Search is not available for this dataset
text
string | meta
dict |
---|---|
------------------------------------------------------------------------
-- The Agda standard library
--
-- List-related properties
------------------------------------------------------------------------
-- Note that the lemmas below could be generalised to work with other
-- equalities than _≡_.
{-# OPTIONS --without-K --safe #-}
module Data.List.Properties where
open import Algebra
import Algebra.Structures as Structures
import Algebra.FunctionProperties as FunctionProperties
open import Data.Bool.Base using (Bool; false; true; not; if_then_else_)
open import Data.Fin using (Fin; zero; suc; cast; toℕ)
open import Data.List as List
open import Data.List.Relation.Unary.All using (All; []; _∷_)
open import Data.List.Relation.Unary.Any using (Any; here; there)
open import Data.Maybe.Base using (Maybe; just; nothing)
open import Data.Nat
open import Data.Nat.Properties
open import Data.Product as Prod hiding (map; zip)
open import Data.These as These using (These; this; that; these)
open import Function
import Relation.Binary as B
import Relation.Binary.Reasoning.Setoid as EqR
open import Relation.Binary.PropositionalEquality as P
using (_≡_; _≢_; _≗_; refl ; sym ; cong)
open import Relation.Nullary using (¬_; yes; no)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Nullary.Decidable using (⌊_⌋)
open import Relation.Unary using (Pred; Decidable; ∁)
open import Relation.Unary.Properties using (∁?)
------------------------------------------------------------------------
-- _∷_
module _ {a} {A : Set a} {x y : A} {xs ys : List A} where
∷-injective : x ∷ xs ≡ y List.∷ ys → x ≡ y × xs ≡ ys
∷-injective refl = (refl , refl)
∷-injectiveˡ : x ∷ xs ≡ y List.∷ ys → x ≡ y
∷-injectiveˡ refl = refl
∷-injectiveʳ : x ∷ xs ≡ y List.∷ ys → xs ≡ ys
∷-injectiveʳ refl = refl
module _ {a} {A : Set a} where
≡-dec : B.Decidable _≡_ → B.Decidable {A = List A} _≡_
≡-dec _≟_ [] [] = yes refl
≡-dec _≟_ (x ∷ xs) [] = no λ()
≡-dec _≟_ [] (y ∷ ys) = no λ()
≡-dec _≟_ (x ∷ xs) (y ∷ ys) with x ≟ y | ≡-dec _≟_ xs ys
... | no x≢y | _ = no (x≢y ∘ ∷-injectiveˡ)
... | yes _ | no xs≢ys = no (xs≢ys ∘ ∷-injectiveʳ)
... | yes refl | yes refl = yes refl
------------------------------------------------------------------------
-- map
module _ {a} {A : Set a} where
map-id : map id ≗ id {A = List A}
map-id [] = refl
map-id (x ∷ xs) = P.cong (x ∷_) (map-id xs)
map-id₂ : ∀ {f : A → A} {xs} → All (λ x → f x ≡ x) xs → map f xs ≡ xs
map-id₂ [] = refl
map-id₂ (fx≡x ∷ pxs) = P.cong₂ _∷_ fx≡x (map-id₂ pxs)
module _ {a b} {A : Set a} {B : Set b} where
map-++-commute : ∀ (f : A → B) xs ys →
map f (xs ++ ys) ≡ map f xs ++ map f ys
map-++-commute f [] ys = refl
map-++-commute f (x ∷ xs) ys = P.cong (f x ∷_) (map-++-commute f xs ys)
map-cong : ∀ {f g : A → B} → f ≗ g → map f ≗ map g
map-cong f≗g [] = refl
map-cong f≗g (x ∷ xs) = P.cong₂ _∷_ (f≗g x) (map-cong f≗g xs)
map-cong₂ : ∀ {f g : A → B} {xs} →
All (λ x → f x ≡ g x) xs → map f xs ≡ map g xs
map-cong₂ [] = refl
map-cong₂ (fx≡gx ∷ fxs≡gxs) = P.cong₂ _∷_ fx≡gx (map-cong₂ fxs≡gxs)
length-map : ∀ (f : A → B) xs → length (map f xs) ≡ length xs
length-map f [] = refl
length-map f (x ∷ xs) = P.cong suc (length-map f xs)
module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where
map-compose : {g : B → C} {f : A → B} → map (g ∘ f) ≗ map g ∘ map f
map-compose [] = refl
map-compose (x ∷ xs) = P.cong (_ ∷_) (map-compose xs)
------------------------------------------------------------------------
-- mapMaybe
module _ {a} {A : Set a} where
mapMaybe-just : (xs : List A) → mapMaybe just xs ≡ xs
mapMaybe-just [] = refl
mapMaybe-just (x ∷ xs) = P.cong (x ∷_) (mapMaybe-just xs)
mapMaybe-nothing : (xs : List A) →
mapMaybe {B = A} (λ _ → nothing) xs ≡ []
mapMaybe-nothing [] = refl
mapMaybe-nothing (x ∷ xs) = mapMaybe-nothing xs
module _ {a b} {A : Set a} {B : Set b} (f : A → Maybe B) where
mapMaybe-concatMap : mapMaybe f ≗ concatMap (fromMaybe ∘ f)
mapMaybe-concatMap [] = refl
mapMaybe-concatMap (x ∷ xs) with f x
... | just y = P.cong (y ∷_) (mapMaybe-concatMap xs)
... | nothing = mapMaybe-concatMap xs
length-mapMaybe : ∀ xs → length (mapMaybe f xs) ≤ length xs
length-mapMaybe [] = z≤n
length-mapMaybe (x ∷ xs) with f x
... | just y = s≤s (length-mapMaybe xs)
... | nothing = ≤-step (length-mapMaybe xs)
------------------------------------------------------------------------
-- _++_
module _ {a} {A : Set a} where
length-++ : ∀ (xs : List A) {ys} → length (xs ++ ys) ≡ length xs + length ys
length-++ [] = refl
length-++ (x ∷ xs) = P.cong suc (length-++ xs)
open FunctionProperties {A = List A} _≡_
++-assoc : Associative _++_
++-assoc [] ys zs = refl
++-assoc (x ∷ xs) ys zs = P.cong (x ∷_) (++-assoc xs ys zs)
++-identityˡ : LeftIdentity [] _++_
++-identityˡ xs = refl
++-identityʳ : RightIdentity [] _++_
++-identityʳ [] = refl
++-identityʳ (x ∷ xs) = P.cong (x ∷_) (++-identityʳ xs)
++-identity : Identity [] _++_
++-identity = ++-identityˡ , ++-identityʳ
++-identityʳ-unique : ∀ (xs : List A) {ys} → xs ≡ xs ++ ys → ys ≡ []
++-identityʳ-unique [] refl = refl
++-identityʳ-unique (x ∷ xs) eq =
++-identityʳ-unique xs (proj₂ (∷-injective eq))
++-identityˡ-unique : ∀ {xs} (ys : List A) → xs ≡ ys ++ xs → ys ≡ []
++-identityˡ-unique [] _ = refl
++-identityˡ-unique {xs = []} (y ∷ ys) ()
++-identityˡ-unique {xs = x ∷ xs} (y ∷ ys) eq
with ++-identityˡ-unique (ys ++ [ x ]) (begin
xs ≡⟨ proj₂ (∷-injective eq) ⟩
ys ++ x ∷ xs ≡⟨ P.sym (++-assoc ys [ x ] xs) ⟩
(ys ++ [ x ]) ++ xs ∎)
where open P.≡-Reasoning
++-identityˡ-unique {xs = x ∷ xs} (y ∷ [] ) eq | ()
++-identityˡ-unique {xs = x ∷ xs} (y ∷ _ ∷ _) eq | ()
++-cancelˡ : ∀ xs {ys zs : List A} → xs ++ ys ≡ xs ++ zs → ys ≡ zs
++-cancelˡ [] ys≡zs = ys≡zs
++-cancelˡ (x ∷ xs) x∷xs++ys≡x∷xs++zs = ++-cancelˡ xs (∷-injectiveʳ x∷xs++ys≡x∷xs++zs)
++-cancelʳ : ∀ {xs} ys zs → ys ++ xs ≡ zs ++ xs → ys ≡ zs
++-cancelʳ [] [] _ = refl
++-cancelʳ {xs} [] (z ∷ zs) eq =
contradiction (P.trans (cong length eq) (length-++ (z ∷ zs))) (m≢1+n+m (length xs))
++-cancelʳ {xs} (y ∷ ys) [] eq =
contradiction (P.trans (P.sym (length-++ (y ∷ ys))) (cong length eq)) (m≢1+n+m (length xs) ∘ sym)
++-cancelʳ (y ∷ ys) (z ∷ zs) eq =
P.cong₂ _∷_ (∷-injectiveˡ eq) (++-cancelʳ ys zs (∷-injectiveʳ eq))
++-cancel : Cancellative _++_
++-cancel = ++-cancelˡ , ++-cancelʳ
++-conicalˡ : ∀ (xs ys : List A) → xs ++ ys ≡ [] → xs ≡ []
++-conicalˡ [] _ refl = refl
++-conicalˡ (x ∷ xs) _ ()
++-conicalʳ : ∀ (xs ys : List A) → xs ++ ys ≡ [] → ys ≡ []
++-conicalʳ [] _ refl = refl
++-conicalʳ (x ∷ xs) _ ()
++-conical : Conical [] _++_
++-conical = ++-conicalˡ , ++-conicalʳ
module _ {a} {A : Set a} where
open Structures {A = List A} _≡_
++-isMagma : IsMagma _++_
++-isMagma = record
{ isEquivalence = P.isEquivalence
; ∙-cong = P.cong₂ _++_
}
++-isSemigroup : IsSemigroup _++_
++-isSemigroup = record
{ isMagma = ++-isMagma
; assoc = ++-assoc
}
++-isMonoid : IsMonoid _++_ []
++-isMonoid = record
{ isSemigroup = ++-isSemigroup
; identity = ++-identity
}
module _ {a} (A : Set a) where
++-semigroup : Semigroup a a
++-semigroup = record
{ Carrier = List A
; isSemigroup = ++-isSemigroup
}
++-monoid : Monoid a a
++-monoid = record
{ Carrier = List A
; isMonoid = ++-isMonoid
}
------------------------------------------------------------------------
-- alignWith
module _ {a b c} {A : Set a} {B : Set b} {C : Set c}
{f g : These A B → C} where
alignWith-cong : f ≗ g → ∀ as → alignWith f as ≗ alignWith g as
alignWith-cong f≗g [] bs = map-cong (f≗g ∘ that) bs
alignWith-cong f≗g as@(_ ∷ _) [] = map-cong (f≗g ∘ this) as
alignWith-cong f≗g (a ∷ as) (b ∷ bs) =
P.cong₂ _∷_ (f≗g (these a b)) (alignWith-cong f≗g as bs)
module _ {a b c} {A : Set a} {B : Set b} {C : Set c}
(f : These A B → C) where
length-alignWith : ∀ xs ys →
length (alignWith f xs ys) ≡ length xs ⊔ length ys
length-alignWith [] ys = length-map (f ∘′ that) ys
length-alignWith xs@(_ ∷ _) [] = length-map (f ∘′ this) xs
length-alignWith (x ∷ xs) (y ∷ ys) = P.cong suc (length-alignWith xs ys)
alignWith-map : ∀ {d e} {D : Set d} {E : Set e} (g : D → A) (h : E → B) →
∀ xs ys → alignWith f (map g xs) (map h ys) ≡
alignWith (f ∘′ These.map g h) xs ys
alignWith-map g h [] ys = sym (map-compose ys)
alignWith-map g h xs@(_ ∷ _) [] = sym (map-compose xs)
alignWith-map g h (x ∷ xs) (y ∷ ys) =
P.cong₂ _∷_ refl (alignWith-map g h xs ys)
map-alignWith : ∀ {d} {D : Set d} (g : C → D) → ∀ xs ys →
map g (alignWith f xs ys) ≡
alignWith (g ∘′ f) xs ys
map-alignWith g [] ys = sym (map-compose ys)
map-alignWith g xs@(_ ∷ _) [] = sym (map-compose xs)
map-alignWith g (x ∷ xs) (y ∷ ys) =
P.cong₂ _∷_ refl (map-alignWith g xs ys)
------------------------------------------------------------------------
-- zipWith
module _ {a b} {A : Set a} {B : Set b} (f : A → A → B) where
zipWith-comm : (∀ x y → f x y ≡ f y x) →
∀ xs ys → zipWith f xs ys ≡ zipWith f ys xs
zipWith-comm f-comm [] [] = refl
zipWith-comm f-comm [] (x ∷ ys) = refl
zipWith-comm f-comm (x ∷ xs) [] = refl
zipWith-comm f-comm (x ∷ xs) (y ∷ ys) =
P.cong₂ _∷_ (f-comm x y) (zipWith-comm f-comm xs ys)
module _ {a b c} {A : Set a} {B : Set b} {C : Set c}
(f : A → B → C) where
zipWith-identityˡ : ∀ xs → zipWith f [] xs ≡ []
zipWith-identityˡ [] = refl
zipWith-identityˡ (x ∷ xs) = refl
zipWith-identityʳ : ∀ xs → zipWith f xs [] ≡ []
zipWith-identityʳ [] = refl
zipWith-identityʳ (x ∷ xs) = refl
length-zipWith : ∀ xs ys →
length (zipWith f xs ys) ≡ length xs ⊓ length ys
length-zipWith [] [] = refl
length-zipWith [] (y ∷ ys) = refl
length-zipWith (x ∷ xs) [] = refl
length-zipWith (x ∷ xs) (y ∷ ys) = P.cong suc (length-zipWith xs ys)
zipWith-map : ∀ {d e} {D : Set d} {E : Set e} (g : D → A) (h : E → B) →
∀ xs ys → zipWith f (map g xs) (map h ys) ≡
zipWith (λ x y → f (g x) (h y)) xs ys
zipWith-map g h [] [] = refl
zipWith-map g h [] (y ∷ ys) = refl
zipWith-map g h (x ∷ xs) [] = refl
zipWith-map g h (x ∷ xs) (y ∷ ys) =
P.cong₂ _∷_ refl (zipWith-map g h xs ys)
map-zipWith : ∀ {d} {D : Set d} (g : C → D) → ∀ xs ys →
map g (zipWith f xs ys) ≡
zipWith (λ x y → g (f x y)) xs ys
map-zipWith g [] [] = refl
map-zipWith g [] (y ∷ ys) = refl
map-zipWith g (x ∷ xs) [] = refl
map-zipWith g (x ∷ xs) (y ∷ ys) =
P.cong₂ _∷_ refl (map-zipWith g xs ys)
------------------------------------------------------------------------
-- unalignWith
module _ {a b} {A : Set a} {B : Set b} where
unalignWith-this : unalignWith ((A → These A B) ∋ this) ≗ (_, [])
unalignWith-this [] = refl
unalignWith-this (a ∷ as) = P.cong (Prod.map₁ (a ∷_)) (unalignWith-this as)
unalignWith-that : unalignWith ((B → These A B) ∋ that) ≗ ([] ,_)
unalignWith-that [] = refl
unalignWith-that (b ∷ bs) = P.cong (Prod.map₂ (b ∷_)) (unalignWith-that bs)
module _ {a b c} {A : Set a} {B : Set b} {C : Set c}
{f g : C → These A B} where
unalignWith-cong : f ≗ g → unalignWith f ≗ unalignWith g
unalignWith-cong f≗g [] = refl
unalignWith-cong f≗g (c ∷ cs) with f c | g c | f≗g c
... | this a | ._ | refl = P.cong (Prod.map₁ (a ∷_)) (unalignWith-cong f≗g cs)
... | that b | ._ | refl = P.cong (Prod.map₂ (b ∷_)) (unalignWith-cong f≗g cs)
... | these a b | ._ | refl = P.cong (Prod.map (a ∷_) (b ∷_)) (unalignWith-cong f≗g cs)
module _ {a b c} {A : Set a} {B : Set b} {C : Set c}
(f : C → These A B) where
unalignWith-map : ∀ {d} {D : Set d} (g : D → C) →
∀ ds → unalignWith f (map g ds) ≡ unalignWith (f ∘′ g) ds
unalignWith-map g [] = refl
unalignWith-map g (d ∷ ds) with f (g d)
... | this a = P.cong (Prod.map₁ (a ∷_)) (unalignWith-map g ds)
... | that b = P.cong (Prod.map₂ (b ∷_)) (unalignWith-map g ds)
... | these a b = P.cong (Prod.map (a ∷_) (b ∷_)) (unalignWith-map g ds)
map-unalignWith : ∀ {d e} {D : Set d} {E : Set e} (g : A → D) (h : B → E) →
Prod.map (map g) (map h) ∘′ unalignWith f ≗ unalignWith (These.map g h ∘′ f)
map-unalignWith g h [] = refl
map-unalignWith g h (c ∷ cs) with f c
... | this a = P.cong (Prod.map₁ (g a ∷_)) (map-unalignWith g h cs)
... | that b = P.cong (Prod.map₂ (h b ∷_)) (map-unalignWith g h cs)
... | these a b = P.cong (Prod.map (g a ∷_) (h b ∷_)) (map-unalignWith g h cs)
unalignWith-alignWith : (g : These A B → C) → f ∘′ g ≗ id →
∀ as bs → unalignWith f (alignWith g as bs) ≡ (as , bs)
unalignWith-alignWith g g∘f≗id [] bs = begin
unalignWith f (map (g ∘′ that) bs) ≡⟨ unalignWith-map (g ∘′ that) bs ⟩
unalignWith (f ∘′ g ∘′ that) bs ≡⟨ unalignWith-cong (g∘f≗id ∘ that) bs ⟩
unalignWith that bs ≡⟨ unalignWith-that bs ⟩
[] , bs ∎ where open P.≡-Reasoning
unalignWith-alignWith g g∘f≗id as@(_ ∷ _) [] = begin
unalignWith f (map (g ∘′ this) as) ≡⟨ unalignWith-map (g ∘′ this) as ⟩
unalignWith (f ∘′ g ∘′ this) as ≡⟨ unalignWith-cong (g∘f≗id ∘ this) as ⟩
unalignWith this as ≡⟨ unalignWith-this as ⟩
as , [] ∎ where open P.≡-Reasoning
unalignWith-alignWith g g∘f≗id (a ∷ as) (b ∷ bs)
rewrite g∘f≗id (these a b) = let ih = unalignWith-alignWith g g∘f≗id as bs in
P.cong (Prod.map (a ∷_) (b ∷_)) ih
------------------------------------------------------------------------
-- unzipWith
module _ {a b c} {A : Set a} {B : Set b} {C : Set c}
(f : A → B × C) where
length-unzipWith₁ : ∀ xys →
length (proj₁ (unzipWith f xys)) ≡ length xys
length-unzipWith₁ [] = refl
length-unzipWith₁ (x ∷ xys) = P.cong suc (length-unzipWith₁ xys)
length-unzipWith₂ : ∀ xys →
length (proj₂ (unzipWith f xys)) ≡ length xys
length-unzipWith₂ [] = refl
length-unzipWith₂ (x ∷ xys) = P.cong suc (length-unzipWith₂ xys)
zipWith-unzipWith : (g : B → C → A) → uncurry′ g ∘ f ≗ id →
uncurry′ (zipWith g) ∘ (unzipWith f) ≗ id
zipWith-unzipWith g f∘g≗id [] = refl
zipWith-unzipWith g f∘g≗id (x ∷ xs) =
P.cong₂ _∷_ (f∘g≗id x) (zipWith-unzipWith g f∘g≗id xs)
------------------------------------------------------------------------
-- foldr
foldr-universal : ∀ {a b} {A : Set a} {B : Set b}
(h : List A → B) f e → (h [] ≡ e) →
(∀ x xs → h (x ∷ xs) ≡ f x (h xs)) →
h ≗ foldr f e
foldr-universal h f e base step [] = base
foldr-universal h f e base step (x ∷ xs) = begin
h (x ∷ xs)
≡⟨ step x xs ⟩
f x (h xs)
≡⟨ P.cong (f x) (foldr-universal h f e base step xs) ⟩
f x (foldr f e xs)
∎
where open P.≡-Reasoning
foldr-cong : ∀ {a b} {A : Set a} {B : Set b}
{f g : A → B → B} {d e : B} →
(∀ x y → f x y ≡ g x y) → d ≡ e →
foldr f d ≗ foldr g e
foldr-cong f≗g refl [] = refl
foldr-cong f≗g d≡e (x ∷ xs) rewrite foldr-cong f≗g d≡e xs = f≗g x _
foldr-fusion : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c}
(h : B → C) {f : A → B → B} {g : A → C → C} (e : B) →
(∀ x y → h (f x y) ≡ g x (h y)) →
h ∘ foldr f e ≗ foldr g (h e)
foldr-fusion h {f} {g} e fuse =
foldr-universal (h ∘ foldr f e) g (h e) refl
(λ x xs → fuse x (foldr f e xs))
id-is-foldr : ∀ {a} {A : Set a} → id {A = List A} ≗ foldr _∷_ []
id-is-foldr = foldr-universal id _∷_ [] refl (λ _ _ → refl)
++-is-foldr : ∀ {a} {A : Set a} (xs ys : List A) →
xs ++ ys ≡ foldr _∷_ ys xs
++-is-foldr xs ys =
begin
xs ++ ys
≡⟨ P.cong (_++ ys) (id-is-foldr xs) ⟩
foldr _∷_ [] xs ++ ys
≡⟨ foldr-fusion (_++ ys) [] (λ _ _ → refl) xs ⟩
foldr _∷_ ([] ++ ys) xs
≡⟨⟩
foldr _∷_ ys xs
∎
where open P.≡-Reasoning
module _ {a b} {A : Set a} {B : Set b} where
foldr-++ : ∀ (f : A → B → B) x ys zs →
foldr f x (ys ++ zs) ≡ foldr f (foldr f x zs) ys
foldr-++ f x [] zs = refl
foldr-++ f x (y ∷ ys) zs = P.cong (f y) (foldr-++ f x ys zs)
map-is-foldr : {f : A → B} → map f ≗ foldr (λ x ys → f x ∷ ys) []
map-is-foldr {f = f} =
begin
map f
≈⟨ P.cong (map f) ∘ id-is-foldr ⟩
map f ∘ foldr _∷_ []
≈⟨ foldr-fusion (map f) [] (λ _ _ → refl) ⟩
foldr (λ x ys → f x ∷ ys) []
∎ where open EqR (P._→-setoid_ _ _)
foldr-∷ʳ : ∀ (f : A → B → B) x y ys →
foldr f x (ys ∷ʳ y) ≡ foldr f (f y x) ys
foldr-∷ʳ f x y [] = refl
foldr-∷ʳ f x y (z ∷ ys) = P.cong (f z) (foldr-∷ʳ f x y ys)
------------------------------------------------------------------------
-- foldl
module _ {a b} {A : Set a} {B : Set b} where
foldl-++ : ∀ (f : A → B → A) x ys zs →
foldl f x (ys ++ zs) ≡ foldl f (foldl f x ys) zs
foldl-++ f x [] zs = refl
foldl-++ f x (y ∷ ys) zs = foldl-++ f (f x y) ys zs
foldl-∷ʳ : ∀ (f : A → B → A) x y ys →
foldl f x (ys ∷ʳ y) ≡ f (foldl f x ys) y
foldl-∷ʳ f x y [] = refl
foldl-∷ʳ f x y (z ∷ ys) = foldl-∷ʳ f (f x z) y ys
------------------------------------------------------------------------
-- concat
module _ {a b} {A : Set a} {B : Set b} where
concat-map : ∀ {f : A → B} → concat ∘ map (map f) ≗ map f ∘ concat
concat-map {f = f} =
begin
concat ∘ map (map f)
≈⟨ P.cong concat ∘ map-is-foldr ⟩
concat ∘ foldr (λ xs → map f xs ∷_) []
≈⟨ foldr-fusion concat [] (λ _ _ → refl) ⟩
foldr (λ ys → map f ys ++_) []
≈⟨ P.sym ∘ foldr-fusion (map f) [] (map-++-commute f) ⟩
map f ∘ concat
∎
where open EqR (P._→-setoid_ _ _)
------------------------------------------------------------------------
-- sum
sum-++-commute : ∀ xs ys → sum (xs ++ ys) ≡ sum xs + sum ys
sum-++-commute [] ys = refl
sum-++-commute (x ∷ xs) ys = begin
x + sum (xs ++ ys) ≡⟨ P.cong (x +_) (sum-++-commute xs ys) ⟩
x + (sum xs + sum ys) ≡⟨ P.sym (+-assoc x _ _) ⟩
(x + sum xs) + sum ys ∎
where open P.≡-Reasoning
------------------------------------------------------------------------
-- replicate
module _ {a} {A : Set a} where
length-replicate : ∀ n {x : A} → length (replicate n x) ≡ n
length-replicate zero = refl
length-replicate (suc n) = P.cong suc (length-replicate n)
------------------------------------------------------------------------
-- scanr
module _ {a b} {A : Set a} {B : Set b} where
scanr-defn : ∀ (f : A → B → B) (e : B) →
scanr f e ≗ map (foldr f e) ∘ tails
scanr-defn f e [] = refl
scanr-defn f e (x ∷ []) = refl
scanr-defn f e (x ∷ y ∷ xs)
with scanr f e (y ∷ xs) | scanr-defn f e (y ∷ xs)
... | [] | ()
... | z ∷ zs | eq with ∷-injective eq
... | z≡fy⦇f⦈xs , _ = P.cong₂ (λ z → f x z ∷_) z≡fy⦇f⦈xs eq
------------------------------------------------------------------------
-- scanl
module _ {a b} {A : Set a} {B : Set b} where
scanl-defn : ∀ (f : A → B → A) (e : A) →
scanl f e ≗ map (foldl f e) ∘ inits
scanl-defn f e [] = refl
scanl-defn f e (x ∷ xs) = P.cong (e ∷_) (begin
scanl f (f e x) xs
≡⟨ scanl-defn f (f e x) xs ⟩
map (foldl f (f e x)) (inits xs)
≡⟨ refl ⟩
map (foldl f e ∘ (x ∷_)) (inits xs)
≡⟨ map-compose (inits xs) ⟩
map (foldl f e) (map (x ∷_) (inits xs))
∎)
where open P.≡-Reasoning
------------------------------------------------------------------------
-- applyUpTo
module _ {a} {A : Set a} where
length-applyUpTo : ∀ (f : ℕ → A) n → length (applyUpTo f n) ≡ n
length-applyUpTo f zero = refl
length-applyUpTo f (suc n) = P.cong suc (length-applyUpTo (f ∘ suc) n)
lookup-applyUpTo : ∀ (f : ℕ → A) n i → lookup (applyUpTo f n) i ≡ f (toℕ i)
lookup-applyUpTo f zero ()
lookup-applyUpTo f (suc n) zero = refl
lookup-applyUpTo f (suc n) (suc i) = lookup-applyUpTo (f ∘ suc) n i
------------------------------------------------------------------------
-- applyUpTo
module _ {a} {A : Set a} (f : ℕ → A) where
length-applyDownFrom : ∀ n → length (applyDownFrom f n) ≡ n
length-applyDownFrom zero = refl
length-applyDownFrom (suc n) = P.cong suc (length-applyDownFrom n)
lookup-applyDownFrom : ∀ n i → lookup (applyDownFrom f n) i ≡ f (n ∸ (suc (toℕ i)))
lookup-applyDownFrom zero ()
lookup-applyDownFrom (suc n) zero = refl
lookup-applyDownFrom (suc n) (suc i) = lookup-applyDownFrom n i
------------------------------------------------------------------------
-- upTo
length-upTo : ∀ n → length (upTo n) ≡ n
length-upTo = length-applyUpTo id
lookup-upTo : ∀ n i → lookup (upTo n) i ≡ toℕ i
lookup-upTo = lookup-applyUpTo id
------------------------------------------------------------------------
-- downFrom
length-downFrom : ∀ n → length (downFrom n) ≡ n
length-downFrom = length-applyDownFrom id
lookup-downFrom : ∀ n i → lookup (downFrom n) i ≡ n ∸ (suc (toℕ i))
lookup-downFrom = lookup-applyDownFrom id
------------------------------------------------------------------------
-- tabulate
module _ {a} {A : Set a} where
tabulate-cong : ∀ {n} {f g : Fin n → A} →
f ≗ g → tabulate f ≡ tabulate g
tabulate-cong {zero} p = P.refl
tabulate-cong {suc n} p = P.cong₂ _∷_ (p zero) (tabulate-cong (p ∘ suc))
tabulate-lookup : ∀ (xs : List A) → tabulate (lookup xs) ≡ xs
tabulate-lookup [] = refl
tabulate-lookup (x ∷ xs) = P.cong (_ ∷_) (tabulate-lookup xs)
length-tabulate : ∀ {n} → (f : Fin n → A) →
length (tabulate f) ≡ n
length-tabulate {zero} f = refl
length-tabulate {suc n} f = P.cong suc (length-tabulate (λ z → f (suc z)))
lookup-tabulate : ∀{n} → (f : Fin n → A) →
∀ i → let i′ = cast (sym (length-tabulate f)) i
in lookup (tabulate f) i′ ≡ f i
lookup-tabulate f zero = refl
lookup-tabulate f (suc i) = lookup-tabulate (f ∘ suc) i
module _ {a b} {A : Set a} {B : Set b} where
map-tabulate : ∀ {n} (g : Fin n → A) (f : A → B) →
map f (tabulate g) ≡ tabulate (f ∘ g)
map-tabulate {zero} g f = refl
map-tabulate {suc n} g f = P.cong (_ ∷_) (map-tabulate (g ∘ suc) f)
------------------------------------------------------------------------
-- _[_]%=_
module _ {a} {A : Set a} where
length-%= : ∀ xs k (f : A → A) → length (xs [ k ]%= f) ≡ length xs
length-%= [] () f
length-%= (x ∷ xs) zero f = refl
length-%= (x ∷ xs) (suc k) f = P.cong suc (length-%= xs k f)
------------------------------------------------------------------------
-- _[_]∷=_
module _ {a} {A : Set a} where
length-∷= : ∀ xs k (v : A) → length (xs [ k ]∷= v) ≡ length xs
length-∷= xs k v = length-%= xs k (const v)
map-∷= : ∀ {b} {B : Set b} xs k (v : A) (f : A → B) →
let eq = P.sym (length-map f xs) in
map f (xs [ k ]∷= v) ≡ map f xs [ cast eq k ]∷= f v
map-∷= [] () v f
map-∷= (x ∷ xs) zero v f = refl
map-∷= (x ∷ xs) (suc k) v f = P.cong (f x ∷_) (map-∷= xs k v f)
------------------------------------------------------------------------
-- _─_
module _ {a} {A : Set a} where
length-─ : ∀ (xs : List A) k → length (xs ─ k) ≡ pred (length xs)
length-─ [] ()
length-─ (x ∷ xs) zero = refl
length-─ (x ∷ []) (suc ())
length-─ (x ∷ y ∷ xs) (suc k) = P.cong suc (length-─ (y ∷ xs) k)
map-─ : ∀ {b} {B : Set b} xs k (f : A → B) →
let eq = P.sym (length-map f xs) in
map f (xs ─ k) ≡ map f xs ─ cast eq k
map-─ [] () f
map-─ (x ∷ xs) zero f = refl
map-─ (x ∷ xs) (suc k) f = P.cong (f x ∷_) (map-─ xs k f)
------------------------------------------------------------------------
-- take
module _ {a} {A : Set a} where
length-take : ∀ n (xs : List A) → length (take n xs) ≡ n ⊓ (length xs)
length-take zero xs = refl
length-take (suc n) [] = refl
length-take (suc n) (x ∷ xs) = P.cong suc (length-take n xs)
------------------------------------------------------------------------
-- drop
module _ {a} {A : Set a} where
length-drop : ∀ n (xs : List A) → length (drop n xs) ≡ length xs ∸ n
length-drop zero xs = refl
length-drop (suc n) [] = refl
length-drop (suc n) (x ∷ xs) = length-drop n xs
take++drop : ∀ n (xs : List A) → take n xs ++ drop n xs ≡ xs
take++drop zero xs = refl
take++drop (suc n) [] = refl
take++drop (suc n) (x ∷ xs) = P.cong (x ∷_) (take++drop n xs)
------------------------------------------------------------------------
-- splitAt
module _ {a} {A : Set a} where
splitAt-defn : ∀ n → splitAt {A = A} n ≗ < take n , drop n >
splitAt-defn zero xs = refl
splitAt-defn (suc n) [] = refl
splitAt-defn (suc n) (x ∷ xs) with splitAt n xs | splitAt-defn n xs
... | (ys , zs) | ih = P.cong (Prod.map (x ∷_) id) ih
------------------------------------------------------------------------
-- takeWhile, dropWhile, and span
module _ {a p} {A : Set a} {P : Pred A p} (P? : Decidable P) where
takeWhile++dropWhile : ∀ xs → takeWhile P? xs ++ dropWhile P? xs ≡ xs
takeWhile++dropWhile [] = refl
takeWhile++dropWhile (x ∷ xs) with P? x
... | yes _ = P.cong (x ∷_) (takeWhile++dropWhile xs)
... | no _ = refl
span-defn : span P? ≗ < takeWhile P? , dropWhile P? >
span-defn [] = refl
span-defn (x ∷ xs) with P? x
... | yes _ = P.cong (Prod.map (x ∷_) id) (span-defn xs)
... | no _ = refl
------------------------------------------------------------------------
-- filter
module _ {a p} {A : Set a} {P : A → Set p} (P? : Decidable P) where
length-filter : ∀ xs → length (filter P? xs) ≤ length xs
length-filter [] = z≤n
length-filter (x ∷ xs) with P? x
... | no _ = ≤-step (length-filter xs)
... | yes _ = s≤s (length-filter xs)
filter-all : ∀ {xs} → All P xs → filter P? xs ≡ xs
filter-all {[]} [] = refl
filter-all {x ∷ xs} (px ∷ pxs) with P? x
... | no ¬px = contradiction px ¬px
... | yes _ = P.cong (x ∷_) (filter-all pxs)
filter-notAll : ∀ xs → Any (∁ P) xs → length (filter P? xs) < length xs
filter-notAll [] ()
filter-notAll (x ∷ xs) (here ¬px) with P? x
... | no _ = s≤s (length-filter xs)
... | yes px = contradiction px ¬px
filter-notAll (x ∷ xs) (there any) with P? x
... | no _ = ≤-step (filter-notAll xs any)
... | yes _ = s≤s (filter-notAll xs any)
filter-some : ∀ {xs} → Any P xs → 0 < length (filter P? xs)
filter-some {x ∷ xs} (here px) with P? x
... | yes _ = s≤s z≤n
... | no ¬px = contradiction px ¬px
filter-some {x ∷ xs} (there pxs) with P? x
... | yes _ = ≤-step (filter-some pxs)
... | no _ = filter-some pxs
filter-none : ∀ {xs} → All (∁ P) xs → filter P? xs ≡ []
filter-none {[]} [] = refl
filter-none {x ∷ xs} (¬px ∷ ¬pxs) with P? x
... | no _ = filter-none ¬pxs
... | yes px = contradiction px ¬px
filter-complete : ∀ {xs} → length (filter P? xs) ≡ length xs →
filter P? xs ≡ xs
filter-complete {[]} eq = refl
filter-complete {x ∷ xs} eq with P? x
... | no ¬px = contradiction eq (<⇒≢ (s≤s (length-filter xs)))
... | yes px = P.cong (x ∷_) (filter-complete (suc-injective eq))
------------------------------------------------------------------------
-- partition
module _ {a p} {A : Set a} {P : A → Set p} (P? : Decidable P) where
partition-defn : partition P? ≗ < filter P? , filter (∁? P?) >
partition-defn [] = refl
partition-defn (x ∷ xs) with P? x
... | yes Px = P.cong (Prod.map (x ∷_) id) (partition-defn xs)
... | no ¬Px = P.cong (Prod.map id (x ∷_)) (partition-defn xs)
------------------------------------------------------------------------
-- reverse
module _ {a} {A : Set a} where
open FunctionProperties {A = List A} _≡_
unfold-reverse : ∀ (x : A) xs → reverse (x ∷ xs) ≡ reverse xs ∷ʳ x
unfold-reverse x xs = helper [ x ] xs
where
open P.≡-Reasoning
helper : (xs ys : List A) → foldl (flip _∷_) xs ys ≡ reverse ys ++ xs
helper xs [] = refl
helper xs (y ∷ ys) = begin
foldl (flip _∷_) (y ∷ xs) ys ≡⟨ helper (y ∷ xs) ys ⟩
reverse ys ++ y ∷ xs ≡⟨ P.sym (++-assoc (reverse ys) _ _) ⟩
(reverse ys ∷ʳ y) ++ xs ≡⟨ P.sym $ P.cong (_++ xs) (unfold-reverse y ys) ⟩
reverse (y ∷ ys) ++ xs ∎
reverse-++-commute : (xs ys : List A) →
reverse (xs ++ ys) ≡ reverse ys ++ reverse xs
reverse-++-commute [] ys = P.sym (++-identityʳ _)
reverse-++-commute (x ∷ xs) ys = begin
reverse (x ∷ xs ++ ys) ≡⟨ unfold-reverse x (xs ++ ys) ⟩
reverse (xs ++ ys) ++ [ x ] ≡⟨ P.cong (_++ [ x ]) (reverse-++-commute xs ys) ⟩
(reverse ys ++ reverse xs) ++ [ x ] ≡⟨ ++-assoc (reverse ys) _ _ ⟩
reverse ys ++ (reverse xs ++ [ x ]) ≡⟨ P.sym $ P.cong (reverse ys ++_) (unfold-reverse x xs) ⟩
reverse ys ++ reverse (x ∷ xs) ∎
where open P.≡-Reasoning
reverse-involutive : Involutive reverse
reverse-involutive [] = refl
reverse-involutive (x ∷ xs) = begin
reverse (reverse (x ∷ xs)) ≡⟨ P.cong reverse $ unfold-reverse x xs ⟩
reverse (reverse xs ∷ʳ x) ≡⟨ reverse-++-commute (reverse xs) ([ x ]) ⟩
x ∷ reverse (reverse (xs)) ≡⟨ P.cong (x ∷_) $ reverse-involutive xs ⟩
x ∷ xs ∎
where open P.≡-Reasoning
length-reverse : (xs : List A) → length (reverse xs) ≡ length xs
length-reverse [] = refl
length-reverse (x ∷ xs) = begin
length (reverse (x ∷ xs)) ≡⟨ P.cong length $ unfold-reverse x xs ⟩
length (reverse xs ∷ʳ x) ≡⟨ length-++ (reverse xs) ⟩
length (reverse xs) + 1 ≡⟨ P.cong (_+ 1) (length-reverse xs) ⟩
length xs + 1 ≡⟨ +-comm _ 1 ⟩
suc (length xs) ∎
where open P.≡-Reasoning
module _ {a b} {A : Set a} {B : Set b} where
reverse-map-commute : (f : A → B) (xs : List A) →
map f (reverse xs) ≡ reverse (map f xs)
reverse-map-commute f [] = refl
reverse-map-commute f (x ∷ xs) = begin
map f (reverse (x ∷ xs)) ≡⟨ P.cong (map f) $ unfold-reverse x xs ⟩
map f (reverse xs ∷ʳ x) ≡⟨ map-++-commute f (reverse xs) ([ x ]) ⟩
map f (reverse xs) ∷ʳ f x ≡⟨ P.cong (_∷ʳ f x) $ reverse-map-commute f xs ⟩
reverse (map f xs) ∷ʳ f x ≡⟨ P.sym $ unfold-reverse (f x) (map f xs) ⟩
reverse (map f (x ∷ xs)) ∎
where open P.≡-Reasoning
reverse-foldr : ∀ (f : A → B → B) x ys →
foldr f x (reverse ys) ≡ foldl (flip f) x ys
reverse-foldr f x [] = refl
reverse-foldr f x (y ∷ ys) = begin
foldr f x (reverse (y ∷ ys)) ≡⟨ P.cong (foldr f x) (unfold-reverse y ys) ⟩
foldr f x ((reverse ys) ∷ʳ y) ≡⟨ foldr-∷ʳ f x y (reverse ys) ⟩
foldr f (f y x) (reverse ys) ≡⟨ reverse-foldr f (f y x) ys ⟩
foldl (flip f) (f y x) ys ∎
where open P.≡-Reasoning
reverse-foldl : ∀ (f : A → B → A) x ys →
foldl f x (reverse ys) ≡ foldr (flip f) x ys
reverse-foldl f x [] = refl
reverse-foldl f x (y ∷ ys) = begin
foldl f x (reverse (y ∷ ys)) ≡⟨ P.cong (foldl f x) (unfold-reverse y ys) ⟩
foldl f x ((reverse ys) ∷ʳ y) ≡⟨ foldl-∷ʳ f x y (reverse ys) ⟩
f (foldl f x (reverse ys)) y ≡⟨ P.cong (flip f y) (reverse-foldl f x ys) ⟩
f (foldr (flip f) x ys) y ∎
where open P.≡-Reasoning
------------------------------------------------------------------------
-- _∷ʳ_
module _ {a} {A : Set a} where
∷ʳ-injective : ∀ {x y : A} xs ys →
xs ∷ʳ x ≡ ys ∷ʳ y → xs ≡ ys × x ≡ y
∷ʳ-injective [] [] refl = (refl , refl)
∷ʳ-injective (x ∷ xs) (y ∷ ys) eq with ∷-injective eq
... | refl , eq′ = Prod.map (P.cong (x ∷_)) id (∷ʳ-injective xs ys eq′)
∷ʳ-injective [] (_ ∷ []) ()
∷ʳ-injective [] (_ ∷ _ ∷ _) ()
∷ʳ-injective (_ ∷ []) [] ()
∷ʳ-injective (_ ∷ _ ∷ _) [] ()
∷ʳ-injectiveˡ : ∀ {x y : A} (xs ys : List A) → xs ∷ʳ x ≡ ys ∷ʳ y → xs ≡ ys
∷ʳ-injectiveˡ xs ys eq = proj₁ (∷ʳ-injective xs ys eq)
∷ʳ-injectiveʳ : ∀ {x y : A} (xs ys : List A) → xs ∷ʳ x ≡ ys ∷ʳ y → x ≡ y
∷ʳ-injectiveʳ xs ys eq = proj₂ (∷ʳ-injective xs ys eq)
------------------------------------------------------------------------
-- DEPRECATED
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 0.15
gfilter-just = mapMaybe-just
{-# WARNING_ON_USAGE gfilter-just
"Warning: gfilter-just was deprecated in v0.15.
Please use mapMaybe-just instead."
#-}
gfilter-nothing = mapMaybe-nothing
{-# WARNING_ON_USAGE gfilter-nothing
"Warning: gfilter-nothing was deprecated in v0.15.
Please use mapMaybe-nothing instead."
#-}
gfilter-concatMap = mapMaybe-concatMap
{-# WARNING_ON_USAGE gfilter-concatMap
"Warning: gfilter-concatMap was deprecated in v0.15.
Please use mapMaybe-concatMap instead."
#-}
length-gfilter = length-mapMaybe
{-# WARNING_ON_USAGE length-gfilter
"Warning: length-gfilter was deprecated in v0.15.
Please use length-mapMaybe instead."
#-}
right-identity-unique = ++-identityʳ-unique
{-# WARNING_ON_USAGE right-identity-unique
"Warning: right-identity-unique was deprecated in v0.15.
Please use ++-identityʳ-unique instead."
#-}
left-identity-unique = ++-identityˡ-unique
{-# WARNING_ON_USAGE left-identity-unique
"Warning: left-identity-unique was deprecated in v0.15.
Please use ++-identityˡ-unique instead."
#-}
-- Version 0.16
module _ {a} {A : Set a} (p : A → Bool) where
boolTakeWhile++boolDropWhile : ∀ xs → boolTakeWhile p xs ++ boolDropWhile p xs ≡ xs
boolTakeWhile++boolDropWhile [] = refl
boolTakeWhile++boolDropWhile (x ∷ xs) with p x
... | true = P.cong (x ∷_) (boolTakeWhile++boolDropWhile xs)
... | false = refl
{-# WARNING_ON_USAGE boolTakeWhile++boolDropWhile
"Warning: boolTakeWhile and boolDropWhile were deprecated in v0.16.
Please use takeWhile and dropWhile instead."
#-}
boolSpan-defn : boolSpan p ≗ < boolTakeWhile p , boolDropWhile p >
boolSpan-defn [] = refl
boolSpan-defn (x ∷ xs) with p x
... | true = P.cong (Prod.map (x ∷_) id) (boolSpan-defn xs)
... | false = refl
{-# WARNING_ON_USAGE boolSpan-defn
"Warning: boolSpan, boolTakeWhile and boolDropWhile were deprecated in v0.16.
Please use span, takeWhile and dropWhile instead."
#-}
length-boolFilter : ∀ xs → length (boolFilter p xs) ≤ length xs
length-boolFilter xs =
length-mapMaybe (λ x → if p x then just x else nothing) xs
{-# WARNING_ON_USAGE length-boolFilter
"Warning: boolFilter was deprecated in v0.16.
Please use filter instead."
#-}
boolPartition-defn : boolPartition p ≗ < boolFilter p , boolFilter (not ∘ p) >
boolPartition-defn [] = refl
boolPartition-defn (x ∷ xs) with p x
... | true = P.cong (Prod.map (x ∷_) id) (boolPartition-defn xs)
... | false = P.cong (Prod.map id (x ∷_)) (boolPartition-defn xs)
{-# WARNING_ON_USAGE boolPartition-defn
"Warning: boolPartition and boolFilter were deprecated in v0.16.
Please use partition and filter instead."
#-}
module _ {a p} {A : Set a} (P : A → Set p) (P? : Decidable P) where
boolFilter-filters : ∀ xs → All P (boolFilter (⌊_⌋ ∘ P?) xs)
boolFilter-filters [] = []
boolFilter-filters (x ∷ xs) with P? x
... | yes px = px ∷ boolFilter-filters xs
... | no ¬px = boolFilter-filters xs
{-# WARNING_ON_USAGE boolFilter-filters
"Warning: boolFilter was deprecated in v0.16.
Please use filter instead."
#-}
-- Version 0.17
idIsFold = id-is-foldr
{-# WARNING_ON_USAGE idIsFold
"Warning: idIsFold was deprecated in v0.17.
Please use id-is-foldr instead."
#-}
++IsFold = ++-is-foldr
{-# WARNING_ON_USAGE ++IsFold
"Warning: ++IsFold was deprecated in v0.17.
Please use ++-is-foldr instead."
#-}
mapIsFold = map-is-foldr
{-# WARNING_ON_USAGE mapIsFold
"Warning: mapIsFold was deprecated in v0.17.
Please use map-is-foldr instead."
#-}
|
{
"alphanum_fraction": 0.4987402812,
"avg_line_length": 36.8761238761,
"ext": "agda",
"hexsha": "b7bbc50301409478484cd884f87f06fd6db362f7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Properties.agda",
"max_line_length": 101,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 13554,
"size": 36913
}
|
-- Andreas, 2018-09-03, issue #3200 reported by gallais
--
-- Record let pattern bindings trigger spurious irrelevance
-- marker, probably due to confusion of Prop with dummy type.
-- {-# OPTIONS -v tc.term.let.pattern:100 #-}
-- {-# OPTIONS -v tc.lhs.top:30 #-}
open import Agda.Builtin.Bool
open import Agda.Builtin.Unit
record R : Set where
field
fld : Bool
data Maybe (A : Set) : Set where
just : A → Maybe A
nothing : Maybe A
case_of_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B
case x of f = f x
solve2 : Maybe (Bool → Bool)
solve2 =
let record { fld = bla } = record { fld = true } in
case true of λ where
true → just (λ x → true)
false → nothing
From-just : {A : Set} → Maybe A → Set
From-just {A} (just _) = A
From-just nothing = ⊤
from-just : {A : Set} (x : Maybe A) → From-just x
from-just (just x) = x
from-just nothing = _
test : Bool
test = from-just solve2 true
-- Error was:
--
-- From-just .((just (λ x → true))) should be a function type, but it isn't
-- when checking that true is a valid argument to a function of type
-- From-just solve2
|
{
"alphanum_fraction": 0.633969119,
"avg_line_length": 23.9347826087,
"ext": "agda",
"hexsha": "f283a9df04ce2896fcadc13f1f471eb72895355e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue3200.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue3200.agda",
"max_line_length": 75,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue3200.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 356,
"size": 1101
}
|
{-# OPTIONS --cubical --cumulativity #-}
open import leibniz public
open import equalities public
open import leibniz-equality public
|
{
"alphanum_fraction": 0.7851851852,
"avg_line_length": 22.5,
"ext": "agda",
"hexsha": "1483060a245f294efdf80d345c16b468f5315e19",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e1104012d85d2072318656f6c6d31acff75c9460",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "guilhermehas/Equality",
"max_forks_repo_path": "README.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e1104012d85d2072318656f6c6d31acff75c9460",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "guilhermehas/Equality",
"max_issues_repo_path": "README.agda",
"max_line_length": 40,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "e1104012d85d2072318656f6c6d31acff75c9460",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "guilhermehas/Equality",
"max_stars_repo_path": "README.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-01T06:04:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-01T06:04:21.000Z",
"num_tokens": 35,
"size": 135
}
|
{-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.types.Group
open import lib.types.Lift
open import lib.groups.Homomorphisms
module lib.groups.Lift where
Lift-group-structure : ∀ {i j} {A : Type i}
→ GroupStructure A → GroupStructure (Lift {j = j} A)
Lift-group-structure GS = record
{ ident = lift ident
; inv = λ {(lift x) → lift (inv x)}
; comp = λ {(lift x) (lift y) → lift (comp x y)}
; unitl = λ {(lift y) → ap lift (unitl y)}
; unitr = λ {(lift x) → ap lift (unitr x)}
; assoc = λ {(lift x) (lift y) (lift z) → ap lift (assoc x y z)}
; invr = λ {(lift x) → ap lift (invr x)}
; invl = λ {(lift x) → ap lift (invl x)}
}
where open GroupStructure GS
Lift-group : ∀ {i j} → Group i → Group (lmax i j)
Lift-group {j = j} G = group (Lift {j = j} El) (Lift-level El-level)
(Lift-group-structure group-struct)
where open Group G
lift-hom : ∀ {i j} {G : Group i} → (G →ᴳ Lift-group {j = j} G)
lift-hom = record {f = lift; pres-comp = λ _ _ → idp}
lower-hom : ∀ {i j} {G : Group i} → (Lift-group {j = j} G →ᴳ G)
lower-hom = record {f = lower; pres-comp = λ _ _ → idp}
lift-iso : ∀ {i j} {G : Group i} → (G ≃ᴳ Lift-group {j = j} G)
lift-iso = (lift-hom , snd lift-equiv)
lower-iso : ∀ {i j} {G : Group i} → (Lift-group {j = j} G ≃ᴳ G)
lower-iso = (lower-hom , snd lower-equiv)
|
{
"alphanum_fraction": 0.5791420118,
"avg_line_length": 33.8,
"ext": "agda",
"hexsha": "8037dc830b6dd82157fce2ae1b60f97c66530f2c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "core/lib/groups/Lift.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "core/lib/groups/Lift.agda",
"max_line_length": 68,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "core/lib/groups/Lift.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 494,
"size": 1352
}
|
{-# OPTIONS --show-implicit #-}
open import Relation.Binary.PropositionalEquality
module Experiments.Ref (funext : ∀ {a b} → Extensionality a b) where
open import Level
open import Data.Nat
import Data.Unit as Unit
open import Data.List
open import Data.List.Most
open import Data.Product hiding (swap)
open import Data.Maybe as Maybe hiding (All)
open import Function as Fun using (case_of_)
import Relation.Binary.PropositionalEquality as PEq
open PEq.≡-Reasoning
data Ty : Set where
unit : Ty
ref : Ty → Ty
open import Experiments.Category (⊑-preorder {A = Ty})
open Product
data Expr : Ty → Set where
unit : Expr unit
ref : ∀ {t} → Expr t → Expr (ref t)
!_ : ∀ {t} → Expr (ref t) → Expr t
_≔_ : ∀ {t} → Expr (ref t) → Expr t → Expr unit
Val : Ty → MP₀
Val t = mp (Val' t) (record {
monotone = λ{ c~c' unit → unit ; c~c' (ref x) → ref (∈-⊒ x c~c') };
monotone-refl = λ{ unit → refl ; (ref x) → cong ref ∈-⊒-refl };
monotone-trans = λ p c~c' c'~c'' → {!!}
})
module Values where
data Val' : Ty → List Ty → Set where
unit : ∀ {Σ} → Val' unit Σ
ref : ∀ {Σ t} → t ∈ Σ → Val' (ref t) Σ
open import Experiments.StrongMonad Ty Val funext
open Strong
mkunit : ⊤ ⇒ Val unit
mkunit = mk⇒ (λ _ → Values.unit) λ c~c' → refl
alloc : ∀ {a} → Val a ⇒ M (Val (ref a))
alloc {a} = mk⇒
(λ v Σ₁ ext μ₁ →
let ext' = ∷ʳ-⊒ a Σ₁ in
(Σ₁ ∷ʳ a) ,
ext' ,
((map-all (MP.monotone (Val _) ext') μ₁) all-∷ʳ MP.monotone (Val _) (⊑-trans ext ext') v) ,
Values.ref (∈-∷ʳ Σ₁ a))
(λ c~c' → {!!})
load : ∀ {a} → Val (ref a) ⇒ M (Val a)
load {a} = mk⇒
(λ v Σ₁ ext μ₁ → case v of λ{
(Values.ref x) → Σ₁ , ⊑-refl , μ₁ , (∈-all (∈-⊒ x ext) μ₁)
})
(λ c~c' → {!!})
store : ∀ {a} → (Val (ref a) ⊗ Val a) ⇒ M ⊤
store = mk⇒
(λ x Σ₁ ext μ₁ → case x of λ{
(Values.ref l , v) → Σ₁ , ⊑-refl , (μ₁ All[ ∈-⊒ l ext ]≔' MP.monotone (Val _) ext v) , Unit.tt
})
(λ c~c' → {!!})
eval : ∀ {a} → Expr a → ⊤ ⇒ M (Val a)
eval unit = η (Val _) ∘ mkunit
eval (ref e) = μ (Val _) ∘ fmap alloc ∘ eval e
eval (! e) = μ (Val _) ∘ fmap load ∘ eval e
eval (e₁ ≔ e₂) =
fmap mkunit
∘ μ ⊤
∘ fmap store
∘ μ ((Val _) ⊗ (Val _))
∘ fmap (ts' (Val _)(Val _))
∘ ts (M (Val _))(Val _)
∘ ⟨ eval e₁ , eval e₂ ⟩
|
{
"alphanum_fraction": 0.5512538495,
"avg_line_length": 27.0595238095,
"ext": "agda",
"hexsha": "151b8ddb200dbe14fd046151e477fae2138f126a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "metaborg/mj.agda",
"max_forks_repo_path": "src/Experiments/Ref.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "metaborg/mj.agda",
"max_issues_repo_path": "src/Experiments/Ref.agda",
"max_line_length": 98,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "metaborg/mj.agda",
"max_stars_repo_path": "src/Experiments/Ref.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z",
"num_tokens": 927,
"size": 2273
}
|
------------------------------------------------------------------------
-- Strings
------------------------------------------------------------------------
{-# OPTIONS --without-K #-}
module String where
open import Prelude
------------------------------------------------------------------------
-- Helper code used below
private
-- A variant of Maybe that matches the Haskell Maybe type.
data HMaybe (A : Type) : Type where
Nothing : HMaybe A
Just : A → HMaybe A
{-# COMPILE GHC HMaybe = data Maybe (Nothing | Just) #-}
-- A conversion function.
hmaybe-to-maybe : ∀ {A} → HMaybe A → Maybe A
hmaybe-to-maybe Nothing = nothing
hmaybe-to-maybe (Just x) = just x
------------------------------------------------------------------------
-- Operations on strings
-- Implemented using the FFI. These operations do not compute at
-- compile-time, and are only supported by the GHC backend.
{-# FOREIGN GHC
import qualified Data.Text
#-}
mutual
-- Tries to parse the given string as a natural number. Accepts
-- whatever the Haskell Read instance for Integer accepts, except
-- for negative numbers.
parseℕ : String → Maybe ℕ
parseℕ = hmaybe-to-maybe ∘ parseℕ′
private
postulate
parseℕ′ : String → HMaybe ℕ
{-# COMPILE GHC parseℕ′ =
\s -> case reads (Data.Text.unpack s) of
{ [(x, "")] | x >= 0 -> Just (x :: Integer)
; _ -> Nothing
}
#-}
-- Turns natural numbers into strings.
postulate
prettyℕ : ℕ → String
{-# COMPILE GHC prettyℕ =
\n -> Data.Text.pack (show (n :: Integer))
#-}
|
{
"alphanum_fraction": 0.5118306351,
"avg_line_length": 23.6176470588,
"ext": "agda",
"hexsha": "13557fef88543a3af042b8fd7d8fe85d4b14159c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/String.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/String.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/String.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 368,
"size": 1606
}
|
-- {-# OPTIONS --show-implicit --show-irrelevant #-}
module Data.QuadTree.FunctorProofs.Valid-QuadTreeFunctor where
open import Haskell.Prelude renaming (zero to Z; suc to S)
open import Data.Logic
open import Data.QuadTree.InternalAgda
open import Agda.Primitive
open import Data.QuadTree.FunctorProofs.FunctorLaws
open import Data.QuadTree.FunctorProofs.Valid-QuadrantFunctor
open import Data.QuadTree.Implementation.Definition
open import Data.QuadTree.Implementation.ValidTypes
open import Data.QuadTree.Implementation.Functors
open import Data.QuadTree.Implementation.QuadrantLenses
ValidFunctor-QuadTree-IdentityLaw : (dep : Nat) -> IdentityLaw (λ y -> VQuadTree y {dep}) {{quadtreeFunctor dep}}
ValidFunctor-QuadTree-IdentityLaw dep (CVQuadTree (Wrapper (w , h) qd) {p}) =
begin
toQt dep w h _ (fmapₑ (quadrantFunctor dep) id (CVQuadrant qd))
=⟨ cong (toQt dep w h _) (ValidFunctor-Quadrant-IdentityLaw dep (CVQuadrant qd)) ⟩
toQt dep w h _ (CVQuadrant qd)
end
toQt-fmap : {a b : Set} {{eqA : Eq a}} {{eqB : Eq b}} (dep w h : Nat) (g : a -> b) (v : VQuadrant a {dep}) .(q : IsTrue (dep == log2up (if w < h then h else w)))
-> toQt dep w h q (fmapₑ (quadrantFunctor dep) g v)
≡ fmapₑ (quadtreeFunctor dep) g (toQt dep w h q v)
toQt-fmap dep w h g (CVQuadrant (Leaf x)) q = refl
toQt-fmap dep w h g (CVQuadrant (Node qd qd₁ qd₂ qd₃)) q = refl
ValidFunctor-QuadTree-CompositionLaw : (dep : Nat) -> CompositionLaw (λ y -> VQuadTree y {dep}) {{quadtreeFunctor dep}}
ValidFunctor-QuadTree-CompositionLaw dep (CVQuadTree (Wrapper (w , h) qd) {p} {q}) f g =
begin
toQt dep w h _ (fmapₑ (quadrantFunctor dep) (g ∘ f) (CVQuadrant qd))
=⟨ cong (toQt dep w h _) (ValidFunctor-Quadrant-CompositionLaw dep (CVQuadrant qd) f g) ⟩
toQt dep w h _ (fmapₑ (quadrantFunctor dep) g (fmapₑ (quadrantFunctor dep) f (CVQuadrant qd)))
=⟨ toQt-fmap dep w h g (fmapₑ (quadrantFunctor dep) f (CVQuadrant qd)) q ⟩
fmapₑ (quadtreeFunctor dep) g (toQt dep w h _ (fmapₑ (quadrantFunctor dep) f (CVQuadrant qd)))
end where
|
{
"alphanum_fraction": 0.7014853857,
"avg_line_length": 53.5128205128,
"ext": "agda",
"hexsha": "4158eb7435fa73af60363bf3314cfc238ed15369",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "JonathanBrouwer/research-project",
"max_forks_repo_path": "src/Data/QuadTree/FunctorProofs/Valid-QuadTreeFunctor.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "JonathanBrouwer/research-project",
"max_issues_repo_path": "src/Data/QuadTree/FunctorProofs/Valid-QuadTreeFunctor.agda",
"max_line_length": 161,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "JonathanBrouwer/research-project",
"max_stars_repo_path": "src/Data/QuadTree/FunctorProofs/Valid-QuadTreeFunctor.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-25T09:10:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-05-25T09:10:20.000Z",
"num_tokens": 737,
"size": 2087
}
|
------------------------------------------------------------------------
-- Asymmetric choice
------------------------------------------------------------------------
{-# OPTIONS --universe-polymorphism #-}
module TotalParserCombinators.AsymmetricChoice where
open import Data.Empty
open import Data.List
open import Data.List.Any using (here)
open import Data.List.Any.Membership.Propositional
using (_∈_) renaming (_∼[_]_ to _List-∼[_]_)
open import Data.Product
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence using (module Equivalence)
open import Function.Inverse as Inv using (_↔_)
open import Function.Related as Related
open import Function.Related.TypeIsomorphisms
import Relation.Binary.PropositionalEquality as P
import Relation.Binary.Sigma.Pointwise as Σ
open import TotalParserCombinators.Congruence using (_∼[_]P_; _≅P_)
open import TotalParserCombinators.Derivative using (D)
open import TotalParserCombinators.Parser
import TotalParserCombinators.Pointwise as Pointwise
open import TotalParserCombinators.Semantics using (_∈_·_)
------------------------------------------------------------------------
-- An initial bag operator
-- first-nonempty returns the left-most non-empty initial bag, if any.
first-nonempty : {R : Set} → List R → List R → List R
first-nonempty [] ys = ys
first-nonempty xs ys = xs
-- first-nonempty preserves equality.
first-nonempty-cong :
∀ {k R} {xs₁ xs₁′ xs₂ xs₂′ : List R} →
xs₁ List-∼[ ⌊ k ⌋⇔ ] xs₁′ → xs₂ List-∼[ ⌊ k ⌋⇔ ] xs₂′ →
first-nonempty xs₁ xs₂ List-∼[ ⌊ k ⌋⇔ ] first-nonempty xs₁′ xs₂′
first-nonempty-cong {xs₁ = []} {[]} eq₁ eq₂ = eq₂
first-nonempty-cong {xs₁ = _ ∷ _} {_ ∷ _} eq₁ eq₂ = eq₁
first-nonempty-cong {xs₁ = []} {_ ∷ _} eq₁ eq₂
with Equivalence.from (⇒⇔ eq₁) ⟨$⟩ here P.refl
... | ()
first-nonempty-cong {xs₁ = _ ∷ _} {[]} eq₁ eq₂
with Equivalence.to (⇒⇔ eq₁) ⟨$⟩ here P.refl
... | ()
-- first-nonempty is correct.
first-nonempty-left :
∀ {k R} {xs₁ xs₂ : List R} →
(∃ λ y → y ∈ xs₁) → first-nonempty xs₁ xs₂ List-∼[ k ] xs₁
first-nonempty-left {xs₁ = []} (_ , ())
first-nonempty-left {xs₁ = _ ∷ _} _ = _ ∎
where open Related.EquationalReasoning
first-nonempty-right :
∀ {k R} {xs₁ xs₂ : List R} →
(∄ λ y → y ∈ xs₁) → first-nonempty xs₁ xs₂ List-∼[ k ] xs₂
first-nonempty-right {xs₁ = x ∷ _} ∉x∷ = ⊥-elim $ ∉x∷ (x , here P.refl)
first-nonempty-right {xs₁ = []} _ = _ ∎
where open Related.EquationalReasoning
------------------------------------------------------------------------
-- Asymmetric choice
-- _◃_ is defined as a pointwise lifting of first-nonempty. Note that
-- _◃_ preserves parser and language equality, but not the
-- sub-/superparser and sub-/superlanguage relations.
private
module AC {R} = Pointwise R R ⌊_⌋⇔ first-nonempty first-nonempty-cong
-- p₁ ◃ p₂ returns a result if either p₁ or p₂ does. For a given
-- string results are returned either from p₁ or from p₂, not both.
infixl 5 _◃_ _◃-cong_
_◃_ : ∀ {Tok R xs₁ xs₂} →
Parser Tok R xs₁ → Parser Tok R xs₂ →
Parser Tok R (first-nonempty xs₁ xs₂)
_◃_ = AC.lift
-- D distributes over _◃_.
D-◃ : ∀ {Tok R xs₁ xs₂ t}
(p₁ : Parser Tok R xs₁) (p₂ : Parser Tok R xs₂) →
D t (p₁ ◃ p₂) ≅P D t p₁ ◃ D t p₂
D-◃ = AC.D-lift
-- _◃_ preserves equality.
_◃-cong_ : ∀ {k Tok R xs₁ xs₁′ xs₂ xs₂′}
{p₁ : Parser Tok R xs₁} {p₁′ : Parser Tok R xs₁′}
{p₂ : Parser Tok R xs₂} {p₂′ : Parser Tok R xs₂′} →
p₁ ∼[ ⌊ k ⌋⇔ ]P p₁′ → p₂ ∼[ ⌊ k ⌋⇔ ]P p₂′ →
p₁ ◃ p₂ ∼[ ⌊ k ⌋⇔ ]P p₁′ ◃ p₂′
_◃-cong_ = AC.lift-cong
-- If p₁ accepts s, then p₁ ◃ p₂ behaves as p₁ when applied to s.
left : ∀ {Tok R xs₁ xs₂ x s}
(p₁ : Parser Tok R xs₁) (p₂ : Parser Tok R xs₂) →
(∃ λ y → y ∈ p₁ · s) → x ∈ p₁ ◃ p₂ · s ↔ x ∈ p₁ · s
left {x = x} =
AC.lift-property
(λ F _ H → ∃ F → H x ↔ F x)
(λ F↔F′ _ H↔H′ →
Σ.cong Inv.id (λ {x} → ↔⇒ (F↔F′ x))
→-cong-⇔
Related-cong (H↔H′ x) (F↔F′ x))
(λ ∈xs₁ → first-nonempty-left ∈xs₁)
-- If p₁ does not accept s, then p₁ ◃ p₂ behaves as p₂ when applied to
-- s.
right : ∀ {Tok R xs₁ xs₂ x s}
(p₁ : Parser Tok R xs₁) (p₂ : Parser Tok R xs₂) →
(∄ λ y → y ∈ p₁ · s) → x ∈ p₁ ◃ p₂ · s ↔ x ∈ p₂ · s
right {x = x} =
AC.lift-property
(λ F G H → ∄ F → H x ↔ G x)
(λ F↔F′ G↔G′ H↔H′ →
¬-cong-⇔ (Σ.cong Inv.id λ {x} → ↔⇒ (F↔F′ x))
→-cong-⇔
Related-cong (H↔H′ x) (G↔G′ x))
(λ ∉xs₁ → first-nonempty-right ∉xs₁)
|
{
"alphanum_fraction": 0.574933687,
"avg_line_length": 33.7611940299,
"ext": "agda",
"hexsha": "cdc3989a2203d59fe089e25a819813cb3ae692e4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "yurrriq/parser-combinators",
"max_forks_repo_path": "TotalParserCombinators/AsymmetricChoice.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88",
"max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "yurrriq/parser-combinators",
"max_issues_repo_path": "TotalParserCombinators/AsymmetricChoice.agda",
"max_line_length": 72,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yurrriq/parser-combinators",
"max_stars_repo_path": "TotalParserCombinators/AsymmetricChoice.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z",
"num_tokens": 1661,
"size": 4524
}
|
{-
Agda Implementors' Meeting VI
Göteborg
May 24 - 30, 2007
Hello Agda!
Ulf Norell
-}
{-
Getting your hands on Agda
http://www.cs.chalmers.se/~ulfn/Agda
darcs get --partial http://www.cs.chalmers.se/~ulfn/darcs/Agda2
-}
-- Each Agda file contains a top-level module, whose
-- name corresponds to the file name.
module Basics where
{-
Expressions (types and terms)
-}
-- The expression language of Agda is your favorite dependently
-- typed λ-calculus.
-- For instance:
id₁ : (A : Set) -> A -> A
id₁ = \ A x -> x
id₂ : (A : Set) -> A -> A
id₂ = \ A x -> id₁ A (id₁ A x)
-- Note: Agda likes white space. This is not correct:
-- id:(A:Set)->A->A
-- Why not? In Agda the following strings are valid identifiers:
-- id:
-- A:Set
-- ->A->A
-- Another useful function, featuring telescopes
-- and typed λs.
compose : (A B C : Set)(f : B -> C)(g : A -> B) -> A -> C
compose = \(A B C : Set) -> \ f g x -> f (g x)
{-
Implicit arguments
-}
-- Writing down type arguments explicitly soon gets old.
-- Enter implicit arguments.
-- Note the curlies in the telescope. And A mysteriously disappeared
-- in the definition.
id₃ : {A : Set} -> A -> A
id₃ = \ x -> x
-- And it's not there when applying the function.
id₄ : {A : Set} -> A -> A
id₄ = \ x -> (id₃ (id₃ x))
-- You can give implicit arguments explicitly.
id₅ : {A : Set} -> A -> A
id₅ {A} x = id₄ {A} x
-- If you want to give a particular implicit argument, you can refer
-- to it by name.
const : {A B : Set} -> A -> B -> A
const = \ x y -> x
const' : (A : Set) -> A -> A -> A
const' = \ A -> const {B = A}
-- It also works the other way around. If you think the type checker
-- should figure out the value of something explicit, you write _.
id₆ : {A : Set} -> A -> A
id₆ x = id₁ _ x
-- Interesting though it is, eventually you'll get bored
-- with the λ-calculus...
-- Move on to: Datatypes.agda
|
{
"alphanum_fraction": 0.5948144382,
"avg_line_length": 20.2783505155,
"ext": "agda",
"hexsha": "34ca2514ca0168f9cd4cfe8fa7da4cd71698856f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/AIM6/HelloAgda/Basics.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/AIM6/HelloAgda/Basics.agda",
"max_line_length": 68,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/AIM6/HelloAgda/Basics.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 621,
"size": 1967
}
|
open import Agda.Builtin.List
open import Agda.Builtin.Reflection
open import Agda.Builtin.Unit
postulate
F : Set → Set
module M₀ where
macro
go-tactic₀ : Term → TC ⊤
go-tactic₀ hole = unify hole (def (quote F) [])
test₀ : Set
test₀ = go-tactic₀ ⊤
module M₁ (A : Set) where
macro
go-tactic₁ : Term → TC ⊤
go-tactic₁ hole = unify hole (def (quote F) [])
test-inside-M₁ : Set
test-inside-M₁ = go-tactic₁ ⊤
test-outside-M₁ : Set
test-outside-M₁ = M₁.go-tactic₁ ⊤ ⊤
|
{
"alphanum_fraction": 0.6553106212,
"avg_line_length": 18.4814814815,
"ext": "agda",
"hexsha": "2479fac9df8c4c40c1aa0b53238dd75b900ecedc",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1363.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1363.agda",
"max_line_length": 51,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1363.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 177,
"size": 499
}
|
{-# OPTIONS --safe --cubical --postfix-projections #-}
module Relation.Binary where
open import Level
open import Function using (_∘_; flip; id)
open import Inspect using (inspect;〖_〗)
open import HLevels using (isSet)
open import Path as ≡ hiding (sym; refl)
open import Data.Bool using (Bool; true; false; bool)
open import Data.Bool.Properties using (false≢true)
open import Data.Empty using (⊥; ⊥-elim; ¬_)
open import Data.Sum using (either; inl; inr; _⊎_; is-l)
open import Relation.Nullary.Decidable using (Dec; yes; no; does)
open import Relation.Nullary.Decidable.Properties using (Dec→Stable)
open import Relation.Nullary.Discrete using (Discrete)
open import Relation.Nullary.Discrete.Properties using (Discrete→isSet)
open import Relation.Nullary.Stable using (Stable)
module _ (_~_ : A → A → Type b) where
Reflexive : Type _
Reflexive = ∀ {x} → x ~ x
Transitive : Type _
Transitive = ∀ {x y z} → x ~ y → y ~ z → x ~ z
Symmetric : Type _
Symmetric = ∀ {x y} → x ~ y → y ~ x
Decidable : Type _
Decidable = ∀ x y → Dec (x ~ y)
Antisymmetric : Type _
Antisymmetric = ∀ {x y} → x ~ y → y ~ x → x ≡ y
Connected : Type _
Connected = ∀ {x y} → ¬ (x ~ y) → ¬ (y ~ x) → x ≡ y
Asymmetric : Type _
Asymmetric = ∀ {x y} → x ~ y → ¬ (y ~ x)
Irreflexive : Type _
Irreflexive = ∀ {x} → ¬ (x ~ x)
Total : Type _
Total = ∀ x y → (x ~ y) ⊎ (y ~ x)
record Preorder {ℓ₁} (𝑆 : Type ℓ₁) ℓ₂ : Type (ℓ₁ ℓ⊔ ℓsuc ℓ₂) where
infix 4 _≤_
field
_≤_ : 𝑆 → 𝑆 → Type ℓ₂
refl : Reflexive _≤_
trans : Transitive _≤_
infix 4 _≰_ _≥_ _≱_
_≰_ _≥_ _≱_ : 𝑆 → 𝑆 → Type ℓ₂
x ≰ y = ¬ (x ≤ y)
x ≥ y = y ≤ x
x ≱ y = ¬ (y ≤ x)
record StrictPreorder {ℓ₁} (𝑆 : Type ℓ₁) ℓ₂ : Type (ℓ₁ ℓ⊔ ℓsuc ℓ₂) where
infix 4 _<_
field
_<_ : 𝑆 → 𝑆 → Type ℓ₂
trans : Transitive _<_
irrefl : Irreflexive _<_
asym : Asymmetric _<_
asym x<y y<x = irrefl (trans x<y y<x)
infix 4 _≮_ _>_ _≯_
_≮_ _>_ _≯_ : 𝑆 → 𝑆 → Type ℓ₂
x ≮ y = ¬ (x < y)
x > y = y < x
x ≯ y = ¬ (y < x)
record StrictPartialOrder {ℓ₁} (𝑆 : Type ℓ₁) ℓ₂ : Type (ℓ₁ ℓ⊔ ℓsuc ℓ₂) where
field strictPreorder : StrictPreorder 𝑆 ℓ₂
open StrictPreorder strictPreorder public
field conn : Connected _<_
record PartialOrder {ℓ₁} (𝑆 : Type ℓ₁) ℓ₂ : Type (ℓ₁ ℓ⊔ ℓsuc ℓ₂) where
field preorder : Preorder 𝑆 ℓ₂
open Preorder preorder public
field antisym : Antisymmetric _≤_
data Tri (A : Type a) (B : Type b) (C : Type c) : Type (a ℓ⊔ b ℓ⊔ c) where
lt : (x<y : A) → Tri A B C
eq : (x≡y : B) → Tri A B C
gt : (x>y : C) → Tri A B C
record TotalOrder {ℓ₁} (𝑆 : Type ℓ₁) ℓ₂ ℓ₃ : Type (ℓ₁ ℓ⊔ ℓsuc ℓ₂ ℓ⊔ ℓsuc ℓ₃) where
field
strictPartialOrder : StrictPartialOrder 𝑆 ℓ₂
partialOrder : PartialOrder 𝑆 ℓ₃
open PartialOrder partialOrder renaming (trans to ≤-trans) public
open StrictPartialOrder strictPartialOrder renaming (trans to <-trans) public
infix 4 _<?_
field
_<?_ : Decidable _<_
≰⇒> : ∀ {x y} → x ≰ y → x > y
≮⇒≥ : ∀ {x y} → x ≮ y → x ≥ y
<⇒≤ : ∀ {x y} → x < y → x ≤ y
<⇒≤ = ≮⇒≥ ∘ asym
_<ᵇ_ : 𝑆 → 𝑆 → Bool
x <ᵇ y = does (x <? y)
<⇒≱ : ∀ {x y} → x < y → x ≱ y
<⇒≱ {x} {y} x<y x≥y = irrefl (subst (_< _) (antisym (<⇒≤ x<y) x≥y) x<y)
≤⇒≯ : ∀ {x y} → x ≤ y → x ≯ y
≤⇒≯ {x} {y} x≤y x>y = irrefl (subst (_< _) (antisym (≮⇒≥ (asym x>y)) x≤y) x>y)
infix 4 _≤ᵇ_ _≤?_ _≤|≥_ _≟_
_≤?_ : Decidable _≤_
x ≤? y with y <? x
... | yes y<x = no (<⇒≱ y<x)
... | no y≮x = yes (≮⇒≥ y≮x)
_≤ᵇ_ : 𝑆 → 𝑆 → Bool
x ≤ᵇ y = does (x ≤? y)
_≤|≥_ : Total _≤_
x ≤|≥ y with x <? y
... | yes x<y = inl (<⇒≤ x<y)
... | no x≮y = inr (≮⇒≥ x≮y)
_≟_ : Discrete 𝑆
x ≟ y with x <? y | y <? x
... | yes x<y | _ = no (λ x≡y → irrefl (subst (_< _) x≡y x<y))
... | _ | yes y<x = no (λ x≡y → irrefl (subst (_ <_) x≡y y<x))
... | no x≮y | no y≮x = yes (conn x≮y y≮x)
Ordering : (x y : 𝑆) → Type (ℓ₁ ℓ⊔ ℓ₂)
Ordering x y = Tri (x < y) (x ≡ y) (x > y)
compare : ∀ x y → Ordering x y
compare x y with x <? y | y <? x
... | yes x<y | _ = lt x<y
... | no x≮y | yes y<x = gt y<x
... | no x≮y | no y≮x = eq (conn x≮y y≮x)
total⇒isSet : isSet 𝑆
total⇒isSet = Discrete→isSet _≟_
module FromPartialOrder {ℓ₁} {𝑆 : Type ℓ₁} {ℓ₂} (po : PartialOrder 𝑆 ℓ₂) (_≤|≥_ : Total (PartialOrder._≤_ po)) where
open PartialOrder po
partialOrder = po
≤-side : 𝑆 → 𝑆 → Bool
≤-side x y = is-l (x ≤|≥ y)
≤-dec : Decidable _≤_
≤-dec x y with x ≤|≥ y | y ≤|≥ x | inspect (≤-side x) y | inspect (≤-side y) x
≤-dec x y | inl x≤y | _ | _ | _ = yes x≤y
≤-dec x y | inr x≥y | inr y≥x | _ | _ = yes y≥x
≤-dec x y | inr x≥y | inl y≤x | 〖 x≥yᵇ 〗 | 〖 y≤xᵇ 〗 = no (x≢y ∘ flip antisym x≥y)
where
x≢y : x ≢ y
x≢y x≡y = false≢true (≡.sym x≥yᵇ ; cong₂ ≤-side x≡y (≡.sym x≡y) ; y≤xᵇ)
≮⇒≥ : ∀ {x y} → Stable (x ≤ y)
≮⇒≥ {x} {y} = Dec→Stable _ (≤-dec x y)
strictPartialOrder : StrictPartialOrder 𝑆 ℓ₂
strictPartialOrder .StrictPartialOrder.strictPreorder .StrictPreorder._<_ x y = ¬ (y ≤ x)
strictPartialOrder .StrictPartialOrder.conn x<y y<x = antisym (≮⇒≥ y<x) (≮⇒≥ x<y)
strictPartialOrder .StrictPartialOrder.strictPreorder .StrictPreorder.irrefl y≰x = y≰x refl
strictPartialOrder .StrictPartialOrder.strictPreorder .StrictPreorder.trans {x} {y} {z} y≰x z≰y z≤x with ≤-dec y z
... | yes y≤z = y≰x (trans y≤z z≤x)
... | no y≰z = either z≰y y≰z (z ≤|≥ y)
≰⇒> = id
_<?_ : Decidable _≱_
_<?_ x y with ≤-dec y x
... | yes y≤x = no λ y≰x → y≰x y≤x
... | no y≰x = yes y≰x
fromPartialOrder : (po : PartialOrder A b) (_≤|≥_ : Total (PartialOrder._≤_ po)) → TotalOrder _ _ _
fromPartialOrder po tot = record { FromPartialOrder po tot }
module FromStrictPartialOrder {ℓ₁} {𝑆 : Type ℓ₁} {ℓ₂} (spo : StrictPartialOrder 𝑆 ℓ₂) (<-dec : Decidable (StrictPartialOrder._<_ spo)) where
open StrictPartialOrder spo
strictPartialOrder = spo
_<?_ = <-dec
partialOrder : PartialOrder _ _
partialOrder .PartialOrder.preorder .Preorder._≤_ x y = ¬ (y < x)
partialOrder .PartialOrder.preorder .Preorder.refl x<x = asym x<x x<x
partialOrder .PartialOrder.preorder .Preorder.trans {x} {y} {z} y≮x z≮y z<x with x <? y
... | yes x<y = z≮y (trans z<x x<y)
... | no x≮y = z≮y (subst (z <_) (conn x≮y y≮x) z<x)
partialOrder .PartialOrder.antisym = flip conn
≰⇒> : ∀ {x y} → Stable (x < y)
≰⇒> {x} {y} = Dec→Stable (x < y) (x <? y)
≮⇒≥ = id
fromStrictPartialOrder : (spo : StrictPartialOrder A b) (_<?_ : Decidable (StrictPartialOrder._<_ spo)) → TotalOrder _ _ _
fromStrictPartialOrder spo _<?_ = record { FromStrictPartialOrder spo _<?_ }
record Equivalence {ℓ₁} (𝑆 : Type ℓ₁) ℓ₂ : Type (ℓ₁ ℓ⊔ ℓsuc ℓ₂) where
infix 4 _≋_
field
_≋_ : 𝑆 → 𝑆 → Type ℓ₂
sym : ∀ {x y} → x ≋ y → y ≋ x
refl : ∀ {x} → x ≋ x
trans : ∀ {x y z} → x ≋ y → y ≋ z → x ≋ z
≡-equivalence : ∀ {a} {A : Set a} → Equivalence A a
≡-equivalence = record
{ _≋_ = _≡_
; sym = ≡.sym
; refl = ≡.refl
; trans = _;_
}
|
{
"alphanum_fraction": 0.5617961511,
"avg_line_length": 30.5,
"ext": "agda",
"hexsha": "7a69e47efe7efb5e88ac52385215ab33515fecdf",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Relation/Binary.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Relation/Binary.agda",
"max_line_length": 140,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Relation/Binary.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 3210,
"size": 7015
}
|
{-# OPTIONS --safe #-}
data ⊥ : Set where
private
{-# TERMINATING #-}
f : ⊥
f = f
mutual
{-# TERMINATING #-}
g : ⊥
g = f
abstract
{-# TERMINATING #-}
h : ⊥
h = f
record I : Set where
{-# TERMINATING #-}
i : ⊥
i = f
instance
{-# TERMINATING #-}
j : I
j = j
|
{
"alphanum_fraction": 0.4662162162,
"avg_line_length": 8.9696969697,
"ext": "agda",
"hexsha": "4b167b0d77092a2185aee36e588538835443a8c0",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue3983.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue3983.agda",
"max_line_length": 22,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue3983.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 111,
"size": 296
}
|
module Duploid where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; sym; cong)
open Eq.≡-Reasoning
open import Level
open import Preduploid
private
variable p q r s : Polarity
record Duploid o ℓ : Set (suc (o ⊔ ℓ)) where
field
𝒟 : Preduploid o ℓ
open Preduploid.Preduploid 𝒟 public
field
⇓ : Ob ⊝ -> Ob +
⇑ : Ob + -> Ob ⊝
delay : forall {P : Ob +} -> P ⇒ ⇑ P
force : forall {P : Ob +} -> ⇑ P ⇒ P
wrap : forall {N : Ob ⊝} -> N ⇒ ⇓ N
unwrap : forall {N : Ob ⊝} -> ⇓ N ⇒ N
force∘delay∙ : forall {A : Ob p} {P : Ob +} {f : A ⇒ P} -> force ∘ (delay ∙ f) ≡ f
∘unwrap∙wrap : forall {N : Ob ⊝} {A : Ob p} {f : N ⇒ A} -> (f ∘ unwrap) ∙ wrap ≡ f
delay∙force : forall {P : Ob +} -> delay ∙ force ≡ id {A = ⇑ P}
wrap∘unwrap : forall {N : Ob ⊝} -> wrap ∘ unwrap ≡ id {A = ⇓ N}
∙force∘delay : forall {P : Ob +} {A : Ob p} {g : P ⇒ A} -> (g ∙ force) ∘ delay ≡ g
∙force∘delay {g = g} =
begin
(g ∙ force) ∘ delay
≡⟨ assoc∙∘ ⟩
g ∙ (force ∘ delay)
≡˘⟨ cong (g ∙_) (cong (force ∘_) identity∙ʳ) ⟩
g ∙ (force ∘ (delay ∙ id))
≡⟨ cong (g ∙_) force∘delay∙ ⟩
g ∙ id
≡⟨ identity∙ʳ ⟩
g
∎
unwrap∙wrap∘ : forall {A : Ob p} {N : Ob ⊝} {g : A ⇒ N} -> unwrap ∙ (wrap ∘ g) ≡ g
unwrap∙wrap∘ {g = g} =
begin
unwrap ∙ (wrap ∘ g)
≡˘⟨ assoc∙∘ ⟩
(unwrap ∙ wrap) ∘ g
≡˘⟨ cong (_∘ g) (cong (_∙ wrap) identity∘ˡ) ⟩
((id ∘ unwrap) ∙ wrap) ∘ g
≡⟨ cong (_∘ g) ∘unwrap∙wrap ⟩
id ∘ g
≡⟨ identity∘ˡ ⟩
g
∎
wrap-Thunkable : forall {N : Ob ⊝} -> Thunkable (wrap {N = N})
wrap-Thunkable {r = +} = sym assoc∙∙
wrap-Thunkable {r = ⊝} {g = g} {h = h} =
begin
h ∘ (g ∙ wrap)
≡˘⟨ ∘unwrap∙wrap ⟩
((h ∘ (g ∙ wrap)) ∘ unwrap) ∙ wrap
≡⟨ cong (_∙ wrap) assoc∘∘ ⟩
(h ∘ ((g ∙ wrap) ∘ unwrap)) ∙ wrap
≡⟨ cong (_∙ wrap) (cong (h ∘_) assoc∙∘) ⟩
(h ∘ (g ∙ (wrap ∘ unwrap))) ∙ wrap
≡⟨ cong (_∙ wrap) (cong (h ∘_) (cong (g ∙_) wrap∘unwrap)) ⟩
(h ∘ (g ∙ id)) ∙ wrap
≡⟨ cong (_∙ wrap) (cong (h ∘_) identity∙ʳ) ⟩
(h ∘ g) ∙ wrap
∎
force-Linear : forall {P : Ob +} -> Linear (force {P = P})
force-Linear {q = +} {g = g} {h = h} = sym (
begin
(force ∘ g) ∙ h
≡˘⟨ force∘delay∙ ⟩
force ∘ (delay ∙ ((force ∘ g) ∙ h))
≡˘⟨ cong (force ∘_) assoc∙∙ ⟩
force ∘ ((delay ∙ (force ∘ g)) ∙ h)
≡˘⟨ cong (force ∘_) (cong (_∙ h) assoc∙∘) ⟩
force ∘ (((delay ∙ force) ∘ g) ∙ h)
≡⟨ cong (force ∘_) (cong (_∙ h) (cong (_∘ g) delay∙force)) ⟩
force ∘ ((id ∘ g) ∙ h)
≡⟨ cong (force ∘_) (cong (_∙ h) identity∘ˡ) ⟩
force ∘ (g ∙ h)
∎)
force-Linear {q = ⊝} = sym assoc∘∘
helper1 : forall {A : Ob p} {P : Ob +} {f : A ⇒ P}
-> (wrap ∘ delay) ∙ f ≡ wrap ∘ (delay ∙ f)
-> forall {B : Ob q} {h : ⇑ P ⇒ B} -> (h ∘ delay) ∙ f ≡ h ∘ (delay ∙ f)
helper1 {f = f} e {h = h} =
begin
(h ∘ delay) ∙ f
≡˘⟨ cong (_∙ f) (cong (_∘ delay) ∘unwrap∙wrap) ⟩
(((h ∘ unwrap) ∙ wrap) ∘ delay) ∙ f
≡⟨ cong (_∙ f) assoc∙∘ ⟩
((h ∘ unwrap) ∙ (wrap ∘ delay)) ∙ f
≡⟨ assoc∙∙ ⟩
(h ∘ unwrap) ∙ ((wrap ∘ delay) ∙ f)
≡⟨ cong ((h ∘ unwrap) ∙_) e ⟩
(h ∘ unwrap) ∙ (wrap ∘ (delay ∙ f))
≡˘⟨ assoc∙∘ ⟩
((h ∘ unwrap) ∙ wrap) ∘ (delay ∙ f)
≡⟨ cong (_∘ _) ∘unwrap∙wrap ⟩
h ∘ (delay ∙ f)
∎
assoc-wrap∘delay∙→Thunkable : forall {A : Ob p} {P : Ob +} {f : A ⇒ P}
-> (wrap ∘ delay) ∙ f ≡ wrap ∘ (delay ∙ f)
-> Thunkable f
assoc-wrap∘delay∙→Thunkable e {r = +} = sym assoc∙∙
assoc-wrap∘delay∙→Thunkable {f = f} e {r = ⊝} {g = g} {h = h} =
begin
h ∘ (g ∙ f)
≡˘⟨ cong (h ∘_) (cong (_∙ f) ∙force∘delay) ⟩
h ∘ (((g ∙ force) ∘ delay) ∙ f)
≡⟨ cong (h ∘_) (helper1 e) ⟩
h ∘ ((g ∙ force) ∘ (delay ∙ f))
≡˘⟨ assoc∘∘ ⟩
(h ∘ (g ∙ force)) ∘ (delay ∙ f)
≡˘⟨ helper1 e ⟩
((h ∘ (g ∙ force)) ∘ delay) ∙ f
≡⟨ cong (_∙ f) assoc∘∘ ⟩
(h ∘ ((g ∙ force) ∘ delay)) ∙ f
≡⟨ cong (_∙ f) (cong (h ∘_) ∙force∘delay) ⟩
(h ∘ g) ∙ f
∎
helper2 : forall {N : Ob ⊝} {A : Ob p} {f : N ⇒ A}
-> f ∘ (unwrap ∙ force) ≡ (f ∘ unwrap) ∙ force
-> forall {B : Ob q} {h : B ⇒ ⇓ N} -> f ∘ (unwrap ∙ h) ≡ (f ∘ unwrap) ∙ h
helper2 {f = f} e {h = h} =
begin
f ∘ (unwrap ∙ h)
≡˘⟨ cong (f ∘_) (cong (unwrap ∙_) force∘delay∙) ⟩
f ∘ (unwrap ∙ (force ∘ (delay ∙ h)))
≡˘⟨ cong (f ∘_) assoc∙∘ ⟩
f ∘ ((unwrap ∙ force) ∘ (delay ∙ h))
≡˘⟨ assoc∘∘ ⟩
(f ∘ (unwrap ∙ force)) ∘ (delay ∙ h)
≡⟨ cong (_∘ (delay ∙ h)) e ⟩
((f ∘ unwrap) ∙ force) ∘ (delay ∙ h)
≡⟨ assoc∙∘ ⟩
(f ∘ unwrap) ∙ (force ∘ (delay ∙ h))
≡⟨ cong ((f ∘ unwrap) ∙_) force∘delay∙ ⟩
(f ∘ unwrap) ∙ h
∎
assoc-∘unwrap∙force→Linear : forall {N : Ob ⊝} {A : Ob p} {f : N ⇒ A}
-> f ∘ (unwrap ∙ force) ≡ (f ∘ unwrap) ∙ force
-> Linear f
assoc-∘unwrap∙force→Linear {f = f} e {q = +} {g = g} {h = h} =
begin
f ∘ (g ∙ h)
≡˘⟨ cong (f ∘_) (cong (_∙ h) unwrap∙wrap∘) ⟩
f ∘ ((unwrap ∙ (wrap ∘ g)) ∙ h)
≡⟨ cong (f ∘_) assoc∙∙ ⟩
f ∘ (unwrap ∙ ((wrap ∘ g) ∙ h))
≡⟨ helper2 e ⟩
(f ∘ unwrap) ∙ ((wrap ∘ g) ∙ h)
≡˘⟨ assoc∙∙ ⟩
((f ∘ unwrap) ∙ (wrap ∘ g)) ∙ h
≡˘⟨ cong (_∙ h) assoc∙∘ ⟩
(((f ∘ unwrap) ∙ wrap) ∘ g) ∙ h
≡⟨ cong (_∙ h) (cong (_∘ g) ∘unwrap∙wrap) ⟩
(f ∘ g) ∙ h
∎
assoc-∘unwrap∙force→Linear e {q = ⊝} = sym assoc∘∘
|
{
"alphanum_fraction": 0.4359772852,
"avg_line_length": 30.6685393258,
"ext": "agda",
"hexsha": "5b74c816e1007c6bbeeeea66af6346e156c9413a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "16def03e15bb8d71680bea60ae758ab37f4b2df9",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "elpinal/duploids",
"max_forks_repo_path": "Duploid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "16def03e15bb8d71680bea60ae758ab37f4b2df9",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "elpinal/duploids",
"max_issues_repo_path": "Duploid.agda",
"max_line_length": 86,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "16def03e15bb8d71680bea60ae758ab37f4b2df9",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "elpinal/duploids",
"max_stars_repo_path": "Duploid.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-13T22:35:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-09T01:39:36.000Z",
"num_tokens": 2710,
"size": 5459
}
|
{- Kleisli category for a monad. -}
module CategoryTheory.Instances.Kleisli where
open import CategoryTheory.Categories
open import CategoryTheory.Functor
open import CategoryTheory.NatTrans
open import CategoryTheory.Monad
open Category
-- Kleisli category from a category ℂ and a monad on ℂ
Kleisli : ∀{n} -> (ℂ : Category n) -> Monad ℂ -> Category n
Kleisli ℂ M = record
{ obj = ℂ.obj
; _~>_ = λ A B → A ℂ.~> T B
; id = λ {A} → η.at A
; _∘_ = λ {A}{B}{C} g f → (μ.at C ℂ.∘ fmap g) ℂ.∘ f
; _≈_ = ℂ._≈_
; id-left = λ {A} {B} {f} → ℂ.≈-cong-left (η-unit2 {B}) ℂ.≈> ℂ.id-left
; id-right = id-right-K
; ∘-assoc = ∘-assoc-K
; ≈-equiv = ℂ.≈-equiv
; ≈-cong = λ p1 p2 → ℂ.≈-cong-right p1 ℂ.≈> ℂ.≈-cong-left (ℂ.≈-cong-right (fmap-cong p2))
}
where
private module ℂ = Category ℂ
open Monad M renaming (T to F)
open Functor F renaming (omap to T)
id-right-K : {A B : ℂ.obj} {f : A ℂ.~> T B} → (μ.at B ℂ.∘ fmap f) ℂ.∘ η.at A ℂ.≈ f
id-right-K {A}{B}{f}=
ℂ.begin
(μ.at B ℂ.∘ fmap f) ℂ.∘ η.at A
ℂ.≈⟨ ℂ.∘-assoc ⟩
μ.at B ℂ.∘ (fmap f ℂ.∘ η.at A)
ℂ.≈⟨ ℂ.≈-cong-right η.nat-cond ℂ.≈> ℂ.∘-assoc ℂ.[sym] ⟩
(μ.at B ℂ.∘ η.at (T B)) ℂ.∘ f
ℂ.≈⟨ ℂ.≈-cong-left (η-unit1) ℂ.≈> ℂ.id-left ⟩
f
ℂ.∎
∘-assoc-K : {A B C D : ℂ.obj} {f : C ℂ.~> T D} {g : B ℂ.~> T C} {h : A ℂ.~> T B} →
(μ.at D ℂ.∘ fmap ((μ.at D ℂ.∘ fmap f) ℂ.∘ g)) ℂ.∘ h ℂ.≈
(μ.at D ℂ.∘ fmap f) ℂ.∘ ((μ.at C ℂ.∘ fmap g) ℂ.∘ h)
∘-assoc-K {A}{B}{C}{D}{f}{g}{h} =
ℂ.begin
(μ.at D ℂ.∘ fmap ((μ.at D ℂ.∘ fmap f) ℂ.∘ g)) ℂ.∘ h
ℂ.≈⟨ ℂ.≈-cong-left (ℂ.≈-cong-right fmap-∘) ⟩
(μ.at D ℂ.∘ (fmap (μ.at D ℂ.∘ fmap f) ℂ.∘ fmap g)) ℂ.∘ h
ℂ.≈⟨ ℂ.≈-cong-left (ℂ.≈-cong-right (ℂ.≈-cong-left fmap-∘)) ⟩
(μ.at D ℂ.∘ ((fmap (μ.at D) ℂ.∘ fmap (fmap f)) ℂ.∘ fmap g)) ℂ.∘ h
ℂ.≈⟨ ℂ.≈-cong-left (ℂ.∘-assoc ℂ.[sym]) ℂ.≈> ℂ.≈-cong-left (ℂ.≈-cong-left (ℂ.∘-assoc ℂ.[sym])) ⟩
(((μ.at D ℂ.∘ fmap (μ.at D)) ℂ.∘ fmap (fmap f)) ℂ.∘ fmap g) ℂ.∘ h
ℂ.≈⟨ ℂ.≈-cong-left (ℂ.≈-cong-left (ℂ.≈-cong-left (μ-assoc ℂ.[sym]))) ⟩
(((μ.at D ℂ.∘ μ.at (T D)) ℂ.∘ fmap (fmap f)) ℂ.∘ fmap g) ℂ.∘ h
ℂ.≈⟨ ℂ.≈-cong-left (ℂ.≈-cong-left (ℂ.∘-assoc)) ⟩
((μ.at D ℂ.∘ (μ.at (T D) ℂ.∘ fmap (fmap f))) ℂ.∘ fmap g) ℂ.∘ h
ℂ.≈⟨ ℂ.≈-cong-left (ℂ.≈-cong-left (ℂ.≈-cong-right (μ.nat-cond ℂ.[sym]))) ⟩
((μ.at D ℂ.∘ (fmap f ℂ.∘ μ.at C)) ℂ.∘ fmap g) ℂ.∘ h
ℂ.≈⟨ ℂ.≈-cong-left (ℂ.≈-cong-left (ℂ.∘-assoc ℂ.[sym])) ⟩
(((μ.at D ℂ.∘ fmap f) ℂ.∘ μ.at C) ℂ.∘ fmap g) ℂ.∘ h
ℂ.≈⟨ ℂ.≈-cong-left (ℂ.∘-assoc) ℂ.≈> ℂ.∘-assoc ⟩
(μ.at D ℂ.∘ fmap f) ℂ.∘ ((μ.at C ℂ.∘ fmap g) ℂ.∘ h)
ℂ.∎
|
{
"alphanum_fraction": 0.4599786553,
"avg_line_length": 43.2461538462,
"ext": "agda",
"hexsha": "7d38a7e63fe443f8f5dd0b992f1a6d5214a9eda6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DimaSamoz/temporal-type-systems",
"max_forks_repo_path": "src/CategoryTheory/Instances/Kleisli.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DimaSamoz/temporal-type-systems",
"max_issues_repo_path": "src/CategoryTheory/Instances/Kleisli.agda",
"max_line_length": 103,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DimaSamoz/temporal-type-systems",
"max_stars_repo_path": "src/CategoryTheory/Instances/Kleisli.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z",
"num_tokens": 1522,
"size": 2811
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Argument visibility used in the reflection machinery
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Reflection.Argument.Visibility where
open import Data.String as String using (String)
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
------------------------------------------------------------------------
-- Re-exporting the builtins publically
open import Agda.Builtin.Reflection public using (Visibility)
open Visibility public
------------------------------------------------------------------------
-- Decidable equality
_≟_ : DecidableEquality Visibility
visible ≟ visible = yes refl
hidden ≟ hidden = yes refl
instance′ ≟ instance′ = yes refl
visible ≟ hidden = no λ()
visible ≟ instance′ = no λ()
hidden ≟ visible = no λ()
hidden ≟ instance′ = no λ()
instance′ ≟ visible = no λ()
instance′ ≟ hidden = no λ()
|
{
"alphanum_fraction": 0.5270890725,
"avg_line_length": 31.1142857143,
"ext": "agda",
"hexsha": "e6b51d8dcbe8ac185ef015183aed059e79ff2715",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Reflection/Argument/Visibility.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Reflection/Argument/Visibility.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Reflection/Argument/Visibility.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 200,
"size": 1089
}
|
module NotNot where
data ⊥ : Set where
Not : Set → Set
Not A = ⊥
Whoa : ∀ {A : Set} → Not (Not A) → A
Whoa ()
postulate
-- Law of excluded middle.
LEM : ∀ {A : Set} → Not (Not A) → A
Alright : ∀ {A : Set} → Not (Not A) → A
Alright p = LEM p
-- Constructive LEM requires hProp, hSet, Discrete, etc.
|
{
"alphanum_fraction": 0.5811688312,
"avg_line_length": 16.2105263158,
"ext": "agda",
"hexsha": "899cde87a8395665251a72a46b1d4932aa63e42a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9576d5b76e6a868992dbe52930712ac67697bed2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "anqurvanillapy/fpl",
"max_forks_repo_path": "agda/NotNot.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9576d5b76e6a868992dbe52930712ac67697bed2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "anqurvanillapy/fpl",
"max_issues_repo_path": "agda/NotNot.agda",
"max_line_length": 56,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9576d5b76e6a868992dbe52930712ac67697bed2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "anqurvanillapy/fpl",
"max_stars_repo_path": "agda/NotNot.agda",
"max_stars_repo_stars_event_max_datetime": "2019-08-24T22:47:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-24T22:47:47.000Z",
"num_tokens": 115,
"size": 308
}
|
{-# OPTIONS --cubical --safe #-}
module Cubical.Structures.AbGroup where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma
open import Cubical.Foundations.SIP renaming (SNS-PathP to SNS)
open import Cubical.Structures.NAryOp
open import Cubical.Structures.Group hiding (⟨_⟩)
private
variable
ℓ : Level
abelian-group-axioms : (X : Type ℓ) → raw-group-structure X → Type ℓ
abelian-group-axioms X _·_ = group-axioms X _·_ ×
((x y : X) → x · y ≡ y · x)
abelian-group-structure : Type ℓ → Type ℓ
abelian-group-structure = add-to-structure raw-group-structure abelian-group-axioms
AbGroup : Type (ℓ-suc ℓ)
AbGroup {ℓ} = TypeWithStr ℓ abelian-group-structure
abelian-group-iso : StrIso abelian-group-structure ℓ
abelian-group-iso = add-to-iso (nAryFunIso 2) abelian-group-axioms
abelian-group-axioms-isProp : (X : Type ℓ)
→ (s : raw-group-structure X)
→ isProp (abelian-group-axioms X s)
abelian-group-axioms-isProp X _·_ = isPropΣ (group-axioms-isProp X _·_)
λ { ((isSetX , _) , _) → isPropΠ2 λ _ _ → isSetX _ _}
abelian-group-is-SNS : SNS {ℓ} abelian-group-structure abelian-group-iso
abelian-group-is-SNS = add-axioms-SNS _ abelian-group-axioms-isProp raw-group-is-SNS
AbGroupPath : (M N : AbGroup {ℓ}) → (M ≃[ abelian-group-iso ] N) ≃ (M ≡ N)
AbGroupPath = SIP abelian-group-is-SNS
-- Abelian group is group
AbGroup→Group : AbGroup {ℓ} → Group
AbGroup→Group (G , _·_ , isGroup , ·comm) = G , _·_ , isGroup
-- Abelian group extractors
⟨_⟩ : AbGroup {ℓ} → Type ℓ
⟨ G , _ ⟩ = G
module _ (G : AbGroup {ℓ}) where
abgroup-operation = group-operation (AbGroup→Group G)
abgroup-is-set = group-is-set (AbGroup→Group G)
abgroup-assoc = group-assoc (AbGroup→Group G)
abgroup-id = group-id (AbGroup→Group G)
abgroup-rid = group-rid (AbGroup→Group G)
abgroup-lid = group-lid (AbGroup→Group G)
abgroup-inv = group-inv (AbGroup→Group G)
abgroup-rinv = group-rinv (AbGroup→Group G)
abgroup-linv = group-linv (AbGroup→Group G)
module abgroup-operation-syntax where
abgroup-operation-syntax : (G : AbGroup {ℓ}) → ⟨ G ⟩ → ⟨ G ⟩ → ⟨ G ⟩
abgroup-operation-syntax G = abgroup-operation G
infixr 20 abgroup-operation-syntax
syntax abgroup-operation-syntax G x y = x ·⟨ G ⟩ y
open abgroup-operation-syntax
abgroup-comm : (G : AbGroup {ℓ}) (x y : ⟨ G ⟩) → x ·⟨ G ⟩ y ≡ y ·⟨ G ⟩ x
abgroup-comm (_ , _ , _ , P) = P
-- AbGroup ·syntax
module abgroup-·syntax (G : AbGroup {ℓ}) where
open group-·syntax (AbGroup→Group G) public
|
{
"alphanum_fraction": 0.6664176317,
"avg_line_length": 30.4204545455,
"ext": "agda",
"hexsha": "4618dd97e3d0f79a29172ab731d07d5b13fa0c91",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmester0/cubical",
"max_forks_repo_path": "Cubical/Structures/AbGroup.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmester0/cubical",
"max_issues_repo_path": "Cubical/Structures/AbGroup.agda",
"max_line_length": 89,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmester0/cubical",
"max_stars_repo_path": "Cubical/Structures/AbGroup.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z",
"num_tokens": 889,
"size": 2677
}
|
-- Andreas, 2015-11-18, issue 1692 reported by m0davis
-- {-# OPTIONS -v tc.with.top:20 #-}
open import Common.Level
open import Common.Equality
open import Common.Product
postulate
Key : Set
Value : Key → Set
anyOf : ∀{A : Set} → A → A → A
data Tree : Set where
node : (k : Key) (v : Value k) → Tree
data _∼_∈_ ( k : Key ) ( v : Value k ) : Tree → Set where
here : k ∼ v ∈ node k v
postulate
k₁≡k₂ : ∀ ( k₁ k₂ : Key ) → k₁ ≡ k₂
∈→v₁≡v₂ : ∀ { k } { v₁ v₂ : Value k } → k ∼ v₁ ∈ node k v₂ → v₁ ≡ v₂
lem : ( t₁ t₂ : Tree )
( t₁→t₂ : ∀ {k} {v : Value k} → k ∼ v ∈ t₁ → k ∼ v ∈ t₂ )
( t₂→t₁ : ∀ {k} {v : Value k} → k ∼ v ∈ t₂ → k ∼ v ∈ t₁ ) →
∃ λ t → ∀ {k} {v : Value k} → k ∼ v ∈ t → k ∼ v ∈ t
lem (node k₁ v₁) (node k₂ v₂) t₁→t₂ t₂→t₁ rewrite k₁≡k₂ k₁ k₂
| ∈→v₁≡v₂ (t₁→t₂ here) -- equivalent to v₂ ≡ v₁
= _ , anyOf t₁→t₂ t₂→t₁
-- PROBLEM WAS:
-- When the second rewrite expression is commented-out, then we get the following types:
{-
t₂→t₁ : {k : Key} {v : Value k} →
k ∼ v ∈ node k₂ v₂ → k ∼ v ∈ node k₂ v₁
t₁→t₂ : {k : Key} {v : Value k} →
k ∼ v ∈ node k₂ v₁ → k ∼ v ∈ node k₂ v₂
-}
-- With both rewrite expressions, we get:
{-
t₂→t₁ : {k : Key} {v : Value k} →
k ∼ v ∈ node k₂ v₂ → k ∼ v ∈ node k₂ v₂
t₁→t₂ : {k : Key} {v : Value k} →
k ∼ v ∈ node k₂ v₁ → k ∼ v ∈ node k₂ v₂
-}
-- The unexpected behavior here is that v₁ has been rewritten to v₂ in t₂→t₁ but not in t₁→t₂.
-- Should be symmetric now, test case passes.
-- Dual case:
lem′ : ( t₁ t₂ : Tree )
( t₁→t₂ : ∀ {k} {v : Value k} → k ∼ v ∈ t₁ → k ∼ v ∈ t₂ )
( t₂→t₁ : ∀ {k} {v : Value k} → k ∼ v ∈ t₂ → k ∼ v ∈ t₁ ) →
∃ λ t → ∀ {k} {v : Value k} → k ∼ v ∈ t → k ∼ v ∈ t
lem′ (node k₁ v₁) (node k₂ v₂) t₁→t₂ t₂→t₁ rewrite k₁≡k₂ k₁ k₂
| ∈→v₁≡v₂ (t₂→t₁ here) -- equivalent to v₁ ≡ v₂
= _ , anyOf t₁→t₂ t₂→t₁
|
{
"alphanum_fraction": 0.4915687276,
"avg_line_length": 32.0819672131,
"ext": "agda",
"hexsha": "7829c769c63f468394011aa0affc71291ea86e2d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1692.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1692.agda",
"max_line_length": 94,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1692.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 869,
"size": 1957
}
|
------------------------------------------------------------------------
-- The rec construction can be encoded using λ-terms
------------------------------------------------------------------------
module Recursion-without-rec where
open import Equality.Propositional.Cubical
open import Prelude hiding (id; swap)
import Finite-subset.Listed equality-with-paths as S
-- To simplify the development, let's work with actual natural numbers
-- as variables and constants (see
-- Atom.one-can-restrict-attention-to-χ-ℕ-atoms).
open import Atom
open import Alpha-equivalence χ-ℕ-atoms
open import Chi χ-ℕ-atoms
open import Compatibility χ-ℕ-atoms
open import Constants χ-ℕ-atoms
open import Free-variables χ-ℕ-atoms
open import Reasoning χ-ℕ-atoms
open import Substitution χ-ℕ-atoms
open import Values χ-ℕ-atoms
open χ-atoms χ-ℕ-atoms
open import Combinators using (id; id-closed)
private
variable
A : Type
R : A → A → Type
x y z z₁ z₂ : Var
e e′ v : Exp
------------------------------------------------------------------------
-- "Plain" lambda terms
-- A predicate that holds for plain lambda terms, i.e. terms that are
-- built up using only var, lambda and apply.
Plain : Exp → Type
Plain (var _) = ⊤
Plain (lambda _ e) = Plain e
Plain (apply e₁ e₂) = Plain e₁ × Plain e₂
Plain (case _ _) = ⊥
Plain (rec _ _) = ⊥
Plain (const _ _) = ⊥
-- Plain is preserved by substitutions.
plain-subst : ∀ e → Plain e → Plain e′ → Plain (e [ x ← e′ ])
plain-subst (apply e₁ e₂) (e₁-ok , e₂-ok) e′-ok =
plain-subst e₁ e₁-ok e′-ok , plain-subst e₂ e₂-ok e′-ok
plain-subst {x = x} (lambda y e) e-ok e′-ok with x V.≟ y
… | yes _ = e-ok
… | no _ = plain-subst e e-ok e′-ok
plain-subst {x = x} (var y) _ e′-ok with x V.≟ y
… | yes _ = e′-ok
… | no _ = _
------------------------------------------------------------------------
-- A variant of a fixpoint combinator
-- A variant of the call-by-value fixpoint combinator Θᵥ that (at the
-- time of writing) is presented on the Wikipedia page about
-- fixed-point combinators
-- (https://en.wikipedia.org/wiki/Fixed-point_combinator). There Θᵥ is
-- defined to be the application of λxy.y(λz.xxyz) to itself. I have
-- dropped the final z, and made the choice of variable name for z
-- customisable.
mutual
F : Var → Exp
F z = apply (f z) (f z)
f : Var → Exp
f z =
lambda v-x (lambda v-y (
apply (var v-y) (
lambda z (
apply (apply (var v-x) (var v-x)) (var v-y)))))
-- The expressions f z, F z and id are closed.
f-closed : Closed (f z)
f-closed =
Closed′-closed-under-lambda $
Closed′-closed-under-lambda $
Closed′-closed-under-apply
(from-⊎ (closed′? (var v-y) (v-y ∷ v-x ∷ [])))
(Closed′-closed-under-lambda $
Closed′-closed-under-apply
(Closed′-closed-under-apply
(Closed′-closed-under-var (inj₂ (inj₂ (inj₁ refl))))
(Closed′-closed-under-var (inj₂ (inj₂ (inj₁ refl)))))
(Closed′-closed-under-var (inj₂ (inj₁ refl))))
F-closed : Closed (F z)
F-closed = Closed′-closed-under-apply f-closed f-closed
-- F z₁ and f z₁ are α-equivalent to F z₂ and f z₂, respectively,
-- assuming that z₁ and z₂ are distinct from v-x and v-y.
f≈αf :
z₁ ≢ v-x → z₁ ≢ v-y → z₂ ≢ v-x → z₂ ≢ v-y →
Alpha R (f z₁) (f z₂)
f≈αf {z₁ = z₁} {z₂ = z₂} {R = R} z₁≢x z₁≢y z₂≢x z₂≢y =
lambda (
lambda (
apply (var y∼y₁) (
lambda (
apply (
apply (var x∼x) (var x∼x)) (
var y∼y₂)))))
where
x∼x : (R [ v-x ∼ v-x ] [ v-y ∼ v-y ] [ z₁ ∼ z₂ ]) v-x v-x
x∼x = inj₂ (z₁≢x , z₂≢x , inj₂ ((λ ()) , (λ ()) , inj₁ (refl , refl)))
y∼y₁ : (R [ v-x ∼ v-x ] [ v-y ∼ v-y ]) v-y v-y
y∼y₁ = inj₁ (refl , refl)
y∼y₂ : (R [ v-x ∼ v-x ] [ v-y ∼ v-y ] [ z₁ ∼ z₂ ]) v-y v-y
y∼y₂ = inj₂ (z₁≢y , z₂≢y , y∼y₁)
F≈αF :
z₁ ≢ v-x → z₁ ≢ v-y → z₂ ≢ v-x → z₂ ≢ v-y →
Alpha R (F z₁) (F z₂)
F≈αF z₁≢x z₁≢y z₂≢x z₂≢y =
apply (f≈αf z₁≢x z₁≢y z₂≢x z₂≢y) (f≈αf z₁≢x z₁≢y z₂≢x z₂≢y)
------------------------------------------------------------------------
-- A plain alternative to rec
-- An expression former that has the same semantics as rec, but that
-- takes plain expressions to plain expressions.
--
-- Note that substitution does not necessarily behave in the same way
-- for plain-rec as for rec (see below).
plain-rec : Var → Exp → Exp
plain-rec x e =
let z , _ = fresh′ (S.from-List (v-x ∷ v-y ∷ [])) e in
apply (lambda z (apply (F z) (lambda x (e [ x ← apply (var x) id ]))))
id
-- If e is a plain lambda term, then plain-rec x e is a plain
-- lambda term.
plain-rec-plain : ∀ e → Plain e → Plain (plain-rec x e)
plain-rec-plain e ok = (_ , plain-subst e ok _) , _
-- The semantic rule given for rec is admissible for plain-rec.
plain-rec-⇓ :
∀ e → e [ x ← plain-rec x e ] ⇓ v → plain-rec x e ⇓ v
plain-rec-⇓ {x = x} {v = v} e ⇓v =
plain-rec x e ⟶⟨⟩
apply (lambda z′
(apply (F z′) (lambda x (e [ x ← apply (var x) id ]))))
id ⟶⟨ apply lambda lambda ⟩
apply (F z′) (lambda x (e [ x ← apply (var x) id ])) [ z′ ← id ] ≡⟨ subst-∉ z′ _ z∉apply ⟩⟶
apply (F z′) (lambda x (e [ x ← apply (var x) id ])) ⟶⟨ []⇓ (apply← ∙) F⇓ ⟩
apply (lambda v-y
(apply (var v-y) (lambda z′ (apply (F z′) (var v-y)))))
(lambda x (e [ x ← apply (var x) id ])) ⟶⟨ apply lambda lambda ⟩
apply (var v-y) (lambda z′ (apply (F z′) (var v-y)))
[ v-y ← lambda x (e [ x ← apply (var x) id ]) ] ≡⟨ cong (apply _) (lambda-step-≢ y≢z) ⟩⟶
apply (lambda x (e [ x ← apply (var x) id ]))
(lambda z′ (apply (F z′) (lambda x (e [ x ← apply (var x) id ])))) ⟶⟨ apply lambda lambda ⟩
e [ x ← apply (var x) id ]
[ x ← lambda z′
(apply (F z′) (lambda x (e [ x ← apply (var x) id ]))) ] ≡⟨ fusion e ⟩⟶
e [ x ← apply (var x) id
[ x ← lambda z′
(apply (F z′)
(lambda x (e [ x ← apply (var x) id ]))) ] ] ≡⟨ cong₂ (λ e₁ e₂ → e [ x ← apply e₁ e₂ ])
(var-step-≡ (refl {x = x}))
(subst-closed x _ id-closed) ⟩⟶
e [ x ← plain-rec x e ] ⇓⟨ ⇓v ⟩■
v
where
z,f = fresh′ (S.from-List (v-x ∷ v-y ∷ [])) e
z′ : Var
z′ = proj₁ z,f
z∉e : ¬ z′ ∈FV e
z∉e = proj₁ (proj₂ z,f)
x≢z : v-x ≢ z′
x≢z x≡z = proj₂ (proj₂ z,f) (S.≡→∈∷ (sym x≡z))
y≢z : v-y ≢ z′
y≢z y≡z = proj₂ (proj₂ z,f) (S.∈→∈∷ (S.≡→∈∷ (sym y≡z)))
F⇓ :
F z′ ⇓
lambda v-y (apply (var v-y) (lambda z′ (apply (F z′) (var v-y))))
F⇓ =
apply lambda lambda
(lambda v-y
(apply (var v-y)
(lambda z′ (apply (apply (var v-x) (var v-x)) (var v-y))))
[ v-x ← f z′ ] ⟶⟨⟩
lambda v-y
(apply (var v-y)
(lambda z′ (apply (apply (var v-x) (var v-x)) (var v-y))
[ v-x ← f z′ ])) ≡⟨ cong (lambda _) $ cong (apply _) $
lambda-step-≢ x≢z ⟩⟶
lambda v-y (apply (var v-y) (lambda z′ (apply (F z′) (var v-y)))) ■⟨ lambda _ _ ⟩)
z∉apply :
¬ z′ ∈FV apply (F z′) (lambda x (e [ x ← apply (var x) id ]))
z∉apply (apply-left z∈Fz) =
F-closed z′ (λ ()) z∈Fz
z∉apply (apply-right (lambda z≢x z∈)) with subst-∈FV x e z∈
… | inj₁ (z∈e , _) = z∉e z∈e
… | inj₂ (apply-left (var z≡x)) = z≢x z≡x
… | inj₂ (apply-right z∈id) = id-closed z′ (λ ()) z∈id
-- Substitution of closed expressions is not in general defined in the
-- same way for plain-rec as for rec.
¬-plain-rec-subst :
¬ (∀ y e x e′ →
Closed e′ →
plain-rec y e [ x ← e′ ] ≡
plain-rec y (if x V.≟ y then e else e [ x ← e′ ]))
¬-plain-rec-subst plain-rec-subst =
not-equal (plain-rec-subst y′ e₁ x′ e₂ id-closed)
where
y′ = v-y
x′ = v-z
e₂ = id
e₁ = var x′
not-equal :
plain-rec y′ e₁ [ x′ ← e₂ ] ≢
plain-rec y′ (if x′ V.≟ y′ then e₁ else e₁ [ x′ ← e₂ ])
not-equal ()
-- However, it is defined in the same way /up to α-equivalence/.
plain-rec-subst :
∀ x →
Closed e′ →
plain-rec y e [ x ← e′ ] ≈α
plain-rec y (if x V.≟ y then e else e [ x ← e′ ])
plain-rec-subst {e′ = e′} {y = y} {e = e} x cl-e′ =
apply (lambda z¹
(apply (F z¹) (lambda y (e [ y ← apply (var y) id ]))))
id [ x ← e′ ] ≡⟨ cong (apply _) $
subst-closed x _ id-closed ⟩α
apply (lambda z¹
(apply (F z¹) (lambda y (e [ y ← apply (var y) id ])))
[ x ← e′ ])
id ≡⟨ cong (λ e → apply (lambda z¹ e) id) $
lemma₁ (x V.≟ z¹) (x V.≟ y) ⟩α
apply (lambda z¹
(apply (F z¹)
(lambda y ((if x V.≟ y then e else e [ x ← e′ ])
[ y ← apply (var y) id ]))))
id ≈⟨ apply (lambda (apply (F≈αF z¹≢x z¹≢y z²≢x z²≢y)
(refl-Alpha _ lemma₂)))
refl-α ⟩α∎
apply (lambda z²
(apply (F z²)
(lambda y ((if x V.≟ y then e else e [ x ← e′ ])
[ y ← apply (var y) id ]))))
id ∎
where
z¹,f₁ = fresh′ (S.from-List (v-x ∷ v-y ∷ [])) e
z¹ : Var
z¹ = proj₁ z¹,f₁
z¹∉e : ¬ z¹ ∈FV e
z¹∉e = proj₁ (proj₂ z¹,f₁)
z¹≢x : z¹ ≢ v-x
z¹≢x z¹≡x = proj₂ (proj₂ z¹,f₁) (S.≡→∈∷ z¹≡x)
z¹≢y : z¹ ≢ v-y
z¹≢y z¹≡y = proj₂ (proj₂ z¹,f₁) (S.∈→∈∷ (S.≡→∈∷ z¹≡y))
z²,f₂ =
fresh′ (S.from-List (v-x ∷ v-y ∷ []))
(if x V.≟ y then e else e [ x ← e′ ])
z² : Var
z² = proj₁ z²,f₂
z²∉ : ¬ z² ∈FV if x V.≟ y then e else e [ x ← e′ ]
z²∉ = proj₁ (proj₂ z²,f₂)
z²≢x : z² ≢ v-x
z²≢x z²≡x = proj₂ (proj₂ z²,f₂) (S.≡→∈∷ z²≡x)
z²≢y : z² ≢ v-y
z²≢y z²≡y = proj₂ (proj₂ z²,f₂) (S.∈→∈∷ (S.≡→∈∷ z²≡y))
x∉y-id : x ≢ y → ¬ x ∈FV apply (var y) id
x∉y-id x≢y (apply-left (var x≡y)) = x≢y x≡y
x∉y-id _ (apply-right x∈id) = id-closed x (λ ()) x∈id
lemma₁ :
(x≟z¹ : Dec (x ≡ z¹)) (x≟y : Dec (x ≡ y)) →
if x≟z¹
then apply (F z¹) (lambda y (e [ y ← apply (var y) id ]))
else apply (F z¹) (lambda y (e [ y ← apply (var y) id ]))
[ x ← e′ ] ≡
apply (F z¹)
(lambda y ((if x≟y then e else e [ x ← e′ ])
[ y ← apply (var y) id ]))
lemma₁ (yes _) (yes _) = refl
lemma₁ (yes x≡z¹) (no _) =
apply (F z¹) (lambda y (e [ y ← apply (var y) id ])) ≡⟨ cong (apply _) $ cong (lambda _) $ cong (_[ _ ← _ ]) $ sym $
subst-∉ x e (z¹∉e ∘ subst (_∈FV _) x≡z¹) ⟩∎
apply (F z¹) (lambda y (e [ x ← e′ ] [ y ← apply (var y) id ])) ∎
lemma₁ (no _) (yes x≡y) =
apply (F z¹ [ x ← e′ ])
(lambda y (e [ y ← apply (var y) id ]) [ x ← e′ ]) ≡⟨ cong (λ e″ → apply e″ (lambda y (e [ y ← apply (var y) id ])
[ x ← e′ ])) $
subst-closed x e′ F-closed ⟩
apply (F z¹) (lambda y (e [ y ← apply (var y) id ]) [ x ← e′ ]) ≡⟨ cong (apply (F z¹)) $
lambda-step-≡ x≡y ⟩∎
apply (F z¹) (lambda y (e [ y ← apply (var y) id ])) ∎
lemma₁ (no _) (no x≢y) =
apply (F z¹ [ x ← e′ ])
(lambda y (e [ y ← apply (var y) id ]) [ x ← e′ ]) ≡⟨ cong (λ e″ → apply e″ (lambda y (e [ y ← apply (var y) id ])
[ x ← e′ ])) $
subst-closed x e′ F-closed ⟩
apply (F z¹) (lambda y (e [ y ← apply (var y) id ]) [ x ← e′ ]) ≡⟨ cong (apply (F z¹)) $
lambda-step-≢ x≢y ⟩
apply (F z¹) (lambda y (e [ y ← apply (var y) id ] [ x ← e′ ])) ≡⟨ cong (apply _) $ cong (lambda _) $ sym $
swap x≢y (x∉y-id x≢y) (cl-e′ _ (λ ())) e ⟩∎
apply (F z¹) (lambda y (e [ x ← e′ ] [ y ← apply (var y) id ])) ∎
lemma₂ :
∀ z →
z ∈FV lambda y ((if x V.≟ y then e else e [ x ← e′ ])
[ y ← apply (var y) id ]) →
(_≡_ [ z¹ ∼ z² ]) z z
lemma₂ z (lambda z≢y z∈) =
case subst-∈FV y _ z∈ of λ where
(inj₁ (z∈ , _)) →
inj₂ ( z¹≢ (x V.≟ y) z∈
, z²∉ ∘ flip (subst (_∈FV _)) z∈ ∘ sym
, refl
)
(inj₂ (apply-left (var z≡y))) →
⊥-elim $ z≢y z≡y
(inj₂ (apply-right ∈id)) →
⊥-elim $ id-closed _ (λ ()) ∈id
where
z¹≢ :
∀ x≟y →
z ∈FV if x≟y then e else e [ x ← e′ ] →
z¹ ≢ z
z¹≢ (yes _) z∈ = z¹∉e ∘ flip (subst (_∈FV _)) z∈ ∘ sym
z¹≢ (no _) z∈ = case subst-∈FV x e z∈ of λ where
(inj₁ (z∈ , _)) →
z¹∉e ∘ flip (subst (_∈FV _)) z∈ ∘ sym
(inj₂ z∈e′) →
⊥-elim $ cl-e′ _ (λ ()) z∈e′
|
{
"alphanum_fraction": 0.431491953,
"avg_line_length": 35.3692307692,
"ext": "agda",
"hexsha": "dd7baa0a367ca4c363e0842fd44f7a4ea1c32ec5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/chi",
"max_forks_repo_path": "src/Recursion-without-rec.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_issues_repo_issues_event_max_datetime": "2020-06-08T11:08:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-05-21T23:29:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/chi",
"max_issues_repo_path": "src/Recursion-without-rec.agda",
"max_line_length": 132,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/chi",
"max_stars_repo_path": "src/Recursion-without-rec.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-20T16:27:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:07.000Z",
"num_tokens": 5029,
"size": 13794
}
|
-- TODO
-- Basic Tarski-style semantics, for soundness only.
module BasicT.Semantics.BasicTarski where
open import BasicT.Syntax.Common public
-- Tarski models.
record Model : Set₁ where
infix 3 ⊩ᵅ_
field
-- Forcing for atomic propositions.
⊩ᵅ_ : Atom → Set
open Model {{…}} public
-- Forcing in a particular model.
module _ {{_ : Model}} where
infix 3 ⊩_
⊩_ : Ty → Set
⊩ α P = ⊩ᵅ P
⊩ A ▻ B = ⊩ A → ⊩ B
⊩ A ∧ B = ⊩ A × ⊩ B
⊩ ⊤ = 𝟙
⊩ BOOL = 𝔹
⊩ NAT = ℕ
infix 3 ⊩⋆_
⊩⋆_ : Cx Ty → Set
⊩⋆ ∅ = 𝟙
⊩⋆ Ξ , A = ⊩⋆ Ξ × ⊩ A
-- Entailment, or forcing in all models.
infix 3 ⊨_
⊨_ : Ty → Set₁
⊨ A = ∀ {{_ : Model}} → ⊩ A
-- Forcing in a particular model, for sequents.
module _ {{_ : Model}} where
infix 3 ⊩_⇒_
⊩_⇒_ : Cx Ty → Ty → Set
⊩ Γ ⇒ A = ⊩⋆ Γ → ⊩ A
infix 3 ⊩_⇒⋆_
⊩_⇒⋆_ : Cx Ty → Cx Ty → Set
⊩ Γ ⇒⋆ Ξ = ⊩⋆ Γ → ⊩⋆ Ξ
-- Entailment, or forcing in all models, for sequents.
infix 3 _⊨_
_⊨_ : Cx Ty → Ty → Set₁
Γ ⊨ A = ∀ {{_ : Model}} → ⊩ Γ ⇒ A
infix 3 _⊨⋆_
_⊨⋆_ : Cx Ty → Cx Ty → Set₁
Γ ⊨⋆ Ξ = ∀ {{_ : Model}} → ⊩ Γ ⇒⋆ Ξ
-- Additional useful equipment, for sequents.
module _ {{_ : Model}} where
lookup : ∀ {A Γ} → A ∈ Γ → ⊩ Γ ⇒ A
lookup top (γ , a) = a
lookup (pop i) (γ , b) = lookup i γ
⟦λ⟧ : ∀ {A B Γ} → ⊩ Γ , A ⇒ B → ⊩ Γ ⇒ A ▻ B
⟦λ⟧ f γ = λ a → f (γ , a)
_⟦$⟧_ : ∀ {A B Γ} → ⊩ Γ ⇒ A ▻ B → ⊩ Γ ⇒ A → ⊩ Γ ⇒ B
(f ⟦$⟧ g) γ = f γ $ g γ
⟦S⟧ : ∀ {A B C Γ} → ⊩ Γ ⇒ A ▻ B ▻ C → ⊩ Γ ⇒ A ▻ B → ⊩ Γ ⇒ A → ⊩ Γ ⇒ C
⟦S⟧ f g a γ = S (f γ) (g γ) (a γ)
_⟦,⟧_ : ∀ {A B Γ} → ⊩ Γ ⇒ A → ⊩ Γ ⇒ B → ⊩ Γ ⇒ A ∧ B
(a ⟦,⟧ b) γ = a γ , b γ
⟦π₁⟧ : ∀ {A B Γ} → ⊩ Γ ⇒ A ∧ B → ⊩ Γ ⇒ A
⟦π₁⟧ s γ = π₁ (s γ)
⟦π₂⟧ : ∀ {A B Γ} → ⊩ Γ ⇒ A ∧ B → ⊩ Γ ⇒ B
⟦π₂⟧ s γ = π₂ (s γ)
|
{
"alphanum_fraction": 0.4488863507,
"avg_line_length": 19.0326086957,
"ext": "agda",
"hexsha": "8f23302adcb9525b086a167761e6037299d0cd8b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/hilbert-gentzen",
"max_forks_repo_path": "BasicT/Semantics/BasicTarski.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/hilbert-gentzen",
"max_issues_repo_path": "BasicT/Semantics/BasicTarski.agda",
"max_line_length": 71,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/hilbert-gentzen",
"max_stars_repo_path": "BasicT/Semantics/BasicTarski.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z",
"num_tokens": 934,
"size": 1751
}
|
open import Agda.Primitive
record Setoid (a : Level) : Set₁ where
constructor mk
field
carrier : Set
record HeytingAlgebra {a} (setoid : Setoid a) (A : Set) : Set a where
constructor laws
open Setoid setoid
field ∧-cong : carrier
|
{
"alphanum_fraction": 0.6963562753,
"avg_line_length": 19,
"ext": "agda",
"hexsha": "fe594bee10c1faca2f513b31c5d2ea065de4e5e3",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue3123.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue3123.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue3123.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 79,
"size": 247
}
|
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module Bottom where
open import Common.FOL.FOL-Eq
postulate bot : ⊥
postulate
zero : D
succ : D → D
postulate false : zero ≡ succ zero
{-# ATP prove false bot #-}
-- $ apia -isrc -inotes/papers/FoSSaCS-2012/ notes/papers/FoSSaCS-2012/Bottom.agda
-- Proving the conjecture in /tmp/Bottom/16-false.tptp ...
-- Vampire 0.6 (revision 903) proved the conjecture in /tmp/Bottom/16-false.tptp
|
{
"alphanum_fraction": 0.6344463972,
"avg_line_length": 25.8636363636,
"ext": "agda",
"hexsha": "ea6fb9c93e31af502a592d6e504ffad0edcea485",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/papers/fossacs-2012/Bottom.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/papers/fossacs-2012/Bottom.agda",
"max_line_length": 83,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/papers/fossacs-2012/Bottom.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 169,
"size": 569
}
|
------------------------------------------------------------------------
-- Unit tests for Tactic.By.Parametrised
------------------------------------------------------------------------
-- Nothing is exported from this module.
{-# OPTIONS --without-K --safe #-}
open import Equality
module Tactic.By.Parametrised.Tests
{c⁺} (eq : ∀ {a p} → Equality-with-J a p c⁺) where
open Derived-definitions-and-properties eq
open import Prelude
open import Maybe eq
open import Monad eq
open import TC-monad eq hiding (Type)
open import Tactic.By.Parametrised eq
------------------------------------------------------------------------
-- Some unit tests
private
module Tests
(assumption : 48 ≡ 42)
(lemma : ∀ n → n + 8 ≡ n + 2)
(f : ℕ → ℕ → ℕ → ℕ)
where
g : ℕ → ℕ → ℕ → ℕ
g zero _ _ = 12
g (suc _) _ _ = 12
fst : ∀ {a b} {A : Type a} {B : A → Type b} →
Σ A B → A
fst = proj₁
{-# NOINLINE fst #-}
record R (F : Type → Type) : Type₁ where
field
p : {A : Type} {x : F A} → x ≡ x
open R ⦃ … ⦄ public
test₁ : ⟨ 40 + 2 ⟩ ≡ 42
test₁ = ⟨by⟩ refl
test₂ : 48 ≡ 42 → ⟨ 42 ⟩ ≡ 48
test₂ eq = ⟨by⟩ eq
test₃ : (f : ℕ → ℕ) → f ⟨ 42 ⟩ ≡ f 48
test₃ f = ⟨by⟩ assumption
test₄ : (f : ℕ → ℕ) → f ⟨ 48 ⟩ ≡ f 42
test₄ f = ⟨by⟩ assumption
test₅ : (f : ℕ → ℕ → ℕ) → f ⟨ 42 ⟩ ⟨ 42 ⟩ ≡ f 48 48
test₅ f = ⟨by⟩ assumption
test₆ : (f : ℕ → ℕ → ℕ → ℕ) → f ⟨ 48 ⟩ 45 ⟨ 48 ⟩ ≡ f 42 45 42
test₆ f = ⟨by⟩ assumption
test₇ : f ⟨ 48 ⟩ (f ⟨ 48 ⟩ 45 ⟨ 48 ⟩) ⟨ 48 ⟩ ≡ f 42 (f 42 45 42) 42
test₇ = ⟨by⟩ assumption
test₈ : ∀ n → g n (g n 45 ⟨ 48 ⟩) ⟨ 48 ⟩ ≡ g n (g n 45 42) 42
test₈ n = ⟨by⟩ assumption
test₉ : (f : ℕ → ℕ) → f ⟨ 42 ⟩ ≡ f 48
test₉ f = ⟨by⟩ (lemma 40)
test₁₀ : (f : ℕ → ℕ) → f ⟨ 42 ⟩ ≡ f 48
test₁₀ f = ⟨by⟩ (λ (_ : ⊤) → assumption)
test₁₁ : (f : ℕ × ℕ → ℕ × ℕ) → (∀ x → ⟨ _≡_ ⟩ (f x) x) →
fst ⟨ f (12 , 73) ⟩ ≡ fst {B = λ _ → ℕ} (12 , 73)
test₁₁ _ hyp = ⟨by⟩ hyp
test₁₂ : (h : ℕ → Maybe ℕ) →
((xs : ℕ) → h xs ≡ just xs) →
(xs : ℕ) → suc ⟨$⟩ h xs ≡ suc ⟨$⟩ return xs
test₁₂ h hyp xs =
suc ⟨$⟩ ⟨ h xs ⟩ ≡⟨ ⟨by⟩ (hyp xs) ⟩∎
suc ⟨$⟩ return xs ∎
test₁₃ : (h : List ⊤ → Maybe (List ⊤)) →
((xs : List ⊤) → h xs ≡ just xs) →
(x : ⊤) (xs : List ⊤) → _
test₁₃ h hyp x xs =
_∷_ ⟨$⟩ return x ⊛ ⟨ h xs ⟩ ≡⟨ ⟨by⟩ (hyp xs) ⟩∎
_∷_ ⟨$⟩ return x ⊛ return xs ∎
test₁₄ : (h : List ℕ → Maybe (List ℕ)) →
((xs : List ℕ) → h xs ≡ just xs) →
(x : ℕ) (xs : List ℕ) → _
test₁₄ h hyp x xs =
_∷_ ⟨$⟩ ⟨ h xs ⟩ ≡⟨ ⟨by⟩ (hyp xs) ⟩∎
_∷_ ⟨$⟩ return xs ∎
test₁₅ :
(F : Type → Type → Type)
(G : Bool → Type → Type) →
((A : Type) → F (G false A) A ≡ G false (F A A)) →
(A : Type) →
G false (F (G false A) A) ≡
G false (G false (F A A))
test₁₅ F G hyp A =
G false ⟨ F (G false A) A ⟩ ≡⟨ ⟨by⟩ hyp ⟩∎
G false (G false (F A A)) ∎
test₁₆ : 48 ≡ 42 →
_≡_ {A = ℕ → ℕ} (λ x → x + ⟨ 42 ⟩) (λ x → x + 48)
test₁₆ hyp = ⟨by⟩ hyp
test₁₇ :
(P : ℕ → Type)
(f : ∀ {n} → P n → P n)
(p : P 0) →
f ⟨ subst P (refl _) p ⟩ ≡ f p
test₁₇ _ _ _ = ⟨by⟩ subst-refl
test₁₈ :
(subst′ :
∀ {a p} {A : Type a} {x y : A}
(P : A → Type p) → x ≡ y → P x → P y) →
(∀ {a p} {A : Type a} {x : A} (P : A → Type p) (p : P x) →
subst′ P (refl x) p ≡ p) →
(P : ℕ → Type)
(f : ∀ {n} → P n → P n)
(p : P 0) →
f ⟨ subst′ P (refl 0) p ⟩ ≡ f p
test₁₈ _ subst′-refl _ _ _ = ⟨by⟩ subst′-refl
-- test₁₉ :
-- {F : Type → Type} ⦃ r : R F ⦄ {A : Type} {x₁ x₂ : F A}
-- (p₁ p₂ : x₁ ≡ x₂) (assumption : p₁ ≡ p₂) →
-- trans p p₁ ≡ trans p p₂
-- test₁₉ p₁ p₂ assumption =
-- trans p p₁ ≡⟨⟩
-- trans p ⟨ p₁ ⟩ ≡⟨ ⟨by⟩ assumption ⟩∎
-- trans p p₂ ∎
|
{
"alphanum_fraction": 0.4024813896,
"avg_line_length": 27.2297297297,
"ext": "agda",
"hexsha": "4648826708ff4b31f31866ecf038bf1bad33e0e9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Tactic/By/Parametrised/Tests.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Tactic/By/Parametrised/Tests.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Tactic/By/Parametrised/Tests.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 1709,
"size": 4030
}
|
------------------------------------------------------------------------
-- A parametrised coinductive definition that can be used to define
-- strong and weak bisimilarity as well as expansion
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
open import Prelude
open import Labelled-transition-system
module Bisimilarity.General
{ℓ}
(lts : LTS ℓ)
(open LTS lts)
(_[_]↝₁_ _[_]↝₂_ : Proc → Label → Proc → Type ℓ)
(⟶→↝₁ : ∀ {p μ q} → p [ μ ]⟶ q → p [ μ ]↝₁ q)
(⟶→↝₂ : ∀ {p μ q} → p [ μ ]⟶ q → p [ μ ]↝₂ q)
where
open import Equality.Propositional as Eq hiding (Extensionality)
open import Logical-equivalence using (_⇔_)
open import Prelude.Size
open import Bijection equality-with-J as Bijection using (_↔_)
open import Function-universe equality-with-J hiding (id; _∘_)
open import H-level equality-with-J
open import H-level.Closure equality-with-J
open import Bisimilarity.Step lts _[_]↝₁_ _[_]↝₂_ as Step public
using (StepC)
open import Indexed-container hiding (⟨_⟩; Bisimilarity)
open import Indexed-container.Combinators hiding (id; _∘_)
open import Relation
import Similarity.Step lts _[_]↝₁_ as Step₁
import Similarity.Step lts _[_]↝₂_ as Step₂
open Indexed-container public using (force)
------------------------------------------------------------------------
-- Bisimilarity
-- Bisimilarity. Note that this definition is small.
infix 4 _∼_ _∼′_ [_]_∼_ [_]_∼′_
Bisimilarity : Size → Rel₂ ℓ Proc
Bisimilarity = ν StepC
Bisimilarity′ : Size → Rel₂ ℓ Proc
Bisimilarity′ = ν′ StepC
[_]_∼_ : Size → Proc → Proc → Type ℓ
[_]_∼_ i = curry (Bisimilarity i)
[_]_∼′_ : Size → Proc → Proc → Type ℓ
[_]_∼′_ i = curry (Bisimilarity′ i)
_∼_ : Proc → Proc → Type ℓ
_∼_ = [ ∞ ]_∼_
_∼′_ : Proc → Proc → Type ℓ
_∼′_ = [ ∞ ]_∼′_
-- Bisimilarity is reflexive.
mutual
reflexive-∼ : ∀ {p i} → [ i ] p ∼ p
reflexive-∼ =
StepC.⟨ (λ p⟶p′ → _ , ⟶→↝₁ p⟶p′ , reflexive-∼′)
, (λ q⟶q′ → _ , ⟶→↝₂ q⟶q′ , reflexive-∼′)
⟩
reflexive-∼′ : ∀ {p i} → [ i ] p ∼′ p
force reflexive-∼′ = reflexive-∼
≡⇒∼ : ∀ {p q} → p ≡ q → p ∼ q
≡⇒∼ refl = reflexive-∼
-- Functions that can be used to aid the instance resolution
-- mechanism.
infix -2 ∼:_ ∼′:_
∼:_ : ∀ {i p q} → [ i ] p ∼ q → [ i ] p ∼ q
∼:_ = id
∼′:_ : ∀ {i p q} → [ i ] p ∼′ q → [ i ] p ∼′ q
∼′:_ = id
------------------------------------------------------------------------
-- Bisimilarity for bisimilarity
-- Bisimilarity of bisimilarity proofs.
infix 4 [_]_≡_ [_]_≡′_
[_]_≡_ : ∀ {p q} → Size → (_ _ : ν StepC ∞ (p , q)) → Type ℓ
[_]_≡_ i = curry (ν-bisimilar i)
[_]_≡′_ : ∀ {p q} → Size → (_ _ : ν′ StepC ∞ (p , q)) → Type ℓ
[_]_≡′_ i = curry (ν′-bisimilar i)
-- An alternative characterisation of bisimilarity of bisimilarity
-- proofs.
[]≡↔ :
Eq.Extensionality ℓ ℓ →
∀ {p q} {i : Size} (p∼q₁ p∼q₂ : ν StepC ∞ (p , q)) →
[ i ] p∼q₁ ≡ p∼q₂
↔
(∀ {p′ μ} (p⟶p′ : p [ μ ]⟶ p′) →
let q′₁ , q⟶q′₁ , p′∼q′₁ = StepC.left-to-right p∼q₁ p⟶p′
q′₂ , q⟶q′₂ , p′∼q′₂ = StepC.left-to-right p∼q₂ p⟶p′
in ∃ λ (q′₁≡q′₂ : q′₁ ≡ q′₂) →
subst (q [ μ ]↝₁_) q′₁≡q′₂ q⟶q′₁ ≡ q⟶q′₂
×
[ i ] subst (ν′ StepC ∞ ∘ (p′ ,_)) q′₁≡q′₂ p′∼q′₁ ≡′ p′∼q′₂)
×
(∀ {q′ μ} (q⟶q′ : q [ μ ]⟶ q′) →
let p′₁ , p⟶p′₁ , p′∼q′₁ = StepC.right-to-left p∼q₁ q⟶q′
p′₂ , p⟶p′₂ , p′∼q′₂ = StepC.right-to-left p∼q₂ q⟶q′
in ∃ λ (p′₁≡p′₂ : p′₁ ≡ p′₂) →
subst (p [ μ ]↝₂_) p′₁≡p′₂ p⟶p′₁ ≡ p⟶p′₂
×
[ i ] subst (ν′ StepC ∞ ∘ (_, q′)) p′₁≡p′₂ p′∼q′₁ ≡′ p′∼q′₂)
[]≡↔ ext {p} {q} {i} p∼q₁@(s₁ , f₁) p∼q₂@(s₂ , f₂) =
[ i ] p∼q₁ ≡ p∼q₂ ↝⟨ ν-bisimilar↔ ext p∼q₁ p∼q₂ ⟩
⟦ StepC₁ ⟷ StepC₂ ⟧₂ (ν′-bisimilar i) (p∼q₁ , p∼q₂) ↝⟨ ⟦⟷⟧₂↔ ext StepC₁ StepC₂ (ν′-bisimilar i) p∼q₁ p∼q₂ ⟩
⟦ StepC₁ ⟧₂ (ν′-bisimilar i)
((proj₁ s₁ , f₁ ∘ inj₁) , (proj₁ s₂ , f₂ ∘ inj₁))
×
⟦ StepC₂ ⟧₂ (ν′-bisimilar i)
( (proj₂ s₁ , λ p → f₁ (inj₂ (_ , refl , p)))
, (proj₂ s₂ , λ p → f₂ (inj₂ (_ , refl , p)))
) ↝⟨ Step₁.⟦StepC⟧₂↔ ext (ν′-bisimilar i) (proj₁ s₁ , f₁ ∘ inj₁)
(proj₁ s₂ , f₂ ∘ inj₁)
×-cong
Step₂.⟦StepC⟧₂↔ ext (ν′-bisimilar i)
(proj₂ s₁ , λ p → f₁ (inj₂ (_ , refl , p)))
(proj₂ s₂ , λ p → f₂ (inj₂ (_ , refl , p))) ⟩
(∀ {p′ μ} (p⟶p′ : p [ μ ]⟶ p′) →
let q′₁ , q⟶q′₁ , p′∼q′₁ =
Step₁.StepC.challenge (proj₁ s₁ , f₁ ∘ inj₁) p⟶p′
q′₂ , q⟶q′₂ , p′∼q′₂ =
Step₁.StepC.challenge (proj₁ s₂ , f₂ ∘ inj₁) p⟶p′
in ∃ λ (q′₁≡q′₂ : q′₁ ≡ q′₂) →
subst (q [ μ ]↝₁_) q′₁≡q′₂ q⟶q′₁ ≡ q⟶q′₂
×
[ i ] subst (ν′ StepC ∞ ∘ (p′ ,_)) q′₁≡q′₂ p′∼q′₁ ≡′ p′∼q′₂)
×
((∀ {q′ μ} (q⟶q′ : q [ μ ]⟶ q′) →
let p′₁ , p⟶p′₁ , p′∼q′₁ =
Step₂.StepC.challenge
(proj₂ s₁ , λ p → f₁ (inj₂ (_ , refl , p))) q⟶q′
p′₂ , p⟶p′₂ , p′∼q′₂ =
Step₂.StepC.challenge
(proj₂ s₂ , λ p → f₂ (inj₂ (_ , refl , p))) q⟶q′
in ∃ λ (p′₁≡p′₂ : p′₁ ≡ p′₂) →
subst (p [ μ ]↝₂_) p′₁≡p′₂ p⟶p′₁ ≡ p⟶p′₂
×
[ i ] subst (ν′ StepC ∞ ∘ (_, q′)) p′₁≡p′₂ p′∼q′₁ ≡′ p′∼q′₂)) ↔⟨⟩
(∀ {p′ μ} (p⟶p′ : p [ μ ]⟶ p′) →
let q′₁ , q⟶q′₁ , p′∼q′₁ = StepC.left-to-right p∼q₁ p⟶p′
q′₂ , q⟶q′₂ , p′∼q′₂ = StepC.left-to-right p∼q₂ p⟶p′
in ∃ λ (q′₁≡q′₂ : q′₁ ≡ q′₂) →
subst (q [ μ ]↝₁_) q′₁≡q′₂ q⟶q′₁ ≡ q⟶q′₂
×
[ i ] subst (ν′ StepC ∞ ∘ (p′ ,_)) q′₁≡q′₂ p′∼q′₁ ≡′ p′∼q′₂)
×
(∀ {q′ μ} (q⟶q′ : q [ μ ]⟶ q′) →
let p′₁ , p⟶p′₁ , p′∼q′₁ = StepC.right-to-left p∼q₁ q⟶q′
p′₂ , p⟶p′₂ , p′∼q′₂ = StepC.right-to-left p∼q₂ q⟶q′
in ∃ λ (p′₁≡p′₂ : p′₁ ≡ p′₂) →
subst (p [ μ ]↝₂_) p′₁≡p′₂ p⟶p′₁ ≡ p⟶p′₂
×
[ i ] subst (ν′ StepC ∞ ∘ (_, q′)) p′₁≡p′₂ p′∼q′₁ ≡′ p′∼q′₂) □
where
open Container
StepC₁ = Step₁.StepC
StepC₂ = Step₂.StepC
module Bisimilarity-of-∼
(ext : Eq.Extensionality ℓ ℓ)
{p q} {i : Size}
(p∼q₁ p∼q₂ : ν StepC ∞ (p , q))
where
-- A "constructor".
⟨_,_,_,_,_⟩ :
(∀ {p′ μ} (p⟶p′ : p [ μ ]⟶ p′) →
let q′₁ , q⟶q′₁ , p′∼q′₁ = StepC.left-to-right p∼q₁ p⟶p′
q′₂ , q⟶q′₂ , p′∼q′₂ = StepC.left-to-right p∼q₂ p⟶p′
in ∃ λ (q′₁≡q′₂ : q′₁ ≡ q′₂) →
subst (q [ μ ]↝₁_) q′₁≡q′₂ q⟶q′₁ ≡ q⟶q′₂
×
[ i ] subst (ν′ StepC ∞ ∘ (p′ ,_)) q′₁≡q′₂ p′∼q′₁ ≡′ p′∼q′₂) →
(∀ {q′ μ} (q⟶q′ : q [ μ ]⟶ q′) →
let p′₁ , p⟶p′₁ , p′∼q′₁ = StepC.right-to-left p∼q₁ q⟶q′
p′₂ , p⟶p′₂ , p′∼q′₂ = StepC.right-to-left p∼q₂ q⟶q′
in ∃ λ (p′₁≡p′₂ : p′₁ ≡ p′₂) →
subst (p [ μ ]↝₂_) p′₁≡p′₂ p⟶p′₁ ≡ p⟶p′₂
×
[ i ] subst (ν′ StepC ∞ ∘ (_, q′)) p′₁≡p′₂ p′∼q′₁ ≡′ p′∼q′₂) →
[ i ] p∼q₁ ≡ p∼q₂
⟨_,_,_,_,_⟩ = curry (_↔_.from ([]≡↔ ext p∼q₁ p∼q₂))
-- Some "projections".
left-to-right :
[ i ] p∼q₁ ≡ p∼q₂ →
∀ {p′ μ} (p⟶p′ : p [ μ ]⟶ p′) →
let q′₁ , q⟶q′₁ , p′∼q′₁ = StepC.left-to-right p∼q₁ p⟶p′
q′₂ , q⟶q′₂ , p′∼q′₂ = StepC.left-to-right p∼q₂ p⟶p′
in ∃ λ (q′₁≡q′₂ : q′₁ ≡ q′₂) →
subst (q [ μ ]↝₁_) q′₁≡q′₂ q⟶q′₁ ≡ q⟶q′₂
×
[ i ] subst (ν′ StepC ∞ ∘ (p′ ,_)) q′₁≡q′₂ p′∼q′₁ ≡′ p′∼q′₂
left-to-right = proj₁ ∘ _↔_.to ([]≡↔ ext p∼q₁ p∼q₂)
right-to-left :
[ i ] p∼q₁ ≡ p∼q₂ →
∀ {q′ μ} (q⟶q′ : q [ μ ]⟶ q′) →
let p′₁ , p⟶p′₁ , p′∼q′₁ = StepC.right-to-left p∼q₁ q⟶q′
p′₂ , p⟶p′₂ , p′∼q′₂ = StepC.right-to-left p∼q₂ q⟶q′
in ∃ λ (p′₁≡p′₂ : p′₁ ≡ p′₂) →
subst (p [ μ ]↝₂_) p′₁≡p′₂ p⟶p′₁ ≡ p⟶p′₂
×
[ i ] subst (ν′ StepC ∞ ∘ (_, q′)) p′₁≡p′₂ p′∼q′₁ ≡′ p′∼q′₂
right-to-left = proj₂ ∘ _↔_.to ([]≡↔ ext p∼q₁ p∼q₂)
-- A statement of extensionality for bisimilarity.
Extensionality : Type ℓ
Extensionality = ν′-extensionality StepC
-- This form of extensionality can be used to derive another form
-- (in the presence of extensionality for functions).
extensionality :
Eq.Extensionality ℓ ℓ →
Extensionality →
∀ {p q} {p∼q₁ p∼q₂ : ν StepC ∞ (p , q)} →
[ ∞ ] p∼q₁ ≡ p∼q₂ → p∼q₁ ≡ p∼q₂
extensionality ext ν-ext = ν-extensionality ext ν-ext
open StepC public using (⟨_,_⟩; left-to-right; right-to-left)
|
{
"alphanum_fraction": 0.441782794,
"avg_line_length": 33.3961538462,
"ext": "agda",
"hexsha": "a25f2fa396a068d829cebb7ac522bf09601ce934",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/up-to",
"max_forks_repo_path": "src/Bisimilarity/General.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/up-to",
"max_issues_repo_path": "src/Bisimilarity/General.agda",
"max_line_length": 133,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/up-to",
"max_stars_repo_path": "src/Bisimilarity/General.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4066,
"size": 8683
}
|
------------------------------------------------------------------------
-- Some theory of Erased, developed using Cubical Agda
------------------------------------------------------------------------
-- This module instantiates and reexports code from Erased.
{-# OPTIONS --erased-cubical --safe #-}
import Equality.Path as P
module Erased.Cubical
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq
open import Prelude
open import Bijection equality-with-J using (_↔_)
import Bijection P.equality-with-J as PB
open import Equality.Path.Isomorphisms eq
open import Equivalence equality-with-J as Eq
using (_≃_; Is-equivalence)
import Equivalence P.equality-with-J as PEq
import Erased.Basics as EB
import Erased.Level-1 P.equality-with-J as EP
import Erased.Level-1 equality-with-J as E
open import Function-universe equality-with-J
private
variable
a p : Level
A : Type a
x y : A
------------------------------------------------------------------------
-- []-cong
-- Given an erased path from x to y there is a path from [ x ] to
-- [ y ].
[]-cong-Path :
{@0 A : Type a} {@0 x y : A} →
EB.Erased (x P.≡ y) → EB.[ x ] P.≡ EB.[ y ]
[]-cong-Path EB.[ eq ] = λ i → EB.[ eq i ]
-- []-cong-Path is an equivalence.
[]-cong-Path-equivalence :
{@0 A : Type a} {@0 x y : A} →
PEq.Is-equivalence ([]-cong-Path {x = x} {y = y})
[]-cong-Path-equivalence =
PEq._≃_.is-equivalence $ PEq.↔⇒≃ (record
{ surjection = record
{ logical-equivalence = record
{ from = λ eq → EB.[ P.cong EB.erased eq ]
}
; right-inverse-of = λ _ → P.refl
}
; left-inverse-of = λ _ → P.refl
})
-- A rearrangement lemma for []-cong-Path (which holds by definition).
[]-cong-Path-[refl] :
{@0 A : Type a} {@0 x : A} →
[]-cong-Path EB.[ P.refl {x = x} ] P.≡ P.refl {x = EB.[ x ]}
[]-cong-Path-[refl] = P.refl
-- The []-cong axioms can be instantiated.
instance-of-[]-cong-axiomatisation-for-Path : EP.[]-cong-axiomatisation a
instance-of-[]-cong-axiomatisation-for-Path = λ where
.EP.[]-cong-axiomatisation.[]-cong → []-cong-Path
.EP.[]-cong-axiomatisation.[]-cong-equivalence → []-cong-Path-equivalence
.EP.[]-cong-axiomatisation.[]-cong-[refl] → []-cong-Path-[refl]
-- Given an erased proof of equality of x and y one can show that
-- EB.[ x ] is equal to EB.[ y ].
[]-cong : {@0 A : Type a} {@0 x y : A} →
EB.Erased (x ≡ y) → EB.[ x ] ≡ EB.[ y ]
[]-cong {x = x} {y = y} =
EB.Erased (x ≡ y) ↝⟨ (λ (EB.[ eq ]) → EB.[ _↔_.to ≡↔≡ eq ]) ⟩
EB.Erased (x P.≡ y) ↝⟨ []-cong-Path ⟩
EB.[ x ] P.≡ EB.[ y ] ↔⟨ inverse ≡↔≡ ⟩□
EB.[ x ] ≡ EB.[ y ] □
-- []-cong is an equivalence.
[]-cong-equivalence :
{@0 A : Type a} {@0 x y : A} →
Is-equivalence ([]-cong {x = x} {y = y})
[]-cong-equivalence {x = x} {y = y} = _≃_.is-equivalence (
EB.Erased (x ≡ y) ↔⟨ _≃_.from ↔≃↔ $
EP.[]-cong.Erased-cong-↔
instance-of-[]-cong-axiomatisation-for-Path
(_≃_.to ↔≃↔ ≡↔≡) ⟩
EB.Erased (x P.≡ y) ↝⟨ _↔_.from ≃↔≃ PEq.⟨ _ , []-cong-Path-equivalence ⟩ ⟩
EB.[ x ] P.≡ EB.[ y ] ↔⟨ inverse ≡↔≡ ⟩□
EB.[ x ] ≡ EB.[ y ] □)
-- A rearrangement lemma for []-cong.
[]-cong-[refl] :
{@0 A : Type a} {@0 x : A} →
[]-cong EB.[ refl x ] ≡ refl EB.[ x ]
[]-cong-[refl] {x = x} =
sym $ _↔_.to (from≡↔≡to Eq.⟨ _ , []-cong-equivalence ⟩) (
EB.[ _↔_.from ≡↔≡ (P.cong EB.erased (_↔_.to ≡↔≡ (refl EB.[ x ]))) ] ≡⟨ []-cong EB.[ sym cong≡cong ] ⟩
EB.[ cong EB.erased (_↔_.from ≡↔≡ (_↔_.to ≡↔≡ (refl EB.[ x ]))) ] ≡⟨ []-cong EB.[ cong (cong EB.erased) (_↔_.left-inverse-of ≡↔≡ _) ] ⟩
EB.[ cong EB.erased (refl EB.[ x ]) ] ≡⟨ []-cong EB.[ cong-refl _ ] ⟩∎
EB.[ refl x ] ∎)
-- The []-cong axioms can be instantiated.
instance-of-[]-cong-axiomatisation : E.[]-cong-axiomatisation a
instance-of-[]-cong-axiomatisation = λ where
.E.[]-cong-axiomatisation.[]-cong → []-cong
.E.[]-cong-axiomatisation.[]-cong-equivalence → []-cong-equivalence
.E.[]-cong-axiomatisation.[]-cong-[refl] → []-cong-[refl]
-- Some reexported definitions.
open import Erased equality-with-J instance-of-[]-cong-axiomatisation
public
hiding ([]-cong; []-cong-equivalence; []-cong-[refl];
Π-Erased≃Π0[]; Π-Erased≃Π0)
------------------------------------------------------------------------
-- Variants of some of the reexported definitions
private
-- The lemma push-subst-[], which is reexported above, can be proved
-- very easily when path equality is used.
push-subst-[]-Path :
{@0 P : A → Type p} {@0 p : P x} {x≡y : x P.≡ y} →
P.subst (λ x → Erased (P x)) x≡y [ p ] ≡ [ P.subst P x≡y p ]
push-subst-[]-Path = refl _
-- Above a lemma H-level-Erased is reexported. That lemma is proved
-- in a certain way. The following two lemmas are included to
-- illustrate a somewhat different proof technique that works for
-- individual h-levels (given by closed natural numbers).
-- Is-proposition is closed under Erased.
Is-proposition-Erased :
{@0 A : Type a} →
@0 Is-proposition A → Is-proposition (Erased A)
Is-proposition-Erased {A = A} prop =
_↔_.from (H-level↔H-level 1)
(Is-proposition-Erased′
(_↔_.to (H-level↔H-level 1) prop))
where
Is-proposition-Erased′ :
@0 P.Is-proposition A → P.Is-proposition (Erased A)
Is-proposition-Erased′ prop x y = λ i →
[ prop (erased x) (erased y) i ]
-- Is-set is closed under Erased.
Is-set-Erased :
{@0 A : Type a} →
@0 Is-set A → Is-set (Erased A)
Is-set-Erased {A = A} set =
_↔_.from (H-level↔H-level 2)
(Is-set-Erased′
(_↔_.to (H-level↔H-level 2) set))
where
Is-set-Erased′ : @0 P.Is-set A → P.Is-set (Erased A)
Is-set-Erased′ set p q = λ i j →
[ set (P.cong erased p) (P.cong erased q) i j ]
------------------------------------------------------------------------
-- Some isomorphisms/equivalences
-- The following four results are inspired by a result in
-- Mishra-Linger's PhD thesis (see Section 5.4.1).
-- There is a bijection (with paths for equality, not _≡_) between
-- (x : Erased A) → P x and (@0 x : A) → P [ x ].
Π-Erased↔Π0[] :
{@0 A : Type a} {@0 P : Erased A → Type p} →
((x : Erased A) → P x) PB.↔ ((@0 x : A) → P [ x ])
Π-Erased↔Π0[] = record
{ surjection = record
{ logical-equivalence = Π-Erased⇔Π0
; right-inverse-of = λ f _ → f
}
; left-inverse-of = λ f _ → f
}
-- There is an equivalence (with paths for equality, not _≡_) between
-- (x : Erased A) → P x and (@0 x : A) → P [ x ].
--
-- This is not proved by converting Π-Erased↔Π0[] to an equivalence,
-- because the type arguments of the conversion function in
-- Equivalence are not erased, and P can only be used in erased
-- contexts.
--
-- This is a strengthening of E.Π-Erased≃Π0[].
Π-Erased≃Π0[] :
{@0 A : Type a} {@0 P : Erased A → Type p} →
((x : Erased A) → P x) PEq.≃ ((@0 x : A) → P [ x ])
Π-Erased≃Π0[] = record
{ to = λ f x → f [ x ]
; is-equivalence =
(λ f ([ x ]) → f x)
, (λ f _ → f)
, (λ f _ → f)
, (λ f _ _ x → f [ x ])
}
-- There is a bijection (with paths for equality, not _≡_) between
-- (x : Erased A) → P (erased x) and (@0 x : A) → P x.
Π-Erased↔Π0 :
{@0 A : Type a} {@0 P : A → Type p} →
((x : Erased A) → P (erased x)) PB.↔ ((@0 x : A) → P x)
Π-Erased↔Π0 = Π-Erased↔Π0[]
-- There is an equivalence (with paths for equality, not _≡_) between
-- (x : Erased A) → P (erased x) and (@0 x : A) → P x.
--
-- This is a strengthening of E.Π-Erased≃Π0.
Π-Erased≃Π0 :
{@0 A : Type a} {@0 P : A → Type p} →
((x : Erased A) → P (erased x)) PEq.≃ ((@0 x : A) → P x)
Π-Erased≃Π0 = Π-Erased≃Π0[]
|
{
"alphanum_fraction": 0.5347776511,
"avg_line_length": 33.5872340426,
"ext": "agda",
"hexsha": "daeedb022c08968eed7bf45e3764e41bf5588527",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Erased/Cubical.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Erased/Cubical.agda",
"max_line_length": 142,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Erased/Cubical.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 2980,
"size": 7893
}
|
-- Andreas, 2019-07-11, issue #3843, reported by shinji-kono
-- recordExpressionToCopattern translation invalidates projection-likeness.
-- {-# OPTIONS -v tc.proj.like:100 -v impossible:10 #-}
data _≡_ {a} {A : Set a} (x : A) : A → Set a where
refl : x ≡ x
postulate
ANY : ∀{a} {A : Set a} → A
Nat : Set
suc : Nat → Nat
diag : (x : Nat) → x ≡ x
P : Nat → Set
Foo : {x : Nat} (px : P x) → Set
record Pack (n : Nat) : Set where
constructor pack
field
lv : Nat
ord : P lv
open Pack
-- Projection-like, because eta-contracted to pidproj x = x
pidproj : ∀ {n} (x : Pack n) → Pack n
pidproj x = record { lv = lv x; ord = ord x }
-- Not considered projection-like, since
-- `pidpc (pack l o)` is stuck, but the `n` cannot be inferred.
pidpc : ∀ {n} (x : Pack n) → Pack n
pidpc x .lv = lv x
pidpc x .ord = ord x
-- Not considered projection-like, since
-- `pidcop (pack l o)` is stuck, but the `n` cannot be inferred.
pidcop : ∀ {n} (x : Pack n) → Pack n
pidcop (pack lx ox) .lv = lx
pidcop (pack lx ox) .ord = ox
-- WAS: Projection-like function,
-- but since is translated to pidcop by recordExpressionsToCopatterns
-- projection-likeness is unsound here.
pid : ∀ {n} (x : Pack n) → Pack n
pid (pack lx ox) = record { lv = lx ; ord = ox }
-- pid record { lv = lx ; ord = ox } = record { lv = lx ; ord = ox }
-- pid (pack lx ox) = pack lx ox -- no error
-- pid x = x -- Error disappears with record pattern matching
test : ∀ {n} (x : Pack (suc n)) → x ≡ pid x
test {n} x@(pack lx ox) with diag (lv x) -- The @-pattern is needed for 2.5.2 and 2.5.3
... | refl with Foo (ord x) -- with needed
... | _ = ANY
-- WAS: internal error
-- Should succeed.
|
{
"alphanum_fraction": 0.6071005917,
"avg_line_length": 29.649122807,
"ext": "agda",
"hexsha": "f3d84d0189ecca63a0e96945ad8214a9e8c13726",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue3843.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue3843.agda",
"max_line_length": 88,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue3843.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 588,
"size": 1690
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Costrings
------------------------------------------------------------------------
{-# OPTIONS --without-K #-}
module Codata.Musical.Costring where
open import Codata.Musical.Colist as Colist using (Colist)
open import Data.Char using (Char)
open import Data.String as String using (String)
open import Function using (_∘_)
-- Possibly infinite strings.
Costring : Set
Costring = Colist Char
-- Methods
toCostring : String → Costring
toCostring = Colist.fromList ∘ String.toList
|
{
"alphanum_fraction": 0.5656565657,
"avg_line_length": 23.76,
"ext": "agda",
"hexsha": "a6405f23fe955ee99a11a8b21b5aa909b88d01af",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Codata/Musical/Costring.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Codata/Musical/Costring.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Codata/Musical/Costring.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 118,
"size": 594
}
|
-- Andreas, AIM XXIII, 2016-04-25
-- Parameter arguments of overloaded projection applications
-- should not be skipped!
record R A : Set where
field f : {x y : A} → A
open R
record S A : Set where
field f : {x y : A} → A
open S
r : ∀{A} → R A
f r {x} = x
test : ∀{A B : Set} (a : A) (b : B) → A
test {A} a b = f (r {A}) {x = a} {y = b}
|
{
"alphanum_fraction": 0.5520231214,
"avg_line_length": 18.2105263158,
"ext": "agda",
"hexsha": "d3ff9b017667fcf283e1f46498854b33020bb330",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue1944-checkHidden.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue1944-checkHidden.agda",
"max_line_length": 60,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue1944-checkHidden.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 138,
"size": 346
}
|
module README where
------------------------------------------------------------------------
-- Core definitions
------------------------------------------------------------------------
import Generics.Prelude
-- Generics.Telescope introduces an encoding for telescopes,
-- along with functions to manipulate indexed functions and families.
import Generics.Telescope
-- Generics.Desc introduces the core universe of descriptions for datatypes.
import Generics.Desc
-- Generics.HasDesc defines the HasDesc record,
-- bridging the gap between descriptions of datatypes
-- and their concrete Agda counterpart.
import Generics.HasDesc
-- Generics.Reflection implements the deriveDesc macro
-- to automatically derive an instance of HasDesc for most datatypes.
import Generics.Reflection
------------------------------------------------------------------------
-- Generic constructions
------------------------------------------------------------------------
-- Generic show implemetation
import Generics.Constructions.Show
-- Datatype-generic case analysis principle
import Generics.Constructions.Case
-- Datatype-generic decidable equality
import Generics.Constructions.DecEq
-- Datatype-generic induction principle,
-- on described datatypes only
import Generics.Constructions.Induction
-- Datatype-generic elimination principle
import Generics.Constructions.Elim
-- WIP Datatype-generic injectivity of constructors
import Generics.Constructions.NoConfusion
|
{
"alphanum_fraction": 0.6603131382,
"avg_line_length": 31.2553191489,
"ext": "agda",
"hexsha": "d373142731065eb06b588ca7fe51cb7f4eceab95",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-01-14T10:35:16.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-08T08:32:42.000Z",
"max_forks_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "flupe/generics",
"max_forks_repo_path": "README.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T10:48:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-09-13T07:33:50.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "flupe/generics",
"max_issues_repo_path": "README.agda",
"max_line_length": 76,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "flupe/generics",
"max_stars_repo_path": "README.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T09:35:17.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-08T15:10:20.000Z",
"num_tokens": 244,
"size": 1469
}
|
open import Formalization.PredicateLogic.Signature
module Formalization.PredicateLogic.Classical.Semantics.Satisfaction (𝔏 : Signature) {ℓₘ} where
open Signature(𝔏)
import Lvl
open import Data
open import Data.Boolean
open import Data.Boolean.Stmt
open import Data.ListSized
import Data.ListSized.Functions as List
open import Formalization.PredicateLogic.Classical.Semantics(𝔏){ℓₘ}
open import Formalization.PredicateLogic.Syntax(𝔏)
open import Functional using (_∘_ ; _∘₂_)
import Logic.Propositional as Logic
import Logic.Predicate as Logic
open import Numeral.Finite
open import Numeral.Finite.Bound
open import Numeral.Natural
open import Relator.Equals
open import Sets.PredicateSet using (PredSet)
open Sets.PredicateSet.BoundedQuantifiers
open import Syntax.Function
open import Type.Dependent renaming (intro to _,_)
open import Type.Properties.Decidable
open import Type
private variable ℓ ℓ₁ ℓ₂ : Lvl.Level
private variable P : Type{ℓₚ}
private variable args n vars : ℕ
private variable 𝔐 : Model
-- A `VarMapping(vars)(𝔐)` maps `vars` number of variables to objects in the domain of the model `𝔐`.
-- Also called: Variable assignment.
VarMapping : ℕ → Model → Type
VarMapping(vars)(𝔐) = 𝕟(vars) → Model.Domain(𝔐)
module VarMapping where
-- Adds a mapping to an object in the domain of the model `𝔐`.
add0 : VarMapping(vars)(𝔐) → Model.Domain(𝔐) → VarMapping(𝐒(vars))(𝔐)
add0 𝔰 t 𝟎 = t
add0 𝔰 t (𝐒(v)) = 𝔰(v)
private variable 𝔰 : VarMapping(vars)(𝔐)
module _ ((𝔐 , 𝔰) : Σ Model (VarMapping(vars))) where
-- Maps terms to objects in the domain given a model and a variable mapping.
val : Term(vars) → Model.Domain(𝔐)
val₊ : List(Term(vars))(n) → List(Model.Domain(𝔐))(n)
val(var v) = 𝔰(v)
val(func f x) = Model.function 𝔐 f (val₊ x)
val₊ {0} ∅ = ∅
val₊ {𝐒(n)} (t ⊰ ts) = (val t ⊰ val₊ {n} ts)
--val₊ = List.map val
-- Satisfication relation.
-- ((𝔐 , 𝔰) ⊧ φ) means that the formula φ is satisfied in the model 𝔐 with the variable mapping.
-- Or in other words: A formula is true in the model 𝔐.
_⊧_ : (Σ Model (VarMapping(vars))) → Formula(vars) → Type{ℓₘ}
(𝔐 , 𝔰) ⊧ (f $ x) = Lvl.Up(IsTrue(Model.relation 𝔐 f (val₊(𝔐 , 𝔰) x))) -- A model decides whether a relation is satisfied.
(𝔐 , 𝔰) ⊧ ⊤ = Unit -- All models satisfy top.
(𝔐 , 𝔰) ⊧ ⊥ = Empty -- No model satisfies bottom.
(𝔐 , 𝔰) ⊧ (φ ∧ ψ) = ((𝔐 , 𝔰) ⊧ φ) Logic.∧ ((𝔐 , 𝔰) ⊧ ψ) -- A model satisfies a conjunction when it satisfies both of the propositions.
(𝔐 , 𝔰) ⊧ (φ ∨ ψ) = ((𝔐 , 𝔰) ⊧ φ) Logic.∨ ((𝔐 , 𝔰) ⊧ ψ) -- A model satisfies a disjunction when it satisfies any one of the propositions.
(𝔐 , 𝔰) ⊧ (φ ⟶ ψ) = Logic.¬((𝔐 , 𝔰) ⊧ φ) Logic.∨ ((𝔐 , 𝔰) ⊧ ψ)
(𝔐 , 𝔰) ⊧ (Ɐ φ) = Logic.∀ₗ(t ↦ (𝔐 , VarMapping.add0{𝔐 = 𝔐} 𝔰 t) ⊧ φ)
(𝔐 , 𝔰) ⊧ (∃ φ) = Logic.∃(t ↦ (𝔐 , VarMapping.add0{𝔐 = 𝔐} 𝔰 t) ⊧ φ)
-- Satisfication of a set of formulas.
-- This means that a model satisfies all formulas at the same time.
_⊧₊_ : (Σ Model (VarMapping(vars))) → PredSet{ℓ}(Formula(vars)) → Type
𝔐 ⊧₊ Γ = ∀ₛ(Γ) (𝔐 ⊧_)
-- Validity of a formula.
-- A formula is valid when it is true independent of any model (is satisfied by all models).
-- Examples:
-- Valid(⊤)
-- Valid(⊥ ⟶ ⊥)
-- ¬ Valid(⊥)
-- ¬ Valid(P) where P : Prop(0)
Valid : Formula(vars) → Type
Valid(φ) = Logic.∀ₗ(_⊧ φ)
-- Satisfiability of sets of formulas.
-- A set of formulas is satisfiable when there is a model that satisfies all of them at the same time.
Satisfiable : PredSet{ℓ}(Formula(vars)) → Type
Satisfiable(Γ) = Logic.∃(_⊧₊ Γ)
-- Unsatisfiability of sets of formulas.
Unsatisfiable : PredSet{ℓ}(Formula(vars)) → Type
Unsatisfiable{ℓ} = Logic.¬_ ∘ Satisfiable{ℓ}
-- Semantic entailment of a formula.
-- A hypothetical statement. If a model would satisfy all formulas in Γ, then this same model satisifes the formula φ.
_⊨_ : PredSet{ℓ}(Formula(vars)) → Formula(vars) → Type
Γ ⊨ φ = ∀{𝔐} → (𝔐 ⊧₊ Γ) → (𝔐 ⊧ φ)
_⊭_ : PredSet{ℓ}(Formula(vars)) → Formula(vars) → Type
_⊭_ = (Logic.¬_) ∘₂ (_⊨_)
-- Axiomatization of a theory by a set of axioms.
-- A set of axioms is a set of formulas.
-- A theory is the closure of a set of axioms.
-- An axiomatization is a subset of formulas of the theory which entails all formulas in the axiomatized theory.
_axiomatizes_ : PredSet{ℓ₁}(Formula(vars)) → PredSet{ℓ₂}(Formula(vars)) → Type
Γ₁ axiomatizes Γ₂ = ∀{φ} → (Γ₁ ⊨ φ) → Γ₂(φ)
-- A set of formulas is closed when it includes all formulas that it entails.
Closed : PredSet{ℓ}(Formula(vars)) → Type
Closed(Γ) = Γ axiomatizes Γ
_⊨₊_ : PredSet{ℓ₁}(Formula(vars)) → PredSet{ℓ₂}(Formula(vars)) → Type
Γ₁ ⊨₊ Γ₂ = ∀{𝔐} → (𝔐 ⊧₊ Γ₁) → (𝔐 ⊧₊ Γ₂)
_⊭₊_ : PredSet{ℓ₁}(Formula(vars)) → PredSet{ℓ₂}(Formula(vars)) → Type
_⊭₊_ = (Logic.¬_) ∘₂ (_⊨₊_)
|
{
"alphanum_fraction": 0.6472273378,
"avg_line_length": 41.7692307692,
"ext": "agda",
"hexsha": "39c687a2828d48664b21a5e696a382df91f2da90",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Formalization/PredicateLogic/Classical/Semantics/Satisfaction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Formalization/PredicateLogic/Classical/Semantics/Satisfaction.agda",
"max_line_length": 155,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Formalization/PredicateLogic/Classical/Semantics/Satisfaction.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1791,
"size": 4887
}
|
-- Andreas, 2017-10-04, issue #2765, reported by nad
-- Problem: inferred level expressions are often "reversed"
open import Agda.Primitive
postulate
F : (ℓ : Level) → Set ℓ
G : (a b c : Level) → Set {!!} -- C-c C-=
G a b c = F a → F b → F c
-- WAS:
-- ?0 := c ⊔ (b ⊔ a)
-- Expected: Inferred level should be
-- ?0 := a ⊔ (b ⊔ c)
|
{
"alphanum_fraction": 0.5680473373,
"avg_line_length": 19.8823529412,
"ext": "agda",
"hexsha": "5ae1ae6559f4cd7125bc80d2d9f638c86bc88657",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue2765.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue2765.agda",
"max_line_length": 59,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue2765.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 128,
"size": 338
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.GlobularSet where
-- Globular sets are defined in a Categorical context, but
-- should they be inside the Categories hierarchy?
open import Level
open import Data.Unit using (⊤)
open import Relation.Binary.PropositionalEquality using (refl)
open import Categories.Category
open import Categories.Category.Instance.Globe
open import Categories.Category.Instance.Sets
open import Categories.Functor
open import Categories.Functor.Presheaf
private
variable
o ℓ e : Level
GlobularSet : (o : Level) → Set (suc o)
GlobularSet o = Presheaf Globe (Sets o)
-- TODO? make universe polymorphic with polymorphic ⊤
Trivial : GlobularSet zero
Trivial = record
{ F₀ = λ _ → ⊤
; F₁ = λ _ x → x
; identity = refl
; homomorphism = refl
; F-resp-≈ = λ _ → refl
}
GlobularObject : Category o ℓ e → Set _
GlobularObject C = Functor (Category.op Globe) C
|
{
"alphanum_fraction": 0.7354555434,
"avg_line_length": 25.3055555556,
"ext": "agda",
"hexsha": "dcc3cd44ed240b70fd1b6d3e93def929b31c49d3",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/GlobularSet.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/GlobularSet.agda",
"max_line_length": 62,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/GlobularSet.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 254,
"size": 911
}
|
module Data.QuadTree.InternalAgda where
open import Data.QuadTree.Implementation.Definition
open import Data.QuadTree.Implementation.PublicFunctions
open import Data.QuadTree.Implementation.Functors
open import Data.QuadTree.Implementation.ValidTypes
open import Data.QuadTree.Implementation.QuadrantLenses
open import Data.QuadTree.Implementation.Foldable
|
{
"alphanum_fraction": 0.8851540616,
"avg_line_length": 44.625,
"ext": "agda",
"hexsha": "aacf653b387f95536d5a25c0126d4e5c2164b1ac",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "JonathanBrouwer/research-project",
"max_forks_repo_path": "src/Data/QuadTree/InternalAgda.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "JonathanBrouwer/research-project",
"max_issues_repo_path": "src/Data/QuadTree/InternalAgda.agda",
"max_line_length": 56,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "JonathanBrouwer/research-project",
"max_stars_repo_path": "src/Data/QuadTree/InternalAgda.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-25T09:10:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-05-25T09:10:20.000Z",
"num_tokens": 73,
"size": 357
}
|
module _ where
module M where
postulate A : Set
module N = M -- This alias introduces a display form M.A --> N.A
open M
postulate
a : A
{-# DISPLAY N.A = A #-} -- Makes Agda loop
test : Set
test = a
|
{
"alphanum_fraction": 0.6208530806,
"avg_line_length": 11.7222222222,
"ext": "agda",
"hexsha": "c0775ffe94214af0f1b27d5ed45928fe79024b56",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue1644b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue1644b.agda",
"max_line_length": 65,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue1644b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 67,
"size": 211
}
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import cw.CW
open import cw.FinCW
open import cw.FinBoundary
open import cohomology.Theory
module cw.cohomology.cochainequiv.DualizedHigherBoundary (OT : OrdinaryTheory lzero)
{n} (⊙fin-skel : ⊙FinSkeleton (S (S n))) where
open OrdinaryTheory OT
private
fin-skel = ⊙FinSkeleton.skel ⊙fin-skel
I = AttachedFinSkeleton.numCells fin-skel
fin-skel₋₁ = AttachedFinSkeleton.skel fin-skel
I₋₁ = AttachedFinSkeleton.numCells fin-skel₋₁
abstract
rephrase-dualized-higher-boundary-in-degree : ∀ g <I
→ GroupIso.g (FreeAbGroup-extend-iso (C2-abgroup 0))
(GroupIso.f (FreeAbGroup-extend-iso (C2-abgroup 0)) g ∘ᴳ fboundary-last fin-skel) <I
== Group.sum (C2 0) (λ <I₋₁ → Group.exp (C2 0) (g <I₋₁) (fdegree-last fin-skel <I <I₋₁))
rephrase-dualized-higher-boundary-in-degree g <I =
FormalSum-extend (C2-abgroup 0) g (GroupHom.f (fboundary-last fin-skel) fs[ inl <I :: nil ])
=⟨ ap (FormalSum-extend (C2-abgroup 0) g) $
app= (is-equiv.g-f (FreeAbGroup-extend-is-equiv (FreeAbGroup (Fin I₋₁))) (fboundary'-last fin-skel)) <I ⟩
FormalSum-extend (C2-abgroup 0) g
(Group.sum (FreeAbGroup.grp (Fin I₋₁))
(λ <I₋₁ → Group.exp (FreeAbGroup.grp (Fin I₋₁)) fs[ inl <I₋₁ :: nil ] (fdegree-last fin-skel <I <I₋₁)))
=⟨ GroupHom.pres-sum (FreeAbGroup-extend (C2-abgroup 0) g)
(λ <I₋₁ → Group.exp (FreeAbGroup.grp (Fin I₋₁)) fs[ inl <I₋₁ :: nil ] (fdegree-last fin-skel <I <I₋₁)) ⟩
Group.sum (C2 0)
(λ <I₋₁ →
(FormalSum-extend (C2-abgroup 0) g
(Group.exp (FreeAbGroup.grp (Fin I₋₁)) fs[ inl <I₋₁ :: nil ] (fdegree-last fin-skel <I <I₋₁))))
=⟨ ap (Group.sum (C2 0))
(λ= λ <I₋₁ →
GroupHom.pres-exp (FreeAbGroup-extend (C2-abgroup 0) g)
fs[ inl <I₋₁ :: nil ]
(fdegree-last fin-skel <I <I₋₁)) ⟩
Group.sum (C2 0)
(λ <I₋₁ →
(Group.exp (C2 0)
(FormalSum-extend (C2-abgroup 0) g fs[ inl <I₋₁ :: nil ])
(fdegree-last fin-skel <I <I₋₁)))
=⟨ ap (Group.sum (C2 0))
(λ= λ <I₋₁ → ap (λ g → Group.exp (C2 0) g (fdegree-last fin-skel <I <I₋₁)) $
app= (is-equiv.g-f (FreeAbGroup-extend-is-equiv (C2-abgroup 0)) g) <I₋₁) ⟩
Group.sum (C2 0) (λ <I₋₁ → (Group.exp (C2 0) (g <I₋₁) (fdegree-last fin-skel <I <I₋₁)))
=∎
|
{
"alphanum_fraction": 0.5994962217,
"avg_line_length": 44.1111111111,
"ext": "agda",
"hexsha": "16f5a676be2dee693ea0cbbd31f52c0f0bc7903f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/cw/cohomology/cochainequiv/DualizedHigherBoundary.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/cw/cohomology/cochainequiv/DualizedHigherBoundary.agda",
"max_line_length": 115,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/cw/cohomology/cochainequiv/DualizedHigherBoundary.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 934,
"size": 2382
}
|
------------------------------------------------------------------------------
-- A partial function: iter₀
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.Iter0.Iter0 where
open import FOTC.Base
open import FOTC.Base.List
------------------------------------------------------------------------------
postulate
iter₀ : D → D → D
iter₀-eq : ∀ f n → iter₀ f n ≡
(if (iszero₁ n) then [] else (n ∷ iter₀ f (f · n)))
{-# ATP axiom iter₀-eq #-}
|
{
"alphanum_fraction": 0.3604651163,
"avg_line_length": 31.2727272727,
"ext": "agda",
"hexsha": "8719d2f0882923462d8227911c4dbd0b935f361f",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/Iter0/Iter0.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/Iter0/Iter0.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/Iter0/Iter0.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 135,
"size": 688
}
|
{-# OPTIONS --sized-types #-}
open import Relation.Binary.Core
module BubbleSort.Correctness.Permutation {A : Set}
(_≤_ : A → A → Set)
(tot≤ : Total _≤_) where
open import BubbleSort _≤_ tot≤
open import Data.Product
open import Data.List
open import Data.Sum
open import List.Permutation.Base A
open import List.Permutation.Base.Equivalence A
open import Size
open import SList
open import SList.Properties A
open import SList.Concatenation A
lemma-swap*∼ : {ι : Size}(x : A) → (xs : SList A {ι}) → unsize A (x ∙ xs) ∼ unsize A (proj₂ (swap* x xs) ∙ proj₁ (swap* x xs))
lemma-swap*∼ x snil = ∼x /head /head ∼[]
lemma-swap*∼ x (y ∙ ys)
with tot≤ x y
... | inj₁ x≤y = ∼x /head (/tail /head) (lemma-swap*∼ y ys)
... | inj₂ y≤x = ∼x (/tail /head) (/tail /head) (lemma-swap*∼ x ys)
lemma-bubbleSort∼ : {ι : Size}(xs : SList A {ι}) → unsize A xs ∼ unsize A (bubbleSort xs)
lemma-bubbleSort∼ snil = ∼[]
lemma-bubbleSort∼ (x ∙ xs) = trans∼ (lemma-swap*∼ x xs) (trans∼ (lemma-⊕∼ y (lemma-bubbleSort∼ ys)) (lemma-size-unsize y (bubbleSort ys)))
where sxxs = swap* x xs
ys = proj₁ sxxs
y = proj₂ sxxs
theorem-bubbleSort∼ : (xs : List A) → xs ∼ unsize A (bubbleSort (size A xs))
theorem-bubbleSort∼ xs = trans∼ (lemma-unsize-size xs) (lemma-bubbleSort∼ (size A xs))
|
{
"alphanum_fraction": 0.6128560993,
"avg_line_length": 37,
"ext": "agda",
"hexsha": "72d99f16ad8a6a0335dcfc32cd725eb4c1a0618b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/BubbleSort/Correctness/Permutation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/BubbleSort/Correctness/Permutation.agda",
"max_line_length": 138,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/BubbleSort/Correctness/Permutation.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 481,
"size": 1369
}
|
---------------------------------------------------------------------------
-- The rec definition using the fixed-point combinator
---------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module LTC-PCF.Data.Nat.Rec where
open import LTC-PCF.Base
---------------------------------------------------------------------------
-- Let T = D → D → (D → D → D) → D be a type. Instead of defining
-- rec : T → T, we use the LTC-PCF λ-abstraction and application to
-- avoid use a polymorphic fixed-point operator.
rech : D → D
rech r = lam (λ n → lam (λ a → lam (λ f →
if (iszero₁ n)
then a
else f · pred₁ n · (r · pred₁ n · a · f))))
rec : D → D → D → D
rec n a f = fix rech · n · a · f
|
{
"alphanum_fraction": 0.4087431694,
"avg_line_length": 32.6785714286,
"ext": "agda",
"hexsha": "61d0df214690b9b3e9dab95691aa0d629411733f",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/LTC-PCF/Data/Nat/Rec.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/LTC-PCF/Data/Nat/Rec.agda",
"max_line_length": 75,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/LTC-PCF/Data/Nat/Rec.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 211,
"size": 915
}
|
open import Prelude
open import Nat
open import Agda.Primitive using (Level; lzero; lsuc) renaming (_⊔_ to lmax)
module List where
-- definitions
data List (A : Set) : Set where
[] : List A
_::_ : A → List A → List A
_++_ : {A : Set} → List A → List A → List A
[] ++ l₂ = l₂
(h :: l₁) ++ l₂ = h :: (l₁ ++ l₂)
infixl 50 _++_
∥_∥ : {A : Set} → List A → Nat
∥ [] ∥ = Z
∥ a :: as ∥ = 1+ ∥ as ∥
_⟦_⟧ : {A : Set} → List A → Nat → Maybe A
[] ⟦ i ⟧ = None
(a :: as) ⟦ Z ⟧ = Some a
(a :: as) ⟦ 1+ i ⟧ = as ⟦ i ⟧
data _In_ : {A : Set} → A → List A → Set where
LInH : ∀{A} {a : A} {l : List A} → a In (a :: l)
LInT : ∀{A} {a a' : A} {l : List A} → a In l → a In (a' :: l)
_⫇_ : {A : Set} → List A → List A → Set
_⫇_ {A} l1 l2 = (i1 : Nat) (a : A) →
l1 ⟦ i1 ⟧ == Some a →
Σ[ i2 ∈ Nat ] (l2 ⟦ i2 ⟧ == Some a)
_≈_ : {A : Set} → List A → List A → Set
_≈_ {A} l1 l2 = l1 ⫇ l2 ∧ l2 ⫇ l1
reverse : {A : Set} → List A → List A
reverse [] = []
reverse (a :: as) = reverse as ++ (a :: [])
map : {A B : Set} → (A → B) → List A → List B
map f [] = []
map f (a :: as) = f a :: map f as
foldl : {A B : Set} → (B → A → B) → B → List A → B
foldl f b [] = b
foldl f b (a :: as) = foldl f (f b a) as
foldr : {A B : Set} → (B → A → B) → B → List A → B
foldr f b = foldl f b ⊙ reverse
concat : {A : Set} → List (List A) → List A
concat [] = []
concat (l1 :: rest) = l1 ++ (concat rest)
-- if the lists aren't the same length,
-- the extra elements of the longer list are ignored
zip : {A B : Set} → List A → List B → List (A ∧ B)
zip [] _ = []
zip (a :: as) [] = []
zip (a :: as) (b :: bs) = (a , b) :: zip as bs
unzip : {A B : Set} → List (A ∧ B) → (List A ∧ List B)
unzip [] = ([] , [])
unzip ((a , b) :: rest)
with unzip rest
... | (as , bs) = (a :: as , b :: bs)
-- theorems
list-==-dec : {A : Set} →
(l1 l2 : List A) →
((a1 a2 : A) → a1 == a2 ∨ a1 ≠ a2) →
l1 == l2 ∨ l1 ≠ l2
list-==-dec [] [] A-==-dec = Inl refl
list-==-dec [] (_ :: _) A-==-dec = Inr (λ ())
list-==-dec (_ :: _) [] A-==-dec = Inr (λ ())
list-==-dec (h1 :: t1) (h2 :: t2) A-==-dec
with A-==-dec h1 h2
... | Inr ne = Inr (λ where refl → ne refl)
... | Inl refl
with list-==-dec t1 t2 A-==-dec
... | Inr ne = Inr (λ where refl → ne refl)
... | Inl refl = Inl refl
-- if the items of two lists are equal, then the lists are equal
==-per-elem : {A : Set} → {l1 l2 : List A} →
((i : Nat) → l1 ⟦ i ⟧ == l2 ⟦ i ⟧) →
l1 == l2
==-per-elem {l1 = []} {[]} items== = refl
==-per-elem {l1 = []} {h2 :: t2} items== = abort (somenotnone (! (items== Z)))
==-per-elem {l1 = h1 :: t1} {[]} items== = abort (somenotnone (items== Z))
==-per-elem {l1 = h1 :: t1} {h2 :: t2} items==
rewrite someinj (items== Z) | ==-per-elem {l1 = t1} {t2} (λ i → items== (1+ i))
= refl
-- _++_ theorems
++assc : ∀{A a1 a2 a3} → (_++_ {A} a1 a2) ++ a3 == a1 ++ (a2 ++ a3)
++assc {A} {[]} {a2} {a3} = refl
++assc {A} {x :: a1} {a2} {a3} with a1 ++ a2 ++ a3 | ++assc {A} {a1} {a2} {a3}
++assc {A} {x :: a1} {a2} {a3} | _ | refl = refl
l++[]==l : {A : Set} (l : List A) →
l ++ [] == l
l++[]==l [] = refl
l++[]==l (a :: as)
rewrite l++[]==l as
= refl
-- ∥_∥ theorem
∥-++-comm : ∀{A a1 a2} → ∥ a1 ∥ + (∥_∥ {A} a2) == ∥ a1 ++ a2 ∥
∥-++-comm {A} {[]} {a2} = refl
∥-++-comm {A} {a :: a1} {a2} = 1+ap (∥-++-comm {A} {a1})
-- _⟦_⟧ and ++ theorem
⦇l1++[a]++l2⦈⟦∥l1∥⟧==a : {A : Set} {l1 l2 : List A} {a : A} →
(l1 ++ (a :: []) ++ l2) ⟦ ∥ l1 ∥ ⟧ == Some a
⦇l1++[a]++l2⦈⟦∥l1∥⟧==a {l1 = []} = refl
⦇l1++[a]++l2⦈⟦∥l1∥⟧==a {l1 = a1 :: l1rest} {l2} {a} = ⦇l1++[a]++l2⦈⟦∥l1∥⟧==a {l1 = l1rest} {l2}
-- packaging of list indexing results
list-index-dec : {A : Set} (l : List A) (i : Nat) →
l ⟦ i ⟧ == None ∨ Σ[ a ∈ A ] (l ⟦ i ⟧ == Some a)
list-index-dec l i
with l ⟦ i ⟧
... | None = Inl refl
... | Some a = Inr (a , refl)
-- theorems characterizing the partiality of list indexing
list-index-some : {A : Set} {l : List A} {i : Nat} →
i < ∥ l ∥ →
Σ[ a ∈ A ] (l ⟦ i ⟧ == Some a)
list-index-some {l = []} {Z} i<∥l∥ = abort (n≮0 i<∥l∥)
list-index-some {l = a :: as} {Z} i<∥l∥ = _ , refl
list-index-some {l = a :: as} {1+ i} i<∥l∥ = list-index-some (1+n<1+m→n<m i<∥l∥)
list-index-none : {A : Set} {l : List A} {i : Nat} →
∥ l ∥ ≤ i →
l ⟦ i ⟧ == None
list-index-none {l = []} i≥∥l∥ = refl
list-index-none {l = a :: as} {1+ i} i≥∥l∥ = list-index-none (1+n≤1+m→n≤m i≥∥l∥)
list-index-some-conv : {A : Set} {l : List A} {i : Nat} {a : A} →
l ⟦ i ⟧ == Some a →
i < ∥ l ∥
list-index-some-conv {l = l} {i} i≥∥l∥
with <dec ∥ l ∥ i
... | Inr (Inr i<∥l∥) = i<∥l∥
... | Inr (Inl refl)
rewrite list-index-none {l = l} {∥ l ∥} ≤refl
= abort (somenotnone (! i≥∥l∥))
... | Inl ∥l∥<i
rewrite list-index-none (n<m→n≤m ∥l∥<i)
= abort (somenotnone (! i≥∥l∥))
list-index-none-conv : {A : Set} {l : List A} {i : Nat} →
l ⟦ i ⟧ == None →
∥ l ∥ ≤ i
list-index-none-conv {l = l} {i} i≥∥l∥
with <dec ∥ l ∥ i
... | Inl ∥l∥<i = n<m→n≤m ∥l∥<i
... | Inr (Inl refl) = ≤refl
... | Inr (Inr i<∥l∥)
with list-index-some i<∥l∥
... | _ , i≱∥l∥ rewrite i≥∥l∥ = abort (somenotnone (! i≱∥l∥))
∥l1∥==∥l2∥→l1[i]→l2[i] : {A B : Set} {la : List A} {lb : List B} {i : Nat} {a : A} →
∥ la ∥ == ∥ lb ∥ →
la ⟦ i ⟧ == Some a →
Σ[ b ∈ B ] (lb ⟦ i ⟧ == Some b)
∥l1∥==∥l2∥→l1[i]→l2[i] {i = i} ∥la∥==∥lb∥ la[i]==a
= list-index-some (tr (λ y → i < y) ∥la∥==∥lb∥ (list-index-some-conv la[i]==a))
∥l1∥==∥l2∥→¬l1[i]→¬l2[i] : {A B : Set} {la : List A} {lb : List B} {i : Nat} →
∥ la ∥ == ∥ lb ∥ →
la ⟦ i ⟧ == None →
lb ⟦ i ⟧ == None
∥l1∥==∥l2∥→¬l1[i]→¬l2[i] {i = i} ∥la∥==∥lb∥ la[i]==None
= list-index-none (tr (λ y → y ≤ i) ∥la∥==∥lb∥ (list-index-none-conv la[i]==None))
-- more list indexing theorems
i∈l2→|l1|+i∈l1++l2 : {A : Set} {l1 l2 : List A} {i : Nat} {a : A} →
l2 ⟦ i ⟧ == Some a →
(l1 ++ l2) ⟦ ∥ l1 ∥ + i ⟧ == Some a
i∈l2→|l1|+i∈l1++l2 {l1 = []} i∈l2 = i∈l2
i∈l2→|l1|+i∈l1++l2 {l1 = a1 :: l1} i∈l2 = i∈l2→|l1|+i∈l1++l2 {l1 = l1} i∈l2
i∈l1→i∈l1++l2 : {A : Set} {l1 l2 : List A} {i : Nat} {a : A} →
l1 ⟦ i ⟧ == Some a →
(l1 ++ l2) ⟦ i ⟧ == Some a
i∈l1→i∈l1++l2 {l1 = a1 :: l1} {i = Z} i∈l1 = i∈l1
i∈l1→i∈l1++l2 {l1 = a1 :: l1} {i = 1+ i} i∈l1 = i∈l1→i∈l1++l2 {l1 = l1} i∈l1
append-index-split : {A : Set} {l1 l2 : List A} {i : Nat} {a : A} →
(l1 ++ l2) ⟦ i ⟧ == Some a →
l1 ⟦ i ⟧ == Some a ∨ (Σ[ j ∈ Nat ] (∥ l1 ∥ + j == i ∧ l2 ⟦ j ⟧ == Some a))
append-index-split {l1 = []} i∈l1==l2 = Inr (_ , refl , i∈l1==l2)
append-index-split {l1 = a1 :: l1} {i = Z} i∈l1==l2 = Inl i∈l1==l2
append-index-split {l1 = a1 :: l1} {i = 1+ i} i∈l1==l2
with append-index-split {l1 = l1} i∈l1==l2
... | Inl i∈l1 = Inl i∈l1
... | Inr (j , |l1|+j=i , j∈l2) = Inr (_ , 1+ap |l1|+j=i , j∈l2)
-- reverse theorems
reverse-single : {A : Set} {a : A} → reverse (a :: []) == a :: []
reverse-single = refl
reverse-++ : {A : Set} {l1 l2 : List A} →
reverse (l1 ++ l2) == reverse l2 ++ reverse l1
reverse-++ {l1 = []} {l2}
rewrite l++[]==l (reverse l2)
= refl
reverse-++ {l1 = a1 :: as1} {l2}
rewrite reverse-++ {l1 = as1} {l2}
= ++assc {a1 = reverse l2}
reverse-inv : {A : Set} {l : List A} → reverse (reverse l) == l
reverse-inv {l = []} = refl
reverse-inv {l = a :: as}
rewrite reverse-++ {l1 = reverse as} {a :: []} | reverse-inv {l = as}
= refl
-- map theorems
map-ext : ∀{A B : Set} {f g : A → B} {l : List A} →
((a : A) → f a == g a) →
map f l == map g l
map-ext {l = []} ext = refl
map-ext {l = a :: l} ext rewrite ext a | map-ext {l = l} ext = refl
map-id : ∀{A : Set} {l : List A} → map (λ a → a) l == l
map-id {l = []} = refl
map-id {l = a :: l} rewrite map-id {l = l} = refl
map-len : ∀{A B : Set} {f : A → B} {l : List A} → ∥ map f l ∥ == ∥ l ∥
map-len {l = []} = refl
map-len {l = _ :: l} = 1+ap map-len
map-In : ∀{A B : Set} {f : A → B} {l : List A} {a : A} →
a In l →
f a In map f l
map-In LInH = LInH
map-In (LInT aInL) = LInT (map-In aInL)
map-++-comm : ∀{A B f a b} → map f a ++ map f b == map {A} {B} f (a ++ b)
map-++-comm {a = []} = refl
map-++-comm {A} {B} {f} {h :: t} {b} with map f (t ++ b) | map-++-comm {A} {B} {f} {t} {b}
map-++-comm {A} {B} {f} {h :: t} {b} | _ | refl = refl
map^2 : ∀{A B C f g l} → map {B} {C} f (map {A} {B} g l) == map (f ⊙ g) l
map^2 {l = []} = refl
map^2 {f = f} {g} {h :: t} rewrite map^2 {f = f} {g} {t} = refl
reverse-map : {A B : Set} {f : A → B} {l : List A} → reverse (map f l) == map f (reverse l)
reverse-map {l = []} = refl
reverse-map {f = f} {a' :: l}
rewrite reverse-map {f = f} {l}
= map-++-comm {a = reverse l}
-- foldl theorem
foldl-++ : {A B : Set} {l1 l2 : List A} {f : B → A → B} {b0 : B} →
foldl f b0 (l1 ++ l2) == foldl f (foldl f b0 l1) l2
foldl-++ {l1 = []} = refl
foldl-++ {l1 = a1 :: l1rest} = foldl-++ {l1 = l1rest}
-- fold+map theorem
foldl-map : {A' A B : Set} {l : List A'} {f-fold : B → A → B} {f-map : A' → A} {b0 : B} →
foldl f-fold b0 (map f-map l) == foldl (λ b a' → f-fold b (f-map a')) b0 l
foldl-map {l = []} = refl
foldl-map {l = a' :: l} {f-fold} {f-map} {b0} = foldl-map {l = l}
foldr-map : {A' A B : Set} {l : List A'} {f-fold : B → A → B} {f-map : A' → A} {b0 : B} →
foldr f-fold b0 (map f-map l) == foldr (λ b a' → f-fold b (f-map a')) b0 l
foldr-map {l = l} {_} {f}
rewrite reverse-map {f = f} {l}
= foldl-map {l = reverse l}
-- zip/unzip theorems
unzip-inv : {A B : Set} {l : List (A ∧ B)} {la : List A} {lb : List B} →
unzip l == (la , lb) →
l == zip la lb
unzip-inv {l = []} form
with form
... | refl = refl
unzip-inv {l = (a' , b') :: rest} {a :: as} {b :: bs} form
with unzip rest | unzip-inv {l = rest} refl | form
... | (as' , bs') | refl | refl = refl
zip-inv : {A B : Set} {la : List A} {lb : List B} →
∥ la ∥ == ∥ lb ∥ →
unzip (zip la lb) == (la , lb)
zip-inv {la = []} {[]} len-eq = refl
zip-inv {la = a :: as} {b :: bs} len-eq
with unzip (zip as bs) | zip-inv (1+inj len-eq)
... | (as' , bs') | refl = refl
-- _≈_ theorems
≈-++-comm-lem' : (A : Set) (l1 l2 : List A) (i : Nat) (a : A) →
(l1 ++ l2) ⟦ i ⟧ == Some a →
Σ[ i' ∈ Nat ] ((l2 ++ l1) ⟦ i' ⟧ == Some a)
≈-++-comm-lem' A l1 l2 i a i∈l1++l2
with append-index-split {l1 = l1} i∈l1++l2
... | Inl i∈l1 = _ , i∈l2→|l1|+i∈l1++l2 {l1 = l2} i∈l1
... | Inr (j , |l1|+j=i , j∈l2) = _ , i∈l1→i∈l1++l2 {l1 = l2} j∈l2
≈-++-comm : {A : Set} {l1 l2 : List A} → l1 ++ l2 ≈ l2 ++ l1
≈-++-comm {A} {l1} {l2} = ≈-++-comm-lem' A l1 l2 , ≈-++-comm-lem' A l2 l1
≈-++-dup : {A : Set} {l : List A} → l ++ l ≈ l
≈-++-dup {l = []} = (λ i a ()) , (λ i a ())
≈-++-dup {A} {a :: l}
= ≈-++-dup'1 , ≈-++-dup'2
where
≈-++-dup'1 : (i : Nat) (a' : A) →
(a :: (l ++ (a :: l))) ⟦ i ⟧ == Some a' →
Σ[ i' ∈ Nat ] ((a :: l) ⟦ i' ⟧ == Some a')
≈-++-dup'1 Z a' i∈alal = Z , i∈alal
≈-++-dup'1 (1+ i) a' i∈alal
with append-index-split {l1 = l} i∈alal
... | Inl i∈l = (1+ i) , i∈l
... | Inr (j , |l1|+j=i , j∈al) = j , j∈al
≈-++-dup'2 : (i : Nat) (a' : A) →
(a :: l) ⟦ i ⟧ == Some a' →
Σ[ i' ∈ Nat ] ((a :: (l ++ (a :: l))) ⟦ i' ⟧ == Some a')
≈-++-dup'2 i a' i∈al = (1 + ∥ l ∥ + i) , i∈l2→|l1|+i∈l1++l2 {l1 = l} i∈al
|
{
"alphanum_fraction": 0.4027755495,
"avg_line_length": 37.8905775076,
"ext": "agda",
"hexsha": "ff61728d150be42241d546aa983d1a13d641e1fd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "db857f3e7dc9a4793f68504e6365d93ed75d7f88",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nickcollins/dependent-dicts-agda",
"max_forks_repo_path": "List.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "db857f3e7dc9a4793f68504e6365d93ed75d7f88",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nickcollins/dependent-dicts-agda",
"max_issues_repo_path": "List.agda",
"max_line_length": 99,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "db857f3e7dc9a4793f68504e6365d93ed75d7f88",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nickcollins/dependent-dicts-agda",
"max_stars_repo_path": "List.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5817,
"size": 12466
}
|
{-# OPTIONS --safe #-}
module Definition.Conversion.Soundness where
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Conversion
open import Definition.Conversion.Whnf
open import Definition.Typed.Consequences.Syntactic
open import Definition.Typed.Consequences.NeTypeEq
open import Tools.Product
import Tools.PropositionalEquality as PE
mutual
-- Algorithmic equality of neutrals is well-formed.
soundness~↑! : ∀ {k l A lA Γ} → Γ ⊢ k ~ l ↑! A ^ lA → Γ ⊢ k ≡ l ∷ A ^ [ ! , lA ]
soundness~↑! (var-refl x x≡y) = PE.subst (λ y → _ ⊢ _ ≡ var y ∷ _ ^ _) x≡y (refl x)
soundness~↑! (app-cong {rF = !} k~l x₁) = app-cong (soundness~↓! k~l) (soundnessConv↑Term x₁)
soundness~↑! (app-cong {rF = %} k~l x₁) = app-cong (soundness~↓! k~l) (let _ , _ , y = soundness~↑% x₁ in y)
soundness~↑! (natrec-cong x₁ x₂ x₃ k~l) =
natrec-cong (soundnessConv↑ x₁) (soundnessConv↑Term x₂)
(soundnessConv↑Term x₃) (soundness~↓! k~l)
soundness~↑! (Emptyrec-cong x₁ k~l) = let ⊢k , ⊢l , _ = soundness~↑% k~l in
Emptyrec-cong (soundnessConv↑ x₁) ⊢k ⊢l
soundness~↑! (Id-cong X x x₁) = Id-cong (soundness~↓! X) (soundnessConv↑Term x) (soundnessConv↑Term x₁)
soundness~↑! (Id-ℕ X x) = Id-cong (refl (ℕⱼ (wfEqTerm (soundness~↓! X)))) (soundness~↓! X) (soundnessConv↑Term x)
soundness~↑! (Id-ℕ0 X) = let XX = soundness~↓! X in Id-cong (refl (ℕⱼ (wfEqTerm XX))) (refl (zeroⱼ (wfEqTerm XX))) XX
soundness~↑! (Id-ℕS x X) = let XX = soundness~↓! X in Id-cong (refl (ℕⱼ (wfEqTerm XX))) (suc-cong (soundnessConv↑Term x)) XX
soundness~↑! (Id-U X x) = Id-cong (refl (univ 0<1 (wfEqTerm (soundness~↓! X)))) (soundness~↓! X) (soundnessConv↑Term x)
soundness~↑! (Id-Uℕ X) = let XX = soundness~↓! X in Id-cong (refl (univ 0<1 (wfEqTerm XX))) (refl (ℕⱼ (wfEqTerm XX))) XX
soundness~↑! (Id-UΠ x X) = let XX = soundness~↓! X
xx = soundnessConv↑Term x
in Id-cong (refl (univ 0<1 (wfEqTerm XX))) xx XX
soundness~↑! (cast-cong X x x₁ x₂ x₃) = cast-cong (soundness~↓! X) (soundnessConv↑Term x) (soundnessConv↑Term x₁) x₂ x₃
soundness~↑! (cast-ℕ X x x₁ x₂) = let XX = soundness~↓! X in cast-cong (refl (ℕⱼ (wfEqTerm XX))) XX (soundnessConv↑Term x) x₁ x₂
soundness~↑! (cast-ℕℕ X x x₁) = let XX = soundness~↓! X in cast-cong (refl (ℕⱼ (wfEqTerm XX))) (refl (ℕⱼ (wfEqTerm XX))) XX x x₁
soundness~↑! (cast-Π x X x₁ x₂ x₃) = cast-cong (soundnessConv↑Term x) (soundness~↓! X) (soundnessConv↑Term x₁) x₂ x₃
soundness~↑! (cast-Πℕ x x₁ x₂ x₃) = let XX = (soundnessConv↑Term x) in cast-cong XX (refl (ℕⱼ (wfEqTerm XX))) (soundnessConv↑Term x₁) x₂ x₃
soundness~↑! (cast-ℕΠ x x₁ x₂ x₃) = let XX = (soundnessConv↑Term x) in cast-cong (refl (ℕⱼ (wfEqTerm XX))) XX (soundnessConv↑Term x₁) x₂ x₃
soundness~↑! (cast-ΠΠ%! x x₁ x₂ x₃ x₄) = cast-cong (soundnessConv↑Term x) (soundnessConv↑Term x₁) (soundnessConv↑Term x₂) x₃ x₄
soundness~↑! (cast-ΠΠ!% x x₁ x₂ x₃ x₄) = cast-cong (soundnessConv↑Term x) (soundnessConv↑Term x₁) (soundnessConv↑Term x₂) x₃ x₄
soundness~↑% : ∀ {k l A lA Γ} → Γ ⊢ k ~ l ↑% A ^ lA → Γ ⊢ k ∷ A ^ [ % , lA ] × Γ ⊢ l ∷ A ^ [ % , lA ] × Γ ⊢ k ≡ l ∷ A ^ [ % , lA ]
soundness~↑% (%~↑ ⊢k ⊢l) = ⊢k , ⊢l , proof-irrelevance ⊢k ⊢l
soundness~↑ : ∀ {k l A rA lA Γ} → Γ ⊢ k ~ l ↑ A ^ [ rA , lA ] → Γ ⊢ k ≡ l ∷ A ^ [ rA , lA ]
soundness~↑ (~↑! x) = soundness~↑! x
soundness~↑ (~↑% x) = let _ , _ , y = soundness~↑% x in y
-- Algorithmic equality of neutrals in WHNF is well-formed.
soundness~↓! : ∀ {k l A lA Γ} → Γ ⊢ k ~ l ↓! A ^ lA → Γ ⊢ k ≡ l ∷ A ^ [ ! , lA ]
soundness~↓! ([~] A₁ D whnfA k~l) = conv (soundness~↑! k~l) (subset* D)
-- Algorithmic equality of types is well-formed.
soundnessConv↑ : ∀ {A B rA Γ} → Γ ⊢ A [conv↑] B ^ rA → Γ ⊢ A ≡ B ^ rA
soundnessConv↑ ([↑] A′ B′ D D′ whnfA′ whnfB′ A′<>B′) =
trans (subset* D) (trans (soundnessConv↓ A′<>B′) (sym (subset* D′)))
-- Algorithmic equality of types in WHNF is well-formed.
soundnessConv↓ : ∀ {A B rA Γ} → Γ ⊢ A [conv↓] B ^ rA → Γ ⊢ A ≡ B ^ rA
soundnessConv↓ (U-refl PE.refl ⊢Γ) = refl (Uⱼ ⊢Γ)
soundnessConv↓ (univ x₂) = univ (soundnessConv↓Term x₂)
-- Algorithmic equality of terms is well-formed.
soundnessConv↑Term : ∀ {a b A lA Γ} → Γ ⊢ a [conv↑] b ∷ A ^ lA → Γ ⊢ a ≡ b ∷ A ^ [ ! , lA ]
soundnessConv↑Term ([↑]ₜ B t′ u′ D d d′ whnfB whnft′ whnfu′ t<>u) =
conv (trans (subset*Term d)
(trans (soundnessConv↓Term t<>u)
(sym (subset*Term d′))))
(sym (subset* D))
-- Algorithmic equality of terms in WHNF is well-formed.
soundnessConv↓Term : ∀ {a b A lA Γ} → Γ ⊢ a [conv↓] b ∷ A ^ lA → Γ ⊢ a ≡ b ∷ A ^ [ ! , lA ]
soundnessConv↓Term (ne x) = soundness~↓! x
soundnessConv↓Term (ℕ-refl ⊢Γ) = refl (ℕⱼ ⊢Γ)
soundnessConv↓Term (Empty-refl PE.refl ⊢Γ) = refl (Emptyⱼ ⊢Γ)
soundnessConv↓Term (Π-cong PE.refl PE.refl PE.refl PE.refl l< l<' F c c₁) =
Π-cong l< l<' F (soundnessConv↑Term c) (soundnessConv↑Term c₁)
soundnessConv↓Term (∃-cong PE.refl F c c₁) =
∃-cong F (soundnessConv↑Term c) (soundnessConv↑Term c₁)
soundnessConv↓Term (ℕ-ins x) = soundness~↓! x
-- soundnessConv↓Term (Empty-ins x) = soundness~↓% x
soundnessConv↓Term (ne-ins t u x x₁) =
let whnfM , neA , neB = ne~↓! x₁
X = soundness~↓! x₁
_ , t∷M , _ = syntacticEqTerm X
_ , M≡A' = neTypeEq neA t∷M t -- soundnessConv↑ M≡A
in conv X M≡A'
soundnessConv↓Term (zero-refl ⊢Γ) = refl (zeroⱼ ⊢Γ)
soundnessConv↓Term (suc-cong c) = suc-cong (soundnessConv↑Term c)
soundnessConv↓Term (η-eq l< l<' F x x₁ y y₁ c) = η-eq l< l<' F x x₁ (soundnessConv↑Term c)
soundnessConv↓Term (U-refl PE.refl ⊢Γ) = refl (univ 0<1 ⊢Γ)
app-cong′ : ∀ {Γ k l t v F rF lF G lG lΠ}
→ Γ ⊢ k ~ l ↓! Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ ι lΠ
→ Γ ⊢ t [genconv↑] v ∷ F ^ [ rF , ι lF ]
→ Γ ⊢ k ∘ t ^ lΠ ~ l ∘ v ^ lΠ ↑ G [ t ] ^ [ ! , ι lG ]
app-cong′ k~l t=v = ~↑! (app-cong k~l t=v)
natrec-cong′ : ∀ {Γ k l h g a b F lF G}
→ Γ ∙ ℕ ^ [ ! , ι ⁰ ] ⊢ F [conv↑] G ^ [ ! , ι lF ]
→ Γ ⊢ a [conv↑] b ∷ F [ zero ] ^ ι lF
→ Γ ⊢ h [conv↑] g ∷ Π ℕ ^ ! ° ⁰ ▹ (F ^ ! ° lF ▹▹ F [ suc (var 0) ]↑ ° lF ° lF) ° lF ° lF ^ ι lF
→ Γ ⊢ k ~ l ↓! ℕ ^ ι ⁰
→ Γ ⊢ natrec lF F a h k ~ natrec lF G b g l ↑ F [ k ] ^ [ ! , ι lF ]
natrec-cong′ F=G a=b h=g k~l = ~↑! (natrec-cong F=G a=b h=g k~l)
Emptyrec-cong′ : ∀ {Γ k l F lF lEmpty G}
→ Γ ⊢ F [conv↑] G ^ [ ! , ι lF ]
→ Γ ⊢ k ~ l ↑% Empty lEmpty ^ ι lEmpty
→ Γ ⊢ Emptyrec lF lEmpty F k ~ Emptyrec lF lEmpty G l ↑ F ^ [ ! , ι lF ]
Emptyrec-cong′ F=G k~l = ~↑! (Emptyrec-cong F=G k~l)
|
{
"alphanum_fraction": 0.570135075,
"avg_line_length": 57.093220339,
"ext": "agda",
"hexsha": "c2ec181c4d8ee00e6e45df7a1cebf0c74ded4126",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/Conversion/Soundness.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/Conversion/Soundness.agda",
"max_line_length": 141,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/Conversion/Soundness.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 2974,
"size": 6737
}
|
{-
This second-order term syntax was created from the following second-order syntax description:
syntax Empty | E
type
𝟘 : 0-ary
term
abort : 𝟘 -> α
theory
(𝟘η) e : 𝟘 c : α |> abort(e) = c
-}
module Empty.Syntax where
open import SOAS.Common
open import SOAS.Context
open import SOAS.Variable
open import SOAS.Families.Core
open import SOAS.Construction.Structure
open import SOAS.ContextMaps.Inductive
open import SOAS.Metatheory.Syntax
open import Empty.Signature
private
variable
Γ Δ Π : Ctx
α : ET
𝔛 : Familyₛ
-- Inductive term declaration
module E:Terms (𝔛 : Familyₛ) where
data E : Familyₛ where
var : ℐ ⇾̣ E
mvar : 𝔛 α Π → Sub E Π Γ → E α Γ
abort : E 𝟘 Γ → E α Γ
open import SOAS.Metatheory.MetaAlgebra ⅀F 𝔛
Eᵃ : MetaAlg E
Eᵃ = record
{ 𝑎𝑙𝑔 = λ where
(abortₒ ⋮ a) → abort a
; 𝑣𝑎𝑟 = var ; 𝑚𝑣𝑎𝑟 = λ 𝔪 mε → mvar 𝔪 (tabulate mε) }
module Eᵃ = MetaAlg Eᵃ
module _ {𝒜 : Familyₛ}(𝒜ᵃ : MetaAlg 𝒜) where
open MetaAlg 𝒜ᵃ
𝕤𝕖𝕞 : E ⇾̣ 𝒜
𝕊 : Sub E Π Γ → Π ~[ 𝒜 ]↝ Γ
𝕊 (t ◂ σ) new = 𝕤𝕖𝕞 t
𝕊 (t ◂ σ) (old v) = 𝕊 σ v
𝕤𝕖𝕞 (mvar 𝔪 mε) = 𝑚𝑣𝑎𝑟 𝔪 (𝕊 mε)
𝕤𝕖𝕞 (var v) = 𝑣𝑎𝑟 v
𝕤𝕖𝕞 (abort a) = 𝑎𝑙𝑔 (abortₒ ⋮ 𝕤𝕖𝕞 a)
𝕤𝕖𝕞ᵃ⇒ : MetaAlg⇒ Eᵃ 𝒜ᵃ 𝕤𝕖𝕞
𝕤𝕖𝕞ᵃ⇒ = record
{ ⟨𝑎𝑙𝑔⟩ = λ{ {t = t} → ⟨𝑎𝑙𝑔⟩ t }
; ⟨𝑣𝑎𝑟⟩ = refl
; ⟨𝑚𝑣𝑎𝑟⟩ = λ{ {𝔪 = 𝔪}{mε} → cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-tab mε)) } }
where
open ≡-Reasoning
⟨𝑎𝑙𝑔⟩ : (t : ⅀ E α Γ) → 𝕤𝕖𝕞 (Eᵃ.𝑎𝑙𝑔 t) ≡ 𝑎𝑙𝑔 (⅀₁ 𝕤𝕖𝕞 t)
⟨𝑎𝑙𝑔⟩ (abortₒ ⋮ _) = refl
𝕊-tab : (mε : Π ~[ E ]↝ Γ)(v : ℐ α Π) → 𝕊 (tabulate mε) v ≡ 𝕤𝕖𝕞 (mε v)
𝕊-tab mε new = refl
𝕊-tab mε (old v) = 𝕊-tab (mε ∘ old) v
module _ (g : E ⇾̣ 𝒜)(gᵃ⇒ : MetaAlg⇒ Eᵃ 𝒜ᵃ g) where
open MetaAlg⇒ gᵃ⇒
𝕤𝕖𝕞! : (t : E α Γ) → 𝕤𝕖𝕞 t ≡ g t
𝕊-ix : (mε : Sub E Π Γ)(v : ℐ α Π) → 𝕊 mε v ≡ g (index mε v)
𝕊-ix (x ◂ mε) new = 𝕤𝕖𝕞! x
𝕊-ix (x ◂ mε) (old v) = 𝕊-ix mε v
𝕤𝕖𝕞! (mvar 𝔪 mε) rewrite cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-ix mε))
= trans (sym ⟨𝑚𝑣𝑎𝑟⟩) (cong (g ∘ mvar 𝔪) (tab∘ix≈id mε))
𝕤𝕖𝕞! (var v) = sym ⟨𝑣𝑎𝑟⟩
𝕤𝕖𝕞! (abort a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩
-- Syntax instance for the signature
E:Syn : Syntax
E:Syn = record
{ ⅀F = ⅀F
; ⅀:CS = ⅀:CompatStr
; mvarᵢ = E:Terms.mvar
; 𝕋:Init = λ 𝔛 → let open E:Terms 𝔛 in record
{ ⊥ = E ⋉ Eᵃ
; ⊥-is-initial = record { ! = λ{ {𝒜 ⋉ 𝒜ᵃ} → 𝕤𝕖𝕞 𝒜ᵃ ⋉ 𝕤𝕖𝕞ᵃ⇒ 𝒜ᵃ }
; !-unique = λ{ {𝒜 ⋉ 𝒜ᵃ} (f ⋉ fᵃ⇒) {x = t} → 𝕤𝕖𝕞! 𝒜ᵃ f fᵃ⇒ t } } } }
-- Instantiation of the syntax and metatheory
open Syntax E:Syn public
open E:Terms public
open import SOAS.Families.Build public
open import SOAS.Syntax.Shorthands Eᵃ public
open import SOAS.Metatheory E:Syn public
|
{
"alphanum_fraction": 0.5562987737,
"avg_line_length": 23.1982758621,
"ext": "agda",
"hexsha": "ef0a4aef30d62a7e58bdf190d92b8af8002856d1",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "out/Empty/Syntax.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "out/Empty/Syntax.agda",
"max_line_length": 93,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "out/Empty/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 1636,
"size": 2691
}
|
postulate
A : Set
f : {{_ : A}} → A
f = {!!}
|
{
"alphanum_fraction": 0.375,
"avg_line_length": 8,
"ext": "agda",
"hexsha": "108c056e4f4b59c43500ba453a541ee6935246fb",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue4307.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue4307.agda",
"max_line_length": 17,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue4307.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 22,
"size": 48
}
|
open import Oscar.Prelude
open import Oscar.Class
open import Oscar.Class.Surjection
open import Oscar.Class.Smap
open import Oscar.Data.Constraint
module Oscar.Class.Surjextensionality where
module Surjextensionality
{𝔬₁ 𝔯₁ ℓ₁ 𝔬₂ 𝔯₂ ℓ₂} {𝔒₁ : Ø 𝔬₁} {𝔒₂ : Ø 𝔬₂}
(_∼₁_ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁)
(_∼̇₁_ : ∀ {x y} → x ∼₁ y → x ∼₁ y → Ø ℓ₁)
(_∼₂_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂)
(_∼̇₂_ : ∀ {x y} → x ∼₂ y → x ∼₂ y → Ø ℓ₂)
(surjection : Surjection.type 𝔒₁ 𝔒₂)
(smap : Smap.type _∼₁_ _∼₂_ surjection surjection)
where
open ℭLASS (_∼₁_ ,, {- FIXME including `(λ {x y} → _∼̇₁_ {x} {y}) ,, ` leads to instance search depth exhausted in Oscar.Data.Surjextenscollation -} _∼₂_ ,, (λ {x y} → _∼̇₂_ {x} {y}) ,, surjection ,, (λ {x y} → smap {x} {y})) (∀ x y (f₁ f₂ : x ∼₁ y) → f₁ ∼̇₁ f₂ → smap f₁ ∼̇₂ smap f₂) public
TYPE = ∀ {x y} {f₁ f₂ : x ∼₁ y} → f₁ ∼̇₁ f₂ → smap f₁ ∼̇₂ smap f₂
module Surjextensionality!
{𝔬₁ 𝔯₁ ℓ₁ 𝔬₂ 𝔯₂ ℓ₂} {𝔒₁ : Ø 𝔬₁} {𝔒₂ : Ø 𝔬₂}
(_∼₁_ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁)
(_∼̇₁_ : ∀ {x y} → _∼₁_ x y → _∼₁_ x y → Ø ℓ₁)
(_∼₂_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂)
(_∼̇₂_ : ∀ {x y} → _∼₂_ x y → _∼₂_ x y → Ø ℓ₂)
⦃ _ : Surjection.class 𝔒₁ 𝔒₂ ⦄
⦃ _ : Smap.class _∼₁_ _∼₂_ surjection surjection ⦄
= Surjextensionality (_∼₁_) (λ {x y} → _∼̇₁_ {x} {y}) (_∼₂_) (λ {x y} → _∼̇₂_ {x} {y}) surjection (λ {x y} → smap {x = x} {y})
module _
{𝔬₁ 𝔯₁ ℓ₁ 𝔬₂ 𝔯₂ ℓ₂} {𝔒₁ : Ø 𝔬₁} {𝔒₂ : Ø 𝔬₂}
{∼₁ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁}
{∼̇₁ : ∀ {x y} → ∼₁ x y → ∼₁ x y → Ø ℓ₁}
{∼₂ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂}
{∼̇₂ : ∀ {x y} → ∼₂ x y → ∼₂ x y → Ø ℓ₂}
{surjection : Surjection.type 𝔒₁ 𝔒₂}
{smap : Smap.type ∼₁ ∼₂ surjection surjection}
where
open Surjextensionality
∼₁
(λ {x y} → ∼̇₁ {x} {y})
∼₂
(λ {x y} → ∼̇₂ {x} {y})
surjection
(λ {x y} → smap {x = x} {y})
surjextensionality : ⦃ _ : class ⦄ → TYPE
surjextensionality = method _ _ _ _
module _
{𝔬₁ 𝔯₁ ℓ₁ 𝔬₂ 𝔯₂ ℓ₂} {𝔒₁ : Ø 𝔬₁} {𝔒₂ : Ø 𝔬₂}
{∼₁ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁}
{∼̇₁ : ∀ {x y} → ∼₁ x y → ∼₁ x y → Ø ℓ₁}
{∼₂ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂}
(∼̇₂ : ∀ {x y} → ∼₂ x y → ∼₂ x y → Ø ℓ₂)
{surjection : Surjection.type 𝔒₁ 𝔒₂}
{smap : Smap.type ∼₁ ∼₂ surjection surjection}
where
open Surjextensionality
∼₁
(λ {x y} → ∼̇₁ {x} {y})
∼₂
(λ {x y} → ∼̇₂ {x} {y})
surjection
(λ {x y} → smap {x = x} {y})
surjextensionality[_] : ⦃ _ : class ⦄ → TYPE
surjextensionality[_] = surjextensionality
⟪⟫-surjextensionality[]-syntax = surjextensionality[_]
syntax ⟪⟫-surjextensionality[]-syntax t x = ⟪ x ⟫[ t ]
|
{
"alphanum_fraction": 0.5382424736,
"avg_line_length": 34.6197183099,
"ext": "agda",
"hexsha": "302360e23a57db2cd2ad1bd2ca6c74fc31a2073d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Surjextensionality.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Surjextensionality.agda",
"max_line_length": 293,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Surjextensionality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1387,
"size": 2458
}
|
{-# OPTIONS --exact-split #-}
-- {-# OPTIONS -v tc.cover.splittree:10 #-}
open import Common.Prelude
open import Common.Equality
test : {m n : Nat} → m ≡ n → Nat
test {zero} refl = zero
test {suc m} refl = suc m
|
{
"alphanum_fraction": 0.6325581395,
"avg_line_length": 21.5,
"ext": "agda",
"hexsha": "d95589f68ca91e145c538a1356bb0103ee9e81a5",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1333.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1333.agda",
"max_line_length": 43,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1333.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 69,
"size": 215
}
|
open import Data.Nat using (ℕ; suc)
open import Data.Fin using (Fin; zero; suc)
infix 9 #_
infixl 7 _·_
infix 6 ƛ_
data Term : ℕ → Set where
#_ : ∀ {n : ℕ} → Fin n → Term n
ƛ_ : ∀ {n : ℕ} → Term (suc n) → Term n
_·_ : ∀ {n : ℕ} → Term n → Term n → Term n
Rename : ℕ → ℕ → Set
Rename n m = Fin n → Fin m
Subst : ℕ → ℕ → Set
Subst n m = Fin n → Term m
ext : ∀ {n m} → Rename n m → Rename (suc n) (suc m)
ext ρ zero = zero
ext ρ (suc x) = suc (ρ x)
rename : ∀ {n m} → Rename n m → (Term n → Term m)
rename ρ (# x) = # (ρ x)
rename ρ (ƛ M) = ƛ (rename (ext ρ) M)
rename ρ (M · N) = rename ρ M · rename ρ N
exts : ∀ {n m} → Subst n m → Subst (suc n) (suc m)
exts σ zero = # zero
exts σ (suc x) = rename suc (σ x)
subst : ∀ {n m} → Subst n m → (Term n → Term m)
subst σ (# x) = σ x
subst σ (ƛ M) = ƛ (subst (exts σ) M)
subst σ (M · N) = subst σ M · subst σ N
subst-zero : ∀ {n} → Term n → Subst (suc n) n
subst-zero M zero = M
subst-zero M (suc x) = # x
infix 8 _[_]
_[_] : ∀ {n} → Term (suc n) → Term n → Term n
M [ N ] = subst (subst-zero N) M
|
{
"alphanum_fraction": 0.5195989061,
"avg_line_length": 22.8541666667,
"ext": "agda",
"hexsha": "e209ed8c789f5ffb5bed8bb851625b7bf2f27d63",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "iwilare/church-rosser",
"max_forks_repo_path": "DeBruijn.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "iwilare/church-rosser",
"max_issues_repo_path": "DeBruijn.agda",
"max_line_length": 51,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "iwilare/church-rosser",
"max_stars_repo_path": "DeBruijn.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-22T01:43:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-06-02T07:27:54.000Z",
"num_tokens": 479,
"size": 1097
}
|
module Formalization.PrimitiveRecursion where
import Lvl
open import Data
open import Data.ListSized
open import Numeral.Finite
open import Numeral.Natural
open import Syntax.Number
open import Type{Lvl.𝟎}
-- Function(n) is a syntactic representation of primitive recursive functions of type (ℕⁿ → ℕ).
-- The syntax
data Function : ℕ → Type where
-- Base cases
Base : Function(0)
Successor : Function(1)
Projection : ∀{n : ℕ} → (i : 𝕟(n)) → Function(n)
-- Inductive cases
Composition : ∀{m n : ℕ} → Function(n) → List(Function(m))(n) → Function(m)
Recursion : ∀{n : ℕ} → Function(n) → Function(𝐒(𝐒(n))) → Function(𝐒(n))
Primitive : Type
Primitive = ℕ
module _ where
open import Data.ListSized.Functions
open import Functional
private variable m n : ℕ
private variable i : 𝕟(n)
private variable x v : Primitive
private variable xs vs : List(Primitive)(n)
private variable f g : Function(m)
private variable fs gs : List(Function(m))(n)
-- The operational semantics.
data _$_⟹_ : ∀{m n} → List(Function(m))(n) → List(Primitive)(m) → List(Primitive)(n) → Type
data _$_⟶_ : ∀{n} → Function(n) → List(Primitive)(n) → ℕ → Type where
zero : (Base $ ∅ ⟶ 𝟎)
succ : (Successor $ singleton(n) ⟶ 𝐒(n))
proj : (Projection{n}(i) $ xs ⟶ index(i)(xs))
comp : (f $ vs ⟶ v) → (gs $ xs ⟹ vs) → (Composition{m}{n} f gs $ xs ⟶ v)
rec𝟎 : (f $ xs ⟶ v) → (Recursion f g $ (𝟎 ⊰ xs) ⟶ v)
rec𝐒 : (Recursion f g $ (n ⊰ xs) ⟶ x) → (g $ (n ⊰ x ⊰ xs) ⟶ v) → (Recursion f g $ (𝐒(n) ⊰ xs) ⟶ v)
data _$_⟹_ where
base : (∅ $ xs ⟹ ∅)
step : (f $ xs ⟶ v) → (fs $ xs ⟹ vs) → ((f ⊰ fs) $ xs ⟹ (v ⊰ vs))
-- Functionally equivalent to `evaluate f (map(g ↦ evaluate g xs)(gs))`, but the termination checker does not accept that form.
mapEvaluate : ∀{m n} → List(Function(m))(n) → List(Primitive)(m) → List(Primitive)(n)
-- The denotational semantics.
-- This is possible to encode into an Agda function because: Primitive recursive functions ⊆ Agda functions.
-- `Base` is interpreted as the constant 0.
-- `Successor` is interpreted as the successor function of ℕ.
-- `Projection{n}(i)` is interpreted as the projection of the i:th element of ℕⁿ.
-- `Composition(f)(gs)` is interpreted as generalized composition by using map on the arguments of a function.
-- Specifically (f ∘ (map gs)).
-- `Recursion(f)(g)` is interpreted as a "recursion constructor".
-- This is used to construct a function `r` in which the following holds:
-- • r(0 ,..xs) = f(..xs)
-- • r(𝐒(n),..xs) = g(n,r(n,..xs),..xs)
{-# TERMINATING #-} -- TODO: Terminated before but the termination checker in Agda version 2.6.2-9bed10c denies this (or in some random cases it gives an internal error at src/full/Agda/TypeChecking/Reduce/Fast.hs:1358)
evaluate : ∀{n} → Function(n) → (List(Primitive)(n) → Primitive)
evaluate {.𝟎} (Base) ∅ = 𝟎
evaluate {.𝐒(𝟎)}(Successor) (singleton x) = 𝐒(x)
evaluate {_} (Projection(i)) xs = index(i)(xs)
evaluate {m} (Composition{m}{n}(f)(gs)) xs = evaluate{n} f (mapEvaluate{m}{n} gs xs)
evaluate {𝐒(_)} (Recursion(f)(g)) (𝟎 ⊰ xs) = evaluate f xs
evaluate {𝐒(m)} (Recursion(f)(g)) (𝐒(n) ⊰ xs) = evaluate{𝐒(𝐒(m))} g (n ⊰ (evaluate{𝐒 m} (Recursion(f)(g)) (n ⊰ xs) ⊰ xs))
mapEvaluate ∅ xs = ∅
mapEvaluate{m}{𝐒(n)} (g ⊰ gs) xs = (evaluate{m} g xs) ⊰ (mapEvaluate{m}{n} gs xs)
------------------------------------------------------
-- This section proves the equivalence between the operational and the denotational semantics. Or it can be interpreted as the correctness of one of the definitions by the other one.
-- This equivalence should be obvious from the definitions.
--
open import Relator.Equals
open import Relator.Equals.Proofs
open import Syntax.Transitivity
[⟹]-to-eval : (fs $ xs ⟹ vs) → (mapEvaluate fs xs ≡ vs)
[⟶]-to-eval : (f $ xs ⟶ v) → (evaluate f xs ≡ v)
[⟶]-to-eval zero = [≡]-intro
[⟶]-to-eval succ = [≡]-intro
[⟶]-to-eval {xs = _⊰_ {𝟎} x xs} (proj {i = 𝟎}) = [≡]-intro
[⟶]-to-eval {xs = _⊰_ {𝐒 n} x xs} (proj {i = 𝟎}) = [≡]-intro
[⟶]-to-eval {xs = _⊰_ {𝐒 n} x xs} (proj {i = 𝐒 i}) = [≡]-intro
[⟶]-to-eval (comp p q) with [⟶]-to-eval p | [⟹]-to-eval q
... | [≡]-intro | [≡]-intro = [≡]-intro
[⟶]-to-eval (rec𝟎 p) with [⟶]-to-eval p
... | [≡]-intro = [≡]-intro
[⟶]-to-eval (rec𝐒 p q) with [⟶]-to-eval p | [⟶]-to-eval q
... | [≡]-intro | [≡]-intro = [≡]-intro
[⟹]-to-eval {fs = ∅} {vs = ∅} _ = [≡]-intro
[⟹]-to-eval {fs = f ⊰ fs} {vs = v ⊰ vs} (step p ps) with [⟶]-to-eval p | [⟹]-to-eval {fs = fs} {vs = vs} ps
... | [≡]-intro | [≡]-intro = [≡]-intro
eval-to-[⟹] : (mapEvaluate fs xs ≡ vs) → (fs $ xs ⟹ vs)
{-# TERMINATING #-} -- TODO: See TODO above in eval
eval-to-[⟶] : (evaluate f xs ≡ v) → (f $ xs ⟶ v)
eval-to-[⟶] {f = Base} {∅} [≡]-intro = zero
eval-to-[⟶] {f = Successor} {singleton x} [≡]-intro = succ
eval-to-[⟶] {f = Projection _} [≡]-intro = proj
eval-to-[⟶] {f = Composition f gs} {xs} p = comp (eval-to-[⟶] p) (eval-to-[⟹] [≡]-intro)
eval-to-[⟶] {f = Recursion f g} {𝟎 ⊰ xs} p = rec𝟎(eval-to-[⟶] {f = f}{xs = xs} p)
eval-to-[⟶] {f = Recursion f g} {𝐒(n) ⊰ xs} p = rec𝐒 (eval-to-[⟶] [≡]-intro) (eval-to-[⟶] p)
eval-to-[⟹] {fs = ∅} [≡]-intro = base
eval-to-[⟹] {fs = f ⊰ fs} [≡]-intro = step (eval-to-[⟶] [≡]-intro) (eval-to-[⟹] [≡]-intro)
-- TODO: Is it possible to prove that _⟶_ terminates and normalizes by using [⟶]-to-eval (total and deterministic)?
open import Function.Equals
open import Logic
open import Logic.Predicate
-- When a function on lists of primitives are primitive recursive.
PrimitiveRecursive : (List(Primitive)(n) → Primitive) → Stmt
PrimitiveRecursive(f) = ∃(e ↦ evaluate e ⊜ f)
Const : Function(0) → ∀{n} → Function(n)
Const(c) = Composition(c) ∅
-- TODO: Would encoding pairs make this easier to implement (e.g. the Cantor Pairing Function?
-- This is used to construct a function `r` in which the following holds for its evaluation:
-- • r(0 ,..xs) = f(..xs)
-- • r(1 ,..xs) = g(..xs)
-- • r(𝐒(𝐒(n)),..xs) = h(n,r(𝐒(n),..xs),r(n,..xs),..xs)
-- Recursion₂ : ∀{n : ℕ} → Function(n) → Function(n) → Function(𝐒(𝐒(𝐒(n)))) → Function(𝐒(n))
-- Recursion₂{n} (f)(g)(h) = Composition(Projection(0)) (Helper ⊰ ∅) where
-- Recursion
--
-- Helper : Function(2)
-- Helper =
--
module Arithmetic where -- TODO: Prove that these are correct by `evaluate`
Zero = Base
Number : ℕ → Function(0)
Number(𝟎) = Zero
Number(𝐒(n)) = Composition(Successor) (Number(n) ⊰ ∅)
Swap₂ : Function(2) → Function(2)
Swap₂(f) = Composition(f) (Projection(1) ⊰ Projection(0) ⊰ ∅)
-- Addition (+) in ℕ.
-- It describes the following function:
-- evaluate(Addition)[𝟎 ,b] = 𝟎
-- evaluate(Addition)[𝐒(a),b] = 𝐒(b)
Addition : Function(2)
Addition = Recursion(Projection(0)) (Composition Successor (Projection(1) ⊰ ∅))
-- Multiplication (⋅) in ℕ.
-- It describes the following function:
-- evaluate(Multiplication)[𝟎 ,b] = 𝟎
-- evaluate(Multiplication)[𝐒(a),b] = evaluate(Multiplication)[a,b] + b
Multiplication : Function(2)
Multiplication = Recursion (Const(Zero)) (Composition Addition (Projection(1) ⊰ Projection(2) ⊰ ∅))
-- Exponentiation (^) in ℕ.
-- It describes the following function:
-- evaluate(Exponentiation)[a ,0 ] = 1
-- evaluate(Exponentiation)[a ,𝐒(b)] = evaluate(Exponentiation)[a,b] ⋅ a
Exponentiation : Function(2)
Exponentiation = Swap₂(Recursion (Composition Successor (Const Zero ⊰ ∅)) (Composition Multiplication (Projection(1) ⊰ Projection(2) ⊰ ∅)))
-- Factorial (!) in ℕ.
-- It describes the following function:
-- evaluate(Factorial)[𝟎 ] = 1
-- evaluate(Factorial)[𝐒(a)] = 𝐒(a) ⋅ evaluate(Factorial)[a,b]
Factorial : Function(1)
Factorial = Recursion(Number(1)) (Composition Multiplication ((Composition Successor (Projection(0) ⊰ ∅)) ⊰ Projection(1) ⊰ ∅))
-- Predecessor (𝐏) in ℕ.
-- It describes the following function:
-- evaluate(Predecessor)[𝟎 ] = 𝟎
-- evaluate(Predecessor)[𝐒(a)] = a
Predecessor : Function(1)
Predecessor = Recursion(Zero) (Projection(0))
-- Monus/Cut-off minus (−₀) in ℕ.
-- It describes the following function:
-- evaluate(Monus)[b,𝟎 ] = b
-- evaluate(Monus)[b,𝐒(a)] = 𝐏(evaluate(Monus)[b,a])
Monus : Function(2)
Monus = Swap₂(Recursion(Projection(0)) (Composition Predecessor (Projection(1) ⊰ ∅)))
-- Maximum (max) of ℕ² in ℕ.
-- It describes the following function:
-- evaluate(Max)[a,b] = a + (b −₀ a)
Max : Function(2)
Max = Composition(Addition) (Projection(0) ⊰ Swap₂(Monus) ⊰ ∅)
-- Minimum (min) of ℕ² in ℕ.
-- It describes the following function:
-- evaluate(Min)[a,b] = (a + b) −₀ max(a,b)
Min : Function(2)
Min = Composition(Monus) (Addition ⊰ Max ⊰ ∅)
-- It describes the following function:
-- evaluate(Distance)[a,b] = max(x −₀ y , y −₀ x)
Distance : Function(2)
Distance = Composition(Addition) (Monus ⊰ Swap₂(Monus) ⊰ ∅)
-- It describes the following function:
-- evaluate(IsZero)[𝟎] = 1
-- evaluate(IsZero)[𝐒(_)] = 0
IsZero : Function(1)
IsZero = Recursion(Number(1)) (Const(Zero))
-- It describes the following function:
-- evaluate(IsZero)[𝟎] = 0
-- evaluate(IsZero)[𝐒(_)] = 1
IsNonZero : Function(1)
IsNonZero = Composition(IsZero) (IsZero ⊰ ∅)
Eq : Function(2)
Eq = Composition(IsZero) (Distance ⊰ ∅)
-- It describes the following function:
-- evaluate(Fibonacci)[𝟎] = 0
-- evaluate(Fibonacci)[𝐒(_)] = 1
-- Fibonacci : Function(1)
-- Fibonacci = Composition(Projection(0)) (Fib ⊰ ∅) where
-- Fib : Function(2)
-- Fib =
-- TODO: http://www.reluctantm.com/gcruttw/teaching/cpsc513.W2010/A3Solutions.pdf
-- TODO: http://ii.fmph.uniba.sk/cl/courses/1-AIN-625-lpp/0910zs/ln/doc/ch_p_gd.pdf
module Proofs where
open import Functional
open import Logic.Propositional
open import Numeral.Natural.Oper
open import Numeral.Natural.Oper.Comparisons
open import Numeral.Natural.Oper.Proofs
open import Relator.Equals
open import Relator.Equals.Proofs
open import Structure.Operator.Properties
open import Structure.Relator.Properties
open import Syntax.Transitivity
addition-correctness : ∀{a b} → (evaluate Arithmetic.Addition (a ⊰ b ⊰ ∅) ≡ a + b)
addition-correctness {𝟎} {b} = [≡]-intro
addition-correctness {𝐒 a} {b} = [≡]-with(𝐒) (addition-correctness {a}{b})
multiplication-correctness : ∀{a b} → (evaluate Arithmetic.Multiplication (a ⊰ b ⊰ ∅) ≡ a ⋅ b)
multiplication-correctness {𝟎} {b} = [≡]-intro
multiplication-correctness {𝐒 a} {b} =
addition-correctness {evaluate Arithmetic.Multiplication (a ⊰ b ⊰ ∅)}{b}
🝖 [≡]-with(_+ b) (multiplication-correctness {a}{b})
🝖 symmetry(_≡_) ([⋅]-with-[𝐒]ₗ {a}{b})
exponentiation-correctness : ∀{a b} → (evaluate Arithmetic.Exponentiation (a ⊰ b ⊰ ∅) ≡ a ^ b)
exponentiation-correctness {a} {𝟎} = [≡]-intro
exponentiation-correctness {a} {𝐒 b} =
multiplication-correctness {evaluate Arithmetic.Exponentiation (a ⊰ b ⊰ ∅)}{a}
🝖 [≡]-with(_⋅ a) (exponentiation-correctness {a}{b})
🝖 commutativity(_⋅_) {a ^ b}{a}
factorial-correctness : ∀{a} → (evaluate Arithmetic.Factorial (a ⊰ ∅) ≡ a !)
factorial-correctness {𝟎} = [≡]-intro
factorial-correctness {𝐒 a} =
multiplication-correctness {𝐒 a}
🝖 [≡]-with(𝐒(a) ⋅_) (factorial-correctness {a})
predecessor-correctness : ∀{a} → (evaluate Arithmetic.Predecessor (a ⊰ ∅) ≡ 𝐏(a))
predecessor-correctness {𝟎} = [≡]-intro
predecessor-correctness {𝐒 a} = [≡]-intro
monus-correctness : ∀{a b} → (evaluate Arithmetic.Monus (a ⊰ b ⊰ ∅) ≡ a −₀ b)
monus-correctness {a} {𝟎} = [≡]-intro
monus-correctness {𝟎} {𝐒 b} = predecessor-correctness{evaluate Arithmetic.Monus (𝟎 ⊰ b ⊰ ∅)} 🝖 [≡]-with(𝐏) (monus-correctness {𝟎}{b})
monus-correctness {𝐒 a} {𝐒 b} =
predecessor-correctness{evaluate Arithmetic.Monus (𝐒(a) ⊰ b ⊰ ∅)}
🝖 [≡]-with(𝐏) (monus-correctness {𝐒 a}{b})
🝖 symmetry(_≡_) ([−₀]-with-[𝐒]ᵣ {𝐒(a)}{b})
isnonzero-correctness : ∀{a} → (evaluate Arithmetic.IsNonZero (a ⊰ ∅) ≡ ℕbool(a ≢? 𝟎))
isnonzero-correctness {𝟎} = [≡]-intro
isnonzero-correctness {𝐒 a} = [≡]-intro
iszero-correctness : ∀{a} → (evaluate Arithmetic.IsZero (a ⊰ ∅) ≡ ℕbool(a ≡? 𝟎))
iszero-correctness {𝟎} = [≡]-intro
iszero-correctness {𝐒 a} = [≡]-intro
-- TODO: Formalize "Function(1) is countably infinite". Maybe take some inspiration from https://proofwiki.org/wiki/Not_All_URM_Computable_Functions_are_Primitive_Recursive . Then prove that (ℕ → ℕ) is not countably infinite, and therefore not all computable functions are expressible primitive recursively (is this argument constructive?)
open import Data.Tuple
open import Function.Inverse
open import Logic.Predicate
open import Logic.Propositional
open import Type.Size.Countable
open import Structure.Function.Domain.Proofs
open import Structure.Function using (congruence₁)
open import Syntax.Function
open import Syntax.Transitivity
postulate Function-countablyInfinite : CountablyInfinite(Function(1))
encodeFunction : Function(1) → ℕ
encodeFunction = inv _ ⦃ bijective-to-invertible ⦃ bij = [∃]-proof Function-countablyInfinite ⦄ ⦄
-- TODO: Use a lifted Numeral.Natural.Sequence.pairIndexing as a witness directly (instead of encodePair). Another alternative is (a ↦ b ↦ 2ᵃ⋅3ᵇ) if it is easier to construct f that way.
postulate Function-value-pair-countablyInfinite : CountablyInfinite(Function(1) ⨯ ℕ)
encodePair : (Function(1) ⨯ ℕ) → ℕ
encodePair = inv _ ⦃ bijective-to-invertible ⦃ bij = [∃]-proof Function-value-pair-countablyInfinite ⦄ ⦄
-- TODO: Is it possible to use Logic.DiagonalMethod for this proof?
no-self-interpreter : ¬ ∃(interpret ↦ ∀{f}{n} → evaluate interpret (singleton (encodePair(f , n))) ≡ evaluate f (singleton n))
no-self-interpreter ([∃]-intro interpret ⦃ p ⦄) = 𝐒-not-self(symmetry(_≡_) x) where
postulate f : Function(1)
postulate f-correctness : ∀{g} → (evaluate f (singleton(encodeFunction g)) ≡ encodePair(g , encodeFunction g))
g : Function(1)
g = Composition Successor (singleton (Composition interpret (singleton f)))
x : evaluate g (singleton (encodeFunction g)) ≡ 𝐒(evaluate g (singleton (encodeFunction g)))
x =
evaluate g (singleton (encodeFunction g)) 🝖[ _≡_ ]-[]
𝐒(evaluate interpret (singleton(evaluate f (singleton(encodeFunction g))))) 🝖[ _≡_ ]-[ congruence₁(𝐒) (congruence₁(evaluate interpret) (congruence₁(singleton) f-correctness)) ]
𝐒(evaluate interpret (singleton(encodePair(g , encodeFunction g)))) 🝖[ _≡_ ]-[ congruence₁(𝐒) p ]
𝐒(evaluate g (singleton(encodeFunction g))) 🝖-end
|
{
"alphanum_fraction": 0.6193732572,
"avg_line_length": 45.6424242424,
"ext": "agda",
"hexsha": "6ba45dae0015924a77da5a2f56417fb557018879",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Formalization/PrimitiveRecursion.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Formalization/PrimitiveRecursion.agda",
"max_line_length": 341,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Formalization/PrimitiveRecursion.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 5345,
"size": 15062
}
|
{-# OPTIONS --type-in-type #-}
-- {-# OPTIONS -v tc.pos:10 -v tc.polarity:10 #-}
-- Andreas, 2012-09-06, message on Agda list "Forget Hurken's paradox..."
module Issue690 where
infix 4 _≡_
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
data ⊥ : Set where
data D : Set where
abs : ∀ {E : Set} → D ≡ E → (E → ⊥) → D
lam : (D → ⊥) → D
lam f = abs refl f
app : D → D → ⊥
app (abs refl f) d = f d
omega : D
omega = lam (λ x → app x x)
Omega : ⊥
Omega = app omega omega
|
{
"alphanum_fraction": 0.5482546201,
"avg_line_length": 16.7931034483,
"ext": "agda",
"hexsha": "8cafb758d6499acef1335bb0adc114d5be5c103c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue690.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue690.agda",
"max_line_length": 73,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue690.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 191,
"size": 487
}
|
module Prelude.Empty where
open import Prelude.Erased
data ⊥ : Set where
⊥-elim : ∀ {a} {A : Set a} → ⊥ → A
⊥-elim ()
{-# INLINE ⊥-elim #-}
private postulate erasedBottom : ⊥
{-# DISPLAY erasedBottom = [erased] #-}
erase-⊥ : ⊥ → ⊥
erase-⊥ _ = erasedBottom
infix 4 ¬_
¬_ : ∀ {a} (A : Set a) → Set a
¬ A = A → ⊥
eraseNegation : ∀ {a} {A : Set a} → ¬ A → ¬ A
eraseNegation !a a = erase-⊥ (!a a)
data ⊥′ {a} : Set a where
⊥′-elim : ∀ {a b} {A : Set a} → ⊥′ {b} → A
⊥′-elim ()
{-# INLINE ⊥′-elim #-}
|
{
"alphanum_fraction": 0.5197628458,
"avg_line_length": 16.3225806452,
"ext": "agda",
"hexsha": "c94bbf248fe92ca21172544162257ddb5ba6e11f",
"lang": "Agda",
"max_forks_count": 24,
"max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z",
"max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "t-more/agda-prelude",
"max_forks_repo_path": "src/Prelude/Empty.agda",
"max_issues_count": 59,
"max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "t-more/agda-prelude",
"max_issues_repo_path": "src/Prelude/Empty.agda",
"max_line_length": 45,
"max_stars_count": 111,
"max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "t-more/agda-prelude",
"max_stars_repo_path": "src/Prelude/Empty.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z",
"num_tokens": 219,
"size": 506
}
|
------------------------------------------------------------------------
-- Dependent lenses
------------------------------------------------------------------------
-- Some code below depends on UIP for Set ℓ (for some ℓ). This kind of
-- assumption is inconsistent in Cubical Agda. However, Andrea Vezzosi
-- and I have discussed whether UIP, the propositional truncation, and
-- extensionality are mutually consistent, and it seems plausible that
-- some form of extensional type theory with squash types would
-- provide a model for these things.
--
-- Note that the code that depends on UIP does not make use of
-- univalence, or at least it did not use to do this, library code may
-- have changed after the code was written. This development tracks
-- usage of univalence in types, but at the time of writing there is
-- some library code that does not do this.
{-# OPTIONS --cubical --safe #-}
module Lens.Dependent where
open import Equality.Propositional.Cubical
open import Logical-equivalence using (module _⇔_)
open import Prelude as P hiding (id; swap; Unit) renaming (_∘_ to _⊚_)
open import Bijection equality-with-J as Bij using (_↔_; module _↔_)
open import Bool equality-with-J
open import Equality.Decidable-UIP equality-with-J using (Constant)
open import Equality.Decision-procedures equality-with-J
import Equality.Groupoid equality-with-J as EG
open import Equality.Tactic equality-with-J as Tactic hiding (module Eq)
open import Equivalence equality-with-J as Eq using (_≃_; module _≃_)
open import Function-universe equality-with-J as F hiding (id; _∘_)
open import Groupoid equality-with-J
open import H-level equality-with-J as H-level
open import H-level.Closure equality-with-J
open import H-level.Truncation.Propositional equality-with-paths
as Trunc
open import Surjection equality-with-J using (module _↠_)
open import Univalence-axiom equality-with-J
import Lens.Non-dependent.Higher equality-with-paths as ND
private
variable
a b b₁ b₂ b₃ c r r₁ r₂ r₃ : Level
A : Set a
------------------------------------------------------------------------
-- Dependent lenses with "remainder types" visible in the type
-- If Lens₃ A R B is inhabited, then a value of type A can be split up
-- into a "remainder" r of type R and a value of type B r.
Lens₃ : Set a → (R : Set r) → (R → Set b) → Set _
Lens₃ A R B = A ≃ Σ R B
module Lens₃ {R : Set r} {B : R → Set b} (lens : Lens₃ A R B) where
open _≃_
-- The remainder.
remainder : A → R
remainder a = proj₁ (to lens a)
-- Getter.
get : (a : A) → B (remainder a)
get a = proj₂ (to lens a)
-- Setter.
set : (a : A) → B (remainder a) → A
set a b = from lens (remainder a , b)
-- Modifier.
modify : (a : A) → (B (remainder a) → B (remainder a)) → A
modify a f = set a (f (get a))
-- Setting leaves the remainder unchanged.
remainder-set : ∀ a b → remainder (set a b) ≡ remainder a
remainder-set a b =
proj₁ (to lens (from lens (remainder a , b))) ≡⟨ cong proj₁ (right-inverse-of lens _) ⟩∎
remainder a ∎
-- A related isomorphism.
codomain-set-≃ : ∀ {a b} → B (remainder (set a b)) ≃ B (remainder a)
codomain-set-≃ = ≡⇒≃ (cong B (remainder-set _ _))
-- Some lens laws.
set-get : ∀ a → set a (get a) ≡ a
set-get a =
from lens (proj₁ (to lens a) , proj₂ (to lens a)) ≡⟨⟩
from lens (to lens a) ≡⟨ left-inverse-of lens _ ⟩∎
a ∎
get-set₁ : ∀ a b → get (set a b) ≡ subst B (sym (remainder-set a b)) b
get-set₁ a b =
proj₂ (to lens (from lens (remainder a , b))) ≡⟨ sym $ dcong proj₂ (sym lemma) ⟩
subst (B ⊚ proj₁) (sym lemma)
(proj₂ {B = B} (remainder a , b)) ≡⟨⟩
subst (B ⊚ proj₁) (sym lemma) b ≡⟨ subst-∘ _ _ (sym lemma) ⟩
subst B (cong proj₁ (sym lemma)) b ≡⟨ cong (λ x → subst B x b) (cong-sym _ lemma) ⟩∎
subst B (sym (cong proj₁ lemma)) b ∎
where
lemma = right-inverse-of lens _
get-set₂ : ∀ a b → get (set a b) ≡ from codomain-set-≃ b
get-set₂ a b =
proj₂ (to lens (from lens (remainder a , b))) ≡⟨ get-set₁ _ _ ⟩
subst B (sym (cong proj₁ lemma)) b ≡⟨ subst-in-terms-of-inverse∘≡⇒↝ equivalence (cong proj₁ lemma) _ _ ⟩∎
≡⇒← (cong B (cong proj₁ lemma)) b ∎
where
lemma = right-inverse-of lens _
set-set₁ : ∀ a b₁ b₂ →
set (set a b₁) b₂ ≡ set a (subst B (remainder-set a b₁) b₂)
set-set₁ a b₁ b₂ =
from lens (remainder (set a b₁) , b₂) ≡⟨ cong (from lens) (Σ-≡,≡→≡ eq refl) ⟩∎
from lens (remainder a , subst B eq b₂) ∎
where
eq = remainder-set a b₁
set-set₂ : ∀ a b₁ b₂ →
set (set a b₁) b₂ ≡ set a (to codomain-set-≃ b₂)
set-set₂ a b₁ b₂ =
set (set a b₁) b₂ ≡⟨ set-set₁ _ _ _ ⟩
set a (subst B eq b₂) ≡⟨ cong (set a) (subst-in-terms-of-≡⇒↝ equivalence eq _ _) ⟩∎
set a (≡⇒→ (cong B eq) b₂) ∎
where
eq = remainder-set a b₁
------------------------------------------------------------------------
-- Lens₃ combinators
-- Identity lens.
id₃ : Lens₃ A ⊤ (λ _ → A)
id₃ {A = A} =
A ↔⟨ inverse ×-left-identity ⟩□
⊤ × A □
-- Composition of lenses.
infixr 9 _₃∘₃_
_₃∘₃_ : {R₁ : Set r₁} {B₁ : R₁ → Set b₁}
{R₂ : R₁ → Set r₂} {B₂ : (r : R₁) → R₂ r → Set b₂} →
(∀ {r} → Lens₃ (B₁ r) (R₂ r) (B₂ r)) → Lens₃ A R₁ B₁ →
Lens₃ A (Σ R₁ R₂) (uncurry B₂)
_₃∘₃_ {A = A} {R₁ = R₁} {B₁ = B₁} {R₂ = R₂} {B₂ = B₂} l₁ l₂ =
A ↔⟨ l₂ ⟩
Σ R₁ B₁ ↔⟨ ∃-cong (λ _ → l₁) ⟩
Σ R₁ (λ r → Σ (R₂ r) (B₂ r)) ↔⟨ Σ-assoc ⟩□
Σ (Σ R₁ R₂) (uncurry B₂) □
------------------------------------------------------------------------
-- Some Lens₃ properties
-- id₃ and _₃∘₃_ form a kind of precategory.
left-identity₃ :
{R : Set r} {B : R → Set b} →
(l : Lens₃ A R B) →
id₃ ₃∘₃ l
≡
(A ↝⟨ l ⟩
Σ R B ↝⟨ Σ-cong (inverse ×-right-identity) (λ _ → F.id) ⟩□
Σ (R × ⊤) (B ⊚ proj₁) □)
left-identity₃ _ = Eq.lift-equality ext refl
right-identity₃ :
{R : Set r} {B : R → Set b} →
(l : Lens₃ A R B) →
l ₃∘₃ id₃
≡
(A ↝⟨ l ⟩
Σ R B ↝⟨ Σ-cong (inverse ×-left-identity) (λ _ → F.id) ⟩□
Σ (⊤ × R) (B ⊚ proj₂) □)
right-identity₃ _ = Eq.lift-equality ext refl
associativity₃ :
{R₁ : Set r₁} {B₁ : R₁ → Set b₁}
{R₂ : R₁ → Set r₂} {B₂ : (r₁ : R₁) → R₂ r₁ → Set b₂}
{R₃ : (r₁ : R₁) → R₂ r₁ → Set r₃}
{B₃ : (r₁ : R₁) (r₂ : R₂ r₁) → R₃ r₁ r₂ → Set b₃} →
(l₁ : ∀ {r₁ r₂} → Lens₃ (B₂ r₁ r₂) (R₃ r₁ r₂) (B₃ r₁ r₂))
(l₂ : ∀ {r} → Lens₃ (B₁ r) (R₂ r) (B₂ r))
(l₃ : Lens₃ A R₁ B₁) →
l₁ ₃∘₃ (l₂ ₃∘₃ l₃)
≡
(A ↝⟨ (l₁ ₃∘₃ l₂) ₃∘₃ l₃ ⟩
Σ (Σ R₁ (λ r₁ → Σ (R₂ r₁) (R₃ r₁))) (uncurry (uncurry ⊚ B₃)) ↝⟨ Σ-cong Σ-assoc (λ _ → F.id) ⟩□
Σ (Σ (Σ R₁ R₂) (uncurry R₃)) (uncurry (uncurry B₃)) □)
associativity₃ _ _ _ = Eq.lift-equality ext refl
------------------------------------------------------------------------
-- Dependent lenses without "remainder types" visible in the type
-- One definition.
Lens : (A : Set a) → (A → Set b) → Set (lsuc (a ⊔ b))
Lens {a = a} {b = b} A B =
∃ λ (R : Set (a ⊔ b)) →
∃ λ (B′ : R → Set b) →
∃ λ (lens : Lens₃ A R B′) →
((r : R) → ∥ B′ r ∥)
×
(∀ a → B′ (Lens₃.remainder lens a) ≡ B a)
-- An alternative definition. This definition is pointwise isomorphic
-- to the previous one, see Lens↔Lens′ below.
Lens′ : (A : Set a) → (A → Set b) → Set (lsuc (a ⊔ b))
Lens′ {a = a} {b = b} A B =
∃ λ (get : (a : A) → B a) →
∃ λ (R : Set (a ⊔ b)) →
∃ λ (remainder : A → R) →
Surjective remainder
×
∃ λ (B′ : R → Set b) →
∃ λ (variant : ∀ {a} → B a ≡ B′ (remainder a)) →
Eq.Is-equivalence {B = ∃ B′}
(λ a → remainder a , subst P.id variant (get a))
module Lens {A : Set a} {B : A → Set b} (l : Lens A B) where
-- The remainder type: what remains of A when B is removed
-- (roughly).
R : Set (a ⊔ b)
R = proj₁ l
-- A variant of B, indexed by Rs instead of As.
B′ : R → Set b
B′ = proj₁ (proj₂ l)
-- The main lens isomorphism.
lens : Lens₃ A R B′
lens = proj₁ (proj₂ (proj₂ l))
-- If the remainder type is inhabited, then the corresponding view
-- should also be (merely) inhabited.
inhabited : (r : R) → ∥ B′ r ∥
inhabited = proj₁ (proj₂ (proj₂ (proj₂ l)))
private module L = Lens₃ lens
open _≃_
-- The "non-B" part of the A value.
remainder : A → R
remainder = L.remainder
-- An equality that specifies in what sense B′ is a variant of B.
--
-- (This used to be a bijection, but it was turned into an
-- equality in order to make it obvious that, if the K rule is
-- enabled, then variant cannot do anything strange.)
variant : ∀ a → B′ (remainder a) ≡ B a
variant = proj₂ (proj₂ (proj₂ (proj₂ l)))
-- A corresponding isomorphism.
variant≃ : ∀ {a} → B′ (remainder a) ≃ B a
variant≃ = ≡⇒≃ (variant _)
-- A variant of variant.
other-variant : ∀ r (b′ : B′ r) → B′ r ≡ B (from lens (r , b′))
other-variant r b′ =
B′ r ≡⟨⟩
B′ (proj₁ {B = B′} (r , b′)) ≡⟨ cong (B′ ⊚ proj₁) (sym $ right-inverse-of lens (r , b′)) ⟩
B′ (proj₁ (to lens (from lens (r , b′)))) ≡⟨⟩
B′ (remainder (from lens (r , b′))) ≡⟨ variant (_≃_.from lens (r , b′)) ⟩∎
B (from lens (r , b′)) ∎
-- Note that B ⊚ _≃_.from lens only depends on the "R part" of the
-- argument.
independent-of-B′ : (r : R) → Constant (B ⊚ _≃_.from lens ⊚ (r ,_))
independent-of-B′ r b₁ b₂ =
B (_≃_.from lens (r , b₁)) ≡⟨ sym $ other-variant _ _ ⟩
B′ r ≡⟨ other-variant _ _ ⟩∎
B (_≃_.from lens (r , b₂)) ∎
-- Thus we can, assuming that Set b is a set, define a variant of B
-- that only depends on R.
module First-variant-of-B (uip : Is-set (Set b)) where
private
B̲′ : (r : R) → ∥ B′ r ∥ → Set b
B̲′ r =
to (constant-function≃∥inhabited∥⇒inhabited uip)
(B ⊚ _≃_.from lens ⊚ (r ,_) , independent-of-B′ r)
B̲ : R → Set b
B̲ r = B̲′ r (inhabited r)
-- This type family is pointwise equal to B′ (given the same
-- assumptions).
B′≡B̲ : ∀ r → B′ r ≡ B̲ r
B′≡B̲ r = Trunc.elim
(λ ∥b′∥ → B′ r ≡ B̲′ r ∥b′∥)
(λ _ → uip)
(other-variant r)
(inhabited r)
-- We can also use other assumptions:
--
-- * Univalence.
-- * B should be a family of sets.
module Second-variant-of-B
(univ : Univalence b)
(B-set : ∀ a → Is-set (B a))
where
private
abstract
B̲-triple : (r : R) → ∃ λ (X : SET b) → B′ r ≡ proj₁ X
B̲-triple r =
to (coherently-constant-function≃∥inhabited∥⇒inhabited
(Σ-closure 3
(∃-H-level-H-level-1+ ext univ 2)
(λ { (_ , X-set) → mono₁ 2 $
H-level-H-level-≡ʳ ext univ 1 X-set })))
( (λ b′ → (B (_≃_.from lens (r , b′)) , B-set _)
, other-variant r b′)
, (λ b′₁ b′₂ → Σ-≡,≡→≡
(Σ-≡,≡→≡ (independent-of-B′ r b′₁ b′₂)
(Is-set-is-propositional _ _))
(subst (λ X → B′ r ≡ proj₁ X)
(Σ-≡,≡→≡ (independent-of-B′ r b′₁ b′₂) _)
(other-variant r b′₁) ≡⟨ subst-∘ (B′ r ≡_) proj₁
(Σ-≡,≡→≡ (independent-of-B′ r b′₁ b′₂) _) ⟩
subst (B′ r ≡_)
(cong proj₁ $
Σ-≡,≡→≡ (independent-of-B′ r b′₁ b′₂) _)
(other-variant r b′₁) ≡⟨⟩
trans (other-variant r b′₁)
(cong proj₁ $
Σ-≡,≡→≡ (independent-of-B′ r b′₁ b′₂) _) ≡⟨ cong (trans (other-variant r b′₁)) $
proj₁-Σ-≡,≡→≡ (independent-of-B′ r b′₁ b′₂) _ ⟩
trans (other-variant r b′₁)
(independent-of-B′ r b′₁ b′₂) ≡⟨⟩
trans (other-variant r b′₁)
(trans (sym $ other-variant r b′₁)
(other-variant r b′₂)) ≡⟨ sym $ trans-assoc _ _ (other-variant r b′₂) ⟩
trans (trans (other-variant r b′₁)
(sym $ other-variant r b′₁))
(other-variant r b′₂) ≡⟨ cong (flip trans (other-variant r b′₂)) $
trans-symʳ (other-variant r b′₁) ⟩
trans refl (other-variant r b′₂) ≡⟨ trans-reflˡ _ ⟩∎
other-variant r b′₂ ∎))
, (λ b′₁ b′₂ b′₃ →
let lemma =
trans (independent-of-B′ r b′₁ b′₂)
(independent-of-B′ r b′₂ b′₃) ≡⟨⟩
trans (trans (sym $ other-variant r b′₁)
(other-variant r b′₂))
(trans (sym $ other-variant r b′₂)
(other-variant r b′₃)) ≡⟨ sym $ trans-assoc (independent-of-B′ r b′₁ b′₂)
(sym $ other-variant r b′₂)
(other-variant r b′₃) ⟩
trans (trans (trans (sym $ other-variant r b′₁)
(other-variant r b′₂))
(sym $ other-variant r b′₂))
(other-variant r b′₃) ≡⟨ cong (flip trans (other-variant r b′₃)) $
trans-[trans]-sym (sym $ other-variant r b′₁)
(other-variant r b′₂) ⟩
trans (sym $ other-variant r b′₁)
(other-variant r b′₃) ≡⟨ refl ⟩∎
independent-of-B′ r b′₁ b′₃ ∎
in
trans
(Σ-≡,≡→≡ (Σ-≡,≡→≡ (independent-of-B′ r b′₁ b′₂) _) _)
(Σ-≡,≡→≡ (Σ-≡,≡→≡ (independent-of-B′ r b′₂ b′₃) _) _) ≡⟨ trans-Σ-≡,≡→≡ (Σ-≡,≡→≡ (independent-of-B′ r b′₁ b′₂) _)
(Σ-≡,≡→≡ (independent-of-B′ r b′₂ b′₃) _)
_ _ ⟩
Σ-≡,≡→≡
(trans (Σ-≡,≡→≡ (independent-of-B′ r b′₁ b′₂) _)
(Σ-≡,≡→≡ (independent-of-B′ r b′₂ b′₃) _))
_ ≡⟨ Σ-≡,≡→≡-cong (trans-Σ-≡,≡→≡ (independent-of-B′ r b′₁ b′₂)
(independent-of-B′ r b′₂ b′₃)
_ _)
refl ⟩
Σ-≡,≡→≡
(Σ-≡,≡→≡ (trans (independent-of-B′ r b′₁ b′₂)
(independent-of-B′ r b′₂ b′₃))
_)
_ ≡⟨ Σ-≡,≡→≡-cong
(Σ-≡,≡→≡-cong lemma
(mono₁ 0 (+⇒≡ Is-set-is-propositional) _ _))
(H-level-H-level-≡ʳ ext univ 1 (B-set _) _ _) ⟩∎
Σ-≡,≡→≡ (Σ-≡,≡→≡ (independent-of-B′ r b′₁ b′₃) _) _ ∎))
(inhabited r)
where
Is-set-is-propositional :
{B : Set b} → Is-proposition (Is-set B)
Is-set-is-propositional =
H-level-propositional ext 2
B̲ : R → Set b
B̲ r = proj₁ (proj₁ (B̲-triple r))
B̲-set : ∀ r → Is-set (B̲ r)
B̲-set r = proj₂ (proj₁ (B̲-triple r))
B′≡B̲ : ∀ r → B′ r ≡ B̲ r
B′≡B̲ r = proj₂ (B̲-triple r)
-- Getter.
get : (a : A) → B a
get a = to variant≃ (L.get a)
-- Setter.
set : (a : A) → B a → A
set a b = L.set a (from variant≃ b)
-- Modifier.
modify : (a : A) → (B a → B a) → A
modify a f = set a (f (get a))
-- Setting leaves the remainder unchanged.
remainder-set : ∀ a b → remainder (set a b) ≡ remainder a
remainder-set a b = L.remainder-set a (from variant≃ b)
-- Hence the type of the gettable part stays unchanged after a set.
codomain-set : ∀ {a b} → B (set a b) ≡ B a
codomain-set {a} {b} =
B (set a b) ≡⟨ sym (variant _) ⟩
B′ (remainder (set a b)) ≡⟨ cong B′ (remainder-set a b) ⟩
B′ (remainder a) ≡⟨ variant _ ⟩∎
B a ∎
-- A corresponding isomorphism.
codomain-set-≃ : ∀ {a b} → B (set a b) ≃ B a
codomain-set-≃ = ≡⇒≃ codomain-set
-- Unfolding lemmas for codomain-set-≃.
to-codomain-set-≃ :
∀ {a b} →
to (codomain-set-≃ {a = a} {b = b}) ≡
to variant≃ ⊚ to L.codomain-set-≃ ⊚ from variant≃
to-codomain-set-≃ =
≡⇒→ (trans (sym (variant _)) (trans eq (variant _))) ≡⟨ ≡⇒↝-trans equivalence {B≡C = trans eq (variant _)} ⟩
≡⇒→ (trans eq (variant _)) ⊚ ≡⇒→ (sym (variant _)) ≡⟨ cong (≡⇒→ (trans eq (variant _)) ⊚_)
(≡⇒↝-sym equivalence {eq = variant _}) ⟩
≡⇒→ (trans eq (variant _)) ⊚ from variant≃ ≡⟨ cong (_⊚ from variant≃) (≡⇒↝-trans equivalence {B≡C = variant _}) ⟩∎
to variant≃ ⊚ ≡⇒→ eq ⊚ from variant≃ ∎
where
eq = cong B′ (remainder-set _ _)
from-codomain-set-≃ :
∀ {a b} →
from (codomain-set-≃ {a = a} {b = b}) ≡
to variant≃ ⊚ from L.codomain-set-≃ ⊚ from variant≃
from-codomain-set-≃ =
≡⇒← (trans (sym (variant _)) (trans eq (variant _))) ≡⟨ sym $ ≡⇒↝-sym equivalence {eq = trans (sym (variant _))
(trans eq (variant _))} ⟩
≡⇒→ (sym (trans (sym (variant _)) (trans eq (variant _)))) ≡⟨ cong ≡⇒→
(Tactic.prove (Sym (Trans (Sym (Lift (variant _)))
(Trans (Lift eq) (Lift (variant _)))))
(Trans (Trans (Sym (Lift (variant _)))
(Sym (Lift eq)))
(Lift (variant _)))
refl) ⟩
≡⇒→ (trans (trans (sym (variant _)) (sym eq)) (variant _)) ≡⟨ ≡⇒↝-trans equivalence {B≡C = variant _} ⟩
to variant≃ ⊚ ≡⇒→ (trans (sym (variant _)) (sym eq)) ≡⟨ cong (to variant≃ ⊚_) (≡⇒↝-trans equivalence {B≡C = sym eq}) ⟩
to variant≃ ⊚ ≡⇒→ (sym eq) ⊚ ≡⇒→ (sym (variant _)) ≡⟨ cong₂ (λ f g → to variant≃ ⊚ f ⊚ g)
(≡⇒↝-sym equivalence {eq = eq})
(≡⇒↝-sym equivalence {eq = variant _}) ⟩∎
to variant≃ ⊚ ≡⇒← eq ⊚ from variant≃ ∎
where
eq = cong B′ (remainder-set _ _)
-- Some lens laws.
set-get : ∀ a → set a (get a) ≡ a
set-get a =
L.set a (from variant≃ (to variant≃ (L.get a))) ≡⟨ cong (L.set a) (left-inverse-of variant≃ _) ⟩
L.set a (L.get a) ≡⟨ L.set-get a ⟩∎
a ∎
get-set : ∀ a b → get (set a b) ≡ from codomain-set-≃ b
get-set a b =
to variant≃ (L.get (L.set a (from variant≃ b))) ≡⟨ cong (to variant≃) $ L.get-set₂ _ _ ⟩
to variant≃ (≡⇒← eq (from variant≃ b)) ≡⟨ cong (_$ b) (sym from-codomain-set-≃) ⟩∎
from codomain-set-≃ b ∎
where
eq = cong B′ (remainder-set a b)
set-set : ∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a (to codomain-set-≃ b₂)
set-set a b₁ b₂ =
L.set (L.set a (from variant≃ b₁)) (from variant≃ b₂) ≡⟨ L.set-set₂ a (from variant≃ b₁) (from variant≃ b₂) ⟩
L.set a (to L.codomain-set-≃ (from variant≃ b₂)) ≡⟨ cong (L.set a) lemma ⟩∎
L.set a (from variant≃ (to codomain-set-≃ b₂)) ∎
where
lemma =
to L.codomain-set-≃ (from variant≃ b₂) ≡⟨ sym $ left-inverse-of variant≃ _ ⟩
from variant≃
(to variant≃ (to L.codomain-set-≃ (from variant≃ b₂))) ≡⟨ cong (from variant≃ ⊚ (_$ b₂)) $ sym to-codomain-set-≃ ⟩∎
from variant≃ (to codomain-set-≃ b₂) ∎
-- For a non-dependent dependent lens, for which UIP holds for the
-- codomain's universe, codomain-set-≃ is equal to the identity.
codomain-set-≃≡id :
{B : Set b} →
Is-set (Set b) →
(l : Lens A (λ _ → B)) →
∀ {a b} → Lens.codomain-set-≃ l {a = a} {b = b} ≡ Eq.id
codomain-set-≃≡id uip l =
codomain-set-≃ ≡⟨⟩
≡⇒≃ codomain-set ≡⟨ cong ≡⇒≃ (uip codomain-set refl) ⟩
≡⇒≃ refl ≡⟨ refl ⟩∎
Eq.id ∎
where
open Lens l
------------------------------------------------------------------------
-- Some lens isomorphisms
-- Lens preserves level-preserving equivalences (assuming univalence).
Lens-cong :
{A₁ A₂ : Set a} {B₁ : A₁ → Set b} {B₂ : A₂ → Set b} →
Univalence b →
(A₁≃A₂ : A₁ ≃ A₂) →
(∀ a → B₁ a ≃ B₂ (_≃_.to A₁≃A₂ a)) →
Lens A₁ B₁ ≃ Lens A₂ B₂
Lens-cong {A₁ = A₁} {A₂} {B₁} {B₂} univ A₁≃A₂ B₁≃B₂ =
(∃ λ (R : Set _) →
∃ λ (B′ : R → Set _) →
∃ λ (lens : Lens₃ A₁ R B′) →
((r : R) → ∥ B′ r ∥)
×
(∀ a → B′ (remainder lens a) ≡ B₁ a)) ↝⟨ (∃-cong λ R → ∃-cong λ B′ →
Σ-cong (Eq.≃-preserves ext A₁≃A₂ F.id) λ lens →
∃-cong λ _ →
Π-cong ext A₁≃A₂ λ a →
≡-preserves-≃ ext univ univ
(≡⇒≃ (
B′ (proj₁ (to lens a)) ≡⟨ cong (λ a → B′ (proj₁ (to lens a))) $ sym $ left-inverse-of A₁≃A₂ _ ⟩∎
B′ (proj₁ (to lens (from A₁≃A₂ (to A₁≃A₂ a)))) ∎))
(B₁≃B₂ a)) ⟩□
(∃ λ (R : Set _) →
∃ λ (B′ : R → Set _) →
∃ λ (lens : Lens₃ A₂ R B′) →
((r : R) → ∥ B′ r ∥)
×
(∀ a → B′ (remainder lens a) ≡ B₂ a)) □
where
open Lens₃
open _≃_
-- If B x is a proposition for all x, then Lens A B is isomorphic to
-- (x : A) → B x (assuming univalence).
lens-to-proposition↔get :
{A : Set a} {B : A → Set b} →
Univalence (a ⊔ b) →
Univalence b →
(∀ x → Is-proposition (B x)) →
Lens A B ↔ ((x : A) → B x)
lens-to-proposition↔get {b = b} {A = A} {B = B} univ₁ univ₂ B-prop =
(∃ λ (R : Set _) →
∃ λ (B′ : R → Set _) →
∃ λ (lens : A ≃ Σ R B′) →
((r : R) → ∥ B′ r ∥)
×
(∀ a → B′ (Lens₃.remainder lens a) ≡ B a)) ↝⟨ (∃-cong λ _ → ∃-cong λ B′ → ∃-cong λ l → ∃-cong λ _ →
Π-cong ext l λ _ →
≡⇒↝ _ $ cong (λ x → B′ _ ≡ B x) $ sym $ _≃_.left-inverse-of l _) ⟩
(∃ λ (R : Set _) →
∃ λ (B′ : R → Set _) →
∃ λ (lens : A ≃ Σ R B′) →
((r : R) → ∥ B′ r ∥)
×
(∀ p → B′ (proj₁ p) ≡ B (_≃_.from lens p))) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → currying) ⟩
(∃ λ (R : Set _) →
∃ λ (B′ : R → Set _) →
∃ λ (lens : A ≃ Σ R B′) →
((r : R) → ∥ B′ r ∥)
×
((r : R) (b : B′ r) → B′ r ≡ B (_≃_.from lens (r , b)))) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → inverse ΠΣ-comm) ⟩
(∃ λ (R : Set _) →
∃ λ (B′ : R → Set _) →
∃ λ (lens : A ≃ Σ R B′) →
((r : R) →
∥ B′ r ∥
×
((b : B′ r) → B′ r ≡ B (_≃_.from lens (r , b))))) ↔⟨ (∃-cong λ _ → ∃-cong λ B′ → ∃-cong λ lens → ∀-cong ext $
lemma₁ B′ lens) ⟩
(∃ λ (R : Set _) →
∃ λ (B′ : R → Set _) →
∃ λ (lens : A ≃ Σ R B′) →
((r : R) → ∃ λ (⊤≃B′ : ⊤ ≃ B′ r) →
B (_≃_.from lens (r , _≃_.to ⊤≃B′ _)))) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ΠΣ-comm) ⟩
(∃ λ (R : Set _) →
∃ λ (B′ : R → Set _) →
∃ λ (lens : A ≃ Σ R B′) →
∃ λ (⊤≃B′ : ∀ r → ⊤ ≃ B′ r) →
∀ r → B (_≃_.from lens (r , _≃_.to (⊤≃B′ r) _))) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-comm) ⟩
(∃ λ (R : Set _) →
∃ λ (B′ : R → Set _) →
∃ λ (⊤≃B′ : ∀ r → ⊤ ≃ B′ r) →
∃ λ (lens : A ≃ Σ R B′) →
∀ r → B (_≃_.from lens (r , _≃_.to (⊤≃B′ r) _))) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ ⊤≃B′ →
Σ-cong (Eq.≃-preserves ext F.id
(drop-⊤-right (λ r → inverse (⊤≃B′ r)))) λ _ →
F.id) ⟩
(∃ λ (R : Set _) →
∃ λ (B′ : R → Set _) →
(∀ r → ⊤ ≃ B′ r)
×
∃ λ (lens : A ≃ R) →
∀ r → B (_≃_.from lens r)) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-comm) ⟩
(∃ λ (R : Set _) →
∃ λ (B′ : R → Set _) →
∃ λ (lens : A ≃ R) →
(∀ r → ⊤ ≃ B′ r)
×
∀ r → B (_≃_.from lens r)) ↝⟨ (∃-cong λ _ → ∃-comm) ⟩
(∃ λ (R : Set _) →
∃ λ (lens : A ≃ R) →
∃ λ (B′ : R → Set _) →
(∀ r → ⊤ ≃ B′ r)
×
∀ r → B (_≃_.from lens r)) ↝⟨ Σ-assoc ⟩
(Σ (∃ λ (R : Set _) → A ≃ R) λ { (R , lens) →
∃ λ (B′ : R → Set _) →
(∀ r → ⊤ ≃ B′ r)
×
∀ r → B (_≃_.from lens r) }) ↝⟨ drop-⊤-left-Σ (other-singleton-with-≃-↔-⊤ {b = b} ext univ₁) ⟩
(∃ λ (B′ : ↑ _ A → Set _) →
(∀ a → ⊤ ≃ B′ a)
×
(∀ a → B (lower a))) ↝⟨ Σ-assoc ⟩
(∃ λ (B′ : ↑ _ A → Set _) → ∀ a → ⊤ ≃ B′ a)
×
(∀ a → B (lower a)) ↔⟨ ((∃-cong λ _ → ∀-cong ext λ _ →
Eq.≃-preserves ext (inverse $ Eq.↔⇒≃ Bij.↑↔) F.id)
×-cong
Π-cong ext (Eq.↔⇒≃ Bij.↑↔) (λ _ → F.id)) ⟩
(∃ λ (B′ : ↑ _ A → Set _) → ∀ a → ↑ _ ⊤ ≃ B′ a)
×
(∀ a → B a) ↔⟨ (∃-cong λ B′ → ∀-cong ext λ _ →
inverse $ ≡≃≃ univ₂)
×-cong
F.id ⟩
(∃ λ (B′ : ↑ _ A → Set _) → ∀ a → ↑ _ ⊤ ≡ B′ a)
×
(∀ a → B a) ↔⟨ (∃-cong λ _ →
Eq.extensionality-isomorphism ext)
×-cong
F.id ⟩
(∃ λ (B′ : ↑ _ A → Set _) → const (↑ _ ⊤) ≡ B′)
×
(∀ a → B a) ↝⟨ drop-⊤-left-× (λ _ →
_⇔_.to contractible⇔↔⊤ (other-singleton-contractible _)) ⟩□
(∀ a → B a) □
where
lemma₂ : {R : Set _} (B′ : R → Set _) (r : R) → _
lemma₂ B′ r =
(∥ B′ r ∥ × Is-proposition (B′ r)) ↝⟨ ×-comm ⟩
(Is-proposition (B′ r) × ∥ B′ r ∥) ↝⟨ (∃-cong λ B′-prop → ∥∥↔ B′-prop) ⟩
(Is-proposition (B′ r) × B′ r) ↔⟨ _↠_.from (Eq.≃↠⇔ (Σ-closure 1 (H-level-propositional ext 1) λ B′-prop →
B′-prop)
(H-level-propositional ext 0))
(record { to = uncurry propositional⇒inhabited⇒contractible
; from = λ B′-contr → mono₁ 0 B′-contr , proj₁ B′-contr
}) ⟩
Contractible (B′ r) ↝⟨ contractible↔≃⊤ ext ⟩
B′ r ≃ ⊤ ↝⟨ Eq.inverse-isomorphism ext ⟩□
⊤ ≃ B′ r □
lemma₁ : {R : Set _} (B′ : R → Set _) (lens : A ≃ Σ R B′) (r : R) → _
lemma₁ B′ lens r =
∥ B′ r ∥
×
((b′ : B′ r) → B′ r ≡ B (_≃_.from lens (r , b′))) ↝⟨ (∃-cong λ _ → ∀-cong ext λ _ →
≡≃≃ univ₂) ⟩
∥ B′ r ∥
×
((b′ : B′ r) → B′ r ≃ B (_≃_.from lens (r , b′))) ↝⟨ (∃-cong λ _ → ∀-cong ext λ b′ →
_↠_.from (Eq.≃↠⇔ (Eq.right-closure ext 0 (B-prop _))
(×-closure 1
(H-level-propositional ext 1)
(B-prop _)))
(record
{ to = λ eq → H-level.respects-surjection
(_≃_.surjection (inverse eq))
1
(B-prop _)
, _≃_.to eq b′
; from = λ { (B′-prop , b) → _↠_.from (Eq.≃↠⇔ B′-prop (B-prop _))
(record { to = const b
; from = const b′
}) }
})) ⟩
∥ B′ r ∥
×
((b′ : B′ r) → Is-proposition (B′ r)
×
B (_≃_.from lens (r , b′))) ↔⟨ (∃-cong λ _ → ΠΣ-comm) ⟩
∥ B′ r ∥
×
(B′ r → Is-proposition (B′ r))
×
((b′ : B′ r) → B (_≃_.from lens (r , b′))) ↝⟨ (∃-cong λ _ →
_↠_.from (Eq.≃↠⇔ (Π-closure ext 1 λ _ →
H-level-propositional ext 1)
(H-level-propositional ext 1))
(record { to = λ B′-prop → [inhabited⇒+]⇒+ 0 B′-prop
; from = λ B′-prop _ → B′-prop
})
×-cong
F.id) ⟩
∥ B′ r ∥
×
Is-proposition (B′ r)
×
((b′ : B′ r) → B (_≃_.from lens (r , b′))) ↔⟨ ×-assoc ⟩
(∥ B′ r ∥
×
Is-proposition (B′ r))
×
((b′ : B′ r) → B (_≃_.from lens (r , b′))) ↔⟨ lemma₂ B′ r ×-cong F.id ⟩
(⊤ ≃ B′ r)
×
((b′ : B′ r) → B (_≃_.from lens (r , b′))) ↝⟨ (∃-cong λ ⊤≃B′ → drop-⊤-left-Π ext (_≃_.bijection $ inverse ⊤≃B′)) ⟩□
(∃ λ (⊤≃B′ : ⊤ ≃ B′ r) →
B (_≃_.from lens (r , _≃_.to ⊤≃B′ _))) □
-- If B x is contractible for all x, then Lens A B is isomorphic to ⊤
-- (assuming univalence).
lens-to-contractible↔⊤ :
{A : Set a} {B : A → Set b} →
Univalence (a ⊔ b) →
Univalence b →
(∀ x → Contractible (B x)) →
Lens A B ↔ ⊤
lens-to-contractible↔⊤ {A = A} {B} univ₁ univ₂ cB =
Lens A B ↝⟨ lens-to-proposition↔get univ₁ univ₂ (mono₁ 0 ⊚ cB) ⟩
((x : A) → B x) ↝⟨ (∀-cong ext λ _ →
_⇔_.to contractible⇔↔⊤ (cB _)) ⟩
(A → ⊤) ↝⟨ →-right-zero ⟩□
⊤ □
-- Lens A (const ⊥) is isomorphic to ¬ A (assuming univalence).
lens-to-⊥↔¬ :
{A : Set a} →
Univalence (a ⊔ b) →
Univalence b →
Lens A (const (⊥ {ℓ = b})) ↔ ¬ A
lens-to-⊥↔¬ {A = A} univ₁ univ₂ =
Lens A (const ⊥) ↝⟨ lens-to-proposition↔get univ₁ univ₂ (λ _ → ⊥-propositional) ⟩
(A → ⊥) ↝⟨ inverse $ ¬↔→⊥ ext ⟩□
¬ A □
------------------------------------------------------------------------
-- Results relating different kinds of lenses
-- If we assume that equality with the codomain type is propositional,
-- then non-dependent dependent lenses are isomorphic to non-dependent
-- lenses.
--
-- TODO: Can this be proved without assuming that equality with the
-- codomain type is propositional? If not, can the definition of Lens
-- be changed so that it can be proved?
non-dependent-lenses-isomorphic :
{B : Set b} →
(∀ {B′} → Is-proposition (B′ ≡ B)) →
∃ λ (iso : Lens A (const B) ↔ ND.Lens A B) →
∀ {l a} → Lens.get l a ≡ ND.Lens.get (_↔_.to iso l) a
non-dependent-lenses-isomorphic {A = A} {B = B} ≡B-prop =
(Lens A (const B) ↝⟨ inverse ND.Lens-as-Σ F.∘ ∃-cong lemma ⟩□
ND.Lens A B □)
, λ {l a} →
let p = variant l a
q = Trunc.rec
≡B-prop
(λ b → subst (λ { (r , _) → B′ l r ≡ B })
(_≃_.right-inverse-of (lens l)
(remainder l a , b))
(variant l (Lens₃.set (lens l) a b)))
(inhabited l (remainder l a))
in
≡⇒→ p (proj₂ (_≃_.to (lens l) a)) ≡⟨ cong (λ eq → ≡⇒→ eq (proj₂ (_≃_.to (lens l) a)))
(≡B-prop p q) ⟩∎
≡⇒→ q (proj₂ (_≃_.to (lens l) a)) ∎
where
open Lens
lemma = λ R →
(∃ λ (B′ : R → Set _) →
∃ λ (lens : A ≃ Σ R B′) →
((r : R) → ∥ B′ r ∥)
×
(∀ a → B′ (Lens₃.remainder lens a) ≡ B)) ↝⟨ (∃-cong λ _ → ∃-cong λ l → ∃-cong λ _ →
Π-cong ext l (λ _ → F.id)) ⟩
(∃ λ (B′ : R → Set _) →
(A ≃ Σ R B′)
×
((r : R) → ∥ B′ r ∥)
×
(∀ p → B′ (proj₁ p) ≡ B)) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → currying) ⟩
(∃ λ (B′ : R → Set _) →
(A ≃ Σ R B′)
×
((r : R) → ∥ B′ r ∥)
×
((r : R) → B′ r → B′ r ≡ B)) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ inh →
∀-cong ext λ r →
_↠_.from (Eq.≃↠⇔ (Π-closure ext 1 λ _ →
≡B-prop)
≡B-prop)
(record { from = λ B′r≡B → const B′r≡B
; to = λ B′r→B′r≡B → Trunc.rec ≡B-prop B′r→B′r≡B (inh r)
})) ⟩
(∃ λ (B′ : R → Set _) →
(A ≃ Σ R B′)
×
((r : R) → ∥ B′ r ∥)
×
((r : R) → B′ r ≡ B)) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ×-comm) ⟩
(∃ λ (B′ : R → Set _) →
(A ≃ Σ R B′)
×
((r : R) → B′ r ≡ B)
×
((r : R) → ∥ B′ r ∥)) ↝⟨ (∃-cong λ _ → ∃-comm) ⟩
(∃ λ (B′ : R → Set _) →
((r : R) → B′ r ≡ B)
×
(A ≃ Σ R B′)
×
((r : R) → ∥ B′ r ∥)) ↔⟨ (∃-cong λ _ →
Σ-cong (Eq.extensionality-isomorphism ext) λ B′≡B →
Eq.≃-preserves ext F.id (∃-cong λ _ → ≡⇒↝ _ (B′≡B _))
×-cong
∀-cong ext (λ _ → Eq.↔⇒≃ $ ∥∥-cong (≡⇒↝ _ (B′≡B _)))) ⟩
(∃ λ (B′ : R → Set _) →
B′ ≡ const B
×
(A ≃ (R × B))
×
(R → ∥ B ∥)) ↝⟨ Σ-assoc ⟩
((∃ λ (B′ : R → Set _) → B′ ≡ const B)
×
(A ≃ (R × B))
×
(R → ∥ B ∥)) ↝⟨ drop-⊤-left-× (λ _ →
_⇔_.to contractible⇔↔⊤ (singleton-contractible _)) ⟩□
((A ≃ (R × B))
×
(R → ∥ B ∥)) □
-- The type of non-dependent dependent lenses from A to B is
-- isomorphic to the type of non-dependent lenses from A to B if UIP
-- holds for B.
non-dependent-lenses-isomorphic-UIP :
{B : Set b} →
Is-set (Set b) →
∃ λ (iso : Lens A (const B) ↔ ND.Lens A B) →
∀ {l a} → Lens.get l a ≡ ND.Lens.get (_↔_.to iso l) a
non-dependent-lenses-isomorphic-UIP uip =
non-dependent-lenses-isomorphic uip
-- Lens and Lens′ are pointwise isomorphic.
Lens↔Lens′ : {A : Set a} {B : A → Set b} →
Lens A B ↔ Lens′ A B
Lens↔Lens′ {a = a} {b = b} {A = A} {B = B} =
(∃ λ (R : Set (a ⊔ b)) →
∃ λ (B′ : R → Set b) →
∃ λ (lens : Lens₃ A R B′) →
((r : R) → ∥ B′ r ∥)
×
(∀ a → B′ (Lens₃.remainder lens a) ≡ B a)) ↝⟨ (∃-cong λ _ → ∃-cong λ _ →
Σ-cong (Eq.≃-as-Σ) λ _ → F.id) ⟩
(∃ λ (R : Set (a ⊔ b)) →
∃ λ (B′ : R → Set b) →
∃ λ (lens : ∃ λ (rg : A → Σ R B′) → Eq.Is-equivalence rg) →
((r : R) → ∥ B′ r ∥)
×
(∀ a → B′ (proj₁ (proj₁ lens a)) ≡ B a)) ↝⟨ (∃-cong λ _ → ∃-cong λ _ →
inverse Σ-assoc) ⟩
(∃ λ (R : Set (a ⊔ b)) →
∃ λ (B′ : R → Set b) →
∃ λ (rg : A → Σ R B′) →
Eq.Is-equivalence rg
×
((r : R) → ∥ B′ r ∥)
×
(∀ a → B′ (proj₁ (rg a)) ≡ B a)) ↝⟨ (∃-cong λ _ → ∃-cong λ _ →
Σ-cong ΠΣ-comm λ _ → F.id) ⟩
(∃ λ (R : Set (a ⊔ b)) →
∃ λ (B′ : R → Set b) →
∃ λ (rg : ∃ λ (remainder : A → R) →
(a : A) → B′ (remainder a)) →
Eq.Is-equivalence {B = ∃ B′} (λ a → proj₁ rg a , proj₂ rg a)
×
((r : R) → ∥ B′ r ∥)
×
(∀ a → B′ (proj₁ rg a) ≡ B a)) ↝⟨ (∃-cong λ _ → ∃-cong λ _ →
inverse Σ-assoc) ⟩
(∃ λ (R : Set (a ⊔ b)) →
∃ λ (B′ : R → Set b) →
∃ λ (remainder : A → R) →
∃ λ (get′ : (a : A) → B′ (remainder a)) →
Eq.Is-equivalence {B = ∃ B′} (λ a → remainder a , get′ a)
×
((r : R) → ∥ B′ r ∥)
×
(∀ a → B′ (remainder a) ≡ B a)) ↝⟨ (∃-cong λ R → ∃-cong λ B′ → ∃-cong λ rem → ∃-cong λ get′ → ∃-cong λ eq →
∀-cong ext (λ r → ∥∥-cong (lemma R B′ rem get′ eq r))
×-cong
F.id) ⟩
(∃ λ (R : Set (a ⊔ b)) →
∃ λ (B′ : R → Set b) →
∃ λ (remainder : A → R) →
∃ λ (get′ : (a : A) → B′ (remainder a)) →
Eq.Is-equivalence {B = ∃ B′} (λ a → remainder a , get′ a)
×
Surjective remainder
×
(∀ a → B′ (remainder a) ≡ B a)) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ →
×-comm) ⟩
(∃ λ (R : Set (a ⊔ b)) →
∃ λ (B′ : R → Set b) →
∃ λ (remainder : A → R) →
∃ λ (get′ : (a : A) → B′ (remainder a)) →
Eq.Is-equivalence {B = ∃ B′} (λ a → remainder a , get′ a)
×
(∀ a → B′ (remainder a) ≡ B a)
×
Surjective remainder) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ →
∃-comm) ⟩
(∃ λ (R : Set (a ⊔ b)) →
∃ λ (B′ : R → Set b) →
∃ λ (remainder : A → R) →
∃ λ (get′ : (a : A) → B′ (remainder a)) →
(∀ a → B′ (remainder a) ≡ B a)
×
Eq.Is-equivalence {B = ∃ B′} (λ a → remainder a , get′ a)
×
Surjective remainder) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ →
∃-comm) ⟩
(∃ λ (R : Set (a ⊔ b)) →
∃ λ (B′ : R → Set b) →
∃ λ (remainder : A → R) →
(∀ a → B′ (remainder a) ≡ B a)
×
∃ λ (get′ : (a : A) → B′ (remainder a)) →
Eq.Is-equivalence {B = ∃ B′} (λ a → remainder a , get′ a)
×
Surjective remainder) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ×-cong₁ λ _ →
∀-cong ext λ _ →
Groupoid.⁻¹-bijection (EG.groupoid _)) ⟩
(∃ λ (R : Set (a ⊔ b)) →
∃ λ (B′ : R → Set b) →
∃ λ (remainder : A → R) →
(∀ a → B a ≡ B′ (remainder a))
×
∃ λ (get′ : (a : A) → B′ (remainder a)) →
Eq.Is-equivalence {B = ∃ B′} (λ a → remainder a , get′ a)
×
Surjective remainder) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ×-cong₁ λ _ →
inverse Bij.implicit-Π↔Π) ⟩
(∃ λ (R : Set (a ⊔ b)) →
∃ λ (B′ : R → Set b) →
∃ λ (remainder : A → R) →
(∀ {a} → B a ≡ B′ (remainder a))
×
∃ λ (get′ : (a : A) → B′ (remainder a)) →
Eq.Is-equivalence {B = ∃ B′} (λ a → remainder a , get′ a)
×
Surjective remainder) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ variant → inverse $
Σ-cong (∀-cong ext λ _ →
Eq.subst-as-equivalence P.id (variant {_})) λ _ →
F.id) ⟩
(∃ λ (R : Set (a ⊔ b)) →
∃ λ (B′ : R → Set b) →
∃ λ (remainder : A → R) →
∃ λ (variant : ∀ {a} → B a ≡ B′ (remainder a)) →
∃ λ (get : (a : A) → B a) →
Eq.Is-equivalence {B = ∃ B′}
(λ a → remainder a , subst P.id variant (get a))
×
Surjective remainder) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ →
∃-comm) ⟩
(∃ λ (R : Set (a ⊔ b)) →
∃ λ (B′ : R → Set b) →
∃ λ (remainder : A → R) →
∃ λ (get : (a : A) → B a) →
∃ λ (variant : ∀ {a} → B a ≡ B′ (remainder a)) →
Eq.Is-equivalence {B = ∃ B′}
(λ a → remainder a , subst P.id variant (get a))
×
Surjective remainder) ↝⟨ (∃-cong λ _ → ∃-cong λ _ →
∃-comm) ⟩
(∃ λ (R : Set (a ⊔ b)) →
∃ λ (B′ : R → Set b) →
∃ λ (get : (a : A) → B a) →
∃ λ (remainder : A → R) →
∃ λ (variant : ∀ {a} → B a ≡ B′ (remainder a)) →
Eq.Is-equivalence {B = ∃ B′}
(λ a → remainder a , subst P.id variant (get a))
×
Surjective remainder) ↝⟨ (∃-cong λ _ →
∃-comm) ⟩
(∃ λ (R : Set (a ⊔ b)) →
∃ λ (get : (a : A) → B a) →
∃ λ (B′ : R → Set b) →
∃ λ (remainder : A → R) →
∃ λ (variant : ∀ {a} → B a ≡ B′ (remainder a)) →
Eq.Is-equivalence {B = ∃ B′}
(λ a → remainder a , subst P.id variant (get a))
×
Surjective remainder) ↝⟨ ∃-comm ⟩
(∃ λ (get : (a : A) → B a) →
∃ λ (R : Set (a ⊔ b)) →
∃ λ (B′ : R → Set b) →
∃ λ (remainder : A → R) →
∃ λ (variant : ∀ {a} → B a ≡ B′ (remainder a)) →
Eq.Is-equivalence {B = ∃ B′}
(λ a → remainder a , subst P.id variant (get a))
×
Surjective remainder) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ →
×-comm) ⟩
(∃ λ (get : (a : A) → B a) →
∃ λ (R : Set (a ⊔ b)) →
∃ λ (B′ : R → Set b) →
∃ λ (remainder : A → R) →
∃ λ (variant : ∀ {a} → B a ≡ B′ (remainder a)) →
Surjective remainder
×
Eq.Is-equivalence {B = ∃ B′}
(λ a → remainder a , subst P.id variant (get a))) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ →
∃-comm) ⟩
(∃ λ (get : (a : A) → B a) →
∃ λ (R : Set (a ⊔ b)) →
∃ λ (B′ : R → Set b) →
∃ λ (remainder : A → R) →
Surjective remainder
×
∃ λ (variant : ∀ {a} → B a ≡ B′ (remainder a)) →
Eq.Is-equivalence {B = ∃ B′}
(λ a → remainder a , subst P.id variant (get a))) ↝⟨ (∃-cong λ _ → ∃-cong λ _ →
∃-comm) ⟩
(∃ λ (get : (a : A) → B a) →
∃ λ (R : Set (a ⊔ b)) →
∃ λ (remainder : A → R) →
∃ λ (B′ : R → Set b) →
Surjective remainder
×
∃ λ (variant : ∀ {a} → B a ≡ B′ (remainder a)) →
Eq.Is-equivalence {B = ∃ B′}
(λ a → remainder a , subst P.id variant (get a))) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ →
∃-comm) ⟩□
(∃ λ (get : (a : A) → B a) →
∃ λ (R : Set (a ⊔ b)) →
∃ λ (remainder : A → R) →
Surjective remainder
×
∃ λ (B′ : R → Set b) →
∃ λ (variant : ∀ {a} → B a ≡ B′ (remainder a)) →
Eq.Is-equivalence {B = ∃ B′}
(λ a → remainder a , subst P.id variant (get a))) □
where
lemma : ∀ _ _ _ _ _ _ → _
lemma = λ _ B′ remainder _ eq r →
B′ r ↝⟨ (inverse $ drop-⊤-right λ _ →
_⇔_.to contractible⇔↔⊤ $
singleton-contractible _) ⟩
B′ r × Singleton r ↝⟨ ∃-comm ⟩
(∃ λ r′ → B′ r × r′ ≡ r) ↝⟨ ∃-cong (λ _ → ×-cong₁ λ r′≡r → ≡⇒↝ _ (cong B′ (sym r′≡r))) ⟩
(∃ λ r′ → B′ r′ × r′ ≡ r) ↝⟨ Σ-assoc ⟩
(∃ λ (p : ∃ B′) → proj₁ p ≡ r) ↝⟨ inverse $ Σ-cong Eq.⟨ _ , eq ⟩ (λ _ → F.id) ⟩□
(∃ λ a → remainder a ≡ r) □
------------------------------------------------------------------------
-- Lens combinators
-- Conversion from Lens₃ to Lens.
Lens₃-to-Lens :
{A : Set a} {R : Set (a ⊔ b)} {B : R → Set b} →
(l : Lens₃ A R B) →
Lens A (B ⊚ Lens₃.remainder l)
Lens₃-to-Lens {A = A} {R} {B} l =
_ ,
_ ,
(A ↝⟨ l ⟩
Σ R B ↔⟨ ∃-cong (λ _ → inverse ∥∥×↔) ⟩
Σ R (λ r → ∥ B r ∥ × B r) ↔⟨ Σ-assoc ⟩□
Σ (Σ R (λ r → ∥ B r ∥)) (λ { (r , _) → B r }) □) ,
proj₂ ,
λ _ → refl
-- A variant of Lens₃-to-Lens.
Lens₃-to-Lens′ :
{A : Set (a ⊔ r)} {R : Set r} {B : R → Set b} →
(l : Lens₃ A R B) →
Lens A (B ⊚ Lens₃.remainder l)
Lens₃-to-Lens′ {a = a} {b = b} {A = A} {R = R} {B = B} l =
Lens₃-to-Lens
(A ↝⟨ l ⟩
Σ R B ↝⟨ Σ-cong (inverse Bij.↑↔) (λ _ → F.id) ⟩□
Σ (↑ (a ⊔ b) R) (λ { (lift r) → B r }) □)
-- Identity lens.
id : Lens A (λ _ → A)
id {A = A} = Lens₃-to-Lens′
(A ↔⟨ inverse ×-left-identity ⟩□
⊤ × A □)
-- Composition of lenses.
--
-- Note that this function combines a family of Lenses and a Lens₃.
infixr 9 _∘₃_
_∘₃_ :
{A : Set (a ⊔ b ⊔ c)} {R : Set (a ⊔ b ⊔ c)}
{B : R → Set (b ⊔ c)} {C : {r : R} → B r → Set c} →
(∀ {r} → Lens (B r) C) → (l₂ : Lens₃ A R B) →
Lens A (C ⊚ Lens₃.get l₂)
_∘₃_ {R = R} l₁ l₂ =
(∃ λ (r : R) → Lens.R (l₁ {r = r})) ,
(λ { (r₁ , r₂) → Lens.B′ (l₁ {r = r₁}) r₂ }) ,
Lens.lens l₁ ₃∘₃ l₂ ,
Lens.inhabited l₁ ⊚ proj₂ ,
Lens.variant l₁ ⊚ Lens₃.get l₂
-- /Forward/ composition of lenses.
--
-- This function combines /Lens/es, but has a type which is arguably
-- more complicated. The type is also somewhat restricted: C is only
-- indexed by As, not Bs.
infixr 9 _⨾_
_⨾_ : {A : Set (a ⊔ b ⊔ c)} {B : A → Set (b ⊔ c)} {C : A → Set c} →
(l₁ : Lens A B) →
let open Lens l₁; open _≃_ lens in
(∀ {r} → Lens (B′ r) (λ b′ → C (from (r , b′)))) →
Lens A C
_⨾_ {C = C} l₁ l₂ =
(∃ λ (r₁ : R l₁) → Lens.R (l₂ {r = r₁})) ,
(λ { (r₁ , r₂) → B′ (l₂ {r = r₁}) r₂ }) ,
lens l₂ ₃∘₃ lens l₁ ,
(λ { (_ , r₂) → inhabited l₂ r₂ }) ,
λ a →
B′ l₂ (remainder l₂ (Lens₃.get (lens l₁) a)) ≡⟨ variant l₂ _ ⟩
C (from (lens l₁) (to (lens l₁) a)) ≡⟨ cong C (left-inverse-of (lens l₁) a) ⟩∎
C a ∎
where
open _≃_
open Lens
-- Can the composition operation be generalised?
-- The argument below does not depend on the details of the
-- implementation of Lens.
module No-fully-general-composition-operator
(Lens′ : (A : Set) → (A → Set) → Set₁)
(get′ : ∀ {A B} → Lens′ A B → (a : A) → B a)
where
-- The following type signature—and partial specification—might seem
-- like a reasonable goal (if we restrict attention to Set₀).
Type-of-composition : Set₁
Type-of-composition =
{A : Set} {B : A → Set} {C : (a : A) → B a → Set}
(l₁ : Lens′ A B)
(l₂ : ∀ a → Lens′ (B a) (C a)) →
∃ λ (l₃ : Lens′ A (λ a → C a (get′ l₁ a))) →
∀ a → get′ l₃ a ≡ get′ (l₂ a) (get′ l₁ a)
-- However, this specification is unsatisfiable in the non-dependent
-- case (for ND.Lens).
no-corresponding-non-dependent-composition-operator :
let open ND.Lens in
¬ ({A B C : Set}
(l₁ : ND.Lens A B)
(l₂ : A → ND.Lens B C) →
∃ λ (l₃ : ND.Lens A C) →
∀ a → get l₃ a ≡ get (l₂ a) (get l₁ a))
no-corresponding-non-dependent-composition-operator comp =
contradiction
where
open ND.Lens
open _≃_
idL : ND.Lens Bool Bool
idL = ND.Lens-combinators.id ⊠
swapL : ND.Lens Bool Bool
swapL = ND.isomorphism-to-lens
(Bool ↔⟨ swap ⟩
Bool ↔⟨ inverse ×-left-identity ⟩□
⊤ × Bool □)
l₁ : ND.Lens Bool Bool
l₁ = idL
l₂ : Bool → ND.Lens Bool Bool
l₂ = if_then idL else swapL
l₃ : ND.Lens Bool Bool
l₃ = proj₁ (comp l₁ l₂)
get-constant : ∀ b → get l₃ b ≡ true
get-constant true = proj₂ (comp l₁ l₂) _
get-constant false = proj₂ (comp l₁ l₂) _
contradiction : ⊥
contradiction = Bool.true≢false (
true ≡⟨ sym $ get-constant (set l₃ true false) ⟩
get l₃ (set l₃ true false) ≡⟨ get-set l₃ true false ⟩∎
false ∎)
-- Thus it is also unsatisfiable if non-dependent dependent lenses
-- are isomorphic (in a certain sense) to the corresponding
-- non-dependent lenses.
no-composition-operator :
({A B : Set} →
∃ λ (iso : Lens′ A (λ _ → B) ↔ ND.Lens A B) →
∀ {l a} → get′ l a ≡ ND.Lens.get (_↔_.to iso l) a) →
¬ Type-of-composition
no-composition-operator Lens↔Lens comp =
no-corresponding-non-dependent-composition-operator
(λ l₁ l₂ →
let l₃ , get-l₃ = comp (from l₁) (λ a → from (l₂ a))
in
to l₃ , λ a →
get (to l₃) a ≡⟨ sym $ proj₂ Lens↔Lens ⟩
get′ l₃ a ≡⟨ get-l₃ a ⟩
get′ (from (l₂ a)) (get′ (from l₁) a) ≡⟨ cong (get′ (from (l₂ a))) (proj₂ Lens↔Lens) ⟩
get′ (from (l₂ a)) (get (to (from l₁)) a) ≡⟨ proj₂ Lens↔Lens ⟩
get (to (from (l₂ a))) (get (to (from l₁)) a) ≡⟨ cong₂ (λ l₁ l₂ → get l₁ (get l₂ a))
(right-inverse-of _)
(right-inverse-of _) ⟩∎
get (l₂ a) (get l₁ a) ∎)
where
open ND.Lens
open module Lens↔Lens {A B : Set} =
_↔_ (proj₁ (Lens↔Lens {A = A} {B = B}))
-- In the presence of UIP for Set it is impossible to define a fully
-- general composition operator.
no-fully-general-composition-operator-UIP :
let open Lens in
Is-set Set →
¬ ({A : Set} {B : A → Set} {C : (a : A) → B a → Set}
(l₁ : Lens A B)
(l₂ : ∀ a → Lens (B a) (C a)) →
∃ λ (l₃ : Lens A (λ a → C a (Lens.get l₁ a))) →
∀ a → get l₃ a ≡ get (l₂ a) (get l₁ a))
no-fully-general-composition-operator-UIP uip =
No-fully-general-composition-operator.no-composition-operator
Lens Lens.get
(non-dependent-lenses-isomorphic-UIP uip)
------------------------------------------------------------------------
-- An observation
-- Lens₃ lenses cannot (easily) be used to replace ordinary
-- projections: one cannot, in general, define lenses with the type of
-- the first projection from a Σ-type. For Lens lenses the situation
-- is unclear.
module Observation where
-- A Σ-type which is isomorphic to the unit type.
Unit = Σ Bool λ b → b ≡ true
-- All its inhabitants are equal.
equal : (u₁ u₂ : Unit) → u₁ ≡ u₂
equal (.true , refl) (.true , refl) = refl
-- Its only inhabitant.
u : Unit
u = (true , refl)
-- The first projection Lens₃ cannot be defined for Unit.
not-proj₁₃ : ∀ {r} {R : Set r} → ¬ Lens₃ Unit R (λ _ → Bool)
not-proj₁₃ l = Bool.true≢false (
true ≡⟨ sym $ subst-const (sym $ remainder-set u true) ⟩
subst (λ _ → Bool) (sym $ remainder-set u true) true ≡⟨ sym $ get-set₁ u true ⟩
get (set u true) ≡⟨ cong get (equal (set u true) (set u false)) ⟩
get (set u false) ≡⟨ get-set₁ u false ⟩
subst (λ _ → Bool) (sym $ remainder-set u false) false ≡⟨ subst-const (sym $ remainder-set u false) ⟩∎
false ∎)
where
open Lens₃ l
-- The first projection Lens cannot be defined for Unit /if/ we
-- assume that UIP holds for Set.
not-proj₁ : Is-set Set → ¬ Lens Unit (λ _ → Bool)
not-proj₁ uip l = Bool.true≢false (
true ≡⟨ sym $ cong (λ eq → from eq true) $ codomain-set-≃≡id uip l ⟩
from codomain-set-≃ true ≡⟨ sym $ get-set u true ⟩
get (set u true) ≡⟨ cong get (equal (set u true) (set u false)) ⟩
get (set u false) ≡⟨ get-set u false ⟩
from codomain-set-≃ false ≡⟨ cong (λ eq → from eq false) $ codomain-set-≃≡id uip l ⟩∎
false ∎)
where
open _≃_
open Lens l
-- TODO: What is the situation in the presence of univalence?
|
{
"alphanum_fraction": 0.3803100748,
"avg_line_length": 40.7837058399,
"ext": "agda",
"hexsha": "338026e988c44e05c56c20cc0f2d95e2642739a5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Saizan/dependent-lenses",
"max_forks_repo_path": "src/Lens/Dependent.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Saizan/dependent-lenses",
"max_issues_repo_path": "src/Lens/Dependent.agda",
"max_line_length": 147,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Saizan/dependent-lenses",
"max_stars_repo_path": "src/Lens/Dependent.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 19673,
"size": 56567
}
|
{-# OPTIONS --without-K --exact-split --safe #-}
module Fragment.Extensions.CSemigroup where
open import Fragment.Extensions.CSemigroup.Base using (CSemigroupFrex) public
|
{
"alphanum_fraction": 0.7803468208,
"avg_line_length": 28.8333333333,
"ext": "agda",
"hexsha": "bc474a64fef7fb7bafeb36e9b380307ee7733ed0",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z",
"max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "yallop/agda-fragment",
"max_forks_repo_path": "src/Fragment/Extensions/CSemigroup.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "yallop/agda-fragment",
"max_issues_repo_path": "src/Fragment/Extensions/CSemigroup.agda",
"max_line_length": 77,
"max_stars_count": 18,
"max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yallop/agda-fragment",
"max_stars_repo_path": "src/Fragment/Extensions/CSemigroup.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z",
"num_tokens": 37,
"size": 173
}
|
{-# OPTIONS --without-K #-}
module BimonoidalCategory where
open import Level
open import Categories.Category
open import Categories.Monoidal
open import Categories.Monoidal.Braided
open import Categories.NaturalIsomorphism
open import Categories.NaturalTransformation using (id; _∘₁_; _≡_)
------------------------------------------------------------------------------
-- Definition
record SymmetricMonoidalCategory {o ℓ e} {ℂ : Category o ℓ e} {Mℂ : Monoidal ℂ}
(BMℂ : Braided Mℂ) : Set (suc (o ⊔ ℓ ⊔ e)) where
open Braided BMℂ using (braid)
open NaturalIsomorphism braid using () renaming (F⇒G to x⊗y⇒y⊗x; F⇐G to y⊗x⇒x⊗y)
field
symmetry : x⊗y⇒y⊗x ∘₁ y⊗x⇒x⊗y ≡ id
{--
record BimonoidalCategory o ℓ e (C : Category o ℓ e) : Set (suc (o ⊔ ℓ ⊔ e)) where
infixr 9 _∘_
infixl 7 _+_ _⊕_
infixl 6 _*_ _⊗_
infix 4 _⇒_
infix 1 _≈_
field
-- objects, morphisms, equality on morphisms
Obj : Set o
_⇒_ : Rel Obj ℓ
_≈_ : ∀ {A B} → Rel (A ⇒ B) e
-- plain category
id : ∀ {A} → A ⇒ A
_∘_ : ∀ {A B C} → (B ⇒ C) → (A ⇒ B) → (A ⇒ C)
-- additive monoid
0# : Obj
_+_ : Op₂ Obj
_⊕_ : ∀ {A B C D} → (A ⇒ C) → (B ⇒ D) → (A + B ⇒ C + D)
-- multiplicative monoid
1# : Obj
_*_ : Op₂ Obj
_⊗_ : ∀ {A B C D} → (A ⇒ C) → (B ⇒ D) → (A * B ⇒ C * D)
-- axioms
isBimonoidalCategory : IsBimonoidalCategory _⇒_ _≈_ id _∘_ 0# _+_ _⊕_ 1# _*_ _⊗_
record Iso {o ℓ e} {Obj : Set o}
(_⇒_ : Rel Obj ℓ)
(_≈_ : ∀ {A B} → Rel (A ⇒ B) e)
(id : ∀ {A} → A ⇒ A)
(_∘_ : ∀ {A B C} → (B ⇒ C) → (A ⇒ B) → (A ⇒ C))
(A B : Obj)
: Set (o ⊔ ℓ ⊔ e) where
field
fwd : A ⇒ B
bwd : B ⇒ A
fwd∘bwd : (_∘_ {B} {A} {B} fwd bwd) ≈ id {B}
bwd∘fwd : (_∘_ {A} {B} {A} bwd fwd) ≈ id {A}
record IsMonoid {o ℓ e} {Obj : Set o}
(_⇒_ : Rel Obj ℓ)
(_≈_ : ∀ {A B} → Rel (A ⇒ B) e)
(id : ∀ {A} → A ⇒ A)
(_∘_ : ∀ {A B C} → (B ⇒ C) → (A ⇒ B) → (A ⇒ C))
(u : Obj)
(_op_ : Op₂ Obj)
(_opf_ : ∀ {A B C D} → (A ⇒ C) → (B ⇒ D) → (_⇒_ (A op B) (C op D)))
: Set (o ⊔ ℓ ⊔ e) where
field
assoc : {A B C : Obj} → Iso _⇒_ _≈_ id _∘_ ((A op B) op C) (A op (B op C))
unite : {A : Obj} → Iso _⇒_ _≈_ id _∘_ (u op A) A
uniti : {A : Obj} → Iso _⇒_ _≈_ id _∘_ (A op u) A
funcObj : {A B : Obj} → ((id {A}) opf (id {B})) ≈ id {A op B}
-- funcMor : {A B C D E F G H : Obj} {f : A ⇒ B} {g : C ⇒ D} {k : E ⇒ F} {h : G ⇒ H} →
-- ((k opf h) ∘ (g opf f)) ≈ ((k opf g) ∘ (h opf f))
-- assoc; unite; uniti are natural transformations
-- triangle
-- pentagon
record IsBimonoidalCategory {o ℓ e} {Obj : Set o}
(_⇒_ : Rel Obj ℓ)
(_≈_ : ∀ {A B} → Rel (A ⇒ B) e)
(id : ∀ {A} → A ⇒ A)
(_∘_ : ∀ {A B C} → (B ⇒ C) → (A ⇒ B) → (A ⇒ C))
(0# : Obj)
(_+_ : Op₂ Obj)
(_⊕_ : ∀ {A B C D} → (A ⇒ C) → (B ⇒ D) → (_⇒_ (A + B) (C + D)))
(1# : Obj)
(_*_ : Op₂ Obj)
(_⊗_ : ∀ {A B C D} → (A ⇒ C) → (B ⇒ D) → (_⇒_ (A * B) (C * D)))
: Set (o ⊔ ℓ ⊔ e) where
field
cat : Category o ℓ e
+-isMonoid : IsMonoid _⇒_ _≈_ id _∘_ 0# _+_ _⊕_
*-isMonoid : IsMonoid _⇒_ _≈_ id _∘_ 1# _*_ _⊗_
-- ⊕ is a bifunctor
-- units and assoc are natural transformations
-- pentangon and triangle axioms
-- multiplicative monoid
-- distributivity
--}
------------------------------------------------------------------------------
|
{
"alphanum_fraction": 0.4665871122,
"avg_line_length": 31.3271028037,
"ext": "agda",
"hexsha": "d974e1466fbae093b51028a041f7e35ca215cd58",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/Obsolete/BimonoidalCategory.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/Obsolete/BimonoidalCategory.agda",
"max_line_length": 89,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/Obsolete/BimonoidalCategory.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 1541,
"size": 3352
}
|
module Main where
import Automaton.DeterministicFinite
import Automaton.NonDeterministicFinite
import Automaton.Pushdown
import Automaton.TuringMachine
import Cardinal
import Cardinal.Finite.Count
import Cardinal.Proofs
import Data
import Data.Any
import Data.Boolean
import Data.Boolean.Stmt
import Data.Boolean.Operators
import Data.Boolean.Proofs
import Data.Either
import Data.List
import Data.List.Computability
import Data.List.Proofs
import Data.List.Relation.Membership.Proofs
import Data.List.Relation.Sublist.Proofs
import Data.List.Relation
import Data.List.Relation.Membership
import Data.List.Relation.Sublist
import Data.ListNonEmpty
import Data.Option
import Data.Proofs
import Data.Tuple
import Data.Tuple.Function
import Data.Tuple.List
import Data.Tuple.Proofs
import Data.Tuple.Raise
import Data.Tuple.Raiseᵣ
import Data.Tuple.Raiseₗ
import FFI.IO as FFI
import FormalLanguage
import FormalLanguage.ContextFreeGrammar
import FormalLanguage.Proofs
import FormalLanguage.RegularExpression
import Functional
import Function.DomainRaise
import Function.Domains
import Function.Domains.Proofs
import Function.Equals
import Function.Names
import Function.PrimitiveRecursion
import Function.Proofs
import Function.Iteration
import Function.Iteration.Proofs
-- import Geometry.Test
-- import Geometry.Test2
import Geometry.Test3
import Graph
import Lang.Instance
import Lang.Irrelevance
import Logic.Classical
import Logic.Classical.DoubleNegated
import Logic.Classical.Mere
import Logic.Computability
import Logic.Computability.Binary
import Logic.Convenience
import Logic.DiagonalProof
import Logic.LambdaCalculus
import Logic.Predicate
import Logic.Predicate.Theorems
import Logic.Propositional
import Logic.Propositional.Names
import Logic.Propositional.Theorems
import Lvl
import Metalogic.Classical.Propositional.ProofSystem
import Metalogic.Classical.Propositional.Syntax
import Metalogic.Classical.Propositional.TruthSemanticsModel
import Metalogic.Constructive.NaturalDeduction.TreeModel
-- import Metalogic.Constructive.Provability
import Metalogic.Linear.SequentCalculus
import Metalogic.Linear.Syntax
import Numeral.CoordinateVector
import Numeral.FiniteInclusive
import Numeral.Finite
import Numeral.Finite.Bound
import Numeral.Finite.Functions
import Numeral.Finite.Oper
import Numeral.Finite.Oper.Comparisons
import Numeral.Finite.Proofs
import Numeral.Integer
import Numeral.Integer.Function
import Numeral.Integer.Oper
import Numeral.Integer.Proofs
import Numeral.Integer.Relation
import Numeral.Integer.Sign
import Numeral.Matrix
import Numeral.Natural
import Numeral.Natural.Coprime
import Numeral.Natural.Function
import Numeral.Natural.Function.Proofs
-- import Numeral.Natural.GreatestCommonDivisor
import Numeral.Natural.Induction
import Numeral.Natural.Inductions
import Numeral.Natural.Oper
import Numeral.Natural.Oper.Comparisons
import Numeral.Natural.Oper.Comparisons.Proofs
import Numeral.Natural.Oper.Divisibility
import Numeral.Natural.Oper.Modulo
import Numeral.Natural.Oper.Modulo.Proofs
import Numeral.Natural.Oper.Proofs
import Numeral.Natural.Order
import Numeral.Natural.Prime
import Numeral.Natural.Relation
import Numeral.Natural.Relation.Computability
import Numeral.Natural.Relation.Countable
import Numeral.Natural.Relation.Divisibility
import Numeral.Natural.Relation.Order
import Numeral.Natural.Relation.Order.Computability
import Numeral.Natural.Relation.Order.Existence
import Numeral.Natural.Relation.Order.Existence.Proofs
import Numeral.Natural.Relation.Order.Proofs
import Numeral.Natural.Relation.Properties
import Numeral.Natural.TotalOper
import Numeral.Natural.UnclosedOper
import Numeral.PositiveInteger
import Numeral.PositiveInteger.Oper
import Numeral.Rational.AlterAdd
-- import Numeral.Rational.SternBrocot
import Numeral.Real
import Numeral.Real.Properties
import Numeral.Sign
import Numeral.Sign.Oper
import Numeral.Sign.Oper0
import Operator.Equals
import Relator.Bijection
import Relator.Congruence
import Relator.Congruence.Proofs
import Relator.Countable
import Relator.Equals
import Relator.Equals.Proofs
import Relator.Equals.Proofs.Uniqueness
import Structure.Setoid.Uniqueness
import Relator.Finite
import Sets.BoolSet
import Sets.BoolSet.Proofs
import Sets.ETCS
import Sets.IZF
import Sets.PredicateSet
import Sets.PredicateSet.Filter
import Sets.PredicateSet.Finite
import Sets.PredicateSet.Proofs
import Sets.PredicateSet.Relations
import Structure.Setoid
import Structure.Setoid.Proofs
import Stream
import String
import Structure.Arithmetic
-- import Structure.Category
import Structure.Function.Domain
import Structure.Function.Linear
import Structure.Function.Ordering
import Structure.LinearAlgebra
import Structure.Logic.Classical.PredicateBoundedQuantification
import Structure.Logic.Classical.NaturalDeduction
import Structure.Logic.Classical.NaturalDeduction.Proofs
import Structure.Logic.Classical.SetTheory
import Structure.Logic.Classical.SetTheory.SetBoundedQuantification
import Structure.Logic.Classical.SetTheory.Function
import Structure.Logic.Classical.SetTheory.Relation
import Structure.Logic.Classical.SetTheory.ZFC
import Structure.Logic.Classical.SetTheory.ZFC.BinaryRelatorSet
-- import Structure.Logic.Classical.SetTheory.ZFC.Finite
import Structure.Logic.Classical.SetTheory.ZFC.FunctionSet
import Structure.Logic.Classical.SetTheory.ZFC.Proofs
import Structure.Logic.Constructive.Functions.Properties
import Structure.Logic.Constructive.NaturalDeduction
import Structure.Operator.Field
import Structure.Operator.Functions
import Structure.Operator.Group
import Structure.Operator.Group.Proofs
import Structure.Operator.Monoid
import Structure.Operator.Proofs
import Structure.Operator.Properties
import Structure.Operator.SetAlgebra
import Structure.Operator.Vector
import Structure.Real
import Structure.Relator.Equivalence as Eq
import Structure.Relator.Function
import Structure.Relator.Ordering
import Structure.Relator.Ordering.Subsets
import Structure.Relator.Properties
import Structure.Relator.Properties.Proofs
import Syntax.Function
import Syntax.Method
import Syntax.Number
import Type
import Type.Cardinality
import Type.Cardinality.Proofs
import Type.Dependent
import Type.Properties.Empty
import Type.Properties.Empty.Proofs
import Type.Functions
import Type.Functions.Inverse
import Type.Functions.Inverse.Proofs
import Type.Functions.Proofs
import Type.Singleton
import Type.Singleton.Proofs
import Type.Properties.Singleton
import Type.Properties.Singleton.Proofs
import Type.Univalence
main : FFI.IO Data.Unit
main = FFI.printStrLn("Okay")
|
{
"alphanum_fraction": 0.8717675692,
"avg_line_length": 31.4545454545,
"ext": "agda",
"hexsha": "a0781e180265bdc46ce8c52f29e4c42375bef743",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "old/Main.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "old/Main.agda",
"max_line_length": 67,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "old/Main.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1485,
"size": 6574
}
|
open import Function using (_$_)
open import Relation.Binary using (Setoid)
open import Data.Product using (_,_)
open import Algebra.Bundles using (RawGroup; RawRing)
open import Algebra.Structures using (IsGroup; IsAbelianGroup; IsRing; IsCommutativeRing)
open import AKS.Algebra.Structures using (IsNonZeroCommutativeRing; IsIntegralDomain)
open import AKS.Algebra.Morphism.Structures using (IsGroupHomomorphism; IsGroupMonomorphism; IsRingHomomorphism; IsRingMonomorphism)
module AKS.Algebra.Morphism.Consequences where
module GroupConsequences {c₁ c₂ ℓ₁ ℓ₂} {G₁ : RawGroup c₁ ℓ₁} {G₂ : RawGroup c₂ ℓ₂} {⟦_⟧} (isGroupMonomorphism : IsGroupMonomorphism G₁ G₂ ⟦_⟧) where
open RawGroup G₁ using () renaming (Carrier to C₁; _∙_ to _+₁_; _⁻¹ to -₁_; ε to ε₁; _≈_ to _≈₁_; rawMonoid to +₁-rawMonoid)
open RawGroup G₂ using () renaming (Carrier to C₂; _∙_ to _+₂_; _⁻¹ to -₂_; ε to ε₂; _≈_ to _≈₂_; rawMonoid to +₂-rawMonoid)
open IsGroupMonomorphism isGroupMonomorphism using (injective; +-homo; -‿homo; ε-homo; +-isMonoidMonomorphism; ⟦⟧-cong)
open import Algebra.Morphism.MonoidMonomorphism +-isMonoidMonomorphism using () renaming (isMonoid to +₂-isMonoid→+₁-isMonoid; comm to +₂-comm→+₁-comm)
module _ (G₂-isGroup : IsGroup _≈₂_ _+₂_ ε₂ -₂_) where
open IsGroup G₂-isGroup using (setoid) renaming (isMonoid to +₂-isMonoid; ⁻¹-cong to -‿cong₂; inverseˡ to -‿inverseˡ₂; inverseʳ to -‿inverseʳ₂; ∙-congˡ to +-congˡ; ∙-congʳ to +-congʳ)
open Setoid setoid using (sym)
open import Relation.Binary.Reasoning.Setoid setoid
open import Algebra.Definitions _≈₁_ using (LeftInverse; RightInverse; Inverse; Congruent₁)
-‿inverseˡ₁ : LeftInverse ε₁ -₁_ _+₁_
-‿inverseˡ₁ x = injective $ begin
⟦ -₁ x +₁ x ⟧ ≈⟨ +-homo (-₁ x) x ⟩
⟦ -₁ x ⟧ +₂ ⟦ x ⟧ ≈⟨ +-congʳ (-‿homo x) ⟩
-₂ ⟦ x ⟧ +₂ ⟦ x ⟧ ≈⟨ -‿inverseˡ₂ ⟦ x ⟧ ⟩
ε₂ ≈⟨ sym ε-homo ⟩
⟦ ε₁ ⟧ ∎
-‿inverseʳ₁ : RightInverse ε₁ -₁_ _+₁_
-‿inverseʳ₁ x = injective $ begin
⟦ x +₁ -₁ x ⟧ ≈⟨ +-homo x (-₁ x) ⟩
⟦ x ⟧ +₂ ⟦ -₁ x ⟧ ≈⟨ +-congˡ (-‿homo x) ⟩
⟦ x ⟧ +₂ -₂ ⟦ x ⟧ ≈⟨ -‿inverseʳ₂ ⟦ x ⟧ ⟩
ε₂ ≈⟨ sym ε-homo ⟩
⟦ ε₁ ⟧ ∎
-‿inverse₁ : Inverse ε₁ -₁_ _+₁_
-‿inverse₁ = -‿inverseˡ₁ , -‿inverseʳ₁
-‿cong₁ : Congruent₁ -₁_
-‿cong₁ {x} {y} x≈y = injective $ begin
⟦ -₁ x ⟧ ≈⟨ -‿homo x ⟩
-₂ ⟦ x ⟧ ≈⟨ -‿cong₂ (⟦⟧-cong x≈y) ⟩
-₂ ⟦ y ⟧ ≈⟨ sym (-‿homo y) ⟩
⟦ -₁ y ⟧ ∎
G₂-isGroup→G₁-isGroup : IsGroup _≈₁_ _+₁_ ε₁ -₁_
G₂-isGroup→G₁-isGroup = record
{ isMonoid = +₂-isMonoid→+₁-isMonoid +₂-isMonoid
; inverse = -‿inverse₁
; ⁻¹-cong = -‿cong₁
}
module _ (G₂-isAbelianGroup : IsAbelianGroup _≈₂_ _+₂_ ε₂ -₂_) where
open IsAbelianGroup G₂-isAbelianGroup using () renaming (isGroup to G₂-isGroup; isMagma to +₂-isMagma; comm to +₂-comm)
G₂-isAbelianGroup→G₁-isAbelianGroup : IsAbelianGroup _≈₁_ _+₁_ ε₁ -₁_
G₂-isAbelianGroup→G₁-isAbelianGroup = record
{ isGroup = G₂-isGroup→G₁-isGroup G₂-isGroup
; comm = +₂-comm→+₁-comm +₂-isMagma +₂-comm
}
module RingConsequences {c₁ c₂ ℓ₁ ℓ₂} {R₁ : RawRing c₁ ℓ₁} {R₂ : RawRing c₂ ℓ₂} {⟦_⟧} (isRingMonomorphism : IsRingMonomorphism R₁ R₂ ⟦_⟧) where
open RawRing R₁ using () renaming (Carrier to C₁; _+_ to _+₁_; _*_ to _*₁_; -_ to -₁_; 0# to 0#₁; 1# to 1#₁; _≈_ to _≈₁_)
open RawRing R₂ using () renaming (Carrier to C₂; _+_ to _+₂_; _*_ to _*₂_; -_ to -₂_; 0# to 0#₂; 1# to 1#₂; _≈_ to _≈₂_)
open IsRingMonomorphism isRingMonomorphism using (injective; +-homo; *-homo; 0#-homo; 1#-homo; ⟦⟧-cong; *-isMonoidMonomorphism; +-isGroupMonomorphism)
open import Algebra.Morphism.MonoidMonomorphism *-isMonoidMonomorphism using () renaming (isMonoid to *₂-isMonoid→*₁-isMonoid; comm to *₂-comm→*₁-comm)
module _ (R₂-isRing : IsRing _≈₂_ _+₂_ _*₂_ -₂_ 0#₂ 1#₂) where
open IsRing R₂-isRing using (setoid; +-cong; *-congˡ; *-congʳ) renaming (distribʳ to distribʳ₁; distribˡ to distribˡ₁; *-isMonoid to *₂-isMonoid; +-isAbelianGroup to +₂-isAbelianGroup)
open Setoid setoid using (sym)
open import Relation.Binary.Reasoning.Setoid setoid
open import Algebra.Definitions _≈₁_ using (_DistributesOverʳ_; _DistributesOverˡ_; _DistributesOver_)
distribʳ : _*₁_ DistributesOverʳ _+₁_
distribʳ r x y = injective $ begin
⟦ (x +₁ y) *₁ r ⟧ ≈⟨ *-homo (x +₁ y) r ⟩
⟦ x +₁ y ⟧ *₂ ⟦ r ⟧ ≈⟨ *-congʳ (+-homo x y) ⟩
(⟦ x ⟧ +₂ ⟦ y ⟧) *₂ ⟦ r ⟧ ≈⟨ distribʳ₁ ⟦ r ⟧ ⟦ x ⟧ ⟦ y ⟧ ⟩
⟦ x ⟧ *₂ ⟦ r ⟧ +₂ ⟦ y ⟧ *₂ ⟦ r ⟧ ≈⟨ +-cong (sym (*-homo x r )) (sym (*-homo y r)) ⟩
⟦ x *₁ r ⟧ +₂ ⟦ y *₁ r ⟧ ≈⟨ sym (+-homo (x *₁ r) (y *₁ r)) ⟩
⟦ x *₁ r +₁ y *₁ r ⟧ ∎
distribˡ : _*₁_ DistributesOverˡ _+₁_
distribˡ r x y = injective $ begin
⟦ r *₁ (x +₁ y) ⟧ ≈⟨ *-homo r (x +₁ y) ⟩
⟦ r ⟧ *₂ ⟦ x +₁ y ⟧ ≈⟨ *-congˡ (+-homo x y) ⟩
⟦ r ⟧ *₂ (⟦ x ⟧ +₂ ⟦ y ⟧) ≈⟨ distribˡ₁ ⟦ r ⟧ ⟦ x ⟧ ⟦ y ⟧ ⟩
⟦ r ⟧ *₂ ⟦ x ⟧ +₂ ⟦ r ⟧ *₂ ⟦ y ⟧ ≈⟨ +-cong (sym (*-homo r x)) (sym (*-homo r y)) ⟩
⟦ r *₁ x ⟧ +₂ ⟦ r *₁ y ⟧ ≈⟨ sym (+-homo (r *₁ x) (r *₁ y)) ⟩
⟦ r *₁ x +₁ r *₁ y ⟧ ∎
distrib : _*₁_ DistributesOver _+₁_
distrib = distribˡ , distribʳ
open GroupConsequences +-isGroupMonomorphism
R₂-isRing→R₁-isRing : IsRing _≈₁_ _+₁_ _*₁_ -₁_ 0#₁ 1#₁
R₂-isRing→R₁-isRing = record
{ +-isAbelianGroup = G₂-isAbelianGroup→G₁-isAbelianGroup +₂-isAbelianGroup
; *-isMonoid = *₂-isMonoid→*₁-isMonoid *₂-isMonoid
; distrib = distrib
}
module _ (R₂-isCommutativeRing : IsCommutativeRing _≈₂_ _+₂_ _*₂_ -₂_ 0#₂ 1#₂) where
open IsCommutativeRing R₂-isCommutativeRing using () renaming (isRing to R₂-isRing; *-comm to *₂-comm; *-isMagma to *₂-isMagma)
R₂-isCommutativeRing→R₁-isCommutativeRing : IsCommutativeRing _≈₁_ _+₁_ _*₁_ -₁_ 0#₁ 1#₁
R₂-isCommutativeRing→R₁-isCommutativeRing = record
{ isRing = R₂-isRing→R₁-isRing R₂-isRing
; *-comm = *₂-comm→*₁-comm *₂-isMagma *₂-comm
}
module _ (R₂-isNonZeroCommutativeRing : IsNonZeroCommutativeRing C₂ _≈₂_ _+₂_ _*₂_ -₂_ 0#₂ 1#₂) where
open IsNonZeroCommutativeRing R₂-isNonZeroCommutativeRing using (setoid) renaming (isCommutativeRing to R₂-isCommutativeRing; 0#≉1# to 0#₂≉1#₂)
open Setoid setoid using (sym)
open import Relation.Binary.Reasoning.Setoid setoid
open import AKS.Algebra.Structures C₁ _≈₁_ using () renaming (_≉_ to _≉₁_)
0#₁≉1#₁ : 0#₁ ≉₁ 1#₁
0#₁≉1#₁ 0#₁≈1#₁ = 0#₂≉1#₂ $ begin
0#₂ ≈⟨ sym 0#-homo ⟩
⟦ 0#₁ ⟧ ≈⟨ ⟦⟧-cong 0#₁≈1#₁ ⟩
⟦ 1#₁ ⟧ ≈⟨ 1#-homo ⟩
1#₂ ∎
R₂-isNonZeroCommutativeRing→R₁-isNonZeroCommutativeRing : IsNonZeroCommutativeRing C₁ _≈₁_ _+₁_ _*₁_ -₁_ 0#₁ 1#₁
R₂-isNonZeroCommutativeRing→R₁-isNonZeroCommutativeRing = record
{ isCommutativeRing = R₂-isCommutativeRing→R₁-isCommutativeRing R₂-isCommutativeRing
; 0#≉1# = 0#₁≉1#₁
}
module _ (R₂-isIntegralDomain : IsIntegralDomain C₂ _≈₂_ _+₂_ _*₂_ -₂_ 0#₂ 1#₂) where
open IsIntegralDomain R₂-isIntegralDomain using (setoid) renaming (isNonZeroCommutativeRing to R₂-isNonZeroCommutativeRing; *-cancelˡ to *₂-cancelˡ)
open Setoid setoid using (sym)
open import Relation.Binary.Reasoning.Setoid setoid
open import AKS.Algebra.Structures C₁ _≈₁_ using () renaming (_≉_ to _≉₁_)
open import AKS.Algebra.Structures C₂ _≈₂_ using () renaming (_≉_ to _≉₂_)
*-cancelˡ : ∀ x {y z} → x ≉₁ 0#₁ → x *₁ y ≈₁ x *₁ z → y ≈₁ z
*-cancelˡ x {y} {z} x≉0 x*y≈x*z = injective $ *₂-cancelˡ ⟦ x ⟧ ⟦x⟧≉0 $ begin
⟦ x ⟧ *₂ ⟦ y ⟧ ≈⟨ sym (*-homo x y) ⟩
⟦ x *₁ y ⟧ ≈⟨ ⟦⟧-cong x*y≈x*z ⟩
⟦ x *₁ z ⟧ ≈⟨ *-homo x z ⟩
⟦ x ⟧ *₂ ⟦ z ⟧ ∎
where
⟦x⟧≉0 : ⟦ x ⟧ ≉₂ 0#₂
⟦x⟧≉0 ⟦x⟧≈0 = x≉0 $ injective $ begin
⟦ x ⟧ ≈⟨ ⟦x⟧≈0 ⟩
0#₂ ≈⟨ sym 0#-homo ⟩
⟦ 0#₁ ⟧ ∎
R₂-isIntegralDomain→R₁-isIntegralDomain : IsIntegralDomain C₁ _≈₁_ _+₁_ _*₁_ -₁_ 0#₁ 1#₁
R₂-isIntegralDomain→R₁-isIntegralDomain = record
{ isNonZeroCommutativeRing = R₂-isNonZeroCommutativeRing→R₁-isNonZeroCommutativeRing R₂-isNonZeroCommutativeRing
; *-cancelˡ = *-cancelˡ
}
|
{
"alphanum_fraction": 0.6138649861,
"avg_line_length": 49.7048192771,
"ext": "agda",
"hexsha": "28e1a6210509fc79b1595dc0c23e3b2671392bb2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mckeankylej/thesis",
"max_forks_repo_path": "proofs/AKS/Algebra/Morphism/Consequences.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mckeankylej/thesis",
"max_issues_repo_path": "proofs/AKS/Algebra/Morphism/Consequences.agda",
"max_line_length": 188,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mckeankylej/thesis",
"max_stars_repo_path": "proofs/AKS/Algebra/Morphism/Consequences.agda",
"max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z",
"num_tokens": 3684,
"size": 8251
}
|
{-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.types.Cospan
open import lib.types.Pullback
open import lib.types.Group
open import lib.groups.Homomorphisms
module lib.groups.PullbackGroup where
-- φ ψ
-- H → G ← K
record Group-Cospan {i j k : ULevel} : Type (lsucc (lmax (lmax i j) k)) where
constructor group-cospan
field
H : Group i
K : Group j
G : Group k
φ : H →ᴳ G
ψ : K →ᴳ G
group-cospan-out : ∀ {i j k} → Group-Cospan {i} {j} {k} → Cospan {i} {j} {k}
group-cospan-out (group-cospan H K G φ ψ) =
cospan (Group.El H) (Group.El K) (Group.El G) (GroupHom.f φ) (GroupHom.f ψ)
module _ {i j k} (D : Group-Cospan {i} {j} {k}) where
private
open Group-Cospan D
module H = Group H
module K = Group K
module G = Group G
module φ = GroupHom φ
module ψ = GroupHom ψ
d : Cospan
d = cospan H.El K.El G.El φ.f ψ.f
Pullback-group-struct : GroupStructure (Pullback d)
Pullback-group-struct = record {
ident = pullback H.ident K.ident (φ.pres-ident ∙ ! (ψ.pres-ident));
inv = λ {(pullback h k p) →
pullback (H.inv h) (K.inv k)
(φ.pres-inv h ∙ ap G.inv p ∙ ! (ψ.pres-inv k))};
comp = λ {(pullback h₁ k₁ p₁) (pullback h₂ k₂ p₂) →
pullback (H.comp h₁ h₂) (K.comp k₁ k₂)
(φ.pres-comp h₁ h₂ ∙ ap2 G.comp p₁ p₂ ∙ ! (ψ.pres-comp k₁ k₂))};
unitl = λ {(pullback h k p) →
pullback= d (H.unitl h) (K.unitl k)
(prop-has-all-paths (G.El-level _ _) _ _)};
unitr = λ {(pullback h k p) →
pullback= d (H.unitr h) (K.unitr k)
(prop-has-all-paths (G.El-level _ _) _ _)};
assoc = λ {(pullback h₁ k₁ p₁) (pullback h₂ k₂ p₂) (pullback h₃ k₃ p₃) →
pullback= d (H.assoc h₁ h₂ h₃) (K.assoc k₁ k₂ k₃)
(prop-has-all-paths (G.El-level _ _) _ _)};
invl = λ {(pullback h k p) →
pullback= d (H.invl h) (K.invl k)
(prop-has-all-paths (G.El-level _ _) _ _)};
invr = λ {(pullback h k p) →
pullback= d (H.invr h) (K.invr k)
(prop-has-all-paths (G.El-level _ _) _ _)}}
Pullback-group : Group (lmax i (lmax j k))
Pullback-group = record {
El = Pullback d;
El-level = pullback-level 0 H.El-level K.El-level G.El-level;
group-struct = Pullback-group-struct}
pfst-hom : Pullback-group →ᴳ H
pfst-hom = record {
f = Pullback.a;
pres-comp = λ _ _ → idp}
psnd-hom : Pullback-group →ᴳ K
psnd-hom = record {
f = Pullback.b;
pres-comp = λ _ _ → idp}
module _ {l} {J : Group l} (χ : J →ᴳ H) (θ : J →ᴳ K) where
private
module χ = GroupHom χ
module θ = GroupHom θ
pullback-hom : ((j : Group.El J) → φ.f (χ.f j) == ψ.f (θ.f j))
→ J →ᴳ Pullback-group
pullback-hom p = record {
f = λ j → pullback (χ.f j) (θ.f j) (p j);
pres-comp = λ j₁ j₂ → pullback= (group-cospan-out D)
(χ.pres-comp j₁ j₂)
(θ.pres-comp j₁ j₂)
(prop-has-all-paths (Group.El-level G _ _) _ _)}
|
{
"alphanum_fraction": 0.5738095238,
"avg_line_length": 30.625,
"ext": "agda",
"hexsha": "5c026b08e528a62c0ce37b95f036e476ea494cfb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "core/lib/groups/PullbackGroup.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "core/lib/groups/PullbackGroup.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "core/lib/groups/PullbackGroup.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1105,
"size": 2940
}
|
------------------------------------------------------------------------
-- Lemmas related to bisimilarity and CCS, implemented using the
-- classical definition of bisimilarity
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
open import Prelude
module Bisimilarity.CCS.Classical {ℓ} {Name : Type ℓ} where
open import Equality.Propositional
open import Logical-equivalence using (_⇔_)
open import Prelude.Size
import Bisimilarity.CCS.General
import Bisimilarity.Classical.Equational-reasoning-instances
open import Equational-reasoning
open import Labelled-transition-system.CCS Name
open import Relation
open import Bisimilarity.Classical CCS
------------------------------------------------------------------------
-- Various lemmas related to _∣_
-- _∣_ is commutative.
∣-comm : ∀ {P Q} → P ∣ Q ∼ Q ∣ P
∣-comm = ⟨ R , R-is-a-bisimulation , base ⟩
where
data R : Rel₂ ℓ (Proc ∞) where
base : ∀ {P Q} → R (P ∣ Q , Q ∣ P)
R-is-symmetric : ∀ {P Q} → R (P , Q) → R (Q , P)
R-is-symmetric base = base
R-is-a-bisimulation : Bisimulation R
R-is-a-bisimulation =
⟪ lr , (λ PRQ tr →
Σ-map id (Σ-map id R-is-symmetric)
(lr (R-is-symmetric PRQ) tr)) ⟫
where
lr : ∀ {P P′ Q μ} →
R (P , Q) → P [ μ ]⟶ P′ →
∃ λ Q′ → Q [ μ ]⟶ Q′ × R (P′ , Q′)
lr base (par-left tr) = _ , par-right tr , base
lr base (par-right tr) = _ , par-left tr , base
lr base (par-τ tr₁ tr₂) =
_
, par-τ tr₂ (subst (λ a → _ [ name a ]⟶ _)
(sym $ co-involutive _)
tr₁)
, base
-- _∣_ is associative.
∣-assoc : ∀ {P Q R} → P ∣ (Q ∣ R) ∼ (P ∣ Q) ∣ R
∣-assoc = ⟨ S , S-is-a-bisimulation , base ⟩
where
data S : Rel₂ ℓ (Proc ∞) where
base : ∀ {P Q R} → S (P ∣ (Q ∣ R) , (P ∣ Q) ∣ R)
S-is-a-bisimulation : Bisimulation S
S-is-a-bisimulation = ⟪ lr , rl ⟫
where
lr : ∀ {P P′ Q μ} →
S (P , Q) → P [ μ ]⟶ P′ →
∃ λ Q′ → Q [ μ ]⟶ Q′ × S (P′ , Q′)
lr base (par-left tr) = _ , par-left (par-left tr) , base
lr base (par-right (par-left tr)) = _ , par-left (par-right tr) , base
lr base (par-right (par-right tr)) = _ , par-right tr , base
lr base (par-right (par-τ tr₁ tr₂)) = _ , par-τ (par-right tr₁) tr₂ , base
lr base (par-τ tr₁ (par-left tr₂)) = _ , par-left (par-τ tr₁ tr₂) , base
lr base (par-τ tr₁ (par-right tr₂)) = _ , par-τ (par-left tr₁) tr₂ , base
rl : ∀ {P Q Q′ μ} →
S (P , Q) → Q [ μ ]⟶ Q′ →
∃ λ P′ → P [ μ ]⟶ P′ × S (P′ , Q′)
rl base (par-left (par-left tr)) = _ , par-left tr , base
rl base (par-left (par-right tr)) = _ , par-right (par-left tr) , base
rl base (par-left (par-τ tr₁ tr₂)) = _ , par-τ tr₁ (par-left tr₂) , base
rl base (par-right tr) = _ , par-right (par-right tr) , base
rl base (par-τ (par-left tr₁) tr₂) = _ , par-τ tr₁ (par-right tr₂) , base
rl base (par-τ (par-right tr₁) tr₂) = _ , par-right (par-τ tr₁ tr₂) , base
-- ∅ is a left identity of _∣_.
∣-left-identity : ∀ {P} → ∅ ∣ P ∼ P
∣-left-identity = ⟨ R , R-is-a-bisimulation , base ⟩
where
data R : Rel₂ ℓ (Proc ∞) where
base : ∀ {P} → R (∅ ∣ P , P)
R-is-a-bisimulation : Bisimulation R
R-is-a-bisimulation = ⟪ lr , rl ⟫
where
lr : ∀ {P P′ Q μ} →
R (P , Q) → P [ μ ]⟶ P′ →
∃ λ Q′ → Q [ μ ]⟶ Q′ × R (P′ , Q′)
lr base (par-right tr) = _ , tr , base
lr base (par-left ())
lr base (par-τ () _)
rl : ∀ {P Q Q′ μ} →
R (P , Q) → Q [ μ ]⟶ Q′ →
∃ λ P′ → P [ μ ]⟶ P′ × R (P′ , Q′)
rl base tr = _ , par-right tr , base
-- ∅ is a right identity of _∣_.
∣-right-identity : ∀ {P} → P ∣ ∅ ∼ P
∣-right-identity {P} =
P ∣ ∅ ∼⟨ ∣-comm ⟩
∅ ∣ P ∼⟨ ∣-left-identity ⟩■
P
-- _∣_ preserves bisimilarity.
_∣-cong_ : ∀ {P P′ Q Q′} → P ∼ P′ → Q ∼ Q′ → P ∣ Q ∼ P′ ∣ Q′
P∼P′ ∣-cong Q∼Q′ with _⇔_.to (Bisimilarity↔ _) P∼P′
| _⇔_.to (Bisimilarity↔ _) Q∼Q′
... | L , L-bisim , PLP′
| R , R-bisim , QRQ′ = ⟨ LR , ⟪ lr , rl ⟫ , base PLP′ QRQ′ ⟩
where
data LR : Rel₂ ℓ (Proc ∞) where
base : ∀ {P P′ Q Q′} →
L (P , P′) → R (Q , Q′) → LR (P ∣ Q , P′ ∣ Q′)
lr : ∀ {P P′ Q μ} →
LR (P , Q) → P [ μ ]⟶ P′ →
∃ λ Q′ → Q [ μ ]⟶ Q′ × LR (P′ , Q′)
lr (base PLP′ QRQ′) (par-left tr) =
Σ-map (_∣ _) (Σ-map par-left (flip base QRQ′))
(left-to-right L-bisim PLP′ tr)
lr (base PLP′ QRQ′) (par-right tr) =
Σ-map (_ ∣_) (Σ-map par-right (base PLP′))
(left-to-right R-bisim QRQ′ tr)
lr (base PLP′ QRQ′) (par-τ tr₁ tr₂) =
Σ-zip _∣_ (Σ-zip par-τ base)
(left-to-right L-bisim PLP′ tr₁)
(left-to-right R-bisim QRQ′ tr₂)
rl : ∀ {P Q Q′ μ} →
LR (P , Q) → Q [ μ ]⟶ Q′ →
∃ λ P′ → P [ μ ]⟶ P′ × LR (P′ , Q′)
rl (base PLP′ QRQ′) (par-left tr) =
Σ-map (_∣ _) (Σ-map par-left (flip base QRQ′))
(right-to-left L-bisim PLP′ tr)
rl (base PLP′ QRQ′) (par-right tr) =
Σ-map (_ ∣_) (Σ-map par-right (base PLP′))
(right-to-left R-bisim QRQ′ tr)
rl (base PLP′ QRQ′) (par-τ tr₁ tr₂) =
Σ-zip _∣_ (Σ-zip par-τ base)
(right-to-left L-bisim PLP′ tr₁)
(right-to-left R-bisim QRQ′ tr₂)
------------------------------------------------------------------------
-- Exercise 6.1.2 from "Enhancements of the bisimulation proof method"
-- by Pous and Sangiorgi
6-1-2 : ∀ {P} → ! P ∣ P ∼ ! P
6-1-2 {P} = ⟨ R , R-is-a-bisimulation , base ⟩
where
data R : Rel₂ ℓ (Proc ∞) where
base : R (! P ∣ P , ! P)
refl : ∀ {P} → R (P , P)
R-is-a-bisimulation : Bisimulation R
R-is-a-bisimulation = ⟪ lr , rl ⟫
where
lr : ∀ {P P′ Q μ} →
R (P , Q) → P [ μ ]⟶ P′ →
∃ λ Q′ → Q [ μ ]⟶ Q′ × R (P′ , Q′)
lr base tr = _ , replication tr , refl
lr refl tr = _ , tr , refl
rl : ∀ {P Q Q′ μ} →
R (P , Q) → Q [ μ ]⟶ Q′ →
∃ λ P′ → P [ μ ]⟶ P′ × R (P′ , Q′)
rl base (replication tr) = _ , tr , refl
rl refl tr = _ , tr , refl
------------------------------------------------------------------------
-- Exercise 6.1.3 (2) from "Enhancements of the bisimulation proof
-- method" by Pous and Sangiorgi
open Bisimilarity.CCS.General.6-1-3-2 (record
{ _∼_ = _∼_
; step-∼ = step-∼
; finally-∼ = Equational-reasoning.finally₂
; reflexive = reflexive
; symmetric = symmetric
; ∣-comm = ∣-comm
; ∣-assoc = ∣-assoc
; _∣-cong_ = _∣-cong_
; 6-1-2 = 6-1-2
})
public using (swap-rightmost; 6-1-3-2)
|
{
"alphanum_fraction": 0.4676936883,
"avg_line_length": 32.7745098039,
"ext": "agda",
"hexsha": "b2db630196651b2b180842a6cf947ae3c050f9e1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/up-to",
"max_forks_repo_path": "src/Bisimilarity/CCS/Classical.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/up-to",
"max_issues_repo_path": "src/Bisimilarity/CCS/Classical.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/up-to",
"max_stars_repo_path": "src/Bisimilarity/CCS/Classical.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2619,
"size": 6686
}
|
{-# OPTIONS --safe #-}
module Cubical.Categories.Functors.HomFunctor where
open import Cubical.Foundations.Prelude
open import Cubical.Categories.Category
open import Cubical.Categories.Functor.Base
open import Cubical.Categories.Instances.Sets
open import Cubical.Categories.Constructions.BinProduct renaming (_×_ to _×C_)
private
variable
ℓC ℓC' : Level
module _ (C : Category ℓC ℓC') where
open Functor
open Category C
HomFunctor : Functor (C ^op ×C C) (SET ℓC')
F-ob HomFunctor (x , y) = Hom[ x , y ] , isSetHom
F-hom HomFunctor {x , y} {x' , y'} (φ , ψ) θ = ψ ∘ (θ ∘ φ)
F-id HomFunctor = funExt λ θ → ⋆IdR (id ⋆ θ) ∙ ⋆IdL θ
F-seq HomFunctor {x , y} {x' , y'} {x'' , y''} (φ , ψ) (φ' , ψ') = funExt λ θ →
((φ' ⋆ φ) ⋆ θ) ⋆ (ψ ⋆ ψ')
≡⟨ sym (⋆Assoc ((φ' ⋆ φ) ⋆ θ) ψ ψ') ⟩
(((φ' ⋆ φ) ⋆ θ) ⋆ ψ) ⋆ ψ'
≡⟨ cong (_⋆ ψ') (
((φ' ⋆ φ) ⋆ θ) ⋆ ψ
≡⟨ cong (_⋆ ψ) (⋆Assoc φ' φ θ) ⟩
(φ' ⋆ (φ ⋆ θ)) ⋆ ψ
≡⟨ ⋆Assoc φ' (φ ⋆ θ) ψ ⟩
φ' ⋆ ((φ ⋆ θ) ⋆ ψ) ∎
) ⟩
(φ' ⋆ ((φ ⋆ θ) ⋆ ψ)) ⋆ ψ' ∎
|
{
"alphanum_fraction": 0.5196998124,
"avg_line_length": 29.6111111111,
"ext": "agda",
"hexsha": "5b37eea00926f67d2f3337e256ef62265b781ec1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Categories/Functors/HomFunctor.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Categories/Functors/HomFunctor.agda",
"max_line_length": 81,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Categories/Functors/HomFunctor.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 529,
"size": 1066
}
|
{-# OPTIONS --allow-exec #-}
module ExecAgda where
open import Agda.Builtin.Equality
open import Agda.Builtin.List
open import Agda.Builtin.Nat
open import Agda.Builtin.Unit
open import Agda.Builtin.Sigma
open import Agda.Builtin.String
open import Agda.Builtin.Reflection renaming (bindTC to _>>=_)
postulate
execTC : String → List String → String → TC (Σ Nat (λ _ → Σ String (λ _ → String)))
{-# BUILTIN AGDATCMEXEC execTC #-}
macro
test : Term → TC ⊤
test hole = execTC "agda" ("-v0" ∷ "-i" ∷ "test/Succeed" ∷ "test/Succeed/exec-tc/empty.agda" ∷ []) ""
>>= λ{(exitCode , (stdOut , stdErr)) → unify hole (lit (string stdOut))}
_ : test ≡ ""
_ = refl
|
{
"alphanum_fraction": 0.6706231454,
"avg_line_length": 26.96,
"ext": "agda",
"hexsha": "9b4982083651f53f496b75c0a20a9e1536fbe9b6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f7772e5515cd896fc9bf458fa19d18847ac56742",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Saizan/agda",
"max_forks_repo_path": "test/Succeed/ExecAgda.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f7772e5515cd896fc9bf458fa19d18847ac56742",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "Saizan/agda",
"max_issues_repo_path": "test/Succeed/ExecAgda.agda",
"max_line_length": 103,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f7772e5515cd896fc9bf458fa19d18847ac56742",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "Saizan/agda",
"max_stars_repo_path": "test/Succeed/ExecAgda.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 211,
"size": 674
}
|
module Nat where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
infixl 60 _+_
infixl 70 _*_
_+_ : Nat -> Nat -> Nat
n + zero = n
n + suc m = suc (n + m)
_*_ : Nat -> Nat -> Nat
n * zero = zero
n * suc m = n * m + n
{-# BUILTIN NATURAL Nat #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN SUC suc #-}
{-# BUILTIN NATPLUS _+_ #-}
{-# BUILTIN NATTIMES _*_ #-}
|
{
"alphanum_fraction": 0.5409836066,
"avg_line_length": 14.64,
"ext": "agda",
"hexsha": "394e2db5441f0949210c19f84c81268cdb42dfc1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "examples/SummerSchool07/Lecture/Nat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "examples/SummerSchool07/Lecture/Nat.agda",
"max_line_length": 28,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/SummerSchool07/Lecture/Nat.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 131,
"size": 366
}
|
open import Prelude
module Implicits.Resolution.Termination.Lemmas.SizeMeasures
where
open import Induction.WellFounded
open import Induction.Nat
open import Data.Vec
open import Data.Fin.Substitution
open import Extensions.Vec
open import Implicits.Syntax
open import Implicits.Syntax.Type.Unification
open import Implicits.Substitutions
open import Implicits.Substitutions.Lemmas
open import Data.Nat hiding (_<_)
open import Data.Nat.Properties
open import Relation.Binary using (module DecTotalOrder)
open DecTotalOrder decTotalOrder using () renaming (refl to ≤-refl)
open import Extensions.Nat
open import Implicits.Resolution.Termination.SizeMeasures
-- we can show that our size measure a ρ< b is well founded
-- by relating it to the well-foundedness proof of _<'_
open import Induction.WellFounded
ρ<-well-founded : Well-founded _ρ<_
ρ<-well-founded = sub.well-founded (image.well-founded <-well-founded)
where
open import Induction.Nat
open import Data.Nat
open import Data.Nat.Properties
module sub = Inverse-image (λ{ (_ , a ) → || a ||})
module image = Subrelation {A = ℕ} {_<_} {_<′_} ≤⇒≤′
open import Induction.WellFounded
hρ<-well-founded : Well-founded _hρ<_
hρ<-well-founded = sub.well-founded (image.well-founded <-well-founded)
where
open import Induction.Nat
open import Data.Nat
open import Data.Nat.Properties
module sub = Inverse-image (λ{ (_ , a ) → h|| a ||})
module image = Subrelation {A = ℕ} {_<_} {_<′_} ≤⇒≤′
m<-well-founded : Well-founded _m<_
m<-well-founded = sub.well-founded (image.well-founded <-well-founded)
where
module sub = Inverse-image (λ{ (_ , _ , a) → m|| a ||})
module image = Subrelation {A = ℕ} {_<_} {_<′_} ≤⇒≤′
module TypeSubstSizeLemmas where
open MetaTypeTypeSubst
mutual
||a/Var|| : ∀ {m ν μ} (a : MetaType m ν) (s : Sub Fin ν μ) →
m|| a /Var s || ≡ m|| a ||
||a/Var|| (a ⇒ b) s = cong₂ (λ u v → 1 + u + v) (||a/Var|| a s) (||a/Var|| b s)
||a/Var|| (∀' a) s = cong (λ u → 1 + u) (||a/Var|| a (s VarSubst.↑))
||a/Var|| (simpl (tvar x)) s = refl
||a/Var|| (simpl (mvar x)) s = refl
||a/Var|| (simpl (a →' b)) s = cong₂ (λ u v → 1 + u + v) (||a/Var|| a s) (||a/Var|| b s)
||a/Var|| (simpl (tc c)) s = refl
||weaken-a|| : ∀ {m ν} (a : MetaType m ν) → m|| weaken a || ≡ m|| a ||
||weaken-a|| {m} {ν} a = begin
m|| weaken a ||
≡⟨ refl ⟩
m|| a /Var VarSubst.wk ||
≡⟨ ||a/Var|| a VarSubst.wk ⟩
m|| a || ∎
||s↑|| : ∀ {m ν μ} (s : Sub (MetaType m) ν μ) →
(∀ (x : Fin ν) → m|| lookup x s || ≡ 1) →
∀ y → m|| lookup y (s ↑) || ≡ 1
||s↑|| s p zero = refl
||s↑|| s p (suc y) = begin
m|| lookup y (map weaken s) ||
≡⟨ cong m||_|| (sym $ lookup⋆map s weaken y) ⟩
m|| weaken (lookup y s) ||
≡⟨ ||weaken-a|| (lookup y s) ⟩
m|| (lookup y s) ||
≡⟨ p y ⟩
1 ∎
||a/s|| : ∀ {m ν μ} (a : MetaType m ν) (s : Sub (MetaType m) ν μ) →
(∀ x → m|| lookup x s || ≡ 1) →
m|| a / s || ≡ m|| a ||
||a/s|| (a ⇒ b) s p = cong₂ (λ u v → 1 + u + v) (||a/s|| a s p) (||a/s|| b s p)
||a/s|| (∀' a) s p = cong (λ u → 1 + u) (||a/s|| a (s ↑) (||s↑|| s p))
||a/s|| {m} {ν} (simpl (tvar x)) s p = begin
m|| (simpl (tvar x)) / s ||
≡⟨ cong m||_|| (MetaTypeTypeLemmas.var-/ {x = x}) ⟩
m|| lookup x s ||
≡⟨ p x ⟩
1 ∎
||a/s|| (simpl (mvar x)) s p = refl
||a/s|| (simpl (a →' b)) s p = cong₂ (λ u v → 1 + u + v) (||a/s|| a s p) (||a/s|| b s p)
||a/s|| (simpl (tc c)) s p = refl
module MetaSubstSizeLemmas where
open MetaTypeMetaSubst hiding (open-meta)
mutual
||a/Var|| : ∀ {ν m n} (a : MetaType m ν) (s : Sub Fin m n) →
m|| a /Var s || ≡ m|| a ||
||a/Var|| (a ⇒ b) s = cong₂ (λ u v → 1 + u + v) (||a/Var|| a s) (||a/Var|| b s)
||a/Var|| {ν = ν} (∀' a) s =
cong (λ u → 1 + u) (||a/Var|| a ((varLift MetaLift.↑tp) {ν = ν} s))
||a/Var|| (simpl (tvar x)) s = refl
||a/Var|| (simpl (mvar x)) s = refl
||a/Var|| (simpl (a →' b)) s = cong₂ (λ u v → 1 + u + v) (||a/Var|| a s) (||a/Var|| b s)
||a/Var|| (simpl (tc c)) s = refl
||weaken-a|| : ∀ {m ν} (a : MetaType m ν) → m|| weaken a || ≡ m|| a ||
||weaken-a|| {m} {ν} a = begin
m|| weaken a ||
≡⟨ refl ⟩
m|| a /Var VarSubst.wk ||
≡⟨ ||a/Var|| a VarSubst.wk ⟩
m|| a || ∎
||s↑|| : ∀ {m ν μ} (s : Sub (MetaType m) ν μ) →
(∀ (x : Fin ν) → m|| lookup x s || ≡ 1) →
∀ y → m|| lookup y (s ↑) || ≡ 1
||s↑|| s p zero = refl
||s↑|| s p (suc y) = begin
m|| lookup y (map weaken s) ||
≡⟨ cong m||_|| (sym $ lookup⋆map s weaken y) ⟩
m|| weaken (lookup y s) ||
≡⟨ ||weaken-a|| (lookup y s) ⟩
m|| (lookup y s) ||
≡⟨ p y ⟩
1 ∎
||a/s|| : ∀ {m ν n} (a : MetaType m ν) (s : Sub (flip MetaType ν) m n) →
(∀ x → m|| lookup x s || ≡ 1) →
m|| a / s || ≡ m|| a ||
||a/s|| (a ⇒ b) s p = cong₂ (λ u v → 1 + u + v) (||a/s|| a s p) (||a/s|| b s p)
||a/s|| (∀' a) s p = cong (λ u → 1 + u) (||a/s|| a (map MetaTypeTypeSubst.weaken s) lem)
where
lem : ∀ x → m|| lookup x (map MetaTypeTypeSubst.weaken s) || ≡ 1
lem x = begin
m|| lookup x (map MetaTypeTypeSubst.weaken s) ||
≡⟨ cong m||_|| (sym $ lookup⋆map s _ x) ⟩
m|| MetaTypeTypeSubst.weaken (lookup x s) ||
≡⟨ TypeSubstSizeLemmas.||weaken-a|| (lookup x s) ⟩
m|| lookup x s ||
≡⟨ p x ⟩
1 ∎
||a/s|| {m} {ν} (simpl (mvar x)) s p = begin
m|| (simpl (mvar x)) / s ||
≡⟨ cong m||_|| (MetaTypeTypeLemmas.var-/ {x = x}) ⟩
m|| lookup x s ||
≡⟨ p x ⟩
1 ∎
||a/s|| (simpl (tvar x)) s p = refl
||a/s|| (simpl (a →' b)) s p = cong₂ (λ u v → 1 + u + v) (||a/s|| a s p) (||a/s|| b s p)
||a/s|| (simpl (tc c)) s p = refl
||open-meta-a||≡a : ∀ {m ν} (a : MetaType m (suc ν)) → m|| open-meta a || ≡ m|| a ||
||open-meta-a||≡a {m} {ν} a = begin
m|| open-meta a ||
≡⟨ TypeSubstSizeLemmas.||a/s|| (MMS.weaken a) (MTS.sub (simpl (mvar zero))) lem ⟩
m|| (MMS.weaken a) ||
≡⟨ ||weaken-a|| a ⟩
m|| a || ∎
where
module MMS = MetaTypeMetaSubst
module MTS = MetaTypeTypeSubst
lem : ∀ (x : Fin (suc ν)) → m|| lookup x (MetaTypeTypeSubst.sub (simpl (mvar zero))) || ≡ 1
lem zero = refl
lem (suc x) =
cong m||_|| (MetaTypeTypeLemmas.lookup-sub-↑⋆ {t = (simpl (mvar zero))} zero x)
module SubstSizeLemmas where
open TypeLemmas
mutual
||a|| : ∀ {ν} (a : Type ν) → || a || ≥ 1
||a|| (simpl (tc x)) = s≤s z≤n
||a|| (simpl (tvar n)) = s≤s z≤n
||a|| (simpl (a →' b)) = s≤s z≤n
||a|| (a ⇒ b) = s≤s z≤n
||a|| (∀' a) = s≤s z≤n
||a/Var|| : ∀ {ν μ} (a : Type ν) (s : Sub Fin ν μ) → || a /Var s || ≡ || a ||
||a/Var|| (a ⇒ b) s = cong₂ (λ u v → 1 + u + v) (||a/Var|| a s) (||a/Var|| b s)
||a/Var|| (∀' a) s = cong (λ u → 1 + u) (||a/Var|| a (s VarSubst.↑))
||a/Var|| (simpl (tvar x)) s = refl
||a/Var|| (simpl (a →' b)) s = cong₂ (λ u v → 1 + u + v) (||a/Var|| a s) (||a/Var|| b s)
||a/Var|| (simpl (tc c)) s = refl
||weaken-a|| : ∀ {ν} (a : Type ν) → || weaken a || ≡ || a ||
||weaken-a|| {ν} a = begin
|| weaken a ||
≡⟨ refl ⟩
|| a /Var VarSubst.wk ||
≡⟨ ||a/Var|| a VarSubst.wk ⟩
|| a || ∎
||s↑|| : ∀ {ν μ} (s : Sub Type ν μ) →
(∀ (x : Fin ν) → || lookup x s || ≡ 1) →
∀ y → || lookup y (s ↑) || ≡ 1
||s↑|| s p zero = refl
||s↑|| s p (suc y) = begin
|| lookup y (map weaken s) ||
≡⟨ cong ||_|| (sym $ lookup⋆map s weaken y) ⟩
|| weaken (lookup y s) ||
≡⟨ ||weaken-a|| (lookup y s) ⟩
|| (lookup y s) ||
≡⟨ p y ⟩
1 ∎
||a/s|| : ∀ {ν μ} (a : Type ν) (s : Sub Type ν μ) →
(∀ x → || lookup x s || ≡ 1) →
|| a / s || ≡ || a ||
||a/s|| (a ⇒ b) s p = cong₂ (λ u v → 1 + u + v) (||a/s|| a s p) (||a/s|| b s p)
||a/s|| (∀' a) s p = cong (λ u → 1 + u) (||a/s|| a (s ↑) (||s↑|| s p))
||a/s|| {m} {ν} (simpl (tvar x)) s p = begin
|| (simpl (tvar x)) / s ||
≡⟨ cong ||_|| (var-/ {x = x}) ⟩
|| lookup x s ||
≡⟨ p x ⟩
1 ∎
||a/s|| (simpl (a →' b)) s p = cong₂ (λ u v → 1 + u + v) (||a/s|| a s p) (||a/s|| b s p)
||a/s|| (simpl (tc c)) s p = refl
||a/wk↑k|| : ∀ {ν} k (a : Type (k + ν)) → || a / wk ↑⋆ k || ≡ || a ||
||a/wk↑k|| k a = ||a/s|| a (wk ↑⋆ k) (λ x → cong ||_|| (lookup-wk-↑⋆ k x))
||a/s||' : ∀ {ν μ} (a : Type ν) (s : Sub Type ν μ) → || a || ≤ || a / s ||
||a/s||' (simpl (tc x)) s = s≤s z≤n
||a/s||' (simpl (tvar n)) s = ||a|| (lookup n s)
||a/s||' (simpl (a →' b)) s = s≤s (<-+ (||a/s||' a s) (||a/s||' b s))
||a/s||' (a ⇒ b) s = s≤s (<-+ (||a/s||' a s) (||a/s||' b s))
||a/s||' (∀' b) s = s≤s (||a/s||' b (s TypeSubst.↑))
h||a/s|| : ∀ {ν μ} (a : Type ν) (s : Sub Type ν μ) → (, a) hρ≤ (, a / s)
h||a/s|| (simpl (tc x)) s = s≤s z≤n
h||a/s|| (simpl (tvar n)) s = ||a|| (proj₂ (lookup n s ◁))
h||a/s|| (simpl (a →' b)) s = s≤s (<-+ (||a/s||' a s) (||a/s||' b s))
h||a/s|| (a ⇒ b) s = h||a/s|| b s
h||a/s|| (∀' b) s = h||a/s|| b (s TypeSubst.↑)
a-ρ<-∀a : ∀ {n} a → (suc n , a) ρ< (, ∀' a)
a-ρ<-∀a _ = ≤-refl
b-ρ<-a⇒b : ∀ {ν} (a b : Type ν) → (_ , b) ρ< (_ , a ⇒ b)
b-ρ<-a⇒b a b = s≤s (≤-steps || a || ≤-refl)
b-hρ≤-a⇒b : ∀ {ν} (a b : Type ν) → (_ , b) hρ≤ (_ , a ⇒ b)
b-hρ≤-a⇒b a b = subst (λ u → u ≤ h|| a ⇒ b ||) refl ≤-refl
a-m<-∀a : ∀ {m ν} a → (m , suc ν , a) m< (m , ν , ∀' a)
a-m<-∀a a = ≤-refl
b-m<-a⇒b : ∀ {m ν} a b → (m , ν , b) m< (m , ν , a ⇒ b)
b-m<-a⇒b a b = s≤s (≤-steps m|| a || ≤-refl)
open-meta-a-m<-∀'a : ∀ {m ν} a → (suc m , ν , open-meta a) m< (m , ν , ∀' a)
open-meta-a-m<-∀'a a = subst (λ x → x < m|| ∀' a ||)
(sym $ MetaSubstSizeLemmas.||open-meta-a||≡a a) (a-m<-∀a a)
|
{
"alphanum_fraction": 0.4380905512,
"avg_line_length": 38.7786259542,
"ext": "agda",
"hexsha": "b06c1a6af3c7f6fc8230055b4301c292fbf2af54",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Implicits/Resolution/Termination/Lemmas/SizeMeasures.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Implicits/Resolution/Termination/Lemmas/SizeMeasures.agda",
"max_line_length": 101,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Implicits/Resolution/Termination/Lemmas/SizeMeasures.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 4374,
"size": 10160
}
|
module Thesis.ANormalCTerm where
open import Thesis.ANormalDTerm
-- OK, this is all cool, but let's drop all this typing.
data CType : Set where
cache : CType
input : Type → CType
open import Data.Product
⟦_⟧CType : CType → Set
-- This is a lie, since we might need to store more complex values in there,
-- including caches...
⟦ cache ⟧CType = Σ[ τ ∈ Type ] ⟦ τ ⟧Type
-- However, this is more correct but is not recognized as terminating.
-- ⟦ cache ⟧CType = Σ[ τ ∈ CType ] ⟦ τ ⟧CType
-- Finally, this definition is too impredicative for Agda to accept it. If
-- ⟦_⟧CType lived in Set₁, it could still not contain values of itself.
-- ⟦ cache ⟧CType = Σ[ S ∈ Set ] S
⟦ input τ ⟧CType = ⟦ τ ⟧Type
-- Maybe step-indexing to the rescue. Really not sure how to step-index the theorems?
-- Maybe compute the needed index while running the base program?
open import Data.Nat
⟦_⟧CTypeN : CType → ℕ → Set
⟦ input τ ⟧CTypeN n = ⟦ τ ⟧Type
⟦ cache ⟧CTypeN 0 = ⊤
⟦ cache ⟧CTypeN (suc n) = Σ[ τ ∈ CType ] ⟦ τ ⟧CTypeN n
-- To top it off, maybe add constructor tcache : CType × ℕ → Type t? Hm, guess
-- that would loop. Just use big-step semantics then.
open import Base.Syntax.Context CType using () renaming (Context to CCtx)
open import Base.Denotation.Environment CType ⟦_⟧CType using () renaming (⟦_⟧Context to ⟦_⟧CCtx)
-- I must merge caches and normal types. So I must step-index types?
data CTerm : (C CFin : CCtx) (Δ : Context) (τ : Type) → Set where
cvar : ∀ {CFin Δ τ} (x : Var Δ τ) →
CTerm CFin CFin Δ τ
clett : ∀ {C CFin Δ τ σ τ₁} →
(f : Var Δ (σ ⇒ τ₁)) →
-- XXX: (f : Var Δ (σ ⇒ (pair τ₁ cache))) →
(x : Var Δ σ) →
-- XXX pretend we only store integers. We should instead use a separate type of caches.
(ct : CTerm (cache • C) CFin (τ₁ • Δ) τ) →
CTerm C CFin Δ τ
-- Rather bogus: the contexts are unchanged. Our functions have a different type here!
⟦_⟧CTerm : ∀ {C CFin Δ τ} → CTerm C CFin Δ τ → ⟦ Δ ⟧Context → ⟦ C ⟧CCtx → (⟦ τ ⟧Type × ⟦ CFin ⟧CCtx)
⟦ cvar x ⟧CTerm ρ c = ⟦ x ⟧Var ρ , c
⟦ clett f x ct ⟧CTerm ρ c =
let v = ⟦ f ⟧Var ρ (⟦ x ⟧Var ρ)
in ⟦ ct ⟧CTerm (v • ρ) ((_ , v) • c)
cache-term-cps : ∀ {Δ σ} {Z : Set} → (t : Term Δ σ) → ∀ C → (∀ CFin → CTerm C CFin Δ σ → Z) → Z
cache-term-cps (var x) C k = k C (cvar x)
cache-term-cps (lett f x t) C k = cache-term-cps t (cache • C) (λ CFin ct → k CFin (clett f x ct))
cache-term-Σ : ∀ {Δ σ} → (t : Term Δ σ) → ∀ C → Σ[ CFin ∈ CCtx ] CTerm C CFin Δ σ
cache-term-Σ (var x) CFin = CFin , cvar x
cache-term-Σ (lett f x t) C =
let CFin , ct = cache-term-Σ t (cache • C)
in CFin , clett f x ct
-- clett f x (cache-term t)
-- -- ⟦_⟧CType : Type → Context → Set
-- -- ⟦ σ ⇒ τ ⟧CType C = {!!}
-- -- ⟦ pair σ τ ⟧CType C = {!!}
-- -- ⟦ sum σ τ ⟧CType C = {!!}
-- -- ⟦ unit ⟧CType C = ⟦ unit ⟧Type × ⟦ C ⟧Context
-- -- ⟦ int ⟧CType C = {!!}
-- data CFun (C CFin : Context) : (Δ : Context) (τ : Type) → Set where
-- cabs : ∀ {σ τ Δ} → CFun (σ • C) CFin (σ • Δ) τ → CFun C CFin Δ (σ ⇒ τ)
-- cterm : ∀ {τ Δ} → CTerm C CFin Δ τ → CFun C CFin Δ τ
-- -- Ouch, this is a lie.... We'd need a different type structure.
-- ⟦_⟧CFun : ∀ {C CFin Δ τ} → CFun C CFin Δ τ → ⟦ Δ ⟧Context → ⟦ C ⟧Context → (⟦ τ ⟧Type × ⟦ CFin ⟧Context)
-- ⟦ cabs cf ⟧CFun ρ c = (λ v → proj₁ (⟦ cf ⟧CFun (v • ρ) (v • c))) , {!!}
-- ⟦ cterm ct ⟧CFun ρ c = ⟦ ct ⟧CTerm ρ c
-- ⟦_⟧CFun2 : ∀ {C CFin Δ σ τ} → CFun C CFin Δ (σ ⇒ τ) → ⟦ Δ ⟧Context → ⟦ C ⟧Context → ⟦ σ ⟧Type → (⟦ τ ⟧Type × ⟦ CFin ⟧Context)
-- ⟦ cabs cf ⟧CFun2 ρ c = λ v → (⟦ cf ⟧CFun (v • ρ) (v • c))
-- -- (λ v → proj₁ (⟦ cf ⟧CFun (v • ρ) (v • c))) , {!!}
-- ⟦ cterm ct ⟧CFun2 ρ c = {! ⟦ ct ⟧CTerm ρ c!}
-- Above we run into the usual problems with nested caching.
data CFunR (C CFin : CCtx) : (Δ : Context) (τ : Type) → Set where
cabsterm : ∀ {σ τ Δ} → CTerm (input σ • C) CFin (σ • Δ) τ → CFunR C CFin Δ (σ ⇒ τ)
⟦_⟧CFunR : ∀ {C CFin Δ σ τ} → CFunR C CFin Δ (σ ⇒ τ) → ⟦ Δ ⟧Context → ⟦ C ⟧CCtx → ⟦ σ ⟧Type → (⟦ τ ⟧Type × ⟦ CFin ⟧CCtx)
⟦ cabsterm ct ⟧CFunR ρ c v = ⟦ ct ⟧CTerm (v • ρ) (v • c)
-- IMPORTANT: Here we need different change types:
ΔτC : Type → Type
ΔτC (σ ⇒ τ) = ΔτC σ ⇒ ΔτC τ
ΔτC unit = unit
ΔτC int = int
ΔτC (pair σ τ) = pair (ΔτC σ) (ΔτC τ)
ΔτC (sum σ τ) = sum (sum (ΔτC σ) (ΔτC τ)) (sum σ τ)
ΔΔC : Context → Context
ΔΔC ∅ = ∅
ΔΔC (τ • Γ) = ΔτC τ • ΔΔC Γ
derive-dcvar : ∀ {Δ σ} → (x : Var Δ σ) → Var (ΔΔC Δ) (ΔτC σ)
derive-dcvar this = this
derive-dcvar (that x) = that (derive-dcvar x)
-- REAL BULLSHIT
-- XXX Not accounted for: derivatives also take caches!
-- C: accumulated caches. CFin: the ones we have at the end.
data CDTerm : (C CFin : CCtx) (Δ : Context) (τ : Type) → Set where
cdvar : ∀ {CFin Δ τ} (x : Var (ΔΔC Δ) (ΔτC τ)) →
CDTerm CFin CFin Δ τ
cdlett : ∀ {C CFin Δ τ σ τ₁} →
-- Here, we also need to pass (and update) the RIGHT cache. Otherwise
-- there's no point.
(df : Var (ΔΔC Δ) (ΔτC (σ ⇒ τ₁))) →
(dx : Var (ΔΔC Δ) (ΔτC σ)) →
(dt : CDTerm (cache • C) CFin (τ₁ • Δ) τ) →
CDTerm C CFin Δ τ
der-cache-term-Σ : ∀ {Δ σ} → (t : Term Δ σ) → ∀ C → Σ[ CFin ∈ CCtx ] CDTerm C CFin Δ σ
der-cache-term-Σ (var x) CFin = CFin , cdvar (derive-dcvar x)
der-cache-term-Σ (lett f x t) C =
let CFin , cdt = der-cache-term-Σ t (cache • C)
in CFin , cdlett (derive-dcvar f) (derive-dcvar x) cdt
--⟦_⟧DTerm : ∀ {Δ τ} → DTerm Δ τ → ⟦ Δ ⟧Context → ⟦ ΔΔ Δ ⟧Context → ⟦ Δt τ ⟧Type
⟦_⟧CDTerm : ∀ {C CFin Δ τ} → CDTerm C CFin Δ τ → ⟦ ΔΔC Δ ⟧Context → ⟦ C ⟧CCtx → (⟦ ΔτC τ ⟧Type × ⟦ CFin ⟧CCtx)
⟦ cdvar x ⟧CDTerm dρ c = ⟦ x ⟧Var dρ , c
⟦ cdlett df dx cdt ⟧CDTerm dρ c =
let dv = ⟦ df ⟧Var dρ (⟦ dx ⟧Var dρ)
in ⟦ cdt ⟧CDTerm (dv • dρ) ((_ , dv) • c)
-- ⟦ cvar x ⟧CTerm ρ c = ⟦ x ⟧Var ρ , c
-- ⟦ clett f x ct ⟧CTerm ρ c =
-- let v = ⟦ f ⟧Var ρ (⟦ x ⟧Var ρ)
-- in ⟦ ct ⟧CTerm (v • ρ) ((_ , v) • c)
-- At the top, C is empty.
data CDFun (C CFin : CCtx) : (Δ : Context) (τ : Type) → Set where
cdabs : ∀ {σ τ Δ} → CDFun (input σ • C) CFin (σ • Δ) τ → CDFun C CFin Δ (σ ⇒ τ)
cdterm : ∀ {τ Δ} → CDTerm C CFin Δ τ → CDFun C CFin Δ τ
data CDFunR (C CFin : CCtx) : (Δ : Context) (τ : Type) → Set where
cdabsterm : ∀ {σ τ Δ} → CDTerm (input σ • C) CFin (σ • Δ) τ → CDFunR C CFin Δ (σ ⇒ τ)
|
{
"alphanum_fraction": 0.5712898527,
"avg_line_length": 41.4697986577,
"ext": "agda",
"hexsha": "73f045b587dfae650715bd5820afbba8f6efa08b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Thesis/ANormalCTerm.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Thesis/ANormalCTerm.agda",
"max_line_length": 128,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Thesis/ANormalCTerm.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 2706,
"size": 6179
}
|
module Int where
open import Data.Product
open import Data.Sum as S
open import Relation.Binary.PropositionalEquality as Eq
open import Relation.Binary.Core
open import Relation.Binary
open import Function.Equality hiding (cong)
open import Data.Empty
import Level
open import Nat
open Eq.≡-Reasoning
ℤb : Set
ℤb = ℕ × ℕ
_≡ℤ_ : ℤb → ℤb → Set
(a , b) ≡ℤ (c , d) = a + d ≡ b + c
reflexive : {x : ℤb} → x ≡ℤ x
reflexive {a , b} = +-comm a b
symmetric : (x y : ℤb) → x ≡ℤ y → y ≡ℤ x
symmetric (a , b) (c , d) a+d≡b+c = begin
c + b
≡⟨ +-comm c b ⟩
b + c
≡⟨ sym a+d≡b+c ⟩
a + d
≡⟨ +-comm a d ⟩
d + a
∎
transitive : ∀ {x y z : ℤb} → x ≡ℤ y → y ≡ℤ z → x ≡ℤ z
transitive {a , b} {c , d} {e , f} a+d≡b+c c+f≡d+e = lem (begin
a + ((d + c) + f)
≡⟨ cong (λ x → a + x) (sym (+-assoc d c f)) ⟩
a + (d + (c + f))
≡⟨ +-assoc a d (c + f) ⟩
(a + d) + (c + f)
≡⟨ cong (λ x → x + (c + f)) a+d≡b+c ⟩
(b + c) + (c + f)
≡⟨ cong (λ x → (b + c) + x) c+f≡d+e ⟩
(b + c) + (d + e)
≡⟨ sym (+-assoc b c (d + e)) ⟩
b + (c + (d + e))
≡⟨ cong (λ x → b + x) (+-assoc c d e) ⟩
b + ((c + d) + e)
∎)
where
lem : (a + ((d + c) + f)) ≡ (b + ((c + d) + e)) → (a + f) ≡ (b + e)
lem p = +-rCancel (a + f) (b + e) (d + c) (begin
(a + f) + (d + c)
≡⟨ sym (+-assoc a f (d + c)) ⟩
a + (f + (d + c))
≡⟨ cong (λ x → a + x) (+-comm f (d + c)) ⟩
a + ((d + c) + f)
≡⟨ p ⟩
b + ((c + d) + e)
≡⟨ cong (λ x → b + x) (cong (λ x → x + e) (+-comm c d)) ⟩
b + ((d + c) + e)
≡⟨ cong (λ x → b + x) (+-comm (d + c) e) ⟩
b + (e + (d + c))
≡⟨ +-assoc b e (d + c) ⟩
(b + e) + (d + c)
∎)
≡ℤ-eq : IsEquivalence _≡ℤ_
≡ℤ-eq = record
{ refl = λ {x} → reflexive {x}
; sym = λ {x y} → symmetric x y
; trans = λ {x y z} → transitive {x} {y} {z} }
ℤ : Setoid (Level.zero) (Level.zero)
ℤ = record { Carrier = ℤb ; _≈_ = _≡ℤ_ ; isEquivalence = ≡ℤ-eq }
≡ℤ-≡ : {a b : ℤb} → a ≡ b → a ≡ℤ b
≡ℤ-≡ {x , y} {.(x , y)} refl = +-comm x y
import Relation.Binary.EqReasoning as EqR
open EqR ℤ renaming
( begin_ to beginℤ_
; _≡⟨_⟩_ to _≡ℤ⟨_⟩_
; _∎ to _ℤ∎
)
_+ℤ_ : ℤb → ℤb → ℤb
(a , b) +ℤ (c , d) = (a + c , b + d)
_*ℤ_ : ℤb → ℤb → ℤb
(a , b) *ℤ (c , d) = ((a * c) + (b * d) , (a * d) + (b * c))
+ℤ-lUniv : (a b c : ℤb) → a ≡ℤ b → (a +ℤ c) ≡ℤ (b +ℤ c)
+ℤ-lUniv (a₁ , a₂) (b₁ , b₂) (c₁ , c₂) a₁+b₂≡a₂+b₁ = lem
where
lem : (a₁ + c₁) + (b₂ + c₂) ≡ (a₂ + c₂) + (b₁ + c₁)
lem = begin
(a₁ + c₁) + (b₂ + c₂)
≡⟨ sym (+-assoc a₁ c₁ (b₂ + c₂)) ⟩
a₁ + (c₁ + (b₂ + c₂))
≡⟨ cong (λ x → a₁ + x) (+-assoc c₁ b₂ c₂) ⟩
a₁ + ((c₁ + b₂) + c₂)
≡⟨ cong (λ x → a₁ + x) (cong (λ x → x + c₂) (+-comm c₁ b₂)) ⟩
a₁ + ((b₂ + c₁) + c₂)
≡⟨ cong (λ x → a₁ + x) (sym (+-assoc b₂ c₁ c₂)) ⟩
a₁ + (b₂ + (c₁ + c₂))
≡⟨ +-assoc a₁ b₂ (c₁ + c₂) ⟩
(a₁ + b₂) + (c₁ + c₂)
≡⟨ cong (λ x → x + (c₁ + c₂)) a₁+b₂≡a₂+b₁ ⟩
(a₂ + b₁) + (c₁ + c₂)
≡⟨ sym (+-assoc a₂ b₁ (c₁ + c₂)) ⟩
a₂ + (b₁ + (c₁ + c₂))
≡⟨ cong (λ x → a₂ + x) (+-assoc b₁ c₁ c₂) ⟩
a₂ + ((b₁ + c₁) + c₂)
≡⟨ cong (λ x → a₂ + x) (+-comm (b₁ + c₁) c₂) ⟩
a₂ + (c₂ + (b₁ + c₁))
≡⟨ +-assoc a₂ c₂ (b₁ + c₁) ⟩
(a₂ + c₂) + (b₁ + c₁)
∎
-- c +ℤ a = (c₁ + a₁ , c₂ + a₂)
-- c +ℤ b = (c₁ + b₁ , c₂ + b₂)
-- (c₁ + a₁) + (c₂ + b₂) ≡ (c₂ + a₂) + (c₁ + b₁)
+ℤ-rUniv : (a b c : ℤb) → a ≡ℤ b → (c +ℤ a) ≡ℤ (c +ℤ b)
+ℤ-rUniv (a₁ , a₂) (b₁ , b₂) (c₁ , c₂) a₁+b₂≡a₂+b₁ = begin
(c₁ + a₁) + (c₂ + b₂)
≡⟨ cong (λ x → (c₁ + a₁) + x) (+-comm c₂ b₂) ⟩
(c₁ + a₁) + (b₂ + c₂)
≡⟨ sym (+-assoc c₁ a₁ (b₂ + c₂)) ⟩
c₁ + (a₁ + (b₂ + c₂))
≡⟨ cong (λ x → c₁ + x) (+-assoc a₁ b₂ c₂) ⟩
c₁ + ((a₁ + b₂) + c₂)
≡⟨ cong (λ x → c₁ + (x + c₂)) a₁+b₂≡a₂+b₁ ⟩
c₁ + ((a₂ + b₁) + c₂)
≡⟨ +-comm c₁ ((a₂ + b₁) + c₂) ⟩
((a₂ + b₁) + c₂) + c₁
≡⟨ cong (λ x → x + c₁) (+-comm (a₂ + b₁) c₂) ⟩
(c₂ + (a₂ + b₁)) + c₁
≡⟨ sym (+-assoc c₂ (a₂ + b₁) c₁) ⟩
c₂ + ((a₂ + b₁) + c₁)
≡⟨ cong (λ x → c₂ + x) (sym (+-assoc a₂ b₁ c₁)) ⟩
c₂ + (a₂ + (b₁ + c₁))
≡⟨ cong (λ x → c₂ + (a₂ + x)) (+-comm b₁ c₁) ⟩
c₂ + (a₂ + (c₁ + b₁))
≡⟨ +-assoc c₂ a₂ (c₁ + b₁) ⟩
(c₂ + a₂) + (c₁ + b₁)
∎
*ℤ-lUniv : (a b c : ℤb) → a ≡ℤ b → (a *ℤ c) ≡ℤ (b *ℤ c)
*ℤ-lUniv (a₁ , a₂) (b₁ , b₂) (c₁ , c₂) a₁+b₂≡a₂+b₁ = lem
where
-- a *ℤ c = (a₁ * c₁ + a₂ * c₂ , a₁ * c₂ + a₂ * c₁)
-- b *ℤ c = (b₁ * c₁ + b₂ * c₂ , b₁ * c₂ + b₂ * c₁)
lem : ((a₁ * c₁) + (a₂ * c₂)) + ((b₁ * c₂) + (b₂ * c₁))
≡ ((a₁ * c₂) + (a₂ * c₁)) + ((b₁ * c₁) + (b₂ * c₂))
lem = begin
((a₁ * c₁) + (a₂ * c₂)) + ((b₁ * c₂) + (b₂ * c₁))
≡⟨ cong (λ x → ((a₁ * c₁) + (a₂ * c₂)) + x) (+-comm (b₁ * c₂) (b₂ * c₁)) ⟩
((a₁ * c₁) + (a₂ * c₂)) + ((b₂ * c₁) + (b₁ * c₂))
≡⟨ sym (+-assoc (a₁ * c₁) (a₂ * c₂) ((b₂ * c₁) + (b₁ * c₂))) ⟩
(a₁ * c₁) + ((a₂ * c₂) + ((b₂ * c₁) + (b₁ * c₂)))
≡⟨ cong (λ x → (a₁ * c₁) + x) (+-assoc (a₂ * c₂) (b₂ * c₁) (b₁ * c₂)) ⟩
(a₁ * c₁) + (((a₂ * c₂) + (b₂ * c₁)) + (b₁ * c₂))
≡⟨ cong (λ x → (a₁ * c₁) + x) (cong (λ x → x + (b₁ * c₂)) (+-comm (a₂ * c₂) (b₂ * c₁))) ⟩
(a₁ * c₁) + (((b₂ * c₁) + (a₂ * c₂)) + (b₁ * c₂))
≡⟨ cong (λ x → (a₁ * c₁) + x) (sym (+-assoc (b₂ * c₁) (a₂ * c₂) (b₁ * c₂))) ⟩
(a₁ * c₁) + ((b₂ * c₁) + ((a₂ * c₂) + (b₁ * c₂)))
≡⟨ +-assoc (a₁ * c₁) (b₂ * c₁) ((a₂ * c₂) + (b₁ * c₂)) ⟩
((a₁ * c₁) + (b₂ * c₁)) + ((a₂ * c₂) + (b₁ * c₂))
≡⟨ cong (λ x → x + ((a₂ * c₂) + (b₁ * c₂))) (sym (+*-rDist a₁ b₂ c₁)) ⟩
((a₁ + b₂) * c₁) + ((a₂ * c₂) + (b₁ * c₂))
≡⟨ cong (λ x → ((a₁ + b₂) * c₁) + x) (sym (+*-rDist a₂ b₁ c₂)) ⟩
((a₁ + b₂) * c₁) + ((a₂ + b₁) * c₂)
≡⟨ cong (λ x → x + ((a₂ + b₁) * c₂)) (cong (λ x → x * c₁) a₁+b₂≡a₂+b₁) ⟩
((a₂ + b₁) * c₁) + ((a₂ + b₁) * c₂)
≡⟨ cong (λ x → ((a₂ + b₁) * c₁) + x) (cong (λ x → x * c₂) (sym a₁+b₂≡a₂+b₁)) ⟩
((a₂ + b₁) * c₁) + ((a₁ + b₂) * c₂)
≡⟨ cong (λ x → x + ((a₁ + b₂) * c₂)) (+*-rDist a₂ b₁ c₁) ⟩
((a₂ * c₁) + (b₁ * c₁)) + ((a₁ + b₂) * c₂)
≡⟨ cong (λ x → ((a₂ * c₁) + (b₁ * c₁)) + x) (+*-rDist a₁ b₂ c₂) ⟩
((a₂ * c₁) + (b₁ * c₁)) + ((a₁ * c₂) + (b₂ * c₂))
≡⟨ sym (+-assoc (a₂ * c₁) (b₁ * c₁) ((a₁ * c₂) + (b₂ * c₂))) ⟩
(a₂ * c₁) + ((b₁ * c₁) + ((a₁ * c₂) + (b₂ * c₂)))
≡⟨ cong (λ x → (a₂ * c₁) + x) (+-assoc (b₁ * c₁) (a₁ * c₂) (b₂ * c₂)) ⟩
(a₂ * c₁) + (((b₁ * c₁) + (a₁ * c₂)) + (b₂ * c₂))
≡⟨ cong (λ x → (a₂ * c₁) + x) (cong (λ x → x + (b₂ * c₂)) (+-comm (b₁ * c₁) (a₁ * c₂))) ⟩
(a₂ * c₁) + (((a₁ * c₂) + (b₁ * c₁)) + (b₂ * c₂))
≡⟨ cong (λ x → (a₂ * c₁) + x) (sym (+-assoc (a₁ * c₂) (b₁ * c₁) (b₂ * c₂))) ⟩
(a₂ * c₁) + ((a₁ * c₂) + ((b₁ * c₁) + (b₂ * c₂)))
≡⟨ +-assoc (a₂ * c₁) (a₁ * c₂) ((b₁ * c₁) + (b₂ * c₂)) ⟩
((a₂ * c₁) + (a₁ * c₂)) + ((b₁ * c₁) + (b₂ * c₂))
≡⟨ cong (λ x → x + ((b₁ * c₁) + (b₂ * c₂))) (+-comm (a₂ * c₁) (a₁ * c₂)) ⟩
((a₁ * c₂) + (a₂ * c₁)) + ((b₁ * c₁) + (b₂ * c₂))
∎
-- c *ℤ a = (c₁ * a₁) + (c₂ * a₂) , (c₁ * a₂) + (c₂ * a₁)
-- c *ℤ b = (c₁ * b₁) + (c₂ * b₂) , (c₁ * b₂) + (c₂ * b₁)
*ℤ-rUniv : (a b c : ℤb) → a ≡ℤ b → (c *ℤ a) ≡ℤ (c *ℤ b)
*ℤ-rUniv (a₁ , a₂) (b₁ , b₂) (c₁ , c₂) a₁+b₂≡a₂+b₁ = begin
((c₁ * a₁) + (c₂ * a₂)) + ((c₁ * b₂) + (c₂ * b₁))
≡⟨ +-assoc ((c₁ * a₁) + (c₂ * a₂)) (c₁ * b₂) (c₂ * b₁) ⟩
(((c₁ * a₁) + (c₂ * a₂)) + (c₁ * b₂)) + (c₂ * b₁)
≡⟨ cong (λ x → x + (c₂ * b₁)) (sym (+-assoc (c₁ * a₁) (c₂ * a₂) (c₁ * b₂))) ⟩
((c₁ * a₁) + ((c₂ * a₂) + (c₁ * b₂))) + (c₂ * b₁)
≡⟨ cong (λ z → ((c₁ * a₁) + z) + (c₂ * b₁)) (+-comm (c₂ * a₂) (c₁ * b₂)) ⟩
((c₁ * a₁) + ((c₁ * b₂) + (c₂ * a₂))) + (c₂ * b₁)
≡⟨ cong (λ z → z + (c₂ * b₁)) (+-assoc (c₁ * a₁) (c₁ * b₂) (c₂ * a₂)) ⟩
(((c₁ * a₁) + (c₁ * b₂)) + (c₂ * a₂)) + (c₂ * b₁)
≡⟨ sym (+-assoc ((c₁ * a₁) + (c₁ * b₂)) (c₂ * a₂) (c₂ * b₁)) ⟩
((c₁ * a₁) + (c₁ * b₂)) + ((c₂ * a₂) + (c₂ * b₁))
≡⟨ cong (λ z → z + ((c₂ * a₂) + (c₂ * b₁))) (sym (+*-lDist a₁ b₂ c₁)) ⟩
(c₁ * (a₁ + b₂)) + ((c₂ * a₂) + (c₂ * b₁))
≡⟨ cong (λ z → (c₁ * (a₁ + b₂)) + z) (sym (+*-lDist a₂ b₁ c₂)) ⟩
(c₁ * (a₁ + b₂)) + (c₂ * (a₂ + b₁))
≡⟨ cong (λ z → (c₁ * z) + (c₂ * (a₂ + b₁))) a₁+b₂≡a₂+b₁ ⟩
(c₁ * (a₂ + b₁)) + (c₂ * (a₂ + b₁))
≡⟨ cong (λ z → (c₁ * (a₂ + b₁)) + (c₂ * z)) (sym a₁+b₂≡a₂+b₁) ⟩
(c₁ * (a₂ + b₁)) + (c₂ * (a₁ + b₂))
≡⟨ cong (λ z → z + (c₂ * (a₁ + b₂))) (+*-lDist a₂ b₁ c₁) ⟩
((c₁ * a₂) + (c₁ * b₁)) + (c₂ * (a₁ + b₂))
≡⟨ cong (λ z → ((c₁ * a₂) + (c₁ * b₁)) + z) (+*-lDist a₁ b₂ c₂) ⟩
((c₁ * a₂) + (c₁ * b₁)) + ((c₂ * a₁) + (c₂ * b₂))
≡⟨ sym (+-assoc (c₁ * a₂) (c₁ * b₁) ((c₂ * a₁) + (c₂ * b₂))) ⟩
(c₁ * a₂) + ((c₁ * b₁) + ((c₂ * a₁) + (c₂ * b₂)))
≡⟨ cong (λ z → (c₁ * a₂) + z) (+-assoc (c₁ * b₁) (c₂ * a₁) (c₂ * b₂)) ⟩
(c₁ * a₂) + (((c₁ * b₁) + (c₂ * a₁)) + (c₂ * b₂))
≡⟨ cong (λ z → (c₁ * a₂) + (z + (c₂ * b₂))) (+-comm (c₁ * b₁) (c₂ * a₁)) ⟩
(c₁ * a₂) + (((c₂ * a₁) + (c₁ * b₁)) + (c₂ * b₂))
≡⟨ cong (λ z → (c₁ * a₂) + z) (sym (+-assoc (c₂ * a₁) (c₁ * b₁) (c₂ * b₂))) ⟩
(c₁ * a₂) + ((c₂ * a₁) + ((c₁ * b₁) + (c₂ * b₂)))
≡⟨ +-assoc (c₁ * a₂) (c₂ * a₁) ((c₁ * b₁) + (c₂ * b₂)) ⟩
((c₁ * a₂) + (c₂ * a₁)) + ((c₁ * b₁) + (c₂ * b₂))
∎
+ℤ-rUnit : (a b : ℕ) → ((a , b) +ℤ (zero , zero)) ≡ (a , b)
+ℤ-rUnit a b = begin
(a , b) +ℤ (zero , zero)
≡⟨ refl ⟩
(a + zero , b + zero)
≡⟨ cong (λ x → x , (b + zero)) (+-rUnit a) ⟩
(a , b + zero)
≡⟨ cong (λ x → a , x) (+-rUnit b) ⟩
(a , b)
∎
+ℤ-lUnit : (a b : ℕ) → ((zero , zero) +ℤ (a , b)) ≡ (a , b)
+ℤ-lUnit a b = begin
(zero , zero) +ℤ (a , b)
≡⟨ refl ⟩
(zero + a , zero + b)
≡⟨ refl ⟩
(a , b)
∎
-- (a , b) *ℤ (succ zero , zero) = (a * succ zero + b * zero , a * zero + b * succ zero)
-- a + (a * zero + b * succ zero) = b + (a * succ zero + b * zero)
*ℤ-rUnit : (a b : ℕ) → ((a , b) *ℤ (succ zero , zero)) ≡ (a , b)
*ℤ-rUnit a b = begin
((a * succ zero) + (b * zero) , ((a * zero) + (b * succ zero)))
≡⟨ cong (λ x → x , ((a * zero) + (b * succ zero))) lem1 ⟩
(a , ((a * zero) + (b * succ zero)))
≡⟨ cong (λ x → a , x) lem2 ⟩
(a , b)
∎
where
lem1 : (a * succ zero) + (b * zero) ≡ a
lem1 = begin
(a * succ zero) + (b * zero)
≡⟨ cong (λ x → x + (b * zero)) (*-rUnit a) ⟩
a + (b * zero)
≡⟨ cong (λ x → a + x) (*-rAbsorp b) ⟩
a + zero
≡⟨ +-rUnit a ⟩
a
∎
lem2 : (a * zero) + (b * succ zero) ≡ b
lem2 = begin
(a * zero) + (b * succ zero)
≡⟨ cong (λ x → (a * zero) + x) (*-rUnit b) ⟩
(a * zero) + b
≡⟨ cong (λ x → x + b) (*-rAbsorp a) ⟩
zero + b
≡⟨ refl ⟩
b
∎
-- ((succ zero * a) + (zero * b) , (succ zero * b) + (zero * a))
*ℤ-lUnit : (a b : ℕ) → ((succ zero , zero) *ℤ (a , b)) ≡ (a , b)
*ℤ-lUnit a b = begin
((succ zero * a) + (zero * b) , (succ zero * b) + (zero * a))
≡⟨ cong (λ x → x , ((succ zero * b) + (zero * a))) lem1 ⟩
(a , (succ zero * b) + (zero * a))
≡⟨ cong (λ x → a , x) lem2 ⟩
(a , b)
∎
where
lem1 : (succ zero * a) + (zero * b) ≡ a
lem1 = begin
(succ zero * a) + (zero * b)
≡⟨ cong (λ x → x + (zero * b)) (*-lUnit a) ⟩
a + (zero * b)
≡⟨ cong (λ x → a + x) refl ⟩
a + zero
≡⟨ +-rUnit a ⟩
a
∎
lem2 : (succ zero * b) + (zero * a) ≡ b
lem2 = begin
(succ zero * b) + (zero * a)
≡⟨ cong (λ x → x + (zero * a)) (*-lUnit b) ⟩
b + (zero * a)
≡⟨ cong (λ x → b + x) refl ⟩
b + zero
≡⟨ +-rUnit b ⟩
b
∎
-- (b +ℤ c) = (b₁ + c₁) , (b₂ + c₂)
-- a +ℤ (b +ℤ c) = a₁ + (b₁ + c₁) , a₂ + (b₂ + c₂)
-- (a +ℤ b) = a₁ + b₁ , a₂ + b₂
-- (a +ℤ b) + c = (a₁ + b₁) + c₁ , (a₂ + b₂) + c₂
-- (a₁ + (b₁ + c₁)) + ((a₂ + b₂) + c₂) ≡ (a₂ + (b₂ + c₂)) + ((a₁ + b₁) + c₁)
+ℤ-assoc : (a b c : ℤb) → (a +ℤ (b +ℤ c)) ≡ℤ ((a +ℤ b) +ℤ c)
+ℤ-assoc (a₁ , a₂) (b₁ , b₂) (c₁ , c₂) = begin
(a₁ + (b₁ + c₁)) + ((a₂ + b₂) + c₂)
≡⟨ +-comm (a₁ + (b₁ + c₁)) ((a₂ + b₂) + c₂) ⟩
((a₂ + b₂) + c₂) + (a₁ + (b₁ + c₁))
≡⟨ cong (λ x → x + (a₁ + (b₁ + c₁))) (sym (+-assoc a₂ b₂ c₂)) ⟩
(a₂ + (b₂ + c₂)) + (a₁ + (b₁ + c₁))
≡⟨ cong (λ x → (a₂ + (b₂ + c₂)) + x) (+-assoc a₁ b₁ c₁) ⟩
(a₂ + (b₂ + c₂)) + ((a₁ + b₁) + c₁)
∎
-- a +ℤ b = a + c , b + d
-- b +ℤ a = c + a , d + b
-- (a + c) + (d + b) = (b + d) + (c + a)
+ℤ-comm : (a b : ℤb) → (a +ℤ b) ≡ℤ (b +ℤ a)
+ℤ-comm (a , b) (c , d) = begin
(a + c) + (d + b)
≡⟨ +-comm (a + c) (d + b) ⟩
(d + b) + (a + c)
≡⟨ cong (λ x → x + (a + c)) (+-comm d b) ⟩
(b + d) + (a + c)
≡⟨ cong (λ x → (b + d) + x) (+-comm a c) ⟩
(b + d) + (c + a)
∎
-- b *ℤ c = (b₁ * c₁) + (b₂ * c₂) , (b₁ * c₂) + (b₂ * c₁)
-- a *ℤ (b *ℤ c) = (a₁ * ((b₁ * c₁) + (b₂ * c₂))) + (a₂ * ((b₁ * c₂) + (b₂ * c₁)))
-- , (a₁ * ((b₁ * c₂) + (b₂ * c₁))) + (a₂ * ((b₁ * c₁) + (b₂ * c₂)))
-- a *ℤ b = (a₁ * b₁) + (a₂ * b₂) , (a₁ * b₂) + (a₂ * b₁)
-- (a *ℤ b) *ℤ c = (((a₁ * b₁) + (a₂ * b₂)) * c₁) + (((a₁ * b₂) + (a₂ * b₁)) * c₂)
-- , (((a₁ * b₂) + (a₂ * b₁)) * c₁) + (((a₁ * b₁) + (a₂ * b₂)) * c₂)
-- (a₁ * ((b₁ * c₁) + (b₂ * c₂))) + (a₂ * ((b₁ * c₂) + (b₂ * c₁)))
-- + (((a₁ * b₂) + (a₂ * b₁)) * c₁) + (((a₁ * b₁) + (a₂ * b₂)) * c₂)
-- ≡
-- (a₁ * ((b₁ * c₂) + (b₂ * c₁))) + (a₂ * ((b₁ * c₁) + (b₂ * c₂)))
-- + (((a₁ * b₁) + (a₂ * b₂)) * c₁) + (((a₁ * b₂) + (a₂ * b₁)) * c₂)
*ℤ-assoc : (a b c : ℤb) → (a *ℤ (b *ℤ c)) ≡ℤ ((a *ℤ b) *ℤ c)
*ℤ-assoc a@(a₁ , a₂) b@(b₁ , b₂) c@(c₁ , c₂) = ≡ℤ-≡ (begin
a *ℤ (b *ℤ c)
≡⟨ cong (λ x → a *ℤ x) refl ⟩
a *ℤ ((b₁ * c₁) + (b₂ * c₂) , (b₁ * c₂) + (b₂ * c₁))
≡⟨ refl ⟩
((a₁ * ((b₁ * c₁) + (b₂ * c₂))) + (a₂ * ((b₁ * c₂) + (b₂ * c₁))) ,
((a₁ * ((b₁ * c₂) + (b₂ * c₁))) + (a₂ * ((b₁ * c₁) + (b₂ * c₂)))))
≡⟨ cong (λ z → z , (((a₁ * ((b₁ * c₂) + (b₂ * c₁))) + (a₂ * ((b₁ * c₁) + (b₂ * c₂)))))) lem1 ⟩
((((a₁ * b₁) + (a₂ * b₂)) * c₁) + (((a₁ * b₂) + (a₂ * b₁)) * c₂)) ,
((a₁ * ((b₁ * c₂) + (b₂ * c₁))) + (a₂ * ((b₁ * c₁) + (b₂ * c₂))))
≡⟨ cong (λ z → (((((a₁ * b₁) + (a₂ * b₂)) * c₁) + (((a₁ * b₂) + (a₂ * b₁)) * c₂))) , z) lem2 ⟩
((((a₁ * b₁) + (a₂ * b₂)) * c₁) + (((a₁ * b₂) + (a₂ * b₁)) * c₂)) ,
((((a₁ * b₁) + (a₂ * b₂)) * c₂) + (((a₁ * b₂) + (a₂ * b₁)) * c₁))
≡⟨ refl ⟩
((a₁ * b₁) + (a₂ * b₂) , (a₁ * b₂) + (a₂ * b₁)) *ℤ c
≡⟨ cong (λ z → z *ℤ c) t-lem ⟩
(a *ℤ b) *ℤ c
∎)
where
t-lem : ((a₁ * b₁) + (a₂ * b₂) , (a₁ * b₂) + (a₂ * b₁)) ≡ (a *ℤ b)
t-lem = refl
lem1 : ((a₁ * ((b₁ * c₁) + (b₂ * c₂))) + (a₂ * ((b₁ * c₂) + (b₂ * c₁)))) ≡
((((a₁ * b₁) + (a₂ * b₂)) * c₁) + (((a₁ * b₂) + (a₂ * b₁)) * c₂))
lem1 = begin
((a₁ * ((b₁ * c₁) + (b₂ * c₂))) + (a₂ * ((b₁ * c₂) + (b₂ * c₁))))
≡⟨ cong (λ z → z + (a₂ * ((b₁ * c₂) + (b₂ * c₁)))) (+*-lDist (b₁ * c₁) (b₂ * c₂) a₁) ⟩
((a₁ * (b₁ * c₁)) + (a₁ * (b₂ * c₂))) + (a₂ * ((b₁ * c₂) + (b₂ * c₁)))
≡⟨ cong (λ z → (((a₁ * (b₁ * c₁)) + (a₁ * (b₂ * c₂)))) + z) (+*-lDist (b₁ * c₂) (b₂ * c₁) a₂) ⟩
((a₁ * (b₁ * c₁)) + (a₁ * (b₂ * c₂))) + ((a₂ * (b₁ * c₂)) + (a₂ * (b₂ * c₁)))
≡⟨ cong (λ z → (((a₁ * (b₁ * c₁)) + (a₁ * (b₂ * c₂)))) + z) (+-comm (a₂ * (b₁ * c₂)) (a₂ * (b₂ * c₁))) ⟩
((a₁ * (b₁ * c₁)) + (a₁ * (b₂ * c₂))) + ((a₂ * (b₂ * c₁)) + (a₂ * (b₁ * c₂)))
≡⟨ sym (+-assoc (a₁ * (b₁ * c₁)) (a₁ * (b₂ * c₂)) ((a₂ * (b₂ * c₁)) + (a₂ * (b₁ * c₂)))) ⟩
(a₁ * (b₁ * c₁)) + ((a₁ * (b₂ * c₂)) + (((a₂ * (b₂ * c₁)) + (a₂ * (b₁ * c₂)))))
≡⟨ cong (λ z → (a₁ * (b₁ * c₁)) + z) (+-assoc (a₁ * (b₂ * c₂)) (a₂ * (b₂ * c₁)) (a₂ * (b₁ * c₂))) ⟩
(a₁ * (b₁ * c₁)) + (((a₁ * (b₂ * c₂)) + (a₂ * (b₂ * c₁))) + (a₂ * (b₁ * c₂)))
≡⟨ cong (λ z → (a₁ * (b₁ * c₁)) + (z + (a₂ * (b₁ * c₂)))) (+-comm (a₁ * (b₂ * c₂)) (a₂ * (b₂ * c₁))) ⟩
(a₁ * (b₁ * c₁)) + (((a₂ * (b₂ * c₁)) + (a₁ * (b₂ * c₂))) + (a₂ * (b₁ * c₂)))
≡⟨ cong (λ z → (a₁ * (b₁ * c₁)) + z) (sym (+-assoc (a₂ * (b₂ * c₁)) (a₁ * (b₂ * c₂)) (a₂ * (b₁ * c₂)))) ⟩
(a₁ * (b₁ * c₁)) + ((a₂ * (b₂ * c₁)) + ((a₁ * (b₂ * c₂)) + (a₂ * (b₁ * c₂))))
≡⟨ +-assoc (a₁ * (b₁ * c₁)) (a₂ * (b₂ * c₁)) ((a₁ * (b₂ * c₂)) + (a₂ * (b₁ * c₂))) ⟩
((a₁ * (b₁ * c₁)) + (a₂ * (b₂ * c₁))) + ((a₁ * (b₂ * c₂)) + (a₂ * (b₁ * c₂)))
≡⟨ cong (λ z → (z + (a₂ * (b₂ * c₁))) + ((a₁ * (b₂ * c₂)) + (a₂ * (b₁ * c₂)))) (*-assoc a₁ b₁ c₁) ⟩
(((a₁ * b₁) * c₁) + (a₂ * (b₂ * c₁))) + ((a₁ * (b₂ * c₂)) + (a₂ * (b₁ * c₂)))
≡⟨ cong (λ z → (((a₁ * b₁) * c₁) + z) + ((a₁ * (b₂ * c₂)) + (a₂ * (b₁ * c₂)))) (*-assoc a₂ b₂ c₁) ⟩
(((a₁ * b₁) * c₁) + ((a₂ * b₂) * c₁)) + ((a₁ * (b₂ * c₂)) + (a₂ * (b₁ * c₂)))
≡⟨ cong (λ z → z + ((a₁ * (b₂ * c₂)) + (a₂ * (b₁ * c₂)))) (sym (+*-rDist (a₁ * b₁) (a₂ * b₂) c₁)) ⟩
(((a₁ * b₁) + (a₂ * b₂)) * c₁) + ((a₁ * (b₂ * c₂)) + (a₂ * (b₁ * c₂)))
≡⟨ cong (λ z → ((((a₁ * b₁) + (a₂ * b₂)) * c₁)) + (z + (a₂ * (b₁ * c₂)))) (*-assoc a₁ b₂ c₂) ⟩
(((a₁ * b₁) + (a₂ * b₂)) * c₁) + (((a₁ * b₂) * c₂) + (a₂ * (b₁ * c₂)))
≡⟨ cong (λ z → (((a₁ * b₁) + (a₂ * b₂)) * c₁) + (((a₁ * b₂) * c₂) + z)) (*-assoc a₂ b₁ c₂) ⟩
(((a₁ * b₁) + (a₂ * b₂)) * c₁) + (((a₁ * b₂) * c₂) + ((a₂ * b₁) * c₂))
≡⟨ cong (λ z → ((((a₁ * b₁) + (a₂ * b₂)) * c₁)) + z) (sym (+*-rDist (a₁ * b₂) (a₂ * b₁) c₂)) ⟩
(((a₁ * b₁) + (a₂ * b₂)) * c₁) + (((a₁ * b₂) + (a₂ * b₁)) * c₂)
∎
lem2 : ((a₁ * ((b₁ * c₂) + (b₂ * c₁))) + (a₂ * ((b₁ * c₁) + (b₂ * c₂)))) ≡
((((a₁ * b₁) + (a₂ * b₂)) * c₂) + (((a₁ * b₂) + (a₂ * b₁)) * c₁))
lem2 = begin
(a₁ * ((b₁ * c₂) + (b₂ * c₁))) + (a₂ * ((b₁ * c₁) + (b₂ * c₂)))
≡⟨ cong (λ x → x + (a₂ * ((b₁ * c₁) + (b₂ * c₂)))) (+*-lDist (b₁ * c₂) (b₂ * c₁) a₁) ⟩
((a₁ * (b₁ * c₂)) + (a₁ * (b₂ * c₁))) + (a₂ * ((b₁ * c₁) + (b₂ * c₂)))
≡⟨ cong (λ x → (((a₁ * (b₁ * c₂)) + (a₁ * (b₂ * c₁)))) + x) (+*-lDist (b₁ * c₁) (b₂ * c₂) a₂) ⟩
((a₁ * (b₁ * c₂)) + (a₁ * (b₂ * c₁))) + ((a₂ * (b₁ * c₁)) + (a₂ * (b₂ * c₂)))
≡⟨ cong (λ x → (x + ((a₁ * (b₂ * c₁)))) + (((a₂ * (b₁ * c₁)) + (a₂ * (b₂ * c₂))))) (*-assoc a₁ b₁ c₂) ⟩
(((a₁ * b₁) * c₂) + (a₁ * (b₂ * c₁))) + ((a₂ * (b₁ * c₁)) + (a₂ * (b₂ * c₂)))
≡⟨ cong (λ x → ((((a₁ * b₁) * c₂)) + x) + (((a₂ * (b₁ * c₁)) + (a₂ * (b₂ * c₂))))) (*-assoc a₁ b₂ c₁) ⟩
(((a₁ * b₁) * c₂) + ((a₁ * b₂) * c₁)) + ((a₂ * (b₁ * c₁)) + (a₂ * (b₂ * c₂)))
≡⟨ cong (λ x → ((((a₁ * b₁) * c₂) + ((a₁ * b₂) * c₁))) + (x + (a₂ * (b₂ * c₂)))) (*-assoc a₂ b₁ c₁) ⟩
(((a₁ * b₁) * c₂) + ((a₁ * b₂) * c₁)) + (((a₂ * b₁) * c₁) + (a₂ * (b₂ * c₂)))
≡⟨ cong (λ x → ((((a₁ * b₁) * c₂) + ((a₁ * b₂) * c₁))) + (((a₂ * b₁) * c₁) + x)) (*-assoc a₂ b₂ c₂) ⟩
(((a₁ * b₁) * c₂) + ((a₁ * b₂) * c₁)) + (((a₂ * b₁) * c₁) + ((a₂ * b₂) * c₂))
≡⟨ sym (+-assoc ((a₁ * b₁) * c₂) ((a₁ * b₂) * c₁) (((a₂ * b₁) * c₁) + ((a₂ * b₂) * c₂))) ⟩
((a₁ * b₁) * c₂) + (((a₁ * b₂) * c₁) + (((a₂ * b₁) * c₁) + ((a₂ * b₂) * c₂)))
≡⟨ cong (λ x → (((a₁ * b₁) * c₂)) + x) (+-assoc ((a₁ * b₂) * c₁) ((a₂ * b₁) * c₁) ((a₂ * b₂) * c₂)) ⟩
((a₁ * b₁) * c₂) + ((((a₁ * b₂) * c₁) + ((a₂ * b₁) * c₁)) + ((a₂ * b₂) * c₂))
≡⟨ cong (λ x → (((a₁ * b₁) * c₂)) + x) (+-comm (((a₁ * b₂) * c₁) + ((a₂ * b₁) * c₁)) ((a₂ * b₂) * c₂)) ⟩
((a₁ * b₁) * c₂) + (((a₂ * b₂) * c₂) + (((a₁ * b₂) * c₁) + ((a₂ * b₁) * c₁)))
≡⟨ +-assoc ((a₁ * b₁) * c₂) ((a₂ * b₂) * c₂) (((a₁ * b₂) * c₁) + ((a₂ * b₁) * c₁)) ⟩
(((a₁ * b₁) * c₂) + ((a₂ * b₂) * c₂)) + (((a₁ * b₂) * c₁) + ((a₂ * b₁) * c₁))
≡⟨ cong (λ x → x + (((a₁ * b₂) * c₁) + ((a₂ * b₁) * c₁))) (sym (+*-rDist (a₁ * b₁) (a₂ * b₂) c₂)) ⟩
(((a₁ * b₁) + (a₂ * b₂)) * c₂) + (((a₁ * b₂) * c₁) + ((a₂ * b₁) * c₁))
≡⟨ cong (λ x → ((((a₁ * b₁) + (a₂ * b₂)) * c₂)) + x) (sym (+*-rDist (a₁ * b₂) (a₂ * b₁) c₁)) ⟩
(((a₁ * b₁) + (a₂ * b₂)) * c₂) + (((a₁ * b₂) + (a₂ * b₁)) * c₁)
∎
-- a *ℤ b = a₁ * b₁ + a₂ * b₂ , a₁ * b₂ + a₂ * b₁
-- b *ℤ a = b₁ * a₁ + b₂ * a₂ , b₁ * a₂ + b₂ * a₁
*ℤ-comm : (a b : ℤb) → (a *ℤ b) ≡ℤ (b *ℤ a)
*ℤ-comm (a₁ , a₂) (b₁ , b₂) = begin
((a₁ * b₁) + (a₂ * b₂)) + ((b₁ * a₂) + (b₂ * a₁))
≡⟨ +-comm ((a₁ * b₁) + (a₂ * b₂)) ((b₁ * a₂) + (b₂ * a₁)) ⟩
((b₁ * a₂) + (b₂ * a₁)) + ((a₁ * b₁) + (a₂ * b₂))
≡⟨ cong (λ z → z + ((a₁ * b₁) + (a₂ * b₂))) (+-comm (b₁ * a₂) (b₂ * a₁)) ⟩
((b₂ * a₁) + (b₁ * a₂)) + ((a₁ * b₁) + (a₂ * b₂))
≡⟨ cong (λ z → (z + (b₁ * a₂)) + ((a₁ * b₁) + (a₂ * b₂))) (*-comm b₂ a₁) ⟩
((a₁ * b₂) + (b₁ * a₂)) + ((a₁ * b₁) + (a₂ * b₂))
≡⟨ cong (λ z → ((a₁ * b₂) + z) + ((a₁ * b₁) + (a₂ * b₂))) (*-comm b₁ a₂) ⟩
((a₁ * b₂) + (a₂ * b₁)) + ((a₁ * b₁) + (a₂ * b₂))
≡⟨ cong (λ z → ((a₁ * b₂) + (a₂ * b₁)) + (z + (a₂ * b₂))) (*-comm a₁ b₁) ⟩
((a₁ * b₂) + (a₂ * b₁)) + ((b₁ * a₁) + (a₂ * b₂))
≡⟨ cong (λ z → ((a₁ * b₂) + (a₂ * b₁)) + ((b₁ * a₁) + z)) (*-comm a₂ b₂) ⟩
((a₁ * b₂) + (a₂ * b₁)) + ((b₁ * a₁) + (b₂ * a₂))
∎
ℕ-ℤ : ℕ → ℤb
ℕ-ℤ n = (n , zero)
ℕ-ℤ-monic : (m n : ℕ) → ℕ-ℤ m ≡ℤ ℕ-ℤ n → m ≡ n
ℕ-ℤ-monic m n m+0≡0+n = begin
m
≡⟨ sym (+-rUnit m) ⟩
m + zero
≡⟨ m+0≡0+n ⟩
zero + n
≡⟨ refl ⟩
n
∎
-- (n , zero) +ℤ (zero , n) = n + zero , zero + n
-- (n + zero) + zero = (zero + n) + zero
+ℤ-invℕ : (n : ℕ) → ((n , zero) +ℤ (zero , n)) ≡ℤ (zero , zero)
+ℤ-invℕ n = begin
(n + zero) + zero
≡⟨ cong (λ x → x + zero) (+-comm n zero) ⟩
(zero + n) + zero
∎
-- (a , b) +ℤ (b , a) = a + b , b + a
-- (a + b) + zero = (b + a) + zero
+ℤ-inv : (a : ℤb) → ∃ λ b → (a +ℤ b) ≡ℤ (zero , zero)
+ℤ-inv (a , b) = (b , a) , (begin
(a + b) + zero
≡⟨ cong (λ x → x + zero) (+-comm a b) ⟩
(b + a) + zero
∎)
-ℤ_ : ℤb → ℤb
-ℤ (a , b) = (b , a)
_-ℤ_ : ℤb → ℤb → ℤb
a -ℤ b = a +ℤ (-ℤ b)
-ℤ-inv : (a : ℤb) → (a -ℤ a) ≡ℤ (zero , zero)
-ℤ-inv (a , b) = begin
(a + b) + zero
≡⟨ cong (λ x → x + zero) (+-comm a b) ⟩
(b + a) + zero
∎
_≤ℤ_ : ℤb → ℤb → Set
a ≤ℤ b = ∃ λ l → (a +ℤ (l , zero)) ≡ℤ b
≤ℤ-refl : (a : ℤb) → a ≤ℤ a
≤ℤ-refl (a , b) = zero , ≡ℤ-≡ (+ℤ-rUnit a b)
-- p : (a₁ , a₂) +ℤ (x , zero) ≡ℤ (b₁ , b₂)
-- (a₁ + x , a₂ + zero) ≡ℤ (b₁ , b₂)
-- (a₁ + x) + b₂ = (a₂ + zero) + b₁
-- q : (b₁ , b₂) +ℤ (x , zero) ≡ℤ (c₁ , c₂)
-- (b₁ + y , b₂ + zero) ≡ℤ (c₁ , c₂)
-- (b₁ + y) + c₂ = (b₂ + zero) + c₁
-- goal : (a₁ , a₂) +ℤ (z , zero) ≡ℤ (c₁ , c₂)
-- (a₁ + z , a₂ + zero) ≡ℤ (c₁ , c₂)
-- (a₁ + z) + c₂ ≡ (a₂ + zero) + c₁
≤ℤ-trans : (a b c : ℤb) → a ≤ℤ b → b ≤ℤ c → a ≤ℤ c
≤ℤ-trans (a₁ , a₂) (b₁ , b₂) (c₁ , c₂) (x , p) (y , q) = (x + y) ,
+-rCancel ((a₁ + (x + y)) + c₂) ((a₂ + zero) + c₁) b₂ (begin
((a₁ + (x + y)) + c₂) + b₂
≡⟨ cong (λ z → z + b₂) (sym (+-assoc a₁ (x + y) c₂)) ⟩
(a₁ + ((x + y) + c₂)) + b₂
≡⟨ sym (+-assoc a₁ ((x + y) + c₂) b₂) ⟩
a₁ + (((x + y) + c₂) + b₂)
≡⟨ cong (λ z → a₁ + z) (sym (+-assoc (x + y) c₂ b₂)) ⟩
a₁ + ((x + y) + (c₂ + b₂))
≡⟨ cong (λ z → a₁ + ((x + y) + z)) (+-comm c₂ b₂) ⟩
a₁ + ((x + y) + (b₂ + c₂))
≡⟨ cong (λ z → a₁ + z) (sym (+-assoc x y (b₂ + c₂))) ⟩
a₁ + (x + (y + (b₂ + c₂)))
≡⟨ cong (λ z → a₁ + (x + z)) (+-assoc y b₂ c₂) ⟩
a₁ + (x + ((y + b₂) + c₂))
≡⟨ cong (λ z → a₁ + (x + (z + c₂))) (+-comm y b₂) ⟩
a₁ + (x + ((b₂ + y) + c₂))
≡⟨ cong (λ z → a₁ + (x + z)) (sym (+-assoc b₂ y c₂)) ⟩
a₁ + (x + (b₂ + (y + c₂)))
≡⟨ +-assoc a₁ x (b₂ + (y + c₂)) ⟩
((a₁ + x) + (b₂ + (y + c₂)))
≡⟨ +-assoc (a₁ + x) b₂ (y + c₂) ⟩
((a₁ + x) + b₂) + (y + c₂)
≡⟨ cong (λ z → z + (y + c₂)) p ⟩
((a₂ + zero) + b₁) + (y + c₂)
≡⟨ sym (+-assoc (a₂ + zero) b₁ (y + c₂)) ⟩
(a₂ + zero) + (b₁ + (y + c₂))
≡⟨ cong (λ z → (a₂ + zero) + z) (+-assoc b₁ y c₂) ⟩
(a₂ + zero) + ((b₁ + y) + c₂)
≡⟨ cong (λ z → (a₂ + zero) + z) q ⟩
(a₂ + zero) + ((b₂ + zero) + c₁)
≡⟨ cong (λ z → (a₂ + zero) + z) (+-comm (b₂ + zero) c₁) ⟩
(a₂ + zero) + (c₁ + (b₂ + zero))
≡⟨ cong (λ z → (a₂ + zero) + (c₁ + z)) (+-rUnit b₂) ⟩
(a₂ + zero) + (c₁ + b₂)
≡⟨ +-assoc (a₂ + zero) c₁ b₂ ⟩
((a₂ + zero) + c₁) + b₂
∎)
-- p : (a₁ + x , a₂ + zero) ≡ℤ (b₁ , b₂)
-- (a₁ + x) + b₂ ≡ (a₂ + zero) + b₁
-- q : (b₁ + y , b₂ + zero) ≡ℤ (a₁ , a₂)
-- (b₁ + y) + a₂ ≡ (b₂ + zero) + a₁
≤ℤ-antisym : (a b : ℤb) → a ≤ℤ b → b ≤ℤ a → a ≡ℤ b
≤ℤ-antisym (a₁ , a₂) (b₁ , b₂) (x , p) (y , q) = begin
a₁ + b₂
≡⟨ sym (+-rUnit (a₁ + b₂)) ⟩
(a₁ + b₂) + zero
≡⟨ cong (λ z → (a₁ + b₂) + z) (sym x≡0) ⟩
(a₁ + b₂) + x
≡⟨ sym (+-assoc a₁ b₂ x) ⟩
a₁ + (b₂ + x)
≡⟨ cong (λ z → a₁ + z) (+-comm b₂ x) ⟩
a₁ + (x + b₂)
≡⟨ +-assoc a₁ x b₂ ⟩
(a₁ + x) + b₂
≡⟨ p ⟩
(a₂ + zero) + b₁
≡⟨ cong (λ z → z + b₁) (+-rUnit a₂) ⟩
a₂ + b₁
∎
where
x≡0 : x ≡ zero
x≡0 = +-lZero x y (+-lCancel (x + y) zero ((a₁ + b₂) + a₂) (begin
((a₁ + b₂) + a₂) + (x + y)
≡⟨ sym (+-assoc (a₁ + b₂) a₂ (x + y)) ⟩
(a₁ + b₂) + (a₂ + (x + y))
≡⟨ cong (λ x₁ → (a₁ + b₂) + x₁) (+-assoc a₂ x y) ⟩
(a₁ + b₂) + ((a₂ + x) + y)
≡⟨ cong (λ z → (a₁ + b₂) + (z + y)) (+-comm a₂ x) ⟩
(a₁ + b₂) + ((x + a₂) + y)
≡⟨ cong (λ z → (a₁ + b₂) + z) (sym (+-assoc x a₂ y)) ⟩
(a₁ + b₂) + (x + (a₂ + y))
≡⟨ +-assoc (a₁ + b₂) x (a₂ + y) ⟩
((a₁ + b₂) + x) + (a₂ + y)
≡⟨ cong (λ z → z + (a₂ + y)) (sym (+-assoc a₁ b₂ x)) ⟩
(a₁ + (b₂ + x)) + (a₂ + y)
≡⟨ cong (λ z → (a₁ + z) + (a₂ + y)) (+-comm b₂ x) ⟩
(a₁ + (x + b₂)) + (a₂ + y)
≡⟨ cong (λ z → z + (a₂ + y)) (+-assoc a₁ x b₂) ⟩
((a₁ + x) + b₂) + (a₂ + y)
≡⟨ cong (λ z → z + (a₂ + y)) p ⟩
((a₂ + zero) + b₁) + (a₂ + y)
≡⟨ sym (+-assoc (a₂ + zero) b₁ (a₂ + y)) ⟩
(a₂ + zero) + (b₁ + (a₂ + y))
≡⟨ cong (λ z → (a₂ + zero) + (b₁ + z)) (+-comm a₂ y) ⟩
(a₂ + zero) + (b₁ + (y + a₂))
≡⟨ cong (λ z → (a₂ + zero) + z) (+-assoc b₁ y a₂) ⟩
(a₂ + zero) + ((b₁ + y) + a₂)
≡⟨ cong (λ z → (a₂ + zero) + z) q ⟩
(a₂ + zero) + ((b₂ + zero) + a₁)
≡⟨ +-comm (a₂ + zero) ((b₂ + zero) + a₁) ⟩
((b₂ + zero) + a₁) + (a₂ + zero)
≡⟨ cong (λ z → z + (a₂ + zero)) (+-comm (b₂ + zero) a₁) ⟩
(a₁ + (b₂ + zero)) + (a₂ + zero)
≡⟨ cong (λ z → (a₁ + z) + (a₂ + zero)) (+-rUnit b₂) ⟩
(a₁ + b₂) + (a₂ + zero)
≡⟨ +-assoc (a₁ + b₂) a₂ zero ⟩
((a₁ + b₂) + a₂) + zero
∎))
-- (a₁ , a₂) ≤ℤ (b₁ , b₂)
-- (a₁ + l , a₂ + zero) ≡ℤ (b₁ , b₂)
-- (a₁ + l) + b₂ ≡ (a₂ + zero) + b₁
≤ℤ-all : (a b : ℤb) → a ≤ℤ b ⊎ b ≤ℤ a
≤ℤ-all a@(a₁ , a₂) b@(b₁ , b₂) = S.map lem1 lem2 (≤-all (a₁ + b₂) (a₂ + b₁))
where
lem1 : (a₁ + b₂) ≤ (a₂ + b₁) → a ≤ℤ b
lem1 (x , p) = x , (begin
(a₁ + x) + b₂
≡⟨ sym (+-assoc a₁ x b₂) ⟩
a₁ + (x + b₂)
≡⟨ cong (λ z → a₁ + z) (+-comm x b₂) ⟩
a₁ + (b₂ + x)
≡⟨ +-assoc a₁ b₂ x ⟩
(a₁ + b₂) + x
≡⟨ p ⟩
a₂ + b₁
≡⟨ cong (λ z → z + b₁) (sym (+-rUnit a₂)) ⟩
(a₂ + zero) + b₁
∎)
lem2 : (a₂ + b₁) ≤ (a₁ + b₂) → b ≤ℤ a
lem2 (x , p) = x , (begin
(b₁ + x) + a₂
≡⟨ sym (+-assoc b₁ x a₂) ⟩
b₁ + (x + a₂)
≡⟨ cong (λ z → b₁ + z) (+-comm x a₂) ⟩
b₁ + (a₂ + x)
≡⟨ +-assoc b₁ a₂ x ⟩
(b₁ + a₂) + x
≡⟨ cong (λ z → z + x) (+-comm b₁ a₂) ⟩
(a₂ + b₁) + x
≡⟨ p ⟩
a₁ + b₂
≡⟨ +-comm a₁ b₂ ⟩
b₂ + a₁
≡⟨ cong (λ z → z + a₁) (sym (+-rUnit b₂)) ⟩
(b₂ + zero) + a₁
∎)
|
{
"alphanum_fraction": 0.3154308348,
"avg_line_length": 44.9336349925,
"ext": "agda",
"hexsha": "d9174fcbf20c9a7331a4f5ee207fe0caf36194f5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bf1f5ed013ea7072055c061b8458c4f1259b54f5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "karrym/NatToReal",
"max_forks_repo_path": "Int.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bf1f5ed013ea7072055c061b8458c4f1259b54f5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "karrym/NatToReal",
"max_issues_repo_path": "Int.agda",
"max_line_length": 117,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bf1f5ed013ea7072055c061b8458c4f1259b54f5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "karrym/NatToReal",
"max_stars_repo_path": "Int.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 15465,
"size": 29791
}
|
module Issue215 where
open import Imports.Bool
{-# COMPILE GHC Bool = data Bool (True | False) #-}
|
{
"alphanum_fraction": 0.6960784314,
"avg_line_length": 14.5714285714,
"ext": "agda",
"hexsha": "6247c6b804a96535dd0befd2f5e573fd59360adb",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue215.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue215.agda",
"max_line_length": 51,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue215.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 25,
"size": 102
}
|
------------------------------------------------------------------------------
-- Example of lambda-lifting
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --universal-quantified-functions #-}
{-# OPTIONS --without-K #-}
module LambdaLifting where
infixl 9 _·_
infix 8 if_then_else_
infix 7 _≡_
infixl 10 _*_
infixl 9 _+_
------------------------------------------------------------------------------
postulate
D : Set
zero true false : D
succ iszero pred : D → D
_·_ : D → D → D
if_then_else_ : D → D → D → D
lam fix : (D → D) → D
data _≡_ (x : D) : D → Set where
refl : x ≡ x
-- Conversion rules
-- Conversion rules for Booleans.
postulate
if-true : ∀ d₁ {d₂} → if true then d₁ else d₂ ≡ d₁
if-false : ∀ {d₁} d₂ → if false then d₁ else d₂ ≡ d₂
{-# ATP axioms if-true if-false #-}
-- Conversion rules for pred.
postulate
-- N.B. We don't need this equation.
-- pred-0 : pred zero ≡ zero
pred-S : ∀ d → pred (succ d) ≡ d
{-# ATP axiom pred-S #-}
-- Conversion rules for iszero.
postulate
iszero-0 : iszero zero ≡ true
iszero-S : ∀ d → iszero (succ d) ≡ false
{-# ATP axioms iszero-0 iszero-S #-}
-- Conversion rule for the λ-abstraction and the application.
postulate beta : ∀ f a → lam f · a ≡ f a
{-# ATP axiom beta #-}
-- Conversion rule for the fixed-pointed operator.
postulate fix-eq : ∀ f → fix f ≡ f (fix f)
{-# ATP axiom fix-eq #-}
postulate
_+_ : D → D → D
+-0x : ∀ d → zero + d ≡ d
+-Sx : ∀ d e → succ d + e ≡ succ (d + e)
{-# ATP axioms +-0x +-Sx #-}
postulate
_*_ : D → D → D
*-0x : ∀ d → zero * d ≡ zero
*-Sx : ∀ d e → succ d * e ≡ e + d * e
{-# ATP axioms *-0x *-Sx #-}
------------------------------------------------------------------------------
-- The original fach
-- fach : D → D
-- fach f = lam (λ n → if (iszero n) then (succ zero) else n * (f · (pred n)))
-- Lambda-lifting via super-combinators (Hughes. Super-combinators. 1982).
α : D → D → D
α f n = if (iszero n) then (succ zero) else n * (f · (pred n))
{-# ATP definition α #-}
fach : D → D
fach f = lam (α f)
{-# ATP definition fach #-}
fac : D → D
fac n = fix fach · n
{-# ATP definition fac #-}
postulate fac0 : fac zero ≡ succ zero
{-# ATP prove fac0 #-}
postulate fac1 : fac (succ zero) ≡ succ zero
{-# ATP prove fac1 #-}
postulate fac2 : fac (succ (succ zero)) ≡ succ (succ zero)
{-# ATP prove fac2 #-}
------------------------------------------------------------------------------
-- Ouput:
--
-- $ apia -inotes --non-fol-function notes/LambdaLifting.agda
-- Proving the conjecture in /tmp/LambdaLifting/95-fac1.tptp ...
-- E 1.6 Tiger Hill proved the conjecture in /tmp/LambdaLifting/95-fac1.tptp
-- Proving the conjecture in /tmp/LambdaLifting/99-fac2.tptp ...
-- E 1.6 Tiger Hill proved the conjecture in /tmp/LambdaLifting/99-fac2.tptp
-- Proving the conjecture in /tmp/LambdaLifting/91-fac0.tptp ...
-- Vampire 0.6 (revision 903) proved the conjecture in /tmp/LambdaLifting/91-fac0.tptp
|
{
"alphanum_fraction": 0.5193578848,
"avg_line_length": 28.6216216216,
"ext": "agda",
"hexsha": "884f3c17f515d29f4fb9626c1006ff200783ed4b",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "issues/universal-quantified-functions-option/LambdaLifting.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "issues/universal-quantified-functions-option/LambdaLifting.agda",
"max_line_length": 86,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "issues/universal-quantified-functions-option/LambdaLifting.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 969,
"size": 3177
}
|
{-# OPTIONS --without-K #-}
module Ch2 where
-- open import lib.Base
open import Base
module Ex2-1 where
{-
Lemma 2.1.2. For every type A and every x, y, z : A there is a function
(x = y) → (y = z) → (x = z)
written p → q → p ∙ q, such that reflx ∙ reflx ≡ reflx for any x : A.
We call p ∙ q the concatenation or composite of p and q.
-}
{-
Exercise 2.1 Show that the three obvious proofs of Lemma 2.1.2 are pairwise equal.
-}
-- (proof(s) of 2.1.2 are the inhabitants of the type corresponding to the
-- statement of the lemma)
{- The versions of concat below WITHOUT the primes 's are proved using Agda's
'internal J rule', whatever that might be.
(And there is no --without-J option to turn it off!)
In the HoTT-Agda lib, there is a
comment that:
concat1' and concat3' are proved using ind== which is the closest I could get
to free path induction (as in the book), but unfortunately this didn't work out
for concat2' which had to use left-based path induction, ie ind=' (J in the
HoTT-Agda libs)
-}
concat1 : ∀ {i} {A : Type i} {x y z : A} → x == y → y == z → x == z
concat1 idp q = q
concat1' : ∀ {i} {A : Type i} {x y z : A} → x == y → y == z → x == z
concat1' {i} {A} {_} {_} {z} = ind== D d where
D : (x y : A) → (p : x == y) → Type i
D x y _ = y == z → x == z
d : (x₁ : A) → D x₁ x₁ idp
d _ = λ q → q
concat2 : ∀ {i} {A : Type i} {x y z : A} → x == y → y == z → x == z
concat2 p idp = p
-- uses based path induction, because I couldn't get free path induction to work
-- at first
concat2' : ∀ {i} {A : Type i} {x y z : A} → x == y → y == z → x == z
concat2' {i} {A} {x} {y} {_} p = ind=' D d where
D : (z : A) → y == z → Type i
D z _ = x == z
d : D _ idp
d = p
-- here is the free path induction version which relies upon a 'twist' of
-- the paths p and q in order to 'line up the end points' of the idp base
-- case of q (Dustin Mulcahey of HoTT-NYC group noticed this trick)
concat2'' : ∀ {i} {A : Type i} {x y z : A} → x == y → y == z → x == z
concat2'' {i} {A} {x} {_} {_} p q = ind== D d q p where
D : (y z : A) → (q : y == z) → Type i
D y z _ = x == y → x == z
d : (y : A) → D y y idp
d _ = λ p → p
concat3 : ∀ {i} {A : Type i} {x y z : A} → x == y → y == z → x == z
concat3 idp idp = idp
concat3' : ∀ {i} {A : Type i} {x y z : A} → x == y → y == z → x == z
concat3' {i} {A} {_} {_} {z} = ind== D d where
D : (x y : A) → (p : x == y) → Type i
D x y _ = y == z → x == z
d : (x₁ : A) → D x₁ x₁ idp
d _ = ind== E e where
E : (y z : A) (q : y == z) → Type i
E y z _ = y == z
e : (x : A) → E x x idp
e _ = idp
concat1=concat2 : ∀ {i} {A : Type i} {x y z : A}
(p : x == y) (q : y == z) → concat1 p q == concat2 p q
concat1=concat2 idp idp = idp
concat1'=concat2' : ∀ {i} {A : Type i} {x y z : A}
(p : x == y) (q : y == z) → concat1' p q == concat2' p q
concat1'=concat2' {i} {A} {_} {_} {z} = ind== D d where
D : (x y : A) → x == y → Type i
D _ y p = (q : y == z) → concat1' p q == concat2' p q
d : (x : A) → D x x idp
d _ = ind== E e where
E : (y₁ z₁ : A) → y₁ == z₁ → Type i
E _ _ q = concat1' idp q == concat2' idp q
e : (x₁ : A) → E x₁ x₁ idp
e _ = idp -- : concat1' idp idp == concat2' idp idp ⇓'p'
-- > (ind== D1 d1) idp idp == (ind== D2 d2) idp idp
-- > (d1 q) idp == (d2 x) idp
-- > (λ q → q) idp == 'p' (aka idp)
-- > idp == idp -- (this being the type of the inhabitant value idp of e x)
concat2=concat3 : ∀ {i} {A : Type i} {x y z : A}
(p : x == y) (q : y == z) → concat2 p q == concat3 p q
concat2=concat3 idp idp = idp
concat2'=concat3' : ∀ {i} {A : Type i} {x y z : A}
(p : x == y) (q : y == z) → concat2' p q == concat3' p q
concat2'=concat3' {i} {A} {x} {y} {z} = ind== D d where
D : (x y : A) → x == y → Type i
D _ y p = (q : y == z) → concat2' p q == concat3' p q
d : (x : A) → D x x idp
d x = ind== E e where
E : (y₁ z₁ : A) → y₁ == z₁ → Type i
E _ _ q = concat2' idp q == concat3' idp q
e : (x₁ : A) → E x₁ x₁ idp
e _ = idp -- : concat2' idp idp == concat3' idp idp
concat1=concat3 : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : y == z) → concat1 p q == concat3 p q
concat1=concat3 idp idp = idp
concat1'=concat3' : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : y == z) → concat1' p q == concat3' p q
concat1'=concat3' {i} {A} {_} {_} {z} = ind== D d where
D : (x y : A) → x == y → Type i
D x y p = (q : y == z) → concat1' p q == concat3' p q
d : (x : A) → D x x idp
d _ = ind== E e where
E : (y z : A) → (q : y == z) → Type i
E _ _ q = concat1' idp q == concat3' idp q
e : (y : A) → E y y idp
e _ = idp -- : concat1' idp idp == concat3' idp idp
module Ex2-2 where
open Ex2-1
{-
Show that the three equalities of proofs constructed in the previous exercise form a
commutative triangle. In other words, if the three definitions of concatenation are denoted
by (p 1 q), (p 2 q), and (p 3 q), then the concatenated equality
(p 1 q) = (p 2 q) = (p 3 q)
is equal to the equality
(p 1 q) = (p 3 q).
-}
-- Choice of which 'concat' we use for the statement of the proof type; we use the book one
concat = concat3
concat-commutative-triangle : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : y == z) →
concat (concat1=concat2 p q) (concat2=concat3 p q) == concat1=concat3 p q
concat-commutative-triangle idp idp = idp
-- likewise, the ind== version of the book concat operator
concat' = concat3'
concat-commutative-triangle' : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : y == z) →
concat' (concat1'=concat2' p q) (concat2'=concat3' p q) == concat1'=concat3' p q
concat-commutative-triangle' {i} {A} {_} {_} {z} = ind== D d where
D : (x y : A) → x == y → Type i
D _ y p = (q : y == z) →
concat' (concat1'=concat2' p q) (concat2'=concat3' p q) == concat1'=concat3' p q
d : (x : A) → D x x idp
d _ = ind== E e where
E : (y z : A) → (q : y == z) → Type i
E _ _ q =
concat' (concat1'=concat2' idp q) (concat2'=concat3' idp q) == concat1'=concat3' idp q
e : (y : A) → E y y idp
e _ = idp -- : concat' (concat1'=concat2' idp idp) (concat2'=concat3' idp idp) == concat1'=concat3' idp idp
module Ex2-3 where
-- use another of the based path inductions
module Ex2-4 where
{- Define, by induction on n, a general notion of n-dimensional path in a type A,
simultaneously with the type of boundaries for such paths. -}
|
{
"alphanum_fraction": 0.4888006805,
"avg_line_length": 36.7395833333,
"ext": "agda",
"hexsha": "869e9eb43a92fa8c88a06cc8f2eaecd4bd573576",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f8b6b11fb7ee0c54ce91a19338c5069a69a51dc7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "aerskine/hott-ex",
"max_forks_repo_path": "Ch2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f8b6b11fb7ee0c54ce91a19338c5069a69a51dc7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "aerskine/hott-ex",
"max_issues_repo_path": "Ch2.agda",
"max_line_length": 113,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f8b6b11fb7ee0c54ce91a19338c5069a69a51dc7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "aerskine/hott-ex",
"max_stars_repo_path": "Ch2.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2726,
"size": 7054
}
|
{-# OPTIONS --cubical --safe #-}
module Algebra.Construct.Free.Semilattice.Relation.Unary.All.Dec where
open import Prelude hiding (⊥; ⊤)
open import Algebra.Construct.Free.Semilattice.Eliminators
open import Algebra.Construct.Free.Semilattice.Definition
open import Cubical.Foundations.HLevels
open import Data.Empty.UniversePolymorphic
open import HITs.PropositionalTruncation.Sugar
open import HITs.PropositionalTruncation.Properties
open import HITs.PropositionalTruncation
open import Data.Unit.UniversePolymorphic
open import Algebra.Construct.Free.Semilattice.Relation.Unary.All.Def
open import Relation.Nullary
open import Relation.Nullary.Decidable
open import Relation.Nullary.Decidable.Properties
open import Relation.Nullary.Decidable.Logic
private
variable p : Level
◻′? : ∀ {P : A → Type p} → (∀ x → Dec (P x)) → xs ∈𝒦 A ⇒∥ Dec (◻ P xs) ∥
∥ ◻′? {P = P} P? ∥-prop {xs} = isPropDec (isProp-◻ {P = P} {xs = xs})
∥ ◻′? P? ∥[] = yes tt
∥ ◻′? P? ∥ x ∷ xs ⟨ Pxs ⟩ = map-dec ∣_∣ refute-trunc (P? x) && Pxs
◻? : ∀ {P : A → Type p} → (∀ x → Dec (P x)) → ∀ xs → Dec (◻ P xs)
◻? P? = ∥ ◻′? P? ∥⇓
|
{
"alphanum_fraction": 0.7022624434,
"avg_line_length": 36.8333333333,
"ext": "agda",
"hexsha": "cbd1a50e554eb67b80cd328aaf3c8a506cdaad33",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Algebra/Construct/Free/Semilattice/Relation/Unary/All/Dec.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Algebra/Construct/Free/Semilattice/Relation/Unary/All/Dec.agda",
"max_line_length": 72,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Algebra/Construct/Free/Semilattice/Relation/Unary/All/Dec.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 382,
"size": 1105
}
|
{-# OPTIONS --cubical #-}
open import Agda.Builtin.Cubical.Path
-- Works:
data Truncate (A : Set) : Set where
[_] : A → Truncate A
sq : ∀{x y} (p q : PathP (λ _ → Truncate A) x y)
→ PathP (λ _ → PathP (λ _ → Truncate A) x y) p q
data Truncat (A : Set) : Set where
[_] : A → Truncat A
sq : ∀{x y : Truncat A} (p q : x ≡ y) → p ≡ q
-- Fails:
data Trunc (A : Set) : Set where
[_] : A → Trunc A
sq : ∀{x y} (p q : PathP (λ _ → Trunc A) x y)
→ PathP _ p q
-- The failure is expected, but it shouldn't give a non-obligated
-- equality constraint as the reason for the failure.
|
{
"alphanum_fraction": 0.55954323,
"avg_line_length": 24.52,
"ext": "agda",
"hexsha": "5f2d839a16e9a969f4f0d99fee6ffe45ad926f7b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue3537.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue3537.agda",
"max_line_length": 65,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue3537.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 235,
"size": 613
}
|
{-
This file contains:
- Definition of groupoid truncations
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.GroupoidTruncation.Base where
open import Cubical.Core.Primitives
-- groupoid truncation as a higher inductive type:
data ∥_∥₃ {ℓ} (A : Type ℓ) : Type ℓ where
∣_∣₃ : A → ∥ A ∥₃
squash₃ : ∀ (x y : ∥ A ∥₃) (p q : x ≡ y) (r s : p ≡ q) → r ≡ s
|
{
"alphanum_fraction": 0.6302083333,
"avg_line_length": 21.3333333333,
"ext": "agda",
"hexsha": "1aaf63dc1f2a696279bc1a16cfdc3e22b8b71a4d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/GroupoidTruncation/Base.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/GroupoidTruncation/Base.agda",
"max_line_length": 64,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/GroupoidTruncation/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 150,
"size": 384
}
|
open import Oscar.Prelude
open import Oscar.Class
open import Oscar.Class.Congruity
open import Oscar.Class.Transextensionality
open import Oscar.Class.Transitivity
open import Oscar.Data.Proposequality
import Oscar.Class.Congruity.Proposequality
module Oscar.Class.Transextensionality.Proposequality where
instance
𝓣ransextensionalityProposequality : ∀
{a} {A : Ø a}
{m} {_⊸_ : A → A → Ø m}
⦃ _ : Transitivity.class _⊸_ ⦄
→ Transextensionality.class _⊸_ Proposequality transitivity
𝓣ransextensionalityProposequality .⋆ = congruity₂ _
|
{
"alphanum_fraction": 0.7799642218,
"avg_line_length": 27.95,
"ext": "agda",
"hexsha": "12012a76bb321269dad751cb3db5efe0eaa69529",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Transextensionality/Proposequality.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Transextensionality/Proposequality.agda",
"max_line_length": 63,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Transextensionality/Proposequality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 174,
"size": 559
}
|
------------------------------------------------------------------------------
-- Note on the equality type class using instance arguments
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- Adapted from: On the Bright Side of Type Classes: Instances
-- Arguments in Agda (ICFP'11).
module FOT.FOTC.TypeClasses.EqualityInstanceArguments where
open import FOTC.Base
open import FOTC.Data.Bool
open import FOTC.Data.Bool.Type
open import FOTC.Data.Nat.Type
------------------------------------------------------------------------------
∃-proj₁ : ∀ {A} → ∃ A → D
∃-proj₁ (x , _) = x
record Eq (P : D → Set) : Set₁ where
field equal : ∀ {t₁ t₂} → P t₁ → P t₂ → Set
equal : {P : D → Set}{t₁ t₂ : D} → {{eqT : Eq P}} → P t₁ → P t₂ → Set
equal {{eqT}} = Eq.equal eqT
boolEq : ∀ {b₁ b₂} → Bool b₁ → Bool b₂ → Set
boolEq btrue btrue = Bool true
boolEq bfalse bfalse = Bool true
{-# CATCHALL #-}
boolEq _ _ = Bool false
nEq : ∀ {m n} → N m → N n → Set
nEq nzero nzero = Bool true
nEq (nsucc Nm) (nsucc Nn) = Bool true
{-# CATCHALL #-}
nEq _ _ = Bool false
instance
eqInstanceBool : Eq Bool
eqInstanceBool = record { equal = boolEq }
eqInstanceN : Eq N
eqInstanceN = record { equal = nEq }
test₁ : Set
test₁ = equal nzero (nsucc nzero)
test₂ : Set
test₂ = equal bfalse bfalse
eqN-sym : ∀ {m n} → (Nm : N m) → (Nn : N n) → equal Nm Nn → equal Nn Nm
eqN-sym nzero nzero h = h
eqN-sym nzero (nsucc Nn) h = h
eqN-sym (nsucc Nm) nzero h = h
eqN-sym (nsucc Nm) (nsucc Nn) h = h
postulate eqN-sym' : ∀ {m n} → (Nm : N m) → (Nn : N n) → equal Nm Nn → equal Nn Nm
-- {-# ATP prove eqN-sym' #-}
|
{
"alphanum_fraction": 0.5171858217,
"avg_line_length": 29.09375,
"ext": "agda",
"hexsha": "93da270b64eb8c81dbfe4949ffd46d8d1ff3ffa6",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/TypeClasses/EqualityInstanceArguments.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/TypeClasses/EqualityInstanceArguments.agda",
"max_line_length": 82,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/TypeClasses/EqualityInstanceArguments.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 585,
"size": 1862
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Categories.Limits.Terminal where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Sigma
-- open import Cubical.Categories.Limits.Base
open import Cubical.Categories.Category
open import Cubical.Categories.Functor
private
variable
ℓ ℓ' : Level
module _ (C : Precategory ℓ ℓ') where
open Precategory C
isInitial : (x : ob) → Type (ℓ-max ℓ ℓ')
isInitial x = ∀ (y : ob) → isContr (C [ x , y ])
isFinal : (x : ob) → Type (ℓ-max ℓ ℓ')
isFinal x = ∀ (y : ob) → isContr (C [ y , x ])
hasFinalOb : Type (ℓ-max ℓ ℓ')
hasFinalOb = Σ[ x ∈ ob ] isFinal x
|
{
"alphanum_fraction": 0.66359447,
"avg_line_length": 25.0384615385,
"ext": "agda",
"hexsha": "2ec414a915d402bb92f8c52659213f24b803e273",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Categories/Limits/Terminal.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Categories/Limits/Terminal.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Categories/Limits/Terminal.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 215,
"size": 651
}
|
module MLib.Semirings where
open import MLib.Prelude
open Algebra using (Semiring)
module _ {ℓ p} (semiring : Semiring ℓ p) where
open Semiring semiring renaming (Carrier to S)
pow : ℕ → S → S
pow Nat.zero x = 1#
pow (Nat.suc n) x = x * pow n x
powsum : ℕ → S → S
powsum Nat.zero x = 1#
powsum (Nat.suc n) x = pow (Nat.suc n) x + powsum n x
Q-stable : ℕ → S → Set p
Q-stable q x = powsum (1 Nat.+ q) x ≈ powsum q x
|
{
"alphanum_fraction": 0.6232876712,
"avg_line_length": 23.0526315789,
"ext": "agda",
"hexsha": "042290023855f036d3002f5dade79a0d07b6d6d1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bch29/agda-matrices",
"max_forks_repo_path": "src/MLib/Semirings.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bch29/agda-matrices",
"max_issues_repo_path": "src/MLib/Semirings.agda",
"max_line_length": 55,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bch29/agda-matrices",
"max_stars_repo_path": "src/MLib/Semirings.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 168,
"size": 438
}
|
-- Andreas, 2016-12-30, issue #2368 reported by m0davis
-- {-# OPTIONS -v interaction.give:100 -v tc.constr:30 #-}
open import Agda.Builtin.Reflection
macro
mac : Term → Term → TC _
mac = {!!}
foo : Set → Set → Set
foo = mac (foo {!Term!} {!Term!}) -- give both solutions
-- WAS: internal error after giving the second `Term`
-- Expected: yellow
|
{
"alphanum_fraction": 0.6470588235,
"avg_line_length": 21,
"ext": "agda",
"hexsha": "b5cd4f9aef577709bcb3359bd07411af2e5013ed",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue2368.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue2368.agda",
"max_line_length": 58,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue2368.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 109,
"size": 357
}
|
{-# OPTIONS --no-termination-check #-}
module Pi-reasoning where
open import Data.Empty
open import Data.Unit hiding (_≟_)
open import Data.Bool hiding (_≟_)
open import Data.Nat
open import Data.List
open import Data.Sum hiding (map)
open import Data.Product hiding (map)
open import Level hiding (suc)
open import Relation.Nullary
open import Relation.Binary
open import Algebra
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Relation.Binary.PropositionalEquality as PropEq using(sym; trans)
import Algebra.FunctionProperties as FunctionProperties
-- open import Algebra.FunctionProperties
open import Algebra.Structures
open import Pi-abstract-machine
------------------------------------------------------------------------------
-- Decidable equality
-- normalize a type to a natural number
size : B → ℕ
size ZERO = 0
size ONE = 1
size (PLUS b₁ b₂) = size b₁ + size b₂
size (TIMES b₁ b₂) = size b₁ * size b₂
-- normalize a value to a number
normalize : {b : B} → VB b → ℕ
normalize {ZERO} ()
normalize {ONE} unitB = 0
normalize {PLUS b₁ b₂} (inlB v) = normalize {b₁} v
normalize {PLUS b₁ b₂} (inrB v) = size b₁ + normalize {b₂} v
normalize {TIMES b₁ b₂} (pairB v₁ v₂) = size b₂ * normalize {b₁} v₁ + normalize {b₂} v₂
-- decidable equality of our values: normalize and compare the
-- underlying natural numbers. This is justified by the fact that the
-- natural numbers are a model of commutative semirings.
-- Note that we can't compare at different types so easily, they have
-- to have the same size, something not worth dealing with right now
vb= : {b : B} → (v₁ : VB b) → (v₂ : VB b) → Set
vb= {b} v₁ v₂ = (normalize {b} v₁) ≡ (normalize {b} v₂)
vb-Equivalence : {b : B} → IsEquivalence (vb= {b})
vb-Equivalence = record
{ refl = refl
; sym = PropEq.sym
; trans = PropEq.trans }
vb== : {b : B} → Decidable {A = VB b} vb=
vb== {b} x y = (normalize {b} x) ≟ (normalize {b} y)
-- generate all values of a type
values : (b : B) → List (VB b)
values ZERO = []
values ONE = [ unitB ]
values (PLUS b₁ b₂) = map inlB (values b₁) ++ map inrB (values b₂)
values (TIMES b₁ b₂) = concatMap (λ v₁ → map (pairB v₁) (values b₂)) (values b₁)
-- B is a Setoid
VB-is-Setoid : {b : B} → Setoid Level.zero Level.zero
VB-is-Setoid {b} = record
{ Carrier = VB b
; _≈_ = vb=
; isEquivalence = vb-Equivalence
}
-- equality of combinators:
-- two combinators are equal if they map equal values to equal values
-- best do this via proving that vb= generates a decidable equivalence
{-
⟺=bool : {b₁ b₂ : B} → (b₁ ⟺ b₂) → (b₁ ⟺ b₂) → Bool
⟺=bool {b₁} {b₂} f g =
and (zipWith vb= (map (eval f) vs) (map (eval g) vs))
where vs = values b₁
data _⟺=_ : {b₁ b₂ : B} → (b₁ ⟺ b₂) → (b₁ ⟺ b₂) → Set where
id⟺= : {b₁ b₂ : B} → (f : b₁ ⟺ b₂) → (f ⟺= f)
sym⟺= : {b₁ b₂ : B} → (f : b₁ ⟺ b₂) → (g : b₁ ⟺ b₂) → ( f ⟺= g ) → (g ⟺= f)
-- verifies that the given combinators relates the given values
data _s⟷_ : B → B → Set where
sid⟷ : {b : B} {v₁ : VB b} {v₂ : VB b} {p : T (vb= (eval (iso id⟷) v₁) v₂)} → (b s⟷ b)
⟺=IsEquivalence : IsEquivalence _s⟷_
⟺=IsEquivalence = record {
refl = srefl ;
sym = {!!} ;
trans = {!!}
}
where srefl : {b : B} {v : VB b} → b s⟷ b
srefl {b} {v} = sid⟷ {b} {v} {v} {{!!}}
-- <-> : B -> B -> Set with constructors id : {b : B} -> (b <-> b)
-- IsEquivalence <->
-- refl = id
-- R= : B -> B -> Set with constructos
-}
------------------------------------------------------------------------------
{--
testT = PLUS ONE (PLUS ONE ONE)
test1 = normalize {testT} (inlB unitB)
test2 = normalize {testT} (inrB (inlB unitB))
test3 = normalize {testT} (inrB (inrB unitB))
testT = PLUS ZERO (PLUS ONE ONE)
test1 = normalize {testT} (inrB (inlB unitB))
test2 = normalize {testT} (inrB (inrB unitB))
testT = TIMES (PLUS ONE ONE) ZERO
test1 = size testT
testT = TIMES (PLUS ONE ONE) (PLUS ONE (PLUS ONE ONE))
test1 = normalize {testT} (pairB (inlB unitB) (inlB unitB))
test2 = normalize {testT} (pairB (inrB unitB) (inlB unitB))
test3 = normalize {testT} (pairB (inlB unitB) (inrB (inlB unitB)))
test4 = normalize {testT} (pairB (inrB unitB) (inrB (inlB unitB)))
test5 = normalize {testT} (pairB (inlB unitB) (inrB (inrB unitB)))
test6 = normalize {testT} (pairB (inrB unitB) (inrB (inrB unitB)))
BOOL = PLUS ONE ONE
test = ⟺= {BOOL} {BOOL} (iso swap₊ ◎ iso swap₊) (iso id⟷)
test1 : (iso swap₊) ⟺= (iso swap₊)
test1 = check
{PLUS ONE ONE} {PLUS ONE ONE}
(iso swap₊) (iso swap₊)
tt
The following does NOT typecheck which is good. Agda rejected my
nonsense claim that id is equivalent to swap+
test2 : (iso swap₊) ⟺= (iso id⟷)
test2 = check
{PLUS ONE ONE} {PLUS ONE ONE}
(iso swap₊) (iso id⟷)
tt
--}
|
{
"alphanum_fraction": 0.5941558442,
"avg_line_length": 31.7935483871,
"ext": "agda",
"hexsha": "4df9ae47093d4905aac8766f384f17833a9bf6cf",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "agda/Pi-reasoning.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "agda/Pi-reasoning.agda",
"max_line_length": 89,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "agda/Pi-reasoning.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 1675,
"size": 4928
}
|
-----------------------------------------------------------------------
-- This file formalizes the proof that Dial₂(Sets) is indeed a model --
-- of Full Tensorial Logic. See Lemma 16 and Lemma 17 of the paper. --
-----------------------------------------------------------------------
module Tensorial where
open import prelude
open import Dial2Sets
-- We first must prove that Dial₂(Sets) is a dialogue category. The
-- defining feature is that we use primarily implication for this.
-- This defines the negation functor: ¬ : Dial₂(Sets) → Dial₂ᵒᵖ(Sets)
¬ₒ : Obj → Obj
¬ₒ A = A ⊸ₒ J
¬ₐ-aux : ∀{U V Y X : Set}{f : U → V}{F : Y → X}
→ Σ (V → ⊤) (λ x → ⊤ → Y)
→ Σ (U → ⊤) (λ x → ⊤ → X)
¬ₐ-aux {f = f}{F}(j₁ , j₂) = (λ u → j₁ (f u)) , (λ t → F (j₂ t))
¬ₐ-aux' : ∀{U V : Set}{f : U → V}
→ Σ U (λ x → ⊤)
→ Σ V (λ x → ⊤)
¬ₐ-aux' {f = f} (u , triv) = f u , triv
¬ₐ : {A B : Obj} → Hom A B → Hom (¬ₒ B) (¬ₒ A)
¬ₐ {(U , X , α)}{(V , Y , β)} (f , F , p) = ¬ₐ-aux , ¬ₐ-aux' , ¬ₐ-cond
where
¬ₐ-cond : {u : Σ (V → ⊤) (λ x → ⊤ → Y)} {y : Σ U (λ x → ⊤)}
→ ⊸-cond β (λ x y₁ → ⊥) u (¬ₐ-aux' y)
→ ⊸-cond α (λ x y₁ → ⊥) (¬ₐ-aux {f = f}{F} u) y
¬ₐ-cond {j₁ , j₂}{u , triv} p₁ p₂ = p₁ (p p₂)
-- At this point we must show that the required family of bijections
-- exist.
--
-- The bijection φ turns out to be a simple use of the combination of
-- currying and associativity:
--
-- Hom(A ⊗ B,¬ C) = Hom(A ⊗ B,C ⊸ ⊥)
-- ≅ Hom((A ⊗ B) ⊗ C, ⊥)
-- ≅ Hom(A ⊗ (B ⊗ C), ⊥)
-- ≅ Hom(A, (B ⊗ C) ⊸ ⊥)
-- = Hom(A, ¬ (B ⊗ C))
--
-- Note that the previous string of isomorphisms do not depend on the
-- fact that ⊥ is the intial object. In fact, we can replace ⊥ with
-- any object at all, and the result still holds.
φ : {A B C : Obj}
→ Hom (A ⊗ₒ B) (¬ₒ C)
→ Hom A (¬ₒ (B ⊗ₒ C))
φ {A}{B}{C} f = cur ((α⊗-inv {A}{B}{C}) ○ (uncur f))
φ-inv : {A B C : Obj}
→ Hom A (¬ₒ (B ⊗ₒ C))
→ Hom (A ⊗ₒ B) (¬ₒ C)
φ-inv {A}{B}{C} g = cur ((α⊗ {A}{B}{C}) ○ (uncur g))
φ-bij₁ : ∀{A B C : Obj}{f : Hom (A ⊗ₒ B) (¬ₒ C)}
→ φ-inv (φ f) ≡h f
φ-bij₁ {A}{B}{C}{f} with
(cur-uncur-bij₁ {A}{B ⊗ₒ C}{J}{comp (α⊗-inv {A}{B}{C}) (uncur {A ⊗ₒ B}{C}{J} f)})
... | eq₁ with
cur-≡h (≡h-subst-○ {(A ⊗ₒ B) ⊗ₒ C}{A ⊗ₒ (B ⊗ₒ C)}{J}{α⊗}{α⊗}
{j = uncur f} (≡h-refl {(A ⊗ₒ B) ⊗ₒ C}{A ⊗ₒ (B ⊗ₒ C)} {f = α⊗}) eq₁
(≡h-trans (○-assoc {f = α⊗ {A} {B} {C}} {α⊗-inv} {uncur f})
(≡h-subst-○ {f₁ = α⊗ {A} {B} {C} ○ α⊗-inv} {id} {uncur f} {uncur f}
{uncur f} α⊗-id₁ ≡h-refl ○-idl)))
... | eq₂ = ≡h-trans eq₂ cur-uncur-bij₂
φ-bij₂ : ∀{A B C : Obj}{f : Hom A (¬ₒ (B ⊗ₒ C))}
→ φ (φ-inv f) ≡h f
φ-bij₂ {A}{B}{C}{f} with
cur-uncur-bij₁ {f = comp (α⊗ {A}{B}{C}) (uncur f)}
... | eq₁ with
cur-cong (≡h-subst-○ {f₁ = α⊗-inv {A}{B}{C}}{α⊗-inv {A}{B}{C}}
{j = comp α⊗-inv (comp α⊗ (uncur f))} ≡h-refl eq₁ ≡h-refl)
... | eq₂ with
(cur-cong (○-assoc {f = α⊗-inv {A} {B} {C}} {α⊗} {uncur f}))
... | eq₃ with
cur-cong (≡h-subst-○ {f₁ = comp (α⊗-inv {A}{B}{C}) α⊗}{id}
{uncur f}{uncur f}{comp id (uncur f)} α⊗-id₂ ≡h-refl ≡h-refl)
... | eq₄ = ≡h-trans eq₂ (≡h-trans eq₃ (≡h-trans eq₄ (≡h-trans
(cur-cong (○-idl {f = uncur f})) (cur-uncur-bij₂ {g = f}))))
-- The following shows that Dial₂(Sets)! is cartesian.
Jₒ = !ₒ
-- First, we define the cartesian product in Dial₂(Sets), and then use
-- Jₒ to put us inside of Dial₂(Sets)!.
_&ᵣ_ : {U X V Y : Set}
→ (α : U → X → Set)
→ (β : V → Y → Set)
→ Σ U (λ x → V)
→ X ⊎ Y
→ Set
_&ᵣ_ α β (u , v) (inj₁ x) = α u x
_&ᵣ_ α β (u , v) (inj₂ y) = β v y
_&ₒ_ : (A B : Obj) → Obj
(U , X , α) &ₒ (V , Y , β) = (U × V) , (X ⊎ Y) , α &ᵣ β
-- The remainder of this file will work under the Jₒ functor which
-- will put us inside of Dial₂(Sets)!.
-- This defines the projection morphism: π₁ : F(A & B) → F(A).
π₁ : {A B : Obj} → Hom (Jₒ (A &ₒ B)) (Jₒ A)
π₁ {U , X , α}{V , Y , β} =
fst ,
(λ (f : U → (X *)) (p : U × V) → map inj₁ (f (fst p))) ,
λ {u}{y} p → π₁-cond {u}{y} p
where
π₁-cond : {u : Σ U (λ x → V)} {y : U → 𝕃 X} →
all-pred ((α &ᵣ β) u) (map inj₁ (y (fst u))) →
all-pred (α (fst u)) (y (fst u))
π₁-cond {u , v} y = aux y
where
aux : {l : X *}
→ all-pred ((α &ᵣ β) (u , v)) (map inj₁ l) → all-pred (α u) l
aux {[]} triv = triv
aux {x :: l} (j₁ , j₂) = j₁ , aux j₂
-- This defines the projection morphism: π₂ : A & B → B.
π₂ : {A B : Obj} → Hom (Jₒ (A &ₒ B)) (Jₒ B)
π₂ {U , X , α}{V , Y , β} =
snd , (λ f p → map inj₂ (f (snd p))) , λ {u}{y} p → π₂-cond {u}{y} p
where
π₂-cond : {u : Σ U (λ x → V)} {y : V → 𝕃 Y} →
all-pred ((α &ᵣ β) u) (map inj₂ (y (snd u))) →
all-pred (β (snd u)) (y (snd u))
π₂-cond {u , v} y = aux y
where
aux : {l : Y *}
→ all-pred ((α &ᵣ β) (u , v)) (map inj₂ l) → all-pred (β v) l
aux {[]} triv = triv
aux {x :: l} (j₁ , j₂) = j₁ , aux j₂
cart-ar-crt : {U X V Y W Z : Set}
→ {α : U → X → Set}
→ {β : V → Y → Set}
→ {γ : W → Z → Set}
→ Hom (Jₒ (W , Z , γ)) (Jₒ (U , X , α))
→ Hom (Jₒ (W , Z , γ)) (Jₒ (V , Y , β))
→ (Σ U (λ x → V) → 𝕃 (X ⊎ Y)) → W → 𝕃 Z
cart-ar-crt (f , F , p₁) (g , G , p₂) j w
with (λ u → (proj-⊎₁ (j (u , g w)))) | (λ v → (proj-⊎₂ (j (f w , v))))
... | j₁ | j₂ = F j₁ w ++ G j₂ w
-- This takes two morphisms f : C → A and g : C → B, and constructs
-- a morphism (f,g) : C → A & B.
cart-ar : {C A B : Obj}
→ Hom (Jₒ C) (Jₒ A)
→ Hom (Jₒ C) (Jₒ B)
→ Hom (Jₒ C) (Jₒ (A &ₒ B))
cart-ar {W , Z , γ}{U , X , α}{V , Y , β} (f , F , p₁) (g , G , p₂)
= (λ w → (f w , g w)) ,
cart-ar-crt {α = α}{β}{γ} (f , F , p₁) (g , G , p₂) ,
(λ {u}{y} p → cart-ar-cond {u}{y} p)
where
cart-ar-cond : {u : W} {y : Σ U (λ x → V) → 𝕃 (X ⊎ Y)} →
all-pred (γ u)
(F (λ u₁ → proj-⊎₁ (y (u₁ , g u))) u ++
G (λ v → proj-⊎₂ (y (f u , v))) u) →
all-pred ((α &ᵣ β) (f u , g u)) (y (f u , g u))
cart-ar-cond {u}{j} p
rewrite
all-pred-append
{f = γ u}
{F (λ u₁ → (proj-⊎₁ (j (u₁ , g u)))) u}
{G (λ v → (proj-⊎₂ (j (f u , v)))) u}
∧-unit ∧-assoc
with p
... | (r₁ , r₂) = aux (p₁ r₁) (p₂ r₂)
where
aux : ∀{l}
→ all-pred (α (f u)) ((proj-⊎₁ l))
→ all-pred (β (g u)) ((proj-⊎₂ l))
→ all-pred ((α &ᵣ β) (f u , g u)) l
aux {[]} _ _ = triv
aux {inj₁ x :: l} (s₁ , s₂) x₂ = s₁ , aux {l} s₂ x₂
aux {inj₂ y :: l} x₁ (s₁ , s₂) = s₁ , aux {l} x₁ s₂
-- This shows that f ≡ (f,g);π₁.
cart-diag₁ : {A B C : Obj}
→ {f : Hom C A}
→ {g : Hom C B}
→ _≡h_ { Jₒ C}{ Jₒ A}
(!ₐ {C}{A} f)
(comp { Jₒ C}
{(Jₒ (A &ₒ B))}
{ Jₒ A}
(cart-ar
(!ₐ {C}{A} f) (!ₐ {C}{B} g))
π₁)
cart-diag₁ {U , X , α}{V , Y , β}{W , Z , γ}{f = f , F , p₁}{g , G , p₂}
= refl , ext-set (λ {j₁} → ext-set (λ {w} → aux))
where
aux : ∀{l : X *} →
map F l ≡
map F (proj-⊎₁ {_}{_}{X}{Y} (map inj₁ l)) ++
map G (proj-⊎₂ (map inj₁ l))
aux {l} rewrite
map-proj-⊎₁ {_}{_}{X}{Y} l |
map-proj-⊎₂-[] {_}{_}{X}{Y} l = sym (++[] (map F l))
-- This shows that g ≡ (f,g);π₂.
cart-diag₂ : {A B C : Obj}
→ {f : Hom C A}
→ {g : Hom C B}
→ _≡h_ { Jₒ C}{ Jₒ B}
(!ₐ {C}{B} g)
(comp { Jₒ C}
{(Jₒ (A &ₒ B))}
{ Jₒ B}
(cart-ar
(!ₐ {C}{A} f) (!ₐ {C}{B} g))
π₂)
cart-diag₂ {U , X , α}{V , Y , β}{W , Z , γ}{f = f , F , p₁}{g , G , p₂}
= refl , ext-set (λ {j₁} → ext-set (λ {w} → aux))
where
aux : ∀{l : Y *} →
map G l ≡
map F (proj-⊎₁ {_}{_}{X}{Y} (map inj₂ l)) ++
map G (proj-⊎₂ {_}{_}{X}{Y} (map inj₂ l))
aux {l} rewrite map-proj-⊎₂ {_}{_}{X}{Y} l |
map-proj-⊎₁-[] {_}{_}{X}{Y} l = refl
term-diag : ∀{A : Obj} → Hom (Jₒ A) (Jₒ (⊤ , ⊥ , λ x y → ⊤))
term-diag {U , X , α} =
(λ x → triv) , (λ f u → aux (f triv) u) , (λ {u}{y} → aux' {u}{y triv})
where
aux : 𝕃 ⊥ → U → 𝕃 X
aux [] u = []
aux (x :: l) u = ⊥-elim x :: aux l u
aux' : {u : U} {l : 𝕃 ⊥} → all-pred (α u) (aux l u) → all-pred (λ y₁ → ⊤) l
aux' {u}{l = []} p = p
aux' {u}{l = x :: l} (p , p') = triv , aux' {u}{l} p'
term-cart-crt₁ : {X : Set} → 𝕃 (X ⊎ ⊥) → 𝕃 X
term-cart-crt₁ [] = []
term-cart-crt₁ (inj₁ x :: l) = x :: term-cart-crt₁ l
term-cart-crt₁ (inj₂ y :: l) = ⊥-elim y :: term-cart-crt₁ l
term-cart₁ : ∀{A : Obj} → Hom (Jₒ A) (Jₒ (A &ₒ (⊤ , ⊥ , λ x y → ⊤)))
term-cart₁ {U , X , α} =
(λ x → x , triv) , (λ f u → term-cart-crt₁ (f (u , triv))) , cond
where
cond : {u : U} {l : 𝕃 (X ⊎ ⊥)} →
all-pred (α u) (term-cart-crt₁ l) →
all-pred ((α &ᵣ (λ x y₁ → ⊤)) (u , triv)) l
cond {u}{[]} p = triv
cond {u}{inj₁ x :: l} (p , p') = p , cond p'
cond {u}{inj₂ y :: l} (p , p') = triv , cond p'
term-cart₂ : ∀{A : Obj} → Hom (Jₒ (A &ₒ (⊤ , ⊥ , λ x y → ⊤))) (Jₒ A)
term-cart₂ {U , X , α} = π₁
term-cart-iso₁ : ∀{A : Obj}
→ _≡h_ {Jₒ A} {Jₒ A} (comp {Jₒ A}{Jₒ (A &ₒ (⊤ , ⊥ , λ x y → ⊤))}
{Jₒ A} term-cart₁ term-cart₂) id
term-cart-iso₁ {U , X , α} = refl , ext-set (λ {f} → ext-set (λ {u} → aux))
where
aux : ∀{l : X *} → term-cart-crt₁ (map inj₁ l) ≡ l
aux {[]} = refl
aux {x :: l} rewrite aux {l} = refl
term-cart-iso₂ : ∀{A : Obj}
→ _≡h_ {Jₒ (A &ₒ (⊤ , ⊥ , λ x y → ⊤))}
{Jₒ (A &ₒ (⊤ , ⊥ , λ x y → ⊤))}
(comp {Jₒ (A &ₒ (⊤ , ⊥ , λ x y → ⊤))}{Jₒ A}
{Jₒ (A &ₒ (⊤ , ⊥ , λ x y → ⊤))}
term-cart₂ term-cart₁) id
term-cart-iso₂ {U , X , α} =
ext-set aux , ext-set (λ {f} → ext-set (aux' {f}))
where
aux : {a : Σ U (λ x → ⊤)} → (fst a , triv) ≡ a
aux {u , triv} = refl
aux' : {f : Σ U (λ x → ⊤)
→ 𝕃 (X ⊎ ⊥)}{a : Σ U (λ x → ⊤)}
→ map inj₁ (term-cart-crt₁ (f (fst a , triv))) ≡ f a
aux' {f}{u , triv} = aux''
where
aux'' : ∀{l : (X ⊎ ⊥) *} → map inj₁ (term-cart-crt₁ l) ≡ l
aux'' {[]} = refl
aux'' {inj₁ x :: l} rewrite aux'' {l} = refl
aux'' {inj₂ y :: l} = ⊥-elim y
twist-cart : ∀{A B : Obj}
→ Hom (Jₒ (A &ₒ B)) (Jₒ (B &ₒ A))
twist-cart {A}{B} = cart-ar {A &ₒ B} {B} {A} π₂ π₁
|
{
"alphanum_fraction": 0.420212766,
"avg_line_length": 34.1818181818,
"ext": "agda",
"hexsha": "f4e8f06846fa0fab46b114f6aa2d0ed760c50e49",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "heades/AUGL",
"max_forks_repo_path": "dialectica-cats/Tensorial.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "heades/AUGL",
"max_issues_repo_path": "dialectica-cats/Tensorial.agda",
"max_line_length": 86,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "heades/AUGL",
"max_stars_repo_path": "dialectica-cats/Tensorial.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4931,
"size": 10152
}
|
module Grove where
open import Axiom.Extensionality.Propositional
open import Data.Bool hiding (_<_; _≟_)
open import Function.Equivalence hiding (_∘_)
open import Function hiding (_⇔_)
open import Function.Equality using (_⟨$⟩_)
open import Level using (Level)
open import Relation.Binary.PropositionalEquality hiding (Extensionality)
open import Relation.Nullary
postulate
extensionality : {ℓ₁ ℓ₂ : Level} → Extensionality ℓ₁ ℓ₂
----------------
-- Constructors
----------------
postulate
Ctor : Set
_≟ℂ_ : (c₁ c₂ : Ctor) → Dec (c₁ ≡ c₂)
----------------
-- Positions
----------------
postulate
Pos : Set
_≟ℙ_ : (p₁ p₂ : Pos) → Dec (p₁ ≡ p₂)
_∈ℙ_ : Pos → Ctor → Set
----------------
-- Identifiers
----------------
postulate
Ident : Set
_≟𝕀_ : (i₁ i₂ : Ident) → Dec (i₁ ≡ i₂)
----------------
-- The Root Vertex
----------------
-- Note actually used in the proofs, but here it is anyway
postulate
ctorRoot : Ctor
posRoot : Pos
posRoot∈ctorRoot : posRoot ∈ℙ ctorRoot
identRoot : Ident
----------------
-- Vertex
----------------
record Vertex : Set where
constructor V
field
ctor : Ctor
ident : Ident
_≟Vertex_ : (v₁ v₂ : Vertex) → Dec (v₁ ≡ v₂)
V c₁ i₁ ≟Vertex V c₂ i₂ with c₁ ≟ℂ c₂ | i₁ ≟𝕀 i₂
... | yes refl | yes refl = yes refl
... | _ | no p = no (λ { refl → p refl })
... | no p | _ = no (λ { refl → p refl })
----------------
-- Edge
----------------
record Edge : Set where
constructor E
field
parent : Vertex
child : Vertex
position : Pos
ident : Ident
.isValid : position ∈ℙ Vertex.ctor parent
_≟Edge_ : (e₁ e₂ : Edge) → Dec (e₁ ≡ e₂)
E parent₁ child₁ position₁ ident₁ _ ≟Edge E parent₂ child₂ position₂ ident₂ _
with parent₁ ≟Vertex parent₂
| child₁ ≟Vertex child₂
| position₁ ≟ℙ position₂
| ident₁ ≟𝕀 ident₂
... | yes refl | yes refl | yes refl | yes refl = yes refl
... | no p | _ | _ | _ = no (λ { refl → p refl })
... | _ | no p | _ | _ = no (λ { refl → p refl })
... | _ | _ | no p | _ = no (λ { refl → p refl })
... | _ | _ | _ | no p = no (λ { refl → p refl })
----------------
-- EdgeState
----------------
data EdgeState : Set where
⊥ : EdgeState -- smallest
+ : EdgeState -- middle
- : EdgeState -- largest
_⊔_ : EdgeState → EdgeState → EdgeState
- ⊔ _ = -
_ ⊔ - = -
+ ⊔ _ = +
_ ⊔ + = +
_ ⊔ _ = ⊥
⊔-assoc : (s₁ s₂ s₃ : EdgeState) → (s₁ ⊔ (s₂ ⊔ s₃)) ≡ ((s₁ ⊔ s₂) ⊔ s₃)
⊔-assoc ⊥ ⊥ ⊥ = refl
⊔-assoc ⊥ ⊥ + = refl
⊔-assoc ⊥ ⊥ - = refl
⊔-assoc ⊥ + ⊥ = refl
⊔-assoc ⊥ + + = refl
⊔-assoc ⊥ + - = refl
⊔-assoc ⊥ - ⊥ = refl
⊔-assoc ⊥ - + = refl
⊔-assoc ⊥ - - = refl
⊔-assoc + ⊥ ⊥ = refl
⊔-assoc + ⊥ + = refl
⊔-assoc + ⊥ - = refl
⊔-assoc + + ⊥ = refl
⊔-assoc + + + = refl
⊔-assoc + + - = refl
⊔-assoc + - ⊥ = refl
⊔-assoc + - + = refl
⊔-assoc + - - = refl
⊔-assoc - ⊥ ⊥ = refl
⊔-assoc - ⊥ + = refl
⊔-assoc - ⊥ - = refl
⊔-assoc - + ⊥ = refl
⊔-assoc - + + = refl
⊔-assoc - + - = refl
⊔-assoc - - ⊥ = refl
⊔-assoc - - + = refl
⊔-assoc - - - = refl
⊔-comm : (s₁ s₂ : EdgeState) → s₁ ⊔ s₂ ≡ s₂ ⊔ s₁
⊔-comm ⊥ ⊥ = refl
⊔-comm ⊥ + = refl
⊔-comm ⊥ - = refl
⊔-comm + ⊥ = refl
⊔-comm + + = refl
⊔-comm + - = refl
⊔-comm - ⊥ = refl
⊔-comm - + = refl
⊔-comm - - = refl
⊔-idem : (s : EdgeState) → s ⊔ s ≡ s
⊔-idem ⊥ = refl
⊔-idem + = refl
⊔-idem - = refl
----------------
-- Graph
----------------
Graph : Set
Graph = Edge → EdgeState
_[_↦_] : Graph → Edge → EdgeState → Graph
_[_↦_] f k v = λ { x → if does (x ≟Edge k) then v ⊔ f x else f x }
[↦]-comm : (s₁ s₂ : EdgeState) (e₁ e₂ : Edge) (g : Graph)
→ (g [ e₁ ↦ s₁ ]) [ e₂ ↦ s₂ ]
≡ (g [ e₂ ↦ s₂ ]) [ e₁ ↦ s₁ ]
[↦]-comm s₁ s₂ e₁ e₂ g = extensionality go where
go : (e : Edge) → ((g [ e₁ ↦ s₁ ]) [ e₂ ↦ s₂ ]) e ≡ ((g [ e₂ ↦ s₂ ]) [ e₁ ↦ s₁ ]) e
go e with e ≟Edge e₁ | e ≟Edge e₂
... | yes refl | yes refl rewrite ⊔-assoc s₁ s₂ (g e) | ⊔-assoc s₂ s₁ (g e) | ⊔-comm s₁ s₂ = refl
... | no _ | yes refl = refl
... | yes refl | no _ = refl
... | no _ | no _ = refl
[↦]-join : (s₁ s₂ : EdgeState) (e : Edge) (g : Graph)
→ (g [ e ↦ s₁ ]) [ e ↦ s₂ ]
≡ g [ e ↦ s₁ ⊔ s₂ ]
[↦]-join s₁ s₂ e g = extensionality go where
go : (e' : Edge) → ((g [ e ↦ s₁ ]) [ e ↦ s₂ ]) e' ≡ (g [ e ↦ s₁ ⊔ s₂ ]) e'
go e' with e' ≟Edge e
... | yes refl rewrite ⊔-assoc s₂ s₁ (g e) | ⊔-comm s₁ s₂ = refl
... | no _ = refl
----------------
-- Action
----------------
data Action : Set where
A : Edge → EdgeState → Action
⟦_⟧ : Action → Graph → Graph
⟦ (A e s) ⟧ g = g [ e ↦ s ]
⟦⟧-comm' : (a₁ a₂ : Action) (g : Graph)
→ ⟦ a₁ ⟧ (⟦ a₂ ⟧ g)
≡ ⟦ a₂ ⟧ (⟦ a₁ ⟧ g)
⟦⟧-comm' (A e₁ s₁) (A e₂ s₂) g = [↦]-comm s₂ s₁ e₂ e₁ g
⟦⟧-comm : (a₁ a₂ : Action)
→ ⟦ a₁ ⟧ ∘′ ⟦ a₂ ⟧
≡ ⟦ a₂ ⟧ ∘′ ⟦ a₁ ⟧
⟦⟧-comm a₁ a₂ = extensionality (⟦⟧-comm' a₁ a₂)
⟦⟧-idem' : (a : Action) (g : Graph)
→ ⟦ a ⟧ (⟦ a ⟧ g)
≡ ⟦ a ⟧ g
⟦⟧-idem' (A e s) g rewrite [↦]-join s s e g with s
... | ⊥ = refl
... | + = refl
... | - = refl
⟦⟧-idem : (a : Action)
→ ⟦ a ⟧ ∘′ ⟦ a ⟧
≡ ⟦ a ⟧
⟦⟧-idem a = extensionality (⟦⟧-idem' a)
----------------
-- Action Relation Between Graphs
----------------
data ActionRel : Graph → Action → Graph → Set where
AR : (a : Action) → (g : Graph) → ActionRel g a (⟦ a ⟧ g)
ActionRel-eqv : {g g' : Graph} {a : Action}
→ ActionRel g a g' ⇔ g' ≡ ⟦ a ⟧ g
ActionRel-eqv {g} {g'} {a} = equivalence to from where
to : ActionRel g a g' → g' ≡ ⟦ a ⟧ g
to (AR .a .g) = refl
from : g' ≡ ⟦ a ⟧ g → ActionRel g a g'
from refl = AR a g
ActionRel-comm : {a₁ a₂ : Action} {g₁ g₂₁ g₃₁ g₂₂ g₃₂ : Graph}
→ ActionRel g₁ a₁ g₂₁ → ActionRel g₂₁ a₂ g₃₁
→ ActionRel g₁ a₂ g₂₂ → ActionRel g₂₂ a₁ g₃₂
→ g₃₁ ≡ g₃₂
ActionRel-comm {a₁} {a₂} {g₁} {g₂₁} {g₃₁} {g₂₂} {g₃₂} ar₁ ar₂ ar₂₂ ar₁' = eqgg where
eqg₂ : g₂₁ ≡ ⟦ a₁ ⟧ g₁
eqg₂ = Equivalence.to ActionRel-eqv ⟨$⟩ ar₁
eqg₃ : g₃₁ ≡ ⟦ a₂ ⟧ (⟦ a₁ ⟧ g₁)
eqg₃ with eqg₂
... | refl = Equivalence.to ActionRel-eqv ⟨$⟩ ar₂
eqg₂₂ : g₂₂ ≡ ⟦ a₂ ⟧ g₁
eqg₂₂ = Equivalence.to ActionRel-eqv ⟨$⟩ ar₂₂
eqg₃₂ : g₃₂ ≡ ⟦ a₁ ⟧ (⟦ a₂ ⟧ g₁)
eqg₃₂ with eqg₂₂
... | refl = Equivalence.to ActionRel-eqv ⟨$⟩ ar₁'
eqgg : g₃₁ ≡ g₃₂
eqgg with eqg₃ | eqg₃₂
... | refl | refl = ⟦⟧-comm' a₂ a₁ g₁
|
{
"alphanum_fraction": 0.4977462975,
"avg_line_length": 24.9477911647,
"ext": "agda",
"hexsha": "d66da25fa4143baa60fdfb0d435002d00f49f18b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2ca7001f22587e354c776bed39e70ba8d022aae9",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "fplab/grove-agda",
"max_forks_repo_path": "Grove.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2ca7001f22587e354c776bed39e70ba8d022aae9",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "fplab/grove-agda",
"max_issues_repo_path": "Grove.agda",
"max_line_length": 99,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2ca7001f22587e354c776bed39e70ba8d022aae9",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "fplab/grove-agda",
"max_stars_repo_path": "Grove.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2750,
"size": 6212
}
|
open import Agda.Builtin.Equality
open import Agda.Builtin.Sigma
data Unit : Set where
unit : Unit
record _∼_ (From To : Set) : Set where
field
to : From → To
from : To → From
to-from : ∀ {x} → to (from x) ≡ x
postulate
P : {A : Set} → A → Set
f : {A B : Set} (A∼B : A ∼ B) (x : A) → P (_∼_.to A∼B x) ∼ P x
record R : Set where
field
p : {x y : Unit} → P x → P y
u v : Unit
g : (r : R) → _ ∼ P r
g = f lemma
where
lemma : R ∼ Σ _ λ _ → Σ _ λ (_ : ∀ {x y} → _ → _) → _
lemma = record
{ to = λ x → R.u x , R.p x , R.v x
; from = λ { (u , p , v) → record
{ u = u
; p = λ {x y} → p {x = x} {y = y}
; v = v
} }
; to-from = refl
}
|
{
"alphanum_fraction": 0.4043367347,
"avg_line_length": 21.7777777778,
"ext": "agda",
"hexsha": "d2609558ce3e408a9e63aa2c420be77509559dcf",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue3960b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue3960b.agda",
"max_line_length": 64,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue3960b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 314,
"size": 784
}
|
module CompilingCoinduction where
open import Common.Coinduction
open import Common.Char
open import Common.String
data Unit : Set where
unit : Unit
{-# COMPILE GHC Unit = data () (()) #-}
postulate
IO : Set → Set
{-# COMPILE GHC IO = type IO #-}
{-# BUILTIN IO IO #-}
{-# FOREIGN GHC import qualified Data.Text.IO #-}
postulate
putStrLn : ∞ String → IO Unit
{-# COMPILE GHC putStrLn = Data.Text.IO.putStrLn . MAlonzo.RTE.flat #-}
{-# COMPILE JS putStrLn = function(x) { return function(cb) { process.stdout.write(x.flat() + "\n"); cb(0); }; } #-}
main = putStrLn (♯ "a")
|
{
"alphanum_fraction": 0.6519524618,
"avg_line_length": 21.0357142857,
"ext": "agda",
"hexsha": "03464bc76054e624d4b5f5c52794e797380ca246",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Compiler/simple/CompilingCoinduction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Compiler/simple/CompilingCoinduction.agda",
"max_line_length": 117,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Compiler/simple/CompilingCoinduction.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 157,
"size": 589
}
|
module Fail.BadBuiltinImport where
import Agda.Builtin.Nat
{-# FOREIGN AGDA2HS
import RandomModule (Natural)
import AlsoNotRight (foo, Natural(..))
import AsConstructor (D(Natural))
#-}
|
{
"alphanum_fraction": 0.7712765957,
"avg_line_length": 18.8,
"ext": "agda",
"hexsha": "8ffd5157bc055e1f335edaaf7ec87de68ac43618",
"lang": "Agda",
"max_forks_count": 18,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z",
"max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "seanpm2001/agda2hs",
"max_forks_repo_path": "test/Fail/BadBuiltinImport.agda",
"max_issues_count": 63,
"max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "seanpm2001/agda2hs",
"max_issues_repo_path": "test/Fail/BadBuiltinImport.agda",
"max_line_length": 38,
"max_stars_count": 55,
"max_stars_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dxts/agda2hs",
"max_stars_repo_path": "test/Fail/BadBuiltinImport.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z",
"num_tokens": 50,
"size": 188
}
|
module Functional.Dependent where
import Lvl
open import Type
private variable ℓ ℓ₁ ℓ₂ : Lvl.Level
-- Function type as a function
_→ᶠ_ : (X : Type{ℓ₁}) → (Type{ℓ₁} → Type{ℓ₂}) → Type{ℓ₁ Lvl.⊔ ℓ₂}
X →ᶠ Y = X → Y(X)
infixl 30 _→ᶠ_
module _ where
private variable X : Type{ℓ}
private variable Y : X → Type{ℓ}
private variable Z : ∀{x : X} → Y(x) → Type{ℓ}
apply : (x : X) → ((x : X) → Y(x)) → Y(x)
apply(x)(f) = f(x)
{-# INLINE apply #-}
const : (∀{x : X} → Y(x)) → ((x : X) → Y(x))
const y _ = y
{-# INLINE const #-}
_$_ : ((x : X) → Y(x)) → (x : X) → Y(x)
f $ x = f(x)
{-# INLINE _$_ #-}
infixr 0 _$_
_⩺_ : (x : X) → ((x : X) → Y(x)) → Y(x)
x ⩺ f = f(x)
{-# INLINE _⩺_ #-}
infixl 10000 _⩺_
_⩹_ : ((x : X) → Y(x)) → (x : X) → Y(x)
f ⩹ x = f(x)
{-# INLINE _⩹_ #-}
infixl 10000 _⩹_
_∘ᵢₘₚₗ_ : (∀{x : X}{y : Y(x)} → Z{x}(y)) → (g : ∀{x : X} → Y(x)) → (∀{x : X} → Z(g{x}))
(f ∘ᵢₘₚₗ g){x} = f{x}{g{x}}
infixl 10000 _∘ᵢₘₚₗ_
_∘ᵢₙₛₜ_ : (⦃ x : X ⦄ ⦃ y : Y(x) ⦄ → Z{x}(y)) → (g : ⦃ x : X ⦄ → Y(x)) → (⦃ x : X ⦄ → Z(g ⦃ x ⦄))
(f ∘ᵢₙₛₜ g) ⦃ x ⦄ = f ⦃ x ⦄ ⦃ g ⦃ x ⦄ ⦄
infixl 10000 _∘ᵢₙₛₜ_
_∘ₛ_ : ((x : X) → (y : Y(x)) → Z{x}(y)) → (g : (x : X) → Y(x)) → ((x : X) → Z(g(x)))
(f ∘ₛ g)(x) = f(x)(g(x))
{-# INLINE _∘ₛ_ #-}
infixl 10000 _∘ₛ_
_∘_ : (∀{x : X} → (y : Y(x)) → Z{x}(y)) → (g : (x : X) → Y(x)) → ((x : X) → Z(g(x)))
_∘_ f = (const f) ∘ₛ_
{-# INLINE _∘_ #-}
infixl 10000 _∘_
module _ where
private variable X : Type{ℓ}
private variable Y : X → Type{ℓ}
private variable Z : ∀{x₁ x₂ : X} → Y(x₁) → Y(x₂) → Type{ℓ}
_on₂_ : (f : ∀{x₁ x₂ : X} → (y₁ : Y(x₁)) → (y₂ : Y(x₂)) → Z{x₁}{x₂}(y₁)(y₂)) → (g : (x : X) → Y(x)) → ((x₁ : X) → (x₂ : X) → Z(g(x₁))(g(x₂)))
((_▫_) on₂ f)(y₁)(y₂) = f(y₁) ▫ f(y₂)
module _ where
private variable X Y : Type{ℓ}
private variable Z : X → Y → Type{ℓ}
swap : ((x : X) → (y : Y) → Z(x)(y)) → ((y : Y) → (x : X) → Z(x)(y))
swap f(y)(x) = f(x)(y)
{-# INLINE swap #-}
{- TODO: Agda errors
module _ where
private variable X₁ : Type{ℓ}
private variable X₂ : X₁ → Type{ℓ}
private variable Y₁ : ∀{x₁ : X₁} → X₂(x₁) → Type{ℓ}
private variable Y₂ : ∀{x₁ : X₁}{x₂ : X₂(x₁)} → Y₁{x₁}(x₂) → Type{ℓ}
private variable Z : ∀{x₁ : X₁}{x₂ : X₂(x₁)}{y₁ : Y₁{x₁}(x₂)} → (Y₂{x₁}{x₂}(y₁)) → Type{ℓ}
pointwise₂,₁' : (∀{x₁ : X₁} → (x₂ : X₂(x₁)) → {y₁ : Y₁(x₂)} → (y₂ : Y₂(y₁)) → Z{x₁}{x₂}{y₁}(y₂)) → (f : (x₁ : X₁) → X₂(x₁)) → (g : ∀{x₁}{x₂} → (y₁ : Y₁{x₁}(x₂)) → Y₂{x₁}{x₂}(y₁)) → ((x₁ : X₁) → (y₁ : Y₁{x₁}(f(x₁))) → Z{x₁}{f(x₁)}{y₁}(g(y₁)))
-}
{-
module _ where
private variable X₁ : Type{ℓ}
private variable X₂ : X₁ → Type{ℓ}
private variable Y₁ : ∀{x₁ : X₁} → X₂(x₁) → Type{ℓ}
private variable Y₂ : ∀{x₁ : X₁}{x₂ : X₂(x₁)} → Y₁{x₁}(x₂) → Type{ℓ}
private variable Z : ∀{x₁ : X₁}{x₂ : X₂(x₁)}{y₁ : Y₁{x₁}(x₂)} → Type{ℓ}
pointwise₂,₁' : ∀{x₁ : X₁} → (x₂ : X₂(x₁)) → {y₁ : Y₁(x₂)} → (y₂ : Y₂(y₁)) → Z{x₁}{x₂}{y₁}
-}
module _ where
private variable A : Type{ℓ}
private variable B : A → Type{ℓ}
private variable C : ∀{a : A} → B(a) → Type{ℓ}
private variable D : ∀{a : A}{b : B(a)} → (C{a}(b)) → Type{ℓ}
private variable E : ∀{a : A}{b : B(a)}{c : C{a}(b)} → D{a}{b}(c) → Type{ℓ}
private variable F : ∀{a : A}{b : B(a)}{c : C{a}(b)}{d : D{a}{b}(c)} → E{a}{b}{c}(d) → Type{ℓ}
-- Alternative definition: (f ∘₂ g) a b = f(g a b)
_∘₂_ : (∀{a : A}{b : B(a)} → (c : C{a}(b)) → D{a}{b}(c)) → (g : ∀(a)(b) → C{a}(b)) → (∀(a)(b) → D(g a b))
_∘₂_ f = (f ∘_) ∘_
{-# INLINE _∘₂_ #-}
-- Alternative definition: (f ∘₂ₛ g) x y = f a b (g a b)
_∘₂ₛ_ : ((a : A) → (b : B(a)) → (c : C{a}(b)) → D{a}{b}(c)) → (g : ∀(a)(b) → C{a}(b)) → (∀(a)(b) → D(g a b))
_∘₂ₛ_ f = ((_∘ₛ_) ∘ f) ∘ₛ_
{-# INLINE _∘₂ₛ_ #-}
-- Alternative definition: (f ∘₂ g) a b c = f(g a b c)
_∘₃_ : (∀{a : A}{b : B(a)}{c : C{a}(b)} → (d : D{a}{b}(c)) → E{a}{b}{c}(d)) → (g : ∀(a)(b)(c) → D{a}{b}(c)) → (∀(a)(b)(c) → E(g a b c))
_∘₃_ f = (f ∘₂_) ∘_
{-# INLINE _∘₃_ #-}
-- Alternative definition: (f ∘₃ₛ g) a b c = f a b c (g a b c)
_∘₃ₛ_ : (∀(a : A)(b : B(a))(c : C{a}(b)) → (d : D{a}{b}(c)) → E{a}{b}{c}(d)) → (g : ∀(a)(b)(c) → D{a}{b}(c)) → (∀(a)(b)(c) → E(g a b c))
_∘₃ₛ_ f = ((_∘₂ₛ_) ∘ f) ∘ₛ_
{-# INLINE _∘₃ₛ_ #-}
-- Alternative definition: (f ∘₄ g) a b c d = f(g a b c d)
_∘₄_ : (∀{a : A}{b : B(a)}{c : C{a}(b)}{d : D{a}{b}(c)} → (e : E{a}{b}{c}(d)) → F{a}{b}{c}{d}(e)) → (g : ∀(a)(b)(c)(d) → E{a}{b}{c}(d)) → (∀(a)(b)(c)(d) → F(g a b c d))
_∘₄_ f = (f ∘₃_) ∘_
{-# INLINE _∘₄_ #-}
-- Alternative definition: (f ∘₄ₛ g) a b c d = f a b c d (g a b c d)
_∘₄ₛ_ : (∀(a : A)(b : B(a))(c : C{a}(b))(d : D{a}{b}(c)) → (e : E{a}{b}{c}(d)) → F{a}{b}{c}{d}(e)) → (g : ∀(a)(b)(c)(d) → E{a}{b}{c}(d)) → (∀(a)(b)(c)(d) → F(g a b c d))
_∘₄ₛ_ f = ((_∘₃ₛ_) ∘ f) ∘ₛ_
{-# INLINE _∘₄ₛ_ #-}
-- Alternative definition: pointwise₂,₁(_▫_) f g a = f(a) ▫ g(a)
pointwise₂,₁ : (∀{a : A} → (b : B(a)) → (c : C{a}(b)) → D{a}{b}(c)) → (f : (a : A) → B(a)) → (g : (a : A) → C{a}(f(a))) → (a : A) → D{a}{f(a)}(g(a))
pointwise₂,₁(_▫_) = ((_∘ₛ_) ∘ ((_▫_) ∘_))
{-# INLINE pointwise₂,₁ #-}
-- Alternative definition: pointwise₂,₂(_▫_) f g a b = (f a b) ▫ (g a b)
pointwise₂,₂ : (∀{a : A}{b : B(a)} → (c : C{a}(b)) → (d : D{a}{b}(c)) → E{a}{b}{c}(d)) → (f : (a : A) → (b : B(a)) → C{a}(b)) → (g : (a : A) → (b : B(a)) → D{a}{b}(f a b)) → (a : A) → (b : B(a)) → E{a}{b}{f a b}(g a b)
pointwise₂,₂(_▫_) = pointwise₂,₁(pointwise₂,₁(_▫_))
{-# INLINE pointwise₂,₂ #-}
-- Alternative definition: pointwise₂,₃(_▫_) f g a b c = (f a b c) ▫ (g a b c)
pointwise₂,₃ : (∀{a : A}{b : B(a)}{c : C{a}(b)} → (d : D{a}{b}(c)) → (e : E{a}{b}{c}(d)) → F{a}{b}{c}{d}(e)) → (f : (a : A) → (b : B(a)) → (c : C{a}(b)) → D{a}{b}(c)) → (g : (a : A) → (b : B(a)) → (c : C{a}(b)) → E{a}{b}(f a b c)) → (a : A) → (b : B(a)) → (c : C{a}(b)) → F{a}{b}{c}{f a b c}(g a b c)
pointwise₂,₃(_▫_) = pointwise₂,₁(pointwise₂,₂(_▫_))
{-# INLINE pointwise₂,₃ #-}
|
{
"alphanum_fraction": 0.428307589,
"avg_line_length": 40.2432432432,
"ext": "agda",
"hexsha": "e0f2886c5410d714386a4f879ccb7e64592c02bf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Functional/Dependent.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Functional/Dependent.agda",
"max_line_length": 302,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Functional/Dependent.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 3246,
"size": 5956
}
|
{-# OPTIONS --omega-in-omega #-}
open import Agda.Primitive
test : Setω
test = Setω
record R : Setω where
field
A : ∀ {ℓ} → Set ℓ
data Type : Setω where
el : ∀ {ℓ} → Set ℓ → Type
|
{
"alphanum_fraction": 0.5885416667,
"avg_line_length": 13.7142857143,
"ext": "agda",
"hexsha": "120f2fb7fd3f587c6f832fea032f6584a074d72e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/OmegaInOmega.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/OmegaInOmega.agda",
"max_line_length": 32,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/OmegaInOmega.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 70,
"size": 192
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
-- Properties relating Initial and Terminal Objects,
-- and Product / Coproduct via op
module Categories.Object.Duality {o ℓ e} (C : Category o ℓ e) where
open Category C
open import Level
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_)
open import Categories.Morphism C
open import Categories.Object.Terminal op
open import Categories.Object.Initial C
open import Categories.Object.Product op
open import Categories.Object.Coproduct C
IsInitial⇒coIsTerminal : ∀ {X} → IsInitial X → IsTerminal X
IsInitial⇒coIsTerminal is⊥ = record
{ ! = !
; !-unique = !-unique
}
where open IsInitial is⊥
⊥⇒op⊤ : Initial → Terminal
⊥⇒op⊤ i = record
{ ⊤ = ⊥
; ⊤-is-terminal = IsInitial⇒coIsTerminal ⊥-is-initial
}
where open Initial i
coIsTerminal⇒IsInitial : ∀ {X} → IsTerminal X → IsInitial X
coIsTerminal⇒IsInitial is⊤ = record
{ ! = !
; !-unique = !-unique
}
where open IsTerminal is⊤
op⊤⇒⊥ : Terminal → Initial
op⊤⇒⊥ t = record
{ ⊥ = ⊤
; ⊥-is-initial = coIsTerminal⇒IsInitial ⊤-is-terminal
}
where open Terminal t
Coproduct⇒coProduct : ∀ {A B} → Coproduct A B → Product A B
Coproduct⇒coProduct A+B = record
{ A×B = A+B.A+B
; π₁ = A+B.i₁
; π₂ = A+B.i₂
; ⟨_,_⟩ = A+B.[_,_]
; project₁ = A+B.inject₁
; project₂ = A+B.inject₂
; unique = A+B.unique
}
where
module A+B = Coproduct A+B
coProduct⇒Coproduct : ∀ {A B} → Product A B → Coproduct A B
coProduct⇒Coproduct A×B = record
{ A+B = A×B.A×B
; i₁ = A×B.π₁
; i₂ = A×B.π₂
; [_,_] = A×B.⟨_,_⟩
; inject₁ = A×B.project₁
; inject₂ = A×B.project₂
; unique = A×B.unique
}
where
module A×B = Product A×B
private
coIsTerminal⟺IsInitial : ∀ {X} (⊥ : IsInitial X) →
coIsTerminal⇒IsInitial (IsInitial⇒coIsTerminal ⊥) ≡ ⊥
coIsTerminal⟺IsInitial _ = ≡.refl
IsInitial⟺coIsTerminal : ∀ {X} (⊤ : IsTerminal X) →
IsInitial⇒coIsTerminal (coIsTerminal⇒IsInitial ⊤) ≡ ⊤
IsInitial⟺coIsTerminal _ = ≡.refl
⊥⟺op⊤ : (⊤ : Terminal) → ⊥⇒op⊤ (op⊤⇒⊥ ⊤) ≡ ⊤
⊥⟺op⊤ _ = ≡.refl
op⊤⟺⊥ : (⊥ : Initial) → op⊤⇒⊥ (⊥⇒op⊤ ⊥) ≡ ⊥
op⊤⟺⊥ _ = ≡.refl
Coproduct⟺coProduct : ∀ {A B} (p : Product A B) → Coproduct⇒coProduct (coProduct⇒Coproduct p) ≡ p
Coproduct⟺coProduct _ = ≡.refl
coProduct⟺Coproduct : ∀ {A B} (p : Coproduct A B) → coProduct⇒Coproduct (Coproduct⇒coProduct p) ≡ p
coProduct⟺Coproduct _ = ≡.refl
|
{
"alphanum_fraction": 0.6228847703,
"avg_line_length": 26.1263157895,
"ext": "agda",
"hexsha": "c5ff4733926626f30baed18a671612fefd6eaf2f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-categories",
"max_forks_repo_path": "src/Categories/Object/Duality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-categories",
"max_issues_repo_path": "src/Categories/Object/Duality.agda",
"max_line_length": 101,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bblfish/agda-categories",
"max_stars_repo_path": "src/Categories/Object/Duality.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1043,
"size": 2482
}
|
module Impure.LFRef.Eval where
open import Prelude
open import Data.Fin using (fromℕ≤)
open import Data.List hiding ([_])
open import Data.List.All
open import Data.List.Any
open import Data.Vec hiding (map; _∷ʳ_)
open import Data.Maybe hiding (All; Any)
open import Extensions.List as L
open import Impure.LFRef.Syntax hiding (subst)
open import Impure.LFRef.Welltyped
-- machine configuration: expression to reduce and a store
Config : Set
Config = Exp 0 × Store
!load : ∀ {i} → (μ : Store) → i < length μ → Term 0
!load {i = i} [] ()
!load {i = zero} (x ∷ μ) (s≤s p) = proj₁ x
!load {i = suc i} (x ∷ μ) (s≤s p) = !load μ p
!store : ∀ {i e} → (μ : Store) → i < length μ → Val e → Store
!store [] () v
!store {i = zero} (x ∷ μ) (s≤s p) v = (, v) ∷ μ
!store {i = suc i} (x ∷ μ) (s≤s p) v = (, v) ∷ (!store μ p v)
!call : ∀ {n m} → Exp m → (l : List (Term n)) → length l ≡ m → Exp n
!call e ts p = e exp/ subst (Vec _) p (fromList ts)
-- small steps for expressions
infix 1 _⊢_≻_
data _⊢_≻_ (𝕊 : Sig) : (t t' : Config) → Set where
funapp-β : ∀ {fn ts μ φ} →
(Sig.funs 𝕊) L.[ fn ]= φ →
(p : length ts ≡ Fun.m φ) →
-------------------------
𝕊 ⊢ fn ·★ ts , μ ≻ (!call (Fun.body φ) ts p) , μ
ref-val : ∀ {t μ} →
(v : Val t) →
----------------------------------------------------
𝕊 ⊢ ref (tm t) , μ ≻ (tm (loc (length μ))) , (μ ∷ʳ (, v))
≔-val : ∀ {i e μ} →
(p : i < length μ) →
(v : Val e) →
--------------------------------------------
𝕊 ⊢ (tm (loc i)) ≔ (tm e) , μ ≻ (tm unit) , (μ L.[ fromℕ≤ p ]≔ (, v))
!-val : ∀ {i μ} →
(p : i < length μ) →
-----------------------------------------
𝕊 ⊢ ! (tm (loc i)) , μ ≻ tm (!load μ p) , μ
ref-clos : ∀ {e e' μ μ'} →
𝕊 ⊢ e , μ ≻ e' , μ' →
---------------------------
𝕊 ⊢ ref e , μ ≻ ref e' , μ'
!-clos : ∀ {e e' μ μ'} →
𝕊 ⊢ e , μ ≻ e' , μ' →
-----------------------
𝕊 ⊢ ! e , μ ≻ ! e' , μ'
≔-clos₁ : ∀ {x x' e μ μ'} →
𝕊 ⊢ x , μ ≻ x' , μ' →
--------------------------
𝕊 ⊢ x ≔ e , μ ≻ x' ≔ e , μ'
≔-clos₂ : ∀ {x e e' μ μ'} →
ExpVal x →
𝕊 ⊢ e , μ ≻ e' , μ' →
--------------------------
𝕊 ⊢ x ≔ e , μ ≻ x ≔ e' , μ'
infix 1 _⊢_≻ₛ_
data _⊢_≻ₛ_ (𝕊 : Sig) : (t t' : SeqExp 0 × Store) → Set where
-- reductions
lett-β : ∀ {t e μ} →
----------------------------------------------
𝕊 ⊢ (lett (tm t) e) , μ ≻ₛ (e seq/ (sub t)) , μ
-- contextual closure
ret-clos : ∀ {e μ e' μ'} →
𝕊 ⊢ e , μ ≻ e' , μ' →
-------------------------------------
𝕊 ⊢ (ret e) , μ ≻ₛ (ret e') , μ'
lett-clos : ∀ {x e x' μ μ'} →
𝕊 ⊢ x , μ ≻ x' , μ' →
-------------------------------------
𝕊 ⊢ (lett x e) , μ ≻ₛ (lett x' e) , μ'
-- reflexive-transitive closure of ≻
open import Data.Star
infix 1 _⊢_≻⋆_
_⊢_≻⋆_ : (Sig) → (c c' : SeqExp 0 × Store) → Set
𝕊 ⊢ c ≻⋆ c' = Star (_⊢_≻ₛ_ 𝕊) c c'
|
{
"alphanum_fraction": 0.3653846154,
"avg_line_length": 30.5,
"ext": "agda",
"hexsha": "2fd9458b0f60fe475fe6857c0ec27dd12f08e07c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Impure/LFRef/Eval.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Impure/LFRef/Eval.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Impure/LFRef/Eval.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1231,
"size": 3172
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.RingSolver.Examples where
open import Cubical.Foundations.Prelude
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.RingSolver.ReflectionSolving
private
variable
ℓ : Level
module Test (R : CommRing {ℓ}) where
open CommRingStr (snd R)
_ : 1r · (1r + 0r)
≡ (1r · 0r) + 1r
_ = solve R
_ : 1r · 0r + (1r - 1r)
≡ 0r - 0r
_ = solve R
_ : (x : fst R) → x ≡ x
_ = solve R
_ : (x y : fst R) → x ≡ x
_ = solve R
_ : (x y : fst R) → x + y ≡ y + x
_ = solve R
_ : (x y : fst R) → (x + y) · (x - y) ≡ x · x - y · y
_ = solve R
{-
A bigger example, copied from the other example files:
-}
_ : (x y z : (fst R)) → (x + y) · (x + y) · (x + y) · (x + y)
≡ x · x · x · x + (fromℤ R 4) · x · x · x · y + (fromℤ R 6) · x · x · y · y
+ (fromℤ R 4) · x · y · y · y + y · y · y · y
_ = solve R
{-
Keep in mind, that the solver can lead to wrong error locations.
For example, the commented code below tries to solve an equation that does not hold,
with the result of an error at the wrong location.
_ : (x y : (fst R)) → x ≡ y
_ = solve R
-}
|
{
"alphanum_fraction": 0.5275526742,
"avg_line_length": 23.7307692308,
"ext": "agda",
"hexsha": "60478cd49939e8c9d85b3f20a5609da0367c8613",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Algebra/RingSolver/Examples.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Algebra/RingSolver/Examples.agda",
"max_line_length": 91,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Algebra/RingSolver/Examples.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 479,
"size": 1234
}
|
module Luau.RuntimeType.ToString where
open import FFI.Data.String using (String)
open import Luau.RuntimeType using (RuntimeType; function; number; nil)
runtimeTypeToString : RuntimeType → String
runtimeTypeToString function = "function"
runtimeTypeToString number = "number"
runtimeTypeToString nil = "nil"
|
{
"alphanum_fraction": 0.8135048232,
"avg_line_length": 31.1,
"ext": "agda",
"hexsha": "be67ee0c61fc4b43bd7630474b87701ebaeb8baa",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Tr4shh/Roblox-Luau",
"max_forks_repo_path": "prototyping/Luau/RuntimeType/ToString.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Tr4shh/Roblox-Luau",
"max_issues_repo_path": "prototyping/Luau/RuntimeType/ToString.agda",
"max_line_length": 71,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Tr4shh/Roblox-Luau",
"max_stars_repo_path": "prototyping/Luau/RuntimeType/ToString.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 68,
"size": 311
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Inverse where
open import Level using (Level; suc; _⊔_)
open import Categories.Category
import Categories.Morphism
record Inverse {o ℓ e} (C : Category o ℓ e) : Set (o ⊔ ℓ ⊔ e) where
open Category C public
open Definitions C public
open Categories.Morphism C
infix 10 _⁻¹
field
_⁻¹ : ∀ {A B} → A ⇒ B → B ⇒ A
pseudo-iso₁ : ∀ {A B} {f : A ⇒ B} → f ∘ f ⁻¹ ∘ f ≈ f
pseudo-iso₂ : ∀ {A B} {f : A ⇒ B} → f ⁻¹ ∘ f ∘ f ⁻¹ ≈ f ⁻¹
|
{
"alphanum_fraction": 0.5949119374,
"avg_line_length": 25.55,
"ext": "agda",
"hexsha": "acc10ed064723e971a4c7046bc4be2b8bd15e17f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Inverse.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Inverse.agda",
"max_line_length": 67,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bblfish/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Inverse.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 197,
"size": 511
}
|
{-# OPTIONS --without-K --safe #-}
open import Level
open import Categories.Category
module Categories.Functor.Power.NaturalTransformation {o ℓ e : Level} (C : Category o ℓ e) where
open import Data.Nat using (ℕ)
open import Data.Fin using (Fin; inject+; raise)
open import Data.Sum using (_⊎_; [_,_]′; inj₁; inj₂)
open import Function using () renaming (_∘_ to _∙_)
open import Function using () renaming (_∘_ to _∙_)
open import Data.Product using (_,_)
import Categories.Functor.Power as Power
module Pow = Power C
open Pow
open import Categories.Functor.Bifunctor using (Bifunctor)
-- open import Categories.Functor.Bifunctor.NaturalTransformation renaming (id to idⁿ; _≡_ to _≡ⁿ_)
open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper; _∘ˡ_)
open import Categories.Category.Product using (_※ⁿ_)
open import Categories.Functor using (Functor; module Functor)
flattenPⁿ : {D : Category o ℓ e} {m n : ℕ} {F G : Powerfunctor′ D (Fin m ⊎ Fin n)} (η : NaturalTransformation F G) →
NaturalTransformation (flattenP F) (flattenP G)
flattenPⁿ {m = m} {n} η = record
{ η = λ Xs → η.η (Xs ∙ pack)
; commute = λ fs → η.commute (fs ∙ pack)
; sym-commute = λ fs → η.sym-commute (fs ∙ pack)
}
where
private module η = NaturalTransformation η
pack = [ inject+ n , raise m ]′
reduceN′ : ∀ {i j : Level} {I : Set i} {J : Set j} {F F′ : Powerendo′ I} {G G′ : Powerendo′ J}
(H : Bifunctor C C C)
(φ : NaturalTransformation F F′) (γ : NaturalTransformation G G′) → NaturalTransformation (reduce′ H F G) (reduce′ H F′ G′)
reduceN′ {I = I} {J} {F} {F′} {G} {G′} H φ γ = ntHelper record
{ η = my-η
; commute = λ {Xs Ys} → my-commute Xs Ys
}
where
module C = Category C
module F = Functor F
module F′ = Functor F′
module G = Functor G
module G′ = Functor G′
module φ = NaturalTransformation φ
module γ = NaturalTransformation γ
module H = Functor H
module L = Functor (reduce′ H F G)
module R = Functor (reduce′ H F′ G′)
my-η : ∀ Xs → C [ L.F₀ Xs , R.F₀ Xs ]
my-η Xs = H.F₁ ((φ.η (Xs ∙ inj₁)) , (γ.η (Xs ∙ inj₂)))
my-commute : ∀ Xs Ys fs → C.CommutativeSquare (L.F₁ fs) (my-η Xs) (my-η Ys) (R.F₁ fs)
my-commute Xs Ys fs = begin
my-η Ys ∘ L.F₁ fs ≈˘⟨ H.homomorphism ⟩
H.F₁ ((φ.η _ ∘ F.F₁ _) , (γ.η _ ∘ G.F₁ _)) ≈⟨ H.F-resp-≈ ((φ.commute _) , (γ.commute _)) ⟩
H.F₁ ((F′.F₁ _ ∘ φ.η _) , (G′.F₁ _ ∘ γ.η _)) ≈⟨ H.homomorphism ⟩
R.F₁ fs ∘ my-η Xs
∎
where
open C using (_∘_)
open C.HomReasoning
-- Giving the implicits below is not necessary, but makes typechecking faster
reduceN : {m n : ℕ} {F F′ : Powerendo m} {G G′ : Powerendo n}
(H : Bifunctor C C C) (φ : NaturalTransformation F F′) (γ : NaturalTransformation G G′) →
NaturalTransformation (reduce H F G) (reduce H F′ G′)
reduceN {F = f} {f′} {g} {g′} H φ γ = flattenPⁿ {F = reduce′ H f g} {G = reduce′ H f′ g′} (reduceN′ H φ γ)
overlapN : {n : ℕ} {F F′ : Powerendo n} {G G′ : Powerendo n}
(H : Bifunctor C C C) (φ : NaturalTransformation F F′) (γ : NaturalTransformation G G′) →
NaturalTransformation (overlaps H F G) (overlaps H F′ G′)
overlapN H φ γ = H ∘ˡ (φ ※ⁿ γ)
|
{
"alphanum_fraction": 0.6234855545,
"avg_line_length": 42.3552631579,
"ext": "agda",
"hexsha": "3099ee79ec04251a1268f41bcea382b0b9923c01",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Functor/Power/NaturalTransformation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Functor/Power/NaturalTransformation.agda",
"max_line_length": 126,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Functor/Power/NaturalTransformation.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1174,
"size": 3219
}
|
-- Record declarations can now contain arbitrary declarations.
-- These are included in the projection module.
module FancyRecordModule where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
record Exist {A : Set}(P : A -> Set) : Set where
field witness : A
x = witness
field proof : P x
silly : Nat -> Nat
silly zero = zero
silly (suc n) = silly n
postulate
P : Nat -> Set
e : Exist P
data _==_ {A : Set}(x : A) : A -> Set where
refl : x == x
test : Exist.silly e (suc zero) == zero
test = refl
|
{
"alphanum_fraction": 0.6287878788,
"avg_line_length": 18.8571428571,
"ext": "agda",
"hexsha": "44d24285e498254af1f94e71cac576412caf99a7",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/FancyRecordModule.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/FancyRecordModule.agda",
"max_line_length": 62,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/FancyRecordModule.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 164,
"size": 528
}
|
module ExtendedLambdaCase where
data Bool : Set where
true false : Bool
data Void : Set where
foo : Bool -> Bool -> Bool -> Bool
foo = λ { x → λ { y z → {!!} } }
module parameterised {A : Set}(B : A -> Set) where
data Bar : (Bool -> Bool) -> Set where
baz : (t : Void) -> Bar λ { x → {!!} }
-- with hidden argument
data Bar' : (Bool -> Bool) -> Set where
baz' : {t : Void} -> (t' : Void) -> Bar' λ { x' → {!!} }
baz : Bool -> {w : Bool} -> Bool
baz = λ { z {w} → {!!} }
another-short-name : {A : Set} -> (A -> {x : A} -> A -> A)
another-short-name = {! λ { a {x} b → a } !}
f : Set
f = (y : Bool) -> parameterised.Bar {Bool}(λ _ → Void) (λ { true → true ; false → false })
|
{
"alphanum_fraction": 0.5021398003,
"avg_line_length": 23.3666666667,
"ext": "agda",
"hexsha": "8c9795ed77546ae6fc7bcf602965876c8e029384",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/interaction/ExtendedLambdaCase.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/interaction/ExtendedLambdaCase.agda",
"max_line_length": 91,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/interaction/ExtendedLambdaCase.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 241,
"size": 701
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Conversion of < to ≤, along with a number of properties
------------------------------------------------------------------------
-- Possible TODO: Prove that a conversion ≤ → < → ≤ returns a
-- relation equivalent to the original one (and similarly for
-- < → ≤ → <).
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Relation.Binary.Construct.StrictToNonStrict
{a ℓ₁ ℓ₂} {A : Set a}
(_≈_ : Rel A ℓ₁) (_<_ : Rel A ℓ₂)
where
open import Relation.Nullary
open import Relation.Binary.Consequences
open import Function
open import Data.Product
open import Data.Sum
open import Data.Empty
------------------------------------------------------------------------
-- Conversion
-- _<_ can be turned into _≤_ as follows:
_≤_ : Rel A _
x ≤ y = (x < y) ⊎ (x ≈ y)
------------------------------------------------------------------------
-- The converted relations have certain properties
-- (if the original relations have certain other properties)
<⇒≤ : _<_ ⇒ _≤_
<⇒≤ = inj₁
reflexive : _≈_ ⇒ _≤_
reflexive = inj₂
antisym : IsEquivalence _≈_ → Transitive _<_ → Irreflexive _≈_ _<_ →
Antisymmetric _≈_ _≤_
antisym eq trans irrefl = as
where
module Eq = IsEquivalence eq
as : Antisymmetric _≈_ _≤_
as (inj₂ x≈y) _ = x≈y
as (inj₁ _) (inj₂ y≈x) = Eq.sym y≈x
as (inj₁ x<y) (inj₁ y<x) =
⊥-elim (trans∧irr⟶asym {_≈_ = _≈_} Eq.refl trans irrefl x<y y<x)
trans : IsEquivalence _≈_ → _<_ Respects₂ _≈_ → Transitive _<_ →
Transitive _≤_
trans eq (respʳ , respˡ) <-trans = tr
where
module Eq = IsEquivalence eq
tr : Transitive _≤_
tr (inj₁ x<y) (inj₁ y<z) = inj₁ $ <-trans x<y y<z
tr (inj₁ x<y) (inj₂ y≈z) = inj₁ $ respʳ y≈z x<y
tr (inj₂ x≈y) (inj₁ y<z) = inj₁ $ respˡ (Eq.sym x≈y) y<z
tr (inj₂ x≈y) (inj₂ y≈z) = inj₂ $ Eq.trans x≈y y≈z
<-≤-trans : Transitive _<_ → _<_ Respectsʳ _≈_ → Trans _<_ _≤_ _<_
<-≤-trans trans respʳ x<y (inj₁ y<z) = trans x<y y<z
<-≤-trans trans respʳ x<y (inj₂ y≈z) = respʳ y≈z x<y
≤-<-trans : Symmetric _≈_ → Transitive _<_ → _<_ Respectsˡ _≈_ → Trans _≤_ _<_ _<_
≤-<-trans sym trans respˡ (inj₁ x<y) y<z = trans x<y y<z
≤-<-trans sym trans respˡ (inj₂ x≈y) y<z = respˡ (sym x≈y) y<z
≤-respʳ-≈ : Transitive _≈_ → _<_ Respectsʳ _≈_ → _≤_ Respectsʳ _≈_
≤-respʳ-≈ trans respʳ y'≈y (inj₁ x<y') = inj₁ (respʳ y'≈y x<y')
≤-respʳ-≈ trans respʳ y'≈y (inj₂ x≈y') = inj₂ (trans x≈y' y'≈y)
≤-respˡ-≈ : Symmetric _≈_ → Transitive _≈_ → _<_ Respectsˡ _≈_ → _≤_ Respectsˡ _≈_
≤-respˡ-≈ sym trans respˡ x'≈x (inj₁ x'<y) = inj₁ (respˡ x'≈x x'<y)
≤-respˡ-≈ sym trans respˡ x'≈x (inj₂ x'≈y) = inj₂ (trans (sym x'≈x) x'≈y)
≤-resp-≈ : IsEquivalence _≈_ → _<_ Respects₂ _≈_ → _≤_ Respects₂ _≈_
≤-resp-≈ eq (respʳ , respˡ) = ≤-respʳ-≈ Eq.trans respʳ , ≤-respˡ-≈ Eq.sym Eq.trans respˡ
where module Eq = IsEquivalence eq
total : Trichotomous _≈_ _<_ → Total _≤_
total <-tri x y with <-tri x y
... | tri< x<y x≉y x≯y = inj₁ (inj₁ x<y)
... | tri≈ x≮y x≈y x≯y = inj₁ (inj₂ x≈y)
... | tri> x≮y x≉y x>y = inj₂ (inj₁ x>y)
decidable : Decidable _≈_ → Decidable _<_ → Decidable _≤_
decidable ≈-dec <-dec x y with ≈-dec x y | <-dec x y
... | yes x≈y | _ = yes (inj₂ x≈y)
... | no x≉y | yes x<y = yes (inj₁ x<y)
... | no x≉y | no x≮y = no [ x≮y , x≉y ]′
decidable' : Trichotomous _≈_ _<_ → Decidable _≤_
decidable' compare x y with compare x y
... | tri< x<y _ _ = yes (inj₁ x<y)
... | tri≈ _ x≈y _ = yes (inj₂ x≈y)
... | tri> x≮y x≉y _ = no [ x≮y , x≉y ]′
------------------------------------------------------------------------
-- Converting structures
isPreorder₁ : IsPreorder _≈_ _<_ → IsPreorder _≈_ _≤_
isPreorder₁ PO = record
{ isEquivalence = S.isEquivalence
; reflexive = reflexive
; trans = trans S.isEquivalence S.∼-resp-≈ S.trans
}
where module S = IsPreorder PO
isPreorder₂ : IsStrictPartialOrder _≈_ _<_ → IsPreorder _≈_ _≤_
isPreorder₂ SPO = record
{ isEquivalence = S.isEquivalence
; reflexive = reflexive
; trans = trans S.isEquivalence S.<-resp-≈ S.trans
}
where module S = IsStrictPartialOrder SPO
isPartialOrder : IsStrictPartialOrder _≈_ _<_ → IsPartialOrder _≈_ _≤_
isPartialOrder SPO = record
{ isPreorder = isPreorder₂ SPO
; antisym = antisym S.isEquivalence S.trans S.irrefl
}
where module S = IsStrictPartialOrder SPO
isTotalOrder : IsStrictTotalOrder _≈_ _<_ → IsTotalOrder _≈_ _≤_
isTotalOrder STO = record
{ isPartialOrder = isPartialOrder S.isStrictPartialOrder
; total = total S.compare
}
where module S = IsStrictTotalOrder STO
isDecTotalOrder : IsStrictTotalOrder _≈_ _<_ → IsDecTotalOrder _≈_ _≤_
isDecTotalOrder STO = record
{ isTotalOrder = isTotalOrder STO
; _≟_ = S._≟_
; _≤?_ = decidable' S.compare
}
where module S = IsStrictTotalOrder STO
|
{
"alphanum_fraction": 0.5866230313,
"avg_line_length": 33.2585034014,
"ext": "agda",
"hexsha": "3815980be349b86c2fb4d628b8584cf57c463c6e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/StrictToNonStrict.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/StrictToNonStrict.agda",
"max_line_length": 88,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/StrictToNonStrict.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1952,
"size": 4889
}
|
record R : Set₂ where
field
f : Set₁
f : Set → R
f .R.f = Set
|
{
"alphanum_fraction": 0.5362318841,
"avg_line_length": 9.8571428571,
"ext": "agda",
"hexsha": "b4c7d64728a8c673e6a56f1cbfa8ab3449a1a928",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2928.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2928.agda",
"max_line_length": 21,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2928.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 29,
"size": 69
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- An explanation about how to use the solver in Tactic.MonoidSolver.
------------------------------------------------------------------------
open import Algebra
module README.Tactic.MonoidSolver {a ℓ} (M : Monoid a ℓ) where
open Monoid M
open import Data.Nat as Nat using (ℕ; suc; zero; _+_)
open import Data.Nat.Properties as Properties using (+-0-monoid; +-comm)
open import Relation.Binary.Reasoning.Setoid setoid
open import Tactic.MonoidSolver using (solve; solve-macro)
-- The monoid solver is capable to of solving equations without having
-- to specify the equation itself in the proof.
example₁ : ∀ x y z → (x ∙ y) ∙ z ≈ x ∙ (y ∙ z) ∙ ε
example₁ x y z = solve M
-- The solver can also be used in equational reasoning.
example₂ : ∀ w x y z → w ≈ x → (w ∙ y) ∙ z ≈ x ∙ (y ∙ z) ∙ ε
example₂ w x y z w≈x = begin
(w ∙ y) ∙ z ≈⟨ ∙-congʳ (∙-congʳ w≈x) ⟩
(x ∙ y) ∙ z ≈⟨ solve M ⟩
x ∙ (y ∙ z) ∙ ε ∎
|
{
"alphanum_fraction": 0.5571705426,
"avg_line_length": 32.25,
"ext": "agda",
"hexsha": "530091bc97a85a9a89d7ea42e5b5aa52ffa5ca10",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/README/Tactic/MonoidSolver.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/README/Tactic/MonoidSolver.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/README/Tactic/MonoidSolver.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 326,
"size": 1032
}
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import Optics.All
open import LibraBFT.Prelude
open import LibraBFT.Lemmas
open import LibraBFT.Base.KVMap
open import LibraBFT.Base.PKCS
open import LibraBFT.Impl.Base.Types
open import LibraBFT.Impl.NetworkMsg
open import LibraBFT.Impl.Consensus.Types
open import LibraBFT.Impl.Util.Crypto
open import LibraBFT.Impl.Handle
open import LibraBFT.Impl.Handle.Properties
open import LibraBFT.Concrete.System.Parameters
open import LibraBFT.Concrete.System
open EpochConfig
open import LibraBFT.Yasm.Types
open import LibraBFT.Yasm.Yasm ℓ-RoundManager ℓ-VSFP ConcSysParms PeerCanSignForPK (λ {st} {part} {pk} → PeerCanSignForPK-stable {st} {part} {pk})
-- In this module, we define two "implementation obligations"
-- (ImplObligationᵢ for i ∈ {1 , 2}), which are predicates over
-- reachable states of a system defined by
-- 'LibraBFT.Concrete.System.Parameters'. These two properties relate
-- votes sent by the same sender, ensuring that if they are for the
-- same epoch and round, then they vote for the same blockID; the
-- first relates a vote output by the handler to a vote sent
-- previously, and the second relates two votes both sent by the
-- handler.
--
-- We then prove that, if an implementation satisfies these two
-- semantic obligations, along with a structural one about messages
-- sent by honest peers in the implementation, then the implemenation
-- satisfies the LibraBFT.Abstract.Properties.VotesOnce invariant.
module LibraBFT.Concrete.Properties.VotesOnce where
-- TODO-3: This may not be the best way to state the implementation obligation. Why not reduce
-- this as much as possible before giving the obligation to the implementation? For example, this
-- will still require the implementation to deal with hash collisons (v and v' could be different,
-- but yield the same bytestring and therefore same signature). Also, avoid the need for the
-- implementation to reason about messages sent by step-cheat, or give it something to make this
-- case easy to eliminate.
ImplObligation₁ : Set (ℓ+1 ℓ-RoundManager)
ImplObligation₁ =
∀{pid pid' s' outs pk}{pre : SystemState}
→ ReachableSystemState pre
-- For any honest call to /handle/ or /init/,
→ (sps : StepPeerState pid (msgPool pre) (initialised pre) (peerStates pre pid) (s' , outs))
→ ∀{v m v' m'} → Meta-Honest-PK pk
-- For signed every vote v of every outputted message
→ v ⊂Msg m → send m ∈ outs
→ (sig : WithVerSig pk v) → ¬ (∈GenInfo (ver-signature sig))
-- If v is really new and valid
→ ¬ (MsgWithSig∈ pk (ver-signature sig) (msgPool pre)) → PeerCanSignForPK (StepPeer-post {pre = pre} (step-honest sps)) v pid pk
-- And if there exists another v' that has been sent before
→ v' ⊂Msg m' → (pid' , m') ∈ (msgPool pre)
→ (sig' : WithVerSig pk v') → ¬ (∈GenInfo (ver-signature sig'))
-- If v and v' share the same epoch and round
→ v ^∙ vEpoch ≡ v' ^∙ vEpoch
→ v ^∙ vRound ≡ v' ^∙ vRound
----------------------------------------------------------
-- Then an honest implemenation promises v and v' vote for the same blockId.
→ v ^∙ vProposedId ≡ v' ^∙ vProposedId
ImplObligation₂ : Set (ℓ+1 ℓ-RoundManager)
ImplObligation₂ =
∀{pid s' outs pk}{pre : SystemState}
→ ReachableSystemState pre
-- For any honest call to /handle/ or /init/,
→ (sps : StepPeerState pid (msgPool pre) (initialised pre) (peerStates pre pid) (s' , outs))
→ ∀{v m v' m'}
→ Meta-Honest-PK pk
-- For every vote v represented in a message output by the call
→ v ⊂Msg m → send m ∈ outs
→ (sig : WithVerSig pk v) → ¬ (∈GenInfo (ver-signature sig))
-- If v is really new and valid
→ ¬ (MsgWithSig∈ pk (ver-signature sig) (msgPool pre)) → PeerCanSignForPK (StepPeer-post {pre = pre} (step-honest sps)) v pid pk
-- And if there exists another v' that is also new and valid
→ v' ⊂Msg m' → send m' ∈ outs
→ (sig' : WithVerSig pk v') → ¬ (∈GenInfo (ver-signature sig'))
→ ¬ (MsgWithSig∈ pk (ver-signature sig') (msgPool pre)) → PeerCanSignForPK (StepPeer-post {pre = pre} (step-honest sps)) v' pid pk
-- If v and v' share the same epoch and round
→ v ^∙ vEpoch ≡ v' ^∙ vEpoch
→ v ^∙ vRound ≡ v' ^∙ vRound
----------------------------------------------------------
-- Then, an honest implemenation promises v and v' vote for the same blockId.
→ v ^∙ vProposedId ≡ v' ^∙ vProposedId
-- Next, we prove that, given the necessary obligations,
module Proof
(sps-corr : StepPeerState-AllValidParts)
(Impl-VO1 : ImplObligation₁)
(Impl-VO2 : ImplObligation₂)
where
-- Any reachable state satisfies the VO rule for any epoch in the system.
module _ (st : SystemState)(r : ReachableSystemState st)(𝓔 : EpochConfig) where
open Structural sps-corr
-- Bring in IntSystemState
open WithSPS sps-corr
open PerState st r
open PerEpoch 𝓔
open import LibraBFT.Concrete.Obligations.VotesOnce 𝓔 (ConcreteVoteEvidence 𝓔) as VO
-- The VO proof is done by induction on the execution trace leading to 'st'. In
-- Agda, this is 'r : RechableSystemState st' above.
private
-- From this point onwards, it might be easier to read this proof starting at 'voo'
-- at the end of the file. Next, we provide an overview the proof.
--
-- We wish to prove that, for any two votes v and v' cast by an honest α in the message
-- pool of a state st, if v and v' have equal rounds and epochs, then they vote for the
-- same block.
--
-- The base case and the case for a new epoch in the system are trivial. For the base case
-- we get to a contradiction because it's not possible to have any message in the msgpool.
--
-- Regarding the PeerStep case. The induction hypothesis tells us that the property holds
-- in the pre-state. Next, we reason about the post-state. We start by analyzing whether
-- v and v' have been sent as outputs of the PeerStep under scrutiny or were already in
-- the pool before.
--
-- There are four possibilities:
--
-- i) v and v' were aleady present in the msgPool before: use induction hypothesis.
-- ii) v and v' are both in the output produced by the PeerStep under scrutiny.
-- iii) v was present before, but v' is new.
-- iv) v' was present before, but v is new.
--
-- In order to obtain this four possiblities we invoke newMsg⊎msgSent4 lemma, which
-- receives proof that some vote is in a message that is in the msgPool of the post state
-- and returns evidence that either the vote is new or that some message with the same
-- signature was sent before.
--
-- Case (i) is trivial; cases (iii) and (iv) are symmetric and reduce to an implementation
-- obligation (Impl-VO1) and case (ii) reduces to a different implementation obligation
-- (Impl-VO2).
VotesOnceProof :
∀ {v v' pk} {st : SystemState}
→ ReachableSystemState st
→ Meta-Honest-PK pk
→ (vv : WithVerSig pk v) → MsgWithSig∈ pk (ver-signature vv) (msgPool st)
→ (vv' : WithVerSig pk v') → MsgWithSig∈ pk (ver-signature vv') (msgPool st)
→ v ^∙ vEpoch ≡ v' ^∙ vEpoch
→ v ^∙ vRound ≡ v' ^∙ vRound
→ v ^∙ vProposedId ≡ v' ^∙ vProposedId
VotesOnceProof step-0 _ _ msv _ _ _ _ = ⊥-elim (¬Any[] (msg∈pool msv))
VotesOnceProof {v} {v'} (step-s r theStep) pkH vv msv vv' msv' eid≡ r≡
with msgSameSig msv | msgSameSig msv'
...| refl | refl
with sameSig⇒sameVoteDataNoCol (msgSigned msv) vv (msgSameSig msv )
| sameSig⇒sameVoteDataNoCol (msgSigned msv') vv' (msgSameSig msv')
...| refl | refl
with ∈GenInfo? (₋vSignature (msgPart msv)) | ∈GenInfo? (₋vSignature (msgPart msv'))
...| yes init | yes init' = genVotesConsistent (msgPart msv) (msgPart msv') init init'
-- A signature in GenInfo is for a vote with round 0, and a signature for which we have a
-- MsgWithSig∈ that is not in GenInfo and is for an honest PK is for a round ≢ 0, so we can
-- derive a contradiction using r≡.
...| yes init | no ¬init = ⊥-elim (¬genVotesRound≢0 (step-s r theStep) pkH msv' ¬init ((trans (sym r≡) (genVotesRound≡0 vv init))))
...| no ¬init | yes init = ⊥-elim (¬genVotesRound≢0 (step-s r theStep) pkH msv ¬init ((trans r≡ (genVotesRound≡0 vv' init))))
...| no ¬init | no ¬init'
with theStep
...| step-peer cheat@(step-cheat c)
with ¬cheatForgeNew cheat refl unit pkH msv ¬init
| ¬cheatForgeNew cheat refl unit pkH msv' ¬init'
...| msb4 | m'sb4
with msgSameSig msb4 | msgSameSig m'sb4
...| refl | refl = VotesOnceProof r pkH vv msb4 vv' m'sb4 eid≡ r≡
VotesOnceProof (step-s r theStep) pkH vv msv vv' msv' eid≡ r≡
| refl | refl
| refl | refl
| no ¬init | no ¬init'
| step-peer (step-honest stPeer)
with newMsg⊎msgSentB4 r stPeer pkH (msgSigned msv) ¬init (msg⊆ msv) (msg∈pool msv)
| newMsg⊎msgSentB4 r stPeer pkH (msgSigned msv') ¬init' (msg⊆ msv') (msg∈pool msv')
...| inj₂ msb4 | inj₂ m'sb4
= VotesOnceProof r pkH vv msb4 vv' m'sb4 eid≡ r≡
...| inj₁ (m∈outs , vspk , newV) | inj₁ (m'∈outs , v'spk , newV')
= Impl-VO2 r stPeer pkH (msg⊆ msv) m∈outs (msgSigned msv) ¬init newV vspk
(msg⊆ msv') m'∈outs (msgSigned msv') ¬init' newV' v'spk eid≡ r≡
...| inj₁ (m∈outs , vspk , newV) | inj₂ m'sb4
with sameSig⇒sameVoteData (msgSigned m'sb4) vv' (msgSameSig m'sb4)
...| inj₁ hb = ⊥-elim (meta-sha256-cr hb)
...| inj₂ refl rewrite sym (msgSameSig msv')
= Impl-VO1 r stPeer pkH (msg⊆ msv) m∈outs (msgSigned msv) ¬init newV vspk
(msg⊆ m'sb4) (msg∈pool m'sb4) (msgSigned m'sb4) (¬subst ¬init' (msgSameSig m'sb4)) eid≡ r≡
VotesOnceProof (step-s r theStep) pkH vv msv vv' msv' eid≡ r≡
| refl | refl
| refl | refl
| no ¬init | no ¬init'
| step-peer (step-honest stPeer)
| inj₂ msb4 | inj₁ (m'∈outs , v'spk , newV')
with sameSig⇒sameVoteData (msgSigned msb4) vv (msgSameSig msb4)
...| inj₁ hb = ⊥-elim (meta-sha256-cr hb)
...| inj₂ refl
= sym (Impl-VO1 r stPeer pkH (msg⊆ msv') m'∈outs (msgSigned msv') ¬init' newV' v'spk
(msg⊆ msb4) (msg∈pool msb4) (msgSigned msb4) (¬subst ¬init (msgSameSig msb4)) (sym eid≡) (sym r≡))
voo : VO.Type IntSystemState
voo hpk refl sv refl sv' round≡
with vmsg≈v (vmFor sv) | vmsg≈v (vmFor sv')
...| refl | refl
= let ver = vmsgSigned (vmFor sv)
mswsv = mkMsgWithSig∈ (nm (vmFor sv)) (cv (vmFor sv)) (cv∈nm (vmFor sv))
_ (nmSentByAuth sv) (vmsgSigned (vmFor sv)) refl
ver' = vmsgSigned (vmFor sv')
mswsv' = mkMsgWithSig∈ (nm (vmFor sv')) (cv (vmFor sv')) (cv∈nm (vmFor sv'))
_ (nmSentByAuth sv') (vmsgSigned (vmFor sv')) refl
epoch≡ = trans (vmsgEpoch (vmFor sv)) (sym (vmsgEpoch (vmFor sv')))
in VotesOnceProof r hpk ver mswsv ver' mswsv' epoch≡ round≡
|
{
"alphanum_fraction": 0.644561867,
"avg_line_length": 50.4666666667,
"ext": "agda",
"hexsha": "5903026568cb11255c60d117dc35ff26299aea13",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "cwjnkins/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Concrete/Properties/VotesOnce.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "cwjnkins/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Concrete/Properties/VotesOnce.agda",
"max_line_length": 146,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "cwjnkins/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Concrete/Properties/VotesOnce.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3645,
"size": 11355
}
|
-- exercises-04-thursday.agda
open import mylib
-- 1. Coinduction
{-
Now your task is to define multiplication _*∞_ for conatural numbers.
This is harder then it sounds. Why? Because to check termination of
corecursive programs agda needs to make sure that if you want to find out a
finite amout of information about the result of the function it only needs a
finite amount of information about its inputs. Such a function is called
productive. And agda isn't very clever in figuring this out, it has to be
obvious from the program (similar as structural recursion has to be
obviously structural).
You should *not* use the TERMINATING pragma in your solution.
But it may be useful for experiments.
_*_ : ℕ → ℕ → ℕ
zero * n = zero
suc m * n = n + m * n
-}
{-
_*∞_ : ℕ∞ → ℕ∞ → ℕ∞
m *∞ n = {!!}
-}
aux : ℕ∞ → ℕ∞ → ℕ∞ → ℕ∞ -- aux l m n = l +∞ (m *∞ n)
pred∞ (aux l m n) with pred∞ l
pred∞ (aux l m n) | nothing with pred∞ m
pred∞ (aux l m n) | nothing | nothing = nothing
pred∞ (aux l m n) | nothing | just m' with pred∞ n
pred∞ (aux l m n) | nothing | just m' | nothing = nothing
pred∞ (aux l m n) | nothing | just m' | just n' = just (aux n' m' n)
pred∞ (aux l m n) | just l' = just (aux l' m n)
{-# TERMINATING #-}
_*∞_ : ℕ∞ → ℕ∞ → ℕ∞
m *∞ n = aux zero∞ m n
{-
pred∞ (m *∞ n) with pred∞ m
... | nothing = nothing
... | just m' with pred∞ n
... | nothing = nothing
... | just n' = just (n' +∞ (m' *∞ n))
-}
{-
with pred∞ m
...| nothing = zero∞
...| just m' with pred∞ n
...| nothing = zero∞
...| just n' = n' +∞ (m' *∞ n)
-}
-- pred∞ (∞ *∞ zero∞) = nothing
-- here are some testing tools
ℕ→ℕ∞ : ℕ → ℕ∞
ℕ→ℕ∞ zero = zero∞
ℕ→ℕ∞ (suc n) = suc∞ (ℕ→ℕ∞ n)
{-# TERMINATING #-} -- a lie
-- this function is a cheat - it doesn't terminate for ∞
ℕ∞→ℕ : ℕ∞ → ℕ
ℕ∞→ℕ n with pred∞ n
ℕ∞→ℕ n | nothing = 0
ℕ∞→ℕ n | just n' = suc (ℕ∞→ℕ n')
-- My unit-test
x3*5 = ℕ∞→ℕ (ℕ→ℕ∞ 3 *∞ ℕ→ℕ∞ 5)
-- 2. Dependent types Fin
{-
Define the following operations on Fin
- max returns the largest element in Fin (suc n)
- emb embeds Fin n into Fin (suc n) without changing its values
- inv inverts the order of elements in Fin n
-}
max : (n : ℕ) → Fin (suc n)
max zero = zero
max (suc n) = suc (max n)
emb : {n : ℕ} → Fin n → Fin (suc n)
emb zero = zero
emb (suc m) = suc (emb m)
inv : {n : ℕ} → Fin n → Fin n
inv zero = max _
inv (suc i) = emb (inv i)
-- 2. Dependent types : Vec
Vector : ℕ → Set {- Vec n is an n-dimensional vector -}
Vector m = Vec ℕ m
Matrix : ℕ → ℕ → Set {- Matrix m n is an m x n Matrix -}
Matrix m n = Vec (Vector n) m
m3 : Matrix 3 3
m3 = (1 ∷ 2 ∷ 3 ∷ [])
∷ (4 ∷ 5 ∷ 6 ∷ [])
∷ (7 ∷ 8 ∷ 9 ∷ [])
∷ []
m4 : Matrix 3 2
m4 = (1 ∷ 2 ∷ [])
∷ (4 ∷ 5 ∷ [])
∷ (7 ∷ 8 ∷ [])
∷ []
-- Define the operation transpose which switches columns and rows.
-- Applicative functor, Vec _ n is an applicative functor
-- mapVec : (A → B) → Vec A n → Vec B n
-- return : A → Vec A n
-- app : Vec (A → B) n → Vec A n → Vec B n
-- mapVec f as = app (return f) as
return : {A : Set}{n : ℕ} → A → Vec A n
return {n = zero} a = []
return {n = suc m} a = a ∷ return {n = m} a
app : {A B : Set}{n : ℕ} → Vec (A → B) n → Vec A n → Vec B n
app [] [] = []
app (a2b ∷ a2bs) (a ∷ as) = a2b a ∷ app a2bs as
transpose : {m n : ℕ} → Matrix m n → Matrix n m
transpose [] = return []
transpose (ns ∷ mns) = app (app (return _∷_) ns) (transpose mns)
{-
transpose : {m n : ℕ} → Matrix m n → Matrix n m
transpose [] = {!!} -- [ [] , [] , [] ] m empty rows
transpose (ns ∷ mns) = {!transpose mns!}
-}
-- if ns = [1 , 2 , 3]
-- transpose mns = [ns1 , ns2 , ns3] => [1 ∷ ns1 , 2 ∷ ns2 , 3 ∷ ns3]
test8 : Matrix 2 3
test8 = transpose m4
test9 : Matrix 3 3
test9 = transpose m3
|
{
"alphanum_fraction": 0.5603402446,
"avg_line_length": 25.5918367347,
"ext": "agda",
"hexsha": "bc856e22366d175a99d9f5e8e00ac46eca63957e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f328e596d98a7d052b34144447dd14de0f57e534",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "FoxySeta/mgs-2021",
"max_forks_repo_path": "Type Theory/exercises-04-thursday.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "f328e596d98a7d052b34144447dd14de0f57e534",
"max_issues_repo_issues_event_max_datetime": "2021-07-14T20:35:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-07-14T20:34:53.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "FoxySeta/mgs-2021",
"max_issues_repo_path": "Type Theory/exercises-04-thursday.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f328e596d98a7d052b34144447dd14de0f57e534",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "FoxySeta/mgs-2021",
"max_stars_repo_path": "Type Theory/exercises-04-thursday.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1492,
"size": 3762
}
|
module Async where
open import Data.Fin
open import Data.List hiding (drop)
open import Data.List.All
open import Typing renaming (send to ssend ; recv to srecv)
open import Syntax
open import Values
-- an asynchronous channel is a promise for a channel
ASession DSession : STypeF SType → STypeF SType
ASession s = srecv (TChan s) (delay send!)
DSession s = dualF (ASession s)
AChan DChan : STypeF SType → Type
AChan s = TChan (ASession s)
DChan s = TChan (DSession s)
Promise : (s : SType) → Type
Promise s = TPair (AChan (SType.force s)) (DChan (SType.force s))
new-promise : ∀ {Φ} → All Unr Φ → (s : SType) → Expr Φ (Promise s)
new-promise unr-Φ s = new unr-Φ (delay (ASession (SType.force s)))
-- create an async channel
anew : ∀ {Φ}
→ (unr-Φ : All Unr Φ)
→ (s : SType)
→ Expr Φ (TPair (AChan (SType.force s)) (AChan (SType.force (dual s))))
anew unr-Φ s =
letbind (split-all-unr unr-Φ) (new unr-Φ s)
(letpair (left (split-all-unr unr-Φ)) (here unr-Φ)
(letbind (rght (rght (split-all-unr unr-Φ))) (new-promise unr-Φ s)
(letpair (left (rght (rght (split-all-unr unr-Φ)))) (here unr-Φ)
(letbind (rght (rght (rght (rght (split-all-unr unr-Φ))))) (new-promise unr-Φ (dual s))
(letpair (left (rght (rght (rght (rght (split-all-unr unr-Φ)))))) (here unr-Φ)
(letbind (rght (rght (rght (left (left (rght (split-all-unr unr-Φ)))))))
(fork (letbind (left (left (split-all-unr unr-Φ))) (send (left (rght (split-all-unr unr-Φ))) (here unr-Φ) (here unr-Φ))
(wait (here unr-Φ))))
(letbind (drop UUnit (rght (left (rght (left (split-all-unr unr-Φ))))))
(fork (letbind (left (left (split-all-unr unr-Φ))) (send (left (rght (split-all-unr unr-Φ))) (here unr-Φ) (here unr-Φ))
(wait (here unr-Φ))))
(pair (drop UUnit (rght (left (split-all-unr unr-Φ))))
(here unr-Φ) (here unr-Φ)))))))))
asend : ∀ {Φ Φ₁ Φ₂ s t}
→ (sp : Split Φ Φ₁ Φ₂)
→ (ch : (AChan (ssend t s)) ∈ Φ₁)
→ (vt : t ∈ Φ₂)
→ Expr Φ (AChan (SType.force s))
asend {Φ} {s = s} sp ch vt =
letbind (split-all-right Φ) (new-promise [] s)
(letpair (left (split-all-right Φ)) (here [])
(letbind (rght (left (split-all-left Φ)))
-- read actual channel & actual send & send depleted channel & close
(fork (letbind (rght sp) (recv ch)
(letpair (left (split-all-right _)) (here [])
(letbind (left (split-all-right _)) (close (here []))
(letbind (drop UUnit (left (rght (split-all-left _)))) (send (left (split-all-right _)) (here []) vt)
(letbind (left (left [])) (send (rght (left [])) (here []) (here []))
(letbind (left []) (wait (here []))
(var (here [])))))))))
(var (there UUnit (here [])))))
-- receive is a blocking operation!
arecv : ∀ {Φ s t}
→ (ch : (AChan (srecv t s)) ∈ Φ)
→ Expr Φ (TPair (AChan (SType.force s)) t)
arecv {s = s} ch =
letbind (split-all-right _) (new-promise [] s)
(letpair (left (split-all-right _)) (here [])
(letbind (rght (rght (split-all-left _))) (recv ch)
(letpair (left (rght (rght (split-all-right _)))) (here [])
(letbind (left (rght (rght (rght [])))) (close (here []))
(letbind (drop UUnit (left (rght (rght [])))) (recv (here []))
(letpair (left (rght (rght []))) (here [])
(letbind (left (rght (rght (left []))))
(fork (letbind (left (left []))
(send (rght (left [])) (here []) (here []))
(wait (here []))))
(pair (drop UUnit (rght (left []))) (here []) (here [])))))))))
aclose : ∀ {Φ}
→ (ch : AChan send! ∈ Φ)
→ Expr Φ TUnit
aclose ch =
fork (letbind (split-all-left _) (recv ch)
(letpair (left []) (here [])
(letbind (left (rght [])) (close (here []))
(close (there UUnit (here []))))))
await : ∀ {Φ}
→ (ch : AChan send? ∈ Φ)
→ Expr Φ TUnit
await ch =
fork (letbind (split-all-left _) (recv ch)
(letpair (left []) (here [])
(letbind (left (rght [])) (close (here []))
(wait (there UUnit (here []))))))
anselect : ∀ {Φ m alt}
→ (lab : Fin m)
→ (ch : AChan (sintN m alt) ∈ Φ)
→ Expr Φ (AChan (SType.force (alt lab)))
anselect {alt = alt} lab ch =
letbind (split-all-right _)
(new-promise [] (alt lab))
(letpair (left (split-all-right _)) (here [])
(letbind (rght (left (split-all-left _)))
(fork (letbind (rght (split-all-left _)) (recv ch)
(letpair (left (rght [])) (here [])
(letbind (left (rght (rght []))) (close (here []))
(letbind (drop UUnit (left (rght []))) (nselect lab (here []))
(letbind (left (left [])) (send (rght (left [])) (here []) (here []))
(wait (here []))))))))
(var (there UUnit (here [])))))
-- branching is a blocking operation!
anbranch : ∀ {Φ m alt Φ₁ Φ₂ t}
→ (sp : Split Φ Φ₁ Φ₂)
→ (ch : AChan (sextN m alt) ∈ Φ₁)
→ (ealts : (i : Fin m) → Expr (AChan (SType.force (alt i)) ∷ Φ₂) t)
→ Expr Φ t
anbranch{alt = alt} sp ch ealts =
letbind sp (recv ch)
(letpair (left (split-all-right _)) (here [])
(letbind (left (split-all-right _)) (close (here []))
(nbranch (drop UUnit (left (split-all-right _))) (here [])
(λ i → letbind (split-all-right _) (new-promise [] (alt i))
(letpair (left (split-all-right _)) (here [])
(letbind (rght (left (left (split-all-right _))))
(fork (letbind (left (left [])) (send (left (rght [])) (here []) (here []))
(wait (here []))))
(letbind (drop UUnit (left (split-all-right _))) (var (here []))
(ealts i))))))))
|
{
"alphanum_fraction": 0.5411558669,
"avg_line_length": 41.3768115942,
"ext": "agda",
"hexsha": "8fc9e8f7868d8efff6a5ffb3ce03d7230bfb5c40",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "peterthiemann/definitional-session",
"max_forks_repo_path": "src/Async.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "peterthiemann/definitional-session",
"max_issues_repo_path": "src/Async.agda",
"max_line_length": 130,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "peterthiemann/definitional-session",
"max_stars_repo_path": "src/Async.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-18T08:10:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-19T16:33:27.000Z",
"num_tokens": 1979,
"size": 5710
}
|
module Sessions.Semantics where
|
{
"alphanum_fraction": 0.875,
"avg_line_length": 16,
"ext": "agda",
"hexsha": "a807776e63d21292fbe13445fd399d1c061e064c",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z",
"max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "laMudri/linear.agda",
"max_forks_repo_path": "src/Sessions/Semantics.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "laMudri/linear.agda",
"max_issues_repo_path": "src/Sessions/Semantics.agda",
"max_line_length": 31,
"max_stars_count": 34,
"max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "laMudri/linear.agda",
"max_stars_repo_path": "src/Sessions/Semantics.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z",
"num_tokens": 7,
"size": 32
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.Functor.Monoidal.Properties where
open import Level
open import Data.Product using (_,_)
open import Categories.Category
open import Categories.Category.Monoidal
open import Categories.Category.Cartesian.Structure
open import Categories.Functor renaming (id to idF)
open import Categories.Functor.Properties
open import Categories.Functor.Cartesian
open import Categories.Functor.Monoidal
open import Categories.Functor.Monoidal.Braided as Braided
open import Categories.Functor.Monoidal.Symmetric as Symmetric
open import Categories.NaturalTransformation
import Categories.Object.Terminal as ⊤
import Categories.Object.Product as P
import Categories.Morphism as M
import Categories.Morphism.Reasoning as MR
private
variable
o o′ o″ ℓ ℓ′ ℓ″ e e′ e″ : Level
-- The identity functor is monoidal
module _ (C : MonoidalCategory o ℓ e) where
private
module C = MonoidalCategory C
open C.HomReasoning
open M C.U
open MR C.U
idF-IsStrongMonoidal : IsStrongMonoidalFunctor C C idF
idF-IsStrongMonoidal = record
{ ε = ≅.refl
; ⊗-homo = record
{ F⇒G = record
{ η = λ _ → C.id
; commute = λ _ → id-comm-sym
; sym-commute = λ _ → id-comm
}
; F⇐G = record
{ η = λ _ → C.id
; commute = λ _ → id-comm-sym
; sym-commute = λ _ → id-comm
}
; iso = λ _ → record
{ isoˡ = C.identity²
; isoʳ = C.identity²
}
}
; associativity = begin
C.associator.from C.∘ C.id C.∘ Functor.F₁ C.⊗ (C.id , C.id) ≈⟨ refl⟩∘⟨ elimʳ C.⊗.identity ⟩
C.associator.from C.∘ C.id ≈⟨ id-comm ⟩
C.id C.∘ C.associator.from ≈⟨ refl⟩∘⟨ introˡ C.⊗.identity ⟩
C.id C.∘ Functor.F₁ C.⊗ (C.id , C.id) C.∘ C.associator.from ∎
; unitaryˡ = elimʳ (elimʳ C.⊗.identity)
; unitaryʳ = elimʳ (elimʳ C.⊗.identity)
}
idF-IsMonoidal : IsMonoidalFunctor C C idF
idF-IsMonoidal = IsStrongMonoidalFunctor.isMonoidal idF-IsStrongMonoidal
idF-StrongMonoidal : StrongMonoidalFunctor C C
idF-StrongMonoidal = record { isStrongMonoidal = idF-IsStrongMonoidal }
idF-Monoidal : MonoidalFunctor C C
idF-Monoidal = record { isMonoidal = idF-IsMonoidal }
-- The identity functor is braided monoidal
module _ (C : BraidedMonoidalCategory o ℓ e) where
open Braided
idF-IsStrongBraidedMonoidal : Strong.IsBraidedMonoidalFunctor C C idF
idF-IsStrongBraidedMonoidal = record
{ isStrongMonoidal = idF-IsStrongMonoidal monoidalCategory
; braiding-compat = MR.id-comm U
}
where open BraidedMonoidalCategory C
idF-IsBraidedMonoidal : Lax.IsBraidedMonoidalFunctor C C idF
idF-IsBraidedMonoidal =
Strong.IsBraidedMonoidalFunctor.isLaxBraidedMonoidal idF-IsStrongBraidedMonoidal
idF-StrongBraidedMonoidal : Strong.BraidedMonoidalFunctor C C
idF-StrongBraidedMonoidal = record { isBraidedMonoidal = idF-IsStrongBraidedMonoidal }
idF-BraidedMonoidal : Lax.BraidedMonoidalFunctor C C
idF-BraidedMonoidal = record { isBraidedMonoidal = idF-IsBraidedMonoidal }
-- The identity functor is symmetric monoidal
module _ (C : SymmetricMonoidalCategory o ℓ e) where
open Symmetric
open SymmetricMonoidalCategory C using (braidedMonoidalCategory)
idF-StrongSymmetricMonoidal : Strong.SymmetricMonoidalFunctor C C
idF-StrongSymmetricMonoidal = record
{ isBraidedMonoidal = idF-IsStrongBraidedMonoidal braidedMonoidalCategory }
idF-SymmetricMonoidal : Lax.SymmetricMonoidalFunctor C C
idF-SymmetricMonoidal = record
{ isBraidedMonoidal = idF-IsBraidedMonoidal braidedMonoidalCategory }
-- Functor composition preserves monoidality
module _ (A : MonoidalCategory o ℓ e) (B : MonoidalCategory o′ ℓ′ e′) (C : MonoidalCategory o″ ℓ″ e″) where
private
module A = MonoidalCategory A
module B = MonoidalCategory B
module C = MonoidalCategory C
open P C.U
open M C.U
open C.HomReasoning
open MR C.U
∘-IsMonoidal : ∀ {F : Functor A.U B.U} {G : Functor B.U C.U} →
IsMonoidalFunctor B C G → IsMonoidalFunctor A B F →
IsMonoidalFunctor A C (G ∘F F)
∘-IsMonoidal {F} {G} CG CF = record
{ ε = G.₁ CF.ε C.∘ CG.ε
; ⊗-homo = ntHelper record
{ η = λ { (X , Y) → G.₁ (CF.⊗-homo.η (X , Y)) C.∘ CG.⊗-homo.η (F.F₀ X , F.F₀ Y) }
; commute = λ { (f , g) → begin
(G.₁ (CF.⊗-homo.η _) C.∘ CG.⊗-homo.η _) C.∘ (G.₁ (F.₁ f) C.⊗₁ G.₁ (F.₁ g)) ≈⟨ C.assoc ⟩
G.₁ (CF.⊗-homo.η _) C.∘ CG.⊗-homo.η _ C.∘ (G.₁ (F.₁ f) C.⊗₁ G.₁ (F.₁ g)) ≈⟨ pushʳ (CG.⊗-homo.commute _) ⟩
(G.₁ (CF.⊗-homo.η _) C.∘ G.₁ (F.₁ f B.⊗₁ F.₁ g)) C.∘ CG.⊗-homo.η _ ≈⟨ pushˡ ([ G ]-resp-square (CF.⊗-homo.commute _)) ⟩
G.₁ (F.₁ (f A.⊗₁ g)) C.∘ G.₁ (CF.⊗-homo.η _) C.∘ CG.⊗-homo.η _ ∎ }
}
; associativity = begin
G.₁ (F.₁ A.associator.from) C.∘ (G.₁ (CF.⊗-homo.η _) C.∘ CG.⊗-homo.η _) C.∘ ((G.₁ (CF.⊗-homo.η _) C.∘ CG.⊗-homo.η _) C.⊗₁ C.id)
≈⟨ refl⟩∘⟨ refl⟩∘⟨ (Functor.homomorphism (C.-⊗ _) ○ C.∘-resp-≈ˡ (C.⊗.F-resp-≈ (C.Equiv.refl , ⟺ G.identity))) ⟩
G.₁ (F.₁ A.associator.from) C.∘ (G.₁ (CF.⊗-homo.η _) C.∘ CG.⊗-homo.η _) C.∘ (G.₁ (CF.⊗-homo.η _) C.⊗₁ G.₁ B.id) C.∘ (CG.⊗-homo.η _ C.⊗₁ C.id)
≈⟨ refl⟩∘⟨ center (CG.⊗-homo.commute _) ⟩
G.₁ (F.₁ A.associator.from) C.∘ G.₁ (CF.⊗-homo.η _) C.∘ (G.₁ (CF.⊗-homo.η _ B.⊗₁ B.id) C.∘ CG.⊗-homo.η _) C.∘ (CG.⊗-homo.η _ C.⊗₁ C.id)
≈⟨ C.∘-resp-≈ʳ (center⁻¹ C.Equiv.refl C.Equiv.refl) ○ C.sym-assoc ⟩
(G.₁ (F.₁ A.associator.from) C.∘ G.₁ (CF.⊗-homo.η _) C.∘ G.₁ (CF.⊗-homo.η _ B.⊗₁ B.id)) C.∘ CG.⊗-homo.η _ C.∘ (CG.⊗-homo.η _ C.⊗₁ C.id)
≈⟨ C.∘-resp-≈ʳ (⟺ G.homomorphism) ⟩∘⟨refl ⟩
(G.₁ (F.₁ A.associator.from) C.∘ G.₁ (CF.⊗-homo.η _ B.∘ CF.⊗-homo.η _ B.⊗₁ B.id)) C.∘ CG.⊗-homo.η _ C.∘ (CG.⊗-homo.η _ C.⊗₁ C.id)
≈⟨ [ G ]-resp-square CF.associativity ⟩∘⟨refl ⟩
(G.₁ (CF.⊗-homo.η _) C.∘ G.₁ ((B.id B.⊗₁ CF.⊗-homo.η _) B.∘ B.associator.from)) C.∘ CG.⊗-homo.η _ C.∘ (CG.⊗-homo.η _ C.⊗₁ C.id)
≈⟨ C.∘-resp-≈ʳ G.homomorphism ⟩∘⟨refl ⟩
(G.₁ (CF.⊗-homo.η _) C.∘ G.₁ (B.id B.⊗₁ CF.⊗-homo.η _) C.∘ G.₁ B.associator.from) C.∘ CG.⊗-homo.η _ C.∘ (CG.⊗-homo.η _ C.⊗₁ C.id)
≈⟨ C.∘-resp-≈ˡ C.sym-assoc ○ C.assoc ⟩
(G.₁ (CF.⊗-homo.η _) C.∘ G.₁ (B.id B.⊗₁ CF.⊗-homo.η _)) C.∘ G.₁ B.associator.from C.∘ CG.⊗-homo.η _ C.∘ (CG.⊗-homo.η _ C.⊗₁ C.id)
≈⟨ refl⟩∘⟨ CG.associativity ⟩
(G.₁ (CF.⊗-homo.η _) C.∘ G.₁ (B.id B.⊗₁ CF.⊗-homo.η _)) C.∘ CG.⊗-homo.η _ C.∘ (C.id C.⊗₁ CG.⊗-homo.η _) C.∘ C.associator.from
≈⟨ center (CG.⊗-homo.sym-commute _) ⟩
G.₁ (CF.⊗-homo.η _) C.∘ (CG.⊗-homo.η _ C.∘ (G.₁ B.id C.⊗₁ G.₁ (CF.⊗-homo.η _))) C.∘ (C.id C.⊗₁ CG.⊗-homo.η _) C.∘ C.associator.from
≈⟨ pull-first C.Equiv.refl ○ C.∘-resp-≈ʳ (C.∘-resp-≈ˡ (C.⊗.F-resp-≈ (G.identity , C.Equiv.refl))) ⟩
(G.₁ (CF.⊗-homo.η _) C.∘ CG.⊗-homo.η _) C.∘ (C.id C.⊗₁ G.₁ (CF.⊗-homo.η _)) C.∘ (C.id C.⊗₁ CG.⊗-homo.η _) C.∘ C.associator.from
≈˘⟨ refl⟩∘⟨ pushˡ (Functor.homomorphism (_ C.⊗-)) ⟩
(G.₁ (CF.⊗-homo.η _) C.∘ CG.⊗-homo.η _) C.∘ (C.id C.⊗₁ (G.F₁ (CF.⊗-homo.η _) C.∘ CG.⊗-homo.η _)) C.∘ C.associator.from
∎
; unitaryˡ = begin
G.₁ (F.₁ A.unitorˡ.from) C.∘ (G.₁ (CF.⊗-homo.η _) C.∘ CG.⊗-homo.η _) C.∘ ((G.₁ CF.ε C.∘ CG.ε) C.⊗₁ C.id)
≈⟨ refl⟩∘⟨ refl⟩∘⟨ (Functor.homomorphism (C.-⊗ _) ○ C.∘-resp-≈ˡ (C.⊗.F-resp-≈ (C.Equiv.refl , ⟺ G.identity))) ⟩
G.₁ (F.₁ A.unitorˡ.from) C.∘ (G.₁ (CF.⊗-homo.η _) C.∘ CG.⊗-homo.η _) C.∘ (G.₁ CF.ε C.⊗₁ G.₁ B.id) C.∘ (CG.ε C.⊗₁ C.id)
≈⟨ refl⟩∘⟨ center (CG.⊗-homo.commute _) ⟩
G.₁ (F.₁ A.unitorˡ.from) C.∘ G.₁ (CF.⊗-homo.η _) C.∘ (G.₁ (CF.ε B.⊗₁ B.id) C.∘ CG.⊗-homo.η _) C.∘ (CG.ε C.⊗₁ C.id)
≈⟨ C.∘-resp-≈ʳ (center⁻¹ C.Equiv.refl C.Equiv.refl) ○ C.sym-assoc ⟩
(G.₁ (F.₁ A.unitorˡ.from) C.∘ G.₁ (CF.⊗-homo.η _) C.∘ G.₁ (CF.ε B.⊗₁ B.id)) C.∘ CG.⊗-homo.η _ C.∘ (CG.ε C.⊗₁ C.id)
≈⟨ C.∘-resp-≈ʳ (⟺ G.homomorphism) ⟩∘⟨refl ⟩
(G.₁ (F.₁ A.unitorˡ.from) C.∘ G.₁ (CF.⊗-homo.η _ B.∘ CF.ε B.⊗₁ B.id)) C.∘ CG.⊗-homo.η _ C.∘ (CG.ε C.⊗₁ C.id)
≈⟨ [ G ]-resp-∘ CF.unitaryˡ ⟩∘⟨refl ⟩
G.₁ B.unitorˡ.from C.∘ CG.⊗-homo.η _ C.∘ (CG.ε C.⊗₁ C.id)
≈⟨ CG.unitaryˡ ⟩
C.unitorˡ.from
∎
; unitaryʳ = begin
G.₁ (F.₁ A.unitorʳ.from) C.∘ (G.₁ (CF.⊗-homo.η _) C.∘ CG.⊗-homo.η _) C.∘ (C.id C.⊗₁ (G.₁ CF.ε C.∘ CG.ε))
≈⟨ (refl⟩∘⟨ refl⟩∘⟨ (Functor.homomorphism (_ C.⊗-) ○ C.∘-resp-≈ˡ (C.⊗.F-resp-≈ (⟺ G.identity , C.Equiv.refl)))) ⟩
G.₁ (F.₁ A.unitorʳ.from) C.∘ (G.₁ (CF.⊗-homo.η _) C.∘ CG.⊗-homo.η _) C.∘ (G.₁ B.id C.⊗₁ G.₁ CF.ε) C.∘ (C.id C.⊗₁ CG.ε)
≈⟨ refl⟩∘⟨ center (CG.⊗-homo.commute _) ⟩
G.₁ (F.₁ A.unitorʳ.from) C.∘ G.₁ (CF.⊗-homo.η _) C.∘ (G.₁ (B.id B.⊗₁ CF.ε) C.∘ CG.⊗-homo.η _) C.∘ (C.id C.⊗₁ CG.ε)
≈⟨ C.∘-resp-≈ʳ (center⁻¹ C.Equiv.refl C.Equiv.refl) ○ C.sym-assoc ⟩
(G.₁ (F.₁ A.unitorʳ.from) C.∘ G.₁ (CF.⊗-homo.η _) C.∘ G.₁ (B.id B.⊗₁ CF.ε)) C.∘ CG.⊗-homo.η _ C.∘ (C.id C.⊗₁ CG.ε)
≈⟨ C.∘-resp-≈ʳ (⟺ G.homomorphism) ⟩∘⟨refl ⟩
(G.₁ (F.₁ A.unitorʳ.from) C.∘ G.F₁ (CF.⊗-homo.η _ B.∘ (B.id B.⊗₁ CF.ε))) C.∘ CG.⊗-homo.η _ C.∘ (C.id C.⊗₁ CG.ε)
≈⟨ [ G ]-resp-∘ CF.unitaryʳ ⟩∘⟨refl ⟩
G.F₁ B.unitorʳ.from C.∘ CG.⊗-homo.η _ C.∘ C.id C.⊗₁ CG.ε
≈⟨ CG.unitaryʳ ⟩
C.unitorʳ.from
∎
}
where module F = Functor F
module G = Functor G
module CF = IsMonoidalFunctor CF
module CG = IsMonoidalFunctor CG
∘-IsStrongMonoidal : ∀ {F : Functor A.U B.U} {G : Functor B.U C.U} →
IsStrongMonoidalFunctor B C G → IsStrongMonoidalFunctor A B F →
IsStrongMonoidalFunctor A C (G ∘F F)
∘-IsStrongMonoidal {F} {G} CG CF = record
{ ε = ≅.trans CG.ε ([ G ]-resp-≅ CF.ε)
; ⊗-homo = record
{ F⇒G = ∘.⊗-homo
; F⇐G = ntHelper record
{ η = λ { (X , Y) → CG.⊗-homo.⇐.η (F.F₀ X , F.F₀ Y) C.∘ G.₁ (CF.⊗-homo.⇐.η (X , Y)) }
; commute = λ _ → pullʳ ([ G ]-resp-square (CF.⊗-homo.⇐.commute _)) ○ pullˡ (CG.⊗-homo.⇐.commute _) ○ C.assoc
}
; iso = λ _ → record
{ isoˡ = cancelInner ([ G ]-resp-∘ (CF.⊗-homo.iso.isoˡ _) ○ G.identity) ○ CG.⊗-homo.iso.isoˡ _
; isoʳ = cancelInner (CG.⊗-homo.iso.isoʳ _) ○ [ G ]-resp-∘ (CF.⊗-homo.iso.isoʳ _) ○ G.identity
}
}
; associativity = ∘.associativity
; unitaryˡ = ∘.unitaryˡ
; unitaryʳ = ∘.unitaryʳ
}
where module F = Functor F
module G = Functor G
module CF = IsStrongMonoidalFunctor CF
module CG = IsStrongMonoidalFunctor CG
module ∘ = IsMonoidalFunctor (∘-IsMonoidal CG.isMonoidal CF.isMonoidal)
module _ {A : MonoidalCategory o ℓ e} {B : MonoidalCategory o′ ℓ′ e′} {C : MonoidalCategory o″ ℓ″ e″} where
∘-StrongMonoidal : StrongMonoidalFunctor B C → StrongMonoidalFunctor A B → StrongMonoidalFunctor A C
∘-StrongMonoidal G F = record { isStrongMonoidal = ∘-IsStrongMonoidal _ _ _ (StrongMonoidalFunctor.isStrongMonoidal G) (StrongMonoidalFunctor.isStrongMonoidal F) }
∘-Monoidal : MonoidalFunctor B C → MonoidalFunctor A B → MonoidalFunctor A C
∘-Monoidal G F = record { isMonoidal = ∘-IsMonoidal _ _ _ (MonoidalFunctor.isMonoidal G) (MonoidalFunctor.isMonoidal F) }
-- Functor composition preserves braided monoidality
module _ {A : BraidedMonoidalCategory o ℓ e}
{B : BraidedMonoidalCategory o′ ℓ′ e′}
{C : BraidedMonoidalCategory o″ ℓ″ e″} where
private
module A = BraidedMonoidalCategory A
module B = BraidedMonoidalCategory B
module C = BraidedMonoidalCategory C
open Braided
∘-IsBraidedMonoidal : ∀ {G : Functor B.U C.U} {F : Functor A.U B.U} →
Lax.IsBraidedMonoidalFunctor B C G →
Lax.IsBraidedMonoidalFunctor A B F →
Lax.IsBraidedMonoidalFunctor A C (G ∘F F)
∘-IsBraidedMonoidal {G} {F} GB FB = record
{ isMonoidal = ∘-IsMonoidal _ _ _ (isMonoidal GB) (isMonoidal FB)
; braiding-compat = begin
G₁ (F₁ AB) ∘ G₁ FH ∘ GH ≈˘⟨ pushˡ (homomorphism G) ⟩
G₁ (F₁ AB B.∘ FH) ∘ GH ≈⟨ F-resp-≈ G (braiding-compat FB) ⟩∘⟨refl ⟩
G₁ (FH B.∘ BB) ∘ GH ≈⟨ pushˡ (homomorphism G) ⟩
G₁ FH ∘ G₁ BB ∘ GH ≈⟨ pushʳ (braiding-compat GB) ⟩
(G₁ FH ∘ GH) ∘ CB ∎
}
where
open C
open HomReasoning
open MR C.U
open Functor hiding (F₁)
open Functor F using (F₁)
open Functor G using () renaming (F₁ to G₁)
open Lax.IsBraidedMonoidalFunctor
FH = λ {X Y} → ⊗-homo.η FB (X , Y)
GH = λ {X Y} → ⊗-homo.η GB (X , Y)
AB = λ {X Y} → A.braiding.⇒.η (X , Y)
BB = λ {X Y} → B.braiding.⇒.η (X , Y)
CB = λ {X Y} → C.braiding.⇒.η (X , Y)
∘-IsStrongBraidedMonoidal : ∀ {G : Functor B.U C.U} {F : Functor A.U B.U} →
Strong.IsBraidedMonoidalFunctor B C G →
Strong.IsBraidedMonoidalFunctor A B F →
Strong.IsBraidedMonoidalFunctor A C (G ∘F F)
∘-IsStrongBraidedMonoidal {G} {F} GB FB = record
{ isStrongMonoidal =
∘-IsStrongMonoidal _ _ _ (isStrongMonoidal GB) (isStrongMonoidal FB)
; braiding-compat =
Lax.IsBraidedMonoidalFunctor.braiding-compat
(∘-IsBraidedMonoidal (isLaxBraidedMonoidal GB) (isLaxBraidedMonoidal FB))
}
where open Strong.IsBraidedMonoidalFunctor
∘-BraidedMonoidal : Lax.BraidedMonoidalFunctor B C →
Lax.BraidedMonoidalFunctor A B →
Lax.BraidedMonoidalFunctor A C
∘-BraidedMonoidal G F = record
{ isBraidedMonoidal =
∘-IsBraidedMonoidal (isBraidedMonoidal G) (isBraidedMonoidal F)
}
where open Lax.BraidedMonoidalFunctor hiding (F)
∘-StrongBraidedMonoidal : Strong.BraidedMonoidalFunctor B C →
Strong.BraidedMonoidalFunctor A B →
Strong.BraidedMonoidalFunctor A C
∘-StrongBraidedMonoidal G F = record
{ isBraidedMonoidal =
∘-IsStrongBraidedMonoidal (isBraidedMonoidal G) (isBraidedMonoidal F)
}
where open Strong.BraidedMonoidalFunctor hiding (F)
-- Functor composition preserves symmetric monoidality
module _ {A : SymmetricMonoidalCategory o ℓ e}
{B : SymmetricMonoidalCategory o′ ℓ′ e′}
{C : SymmetricMonoidalCategory o″ ℓ″ e″} where
open Symmetric
∘-SymmetricMonoidal : Lax.SymmetricMonoidalFunctor B C →
Lax.SymmetricMonoidalFunctor A B →
Lax.SymmetricMonoidalFunctor A C
∘-SymmetricMonoidal G F = record
{ isBraidedMonoidal =
∘-IsBraidedMonoidal (isBraidedMonoidal G) (isBraidedMonoidal F)
}
where open Lax.SymmetricMonoidalFunctor hiding (F)
∘-StrongSymmetricMonoidal : Strong.SymmetricMonoidalFunctor B C →
Strong.SymmetricMonoidalFunctor A B →
Strong.SymmetricMonoidalFunctor A C
∘-StrongSymmetricMonoidal G F = record
{ isBraidedMonoidal =
∘-IsStrongBraidedMonoidal (isBraidedMonoidal G) (isBraidedMonoidal F)
}
where open Strong.SymmetricMonoidalFunctor hiding (F)
module _ (C : CartesianCategory o ℓ e) (D : CartesianCategory o′ ℓ′ e′) where
private
module C = CartesianCategory C
module D = CartesianCategory D
open D.HomReasoning
open MR D.U
module _ (F : StrongMonoidalFunctor C.monoidalCategory D.monoidalCategory) where
private
module F = StrongMonoidalFunctor F
F-resp-⊤ : ⊤.IsTerminal D.U (F.F₀ C.⊤)
F-resp-⊤ = ⊤.Terminal.⊤-is-terminal (⊤.transport-by-iso D.U D.terminal F.ε)
module F-resp-⊤ = ⊤.IsTerminal F-resp-⊤
lemma₁ : ∀ {X} → F.ε.from D.∘ D.! {F.₀ X} D.≈ F.₁ (C.! {X})
lemma₁ = F-resp-⊤.!-unique _
π₁-comm : ∀ {X Y} → F.F₁ C.π₁ D.∘ F.⊗-homo.⇒.η (X , Y) D.≈ D.π₁
π₁-comm {X} {Y} = begin
F.F₁ C.π₁ D.∘ F.⊗-homo.⇒.η (X , Y) ≈˘⟨ [ F.F ]-resp-∘ (C.Equiv.trans C.project₁ C.identityˡ) ⟩∘⟨refl ⟩
(F.F₁ C.π₁ D.∘ F.F₁ (C.id C.⁂ C.!)) D.∘ F.⊗-homo.⇒.η (X , Y) ≈⟨ pullʳ (F.⊗-homo.⇒.sym-commute _) ⟩
F.F₁ C.π₁ D.∘ F.⊗-homo.⇒.η (X , C.⊤) D.∘ (F.F₁ C.id D.⁂ F.F₁ C.!) ≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ ([ F.₀ X D.×- ]-resp-∘ lemma₁ ○ Functor.F-resp-≈ D.-×- (⟺ F.identity , D.Equiv.refl)) ⟩
F.F₁ C.π₁ D.∘ F.⊗-homo.⇒.η (X , C.⊤) D.∘ (D.id D.⁂ F.ε.from) D.∘ (D.id D.⁂ D.!) ≈⟨ D.∘-resp-≈ʳ D.sym-assoc ○ D.sym-assoc ⟩
(F.F₁ C.π₁ D.∘ F.⊗-homo.⇒.η (X , C.⊤) D.∘ (D.id D.⁂ F.ε.from)) D.∘ (D.id D.⁂ D.!) ≈⟨ F.unitaryʳ ⟩∘⟨refl ⟩
D.π₁ D.∘ (D.id D.⁂ D.!) ≈⟨ D.project₁ ○ D.identityˡ ⟩
D.π₁ ∎
π₂-comm : ∀ {X Y} → F.F₁ C.π₂ D.∘ F.⊗-homo.⇒.η (X , Y) D.≈ D.π₂
π₂-comm {X} {Y} = begin
F.F₁ C.π₂ D.∘ F.⊗-homo.⇒.η (X , Y) ≈˘⟨ [ F.F ]-resp-∘ (C.Equiv.trans C.project₂ C.identityˡ) ⟩∘⟨refl ⟩
(F.F₁ C.π₂ D.∘ F.F₁ (C.! C.⁂ C.id)) D.∘ F.⊗-homo.⇒.η (X , Y) ≈⟨ pullʳ (F.⊗-homo.⇒.sym-commute _) ⟩
F.F₁ C.π₂ D.∘ F.⊗-homo.⇒.η (C.⊤ , Y) D.∘ (F.F₁ C.! D.⁂ F.F₁ C.id) ≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ ([ D.-× F.₀ Y ]-resp-∘ lemma₁ ○ Functor.F-resp-≈ D.-×- (D.Equiv.refl , ⟺ F.identity)) ⟩
F.F₁ C.π₂ D.∘ F.⊗-homo.⇒.η (C.⊤ , Y) D.∘ (F.ε.from D.⁂ D.id) D.∘ (D.! D.⁂ D.id) ≈⟨ D.∘-resp-≈ʳ D.sym-assoc ○ D.sym-assoc ⟩
(F.F₁ C.π₂ D.∘ F.⊗-homo.⇒.η (C.⊤ , Y) D.∘ (F.ε.from D.⁂ D.id)) D.∘ (D.! D.⁂ D.id) ≈⟨ F.unitaryˡ ⟩∘⟨refl ⟩
D.π₂ D.∘ (D.! D.⁂ D.id) ≈⟨ D.project₂ ○ D.identityˡ ⟩
D.π₂ ∎
unique : ∀ {X A B} {h : X D.⇒ F.₀ (A C.× B)} {i : X D.⇒ F.₀ A} {j : X D.⇒ F.₀ B} →
F.₁ C.π₁ D.∘ h D.≈ i →
F.₁ C.π₂ D.∘ h D.≈ j →
F.⊗-homo.⇒.η (A , B) D.∘ D.product.⟨ i , j ⟩ D.≈ h
unique eq₁ eq₂ = ⟺ (switch-tofromˡ F.⊗-homo.FX≅GX (⟺ (D.unique (pullˡ (⟺ (switch-fromtoʳ F.⊗-homo.FX≅GX π₁-comm)) ○ eq₁)
(pullˡ (⟺ (switch-fromtoʳ F.⊗-homo.FX≅GX π₂-comm)) ○ eq₂))))
StrongMonoidal⇒Cartesian : CartesianF C D
StrongMonoidal⇒Cartesian = record
{ F = F.F
; isCartesian = record
{ F-resp-⊤ = F-resp-⊤
; F-resp-× = λ {A B} → record
{ ⟨_,_⟩ = λ f g → F.⊗-homo.⇒.η _ D.∘ D.⟨ f , g ⟩
; project₁ = λ {_ h i} → begin
F.₁ C.π₁ D.∘ F.⊗-homo.⇒.η _ D.∘ D.⟨ h , i ⟩ ≈⟨ pullˡ π₁-comm ⟩
D.π₁ D.∘ D.product.⟨ h , i ⟩ ≈⟨ D.project₁ ⟩
h ∎
; project₂ = λ {_ h i} → begin
F.₁ C.π₂ D.∘ F.⊗-homo.⇒.η _ D.∘ D.⟨ h , i ⟩ ≈⟨ pullˡ π₂-comm ⟩
D.π₂ D.∘ D.⟨ h , i ⟩ ≈⟨ D.project₂ ⟩
i ∎
; unique = unique
}
}
}
|
{
"alphanum_fraction": 0.5404152285,
"avg_line_length": 49.6445012788,
"ext": "agda",
"hexsha": "6f02e4cb3630c2acbd6ca210b4328c9a2e2b54d0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f8a33de12956c729c7fb00a302f166a643eb6052",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "TOTBWF/agda-categories",
"max_forks_repo_path": "src/Categories/Functor/Monoidal/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f8a33de12956c729c7fb00a302f166a643eb6052",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "TOTBWF/agda-categories",
"max_issues_repo_path": "src/Categories/Functor/Monoidal/Properties.agda",
"max_line_length": 197,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f8a33de12956c729c7fb00a302f166a643eb6052",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "TOTBWF/agda-categories",
"max_stars_repo_path": "src/Categories/Functor/Monoidal/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 8750,
"size": 19411
}
|
------------------------------------------------------------------------------
-- Mirror example
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.Mirror.Example where
open import FOTC.Base
open import FOTC.Data.Nat.UnaryNumbers
open import FOTC.Base.List
open import FOTC.Data.List
open import FOTC.Program.Mirror.Mirror
open import FOTC.Program.Mirror.Type
open import FOTC.Program.Mirror.PropertiesI
------------------------------------------------------------------------------
-- Example
-- 1
-- / / \ \
-- 2 3 4 5
-- / \
-- 6 7
t : D
t = node 1' (node 2' (node 6' [] ∷ node 7' [] ∷ []) ∷
node 3' [] ∷
node 4' [] ∷
node 5' [] ∷
[]
)
tTree : Tree t
tTree = tree 1' (fcons (tree 2' (fcons (tree 6' fnil)
(fcons (tree 7' fnil)
fnil)))
(fcons (tree 3' fnil)
(fcons (tree 4' fnil)
(fcons (tree 5' fnil)
fnil))))
test : t ≡ mirror · (mirror · t)
test = sym (mirror-involutive tTree)
|
{
"alphanum_fraction": 0.4028831563,
"avg_line_length": 28.0425531915,
"ext": "agda",
"hexsha": "f6c00740335d9f0540f558a6389c782cfbda4f79",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/Mirror/Example.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/Mirror/Example.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/Mirror/Example.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 333,
"size": 1318
}
|
{-# OPTIONS --safe --without-K #-}
module Generics.Telescope.Equality where
-- freely inspired by jespercockx/telescopic
-- note that our telescopes extend to the right
-- while in telescopic they extend to the left
-- a byproduct is that the following defs are overly mutual
open import Generics.Prelude
open import Generics.Telescope
private
variable
l : Level
A : Set l
a x y : A
-----------
-- Helpers
private
J⁻¹ : ∀ {a b} {A : Set a} {x : A} (B : (y : A) → x ≡ y → Set b)
→ {y : A} (p : x ≡ y) → B y p → B x refl
J⁻¹ B p = J (λ y e → B y e → B _ refl) p id
Jω : ∀ {a} {A : Set a} {x : A} (B : (y : A) → x ≡ y → Setω)
→ {y : A} (p : x ≡ y) → B x refl → B y p
Jω B refl x = x
Jω⁻¹ : ∀ {a} {A : Set a} {x : A} (B : (y : A) → x ≡ y → Setω)
→ {y : A} (p : x ≡ y) → B y p → B x refl
Jω⁻¹ B p = Jω (λ y e → B y e → B _ refl) p λ x → x
JJ⁻¹ : ∀ {a b} {A : Set a} {x : A} (B : (y : A) → x ≡ y → Set b)
→ {y : A} {p : x ≡ y}
→ (z : B y p)
→ J B p (J⁻¹ B p z) ≡ z
JJ⁻¹ B {p = refl} z = refl
JJω⁻¹ : ∀ {a} {A : Set a} {x : A} (B : (y : A) → x ≡ y → Setω)
→ {y : A} {p : x ≡ y}
→ (z : B y p)
→ Jω B p (Jω⁻¹ B p z) ≡ω z
JJω⁻¹ B {p = refl} z = refl
substω : ∀ {a} {A : Set a} (P : A → Setω) {x y : A}
→ x ≡ y → P x → P y
substω P refl x = x
substω-substω-sym : ∀ {a} {A : Set a} {P : A → Setω}
{x y : A} (x≡y : x ≡ y)
{p : P y}
→ substω P x≡y (substω P (sym x≡y) p) ≡ω p
substω-substω-sym refl = reflω
----------------------
-- Telescope Equality
_≡ⁿ_ : {T : Telescope A} → ⟦ T ⟧tel a → ⟦ T ⟧tel a → Telescope ⊤
substⁿ : {T : Telescope A} (f : ∀ {x} → ⟦ T ⟧tel x → Set l)
{xs ys : ⟦ T ⟧tel a}
→ ⟦ xs ≡ⁿ ys ⟧tel tt
→ f xs → f ys
reflⁿ : {T : Telescope A} {xs : ⟦ T ⟧tel a}
→ ⟦ xs ≡ⁿ xs ⟧tel tt
substⁿ-refl : {T : Telescope A} (f : ∀ {x} → ⟦ T ⟧tel x → Set l)
{xs : ⟦ T ⟧tel a} {x : f xs}
→ substⁿ f reflⁿ x ≡ x
Jⁿ : {T : Telescope A} {xs : ⟦ T ⟧tel a}
(ϕ : ∀ ss → ⟦ xs ≡ⁿ ss ⟧tel tt → Set l)
→ ∀ {ss} (es : ⟦ xs ≡ⁿ ss ⟧tel tt)
→ ϕ xs reflⁿ
→ ϕ ss es
Jⁿ-refl : {T : Telescope A} {xs : ⟦ T ⟧tel a}
(ϕ : ∀ ss → ⟦ xs ≡ⁿ ss ⟧tel tt → Set l)
(φ : ϕ xs reflⁿ)
→ Jⁿ ϕ reflⁿ φ ≡ φ
-- TODO: discard equality between irrelevant values
_≡ⁿ_ {T = ε} tt tt = ε
_≡ⁿ_ {T = T ⊢< n , ai > f} (xs , x) (ys , y) =
e ∶ xs ≡ⁿ ys , substⁿ (< relevance ai >_ ∘ f ∘ (_ ,_)) e x ≡ y
reflⁿ {T = ε} = tt
reflⁿ {T = T ⊢< n , ai > f} {xs , x} =
reflⁿ , substⁿ-refl (< relevance ai >_ ∘ f ∘ (_ ,_))
Jⁿ {T = ε} ϕ _ φ = φ
Jⁿ {T = T ⊢< n , ai > f} {xs , x} ϕ {ss , s} (es , e) φ =
J (λ y ey → ϕ (ss , y) (es , ey)) e $
Jⁿ (λ ss′ es′ → ϕ (ss′ , substⁿ (< relevance ai >_ ∘ f ∘ (_ ,_)) es′ x)
(es′ , refl)) es d
where
d : ϕ (xs , substⁿ (< relevance ai >_ ∘ f ∘ (_ ,_)) reflⁿ x)
(reflⁿ , refl)
d = J⁻¹ (λ y ey → ϕ (xs , y) (reflⁿ , ey)) (substⁿ-refl _) φ
substⁿ {T = ε} f tt z = z
substⁿ {T = T ⊢< n , ai > g} f {xs , x} {ys , y} (es , e) z =
subst (f ∘ (ys ,_)) e $
Jⁿ (λ rs er → f (rs , substⁿ (< relevance ai >_ ∘ g ∘ (_ ,_)) er x))
es
(subst (f ∘ (xs ,_)) (sym (substⁿ-refl (< relevance ai >_ ∘ g ∘ (_ ,_)))) z)
substⁿ-refl {T = ε} f = refl
substⁿ-refl {T = T ⊢< n , ai > g} f {xs , x} {z}
rewrite Jⁿ-refl (λ rs er → f (rs , substⁿ (< relevance ai >_ ∘ g ∘ (_ ,_)) er x))
(subst (f ∘ (xs ,_)) (sym (substⁿ-refl (< relevance ai >_ ∘ g ∘ (_ ,_)))) z)
= subst-subst-sym (substⁿ-refl (< relevance ai >_ ∘ g ∘ (_ ,_)))
Jⁿ-refl {T = ε} ϕ φ = refl
Jⁿ-refl {T = T ⊢< n , ai > f} {xs , x} ϕ φ
rewrite Jⁿ-refl (λ ss′ es′ → ϕ (ss′ , substⁿ (< relevance ai >_ ∘ f ∘ (_ ,_)) es′ x) (es′ , refl))
(J⁻¹ (λ y ey → ϕ (xs , y) (reflⁿ , ey)) _ φ)
= JJ⁻¹ (λ y ey → ϕ (xs , y) (reflⁿ , ey)) φ
------------------------------
-- Telescope Equality in Setω
substωⁿ : {T : Telescope A} (f : ∀ {x} → ⟦ T ⟧tel x → Setω)
{xs ys : ⟦ T ⟧tel a}
→ ⟦ xs ≡ⁿ ys ⟧tel tt
→ f xs → f ys
substωⁿ-refl : {T : Telescope A} (f : ∀ {x} → ⟦ T ⟧tel x → Setω)
{xs : ⟦ T ⟧tel a} {x : f xs}
→ substωⁿ f reflⁿ x ≡ω x
Jωⁿ : {T : Telescope A} {xs : ⟦ T ⟧tel a}
(ϕ : ∀ ss → ⟦ xs ≡ⁿ ss ⟧tel tt → Setω)
→ ∀ {ss} (es : ⟦ xs ≡ⁿ ss ⟧tel tt)
→ ϕ xs reflⁿ
→ ϕ ss es
Jωⁿ-refl : {T : Telescope A} {xs : ⟦ T ⟧tel a}
(ϕ : ∀ ss → ⟦ xs ≡ⁿ ss ⟧tel tt → Setω)
(φ : ϕ xs reflⁿ)
→ Jωⁿ ϕ reflⁿ φ ≡ω φ
Jωⁿ {T = ε} ϕ _ φ = φ
Jωⁿ {T = T ⊢< n , ai > f} {xs , x} ϕ {ss , s} (es , e) φ =
Jω (λ y ey → ϕ (ss , y) (es , ey)) e
(Jωⁿ (λ ss′ es′ → ϕ (ss′ , substⁿ (< relevance ai >_ ∘ f ∘ (_ ,_)) es′ x)
(es′ , refl)) es d)
where
d : ϕ (xs , substⁿ (< relevance ai >_ ∘ f ∘ (_ ,_)) reflⁿ x)
(reflⁿ , refl)
d = Jω⁻¹ (λ y ey → ϕ (xs , y) (reflⁿ , ey)) (substⁿ-refl (< relevance ai >_ ∘ f ∘ (_ ,_))) φ
substωⁿ {T = ε} f tt z = z
substωⁿ {T = T ⊢< n , ai > g} f {xs , x} {ys , y} (es , e) z =
substω (λ x → f (ys , x)) e
(Jωⁿ (λ rs er → f (rs , substⁿ (< relevance ai >_ ∘ g ∘ (_ ,_)) er x))
es
(substω (λ x → f (xs , x)) (sym (substⁿ-refl (< relevance ai >_ ∘ g ∘ (_ ,_)))) z))
substωⁿ-refl {T = ε} f = refl
substωⁿ-refl {T = T ⊢< n , ai > g} f {xs , x} {z} =
transω (cong≡ωω (λ x → substω (λ x → f (_ , x)) ((substⁿ-refl (< relevance ai >_ ∘ g ∘ (_ ,_)))) x)
p)
(substω-substω-sym (substⁿ-refl (< relevance ai >_ ∘ g ∘ (_ ,_))))
where
p = Jωⁿ-refl (λ rs er → f (rs , substⁿ (< relevance ai >_ ∘ g ∘ (_ ,_)) er x))
(substω (λ x → f (xs , x)) (sym (substⁿ-refl (< relevance ai >_ ∘ g ∘ (_ ,_)))) z)
Jωⁿ-refl {T = ε} ϕ φ = refl
Jωⁿ-refl {T = T ⊢< n , ai > f} {xs , x} ϕ φ =
transω (cong≡ωω (λ x → Jω (λ y ey → ϕ (xs , y) (reflⁿ , ey))
(substⁿ-refl (< relevance ai >_ ∘ f ∘ (_ ,_))) x) p)
(JJω⁻¹ (λ y ey → ϕ (xs , y) (reflⁿ , ey)) φ)
where
p = Jωⁿ-refl (λ ss′ es′ → ϕ (ss′ , substⁿ (< relevance ai >_ ∘ f ∘ (_ ,_)) es′ x) (es′ , refl))
(Jω⁻¹ (λ y ey → ϕ (xs , y) (reflⁿ , ey)) _ φ)
|
{
"alphanum_fraction": 0.4277998411,
"avg_line_length": 34.3989071038,
"ext": "agda",
"hexsha": "4cafc8f2938037e940777923f20f83dbf5da9a40",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-01-14T10:35:16.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-08T08:32:42.000Z",
"max_forks_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "flupe/generics",
"max_forks_repo_path": "src/Generics/Telescope/Equality.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T10:48:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-09-13T07:33:50.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "flupe/generics",
"max_issues_repo_path": "src/Generics/Telescope/Equality.agda",
"max_line_length": 101,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "flupe/generics",
"max_stars_repo_path": "src/Generics/Telescope/Equality.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T09:35:17.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-08T15:10:20.000Z",
"num_tokens": 2905,
"size": 6295
}
|
module ShouldBePi where
postulate X : Set
|
{
"alphanum_fraction": 0.7555555556,
"avg_line_length": 7.5,
"ext": "agda",
"hexsha": "b050eee87063fcab7417648075f534f616e55cfe",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Imports/ShouldBePi.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Imports/ShouldBePi.agda",
"max_line_length": 23,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Imports/ShouldBePi.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 13,
"size": 45
}
|
{-# OPTIONS --no-flat-split #-}
module _ where
postulate
A : Set
data Id (A : Set) : Set where
id : A → Id A
-- --no-flat-split disables matching on the @♭ x agument.
test2 : (@♭ x : Id A) → A
test2 (id x) = x
|
{
"alphanum_fraction": 0.5806451613,
"avg_line_length": 16.6923076923,
"ext": "agda",
"hexsha": "6e30951b8b77d68933956e9e7aebf3472f744400",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/NoFlatSplit.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/NoFlatSplit.agda",
"max_line_length": 57,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/NoFlatSplit.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 77,
"size": 217
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.