G : Context n} (e : Term n) {e' : Term n} {A}
-> G ⊢ e :: A
-> e ▷ e'
-> G ⊢ e' :: A
preservation e (sub D s) st = sub (preservation e D st) s
preservation (_ · _) (=>E D D₁) (cong/app s) = =>E (preservation _ D s) D₁
preservation {G = G} (abs e1 · e2) (=>E D D₁) beta/=>
with inversion/=>I D
... | _ , _ , D , s with inversion/S-Arr s
... | sdom , scod = substitution G [] e1 (sub D₁ sdom) (sub D scod)
preservation (e # l) (recE D l∈r) (cong/# s) = recE (preservation e D s) l∈r
preservation {G = G} (rec r # l) (recE D l∈r) (beta/rec {l∈r = l∈r′})
with inversion/recI D
... | rt , f , _ , x , s with inversion/S-Record s
... | sr = let a = x l∈r′ in let l∈rt , b = sr l∈r in sub (subst (λ z -> G ⊢ find l r l∈r′ :: find l rt z) (l∈r-isProp l rt (f l∈r′) (l∈rt)) a) b
-- Path.
data P {n : ℕ} : Term n -> Set where
var : forall {i : Fin n} -> P (var i)
app : forall {e1 e2 : Term n} -> P e1 -> P (e1 · e2)
proj : forall {e} {l} -> P e -> P (e # l)
data Whnf {n : ℕ} : Term n -> Set where
`_ : forall {p : Term n} -> P p -> Whnf p
abs : forall {e : Term (suc n)} -> Whnf (abs e)
rec : forall {l} {r : Record (Term n) l} -> Whnf (rec r)
=>Whnf : forall {n} {G : Context n} {e : Term n} {A B : Type}
-> G ⊢ e :: A => B
-> Whnf e
-> P e ⊎ (Σ[ e' ∈ Term (suc n) ] e ≡ abs e')
=>Whnf {e = var x} D (` x₁) = inl x₁
=>Whnf {e = abs e} D abs = inr (e , refl)
=>Whnf {e = e · e₁} D (` x) = inl x
=>Whnf {e = rec x} D w
with inversion/recI D
... | ()
=>Whnf {e = e # x} D (` x₁) = inl x₁
recWhnf : forall {n} {G : Context n} {e : Term n} {l} {rt : Record Type l}
-> G ⊢ e :: rec rt
-> Whnf e
-> P e ⊎ (Σ[ l' ∈ Label ] Σ[ r ∈ Record (Term n) l' ] e ≡ rec r)
recWhnf {e = var x} D (` x₁) = inl x₁
recWhnf {e = abs e} D w
with inversion/=>I D
... | ()
recWhnf {e = e · e₁} D (` x) = inl x
recWhnf {e = rec x} D rec = inr (_ , x , refl)
recWhnf {e = e # x} D (` x₁) = inl x₁
helper/progress : forall {n} {G : Context n} {l1 l2} {r : Record _ l1} {rt : Record _ l2}
-> G ⊢ rec r :: rec rt
-> forall {l}
-> l ∈ rt
-> l ∈ r
helper/progress D l∈rt
with inversion/recI D
... | rt0 , f , g , x , s with inversion/S-Record s l∈rt
... | l∈rt0 , s' = g l∈rt0
progress : forall {n} {G : Context n} {e : Term n} {A}
-> G ⊢ e :: A
-> (Σ[ e' ∈ Term n ] e ▷ e') ⊎ Whnf e
progress (axiom x) = inr (` var)
progress (=>I D) = inr abs
progress {n} {e = e1 · e2} (=>E D D₁) with progress D
... | inl (e1' , s) = inl ((e1' · e2) , cong/app s)
... | inr w with =>Whnf D w
... | inl p = inr (` app p)
... | inr (e1 , x) = inl (transport (Σ-cong-snd λ x₁ i → (x (~ i) · e2) ▷ x₁) (subst′ e2 fzero e1 , beta/=>))
progress (sub D _) = progress D
progress (recI D) = inr rec
progress {G = G} {e = e # l} (recE D l∈r) with progress D
... | inl (e' , s) = inl ((e' # l) , cong/# s)
... | inr w with recWhnf D w
... | inl p = inr (` proj p)
... | inr (l' , r , x) = inl (transport (Σ-cong-snd λ x₁ i → x (~ i) # l ▷ x₁) (find l r (helper/progress (subst (λ x₁ → G ⊢ x₁ :: _) x D) l∈r) , beta/rec))
|
{
"alphanum_fraction": 0.5138821021,
"avg_line_length": 45.5688259109,
"ext": "agda",
"hexsha": "aae9872a558dfade66ddb5b768f17b071bcc8166",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T10:47:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-24T10:47:09.000Z",
"max_forks_repo_head_hexsha": "fca08c53394f72c63d1bd7260fabfd70f73040b3",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "elpinal/subtyping-agda",
"max_forks_repo_path": "Subtyping.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fca08c53394f72c63d1bd7260fabfd70f73040b3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "elpinal/subtyping-agda",
"max_issues_repo_path": "Subtyping.agda",
"max_line_length": 241,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "fca08c53394f72c63d1bd7260fabfd70f73040b3",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "elpinal/subtyping-agda",
"max_stars_repo_path": "Subtyping.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T17:17:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-01-16T07:11:04.000Z",
"num_tokens": 10276,
"size": 22511
}
|
postulate
I : Set
D : I → Set
T : Set
record R : Set where
field
t0 : T
{i0} : I
t1 : T
d0 : D i0
{i1} : I
d1 : D i1
t2 : T
module M0 where
postulate
t0 t1 : T
module MI where
postulate
i1 : I
d1 : D i1
module MD {i0 : I} where
postulate
d0 : D i0
t0 : T
r : R
r = record { M0; t2 = M0.t0; MD; MI; i0 = i0 }
module My where postulate i0 : I
r' : R
r' = record { R r; t0 = R.t1 r }
where module Rr = R r
|
{
"alphanum_fraction": 0.4927835052,
"avg_line_length": 13.1081081081,
"ext": "agda",
"hexsha": "e628fea49e054038761bc6129550a277573ac911",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/RecordFromModuleAmb.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/RecordFromModuleAmb.agda",
"max_line_length": 46,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/RecordFromModuleAmb.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 221,
"size": 485
}
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Functions.Definition
module Orders.WellFounded.Definition {a b : _} {A : Set a} (_<_ : Rel {a} {b} A) where
data Accessible (x : A) : Set (lsuc a ⊔ b) where
access : (∀ y → y < x → Accessible y) → Accessible x
WellFounded : Set (lsuc a ⊔ b)
WellFounded = ∀ x → Accessible x
|
{
"alphanum_fraction": 0.6517412935,
"avg_line_length": 30.9230769231,
"ext": "agda",
"hexsha": "cf7842af978594c7c3a5420c3f7e57d183f0f6ac",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Orders/WellFounded/Definition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Orders/WellFounded/Definition.agda",
"max_line_length": 86,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Orders/WellFounded/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 134,
"size": 402
}
|
------------------------------------------------------------------------------
-- Quicksort using the Bove-Capretta method
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.Program.QuickSort.QuickSortBC where
open import Data.List.Base
open import Data.Nat.Base
open import Data.Nat.Properties
open import Induction
open import Induction.Nat
open import Induction.WellFounded
open import Level
open import Relation.Unary
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
module InvImg =
Induction.WellFounded.Inverse-image {A = List ℕ} {ℕ} {_<′_} length
------------------------------------------------------------------------------
-- Non-terminating quicksort.
{-# TERMINATING #-}
qsNT : List ℕ → List ℕ
qsNT [] = []
qsNT (x ∷ xs) = qsNT (filter (λ y → y ≤′? x) xs) ++
x ∷ qsNT (filter (λ y → x ≤′? y) xs)
-- Domain predicate for quicksort.
data QSDom : List ℕ → Set where
qsDom-[] : QSDom []
qsDom-∷ : ∀ {x xs} →
(QSDom (filter (λ y → y ≤′? x) xs)) →
(QSDom (filter (λ y → x ≤′? y) xs)) →
QSDom (x ∷ xs)
-- Induction principle associated to the domain predicate of quicksort.
-- (It was not necessary).
QSDom-ind : (P : List ℕ → Set) →
P [] →
(∀ {x xs} → QSDom (filter (λ y → y ≤′? x) xs) →
P (filter (λ y → y ≤′? x) xs) →
QSDom (filter (λ y → x ≤′? y) xs) →
P (filter (λ y → x ≤′? y) xs) →
P (x ∷ xs)) →
(∀ {xs} → QSDom xs → P xs)
QSDom-ind P P[] ih qsDom-[] = P[]
QSDom-ind P P[] ih (qsDom-∷ h₁ h₂) =
ih h₁ (QSDom-ind P P[] ih h₁) h₂ (QSDom-ind P P[] ih h₂)
-- Well-founded relation on lists.
_⟪′_ : {A : Set} → List A → List A → Set
xs ⟪′ ys = length xs <′ length ys
wf-⟪′ : WellFounded _⟪′_
wf-⟪′ = InvImg.well-founded <′-wellFounded
-- The well-founded induction principle on _⟪′_.
-- postulate wfi-⟪′ : (P : List ℕ → Set) →
-- (∀ xs → (∀ ys → ys ⟪′ xs → P ys) → P xs) →
-- ∀ xs → P xs
-- The quicksort algorithm is total.
filter-length : {A : Set} {P : Pred A Level.zero} →
(P? : Relation.Unary.Decidable P ) → ∀ xs → length (filter P? xs) ≤′ length xs
filter-length P? [] = ≤′-refl
filter-length P? (x ∷ xs) with P? x
... | yes _ = ≤⇒≤′ (s≤s (≤′⇒≤ (filter-length P? xs)))
... | no _ = ≤′-step (filter-length P? xs)
module AllWF = Induction.WellFounded.All wf-⟪′
allQSDom : ∀ xs → QSDom xs
-- If we use wfi-⟪′ then allQSDom = wfi-⟪′ P ih
allQSDom = build (AllWF.wfRec-builder _) P ih
where
P : List ℕ → Set
P = QSDom
-- If we use wfi-⟪′ then
-- ih : ∀ zs → (∀ ys → ys ⟪′ zs → P ys) → P zs
ih : ∀ zs → WfRec _⟪′_ P zs → P zs
ih [] h = qsDom-[]
ih (z ∷ zs) h = qsDom-∷ prf₁ prf₂
where
c₁ : (y : ℕ) → Dec (y ≤′ z)
c₁ y = y ≤′? z
c₂ : (y : ℕ) → Dec (z ≤′ y)
c₂ y = z ≤′? y
f₁ : List ℕ
f₁ = filter c₁ zs
f₂ : List ℕ
f₂ = filter c₂ zs
prf₁ : QSDom (filter (λ y → y ≤′? z) zs)
prf₁ = h f₁ (≤⇒≤′ (s≤s (≤′⇒≤ (filter-length c₁ zs))))
prf₂ : QSDom (filter (λ y → z ≤′? y) zs)
prf₂ = h f₂ (≤⇒≤′ (s≤s (≤′⇒≤ (filter-length c₂ zs))))
-- Quicksort algorithm by structural recursion on the domain predicate.
qsDom : ∀ xs → QSDom xs → List ℕ
qsDom .[] qsDom-[] = []
qsDom (x ∷ xs) (qsDom-∷ h₁ h₂) =
qsDom (filter (λ y → y ≤′? x) xs) h₁ ++
x ∷ qsDom (filter (λ y → x ≤′? y) xs) h₂
-- The quicksort algorithm.
qs : List ℕ → List ℕ
qs xs = qsDom xs (allQSDom xs)
-- Testing.
l₁ : List ℕ
l₁ = []
l₂ = 1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ []
l₃ = 5 ∷ 4 ∷ 3 ∷ 2 ∷ 1 ∷ []
l₄ = 4 ∷ 1 ∷ 3 ∷ 5 ∷ 2 ∷ []
t₁ : qs l₁ ≡ l₁
t₁ = refl
t₂ : qs l₂ ≡ l₂
t₂ = refl
t₃ : qs l₃ ≡ l₂
t₃ = refl
t₄ : qs l₄ ≡ l₂
t₄ = refl
|
{
"alphanum_fraction": 0.4904537565,
"avg_line_length": 27.8137931034,
"ext": "agda",
"hexsha": "e1e494978feb99822c240a4a6338f96181049c6e",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/Program/QuickSort/QuickSortBC.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/Program/QuickSort/QuickSortBC.agda",
"max_line_length": 94,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/Program/QuickSort/QuickSortBC.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 1494,
"size": 4033
}
|
------------------------------------------------------------------------------
-- Totality properties respect to Tree
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.SortList.Properties.Totality.TreeI where
open import FOTC.Base
open import FOTC.Data.Nat.List.Type
open import FOTC.Data.Nat.Type
open import FOTC.Program.SortList.SortList
------------------------------------------------------------------------------
-- See the ATP version.
postulate toTree-Tree : ∀ {item t} → N item → Tree t → Tree (toTree · item · t)
makeTree-Tree : ∀ {is} → ListN is → Tree (makeTree is)
makeTree-Tree lnnil = subst Tree (sym (lit-[] toTree nil)) tnil
makeTree-Tree (lncons {i} {is} Ni LNis) =
subst Tree
(sym (lit-∷ toTree i is nil))
(toTree-Tree Ni (makeTree-Tree LNis))
|
{
"alphanum_fraction": 0.496031746,
"avg_line_length": 37.3333333333,
"ext": "agda",
"hexsha": "b86c96d5e9e8c59a1b9fc607bb4c828b908e0bff",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/SortList/Properties/Totality/TreeI.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/SortList/Properties/Totality/TreeI.agda",
"max_line_length": 79,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/SortList/Properties/Totality/TreeI.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 227,
"size": 1008
}
|
{-
Theory about equivalences
Definitions are in Core/Glue.agda but re-exported by this module
- isEquiv is a proposition ([isPropIsEquiv])
- Any isomorphism is an equivalence ([isoToEquiv])
There are more statements about equivalences in Equiv/Properties.agda:
- if f is an equivalence then (cong f) is an equivalence
- if f is an equivalence then precomposition with f is an equivalence
- if f is an equivalence then postcomposition with f is an equivalence
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Foundations.Equiv where
open import Cubical.Foundations.Function
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Equiv.Base public
open import Cubical.Data.Sigma.Base
private
variable
ℓ ℓ' ℓ'' : Level
A B C D : Type ℓ
equivIsEquiv : (e : A ≃ B) → isEquiv (equivFun e)
equivIsEquiv e = snd e
equivCtr : (e : A ≃ B) (y : B) → fiber (equivFun e) y
equivCtr e y = e .snd .equiv-proof y .fst
equivCtrPath : (e : A ≃ B) (y : B) →
(v : fiber (equivFun e) y) → Path _ (equivCtr e y) v
equivCtrPath e y = e .snd .equiv-proof y .snd
-- Proof using isPropIsContr. This is slow and the direct proof below is better
isPropIsEquiv' : (f : A → B) → isProp (isEquiv f)
equiv-proof (isPropIsEquiv' f u0 u1 i) y =
isPropIsContr (u0 .equiv-proof y) (u1 .equiv-proof y) i
-- Direct proof that computes quite ok (can be optimized further if
-- necessary, see:
-- https://github.com/mortberg/cubicaltt/blob/pi4s3_dimclosures/examples/brunerie2.ctt#L562
isPropIsEquiv : (f : A → B) → isProp (isEquiv f)
equiv-proof (isPropIsEquiv f p q i) y =
let p2 = p .equiv-proof y .snd
q2 = q .equiv-proof y .snd
in p2 (q .equiv-proof y .fst) i
, λ w j → hcomp (λ k → λ { (i = i0) → p2 w j
; (i = i1) → q2 w (j ∨ ~ k)
; (j = i0) → p2 (q2 w (~ k)) i
; (j = i1) → w })
(p2 w (i ∨ j))
equivEq : {e f : A ≃ B} → (h : e .fst ≡ f .fst) → e ≡ f
equivEq {e = e} {f = f} h = λ i → (h i) , isProp→PathP (λ i → isPropIsEquiv (h i)) (e .snd) (f .snd) i
module _ {f : A → B} (equivF : isEquiv f) where
funIsEq : A → B
funIsEq = f
invIsEq : B → A
invIsEq y = equivF .equiv-proof y .fst .fst
secIsEq : section f invIsEq
secIsEq y = equivF .equiv-proof y .fst .snd
retIsEq : retract f invIsEq
retIsEq a i = equivF .equiv-proof (f a) .snd (a , refl) i .fst
commSqIsEq : ∀ a → Square (secIsEq (f a)) refl (cong f (retIsEq a)) refl
commSqIsEq a i = equivF .equiv-proof (f a) .snd (a , refl) i .snd
module _ (w : A ≃ B) where
invEq : B → A
invEq = invIsEq (snd w)
secEq : section invEq (w .fst)
secEq = retIsEq (snd w)
retEq : retract invEq (w .fst)
retEq = secIsEq (snd w)
open Iso
equivToIso : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → A ≃ B → Iso A B
fun (equivToIso e) = e .fst
inv (equivToIso e) = invEq e
rightInv (equivToIso e) = retEq e
leftInv (equivToIso e) = secEq e
-- TODO: there should be a direct proof of this that doesn't use equivToIso
invEquiv : A ≃ B → B ≃ A
invEquiv e = isoToEquiv (invIso (equivToIso e))
invEquivIdEquiv : (A : Type ℓ) → invEquiv (idEquiv A) ≡ idEquiv A
invEquivIdEquiv _ = equivEq refl
-- TODO: there should be a direct proof of this that doesn't use equivToIso
compEquiv : A ≃ B → B ≃ C → A ≃ C
compEquiv f g = isoToEquiv (compIso (equivToIso f) (equivToIso g))
compEquivIdEquiv : (e : A ≃ B) → compEquiv (idEquiv A) e ≡ e
compEquivIdEquiv e = equivEq refl
compEquivEquivId : (e : A ≃ B) → compEquiv e (idEquiv B) ≡ e
compEquivEquivId e = equivEq refl
invEquiv-is-rinv : (e : A ≃ B) → compEquiv e (invEquiv e) ≡ idEquiv A
invEquiv-is-rinv e = equivEq (funExt (secEq e))
invEquiv-is-linv : (e : A ≃ B) → compEquiv (invEquiv e) e ≡ idEquiv B
invEquiv-is-linv e = equivEq (funExt (retEq e))
compEquiv-assoc : (f : A ≃ B) (g : B ≃ C) (h : C ≃ D)
→ compEquiv f (compEquiv g h) ≡ compEquiv (compEquiv f g) h
compEquiv-assoc f g h = equivEq refl
LiftEquiv : A ≃ Lift {i = ℓ} {j = ℓ'} A
LiftEquiv .fst a .lower = a
LiftEquiv .snd .equiv-proof = strictContrFibers lower
Lift≃Lift : (e : A ≃ B) → Lift {j = ℓ'} A ≃ Lift {j = ℓ''} B
Lift≃Lift e .fst a .lower = e .fst (a .lower)
Lift≃Lift e .snd .equiv-proof b .fst .fst .lower = invEq e (b .lower)
Lift≃Lift e .snd .equiv-proof b .fst .snd i .lower =
e .snd .equiv-proof (b .lower) .fst .snd i
Lift≃Lift e .snd .equiv-proof b .snd (a , p) i .fst .lower =
e .snd .equiv-proof (b .lower) .snd (a .lower , cong lower p) i .fst
Lift≃Lift e .snd .equiv-proof b .snd (a , p) i .snd j .lower =
e .snd .equiv-proof (b .lower) .snd (a .lower , cong lower p) i .snd j
isContr→Equiv : isContr A → isContr B → A ≃ B
isContr→Equiv Actr Bctr = isoToEquiv (isContr→Iso Actr Bctr)
propBiimpl→Equiv : (Aprop : isProp A) (Bprop : isProp B) (f : A → B) (g : B → A) → A ≃ B
propBiimpl→Equiv Aprop Bprop f g = f , hf
where
hf : isEquiv f
hf .equiv-proof y .fst = (g y , Bprop (f (g y)) y)
hf .equiv-proof y .snd h i .fst = Aprop (g y) (h .fst) i
hf .equiv-proof y .snd h i .snd = isProp→isSet' Bprop (Bprop (f (g y)) y) (h .snd)
(cong f (Aprop (g y) (h .fst))) refl i
isEquivPropBiimpl→Equiv : isProp A → isProp B
→ ((A → B) × (B → A)) ≃ (A ≃ B)
isEquivPropBiimpl→Equiv {A = A} {B = B} Aprop Bprop = isoToEquiv isom where
isom : Iso (Σ (A → B) (λ _ → B → A)) (A ≃ B)
isom .fun (f , g) = propBiimpl→Equiv Aprop Bprop f g
isom .inv e = equivFun e , invEq e
isom .rightInv e = equivEq refl
isom .leftInv _ = refl
equivΠCod : ∀ {F : A → Type ℓ} {G : A → Type ℓ'}
→ ((x : A) → F x ≃ G x) → ((x : A) → F x) ≃ ((x : A) → G x)
equivΠCod k .fst f x = k x .fst (f x)
equivΠCod k .snd .equiv-proof f .fst .fst x = equivCtr (k x) (f x) .fst
equivΠCod k .snd .equiv-proof f .fst .snd i x = equivCtr (k x) (f x) .snd i
equivΠCod k .snd .equiv-proof f .snd (g , p) i .fst x =
equivCtrPath (k x) (f x) (g x , λ j → p j x) i .fst
equivΠCod k .snd .equiv-proof f .snd (g , p) i .snd j x =
equivCtrPath (k x) (f x) (g x , λ k → p k x) i .snd j
equivImplicitΠCod : ∀ {F : A → Type ℓ} {G : A → Type ℓ'}
→ ({x : A} → F x ≃ G x) → ({x : A} → F x) ≃ ({x : A} → G x)
equivImplicitΠCod k .fst f {x} = k {x} .fst (f {x})
equivImplicitΠCod k .snd .equiv-proof f .fst .fst {x} = equivCtr (k {x}) (f {x}) .fst
equivImplicitΠCod k .snd .equiv-proof f .fst .snd i {x} = equivCtr (k {x}) (f {x}) .snd i
equivImplicitΠCod k .snd .equiv-proof f .snd (g , p) i .fst {x} =
equivCtrPath (k {x}) (f {x}) (g {x} , λ j → p j {x}) i .fst
equivImplicitΠCod k .snd .equiv-proof f .snd (g , p) i .snd j {x} =
equivCtrPath (k {x}) (f {x}) (g {x} , λ k → p k {x}) i .snd j
equiv→Iso : (A ≃ B) → (C ≃ D) → Iso (A → C) (B → D)
equiv→Iso h k .Iso.fun f b = equivFun k (f (invEq h b))
equiv→Iso h k .Iso.inv g a = invEq k (g (equivFun h a))
equiv→Iso h k .Iso.rightInv g = funExt λ b → retEq k _ ∙ cong g (retEq h b)
equiv→Iso h k .Iso.leftInv f = funExt λ a → secEq k _ ∙ cong f (secEq h a)
equiv→ : (A ≃ B) → (C ≃ D) → (A → C) ≃ (B → D)
equiv→ h k = isoToEquiv (equiv→Iso h k)
equivCompIso : (A ≃ B) → (C ≃ D) → Iso (A ≃ C) (B ≃ D)
equivCompIso h k .Iso.fun f = compEquiv (compEquiv (invEquiv h) f) k
equivCompIso h k .Iso.inv g = compEquiv (compEquiv h g) (invEquiv k)
equivCompIso h k .Iso.rightInv g = equivEq (equiv→Iso h k .Iso.rightInv (equivFun g))
equivCompIso h k .Iso.leftInv f = equivEq (equiv→Iso h k .Iso.leftInv (equivFun f))
equivComp : (A ≃ B) → (C ≃ D) → (A ≃ C) ≃ (B ≃ D)
equivComp h k = isoToEquiv (equivCompIso h k)
-- Some helpful notation:
_≃⟨_⟩_ : (X : Type ℓ) → (X ≃ B) → (B ≃ C) → (X ≃ C)
_ ≃⟨ f ⟩ g = compEquiv f g
_■ : (X : Type ℓ) → (X ≃ X)
_■ = idEquiv
infixr 0 _≃⟨_⟩_
infix 1 _■
composesToId→Equiv : (f : A → B) (g : B → A) → f ∘ g ≡ idfun B → isEquiv f → isEquiv g
composesToId→Equiv f g id iseqf =
isoToIsEquiv
(iso g f
(λ b → (λ i → equiv-proof iseqf (f b) .snd (g (f b) , cong (λ h → h (f b)) id) (~ i) .fst)
∙∙ cong (λ x → equiv-proof iseqf (f b) .fst .fst) id
∙∙ λ i → equiv-proof iseqf (f b) .snd (b , refl) i .fst)
λ a i → id i a)
|
{
"alphanum_fraction": 0.5964531307,
"avg_line_length": 37.6772727273,
"ext": "agda",
"hexsha": "30a088bb794d0d365bd70cc716656ec1a7d1229b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Edlyr/cubical",
"max_forks_repo_path": "Cubical/Foundations/Equiv.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Edlyr/cubical",
"max_issues_repo_path": "Cubical/Foundations/Equiv.agda",
"max_line_length": 102,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Edlyr/cubical",
"max_stars_repo_path": "Cubical/Foundations/Equiv.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3336,
"size": 8289
}
|
module Scratch where
open import OutsideIn.Prelude
open import OutsideIn.X
open import OutsideIn.Instantiations.Simple as Simple
import OutsideIn
data DCs : ℕ → Set where
True : DCs 0
False : DCs 0
data TCs : Set where
BoolT : TCs
open OutsideIn(Simple DCs)
data ⊥ : Set where
import OutsideIn.Inference.Separator as S
open S(Simple DCs)
ep : ∀ {v} → SConstraint v
ep = SConstraint.ε
_~_ : ∀ {v} → Simple.Type v → Simple.Type v → SConstraint v
_~_ = SConstraint._∼_
con : SConstraint (TCs ⨁ 7)
con = (((((SConstraint.ε ∧′
(Var (suc (suc zero)) SConstraint.∼ Var (suc (suc (suc (suc zero))))))
∧′ (Var (suc (suc (suc zero))) SConstraint.∼ Var (suc (suc (suc (suc (suc zero)))))))
∧′ ((((Var (suc zero) SConstraint.∼ Var (suc (suc (suc zero))))
∧′ (Var (suc zero) SConstraint.∼ Var (suc (suc (suc (suc (suc (suc (suc BoolT)))))))))
∧′ (Var (suc (suc (suc (suc (suc (suc (suc BoolT))))))) SConstraint.∼ Var (suc (suc zero))))
∧′ ((((Var zero SConstraint.∼ Var (suc (suc (suc zero)))) ∧′ (Var zero SConstraint.∼ Var (suc (suc (suc (suc (suc (suc (suc BoolT)))))))))
∧′ (Var (suc (suc (suc (suc (suc (suc (suc BoolT))))))) SConstraint.∼ Var (suc (suc zero)))) ∧′ SConstraint.ε)))
∧′ (Var (suc (suc (suc (suc (suc (suc zero)))))) SConstraint.∼ ((funTy · Var (suc (suc (suc (suc zero))))) · Var (suc (suc (suc (suc (suc zero)))))))))
con-s : SConstraint (SVar TCs 7)
con-s = Functor.map sconstraint-is-functor svar-iso₁ con
con′ : SConstraint (TCs ⨁ 1)
con′ = SConstraint.ε ∧′ ((Var zero) SConstraint.∼ (Var (suc BoolT)) )
conn : SConstraint (TCs ⨁ 2)
conn = (Var (suc zero)) Simple.∼ ((funTy · Var zero) · Var zero)
v = Simple.simplifier (λ a b → true) 1 ax SConstraint.ε conn
open import Data.List
--
-- zero --> suc suc zero
-- suc zero --> zero
-- suc suc zero --> suc zero
-- suc suc suc zero --> suc suc zero
-- suc suc suc suc zero --> suc suc suc zero
-- suc suc suc suc suc zero --> suc suc suc suc zero
-- suc suc suc suc suc suc zero --> suc suc suc suc suc zero
e : ∀ {tv} → Expression tv TCs _
e = λ′ case Var (N zero) of
( DC True →′ Var (DC False)
∣ DC False →′ Var (DC True )
∣ esac
)
e2 : ∀ {tv ev} → Expression tv ev _
e2 = λ′ Var (N zero)
p2 : Program ⊥ TCs
p2 = bind₂ 1 · e2 ∷ SConstraint.ε ⇒ Var zero ⟶ Var zero
, bind₁ e2
, end
p : Program ⊥ TCs
p = bind₂ 0 · e ∷ SConstraint.ε ⇒ Var BoolT ⟶ Var BoolT
, bind₁ e
, end
Γ : Environment ⊥ TCs
Γ (DC True) = DC∀ 0 · [] ⟶ BoolT
Γ (DC False) = DC∀ 0 · [] ⟶ BoolT
Γ (N ())
open import Data.Fin
test = go ax Γ (λ a b → true) p
test2 = go ax Γ (λ a b → true) p2
|
{
"alphanum_fraction": 0.5426703372,
"avg_line_length": 29.6530612245,
"ext": "agda",
"hexsha": "5bc762c9262c1c9ec1c24cede7d22e8ecd0422eb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "liamoc/outside-in",
"max_forks_repo_path": "Scratch.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "liamoc/outside-in",
"max_issues_repo_path": "Scratch.agda",
"max_line_length": 164,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "liamoc/outside-in",
"max_stars_repo_path": "Scratch.agda",
"max_stars_repo_stars_event_max_datetime": "2020-11-19T14:30:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-14T05:22:15.000Z",
"num_tokens": 1062,
"size": 2906
}
|
-- -----------------------------
-- Equality
module Homogenous.Equality where
import Homogenous.Base
import EqBase
import PolyDepPrelude
open PolyDepPrelude using ( Datoid
; Bool; true; false; _&&_
; Pair; pair
; Either; left; right
; suc; zero
; _::_; nil
; cmp; Unit; unit
)
open Homogenous.Base using (Arity; Sig; Fa; F; T; It; out)
eq_step_ar : (n : Arity){X : Set}(fs : Fa n (X -> Bool))(xs : Fa n X) -> Bool
eq_step_ar zero unit unit = true
eq_step_ar (suc m) (pair f fs') (pair x xs') = f x && eq_step_ar m fs' xs'
-- We write left as This (as in "This constructor" and right as Other
-- (as in "one of the Other constructors") to help the reader
eq_step' : (fi : Sig){X : Set} -> F fi (X -> Bool) -> F fi X -> Bool
eq_step' (nil) () () -- empty
eq_step' (n :: ns) (left fs ) (left xs ) = eq_step_ar n fs xs
eq_step' (n :: ns) (left fs ) (right y') = false
eq_step' (n :: ns) (right x') (left xs ) = false
eq_step' (n :: ns) (right x') (right y') = eq_step' ns x' y'
eq_step : (fi : Sig)(x : F fi (T fi -> Bool)) -> T fi -> Bool
eq_step fi x = \t -> eq_step' fi x (out fi t)
equal' : (fi : Sig) -> T fi -> (T fi -> Bool)
equal' fi = It fi (eq_step fi)
equal : (fi : Sig) -> T fi -> T fi -> Bool
equal fi x y = equal' fi x y
|
{
"alphanum_fraction": 0.5210263721,
"avg_line_length": 33.4047619048,
"ext": "agda",
"hexsha": "7aedda17759cfb8af9ee3d745100319879abf786",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/AIM5/PolyDep/Homogenous/Equality.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/AIM5/PolyDep/Homogenous/Equality.agda",
"max_line_length": 77,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/AIM5/PolyDep/Homogenous/Equality.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 442,
"size": 1403
}
|
module Structure.Monoid.Laws where
open import Prelude
record MonoidLaws {a} (A : Set a) {{Mon : Monoid A}} : Set a where
field
idLeft : (x : A) → mempty <> x ≡ x
idRight : (x : A) → x <> mempty ≡ x
<>assoc : (x y z : A) → x <> (y <> z) ≡ (x <> y) <> z
open MonoidLaws {{...}} public
{-# DISPLAY MonoidLaws.idLeft _ = idLeft #-}
{-# DISPLAY MonoidLaws.idRight _ = idRight #-}
{-# DISPLAY MonoidLaws.<>assoc _ = <>assoc #-}
instance
MonoidLawsList : ∀ {a} {A : Set a} → MonoidLaws (List A)
idLeft {{MonoidLawsList}} xs = refl
idRight {{MonoidLawsList}} [] = refl
idRight {{MonoidLawsList}} (x ∷ xs) = x ∷_ $≡ idRight xs
<>assoc {{MonoidLawsList}} [] ys zs = refl
<>assoc {{MonoidLawsList}} (x ∷ xs) ys zs = x ∷_ $≡ <>assoc xs ys zs
MonoidLawsMaybe : ∀ {a} {A : Set a} {{_ : Monoid A}} {{_ : MonoidLaws A}} → MonoidLaws (Maybe A)
idLeft {{MonoidLawsMaybe}} x = refl
idRight {{MonoidLawsMaybe}} nothing = refl
idRight {{MonoidLawsMaybe}} (just _) = refl
<>assoc {{MonoidLawsMaybe}} nothing y z = refl
<>assoc {{MonoidLawsMaybe}} (just x) y z = refl
-- Can't do function lifting because no extentionality.
|
{
"alphanum_fraction": 0.5905644482,
"avg_line_length": 34.9117647059,
"ext": "agda",
"hexsha": "579bc96e79998985f0235dd79c04aa08165ba3ef",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lclem/agda-prelude",
"max_forks_repo_path": "src/Structure/Monoid/Laws.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lclem/agda-prelude",
"max_issues_repo_path": "src/Structure/Monoid/Laws.agda",
"max_line_length": 98,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lclem/agda-prelude",
"max_stars_repo_path": "src/Structure/Monoid/Laws.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 435,
"size": 1187
}
|
module _ where
import DummyModule Set Set
|
{
"alphanum_fraction": 0.7954545455,
"avg_line_length": 8.8,
"ext": "agda",
"hexsha": "d6ca362534f864a3a16e656b6605872a4782567a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2579.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2579.agda",
"max_line_length": 26,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2579.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 11,
"size": 44
}
|
module Data.HVec where
open import Data.Fin using (Fin; zero; suc)
open import Data.Nat using (ℕ; zero; suc; _+_)
open import Function using (const)
open import Data.Vec as V using (Vec; []; _∷_; _[_]≔_)
open import Level as L using (Level; suc)
-- ------------------------------------------------------------------------
-- Hetrogenous Vectors
infixr 5 _∷_
data HVec { ℓ } : ( n : ℕ ) → Vec (Set ℓ) n → Set ℓ where
[] : HVec 0 []
_∷_ : ∀ { n } { A : Set ℓ } { As }
→ A
→ HVec n As
-- ----------------------
→ HVec (1 + n) (A ∷ As)
-- -- ------------------------------------------------------------------------
private
variable
ℓ : Level
A : Set ℓ
n : ℕ
As : Vec (Set ℓ) n
length : HVec n As → ℕ
length { n = n } _ = n
head : HVec (1 + n) As → (V.head As)
head (x ∷ xs) = x
tail : HVec (1 + n) As → HVec n (V.tail As)
tail (x ∷ xs) = xs
lookup : HVec n As → (i : Fin n) → (V.lookup As i)
lookup (x ∷ xs) zero = x
lookup (x ∷ xs) (suc i) = lookup xs i
insert : HVec n As → (i : Fin (1 + n)) → A → HVec (1 + n) (V.insert As i A)
insert xs zero v = v ∷ xs
insert (x ∷ xs) (suc i) v = x ∷ insert xs i v
remove : HVec (1 + n) As → (i : Fin (1 + n)) → HVec n (V.remove As i)
remove (x ∷ xs) zero = xs
remove (x₁ ∷ x₂ ∷ xs) (suc i) = x₁ ∷ remove (x₂ ∷ xs) i
updateAt : ∀ { ℓ n } { A : Set ℓ } { As : Vec (Set ℓ) n } (i : Fin n) → (V.lookup As i → A) → HVec n As → HVec n (As [ i ]≔ A)
updateAt zero f (x ∷ xs) = f x ∷ xs
updateAt (suc i) f (x ∷ xs) = x ∷ updateAt i f xs
infixl 6 _[_]$=_
_[_]$=_ : HVec n As → (i : Fin n) → (V.lookup As i → A) → HVec n (As [ i ]≔ A)
xs [ i ]$= f = updateAt i f xs
infixl 6 _[_]&=_
_[_]&=_ : HVec n As → (i : Fin n) → A → HVec n (As [ i ]≔ A)
xs [ i ]&= y = xs [ i ]$= const y
-- -- ------------------------------------------------------------------------
|
{
"alphanum_fraction": 0.4444444444,
"avg_line_length": 25.2739726027,
"ext": "agda",
"hexsha": "c1f74ba2ce75b170a72564863c2ddb87f382f532",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bb895fa8a3ccbefbd2c4a135c79744ba06895be7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "johnyob/agda-sigma",
"max_forks_repo_path": "src/Data/HVec.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bb895fa8a3ccbefbd2c4a135c79744ba06895be7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "johnyob/agda-sigma",
"max_issues_repo_path": "src/Data/HVec.agda",
"max_line_length": 126,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bb895fa8a3ccbefbd2c4a135c79744ba06895be7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "johnyob/agda-sigma",
"max_stars_repo_path": "src/Data/HVec.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 705,
"size": 1845
}
|
open import Oscar.Prelude
open import Oscar.Data.Proposequality
module Oscar.Class.Symmetrical where
private
module _
{𝔞} {𝔄 : Ø 𝔞}
{𝔟} {𝔅 : Ø 𝔟}
where
module Visible
(_∼_ : 𝔄 → 𝔄 → 𝔅)
{ℓ} (_↦_ : 𝔅 → 𝔅 → Ø ℓ)
where
𝓼ymmetrical = λ x y → (x ∼ y) ↦ (y ∼ x)
𝓈ymmetrical = ∀ x y → 𝓼ymmetrical x y
record 𝓢ymmetrical
{𝓢 : 𝔄 → 𝔄 → Ø ℓ}
⦃ _ : 𝓢 ≡ 𝓼ymmetrical ⦄
: Ø 𝔞 ∙̂ ℓ
where
field symmetrical : 𝓈ymmetrical -- FIXME might there be some reason to use "∀ x y → 𝓢 x y" here instead?
Symmetrical : Ø _
Symmetrical = 𝓢ymmetrical ⦃ ∅ ⦄
symmetrical⟦_/_⟧ : ⦃ _ : Symmetrical ⦄ → 𝓈ymmetrical
symmetrical⟦_/_⟧ ⦃ I ⦄ = 𝓢ymmetrical.symmetrical I
module Hidden
{_∼_ : 𝔄 → 𝔄 → 𝔅}
{ℓ} {_↦_ : 𝔅 → 𝔅 → Ø ℓ}
where
open Visible _∼_ _↦_
symmetrical : ⦃ _ : Symmetrical ⦄ → 𝓈ymmetrical
symmetrical = symmetrical⟦_/_⟧
open Visible public
open Hidden public
|
{
"alphanum_fraction": 0.5523138833,
"avg_line_length": 25.4871794872,
"ext": "agda",
"hexsha": "a24dc0811c324b482f55ee254b60521246eb5d1a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Symmetrical.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Symmetrical.agda",
"max_line_length": 112,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Symmetrical.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 420,
"size": 994
}
|
-- Andreas, 2012-06-07
-- {-# OPTIONS --show-implicit -v tc.rec:100 -v tc.meta.assign:15 #-}
module Issue387 where
import Common.Level
mutual
record R' (A : Set) : Set where
field f : _
c' : {A : Set} -> A -> R' A
c' a = record { f = a }
-- previous to fix of 387, this had an unresolved meta
-- because two metas were created for _
|
{
"alphanum_fraction": 0.617816092,
"avg_line_length": 20.4705882353,
"ext": "agda",
"hexsha": "858431542ea31ed004896523b9b5ef27dd713c94",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue387.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue387.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue387.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 113,
"size": 348
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category.Core using (Category)
module Categories.Diagram.Pushout {o ℓ e} (C : Category o ℓ e) where
open Category C
open HomReasoning
open Equiv
open import Categories.Morphism.Reasoning C as Square
renaming (glue to glue-square) hiding (id-unique)
open import Level
private
variable
A B E X Y Z : Obj
f g h j : A ⇒ B
record Pushout (f : X ⇒ Y) (g : X ⇒ Z) : Set (o ⊔ ℓ ⊔ e) where
field
{Q} : Obj
i₁ : Y ⇒ Q
i₂ : Z ⇒ Q
field
commute : i₁ ∘ f ≈ i₂ ∘ g
universal : {h₁ : Y ⇒ B} {h₂ : Z ⇒ B} → h₁ ∘ f ≈ h₂ ∘ g → Q ⇒ B
unique : {h₁ : Y ⇒ E} {h₂ : Z ⇒ E} {j : Q ⇒ E} {eq : h₁ ∘ f ≈ h₂ ∘ g} →
j ∘ i₁ ≈ h₁ → j ∘ i₂ ≈ h₂ →
j ≈ universal eq
universal∘i₁≈h₁ : {h₁ : Y ⇒ E} {h₂ : Z ⇒ E} {eq : h₁ ∘ f ≈ h₂ ∘ g} →
universal eq ∘ i₁ ≈ h₁
universal∘i₂≈h₂ : {h₁ : Y ⇒ E} {h₂ : Z ⇒ E} {eq : h₁ ∘ f ≈ h₂ ∘ g} →
universal eq ∘ i₂ ≈ h₂
unique-diagram : h ∘ i₁ ≈ j ∘ i₁ →
h ∘ i₂ ≈ j ∘ i₂ →
h ≈ j
unique-diagram {h = h} {j = j} eq₁ eq₂ = begin
h ≈⟨ unique eq₁ eq₂ ⟩
universal eq ≈˘⟨ unique refl refl ⟩
j ∎
where eq = extendˡ commute
|
{
"alphanum_fraction": 0.4769585253,
"avg_line_length": 27.7021276596,
"ext": "agda",
"hexsha": "0efd95bea92bef7aed09b0baee4b2fa311dbc66c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Diagram/Pushout.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Diagram/Pushout.agda",
"max_line_length": 78,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Diagram/Pushout.agda",
"max_stars_repo_stars_event_max_datetime": "2019-05-22T03:54:24.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-05-21T17:07:19.000Z",
"num_tokens": 521,
"size": 1302
}
|
module Basic.Compiler.Machine where
open import Basic.AST
open import Basic.BigStep
open import Basic.Compiler.Code
open import Utils.Decidable
open import Data.Product
open import Relation.Nullary
open import Relation.Nullary.Decidable
open import Data.List hiding (unfold)
open import Data.Bool
open import Data.Nat
open import Data.Maybe
{-
This is a simple interpreter for the abstract machine code.
There's no corresponding part in the book.
A nice thing about the abstract machine is that each transition is decidable,
so we can tell at each point whether our program is stuck or may continue.
Of course, this doesn't mean that *computation sequences* are decidable! (it's pretty much
just the halting problem).
What we can do is specify how many steps we'd like to compute, and then compute that far.
The "steps" function below only computes the ending configuration, while "trace"
returns a list of all intermediate configurations.
"unfold" returns a computation sequence if the program terminates or gets stuck in
the given number of steps.
-}
step : ∀ {n} (c : Code n) e s → Dec (∃₂ λ c' e' -> ∃ λ s' → ⟨ c , e , s ⟩▷⟨ c' , e' , s' ⟩)
step [] e s = no (λ {(c' , e' , s' , ())})
step (PUSH x ∷ c) e s = yes (c , nat x ∷ e , s , PUSH x)
step (FETCH x ∷ c) e s = yes (c , nat _ ∷ e , s , FETCH x)
step (STORE x ∷ c) [] s = no (λ {(c' , e' , s' , ())})
step (STORE x ∷ c) (nat x₁ ∷ e) s = yes (c , e , _ , STORE x)
step (STORE x ∷ c) (bool x₁ ∷ e) s = no (λ {(c' , e' , s' , ())})
step (ADD ∷ c) [] s = no (λ { (c' , e' , s' , ()) })
step (ADD ∷ c) (nat x ∷ []) s = no (λ { (c' , e' , s' , ()) })
step (ADD ∷ c) (nat x ∷ nat x₁ ∷ e) s = yes (c , nat _ ∷ e , s , ADD x x₁)
step (ADD ∷ c) (nat x ∷ bool x₁ ∷ e) s = no (λ { (c' , e' , s' , ()) })
step (ADD ∷ c) (bool x ∷ e) s = no (λ { (c' , e' , s' , ()) })
step (MUL ∷ c) [] s = no (λ { (c' , e' , s' , ()) })
step (MUL ∷ c) (nat x ∷ []) s = no (λ { (c' , e' , s' , ()) })
step (MUL ∷ c) (nat x ∷ nat x₁ ∷ e) s = yes (c , nat _ ∷ e , s , MUL x x₁)
step (MUL ∷ c) (nat x ∷ bool x₁ ∷ e) s = no (λ { (c' , e' , s' , ()) })
step (MUL ∷ c) (bool x ∷ e) s = no (λ { (c' , e' , s' , ()) })
step (SUB ∷ c) [] s = no (λ { (c' , e' , s' , ()) })
step (SUB ∷ c) (nat x ∷ []) s = no (λ { (c' , e' , s' , ()) })
step (SUB ∷ c) (nat x ∷ nat x₁ ∷ e) s = yes (c , nat _ ∷ e , s , SUB x x₁)
step (SUB ∷ c) (nat x ∷ bool x₁ ∷ e) s = no (λ { (c' , e' , s' , ()) })
step (SUB ∷ c) (bool x ∷ e) s = no (λ { (c' , e' , s' , ()) })
step (TRUE ∷ c) e s = yes (c , bool true ∷ e , s , TRUE)
step (FALSE ∷ c) e s = yes (c , bool false ∷ e , s , FALSE)
step (EQ ∷ c) [] s = no (λ { (c' , e' , s' , ()) })
step (EQ ∷ c) (nat x ∷ []) s = no (λ { (c' , e' , s' , ()) })
step (EQ ∷ c) (nat x ∷ nat x₁ ∷ e) s = yes (c , bool ⌊ x ≡⁇ x₁ ⌋ ∷ e , s , EQ x x₁)
step (EQ ∷ c) (nat x ∷ bool x₁ ∷ e) s = no (λ { (c' , e' , s' , ()) })
step (EQ ∷ c) (bool x ∷ e) s = no (λ { (c' , e' , s' , ()) })
step (LTE ∷ c) [] s = no (λ { (c' , e' , s' , ()) })
step (LTE ∷ c) (nat x ∷ []) s = no (λ { (c' , e' , s' , ()) })
step (LTE ∷ c) (nat x ∷ nat x₁ ∷ e) s = yes (c , bool ⌊ x ≤⁇ x₁ ⌋ ∷ e , s , LTE x x₁)
step (LTE ∷ c) (nat x ∷ bool x₁ ∷ e) s = no (λ { (c' , e' , s' , ()) })
step (LTE ∷ c) (bool x ∷ e) s = no (λ { (c' , e' , s' , ()) })
step (LT ∷ c) [] s = no (λ { (c' , e' , s' , ()) })
step (LT ∷ c) (nat x ∷ []) s = no (λ { (c' , e' , s' , ()) })
step (LT ∷ c) (nat x ∷ nat x₁ ∷ e) s = yes (c , bool ⌊ x <⁇ x₁ ⌋ ∷ e , s , LT x x₁)
step (LT ∷ c) (nat x ∷ bool x₁ ∷ e) s = no (λ { (c' , e' , s' , ()) })
step (LT ∷ c) (bool x ∷ e) s = no (λ { (c' , e' , s' , ()) })
step (AND ∷ c) [] s = no (λ { (c' , e' , s' , ()) })
step (AND ∷ c) (nat x ∷ e) s = no (λ { (c' , e' , s' , ()) })
step (AND ∷ c) (bool x ∷ []) s = no (λ { (c' , e' , s' , ()) })
step (AND ∷ c) (bool x ∷ nat x₁ ∷ e) s = no (λ { (c' , e' , s' , ()) })
step (AND ∷ c) (bool x ∷ bool x₁ ∷ e) s = yes (c , bool (x ∧ x₁) ∷ e , s , AND x x₁)
step (NOT ∷ c) [] s = no (λ { (c' , e' , s' , ()) })
step (NOT ∷ c) (nat x ∷ e) s = no (λ { (c' , e' , s' , ()) })
step (NOT ∷ c) (bool x ∷ e) s = yes (c , bool _ ∷ e , s , NOT x)
step (NOOP ∷ c) e s = yes (c , e , s , NOOP)
step (BRANCH x x₁ ∷ c) [] s = no (λ { (c' , e' , s' , ()) })
step (BRANCH x x₁ ∷ c) (nat x₂ ∷ e) s = no (λ { (c' , e' , s' , ()) })
step (BRANCH x x₁ ∷ c) (bool true ∷ e) s = yes (x ++ c , e , s , BRANCH)
step (BRANCH x x₁ ∷ c) (bool false ∷ e) s = yes (x₁ ++ c , e , s , BRANCH)
step (LOOP x x₁ ∷ c) e s = yes (x ++ BRANCH (x₁ ++ LOOP x x₁ ∷ []) (NOOP ∷ []) ∷ c , e , s , LOOP)
steps : ∀ {n} → Code n → Stack → State n → ℕ → (Code n × Stack × State n)
steps c e s zero = c , e , s
steps c e s (suc n) with step c e s
... | yes (c' , e' , s' , p) = steps c' e' s' n
... | no _ = c , e , s
trace : ∀ {n} → Code n → Stack → State n → ℕ → List (Code n × Stack × State n)
trace c e s zero = []
trace c e s (suc n) with step c e s
... | yes (c' , e' , s' , p) = (c , e , s) ∷ trace c' e' s' n
... | no _ = (c , e , s) ∷ []
unfold :
∀ {n} c e (s : State n) → ℕ → Maybe (∃₂ λ c' e' → ∃ λ s' → ⟨ c , e , s ⟩▷*⟨ c' , e' , s' ⟩)
unfold [] e s n₁ = just ([] , e , s , done)
unfold (x ∷ c) e s zero = nothing
unfold (x ∷ c) e s (suc n) with step (x ∷ c) e s
... | no ¬p = just (x ∷ c , e , s , stuck (λ c' e' s' z → ¬p (c' , e' , s' , z)))
... | yes (c' , e' , s' , p) with unfold c' e' s' n
... | nothing = nothing
... | just (c'' , e'' , s'' , seq) = just (c'' , e'' , s'' , p ∷ seq)
|
{
"alphanum_fraction": 0.4646853788,
"avg_line_length": 43.2619047619,
"ext": "agda",
"hexsha": "2f21c9ebcbbd8806c27e4233ce7faa237025bef2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AndrasKovacs/SemanticsWithApplications",
"max_forks_repo_path": "Basic/Compiler/Machine.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AndrasKovacs/SemanticsWithApplications",
"max_issues_repo_path": "Basic/Compiler/Machine.agda",
"max_line_length": 98,
"max_stars_count": 8,
"max_stars_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AndrasKovacs/SemanticsWithApplications",
"max_stars_repo_path": "Basic/Compiler/Machine.agda",
"max_stars_repo_stars_event_max_datetime": "2020-02-02T10:01:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-09-12T04:25:39.000Z",
"num_tokens": 2380,
"size": 5451
}
|
{-# OPTIONS --safe --without-K #-}
module Generics.All where
open import Generics.Prelude
open import Generics.Telescope
open import Generics.Desc
open import Generics.Mu
private
variable
P : Telescope ⊤
p : ⟦ P ⟧tel tt
V I : ExTele P
ℓ c : Level
n : ℕ
levelAllIndArg : ConDesc P V I → Level → Level
levelAllIndArg (var _) c = c
levelAllIndArg (π {ℓ} _ _ C) c = ℓ ⊔ levelAllIndArg C c
levelAllIndArg (A ⊗ B) c = levelAllIndArg A c ⊔ levelAllIndArg B c
AllIndArg
: {X : ⟦ P , I ⟧xtel → Set ℓ}
(Pr : ∀ {i} → X (p , i) → Set c)
(C : ConDesc P V I)
→ ∀ {v} → ⟦ C ⟧IndArg X (p , v) → Set (levelAllIndArg C c)
AllIndArg Pr (var _) x = Pr x
AllIndArg Pr (π (n , ai) S C) x = (s : < relevance ai > S _) → AllIndArg Pr C (app< n , ai > x s)
AllIndArg Pr (A ⊗ B) (xa , xb) = AllIndArg Pr A xa × AllIndArg Pr B xb
AllIndArgω
: {X : ⟦ P , I ⟧xtel → Set ℓ}
(Pr : ∀ {i} → X (p , i) → Setω)
(C : ConDesc P V I)
→ ∀ {v} → ⟦ C ⟧IndArg X (p , v) → Setω
AllIndArgω Pr (var _) x = Pr x
AllIndArgω Pr (π (n , ai) S C) x = (s : < relevance ai > S _) → AllIndArgω Pr C (app< n , ai > x s)
AllIndArgω Pr (A ⊗ B) (xa , xb) = AllIndArgω Pr A xa ×ω AllIndArgω Pr B xb
levelAllCon : ConDesc P V I → Level → Level
levelAllCon (var _) c = lzero
levelAllCon (π {ℓ} _ _ C) c = levelAllCon C c
levelAllCon (A ⊗ B) c = levelAllIndArg A c ⊔ levelAllCon B c
AllCon
: {X : ⟦ P , I ⟧xtel → Set ℓ}
(Pr : ∀ {i} → X (p , i) → Set c)
(C : ConDesc P V I)
→ ∀ {v i} → ⟦ C ⟧Con X (p , v , i) → Set (levelAllCon C c)
AllCon Pr (var _) x = ⊤
AllCon Pr (π _ _ C) (_ , x) = AllCon Pr C x
AllCon Pr (A ⊗ B) (xa , xb) = AllIndArg Pr A xa × AllCon Pr B xb
AllConω
: {X : ⟦ P , I ⟧xtel → Set ℓ}
(Pr : ∀ {i} → X (p , i) → Setω)
(C : ConDesc P V I)
→ ∀ {v i} → ⟦ C ⟧Con X (p , v , i) → Setω
AllConω Pr (var f) x = ⊤ω
AllConω Pr (π ia S C) (_ , x) = AllConω Pr C x
AllConω Pr (A ⊗ B) (xa , xb) = AllIndArgω Pr A xa ×ω AllConω Pr B xb
AllData : {X : ⟦ P , I ⟧xtel → Set ℓ}
(Pr : ∀ {i} → X (p , i) → Set c)
(D : DataDesc P I n)
→ ∀ {i} ((k , x) : ⟦ D ⟧Data X (p , i))
→ Set (levelAllCon (lookupCon D k) c)
AllData Pr D (k , x) = AllCon Pr (lookupCon D k) x
AllDataω : {X : ⟦ P , I ⟧xtel → Set ℓ}
(Pr : ∀ {i} → X (p , i) → Setω)
(D : DataDesc P I n)
→ ∀ {i} (x : ⟦ D ⟧Data X (p , i))
→ Setω
AllDataω Pr D (k , x) = AllConω Pr (lookupCon D k) x
|
{
"alphanum_fraction": 0.527324633,
"avg_line_length": 31.0379746835,
"ext": "agda",
"hexsha": "a5cd792019c3ba959a2d0a315180317cede5134a",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-01-14T10:35:16.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-08T08:32:42.000Z",
"max_forks_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "flupe/generics",
"max_forks_repo_path": "src/Generics/All.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T10:48:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-09-13T07:33:50.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "flupe/generics",
"max_issues_repo_path": "src/Generics/All.agda",
"max_line_length": 99,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "flupe/generics",
"max_stars_repo_path": "src/Generics/All.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T09:35:17.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-08T15:10:20.000Z",
"num_tokens": 1067,
"size": 2452
}
|
module OList.Properties {A : Set}(_≤_ : A → A → Set) where
open import Data.List
open import Bound.Lower A
open import Bound.Lower.Order _≤_
open import List.Sorted _≤_
open import OList _≤_
lemma-olist-sorted : {b : Bound} → (xs : OList b) → Sorted (forget xs)
lemma-olist-sorted onil = nils
lemma-olist-sorted (:< {x = x} _ onil) = singls x
lemma-olist-sorted (:< b≤x (:< (lexy x≤y) ys)) = conss x≤y (lemma-olist-sorted (:< (lexy x≤y) ys))
|
{
"alphanum_fraction": 0.6659192825,
"avg_line_length": 29.7333333333,
"ext": "agda",
"hexsha": "2cf30a13e92e290a83e7ca16af650fabe2ceeeab",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/OList/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/OList/Properties.agda",
"max_line_length": 98,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/OList/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 166,
"size": 446
}
|
{-# OPTIONS --without-K #-}
module LeqLemmas where
open import Data.Nat
using (ℕ; zero; suc; _+_; _*_; _<_; _≤_; _≤?_; z≤n; s≤s;
module ≤-Reasoning)
open import Data.Nat.Properties.Simple
using (*-comm; +-right-identity; +-comm; +-assoc)
open import Data.Nat.Properties
using (cancel-+-left-≤; n≤m+n)
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; sym; cong; module ≡-Reasoning)
open import Relation.Binary using (Decidable)
open import Relation.Binary.Core using (Transitive; _⇒_)
open import Data.Fin
using (Fin; zero; suc; toℕ; fromℕ; raise; inject≤)
open import Data.Fin.Properties using (bounded; to-from)
------------------------------------------------------------------------------
-- Proofs and definitions about ≤ on natural numbers
_<?_ : Decidable _<_
i <? j = suc i ≤? j
-- buried in Data.Nat
refl′ : _≡_ ⇒ _≤_
refl′ {0} refl = z≤n
refl′ {suc m} refl = s≤s (refl′ refl)
trans< : Transitive _<_
trans< (s≤s z≤n) (s≤s _) = s≤s z≤n
trans< (s≤s (s≤s i≤j)) (s≤s sj<k) = s≤s (trans< (s≤s i≤j) sj<k)
trans≤ : Transitive _≤_
trans≤ z≤n x = z≤n
trans≤ (s≤s m≤n) (s≤s n≤o) = s≤s (trans≤ m≤n n≤o)
i*1≡i : (i : ℕ) → i * 1 ≡ i
i*1≡i i = begin (i * 1
≡⟨ *-comm i 1 ⟩
1 * i
≡⟨ refl ⟩
i + 0
≡⟨ +-right-identity i ⟩
i ∎)
where open ≡-Reasoning
i≤i : (i : ℕ) → i ≤ i
i≤i 0 = z≤n
i≤i (suc i) = s≤s (i≤i i)
i≤si : (i : ℕ) → i ≤ suc i
i≤si 0 = z≤n
i≤si (suc i) = s≤s (i≤si i)
i≤j+i : ∀ {i j} → i ≤ j + i
i≤j+i {i} {0} = i≤i i
i≤j+i {i} {suc j} =
begin (i
≤⟨ i≤j+i {i} {j} ⟩
j + i
≤⟨ i≤si (j + i) ⟩
suc j + i ∎)
where open ≤-Reasoning
cong+r≤ : ∀ {i j} → i ≤ j → (k : ℕ) → i + k ≤ j + k
cong+r≤ {0} {j} z≤n k = n≤m+n j k
cong+r≤ {suc i} {0} () k -- absurd
cong+r≤ {suc i} {suc j} (s≤s i≤j) k = s≤s (cong+r≤ {i} {j} i≤j k)
cong+l≤ : ∀ {i j} → i ≤ j → (k : ℕ) → k + i ≤ k + j
cong+l≤ {i} {j} i≤j k =
begin (k + i
≡⟨ +-comm k i ⟩
i + k
≤⟨ cong+r≤ i≤j k ⟩
j + k
≡⟨ +-comm j k ⟩
k + j ∎)
where open ≤-Reasoning
cong*r≤ : ∀ {i j} → i ≤ j → (k : ℕ) → i * k ≤ j * k
cong*r≤ {0} {j} z≤n k = z≤n
cong*r≤ {suc i} {0} () k -- absurd
cong*r≤ {suc i} {suc j} (s≤s i≤j) k = cong+l≤ (cong*r≤ i≤j k) k
sinj : ∀ {i j} → suc i ≡ suc j → i ≡ j
sinj = cong (λ { 0 → 0 ; (suc x) → x })
sinj≤ : ∀ {i j} → suc i ≤ suc j → i ≤ j
sinj≤ {0} {j} _ = z≤n
sinj≤ {suc i} {0} (s≤s ()) -- absurd
sinj≤ {suc i} {suc j} (s≤s p) = p
i*n+n≤sucm*n : ∀ {m n} → (i : Fin (suc m)) → toℕ i * n + n ≤ suc m * n
i*n+n≤sucm*n {0} {n} zero =
begin (n
≡⟨ sym (+-right-identity n) ⟩
n + 0
≤⟨ i≤i (n + 0) ⟩
n + 0 ∎)
where open ≤-Reasoning
i*n+n≤sucm*n {0} {n} (suc ())
i*n+n≤sucm*n {suc m} {n} i =
begin (toℕ i * n + n
≡⟨ +-comm (toℕ i * n) n ⟩
n + toℕ i * n
≡⟨ refl ⟩
suc (toℕ i) * n
≤⟨ cong*r≤ (bounded i) n ⟩
suc (suc m) * n ∎)
where open ≤-Reasoning
i*n+k≤m*n : ∀ {m n} → (i : Fin m) → (k : Fin n) →
(suc (toℕ i * n + toℕ k) ≤ m * n)
i*n+k≤m*n {0} {_} () _
i*n+k≤m*n {_} {0} _ ()
i*n+k≤m*n {suc m} {suc n} i k =
begin (suc (toℕ i * suc n + toℕ k)
≡⟨ cong suc (+-comm (toℕ i * suc n) (toℕ k)) ⟩
suc (toℕ k + toℕ i * suc n)
≡⟨ refl ⟩
suc (toℕ k) + (toℕ i * suc n)
≤⟨ cong+r≤ (bounded k) (toℕ i * suc n) ⟩
suc n + (toℕ i * suc n)
≤⟨ cong+l≤ (cong*r≤ (sinj≤ (bounded i)) (suc n)) (suc n) ⟩
suc n + (m * suc n)
≡⟨ refl ⟩
suc m * suc n ∎)
where open ≤-Reasoning
bounded' : (m : ℕ) → (j : Fin (suc m)) → (toℕ j ≤ m)
bounded' m j with bounded j
... | s≤s pr = pr
simplify-≤ : {m n m' n' : ℕ} → (m ≤ n) → (m ≡ m') → (n ≡ n') → (m' ≤ n')
simplify-≤ leq refl refl = leq
cancel-Fin : ∀ (n y z : ℕ) → ((x : Fin (suc n)) → toℕ x + y ≤ n + z) → y ≤ z
cancel-Fin 0 y z pf = pf zero
cancel-Fin (suc n) y z pf =
cancel-+-left-≤ n (trans≤ leq (sinj≤ (pf (fromℕ (suc n)))))
where leq : n + y ≤ toℕ (fromℕ n) + y
leq = begin (n + y
≡⟨ cong (λ x → x + y) (sym (to-from n)) ⟩
toℕ (fromℕ n) + y ∎)
where open ≤-Reasoning
≤-proof-irrelevance : {m n : ℕ} → (p q : m ≤ n) → p ≡ q
≤-proof-irrelevance z≤n z≤n = refl
≤-proof-irrelevance (s≤s p) (s≤s q) = cong s≤s (≤-proof-irrelevance p q)
raise-suc' : (n a b n+a : ℕ) (n+a≡ : n+a ≡ n + a) →
(leq : suc a ≤ b) →
(leq' : suc n+a ≤ n + b) →
raise n (inject≤ (fromℕ a) leq) ≡ inject≤ (fromℕ n+a) leq'
raise-suc' 0 a b .a refl leq leq' =
cong (inject≤ (fromℕ a)) (≤-proof-irrelevance leq leq')
raise-suc' (suc n) a b .(suc (n + a)) refl leq (s≤s leq') =
cong suc (raise-suc' n a b (n + a) refl leq leq')
raise-suc : (m n : ℕ) (j : Fin (suc m)) (d : Fin (suc n))
(leq : suc (toℕ j * suc n + toℕ d) ≤ suc m * suc n) →
(leq' : suc (toℕ (suc j) * suc n + toℕ d) ≤ suc (suc m) * suc n) →
raise (suc n) (inject≤ (fromℕ (toℕ j * suc n + toℕ d)) leq) ≡
inject≤ (fromℕ (toℕ (suc j) * suc n + toℕ d)) leq'
raise-suc m n j d leq leq' =
raise-suc'
(suc n)
(toℕ j * suc n + toℕ d)
(suc m * suc n)
(toℕ (suc j) * suc n + toℕ d)
(begin (toℕ (suc j) * suc n + toℕ d
≡⟨ refl ⟩
(suc n + toℕ j * suc n) + toℕ d
≡⟨ +-assoc (suc n) (toℕ j * suc n) (toℕ d) ⟩
suc n + (toℕ j * suc n + toℕ d) ∎))
leq
leq'
where open ≡-Reasoning
{-
-- buried in Data.Nat
refl′ : _≡_ ⇒ _≤_
refl′ {0} refl = z≤n
refl′ {suc m} refl = s≤s (refl′ refl)
trans< : Transitive _<_
trans< (s≤s z≤n) (s≤s _) = s≤s z≤n
trans< (s≤s (s≤s i≤j)) (s≤s sj<k) = s≤s (trans< (s≤s i≤j) sj<k)
trans≤ : Transitive _≤_
trans≤ z≤n x = z≤n
trans≤ (s≤s m≤n) (s≤s n≤o) = s≤s (trans≤ m≤n n≤o)
i*1≡i : (i : ℕ) → i * 1 ≡ i
i*1≡i i = begin (i * 1
≡⟨ *-comm i 1 ⟩
1 * i
≡⟨ refl ⟩
i + 0
≡⟨ +-right-identity i ⟩
i ∎)
where open ≡-Reasoning
i≤i : (i : ℕ) → i ≤ i
i≤i 0 = z≤n
i≤i (suc i) = s≤s (i≤i i)
i≤si : (i : ℕ) → i ≤ suc i
i≤si 0 = z≤n
i≤si (suc i) = s≤s (i≤si i)
i≤j+i : ∀ {i j} → i ≤ j + i
i≤j+i {i} {0} = i≤i i
i≤j+i {i} {suc j} =
begin (i
≤⟨ i≤j+i {i} {j} ⟩
j + i
≤⟨ i≤si (j + i) ⟩
suc j + i ∎)
where open ≤-Reasoning
sinj : ∀ {i j} → suc i ≡ suc j → i ≡ j
sinj = cong (λ { 0 → 0 ; (suc x) → x })
i*n+n≤sucm*n : ∀ {m n} → (i : Fin (suc m)) → toℕ i * n + n ≤ suc m * n
i*n+n≤sucm*n {0} {n} zero =
begin (n
≡⟨ sym (+-right-identity n) ⟩
n + 0
≤⟨ i≤i (n + 0) ⟩
n + 0 ∎)
where open ≤-Reasoning
i*n+n≤sucm*n {0} {n} (suc ())
i*n+n≤sucm*n {suc m} {n} i =
begin (toℕ i * n + n
≡⟨ +-comm (toℕ i * n) n ⟩
n + toℕ i * n
≡⟨ refl ⟩
suc (toℕ i) * n
≤⟨ cong*r≤ (bounded i) n ⟩
suc (suc m) * n ∎)
where open ≤-Reasoning
i*n+k≤m*n : ∀ {m n} → (i : Fin m) → (k : Fin n) →
(suc (toℕ i * n + toℕ k) ≤ m * n)
i*n+k≤m*n {0} {_} () _
i*n+k≤m*n {_} {0} _ ()
i*n+k≤m*n {suc m} {suc n} i k =
begin (suc (toℕ i * suc n + toℕ k)
≡⟨ cong suc (+-comm (toℕ i * suc n) (toℕ k)) ⟩
suc (toℕ k + toℕ i * suc n)
≡⟨ refl ⟩
suc (toℕ k) + (toℕ i * suc n)
≤⟨ cong+r≤ (bounded k) (toℕ i * suc n) ⟩
suc n + (toℕ i * suc n)
≤⟨ cong+l≤ (cong*r≤ (sinj≤ (bounded i)) (suc n)) (suc n) ⟩
suc n + (m * suc n)
≡⟨ refl ⟩
suc m * suc n ∎)
where open ≤-Reasoning
bounded' : (m : ℕ) → (j : Fin (suc m)) → (toℕ j ≤ m)
bounded' m j with bounded j
... | s≤s pr = pr
simplify-≤ : {m n m' n' : ℕ} → (m ≤ n) → (m ≡ m') → (n ≡ n') → (m' ≤ n')
simplify-≤ leq refl refl = leq
cancel-Fin : ∀ (n y z : ℕ) → ((x : Fin (suc n)) → toℕ x + y ≤ n + z) → y ≤ z
cancel-Fin 0 y z pf = pf zero
cancel-Fin (suc n) y z pf =
cancel-+-left-≤ n (trans≤ leq (sinj≤ (pf (fromℕ (suc n)))))
where leq : n + y ≤ toℕ (fromℕ n) + y
leq = begin (n + y
≡⟨ cong (λ x → x + y) (sym (to-from n)) ⟩
toℕ (fromℕ n) + y ∎)
where open ≤-Reasoning
≤-proof-irrelevance : {m n : ℕ} → (p q : m ≤ n) → p ≡ q
≤-proof-irrelevance z≤n z≤n = refl
≤-proof-irrelevance (s≤s p) (s≤s q) = cong s≤s (≤-proof-irrelevance p q)
raise-suc' : (n a b n+a : ℕ) (n+a≡ : n+a ≡ n + a) →
(leq : suc a ≤ b) →
(leq' : suc n+a ≤ n + b) →
raise n (inject≤ (fromℕ a) leq) ≡ inject≤ (fromℕ n+a) leq'
raise-suc' 0 a b .a refl leq leq' =
cong (inject≤ (fromℕ a)) (≤-proof-irrelevance leq leq')
raise-suc' (suc n) a b .(suc (n + a)) refl leq (s≤s leq') =
cong suc (raise-suc' n a b (n + a) refl leq leq')
raise-suc : (m n : ℕ) (j : Fin (suc m)) (d : Fin (suc n))
(leq : suc (toℕ j * suc n + toℕ d) ≤ suc m * suc n) →
(leq' : suc (toℕ (suc j) * suc n + toℕ d) ≤ suc (suc m) * suc n) →
raise (suc n) (inject≤ (fromℕ (toℕ j * suc n + toℕ d)) leq) ≡
inject≤ (fromℕ (toℕ (suc j) * suc n + toℕ d)) leq'
raise-suc m n j d leq leq' =
raise-suc'
(suc n)
(toℕ j * suc n + toℕ d)
(suc m * suc n)
(toℕ (suc j) * suc n + toℕ d)
(begin (toℕ (suc j) * suc n + toℕ d
≡⟨ refl ⟩
(suc n + toℕ j * suc n) + toℕ d
≡⟨ +-assoc (suc n) (toℕ j * suc n) (toℕ d) ⟩
suc n + (toℕ j * suc n + toℕ d) ∎))
leq
leq'
where open ≡-Reasoning
-}
|
{
"alphanum_fraction": 0.435783145,
"avg_line_length": 30.4321766562,
"ext": "agda",
"hexsha": "9041f2932c485cd4acf12d35710c745c6655dfe1",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/Obsolete/LeqLemmas.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/Obsolete/LeqLemmas.agda",
"max_line_length": 78,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/Obsolete/LeqLemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 4697,
"size": 9647
}
|
------------------------------------------------------------------------
-- Non-dependent and dependent lenses
-- Nils Anders Danielsson
------------------------------------------------------------------------
{-# OPTIONS --cubical --safe #-}
module README where
-- Non-dependent lenses.
import Lens.Non-dependent
import Lens.Non-dependent.Traditional
import Lens.Non-dependent.Higher
import Lens.Non-dependent.Higher.Capriotti
import Lens.Non-dependent.Higher.Surjective-remainder
import Lens.Non-dependent.Equivalent-preimages
import Lens.Non-dependent.Bijection
-- Non-dependent lenses with erased proofs.
import Lens.Non-dependent.Traditional.Erased
import Lens.Non-dependent.Higher.Erased
-- Dependent lenses.
import Lens.Dependent
-- Comparisons of different kinds of lenses, focusing on the
-- definition of composable record getters and setters.
import README.Record-getters-and-setters
|
{
"alphanum_fraction": 0.6751381215,
"avg_line_length": 27.4242424242,
"ext": "agda",
"hexsha": "29e2cec12cfb5c932bed92f50ac400932c5c8bbc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Saizan/dependent-lenses",
"max_forks_repo_path": "README.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Saizan/dependent-lenses",
"max_issues_repo_path": "README.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Saizan/dependent-lenses",
"max_stars_repo_path": "README.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 168,
"size": 905
}
|
{-
Transferring properties of terms between equivalent structures
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Structures.Transfer where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.SIP
open import Cubical.Foundations.Transport
open import Cubical.Structures.Product
private
variable
ℓ ℓ₀ ℓ₁ ℓ₂ ℓ₂' : Level
transfer : {ℓ₂' ℓ₀ : Level} {S : Type ℓ → Type ℓ₁} {H : Type ℓ → Type ℓ₂}
(P : ∀ X → S X → H X → Type ℓ₀)
(α : EquivAction H) (τ : TransportStr α)
(ι : StrEquiv S ℓ₂') (θ : UnivalentStr S ι)
{X Y : Type ℓ} {s : S X} {t : S Y}
(e : (X , s) ≃[ ι ] (Y , t))
→ (h : H Y) → P X s (invEq (α (e .fst)) h) → P Y t h
transfer P α τ ι θ {X} {Y} {s} {t} e h =
subst (λ {(Z , u , h) → P Z u h})
(sip
(productUnivalentStr ι θ (EquivAction→StrEquiv α) (TransportStr→UnivalentStr α τ))
(X , s , invEq (α (e .fst)) h)
(Y , t , h)
(e .fst , e .snd , retEq (α (e .fst)) h))
transfer⁻ : {ℓ₂' ℓ₀ : Level} {S : Type ℓ → Type ℓ₁} {H : Type ℓ → Type ℓ₂}
(P : ∀ X → S X → H X → Type ℓ₀)
(α : EquivAction H) (τ : TransportStr α)
(ι : StrEquiv S ℓ₂') (θ : UnivalentStr S ι)
{X Y : Type ℓ} {s : S X} {t : S Y}
(e : (X , s) ≃[ ι ] (Y , t))
→ (h : H X) → P Y t (equivFun (α (e .fst)) h) → P X s h
transfer⁻ P α τ ι θ {X} {Y} {s} {t} e h =
subst⁻ (λ {(Z , u , h) → P Z u h})
(sip
(productUnivalentStr ι θ (EquivAction→StrEquiv α) (TransportStr→UnivalentStr α τ))
(X , s , h)
(Y , t , equivFun (α (e .fst)) h)
(e .fst , e .snd , refl))
|
{
"alphanum_fraction": 0.5559724828,
"avg_line_length": 33.3125,
"ext": "agda",
"hexsha": "fbc24df8882f29570016b331441d6dacb85441ce",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Structures/Transfer.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Structures/Transfer.agda",
"max_line_length": 89,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Structures/Transfer.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 674,
"size": 1599
}
|
module Relations where
open import Level as Level using (zero)
open import Size
open import Function
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P
open ≡-Reasoning
RelTrans : Set → Set₁
RelTrans B = Rel B Level.zero → Rel B Level.zero
Monotone : ∀{B} → RelTrans B → Set₁
Monotone F = ∀ {R S} → R ⇒ S → F R ⇒ F S
-- | Useful example of a compatible up-to technique: equivalence closure.
data EquivCls {B : Set} (R : Rel B Level.zero) : Rel B Level.zero where
cls-incl : {a b : B} → R a b → EquivCls R a b
cls-refl : {b : B} → EquivCls R b b
cls-sym : {a b : B} → EquivCls R a b → EquivCls R b a
cls-trans : {a b c : B} → EquivCls R a b → EquivCls R b c → EquivCls R a c
-- | The operation of taking the equivalence closure is monotone.
equivCls-monotone : ∀{B} → Monotone {B} EquivCls
equivCls-monotone R≤S (cls-incl xRy) = cls-incl (R≤S xRy)
equivCls-monotone R≤S cls-refl = cls-refl
equivCls-monotone R≤S (cls-sym p) = cls-sym (equivCls-monotone R≤S p)
equivCls-monotone R≤S (cls-trans p q) =
cls-trans (equivCls-monotone R≤S p) (equivCls-monotone R≤S q)
-- | The equivalence closure is indeed a closure operator.
equivCls-expanding : ∀{B R} → R ⇒ EquivCls {B} R
equivCls-expanding p = cls-incl p
equivCls-idempotent : ∀{B R} → EquivCls (EquivCls R) ⇒ EquivCls {B} R
equivCls-idempotent (cls-incl p) = p
equivCls-idempotent cls-refl = cls-refl
equivCls-idempotent (cls-sym p) = cls-sym (equivCls-idempotent p)
equivCls-idempotent (cls-trans p q) =
cls-trans (equivCls-idempotent p) (equivCls-idempotent q)
-- | Equivalence closure gives indeed equivalence relation
equivCls-equiv : ∀{A} → (R : Rel A _) → IsEquivalence (EquivCls R)
equivCls-equiv R = record
{ refl = cls-refl
; sym = cls-sym
; trans = cls-trans
}
|
{
"alphanum_fraction": 0.6834254144,
"avg_line_length": 36.9387755102,
"ext": "agda",
"hexsha": "0e9a7e2cfc1e12c084cce2f6bfabd05ca6874a31",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hbasold/Sandbox",
"max_forks_repo_path": "Streams/Relations.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hbasold/Sandbox",
"max_issues_repo_path": "Streams/Relations.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hbasold/Sandbox",
"max_stars_repo_path": "Streams/Relations.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 626,
"size": 1810
}
|
{-# OPTIONS --cubical --safe --postfix-projections #-}
module Algebra.Construct.Free.Semilattice.Direct where
open import Algebra
open import Prelude
open import Path.Reasoning
infixl 6 _∪_
data 𝒦 (A : Type a) : Type a where
η : A → 𝒦 A
_∪_ : 𝒦 A → 𝒦 A → 𝒦 A
∅ : 𝒦 A
∪-assoc : ∀ xs ys zs → (xs ∪ ys) ∪ zs ≡ xs ∪ (ys ∪ zs)
∪-commutative : ∀ xs ys → xs ∪ ys ≡ ys ∪ xs
∪-idempotent : ∀ xs → xs ∪ xs ≡ xs
∪-identity : ∀ xs → xs ∪ ∅ ≡ xs
trunc : isSet (𝒦 A)
module _ (semiLattice : Semilattice b) where
open Semilattice semiLattice
module _ (sIsSet : isSet 𝑆) (h : A → 𝑆) where
μ : 𝒦 A → 𝑆
μ (η x) = h x
μ (xs ∪ ys) = μ xs ∙ μ ys
μ ∅ = ε
μ (∪-assoc xs ys zs i) = assoc (μ xs) (μ ys) (μ zs) i
μ (∪-commutative xs ys i) = comm (μ xs) (μ ys) i
μ (∪-idempotent xs i) = idem (μ xs) i
μ (∪-identity xs i) = ∙ε (μ xs) i
μ (trunc xs ys x y i j) = sIsSet (μ xs) (μ ys) (cong μ x) (cong μ y) i j
module Eliminators where
record _⇘_ {a p} (A : Type a) (P : 𝒦 A → Type p) : Type (a ℓ⊔ p) where
constructor elim
field
⟦_⟧-set : ∀ {xs} → isSet (P xs)
⟦_⟧∅ : P ∅
⟦_⟧_∪_⟨_∪_⟩ : ∀ xs ys → P xs → P ys → P (xs ∪ ys)
⟦_⟧η : ∀ x → P (η x)
private z = ⟦_⟧∅; f = ⟦_⟧_∪_⟨_∪_⟩
field
⟦_⟧-assoc : ∀ xs ys zs pxs pys pzs →
f (xs ∪ ys) zs (f xs ys pxs pys) pzs ≡[ i ≔ P (∪-assoc xs ys zs i ) ]≡
f xs (ys ∪ zs) pxs (f ys zs pys pzs)
⟦_⟧-commutative : ∀ xs ys pxs pys →
f xs ys pxs pys ≡[ i ≔ P (∪-commutative xs ys i) ]≡ f ys xs pys pxs
⟦_⟧-idempotent : ∀ xs pxs →
f xs xs pxs pxs ≡[ i ≔ P (∪-idempotent xs i) ]≡ pxs
⟦_⟧-identity : ∀ xs pxs → f xs ∅ pxs z ≡[ i ≔ P (∪-identity xs i) ]≡ pxs
⟦_⟧⇓ : ∀ xs → P xs
⟦ η x ⟧⇓ = ⟦_⟧η x
⟦ xs ∪ ys ⟧⇓ = f xs ys ⟦ xs ⟧⇓ ⟦ ys ⟧⇓
⟦ ∅ ⟧⇓ = z
⟦ ∪-assoc xs ys zs i ⟧⇓ = ⟦_⟧-assoc xs ys zs ⟦ xs ⟧⇓ ⟦ ys ⟧⇓ ⟦ zs ⟧⇓ i
⟦ ∪-commutative xs ys i ⟧⇓ = ⟦_⟧-commutative xs ys ⟦ xs ⟧⇓ ⟦ ys ⟧⇓ i
⟦ ∪-idempotent xs i ⟧⇓ = ⟦_⟧-idempotent xs ⟦ xs ⟧⇓ i
⟦ ∪-identity xs i ⟧⇓ = ⟦_⟧-identity xs ⟦ xs ⟧⇓ i
⟦ trunc xs ys x y i j ⟧⇓ =
isOfHLevel→isOfHLevelDep 2
(λ xs → ⟦_⟧-set {xs})
⟦ xs ⟧⇓ ⟦ ys ⟧⇓
(cong ⟦_⟧⇓ x) (cong ⟦_⟧⇓ y)
(trunc xs ys x y)
i j
open _⇘_ public
infixr 0 ⇘-syntax
⇘-syntax = _⇘_
syntax ⇘-syntax A (λ xs → Pxs) = xs ∈𝒦 A ⇒ Pxs
record _⇲_ {a p} (A : Type a) (P : 𝒦 A → Type p) : Type (a ℓ⊔ p) where
constructor elim-prop
field
∥_∥-prop : ∀ {xs} → isProp (P xs)
∥_∥∅ : P ∅
∥_∥_∪_⟨_∪_⟩ : ∀ xs ys → P xs → P ys → P (xs ∪ ys)
∥_∥η : ∀ x → P (η x)
private z = ∥_∥∅; f = ∥_∥_∪_⟨_∪_⟩
∥_∥⇑ = elim
(λ {xs} → isProp→isSet (∥_∥-prop {xs}))
z f ∥_∥η
(λ xs ys zs pxs pys pzs → toPathP (∥_∥-prop (transp (λ i → P (∪-assoc xs ys zs i)) i0 (f (xs ∪ ys) zs (f xs ys pxs pys) pzs)) (f xs (ys ∪ zs) pxs (f ys zs pys pzs) )))
(λ xs ys pxs pys → toPathP (∥_∥-prop (transp (λ i → P (∪-commutative xs ys i)) i0 (f xs ys pxs pys)) (f ys xs pys pxs) ))
(λ xs pxs → toPathP (∥_∥-prop (transp (λ i → P (∪-idempotent xs i)) i0 (f xs xs pxs pxs)) pxs))
(λ xs pxs → toPathP (∥_∥-prop (transp (λ i → P (∪-identity xs i)) i0 (f xs ∅ pxs z)) pxs))
∥_∥⇓ = ⟦ ∥_∥⇑ ⟧⇓
open _⇲_ public
elim-prop-syntax : ∀ {a p} → (A : Type a) → (𝒦 A → Type p) → Type (a ℓ⊔ p)
elim-prop-syntax = _⇲_
syntax elim-prop-syntax A (λ xs → Pxs) = xs ∈𝒦 A ⇒∥ Pxs ∥
module _ {a} {A : Type a} where
open Semilattice
open CommutativeMonoid
open Monoid
𝒦-semilattice : Semilattice a
𝒦-semilattice .commutativeMonoid .monoid .𝑆 = 𝒦 A
𝒦-semilattice .commutativeMonoid .monoid ._∙_ = _∪_
𝒦-semilattice .commutativeMonoid .monoid .ε = ∅
𝒦-semilattice .commutativeMonoid .monoid .assoc = ∪-assoc
𝒦-semilattice .commutativeMonoid .monoid .ε∙ x = ∪-commutative ∅ x ; ∪-identity x
𝒦-semilattice .commutativeMonoid .monoid .∙ε = ∪-identity
𝒦-semilattice .commutativeMonoid .comm = ∪-commutative
𝒦-semilattice .idem = ∪-idempotent
import Algebra.Construct.Free.Semilattice as Listed
Listed→Direct : Listed.𝒦 A → 𝒦 A
Listed→Direct = Listed.μ 𝒦-semilattice trunc η
Direct→Listed : 𝒦 A → Listed.𝒦 A
Direct→Listed = μ Listed.𝒦-semilattice Listed.trunc (Listed._∷ Listed.[])
Listed→Direct→Listed : (xs : Listed.𝒦 A) → Direct→Listed (Listed→Direct xs) ≡ xs
Listed→Direct→Listed = ∥ ldl ∥⇓
where
open Listed using (_⇲_; elim-prop-syntax)
open _⇲_
ldl : xs ∈𝒦 A ⇒∥ Direct→Listed (Listed→Direct xs) ≡ xs ∥
∥ ldl ∥-prop = Listed.trunc _ _
∥ ldl ∥[] = refl
∥ ldl ∥ x ∷ xs ⟨ Pxs ⟩ = cong (x Listed.∷_) Pxs
open Eliminators
Direct→Listed→Direct : (xs : 𝒦 A) → Listed→Direct (Direct→Listed xs) ≡ xs
Direct→Listed→Direct = ∥ dld ∥⇓
where
dld : xs ∈𝒦 A ⇒∥ Listed→Direct (Direct→Listed xs) ≡ xs ∥
∥ dld ∥-prop = trunc _ _
∥ dld ∥∅ = refl
∥ dld ∥η x = ∪-identity (η x)
∥ dld ∥ xs ∪ ys ⟨ Pxs ∪ Pys ⟩ =
sym (Listed.∙-hom 𝒦-semilattice trunc η (Direct→Listed xs) (Direct→Listed ys)) ;
cong₂ _∪_ Pxs Pys
Direct⇔Listed : 𝒦 A ⇔ Listed.𝒦 A
Direct⇔Listed .fun = Direct→Listed
Direct⇔Listed .inv = Listed→Direct
Direct⇔Listed .rightInv = Listed→Direct→Listed
Direct⇔Listed .leftInv = Direct→Listed→Direct
|
{
"alphanum_fraction": 0.5486018642,
"avg_line_length": 36.0068493151,
"ext": "agda",
"hexsha": "a0eb057a40d6d5a74f7e3ab7f1a1c9deea29ae09",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Algebra/Construct/Free/Semilattice/Direct.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Algebra/Construct/Free/Semilattice/Direct.agda",
"max_line_length": 179,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Algebra/Construct/Free/Semilattice/Direct.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 2560,
"size": 5257
}
|
-- Andreas, 2017-08-10, issue #2667, reported by xekoukou,
-- test case by gallais
-- {-# OPTIONS -v tc.with.split:40 #-}
data Bot : Set where
data A : Set where
s : A → A
data P : A → Set where
p : ∀ {a} → P (s a)
poo : ∀{b} → P b → Set
poo p with Bot
poo {b = s c} p | _ = P c
-- Error WAS (2.5.3): Panic, unbound variable c
-- Expected (as in 2.5.2):
--
-- Inaccessible (dotted) patterns from the parent clause must also be
-- inaccessible in the with clause, when checking the pattern {b = s c},
-- when checking that the clause
-- poo p with Bot
-- poo {b = s c} p | _ = P c
-- has type {b : A} → P b → Set
-- Ideally: succeed.
-- 2018-01-05, Jesper: We're one step closer to an ideal world.
|
{
"alphanum_fraction": 0.6090014065,
"avg_line_length": 22.21875,
"ext": "agda",
"hexsha": "f95ba8c7da9c7486b043c674dc6b9768aae9fe1f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2667.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2667.agda",
"max_line_length": 72,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2667.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 250,
"size": 711
}
|
{-# OPTIONS --cubical --safe --guardedness #-}
module Container.Fixpoint where
open import Container
open import Prelude
data μ {s p} (C : Container s p) : Type (s ℓ⊔ p) where
sup : ⟦ C ⟧ (μ C) → μ C
record ν {s p} (C : Container s p) : Type (s ℓ⊔ p) where
coinductive
field inf : ⟦ C ⟧ (ν C)
open ν public
|
{
"alphanum_fraction": 0.6246056782,
"avg_line_length": 21.1333333333,
"ext": "agda",
"hexsha": "084c41c49b6b4a2e04c8c2292bb2ef542d544b7c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Container/Fixpoint.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Container/Fixpoint.agda",
"max_line_length": 56,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Container/Fixpoint.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 117,
"size": 317
}
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020 Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Prelude
-- This module contains a model of a key-value store, along with its
-- functionality and various properties about it. Most of the properties
-- are not currently used, but they are included here based on our
-- experience in other work, as we think many of them will be needed when
-- reasoning about an actual LibraBFT implementation.
-- Although we believe the assumptions here are reasonable, it is always
-- possible that we made a mistake in postulating one of the properties,
-- making it impossible to implement. Thus, it would a useful contribution
-- to:
--
-- TODO-1: construct an actual implementation and provide and prove the
-- necessary properties to satisfy the requirements of this module
--
-- Note that this would require some work, but should be relatively
-- straightforward and requires only "local" changes.
module LibraBFT.Base.KVMap where
private
variable
Key : Set
Val : Set
k k' : Key
v v' : Val
postulate -- valid assumptions, but would be good to eliminate with a reference implementation (above)
_≟Key_ : ∀ (k1 k2 : Key) → Dec (k1 ≡ k2)
KVMap : Set → Set → Set
_∈KV_ : Key → KVMap Key Val → Set
_∈KV?_ : (k : Key) (kvm : KVMap Key Val) → Dec (k ∈KV kvm)
∈KV-irrelevant : (k : Key) (kvm : KVMap Key Val)
→ (r s : k ∈KV kvm)
→ r ≡ s
-- functionality
empty : KVMap Key Val
∈KV-empty-⊥ : k ∈KV (empty {Val = Val}) → ⊥
lookup : Key → KVMap Key Val → Maybe Val
kvm-insert : (k : Key)(v : Val)(kvm : KVMap Key Val)
→ lookup k kvm ≡ nothing
→ KVMap Key Val
-- TODO-3: update properties to reflect kvm-update, consider combining insert/update
kvm-update : (k : Key)(v : Val)(kvm : KVMap Key Val)
→ lookup k kvm ≢ nothing
→ KVMap Key Val
kvm-size : KVMap Key Val → ℕ
-- TODO-1: add properties relating kvm-toList to empty, kvm-insert and kvm-update
kvm-toList : KVMap Key Val → List (Key × Val)
kvm-toList-length : (kvm : KVMap Key Val)
→ length (kvm-toList kvm) ≡ kvm-size kvm
-- TODO-1: need properties showing that the resulting map contains (k , v) for
-- each pair in the list, provided there is no pair (k , v') in the list
-- after (k , v). This is consistent with Haskell's Data.Map.fromList
kvm-fromList : List (Key × Val) → KVMap Key Val
-- properties
lookup-correct : {kvm : KVMap Key Val}
→ (prf : lookup k kvm ≡ nothing)
→ lookup k (kvm-insert k v kvm prf) ≡ just v
lookup-correct-update
: {kvm : KVMap Key Val}
→ (prf : lookup k kvm ≢ nothing)
→ lookup k (kvm-update k v kvm prf) ≡ just v
lookup-stable : {kvm : KVMap Key Val}{k k' : Key}{v' : Val}
→ (prf : lookup k kvm ≡ nothing)
→ lookup k' kvm ≡ just v
→ lookup k' (kvm-insert k v' kvm prf) ≡ just v
insert-target : {kvm : KVMap Key Val}
→ (prf : lookup k kvm ≡ nothing)
→ lookup k' kvm ≢ just v
→ lookup k' (kvm-insert k v' kvm prf) ≡ just v
→ k' ≡ k × v ≡ v'
insert-target-≢ : {kvm : KVMap Key Val}{k k' : Key}
→ (prf : lookup k kvm ≡ nothing)
→ k' ≢ k
→ lookup k' kvm ≡ lookup k' (kvm-insert k v kvm prf)
update-target-≢ : {kvm : KVMap Key Val}
→ ∀ {k1 k2 x}
→ k2 ≢ k1
→ lookup k1 kvm ≡ lookup k1 (kvm-update k2 v kvm x)
kvm-empty : lookup {Val = Val} k empty ≡ nothing
kvm-empty-⊥ : {k : Key} {v : Val} → lookup k empty ≡ just v → ⊥
KVM-extensionality : ∀ {kvm1 kvm2 : KVMap Key Val}
→ (∀ (x : Key) → lookup x kvm1 ≡ lookup x kvm2)
→ kvm1 ≡ kvm2
-- Corollaries
lookup-stable-1 : {kvm : KVMap Key Val}{k k' : Key}{v' : Val}
→ (prf : lookup k kvm ≡ nothing)
→ lookup k' kvm ≡ just v'
→ lookup k' (kvm-insert k v kvm prf) ≡ lookup k' kvm
lookup-stable-1 prf hyp = trans (lookup-stable prf hyp) (sym hyp)
lookup-correct-update-2
: {kvm : KVMap Key Val}
→ (prf : lookup k kvm ≢ nothing)
→ lookup k (kvm-update k v kvm prf) ≡ just v'
→ v ≡ v'
lookup-correct-update-2 {kvm} prf lkup =
just-injective
(trans (sym (lookup-correct-update prf)) lkup)
update-target : {kvm : KVMap Key Val}
→ ∀ {k1 k2 x}
→ lookup k1 kvm ≢ lookup k1 (kvm-update k2 v kvm x)
→ k2 ≡ k1
update-target {kvm = kvm}{k1 = k1}{k2 = k2}{x} vneq
with k1 ≟Key k2
...| yes refl = refl
...| no neq = ⊥-elim (vneq (update-target-≢ {k1 = k1} {k2 = k2} (neq ∘ sym)))
lookup-correct-update-3 : ∀ {kvm : KVMap Key Val}{k1 k2 v2}
→ (prf : lookup k2 kvm ≢ nothing)
→ lookup k2 kvm ≡ just v2
→ lookup k1 (kvm-update k2 v2 kvm prf) ≡ lookup k1 kvm
lookup-correct-update-3 {kvm = kvm} {k1 = k1} {k2 = k2} {v2 = v2} prf with k1 ≟Key k2
...| yes refl = λ pr → trans (lookup-correct-update {v = v2} prf) (sym pr)
...| no neq = λ pr → sym (update-target-≢ {k1 = k1} {k2 = k2} {prf} λ k2≢k1 → ⊥-elim (neq (sym k2≢k1)))
lookup-correct-update-4
: ∀ {orig : KVMap Key Val}{k1}{v1}
{rdy : lookup k1 orig ≢ nothing}
→ lookup k1 orig ≡ just v1
→ kvm-update k1 v1 orig rdy ≡ orig
lookup-correct-update-4 {orig = orig} {k1 = k1} {v1 = v1} {rdy = rdy} hyp =
KVM-extensionality {kvm1 = kvm-update k1 v1 orig rdy} {kvm2 = orig}
λ x → lookup-correct-update-3 rdy hyp
insert-target-0 : {kvm : KVMap Key Val}
→ (prf : lookup k kvm ≡ nothing)
→ lookup k' kvm ≢ lookup k' (kvm-insert k v kvm prf)
→ k ≡ k'
insert-target-0 {k = k} {k' = k'} prf lookups≢
with k' ≟Key k
...| yes refl = refl
...| no neq = ⊥-elim (lookups≢ (insert-target-≢ prf neq))
|
{
"alphanum_fraction": 0.5485617074,
"avg_line_length": 39.4268292683,
"ext": "agda",
"hexsha": "ae61ee3c709536e3e870941cb126ece538923ed8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "cwjnkins/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Base/KVMap.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "cwjnkins/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Base/KVMap.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "cwjnkins/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Base/KVMap.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1993,
"size": 6466
}
|
module 747Negation where
-- Library
open import Relation.Binary.PropositionalEquality using (_≡_; refl) -- added last
open import Data.Nat using (ℕ; zero; suc)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Product using (_×_; proj₁; proj₂)
-- Negation is defined as implying false.
¬_ : Set → Set
¬ A = A → ⊥
-- if both ¬ A and A hold, then ⊥ holds (not surprisingly).
¬-elim : ∀ {A : Set}
→ ¬ A
→ A
---
→ ⊥
¬-elim = {!!}
infix 3 ¬_
-- Double negation introduction.
¬¬-intro : ∀ {A : Set}
→ A
-----
→ ¬ ¬ A
¬¬-intro = {!!}
-- Double negation cannot be eliminated in intuitionistic logic.
-- Triple negation elimination.
¬¬¬-elim : ∀ {A : Set}
→ ¬ ¬ ¬ A
-------
→ ¬ A
¬¬¬-elim = {!!}
-- One direction of the contrapositive.
contraposition : ∀ {A B : Set}
→ (A → B)
-----------
→ (¬ B → ¬ A)
contraposition = {!!}
-- The other direction cannot be proved in intuitionistic logic.
-- not-equal-to.
_≢_ : ∀ {A : Set} → A → A → Set
x ≢ y = ¬ (x ≡ y)
_ : 1 ≢ 2
_ = {!!}
-- One of the first-order Peano axioms.
peano : ∀ {m : ℕ} → zero ≢ suc m
peano = {!!}
-- Copied from 747Isomorphism.
postulate
extensionality : ∀ {A B : Set} {f g : A → B}
→ (∀ (x : A) → f x ≡ g x)
-----------------------
→ f ≡ g
-- Two proofs of ⊥ → ⊥ which look different but are the same
-- (assuming extensionality).
id : ⊥ → ⊥
id x = x
id′ : ⊥ → ⊥
id′ ()
id≡id′ : id ≡ id′
id≡id′ = extensionality (λ())
-- Assuming extensionality, any two proofs of a negation are the same
assimilation : ∀ {A : Set} (¬x ¬x′ : ¬ A) → ¬x ≡ ¬x′
assimilation ¬x ¬x′ = extensionality λ x → ⊥-elim (¬x x)
-- Strict inequality (copied from 747Relations).
infix 4 _<_
data _<_ : ℕ → ℕ → Set where
z<s : ∀ {n : ℕ}
------------
→ zero < suc n
s<s : ∀ {m n : ℕ}
→ m < n
-------------
→ suc m < suc n
-- 747/PLFA exercise: NotFourLTThree (1 point)
-- Show ¬ (4 < 3).
¬4<3 : ¬ (4 < 3)
¬4<3 = {!!}
-- 747/PLFA exercise: LTIrrefl (1 point)
-- < is irreflexive (never reflexive).
¬n<n : ∀ (n : ℕ) → ¬ (n < n)
¬n<n n = {!!}
-- 747/PLFA exercise: LTTrich (3 points)
-- Show that strict inequality satisfies trichotomy,
-- in the sense that exactly one of the three possibilities holds.
-- Here is the expanded definition of trichotomy.
data Trichotomy (m n : ℕ) : Set where
is-< : m < n → ¬ m ≡ n → ¬ n < m → Trichotomy m n
is-≡ : m ≡ n → ¬ m < n → ¬ n < m → Trichotomy m n
is-> : n < m → ¬ m ≡ n → ¬ m < n → Trichotomy m n
<-trichotomy : ∀ (m n : ℕ) → Trichotomy m n
<-trichotomy m n = {!!}
-- PLFA exercise: one of DeMorgan's Laws as isomorphism
-- ⊎-dual-× : ∀ {A B : Set} → ¬ (A ⊎ B) ≃ (¬ A) × (¬ B)
-- Expand negation as implies-false, then look in 747Relations
-- for a law of which this is a special case.
-- What about ¬ (A × B) ≃ (¬ A) ⊎ (¬ B)?
-- Answer: RHS implies LHS but converse cannot be proved in intuitionistic logic.
-- Intuitionistic vs classical logic.
-- The law of the excluded middle (LEM, or just em) cannot be
-- proved in intuitionistic logic.
-- But we can add it, and get classical logic.
-- postulate
-- em : ∀ {A : Set} → A ⊎ ¬ A
-- How do we know this does not give a contradiction?
-- The following theorem of intuitionistic logic demonstrates this.
-- (The proof is compact, but takes some thought.)
em-irrefutable : ∀ {A : Set} → ¬ ¬ (A ⊎ ¬ A)
em-irrefutable = {!!}
-- PLFA exercise: classical equivalences
-- Excluded middle cannot be proved in intuitionistic logic,
-- but adding it is consistent and gives classical logic.
-- Here are four other classical theorems with the same property.
-- You can show that each of them is logically equivalent to all the others.
-- You do not need to prove twenty implications, since implication is transitive.
-- But there is a lot of choice as to how to proceed!
-- Excluded Middle
em = ∀ {A : Set} → A ⊎ ¬ A
-- Double Negation Elimination
dne = ∀ {A : Set} → ¬ ¬ A → A
-- Peirce’s Law
peirce = ∀ {A B : Set} → ((A → B) → A) → A
-- Implication as disjunction
iad = ∀ {A B : Set} → (A → B) → ¬ A ⊎ B
-- De Morgan:
dem = ∀ {A B : Set} → ¬ (¬ A × ¬ B) → A ⊎ B
-- End of classical five exercise.
-- Definition: a formula is stable if double negation holds for it.
Stable : Set → Set
Stable A = ¬ ¬ A → A
-- PLFA exercise: every negated formula is stable.
-- This is triple negation elimination.
-- PLFA exercise: the conjunction of two stable formulas is stable.
-- This is the version of DeMorgan's Law that is a special case, above.
-- Where negation sits in the standard library.
import Relation.Nullary using (¬_)
import Relation.Nullary.Negation using (contraposition)
-- Unicode used in this chapter:
{-
¬ U+00AC NOT SIGN (\neg)
≢ U+2262 NOT IDENTICAL TO (\==n)
-}
|
{
"alphanum_fraction": 0.5980432973,
"avg_line_length": 22.8761904762,
"ext": "agda",
"hexsha": "c7bc080f842876b7a6f9640cc85da89d6065a6a6",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x07-747Negation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x07-747Negation.agda",
"max_line_length": 81,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x07-747Negation.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 1574,
"size": 4804
}
|
------------------------------------------------------------------------
-- Simple regular expression matcher
------------------------------------------------------------------------
open import Eq
open import Setoids
open import Prelude
import RegExps
module SimpleMatcher (D : Datoid) where
private
open module D' = Datoid D
open module S' = Setoid setoid
open module R = RegExps setoid
infix 4 _∈‿⟦_⟧¿
------------------------------------------------------------------------
-- A lemma
private
lemma : forall {a x xs₂}
-> (xs₁ : [ a ]) -> (xs₁ ++ x ∷ []) ++ xs₂ ≡ xs₁ ++ x ∷ xs₂
lemma [] = refl
lemma (x ∷ xs) = cong (\ys -> x ∷ ys) (lemma xs)
------------------------------------------------------------------------
-- Regular expression matcher
-- The type of _∈‿⟦_⟧¿ documents its soundness (assuming that the code
-- is terminating). To prove completeness more work is necessary.
matches-⊙¿ : forall xs₁ xs₂ re₁ re₂
-> Maybe (xs₁ ++ xs₂ ∈‿⟦ re₁ ⊙ re₂ ⟧)
_∈‿⟦_⟧¿ : (xs : [ carrier ]) -> (re : RegExp) -> Maybe (xs ∈‿⟦ re ⟧)
[] ∈‿⟦ ε ⟧¿ = just matches-ε
_ ∷ [] ∈‿⟦ • ⟧¿ = just matches-•
x ∷ [] ∈‿⟦ sym y ⟧¿ with x ≟ y
x ∷ [] ∈‿⟦ sym y ⟧¿ | yes eq = just (matches-sym eq)
x ∷ [] ∈‿⟦ sym y ⟧¿ | no _ = nothing
xs ∈‿⟦ re₁ ∣ re₂ ⟧¿ with xs ∈‿⟦ re₁ ⟧¿
xs ∈‿⟦ re₁ ∣ re₂ ⟧¿ | just m = just (matches-∣ˡ m)
xs ∈‿⟦ re₁ ∣ re₂ ⟧¿ | nothing with xs ∈‿⟦ re₂ ⟧¿
xs ∈‿⟦ re₁ ∣ re₂ ⟧¿ | nothing | just m = just (matches-∣ʳ m)
xs ∈‿⟦ re₁ ∣ re₂ ⟧¿ | nothing | nothing = nothing
xs ∈‿⟦ re₁ ⊙ re₂ ⟧¿ = matches-⊙¿ [] xs re₁ re₂
[] ∈‿⟦ re ⋆ ⟧¿ = just (matches-⋆ (matches-∣ˡ matches-ε))
x ∷ xs ∈‿⟦ re ⋆ ⟧¿ with matches-⊙¿ (x ∷ []) xs re (re ⋆)
x ∷ xs ∈‿⟦ re ⋆ ⟧¿ | just m = just (matches-⋆ (matches-∣ʳ m))
x ∷ xs ∈‿⟦ re ⋆ ⟧¿ | nothing = nothing
_ ∈‿⟦ _ ⟧¿ = nothing
matches-⊙¿ xs₁ xs₂ re₁ re₂ with xs₁ ∈‿⟦ re₁ ⟧¿ | xs₂ ∈‿⟦ re₂ ⟧¿
matches-⊙¿ xs₁ xs₂ re₁ re₂ | just m₁ | just m₂ = just (matches-⊙ m₁ m₂)
matches-⊙¿ xs₁ [] re₁ re₂ | _ | _ = nothing
matches-⊙¿ xs₁ (x ∷ xs₂) re₁ re₂ | _ | _ =
subst (\xs -> Maybe (xs ∈‿⟦ re₁ ⊙ re₂ ⟧))
(lemma xs₁)
(matches-⊙¿ (xs₁ ++ x ∷ []) xs₂ re₁ re₂)
|
{
"alphanum_fraction": 0.4445939883,
"avg_line_length": 35.380952381,
"ext": "agda",
"hexsha": "2fd76c1df7c68ead2e5275cb7c0f19f263dff2ba",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/AIM6/RegExp/talk/SimpleMatcher.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/AIM6/RegExp/talk/SimpleMatcher.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/AIM6/RegExp/talk/SimpleMatcher.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 892,
"size": 2229
}
|
module Issue353 where
data Func : Set₁ where
K : (A : Set) → Func
-- Doesn't work.
module M where
const : ∀ {A B : Set₁} → A → B → A
const x = λ _ → x
⟦_⟧ : Func → Set → Set
⟦ K A ⟧ X = const A X
data μ (F : Func) : Set where
⟨_⟩ : ⟦ F ⟧ (μ F) → μ F
-- Error: μ is not strictly positive, because it occurs in the second
-- argument to ⟦_⟧ in the type of the constructor ⟨_⟩ in the
-- definition of μ.
|
{
"alphanum_fraction": 0.5651162791,
"avg_line_length": 19.5454545455,
"ext": "agda",
"hexsha": "d81fc101220beadbe2cd7d0ee96df42257c5e1d1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/agda-kanso",
"max_forks_repo_path": "test/succeed/Issue353.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/agda-kanso",
"max_issues_repo_path": "test/succeed/Issue353.agda",
"max_line_length": 71,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/Issue353.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 160,
"size": 430
}
|
{-
A couple of general facts about equivalences:
- if f is an equivalence then (cong f) is an equivalence ([equivCong])
- if f is an equivalence then pre- and postcomposition with f are equivalences ([preCompEquiv], [postCompEquiv])
- if f is an equivalence then (Σ[ g ] section f g) and (Σ[ g ] retract f g) are contractible ([isContr-section], [isContr-retract])
(these are not in 'Equiv.agda' because they need Univalence.agda (which imports Equiv.agda))
-}
{-# OPTIONS --cubical --safe #-}
module Cubical.Foundations.Equiv.Properties where
open import Cubical.Core.Everything
open import Cubical.Data.Sigma
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.FunExtEquiv
isEquivCong : ∀ {ℓ} {A B : Type ℓ} {x y : A} (e : A ≃ B) → isEquiv (λ (p : x ≡ y) → (cong (fst e) p))
isEquivCong e = EquivJ (λ (B' A' : Type _) (e' : A' ≃ B') →
(x' y' : A') → isEquiv (λ (p : x' ≡ y') → cong (fst e') p))
(λ _ x' y' → idIsEquiv (x' ≡ y')) _ _ e _ _
congEquiv : ∀ {ℓ} {A B : Type ℓ} {x y : A} (e : A ≃ B) → (x ≡ y) ≃ (e .fst x ≡ e .fst y)
congEquiv e = ((λ (p : _ ≡ _) → cong (fst e) p) , isEquivCong e)
isEquivPreComp : ∀ {ℓ ℓ′} {A B : Type ℓ} {C : Type ℓ′} (e : A ≃ B)
→ isEquiv (λ (φ : B → C) → φ ∘ e .fst)
isEquivPreComp {A = A} {C = C} e = EquivJ
(λ (B A : Type _) (e' : A ≃ B) → isEquiv (λ (φ : B → C) → φ ∘ e' .fst))
(λ A → idIsEquiv (A → C)) _ _ e
isEquivPostComp : ∀ {ℓ ℓ′} {A B : Type ℓ} {C : Type ℓ′} (e : A ≃ B)
→ isEquiv (λ (φ : C → A) → e .fst ∘ φ)
isEquivPostComp {A = A} {C = C} e = EquivJ
(λ (B A : Type _) (e' : A ≃ B) → isEquiv (λ (φ : C → A) → e' .fst ∘ φ))
(λ A → idIsEquiv (C → A)) _ _ e
preCompEquiv : ∀ {ℓ ℓ′} {A B : Type ℓ} {C : Type ℓ′} (e : A ≃ B)
→ (B → C) ≃ (A → C)
preCompEquiv e = (λ φ x → φ (fst e x)) , isEquivPreComp e
postCompEquiv : ∀ {ℓ ℓ′} {A B : Type ℓ} {C : Type ℓ′} (e : A ≃ B)
→ (C → A) ≃ (C → B)
postCompEquiv e = (λ φ x → fst e (φ x)) , isEquivPostComp e
isContr-section : ∀ {ℓ} {A B : Type ℓ} (e : A ≃ B) → isContr (Σ[ g ∈ (B → A) ] section (fst e) g)
fst (isContr-section e) = invEq e , retEq e
snd (isContr-section e) (f , ε) i = (λ b → fst (p b i)) , (λ b → snd (p b i))
where p : ∀ b → (invEq e b , retEq e b) ≡ (f b , ε b)
p b = snd (equiv-proof (snd e) b) (f b , ε b)
-- there is a (much slower) alternate proof that also works for retract
isContr-section' : ∀ {ℓ} {A B : Type ℓ} (e : A ≃ B) → isContr (Σ[ g ∈ (B → A) ] section (fst e) g)
isContr-section' {_} {A} {B} e = transport (λ i → isContr (Σ[ g ∈ (B → A) ] eq g i))
(equiv-proof (isEquivPostComp e) (idfun _))
where eq : ∀ (g : B → A) → ((fst e) ∘ g ≡ idfun _) ≡ (section (fst e) g)
eq g = sym (funExtPath {f = (fst e) ∘ g} {g = idfun _})
isContr-retract : ∀ {ℓ} {A B : Type ℓ} (e : A ≃ B) → isContr (Σ[ g ∈ (B → A) ] retract (fst e) g)
isContr-retract {_} {A} {B} e = transport (λ i → isContr (Σ[ g ∈ (B → A) ] eq g i))
(equiv-proof (isEquivPreComp e) (idfun _))
where eq : ∀ (g : B → A) → (g ∘ (fst e) ≡ idfun _) ≡ (retract (fst e) g)
eq g = sym (funExtPath {f = g ∘ (fst e)} {g = idfun _})
|
{
"alphanum_fraction": 0.5291402193,
"avg_line_length": 45.6052631579,
"ext": "agda",
"hexsha": "711deecec0002e3cc03f2085e7f7e02e75e999b6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/Foundations/Equiv/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/Foundations/Equiv/Properties.agda",
"max_line_length": 131,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/Foundations/Equiv/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1378,
"size": 3466
}
|
module Printf where
_∘_ : {A : Set}{B : A -> Set}{C : {x : A} -> B x -> Set} ->
(f : {x : A}(y : B x) -> C y)(g : (x : A) -> B x)(x : A) -> C (g x)
(f ∘ g) x = f (g x)
infixr 10 _::_
data List (A : Set) : Set where
nil : List A
_::_ : A -> List A -> List A
{-# BUILTIN LIST List #-}
{-# BUILTIN NIL nil #-}
{-# BUILTIN CONS _::_ #-}
[_] : {A : Set} -> A -> List A
[ x ] = x :: nil
module Primitive where
postulate
String : Set
Float : Set
Char : Set
data Nat : Set where
zero : Nat
suc : Nat → Nat
data Int : Set where
pos : Nat → Int
negsuc : Nat → Int
{-# BUILTIN NATURAL Nat #-}
{-# BUILTIN INTEGER Int #-}
{-# BUILTIN INTEGERPOS pos #-}
{-# BUILTIN INTEGERNEGSUC negsuc #-}
{-# BUILTIN STRING String #-}
{-# BUILTIN FLOAT Float #-}
{-# BUILTIN CHAR Char #-}
private
primitive
primStringAppend : String -> String -> String
primStringToList : String -> List Char
primStringFromList : List Char -> String
primShowChar : Char -> String
primShowInteger : Int -> String
primShowFloat : Float -> String
_++_ = primStringAppend
showChar = primShowChar
showInt = primShowInteger
showFloat = primShowFloat
stringToList = primStringToList
listToString = primStringFromList
open Primitive
data Unit : Set where
unit : Unit
infixr 8 _×_
infixr 8 _◅_
data _×_ (A B : Set) : Set where
_◅_ : A -> B -> A × B
data Format : Set where
stringArg : Format
intArg : Format
floatArg : Format
charArg : Format
litChar : Char -> Format
badFormat : Char -> Format
data BadFormat (c : Char) : Set where
format : String -> List Format
format = format' ∘ stringToList
where
format' : List Char -> List Format
format' ('%' :: 's' :: fmt) = stringArg :: format' fmt
format' ('%' :: 'd' :: fmt) = intArg :: format' fmt
format' ('%' :: 'f' :: fmt) = floatArg :: format' fmt
format' ('%' :: 'c' :: fmt) = charArg :: format' fmt
format' ('%' :: '%' :: fmt) = litChar '%' :: format' fmt
format' ('%' :: c :: fmt) = badFormat c :: format' fmt
format' (c :: fmt) = litChar c :: format' fmt
format' nil = nil
Printf' : List Format -> Set
Printf' (stringArg :: fmt) = String × Printf' fmt
Printf' (intArg :: fmt) = Int × Printf' fmt
Printf' (floatArg :: fmt) = Float × Printf' fmt
Printf' (charArg :: fmt) = Char × Printf' fmt
Printf' (badFormat c :: fmt) = BadFormat c
Printf' (litChar _ :: fmt) = Printf' fmt
Printf' nil = Unit
Printf : String -> Set
Printf fmt = Printf' (format fmt)
printf : (fmt : String) -> Printf fmt -> String
printf = printf' ∘ format
where
printf' : (fmt : List Format) -> Printf' fmt -> String
printf' (stringArg :: fmt) (s ◅ args) = s ++ printf' fmt args
printf' (intArg :: fmt) (n ◅ args) = showInt n ++ printf' fmt args
printf' (floatArg :: fmt) (x ◅ args) = showFloat x ++ printf' fmt args
printf' (charArg :: fmt) (c ◅ args) = showChar c ++ printf' fmt args
printf' (litChar c :: fmt) args = listToString [ c ] ++ printf' fmt args
printf' (badFormat _ :: fmt) ()
printf' nil unit = ""
|
{
"alphanum_fraction": 0.5373178709,
"avg_line_length": 28.7435897436,
"ext": "agda",
"hexsha": "d75ab4fbc2b5a2146c7658a40f555fe02be26caa",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Succeed/Printf.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Succeed/Printf.agda",
"max_line_length": 84,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/Printf.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 1057,
"size": 3363
}
|
-- Basic intuitionistic propositional calculus, without ∨ or ⊥.
-- Kripke-style semantics with abstract worlds.
-- Gödel embedding.
module BasicIPC.Semantics.KripkeGodel where
open import BasicIPC.Syntax.Common public
-- Kripke models.
record Model : Set₁ where
infix 3 _⊩ᵅ_
field
World : Set
-- Intuitionistic accessibility; preorder.
_≤_ : World → World → Set
refl≤ : ∀ {w} → w ≤ w
trans≤ : ∀ {w w′ w″} → w ≤ w′ → w′ ≤ w″ → w ≤ w″
-- Forcing for atomic propositions.
_⊩ᵅ_ : World → Atom → Set
open Model {{…}} public
-- Forcing in a particular world of a particular model, based on the Gödel embedding of IPC in S4.
module _ {{_ : Model}} where
infix 3 _⊩_
_⊩_ : World → Ty → Set
w ⊩ α P = ∀ {w′} → w ≤ w′ → w′ ⊩ᵅ P
w ⊩ A ▻ B = ∀ {w′} → w ≤ w′ → w′ ⊩ A → w′ ⊩ B
w ⊩ A ∧ B = ∀ {w′} → w ≤ w′ → w′ ⊩ A × w′ ⊩ B
w ⊩ ⊤ = ∀ {w′} → w ≤ w′ → 𝟙
infix 3 _⊩⋆_
_⊩⋆_ : World → Cx Ty → Set
w ⊩⋆ ∅ = 𝟙
w ⊩⋆ Ξ , A = w ⊩⋆ Ξ × w ⊩ A
-- Monotonicity with respect to intuitionistic accessibility.
module _ {{_ : Model}} where
mono⊩ : ∀ {A w w′} → w ≤ w′ → w ⊩ A → w′ ⊩ A
mono⊩ {α P} ξ s = λ ξ′ → s (trans≤ ξ ξ′)
mono⊩ {A ▻ B} ξ s = λ ξ′ → s (trans≤ ξ ξ′)
mono⊩ {A ∧ B} ξ s = λ ξ′ → s (trans≤ ξ ξ′)
mono⊩ {⊤} ξ s = λ ξ′ → ∙
mono⊩⋆ : ∀ {Ξ w w′} → w ≤ w′ → w ⊩⋆ Ξ → w′ ⊩⋆ Ξ
mono⊩⋆ {∅} ξ ∙ = ∙
mono⊩⋆ {Ξ , A} ξ (γ , a) = mono⊩⋆ {Ξ} ξ γ , mono⊩ {A} ξ a
-- Additional useful equipment.
module _ {{_ : Model}} where
_⟪$⟫_ : ∀ {A B w} → w ⊩ A ▻ B → w ⊩ A → w ⊩ B
s ⟪$⟫ a = s refl≤ a
⟪K⟫ : ∀ {A B w} → w ⊩ A → w ⊩ B ▻ A
⟪K⟫ {A} a ξ = K (mono⊩ {A} ξ a)
⟪S⟫ : ∀ {A B C w} → w ⊩ A ▻ B ▻ C → w ⊩ A ▻ B → w ⊩ A → w ⊩ C
⟪S⟫ {A} {B} {C} s₁ s₂ a = _⟪$⟫_ {B} {C} (_⟪$⟫_ {A} {B ▻ C} s₁ a) (_⟪$⟫_ {A} {B} s₂ a)
⟪S⟫′ : ∀ {A B C w} → w ⊩ A ▻ B ▻ C → w ⊩ (A ▻ B) ▻ A ▻ C
⟪S⟫′ {A} {B} {C} s₁ ξ s₂ ξ′ a = let s₁′ = mono⊩ {A ▻ B ▻ C} (trans≤ ξ ξ′) s₁
s₂′ = mono⊩ {A ▻ B} ξ′ s₂
in ⟪S⟫ {A} {B} {C} s₁′ s₂′ a
_⟪,⟫_ : ∀ {A B w} → w ⊩ A → w ⊩ B → w ⊩ A ∧ B
_⟪,⟫_ {A} {B} a b ξ = mono⊩ {A} ξ a , mono⊩ {B} ξ b
_⟪,⟫′_ : ∀ {A B w} → w ⊩ A → w ⊩ B ▻ A ∧ B
_⟪,⟫′_ {A} {B} a ξ = _⟪,⟫_ {A} {B} (mono⊩ {A} ξ a)
⟪π₁⟫ : ∀ {A B w} → w ⊩ A ∧ B → w ⊩ A
⟪π₁⟫ s = π₁ (s refl≤)
⟪π₂⟫ : ∀ {A B w} → w ⊩ A ∧ B → w ⊩ B
⟪π₂⟫ s = π₂ (s refl≤)
-- Forcing in a particular world of a particular model, for sequents.
module _ {{_ : Model}} where
infix 3 _⊩_⇒_
_⊩_⇒_ : World → Cx Ty → Ty → Set
w ⊩ Γ ⇒ A = w ⊩⋆ Γ → w ⊩ A
infix 3 _⊩_⇒⋆_
_⊩_⇒⋆_ : World → Cx Ty → Cx Ty → Set
w ⊩ Γ ⇒⋆ Ξ = w ⊩⋆ Γ → w ⊩⋆ Ξ
-- Entailment, or forcing in all worlds of all models, for sequents.
infix 3 _⊨_
_⊨_ : Cx Ty → Ty → Set₁
Γ ⊨ A = ∀ {{_ : Model}} {w : World} → w ⊩ Γ ⇒ A
infix 3 _⊨⋆_
_⊨⋆_ : Cx Ty → Cx Ty → Set₁
Γ ⊨⋆ Ξ = ∀ {{_ : Model}} {w : World} → w ⊩ Γ ⇒⋆ Ξ
-- Additional useful equipment, for sequents.
module _ {{_ : Model}} where
lookup : ∀ {A Γ w} → A ∈ Γ → w ⊩ Γ ⇒ A
lookup top (γ , a) = a
lookup (pop i) (γ , b) = lookup i γ
⟦λ⟧ : ∀ {A B Γ w} → (∀ {w′} → w′ ⊩ Γ , A ⇒ B) → w ⊩ Γ ⇒ A ▻ B
⟦λ⟧ s γ = λ ξ a → s (mono⊩⋆ ξ γ , a)
_⟦$⟧_ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A ▻ B → w ⊩ Γ ⇒ A → w ⊩ Γ ⇒ B
_⟦$⟧_ {A} {B} s₁ s₂ γ = _⟪$⟫_ {A} {B} (s₁ γ) (s₂ γ)
⟦K⟧ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A → w ⊩ Γ ⇒ B ▻ A
⟦K⟧ {A} {B} a γ = ⟪K⟫ {A} {B} (a γ)
⟦S⟧ : ∀ {A B C Γ w} → w ⊩ Γ ⇒ A ▻ B ▻ C → w ⊩ Γ ⇒ A ▻ B → w ⊩ Γ ⇒ A → w ⊩ Γ ⇒ C
⟦S⟧ {A} {B} {C} s₁ s₂ a γ = ⟪S⟫ {A} {B} {C} (s₁ γ) (s₂ γ) (a γ)
_⟦,⟧_ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A → w ⊩ Γ ⇒ B → w ⊩ Γ ⇒ A ∧ B
_⟦,⟧_ {A} {B} a b γ = _⟪,⟫_ {A} {B} (a γ) (b γ)
⟦π₁⟧ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A ∧ B → w ⊩ Γ ⇒ A
⟦π₁⟧ {A} {B} s γ = ⟪π₁⟫ {A} {B} (s γ)
⟦π₂⟧ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A ∧ B → w ⊩ Γ ⇒ B
⟦π₂⟧ {A} {B} s γ = ⟪π₂⟫ {A} {B} (s γ)
|
{
"alphanum_fraction": 0.4147417597,
"avg_line_length": 27.9202898551,
"ext": "agda",
"hexsha": "55c3b56386ec30fbf30d2a2bb910b5ab6f7c0968",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/hilbert-gentzen",
"max_forks_repo_path": "BasicIPC/Semantics/KripkeGodel.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/hilbert-gentzen",
"max_issues_repo_path": "BasicIPC/Semantics/KripkeGodel.agda",
"max_line_length": 98,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/hilbert-gentzen",
"max_stars_repo_path": "BasicIPC/Semantics/KripkeGodel.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z",
"num_tokens": 2195,
"size": 3853
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.Cost where
open import Cubical.HITs.Cost.Base
|
{
"alphanum_fraction": 0.7288135593,
"avg_line_length": 23.6,
"ext": "agda",
"hexsha": "33fa43ee5bdd475b1dfe9808cb1a07812f6dbb64",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/Cost.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/Cost.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/Cost.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 35,
"size": 118
}
|
{-# OPTIONS --without-K #-}
-- Constructions on top of exploration functions
open import Level.NP
open import Type hiding (★)
open import Type.Identities
open import Function.NP
open import Function.Extensionality
open import Algebra.FunctionProperties.NP
open import Data.Two.Base
open import Data.Indexed
open import Data.Nat.NP hiding (_⊔_)
open import Data.Nat.Properties
open import Data.Fin using (Fin) renaming (zero to fzero)
open import Data.Maybe.NP
open import Algebra
open import Data.Product.NP renaming (map to ×-map) hiding (first)
open import Data.Sum.NP renaming (map to ⊎-map)
open import Data.Zero using (𝟘)
open import Data.One using (𝟙)
open import Data.Tree.Binary
import Data.List as List
open List using (List; _++_)
open import Relation.Nullary.Decidable
open import Relation.Nullary.NP
open import Relation.Binary
open import Relation.Binary.Sum using (_⊎-cong_)
open import Relation.Binary.Product.Pointwise using (_×-cong_)
import Function.Related as FR
import Relation.Binary.PropositionalEquality.NP as ≡
open import HoTT
open Equivalences
open ≡ using (_≡_)
open import Explore.Core
open import Explore.Properties
import Explore.Monad as EM
module Explore.Explorable where
module _ {m a} {A : ★ a} where
open EM {a} m
gfilter-explore : ∀ {B} → (A →? B) → Explore m A → Explore m B
gfilter-explore f eᴬ = eᴬ >>= λ x → maybe (λ η → point-explore η) empty-explore (f x)
filter-explore : (A → 𝟚) → Explore m A → Explore m A
filter-explore p = gfilter-explore λ x → [0: nothing 1: just x ] (p x)
-- monoidal exploration: explore A with a monoid M
explore-monoid : ∀ {ℓ} → Explore m A → ExploreMon m ℓ A
explore-monoid eᴬ M = eᴬ ε _·_ where open Mon M renaming (_∙_ to _·_)
explore-endo : Explore m A → Explore m A
explore-endo eᴬ ε op f = eᴬ id _∘′_ (op ∘ f) ε
explore-endo-monoid : ∀ {ℓ} → Explore m A → ExploreMon m ℓ A
explore-endo-monoid = explore-monoid ∘ explore-endo
explore-backward : Explore m A → Explore m A
explore-backward eᴬ ε _∙_ f = eᴬ ε (flip _∙_) f
-- explore-backward ∘ explore-backward = id
-- (m : a comm monoid) → explore-backward m = explore m
private
module FindForward {a} {A : ★ a} (explore : Explore a A) where
find? : Find? A
find? = explore nothing (M?._∣_ _)
first : Maybe A
first = find? just
findKey : FindKey A
findKey pred = find? (λ x → [0: nothing 1: just x ] (pred x))
module ExplorePlug {ℓ a} {A : ★ a} where
record ExploreIndKit p (P : Explore ℓ A → ★ p) : ★ (a ⊔ ₛ ℓ ⊔ p) where
constructor mk
field
Pε : P empty-explore
P∙ : ∀ {e₀ e₁ : Explore ℓ A} → P e₀ → P e₁ → P (merge-explore e₀ e₁)
Pf : ∀ x → P (point-explore x)
_$kit_ : ∀ {p} {P : Explore ℓ A → ★ p} {e : Explore ℓ A}
→ ExploreInd p e → ExploreIndKit p P → P e
_$kit_ {P = P} ind (mk Pε P∙ Pf) = ind P Pε P∙ Pf
_,-kit_ : ∀ {p} {P : Explore ℓ A → ★ p}{Q : Explore ℓ A → ★ p}
→ ExploreIndKit p P → ExploreIndKit p Q → ExploreIndKit p (P ×° Q)
Pk ,-kit Qk = mk (Pε Pk , Pε Qk)
(λ x y → P∙ Pk (fst x) (fst y) , P∙ Qk (snd x) (snd y))
(λ x → Pf Pk x , Pf Qk x)
where open ExploreIndKit
ExploreInd-Extra : ∀ p → Explore ℓ A → ★ _
ExploreInd-Extra p exp =
∀ (Q : Explore ℓ A → ★ p)
(Q-kit : ExploreIndKit p Q)
(P : Explore ℓ A → ★ p)
(Pε : P empty-explore)
(P∙ : ∀ {e₀ e₁ : Explore ℓ A} → Q e₀ → Q e₁ → P e₀ → P e₁
→ P (merge-explore e₀ e₁))
(Pf : ∀ x → P (point-explore x))
→ P exp
to-extra : ∀ {p} {e : Explore ℓ A} → ExploreInd p e → ExploreInd-Extra p e
to-extra e-ind Q Q-kit P Pε P∙ Pf =
snd (e-ind (Q ×° P)
(Qε , Pε)
(λ { (a , b) (c , d) → Q∙ a c , P∙ a c b d })
(λ x → Qf x , Pf x))
where open ExploreIndKit Q-kit renaming (Pε to Qε; P∙ to Q∙; Pf to Qf)
ExplorePlug : ∀ {m} (M : Monoid ℓ m) (e : Explore _ A) → ★ _
ExplorePlug M e = ∀ f x → e∘ ε _∙_ f ∙ x ≈ e∘ x _∙_ f
where open Mon M
e∘ = explore-endo e
plugKit : ∀ {m} (M : Monoid ℓ m) → ExploreIndKit _ (ExplorePlug M)
plugKit M = mk (λ _ → fst identity)
(λ Ps Ps' f x →
trans (∙-cong (! Ps _ _) refl)
(trans (assoc _ _ _)
(trans (∙-cong refl (Ps' _ x)) (Ps _ _))))
(λ x f _ → ∙-cong (snd identity (f x)) refl)
where open Mon M
module FromExplore
{a} {A : ★ a}
(explore : ∀ {ℓ} → Explore ℓ A) where
module _ {ℓ} where
with-monoid : ∀ {m} → ExploreMon ℓ m A
with-monoid = explore-monoid explore
with∘ : Explore ℓ A
with∘ = explore-endo explore
with-endo-monoid : ∀ {m} → ExploreMon ℓ m A
with-endo-monoid = explore-endo-monoid explore
backward : Explore ℓ A
backward = explore-backward explore
gfilter : ∀ {B} → (A →? B) → Explore ℓ B
gfilter f = gfilter-explore f explore
filter : (A → 𝟚) → Explore ℓ A
filter p = filter-explore p explore
sum : Sum A
sum = explore 0 _+_
Card : ℕ
Card = sum (const 1)
count : Count A
count f = sum (𝟚▹ℕ ∘ f)
product : (A → ℕ) → ℕ
product = explore 1 _*_
big-∧ big-∨ big-xor : (A → 𝟚) → 𝟚
big-∧ = explore 1₂ _∧_
and = big-∧
all = big-∧
big-∨ = explore 0₂ _∨_
or = big-∨
any = big-∨
big-xor = explore 0₂ _xor_
big-lift∧ big-lift∨ : Level → (A → 𝟚) → 𝟚
big-lift∧ ℓ f = lower (explore {ℓ} (lift 1₂) (lift-op₂ _∧_) (lift ∘ f))
big-lift∨ ℓ f = lower (explore {ℓ} (lift 0₂) (lift-op₂ _∨_) (lift ∘ f))
bin-tree : BinTree A
bin-tree = explore empty fork leaf
list : List A
list = explore List.[] _++_ List.[_]
module FindBackward = FindForward backward
findLast? : Find? A
findLast? = FindBackward.find?
last : Maybe A
last = FindBackward.first
findLastKey : FindKey A
findLastKey = FindBackward.findKey
open FindForward explore public
module FromLookup
{a} {A : ★ a}
{explore : ∀ {ℓ} → Explore ℓ A}
(lookup : ∀ {ℓ} → Lookup {ℓ} explore)
where
module CheckDec! {ℓ}{P : A → ★ ℓ}(decP : ∀ x → Dec (P x)) where
CheckDec! : ★ _
CheckDec! = explore (Lift 𝟙) _×_ λ x → ✓ ⌊ decP x ⌋
checkDec! : {p✓ : CheckDec!} → ∀ x → P x
checkDec! {p✓} x = toWitness (lookup p✓ x)
module FromExploreInd
{a} {A : ★ a}
{explore : ∀ {ℓ} → Explore ℓ A}
(explore-ind : ∀ {p ℓ} → ExploreInd {ℓ} p explore)
where
open FromExplore explore public
module _ {ℓ p} where
explore-mon-ext : ExploreMonExt {ℓ} p explore
explore-mon-ext m {f} {g} f≈°g = explore-ind (λ s → s _ _ f ≈ s _ _ g) refl ∙-cong f≈°g
where open Mon m
explore-mono : ExploreMono {ℓ} p explore
explore-mono _⊆_ z⊆ _∙-mono_ {f} {g} f⊆°g =
explore-ind (λ e → e _ _ f ⊆ e _ _ g) z⊆ _∙-mono_ f⊆°g
open ExplorePlug {ℓ} {a} {A}
explore∘-plug : (M : Monoid ℓ ℓ) → ExplorePlug M explore
explore∘-plug M = explore-ind $kit plugKit M
module _ (M : Monoid ℓ ℓ)
(open Mon M)
(f : A → C)
where
explore-endo-monoid-spec′ : ∀ z → explore ε _∙_ f ∙ z ≈ explore-endo explore z _∙_ f
explore-endo-monoid-spec′ = explore-ind (λ e → ∀ z → e ε _∙_ f ∙ z ≈ explore-endo e z _∙_ f)
(fst identity) (λ P₀ P₁ z → trans (assoc _ _ _) (trans (∙-cong refl (P₁ z)) (P₀ _))) (λ _ _ → refl)
explore-endo-monoid-spec : with-monoid M f ≈ with-endo-monoid M f
explore-endo-monoid-spec = trans (! snd identity _) (explore-endo-monoid-spec′ ε)
explore∘-ind : ∀ (M : Monoid ℓ ℓ) → BigOpMonInd ℓ M (with-endo-monoid M)
explore∘-ind M P Pε P∙ Pf P≈ =
snd (explore-ind (λ e → ExplorePlug M e × P (λ f → e id _∘′_ (_∙_ ∘ f) ε))
(const (fst identity) , Pε)
(λ {e} {s'} Ps Ps' → ExploreIndKit.P∙ (plugKit M) {e} {s'} (fst Ps) (fst Ps')
, P≈ (λ f → fst Ps f _) (P∙ (snd Ps) (snd Ps')))
(λ x → ExploreIndKit.Pf (plugKit M) x
, P≈ (λ f → ! snd identity _) (Pf x)))
where open Mon M
explore-swap : ∀ {b} → ExploreSwap {ℓ} p explore {b}
explore-swap mon {eᴮ} eᴮ-ε pf f =
explore-ind (λ e → e _ _ (eᴮ ∘ f) ≈ eᴮ (e _ _ ∘ flip f))
(! eᴮ-ε)
(λ p q → trans (∙-cong p q) (! pf _ _))
(λ _ → refl)
where open Mon mon
explore-ε : Exploreε {ℓ} p explore
explore-ε M = explore-ind (λ e → e ε _ (const ε) ≈ ε)
refl
(λ x≈ε y≈ε → trans (∙-cong x≈ε y≈ε) (fst identity ε))
(λ _ → refl)
where open Mon M
explore-hom : ExploreHom {ℓ} p explore
explore-hom cm f g = explore-ind (λ e → e _ _ (f ∙° g) ≈ e _ _ f ∙ e _ _ g)
(! fst identity ε)
(λ p₀ p₁ → trans (∙-cong p₀ p₁) (∙-interchange _ _ _ _))
(λ _ → refl)
where open CMon cm
explore-linˡ : ExploreLinˡ {ℓ} p explore
explore-linˡ m _◎_ f k ide dist = explore-ind (λ e → e ε _∙_ (λ x → k ◎ f x) ≈ k ◎ e ε _∙_ f) (! ide) (λ x x₁ → trans (∙-cong x x₁) (! dist k _ _)) (λ x → refl)
where open Mon m
explore-linʳ : ExploreLinʳ {ℓ} p explore
explore-linʳ m _◎_ f k ide dist = explore-ind (λ e → e ε _∙_ (λ x → f x ◎ k) ≈ e ε _∙_ f ◎ k) (! ide) (λ x x₁ → trans (∙-cong x x₁) (! dist k _ _)) (λ x → refl)
where open Mon m
module ProductMonoid
{M : ★₀} (εₘ : M) (_⊕ₘ_ : Op₂ M)
{N : ★₀} (εₙ : N) (_⊕ₙ_ : Op₂ N)
where
ε = (εₘ , εₙ)
_⊕_ : Op₂ (M × N)
(xₘ , xₙ) ⊕ (yₘ , yₙ) = (xₘ ⊕ₘ yₘ , xₙ ⊕ₙ yₙ)
explore-product-monoid :
∀ fₘ fₙ → explore ε _⊕_ < fₘ , fₙ > ≡ (explore εₘ _⊕ₘ_ fₘ , explore εₙ _⊕ₙ_ fₙ)
explore-product-monoid fₘ fₙ =
explore-ind (λ e → e ε _⊕_ < fₘ , fₙ > ≡ (e εₘ _⊕ₘ_ fₘ , e εₙ _⊕ₙ_ fₙ)) ≡.refl (≡.ap₂ _⊕_) (λ _ → ≡.refl)
{-
empty-explore:
ε ≡ (εₘ , εₙ) ✓
point-explore (x , y):
< fₘ , fₙ > (x , y) ≡ (fₘ x , fₙ y) ✓
merge-explore e₀ e₁:
e₀ ε _⊕_ < fₘ , fₙ > ⊕ e₁ ε _⊕_ < fₘ , fₙ >
≡
(e₀ εₘ _⊕ₘ_ fₘ , e₀ εₙ _⊕ₙ_ fₙ) ⊕ (e₁ εₘ _⊕ₘ_ fₘ , e₁ εₙ _⊕ₙ_ fₙ)
≡
(e₀ εₘ _⊕ₘ_ fₘ ⊕ e₁ εₘ _⊕ₘ_ fₘ , e₀ εₙ _⊕ₙ_ fₙ ⊕ e₁ εₙ _⊕ₙ_ fₙ)
-}
module _ {ℓ} where
reify : Reify {ℓ} explore
reify = explore-ind (λ eᴬ → Πᵉ eᴬ _) _ _,_
unfocus : Unfocus {ℓ} explore
unfocus = explore-ind Unfocus (λ{ (lift ()) }) (λ P Q → [ P , Q ]) (λ η → _,_ η)
module _ {ℓᵣ aᵣ} {Aᵣ : A → A → ★ aᵣ}
(Aᵣ-refl : Reflexive Aᵣ) where
⟦explore⟧ : ⟦Explore⟧ ℓᵣ Aᵣ (explore {ℓ}) (explore {ℓ})
⟦explore⟧ Mᵣ zᵣ ∙ᵣ fᵣ = explore-ind (λ e → Mᵣ (e _ _ _) (e _ _ _)) zᵣ (λ η → ∙ᵣ η) (λ η → fᵣ Aᵣ-refl)
explore-ext : ExploreExt {ℓ} explore
explore-ext ε op = explore-ind (λ e → e _ _ _ ≡ e _ _ _) ≡.refl (≡.ap₂ op)
module LiftHom
{m p}
{S T : ★ m}
(_≈_ : T → T → ★ p)
(≈-refl : Reflexive _≈_)
(≈-trans : Transitive _≈_)
(zero : S)
(_+_ : Op₂ S)
(one : T)
(_*_ : Op₂ T)
(≈-cong-* : _*_ Preserves₂ _≈_ ⟶ _≈_ ⟶ _≈_)
(f : S → T)
(g : A → S)
(hom-0-1 : f zero ≈ one)
(hom-+-* : ∀ {x y} → (f (x + y)) ≈ (f x * f y))
where
lift-hom : f (explore zero _+_ g) ≈ explore one _*_ (f ∘ g)
lift-hom = explore-ind (λ e → f (e zero _+_ g) ≈ e one _*_ (f ∘ g))
hom-0-1
(λ p q → ≈-trans hom-+-* (≈-cong-* p q))
(λ _ → ≈-refl)
module _ {ℓ} {P : A → ★_ ℓ} where
open LiftHom {S = ★_ ℓ} {★_ ℓ} (λ A B → B → A) id _∘′_
(Lift 𝟘) _⊎_ (Lift 𝟙) _×_
(λ f g → ×-map f g) Dec P (const (no (λ{ (lift ()) })))
(uncurry Dec-⊎)
public renaming (lift-hom to lift-Dec)
module FromFocus {p} (focus : Focus {p} explore) where
Dec-Σ : ∀ {P} → Π A (Dec ∘ P) → Dec (Σ A P)
Dec-Σ = map-Dec unfocus focus ∘ lift-Dec ∘ reify
lift-hom-≡ :
∀ {m} {S T : ★ m}
(zero : S)
(_+_ : Op₂ S)
(one : T)
(_*_ : Op₂ T)
(f : S → T)
(g : A → S)
(hom-0-1 : f zero ≡ one)
(hom-+-* : ∀ {x y} → f (x + y) ≡ f x * f y)
→ f (explore zero _+_ g) ≡ explore one _*_ (f ∘ g)
lift-hom-≡ z _+_ o _*_ = LiftHom.lift-hom _≡_ ≡.refl ≡.trans z _+_ o _*_ (≡.ap₂ _*_)
-- Since so far S and T should have the same level, we get this mess of resizing
-- There is a later version based on ⟦explore⟧.
module _ (f : A → 𝟚) {{_ : UA}} where
lift-✓all-Πᵉ : ✓ (big-lift∧ ₁ f) ≡ Πᵉ explore (✓ ∘ f)
lift-✓all-Πᵉ = lift-hom-≡ (lift 1₂) (lift-op₂ _∧_) (Lift 𝟙) _×_ (✓ ∘ lower) (lift ∘ f) (≡.! Lift≡id) (✓-∧-× _ _)
module _ (f : A → 𝟚) where
lift-✓any↔Σᵉ : ✓ (big-lift∨ ₁ f) ↔ Σᵉ explore (✓ ∘ f)
lift-✓any↔Σᵉ = LiftHom.lift-hom _↔_ (id , id) (zip (flip _∘′_) _∘′_)
(lift 0₂) (lift-op₂ _∨_) (Lift 𝟘) _⊎_
(zip ⊎-map ⊎-map) (✓ ∘ lower) (lift ∘ f)
((λ()) , λ{(lift())}) (✓∨-⊎ , ⊎-✓∨)
sum-ind : SumInd sum
sum-ind P P0 P+ Pf = explore-ind (λ e → P (e 0 _+_)) P0 P+ Pf
sum-ext : SumExt sum
sum-ext = explore-ext 0 _+_
sum-zero : SumZero sum
sum-zero = explore-ε ℕ+.monoid
sum-hom : SumHom sum
sum-hom = explore-hom ℕ°.+-commutativeMonoid
sum-mono : SumMono sum
sum-mono = explore-mono _≤_ z≤n _+-mono_
sum-swap' : SumSwap sum
sum-swap' {sumᴮ = sᴮ} sᴮ-0 hom f =
sum-ind (λ s → s (sᴮ ∘ f) ≡ sᴮ (s ∘ flip f))
(! sᴮ-0)
(λ p q → (ap₂ _+_ p q) ∙ (! hom _ _)) (λ _ → refl)
where open ≡
sum-lin : SumLin sum
sum-lin f zero = sum-zero
sum-lin f (suc k) = ≡.trans (sum-hom f (λ x → k * f x)) (≡.ap₂ _+_ (≡.refl {x = sum f}) (sum-lin f k))
sum-const : SumConst sum
sum-const x = sum-ext (λ _ → ! snd ℕ°.*-identity x) ∙ sum-lin (const 1) x ∙ ℕ°.*-comm x Card
where open ≡
exploreStableUnder→sumStableUnder : ∀ {p} → StableUnder explore p → SumStableUnder sum p
exploreStableUnder→sumStableUnder SU-p = SU-p 0 _+_
count-ext : CountExt count
count-ext f≗g = sum-ext (≡.cong 𝟚▹ℕ ∘ f≗g)
sumStableUnder→countStableUnder : ∀ {p} → SumStableUnder sum p → CountStableUnder count p
sumStableUnder→countStableUnder sumSU-p f = sumSU-p (𝟚▹ℕ ∘ f)
diff-list = with-endo-monoid (List.monoid A) List.[_]
{-
list≡diff-list : list ≡ diff-list
list≡diff-list = {!explore-endo-monoid-spec (List.monoid A) List.[_]!}
-}
lift-sum : ∀ ℓ → Sum A
lift-sum ℓ f = lower {₀} {ℓ} (explore (lift 0) (lift-op₂ _+_) (lift ∘ f))
Fin-lower-sum≡Σᵉ-Fin : ∀ {{_ : UA}}(f : A → ℕ) → Fin (lift-sum _ f) ≡ Σᵉ explore (Fin ∘ f)
Fin-lower-sum≡Σᵉ-Fin f = lift-hom-≡ (lift 0) (lift-op₂ _+_) (Lift 𝟘) _⊎_ (Fin ∘ lower) (lift ∘ f) (Fin0≡𝟘 ∙ ! Lift≡id) (! Fin-⊎-+)
where open ≡
module FromTwoExploreInd
{a} {A : ★ a}
{eᴬ : ∀ {ℓ} → Explore ℓ A}
(eᴬ-ind : ∀ {p ℓ} → ExploreInd {ℓ} p eᴬ)
{b} {B : ★ b}
{eᴮ : ∀ {ℓ} → Explore ℓ B}
(eᴮ-ind : ∀ {p ℓ} → ExploreInd {ℓ} p eᴮ)
where
module A = FromExploreInd eᴬ-ind
module B = FromExploreInd eᴮ-ind
module _ {c ℓ}(cm : CommutativeMonoid c ℓ) where
open CMon cm
opᴬ = eᴬ ε _∙_
opᴮ = eᴮ ε _∙_
-- TODO use lift-hom
explore-swap' : ∀ f → opᴬ (opᴮ ∘ f) ≈ opᴮ (opᴬ ∘ flip f)
explore-swap' = A.explore-swap m (B.explore-ε m) (B.explore-hom cm)
sum-swap : ∀ f → A.sum (B.sum ∘ f) ≡ B.sum (A.sum ∘ flip f)
sum-swap = explore-swap' ℕ°.+-commutativeMonoid
module FromTwoAdequate-sum
{{_ : UA}}{{_ : FunExt}}
{A}{B}
{sumᴬ : Sum A}{sumᴮ : Sum B}
(open Adequacy _≡_)
(sumᴬ-adq : Adequate-sum sumᴬ)
(sumᴮ-adq : Adequate-sum sumᴮ) where
open ≡
sumStableUnder : (p : A ≃ B)(f : B → ℕ)
→ sumᴬ (f ∘ ·→ p) ≡ sumᴮ f
sumStableUnder p f = Fin-injective (sumᴬ-adq (f ∘ ·→ p)
∙ Σ-fst≃ p _
∙ ! sumᴮ-adq f)
sumStableUnder′ : (p : A ≃ B)(f : A → ℕ)
→ sumᴬ f ≡ sumᴮ (f ∘ <– p)
sumStableUnder′ p f = Fin-injective (sumᴬ-adq f
∙ Σ-fst≃′ p _
∙ ! sumᴮ-adq (f ∘ <– p))
module FromAdequate-sum
{A}
{sum : Sum A}
(open Adequacy _≡_)
(sum-adq : Adequate-sum sum)
{{_ : UA}}{{_ : FunExt}}
where
open FromTwoAdequate-sum sum-adq sum-adq public
open ≡
sum-ext : SumExt sum
sum-ext = ap sum ∘ λ=
private
count : Count A
count f = sum (𝟚▹ℕ ∘ f)
private
module M {p q : A → 𝟚}(same-count : count p ≡ count q) where
private
P = λ x → p x ≡ 1₂
Q = λ x → q x ≡ 1₂
¬P = λ x → p x ≡ 0₂
¬Q = λ x → q x ≡ 0₂
π : Σ A P ≡ Σ A Q
π = ! Σ=′ _ (count-≡ p)
∙ ! (sum-adq (𝟚▹ℕ ∘ p))
∙ ap Fin same-count
∙ sum-adq (𝟚▹ℕ ∘ q)
∙ Σ=′ _ (count-≡ q)
lem1 : ∀ px qx → 𝟚▹ℕ qx ≡ (𝟚▹ℕ (px ∧ qx)) + 𝟚▹ℕ (not px) * 𝟚▹ℕ qx
lem1 1₂ 1₂ = ≡.refl
lem1 1₂ 0₂ = ≡.refl
lem1 0₂ 1₂ = ≡.refl
lem1 0₂ 0₂ = ≡.refl
lem2 : ∀ px qx → 𝟚▹ℕ px ≡ (𝟚▹ℕ (px ∧ qx)) + 𝟚▹ℕ px * 𝟚▹ℕ (not qx)
lem2 1₂ 1₂ = ≡.refl
lem2 1₂ 0₂ = ≡.refl
lem2 0₂ 1₂ = ≡.refl
lem2 0₂ 0₂ = ≡.refl
lemma1 : ∀ px qx → (qx ≡ 1₂) ≡ (Fin (𝟚▹ℕ (px ∧ qx)) ⊎ (px ≡ 0₂ × qx ≡ 1₂))
lemma1 px qx = ! Fin-≡-≡1₂ qx
∙ ap Fin (lem1 px qx)
∙ ! Fin-⊎-+
∙ ⊎= refl (! Fin-×-* ∙ ×= (Fin-≡-≡0₂ px) (Fin-≡-≡1₂ qx))
lemma2 : ∀ px qx → (Fin (𝟚▹ℕ (px ∧ qx)) ⊎ (px ≡ 1₂ × qx ≡ 0₂)) ≡ (px ≡ 1₂)
lemma2 px qx = ! ⊎= refl (! Fin-×-* ∙ ×= (Fin-≡-≡1₂ px) (Fin-≡-≡0₂ qx)) ∙ Fin-⊎-+ ∙ ap Fin (! lem2 px qx) ∙ Fin-≡-≡1₂ px
π' : (Fin (sum (λ x → 𝟚▹ℕ (p x ∧ q x))) ⊎ Σ A (λ x → P x × ¬Q x))
≡ (Fin (sum (λ x → 𝟚▹ℕ (p x ∧ q x))) ⊎ Σ A (λ x → ¬P x × Q x))
π' = ⊎= (sum-adq (λ x → 𝟚▹ℕ (p x ∧ q x))) refl
∙ ! Σ⊎-split
∙ Σ=′ _ (λ x → lemma2 (p x) (q x))
∙ π
∙ Σ=′ _ (λ x → lemma1 (p x) (q x))
∙ Σ⊎-split
∙ ! ⊎= (sum-adq (λ x → 𝟚▹ℕ (p x ∧ q x))) refl
π'' : Σ A (P ×° ¬Q) ≡ Σ A (¬P ×° Q)
π'' = Fin⊎-injective (sum (λ x → 𝟚▹ℕ (p x ∧ q x))) π'
open EquivalentSubsets π'' public
same-count→iso : ∀{p q : A → 𝟚}(same-count : count p ≡ count q) → p ≡ q ∘ M.π {p} {q} same-count
same-count→iso {p} {q} sc = M.prop {p} {q} sc
module From⟦Explore⟧
{-a-} {A : ★₀ {- a-}}
{explore : ∀ {ℓ} → Explore ℓ A}
(⟦explore⟧ : ∀ {ℓ₀ ℓ₁} ℓᵣ → ⟦Explore⟧ {ℓ₀} {ℓ₁} ℓᵣ _≡_ explore explore)
{{_ : UA}}
where
open FromExplore explore
module AlsoInFromExploreInd
{ℓ}(M : Monoid ℓ ℓ)
(open Mon M)
(f : A → C)
where
explore-endo-monoid-spec′ : ∀ z → explore ε _∙_ f ∙ z ≈ explore-endo explore z _∙_ f
explore-endo-monoid-spec′ = ⟦explore⟧ ₀ {C} {C → C}
(λ r s → ∀ z → r ∙ z ≈ s z)
(fst identity)
(λ P₀ P₁ z → trans (assoc _ _ _) (trans (∙-cong refl (P₁ z)) (P₀ _)))
(λ xᵣ _ → ∙-cong (reflexive (≡.ap f xᵣ)) refl)
explore-endo-monoid-spec : with-monoid M f ≈ with-endo-monoid M f
explore-endo-monoid-spec = trans (! snd identity _) (explore-endo-monoid-spec′ ε)
open ≡
module _ (f : A → ℕ) where
sum⇒Σᵉ : Fin (explore 0 _+_ f) ≡ explore (Lift 𝟘) _⊎_ (Fin ∘ f)
sum⇒Σᵉ = ⟦explore⟧ {₀} {₁} ₁
(λ n X → Fin n ≡ X)
(Fin0≡𝟘 ∙ ! Lift≡id)
(λ p q → ! Fin-⊎-+ ∙ ⊎= p q)
(ap (Fin ∘ f))
product⇒Πᵉ : Fin (explore 1 _*_ f) ≡ explore (Lift 𝟙) _×_ (Fin ∘ f)
product⇒Πᵉ = ⟦explore⟧ {₀} {₁} ₁
(λ n X → Fin n ≡ X)
(Fin1≡𝟙 ∙ ! Lift≡id)
(λ p q → ! Fin-×-* ∙ ×= p q)
(ap (Fin ∘ f))
module _ (f : A → 𝟚) where
✓all-Πᵉ : ✓ (all f) ≡ Πᵉ explore (✓ ∘ f)
✓all-Πᵉ = ⟦explore⟧ {₀} {₁} ₁
(λ b X → ✓ b ≡ X)
(! Lift≡id)
(λ p q → ✓-∧-× _ _ ∙ ×= p q)
(ap (✓ ∘ f))
✓any→Σᵉ : ✓ (any f) → Σᵉ explore (✓ ∘ f)
✓any→Σᵉ p = ⟦explore⟧ {₀} {ₛ ₀} ₁
(λ b (X : ★₀) → Lift (✓ b) → X)
(λ x → lift (lower x))
(λ { {0₂} {x₁} xᵣ {y₀} {y₁} yᵣ zᵣ → inr (yᵣ zᵣ)
; {1₂} {x₁} xᵣ {y₀} {y₁} yᵣ zᵣ → inl (xᵣ _) })
(λ xᵣ x → tr (✓ ∘ f) xᵣ (lower x)) (lift p)
module FromAdequate-Σᵉ
(adequate-Σᵉ : ∀ {ℓ} → Adequate-Σ {ℓ} (Σᵉ explore))
where
open Adequacy
adequate-sum : Adequate-sum _≡_ sum
adequate-sum f = sum⇒Σᵉ f ∙ adequate-Σᵉ (Fin ∘ f)
open FromAdequate-sum adequate-sum public
adequate-any : Adequate-any -→- any
adequate-any f e = coe (adequate-Σᵉ (✓ ∘ f)) (✓any→Σᵉ f e)
module FromAdequate-Πᵉ
(adequate-Πᵉ : ∀ {ℓ} → Adequate-Π {ℓ} (Πᵉ explore))
where
open Adequacy
adequate-product : Adequate-product _≡_ product
adequate-product f = product⇒Πᵉ f ∙ adequate-Πᵉ (Fin ∘ f)
adequate-all : Adequate-all _≡_ all
adequate-all f = ✓all-Πᵉ f ∙ adequate-Πᵉ _
check! : (f : A → 𝟚) {pf : ✓ (all f)} → (∀ x → ✓ (f x))
check! f {pf} = coe (adequate-all f) pf
{-
module ExplorableRecord where
record Explorable A : ★₁ where
constructor mk
field
explore : Explore₀ A
explore-ind : ExploreInd₀ explore
open FromExploreInd explore-ind
field
adequate-sum : Adequate-sum sum
-- adequate-product : AdequateProduct product
open FromExploreInd explore-ind public
open Explorable public
ExploreForFun : ★₀ → ★₁
ExploreForFun A = ∀ {X} → Explorable X → Explorable (A → X)
record Funable A : ★₂ where
constructor _,_
field
explorable : Explorable A
negative : ExploreForFun A
module DistFun {A} (μA : Explorable A)
(μA→ : ExploreForFun A)
{B} (μB : Explorable B){X}
(_≈_ : X → X → ★ ₀)
(0′ : X)
(_+_ : X → X → X)
(_*_ : X → X → X) where
Σᴮ = explore μB 0′ _+_
Π' = explore μA 0′ _*_
Σ' = explore (μA→ μB) 0′ _+_
DistFun = ∀ f → Π' (Σᴮ ∘ f) ≈ Σ' (Π' ∘ _ˢ_ f)
DistFun : ∀ {A} → Explorable A → ExploreForFun A → ★₁
DistFun μA μA→ = ∀ {B} (μB : Explorable B) c → let open CMon {₀}{₀} c in
∀ _*_ → Zero _≈_ ε _*_ → _DistributesOver_ _≈_ _*_ _∙_ → _*_ Preserves₂ _≈_ ⟶ _≈_ ⟶ _≈_
→ DistFun.DistFun μA μA→ μB _≈_ ε _∙_ _*_
DistFunable : ∀ {A} → Funable A → ★₁
DistFunable (μA , μA→) = DistFun μA μA→
module _ {{_ : UA}}{{_ : FunExt}} where
μ-iso : ∀ {A B} → (A ≃ B) → Explorable A → Explorable B
μ-iso {A}{B} A≃B μA = mk (EM.map _ A→B (explore μA)) (EM.map-ind _ A→B (explore-ind μA)) ade
where
open ≡
A→B = –> A≃B
ade = λ f → adequate-sum μA (f ∘ A→B) ∙ Σ-fst≃ A≃B _
-- I guess this could be more general
μ-iso-preserve : ∀ {A B} (A≃B : A ≃ B) f (μA : Explorable A) → sum μA f ≡ sum (μ-iso A≃B μA) (f ∘ <– A≃B)
μ-iso-preserve A≃B f μA = sum-ext μA (λ x → ap f (! (<–-inv-l A≃B x)))
where open ≡
{-
μLift : ∀ {A} → Explorable A → Explorable (Lift A)
μLift = μ-iso {!(! Lift↔id)!}
where open ≡
-}
-- -}
-- -}
-- -}
-- -}
|
{
"alphanum_fraction": 0.4935878692,
"avg_line_length": 33.8121468927,
"ext": "agda",
"hexsha": "e0bf0cec777158bbba22ff7e33e5aab70750c16a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "crypto-agda/explore",
"max_forks_repo_path": "lib/Explore/Explorable.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "crypto-agda/explore",
"max_issues_repo_path": "lib/Explore/Explorable.agda",
"max_line_length": 164,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "crypto-agda/explore",
"max_stars_repo_path": "lib/Explore/Explorable.agda",
"max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z",
"num_tokens": 9941,
"size": 23939
}
|
module Data.Num.Bijective.Properties where
open import Data.Num.Bijective
open import Data.Nat
open import Data.Nat.DM
open import Data.Nat.Properties
open import Data.Nat.Properties.Simple
open import Data.Nat.Properties.Extra
open import Data.Fin as Fin using (Fin)
open import Data.Fin.Extra
open import Data.Fin.Properties as FinP hiding (_≟_)
renaming (toℕ-injective to Fin-toℕ-injective)
open import Data.Fin.Properties.Extra as FinPX
renaming (cancel-suc to Fin-cancel-suc)
open import Data.Product
open import Function
open import Function.Injection hiding (_∘_)
open import Relation.Nullary
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Binary.PropositionalEquality as PropEq
open ≡-Reasoning
-- begin
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ∎
------------------------------------------------------------------------
-- Various ≡-related lemmata
------------------------------------------------------------------------
1+-never-∙ : ∀ {b} xs → 1+ {b} xs ≢ ∙
1+-never-∙ ∙ ()
1+-never-∙ {b} (x ∷ xs) +1xs≡∙ with full x
1+-never-∙ (x ∷ xs) () | yes p
1+-never-∙ (x ∷ xs) () | no ¬p
fromℕ-∙-0 : ∀ {b} n → fromℕ {b} n ≡ ∙ → n ≡ 0
fromℕ-∙-0 zero p = refl
fromℕ-∙-0 (suc n) p = contradiction p (1+-never-∙ (fromℕ n))
toℕ-∙-0 : ∀ {b} xs → toℕ {suc b} xs ≡ 0 → xs ≡ ∙
toℕ-∙-0 ∙ p = refl
toℕ-∙-0 (x ∷ xs) ()
digit+1-never-0 : ∀ {b} (x : Fin (suc b)) → (¬p : Fin.toℕ x ≢ b) → digit+1 x ¬p ≢ Fin.zero
digit+1-never-0 {b} x ¬p eq with Fin.toℕ x ≟ b
digit+1-never-0 {b} x ¬p eq | yes q = contradiction q ¬p
digit+1-never-0 {zero} Fin.zero ¬p eq | no ¬q = contradiction refl ¬p
digit+1-never-0 {suc b} Fin.zero ¬p eq | no ¬q = contradiction eq (λ ())
digit+1-never-0 {zero} (Fin.suc ()) ¬p eq | no ¬q
digit+1-never-0 {suc b} (Fin.suc x) ¬p () | no ¬q
Fin⇒ℕ-digit+1 : ∀ {b}
→ (x : Fin (suc b))
→ (¬p : Fin.toℕ x ≢ b)
→ Fin.toℕ (digit+1 x ¬p) ≡ suc (Fin.toℕ x)
Fin⇒ℕ-digit+1 {b} x ¬p = toℕ-fromℕ≤ (s≤s (digit+1-lemma (Fin.toℕ x) b (bounded x) ¬p))
------------------------------------------------------------------------
-- injectivity
------------------------------------------------------------------------
∷-injective : ∀ {b}
→ {x y : Fin (suc b)}
→ {xs ys : Bij (suc b)}
→ x ∷ xs ≡ y ∷ ys
→ x ≡ y × xs ≡ ys
∷-injective refl = refl , refl
digit+1-injective : ∀ {b} (x y : Fin (suc b))
→ (¬p : Fin.toℕ x ≢ b)
→ (¬q : Fin.toℕ y ≢ b)
→ digit+1 x ¬p ≡ digit+1 y ¬q
→ x ≡ y
digit+1-injective Fin.zero Fin.zero ¬p ¬q eq = refl
digit+1-injective {zero} Fin.zero (Fin.suc ()) ¬p ¬q eq
digit+1-injective {suc b} Fin.zero (Fin.suc y) ¬p ¬q eq = Fin-toℕ-injective (cancel-suc eq')
where eq' : Fin.toℕ {suc (suc b)} (digit+1 Fin.zero ¬p) ≡ suc (Fin.toℕ {suc (suc b)} (Fin.suc y))
eq' = begin
Fin.toℕ {suc (suc b)} (Fin.suc Fin.zero)
≡⟨ cong Fin.toℕ eq ⟩
suc (Fin.toℕ (Fin.fromℕ≤ (s≤s (digit+1-lemma (Fin.toℕ y) b (bounded y) (¬q ∘ cong suc)))))
≡⟨ cong suc (toℕ-fromℕ≤ (s≤s (digit+1-lemma (Fin.toℕ y) b (bounded y) (¬q ∘ cong suc)))) ⟩
suc (Fin.toℕ {suc (suc b)} (Fin.suc y))
∎
digit+1-injective {zero} (Fin.suc ()) Fin.zero ¬p ¬q eq
digit+1-injective {suc b} (Fin.suc x) Fin.zero ¬p ¬q eq = Fin-toℕ-injective (cancel-suc eq')
where eq' : suc (Fin.toℕ {suc (suc b)} (Fin.suc x)) ≡ Fin.toℕ {suc (suc b)} (digit+1 Fin.zero ¬q)
eq' = begin
suc (Fin.toℕ {suc (suc b)} (Fin.suc x))
≡⟨ cong suc (sym (toℕ-fromℕ≤ (s≤s (digit+1-lemma (Fin.toℕ x) b (bounded x) (¬p ∘ cong suc))))) ⟩
suc (Fin.toℕ (Fin.fromℕ≤ (s≤s (digit+1-lemma (Fin.toℕ x) b (bounded x) (¬p ∘ cong suc)))))
≡⟨ cong Fin.toℕ eq ⟩
Fin.toℕ {suc (suc b)} (Fin.suc Fin.zero)
∎
digit+1-injective {zero} (Fin.suc ()) (Fin.suc y) ¬p ¬q eq
digit+1-injective {suc b} (Fin.suc x) (Fin.suc y) ¬p ¬q eq = cong Fin.suc (digit+1-injective x y (¬p ∘ cong suc) (¬q ∘ cong suc) (Fin-cancel-suc eq))
where open import Data.Fin.Properties.Extra
1+-injective : ∀ b → (xs ys : Bij (suc b)) → 1+ xs ≡ 1+ ys → xs ≡ ys
1+-injective b ∙ ∙ eq = refl
1+-injective b ∙ (y ∷ ys) eq with full y
1+-injective b ∙ (y ∷ ys) eq | yes p = contradiction (proj₂ (∷-injective (sym eq))) (1+-never-∙ ys)
1+-injective b ∙ (y ∷ ys) eq | no ¬p = contradiction (proj₁ (∷-injective (sym eq))) (digit+1-never-0 y ¬p)
1+-injective b (x ∷ xs) ∙ eq with full x
1+-injective b (x ∷ xs) ∙ eq | yes p = contradiction (proj₂ (∷-injective eq)) (1+-never-∙ xs)
1+-injective b (x ∷ xs) ∙ eq | no ¬p = contradiction (proj₁ (∷-injective eq)) (digit+1-never-0 x ¬p)
1+-injective b (x ∷ xs) (y ∷ ys) eq with full x | full y
1+-injective b (x ∷ xs) (y ∷ ys) eq | yes p | yes q = cong₂ _∷_ x≡y xs≡ys
where
x≡y : x ≡ y
x≡y = Fin-toℕ-injective (trans p (sym q))
xs≡ys : xs ≡ ys
xs≡ys = 1+-injective b xs ys (proj₂ (∷-injective eq))
1+-injective b (x ∷ xs) (y ∷ ys) eq | yes p | no ¬q = contradiction (sym (proj₁ (∷-injective eq))) (digit+1-never-0 y ¬q)
1+-injective b (x ∷ xs) (y ∷ ys) eq | no ¬p | yes q = contradiction (proj₁ (∷-injective eq)) (digit+1-never-0 x ¬p)
1+-injective b (x ∷ xs) (y ∷ ys) eq | no ¬p | no ¬q = cong₂ _∷_ (digit+1-injective x y ¬p ¬q (proj₁ (∷-injective eq))) (proj₂ (∷-injective eq))
toℕ-injective : ∀ {b} → (xs ys : Bij (suc b)) → toℕ xs ≡ toℕ ys → xs ≡ ys
toℕ-injective ∙ ∙ eq = refl
toℕ-injective ∙ (y ∷ ys) ()
toℕ-injective (x ∷ xs) ∙ ()
toℕ-injective (x ∷ xs) (y ∷ ys) eq =
cong₂ _∷_ (proj₁ ind) (toℕ-injective xs ys (proj₂ ?))
where
ind : x ≡ y × toℕ xs ≡ toℕ ys
ind = some-lemma x y (toℕ xs) (toℕ ys) (cancel-suc eq)
fromℕ-injective : ∀ b m n → fromℕ {b} m ≡ fromℕ {b} n → m ≡ n
fromℕ-injective b zero zero eq = refl
fromℕ-injective b zero (suc n) eq = contradiction (sym eq) (1+-never-∙ (fromℕ n))
fromℕ-injective b (suc m) zero eq = contradiction eq (1+-never-∙ (fromℕ m))
fromℕ-injective b (suc m) (suc n) eq = cong suc (fromℕ-injective b m n (1+-injective b (fromℕ m) (fromℕ n) eq))
--
-- xs ─── 1+ ──➞ 1+ xs
-- | |
-- toℕ toℕ
-- ↓ ↓
-- n ─── suc ──➞ suc n
--
toℕ-1+ : ∀ b xs → toℕ {suc b} (1+ xs) ≡ suc (toℕ xs)
toℕ-1+ b ∙ = refl
toℕ-1+ b (x ∷ xs) with full x
toℕ-1+ b (x ∷ xs) | yes p =
begin
toℕ (Fin.zero ∷ 1+ xs)
≡⟨ cong (λ w → suc (w * suc b)) (toℕ-1+ b xs) ⟩
suc (suc (b + toℕ xs * suc b))
≡⟨ cong (λ w → suc (suc (w + toℕ xs * suc b))) (sym p) ⟩
suc (toℕ (x ∷ xs))
∎
toℕ-1+ b (x ∷ xs) | no ¬p =
cong (λ w → suc w + toℕ xs * suc b) (toℕ-fromℕ≤ (s≤s (digit+1-lemma (Fin.toℕ x) b (bounded x) ¬p)))
--
-- xs ── n+ n ──➞ n+ n xs
-- | |
-- toℕ toℕ
-- ↓ ↓
-- m ── n + ──➞ n + m
--
toℕ-n+ : ∀ b n xs → toℕ {suc b} (n+ n xs) ≡ n + (toℕ xs)
toℕ-n+ b zero xs = refl
toℕ-n+ b (suc n) xs = begin
toℕ (1+ (n+ n xs))
≡⟨ toℕ-1+ b (n+ n xs) ⟩
suc (toℕ (n+ n xs))
≡⟨ cong suc (toℕ-n+ b n xs) ⟩
suc (n + toℕ xs)
∎
toℕ-fromℕ : ∀ b n → toℕ {suc b} (fromℕ {b} n) ≡ n
toℕ-fromℕ b zero = refl
toℕ-fromℕ b (suc n) with fromℕ {b} n | inspect (fromℕ {b}) n
toℕ-fromℕ b (suc n) | ∙ | [ eq ] = cong suc (sym (fromℕ-∙-0 n eq))
toℕ-fromℕ b (suc n) | x ∷ xs | [ eq ] with full x
toℕ-fromℕ b (suc n) | x ∷ xs | [ eq ] | yes p =
begin
toℕ (Fin.zero ∷ 1+ xs)
≡⟨ refl ⟩
suc (toℕ (1+ xs) * suc b)
≡⟨ cong (λ w → suc (w * suc b)) (toℕ-1+ b xs) ⟩
suc (suc (b + toℕ xs * suc b))
≡⟨ cong (λ w → suc (suc (w + toℕ xs * suc b))) (sym p) ⟩
suc (suc (Fin.toℕ x) + toℕ xs * suc b)
≡⟨ cong (λ w → suc (toℕ w)) (sym eq) ⟩
suc (toℕ (fromℕ n))
≡⟨ cong suc (toℕ-fromℕ b n) ⟩
suc n
∎
toℕ-fromℕ b (suc n) | x ∷ xs | [ eq ] | no ¬p =
begin
toℕ (digit+1 x ¬p ∷ xs)
≡⟨ cong (λ w → suc (w + toℕ xs * suc b)) (toℕ-fromℕ≤ (s≤s (digit+1-lemma (Fin.toℕ x) b (bounded x) ¬p))) ⟩
suc (suc (Fin.toℕ x + toℕ xs * suc b))
≡⟨ cong (λ w → suc (toℕ w)) (sym eq) ⟩
suc (toℕ (fromℕ n))
≡⟨ cong suc (toℕ-fromℕ b n) ⟩
suc n
∎
fromℕ-toℕ : ∀ {b} xs → fromℕ {b} (toℕ {suc b} xs) ≡ xs
fromℕ-toℕ {b} xs = toℕ-injective (fromℕ (toℕ xs)) xs (toℕ-fromℕ b (toℕ xs))
toℕ-fromℕ-reverse : ∀ b {m} {n} → toℕ (fromℕ {b} m) ≡ n → m ≡ n
toℕ-fromℕ-reverse b {m} {n} eq = begin
m
≡⟨ sym (toℕ-fromℕ b m) ⟩
toℕ (fromℕ m)
≡⟨ eq ⟩
n
∎
fromℕ-toℕ-reverse : ∀ b {xs} {ys} → fromℕ {b} (toℕ {suc b} xs) ≡ ys → xs ≡ ys
fromℕ-toℕ-reverse b {xs} {ys} eq = begin
xs
≡⟨ sym (fromℕ-toℕ xs) ⟩
fromℕ (toℕ xs)
≡⟨ eq ⟩
ys
∎
------------------------------------------------------------------------
-- surjectivity
------------------------------------------------------------------------
toℕ-surjective : ∀ b n → Σ[ xs ∈ Bij (suc b) ] toℕ xs ≡ n
toℕ-surjective b zero = ∙ , refl
toℕ-surjective b (suc n) = (fromℕ (suc n)) , toℕ-fromℕ b (suc n)
fromℕ-surjective : ∀ {b} (xs : Bij (suc b)) → Σ[ n ∈ ℕ ] fromℕ n ≡ xs
fromℕ-surjective ∙ = zero , refl
fromℕ-surjective (x ∷ xs) = toℕ (x ∷ xs) , fromℕ-toℕ (x ∷ xs)
------------------------------------------------------------------------
-- _⊹_
------------------------------------------------------------------------
toℕ-⊹-homo : ∀ {b} (xs ys : Bij (suc b)) → toℕ (xs ⊹ ys) ≡ toℕ xs + toℕ ys
toℕ-⊹-homo {b} ∙ ys = refl
toℕ-⊹-homo {b} (x ∷ xs) ∙ = sym (+-right-identity (suc (Fin.toℕ x + toℕ xs * suc b)))
toℕ-⊹-homo {b} (x ∷ xs) (y ∷ ys) with suc (Fin.toℕ x + Fin.toℕ y) divMod (suc b)
toℕ-⊹-homo {b} (x ∷ xs) (y ∷ ys) | result quotient remainder property div-eq mod-eq
rewrite div-eq | mod-eq
= begin
suc (Fin.toℕ remainder + toℕ (n+ quotient (xs ⊹ ys)) * suc b)
-- apply "toℕ-n+" to remove "n+"
≡⟨ cong (λ w → suc (Fin.toℕ remainder + w * suc b)) (toℕ-n+ b quotient (xs ⊹ ys)) ⟩
suc (Fin.toℕ remainder + (quotient + toℕ (xs ⊹ ys)) * suc b)
-- the induction hypothesis
≡⟨ cong (λ w → suc (Fin.toℕ remainder + (quotient + w) * suc b)) (toℕ-⊹-homo xs ys) ⟩
suc (Fin.toℕ remainder + (quotient + (toℕ xs + toℕ ys)) * suc b)
≡⟨ cong (λ w → suc (Fin.toℕ remainder) + w) (distribʳ-*-+ (suc b) quotient (toℕ xs + toℕ ys)) ⟩
suc (Fin.toℕ remainder + (quotient * suc b + (toℕ xs + toℕ ys) * suc b))
≡⟨ cong suc (sym (+-assoc (Fin.toℕ remainder) (quotient * suc b) ((toℕ xs + toℕ ys) * suc b))) ⟩
suc (Fin.toℕ remainder + quotient * suc b + (toℕ xs + toℕ ys) * suc b)
-- apply "property"
≡⟨ cong (λ w → suc (w + (toℕ xs + toℕ ys) * suc b)) (sym property) ⟩
suc (suc (Fin.toℕ x + Fin.toℕ y + (toℕ xs + toℕ ys) * suc b))
≡⟨ cong (λ w → suc (suc (Fin.toℕ x + Fin.toℕ y + w))) (distribʳ-*-+ (suc b) (toℕ xs) (toℕ ys)) ⟩
suc (suc (Fin.toℕ x + Fin.toℕ y + (toℕ xs * suc b + toℕ ys * suc b)))
≡⟨ cong (λ w → suc (suc w)) (+-assoc (Fin.toℕ x) (Fin.toℕ y) (toℕ xs * suc b + toℕ ys * suc b)) ⟩
suc (suc (Fin.toℕ x + (Fin.toℕ y + (toℕ xs * suc b + toℕ ys * suc b))))
≡⟨ cong (λ w → suc (suc (Fin.toℕ x + w))) (sym (+-assoc (Fin.toℕ y) (toℕ xs * suc b) (toℕ ys * suc b))) ⟩
suc (suc (Fin.toℕ x + (Fin.toℕ y + toℕ xs * suc b + toℕ ys * suc b)))
≡⟨ cong (λ w → suc (suc (Fin.toℕ x + (w + toℕ ys * suc b)))) (+-comm (Fin.toℕ y) (toℕ xs * suc b)) ⟩
suc (suc (Fin.toℕ x + (toℕ xs * suc b + Fin.toℕ y + toℕ ys * suc b)))
≡⟨ cong (λ w → suc (suc (Fin.toℕ x + w))) (+-assoc (toℕ xs * suc b) (Fin.toℕ y) (toℕ ys * suc b)) ⟩
suc (suc (Fin.toℕ x + (toℕ xs * suc b + (Fin.toℕ y + toℕ ys * suc b))))
≡⟨ cong (λ w → suc (suc w)) (sym (+-assoc (Fin.toℕ x) (toℕ xs * suc b) (Fin.toℕ y + toℕ ys * suc b))) ⟩
suc (suc ((Fin.toℕ x + toℕ xs * suc b) + (Fin.toℕ y + toℕ ys * suc b)))
≡⟨ cong suc (sym (+-suc (Fin.toℕ x + toℕ xs * suc b) (Fin.toℕ y + toℕ ys * suc b))) ⟩
suc (Fin.toℕ x + toℕ xs * suc b + suc (Fin.toℕ y + toℕ ys * suc b))
≡⟨ refl ⟩
toℕ (x ∷ xs) + toℕ (y ∷ ys)
∎
fromℕ-⊹-homo : ∀ {b} (m n : ℕ) → fromℕ {b} (m + n) ≡ fromℕ m ⊹ fromℕ n
fromℕ-⊹-homo {b} m n = toℕ-injective (fromℕ (m + n)) (fromℕ m ⊹ fromℕ n) $
begin
toℕ (fromℕ (m + n))
≡⟨ toℕ-fromℕ b (m + n) ⟩
m + n
≡⟨ sym (cong₂ _+_ (toℕ-fromℕ b m) (toℕ-fromℕ b n)) ⟩
toℕ (fromℕ m) + toℕ (fromℕ n)
≡⟨ sym (toℕ-⊹-homo (fromℕ m) (fromℕ n)) ⟩
toℕ (fromℕ m ⊹ fromℕ n)
∎
⊹-1+ : ∀ {b} (xs ys : Bij (suc b)) → (1+ xs) ⊹ ys ≡ 1+ (xs ⊹ ys)
⊹-1+ {b} xs ys = toℕ-injective (1+ xs ⊹ ys) (1+ (xs ⊹ ys)) $
begin
toℕ (1+ xs ⊹ ys)
≡⟨ toℕ-⊹-homo (1+ xs) ys ⟩
toℕ (1+ xs) + toℕ ys
≡⟨ cong (λ w → w + toℕ ys) (toℕ-1+ b xs) ⟩
suc (toℕ xs + toℕ ys)
≡⟨ cong suc (sym (toℕ-⊹-homo xs ys)) ⟩
suc (toℕ (xs ⊹ ys))
≡⟨ sym (toℕ-1+ b (xs ⊹ ys)) ⟩
toℕ (1+ (xs ⊹ ys))
∎
⊹-assoc : ∀ {b} (xs ys zs : Bij (suc b)) → (xs ⊹ ys) ⊹ zs ≡ xs ⊹ (ys ⊹ zs)
⊹-assoc xs ys zs = toℕ-injective (xs ⊹ ys ⊹ zs) (xs ⊹ (ys ⊹ zs)) $
begin
toℕ (xs ⊹ ys ⊹ zs)
≡⟨ toℕ-⊹-homo (xs ⊹ ys) zs ⟩
toℕ (xs ⊹ ys) + toℕ zs
≡⟨ cong (λ w → w + toℕ zs) (toℕ-⊹-homo xs ys) ⟩
toℕ xs + toℕ ys + toℕ zs
≡⟨ +-assoc (toℕ xs) (toℕ ys) (toℕ zs) ⟩
toℕ xs + (toℕ ys + toℕ zs)
≡⟨ cong (λ w → toℕ xs + w) (sym (toℕ-⊹-homo ys zs)) ⟩
toℕ xs + toℕ (ys ⊹ zs)
≡⟨ sym (toℕ-⊹-homo xs (ys ⊹ zs)) ⟩
toℕ (xs ⊹ (ys ⊹ zs))
∎
⊹-comm : ∀ {b} (xs ys : Bij (suc b)) → xs ⊹ ys ≡ ys ⊹ xs
⊹-comm xs ys = toℕ-injective (xs ⊹ ys) (ys ⊹ xs) $
begin
toℕ (xs ⊹ ys)
≡⟨ toℕ-⊹-homo xs ys ⟩
toℕ xs + toℕ ys
≡⟨ +-comm (toℕ xs) (toℕ ys) ⟩
toℕ ys + toℕ xs
≡⟨ sym (toℕ-⊹-homo ys xs) ⟩
toℕ (ys ⊹ xs)
∎
increase-base-lemma : ∀ b
→ (xs : Bij (suc b))
→ toℕ (increase-base xs) ≡ toℕ xs
increase-base-lemma b ∙ = refl
increase-base-lemma b (x ∷ xs) with fromℕ {suc b} (toℕ (increase-base xs) * suc b) | inspect (λ ws → fromℕ {suc b} (toℕ ws * suc b)) (increase-base xs)
increase-base-lemma b (x ∷ xs) | ∙ | [ eq ] = cong suc $
begin
Fin.toℕ (Fin.inject₁ x) + 0
≡⟨ cong (λ w → w + 0) (FinP.inject₁-lemma x) ⟩
Fin.toℕ x + 0
≡⟨ cong (λ w → Fin.toℕ x + w) $
begin
zero
≡⟨ cong toℕ (sym eq) ⟩
toℕ (fromℕ (toℕ (increase-base xs) * suc b))
≡⟨ toℕ-fromℕ (suc b) (toℕ (increase-base xs) * suc b) ⟩
toℕ (increase-base xs) * suc b
∎ ⟩
Fin.toℕ x + toℕ (increase-base xs) * suc b
≡⟨ cong (λ w → Fin.toℕ x + w * suc b) (increase-base-lemma b xs) ⟩
Fin.toℕ x + toℕ xs * suc b
∎
increase-base-lemma b (x ∷ xs) | y ∷ ys | [ eq ] with (suc (Fin.toℕ x + Fin.toℕ y)) divMod (suc (suc b))
increase-base-lemma b (x ∷ xs) | y ∷ ys | [ eq ] | result quotient remainder property div-eq mod-eq
rewrite div-eq | mod-eq
= cong suc $ begin
Fin.toℕ remainder + toℕ (n+ quotient ys) * suc (suc b)
≡⟨ cong (λ w → Fin.toℕ remainder + w * suc (suc b)) (toℕ-n+ (suc b) quotient ys) ⟩
Fin.toℕ remainder + (quotient + toℕ ys) * suc (suc b)
≡⟨ cong (λ w → Fin.toℕ remainder + w) (distribʳ-*-+ (suc (suc b)) quotient (toℕ ys)) ⟩
Fin.toℕ remainder + (quotient * suc (suc b) + toℕ ys * suc (suc b))
≡⟨ sym (+-assoc (Fin.toℕ remainder) (quotient * suc (suc b)) (toℕ ys * suc (suc b))) ⟩
Fin.toℕ remainder + quotient * suc (suc b) + toℕ ys * suc (suc b)
≡⟨ cong (λ w → w + toℕ ys * suc (suc b)) (sym property) ⟩
suc (Fin.toℕ x + Fin.toℕ y + toℕ ys * suc (suc b))
≡⟨ cong suc (+-assoc (Fin.toℕ x) (Fin.toℕ y) (toℕ ys * suc (suc b))) ⟩
suc (Fin.toℕ x + (Fin.toℕ y + toℕ ys * suc (suc b)))
≡⟨ sym (+-suc (Fin.toℕ x) (Fin.toℕ y + toℕ ys * suc (suc b))) ⟩
Fin.toℕ x + suc (Fin.toℕ y + toℕ ys * suc (suc b))
≡⟨ cong (λ w → Fin.toℕ x + toℕ w) (sym eq) ⟩
Fin.toℕ x + toℕ (fromℕ (toℕ (increase-base xs) * suc b))
≡⟨ cong (λ w → Fin.toℕ x + w) (toℕ-fromℕ (suc b) (toℕ (increase-base xs) * suc b)) ⟩
Fin.toℕ x + toℕ (increase-base xs) * suc b
≡⟨ cong (λ w → Fin.toℕ x + w * suc b) (increase-base-lemma b xs) ⟩
Fin.toℕ x + toℕ xs * suc b
∎
decrease-base-lemma : ∀ b → (xs : Bij (suc (suc b))) → toℕ (decrease-base xs) ≡ toℕ xs
decrease-base-lemma b ∙ = refl
decrease-base-lemma b (x ∷ xs) with fromℕ {b} (toℕ (decrease-base xs) * suc (suc b))
| inspect (λ ws → fromℕ {b} (toℕ ws * suc (suc b))) (decrease-base xs)
decrease-base-lemma b (x ∷ xs) | ∙ | [ eq ] with full x
decrease-base-lemma b (x ∷ xs) | ∙ | [ eq ] | yes p = cong suc $
begin
suc (b + 0)
≡⟨ cong (λ w → w + 0) (sym p)⟩
Fin.toℕ x + zero
≡⟨ cong (λ w → Fin.toℕ x + w) $
begin
zero
≡⟨ cong toℕ (sym eq) ⟩
toℕ (fromℕ (toℕ (decrease-base xs) * suc (suc b)))
≡⟨ toℕ-fromℕ b (toℕ (decrease-base xs) * suc (suc b)) ⟩
toℕ (decrease-base xs) * suc (suc b)
∎ ⟩
Fin.toℕ x + toℕ (decrease-base xs) * suc (suc b)
≡⟨ cong (λ w → Fin.toℕ x + w * suc (suc b)) (decrease-base-lemma b xs) ⟩
Fin.toℕ x + toℕ xs * suc (suc b)
∎
decrease-base-lemma b (x ∷ xs) | ∙ | [ eq ] | no ¬p = cong suc $
begin
Fin.toℕ (inject-1 x ¬p) + 0
≡⟨ cong (λ w → w + 0) (inject-1-lemma x ¬p) ⟩
Fin.toℕ x + 0
≡⟨ cong (λ w → Fin.toℕ x + w) $
begin
zero
≡⟨ cong toℕ (sym eq) ⟩
toℕ (fromℕ (toℕ (decrease-base xs) * suc (suc b)))
≡⟨ toℕ-fromℕ b (toℕ (decrease-base xs) * suc (suc b)) ⟩
toℕ (decrease-base xs) * suc (suc b)
∎ ⟩
Fin.toℕ x + toℕ (decrease-base xs) * suc (suc b)
≡⟨ cong (λ w → Fin.toℕ x + w * suc (suc b)) (decrease-base-lemma b xs) ⟩
Fin.toℕ x + toℕ xs * suc (suc b)
∎
decrease-base-lemma b (x ∷ xs) | y ∷ ys | [ eq ] with (suc (Fin.toℕ x + Fin.toℕ y)) divMod (suc b)
decrease-base-lemma b (x ∷ xs) | y ∷ ys | [ eq ] | result quotient remainder property div-eq mod-eq
rewrite div-eq | mod-eq = cong suc $ begin
Fin.toℕ remainder + toℕ (n+ quotient ys) * suc b
≡⟨ cong (λ w → Fin.toℕ remainder + w * suc b) (toℕ-n+ b quotient ys) ⟩
Fin.toℕ remainder + (quotient + toℕ ys) * suc b
≡⟨ cong (λ w → Fin.toℕ remainder + w) (distribʳ-*-+ (suc b) quotient (toℕ ys)) ⟩
Fin.toℕ remainder + (quotient * suc b + toℕ ys * suc b)
≡⟨ sym (+-assoc (Fin.toℕ remainder) (quotient * suc b) (toℕ ys * suc b)) ⟩
Fin.toℕ remainder + quotient * suc b + toℕ ys * suc b
≡⟨ cong (λ w → w + toℕ ys * suc b) (sym property) ⟩
suc (Fin.toℕ x + Fin.toℕ y + toℕ ys * suc b)
≡⟨ cong suc (+-assoc (Fin.toℕ x) (Fin.toℕ y) (toℕ ys * suc b)) ⟩
suc (Fin.toℕ x + (Fin.toℕ y + toℕ ys * suc b))
≡⟨ sym (+-suc (Fin.toℕ x) (Fin.toℕ y + toℕ ys * suc b)) ⟩
Fin.toℕ x + suc (Fin.toℕ y + toℕ ys * suc b)
≡⟨ cong (λ w → Fin.toℕ x + toℕ w) (sym eq) ⟩
Fin.toℕ x + toℕ (fromℕ (toℕ (decrease-base xs) * suc (suc b)))
≡⟨ cong (λ w → Fin.toℕ x + w) (toℕ-fromℕ b (toℕ (decrease-base xs) * suc (suc b))) ⟩
Fin.toℕ x + toℕ (decrease-base xs) * suc (suc b)
≡⟨ cong (λ w → Fin.toℕ x + w * suc (suc b)) (decrease-base-lemma b xs) ⟩
Fin.toℕ x + toℕ xs * suc (suc b)
∎
-- begin
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ∎
|
{
"alphanum_fraction": 0.4724594993,
"avg_line_length": 42.7941176471,
"ext": "agda",
"hexsha": "0a4af4e4dc7f105e318a9979062e5c0cdc3c39b1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/numeral",
"max_forks_repo_path": "Data/Num/Bijective/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/numeral",
"max_issues_repo_path": "Data/Num/Bijective/Properties.agda",
"max_line_length": 151,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/numeral",
"max_stars_repo_path": "Data/Num/Bijective/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z",
"num_tokens": 8838,
"size": 20370
}
|
-- Andreas, 2011-04-11 adapted from Data.Nat.Properties
module FrozenMVar2 where
open import Common.Level
open import Common.Equality
Rel : ∀ {a} → Set a → (ℓ : Level) → Set (a ⊔ lsuc ℓ)
Rel A ℓ = A → A → Set ℓ
Op₂ : ∀ {ℓ} → Set ℓ → Set ℓ
Op₂ A = A → A → A
module FunctionProperties
{a ℓ} {A : Set a} (_≈_ : Rel A ℓ) where
Associative : Op₂ A → Set _
Associative _∙_ = ∀ x y z → ((x ∙ y) ∙ z) ≈ (x ∙ (y ∙ z))
open FunctionProperties _≡_ -- THIS produces frozen metas
data ℕ : Set where
zℕ : ℕ
sℕ : (n : ℕ) → ℕ
infixl 6 _+_
_+_ : ℕ → ℕ → ℕ
zℕ + n = n
sℕ m + n = sℕ (m + n)
+-assoc : Associative _+_
-- +-assoc : ∀ x y z -> ((x + y) + z) ≡ (x + (y + z)) -- this works
+-assoc zℕ _ _ = refl
+-assoc (sℕ m) n o = cong sℕ (+-assoc m n o)
-- Due to a frozen meta we get:
-- Type mismatch when checking that the pattern zℕ has type _95
|
{
"alphanum_fraction": 0.5671296296,
"avg_line_length": 22.7368421053,
"ext": "agda",
"hexsha": "30d62f28be82b86a086fe6b2b241259b6075a714",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/FrozenMVar2.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/FrozenMVar2.agda",
"max_line_length": 67,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/FrozenMVar2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 354,
"size": 864
}
|
open import Agda.Primitive
Type : (i : Level) → Set (lsuc i)
Type i = Set i
postulate
T : (i : Level) (A : Type i) → Set
-- Give 'T lzero ?', then give '? → ?'.
-- An internal error has occurred. Please report this as a bug.
-- Location of the error: src/full/Agda/TypeChecking/Rules/Term.hs:178
Bug : Set
Bug = {!T lzero ?!}
-- Now: Failed to give (? → ?)
-- Ideally, this should succeed.
|
{
"alphanum_fraction": 0.6297229219,
"avg_line_length": 22.0555555556,
"ext": "agda",
"hexsha": "75f99cda7f54edc43b4f42acf40d3cfaab75cd02",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue3000.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue3000.agda",
"max_line_length": 70,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue3000.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 127,
"size": 397
}
|
{-# OPTIONS --without-K #-}
module pointed where
open import pointed.core public
open import pointed.equality public
|
{
"alphanum_fraction": 0.7711864407,
"avg_line_length": 19.6666666667,
"ext": "agda",
"hexsha": "5d020655065bbedf4b8fb7ffdd33358ff34ff17e",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/pointed.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/pointed.agda",
"max_line_length": 35,
"max_stars_count": 20,
"max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pcapriotti/agda-base",
"max_stars_repo_path": "src/pointed.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z",
"num_tokens": 23,
"size": 118
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.