Search is not available for this dataset
text
string | meta
dict |
---|---|
------------------------------------------------------------------------
-- Some derivable properties
------------------------------------------------------------------------
open import Algebra
module Algebra.Props.Group (g : Group) where
open Group g
import Algebra.FunctionProperties as P; open P _≈_
import Relation.Binary.EqReasoning as EqR; open EqR setoid
open import Data.Function
open import Data.Product
⁻¹-involutive : ∀ x → x ⁻¹ ⁻¹ ≈ x
⁻¹-involutive x = begin
x ⁻¹ ⁻¹ ≈⟨ sym $ proj₂ identity _ ⟩
x ⁻¹ ⁻¹ ∙ ε ≈⟨ refl ⟨ ∙-pres-≈ ⟩ sym (proj₁ inverse _) ⟩
x ⁻¹ ⁻¹ ∙ (x ⁻¹ ∙ x) ≈⟨ sym $ assoc _ _ _ ⟩
x ⁻¹ ⁻¹ ∙ x ⁻¹ ∙ x ≈⟨ proj₁ inverse _ ⟨ ∙-pres-≈ ⟩ refl ⟩
ε ∙ x ≈⟨ proj₁ identity _ ⟩
x ∎
left-identity-unique : ∀ x y → x ∙ y ≈ y → x ≈ ε
left-identity-unique x y eq = begin
x ≈⟨ sym (proj₂ identity x) ⟩
x ∙ ε ≈⟨ refl ⟨ ∙-pres-≈ ⟩ sym (proj₂ inverse y) ⟩
x ∙ (y ∙ y ⁻¹) ≈⟨ sym (assoc x y (y ⁻¹)) ⟩
(x ∙ y) ∙ y ⁻¹ ≈⟨ eq ⟨ ∙-pres-≈ ⟩ refl ⟩
y ∙ y ⁻¹ ≈⟨ proj₂ inverse y ⟩
ε ∎
right-identity-unique : ∀ x y → x ∙ y ≈ x → y ≈ ε
right-identity-unique x y eq = begin
y ≈⟨ sym (proj₁ identity y) ⟩
ε ∙ y ≈⟨ sym (proj₁ inverse x) ⟨ ∙-pres-≈ ⟩ refl ⟩
(x ⁻¹ ∙ x) ∙ y ≈⟨ assoc (x ⁻¹) x y ⟩
x ⁻¹ ∙ (x ∙ y) ≈⟨ refl ⟨ ∙-pres-≈ ⟩ eq ⟩
x ⁻¹ ∙ x ≈⟨ proj₁ inverse x ⟩
ε ∎
identity-unique : ∀ {x} → Identity x _∙_ → x ≈ ε
identity-unique {x} id = left-identity-unique x x (proj₂ id x)
|
{
"alphanum_fraction": 0.4584398977,
"avg_line_length": 35.5454545455,
"ext": "agda",
"hexsha": "560d422920a64975b67d5758b9e365244c209ca3",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Algebra/Props/Group.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Algebra/Props/Group.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Algebra/Props/Group.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 638,
"size": 1564
}
|
{-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.Equivalences2
open import lib.NType2
open import lib.types.Group
open import lib.types.Pi
open import lib.types.Sigma
open import lib.types.Truncation
module lib.groups.Homomorphisms where
record GroupHom {i j} (G : Group i) (H : Group j)
: Type (lsucc (lmax i j)) where
constructor group-hom
field
f : Group.El G → Group.El H
pres-comp : ∀ g1 g2 → f (Group.comp G g1 g2) == Group.comp H (f g1) (f g2)
abstract
pres-ident : f (Group.ident G) == Group.ident H
pres-ident = group-cancel-l H (f (Group.ident G)) $
Group.comp H (f (Group.ident G)) (f (Group.ident G))
=⟨ ! (pres-comp (Group.ident G) (Group.ident G)) ⟩
f (Group.comp G (Group.ident G) (Group.ident G))
=⟨ ap f (Group.unitl G (Group.ident G)) ⟩
f (Group.ident G)
=⟨ ! (Group.unitr H (f (Group.ident G))) ⟩
Group.comp H (f (Group.ident G)) (Group.ident H) ∎
pres-inv : (g : Group.El G) → f (Group.inv G g) == Group.inv H (f g)
pres-inv g =
f (Group.inv G g)
=⟨ ! (Group.unitr H (f (Group.inv G g))) ⟩
Group.comp H (f (Group.inv G g)) (Group.ident H)
=⟨ ! (Group.invr H (f g))
|in-ctx (λ w → Group.comp H (f (Group.inv G g)) w) ⟩
Group.comp H (f (Group.inv G g)) (Group.comp H (f g) (Group.inv H (f g)))
=⟨ ! (Group.assoc H (f (Group.inv G g)) (f g) (Group.inv H (f g))) ⟩
Group.comp H (Group.comp H (f (Group.inv G g)) (f g)) (Group.inv H (f g))
=⟨ ! (pres-comp (Group.inv G g) g) ∙ ap f (Group.invl G g) ∙ pres-ident
|in-ctx (λ w → Group.comp H w (Group.inv H (f g))) ⟩
Group.comp H (Group.ident H) (Group.inv H (f g))
=⟨ Group.unitl H (Group.inv H (f g)) ⟩
Group.inv H (f g) ∎
⊙f : Σ (Group.El G → Group.El H)
(λ f → f (Group.ident G) == Group.ident H)
⊙f = (f , pres-ident)
infix 0 _→ᴳ_
_→ᴳ_ = GroupHom
GroupIso : ∀ {i j} (G : Group i) (H : Group j) → Type (lsucc (lmax i j))
GroupIso G H = Σ (G →ᴳ H) (λ φ → is-equiv (GroupHom.f φ))
infix 30 _≃ᴳ_
_≃ᴳ_ = GroupIso
idhom : ∀ {i} (G : Group i) → (G →ᴳ G)
idhom G = group-hom (idf _) (λ _ _ → idp)
idiso : ∀ {i} (G : Group i) → (G ≃ᴳ G)
idiso G = (idhom G , idf-is-equiv _)
infixr 80 _∘ᴳ_
_∘ᴳ_ : ∀ {i j k} {G : Group i} {H : Group j} {K : Group k}
→ (H →ᴳ K) → (G →ᴳ H) → (G →ᴳ K)
(group-hom g g-comp) ∘ᴳ (group-hom f f-comp) =
record {
f = g ∘ f;
pres-comp = λ x₁ x₂ → ap g (f-comp x₁ x₂) ∙ g-comp (f x₁) (f x₂)}
infixr 80 _∘eᴳ_
_∘eᴳ_ : ∀ {i j k} {G : Group i} {H : Group j} {K : Group k}
→ H ≃ᴳ K → G ≃ᴳ H → G ≃ᴳ K
(φ₂ , ie₂) ∘eᴳ (φ₁ , ie₁) = (φ₂ ∘ᴳ φ₁ , ie₂ ∘ise ie₁)
infixl 120 _⁻¹ᴳ
_⁻¹ᴳ : ∀ {i j} {G : Group i} {H : Group j} → G ≃ᴳ H → H ≃ᴳ G
_⁻¹ᴳ {G = G} {H = H} (φ , ie) =
(record {
f = is-equiv.g ie;
pres-comp = λ h₁ h₂ →
ap2 (λ w₁ w₂ → is-equiv.g ie (Group.comp H w₁ w₂))
(! (is-equiv.f-g ie h₁)) (! (is-equiv.f-g ie h₂))
∙ ! (ap (is-equiv.g ie)
(GroupHom.pres-comp φ (is-equiv.g ie h₁) (is-equiv.g ie h₂)))
∙ is-equiv.g-f ie (Group.comp G (is-equiv.g ie h₁) (is-equiv.g ie h₂))} ,
snd ((_ , ie) ⁻¹))
{- a homomorphism which is an equivalence gives a path between groups -}
module _ {i} {G H : Group i} (iso : G ≃ᴳ H) where
private
module G = Group G
module H = Group H
module φ = GroupHom (fst iso)
ie = snd iso
private
ap3-lemma : ∀ {i j k l} {C : Type i} {D : C → Type j} {E : C → Type k}
{F : Type l} {c₁ c₂ : C} {d₁ : D c₁} {d₂ : D c₂} {e₁ : E c₁} {e₂ : E c₂}
(f : (c : C) → D c → E c → F) (p : c₁ == c₂)
→ (d₁ == d₂ [ D ↓ p ]) → (e₁ == e₂ [ E ↓ p ])
→ (f c₁ d₁ e₁ == f c₂ d₂ e₂)
ap3-lemma f idp idp idp = idp
ap3-lemma-el : ∀ {i} {G H : Group i}
(p : Group.El G == Group.El H)
(q : Group.El-level G == Group.El-level H [ _ ↓ p ])
(r : Group.group-struct G == Group.group-struct H [ _ ↓ p ])
→ ap Group.El (ap3-lemma group p q r) == p
ap3-lemma-el idp idp idp = idp
abstract
group-ua : G == H
group-ua =
ap3-lemma group
(ua (φ.f , ie))
(prop-has-all-paths-↓ has-level-is-prop)
(↓-group-structure= (G.El-level) (ua (φ.f , ie)) ident= inv= comp=)
where
ident= : G.ident == H.ident [ (λ C → C) ↓ ua (φ.f , ie) ]
ident= = ↓-idf-ua-in _ φ.pres-ident
inv= : G.inv == H.inv [ (λ C → C → C) ↓ ua (φ.f , ie) ]
inv= =
↓-→-from-transp $ λ= $ λ a →
transport (λ C → C) (ua (φ.f , ie)) (G.inv a)
=⟨ to-transp (↓-idf-ua-in _ idp) ⟩
φ.f (G.inv a)
=⟨ φ.pres-inv a ⟩
H.inv (φ.f a)
=⟨ ap H.inv (! (to-transp (↓-idf-ua-in _ idp))) ⟩
H.inv (transport (λ C → C) (ua (φ.f , ie)) a) ∎
comp=' : (a : G.El)
→ G.comp a == H.comp (φ.f a) [ (λ C → C → C) ↓ ua (φ.f , ie) ]
comp=' a =
↓-→-from-transp $ λ= $ λ b →
transport (λ C → C) (ua (φ.f , ie)) (G.comp a b)
=⟨ to-transp (↓-idf-ua-in _ idp) ⟩
φ.f (G.comp a b)
=⟨ φ.pres-comp a b ⟩
H.comp (φ.f a) (φ.f b)
=⟨ ! (to-transp (↓-idf-ua-in _ idp))
|in-ctx (λ w → H.comp (φ.f a) w) ⟩
H.comp (φ.f a) (transport (λ C → C) (ua (φ.f , ie)) b) ∎
comp= : G.comp == H.comp [ (λ C → C → C → C) ↓ ua (φ.f , ie) ]
comp= =
↓-→-from-transp $ λ= $ λ a →
transport (λ C → C → C) (ua (φ.f , ie)) (G.comp a)
=⟨ to-transp (comp=' a) ⟩
H.comp (φ.f a)
=⟨ ! (to-transp (↓-idf-ua-in _ idp)) |in-ctx (λ w → H.comp w) ⟩
H.comp (transport (λ C → C) (ua (φ.f , ie)) a) ∎
group-ua-el : ap Group.El group-ua == ua (φ.f , ie)
group-ua-el = ap3-lemma-el (ua (φ.f , ie)) _ _
{- equality of homomorphisms -}
abstract
hom= : ∀ {i j} {G : Group i} {H : Group j} (φ ψ : (G →ᴳ H))
→ GroupHom.f φ == GroupHom.f ψ → φ == ψ
hom= {H = H} _ _ p =
ap (uncurry group-hom)
(pair= p (prop-has-all-paths-↓
(Π-level (λ _ → Π-level (λ _ → Group.El-level H _ _)))))
hom=-↓ : ∀ {i j k} {A : Type i} {G : A → Group j} {H : A → Group k} {x y : A}
{p : x == y} (φ : G x →ᴳ H x) (ψ : G y →ᴳ H y)
→ GroupHom.f φ == GroupHom.f ψ
[ (λ a → Group.El (G a) → Group.El (H a)) ↓ p ]
→ φ == ψ [ (λ a → G a →ᴳ H a) ↓ p ]
hom=-↓ {p = idp} = hom=
{- homomorphism from equality of groups -}
coeᴳ : ∀ {i} {G H : Group i} → G == H → (G →ᴳ H)
coeᴳ idp = idhom _
coe!ᴳ : ∀ {i} {G H : Group i} → G == H → (H →ᴳ G)
coe!ᴳ idp = idhom _
coeᴳ-fun : ∀ {i} {G H : Group i} (p : G == H)
→ GroupHom.f (coeᴳ p) == coe (ap Group.El p)
coeᴳ-fun idp = idp
coe!ᴳ-fun : ∀ {i} {G H : Group i} (p : G == H)
→ GroupHom.f (coe!ᴳ p) == coe! (ap Group.El p)
coe!ᴳ-fun idp = idp
coeᴳ-β : ∀ {i} {G H : Group i} (iso : G ≃ᴳ H)
→ coeᴳ (group-ua iso) == fst iso
coeᴳ-β (φ , ie) = hom= _ _ $
coeᴳ-fun (group-ua (φ , ie))
∙ ap coe (group-ua-el (φ , ie))
∙ λ= (coe-β (GroupHom.f φ , ie))
{- algebraic properties -}
∘ᴳ-unit-r : ∀ {i j} {G : Group i} {H : Group j} (φ : G →ᴳ H)
→ φ ∘ᴳ idhom G == φ
∘ᴳ-unit-r φ = idp
∘ᴳ-unit-l : ∀ {i j} {G : Group i} {H : Group j} (φ : G →ᴳ H)
→ idhom H ∘ᴳ φ == φ
∘ᴳ-unit-l φ = hom= _ _ $ idp
∘ᴳ-assoc : ∀ {i j k l} {G : Group i} {H : Group j} {K : Group k} {L : Group l}
(χ : K →ᴳ L) (ψ : H →ᴳ K) (φ : G →ᴳ H)
→ (χ ∘ᴳ ψ) ∘ᴳ φ == χ ∘ᴳ ψ ∘ᴳ φ
∘ᴳ-assoc χ ψ φ = hom= _ _ $ idp
{- homomorphism with kernel zero is injective -}
module _ {i j} {G : Group i} {H : Group j} (φ : (G →ᴳ H)) where
private
module G = Group G
module H = Group H
module φ = GroupHom φ
zero-kernel-injective : ((g : G.El) → φ.f g == H.ident → g == G.ident)
→ ((g₁ g₂ : G.El) → φ.f g₁ == φ.f g₂ → g₁ == g₂)
zero-kernel-injective f g₁ g₂ p =
! (group-inv-inv G g₁) ∙ group-inv-unique-r G (G.inv g₁) g₂ (f _ $
φ.f (G.comp (G.inv g₁) g₂)
=⟨ φ.pres-comp (G.inv g₁) g₂ ⟩
H.comp (φ.f (G.inv g₁)) (φ.f g₂)
=⟨ φ.pres-inv g₁ |in-ctx (λ w → H.comp w (φ.f g₂)) ⟩
H.comp (H.inv (φ.f g₁)) (φ.f g₂)
=⟨ p |in-ctx (λ w → H.comp (H.inv w) (φ.f g₂)) ⟩
H.comp (H.inv (φ.f g₂)) (φ.f g₂)
=⟨ H.invl (φ.f g₂) ⟩
H.ident ∎)
{- constant homomorphism -}
module _ where
cst-hom : ∀ {i j} {G : Group i} {H : Group j} → (G →ᴳ H)
cst-hom {H = H} = group-hom (cst ident) (λ _ _ → ! (unitl _))
where open Group H
pre∘-cst-hom : ∀ {i j k} {G : Group i} {H : Group j} {K : Group k}
(φ : H →ᴳ K)
→ φ ∘ᴳ cst-hom {G = G} {H = H} == cst-hom
pre∘-cst-hom φ = hom= _ _ (λ= (λ g → GroupHom.pres-ident φ))
{- if an injective homomorphism is merely surjective, then it is
- fully surjective -}
module _ {i j} {G : Group i} {H : Group j} (φ : G →ᴳ H) where
private
module G = Group G
module H = Group H
module φ = GroupHom φ
module _ (inj : (g₁ g₂ : G.El) → φ.f g₁ == φ.f g₂ → g₁ == g₂)
(msurj : (h : H.El) → Trunc -1 (Σ G.El (λ g → φ.f g == h))) where
{- a surjective and injective homomorphism is an isomorphism -}
module _ {i j} {G : Group i} {H : Group j} (φ : G →ᴳ H) where
private
module G = Group G
module H = Group H
module φ = GroupHom φ
module _ (inj : (g₁ g₂ : G.El) → φ.f g₁ == φ.f g₂ → g₁ == g₂)
(surj : (h : H.El) → Trunc -1 (Σ G.El (λ g → φ.f g == h))) where
private
image-prop : (h : H.El) → is-prop (Σ G.El (λ g → φ.f g == h))
image-prop h = all-paths-is-prop $ λ {(g₁ , p₁) (g₂ , p₂) →
pair= (inj g₁ g₂ (p₁ ∙ ! p₂)) (prop-has-all-paths-↓ (H.El-level _ _))}
surj-inj-is-equiv : is-equiv φ.f
surj-inj-is-equiv = contr-map-is-equiv
(λ h → let (g₁ , p₁) = Trunc-rec (image-prop h) (idf _) (surj h) in
((g₁ , p₁) , (λ {(g₂ , p₂) →
pair= (inj g₁ g₂ (p₁ ∙ ! p₂))
(prop-has-all-paths-↓ (H.El-level _ _))})))
module _ {i} {G H : Group i} (φ : G →ᴳ H) where
private
module G = Group G
module H = Group H
module φ = GroupHom φ
module _ (inj : (g₁ g₂ : G.El) → φ.f g₁ == φ.f g₂ → g₁ == g₂)
(surj : (h : H.El) → Trunc -1 (Σ G.El (λ g → φ.f g == h))) where
surj-inj-iso : G ≃ᴳ H
surj-inj-iso = (φ , surj-inj-is-equiv φ inj surj)
surj-inj-path : G == H
surj-inj-path = group-ua surj-inj-iso
{- negation is a homomorphism in an abelian gruop -}
inv-hom : ∀ {i} (G : Group i) (G-abelian : is-abelian G) → GroupHom G G
inv-hom G G-abelian = record {
f = Group.inv G;
pres-comp = λ g₁ g₂ →
group-inv-comp G g₁ g₂ ∙ G-abelian (Group.inv G g₂) (Group.inv G g₁)}
inv-hom-natural : ∀ {i j} {G : Group i} {H : Group j}
(G-abelian : is-abelian G) (H-abelian : is-abelian H) (φ : G →ᴳ H)
→ φ ∘ᴳ inv-hom G G-abelian == inv-hom H H-abelian ∘ᴳ φ
inv-hom-natural _ _ φ = hom= _ _ $ λ= $ GroupHom.pres-inv φ
{- two homomorphisms into an abelian group can be composed with
- the group operation -}
module _ {i} {G H : Group i} (H-abelian : is-abelian H)
(φ ψ : G →ᴳ H) where
private
module G = Group G
module H = Group H
module φ = GroupHom φ
module ψ = GroupHom ψ
comp-hom : G →ᴳ H
comp-hom = record {
f = λ g → H.comp (φ.f g) (ψ.f g);
pres-comp = λ g₁ g₂ →
H.comp (φ.f (G.comp g₁ g₂)) (ψ.f (G.comp g₁ g₂))
=⟨ ap2 H.comp (φ.pres-comp g₁ g₂) (ψ.pres-comp g₁ g₂) ⟩
H.comp (H.comp (φ.f g₁) (φ.f g₂)) (H.comp (ψ.f g₁) (ψ.f g₂))
=⟨ lemma (φ.f g₁) (φ.f g₂) (ψ.f g₁) (ψ.f g₂) ⟩
H.comp (H.comp (φ.f g₁) (ψ.f g₁)) (H.comp (φ.f g₂) (ψ.f g₂)) ∎}
where
lemma : (h₁ h₂ h₃ h₄ : H.El) →
H.comp (H.comp h₁ h₂) (H.comp h₃ h₄)
== H.comp (H.comp h₁ h₃) (H.comp h₂ h₄)
lemma h₁ h₂ h₃ h₄ =
(h₁ □ h₂) □ (h₃ □ h₄)
=⟨ H.assoc h₁ h₂ (h₃ □ h₄) ⟩
h₁ □ (h₂ □ (h₃ □ h₄))
=⟨ H-abelian h₃ h₄ |in-ctx (λ w → h₁ □ (h₂ □ w)) ⟩
h₁ □ (h₂ □ (h₄ □ h₃))
=⟨ ! (H.assoc h₂ h₄ h₃) |in-ctx (λ w → h₁ □ w) ⟩
h₁ □ ((h₂ □ h₄) □ h₃)
=⟨ H-abelian (h₂ □ h₄) h₃ |in-ctx (λ w → h₁ □ w) ⟩
h₁ □ (h₃ □ (h₂ □ h₄))
=⟨ ! (H.assoc h₁ h₃ (h₂ □ h₄)) ⟩
(h₁ □ h₃) □ (h₂ □ h₄) ∎
where
infix 80 _□_
_□_ = H.comp
|
{
"alphanum_fraction": 0.4928194123,
"avg_line_length": 33.9383753501,
"ext": "agda",
"hexsha": "153bdbea996365ae9bbfd6451b850d302c9b71c0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "core/lib/groups/Homomorphisms.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "core/lib/groups/Homomorphisms.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "core/lib/groups/Homomorphisms.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5289,
"size": 12116
}
|
{-# OPTIONS --no-unicode #-}
data Two : Set where
tt ff : Two
data Foo : Set where
foo : Foo -> Foo -> Foo
test1 : Foo → Two
test1 x₀ = {!!}
test : Foo -> Foo → Two
test x1 = {!!}
|
{
"alphanum_fraction": 0.5425531915,
"avg_line_length": 13.4285714286,
"ext": "agda",
"hexsha": "de3e70ade2f7035f1594b40d2b12fe7ae7ab742a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue3866.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue3866.agda",
"max_line_length": 28,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue3866.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 62,
"size": 188
}
|
module UniDB.Morph.ShiftsPrime where
open import UniDB.Spec
open import UniDB.Basic
open import UniDB.Subst
open import Function
open import Data.Product
--------------------------------------------------------------------------------
mutual
data Shifts* : MOR where
refl : {γ : Dom} → Shifts* γ γ
incl : {γ₁ γ₂ : Dom} (ξ : Shifts+ γ₁ γ₂) → Shifts* γ₁ γ₂
data Shifts+ : MOR where
step : {γ₁ γ₂ : Dom} (ξ : Shifts* γ₁ γ₂) → Shifts+ γ₁ (suc γ₂)
skip : {γ₁ γ₂ : Dom} (ξ : Shifts+ γ₁ γ₂) → Shifts+ (suc γ₁) (suc γ₂)
mutual
shiftIx* : {γ₁ γ₂ : Dom} (ξ : Shifts* γ₁ γ₂) (i : Ix γ₁) → Ix γ₂
shiftIx* refl i = i
shiftIx* (incl ξ) i = shiftIx+ ξ i
shiftIx+ : {γ₁ γ₂ : Dom} (ξ : Shifts+ γ₁ γ₂) (i : Ix γ₁) → Ix γ₂
shiftIx+ (skip ξ) zero = zero
shiftIx+ (skip ξ) (suc i) = suc (shiftIx+ ξ i)
shiftIx+ (step ξ) i = suc (shiftIx* ξ i)
mutual
_⊙**_ : {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Shifts* γ₁ γ₂) (ξ₂ : Shifts* γ₂ γ₃) → Shifts* γ₁ γ₃
ξ₁ ⊙** refl = ξ₁
ξ₁ ⊙** incl ξ₂ = incl (ξ₁ ⊙*+ ξ₂)
_⊙*+_ : {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Shifts* γ₁ γ₂) (ξ₂ : Shifts+ γ₂ γ₃) → Shifts+ γ₁ γ₃
refl ⊙*+ ξ₂ = ξ₂
incl ξ₁ ⊙*+ ξ₂ = ξ₁ ⊙++ ξ₂
_⊙+*_ : {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Shifts+ γ₁ γ₂) (ξ₂ : Shifts* γ₂ γ₃) → Shifts+ γ₁ γ₃
ξ₁ ⊙+* refl = ξ₁
ξ₁ ⊙+* incl ξ₂ = ξ₁ ⊙++ ξ₂
_⊙++_ : {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Shifts+ γ₁ γ₂) (ξ₂ : Shifts+ γ₂ γ₃) → Shifts+ γ₁ γ₃
ξ₁ ⊙++ step ξ₂ = step (incl (ξ₁ ⊙+* ξ₂))
step ξ₁ ⊙++ skip ξ₂ = step (incl (ξ₁ ⊙*+ ξ₂))
skip ξ₁ ⊙++ skip ξ₂ = skip (ξ₁ ⊙++ ξ₂)
--------------------------------------------------------------------------------
instance
iLkShifts* : {T : STX} {{vrT : Vr T}} → Lk T Shifts*
lk {{iLkShifts*}} ξ i = vr {_} (shiftIx* ξ i)
iLkShifts+ : {T : STX} {{vrT : Vr T}} → Lk T Shifts+
lk {{iLkShifts+}} ξ i = vr {_} (shiftIx+ ξ i)
iUpShifts* : Up Shifts*
_↑₁ {{iUpShifts*}} refl = refl
_↑₁ {{iUpShifts*}} (incl ξ) = incl (skip ξ)
_↑_ {{iUpShifts*}} ξ 0 = ξ
_↑_ {{iUpShifts*}} ξ (suc δ⁺) = ξ ↑ δ⁺ ↑₁
↑-zero {{iUpShifts*}} ξ = refl
↑-suc {{iUpShifts*}} ξ δ⁺ = refl
iUpShifts+ : Up Shifts+
_↑₁ {{iUpShifts+}} ξ = skip ξ
_↑_ {{iUpShifts+}} ξ 0 = ξ
_↑_ {{iUpShifts+}} ξ (suc δ⁺) = ξ ↑ δ⁺ ↑₁
↑-zero {{iUpShifts+}} ξ = refl
↑-suc {{iUpShifts+}} ξ δ⁺ = refl
iIdmShifts* : Idm Shifts*
idm {{iIdmShifts*}} γ = refl {γ}
iWkmShifts* : Wkm Shifts*
wkm {{iWkmShifts*}} zero = idm {Shifts*} _
wkm {{iWkmShifts*}} (suc δ) = incl (step (wkm {Shifts*} δ))
iCompShifts* : Comp Shifts*
_⊙_ {{iCompShifts*}} = _⊙**_
iCompShifts+ : Comp Shifts+
_⊙_ {{iCompShifts+}} = _⊙++_
--------------------------------------------------------------------------------
suc-inj : {γ : Dom} {i j : Ix γ} → _≡_ {A = Ix (suc γ)} (suc i) (suc j) → i ≡ j
suc-inj refl = refl
shift₁≠id : {γ : Dom} (ξ : Shifts+ γ γ) →
Σ[ i ∈ Ix γ ] shiftIx+ ξ i ≢ i
shift₁≠id (skip ξ) with shift₁≠id ξ
shift₁≠id (skip ξ) | w , ¬p = suc w , ¬p ∘ suc-inj
shift₁≠id (step ξ) = zero , λ ()
mutual
extensionality-shifts* : {γ₁ γ₂ : Dom} (ξ₁ ξ₂ : Shifts* γ₁ γ₂)
(hyp : (i : Ix γ₁) → lk {Ix} ξ₁ i ≡ lk {Ix} ξ₂ i) →
ξ₁ ≡ ξ₂
extensionality-shifts* refl refl hyp = refl
extensionality-shifts* refl (incl ξ₂) hyp with shift₁≠id ξ₂
... | w , ¬p = case ¬p (sym (hyp w)) of λ()
extensionality-shifts* (incl ξ₁) refl hyp with shift₁≠id ξ₁
... | w , ¬p = case ¬p (hyp w) of λ()
extensionality-shifts* (incl ξ₁) (incl ξ₂) hyp = cong incl (extensionality-shifts+ ξ₁ ξ₂ hyp)
extensionality-shifts+ : {γ₁ γ₂ : Dom} (ξ₁ ξ₂ : Shifts+ γ₁ γ₂)
(hyp : (i : Ix γ₁) → lk {Ix} ξ₁ i ≡ lk {Ix} ξ₂ i) →
ξ₁ ≡ ξ₂
extensionality-shifts+ (skip ξ₁) (skip ξ₂) hyp = cong skip (extensionality-shifts+ ξ₁ ξ₂ (suc-inj ∘ hyp ∘ suc))
extensionality-shifts+ (skip ξ₁) (step ξ₂) hyp = case hyp zero of λ()
extensionality-shifts+ (step ξ₁) (skip ξ₂) hyp = case hyp zero of λ()
extensionality-shifts+ (step ξ₁) (step ξ₂) hyp = cong step (extensionality-shifts* ξ₁ ξ₂ (suc-inj ∘ hyp))
mutual
shiftIx-⊙** : {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Shifts* γ₁ γ₂) (ξ₂ : Shifts* γ₂ γ₃) →
(i : Ix γ₁) → shiftIx* (ξ₁ ⊙** ξ₂) i ≡ shiftIx* ξ₂ (shiftIx* ξ₁ i)
shiftIx-⊙** ξ₁ refl i = refl
shiftIx-⊙** ξ₁ (incl ξ₂) i = shiftIx-⊙*+ ξ₁ ξ₂ i
shiftIx-⊙*+ : {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Shifts* γ₁ γ₂) (ξ₂ : Shifts+ γ₂ γ₃) →
(i : Ix γ₁) → shiftIx+ (ξ₁ ⊙*+ ξ₂) i ≡ shiftIx+ ξ₂ (shiftIx* ξ₁ i)
shiftIx-⊙*+ refl ξ₂ i = refl
shiftIx-⊙*+ (incl ξ₁) ξ₂ i = shiftIx-⊙++ ξ₁ ξ₂ i
shiftIx-⊙+* : {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Shifts+ γ₁ γ₂) (ξ₂ : Shifts* γ₂ γ₃) →
(i : Ix γ₁) → shiftIx+ (ξ₁ ⊙+* ξ₂) i ≡ shiftIx* ξ₂ (shiftIx+ ξ₁ i)
shiftIx-⊙+* ξ₁ refl i = refl
shiftIx-⊙+* ξ₁ (incl ξ₂) i = shiftIx-⊙++ ξ₁ ξ₂ i
shiftIx-⊙++ : {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Shifts+ γ₁ γ₂) (ξ₂ : Shifts+ γ₂ γ₃) →
(i : Ix γ₁) → shiftIx+ (ξ₁ ⊙++ ξ₂) i ≡ shiftIx+ ξ₂ (shiftIx+ ξ₁ i)
shiftIx-⊙++ ξ₁ (step ξ₂) i = cong suc (shiftIx-⊙+* ξ₁ ξ₂ i)
shiftIx-⊙++ (step ξ₁) (skip ξ₂) i = cong suc (shiftIx-⊙*+ ξ₁ ξ₂ i)
shiftIx-⊙++ (skip ξ₁) (skip ξ₂) zero = refl
shiftIx-⊙++ (skip ξ₁) (skip ξ₂) (suc i) = cong suc (shiftIx-⊙++ ξ₁ ξ₂ i)
⊙**-↑₁ : {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Shifts* γ₁ γ₂) (ξ₂ : Shifts* γ₂ γ₃) →
(ξ₁ ⊙** ξ₂) ↑₁ ≡ (ξ₁ ↑₁) ⊙** (ξ₂ ↑₁)
⊙**-↑₁ ξ₁ refl = refl
⊙**-↑₁ refl (incl ξ₂) = refl
⊙**-↑₁ (incl ξ₁) (incl ξ₂) = refl
⊙++-↑₁ : {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Shifts+ γ₁ γ₂) (ξ₂ : Shifts+ γ₂ γ₃) →
(ξ₁ ⊙++ ξ₂) ↑₁ ≡ (ξ₁ ↑₁) ⊙++ (ξ₂ ↑₁)
⊙++-↑₁ ξ₁ (step ξ₂) = refl
⊙++-↑₁ (step ξ₁) (skip ξ₂) = refl
⊙++-↑₁ (skip ξ₁) (skip ξ₂) = refl
mutual
⊙***-assoc : {γ₁ γ₂ γ₃ γ₄ : Dom}
(ξ₁ : Shifts* γ₁ γ₂) (ξ₂ : Shifts* γ₂ γ₃) (ξ₃ : Shifts* γ₃ γ₄) →
(ξ₁ ⊙** (ξ₂ ⊙** ξ₃)) ≡ ((ξ₁ ⊙** ξ₂) ⊙** ξ₃)
⊙***-assoc ξ₁ ξ₂ refl = refl
⊙***-assoc ξ₁ ξ₂ (incl ξ₃) = cong incl (⊙**+-assoc ξ₁ ξ₂ ξ₃)
⊙**+-assoc : {γ₁ γ₂ γ₃ γ₄ : Dom}
(ξ₁ : Shifts* γ₁ γ₂) (ξ₂ : Shifts* γ₂ γ₃) (ξ₃ : Shifts+ γ₃ γ₄) →
(ξ₁ ⊙*+ (ξ₂ ⊙*+ ξ₃)) ≡ ((ξ₁ ⊙** ξ₂) ⊙*+ ξ₃)
⊙**+-assoc ξ₁ refl ξ₃ = refl
⊙**+-assoc ξ₁ (incl ξ₂) ξ₃ = ⊙*++-assoc ξ₁ ξ₂ ξ₃
⊙*++-assoc : {γ₁ γ₂ γ₃ γ₄ : Dom}
(ξ₁ : Shifts* γ₁ γ₂) (ξ₂ : Shifts+ γ₂ γ₃) (ξ₃ : Shifts+ γ₃ γ₄) →
(ξ₁ ⊙*+ (ξ₂ ⊙++ ξ₃)) ≡ ((ξ₁ ⊙*+ ξ₂) ⊙++ ξ₃)
⊙*++-assoc refl ξ₂ ξ₃ = refl
⊙*++-assoc (incl ξ₁) ξ₂ ξ₃ = ⊙+++-assoc ξ₁ ξ₂ ξ₃
⊙++*-assoc : {γ₁ γ₂ γ₃ γ₄ : Dom}
(ξ₁ : Shifts+ γ₁ γ₂) (ξ₂ : Shifts+ γ₂ γ₃) (ξ₃ : Shifts* γ₃ γ₄) →
(ξ₁ ⊙++ (ξ₂ ⊙+* ξ₃)) ≡ ((ξ₁ ⊙++ ξ₂) ⊙+* ξ₃)
⊙++*-assoc ξ₁ ξ₂ refl = refl
⊙++*-assoc ξ₁ ξ₂ (incl ξ₃) = ⊙+++-assoc ξ₁ ξ₂ ξ₃
⊙+*+-assoc : {γ₁ γ₂ γ₃ γ₄ : Dom}
(ξ₁ : Shifts+ γ₁ γ₂) (ξ₂ : Shifts* γ₂ γ₃) (ξ₃ : Shifts+ γ₃ γ₄) →
(ξ₁ ⊙++ (ξ₂ ⊙*+ ξ₃)) ≡ ((ξ₁ ⊙+* ξ₂) ⊙++ ξ₃)
⊙+*+-assoc ξ₁ refl ξ₃ = refl
⊙+*+-assoc ξ₁ (incl ξ₂) ξ₃ = ⊙+++-assoc ξ₁ ξ₂ ξ₃
⊙+++-assoc : {γ₁ γ₂ γ₃ γ₄ : Dom}
(ξ₁ : Shifts+ γ₁ γ₂) (ξ₂ : Shifts+ γ₂ γ₃) (ξ₃ : Shifts+ γ₃ γ₄) →
(ξ₁ ⊙++ (ξ₂ ⊙++ ξ₃)) ≡ ((ξ₁ ⊙++ ξ₂) ⊙++ ξ₃)
⊙+++-assoc ξ₁ ξ₂ (step ξ₃) = cong (step ∘ incl) (⊙++*-assoc ξ₁ ξ₂ ξ₃)
⊙+++-assoc ξ₁ (step ξ₂) (skip ξ₃) = cong (step ∘ incl) (⊙+*+-assoc ξ₁ ξ₂ ξ₃)
⊙+++-assoc (step ξ₁) (skip ξ₂) (skip ξ₃) = cong (step ∘ incl) (⊙*++-assoc ξ₁ ξ₂ ξ₃)
⊙+++-assoc (skip ξ₁) (skip ξ₂) (skip ξ₃) = cong skip (⊙+++-assoc ξ₁ ξ₂ ξ₃)
--------------------------------------------------------------------------------
module _ {T : STX} {{vrT : Vr T}} where
instance
iLkUpShifts* : {{wkT : Wk T}} {{wkVrT : WkVr T}} → LkUp T Shifts*
lk-↑₁-zero {{iLkUpShifts*}} refl = refl
lk-↑₁-zero {{iLkUpShifts*}} (incl ξ) = refl
lk-↑₁-suc {{iLkUpShifts*}} refl i = sym (wk₁-vr {T} i)
lk-↑₁-suc {{iLkUpShifts*}} (incl ξ) i = sym (wk₁-vr {T} (shiftIx+ ξ i))
iLkRenShifts* : LkRen T Shifts*
lk-ren {{iLkRenShifts*}} ξ i = refl
iLkIdmShifts* : LkIdm T Shifts*
lk-idm {{iLkIdmShifts*}} i = refl
iLkWkmShifts* : LkWkm T Shifts*
lk-wkm {{iLkWkmShifts*}} δ i = cong vr (lem δ i)
where
lem : {γ : Dom} (δ : Dom) (i : Ix γ) →
shiftIx* (wkm {Shifts*} δ) i ≡ wk {Ix} δ i
lem zero i = refl
lem (suc δ) i = cong suc (lem δ i)
iLkCompApShifts* : {{apTT : Ap T T}} {{apVrT : ApVr T}} → LkCompAp T Shifts*
lk-⊙-ap {{iLkCompApShifts*}} {Ξ} ξ₁ ξ₂ i = begin
vr (lk {Ix} (ξ₁ ⊙ ξ₂) i) ≡⟨ cong vr (shiftIx-⊙** ξ₁ ξ₂ i) ⟩
lk {T} ξ₂ (lk {Ix} ξ₁ i) ≡⟨ sym (ap-vr {T} ξ₂ (lk ξ₁ i)) ⟩
ap {T} ξ₂ (vr (lk {Ix} ξ₁ i)) ∎ -- sym {!ap-vr {T} !}
instance
iUpIdmShifts* : UpIdm Shifts*
idm-↑₁ {{iUpIdmShifts*}} = refl
iCompIdmShifts* : CompIdm Shifts*
⊙-idm {{iCompIdmShifts*}} ξ = refl
idm-⊙ {{iCompIdmShifts*}} refl = refl
idm-⊙ {{iCompIdmShifts*}} (incl ξ) = refl
iUpCompShifts* : UpComp Shifts*
⊙-↑₁ {{iUpCompShifts*}} ξ₁ ξ₂ = ⊙**-↑₁ ξ₁ ξ₂
-- extensionality-shifts* ((ξ₁ ⊙ ξ₂) ↑₁) (ξ₁ ↑₁ ⊙ ξ₂ ↑₁)
-- (lk≃ {Ix} {Shifts*} {ξ = (ξ₁ ⊙ ξ₂) ↑₁} {ξ₁ ↑₁ ⊙ ξ₂ ↑₁}
-- (⊙-↑₁-pointwise {Ix} {{apWkTT = iApWk Ix Ix}} {Shifts*} ξ₁ ξ₂))
iCompAssoc* : CompAssoc Shifts*
⊙-assoc {{iCompAssoc*}} = ⊙***-assoc
iUpCompShifts+ : UpComp Shifts+
⊙-↑₁ {{iUpCompShifts+}} = ⊙++-↑₁
iCompAssoc+ : CompAssoc Shifts+
⊙-assoc {{iCompAssoc+}} = ⊙+++-assoc
--------------------------------------------------------------------------------
{-
iWkmHomShifts* : WkmHom Shifts*
wkm-zero {{iWkmHomShifts*}} = {!!}
wkm-suc {{iWkmHomShifts*}} δ = {!!}
-}
|
{
"alphanum_fraction": 0.5007969398,
"avg_line_length": 37.3452380952,
"ext": "agda",
"hexsha": "d7b76fe6e6584262ab7c164c8bdd5df146043e5d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "skeuchel/unidb-agda",
"max_forks_repo_path": "UniDB/Morph/ShiftsPrime.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "skeuchel/unidb-agda",
"max_issues_repo_path": "UniDB/Morph/ShiftsPrime.agda",
"max_line_length": 113,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "skeuchel/unidb-agda",
"max_stars_repo_path": "UniDB/Morph/ShiftsPrime.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4973,
"size": 9411
}
|
------------------------------------------------------------------------
-- Terminating parser combinator interface
------------------------------------------------------------------------
module RecursiveDescent.Coinductive where
open import RecursiveDescent.Index
import RecursiveDescent.Coinductive.Internal as P
open P public using (Parser)
open import Data.List
open import Data.Bool
open import Data.Maybe
open import Data.Product.Record hiding (map)
import Data.Product as Prod
open import Data.Function
import Data.BoundedVec.Inefficient as BVec
------------------------------------------------------------------------
-- Run function for the parsers
parse : forall {tok i r} ->
Parser tok i r -> List tok -> List (Prod._×_ r (List tok))
parse p s = map (Prod.map id BVec.toList)
(P.parse _ p (BVec.fromList s))
-- A variant which only returns parses which leave no remaining input.
parse-complete : forall {tok i r} ->
Parser tok i r -> List tok -> List r
parse-complete p s =
map Prod.proj₁ (filter (null ∘ Prod.proj₂) (parse p s))
------------------------------------------------------------------------
-- Exported combinators
infixl 40 _∣_
infixl 10 _>>=_ _!>>=_
symbol : forall {tok} -> Parser tok 0I tok
symbol = P.symbol
return : forall {tok r} -> r -> Parser tok 1I r
return = P.ret
fail : forall {tok r} -> Parser tok 0I r
fail = P.fail
_>>=_ : forall {tok e₁ c₁ i₂ r₁ r₂} -> let i₁ = (e₁ , c₁) in
Parser tok i₁ r₁ ->
(r₁ -> Parser tok i₂ r₂) ->
Parser tok (i₁ ·I i₂) r₂
_>>=_ {e₁ = true } = P.bind₀
_>>=_ {e₁ = false} = P.bind₁
-- If the first parser is guaranteed to consume something, then the
-- second parser's index can depend on the result of the first parser.
_!>>=_ : forall {tok c₁ r₁ r₂} {i₂ : r₁ -> Index} ->
let i₁ = (false , c₁) in
Parser tok i₁ r₁ ->
((x : r₁) -> Parser tok (i₂ x) r₂) ->
Parser tok (i₁ ·I 1I) r₂
_!>>=_ = P.bind₁
_∣_ : forall {tok e₁ c₁ i₂ r} -> let i₁ = (e₁ , c₁) in
Parser tok i₁ r ->
Parser tok i₂ r ->
Parser tok (i₁ ∣I i₂) r
_∣_ {e₁ = true } = P.alt₀
_∣_ {e₁ = false} = P.alt₁ _
|
{
"alphanum_fraction": 0.5455801105,
"avg_line_length": 30.1666666667,
"ext": "agda",
"hexsha": "0835753aa7bdd0e91cd89c08b5fe798d259750d8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "misc/RecursiveDescent/Coinductive.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "misc/RecursiveDescent/Coinductive.agda",
"max_line_length": 72,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yurrriq/parser-combinators",
"max_stars_repo_path": "misc/RecursiveDescent/Coinductive.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z",
"num_tokens": 608,
"size": 2172
}
|
open import Type
module Formalization.ClassicalPropositionalLogic.TruthTable {ℓₚ}{P : Type{ℓₚ}} where
import Lvl
open import Data
open import Data.Boolean
open import Data.Boolean.Operators using () renaming (module Logic to Bool)
import Data.Boolean.Proofs as Bool
open import Data.Boolean.Stmt
open import Data.Boolean.Stmt.Proofs
open import Data.Either as Either using (_‖_ ; Left ; Right)
open import Data.Tuple as Tuple using ()
open import Formalization.ClassicalPropositionalLogic.Syntax
open import Formalization.ClassicalPropositionalLogic.Semantics
open import Functional
import Logic.Propositional as Logic
import Logic.Propositional.Theorems as Logic
open import Logic
open import Relator.Equals.Proofs.Equiv
import Sets.PredicateSet
open Sets.PredicateSet.BoundedQuantifiers
private variable ℓ : Lvl.Level
-- `_⊧_`, but decidable.
eval : Model(P) → Formula(P) → Bool
eval env (• p) = env(p)
eval env (⊤) = 𝑇
eval env (⊥) = 𝐹
eval env (¬ φ) = Bool.¬(eval env (φ))
eval env (φ ∧ ψ) = eval env (φ) Bool.∧ eval env (ψ)
eval env (φ ∨ ψ) = eval env (φ) Bool.∨ eval env (ψ)
eval env (φ ⟶ ψ) = eval env (φ) Bool.⟶ eval env (ψ)
eval env (φ ⟷ ψ) = eval env (φ) Bool.⟷ eval env (ψ)
_⊢_ : Formulas(P){ℓ} → Formula(P) → Stmt
Γ ⊢ φ = ∀{𝔐} → (∀ₛ(Γ) (IsTrue ∘ eval 𝔐)) → IsTrue(eval 𝔐 φ)
private variable Γ Γ₁ Γ₂ : Formulas(P){ℓ}
private variable φ ψ : Formula(P)
private variable 𝔐 : Model(P)
models-to-eval : (𝔐 ⊧ φ) → IsTrue(eval 𝔐 φ)
eval-to-models : IsTrue(eval 𝔐 φ) → (𝔐 ⊧ φ)
eval-to-models {φ = • x} p = p
eval-to-models {φ = ⊤} p = <>
eval-to-models {φ = ⊥} p = p
eval-to-models {φ = ¬ φ} p = Logic.[↔]-to-[→] IsTrue.preserves-[!][¬] p ∘ models-to-eval {φ = φ}
eval-to-models {φ = φ ∧ ψ} p = Tuple.map (eval-to-models {φ = φ}) (eval-to-models {φ = ψ}) (Logic.[↔]-to-[→] IsTrue.preserves-[&&][∧] p)
eval-to-models {φ = φ ∨ ψ} p = Either.map (eval-to-models {φ = φ}) (eval-to-models {φ = ψ}) (Logic.[↔]-to-[→] IsTrue.preserves-[||][∨] p)
eval-to-models {φ = φ ⟶ ψ} p = Either.map (Logic.contrapositiveᵣ (models-to-eval {φ = φ}) ∘ Logic.[↔]-to-[→] IsTrue.preserves-[!][¬]) (eval-to-models {φ = ψ}) (Logic.[↔]-to-[→] IsTrue.preserves-[||][∨] ([≡]-substitutionᵣ Bool.[→?]-disjunctive-form {f = IsTrue} p))
eval-to-models {φ = φ ⟷ ψ} p = Either.map (Tuple.map (eval-to-models {φ = φ}) (eval-to-models {φ = ψ}) ∘ (Logic.[↔]-to-[→] IsTrue.preserves-[&&][∧])) (Tuple.map (Logic.contrapositiveᵣ (models-to-eval {φ = φ}) ∘ Logic.[↔]-to-[→] IsTrue.preserves-[!][¬]) (Logic.contrapositiveᵣ (models-to-eval {φ = ψ}) ∘ Logic.[↔]-to-[→] IsTrue.preserves-[!][¬]) ∘ Logic.[↔]-to-[→] IsTrue.preserves-[&&][∧]) (Logic.[↔]-to-[→] IsTrue.preserves-[||][∨] ([≡]-substitutionᵣ Bool.[==]-disjunctive-form {f = IsTrue} p))
models-to-eval {φ = • x} p = p
models-to-eval {φ = ⊤} p = <>
models-to-eval {φ = ⊥} p = p
models-to-eval {φ = ¬ φ} p = Logic.[↔]-to-[←] IsTrue.preserves-[!][¬] (p ∘ eval-to-models {φ = φ})
models-to-eval {φ = φ ∧ ψ} p = Logic.[↔]-to-[←] IsTrue.preserves-[&&][∧] (Tuple.map (models-to-eval {φ = φ}) (models-to-eval {φ = ψ}) p)
models-to-eval {φ = φ ∨ ψ} p = Logic.[↔]-to-[←] IsTrue.preserves-[||][∨] (Either.map (models-to-eval {φ = φ}) (models-to-eval {φ = ψ}) p)
models-to-eval {φ = φ ⟶ ψ} p = [≡]-substitutionₗ Bool.[→?]-disjunctive-form {f = IsTrue} (Logic.[↔]-to-[←] IsTrue.preserves-[||][∨] (Either.map (Logic.[↔]-to-[←] IsTrue.preserves-[!][¬] ∘ Logic.contrapositiveᵣ (eval-to-models {φ = φ})) (models-to-eval {φ = ψ}) p))
models-to-eval {φ = φ ⟷ ψ} p = [≡]-substitutionₗ Bool.[==]-disjunctive-form {f = IsTrue} (Logic.[↔]-to-[←] IsTrue.preserves-[||][∨] (Either.map (Logic.[↔]-to-[←] IsTrue.preserves-[&&][∧] ∘ Tuple.map (models-to-eval {φ = φ}) (models-to-eval {φ = ψ})) (Logic.[↔]-to-[←] IsTrue.preserves-[&&][∧] ∘ Tuple.map (Logic.[↔]-to-[←] IsTrue.preserves-[!][¬] ∘ Logic.contrapositiveᵣ (eval-to-models {φ = φ})) (Logic.[↔]-to-[←] IsTrue.preserves-[!][¬] ∘ Logic.contrapositiveᵣ (eval-to-models {φ = ψ}))) p))
completeness : (Γ ⊨ φ) → (Γ ⊢ φ)
completeness {φ = φ} Γφ {𝔐} a = models-to-eval {φ = φ} (Γφ (\{γ} → eval-to-models {φ = γ} ∘ a))
soundness : (Γ ⊢ φ) → (Γ ⊨ φ)
soundness {φ = φ} Γφ {𝔐} a = eval-to-models {φ = φ} (Γφ (\{γ} → models-to-eval {φ = γ} ∘ a))
|
{
"alphanum_fraction": 0.6053558844,
"avg_line_length": 60.8142857143,
"ext": "agda",
"hexsha": "e222f7b8b8cf27887768126e5c736c01249f44b3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Formalization/ClassicalPropositionalLogic/TruthTable.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Formalization/ClassicalPropositionalLogic/TruthTable.agda",
"max_line_length": 495,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Formalization/ClassicalPropositionalLogic/TruthTable.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1713,
"size": 4257
}
|
------------------------------------------------------------------------
-- An example that uses natural numbers as names, implemented using
-- the coinductive definition of bisimilarity
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
module Bisimilarity.CCS.Examples.Natural-numbers where
open import Equality.Propositional
open import Logical-equivalence using (_⇔_)
open import Prelude
open import Prelude.Size
open import Bijection equality-with-J using (_↔_)
open import Equality.Decision-procedures equality-with-J
open import Fin equality-with-J
open import Function-universe equality-with-J as F
hiding (id; _∘_; Distinct↔≢)
open import Nat equality-with-J hiding (Distinct)
open import Bisimilarity.CCS
import Bisimilarity.Equational-reasoning-instances
open import Bisimilarity.CCS.Examples
open import Equational-reasoning
open import Labelled-transition-system.CCS ℕ
open import Bisimilarity CCS
module _ (μ : Action) where
-- Two processes that are strongly bisimilar.
P : ∀ {i} → ℕ → Proc i
P n = Restricted n ∣ (μ · λ { .force → P (1 + n) })
Q : ∀ {i} → Proc i
Q = μ · λ { .force → Q }
P∼Q : ∀ {i n} → [ i ] P n ∼ Q
P∼Q {n = n} =
P n ∼⟨ Restricted∼∅ ∣-cong (refl ·-cong λ { .force → P∼Q }) ⟩
∅ ∣ Q ∼⟨ ∣-left-identity ⟩■
Q
-- Q is not finite.
Q-infinite : ¬ Finite Q
Q-infinite (action f) = Q-infinite f
-- However, Q is regular.
Q-regular : Regular Q
Q-regular = 1 , (λ _ → Q) , (fzero ,_) ∘ lemma
where
lemma : ∀ {P} → Subprocess P Q → Equal ∞ P Q
lemma (refl eq) = eq
lemma (action sub) = lemma sub
-- The processes in the family P are not finite.
P-infinite : ∀ {n} → ¬ Finite (P n)
P-infinite (_ ∣ action f) = P-infinite f
-- Furthermore they are irregular.
P-irregular : ∀ {n} → ¬ Regular (P n)
P-irregular (k , Qs , hyp) = irregular′ k hyp
where
Regular′ : ℕ → ∀ k → (Fin k → Proc ∞) → Type
Regular′ n k Qs =
∀ {Q} → Subprocess Q (P n) →
∃ λ (i : Fin k) → Equal ∞ Q (Qs i)
irregular′ : ∀ {n} k {Qs} → ¬ Regular′ n k Qs
irregular′ {n} zero {Qs} =
Regular′ n zero Qs ↝⟨ _$ refl (Proc-refl _) ⟩
(∃ λ (i : Fin zero) → _) ↝⟨ proj₁ ⟩□
⊥ □
irregular′ {n} (suc k) {Qs} =
Regular′ n (suc k) Qs ↝⟨ lemma₂ ⟩
(∃ λ Qs′ → Regular′ (suc n) k Qs′) ↝⟨ irregular′ k ∘ proj₂ ⟩□
⊥ □
where
lemma₁ :
∀ {Q} m {n} → Subprocess Q (P (1 + m + n)) → ¬ Equal ∞ Q (P n)
lemma₁ m (par-right (action sub)) eq = lemma₁ (suc m) sub eq
lemma₁ m {n} (refl (⟨ν refl ⟩ _ ∣ _)) (⟨ν suc[m+n]≡n ⟩ _ ∣ _) =
≢1+ _ (n ≡⟨ sym suc[m+n]≡n ⟩
suc (m + n) ≡⟨ cong suc (+-comm m) ⟩∎
suc (n + m) ∎)
lemma₁ _ (par-left (refl ())) (_ ∣ _)
lemma₁ _ (par-left (restriction (refl ()))) (_ ∣ _)
lemma₁ _ (par-left (restriction (action (refl ())))) (_ ∣ _)
lemma₁ _ (par-right (refl p)) q
with Proc-trans (Proc-sym p) q
... | ()
lemma₂ : ∀ {n k Qs} →
Regular′ n (suc k) Qs →
∃ λ Qs′ → Regular′ (suc n) k Qs′
lemma₂ {n} {k} {Qs} reg =
let i , Pn≡Qsi = reg (refl (Proc-refl _))
Fin↔ = Fin↔Fin+≢ i
Qs′ =
Fin k ↔⟨ Fin↔ ⟩
(∃ λ (j : Fin (suc k)) → Distinct j i) ↝⟨ Qs ∘ proj₁ ⟩□
Proc ∞ □
in
Qs′ , λ {Q} →
Subprocess Q (P (1 + n)) ↝⟨ (λ sub → reg (par-right (action sub)) , lemma₁ 0 sub) ⟩
(∃ λ (j : Fin (suc k)) → Equal ∞ Q (Qs j)) ×
¬ Equal ∞ Q (P n) ↝⟨ (λ { ((j , Q≡Qsj) , Q≢Pn) →
( j
, (case j Fin.≟ i of λ where
(inj₁ refl) → ⊥-elim $
Q≢Pn (Proc-trans Q≡Qsj (Proc-sym Pn≡Qsi))
(inj₂ j≢i) → _⇔_.from (Distinct↔≢ _) j≢i)
)
, Q≡Qsj }) ⟩
(∃ λ (j : ∃ λ (j : Fin (suc k)) → Distinct j i) →
Equal ∞ Q (Qs (proj₁ j))) ↝⟨ ∃-cong (λ _ → ≡⇒↝ _ $ cong (λ j → Equal ∞ Q (Qs (proj₁ j))) $ sym $
_↔_.right-inverse-of Fin↔ _) ⟩
(∃ λ (j : ∃ λ (j : Fin (suc k)) → Distinct j i) →
Equal ∞ Q (Qs (proj₁ (_↔_.to Fin↔ (_↔_.from Fin↔ j))))) ↔⟨⟩
(∃ λ (j : ∃ λ (j : Fin (suc k)) → Distinct j i) →
Equal ∞ Q (Qs′ (_↔_.from Fin↔ j))) ↝⟨ Σ-cong (inverse Fin↔) (λ _ → F.id) ⟩□
(∃ λ (j : Fin k) → Equal ∞ Q (Qs′ j)) □
|
{
"alphanum_fraction": 0.4042235096,
"avg_line_length": 39.9328358209,
"ext": "agda",
"hexsha": "57feb013454cbc7940373821bb1b821cf951562e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/up-to",
"max_forks_repo_path": "src/Bisimilarity/CCS/Examples/Natural-numbers.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/up-to",
"max_issues_repo_path": "src/Bisimilarity/CCS/Examples/Natural-numbers.agda",
"max_line_length": 142,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/up-to",
"max_stars_repo_path": "src/Bisimilarity/CCS/Examples/Natural-numbers.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1688,
"size": 5351
}
|
import Relation.Binary.EqReasoning as EqReasoning
open import SemiNearRingRecords
module ZeroLemmas (snr : SemiNearRing) where
open SemiNearRing snr -- public
open import CommAssocLemmas s _≃s_ _+s_ zers isCommMon hiding (_<+>_) renaming (SA to Ss)
zeroˡLemma : ∀ x y → zers *s x +s zers *s y ≃s zers
zeroˡLemma x y = begin
zers *s x +s zers *s y
≈⟨ zeroˡ x <+> zeroˡ y ⟩
zers +s zers
≈⟨ identityˡs zers ⟩
zers
∎
where open EqReasoning Ss
zeroʳLemma : ∀ x y → x *s zers +s y *s zers ≃s zers
zeroʳLemma x y =
begin
x *s zers +s y *s zers
≈⟨ zeroʳ x <+> zeroʳ y ⟩
zers +s zers
≈⟨ identityˡs zers ⟩
zers
∎
where open EqReasoning Ss
zeroˡʳLemma : ∀ w x y → w +s (zers *s x +s y *s zers) ≃s w
zeroˡʳLemma w x y = begin
w +s (zers *s x +s y *s zers)
≈⟨ refls <+> (zeroˡ x <+> zeroʳ y) ⟩
w +s (zers +s zers)
≈⟨ refls <+> identityˡs zers ⟩
w +s zers
≈⟨ identityʳs w ⟩
w
∎
where open EqReasoning Ss
-- Some lemmas are needed to eliminate the zers and massage the terms.
zeroLemma01 = lemmaCommAssoc01
zeroLemma10 : ∀ {a b c d e} → a +s ( ((zers *s b) +s c) +s (d +s (e *s zers)))
≃s a +s ( c +s d )
zeroLemma10 {a} {b} {c} {d} {e} = refls <+>
(begin
((zers *s b) +s c) +s (d +s (e *s zers))
≈⟨ (zeroˡ b <+> refls) <+> (refls <+> zeroʳ e) ⟩
( zers +s c) +s (d +s zers)
≈⟨ identityˡs c <+> identityʳs d ⟩
c +s d
∎)
where open EqReasoning Ss
zeroLemma00 : ∀ {a b c d e} → a +s ((c +s b) +s (d +s (e *s zers)) )
≃s (a +s b) +s (c +s d)
zeroLemma00 {a} {b} {c} {d} {e} =
(begin
a +s ((c +s b) +s (d +s (e *s zers)) )
≈⟨ refls <+> (comms c b <+> (refls <+> zeroʳ e)) ⟩
a +s ((b +s c) +s (d +s zers) )
≈⟨ refls <+> (refls <+> identityʳs d) ⟩
a +s ((b +s c) +s d)
≈⟨ refls <+> assocs b c d ⟩
a +s (b +s (c +s d))
≈⟨ syms (assocs a b _) ⟩
(a +s b) +s (c +s d)
∎)
where open EqReasoning Ss
zeroLemma11 : ∀ {a b c d e} → a +s (((zers *s e) +s c) +s (b +s d))
≃s (a +s b) +s (c +s d)
zeroLemma11 {a} {b} {c} {d} {e} =
(begin
a +s (((zers *s e) +s c) +s (b +s d))
≈⟨ refls <+> ((zeroˡ e <+> refls) <+> refls) ⟩
a +s ((zers +s c) +s (b +s d))
≈⟨ refls <+> (identityˡs c <+> refls) ⟩
a +s ( c +s (b +s d))
≈⟨ refls <+> syms (assocs c b d) ⟩
a +s ((c +s b) +s d)
≈⟨ refls <+> (comms c b <+> refls) ⟩
a +s ((b +s c) +s d)
≈⟨ refls <+> (assocs _ _ _) ⟩
a +s (b +s (c +s d))
≈⟨ syms (assocs _ _ _) ⟩
(a +s b) +s (c +s d)
∎)
where open EqReasoning Ss
|
{
"alphanum_fraction": 0.4227108631,
"avg_line_length": 33.4835164835,
"ext": "agda",
"hexsha": "f2e61d0f3f1dd2dbf57a3f67dc5b187ab0caf8a9",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-04-29T04:53:48.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-29T04:53:48.000Z",
"max_forks_repo_head_hexsha": "43729ff822a0b05c6cb74016b04bdc93c627b0b1",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "DSLsofMath/ValiantAgda",
"max_forks_repo_path": "code/ZeroLemmas.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "43729ff822a0b05c6cb74016b04bdc93c627b0b1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "DSLsofMath/ValiantAgda",
"max_issues_repo_path": "code/ZeroLemmas.agda",
"max_line_length": 91,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "43729ff822a0b05c6cb74016b04bdc93c627b0b1",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "DSLsofMath/ValiantAgda",
"max_stars_repo_path": "code/ZeroLemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-15T03:04:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-23T00:41:14.000Z",
"num_tokens": 1325,
"size": 3047
}
|
module Data.Finitude.Exponent where
open import Data.Finitude
open import Data.Fin as Fin using (Fin; toℕ)
open import Data.Nat
open import Data.Vec as Vec
open import Relation.Binary.PropositionalEquality as P
open import Data.Nat.DivMod
open import Relation.Nullary.Decidable
open import Function
open import Function.Equality as F using (_⟶_; _⟨$⟩_; _⇨_)
open import Function.Inverse as Inv using (module Inverse; Inverse)
open import Data.Product
open import Data.Sum
open import Data.Empty
open import Relation.Binary
exponent : ∀ {m} {n} → Finitude (P.setoid (Vec (Fin m) n)) (m ^ n)
exponent {m} {n} = record {
to = P.→-to-⟶ to
; from = P.→-to-⟶ from
; inverse-of = record {
left-inverse-of = from∘to
; right-inverse-of = to∘from {m}{n}
}
}
where
open import Data.Nat.Properties
open import Data.Fin.Properties hiding (≤-refl; _≟_; <-cmp)
open import Relation.Nullary.Negation
shift : ∀ {m n} (i : Fin m)(j : Fin n) → toℕ j + (toℕ i) * n < m * n
shift {m}{n} i j =
begin suc (toℕ j) + toℕ i * n
≤⟨ +-mono-≤ (toℕ<n j) (≤-refl {(toℕ i) * n}) ⟩
n + toℕ i * n
≤⟨ *-mono-≤ (toℕ<n i) ≤-refl ⟩ m * n ∎
where
open ≤-Reasoning
to : ∀ {m n} → Vec (Fin m) n → Fin (m ^ n)
to [] = Fin.zero
to {m}{n = suc n} (i ∷ is) = Fin.fromℕ≤ (shift i (to is))
suci^j≢0 : ∀ i j → suc i ^ j ≢ 0
suci^j≢0 i j eq with i^j≡0⇒i≡0 _ j eq
... | ()
from : ∀ {m n} → Fin (m ^ n) → Vec (Fin m) n
from {m} {zero} i = []
from {zero} {suc n} ()
from {suc m} {suc n} i with ((toℕ i) divMod (suc m ^ n))
{≢0 = fromWitnessFalse (suci^j≢0 _ n)}
from {suc m} {suc n} i | result quotient remainder property
= Fin.fromℕ≤ q<sm ∷ from remainder
where
q<sm : quotient < suc m
q<sm = ≰⇒> (λ sm≤q → <⇒≱ (toℕ<n i)
(begin (suc m) * (suc m ^ n)
≤⟨ *-mono-≤ sm≤q ≤-refl ⟩ quotient * (suc m ^ n)
≤⟨ +-mono-≤ (z≤n {toℕ remainder}) ≤-refl ⟩ toℕ remainder + quotient * (suc m ^ n)
≡⟨ P.sym property ⟩ toℕ i ∎))
where
open ≤-Reasoning
≢→<⊎> : ∀ {m n} → m ≢ n → m < n ⊎ n < m
≢→<⊎> {m}{n} m≢n with <-cmp m n
≢→<⊎> {m} {n} m≢n | tri< m<n _ _ = inj₁ m<n
≢→<⊎> {m} {n} m≢n | tri≈ _ m≡n _ = ⊥-elim (m≢n m≡n)
≢→<⊎> {m} {n} m≢n | tri> _ _ n<m = inj₂ n<m
chn : ∀ m → ∀ {k₀ k₁} {r₀ r₁ : Fin m} → toℕ r₀ + k₀ * m ≡ toℕ r₁ + k₁ * m → k₀ ≡ k₁ × r₀ ≡ r₁
chn zero {k₀} {k₁} {()} {r₁} _
chn (suc m) {k₀} {k₁} {r₀} {r₁} eq = k₀≡k₁ , r₀≡r₁
where
open ≤-Reasoning
contra : k₀ ≢ k₁ → ⊥
contra k₀≢k₁ with ≢→<⊎> k₀≢k₁
... | inj₁ k₀<k₁ = <⇒≱ (toℕ<n r₀) (+-cancelʳ-≤ (suc m) (toℕ r₀)
(begin suc m + k₀ * suc m
≡⟨ refl ⟩ suc k₀ * suc m
≤⟨ *-mono-≤ (m≤m+n (suc k₀) (k₁ ∸ suc k₀)) (≤-refl {suc m}) ⟩
(suc k₀ + (k₁ ∸ suc k₀)) * suc m
≡⟨ P.cong₂ _*_ (m+n∸m≡n k₀<k₁) refl ⟩ k₁ * suc m
≤⟨ n≤m+n (toℕ r₁) (k₁ * suc m) ⟩ toℕ r₁ + k₁ * suc m
≡⟨ P.sym eq ⟩ toℕ r₀ + k₀ * suc m ∎))
... | inj₂ k₁<k₀ = <⇒≱ (toℕ<n r₁) (+-cancelʳ-≤ (suc m) (toℕ r₁)
(begin suc k₁ * suc m
≤⟨ *-mono-≤ (m≤m+n (suc k₁) (k₀ ∸ suc k₁)) (≤-refl {suc m}) ⟩
(suc k₁ + (k₀ ∸ suc k₁)) * suc m
≡⟨ P.cong₂ _*_ (m+n∸m≡n k₁<k₀) refl ⟩ k₀ * suc m
≤⟨ n≤m+n (toℕ r₀) (k₀ * suc m) ⟩ toℕ r₀ + k₀ * suc m
≡⟨ eq ⟩ toℕ r₁ + k₁ * suc m ∎ ))
k₀≡k₁ : k₀ ≡ k₁
k₀≡k₁ = decidable-stable (k₀ ≟ k₁) contra
r₀≡r₁ : r₀ ≡ r₁
r₀≡r₁ = toℕ-injective (+-cancelʳ-≡ (toℕ r₀) (toℕ r₁)
(P.subst (λ k → toℕ r₀ + k * (suc m) ≡ toℕ r₁ + k₁ * (suc m)) k₀≡k₁ eq))
from∘to : ∀ {m n}(is : Vec (Fin m) n) → from (to is) ≡ is
from∘to {m} {.0} [] = P.refl
from∘to {zero} {.(suc _)} (() ∷ is)
from∘to {suc m} {suc n} (i ∷ is) with to (i ∷ is) | P.inspect to (i ∷ is)
from∘to {suc m} {suc n} (i ∷ is) | j | Reveal_·_is_.[ eq ] with P.cong toℕ eq
... | eq2 rewrite toℕ-fromℕ≤ (shift i (to is)) with ((toℕ j) divMod (suc m ^ n))
{≢0 = fromWitnessFalse (suci^j≢0 _ n)}
... | result quotient remainder property with chn (suc m ^ n) {toℕ i}{quotient}
{to is}{remainder} (trans eq2 property)
... | k₀≡k₁ , r₀≡r₁ rewrite P.sym r₀≡r₁ | from∘to is =
P.cong (_∷ is) (toℕ-injective (begin toℕ (Fin.fromℕ≤ _)
≡⟨ toℕ-fromℕ≤ _ ⟩ quotient
≡⟨ P.sym k₀≡k₁ ⟩ toℕ i ∎))
where
open ≡-Reasoning
to∘from : ∀ {m n}(i : Fin (m ^ n)) → to (from{m}{n} i) ≡ i
to∘from {m} {zero} Fin.zero = refl
to∘from {m} {zero} (Fin.suc ())
to∘from {zero} {suc n} ()
to∘from {suc m} {suc n} i with ((toℕ i) divMod (suc m ^ n))
{≢0 = fromWitnessFalse (suci^j≢0 _ n)}
to∘from {suc m} {suc n} i | result quotient remainder property = goal
where
q<sm : quotient < suc m
q<sm = ≰⇒> (λ sm≤q → <⇒≱ (toℕ<n i)
(begin (suc m) * (suc m ^ n)
≤⟨ *-mono-≤ sm≤q ≤-refl ⟩ quotient * (suc m ^ n)
≤⟨ +-mono-≤ (z≤n {toℕ remainder}) ≤-refl ⟩ toℕ remainder + quotient * (suc m ^ n)
≡⟨ P.sym property ⟩ toℕ i ∎))
where
open ≤-Reasoning
goal : to (Fin.fromℕ≤ q<sm ∷ from {suc m}{n} remainder) ≡ i
goal = toℕ-injective
(begin _ ≡⟨ toℕ-fromℕ≤ _ ⟩
toℕ (to (from {suc m} {n} remainder)) + toℕ (Fin.fromℕ≤ q<sm ) * (suc m ^ n)
≡⟨ P.cong₂ (λ r k → toℕ r + k * (suc m ^ n))
(to∘from {suc m} {n} remainder) (toℕ-fromℕ≤ q<sm)
⟩ toℕ remainder + quotient * (suc m ^ n)
≡⟨ P.sym property ⟩ toℕ i ∎)
where
open ≡-Reasoning
⟶-finitude-toVec : ∀{m n a b p q}{A : Setoid a p}{B : Setoid b q} → Finitude A m → Finitude B n
→ A ⟶ B → Vec (Fin n) m
⟶-finitude-toVec finA finB f = Vec.tabulate
(λ i → (Inverse.to finB F.∘ f F.∘ Inverse.from finA) ⟨$⟩ i )
⟶-finitude-fromVec : ∀{m n a b p q}{A : Setoid a p}{B : Setoid b q} → Finitude A m → Finitude B n
→ Vec (Fin n) m → A ⟶ B
⟶-finitude-fromVec {A = SA}{B = SB} finA finB vec =
record { _⟨$⟩_ = f
; cong = f-cong }
where
open module SA = Setoid SA renaming (Carrier to A) using ()
open module SB = Setoid SB renaming (Carrier to B) using ()
f : A → B
f x = Inverse.from finB ⟨$⟩ Vec.lookup (Inverse.to finA ⟨$⟩ x) vec
f-cong : ∀ {x y} → x SA.≈ y → f x SB.≈ f y
f-cong {x}{y} x≈y = F.cong (Inverse.from finB)
(P.cong (flip Vec.lookup vec) (F.cong (Inverse.to finA) x≈y))
⟶-finitude↔Vec : ∀{m n a b p q}{A : Setoid a p}{B : Setoid b q} → Finitude A n → Finitude B m
→ Inverse (A ⇨ B) (P.setoid (Vec (Fin m) n))
Inverse.to (⟶-finitude↔Vec {m} {n} {A = S₁} {S₂} finA finB) ._⟨$⟩_ = ⟶-finitude-toVec finA finB
Inverse.to (⟶-finitude↔Vec {m} {n} {A = S₁} {S₂} finA finB) .F.cong {f} {g} eq = tabulate-cong ( λ i →
F.cong (Inverse.to finB) (eq ≈₁-refl) )
where
open import Data.Vec.Properties
open Setoid S₁ renaming (isEquivalence to isEquivalence₁)
open IsEquivalence isEquivalence₁ renaming (refl to ≈₁-refl)
Inverse.from (⟶-finitude↔Vec finA finB) = P.→-to-⟶ (⟶-finitude-fromVec finA finB)
Inv._InverseOf_.left-inverse-of (Inverse.inverse-of (⟶-finitude↔Vec {m = m}{n}{A = S₁} {S₂} finA finB)) f {x}{y} x≈y =
begin ⟶-finitude-fromVec finA finB (⟶-finitude-toVec finA finB f) ⟨$⟩ x
≈⟨ F.cong (Inverse.from finB) lemma ⟩ _
≈⟨ linv₂ _ ⟩ _
≈⟨ F.cong f (linv₁ x) ⟩ _
≈⟨ F.cong f x≈y ⟩ f ⟨$⟩ y ∎
where
open import Data.Vec.Properties
open import Relation.Binary.Reasoning.Setoid (S₂)
open Setoid S₁ renaming (isEquivalence to isEquivalence₁)
open IsEquivalence isEquivalence₁ renaming (refl to ≈₁-refl; trans to ≈₁-trans)
open Setoid S₂ renaming (isEquivalence to isEquivalence₂)
open IsEquivalence isEquivalence₂ renaming (refl to ≈₂-refl; trans to ≈₂-trans)
F = (Inverse.to finB F.∘ f F.∘ Inverse.from finA) ⟨$⟩_
lemma = lookup∘tabulate F (Inverse.to finA ⟨$⟩ x)
linv₁ = finA .Inverse.inverse-of .Inv._InverseOf_.left-inverse-of
linv₂ = finB .Inverse.inverse-of .Inv._InverseOf_.left-inverse-of
Inv._InverseOf_.right-inverse-of (Inverse.inverse-of (⟶-finitude↔Vec finA finB)) vec =
begin _ ≡⟨ tabulate-cong lemma ⟩ _
≡⟨ tabulate∘lookup vec ⟩ vec ∎
where
open import Data.Vec.Properties
open P.≡-Reasoning
rinv₁ = finA .Inverse.inverse-of .Inv._InverseOf_.right-inverse-of
rinv₂ = finB .Inverse.inverse-of .Inv._InverseOf_.right-inverse-of
lemma : Inverse.to finB F.∘ (⟶-finitude-fromVec finA finB vec) F.∘ Inverse.from finA ⟨$⟩_ ≗ flip lookup vec
lemma i = begin _ ≡⟨ rinv₂ _ ⟩ _
≡⟨ P.cong (flip lookup vec) (rinv₁ i) ⟩ lookup i vec ∎
⟶-finitude : ∀{m n a b p q}{A : Setoid a p}{B : Setoid b q} → Finitude A n → Finitude B m
→ Finitude (A ⇨ B) (m ^ n)
⟶-finitude finA finB = exponent Inv.∘ (⟶-finitude↔Vec finA finB)
|
{
"alphanum_fraction": 0.4923218673,
"avg_line_length": 47.1884057971,
"ext": "agda",
"hexsha": "e72bf56e86da5a096b5883590b96ff091ea000e4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "abacd166f63582b7395d9cc10b6323c0f69649e5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "tizmd/agda-finitary",
"max_forks_repo_path": "src/Data/Finitude/Exponent.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "abacd166f63582b7395d9cc10b6323c0f69649e5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "tizmd/agda-finitary",
"max_issues_repo_path": "src/Data/Finitude/Exponent.agda",
"max_line_length": 119,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "abacd166f63582b7395d9cc10b6323c0f69649e5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "tizmd/agda-finitary",
"max_stars_repo_path": "src/Data/Finitude/Exponent.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3949,
"size": 9768
}
|
module product where
open import level
----------------------------------------------------------------------
-- types
----------------------------------------------------------------------
data Σ {ℓ ℓ'} (A : Set ℓ) (B : A → Set ℓ') : Set (ℓ ⊔ ℓ') where
_,_ : (a : A) → (b : B a) → Σ A B
data Σi {ℓ ℓ'} (A : Set ℓ) (B : A → Set ℓ') : Set (ℓ ⊔ ℓ') where
,_ : {a : A} → (b : B a) → Σi A B
_×_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (ℓ ⊔ ℓ')
A × B = Σ A (λ x → B)
_i×_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (ℓ ⊔ ℓ')
A i× B = Σi A (λ x → B)
----------------------------------------------------------------------
-- syntax
----------------------------------------------------------------------
infix 1 Σ-syntax
infixr 2 _×_ _i×_ _∧_
infixr 4 _,_
infix 4 ,_
-- This provides the syntax: Σ[ x ∈ A ] B it is taken from the Agda
-- standard library. This style is nice when working in Set.
Σ-syntax : ∀ {a b} (A : Set a) → (A → Set b) → Set (a ⊔ b)
Σ-syntax = Σ
syntax Σ-syntax A (λ x → B) = Σ[ x ∈ A ] B
----------------------------------------------------------------------
-- operations
----------------------------------------------------------------------
fst : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} → A × B → A
fst (a , b) = a
snd : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} → A × B → B
snd (a , b) = b
⟨_,_⟩ : ∀{ℓ₁ ℓ₂ ℓ₃ ℓ₄}
{A : Set ℓ₁}{B : Set ℓ₂}
{C : Set ℓ₃}{D : Set ℓ₄}
→ (A → C)
→ (B → D)
→ (A × B → C × D)
⟨ f , g ⟩ (a , b) = f a , g b
twist-× : ∀{ℓ₁ ℓ₂}
{A : Set ℓ₁}{B : Set ℓ₂}
→ A × B
→ B × A
twist-× (a , b) = (b , a)
rl-assoc-× : ∀{ℓ₁ ℓ₂ ℓ₃}
{A : Set ℓ₁}{B : Set ℓ₂}
{C : Set ℓ₃}
→ A × (B × C)
→ (A × B) × C
rl-assoc-× (a , b , c) = ((a , b) , c)
lr-assoc-× : ∀{ℓ₁ ℓ₂ ℓ₃}
{A : Set ℓ₁}{B : Set ℓ₂}
{C : Set ℓ₃}
→ (A × B) × C
→ A × (B × C)
lr-assoc-× ((a , b) , c) = (a , b , c)
----------------------------------------------------------------------
-- some logical notation
----------------------------------------------------------------------
_∧_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (ℓ ⊔ ℓ')
_∧_ = _×_
∃ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : A → Set ℓ') → Set (ℓ ⊔ ℓ')
∃ = Σ
∃i : ∀ {ℓ ℓ'} (A : Set ℓ) (B : A → Set ℓ') → Set (ℓ ⊔ ℓ')
∃i = Σi
|
{
"alphanum_fraction": 0.2959139785,
"avg_line_length": 27.0348837209,
"ext": "agda",
"hexsha": "751bfd9b3fe852d08b3e3ede13bc1603ee4628ff",
"lang": "Agda",
"max_forks_count": 17,
"max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z",
"max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rfindler/ial",
"max_forks_repo_path": "product.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rfindler/ial",
"max_issues_repo_path": "product.agda",
"max_line_length": 70,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rfindler/ial",
"max_stars_repo_path": "product.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z",
"num_tokens": 921,
"size": 2325
}
|
------------------------------------------------------------------------
-- Fixity and associativity
------------------------------------------------------------------------
module Mixfix.Fixity where
open import Data.Fin using (Fin; zero; suc; #_)
open import Data.Fin.Properties using (eq?)
open import Function.LeftInverse
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as Eq
data Associativity : Set where
left : Associativity
right : Associativity
non : Associativity
-- A combination of fixity and associativity. Only infix operators
-- have associativity.
-- Note that infix is a reserved word.
data Fixity : Set where
prefx : Fixity
infx : (assoc : Associativity) → Fixity
postfx : Fixity
closed : Fixity
Fixity-is-finite : LeftInverse (Eq.setoid Fixity) (Eq.setoid (Fin 6))
Fixity-is-finite = record
{ from = Eq.→-to-⟶ from
; to = Eq.→-to-⟶ to
; left-inverse-of = left-inverse-of
}
where
to : Fixity → Fin 6
to prefx = # 0
to (infx left) = # 1
to (infx right) = # 2
to (infx non) = # 3
to postfx = # 4
to closed = # 5
from : Fin 6 → Fixity
from zero = prefx
from (suc zero) = infx left
from (suc (suc zero)) = infx right
from (suc (suc (suc zero))) = infx non
from (suc (suc (suc (suc zero)))) = postfx
from (suc (suc (suc (suc (suc zero))))) = closed
from (suc (suc (suc (suc (suc (suc ()))))))
left-inverse-of : Eq.→-to-⟶ from LeftInverseOf Eq.→-to-⟶ to
left-inverse-of prefx = refl
left-inverse-of (infx left) = refl
left-inverse-of (infx right) = refl
left-inverse-of (infx non) = refl
left-inverse-of postfx = refl
left-inverse-of closed = refl
_≟_ : Decidable (_≡_ {A = Fixity})
_≟_ = eq? injection
where open LeftInverse Fixity-is-finite
|
{
"alphanum_fraction": 0.55453149,
"avg_line_length": 30.515625,
"ext": "agda",
"hexsha": "0b558b53e194f7b89ed4453f44b44973a8cb2333",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "Mixfix/Fixity.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "Mixfix/Fixity.agda",
"max_line_length": 72,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yurrriq/parser-combinators",
"max_stars_repo_path": "Mixfix/Fixity.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z",
"num_tokens": 583,
"size": 1953
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category.Core
-- Reflexive pairs and reflexive coequalizers
-- https://ncatlab.org/nlab/show/reflexive+coequalizer
module Categories.Diagram.ReflexivePair {o ℓ e} (𝒞 : Category o ℓ e) where
open import Level
open import Categories.Diagram.Coequalizer 𝒞
open Category 𝒞
open HomReasoning
open Equiv
private
variable
A B R : Obj
-- A reflexive pair can be thought of as a vast generalization of a reflexive relation.
-- To see this, consider the case in 'Set' where 'R ⊆ A × A', and 'f' and 'g' are the projections.
-- Then, our morphism 's' would have to look something like the diagonal morphism due to the
-- restriction it is a section of both 'f' and 'g'.
record IsReflexivePair (f g : R ⇒ A) (s : A ⇒ R) : Set e where
field
sectionₗ : f ∘ s ≈ id
sectionᵣ : g ∘ s ≈ id
section : f ∘ s ≈ g ∘ s
section = sectionₗ ○ ⟺ sectionᵣ
record ReflexivePair (f g : R ⇒ A) : Set (ℓ ⊔ e) where
field
s : A ⇒ R
isReflexivePair : IsReflexivePair f g s
open IsReflexivePair isReflexivePair public
|
{
"alphanum_fraction": 0.6934441367,
"avg_line_length": 27.7692307692,
"ext": "agda",
"hexsha": "cf61bf7090437407903f2da98c012bb95e6e28f2",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Diagram/ReflexivePair.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Diagram/ReflexivePair.agda",
"max_line_length": 98,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Diagram/ReflexivePair.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 353,
"size": 1083
}
|
------------------------------------------------------------------------
-- A large class of algebraic structures satisfies the property that
-- isomorphic instances of a structure are equal (assuming univalence)
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
-- This code has been superseded by more recent developments. See
-- README.agda.
-- This module has been developed in collaboration with Thierry
-- Coquand.
open import Equality
module Univalence-axiom.Isomorphism-implies-equality
{reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where
open import Bijection eq
open Derived-definitions-and-properties eq
open import Equivalence eq as Eq
open import H-level eq
open import H-level.Closure eq
open import Logical-equivalence
open import Prelude
open import Univalence-axiom eq
------------------------------------------------------------------------
-- N-ary functions
-- N-ary functions.
_^_⟶_ : Type → ℕ → Type → Type
A ^ zero ⟶ B = B
A ^ suc n ⟶ B = A → A ^ n ⟶ B
-- N-ary function morphisms.
Is-_-ary-morphism :
(n : ℕ) {A B : Type} → A ^ n ⟶ A → B ^ n ⟶ B → (A → B) → Type
Is- zero -ary-morphism f₁ f₂ m = m f₁ ≡ f₂
Is- suc n -ary-morphism f₁ f₂ m =
∀ x → Is- n -ary-morphism (f₁ x) (f₂ (m x)) m
abstract
-- If _↔_.to m is a morphism, then _↔_.from m is also a morphism.
from-also-_-ary-morphism :
(n : ℕ) {A B : Type} (f₁ : A ^ n ⟶ A) (f₂ : B ^ n ⟶ B) (m : A ↔ B) →
Is- n -ary-morphism f₁ f₂ (_↔_.to m) →
Is- n -ary-morphism f₂ f₁ (_↔_.from m)
from-also- zero -ary-morphism f₁ f₂ m is = _↔_.to-from m is
from-also- suc n -ary-morphism f₁ f₂ m is = λ x →
from-also- n -ary-morphism (f₁ (from x)) (f₂ x) m
(subst (λ y → Is- n -ary-morphism (f₁ (from x)) (f₂ y) to)
(right-inverse-of x)
(is (from x)))
where open _↔_ m
-- Changes the type of an n-ary function.
cast : {A₁ A₂ : Type} → A₁ ≃ A₂ → ∀ n → A₁ ^ n ⟶ A₁ → A₂ ^ n ⟶ A₂
cast A₁≃A₂ zero = _≃_.to A₁≃A₂
cast A₁≃A₂ (suc n) = λ f x → cast A₁≃A₂ n (f (_≃_.from A₁≃A₂ x))
abstract
-- Cast simplification lemma.
cast-id : {A : Type} →
(∀ n → Extensionality′ A (λ _ → A ^ n ⟶ A)) →
∀ n (f : A ^ n ⟶ A) → cast Eq.id n f ≡ f
cast-id ext zero f = refl f
cast-id ext (suc n) f = ext n $ λ x → cast-id ext n (f x)
-- We can express cast as an instance of subst (assuming
-- extensionality and univalence).
cast-is-subst :
(∀ {A : Type} n → Extensionality′ A (λ _ → A ^ n ⟶ A)) →
{A₁ A₂ : Type}
(univ : Univalence′ A₁ A₂)
(A₁≃A₂ : A₁ ≃ A₂) (n : ℕ) (f : A₁ ^ n ⟶ A₁) →
cast A₁≃A₂ n f ≡ subst (λ C → C ^ n ⟶ C) (≃⇒≡ univ A₁≃A₂) f
cast-is-subst ext univ A₁≃A₂ n =
transport-theorem
(λ A → A ^ n ⟶ A)
(λ A≃B f → cast A≃B n f)
(cast-id ext n)
univ
A₁≃A₂
-- If there is an isomorphism from f₁ to f₂, then the corresponding
-- instance of cast maps f₁ to f₂ (assuming extensionality).
cast-isomorphism :
{A₁ A₂ : Type} →
(∀ n → Extensionality′ A₂ (λ _ → A₂ ^ n ⟶ A₂)) →
(A₁≃A₂ : A₁ ≃ A₂)
(n : ℕ) (f₁ : A₁ ^ n ⟶ A₁) (f₂ : A₂ ^ n ⟶ A₂) →
Is- n -ary-morphism f₁ f₂ (_≃_.to A₁≃A₂) →
cast A₁≃A₂ n f₁ ≡ f₂
cast-isomorphism ext A₁≃A₂ zero f₁ f₂ is = is
cast-isomorphism ext A₁≃A₂ (suc n) f₁ f₂ is = ext n $ λ x →
cast A₁≃A₂ n (f₁ (from x)) ≡⟨ cast-isomorphism ext A₁≃A₂ n _ _ (is (from x)) ⟩
f₂ (to (from x)) ≡⟨ cong f₂ (right-inverse-of x) ⟩∎
f₂ x ∎
where open _≃_ A₁≃A₂
-- Combining the results above we get the following: if there is an
-- isomorphism from f₁ to f₂, then the corresponding instance of
-- subst maps f₁ to f₂ (assuming extensionality and univalence).
subst-isomorphism :
(∀ {A : Type} n → Extensionality′ A (λ _ → A ^ n ⟶ A)) →
{A₁ A₂ : Type}
(univ : Univalence′ A₁ A₂)
(A₁≃A₂ : A₁ ≃ A₂)
(n : ℕ) (f₁ : A₁ ^ n ⟶ A₁) (f₂ : A₂ ^ n ⟶ A₂) →
Is- n -ary-morphism f₁ f₂ (_≃_.to A₁≃A₂) →
subst (λ A → A ^ n ⟶ A) (≃⇒≡ univ A₁≃A₂) f₁ ≡ f₂
subst-isomorphism ext univ A₁≃A₂ n f₁ f₂ is =
subst (λ A → A ^ n ⟶ A) (≃⇒≡ univ A₁≃A₂) f₁ ≡⟨ sym $ cast-is-subst ext univ A₁≃A₂ n f₁ ⟩
cast A₁≃A₂ n f₁ ≡⟨ cast-isomorphism ext A₁≃A₂ n f₁ f₂ is ⟩∎
f₂ ∎
------------------------------------------------------------------------
-- A class of algebraic structures
-- An algebraic structure universe.
mutual
-- Codes for structures.
infixl 5 _+operator_ _+axiom_
data Structure : Type₁ where
empty : Structure
-- N-ary functions.
_+operator_ : Structure → (n : ℕ) → Structure
-- Arbitrary /propositional/ axioms.
_+axiom_ : (s : Structure)
(P : ∃ λ (P : (A : Type) → ⟦ s ⟧ A → Type) →
∀ A s → Is-proposition (P A s)) →
Structure
-- Interpretation of the codes.
⟦_⟧ : Structure → Type → Type₁
⟦ empty ⟧ A = ↑ _ ⊤
⟦ s +operator n ⟧ A = ⟦ s ⟧ A × (A ^ n ⟶ A)
⟦ s +axiom (P , P-prop) ⟧ A = Σ (⟦ s ⟧ A) (P A)
-- Top-level interpretation.
⟪_⟫ : Structure → Type₁
⟪ s ⟫ = ∃ ⟦ s ⟧
-- Morphisms.
Is-structure-morphism :
(s : Structure) →
{A B : Type} → ⟦ s ⟧ A → ⟦ s ⟧ B →
(A → B) → Type
Is-structure-morphism empty _ _ m = ⊤
Is-structure-morphism (s +axiom _) (s₁ , _) (s₂ , _) m =
Is-structure-morphism s s₁ s₂ m
Is-structure-morphism (s +operator n) (s₁ , op₁) (s₂ , op₂) m =
Is-structure-morphism s s₁ s₂ m × Is- n -ary-morphism op₁ op₂ m
-- Isomorphisms.
Isomorphism : (s : Structure) → ⟪ s ⟫ → ⟪ s ⟫ → Type
Isomorphism s (A₁ , s₁) (A₂ , s₂) =
∃ λ (m : A₁ ↔ A₂) → Is-structure-morphism s s₁ s₂ (_↔_.to m)
abstract
-- If _↔_.to m is a morphism, then _↔_.from m is also a morphism.
from-also-structure-morphism :
(s : Structure) →
{A B : Type} {s₁ : ⟦ s ⟧ A} {s₂ : ⟦ s ⟧ B} →
(m : A ↔ B) →
Is-structure-morphism s s₁ s₂ (_↔_.to m) →
Is-structure-morphism s s₂ s₁ (_↔_.from m)
from-also-structure-morphism empty m = _
from-also-structure-morphism (s +axiom _) m =
from-also-structure-morphism s m
from-also-structure-morphism (s +operator n) m =
Σ-map (from-also-structure-morphism s m)
(from-also- n -ary-morphism _ _ m)
-- Isomorphic structures are equal (assuming univalence).
isomorphic-equal :
Univalence′ (Type ²/≡) Type →
Univalence lzero →
(s : Structure) (s₁ s₂ : ⟪ s ⟫) →
Isomorphism s s₁ s₂ → s₁ ≡ s₂
isomorphic-equal univ₁ univ₂
s (A₁ , s₁) (A₂ , s₂) (m , is) =
(A₁ , s₁) ≡⟨ Σ-≡,≡→≡ A₁≡A₂ (lemma s s₁ s₂ is) ⟩∎
(A₂ , s₂) ∎
where
open _↔_ m
-- Extensionality follows from univalence.
ext : {A : Type} {B : A → Type} → Extensionality′ A B
ext = dependent-extensionality′ univ₁ (λ _ → univ₂)
-- The presence of the bijection implies that the structure's
-- underlying types are equal (due to univalence).
A₁≡A₂ : A₁ ≡ A₂
A₁≡A₂ = _≃_.from (≡≃≃ univ₂) $ ↔⇒≃ m
-- We can lift subst-isomorphism to structures by recursion on
-- structure codes.
lemma : (s : Structure)
(s₁ : ⟦ s ⟧ A₁) (s₂ : ⟦ s ⟧ A₂) →
Is-structure-morphism s s₁ s₂ to →
subst ⟦ s ⟧ A₁≡A₂ s₁ ≡ s₂
lemma empty _ _ _ = refl _
lemma (s +axiom (P , P-prop)) (s₁ , ax₁) (s₂ , ax₂) is =
subst (λ A → Σ (⟦ s ⟧ A) (P A)) A₁≡A₂ (s₁ , ax₁) ≡⟨ push-subst-pair′ ⟦ s ⟧ (uncurry P) (lemma s s₁ s₂ is) ⟩
(s₂ , _) ≡⟨ cong (_,_ s₂) $ P-prop _ _ _ _ ⟩∎
(s₂ , ax₂) ∎
lemma (s +operator n) (s₁ , op₁) (s₂ , op₂) (is-s , is-o) =
subst (λ A → ⟦ s ⟧ A × (A ^ n ⟶ A)) A₁≡A₂ (s₁ , op₁) ≡⟨ push-subst-pair′ ⟦ s ⟧ (λ { (A , _) → A ^ n ⟶ A }) (lemma s s₁ s₂ is-s) ⟩
(s₂ , subst₂ (λ { (A , _) → A ^ n ⟶ A }) A₁≡A₂
(lemma s s₁ s₂ is-s) op₁) ≡⟨ cong (_,_ s₂) $ subst₂-proj₁ (λ A → A ^ n ⟶ A) ⟩
(s₂ , subst (λ A → A ^ n ⟶ A) A₁≡A₂ op₁) ≡⟨ cong (_,_ s₂) $ subst-isomorphism (λ _ → ext) univ₂ (↔⇒≃ m) n op₁ op₂ is-o ⟩∎
(s₂ , op₂) ∎
------------------------------------------------------------------------
-- Some example structures
-- Example: magmas.
magma : Structure
magma = empty +operator 2
Magma : Type₁
Magma = ⟪ magma ⟫
private
-- An unfolding of Magma.
Magma-unfolded : Magma ≡ ∃ λ (A : Type) → ↑ _ ⊤ × (A → A → A)
Magma-unfolded = refl _
-- Example: semigroups. The definition uses extensionality to prove
-- that the axioms are propositional. Note that one axiom states that
-- the underlying type is a set. This assumption is used to prove that
-- the other axiom is propositional.
semigroup : Extensionality lzero lzero → Structure
semigroup ext =
empty
+axiom
( (λ A _ → Is-set A)
, is-set-prop
)
+operator 2
+axiom
( (λ { _ (_ , _∙_) →
∀ x y z → (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z) })
, assoc-prop
)
where
is-set-prop = λ _ _ → H-level-propositional ext 2
assoc-prop = λ { _ ((_ , A-set) , _) →
Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
A-set
}
Semigroup : Extensionality lzero lzero → Type₁
Semigroup ext = ⟪ semigroup ext ⟫
private
-- An unfolding of Semigroup.
Semigroup-unfolded :
(ext : Extensionality lzero lzero) →
Semigroup ext ≡ Σ
Type λ A → Σ (Σ (Σ (↑ _ ⊤) λ _ →
Is-set A ) λ _ →
A → A → A ) λ { (_ , _∙_) →
∀ x y z → (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z) }
Semigroup-unfolded _ = refl _
-- Example: abelian groups.
abelian-group : Extensionality lzero lzero → Structure
abelian-group ext =
empty
-- The underlying type is a set.
+axiom
( (λ A _ → Is-set A)
, is-set-prop
)
-- The binary group operation.
+operator 2
-- Commutativity.
+axiom
( (λ { _ (_ , _∙_) →
∀ x y → (x ∙ y) ≡ (y ∙ x) })
, comm-prop
)
-- Associativity.
+axiom
( (λ { _ ((_ , _∙_) , _) →
∀ x y z → (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z) })
, assoc-prop
)
-- Identity.
+operator 0
-- Left identity.
+axiom
( (λ { _ ((((_ , _∙_) , _) , _) , e) →
∀ x → (e ∙ x) ≡ x })
, left-identity-prop
)
-- Right identity.
+axiom
( (λ { _ (((((_ , _∙_) , _) , _) , e) , _) →
∀ x → (x ∙ e) ≡ x })
, right-identity-prop
)
-- Inverse.
+operator 1
-- Left inverse.
+axiom
( (λ { _ (((((((_ , _∙_) , _) , _) , e) , _) , _) , _⁻¹) →
∀ x → ((x ⁻¹) ∙ x) ≡ e })
, left-inverse-prop
)
-- Right inverse.
+axiom
( (λ { _ ((((((((_ , _∙_) , _) , _) , e) , _) , _) , _⁻¹) , _) →
∀ x → (x ∙ (x ⁻¹)) ≡ e })
, right-inverse-prop
)
where
is-set-prop = λ _ _ → H-level-propositional ext 2
comm-prop =
λ { _ ((_ , A-set) , _) →
Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
A-set
}
assoc-prop =
λ { _ (((_ , A-set) , _) , _) →
Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
A-set
}
left-identity-prop =
λ { _ (((((_ , A-set) , _) , _) , _) , _) →
Π-closure ext 1 λ _ →
A-set
}
right-identity-prop =
λ { _ ((((((_ , A-set) , _) , _) , _) , _) , _) →
Π-closure ext 1 λ _ →
A-set
}
left-inverse-prop =
λ { _ ((((((((_ , A-set) , _) , _) , _) , _) , _) , _) , _) →
Π-closure ext 1 λ _ →
A-set
}
right-inverse-prop =
λ { _ (((((((((_ , A-set) , _) , _) , _) , _) , _) , _) , _) , _) →
Π-closure ext 1 λ _ →
A-set
}
Abelian-group : Extensionality lzero lzero → Type₁
Abelian-group ext = ⟪ abelian-group ext ⟫
private
-- An unfolding of Abelian-group. Note that the inner structure is
-- left-nested.
Abelian-group-unfolded :
(ext : Extensionality lzero lzero) →
Abelian-group ext ≡ Σ
Type λ A → Σ (Σ (Σ (Σ (Σ (Σ (Σ (Σ (Σ (Σ (↑ _ ⊤) λ _ →
Is-set A ) λ _ →
A → A → A ) λ { (_ , _∙_) →
∀ x y → (x ∙ y) ≡ (y ∙ x) }) λ { ((_ , _∙_) , _) →
∀ x y z → (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z) }) λ _ →
A ) λ { ((((_ , _∙_) , _) , _) , e) →
∀ x → (e ∙ x) ≡ x }) λ { (((((_ , _∙_) , _) , _) , e) , _) →
∀ x → (x ∙ e) ≡ x }) λ _ →
A → A ) λ { (((((((_ , _∙_) , _) , _) , e) , _) , _) , _⁻¹) →
∀ x → ((x ⁻¹) ∙ x) ≡ e }) λ { ((((((((_ , _∙_) , _) , _) , e) , _) , _) , _⁻¹) , _) →
∀ x → (x ∙ (x ⁻¹)) ≡ e }
Abelian-group-unfolded _ = refl _
------------------------------------------------------------------------
-- Right-nested structures
-- Right-nested structures are arguably easier to define (see the
-- example below). However, the following class of right-nested
-- structures is in some sense different from the class above. Take
-- "operator 0 f : Structureʳ Bool", for instance. The /shape/ of f op
-- can vary depending on whether the operator op is true or false.
--
-- One could perhaps avoid this issue by only considering values of
-- type ∀ A → Structureʳ A. However, it is not obvious how to convert
-- elements of this type to elements of type Structure in a
-- meaning-preserving way. Furthermore it seems to be awkward to
-- define things like Is-structure-isomorphism when using values of
-- type ∀ A → Structureʳ A (see the definition of
-- Is-structure-isomorphismʳ below).
-- Codes. (Note that these structures are defined for a single
-- underlying type.)
data Structureʳ (A : Type) : Type₁ where
empty : Structureʳ A
-- N-ary functions.
operator : (n : ℕ)
(s : A ^ n ⟶ A → Structureʳ A) →
Structureʳ A
-- Arbitrary /propositional/ axioms.
axiom : (P : Type)
(P-prop : Is-proposition P)
(s : P → Structureʳ A) →
Structureʳ A
-- Interpretation of the codes.
⟦_⟧ʳ : {A : Type} → Structureʳ A → Type₁
⟦ empty ⟧ʳ = ↑ _ ⊤
⟦ operator n s ⟧ʳ = ∃ λ op → ⟦ s op ⟧ʳ
⟦ axiom P P-prop s ⟧ʳ = ∃ λ p → ⟦ s p ⟧ʳ
-- Top-level interpretation.
⟪_⟫ʳ : (∀ A → Structureʳ A) → Type₁
⟪ s ⟫ʳ = ∃ λ A → ⟦ s A ⟧ʳ
-- The property of being an isomorphism.
Is-structure-isomorphismʳ :
(s : ∀ A → Structureʳ A) →
{A B : Type} → ⟦ s A ⟧ʳ → ⟦ s B ⟧ʳ →
A ↔ B → Type
Is-structure-isomorphismʳ s {A} {B} S₁ S₂ m =
helper (s A) (s B) S₁ S₂
where
helper : (s₁ : Structureʳ A) (s₂ : Structureʳ B) →
⟦ s₁ ⟧ʳ → ⟦ s₂ ⟧ʳ → Type
helper empty empty _ _ = ⊤
helper (operator n₁ s₁) (operator n₂ s₂) (op₁ , S₁) (op₂ , S₂) =
(∃ λ (eq : n₁ ≡ n₂) →
Is- n₁ -ary-morphism
op₁ (subst (λ n → B ^ n ⟶ B) (sym eq) op₂) (_↔_.to m)) ×
helper (s₁ op₁) (s₂ op₂) S₁ S₂
helper (axiom P₁ _ s₁) (axiom P₂ _ s₂) (p₁ , S₁) (p₂ , S₂) =
helper (s₁ p₁) (s₂ p₂) S₁ S₂
helper empty (operator n s₂) _ _ = ⊥
helper empty (axiom P P-prop s₂) _ _ = ⊥
helper (operator n s₁) empty _ _ = ⊥
helper (operator n s₁) (axiom P P-prop s₂) _ _ = ⊥
helper (axiom P P-prop s₁) empty _ _ = ⊥
helper (axiom P P-prop s₁) (operator n s₂) _ _ = ⊥
-- Example: semigroups.
semigroupʳ :
Extensionality lzero lzero →
∀ A → Structureʳ A
semigroupʳ ext A =
axiom (Is-set A)
(H-level-propositional ext 2)
λ A-set →
operator 2 λ _∙_ →
axiom (∀ x y z → (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z))
(Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
A-set)
λ _ →
empty
Semigroupʳ : Extensionality lzero lzero → Type₁
Semigroupʳ ext = ⟪ semigroupʳ ext ⟫ʳ
private
-- An unfolding of Semigroupʳ.
Semigroupʳ-unfolded :
(ext : Extensionality lzero lzero) →
Semigroupʳ ext ≡
∃ λ (A : Type) →
∃ λ (_ : Is-set A) →
∃ λ (_∙_ : A → A → A) →
∃ λ (_ : ∀ x y z → (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z)) →
↑ _ ⊤
Semigroupʳ-unfolded _ = refl _
|
{
"alphanum_fraction": 0.4942115525,
"avg_line_length": 29.4121863799,
"ext": "agda",
"hexsha": "16a8cf61bbbbaa833a47db8440e47190f544c176",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Univalence-axiom/Isomorphism-implies-equality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Univalence-axiom/Isomorphism-implies-equality.agda",
"max_line_length": 140,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Univalence-axiom/Isomorphism-implies-equality.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 6132,
"size": 16412
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Construction.Properties.Kleisli where
open import Level
import Relation.Binary.PropositionalEquality as ≡
open import Categories.Adjoint
open import Categories.Adjoint.Properties
open import Categories.Category
open import Categories.Functor using (Functor; _∘F_)
open import Categories.Functor.Equivalence
open import Categories.Monad
import Categories.Morphism.Reasoning as MR
open import Categories.Adjoint.Construction.Kleisli
open import Categories.Category.Construction.Kleisli
private
variable
o ℓ e : Level
𝒞 𝒟 : Category o ℓ e
module _ {F : Functor 𝒞 𝒟} {G : Functor 𝒟 𝒞} (F⊣G : Adjoint F G) where
private
T : Monad 𝒞
T = adjoint⇒monad F⊣G
𝒞ₜ : Category _ _ _
𝒞ₜ = Kleisli T
module 𝒞 = Category 𝒞
module 𝒟 = Category 𝒟
module 𝒞ₜ = Category 𝒞ₜ
module T = Monad T
module F = Functor F
module G = Functor G
open Adjoint F⊣G
-- Maclane's Comparison Functor
ComparisonF : Functor 𝒞ₜ 𝒟
ComparisonF = record
{ F₀ = λ X → F.F₀ X
; F₁ = λ {A} {B} f → 𝒟 [ counit.η (F.F₀ B) ∘ F.F₁ f ]
; identity = zig
; homomorphism = λ {X} {Y} {Z} {f} {g} → begin
𝒟 [ counit.η (F.F₀ Z) ∘ F.F₁ (𝒞 [ 𝒞 [ G.F₁ (counit.η (F.F₀ Z)) ∘ G.F₁ (F.F₁ g)] ∘ f ])] ≈⟨ refl⟩∘⟨ F.homomorphism ⟩
𝒟 [ counit.η (F.F₀ Z) ∘ 𝒟 [ F.F₁ (𝒞 [ G.F₁ (counit.η (F.F₀ Z)) ∘ G.F₁ (F.F₁ g) ]) ∘ F.F₁ f ] ] ≈⟨ refl⟩∘⟨ F.homomorphism ⟩∘⟨refl ⟩
𝒟 [ counit.η (F.F₀ Z) ∘ 𝒟 [ 𝒟 [ F.F₁ (G.F₁ (counit.η (F.F₀ Z))) ∘ F.F₁ (G.F₁ (F.F₁ g)) ] ∘ F.F₁ f ] ] ≈⟨ center⁻¹ refl refl ⟩
𝒟 [ 𝒟 [ counit.η (F.F₀ Z) ∘ F.F₁ (G.F₁ (counit.η (F.F₀ Z))) ] ∘ 𝒟 [ F.F₁ (G.F₁ (F.F₁ g)) ∘ F.F₁ f ] ] ≈⟨ counit.commute (counit.η (F.F₀ Z)) ⟩∘⟨refl ⟩
𝒟 [ 𝒟 [ counit.η (F.F₀ Z) ∘ (counit.η (F.F₀ (G.F₀ (F.F₀ Z)))) ] ∘ 𝒟 [ F.F₁ (G.F₁ (F.F₁ g)) ∘ F.F₁ f ] ] ≈⟨ extend² (counit.commute (F.F₁ g)) ⟩
𝒟 [ 𝒟 [ counit.η (F.F₀ Z) ∘ F.F₁ g ] ∘ 𝒟 [ counit.η (F.F₀ Y) ∘ F.F₁ f ] ] ∎
; F-resp-≈ = λ eq → 𝒟.∘-resp-≈ʳ (F.F-resp-≈ eq)
}
where
open 𝒟.HomReasoning
open MR 𝒟
private
L = ComparisonF
module L = Functor L
module Gₜ = Functor (Forgetful T)
module Fₜ = Functor (Free T)
G∘L≡Forgetful : (G ∘F L) ≡F Forgetful T
G∘L≡Forgetful = record
{ eq₀ = λ X → ≡.refl
; eq₁ = λ {A} {B} f → begin
𝒞 [ 𝒞.id ∘ G.F₁ (𝒟 [ counit.η (F.F₀ B) ∘ F.F₁ f ]) ] ≈⟨ 𝒞.identityˡ ⟩
G.F₁ (𝒟 [ counit.η (F.F₀ B) ∘ F.F₁ f ]) ≈⟨ G.homomorphism ⟩
𝒞 [ G.F₁ (counit.η (F.F₀ B)) ∘ G.F₁ (F.F₁ f) ] ≈˘⟨ 𝒞.identityʳ ⟩
𝒞 [ 𝒞 [ G.F₁ (counit.η (F.F₀ B)) ∘ G.F₁ (F.F₁ f) ] ∘ 𝒞.id ] ∎
}
where
open 𝒞.HomReasoning
L∘Free≡F : (L ∘F Free T) ≡F F
L∘Free≡F = record
{ eq₀ = λ X → ≡.refl
; eq₁ = λ {A} {B} f → begin
𝒟 [ 𝒟.id ∘ 𝒟 [ counit.η (F.F₀ B) ∘ F.F₁ (𝒞 [ unit.η B ∘ f ]) ] ] ≈⟨ 𝒟.identityˡ ⟩
𝒟 [ counit.η (F.F₀ B) ∘ F.F₁ (𝒞 [ unit.η B ∘ f ]) ] ≈⟨ pushʳ F.homomorphism ⟩
𝒟 [ 𝒟 [ counit.η (F.F₀ B) ∘ F.F₁ (unit.η B) ] ∘ F.F₁ f ] ≈⟨ elimˡ zig ⟩
F.F₁ f ≈˘⟨ 𝒟.identityʳ ⟩
𝒟 [ F.F₁ f ∘ 𝒟.id ] ∎
}
where
open 𝒟.HomReasoning
open MR 𝒟
|
{
"alphanum_fraction": 0.5122962963,
"avg_line_length": 35.9042553191,
"ext": "agda",
"hexsha": "321308f0c8ba496717411dd6fd888a1f9064da97",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Construction/Properties/Kleisli.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Construction/Properties/Kleisli.agda",
"max_line_length": 157,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Construction/Properties/Kleisli.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1547,
"size": 3375
}
|
module Issue599 where
data Bool : Set where
true false : Bool
-- standard lambda here
foo : Bool → Bool
foo = ?
-- pattern matching lambda here
bar : Bool → Bool
bar = ?
|
{
"alphanum_fraction": 0.6761363636,
"avg_line_length": 12.5714285714,
"ext": "agda",
"hexsha": "6902be18944e551a64906001a48dbc4e509197dd",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue599.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue599.agda",
"max_line_length": 31,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue599.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 46,
"size": 176
}
|
------------------------------------------------------------------------
-- The halting problem
------------------------------------------------------------------------
module Halting-problem where
open import Equality.Propositional.Cubical
open import Logical-equivalence using (_⇔_)
open import Prelude hiding (const; Decidable)
open import Tactic.By.Propositional
open import Univalence-axiom
open import Equality.Decision-procedures equality-with-J
open import Function-universe equality-with-J hiding (id; _∘_)
open import H-level equality-with-J
open import H-level.Closure equality-with-J
open import H-level.Truncation.Propositional equality-with-paths
as Trunc hiding (rec)
-- To simplify the development, let's work with actual natural numbers
-- as variables and constants (see
-- Atom.one-can-restrict-attention-to-χ-ℕ-atoms).
open import Atom
open import Cancellation χ-ℕ-atoms
open import Chi χ-ℕ-atoms
open import Coding χ-ℕ-atoms
open import Compatibility χ-ℕ-atoms
open import Computability χ-ℕ-atoms hiding (_∘_)
open import Constants χ-ℕ-atoms
open import Deterministic χ-ℕ-atoms
open import Free-variables χ-ℕ-atoms
open import Propositional χ-ℕ-atoms
open import Reasoning χ-ℕ-atoms
open import Termination χ-ℕ-atoms
open import Values χ-ℕ-atoms
open χ-atoms χ-ℕ-atoms
import Coding.Instances.Nat
open import Combinators as χ hiding (id; if_then_else_)
open import Internal-coding
------------------------------------------------------------------------
-- The extensional halting problem
-- The extensional halting problem is undecidable.
extensional-halting-problem :
¬ ∃ λ halts →
Closed halts
×
∀ p → Closed p →
(Terminates p →
apply halts (lambda v-underscore p) ⇓ ⌜ true ⦂ Bool ⌝)
×
(¬ Terminates p →
apply halts (lambda v-underscore p) ⇓ ⌜ false ⦂ Bool ⌝)
extensional-halting-problem (halts , cl , hyp) = contradiction
where
terminv : Exp → Exp
terminv p = χ.if apply halts (lambda v-underscore p)
then loop
else ⌜ zero ⌝
terminv-lemma : ∀ {p} → Closed p →
Terminates (terminv p) ⇔ ¬ Terminates p
terminv-lemma {p} cl-p = record { to = to; from = from }
where
to : Terminates (terminv p) → ¬ Terminates p
to (_ , case _ (there _ (there _ ())) _ _) p⇓
to (_ , case halts⇓false (there _ here) [] _) p⇓ =
C.distinct-codes→distinct-names (λ ()) $
proj₁ $ cancel-const $
⇓-deterministic (proj₁ (hyp p cl-p) p⇓) halts⇓false
to (_ , case _ here [] loop⇓) p⇓ = ¬loop⇓ (_ , loop⇓)
from : ¬ Terminates p → Terminates (terminv p)
from ¬p⇓ =
_ , case (proj₂ (hyp p cl-p) ¬p⇓) (there lemma here) [] (const [])
where
lemma = C.distinct-codes→distinct-names (λ ())
strange : Exp
strange = rec v-p (terminv (var v-p))
strange-closed : Closed strange
strange-closed =
Closed′-closed-under-rec $
if-then-else-closed
(Closed′-closed-under-apply
(Closed→Closed′ cl)
(Closed′-closed-under-lambda
(Closed′-closed-under-var (inj₂ (inj₁ refl)))))
(Closed→Closed′ loop-closed)
(Closed→Closed′ $ rep-closed zero)
subst-lemma : terminv (var v-p) [ v-p ← strange ] ≡ terminv strange
subst-lemma =
terminv (var v-p) [ v-p ← strange ] ≡⟨⟩
χ.if apply ⟨ halts [ v-p ← strange ] ⟩
(lambda v-underscore strange)
then loop else ⌜ zero ⌝ ≡⟨ ⟨by⟩ (subst-closed _ _ cl) ⟩
χ.if apply halts (lambda v-underscore strange)
then loop else ⌜ zero ⌝ ≡⟨⟩
terminv strange ∎
strange-lemma : Terminates strange ⇔ ¬ Terminates strange
strange-lemma =
Terminates strange ↝⟨ record { to = λ { (_ , rec p) → _ , p }
; from = Σ-map _ rec
} ⟩
Terminates (terminv (var v-p) [ v-p ← strange ]) ↔⟨ ≡⇒↝ bijection (by subst-lemma) ⟩
Terminates (terminv strange) ↝⟨ terminv-lemma strange-closed ⟩
¬ Terminates strange □
contradiction : ⊥
contradiction = ¬[⇔¬] strange-lemma
-- A variant of the statement above.
extensional-halting-problem′ :
¬ ∃ λ halts →
Closed halts
×
∀ p → Closed p →
∃ λ (b : Bool) →
apply halts (lambda v-underscore p) ⇓ ⌜ b ⌝
×
if b then Terminates p else (¬ Terminates p)
extensional-halting-problem′ (halts , cl , hyp) =
extensional-halting-problem
( halts
, cl
, λ _ cl-p → ⇓→⇓true cl-p
, ¬⇓→⇓false cl-p
)
where
⇓→⇓true : ∀ {p} → Closed p → Terminates p →
apply halts (lambda v-underscore p) ⇓ ⌜ true ⦂ Bool ⌝
⇓→⇓true {p} cl p⇓ with hyp p cl
... | true , halts⇓true , _ = halts⇓true
... | false , _ , ¬p⇓ = ⊥-elim (¬p⇓ p⇓)
¬⇓→⇓false :
∀ {p} → Closed p → ¬ Terminates p →
apply halts (lambda v-underscore p) ⇓ ⌜ false ⦂ Bool ⌝
¬⇓→⇓false {p} cl ¬p⇓ with hyp p cl
... | false , halts⇓false , _ = halts⇓false
... | true , _ , p⇓ = ⊥-elim (¬p⇓ p⇓)
-- And another variant.
extensional-halting-problem″ :
¬ ∃ λ halts →
Closed halts
×
∀ p → Closed p →
∥ (∃ λ (b : Bool) →
apply halts (lambda v-underscore p) ⇓ ⌜ b ⌝
×
if b then Terminates p else (¬ Terminates p)) ∥
extensional-halting-problem″ (halts , cl , hyp) =
extensional-halting-problem
( halts
, cl
, λ _ cl-p → ⇓→⇓true cl-p , ¬⇓→⇓false cl-p
)
where
⇓→⇓true : ∀ {p} → Closed p → Terminates p →
apply halts (lambda v-underscore p) ⇓ ⌜ true ⦂ Bool ⌝
⇓→⇓true cl p⇓ =
flip (Trunc.rec ⇓-propositional) (hyp _ cl) λ where
(false , _ , ¬p⇓) → ⊥-elim (¬p⇓ p⇓)
(true , halts⇓true , _) → halts⇓true
¬⇓→⇓false :
∀ {p} → Closed p → ¬ Terminates p →
apply halts (lambda v-underscore p) ⇓ ⌜ false ⦂ Bool ⌝
¬⇓→⇓false cl ¬p⇓ =
flip (Trunc.rec ⇓-propositional) (hyp _ cl) λ where
(true , _ , p⇓) → ⊥-elim (¬p⇓ p⇓)
(false , halts⇓false , _) → halts⇓false
------------------------------------------------------------------------
-- The intensional halting problem with arbitrary or non-standard
-- coding relations
-- A "termination inversion" function, parametrised by a solution to
-- the (generalised) intensional halting problem of self application.
terminv : Exp → Exp
terminv halts =
lambda v-x
(χ.if apply halts (var v-x)
then loop
else ⌜ zero ⌝)
-- A generalised variant of the intensional halting problem of
-- self-application is not decidable. This variant replaces the coding
-- function for expressions with an arbitrary relation, restricted so
-- that codes have to be values. Furthermore the statement is changed
-- to include the assumption that there is a code for a certain
-- "strange" program.
generalised-intensional-halting-problem-of-self-application :
(Code : Exp → ∃ Value → Type) →
¬ ∃ λ halts →
Closed halts
×
∃ (Code (terminv halts))
×
∀ p c → Closed p → Code p c →
let c′ = proj₁ c in
(Terminates (apply p c′) →
apply halts c′ ⇓ ⌜ true ⦂ Bool ⌝)
×
(¬ Terminates (apply p c′) →
apply halts c′ ⇓ ⌜ false ⦂ Bool ⌝)
generalised-intensional-halting-problem-of-self-application
Code (halts , cl , (code-strange , cd) , hyp) =
contradiction
where
terminv-lemma : ∀ p c → Closed p → Code p c →
Terminates (apply (terminv halts) (proj₁ c))
⇔
¬ Terminates (apply p (proj₁ c))
terminv-lemma p (c , c-vl) cl-p cd-p =
record { to = to; from = from }
where
to : Terminates (apply (terminv halts) c) →
¬ Terminates (apply p c)
to (_ , apply lambda _ (case _ here [] loop⇓)) p⇓ =
¬loop⇓ (_ , loop⇓)
to (_ , apply lambda _ (case _ (there _ (there _ ())) _ _)) p⇓
to (_ , apply lambda rep-p⇓
(case halts⇓false′ (there _ here) [] _)) p⇓ =
C.distinct-codes→distinct-names (λ ()) $
proj₁ $ cancel-const $
⇓-deterministic
(proj₁ (hyp p (c , c-vl) cl-p cd-p) p⇓)
halts⇓false
where
halts⇓false : apply halts c ⇓ ⌜ false ⦂ Bool ⌝
halts⇓false
rewrite sym $ values-only-compute-to-themselves c-vl rep-p⇓ =
subst (λ e → apply e _ ⇓ _)
(subst-closed _ _ cl)
halts⇓false′
from : ¬ Terminates (apply p c) →
Terminates (apply (terminv halts) c)
from ¬p⇓ =
_ , apply lambda (values-compute-to-themselves c-vl)
(case halts⇓false
(there (C.distinct-codes→distinct-names (λ ())) here)
[]
(const []))
where
halts⇓false : apply (halts [ v-x ← c ]) c ⇓
⌜ false ⦂ Bool ⌝
halts⇓false =
subst (λ e → apply e _ ⇓ _)
(sym $ subst-closed _ _ cl)
(proj₂ (hyp p (c , c-vl) cl-p cd-p) ¬p⇓)
strange : Exp
strange = apply (terminv halts) (proj₁ code-strange)
terminv-closed : Closed (terminv halts)
terminv-closed =
Closed′-closed-under-lambda $
if-then-else-closed
(Closed′-closed-under-apply
(Closed→Closed′ cl)
(Closed′-closed-under-var (inj₁ refl)))
(Closed→Closed′ loop-closed)
(Closed→Closed′ $ rep-closed zero)
strange-lemma : Terminates strange ⇔ ¬ Terminates strange
strange-lemma =
terminv-lemma
(terminv halts) code-strange
terminv-closed cd
contradiction : ⊥
contradiction = ¬[⇔¬] strange-lemma
-- A coding relation: An expression e that terminates is encoded by
-- the representation of true, and an expression e that does not
-- terminate is encoded by the representation of false.
⇓-coding : Exp → ∃ Value → Type
⇓-coding e (c , _) =
Terminates e × c ≡ ⌜ true ⦂ Bool ⌝
⊎
¬ Terminates e × c ≡ ⌜ false ⦂ Bool ⌝
-- When this coding relation is used the intensional halting problem
-- with zero arguments is decidable.
intensional-halting-problem₀-with-⇓-coding :
∃ λ halts →
Closed halts
×
∀ p (c@(c′ , _) : ∃ Value) → Closed p → ⇓-coding p c →
(Terminates p → apply halts c′ ⇓ ⌜ true ⦂ Bool ⌝)
×
(¬ Terminates p → apply halts c′ ⇓ ⌜ false ⦂ Bool ⌝)
intensional-halting-problem₀-with-⇓-coding =
halts
, halts-closed
, halts-correct
where
halts : Exp
halts =
lambda v-p
(case (var v-p)
(branch c-true [] ⌜ true ⦂ Bool ⌝ ∷
branch c-false [] ⌜ false ⦂ Bool ⌝ ∷
[]))
halts-closed : Closed halts
halts-closed = from-⊎ (closed? halts)
halts-correct :
∀ p (c@(c′ , _) : ∃ Value) → Closed p → ⇓-coding p c →
(Terminates p → apply halts c′ ⇓ ⌜ true ⦂ Bool ⌝)
×
(¬ Terminates p → apply halts c′ ⇓ ⌜ false ⦂ Bool ⌝)
halts-correct _ (.(⌜ true ⌝) , _) _ (inj₁ (p⇓ , refl)) =
(λ _ → apply lambda (rep⇓rep (true ⦂ Bool))
(case (rep⇓rep (true ⦂ Bool)) here []
(rep⇓rep (true ⦂ Bool))))
, (λ ¬p⇓ → ⊥-elim (¬p⇓ p⇓))
halts-correct _ (.(⌜ false ⌝) , _) _ (inj₂ (¬p⇓ , refl)) =
(λ p⇓ → ⊥-elim (¬p⇓ p⇓))
, (λ _ → apply lambda (rep⇓rep (false ⦂ Bool))
(case (rep⇓rep (false ⦂ Bool)) (there (λ ()) here) []
(rep⇓rep (false ⦂ Bool))))
------------------------------------------------------------------------
-- The intensional halting problem
-- The intensional halting problem of self-application. (This
-- definition is not used below.)
Intensional-halting-problem-of-self-application : Closed-exp →Bool
Intensional-halting-problem-of-self-application =
as-function-to-Bool₁ (λ { (e , _) → Terminates (apply e ⌜ e ⌝) })
-- The intensional halting problem of self-application is not
-- decidable.
intensional-halting-problem-of-self-application :
¬ ∃ λ halts →
Closed halts
×
∀ p → Closed p →
(Terminates (apply p ⌜ p ⌝) →
apply halts ⌜ p ⌝ ⇓ ⌜ true ⦂ Bool ⌝)
×
(¬ Terminates (apply p ⌜ p ⌝) →
apply halts ⌜ p ⌝ ⇓ ⌜ false ⦂ Bool ⌝)
intensional-halting-problem-of-self-application
(halts , cl , hyp) =
generalised-intensional-halting-problem-of-self-application
⌜⌝-Code
( halts
, cl
, ( ( ⌜ terminv halts ⌝
, const→value (rep-const (terminv halts))
)
, refl
)
, λ { p _ cl-p refl → hyp p cl-p }
)
where
⌜⌝-Code : Exp → ∃ Value → Type
⌜⌝-Code e (c , _) = ⌜ e ⌝ ≡ c
-- The intensional halting problem with one argument is not decidable.
intensional-halting-problem₁ :
¬ ∃ λ halts →
Closed halts
×
∀ p x → Closed p → Closed x →
(Terminates (apply p ⌜ x ⌝) →
apply halts ⌜ p , x ⌝ ⇓ ⌜ true ⦂ Bool ⌝)
×
(¬ Terminates (apply p ⌜ x ⌝) →
apply halts ⌜ p , x ⌝ ⇓ ⌜ false ⦂ Bool ⌝)
intensional-halting-problem₁ (halts , cl , hyp) =
intensional-halting-problem-of-self-application
( halts′
, cl′
, λ p cl-p → Σ-map (lemma p true ∘_) (lemma p false ∘_)
(hyp p p cl-p cl-p)
)
where
arg = const c-pair (var v-p ∷ var v-p ∷ [])
halts′ = lambda v-p (apply halts arg)
cl′ : Closed halts′
cl′ =
Closed′-closed-under-lambda $
Closed′-closed-under-apply
(Closed→Closed′ cl)
(from-⊎ (closed′? arg (v-p ∷ [])))
lemma : (p : Exp) (b : Bool) →
apply halts ⌜ p , p ⌝ ⇓ ⌜ b ⌝ →
apply halts′ ⌜ p ⌝ ⇓ ⌜ b ⌝
lemma p b halts⇓ =
apply halts′ ⌜ p ⌝ ⟶⟨ apply lambda (rep⇓rep p) ⟩
apply ⟨ halts [ v-p ← ⌜ p ⌝ ] ⟩ ⌜ p , p ⌝ ≡⟨ ⟨by⟩ (subst-closed _ _ cl) ⟩⟶
apply halts ⌜ p , p ⌝ ⇓⟨ halts⇓ ⟩■
⌜ b ⌝
-- The intensional halting problem with zero arguments is not
-- decidable.
intensional-halting-problem₀ :
¬ ∃ λ halts →
Closed halts
×
∀ p → Closed p →
(Terminates p → apply halts ⌜ p ⌝ ⇓ ⌜ true ⦂ Bool ⌝)
×
(¬ Terminates p → apply halts ⌜ p ⌝ ⇓ ⌜ false ⦂ Bool ⌝)
intensional-halting-problem₀ (halts , cl , hyp) =
intensional-halting-problem-of-self-application
( halts′
, cl′
, λ p cl-p → Σ-map (lemma p true ∘_) (lemma p false ∘_)
(hyp (apply p ⌜ p ⌝)
(Closed′-closed-under-apply
(Closed→Closed′ cl-p)
(Closed→Closed′ (rep-closed p))))
)
where
halts′ =
lambda v-p (apply halts (
const c-apply (var v-p ∷ apply internal-code (var v-p) ∷ [])))
cl′ : Closed halts′
cl′ =
Closed′-closed-under-lambda $
Closed′-closed-under-apply
(Closed→Closed′ cl)
(Closed′-closed-under-const
(λ { _ (inj₁ refl) →
Closed′-closed-under-var (inj₁ refl)
; _ (inj₂ (inj₁ refl)) →
Closed′-closed-under-apply
(Closed→Closed′ internal-code-closed)
(Closed′-closed-under-var (inj₁ refl))
; _ (inj₂ (inj₂ ()))
}))
abstract
lemma : (p : Exp) (b : Bool) →
apply halts ⌜ Exp.apply p ⌜ p ⌝ ⌝ ⇓ ⌜ b ⌝ →
apply halts′ ⌜ p ⌝ ⇓ ⌜ b ⌝
lemma p b halts⇓ =
apply halts′ ⌜ p ⌝ ⟶⟨ apply lambda (rep⇓rep p) ⟩
apply ⟨ halts [ v-p ← ⌜ p ⌝ ] ⟩ (const c-apply (
⌜ p ⌝ ∷ apply (internal-code [ v-p ← ⌜ p ⌝ ]) ⌜ p ⌝ ∷ [])) ≡⟨ ⟨by⟩ (subst-closed _ _ cl) ⟩⟶
apply halts (const c-apply (
⌜ p ⌝ ∷ apply ⟨ internal-code [ v-p ← ⌜ p ⌝ ] ⟩ ⌜ p ⌝ ∷ [])) ≡⟨ ⟨by⟩ (subst-closed v-p ⌜ p ⌝ internal-code-closed) ⟩⟶
apply halts (const c-apply (
⌜ p ⌝ ∷ apply internal-code ⌜ p ⌝ ∷ [])) ⟶⟨ []⇓ (apply→ ∙) (const (rep⇓rep p ∷ internal-code-correct p ∷ [])) ⟩
apply halts (const c-apply (⌜ p ⌝ ∷ ⌜ ⌜ p ⌝ ⦂ Exp ⌝ ∷ [])) ⟶⟨⟩
apply halts ⌜ Exp.apply p ⌜ p ⌝ ⌝ ⇓⟨ halts⇓ ⟩■
⌜ b ⌝
-- Two statements of the intensional halting problem with zero
-- arguments.
Intensional-halting-problem₀₁ : Closed-exp →Bool
Intensional-halting-problem₀₁ =
as-function-to-Bool₁ (Terminates ∘ proj₁)
Intensional-halting-problem₀₂ : Closed-exp →Bool
Intensional-halting-problem₀₂ =
as-function-to-Bool₂ (Terminates ∘ proj₁) Terminates-propositional
-- The first variant is not decidable.
intensional-halting-problem₀₁ :
¬ Decidable Intensional-halting-problem₀₁
intensional-halting-problem₀₁ (halts , cl , hyp , _) =
intensional-halting-problem₀
( halts
, cl
, λ p cl-p →
(λ p⇓ →
apply halts ⌜ p ⌝ ⇓⟨ hyp (p , cl-p) true ((λ _ → refl) , λ ¬p⇓ → ⊥-elim (¬p⇓ p⇓)) ⟩■
⌜ true ⦂ Bool ⌝) ,
λ ¬p⇓ →
apply halts ⌜ p ⌝ ⇓⟨ hyp (p , cl-p) false ((λ p⇓ → ⊥-elim (¬p⇓ p⇓)) , λ _ → refl) ⟩■
⌜ false ⦂ Bool ⌝
)
-- The second variant is not decidable.
intensional-halting-problem₀₂ :
¬ Decidable Intensional-halting-problem₀₂
intensional-halting-problem₀₂ (halts , cl , hyp , _) =
intensional-halting-problem₀
( halts
, cl
, λ p cl-p →
(λ p⇓ →
apply halts ⌜ p ⌝ ⇓⟨ hyp (p , cl-p) true (inj₁ (p⇓ , refl)) ⟩■
⌜ true ⦂ Bool ⌝)
, (λ ¬p⇓ →
apply halts ⌜ p ⌝ ⇓⟨ hyp (p , cl-p) false (inj₂ (¬p⇓ , refl)) ⟩■
⌜ false ⦂ Bool ⌝)
)
-- Under the assumption of excluded middle one can prove that
-- Intensional-halting-problem₀₁ and Intensional-halting-problem₀₂ are
-- pointwise equal.
Intensional-halting-problem₀₂→Intensional-halting-problem₀₁ :
∀ {e b} →
proj₁ Intensional-halting-problem₀₂ [ e ]= b →
proj₁ Intensional-halting-problem₀₁ [ e ]= b
Intensional-halting-problem₀₂→Intensional-halting-problem₀₁
(inj₁ (e⇓ , refl)) = (λ _ → refl) , (⊥-elim ∘ (_$ e⇓))
Intensional-halting-problem₀₂→Intensional-halting-problem₀₁
(inj₂ (¬e⇓ , refl)) = (⊥-elim ∘ ¬e⇓) , λ _ → refl
Intensional-halting-problem₀₁→Intensional-halting-problem₀₂ :
(excluded-middle : (P : Type) → Is-proposition P → Dec P) →
∀ {e} b →
proj₁ Intensional-halting-problem₀₁ [ e ]= b →
proj₁ Intensional-halting-problem₀₂ [ e ]= b
Intensional-halting-problem₀₁→Intensional-halting-problem₀₂ em =
λ where
true (_ , ¬¬e⇓) →
inj₁ ( double-negation-elimination
Terminates-propositional
(Bool.true≢false ∘ ¬¬e⇓)
, refl
)
false (¬e⇓ , _) →
inj₂ ( Bool.true≢false ∘ sym ∘ ¬e⇓
, refl
)
where
double-negation-elimination :
{P : Type} → Is-proposition P → ¬ ¬ P → P
double-negation-elimination P-prop ¬¬p =
case em _ P-prop of λ where
(inj₁ p) → p
(inj₂ ¬p) → ⊥-elim (¬¬p ¬p)
------------------------------------------------------------------------
-- "Half of the halting problem"
-- If a (correct) self-interpreter can be implemented, then "half of
-- the halting problem" is computable.
half-of-the-halting-problem :
(eval : Exp) →
Closed eval →
(∀ p v → Closed p → p ⇓ v → apply eval ⌜ p ⌝ ⇓ ⌜ v ⌝) →
(∀ p → Closed p → ¬ Terminates p →
¬ Terminates (apply eval ⌜ p ⌝)) →
∃ λ halts →
Closed halts
×
∀ p → Closed p →
(Terminates p → apply halts ⌜ p ⌝ ⇓ ⌜ true ⦂ Bool ⌝)
×
(¬ Terminates p → ¬ Terminates (apply halts ⌜ p ⌝))
half-of-the-halting-problem eval cl eval⇓ eval¬⇓ =
halts , cl′ , λ p cl-p → lemma₁ p cl-p , lemma₂ p cl-p
module Half-of-the-halting-problem where
halts = lambda v-p (apply (lambda v-underscore ⌜ true ⦂ Bool ⌝)
(apply eval (var v-p)))
cl′ : Closed halts
cl′ =
Closed′-closed-under-lambda $
Closed′-closed-under-apply
(from-⊎ (closed′? (lambda v-underscore ⌜ true ⦂ Bool ⌝) _))
(Closed′-closed-under-apply
(Closed→Closed′ cl)
(Closed′-closed-under-var (inj₁ refl)))
lemma₁ : ∀ p → Closed p → Terminates p →
apply halts ⌜ p ⌝ ⇓ ⌜ true ⦂ Bool ⌝
lemma₁ p cl-p (v , p⇓v) =
apply halts ⌜ p ⌝ ⟶⟨ apply lambda (rep⇓rep p) ⟩
apply (lambda v-underscore ⌜ true ⦂ Bool ⌝)
(apply ⟨ eval [ v-p ← ⌜ p ⌝ ] ⟩ ⌜ p ⌝) ≡⟨ ⟨by⟩ (subst-closed _ _ cl) ⟩⟶
apply (lambda v-underscore ⌜ true ⦂ Bool ⌝)
(apply eval ⌜ p ⌝) ⇓⟨ apply lambda (eval⇓ p v cl-p p⇓v) (rep⇓rep (true ⦂ Bool)) ⟩■
⌜ true ⦂ Bool ⌝
halts-eval-inversion :
∀ e →
Terminates (apply halts e) →
Terminates (apply eval e)
halts-eval-inversion e (_ , apply {v₂ = v} lambda e⇓
(apply {v₂ = v₂} _ eval⇓ _)) =
_ , (apply eval e ⟶⟨ []⇓ (apply→ ∙) e⇓ ⟩
apply eval v ≡⟨ by (subst-closed _ _ cl) ⟩⟶
apply (eval [ v-p ← v ]) v ⇓⟨ eval⇓ ⟩■
v₂)
lemma₂ : ∀ p → Closed p →
¬ Terminates p →
¬ Terminates (apply halts ⌜ p ⌝)
lemma₂ p cl-p ¬p⇓ =
Terminates (apply halts ⌜ p ⌝) ↝⟨ halts-eval-inversion ⌜ p ⌝ ⟩
Terminates (apply eval ⌜ p ⌝) ↝⟨ eval¬⇓ p cl-p ¬p⇓ ⟩□
⊥ □
-- Two statements of "half of the halting problem".
Half-of-the-halting-problem₁ : Closed-exp ⇀ Bool
Half-of-the-halting-problem₁ =
as-partial-function-to-Bool₁ (Terminates ∘ proj₁)
Half-of-the-halting-problem₂ : Closed-exp ⇀ Bool
Half-of-the-halting-problem₂ =
as-partial-function-to-Bool₂
(Terminates ∘ proj₁)
Terminates-propositional
-- If a (correct) self-interpreter can be implemented, then
-- Half-of-the-halting-problem₂ is computable.
half-of-the-halting-problem₂ :
(eval : Exp) →
Closed eval →
(∀ p v → Closed p → p ⇓ v → apply eval ⌜ p ⌝ ⇓ ⌜ v ⌝) →
(∀ p v → Closed p → apply eval ⌜ p ⌝ ⇓ v →
∃ λ v′ → p ⇓ v′ × v ≡ ⌜ v′ ⌝) →
Computable Half-of-the-halting-problem₂
half-of-the-halting-problem₂ eval cl eval₁ eval₂ =
H.halts , H.cl′ ,
(λ { (p , cl-p) .true (p⇓ , refl) → H.lemma₁ p cl-p p⇓ }) ,
(λ { (p , cl-p) v halts⌜p⌝⇓v → true ,
Σ-map (_, refl) id (lemma₂ p v cl-p halts⌜p⌝⇓v) })
where
eval-inversion :
∀ p → Closed p →
Terminates (apply eval ⌜ p ⌝) →
Terminates p
eval-inversion p cl-p = Σ-map id proj₁ ∘ eval₂ p _ cl-p ∘ proj₂
module H = Half-of-the-halting-problem eval cl eval₁
(λ { p cl-p ¬p⇓ →
Terminates (apply eval ⌜ p ⌝) ↝⟨ eval-inversion p cl-p ⟩
Terminates p ↝⟨ ¬p⇓ ⟩□
⊥ □ })
lemma₂ : ∀ p v → Closed p → apply H.halts ⌜ p ⌝ ⇓ v →
Terminates p × v ≡ ⌜ true ⦂ Bool ⌝
lemma₂ p v cl-p q@(apply lambda _ (apply lambda _ (const []))) =
( $⟨ _ , q ⟩
Terminates (apply H.halts ⌜ p ⌝) ↝⟨ H.halts-eval-inversion ⌜ p ⌝ ⟩
Terminates (apply eval ⌜ p ⌝) ↝⟨ eval-inversion p cl-p ⟩□
Terminates p □)
, refl
------------------------------------------------------------------------
-- Halting with zero
-- If the expression terminates with ⌜ zero ⌝ as the result, then this
-- (total partial) function returns true. If the expression does not
-- terminate with ⌜ zero ⌝ as the result, then the function returns
-- false.
Halts-with-zero : Closed-exp →Bool
Halts-with-zero =
as-function-to-Bool₁ (λ { (e , _) → e ⇓ ⌜ zero ⌝ })
-- Halts-with-zero is not decidable.
halts-with-zero : ¬ Decidable Halts-with-zero
halts-with-zero =
Reduction→¬Computable→¬Computable
(proj₁ Intensional-halting-problem₀₁) (proj₁ Halts-with-zero) red
intensional-halting-problem₀₁
where
red : Reduction (proj₁ Intensional-halting-problem₀₁)
(proj₁ Halts-with-zero)
red (halts-with-zero , cl , hyp₁ , hyp₂) =
halts , cl-halts , hyp₁′ , hyp₂′
where
argument : Closed-exp → Closed-exp
argument (p , cl-p) =
apply (lambda v-x (const c-zero [])) p
, (Closed′-closed-under-apply
(from-⊎ (closed′? (lambda v-x (const c-zero [])) []))
(Closed→Closed′ cl-p))
coded-argument : Exp → Exp
coded-argument p = const c-apply (
⌜ Exp.lambda v-x (const c-zero []) ⌝ ∷
p ∷
[])
halts : Exp
halts =
lambda v-p (apply halts-with-zero (coded-argument (var v-p)))
cl-halts : Closed halts
cl-halts =
Closed′-closed-under-lambda $
Closed′-closed-under-apply
(Closed→Closed′ cl)
(Closed′-closed-under-const λ where
_ (inj₁ refl) → Closed→Closed′ $
rep-closed (Exp.lambda v-x (const c-zero []))
_ (inj₂ (inj₁ refl)) → Closed′-closed-under-var (inj₁ refl)
_ (inj₂ (inj₂ ())))
lemma₁ :
∀ p b →
proj₁ Intensional-halting-problem₀₁ [ p ]= b →
proj₁ Halts-with-zero [ argument p ]= b
lemma₁ p true (_ , ¬¬p⇓) =
(λ _ → refl)
, λ ¬arg-p⇓zero → ¬¬p⇓ λ p⇓ → ¬arg-p⇓zero
(proj₁ (argument p) ⇓⟨ apply lambda (proj₂ p⇓) (const []) ⟩■
const c-zero [])
lemma₁ p false (¬p⇓ , _) =
(λ { (apply _ p⇓ _) → ¬p⇓ (_ , p⇓) })
, λ _ → refl
hyp₁′ : ∀ p b → proj₁ Intensional-halting-problem₀₁ [ p ]= b →
apply halts ⌜ p ⌝ ⇓ ⌜ b ⌝
hyp₁′ p b halts[p]=b =
apply halts ⌜ p ⌝ ⟶⟨ apply lambda (rep⇓rep p) ⟩
apply ⟨ halts-with-zero [ v-p ← ⌜ p ⌝ ] ⟩ (coded-argument ⌜ p ⌝) ≡⟨ ⟨by⟩ (subst-closed _ _ cl) ⟩⟶
apply halts-with-zero (coded-argument ⌜ p ⌝) ⟶⟨⟩
apply halts-with-zero ⌜ argument p ⌝ ⇓⟨ hyp₁ (argument p) b (lemma₁ p _ halts[p]=b) ⟩■
⌜ b ⌝
pattern coded-argument-⇓ p =
const (const (const (const (const (const [] ∷ []) ∷ []) ∷ []) ∷
const (const [] ∷ const [] ∷ []) ∷
[]) ∷
p ∷
[])
lemma₂ :
∀ p v →
apply halts ⌜ p ⌝ ⇓ v →
apply halts-with-zero ⌜ argument p ⌝ ⇓ v
lemma₂ p v (apply {v₂ = v₂} lambda q r) =
apply ⟨ halts-with-zero ⟩ ⌜ argument p ⌝ ≡⟨ ⟨by⟩ (subst-closed _ _ cl) ⟩⟶
apply (halts-with-zero [ v-p ← v₂ ]) (coded-argument ⌜ p ⌝) ⟶⟨ []⇓ (apply→ ∙) (coded-argument-⇓ q) ⟩
apply (halts-with-zero [ v-p ← v₂ ]) (coded-argument v₂) ⇓⟨ r ⟩■
v
hyp₂′ : ∀ p v → apply halts ⌜ p ⌝ ⇓ v →
∃ λ v′ →
proj₁ Intensional-halting-problem₀₁ [ p ]= v′
×
v ≡ ⌜ v′ ⌝
hyp₂′ p v q =
Σ-map id
(Σ-map
(Σ-map
(_∘ λ p⇓ → apply lambda (proj₂ p⇓) (const []))
(_∘ λ ¬p⇓ → λ { (apply lambda p⇓ (const [])) →
¬p⇓ (_ , p⇓) }))
id) $
hyp₂ (argument p) v (lemma₂ p v q)
|
{
"alphanum_fraction": 0.5252252918,
"avg_line_length": 33.887359199,
"ext": "agda",
"hexsha": "cf0b4e7eb8767e787179c2016a971ac5c159d2e9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/chi",
"max_forks_repo_path": "src/Halting-problem.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_issues_repo_issues_event_max_datetime": "2020-06-08T11:08:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-05-21T23:29:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/chi",
"max_issues_repo_path": "src/Halting-problem.agda",
"max_line_length": 140,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/chi",
"max_stars_repo_path": "src/Halting-problem.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-20T16:27:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:07.000Z",
"num_tokens": 9582,
"size": 27076
}
|
module IrrelevantLambda where
postulate
A : Set
P : .A -> Set
f : ._ -> Set
f = λ .x -> P x
f' = λ .(x : _) -> P x
f'' = λ .{x y z : _} -> P x
g : ((.A -> Set) -> Set) -> Set
g k = k f
|
{
"alphanum_fraction": 0.4307692308,
"avg_line_length": 12.1875,
"ext": "agda",
"hexsha": "1b875ca296d9633a23ece71fa6cc80140ab2aaad",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dagit/agda",
"max_forks_repo_path": "test/succeed/IrrelevantLambda.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dagit/agda",
"max_issues_repo_path": "test/succeed/IrrelevantLambda.agda",
"max_line_length": 31,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/IrrelevantLambda.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T07:26:06.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T07:26:06.000Z",
"num_tokens": 87,
"size": 195
}
|
module Golden.InsertionSort where
open import Agda.Builtin.Nat
open import Agda.Builtin.List
open import Agda.Builtin.Bool
insert : Nat -> List Nat -> List Nat
insert a [] = a ∷ []
insert x (a ∷ b) with x < a
... | true = x ∷ a ∷ b
... | false = a ∷ (insert x b)
foldr : ∀ {a b : Set} → (a → b → b) → b → List a -> b
foldr f ini [] = ini
foldr f ini (x ∷ l) = f x (foldr f ini l)
insertSort : List Nat -> List Nat
insertSort = foldr insert []
atDef : ∀ {a : Set} → a → List a -> Nat -> a
atDef def (x ∷ l) zero = x
atDef def (x ∷ l) (suc ix) = atDef def l ix
atDef def _ _ = def
lst : List Nat
lst = 4 ∷ 2 ∷ 7 ∷ []
slst : List Nat
slst = insertSort lst
l0 : Nat
l0 = atDef 0 slst 0
l1 : Nat
l1 = atDef 0 slst 1
l2 : Nat
l2 = atDef 0 slst 2
|
{
"alphanum_fraction": 0.5893333333,
"avg_line_length": 19.2307692308,
"ext": "agda",
"hexsha": "5c1f2bddf098becec4ac38ce962a5726228749f6",
"lang": "Agda",
"max_forks_count": 7,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:48.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-05-24T10:45:59.000Z",
"max_forks_repo_head_hexsha": "e38b699870ba638221828b07b12948d70a1bdaec",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "agda/agda-ocaml",
"max_forks_repo_path": "test/agda-ocaml/Golden/InsertionSort.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "e38b699870ba638221828b07b12948d70a1bdaec",
"max_issues_repo_issues_event_max_datetime": "2018-11-05T21:28:57.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-03-29T13:37:52.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "agda/agda-ocaml",
"max_issues_repo_path": "test/agda-ocaml/Golden/InsertionSort.agda",
"max_line_length": 53,
"max_stars_count": 48,
"max_stars_repo_head_hexsha": "e38b699870ba638221828b07b12948d70a1bdaec",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "agda/agda-ocaml",
"max_stars_repo_path": "test/agda-ocaml/Golden/InsertionSort.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-15T09:08:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-03-29T14:19:31.000Z",
"num_tokens": 302,
"size": 750
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Universe levels
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Level where
-- Levels.
open import Agda.Primitive as Prim public
using (Level; _⊔_)
renaming (lzero to zero; lsuc to suc)
-- Lifting.
record Lift {a} ℓ (A : Set a) : Set (a ⊔ ℓ) where
constructor lift
field lower : A
open Lift public
-- Synonyms
0ℓ : Level
0ℓ = zero
|
{
"alphanum_fraction": 0.469581749,
"avg_line_length": 18.1379310345,
"ext": "agda",
"hexsha": "b2a8bc33a30c892936780d60f6ed744710532bcf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Level.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Level.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Level.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 123,
"size": 526
}
|
{-# OPTIONS --safe #-}
module Cubical.Algebra.MonoidSolver.Solver where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Structure
open import Cubical.Data.FinData using (Fin)
open import Cubical.Data.Nat using (ℕ)
open import Cubical.Data.List
open import Cubical.Data.Vec using (Vec; lookup)
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.MonoidSolver.MonoidExpression
private
variable
ℓ : Level
module Eval (M : Monoid ℓ) where
open MonoidStr (snd M)
Env : ℕ → Type ℓ
Env n = Vec ⟨ M ⟩ n
-- evaluation of an expression (without normalization)
⟦_⟧ : ∀{n} → Expr ⟨ M ⟩ n → Env n → ⟨ M ⟩
⟦ ε⊗ ⟧ v = ε
⟦ ∣ i ⟧ v = lookup i v
⟦ e₁ ⊗ e₂ ⟧ v = ⟦ e₁ ⟧ v · ⟦ e₂ ⟧ v
NormalForm : ℕ → Type _
NormalForm n = List (Fin n)
-- normalization of an expression
normalize : ∀{n} → Expr ⟨ M ⟩ n → NormalForm n
normalize (∣ i) = i ∷ []
normalize ε⊗ = []
normalize (e₁ ⊗ e₂) = (normalize e₁) ++ (normalize e₂)
-- evaluation of normalform
eval : ∀ {n} → NormalForm n → Env n → ⟨ M ⟩
eval [] v = ε
eval (x ∷ xs) v = (lookup x v) · (eval xs v)
-- some calculation
evalIsHom : ∀ {n} (x y : NormalForm n) (v : Env n)
→ eval (x ++ y) v ≡ eval x v · eval y v
evalIsHom [] y v = sym (·IdL _)
evalIsHom (x ∷ xs) y v =
cong (λ m → (lookup x v) · m) (evalIsHom xs y v) ∙ ·Assoc _ _ _
module EqualityToNormalform (M : Monoid ℓ) where
open Eval M
open MonoidStr (snd M)
-- proof that evaluation of an expression is invariant under normalization
isEqualToNormalform : (n : ℕ)
→ (e : Expr ⟨ M ⟩ n)
→ (v : Env n)
→ eval (normalize e) v ≡ ⟦ e ⟧ v
isEqualToNormalform n (∣ i) v = ·IdR _
isEqualToNormalform n ε⊗ v = refl
isEqualToNormalform n (e₁ ⊗ e₂) v =
eval ((normalize e₁) ++ (normalize e₂)) v ≡⟨ evalIsHom (normalize e₁) (normalize e₂) v ⟩
(eval (normalize e₁) v) · (eval (normalize e₂) v) ≡⟨ cong₂ _·_ (isEqualToNormalform n e₁ v) (isEqualToNormalform n e₂ v) ⟩
⟦ e₁ ⟧ v · ⟦ e₂ ⟧ v ∎
solve : {n : ℕ}
→ (e₁ e₂ : Expr ⟨ M ⟩ n)
→ (v : Env n)
→ (p : eval (normalize e₁) v ≡ eval (normalize e₂) v)
→ ⟦ e₁ ⟧ v ≡ ⟦ e₂ ⟧ v
solve e₁ e₂ v p =
⟦ e₁ ⟧ v ≡⟨ sym (isEqualToNormalform _ e₁ v) ⟩
eval (normalize e₁) v ≡⟨ p ⟩
eval (normalize e₂) v ≡⟨ isEqualToNormalform _ e₂ v ⟩
⟦ e₂ ⟧ v ∎
solve : (M : Monoid ℓ)
{n : ℕ} (e₁ e₂ : Expr ⟨ M ⟩ n) (v : Eval.Env M n)
(p : Eval.eval M (Eval.normalize M e₁) v ≡ Eval.eval M (Eval.normalize M e₂) v)
→ _
solve M = EqualityToNormalform.solve M
|
{
"alphanum_fraction": 0.5578256111,
"avg_line_length": 31.5057471264,
"ext": "agda",
"hexsha": "ee962b12a3b059c1242cd047e0320772eaf84306",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/MonoidSolver/Solver.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/MonoidSolver/Solver.agda",
"max_line_length": 126,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/MonoidSolver/Solver.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 980,
"size": 2741
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Homotopy.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv.Properties
private
variable
ℓ ℓ' : Level
_∼_ : {X : Type ℓ} {Y : X → Type ℓ'} → (f g : (x : X) → Y x) → Type (ℓ-max ℓ ℓ')
_∼_ {X = X} f g = (x : X) → f x ≡ g x
funExt∼ : {X : Type ℓ} {Y : X → Type ℓ'} {f g : (x : X) → Y x} (H : f ∼ g) → f ≡ g
funExt∼ = funExt
∼-refl : {X : Type ℓ} {Y : X → Type ℓ'} {f : (x : X) → Y x} → f ∼ f
∼-refl {f = f} = λ x → refl {x = f x}
|
{
"alphanum_fraction": 0.5258302583,
"avg_line_length": 27.1,
"ext": "agda",
"hexsha": "b28d357357eb4c8c33ea11b3ed75914d8d3dbcad",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Homotopy/Base.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Homotopy/Base.agda",
"max_line_length": 82,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Homotopy/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 247,
"size": 542
}
|
{-# OPTIONS --cubical --safe --postfix-projections #-}
module Categories.Exercises where
open import Prelude
open import Categories
open Category ⦃ ... ⦄
open import Categories.Product
open Product public
open HasProducts ⦃ ... ⦄ public
-- module _ {ℓ₁} {ℓ₂} ⦃ c : Category ℓ₁ ℓ₂ ⦄ ⦃ hp : HasProducts c ⦄ where
-- ex17 : (t : Terminal) (x : Ob) → Product.obj (product (fst t) x) ≅ x
-- ex17 t x .fst = proj₂ (product (fst t) x)
-- ex17 t x .snd .fst = ump (product (fst t) x) (t .snd .fst) Id .fst
-- ex17 t x .snd .snd .fst = let p = ump (product (fst t) x) (t .snd .fst) Id .snd .snd ({!!} , {!!}) in {!!}
-- ex17 t x .snd .snd .snd = {!!}
|
{
"alphanum_fraction": 0.5990853659,
"avg_line_length": 34.5263157895,
"ext": "agda",
"hexsha": "5cf1ea892a374826c595f23b8e491bd6c6f6f0ea",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Categories/Exercises.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Categories/Exercises.agda",
"max_line_length": 111,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Categories/Exercises.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 241,
"size": 656
}
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Multiplication
open import Semirings.Definition
open import Rings.Definition
open import Setoids.Setoids
module Numbers.Integers.RingStructure.Ring where
open import Numbers.Integers.Definition public
open import Numbers.Integers.Addition public
open import Numbers.Integers.Multiplication public
*ZCommutative : (a b : ℤ) → a *Z b ≡ b *Z a
*ZCommutative (nonneg x) (nonneg y) = applyEquality nonneg (multiplicationNIsCommutative x y)
*ZCommutative (nonneg zero) (negSucc y) = refl
*ZCommutative (nonneg (succ x)) (negSucc y) = refl
*ZCommutative (negSucc x) (nonneg zero) = refl
*ZCommutative (negSucc x) (nonneg (succ y)) = refl
*ZCommutative (negSucc x) (negSucc y) = applyEquality nonneg (multiplicationNIsCommutative (succ x) (succ y))
*ZleftIdent : (a : ℤ) → (nonneg 1) *Z a ≡ a
*ZleftIdent (nonneg x) = applyEquality nonneg (Semiring.commutative ℕSemiring x 0)
*ZleftIdent (negSucc x) = applyEquality negSucc (transitivity (Semiring.commutative ℕSemiring (x +N 0) 0) (Semiring.commutative ℕSemiring x 0))
*ZrightIdent : (a : ℤ) → a *Z (nonneg 1) ≡ a
*ZrightIdent (nonneg x) = applyEquality nonneg (Semiring.productOneRight ℕSemiring x)
*ZrightIdent (negSucc x) = applyEquality negSucc (transitivity (Semiring.commutative ℕSemiring (x +N 0) 0) (Semiring.commutative ℕSemiring x 0))
*ZZeroLeft : (a : ℤ) → nonneg 0 *Z a ≡ nonneg 0
*ZZeroLeft (nonneg x) = refl
*ZZeroLeft (negSucc x) = refl
*ZZeroRight : (a : ℤ) → a *Z nonneg 0 ≡ nonneg 0
*ZZeroRight (nonneg x) = applyEquality nonneg (Semiring.productZeroRight ℕSemiring x)
*ZZeroRight (negSucc x) = refl
*ZAssociative : (a b c : ℤ) → a *Z (b *Z c) ≡ (a *Z b) *Z c
*ZAssociative (nonneg zero) b c = transitivity (*ZZeroLeft (b *Z c)) (transitivity (equalityCommutative (*ZZeroLeft c)) (applyEquality (_*Z c) (equalityCommutative (*ZZeroLeft b))))
*ZAssociative (nonneg (succ a)) (nonneg zero) c rewrite Semiring.productZeroRight ℕSemiring a | *ZZeroLeft c | Semiring.productZeroRight ℕSemiring a = refl
*ZAssociative (nonneg (succ a)) (nonneg (succ b)) (nonneg zero) rewrite Semiring.productZeroRight ℕSemiring b | Semiring.productZeroRight ℕSemiring (b +N a *N succ b) | Semiring.productZeroRight ℕSemiring a = refl
*ZAssociative (nonneg (succ a)) (nonneg (succ b)) (nonneg (succ c)) = applyEquality nonneg (Semiring.*Associative ℕSemiring (succ a) (succ b) (succ c))
*ZAssociative (nonneg (succ a)) (nonneg (succ b)) (negSucc x) rewrite productDistributes' b (a *N succ b) x | Semiring.+Associative ℕSemiring x (b *N x) ((a *N succ b) *N x) | equalityCommutative (Semiring.+Associative ℕSemiring ((x +N b *N x) +N b) (a *N ((x +N b *N x) +N b)) a) | equalityCommutative (Semiring.+Associative ℕSemiring (x +N b *N x) ((a *N succ b) *N x) (b +N a *N succ b)) | equalityCommutative (Semiring.+Associative ℕSemiring (x +N b *N x) b (a *N ((x +N b *N x) +N b) +N a)) = applyEquality (λ i → negSucc ((x +N b *N x) +N i)) ans
where
ans3 : (succ b +N (succ b *N x)) *N a ≡ succ x *N (a *N succ b)
ans3 rewrite multiplicationNIsCommutative (succ b) x = transitivity (equalityCommutative (Semiring.*Associative ℕSemiring (succ x) (succ b) a)) (applyEquality (succ x *N_) (multiplicationNIsCommutative (succ b) a))
ans2 : a *N ((x +N b *N x) +N b) +N a ≡ (a *N succ b) +N (a *N succ b) *N x
ans2 rewrite multiplicationNIsCommutative (a *N succ b) x | Semiring.commutative ℕSemiring (succ b *N x) b | multiplicationNIsCommutative a (b +N (succ b *N x)) | Semiring.commutative ℕSemiring ((b +N (succ b *N x)) *N a) a = ans3
ans : b +N (a *N ((x +N b *N x) +N b) +N a) ≡ (a *N succ b) *N x +N (b +N a *N succ b)
ans rewrite Semiring.commutative ℕSemiring ((a *N succ b) *N x) (b +N a *N succ b) | equalityCommutative (Semiring.+Associative ℕSemiring b (a *N succ b) ((a *N succ b) *N x)) = applyEquality (b +N_) ans2
*ZAssociative (nonneg (succ a)) (negSucc b) (nonneg zero) = applyEquality nonneg (Semiring.productZeroRight ℕSemiring a)
*ZAssociative (nonneg (succ a)) (negSucc b) (nonneg (succ c)) = applyEquality negSucc ans
where
ans4 : (b +N b *N c) +N (a *N b +N (a *N b) *N c) ≡ (b +N a *N b) +N (b *N c +N (a *N b) *N c)
ans4 rewrite Semiring.+Associative ℕSemiring (b +N b *N c) (a *N b) ((a *N b) *N c) | Semiring.+Associative ℕSemiring (b +N a *N b) (b *N c) ((a *N b) *N c) = applyEquality (_+N (a *N b) *N c) (transitivity (transitivity (applyEquality (_+N a *N b) (Semiring.commutative ℕSemiring b (b *N c))) (equalityCommutative (Semiring.+Associative ℕSemiring (b *N c) b (a *N b)))) (Semiring.commutative ℕSemiring (b *N c) (b +N a *N b)))
ans3 : ((b +N b *N c) +N (a *N b +N (a *N b) *N c)) +N ((c +N a *N c) +N a) ≡ ((b +N a *N b) +N (b *N c +N (a *N b) *N c)) +N ((a +N a *N c) +N c)
ans3 rewrite Semiring.commutative ℕSemiring (c +N a *N c) a | Semiring.commutative ℕSemiring c (a *N c) | Semiring.+Associative ℕSemiring a (a *N c) c = applyEquality (λ i → i +N ((a +N a *N c) +N c)) {(b +N b *N c) +N (a *N b +N (a *N b) *N c)} {(b +N a *N b) +N (b *N c +N (a *N b) *N c)} ans4
ans2 : (((b +N c *N b) +N (a *N b +N a *N (c *N b))) +N (c +N a *N c)) +N a ≡ (((b +N a *N b) +N (c *N b +N c *N (a *N b))) +N (a +N c *N a)) +N c
ans2 rewrite multiplicationNIsCommutative c b | multiplicationNIsCommutative c (a *N b) | Semiring.*Associative ℕSemiring a b c | multiplicationNIsCommutative c a = transitivity (equalityCommutative (Semiring.+Associative ℕSemiring ((b +N b *N c) +N (a *N b +N (a *N b) *N c)) (c +N a *N c) a)) (transitivity ans3 (Semiring.+Associative ℕSemiring ((b +N a *N b) +N (b *N c +N (a *N b) *N c)) (a +N a *N c) c))
ans : succ a *N ((succ c *N b) +N c) +N a ≡ succ c *N ((succ a *N b) +N a) +N c
ans = transitivity (applyEquality (_+N a) (productDistributes (succ a) (succ c *N b) c)) (transitivity (transitivity (applyEquality (λ i → ((((b +N c *N b) +N i) +N (c +N a *N c)) +N a)) (productDistributes a b (c *N b))) (transitivity ans2 (applyEquality (λ i → (((b +N a *N b) +N i) +N (a +N c *N a)) +N c) (equalityCommutative (productDistributes c b (a *N b)))))) (applyEquality (_+N c) (equalityCommutative (productDistributes (succ c) (succ a *N b) a))))
*ZAssociative (nonneg (succ a)) (negSucc b) (negSucc x) = applyEquality nonneg ans
where
ans : succ a *N (succ b *N succ x) ≡ succ ((succ a *N b) +N a) *N succ x
ans rewrite Semiring.commutative ℕSemiring (succ a *N b) a | multiplicationNIsCommutative (succ a) b = transitivity (Semiring.*Associative ℕSemiring (succ a) (succ b) (succ x)) (applyEquality (_*N succ x) {succ a *N succ b} {succ b *N succ a} (multiplicationNIsCommutative (succ a) (succ b)))
*ZAssociative (negSucc a) (nonneg zero) c rewrite *ZZeroLeft c = refl
*ZAssociative (negSucc a) (nonneg (succ b)) (nonneg zero) rewrite multiplicationNIsCommutative b 0 = refl
*ZAssociative (negSucc a) (nonneg (succ b)) (nonneg (succ c)) = applyEquality negSucc ans
where
ans2 : (d : ℕ) → ((succ b *N d) *N a) +N b *N d ≡ d *N ((succ b *N a) +N b)
ans2 d = transitivity (transitivity (applyEquality (((d +N b *N d) *N a) +N_) (multiplicationNIsCommutative b d)) (applyEquality (_+N d *N b) (transitivity (applyEquality (_*N a) {d +N b *N d} {d *N succ b} (multiplicationNIsCommutative (succ b) d)) (equalityCommutative (Semiring.*Associative ℕSemiring d (succ b) a))))) (equalityCommutative (Semiring.+DistributesOver* ℕSemiring d (succ b *N a) b))
ans : (succ (c +N b *N succ c) *N a) +N (c +N b *N succ c) ≡ (succ c *N ((succ b *N a) +N b)) +N c
ans rewrite Semiring.commutative ℕSemiring c (b *N succ c) | Semiring.+Associative ℕSemiring (succ (b *N succ c +N c) *N a) (b *N succ c) c | Semiring.commutative ℕSemiring (b *N succ c) c = applyEquality (_+N c) (ans2 (succ c))
*ZAssociative (negSucc a) (nonneg (succ b)) (negSucc c) = applyEquality nonneg ans
where
ans : succ a *N ((succ ((succ b) *N c)) +N b) ≡ (succ (succ b *N a) +N b) *N succ c
ans rewrite Semiring.commutative ℕSemiring (succ b *N a) b | multiplicationNIsCommutative (succ b) a = transitivity (applyEquality (succ a *N_) (applyEquality succ (transitivity (equalityCommutative (Semiring.+Associative ℕSemiring c (b *N c) b)) (applyEquality (c +N_) (transitivity (transitivity (Semiring.commutative ℕSemiring (b *N c) b) (applyEquality (b +N_) (multiplicationNIsCommutative b c))) (multiplicationNIsCommutative (succ c) b)))))) (Semiring.*Associative ℕSemiring (succ a) (succ b) (succ c))
*ZAssociative (negSucc a) (negSucc b) (nonneg zero) rewrite Semiring.productZeroRight ℕSemiring (b +N a *N succ b) = refl
*ZAssociative (negSucc a) (negSucc b) (nonneg (succ x)) = applyEquality nonneg (transitivity (applyEquality (succ a *N_) ans) (Semiring.*Associative ℕSemiring (succ a) (succ b) (succ x)))
where
ans : succ ((succ x *N b) +N x) ≡ (succ b *N succ x)
ans rewrite Semiring.commutative ℕSemiring (succ x *N b) x | multiplicationNIsCommutative (succ x) b = refl
*ZAssociative (negSucc a) (negSucc b) (negSucc x) = applyEquality negSucc t
where
l1 : (a b c d e f g : ℕ) → (a +N b) +N d ≡ e +N (f +N g) → (a +N b) +N (c +N d) ≡ (c +N e) +N (f +N g)
l1 a b c d e f g pr rewrite Semiring.commutative ℕSemiring c d | Semiring.+Associative ℕSemiring (a +N b) d c | pr | Semiring.commutative ℕSemiring (e +N (f +N g)) c | Semiring.+Associative ℕSemiring c e (f +N g) = refl
v : (((succ b) *N succ x) *N a) ≡ (succ x) *N (a *N succ b)
v = transitivity (applyEquality (_*N a) (multiplicationNIsCommutative (succ b) (succ x))) (transitivity (equalityCommutative (Semiring.*Associative ℕSemiring (succ x) (succ b) a)) (applyEquality (succ x *N_) (multiplicationNIsCommutative (succ b) a)))
u : (a +N (x +N b *N succ x) *N a) +N b *N succ x ≡ (b +N a *N succ b) *N x +N (b +N a *N succ b)
u = transitivity (transitivity (transitivity (Semiring.commutative ℕSemiring (a +N (x +N b *N succ x) *N a) (b *N succ x)) (transitivity (applyEquality (_+N (a +N (x +N b *N succ x) *N a)) (multiplicationNIsCommutative b (succ x))) (transitivity (applyEquality ((b +N x *N b) +N_) v) (equalityCommutative (productDistributes (succ x) b (a *N succ b)))))) (applyEquality ((b +N a *N succ b) +N_) (multiplicationNIsCommutative x (b +N a *N succ b)))) (Semiring.commutative ℕSemiring (b +N a *N succ b) ((b +N a *N succ b) *N x))
t : (a +N (x +N b *N succ x) *N a) +N (x +N b *N succ x) ≡ (x +N (b +N a *N succ b) *N x) +N (b +N a *N succ b)
t = l1 a ((x +N b *N succ x) *N a) x (b *N succ x) ((b +N (a *N succ b)) *N x) b (a *N succ b) u
multLemma : (a b : ℕ) → a *N succ b ≡ a *N b +N a
multLemma a b rewrite multiplicationNIsCommutative a (succ b) | Semiring.commutative ℕSemiring a (b *N a) | multiplicationNIsCommutative a b = refl
negSucc+Nonneg : (a b : ℕ) → negSucc a ≡ negSucc (a +N b) +Z nonneg b
negSucc+Nonneg zero zero = refl
negSucc+Nonneg zero (succ b) = negSucc+Nonneg zero b
negSucc+Nonneg (succ a) zero rewrite Semiring.commutative ℕSemiring a 0 = refl
negSucc+Nonneg (succ a) (succ b) rewrite Semiring.commutative ℕSemiring a (succ b) | Semiring.commutative ℕSemiring b a = negSucc+Nonneg (succ a) b
distLemma : (a b : ℕ) → negSucc a *Z nonneg b ≡ negSucc ((a +N b *N a) +N b) +Z nonneg (succ a)
distLemma a b rewrite Semiring.commutative ℕSemiring (a +N b *N a) b | Semiring.commutative ℕSemiring a (b *N a) | Semiring.+Associative ℕSemiring b (b *N a) a = transitivity u (transitivity (equalityCommutative (+ZAssociative (negSucc ((b +N b *N a) +N a)) (nonneg a) (nonneg 1))) (applyEquality ((negSucc ((b +N b *N a) +N a)) +Z_) {nonneg a +Z nonneg 1} {nonneg (succ a)} (+ZCommutative (nonneg a) (nonneg 1))))
where
v : (a b : ℕ) → negSucc a *Z nonneg b ≡ (negSucc (b +N b *N a)) +Z nonneg 1
v zero zero = refl
v zero (succ b) rewrite Semiring.productZeroRight ℕSemiring b = applyEquality negSucc (equalityCommutative (Semiring.sumZeroRight ℕSemiring b))
v (succ a) zero = refl
v (succ a) (succ b) = applyEquality negSucc (Semiring.commutative ℕSemiring (succ (a +N b *N succ a)) b)
u : negSucc a *Z nonneg b ≡ (negSucc ((b +N b *N a) +N a) +Z nonneg a) +Z nonneg 1
u = transitivity (v a b) (applyEquality (_+Z nonneg 1) (negSucc+Nonneg (b +N b *N a) a))
*ZDistributesOver+Z : (a b c : ℤ) → a *Z (b +Z c) ≡ (a *Z b) +Z (a *Z c)
*ZDistributesOver+Z (nonneg zero) b c rewrite *ZZeroLeft (b +Z c) | *ZZeroLeft b | *ZZeroLeft c = refl
*ZDistributesOver+Z (nonneg (succ a)) (nonneg zero) (nonneg c) rewrite Semiring.productZeroRight ℕSemiring a = refl
*ZDistributesOver+Z (nonneg (succ a)) (nonneg (succ b)) (nonneg c) = applyEquality nonneg (productDistributes (succ a) (succ b) c)
*ZDistributesOver+Z (nonneg (succ a)) (nonneg zero) (negSucc c) rewrite Semiring.productZeroRight ℕSemiring a = refl
*ZDistributesOver+Z (nonneg (succ a)) (nonneg (succ b)) (negSucc zero) rewrite Semiring.productZeroRight ℕSemiring a = t a
where
t : (a : ℕ) → nonneg (succ a *N b) ≡ nonneg (succ a *N succ b) +Z negSucc a
t zero = refl
t (succ a) = transitivity (+Zinherits b (b +N a *N b)) (transitivity (applyEquality (nonneg b +Z_) (t a)) (transitivity (+ZAssociative (nonneg b) (nonneg (succ (b +N a *N succ b))) (negSucc a)) (applyEquality (_+Z negSucc a) {nonneg b +Z nonneg (succ (b +N a *N succ b))} {nonneg (b +N succ (b +N a *N succ b))} (equalityCommutative (+Zinherits b _)))))
*ZDistributesOver+Z (nonneg (succ a)) (nonneg (succ x)) (negSucc (succ b)) = transitivity (applyEquality ((nonneg (succ a)) *Z_) (+ZCommutative (nonneg x) (negSucc b))) (transitivity (transitivity (*ZDistributesOver+Z (nonneg (succ a)) (negSucc b) (nonneg x)) t) (+ZCommutative (negSucc ((b +N a *N succ b) +N a)) (nonneg (x +N a *N succ x))))
where
t : negSucc ((b +N a *N b) +N a) +Z nonneg (x +N a *N x) ≡ negSucc ((b +N a *N succ b) +N a) +Z nonneg (x +N a *N succ x)
t rewrite multLemma a x | multLemma a b | Semiring.+Associative ℕSemiring x (a *N x) a | Semiring.+Associative ℕSemiring b (a *N b) a | Semiring.commutative ℕSemiring (x +N a *N x) a | +Zinherits a (x +N a *N x) | +ZAssociative (negSucc (((b +N a *N b) +N a) +N a)) (nonneg a) (nonneg (x +N a *N x)) = applyEquality (_+Z nonneg (x +N a *N x)) {negSucc ((b +N a *N b) +N a)} {negSucc (((b +N a *N b) +N a) +N a) +Z nonneg a} (negSucc+Nonneg ((b +N a *N b) +N a) a)
*ZDistributesOver+Z (nonneg (succ a)) (negSucc b) (nonneg zero) rewrite Semiring.productZeroRight ℕSemiring a = refl
*ZDistributesOver+Z (nonneg (succ a)) (negSucc zero) (nonneg (succ x)) rewrite Semiring.productZeroRight ℕSemiring a = t a x
where
t : (a x : ℕ) → nonneg (succ a *N x) ≡ negSucc a +Z nonneg (succ a *N succ x)
t zero x = refl
t (succ a) x with t a x
... | bl rewrite +Zinherits x (a *N x) | +Zinherits x (x +N a *N x) = transitivity (transitivity (applyEquality (nonneg x +Z_) (+Zinherits x (a *N x))) (+ZCommutative (nonneg x) (nonneg x +Z nonneg (a *N x)))) (transitivity (applyEquality (_+Z nonneg x) bl) (transitivity (equalityCommutative (+ZAssociative (negSucc a) (nonneg (succ x +N a *N succ x)) (nonneg x))) (applyEquality (λ i → negSucc a +Z nonneg i) {succ (x +N a *N succ x) +N x} {x +N succ (x +N a *N succ x)} (Semiring.commutative ℕSemiring (succ (x +N a *N succ x)) x))))
*ZDistributesOver+Z (nonneg (succ a)) (negSucc (succ b)) (nonneg (succ x)) = transitivity (*ZDistributesOver+Z (nonneg (succ a)) (negSucc b) (nonneg x)) t
where
t : negSucc ((b +N a *N b) +N a) +Z nonneg (x +N a *N x) ≡ negSucc ((b +N a *N succ b) +N a) +Z nonneg (x +N a *N succ x)
t rewrite multLemma a x | multLemma a b | Semiring.+Associative ℕSemiring x (a *N x) a | Semiring.+Associative ℕSemiring b (a *N b) a | Semiring.commutative ℕSemiring (x +N a *N x) a | +Zinherits a (x +N a *N x) | +ZAssociative (negSucc (((b +N a *N b) +N a) +N a)) (nonneg a) (nonneg (x +N a *N x)) = applyEquality (_+Z nonneg (x +N a *N x)) {negSucc ((b +N a *N b) +N a)} {negSucc (((b +N a *N b) +N a) +N a) +Z nonneg a} (negSucc+Nonneg ((b +N a *N b) +N a) a)
*ZDistributesOver+Z (nonneg (succ a)) (negSucc b) (negSucc x) = applyEquality negSucc (transitivity (applyEquality (_+N a) (transitivity (productDistributes (succ a) (succ b) x) (applyEquality (_+N (x +N a *N x)) {succ b +N a *N succ b} {succ (b +N a *N b) +N a} (applyEquality succ u)))) (equalityCommutative (Semiring.+Associative ℕSemiring (succ ((b +N a *N b) +N a)) (succ a *N x) a)))
where
u : b +N a *N succ b ≡ (succ a *N b) +N a
u rewrite multiplicationNIsCommutative a (succ b) | Semiring.commutative ℕSemiring a (b *N a) | multiplicationNIsCommutative b a = Semiring.+Associative ℕSemiring b (a *N b) a
*ZDistributesOver+Z (negSucc a) (nonneg zero) (nonneg x) = refl
*ZDistributesOver+Z (negSucc a) (nonneg zero) (negSucc x) = refl
*ZDistributesOver+Z (negSucc a) (nonneg (succ b)) (nonneg zero) rewrite Semiring.commutative ℕSemiring b 0 = refl
*ZDistributesOver+Z (negSucc a) (nonneg (succ b)) (nonneg (succ c)) = applyEquality negSucc t
where
v : a *N b +N a *N succ c ≡ c *N a +N (a +N b *N a)
v rewrite multiplicationNIsCommutative b a | Semiring.+Associative ℕSemiring (c *N a) a (a *N b) | Semiring.commutative ℕSemiring (c *N a +N a) (a *N b) | Semiring.commutative ℕSemiring (c *N a) a = applyEquality (λ i → a *N b +N i) (transitivity (multLemma a c) (transitivity (Semiring.commutative ℕSemiring (a *N c) a) (applyEquality (a +N_) (multiplicationNIsCommutative a c))))
u : (a +N (b +N succ c) *N a) +N b ≡ (a +N c *N a) +N ((a +N b *N a) +N b)
u rewrite Semiring.+Associative ℕSemiring (a +N c *N a) (a +N b *N a) b | (equalityCommutative (Semiring.+Associative ℕSemiring a (c *N a) (a +N b *N a))) = applyEquality (λ i → (a +N i) +N b) (transitivity (multiplicationNIsCommutative (b +N succ c) a) (transitivity (productDistributes a b (succ c)) v))
t : (a +N (b +N succ c) *N a) +N (b +N succ c) ≡ succ (((a +N b *N a) +N b) +N ((a +N c *N a) +N c))
t rewrite Semiring.+Associative ℕSemiring ((a +N (b +N succ c) *N a)) b (succ c) | Semiring.commutative ℕSemiring ((a +N b *N a) +N b) ((a +N c *N a) +N c) | Semiring.commutative ℕSemiring (a +N c *N a) c | equalityCommutative (Semiring.+Associative ℕSemiring (succ c) (a +N c *N a) ((a +N b *N a) +N b)) | Semiring.commutative ℕSemiring (succ c) ((a +N c *N a) +N ((a +N b *N a) +N b)) = applyEquality (_+N succ c) u
*ZDistributesOver+Z (negSucc a) (nonneg (succ b)) (negSucc zero) rewrite Semiring.productOneRight ℕSemiring a = distLemma a b
*ZDistributesOver+Z (negSucc a) (nonneg (succ b)) (negSucc (succ c)) = transitivity (*ZDistributesOver+Z (negSucc a) (nonneg b) (negSucc c)) (transitivity (applyEquality (_+Z nonneg (succ (c +N a *N succ c))) (distLemma a b)) (transitivity (equalityCommutative (+ZAssociative (negSucc ((a +N b *N a) +N b)) (nonneg (succ a)) (nonneg (succ (c +N a *N succ c))))) (applyEquality (negSucc ((a +N b *N a) +N b) +Z_) {nonneg (succ (a +N succ (c +N a *N succ c)))} {nonneg (succ (succ (c +N a *N succ (succ c))))} (applyEquality nonneg (t (succ a) (succ c))))))
where
t : (x y : ℕ) → x +N x *N y ≡ x *N succ y
t x y = transitivity (Semiring.commutative ℕSemiring x (x *N y)) (equalityCommutative (multLemma x y))
*ZDistributesOver+Z (negSucc a) (negSucc b) (nonneg zero) rewrite Semiring.commutative ℕSemiring (b +N a *N succ b) 0 = refl
*ZDistributesOver+Z (negSucc a) (negSucc zero) (nonneg (succ b)) = transitivity (distLemma a b) (transitivity (+ZCommutative (negSucc ((a +N b *N a) +N b)) (nonneg (succ a))) (applyEquality (λ i → nonneg (succ i) +Z negSucc ((a +N b *N a) +N b)) (equalityCommutative (Semiring.productOneRight ℕSemiring a))))
*ZDistributesOver+Z (negSucc a) (negSucc (succ c)) (nonneg (succ b)) = transitivity (applyEquality (negSucc a *Z_) (+ZCommutative (negSucc c) (nonneg b))) (transitivity (transitivity (*ZDistributesOver+Z (negSucc a) (nonneg b) (negSucc c)) (transitivity (applyEquality (_+Z nonneg (succ (c +N a *N succ c))) (distLemma a b)) (transitivity (equalityCommutative (+ZAssociative (negSucc ((a +N b *N a) +N b)) (nonneg (succ a)) (nonneg (succ (c +N a *N succ c))))) (applyEquality (negSucc ((a +N b *N a) +N b) +Z_) {nonneg (succ (a +N succ (c +N a *N succ c)))} {nonneg (succ (succ (c +N a *N succ (succ c))))} (applyEquality nonneg (t (succ a) (succ c))))))) (+ZCommutative (negSucc ((a +N b *N a) +N b)) (nonneg (succ (succ (c +N a *N succ (succ c)))))))
where
t : (x y : ℕ) → x +N x *N y ≡ x *N succ y
t x y = transitivity (Semiring.commutative ℕSemiring x (x *N y)) (equalityCommutative (multLemma x y))
*ZDistributesOver+Z (negSucc a) (negSucc b) (negSucc c) = applyEquality nonneg (transitivity (applyEquality (λ i → succ a *N (succ i)) (transitivity (applyEquality succ (Semiring.commutative ℕSemiring b c)) (Semiring.commutative ℕSemiring (succ c) b))) (productDistributes (succ a) (succ b) (succ c)))
ℤRing : Ring (reflSetoid ℤ) _+Z_ _*Z_
Ring.additiveGroup ℤRing = ℤGroup
Ring.*WellDefined ℤRing refl refl = refl
Ring.1R ℤRing = nonneg 1
Ring.groupIsAbelian ℤRing {a} {b} = +ZCommutative a b
Ring.*Associative ℤRing {a} {b} {c} = *ZAssociative a b c
Ring.*Commutative ℤRing {a} {b} = *ZCommutative a b
Ring.*DistributesOver+ ℤRing {a} {b} {c} = *ZDistributesOver+Z a b c
Ring.identIsIdent ℤRing {a} = *ZleftIdent a
|
{
"alphanum_fraction": 0.6556659291,
"avg_line_length": 119.3314606742,
"ext": "agda",
"hexsha": "088f16e078103495db4693838182d16f71fd39a1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Numbers/Integers/RingStructure/Ring.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Numbers/Integers/RingStructure/Ring.agda",
"max_line_length": 752,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Numbers/Integers/RingStructure/Ring.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 8259,
"size": 21241
}
|
module Oscar.Data.Term.Injectivity {𝔣} (FunctionName : Set 𝔣) where
open import Oscar.Data.Term FunctionName
open import Data.Fin
open import Data.Nat
open import Data.Vec
open import Relation.Binary.PropositionalEquality
Term-i-inj : ∀ {m} {𝑥₁ 𝑥₂ : Fin m} → i 𝑥₁ ≡ i 𝑥₂ → 𝑥₁ ≡ 𝑥₂
Term-i-inj refl = refl
Term-functionName-inj : ∀ {fn₁ fn₂} {n N₁ N₂} {ts₁ : Vec (Term n) N₁} {ts₂ : Vec (Term n) N₂} → Term.function fn₁ ts₁ ≡ Term.function fn₂ ts₂ → fn₁ ≡ fn₂
Term-functionName-inj refl = refl
Term-functionArity-inj : ∀ {fn₁ fn₂} {n N₁ N₂} {ts₁ : Vec (Term n) N₁} {ts₂ : Vec (Term n) N₂} → Term.function fn₁ ts₁ ≡ Term.function fn₂ ts₂ → N₁ ≡ N₂
Term-functionArity-inj refl = refl
Term-functionTerms-inj : ∀ {fn₁ fn₂} {n N} {ts₁ : Vec (Term n) N} {ts₂ : Vec (Term n) N} → Term.function fn₁ ts₁ ≡ Term.function fn₂ ts₂ → ts₁ ≡ ts₂
Term-functionTerms-inj refl = refl
Term-forkLeft-inj : ∀ {n} {l₁ r₁ l₂ r₂ : Term n} → l₁ fork r₁ ≡ l₂ fork r₂ → l₁ ≡ l₂
Term-forkLeft-inj refl = refl
Term-forkRight-inj : ∀ {n} {l₁ r₁ l₂ r₂ : Term n} → l₁ fork r₁ ≡ l₂ fork r₂ → r₁ ≡ r₂
Term-forkRight-inj refl = refl
|
{
"alphanum_fraction": 0.6733031674,
"avg_line_length": 39.4642857143,
"ext": "agda",
"hexsha": "b4091b9dc51de4b83cfd32b9b9ab87f09b667836",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/Data/Term/Injectivity.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/Data/Term/Injectivity.agda",
"max_line_length": 153,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/Data/Term/Injectivity.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 448,
"size": 1105
}
|
{-# OPTIONS --without-K --exact-split --rewriting --overlapping-instances #-}
open import lib.Basics
open import lib.NConnected
open import lib.NType2
open import lib.types.Truncation
open import lib.types.Sigma
open import lib.Equivalence
open import lib.types.Fin
open import lib.types.Coproduct
open import Graphs.Definition
open import Graphs.Properties
open import Coequalizers.Definition
open import Coequalizers.Misc
open import Groups.Definition
open import Coequalizers.PullbackStability
open import Coequalizers.PreserveEquivalence
open import Coequalizers.EdgeCoproduct
open import Graphs.SpanningTreeFinite
open import Graphs.SubTrees
open import Util.Misc
open import Util.DecEq
module NielsenSchreier {i : ULevel} where
{- We build towards the proof of the finite index Nielsen-Schreier theorem in several steps. -}
{- We will first show that subgroups of free higher groups are free higher groupoids. That is, we will show that
for any family of types X over ⊤ / A, the total space Σ (⊤ / A) X is equivalent to the coequalizer of
a graph. Moveover, we can give an explicit description of the graph. -}
module SubgroupsOfFreeHigherGroups (A : Type i) (X : (⊤ / A) → Type i) where
instance
{- Whenever we need a pair of maps (A × X fhg-base) ⇉ (X fhg-base) we will use the definition below. This
applies in this module and wherever it is imported. -}
higher-subgp-gph : Graph (A × X fhg-base) (X fhg-base)
higher-subgp-gph = record { π₀ = snd ; π₁ = λ {(a , x) → transport X (quot a) x} }
to-free-higher-gpd : Σ (⊤ / A) X ≃ (X fhg-base) / (A × X fhg-base)
to-free-higher-gpd =
Σ (⊤ / A) X
≃⟨ pb-equiv ⁻¹ ⟩ -- coequalizers are stable under pullback
(Σ ⊤ (X ∘ c[_])) / (Σ A (X ∘ c[_] ∘ π₀))
≃⟨ Coeq-emap Σ₁-Unit (ide _) (λ _ → idp) (λ _ → idp) ⟩
(X fhg-base) / (A × X fhg-base)
≃∎
where
open PullbackStability A ⊤ X -- contains definition of (Σ ⊤ (X ∘ c[_])) / (Σ A (X ∘ c[_] ∘ π₀))
{- We now show that subgroups of free groups are free groupoids. This is a 1-truncated version of
the result above. -}
module SubGroupsOfFreeGroups (A : Type i) (X : ∥ ⊤ / A ∥₁ → Type i)
⦃ Xset : {z : ∥ ⊤ / A ∥₁} → is-set (X z) ⦄ where -- we now need to assume X is 0-truncated.
open SubgroupsOfFreeHigherGroups A (X ∘ [_]) public -- also defines instance for (X fhg-base) / (A × X fhg-base)
to-free-gpd : Σ ∥ ⊤ / A ∥₁ X ≃ ∥ X base / (A × X base) ∥₁
to-free-gpd =
Σ ∥ ⊤ / A ∥₁ X
≃⟨ Σ-emap-r (Trunc-elim λ z → ide _) ⟩
Σ ∥ ⊤ / A ∥₁ X'
≃⟨ TruncRecType.flattening-Trunc _ ⟩
∥ Σ (⊤ / A) (X ∘ [_]) ∥₁
≃⟨ Trunc-emap to-free-higher-gpd ⟩
∥ X base / (A × X base) ∥₁
≃∎
where
X'-set : ∥ ⊤ / A ∥₁ → hSet i
X'-set = Trunc-rec (λ z → ((X [ z ]) , Xset))
X' = fst ∘ X'-set
instance
X-≃-gpd : {z : ∥ ⊤ / A ∥₁} → is-gpd (X z ≃ X' z)
X-≃-gpd {z} = raise-level 0 (≃-level Xset (snd (X'-set z)))
{- A free groupoid with vertex set a definitionally finite set is merely equivalent
to a free group. -}
strict-fin-free-gpd-is-free-gp :
(n : ℕ) → (E : Type i) → (Edec : has-dec-eq E) →
⦃ gph : Graph E (Fin (S n)) ⦄ ⦃ conn : gph-is-connected gph ⦄ →
∥ Σ (Type i) (λ B → ∥ Coeq gph ∥₁ ≃ FreeGroup B) ∥
strict-fin-free-gpd-is-free-gp n E Edec =
Trunc-fmap from-spanning-tree-fin (spanning-tree E Edec n)
where
from-spanning-tree-fin : SpanningTree E (Fin (S n)) (Fin n) (Fin (S n)) →
Σ (Type i) (λ B → ∥ Fin (S n) / E ∥₁ ≃ FreeGroup B)
from-spanning-tree-fin st =
¬E' , Trunc-emap eq
where
open SpanningTree st
open ExtendSpanningTree E (Fin (S n)) (Fin n) (Fin (S n)) st
open CoeqCoprodEquiv (Fin (S n)) (Fin n) ¬E'
eq : Fin (S n) / E ≃ ⊤ / ¬E'
eq =
Fin (S n) / E
≃⟨ spantree-equiv ⟩
Fin (S n) / ((Fin n) ⊔ ¬E')
≃⟨ edge-coproduct-expand ⟩
(Fin (S n) / (Fin n)) / ¬E'
≃⟨ Coeq-emap (contr-equiv-Unit ⟨⟩) (ide _) (λ _ → idp) (λ _ → idp) ⟩
⊤ / ¬E'
≃∎
{- We generalise the above so that the vertex set only needs to be equivalent to a
definitionally finite set. -}
fin-free-gpd-is-free-gp : (n : ℕ) → (E : Type i) → (Edec : has-dec-eq E) →
(V : Type i) → (Vfin : V ≃ Fin (S n)) →
⦃ gph : Graph E V ⦄ ⦃ conn : gph-is-connected gph ⦄ →
∥ Σ (Type i) (λ B → ∥ Coeq gph ∥₁ ≃ FreeGroup B) ∥
fin-free-gpd-is-free-gp n E Edec V Vfin =
Trunc-fmap (λ {(B , e) → B , (e ∘e Trunc-emap coeq-equiv)}) (strict-fin-free-gpd-is-free-gp n E Edec)
where
instance
gph' : Graph E (Fin (S n))
gph' = record { π₀ = (–> Vfin) ∘ π₀ ; π₁ = (–> Vfin) ∘ π₁ }
coeq-equiv : (V / E) ≃ (Fin (S n) / E)
coeq-equiv = Coeq-emap Vfin (ide E) (λ _ → idp) λ _ → idp
instance
conn' : gph-is-connected gph'
conn' = equiv-preserves-level (Trunc-emap coeq-equiv )
{- We can now prove the finite index version of the Nielsen-Schreier theorem. -}
nielsen-schreier-finite-index :
(A : Type i) (Adec : has-dec-eq A) -- we are given a type A with decidable equality
(X : (FreeGroup A) → Type i) -- together with a covering space over the free group on A, that is a family of types X ...
⦃ conn : is-connected 0 (Σ (FreeGroup A) X) ⦄ -- such that the total space is connected
(n : ℕ) (Xfin : X (base) ≃ Fin (S n)) → -- here we do the finite index case
∥ Σ (Type i) (λ B → Σ (FreeGroup A) X ≃ FreeGroup B) ∥ -- then the total space is a free group
nielsen-schreier-finite-index A Adec X n Xfin =
Trunc-fmap (λ {(B , e) → B , e ∘e to-free-gpd}) -- we compose the two equivalences from earlier
(fin-free-gpd-is-free-gp n (A × X base) (×-has-dec-eq Adec (equiv-preserves-dec-eq Xfin Fin-has-dec-eq)) (X base) Xfin)
-- earlier we showed that free groupoids with finite vertex set are merely equivalent to free groups
where
open SubGroupsOfFreeGroups A X -- contains our proof that the subgroup is a free groupoid
instance -- we use that X is a set and the free groupoid is connected
Xset : {z : (FreeGroup A)} → is-set (X z)
Xset {z} = Trunc-elim {P = λ z → is-set (X z)}
(Coeq-elim (λ z → is-set (X [ z ]))
(λ {unit → equiv-preserves-level (Xfin ⁻¹) ⦃ Fin-is-set ⦄}) λ _ → prop-has-all-paths-↓) z
conn2 : is-connected 0 (X base / (A × X base))
conn2 = equiv-preserves-level e
where
e : ∥ Σ (FreeGroup A) X ∥₀ ≃ ∥ X base / (A × X base) ∥₀
e =
∥ Σ (FreeGroup A) X ∥₀
≃⟨ Trunc-emap (to-free-gpd ) ⟩
∥ ∥ X base / (A × X base) ∥₁ ∥₀
≃⟨ Trunc-fuse _ 0 1 ⟩
∥ X base / (A × X base) ∥₀
≃∎
|
{
"alphanum_fraction": 0.5836046168,
"avg_line_length": 41.2073170732,
"ext": "agda",
"hexsha": "0d8fa65c284151ee79b0304ce020a846e37fa492",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "awswan/nielsenschreier-hott",
"max_forks_repo_path": "main/NielsenSchreier.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "awswan/nielsenschreier-hott",
"max_issues_repo_path": "main/NielsenSchreier.agda",
"max_line_length": 132,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "awswan/nielsenschreier-hott",
"max_stars_repo_path": "main/NielsenSchreier.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2451,
"size": 6758
}
|
{-# OPTIONS --without-K #-}
module TypeEquivalences where
open import Data.Empty
open import Data.Unit
open import Data.Unit.Core
open import Data.Nat renaming (_⊔_ to _⊔ℕ_)
open import Data.Sum renaming (map to _⊎→_)
open import Data.Product renaming (map to _×→_)
open import Function renaming (_∘_ to _○_)
-- explicit using to show how little of HoTT is needed
open import SimpleHoTT using (refl; ap; ap2)
open import Equivalences
------------------------------------------------------------------------------
-- Type Equivalences
-- for each type combinator, define two functions that are inverses, and
-- establish an equivalence. These are all in the 'semantic space' with
-- respect to Pi combinators.
-- swap₊
swap₊ : {A B : Set} → A ⊎ B → B ⊎ A
swap₊ (inj₁ a) = inj₂ a
swap₊ (inj₂ b) = inj₁ b
swapswap₊ : {A B : Set} → swap₊ ○ swap₊ {A} {B} ∼ id
swapswap₊ (inj₁ a) = refl (inj₁ a)
swapswap₊ (inj₂ b) = refl (inj₂ b)
swap₊equiv : {A B : Set} → (A ⊎ B) ≃ (B ⊎ A)
swap₊equiv = (swap₊ , equiv₁ (mkqinv swap₊ swapswap₊ swapswap₊))
-- unite₊ and uniti₊
unite₊ : {A : Set} → ⊥ ⊎ A → A
unite₊ (inj₁ ())
unite₊ (inj₂ y) = y
uniti₊ : {A : Set} → A → ⊥ ⊎ A
uniti₊ a = inj₂ a
uniti₊∘unite₊ : {A : Set} → uniti₊ ○ unite₊ ∼ id {A = ⊥ ⊎ A}
uniti₊∘unite₊ (inj₁ ())
uniti₊∘unite₊ (inj₂ y) = refl (inj₂ y)
-- this is so easy, Agda can figure it out by itself (see below)
unite₊∙uniti₊ : {A : Set} → unite₊ ○ uniti₊ ∼ id {A = A}
unite₊∙uniti₊ = refl
unite₊equiv : {A : Set} → (⊥ ⊎ A) ≃ A
unite₊equiv = (unite₊ , mkisequiv uniti₊ refl uniti₊ uniti₊∘unite₊)
uniti₊equiv : {A : Set} → A ≃ (⊥ ⊎ A)
uniti₊equiv = uniti₊ , mkisequiv unite₊ uniti₊∘unite₊ unite₊ unite₊∙uniti₊
-- unite⋆ and uniti⋆
unite⋆ : {A : Set} → ⊤ × A → A
unite⋆ (tt , x) = x
uniti⋆ : {A : Set} → A → ⊤ × A
uniti⋆ x = tt , x
uniti⋆∘unite⋆ : {A : Set} → uniti⋆ ○ unite⋆ ∼ id {A = ⊤ × A}
uniti⋆∘unite⋆ (tt , x) = refl (tt , x)
unite⋆equiv : {A : Set} → (⊤ × A) ≃ A
unite⋆equiv = unite⋆ , mkisequiv uniti⋆ refl uniti⋆ uniti⋆∘unite⋆
uniti⋆equiv : {A : Set} → A ≃ (⊤ × A)
uniti⋆equiv = uniti⋆ , mkisequiv unite⋆ uniti⋆∘unite⋆ unite⋆ refl
-- swap⋆
swap⋆ : {A B : Set} → A × B → B × A
swap⋆ (a , b) = (b , a)
swapswap⋆ : {A B : Set} → swap⋆ ○ swap⋆ ∼ id {A = A × B}
swapswap⋆ (a , b) = refl (a , b)
swap⋆equiv : {A B : Set} → (A × B) ≃ (B × A)
swap⋆equiv = swap⋆ , mkisequiv swap⋆ swapswap⋆ swap⋆ swapswap⋆
-- assocl₊ and assocr₊
assocl₊ : {A B C : Set} → (A ⊎ (B ⊎ C)) → ((A ⊎ B) ⊎ C)
assocl₊ (inj₁ a) = inj₁ (inj₁ a)
assocl₊ (inj₂ (inj₁ b)) = inj₁ (inj₂ b)
assocl₊ (inj₂ (inj₂ c)) = inj₂ c
assocr₊ : {A B C : Set} → ((A ⊎ B) ⊎ C) → (A ⊎ (B ⊎ C))
assocr₊ (inj₁ (inj₁ a)) = inj₁ a
assocr₊ (inj₁ (inj₂ b)) = inj₂ (inj₁ b)
assocr₊ (inj₂ c) = inj₂ (inj₂ c)
assocl₊∘assocr₊ : {A B C : Set} → assocl₊ ○ assocr₊ ∼ id {A = ((A ⊎ B) ⊎ C)}
assocl₊∘assocr₊ (inj₁ (inj₁ a)) = refl (inj₁ (inj₁ a))
assocl₊∘assocr₊ (inj₁ (inj₂ b)) = refl (inj₁ (inj₂ b))
assocl₊∘assocr₊ (inj₂ c) = refl (inj₂ c)
assocr₊∘assocl₊ : {A B C : Set} → assocr₊ ○ assocl₊ ∼ id {A = (A ⊎ (B ⊎ C))}
assocr₊∘assocl₊ (inj₁ a) = refl (inj₁ a)
assocr₊∘assocl₊ (inj₂ (inj₁ b)) = refl (inj₂ (inj₁ b))
assocr₊∘assocl₊ (inj₂ (inj₂ c)) = refl (inj₂ (inj₂ c))
assocl₊equiv : {A B C : Set} → (A ⊎ (B ⊎ C)) ≃ ((A ⊎ B) ⊎ C)
assocl₊equiv =
assocl₊ , mkisequiv assocr₊ assocl₊∘assocr₊ assocr₊ assocr₊∘assocl₊
assocr₊equiv : {A B C : Set} → ((A ⊎ B) ⊎ C) ≃ (A ⊎ (B ⊎ C))
assocr₊equiv =
assocr₊ , mkisequiv assocl₊ assocr₊∘assocl₊ assocl₊ assocl₊∘assocr₊
-- assocl⋆ and assocr⋆
assocl⋆ : {A B C : Set} → (A × (B × C)) → ((A × B) × C)
assocl⋆ (a , (b , c)) = ((a , b) , c)
assocr⋆ : {A B C : Set} → ((A × B) × C) → (A × (B × C))
assocr⋆ ((a , b) , c) = (a , (b , c))
assocl⋆∘assocr⋆ : {A B C : Set} → assocl⋆ ○ assocr⋆ ∼ id {A = ((A × B) × C)}
assocl⋆∘assocr⋆ x = refl x
assocr⋆∘assocl⋆ : {A B C : Set} → assocr⋆ ○ assocl⋆ ∼ id {A = (A × (B × C))}
assocr⋆∘assocl⋆ x = refl x
assocl⋆equiv : {A B C : Set} → (A × (B × C)) ≃ ((A × B) × C)
assocl⋆equiv =
assocl⋆ , mkisequiv assocr⋆ assocl⋆∘assocr⋆ assocr⋆ assocr⋆∘assocl⋆
assocr⋆equiv : {A B C : Set} → ((A × B) × C) ≃ (A × (B × C))
assocr⋆equiv =
assocr⋆ , mkisequiv assocl⋆ assocr⋆∘assocl⋆ assocl⋆ assocl⋆∘assocr⋆
-- distz and factorz
distz : { A : Set} → (⊥ × A) → ⊥
distz (() , _)
factorz : {A : Set} → ⊥ → (⊥ × A)
factorz ()
distz∘factorz : {A : Set} → distz ○ factorz {A} ∼ id
distz∘factorz ()
factorz∘distz : {A : Set} → factorz {A} ○ distz ∼ id
factorz∘distz (() , proj₂)
distzequiv : {A : Set} → (⊥ × A) ≃ ⊥
distzequiv {A} =
distz , mkisequiv factorz (distz∘factorz {A}) factorz factorz∘distz
factorzequiv : {A : Set} → ⊥ ≃ (⊥ × A)
factorzequiv {A} =
factorz , mkisequiv distz factorz∘distz distz (distz∘factorz {A})
-- dist and factor
dist : {A B C : Set} → ((A ⊎ B) × C) → (A × C) ⊎ (B × C)
dist (inj₁ x , c) = inj₁ (x , c)
dist (inj₂ y , c) = inj₂ (y , c)
factor : {A B C : Set} → (A × C) ⊎ (B × C) → ((A ⊎ B) × C)
factor (inj₁ (a , c)) = inj₁ a , c
factor (inj₂ (b , c)) = inj₂ b , c
dist∘factor : {A B C : Set} → dist {A} {B} {C} ○ factor ∼ id
dist∘factor (inj₁ x) = refl (inj₁ x)
dist∘factor (inj₂ y) = refl (inj₂ y)
factor∘dist : {A B C : Set} → factor {A} {B} {C} ○ dist ∼ id
factor∘dist (inj₁ x , c) = refl (inj₁ x , c)
factor∘dist (inj₂ y , c) = refl (inj₂ y , c)
distequiv : {A B C : Set} → ((A ⊎ B) × C) ≃ ((A × C) ⊎ (B × C))
distequiv = dist , mkisequiv factor dist∘factor factor factor∘dist
factorequiv : {A B C : Set} → ((A × C) ⊎ (B × C)) ≃ ((A ⊎ B) × C)
factorequiv = factor , (mkisequiv dist factor∘dist dist dist∘factor)
-- ⊕
_⊎∼_ : {A B C D : Set} {f : A → C} {finv : C → A} {g : B → D} {ginv : D → B} →
(α : f ○ finv ∼ id) → (β : g ○ ginv ∼ id) →
(f ⊎→ g) ○ (finv ⊎→ ginv) ∼ id {A = C ⊎ D}
_⊎∼_ α β (inj₁ x) = ap inj₁ (α x)
_⊎∼_ α β (inj₂ y) = ap inj₂ (β y)
path⊎ : {A B C D : Set} → A ≃ C → B ≃ D → (A ⊎ B) ≃ (C ⊎ D)
path⊎ (fp , eqp) (fq , eqq) =
Data.Sum.map fp fq ,
mkisequiv (P.g ⊎→ Q.g) (P.α ⊎∼ Q.α) (P.h ⊎→ Q.h) (P.β ⊎∼ Q.β)
where module P = isequiv eqp
module Q = isequiv eqq
-- ⊗
_×∼_ : {A B C D : Set} {f : A → C} {finv : C → A} {g : B → D} {ginv : D → B} →
(α : f ○ finv ∼ id) → (β : g ○ ginv ∼ id) →
(f ×→ g) ○ (finv ×→ ginv) ∼ id {A = C × D}
_×∼_ α β (x , y) = ap2 _,_ (α x) (β y)
path× : {A B C D : Set} → A ≃ C → B ≃ D → (A × B) ≃ (C × D)
path× {A} {B} {C} {D} (fp , eqp) (fq , eqq) =
Data.Product.map fp fq ,
mkisequiv
(P.g ×→ Q.g)
(_×∼_ {A} {B} {C} {D} {fp} {P.g} {fq} {Q.g} P.α Q.α)
(P.h ×→ Q.h)
(_×∼_ {C} {D} {A} {B} {P.h} {fp} {Q.h} {fq} P.β Q.β)
where module P = isequiv eqp
module Q = isequiv eqq
idequiv : {A : Set} → A ≃ A
idequiv = id≃
|
{
"alphanum_fraction": 0.5256621278,
"avg_line_length": 30.3772727273,
"ext": "agda",
"hexsha": "ad9aa1f41c9676b1dc21aeb2f86b8d32b31a3319",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/OldUnivalence/TypeEquivalences.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/OldUnivalence/TypeEquivalences.agda",
"max_line_length": 78,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/OldUnivalence/TypeEquivalences.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 3409,
"size": 6683
}
|
{-# OPTIONS --cubical #-}
module HyperPositive where
open import Prelude
infixr 4 _↬_
{-# NO_POSITIVITY_CHECK #-}
record _↬_ (A : Type a) (B : Type b) : Type (a ℓ⊔ b) where
inductive; constructor hyp
field invoke : ((A ↬ B) → A) → B
open _↬_
open import Data.List using (List; _∷_; []; foldr)
module _ {a b} {A : Type a} {B : Type b} where
XT = List (A × B) ↬ (A → List (A × B)) → List (A × B)
YT = List (A × B) ↬ (A → List (A × B))
yfld : List B → YT
yfld = foldr f n
where
f : B → YT → YT
f y yk .invoke xk x = (x , y) ∷ xk yk
n : YT
n .invoke _ _ = []
xfld : List A → XT
xfld = foldr f n
where
f : A → XT → XT
f x xk yk = yk .invoke xk x
n : XT
n _ = []
zip : List A → List B → List (A × B)
zip xs ys = xfld xs (yfld ys)
open import Data.List using (_⋯_)
open import Data.List.Syntax
_ : zip (1 ⋯ 5) (11 ⋯ 15) ≡ [ 5 ][ (1 , 11) , (2 , 12) , (3 , 13) , (4 , 14) , (5 , 15) ]
_ = refl
|
{
"alphanum_fraction": 0.5135699374,
"avg_line_length": 20.8260869565,
"ext": "agda",
"hexsha": "c49827ae1cfeead682b26b26b48cb604c051b738",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "HyperPositive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "HyperPositive.agda",
"max_line_length": 89,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "HyperPositive.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 403,
"size": 958
}
|
open import Relation.Binary.Indexed
module Relation.Binary.Indexed.EqReasoning {𝒾} {I : Set 𝒾} {𝒸 ℓ} (S : Setoid I 𝒸 ℓ) where
open Setoid S
import Relation.Binary.Indexed.PreorderReasoning as PreR
open import Relation.Binary.Indexed.Extra using (Setoid⇒Preorder)
open PreR (Setoid⇒Preorder S) public
renaming ( _∼⟨_⟩_ to _≈⟨_⟩_
; _≈⟨_⟩_ to _≡⟨_⟩_
; _≈⟨⟩_ to _≡⟨⟩_
)
|
{
"alphanum_fraction": 0.6267605634,
"avg_line_length": 32.7692307692,
"ext": "agda",
"hexsha": "648ac0e4e868950234b610991ee730a9c332bc6f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9f6d933b227aecab338ecaef1d86566a54fdac68",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/categories",
"max_forks_repo_path": "src/Relation/Binary/Indexed/EqReasoning.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9f6d933b227aecab338ecaef1d86566a54fdac68",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/categories",
"max_issues_repo_path": "src/Relation/Binary/Indexed/EqReasoning.agda",
"max_line_length": 89,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9f6d933b227aecab338ecaef1d86566a54fdac68",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/categories",
"max_stars_repo_path": "src/Relation/Binary/Indexed/EqReasoning.agda",
"max_stars_repo_stars_event_max_datetime": "2018-01-04T23:19:30.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-01-04T23:19:30.000Z",
"num_tokens": 162,
"size": 426
}
|
module Cats.Category.Discrete {li} (I : Set li) where
open import Data.Unit using (⊤)
open import Level
open import Cats.Category.Base
open import Cats.Functor using (Functor)
Obj : Set li
Obj = I
data _⇒_ : Obj → Obj → Set where
id : ∀ {A} → A ⇒ A
_∘_ : ∀ {A B C} → B ⇒ C → A ⇒ B → A ⇒ C
id ∘ id = id
Discrete : Category li zero zero
Discrete = record
{ Obj = Obj
; _⇒_ = _⇒_
; _≈_ = λ _ _ → ⊤
; id = id
; _∘_ = _∘_
; equiv = _
; ∘-resp = _
; id-r = _
; id-l = _
; assoc = _
}
functor : ∀ {lo la l≈} {C : Category lo la l≈}
→ (I → Category.Obj C)
→ Functor Discrete C
functor {C = C} f = record
{ fobj = f
; fmap = λ { id → C.id }
; fmap-resp = λ { {_} {_} {id} {id} _ → C.≈.refl }
; fmap-id = C.≈.refl
; fmap-∘ = λ { {f = id} {id} → C.id-l }
}
where
module C = Category C
|
{
"alphanum_fraction": 0.4976905312,
"avg_line_length": 17.6734693878,
"ext": "agda",
"hexsha": "b3b0061aac42c5e6feac8e192eaf82d865213acd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alessio-b-zak/cats",
"max_forks_repo_path": "Cats/Category/Discrete.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alessio-b-zak/cats",
"max_issues_repo_path": "Cats/Category/Discrete.agda",
"max_line_length": 54,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alessio-b-zak/cats",
"max_stars_repo_path": "Cats/Category/Discrete.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 349,
"size": 866
}
|
{-# OPTIONS --cubical #-}
module Cubical.Categories.Sets where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Categories.Category
module _ ℓ where
SET : Precategory (ℓ-suc ℓ) ℓ
SET .ob = Σ (Type ℓ) isSet
SET .hom (A , _) (B , _) = A → B
SET .idn _ = λ x → x
SET .seq f g = λ x → g (f x)
SET .seq-λ f = refl
SET .seq-ρ f = refl
SET .seq-α f g h = refl
module _ {ℓ} where
isSetExpIdeal : {A B : Type ℓ} → isSet B → isSet (A → B)
isSetExpIdeal B/set = isOfHLevelPi 2 λ _ → B/set
isSetLift : {A : Type ℓ} → isSet A → isSet (Lift {ℓ} {ℓ-suc ℓ} A)
isSetLift = isOfHLevelLift 2
instance
SET-category : isCategory (SET ℓ)
SET-category .homIsSet {_} {B , B/set} = isSetExpIdeal B/set
|
{
"alphanum_fraction": 0.6384915475,
"avg_line_length": 26.5172413793,
"ext": "agda",
"hexsha": "7ad005e44014e064e99115f0aacf32e5ea2d0758",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "borsiemir/cubical",
"max_forks_repo_path": "Cubical/Categories/Sets.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "borsiemir/cubical",
"max_issues_repo_path": "Cubical/Categories/Sets.agda",
"max_line_length": 67,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "borsiemir/cubical",
"max_stars_repo_path": "Cubical/Categories/Sets.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 300,
"size": 769
}
|
-- Building some simple tactics using the reflected type checking monad.
module _ where
open import Common.Reflection
open import Common.Prelude hiding (_>>=_)
open import Common.Equality
open import Agda.Builtin.Sigma
-- Some helpers --
quotegoal : (Type → Tactic) → Tactic
quotegoal tac hole =
inferType hole >>= λ goal →
reduce goal >>= λ goal →
tac goal hole
case_of_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B
case x of f = f x
replicateTC : {A : Set} → Nat → TC A → TC (List A)
replicateTC zero m = returnTC []
replicateTC (suc n) m = m >>= λ x → replicateTC n m >>= λ xs → returnTC (x ∷ xs)
mapTC! : ∀ {A : Set} → (A → TC ⊤) → List A → TC ⊤
mapTC! f [] = returnTC _
mapTC! f (x ∷ xs) = f x >>= λ _ → mapTC! f xs
mapTC!r : ∀ {A} → (A → TC ⊤) → List A → TC ⊤
mapTC!r f [] = returnTC _
mapTC!r f (x ∷ xs) = mapTC! f xs >>= λ _ → f x
visibleArity : QName → TC Nat
visibleArity q = getType q >>= λ t → returnTC (typeArity t)
where
typeArity : Type → Nat
typeArity (pi (arg (argInfo visible _) _) (abs _ b)) = suc (typeArity b)
typeArity (pi _ (abs _ b)) = typeArity b
typeArity _ = 0
newMeta! : TC Term
newMeta! = newMeta unknown
absurdLam : Term
absurdLam = extLam (absurdClause
(("()" , arg (argInfo visible relevant) unknown) ∷ [])
(arg (argInfo visible relevant) absurd ∷ [])
∷ []) []
-- Simple assumption tactic --
assumption-tac : Nat → Nat → Tactic
assumption-tac x 0 _ = typeError (strErr "No assumption matched" ∷ [])
assumption-tac x (suc n) hole =
catchTC (unify hole (var x []))
(assumption-tac (suc x) n hole)
macro
assumption : Tactic
assumption hole = getContext >>= λ Γ → assumption-tac 0 (length Γ) hole
test-assumption : ∀ {A B : Set} → A → B → A
test-assumption x y = assumption
test-assumption₂ : ∀ {A B : Set} → A → B → _
test-assumption₂ x y = assumption -- will pick y
-- Solving a goal using only constructors --
tryConstructors : Nat → List QName → Tactic
constructors-tac : Nat → Type → Tactic
constructors-tac zero _ _ = typeError (strErr "Search depth exhausted" ∷ [])
constructors-tac (suc n) (def d vs) hole =
getDefinition d >>= λ def →
case def of λ
{ (dataDef _ cs) → tryConstructors n cs hole
; _ → returnTC _ }
constructors-tac _ (pi a b) hole = give absurdLam hole
constructors-tac _ _ hole = returnTC _
tryConstructors n [] hole = typeError (strErr "No matching constructor term" ∷ [])
tryConstructors n (c ∷ cs) hole =
visibleArity c >>= λ ar →
catchTC (replicateTC ar newMeta! >>= λ vs →
unify hole (con c (map (arg (argInfo visible relevant)) vs)) >>= λ _ →
mapTC!r (quotegoal (constructors-tac n)) vs)
(tryConstructors n cs hole)
macro
constructors : Tactic
constructors = quotegoal (constructors-tac 10)
data Any {A : Set} (P : A → Set) : List A → Set where
zero : ∀ {x xs} → P x → Any P (x ∷ xs)
suc : ∀ {x xs} → Any P xs → Any P (x ∷ xs)
infix 1 _∈_
_∈_ : ∀ {A : Set} → A → List A → Set
x ∈ xs = Any (x ≡_) xs
data Dec (A : Set) : Set where
yes : A → Dec A
no : (A → ⊥) → Dec A
test₁ : 3 ∈ 1 ∷ 2 ∷ 3 ∷ []
test₁ = constructors
test₂ : Dec (2 + 3 ≡ 5)
test₂ = constructors
test₃ : Dec (2 + 2 ≡ 5)
test₃ = constructors
data Singleton (n : Nat) : Set where
it : (m : Nat) → m ≡ n → Singleton n
test₄ : Singleton 5
test₄ = constructors -- this works because we solve goals right to left (picking refl before m)
|
{
"alphanum_fraction": 0.6091458154,
"avg_line_length": 29.218487395,
"ext": "agda",
"hexsha": "dc76b1d957c5e12daeaf369056f7bebebbae288c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Succeed/ReflectTC.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/ReflectTC.agda",
"max_line_length": 95,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/ReflectTC.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1165,
"size": 3477
}
|
------------------------------------------------------------------------
-- Proofs of the map-iterate property and iterate fusion
------------------------------------------------------------------------
module MapIterate where
open import Codata.Musical.Notation
open import Codata.Musical.Stream as Stream
using (Stream; map; zipWith; iterate; _≈_)
open Stream.Stream; open Stream._≈_
open import Data.Nat
open import Relation.Binary
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
private
module SS {A : Set} = Setoid (Stream.setoid A)
-- The map-iterate property:
map-iterate : {A : Set} (f : A → A) (x : A) →
map f (iterate f x) ≈ iterate f (f x)
map-iterate f x = refl ∷ ♯ map-iterate f (f x)
-- An equality proof language.
infixr 5 _∷_
infix 4 _≈P_ _≈W_
infix 3 _∎
infixr 2 _≈⟨_⟩_
data _≈P_ {A : Set} : Stream A → Stream A → Set where
_∷_ : ∀ (x : A) {xs ys}
(xs≈ys : ∞ (♭ xs ≈P ♭ ys)) → x ∷ xs ≈P x ∷ ys
_≈⟨_⟩_ : ∀ (xs : Stream A) {ys zs}
(xs≈ys : xs ≈P ys) (ys≈zs : ys ≈P zs) → xs ≈P zs
_∎ : (xs : Stream A) → xs ≈P xs
zipWith-cong : ∀ (_∙_ : A → A → A) {xs₁ ys₁ xs₂ ys₂}
(xs₁≈ys₁ : xs₁ ≈P ys₁) (xs₂≈ys₂ : xs₂ ≈P ys₂) →
zipWith _∙_ xs₁ xs₂ ≈P zipWith _∙_ ys₁ ys₂
-- Completeness.
completeP : {A : Set} {xs ys : Stream A} → xs ≈ ys → xs ≈P ys
completeP (refl ∷ xs≈ys) = _ ∷ ♯ completeP (♭ xs≈ys)
-- Weak head normal forms.
data _≈W_ {A : Set} : Stream A → Stream A → Set where
_∷_ : ∀ x {xs ys} (xs≈ys : ♭ xs ≈P ♭ ys) → x ∷ xs ≈W x ∷ ys
transW : {A : Set} {xs ys zs : Stream A} →
xs ≈W ys → ys ≈W zs → xs ≈W zs
transW (x ∷ xs≈ys) (.x ∷ ys≈zs) = x ∷ (_ ≈⟨ xs≈ys ⟩ ys≈zs)
reflW : {A : Set} (xs : Stream A) → xs ≈W xs
reflW (x ∷ xs) = x ∷ (♭ xs ∎)
zipWith-congW : ∀ {A : Set} (_∙_ : A → A → A) {xs₁ ys₁ xs₂ ys₂} →
xs₁ ≈W ys₁ → xs₂ ≈W ys₂ →
zipWith _∙_ xs₁ xs₂ ≈W zipWith _∙_ ys₁ ys₂
zipWith-congW _∙_ (x₁ ∷ xs₁≈ys₁) (x₂ ∷ xs₂≈ys₂) =
(x₁ ∙ x₂) ∷ zipWith-cong _∙_ xs₁≈ys₁ xs₂≈ys₂
whnf : {A : Set} {xs ys : Stream A} → xs ≈P ys → xs ≈W ys
whnf (x ∷ xs≈ys) = x ∷ ♭ xs≈ys
whnf (xs ≈⟨ xs≈ys ⟩ ys≈zs) = transW (whnf xs≈ys) (whnf ys≈zs)
whnf (xs ∎) = reflW xs
whnf (zipWith-cong _∙_ xs₁≈ys₁ xs₂≈ys₂) =
zipWith-congW _∙_ (whnf xs₁≈ys₁) (whnf xs₂≈ys₂)
-- Soundness.
mutual
soundW : {A : Set} {xs ys : Stream A} → xs ≈W ys → xs ≈ ys
soundW (x ∷ xs≈ys) = refl ∷ ♯ soundP xs≈ys
soundP : {A : Set} {xs ys : Stream A} → xs ≈P ys → xs ≈ ys
soundP xs≈ys = soundW (whnf xs≈ys)
-- A small hack which enables me to write "by definition" below.
definition : {A : Set} {xs : Stream A} → xs ≈P xs
definition {xs = xs} = xs ∎
by : ∀ {A : Set} {x : A} {xs ys : ∞ (Stream A)} →
♭ xs ≈P ♭ ys → x ∷ xs ≈P x ∷ ys
by {x = x} ♭xs≈♭ys = x ∷ ♯ ♭xs≈♭ys
-- Iterate preserves equality.
iterate-cong : {A : Set} (f : A → A) {x y : A} →
x ≡ y → iterate f x ≈P iterate f y
iterate-cong f {x} refl = iterate f x ∎
-- Iterate fusion.
iterate-fusion : {A B : Set} (h : A → B) (f₁ : A → A) (f₂ : B → B) →
((x : A) → h (f₁ x) ≡ f₂ (h x)) →
(x : A) → map h (iterate f₁ x) ≈P iterate f₂ (h x)
iterate-fusion h f₁ f₂ hyp x =
map h (iterate f₁ x) ≈⟨ by definition ⟩
h x ∷ ♯ map h (iterate f₁ (f₁ x)) ≈⟨ h x ∷ ♯ iterate-fusion h f₁ f₂ hyp (f₁ x) ⟩
h x ∷ ♯ iterate f₂ (h (f₁ x)) ≈⟨ h x ∷ ♯ iterate-cong f₂ (hyp x) ⟩
h x ∷ ♯ iterate f₂ (f₂ (h x)) ≈⟨ by definition ⟩
iterate f₂ (h x) ∎
-- The equation given for fib in StreamProg has a unique solution.
fib-rhs : Stream ℕ → Stream ℕ
fib-rhs ns = 0 ∷ ♯ zipWith _+_ ns (1 ∷ ♯ ns)
fib-unique :
∀ ms ns → ms ≈ fib-rhs ms → ns ≈ fib-rhs ns → ms ≈P ns
fib-unique ms ns ms≈ ns≈ =
ms ≈⟨ completeP ms≈ ⟩
fib-rhs ms ≈⟨ 0 ∷ ♯ zipWith-cong _+_ (fib-unique ms ns ms≈ ns≈)
(1 ∷ ♯ fib-unique ms ns ms≈ ns≈) ⟩
fib-rhs ns ≈⟨ completeP (SS.sym ns≈) ⟩
ns ∎
|
{
"alphanum_fraction": 0.5065190652,
"avg_line_length": 33.5950413223,
"ext": "agda",
"hexsha": "01c51f153fa9b947f0d9540877594f43c20c5e52",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/codata",
"max_forks_repo_path": "MapIterate.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/codata",
"max_issues_repo_path": "MapIterate.agda",
"max_line_length": 83,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/codata",
"max_stars_repo_path": "MapIterate.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z",
"num_tokens": 1732,
"size": 4065
}
|
{-# OPTIONS --safe -W noTerminationIssue #-}
data ⊥ : Set where
bad : ⊥
bad = bad
|
{
"alphanum_fraction": 0.6071428571,
"avg_line_length": 12,
"ext": "agda",
"hexsha": "0f5fd2ece3b897517ce9e679e6927826390f7833",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue5029.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue5029.agda",
"max_line_length": 44,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue5029.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 27,
"size": 84
}
|
module plfa.working.Induction where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; cong; sym)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; step-≡; _∎)
open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_)
+-assoc : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p)
+-assoc zero n p =
begin
(zero + n) + p
≡⟨⟩
n + p
≡⟨⟩
zero + (n + p)
∎
+-assoc (suc m) n p =
begin
(suc m + n) + p
≡⟨⟩
suc (m + n) + p
≡⟨⟩
suc ((m + n) + p)
≡⟨ cong suc (+-assoc m n p) ⟩
suc (m + (n + p))
≡⟨⟩
suc m + (n + p)
∎
+-identity : ∀ (m : ℕ) → m + zero ≡ m
+-identity zero =
begin
zero + zero
≡⟨⟩
zero
∎
+-identity (suc m) =
begin
(suc m) + zero
≡⟨⟩
suc (m + zero)
≡⟨ cong suc (+-identity m) ⟩
suc m
∎
+-suc : ∀ (m n : ℕ) → m + suc n ≡ suc (m + n)
+-suc zero n =
begin
zero + suc n
≡⟨⟩
suc n
≡⟨⟩
suc (zero + n)
∎
+-suc (suc m) n =
begin
suc m + suc n
≡⟨⟩
(suc m) + suc n
≡⟨ cong suc (+-suc m n) ⟩
suc (suc m + n)
∎
+-comm : ∀ (m n : ℕ) → m + n ≡ n + m
+-comm m zero =
begin
m + zero
≡⟨ +-identity m ⟩
m
≡⟨⟩
zero + m
∎
+-comm m (suc n) =
begin
m + suc n
≡⟨ +-suc m n ⟩
suc (m + n)
≡⟨ cong suc (+-comm m n) ⟩
suc (n + m)
≡⟨⟩
suc n + m
∎
|
{
"alphanum_fraction": 0.389307745,
"avg_line_length": 17.578313253,
"ext": "agda",
"hexsha": "0fb711fea744b2395d9a5af9848fa0b2990cf37f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5365a4ba8ba0dc80cb77ab73aee92c645d0787d9",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "kaychaks/plfa.github.io",
"max_forks_repo_path": "src/plfa/working/Induction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5365a4ba8ba0dc80cb77ab73aee92c645d0787d9",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "kaychaks/plfa.github.io",
"max_issues_repo_path": "src/plfa/working/Induction.agda",
"max_line_length": 58,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "5365a4ba8ba0dc80cb77ab73aee92c645d0787d9",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "kaychaks/plfa.github.io",
"max_stars_repo_path": "src/plfa/working/Induction.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 660,
"size": 1459
}
|
{-# OPTIONS --sized-types --guardedness #-}
-- Note: This module is not meant to be imported.
module Js where
import Data
import Data.Boolean
import FFI.IO as FFI
main : FFI.IO Data.Unit
main = FFI.printStrLn("Okay")
|
{
"alphanum_fraction": 0.7181818182,
"avg_line_length": 18.3333333333,
"ext": "agda",
"hexsha": "991971e8100b79cdccdba97589697d48484e86a8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Js.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Js.agda",
"max_line_length": 49,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Js.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 58,
"size": 220
}
|
module _ where
record R : Set₁ where
field x : Set
g : Set₁
module M (r : R) where
open R r
f = x
g = R
|
{
"alphanum_fraction": 0.5739130435,
"avg_line_length": 8.2142857143,
"ext": "agda",
"hexsha": "62dc1e9b5a42156d3d32baff36f417230c29c440",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue3010.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue3010.agda",
"max_line_length": 22,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue3010.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 46,
"size": 115
}
|
module Examples.Syntax where
open import Agda.Builtin.Equality using (_≡_; refl)
open import FFI.Data.String using (_++_)
open import Luau.Syntax using (var; _$_; return; nil; function_⟨_⟩_end; done; _∙_)
open import Luau.Syntax.ToString using (exprToString; blockToString)
f = var "f"
x = var "x"
ex1 : exprToString(f $ x) ≡
"f(x)"
ex1 = refl
ex2 : blockToString(return nil ∙ done) ≡
"return nil"
ex2 = refl
ex3 : blockToString(function "f" ⟨ "x" ⟩ return x ∙ done end ∙ return f ∙ done) ≡
"local function f(x)\n" ++
" return x\n" ++
"end\n" ++
"return f"
ex3 = refl
|
{
"alphanum_fraction": 0.6587030717,
"avg_line_length": 23.44,
"ext": "agda",
"hexsha": "8af9bca8b12c78ce8740ee85dae049bf8b9808a8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "FreakingBarbarians/luau",
"max_forks_repo_path": "prototyping/Examples/Syntax.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "FreakingBarbarians/luau",
"max_issues_repo_path": "prototyping/Examples/Syntax.agda",
"max_line_length": 82,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "FreakingBarbarians/luau",
"max_stars_repo_path": "prototyping/Examples/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-11T21:30:17.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-11T21:30:17.000Z",
"num_tokens": 199,
"size": 586
}
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import cw.CW
open import cw.FinCW
open import cw.FinBoundary
open import cohomology.Theory
module cw.cohomology.cochainequiv.HigherCoboundaryCommSquare (OT : OrdinaryTheory lzero)
{n} (⊙fin-skel : ⊙FinSkeleton (S (S n))) where
open OrdinaryTheory OT
open import cw.cohomology.WedgeOfCells OT
open import cw.cohomology.reconstructed.HigherCoboundary OT ⊙⦉ ⊙fin-skel ⦊
open import cw.cohomology.cochainequiv.DualizedHigherBoundary OT ⊙fin-skel
open import cw.cohomology.cochainequiv.HigherCoboundary OT ⊙fin-skel
private
fin-skel = ⊙FinSkeleton.skel ⊙fin-skel
I = AttachedFinSkeleton.numCells fin-skel
ac = ⊙FinSkeleton-has-cells-with-choice 0 ⊙fin-skel lzero
⊙fin-skel₋₁ = ⊙fcw-init ⊙fin-skel
fin-skel₋₁ = ⊙FinSkeleton.skel ⊙fin-skel₋₁
ac₋₁ = ⊙FinSkeleton-has-cells-with-choice 0 ⊙fin-skel₋₁ lzero
abstract
rephrase-dualized-higher-boundary-comm-sqr :
CommSquareEquiv
(λ g <I → Group.sum (C2 0) (λ <I₋₁ → Group.exp (C2 0) (g <I₋₁) (fdegree-last fin-skel <I <I₋₁)))
(_∘ᴳ fboundary-last fin-skel)
(FreeAbGroup-extend (C2-abgroup 0))
(FreeAbGroup-extend (C2-abgroup 0))
rephrase-dualized-higher-boundary-comm-sqr =
comm-sqr (λ g →
equiv-adj'
(GroupIso.f-equiv (FreeAbGroup-extend-iso (C2-abgroup 0)))
(λ= λ <I → ! (rephrase-dualized-higher-boundary-in-degree g <I))) ,
FreeAbGroup-extend-is-equiv (C2-abgroup 0) ,
FreeAbGroup-extend-is-equiv (C2-abgroup 0)
rephrase-cw-co∂-last-comm-sqr :
CommSquareEquiv
(λ g <I → Group.sum (C2 0) (λ <I₋₁ → Group.exp (C2 0) (g <I₋₁) (fdegree-last fin-skel <I <I₋₁)))
(GroupHom.f cw-co∂-last)
(GroupIso.g (CXₙ/Xₙ₋₁-diag-β ⊙⦉ ⊙fin-skel₋₁ ⦊ ac₋₁))
(GroupIso.g (CXₙ/Xₙ₋₁-diag-β ⊙⦉ ⊙fin-skel ⦊ ac))
rephrase-cw-co∂-last-comm-sqr =
comm-sqr (λ g →
equiv-adj'
(GroupIso.g-equiv (CXₙ/Xₙ₋₁-diag-β ⊙⦉ ⊙fin-skel ⦊ ac))
(λ= λ <I → ! (rephrase-cw-co∂-last-in-degree g <I))) ,
(GroupIso.g-is-equiv (CXₙ/Xₙ₋₁-diag-β ⊙⦉ ⊙fin-skel₋₁ ⦊ ac₋₁)) ,
(GroupIso.g-is-equiv (CXₙ/Xₙ₋₁-diag-β ⊙⦉ ⊙fin-skel ⦊ ac))
higher-coboundary-comm-sqr :
CommSquareEquiv
(GroupHom.f cw-co∂-last)
(_∘ᴳ fboundary-last fin-skel)
(FreeAbGroup-extend (C2-abgroup 0) ∘ GroupIso.f (CXₙ/Xₙ₋₁-diag-β ⊙⦉ ⊙fin-skel₋₁ ⦊ ac₋₁))
(FreeAbGroup-extend (C2-abgroup 0) ∘ GroupIso.f (CXₙ/Xₙ₋₁-diag-β ⊙⦉ ⊙fin-skel ⦊ ac))
higher-coboundary-comm-sqr =
CommSquareEquiv-∘v
rephrase-dualized-higher-boundary-comm-sqr
(CommSquareEquiv-inverse-v rephrase-cw-co∂-last-comm-sqr)
higher-coboundary-comm-sqrᴳ :
CommSquareEquivᴳ
cw-co∂-last
(pre∘ᴳ-hom (C2-abgroup 0) (fboundary-last fin-skel))
(FreeAbGroup-extend-hom (C2-abgroup 0) ∘ᴳ GroupIso.f-hom (CXₙ/Xₙ₋₁-diag-β ⊙⦉ ⊙fin-skel₋₁ ⦊ ac₋₁))
(FreeAbGroup-extend-hom (C2-abgroup 0) ∘ᴳ GroupIso.f-hom (CXₙ/Xₙ₋₁-diag-β ⊙⦉ ⊙fin-skel ⦊ ac))
higher-coboundary-comm-sqrᴳ =
comm-sqrᴳ (fst higher-coboundary-comm-sqr □$_) , snd higher-coboundary-comm-sqr
|
{
"alphanum_fraction": 0.6636125654,
"avg_line_length": 40.7466666667,
"ext": "agda",
"hexsha": "f6e81be8ac215f1b08d6e8042f66b09492b3560b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/cw/cohomology/cochainequiv/HigherCoboundaryCommSquare.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/cw/cohomology/cochainequiv/HigherCoboundaryCommSquare.agda",
"max_line_length": 103,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/cw/cohomology/cochainequiv/HigherCoboundaryCommSquare.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1280,
"size": 3056
}
|
module CoinductiveAfterEvaluation where
open import Common.Coinduction
data Functor : Set where
Id : Functor
_·_ : Functor → Set → Set
Id · A = A
data ν (F : Functor) : Set where
inn : ∞ (F · ν F) → ν F
-- Evaluation is required to see that Id · ν Id is a coinductive type.
foo : ∀ F → F · ν F
foo Id = inn (♯ foo Id)
|
{
"alphanum_fraction": 0.6463414634,
"avg_line_length": 18.2222222222,
"ext": "agda",
"hexsha": "c0dfd3cc64284d74e88bcfbc336468ee4e78f713",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/CoinductiveAfterEvaluation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/CoinductiveAfterEvaluation.agda",
"max_line_length": 70,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/CoinductiveAfterEvaluation.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 109,
"size": 328
}
|
module Dave.Algebra.Naturals.Definition where
open import Dave.Equality public
open import Dave.Structures.Monoid public
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
one = suc zero
two = suc one
three = suc two
four = suc three
five = suc four
six = suc five
seven = suc six
eight = suc seven
nine = suc eight
{-# BUILTIN NATURAL ℕ #-}
ℕ-suc-≡ : ∀ {m n : ℕ} → m ≡ n → suc m ≡ suc n
ℕ-suc-≡ refl = refl
|
{
"alphanum_fraction": 0.6108597285,
"avg_line_length": 20.0909090909,
"ext": "agda",
"hexsha": "45ad5374d50f4eb222fa055e7e5db9d97f008217",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DavidStahl97/formal-proofs",
"max_forks_repo_path": "Dave/Algebra/Naturals/Definition.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DavidStahl97/formal-proofs",
"max_issues_repo_path": "Dave/Algebra/Naturals/Definition.agda",
"max_line_length": 47,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DavidStahl97/formal-proofs",
"max_stars_repo_path": "Dave/Algebra/Naturals/Definition.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 152,
"size": 442
}
|
module x07-747Negation-hc where
open import Relation.Binary.PropositionalEquality using (_≡_; cong; refl; subst; sym) -- added last
open import Data.Nat using (ℕ; zero; suc)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Product using (_×_; proj₁; proj₂)
------------------------------------------------------------------------------
-- NEGATION : defined as implying false
-- import Relation.Nullary using (¬_)
¬_ : Set → Set
¬ A = A → ⊥
infix 3 ¬_
-- if both ¬ A and A hold, then ⊥ holds
¬-elim : ∀ {A : Set}
→ ¬ A
→ A
---
→ ⊥
¬-elim ¬a a = ¬a a
-- double negation introduction (cannot be eliminated in intuitionistic logic)
¬¬-intro : ∀ {A : Set}
→ A
-----
→ ¬ ¬ A
-- ¬¬-intro a ¬a = ¬a a -- agda with auto split/fill to this
¬¬-intro a = λ ¬a → ¬a a -- easier to understand with ¬ def using anon λ
-- triple negation elimination
¬¬¬-elim : ∀ {A : Set}
→ ¬ ¬ ¬ A
-------
→ ¬ A
-- ¬¬¬-elim ¬¬¬a a = ¬-elim ¬¬¬a (¬¬-intro a)
¬¬¬-elim ¬¬¬a = λ a → ¬-elim ¬¬¬a (¬¬-intro a)
-- import Relation.Nullary.Negation using (contraposition)
-- one direction of the contrapositive
-- the other direction cannot be proved in intuitionistic logic
contraposition : ∀ {A B : Set}
→ (A → B)
-----------
→ (¬ B → ¬ A)
-- contraposition a→b ¬b a = ¬b (a→b a)
contraposition a→b = λ ¬b → λ a → ¬b (a→b a)
-- not-equal-to
_≢_ : ∀ {A : Set} → A → A → Set
x ≢ y = ¬ (x ≡ y)
_ : 1 ≢ 2
_ = λ ()
-- a first-order Peano axioms
peano : ∀ {m : ℕ} → zero ≢ suc m
peano ()
open import x05-842Isomorphism-hc using (extensionality)
-- two proofs of ⊥ → ⊥
-- they look different but are the same (assuming extensionality)
id : ⊥ → ⊥
id x = x
id′ : ⊥ → ⊥
id′ ()
id≡id′ : id ≡ id′
id≡id′ = extensionality (λ())
-- assuming extensionality, any two proofs of a negation are the same
assimilation : ∀ {A : Set} (¬x ¬x′ : ¬ A) → ¬x ≡ ¬x′
assimilation ¬x ¬x′ = extensionality λ x → ⊥-elim (¬x x)
-- BEGIN: Strict inequality (copied from 747Relations).
infix 4 _<_
data _<_ : ℕ → ℕ → Set where
z<s : ∀ {n : ℕ}
------------
→ zero < suc n
s<s : ∀ {m n : ℕ}
→ m < n
-------------
→ suc m < suc n
-- END: Strict inequality (copied from 747Relations).
-- NotFourLTThree
¬4<3 : ¬ (4 < 3)
¬4<3 (s<s (s<s (s<s ())))
-- < is irreflexive (never reflexive)
¬n<n : ∀ (n : ℕ) → ¬ (n < n)
-- ¬n<n (suc n) (s<s n<n) = ¬n<n n n<n
¬n<n (suc n) = λ { (s<s n<n) → ¬n<n n n<n }
-- 747/PLFA exercise: LTTrich (3 points)
-- Prove that strict inequality satisfies trichotomy : exactly one of the three possibilities holds.
data Trichotomy (m n : ℕ) : Set where
is-< : m < n → ¬ m ≡ n → ¬ n < m → Trichotomy m n
is-≡ : m ≡ n → ¬ m < n → ¬ n < m → Trichotomy m n
is-> : n < m → ¬ m ≡ n → ¬ m < n → Trichotomy m n
open import x03-842Relations-hc-2 using (suc-injective; m≡n→sucm≡sucn)
inv-s<s : ∀ {m n : ℕ}
→ suc m < suc n
-------------
→ m < n
inv-s<s (s<s m<n) = m<n
<-trichotomy : ∀ (m n : ℕ) → Trichotomy m n
<-trichotomy zero zero = is-≡ refl (λ ()) (λ ())
<-trichotomy zero (suc n) = is-< z<s (λ ()) (λ ())
<-trichotomy (suc m) zero = is-> z<s (λ ()) (λ ())
<-trichotomy (suc m) (suc n) with <-trichotomy m n
... | is-< m<n ¬m≡n ¬n<m = is-< (s<s m<n)
(λ sucm≡sucn → ¬m≡n (suc-injective sucm≡sucn))
(λ sucn<sucm → ¬n<m (inv-s<s sucn<sucm))
... | is-≡ m≡n ¬m<n ¬n<m = is-≡ (m≡n→sucm≡sucn m n m≡n)
(λ sucm<sucn → ¬m<n (inv-s<s sucm<sucn))
(λ sucn<sucm → ¬n<m (inv-s<s sucn<sucm))
... | is-> n<m ¬m≡n ¬m<n = is-> (s<s n<m)
(λ sucm≡sucn → ¬m≡n (suc-injective sucm≡sucn))
(λ sucm<sucn → ¬m<n (inv-s<s sucm<sucn))
-- PLFA exercise: one of DeMorgan's Laws as isomorphism TODO
-- ⊎-dual-× : ∀ {A B : Set} → ¬ (A ⊎ B) ≃ (¬ A) × (¬ B)
-- Expand negation as implies-false, then look in 747Relations
-- for a law of which this is a special case.
-- What about ¬ (A × B) ≃ (¬ A) ⊎ (¬ B)?
-- Answer: RHS implies LHS but converse cannot be proved in intuitionistic logic.
-- Intuitionistic vs classical logic.
-- The law of the excluded middle (LEM, or just em) cannot be proved in intuitionistic logic.
-- LEM can be added to intuitionistic logic to get classical logic.
-- postulate
-- em : ∀ {A : Set} → A ⊎ ¬ A
-- 'em-irrefutable' theorem of intuitionistic logic demonstrates
-- that 'em' does not give a contradiction?
em-irrefutable : ∀ {A : Set} → ¬ ¬ (A ⊎ ¬ A)
em-irrefutable = λ z → z (inj₂ (λ x → z (inj₁ x)))
-- PLFA exercise: classical equivalences TODO
-- Here are four other classical theorems that can be added and are consisstent in IT.
-- Prove each is logically equivalent to all the others.
-- It is NOT necessary to prove twenty implications, since implication is transitive.
-- There is a lot of choice as to how to proceed.
-- Excluded Middle
em = ∀ {A : Set} → A ⊎ ¬ A
-- Double Negation Elimination
dne = ∀ {A : Set} → ¬ ¬ A → A
-- Peirce’s Law
peirce = ∀ {A B : Set} → ((A → B) → A) → A
-- Implication as disjunction
iad = ∀ {A B : Set} → (A → B) → ¬ A ⊎ B
-- De Morgan:
dem = ∀ {A B : Set} → ¬ (¬ A × ¬ B) → A ⊎ B
-- End of classical five exercise.
-- Definition: a formula is stable if double negation holds for it.
Stable : Set → Set
Stable A = ¬ ¬ A → A
-- PLFA exercise: every negated formula is stable.
-- This is triple negation elimination.
-- PLFA exercise: the conjunction of two stable formulas is stable.
-- This is the version of DeMorgan's Law that is a special case, above.
|
{
"alphanum_fraction": 0.5522151899,
"avg_line_length": 30.4171122995,
"ext": "agda",
"hexsha": "a57ba375ac75c292adbdc8244eac292c9fc6cec3",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x07-747Negation-hc.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x07-747Negation-hc.agda",
"max_line_length": 100,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x07-747Negation-hc.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 2010,
"size": 5688
}
|
{-# OPTIONS --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Substitution.Introductions.Cast {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.Typed.Properties
import Definition.Typed.Weakening as Twk
open import Definition.Typed.EqualityRelation
open import Definition.Typed.RedSteps
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.Properties
open import Definition.LogicalRelation.Application
open import Definition.LogicalRelation.Substitution
import Definition.LogicalRelation.Weakening as Lwk
open import Definition.LogicalRelation.Substitution.Properties
import Definition.LogicalRelation.Substitution.Irrelevance as S
open import Definition.LogicalRelation.Substitution.Reflexivity
open import Definition.LogicalRelation.Substitution.Weakening
-- open import Definition.LogicalRelation.Substitution.Introductions.Nat
open import Definition.LogicalRelation.Substitution.Introductions.Empty
open import Definition.LogicalRelation.ShapeView
-- open import Definition.LogicalRelation.Substitution.Introductions.Pi
-- open import Definition.LogicalRelation.Substitution.Introductions.SingleSubst
open import Definition.LogicalRelation.Substitution.Introductions.Universe
open import Definition.LogicalRelation.Substitution.MaybeEmbed
open import Definition.LogicalRelation.Substitution.Introductions.Castlemmas
open import Tools.Product
open import Tools.Empty using (⊥; ⊥-elim)
import Tools.Unit as TU
import Tools.PropositionalEquality as PE
import Data.Nat as Nat
~-irrelevanceTerm : ∀ {t t' u u' A A' r Γ} (eqA : A PE.≡ A') (eqt : t PE.≡ t') (equ : u PE.≡ u')
→ Γ ⊢ t ~ u ∷ A ^ r
→ Γ ⊢ t' ~ u' ∷ A' ^ r
~-irrelevanceTerm PE.refl PE.refl PE.refl X = X
[cast]irr : ∀ {A B Γ}
(⊢Γ : ⊢ Γ)
([A] : Γ ⊩⟨ ι ⁰ ⟩ A ^ [ % , ι ⁰ ])
([B] : Γ ⊩⟨ ι ⁰ ⟩ B ^ [ % , ι ⁰ ]) →
∀ {t e} → ([t] : Γ ⊩⟨ ι ⁰ ⟩ t ∷ A ^ [ % , ι ⁰ ] / [A]) → (⊢e : Γ ⊢ e ∷ Id (Univ % ⁰) A B ^ [ % , ι ¹ ]) →
Γ ⊩⟨ ι ⁰ ⟩ cast ⁰ A B e t ∷ B ^ [ % , ι ⁰ ] / [B]
[cast]irr {A} {B} ⊢Γ [A] [B] {t} {e} [t] ⊢e =
let ⊢A = escape {l = ι ⁰} {A = A} [A]
⊢B = escape {l = ι ⁰} {A = B} [B]
⊢t = escapeTerm {l = ι ⁰} {A = A} [A] [t]
in logRelIrr [B] (castⱼ (un-univ ⊢A) (un-univ ⊢B) ⊢e ⊢t)
[castext]irr : ∀ {A A′ B B′ Γ}
(⊢Γ : ⊢ Γ)
([A] : Γ ⊩⟨ ι ⁰ ⟩ A ^ [ % , ι ⁰ ])
([A′] : Γ ⊩⟨ ι ⁰ ⟩ A′ ^ [ % , ι ⁰ ])
([A≡A′] : Γ ⊩⟨ ι ⁰ ⟩ A ≡ A′ ^ [ % , ι ⁰ ] / [A])
([B] : Γ ⊩⟨ ι ⁰ ⟩ B ^ [ % , ι ⁰ ])
([B′] : Γ ⊩⟨ ι ⁰ ⟩ B′ ^ [ % , ι ⁰ ])
([B≡B′] : Γ ⊩⟨ ι ⁰ ⟩ B ≡ B′ ^ [ % , ι ⁰ ] / [B])
→ (∀ {t t′ e e′} → ([t] : Γ ⊩⟨ ι ⁰ ⟩ t ∷ A ^ [ % , ι ⁰ ] / [A])
→ ([t′] : Γ ⊩⟨ ι ⁰ ⟩ t′ ∷ A′ ^ [ % , ι ⁰ ] / [A′])
→ ([t≡t′] : Γ ⊩⟨ ι ⁰ ⟩ t ≡ t′ ∷ A ^ [ % , ι ⁰ ] / [A])
→ (⊢e : Γ ⊢ e ∷ Id (Univ % ⁰) A B ^ [ % , ι ¹ ])
→ (⊢e′ : Γ ⊢ e′ ∷ Id (Univ % ⁰) A′ B′ ^ [ % , ι ¹ ])
→ Γ ⊩⟨ ι ⁰ ⟩ cast ⁰ A B e t ≡ cast ⁰ A′ B′ e′ t′ ∷ B ^ [ % , ι ⁰ ] / [B])
[castext]irr {A} {A′} {B} {B′} ⊢Γ [A] [A′] [A≡A′] [B] [B′] [B≡B′] [t] [t′] [t≡t′] ⊢e ⊢e′ =
let ⊢A = escape {l = ι ⁰} {A = A} [A]
⊢B = escape {l = ι ⁰} {A = B} [B]
⊢A′ = escape {l = ι ⁰} {A = A′} [A′]
⊢B′ = escape {l = ι ⁰} {A = B′} [B′]
⊢t = escapeTerm {l = ι ⁰} {A = A} [A] [t]
⊢t′ = escapeTerm {l = ι ⁰} {A = A′} [A′] [t′]
in logRelIrrEq [B] (castⱼ (un-univ ⊢A) (un-univ ⊢B) ⊢e ⊢t) (conv (castⱼ (un-univ ⊢A′) (un-univ ⊢B′) ⊢e′ ⊢t′) (sym (≅-eq (escapeEq [B] [B≡B′]))))
[cast]Ne : ∀ {A B Γ}
(⊢Γ : ⊢ Γ)
([A] : Γ ⊩ne A ^[ ! , ⁰ ])
([B] : Γ ⊩⟨ ι ⁰ ⟩ B ^ [ ! , ι ⁰ ]) →
∀ {t e} → ([t] : Γ ⊩⟨ ι ⁰ ⟩ t ∷ A ^ [ ! , ι ⁰ ] / ne [A]) → (⊢e : Γ ⊢ e ∷ Id (Univ ! ⁰) A B ^ [ % , ι ¹ ]) →
Γ ⊩⟨ ι ⁰ ⟩ cast ⁰ A B e t ∷ B ^ [ ! , ι ⁰ ] / [B]
[cast]Ne {A} {B} ⊢Γ (ne K D neK K≡K) [B] {t} {e} [t] ⊢e =
let [[ ⊢A , ⊢K , DK ]] = D
⊢A≡K = subset* DK
⊢B = escape {l = ι ⁰} [B]
B≅B = ≅-un-univ (escapeEq {l = ι ⁰} [B] (reflEq {l = ι ⁰} [B]))
⊢e' = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B))) (un-univ≡ ⊢A≡K) (refl (un-univ ⊢B))))
cast~cast = ~-cast K≡K B≅B (≅-conv (escapeTermEq {l = ι ⁰} {A = A} (ne′ K D neK K≡K) (reflEqTerm {l = ι ⁰} (ne′ K D neK K≡K) [t])) ⊢A≡K) ⊢e' ⊢e'
in neuTerm:⇒*: {t = cast ⁰ A B e t} [B] (castₙ neK) (CastRed*Term ⊢B ⊢e (escapeTerm {l = ι ⁰} (ne′ K D neK K≡K) [t]) (un-univ:⇒*: D)) cast~cast
[castext]Ne : ∀ {A A′ B B′ Γ}
(⊢Γ : ⊢ Γ)
([A] : Γ ⊩ne A ^[ ! , ⁰ ])
([A′] : Γ ⊩ne A′ ^[ ! , ⁰ ])
([A≡A′] : Γ ⊩⟨ ι ⁰ ⟩ A ≡ A′ ^ [ ! , ι ⁰ ] / ne [A])
([B] : Γ ⊩⟨ ι ⁰ ⟩ B ^ [ ! , ι ⁰ ])
([B′] : Γ ⊩⟨ ι ⁰ ⟩ B′ ^ [ ! , ι ⁰ ])
([B≡B′] : Γ ⊩⟨ ι ⁰ ⟩ B ≡ B′ ^ [ ! , ι ⁰ ] / [B])
→ (∀ {t t′ e e′} → ([t] : Γ ⊩⟨ ι ⁰ ⟩ t ∷ A ^ [ ! , ι ⁰ ] / ne [A])
→ ([t′] : Γ ⊩⟨ ι ⁰ ⟩ t′ ∷ A′ ^ [ ! , ι ⁰ ] / ne [A′])
→ ([t≡t′] : Γ ⊩⟨ ι ⁰ ⟩ t ≡ t′ ∷ A ^ [ ! , ι ⁰ ] / ne [A])
→ (⊢e : Γ ⊢ e ∷ Id (U ⁰) A B ^ [ % , ι ¹ ])
→ (⊢e′ : Γ ⊢ e′ ∷ Id (U ⁰) A′ B′ ^ [ % , ι ¹ ])
→ Γ ⊩⟨ ι ⁰ ⟩ cast ⁰ A B e t ≡ cast ⁰ A′ B′ e′ t′ ∷ B ^ [ ! , ι ⁰ ] / [B])
[castext]Ne {A} {A′} {B} {B′} ⊢Γ (ne K D neK K≡K) (ne K′ D′ neK′ K′≡K′) (ne₌ M D′′ neM K≡M) [B] [B′] [B≡B′] [t] [t′] [t≡t′] ⊢e ⊢e′ =
let [A] = ne K D neK K≡K
[A′] = ne K′ D′ neK′ K′≡K′
[[ ⊢A , ⊢K , DK ]] = D
⊢A≡K = subset* DK
[[ _ , _ , DM ]] = D′′
⊢A'≡M = subset* DM
⊢A = escape {l = ι ⁰} {A = A} (ne [A])
⊢B = escape {l = ι ⁰} {A = B} [B]
⊢A′ = escape {l = ι ⁰} {A = A′} (ne [A′])
⊢B′ = escape {l = ι ⁰} {A = B′} [B′]
⊢t = escapeTerm {l = ι ⁰} {A = A} (ne [A]) [t]
⊢t′ = escapeTerm {l = ι ⁰} {A = A′} (ne [A′]) [t′]
t≅t′ = escapeTermEq {l = ι ⁰} {A = A} (ne [A]) [t≡t′]
⊢e' = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B))) (un-univ≡ ⊢A≡K) (refl (un-univ ⊢B))))
⊢e′' = conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢B))) (un-univ≡ ⊢A'≡M) (refl (un-univ ⊢B′))))
in neuEqTerm:⇒*: [B] (castₙ neK) (castₙ neM)
(CastRed*Term ⊢B ⊢e (escapeTerm {l = ι ⁰} (ne [A]) [t]) (un-univ:⇒*: D))
(conv:⇒*: (CastRed*Term ⊢B′ ⊢e′ (escapeTerm {l = ι ⁰} (ne [A′]) [t′]) (un-univ:⇒*: D′′)) (sym (≅-eq (escapeEq [B] [B≡B′]))))
(~-cast K≡M (≅-un-univ (escapeEq [B] [B≡B′])) (≅-conv t≅t′ (subset* (red D))) ⊢e' ⊢e′')
[cast]ℕ : ∀ {A B Γ}
(⊢Γ : ⊢ Γ)
([A] : Γ ⊩ℕ A)
([B] : Γ ⊩ℕ B) →
∀ {t e} → ([t] : Γ ⊩⟨ ι ⁰ ⟩ t ∷ A ^ [ ! , ι ⁰ ] / ℕᵣ [A]) → (⊢e : Γ ⊢ e ∷ Id (Univ ! ⁰) A B ^ [ % , ι ¹ ]) →
Γ ⊩⟨ ι ⁰ ⟩ cast ⁰ A B e t ∷ B ^ [ ! , ι ⁰ ] / ℕᵣ [B]
[cast]ℕ {A} {B} ⊢Γ [[ ⊢A , ⊢ℕ , D ]] [[ ⊢B , ⊢ℕ' , D' ]] {t} {e} (ℕₜ .(suc _) d n≡n (sucᵣ {a} x)) ⊢e =
let ⊢t = escapeTerm {l = ι ⁰} (ℕᵣ [[ ⊢A , ⊢ℕ , D ]]) (ℕₜ (suc a) d n≡n (sucᵣ x))
[N] = idRed:*: (univ (ℕⱼ ⊢Γ))
⊢eℕℕ = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B) )) (un-univ≡ (subset* D)) (un-univ≡ (subset* D'))))
⊢eℕB = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B) )) (un-univ≡ (subset* D)) (refl (un-univ ⊢B))))
rec = [cast]ℕ ⊢Γ (idRed:*: ⊢ℕ) (idRed:*: ⊢ℕ) x ⊢eℕℕ
cast≅cast = escapeTermEq {l = ι ⁰} (ℕᵣ (idRed:*: ⊢ℕ)) (reflEqTerm {l = ι ⁰} (ℕᵣ (idRed:*: ⊢ℕ)) rec)
in ℕₜ (suc (cast ⁰ ℕ ℕ e a)) ((conv:⇒*: (transTerm:⇒:* (CastRed*Term ⊢B ⊢e (escapeTerm {l = ι ⁰} (ℕᵣ [[ ⊢A , ⊢ℕ , D ]]) (ℕₜ (suc a) d n≡n (sucᵣ x))) (un-univ:⇒*: [[ ⊢A , ⊢ℕ , D ]]))
(transTerm:⇒:* (CastRed*Termℕ ⊢eℕB (conv ⊢t (subset* D)) [[ ⊢B , ⊢ℕ' , D' ]])
(conv:⇒*: (transTerm:⇒:* (CastRed*Termℕℕ ⊢eℕℕ d)
(CastRed*Termℕsuc ⊢eℕℕ (escapeTerm {l = ι ⁰} (ℕᵣ (idRed:*: ⊢ℕ)) x))) (sym (subset* D'))))) (subset* D') ))
(≅-suc-cong cast≅cast) (Natural-prop.sucᵣ rec)
[cast]ℕ {A} {B} ⊢Γ [[ ⊢A , ⊢ℕ , D ]] [[ ⊢B , ⊢ℕ' , D' ]] {t} {e} (ℕₜ .zero d n≡n zeroᵣ) ⊢e =
let ⊢t = escapeTerm {l = ι ⁰} (ℕᵣ [[ ⊢A , ⊢ℕ , D ]]) (ℕₜ zero d n≡n zeroᵣ)
⊢eℕℕ = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B) )) (un-univ≡ (subset* D)) (un-univ≡ (subset* D'))))
in ℕₜ zero ((conv:⇒*: (transTerm:⇒:* (CastRed*Term ⊢B ⊢e (escapeTerm {l = ι ⁰} (ℕᵣ [[ ⊢A , ⊢ℕ , D ]]) (ℕₜ zero d n≡n zeroᵣ)) (un-univ:⇒*: [[ ⊢A , ⊢ℕ , D ]]))
(transTerm:⇒:* (CastRed*Termℕ (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B) )) (un-univ≡ (subset* D))
(refl (un-univ ⊢B))))) (conv ⊢t (subset* D)) [[ ⊢B , ⊢ℕ' , D' ]])
(conv:⇒*: (transTerm:⇒:* (CastRed*Termℕℕ ⊢eℕℕ d)
(CastRed*Termℕzero ⊢eℕℕ)) (sym (subset* D'))))) (subset* D') ))
(≅ₜ-zerorefl ⊢Γ) Natural-prop.zeroᵣ
[cast]ℕ {A} {B} ⊢Γ [[ ⊢A , ⊢ℕ , D ]] [[ ⊢B , ⊢ℕ' , D' ]] {t} {e} (ℕₜ n d n≡n (ne x)) ⊢e =
let ⊢t = escapeTerm {l = ι ⁰} (ℕᵣ [[ ⊢A , ⊢ℕ , D ]]) (ℕₜ n d n≡n (ne x))
⊢eℕℕ = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B) )) (un-univ≡ (subset* D)) (un-univ≡ (subset* D'))))
neNfₜ nen ⊢n n~n = x
in ℕₜ (cast ⁰ ℕ ℕ e n) ((conv:⇒*: (transTerm:⇒:* (CastRed*Term ⊢B ⊢e (escapeTerm {l = ι ⁰} (ℕᵣ [[ ⊢A , ⊢ℕ , D ]]) (ℕₜ n d n≡n (ne x))) (un-univ:⇒*: [[ ⊢A , ⊢ℕ , D ]]))
(transTerm:⇒:* (CastRed*Termℕ (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B) )) (un-univ≡ (subset* D))
(refl (un-univ ⊢B))))) (conv ⊢t (subset* D)) [[ ⊢B , ⊢ℕ' , D' ]])
(conv:⇒*: (CastRed*Termℕℕ ⊢eℕℕ d) (sym (subset* D'))))) (subset* D') ))
(~-to-≅ₜ (~-castℕℕ (wfTerm ⊢n) n~n ⊢eℕℕ ⊢eℕℕ)) (ne (neNfₜ (castℕℕₙ nen) (castⱼ (ℕⱼ (wfTerm ⊢n)) (ℕⱼ (wfTerm ⊢n)) ⊢eℕℕ ⊢n) (~-castℕℕ (wfTerm ⊢n) n~n ⊢eℕℕ ⊢eℕℕ)))
[castext]ℕ : ∀ {A A' B B' Γ}
(⊢Γ : ⊢ Γ)
([A] : Γ ⊩ℕ A)
([A'] : Γ ⊩ℕ A')
([A≡A′] : Γ ⊩⟨ ι ⁰ ⟩ A ≡ A' ^ [ ! , ι ⁰ ] / ℕᵣ [A])
([B] : Γ ⊩ℕ B)
([B'] : Γ ⊩ℕ B')
([B≡B′] : Γ ⊩⟨ ι ⁰ ⟩ B ≡ B' ^ [ ! , ι ⁰ ] / ℕᵣ [B]) →
∀ {t t' e e' } → (⊢t : Γ ⊢ t ∷ A ^ [ ! , ι ⁰ ])
→ (⊢t′ : Γ ⊢ t' ∷ A' ^ [ ! , ι ⁰ ])
→ ([t≡t′] : Γ ⊩⟨ ι ⁰ ⟩ t ≡ t' ∷ A ^ [ ! , ι ⁰ ] / ℕᵣ [A])
→ (⊢e : Γ ⊢ e ∷ Id (U ⁰) A B ^ [ % , ι ¹ ])
→ (⊢e′ : Γ ⊢ e' ∷ Id (U ⁰) A' B' ^ [ % , ι ¹ ])
→ Γ ⊩⟨ ι ⁰ ⟩ cast ⁰ A B e t ≡ cast ⁰ A' B' e' t' ∷ B ^ [ ! , ι ⁰ ] / ℕᵣ [B]
[castext]ℕ ⊢Γ [[ ⊢A , ⊢ℕA , DA ]] [[ ⊢A' , ⊢ℕA' , DA' ]] [A≡A′] [[ ⊢B , ⊢ℕB , DB ]] [[ ⊢B' , ⊢ℕB' , DB' ]] [B≡B′] {t} {t'} {e} {e'} ⊢t ⊢t′
(ℕₜ₌ .(suc a) .(suc a') d d′ k≡k′ (sucᵣ {a} {a'} (ℕₜ₌ k k′ [[ ⊢a , ⊢u , d₁ ]] [[ ⊢a' , ⊢u₁ , d₂ ]] k≡k′₁ prop))) ⊢e ⊢e′ =
let ⊢eℕℕ = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B) )) (un-univ≡ (subset* DA)) (un-univ≡ (subset* DB))))
⊢eℕℕ' = conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢B') )) (un-univ≡ (subset* DA')) (un-univ≡ (subset* DB'))))
⊢B≡B′ = escapeEq {l = ι ⁰} (ℕᵣ [[ ⊢B , ⊢ℕB , DB ]]) [B≡B′]
rec = [castext]ℕ ⊢Γ (idRed:*: ⊢ℕA) (idRed:*: ⊢ℕA) (reflEq {l = ι ⁰} (ℕᵣ (idRed:*: ⊢ℕA))) (idRed:*: ⊢ℕA) (idRed:*: ⊢ℕA) (reflEq {l = ι ⁰} (ℕᵣ (idRed:*: ⊢ℕA)))
⊢a ⊢a' (ℕₜ₌ k k′ [[ ⊢a , ⊢u , d₁ ]] [[ ⊢a' , ⊢u₁ , d₂ ]] k≡k′₁ prop) ⊢eℕℕ ⊢eℕℕ'
cast≅cast = escapeTermEq {l = ι ⁰} (ℕᵣ (idRed:*: ⊢ℕA)) rec
in ℕₜ₌ (suc (cast ⁰ ℕ ℕ e a)) (suc (cast ⁰ ℕ ℕ e' a'))
(conv:⇒*: (transTerm:⇒:* (CastRed*Term ⊢B ⊢e ⊢t (un-univ:⇒*: [[ ⊢A , ⊢ℕA , DA ]]))
(transTerm:⇒:* (CastRed*Termℕ (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B) )) (un-univ≡ (subset* DA))
(refl (un-univ ⊢B))))) (conv ⊢t (subset* DA)) [[ ⊢B , ⊢ℕB , DB ]])
(conv:⇒*: (transTerm:⇒:* (CastRed*Termℕℕ ⊢eℕℕ d)
(CastRed*Termℕsuc ⊢eℕℕ ⊢a)) (sym (subset* DB))))) (subset* DB))
(conv:⇒*: (transTerm:⇒:* (CastRed*Term ⊢B' ⊢e′ ⊢t′ (un-univ:⇒*: [[ ⊢A' , ⊢ℕA' , DA' ]]))
(transTerm:⇒:* (CastRed*Termℕ (conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢B) )) (un-univ≡ (subset* DA'))
(refl (un-univ ⊢B'))))) (conv ⊢t′ (subset* DA')) [[ ⊢B' , ⊢ℕB' , DB' ]])
(conv:⇒*: (transTerm:⇒:* (CastRed*Termℕℕ ⊢eℕℕ' d′)
(CastRed*Termℕsuc ⊢eℕℕ' ⊢a')) (sym (subset* DB'))))) (subset* DB'))
(≅-suc-cong cast≅cast) (sucᵣ rec)
[castext]ℕ ⊢Γ [[ ⊢A , ⊢ℕA , DA ]] [[ ⊢A' , ⊢ℕA' , DA' ]] [A≡A′] [[ ⊢B , ⊢ℕB , DB ]] [[ ⊢B' , ⊢ℕB' , DB' ]] [B≡B′] ⊢t ⊢t′ (ℕₜ₌ .zero .zero d d′ k≡k′ zeroᵣ) ⊢e ⊢e′ =
let ⊢eℕℕ = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B) )) (un-univ≡ (subset* DA)) (un-univ≡ (subset* DB))))
⊢eℕℕ' = conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢B') )) (un-univ≡ (subset* DA')) (un-univ≡ (subset* DB'))))
⊢B≡B′ = escapeEq {l = ι ⁰} (ℕᵣ [[ ⊢B , ⊢ℕB , DB ]]) [B≡B′]
in ℕₜ₌ zero zero
(conv:⇒*: (transTerm:⇒:* (CastRed*Term ⊢B ⊢e ⊢t (un-univ:⇒*: [[ ⊢A , ⊢ℕA , DA ]]))
(transTerm:⇒:* (CastRed*Termℕ (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B) )) (un-univ≡ (subset* DA))
(refl (un-univ ⊢B))))) (conv ⊢t (subset* DA)) [[ ⊢B , ⊢ℕB , DB ]])
(conv:⇒*: (transTerm:⇒:* (CastRed*Termℕℕ ⊢eℕℕ d)
(CastRed*Termℕzero ⊢eℕℕ)) (sym (subset* DB))))) (subset* DB))
(conv:⇒*: (transTerm:⇒:* (CastRed*Term ⊢B' ⊢e′ ⊢t′ (un-univ:⇒*: [[ ⊢A' , ⊢ℕA' , DA' ]]))
(transTerm:⇒:* (CastRed*Termℕ (conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢B) )) (un-univ≡ (subset* DA'))
(refl (un-univ ⊢B'))))) (conv ⊢t′ (subset* DA')) [[ ⊢B' , ⊢ℕB' , DB' ]])
(conv:⇒*: (transTerm:⇒:* (CastRed*Termℕℕ ⊢eℕℕ' d′)
(CastRed*Termℕzero ⊢eℕℕ')) (sym (subset* DB'))))) (subset* DB'))
(≅ₜ-zerorefl ⊢Γ) zeroᵣ
[castext]ℕ ⊢Γ [[ ⊢A , ⊢ℕA , DA ]] [[ ⊢A' , ⊢ℕA' , DA' ]] [A≡A′] [[ ⊢B , ⊢ℕB , DB ]] [[ ⊢B' , ⊢ℕB' , DB' ]] [B≡B′] ⊢t ⊢t′ (ℕₜ₌ k k′ d d′ k≡k′ (ne (neNfₜ₌ neK neM k≡m))) ⊢e ⊢e′ =
let ⊢eℕℕ = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B) )) (un-univ≡ (subset* DA)) (un-univ≡ (subset* DB))))
⊢eℕℕ' = conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢B') )) (un-univ≡ (subset* DA')) (un-univ≡ (subset* DB'))))
⊢B≡B′ = escapeEq {l = ι ⁰} (ℕᵣ [[ ⊢B , ⊢ℕB , DB ]]) [B≡B′]
in neuEqTerm:⇒*: {l = ι ⁰} (ℕᵣ [[ ⊢B , ⊢ℕB , DB ]]) (castℕℕₙ neK) (castℕℕₙ neM)
(transTerm:⇒:* (CastRed*Term ⊢B ⊢e ⊢t (un-univ:⇒*: [[ ⊢A , ⊢ℕA , DA ]]))
(transTerm:⇒:* (CastRed*Termℕ (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B) ))(un-univ≡ (subset* DA))
(refl (un-univ ⊢B))))) (conv ⊢t (subset* DA)) [[ ⊢B , ⊢ℕB , DB ]])
(conv:⇒*: (CastRed*Termℕℕ ⊢eℕℕ d) (sym (subset* DB)))))
(conv:⇒*: (transTerm:⇒:* (CastRed*Term ⊢B' ⊢e′ ⊢t′ (un-univ:⇒*: [[ ⊢A' , ⊢ℕA' , DA' ]]))
(transTerm:⇒:* (CastRed*Termℕ (conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢B') ))(un-univ≡ (subset* DA'))
(refl (un-univ ⊢B'))))) (conv ⊢t′ (subset* DA')) [[ ⊢B' , ⊢ℕB' , DB' ]])
(conv:⇒*: (CastRed*Termℕℕ ⊢eℕℕ' d′) (sym (subset* DB'))))) (sym (≅-eq ⊢B≡B′)))
(~-conv (~-castℕℕ ⊢Γ k≡m ⊢eℕℕ ⊢eℕℕ') (sym (subset* DB)))
[cast] : ∀ {A B Γ r}
(⊢Γ : ⊢ Γ)
([A] : Γ ⊩⟨ ι ⁰ ⟩ A ^ [ r , ι ⁰ ])
([B] : Γ ⊩⟨ ι ⁰ ⟩ B ^ [ r , ι ⁰ ])
→ (∀ {t e} → ([t] : Γ ⊩⟨ ι ⁰ ⟩ t ∷ A ^ [ r , ι ⁰ ] / [A]) → (⊢e : Γ ⊢ e ∷ Id (Univ r ⁰) A B ^ [ % , ι ¹ ]) → Γ ⊩⟨ ι ⁰ ⟩ cast ⁰ A B e t ∷ B ^ [ r , ι ⁰ ] / [B])
× (∀ {t e} → ([t] : Γ ⊩⟨ ι ⁰ ⟩ t ∷ B ^ [ r , ι ⁰ ] / [B]) → (⊢e : Γ ⊢ e ∷ Id (Univ r ⁰) B A ^ [ % , ι ¹ ]) → Γ ⊩⟨ ι ⁰ ⟩ cast ⁰ B A e t ∷ A ^ [ r , ι ⁰ ] / [A])
[castext] : ∀ {A A′ B B′ Γ r}
(⊢Γ : ⊢ Γ)
([A] : Γ ⊩⟨ ι ⁰ ⟩ A ^ [ r , ι ⁰ ])
([A′] : Γ ⊩⟨ ι ⁰ ⟩ A′ ^ [ r , ι ⁰ ])
([A≡A′] : Γ ⊩⟨ ι ⁰ ⟩ A ≡ A′ ^ [ r , ι ⁰ ] / [A])
([B] : Γ ⊩⟨ ι ⁰ ⟩ B ^ [ r , ι ⁰ ])
([B′] : Γ ⊩⟨ ι ⁰ ⟩ B′ ^ [ r , ι ⁰ ])
([B≡B′] : Γ ⊩⟨ ι ⁰ ⟩ B ≡ B′ ^ [ r , ι ⁰ ] / [B])
→ (∀ {t t′ e e′} → ([t] : Γ ⊩⟨ ι ⁰ ⟩ t ∷ A ^ [ r , ι ⁰ ] / [A])
→ ([t′] : Γ ⊩⟨ ι ⁰ ⟩ t′ ∷ A′ ^ [ r , ι ⁰ ] / [A′])
→ ([t≡t′] : Γ ⊩⟨ ι ⁰ ⟩ t ≡ t′ ∷ A ^ [ r , ι ⁰ ] / [A])
→ (⊢e : Γ ⊢ e ∷ Id (Univ r ⁰) A B ^ [ % , ι ¹ ])
→ (⊢e′ : Γ ⊢ e′ ∷ Id (Univ r ⁰) A′ B′ ^ [ % , ι ¹ ])
→ Γ ⊩⟨ ι ⁰ ⟩ cast ⁰ A B e t ≡ cast ⁰ A′ B′ e′ t′ ∷ B ^ [ r , ι ⁰ ] / [B])
× (∀ {t t′ e e′} → ([t] : Γ ⊩⟨ ι ⁰ ⟩ t ∷ B ^ [ r , ι ⁰ ] / [B])
→ ([t′] : Γ ⊩⟨ ι ⁰ ⟩ t′ ∷ B′ ^ [ r , ι ⁰ ] / [B′])
→ ([t≡t′] : Γ ⊩⟨ ι ⁰ ⟩ t ≡ t′ ∷ B ^ [ r , ι ⁰ ] / [B])
→ (⊢e : Γ ⊢ e ∷ Id (Univ r ⁰) B A ^ [ % , ι ¹ ])
→ (⊢e′ : Γ ⊢ e′ ∷ Id (Univ r ⁰) B′ A′ ^ [ % , ι ¹ ])
→ Γ ⊩⟨ ι ⁰ ⟩ cast ⁰ B A e t ≡ cast ⁰ B′ A′ e′ t′ ∷ A ^ [ r , ι ⁰ ] / [A])
[castextShape] : ∀ {A A′ B B′ Γ r}
(⊢Γ : ⊢ Γ)
([A] : Γ ⊩⟨ ι ⁰ ⟩ A ^ [ r , ι ⁰ ])
([A′] : Γ ⊩⟨ ι ⁰ ⟩ A′ ^ [ r , ι ⁰ ])
(ShapeA : ShapeView Γ (ι ⁰) (ι ⁰) A A′ [ r , ι ⁰ ] [ r , ι ⁰ ] [A] [A′])
([A≡A′] : Γ ⊩⟨ ι ⁰ ⟩ A ≡ A′ ^ [ r , ι ⁰ ] / [A])
([B] : Γ ⊩⟨ ι ⁰ ⟩ B ^ [ r , ι ⁰ ])
([B′] : Γ ⊩⟨ ι ⁰ ⟩ B′ ^ [ r , ι ⁰ ])
(ShapeB : ShapeView Γ (ι ⁰) (ι ⁰) B B′ [ r , ι ⁰ ] [ r , ι ⁰ ] [B] [B′])
([B≡B′] : Γ ⊩⟨ ι ⁰ ⟩ B ≡ B′ ^ [ r , ι ⁰ ] / [B])
→ (∀ {t t′ e e′} → ([t] : Γ ⊩⟨ ι ⁰ ⟩ t ∷ A ^ [ r , ι ⁰ ] / [A])
→ ([t′] : Γ ⊩⟨ ι ⁰ ⟩ t′ ∷ A′ ^ [ r , ι ⁰ ] / [A′])
→ ([t≡t′] : Γ ⊩⟨ ι ⁰ ⟩ t ≡ t′ ∷ A ^ [ r , ι ⁰ ] / [A])
→ (⊢e : Γ ⊢ e ∷ Id (Univ r ⁰) A B ^ [ % , ι ¹ ])
→ (⊢e′ : Γ ⊢ e′ ∷ Id (Univ r ⁰) A′ B′ ^ [ % , ι ¹ ])
→ Γ ⊩⟨ ι ⁰ ⟩ cast ⁰ A B e t ≡ cast ⁰ A′ B′ e′ t′ ∷ B ^ [ r , ι ⁰ ] / [B])
× (∀ {t t′ e e′} → ([t] : Γ ⊩⟨ ι ⁰ ⟩ t ∷ B ^ [ r , ι ⁰ ] / [B])
→ ([t′] : Γ ⊩⟨ ι ⁰ ⟩ t′ ∷ B′ ^ [ r , ι ⁰ ] / [B′])
→ ([t≡t′] : Γ ⊩⟨ ι ⁰ ⟩ t ≡ t′ ∷ B ^ [ r , ι ⁰ ] / [B])
→ (⊢e : Γ ⊢ e ∷ Id (Univ r ⁰) B A ^ [ % , ι ¹ ])
→ (⊢e′ : Γ ⊢ e′ ∷ Id (Univ r ⁰) B′ A′ ^ [ % , ι ¹ ])
→ Γ ⊩⟨ ι ⁰ ⟩ cast ⁰ B A e t ≡ cast ⁰ B′ A′ e′ t′ ∷ A ^ [ r , ι ⁰ ] / [A])
[cast] ⊢Γ (ℕᵣ x) (ℕᵣ x₁) = (λ [t] ⊢e → [cast]ℕ ⊢Γ x x₁ [t] ⊢e) , (λ [t] ⊢e → [cast]ℕ ⊢Γ x₁ x [t] ⊢e)
[cast] {A} {B} ⊢Γ (ℕᵣ x) (ne′ K [[ ⊢B , ⊢K , D ]] neK K≡K) =
(λ {t} {e} [t] ⊢e → let ⊢A≡ℕ = let [[ _ , _ , Dx ]] = x in un-univ≡ (subset* Dx)
⊢B≡K = un-univ≡ (subset* D)
⊢A≡ℕ' = let [[ _ , _ , Dx ]] = x in subset* Dx
⊢t = conv (escapeTerm {l = ι ⁰} (ℕᵣ x) [t]) ⊢A≡ℕ'
⊢e' = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B))) ⊢A≡ℕ ⊢B≡K))
in neₜ (cast ⁰ ℕ K e t)
(conv:⇒*: (transTerm:⇒:* (CastRed*Term ⊢B ⊢e (escapeTerm {l = ι ⁰} (ℕᵣ x) [t]) (un-univ:⇒*: x))
(CastRed*Termℕ (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B) )) ⊢A≡ℕ
(refl (un-univ ⊢B))))) ⊢t [[ ⊢B , ⊢K , D ]])) (subset* D) )
(neNfₜ (castℕₙ neK) (castⱼ (ℕⱼ (wf ⊢B)) (un-univ ⊢K) (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B) ))
⊢A≡ℕ (un-univ≡ (subset* D)))))
⊢t)
(~-castℕ (wf ⊢B) K≡K (≅-conv (escapeTermEq {l = ι ⁰} {A = A} (ℕᵣ x) (reflEqTerm {l = ι ⁰} (ℕᵣ x) [t])) ⊢A≡ℕ' ) ⊢e' ⊢e'))) ,
λ {t} {e} [t] ⊢e → [cast]Ne ⊢Γ (ne K [[ ⊢B , ⊢K , D ]] neK K≡K) (ℕᵣ x) [t] ⊢e
[cast] {A} {B} {r = .!} ⊢Γ (ℕᵣ x) (Πᵣ′ rF lF lG (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢B , ⊢Π , D ]] ⊢F ⊢G B≡B [F] [G] G-ext) =
(λ {t} {e} [t] ⊢e →
let ⊢A≡ℕ = let [[ _ , _ , Dx ]] = x in un-univ≡ (subset* (red x))
⊢A≡ℕ' = let [[ _ , _ , Dx ]] = x in subset* (red x)
⊢B≡Π = un-univ≡ (subset* D)
⊢t = conv (escapeTerm {l = ι ⁰} (ℕᵣ x) [t]) ⊢A≡ℕ'
t≅t = ≅-conv (escapeTermEq {l = ι ⁰} {A = A} (ℕᵣ x) (reflEqTerm {l = ι ⁰} (ℕᵣ x) [t])) ⊢A≡ℕ'
⊢e' = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B))) ⊢A≡ℕ ⊢B≡Π))
cast~cast = ~-castℕΠ (un-univ ⊢F) (un-univ ⊢G) (≅-un-univ B≡B) t≅t ⊢e' ⊢e'
in neuTerm:⇒*: {t = cast ⁰ A B e t} (Πᵣ′ rF lF lG (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢B , ⊢Π , D ]] ⊢F ⊢G B≡B [F] [G] G-ext)
castℕΠₙ (transTerm:⇒:* (CastRed*Term ⊢B ⊢e (escapeTerm {l = ι ⁰} (ℕᵣ x) [t]) (un-univ:⇒*: x))
(CastRed*Termℕ (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B) )) ⊢A≡ℕ
(refl (un-univ ⊢B))))) ⊢t [[ ⊢B , ⊢Π , D ]])) (~-conv cast~cast (sym (subset* D)))) ,
λ {t} {e} [t] ⊢e →
let ⊢B≡Π = un-univ≡ (subset* D)
⊢B≡Π' = subset* D
[[ ⊢A , ⊢N , Dx ]] = x
⊢A≡ℕ = subset* Dx
⊢t' = escapeTerm {l = ι ⁰} {A = B} (Πᵣ′ rF lF lG (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢B , ⊢Π , D ]] ⊢F ⊢G B≡B [F] [G] G-ext) [t]
⊢t = conv {B = (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰)} ⊢t' ⊢B≡Π'
t≅t = ≅-conv (escapeTermEq {l = ι ⁰} {A = B} (Πᵣ′ rF lF lG (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢B , ⊢Π , D ]] ⊢F ⊢G B≡B [F] [G] G-ext)
(reflEqTerm {l = ι ⁰} (Πᵣ′ rF lF lG (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢B , ⊢Π , D ]] ⊢F ⊢G B≡B [F] [G] G-ext) [t])) ⊢B≡Π'
⊢e' = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B))) ⊢B≡Π (un-univ≡ ⊢A≡ℕ)))
cast~cast = ~-castΠℕ (un-univ ⊢F) (un-univ ⊢G) (≅-un-univ B≡B) t≅t ⊢e' ⊢e'
in neuTerm:⇒*: {l = ∞} (ℕᵣ x) castΠℕₙ (conv:⇒*: (transTerm:⇒:* (CastRed*Term ⊢A ⊢e ⊢t' (un-univ:⇒*: [[ ⊢B , ⊢Π , D ]]))
(CastRed*TermΠ (un-univ ⊢F ) (un-univ ⊢G) (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B) )) ⊢B≡Π
(refl (un-univ ⊢A))))) ⊢t [[ ⊢A , ⊢N , Dx ]])) (refl ⊢A )) (~-conv cast~cast (sym ⊢A≡ℕ))
[cast] {A} {B} ⊢Γ (ne′ K [[ ⊢B , ⊢K , D ]] neK K≡K) (ℕᵣ x) =
(λ {t} {e} [t] ⊢e → [cast]Ne ⊢Γ (ne K [[ ⊢B , ⊢K , D ]] neK K≡K) (ℕᵣ x) [t] ⊢e) ,
(λ {t} {e} [t] ⊢e → let ⊢A≡ℕ = let [[ _ , _ , Dx ]] = x in un-univ≡ (subset* Dx)
⊢A≡ℕ' = let [[ _ , _ , Dx ]] = x in subset* Dx
⊢B≡K = un-univ≡ (subset* D)
⊢t = conv (escapeTerm {l = ι ⁰} (ℕᵣ x) [t]) ⊢A≡ℕ'
⊢e' = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B))) ⊢A≡ℕ ⊢B≡K))
in neₜ (cast ⁰ ℕ K e t)
(conv:⇒*: (transTerm:⇒:* (CastRed*Term ⊢B ⊢e (escapeTerm {l = ι ⁰} (ℕᵣ x) [t]) (un-univ:⇒*: x))
(CastRed*Termℕ (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B) )) ⊢A≡ℕ
(refl (un-univ ⊢B))))) ⊢t [[ ⊢B , ⊢K , D ]])) (subset* D) )
(neNfₜ (castℕₙ neK) (castⱼ (ℕⱼ (wf ⊢B)) (un-univ ⊢K) (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B) ))
⊢A≡ℕ (un-univ≡ (subset* D)))))
⊢t)
(~-castℕ (wf ⊢B) K≡K (≅-conv (escapeTermEq {l = ι ⁰} {A = B} (ℕᵣ x) (reflEqTerm {l = ι ⁰} (ℕᵣ x) [t])) ⊢A≡ℕ' ) ⊢e' ⊢e')))
[cast] {r = !} ⊢Γ (ne x) (ne x₁) = (λ {t} {e} [t] ⊢e → [cast]Ne ⊢Γ x (ne x₁) [t] ⊢e) , λ {t} {e} [t] ⊢e → [cast]Ne ⊢Γ x₁ (ne x) [t] ⊢e
[cast] {A} {B} {r = !} ⊢Γ (ne′ K [[ ⊢A , ⊢K , D ]] neK K≡K) (Πᵣ′ rF lF lG (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢B , ⊢Π , DΠ ]] ⊢F ⊢G B≡B [F] [G] G-ext) =
(λ {t} {e} [t] ⊢e → [cast]Ne ⊢Γ (ne K [[ ⊢A , ⊢K , D ]] neK K≡K) (Πᵣ′ rF lF lG (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢B , ⊢Π , DΠ ]] ⊢F ⊢G B≡B [F] [G] G-ext) [t] ⊢e) ,
(λ {t} {e} [t] ⊢e → let ⊢B≡Π = un-univ≡ (subset* DΠ)
⊢B≡Π' = subset* DΠ
⊢A≡K = un-univ≡ (subset* D)
[Π] = Πᵣ′ rF lF lG (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢B , ⊢Π , DΠ ]] ⊢F ⊢G B≡B [F] [G] G-ext
⊢t' = escapeTerm {l = ι ⁰} [Π] [t]
⊢t = conv ⊢t' ⊢B≡Π'
⊢e' = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B))) ⊢B≡Π ⊢A≡K))
in neₜ (cast ⁰ (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) K e t)
(conv:⇒*: (transTerm:⇒:* (CastRed*Term ⊢A ⊢e ⊢t' (un-univ:⇒*: [[ ⊢B , ⊢Π , DΠ ]]))
(CastRed*TermΠ (un-univ ⊢F) (un-univ ⊢G) (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B) )) ⊢B≡Π
(refl (un-univ ⊢A))))) ⊢t [[ ⊢A , ⊢K , D ]])) (subset* D) )
(neNfₜ (castΠₙ neK) (castⱼ (Πⱼ ≡is≤ PE.refl ▹ ≡is≤ PE.refl ▹ un-univ ⊢F ▹ un-univ ⊢G) (un-univ ⊢K) (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B) ))
⊢B≡Π (un-univ≡ (subset* D)))))
⊢t)
(~-castΠ (≅-un-univ B≡B) K≡K (≅-conv (escapeTermEq {l = ι ⁰} {A = B} [Π] (reflEqTerm {l = ι ⁰} [Π] [t])) ⊢B≡Π' ) ⊢e' ⊢e')))
[cast] {A} {B} ⊢Γ (Πᵣ′ rF lF lG (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢B , ⊢Π , D ]] ⊢F ⊢G B≡B [F] [G] G-ext) (ℕᵣ x) =
(λ {t} {e} [t] ⊢e →
let ⊢B≡Π = un-univ≡ (subset* D)
⊢B≡Π' = subset* D
[[ ⊢A , ⊢N , Dx ]] = x
⊢A≡ℕ = subset* Dx
⊢t' = escapeTerm {l = ι ⁰} {A = A} (Πᵣ′ rF lF lG (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢B , ⊢Π , D ]] ⊢F ⊢G B≡B [F] [G] G-ext) [t]
⊢t = conv {B = (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰)} ⊢t' ⊢B≡Π'
t≅t = ≅-conv (escapeTermEq {l = ι ⁰} {A = A} (Πᵣ′ rF lF lG (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢B , ⊢Π , D ]] ⊢F ⊢G B≡B [F] [G] G-ext)
(reflEqTerm {l = ι ⁰} (Πᵣ′ rF lF lG (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢B , ⊢Π , D ]] ⊢F ⊢G B≡B [F] [G] G-ext) [t])) ⊢B≡Π'
⊢e' = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B))) ⊢B≡Π (un-univ≡ ⊢A≡ℕ)))
cast~cast = ~-castΠℕ (un-univ ⊢F) (un-univ ⊢G) (≅-un-univ B≡B) t≅t ⊢e' ⊢e'
in neuTerm:⇒*: {l = ∞} {t = cast ⁰ A B e t} (ℕᵣ x) castΠℕₙ (conv:⇒*: (transTerm:⇒:* (CastRed*Term ⊢A ⊢e ⊢t' (un-univ:⇒*: [[ ⊢B , ⊢Π , D ]]))
(CastRed*TermΠ (un-univ ⊢F ) (un-univ ⊢G) (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B) )) ⊢B≡Π
(refl (un-univ ⊢A))))) ⊢t [[ ⊢A , ⊢N , Dx ]])) (refl ⊢A )) (~-conv cast~cast (sym ⊢A≡ℕ))) ,
(λ {t} {e} [t] ⊢e →
let ⊢B≡Π = un-univ≡ (subset* D)
⊢A≡ℕ = let [[ _ , _ , Dx ]] = x in un-univ≡ (subset* (red x))
⊢A≡ℕ' = let [[ _ , _ , Dx ]] = x in subset* (red x)
⊢t = conv (escapeTerm {l = ι ⁰} (ℕᵣ x) [t]) ⊢A≡ℕ'
t≅t = ≅-conv (escapeTermEq {l = ι ⁰} {A = B} (ℕᵣ x) (reflEqTerm {l = ι ⁰} (ℕᵣ x) [t])) ⊢A≡ℕ'
⊢e' = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B))) ⊢A≡ℕ ⊢B≡Π ))
cast~cast = ~-castℕΠ (un-univ ⊢F) (un-univ ⊢G) (≅-un-univ B≡B) t≅t ⊢e' ⊢e'
in neuTerm:⇒*: {t = cast ⁰ B A e t} (Πᵣ′ rF lF lG (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢B , ⊢Π , D ]] ⊢F ⊢G B≡B [F] [G] G-ext)
castℕΠₙ (transTerm:⇒:* (CastRed*Term ⊢B ⊢e (escapeTerm {l = ι ⁰} (ℕᵣ x) [t]) (un-univ:⇒*: x))
(CastRed*Termℕ (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B) )) ⊢A≡ℕ
(refl (un-univ ⊢B))))) ⊢t [[ ⊢B , ⊢Π , D ]])) (~-conv cast~cast (sym (subset* D))))
[cast] {A} {B} {r = !} ⊢Γ (Πᵣ′ rF lF lG (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢B , ⊢Π , DΠ ]] ⊢F ⊢G B≡B [F] [G] G-ext) (ne′ K [[ ⊢A , ⊢K , D ]] neK K≡K) =
(λ {t} {e} [t] ⊢e → let ⊢B≡Π = un-univ≡ (subset* DΠ)
⊢A≡K = un-univ≡ (subset* D)
⊢B≡Π' = subset* DΠ
[Π] = Πᵣ′ rF lF lG (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢B , ⊢Π , DΠ ]] ⊢F ⊢G B≡B [F] [G] G-ext
⊢t' = escapeTerm {l = ι ⁰} [Π] [t]
⊢t = conv ⊢t' ⊢B≡Π'
⊢e' = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B))) ⊢B≡Π ⊢A≡K))
in neₜ (cast ⁰ (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) K e t)
(conv:⇒*: (transTerm:⇒:* (CastRed*Term ⊢A ⊢e ⊢t' (un-univ:⇒*: [[ ⊢B , ⊢Π , DΠ ]]))
(CastRed*TermΠ (un-univ ⊢F) (un-univ ⊢G) (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B) )) ⊢B≡Π
(refl (un-univ ⊢A))))) ⊢t [[ ⊢A , ⊢K , D ]])) (subset* D) )
(neNfₜ (castΠₙ neK) (castⱼ (Πⱼ ≡is≤ PE.refl ▹ ≡is≤ PE.refl ▹ un-univ ⊢F ▹ un-univ ⊢G) (un-univ ⊢K) (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B) ))
⊢B≡Π (un-univ≡ (subset* D)))))
⊢t)
(~-castΠ (≅-un-univ B≡B) K≡K (≅-conv (escapeTermEq {l = ι ⁰} {A = A} [Π] (reflEqTerm {l = ι ⁰} [Π] [t])) ⊢B≡Π' ) ⊢e' ⊢e'))) ,
(λ {t} {e} [t] ⊢e → [cast]Ne ⊢Γ (ne K [[ ⊢A , ⊢K , D ]] neK K≡K) (Πᵣ′ rF lF lG (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢B , ⊢Π , DΠ ]] ⊢F ⊢G B≡B [F] [G] G-ext) [t] ⊢e)
[cast] {r = %} ⊢Γ [A] [B] = [cast]irr ⊢Γ [A] [B] , [cast]irr ⊢Γ [B] [A]
[cast] {A} {B} {Γ} {r = !} ⊢Γ (Πᵣ′ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ′ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ D₁ ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext) =
(λ {t} {e} [t] ⊢e →
let [A] = Πᵣ′ % ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G D ⊢F ⊢G A≡A [F] [G] G-ext
⊢A = escape [A]
[B] = Πᵣ′ ! ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ D₁ ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext
⊢B = escape [B]
⊢t = escapeTerm [A] [t]
⊢A≡Π = subset* (red D)
⊢B≡Π = subset* (red D₁)
⊢t≡t = ≅-conv (escapeTermEq {l = ι ⁰} [A] (reflEqTerm {l = ι ⁰} [A] [t])) ⊢A≡Π
⊢e' = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B))) (un-univ≡ ⊢A≡Π) (un-univ≡ ⊢B≡Π)))
cast~cast = ~-conv (~-castΠΠ%! (un-univ ⊢F) (un-univ ⊢G) (≅-un-univ A≡A) (un-univ ⊢F₁) (un-univ ⊢G₁) (≅-un-univ A₁≡A₁) ⊢t≡t ⊢e' ⊢e') (sym ⊢B≡Π)
in neuTerm:⇒*: {t = cast ⁰ A B e t} [B]
castΠΠ%!ₙ (transTerm:⇒:* (CastRed*Term ⊢B ⊢e ⊢t (un-univ:⇒*: D))
(CastRed*TermΠ (un-univ ⊢F ) (un-univ ⊢G) (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B) )) (un-univ≡ ⊢A≡Π)
(refl (un-univ ⊢B))))) (conv ⊢t ⊢A≡Π) D₁)) cast~cast) ,
(λ {t} {e} [t] ⊢e →
let [A] = Πᵣ′ % ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G D ⊢F ⊢G A≡A [F] [G] G-ext
⊢A = escape [A]
[B] = Πᵣ′ ! ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ D₁ ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext
⊢B = escape [B]
⊢t = escapeTerm [B] [t]
⊢A≡Π = subset* (red D)
⊢B≡Π = subset* (red D₁)
⊢t≡t = ≅-conv (escapeTermEq {l = ι ⁰} [B] (reflEqTerm {l = ι ⁰} [B] [t])) ⊢B≡Π
⊢e' = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B))) (un-univ≡ ⊢B≡Π) (un-univ≡ ⊢A≡Π)))
cast~cast = ~-conv (~-castΠΠ!% (un-univ ⊢F₁) (un-univ ⊢G₁) (≅-un-univ A₁≡A₁) (un-univ ⊢F) (un-univ ⊢G) (≅-un-univ A≡A) ⊢t≡t ⊢e' ⊢e') (sym ⊢A≡Π)
in neuTerm:⇒*: {t = cast ⁰ B A e t} [A]
castΠΠ!%ₙ (transTerm:⇒:* (CastRed*Term ⊢A ⊢e ⊢t (un-univ:⇒*: D₁))
(CastRed*TermΠ (un-univ ⊢F₁ ) (un-univ ⊢G₁) (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢A) )) (un-univ≡ ⊢B≡Π)
(refl (un-univ ⊢A))))) (conv ⊢t ⊢B≡Π) D)) cast~cast)
[cast] {A} {B} {Γ} {r = !} ⊢Γ (Πᵣ′ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ′ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ D₁ ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext) =
(λ {t} {e} [t] ⊢e →
let [A] = Πᵣ′ ! ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G D ⊢F ⊢G A≡A [F] [G] G-ext
⊢A = escape [A]
[B] = Πᵣ′ % ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ D₁ ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext
⊢B = escape [B]
⊢t = escapeTerm [A] [t]
⊢A≡Π = subset* (red D)
⊢B≡Π = subset* (red D₁)
⊢t≡t = ≅-conv (escapeTermEq {l = ι ⁰} [A] (reflEqTerm {l = ι ⁰} [A] [t])) ⊢A≡Π
⊢e' = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B))) (un-univ≡ ⊢A≡Π) (un-univ≡ ⊢B≡Π)))
cast~cast = ~-conv (~-castΠΠ!% (un-univ ⊢F) (un-univ ⊢G) (≅-un-univ A≡A) (un-univ ⊢F₁) (un-univ ⊢G₁) (≅-un-univ A₁≡A₁) ⊢t≡t ⊢e' ⊢e') (sym ⊢B≡Π)
in neuTerm:⇒*: {t = cast ⁰ A B e t} [B]
castΠΠ!%ₙ (transTerm:⇒:* (CastRed*Term ⊢B ⊢e ⊢t (un-univ:⇒*: D))
(CastRed*TermΠ (un-univ ⊢F ) (un-univ ⊢G) (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B) )) (un-univ≡ ⊢A≡Π)
(refl (un-univ ⊢B))))) (conv ⊢t ⊢A≡Π) D₁)) cast~cast) ,
(λ {t} {e} [t] ⊢e →
let [A] = Πᵣ′ ! ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G D ⊢F ⊢G A≡A [F] [G] G-ext
⊢A = escape [A]
[B] = Πᵣ′ % ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ D₁ ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext
⊢B = escape [B]
⊢t = escapeTerm [B] [t]
⊢A≡Π = subset* (red D)
⊢B≡Π = subset* (red D₁)
⊢t≡t = ≅-conv (escapeTermEq {l = ι ⁰} [B] (reflEqTerm {l = ι ⁰} [B] [t])) ⊢B≡Π
⊢e' = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢B))) (un-univ≡ ⊢B≡Π) (un-univ≡ ⊢A≡Π)))
cast~cast = ~-conv (~-castΠΠ%! (un-univ ⊢F₁) (un-univ ⊢G₁) (≅-un-univ A₁≡A₁) (un-univ ⊢F) (un-univ ⊢G) (≅-un-univ A≡A) ⊢t≡t ⊢e' ⊢e') (sym ⊢A≡Π)
in neuTerm:⇒*: {t = cast ⁰ B A e t} [A]
castΠΠ%!ₙ (transTerm:⇒:* (CastRed*Term ⊢A ⊢e ⊢t (un-univ:⇒*: D₁))
(CastRed*TermΠ (un-univ ⊢F₁ ) (un-univ ⊢G₁) (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢A) )) (un-univ≡ ⊢B≡Π)
(refl (un-univ ⊢A))))) (conv ⊢t ⊢B≡Π) D)) cast~cast)
[cast] {A} {B} {Γ} {r = !} ⊢Γ (Πᵣ′ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢A , ⊢ΠFG , D ]] ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ′ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢B , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext) =
[cast]₁ , [cast]₂
where
module b₁ = cast-ΠΠ-lemmas ⊢Γ ⊢F [F] ⊢F₁ [F₁]
(λ [ρ] ⊢Δ → proj₂ ([cast] ⊢Δ ([F] [ρ] ⊢Δ) ([F₁] [ρ] ⊢Δ)))
(λ [ρ] ⊢Δ → proj₂ ([castext] ⊢Δ ([F] [ρ] ⊢Δ) ([F] [ρ] ⊢Δ) (reflEq ([F] [ρ] ⊢Δ)) ([F₁] [ρ] ⊢Δ) ([F₁] [ρ] ⊢Δ) (reflEq ([F₁] [ρ] ⊢Δ))))
module b₂ = cast-ΠΠ-lemmas ⊢Γ ⊢F₁ [F₁] ⊢F [F]
(λ [ρ] ⊢Δ → proj₁ ([cast] ⊢Δ ([F] [ρ] ⊢Δ) ([F₁] [ρ] ⊢Δ)))
(λ [ρ] ⊢Δ → proj₁ ([castext] ⊢Δ ([F] [ρ] ⊢Δ) ([F] [ρ] ⊢Δ) (reflEq ([F] [ρ] ⊢Δ)) ([F₁] [ρ] ⊢Δ) ([F₁] [ρ] ⊢Δ) (reflEq ([F₁] [ρ] ⊢Δ))))
[A] = (Πᵣ′ ! ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢A , ⊢ΠFG , D ]] ⊢F ⊢G A≡A [F] [G] G-ext)
[B] = (Πᵣ′ ! ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢B , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext)
[cast]₁ : ∀ {t e} → ([t] : Γ ⊩⟨ ι ⁰ ⟩ t ∷ A ^ [ ! , ι ⁰ ] / [A])
→ (⊢e : Γ ⊢ e ∷ Id (U ⁰) A B ^ [ % , ι ¹ ])
→ Γ ⊩⟨ ι ⁰ ⟩ cast ⁰ A B e t ∷ B ^ [ ! , ι ⁰ ] / [B]
[cast]₁ {t} {e} (f , [[ ⊢t , ⊢f , Df ]] , funf , f≡f , [fext] , [f]) ⊢e = [castΠΠ]
where
open cast-ΠΠ-lemmas-2 ⊢Γ ⊢A ⊢ΠFG D ⊢F ⊢G A≡A [F] [G] G-ext ⊢B ⊢ΠF₁G₁ D₁ ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext ⊢e
(λ [ρ] ⊢Δ [x] [y] → proj₁ ([cast] ⊢Δ ([G] [ρ] ⊢Δ [x]) ([G₁] [ρ] ⊢Δ [y])))
(λ [ρ] ⊢Δ [x] [x′] [x≡x′] [y] [y′] [y≡y′] →
proj₁ ([castext] ⊢Δ ([G] [ρ] ⊢Δ [x]) ([G] [ρ] ⊢Δ [x′]) (G-ext [ρ] ⊢Δ [x] [x′] [x≡x′])
([G₁] [ρ] ⊢Δ [y]) ([G₁] [ρ] ⊢Δ [y′]) (G₁-ext [ρ] ⊢Δ [y] [y′] [y≡y′])))
⊢t Df [fext] [f] b₁.[b] b₁.[bext]
[cast]₂ : ∀ {t e} → ([t] : Γ ⊩⟨ ι ⁰ ⟩ t ∷ B ^ [ ! , ι ⁰ ] / [B])
→ (⊢e : Γ ⊢ e ∷ Id (U ⁰) B A ^ [ % , ι ¹ ])
→ Γ ⊩⟨ ι ⁰ ⟩ cast ⁰ B A e t ∷ A ^ [ ! , ι ⁰ ] / [A]
[cast]₂ {t} {e} (f , [[ ⊢t , ⊢f , Df ]] , funf , f≡f , [fext] , [f]) ⊢e = [castΠΠ]
where
open cast-ΠΠ-lemmas-2 ⊢Γ ⊢B ⊢ΠF₁G₁ D₁ ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext ⊢A ⊢ΠFG D ⊢F ⊢G A≡A [F] [G] G-ext ⊢e
(λ [ρ] ⊢Δ [y] [x] → proj₂ ([cast] ⊢Δ ([G] [ρ] ⊢Δ [x]) ([G₁] [ρ] ⊢Δ [y])))
(λ [ρ] ⊢Δ [y] [y′] [y≡y′] [x] [x′] [x≡x′] →
proj₂ ([castext] ⊢Δ ([G] [ρ] ⊢Δ [x]) ([G] [ρ] ⊢Δ [x′]) (G-ext [ρ] ⊢Δ [x] [x′] [x≡x′])
([G₁] [ρ] ⊢Δ [y]) ([G₁] [ρ] ⊢Δ [y′]) (G₁-ext [ρ] ⊢Δ [y] [y′] [y≡y′])))
⊢t Df [fext] [f] b₂.[b] b₂.[bext]
[cast] {A} {B} {Γ} {r = !} ⊢Γ (Πᵣ′ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢A , ⊢ΠFG , D ]] ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ′ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢B , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext) =
[cast]₁ , [cast]₂
where
module b₁ = cast-ΠΠ-lemmas ⊢Γ ⊢F [F] ⊢F₁ [F₁]
(λ [ρ] ⊢Δ → proj₂ ([cast] ⊢Δ ([F] [ρ] ⊢Δ) ([F₁] [ρ] ⊢Δ)))
(λ [ρ] ⊢Δ → proj₂ ([castext] ⊢Δ ([F] [ρ] ⊢Δ) ([F] [ρ] ⊢Δ) (reflEq ([F] [ρ] ⊢Δ)) ([F₁] [ρ] ⊢Δ) ([F₁] [ρ] ⊢Δ) (reflEq ([F₁] [ρ] ⊢Δ))))
module b₂ = cast-ΠΠ-lemmas ⊢Γ ⊢F₁ [F₁] ⊢F [F]
(λ [ρ] ⊢Δ → proj₁ ([cast] ⊢Δ ([F] [ρ] ⊢Δ) ([F₁] [ρ] ⊢Δ)))
(λ [ρ] ⊢Δ → proj₁ ([castext] ⊢Δ ([F] [ρ] ⊢Δ) ([F] [ρ] ⊢Δ) (reflEq ([F] [ρ] ⊢Δ)) ([F₁] [ρ] ⊢Δ) ([F₁] [ρ] ⊢Δ) (reflEq ([F₁] [ρ] ⊢Δ))))
[A] = (Πᵣ′ % ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢A , ⊢ΠFG , D ]] ⊢F ⊢G A≡A [F] [G] G-ext)
[B] = (Πᵣ′ % ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢B , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext)
[cast]₁ : ∀ {t e} → ([t] : Γ ⊩⟨ ι ⁰ ⟩ t ∷ A ^ [ ! , ι ⁰ ] / [A])
→ (⊢e : Γ ⊢ e ∷ Id (U ⁰) A B ^ [ % , ι ¹ ])
→ Γ ⊩⟨ ι ⁰ ⟩ cast ⁰ A B e t ∷ B ^ [ ! , ι ⁰ ] / [B]
[cast]₁ {t} {e} (f , [[ ⊢t , ⊢f , Df ]] , funf , f≡f , [fext] , [f]) ⊢e = [castΠΠ]
where
open cast-ΠΠ-lemmas-2 ⊢Γ ⊢A ⊢ΠFG D ⊢F ⊢G A≡A [F] [G] G-ext ⊢B ⊢ΠF₁G₁ D₁ ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext ⊢e
(λ [ρ] ⊢Δ [x] [y] → proj₁ ([cast] ⊢Δ ([G] [ρ] ⊢Δ [x]) ([G₁] [ρ] ⊢Δ [y])))
(λ [ρ] ⊢Δ [x] [x′] [x≡x′] [y] [y′] [y≡y′] →
proj₁ ([castext] ⊢Δ ([G] [ρ] ⊢Δ [x]) ([G] [ρ] ⊢Δ [x′]) (G-ext [ρ] ⊢Δ [x] [x′] [x≡x′])
([G₁] [ρ] ⊢Δ [y]) ([G₁] [ρ] ⊢Δ [y′]) (G₁-ext [ρ] ⊢Δ [y] [y′] [y≡y′])))
⊢t Df [fext] [f] b₁.[b] b₁.[bext]
[cast]₂ : ∀ {t e} → ([t] : Γ ⊩⟨ ι ⁰ ⟩ t ∷ B ^ [ ! , ι ⁰ ] / [B])
→ (⊢e : Γ ⊢ e ∷ Id (U ⁰) B A ^ [ % , ι ¹ ])
→ Γ ⊩⟨ ι ⁰ ⟩ cast ⁰ B A e t ∷ A ^ [ ! , ι ⁰ ] / [A]
[cast]₂ {t} {e} (f , [[ ⊢t , ⊢f , Df ]] , funf , f≡f , [fext] , [f]) ⊢e = [castΠΠ]
where
open cast-ΠΠ-lemmas-2 ⊢Γ ⊢B ⊢ΠF₁G₁ D₁ ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext ⊢A ⊢ΠFG D ⊢F ⊢G A≡A [F] [G] G-ext ⊢e
(λ [ρ] ⊢Δ [y] [x] → proj₂ ([cast] ⊢Δ ([G] [ρ] ⊢Δ [x]) ([G₁] [ρ] ⊢Δ [y])))
(λ [ρ] ⊢Δ [y] [y′] [y≡y′] [x] [x′] [x≡x′] →
proj₂ ([castext] ⊢Δ ([G] [ρ] ⊢Δ [x]) ([G] [ρ] ⊢Δ [x′]) (G-ext [ρ] ⊢Δ [x] [x′] [x≡x′])
([G₁] [ρ] ⊢Δ [y]) ([G₁] [ρ] ⊢Δ [y′]) (G₁-ext [ρ] ⊢Δ [y] [y′] [y≡y′])))
⊢t Df [fext] [f] b₂.[b] b₂.[bext]
[castextShape] {A₁} {A₂} {A₃} {A₄} {Γ} {r = !} ⊢Γ
_ _
(Πᵥ (Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext)
(Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₂ G₂ [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]] ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext))
(Π₌ F₂′ G₂′ D₂′ A₁≡A₂′ [F₁≡F₂′] [G₁≡G₂′]) =
let ΠFG′≡ΠFG′₁ = whrDet* (D₂ , Πₙ) (D₂′ , Πₙ)
F′≡F′₁ , rF≡rF′ , _ , G′≡G′₁ , _ = Π-PE-injectivity ΠFG′≡ΠFG′₁
in ⊥-elim (!≢% (PE.sym rF≡rF′))
[castextShape] {A₁} {A₂} {A₃} {A₄} {Γ} {r = !} ⊢Γ
_ _
(Πᵥ (Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext)
(Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₂ G₂ [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]] ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext))
(Π₌ F₂′ G₂′ D₂′ A₁≡A₂′ [F₁≡F₂′] [G₁≡G₂′])
=
let ΠFG′≡ΠFG′₁ = whrDet* (D₂ , Πₙ) (D₂′ , Πₙ)
F′≡F′₁ , rF≡rF′ , _ , G′≡G′₁ , _ = Π-PE-injectivity ΠFG′≡ΠFG′₁
in ⊥-elim (!≢% rF≡rF′)
[castextShape] {A₁} {A₂} {A₃} {A₄} {Γ} {r = !} ⊢Γ
_ _
(Πᵥ (Πᵣ r1 .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext)
(Πᵣ r2 .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₂ G₂ [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]] ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext))
(Π₌ F₂′ G₂′ D₂′ A₁≡A₂′ [F₁≡F₂′] [G₁≡G₂′])
_ _
(Πᵥ (Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₃ G₃ [[ ⊢A₃ , ⊢ΠF₃G₃ , D₃ ]] ⊢F₃ ⊢G₃ A₃≡A₃ [F₃] [G₃] G₃-ext)
(Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₄ G₄ [[ ⊢A₄ , ⊢ΠF₄G₄ , D₄ ]] ⊢F₄ ⊢G₄ A₄≡A₄ [F₄] [G₄] G₄-ext))
(Π₌ F₄′ G₄′ D₄′ A₃≡A₄′ [F₃≡F₄′] [G₃≡G₄′]) =
let ΠFG′≡ΠFG′₁ = whrDet* (D₄ , Πₙ) (D₄′ , Πₙ)
F′≡F′₁ , rF≡rF′ , _ , G′≡G′₁ , _ = Π-PE-injectivity ΠFG′≡ΠFG′₁
in ⊥-elim (!≢% rF≡rF′)
[castextShape] {A₁} {A₂} {A₃} {A₄} {Γ} {r = !} ⊢Γ
_ _
(Πᵥ (Πᵣ r1 .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext)
(Πᵣ r2 .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₂ G₂ [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]] ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext))
(Π₌ F₂′ G₂′ D₂′ A₁≡A₂′ [F₁≡F₂′] [G₁≡G₂′])
_ _
(Πᵥ (Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₃ G₃ [[ ⊢A₃ , ⊢ΠF₃G₃ , D₃ ]] ⊢F₃ ⊢G₃ A₃≡A₃ [F₃] [G₃] G₃-ext)
(Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₄ G₄ [[ ⊢A₄ , ⊢ΠF₄G₄ , D₄ ]] ⊢F₄ ⊢G₄ A₄≡A₄ [F₄] [G₄] G₄-ext))
(Π₌ F₄′ G₄′ D₄′ A₃≡A₄′ [F₃≡F₄′] [G₃≡G₄′]) =
let ΠFG′≡ΠFG′₁ = whrDet* (D₄ , Πₙ) (D₄′ , Πₙ)
F′≡F′₁ , rF≡rF′ , _ , G′≡G′₁ , _ = Π-PE-injectivity ΠFG′≡ΠFG′₁
in ⊥-elim (!≢% (PE.sym rF≡rF′))
[castextShape] {A₁} {A₂} {A₃} {A₄} {Γ} {r = !} ⊢Γ
_ _
(Πᵥ (Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext)
(Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₂ G₂ [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]] ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext))
(Π₌ F₂′ G₂′ D₂′ A₁≡A₂′ [F₁≡F₂′] [G₁≡G₂′])
_ _
(Πᵥ (Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₃ G₃ [[ ⊢A₃ , ⊢ΠF₃G₃ , D₃ ]] ⊢F₃ ⊢G₃ A₃≡A₃ [F₃] [G₃] G₃-ext)
(Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₄ G₄ [[ ⊢A₄ , ⊢ΠF₄G₄ , D₄ ]] ⊢F₄ ⊢G₄ A₄≡A₄ [F₄] [G₄] G₄-ext))
(Π₌ F₄′ G₄′ D₄′ A₃≡A₄′ [F₃≡F₄′] [G₃≡G₄′]) =
([castext]₁ , [castext]₂)
where
module b₁ = cast-ΠΠ-lemmas ⊢Γ ⊢F₁ [F₁] ⊢F₃ [F₃]
(λ [ρ] ⊢Δ → proj₂ ([cast] ⊢Δ ([F₁] [ρ] ⊢Δ) ([F₃] [ρ] ⊢Δ)))
(λ [ρ] ⊢Δ → proj₂ ([castext] ⊢Δ ([F₁] [ρ] ⊢Δ) ([F₁] [ρ] ⊢Δ) (reflEq ([F₁] [ρ] ⊢Δ)) ([F₃] [ρ] ⊢Δ) ([F₃] [ρ] ⊢Δ) (reflEq ([F₃] [ρ] ⊢Δ))))
module b₂ = cast-ΠΠ-lemmas ⊢Γ ⊢F₂ [F₂] ⊢F₄ [F₄]
(λ [ρ] ⊢Δ → proj₂ ([cast] ⊢Δ ([F₂] [ρ] ⊢Δ) ([F₄] [ρ] ⊢Δ)))
(λ [ρ] ⊢Δ → proj₂ ([castext] ⊢Δ ([F₂] [ρ] ⊢Δ) ([F₂] [ρ] ⊢Δ) (reflEq ([F₂] [ρ] ⊢Δ)) ([F₄] [ρ] ⊢Δ) ([F₄] [ρ] ⊢Δ) (reflEq ([F₄] [ρ] ⊢Δ))))
module b₃ = cast-ΠΠ-lemmas ⊢Γ ⊢F₃ [F₃] ⊢F₁ [F₁]
(λ [ρ] ⊢Δ → proj₁ ([cast] ⊢Δ ([F₁] [ρ] ⊢Δ) ([F₃] [ρ] ⊢Δ)))
(λ [ρ] ⊢Δ → proj₁ ([castext] ⊢Δ ([F₁] [ρ] ⊢Δ) ([F₁] [ρ] ⊢Δ) (reflEq ([F₁] [ρ] ⊢Δ)) ([F₃] [ρ] ⊢Δ) ([F₃] [ρ] ⊢Δ) (reflEq ([F₃] [ρ] ⊢Δ))))
module b₄ = cast-ΠΠ-lemmas ⊢Γ ⊢F₄ [F₄] ⊢F₂ [F₂]
(λ [ρ] ⊢Δ → proj₁ ([cast] ⊢Δ ([F₂] [ρ] ⊢Δ) ([F₄] [ρ] ⊢Δ)))
(λ [ρ] ⊢Δ → proj₁ ([castext] ⊢Δ ([F₂] [ρ] ⊢Δ) ([F₂] [ρ] ⊢Δ) (reflEq ([F₂] [ρ] ⊢Δ)) ([F₄] [ρ] ⊢Δ) ([F₄] [ρ] ⊢Δ) (reflEq ([F₄] [ρ] ⊢Δ))))
[A₁] = (Πᵣ′ ! ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext)
[A₂] = (Πᵣ′ ! ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₂ G₂ [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]] ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext)
[A₁≡A₂] = (Π₌ F₂′ G₂′ D₂′ A₁≡A₂′ [F₁≡F₂′] [G₁≡G₂′])
[A₃] = (Πᵣ′ ! ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₃ G₃ [[ ⊢A₃ , ⊢ΠF₃G₃ , D₃ ]] ⊢F₃ ⊢G₃ A₃≡A₃ [F₃] [G₃] G₃-ext)
[A₄] = (Πᵣ′ ! ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₄ G₄ [[ ⊢A₄ , ⊢ΠF₄G₄ , D₄ ]] ⊢F₄ ⊢G₄ A₄≡A₄ [F₄] [G₄] G₄-ext)
[A₃≡A₄] = (Π₌ F₄′ G₄′ D₄′ A₃≡A₄′ [F₃≡F₄′] [G₃≡G₄′])
Π≡Π = whrDet* (D₂ , Whnf.Πₙ) (D₂′ , Whnf.Πₙ)
F₂≡F₂′ = let x , _ , _ , _ , _ = Π-PE-injectivity Π≡Π in x
G₂≡G₂′ = let _ , _ , _ , x , _ = Π-PE-injectivity Π≡Π in x
Π≡Π′ = whrDet* (D₄ , Whnf.Πₙ) (D₄′ , Whnf.Πₙ)
F₄≡F₄′ = let x , _ , _ , _ , _ = Π-PE-injectivity Π≡Π′ in x
G₄≡G₄′ = let _ , _ , _ , x , _ = Π-PE-injectivity Π≡Π′ in x
A₁≡A₂ = PE.subst₂ (λ X Y → Γ ⊢ Π F₁ ^ ! ° ⁰ ▹ G₁ ° ⁰ ° ⁰ ≅ Π X ^ ! ° ⁰ ▹ Y ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ]) (PE.sym F₂≡F₂′) (PE.sym G₂≡G₂′) A₁≡A₂′
A₃≡A₄ = PE.subst₂ (λ X Y → Γ ⊢ Π F₃ ^ ! ° ⁰ ▹ G₃ ° ⁰ ° ⁰ ≅ Π X ^ ! ° ⁰ ▹ Y ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ]) (PE.sym F₄≡F₄′) (PE.sym G₄≡G₄′) A₃≡A₄′
[F₁≡F₂] = PE.subst (λ X → ∀ {ρ Δ} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Δ ⊩⟨ ι ⁰ ⟩ wk ρ F₁ ≡ wk ρ X ^ [ ! , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
(PE.sym F₂≡F₂′) [F₁≡F₂′]
[F₃≡F₄] = PE.subst (λ X → ∀ {ρ Δ} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Δ ⊩⟨ ι ⁰ ⟩ wk ρ F₃ ≡ wk ρ X ^ [ ! , ι ⁰ ] / [F₃] [ρ] ⊢Δ)
(PE.sym F₄≡F₄′) [F₃≡F₄′]
[G₁≡G₂] = PE.subst (λ X → ∀ {ρ Δ a} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₁ ^ [ ! , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ wk (lift ρ) G₁ [ a ] ≡ wk (lift ρ) X [ a ] ^ [ ! , ι ⁰ ] / [G₁] [ρ] ⊢Δ [a])
(PE.sym G₂≡G₂′) [G₁≡G₂′]
[G₃≡G₄] = PE.subst (λ X → ∀ {ρ Δ a} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₃ ^ [ ! , ι ⁰ ] / [F₃] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ wk (lift ρ) G₃ [ a ] ≡ wk (lift ρ) X [ a ] ^ [ ! , ι ⁰ ] / [G₃] [ρ] ⊢Δ [a])
(PE.sym G₄≡G₄′) [G₃≡G₄′]
[b₁≡b₂] : ∀ {ρ Δ e₁₃ e₂₄ x₃ x₄} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ (Δ ⊢ e₁₃ ∷ Id (U ⁰) (wk ρ F₁) (wk ρ F₃) ^ [ % , ι ¹ ])
→ (Δ ⊢ e₂₄ ∷ Id (U ⁰) (wk ρ F₂) (wk ρ F₄) ^ [ % , ι ¹ ])
→ (Δ ⊩⟨ ι ⁰ ⟩ x₃ ∷ wk ρ F₃ ^ [ ! , ι ⁰ ] / [F₃] [ρ] ⊢Δ)
→ (Δ ⊩⟨ ι ⁰ ⟩ x₄ ∷ wk ρ F₄ ^ [ ! , ι ⁰ ] / [F₄] [ρ] ⊢Δ)
→ (Δ ⊩⟨ ι ⁰ ⟩ x₃ ≡ x₄ ∷ wk ρ F₃ ^ [ ! , ι ⁰ ] / [F₃] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ b₁.b ρ e₁₃ x₃ ≡ b₂.b ρ e₂₄ x₄ ∷ wk ρ F₁ ^ [ ! , ι ⁰ ] / [F₁] [ρ] ⊢Δ
[b₁≡b₂] [ρ] ⊢Δ ⊢e₁₃ ⊢e₂₄ [x₃] [x₄] [x₃≡x₄] =
let
⊢e₃₁ = Idsymⱼ (univ 0<1 ⊢Δ) (un-univ (escape ([F₁] [ρ] ⊢Δ)))
(un-univ (escape ([F₃] [ρ] ⊢Δ))) ⊢e₁₃
⊢e₄₂ = Idsymⱼ (univ 0<1 ⊢Δ) (un-univ (escape ([F₂] [ρ] ⊢Δ)))
(un-univ (escape ([F₄] [ρ] ⊢Δ))) ⊢e₂₄
in proj₂ ([castext] ⊢Δ ([F₁] [ρ] ⊢Δ) ([F₂] [ρ] ⊢Δ) ([F₁≡F₂] [ρ] ⊢Δ) ([F₃] [ρ] ⊢Δ) ([F₄] [ρ] ⊢Δ) ([F₃≡F₄] [ρ] ⊢Δ)) [x₃] [x₄] [x₃≡x₄] ⊢e₃₁ ⊢e₄₂
[b₃≡b₄] : ∀ {ρ Δ e₃₁ e₄₂ x₁ x₂} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ (Δ ⊢ e₃₁ ∷ Id (U ⁰) (wk ρ F₃) (wk ρ F₁) ^ [ % , ι ¹ ])
→ (Δ ⊢ e₄₂ ∷ Id (U ⁰) (wk ρ F₄) (wk ρ F₂) ^ [ % , ι ¹ ])
→ (Δ ⊩⟨ ι ⁰ ⟩ x₁ ∷ wk ρ F₁ ^ [ ! , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ (Δ ⊩⟨ ι ⁰ ⟩ x₂ ∷ wk ρ F₂ ^ [ ! , ι ⁰ ] / [F₂] [ρ] ⊢Δ)
→ (Δ ⊩⟨ ι ⁰ ⟩ x₁ ≡ x₂ ∷ wk ρ F₁ ^ [ ! , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ b₃.b ρ e₃₁ x₁ ≡ b₄.b ρ e₄₂ x₂ ∷ wk ρ F₃ ^ [ ! , ι ⁰ ] / [F₃] [ρ] ⊢Δ
[b₃≡b₄] [ρ] ⊢Δ ⊢e₃₁ ⊢e₄₂ [x₁] [x₂] [x₁≡x₂] =
let
⊢e₁₃ = Idsymⱼ (univ 0<1 ⊢Δ) (un-univ (escape ([F₃] [ρ] ⊢Δ)))
(un-univ (escape ([F₁] [ρ] ⊢Δ))) ⊢e₃₁
⊢e₂₄ = Idsymⱼ (univ 0<1 ⊢Δ) (un-univ (escape ([F₄] [ρ] ⊢Δ)))
(un-univ (escape ([F₂] [ρ] ⊢Δ))) ⊢e₄₂
in proj₁ ([castext] ⊢Δ ([F₁] [ρ] ⊢Δ) ([F₂] [ρ] ⊢Δ) ([F₁≡F₂] [ρ] ⊢Δ) ([F₃] [ρ] ⊢Δ) ([F₄] [ρ] ⊢Δ) ([F₃≡F₄] [ρ] ⊢Δ)) [x₁] [x₂] [x₁≡x₂] ⊢e₁₃ ⊢e₂₄
[castext]₁ : (∀ {t₁ t₂ e₁₃ e₂₄} → ([t₁] : Γ ⊩⟨ ι ⁰ ⟩ t₁ ∷ A₁ ^ [ ! , ι ⁰ ] / [A₁])
→ ([t₁] : Γ ⊩⟨ ι ⁰ ⟩ t₂ ∷ A₂ ^ [ ! , ι ⁰ ] / [A₂])
→ ([t₁≡t₂] : Γ ⊩⟨ ι ⁰ ⟩ t₁ ≡ t₂ ∷ A₁ ^ [ ! , ι ⁰ ] / [A₁])
→ (⊢e₁₃ : Γ ⊢ e₁₃ ∷ Id (U ⁰) A₁ A₃ ^ [ % , ι ¹ ])
→ (⊢e₂₄ : Γ ⊢ e₂₄ ∷ Id (U ⁰) A₂ A₄ ^ [ % , ι ¹ ])
→ Γ ⊩⟨ ι ⁰ ⟩ cast ⁰ A₁ A₃ e₁₃ t₁ ≡ cast ⁰ A₂ A₄ e₂₄ t₂ ∷ A₃ ^ [ ! , ι ⁰ ] / [A₃])
[castext]₁ {t₁} {t₂} {e₁₃} {e₂₄}
(f₁ , [[ ⊢t₁ , ⊢f₁ , Df₁ ]] , funf₁ , f₁≡f₁ , [f₁ext] , [f₁])
(f₂ , [[ ⊢t₂ , ⊢f₂ , Df₂ ]] , funf₂ , f₂≡f₂ , [f₂ext] , [f₂])
(f₁′ , f₂′ , [[ _ , ⊢f₁′ , Df₁′ ]] , [[ _ , ⊢f₂′ , Df₂′ ]] , funf₁′ , funf₂′ , _ , _ , _ , [f₁′≡f₂′])
⊢e₁₃ ⊢e₂₄ =
( (lam F₃ ▹ g₁.g (step id) (var 0) ^ ⁰)
, (lam F₄ ▹ g₂.g (step id) (var 0) ^ ⁰)
, g₁.Dg
, conv:* g₂.Dg (sym (≅-eq A₃≡A₄))
, lamₙ
, lamₙ
, g₁≡g₂
, g₁.[castΠΠ]
, convTerm₂ [A₃] [A₄] [A₃≡A₄] g₂.[castΠΠ]
, [g₁a≡g₂a] )
where
f₁≡f₁′ = whrDet*Term (Df₁ , functionWhnf funf₁) (Df₁′ , functionWhnf funf₁′)
f₂≡f₂′ = whrDet*Term (Df₂ , functionWhnf funf₂) (Df₂′ , functionWhnf funf₂′)
[f₁≡f₂] = PE.subst₂ (λ X Y → ∀ {ρ Δ a} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → ([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₁ ^ [ ! , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ wk ρ X ∘ a ^ ⁰ ≡ wk ρ Y ∘ a ^ ⁰ ∷ wk (lift ρ) G₁ [ a ] ^ [ ! , ι ⁰ ] / [G₁] [ρ] ⊢Δ [a]) (PE.sym f₁≡f₁′) (PE.sym f₂≡f₂′) [f₁′≡f₂′]
open cast-ΠΠ-lemmas-3 ⊢Γ ⊢A₁ ⊢ΠF₁G₁ D₁ ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext
⊢A₂ ⊢ΠF₂G₂ D₂ ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext
⊢A₃ ⊢ΠF₃G₃ D₃ ⊢F₃ ⊢G₃ A₃≡A₃ [F₃] [G₃] G₃-ext
⊢A₄ ⊢ΠF₄G₄ D₄ ⊢F₄ ⊢G₄ A₄≡A₄ [F₄] [G₄] G₄-ext
A₁≡A₂ A₃≡A₄ [F₁≡F₂] [F₃≡F₄] [G₁≡G₂] [G₃≡G₄]
⊢e₁₃ ⊢e₂₄
⊢t₁ Df₁ [f₁ext] [f₁]
⊢t₂ Df₂ [f₂ext] [f₂]
[f₁≡f₂]
(λ [ρ] ⊢Δ [x] [y] → proj₁ ([cast] ⊢Δ ([G₁] [ρ] ⊢Δ [x]) ([G₃] [ρ] ⊢Δ [y])))
(λ [ρ] ⊢Δ [x] [y] → proj₁ ([cast] ⊢Δ ([G₂] [ρ] ⊢Δ [x]) ([G₄] [ρ] ⊢Δ [y])))
(λ [ρ] ⊢Δ [x] [x′] [x≡x′] [y] [y′] [y≡y′] →
proj₁ ([castext] ⊢Δ ([G₁] [ρ] ⊢Δ [x]) ([G₁] [ρ] ⊢Δ [x′]) (G₁-ext [ρ] ⊢Δ [x] [x′] [x≡x′])
([G₃] [ρ] ⊢Δ [y]) ([G₃] [ρ] ⊢Δ [y′]) (G₃-ext [ρ] ⊢Δ [y] [y′] [y≡y′])))
(λ [ρ] ⊢Δ [x] [x′] [x≡x′] [y] [y′] [y≡y′] →
proj₁ ([castext] ⊢Δ ([G₂] [ρ] ⊢Δ [x]) ([G₂] [ρ] ⊢Δ [x′]) (G₂-ext [ρ] ⊢Δ [x] [x′] [x≡x′])
([G₄] [ρ] ⊢Δ [y]) ([G₄] [ρ] ⊢Δ [y′]) (G₄-ext [ρ] ⊢Δ [y] [y′] [y≡y′])))
(λ [ρ] ⊢Δ [x₁] [x₂] [G₁x₁≡G₂x₂] [x₃] [x₄] [G₃x₃≡G₄x₄] →
proj₁ ([castext] ⊢Δ ([G₁] [ρ] ⊢Δ [x₁]) ([G₂] [ρ] ⊢Δ [x₂]) [G₁x₁≡G₂x₂]
([G₃] [ρ] ⊢Δ [x₃]) ([G₄] [ρ] ⊢Δ [x₄]) [G₃x₃≡G₄x₄]))
b₁.[b] b₁.[bext] b₂.[b] b₂.[bext] [b₁≡b₂]
[castext]₂ : (∀ {t₃ t₄ e₃₁ e₄₂} → ([t₃] : Γ ⊩⟨ ι ⁰ ⟩ t₃ ∷ A₃ ^ [ ! , ι ⁰ ] / [A₃])
→ ([t₄] : Γ ⊩⟨ ι ⁰ ⟩ t₄ ∷ A₄ ^ [ ! , ι ⁰ ] / [A₄])
→ ([t₃≡t₄] : Γ ⊩⟨ ι ⁰ ⟩ t₃ ≡ t₄ ∷ A₃ ^ [ ! , ι ⁰ ] / [A₃])
→ (⊢e₃₁ : Γ ⊢ e₃₁ ∷ Id (U ⁰) A₃ A₁ ^ [ % , ι ¹ ])
→ (⊢e₄₂ : Γ ⊢ e₄₂ ∷ Id (U ⁰) A₄ A₂ ^ [ % , ι ¹ ])
→ Γ ⊩⟨ ι ⁰ ⟩ cast ⁰ A₃ A₁ e₃₁ t₃ ≡ cast ⁰ A₄ A₂ e₄₂ t₄ ∷ A₁ ^ [ ! , ι ⁰ ] / [A₁])
[castext]₂ {t₃} {t₄} {e₃₁} {e₄₂}
(f₃ , [[ ⊢t₃ , ⊢f₃ , Df₃ ]] , funf₃ , f₃≡f₃ , [f₃ext] , [f₃])
(f₄ , [[ ⊢t₄ , ⊢f₄ , Df₄ ]] , funf₄ , f₄≡f₄ , [f₄ext] , [f₄])
(f₃′ , f₄′ , [[ _ , ⊢f₃′ , Df₃′ ]] , [[ _ , ⊢f₄′ , Df₄′ ]] , funf₃′ , funf₄′ , _ , _ , _ , [f₃′≡f₄′])
⊢e₃₁ ⊢e₄₂ =
( (lam F₁ ▹ g₁.g (step id) (var 0) ^ ⁰)
, (lam F₂ ▹ g₂.g (step id) (var 0) ^ ⁰)
, g₁.Dg
, conv:* g₂.Dg (sym (≅-eq A₁≡A₂))
, lamₙ
, lamₙ
, g₁≡g₂
, g₁.[castΠΠ]
, convTerm₂ [A₁] [A₂] [A₁≡A₂] g₂.[castΠΠ]
, [g₁a≡g₂a] )
where
f₃≡f₃′ = whrDet*Term (Df₃ , functionWhnf funf₃) (Df₃′ , functionWhnf funf₃′)
f₄≡f₄′ = whrDet*Term (Df₄ , functionWhnf funf₄) (Df₄′ , functionWhnf funf₄′)
[f₃≡f₄] = PE.subst₂ (λ X Y → ∀ {ρ Δ a} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → ([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₃ ^ [ ! , ι ⁰ ] / [F₃] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ wk ρ X ∘ a ^ ⁰ ≡ wk ρ Y ∘ a ^ ⁰ ∷ wk (lift ρ) G₃ [ a ] ^ [ ! , ι ⁰ ] / [G₃] [ρ] ⊢Δ [a]) (PE.sym f₃≡f₃′) (PE.sym f₄≡f₄′) [f₃′≡f₄′]
open cast-ΠΠ-lemmas-3 ⊢Γ ⊢A₃ ⊢ΠF₃G₃ D₃ ⊢F₃ ⊢G₃ A₃≡A₃ [F₃] [G₃] G₃-ext
⊢A₄ ⊢ΠF₄G₄ D₄ ⊢F₄ ⊢G₄ A₄≡A₄ [F₄] [G₄] G₄-ext
⊢A₁ ⊢ΠF₁G₁ D₁ ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext
⊢A₂ ⊢ΠF₂G₂ D₂ ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext
A₃≡A₄ A₁≡A₂ [F₃≡F₄] [F₁≡F₂] [G₃≡G₄] [G₁≡G₂]
⊢e₃₁ ⊢e₄₂
⊢t₃ Df₃ [f₃ext] [f₃]
⊢t₄ Df₄ [f₄ext] [f₄]
[f₃≡f₄]
(λ [ρ] ⊢Δ [y] [x] → proj₂ ([cast] ⊢Δ ([G₁] [ρ] ⊢Δ [x]) ([G₃] [ρ] ⊢Δ [y])))
(λ [ρ] ⊢Δ [y] [x] → proj₂ ([cast] ⊢Δ ([G₂] [ρ] ⊢Δ [x]) ([G₄] [ρ] ⊢Δ [y])))
(λ [ρ] ⊢Δ [y] [y′] [y≡y′] [x] [x′] [x≡x′] →
proj₂ ([castext] ⊢Δ ([G₁] [ρ] ⊢Δ [x]) ([G₁] [ρ] ⊢Δ [x′]) (G₁-ext [ρ] ⊢Δ [x] [x′] [x≡x′])
([G₃] [ρ] ⊢Δ [y]) ([G₃] [ρ] ⊢Δ [y′]) (G₃-ext [ρ] ⊢Δ [y] [y′] [y≡y′])))
(λ [ρ] ⊢Δ [y] [y′] [y≡y′] [x] [x′] [x≡x′] →
proj₂ ([castext] ⊢Δ ([G₂] [ρ] ⊢Δ [x]) ([G₂] [ρ] ⊢Δ [x′]) (G₂-ext [ρ] ⊢Δ [x] [x′] [x≡x′])
([G₄] [ρ] ⊢Δ [y]) ([G₄] [ρ] ⊢Δ [y′]) (G₄-ext [ρ] ⊢Δ [y] [y′] [y≡y′])))
(λ [ρ] ⊢Δ [x₃] [x₄] [G₃x₃≡G₄x₄] [x₁] [x₂] [G₁x₁≡G₂x₂] →
proj₂ ([castext] ⊢Δ ([G₁] [ρ] ⊢Δ [x₁]) ([G₂] [ρ] ⊢Δ [x₂]) [G₁x₁≡G₂x₂]
([G₃] [ρ] ⊢Δ [x₃]) ([G₄] [ρ] ⊢Δ [x₄]) [G₃x₃≡G₄x₄]))
b₃.[b] b₃.[bext] b₄.[b] b₄.[bext] [b₃≡b₄]
[castextShape] {A₁} {A₂} {A₃} {A₄} {Γ} {r = !} ⊢Γ
_ _
(Πᵥ (Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext)
(Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₂ G₂ [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]] ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext))
(Π₌ F₂′ G₂′ D₂′ A₁≡A₂′ [F₁≡F₂′] [G₁≡G₂′])
_ _
(Πᵥ (Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₃ G₃ [[ ⊢A₃ , ⊢ΠF₃G₃ , D₃ ]] ⊢F₃ ⊢G₃ A₃≡A₃ [F₃] [G₃] G₃-ext)
(Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₄ G₄ [[ ⊢A₄ , ⊢ΠF₄G₄ , D₄ ]] ⊢F₄ ⊢G₄ A₄≡A₄ [F₄] [G₄] G₄-ext))
(Π₌ F₄′ G₄′ D₄′ A₃≡A₄′ [F₃≡F₄′] [G₃≡G₄′]) =
([castext]₁ , [castext]₂)
where
module b₁ = cast-ΠΠ-lemmas ⊢Γ ⊢F₁ [F₁] ⊢F₃ [F₃]
(λ [ρ] ⊢Δ → proj₂ ([cast] ⊢Δ ([F₁] [ρ] ⊢Δ) ([F₃] [ρ] ⊢Δ)))
(λ [ρ] ⊢Δ → proj₂ ([castext] ⊢Δ ([F₁] [ρ] ⊢Δ) ([F₁] [ρ] ⊢Δ) (reflEq ([F₁] [ρ] ⊢Δ)) ([F₃] [ρ] ⊢Δ) ([F₃] [ρ] ⊢Δ) (reflEq ([F₃] [ρ] ⊢Δ))))
module b₂ = cast-ΠΠ-lemmas ⊢Γ ⊢F₂ [F₂] ⊢F₄ [F₄]
(λ [ρ] ⊢Δ → proj₂ ([cast] ⊢Δ ([F₂] [ρ] ⊢Δ) ([F₄] [ρ] ⊢Δ)))
(λ [ρ] ⊢Δ → proj₂ ([castext] ⊢Δ ([F₂] [ρ] ⊢Δ) ([F₂] [ρ] ⊢Δ) (reflEq ([F₂] [ρ] ⊢Δ)) ([F₄] [ρ] ⊢Δ) ([F₄] [ρ] ⊢Δ) (reflEq ([F₄] [ρ] ⊢Δ))))
module b₃ = cast-ΠΠ-lemmas ⊢Γ ⊢F₃ [F₃] ⊢F₁ [F₁]
(λ [ρ] ⊢Δ → proj₁ ([cast] ⊢Δ ([F₁] [ρ] ⊢Δ) ([F₃] [ρ] ⊢Δ)))
(λ [ρ] ⊢Δ → proj₁ ([castext] ⊢Δ ([F₁] [ρ] ⊢Δ) ([F₁] [ρ] ⊢Δ) (reflEq ([F₁] [ρ] ⊢Δ)) ([F₃] [ρ] ⊢Δ) ([F₃] [ρ] ⊢Δ) (reflEq ([F₃] [ρ] ⊢Δ))))
module b₄ = cast-ΠΠ-lemmas ⊢Γ ⊢F₄ [F₄] ⊢F₂ [F₂]
(λ [ρ] ⊢Δ → proj₁ ([cast] ⊢Δ ([F₂] [ρ] ⊢Δ) ([F₄] [ρ] ⊢Δ)))
(λ [ρ] ⊢Δ → proj₁ ([castext] ⊢Δ ([F₂] [ρ] ⊢Δ) ([F₂] [ρ] ⊢Δ) (reflEq ([F₂] [ρ] ⊢Δ)) ([F₄] [ρ] ⊢Δ) ([F₄] [ρ] ⊢Δ) (reflEq ([F₄] [ρ] ⊢Δ))))
[A₁] = (Πᵣ′ % ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext)
[A₂] = (Πᵣ′ % ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₂ G₂ [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]] ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext)
[A₁≡A₂] = (Π₌ F₂′ G₂′ D₂′ A₁≡A₂′ [F₁≡F₂′] [G₁≡G₂′])
[A₃] = (Πᵣ′ % ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₃ G₃ [[ ⊢A₃ , ⊢ΠF₃G₃ , D₃ ]] ⊢F₃ ⊢G₃ A₃≡A₃ [F₃] [G₃] G₃-ext)
[A₄] = (Πᵣ′ % ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₄ G₄ [[ ⊢A₄ , ⊢ΠF₄G₄ , D₄ ]] ⊢F₄ ⊢G₄ A₄≡A₄ [F₄] [G₄] G₄-ext)
[A₃≡A₄] = (Π₌ F₄′ G₄′ D₄′ A₃≡A₄′ [F₃≡F₄′] [G₃≡G₄′])
Π≡Π = whrDet* (D₂ , Whnf.Πₙ) (D₂′ , Whnf.Πₙ)
F₂≡F₂′ = let x , _ , _ , _ , _ = Π-PE-injectivity Π≡Π in x
G₂≡G₂′ = let _ , _ , _ , x , _ = Π-PE-injectivity Π≡Π in x
Π≡Π′ = whrDet* (D₄ , Whnf.Πₙ) (D₄′ , Whnf.Πₙ)
F₄≡F₄′ = let x , _ , _ , _ , _ = Π-PE-injectivity Π≡Π′ in x
G₄≡G₄′ = let _ , _ , _ , x , _ = Π-PE-injectivity Π≡Π′ in x
A₁≡A₂ = PE.subst₂ (λ X Y → Γ ⊢ Π F₁ ^ % ° ⁰ ▹ G₁ ° ⁰ ° ⁰ ≅ Π X ^ % ° ⁰ ▹ Y ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ]) (PE.sym F₂≡F₂′) (PE.sym G₂≡G₂′) A₁≡A₂′
A₃≡A₄ = PE.subst₂ (λ X Y → Γ ⊢ Π F₃ ^ % ° ⁰ ▹ G₃ ° ⁰ ° ⁰ ≅ Π X ^ % ° ⁰ ▹ Y ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ]) (PE.sym F₄≡F₄′) (PE.sym G₄≡G₄′) A₃≡A₄′
[F₁≡F₂] = PE.subst (λ X → ∀ {ρ Δ} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Δ ⊩⟨ ι ⁰ ⟩ wk ρ F₁ ≡ wk ρ X ^ [ % , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
(PE.sym F₂≡F₂′) [F₁≡F₂′]
[F₃≡F₄] = PE.subst (λ X → ∀ {ρ Δ} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Δ ⊩⟨ ι ⁰ ⟩ wk ρ F₃ ≡ wk ρ X ^ [ % , ι ⁰ ] / [F₃] [ρ] ⊢Δ)
(PE.sym F₄≡F₄′) [F₃≡F₄′]
[G₁≡G₂] = PE.subst (λ X → ∀ {ρ Δ a} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₁ ^ [ % , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ wk (lift ρ) G₁ [ a ] ≡ wk (lift ρ) X [ a ] ^ [ ! , ι ⁰ ] / [G₁] [ρ] ⊢Δ [a])
(PE.sym G₂≡G₂′) [G₁≡G₂′]
[G₃≡G₄] = PE.subst (λ X → ∀ {ρ Δ a} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₃ ^ [ % , ι ⁰ ] / [F₃] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ wk (lift ρ) G₃ [ a ] ≡ wk (lift ρ) X [ a ] ^ [ ! , ι ⁰ ] / [G₃] [ρ] ⊢Δ [a])
(PE.sym G₄≡G₄′) [G₃≡G₄′]
[b₁≡b₂] : ∀ {ρ Δ e₁₃ e₂₄ x₃ x₄} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ (Δ ⊢ e₁₃ ∷ Id (SProp ⁰) (wk ρ F₁) (wk ρ F₃) ^ [ % , ι ¹ ])
→ (Δ ⊢ e₂₄ ∷ Id (SProp ⁰) (wk ρ F₂) (wk ρ F₄) ^ [ % , ι ¹ ])
→ (Δ ⊩⟨ ι ⁰ ⟩ x₃ ∷ wk ρ F₃ ^ [ % , ι ⁰ ] / [F₃] [ρ] ⊢Δ)
→ (Δ ⊩⟨ ι ⁰ ⟩ x₄ ∷ wk ρ F₄ ^ [ % , ι ⁰ ] / [F₄] [ρ] ⊢Δ)
→ (Δ ⊩⟨ ι ⁰ ⟩ x₃ ≡ x₄ ∷ wk ρ F₃ ^ [ % , ι ⁰ ] / [F₃] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ b₁.b ρ e₁₃ x₃ ≡ b₂.b ρ e₂₄ x₄ ∷ wk ρ F₁ ^ [ % , ι ⁰ ] / [F₁] [ρ] ⊢Δ
[b₁≡b₂] [ρ] ⊢Δ ⊢e₁₃ ⊢e₂₄ [x₃] [x₄] [x₃≡x₄] =
let
⊢e₃₁ = Idsymⱼ (univ 0<1 ⊢Δ) (un-univ (escape ([F₁] [ρ] ⊢Δ)))
(un-univ (escape ([F₃] [ρ] ⊢Δ))) ⊢e₁₃
⊢e₄₂ = Idsymⱼ (univ 0<1 ⊢Δ) (un-univ (escape ([F₂] [ρ] ⊢Δ)))
(un-univ (escape ([F₄] [ρ] ⊢Δ))) ⊢e₂₄
in proj₂ ([castext] ⊢Δ ([F₁] [ρ] ⊢Δ) ([F₂] [ρ] ⊢Δ) ([F₁≡F₂] [ρ] ⊢Δ) ([F₃] [ρ] ⊢Δ) ([F₄] [ρ] ⊢Δ) ([F₃≡F₄] [ρ] ⊢Δ)) [x₃] [x₄] [x₃≡x₄] ⊢e₃₁ ⊢e₄₂
[b₃≡b₄] : ∀ {ρ Δ e₃₁ e₄₂ x₁ x₂} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ (Δ ⊢ e₃₁ ∷ Id (SProp ⁰) (wk ρ F₃) (wk ρ F₁) ^ [ % , ι ¹ ])
→ (Δ ⊢ e₄₂ ∷ Id (SProp ⁰) (wk ρ F₄) (wk ρ F₂) ^ [ % , ι ¹ ])
→ (Δ ⊩⟨ ι ⁰ ⟩ x₁ ∷ wk ρ F₁ ^ [ % , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ (Δ ⊩⟨ ι ⁰ ⟩ x₂ ∷ wk ρ F₂ ^ [ % , ι ⁰ ] / [F₂] [ρ] ⊢Δ)
→ (Δ ⊩⟨ ι ⁰ ⟩ x₁ ≡ x₂ ∷ wk ρ F₁ ^ [ % , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ b₃.b ρ e₃₁ x₁ ≡ b₄.b ρ e₄₂ x₂ ∷ wk ρ F₃ ^ [ % , ι ⁰ ] / [F₃] [ρ] ⊢Δ
[b₃≡b₄] [ρ] ⊢Δ ⊢e₃₁ ⊢e₄₂ [x₁] [x₂] [x₁≡x₂] =
let
⊢e₁₃ = Idsymⱼ (univ 0<1 ⊢Δ) (un-univ (escape ([F₃] [ρ] ⊢Δ)))
(un-univ (escape ([F₁] [ρ] ⊢Δ))) ⊢e₃₁
⊢e₂₄ = Idsymⱼ (univ 0<1 ⊢Δ) (un-univ (escape ([F₄] [ρ] ⊢Δ)))
(un-univ (escape ([F₂] [ρ] ⊢Δ))) ⊢e₄₂
in proj₁ ([castext] ⊢Δ ([F₁] [ρ] ⊢Δ) ([F₂] [ρ] ⊢Δ) ([F₁≡F₂] [ρ] ⊢Δ) ([F₃] [ρ] ⊢Δ) ([F₄] [ρ] ⊢Δ) ([F₃≡F₄] [ρ] ⊢Δ)) [x₁] [x₂] [x₁≡x₂] ⊢e₁₃ ⊢e₂₄
[castext]₁ : (∀ {t₁ t₂ e₁₃ e₂₄} → ([t₁] : Γ ⊩⟨ ι ⁰ ⟩ t₁ ∷ A₁ ^ [ ! , ι ⁰ ] / [A₁])
→ ([t₁] : Γ ⊩⟨ ι ⁰ ⟩ t₂ ∷ A₂ ^ [ ! , ι ⁰ ] / [A₂])
→ ([t₁≡t₂] : Γ ⊩⟨ ι ⁰ ⟩ t₁ ≡ t₂ ∷ A₁ ^ [ ! , ι ⁰ ] / [A₁])
→ (⊢e₁₃ : Γ ⊢ e₁₃ ∷ Id (U ⁰) A₁ A₃ ^ [ % , ι ¹ ])
→ (⊢e₂₄ : Γ ⊢ e₂₄ ∷ Id (U ⁰) A₂ A₄ ^ [ % , ι ¹ ])
→ Γ ⊩⟨ ι ⁰ ⟩ cast ⁰ A₁ A₃ e₁₃ t₁ ≡ cast ⁰ A₂ A₄ e₂₄ t₂ ∷ A₃ ^ [ ! , ι ⁰ ] / [A₃])
[castext]₁ {t₁} {t₂} {e₁₃} {e₂₄}
(f₁ , [[ ⊢t₁ , ⊢f₁ , Df₁ ]] , funf₁ , f₁≡f₁ , [f₁ext] , [f₁])
(f₂ , [[ ⊢t₂ , ⊢f₂ , Df₂ ]] , funf₂ , f₂≡f₂ , [f₂ext] , [f₂])
(f₁′ , f₂′ , [[ _ , ⊢f₁′ , Df₁′ ]] , [[ _ , ⊢f₂′ , Df₂′ ]] , funf₁′ , funf₂′ , _ , _ , _ , [f₁′≡f₂′])
⊢e₁₃ ⊢e₂₄ =
( (lam F₃ ▹ g₁.g (step id) (var 0) ^ ⁰)
, (lam F₄ ▹ g₂.g (step id) (var 0) ^ ⁰)
, g₁.Dg
, conv:* g₂.Dg (sym (≅-eq A₃≡A₄))
, lamₙ
, lamₙ
, g₁≡g₂
, g₁.[castΠΠ]
, convTerm₂ [A₃] [A₄] [A₃≡A₄] g₂.[castΠΠ]
, [g₁a≡g₂a] )
where
f₁≡f₁′ = whrDet*Term (Df₁ , functionWhnf funf₁) (Df₁′ , functionWhnf funf₁′)
f₂≡f₂′ = whrDet*Term (Df₂ , functionWhnf funf₂) (Df₂′ , functionWhnf funf₂′)
[f₁≡f₂] = PE.subst₂ (λ X Y → ∀ {ρ Δ a} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → ([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₁ ^ [ % , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ wk ρ X ∘ a ^ ⁰ ≡ wk ρ Y ∘ a ^ ⁰ ∷ wk (lift ρ) G₁ [ a ] ^ [ ! , ι ⁰ ] / [G₁] [ρ] ⊢Δ [a]) (PE.sym f₁≡f₁′) (PE.sym f₂≡f₂′) [f₁′≡f₂′]
open cast-ΠΠ-lemmas-3 ⊢Γ ⊢A₁ ⊢ΠF₁G₁ D₁ ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext
⊢A₂ ⊢ΠF₂G₂ D₂ ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext
⊢A₃ ⊢ΠF₃G₃ D₃ ⊢F₃ ⊢G₃ A₃≡A₃ [F₃] [G₃] G₃-ext
⊢A₄ ⊢ΠF₄G₄ D₄ ⊢F₄ ⊢G₄ A₄≡A₄ [F₄] [G₄] G₄-ext
A₁≡A₂ A₃≡A₄ [F₁≡F₂] [F₃≡F₄] [G₁≡G₂] [G₃≡G₄]
⊢e₁₃ ⊢e₂₄
⊢t₁ Df₁ [f₁ext] [f₁]
⊢t₂ Df₂ [f₂ext] [f₂]
[f₁≡f₂]
(λ [ρ] ⊢Δ [x] [y] → proj₁ ([cast] ⊢Δ ([G₁] [ρ] ⊢Δ [x]) ([G₃] [ρ] ⊢Δ [y])))
(λ [ρ] ⊢Δ [x] [y] → proj₁ ([cast] ⊢Δ ([G₂] [ρ] ⊢Δ [x]) ([G₄] [ρ] ⊢Δ [y])))
(λ [ρ] ⊢Δ [x] [x′] [x≡x′] [y] [y′] [y≡y′] →
proj₁ ([castext] ⊢Δ ([G₁] [ρ] ⊢Δ [x]) ([G₁] [ρ] ⊢Δ [x′]) (G₁-ext [ρ] ⊢Δ [x] [x′] [x≡x′])
([G₃] [ρ] ⊢Δ [y]) ([G₃] [ρ] ⊢Δ [y′]) (G₃-ext [ρ] ⊢Δ [y] [y′] [y≡y′])))
(λ [ρ] ⊢Δ [x] [x′] [x≡x′] [y] [y′] [y≡y′] →
proj₁ ([castext] ⊢Δ ([G₂] [ρ] ⊢Δ [x]) ([G₂] [ρ] ⊢Δ [x′]) (G₂-ext [ρ] ⊢Δ [x] [x′] [x≡x′])
([G₄] [ρ] ⊢Δ [y]) ([G₄] [ρ] ⊢Δ [y′]) (G₄-ext [ρ] ⊢Δ [y] [y′] [y≡y′])))
(λ [ρ] ⊢Δ [x₁] [x₂] [G₁x₁≡G₂x₂] [x₃] [x₄] [G₃x₃≡G₄x₄] →
proj₁ ([castext] ⊢Δ ([G₁] [ρ] ⊢Δ [x₁]) ([G₂] [ρ] ⊢Δ [x₂]) [G₁x₁≡G₂x₂]
([G₃] [ρ] ⊢Δ [x₃]) ([G₄] [ρ] ⊢Δ [x₄]) [G₃x₃≡G₄x₄]))
b₁.[b] b₁.[bext] b₂.[b] b₂.[bext] [b₁≡b₂]
[castext]₂ : (∀ {t₃ t₄ e₃₁ e₄₂} → ([t₃] : Γ ⊩⟨ ι ⁰ ⟩ t₃ ∷ A₃ ^ [ ! , ι ⁰ ] / [A₃])
→ ([t₄] : Γ ⊩⟨ ι ⁰ ⟩ t₄ ∷ A₄ ^ [ ! , ι ⁰ ] / [A₄])
→ ([t₃≡t₄] : Γ ⊩⟨ ι ⁰ ⟩ t₃ ≡ t₄ ∷ A₃ ^ [ ! , ι ⁰ ] / [A₃])
→ (⊢e₃₁ : Γ ⊢ e₃₁ ∷ Id (U ⁰) A₃ A₁ ^ [ % , ι ¹ ])
→ (⊢e₄₂ : Γ ⊢ e₄₂ ∷ Id (U ⁰) A₄ A₂ ^ [ % , ι ¹ ])
→ Γ ⊩⟨ ι ⁰ ⟩ cast ⁰ A₃ A₁ e₃₁ t₃ ≡ cast ⁰ A₄ A₂ e₄₂ t₄ ∷ A₁ ^ [ ! , ι ⁰ ] / [A₁])
[castext]₂ {t₃} {t₄} {e₃₁} {e₄₂}
(f₃ , [[ ⊢t₃ , ⊢f₃ , Df₃ ]] , funf₃ , f₃≡f₃ , [f₃ext] , [f₃])
(f₄ , [[ ⊢t₄ , ⊢f₄ , Df₄ ]] , funf₄ , f₄≡f₄ , [f₄ext] , [f₄])
(f₃′ , f₄′ , [[ _ , ⊢f₃′ , Df₃′ ]] , [[ _ , ⊢f₄′ , Df₄′ ]] , funf₃′ , funf₄′ , _ , _ , _ , [f₃′≡f₄′])
⊢e₃₁ ⊢e₄₂ =
( (lam F₁ ▹ g₁.g (step id) (var 0) ^ ⁰)
, (lam F₂ ▹ g₂.g (step id) (var 0) ^ ⁰)
, g₁.Dg
, conv:* g₂.Dg (sym (≅-eq A₁≡A₂))
, lamₙ
, lamₙ
, g₁≡g₂
, g₁.[castΠΠ]
, convTerm₂ [A₁] [A₂] [A₁≡A₂] g₂.[castΠΠ]
, [g₁a≡g₂a] )
where
f₃≡f₃′ = whrDet*Term (Df₃ , functionWhnf funf₃) (Df₃′ , functionWhnf funf₃′)
f₄≡f₄′ = whrDet*Term (Df₄ , functionWhnf funf₄) (Df₄′ , functionWhnf funf₄′)
[f₃≡f₄] = PE.subst₂ (λ X Y → ∀ {ρ Δ a} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → ([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₃ ^ [ % , ι ⁰ ] / [F₃] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ wk ρ X ∘ a ^ ⁰ ≡ wk ρ Y ∘ a ^ ⁰ ∷ wk (lift ρ) G₃ [ a ] ^ [ ! , ι ⁰ ] / [G₃] [ρ] ⊢Δ [a]) (PE.sym f₃≡f₃′) (PE.sym f₄≡f₄′) [f₃′≡f₄′]
open cast-ΠΠ-lemmas-3 ⊢Γ ⊢A₃ ⊢ΠF₃G₃ D₃ ⊢F₃ ⊢G₃ A₃≡A₃ [F₃] [G₃] G₃-ext
⊢A₄ ⊢ΠF₄G₄ D₄ ⊢F₄ ⊢G₄ A₄≡A₄ [F₄] [G₄] G₄-ext
⊢A₁ ⊢ΠF₁G₁ D₁ ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext
⊢A₂ ⊢ΠF₂G₂ D₂ ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext
A₃≡A₄ A₁≡A₂ [F₃≡F₄] [F₁≡F₂] [G₃≡G₄] [G₁≡G₂]
⊢e₃₁ ⊢e₄₂
⊢t₃ Df₃ [f₃ext] [f₃]
⊢t₄ Df₄ [f₄ext] [f₄]
[f₃≡f₄]
(λ [ρ] ⊢Δ [y] [x] → proj₂ ([cast] ⊢Δ ([G₁] [ρ] ⊢Δ [x]) ([G₃] [ρ] ⊢Δ [y])))
(λ [ρ] ⊢Δ [y] [x] → proj₂ ([cast] ⊢Δ ([G₂] [ρ] ⊢Δ [x]) ([G₄] [ρ] ⊢Δ [y])))
(λ [ρ] ⊢Δ [y] [y′] [y≡y′] [x] [x′] [x≡x′] →
proj₂ ([castext] ⊢Δ ([G₁] [ρ] ⊢Δ [x]) ([G₁] [ρ] ⊢Δ [x′]) (G₁-ext [ρ] ⊢Δ [x] [x′] [x≡x′])
([G₃] [ρ] ⊢Δ [y]) ([G₃] [ρ] ⊢Δ [y′]) (G₃-ext [ρ] ⊢Δ [y] [y′] [y≡y′])))
(λ [ρ] ⊢Δ [y] [y′] [y≡y′] [x] [x′] [x≡x′] →
proj₂ ([castext] ⊢Δ ([G₂] [ρ] ⊢Δ [x]) ([G₂] [ρ] ⊢Δ [x′]) (G₂-ext [ρ] ⊢Δ [x] [x′] [x≡x′])
([G₄] [ρ] ⊢Δ [y]) ([G₄] [ρ] ⊢Δ [y′]) (G₄-ext [ρ] ⊢Δ [y] [y′] [y≡y′])))
(λ [ρ] ⊢Δ [x₃] [x₄] [G₃x₃≡G₄x₄] [x₁] [x₂] [G₁x₁≡G₂x₂] →
proj₂ ([castext] ⊢Δ ([G₁] [ρ] ⊢Δ [x₁]) ([G₂] [ρ] ⊢Δ [x₂]) [G₁x₁≡G₂x₂]
([G₃] [ρ] ⊢Δ [x₃]) ([G₄] [ρ] ⊢Δ [x₄]) [G₃x₃≡G₄x₄]))
b₃.[b] b₃.[bext] b₄.[b] b₄.[bext] [b₃≡b₄]
[castextShape] {A₁} {A₂} {A₃} {A₄} {Γ} {r = !} ⊢Γ
_ _
(Πᵥ (Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext)
(Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₂ G₂ [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]] ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext))
(Π₌ F₂′ G₂′ D₂′ A₁≡A₂′ [F₁≡F₂′] [G₁≡G₂′])
_ _
(Πᵥ (Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₃ G₃ [[ ⊢A₃ , ⊢ΠF₃G₃ , D₃ ]] ⊢F₃ ⊢G₃ A₃≡A₃ [F₃] [G₃] G₃-ext)
(Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₄ G₄ [[ ⊢A₄ , ⊢ΠF₄G₄ , D₄ ]] ⊢F₄ ⊢G₄ A₄≡A₄ [F₄] [G₄] G₄-ext))
(Π₌ F₄′ G₄′ D₄′ A₃≡A₄′ [F₃≡F₄′] [G₃≡G₄′]) =
(λ {t} {t′} {e} {e′} [t] [t′] [t≡t′] ⊢e ⊢e′ →
let [A₁] = Πᵣ′ ! ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext
[A₃] = Πᵣ′ % ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₃ G₃ [[ ⊢A₃ , ⊢ΠF₃G₃ , D₃ ]] ⊢F₃ ⊢G₃ A₃≡A₃ [F₃] [G₃] G₃-ext
[A₂] = Πᵣ′ ! ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₂ G₂ [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]] ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext
⊢t = escapeTerm [A₁] [t]
⊢t′ = escapeTerm [A₂] [t′]
⊢A₁≡Π = subset* D₁
⊢A₃≡Π = subset* D₃
⊢A₂≡Π = subset* D₂
⊢A₄≡Π = subset* D₄
⊢A₃≡A₄ = escapeEq {l = ι ⁰} [A₃] (Π₌ F₄′ G₄′ D₄′ A₃≡A₄′ [F₃≡F₄′] [G₃≡G₄′])
⊢t≡t = ≅-conv (escapeTermEq {l = ι ⁰} [A₁] [t≡t′]) ⊢A₁≡Π
ΠFG′≡ΠFG′₂ = whrDet* (D₂ , Πₙ) (D₂′ , Πₙ)
F′≡F′₂ , _ , _ , G′≡G′₂ , _ = Π-PE-injectivity ΠFG′≡ΠFG′₂
ΠFG′≡ΠFG′₄ = whrDet* (D₄ , Πₙ) (D₄′ , Πₙ)
F′≡F′₄ , _ , _ , G′≡G′₄ , _ = Π-PE-injectivity ΠFG′≡ΠFG′₄
⊢e' = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢A₁))) (un-univ≡ ⊢A₁≡Π) (un-univ≡ ⊢A₃≡Π)))
⊢e′' = conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢A₁)))
(un-univ≡ (PE.subst (λ X → Γ ⊢ A₂ ≡ X ^ [ ! , ι ⁰ ]) ΠFG′≡ΠFG′₂ ⊢A₂≡Π))
(un-univ≡ (PE.subst (λ X → Γ ⊢ A₄ ≡ X ^ [ ! , ι ⁰ ]) ΠFG′≡ΠFG′₄ ⊢A₄≡Π))))
cast~cast = ~-conv (~-castΠΠ!% (un-univ ⊢F₁) (un-univ ⊢G₁) (≅-un-univ A₁≡A₂′) (un-univ ⊢F₃) (un-univ ⊢G₃) (≅-un-univ A₃≡A₄′) ⊢t≡t ⊢e' ⊢e′') (sym ⊢A₃≡Π)
in neuEqTerm:⇒*: {l = ι ⁰} { n = cast ⁰ (Π F₁ ^ ! ° ⁰ ▹ G₁ ° ⁰ ° ⁰) (Π F₃ ^ % ° ⁰ ▹ G₃ ° ⁰ ° ⁰) e t} {n′ = cast ⁰ (Π F₂ ^ ! ° ⁰ ▹ G₂ ° ⁰ ° ⁰) (Π F₄ ^ % ° ⁰ ▹ G₄ ° ⁰ ° ⁰) e′ t′}
[A₃]
castΠΠ!%ₙ castΠΠ!%ₙ
(transTerm:⇒:* (CastRed*Term ⊢A₃ ⊢e ⊢t (un-univ:⇒*: [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]]))
(CastRed*TermΠ (un-univ ⊢F₁ ) (un-univ ⊢G₁) (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢A₃) )) (un-univ≡ ⊢A₁≡Π)
(refl (un-univ ⊢A₃))))) (conv ⊢t ⊢A₁≡Π) [[ ⊢A₃ , ⊢ΠF₃G₃ , D₃ ]]))
(conv:⇒*: (transTerm:⇒:* (CastRed*Term ⊢A₄ ⊢e′ ⊢t′ (un-univ:⇒*: [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]]))
(CastRed*TermΠ (un-univ ⊢F₂ ) (un-univ ⊢G₂) (conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢A₄) )) (un-univ≡ ⊢A₂≡Π)
(refl (un-univ ⊢A₄))))) (conv ⊢t′ ⊢A₂≡Π) [[ ⊢A₄ , ⊢ΠF₄G₄ , D₄ ]])) (sym (≅-eq ⊢A₃≡A₄)))
(~-irrelevanceTerm PE.refl PE.refl (PE.cong₄ (λ X Y X' Y' → cast ⁰ (Π X ^ ! ° ⁰ ▹ Y ° ⁰ ° ⁰) (Π X' ^ % ° ⁰ ▹ Y' ° ⁰ ° ⁰) _ _ ) (PE.sym F′≡F′₂) (PE.sym G′≡G′₂) (PE.sym F′≡F′₄) (PE.sym G′≡G′₄)) cast~cast)),
(λ {t} {t′} {e} {e′} [t] [t′] [t≡t′] ⊢e ⊢e′ →
let [A₁] = Πᵣ′ ! ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext
[A₃] = Πᵣ′ % ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₃ G₃ [[ ⊢A₃ , ⊢ΠF₃G₃ , D₃ ]] ⊢F₃ ⊢G₃ A₃≡A₃ [F₃] [G₃] G₃-ext
[A₄] = Πᵣ′ % ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₄ G₄ [[ ⊢A₄ , ⊢ΠF₄G₄ , D₄ ]] ⊢F₄ ⊢G₄ A₄≡A₄ [F₄] [G₄] G₄-ext
⊢t = escapeTerm [A₃] [t]
⊢t′ = escapeTerm [A₄] [t′]
⊢A₁≡Π = subset* D₁
⊢A₃≡Π = subset* D₃
⊢A₂≡Π = subset* D₂
⊢A₄≡Π = subset* D₄
ΠFG′≡ΠFG′₂ = whrDet* (D₂ , Πₙ) (D₂′ , Πₙ)
ΠFG′≡ΠFG′₄ = whrDet* (D₄ , Πₙ) (D₄′ , Πₙ)
⊢A₁≡A₂ = escapeEq {l = ι ⁰} [A₁] (Π₌ F₂′ G₂′ D₂′ A₁≡A₂′ [F₁≡F₂′] [G₁≡G₂′])
⊢t≡t = ≅-conv (escapeTermEq {l = ι ⁰} [A₃] [t≡t′]) ⊢A₃≡Π
F′≡F′₄ , _ , _ , G′≡G′₄ , _ = Π-PE-injectivity ΠFG′≡ΠFG′₄
F′≡F′₂ , _ , _ , G′≡G′₂ , _ = Π-PE-injectivity ΠFG′≡ΠFG′₂
⊢e' = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢A₁))) (un-univ≡ ⊢A₃≡Π) (un-univ≡ ⊢A₁≡Π)))
⊢e′' = conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢A₁)))
(un-univ≡ (PE.subst (λ X → Γ ⊢ A₄ ≡ X ^ [ ! , ι ⁰ ]) ΠFG′≡ΠFG′₄ ⊢A₄≡Π))
(un-univ≡ (PE.subst (λ X → Γ ⊢ A₂ ≡ X ^ [ ! , ι ⁰ ]) ΠFG′≡ΠFG′₂ ⊢A₂≡Π))))
cast~cast = ~-conv (~-castΠΠ%! (un-univ ⊢F₃) (un-univ ⊢G₃) (≅-un-univ A₃≡A₄′) (un-univ ⊢F₁) (un-univ ⊢G₁) (≅-un-univ A₁≡A₂′) ⊢t≡t ⊢e' ⊢e′') (sym ⊢A₁≡Π)
in neuEqTerm:⇒*: {l = ι ⁰} { n = cast ⁰ (Π F₃ ^ % ° ⁰ ▹ G₃ ° ⁰ ° ⁰) (Π F₁ ^ ! ° ⁰ ▹ G₁ ° ⁰ ° ⁰) e t} {n′ = cast ⁰ (Π F₄ ^ % ° ⁰ ▹ G₄ ° ⁰ ° ⁰) (Π F₂ ^ ! ° ⁰ ▹ G₂ ° ⁰ ° ⁰) e′ t′}
[A₁]
castΠΠ%!ₙ castΠΠ%!ₙ
(transTerm:⇒:* (CastRed*Term ⊢A₁ ⊢e ⊢t (un-univ:⇒*: [[ ⊢A₃ , ⊢ΠF₃G₃ , D₃ ]]))
(CastRed*TermΠ (un-univ ⊢F₃ ) (un-univ ⊢G₃) (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢A₁) )) (un-univ≡ ⊢A₃≡Π)
(refl (un-univ ⊢A₁))))) (conv ⊢t ⊢A₃≡Π) [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]]))
(conv:⇒*: (transTerm:⇒:* (CastRed*Term ⊢A₂ ⊢e′ ⊢t′ (un-univ:⇒*: [[ ⊢A₄ , ⊢ΠF₄G₄ , D₄ ]]))
(CastRed*TermΠ (un-univ ⊢F₄ ) (un-univ ⊢G₄) (conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢A₂) )) (un-univ≡ ⊢A₄≡Π)
(refl (un-univ ⊢A₂))))) (conv ⊢t′ ⊢A₄≡Π) [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]])) (sym (≅-eq ⊢A₁≡A₂)))
(~-irrelevanceTerm PE.refl PE.refl (PE.cong₄ (λ X Y X' Y' → cast ⁰ (Π X ^ % ° ⁰ ▹ Y ° ⁰ ° ⁰) (Π X' ^ ! ° ⁰ ▹ Y' ° ⁰ ° ⁰) _ _ ) (PE.sym F′≡F′₄) (PE.sym G′≡G′₄) (PE.sym F′≡F′₂) (PE.sym G′≡G′₂)) cast~cast))
[castextShape] {A₃} {A₄} {A₁} {A₂} {Γ} {r = !} ⊢Γ
_ _
(Πᵥ (Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₃ G₃ [[ ⊢A₃ , ⊢ΠF₃G₃ , D₃ ]] ⊢F₃ ⊢G₃ A₃≡A₃ [F₃] [G₃] G₃-ext)
(Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₄ G₄ [[ ⊢A₄ , ⊢ΠF₄G₄ , D₄ ]] ⊢F₄ ⊢G₄ A₄≡A₄ [F₄] [G₄] G₄-ext))
(Π₌ F₄′ G₄′ D₄′ A₃≡A₄′ [F₃≡F₄′] [G₃≡G₄′])
_ _
(Πᵥ (Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext)
(Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₂ G₂ [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]] ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext))
(Π₌ F₂′ G₂′ D₂′ A₁≡A₂′ [F₁≡F₂′] [G₁≡G₂′]) =
(λ {t} {t′} {e} {e′} [t] [t′] [t≡t′] ⊢e ⊢e′ →
let [A₁] = Πᵣ′ ! ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext
[A₃] = Πᵣ′ % ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₃ G₃ [[ ⊢A₃ , ⊢ΠF₃G₃ , D₃ ]] ⊢F₃ ⊢G₃ A₃≡A₃ [F₃] [G₃] G₃-ext
[A₄] = Πᵣ′ % ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₄ G₄ [[ ⊢A₄ , ⊢ΠF₄G₄ , D₄ ]] ⊢F₄ ⊢G₄ A₄≡A₄ [F₄] [G₄] G₄-ext
⊢t = escapeTerm [A₃] [t]
⊢t′ = escapeTerm [A₄] [t′]
⊢A₁≡Π = subset* D₁
⊢A₃≡Π = subset* D₃
⊢A₂≡Π = subset* D₂
⊢A₄≡Π = subset* D₄
ΠFG′≡ΠFG′₂ = whrDet* (D₂ , Πₙ) (D₂′ , Πₙ)
ΠFG′≡ΠFG′₄ = whrDet* (D₄ , Πₙ) (D₄′ , Πₙ)
⊢A₁≡A₂ = escapeEq {l = ι ⁰} [A₁] (Π₌ F₂′ G₂′ D₂′ A₁≡A₂′ [F₁≡F₂′] [G₁≡G₂′])
⊢t≡t = ≅-conv (escapeTermEq {l = ι ⁰} [A₃] [t≡t′]) ⊢A₃≡Π
F′≡F′₄ , _ , _ , G′≡G′₄ , _ = Π-PE-injectivity ΠFG′≡ΠFG′₄
F′≡F′₂ , _ , _ , G′≡G′₂ , _ = Π-PE-injectivity ΠFG′≡ΠFG′₂
⊢e' = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢A₁))) (un-univ≡ ⊢A₃≡Π)(un-univ≡ ⊢A₁≡Π) ))
⊢e′' = conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢A₁)))
(un-univ≡ (PE.subst (λ X → Γ ⊢ A₄ ≡ X ^ [ ! , ι ⁰ ]) ΠFG′≡ΠFG′₄ ⊢A₄≡Π))
(un-univ≡ (PE.subst (λ X → Γ ⊢ A₂ ≡ X ^ [ ! , ι ⁰ ]) ΠFG′≡ΠFG′₂ ⊢A₂≡Π))))
cast~cast = ~-conv (~-castΠΠ%! (un-univ ⊢F₃) (un-univ ⊢G₃) (≅-un-univ A₃≡A₄′) (un-univ ⊢F₁) (un-univ ⊢G₁) (≅-un-univ A₁≡A₂′) ⊢t≡t ⊢e' ⊢e′') (sym ⊢A₁≡Π)
in neuEqTerm:⇒*: {l = ι ⁰} { n = cast ⁰ (Π F₃ ^ % ° ⁰ ▹ G₃ ° ⁰ ° ⁰) (Π F₁ ^ ! ° ⁰ ▹ G₁ ° ⁰ ° ⁰) e t} {n′ = cast ⁰ (Π F₄ ^ % ° ⁰ ▹ G₄ ° ⁰ ° ⁰) (Π F₂ ^ ! ° ⁰ ▹ G₂ ° ⁰ ° ⁰) e′ t′}
[A₁]
castΠΠ%!ₙ castΠΠ%!ₙ
(transTerm:⇒:* (CastRed*Term ⊢A₁ ⊢e ⊢t (un-univ:⇒*: [[ ⊢A₃ , ⊢ΠF₃G₃ , D₃ ]]))
(CastRed*TermΠ (un-univ ⊢F₃ ) (un-univ ⊢G₃) (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢A₁) )) (un-univ≡ ⊢A₃≡Π)
(refl (un-univ ⊢A₁))))) (conv ⊢t ⊢A₃≡Π) [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]]))
(conv:⇒*: (transTerm:⇒:* (CastRed*Term ⊢A₂ ⊢e′ ⊢t′ (un-univ:⇒*: [[ ⊢A₄ , ⊢ΠF₄G₄ , D₄ ]]))
(CastRed*TermΠ (un-univ ⊢F₄ ) (un-univ ⊢G₄) (conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢A₂) )) (un-univ≡ ⊢A₄≡Π)
(refl (un-univ ⊢A₂))))) (conv ⊢t′ ⊢A₄≡Π) [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]])) (sym (≅-eq ⊢A₁≡A₂)))
(~-irrelevanceTerm PE.refl PE.refl (PE.cong₄ (λ X Y X' Y' → cast ⁰ (Π X ^ % ° ⁰ ▹ Y ° ⁰ ° ⁰) (Π X' ^ ! ° ⁰ ▹ Y' ° ⁰ ° ⁰) _ _ ) (PE.sym F′≡F′₄) (PE.sym G′≡G′₄) (PE.sym F′≡F′₂) (PE.sym G′≡G′₂)) cast~cast)) ,
(λ {t} {t′} {e} {e′} [t] [t′] [t≡t′] ⊢e ⊢e′ →
let [A₁] = Πᵣ′ ! ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext
[A₃] = Πᵣ′ % ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₃ G₃ [[ ⊢A₃ , ⊢ΠF₃G₃ , D₃ ]] ⊢F₃ ⊢G₃ A₃≡A₃ [F₃] [G₃] G₃-ext
[A₂] = Πᵣ′ ! ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₂ G₂ [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]] ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext
⊢t = escapeTerm [A₁] [t]
⊢t′ = escapeTerm [A₂] [t′]
⊢A₁≡Π = subset* D₁
⊢A₃≡Π = subset* D₃
⊢A₂≡Π = subset* D₂
⊢A₄≡Π = subset* D₄
⊢A₃≡A₄ = escapeEq {l = ι ⁰} [A₃] (Π₌ F₄′ G₄′ D₄′ A₃≡A₄′ [F₃≡F₄′] [G₃≡G₄′])
⊢t≡t = ≅-conv (escapeTermEq {l = ι ⁰} [A₁] [t≡t′]) ⊢A₁≡Π
ΠFG′≡ΠFG′₂ = whrDet* (D₂ , Πₙ) (D₂′ , Πₙ)
F′≡F′₂ , _ , _ , G′≡G′₂ , _ = Π-PE-injectivity ΠFG′≡ΠFG′₂
ΠFG′≡ΠFG′₄ = whrDet* (D₄ , Πₙ) (D₄′ , Πₙ)
F′≡F′₄ , _ , _ , G′≡G′₄ , _ = Π-PE-injectivity ΠFG′≡ΠFG′₄
⊢e' = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢A₁))) (un-univ≡ ⊢A₁≡Π) (un-univ≡ ⊢A₃≡Π)))
⊢e′' = conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢A₁)))
(un-univ≡ (PE.subst (λ X → Γ ⊢ A₂ ≡ X ^ [ ! , ι ⁰ ]) ΠFG′≡ΠFG′₂ ⊢A₂≡Π))
(un-univ≡ (PE.subst (λ X → Γ ⊢ A₄ ≡ X ^ [ ! , ι ⁰ ]) ΠFG′≡ΠFG′₄ ⊢A₄≡Π))))
cast~cast = ~-conv (~-castΠΠ!% (un-univ ⊢F₁) (un-univ ⊢G₁) (≅-un-univ A₁≡A₂′) (un-univ ⊢F₃) (un-univ ⊢G₃) (≅-un-univ A₃≡A₄′) ⊢t≡t ⊢e' ⊢e′') (sym ⊢A₃≡Π)
in neuEqTerm:⇒*: {l = ι ⁰} { n = cast ⁰ (Π F₁ ^ ! ° ⁰ ▹ G₁ ° ⁰ ° ⁰) (Π F₃ ^ % ° ⁰ ▹ G₃ ° ⁰ ° ⁰) e t} {n′ = cast ⁰ (Π F₂ ^ ! ° ⁰ ▹ G₂ ° ⁰ ° ⁰) (Π F₄ ^ % ° ⁰ ▹ G₄ ° ⁰ ° ⁰) e′ t′}
[A₃]
castΠΠ!%ₙ castΠΠ!%ₙ
(transTerm:⇒:* (CastRed*Term ⊢A₃ ⊢e ⊢t (un-univ:⇒*: [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]]))
(CastRed*TermΠ (un-univ ⊢F₁ ) (un-univ ⊢G₁) (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢A₃) )) (un-univ≡ ⊢A₁≡Π)
(refl (un-univ ⊢A₃))))) (conv ⊢t ⊢A₁≡Π) [[ ⊢A₃ , ⊢ΠF₃G₃ , D₃ ]]))
(conv:⇒*: (transTerm:⇒:* (CastRed*Term ⊢A₄ ⊢e′ ⊢t′ (un-univ:⇒*: [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]]))
(CastRed*TermΠ (un-univ ⊢F₂ ) (un-univ ⊢G₂) (conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢A₄) )) (un-univ≡ ⊢A₂≡Π)
(refl (un-univ ⊢A₄))))) (conv ⊢t′ ⊢A₂≡Π) [[ ⊢A₄ , ⊢ΠF₄G₄ , D₄ ]])) (sym (≅-eq ⊢A₃≡A₄)))
(~-irrelevanceTerm PE.refl PE.refl (PE.cong₄ (λ X Y X' Y' → cast ⁰ (Π X ^ ! ° ⁰ ▹ Y ° ⁰ ° ⁰) (Π X' ^ % ° ⁰ ▹ Y' ° ⁰ ° ⁰) _ _ ) (PE.sym F′≡F′₂) (PE.sym G′≡G′₂) (PE.sym F′≡F′₄) (PE.sym G′≡G′₄)) cast~cast))
[castextShape] {A} {C} {B} {D} {Γ} ⊢Γ .(ℕᵣ ℕA₁) .(ℕᵣ ℕB₁) (ℕᵥ ℕA₁ ℕB₁) [A≡C] .(ℕᵣ ℕA) .(ℕᵣ ℕB) (ℕᵥ ℕA ℕB) [B≡D] =
(λ {t} {t′} {e} {e′} [t] [t′] [t≡t′] ⊢e ⊢e′ → [castext]ℕ ⊢Γ ℕA₁ ℕB₁ [A≡C] ℕA ℕB [B≡D] (escapeTerm {l = ι ⁰} (ℕᵣ ℕA₁) [t]) (escapeTerm {l = ι ⁰} (ℕᵣ ℕB₁) [t′]) [t≡t′] ⊢e ⊢e′ ) ,
λ {t} {t′} {e} {e′} [t] [t′] [t≡t′] ⊢e ⊢e′ → [castext]ℕ ⊢Γ ℕA ℕB [B≡D] ℕA₁ ℕB₁ [A≡C] (escapeTerm {l = ι ⁰} (ℕᵣ ℕA) [t]) (escapeTerm {l = ι ⁰} (ℕᵣ ℕB) [t′]) [t≡t′] ⊢e ⊢e′
[castextShape] {A} {C} {B} {D} {Γ} ⊢Γ .(ne neA) .(ne neB) (ne neA neB) [A≡C] .(ℕᵣ ℕA) .(ℕᵣ ℕB) (ℕᵥ ℕA ℕB) [B≡D] =
([castext]Ne ⊢Γ neA neB [A≡C] (ℕᵣ ℕA) (ℕᵣ ℕB) [B≡D]) ,
(λ {t} {t′} {e} {e′} [t] [t′] [t≡t′] ⊢e ⊢e′ →
let ne K [[ ⊢A , ⊢K , D ]] neK K≡K = neA
ne₌ K′ [[ ⊢A′ , ⊢K′ , D′ ]] neK' K≡K' = [A≡C]
⊢B≡ℕ = subset* (red ℕA)
⊢t = conv (escapeTerm {l = ι ⁰} (ℕᵣ ℕA) [t]) ⊢B≡ℕ
⊢D≡ℕ = subset* (red ℕB)
⊢t′ = conv (escapeTerm {l = ι ⁰} (ℕᵣ ℕB) [t′]) ⊢D≡ℕ
t≅t′ = escapeTermEq {l = ι ⁰} (ℕᵣ ℕA) [t≡t′]
⊢A≡K = subset* D
⊢C≡K = subset* D′
⊢e' = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢A))) (un-univ≡ ⊢B≡ℕ) (un-univ≡ ⊢A≡K)))
⊢e′' = conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢A))) (un-univ≡ ⊢D≡ℕ) (un-univ≡ ⊢C≡K)))
in neₜ₌ (cast ⁰ ℕ K e t) (cast ⁰ ℕ K′ e′ t′)
(conv:⇒*: (transTerm:⇒:* (CastRed*Term ⊢A ⊢e (escapeTerm {l = ι ⁰} (ℕᵣ ℕA) [t]) (un-univ:⇒*: ℕA))
(CastRed*Termℕ (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢A) )) (un-univ≡ ⊢B≡ℕ)
(refl (un-univ ⊢A))))) ⊢t [[ ⊢A , ⊢K , D ]])) (subset* D))
(conv:⇒*: (transTerm:⇒:* (CastRed*Term ⊢A′ ⊢e′ (escapeTerm {l = ι ⁰} (ℕᵣ ℕB) [t′]) (un-univ:⇒*: ℕB))
(CastRed*Termℕ (conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢A′) )) (un-univ≡ ⊢D≡ℕ)
(refl (un-univ ⊢A′))))) ⊢t′ [[ ⊢A′ , ⊢K′ , D′ ]]))
(trans (subset* D′) (sym (≅-eq (≅-univ (~-to-≅ₜ K≡K'))))))
(neNfₜ₌ (castℕₙ neK) (castℕₙ neK') (~-castℕ ⊢Γ K≡K' (≅-conv t≅t′ ⊢B≡ℕ) ⊢e' ⊢e′')))
[castextShape] {A} {C} {B} {D} {Γ} {r = !} ⊢Γ _ _ (Πᵥ (Πᵣ rF .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢A , ⊢Π , DΠA ]] ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ rF′ .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F′ G′ [[ ⊢C , ⊢Π′ , DΠB ]] ⊢F′ ⊢G′ C≡C [F]′ [G]′ G-ext′))
(Π₌ F′₁ G′₁ D₌ A≡B [F≡F′] [G≡G′]) .(ℕᵣ ℕA) .(ℕᵣ ℕB) (ℕᵥ ℕA ℕB) [B≡D] =
(λ {t} {t′} {e} {e′} [t] [t′] [t≡t′] ⊢e ⊢e′ →
let ΠA = Πᵣ rF ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢A , ⊢Π , DΠA ]] ⊢F ⊢G A≡A [F] [G] G-ext
ΠB = Πᵣ rF′ ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F′ G′ [[ ⊢C , ⊢Π′ , DΠB ]] ⊢F′ ⊢G′ C≡C [F]′ [G]′ G-ext′
⊢A≡Π = subset* DΠA
[[ _ , _ , DB ]] = ℕA
⊢B≡ℕ = subset* DB
[[ _ , _ , DD ]] = ℕB
⊢D≡ℕ = subset* DD
⊢t = conv (escapeTerm {l = ι ⁰} (Πᵣ ΠA) [t]) ⊢A≡Π
⊢C≡Π = subset* DΠB
⊢t′ = conv (escapeTerm {l = ι ⁰} (Πᵣ ΠB) [t′]) ⊢C≡Π
t≅t′ = escapeTermEq {l = ι ⁰} (Πᵣ ΠA) [t≡t′]
ΠFG′≡ΠFG′₁ = whrDet* (DΠB , Πₙ) (D₌ , Πₙ)
F′≡F′₁ , rF≡rF′ , _ , G′≡G′₁ , _ = Π-PE-injectivity ΠFG′≡ΠFG′₁
⊢B = escape {l = ι ⁰} (ℕᵣ ℕA)
⊢D = escape {l = ι ⁰} (ℕᵣ ℕB)
⊢B≡D = escapeEq {l = ι ⁰} (ℕᵣ ℕA) [B≡D]
⊢e' = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢A))) (un-univ≡ ⊢A≡Π) (un-univ≡ ⊢B≡ℕ)))
⊢e′' = conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢A)))
(un-univ≡ (PE.subst (λ X → Γ ⊢ C ≡ X ^ [ ! , ι ⁰ ])
(PE.cong₃ (λ X Y Z → Π X ^ Y ° ⁰ ▹ Z ° ⁰ ° ⁰) F′≡F′₁ rF≡rF′ G′≡G′₁) ⊢C≡Π))
(un-univ≡ ⊢D≡ℕ)))
cast~cast = ~-irrelevanceTerm PE.refl PE.refl (PE.cong₃ (λ X Y Z → cast ⁰ (Π X ^ Y ° ⁰ ▹ Z ° ⁰ ° ⁰) _ _ _ ) (PE.sym F′≡F′₁) (PE.sym rF≡rF′) (PE.sym G′≡G′₁) )
(~-castΠℕ (un-univ ⊢F) (un-univ ⊢G) (≅-un-univ A≡B) (≅-conv t≅t′ ⊢A≡Π) ⊢e' ⊢e′')
in neuEqTerm:⇒*: {l = ι ⁰} { n = cast ⁰ (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) ℕ e t} {n′ = cast ⁰ (Π F′ ^ rF′ ° ⁰ ▹ G′ ° ⁰ ° ⁰) ℕ e′ t′} (ℕᵣ ℕA)
castΠℕₙ castΠℕₙ
(transTerm:⇒:* (CastRed*Term ⊢B ⊢e (escapeTerm {l = ι ⁰} (Πᵣ ΠA) [t]) (un-univ:⇒*: [[ ⊢A , ⊢Π , DΠA ]]))
(CastRed*TermΠ (un-univ ⊢F) (un-univ ⊢G) (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢A) )) (un-univ≡ ⊢A≡Π)
(refl (un-univ ⊢B))))) ⊢t ℕA))
(conv:⇒*: (transTerm:⇒:* (CastRed*Term ⊢D ⊢e′ (escapeTerm {l = ι ⁰} (Πᵣ ΠB) [t′]) (un-univ:⇒*: [[ ⊢C , ⊢Π′ , DΠB ]]))
(CastRed*TermΠ (un-univ ⊢F′) (un-univ ⊢G′) (conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢C) )) (un-univ≡ ⊢C≡Π)
(refl (un-univ ⊢D))))) ⊢t′ ℕB)) (sym (≅-eq ⊢B≡D)))
(~-conv cast~cast (sym (subset* (red ℕA))))),
λ {t} {t′} {e} {e′} [t] [t′] [t≡t′] ⊢e ⊢e′ →
let ΠA = Πᵣ rF ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢A , ⊢Π , DΠA ]] ⊢F ⊢G A≡A [F] [G] G-ext
⊢A≡Π = subset* DΠA
⊢B≡ℕ = subset* (red ℕA)
⊢D≡ℕ = subset* (red ℕB)
⊢t = conv (escapeTerm {l = ι ⁰} (ℕᵣ ℕA) [t]) ⊢B≡ℕ
⊢C≡Π = subset* DΠB
⊢t′ = conv (escapeTerm {l = ι ⁰} (ℕᵣ ℕB) [t′]) ⊢D≡ℕ
t≅t′ = escapeTermEq {l = ι ⁰} (ℕᵣ ℕA) [t≡t′]
ΠFG′≡ΠFG′₁ = whrDet* (DΠB , Πₙ) (D₌ , Πₙ)
F′≡F′₁ , rF≡rF′ , _ , G′≡G′₁ , _ = Π-PE-injectivity ΠFG′≡ΠFG′₁
⊢B = escape {l = ι ⁰} (ℕᵣ ℕA)
⊢D = escape {l = ι ⁰} (ℕᵣ ℕB)
⊢A≡C = escapeEq {l = ι ⁰} (Πᵣ ΠA) (Π₌ F′₁ G′₁ D₌ A≡B [F≡F′] [G≡G′])
⊢e' = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢A))) (un-univ≡ ⊢B≡ℕ) (un-univ≡ ⊢A≡Π)))
⊢e′' = conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢A)))
(un-univ≡ ⊢D≡ℕ)
(un-univ≡ (PE.subst (λ X → Γ ⊢ C ≡ X ^ [ ! , ι ⁰ ])
(PE.cong₃ (λ X Y Z → Π X ^ Y ° ⁰ ▹ Z ° ⁰ ° ⁰) F′≡F′₁ rF≡rF′ G′≡G′₁) ⊢C≡Π))))
cast~cast = ~-irrelevanceTerm PE.refl PE.refl (PE.cong₃ (λ X Y Z → cast ⁰ _ (Π X ^ Y ° ⁰ ▹ Z ° ⁰ ° ⁰) _ _ ) (PE.sym F′≡F′₁) (PE.sym rF≡rF′) (PE.sym G′≡G′₁) )
(~-castℕΠ (un-univ ⊢F) (un-univ ⊢G) (≅-un-univ A≡B) (≅-conv t≅t′ ⊢B≡ℕ) ⊢e' ⊢e′')
in neuEqTerm:⇒*: { n = cast ⁰ ℕ (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) e t} {n′ = cast ⁰ ℕ (Π F′ ^ rF′ ° ⁰ ▹ G′ ° ⁰ ° ⁰) e′ t′} (Πᵣ ΠA)
castℕΠₙ castℕΠₙ
(transTerm:⇒:* (CastRed*Term ⊢A ⊢e (escapeTerm {l = ι ⁰} (ℕᵣ ℕA) [t]) (un-univ:⇒*: ℕA))
(CastRed*Termℕ (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢A) )) (un-univ≡ ⊢B≡ℕ)
(refl (un-univ ⊢A)))))
⊢t [[ ⊢A , ⊢Π , DΠA ]]))
(conv:⇒*: (transTerm:⇒:* (CastRed*Term ⊢C ⊢e′ (escapeTerm {l = ι ⁰} (ℕᵣ ℕB) [t′]) (un-univ:⇒*: ℕB))
(CastRed*Termℕ (conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢C) )) (un-univ≡ ⊢D≡ℕ)
(refl (un-univ ⊢C))))) ⊢t′ [[ ⊢C , ⊢Π′ , DΠB ]])) (sym (≅-eq ⊢A≡C)))
(~-conv cast~cast (sym (subset* DΠA)))
[castextShape] {A} {C} {B} {D} {Γ} ⊢Γ .(ℕᵣ ℕA) .(ℕᵣ ℕB) (ℕᵥ ℕA ℕB) [A≡C] .(ne neA) .(ne neB) (ne neA neB) [B≡D] =
(λ {t} {t′} {e} {e′} [t] [t′] [t≡t′] ⊢e ⊢e′ →
let ne K [[ ⊢A , ⊢K , D ]] neK K≡K = neA
ne₌ K′ [[ ⊢A′ , ⊢K′ , D′ ]] neK' K≡K' = [B≡D]
⊢B≡ℕ = subset* (red ℕA)
⊢A≡K = subset* D
⊢C≡K = subset* D′
⊢t = conv (escapeTerm {l = ι ⁰} (ℕᵣ ℕA) [t]) ⊢B≡ℕ
⊢D≡ℕ = subset* (red ℕB)
⊢t′ = conv (escapeTerm {l = ι ⁰} (ℕᵣ ℕB) [t′]) ⊢D≡ℕ
t≅t′ = escapeTermEq {l = ι ⁰} (ℕᵣ ℕA) [t≡t′]
⊢e' = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢A))) (un-univ≡ ⊢B≡ℕ) (un-univ≡ ⊢A≡K)))
⊢e′' = conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢A))) (un-univ≡ ⊢D≡ℕ) (un-univ≡ ⊢C≡K)))
in neₜ₌ (cast ⁰ ℕ K e t) (cast ⁰ ℕ K′ e′ t′)
(conv:⇒*: (transTerm:⇒:* (CastRed*Term ⊢A ⊢e (escapeTerm {l = ι ⁰} (ℕᵣ ℕA) [t]) (un-univ:⇒*: ℕA))
(CastRed*Termℕ (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢A) )) (un-univ≡ ⊢B≡ℕ)
(refl (un-univ ⊢A))))) ⊢t [[ ⊢A , ⊢K , D ]])) (subset* D))
(conv:⇒*: (transTerm:⇒:* (CastRed*Term ⊢A′ ⊢e′ (escapeTerm {l = ι ⁰} (ℕᵣ ℕB) [t′]) (un-univ:⇒*: ℕB))
(CastRed*Termℕ (conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢A′) )) (un-univ≡ ⊢D≡ℕ)
(refl (un-univ ⊢A′))))) ⊢t′ [[ ⊢A′ , ⊢K′ , D′ ]]))
(trans (subset* D′) (sym (≅-eq (≅-univ (~-to-≅ₜ K≡K'))))))
(neNfₜ₌ (castℕₙ neK) (castℕₙ neK') (~-castℕ ⊢Γ K≡K' (≅-conv t≅t′ ⊢B≡ℕ) ⊢e' ⊢e′'))) ,
([castext]Ne ⊢Γ neA neB [B≡D] (ℕᵣ ℕA) (ℕᵣ ℕB) [A≡C])
[castextShape] {A} {C} {B} {D} {Γ} {r = !} ⊢Γ .(ne neA₁) .(ne neB₁) (ne neA₁ neB₁) [A≡C] .(ne neA) .(ne neB) (ne neA neB) [B≡D] =
([castext]Ne ⊢Γ neA₁ neB₁ [A≡C] (ne neA) (ne neB) [B≡D]) , ([castext]Ne ⊢Γ neA neB [B≡D] (ne neA₁) (ne neB₁) [A≡C])
[castextShape] {A} {C} {B} {D} {Γ} {r = !} ⊢Γ _ _ (Πᵥ (Πᵣ rF .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢A , ⊢Π , DΠA ]] ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ rF′ .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F′ G′ [[ ⊢C , ⊢Π′ , DΠB ]] ⊢F′ ⊢G′ C≡C [F]′ [G]′ G-ext′))
(Π₌ F′₁ G′₁ D₌ A≡B [F≡F′] [G≡G′]) .(ne neA) .(ne neB) (ne neA neB) [B≡D] =
(λ {t} {t′} {e} {e′} [t] [t′] [t≡t′] ⊢e ⊢e′ →
let ne K [[ ⊢B , ⊢K , D ]] neK K≡K = neA
ne₌ K′ [[ ⊢D , ⊢K′ , D′ ]] neK' K≡K' = [B≡D]
ΠA = Πᵣ rF ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢A , ⊢Π , DΠA ]] ⊢F ⊢G A≡A [F] [G] G-ext
ΠB = Πᵣ rF′ ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F′ G′ [[ ⊢C , ⊢Π′ , DΠB ]] ⊢F′ ⊢G′ C≡C [F]′ [G]′ G-ext′
⊢A≡Π = subset* DΠA
⊢B≡K = subset* D
⊢D≡K = subset* D′
⊢t = conv (escapeTerm {l = ι ⁰} (Πᵣ ΠA) [t]) ⊢A≡Π
⊢C≡Π = subset* DΠB
⊢t′ = conv (escapeTerm {l = ι ⁰} (Πᵣ ΠB) [t′]) ⊢C≡Π
t≅t′ = escapeTermEq {l = ι ⁰} (Πᵣ ΠA) [t≡t′]
ΠFG′≡ΠFG′₁ = whrDet* (DΠB , Πₙ) (D₌ , Πₙ)
⊢B≡D = escapeEq {l = ι ⁰} (ne neA) [B≡D]
F′≡F′₁ , rF≡rF′ , _ , G′≡G′₁ , _ = Π-PE-injectivity ΠFG′≡ΠFG′₁
⊢e' = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢A))) (un-univ≡ ⊢A≡Π) (un-univ≡ ⊢B≡K)))
⊢e′' = conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢A)))
(un-univ≡ (PE.subst (λ X → Γ ⊢ C ≡ X ^ [ ! , ι ⁰ ])
(PE.cong₃ (λ X Y Z → Π X ^ Y ° ⁰ ▹ Z ° ⁰ ° ⁰) F′≡F′₁ rF≡rF′ G′≡G′₁) ⊢C≡Π))
(un-univ≡ ⊢D≡K)))
in neuEqTerm:⇒*: {l = ι ⁰} {n = cast ⁰ (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) K e t} {n′ = cast ⁰ (Π F′ ^ rF′ ° ⁰ ▹ G′ ° ⁰ ° ⁰) K′ e′ t′}
(ne neA) (castΠₙ neK) (castΠₙ neK')
(transTerm:⇒:* (CastRed*Term ⊢B ⊢e (escapeTerm {l = ι ⁰} (Πᵣ ΠA) [t]) (un-univ:⇒*: [[ ⊢A , ⊢Π , DΠA ]]))
(CastRed*TermΠ (un-univ ⊢F) (un-univ ⊢G) (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢A) )) (un-univ≡ ⊢A≡Π)
(refl (un-univ ⊢B))))) ⊢t [[ ⊢B , ⊢K , D ]]))
(conv:⇒*: (transTerm:⇒:* (CastRed*Term ⊢D ⊢e′ (escapeTerm {l = ι ⁰} (Πᵣ ΠB) [t′]) (un-univ:⇒*: [[ ⊢C , ⊢Π′ , DΠB ]]))
(CastRed*TermΠ (un-univ ⊢F′) (un-univ ⊢G′) (conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢C) )) (un-univ≡ ⊢C≡Π)
(refl (un-univ ⊢D))))) ⊢t′ [[ ⊢D , ⊢K′ , D′ ]]))
(sym (≅-eq ⊢B≡D)))
(~-irrelevanceTerm PE.refl PE.refl (PE.cong₃ (λ X Y Z → cast ⁰ (Π X ^ Y ° ⁰ ▹ Z ° ⁰ ° ⁰) _ _ _ ) (PE.sym F′≡F′₁) (PE.sym rF≡rF′) (PE.sym G′≡G′₁) )
(~-conv (~-castΠ (≅-un-univ A≡B) K≡K' (≅-conv t≅t′ ⊢A≡Π) ⊢e' ⊢e′') (sym (subset* D))))) ,
([castext]Ne ⊢Γ neA neB [B≡D] (Πᵣ′ rF ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢A , ⊢Π , DΠA ]] ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ′ rF′ ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F′ G′ [[ ⊢C , ⊢Π′ , DΠB ]] ⊢F′ ⊢G′ C≡C [F]′ [G]′ G-ext′) (Π₌ F′₁ G′₁ D₌ A≡B [F≡F′] [G≡G′]))
[castextShape] {A} {C} {B} {D} {Γ} {r = !} ⊢Γ .(ℕᵣ ℕA) .(ℕᵣ ℕB) (ℕᵥ ℕA ℕB) [B≡D]
_ _ (Πᵥ (Πᵣ rF .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢A , ⊢Π , DΠA ]] ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ rF′ .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F′ G′ [[ ⊢C , ⊢Π′ , DΠB ]] ⊢F′ ⊢G′ C≡C [F]′ [G]′ G-ext′))
(Π₌ F′₁ G′₁ D₌ A≡B [F≡F′] [G≡G′]) =
(λ {t} {t′} {e} {e′} [t] [t′] [t≡t′] ⊢e ⊢e′ →
let ΠA = Πᵣ rF ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢A , ⊢Π , DΠA ]] ⊢F ⊢G A≡A [F] [G] G-ext
⊢A≡Π = subset* DΠA
⊢B≡ℕ = subset* (red ℕA)
⊢D≡ℕ = subset* (red ℕB)
⊢t = conv (escapeTerm {l = ι ⁰} (ℕᵣ ℕA) [t]) ⊢B≡ℕ
⊢C≡Π = subset* DΠB
⊢t′ = conv (escapeTerm {l = ι ⁰} (ℕᵣ ℕB) [t′]) ⊢D≡ℕ
t≅t′ = escapeTermEq {l = ι ⁰} (ℕᵣ ℕA) [t≡t′]
ΠFG′≡ΠFG′₁ = whrDet* (DΠB , Πₙ) (D₌ , Πₙ)
F′≡F′₁ , rF≡rF′ , _ , G′≡G′₁ , _ = Π-PE-injectivity ΠFG′≡ΠFG′₁
⊢B = escape {l = ι ⁰} (ℕᵣ ℕA)
⊢D = escape {l = ι ⁰} (ℕᵣ ℕB)
⊢A≡C = escapeEq {l = ι ⁰} (Πᵣ ΠA) (Π₌ F′₁ G′₁ D₌ A≡B [F≡F′] [G≡G′])
⊢e' = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢A))) (un-univ≡ ⊢B≡ℕ) (un-univ≡ ⊢A≡Π)))
⊢e′' = conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢A)))
(un-univ≡ ⊢D≡ℕ)
(un-univ≡ (PE.subst (λ X → Γ ⊢ D ≡ X ^ [ ! , ι ⁰ ])
(PE.cong₃ (λ X Y Z → Π X ^ Y ° ⁰ ▹ Z ° ⁰ ° ⁰) F′≡F′₁ rF≡rF′ G′≡G′₁) ⊢C≡Π))))
cast~cast = ~-irrelevanceTerm PE.refl PE.refl (PE.cong₃ (λ X Y Z → cast ⁰ _ (Π X ^ Y ° ⁰ ▹ Z ° ⁰ ° ⁰) _ _ ) (PE.sym F′≡F′₁) (PE.sym rF≡rF′) (PE.sym G′≡G′₁) )
(~-castℕΠ (un-univ ⊢F) (un-univ ⊢G) (≅-un-univ A≡B) (≅-conv t≅t′ ⊢B≡ℕ) ⊢e' ⊢e′')
in neuEqTerm:⇒*: {l = ι ⁰} { n = cast ⁰ ℕ (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) e t} {n′ = cast ⁰ ℕ (Π F′ ^ rF′ ° ⁰ ▹ G′ ° ⁰ ° ⁰) e′ t′} (Πᵣ ΠA)
castℕΠₙ castℕΠₙ
(transTerm:⇒:* (CastRed*Term ⊢A ⊢e (escapeTerm {l = ι ⁰} (ℕᵣ ℕA) [t]) (un-univ:⇒*: ℕA))
(CastRed*Termℕ (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢A) )) (un-univ≡ ⊢B≡ℕ)
(refl (un-univ ⊢A)))))
⊢t [[ ⊢A , ⊢Π , DΠA ]]))
(conv:⇒*: (transTerm:⇒:* (CastRed*Term ⊢C ⊢e′ (escapeTerm {l = ι ⁰} (ℕᵣ ℕB) [t′]) (un-univ:⇒*: ℕB))
(CastRed*Termℕ (conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢C) )) (un-univ≡ ⊢D≡ℕ)
(refl (un-univ ⊢C))))) ⊢t′ [[ ⊢C , ⊢Π′ , DΠB ]])) (sym (≅-eq ⊢A≡C)))
(~-conv cast~cast (sym (subset* DΠA)))) ,
(λ {t} {t′} {e} {e′} [t] [t′] [t≡t′] ⊢e ⊢e′ →
let ΠA = Πᵣ rF ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢A , ⊢Π , DΠA ]] ⊢F ⊢G A≡A [F] [G] G-ext
ΠB = Πᵣ rF′ ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F′ G′ [[ ⊢C , ⊢Π′ , DΠB ]] ⊢F′ ⊢G′ C≡C [F]′ [G]′ G-ext′
⊢A≡Π = subset* DΠA
⊢t = conv (escapeTerm {l = ι ⁰} (Πᵣ ΠA) [t]) ⊢A≡Π
⊢C≡Π = subset* DΠB
⊢t′ = conv (escapeTerm {l = ι ⁰} (Πᵣ ΠB) [t′]) ⊢C≡Π
t≅t′ = escapeTermEq {l = ι ⁰} (Πᵣ ΠA) [t≡t′]
ΠFG′≡ΠFG′₁ = whrDet* (DΠB , Πₙ) (D₌ , Πₙ)
F′≡F′₁ , rF≡rF′ , _ , G′≡G′₁ , _ = Π-PE-injectivity ΠFG′≡ΠFG′₁
⊢B = escape {l = ι ⁰} (ℕᵣ ℕA)
⊢D = escape {l = ι ⁰} (ℕᵣ ℕB)
⊢B≡ℕ = subset* (red ℕA)
⊢D≡ℕ = subset* (red ℕB)
⊢B≡D = escapeEq {l = ι ⁰} (ℕᵣ ℕA) [B≡D]
⊢e' = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢A))) (un-univ≡ ⊢A≡Π) (un-univ≡ ⊢B≡ℕ)))
⊢e′' = conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢A)))
(un-univ≡ (PE.subst (λ X → Γ ⊢ D ≡ X ^ [ ! , ι ⁰ ])
(PE.cong₃ (λ X Y Z → Π X ^ Y ° ⁰ ▹ Z ° ⁰ ° ⁰) F′≡F′₁ rF≡rF′ G′≡G′₁) ⊢C≡Π))
(un-univ≡ ⊢D≡ℕ)))
cast~cast = ~-irrelevanceTerm PE.refl PE.refl (PE.cong₃ (λ X Y Z → cast ⁰ (Π X ^ Y ° ⁰ ▹ Z ° ⁰ ° ⁰) _ _ _ ) (PE.sym F′≡F′₁) (PE.sym rF≡rF′) (PE.sym G′≡G′₁) )
(~-castΠℕ (un-univ ⊢F) (un-univ ⊢G) (≅-un-univ A≡B) (≅-conv t≅t′ ⊢A≡Π) ⊢e' ⊢e′')
in neuEqTerm:⇒*: {l = ι ⁰} { n = cast ⁰ (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) ℕ e t} {n′ = cast ⁰ (Π F′ ^ rF′ ° ⁰ ▹ G′ ° ⁰ ° ⁰) ℕ e′ t′} (ℕᵣ ℕA)
castΠℕₙ castΠℕₙ
(transTerm:⇒:* (CastRed*Term ⊢B ⊢e (escapeTerm {l = ι ⁰} (Πᵣ ΠA) [t]) (un-univ:⇒*: [[ ⊢A , ⊢Π , DΠA ]]))
(CastRed*TermΠ (un-univ ⊢F) (un-univ ⊢G) (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢A) )) (un-univ≡ ⊢A≡Π)
(refl (un-univ ⊢B))))) ⊢t ℕA))
(conv:⇒*: (transTerm:⇒:* (CastRed*Term ⊢D ⊢e′ (escapeTerm {l = ι ⁰} (Πᵣ ΠB) [t′]) (un-univ:⇒*: [[ ⊢C , ⊢Π′ , DΠB ]]))
(CastRed*TermΠ (un-univ ⊢F′) (un-univ ⊢G′) (conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢C) )) (un-univ≡ ⊢C≡Π)
(refl (un-univ ⊢D))))) ⊢t′ ℕB)) (sym (≅-eq ⊢B≡D)))
(~-conv cast~cast (sym (subset* (red ℕA)))))
[castextShape] {A} {C} {B} {D} {Γ} {r = !} ⊢Γ .(ne neA) .(ne neB) (ne neA neB) [B≡D]
_ _ (Πᵥ (Πᵣ rF .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢A , ⊢Π , DΠA ]] ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ rF′ .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F′ G′ [[ ⊢C , ⊢Π′ , DΠB ]] ⊢F′ ⊢G′ C≡C [F]′ [G]′ G-ext′))
(Π₌ F′₁ G′₁ D₌ A≡B [F≡F′] [G≡G′]) =
([castext]Ne ⊢Γ neA neB [B≡D] (Πᵣ′ rF ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢A , ⊢Π , DΠA ]] ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ′ rF′ ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F′ G′ [[ ⊢C , ⊢Π′ , DΠB ]] ⊢F′ ⊢G′ C≡C [F]′ [G]′ G-ext′) (Π₌ F′₁ G′₁ D₌ A≡B [F≡F′] [G≡G′])) ,
(λ {t} {t′} {e} {e′} [t] [t′] [t≡t′] ⊢e ⊢e′ →
let ne K [[ ⊢B , ⊢K , DB ]] neK K≡K = neA
ne₌ K′ [[ ⊢D , ⊢K′ , D′ ]] neK' K≡K' = [B≡D]
ΠA = Πᵣ rF ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢A , ⊢Π , DΠA ]] ⊢F ⊢G A≡A [F] [G] G-ext
ΠB = Πᵣ rF′ ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F′ G′ [[ ⊢C , ⊢Π′ , DΠB ]] ⊢F′ ⊢G′ C≡C [F]′ [G]′ G-ext′
⊢A≡Π = subset* DΠA
⊢t = conv (escapeTerm {l = ι ⁰} (Πᵣ ΠA) [t]) ⊢A≡Π
⊢C≡Π = subset* DΠB
⊢t′ = conv (escapeTerm {l = ι ⁰} (Πᵣ ΠB) [t′]) ⊢C≡Π
t≅t′ = escapeTermEq {l = ι ⁰} (Πᵣ ΠA) [t≡t′]
ΠFG′≡ΠFG′₁ = whrDet* (DΠB , Πₙ) (D₌ , Πₙ)
⊢B≡K = subset* DB
⊢D≡K = subset* D′
⊢B≡D = escapeEq {l = ι ⁰} (ne neA) [B≡D]
F′≡F′₁ , rF≡rF′ , _ , G′≡G′₁ , _ = Π-PE-injectivity ΠFG′≡ΠFG′₁
⊢e' = conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢A))) (un-univ≡ ⊢A≡Π) (un-univ≡ ⊢B≡K)))
⊢e′' = conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢A)))
(un-univ≡ (PE.subst (λ X → Γ ⊢ D ≡ X ^ [ ! , ι ⁰ ])
(PE.cong₃ (λ X Y Z → Π X ^ Y ° ⁰ ▹ Z ° ⁰ ° ⁰) F′≡F′₁ rF≡rF′ G′≡G′₁) ⊢C≡Π))
(un-univ≡ ⊢D≡K)))
in neuEqTerm:⇒*: {l = ι ⁰} {n = cast ⁰ (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) K e t} {n′ = cast ⁰ (Π F′ ^ rF′ ° ⁰ ▹ G′ ° ⁰ ° ⁰) K′ e′ t′}
(ne neA) (castΠₙ neK) (castΠₙ neK')
(transTerm:⇒:* (CastRed*Term ⊢B ⊢e (escapeTerm {l = ι ⁰} (Πᵣ ΠA) [t]) (un-univ:⇒*: [[ ⊢A , ⊢Π , DΠA ]]))
(CastRed*TermΠ (un-univ ⊢F) (un-univ ⊢G) (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢A) )) (un-univ≡ ⊢A≡Π)
(refl (un-univ ⊢B))))) ⊢t [[ ⊢B , ⊢K , DB ]]))
(conv:⇒*: (transTerm:⇒:* (CastRed*Term ⊢D ⊢e′ (escapeTerm {l = ι ⁰} (Πᵣ ΠB) [t′]) (un-univ:⇒*: [[ ⊢C , ⊢Π′ , DΠB ]]))
(CastRed*TermΠ (un-univ ⊢F′) (un-univ ⊢G′) (conv ⊢e′ (univ (Id-cong (refl (univ 0<1 (wf ⊢C) )) (un-univ≡ ⊢C≡Π)
(refl (un-univ ⊢D))))) ⊢t′ [[ ⊢D , ⊢K′ , D′ ]]))
(sym (≅-eq ⊢B≡D)))
(~-irrelevanceTerm PE.refl PE.refl (PE.cong₃ (λ X Y Z → cast ⁰ (Π X ^ Y ° ⁰ ▹ Z ° ⁰ ° ⁰) _ _ _ ) (PE.sym F′≡F′₁) (PE.sym rF≡rF′) (PE.sym G′≡G′₁) )
(~-conv (~-castΠ (≅-un-univ A≡B) K≡K' (≅-conv t≅t′ ⊢A≡Π) ⊢e' ⊢e′') (sym (subset* DB)))))
[castextShape] {A} {C} {B} {D} {Γ} {r = %} ⊢Γ [A] [C] _ [A≡C] [B] [D] _ [B≡D] =
[castext]irr {A} {C} {B} {D} {Γ} ⊢Γ [A] [C] [A≡C] [B] [D] [B≡D] , [castext]irr {B} {D} {A} {C} {Γ} ⊢Γ [B] [D] [B≡D] [A] [C] [A≡C]
[castext] {A} {C} {B} {D} {Γ} ⊢Γ [A] [C] [A≡C] [B] [D] [B≡D] = [castextShape] ⊢Γ [A] [C] (goodCases [A] [C] [A≡C]) [A≡C] [B] [D] (goodCases [B] [D] [B≡D]) [B≡D]
cast∞ : ∀ {A B r t e Γ}
(⊢Γ : ⊢ Γ)
([U] : Γ ⊩⟨ ∞ ⟩ Univ r ⁰ ^ [ ! , ι ¹ ])
([AU] : Γ ⊩⟨ ∞ ⟩ A ∷ Univ r ⁰ ^ [ ! , ι ¹ ] / [U])
([BU] : Γ ⊩⟨ ∞ ⟩ B ∷ Univ r ⁰ ^ [ ! , ι ¹ ] / [U])
([A] : Γ ⊩⟨ ∞ ⟩ A ^ [ r , ι ⁰ ])
([B] : Γ ⊩⟨ ∞ ⟩ B ^ [ r , ι ⁰ ])
([t] : Γ ⊩⟨ ∞ ⟩ t ∷ A ^ [ r , ι ⁰ ] / [A])
([Id] : Γ ⊩⟨ ∞ ⟩ Id (Univ r ⁰) A B ^ [ % , ι ¹ ]) →
([e] : Γ ⊩⟨ ∞ ⟩ e ∷ Id (Univ r ⁰) A B ^ [ % , ι ¹ ] / [Id] ) →
Γ ⊩⟨ ∞ ⟩ cast ⁰ A B e t ∷ B ^ [ r , ι ⁰ ] / [B]
cast∞ {A} {B} {r} {t} {e} {Γ} ⊢Γ [U] [AU] [BU] [A] [B] [t] [Id] [e] =
let
[A]′ : Γ ⊩⟨ ι ⁰ ⟩ A ^ [ r , ι ⁰ ]
[A]′ = univEq [U] [AU]
[B]′ : Γ ⊩⟨ ι ⁰ ⟩ B ^ [ r , ι ⁰ ]
[B]′ = univEq [U] [BU]
[t]′ : Γ ⊩⟨ ι ⁰ ⟩ t ∷ A ^ [ r , ι ⁰ ] / [A]′
[t]′ = irrelevanceTerm [A] (emb ∞< (emb emb< [A]′)) [t]
⊢e : Γ ⊢ e ∷ Id (Univ r ⁰) A B ^ [ % , ι ¹ ]
⊢e = escapeTerm [Id] [e]
x : Γ ⊩⟨ ι ⁰ ⟩ cast ⁰ A B e t ∷ B ^ [ r , ι ⁰ ] / [B]′
x = proj₁ ([cast] ⊢Γ [A]′ [B]′) [t]′ ⊢e
in irrelevanceTerm (emb ∞< (emb emb< [B]′)) [B] x
castext∞ : ∀ {A A' B B' r t t' e e' Γ}
(⊢Γ : ⊢ Γ)
([U] : Γ ⊩⟨ ∞ ⟩ Univ r ⁰ ^ [ ! , ι ¹ ])
([U'] : Γ ⊩⟨ ∞ ⟩ Univ r ⁰ ^ [ ! , ι ¹ ])
([AU] : Γ ⊩⟨ ∞ ⟩ A ∷ Univ r ⁰ ^ [ ! , ι ¹ ] / [U])
([AU'] : Γ ⊩⟨ ∞ ⟩ A' ∷ Univ r ⁰ ^ [ ! , ι ¹ ] / [U])
([BU] : Γ ⊩⟨ ∞ ⟩ B ∷ Univ r ⁰ ^ [ ! , ι ¹ ] / [U'])
([BU'] : Γ ⊩⟨ ∞ ⟩ B' ∷ Univ r ⁰ ^ [ ! , ι ¹ ] / [U'])
([UA≡UA'] : Γ ⊩⟨ ∞ ⟩ A ≡ A' ∷ Univ r ⁰ ^ [ ! , ι ¹ ] / [U])
([UB≡UB'] : Γ ⊩⟨ ∞ ⟩ B ≡ B' ∷ Univ r ⁰ ^ [ ! , ι ¹ ] / [U'])
([A] : Γ ⊩⟨ ∞ ⟩ A ^ [ r , ι ⁰ ])
([A'] : Γ ⊩⟨ ∞ ⟩ A' ^ [ r , ι ⁰ ])
([B] : Γ ⊩⟨ ∞ ⟩ B ^ [ r , ι ⁰ ])
([B'] : Γ ⊩⟨ ∞ ⟩ B' ^ [ r , ι ⁰ ])
([t] : Γ ⊩⟨ ∞ ⟩ t ∷ A ^ [ r , ι ⁰ ] / [A])
([t'] : Γ ⊩⟨ ∞ ⟩ t' ∷ A' ^ [ r , ι ⁰ ] / [A'])
([t≡t'] : Γ ⊩⟨ ∞ ⟩ t ≡ t' ∷ A ^ [ r , ι ⁰ ] / [A])
([Id] : Γ ⊩⟨ ∞ ⟩ Id (Univ r ⁰) A B ^ [ % , ι ¹ ]) →
([Id'] : Γ ⊩⟨ ∞ ⟩ Id (Univ r ⁰) A' B' ^ [ % , ι ¹ ]) →
([e] : Γ ⊩⟨ ∞ ⟩ e ∷ Id (Univ r ⁰) A B ^ [ % , ι ¹ ] / [Id] ) →
([e'] : Γ ⊩⟨ ∞ ⟩ e' ∷ Id (Univ r ⁰) A' B' ^ [ % , ι ¹ ] / [Id'] ) →
Γ ⊩⟨ ∞ ⟩ cast ⁰ A B e t ≡ cast ⁰ A' B' e' t' ∷ B ^ [ r , ι ⁰ ] / [B]
castext∞ {A} {A'} {B} {B'} {r} {t} {t'} {e} {e'} {Γ} ⊢Γ [U] [U'] [AU] [AU'] [BU] [BU'] [UA≡UA'] [UB≡UB'] [A] [A'] [B] [B'] [t] [t'] [t≡t'] [Id] [Id'] [e] [e'] =
let
[A]′ : Γ ⊩⟨ ι ⁰ ⟩ A ^ [ r , ι ⁰ ]
[A]′ = univEq [U] [AU]
[A']′ : Γ ⊩⟨ ι ⁰ ⟩ A' ^ [ r , ι ⁰ ]
[A']′ = univEq [U] [AU']
[t]′ : Γ ⊩⟨ ι ⁰ ⟩ t ∷ A ^ [ r , ι ⁰ ] / [A]′
[t]′ = irrelevanceTerm [A] (emb ∞< (emb emb< [A]′)) [t]
[B]′ : Γ ⊩⟨ ι ⁰ ⟩ B ^ [ r , ι ⁰ ]
[B]′ = univEq [U'] [BU]
[B']′ : Γ ⊩⟨ ι ⁰ ⟩ B' ^ [ r , ι ⁰ ]
[B']′ = univEq [U'] [BU']
[A≡A']′ : Γ ⊩⟨ ι ⁰ ⟩ A ≡ A' ^ [ r , ι ⁰ ] / [A]′
[A≡A']′ = univEqEq [U] [A]′ [UA≡UA']
[B≡B']′ : Γ ⊩⟨ ι ⁰ ⟩ B ≡ B' ^ [ r , ι ⁰ ] / [B]′
[B≡B']′ = univEqEq [U'] [B]′ [UB≡UB']
[t']′ : Γ ⊩⟨ ι ⁰ ⟩ t' ∷ A' ^ [ r , ι ⁰ ] / [A']′
[t']′ = irrelevanceTerm [A'] (emb ∞< (emb emb< [A']′)) [t']
[t≡t']′ : Γ ⊩⟨ ι ⁰ ⟩ t ≡ t' ∷ A ^ [ r , ι ⁰ ] / [A]′
[t≡t']′ = irrelevanceEqTerm [A] (emb ∞< (emb emb< [A]′)) [t≡t']
⊢e : Γ ⊢ e ∷ Id (Univ r ⁰) A B ^ [ % , ι ¹ ]
⊢e = escapeTerm [Id] [e]
⊢e' : Γ ⊢ e' ∷ Id (Univ r ⁰) A' B' ^ [ % , ι ¹ ]
⊢e' = escapeTerm [Id'] [e']
x : Γ ⊩⟨ ι ⁰ ⟩ cast ⁰ A B e t ≡ cast ⁰ A' B' e' t' ∷ B ^ [ r , ι ⁰ ] / [B]′
x = proj₁ ([castext] ⊢Γ [A]′ [A']′ [A≡A']′ [B]′ [B']′ [B≡B']′) [t]′ [t']′ [t≡t']′ ⊢e ⊢e'
in irrelevanceEqTerm (emb ∞< (emb emb< [B]′)) [B] x
castext∞' : ∀ {A A' B B' r t t' e e' Γ}
(⊢Γ : ⊢ Γ)
([U] : Γ ⊩⟨ ∞ ⟩ Univ r ⁰ ^ [ ! , ι ¹ ])
([U'] : Γ ⊩⟨ ∞ ⟩ Univ r ⁰ ^ [ ! , ι ¹ ])
([AU] : Γ ⊩⟨ ∞ ⟩ A ∷ Univ r ⁰ ^ [ ! , ι ¹ ] / [U])
([AU'] : Γ ⊩⟨ ∞ ⟩ A' ∷ Univ r ⁰ ^ [ ! , ι ¹ ] / [U'])
([BU] : Γ ⊩⟨ ∞ ⟩ B ∷ Univ r ⁰ ^ [ ! , ι ¹ ] / [U])
([BU'] : Γ ⊩⟨ ∞ ⟩ B' ∷ Univ r ⁰ ^ [ ! , ι ¹ ] / [U'])
([UA≡UA'] : Γ ⊩⟨ ∞ ⟩ A ≡ A' ∷ Univ r ⁰ ^ [ ! , ι ¹ ] / [U])
([UB≡UB'] : Γ ⊩⟨ ∞ ⟩ B ≡ B' ∷ Univ r ⁰ ^ [ ! , ι ¹ ] / [U])
([A] : Γ ⊩⟨ ∞ ⟩ A ^ [ r , ι ⁰ ])
([A'] : Γ ⊩⟨ ∞ ⟩ A' ^ [ r , ι ⁰ ])
([B] : Γ ⊩⟨ ∞ ⟩ B ^ [ r , ι ⁰ ])
([B'] : Γ ⊩⟨ ∞ ⟩ B' ^ [ r , ι ⁰ ])
([t] : Γ ⊩⟨ ∞ ⟩ t ∷ A ^ [ r , ι ⁰ ] / [A])
([t'] : Γ ⊩⟨ ∞ ⟩ t' ∷ A' ^ [ r , ι ⁰ ] / [A'])
([t≡t'] : Γ ⊩⟨ ∞ ⟩ t ≡ t' ∷ A ^ [ r , ι ⁰ ] / [A])
([Id] : Γ ⊩⟨ ∞ ⟩ Id (Univ r ⁰) A B ^ [ % , ι ¹ ]) →
([Id'] : Γ ⊩⟨ ∞ ⟩ Id (Univ r ⁰) A' B' ^ [ % , ι ¹ ]) →
([e] : Γ ⊩⟨ ∞ ⟩ e ∷ Id (Univ r ⁰) A B ^ [ % , ι ¹ ] / [Id] ) →
([e'] : Γ ⊩⟨ ∞ ⟩ e' ∷ Id (Univ r ⁰) A' B' ^ [ % , ι ¹ ] / [Id'] ) →
Γ ⊩⟨ ∞ ⟩ cast ⁰ A B e t ≡ cast ⁰ A' B' e' t' ∷ B ^ [ r , ι ⁰ ] / [B]
castext∞' {A} {A'} {B} {B'} {r} {t} {t'} {e} {e'} {Γ} ⊢Γ [U] [U'] [AU] [AU'] [BU] [BU'] [UA≡UA'] [UB≡UB'] [A] [A'] [B] [B'] [t] [t'] [t≡t'] [Id] [Id'] [e] [e'] =
let
[A]′ : Γ ⊩⟨ ι ⁰ ⟩ A ^ [ r , ι ⁰ ]
[A]′ = univEq [U] [AU]
[A']′ : Γ ⊩⟨ ι ⁰ ⟩ A' ^ [ r , ι ⁰ ]
[A']′ = univEq [U'] [AU']
[t]′ : Γ ⊩⟨ ι ⁰ ⟩ t ∷ A ^ [ r , ι ⁰ ] / [A]′
[t]′ = irrelevanceTerm [A] (emb ∞< (emb emb< [A]′)) [t]
[B]′ : Γ ⊩⟨ ι ⁰ ⟩ B ^ [ r , ι ⁰ ]
[B]′ = univEq [U] [BU]
[B']′ : Γ ⊩⟨ ι ⁰ ⟩ B' ^ [ r , ι ⁰ ]
[B']′ = univEq [U'] [BU']
[A≡A']′ : Γ ⊩⟨ ι ⁰ ⟩ A ≡ A' ^ [ r , ι ⁰ ] / [A]′
[A≡A']′ = univEqEq [U] [A]′ [UA≡UA']
[B≡B']′ : Γ ⊩⟨ ι ⁰ ⟩ B ≡ B' ^ [ r , ι ⁰ ] / [B]′
[B≡B']′ = univEqEq [U] [B]′ [UB≡UB']
[t']′ : Γ ⊩⟨ ι ⁰ ⟩ t' ∷ A' ^ [ r , ι ⁰ ] / [A']′
[t']′ = irrelevanceTerm [A'] (emb ∞< (emb emb< [A']′)) [t']
[t≡t']′ : Γ ⊩⟨ ι ⁰ ⟩ t ≡ t' ∷ A ^ [ r , ι ⁰ ] / [A]′
[t≡t']′ = irrelevanceEqTerm [A] (emb ∞< (emb emb< [A]′)) [t≡t']
⊢e : Γ ⊢ e ∷ Id (Univ r ⁰) A B ^ [ % , ι ¹ ]
⊢e = escapeTerm [Id] [e]
⊢e' : Γ ⊢ e' ∷ Id (Univ r ⁰) A' B' ^ [ % , ι ¹ ]
⊢e' = escapeTerm [Id'] [e']
x : Γ ⊩⟨ ι ⁰ ⟩ cast ⁰ A B e t ≡ cast ⁰ A' B' e' t' ∷ B ^ [ r , ι ⁰ ] / [B]′
x = proj₁ ([castext] ⊢Γ [A]′ [A']′ [A≡A']′ [B]′ [B']′ [B≡B']′) [t]′ [t']′ [t≡t']′ ⊢e ⊢e'
in irrelevanceEqTerm (emb ∞< (emb emb< [B]′)) [B] x
abstract
castᵗᵛ : ∀ {A B r t e Γ}
([Γ] : ⊩ᵛ Γ)
([U] : Γ ⊩ᵛ⟨ ∞ ⟩ Univ r ⁰ ^ [ ! , ι ¹ ] / [Γ])
([AU] : Γ ⊩ᵛ⟨ ∞ ⟩ A ∷ Univ r ⁰ ^ [ ! , ι ¹ ] / [Γ] / [U])
([BU] : Γ ⊩ᵛ⟨ ∞ ⟩ B ∷ Univ r ⁰ ^ [ ! , ι ¹ ] / [Γ] / [U])
([A] : Γ ⊩ᵛ⟨ ∞ ⟩ A ^ [ r , ι ⁰ ] / [Γ])
([B] : Γ ⊩ᵛ⟨ ∞ ⟩ B ^ [ r , ι ⁰ ] / [Γ])
([t] : Γ ⊩ᵛ⟨ ∞ ⟩ t ∷ A ^ [ r , ι ⁰ ] / [Γ] / [A])
([Id] : Γ ⊩ᵛ⟨ ∞ ⟩ Id (Univ r ⁰) A B ^ [ % , ι ¹ ] / [Γ]) →
([e] : Γ ⊩ᵛ⟨ ∞ ⟩ e ∷ Id (Univ r ⁰) A B ^ [ % , ι ¹ ] / [Γ] / [Id] ) →
Γ ⊩ᵛ⟨ ∞ ⟩ cast ⁰ A B e t ∷ B ^ [ r , ι ⁰ ] / [Γ] / [B]
castᵗᵛ {A} {B} {t} {e} {Γ} [Γ] [U] [AU] [BU] [A] [B] [t] [Id] [e] ⊢Δ [σ] =
cast∞ ⊢Δ (proj₁ ([U] ⊢Δ [σ])) (proj₁ ([AU] ⊢Δ [σ])) (proj₁ ([BU] ⊢Δ [σ]))
(proj₁ ([A] ⊢Δ [σ])) (proj₁ ([B] ⊢Δ [σ]))
(proj₁ ([t] ⊢Δ [σ])) (proj₁ ([Id] ⊢Δ [σ])) (proj₁ ([e] ⊢Δ [σ]))
, λ [σ′] [σ≡σ′] → castext∞' ⊢Δ (proj₁ ([U] ⊢Δ [σ])) (proj₁ ([U] ⊢Δ [σ′]))
(proj₁ ([AU] ⊢Δ [σ])) (proj₁ ([AU] ⊢Δ [σ′])) (proj₁ ([BU] ⊢Δ [σ])) (proj₁ ([BU] ⊢Δ [σ′]))
(proj₂ ([AU] ⊢Δ [σ]) [σ′] [σ≡σ′]) (proj₂ ([BU] ⊢Δ [σ]) [σ′] [σ≡σ′])
(proj₁ ([A] ⊢Δ [σ])) (proj₁ ([A] ⊢Δ [σ′]))
(proj₁ ([B] ⊢Δ [σ])) (proj₁ ([B] ⊢Δ [σ′]))
(proj₁ ([t] ⊢Δ [σ])) (proj₁ ([t] ⊢Δ [σ′])) (proj₂ ([t] ⊢Δ [σ]) [σ′] [σ≡σ′])
(proj₁ ([Id] ⊢Δ [σ])) (proj₁ ([Id] ⊢Δ [σ′])) (proj₁ ([e] ⊢Δ [σ])) (proj₁ ([e] ⊢Δ [σ′]))
cast-congᵗᵛ : ∀ {A A' B B' t t' e e' r Γ}
([Γ] : ⊩ᵛ Γ) →
([U] : Γ ⊩ᵛ⟨ ∞ ⟩ Univ r ⁰ ^ [ ! , ι ¹ ] / [Γ])
([U'] : Γ ⊩ᵛ⟨ ∞ ⟩ Univ r ⁰ ^ [ ! , ι ¹ ] / [Γ])
([AU] : Γ ⊩ᵛ⟨ ∞ ⟩ A ∷ Univ r ⁰ ^ [ ! , ι ¹ ] / [Γ] / [U])
([AU'] : Γ ⊩ᵛ⟨ ∞ ⟩ A' ∷ Univ r ⁰ ^ [ ! , ι ¹ ] / [Γ] / [U])
([BU] : Γ ⊩ᵛ⟨ ∞ ⟩ B ∷ Univ r ⁰ ^ [ ! , ι ¹ ] / [Γ] / [U'])
([BU'] : Γ ⊩ᵛ⟨ ∞ ⟩ B' ∷ Univ r ⁰ ^ [ ! , ι ¹ ] / [Γ] / [U'])
([UA≡UA'] : Γ ⊩ᵛ⟨ ∞ ⟩ A ≡ A' ∷ Univ r ⁰ ^ [ ! , ι ¹ ] / [Γ] / [U])
([UB≡UB'] : Γ ⊩ᵛ⟨ ∞ ⟩ B ≡ B' ∷ Univ r ⁰ ^ [ ! , ι ¹ ] / [Γ] / [U'])
([A] : Γ ⊩ᵛ⟨ ∞ ⟩ A ^ [ r , ι ⁰ ] / [Γ])
([A'] : Γ ⊩ᵛ⟨ ∞ ⟩ A' ^ [ r , ι ⁰ ] / [Γ])
([B] : Γ ⊩ᵛ⟨ ∞ ⟩ B ^ [ r , ι ⁰ ] / [Γ])
([B'] : Γ ⊩ᵛ⟨ ∞ ⟩ B' ^ [ r , ι ⁰ ] / [Γ])
([t] : Γ ⊩ᵛ⟨ ∞ ⟩ t ∷ A ^ [ r , ι ⁰ ] / [Γ] / [A])
([t'] : Γ ⊩ᵛ⟨ ∞ ⟩ t' ∷ A' ^ [ r , ι ⁰ ] / [Γ] / [A'])
([t≡t']ₜ : Γ ⊩ᵛ⟨ ∞ ⟩ t ≡ t' ∷ A ^ [ r , ι ⁰ ] / [Γ] / [A] )
([Id] : Γ ⊩ᵛ⟨ ∞ ⟩ Id (Univ r ⁰) A B ^ [ % , ι ¹ ] / [Γ])
([e] : Γ ⊩ᵛ⟨ ∞ ⟩ e ∷ Id (Univ r ⁰) A B ^ [ % , ι ¹ ] / [Γ] / [Id] )
([Id'] : Γ ⊩ᵛ⟨ ∞ ⟩ Id (Univ r ⁰) A' B' ^ [ % , ι ¹ ] / [Γ])
([e'] : Γ ⊩ᵛ⟨ ∞ ⟩ e' ∷ Id (Univ r ⁰) A' B' ^ [ % , ι ¹ ] / [Γ] / [Id'] ) →
Γ ⊩ᵛ⟨ ∞ ⟩ cast ⁰ A B e t ≡ cast ⁰ A' B' e' t' ∷ B ^ [ r , ι ⁰ ] / [Γ] / [B]
cast-congᵗᵛ [Γ] [U] [U'] [AU] [AU'] [BU] [BU'] [UA≡UA'] [UB≡UB'] [A] [A'] [B]
[B'] [t] [t'] [t≡t']ₜ [Id] [e] [Id'] [e'] ⊢Δ [σ] =
castext∞ ⊢Δ (proj₁ ([U] ⊢Δ [σ])) (proj₁ ([U'] ⊢Δ [σ]))
(proj₁ ([AU] ⊢Δ [σ])) (proj₁ ([AU'] ⊢Δ [σ])) (proj₁ ([BU] ⊢Δ [σ])) (proj₁ ([BU'] ⊢Δ [σ])) ([UA≡UA'] ⊢Δ [σ]) ([UB≡UB'] ⊢Δ [σ])
(proj₁ ([A] ⊢Δ [σ])) (proj₁ ([A'] ⊢Δ [σ])) (proj₁ ([B] ⊢Δ [σ])) (proj₁ ([B'] ⊢Δ [σ]))
(proj₁ ([t] ⊢Δ [σ])) (proj₁ ([t'] ⊢Δ [σ])) ([t≡t']ₜ ⊢Δ [σ])
(proj₁ ([Id] ⊢Δ [σ])) (proj₁ ([Id'] ⊢Δ [σ])) (proj₁ ([e] ⊢Δ [σ])) (proj₁ ([e'] ⊢Δ [σ]))
|
{
"alphanum_fraction": 0.3536947905,
"avg_line_length": 72.684244373,
"ext": "agda",
"hexsha": "c07e03e8fe5d3c389a6f9bd9dbbfa291673626ac",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Cast.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Cast.agda",
"max_line_length": 267,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Cast.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 66158,
"size": 113024
}
|
module Issue277 where
data D : Set where
d : D
abstract
x : D
x = d
-- Normalise x using the Emacs mode, at the top-level. Result: d. The
-- result should be x. Agda.Interaction.GhciTop.cmd_compute_toplevel
-- receives the right arguments, so the problem does not lie in the
-- Emacs Lisp code.
y : D
y = {!x!} -- Normalisation works correctly in the goal.
|
{
"alphanum_fraction": 0.6972972973,
"avg_line_length": 19.4736842105,
"ext": "agda",
"hexsha": "17df2e091aacafeba275a4b3fc578b0ddaa8d284",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue277.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue277.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue277.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 107,
"size": 370
}
|
{-# OPTIONS --without-K --safe #-}
-- Mentioned in passing here:
-- https://ncatlab.org/nlab/show/slice+2-category
open import Categories.Bicategory using (Bicategory)
module Categories.Bicategory.Construction.LaxSlice
{o ℓ e t}
(𝒞 : Bicategory o ℓ e t)
where
open import Data.Product using (_,_)
open import Function using (_$_)
open import Level using (_⊔_)
open import Categories.Bicategory.Extras 𝒞
open Shorthands
open import Categories.Category using () renaming (Category to 1Category)
open import Categories.Functor using (Functor)
open Functor using (F₀)
open import Categories.Functor.Bifunctor using (Bifunctor)
open import Categories.Functor.Construction.Constant using (const)
import Categories.Morphism.Reasoning as MR
open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; niHelper)
record SliceObj (X : Obj) : Set (t ⊔ o) where
constructor sliceobj
field
{Y} : Obj
arr : Y ⇒₁ X
module SliceHom (A : Obj) where
record Slice⇒₁ (X Y : SliceObj A) : Set (o ⊔ ℓ) where
constructor slicearr₁
private
module X = SliceObj X
module Y = SliceObj Y
field
{h} : X.Y ⇒₁ Y.Y
Δ : X.arr ⇒₂ (Y.arr ∘₁ h)
record Slice⇒₂ {X Y : SliceObj A} (J K : Slice⇒₁ X Y) : Set (ℓ ⊔ e) where
constructor slicearr₂
private
module Y = SliceObj Y
module J = Slice⇒₁ J
module K = Slice⇒₁ K
field
{ϕ} : J.h ⇒₂ K.h
E : K.Δ ≈ (Y.arr ▷ ϕ ∘ᵥ J.Δ)
_∘ᵥ/_ : ∀ {X Y : SliceObj A}{J K L : Slice⇒₁ X Y} → Slice⇒₂ K L → Slice⇒₂ J K → Slice⇒₂ J L
_∘ᵥ/_ {X}{Y}{J}{K}{L} (slicearr₂ {ϕ = ϕ} E) (slicearr₂ {ϕ = ψ} F) = slicearr₂ {ϕ = ϕ ∘ᵥ ψ} $ begin
L.Δ ≈⟨ E ⟩
(Y.arr ▷ ϕ ∘ᵥ K.Δ) ≈⟨ refl⟩∘⟨ F ⟩
Y.arr ▷ ϕ ∘ᵥ (Y.arr ▷ ψ ∘ᵥ J.Δ) ≈⟨ pullˡ ∘ᵥ-distr-▷ ⟩
Y.arr ▷ (ϕ ∘ᵥ ψ) ∘ᵥ J.Δ ∎
where module X = SliceObj X
module Y = SliceObj Y
module J = Slice⇒₁ J
module K = Slice⇒₁ K
module L = Slice⇒₁ L
open 1Category (hom X.Y A)
open HomReasoning
open Equiv
open MR (hom X.Y A)
SliceHomCat : SliceObj A → SliceObj A → 1Category (o ⊔ ℓ) (ℓ ⊔ e) e
SliceHomCat X Y = record
{ Obj = Slice⇒₁ X Y
; _⇒_ = Slice⇒₂
; _≈_ = λ (slicearr₂ {ϕ} _) (slicearr₂ {ψ} _) → ϕ ≈ ψ
; id = slice-id _
; _∘_ = _∘ᵥ/_
; assoc = hom.assoc
; sym-assoc = hom.sym-assoc
; identityˡ = hom.identityˡ
; identityʳ = hom.identityʳ
; identity² = hom.identity²
; equiv = record { refl = refl ; sym = sym ; trans = trans }
; ∘-resp-≈ = hom.∘-resp-≈
}
where
open hom.Equiv
module X = SliceObj X
module Y = SliceObj Y
slice-id : ∀ (J : Slice⇒₁ X Y) → Slice⇒₂ J J
slice-id J = slicearr₂ $ begin
J.Δ ≈˘⟨ identity₂ˡ ⟩
id₂ ∘ᵥ J.Δ ≈˘⟨ ▷id₂ ⟩∘⟨refl ⟩
(Y.arr ▷ id₂) ∘ J.Δ ∎
where module J = Slice⇒₁ J
open 1Category (hom X.Y A)
open HomReasoning
_⊚₀/_ : ∀ {X Y Z : SliceObj A} → Slice⇒₁ Y Z → Slice⇒₁ X Y → Slice⇒₁ X Z
_⊚₀/_ {X}{Y}{Z} J K = slicearr₁ ((α⇒ ∘ᵥ J.Δ ◁ K.h) ∘ᵥ K.Δ)
where module K = Slice⇒₁ K
module J = Slice⇒₁ J
_⊚₁/_ : ∀ {X Y Z : SliceObj A} → {J J' : Slice⇒₁ Y Z} → {K K' : Slice⇒₁ X Y} → Slice⇒₂ J J' → Slice⇒₂ K K' → Slice⇒₂ (J ⊚₀/ K) (J' ⊚₀/ K')
_⊚₁/_ {X}{Y}{Z}{J'}{J}{K'}{K} δ γ = slicearr₂ $ begin
(α⇒ ∘ᵥ J.Δ ◁ K.h) ∘ᵥ K.Δ ≈⟨ (refl⟩∘⟨ γ.E) ⟩
(α⇒ ∘ᵥ J.Δ ◁ K.h) ∘ᵥ (Y.arr ▷ γ.ϕ ∘ᵥ K'.Δ) ≈⟨ ((refl⟩∘⟨ δ.E ⟩⊚⟨refl) ⟩∘⟨refl) ⟩
(α⇒ ∘ᵥ (Z.arr ▷ δ.ϕ ∘ᵥ J'.Δ) ◁ K.h) ∘ᵥ (Y.arr ▷ γ.ϕ ∘ᵥ K'.Δ) ≈˘⟨ (((refl⟩∘⟨ ∘ᵥ-distr-◁ ) ⟩∘⟨refl)) ⟩
(α⇒ ∘ᵥ ((Z.arr ▷ δ.ϕ) ◁ K.h ∘ᵥ J'.Δ ◁ K.h)) ∘ᵥ (Y.arr ▷ γ.ϕ ∘ᵥ K'.Δ) ≈⟨ pullʳ (center (sym ◁-▷-exchg)) ⟩
α⇒ ∘ᵥ (Z.arr ▷ δ.ϕ) ◁ K.h ∘ᵥ (Z.arr ⊚₀ J'.h ▷ γ.ϕ ∘ᵥ J'.Δ ◁ K'.h) ∘ᵥ K'.Δ ≈⟨ pushʳ ( pullˡ (pullˡ (sym ⊚.homomorphism)) ) ⟩
(α⇒ ∘ᵥ (Z.arr ▷ δ.ϕ ∘ᵥ id₂) ⊚₁ (id₂ ∘ᵥ γ.ϕ) ∘ᵥ J'.Δ ◁ K'.h) ∘ᵥ K'.Δ ≈⟨ ((refl⟩∘⟨ (identity₂ʳ ⟩⊚⟨ identity₂ˡ ⟩∘⟨refl)) ⟩∘⟨refl) ⟩
(α⇒ ∘ᵥ ((Z.arr ▷ δ.ϕ) ⊚₁ γ.ϕ) ∘ᵥ J'.Δ ◁ K'.h) ∘ᵥ K'.Δ ≈⟨ pushˡ (pullˡ (⊚-assoc.⇒.commute ((id₂ , δ.ϕ) , γ.ϕ))) ⟩
(Z.arr ▷ δ.ϕ ⊚₁ γ.ϕ ∘ᵥ α⇒) ∘ᵥ J'.Δ ◁ K'.h ∘ᵥ K'.Δ ≈⟨ pullʳ (sym assoc) ⟩
(Z.arr ▷ δ.ϕ ⊚₁ γ.ϕ) ∘ᵥ ((α⇒ ∘ᵥ J'.Δ ◁ K'.h) ∘ᵥ K'.Δ) ∎
where module X = SliceObj X
module Y = SliceObj Y
module Z = SliceObj Z
module J = Slice⇒₁ J
module J' = Slice⇒₁ J'
module K = Slice⇒₁ K
module K' = Slice⇒₁ K'
module γ = Slice⇒₂ γ
module δ = Slice⇒₂ δ
open 1Category (hom X.Y A)
open HomReasoning
open MR (hom X.Y A)
open Equiv
id/ : ∀ {X : SliceObj A} → Slice⇒₁ X X
id/ = slicearr₁ ρ⇐
_⊚/_ : ∀ {X Y Z : SliceObj A} → Bifunctor (SliceHomCat Y Z) (SliceHomCat X Y) (SliceHomCat X Z)
_⊚/_ {X}{Y}{Z} = record
{ F₀ = λ (J , K) → J ⊚₀/ K
; F₁ = λ (δ , γ) → δ ⊚₁/ γ
; identity = ⊚.identity
; homomorphism = ⊚.homomorphism
; F-resp-≈ = ⊚.F-resp-≈
}
where module X = SliceObj X
module Y = SliceObj Y
module Z = SliceObj Z
α⇒/ : ∀ {W X Y Z}(J : Slice⇒₁ Y Z) (K : Slice⇒₁ X Y) (L : Slice⇒₁ W X) → Slice⇒₂ ((J ⊚₀/ K) ⊚₀/ L) (J ⊚₀/ (K ⊚₀/ L))
α⇒/ {W}{X}{Y}{Z} J K L = slicearr₂ $ begin
(α⇒ ∘ᵥ J.Δ ◁ K.h ⊚₀ L.h) ∘ᵥ ((α⇒ ∘ᵥ K.Δ ◁ L.h) ∘ᵥ L.Δ ) ≈⟨ pullʳ (center⁻¹ (sym α⇒-◁-∘₁) refl) ⟩
α⇒ ∘ᵥ (α⇒ ∘ᵥ J.Δ ◁ K.h ◁ L.h) ∘ᵥ K.Δ ◁ L.h ∘ᵥ L.Δ ≈⟨ pullˡ (pullˡ (sym pentagon)) ⟩
((Z.arr ▷ α⇒ ∘ᵥ α⇒ ∘ᵥ α⇒ ◁ L.h) ∘ᵥ J.Δ ◁ K.h ◁ L.h) ∘ᵥ (K.Δ ◁ L.h ∘ᵥ L.Δ) ≈⟨ pullˡ (pushˡ (pull-last ∘ᵥ-distr-◁ )) ⟩
(Z.arr ▷ α⇒ ∘ᵥ (α⇒ ∘ᵥ ((α⇒ ∘ᵥ J.Δ ◁ K.h) ◁ L.h)) ∘ᵥ K.Δ ◁ L.h) ∘ᵥ L.Δ ≈⟨ pushˡ (pushʳ (pullʳ ∘ᵥ-distr-◁)) ⟩
((Z.arr ▷ α⇒ ∘ᵥ α⇒)) ∘ᵥ (((α⇒ ∘ᵥ J.Δ ◁ K.h) ∘ᵥ K.Δ) ◁ L.h) ∘ᵥ L.Δ ≈⟨ pullʳ (pushʳ refl) ⟩
Z.arr ▷ α⇒ ∘ᵥ ((α⇒ ∘ᵥ (((α⇒ ∘ᵥ J.Δ ◁ K.h)) ∘ᵥ K.Δ) ◁ L.h) ∘ᵥ L.Δ) ∎
where module W = SliceObj W
module X = SliceObj X
module Y = SliceObj Y
module Z = SliceObj Z
module J = Slice⇒₁ J
module K = Slice⇒₁ K
module L = Slice⇒₁ L
open 1Category (hom W.Y A)
open HomReasoning
open MR (hom W.Y A)
open hom.Equiv
λ⇒/ : ∀ {X Y} (J : Slice⇒₁ X Y) → Slice⇒₂ (id/ ⊚₀/ J) J
λ⇒/ {X}{Y} J = slicearr₂ $ begin
J.Δ ≈⟨ introˡ id₂◁ ⟩
(id₂ ◁ J.h) ∘ᵥ J.Δ ≈˘⟨ (unitʳ.iso.isoʳ (Y.arr , _) ⟩⊚⟨refl ⟩∘⟨refl) ⟩
((ρ⇒ ∘ᵥ ρ⇐) ◁ J.h) ∘ᵥ J.Δ ≈˘⟨ (∘ᵥ-distr-◁ ⟩∘⟨refl) ⟩
(ρ⇒ ◁ J.h ∘ᵥ ρ⇐ ◁ J.h) ∘ᵥ J.Δ ≈⟨ pushˡ (sym triangle ⟩∘⟨ refl) ⟩
(Y.arr ▷ λ⇒ ∘ᵥ α⇒) ∘ᵥ ρ⇐ ◁ J.h ∘ᵥ J.Δ ≈⟨ pullʳ (sym assoc) ⟩
Y.arr ▷ λ⇒ ∘ᵥ (α⇒ ∘ᵥ ρ⇐ ◁ J.h) ∘ᵥ J.Δ ∎
where module X = SliceObj X
module Y = SliceObj Y
module J = Slice⇒₁ J
open 1Category (hom X.Y A)
open HomReasoning
open MR (hom X.Y A)
open hom.Equiv
ρ⇒/ : ∀{X}{Y} (J : Slice⇒₁ X Y) → Slice⇒₂ (J ⊚₀/ id/) J
ρ⇒/ {X}{Y} J = slicearr₂ $ begin
J.Δ ≈⟨ introʳ (unitʳ.iso.isoʳ _) ⟩
J.Δ ∘ᵥ ρ⇒ ∘ᵥ ρ⇐ ≈⟨ pullˡ (sym ρ⇒-∘ᵥ-◁) ⟩
(ρ⇒ ∘ᵥ J.Δ ◁ id₁) ∘ᵥ ρ⇐ ≈⟨ unitorʳ-coherence ⟩∘⟨refl ⟩∘⟨refl ⟩
((Y.arr ▷ ρ⇒ ∘ᵥ α⇒) ∘ᵥ J.Δ ◁ id₁) ∘ᵥ ρ⇐ ≈⟨ pushˡ assoc ⟩
Y.arr ▷ ρ⇒ ∘ᵥ (α⇒ ∘ᵥ J.Δ ◁ id₁) ∘ᵥ ρ⇐ ∎
where module X = SliceObj X
module Y = SliceObj Y
module J = Slice⇒₁ J
open 1Category (hom X.Y A)
open HomReasoning
open MR (hom X.Y A)
open hom.Equiv
slice-inv : ∀ {X}{Y}{J : Slice⇒₁ X Y}{K} (α : Slice⇒₂ J K) → (f : Slice⇒₁.h K ⇒₂ Slice⇒₁.h J) → (f ∘ᵥ (Slice⇒₂.ϕ α) ≈ id₂) → Slice⇒₂ K J
slice-inv {X}{Y}{J}{K} α f p = slicearr₂ $ begin
J.Δ ≈⟨ introˡ ▷id₂ ⟩
(Y.arr ▷ id₂) ∘ᵥ J.Δ ≈˘⟨ (refl⟩⊚⟨ p ⟩∘⟨refl) ⟩
(Y.arr ▷ (f ∘ᵥ α.ϕ)) ∘ᵥ J.Δ ≈˘⟨ (∘ᵥ-distr-▷ ⟩∘⟨refl) ⟩
(Y.arr ▷ f ∘ᵥ Y.arr ▷ α.ϕ) ∘ᵥ J.Δ ≈⟨ pullʳ (sym α.E) ⟩
Y.arr ▷ f ∘ᵥ K.Δ ∎
where module X = SliceObj X
module Y = SliceObj Y
module J = Slice⇒₁ J
module K = Slice⇒₁ K
module α = Slice⇒₂ α
open 1Category (hom X.Y A)
open HomReasoning
open MR (hom X.Y A)
open hom.Equiv
LaxSlice : Obj → Bicategory (o ⊔ ℓ) (ℓ ⊔ e) e (o ⊔ t)
LaxSlice A = record
{ enriched = record
{ Obj = SliceObj A
; hom = SliceHomCat
; id = const id/
; ⊚ = _⊚/_
; ⊚-assoc = niHelper (record
{ η = λ ((J , K) , L) → α⇒/ J K L
; η⁻¹ = λ ((J , K) , L) → slice-inv (α⇒/ J K L) α⇐ (⊚-assoc.iso.isoˡ _)
; commute = λ f → ⊚-assoc.⇒.commute _
; iso = λ _ → record { isoˡ = ⊚-assoc.iso.isoˡ _ ; isoʳ = ⊚-assoc.iso.isoʳ _ }
})
; unitˡ = niHelper (record
{ η = λ (_ , J) → λ⇒/ J
; η⁻¹ = λ (_ , J) → slice-inv (λ⇒/ J) λ⇐ (unitˡ.iso.isoˡ _)
; commute = λ _ → λ⇒-∘ᵥ-▷
; iso = λ _ → record { isoˡ = unitˡ.iso.isoˡ _ ; isoʳ = unitˡ.iso.isoʳ _ }
})
; unitʳ = niHelper (record
{ η = λ (J , _) → ρ⇒/ J
; η⁻¹ = λ (J , _) → slice-inv (ρ⇒/ J) ρ⇐ (unitʳ.iso.isoˡ _)
; commute = λ _ → ρ⇒-∘ᵥ-◁
; iso = λ _ → record { isoˡ = unitʳ.iso.isoˡ _ ; isoʳ = unitʳ.iso.isoʳ _ } })
}
; triangle = triangle
; pentagon = pentagon
}
where open SliceHom A
|
{
"alphanum_fraction": 0.4632368043,
"avg_line_length": 40.0740740741,
"ext": "agda",
"hexsha": "a18a90536af0171cc7e14e8cf0a574c1be7e24d8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "maxsnew/agda-categories",
"max_forks_repo_path": "src/Categories/Bicategory/Construction/LaxSlice.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "maxsnew/agda-categories",
"max_issues_repo_path": "src/Categories/Bicategory/Construction/LaxSlice.agda",
"max_line_length": 140,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "maxsnew/agda-categories",
"max_stars_repo_path": "src/Categories/Bicategory/Construction/LaxSlice.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4888,
"size": 9738
}
|
module L.Base.Id.Core where
-- Use the builtin _≡_ and refl
open import Agda.Builtin.Equality public
J : ∀{a c} {A : Set a} → (C : (x y : A) → x ≡ y → Set c)
→ ((x : A) → C x x refl)
→ (M N : A) → (P : M ≡ N ) → C M N P
J C c M .M refl = c M
|
{
"alphanum_fraction": 0.4601449275,
"avg_line_length": 19.7142857143,
"ext": "agda",
"hexsha": "c869f62d408216cc422dcfa6051c75082057c122",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "borszag/smallib",
"max_forks_repo_path": "src/L/Base/Id/Core.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_issues_repo_issues_event_max_datetime": "2020-11-09T16:40:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-10-19T10:13:16.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "borszag/smallib",
"max_issues_repo_path": "src/L/Base/Id/Core.agda",
"max_line_length": 56,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "borszag/smallib",
"max_stars_repo_path": "src/L/Base/Id/Core.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 107,
"size": 276
}
|
open import Prelude
open import Nat
module List where
-- lets us omit a bunch of parens
infixr 99 _::_
infixr 9 _++_
-- standard definition of polymorphic lists
data List (A : Set) : Set where
[] : List A
_::_ : A → List A → List A
{-# BUILTIN LIST List #-}
-- shorthand notation for small lists
[_] : {A : Set} → A → List A
[ x ] = x :: []
-- list append
_++_ : {A : Set} → List A → List A → List A
[] ++ l2 = l2
x :: l1 ++ l2 = x :: (l1 ++ l2)
|
{
"alphanum_fraction": 0.5419222904,
"avg_line_length": 20.375,
"ext": "agda",
"hexsha": "132c87b9e0a19e951487c657d4c0348f3b076d59",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-agda",
"max_forks_repo_path": "List.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-agda",
"max_issues_repo_path": "List.agda",
"max_line_length": 45,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-agda",
"max_stars_repo_path": "List.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 171,
"size": 489
}
|
module plfa.Relations where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; cong; sym)
open import Data.Nat using (ℕ ; zero; suc; _+_)
open import Data.Nat.Properties using (+-comm)
data _≤_ : ℕ → ℕ → Set where
z≤n : ∀ { n : ℕ }
---------
→ zero ≤ n
s≤s : ∀ { m n : ℕ }
→ m ≤ n
---------------
→ suc m ≤ suc n
infix 4 _≤_
_ : 2 ≤ 4
_ = s≤s (s≤s z≤n)
_ : 2 ≤ 4
_ = s≤s {1} {3} (s≤s {0} {2} (z≤n {2}))
_ : 2 ≤ 4
_ = s≤s {m = 1} {n = 3} (s≤s {m = 0} {n = 2} (z≤n {n = 2}))
_ : 2 ≤ 4
_ = s≤s {n = 3} (s≤s {n = 2} z≤n)
inv-s≤s : ∀ { m n : ℕ }
→ suc m ≤ suc n
-------------
→ m ≤ n
inv-s≤s (s≤s m≤n) = m≤n
inv-z≤n : ∀ { m : ℕ }
→ m ≤ zero
--------
→ m ≡ zero
inv-z≤n z≤n = refl
-- @practice: exercise `orderings` start
-- _⊆_ relations has partial order property but not total order
-- adjacency relation has preorder property but not partial order
-- @practice: exercise `orderings` end
-- 自反: reflexive - refl
-- 传递: transitive - trans
-- 反对称: anti-symmetric - antisym
-- 完全: total - total
≤-refl : ∀ { n : ℕ }
-----
→ n ≤ n
≤-refl {zero} = z≤n
≤-refl {suc n} = s≤s ≤-refl
≤-trans : ∀ { m n p : ℕ }
→ m ≤ n
→ n ≤ p
-----
→ m ≤ p
≤-trans z≤n _ = z≤n
≤-trans (s≤s m≤n) (s≤s n≤p) = s≤s (≤-trans m≤n n≤p)
|
{
"alphanum_fraction": 0.4839939024,
"avg_line_length": 18.2222222222,
"ext": "agda",
"hexsha": "b5968ad4c5f834a37712c538e5b5d9a410f59255",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-15T01:26:23.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-15T01:26:23.000Z",
"max_forks_repo_head_hexsha": "2a996af58d6b9be5d608ed040267398bcf72403b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lonelyhentai/workspace",
"max_forks_repo_path": "fp/agda/plfa/Relations.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2a996af58d6b9be5d608ed040267398bcf72403b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lonelyhentai/workspace",
"max_issues_repo_path": "fp/agda/plfa/Relations.agda",
"max_line_length": 65,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "2a996af58d6b9be5d608ed040267398bcf72403b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lonelyhentai/workspace",
"max_stars_repo_path": "fp/agda/plfa/Relations.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-15T01:26:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-26T16:37:38.000Z",
"num_tokens": 610,
"size": 1312
}
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
{-# OPTIONS --allow-unsolved-metas #-}
open import LibraBFT.Prelude
open import LibraBFT.Base.PKCS
open import LibraBFT.Concrete.Obligations
open import LibraBFT.Concrete.System.Parameters
open import LibraBFT.Impl.Consensus.Types
open import LibraBFT.Impl.NetworkMsg
open import LibraBFT.Impl.Util.Crypto
open EpochConfig
open import LibraBFT.Yasm.Yasm (ℓ+1 0ℓ) EpochConfig epochId authorsN ConcSysParms NodeId-PK-OK
-- In this module, we will prove a structural property that any new signed message produced by an
-- honest handler from a reachable state correctly identifies the sender, and is for a valid epoch
-- of which that sender is a member. It is postulated for now, because the property does not yet
-- hold for our fake implementation that does not actually comply. A proof outline and notes are
-- included below, which we can finish once we do have a compliant implementation.
module LibraBFT.Impl.Properties.Aux where
-- This proof is complete except for pieces that are directly about the handlers. Our
-- fake/simple handler does not yet obey the needed properties, so we can't finish this yet.
impl-sps-avp : StepPeerState-AllValidParts
-- In our fake/simple implementation, init and handling V and C msgs do not send any messages
impl-sps-avp _ hpk (step-init ix) m∈outs part⊂m ver = ⊥-elim (¬Any[] m∈outs)
impl-sps-avp _ hpk (step-msg {sndr , V vm} _ _) m∈outs _ _ = ⊥-elim (¬Any[] m∈outs)
impl-sps-avp _ hpk (step-msg {sndr , C cm} _ _) m∈outs _ _ = ⊥-elim (¬Any[] m∈outs)
-- These aren't true yet, because processProposalMsgM sends fake votes that don't follow the rules for ValidPartForPK
impl-sps-avp preach hpk (step-msg {sndr , P pm} m∈pool ps≡) m∈outs v⊂m ver
with m∈outs
-- Handler sends at most one vote, so it can't be "there"
...| there {xs = xs} imp = ⊥-elim (¬Any[] imp)
...| here refl
with v⊂m
...| vote∈qc vs∈qc rbld≈ qc∈m
with qc∈m
...| xxx = {!x!} -- We will prove that votes represented in the SyncInfo of a
-- proposal message were sent before, so these will be inj₂.
-- This will be based on an invariant of the implementation, for
-- example that the QCs included in the SyncInfo of a VoteMsg have
-- been sent before. We will need to use hash injectivity and
-- signature injectivity to ensure a different vote was not sent
-- previously with the same signature.
impl-sps-avp {pk = pk} {α = α} {st = st} preach hpk (step-msg {sndr , P pm} m∈pool ps≡) m∈outs v⊂m ver
| here refl
| vote∈vm {si}
with MsgWithSig∈? {pk} {ver-signature ver} {msgPool st}
...| yes msg∈ = inj₂ msg∈
...| no msg∉ = inj₁ ((mkValidSenderForPK {! epoch !} -- We will need an invariant that says the epoch
-- used by a voter is "in range".
(EC-lookup' (availEpochs st) {!!})
refl
{! !} -- The implementation will need to check that the voter is a member of
-- the epoch of the message it's sending.
)
, msg∉)
|
{
"alphanum_fraction": 0.6045576408,
"avg_line_length": 61.1475409836,
"ext": "agda",
"hexsha": "cb8de75c462e3281d28c3085d5633902ac4e8754",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "haroldcarr/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Impl/Properties/Aux.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "haroldcarr/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Impl/Properties/Aux.agda",
"max_line_length": 131,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "haroldcarr/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Impl/Properties/Aux.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 976,
"size": 3730
}
|
{-# OPTIONS --cubical --safe --prop #-}
module Relation.Binary.Equivalence.PropTruncated where
open import Prelude
open import Relation.Nullary.Stable
infix 4 _≐_
data _≐_ {a} {A : Type a} (x y : A) : Prop a where
∣_∣ : x ≡ y → x ≐ y
data ∙⊥ : Prop where
private
variable
x y z : A
rerel : ∙⊥ → ⊥
rerel ()
∙refute : x ≐ y → (x ≡ y → ⊥) → ∙⊥
∙refute ∣ x≡y ∣ x≢y with x≢y x≡y
∙refute ∣ x≡y ∣ x≢y | ()
refute : x ≐ y → ¬ (¬ (x ≡ y))
refute x≐y x≢y = rerel (∙refute x≐y x≢y)
unsquash : Stable (x ≡ y) → x ≐ y → x ≡ y
unsquash st x≐y = st (refute x≐y)
∙refl : x ≐ x
∙refl = ∣ refl ∣
∙trans : x ≐ y → y ≐ z → x ≐ z
∙trans ∣ xy ∣ (∣_∣ yz) = ∣_∣ (xy ; yz)
∙sym : x ≐ y → y ≐ x
∙sym (∣_∣ p) = ∣_∣ (sym p)
∙cong : (f : A → B) → x ≐ y → f x ≐ f y
∙cong f ∣ x≡y ∣ = ∣ cong f x≡y ∣
module Reasoning where
infixr 2 ≐˘⟨⟩-syntax ≐⟨∙⟩-syntax
≐˘⟨⟩-syntax : ∀ (x : A) {y z} → y ≐ z → y ≐ x → x ≐ z
≐˘⟨⟩-syntax _ y≡z y≡x = ∙trans (∙sym y≡x) y≡z
syntax ≐˘⟨⟩-syntax x y≡z y≡x = x ≐˘⟨ y≡x ⟩ y≡z
≐⟨∙⟩-syntax : ∀ (x : A) {y z} → y ≐ z → x ≐ y → x ≐ z
≐⟨∙⟩-syntax _ y≡z x≡y = ∙trans x≡y y≡z
syntax ≐⟨∙⟩-syntax x y≡z x≡y = x ≐⟨ x≡y ⟩ y≡z
_≐⟨⟩_ : ∀ (x : A) {y} → x ≐ y → x ≐ y
_ ≐⟨⟩ x≡y = x≡y
infix 2.5 _∎
_∎ : ∀ {A : Type a} (x : A) → x ≐ x
_∎ x = ∙refl
infixr 2 ≡˘⟨⟩-syntax ≡⟨∙⟩-syntax
≡˘⟨⟩-syntax : ∀ (x : A) {y z} → y ≐ z → y ≡ x → x ≐ z
≡˘⟨⟩-syntax _ y≡z y≡x = ∙trans (∣_∣ (sym y≡x)) y≡z
syntax ≡˘⟨⟩-syntax x y≡z y≡x = x ≡˘⟨ y≡x ⟩ y≡z
≡⟨∙⟩-syntax : ∀ (x : A) {y z} → y ≐ z → x ≡ y → x ≐ z
≡⟨∙⟩-syntax _ y≡z x≡y = ∙trans ∣ x≡y ∣ y≡z
syntax ≡⟨∙⟩-syntax x y≡z x≡y = x ≡⟨ x≡y ⟩ y≡z
|
{
"alphanum_fraction": 0.4517516902,
"avg_line_length": 21.6933333333,
"ext": "agda",
"hexsha": "7c5af67176f88afd8eb1909e2f79eb536e437592",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Relation/Binary/Equivalence/PropTruncated.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Relation/Binary/Equivalence/PropTruncated.agda",
"max_line_length": 55,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Relation/Binary/Equivalence/PropTruncated.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 1015,
"size": 1627
}
|
open import Mockingbird.Forest using (Forest)
-- Mockingbirds, Warblers, and Starlings
module Mockingbird.Problems.Chapter12 {b ℓ} (forest : Forest {b} {ℓ}) where
open import Data.Product using (_×_; _,_; proj₁; ∃-syntax)
open import Function using (_$_)
open import Mockingbird.Forest.Birds forest
import Mockingbird.Problems.Chapter11 forest as Chapter₁₁
open Forest forest
problem₁ : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasMockingbird ⦄ → HasDoubleMockingbird
problem₁ = record
{ M₂ = B ∙ M
; isDoubleMockingbird = λ x y → begin
B ∙ M ∙ x ∙ y ≈⟨ isBluebird M x y ⟩
M ∙ (x ∙ y) ≈⟨ isMockingbird (x ∙ y) ⟩
x ∙ y ∙ (x ∙ y) ∎
}
problem₂-BCM : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasThrush ⦄ ⦃ _ : HasMockingbird ⦄ → HasLark
problem₂-BCM = record
{ L = C ∙ B ∙ M
; isLark = λ x y → begin
C ∙ B ∙ M ∙ x ∙ y ≈⟨ congʳ $ isCardinal B M x ⟩
B ∙ x ∙ M ∙ y ≈⟨ isBluebird x M y ⟩
x ∙ (M ∙ y) ≈⟨ congˡ $ isMockingbird y ⟩
x ∙ (y ∙ y) ∎
} where instance hasCardinal = Chapter₁₁.problem₂₁′
problem₂-BRM : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasThrush ⦄ ⦃ _ : HasMockingbird ⦄ → HasLark
problem₂-BRM = record
{ L = R ∙ M ∙ B
; isLark = λ x y → begin
R ∙ M ∙ B ∙ x ∙ y ≈⟨ congʳ $ isRobin M B x ⟩
B ∙ x ∙ M ∙ y ≈⟨ isBluebird x M y ⟩
x ∙ (M ∙ y) ≈⟨ congˡ $ isMockingbird y ⟩
x ∙ (y ∙ y) ∎
} where instance hasRobin = Chapter₁₁.problem₂₀
problem₃ : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasWarbler ⦄ → HasLark
problem₃ = record
{ L = B ∙ W ∙ B
; isLark = λ x y → begin
B ∙ W ∙ B ∙ x ∙ y ≈⟨ congʳ $ isBluebird W B x ⟩
W ∙ (B ∙ x) ∙ y ≈⟨ isWarbler (B ∙ x) y ⟩
B ∙ x ∙ y ∙ y ≈⟨ isBluebird x y y ⟩
x ∙ (y ∙ y) ∎
}
problem₄ : ⦃ _ : HasMockingbird ⦄ ⦃ _ : HasQueerBird ⦄ → HasLark
problem₄ = record
{ L = Q ∙ M
; isLark = λ x y → begin
Q ∙ M ∙ x ∙ y ≈⟨ isQueerBird M x y ⟩
x ∙ (M ∙ y) ≈⟨ congˡ $ isMockingbird y ⟩
x ∙ (y ∙ y) ∎
}
problem₅ : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasRobin ⦄ ⦃ _ : HasMockingbird ⦄ → HasConverseWarbler
problem₅ = record
{ W′ = M₂ ∙ R
; isConverseWarbler = λ x y → begin
M₂ ∙ R ∙ x ∙ y ≈⟨ congʳ $ isDoubleMockingbird R x ⟩
R ∙ x ∙ (R ∙ x) ∙ y ≈⟨ isRobin x (R ∙ x) y ⟩
R ∙ x ∙ y ∙ x ≈⟨ isRobin x y x ⟩
y ∙ x ∙ x ∎
} where instance hasDoubleMockingbird = problem₁
problem₆′ : ⦃ _ : HasCardinal ⦄ ⦃ _ : HasConverseWarbler ⦄ → HasWarbler
problem₆′ = record
{ W = C ∙ W′
; isWarbler = λ x y → begin
C ∙ W′ ∙ x ∙ y ≈⟨ isCardinal W′ x y ⟩
W′ ∙ y ∙ x ≈⟨ isConverseWarbler y x ⟩
x ∙ y ∙ y ∎
}
problem₆ : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasRobin ⦄ ⦃ _ : HasCardinal ⦄ ⦃ _ : HasMockingbird ⦄ → HasWarbler
problem₆ = record
{ W = C ∙ (B ∙ M ∙ R)
; isWarbler = λ x y → begin
C ∙ (B ∙ M ∙ R) ∙ x ∙ y ≈⟨⟩
C ∙ (M₂ ∙ R) ∙ x ∙ y ≈⟨⟩
C ∙ W′ ∙ x ∙ y ≈⟨⟩
W ∙ x ∙ y ≈⟨ isWarbler x y ⟩
x ∙ y ∙ y ∎
} where
instance
hasDoubleMockingbird = problem₁
hasConverseWarbler = problem₅
hasWarbler = problem₆′
problem₇ : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasThrush ⦄ ⦃ _ : HasMockingbird ⦄ → HasWarbler
problem₇ = record
{ W = B ∙ (T ∙ (B ∙ M ∙ (B ∙ B ∙ T))) ∙ (B ∙ B ∙ T)
; isWarbler = λ x y → begin
B ∙ (T ∙ (B ∙ M ∙ (B ∙ B ∙ T))) ∙ (B ∙ B ∙ T) ∙ x ∙ y ≈˘⟨ congʳ $ congʳ $ isWarbler′ ⟩
W ∙ x ∙ y ≈⟨ isWarbler x y ⟩
x ∙ y ∙ y ∎
} where
instance
hasRobin = Chapter₁₁.problem₂₀
hasCardinal = Chapter₁₁.problem₂₁-bonus
hasWarbler = problem₆
isWarbler′ : W ≈ B ∙ (T ∙ (B ∙ M ∙ (B ∙ B ∙ T))) ∙ (B ∙ B ∙ T)
isWarbler′ = begin
W ≈⟨⟩
C ∙ (B ∙ M ∙ R) ≈⟨⟩
C ∙ (B ∙ M ∙ (B ∙ B ∙ T)) ≈⟨⟩
B ∙ (T ∙ (B ∙ B ∙ T)) ∙ (B ∙ B ∙ T) ∙ (B ∙ M ∙ (B ∙ B ∙ T)) ≈⟨ isBluebird (T ∙ (B ∙ B ∙ T)) (B ∙ B ∙ T) (B ∙ M ∙ (B ∙ B ∙ T)) ⟩
T ∙ (B ∙ B ∙ T) ∙ (B ∙ B ∙ T ∙ (B ∙ M ∙ (B ∙ B ∙ T))) ≈⟨ isThrush (B ∙ B ∙ T) (B ∙ B ∙ T ∙ (B ∙ M ∙ (B ∙ B ∙ T))) ⟩
B ∙ B ∙ T ∙ (B ∙ M ∙ (B ∙ B ∙ T)) ∙ (B ∙ B ∙ T) ≈⟨ congʳ $ isBluebird B T (B ∙ M ∙ (B ∙ B ∙ T)) ⟩
B ∙ (T ∙ (B ∙ M ∙ (B ∙ B ∙ T))) ∙ (B ∙ B ∙ T) ∎
-- TODO: other expression in problem 7.
-- NOTE: the bluebird B is not necessary.
problem₈ : ⦃ _ : HasThrush ⦄ ⦃ _ : HasWarbler ⦄ → HasMockingbird
problem₈ = record
{ M = W ∙ T
; isMockingbird = λ x → begin
W ∙ T ∙ x ≈⟨ isWarbler T x ⟩
T ∙ x ∙ x ≈⟨ isThrush x x ⟩
x ∙ x ∎
}
problem₉-W* : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasThrush ⦄ ⦃ _ : HasMockingbird ⦄ → HasWarblerOnceRemoved
problem₉-W* = record
{ W* = B ∙ W
; isWarblerOnceRemoved = λ x y z → begin
B ∙ W ∙ x ∙ y ∙ z ≈⟨ congʳ $ isBluebird W x y ⟩
W ∙ (x ∙ y) ∙ z ≈⟨ isWarbler (x ∙ y) z ⟩
x ∙ y ∙ z ∙ z ∎
} where instance hasWarbler = problem₇
problem₉-W** : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasThrush ⦄ ⦃ _ : HasMockingbird ⦄ → HasWarblerTwiceRemoved
problem₉-W** = record
{ W** = B ∙ W*
; isWarblerTwiceRemoved = λ x y z w → begin
B ∙ W* ∙ x ∙ y ∙ z ∙ w ≈⟨ congʳ $ congʳ $ isBluebird W* x y ⟩
W* ∙ (x ∙ y) ∙ z ∙ w ≈⟨ isWarblerOnceRemoved (x ∙ y) z w ⟩
x ∙ y ∙ z ∙ w ∙ w ∎
} where
instance
hasWarbler = problem₇
hasWarblerOnceRemoved = problem₉-W*
problem₁₀ : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasCardinal ⦄ ⦃ _ : HasWarbler ⦄ → HasHummingbird
problem₁₀ = record
{ H = B ∙ W ∙ (B ∙ C)
; isHummingbird = λ x y z → begin
B ∙ W ∙ (B ∙ C) ∙ x ∙ y ∙ z ≈⟨ congʳ $ congʳ $ isBluebird W (B ∙ C) x ⟩
W ∙ (B ∙ C ∙ x) ∙ y ∙ z ≈⟨ congʳ $ isWarbler (B ∙ C ∙ x) y ⟩
B ∙ C ∙ x ∙ y ∙ y ∙ z ≈⟨ congʳ $ congʳ $ isBluebird C x y ⟩
C ∙ (x ∙ y) ∙ y ∙ z ≈⟨ isCardinal (x ∙ y) y z ⟩
x ∙ y ∙ z ∙ y ∎
}
problem₁₁ : ⦃ _ : HasRobin ⦄ ⦃ _ : HasHummingbird ⦄ → HasWarbler
problem₁₁ = problem₆′
where
instance
hasCardinal = Chapter₁₁.problem₂₁
hasConverseWarbler : HasConverseWarbler
hasConverseWarbler = record
{ W′ = H ∙ R
; isConverseWarbler = λ x y → begin
H ∙ R ∙ x ∙ y ≈⟨ isHummingbird R x y ⟩
R ∙ x ∙ y ∙ x ≈⟨ isRobin x y x ⟩
y ∙ x ∙ x ∎
}
problem₁₂ : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasThrush ⦄ ⦃ _ : HasMockingbird ⦄ → HasStarling
problem₁₂ = record
{ S = W** ∙ G
; isStarling = λ x y z → begin
W** ∙ G ∙ x ∙ y ∙ z ≈⟨ isWarblerTwiceRemoved G x y z ⟩
G ∙ x ∙ y ∙ z ∙ z ≈⟨ isGoldfinch x y z z ⟩
x ∙ z ∙ (y ∙ z) ∎
} where
instance
hasWarblerTwiceRemoved = problem₉-W**
hasGoldfinch = Chapter₁₁.problem₄₇
problem₁₃ : ⦃ _ : HasStarling ⦄ ⦃ _ : HasRobin ⦄ → HasHummingbird
problem₁₃ = record
{ H = S ∙ R
; isHummingbird = λ x y z → begin
S ∙ R ∙ x ∙ y ∙ z ≈⟨ congʳ $ isStarling R x y ⟩
R ∙ y ∙ (x ∙ y) ∙ z ≈⟨ isRobin y (x ∙ y) z ⟩
x ∙ y ∙ z ∙ y ∎
}
problem₁₄-SR : ⦃ _ : HasStarling ⦄ ⦃ _ : HasRobin ⦄ → HasWarbler
problem₁₄-SR = record
{ W = R ∙ (S ∙ R ∙ R) ∙ R
; isWarbler = λ x y → begin
R ∙ (S ∙ R ∙ R) ∙ R ∙ x ∙ y ≈˘⟨ congʳ $ congʳ $ isRobin R R (S ∙ R ∙ R) ⟩
R ∙ R ∙ R ∙ (S ∙ R ∙ R) ∙ x ∙ y ≈⟨⟩
C ∙ (S ∙ R ∙ R) ∙ x ∙ y ≈⟨⟩
C ∙ (H ∙ R) ∙ x ∙ y ≈⟨⟩
W ∙ x ∙ y ≈⟨ isWarbler x y ⟩
x ∙ y ∙ y ∎
} where
instance
hasCardinal = Chapter₁₁.problem₂₁
hasHummingbird = problem₁₃
hasWarbler = problem₁₁
problem₁₄-SC : ⦃ _ : HasStarling ⦄ ⦃ _ : HasCardinal ⦄ → HasWarbler
problem₁₄-SC = record
{ W = C ∙ (S ∙ (C ∙ C) ∙ (C ∙ C))
; isWarbler = λ x y → begin
C ∙ (S ∙ (C ∙ C) ∙ (C ∙ C)) ∙ x ∙ y ≈⟨⟩
C ∙ (S ∙ R ∙ R) ∙ x ∙ y ≈⟨ isCardinal (S ∙ R ∙ R) x y ⟩
S ∙ R ∙ R ∙ y ∙ x ≈⟨ congʳ $ isStarling R R y ⟩
R ∙ y ∙ (R ∙ y) ∙ x ≈⟨ isRobin y (R ∙ y) x ⟩
R ∙ y ∙ x ∙ y ≈⟨ isRobin y x y ⟩
x ∙ y ∙ y ∎
} where instance hasRobin = Chapter₁₁.problem₂₃
problem₁₅ : ⦃ _ : HasThrush ⦄ ⦃ _ : HasStarling ⦄ → HasWarbler
problem₁₅ = record
{ W = S ∙ T
; isWarbler = λ x y → begin
S ∙ T ∙ x ∙ y ≈⟨ isStarling T x y ⟩
T ∙ y ∙ (x ∙ y) ≈⟨ isThrush y (x ∙ y) ⟩
x ∙ y ∙ y ∎
}
problem₁₆ : ⦃ _ : HasThrush ⦄ ⦃ _ : HasStarling ⦄ → HasMockingbird
problem₁₆ = record
{ M = S ∙ T ∙ T
; isMockingbird = λ x → begin
S ∙ T ∙ T ∙ x ≈⟨ isStarling T T x ⟩
T ∙ x ∙ (T ∙ x) ≈⟨ isThrush x (T ∙ x) ⟩
T ∙ x ∙ x ≈⟨ isThrush x x ⟩
x ∙ x ∎
}
module Exercises where
exercise₁-a : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasThrush ⦄
→ ∃[ G₁ ] (∀ x y z w v → G₁ ∙ x ∙ y ∙ z ∙ w ∙ v ≈ x ∙ y ∙ v ∙ (z ∙ w))
exercise₁-a =
( D₁ ∙ C*
, λ x y z w v → begin
D₁ ∙ C* ∙ x ∙ y ∙ z ∙ w ∙ v ≈⟨ congʳ $ isDickcissel C* x y z w ⟩
C* ∙ x ∙ y ∙ (z ∙ w) ∙ v ≈⟨ isCardinalOnceRemoved x y (z ∙ w) v ⟩
x ∙ y ∙ v ∙ (z ∙ w) ∎
)
where
instance
hasCardinal = Chapter₁₁.problem₂₁′
hasCardinalOnceRemoved = Chapter₁₁.problem₃₁
hasDickcissel = Chapter₁₁.problem₉
-- Note: in the solutions, the bluebird is used, but the exercise does not
-- state that the bluebird may be used.
exercise₁-b : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasMockingbird ⦄
→ ∃[ G₁ ] (∀ x y z w v → G₁ ∙ x ∙ y ∙ z ∙ w ∙ v ≈ x ∙ y ∙ v ∙ (z ∙ w))
→ ∃[ G₂ ] (∀ x y z w → G₂ ∙ x ∙ y ∙ z ∙ w ≈ x ∙ w ∙ (x ∙ w) ∙ (y ∙ z))
exercise₁-b (G₁ , isG₁) =
( G₁ ∙ (B ∙ M)
, λ x y z w → begin
G₁ ∙ (B ∙ M) ∙ x ∙ y ∙ z ∙ w ≈⟨ isG₁ (B ∙ M) x y z w ⟩
B ∙ M ∙ x ∙ w ∙ (y ∙ z) ≈⟨ congʳ $ isBluebird M x w ⟩
M ∙ (x ∙ w) ∙ (y ∙ z) ≈⟨ congʳ $ isMockingbird (x ∙ w) ⟩
x ∙ w ∙ (x ∙ w) ∙ (y ∙ z) ∎
)
exercise₁-c : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasThrush ⦄ ⦃ _ : HasIdentity ⦄
→ ∃[ I₂ ] (∀ x → I₂ ∙ x ≈ x ∙ I ∙ I)
exercise₁-c =
( B ∙ (T ∙ I) ∙ (T ∙ I)
, λ x → begin
B ∙ (T ∙ I) ∙ (T ∙ I) ∙ x ≈⟨ isBluebird (T ∙ I) (T ∙ I) x ⟩
T ∙ I ∙ (T ∙ I ∙ x) ≈⟨ isThrush I (T ∙ I ∙ x) ⟩
T ∙ I ∙ x ∙ I ≈⟨ congʳ $ isThrush I x ⟩
x ∙ I ∙ I ∎
)
exercise₁-d : ⦃ _ : HasIdentity ⦄ ⦃ _ : HasFinch ⦄
→ (hasI₂ : ∃[ I₂ ] (∀ x → I₂ ∙ x ≈ x ∙ I ∙ I))
→ ∀ x → proj₁ hasI₂ ∙ (F ∙ x) ≈ x
exercise₁-d (I₂ , isI₂) x = begin
I₂ ∙ (F ∙ x) ≈⟨ isI₂ (F ∙ x) ⟩
F ∙ x ∙ I ∙ I ≈⟨ isFinch x I I ⟩
I ∙ I ∙ x ≈⟨ congʳ $ isIdentity I ⟩
I ∙ x ≈⟨ isIdentity x ⟩
x ∎
exercise₁-e : ⦃ _ : HasFinch ⦄ ⦃ _ : HasQueerBird ⦄ ⦃ _ : HasIdentity ⦄
→ (hasG₂ : ∃[ G₂ ] (∀ x y z w → G₂ ∙ x ∙ y ∙ z ∙ w ≈ x ∙ w ∙ (x ∙ w) ∙ (y ∙ z)))
→ (hasI₂ : ∃[ I₂ ] (∀ x → I₂ ∙ x ≈ x ∙ I ∙ I))
→ IsWarbler (proj₁ hasG₂ ∙ F ∙ (Q ∙ proj₁ hasI₂))
exercise₁-e (G₂ , isG₂) (I₂ , isI₂) x y = begin
G₂ ∙ F ∙ (Q ∙ I₂) ∙ x ∙ y ≈⟨ isG₂ F (Q ∙ I₂) x y ⟩
F ∙ y ∙ (F ∙ y) ∙ (Q ∙ I₂ ∙ x) ≈⟨ isFinch y (F ∙ y) (Q ∙ I₂ ∙ x) ⟩
Q ∙ I₂ ∙ x ∙ (F ∙ y) ∙ y ≈⟨ congʳ $ isQueerBird I₂ x (F ∙ y) ⟩
x ∙ (I₂ ∙ (F ∙ y)) ∙ y ≈⟨ congʳ $ congˡ $ exercise₁-d (I₂ , isI₂) y ⟩
x ∙ y ∙ y ∎
exercise₂ : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasCardinal ⦄ ⦃ _ : HasWarbler ⦄
→ IsStarling (B ∙ (B ∙ (B ∙ W) ∙ C) ∙ (B ∙ B))
exercise₂ x y z = begin
B ∙ (B ∙ (B ∙ W) ∙ C) ∙ (B ∙ B) ∙ x ∙ y ∙ z ≈⟨ congʳ $ congʳ $ isBluebird (B ∙ (B ∙ W) ∙ C) (B ∙ B) x ⟩
B ∙ (B ∙ W) ∙ C ∙ (B ∙ B ∙ x) ∙ y ∙ z ≈⟨ congʳ $ congʳ $ isBluebird (B ∙ W) C (B ∙ B ∙ x) ⟩
B ∙ W ∙ (C ∙ (B ∙ B ∙ x)) ∙ y ∙ z ≈⟨ congʳ $ isBluebird W (C ∙ (B ∙ B ∙ x)) y ⟩
W ∙ (C ∙ (B ∙ B ∙ x) ∙ y) ∙ z ≈⟨ isWarbler (C ∙ (B ∙ B ∙ x) ∙ y) z ⟩
C ∙ (B ∙ B ∙ x) ∙ y ∙ z ∙ z ≈⟨ congʳ $ isCardinal (B ∙ B ∙ x) y z ⟩
B ∙ B ∙ x ∙ z ∙ y ∙ z ≈⟨ congʳ $ congʳ $ isBluebird B x z ⟩
B ∙ (x ∙ z) ∙ y ∙ z ≈⟨ isBluebird (x ∙ z) y z ⟩
x ∙ z ∙ (y ∙ z) ∎
exercise₃ : ⦃ _ : HasStarling ⦄ ⦃ _ : HasBluebird ⦄ → HasPhoenix
exercise₃ = record
{ Φ = B ∙ (B ∙ S) ∙ B
; isPhoenix = λ x y z w → begin
B ∙ (B ∙ S) ∙ B ∙ x ∙ y ∙ z ∙ w ≈⟨ congʳ $ congʳ $ congʳ $ isBluebird (B ∙ S) B x ⟩
B ∙ S ∙ (B ∙ x) ∙ y ∙ z ∙ w ≈⟨ congʳ $ congʳ $ isBluebird S (B ∙ x) y ⟩
S ∙ (B ∙ x ∙ y) ∙ z ∙ w ≈⟨ isStarling (B ∙ x ∙ y) z w ⟩
B ∙ x ∙ y ∙ w ∙ (z ∙ w) ≈⟨ congʳ $ isBluebird x y w ⟩
x ∙ (y ∙ w) ∙ (z ∙ w) ∎
}
exercise₄ : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasCardinal ⦄ ⦃ _ : HasWarbler ⦄ → HasPsiBird
exercise₄ = record
{ Ψ = H* ∙ D₂
; isPsiBird = λ x y z w → begin
H* ∙ D₂ ∙ x ∙ y ∙ z ∙ w ≈⟨⟩
B ∙ H ∙ D₂ ∙ x ∙ y ∙ z ∙ w ≈⟨ congʳ $ congʳ $ congʳ $ isBluebird H D₂ x ⟩
H ∙ (D₂ ∙ x) ∙ y ∙ z ∙ w ≈⟨ congʳ $ isHummingbird (D₂ ∙ x) y z ⟩
D₂ ∙ x ∙ y ∙ z ∙ y ∙ w ≈⟨ isDovekie x y z y w ⟩
x ∙ (y ∙ z) ∙ (y ∙ w) ∎
} where
instance
hasHummingbird = problem₁₀
hasDovekie = Chapter₁₁.problem₁₁
H* = B ∙ H
-- NOTE: my copy of the book contains a mistake (looking at the given
-- solutions): it says Γxyzwv = y(zw)(xywv) instead of Γxyzwv = y(zw)(xyzwv).
exercise₅-a : ⦃ _ : HasPhoenix ⦄ ⦃ _ : HasBluebird ⦄
→ ∃[ Γ ] (∀ x y z w v → Γ ∙ x ∙ y ∙ z ∙ w ∙ v ≈ y ∙ (z ∙ w) ∙ (x ∙ y ∙ z ∙ w ∙ v))
exercise₅-a =
( Φ ∙ (Φ ∙ (Φ ∙ B)) ∙ B
, λ x y z w v → begin
Φ ∙ (Φ ∙ (Φ ∙ B)) ∙ B ∙ x ∙ y ∙ z ∙ w ∙ v ≈⟨ congʳ $ congʳ $ congʳ $ isPhoenix (Φ ∙ (Φ ∙ B)) B x y ⟩
Φ ∙ (Φ ∙ B) ∙ (B ∙ y) ∙ (x ∙ y) ∙ z ∙ w ∙ v ≈⟨ congʳ $ congʳ $ isPhoenix (Φ ∙ B) (B ∙ y) (x ∙ y) z ⟩
Φ ∙ B ∙ (B ∙ y ∙ z) ∙ (x ∙ y ∙ z) ∙ w ∙ v ≈⟨ congʳ $ isPhoenix B (B ∙ y ∙ z) (x ∙ y ∙ z) w ⟩
B ∙ (B ∙ y ∙ z ∙ w) ∙ (x ∙ y ∙ z ∙ w) ∙ v ≈⟨ isBluebird (B ∙ y ∙ z ∙ w) (x ∙ y ∙ z ∙ w) v ⟩
B ∙ y ∙ z ∙ w ∙ (x ∙ y ∙ z ∙ w ∙ v) ≈⟨ congʳ $ isBluebird y z w ⟩
y ∙ (z ∙ w) ∙ (x ∙ y ∙ z ∙ w ∙ v) ∎
)
exercise₅-b : ⦃ _ : HasKestrel ⦄
→ ∃[ Γ ] (∀ x y z w v → Γ ∙ x ∙ y ∙ z ∙ w ∙ v ≈ y ∙ (z ∙ w) ∙ (x ∙ y ∙ z ∙ w ∙ v))
→ HasPsiBird
exercise₅-b (Γ , isΓ) = record
{ Ψ = Γ ∙ (K ∙ K)
; isPsiBird = λ x y z w → begin
Γ ∙ (K ∙ K) ∙ x ∙ y ∙ z ∙ w ≈⟨ isΓ (K ∙ K) x y z w ⟩
x ∙ (y ∙ z) ∙ (K ∙ K ∙ x ∙ y ∙ z ∙ w) ≈⟨ congˡ $ congʳ $ congʳ $ congʳ $ isKestrel K x ⟩
x ∙ (y ∙ z) ∙ (K ∙ y ∙ z ∙ w) ≈⟨ congˡ $ congʳ $ isKestrel y z ⟩
x ∙ (y ∙ z) ∙ (y ∙ w) ∎
}
exercise₅ : ⦃ _ : HasPhoenix ⦄ ⦃ _ : HasBluebird ⦄ ⦃ _ : HasKestrel ⦄ → HasPsiBird
exercise₅ = exercise₅-b exercise₅-a
exercise₆-a : ⦃ _ : HasStarling ⦄ ⦃ _ : HasBluebird ⦄ ⦃ _ : HasThrush ⦄
→ ∃[ S′ ] (∀ x y z → S′ ∙ x ∙ y ∙ z ≈ y ∙ z ∙ (x ∙ z))
exercise₆-a =
( C ∙ S
, λ x y z → begin
C ∙ S ∙ x ∙ y ∙ z ≈⟨ congʳ $ isCardinal S x y ⟩
S ∙ y ∙ x ∙ z ≈⟨ isStarling y x z ⟩
y ∙ z ∙ (x ∙ z) ∎
)
where instance hasCardinal = Chapter₁₁.problem₂₁′
exercise₆-b : ⦃ _ : HasIdentity ⦄
→ ∃[ S′ ] (∀ x y z → S′ ∙ x ∙ y ∙ z ≈ y ∙ z ∙ (x ∙ z))
→ HasWarbler
exercise₆-b (S′ , isS′) = record
{ W = S′ ∙ I
; isWarbler = λ x y → begin
S′ ∙ I ∙ x ∙ y ≈⟨ isS′ I x y ⟩
x ∙ y ∙ (I ∙ y) ≈⟨ congˡ $ isIdentity y ⟩
x ∙ y ∙ y ∎
}
exercise₇ : ⦃ _ : HasQueerBird ⦄ ⦃ _ : HasCardinal ⦄ ⦃ _ : HasWarbler ⦄
→ ∃[ Q̂ ] IsStarling (C ∙ Q̂ ∙ W)
exercise₇ = let Q̂ = Q ∙ (Q ∙ Q ∙ (Q ∙ Q)) ∙ Q in
( Q̂
, λ x y z → begin
C ∙ Q̂ ∙ W ∙ x ∙ y ∙ z ≈⟨ congʳ $ congʳ $ isCardinal Q̂ W x ⟩
Q̂ ∙ x ∙ W ∙ y ∙ z ≈⟨⟩
Q ∙ (Q ∙ Q ∙ (Q ∙ Q)) ∙ Q ∙ x ∙ W ∙ y ∙ z ≈⟨ congʳ $ congʳ $ congʳ $ isQueerBird (Q ∙ Q ∙ (Q ∙ Q)) Q x ⟩
Q ∙ (Q ∙ Q ∙ (Q ∙ Q) ∙ x) ∙ W ∙ y ∙ z ≈⟨ congʳ $ isQueerBird (Q ∙ Q ∙ (Q ∙ Q) ∙ x) W y ⟩
W ∙ (Q ∙ Q ∙ (Q ∙ Q) ∙ x ∙ y) ∙ z ≈⟨ isWarbler (Q ∙ Q ∙ (Q ∙ Q) ∙ x ∙ y) z ⟩
Q ∙ Q ∙ (Q ∙ Q) ∙ x ∙ y ∙ z ∙ z ≈⟨ congʳ $ congʳ $ congʳ $ isQueerBird Q (Q ∙ Q) x ⟩
Q ∙ Q ∙ (Q ∙ x) ∙ y ∙ z ∙ z ≈⟨ congʳ $ congʳ $ isQueerBird Q (Q ∙ x) y ⟩
Q ∙ x ∙ (Q ∙ y) ∙ z ∙ z ≈⟨ congʳ $ isQueerBird x (Q ∙ y) z ⟩
Q ∙ y ∙ (x ∙ z) ∙ z ≈⟨ isQueerBird y (x ∙ z) z ⟩
x ∙ z ∙ (y ∙ z) ∎
)
|
{
"alphanum_fraction": 0.4241068766,
"avg_line_length": 40.5,
"ext": "agda",
"hexsha": "3841c6848ceee83f70c07201ef3c09d7675f00a6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "splintah/combinatory-logic",
"max_forks_repo_path": "Mockingbird/Problems/Chapter12.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "splintah/combinatory-logic",
"max_issues_repo_path": "Mockingbird/Problems/Chapter12.agda",
"max_line_length": 132,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "splintah/combinatory-logic",
"max_stars_repo_path": "Mockingbird/Problems/Chapter12.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T23:44:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-28T23:44:42.000Z",
"num_tokens": 8460,
"size": 16767
}
|
module Syntax where
open import Data.List using (List; []; _∷_; _++_; lookup; length)
open import Data.Product using (Σ; Σ-syntax; proj₁; proj₂)
open import Data.Unit renaming (⊤ to top)
open import Data.Empty renaming (⊥ to bot)
open import Level using (suc; _⊔_)
module PType {ℓ} (Gr : Set ℓ) where
infixr 10 _*_
infixr 9 _=>_
data Type : Set ℓ where
⌊_⌋ : Gr -> Type
Unit : Type
_*_ : Type -> Type -> Type
_=>_ : Type -> Type -> Type
record Sorting : Set ℓ where
field
dom : Type
cod : Type
Context : Set ℓ
Context = List Type
record Signature ℓ₁ ℓ₂ : Set (suc (ℓ₁ ⊔ ℓ₂)) where
field
Gr : Set ℓ₁
Func : Set ℓ₂
open PType Gr public
field
sorting : Func -> Sorting
dom : Func -> Type
dom f = Sorting.dom (sorting f)
cod : Func -> Type
cod f = Sorting.cod (sorting f)
module Term {ℓ₁ ℓ₂} (Sg : Signature ℓ₁ ℓ₂) where
open Signature Sg
infix 3 _⊨_
infix 8 _∙_
infix 3 _⊢_
infixl 4 _[_]
data _⊨_ : Context -> Context -> Set (ℓ₁ ⊔ ℓ₂)
data _⊢_ : Context -> Type -> Set (ℓ₁ ⊔ ℓ₂)
data _⊨_ where
id : forall {Γ} -> Γ ⊨ Γ -- identity morphism
_∙_ : forall {Γ Γ′ Γ′′} -> Γ′ ⊨ Γ′′ -> Γ ⊨ Γ′ -> Γ ⊨ Γ′′ -- composition of morphisms
weaken : forall {Γ A} -> A ∷ Γ ⊨ Γ -- the first projection
ext : forall {Γ Γ′ A} -> Γ ⊨ Γ′ -> Γ ⊢ A -> Γ ⊨ A ∷ Γ′ -- the unique morphism into the product
! : forall {Γ} -> Γ ⊨ [] -- the unique morphism into the terminal object
data _⊢_ where
func : forall {Γ} (f : Func) -> Γ ⊢ dom f -> Γ ⊢ cod f
var : forall {Γ A} -> A ∷ Γ ⊢ A
unit : forall {Γ} -> Γ ⊢ Unit
pair : forall {Γ A B} -> Γ ⊢ A -> Γ ⊢ B -> Γ ⊢ A * B
fst : forall {Γ A B} -> Γ ⊢ A * B -> Γ ⊢ A
snd : forall {Γ A B} -> Γ ⊢ A * B -> Γ ⊢ B
abs : forall {Γ A B} -> A ∷ Γ ⊢ B -> Γ ⊢ A => B
app : forall {Γ A B} -> Γ ⊢ A => B -> Γ ⊢ A -> Γ ⊢ B
_[_] : forall {Γ Γ′ A} -> Γ′ ⊢ A -> Γ ⊨ Γ′ -> Γ ⊢ A
infix 10 _×id′
_×id′ : forall {Γ Γ′} {A} -> Γ ⊨ Γ′ -> A ∷ Γ ⊨ A ∷ Γ′
γ ×id′ = ext (γ ∙ weaken) var
|
{
"alphanum_fraction": 0.5285784074,
"avg_line_length": 24.6626506024,
"ext": "agda",
"hexsha": "f710728d2edc5af922b30b0bf38865e09d769185",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "elpinal/exsub-ccc",
"max_forks_repo_path": "Syntax.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "elpinal/exsub-ccc",
"max_issues_repo_path": "Syntax.agda",
"max_line_length": 98,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "elpinal/exsub-ccc",
"max_stars_repo_path": "Syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T13:30:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-05T06:16:32.000Z",
"num_tokens": 842,
"size": 2047
}
|
-- Andreas, 2019-02-25, issue #3588
-- C-c C-r (refine) produces unqualified constructor, but only
-- a qualified constructor is accepted in this place.
-- {-# OPTIONS -v interaction.intro:100 #-}
-- {-# OPTIONS -v scope.inverse:100 #-}
-- {-# OPTIONS -v toConcrete:50 #-}
module Issue3588 where
module M (_ : Set₁) where
data D : Set where
c : D
data P : D → Set where
c : P c
open M Set using (D; P)
open M.D
test : P c
test = {!!} -- C-c C-r
-- "c" suggested by refine, but rejected by reload or give
-- correct: P.c
|
{
"alphanum_fraction": 0.6220183486,
"avg_line_length": 20.1851851852,
"ext": "agda",
"hexsha": "edddb5fcb3e5faf3769a90638092398297ba6707",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue3588.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue3588.agda",
"max_line_length": 62,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue3588.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 170,
"size": 545
}
|
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module LogicalFramework.NonIntuitionistic where
infix 6 ¬_
infixr 5 _∧_
infixr 4 _∨_
postulate
⊥ : Set
⊥-elim : {A : Set} → ⊥ → A
-- Disjunction.
postulate
_∨_ : Set → Set → Set
inj₁ : {A B : Set} → A → A ∨ B
inj₂ : {A B : Set} → B → A ∨ B
case : {A B C : Set} → (A → C) → (B → C) → A ∨ B → C
-- Conjunction.
postulate
_∧_ : Set → Set → Set
_,_ : {A B : Set} → A → B → A ∧ B
∧-proj₁ : {A B : Set} → A ∧ B → A
∧-proj₂ : {A B : Set} → A ∧ B → B
-- Negation.
-- The underscore allows to write for example '¬ ¬ A' instead of '¬ (¬ A)'.
¬_ : Set → Set
¬ A = A → ⊥
module pem→¬-elim where
-- The principle of the excluded middle.
postulate pem : ∀ {A} → A ∨ ¬ A
-- The principle of indirect proof (proof by contradiction).
¬-elim : ∀ {A} → (¬ A → ⊥) → A
¬-elim h = case (λ a → a) (λ ¬a → ⊥-elim (h ¬a)) pem
module ¬-elim→pem where
-- The principle of indirect proof (proof by contradiction).
postulate ¬-elim : ∀ {A} → (¬ A → ⊥) → A
helper₁ : {A : Set} → ¬ (A ∨ ¬ A) → ¬ A ∧ ¬ ¬ A
helper₁ h = (λ a → h (inj₁ a)) , (λ ¬a → h (inj₂ ¬a))
helper₂ : {A : Set} → ¬ A ∧ ¬ ¬ A → ⊥
helper₂ h = ∧-proj₂ h (∧-proj₁ h)
helper₃ : {A : Set} → ¬ (A ∨ ¬ A) → ⊥
helper₃ h = helper₂ (helper₁ h)
-- The principle of the excluded middle.
pem : ∀ {A} → A ∨ ¬ A
pem = ¬-elim helper₃
|
{
"alphanum_fraction": 0.4990085922,
"avg_line_length": 24.8032786885,
"ext": "agda",
"hexsha": "6a29c2c358d9dd3bddc7235139ae918feee6f591",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/thesis/report/LogicalFramework/NonIntuitionistic.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/thesis/report/LogicalFramework/NonIntuitionistic.agda",
"max_line_length": 75,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/thesis/report/LogicalFramework/NonIntuitionistic.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 600,
"size": 1513
}
|
-- Generalized variables in datatype (and record) parameters
module _ where
open import Agda.Primitive
open import Agda.Builtin.Nat
module NotParameterised where
variable
ℓ : Level
A : Set ℓ
x y : A
m n : Nat
data Vec (A : Set ℓ) : Nat → Set ℓ where
[] : Vec A zero
_∷_ : A → Vec A n → Vec A (suc n)
variable
xs : Vec A n
-- n should be generalized as an index here
data All (P : A → Set ℓ) : Vec A n → Set ℓ where
[] : All P []
_∷_ : P x → All P xs → All P (x ∷ xs)
infix 2 _∈_
-- need an occurrence of ℓ in the params to not generalize it as an index,
-- so we bind A explicitly
data _∈_ {A : Set ℓ} (x : A) : Vec A n → Set ℓ where
zero : x ∈ x ∷ xs
suc : x ∈ xs → x ∈ y ∷ xs
lookup : {P : A → Set ℓ} → All P xs → x ∈ xs → P x
lookup (x ∷ _) zero = x
lookup (_ ∷ xs) (suc i) = lookup xs i
-- Check that we can do the same in a parameterised module
module Parameterised (Dummy : Set) where
variable
ℓ : Level
A : Set ℓ
x y : A
m n : Nat
data Vec (A : Set ℓ) : Nat → Set ℓ where
[] : Vec A zero
_∷_ : A → Vec A n → Vec A (suc n)
variable
xs : Vec A n
-- n should be generalized as an index here
data All (P : A → Set ℓ) : Vec A n → Set ℓ where
[] : All P []
_∷_ : P x → All P xs → All P (x ∷ xs)
infix 2 _∈_
-- need an occurrence of ℓ in the params to not generalize it as an index,
-- so we bind A explicitly
data _∈_ {A : Set ℓ} (x : A) : Vec A n → Set ℓ where
zero : x ∈ x ∷ xs
suc : x ∈ xs → x ∈ y ∷ xs
lookup : {P : A → Set ℓ} → All P xs → x ∈ xs → P x
lookup (x ∷ _) zero = x
lookup (_ ∷ xs) (suc i) = lookup xs i
|
{
"alphanum_fraction": 0.5489033788,
"avg_line_length": 23.7605633803,
"ext": "agda",
"hexsha": "dcbe4853d786413d9d8249b745de852e217a1e57",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue3296.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue3296.agda",
"max_line_length": 76,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue3296.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 637,
"size": 1687
}
|
-- {-# OPTIONS -v interaction.give:20 #-}
-- Reported by stevan.andjelkovic, Yesterday (17 hours ago)
-- Trying to give the expression in the goal gives the following error:
-- tt != tt p a of type Prop
-- when checking that the expression (λ x y → ?) has type
-- ({o : ⊤} (p : ⊤) → ⊥ → ⊤)
record _▷_ (I O : Set) : Set₁ where
constructor _◃_/_
field
Parameter : (o : O) → Set
Arity : ∀ {o} (p : Parameter o) → Set
input : ∀ {o} (p : Parameter o) (a : Arity p) → I
open _▷_ public
data ⊥ : Set where
record ⊤ : Set where
constructor tt
--data ⊤ : Set where
-- tt : ⊤
Abort : ⊤ ▷ ⊤
Abort = (λ _ → ⊤) ◃ (λ _ → ⊥) / {!!λ x y → {!!}!}
|
{
"alphanum_fraction": 0.5414201183,
"avg_line_length": 21.8064516129,
"ext": "agda",
"hexsha": "2923552eb8b680b1f789ad49c3368c6fece33a1a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue1360.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue1360.agda",
"max_line_length": 71,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue1360.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 249,
"size": 676
}
|
{-# OPTIONS --universe-polymorphism #-}
open import Level
open import Categories.Category
open import Categories.Product
module Categories.Product.Projections
{o ℓ e o′ ℓ′ e′}
(C : Category o ℓ e)
(D : Category o′ ℓ′ e′)
where
open import Categories.Functor
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂; zip; map; <_,_>; swap)
∏₁ : Functor (Product C D) C
∏₁ = record
{ F₀ = proj₁
; F₁ = proj₁
; identity = refl
; homomorphism = refl
; F-resp-≡ = proj₁
} where
open Category.Equiv C
∏₂ : Functor (Product C D) D
∏₂ = record
{ F₀ = proj₂
; F₁ = proj₂
; identity = refl
; homomorphism = refl
; F-resp-≡ = proj₂
} where
open Category.Equiv D
|
{
"alphanum_fraction": 0.5526641884,
"avg_line_length": 22.4166666667,
"ext": "agda",
"hexsha": "39e679ffb1b06aa589bb716e887bee6ab30aec6c",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Product/Projections.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Product/Projections.agda",
"max_line_length": 81,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Product/Projections.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 257,
"size": 807
}
|
{-# OPTIONS --safe #-}
module Cubical.Categories.Instances.Sets where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Unit
open import Cubical.Data.Sigma using (ΣPathP)
open import Cubical.Categories.Category
open import Cubical.Categories.Functor
open import Cubical.Categories.NaturalTransformation
open import Cubical.Categories.Limits
open Category
module _ ℓ where
SET : Category (ℓ-suc ℓ) ℓ
ob SET = hSet ℓ
Hom[_,_] SET (A , _) (B , _) = A → B
id SET x = x
_⋆_ SET f g x = g (f x)
⋆IdL SET f = refl
⋆IdR SET f = refl
⋆Assoc SET f g h = refl
isSetHom SET {A} {B} = isSetΠ (λ _ → snd B)
private
variable
ℓ ℓ' : Level
open Functor
-- Hom functors
_[-,_] : (C : Category ℓ ℓ') → (c : C .ob) → Functor (C ^op) (SET ℓ')
(C [-, c ]) .F-ob x = (C [ x , c ]) , C .isSetHom
(C [-, c ]) .F-hom f k = f ⋆⟨ C ⟩ k
(C [-, c ]) .F-id = funExt λ _ → C .⋆IdL _
(C [-, c ]) .F-seq _ _ = funExt λ _ → C .⋆Assoc _ _ _
_[_,-] : (C : Category ℓ ℓ') → (c : C .ob)→ Functor C (SET ℓ')
(C [ c ,-]) .F-ob x = (C [ c , x ]) , C .isSetHom
(C [ c ,-]) .F-hom f k = k ⋆⟨ C ⟩ f
(C [ c ,-]) .F-id = funExt λ _ → C .⋆IdR _
(C [ c ,-]) .F-seq _ _ = funExt λ _ → sym (C .⋆Assoc _ _ _)
module _ {C : Category ℓ ℓ'} {F : Functor C (SET ℓ')} where
open NatTrans
-- natural transformations by pre/post composition
preComp : {x y : C .ob}
→ (f : C [ x , y ])
→ C [ x ,-] ⇒ F
→ C [ y ,-] ⇒ F
preComp f α .N-ob c k = (α ⟦ c ⟧) (f ⋆⟨ C ⟩ k)
preComp f α .N-hom {x = c} {d} k
= (λ l → (α ⟦ d ⟧) (f ⋆⟨ C ⟩ (l ⋆⟨ C ⟩ k)))
≡[ i ]⟨ (λ l → (α ⟦ d ⟧) (⋆Assoc C f l k (~ i))) ⟩
(λ l → (α ⟦ d ⟧) (f ⋆⟨ C ⟩ l ⋆⟨ C ⟩ k))
≡[ i ]⟨ (λ l → (α .N-hom k) i (f ⋆⟨ C ⟩ l)) ⟩
(λ l → (F ⟪ k ⟫) ((α ⟦ c ⟧) (f ⋆⟨ C ⟩ l)))
∎
-- properties
-- TODO: move to own file
open CatIso renaming (inv to cInv)
open Iso
Iso→CatIso : ∀ {A B : (SET ℓ) .ob}
→ Iso (fst A) (fst B)
→ CatIso (SET ℓ) A B
Iso→CatIso is .mor = is .fun
Iso→CatIso is .cInv = is .inv
Iso→CatIso is .sec = funExt λ b → is .rightInv b -- is .rightInv
Iso→CatIso is .ret = funExt λ b → is .leftInv b -- is .rightInv
-- SET is complete
-- notes:
-- didn't need to restrict to *finite* diagrams , why is that required in Set theoretic?
-- didn't use coinduction here because Agda didn't like me referencing 'cone' frome 'up' (termination check)
open NatTrans
isCompleteSET : ∀ {ℓJ ℓJ'} → complete' {ℓJ = ℓJ} {ℓJ'} (SET (ℓ-max ℓJ ℓJ'))
isCompleteSET J K = record
{ head = head'
; islim = record { cone = cone' ; up = up' } }
where
-- the limit is defined as the Set of all cones with head Unit
head' = Cone K (Unit* , isOfHLevelLift 2 isSetUnit) , isSetNatTrans
-- the legs are defined by taking a cone to its component at j
cone' : Cone K head'
cone' .N-ob j μ = (μ ⟦ j ⟧) tt*
-- Naturality follows from naturality of the Unit cone
cone' .N-hom {x = i} {j} f
= funExt λ μ → (μ ⟦ j ⟧) tt*
≡[ i ]⟨ (μ .N-hom f i) tt* ⟩
(K ⟪ f ⟫) ((μ ⟦ i ⟧) tt*)
∎
-- Given another cone α, we want a unique function f from α → cone' which factors it
-- factorization property enforces that (cone' ⟦ j ⟧ ● f) ≡ α ⟦ j ⟧
-- but cone' ⟦ j ⟧ simply takes the jth component the output Cone K Unit from f
-- so this enforces that for all x ∈ A, (f x) ⟦ j ⟧ ≡ α ⟦ j ⟧ x
-- this determines the *only* possible factoring morphism
up' : ∀ {A} (α : Cone K A) → cone' uniquelyFactors α
up' {A} α = (f , fact) , unique
where
f : fst A → Cone K (Unit* , isOfHLevelLift 2 isSetUnit)
f x = natTrans (λ j _ → α .N-ob j x)
(λ {m} {n} f → funExt λ μ i → α .N-hom f i x)
fact : α ≡ (f ◼ cone')
fact = makeNatTransPath refl -- I LOVE DEFINITIONAL EQUALITY
unique : (τ : cone' factors α) → (f , fact) ≡ τ
unique (f' , fact') = ΣPathP (f≡f' , fact≡fact')
where
f≡f' : f ≡ f'
f≡f' = funExt λ x → makeNatTransPath (funExt λ _ → sym eq2)
where
-- the factorization property enforces that f' must have the same behavior as f
eq1 : ∀ {x j} → ((cone' ⟦ j ⟧) (f' x)) ≡ (α ⟦ j ⟧) x
eq1 {x} {j} i = ((fact' (~ i)) ⟦ j ⟧) x
eq2 : ∀ {x j} → (f' x) ⟦ j ⟧ ≡ λ _ → (α ⟦ j ⟧) x -- = (f x) ⟦ j ⟧
eq2 {x} {j} = funExt λ _ → eq1
-- follows from Set having homsets
fact≡fact' : PathP (λ i → α ≡ ((f≡f' i) ◼ cone')) fact fact'
fact≡fact' = isOfHLevel→isOfHLevelDep 1 (λ β → isSetNatTrans α β) fact fact' λ i → (f≡f' i) ◼ cone'
|
{
"alphanum_fraction": 0.5246861925,
"avg_line_length": 34.8905109489,
"ext": "agda",
"hexsha": "ff9483450ce5aede51fe72ba983285e34645c06b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lpw25/cubical",
"max_forks_repo_path": "Cubical/Categories/Instances/Sets.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lpw25/cubical",
"max_issues_repo_path": "Cubical/Categories/Instances/Sets.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lpw25/cubical",
"max_stars_repo_path": "Cubical/Categories/Instances/Sets.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1858,
"size": 4780
}
|
-- Andreas, 2014-01-09, extend parser of typed bindings to allow hiding
postulate
_≡_ : ∀{A : Set} (a b : A) → Set
List : Set → Set
_++_ : ∀{A : Set} (xs ys : List A) → List A
assoc : ∀{A : Set} (xs {ys} {zs} : List A) → ((xs ++ ys) ++ zs) ≡ (xs ++ (ys ++ zs))
assoc1 : ∀{A : Set} (xs {ys zs} : List A) → ((xs ++ ys) ++ zs) ≡ (xs ++ (ys ++ zs))
test : (xs {ys zs} _ us : Set) → Set
test1 : .(xs {ys zs} _ us : Set) → Set
test2 : ..(xs {ys zs} _ us : Set) → Set
|
{
"alphanum_fraction": 0.4761904762,
"avg_line_length": 40.25,
"ext": "agda",
"hexsha": "aefba935dbdcd0d07676bfc17659dcd5b1251432",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1391.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1391.agda",
"max_line_length": 86,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1391.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 211,
"size": 483
}
|
{-# OPTIONS --without-K --safe #-}
module Data.Nat.Base where
open import Agda.Builtin.Nat public
using (_+_; _*_; zero; suc)
renaming (Nat to ℕ; _-_ to _∸_)
open import Level
data Ordering : ℕ → ℕ → Type where
less : ∀ m k → Ordering m (suc (m + k))
equal : ∀ m → Ordering m m
greater : ∀ m k → Ordering (suc (m + k)) m
compare : ∀ m n → Ordering m n
compare zero zero = equal zero
compare (suc m) zero = greater zero m
compare zero (suc n) = less zero n
compare (suc m) (suc n) with compare m n
... | less m k = less (suc m) k
... | equal m = equal (suc m)
... | greater n k = greater (suc n) k
|
{
"alphanum_fraction": 0.5854037267,
"avg_line_length": 25.76,
"ext": "agda",
"hexsha": "bc62f6e1c86918a82055c60efbaf5009cd63c5f1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Nat/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Nat/Base.agda",
"max_line_length": 44,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Nat/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 219,
"size": 644
}
|
open import OutsideIn.Prelude
open import OutsideIn.X
module OutsideIn.Inference.Solver(x : X) where
import OutsideIn.Inference.Separator as S
import OutsideIn.Expressions as E
import OutsideIn.Constraints as C
open import Data.Bool renaming (_∧_ to _and_)
open E(x)
open S(x)
open X(x)
open C(x)
private module PlusN-m {n} = Monad (PlusN-is-monad {n})
module QC-f = Functor (qconstraint-is-functor)
module Ax-f = Functor (axiomscheme-is-functor)
module Type-f = Functor (type-is-functor)
module Type-m = Monad (type-is-monad)
mutual
data _,_solvI►_ {x : Set}⦃ eq : Eq x ⦄(Q : AxiomScheme x)(Qg : QConstraint x) : {s : Shape} → Implications x s → Set where
I-ε : Q , Qg solvI► imp-ε
I-∧ : ∀ {r₁ r₂}{a : Implications x r₁}{b : Implications x r₂}
→ Q , Qg solvI► a → Q , Qg solvI► b → Q , Qg solvI► (a imp-∧ b)
I-i : ∀ {r}{n}{Qv}{C : SeparatedConstraint _ r}{n′}{θ}
→ ( let peq = (PlusN-eq {n} eq) in Q , Qg ∧ Qv , n solv► C ↝ n′ , ε , θ)
→ Q , Qg solvI► imp (∃ n · Qv ⊃ C)
data _,_,_solv►_↝_,_,_ {x : Set}⦃ eq : Eq x ⦄(Q : AxiomScheme x)(Qg : QConstraint x)(n : ℕ) : {s : Shape} →
(SeparatedConstraint (x ⨁ n) s) → (m : ℕ) → (Qr : QConstraint (x ⨁ m)) → (θ : x ⨁ n → Type (x ⨁ m)) → Set where
SOLVE : ∀ {s}{simpl}{imps : Implications _ s}{m}{Qr}{θ}
→ simplifier eq n Q Qg simpl ≡ m , Qr , solved Qr θ
→ let peq = (PlusN-eq {m} eq) in (Ax-f.map (PlusN-m.unit {m}) Q) , (Qr ∧ QC-f.map (PlusN-m.unit {m}) Qg) solvI► substituteImp θ imps
→ Q , Qg , n solv► SC simpl imps ↝ m , Qr , θ
solveImps : {x : Set}{s : Shape} → (eq : Eq x) → (Q : AxiomScheme x) → (Qg : QConstraint x) → (C : Implications x s)
→ Ⓢ (Q , Qg solvI► C)
solver′ : {x : Set}{s : Shape} → (eq : Eq x)
→ (n : ℕ) → (Q : AxiomScheme x) → (Qg : QConstraint x) → (C : SeparatedConstraint (x ⨁ n) s)
→ Ⓢ (∃ (λ m → ∃ (λ θ → Q , Qg , n solv► C ↝ m , ε , θ)))
solver′ eq n axioms given (SC simpl imps) with simplifier eq n axioms given simpl | inspect (simplifier eq n axioms given) simpl
... | m , ε? , solved .ε? θ | iC prf with is-ε ε?
solver′ eq n axioms given (SC simpl imps)
| m , .ε , solved .ε θ | iC prf | yes refl = solveImps (PlusN-eq {m} eq)
(Ax-f.map (PlusN-m.unit {m}) axioms)
( ε ∧ QC-f.map (PlusN-m.unit {m}) given)
(substituteImp θ imps)
>>= λ impP → suc (m , θ , SOLVE prf impP)
where open Monad(Ⓢ-is-monad)
... | no isntε = zero
solveImps eq Q Qg imp-ε = suc I-ε
solveImps eq Q Qg (a imp-∧ b) = solveImps eq Q Qg a
>>= λ a′ → solveImps eq Q Qg b
>>= λ b′ → suc (I-∧ a′ b′)
where open Monad(Ⓢ-is-monad)
solveImps eq Q Qg (imp (∃ n · Qv ⊃ C)) = solver′ eq n Q (Qg ∧ Qv) C >>= λ { (m , θ , prf) → suc (I-i prf) }
where open Monad(Ⓢ-is-monad)
solver : {x : Set}{s : Shape} → (eq : Eq x)
→ (n : ℕ) → (Q : AxiomScheme x) → (Qg : QConstraint x) → (C : SeparatedConstraint (x ⨁ n) s)
→ Ⓢ (∃ (λ m → ∃ (λ Qr → ∃ (λ θ → Q , Qg , n solv► C ↝ m , Qr , θ))))
solver eq n Q Qg (SC simpl imps) with simplifier eq n Q Qg simpl | inspect (simplifier eq n Q Qg) simpl
... | m , Qr , solved .Qr θ | iC prf = solveImps (PlusN-eq {m} eq)
(Ax-f.map (PlusN-m.unit {m}) Q)
(Qr ∧ QC-f.map (PlusN-m.unit {m}) Qg)
(substituteImp θ imps)
>>= λ prf′ → suc (m , Qr , θ , SOLVE prf prf′)
where open Monad(Ⓢ-is-monad)
|
{
"alphanum_fraction": 0.4729051681,
"avg_line_length": 58.6176470588,
"ext": "agda",
"hexsha": "88f3ccd8c79c9bbdfdc53658964afe75d99c416c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "liamoc/outside-in",
"max_forks_repo_path": "OutsideIn/Inference/Solver.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "liamoc/outside-in",
"max_issues_repo_path": "OutsideIn/Inference/Solver.agda",
"max_line_length": 144,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "liamoc/outside-in",
"max_stars_repo_path": "OutsideIn/Inference/Solver.agda",
"max_stars_repo_stars_event_max_datetime": "2020-11-19T14:30:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-14T05:22:15.000Z",
"num_tokens": 1434,
"size": 3986
}
|
module Data.Boolean.Proofs where
import Lvl
open import Data
open import Data.Boolean
import Data.Boolean.Operators
open Data.Boolean.Operators.Logic using (_⊼_ ; _⊽_ ; _⊕_)
open Data.Boolean.Operators.Programming
open import Data.Either as Either using (_‖_ ; Left ; Right)
open import Functional
open import Logic.IntroInstances
open import Logic.Propositional as Logic using (_∨_ ; _∧_ ; ¬_ ; _↔_ ; [⊤]-intro ; [↔]-intro ; [⊥]-elim ; [↔]-to-[←] ; [↔]-to-[→])
open import Logic.Predicate
open import Relator.Equals
open import Relator.Equals.Proofs.Equiv
open import Structure.Operator.Monoid
import Structure.Operator.Names as Names
open import Structure.Operator.Properties
open import Type
private variable ℓ : Lvl.Level
private variable T : Type{ℓ}
private variable P : Bool → Type{ℓ}
private variable a b c t f : Bool
private variable x y : Bool
private variable pt pf : ∀{b} → P(b)
---------------------------------------------
-- Eliminator
module _ {pt pf : T} where
elim-nested : (elim pt pf (elim t f b) ≡ elim{T = const T} (elim pt pf t) (elim pt pf f) b)
elim-nested{t = t}{f = f}{b = b} = elim{T = b ↦ (elim pt pf (elim t f b) ≡ elim(elim pt pf t) (elim pt pf f) b)} [≡]-intro [≡]-intro b
module _ {x : T} where
elim-redundant : (elim{T = const T} x x b ≡ x)
elim-redundant{b = b} = elim{T = b ↦ elim x x b ≡ x} [≡]-intro [≡]-intro b
elim-inverse : (elim 𝑇 𝐹 b ≡ b)
elim-inverse{b = b} = elim{T = b ↦ elim 𝑇 𝐹 b ≡ b} [≡]-intro [≡]-intro b
elim-anti-inverse : (elim 𝐹 𝑇 b ≡ ! b)
elim-anti-inverse {𝑇} = [≡]-intro
elim-anti-inverse {𝐹} = [≡]-intro
---------------------------------------------
-- Negation
[!]-no-fixpoints : ∀{b} → (! b ≢ b)
[!]-no-fixpoints {𝑇} ()
[!]-no-fixpoints {𝐹} ()
[!!]-elim : ∀{a} → (!(! a) ≡ a)
[!!]-elim {𝑇} = [≡]-intro
[!!]-elim {𝐹} = [≡]-intro
{-# REWRITE [!!]-elim #-}
---------------------------------------------
-- Idempotence
[&&]-idempotence-raw : ∀{a} → (a && a ≡ a)
[&&]-idempotence-raw {𝑇} = [≡]-intro
[&&]-idempotence-raw {𝐹} = [≡]-intro
{-# REWRITE [&&]-idempotence-raw #-}
instance
[&&]-idempotence : Idempotence(_&&_)
Idempotence.proof([&&]-idempotence) = [&&]-idempotence-raw
[||]-idempotence-raw : ∀{a} → (a || a ≡ a)
[||]-idempotence-raw {𝑇} = [≡]-intro
[||]-idempotence-raw {𝐹} = [≡]-intro
{-# REWRITE [||]-idempotence-raw #-}
instance
[||]-idempotence : Idempotence(_||_)
Idempotence.proof([||]-idempotence) = [||]-idempotence-raw
---------------------------------------------
-- Left anti-identities
[==]-anti-identityₗ : ∀{a} → (𝐹 == a ≡ ! a)
[==]-anti-identityₗ {𝑇} = [≡]-intro
[==]-anti-identityₗ {𝐹} = [≡]-intro
{-# REWRITE [==]-anti-identityₗ #-}
[!=]-anti-identityₗ : ∀{a} → (𝑇 != a ≡ ! a)
[!=]-anti-identityₗ {𝑇} = [≡]-intro
[!=]-anti-identityₗ {𝐹} = [≡]-intro
{-# REWRITE [!=]-anti-identityₗ #-}
---------------------------------------------
-- Right anti-identities
[==]-anti-identityᵣ : ∀{a} → (a == 𝐹 ≡ ! a)
[==]-anti-identityᵣ {𝑇} = [≡]-intro
[==]-anti-identityᵣ {𝐹} = [≡]-intro
{-# REWRITE [==]-anti-identityᵣ #-}
[!=]-anti-identityᵣ : ∀{a} → (a != 𝑇 ≡ ! a)
[!=]-anti-identityᵣ {𝑇} = [≡]-intro
[!=]-anti-identityᵣ {𝐹} = [≡]-intro
{-# REWRITE [!=]-anti-identityᵣ #-}
---------------------------------------------
-- Left identities
[||]-identityₗ-raw : ∀{a} → (𝐹 || a ≡ a)
[||]-identityₗ-raw {𝑇} = [≡]-intro
[||]-identityₗ-raw {𝐹} = [≡]-intro
{-# REWRITE [||]-identityₗ-raw #-}
instance
[||]-identityₗ : Identityₗ(_||_)(𝐹)
Identityₗ.proof([||]-identityₗ) = [||]-identityₗ-raw
[&&]-identityₗ-raw : ∀{a} → (𝑇 && a ≡ a)
[&&]-identityₗ-raw {𝑇} = [≡]-intro
[&&]-identityₗ-raw {𝐹} = [≡]-intro
{-# REWRITE [&&]-identityₗ-raw #-}
instance
[&&]-identityₗ : Identityₗ(_&&_)(𝑇)
Identityₗ.proof([&&]-identityₗ) = [&&]-identityₗ-raw
[==]-identityₗ-raw : ∀{a} → (𝑇 == a ≡ a)
[==]-identityₗ-raw {𝑇} = [≡]-intro
[==]-identityₗ-raw {𝐹} = [≡]-intro
{-# REWRITE [==]-identityₗ-raw #-}
instance
[==]-identityₗ : Identityₗ(_==_)(𝑇)
Identityₗ.proof([==]-identityₗ) = [==]-identityₗ-raw
[!=]-identityₗ-raw : ∀{a} → (𝐹 != a ≡ a)
[!=]-identityₗ-raw {𝑇} = [≡]-intro
[!=]-identityₗ-raw {𝐹} = [≡]-intro
{-# REWRITE [!=]-identityₗ-raw #-}
instance
[!=]-identityₗ : Identityₗ(_!=_)(𝐹)
Identityₗ.proof([!=]-identityₗ) = [!=]-identityₗ-raw
---------------------------------------------
-- Left absorbers
[||]-absorberₗ-raw : ∀{a} → (𝑇 || a ≡ 𝑇)
[||]-absorberₗ-raw {𝑇} = [≡]-intro
[||]-absorberₗ-raw {𝐹} = [≡]-intro
{-# REWRITE [||]-absorberₗ-raw #-}
instance
[||]-absorberₗ : Absorberₗ(_||_)(𝑇)
Absorberₗ.proof([||]-absorberₗ) {a} = [||]-absorberₗ-raw {a}
[&&]-absorberₗ-raw : ∀{a} → (𝐹 && a ≡ 𝐹)
[&&]-absorberₗ-raw {𝑇} = [≡]-intro
[&&]-absorberₗ-raw {𝐹} = [≡]-intro
{-# REWRITE [&&]-absorberₗ-raw #-}
instance
[&&]-absorberₗ : Absorberₗ(_&&_)(𝐹)
Absorberₗ.proof([&&]-absorberₗ) {a} = [&&]-absorberₗ-raw {a}
---------------------------------------------
-- Right identities
[||]-identityᵣ-raw : ∀{a} → (a || 𝐹 ≡ a)
[||]-identityᵣ-raw {𝑇} = [≡]-intro
[||]-identityᵣ-raw {𝐹} = [≡]-intro
{-# REWRITE [||]-identityᵣ-raw #-}
instance
[||]-identityᵣ : Identityᵣ(_||_)(𝐹)
Identityᵣ.proof([||]-identityᵣ) = [||]-identityᵣ-raw
[&&]-identityᵣ-raw : ∀{a} → (a && 𝑇 ≡ a)
[&&]-identityᵣ-raw {𝑇} = [≡]-intro
[&&]-identityᵣ-raw {𝐹} = [≡]-intro
{-# REWRITE [&&]-identityᵣ-raw #-}
instance
[&&]-identityᵣ : Identityᵣ(_&&_)(𝑇)
Identityᵣ.proof([&&]-identityᵣ) = [&&]-identityᵣ-raw
[==]-identityᵣ-raw : ∀{a} → (a == 𝑇 ≡ a)
[==]-identityᵣ-raw {𝑇} = [≡]-intro
[==]-identityᵣ-raw {𝐹} = [≡]-intro
{-# REWRITE [==]-identityᵣ-raw #-}
instance
[==]-identityᵣ : Identityᵣ(_==_)(𝑇)
Identityᵣ.proof([==]-identityᵣ) = [==]-identityᵣ-raw
[!=]-identityᵣ-raw : ∀{a} → (a != 𝐹 ≡ a)
[!=]-identityᵣ-raw {𝑇} = [≡]-intro
[!=]-identityᵣ-raw {𝐹} = [≡]-intro
{-# REWRITE [!=]-identityᵣ-raw #-}
instance
[!=]-identityᵣ : Identityᵣ(_!=_)(𝐹)
Identityᵣ.proof([!=]-identityᵣ) = [!=]-identityᵣ-raw
---------------------------------------------
-- Identities
instance
[||]-identity : Identity(_||_)(𝐹)
[||]-identity = record{}
instance
[&&]-identity : Identity(_&&_)(𝑇)
[&&]-identity = record{}
instance
[==]-identity : Identity(_==_)(𝑇)
[==]-identity = record{}
instance
[!=]-identity : Identity(_!=_)(𝐹)
[!=]-identity = record{}
---------------------------------------------
-- Right absorbers
[||]-absorberᵣ-raw : ∀{a} → (a || 𝑇 ≡ 𝑇)
[||]-absorberᵣ-raw {𝑇} = [≡]-intro
[||]-absorberᵣ-raw {𝐹} = [≡]-intro
{-# REWRITE [||]-absorberᵣ-raw #-}
instance
[||]-absorberᵣ : Absorberᵣ(_||_)(𝑇)
Absorberᵣ.proof([||]-absorberᵣ) {a} = [||]-absorberᵣ-raw {a}
[&&]-absorberᵣ-raw : ∀{a} → (a && 𝐹 ≡ 𝐹)
[&&]-absorberᵣ-raw {𝑇} = [≡]-intro
[&&]-absorberᵣ-raw {𝐹} = [≡]-intro
{-# REWRITE [&&]-absorberᵣ-raw #-}
instance
[&&]-absorberᵣ : Absorberᵣ(_&&_)(𝐹)
Absorberᵣ.proof([&&]-absorberᵣ) {a} = [&&]-absorberᵣ-raw {a}
---------------------------------------------
-- Associativity
instance
[||]-associativity : Associativity(_||_)
Associativity.proof([||]-associativity) = proof where
proof : Names.Associativity(_||_)
proof {𝑇}{𝑇}{𝑇} = [≡]-intro
proof {𝑇}{𝑇}{𝐹} = [≡]-intro
proof {𝑇}{𝐹}{𝑇} = [≡]-intro
proof {𝑇}{𝐹}{𝐹} = [≡]-intro
proof {𝐹}{𝑇}{𝑇} = [≡]-intro
proof {𝐹}{𝑇}{𝐹} = [≡]-intro
proof {𝐹}{𝐹}{𝑇} = [≡]-intro
proof {𝐹}{𝐹}{𝐹} = [≡]-intro
instance
[&&]-associativity : Associativity(_&&_)
Associativity.proof([&&]-associativity) = proof where
proof : Names.Associativity(_&&_)
proof {𝑇}{𝑇}{𝑇} = [≡]-intro
proof {𝑇}{𝑇}{𝐹} = [≡]-intro
proof {𝑇}{𝐹}{𝑇} = [≡]-intro
proof {𝑇}{𝐹}{𝐹} = [≡]-intro
proof {𝐹}{𝑇}{𝑇} = [≡]-intro
proof {𝐹}{𝑇}{𝐹} = [≡]-intro
proof {𝐹}{𝐹}{𝑇} = [≡]-intro
proof {𝐹}{𝐹}{𝐹} = [≡]-intro
instance
[==]-associativity : Associativity(_==_)
Associativity.proof([==]-associativity) = proof where
proof : Names.Associativity(_==_)
proof {𝑇}{𝑇}{𝑇} = [≡]-intro
proof {𝑇}{𝑇}{𝐹} = [≡]-intro
proof {𝑇}{𝐹}{𝑇} = [≡]-intro
proof {𝑇}{𝐹}{𝐹} = [≡]-intro
proof {𝐹}{𝑇}{𝑇} = [≡]-intro
proof {𝐹}{𝑇}{𝐹} = [≡]-intro
proof {𝐹}{𝐹}{𝑇} = [≡]-intro
proof {𝐹}{𝐹}{𝐹} = [≡]-intro
instance
[!=]-associativity : Associativity(_!=_)
Associativity.proof([!=]-associativity) = proof where
proof : Names.Associativity(_!=_)
proof {𝑇}{𝑇}{𝑇} = [≡]-intro
proof {𝑇}{𝑇}{𝐹} = [≡]-intro
proof {𝑇}{𝐹}{𝑇} = [≡]-intro
proof {𝑇}{𝐹}{𝐹} = [≡]-intro
proof {𝐹}{𝑇}{𝑇} = [≡]-intro
proof {𝐹}{𝑇}{𝐹} = [≡]-intro
proof {𝐹}{𝐹}{𝑇} = [≡]-intro
proof {𝐹}{𝐹}{𝐹} = [≡]-intro
---------------------------------------------
-- Other
[⊼]-pseudo-associativity : (!(a ⊼ b) ⊼ c ≡ a ⊼ !(b ⊼ c))
[⊼]-pseudo-associativity {𝑇} {𝑇} {𝑇} = [≡]-intro
[⊼]-pseudo-associativity {𝑇} {𝑇} {𝐹} = [≡]-intro
[⊼]-pseudo-associativity {𝑇} {𝐹} {𝑇} = [≡]-intro
[⊼]-pseudo-associativity {𝑇} {𝐹} {𝐹} = [≡]-intro
[⊼]-pseudo-associativity {𝐹} {𝑇} {𝑇} = [≡]-intro
[⊼]-pseudo-associativity {𝐹} {𝑇} {𝐹} = [≡]-intro
[⊼]-pseudo-associativity {𝐹} {𝐹} {𝑇} = [≡]-intro
[⊼]-pseudo-associativity {𝐹} {𝐹} {𝐹} = [≡]-intro
[⊼]-to-conjunction : (!(a ⊼ b) ≡ a && b)
[⊼]-to-conjunction {𝑇} {𝑇} = [≡]-intro
[⊼]-to-conjunction {𝑇} {𝐹} = [≡]-intro
[⊼]-to-conjunction {𝐹} {𝑇} = [≡]-intro
[⊼]-to-conjunction {𝐹} {𝐹} = [≡]-intro
[⊼]-to-negation : (b ⊼ b ≡ ! b)
[⊼]-to-negation {𝑇} = [≡]-intro
[⊼]-to-negation {𝐹} = [≡]-intro
[⊼]-pseudo-absorptionₗ : (a ⊼ (a ⊼ b) ≡ a ⊼ (! b))
[⊼]-pseudo-absorptionₗ {𝑇} {𝑇} = [≡]-intro
[⊼]-pseudo-absorptionₗ {𝑇} {𝐹} = [≡]-intro
[⊼]-pseudo-absorptionₗ {𝐹} {𝑇} = [≡]-intro
[⊼]-pseudo-absorptionₗ {𝐹} {𝐹} = [≡]-intro
[⊼]-pseudo-absorptionᵣ : ((a ⊼ b) ⊼ b ≡ (! a) ⊼ b)
[⊼]-pseudo-absorptionᵣ {𝑇} {𝑇} = [≡]-intro
[⊼]-pseudo-absorptionᵣ {𝑇} {𝐹} = [≡]-intro
[⊼]-pseudo-absorptionᵣ {𝐹} {𝑇} = [≡]-intro
[⊼]-pseudo-absorptionᵣ {𝐹} {𝐹} = [≡]-intro
[⊼]-pseudo-pseudo-absorptionₗ : (((! a) ⊼ b) ⊼ (a ⊼ b) ≡ b)
[⊼]-pseudo-pseudo-absorptionₗ {𝑇} {𝑇} = [≡]-intro
[⊼]-pseudo-pseudo-absorptionₗ {𝑇} {𝐹} = [≡]-intro
[⊼]-pseudo-pseudo-absorptionₗ {𝐹} {𝑇} = [≡]-intro
[⊼]-pseudo-pseudo-absorptionₗ {𝐹} {𝐹} = [≡]-intro
[⊼]-pseudo-pseudo-absorptionᵣ : ((a ⊼ (! b)) ⊼ (a ⊼ b) ≡ a)
[⊼]-pseudo-pseudo-absorptionᵣ {𝑇} {𝑇} = [≡]-intro
[⊼]-pseudo-pseudo-absorptionᵣ {𝑇} {𝐹} = [≡]-intro
[⊼]-pseudo-pseudo-absorptionᵣ {𝐹} {𝑇} = [≡]-intro
[⊼]-pseudo-pseudo-absorptionᵣ {𝐹} {𝐹} = [≡]-intro
[⊽]-pseudo-associativity : (!(a ⊽ b) ⊽ c ≡ a ⊽ !(b ⊽ c))
[⊽]-pseudo-associativity {𝑇} {𝑇} {𝑇} = [≡]-intro
[⊽]-pseudo-associativity {𝑇} {𝑇} {𝐹} = [≡]-intro
[⊽]-pseudo-associativity {𝑇} {𝐹} {𝑇} = [≡]-intro
[⊽]-pseudo-associativity {𝑇} {𝐹} {𝐹} = [≡]-intro
[⊽]-pseudo-associativity {𝐹} {𝑇} {𝑇} = [≡]-intro
[⊽]-pseudo-associativity {𝐹} {𝑇} {𝐹} = [≡]-intro
[⊽]-pseudo-associativity {𝐹} {𝐹} {𝑇} = [≡]-intro
[⊽]-pseudo-associativity {𝐹} {𝐹} {𝐹} = [≡]-intro
[⊽]-to-disjunction : (!(a ⊽ b) ≡ a || b)
[⊽]-to-disjunction {𝑇} {𝑇} = [≡]-intro
[⊽]-to-disjunction {𝑇} {𝐹} = [≡]-intro
[⊽]-to-disjunction {𝐹} {𝑇} = [≡]-intro
[⊽]-to-disjunction {𝐹} {𝐹} = [≡]-intro
[⊽]-to-negation : (b ⊽ b ≡ ! b)
[⊽]-to-negation {𝑇} = [≡]-intro
[⊽]-to-negation {𝐹} = [≡]-intro
[⊽]-pseudo-absorptionₗ : (a ⊽ (a ⊽ b) ≡ a ⊽ (! b))
[⊽]-pseudo-absorptionₗ {𝑇} {𝑇} = [≡]-intro
[⊽]-pseudo-absorptionₗ {𝑇} {𝐹} = [≡]-intro
[⊽]-pseudo-absorptionₗ {𝐹} {𝑇} = [≡]-intro
[⊽]-pseudo-absorptionₗ {𝐹} {𝐹} = [≡]-intro
[⊽]-pseudo-absorptionᵣ : ((a ⊽ b) ⊽ b ≡ (! a) ⊽ b)
[⊽]-pseudo-absorptionᵣ {𝑇} {𝑇} = [≡]-intro
[⊽]-pseudo-absorptionᵣ {𝑇} {𝐹} = [≡]-intro
[⊽]-pseudo-absorptionᵣ {𝐹} {𝑇} = [≡]-intro
[⊽]-pseudo-absorptionᵣ {𝐹} {𝐹} = [≡]-intro
[⊽]-pseudo-pseudo-absorptionₗ : (((! a) ⊽ b) ⊽ (a ⊽ b) ≡ b)
[⊽]-pseudo-pseudo-absorptionₗ {𝑇} {𝑇} = [≡]-intro
[⊽]-pseudo-pseudo-absorptionₗ {𝑇} {𝐹} = [≡]-intro
[⊽]-pseudo-pseudo-absorptionₗ {𝐹} {𝑇} = [≡]-intro
[⊽]-pseudo-pseudo-absorptionₗ {𝐹} {𝐹} = [≡]-intro
[⊽]-pseudo-pseudo-absorptionᵣ : ((a ⊽ (! b)) ⊽ (a ⊽ b) ≡ a)
[⊽]-pseudo-pseudo-absorptionᵣ {𝑇} {𝑇} = [≡]-intro
[⊽]-pseudo-pseudo-absorptionᵣ {𝑇} {𝐹} = [≡]-intro
[⊽]-pseudo-pseudo-absorptionᵣ {𝐹} {𝑇} = [≡]-intro
[⊽]-pseudo-pseudo-absorptionᵣ {𝐹} {𝐹} = [≡]-intro
---------------------------------------------
-- Commutativity
instance
[||]-commutativity : Commutativity(_||_)
Commutativity.proof([||]-commutativity) = proof where
proof : Names.Commutativity(_||_)
proof {𝑇}{𝑇} = [≡]-intro
proof {𝑇}{𝐹} = [≡]-intro
proof {𝐹}{𝑇} = [≡]-intro
proof {𝐹}{𝐹} = [≡]-intro
instance
[&&]-commutativity : Commutativity(_&&_)
Commutativity.proof([&&]-commutativity) = proof where
proof : Names.Commutativity(_&&_)
proof {𝑇}{𝑇} = [≡]-intro
proof {𝑇}{𝐹} = [≡]-intro
proof {𝐹}{𝑇} = [≡]-intro
proof {𝐹}{𝐹} = [≡]-intro
instance
[==]-commutativity : Commutativity(_==_)
Commutativity.proof([==]-commutativity) = proof where
proof : Names.Commutativity(_==_)
proof {𝑇}{𝑇} = [≡]-intro
proof {𝑇}{𝐹} = [≡]-intro
proof {𝐹}{𝑇} = [≡]-intro
proof {𝐹}{𝐹} = [≡]-intro
instance
[!=]-commutativity : Commutativity(_!=_)
Commutativity.proof([!=]-commutativity) = proof where
proof : Names.Commutativity(_!=_)
proof {𝑇}{𝑇} = [≡]-intro
proof {𝑇}{𝐹} = [≡]-intro
proof {𝐹}{𝑇} = [≡]-intro
proof {𝐹}{𝐹} = [≡]-intro
instance
[⊼]-commutativity : Commutativity(_⊼_)
Commutativity.proof([⊼]-commutativity) = proof where
proof : Names.Commutativity(_⊼_)
proof {𝑇}{𝑇} = [≡]-intro
proof {𝑇}{𝐹} = [≡]-intro
proof {𝐹}{𝑇} = [≡]-intro
proof {𝐹}{𝐹} = [≡]-intro
instance
[⊽]-commutativity : Commutativity(_⊽_)
Commutativity.proof([⊽]-commutativity) = proof where
proof : Names.Commutativity(_⊽_)
proof {𝑇}{𝑇} = [≡]-intro
proof {𝑇}{𝐹} = [≡]-intro
proof {𝐹}{𝑇} = [≡]-intro
proof {𝐹}{𝐹} = [≡]-intro
instance
[⊕]-commutativity : Commutativity(_⊕_)
Commutativity.proof([⊕]-commutativity) = proof where
proof : Names.Commutativity(_⊕_)
proof {𝑇}{𝑇} = [≡]-intro
proof {𝑇}{𝐹} = [≡]-intro
proof {𝐹}{𝑇} = [≡]-intro
proof {𝐹}{𝐹} = [≡]-intro
instance
[&&][||]-distributivityₗ : Distributivityₗ(_&&_)(_||_)
Distributivityₗ.proof([&&][||]-distributivityₗ) = proof where
proof : Names.Distributivityₗ(_&&_)(_||_)
proof {𝑇}{𝑇}{𝑇} = [≡]-intro
proof {𝑇}{𝑇}{𝐹} = [≡]-intro
proof {𝑇}{𝐹}{𝑇} = [≡]-intro
proof {𝑇}{𝐹}{𝐹} = [≡]-intro
proof {𝐹}{𝑇}{𝑇} = [≡]-intro
proof {𝐹}{𝑇}{𝐹} = [≡]-intro
proof {𝐹}{𝐹}{𝑇} = [≡]-intro
proof {𝐹}{𝐹}{𝐹} = [≡]-intro
instance
[||][&&]-distributivityₗ : Distributivityₗ(_||_)(_&&_)
Distributivityₗ.proof([||][&&]-distributivityₗ) = proof where
proof : Names.Distributivityₗ(_||_)(_&&_)
proof {𝑇}{𝑇}{𝑇} = [≡]-intro
proof {𝑇}{𝑇}{𝐹} = [≡]-intro
proof {𝑇}{𝐹}{𝑇} = [≡]-intro
proof {𝑇}{𝐹}{𝐹} = [≡]-intro
proof {𝐹}{𝑇}{𝑇} = [≡]-intro
proof {𝐹}{𝑇}{𝐹} = [≡]-intro
proof {𝐹}{𝐹}{𝑇} = [≡]-intro
proof {𝐹}{𝐹}{𝐹} = [≡]-intro
instance
[||]-oppositeFunctionₗ : ComplementFunctionₗ(_||_)(!)
ComplementFunctionₗ.proof([||]-oppositeFunctionₗ) = proof where
proof : Names.InverseFunctionₗ(_||_)(𝑇)(!)
proof {𝑇} = [≡]-intro
proof {𝐹} = [≡]-intro
instance
[||]-oppositeFunctionᵣ : ComplementFunctionᵣ(_||_)(!)
ComplementFunctionᵣ.proof([||]-oppositeFunctionᵣ) = proof where
proof : Names.InverseFunctionᵣ(_||_)(𝑇)(!)
proof {𝑇} = [≡]-intro
proof {𝐹} = [≡]-intro
instance
[&&]-oppositeFunctionₗ : ComplementFunctionₗ(_&&_)(!)
ComplementFunctionₗ.proof([&&]-oppositeFunctionₗ) = proof where
proof : Names.InverseFunctionₗ(_&&_)(𝐹)(!)
proof {𝑇} = [≡]-intro
proof {𝐹} = [≡]-intro
instance
[&&]-oppositeFunctionᵣ : ComplementFunctionᵣ(_&&_)(!)
ComplementFunctionᵣ.proof([&&]-oppositeFunctionᵣ) = proof where
proof : Names.InverseFunctionᵣ(_&&_)(𝐹)(!)
proof {𝑇} = [≡]-intro
proof {𝐹} = [≡]-intro
---------------------------------------------
-- Algebraic structures
instance
[&&]-monoid : Monoid(_&&_)
[&&]-monoid = record{}
instance
[||]-monoid : Monoid(_||_)
[||]-monoid = record{}
instance
[==]-monoid : Monoid(_==_)
[==]-monoid = record{}
instance
[!=]-monoid : Monoid(_!=_)
[!=]-monoid = record{}
-- TODO: Set algebra
---------------------------------------------
-- Inverting
inverted-[==][!=] : ∀{a b} → (!(a == b) ≡ (a != b))
inverted-[==][!=] {𝑇}{𝑇} = [≡]-intro
inverted-[==][!=] {𝑇}{𝐹} = [≡]-intro
inverted-[==][!=] {𝐹}{𝑇} = [≡]-intro
inverted-[==][!=] {𝐹}{𝐹} = [≡]-intro
inverted-[!=][==] : ∀{a b} → (!(a != b) ≡ (a == b))
inverted-[!=][==] {𝑇}{𝑇} = [≡]-intro
inverted-[!=][==] {𝑇}{𝐹} = [≡]-intro
inverted-[!=][==] {𝐹}{𝑇} = [≡]-intro
inverted-[!=][==] {𝐹}{𝐹} = [≡]-intro
---------------------------------------------
-- Rules of classical logic
-- A boolean operation is either true or false
bivalence : ∀{a} → ((a ≡ 𝑇) ∨ (a ≡ 𝐹))
bivalence {𝑇} = Logic.[∨]-introₗ [≡]-intro
bivalence {𝐹} = Logic.[∨]-introᵣ [≡]-intro
-- A boolean operation is not both true and false at the same time
disjointness : ∀{a} → ¬((a ≡ 𝑇) ∧ (a ≡ 𝐹))
disjointness {𝑇} (Logic.[∧]-intro [≡]-intro ())
disjointness {𝐹} (Logic.[∧]-intro () [≡]-intro)
[→?]-disjunctive-form : ∀{a b} → ((a →? b) ≡ ((! a) || b))
[→?]-disjunctive-form {𝑇} {𝑇} = [≡]-intro
[→?]-disjunctive-form {𝑇} {𝐹} = [≡]-intro
[→?]-disjunctive-form {𝐹} {𝑇} = [≡]-intro
[→?]-disjunctive-form {𝐹} {𝐹} = [≡]-intro
[==]-disjunctive-form : ∀{a b} → ((a == b) ≡ ((a && b) || ((! a) && (! b))))
[==]-disjunctive-form {𝑇} {𝑇} = [≡]-intro
[==]-disjunctive-form {𝑇} {𝐹} = [≡]-intro
[==]-disjunctive-form {𝐹} {𝑇} = [≡]-intro
[==]-disjunctive-form {𝐹} {𝐹} = [≡]-intro
module 𝑇 where
[∧]-intro : ∀{a b} → (a ≡ 𝑇) → (b ≡ 𝑇) → ((a && b) ≡ 𝑇)
[∧]-intro [≡]-intro [≡]-intro = [≡]-intro
[∨]-introₗ : ∀{a b} → (a ≡ 𝑇) → ((a || b) ≡ 𝑇)
[∨]-introₗ {_}{𝑇} [≡]-intro = [≡]-intro
[∨]-introₗ {_}{𝐹} [≡]-intro = [≡]-intro
[∨]-introᵣ : ∀{a b} → (b ≡ 𝑇) → ((a || b) ≡ 𝑇)
[∨]-introᵣ {𝑇}{_} [≡]-intro = [≡]-intro
[∨]-introᵣ {𝐹}{_} [≡]-intro = [≡]-intro
[∧]-elimₗ : ∀{a b} → ((a && b) ≡ 𝑇) → (a ≡ 𝑇)
[∧]-elimₗ {𝑇}{𝑇} [≡]-intro = [≡]-intro
[∧]-elimₗ {𝑇}{𝐹} ()
[∧]-elimₗ {𝐹}{𝑇} ()
[∧]-elimₗ {𝐹}{𝐹} ()
[∧]-elimᵣ : ∀{a b} → ((a && b) ≡ 𝑇) → (b ≡ 𝑇)
[∧]-elimᵣ {𝑇}{𝑇} [≡]-intro = [≡]-intro
[∧]-elimᵣ {𝑇}{𝐹} ()
[∧]-elimᵣ {𝐹}{𝑇} ()
[∧]-elimᵣ {𝐹}{𝐹} ()
[∨]-elim : ∀{a b}{ℓ₂}{φ : Type{ℓ₂}} → ((a ≡ 𝑇) → φ) → ((b ≡ 𝑇) → φ) → ((a || b) ≡ 𝑇) → φ
[∨]-elim {𝑇}{𝑇}{_} f _ [≡]-intro = f [≡]-intro
[∨]-elim {𝑇}{𝐹}{_} f _ [≡]-intro = f [≡]-intro
[∨]-elim {𝐹}{𝑇}{_} _ f [≡]-intro = f [≡]-intro
[∨]-elim {𝐹}{𝐹}{_} _ f ()
[¬]-intro : ∀{a} → (a ≡ 𝐹) → (! a ≡ 𝑇)
[¬]-intro [≡]-intro = [≡]-intro
[¬]-elim : ∀{a} → (! a ≡ 𝑇) → (a ≡ 𝐹)
[¬]-elim {𝑇} ()
[¬]-elim {𝐹} [≡]-intro = [≡]-intro
[¬¬]-elim : ∀{a} → (!(! a) ≡ 𝑇) → (a ≡ 𝑇)
[¬¬]-elim {𝑇} [≡]-intro = [≡]-intro
[¬¬]-elim {𝐹} ()
preserves-[&&][∧] : ∀{a b} → ((a && b) ≡ 𝑇) ↔ (a ≡ 𝑇)∧(b ≡ 𝑇)
preserves-[&&][∧] = [↔]-intro
(\{(Logic.[∧]-intro l r) → [∧]-intro l r})
(proof ↦ Logic.[∧]-intro ([∧]-elimₗ proof) ([∧]-elimᵣ proof))
preserves-[||][∨] : ∀{a b} → ((a || b) ≡ 𝑇) ↔ (a ≡ 𝑇)∨(b ≡ 𝑇)
preserves-[||][∨] = [↔]-intro
(Logic.[∨]-elim [∨]-introₗ [∨]-introᵣ)
([∨]-elim Logic.[∨]-introₗ Logic.[∨]-introᵣ)
preserves-[!][¬] : ∀{a} → (! a ≡ 𝑇) ↔ ¬(a ≡ 𝑇)
preserves-[!][¬] {a} = [↔]-intro (l{a}) (r{a}) where
l : ∀{a} → (! a ≡ 𝑇) ← ¬(a ≡ 𝑇)
l {𝐹} _ = [≡]-intro
l {𝑇} f = [⊥]-elim (f [≡]-intro)
r : ∀{a} → (! a ≡ 𝑇) → ¬(a ≡ 𝑇)
r {𝑇} () _
r {𝐹} _ ()
[≡]-transfer : ∀{a b} → ((a == b) ≡ 𝑇) ↔ (a ≡ b)
[≡]-transfer {𝑇}{𝑇} = [↔]-intro (_ ↦ [≡]-intro) (_ ↦ [≡]-intro)
[≡]-transfer {𝐹}{𝑇} = [↔]-intro (\()) (\())
[≡]-transfer {𝑇}{𝐹} = [↔]-intro (\()) (\())
[≡]-transfer {𝐹}{𝐹} = [↔]-intro (_ ↦ [≡]-intro) (_ ↦ [≡]-intro)
[≢]-transfer : ∀{a b} → ((a != b) ≡ 𝑇) ↔ (a ≢ b)
[≢]-transfer {𝑇}{𝑇} = [↔]-intro (ab ↦ [⊥]-elim(ab [≡]-intro)) (\())
[≢]-transfer {𝐹}{𝑇} = [↔]-intro (_ ↦ [≡]-intro) (_ ↦ \())
[≢]-transfer {𝑇}{𝐹} = [↔]-intro (_ ↦ [≡]-intro) (_ ↦ \())
[≢]-transfer {𝐹}{𝐹} = [↔]-intro (ab ↦ [⊥]-elim(ab [≡]-intro)) (\())
module 𝐹 where
[∧]-introₗ : ∀{a b} → (a ≡ 𝐹) → ((a && b) ≡ 𝐹)
[∧]-introₗ {_}{𝑇} [≡]-intro = [≡]-intro
[∧]-introₗ {_}{𝐹} [≡]-intro = [≡]-intro
[∧]-introᵣ : ∀{a b} → (b ≡ 𝐹) → ((a && b) ≡ 𝐹)
[∧]-introᵣ {𝑇}{_} [≡]-intro = [≡]-intro
[∧]-introᵣ {𝐹}{_} [≡]-intro = [≡]-intro
[∨]-intro : ∀{a b} → (a ≡ 𝐹) → (b ≡ 𝐹) → ((a || b) ≡ 𝐹)
[∨]-intro [≡]-intro [≡]-intro = [≡]-intro
[¬]-intro : ∀{a} → (! a ≡ 𝑇) → (a ≡ 𝐹)
[¬]-intro = 𝑇.[¬]-elim
[¬]-elim : ∀{a} → (a ≡ 𝐹) → (! a ≡ 𝑇)
[¬]-elim = 𝑇.[¬]-intro
[≢][𝑇]-is-[𝐹] : ∀{a} → (a ≢ 𝑇) ↔ (a ≡ 𝐹)
[≢][𝑇]-is-[𝐹] {a} = [↔]-intro (l{a}) (r{a}) where
r : ∀{a} → (a ≢ 𝑇) → (a ≡ 𝐹)
r {𝑇} (a≢𝑇) = [⊥]-elim ((a≢𝑇) ([≡]-intro))
r {𝐹} (a≢𝑇) = [≡]-intro
l : ∀{a} → (a ≢ 𝑇) ← (a ≡ 𝐹)
l {𝑇} ()
l {𝐹} (a≡𝐹) ()
[≢][𝐹]-is-[𝑇] : ∀{a} → (a ≢ 𝐹) ↔ (a ≡ 𝑇)
[≢][𝐹]-is-[𝑇] {a} = [↔]-intro (l{a}) (r{a}) where
r : ∀{a} → (a ≢ 𝐹) → (a ≡ 𝑇)
r {𝑇} (a≢𝐹) = [≡]-intro
r {𝐹} (a≢𝐹) = [⊥]-elim ((a≢𝐹) ([≡]-intro))
l : ∀{a} → (a ≢ 𝐹) ← (a ≡ 𝑇)
l {𝑇} (a≡𝑇) ()
l {𝐹} ()
---------------------------------------------
-- If-statements
module _ {ℓ₁ ℓ₂} {T : Type{ℓ₁}} {x y : T} {P : T → Type{ℓ₂}} where
if-intro : ∀{B} → ((B ≡ 𝑇) → P(x)) → ((B ≡ 𝐹) → P(y)) → P(if B then x else y)
if-intro {𝑇} px py = px [≡]-intro
if-intro {𝐹} px py = py [≡]-intro
module _ {ℓ₁ ℓ₂ ℓ₃} {T : Type{ℓ₁}} {x y : T} {P : T → Type{ℓ₂}} {Q : Bool → Type{ℓ₃}} where
if-elim : ∀{B} → P(if B then x else y) → (P(x) → Q(𝑇)) → (P(y) → Q(𝐹)) → Q(B)
if-elim{𝑇} p pxq pyq = pxq p
if-elim{𝐹} p pxq pyq = pyq p
module _ {ℓ₁ ℓ₂ ℓ₃} {T : Type{ℓ₁}} {x y : T} {P : T → Type{ℓ₂}} {Q : Type{ℓ₃}} where
if-bool-elim : ∀{B} → P(if B then x else y) → (P(x) → (B ≡ 𝑇) → Q) → (P(y) → (B ≡ 𝐹) → Q) → Q
if-bool-elim{𝑇} p pxq pyq = pxq p [≡]-intro
if-bool-elim{𝐹} p pxq pyq = pyq p [≡]-intro
module _ {ℓ₁ ℓ₂ ℓ₃ ℓ₄} {T : Type{ℓ₁}} {P : T → Type{ℓ₂}} {X : Type{ℓ₃}} {Y : Type{ℓ₄}} (nxy : X → Y → Logic.⊥) where
either-bool-left : (xy : (X ∨ Y)) → (X ↔ (Either.isRight(xy) ≡ 𝐹))
either-bool-left xy with bivalence{Either.isRight(xy)}
either-bool-left (Left x) | Right f = [↔]-intro (const x) (const f)
either-bool-left (Right y) | Left t = [↔]-intro (\()) (x ↦ empty(nxy x y))
either-bool-right : (xy : (X ∨ Y)) → (Y ↔ (Either.isRight(xy) ≡ 𝑇))
either-bool-right xy with bivalence{Either.isRight(xy)}
either-bool-right (Left x) | Right f = [↔]-intro (\()) (y ↦ empty(nxy x y))
either-bool-right (Right y) | Left t = [↔]-intro (const y) (const t)
module _ {ℓ₁ ℓ₂ ℓ₃ ℓ₄} {T : Type{ℓ₁}} {P : T → Type{ℓ₂}} {X : Type{ℓ₃}} {Y : Type{ℓ₄}} where
either-bool-leftₗ : (xy : (X ∨ Y)) → (X ← (Either.isRight(xy) ≡ 𝐹))
either-bool-leftₗ xy with bivalence{Either.isRight(xy)}
either-bool-leftₗ (Left x) | Right f = const x
either-bool-leftₗ (Right y) | Left t = \()
either-bool-rightₗ : (xy : (X ∨ Y)) → (Y ← (Either.isRight(xy) ≡ 𝑇))
either-bool-rightₗ xy with bivalence{Either.isRight(xy)}
either-bool-rightₗ (Left x) | Right f = \()
either-bool-rightₗ (Right y) | Left t = const y
if-not-either-bool-intro : ∀{x y : T} → (X → P(x)) → (Y → P(y)) → (xy : (X ∨ Y)) → P(if not(Either.isRight(xy)) then x else y)
if-not-either-bool-intro {x}{y} xp yp xy = if-intro {x = x}{y = y} (xp ∘ either-bool-leftₗ xy ∘ 𝑇.[¬]-elim) (yp ∘ either-bool-rightₗ xy ∘ 𝑇.[¬¬]-elim ∘ 𝐹.[¬]-elim)
module _ {ℓ₁ ℓ₂ ℓ₃ ℓ₄} {T : Type{ℓ₁}} {P : T → Type{ℓ₂}} {X : Type{ℓ₃}} {Y : Type{ℓ₄}} where
if-either-bool-intro : ∀{x y : T} → (X → P(x)) → (Y → P(y)) → (xy : (X ∨ Y)) → P(if Either.isRight(xy) then y else x)
if-either-bool-intro {x}{y} xp yp xy = if-intro {x = y}{y = x} (yp ∘ either-bool-rightₗ {P = P} xy) (xp ∘ either-bool-leftₗ {P = P} xy)
---------------------------------------------
-- The predicate of if-statements
module _ {ℓ} {T : Type{ℓ}} {x y : T} where
if-and : ∀{B₁ B₂} → (if (B₁ && B₂) then x else y ≡ if B₁ then (if B₂ then x else y) else y)
if-and {𝐹}{𝐹} = [≡]-intro
if-and {𝐹}{𝑇} = [≡]-intro
if-and {𝑇}{𝐹} = [≡]-intro
if-and {𝑇}{𝑇} = [≡]-intro
if-or : ∀{B₁ B₂} → (if (B₁ || B₂) then x else y ≡ if B₁ then x else if B₂ then x else y)
if-or {𝐹}{𝐹} = [≡]-intro
if-or {𝐹}{𝑇} = [≡]-intro
if-or {𝑇}{𝐹} = [≡]-intro
if-or {𝑇}{𝑇} = [≡]-intro
if-not : ∀{B} → (if (! B) then x else y ≡ if B then y else x)
if-not {𝐹} = [≡]-intro
if-not {𝑇} = [≡]-intro
---------------------------------------------
-- The results of if-statements
module _ {ℓ} {T : Type{ℓ}} {x : T} {B} where
if-then-redundant : (if B then x else x ≡ x)
if-then-redundant = elim-redundant{b = B}
module _ {ℓ} {T : Type{ℓ}} {B} where
if-then-bool-inverse : (if B then 𝑇 else 𝐹 ≡ B)
if-then-bool-inverse = elim-inverse{b = B}
if-then-bool-anti-inverse : (if B then 𝐹 else 𝑇 ≡ ! B)
if-then-bool-anti-inverse = elim-anti-inverse{b = B}
|
{
"alphanum_fraction": 0.499939313,
"avg_line_length": 33.0883534137,
"ext": "agda",
"hexsha": "51aaccc2b889f3fad7b9d9a094e5a3913434fd1a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/Boolean/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/Boolean/Proofs.agda",
"max_line_length": 165,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/Boolean/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 12444,
"size": 24717
}
|
open import Agda.Builtin.Equality
open import Agda.Builtin.Nat
data ⊤ : Set where
tt : ⊤
foo : Nat → ⊤ → ⊤
foo 0 tt = tt
foo (suc n) tt = foo n tt -- NB tail-recursive
test : foo 100000 tt ≡ tt
test = refl -- memory blows up here
|
{
"alphanum_fraction": 0.6483050847,
"avg_line_length": 16.8571428571,
"ext": "agda",
"hexsha": "9c4279dc0c7cb243fac5d3391df455a79f984676",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2147.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2147.agda",
"max_line_length": 46,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2147.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 86,
"size": 236
}
|
module Issue2486.Import where
open import Issue2486.Haskell
{-# FOREIGN GHC import qualified MAlonzo.Code.Issue2486.Haskell #-}
data MyList (A : Set) : Set where
[] : MyList A
_::_ : A → MyList A → MyList A
{-# COMPILE GHC MyList = data MAlonzo.Code.Issue2486.Haskell.MyList ( MAlonzo.Code.Issue2486.Haskell.Nil | MAlonzo.Code.Issue2486.Haskell.Cons ) #-}
|
{
"alphanum_fraction": 0.7252747253,
"avg_line_length": 30.3333333333,
"ext": "agda",
"hexsha": "faf965f9ffe04c0e3da13ed81a2445b04d39a1ee",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Compiler/simple/Issue2486/Import.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Compiler/simple/Issue2486/Import.agda",
"max_line_length": 148,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Compiler/simple/Issue2486/Import.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 114,
"size": 364
}
|
{-# OPTIONS --allow-unsolved-metas #-}
module FLutil where
open import Level hiding ( suc ; zero )
open import Data.Fin hiding ( _<_ ; _≤_ ; _-_ ; _+_ ; _≟_)
open import Data.Fin.Properties hiding ( <-trans ; ≤-refl ; ≤-trans ; ≤-irrelevant ; _≟_ ) renaming ( <-cmp to <-fcmp )
open import Data.Fin.Permutation -- hiding ([_,_])
open import Data.Nat -- using (ℕ; suc; zero; s≤s ; z≤n )
open import Data.Nat.Properties as DNP
open import Relation.Binary.PropositionalEquality hiding ( [_] )
open import Data.List using (List; []; _∷_ ; length ; _++_ ; tail ) renaming (reverse to rev )
open import Data.Product
open import Relation.Nullary
open import Data.Empty
open import Relation.Binary.Core
open import Relation.Binary.Definitions
open import logic
open import nat
infixr 100 _::_
data FL : (n : ℕ )→ Set where
f0 : FL 0
_::_ : { n : ℕ } → Fin (suc n ) → FL n → FL (suc n)
data _f<_ : {n : ℕ } (x : FL n ) (y : FL n) → Set where
f<n : {m : ℕ } {xn yn : Fin (suc m) } {xt yt : FL m} → xn Data.Fin.< yn → (xn :: xt) f< ( yn :: yt )
f<t : {m : ℕ } {xn : Fin (suc m) } {xt yt : FL m} → xt f< yt → (xn :: xt) f< ( xn :: yt )
FLeq : {n : ℕ } {xn yn : Fin (suc n)} {x : FL n } {y : FL n} → xn :: x ≡ yn :: y → ( xn ≡ yn ) × (x ≡ y )
FLeq refl = refl , refl
FLpos : {n : ℕ} → FL (suc n) → Fin (suc n)
FLpos (x :: _) = x
f-<> : {n : ℕ } {x : FL n } {y : FL n} → x f< y → y f< x → ⊥
f-<> (f<n x) (f<n x₁) = nat-<> x x₁
f-<> (f<n x) (f<t lt2) = nat-≡< refl x
f-<> (f<t lt) (f<n x) = nat-≡< refl x
f-<> (f<t lt) (f<t lt2) = f-<> lt lt2
f-≡< : {n : ℕ } {x : FL n } {y : FL n} → x ≡ y → y f< x → ⊥
f-≡< refl (f<n x) = nat-≡< refl x
f-≡< refl (f<t lt) = f-≡< refl lt
FLcmp : {n : ℕ } → Trichotomous {Level.zero} {FL n} _≡_ _f<_
FLcmp f0 f0 = tri≈ (λ ()) refl (λ ())
FLcmp (xn :: xt) (yn :: yt) with <-fcmp xn yn
... | tri< a ¬b ¬c = tri< (f<n a) (λ eq → nat-≡< (cong toℕ (proj₁ (FLeq eq)) ) a) (λ lt → f-<> lt (f<n a) )
... | tri> ¬a ¬b c = tri> (λ lt → f-<> lt (f<n c) ) (λ eq → nat-≡< (cong toℕ (sym (proj₁ (FLeq eq)) )) c) (f<n c)
... | tri≈ ¬a refl ¬c with FLcmp xt yt
... | tri< a ¬b ¬c₁ = tri< (f<t a) (λ eq → ¬b (proj₂ (FLeq eq) )) (λ lt → f-<> lt (f<t a) )
... | tri≈ ¬a₁ refl ¬c₁ = tri≈ (λ lt → f-≡< refl lt ) refl (λ lt → f-≡< refl lt )
... | tri> ¬a₁ ¬b c = tri> (λ lt → f-<> lt (f<t c) ) (λ eq → ¬b (proj₂ (FLeq eq) )) (f<t c)
f<-trans : {n : ℕ } { x y z : FL n } → x f< y → y f< z → x f< z
f<-trans {suc n} (f<n x) (f<n x₁) = f<n ( Data.Fin.Properties.<-trans x x₁ )
f<-trans {suc n} (f<n x) (f<t y<z) = f<n x
f<-trans {suc n} (f<t x<y) (f<n x) = f<n x
f<-trans {suc n} (f<t x<y) (f<t y<z) = f<t (f<-trans x<y y<z)
infixr 250 _f<?_
_f<?_ : {n : ℕ} → (x y : FL n ) → Dec (x f< y )
x f<? y with FLcmp x y
... | tri< a ¬b ¬c = yes a
... | tri≈ ¬a refl ¬c = no ( ¬a )
... | tri> ¬a ¬b c = no ( ¬a )
_f≤_ : {n : ℕ } (x : FL n ) (y : FL n) → Set
_f≤_ x y = (x ≡ y ) ∨ (x f< y )
FL0 : {n : ℕ } → FL n
FL0 {zero} = f0
FL0 {suc n} = zero :: FL0
fmax : { n : ℕ } → FL n
fmax {zero} = f0
fmax {suc n} = fromℕ< a<sa :: fmax {n}
fmax< : { n : ℕ } → {x : FL n } → ¬ (fmax f< x )
fmax< {suc n} {x :: y} (f<n lt) = nat-≤> (fmax1 x) lt where
fmax1 : {n : ℕ } → (x : Fin (suc n)) → toℕ x ≤ toℕ (fromℕ< {n} a<sa)
fmax1 {zero} zero = z≤n
fmax1 {suc n} zero = z≤n
fmax1 {suc n} (suc x) = s≤s (fmax1 x)
fmax< {suc n} {x :: y} (f<t lt) = fmax< {n} {y} lt
fmax¬ : { n : ℕ } → {x : FL n } → ¬ ( x ≡ fmax ) → x f< fmax
fmax¬ {zero} {f0} ne = ⊥-elim ( ne refl )
fmax¬ {suc n} {x} ne with FLcmp x fmax
... | tri< a ¬b ¬c = a
... | tri≈ ¬a b ¬c = ⊥-elim ( ne b)
... | tri> ¬a ¬b c = ⊥-elim (fmax< c)
x≤fmax : {n : ℕ } → {x : FL n} → x f≤ fmax
x≤fmax {n} {x} with FLcmp x fmax
... | tri< a ¬b ¬c = case2 a
... | tri≈ ¬a b ¬c = case1 b
... | tri> ¬a ¬b c = ⊥-elim ( fmax< c )
open import Data.Nat.Properties using ( ≤-trans ; <-trans )
fsuc : { n : ℕ } → (x : FL n ) → x f< fmax → FL n
fsuc {n} (x :: y) (f<n lt) = fromℕ< fsuc1 :: y where
fsuc1 : suc (toℕ x) < n
fsuc1 = Data.Nat.Properties.≤-trans (s≤s lt) ( s≤s ( toℕ≤pred[n] (fromℕ< a<sa)) )
fsuc (x :: y) (f<t lt) = x :: fsuc y lt
open import fin
flist1 : {n : ℕ } (i : ℕ) → i < suc n → List (FL n) → List (FL n) → List (FL (suc n))
flist1 zero i<n [] _ = []
flist1 zero i<n (a ∷ x ) z = ( zero :: a ) ∷ flist1 zero i<n x z
flist1 (suc i) (s≤s i<n) [] z = flist1 i (Data.Nat.Properties.<-trans i<n a<sa) z z
flist1 (suc i) i<n (a ∷ x ) z = ((fromℕ< i<n ) :: a ) ∷ flist1 (suc i) i<n x z
flist : {n : ℕ } → FL n → List (FL n)
flist {zero} f0 = f0 ∷ []
flist {suc n} (x :: y) = flist1 n a<sa (flist y) (flist y)
FL1 : List ℕ → List ℕ
FL1 [] = []
FL1 (x ∷ y) = suc x ∷ FL1 y
FL→plist : {n : ℕ} → FL n → List ℕ
FL→plist {0} f0 = []
FL→plist {suc n} (zero :: y) = zero ∷ FL1 (FL→plist y)
FL→plist {suc n} (suc x :: y) with FL→plist y
... | [] = zero ∷ []
... | x1 ∷ t = suc x1 ∷ FL2 x t where
FL2 : {n : ℕ} → Fin n → List ℕ → List ℕ
FL2 zero y = zero ∷ FL1 y
FL2 (suc i) [] = zero ∷ []
FL2 (suc i) (x ∷ y) = suc x ∷ FL2 i y
tt0 = (# 2) :: (# 1) :: (# 0) :: zero :: f0
tt1 = FL→plist tt0
open _∧_
find-zero : {n i : ℕ} → List ℕ → i < n → Fin n ∧ List ℕ
find-zero [] i<n = record { proj1 = fromℕ< i<n ; proj2 = [] }
find-zero x (s≤s z≤n) = record { proj1 = fromℕ< (s≤s z≤n) ; proj2 = x }
find-zero (zero ∷ y) (s≤s (s≤s i<n)) = record { proj1 = fromℕ< (s≤s (s≤s i<n)) ; proj2 = y }
find-zero (suc x ∷ y) (s≤s (s≤s i<n)) with find-zero y (s≤s i<n)
... | record { proj1 = i ; proj2 = y1 } = record { proj1 = suc i ; proj2 = suc x ∷ y1 }
plist→FL : {n : ℕ} → List ℕ → FL n -- wrong implementation
plist→FL {zero} [] = f0
plist→FL {suc n} [] = zero :: plist→FL {n} []
plist→FL {zero} x = f0
plist→FL {suc n} x with find-zero x a<sa
... | record { proj1 = i ; proj2 = y } = i :: plist→FL y
tt2 = 2 ∷ 1 ∷ 0 ∷ 3 ∷ []
tt3 : FL 4
tt3 = plist→FL tt2
tt4 = FL→plist tt3
tt5 = plist→FL {4} (FL→plist tt0)
-- maybe FL→iso can be easier using this ...
-- FL→plist-iso : {n : ℕ} → (f : FL n ) → plist→FL (FL→plist f ) ≡ f
-- FL→plist-iso = {!!}
-- FL→plist-inject : {n : ℕ} → (f g : FL n ) → FL→plist f ≡ FL→plist g → f ≡ g
-- FL→plist-inject = {!!}
open import Relation.Binary as B hiding (Decidable; _⇔_)
open import Data.Sum.Base as Sum -- inj₁
open import Relation.Nary using (⌊_⌋)
open import Data.List.Fresh hiding ([_])
FList : (n : ℕ ) → Set
FList n = List# (FL n) ⌊ _f<?_ ⌋
fr1 : FList 3
fr1 =
((# 0) :: ((# 0) :: ((# 0 ) :: f0))) ∷#
((# 0) :: ((# 1) :: ((# 0 ) :: f0))) ∷#
((# 1) :: ((# 0) :: ((# 0 ) :: f0))) ∷#
((# 2) :: ((# 0) :: ((# 0 ) :: f0))) ∷#
((# 2) :: ((# 1) :: ((# 0 ) :: f0))) ∷#
[]
open import Data.Product
open import Relation.Nullary.Decidable hiding (⌊_⌋)
-- open import Data.Bool hiding (_<_ ; _≤_ )
open import Data.Unit.Base using (⊤ ; tt)
-- fresh a [] = ⊤
-- fresh a (x ∷# xs) = R a x × fresh a xs
-- toWitness
-- ttf< : {n : ℕ } → {x a : FL n } → x f< a → T (isYes (x f<? a))
-- ttf< {n} {x} {a} x<a with x f<? a
-- ... | yes y = subst (λ k → Data.Bool.T k ) refl tt
-- ... | no nn = ⊥-elim ( nn x<a )
ttf : {n : ℕ } {x a : FL (n)} → x f< a → (y : FList (n)) → fresh (FL (n)) ⌊ _f<?_ ⌋ a y → fresh (FL (n)) ⌊ _f<?_ ⌋ x y
ttf _ [] fr = Level.lift tt
ttf {_} {x} {a} lt (cons a₁ y x1) (lift lt1 , x2 ) = (Level.lift (fromWitness (ttf1 lt1 lt ))) , ttf (ttf1 lt1 lt) y x1 where
ttf1 : True (a f<? a₁) → x f< a → x f< a₁
ttf1 t x<a = f<-trans x<a (toWitness t)
-- by https://gist.github.com/aristidb/1684202
FLinsert : {n : ℕ } → FL n → FList n → FList n
FLfresh : {n : ℕ } → (a x : FL (suc n) ) → (y : FList (suc n) ) → a f< x
→ fresh (FL (suc n)) ⌊ _f<?_ ⌋ a y → fresh (FL (suc n)) ⌊ _f<?_ ⌋ a (FLinsert x y)
FLinsert {zero} f0 y = f0 ∷# []
FLinsert {suc n} x [] = x ∷# []
FLinsert {suc n} x (cons a y x₁) with FLcmp x a
... | tri≈ ¬a b ¬c = cons a y x₁
... | tri< lt ¬b ¬c = cons x ( cons a y x₁) ( Level.lift (fromWitness lt ) , ttf lt y x₁)
FLinsert {suc n} x (cons a [] x₁) | tri> ¬a ¬b lt = cons a ( x ∷# [] ) ( Level.lift (fromWitness lt) , Level.lift tt )
FLinsert {suc n} x (cons a y yr) | tri> ¬a ¬b a<x = cons a (FLinsert x y) (FLfresh a x y a<x yr )
FLfresh a x [] a<x (Level.lift tt) = Level.lift (fromWitness a<x) , Level.lift tt
FLfresh a x (cons b [] (Level.lift tt)) a<x (Level.lift a<b , a<y) with FLcmp x b
... | tri< x<b ¬b ¬c = Level.lift (fromWitness a<x) , Level.lift a<b , Level.lift tt
... | tri≈ ¬a refl ¬c = Level.lift (fromWitness a<x) , Level.lift tt
... | tri> ¬a ¬b b<x = Level.lift a<b , Level.lift (fromWitness (f<-trans (toWitness a<b) b<x)) , Level.lift tt
FLfresh a x (cons b y br) a<x (Level.lift a<b , a<y) with FLcmp x b
... | tri< x<b ¬b ¬c = Level.lift (fromWitness a<x) , Level.lift a<b , ttf (toWitness a<b) y br
... | tri≈ ¬a refl ¬c = Level.lift (fromWitness a<x) , ttf a<x y br
FLfresh a x (cons b [] br) a<x (Level.lift a<b , a<y) | tri> ¬a ¬b b<x =
Level.lift a<b , Level.lift (fromWitness (f<-trans (toWitness a<b) b<x)) , Level.lift tt
FLfresh a x (cons b (cons a₁ y x₁) br) a<x (Level.lift a<b , a<y) | tri> ¬a ¬b b<x =
Level.lift a<b , FLfresh a x (cons a₁ y x₁) a<x a<y
fr6 = FLinsert ((# 1) :: ((# 1) :: ((# 0 ) :: f0))) fr1
open import Data.List.Fresh.Relation.Unary.Any
open import Data.List.Fresh.Relation.Unary.All
x∈FLins : {n : ℕ} → (x : FL n ) → (xs : FList n) → Any (x ≡_) (FLinsert x xs)
x∈FLins {zero} f0 [] = here refl
x∈FLins {zero} f0 (cons f0 xs x) = here refl
x∈FLins {suc n} x [] = here refl
x∈FLins {suc n} x (cons a xs x₁) with FLcmp x a
... | tri< x<a ¬b ¬c = here refl
... | tri≈ ¬a b ¬c = here b
x∈FLins {suc n} x (cons a [] x₁) | tri> ¬a ¬b a<x = there ( here refl )
x∈FLins {suc n} x (cons a (cons a₁ xs x₂) x₁) | tri> ¬a ¬b a<x = there ( x∈FLins x (cons a₁ xs x₂) )
nextAny : {n : ℕ} → {x h : FL n } → {L : FList n} → {hr : fresh (FL n) ⌊ _f<?_ ⌋ h L } → Any (x ≡_) L → Any (x ≡_) (cons h L hr )
nextAny (here x₁) = there (here x₁)
nextAny (there any) = there (there any)
insAny : {n : ℕ} → {x h : FL n } → (xs : FList n) → Any (x ≡_) xs → Any (x ≡_) (FLinsert h xs)
insAny {zero} {f0} {f0} (cons a L xr) (here refl) = here refl
insAny {zero} {f0} {f0} (cons a L xr) (there any) = insAny {zero} {f0} {f0} L any
insAny {suc n} {x} {h} (cons a L xr) any with FLcmp h a
... | tri< x<a ¬b ¬c = there any
... | tri≈ ¬a b ¬c = any
insAny {suc n} {a} {h} (cons a [] (Level.lift tt)) (here refl) | tri> ¬a ¬b c = here refl
insAny {suc n} {x} {h} (cons a (cons a₁ L x₁) xr) (here refl) | tri> ¬a ¬b c = here refl
insAny {suc n} {x} {h} (cons a (cons a₁ L x₁) xr) (there any) | tri> ¬a ¬b c = there (insAny (cons a₁ L x₁) any)
-- FLinsert membership
module FLMB { n : ℕ } where
FL-Setoid : Setoid Level.zero Level.zero
FL-Setoid = record { Carrier = FL n ; _≈_ = _≡_ ; isEquivalence = record { sym = sym ; refl = refl ; trans = trans }}
open import Data.List.Fresh.Membership.Setoid FL-Setoid
FLinsert-mb : (x : FL n ) → (xs : FList n) → x ∈ FLinsert x xs
FLinsert-mb x xs = x∈FLins {n} x xs
|
{
"alphanum_fraction": 0.5135476879,
"avg_line_length": 40.7058823529,
"ext": "agda",
"hexsha": "02b4588e2ea60d4703a02e3999c125427e6a5afb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/Galois",
"max_forks_repo_path": "src/FLutil.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/Galois",
"max_issues_repo_path": "src/FLutil.agda",
"max_line_length": 130,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/Galois",
"max_stars_repo_path": "src/FLutil.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-16T03:37:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-16T03:37:05.000Z",
"num_tokens": 4989,
"size": 11072
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- The partiality monad
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe --guardedness #-}
module Category.Monad.Partiality where
open import Codata.Musical.Notation
open import Category.Monad
open import Data.Bool.Base using (Bool; false; true)
open import Data.Nat using (ℕ; zero; suc; _+_)
open import Data.Product as Prod hiding (map)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Function
open import Function.Equivalence using (_⇔_; equivalence)
open import Level using (_⊔_)
open import Relation.Binary as B hiding (Rel)
open import Relation.Binary.PropositionalEquality as P using (_≡_)
open import Relation.Nullary
open import Relation.Nullary.Decidable hiding (map)
open import Relation.Nullary.Negation
------------------------------------------------------------------------
-- The partiality monad
data _⊥ {a} (A : Set a) : Set a where
now : (x : A) → A ⊥
later : (x : ∞ (A ⊥)) → A ⊥
monad : ∀ {f} → RawMonad {f = f} _⊥
monad = record
{ return = now
; _>>=_ = _>>=_
}
where
_>>=_ : ∀ {A B} → A ⊥ → (A → B ⊥) → B ⊥
now x >>= f = f x
later x >>= f = later (♯ (♭ x >>= f))
private module M {f} = RawMonad (monad {f})
-- Non-termination.
never : ∀ {a} {A : Set a} → A ⊥
never = later (♯ never)
-- run x for n steps peels off at most n "later" constructors from x.
run_for_steps : ∀ {a} {A : Set a} → A ⊥ → ℕ → A ⊥
run now x for n steps = now x
run later x for zero steps = later x
run later x for suc n steps = run ♭ x for n steps
-- Is the computation done?
isNow : ∀ {a} {A : Set a} → A ⊥ → Bool
isNow (now x) = true
isNow (later x) = false
------------------------------------------------------------------------
-- Kinds
-- The partiality monad comes with two forms of equality (weak and
-- strong) and one ordering. Strong equality is stronger than the
-- ordering, which is stronger than weak equality.
-- The three relations are defined using a single data type, indexed
-- by a "kind".
data OtherKind : Set where
geq weak : OtherKind
data Kind : Set where
strong : Kind
other : (k : OtherKind) → Kind
-- Kind equality is decidable.
infix 4 _≟-Kind_
_≟-Kind_ : Decidable (_≡_ {A = Kind})
_≟-Kind_ strong strong = yes P.refl
_≟-Kind_ strong (other k) = no λ()
_≟-Kind_ (other k) strong = no λ()
_≟-Kind_ (other geq) (other geq) = yes P.refl
_≟-Kind_ (other geq) (other weak) = no λ()
_≟-Kind_ (other weak) (other geq) = no λ()
_≟-Kind_ (other weak) (other weak) = yes P.refl
-- A predicate which is satisfied only for equalities. Note that, for
-- concrete inputs, this predicate evaluates to ⊤ or ⊥.
Equality : Kind → Set
Equality k = False (k ≟-Kind other geq)
------------------------------------------------------------------------
-- Equality/ordering
module Equality {a ℓ} {A : Set a} -- The "return type".
(_∼_ : A → A → Set ℓ) where
-- The three relations.
data Rel : Kind → A ⊥ → A ⊥ → Set (a ⊔ ℓ) where
now : ∀ {k x y} (x∼y : x ∼ y) → Rel k (now x) (now y)
later : ∀ {k x y} (x∼y : ∞ (Rel k (♭ x) (♭ y))) → Rel k (later x) (later y)
laterʳ : ∀ {x y} (x≈y : Rel (other weak) x (♭ y) ) → Rel (other weak) x (later y)
laterˡ : ∀ {k x y} (x∼y : Rel (other k) (♭ x) y ) → Rel (other k) (later x) y
infix 4 _≅_ _≳_ _≲_ _≈_
_≅_ : A ⊥ → A ⊥ → Set _
_≅_ = Rel strong
_≳_ : A ⊥ → A ⊥ → Set _
_≳_ = Rel (other geq)
_≲_ : A ⊥ → A ⊥ → Set _
_≲_ = flip _≳_
_≈_ : A ⊥ → A ⊥ → Set _
_≈_ = Rel (other weak)
-- x ⇓ y means that x terminates with y.
infix 4 _⇓[_]_ _⇓_
_⇓[_]_ : A ⊥ → Kind → A → Set _
x ⇓[ k ] y = Rel k x (now y)
_⇓_ : A ⊥ → A → Set _
x ⇓ y = x ⇓[ other weak ] y
-- x ⇓ means that x terminates.
infix 4 _⇓
_⇓ : A ⊥ → Set _
x ⇓ = ∃ λ v → x ⇓ v
-- x ⇑ means that x does not terminate.
infix 4 _⇑[_] _⇑
_⇑[_] : A ⊥ → Kind → Set _
x ⇑[ k ] = Rel k x never
_⇑ : A ⊥ → Set _
x ⇑ = x ⇑[ other weak ]
------------------------------------------------------------------------
-- Lemmas relating the three relations
module _ {a ℓ} {A : Set a} {_∼_ : A → A → Set ℓ} where
open Equality _∼_ using (Rel; _≅_; _≳_; _≲_; _≈_; _⇓[_]_; _⇑[_])
open Equality.Rel
-- All relations include strong equality.
≅⇒ : ∀ {k} {x y : A ⊥} → x ≅ y → Rel k x y
≅⇒ (now x∼y) = now x∼y
≅⇒ (later x≅y) = later (♯ ≅⇒ (♭ x≅y))
-- The weak equality includes the ordering.
≳⇒ : ∀ {k} {x y : A ⊥} → x ≳ y → Rel (other k) x y
≳⇒ (now x∼y) = now x∼y
≳⇒ (later x≳y) = later (♯ ≳⇒ (♭ x≳y))
≳⇒ (laterˡ x≳y) = laterˡ (≳⇒ x≳y )
-- Weak equality includes the other relations.
⇒≈ : ∀ {k} {x y : A ⊥} → Rel k x y → x ≈ y
⇒≈ {strong} = ≅⇒
⇒≈ {other geq} = ≳⇒
⇒≈ {other weak} = id
-- The relations agree for non-terminating computations.
never⇒never : ∀ {k₁ k₂} {x : A ⊥} →
Rel k₁ x never → Rel k₂ x never
never⇒never (later x∼never) = later (♯ never⇒never (♭ x∼never))
never⇒never (laterʳ x≈never) = never⇒never x≈never
never⇒never (laterˡ x∼never) = later (♯ never⇒never x∼never)
-- The "other" relations agree when the right-hand side is a value.
now⇒now : ∀ {k₁ k₂} {x} {y : A} →
Rel (other k₁) x (now y) → Rel (other k₂) x (now y)
now⇒now (now x∼y) = now x∼y
now⇒now (laterˡ x∼now) = laterˡ (now⇒now x∼now)
------------------------------------------------------------------------
-- Later can be dropped
laterʳ⁻¹ : ∀ {k} {x : A ⊥} {y} →
Rel (other k) x (later y) → Rel (other k) x (♭ y)
laterʳ⁻¹ (later x∼y) = laterˡ (♭ x∼y)
laterʳ⁻¹ (laterʳ x≈y) = x≈y
laterʳ⁻¹ (laterˡ x∼ly) = laterˡ (laterʳ⁻¹ x∼ly)
laterˡ⁻¹ : ∀ {x} {y : A ⊥} → later x ≈ y → ♭ x ≈ y
laterˡ⁻¹ (later x≈y) = laterʳ (♭ x≈y)
laterˡ⁻¹ (laterʳ lx≈y) = laterʳ (laterˡ⁻¹ lx≈y)
laterˡ⁻¹ (laterˡ x≈y) = x≈y
later⁻¹ : ∀ {k} {x y : ∞ (A ⊥)} →
Rel k (later x) (later y) → Rel k (♭ x) (♭ y)
later⁻¹ (later x∼y) = ♭ x∼y
later⁻¹ (laterʳ lx≈y) = laterˡ⁻¹ lx≈y
later⁻¹ (laterˡ x∼ly) = laterʳ⁻¹ x∼ly
------------------------------------------------------------------------
-- The relations are equivalences or partial orders, given suitable
-- assumptions about the underlying relation
module Equivalence where
-- Reflexivity.
refl : Reflexive _∼_ → ∀ {k} → Reflexive (Rel k)
refl refl-∼ {x = now v} = now refl-∼
refl refl-∼ {x = later x} = later (♯ refl refl-∼)
-- Symmetry.
sym : Symmetric _∼_ → ∀ {k} → Equality k → Symmetric (Rel k)
sym sym-∼ eq (now x∼y) = now (sym-∼ x∼y)
sym sym-∼ eq (later x∼y) = later (♯ sym sym-∼ eq (♭ x∼y))
sym sym-∼ eq (laterʳ x≈y) = laterˡ (sym sym-∼ eq x≈y )
sym sym-∼ eq (laterˡ {weak} x≈y) = laterʳ (sym sym-∼ eq x≈y )
sym sym-∼ () (laterˡ {geq} x≳y)
-- Transitivity.
private
module Trans (trans-∼ : Transitive _∼_) where
now-trans : ∀ {k x y} {v : A} →
Rel k x y → Rel k y (now v) → Rel k x (now v)
now-trans (now x∼y) (now y∼z) = now (trans-∼ x∼y y∼z)
now-trans (laterˡ x∼y) y∼z = laterˡ (now-trans x∼y y∼z)
now-trans x∼ly (laterˡ y∼z) = now-trans (laterʳ⁻¹ x∼ly) y∼z
mutual
later-trans : ∀ {k} {x y : A ⊥} {z} →
Rel k x y → Rel k y (later z) → Rel k x (later z)
later-trans (later x∼y) ly∼lz = later (♯ trans (♭ x∼y) (later⁻¹ ly∼lz))
later-trans (laterˡ x∼y) y∼lz = later (♯ trans x∼y (laterʳ⁻¹ y∼lz))
later-trans (laterʳ x≈y) ly≈lz = later-trans x≈y (laterˡ⁻¹ ly≈lz)
later-trans x≈y (laterʳ y≈z) = laterʳ ( trans x≈y y≈z )
trans : ∀ {k} {x y z : A ⊥} → Rel k x y → Rel k y z → Rel k x z
trans {z = now v} x∼y y∼v = now-trans x∼y y∼v
trans {z = later z} x∼y y∼lz = later-trans x∼y y∼lz
open Trans public using (trans)
-- All the relations are preorders.
preorder : IsPreorder _≡_ _∼_ → Kind → Preorder _ _ _
preorder pre k = record
{ Carrier = A ⊥
; _≈_ = _≡_
; _∼_ = Rel k
; isPreorder = record
{ isEquivalence = P.isEquivalence
; reflexive = refl′
; trans = Equivalence.trans (IsPreorder.trans pre)
}
}
where
refl′ : ∀ {k} {x y : A ⊥} → x ≡ y → Rel k x y
refl′ P.refl = Equivalence.refl (IsPreorder.refl pre)
private
preorder′ : IsEquivalence _∼_ → Kind → Preorder _ _ _
preorder′ equiv =
preorder (Setoid.isPreorder (record { isEquivalence = equiv }))
-- The two equalities are equivalence relations.
setoid : IsEquivalence _∼_ →
(k : Kind) {eq : Equality k} → Setoid _ _
setoid equiv k {eq} = record
{ Carrier = A ⊥
; _≈_ = Rel k
; isEquivalence = record
{ refl = Pre.refl
; sym = Equivalence.sym (IsEquivalence.sym equiv) eq
; trans = Pre.trans
}
} where module Pre = Preorder (preorder′ equiv k)
-- The order is a partial order, with strong equality as the
-- underlying equality.
≳-poset : IsEquivalence _∼_ → Poset _ _ _
≳-poset equiv = record
{ Carrier = A ⊥
; _≈_ = _≅_
; _≤_ = _≳_
; isPartialOrder = record
{ antisym = antisym
; isPreorder = record
{ isEquivalence = S.isEquivalence
; reflexive = ≅⇒
; trans = Pre.trans
}
}
}
where
module S = Setoid (setoid equiv strong)
module Pre = Preorder (preorder′ equiv (other geq))
antisym : {x y : A ⊥} → x ≳ y → x ≲ y → x ≅ y
antisym (now x∼y) (now _) = now x∼y
antisym (later x≳y) (later x≲y) = later (♯ antisym (♭ x≳y) (♭ x≲y))
antisym (later x≳y) (laterˡ x≲ly) = later (♯ antisym (♭ x≳y) (laterʳ⁻¹ x≲ly))
antisym (laterˡ x≳ly) (later x≲y) = later (♯ antisym (laterʳ⁻¹ x≳ly) (♭ x≲y))
antisym (laterˡ x≳ly) (laterˡ x≲ly) = later (♯ antisym (laterʳ⁻¹ x≳ly) (laterʳ⁻¹ x≲ly))
-- Equational reasoning.
module Reasoning (isEquivalence : IsEquivalence _∼_) where
private
module Pre {k} = Preorder (preorder′ isEquivalence k)
module S {k eq} = Setoid (setoid isEquivalence k {eq})
infix 3 _∎
infixr 2 _≡⟨_⟩_ _≅⟨_⟩_ _≳⟨_⟩_ _≈⟨_⟩_
_≡⟨_⟩_ : ∀ {k} x {y z : A ⊥} → x ≡ y → Rel k y z → Rel k x z
_ ≡⟨ P.refl ⟩ y∼z = y∼z
_≅⟨_⟩_ : ∀ {k} x {y z : A ⊥} → x ≅ y → Rel k y z → Rel k x z
_ ≅⟨ x≅y ⟩ y∼z = Pre.trans (≅⇒ x≅y) y∼z
_≳⟨_⟩_ : ∀ {k} x {y z : A ⊥} →
x ≳ y → Rel (other k) y z → Rel (other k) x z
_ ≳⟨ x≳y ⟩ y∼z = Pre.trans (≳⇒ x≳y) y∼z
_≈⟨_⟩_ : ∀ x {y z : A ⊥} → x ≈ y → y ≈ z → x ≈ z
_ ≈⟨ x≈y ⟩ y≈z = Pre.trans x≈y y≈z
sym : ∀ {k} {eq : Equality k} {x y : A ⊥} →
Rel k x y → Rel k y x
sym {eq = eq} = S.sym {eq = eq}
_∎ : ∀ {k} (x : A ⊥) → Rel k x x
x ∎ = Pre.refl
------------------------------------------------------------------------
-- Lemmas related to now and never
-- Now is not never.
now≉never : ∀ {k} {x : A} → ¬ Rel k (now x) never
now≉never (laterʳ hyp) = now≉never hyp
-- A partial value is either now or never (classically, when the
-- underlying relation is reflexive).
now-or-never : Reflexive _∼_ →
∀ {k} (x : A ⊥) →
¬ ¬ ((∃ λ y → x ⇓[ other k ] y) ⊎ x ⇑[ other k ])
now-or-never refl x = helper <$> excluded-middle
where
open RawMonad ¬¬-Monad
not-now-is-never : (x : A ⊥) → (∄ λ y → x ≳ now y) → x ≳ never
not-now-is-never (now x) hyp with hyp (-, now refl)
... | ()
not-now-is-never (later x) hyp =
later (♯ not-now-is-never (♭ x) (hyp ∘ Prod.map id laterˡ))
helper : Dec (∃ λ y → x ≳ now y) → _
helper (yes ≳now) = inj₁ $ Prod.map id ≳⇒ ≳now
helper (no ≵now) = inj₂ $ ≳⇒ $ not-now-is-never x ≵now
------------------------------------------------------------------------
-- Map-like results
-- Map.
map : ∀ {_∼′_ : A → A → Set a} {k} →
_∼′_ ⇒ _∼_ → Equality.Rel _∼′_ k ⇒ Equality.Rel _∼_ k
map ∼′⇒∼ (now x∼y) = now (∼′⇒∼ x∼y)
map ∼′⇒∼ (later x∼y) = later (♯ map ∼′⇒∼ (♭ x∼y))
map ∼′⇒∼ (laterʳ x≈y) = laterʳ (map ∼′⇒∼ x≈y)
map ∼′⇒∼ (laterˡ x∼y) = laterˡ (map ∼′⇒∼ x∼y)
-- If a statement can be proved using propositional equality as the
-- underlying relation, then it can also be proved for any other
-- reflexive underlying relation.
≡⇒ : Reflexive _∼_ →
∀ {k x y} → Equality.Rel _≡_ k x y → Rel k x y
≡⇒ refl-∼ = map (flip (P.subst (_∼_ _)) refl-∼)
------------------------------------------------------------------------
-- Steps
-- The number of later constructors (steps) in the terminating
-- computation x.
steps : ∀ {k} {x : A ⊥} {y} → x ⇓[ k ] y → ℕ
steps (now _) = zero
steps .{x = later x} (laterˡ {x = x} x⇓) = suc (steps {x = ♭ x} x⇓)
module Steps {trans-∼ : Transitive _∼_} where
left-identity :
∀ {k x y} {z : A}
(x≅y : x ≅ y) (y⇓z : y ⇓[ k ] z) →
steps (Equivalence.trans trans-∼ (≅⇒ x≅y) y⇓z) ≡ steps y⇓z
left-identity (now _) (now _) = P.refl
left-identity (later x≅y) (laterˡ y⇓z) =
P.cong suc $ left-identity (♭ x≅y) y⇓z
right-identity :
∀ {k x} {y z : A}
(x⇓y : x ⇓[ k ] y) (y≈z : now y ⇓[ k ] z) →
steps (Equivalence.trans trans-∼ x⇓y y≈z) ≡ steps x⇓y
right-identity (now x∼y) (now y∼z) = P.refl
right-identity (laterˡ x∼y) (now y∼z) =
P.cong suc $ right-identity x∼y (now y∼z)
------------------------------------------------------------------------
-- Laws related to bind
-- Never is a left and right "zero" of bind.
left-zero : {B : Set a} (f : B → A ⊥) → let open M in
(never >>= f) ≅ never
left-zero f = later (♯ left-zero f)
right-zero : ∀ {B} (x : B ⊥) → let open M in
(x >>= λ _ → never) ≅ never
right-zero (later x) = later (♯ right-zero (♭ x))
right-zero (now x) = never≅never
where never≅never : never ≅ never
never≅never = later (♯ never≅never)
-- Now is a left and right identity of bind (for a reflexive
-- underlying relation).
left-identity : Reflexive _∼_ →
∀ {B} (x : B) (f : B → A ⊥) → let open M in
(now x >>= f) ≅ f x
left-identity refl-∼ x f = Equivalence.refl refl-∼
right-identity : Reflexive _∼_ →
(x : A ⊥) → let open M in
(x >>= now) ≅ x
right-identity refl (now x) = now refl
right-identity refl (later x) = later (♯ right-identity refl (♭ x))
-- Bind is associative (for a reflexive underlying relation).
associative : Reflexive _∼_ →
∀ {B C} (x : C ⊥) (f : C → B ⊥) (g : B → A ⊥) →
let open M in
(x >>= f >>= g) ≅ (x >>= λ y → f y >>= g)
associative refl-∼ (now x) f g = Equivalence.refl refl-∼
associative refl-∼ (later x) f g =
later (♯ associative refl-∼ (♭ x) f g)
module _ {s ℓ} {A B : Set s}
{_∼A_ : A → A → Set ℓ}
{_∼B_ : B → B → Set ℓ} where
open Equality
private
open module EqA = Equality _∼A_ using () renaming (_⇓[_]_ to _⇓[_]A_; _⇑[_] to _⇑[_]A)
open module EqB = Equality _∼B_ using () renaming (_⇓[_]_ to _⇓[_]B_; _⇑[_] to _⇑[_]B)
-- Bind preserves all the relations.
_>>=-cong_ :
∀ {k} {x₁ x₂ : A ⊥} {f₁ f₂ : A → B ⊥} → let open M in
Rel _∼A_ k x₁ x₂ →
(∀ {x₁ x₂} → x₁ ∼A x₂ → Rel _∼B_ k (f₁ x₁) (f₂ x₂)) →
Rel _∼B_ k (x₁ >>= f₁) (x₂ >>= f₂)
now x₁∼x₂ >>=-cong f₁∼f₂ = f₁∼f₂ x₁∼x₂
later x₁∼x₂ >>=-cong f₁∼f₂ = later (♯ (♭ x₁∼x₂ >>=-cong f₁∼f₂))
laterʳ x₁≈x₂ >>=-cong f₁≈f₂ = laterʳ (x₁≈x₂ >>=-cong f₁≈f₂)
laterˡ x₁∼x₂ >>=-cong f₁∼f₂ = laterˡ (x₁∼x₂ >>=-cong f₁∼f₂)
-- Inversion lemmas for bind.
>>=-inversion-⇓ :
Reflexive _∼A_ →
∀ {k} x {f : A → B ⊥} {y} → let open M in
(x>>=f⇓ : (x >>= f) ⇓[ k ]B y) →
∃ λ z → ∃₂ λ (x⇓ : x ⇓[ k ]A z) (fz⇓ : f z ⇓[ k ]B y) →
steps x⇓ + steps fz⇓ ≡ steps x>>=f⇓
>>=-inversion-⇓ refl (now x) fx⇓ =
(x , now refl , fx⇓ , P.refl)
>>=-inversion-⇓ refl (later x) (laterˡ x>>=f⇓) =
Prod.map id (Prod.map laterˡ (Prod.map id (P.cong suc))) $
>>=-inversion-⇓ refl (♭ x) x>>=f⇓
>>=-inversion-⇑ : IsEquivalence _∼A_ →
∀ {k} x {f : A → B ⊥} → let open M in
Rel _∼B_ (other k) (x >>= f) never →
¬ ¬ (x ⇑[ other k ]A ⊎
∃ λ y → x ⇓[ other k ]A y × f y ⇑[ other k ]B)
>>=-inversion-⇑ eqA {k} x {f} ∼never =
helper <$> now-or-never IsEqA.refl x
where
open RawMonad ¬¬-Monad using (_<$>_)
open M using (_>>=_)
open Reasoning eqA
module IsEqA = IsEquivalence eqA
k≳ = other geq
is-never : ∀ {x y} →
x ⇓[ k≳ ]A y → (x >>= f) ⇑[ k≳ ]B →
∃ λ z → (y ∼A z) × f z ⇑[ k≳ ]B
is-never (now x∼y) = λ fx⇑ → (_ , IsEqA.sym x∼y , fx⇑)
is-never (laterˡ ≳now) = is-never ≳now ∘ later⁻¹
helper : (∃ λ y → x ⇓[ k≳ ]A y) ⊎ x ⇑[ k≳ ]A →
x ⇑[ other k ]A ⊎
∃ λ y → x ⇓[ other k ]A y × f y ⇑[ other k ]B
helper (inj₂ ≳never) = inj₁ (≳⇒ ≳never)
helper (inj₁ (y , ≳now)) with is-never ≳now (never⇒never ∼never)
... | (z , y∼z , fz⇑) = inj₂ (z , ≳⇒ (x ≳⟨ ≳now ⟩
now y ≅⟨ now y∼z ⟩
now z ∎)
, ≳⇒ fz⇑)
module _ {ℓ} {A B : Set ℓ} {_∼_ : B → B → Set ℓ} where
open Equality
-- A variant of _>>=-cong_.
_≡->>=-cong_ :
∀ {k} {x₁ x₂ : A ⊥} {f₁ f₂ : A → B ⊥} → let open M in
Rel _≡_ k x₁ x₂ →
(∀ x → Rel _∼_ k (f₁ x) (f₂ x)) →
Rel _∼_ k (x₁ >>= f₁) (x₂ >>= f₂)
_≡->>=-cong_ {k} {f₁ = f₁} {f₂} x₁≈x₂ f₁≈f₂ =
x₁≈x₂ >>=-cong λ {x} x≡x′ →
P.subst (λ y → Rel _∼_ k (f₁ x) (f₂ y)) x≡x′ (f₁≈f₂ x)
------------------------------------------------------------------------
-- Productivity checker workaround
-- The monad can be awkward to use, due to the limitations of guarded
-- coinduction. The following code provides a (limited) workaround.
module Workaround {a} where
infixl 1 _>>=_
data _⊥P : Set a → Set (Level.suc a) where
now : ∀ {A} (x : A) → A ⊥P
later : ∀ {A} (x : ∞ (A ⊥P)) → A ⊥P
_>>=_ : ∀ {A B} (x : A ⊥P) (f : A → B ⊥P) → B ⊥P
private
data _⊥W : Set a → Set (Level.suc a) where
now : ∀ {A} (x : A) → A ⊥W
later : ∀ {A} (x : A ⊥P) → A ⊥W
mutual
_>>=W_ : ∀ {A B} → A ⊥W → (A → B ⊥P) → B ⊥W
now x >>=W f = whnf (f x)
later x >>=W f = later (x >>= f)
whnf : ∀ {A} → A ⊥P → A ⊥W
whnf (now x) = now x
whnf (later x) = later (♭ x)
whnf (x >>= f) = whnf x >>=W f
mutual
private
⟦_⟧W : ∀ {A} → A ⊥W → A ⊥
⟦ now x ⟧W = now x
⟦ later x ⟧W = later (♯ ⟦ x ⟧P)
⟦_⟧P : ∀ {A} → A ⊥P → A ⊥
⟦ x ⟧P = ⟦ whnf x ⟧W
-- The definitions above make sense. ⟦_⟧P is homomorphic with
-- respect to now, later and _>>=_.
module Correct where
private
open module Eq {A : Set a} = Equality {A = A} _≡_
open module R {A : Set a} = Reasoning (P.isEquivalence {A = A})
now-hom : ∀ {A} (x : A) → ⟦ now x ⟧P ≅ now x
now-hom x = now x ∎
later-hom : ∀ {A} (x : ∞ (A ⊥P)) →
⟦ later x ⟧P ≅ later (♯ ⟦ ♭ x ⟧P)
later-hom x = later (♯ (⟦ ♭ x ⟧P ∎))
mutual
private
>>=-homW : ∀ {A B} (x : B ⊥W) (f : B → A ⊥P) →
⟦ x >>=W f ⟧W ≅ M._>>=_ ⟦ x ⟧W (λ y → ⟦ f y ⟧P)
>>=-homW (now x) f = ⟦ f x ⟧P ∎
>>=-homW (later x) f = later (♯ >>=-hom x f)
>>=-hom : ∀ {A B} (x : B ⊥P) (f : B → A ⊥P) →
⟦ x >>= f ⟧P ≅ M._>>=_ ⟦ x ⟧P (λ y → ⟦ f y ⟧P)
>>=-hom x f = >>=-homW (whnf x) f
------------------------------------------------------------------------
-- An alternative, but equivalent, formulation of equality/ordering
module AlternativeEquality {a ℓ} where
private
El : Setoid a ℓ → Set _
El = Setoid.Carrier
Eq : ∀ S → B.Rel (El S) _
Eq = Setoid._≈_
open Equality using (Rel)
open Equality.Rel
infix 4 _∣_≅P_ _∣_≳P_ _∣_≈P_
infix 3 _∎
infixr 2 _≡⟨_⟩_ _≅⟨_⟩_ _≳⟨_⟩_ _≳⟨_⟩≅_ _≳⟨_⟩≈_ _≈⟨_⟩≅_ _≈⟨_⟩≲_
infixl 1 _>>=_
mutual
-- Proof "programs".
_∣_≅P_ : ∀ S → B.Rel (El S ⊥) _
_∣_≅P_ = flip RelP strong
_∣_≳P_ : ∀ S → B.Rel (El S ⊥) _
_∣_≳P_ = flip RelP (other geq)
_∣_≈P_ : ∀ S → B.Rel (El S ⊥) _
_∣_≈P_ = flip RelP (other weak)
data RelP S : Kind → B.Rel (El S ⊥) (Level.suc (a ⊔ ℓ)) where
-- Congruences.
now : ∀ {k x y} (xRy : x ⟨ Eq S ⟩ y) → RelP S k (now x) (now y)
later : ∀ {k x y} (x∼y : ∞ (RelP S k (♭ x) (♭ y))) →
RelP S k (later x) (later y)
_>>=_ : ∀ {S′ : Setoid a ℓ} {k} {x₁ x₂}
{f₁ f₂ : El S′ → El S ⊥} →
let open M in
(x₁∼x₂ : RelP S′ k x₁ x₂)
(f₁∼f₂ : ∀ {x y} → x ⟨ Eq S′ ⟩ y →
RelP S k (f₁ x) (f₂ y)) →
RelP S k (x₁ >>= f₁) (x₂ >>= f₂)
-- Ordering/weak equality.
laterʳ : ∀ {x y} (x≈y : RelP S (other weak) x (♭ y)) → RelP S (other weak) x (later y)
laterˡ : ∀ {k x y} (x∼y : RelP S (other k) (♭ x) y) → RelP S (other k) (later x) y
-- Equational reasoning. Note that including full transitivity
-- for weak equality would make _∣_≈P_ trivial; a similar
-- problem applies to _∣_≳P_ (A ∣ never ≳P now x would be
-- provable). Instead the definition of RelP includes limited
-- notions of transitivity, similar to weak bisimulation up-to
-- various things.
_∎ : ∀ {k} x → RelP S k x x
sym : ∀ {k x y} {eq : Equality k} (x∼y : RelP S k x y) → RelP S k y x
_≡⟨_⟩_ : ∀ {k} x {y z} (x≡y : x ≡ y) (y∼z : RelP S k y z) → RelP S k x z
_≅⟨_⟩_ : ∀ {k} x {y z} (x≅y : S ∣ x ≅P y) (y∼z : RelP S k y z) → RelP S k x z
_≳⟨_⟩_ : let open Equality (Eq S) in
∀ x {y z} (x≳y : x ≳ y) (y≳z : S ∣ y ≳P z) → S ∣ x ≳P z
_≳⟨_⟩≅_ : ∀ x {y z} (x≳y : S ∣ x ≳P y) (y≅z : S ∣ y ≅P z) → S ∣ x ≳P z
_≳⟨_⟩≈_ : ∀ x {y z} (x≳y : S ∣ x ≳P y) (y≈z : S ∣ y ≈P z) → S ∣ x ≈P z
_≈⟨_⟩≅_ : ∀ x {y z} (x≈y : S ∣ x ≈P y) (y≅z : S ∣ y ≅P z) → S ∣ x ≈P z
_≈⟨_⟩≲_ : ∀ x {y z} (x≈y : S ∣ x ≈P y) (y≲z : S ∣ z ≳P y) → S ∣ x ≈P z
-- If any of the following transitivity-like rules were added to
-- RelP, then RelP and Rel would no longer be equivalent:
--
-- x ≳P y → y ≳P z → x ≳P z
-- x ≳P y → y ≳ z → x ≳P z
-- x ≲P y → y ≈P z → x ≈P z
-- x ≈P y → y ≳P z → x ≈P z
-- x ≲ y → y ≈P z → x ≈P z
-- x ≈P y → y ≳ z → x ≈P z
-- x ≈P y → y ≈P z → x ≈P z
-- x ≈P y → y ≈ z → x ≈P z
-- x ≈ y → y ≈P z → x ≈P z
--
-- The reason is that any of these rules would make it possible
-- to derive that never and now x are related.
-- RelP is complete with respect to Rel.
complete : ∀ {S k} {x y : El S ⊥} →
Equality.Rel (Eq S) k x y → RelP S k x y
complete (now xRy) = now xRy
complete (later x∼y) = later (♯ complete (♭ x∼y))
complete (laterʳ x≈y) = laterʳ (complete x≈y)
complete (laterˡ x∼y) = laterˡ (complete x∼y)
-- RelP is sound with respect to Rel.
private
-- Proof WHNFs.
data RelW S : Kind → B.Rel (El S ⊥) (Level.suc (a ⊔ ℓ)) where
now : ∀ {k x y} (xRy : x ⟨ Eq S ⟩ y) → RelW S k (now x) (now y)
later : ∀ {k x y} (x∼y : RelP S k (♭ x) (♭ y)) → RelW S k (later x) (later y)
laterʳ : ∀ {x y} (x≈y : RelW S (other weak) x (♭ y)) → RelW S (other weak) x (later y)
laterˡ : ∀ {k x y} (x∼y : RelW S (other k) (♭ x) y) → RelW S (other k) (later x) y
-- WHNFs can be turned into programs.
program : ∀ {S k x y} → RelW S k x y → RelP S k x y
program (now xRy) = now xRy
program (later x∼y) = later (♯ x∼y)
program (laterˡ x∼y) = laterˡ (program x∼y)
program (laterʳ x≈y) = laterʳ (program x≈y)
-- Lemmas for WHNFs.
_>>=W_ : ∀ {A B k x₁ x₂} {f₁ f₂ : El A → El B ⊥} →
RelW A k x₁ x₂ →
(∀ {x y} → x ⟨ Eq A ⟩ y → RelW B k (f₁ x) (f₂ y)) →
RelW B k (M._>>=_ x₁ f₁) (M._>>=_ x₂ f₂)
now xRy >>=W f₁∼f₂ = f₁∼f₂ xRy
later x∼y >>=W f₁∼f₂ = later (x∼y >>= program ∘ f₁∼f₂)
laterʳ x≈y >>=W f₁≈f₂ = laterʳ (x≈y >>=W f₁≈f₂)
laterˡ x∼y >>=W f₁∼f₂ = laterˡ (x∼y >>=W f₁∼f₂)
reflW : ∀ {S k} x → RelW S k x x
reflW {S} (now x) = now (Setoid.refl S)
reflW (later x) = later (♭ x ∎)
symW : ∀ {S k x y} → Equality k → RelW S k x y → RelW S k y x
symW {S} eq (now xRy) = now (Setoid.sym S xRy)
symW eq (later x≈y) = later (sym {eq = eq} x≈y)
symW eq (laterʳ x≈y) = laterˡ (symW eq x≈y)
symW eq (laterˡ {weak} x≈y) = laterʳ (symW eq x≈y)
symW () (laterˡ {geq} x≈y)
trans≅W : ∀ {S x y z} →
RelW S strong x y → RelW S strong y z → RelW S strong x z
trans≅W {S} (now xRy) (now yRz) = now (Setoid.trans S xRy yRz)
trans≅W (later x≅y) (later y≅z) = later (_ ≅⟨ x≅y ⟩ y≅z)
trans≳-W : ∀ {S x y z} → let open Equality (Eq S) in
x ≳ y → RelW S (other geq) y z → RelW S (other geq) x z
trans≳-W {S} (now xRy) (now yRz) = now (Setoid.trans S xRy yRz)
trans≳-W (later x≳y) (later y≳z) = later (_ ≳⟨ ♭ x≳y ⟩ y≳z)
trans≳-W (later x≳y) (laterˡ y≳z) = laterˡ (trans≳-W (♭ x≳y) y≳z)
trans≳-W (laterˡ x≳y) y≳z = laterˡ (trans≳-W x≳y y≳z)
-- Strong equality programs can be turned into WHNFs.
whnf≅ : ∀ {S x y} → S ∣ x ≅P y → RelW S strong x y
whnf≅ (now xRy) = now xRy
whnf≅ (later x≅y) = later (♭ x≅y)
whnf≅ (x₁≅x₂ >>= f₁≅f₂) = whnf≅ x₁≅x₂ >>=W λ xRy → whnf≅ (f₁≅f₂ xRy)
whnf≅ (x ∎) = reflW x
whnf≅ (sym x≅y) = symW _ (whnf≅ x≅y)
whnf≅ (x ≡⟨ P.refl ⟩ y≅z) = whnf≅ y≅z
whnf≅ (x ≅⟨ x≅y ⟩ y≅z) = trans≅W (whnf≅ x≅y) (whnf≅ y≅z)
-- More transitivity lemmas.
_⟨_⟩≅_ : ∀ {S k} x {y z} →
RelP S k x y → S ∣ y ≅P z → RelP S k x z
_⟨_⟩≅_ {k = strong} x x≅y y≅z = x ≅⟨ x≅y ⟩ y≅z
_⟨_⟩≅_ {k = other geq} x x≳y y≅z = x ≳⟨ x≳y ⟩≅ y≅z
_⟨_⟩≅_ {k = other weak} x x≈y y≅z = x ≈⟨ x≈y ⟩≅ y≅z
trans∼≅W : ∀ {S k x y z} →
RelW S k x y → RelW S strong y z → RelW S k x z
trans∼≅W {S} (now xRy) (now yRz) = now (Setoid.trans S xRy yRz)
trans∼≅W (later x∼y) (later y≅z) = later (_ ⟨ x∼y ⟩≅ y≅z)
trans∼≅W (laterʳ x≈y) (later y≅z) = laterʳ (trans∼≅W x≈y (whnf≅ y≅z))
trans∼≅W (laterˡ x∼y) y≅z = laterˡ (trans∼≅W x∼y y≅z)
trans≅∼W : ∀ {S k x y z} →
RelW S strong x y → RelW S k y z → RelW S k x z
trans≅∼W {S} (now xRy) (now yRz) = now (Setoid.trans S xRy yRz)
trans≅∼W (later x≅y) (later y∼z) = later (_ ≅⟨ x≅y ⟩ y∼z)
trans≅∼W (later x≅y) (laterˡ y∼z) = laterˡ (trans≅∼W (whnf≅ x≅y) y∼z)
trans≅∼W x≅y (laterʳ ly≈z) = laterʳ (trans≅∼W x≅y ly≈z)
-- Order programs can be turned into WHNFs.
whnf≳ : ∀ {S x y} → S ∣ x ≳P y → RelW S (other geq) x y
whnf≳ (now xRy) = now xRy
whnf≳ (later x∼y) = later (♭ x∼y)
whnf≳ (laterˡ x≲y) = laterˡ (whnf≳ x≲y)
whnf≳ (x₁∼x₂ >>= f₁∼f₂) = whnf≳ x₁∼x₂ >>=W λ xRy → whnf≳ (f₁∼f₂ xRy)
whnf≳ (x ∎) = reflW x
whnf≳ (sym {eq = ()} x≅y)
whnf≳ (x ≡⟨ P.refl ⟩ y≳z) = whnf≳ y≳z
whnf≳ (x ≅⟨ x≅y ⟩ y≳z) = trans≅∼W (whnf≅ x≅y) (whnf≳ y≳z)
whnf≳ (x ≳⟨ x≳y ⟩ y≳z) = trans≳-W x≳y (whnf≳ y≳z)
whnf≳ (x ≳⟨ x≳y ⟩≅ y≅z) = trans∼≅W (whnf≳ x≳y) (whnf≅ y≅z)
-- Another transitivity lemma.
trans≳≈W : ∀ {S x y z} →
RelW S (other geq) x y → RelW S (other weak) y z →
RelW S (other weak) x z
trans≳≈W {S} (now xRy) (now yRz) = now (Setoid.trans S xRy yRz)
trans≳≈W (later x≳y) (later y≈z) = later (_ ≳⟨ x≳y ⟩≈ y≈z)
trans≳≈W (laterˡ x≳y) y≈z = laterˡ (trans≳≈W x≳y y≈z)
trans≳≈W x≳y (laterʳ y≈z) = laterʳ (trans≳≈W x≳y y≈z)
trans≳≈W (later x≳y) (laterˡ y≈z) = laterˡ (trans≳≈W (whnf≳ x≳y) y≈z)
-- All programs can be turned into WHNFs.
whnf : ∀ {S k x y} → RelP S k x y → RelW S k x y
whnf (now xRy) = now xRy
whnf (later x∼y) = later (♭ x∼y)
whnf (laterʳ x≈y) = laterʳ (whnf x≈y)
whnf (laterˡ x∼y) = laterˡ (whnf x∼y)
whnf (x₁∼x₂ >>= f₁∼f₂) = whnf x₁∼x₂ >>=W λ xRy → whnf (f₁∼f₂ xRy)
whnf (x ∎) = reflW x
whnf (sym {eq = eq} x≈y) = symW eq (whnf x≈y)
whnf (x ≡⟨ P.refl ⟩ y∼z) = whnf y∼z
whnf (x ≅⟨ x≅y ⟩ y∼z) = trans≅∼W (whnf x≅y) (whnf y∼z)
whnf (x ≳⟨ x≳y ⟩ y≳z) = trans≳-W x≳y (whnf y≳z)
whnf (x ≳⟨ x≳y ⟩≅ y≅z) = trans∼≅W (whnf x≳y) (whnf y≅z)
whnf (x ≳⟨ x≳y ⟩≈ y≈z) = trans≳≈W (whnf x≳y) (whnf y≈z)
whnf (x ≈⟨ x≈y ⟩≅ y≅z) = trans∼≅W (whnf x≈y) (whnf y≅z)
whnf (x ≈⟨ x≈y ⟩≲ y≲z) = symW _ (trans≳≈W (whnf y≲z) (symW _ (whnf x≈y)))
mutual
-- Soundness.
private
soundW : ∀ {S k x y} → RelW S k x y → Rel (Eq S) k x y
soundW (now xRy) = now xRy
soundW (later x∼y) = later (♯ sound x∼y)
soundW (laterʳ x≈y) = laterʳ (soundW x≈y)
soundW (laterˡ x∼y) = laterˡ (soundW x∼y)
sound : ∀ {S k x y} → RelP S k x y → Rel (Eq S) k x y
sound x∼y = soundW (whnf x∼y)
-- RelP and Rel are equivalent (when the underlying relation is an
-- equivalence).
correct : ∀ {S k x y} → RelP S k x y ⇔ Rel (Eq S) k x y
correct = equivalence sound complete
------------------------------------------------------------------------
-- Another lemma
-- Bind is "idempotent".
idempotent :
∀ {ℓ} {A : Set ℓ} (B : Setoid ℓ ℓ) →
let open M; open Setoid B using (_≈_; Carrier); open Equality _≈_ in
(x : A ⊥) (f : A → A → Carrier ⊥) →
(x >>= λ y′ → x >>= λ y″ → f y′ y″) ≳ (x >>= λ y′ → f y′ y′)
idempotent {A = A} B x f = sound (idem x)
where
open AlternativeEquality hiding (_>>=_)
open M
open Equality.Rel using (laterˡ)
open Equivalence using (refl)
idem : (x : A ⊥) →
B ∣ (x >>= λ y′ → x >>= λ y″ → f y′ y″) ≳P
(x >>= λ y′ → f y′ y′)
idem (now x) = f x x ∎
idem (later x) = later (♯ (
(♭ x >>= λ y′ → later x >>= λ y″ → f y′ y″) ≳⟨ (refl P.refl {x = ♭ x} ≡->>=-cong λ _ →
laterˡ (refl (Setoid.refl B))) ⟩
(♭ x >>= λ y′ → ♭ x >>= λ y″ → f y′ y″) ≳⟨ idem (♭ x) ⟩≅
(♭ x >>= λ y′ → f y′ y′) ∎))
------------------------------------------------------------------------
-- Example
private
module Example where
open Data.Nat
open Workaround
-- McCarthy's f91:
f91′ : ℕ → ℕ ⊥P
f91′ n with n ≤? 100
... | yes _ = later (♯ (f91′ (11 + n) >>= f91′))
... | no _ = now (n ∸ 10)
f91 : ℕ → ℕ ⊥
f91 n = ⟦ f91′ n ⟧P
|
{
"alphanum_fraction": 0.4652084324,
"avg_line_length": 34.2508143322,
"ext": "agda",
"hexsha": "db7e927e55d2ac5867f4d39288d1886e60c3eb8c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Category/Monad/Partiality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Category/Monad/Partiality.agda",
"max_line_length": 100,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Category/Monad/Partiality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 13774,
"size": 31545
}
|
open import Algebra using (CommutativeMonoid)
open import Relation.Binary.Structures using (IsEquivalence)
open import Relation.Binary.PropositionalEquality using () renaming (cong to ≡-cong)
module AKS.Exponentiation {c ℓ} (M : CommutativeMonoid c ℓ) where
open import AKS.Nat using (ℕ; _+_; _<_)
open ℕ
open import AKS.Nat using (ℕ⁺; ℕ+; ⟅_⇓⟆)
open import AKS.Nat using (Acc; acc; <-well-founded)
open import AKS.Binary using (2*; 𝔹; 𝔹⁺; ⟦_⇑⟧; ⟦_⇓⟧; ⟦_⇑⟧⁺; ⟦_⇓⟧⁺; ℕ→𝔹→ℕ; ⌈log₂_⌉)
open 𝔹
open 𝔹⁺
open CommutativeMonoid M
using (_≈_; isEquivalence; setoid; ε; _∙_; ∙-cong; ∙-congˡ; identityˡ; identityʳ; assoc; comm)
renaming (Carrier to C)
open IsEquivalence isEquivalence using (refl; sym)
open import Relation.Binary.Reasoning.Setoid setoid
_^ⁱ_ : C → ℕ → C
x ^ⁱ zero = ε
x ^ⁱ suc n = x ∙ x ^ⁱ n
^ⁱ-homo : ∀ x n m → x ^ⁱ (n + m) ≈ x ^ⁱ n ∙ x ^ⁱ m
^ⁱ-homo x zero m = sym (identityˡ (x ^ⁱ m))
^ⁱ-homo x (suc n) m = begin
x ∙ x ^ⁱ (n + m) ≈⟨ ∙-congˡ (^ⁱ-homo x n m) ⟩
x ∙ (x ^ⁱ n ∙ x ^ⁱ m) ≈⟨ sym (assoc _ _ _) ⟩
x ∙ x ^ⁱ n ∙ x ^ⁱ m ∎
∙-^ⁱ-dist : ∀ x y n → (x ∙ y) ^ⁱ n ≈ x ^ⁱ n ∙ y ^ⁱ n
∙-^ⁱ-dist x y zero = sym (identityˡ ε)
∙-^ⁱ-dist x y (suc n) = begin
x ∙ y ∙ ((x ∙ y) ^ⁱ n) ≈⟨ ∙-congˡ (∙-^ⁱ-dist x y n) ⟩
x ∙ y ∙ (x ^ⁱ n ∙ y ^ⁱ n) ≈⟨ assoc _ _ _ ⟩
x ∙ (y ∙ (x ^ⁱ n ∙ y ^ⁱ n)) ≈⟨ ∙-congˡ (comm _ _) ⟩
x ∙ (x ^ⁱ n ∙ y ^ⁱ n ∙ y) ≈⟨ ∙-congˡ (assoc _ _ _) ⟩
x ∙ (x ^ⁱ n ∙ (y ^ⁱ n ∙ y)) ≈⟨ ∙-congˡ (∙-congˡ (comm _ _)) ⟩
x ∙ (x ^ⁱ n ∙ (y ∙ y ^ⁱ n)) ≈⟨ sym (assoc _ _ _) ⟩
x ∙ (x ^ⁱ n) ∙ (y ∙ (y ^ⁱ n)) ∎
_^ᵇ⁺_ : C → 𝔹⁺ → C
x ^ᵇ⁺ 𝕓1ᵇ = x
x ^ᵇ⁺ (b 0ᵇ) = (x ∙ x) ^ᵇ⁺ b
x ^ᵇ⁺ (b 1ᵇ) = x ∙ (x ∙ x) ^ᵇ⁺ b
_^ᵇ_ : C → 𝔹 → C
x ^ᵇ 𝕓0ᵇ = ε
x ^ᵇ (+ b) = x ^ᵇ⁺ b
_^⁺_ : C → ℕ⁺ → C
x ^⁺ n = x ^ᵇ⁺ ⟦ n ⇑⟧⁺
_^_ : C → ℕ → C
x ^ n = x ^ᵇ ⟦ n ⇑⟧
x^n≈x^ⁱn : ∀ x n → x ^ n ≈ x ^ⁱ n
x^n≈x^ⁱn x n = begin
x ^ n ≈⟨ loop x ⟦ n ⇑⟧ ⟩
x ^ⁱ ⟦ ⟦ n ⇑⟧ ⇓⟧ ≡⟨ ≡-cong (λ t → x ^ⁱ t) (ℕ→𝔹→ℕ n) ⟩
x ^ⁱ n ∎
where
even : ∀ x b → (x ∙ x) ^ᵇ⁺ b ≈ x ^ⁱ 2* ⟦ b ⇓⟧⁺
loop⁺ : ∀ x b → x ^ᵇ⁺ b ≈ x ^ⁱ ⟦ b ⇓⟧⁺
even x b = begin
(x ∙ x) ^ᵇ⁺ b ≈⟨ loop⁺ (x ∙ x) b ⟩
(x ∙ x) ^ⁱ ⟦ b ⇓⟧⁺ ≈⟨ ∙-^ⁱ-dist x x ⟦ b ⇓⟧⁺ ⟩
x ^ⁱ ⟦ b ⇓⟧⁺ ∙ x ^ⁱ ⟦ b ⇓⟧⁺ ≈⟨ sym (^ⁱ-homo x ⟦ b ⇓⟧⁺ ⟦ b ⇓⟧⁺) ⟩
x ^ⁱ 2* ⟦ b ⇓⟧⁺ ∎
loop⁺ x 𝕓1ᵇ = sym (identityʳ x)
loop⁺ x (b 0ᵇ) = even x b
loop⁺ x (b 1ᵇ) = ∙-congˡ (even x b)
loop : ∀ x b → x ^ᵇ b ≈ x ^ⁱ ⟦ b ⇓⟧
loop x 𝕓0ᵇ = refl
loop x (+ b) = loop⁺ x b
^-homo : ∀ x n m → x ^ (n + m) ≈ x ^ n ∙ x ^ m
^-homo x n m = begin
x ^ (n + m) ≈⟨ x^n≈x^ⁱn x (n + m) ⟩
x ^ⁱ (n + m) ≈⟨ ^ⁱ-homo x n m ⟩
x ^ⁱ n ∙ x ^ⁱ m ≈⟨ ∙-cong (sym (x^n≈x^ⁱn x n)) (sym (x^n≈x^ⁱn x m)) ⟩
x ^ n ∙ x ^ m ∎
x^n≈x^⁺n : ∀ x n → x ^ ⟅ n ⇓⟆ ≈ x ^⁺ n
x^n≈x^⁺n x (ℕ+ n) = refl
^-^⁺-homo : ∀ x n m → x ^ (n + ⟅ m ⇓⟆) ≈ x ^ n ∙ x ^⁺ m
^-^⁺-homo x n (ℕ+ m) = ^-homo x n (suc m)
|
{
"alphanum_fraction": 0.459092533,
"avg_line_length": 30.4239130435,
"ext": "agda",
"hexsha": "e22f1821f0125cf31d31849138b8d8399bf76f83",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mckeankylej/thesis",
"max_forks_repo_path": "proofs/AKS/Exponentiation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mckeankylej/thesis",
"max_issues_repo_path": "proofs/AKS/Exponentiation.agda",
"max_line_length": 96,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mckeankylej/thesis",
"max_stars_repo_path": "proofs/AKS/Exponentiation.agda",
"max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z",
"num_tokens": 1797,
"size": 2799
}
|
{-# OPTIONS --cubical --safe --postfix-projections --guardedness #-}
open import Algebra
open import Prelude
open import Relation.Binary
open import WellFounded
open import Algebra.Monus
open import Data.Maybe
module Control.Comonad.IntervalHeap {s}
(mon : TMAPOM s)
(wf : WellFounded (TMAPOM._<_ mon))
(cancel : Cancellativeˡ (TMAPOM._∙_ mon))
where
open TMAPOM mon
mutual
record Heap (A : Type a) : Type (s ℓ⊔ a) where
inductive; constructor _◃_
field
hd : A
tl : Next A
record Next {a} (A : Type a) : Type (s ℓ⊔ a) where
coinductive; constructor ⟪_⟫
field next : Span A
data Span {a} (A : Type a) : Type (s ℓ⊔ a) where
[] : Span A
until : (s : 𝑆) → (s≢ε : s ≢ ε) → (xs : Heap A) → Span A
open Heap public
open Next public
State : Type a → Type _
State A = 𝑆 → A × 𝑆
pop′ : (s : 𝑆) → Acc _<_ s → Heap A → A × 𝑆
pop′ s₂ a xs with xs .tl .next
pop′ s₂ a xs | [] = xs .hd , ε
pop′ s₂ a xs | until s₁ s₁≢ε ys with s₁ ≤? s₂
pop′ s₂ a xs | until s₁ s₁≢ε ys | no s₁≰s₂ = xs .hd , fst (<⇒≤ s₁≰s₂)
pop′ s₂ (acc wf) xs | until s₁ s₁≢ε ys | yes (k₁ , s₂≡s₁∙k₁) = pop′ k₁ (wf k₁ lemma) ys
where
lemma : k₁ < s₂
lemma (k₂ , k₁≡s₂∙k₂) = s₁≢ε (zeroSumFree s₁ k₂ (sym (cancel k₁ _ _ p)))
where
p : k₁ ∙ ε ≡ k₁ ∙ (s₁ ∙ k₂)
p = ∙ε k₁ ; k₁≡s₂∙k₂ ; cong (_∙ k₂) s₂≡s₁∙k₁ ; cong (_∙ k₂) (comm s₁ k₁) ; assoc k₁ s₁ k₂
pop : Heap A → State A
pop xs s = pop′ s (wf s) xs
mutual
stepFrom : State A → (s : 𝑆) → Dec (s ≡ ε) → Span A
stepFrom f s (yes p) = []
stepFrom f s (no ¬p) = until s ¬p (tabulate (f ∘ (s ∙_)))
tabulate : State A → Heap A
tabulate f =
let x , s = f ε
in x ◃ λ where .next → stepFrom f s (s ≟ ε)
pop-ε : (xs : Heap A) (a : Acc _<_ ε) → pop′ ε a xs .fst ≡ xs .hd
pop-ε xs _ with xs .tl .next
pop-ε xs _ | [] = refl
pop-ε xs _ | until s s≢ε ys with s ≤? ε
pop-ε xs _ | until s s≢ε ys | no s≰ε = refl
pop-ε xs _ | until s s≢ε ys | yes s≤ε = ⊥-elim (s≢ε (antisym s≤ε (positive s)))
-- slide : Heap A → Heap A
-- slide xs with xs .tl .next
-- slide xs | [] = xs
-- slide xs | [] = []
-- pop-tl : ∀ (x : A) s₁ (s₁≢ε : s₁ ≢ ε) xs s₂ → pop (x ◃ ⟪ until s₁ s₁≢ε xs ⟫) (s₁ ∙ s₂) ≡ pop xs s₂
-- pop-tl x s₁ s₁≢ε xs s₂ with s₁ ≤? (s₁ ∙ s₂)
-- pop-tl x s₁ s₁≢ε xs s₂ | no s₁≰s₁∙s₂ = ⊥-elim (s₁≰s₁∙s₂ (s₂ , refl))
-- pop-tl x s₁ s₁≢ε xs s₂ | yes (k , s₁≤s₁∙s₂) =
-- let p = cancel s₁ s₂ k s₁≤s₁∙s₂
-- in {!!} ; cong (λ w → pop′ s₂ w xs) (isPropAcc {!!} (wf s₂))
-- seg-leftInv′ : (x : Heap A) → tabulate (pop x) ≡ x
-- seg-leftInv′ x = {!!}
-- mutual
-- seg-leftInv′ : (xs : Heap A) → stepFrom (pop xs) (pop xs ε .snd) (pop xs ε .snd ≟ ε) ≡ xs .tl .next
-- seg-leftInv′ (x ◃ xs) with pop (x ◃ xs) ε .snd ≟ ε
-- seg-leftInv′ (x ◃ xs) | yes s≡ε = {!!}
-- seg-leftInv′ (x ◃ xs) | no s≢ε = {!!}
-- seg-leftInv : (x : Heap A) → tabulate (pop x) ≡ x
-- seg-leftInv (x ◃ xs) i .hd = pop-ε (x ◃ xs) (wf ε) i
-- seg-leftInv (x ◃ xs) i .tl .next = seg-leftInv′ (x ◃ xs) i
-- state-iso : Heap A ⇔ State A
-- state-iso .fun = pop
-- state-iso .inv = tabulate
-- state-iso .rightInv = {!!}
-- state-iso .leftInv = {!!}
|
{
"alphanum_fraction": 0.5495987159,
"avg_line_length": 30.8415841584,
"ext": "agda",
"hexsha": "7c93b93f4bda6a98141cc8fd48f41532e4269051",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Control/Comonad/IntervalHeap.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Control/Comonad/IntervalHeap.agda",
"max_line_length": 104,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Control/Comonad/IntervalHeap.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 1421,
"size": 3115
}
|
------------------------------------------------------------------------------
-- First-order logic
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOL.README where
------------------------------------------------------------------------------
-- Description
-- Formalization of first-order logic using Agda's inductive notions.
------------------------------------------------------------------------------
-- Definition of the connectives and quantifiers
open import FOL.Base
-- Propositional logic theorems
open import FOL.ExclusiveDisjunction.TheoremsATP
open import FOL.ExclusiveDisjunction.TheoremsI
open import FOL.PropositionalLogic.TheoremsATP
open import FOL.PropositionalLogic.TheoremsI
-- First-order logic theorems
open import FOL.TheoremsATP
open import FOL.TheoremsI
-- Logical schemata
open import FOL.SchemataATP
-- Non-empty domains
open import FOL.NonEmptyDomain.TheoremsATP
open import FOL.NonEmptyDomain.TheoremsI
-- Non-intuitionistic logic theorems
open import FOL.NonIntuitionistic.TheoremsATP
open import FOL.NonIntuitionistic.TheoremsI
|
{
"alphanum_fraction": 0.5772230889,
"avg_line_length": 31.2682926829,
"ext": "agda",
"hexsha": "05e3d8a76afbd7abe5a8df9066711549f0d60e52",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOL/README.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOL/README.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOL/README.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 257,
"size": 1282
}
|
{-# OPTIONS --without-K #-}
module NTypes.Contractible where
open import Equivalence
open import Types
isContr : ∀ {a} → Set a → Set _
isContr A = Σ A λ x → (y : A) → x ≡ y
contr→eq-⊤ : ∀ {a} {A : Set a} → isContr A → A ≃ ⊤
contr→eq-⊤ h
= (λ _ → _)
, ((λ _ → π₁ h) , λ _ → refl)
, ((λ _ → π₁ h) , π₂ h)
eq-⊤→contr : ∀ {a} {A : Set a} → A ≃ ⊤ → isContr A
eq-⊤→contr (f , (g , α) , (h , β)) = h _ , β
pp-space-contr : ∀ {a} {A : Set a} (x : A) →
isContr (Σ A λ y → x ≡ y)
pp-space-contr {A = A} x
= (x , refl)
, λ y → J
(λ x y p → Id (Σ A (λ y → x ≡ y)) (x , refl) (y , p))
(λ _ → refl) _ _ (π₂ y)
|
{
"alphanum_fraction": 0.4592,
"avg_line_length": 24.0384615385,
"ext": "agda",
"hexsha": "805ec56f6d9a3442ae1dd3c56f88dc48b64d7098",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "vituscze/HoTT-lectures",
"max_forks_repo_path": "src/NTypes/Contractible.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "vituscze/HoTT-lectures",
"max_issues_repo_path": "src/NTypes/Contractible.agda",
"max_line_length": 59,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "vituscze/HoTT-lectures",
"max_stars_repo_path": "src/NTypes/Contractible.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 296,
"size": 625
}
|
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-}
module Cubical.Data.NatMinusOne.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Univalence
open import Cubical.Data.Nat
open import Cubical.Data.NatMinusOne.Base
open import Cubical.Reflection.StrictEquiv
-1+Path : ℕ ≡ ℕ₋₁
-1+Path = ua e
where
unquoteDecl e = declStrictEquiv e -1+_ 1+_
|
{
"alphanum_fraction": 0.7711442786,
"avg_line_length": 28.7142857143,
"ext": "agda",
"hexsha": "f89c3bb03dfbf4684de198531ea9227b13f422dc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Edlyr/cubical",
"max_forks_repo_path": "Cubical/Data/NatMinusOne/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Edlyr/cubical",
"max_issues_repo_path": "Cubical/Data/NatMinusOne/Properties.agda",
"max_line_length": 67,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Edlyr/cubical",
"max_stars_repo_path": "Cubical/Data/NatMinusOne/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 120,
"size": 402
}
|
{- Delay operator. -}
module TemporalOps.Delay where
open import CategoryTheory.Categories
open import CategoryTheory.Instances.Reactive
open import CategoryTheory.Functor
open import CategoryTheory.CartesianStrength
open import TemporalOps.Common
open import TemporalOps.Next
open import Data.Nat.Properties using (+-identityʳ ; +-comm ; +-assoc ; +-suc)
open import Relation.Binary.HeterogeneousEquality as ≅ using (_≅_ ; ≅-to-≡)
import Relation.Binary.PropositionalEquality as ≡
open import Data.Product
open import Data.Sum
-- General iteration
-- iter f n v = fⁿ(v)
iter : (τ -> τ) -> ℕ -> τ -> τ
iter F zero A = A
iter F (suc n) A = F (iter F n A)
-- Multi-step delay
delay_by_ : τ -> ℕ -> τ
delay A by zero = A
delay A by suc n = ▹ (delay A by n)
infix 67 delay_by_
-- || Lemmas for the delay operator
-- Extra delay is cancelled out by extra waiting.
delay-+ : ∀{A} -> (n l k : ℕ)
-> delay A by (n + l) at (n + k) ≡ delay A by l at k
delay-+ zero l k = refl
delay-+ (suc n) = delay-+ n
-- || Derived lemmas - they can all be expressed in terms of delay-+,
-- || but they are given explicitly for simplicity.
-- Delay by n is cancelled out by waiting n extra steps.
delay-+-left0 : ∀{A} -> (n k : ℕ)
-> delay A by n at (n + k) ≡ A at k
delay-+-left0 zero k = refl
delay-+-left0 (suc n) k = delay-+-left0 n k
-- delay-+-left0 can be converted to delay-+ (heterogeneously).
delay-+-left0-eq : ∀{A : τ} -> (n l : ℕ)
-> Proof-≡ (delay-+-left0 {A} n l) (delay-+ {A} n 0 l)
delay-+-left0-eq zero l v v′ pf = ≅-to-≡ pf
delay-+-left0-eq (suc n) l = delay-+-left0-eq n l
-- Extra delay by n steps is cancelled out by waiting for n steps.
delay-+-right0 : ∀{A} -> (n l : ℕ)
-> delay A by (n + l) at n ≡ delay A by l at 0
delay-+-right0 zero l = refl
delay-+-right0 (suc n) l = delay-+-right0 n l
-- Delaying by n is the same as delaying by (n + 0)
delay-+0-left : ∀{A} -> (k n : ℕ)
-> delay A by k at n ≡ delay A by (k + 0) at n
delay-+0-left {A} k n rewrite +-identityʳ k = refl
-- If the delay is greater than the wait amount, we get unit
delay-⊤ : ∀{A} -> (n k : ℕ)
-> ⊤ at n ≡ delay A by (n + suc k) at n
delay-⊤ {A} n k = sym (delay-+-right0 n (suc k))
-- Associativity of arguments in the delay lemma
delay-assoc-sym : ∀{A} (n k l j : ℕ)
-> Proof-≅ (sym (delay-+ {A} n (k + l) (k + j)))
(sym (delay-+ {A} (n + k) l j))
delay-assoc-sym zero zero l j v v′ pr = pr
delay-assoc-sym zero (suc k) l j = delay-assoc-sym zero k l j
delay-assoc-sym (suc n) k l j = delay-assoc-sym n k l j
-- Functor instance for delay
F-delay : ℕ -> Endofunctor ℝeactive
F-delay k = record
{ omap = delay_by k
; fmap = fmap-delay k
; fmap-id = λ {_ n a} -> fmap-delay-id k {_} {n} {a}
; fmap-∘ = fmap-delay-∘ k
; fmap-cong = fmap-delay-cong k
}
where
-- Lifting of delay
fmap-delay : {A B : τ} -> (k : ℕ) -> A ⇴ B -> delay A by k ⇴ delay B by k
fmap-delay zero f = f
fmap-delay (suc k) f = Functor.fmap F-▹ (fmap-delay k f)
-- Delay preserves identities
fmap-delay-id : ∀ (k : ℕ) {A : τ} {n : ℕ} {a : (delay A by k) n}
-> (fmap-delay k id at n) a ≡ a
fmap-delay-id zero = refl
fmap-delay-id (suc k) {A} {zero} = refl
fmap-delay-id (suc k) {A} {suc n} = fmap-delay-id k {A} {n}
-- Delay preserves composition
fmap-delay-∘ : ∀ (k : ℕ) {A B C : τ} {g : B ⇴ C} {f : A ⇴ B} {n : ℕ} {a : (delay A by k) n}
-> (fmap-delay k (g ∘ f) at n) a ≡ (fmap-delay k g ∘ fmap-delay k f at n) a
fmap-delay-∘ zero = refl
fmap-delay-∘ (suc k) {n = zero} = refl
fmap-delay-∘ (suc k) {n = suc n} = fmap-delay-∘ k {n = n}
-- Delay is congruent
fmap-delay-cong : ∀ (k : ℕ) {A B : τ} {f f′ : A ⇴ B}
-> ({n : ℕ} {a : A at n} -> f n a ≡ f′ n a)
-> ({n : ℕ} {a : delay A by k at n}
-> (fmap-delay k f at n) a
≡ (fmap-delay k f′ at n) a)
fmap-delay-cong zero e = e
fmap-delay-cong (suc k) e {zero} = refl
fmap-delay-cong (suc k) e {suc n} = fmap-delay-cong k e
-- || Lemmas for the interaction of fmap and delay-+
-- Lifted version of the delay-+ lemma
-- Arguments have different types, so we need heterogeneous equality
fmap-delay-+ : ∀ {A B : τ} {f : A ⇴ B} (n k l : ℕ)
-> Fun-≅ (Functor.fmap (F-delay (n + k)) f at (n + l))
(Functor.fmap (F-delay k) f at l)
fmap-delay-+ zero k l v .v ≅.refl = ≅.refl
fmap-delay-+ (suc n) k l v v′ pf = fmap-delay-+ n k l v v′ pf
-- Specialised version with v of type delay A by (n + k) at (n + l)
-- Uses explicit rewrites and homogeneous equality
fmap-delay-+-n+k : ∀ {A B : τ} {f : A ⇴ B} (n k l : ℕ)
-> (v : delay A by (n + k) at (n + l))
-> rew (delay-+ n k l) ((Functor.fmap (F-delay (n + k)) f at (n + l)) v)
≡ (Functor.fmap (F-delay k) f at l) (rew (delay-+ n k l) v)
fmap-delay-+-n+k {A} n k l v =
≅-to-rew-≡ (fmap-delay-+ n k l v v′ v≅v′) (delay-+ n k l)
where
v′ : delay A by k at l
v′ = rew (delay-+ n k l) v
v≅v′ : v ≅ v′
v≅v′ = rew-to-≅ (delay-+ n k l)
-- Lifted delay lemma with delay-+-left0
fmap-delay-+-n+0 : ∀ {A B : τ} {f : A ⇴ B} (n l : ℕ)
-> {v : delay A by n at (n + l)}
-> rew (delay-+-left0 n l) ((Functor.fmap (F-delay n) f at (n + l)) v)
≡ f l (rew (delay-+-left0 n l) v)
fmap-delay-+-n+0 {A} zero l = refl
fmap-delay-+-n+0 {A} (suc n) l = fmap-delay-+-n+0 n l
-- Specialised version with v of type delay A by k at l
-- Uses explicit rewrites and homogeneous equality
fmap-delay-+-k : ∀ {A B : τ} {f : A ⇴ B} (n k l : ℕ)
->(v : delay A by k at l)
-> Functor.fmap (F-delay (n + k)) f (n + l) (rew (sym (delay-+ n k l)) v)
≡ rew (sym (delay-+ n k l)) (Functor.fmap (F-delay k) f l v)
fmap-delay-+-k {A} {B} {f} n k l v =
sym (≅-to-rew-≡ (≅.sym (fmap-delay-+ n k l v′ v v≅v′)) (sym (delay-+ n k l)))
where
v′ : delay A by (n + k) at (n + l)
v′ = rew (sym (delay-+ n k l)) v
v≅v′ : v′ ≅ v
v≅v′ = ≅.sym (rew-to-≅ (sym (delay-+ n k l)))
-- Delay is a Cartesian functor
F-cart-delay : ∀ k -> CartesianFunctor (F-delay k) ℝeactive-cart ℝeactive-cart
F-cart-delay k = record
{ u = u-delay k
; m = m-delay k
; m-nat₁ = m-nat₁-delay k
; m-nat₂ = m-nat₂-delay k
; associative = assoc-delay k
; unital-right = unit-right-delay k
; unital-left = λ {B} {n} {a} -> unit-left-delay k {B} {n} {a}
}
where
open CartesianFunctor F-cart-▹
u-delay : ∀ k -> ⊤ ⇴ delay ⊤ by k
u-delay zero = λ n _ → top.tt
u-delay (suc k) zero top.tt = top.tt
u-delay (suc k) (suc n) top.tt = u-delay k n top.tt
m-delay : ∀ k (A B : τ) -> (delay A by k ⊗ delay B by k) ⇴ delay (A ⊗ B) by k
m-delay zero A B = λ n x → x
m-delay (suc k) A B = Functor.fmap F-▹ (m-delay k A B) ∘ m (delay A by k) (delay B by k)
m-nat₁-delay : ∀ k {A B C : τ} (f : A ⇴ B)
-> Functor.fmap (F-delay k) (f * id) ∘ m-delay k A C
≈ m-delay k B C ∘ Functor.fmap (F-delay k) f * id
m-nat₁-delay zero f = refl
m-nat₁-delay (suc k) f {zero} = refl
m-nat₁-delay (suc k) f {suc n} = m-nat₁-delay k f
m-nat₂-delay : ∀ k {A B C : τ} (f : A ⇴ B)
-> Functor.fmap (F-delay k) (id * f) ∘ m-delay k C A
≈ m-delay k C B ∘ id * Functor.fmap (F-delay k) f
m-nat₂-delay zero f = refl
m-nat₂-delay (suc k) f {zero} = refl
m-nat₂-delay (suc k) f {suc n} = m-nat₂-delay k f
assoc-delay : ∀ k {A B C : τ}
-> m-delay k A (B ⊗ C) ∘ id * m-delay k B C ∘ assoc-right
≈ Functor.fmap (F-delay k) assoc-right ∘ m-delay k (A ⊗ B) C ∘ m-delay k A B * id
assoc-delay zero = refl
assoc-delay (suc k) {A} {B} {C} {zero} = refl
assoc-delay (suc k) {A} {B} {C} {suc n} = assoc-delay k
unit-right-delay : ∀ k {A : τ} ->
Functor.fmap (F-delay k) unit-right ∘ m-delay k A ⊤ ∘ (id * u-delay k) ≈ unit-right
unit-right-delay zero {A} {n} = refl
unit-right-delay (suc k) {A} {zero} = refl
unit-right-delay (suc k) {A} {suc n} = unit-right-delay k
unit-left-delay : ∀ k {B : τ} ->
Functor.fmap (F-delay k) unit-left ∘ m-delay k ⊤ B ∘ (u-delay k * id) ≈ unit-left
unit-left-delay zero = refl
unit-left-delay (suc k) {B} {zero} = refl
unit-left-delay (suc k) {B} {suc n} = unit-left-delay k
m-delay-+-n+0 : ∀ {A B} k l {a b}
-> (rew (delay-+-left0 k l)
(CartesianFunctor.m (F-cart-delay k) A B (k + l) (a , b)))
≡ (rew (delay-+-left0 k l) a , rew (delay-+-left0 k l) b)
m-delay-+-n+0 zero l = refl
m-delay-+-n+0 (suc k) l = m-delay-+-n+0 k l
m-delay-+-sym : ∀ {A B} k l m{a b}
-> rew (sym (delay-+ k m l))
(CartesianFunctor.m (F-cart-delay m) A B l (a , b))
≡ CartesianFunctor.m (F-cart-delay (k + m)) A B (k + l)
((rew (sym (delay-+ k m l)) a) , (rew (sym (delay-+ k m l)) b))
m-delay-+-sym zero l m = refl
m-delay-+-sym (suc k) l m = m-delay-+-sym k l m
|
{
"alphanum_fraction": 0.5362779483,
"avg_line_length": 39.1587982833,
"ext": "agda",
"hexsha": "31b1ef007ea97811c8be9e7d1dd1dd7cb4bea132",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DimaSamoz/temporal-type-systems",
"max_forks_repo_path": "src/TemporalOps/Delay.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DimaSamoz/temporal-type-systems",
"max_issues_repo_path": "src/TemporalOps/Delay.agda",
"max_line_length": 95,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DimaSamoz/temporal-type-systems",
"max_stars_repo_path": "src/TemporalOps/Delay.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z",
"num_tokens": 3460,
"size": 9124
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.Truncation.Properties where
open import Cubical.Data.NatMinusOne
open import Cubical.HITs.Truncation.Base
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.Equiv.PathSplit
open isPathSplitEquiv
open import Cubical.Modalities.Modality
open Modality
open import Cubical.Data.Empty.Base as ⊥ renaming (rec to ⊥rec ; elim to ⊥elim)
open import Cubical.Data.Nat hiding (elim)
open import Cubical.Data.Sigma
open import Cubical.Data.Bool
open import Cubical.Data.Unit
open import Cubical.HITs.Sn.Base
open import Cubical.HITs.S1
open import Cubical.HITs.Susp
open import Cubical.HITs.Nullification as Null hiding (rec; elim)
open import Cubical.HITs.PropositionalTruncation as PropTrunc
renaming (∥_∥ to ∥_∥₁; ∣_∣ to ∣_∣₁; squash to squash₁) using ()
open import Cubical.HITs.SetTruncation as SetTrunc using (∥_∥₂; ∣_∣₂; squash₂)
open import Cubical.HITs.GroupoidTruncation as GpdTrunc using (∥_∥₃; ∣_∣₃; squash₃)
open import Cubical.HITs.2GroupoidTruncation as 2GpdTrunc using (∥_∥₄; ∣_∣₄; squash₄)
private
variable
ℓ ℓ' : Level
A : Type ℓ
B : Type ℓ'
sphereFill : (n : ℕ) (f : S₊ n → A) → Type _
sphereFill {A = A} n f = Σ[ top ∈ A ] ((x : S₊ n) → top ≡ f x)
isSphereFilled : ℕ → Type ℓ → Type ℓ
isSphereFilled n A = (f : S₊ n → A) → sphereFill n f
isSphereFilled∥∥ : {n : ℕ} → isSphereFilled n (HubAndSpoke A n)
isSphereFilled∥∥ f = (hub f) , (spoke f)
isSphereFilled→isOfHLevel : (n : ℕ) → isSphereFilled n A → isOfHLevel (suc n) A
isSphereFilled→isOfHLevel {A = A} zero h x y = sym (snd (h f) true) ∙ snd (h f) false
where
f : Bool → A
f true = x
f false = y
isSphereFilled→isOfHLevel {A = A} (suc zero) h x y =
J (λ y q → (p : x ≡ y) → q ≡ p) (helper x)
where
helper : (x : A) (p : x ≡ x) → refl ≡ p
helper x p i j =
hcomp (λ k → λ { (i = i0) → h S¹→A .snd base k
; (i = i1) → p j
; (j = i0) → h S¹→A .snd base (i ∨ k)
; (j = i1) → h S¹→A .snd base (i ∨ k)})
(h S¹→A .snd (loop j) i)
where
S¹→A : S¹ → A
S¹→A base = x
S¹→A (loop i) = p i
isSphereFilled→isOfHLevel {A = A} (suc (suc n)) h x y =
isSphereFilled→isOfHLevel (suc n) (helper h x y)
where
helper : {n : ℕ} → isSphereFilled (suc (suc n)) A → (x y : A) → isSphereFilled (suc n) (x ≡ y)
helper {n = n} h x y f = sym (snd (h f') north) ∙ (snd (h f') south) , r
where
f' : Susp (S₊ (suc n)) → A
f' north = x
f' south = y
f' (merid u i) = f u i
r : (s : S₊ (suc n)) → sym (snd (h f') north) ∙ (snd (h f') south) ≡ f s
r s i j = hcomp
(λ k →
λ { (i = i1) → snd (h f') (merid s j) k
; (j = i0) → snd (h f') north (k ∨ (~ i))
; (j = i1) → snd (h f') south k
})
(snd (h f') north (~ i ∧ ~ j))
isOfHLevel→isSphereFilled : (n : ℕ) → isOfHLevel (suc n) A → isSphereFilled n A
isOfHLevel→isSphereFilled zero h f = (f true) , (λ _ → h _ _)
isOfHLevel→isSphereFilled {A = A} (suc zero) h f = (f base) , toPropElim (λ _ → h _ _) refl
isOfHLevel→isSphereFilled {A = A} (suc (suc n)) h =
helper λ x y → isOfHLevel→isSphereFilled (suc n) (h x y)
where
helper : {n : ℕ} → ((x y : A) → isSphereFilled (suc n) (x ≡ y))
→ isSphereFilled (suc (suc n)) A
helper {n = n} h f = f north , r
where
r : (x : S₊ (suc (suc n))) → f north ≡ f x
r north = refl
r south = h (f north) (f south) (λ x → cong f (merid x)) .fst
r (merid x i) j = hcomp (λ k → λ { (i = i0) → f north
; (i = i1) → h (f north) (f south) (λ x → cong f (merid x)) .snd x (~ k) j
; (j = i0) → f north
; (j = i1) → f (merid x i) }) (f (merid x (i ∧ j)))
isOfHLevelTrunc : (n : ℕ) → isOfHLevel n (∥ A ∥ n)
isOfHLevelTrunc zero = isOfHLevelUnit* 0
isOfHLevelTrunc (suc n) = isSphereFilled→isOfHLevel n isSphereFilled∥∥
rec : {n : HLevel}
{B : Type ℓ'} →
isOfHLevel (suc n) B →
(A → B) →
hLevelTrunc (suc n) A →
B
rec h g ∣ x ∣ = g x
rec {n = n} {B = B} hB g (hub f) = isOfHLevel→isSphereFilled n hB (λ x → rec hB g (f x)) .fst
rec {n = n} hB g (spoke f x i) =
isOfHLevel→isSphereFilled n hB (λ x → rec hB g (f x)) .snd x i
elim : {n : ℕ}
{B : ∥ A ∥ (suc n) → Type ℓ'}
(hB : (x : ∥ A ∥ (suc n)) → isOfHLevel (suc n) (B x))
(g : (a : A) → B (∣ a ∣))
(x : ∥ A ∥ (suc n)) →
B x
elim hB g (∣ a ∣ ) = g a
elim {B = B} hB g (hub f) =
isOfHLevel→isSphereFilled _ (hB (hub f)) (λ x → subst B (sym (spoke f x)) (elim hB g (f x)) ) .fst
elim {B = B} hB g (spoke f x i) =
toPathP {A = λ i → B (spoke f x (~ i))}
(sym (isOfHLevel→isSphereFilled _ (hB (hub f)) (λ x → subst B (sym (spoke f x)) (elim hB g (f x))) .snd x))
(~ i)
elim2 : {n : ℕ}
{B : ∥ A ∥ (suc n) → ∥ A ∥ (suc n) → Type ℓ'}
(hB : ((x y : ∥ A ∥ (suc n)) → isOfHLevel (suc n) (B x y)))
(g : (a b : A) → B ∣ a ∣ ∣ b ∣)
(x y : ∥ A ∥ (suc n)) →
B x y
elim2 {n = n} hB g = elim (λ _ → isOfHLevelΠ (suc n) (λ _ → hB _ _)) λ a →
elim (λ _ → hB _ _) (λ b → g a b)
elim3 : {n : ℕ}
{B : (x y z : ∥ A ∥ (suc n)) → Type ℓ'}
(hB : ((x y z : ∥ A ∥ (suc n)) → isOfHLevel (suc n) (B x y z)))
(g : (a b c : A) → B (∣ a ∣) ∣ b ∣ ∣ c ∣)
(x y z : ∥ A ∥ (suc n)) →
B x y z
elim3 {n = n} hB g = elim2 (λ _ _ → isOfHLevelΠ (suc n) (hB _ _)) λ a b →
elim (λ _ → hB _ _ _) (λ c → g a b c)
isContr→isContr∥ : (n : ℕ) → isContr A → isContr (∥ A ∥ n)
isContr→isContr∥ zero _ = tt* , (λ _ _ → tt*)
isContr→isContr∥ (suc n) contr = ∣ fst contr ∣ , (elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _)
(λ a i → ∣ snd contr a i ∣))
isOfHLevelMin→isOfHLevel : {n m : ℕ} → isOfHLevel (min n m) A → isOfHLevel n A × isOfHLevel m A
isOfHLevelMin→isOfHLevel {n = zero} {m = m} h = h , isContr→isOfHLevel m h
isOfHLevelMin→isOfHLevel {n = suc n} {m = zero} h = (isContr→isOfHLevel (suc n) h) , h
isOfHLevelMin→isOfHLevel {A = A} {n = suc n} {m = suc m} h =
subst (λ x → isOfHLevel x A) (helper n m)
(isOfHLevelPlus (suc n ∸ (suc (min n m))) h)
, subst (λ x → isOfHLevel x A) ((λ i → m ∸ (minComm n m i) + suc (minComm n m i)) ∙ helper m n)
(isOfHLevelPlus (suc m ∸ (suc (min n m))) h)
where
helper : (n m : ℕ) → n ∸ min n m + suc (min n m) ≡ suc n
helper zero zero = refl
helper zero (suc m) = refl
helper (suc n) zero = cong suc (+-comm n 1)
helper (suc n) (suc m) = +-suc _ _ ∙ cong suc (helper n m)
ΣTruncElim : ∀ {ℓ ℓ' ℓ''} {A : Type ℓ} {n m : ℕ}
{B : (x : ∥ A ∥ (suc n)) → Type ℓ'}
{C : (Σ[ a ∈ (∥ A ∥ (suc n)) ] (∥ B a ∥ (suc m))) → Type ℓ''}
→ ((x : (Σ[ a ∈ (∥ A ∥ (suc n)) ] (∥ B a ∥ (suc m)))) → isOfHLevel (min (suc n) (suc m)) (C x))
→ ((a : A) (b : B (∣ a ∣)) → C (∣ a ∣ , ∣ b ∣))
→ (x : (Σ[ a ∈ (∥ A ∥ (suc n)) ] (∥ B a ∥ (suc m)))) → (C x)
ΣTruncElim {n = n} {m = m} {B = B} {C = C} hB g (a , b) =
elim {B = λ a → (b : (∥ B a ∥ (suc m))) → C (a , b)}
(λ x → isOfHLevelΠ (suc n) λ b → isOfHLevelMin→isOfHLevel (hB (x , b)) .fst )
(λ a → elim (λ _ → isOfHLevelMin→isOfHLevel (hB (∣ a ∣ , _)) .snd) λ b → g a b)
a b
truncIdempotentIso : (n : ℕ) → isOfHLevel n A → Iso (∥ A ∥ n) A
truncIdempotentIso zero hA = isContr→Iso (isOfHLevelUnit* 0) hA
Iso.fun (truncIdempotentIso (suc n) hA) = rec hA λ a → a
Iso.inv (truncIdempotentIso (suc n) hA) = ∣_∣
Iso.rightInv (truncIdempotentIso (suc n) hA) _ = refl
Iso.leftInv (truncIdempotentIso (suc n) hA) = elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) λ _ → refl
truncIdempotent≃ : (n : ℕ) → isOfHLevel n A → ∥ A ∥ n ≃ A
truncIdempotent≃ n hA = isoToEquiv (truncIdempotentIso n hA)
truncIdempotent : (n : ℕ) → isOfHLevel n A → ∥ A ∥ n ≡ A
truncIdempotent n hA = ua (truncIdempotent≃ n hA)
HLevelTruncModality : ∀ {ℓ} (n : HLevel) → Modality ℓ
isModal (HLevelTruncModality n) = isOfHLevel n
isModalIsProp (HLevelTruncModality n) = isPropIsOfHLevel n
◯ (HLevelTruncModality n) = hLevelTrunc n
◯-isModal (HLevelTruncModality n) = isOfHLevelTrunc n
η (HLevelTruncModality zero) _ = tt*
η (HLevelTruncModality (suc n)) = ∣_∣
◯-elim (HLevelTruncModality zero) cB _ tt* = cB tt* .fst
◯-elim (HLevelTruncModality (suc n)) = elim
◯-elim-β (HLevelTruncModality zero) cB f a = cB tt* .snd (f a)
◯-elim-β (HLevelTruncModality (suc n)) = λ _ _ _ → refl
◯-=-isModal (HLevelTruncModality zero) x y = (isOfHLevelUnit* 1 x y) , (isOfHLevelUnit* 2 x y _)
◯-=-isModal (HLevelTruncModality (suc n)) = isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n))
-- universal property
univTrunc : ∀ {ℓ} (n : HLevel) {B : TypeOfHLevel ℓ n} → Iso (hLevelTrunc n A → B .fst) (A → B .fst)
univTrunc zero {B , lev} = isContr→Iso (isOfHLevelΠ 0 (λ _ → lev)) (isOfHLevelΠ 0 λ _ → lev)
Iso.fun (univTrunc (suc n) {B , lev}) g a = g ∣ a ∣
Iso.inv (univTrunc (suc n) {B , lev}) = rec lev
Iso.rightInv (univTrunc (suc n) {B , lev}) b = refl
Iso.leftInv (univTrunc (suc n) {B , lev}) b = funExt (elim (λ x → isOfHLevelPath _ lev _ _)
λ a → refl)
-- functorial action
map : {n : HLevel} {B : Type ℓ'} (g : A → B)
→ hLevelTrunc n A → hLevelTrunc n B
map {n = zero} g = λ _ → tt*
map {n = suc n} g = rec (isOfHLevelTrunc _) (λ a → ∣ g a ∣)
mapCompIso : {n : HLevel} {B : Type ℓ'} → (Iso A B) → Iso (hLevelTrunc n A) (hLevelTrunc n B)
mapCompIso {n = zero} {B} _ = isContr→Iso (isOfHLevelUnit* 0) (isOfHLevelUnit* 0)
Iso.fun (mapCompIso {n = (suc n)} g) = map (Iso.fun g)
Iso.inv (mapCompIso {n = (suc n)} g) = map (Iso.inv g)
Iso.rightInv (mapCompIso {n = (suc n)} g) = elim (λ x → isOfHLevelPath _ (isOfHLevelTrunc _) _ _) λ b → cong ∣_∣ (Iso.rightInv g b)
Iso.leftInv (mapCompIso {n = (suc n)} g) = elim (λ x → isOfHLevelPath _ (isOfHLevelTrunc _) _ _) λ a → cong ∣_∣ (Iso.leftInv g a)
mapId : {n : HLevel} → ∀ t → map {n = n} (idfun A) t ≡ t
mapId {n = 0} tt* = refl
mapId {n = (suc n)} =
elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) (λ _ → refl)
-- equivalences to prop/set/groupoid truncations
propTruncTrunc1Iso : Iso ∥ A ∥₁ (∥ A ∥ 1)
Iso.fun propTruncTrunc1Iso = PropTrunc.rec (isOfHLevelTrunc 1) ∣_∣
Iso.inv propTruncTrunc1Iso = rec squash₁ ∣_∣₁
Iso.rightInv propTruncTrunc1Iso = elim (λ _ → isOfHLevelPath 1 (isOfHLevelTrunc 1) _ _) (λ _ → refl)
Iso.leftInv propTruncTrunc1Iso = PropTrunc.elim (λ _ → isOfHLevelPath 1 squash₁ _ _) (λ _ → refl)
propTrunc≃Trunc1 : ∥ A ∥₁ ≃ ∥ A ∥ 1
propTrunc≃Trunc1 = isoToEquiv propTruncTrunc1Iso
propTrunc≡Trunc1 : ∥ A ∥₁ ≡ ∥ A ∥ 1
propTrunc≡Trunc1 = ua propTrunc≃Trunc1
setTruncTrunc2Iso : Iso ∥ A ∥₂ (∥ A ∥ 2)
Iso.fun setTruncTrunc2Iso = SetTrunc.rec (isOfHLevelTrunc 2) ∣_∣
Iso.inv setTruncTrunc2Iso = rec squash₂ ∣_∣₂
Iso.rightInv setTruncTrunc2Iso = elim (λ _ → isOfHLevelPath 2 (isOfHLevelTrunc 2) _ _) (λ _ → refl)
Iso.leftInv setTruncTrunc2Iso = SetTrunc.elim (λ _ → isOfHLevelPath 2 squash₂ _ _) (λ _ → refl)
setTrunc≃Trunc2 : ∥ A ∥₂ ≃ ∥ A ∥ 2
setTrunc≃Trunc2 = isoToEquiv setTruncTrunc2Iso
propTrunc≡Trunc2 : ∥ A ∥₂ ≡ ∥ A ∥ 2
propTrunc≡Trunc2 = ua setTrunc≃Trunc2
groupoidTruncTrunc3Iso : Iso ∥ A ∥₃ (∥ A ∥ 3)
Iso.fun groupoidTruncTrunc3Iso = GpdTrunc.rec (isOfHLevelTrunc 3) ∣_∣
Iso.inv groupoidTruncTrunc3Iso = rec squash₃ ∣_∣₃
Iso.rightInv groupoidTruncTrunc3Iso = elim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) (λ _ → refl)
Iso.leftInv groupoidTruncTrunc3Iso = GpdTrunc.elim (λ _ → isOfHLevelPath 3 squash₃ _ _) (λ _ → refl)
groupoidTrunc≃Trunc3 : ∥ A ∥₃ ≃ ∥ A ∥ 3
groupoidTrunc≃Trunc3 = isoToEquiv groupoidTruncTrunc3Iso
groupoidTrunc≡Trunc3 : ∥ A ∥₃ ≡ ∥ A ∥ 3
groupoidTrunc≡Trunc3 = ua groupoidTrunc≃Trunc3
2GroupoidTruncTrunc4Iso : Iso ∥ A ∥₄ (∥ A ∥ 4)
Iso.fun 2GroupoidTruncTrunc4Iso = 2GpdTrunc.rec (isOfHLevelTrunc 4) ∣_∣
Iso.inv 2GroupoidTruncTrunc4Iso = rec squash₄ ∣_∣₄
Iso.rightInv 2GroupoidTruncTrunc4Iso = elim (λ _ → isOfHLevelPath 4 (isOfHLevelTrunc 4) _ _) (λ _ → refl)
Iso.leftInv 2GroupoidTruncTrunc4Iso = 2GpdTrunc.elim (λ _ → isOfHLevelPath 4 squash₄ _ _) (λ _ → refl)
2GroupoidTrunc≃Trunc4 : ∥ A ∥₄ ≃ ∥ A ∥ 4
2GroupoidTrunc≃Trunc4 = isoToEquiv 2GroupoidTruncTrunc4Iso
2GroupoidTrunc≡Trunc4 : ∥ A ∥₄ ≡ ∥ A ∥ 4
2GroupoidTrunc≡Trunc4 = ua 2GroupoidTrunc≃Trunc4
isContr→isContrTrunc : ∀ {ℓ} {A : Type ℓ} (n : ℕ) → isContr A → isContr (hLevelTrunc n A)
isContr→isContrTrunc zero contr = isOfHLevelUnit* 0
isContr→isContrTrunc (suc n) contr =
∣ fst contr ∣ , (elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) λ a → cong ∣_∣ (snd contr a))
truncOfProdIso : (n : ℕ) → Iso (hLevelTrunc n (A × B)) (hLevelTrunc n A × hLevelTrunc n B)
truncOfProdIso 0 = isContr→Iso (isOfHLevelUnit* 0) (isOfHLevel× 0 (isOfHLevelUnit* 0) (isOfHLevelUnit* 0))
Iso.fun (truncOfProdIso (suc n)) = rec (isOfHLevelΣ (suc n) (isOfHLevelTrunc (suc n)) (λ _ → isOfHLevelTrunc (suc n))) λ {(a , b) → ∣ a ∣ , ∣ b ∣}
Iso.inv (truncOfProdIso (suc n)) (a , b) = rec (isOfHLevelTrunc (suc n))
(λ a → rec (isOfHLevelTrunc (suc n))
(λ b → ∣ a , b ∣)
b)
a
Iso.rightInv (truncOfProdIso (suc n)) (a , b) =
elim {B = λ a → Iso.fun (truncOfProdIso (suc n)) (Iso.inv (truncOfProdIso (suc n)) (a , b)) ≡ (a , b)}
(λ _ → isOfHLevelPath (suc n) (isOfHLevelΣ (suc n) (isOfHLevelTrunc (suc n)) (λ _ → isOfHLevelTrunc (suc n))) _ _)
(λ a → elim {B = λ b → Iso.fun (truncOfProdIso (suc n)) (Iso.inv (truncOfProdIso (suc n)) (∣ a ∣ , b)) ≡ (∣ a ∣ , b)}
(λ _ → isOfHLevelPath (suc n) (isOfHLevelΣ (suc n) (isOfHLevelTrunc (suc n)) (λ _ → isOfHLevelTrunc (suc n))) _ _)
(λ b → refl) b) a
Iso.leftInv (truncOfProdIso (suc n)) = elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) λ a → refl
---- ∥ Ω A ∥ ₙ ≡ Ω ∥ A ∥ₙ₊₁ ----
{- Proofs of Theorem 7.3.12. and Corollary 7.3.13. in the HoTT book -}
module ΩTrunc {X : Type ℓ} {n : HLevel} where
{- We define the fibration P to show a more general result -}
P : ∥ X ∥ (2 + n) → ∥ X ∥ (2 + n) → Type ℓ
P x y = elim2 (λ _ _ → isOfHLevelTypeOfHLevel (suc n))
(λ a b → ∥ a ≡ b ∥ (suc n) , isOfHLevelTrunc (suc n)) x y .fst
{- We will need P to be of hLevel n + 3 -}
hLevelP : (a b : ∥ X ∥ (2 + n)) → isOfHLevel (2 + n) (P a b)
hLevelP =
elim2 (λ x y → isProp→isOfHLevelSuc (suc n) (isPropIsOfHLevel (2 + n)))
(λ a b → isOfHLevelSuc (suc n) (isOfHLevelTrunc (suc n)))
{- decode function from P x y to x ≡ y -}
decode-fun : (x y : ∥ X ∥ (2 + n)) → P x y → x ≡ y
decode-fun =
elim2 (λ u v → isOfHLevelΠ (2 + n)(λ _ → isOfHLevelSuc (2 + n) (isOfHLevelTrunc (2 + n)) u v))
decode*
where
decode* : (u v : X) → P ∣ u ∣ ∣ v ∣ → Path (∥ X ∥ (2 + n)) ∣ u ∣ ∣ v ∣
decode* u v =
rec (isOfHLevelTrunc (2 + n) ∣ u ∣ ∣ v ∣) (cong ∣_∣)
{- auxiliary function r used to define encode -}
r : (u : ∥ X ∥ (2 + n)) → P u u
r = elim (λ x → hLevelP x x) (λ a → ∣ refl ∣)
{- encode function from x ≡ y to P x y -}
encode-fun : (x y : ∥ X ∥ (2 + n)) → x ≡ y → P x y
encode-fun x y p = subst (P x) p (r x)
{- We need the following two lemmas on the functions behaviour for refl -}
dec-refl : (x : ∥ X ∥ (2 + n)) → decode-fun x x (r x) ≡ refl
dec-refl =
elim (λ x → isOfHLevelSuc (1 + n)
(isOfHLevelSuc (1 + n)
(isOfHLevelTrunc (2 + n) x x)
(decode-fun x x (r x)) refl))
(λ _ → refl)
enc-refl : (x : ∥ X ∥ (2 + n)) → encode-fun x x refl ≡ r x
enc-refl x = transportRefl (r x)
{- decode-fun is a right-inverse -}
P-rinv : (u v : ∥ X ∥ (2 + n)) (x : Path (∥ X ∥ (2 + n)) u v)
→ decode-fun u v (encode-fun u v x) ≡ x
P-rinv u v = J (λ y p → decode-fun u y (encode-fun u y p) ≡ p)
(cong (decode-fun u u) (enc-refl u) ∙ dec-refl u)
{- decode-fun is a left-inverse -}
P-linv : (u v : ∥ X ∥ (2 + n)) (x : P u v)
→ encode-fun u v (decode-fun u v x) ≡ x
P-linv =
elim2 (λ x y → isOfHLevelΠ (2 + n) (λ z → isOfHLevelSuc (2 + n) (hLevelP x y) _ _))
helper
where
helper : (a b : X) (p : P ∣ a ∣ ∣ b ∣)
→ encode-fun _ _ (decode-fun ∣ a ∣ ∣ b ∣ p) ≡ p
helper a b =
elim (λ x → hLevelP ∣ a ∣ ∣ b ∣ _ _)
(J (λ y p → encode-fun ∣ a ∣ ∣ y ∣ (decode-fun _ _ ∣ p ∣) ≡ ∣ p ∣)
(enc-refl ∣ a ∣))
{- The final Iso established -}
IsoFinal : (x y : ∥ X ∥ (2 + n)) → Iso (x ≡ y) (P x y)
Iso.fun (IsoFinal x y) = encode-fun x y
Iso.inv (IsoFinal x y) = decode-fun x y
Iso.rightInv (IsoFinal x y) = P-linv x y
Iso.leftInv (IsoFinal x y) = P-rinv x y
PathIdTruncIso : {a b : A} (n : HLevel) → Iso (Path (∥ A ∥ (suc n)) ∣ a ∣ ∣ b ∣) (∥ a ≡ b ∥ n)
PathIdTruncIso zero = isContr→Iso ((isOfHLevelTrunc 1 _ _)
, isOfHLevelPath 1 (isOfHLevelTrunc 1) ∣ _ ∣ ∣ _ ∣ _) (isOfHLevelUnit* 0)
PathIdTruncIso (suc n) = ΩTrunc.IsoFinal ∣ _ ∣ ∣ _ ∣
PathIdTrunc : {a b : A} (n : HLevel) → (Path (∥ A ∥ (suc n)) ∣ a ∣ ∣ b ∣) ≡ (∥ a ≡ b ∥ n)
PathIdTrunc n = isoToPath (PathIdTruncIso n)
PathΩ : {a : A} (n : HLevel) → (Path (∥ A ∥ (suc n)) ∣ a ∣ ∣ a ∣) ≡ (∥ a ≡ a ∥ n)
PathΩ n = PathIdTrunc n
{- Special case using direct defs of truncations -}
PathIdTrunc₀Iso : {a b : A} → Iso (∣ a ∣₂ ≡ ∣ b ∣₂) ∥ a ≡ b ∥₁
PathIdTrunc₀Iso = compIso (congIso setTruncTrunc2Iso)
(compIso (ΩTrunc.IsoFinal ∣ _ ∣ ∣ _ ∣)
(invIso propTruncTrunc1Iso))
-------------------------
truncOfTruncIso : (n m : HLevel) → Iso (hLevelTrunc n A) (hLevelTrunc n (hLevelTrunc (m + n) A))
truncOfTruncIso zero m = isContr→Iso (isOfHLevelUnit* 0) (isOfHLevelUnit* 0)
Iso.fun (truncOfTruncIso (suc n) zero) = rec (isOfHLevelTrunc (suc n)) λ a → ∣ ∣ a ∣ ∣
Iso.fun (truncOfTruncIso (suc n) (suc m)) = rec (isOfHLevelTrunc (suc n)) λ a → ∣ ∣ a ∣ ∣
Iso.inv (truncOfTruncIso (suc n) zero) = rec (isOfHLevelTrunc (suc n))
(rec (isOfHLevelTrunc (suc n))
λ a → ∣ a ∣)
Iso.inv (truncOfTruncIso (suc n) (suc m)) = rec (isOfHLevelTrunc (suc n))
(rec (isOfHLevelPlus (suc m) (isOfHLevelTrunc (suc n)))
λ a → ∣ a ∣)
Iso.rightInv (truncOfTruncIso (suc n) zero) =
elim (λ x → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _ )
(elim (λ x → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _ )
λ a → refl)
Iso.rightInv (truncOfTruncIso (suc n) (suc m)) =
elim (λ x → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _ )
(elim (λ x → isOfHLevelPath ((suc m) + (suc n)) (isOfHLevelPlus (suc m) (isOfHLevelTrunc (suc n))) _ _ )
λ a → refl)
Iso.leftInv (truncOfTruncIso (suc n) zero) = elim (λ x → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) λ a → refl
Iso.leftInv (truncOfTruncIso (suc n) (suc m)) = elim (λ x → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) λ a → refl
truncOfTruncEq : (n m : ℕ) → (hLevelTrunc n A) ≃ (hLevelTrunc n (hLevelTrunc (m + n) A))
truncOfTruncEq n m = isoToEquiv (truncOfTruncIso n m)
truncOfTruncIso2 : (n m : HLevel) → Iso (hLevelTrunc (m + n) (hLevelTrunc n A)) (hLevelTrunc n A)
truncOfTruncIso2 n m = truncIdempotentIso (m + n) (isOfHLevelPlus m (isOfHLevelTrunc n))
truncOfΣIso : ∀ {ℓ ℓ'} (n : HLevel) {A : Type ℓ} {B : A → Type ℓ'}
→ Iso (hLevelTrunc n (Σ A B)) (hLevelTrunc n (Σ A λ x → hLevelTrunc n (B x)))
truncOfΣIso zero = idIso
Iso.fun (truncOfΣIso (suc n)) = map λ {(a , b) → a , ∣ b ∣}
Iso.inv (truncOfΣIso (suc n)) =
rec (isOfHLevelTrunc (suc n))
(uncurry λ a → rec (isOfHLevelTrunc (suc n)) λ b → ∣ a , b ∣)
Iso.rightInv (truncOfΣIso (suc n)) =
elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _)
(uncurry λ a → elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _)
λ b → refl)
Iso.leftInv (truncOfΣIso (suc n)) =
elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) λ {(a , b) → refl}
|
{
"alphanum_fraction": 0.5617206983,
"avg_line_length": 46.5446428571,
"ext": "agda",
"hexsha": "092e8ccef93699412e372083c163f0f552aa5694",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "21cf7a1c292ea39dac1a0151b70088c36e7f9143",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shlevy/cubical",
"max_forks_repo_path": "Cubical/HITs/Truncation/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "21cf7a1c292ea39dac1a0151b70088c36e7f9143",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shlevy/cubical",
"max_issues_repo_path": "Cubical/HITs/Truncation/Properties.agda",
"max_line_length": 146,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "21cf7a1c292ea39dac1a0151b70088c36e7f9143",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shlevy/cubical",
"max_stars_repo_path": "Cubical/HITs/Truncation/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 8840,
"size": 20852
}
|
module GetTypes where
open import Level using () renaming (zero to ℓ₀)
open import Data.Nat using (ℕ)
open import Data.List using (List ; map)
open import Data.Vec using (Vec) renaming (map to mapV)
open import Function using (_∘_ ; id)
open import Relation.Binary.PropositionalEquality using (_≗_)
open import Structures using (Shaped ; module Shaped)
open import Instances using (VecShaped)
module ListList where
record Get : Set₁ where
field
get : {A : Set} → List A → List A
free-theorem : {α β : Set} → (f : α → β) → get ∘ map f ≗ map f ∘ get
module VecVec where
record Get : Set₁ where
field
getlen : ℕ → ℕ
get : {A : Set} {n : ℕ} → Vec A n → Vec A (getlen n)
free-theorem : {α β : Set} (f : α → β) {n : ℕ} → get {_} {n} ∘ mapV f ≗ mapV f ∘ get
module PartialVecVec where
record Get : Set₁ where
field
I : Set
gl₁ : I → ℕ
gl₂ : I → ℕ
get : {A : Set} {i : I} → Vec A (gl₁ i) → Vec A (gl₂ i)
free-theorem : {α β : Set} → (f : α → β) → {i : I} → get {_} {i} ∘ mapV f ≗ mapV f ∘ get
VecVec-to-PartialVecVec : VecVec.Get → PartialVecVec.Get
VecVec-to-PartialVecVec G = record
{ I = ℕ
; gl₁ = id
; gl₂ = getlen
; get = get
; free-theorem = free-theorem
} where open VecVec.Get G
module PartialShapeShape where
record Get : Set₁ where
field
SourceShape : Set
SourceContainer : Set → SourceShape → Set
SourceShapeT : Shaped SourceShape SourceContainer
ViewShape : Set
ViewContainer : Set → ViewShape → Set
ViewShapeT : Shaped ViewShape ViewContainer
I : Set
gl₁ : I → SourceShape
gl₂ : I → ViewShape
open Shaped SourceShapeT using () renaming (fmap to fmapS)
open Shaped ViewShapeT using () renaming (fmap to fmapV)
field
get : {A : Set} {i : I} → SourceContainer A (gl₁ i) → ViewContainer A (gl₂ i)
free-theorem : {α β : Set} → (f : α → β) → {i : I} → get {_} {i} ∘ fmapS f ≗ fmapV f ∘ get
open Shaped SourceShapeT public using () renaming (fmap to fmapS)
open Shaped ViewShapeT public using () renaming (fmap to fmapV)
PartialVecVec-to-PartialShapeShape : PartialVecVec.Get → PartialShapeShape.Get
PartialVecVec-to-PartialShapeShape G = record
{ SourceShapeT = VecShaped
; ViewShapeT = VecShaped
; I = I
; gl₁ = gl₁
; gl₂ = gl₂
; get = get
; free-theorem = free-theorem
} where open PartialVecVec.Get G
|
{
"alphanum_fraction": 0.6202118989,
"avg_line_length": 31.0632911392,
"ext": "agda",
"hexsha": "83f6845c1dc5f0ae859ce7aa312b6536797d28ed",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jvoigtlaender/bidiragda",
"max_forks_repo_path": "GetTypes.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jvoigtlaender/bidiragda",
"max_issues_repo_path": "GetTypes.agda",
"max_line_length": 96,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jvoigtlaender/bidiragda",
"max_stars_repo_path": "GetTypes.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 796,
"size": 2454
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- An inductive definition of the sublist relation with respect to a
-- setoid. This is a generalisation of what is commonly known as Order
-- Preserving Embeddings (OPE).
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (Setoid; Rel)
module Data.List.Relation.Binary.Sublist.Setoid
{c ℓ} (S : Setoid c ℓ) where
open import Level using (_⊔_)
open import Data.List.Base using (List; []; _∷_)
import Data.List.Relation.Binary.Equality.Setoid as SetoidEquality
import Data.List.Relation.Binary.Sublist.Heterogeneous as Heterogeneous
import Data.List.Relation.Binary.Sublist.Heterogeneous.Core
as HeterogeneousCore
import Data.List.Relation.Binary.Sublist.Heterogeneous.Properties
as HeterogeneousProperties
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P using (_≡_)
open Setoid S renaming (Carrier to A)
open SetoidEquality S
------------------------------------------------------------------------
-- Definition
infix 4 _⊆_
_⊆_ : Rel (List A) (c ⊔ ℓ)
_⊆_ = Heterogeneous.Sublist _≈_
------------------------------------------------------------------------
-- Re-export definitions and operations from heterogeneous sublists
open HeterogeneousCore _≈_ using ([]; _∷_; _∷ʳ_) public
open Heterogeneous {R = _≈_} hiding (Sublist; []; _∷_; _∷ʳ_) public
renaming
(toAny to to∈; fromAny to from∈)
------------------------------------------------------------------------
-- Relational properties holding for Setoid case
⊆-reflexive : _≋_ ⇒ _⊆_
⊆-reflexive = HeterogeneousProperties.fromPointwise
⊆-refl : Reflexive _⊆_
⊆-refl = HeterogeneousProperties.refl refl
⊆-trans : Transitive _⊆_
⊆-trans = HeterogeneousProperties.trans trans
⊆-antisym : Antisymmetric _≋_ _⊆_
⊆-antisym = HeterogeneousProperties.antisym (λ x≈y _ → x≈y)
⊆-isPreorder : IsPreorder _≋_ _⊆_
⊆-isPreorder = record
{ isEquivalence = ≋-isEquivalence
; reflexive = ⊆-reflexive
; trans = ⊆-trans
}
⊆-isPartialOrder : IsPartialOrder _≋_ _⊆_
⊆-isPartialOrder = record
{ isPreorder = ⊆-isPreorder
; antisym = ⊆-antisym
}
⊆-preorder : Preorder c (c ⊔ ℓ) (c ⊔ ℓ)
⊆-preorder = record
{ isPreorder = ⊆-isPreorder
}
⊆-poset : Poset c (c ⊔ ℓ) (c ⊔ ℓ)
⊆-poset = record
{ isPartialOrder = ⊆-isPartialOrder
}
|
{
"alphanum_fraction": 0.6156670747,
"avg_line_length": 29.8902439024,
"ext": "agda",
"hexsha": "6140d6dddb1514717e72729d6eb42bb916d2d10d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/Setoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/Setoid.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/Setoid.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 731,
"size": 2451
}
|
module Structure.Function where
import Lvl
open import Lang.Instance
open import Logic.Predicate
open import Logic
open import Structure.Function.Names
open import Structure.Setoid
open import Type
private variable ℓ ℓₒ ℓₒ₁ ℓₒ₂ ℓₒ₃ ℓₗ ℓₗ₁ ℓₗ₂ ℓₗ₃ : Lvl.Level
private variable A B : Type{ℓ}
-- The function `f` "(behaves like)/is a function" in the context of `_≡_` from the Equiv instance.
-- `congruence` is the defining property of a function.
module _
⦃ equiv-A : Equiv{ℓₗ₁}(A) ⦄
⦃ equiv-B : Equiv{ℓₗ₂}(B) ⦄
(f : A → B)
where
record Function : Stmt{Lvl.of(A) Lvl.⊔ ℓₗ₁ Lvl.⊔ ℓₗ₂} where
constructor intro
field congruence : Congruence₁(f)
congruence₁ = inst-fn Function.congruence
_→ᶠⁿ_ : (A : Setoid{ℓₗ₁}{ℓₒ₁}) → (B : Setoid{ℓₗ₂}{ℓₒ₂}) → Type{ℓₒ₁ Lvl.⊔ ℓₒ₂ Lvl.⊔ ℓₗ₁ Lvl.⊔ ℓₗ₂}
([∃]-intro A) →ᶠⁿ ([∃]-intro B) = ∃(Function{A = A}{B = B})
|
{
"alphanum_fraction": 0.6859122402,
"avg_line_length": 29.8620689655,
"ext": "agda",
"hexsha": "a2a9cbd1902a76146f319f34940613462b1c8506",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Function.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Function.agda",
"max_line_length": 99,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Function.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 389,
"size": 866
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.Prod.Base where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
-- Here we define an inductive version of the product type, see below
-- for its uses.
-- See `Cubical.Data.Sigma` for `_×_` defined as a special case of
-- sigma types, which is the generally preferred one.
-- If × is defined using Σ then transp/hcomp will be compute
-- "negatively", that is, they won't reduce unless we project out the
-- first of second component. This is not always what we want so this
-- implementation is done using a datatype which computes positively.
private
variable
ℓ ℓ' : Level
data _×_ (A : Type ℓ) (B : Type ℓ') : Type (ℓ-max ℓ ℓ') where
_,_ : A → B → A × B
infixr 5 _×_
proj₁ : {A : Type ℓ} {B : Type ℓ'} → A × B → A
proj₁ (x , _) = x
proj₂ : {A : Type ℓ} {B : Type ℓ'} → A × B → B
proj₂ (_ , x) = x
private
variable
A : Type ℓ
B C : A → Type ℓ
intro : (∀ a → B a) → (∀ a → C a) → ∀ a → B a × C a
intro f g a = f a , g a
map : {B : Type ℓ} {D : B → Type ℓ'}
→ (∀ a → C a) → (∀ b → D b) → (x : A × B) → C (proj₁ x) × D (proj₂ x)
map f g = intro (f ∘ proj₁) (g ∘ proj₂)
×-η : {A : Type ℓ} {B : Type ℓ'} (x : A × B) → x ≡ ((proj₁ x) , (proj₂ x))
×-η (x , x₁) = refl
|
{
"alphanum_fraction": 0.5971705138,
"avg_line_length": 25.8269230769,
"ext": "agda",
"hexsha": "6b88b3c5a078427cee78057abc65cbd796d7b504",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Data/Prod/Base.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Data/Prod/Base.agda",
"max_line_length": 74,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Data/Prod/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 488,
"size": 1343
}
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Prelude
open import LibraBFT.Concrete.System.Parameters
import LibraBFT.Concrete.Properties.VotesOnce as VO
import LibraBFT.Concrete.Properties.LockedRound as LR
open import LibraBFT.Impl.Consensus.Types hiding (EpochConfigFor)
open EpochConfig
open import LibraBFT.Yasm.Yasm (ℓ+1 0ℓ) EpochConfig epochId authorsN ConcSysParms NodeId-PK-OK
-- This module collects in one place the obligations an
-- implementation must meet in order to enjoy the properties
-- proved in Abstract.Properties.
module LibraBFT.Concrete.Obligations where
record ImplObligations : Set₁ where
field
-- Structural obligations:
sps-cor : StepPeerState-AllValidParts
-- Semantic obligations:
--
-- VotesOnce:
vo₁ : VO.ImplObligation₁
vo₂ : VO.ImplObligation₂
-- LockedRound:
lr₁ : LR.ImplObligation₁
|
{
"alphanum_fraction": 0.7468916519,
"avg_line_length": 35.1875,
"ext": "agda",
"hexsha": "9b739f4321b963744042be19b3ece027b3d26433",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "haroldcarr/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Concrete/Obligations.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "haroldcarr/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Concrete/Obligations.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "haroldcarr/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Concrete/Obligations.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 302,
"size": 1126
}
|
open import Nat
open import Prelude
open import contexts
open import dynamics-core
open import canonical-value-forms
module canonical-boxed-forms where
canonical-boxed-forms-num : ∀{Δ d} →
Δ , ∅ ⊢ d :: num →
d boxedval →
Σ[ n ∈ Nat ] (d == N n)
canonical-boxed-forms-num (TAVar _) (BVVal ())
canonical-boxed-forms-num wt (BVVal v) = canonical-value-forms-num wt v
-- this type gives somewhat nicer syntax for the output of the canonical
-- forms lemma for boxed values at arrow type
data cbf-arr : (Δ : hctx) (d : ihexp) (τ1 τ2 : htyp) → Set where
CBFALam : ∀{Δ d τ1 τ2} →
Σ[ x ∈ Nat ] Σ[ d' ∈ ihexp ]
((d == (·λ x ·[ τ1 ] d')) ×
(Δ , ■ (x , τ1) ⊢ d' :: τ2)
)
→ cbf-arr Δ d τ1 τ2
CBFACastArr : ∀{Δ d τ1 τ2} →
Σ[ d' ∈ ihexp ] Σ[ τ1' ∈ htyp ] Σ[ τ2' ∈ htyp ]
((d == (d' ⟨ τ1' ==> τ2' ⇒ τ1 ==> τ2 ⟩)) ×
(τ1' ==> τ2' ≠ τ1 ==> τ2) ×
(Δ , ∅ ⊢ d' :: τ1' ==> τ2') ×
(d' boxedval)
)
→ cbf-arr Δ d τ1 τ2
canonical-boxed-forms-arr : ∀{Δ d τ1 τ2 } →
Δ , ∅ ⊢ d :: (τ1 ==> τ2) →
d boxedval →
cbf-arr Δ d τ1 τ2
canonical-boxed-forms-arr (TAVar x₁) (BVVal ())
canonical-boxed-forms-arr (TALam f wt) (BVVal v) = CBFALam (canonical-value-forms-arr (TALam f wt) v)
canonical-boxed-forms-arr (TAAp wt wt₁) (BVVal ())
canonical-boxed-forms-arr (TAEHole x x₁) (BVVal ())
canonical-boxed-forms-arr (TANEHole x wt x₁) (BVVal ())
canonical-boxed-forms-arr (TACast wt x) (BVVal ())
canonical-boxed-forms-arr (TACast wt x) (BVArrCast x₁ bv) = CBFACastArr (_ , _ , _ , refl , x₁ , wt , bv)
canonical-boxed-forms-arr (TAFailedCast x x₁ x₂ x₃) (BVVal ())
-- this type gives somewhat nicer syntax for the output of the canonical
-- forms lemma for boxed values at sum type
data cbf-sum : (Δ : hctx) (d : ihexp) (τ1 τ2 : htyp) → Set where
CBFSInl : ∀{Δ d τ1 τ2} →
Σ[ d' ∈ ihexp ]
((d == (inl τ2 d')) ×
(Δ , ∅ ⊢ d' :: τ1) ×
(d boxedval)
)
→ cbf-sum Δ d τ1 τ2
CBFSInr : ∀{Δ d τ1 τ2} →
Σ[ d' ∈ ihexp ]
((d == (inr τ1 d')) ×
(Δ , ∅ ⊢ d' :: τ2) ×
(d boxedval)
)
→ cbf-sum Δ d τ1 τ2
CBFSCastSum : ∀{Δ d τ1 τ2} →
Σ[ d' ∈ ihexp ] Σ[ τ1' ∈ htyp ] Σ[ τ2' ∈ htyp ]
((d == (d' ⟨ τ1' ⊕ τ2' ⇒ τ1 ⊕ τ2 ⟩)) ×
(τ1' ⊕ τ2' ≠ τ1 ⊕ τ2) ×
(Δ , ∅ ⊢ d' :: τ1' ⊕ τ2') ×
(d' boxedval)
)
→ cbf-sum Δ d τ1 τ2
canonical-boxed-forms-sum : ∀{Δ d τ1 τ2 } →
Δ , ∅ ⊢ d :: (τ1 ⊕ τ2) →
d boxedval →
cbf-sum Δ d τ1 τ2
canonical-boxed-forms-sum (TAInl wt) x = CBFSInl (_ , refl , wt , x)
canonical-boxed-forms-sum (TAInr wt) x = CBFSInr (_ , refl , wt , x)
canonical-boxed-forms-sum (TACast wt x₁) (BVSumCast x bv) = CBFSCastSum (_ , _ , _ , refl , x , wt , bv)
canonical-boxed-forms-sum (TAVar x₁) (BVVal ())
canonical-boxed-forms-sum (TAAp wt wt₁) (BVVal ())
canonical-boxed-forms-sum (TACase wt _ wt₁ _ wt₂) (BVVal ())
canonical-boxed-forms-sum (TAFst wt) (BVVal ())
canonical-boxed-forms-sum (TASnd wt) (BVVal ())
canonical-boxed-forms-sum (TAEHole x₁ x₂) (BVVal ())
canonical-boxed-forms-sum (TANEHole x₁ wt x₂) (BVVal ())
canonical-boxed-forms-sum (TACast wt x₁) (BVVal ())
canonical-boxed-forms-sum (TAFailedCast wt x₁ x₂ x₃) (BVVal ())
-- this type gives somewhat nicer syntax for the output of the canonical
-- forms lemma for boxed values at product type
data cbf-prod : (Δ : hctx) (d : ihexp) (τ1 τ2 : htyp) → Set where
CBFPPair : ∀{Δ d τ1 τ2} →
Σ[ d1 ∈ ihexp ] Σ[ d2 ∈ ihexp ]
((d == ⟨ d1 , d2 ⟩) ×
(Δ , ∅ ⊢ d1 :: τ1) ×
(Δ , ∅ ⊢ d2 :: τ2) ×
(d1 boxedval) ×
(d2 boxedval)
)
→ cbf-prod Δ d τ1 τ2
CBFPCastProd : ∀{Δ d τ1 τ2} →
Σ[ d' ∈ ihexp ] Σ[ τ1' ∈ htyp ] Σ[ τ2' ∈ htyp ]
((d == (d' ⟨ τ1' ⊠ τ2' ⇒ τ1 ⊠ τ2 ⟩)) ×
(τ1' ⊠ τ2' ≠ τ1 ⊠ τ2) ×
(Δ , ∅ ⊢ d' :: τ1' ⊠ τ2') ×
(d' boxedval)
)
→ cbf-prod Δ d τ1 τ2
canonical-boxed-forms-prod : ∀{Δ d τ1 τ2 } →
Δ , ∅ ⊢ d :: (τ1 ⊠ τ2) →
d boxedval →
cbf-prod Δ d τ1 τ2
canonical-boxed-forms-prod (TAPair wt wt₁) (BVVal (VPair x x₁)) = CBFPPair (_ , _ , refl , wt , wt₁ , BVVal x , BVVal x₁)
canonical-boxed-forms-prod (TAPair wt wt₁) (BVPair bv bv₁) = CBFPPair (_ , _ , refl , wt , wt₁ , bv , bv₁)
canonical-boxed-forms-prod (TACast wt x) (BVProdCast x₁ bv) = CBFPCastProd (_ , _ , _ , refl , x₁ , wt , bv)
canonical-boxed-forms-hole : ∀{Δ d} →
Δ , ∅ ⊢ d :: ⦇-⦈ →
d boxedval →
Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ]
((d == d' ⟨ τ' ⇒ ⦇-⦈ ⟩) ×
(τ' ground) ×
(Δ , ∅ ⊢ d' :: τ'))
canonical-boxed-forms-hole (TAVar x₁) (BVVal ())
canonical-boxed-forms-hole (TAAp wt wt₁) (BVVal ())
canonical-boxed-forms-hole (TAEHole x x₁) (BVVal ())
canonical-boxed-forms-hole (TANEHole x wt x₁) (BVVal ())
canonical-boxed-forms-hole (TACast wt x) (BVVal ())
canonical-boxed-forms-hole (TACast wt x) (BVHoleCast x₁ bv) = _ , _ , refl , x₁ , wt
canonical-boxed-forms-hole (TAFailedCast x x₁ x₂ x₃) (BVVal ())
canonical-boxed-forms-coverage : ∀{Δ d τ} →
Δ , ∅ ⊢ d :: τ →
d boxedval →
τ ≠ num →
((τ1 : htyp) (τ2 : htyp) → τ ≠ (τ1 ==> τ2)) →
((τ1 : htyp) (τ2 : htyp) → τ ≠ (τ1 ⊕ τ2)) →
((τ1 : htyp) (τ2 : htyp) → τ ≠ (τ1 ⊠ τ2)) →
τ ≠ ⦇-⦈ →
⊥
canonical-boxed-forms-coverage TANum bv nn na ns np nh = nn refl
canonical-boxed-forms-coverage (TAPlus wt wt₁) bv nn na ns np nh = nn refl
canonical-boxed-forms-coverage (TALam x wt) bv nn na ns np nh = na _ _ refl
canonical-boxed-forms-coverage (TAAp wt wt₁) (BVVal ()) nn na ns np nh
canonical-boxed-forms-coverage (TAInl wt) bv nn na ns np nh = ns _ _ refl
canonical-boxed-forms-coverage (TAInr wt) bv nn na ns np nh = ns _ _ refl
canonical-boxed-forms-coverage (TACase wt _ wt₁ _ wt₂) (BVVal ()) nn na ns np nh
canonical-boxed-forms-coverage (TAEHole x x₁) (BVVal ()) nn na ns np nh
canonical-boxed-forms-coverage (TANEHole x wt x₁) (BVVal ()) nn na ns np nh
canonical-boxed-forms-coverage (TACast wt x) (BVArrCast x₁ bv) nn na ns np nh = na _ _ refl
canonical-boxed-forms-coverage (TACast wt x) (BVSumCast x₁ bv) nn na ns np nh = ns _ _ refl
canonical-boxed-forms-coverage (TACast wt x) (BVProdCast x₁ bv) nn na ns np nh = np _ _ refl
canonical-boxed-forms-coverage (TACast wt x) (BVHoleCast x₁ bv) nn na ns np nh = nh refl
canonical-boxed-forms-coverage (TAFailedCast wt x x₁ x₂) (BVVal ()) nn na ns np nh
canonical-boxed-forms-coverage (TAPair wt wt₁) bv nn na ns np nh = np _ _ refl
canonical-boxed-forms-coverage (TAFst wt) (BVVal ()) nn na ns np nh
canonical-boxed-forms-coverage (TASnd wt) (BVVal ()) nn na ns np nh
|
{
"alphanum_fraction": 0.5090715048,
"avg_line_length": 46.85,
"ext": "agda",
"hexsha": "522453afc150c4a6d116a0244f27ceea53ab38f8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-agda",
"max_forks_repo_path": "canonical-boxed-forms.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-agda",
"max_issues_repo_path": "canonical-boxed-forms.agda",
"max_line_length": 123,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-agda",
"max_stars_repo_path": "canonical-boxed-forms.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2751,
"size": 7496
}
|
------------------------------------------------------------------------
-- The Maybe type
------------------------------------------------------------------------
module Data.Maybe where
------------------------------------------------------------------------
-- The type
open import Data.Maybe.Core public
------------------------------------------------------------------------
-- Some operations
open import Data.Bool using (Bool; true; false)
open import Data.Unit using (⊤)
boolToMaybe : Bool → Maybe ⊤
boolToMaybe true = just _
boolToMaybe false = nothing
maybeToBool : ∀ {A} → Maybe A → Bool
maybeToBool (just _) = true
maybeToBool nothing = false
-- A non-dependent eliminator.
maybe : {a b : Set} → (a → b) → b → Maybe a → b
maybe j n (just x) = j x
maybe j n nothing = n
maybe₀₁ : {a : Set} {b : Set₁} → (a → b) → b → Maybe a → b
maybe₀₁ j n (just x) = j x
maybe₀₁ j n nothing = n
------------------------------------------------------------------------
-- Maybe monad
open import Data.Function
open import Category.Functor
open import Category.Monad
open import Category.Monad.Identity
functor : RawFunctor Maybe
functor = record
{ _<$>_ = λ f → maybe (just ∘ f) nothing
}
monadT : ∀ {M} → RawMonad M → RawMonad (λ A → M (Maybe A))
monadT M = record
{ return = M.return ∘ just
; _>>=_ = λ m f → M._>>=_ m (maybe f (M.return nothing))
}
where module M = RawMonad M
monad : RawMonad Maybe
monad = monadT IdentityMonad
monadZero : RawMonadZero Maybe
monadZero = record
{ monad = monad
; ∅ = nothing
}
monadPlus : RawMonadPlus Maybe
monadPlus = record
{ monadZero = monadZero
; _∣_ = _∣_
}
where
_∣_ : ∀ {a} → Maybe a → Maybe a → Maybe a
nothing ∣ y = y
just x ∣ y = just x
------------------------------------------------------------------------
-- Equality
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; refl)
drop-just : ∀ {A} {x y : A} → just x ≡ just y → x ≡ y
drop-just refl = refl
decSetoid : ∀ {A} → Decidable (_≡_ {A}) → DecSetoid
decSetoid {A} _A-≟_ = PropEq.decSetoid _≟_
where
_≟_ : Decidable (_≡_ {Maybe A})
just x ≟ just y with x A-≟ y
just x ≟ just .x | yes refl = yes refl
just x ≟ just y | no x≢y = no (x≢y ∘ drop-just)
just x ≟ nothing = no λ()
nothing ≟ just y = no λ()
nothing ≟ nothing = yes refl
------------------------------------------------------------------------
-- Any and All
open import Data.Product using (_,_)
open import Data.Empty using (⊥)
import Relation.Nullary.Decidable as Dec
data Any {A} (P : A → Set) : Maybe A → Set where
just : ∀ {x} (px : P x) → Any P (just x)
data All {A} (P : A → Set) : Maybe A → Set where
just : ∀ {x} (px : P x) → All P (just x)
nothing : All P nothing
IsJust : ∀ {A} → Maybe A → Set
IsJust = Any (λ _ → ⊤)
IsNothing : ∀ {A} → Maybe A → Set
IsNothing = All (λ _ → ⊥)
private
drop-just-Any : ∀ {A} {P : A → Set} {x} → Any P (just x) → P x
drop-just-Any (just px) = px
drop-just-All : ∀ {A} {P : A → Set} {x} → All P (just x) → P x
drop-just-All (just px) = px
anyDec : ∀ {A} {P : A → Set} →
(∀ x → Dec (P x)) → (x : Maybe A) → Dec (Any P x)
anyDec p nothing = no λ()
anyDec p (just x) = Dec.map (just , drop-just-Any) (p x)
allDec : ∀ {A} {P : A → Set} →
(∀ x → Dec (P x)) → (x : Maybe A) → Dec (All P x)
allDec p nothing = yes nothing
allDec p (just x) = Dec.map (just , drop-just-All) (p x)
|
{
"alphanum_fraction": 0.5140160183,
"avg_line_length": 26.0895522388,
"ext": "agda",
"hexsha": "62828201cf4b5463fd4cb57db1676e1487c7df29",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Data/Maybe.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Data/Maybe.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Data/Maybe.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 1112,
"size": 3496
}
|
open import Agda.Builtin.Reflection
open import Agda.Builtin.Unit
open import Agda.Builtin.String
open import Agda.Builtin.Nat
open import Agda.Builtin.List
infixl 5 _>>=_
_>>=_ = bindTC
pure = returnTC
defToTerm : Name → Definition → List (Arg Term) → Term
defToTerm _ (function cs) as = pat-lam cs as
defToTerm _ (data-cons d) as = con d as
defToTerm _ _ _ = unknown
derefImmediate : Term → TC Term
derefImmediate (def f args) = getDefinition f >>= λ f' → pure (defToTerm f f' args)
derefImmediate x = pure x
macro
reflect : ∀ {ℓ} {t : Set ℓ} → t → Type → TC ⊤
reflect {_} {t} x ty = quoteTC x >>= derefImmediate >>= λ x' → quoteTC t >>= checkType x' >>= quoteTC >>= unify ty
-- reflect {_} {t} x ty = quoteTC x >>= derefImmediate >>= quoteTC >>= unify ty
data Maybe {ℓ} (t : Set ℓ) : Set ℓ where
just : t → Maybe t
nothing : Maybe t
listToMaybe : ∀ {ℓ} {t : Set ℓ} → List t → Maybe t
listToMaybe [] = nothing
listToMaybe (x ∷ _) = just x
record Show {ℓ} (t : Set ℓ) : Set ℓ where
field
show : t → String
open Show {{...}}
instance
showN : Show Nat
showN = record { show = λ _ → "nat" }
mShow : ∀ {ℓ} {t : Set ℓ} → {{_ : Show t}} → Show (Maybe t)
mShow = record {
show = λ { (just x) → show x ;
_ → "nothing" }
}
prog : String
prog =
let
x : List Nat
x = 3 ∷ []
in
show (listToMaybe x)
example : Term
example = reflect prog
|
{
"alphanum_fraction": 0.6076759062,
"avg_line_length": 22.6935483871,
"ext": "agda",
"hexsha": "a249df29f6553f040bb789ae3a9d9be4a4c5c19f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2404.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2404.agda",
"max_line_length": 116,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2404.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 483,
"size": 1407
}
|
{-# OPTIONS --without-K #-}
open import HoTT.Base
module HoTT.Base.Inspect where
open variables
data Inspect {i j} {A : 𝒰 i} {P : A → 𝒰 j} (f : Π A P) (x : A) (y : P x) : 𝒰 (i ⊔ j) where
[_] : y == f x → Inspect f x y
inspect : (f : Π A P) (x : A) → Inspect f x (f x)
inspect f x = [ refl ]
|
{
"alphanum_fraction": 0.5387205387,
"avg_line_length": 22.8461538462,
"ext": "agda",
"hexsha": "aceb7c5db2d122df1ed6db035efc011b945466cd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "michaelforney/hott",
"max_forks_repo_path": "HoTT/Base/Inspect.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "michaelforney/hott",
"max_issues_repo_path": "HoTT/Base/Inspect.agda",
"max_line_length": 90,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "michaelforney/hott",
"max_stars_repo_path": "HoTT/Base/Inspect.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 125,
"size": 297
}
|
{- Next step operator. -}
module TemporalOps.Next where
open import CategoryTheory.Categories
open import CategoryTheory.Instances.Reactive
open import CategoryTheory.Functor
open import CategoryTheory.CartesianStrength
open import TemporalOps.Common
open import Data.Product
open import Data.Sum
-- One-step delay operator.
▹_ : τ -> τ
(▹ A) zero = ⊤ zero
(▹ A) (suc n) = A n
infixr 70 ▹_
-- Functor instance for ▹
F-▹ : Endofunctor ℝeactive
F-▹ = record
{ omap = ▹_
; fmap = fmap-▹
; fmap-id = λ {_ n} -> fmap-▹-id {n = n}
; fmap-∘ = λ {_ _ _ _ _ n} -> fmap-▹-∘ {n = n}
; fmap-cong = fmap-▹-cong
}
where
-- Lifting of ▹
fmap-▹ : {A B : τ} -> A ⇴ B -> ▹ A ⇴ ▹ B
fmap-▹ f zero = λ _ → top.tt
fmap-▹ f (suc n) = f n
-- ▹ preserves identities
fmap-▹-id : ∀ {A : τ} {n : ℕ} {a : ▹ A at n}
-> (fmap-▹ id at n) a ≡ a
fmap-▹-id {n = zero} = refl
fmap-▹-id {n = suc n} = refl
-- ▹ preserves composition
fmap-▹-∘ : ∀ {A B C : τ} {g : B ⇴ C} {f : A ⇴ B} {n : ℕ} {a : ▹ A at n}
-> (fmap-▹ (g ∘ f) at n) a ≡ (fmap-▹ g ∘ fmap-▹ f at n) a
fmap-▹-∘ {n = zero} = refl
fmap-▹-∘ {n = suc n} = refl
-- ▹ is congruent
fmap-▹-cong : ∀{A B : τ} {f f′ : A ⇴ B}
-> ({n : ℕ} {a : A at n} -> f n a ≡ f′ n a)
-> ({n : ℕ} {a : ▹ A at n} -> (fmap-▹ f at n) a
≡ (fmap-▹ f′ at n) a)
fmap-▹-cong e {zero} = refl
fmap-▹-cong e {suc n} = e
-- ▹ is a Cartesian functor
F-cart-▹ : CartesianFunctor F-▹ ℝeactive-cart ℝeactive-cart
F-cart-▹ = record
{ u = u-▹
; m = m-▹
; m-nat₁ = m-nat₁-▹
; m-nat₂ = m-nat₂-▹
; associative = λ {A}{B}{C}{n}{a} -> assoc-▹ {A}{B}{C}{n}{a}
; unital-right = λ {A}{n}{a} -> unit-right-▹ {A}{n}{a}
; unital-left = λ {A}{n}{a} -> unit-left-▹ {A}{n}{a}
}
where
open Functor F-▹
u-▹ : ⊤ ⇴ ▹ ⊤
u-▹ zero t = top.tt
u-▹ (suc n) t = top.tt
m-▹ : ∀(A B : τ) -> ▹ A ⊗ ▹ B ⇴ ▹ (A ⊗ B)
m-▹ A B zero _ = top.tt
m-▹ A B (suc n) p = p
m-nat₁-▹ : ∀{A B C : τ} (f : A ⇴ B)
-> fmap (f * id) ∘ m-▹ A C ≈ m-▹ B C ∘ fmap f * id
m-nat₁-▹ f {zero} {a} = refl
m-nat₁-▹ f {suc n} {a} = refl
m-nat₂-▹ : ∀{A B C : τ} (f : A ⇴ B)
-> fmap (id * f) ∘ m-▹ C A ≈ m-▹ C B ∘ id * fmap f
m-nat₂-▹ f {zero} {a} = refl
m-nat₂-▹ f {suc n} {a} = refl
assoc-▹ : ∀{A B C : τ}
-> m-▹ A (B ⊗ C) ∘ id * m-▹ B C ∘ assoc-right
≈ fmap assoc-right ∘ m-▹ (A ⊗ B) C ∘ m-▹ A B * id
assoc-▹ {A} {B} {C} {zero} {a} = refl
assoc-▹ {A} {B} {C} {suc n} {(▹A , ▹B) , ▹C} = refl
unit-right-▹ : ∀{A : τ} ->
fmap unit-right ∘ m-▹ A ⊤ ∘ (id * u-▹) ≈ unit-right
unit-right-▹ {A} {zero} {a} = refl
unit-right-▹ {A} {suc n} {a} = refl
unit-left-▹ : ∀{A : τ} ->
fmap unit-left ∘ m-▹ ⊤ A ∘ (u-▹ * id) ≈ unit-left
unit-left-▹ {A} {zero} {a} = refl
unit-left-▹ {A} {suc n} {a} = refl
-- ▹ preserves coproducts
sum-▹ : ∀{A B : τ} -> (▹ A ⊕ ▹ B) ⇴ ▹ (A ⊕ B)
sum-▹ zero v = top.tt
sum-▹ (suc n) v = v
|
{
"alphanum_fraction": 0.4422030099,
"avg_line_length": 29.7428571429,
"ext": "agda",
"hexsha": "f2e71734f3f863aa01a0ff81d629d2c1c94c5048",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DimaSamoz/temporal-type-systems",
"max_forks_repo_path": "src/TemporalOps/Next.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DimaSamoz/temporal-type-systems",
"max_issues_repo_path": "src/TemporalOps/Next.agda",
"max_line_length": 75,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DimaSamoz/temporal-type-systems",
"max_stars_repo_path": "src/TemporalOps/Next.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z",
"num_tokens": 1470,
"size": 3123
}
|
module Luau.RuntimeType where
open import Luau.Value using (Value; nil; addr; number)
data RuntimeType : Set where
function : RuntimeType
number : RuntimeType
nil : RuntimeType
valueType : Value → RuntimeType
valueType nil = nil
valueType (addr x) = function
valueType (number x) = number
|
{
"alphanum_fraction": 0.755033557,
"avg_line_length": 21.2857142857,
"ext": "agda",
"hexsha": "25c0283aaf0574ff8f73a44028c48dce4cbc5647",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Tr4shh/Roblox-Luau",
"max_forks_repo_path": "prototyping/Luau/RuntimeType.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Tr4shh/Roblox-Luau",
"max_issues_repo_path": "prototyping/Luau/RuntimeType.agda",
"max_line_length": 55,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Tr4shh/Roblox-Luau",
"max_stars_repo_path": "prototyping/Luau/RuntimeType.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 79,
"size": 298
}
|
------------------------------------------------------------------------
-- An abstraction of various forms of recursion/induction
------------------------------------------------------------------------
-- Note: The types in this module can perhaps be easier to understand
-- if they are normalised. Note also that Agda can do the
-- normalisation for you.
module Induction where
open import Relation.Unary
-- A RecStruct describes the allowed structure of recursion. The
-- examples in Induction.Nat should explain what this is all about.
RecStruct : Set → Set₁
RecStruct a = Pred a → Pred a
-- A recursor builder constructs an instance of a recursion structure
-- for a given input.
RecursorBuilder : ∀ {a} → RecStruct a → Set₁
RecursorBuilder {a} Rec = (P : Pred a) → Rec P ⊆′ P → Universal (Rec P)
-- A recursor can be used to actually compute/prove something useful.
Recursor : ∀ {a} → RecStruct a → Set₁
Recursor {a} Rec = (P : Pred a) → Rec P ⊆′ P → Universal P
-- And recursors can be constructed from recursor builders.
build : ∀ {a} {Rec : RecStruct a} →
RecursorBuilder Rec →
Recursor Rec
build builder P f x = f x (builder P f x)
-- We can repeat the exercise above for subsets of the type we are
-- recursing over.
SubsetRecursorBuilder : ∀ {a} → Pred a → RecStruct a → Set₁
SubsetRecursorBuilder {a} Q Rec = (P : Pred a) → Rec P ⊆′ P → Q ⊆′ Rec P
SubsetRecursor : ∀ {a} → Pred a → RecStruct a → Set₁
SubsetRecursor {a} Q Rec = (P : Pred a) → Rec P ⊆′ P → Q ⊆′ P
subsetBuild : ∀ {a} {Q : Pred a} {Rec : RecStruct a} →
SubsetRecursorBuilder Q Rec →
SubsetRecursor Q Rec
subsetBuild builder P f x q = f x (builder P f x q)
|
{
"alphanum_fraction": 0.6180637544,
"avg_line_length": 33.88,
"ext": "agda",
"hexsha": "3daa6eaaa841dee44715702df3e32949bee02987",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Induction.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Induction.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Induction.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 453,
"size": 1694
}
|
------------------------------------------------------------------------
-- An equality postulate which evaluates
------------------------------------------------------------------------
module Relation.Binary.PropositionalEquality.TrustMe where
open import Relation.Binary.PropositionalEquality
private
primitive
primTrustMe : {A : Set}{a b : A} → a ≡ b
-- trustMe {a = x} {b = y} evaluates to refl if x and y are
-- definitionally equal.
--
-- For an example of the use of trustMe, see Data.String._≟_.
trustMe : {A : Set}{a b : A} → a ≡ b
trustMe = primTrustMe
|
{
"alphanum_fraction": 0.5235602094,
"avg_line_length": 28.65,
"ext": "agda",
"hexsha": "f363eed87fd5767c0b9738406e3f575045ae7105",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Relation/Binary/PropositionalEquality/TrustMe.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Relation/Binary/PropositionalEquality/TrustMe.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Relation/Binary/PropositionalEquality/TrustMe.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 131,
"size": 573
}
|
-- As reported by Andreas on 2017-01-23
open import Common.Equality
open import Common.Product
data Bool : Set where
true false : Bool
f : (x y : Bool) → Bool
f true y = y
-- f false x = true -- Missing case
test : let
X : Bool → Bool → Bool
X = {! f !}
in (∀{x y} → X (f false x) y ≡ y) × (X false false ≡ true)
test = refl , refl
-- If we add the missing clause f false x = true, then X has
-- for instance solution f.
|
{
"alphanum_fraction": 0.606741573,
"avg_line_length": 21.1904761905,
"ext": "agda",
"hexsha": "02c3a20fd7799c36b0a33e9d685b0d0d470aa20d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue2426.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue2426.agda",
"max_line_length": 60,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue2426.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 144,
"size": 445
}
|
open import Prelude hiding (lift; id)
module Implicits.Syntax.LNMetaType where
open import Implicits.Syntax.Type
open import Data.Nat as Nat
mutual
data MetaSType (m : ℕ) : Set where
tvar : ℕ → MetaSType m
mvar : Fin m → MetaSType m
_→'_ : (a b : MetaType m) → MetaSType m
tc : ℕ → MetaSType m
data MetaType (m : ℕ) : Set where
_⇒_ : (a b : MetaType m) → MetaType m
∀' : MetaType m → MetaType m
simpl : MetaSType m → MetaType m
mutual
open-meta : ∀ {m} → ℕ → MetaType m → MetaType (suc m)
open-meta k (a ⇒ b) = open-meta k a ⇒ open-meta k b
open-meta k (∀' a) = ∀' (open-meta (suc k) a )
open-meta k (simpl x) = simpl (open-st k x)
where
open-st : ∀ {m} → ℕ → MetaSType m → MetaSType (suc m)
open-st k (tvar x) with Nat.compare x k
open-st .(suc (x N+ k)) (tvar x) | less .x k = tvar x
open-st k (tvar .k) | equal .k = mvar zero
open-st k (tvar .(suc (k N+ x))) | greater .k x = tvar (k N+ x)
open-st k (mvar x) = mvar (suc x)
open-st k (a →' b) = open-meta k a →' open-meta k b
open-st k (tc x) = tc x
mutual
data TClosedS {m} (n : ℕ) : MetaSType m → Set where
tvar : ∀ {x} → (x N< n) → TClosedS n (tvar x)
mvar : ∀ {x} → TClosedS n (mvar x)
_→'_ : ∀ {a b} → TClosed n a → TClosed n b → TClosedS n (a →' b)
tc : ∀ {c} → TClosedS n (tc c)
data TClosed {m} (n : ℕ) : MetaType m → Set where
_⇒_ : ∀ {a b} → TClosed n a → TClosed n b → TClosed n (a ⇒ b)
∀' : ∀ {a} → TClosed (suc n) a → TClosed n (∀' a)
simpl : ∀ {τ} → TClosedS n τ → TClosed n (simpl τ)
to-meta : ∀ {ν} → Type ν → MetaType zero
to-meta (simpl (tc x)) = simpl (tc x)
to-meta (simpl (tvar n)) = simpl (tvar (toℕ n))
to-meta (simpl (a →' b)) = simpl (to-meta a →' to-meta b)
to-meta (a ⇒ b) = to-meta a ⇒ to-meta b
to-meta (∀' a) = ∀' (to-meta a)
from-meta : ∀ {ν} {a : MetaType zero} → TClosed ν a → Type ν
from-meta (a ⇒ b) = from-meta a ⇒ from-meta b
from-meta (∀' a) = ∀' (from-meta a)
from-meta (simpl (tvar x)) = simpl (tvar (fromℕ≤ x))
from-meta (simpl (mvar {()}))
from-meta (simpl (a →' b)) = simpl (from-meta a →' from-meta b)
from-meta (simpl (tc {c})) = simpl (tc c)
|
{
"alphanum_fraction": 0.5551992671,
"avg_line_length": 34.6507936508,
"ext": "agda",
"hexsha": "8ef70e007ce91a270562c45ba54db41d5a5fc2e8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Implicits/Syntax/LNMetaType.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Implicits/Syntax/LNMetaType.agda",
"max_line_length": 69,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Implicits/Syntax/LNMetaType.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 868,
"size": 2183
}
|
{-# OPTIONS --safe #-}
module Cubical.Experiments.HAEquivInt where
open import Cubical.Experiments.HAEquivInt.Base public
|
{
"alphanum_fraction": 0.7903225806,
"avg_line_length": 20.6666666667,
"ext": "agda",
"hexsha": "819a03aac3ca75a338b679bf8e29f0f5f39bf804",
"lang": "Agda",
"max_forks_count": 134,
"max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z",
"max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "marcinjangrzybowski/cubical",
"max_forks_repo_path": "Cubical/Experiments/HAEquivInt.agda",
"max_issues_count": 584,
"max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "marcinjangrzybowski/cubical",
"max_issues_repo_path": "Cubical/Experiments/HAEquivInt.agda",
"max_line_length": 54,
"max_stars_count": 301,
"max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "marcinjangrzybowski/cubical",
"max_stars_repo_path": "Cubical/Experiments/HAEquivInt.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z",
"num_tokens": 29,
"size": 124
}
|
-----------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of the heterogeneous sublist relation
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Binary.Sublist.Heterogeneous.Properties where
open import Data.Empty
open import Data.List.Relation.Unary.Any using (Any; here; there)
open import Data.List.Base as List hiding (map; _∷ʳ_)
import Data.List.Properties as Lₚ
open import Data.List.Relation.Unary.Any.Properties
using (here-injective; there-injective)
open import Data.List.Relation.Binary.Pointwise as Pw using (Pointwise; []; _∷_)
open import Data.List.Relation.Binary.Sublist.Heterogeneous
open import Data.Maybe.Relation.Unary.All as MAll using (nothing; just)
open import Data.Nat using (ℕ; _≤_; _≥_); open ℕ; open _≤_
import Data.Nat.Properties as ℕₚ
open import Data.Product using (_×_; uncurry)
open import Function
open import Function.Bijection using (_⤖_; bijection)
open import Function.Equivalence using (_⇔_ ; equivalence)
open import Relation.Nullary using (yes; no; ¬_)
open import Relation.Nullary.Negation using (¬?)
import Relation.Nullary.Decidable as Dec
open import Relation.Unary as U using (Pred; _⊆_)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P using (_≡_)
------------------------------------------------------------------------
-- Injectivity of constructors
module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where
∷-injectiveˡ : ∀ {x y xs ys} {px qx : R x y} {pxs qxs : Sublist R xs ys} →
(Sublist R (x ∷ xs) (y ∷ ys) ∋ px ∷ pxs) ≡ (qx ∷ qxs) → px ≡ qx
∷-injectiveˡ P.refl = P.refl
∷-injectiveʳ : ∀ {x y xs ys} {px qx : R x y} {pxs qxs : Sublist R xs ys} →
(Sublist R (x ∷ xs) (y ∷ ys) ∋ px ∷ pxs) ≡ (qx ∷ qxs) → pxs ≡ qxs
∷-injectiveʳ P.refl = P.refl
∷ʳ-injective : ∀ {y xs ys} {pxs qxs : Sublist R xs ys} →
(Sublist R xs (y ∷ ys) ∋ y ∷ʳ pxs) ≡ (y ∷ʳ qxs) → pxs ≡ qxs
∷ʳ-injective P.refl = P.refl
module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where
length-mono-≤ : ∀ {as bs} → Sublist R as bs → length as ≤ length bs
length-mono-≤ [] = z≤n
length-mono-≤ (y ∷ʳ rs) = ℕₚ.≤-step (length-mono-≤ rs)
length-mono-≤ (r ∷ rs) = s≤s (length-mono-≤ rs)
------------------------------------------------------------------------
-- Conversion to and from Pointwise (proto-reflexivity)
fromPointwise : Pointwise R ⇒ Sublist R
fromPointwise [] = []
fromPointwise (p ∷ ps) = p ∷ fromPointwise ps
toPointwise : ∀ {as bs} → length as ≡ length bs →
Sublist R as bs → Pointwise R as bs
toPointwise {bs = []} eq [] = []
toPointwise {bs = b ∷ bs} eq (r ∷ rs) = r ∷ toPointwise (ℕₚ.suc-injective eq) rs
toPointwise {bs = b ∷ bs} eq (b ∷ʳ rs) =
⊥-elim $ ℕₚ.<-irrefl eq (s≤s (length-mono-≤ rs))
------------------------------------------------------------------------
-- Various functions' outputs are sublists
-- These lemmas are generalisations of results of the form `f xs ⊆ xs`.
-- (where _⊆_ stands for Sublist R). If R is reflexive then we can indeed
-- obtain `f xs ⊆ xs` from `xs ⊆ ys → f xs ⊆ ys`. The other direction is
-- only true if R is both reflexive and transitive.
module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where
tail-Sublist : ∀ {as bs} → Sublist R as bs →
MAll.All (λ as → Sublist R as bs) (tail as)
tail-Sublist [] = nothing
tail-Sublist (b ∷ʳ ps) = MAll.map (b ∷ʳ_) (tail-Sublist ps)
tail-Sublist (p ∷ ps) = just (_ ∷ʳ ps)
take-Sublist : ∀ {as bs} n → Sublist R as bs → Sublist R (take n as) bs
take-Sublist n (y ∷ʳ rs) = y ∷ʳ take-Sublist n rs
take-Sublist zero rs = minimum _
take-Sublist (suc n) [] = []
take-Sublist (suc n) (r ∷ rs) = r ∷ take-Sublist n rs
drop-Sublist : ∀ n → Sublist R ⇒ (Sublist R ∘′ drop n)
drop-Sublist n (y ∷ʳ rs) = y ∷ʳ drop-Sublist n rs
drop-Sublist zero rs = rs
drop-Sublist (suc n) [] = []
drop-Sublist (suc n) (r ∷ rs) = _ ∷ʳ drop-Sublist n rs
module _ {a b r p} {A : Set a} {B : Set b}
{R : REL A B r} {P : Pred A p} (P? : U.Decidable P) where
takeWhile-Sublist : ∀ {as bs} → Sublist R as bs → Sublist R (takeWhile P? as) bs
takeWhile-Sublist [] = []
takeWhile-Sublist (y ∷ʳ rs) = y ∷ʳ takeWhile-Sublist rs
takeWhile-Sublist {a ∷ as} (r ∷ rs) with P? a
... | yes pa = r ∷ takeWhile-Sublist rs
... | no ¬pa = minimum _
dropWhile-Sublist : ∀ {as bs} → Sublist R as bs → Sublist R (dropWhile P? as) bs
dropWhile-Sublist [] = []
dropWhile-Sublist (y ∷ʳ rs) = y ∷ʳ dropWhile-Sublist rs
dropWhile-Sublist {a ∷ as} (r ∷ rs) with P? a
... | yes pa = _ ∷ʳ dropWhile-Sublist rs
... | no ¬pa = r ∷ rs
filter-Sublist : ∀ {as bs} → Sublist R as bs → Sublist R (filter P? as) bs
filter-Sublist [] = []
filter-Sublist (y ∷ʳ rs) = y ∷ʳ filter-Sublist rs
filter-Sublist {a ∷ as} (r ∷ rs) with P? a
... | yes pa = r ∷ filter-Sublist rs
... | no ¬pa = _ ∷ʳ filter-Sublist rs
------------------------------------------------------------------------
-- Various functions are increasing wrt _⊆_
-- We write f⁺ for the proof that `xs ⊆ ys → f xs ⊆ f ys`
-- and f⁻ for the one that `f xs ⊆ f ys → xs ⊆ ys`.
module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where
------------------------------------------------------------------------
-- _∷_
∷ˡ⁻ : ∀ {a as bs} → Sublist R (a ∷ as) bs → Sublist R as bs
∷ˡ⁻ (y ∷ʳ rs) = y ∷ʳ ∷ˡ⁻ rs
∷ˡ⁻ (r ∷ rs) = _ ∷ʳ rs
∷ʳ⁻ : ∀ {a as b bs} → ¬ R a b → Sublist R (a ∷ as) (b ∷ bs) →
Sublist R (a ∷ as) bs
∷ʳ⁻ ¬r (y ∷ʳ rs) = rs
∷ʳ⁻ ¬r (r ∷ rs) = ⊥-elim (¬r r)
∷⁻ : ∀ {a as b bs} → Sublist R (a ∷ as) (b ∷ bs) → Sublist R as bs
∷⁻ (y ∷ʳ rs) = ∷ˡ⁻ rs
∷⁻ (x ∷ rs) = rs
module _ {a b c d r} {A : Set a} {B : Set b} {C : Set c} {D : Set d}
{R : REL C D r} where
------------------------------------------------------------------------
-- map
map⁺ : ∀ {as bs} (f : A → C) (g : B → D) →
Sublist (λ a b → R (f a) (g b)) as bs →
Sublist R (List.map f as) (List.map g bs)
map⁺ f g [] = []
map⁺ f g (y ∷ʳ rs) = g y ∷ʳ map⁺ f g rs
map⁺ f g (r ∷ rs) = r ∷ map⁺ f g rs
map⁻ : ∀ {as bs} (f : A → C) (g : B → D) →
Sublist R (List.map f as) (List.map g bs) →
Sublist (λ a b → R (f a) (g b)) as bs
map⁻ {[]} {bs} f g rs = minimum _
map⁻ {a ∷ as} {[]} f g ()
map⁻ {a ∷ as} {b ∷ bs} f g (_ ∷ʳ rs) = b ∷ʳ map⁻ f g rs
map⁻ {a ∷ as} {b ∷ bs} f g (r ∷ rs) = r ∷ map⁻ f g rs
module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where
------------------------------------------------------------------------
-- _++_
++⁺ : ∀ {as bs cs ds} → Sublist R as bs → Sublist R cs ds →
Sublist R (as ++ cs) (bs ++ ds)
++⁺ [] cds = cds
++⁺ (y ∷ʳ abs) cds = y ∷ʳ ++⁺ abs cds
++⁺ (ab ∷ abs) cds = ab ∷ ++⁺ abs cds
++⁻ : ∀ {as bs cs ds} → length as ≡ length bs →
Sublist R (as ++ cs) (bs ++ ds) → Sublist R cs ds
++⁻ {[]} {[]} eq rs = rs
++⁻ {a ∷ as} {b ∷ bs} eq rs = ++⁻ (ℕₚ.suc-injective eq) (∷⁻ rs)
++⁻ {[]} {_ ∷ _} ()
++⁻ {_ ∷ _} {[]} ()
++ˡ : ∀ {as bs} (cs : List B) → Sublist R as bs → Sublist R as (cs ++ bs)
++ˡ zs = ++⁺ (minimum zs)
++ʳ : ∀ {as bs} (cs : List B) → Sublist R as bs → Sublist R as (bs ++ cs)
++ʳ cs [] = minimum cs
++ʳ cs (y ∷ʳ rs) = y ∷ʳ ++ʳ cs rs
++ʳ cs (r ∷ rs) = r ∷ ++ʳ cs rs
------------------------------------------------------------------------
-- take / drop
take⁺ : ∀ {m n as bs} → m ≤ n → Pointwise R as bs →
Sublist R (take m as) (take n bs)
take⁺ z≤n ps = minimum _
take⁺ (s≤s m≤n) [] = []
take⁺ (s≤s m≤n) (p ∷ ps) = p ∷ take⁺ m≤n ps
drop⁺ : ∀ {m n as bs} → m ≥ n → Sublist R as bs →
Sublist R (drop m as) (drop n bs)
drop⁺ {m} z≤n rs = drop-Sublist m rs
drop⁺ (s≤s m≥n) [] = []
drop⁺ (s≤s m≥n) (y ∷ʳ rs) = drop⁺ (ℕₚ.≤-step m≥n) rs
drop⁺ (s≤s m≥n) (r ∷ rs) = drop⁺ m≥n rs
drop⁺-≥ : ∀ {m n as bs} → m ≥ n → Pointwise R as bs →
Sublist R (drop m as) (drop n bs)
drop⁺-≥ m≥n pw = drop⁺ m≥n (fromPointwise pw)
drop⁺-⊆ : ∀ {as bs} m → Sublist R as bs →
Sublist R (drop m as) (drop m bs)
drop⁺-⊆ m = drop⁺ (ℕₚ.≤-refl {m})
module _ {a b r p q} {A : Set a} {B : Set b}
{R : REL A B r} {P : Pred A p} {Q : Pred B q}
(P? : U.Decidable P) (Q? : U.Decidable Q) where
⊆-takeWhile-Sublist : ∀ {as bs} →
(∀ {a b} → R a b → P a → Q b) →
Pointwise R as bs → Sublist R (takeWhile P? as) (takeWhile Q? bs)
⊆-takeWhile-Sublist rp⇒q [] = []
⊆-takeWhile-Sublist {a ∷ as} {b ∷ bs} rp⇒q (p ∷ ps) with P? a | Q? b
... | yes pa | yes qb = p ∷ ⊆-takeWhile-Sublist rp⇒q ps
... | yes pa | no ¬qb = ⊥-elim $ ¬qb $ rp⇒q p pa
... | no ¬pa | yes qb = minimum _
... | no ¬pa | no ¬qb = []
⊇-dropWhile-Sublist : ∀ {as bs} →
(∀ {a b} → R a b → Q b → P a) →
Pointwise R as bs → Sublist R (dropWhile P? as) (dropWhile Q? bs)
⊇-dropWhile-Sublist rq⇒p [] = []
⊇-dropWhile-Sublist {a ∷ as} {b ∷ bs} rq⇒p (p ∷ ps) with P? a | Q? b
... | yes pa | yes qb = ⊇-dropWhile-Sublist rq⇒p ps
... | yes pa | no ¬qb = b ∷ʳ dropWhile-Sublist P? (fromPointwise ps)
... | no ¬pa | yes qb = ⊥-elim $ ¬pa $ rq⇒p p qb
... | no ¬pa | no ¬qb = p ∷ fromPointwise ps
⊆-filter-Sublist : ∀ {as bs} → (∀ {a b} → R a b → P a → Q b) →
Sublist R as bs → Sublist R (filter P? as) (filter Q? bs)
⊆-filter-Sublist rp⇒q [] = []
⊆-filter-Sublist rp⇒q (y ∷ʳ rs) with Q? y
... | yes qb = y ∷ʳ ⊆-filter-Sublist rp⇒q rs
... | no ¬qb = ⊆-filter-Sublist rp⇒q rs
⊆-filter-Sublist {a ∷ as} {b ∷ bs} rp⇒q (r ∷ rs) with P? a | Q? b
... | yes pa | yes qb = r ∷ ⊆-filter-Sublist rp⇒q rs
... | yes pa | no ¬qb = ⊥-elim $ ¬qb $ rp⇒q r pa
... | no ¬pa | yes qb = _ ∷ʳ ⊆-filter-Sublist rp⇒q rs
... | no ¬pa | no ¬qb = ⊆-filter-Sublist rp⇒q rs
module _ {a r p} {A : Set a} {R : Rel A r} {P : Pred A p} (P? : U.Decidable P) where
takeWhile-filter : ∀ {as} → Pointwise R as as →
Sublist R (takeWhile P? as) (filter P? as)
takeWhile-filter [] = []
takeWhile-filter {a ∷ as} (p ∷ ps) with P? a
... | yes pa = p ∷ takeWhile-filter ps
... | no ¬pa = minimum _
filter-dropWhile : ∀ {as} → Pointwise R as as →
Sublist R (filter P? as) (dropWhile (¬? ∘ P?) as)
filter-dropWhile [] = []
filter-dropWhile {a ∷ as} (p ∷ ps) with P? a
... | yes pa = p ∷ filter-Sublist P? (fromPointwise ps)
... | no ¬pa = filter-dropWhile ps
------------------------------------------------------------------------
-- reverse
module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where
reverseAcc⁺ : ∀ {as bs cs ds} → Sublist R as bs → Sublist R cs ds →
Sublist R (reverseAcc cs as) (reverseAcc ds bs)
reverseAcc⁺ [] cds = cds
reverseAcc⁺ (y ∷ʳ abs) cds = reverseAcc⁺ abs (y ∷ʳ cds)
reverseAcc⁺ (r ∷ abs) cds = reverseAcc⁺ abs (r ∷ cds)
reverse⁺ : ∀ {as bs} → Sublist R as bs → Sublist R (reverse as) (reverse bs)
reverse⁺ rs = reverseAcc⁺ rs []
reverse⁻ : ∀ {as bs} → Sublist R (reverse as) (reverse bs) → Sublist R as bs
reverse⁻ {as} {bs} p = cast (reverse⁺ p) where
cast = P.subst₂ (Sublist R) (Lₚ.reverse-involutive as) (Lₚ.reverse-involutive bs)
------------------------------------------------------------------------
-- Inversion lemmas
module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} {a as b bs} where
∷⁻¹ : R a b → Sublist R as bs ⇔ Sublist R (a ∷ as) (b ∷ bs)
∷⁻¹ r = equivalence (r ∷_) ∷⁻
∷ʳ⁻¹ : ¬ R a b → Sublist R (a ∷ as) bs ⇔ Sublist R (a ∷ as) (b ∷ bs)
∷ʳ⁻¹ ¬r = equivalence (_ ∷ʳ_) (∷ʳ⁻ ¬r)
------------------------------------------------------------------------
-- Irrelevant special case
module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where
Sublist-[]-irrelevant : U.Irrelevant (Sublist R [])
Sublist-[]-irrelevant [] [] = P.refl
Sublist-[]-irrelevant (y ∷ʳ p) (.y ∷ʳ q) = P.cong (y ∷ʳ_) (Sublist-[]-irrelevant p q)
------------------------------------------------------------------------
-- (to/from)Any is a bijection
toAny-injective : ∀ {xs x} {p q : Sublist R [ x ] xs} → toAny p ≡ toAny q → p ≡ q
toAny-injective {p = y ∷ʳ p} {y ∷ʳ q} =
P.cong (y ∷ʳ_) ∘′ toAny-injective ∘′ there-injective
toAny-injective {p = _ ∷ p} {_ ∷ q} =
P.cong₂ (flip _∷_) (Sublist-[]-irrelevant p q) ∘′ here-injective
toAny-injective {p = _ ∷ʳ _} {_ ∷ _} = λ ()
toAny-injective {p = _ ∷ _} {_ ∷ʳ _} = λ ()
fromAny-injective : ∀ {xs x} {p q : Any (R x) xs} →
fromAny {R = R} p ≡ fromAny q → p ≡ q
fromAny-injective {p = here px} {here qx} = P.cong here ∘′ ∷-injectiveˡ
fromAny-injective {p = there p} {there q} =
P.cong there ∘′ fromAny-injective ∘′ ∷ʳ-injective
fromAny-injective {p = here _} {there _} = λ ()
fromAny-injective {p = there _} {here _} = λ ()
toAny∘fromAny≗id : ∀ {xs x} (p : Any (R x) xs) → toAny (fromAny {R = R} p) ≡ p
toAny∘fromAny≗id (here px) = P.refl
toAny∘fromAny≗id (there p) = P.cong there (toAny∘fromAny≗id p)
Sublist-[x]-bijection : ∀ {x xs} → (Sublist R [ x ] xs) ⤖ (Any (R x) xs)
Sublist-[x]-bijection = bijection toAny fromAny toAny-injective toAny∘fromAny≗id
------------------------------------------------------------------------
-- Relational properties
module _ {a r} {A : Set a} {R : Rel A r} where
reflexive : Reflexive R → _≡_ ⇒ Sublist R
reflexive R-refl P.refl = fromPointwise (Pw.refl R-refl)
refl : Reflexive R → Reflexive (Sublist R)
refl R-refl = reflexive R-refl P.refl
module _ {a b c r s t} {A : Set a} {B : Set b} {C : Set c}
{R : REL A B r} {S : REL B C s} {T : REL A C t} where
trans : Trans R S T → Trans (Sublist R) (Sublist S) (Sublist T)
trans rs⇒t [] [] = []
trans rs⇒t rs (y ∷ʳ ss) = y ∷ʳ trans rs⇒t rs ss
trans rs⇒t (y ∷ʳ rs) (s ∷ ss) = _ ∷ʳ trans rs⇒t rs ss
trans rs⇒t (r ∷ rs) (s ∷ ss) = rs⇒t r s ∷ trans rs⇒t rs ss
module _ {a b r s e} {A : Set a} {B : Set b}
{R : REL A B r} {S : REL B A s} {E : REL A B e} where
open ℕₚ.≤-Reasoning
antisym : Antisym R S E → Antisym (Sublist R) (Sublist S) (Pointwise E)
antisym rs⇒e [] [] = []
antisym rs⇒e (r ∷ rs) (s ∷ ss) = rs⇒e r s ∷ antisym rs⇒e rs ss
-- impossible cases
antisym rs⇒e (_∷ʳ_ {xs} {ys₁} y rs) (_∷ʳ_ {ys₂} {zs} z ss) =
⊥-elim $ ℕₚ.<-irrefl P.refl $ begin
length (y ∷ ys₁) ≤⟨ length-mono-≤ ss ⟩
length zs ≤⟨ ℕₚ.n≤1+n (length zs) ⟩
length (z ∷ zs) ≤⟨ length-mono-≤ rs ⟩
length ys₁ ∎
antisym rs⇒e (_∷ʳ_ {xs} {ys₁} y rs) (_∷_ {y} {ys₂} {z} {zs} s ss) =
⊥-elim $ ℕₚ.<-irrefl P.refl $ begin
length (z ∷ zs) ≤⟨ length-mono-≤ rs ⟩
length ys₁ ≤⟨ length-mono-≤ ss ⟩
length zs ∎
antisym rs⇒e (_∷_ {x} {xs} {y} {ys₁} r rs) (_∷ʳ_ {ys₂} {zs} z ss) =
⊥-elim $ ℕₚ.<-irrefl P.refl $ begin
length (y ∷ ys₁) ≤⟨ length-mono-≤ ss ⟩
length xs ≤⟨ length-mono-≤ rs ⟩
length ys₁ ∎
module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} (R? : Decidable R) where
sublist? : Decidable (Sublist R)
sublist? [] ys = yes (minimum ys)
sublist? (x ∷ xs) [] = no λ ()
sublist? (x ∷ xs) (y ∷ ys) with R? x y
... | yes r = Dec.map (∷⁻¹ r) (sublist? xs ys)
... | no ¬r = Dec.map (∷ʳ⁻¹ ¬r) (sublist? (x ∷ xs) ys)
module _ {a e r} {A : Set a} {E : Rel A e} {R : Rel A r} where
isPreorder : IsPreorder E R → IsPreorder (Pointwise E) (Sublist R)
isPreorder ER-isPreorder = record
{ isEquivalence = Pw.isEquivalence ER.isEquivalence
; reflexive = fromPointwise ∘ Pw.map ER.reflexive
; trans = trans ER.trans
} where module ER = IsPreorder ER-isPreorder
isPartialOrder : IsPartialOrder E R → IsPartialOrder (Pointwise E) (Sublist R)
isPartialOrder ER-isPartialOrder = record
{ isPreorder = isPreorder ER.isPreorder
; antisym = antisym ER.antisym
} where module ER = IsPartialOrder ER-isPartialOrder
isDecPartialOrder : IsDecPartialOrder E R →
IsDecPartialOrder (Pointwise E) (Sublist R)
isDecPartialOrder ER-isDecPartialOrder = record
{ isPartialOrder = isPartialOrder ER.isPartialOrder
; _≟_ = Pw.decidable ER._≟_
; _≤?_ = sublist? ER._≤?_
} where module ER = IsDecPartialOrder ER-isDecPartialOrder
module _ {a e r} where
preorder : Preorder a e r → Preorder _ _ _
preorder ER-preorder = record
{ isPreorder = isPreorder ER.isPreorder
} where module ER = Preorder ER-preorder
poset : Poset a e r → Poset _ _ _
poset ER-poset = record
{ isPartialOrder = isPartialOrder ER.isPartialOrder
} where module ER = Poset ER-poset
decPoset : DecPoset a e r → DecPoset _ _ _
decPoset ER-poset = record
{ isDecPartialOrder = isDecPartialOrder ER.isDecPartialOrder
} where module ER = DecPoset ER-poset
|
{
"alphanum_fraction": 0.5140529532,
"avg_line_length": 39.7800925926,
"ext": "agda",
"hexsha": "e58d46657b7d4c3f11d703353331f6b725e5b0cf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/Heterogeneous/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/Heterogeneous/Properties.agda",
"max_line_length": 87,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/Heterogeneous/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6746,
"size": 17185
}
|
module Tactic.Nat.Subtract.Exp where
open import Prelude
open import Tactic.Nat.Exp
open import Tactic.Nat.NF
open import Container.Bag
open import Data.TreeRep
infixl 6 _⟨+⟩_ _⟨-⟩_
infixl 7 _⟨*⟩_
data SubExp : Set where
var : (x : Var) → SubExp
lit : (n : Nat) → SubExp
_⟨+⟩_ _⟨-⟩_ _⟨*⟩_ : (a b : SubExp) → SubExp
infix 4 _:≡_ _:<_
data Eqn : Set where
_:≡_ : (a b : SubExp) → Eqn
_:<_ : (a b : SubExp) → Eqn
⟦_⟧se : SubExp → Env Var → Nat
⟦ var x ⟧se ρ = ρ x
⟦ lit n ⟧se ρ = n
⟦ e₁ ⟨+⟩ e₂ ⟧se ρ = ⟦ e₁ ⟧se ρ + ⟦ e₂ ⟧se ρ
⟦ e₁ ⟨-⟩ e₂ ⟧se ρ = ⟦ e₁ ⟧se ρ - ⟦ e₂ ⟧se ρ
⟦ e₁ ⟨*⟩ e₂ ⟧se ρ = ⟦ e₁ ⟧se ρ * ⟦ e₂ ⟧se ρ
⟦_⟧eqn : Eqn → Env Var → Set
⟦ e₁ :≡ e₂ ⟧eqn ρ = ⟦ e₁ ⟧se ρ ≡ ⟦ e₂ ⟧se ρ
⟦ e₁ :< e₂ ⟧eqn ρ = ⟦ e₁ ⟧se ρ < ⟦ e₂ ⟧se ρ
data SubAtom : Set
SubNF : Set
SubNF = NF SubAtom
data SubAtom where
var : Var → SubAtom
_⟨-⟩_ : (a b : SubNF) → SubAtom
⟦_⟧sn : SubNF → Env Var → Nat
⟦_⟧st : Tm SubAtom → Env Var → Nat
⟦_⟧sa : SubAtom → Env Var → Nat
⟦ var x ⟧sa ρ = ρ x
⟦ a ⟨-⟩ b ⟧sa ρ = ⟦ a ⟧sn ρ - ⟦ b ⟧sn ρ
⟦ [] ⟧st ρ = 1
⟦ t ∷ ts ⟧st ρ = ⟦ t ⟧sa ρ * ⟦ ts ⟧st ρ
⟦ [] ⟧sn ρ = 0
⟦ (k , ts) ∷ n ⟧sn ρ = k * ⟦ ts ⟧st ρ + ⟦ n ⟧sn ρ
⟦_⟧sns : SubNF → Env Var → Nat
⟦_⟧sts : Tm SubAtom → Env Var → Nat
⟦_⟧sas : SubAtom → Env Var → Nat
⟦ var x ⟧sas ρ = ρ x
⟦ a ⟨-⟩ b ⟧sas ρ = ⟦ a ⟧sns ρ - ⟦ b ⟧sns ρ
⟦ [] ⟧sts ρ = 1
⟦ t ∷ [] ⟧sts ρ = ⟦ t ⟧sas ρ
⟦ t ∷ ts ⟧sts ρ = ⟦ t ⟧sas ρ * ⟦ ts ⟧sts ρ
⟦ [] ⟧sns ρ = 0
⟦ (k , ts) ∷ [] ⟧sns ρ = k * ⟦ ts ⟧sts ρ
⟦ (k , ts) ∷ n ⟧sns ρ = k * ⟦ ts ⟧sts ρ + ⟦ n ⟧sns ρ
atomEnv : Env Var → Env SubAtom
atomEnv ρ x = ⟦ x ⟧sa ρ
atomEnvS : Env Var → Env SubAtom
atomEnvS ρ x = ⟦ x ⟧sas ρ
instance
EncodeSubAtom : TreeEncoding SubAtom
EncodeSubAtom = treeEncoding enc dec emb
where
enc : SubAtom → TreeRep
encNF : SubNF → TreeRep
encNFs : SubNF → List TreeRep
encTm : Tm SubAtom → List TreeRep
enc (var x) = node x []
enc (a ⟨-⟩ b) = node 0 (encNF a ∷ encNF b ∷ [])
encNF n = node 0 (encNFs n)
encNFs [] = []
encNFs ((n , t) ∷ ns) = node n (encTm t) ∷ encNFs ns
encTm [] = []
encTm (x ∷ xs) = enc x ∷ encTm xs
dec : TreeRep → Maybe SubAtom
decNF : TreeRep → Maybe SubNF
decNFs : List TreeRep → Maybe SubNF
decTm : List TreeRep → Maybe (Tm SubAtom)
dec (node x []) = just (var x)
dec (node _ (t ∷ t₁ ∷ [])) = _⟨-⟩_ <$> decNF t <*> decNF t₁
dec _ = nothing
decNF (leaf _) = nothing
decNF (node _ ts) = decNFs ts
decNFs (node n ts ∷ ts₁) = _∷_ <$> (_,_ n <$> decTm ts) <*> decNFs ts₁
decNFs _ = just []
decTm [] = just []
decTm (x ∷ ts) = _∷_ <$> dec x <*> decTm ts
emb : ∀ a → dec (enc a) ≡ just a
embNFs : ∀ n → decNFs (encNFs n) ≡ just n
embTm : ∀ t → decTm (encTm t) ≡ just t
emb (var x) = refl
emb (a ⟨-⟩ b) = _⟨-⟩_ =$= embNFs a =*= embNFs b
embNFs [] = refl
embNFs ((n , t) ∷ ns) = _∷_ =$= (_,_ n =$= embTm t) =*= embNFs ns
embTm [] = refl
embTm (x ∷ xs) = _∷_ =$= emb x =*= embTm xs
EqSubAtom : Eq SubAtom
EqSubAtom = EqByTreeEncoding
OrdSubAtom : Ord SubAtom
OrdSubAtom = OrdByTreeEncoding
_-nf′_ : SubNF → SubNF → SubNF
a -nf′ b =
case cancel a b of λ where
(x , []) → x
([] , _) → []
(a′ , b′) → [ 1 , [ a′ ⟨-⟩ b′ ] ]
data IsSubtraction : SubNF → Set where
_⟨-⟩_ : ∀ a b → IsSubtraction [ 1 , [ a ⟨-⟩ b ] ]
no : ∀ {a} → IsSubtraction a
is-subtraction : ∀ a → IsSubtraction a
is-subtraction [ 1 , [ a ⟨-⟩ b ] ] = a ⟨-⟩ b
is-subtraction a = no
infixl 6 _-nf_
infixl 7 _*nf₁_ _*tm_ _*ktm_ _*ktm′_
_-nf_ : SubNF → SubNF → SubNF
a -nf b with is-subtraction a
_ -nf c | a ⟨-⟩ b = a -nf′ (b +nf c)
a -nf b | no = a -nf′ b
data IsSubtractionTm : Nat × Tm SubAtom → Set where
_⟨-⟩_ : ∀ a b → IsSubtractionTm (1 , [ a ⟨-⟩ b ])
no : ∀ {a} → IsSubtractionTm a
is-subtraction-tm : ∀ a → IsSubtractionTm a
is-subtraction-tm (1 , [ a ⟨-⟩ b ]) = a ⟨-⟩ b
is-subtraction-tm a = no
_*nf₁_ : SubNF → SubNF → SubNF
_*ktm′_ : Nat × Tm SubAtom → SubNF → SubNF
_*tm_ : Nat × Tm SubAtom → Nat × Tm SubAtom → SubNF
s *tm t with is-subtraction-tm t
s *tm _ | b ⟨-⟩ c = s *ktm′ b -nf s *ktm′ c
(a , x) *tm (b , y) | no = [ a * b , merge x y ]
t *ktm′ [] = []
t *ktm′ (x ∷ a) = t *tm x +nf t *ktm′ a
_*ktm_ : Nat × Tm SubAtom → SubNF → SubNF
t *ktm a with is-subtraction-tm t
_ *ktm c | a ⟨-⟩ b = a *nf₁ c -nf b *nf₁ c
t *ktm a | no = t *ktm′ a
[] *nf₁ b = []
(t ∷ a) *nf₁ b = t *ktm b +nf (a *nf₁ b)
normSub : SubExp → SubNF
normSub (var x) = [ 1 , [ var x ] ]
normSub (lit 0) = []
normSub (lit n) = [ n , [] ]
normSub (e ⟨+⟩ e₁) = normSub e +nf normSub e₁
normSub (e ⟨-⟩ e₁) = normSub e -nf normSub e₁
normSub (e ⟨*⟩ e₁) = normSub e *nf₁ normSub e₁
|
{
"alphanum_fraction": 0.5061349693,
"avg_line_length": 25.7368421053,
"ext": "agda",
"hexsha": "6394b1bde4dceb7fb8fe8e87c0502d06feb2d9ce",
"lang": "Agda",
"max_forks_count": 24,
"max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z",
"max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "L-TChen/agda-prelude",
"max_forks_repo_path": "src/Tactic/Nat/Subtract/Exp.agda",
"max_issues_count": 59,
"max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "L-TChen/agda-prelude",
"max_issues_repo_path": "src/Tactic/Nat/Subtract/Exp.agda",
"max_line_length": 76,
"max_stars_count": 111,
"max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "L-TChen/agda-prelude",
"max_stars_repo_path": "src/Tactic/Nat/Subtract/Exp.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z",
"num_tokens": 2288,
"size": 4890
}
|
postulate
@0 A : Set
_ : @0 Set → (Set → Set) → Set
_ = λ @0 where
A G → G A
|
{
"alphanum_fraction": 0.487804878,
"avg_line_length": 11.7142857143,
"ext": "agda",
"hexsha": "715c22c00982f7df75f569a128c48d590c9bba2b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue4525a.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue4525a.agda",
"max_line_length": 30,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue4525a.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 38,
"size": 82
}
|
-- New NO_POSITIVITY_CHECK pragma for data definitions and mutual
-- blocks
-- Skipping a single data definition.
{-# NO_POSITIVITY_CHECK #-}
data D : Set where
lam : (D → D) → D
|
{
"alphanum_fraction": 0.7032967033,
"avg_line_length": 22.75,
"ext": "agda",
"hexsha": "03f778c25227b2704c20d7240576f207fc049d22",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1614a.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1614a.agda",
"max_line_length": 65,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1614a.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 48,
"size": 182
}
|
import Agda.Builtin.Nat as Nat public
f : let open Nat public in Nat → Nat
f x = x
|
{
"alphanum_fraction": 0.7023809524,
"avg_line_length": 16.8,
"ext": "agda",
"hexsha": "24d37d225a982f0b8185a7a17533b3ef3e328fe3",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/uselesspublic.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/uselesspublic.agda",
"max_line_length": 37,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/uselesspublic.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 27,
"size": 84
}
|
{-# OPTIONS --without-K #-}
module sets.nat.properties where
open import equality.core
open import equality.calculus
open import equality.reasoning
open import function.isomorphism.core
open import sets.nat.core
open import sets.empty
+-left-unit : ∀ n → 0 + n ≡ n
+-left-unit n = refl
+-right-unit : ∀ n → n + 0 ≡ n
+-right-unit zero = refl
+-right-unit (suc n) = ap suc (+-right-unit n)
+-associativity : ∀ n m p → n + m + p ≡ n + (m + p)
+-associativity 0 m p = refl
+-associativity (suc n) m p = ap suc (+-associativity n m p)
+-left-cancel : ∀ n → injective (_+_ n)
+-left-cancel 0 p = p
+-left-cancel (suc n) p = +-left-cancel n (ap pred p)
right-distr : ∀ n m p → (n + m) * p ≡ n * p + m * p
right-distr 0 m p = refl
right-distr (suc n) m p = begin
p + (n + m) * p
≡⟨ ap (_+_ p) (right-distr n m p) ⟩
p + (n * p + m * p)
≡⟨ sym (+-associativity p (n * p) (m * p)) ⟩
p + n * p + m * p
∎
where open ≡-Reasoning
*-left-unit : ∀ n → 1 * n ≡ n
*-left-unit n = +-right-unit n
*-right-unit : ∀ n → n * 1 ≡ n
*-right-unit zero = refl
*-right-unit (suc n) = ap suc (*-right-unit n)
*-associativity : ∀ n m p → n * m * p ≡ n * (m * p)
*-associativity 0 m p = refl
*-associativity (suc n) m p =
right-distr m (n * m) p
· ap (λ z → (m * p) + z)
(*-associativity n m p)
+-commutativity : ∀ n m → n + m ≡ m + n
+-commutativity 0 m = sym (+-right-unit m)
+-commutativity (suc n) m = begin
suc (n + m)
≡⟨ ap suc (+-commutativity n m) ⟩
suc (m + n)
≡⟨ lem m n ⟩
m + suc n
∎
where
open ≡-Reasoning
lem : ∀ n m → suc n + m ≡ n + suc m
lem 0 m = refl
lem (suc n) m = ap suc (lem n m)
left-distr : ∀ n m p → n * (m + p) ≡ n * m + n * p
left-distr 0 m p = refl
left-distr (suc n) m p = begin
m + p + n * (m + p)
≡⟨ +-associativity m p _ ⟩
m + (p + n * (m + p))
≡⟨ ap (λ z → m + (p + z))
(left-distr n m p) ⟩
m + (p + (n * m + n * p))
≡⟨ ap (_+_ m)
(sym (+-associativity p (n * m) _)) ⟩
m + (p + n * m + n * p)
≡⟨ ap (λ z → m + (z + n * p))
(+-commutativity p (n * m)) ⟩
m + (n * m + p + n * p)
≡⟨ ap (_+_ m) (+-associativity (n * m) p _) ⟩
m + (n * m + (p + n * p))
≡⟨ sym (+-associativity m (n * m) _) ⟩
m + n * m + (p + n * p)
∎
where open ≡-Reasoning
left-zero : ∀ n → 0 * n ≡ 0
left-zero n = refl
right-zero : ∀ n → n * 0 ≡ 0
right-zero 0 = refl
right-zero (suc n) = right-zero n
*-commutativity : ∀ n m → n * m ≡ m * n
*-commutativity 0 m = sym (right-zero m)
*-commutativity (suc n) m = begin
m + n * m
≡⟨ ap₂ _+_ (sym (*-right-unit m))
(*-commutativity n m) ⟩
m * 1 + m * n
≡⟨ sym (left-distr m 1 n) ⟩
m * suc n
∎
where open ≡-Reasoning
suc-fixpoint : ∀ {n} → ¬ (suc n ≡ n)
suc-fixpoint {zero} ()
suc-fixpoint {suc n} p = suc-fixpoint (suc-inj p)
|
{
"alphanum_fraction": 0.5077628793,
"avg_line_length": 25.7636363636,
"ext": "agda",
"hexsha": "bcbcdbff0d0819e8636415eeb79e3ceae227ec22",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/sets/nat/properties.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/sets/nat/properties.agda",
"max_line_length": 60,
"max_stars_count": 20,
"max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pcapriotti/agda-base",
"max_stars_repo_path": "src/sets/nat/properties.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z",
"num_tokens": 1182,
"size": 2834
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Monoidal.Structure where
open import Level
open import Categories.Category
open import Categories.Category.Monoidal.Core
record MonoidalCategory o ℓ e : Set (suc (o ⊔ ℓ ⊔ e)) where
field
U : Category o ℓ e
monoidal : Monoidal U
module U = Category U
module monoidal = Monoidal monoidal
open U public
open monoidal public
|
{
"alphanum_fraction": 0.7149758454,
"avg_line_length": 20.7,
"ext": "agda",
"hexsha": "ac815f46ce1aeb841dbc7e6ab09da3365a9519b5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Monoidal/Structure.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Monoidal/Structure.agda",
"max_line_length": 59,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bblfish/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Monoidal/Structure.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 108,
"size": 414
}
|
-- Andreas, 2019-07-23, issue #3932
--
-- Mutual blocks are not supported in mutual blocks
module _ where
module M where
mutual
A : Set1
A = Set
mutual
B : Set1
B = A
module N where
mutual
A : Set1
A = Set
mutual
A = Set
module O where
mutual
A : Set1
mutual
A = Set
-- WAS: internal errors
-- EXPECTED ERRORS:
--
-- * mutual blocks in mutual blocks are not supported
--
-- * The following names are declared but not accompanied by a definition: A
-- when scope checking the declaration
-- module O where
|
{
"alphanum_fraction": 0.6170940171,
"avg_line_length": 13.6046511628,
"ext": "agda",
"hexsha": "3ebeb45f80dd0e368061d977d53ab35b5b4a8209",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue3932.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue3932.agda",
"max_line_length": 76,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue3932.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 165,
"size": 585
}
|
-- Andreas, 2021-11-19, issue #5657 reported by J Barrett
-- Regression in 2.6.2: internal error instead of error message
record R : Set₁ where
field A : Set
postulate r : R
open R r
fail : Set
fail = r .A
-- WAS:
-- An internal error has occurred. Please report this as a bug.
-- Location of the error: __IMPOSSIBLE__, called at src/full/Agda/TypeChecking/Rules/Application.hs:968
-- Expected:
-- Set should be a function type, but it isn't
-- when checking that r is a valid argument to a function of type Set
|
{
"alphanum_fraction": 0.7225433526,
"avg_line_length": 25.95,
"ext": "agda",
"hexsha": "d437e38e60805a17bc6738725eef67da7da8c01f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Fail/Issue5657.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Fail/Issue5657.agda",
"max_line_length": 103,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Fail/Issue5657.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 148,
"size": 519
}
|
{-
Day 3 input
-}
module a3-input where
open import Data.Nat
open import Data.List hiding (lookup;allFin)
renaming (map to mapList)
open import Data.Vec
input : List (Vec ℕ 12)
input =
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
(0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷
(1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷
(0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷
[]
|
{
"alphanum_fraction": 0.1753800358,
"avg_line_length": 68.2485207101,
"ext": "agda",
"hexsha": "88143783e34bb30388c0e8712062ac7d2831dec6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "834bc9e291a76bdbcd58cbff9805161f1b1cfe71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "felixwellen/adventOfCode",
"max_forks_repo_path": "a3-input.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "834bc9e291a76bdbcd58cbff9805161f1b1cfe71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "felixwellen/adventOfCode",
"max_issues_repo_path": "a3-input.agda",
"max_line_length": 68,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "834bc9e291a76bdbcd58cbff9805161f1b1cfe71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "felixwellen/adventOfCode",
"max_stars_repo_path": "a3-input.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 65048,
"size": 69204
}
|
module Generic.Function.Elim where
open import Generic.Core
AllAny : ∀ {ι α β γ δ} {I : Set ι} {A : Set α} {C : I -> Set γ}
-> (B : I -> A -> Set β)
-> (∀ x -> (∀ {j} -> B j x -> C j) -> Set δ)
-> (xs : List A)
-> (∀ {j} -> Any (B j) xs -> C j)
-> Set δ
AllAny B D [] k = ⊤
AllAny B D (x ∷ []) k = D x k
AllAny B D (x ∷ y ∷ xs) k = D x (k ∘ inj₁) × AllAny B D (y ∷ xs) (k ∘ inj₂)
data VarView {ι β} {I : Set ι} : Desc I β -> Set where
yes-var : ∀ {i} -> VarView (var i)
no-var : ∀ {D} -> VarView D
varView : ∀ {ι β} {I : Set ι} -> (D : Desc I β) -> VarView D
varView (var i) = yes-var
varView D = no-var
mutual
Hyp : ∀ {ι β γ} {I : Set ι} {B}
-> (∀ {i} -> B i -> Set γ) -> (D : Desc I β) -> ⟦ D ⟧ B -> Set (β ⊔ γ)
Hyp {β = β} C (var i) y = Lift β (C y)
Hyp C (π i q D) f = Hypᵇ i C D f
Hyp C (D ⊛ E) (x , y) = Hyp C D x × Hyp C E y
Hypᵇ : ∀ {ι α β γ δ q q′} {I : Set ι} {B} i
-> (∀ {i} -> B i -> Set γ) -> (D : Binder α β δ i q′ I) -> ⟦ i / D ⟧ᵇ q B -> Set (β ⊔ γ)
Hypᵇ {γ = γ} {q = q} i C (coerce (A , D)) f =
Coerce′ (cong (γ ⊔_) q) $ Pi i A λ x -> Hyp C (D x) (appPi i (uncoerce′ q f) x)
mutual
Elim : ∀ {ι β γ} {I : Set ι} {B}
-> (∀ {i} -> B i -> Set γ)
-> (D : Desc I β)
-> (∀ {j} -> Extend D B j -> B j)
-> Set (β ⊔ γ)
Elim {β = β} C (var i) k = Lift β (C (k lrefl))
Elim C (π i q D) k = Elimᵇ i C D k
Elim C (D ⊛ E) k with varView D
... | yes-var = ∀ {x} -> C x -> Elim C E (k ∘ _,_ x)
... | no-var = ∀ {x} -> Hyp C D x -> Elim C E (k ∘ _,_ x)
Elimᵇ : ∀ {ι α β γ δ q q′} {I : Set ι} {B} i
-> (∀ {i} -> B i -> Set γ)
-> (D : Binder α β δ i q′ I)
-> (∀ {j} -> Extendᵇ i D q B j -> B j)
-> Set (β ⊔ γ)
Elimᵇ {γ = γ} {q = q} i C (coerce (A , D)) k =
Coerce′ (cong (γ ⊔_) q) $ Pi i A λ x -> Elim C (D x) (k ∘ coerce′ q ∘ _,_ x)
module _ {ι β γ} {I : Set ι} {D₀ : Data (Desc I β)} (C : ∀ {j} -> μ D₀ j -> Set γ) where
K : Name -> Type -> Type -> (Ds : List (Desc I β)) -> All (const Name) Ds -> Set (ι ⊔ β)
K d a b Ds ns = ∀ {j} -> Node D₀ (packData d a b Ds ns) j -> μ D₀ j
Elims : ∀ d a b (Ds : List (Desc I β)) ns -> K d a b Ds ns -> Set (β ⊔ γ)
Elims d a b Ds ns = AllAny (λ j D -> Extend D (μ D₀) j) (Elim C) Ds
module _ (hs : Elims (dataName D₀)
(parsTele D₀)
(indsTele D₀)
(consTypes D₀)
(consNames D₀)
node) where
{-# TERMINATING #-}
mutual
elimHyp : (D : Desc I β) -> (d : ⟦ D ⟧ (μ D₀)) -> Hyp C D d
elimHyp (var i) d = lift (elim d)
elimHyp (π i q D) f = elimHypᵇ i D f
elimHyp (D ⊛ E) (x , y) = elimHyp D x , elimHyp E y
elimHypᵇ : ∀ {α δ q q′} i
-> (D : Binder α β δ i q′ I)
-> (f : ⟦ i / D ⟧ᵇ q (μ D₀))
-> Hypᵇ i C D f
elimHypᵇ {q = q} i (coerce (A , D)) f =
coerce′ (cong (_⊔_ γ) q) (lamPi i λ x -> elimHyp (D x) (appPi i (uncoerce′ q f) x))
elimExtend : ∀ {j}
-> (D : Desc I β) {k : ∀ {j} -> Extend D (μ D₀) j -> μ D₀ j}
-> Elim C D k
-> (e : Extend D (μ D₀) j)
-> C (k e)
elimExtend (var i) z lrefl = lower z
elimExtend (π i q D) h p = elimExtendᵇ i D h p
elimExtend (D ⊛ E) h (d , e) with varView D
... | yes-var = elimExtend E (h (elim d)) e
... | no-var = elimExtend E (h (elimHyp D d)) e
elimExtendᵇ : ∀ {α δ q q′ j} i
-> (D : Binder α β δ i q′ I) {k : ∀ {j} -> Extendᵇ i D q (μ D₀) j -> μ D₀ j}
-> Elimᵇ i C D k
-> (p : Extendᵇ i D q (μ D₀) j)
-> C (k p)
elimExtendᵇ {q = q} i (coerce (A , D)) h p with p | inspectUncoerce′ q p
... | _ | (x , e) , refl = elimExtend (D x) (appPi i (uncoerce′ (cong (γ ⊔_) q) h) x) e
elimAny : ∀ {j} (Ds : List (Desc I β)) d a b ns {k : K d a b Ds ns}
-> Elims d a b Ds ns k -> (a : Node D₀ (packData d a b Ds ns) j) -> C (k a)
elimAny [] d a b tt tt ()
elimAny (D ∷ []) d a b (n , ns) h e = elimExtend D h e
elimAny (D ∷ E ∷ Ds) d a b (n , ns) (h , hs) (inj₁ e) = elimExtend D h e
elimAny (D ∷ E ∷ Ds) d a b (n , ns) (h , hs) (inj₂ r) = elimAny (E ∷ Ds) d a b ns hs r
elim : ∀ {j} -> (d : μ D₀ j) -> C d
elim (node e) = elimAny (consTypes D₀)
(dataName D₀)
(parsTele D₀)
(indsTele D₀)
(consNames D₀)
hs
e
|
{
"alphanum_fraction": 0.3941212999,
"avg_line_length": 41.6465517241,
"ext": "agda",
"hexsha": "eeea1bb5c941c7f548371e74fe2ca7585d639295",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z",
"max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "turion/Generic",
"max_forks_repo_path": "src/Generic/Function/Elim.agda",
"max_issues_count": 9,
"max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "turion/Generic",
"max_issues_repo_path": "src/Generic/Function/Elim.agda",
"max_line_length": 95,
"max_stars_count": 30,
"max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "turion/Generic",
"max_stars_repo_path": "src/Generic/Function/Elim.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z",
"num_tokens": 1977,
"size": 4831
}
|
{-# OPTIONS --without-K #-}
open import lib.Base
open import lib.PathGroupoid
open import lib.PathFunctor
open import lib.NType
module lib.Equivalences where
{-
We use the half-adjoint definition of equivalences (but this fact should be
invisible to the user of the library). The constructor of the type of
equivalences is [equiv], it takes two maps and the two proofs that the composites
are equal: [equiv to from to-from from-to]
The type of equivalences between two types [A] and [B] can be written either
[A ≃ B] or [Equiv A B].
Given an equivalence [e] : [A ≃ B], you can extract the two maps as follows:
[–> e] : [A → B] and [<– e] : [B → A] (the dash is an en dash)
The proofs that the composites are the identities are [<–-inv-l] and [<–-inv-r].
The identity equivalence on [A] is [ide A], the composition of two equivalences
is [_∘e_] (function composition order) and the inverse of an equivalence is [_⁻¹]
-}
module _ {i} {j} {A : Type i} {B : Type j} where
record is-equiv (f : A → B) : Type (lmax i j)
where
field
g : B → A
f-g : (b : B) → f (g b) == b
g-f : (a : A) → g (f a) == a
adj : (a : A) → ap f (g-f a) == f-g (f a)
abstract
adj' : (b : B) → ap g (f-g b) == g-f (g b)
adj' b = anti-whisker-left (ap g (f-g (f (g b)))) $ ! $
ap g (f-g (f (g b))) ∙ g-f (g b)
=⟨ ! $ htpy-natural-app=idf f-g b |in-ctx (λ p → ap g p ∙ g-f (g b)) ⟩
ap g (ap (f ∘ g) (f-g b)) ∙ g-f (g b)
=⟨ ! $ ap-∘ g (f ∘ g) (f-g b) |in-ctx (λ p → p ∙ g-f (g b)) ⟩
ap (g ∘ f ∘ g) (f-g b) ∙ g-f (g b)
=⟨ htpy-natural (g-f ∘ g) (f-g b) ⟩
g-f (g (f (g b))) ∙ ap g (f-g b)
=⟨ ! $ htpy-natural-app=idf g-f (g b) |in-ctx (λ p → p ∙ ap g (f-g b)) ⟩
ap (g ∘ f) (g-f (g b)) ∙ ap g (f-g b)
=⟨ ap-∘ g f (g-f (g b)) |in-ctx (λ p → p ∙ ap g (f-g b)) ⟩
ap g (ap f (g-f (g b))) ∙ ap g (f-g b)
=⟨ adj (g b) |in-ctx (λ p → ap g p ∙ ap g (f-g b)) ⟩
ap g (f-g (f (g b))) ∙ ap g (f-g b)
∎
{-
In order to prove that something is an equivalence, you have to give an inverse
and a proof that it’s an inverse (you don’t need the adj part).
[is-eq] is a very, very bad name.
-}
is-eq : (f : A → B)
(g : B → A) (f-g : (b : B) → f (g b) == b)
(g-f : (a : A) → g (f a) == a) → is-equiv f
is-eq f g f-g g-f =
record {g = g; f-g = f-g'; g-f = g-f; adj = adj} where
f-g' : (b : B) → f (g b) == b
f-g' b = ! (ap (f ∘ g) (f-g b)) ∙ ap f (g-f (g b)) ∙ f-g b
adj : (a : A) → ap f (g-f a) == f-g' (f a)
adj a =
ap f (g-f a)
=⟨ ! (!-inv-l (ap (f ∘ g) (f-g (f a)))) |in-ctx (λ q → q ∙ ap f (g-f a)) ⟩
(! (ap (f ∘ g) (f-g (f a))) ∙ ap (f ∘ g) (f-g (f a))) ∙ ap f (g-f a)
=⟨ ∙-assoc (! (ap (f ∘ g) (f-g (f a)))) (ap (f ∘ g) (f-g (f a))) _ ⟩
! (ap (f ∘ g) (f-g (f a))) ∙ ap (f ∘ g) (f-g (f a)) ∙ ap f (g-f a)
=⟨ lemma |in-ctx (λ q → ! (ap (f ∘ g) (f-g (f a))) ∙ q) ⟩
! (ap (f ∘ g) (f-g (f a))) ∙ ap f (g-f (g (f a))) ∙ f-g (f a) ∎
where
lemma : ap (f ∘ g) (f-g (f a)) ∙ ap f (g-f a)
== ap f (g-f (g (f a))) ∙ f-g (f a)
lemma =
ap (f ∘ g) (f-g (f a)) ∙ ap f (g-f a)
=⟨ htpy-natural-app=idf f-g (f a) |in-ctx (λ q → q ∙ ap f (g-f a)) ⟩
f-g (f (g (f a))) ∙ ap f (g-f a)
=⟨ ! (ap-idf (ap f (g-f a))) |in-ctx (λ q → f-g (f (g (f a))) ∙ q) ⟩
f-g (f (g (f a))) ∙ ap (idf B) (ap f (g-f a))
=⟨ ! (htpy-natural f-g (ap f (g-f a))) ⟩
ap (f ∘ g) (ap f (g-f a)) ∙ f-g (f a)
=⟨ ap-∘ f g (ap f (g-f a)) |in-ctx (λ q → q ∙ f-g (f a)) ⟩
ap f (ap g (ap f (g-f a))) ∙ f-g (f a)
=⟨ ∘-ap g f (g-f a) ∙ htpy-natural-app=idf g-f a
|in-ctx (λ q → ap f q ∙ f-g (f a)) ⟩
ap f (g-f (g (f a))) ∙ f-g (f a) ∎
infix 30 _≃_
_≃_ : ∀ {i j} (A : Type i) (B : Type j) → Type (lmax i j)
A ≃ B = Σ (A → B) is-equiv
Equiv = _≃_
module _ {i} {j} {A : Type i} {B : Type j} where
equiv : (f : A → B) (g : B → A) (f-g : (b : B) → f (g b) == b)
(g-f : (a : A) → g (f a) == a) → A ≃ B
equiv f g f-g g-f = (f , is-eq f g f-g g-f)
–> : (e : A ≃ B) → (A → B)
–> e = fst e
<– : (e : A ≃ B) → (B → A)
<– e = is-equiv.g (snd e)
<–-inv-l : (e : A ≃ B) (a : A)
→ (<– e (–> e a) == a)
<–-inv-l e a = is-equiv.g-f (snd e) a
<–-inv-r : (e : A ≃ B) (b : B)
→ (–> e (<– e b) == b)
<–-inv-r e b = is-equiv.f-g (snd e) b
<–-inv-adj : (e : A ≃ B) (a : A)
→ ap (–> e) (<–-inv-l e a) == <–-inv-r e (–> e a)
<–-inv-adj e a = is-equiv.adj (snd e) a
<–-inv-adj' : (e : A ≃ B) (b : B)
→ ap (<– e) (<–-inv-r e b) == <–-inv-l e (<– e b)
<–-inv-adj' e b = is-equiv.adj' (snd e) b
-- Equivalences are "injective"
equiv-inj : (e : A ≃ B) {x y : A}
→ (–> e x == –> e y → x == y)
equiv-inj e {x} {y} p = ! (<–-inv-l e x) ∙ ap (<– e) p ∙ <–-inv-l e y
idf-is-equiv : ∀ {i} (A : Type i) → is-equiv (idf A)
idf-is-equiv A = is-eq _ (idf A) (λ _ → idp) (λ _ → idp)
ide : ∀ {i} (A : Type i) → A ≃ A
ide A = equiv (idf A) (idf A) (λ _ → idp) (λ _ → idp)
infixr 80 _∘e_
infixr 80 _∘ise_
_∘e_ : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k}
→ B ≃ C → A ≃ B → A ≃ C
e1 ∘e e2 = ((–> e1 ∘ –> e2) , record {g = (<– e2 ∘ <– e1);
f-g = (λ c → ap (–> e1) (<–-inv-r e2 (<– e1 c)) ∙ <–-inv-r e1 c);
g-f = (λ a → ap (<– e2) (<–-inv-l e1 (–> e2 a)) ∙ <–-inv-l e2 a);
adj = λ a →
ap (–> e1 ∘ –> e2) (ap (<– e2) (<–-inv-l e1 (–> e2 a)) ∙ <–-inv-l e2 a)
=⟨ ap-∘ (–> e1) (–> e2) (ap (<– e2) (<–-inv-l e1 (–> e2 a)) ∙ <–-inv-l e2 a) ⟩
ap (–> e1) (ap (–> e2) (ap (<– e2) (<–-inv-l e1 (–> e2 a)) ∙ <–-inv-l e2 a))
=⟨ ap-∙ (–> e2) (ap (<– e2) (<–-inv-l e1 (–> e2 a))) (<–-inv-l e2 a) |in-ctx ap (–> e1) ⟩
ap (–> e1) (ap (–> e2) (ap (<– e2) (<–-inv-l e1 (–> e2 a))) ∙ ap (–> e2) (<–-inv-l e2 a))
=⟨ ! (ap-∘ (–> e2) (<– e2) (<–-inv-l e1 (–> e2 a))) ∙2 <–-inv-adj e2 a |in-ctx ap (–> e1) ⟩
ap (–> e1) (ap (–> e2 ∘ <– e2) (<–-inv-l e1 (–> e2 a)) ∙ <–-inv-r e2 (–> e2 a))
=⟨ htpy-natural (<–-inv-r e2) (<–-inv-l e1 (–> e2 a)) |in-ctx ap (–> e1) ⟩
ap (–> e1) (<–-inv-r e2 (<– e1 ((–> e1 ∘ –> e2) a)) ∙ ap (λ z → z) (<–-inv-l e1 (–> e2 a)))
=⟨ <–-inv-r e2 (<– e1 ((–> e1 ∘ –> e2) a)) ∙ₗ ap-idf (<–-inv-l e1 (–> e2 a)) |in-ctx ap (–> e1) ⟩
ap (–> e1) (<–-inv-r e2 (<– e1 ((–> e1 ∘ –> e2) a)) ∙ <–-inv-l e1 (–> e2 a))
=⟨ ap-∙ (–> e1) (<–-inv-r e2 (<– e1 ((–> e1 ∘ –> e2) a))) (<–-inv-l e1 (–> e2 a)) ⟩
ap (–> e1) (<–-inv-r e2 (<– e1 ((–> e1 ∘ –> e2) a))) ∙ ap (–> e1) (<–-inv-l e1 (–> e2 a))
=⟨ ap (–> e1) (<–-inv-r e2 (<– e1 ((–> e1 ∘ –> e2) a))) ∙ₗ (<–-inv-adj e1 (–> e2 a)) ⟩
ap (–> e1) (<–-inv-r e2 (<– e1 ((–> e1 ∘ –> e2) a))) ∙ <–-inv-r e1 ((–> e1 ∘ –> e2) a)
∎})
_∘ise_ : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k}
{f : A → B} {g : B → C}
→ is-equiv g → is-equiv f → is-equiv (g ∘ f)
i1 ∘ise i2 = snd ((_ , i1) ∘e (_ , i2))
infix 120 _⁻¹
_⁻¹ : ∀ {i j} {A : Type i} {B : Type j} → (A ≃ B) → (B ≃ A)
e ⁻¹ = equiv (<– e) (–> e) (<–-inv-l e) (<–-inv-r e)
{- Equational reasoning for equivalences -}
infix 15 _≃∎
infixr 10 _≃⟨_⟩_
_≃⟨_⟩_ : ∀ {i j k} (A : Type i) {B : Type j} {C : Type k} → A ≃ B → B ≃ C → A ≃ C
A ≃⟨ u ⟩ v = v ∘e u
_≃∎ : ∀ {i} (A : Type i) → A ≃ A
_≃∎ = ide
{- lifting is an equivalence -}
lower-equiv : ∀ {i j} {A : Type i} → Lift {j = j} A ≃ A
lower-equiv = equiv lower lift (λ _ → idp) (λ _ → idp)
{- Any contractible type is equivalent to (all liftings of) the unit type -}
module _ {i} {A : Type i} (h : is-contr A) where
contr-equiv-Unit : A ≃ Unit
contr-equiv-Unit = equiv (λ _ → unit) (λ _ → fst h) (λ _ → idp) (snd h)
contr-equiv-LiftUnit : ∀ {j} → A ≃ Lift {j = j} Unit
contr-equiv-LiftUnit = lower-equiv ⁻¹ ∘e contr-equiv-Unit
{- An equivalence induces an equivalence on the path spaces -}
module _ {i j} {A : Type i} {B : Type j} (e : A ≃ B) where
private
abstract
left-inverse : {x y : A} (p : x == y) → equiv-inj e (ap (–> e) p) == p
left-inverse idp = !-inv-l (<–-inv-l e _)
right-inverse : {x y : A} (p : –> e x == –> e y)
→ ap (–> e) (equiv-inj e p) == p
right-inverse {x} {y} p =
ap f (! (g-f x) ∙ ap g p ∙ (g-f y))
=⟨ ap-∙ f (! (g-f x)) (ap g p ∙ (g-f y)) ⟩
ap f (! (g-f x)) ∙ ap f (ap g p ∙ (g-f y))
=⟨ ap-∙ f (ap g p) (g-f y) |in-ctx (λ q → ap f (! (g-f x)) ∙ q) ⟩
ap f (! (g-f x)) ∙ ap f (ap g p) ∙ ap f (g-f y)
=⟨ ∘-ap f g p |in-ctx (λ q → ap f (! (g-f x)) ∙ q ∙ ap f (g-f y)) ⟩
ap f (! (g-f x)) ∙ ap (f ∘ g) p ∙ ap f (g-f y)
=⟨ adj y |in-ctx (λ q → ap f (! (g-f x)) ∙ ap (f ∘ g) p ∙ q) ⟩
ap f (! (g-f x)) ∙ ap (f ∘ g) p ∙ (f-g (f y))
=⟨ ap-! f (g-f x) |in-ctx (λ q → q ∙ ap (f ∘ g) p ∙ (f-g (f y))) ⟩
! (ap f (g-f x)) ∙ ap (f ∘ g) p ∙ (f-g (f y))
=⟨ adj x |in-ctx (λ q → ! q ∙ ap (f ∘ g) p ∙ (f-g (f y))) ⟩
! (f-g (f x)) ∙ ap (f ∘ g) p ∙ (f-g (f y))
=⟨ htpy-natural f-g p |in-ctx (λ q → ! (f-g (f x)) ∙ q) ⟩
! (f-g (f x)) ∙ (f-g (f x)) ∙ ap (idf B) p
=⟨ ! (∙-assoc (! (f-g (f x))) (f-g (f x)) (ap (idf B) p))
∙ ap (λ q → q ∙ ap (idf B) p) (!-inv-l (f-g (f x))) ∙ ap-idf p ⟩
p ∎
where f : A → B
f = fst e
open is-equiv (snd e)
equiv-ap : (x y : A) → (x == y) ≃ (–> e x == –> e y)
equiv-ap x y = equiv (ap (–> e)) (equiv-inj e) right-inverse left-inverse
{- Equivalent types have the same truncation level -}
equiv-preserves-level : ∀ {i j} {A : Type i} {B : Type j} {n : ℕ₋₂} (e : A ≃ B)
→ (has-level n A → has-level n B)
equiv-preserves-level {n = ⟨-2⟩} e (x , p) =
(–> e x , (λ y → ap (–> e) (p _) ∙ <–-inv-r e y))
equiv-preserves-level {n = S n} e c = λ x y →
equiv-preserves-level (equiv-ap (e ⁻¹) x y ⁻¹) (c (<– e x) (<– e y))
{- This is a collection of type equivalences involving basic type formers.
We exclude Empty since Π₁-Empty requires λ=.
-}
module _ {j} {B : Unit → Type j} where
Σ₁-Unit : Σ Unit B ≃ B unit
Σ₁-Unit = equiv (λ {(unit , b) → b}) (λ b → (unit , b)) (λ _ → idp) (λ _ → idp)
Π₁-Unit : Π Unit B ≃ B unit
Π₁-Unit = equiv (λ f → f unit) (λ b _ → b) (λ _ → idp) (λ _ → idp)
module _ {i} {A : Type i} where
Σ₂-Unit : Σ A (λ _ → Unit) ≃ A
Σ₂-Unit = equiv fst (λ a → (a , unit)) (λ _ → idp) (λ _ → idp)
Π₂-Unit : Π A (λ _ → Unit) ≃ Unit
Π₂-Unit = equiv (λ _ → unit) (λ _ _ → unit) (λ _ → idp) (λ _ → idp)
module _ {i j k} {A : Type i} {B : A → Type j} {C : (a : A) → B a → Type k} where
Σ-assoc : Σ (Σ A B) (uncurry C) ≃ Σ A (λ a → Σ (B a) (C a))
Σ-assoc = equiv (λ {((a , b) , c) → (a , (b , c))})
(λ {(a , (b , c)) → ((a , b) , c)}) (λ _ → idp) (λ _ → idp)
curry-equiv : Π (Σ A B) (uncurry C) ≃ Π A (λ a → Π (B a) (C a))
curry-equiv = equiv curry uncurry (λ _ → idp) (λ _ → idp)
{- The type-theoretic axiom of choice -}
choice : Π A (λ a → Σ (B a) (λ b → C a b)) ≃ Σ (Π A B) (λ g → Π A (λ a → C a (g a)))
choice = equiv f g (λ _ → idp) (λ _ → idp)
where f = λ c → ((λ a → fst (c a)) , (λ a → snd (c a)))
g = λ d → (λ a → (fst d a , snd d a))
{- Homotopy fibers -}
hfiber : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) (y : B) → Type (lmax i j)
hfiber {A = A} f y = Σ A (λ x → f x == y)
|
{
"alphanum_fraction": 0.4231275792,
"avg_line_length": 40.9676258993,
"ext": "agda",
"hexsha": "ce0eabb334f2da7ca9ccbfe64af6cc8cc33aefad",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "core/lib/Equivalences.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "core/lib/Equivalences.agda",
"max_line_length": 107,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "core/lib/Equivalences.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5416,
"size": 11389
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.