Search is not available for this dataset
text
string | meta
dict |
---|---|
-- Andreas, fixed #1349 on 2016-06-08
-- {-# OPTIONS -v tc.term.exlam:50 -v scope.extendedLambda:10 #-}
module Issue1349 where
open import Common.Prelude
module Logic {s} (F : Set s) (arF : F → Nat) where
data Term : Nat → Set s where
var : ∀ n → Term (suc n)
d : Unit → Nat
d = \ {unit → zero} -- fails
-- d unit = zero -- works
module M = Logic Unit d -- (λ{unit -> zero})
test : Logic.Term Unit {!!} (suc zero)
test = M.var zero
-- WAS:
-- Agda2> Ambiguous name: Issue1349._..extendedlambda0
-- (agda2-info-action "*Error*" "An internal error has occurred. Please report this as a bug. Location of the error: src/full/Agda/TypeChecking/Reduce/Monad.hs:172" nil)
-- Gives proper error now.
|
{
"alphanum_fraction": 0.6507713885,
"avg_line_length": 25.4642857143,
"ext": "agda",
"hexsha": "12e5a9c994a5707a62a7ef60229bfd843fd075df",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue1349.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue1349.agda",
"max_line_length": 169,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue1349.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 226,
"size": 713
}
|
open import Data.Bool using ( Bool ; true ; false ; _∨_ )
open import Data.List.Primitive using ( #List ; [] ; _∷_ )
open import Data.Maybe using ( Maybe ; just ; nothing )
open import Data.Maybe.Primitive using ( #Maybe ; just ; nothing )
open import Data.String using ( String )
open import Web.URI.Primitive using ( #URI ; #toString ; #fromString ; #abs ; #rel )
open import Web.URI.Scheme using ( Scheme? ; http: )
open import Web.URI.Port using ( Port? ; ε )
module Web.URI where
infixl 5 _/_ _#_ _//_∶_ _//_
-- No authority or query component for now, and no parent path segments.
-- URIRef? isAbs isRef tracks whether a URI is absolute or relative,
-- and whether it is a URI reference (allows a #fragment) or not.
data URIRef? : Bool → Bool → Set where
root : {isRef : Bool} → (URIRef? false isRef)
_//_∶_ : {isRef : Bool} → Scheme? → String → Port? → (URIRef? true isRef)
_/_ : {isAbs isRef : Bool} → (URIRef? isAbs false) → String → (URIRef? isAbs isRef)
_#_ : {isAbs : Bool} → (URIRef? isAbs false) → String → (URIRef? isAbs true)
RURI = URIRef? false false
RURIRef = URIRef? false true
RURIRef? = URIRef? false
AURI = URIRef? true false
AURIRef = URIRef? true true
AURIRef? = URIRef? true
URIRef : Bool → Set
URIRef isAbs = URIRef? isAbs true
URI : Bool → Set
URI isAbs = URIRef? isAbs false
_//_ : {isRef : Bool} → Scheme? → String → (URIRef? true isRef)
s // h = s // h ∶ ε
http://_ : {isRef : Bool} → String → (URIRef? true isRef)
http:// h = http: // h
xsd: : String → AURIRef
xsd:(local) = http://"www.w3.org"/"2001"/"XMLSchema"#(local)
rdf: : String → AURIRef
rdf:(local) = http://"www.w3.org"/"1999"/"02"/"22-rdf-syntax-ns"#(local)
rdfs: : String → AURIRef
rdfs:(local) = http://"www.w3.org"/"2000"/"01"/"rdf-schema"#(local)
owl: : String → AURIRef
owl:(local) = http://"www.w3.org"/"2002"/"07"/"owl"#(local)
-- Parsing --
fromURI : {isAbs isRef : Bool} → (URIRef? isAbs false) → (URIRef? isAbs isRef)
fromURI {isAbs} {false} u = u
fromURI root = root
fromURI (s // h ∶ n) = s // h ∶ n
fromURI (u / a) = u / a
from#Path : {isAbs : Bool} → (URIRef? isAbs false) → (#List String) → (URIRef? isAbs false)
from#Path u [] = u
from#Path u (a ∷ as) = from#Path (u / a) as
from#Fragment : {isAbs isRef : Bool} → (URIRef? isAbs false) → (#Maybe String) → (Maybe (URIRef? isAbs isRef))
from#Fragment {isAbs} {true} u (just f) = just (u # f)
from#Fragment {isAbs} {false} u (just f) = nothing
from#Fragment {isAbs} {isRef} u nothing = just (fromURI u)
from#URI : {isAbs isRef : Bool} → (#Maybe #URI) → (Maybe (URIRef? isAbs isRef))
from#URI {true} (just (#abs s h n p f)) = from#Fragment (from#Path (s // h ∶ n) p) f
from#URI {false} (just (#rel p f)) = from#Fragment (from#Path root p) f
from#URI _ = nothing
fromString : {isAbs isRef : Bool} → String → (Maybe (URIRef? isAbs isRef))
fromString s = from#URI (#fromString s)
-- Serializing to#URI'
to#URI : {isAbs isRef : Bool} → (URIRef? isAbs isRef) → (#List String) → (#Maybe String) → #URI
to#URI root as f? = #rel as f?
to#URI (s // h ∶ n) as f? = #abs s h n as f?
to#URI (u / a) as f? = to#URI u (a ∷ as) f?
to#URI (u # f) as f? = to#URI u as (just f)
toString : {isAbs isRef : Bool} → (URIRef? isAbs isRef) → String
toString u = #toString (to#URI u [] nothing)
-- Composing --
_&_ : {isAbs₁ isAbs₂ isRef : Bool} → (URIRef? isAbs₁ false) → (URIRef? isAbs₂ isRef) → (URIRef? (isAbs₂ ∨ isAbs₁) isRef)
u & root = fromURI u
u & (s // h ∶ n) = s // h ∶ n
u & (v / a) = (u & v) / a
u & (v # a) = (u & v) # a
|
{
"alphanum_fraction": 0.6066887783,
"avg_line_length": 36.9183673469,
"ext": "agda",
"hexsha": "dc64a93a989bb7fc8c88b79407f0607e984ff4a3",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:37:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:37:59.000Z",
"max_forks_repo_head_hexsha": "8ced22124dbe12fa820699bb362247a96d592c03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-web-uri",
"max_forks_repo_path": "src/Web/URI.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8ced22124dbe12fa820699bb362247a96d592c03",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-web-uri",
"max_issues_repo_path": "src/Web/URI.agda",
"max_line_length": 120,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "8ced22124dbe12fa820699bb362247a96d592c03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-web-uri",
"max_stars_repo_path": "src/Web/URI.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-23T04:56:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-23T04:56:25.000Z",
"num_tokens": 1293,
"size": 3618
}
|
open import Oscar.Prelude
open import Oscar.Data.Constraint
module Oscar.Class where
record InnerClass {ℓ} {𝔢} {CONSTRAINTS : Ø 𝔢} (constraints : CONSTRAINTS) (_ : Constraint constraints) (SET-METHOD : Ø ℓ) : Ø ℓ where
constructor ∁
field
⋆ : SET-METHOD
open InnerClass public
module ℭLASS
{ℓ}
{𝔢}
{CONSTRAINTS : Ø 𝔢}
(constraints : CONSTRAINTS)
(c : Ø ℓ)
where
class = InnerClass constraints ∅ c
type = c
method : ⦃ _ : class ⦄ → type
method ⦃ ⌶ ⦄ = InnerClass.⋆ ⌶
record Rℭlass
{ℓ 𝔯}
{𝔢}
{CONSTRAINTS : Ø 𝔢}
(constraints : CONSTRAINTS)
: Ø ↑̂ (ℓ ∙̂ 𝔯)
where
constructor ∁
field
SET-METHOD : Ø ℓ
SET-R : SET-METHOD → Ø 𝔯
record SET-CLASS
⦃ _ : Constraint constraints ⦄
: Ø ℓ ∙̂ 𝔯
where
constructor ∁
field ⋆ : SET-METHOD
⦃ ⋆⋆ ⦄ : SET-R ⋆
open SET-CLASS public
GET-CLASS : Ø _
GET-CLASS = SET-CLASS
GET-METHOD : ⦃ _ : GET-CLASS ⦄ → SET-METHOD
GET-METHOD ⦃ ⌶ ⦄ = SET-CLASS.⋆ ⌶
open Rℭlass using (⋆; ∁) public
|
{
"alphanum_fraction": 0.6065411298,
"avg_line_length": 19.7843137255,
"ext": "agda",
"hexsha": "8d301480f70718ae3b09a79bf5a7dc8f907e36cb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class.agda",
"max_line_length": 133,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 428,
"size": 1009
}
|
{-# OPTIONS --without-K #-}
module algebra.group.morphism where
open import level
open import algebra.group.core
open import algebra.monoid.morphism
module _ {i}{j}
{X : Set i}⦃ sX : IsGroup X ⦄
{Y : Set j}⦃ sY : IsGroup Y ⦄ where
open IsGroup ⦃ ... ⦄
IsGroupMorphism : (X → Y) → Set (i ⊔ j)
IsGroupMorphism f = IsMonoidMorphism f
|
{
"alphanum_fraction": 0.635097493,
"avg_line_length": 23.9333333333,
"ext": "agda",
"hexsha": "4bbb6558e758119b6fd500da4dbe716715d49cc6",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/algebra/group/morphism.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/algebra/group/morphism.agda",
"max_line_length": 44,
"max_stars_count": 20,
"max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pcapriotti/agda-base",
"max_stars_repo_path": "src/algebra/group/morphism.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z",
"num_tokens": 125,
"size": 359
}
|
-- Andreas, 2016-07-21 adapted from MagicWith.agda
-- Testing correct printing of postfix projections.
{-# OPTIONS --postfix-projections #-}
-- {-# OPTIONS -v tc.cc:60 #-}
-- {-# OPTIONS -v tc.conv.elim:50 #-}
open import Common.Product
open import Common.Nat
record True : Set where
data False : Set where
IsZero : Nat → Set
IsZero zero = True
IsZero (suc _) = False
Uncurry : {A : Set}{B : A → Set} → ((x : A) → B x → Set) → Σ A B → Set
Uncurry F p = F (p .proj₁) (p .proj₂)
F : (n : Nat) → IsZero n → Set
F zero _ = True
F (suc _) ()
-- Trying to match only on p .proj₁ doesn't work since we can't abstract
-- p .proj₁ without also abstracting p .proj₂.
f : (p : Σ Nat IsZero) → Uncurry F p
f p with p .proj₁
f p | zero = _
f p | suc _ = ?
|
{
"alphanum_fraction": 0.6240105541,
"avg_line_length": 23.6875,
"ext": "agda",
"hexsha": "2d7096946fa6bfab9ca8acd11349703516172d0a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1963MagicWith.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1963MagicWith.agda",
"max_line_length": 72,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1963MagicWith.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 255,
"size": 758
}
|
{-# OPTIONS --allow-unsolved-metas --no-termination-check #-}
module TT where
module Prelude where
-- Props ------------------------------------------------------------------
data True : Set where
tt : True
data False : Set where
postulate
falseE : (A : Set) -> False -> A
infix 3 _/\_
data _/\_ (P Q : Set) : Set where
andI : P -> Q -> P /\ Q
-- Zero and One -----------------------------------------------------------
data Zero : Set where
data One : Set where
unit : One
-- Natural numbers --------------------------------------------------------
data Nat : Set where
zero : Nat
suc : Nat -> Nat
_+_ : Nat -> Nat -> Nat
zero + m = m
suc n + m = suc (n + m)
module NatEq where
infix 5 _==_
_==_ : Nat -> Nat -> Set
zero == zero = True
suc n == suc m = n == m
_ == _ = False
rewriteEq : (C : Nat -> Set){m n : Nat} -> m == n -> C n -> C m
rewriteEq C {zero} {zero} _ x = x
rewriteEq C {suc _} {suc _} eq x = rewriteEq (\z -> C (suc z)) eq x
rewriteEq C {zero} {suc _} () _
rewriteEq C {suc _} {zero} () _
module Chain {A : Set}(_==_ : A -> A -> Set)
(_trans_ : {x y z : A} -> x == y -> y == z -> x == z)
where
infixl 4 _=-=_
infixl 4 _===_
infixr 8 _since_
_=-=_ : (x : A){y : A} -> x == y -> x == y
x =-= xy = xy
_===_ : {x y z : A} -> x == y -> y == z -> x == z
xy === yz = xy trans yz
_since_ : {x : A}(y : A) -> x == y -> x == y
y since xy = xy
module Fin where
open Prelude
-- Finite sets ------------------------------------------------------------
data Suc (A : Set) : Set where
fzero' : Suc A
fsuc' : A -> Suc A
mutual
data Fin (n : Nat) : Set where
finI : Fin' n -> Fin n
Fin' : Nat -> Set
Fin' zero = Zero
Fin' (suc n) = Suc (Fin n)
fzero : {n : Nat} -> Fin (suc n)
fzero = finI fzero'
fsuc : {n : Nat} -> Fin n -> Fin (suc n)
fsuc i = finI (fsuc' i)
finE : {n : Nat} -> Fin n -> Fin' n
finE (finI i) = i
module FinEq where
infix 5 _==_
_==_ : {n : Nat} -> Fin n -> Fin n -> Set
_==_ {suc _} (finI fzero' ) (finI fzero' ) = True
_==_ {suc _} (finI (fsuc' i)) (finI (fsuc' j)) = i == j
_==_ _ _ = False
rewriteEq : {n : Nat}(C : Fin n -> Set){i j : Fin n} -> i == j -> C j -> C i
rewriteEq {suc _} C {finI fzero' } {finI fzero' } eq x = x
rewriteEq {suc _} C {finI (fsuc' i)} {finI (fsuc' j)} eq x = rewriteEq (\z -> C (fsuc z)) eq x
rewriteEq {suc _} C {finI (fsuc' _)} {finI fzero' } () _
rewriteEq {suc _} C {finI fzero' } {finI (fsuc' _)} () _
rewriteEq {zero} C {finI ()} {_} _ _
module Vec where
open Prelude
open Fin
infixr 15 _::_
-- Vectors ----------------------------------------------------------------
data Nil : Set where
nil' : Nil
data Cons (A As : Set) : Set where
cons' : A -> As -> Cons A As
mutual
data Vec (A : Set)(n : Nat) : Set where
vecI : Vec' A n -> Vec A n
Vec' : Set -> Nat -> Set
Vec' A zero = Nil
Vec' A (suc n) = Cons A (Vec A n)
nil : {A : Set} -> Vec A zero
nil = vecI nil'
_::_ : {A : Set}{n : Nat} -> A -> Vec A n -> Vec A (suc n)
x :: xs = vecI (cons' x xs)
vecE : {A : Set}{n : Nat} -> Vec A n -> Vec' A n
vecE (vecI xs) = xs
vec : {A : Set}(n : Nat) -> A -> Vec A n
vec zero _ = nil
vec (suc n) x = x :: vec n x
map : {n : Nat}{A B : Set} -> (A -> B) -> Vec A n -> Vec B n
map {zero} f (vecI nil') = nil
map {suc n} f (vecI (cons' x xs)) = f x :: map f xs
_!_ : {n : Nat}{A : Set} -> Vec A n -> Fin n -> A
_!_ {zero } _ (finI ())
_!_ {suc n} (vecI (cons' x _ )) (finI fzero') = x
_!_ {suc n} (vecI (cons' _ xs)) (finI (fsuc' i)) = xs ! i
tabulate : {n : Nat}{A : Set} -> (Fin n -> A) -> Vec A n
tabulate {zero} f = nil
tabulate {suc n} f = f fzero :: tabulate (\x -> f (fsuc x))
module Untyped where
open Prelude
open Fin
open Vec
Name = Nat
data Expr (n : Nat) : Set where
eVar : Fin n -> Expr n
eApp : Expr n -> Expr n -> Expr n
eLam : Expr (suc n) -> Expr n
eSet : Expr n
eEl : Expr n
ePi : Expr n
eCon : Name -> Expr n
module ExprEq where
infix 5 _==_
_==_ : {n : Nat} -> Expr n -> Expr n -> Set
eVar i == eVar j = FinEq._==_ i j
eApp e1 e2 == eApp e3 e4 = e1 == e3 /\ e2 == e4
eLam e1 == eLam e2 = e1 == e2
eSet == eSet = True
eEl == eEl = True
ePi == ePi = True
eCon f == eCon g = NatEq._==_ f g
_ == _ = False
rewriteEq : {n : Nat}(C : Expr n -> Set){r s : Expr n} -> r == s -> C s -> C r
rewriteEq C {eVar i } {eVar j } eq x = FinEq.rewriteEq (\z -> C (eVar z)) eq x
rewriteEq C {eLam e1 } {eLam e2 } eq x = rewriteEq (\z -> C (eLam z)) eq x
rewriteEq C {eSet } {eSet } eq x = x
rewriteEq C {eEl } {eEl } eq x = x
rewriteEq C {ePi } {ePi } eq x = x
rewriteEq C {eCon f } {eCon g } eq x = NatEq.rewriteEq (\z -> C (eCon z)) eq x
rewriteEq C {eApp e1 e2} {eApp e3 e4} (andI eq13 eq24) x =
rewriteEq (\z -> C (eApp z e2)) eq13 (
rewriteEq (\z -> C (eApp e3 z)) eq24 x
)
rewriteEq C {eVar _} {eLam _ } () _
rewriteEq C {eVar _} {eSet } () _
rewriteEq C {eVar _} {eEl } () _
rewriteEq C {eVar _} {eCon _ } () _
rewriteEq C {eVar _} {ePi } () _
rewriteEq C {eVar _} {eApp _ _} () _
rewriteEq C {eLam _} {eVar _ } () _
rewriteEq C {eLam _} {eSet } () _
rewriteEq C {eLam _} {eEl } () _
rewriteEq C {eLam _} {eCon _ } () _
rewriteEq C {eLam _} {ePi } () _
rewriteEq C {eLam _} {eApp _ _} () _
rewriteEq C {eSet } {eLam _ } () _
rewriteEq C {eSet } {eVar _ } () _
rewriteEq C {eSet } {eEl } () _
rewriteEq C {eSet } {eCon _ } () _
rewriteEq C {eSet } {ePi } () _
rewriteEq C {eSet } {eApp _ _} () _
rewriteEq C {eEl } {eLam _ } () _
rewriteEq C {eEl } {eSet } () _
rewriteEq C {eEl } {eVar _ } () _
rewriteEq C {eEl } {eCon _ } () _
rewriteEq C {eEl } {ePi } () _
rewriteEq C {eEl } {eApp _ _} () _
rewriteEq C {eCon _} {eLam _ } () _
rewriteEq C {eCon _} {eSet } () _
rewriteEq C {eCon _} {eEl } () _
rewriteEq C {eCon _} {eVar _ } () _
rewriteEq C {eCon _} {ePi } () _
rewriteEq C {eCon _} {eApp _ _} () _
rewriteEq C {ePi } {eLam _ } () _
rewriteEq C {ePi } {eSet } () _
rewriteEq C {ePi } {eEl } () _
rewriteEq C {ePi } {eCon _ } () _
rewriteEq C {ePi } {eVar _ } () _
rewriteEq C {ePi } {eApp _ _} () _
rewriteEq C {eApp _ _} {eLam _ } () _
rewriteEq C {eApp _ _} {eSet } () _
rewriteEq C {eApp _ _} {eEl } () _
rewriteEq C {eApp _ _} {eCon _ } () _
rewriteEq C {eApp _ _} {ePi } () _
rewriteEq C {eApp _ _} {eVar _ } () _
module Typed where
open Prelude
open Fin
open Vec
infixl 15 _&_
infix 13 _!!_
infix 5 _==_
-- Contexts ---------------------------------------------------------------
data CSuc (n : Nat) : Set
Context' : Nat -> Set
Context' zero = Nil
Context' (suc n) = CSuc n
data Context (n : Nat) : Set
data Type {n : Nat}(Γ : Context n) : Set
data CSuc n where
ext : (Γ : Context n) -> Type Γ -> Context' (suc n)
data Context n where
ctxI : Context' n -> Context n
-- Types ------------------------------------------------------------------
_&_ : {n : Nat}(Γ : Context n) -> Type Γ -> Context (suc n)
data Term {n : Nat}(Γ : Context n)(A : Type Γ) : Set
data Type {n} Γ where
SET : Type Γ
Pi : (A : Type Γ) -> Type (Γ & A) -> Type Γ
El : Term Γ SET -> Type Γ
Γ & A = ctxI (ext Γ A)
-- Variables --------------------------------------------------------------
data VarSuc {n : Nat}(Γ : Context n)(B : Type Γ)(A : Type (Γ & B)) : Set
Var' : {n : Nat}(Γ : Context n) -> Type Γ -> Set
Var' {zero} Γ A = Zero
Var' {suc n} (ctxI (ext Γ B)) A = VarSuc Γ B A
_==_ : {n : Nat}{Γ : Context n} -> Type Γ -> Type Γ -> Set
data Ren {n m : Nat}(Γ : Context n)(Δ : Context m) : Set
rename : {n m : Nat}{Γ : Context n}{Δ : Context m} -> Ren Γ Δ -> Type Γ -> Type Δ
upR : {n : Nat}{Γ : Context n}{A : Type Γ} -> Ren Γ (Γ & A)
data Var {n : Nat}(Γ : Context n)(A : Type Γ) : Set
data VarSuc {n} Γ B A where
vzero_ : A == rename upR B -> Var' (Γ & B) A
vsuc_ : (C : Type Γ) -> A == rename upR C -> Var Γ C -> Var' (Γ & B) A
data Var {n} Γ A where
varI : Var' Γ A -> Var Γ A
-- Terms ------------------------------------------------------------------
data Sub {n m : Nat}(Γ : Context n)(Δ : Context m) : Set
subst : {n m : Nat}{Γ : Context n}{Δ : Context m} -> Sub Γ Δ -> Type Γ -> Type Δ
down : {n : Nat}{Γ : Context n}{A : Type Γ} -> Term Γ A -> Sub (Γ & A) Γ
data Term {n} Γ A where
var : (x : Var Γ A) -> Term Γ A
app : {B : Type Γ}{C : Type (Γ & B)} -> Term Γ (Pi B C) -> (t : Term Γ B) ->
A == subst (down t) C -> Term Γ A
lam : {B : Type Γ}{C : Type (Γ & B)} -> Term (Γ & B) C -> A == Pi B C -> Term Γ A
-- Context manipulation ---------------------------------------------------
∅ : Context zero
∅ = ctxI nil'
_!!_ : {n : Nat}(Γ : Context n) -> Fin n -> Type Γ
_!!_ {zero} _ (finI ())
_!!_ {suc _} (ctxI (ext Γ A)) (finI fzero') = rename upR A
_!!_ {suc _} (ctxI (ext Γ A)) (finI (fsuc' i)) = rename upR (Γ !! i)
-- Renamings --------------------------------------------------------------
data ConsRen {n m : Nat}(Γ : Context n)(A : Type Γ)(Δ : Context m) : Set
Ren' : {n m : Nat} -> Context n -> Context m -> Set
Ren' {zero} {m} (ctxI nil') Δ = Nil
Ren' {suc n} {m} (ctxI (ext Γ A)) Δ = ConsRen Γ A Δ
data ConsRen {n m} Γ A Δ where
extRen' : (ρ : Ren Γ Δ) -> Var Δ (rename ρ A) -> Ren' (Γ & A) Δ
data Ren {n m} Γ Δ where
renI : Ren' Γ Δ -> Ren Γ Δ
-- Performing renamings ---------------------------------------------------
rename' : {n m : Nat}{Γ : Context n}{Δ : Context m} -> Ren Γ Δ -> Type Γ -> Type Δ
rename ρ SET = SET
rename ρ A = rename' ρ A
liftR : {n m : Nat}{Γ : Context n}{A : Type Γ}{Δ : Context m} ->
(ρ : Ren Γ Δ) -> Ren (Γ & A) (Δ & rename ρ A)
renameTerm : {n m : Nat}{Γ : Context n}{Δ : Context m}{A : Type Γ}
(ρ : Ren Γ Δ) -> Term Γ A -> Term Δ (rename ρ A)
rename' ρ SET = SET
rename' ρ (Pi A B) = Pi (rename ρ A) (rename (liftR ρ) B)
rename' ρ (El t) = El (renameTerm ρ t)
lookupR : {n m : Nat}{Γ : Context n}{A : Type Γ}{Δ : Context m}
(ρ : Ren Γ Δ)(x : Var Γ A) -> Var Δ (rename ρ A)
cong : {n m : Nat}{Γ : Context n}{Δ : Context m}(f : Type Γ -> Type Δ)
{A B : Type Γ} -> A == B -> f A == f B
_trans_ : {n : Nat}{Γ : Context n}{A B C : Type Γ} -> A == B -> B == C -> A == C
renameSubstCommute :
{n m : Nat}{Γ : Context n}{Δ : Context m}{A : Type Γ}{B : Type (Γ & A)}
{ρ : Ren Γ Δ}{t : Term Γ A} ->
rename ρ (subst (down t) B) == subst (down (renameTerm ρ t)) (rename (liftR ρ) B)
renameTerm ρ (var x) = var (lookupR ρ x)
renameTerm {_}{_}{_}{_}{A} ρ (app{_}{C} s t eq) =
app (renameTerm ρ s) (renameTerm ρ t)
(cong (rename ρ) eq trans renameSubstCommute)
renameTerm ρ (lam t eq) = lam (renameTerm (liftR ρ) t) (cong (rename ρ) eq)
lookupR {zero} _ (varI ())
lookupR {suc n} {_} {ctxI (ext Γ B)} {A} {Δ}
(renI (extRen' ρ z)) (varI (vzero_ eq)) = {!!}
lookupR {suc n} {_} {ctxI (ext Γ B)} {A} {Δ}
(renI (extRen' ρ z)) (varI (vsuc_ C eq x)) = {!!}
-- Building renamings -----------------------------------------------------
extRen : {n m : Nat}{Γ : Context n}{A : Type Γ}{Δ : Context m}
(ρ : Ren Γ Δ) -> Var Δ (rename ρ A) -> Ren (Γ & A) Δ
extRen ρ x = renI (extRen' ρ x)
_coR_ : {n m p : Nat}{Γ : Context n}{Δ : Context m}{Θ : Context p} -> Ren Δ Θ -> Ren Γ Δ -> Ren Γ Θ
liftR {_}{_}{_}{A} ρ = extRen (upR coR ρ) (varI {!!})
idR : {n : Nat} {Γ : Context n} -> Ren Γ Γ
idR = {!!}
_coR_ = {!!}
upR = {!!}
-- Substitutions ----------------------------------------------------------
data ConsSub {n m : Nat}(Γ : Context n)(A : Type Γ)(Δ : Context m) : Set
Sub' : {n m : Nat} -> Context n -> Context m -> Set
Sub' {zero} {m} (ctxI nil') Δ = Nil
Sub' {suc n} {m} (ctxI (ext Γ A)) Δ = ConsSub Γ A Δ
data ConsSub {n m} Γ A Δ where
extSub' : (σ : Sub Γ Δ) -> Term Δ (subst σ A) -> Sub' (Γ & A) Δ
data Sub {n m} Γ Δ where
subI : Sub' Γ Δ -> Sub Γ Δ
-- Performing substitution ------------------------------------------------
subst' : {n m : Nat}{Γ : Context n}{Δ : Context m} -> Sub Γ Δ -> Type Γ -> Type Δ
subst σ SET = SET
subst σ A = subst' σ A
liftS : {n m : Nat}{Γ : Context n}{A : Type Γ}{Δ : Context m} ->
(σ : Sub Γ Δ) -> Sub (Γ & A) (Δ & subst σ A)
substTerm : {n m : Nat}{Γ : Context n}{Δ : Context m}{A : Type Γ} ->
(σ : Sub Γ Δ) -> Term Γ A -> Term Δ (subst σ A)
subst' σ (Pi A B) = Pi (subst σ A) (subst (liftS σ) B)
subst' σ (El t) = El (substTerm σ t)
subst' σ SET = SET
substTerm σ (var x) = {!!}
substTerm σ (app s t eq) = {!!}
substTerm σ (lam t eq) = {!!}
-- Building substitutions -------------------------------------------------
liftS {_}{_}{_}{A} σ = {!!} -- extSub (upS ∘ σ) (var fzero (substCompose upS σ A))
-- Works with hidden args to substCompose when inlined in subst
-- but not here. Weird.
topS : {n : Nat}{Γ : Context n} -> Sub ∅ Γ
topS = subI nil'
extSub : {n m : Nat}{Γ : Context n}{A : Type Γ}{Δ : Context m}
(σ : Sub Γ Δ) -> Term Δ (subst σ A) -> Sub (Γ & A) Δ
extSub σ t = subI (extSub' σ t)
idS : {n : Nat}{Γ : Context n} -> Sub Γ Γ
idS {zero} {ctxI nil'} = topS
idS {suc _} {ctxI (ext Γ A)} = {!!} -- extSub upS (var fzero refl)
convert : {n : Nat}{Γ : Context n}{A B : Type Γ} -> A == B -> Term Γ B -> Term Γ A
_∘_ : {n m p : Nat}{Γ : Context n}{Δ : Context m}{Θ : Context p} -> Sub Δ Θ -> Sub Γ Δ -> Sub Γ Θ
substCompose : {n m p : Nat}{Γ : Context n}{Δ : Context m}{Θ : Context p}
(σ : Sub Δ Θ)(δ : Sub Γ Δ)(A : Type Γ) ->
subst (σ ∘ δ) A == subst σ (subst δ A)
_∘_ {zero} {_}{_} {ctxI nil'} _ _ = topS
_∘_ {suc _}{_}{_} {ctxI (ext Γ A)} σ (subI (extSub' δ t)) =
extSub (σ ∘ δ) (convert (substCompose σ δ A) (substTerm σ t))
upS : {n : Nat}{Γ : Context n}{A : Type Γ} -> Sub Γ (Γ & A)
upS = {!!}
substId : {n : Nat}{Γ : Context n}{A : Type Γ} -> subst idS A == A
down t = extSub idS (convert substId t)
-- Convertibility ---------------------------------------------------------
A == B = {!!}
refl : {n : Nat}{Γ : Context n}{A : Type Γ} -> A == A
refl = {!!}
cong f eq = {!!}
ab trans bc = {!!}
convert eq t = {!!}
-- Properties -------------------------------------------------------------
renameId : {n : Nat}{Γ : Context n}{A : Type Γ} -> rename idR A == A
renameId = {!!}
renameCompose : {n m p : Nat}{Γ : Context n}{Δ : Context m}{Θ : Context p}
(σ : Ren Δ Θ)(δ : Ren Γ Δ)(A : Type Γ) ->
rename (σ coR δ) A == rename σ (rename δ A)
renameCompose σ δ A = {!!}
substId = {!!}
substCompose σ δ A = {!!}
renameSubstCommute = {!!}
|
{
"alphanum_fraction": 0.4462977003,
"avg_line_length": 31.5928143713,
"ext": "agda",
"hexsha": "e7d4f5836bb5effcd768421a2386afd2f7740acb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/TT.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/TT.agda",
"max_line_length": 101,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/TT.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 5842,
"size": 15828
}
|
module Data.BinaryTree where
import Lvl
open import Type
private variable ℓ ℓᵢ ℓₗ ℓₙ ℓₒ : Lvl.Level
private variable N N₁ N₂ L T A B : Type{ℓ}
data BinaryTree (L : Type{ℓₗ}) (N : Type{ℓₙ}) : Type{ℓₗ Lvl.⊔ ℓₙ} where
Leaf : L → BinaryTree L N
Node : N → BinaryTree L N → BinaryTree L N → BinaryTree L N
elim : (P : BinaryTree L N → Type{ℓ}) → ((l : L) → P(Leaf l)) → (∀{tl tr} → (n : N) → (pl : P(tl)) → (pr : P(tr)) → P(Node n tl tr)) → ((t : BinaryTree L N) → P(t))
elim P pl pn (Leaf l) = pl l
elim P pl pn (Node n l r) = pn n (elim P pl pn l) (elim P pl pn r)
open import Data using (Unit ; <>)
open import Data.Boolean
open import Data.Option
open import Data.Tuple using (_⨯_ ; _,_)
open import Functional as Fn using (_$_)
open import Numeral.Natural
open import Numeral.Natural.Function
open import Numeral.Natural.Oper hiding (_^_)
emptyTree : BinaryTree{ℓₗ} Unit N
emptyTree = Leaf <>
singleton : N → BinaryTree{ℓₗ} Unit N
singleton a = Node a emptyTree emptyTree
isLeaf : BinaryTree L N → Bool
isLeaf (Leaf _) = 𝑇
isLeaf (Node _ _ _) = 𝐹
isNode : BinaryTree L N → Bool
isNode (Leaf _) = 𝐹
isNode (Node _ _ _) = 𝑇
root : BinaryTree L N → Option(N)
root (Leaf _) = None
root (Node a _ _) = Some a
flip : BinaryTree L N → BinaryTree L N
flip (Leaf l) = Leaf l
flip (Node n l r) = Node n (flip r) (flip l)
foldPreOrderDepthFirst : (L → T → T) → (N → T → T) → T → BinaryTree L N → T
foldPreOrderDepthFirst(_▫ₗ_)(_▫ₙ_) id (Leaf a) = a ▫ₗ id
foldPreOrderDepthFirst(_▫ₗ_)(_▫ₙ_) id (Node a l r) =
a ▫ₙ_ $
Fn.swap(foldPreOrderDepthFirst(_▫ₗ_)(_▫ₙ_)) l $
Fn.swap(foldPreOrderDepthFirst(_▫ₗ_)(_▫ₙ_)) r $
id
foldInOrderDepthFirst : (L → T → T) → (N → T → T) → T → BinaryTree L N → T
foldInOrderDepthFirst(_▫ₗ_)(_▫ₙ_) id (Leaf a) = a ▫ₗ id
foldInOrderDepthFirst(_▫ₗ_)(_▫ₙ_) id (Node a l r) =
Fn.swap(foldInOrderDepthFirst(_▫ₗ_)(_▫ₙ_)) l $
a ▫ₙ_ $
Fn.swap(foldInOrderDepthFirst(_▫ₗ_)(_▫ₙ_)) r $
id
foldPostOrderDepthFirst : (L → T → T) → (N → T → T) → T → BinaryTree L N → T
foldPostOrderDepthFirst(_▫ₗ_)(_▫ₙ_) id (Leaf a) = a ▫ₗ id
foldPostOrderDepthFirst(_▫ₗ_)(_▫ₙ_) id (Node a l r) =
Fn.swap(foldPostOrderDepthFirst(_▫ₗ_)(_▫ₙ_)) l $
Fn.swap(foldPostOrderDepthFirst(_▫ₗ_)(_▫ₙ_)) r $
a ▫ₙ_ $
id
foldReversedPreOrderDepthFirst : (L → T → T) → (N → T → T) → T → BinaryTree L N → T
foldReversedPreOrderDepthFirst(_▫ₗ_)(_▫ₙ_) id (Leaf a) = a ▫ₗ id
foldReversedPreOrderDepthFirst(_▫ₗ_)(_▫ₙ_) id (Node a l r) =
a ▫ₙ_ $
Fn.swap(foldReversedPreOrderDepthFirst(_▫ₗ_)(_▫ₙ_)) r $
Fn.swap(foldReversedPreOrderDepthFirst(_▫ₗ_)(_▫ₙ_)) l $
id
foldReversedInOrderDepthFirst : (L → T → T) → (N → T → T) → T → BinaryTree L N → T
foldReversedInOrderDepthFirst(_▫ₗ_)(_▫ₙ_) id (Leaf a) = a ▫ₗ id
foldReversedInOrderDepthFirst(_▫ₗ_)(_▫ₙ_) id (Node a l r) =
Fn.swap(foldReversedInOrderDepthFirst(_▫ₗ_)(_▫ₙ_)) r $
a ▫ₙ_ $
Fn.swap(foldReversedInOrderDepthFirst(_▫ₗ_)(_▫ₙ_)) l $
id
foldReversedPostOrderDepthFirst : (L → T → T) → (N → T → T) → T → BinaryTree L N → T
foldReversedPostOrderDepthFirst(_▫ₗ_)(_▫ₙ_) id (Leaf a) = a ▫ₗ id
foldReversedPostOrderDepthFirst(_▫ₗ_)(_▫ₙ_) id (Node a l r) =
Fn.swap(foldReversedPostOrderDepthFirst(_▫ₗ_)(_▫ₙ_)) r $
Fn.swap(foldReversedPostOrderDepthFirst(_▫ₗ_)(_▫ₙ_)) l $
a ▫ₙ_ $
id
-- The size is the number of nodes in the tree.
size : BinaryTree L N → ℕ
size (Leaf _) = 𝟎
size (Node _ l r) = 𝐒(size(l) + size(r))
-- The number of leaves in the tree.
numberOfLeaves : BinaryTree L N → ℕ
numberOfLeaves (Leaf _) = 1
numberOfLeaves (Node _ l r) = numberOfLeaves(l) + numberOfLeaves(r)
-- The height is the length of the longest path from the root.
height : BinaryTree L N → ℕ
height (Leaf _) = 𝟎
height (Node _ l r) = 𝐒(max (height l) (height r))
open import Data.Boolean.Operators
open Data.Boolean.Operators.Programming
isFull : BinaryTree L N → Bool
isFull (Leaf _) = 𝑇
isFull (Node _ (Leaf _) (Leaf _)) = 𝑇
isFull (Node _ (Node _ _ _) (Leaf _)) = 𝐹
isFull (Node _ (Leaf _) (Node _ _ _)) = 𝐹
isFull (Node _ l@(Node _ _ _) r@(Node _ _ _)) = isFull l && isFull r
open import Data.List
import Data.List.Functions as List
treesOfDepth : ℕ → BinaryTree L N → List(BinaryTree L N)
treesOfDepth 𝟎 tree = tree ⊰ ∅
treesOfDepth (𝐒(_)) (Leaf _) = ∅
treesOfDepth (𝐒(n)) (Node _ l r) = (treesOfDepth n l) List.++ (treesOfDepth n r)
|
{
"alphanum_fraction": 0.6048335807,
"avg_line_length": 36.8515625,
"ext": "agda",
"hexsha": "4e6418adb454b55ce849243a3c635fb0d2af934d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/BinaryTree.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/BinaryTree.agda",
"max_line_length": 164,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/BinaryTree.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1761,
"size": 4717
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.Vec.NAry where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Data.Nat
open import Cubical.Data.Vec.Base
private
variable
ℓ ℓ' : Level
A : Type ℓ
B : Type ℓ'
nAryLevel : Level → Level → ℕ → Level
nAryLevel ℓ₁ ℓ₂ zero = ℓ₂
nAryLevel ℓ₁ ℓ₂ (suc n) = ℓ-max ℓ₁ (nAryLevel ℓ₁ ℓ₂ n)
nAryOp : (n : ℕ) → Type ℓ → Type ℓ' → Type (nAryLevel ℓ ℓ' n)
nAryOp zero A B = B
nAryOp (suc n) A B = A → nAryOp n A B
_$ⁿ_ : ∀ {n} → nAryOp n A B → (Vec A n → B)
f $ⁿ [] = f
f $ⁿ (x ∷ xs) = f x $ⁿ xs
curryⁿ : ∀ {n} → (Vec A n → B) → nAryOp n A B
curryⁿ {n = zero} f = f []
curryⁿ {n = suc n} f x = curryⁿ (λ xs → f (x ∷ xs))
$ⁿ-curryⁿ : ∀ {n} (f : Vec A n → B) → _$ⁿ_ (curryⁿ f) ≡ f
$ⁿ-curryⁿ {n = zero} f = funExt λ { [] → refl }
$ⁿ-curryⁿ {n = suc n} f = funExt λ { (x ∷ xs) i → $ⁿ-curryⁿ {n = n} (λ ys → f (x ∷ ys)) i xs}
curryⁿ-$ⁿ : ∀ {n} (f : nAryOp {ℓ = ℓ} {ℓ' = ℓ'} n A B) → curryⁿ {A = A} {B = B} (_$ⁿ_ f) ≡ f
curryⁿ-$ⁿ {n = zero} f = refl
curryⁿ-$ⁿ {n = suc n} f = funExt λ x → curryⁿ-$ⁿ {n = n} (f x)
nAryOp≃VecFun : ∀ {n} → nAryOp n A B ≃ (Vec A n → B)
nAryOp≃VecFun {n = n} = isoToEquiv f
where
f : Iso (nAryOp n A B) (Vec A n → B)
Iso.fun f = _$ⁿ_
Iso.inv f = curryⁿ
Iso.rightInv f = $ⁿ-curryⁿ
Iso.leftInv f = curryⁿ-$ⁿ {n = n}
-- In order to apply ua to nAryOp≃VecFun we probably need to change
-- the base-case of nAryLevel to "ℓ-max ℓ₁ ℓ₂". This will make it
-- necessary to add lots of Lifts in zero cases so it's not done yet,
-- but if the Path is ever needed then it might be worth to do.
|
{
"alphanum_fraction": 0.5938740783,
"avg_line_length": 31.4821428571,
"ext": "agda",
"hexsha": "0a90a21c982193b1f0abb5439cdc249e9573389a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Data/Vec/NAry.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Data/Vec/NAry.agda",
"max_line_length": 93,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Data/Vec/NAry.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 796,
"size": 1763
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Dagger.Construction.Discrete where
open import Relation.Binary.PropositionalEquality
open import Categories.Category.Dagger
open import Categories.Category.Discrete
Discrete-HasDagger : ∀ {a} (A : Set a) → HasDagger (Discrete A)
Discrete-HasDagger A = record
{ _† = sym
; †-identity = refl
; †-homomorphism = λ { {f = refl} {g = refl} → refl }
; †-resp-≈ = cong sym
; †-involutive = λ { refl → refl}
}
Discrete-DaggerCategory : ∀ {a} (A : Set a) → DaggerCategory a a a
Discrete-DaggerCategory A = record { hasDagger = Discrete-HasDagger A }
|
{
"alphanum_fraction": 0.6914378029,
"avg_line_length": 30.95,
"ext": "agda",
"hexsha": "719d3d5db74babcf21e54e1d48a63a6ee2e9d510",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d07746023503cc8f49670e309a6170dc4b404b95",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Dagger/Construction/Discrete.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d07746023503cc8f49670e309a6170dc4b404b95",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Dagger/Construction/Discrete.agda",
"max_line_length": 71,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "f8a33de12956c729c7fb00a302f166a643eb6052",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "TOTBWF/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Dagger/Construction/Discrete.agda",
"max_stars_repo_stars_event_max_datetime": "2021-04-18T18:21:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-18T18:21:47.000Z",
"num_tokens": 192,
"size": 619
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.Diagram.Colimit.Lan where
open import Level
open import Categories.Category
open import Categories.Category.Cocomplete
open import Categories.Diagram.Duality
open import Categories.Diagram.Limit.Ran
open import Categories.Functor
open import Categories.Kan
open import Categories.Kan.Duality
private
variable
o ℓ e : Level
C D E : Category o ℓ e
module _ {o ℓ e o′ ℓ′ e′} {C : Category o′ ℓ′ e′} {D : Category o ℓ e}
(F : Functor C D) (X : Functor C E) (Com : Cocomplete (o′ ⊔ ℓ) (ℓ′ ⊔ e) e′ E) where
private
module F = Functor F
module X = Functor X
colimit-is-lan : Lan F X
colimit-is-lan = coRan⇒Lan (limit-is-ran F.op X.op λ G → Colimit⇒coLimit E (Com (Functor.op G)))
|
{
"alphanum_fraction": 0.6871727749,
"avg_line_length": 28.2962962963,
"ext": "agda",
"hexsha": "dcbc27b23f2db53addda787c56f12ff98cde16bf",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Diagram/Colimit/Lan.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Diagram/Colimit/Lan.agda",
"max_line_length": 98,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Diagram/Colimit/Lan.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 246,
"size": 764
}
|
-- Possible improvements:
-- * Most of the code below is not reachable from main.
-- * The following primitives are not used at all: primPOr, primComp,
-- primHComp, prim^glueU and prim^unglueU.
{-# OPTIONS --erased-cubical #-}
-- The code from Agda.Builtin.Cubical.Glue should not be compiled.
open import Agda.Builtin.Cubical.Glue
open import Agda.Builtin.Cubical.HCompU
open import Agda.Builtin.Cubical.Id
open import Agda.Builtin.Cubical.Path
open import Agda.Builtin.Cubical.Sub
open import Agda.Builtin.IO
open import Agda.Builtin.Nat
open import Agda.Builtin.String
open import Agda.Builtin.Unit
open import Agda.Primitive.Cubical
open import Erased-cubical-Cubical
postulate
putStr : String → IO ⊤
{-# FOREIGN GHC import qualified Data.Text.IO #-}
{-# COMPILE GHC putStr = Data.Text.IO.putStr #-}
{-# COMPILE JS putStr =
function (x) {
return function(cb) {
process.stdout.write(x); cb(0); }; } #-}
i₁ : I
i₁ = primIMax (primIMax (primINeg i0) i1) (primIMin i1 i0)
i₁-1 : IsOne i₁
i₁-1 = IsOne1 (primIMax (primINeg i0) i1) (primIMin i1 i0)
(IsOne2 (primINeg i0) i1 itIsOne)
p₁ : Partial i1 Nat
p₁ = λ _ → 12
p₂ : PartialP i1 (λ _ → Nat)
p₂ = λ _ → 12
p₃ : PartialP i0 (λ _ → Nat)
p₃ = isOneEmpty
subst :
∀ {a p} {A : Set a}
(P : A → Set p) (f : I → A) → P (f i0) → P (f i1)
subst P eq p = primTransp (λ i → P (eq i)) i0 p
p₄ : 12 ≡ 12
p₄ = λ _ → 12
n₁ : Nat
n₁ = p₄ i0
s : Sub Nat i1 (λ _ → 13)
s = inc 13
n₂ : Nat
n₂ = primSubOut s
i₂ : I
i₂ = primFaceForall (λ _ → i1)
i₃ : Id 12 12
i₃ = conid i0 p₄
i₄ : I
i₄ = primDepIMin i1 (λ _ → i0)
i₅ : I
i₅ = primIdFace i₃
p₅ : 12 ≡ 12
p₅ = primIdPath i₃
n₃ : Nat
n₃ = primIdJ (λ _ _ → Nat) 14 i₃
n₄ : Nat
n₄ = primIdElim (λ _ _ → Nat) (λ _ _ _ → 14) i₃
Is-proposition : Set → Set
Is-proposition A = (x y : A) → x ≡ y
data ∥_∥ (A : Set) : Set where
∣_∣ : A → ∥ A ∥
@0 trivial : Is-proposition ∥ A ∥
rec : {A B : Set} → @0 Is-proposition B → (A → B) → ∥ A ∥ → B
rec p f ∣ x ∣ = f x
rec p f (trivial x y i) = p (rec p f x) (rec p f y) i
main : IO ⊤
main =
putStr (rec easy
(λ where
true → "Success\n"
false → "Failure\n")
∣ true ∣)
-- It should be possible to mention things that are not compiled in
-- type signatures.
u₁ : Not-compiled → ⊤
u₁ _ = tt
@0 A : Set₁
A = Set
u₂ : A → ⊤
u₂ _ = tt
|
{
"alphanum_fraction": 0.6103896104,
"avg_line_length": 20.2288135593,
"ext": "agda",
"hexsha": "5a0386a30f1d44e653a4add3f4fad7518e1bd46d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-18T13:34:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-18T13:34:07.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Compiler/simple/Erased-cubical.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Compiler/simple/Erased-cubical.agda",
"max_line_length": 69,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Compiler/simple/Erased-cubical.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 950,
"size": 2387
}
|
{-
This second-order signature was created from the following second-order syntax description:
syntax Unit | U
type
𝟙 : 0-ary
term
unit : 𝟙
theory
(𝟙η) u : 𝟙 |> u = unit
-}
module Unit.Signature where
open import SOAS.Context
-- Type declaration
data UT : Set where
𝟙 : UT
open import SOAS.Syntax.Signature UT public
open import SOAS.Syntax.Build UT public
-- Operator symbols
data Uₒ : Set where
unitₒ : Uₒ
-- Term signature
U:Sig : Signature Uₒ
U:Sig = sig λ
{ unitₒ → ⟼₀ 𝟙
}
open Signature U:Sig public
|
{
"alphanum_fraction": 0.6934579439,
"avg_line_length": 13.375,
"ext": "agda",
"hexsha": "9a24aee6ee405e2e043fc6c03b32bf0ad6fb3975",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "out/Unit/Signature.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "out/Unit/Signature.agda",
"max_line_length": 91,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "out/Unit/Signature.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 181,
"size": 535
}
|
module Numeric.Nat.Sqrt where
open import Prelude hiding (_<?_)
open import Numeric.Nat.Properties
open import Tactic.Nat
open import Numeric.Nat.BinarySearch
data Sqrt (n : Nat) : Set where
root : ∀ r → r ^ 2 ≤ n → n < suc r ^ 2 → Sqrt n
getSqrt : ∀ {n} → Sqrt n → Nat
getSqrt (root r _ _) = r
private
infix 4 _<?_
_<?_ : (a b : Nat) → Dec (a < b)
a <? b with compare a b
a <? b | less a<b = yes a<b
a <? .a | equal refl = no (λ a<a → refute a<a)
a <? b | greater a>b = no (λ a<b → less-antisym {A = Nat} a>b a<b)
sqrt : (n : Nat) → Sqrt n
sqrt 0 = root 0 (diff! 0) (diff! 0) -- just to avoid unfolding neutral application
sqrt n with binarySearch 0 n (λ r → n <? r ^ 2)
sqrt n | here k !n< n< _ _ = root k (less-raa (λ lt → !n< (by lt))) n<
sqrt 0 | none _ = root 0 (diff! 0) (diff! 0)
sqrt 1 | none _ = root 1 (diff! 0) (diff! 2)
sqrt (suc (suc n)) | none !n<n² = ⊥-elim (!n<n² auto)
sqrt n | below (diff _ ())
sqrt n | bad-range (diff _ ())
sqrt! : Nat → Nat
sqrt! n = getSqrt (sqrt n)
sqrt-below : ∀ n → sqrt! n ^ 2 ≤ n
sqrt-below n with sqrt n
... | root _ lo _ = lo
sqrt-above : ∀ n → suc (sqrt! n) ^ 2 > n
sqrt-above n with sqrt n
... | root _ _ hi = hi
|
{
"alphanum_fraction": 0.5725062867,
"avg_line_length": 27.7441860465,
"ext": "agda",
"hexsha": "337879a896849ead604cafdae73ffd0458ef7623",
"lang": "Agda",
"max_forks_count": 24,
"max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z",
"max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "L-TChen/agda-prelude",
"max_forks_repo_path": "src/Numeric/Nat/Sqrt.agda",
"max_issues_count": 59,
"max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "L-TChen/agda-prelude",
"max_issues_repo_path": "src/Numeric/Nat/Sqrt.agda",
"max_line_length": 83,
"max_stars_count": 111,
"max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "L-TChen/agda-prelude",
"max_stars_repo_path": "src/Numeric/Nat/Sqrt.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z",
"num_tokens": 467,
"size": 1193
}
|
module Issue561.Core where
postulate Char : Set
{-# BUILTIN CHAR Char #-}
open import Agda.Builtin.IO public
postulate
return : ∀ {a} {A : Set a} → A → IO A
{-# COMPILE GHC return = \_ _ -> return #-}
{-# COMPILE UHC return = \_ _ x -> UHC.Agda.Builtins.primReturn x #-}
{-# COMPILE JS return =
function(u0) { return function(u1) { return function(x) { return function(cb) { cb(x); }; }; }; } #-}
|
{
"alphanum_fraction": 0.6161369193,
"avg_line_length": 25.5625,
"ext": "agda",
"hexsha": "56c4208efd56d94f42b7a1e496e0a1b953627992",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Compiler/simple/Issue561/Core.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Compiler/simple/Issue561/Core.agda",
"max_line_length": 105,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Compiler/simple/Issue561/Core.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 122,
"size": 409
}
|
{-# OPTIONS --no-termination-check #-}
module Data.Bits where
import Prelude
import Logic.Base
import Data.List as List
import Data.Nat as Nat
import Data.Bool as Bool
open Prelude
open Nat
open Bool
open List
Bit = Bool
shiftL : Nat -> Nat -> Nat
shiftL n i = n * 2 ^ i
sucBits : List Bit -> List Bit
sucBits [] = true :: []
sucBits (false :: xs) = true :: xs
sucBits (true :: xs) = false :: sucBits xs
-- Least significant bit first. Last bit (when present) is always one.
toBits : Nat -> List Bit
toBits zero = []
toBits (suc n) = sucBits (odd n :: toBits (div n 2))
fromBits : List Bit -> Nat
fromBits xs = foldr (\b n -> bitValue b + 2 * n) 0 xs
where
bitValue : Bit -> Nat
bitValue b = if b then 1 else 0
nofBits : Nat -> Nat
nofBits = length ∘ toBits
module Proofs where
open Logic.Base
-- fromBits∘toBits=id : (n : Nat) -> fromBits (toBits n) ≡ n
-- fromBits∘toBits=id zero = tt
-- fromBits∘toBits=id (suc n) = ?
|
{
"alphanum_fraction": 0.6354273944,
"avg_line_length": 20.2291666667,
"ext": "agda",
"hexsha": "78c540e2cee7068ff0f5517ac621fdd0f6641121",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/lib/Data/Bits.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/lib/Data/Bits.agda",
"max_line_length": 70,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/lib/Data/Bits.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 318,
"size": 971
}
|
data A : Set where
a : A
data T : A → Set where
t : T a
postulate
f : ∀ x → T x → Set
stuff : Set
stuff = f {!!} t
-- There should not be a (Checked) status for this module!
|
{
"alphanum_fraction": 0.5760869565,
"avg_line_length": 13.1428571429,
"ext": "agda",
"hexsha": "9229967475e351bcae406c740dadfdb9b8e923ea",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/interaction/Issue1036.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/interaction/Issue1036.agda",
"max_line_length": 58,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "masondesu/agda",
"max_stars_repo_path": "test/interaction/Issue1036.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 65,
"size": 184
}
|
module Data.Tuple where
data _×_ (A B : Set) : Set where
<_,_> : A -> B -> A × B
fst : {A B : Set} -> A × B -> A
fst < x , y > = x
snd : {A B : Set} -> A × B -> B
snd < x , y > = y
|
{
"alphanum_fraction": 0.420212766,
"avg_line_length": 14.4615384615,
"ext": "agda",
"hexsha": "d8be8cf2dc05b68f5dfc43f6d4ff8c8706c60146",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Tuple.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Tuple.agda",
"max_line_length": 32,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Tuple.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 82,
"size": 188
}
|
-- Basic intuitionistic modal logic S4, without ∨, ⊥, or ◇.
-- Hilbert-style formalisation of syntax with context pairs.
-- Nested terms.
module BasicIS4.Syntax.DyadicHilbert where
open import BasicIS4.Syntax.Common public
-- Derivations.
infix 3 _⊢_
data _⊢_ : Cx² Ty Ty → Ty → Set where
var : ∀ {A Γ Δ} → A ∈ Γ → Γ ⁏ Δ ⊢ A
app : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ▻ B → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ B
ci : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A ▻ A
ck : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ▻ B ▻ A
cs : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C
mvar : ∀ {A Γ Δ} → A ∈ Δ → Γ ⁏ Δ ⊢ A
box : ∀ {A Γ Δ} → ∅ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ □ A
cdist : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ (A ▻ B) ▻ □ A ▻ □ B
cup : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ □ A ▻ □ □ A
cdown : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ □ A ▻ A
cpair : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ▻ B ▻ A ∧ B
cfst : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ∧ B ▻ A
csnd : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ∧ B ▻ B
unit : ∀ {Γ Δ} → Γ ⁏ Δ ⊢ ⊤
infix 3 _⊢⋆_
_⊢⋆_ : Cx² Ty Ty → Cx Ty → Set
Γ ⁏ Δ ⊢⋆ ∅ = 𝟙
Γ ⁏ Δ ⊢⋆ Ξ , A = Γ ⁏ Δ ⊢⋆ Ξ × Γ ⁏ Δ ⊢ A
-- Monotonicity with respect to context inclusion.
mono⊢ : ∀ {A Γ Γ′ Δ} → Γ ⊆ Γ′ → Γ ⁏ Δ ⊢ A → Γ′ ⁏ Δ ⊢ A
mono⊢ η (var i) = var (mono∈ η i)
mono⊢ η (app t u) = app (mono⊢ η t) (mono⊢ η u)
mono⊢ η ci = ci
mono⊢ η ck = ck
mono⊢ η cs = cs
mono⊢ η (mvar i) = mvar i
mono⊢ η (box t) = box t
mono⊢ η cdist = cdist
mono⊢ η cup = cup
mono⊢ η cdown = cdown
mono⊢ η cpair = cpair
mono⊢ η cfst = cfst
mono⊢ η csnd = csnd
mono⊢ η unit = unit
mono⊢⋆ : ∀ {Ξ Γ Γ′ Δ} → Γ ⊆ Γ′ → Γ ⁏ Δ ⊢⋆ Ξ → Γ′ ⁏ Δ ⊢⋆ Ξ
mono⊢⋆ {∅} η ∙ = ∙
mono⊢⋆ {Ξ , A} η (ts , t) = mono⊢⋆ η ts , mono⊢ η t
-- Monotonicity with respect to modal context inclusion.
mmono⊢ : ∀ {A Γ Δ Δ′} → Δ ⊆ Δ′ → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ′ ⊢ A
mmono⊢ θ (var i) = var i
mmono⊢ θ (app t u) = app (mmono⊢ θ t) (mmono⊢ θ u)
mmono⊢ θ ci = ci
mmono⊢ θ ck = ck
mmono⊢ θ cs = cs
mmono⊢ θ (mvar i) = mvar (mono∈ θ i)
mmono⊢ θ (box t) = box (mmono⊢ θ t)
mmono⊢ θ cdist = cdist
mmono⊢ θ cup = cup
mmono⊢ θ cdown = cdown
mmono⊢ θ cpair = cpair
mmono⊢ θ cfst = cfst
mmono⊢ θ csnd = csnd
mmono⊢ θ unit = unit
mmono⊢⋆ : ∀ {Ξ Γ Δ Δ′} → Δ ⊆ Δ′ → Γ ⁏ Δ ⊢⋆ Ξ → Γ ⁏ Δ′ ⊢⋆ Ξ
mmono⊢⋆ {∅} θ ∙ = ∙
mmono⊢⋆ {Ξ , A} θ (ts , t) = mmono⊢⋆ θ ts , mmono⊢ θ t
-- Monotonicity using context pairs.
mono²⊢ : ∀ {A Π Π′} → Π ⊆² Π′ → Π ⊢ A → Π′ ⊢ A
mono²⊢ (η , θ) = mono⊢ η ∘ mmono⊢ θ
-- Shorthand for variables.
v₀ : ∀ {A Γ Δ} → Γ , A ⁏ Δ ⊢ A
v₀ = var i₀
v₁ : ∀ {A B Γ Δ} → Γ , A , B ⁏ Δ ⊢ A
v₁ = var i₁
v₂ : ∀ {A B C Γ Δ} → Γ , A , B , C ⁏ Δ ⊢ A
v₂ = var i₂
mv₀ : ∀ {A Γ Δ} → Γ ⁏ Δ , A ⊢ A
mv₀ = mvar i₀
mv₁ : ∀ {A B Γ Δ} → Γ ⁏ Δ , A , B ⊢ A
mv₁ = mvar i₁
mv₂ : ∀ {A B C Γ Δ} → Γ ⁏ Δ , A , B , C ⊢ A
mv₂ = mvar i₂
-- Reflexivity.
refl⊢⋆ : ∀ {Γ Δ} → Γ ⁏ Δ ⊢⋆ Γ
refl⊢⋆ {∅} = ∙
refl⊢⋆ {Γ , A} = mono⊢⋆ weak⊆ refl⊢⋆ , v₀
mrefl⊢⋆ : ∀ {Δ Γ} → Γ ⁏ Δ ⊢⋆ □⋆ Δ
mrefl⊢⋆ {∅} = ∙
mrefl⊢⋆ {Δ , A} = mmono⊢⋆ weak⊆ mrefl⊢⋆ , box mv₀
-- Deduction theorem.
lam : ∀ {A B Γ Δ} → Γ , A ⁏ Δ ⊢ B → Γ ⁏ Δ ⊢ A ▻ B
lam (var top) = ci
lam (var (pop i)) = app ck (var i)
lam (app t u) = app (app cs (lam t)) (lam u)
lam ci = app ck ci
lam ck = app ck ck
lam cs = app ck cs
lam (mvar i) = app ck (mvar i)
lam (box t) = app ck (box t)
lam cdist = app ck cdist
lam cup = app ck cup
lam cdown = app ck cdown
lam cpair = app ck cpair
lam cfst = app ck cfst
lam csnd = app ck csnd
lam unit = app ck unit
lam⋆ : ∀ {Ξ A Γ Δ} → Γ ⧺ Ξ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ Ξ ▻⋯▻ A
lam⋆ {∅} = I
lam⋆ {Ξ , B} = lam⋆ {Ξ} ∘ lam
lam⋆₀ : ∀ {Γ A Δ} → Γ ⁏ Δ ⊢ A → ∅ ⁏ Δ ⊢ Γ ▻⋯▻ A
lam⋆₀ {∅} = I
lam⋆₀ {Γ , B} = lam⋆₀ ∘ lam
-- Combined axioms of distribution and transitivity.
cdistup : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ (□ A ▻ B) ▻ □ A ▻ □ B
cdistup = app (app cs (app (app cs (app ck cs))
(app (app cs (app (app cs (app ck cs))
(lam (lam cdist))))
(app (app cs (app ck ck)) ci))))
(app (app cs (app (app cs (app ck cs))
(lam (lam cup))))
(app ck ci))
-- Modal deduction theorem.
mlam : ∀ {A B Γ Δ} → Γ ⁏ Δ , A ⊢ B → Γ ⁏ Δ ⊢ □ A ▻ B
mlam (var i) = app ck (var i)
mlam (app t u) = app (app cs (mlam t)) (mlam u)
mlam ci = app ck ci
mlam ck = app ck ck
mlam cs = app ck cs
mlam (mvar top) = cdown
mlam (mvar (pop i)) = app ck (mvar i)
mlam (box t) = app cdistup (box (mlam t))
mlam cdist = app ck cdist
mlam cup = app ck cup
mlam cdown = app ck cdown
mlam cpair = app ck cpair
mlam cfst = app ck cfst
mlam csnd = app ck csnd
mlam unit = app ck unit
mlam⋆ : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ ⧺ Ξ ⊢ A → Γ ⁏ Δ ⊢ □⋆ Ξ ▻⋯▻ A
mlam⋆ {∅} = I
mlam⋆ {Ξ , B} = mlam⋆ {Ξ} ∘ mlam
mlam⋆₀ : ∀ {Δ A Γ} → Γ ⁏ Δ ⊢ A → Γ ⁏ ∅ ⊢ □⋆ Δ ▻⋯▻ A
mlam⋆₀ {∅} = I
mlam⋆₀ {Δ , B} = mlam⋆₀ ∘ mlam
-- Detachment theorems.
det : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ▻ B → Γ , A ⁏ Δ ⊢ B
det t = app (mono⊢ weak⊆ t) v₀
det⋆ : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ ⊢ Ξ ▻⋯▻ A → Γ ⧺ Ξ ⁏ Δ ⊢ A
det⋆ {∅} = I
det⋆ {Ξ , B} = det ∘ det⋆ {Ξ}
det⋆₀ : ∀ {Γ A Δ} → ∅ ⁏ Δ ⊢ Γ ▻⋯▻ A → Γ ⁏ Δ ⊢ A
det⋆₀ {∅} = I
det⋆₀ {Γ , B} = det ∘ det⋆₀
mdet : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ A ▻ B → Γ ⁏ Δ , A ⊢ B
mdet t = app (mmono⊢ weak⊆ t) (box mv₀)
mdet⋆ : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ ⊢ □⋆ Ξ ▻⋯▻ A → Γ ⁏ Δ ⧺ Ξ ⊢ A
mdet⋆ {∅} = I
mdet⋆ {Ξ , B} = mdet ∘ mdet⋆ {Ξ}
mdet⋆₀ : ∀ {Δ A Γ} → Γ ⁏ ∅ ⊢ □⋆ Δ ▻⋯▻ A → Γ ⁏ Δ ⊢ A
mdet⋆₀ {∅} = I
mdet⋆₀ {Δ , B} = mdet ∘ mdet⋆₀
-- Context manipulation.
merge : ∀ {Δ A Γ} → Γ ⁏ Δ ⊢ A → Γ ⧺ (□⋆ Δ) ⁏ ∅ ⊢ A
merge {Δ} = det⋆ {□⋆ Δ} ∘ mlam⋆₀
mmerge : ∀ {Γ A Δ} → □⋆ Γ ⁏ Δ ⊢ A → ∅ ⁏ Δ ⧺ Γ ⊢ A
mmerge {Γ} = mdet⋆ {Γ} ∘ lam⋆₀
split : ∀ {Δ A Γ} → Γ ⧺ (□⋆ Δ) ⁏ ∅ ⊢ A → Γ ⁏ Δ ⊢ A
split {Δ} = mdet⋆₀ ∘ lam⋆ {□⋆ Δ}
msplit : ∀ {Γ A Δ} → ∅ ⁏ Δ ⧺ Γ ⊢ A → □⋆ Γ ⁏ Δ ⊢ A
msplit {Γ} = det⋆₀ ∘ mlam⋆ {Γ}
merge⋆ : ∀ {Ξ Δ Γ} → Γ ⁏ Δ ⊢⋆ Ξ → Γ ⧺ (□⋆ Δ) ⁏ ∅ ⊢⋆ Ξ
merge⋆ {∅} ∙ = ∙
merge⋆ {Ξ , A} (ts , t) = merge⋆ ts , merge t
split⋆ : ∀ {Ξ Δ Γ} → Γ ⧺ (□⋆ Δ) ⁏ ∅ ⊢⋆ Ξ → Γ ⁏ Δ ⊢⋆ Ξ
split⋆ {∅} ∙ = ∙
split⋆ {Ξ , A} (ts , t) = split⋆ ts , split t
-- Cut and multicut.
cut : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A → Γ , A ⁏ Δ ⊢ B → Γ ⁏ Δ ⊢ B
cut t u = app (lam u) t
mcut : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ A → Γ ⁏ Δ , A ⊢ B → Γ ⁏ Δ ⊢ B
mcut t u = app (mlam u) t
multicut : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ ⊢⋆ Ξ → Ξ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ A
multicut {∅} ∙ u = mono⊢ bot⊆ u
multicut {Ξ , B} (ts , t) u = app (multicut ts (lam u)) t
mmulticut : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ ⊢⋆ □⋆ Ξ → Γ ⁏ Ξ ⊢ A → Γ ⁏ Δ ⊢ A
mmulticut {∅} ∙ u = mmono⊢ bot⊆ u
mmulticut {Ξ , B} (ts , t) u = app (mmulticut ts (mlam u)) t
-- Transitivity.
trans⊢⋆₀ : ∀ {Γ″ Γ′ Γ} → Γ ⁏ ∅ ⊢⋆ Γ′ → Γ′ ⁏ ∅ ⊢⋆ Γ″ → Γ ⁏ ∅ ⊢⋆ Γ″
trans⊢⋆₀ {∅} ts ∙ = ∙
trans⊢⋆₀ {Γ″ , A} ts (us , u) = trans⊢⋆₀ ts us , multicut ts u
trans⊢⋆ : ∀ {Ξ Γ Γ′ Δ Δ′} → Γ ⁏ Δ ⊢⋆ Γ′ ⧺ (□⋆ Δ′) → Γ′ ⁏ Δ′ ⊢⋆ Ξ → Γ ⁏ Δ ⊢⋆ Ξ
trans⊢⋆ ts us = split⋆ (trans⊢⋆₀ (merge⋆ ts) (merge⋆ us))
-- Contraction.
ccont : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ (A ▻ A ▻ B) ▻ A ▻ B
ccont = lam (lam (app (app v₁ v₀) v₀))
cont : ∀ {A B Γ Δ} → Γ , A , A ⁏ Δ ⊢ B → Γ , A ⁏ Δ ⊢ B
cont t = det (app ccont (lam (lam t)))
mcont : ∀ {A B Γ Δ} → Γ ⁏ Δ , A , A ⊢ B → Γ ⁏ Δ , A ⊢ B
mcont t = mdet (app ccont (mlam (mlam t)))
-- Exchange, or Schönfinkel’s C combinator.
cexch : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ (A ▻ B ▻ C) ▻ B ▻ A ▻ C
cexch = lam (lam (lam (app (app v₂ v₀) v₁)))
exch : ∀ {A B C Γ Δ} → Γ , A , B ⁏ Δ ⊢ C → Γ , B , A ⁏ Δ ⊢ C
exch t = det (det (app cexch (lam (lam t))))
mexch : ∀ {A B C Γ Δ} → Γ ⁏ Δ , A , B ⊢ C → Γ ⁏ Δ , B , A ⊢ C
mexch t = mdet (mdet (app cexch (mlam (mlam t))))
-- Composition, or Schönfinkel’s B combinator.
ccomp : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ (B ▻ C) ▻ (A ▻ B) ▻ A ▻ C
ccomp = lam (lam (lam (app v₂ (app v₁ v₀))))
comp : ∀ {A B C Γ Δ} → Γ , B ⁏ Δ ⊢ C → Γ , A ⁏ Δ ⊢ B → Γ , A ⁏ Δ ⊢ C
comp t u = det (app (app ccomp (lam t)) (lam u))
mcomp : ∀ {A B C Γ Δ} → Γ ⁏ Δ , B ⊢ □ C → Γ ⁏ Δ , A ⊢ □ B → Γ ⁏ Δ , A ⊢ □ C
mcomp t u = mdet (app (app ccomp (mlam t)) (mlam u))
-- Useful theorems in functional form.
dist : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ (A ▻ B) → Γ ⁏ Δ ⊢ □ A → Γ ⁏ Δ ⊢ □ B
dist t u = app (app cdist t) u
up : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ □ A → Γ ⁏ Δ ⊢ □ □ A
up t = app cup t
down : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ □ A → Γ ⁏ Δ ⊢ A
down t = app cdown t
distup : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ (□ A ▻ B) → Γ ⁏ Δ ⊢ □ A → Γ ⁏ Δ ⊢ □ B
distup t u = dist t (up u)
unbox : ∀ {A C Γ Δ} → Γ ⁏ Δ ⊢ □ A → Γ ⁏ Δ , A ⊢ C → Γ ⁏ Δ ⊢ C
unbox t u = app (mlam u) t
pair : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ B → Γ ⁏ Δ ⊢ A ∧ B
pair t u = app (app cpair t) u
fst : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ∧ B → Γ ⁏ Δ ⊢ A
fst t = app cfst t
snd : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ∧ B → Γ ⁏ Δ ⊢ B
snd t = app csnd t
-- Internalisation, or lifting, and additional theorems.
lift : ∀ {Γ A Δ} → Γ ⁏ Δ ⊢ A → □⋆ Γ ⁏ Δ ⊢ □ A
lift {∅} t = box t
lift {Γ , B} t = det (app cdist (lift (lam t)))
hypup : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ▻ B → Γ ⁏ Δ ⊢ □ A ▻ B
hypup t = lam (app (mono⊢ weak⊆ t) (down v₀))
hypdown : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ □ A ▻ B → Γ ⁏ Δ ⊢ □ A ▻ B
hypdown t = lam (app (mono⊢ weak⊆ t) (up v₀))
cxup : ∀ {Γ A Δ} → Γ ⁏ Δ ⊢ A → □⋆ Γ ⁏ Δ ⊢ A
cxup {∅} t = t
cxup {Γ , B} t = det (hypup (cxup (lam t)))
cxdown : ∀ {Γ A Δ} → □⋆ □⋆ Γ ⁏ Δ ⊢ A → □⋆ Γ ⁏ Δ ⊢ A
cxdown {∅} t = t
cxdown {Γ , B} t = det (hypdown (cxdown (lam t)))
box⋆ : ∀ {Ξ Γ Δ} → ∅ ⁏ Δ ⊢⋆ Ξ → Γ ⁏ Δ ⊢⋆ □⋆ Ξ
box⋆ {∅} ∙ = ∙
box⋆ {Ξ , A} (ts , t) = box⋆ ts , box t
lift⋆ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊢⋆ Ξ → □⋆ Γ ⁏ Δ ⊢⋆ □⋆ Ξ
lift⋆ {∅} ∙ = ∙
lift⋆ {Ξ , A} (ts , t) = lift⋆ ts , lift t
up⋆ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊢⋆ □⋆ Ξ → Γ ⁏ Δ ⊢⋆ □⋆ □⋆ Ξ
up⋆ {∅} ∙ = ∙
up⋆ {Ξ , A} (ts , t) = up⋆ ts , up t
down⋆ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊢⋆ □⋆ Ξ → Γ ⁏ Δ ⊢⋆ Ξ
down⋆ {∅} ∙ = ∙
down⋆ {Ξ , A} (ts , t) = down⋆ ts , down t
multibox : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ ⊢⋆ □⋆ Ξ → □⋆ Ξ ⁏ ∅ ⊢ A → Γ ⁏ Δ ⊢ □ A
multibox ts u = multicut (up⋆ ts) (mmono⊢ bot⊆ (lift u))
dist′ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ (A ▻ B) → Γ ⁏ Δ ⊢ □ A ▻ □ B
dist′ t = lam (dist (mono⊢ weak⊆ t) v₀)
mpair : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ A → Γ ⁏ Δ ⊢ □ B → Γ ⁏ Δ ⊢ □ (A ∧ B)
mpair t u = dist (dist (box cpair) t) u
mfst : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ (A ∧ B) → Γ ⁏ Δ ⊢ □ A
mfst t = dist (box cfst) t
msnd : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ (A ∧ B) → Γ ⁏ Δ ⊢ □ B
msnd t = dist (box csnd) t
-- Closure under context concatenation.
concat : ∀ {A B Γ} Γ′ {Δ} → Γ , A ⁏ Δ ⊢ B → Γ′ ⁏ Δ ⊢ A → Γ ⧺ Γ′ ⁏ Δ ⊢ B
concat Γ′ t u = app (mono⊢ (weak⊆⧺₁ Γ′) (lam t)) (mono⊢ weak⊆⧺₂ u)
mconcat : ∀ {A B Γ Δ} Δ′ → Γ ⁏ Δ , A ⊢ B → Γ ⁏ Δ′ ⊢ □ A → Γ ⁏ Δ ⧺ Δ′ ⊢ B
mconcat Δ′ t u = app (mmono⊢ (weak⊆⧺₁ Δ′) (mlam t)) (mmono⊢ weak⊆⧺₂ u)
-- Convertibility.
data _⋙_ {Γ Δ : Cx Ty} : ∀ {A} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ A → Set where
refl⋙ : ∀ {A} → {t : Γ ⁏ Δ ⊢ A}
→ t ⋙ t
trans⋙ : ∀ {A} → {t t′ t″ : Γ ⁏ Δ ⊢ A}
→ t ⋙ t′ → t′ ⋙ t″
→ t ⋙ t″
sym⋙ : ∀ {A} → {t t′ : Γ ⁏ Δ ⊢ A}
→ t ⋙ t′
→ t′ ⋙ t
congapp⋙ : ∀ {A B} → {t t′ : Γ ⁏ Δ ⊢ A ▻ B} → {u u′ : Γ ⁏ Δ ⊢ A}
→ t ⋙ t′ → u ⋙ u′
→ app t u ⋙ app t′ u′
congi⋙ : ∀ {A} → {t t′ : Γ ⁏ Δ ⊢ A}
→ t ⋙ t′
→ app ci t ⋙ app ci t′
congk⋙ : ∀ {A B} → {t t′ : Γ ⁏ Δ ⊢ A} → {u u′ : Γ ⁏ Δ ⊢ B}
→ t ⋙ t′ → u ⋙ u′
→ app (app ck t) u ⋙ app (app ck t′) u′
congs⋙ : ∀ {A B C} → {t t′ : Γ ⁏ Δ ⊢ A ▻ B ▻ C} → {u u′ : Γ ⁏ Δ ⊢ A ▻ B} → {v v′ : Γ ⁏ Δ ⊢ A}
→ t ⋙ t′ → u ⋙ u′ → v ⋙ v′
-- NOTE: Rejected by Pfenning and Davies.
-- congbox⋙ : ∀ {A} → {t t′ : ∅ ⁏ Δ ⊢ A}
-- → t ⋙ t′
-- → box {Γ} t ⋙ box {Γ} t′
congdist⋙ : ∀ {A B} → {t t′ : Γ ⁏ Δ ⊢ □ (A ▻ B)} → {u u′ : Γ ⁏ Δ ⊢ □ A}
→ t ⋙ t′ → u ⋙ u′
→ app (app cdist t) u ⋙ app (app cdist t′) u′
congup⋙ : ∀ {A} → {t t′ : Γ ⁏ Δ ⊢ □ A}
→ t ⋙ t′
→ app cup t ⋙ app cup t′
congdown⋙ : ∀ {A} → {t t′ : Γ ⁏ Δ ⊢ □ A}
→ t ⋙ t′
→ app cdown t ⋙ app cdown t′
congpair⋙ : ∀ {A B} → {t t′ : Γ ⁏ Δ ⊢ A} → {u u′ : Γ ⁏ Δ ⊢ B}
→ t ⋙ t′ → u ⋙ u′
→ app (app cpair t) u ⋙ app (app cpair t′) u′
congfst⋙ : ∀ {A B} → {t t′ : Γ ⁏ Δ ⊢ A ∧ B}
→ t ⋙ t′
→ app cfst t ⋙ app cfst t′
congsnd⋙ : ∀ {A B} → {t t′ : Γ ⁏ Δ ⊢ A ∧ B}
→ t ⋙ t′
→ app csnd t ⋙ app csnd t′
-- TODO: Verify this.
beta▻ₖ⋙ : ∀ {A B} → {t : Γ ⁏ Δ ⊢ A} → {u : Γ ⁏ Δ ⊢ B}
→ app (app ck t) u ⋙ t
-- TODO: Verify this.
beta▻ₛ⋙ : ∀ {A B C} → {t : Γ ⁏ Δ ⊢ A ▻ B ▻ C} → {u : Γ ⁏ Δ ⊢ A ▻ B} → {v : Γ ⁏ Δ ⊢ A}
→ app (app (app cs t) u) v ⋙ app (app t v) (app u v)
-- TODO: What about eta for ▻? What about beta, eta, and commuting conversions for □?
beta∧₁⋙ : ∀ {A B} → {t : Γ ⁏ Δ ⊢ A} → {u : Γ ⁏ Δ ⊢ B}
→ app cfst (app (app cpair t) u) ⋙ t
beta∧₂⋙ : ∀ {A B} → {t : Γ ⁏ Δ ⊢ A} → {u : Γ ⁏ Δ ⊢ B}
→ app csnd (app (app cpair t) u) ⋙ u
eta∧⋙ : ∀ {A B} → {t : Γ ⁏ Δ ⊢ A ∧ B}
→ t ⋙ app (app cpair (app cfst t)) (app csnd t)
eta⊤⋙ : ∀ {t : Γ ⁏ Δ ⊢ ⊤} → t ⋙ unit
|
{
"alphanum_fraction": 0.3898713826,
"avg_line_length": 29.4913793103,
"ext": "agda",
"hexsha": "ea4ab7f3d38ff72b69c5f02047335c9b20858edc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/hilbert-gentzen",
"max_forks_repo_path": "BasicIS4/Syntax/DyadicHilbert.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/hilbert-gentzen",
"max_issues_repo_path": "BasicIS4/Syntax/DyadicHilbert.agda",
"max_line_length": 98,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/hilbert-gentzen",
"max_stars_repo_path": "BasicIS4/Syntax/DyadicHilbert.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z",
"num_tokens": 7428,
"size": 13684
}
|
{-# OPTIONS --safe --without-K #-}
open import Relation.Binary
module Data.List.Membership.Setoid.Disjoint {a p} (S : Setoid a p) where
open Setoid S renaming (Carrier to A)
open import Data.List using (List ; [])
open import Data.List.Membership.Setoid (S)
open import Data.List.Membership.Setoid.Trans (S)
open import Data.Empty
open import Function
Disjoint : Rel (List A) _
Disjoint xs ys = ∀ {x} → x ∈ xs → x ∈ ys → ⊥
disjoint-sym : Symmetric Disjoint
disjoint-sym dis = flip dis
disjoint-[]ˡ : ∀ {xs} → Disjoint xs []
disjoint-[]ˡ _ ()
disjoint-[]ʳ : ∀ {xs} → Disjoint [] xs
disjoint-[]ʳ ()
disjointness : ∀ {xs ys} → Disjoint xs ys → ∀ {x} → x ∈ xs → ∀ {y} → y ∈ ys → x ≈ y → ⊥
disjointness xs⋈ys x∈xs y∈ys x≈y = xs⋈ys x∈xs (≈-trans-∈ x≈y y∈ys)
|
{
"alphanum_fraction": 0.6413612565,
"avg_line_length": 26.3448275862,
"ext": "agda",
"hexsha": "0ab83deeeb5ed638f202aa5b66b205b50250fdf4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d4cd2a3442a9b58e6139499d16a2b31268f27f80",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "tizmd/agda-distinct-disjoint",
"max_forks_repo_path": "src/Data/List/Membership/Setoid/Disjoint.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d4cd2a3442a9b58e6139499d16a2b31268f27f80",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "tizmd/agda-distinct-disjoint",
"max_issues_repo_path": "src/Data/List/Membership/Setoid/Disjoint.agda",
"max_line_length": 87,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "d4cd2a3442a9b58e6139499d16a2b31268f27f80",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "tizmd/agda-distinct-disjoint",
"max_stars_repo_path": "src/Data/List/Membership/Setoid/Disjoint.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 273,
"size": 764
}
|
module Monads.Except where
open import Class.Monad
open import Class.Monad.Except
open import Monads.ExceptT
open import Monads.Identity
open import Level
private
variable
a : Level
A : Set a
Except : Set a -> Set a -> Set a
Except = ExceptT Id
instance
Except-Monad : Monad (Except A)
Except-Monad = ExceptT-Monad
Except-MonadExcept : MonadExcept (Except A) A
Except-MonadExcept = ExceptT-MonadExcept
|
{
"alphanum_fraction": 0.7411764706,
"avg_line_length": 18.4782608696,
"ext": "agda",
"hexsha": "3b764bfd5b3d0fffbb8d24c59cac6d4a924964b6",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z",
"max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "WhatisRT/meta-cedille",
"max_forks_repo_path": "stdlib-exts/Monads/Except.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "WhatisRT/meta-cedille",
"max_issues_repo_path": "stdlib-exts/Monads/Except.agda",
"max_line_length": 47,
"max_stars_count": 35,
"max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "WhatisRT/meta-cedille",
"max_stars_repo_path": "stdlib-exts/Monads/Except.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z",
"num_tokens": 124,
"size": 425
}
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import groups.SumOfSubIndicator
open import cohomology.Theory
{- It should be possible to prove lemmas for arbitrary universe levels,
but this file is only used for [FinSkeleton], which is in the zeroth
universe. -}
module cohomology.SubFinWedge (CT : CohomologyTheory lzero) (n : ℤ) where
open CohomologyTheory CT
{-
[B-ac] and [B-dec] can actually be proved from [subfin],
but maybe the user wants to supply a different [B-ac].
Another good question is why the focus is on [B], not [A].
Well, check the definition of [MinusPoint] and you will see why.
-}
module _ {I} {A B : Type₀} (p : Fin I → Coprod A B) (X : Ptd₀) where
C-subfinite-additive : C n (⊙BigWedge (λ (_ : B) → X)) →ᴳ Πᴳ B (λ _ → C n X)
C-subfinite-additive = C-additive n (λ (_ : B) → X)
CEl-subfinite-additive : CEl n (⊙BigWedge (λ (_ : B) → X)) → Π B (λ _ → CEl n X)
CEl-subfinite-additive = GroupHom.f C-subfinite-additive
C-subfinite-additive-is-equiv : has-choice 0 B lzero → is-equiv CEl-subfinite-additive
C-subfinite-additive-is-equiv = C-additive-is-equiv n (λ _ → X)
C-subfinite-additive-iso : has-choice 0 B lzero
→ C n (⊙BigWedge (λ (_ : B) → X)) ≃ᴳ Πᴳ B (λ _ → C n X)
C-subfinite-additive-iso = C-additive-iso n (λ (_ : B) → X)
{- an explicit inverse function -}
explicit-inverse-C-subfinite-additive : has-dec-eq B
→ Π B (λ _ → CEl n X) → CEl n (⊙BigWedge (λ (_ : B) → X))
explicit-inverse-C-subfinite-additive B-dec f =
Group.subsum-r (C n (⊙BigWedge (λ _ → X))) p (λ b → CEl-fmap n (⊙bwproj B-dec b) (f b))
module _ where
{- this part is to prove the explicit inverse function is correct -}
abstract
private
C-bwproj-bwin-≠ : {B : Type₀} (B-dec : has-dec-eq B) {X : Ptd₀}
{b b' : B} (neq : b ≠ b') (g : CEl n X)
→ CEl-fmap n (⊙bwproj B-dec b ⊙∘ ⊙bwin {X = λ _ → X} b') g == Cident n X
C-bwproj-bwin-≠ B-dec neq g =
CEl-fmap-base-indep n (bwproj-bwin-≠ B-dec neq) g ∙ C-fmap-cst n g
C-bwproj-bwin-diag : {B : Type₀} (B-dec : has-dec-eq B) {X : Ptd₀} (b : B) (g : CEl n X)
→ CEl-fmap n (⊙bwproj B-dec b ⊙∘ ⊙bwin {X = λ _ → X} b) g == g
C-bwproj-bwin-diag B-dec b g =
CEl-fmap-base-indep n (bwproj-bwin-diag B-dec b) g ∙ C-fmap-idf n g
inverse-C-subfinite-additive-β' : ∀ {A B : Type₀} (B-dec : has-dec-eq B) {I}
(p : Fin I ≃ Coprod A B) {X : Ptd₀}
→ ∀ f → GroupHom.f (C-subfinite-additive (–> p) X) (explicit-inverse-C-subfinite-additive (–> p) X B-dec f) ∼ f
inverse-C-subfinite-additive-β' B-dec p {X} f b* =
CEl-fmap n (⊙bwin b*) (Group.subsum-r (C n (⊙BigWedge (λ _ → X))) (–> p) (λ b → CEl-fmap n (⊙bwproj B-dec b) (f b)))
=⟨ GroupHom.pres-subsum-r (C-fmap n (⊙bwin b*)) (–> p) (λ b → CEl-fmap n (⊙bwproj B-dec b) (f b)) ⟩
Group.subsum-r (C n X) (–> p) (λ b → CEl-fmap n (⊙bwin b*) (CEl-fmap n (⊙bwproj B-dec b) (f b)))
=⟨ ap (Group.subsum-r (C n X) (–> p)) (λ= λ b → ∘-CEl-fmap n (⊙bwin b*) (⊙bwproj B-dec b) (f b)) ⟩
Group.subsum-r (C n X) (–> p) (λ b → CEl-fmap n (⊙bwproj B-dec b ⊙∘ ⊙bwin b*) (f b))
=⟨ subsum-r-subindicator (C n X) p (λ b → CEl-fmap n (⊙bwproj B-dec b ⊙∘ ⊙bwin b*) (f b))
b* (λ b≠b* → C-bwproj-bwin-≠ B-dec b≠b* _) ⟩
CEl-fmap n (⊙bwproj B-dec b* ⊙∘ ⊙bwin b*) (f b*)
=⟨ C-bwproj-bwin-diag B-dec b* (f b*) ⟩
f b*
=∎
inverse-C-subfinite-additive-β : ∀ {A B : Type₀}
(B-ac : has-choice 0 B lzero) (B-dec : has-dec-eq B) {I}
(p : Fin I ≃ Coprod A B) {X : Ptd₀}
→ is-equiv.g (C-subfinite-additive-is-equiv (–> p) X B-ac)
∼ explicit-inverse-C-subfinite-additive (–> p) X B-dec
inverse-C-subfinite-additive-β B-ac B-dec p {X} f =
! $ equiv-adj (GroupIso.f-equiv (C-subfinite-additive-iso (–> p) X B-ac)) $
λ= $ inverse-C-subfinite-additive-β' B-dec p f
module _ (I : ℕ) (X : Ptd₀) where
C-finite-additive : C n (⊙BigWedge (λ (_ : Fin I) → X)) →ᴳ Πᴳ (Fin I) (λ _ → C n X)
C-finite-additive = C-subfinite-additive {A = Empty} inr X
CEl-finite-additive : CEl n (⊙BigWedge (λ (_ : Fin I) → X)) → Π (Fin I) (λ _ → CEl n X)
CEl-finite-additive = GroupHom.f C-finite-additive
C-finite-additive-is-equiv : is-equiv CEl-finite-additive
C-finite-additive-is-equiv = C-subfinite-additive-is-equiv {A = Empty} inr X (Fin-has-choice 0 lzero)
C-finite-additive-iso : C n (⊙BigWedge (λ (_ : Fin I) → X)) ≃ᴳ Πᴳ (Fin I) (λ _ → C n X)
C-finite-additive-iso = C-subfinite-additive-iso {A = Empty} inr X (Fin-has-choice 0 lzero)
{- an explicit inverse function -}
explicit-inverse-C-finite-additive : Π (Fin I) (λ _ → CEl n X) → CEl n (⊙BigWedge (λ (_ : Fin I) → X))
explicit-inverse-C-finite-additive = explicit-inverse-C-subfinite-additive {A = Empty} inr X Fin-has-dec-eq
module _ where
abstract
inverse-C-finite-additive-β : ∀ {I : ℕ} {X : Ptd₀}
→ is-equiv.g (C-finite-additive-is-equiv I X)
∼ explicit-inverse-C-finite-additive I X
inverse-C-finite-additive-β {I} {X} =
inverse-C-subfinite-additive-β {A = Empty} {B = Fin I}
(Fin-has-choice 0 lzero) Fin-has-dec-eq (⊔₁-Empty (Fin I) ⁻¹) {X}
|
{
"alphanum_fraction": 0.5892822967,
"avg_line_length": 47.0720720721,
"ext": "agda",
"hexsha": "b638cc904e66e7013e44d4f19f257bb3b6c01aff",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/cohomology/SubFinWedge.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/cohomology/SubFinWedge.agda",
"max_line_length": 124,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/cohomology/SubFinWedge.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 2092,
"size": 5225
}
|
module hierarchy where
data Bool : Set where
true : Bool
false : Bool
_and_ : Bool → Bool → Bool
true and true = true
true and false = false
false and true = false
false and false = false
_or_ : Bool → Bool → Bool
true or true = true
true or false = true
false or true = true
false or false = false
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
_==_ : ℕ → ℕ → Bool
zero == zero = true
suc n == suc m = n == m
_ == _ = false
data List (A : Set) : Set where
[] : List A
_::_ : A → List A → List A
_∈_ : ℕ → List ℕ → Bool
x ∈ [] = false
x ∈ (y :: ys) with x == y
... | true = true
... | false = x ∈ ys
_⊂_ : List ℕ → List ℕ → Bool
[] ⊂ ys = true
(x :: xs) ⊂ ys with x ∈ ys
... | true = xs ⊂ ys
... | false = false
_++_ : {A : Set} → List A → List A → List A
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)
map : {A : Set} → (A → A) → List A → List A
map f [] = []
map f (x :: xs) = (f x) :: (map f xs)
any : {A : Set} → (A → Bool) → List A → Bool
any _ [] = false
any f (x :: xs) = (f x) or (any f xs)
all : {A : Set} → (A → Bool) → List A → Bool
all _ [] = true
all f (x :: xs) = (f x) and (all f xs)
data Arrow : Set where
_⇒_ : List ℕ → ℕ → Arrow
_⇔_ : Arrow → Arrow → Bool
(at ⇒ ah) ⇔ (bt ⇒ bh) = ((at ⊂ bt) and (bt ⊂ at)) and (ah == bh)
_∈∈_ : Arrow → List Arrow → Bool
x ∈∈ [] = false
x ∈∈ (y :: ys) with x ⇔ y
... | true = true
... | false = x ∈∈ ys
_⊂⊂_ : List Arrow → List Arrow → Bool
[] ⊂⊂ ys = true
(x :: xs) ⊂⊂ ys with x ∈∈ ys
... | true = xs ⊂⊂ ys
... | false = false
ArrowSearch : List Arrow → List Arrow → ℕ → Bool
ArrowSearch [] ds g = false
ArrowSearch (([] ⇒ h) :: cs) ds g with (h == g)
... | true = true
... | false = ArrowSearch cs (([] ⇒ h) :: ds) g
ArrowSearch ((ts ⇒ h) :: cs) ds g with (h == g)
... | true = (all (ArrowSearch (cs ++ ds) []) ts)
or (ArrowSearch cs ((ts ⇒ h) :: ds) g)
... | false = ArrowSearch cs ((ts ⇒ h) :: ds) g
_⊢_ : List Arrow → Arrow → Bool
cs ⊢ ((t :: ts) ⇒ h) = (([] ⇒ t) :: cs) ⊢ (ts ⇒ h)
cs ⊢ ([] ⇒ h) = ArrowSearch cs [] h
|
{
"alphanum_fraction": 0.4487978629,
"avg_line_length": 22.46,
"ext": "agda",
"hexsha": "60a8164e60bd32197d3362ace7096fec5901a82d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e73df65d9a118e35a42d2d00d838aa901f9c3a6f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "louisswarren/hieretikz",
"max_forks_repo_path": "hierarchy.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e73df65d9a118e35a42d2d00d838aa901f9c3a6f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "louisswarren/hieretikz",
"max_issues_repo_path": "hierarchy.agda",
"max_line_length": 64,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e73df65d9a118e35a42d2d00d838aa901f9c3a6f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "louisswarren/hieretikz",
"max_stars_repo_path": "hierarchy.agda",
"max_stars_repo_stars_event_max_datetime": "2018-03-26T03:34:11.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-03-18T12:17:36.000Z",
"num_tokens": 820,
"size": 2246
}
|
module Lang.Inspect where
open import Type
open import Structure.Setoid
open import Structure.Relator.Properties
{-
module _ {ℓ₁ ℓ₂} {A : Type{ℓ₁}} {B : A → Type{ℓ₂}} ⦃ eqB : ∀{x} → Equiv(B(x)) ⦄ (f : ∀(x) → B(x)) (x : A) where
data Inspect (y : B(x)) : Type{ℓ₂} where
intro : (f(x) ≡ y) → Inspect(y)
inspect : Inspect(f(x))
inspect = intro(reflexivity(_≡_ ⦃ eqB ⦄))
{-# INLINE inspect #-}
-}
module _ {ℓ₁ ℓ₂ ℓₑ₂} {A : Type{ℓ₁}} {B : Type{ℓ₂}} ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ (f : A → B) (x : A) where
data Inspect (y : B) : Type{ℓₑ₂} where
intro : (f(x) ≡ y) → Inspect(y)
inspect : Inspect(f(x))
inspect = intro(reflexivity(_≡_))
{-# INLINE inspect #-}
|
{
"alphanum_fraction": 0.5758468336,
"avg_line_length": 28.2916666667,
"ext": "agda",
"hexsha": "0ff04dcdf4ab37aeb69f977b678df8f1ee18e0f9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Lang/Inspect.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Lang/Inspect.agda",
"max_line_length": 111,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Lang/Inspect.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 292,
"size": 679
}
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT hiding (left; right)
module homotopy.BlakersMassey {i j k}
{A : Type i} {B : Type j} (Q : A → B → Type k)
m (f-conn : ∀ a → is-connected (S m) (Σ B (λ b → Q a b)))
n (g-conn : ∀ b → is-connected (S n) (Σ A (λ a → Q a b)))
where
open import homotopy.blakersmassey.Pushout Q
import homotopy.blakersmassey.CoherenceData Q m f-conn n g-conn as Coh
-- These extra parameters will be discharged in the end
module _ {a₀} {b₀} (q₀₀ : Q a₀ b₀) where
-- Step 1:
-- Generalizing the theorem to [bmleft x == p] for arbitrary p.
-- This requires a pushout-rec
-- "extended" version
code-bmleft-template : ∀ a₁ {p} (r' : bmleft a₁ == p) → bmleft a₀ == p → Type (lmax i (lmax j k))
code-bmleft-template a₁ r' r = Trunc (m +2+ n) (hfiber (λ q₁₀ → bmglue q₀₀ ∙' ! (bmglue q₁₀) ∙' r') r)
code-bmleft : ∀ a₁ → bmleft a₀ == bmleft a₁ → Type (lmax i (lmax j k))
code-bmleft a₁ = code-bmleft-template a₁ idp
code-bmright : ∀ b₁ → bmleft a₀ == bmright b₁ → Type (lmax i (lmax j k))
code-bmright b₁ r = Trunc (m +2+ n) (hfiber bmglue r)
-- The template from [Coh.eqv] to the input for [apd code glue]
-- for using the identification elimination.
code-bmglue-template : ∀ {a₁ p}
→ (code : (r : bmleft a₀ == p) → Type (lmax i (lmax j k)))
→ (r : bmleft a₁ == p)
→ (∀ r' → code-bmleft-template a₁ r r' ≃ code r')
→ code-bmleft-template a₁ idp == code [ (λ p → bmleft a₀ == p → Type (lmax i (lmax j k))) ↓ r ]
code-bmglue-template _ idp lemma = λ= (ua ∘ lemma)
-- The real glue, that is, the template with actual equivalence.
code-bmglue : ∀ {a₁ b₁} (q₁₁ : Q a₁ b₁)
→ code-bmleft a₁ == code-bmright b₁
[ (λ p → bmleft a₀ == p → Type (lmax i (lmax j k))) ↓ bmglue q₁₁ ]
code-bmglue {a₁} {b₁} q₁₁ =
code-bmglue-template (code-bmright b₁) (bmglue q₁₁) (Coh.eqv q₀₀ q₁₁)
-- Here's the data structure for the generalized theorem.
module Code = BMPushoutElim code-bmleft code-bmright code-bmglue
code : ∀ p → bmleft a₀ == p → Type (lmax i (lmax j k))
code = Code.f
-- Step 2:
-- [code] is contractible!
-- The center for [idp]. We will use transport to find the center
-- in other fibers.
code-center-idp : code (bmleft a₀) idp
code-center-idp = [ q₀₀ , !-inv'-r (bmglue q₀₀) ]
-- The following is the breakdown of the path for coercing:
-- [ap2 code r (↓-cst=idf-in' r)]
-- We will need the broken-down version anyway,
-- so why not breaking them down from the very beginning?
-- The template here, again, is to keep the possibility
-- of plugging in [idp] for [r].
coerce-path-template : ∀ {p} r
→ code-bmleft a₀ == code p [ (λ p → bmleft a₀ == p → Type (lmax i (lmax j k))) ↓ r ]
→ code-bmleft a₀ idp == code p r
coerce-path-template idp lemma = app= lemma idp
-- The real path.
coerce-path : ∀ {p} r → code (bmleft a₀) idp == code p r
coerce-path r = coerce-path-template r (apd code r)
-- Find the center in other fibers.
code-center : ∀ {p} r → code p r
code-center r = coe (coerce-path r) code-center-idp
-- Part of the decomposed [coe (coerce-path r)]
code-bmleft-template-diag : ∀ {p} (r : bmleft a₀ == p)
→ code-bmleft a₀ idp → code-bmleft-template a₀ r r
code-bmleft-template-diag r = Trunc-rec Trunc-level
λ {(q₀₀' , shift) →
[ q₀₀' , ! (∙'-assoc (bmglue q₀₀) (! (bmglue q₀₀')) r) ∙ ap (_∙' r) shift ∙' ∙'-unit-l r ]}
abstract
code-bmleft-template-diag-idp : ∀ x → code-bmleft-template-diag idp x == x
code-bmleft-template-diag-idp =
Trunc-elim (λ _ → =-preserves-level Trunc-level)
λ{(q₁₀ , shift) → ap (λ p → [ q₁₀ , p ]) (ap-idf shift)}
-- Here shows the use of two templates. It will be super painful
-- if we cannot throw in [idp]. Now we only have to deal with
-- simple computations.
abstract
coe-coerce-path-code-bmglue-template : ∀ {p} (r : bmleft a₀ == p)
(lemma : ∀ r' → code-bmleft-template a₀ r r' ≃ code p r')
(x : code-bmleft a₀ idp)
→ coe (coerce-path-template r (code-bmglue-template (code p) r lemma)) x
== –> (lemma r) (code-bmleft-template-diag r x)
coe-coerce-path-code-bmglue-template idp lemma x =
coe (app= (λ= (ua ∘ lemma)) idp) x
=⟨ ap (λ p → coe p x) (app=-β (ua ∘ lemma) idp) ⟩
coe (ua (lemma idp)) x
=⟨ coe-β (lemma idp) x ⟩
–> (lemma idp) x
=⟨ ! (ap (–> (lemma idp)) (code-bmleft-template-diag-idp x)) ⟩
–> (lemma idp) (code-bmleft-template-diag idp x)
=∎
-- Here is the actually lemma we want!
-- A succinct breakdown of [coerce-path code (glue q)].
abstract
coe-coerce-path-code-bmglue : ∀ {b₁} (q₀₁ : Q a₀ b₁) x
→ coe (coerce-path (bmglue q₀₁)) x
== Coh.to q₀₀ q₀₁ (bmglue q₀₁) (code-bmleft-template-diag (bmglue q₀₁) x)
coe-coerce-path-code-bmglue q₀₁ x =
coe (coerce-path-template (bmglue q₀₁) (apd code (bmglue q₀₁))) x
=⟨ ap (λ p → coe (coerce-path-template (bmglue q₀₁) p) x) (Code.glue-β q₀₁) ⟩
coe (coerce-path-template (bmglue q₀₁) (code-bmglue q₀₁)) x
=⟨ coe-coerce-path-code-bmglue-template (bmglue q₀₁) (Coh.eqv q₀₀ q₀₁) x ⟩
Coh.to q₀₀ q₀₁ (bmglue q₀₁) (code-bmleft-template-diag (bmglue q₀₁) x)
=∎
-- This is the only case you care for contractibiltiy.
abstract
code-coh-lemma : ∀ {b₁} (q₀₁ : Q a₀ b₁) → code-center (bmglue q₀₁) == [ q₀₁ , idp ]
code-coh-lemma q₀₁ =
coe (coerce-path (bmglue q₀₁)) code-center-idp
=⟨ coe-coerce-path-code-bmglue q₀₁ code-center-idp ⟩
Coh.to' q₀₀ q₀₁ (bmglue q₀₁) (q₀₀ , α₁α₁⁻¹α₂=α₂ (bmglue q₀₀) (bmglue q₀₁))
=⟨ ap (Coh.To.ext q₀₀ (_ , q₀₀) (_ , q₀₁) (bmglue q₀₁)) (path-lemma (bmglue q₀₀) (bmglue q₀₁)) ⟩
Coh.To.ext q₀₀ (_ , q₀₀) (_ , q₀₁) (bmglue q₀₁) (! path)
=⟨ Coh.To.β-r q₀₀ (_ , q₀₁) (bmglue q₀₁) (! path) ⟩
[ q₀₁ , path ∙' ! path ]
=⟨ ap (λ p → [ q₀₁ , p ]) (!-inv'-r path) ⟩
[ q₀₁ , idp ]
=∎
where
path = Coh.βPair.path (Coh.βpair-bmright q₀₀ q₀₁ (bmglue q₀₁))
-- this is defined to be the path generated by [code-bmleft-template-diag]
α₁α₁⁻¹α₂=α₂ : ∀ {p₁ p₂ p₃ : BMPushout} (α₁ : p₁ == p₂) (α₂ : p₁ == p₃)
→ α₁ ∙' ! α₁ ∙' α₂ == α₂
α₁α₁⁻¹α₂=α₂ α₁ α₂ = ! (∙'-assoc α₁ (! α₁) α₂) ∙ ap (_∙' α₂) (!-inv'-r α₁) ∙' ∙'-unit-l α₂
-- the relation of this path and the one from CoherenceData
path-lemma : ∀ {p₁ p₂ p₃ : BMPushout} (α₁ : p₁ == p₂) (α₂ : p₁ == p₃)
→ α₁α₁⁻¹α₂=α₂ α₁ α₂ == ! (Coh.α₁=α₂α₂⁻¹α₁ α₂ α₁)
path-lemma idp idp = idp
-- Make [r] free to apply identification elimination.
code-coh : ∀ {b₁} (r : bmleft a₀ == bmright b₁) (s : hfiber bmglue r) → code-center r == [ s ]
code-coh ._ (q₀₁ , idp) = code-coh-lemma q₀₁
-- Finish the lemma.
code-contr : ∀ {b₁} (r : bmleft a₀ == bmright b₁) → is-contr (Trunc (m +2+ n) (hfiber bmglue r))
code-contr r = code-center r , Trunc-elim
(λ _ → =-preserves-level Trunc-level) (code-coh r)
-- The final theorem.
-- It is sufficient to find some [q₀₀].
blakers-massey : ∀ {a₀ b₀} → has-conn-fibers (m +2+ n) (bmglue {a₀} {b₀})
blakers-massey {a₀} r = Trunc-rec
(prop-has-level-S is-connected-is-prop)
(λ{(_ , q₀₀) → code-contr q₀₀ r})
(fst (f-conn a₀))
|
{
"alphanum_fraction": 0.5949105915,
"avg_line_length": 42.7647058824,
"ext": "agda",
"hexsha": "9e0d3cd63252ae3c01ac6245c13d3cab9e012b5d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/BlakersMassey.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/BlakersMassey.agda",
"max_line_length": 104,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/BlakersMassey.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2876,
"size": 7270
}
|
-- An ATP conjecture must be used with postulates.
-- This error is detected by Syntax.Translation.ConcreteToAbstract.
module ATPBadConjecture1 where
data Bool : Set where
false true : Bool
{-# ATP prove false #-}
|
{
"alphanum_fraction": 0.75,
"avg_line_length": 20,
"ext": "agda",
"hexsha": "0fb6574dffa13b96e1127d3345778233b4408337",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "asr/eagda",
"max_forks_repo_path": "test/fail/ATPBadConjecture1.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "asr/eagda",
"max_issues_repo_path": "test/fail/ATPBadConjecture1.agda",
"max_line_length": 67,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "asr/eagda",
"max_stars_repo_path": "test/fail/ATPBadConjecture1.agda",
"max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z",
"num_tokens": 52,
"size": 220
}
|
{-# OPTIONS --without-K #-}
module function.surjective where
open import sum
open import equality
open import function.isomorphism.core
open import hott.level.core
open import hott.equivalence.core
open import hott.truncation
surjective : ∀ {i j}{A : Set i}{B : Set j} → (A → B) → Set _
surjective f = ∀ b → ∥ f ⁻¹ b ∥
retr⇒surj : ∀ {i j}{A : Set i}{B : Set j}
→ (f : A → B)
→ retraction f
→ surjective f
retr⇒surj f retr b = η (retr b)
inj+surj⇒eq : ∀ {i j}{A : Set i}{B : Set j}
→ h 2 A → h 2 B
→ (f : A → B)
→ injective f
→ surjective f
→ weak-equiv f
inj+surj⇒eq {A = A}{B = B} hA hB f inj surj b = retr-f b , propFib b (retr-f b)
where
propFib : (b : B) → prop (f ⁻¹ b)
propFib b (a , p) (a' , p') = unapΣ (inj (p · sym p') , h1⇒prop (hB (f a') b) _ _)
retr-f : retraction f
retr-f b = Trunc-elim (prop⇒h1 (propFib b)) (λ x → x) (surj b)
|
{
"alphanum_fraction": 0.5339602926,
"avg_line_length": 28.1470588235,
"ext": "agda",
"hexsha": "68d2c30572f674b00cd450c33e1641ef3548efb6",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z",
"max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "HoTT/M-types",
"max_forks_repo_path": "function/surjective.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "HoTT/M-types",
"max_issues_repo_path": "function/surjective.agda",
"max_line_length": 86,
"max_stars_count": 27,
"max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "HoTT/M-types",
"max_stars_repo_path": "function/surjective.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z",
"num_tokens": 373,
"size": 957
}
|
------------------------------------------------------------------------------
-- The Booleans properties
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module LTC-PCF.Data.Bool.Properties where
open import LTC-PCF.Base
open import LTC-PCF.Data.Bool
open import LTC-PCF.Data.Nat.Inequalities
open import LTC-PCF.Data.Nat.Inequalities.Properties
open import LTC-PCF.Data.Nat.Type
------------------------------------------------------------------------------
-- Congruence properties
notCong : ∀ {a b} → a ≡ b → not a ≡ not b
notCong refl = refl
------------------------------------------------------------------------------
-- Basic properties
t&&x≡x : ∀ b → true && b ≡ b
t&&x≡x b = if-true b
f&&x≡f : ∀ b → false && b ≡ false
f&&x≡f b = if-false false
not-t : not true ≡ false
not-t = if-true false
not-f : not false ≡ true
not-f = if-false true
&&-Bool : ∀ {a b} → Bool a → Bool b → Bool (a && b)
&&-Bool {b = b} btrue Bb = subst Bool (sym (t&&x≡x b)) Bb
&&-Bool {b = b} bfalse Bb = subst Bool (sym (f&&x≡f b)) bfalse
not-Bool : ∀ {b} → Bool b → Bool (not b)
not-Bool btrue = subst Bool (sym not-t) bfalse
not-Bool bfalse = subst Bool (sym not-f) btrue
&&-comm : ∀ {a b} → Bool a → Bool b → a && b ≡ b && a
&&-comm btrue btrue = refl
&&-comm btrue bfalse = trans (t&&x≡x false) (sym (f&&x≡f true))
&&-comm bfalse btrue = trans (f&&x≡f true) (sym (t&&x≡x false))
&&-comm bfalse bfalse = refl
x≢not-x : ∀ {b} → Bool b → b ≢ not b
x≢not-x btrue h = t≢f (trans h not-t)
x≢not-x bfalse h = t≢f (sym (trans h not-f))
not-x≢x : ∀ {b} → Bool b → not b ≢ b
not-x≢x Bb h = x≢not-x Bb (sym h)
not-involutive : ∀ {b} → Bool b → not (not b) ≡ b
not-involutive btrue = trans (notCong not-t) not-f
not-involutive bfalse = trans (notCong not-f) not-t
------------------------------------------------------------------------------
-- Properties with inequalities
lt-Bool : ∀ {m n} → N m → N n → Bool (lt m n)
lt-Bool nzero nzero = subst Bool (sym lt-00) bfalse
lt-Bool nzero (nsucc {n} Nn) = subst Bool (sym (lt-0S n)) btrue
lt-Bool (nsucc {m} Nm) nzero = subst Bool (sym (lt-S0 m)) bfalse
lt-Bool (nsucc {m} Nm) (nsucc {n} Nn) = subst Bool (sym (lt-SS m n)) (lt-Bool Nm Nn)
le-Bool : ∀ {m n} → N m → N n → Bool (le m n)
le-Bool {n = n} nzero Nn = subst Bool (sym (lt-0S n)) btrue
le-Bool (nsucc Nm) nzero = subst Bool (sym (Sx≰0 Nm)) bfalse
le-Bool (nsucc {m} Nm) (nsucc {n} Nn) =
subst Bool (sym (lt-SS m (succ₁ n))) (le-Bool Nm Nn)
|
{
"alphanum_fraction": 0.4957983193,
"avg_line_length": 35.0897435897,
"ext": "agda",
"hexsha": "60b31f9dd2d4333fd6ad21192b9925e2db998c50",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/LTC-PCF/Data/Bool/Properties.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/LTC-PCF/Data/Bool/Properties.agda",
"max_line_length": 84,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/LTC-PCF/Data/Bool/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 918,
"size": 2737
}
|
{-
This second-order term syntax was created from the following second-order syntax description:
syntax Sum | S
type
_⊕_ : 2-ary | l30
term
inl : α -> α ⊕ β
inr : β -> α ⊕ β
case : α ⊕ β α.γ β.γ -> γ
theory
(lβ) a : α f : α.γ g : β.γ |> case (inl(a), x.f[x], y.g[y]) = f[a]
(rβ) b : β f : α.γ g : β.γ |> case (inr(b), x.f[x], y.g[y]) = g[b]
(cη) s : α ⊕ β c : (α ⊕ β).γ |> case (s, x.c[inl(x)], y.c[inr(y)]) = c[s]
-}
module Sum.Syntax where
open import SOAS.Common
open import SOAS.Context
open import SOAS.Variable
open import SOAS.Families.Core
open import SOAS.Construction.Structure
open import SOAS.ContextMaps.Inductive
open import SOAS.Metatheory.Syntax
open import Sum.Signature
private
variable
Γ Δ Π : Ctx
α β γ : ST
𝔛 : Familyₛ
-- Inductive term declaration
module S:Terms (𝔛 : Familyₛ) where
data S : Familyₛ where
var : ℐ ⇾̣ S
mvar : 𝔛 α Π → Sub S Π Γ → S α Γ
inl : S α Γ → S (α ⊕ β) Γ
inr : S β Γ → S (α ⊕ β) Γ
case : S (α ⊕ β) Γ → S γ (α ∙ Γ) → S γ (β ∙ Γ) → S γ Γ
open import SOAS.Metatheory.MetaAlgebra ⅀F 𝔛
Sᵃ : MetaAlg S
Sᵃ = record
{ 𝑎𝑙𝑔 = λ where
(inlₒ ⋮ a) → inl a
(inrₒ ⋮ a) → inr a
(caseₒ ⋮ a , b , c) → case a b c
; 𝑣𝑎𝑟 = var ; 𝑚𝑣𝑎𝑟 = λ 𝔪 mε → mvar 𝔪 (tabulate mε) }
module Sᵃ = MetaAlg Sᵃ
module _ {𝒜 : Familyₛ}(𝒜ᵃ : MetaAlg 𝒜) where
open MetaAlg 𝒜ᵃ
𝕤𝕖𝕞 : S ⇾̣ 𝒜
𝕊 : Sub S Π Γ → Π ~[ 𝒜 ]↝ Γ
𝕊 (t ◂ σ) new = 𝕤𝕖𝕞 t
𝕊 (t ◂ σ) (old v) = 𝕊 σ v
𝕤𝕖𝕞 (mvar 𝔪 mε) = 𝑚𝑣𝑎𝑟 𝔪 (𝕊 mε)
𝕤𝕖𝕞 (var v) = 𝑣𝑎𝑟 v
𝕤𝕖𝕞 (inl a) = 𝑎𝑙𝑔 (inlₒ ⋮ 𝕤𝕖𝕞 a)
𝕤𝕖𝕞 (inr a) = 𝑎𝑙𝑔 (inrₒ ⋮ 𝕤𝕖𝕞 a)
𝕤𝕖𝕞 (case a b c) = 𝑎𝑙𝑔 (caseₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b , 𝕤𝕖𝕞 c)
𝕤𝕖𝕞ᵃ⇒ : MetaAlg⇒ Sᵃ 𝒜ᵃ 𝕤𝕖𝕞
𝕤𝕖𝕞ᵃ⇒ = record
{ ⟨𝑎𝑙𝑔⟩ = λ{ {t = t} → ⟨𝑎𝑙𝑔⟩ t }
; ⟨𝑣𝑎𝑟⟩ = refl
; ⟨𝑚𝑣𝑎𝑟⟩ = λ{ {𝔪 = 𝔪}{mε} → cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-tab mε)) } }
where
open ≡-Reasoning
⟨𝑎𝑙𝑔⟩ : (t : ⅀ S α Γ) → 𝕤𝕖𝕞 (Sᵃ.𝑎𝑙𝑔 t) ≡ 𝑎𝑙𝑔 (⅀₁ 𝕤𝕖𝕞 t)
⟨𝑎𝑙𝑔⟩ (inlₒ ⋮ _) = refl
⟨𝑎𝑙𝑔⟩ (inrₒ ⋮ _) = refl
⟨𝑎𝑙𝑔⟩ (caseₒ ⋮ _) = refl
𝕊-tab : (mε : Π ~[ S ]↝ Γ)(v : ℐ α Π) → 𝕊 (tabulate mε) v ≡ 𝕤𝕖𝕞 (mε v)
𝕊-tab mε new = refl
𝕊-tab mε (old v) = 𝕊-tab (mε ∘ old) v
module _ (g : S ⇾̣ 𝒜)(gᵃ⇒ : MetaAlg⇒ Sᵃ 𝒜ᵃ g) where
open MetaAlg⇒ gᵃ⇒
𝕤𝕖𝕞! : (t : S α Γ) → 𝕤𝕖𝕞 t ≡ g t
𝕊-ix : (mε : Sub S Π Γ)(v : ℐ α Π) → 𝕊 mε v ≡ g (index mε v)
𝕊-ix (x ◂ mε) new = 𝕤𝕖𝕞! x
𝕊-ix (x ◂ mε) (old v) = 𝕊-ix mε v
𝕤𝕖𝕞! (mvar 𝔪 mε) rewrite cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-ix mε))
= trans (sym ⟨𝑚𝑣𝑎𝑟⟩) (cong (g ∘ mvar 𝔪) (tab∘ix≈id mε))
𝕤𝕖𝕞! (var v) = sym ⟨𝑣𝑎𝑟⟩
𝕤𝕖𝕞! (inl a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩
𝕤𝕖𝕞! (inr a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩
𝕤𝕖𝕞! (case a b c) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b | 𝕤𝕖𝕞! c = sym ⟨𝑎𝑙𝑔⟩
-- Syntax instance for the signature
S:Syn : Syntax
S:Syn = record
{ ⅀F = ⅀F
; ⅀:CS = ⅀:CompatStr
; mvarᵢ = S:Terms.mvar
; 𝕋:Init = λ 𝔛 → let open S:Terms 𝔛 in record
{ ⊥ = S ⋉ Sᵃ
; ⊥-is-initial = record { ! = λ{ {𝒜 ⋉ 𝒜ᵃ} → 𝕤𝕖𝕞 𝒜ᵃ ⋉ 𝕤𝕖𝕞ᵃ⇒ 𝒜ᵃ }
; !-unique = λ{ {𝒜 ⋉ 𝒜ᵃ} (f ⋉ fᵃ⇒) {x = t} → 𝕤𝕖𝕞! 𝒜ᵃ f fᵃ⇒ t } } } }
-- Instantiation of the syntax and metatheory
open Syntax S:Syn public
open S:Terms public
open import SOAS.Families.Build public
open import SOAS.Syntax.Shorthands Sᵃ public
open import SOAS.Metatheory S:Syn public
|
{
"alphanum_fraction": 0.5149911817,
"avg_line_length": 26.1692307692,
"ext": "agda",
"hexsha": "3c736841ffdb4a80e8957160dcc35009897e336a",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "out/Sum/Syntax.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "out/Sum/Syntax.agda",
"max_line_length": 93,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "out/Sum/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 2154,
"size": 3402
}
|
module LibB where
import LibC
|
{
"alphanum_fraction": 0.8333333333,
"avg_line_length": 10,
"ext": "agda",
"hexsha": "f22d0e1904910109794d203cd220731ff7e08da5",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/interaction/Issue5245/b/LibB.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/interaction/Issue5245/b/LibB.agda",
"max_line_length": 17,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/interaction/Issue5245/b/LibB.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 9,
"size": 30
}
|
{-# OPTIONS --safe #-}
module Cubical.Experiments.IsoInt where
open import Cubical.Experiments.IsoInt.Base public
|
{
"alphanum_fraction": 0.775862069,
"avg_line_length": 19.3333333333,
"ext": "agda",
"hexsha": "b3dbb7872416fc550171b76fea2b7be250f56924",
"lang": "Agda",
"max_forks_count": 134,
"max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z",
"max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "marcinjangrzybowski/cubical",
"max_forks_repo_path": "Cubical/Experiments/IsoInt.agda",
"max_issues_count": 584,
"max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "marcinjangrzybowski/cubical",
"max_issues_repo_path": "Cubical/Experiments/IsoInt.agda",
"max_line_length": 50,
"max_stars_count": 301,
"max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "marcinjangrzybowski/cubical",
"max_stars_repo_path": "Cubical/Experiments/IsoInt.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z",
"num_tokens": 27,
"size": 116
}
|
{-# OPTIONS --without-K #-}
module lib.cubical.Cubical where
open import lib.cubical.Square public
open import lib.cubical.Cube public
|
{
"alphanum_fraction": 0.7664233577,
"avg_line_length": 19.5714285714,
"ext": "agda",
"hexsha": "16fd283b9ab0ecc98863cf3663dec6ef78a4f29b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "danbornside/HoTT-Agda",
"max_forks_repo_path": "lib/cubical/Cubical.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "danbornside/HoTT-Agda",
"max_issues_repo_path": "lib/cubical/Cubical.agda",
"max_line_length": 37,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "danbornside/HoTT-Agda",
"max_stars_repo_path": "lib/cubical/Cubical.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 36,
"size": 137
}
|
--------------------------------------------------------------------------------
-- This is part of Agda Inference Systems
open import Data.Nat
open import Relation.Binary.PropositionalEquality
open import Data.Sum
module Examples.Colists.Auxiliary.MaxOf where
max : ℕ → ℕ → ℕ
max zero zero = zero
max zero (suc y) = suc y
max (suc x) zero = suc x
max (suc x) (suc y) = suc (max x y)
max-refl : (x y : ℕ) → (x ≡ max x y) ⊎ (y ≡ max x y)
max-refl zero zero = inj₂ refl
max-refl zero (suc y) = inj₂ refl
max-refl (suc x) zero = inj₁ refl
max-refl (suc x) (suc y) with max-refl x y
max-refl (suc x) (suc y) | inj₁ eq = inj₁ (cong (λ x₁ → suc x₁) eq)
max-refl (suc x) (suc y) | inj₂ eq = inj₂ (cong (λ x₁ → suc x₁) eq)
max-refl-eq : ∀{x y z} → z ≡ max x y → z ≡ x ⊎ z ≡ y
max-refl-eq {x} {y} {z} refl with max-refl x y
max-refl-eq {x} {y} {.(max x y)} refl | inj₁ x₁ = inj₁ (sym x₁)
max-refl-eq {x} {y} {.(max x y)} refl | inj₂ y₁ = inj₂ (sym y₁)
max-self : ∀ {n} → n ≡ max n n
max-self {zero} = refl
max-self {suc n} = cong (λ x → suc x) max-self
max-trans : ∀{x y z} → y ≡ max y z → x ≡ max x y → x ≡ max x z
max-trans {zero} {zero} {zero} _ _ = refl
max-trans {suc x} {zero} {zero} refl refl = refl
max-trans {suc x} {suc y} {zero} refl _ = refl
max-trans {suc x} {suc y} {suc z} eq eq1 =
let eq-pred = cong pred eq in
let eq1-pred = cong pred eq1 in
cong suc (max-trans eq-pred eq1-pred)
max-comm : ∀{x y z} → x ≡ max y z → x ≡ max z y
max-comm {x} {zero} {zero} eq = eq
max-comm {x} {suc y} {zero} eq = eq
max-comm {x} {zero} {suc z} eq = eq
max-comm {suc x} {suc y} {suc z} eq = cong suc (max-comm (cong pred eq))
|
{
"alphanum_fraction": 0.5528647372,
"avg_line_length": 36.8043478261,
"ext": "agda",
"hexsha": "fe01bdc8693c343ab9fdccfbf4b2fe33c4f69b75",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b9043f99e4bf7211db4066a7a943401d127f0c8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "LcicC/inference-systems-agda",
"max_forks_repo_path": "Examples/Colists/Auxiliary/MaxOf.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b9043f99e4bf7211db4066a7a943401d127f0c8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "LcicC/inference-systems-agda",
"max_issues_repo_path": "Examples/Colists/Auxiliary/MaxOf.agda",
"max_line_length": 80,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "b9043f99e4bf7211db4066a7a943401d127f0c8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "LcicC/inference-systems-agda",
"max_stars_repo_path": "Examples/Colists/Auxiliary/MaxOf.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-25T15:48:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-10T15:53:47.000Z",
"num_tokens": 686,
"size": 1693
}
|
data Unit : Set where
unit : Unit
mutual
data D : Unit → Set where
c : (x : Unit) → F x x → D x
F : Unit → Unit → Set
F unit x = D x
Works : (x : Unit) → D x → Set₁
Works .x (c x p) with x
Works .x (c x p) | _ = Set
Fails : (x : Unit) → D x → Set₁
Fails y = Fails′ y
where
Fails′ : (x : Unit) → D x → Set₁
Fails′ .x (c x p) with x
Fails′ .x (c x p) | _ = Set
|
{
"alphanum_fraction": 0.5090439276,
"avg_line_length": 16.8260869565,
"ext": "agda",
"hexsha": "2641e02412a95420d06b559de0e4c54d83e99bb4",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2327.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2327.agda",
"max_line_length": 34,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2327.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 171,
"size": 387
}
|
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.ShapeView {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Properties.Escape
open import Definition.LogicalRelation.Properties.Reflexivity
open import Tools.Product
open import Tools.Empty using (⊥; ⊥-elim)
import Tools.PropositionalEquality as PE
-- Type for maybe embeddings of reducible types
data MaybeEmb (l : TypeLevel) (⊩⟨_⟩ : TypeLevel → Set) : Set where
noemb : ⊩⟨ l ⟩ → MaybeEmb l ⊩⟨_⟩
emb : ∀ {l′} → l′ < l → MaybeEmb l′ ⊩⟨_⟩ → MaybeEmb l ⊩⟨_⟩
-- Specific reducible types with possible embedding
_⊩⟨_⟩U : (Γ : Con Term) (l : TypeLevel) → Set
Γ ⊩⟨ l ⟩U = MaybeEmb l (λ l′ → Γ ⊩′⟨ l′ ⟩U)
_⊩⟨_⟩ℕ_ : (Γ : Con Term) (l : TypeLevel) (A : Term) → Set
Γ ⊩⟨ l ⟩ℕ A = MaybeEmb l (λ l′ → Γ ⊩ℕ A)
_⊩⟨_⟩Empty_ : (Γ : Con Term) (l : TypeLevel) (A : Term) → Set
Γ ⊩⟨ l ⟩Empty A = MaybeEmb l (λ l′ → Γ ⊩Empty A)
_⊩⟨_⟩Unit_ : (Γ : Con Term) (l : TypeLevel) (A : Term) → Set
Γ ⊩⟨ l ⟩Unit A = MaybeEmb l (λ l′ → Γ ⊩Unit A)
_⊩⟨_⟩ne_ : (Γ : Con Term) (l : TypeLevel) (A : Term) → Set
Γ ⊩⟨ l ⟩ne A = MaybeEmb l (λ l′ → Γ ⊩ne A)
_⊩⟨_⟩B⟨_⟩_ : (Γ : Con Term) (l : TypeLevel) (W : BindingType) (A : Term) → Set
Γ ⊩⟨ l ⟩B⟨ W ⟩ A = MaybeEmb l (λ l′ → Γ ⊩′⟨ l′ ⟩B⟨ W ⟩ A)
-- Construct a general reducible type from a specific
U-intr : ∀ {Γ l} → Γ ⊩⟨ l ⟩U → Γ ⊩⟨ l ⟩ U
U-intr (noemb x) = Uᵣ x
U-intr (emb 0<1 x) = emb 0<1 (U-intr x)
ℕ-intr : ∀ {A Γ l} → Γ ⊩⟨ l ⟩ℕ A → Γ ⊩⟨ l ⟩ A
ℕ-intr (noemb x) = ℕᵣ x
ℕ-intr (emb 0<1 x) = emb 0<1 (ℕ-intr x)
Empty-intr : ∀ {A Γ l} → Γ ⊩⟨ l ⟩Empty A → Γ ⊩⟨ l ⟩ A
Empty-intr (noemb x) = Emptyᵣ x
Empty-intr (emb 0<1 x) = emb 0<1 (Empty-intr x)
Unit-intr : ∀ {A Γ l} → Γ ⊩⟨ l ⟩Unit A → Γ ⊩⟨ l ⟩ A
Unit-intr (noemb x) = Unitᵣ x
Unit-intr (emb 0<1 x) = emb 0<1 (Unit-intr x)
ne-intr : ∀ {A Γ l} → Γ ⊩⟨ l ⟩ne A → Γ ⊩⟨ l ⟩ A
ne-intr (noemb x) = ne x
ne-intr (emb 0<1 x) = emb 0<1 (ne-intr x)
B-intr : ∀ {A Γ l} W → Γ ⊩⟨ l ⟩B⟨ W ⟩ A → Γ ⊩⟨ l ⟩ A
B-intr W (noemb x) = Bᵣ W x
B-intr W (emb 0<1 x) = emb 0<1 (B-intr W x)
-- Construct a specific reducible type from a general with some criterion
U-elim : ∀ {Γ l} → Γ ⊩⟨ l ⟩ U → Γ ⊩⟨ l ⟩U
U-elim (Uᵣ′ l′ l< ⊢Γ) = noemb (Uᵣ l′ l< ⊢Γ)
U-elim (ℕᵣ D) with whnfRed* (red D) Uₙ
... | ()
U-elim (Emptyᵣ D) with whnfRed* (red D) Uₙ
... | ()
U-elim (Unitᵣ D) with whnfRed* (red D) Uₙ
... | ()
U-elim (ne′ K D neK K≡K) =
⊥-elim (U≢ne neK (whnfRed* (red D) Uₙ))
U-elim (Bᵣ′ W F G D ⊢F ⊢G A≡A [F] [G] G-ext) =
⊥-elim (U≢B W (whnfRed* (red D) Uₙ))
U-elim (emb 0<1 x) with U-elim x
U-elim (emb 0<1 x) | noemb x₁ = emb 0<1 (noemb x₁)
U-elim (emb 0<1 x) | emb () x₁
ℕ-elim′ : ∀ {A Γ l} → Γ ⊢ A ⇒* ℕ → Γ ⊩⟨ l ⟩ A → Γ ⊩⟨ l ⟩ℕ A
ℕ-elim′ D (Uᵣ′ l′ l< ⊢Γ) with whrDet* (id (Uⱼ ⊢Γ) , Uₙ) (D , ℕₙ)
... | ()
ℕ-elim′ D (ℕᵣ D′) = noemb D′
ℕ-elim′ D (ne′ K D′ neK K≡K) =
⊥-elim (ℕ≢ne neK (whrDet* (D , ℕₙ) (red D′ , ne neK)))
ℕ-elim′ D (Bᵣ′ W F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) =
⊥-elim (ℕ≢B W (whrDet* (D , ℕₙ) (red D′ , ⟦ W ⟧ₙ)))
ℕ-elim′ D (Emptyᵣ D′) with whrDet* (D , ℕₙ) (red D′ , Emptyₙ)
... | ()
ℕ-elim′ D (Unitᵣ D′) with whrDet* (D , ℕₙ) (red D′ , Unitₙ)
... | ()
ℕ-elim′ D (emb 0<1 x) with ℕ-elim′ D x
ℕ-elim′ D (emb 0<1 x) | noemb x₁ = emb 0<1 (noemb x₁)
ℕ-elim′ D (emb 0<1 x) | emb () x₂
ℕ-elim : ∀ {Γ l} → Γ ⊩⟨ l ⟩ ℕ → Γ ⊩⟨ l ⟩ℕ ℕ
ℕ-elim [ℕ] = ℕ-elim′ (id (escape [ℕ])) [ℕ]
Empty-elim′ : ∀ {A Γ l} → Γ ⊢ A ⇒* Empty → Γ ⊩⟨ l ⟩ A → Γ ⊩⟨ l ⟩Empty A
Empty-elim′ D (Uᵣ′ l′ l< ⊢Γ) with whrDet* (id (Uⱼ ⊢Γ) , Uₙ) (D , Emptyₙ)
... | ()
Empty-elim′ D (Emptyᵣ D′) = noemb D′
Empty-elim′ D (Unitᵣ D′) with whrDet* (D , Emptyₙ) (red D′ , Unitₙ)
... | ()
Empty-elim′ D (ne′ K D′ neK K≡K) =
⊥-elim (Empty≢ne neK (whrDet* (D , Emptyₙ) (red D′ , ne neK)))
Empty-elim′ D (Bᵣ′ W F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) =
⊥-elim (Empty≢B W (whrDet* (D , Emptyₙ) (red D′ , ⟦ W ⟧ₙ)))
Empty-elim′ D (ℕᵣ D′) with whrDet* (D , Emptyₙ) (red D′ , ℕₙ)
... | ()
Empty-elim′ D (emb 0<1 x) with Empty-elim′ D x
Empty-elim′ D (emb 0<1 x) | noemb x₁ = emb 0<1 (noemb x₁)
Empty-elim′ D (emb 0<1 x) | emb () x₂
Empty-elim : ∀ {Γ l} → Γ ⊩⟨ l ⟩ Empty → Γ ⊩⟨ l ⟩Empty Empty
Empty-elim [Empty] = Empty-elim′ (id (escape [Empty])) [Empty]
Unit-elim′ : ∀ {A Γ l} → Γ ⊢ A ⇒* Unit → Γ ⊩⟨ l ⟩ A → Γ ⊩⟨ l ⟩Unit A
Unit-elim′ D (Uᵣ′ l′ l< ⊢Γ) with whrDet* (id (Uⱼ ⊢Γ) , Uₙ) (D , Unitₙ)
... | ()
Unit-elim′ D (Unitᵣ D′) = noemb D′
Unit-elim′ D (Emptyᵣ D′) with whrDet* (D , Unitₙ) (red D′ , Emptyₙ)
... | ()
Unit-elim′ D (ne′ K D′ neK K≡K) =
⊥-elim (Unit≢ne neK (whrDet* (D , Unitₙ) (red D′ , ne neK)))
Unit-elim′ D (Bᵣ′ W F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) =
⊥-elim (Unit≢B W (whrDet* (D , Unitₙ) (red D′ , ⟦ W ⟧ₙ)))
Unit-elim′ D (ℕᵣ D′) with whrDet* (D , Unitₙ) (red D′ , ℕₙ)
... | ()
Unit-elim′ D (emb 0<1 x) with Unit-elim′ D x
Unit-elim′ D (emb 0<1 x) | noemb x₁ = emb 0<1 (noemb x₁)
Unit-elim′ D (emb 0<1 x) | emb () x₂
Unit-elim : ∀ {Γ l} → Γ ⊩⟨ l ⟩ Unit → Γ ⊩⟨ l ⟩Unit Unit
Unit-elim [Unit] = Unit-elim′ (id (escape [Unit])) [Unit]
ne-elim′ : ∀ {A Γ l K} → Γ ⊢ A ⇒* K → Neutral K → Γ ⊩⟨ l ⟩ A → Γ ⊩⟨ l ⟩ne A
ne-elim′ D neK (Uᵣ′ l′ l< ⊢Γ) =
⊥-elim (U≢ne neK (whrDet* (id (Uⱼ ⊢Γ) , Uₙ) (D , ne neK)))
ne-elim′ D neK (ℕᵣ D′) = ⊥-elim (ℕ≢ne neK (whrDet* (red D′ , ℕₙ) (D , ne neK)))
ne-elim′ D neK (Emptyᵣ D′) = ⊥-elim (Empty≢ne neK (whrDet* (red D′ , Emptyₙ) (D , ne neK)))
ne-elim′ D neK (Unitᵣ D′) = ⊥-elim (Unit≢ne neK (whrDet* (red D′ , Unitₙ) (D , ne neK)))
ne-elim′ D neK (ne′ K D′ neK′ K≡K) = noemb (ne K D′ neK′ K≡K)
ne-elim′ D neK (Bᵣ′ W F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) =
⊥-elim (B≢ne W neK (whrDet* (red D′ , ⟦ W ⟧ₙ) (D , ne neK)))
ne-elim′ D neK (emb 0<1 x) with ne-elim′ D neK x
ne-elim′ D neK (emb 0<1 x) | noemb x₁ = emb 0<1 (noemb x₁)
ne-elim′ D neK (emb 0<1 x) | emb () x₂
ne-elim : ∀ {Γ l K} → Neutral K → Γ ⊩⟨ l ⟩ K → Γ ⊩⟨ l ⟩ne K
ne-elim neK [K] = ne-elim′ (id (escape [K])) neK [K]
B-elim′ : ∀ {A Γ F G l} W → Γ ⊢ A ⇒* ⟦ W ⟧ F ▹ G → Γ ⊩⟨ l ⟩ A → Γ ⊩⟨ l ⟩B⟨ W ⟩ A
B-elim′ W D (Uᵣ′ l′ l< ⊢Γ) =
⊥-elim (U≢B W (whrDet* (id (Uⱼ ⊢Γ) , Uₙ) (D , ⟦ W ⟧ₙ)))
B-elim′ W D (ℕᵣ D′) =
⊥-elim (ℕ≢B W (whrDet* (red D′ , ℕₙ) (D , ⟦ W ⟧ₙ)))
B-elim′ W D (Emptyᵣ D′) =
⊥-elim (Empty≢B W (whrDet* (red D′ , Emptyₙ) (D , ⟦ W ⟧ₙ)))
B-elim′ W D (Unitᵣ D′) =
⊥-elim (Unit≢B W (whrDet* (red D′ , Unitₙ) (D , ⟦ W ⟧ₙ)))
B-elim′ W D (ne′ K D′ neK K≡K) =
⊥-elim (B≢ne W neK (whrDet* (D , ⟦ W ⟧ₙ) (red D′ , ne neK)))
B-elim′ BΠ D (Bᵣ′ BΣ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) with whrDet* (D , Πₙ) (red D′ , Σₙ)
... | ()
B-elim′ BΣ D (Bᵣ′ BΠ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) with whrDet* (D , Σₙ) (red D′ , Πₙ)
... | ()
B-elim′ BΠ D (Bᵣ′ BΠ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) =
noemb (Bᵣ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext)
B-elim′ BΣ D (Bᵣ′ BΣ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) =
noemb (Bᵣ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext)
B-elim′ W D (emb 0<1 x) with B-elim′ W D x
B-elim′ W D (emb 0<1 x) | noemb x₁ = emb 0<1 (noemb x₁)
B-elim′ W D (emb 0<1 x) | emb () x₂
B-elim : ∀ {Γ F G l} W → Γ ⊩⟨ l ⟩ ⟦ W ⟧ F ▹ G → Γ ⊩⟨ l ⟩B⟨ W ⟩ ⟦ W ⟧ F ▹ G
B-elim W [Π] = B-elim′ W (id (escape [Π])) [Π]
Π-elim : ∀ {Γ F G l} → Γ ⊩⟨ l ⟩ Π F ▹ G → Γ ⊩⟨ l ⟩B⟨ BΠ ⟩ Π F ▹ G
Π-elim [Π] = B-elim′ BΠ (id (escape [Π])) [Π]
Σ-elim : ∀ {Γ F G l} → Γ ⊩⟨ l ⟩ Σ F ▹ G → Γ ⊩⟨ l ⟩B⟨ BΣ ⟩ Σ F ▹ G
Σ-elim [Σ] = B-elim′ BΣ (id (escape [Σ])) [Σ]
-- Extract a type and a level from a maybe embedding
extractMaybeEmb : ∀ {l ⊩⟨_⟩} → MaybeEmb l ⊩⟨_⟩ → ∃ λ l′ → ⊩⟨ l′ ⟩
extractMaybeEmb (noemb x) = _ , x
extractMaybeEmb (emb 0<1 x) = extractMaybeEmb x
-- A view for constructor equality of types where embeddings are ignored
data ShapeView Γ : ∀ l l′ A B (p : Γ ⊩⟨ l ⟩ A) (q : Γ ⊩⟨ l′ ⟩ B) → Set where
Uᵥ : ∀ {l l′} UA UB → ShapeView Γ l l′ U U (Uᵣ UA) (Uᵣ UB)
ℕᵥ : ∀ {A B l l′} ℕA ℕB → ShapeView Γ l l′ A B (ℕᵣ ℕA) (ℕᵣ ℕB)
Emptyᵥ : ∀ {A B l l′} EmptyA EmptyB → ShapeView Γ l l′ A B (Emptyᵣ EmptyA) (Emptyᵣ EmptyB)
Unitᵥ : ∀ {A B l l′} UnitA UnitB → ShapeView Γ l l′ A B (Unitᵣ UnitA) (Unitᵣ UnitB)
ne : ∀ {A B l l′} neA neB
→ ShapeView Γ l l′ A B (ne neA) (ne neB)
Bᵥ : ∀ {A B l l′} W BA BB
→ ShapeView Γ l l′ A B (Bᵣ W BA) (Bᵣ W BB)
emb⁰¹ : ∀ {A B l p q}
→ ShapeView Γ ⁰ l A B p q
→ ShapeView Γ ¹ l A B (emb 0<1 p) q
emb¹⁰ : ∀ {A B l p q}
→ ShapeView Γ l ⁰ A B p q
→ ShapeView Γ l ¹ A B p (emb 0<1 q)
-- Construct an shape view from an equality (aptly named)
goodCases : ∀ {l l′ Γ A B} ([A] : Γ ⊩⟨ l ⟩ A) ([B] : Γ ⊩⟨ l′ ⟩ B)
→ Γ ⊩⟨ l ⟩ A ≡ B / [A] → ShapeView Γ l l′ A B [A] [B]
-- Diagonal cases
goodCases (Uᵣ UA) (Uᵣ UB) A≡B = Uᵥ UA UB
goodCases (ℕᵣ ℕA) (ℕᵣ ℕB) A≡B = ℕᵥ ℕA ℕB
goodCases (Emptyᵣ EmptyA) (Emptyᵣ EmptyB) A≡B = Emptyᵥ EmptyA EmptyB
goodCases (Unitᵣ UnitA) (Unitᵣ UnitB) A≡B = Unitᵥ UnitA UnitB
goodCases (ne neA) (ne neB) A≡B = ne neA neB
goodCases (Bᵣ BΠ ΠA) (Bᵣ BΠ ΠB) A≡B = Bᵥ BΠ ΠA ΠB
goodCases (Bᵣ BΣ ΣA) (Bᵣ BΣ ΣB) A≡B = Bᵥ BΣ ΣA ΣB
--goodCases (Σᵣ ΣA) (Σᵣ ΣB) A≡B = Σᵥ ΣA ΣB
goodCases {l} [A] (emb 0<1 x) A≡B =
emb¹⁰ (goodCases {l} {⁰} [A] x A≡B)
goodCases {l′ = l} (emb 0<1 x) [B] A≡B =
emb⁰¹ (goodCases {⁰} {l} x [B] A≡B)
-- Refutable cases
-- U ≡ _
goodCases (Uᵣ′ _ _ ⊢Γ) (ℕᵣ D) PE.refl with whnfRed* (red D) Uₙ
... | ()
goodCases (Uᵣ′ _ _ ⊢Γ) (Emptyᵣ D) PE.refl with whnfRed* (red D) Uₙ
... | ()
goodCases (Uᵣ′ _ _ ⊢Γ) (Unitᵣ D) PE.refl with whnfRed* (red D) Uₙ
... | ()
goodCases (Uᵣ′ _ _ ⊢Γ) (ne′ K D neK K≡K) PE.refl =
⊥-elim (U≢ne neK (whnfRed* (red D) Uₙ))
goodCases (Uᵣ′ _ _ ⊢Γ) (Bᵣ′ W F G D ⊢F ⊢G A≡A [F] [G] G-ext) PE.refl =
⊥-elim (U≢B W (whnfRed* (red D) Uₙ))
-- ℕ ≡ _
goodCases (ℕᵣ D) (Uᵣ ⊢Γ) A≡B with whnfRed* A≡B Uₙ
... | ()
goodCases (ℕᵣ _) (Emptyᵣ D') D with whrDet* (D , ℕₙ) (red D' , Emptyₙ)
... | ()
goodCases (ℕᵣ x) (Unitᵣ D') D with whrDet* (D , ℕₙ) (red D' , Unitₙ)
... | ()
goodCases (ℕᵣ D) (ne′ K D₁ neK K≡K) A≡B =
⊥-elim (ℕ≢ne neK (whrDet* (A≡B , ℕₙ) (red D₁ , ne neK)))
goodCases (ℕᵣ D) (Bᵣ′ W F G D₁ ⊢F ⊢G A≡A [F] [G] G-ext) A≡B =
⊥-elim (ℕ≢B W (whrDet* (A≡B , ℕₙ) (red D₁ , ⟦ W ⟧ₙ)))
-- Empty ≢ _
goodCases (Emptyᵣ D) (Uᵣ ⊢Γ) A≡B with whnfRed* A≡B Uₙ
... | ()
goodCases (Emptyᵣ _) (Unitᵣ D') D with whrDet* (red D' , Unitₙ) (D , Emptyₙ)
... | ()
goodCases (Emptyᵣ _) (ℕᵣ D') D with whrDet* (red D' , ℕₙ) (D , Emptyₙ)
... | ()
goodCases (Emptyᵣ D) (ne′ K D₁ neK K≡K) A≡B =
⊥-elim (Empty≢ne neK (whrDet* (A≡B , Emptyₙ) (red D₁ , ne neK)))
goodCases (Emptyᵣ D) (Bᵣ′ W F G D₁ ⊢F ⊢G A≡A [F] [G] G-ext) A≡B =
⊥-elim (Empty≢B W (whrDet* (A≡B , Emptyₙ) (red D₁ , ⟦ W ⟧ₙ)))
-- Unit ≡ _
goodCases (Unitᵣ _) (Uᵣ x₁) A≡B with whnfRed* A≡B Uₙ
... | ()
goodCases (Unitᵣ _) (Emptyᵣ D') D with whrDet* (red D' , Emptyₙ) (D , Unitₙ)
... | ()
goodCases (Unitᵣ _) (ℕᵣ D') D with whrDet* (red D' , ℕₙ) (D , Unitₙ)
... | ()
goodCases (Unitᵣ D) (ne′ K D₁ neK K≡K) A≡B =
⊥-elim (Unit≢ne neK (whrDet* (A≡B , Unitₙ) (red D₁ , ne neK)))
goodCases (Unitᵣ D) (Bᵣ′ W F G D₁ ⊢F ⊢G A≡A [F] [G] G-ext) A≡B =
⊥-elim (Unit≢B W (whrDet* (A≡B , Unitₙ) (red D₁ , ⟦ W ⟧ₙ)))
-- ne ≡ _
goodCases (ne′ K D neK K≡K) (Uᵣ ⊢Γ) (ne₌ M D′ neM K≡M) =
⊥-elim (U≢ne neM (whnfRed* (red D′) Uₙ))
goodCases (ne′ K D neK K≡K) (ℕᵣ D₁) (ne₌ M D′ neM K≡M) =
⊥-elim (ℕ≢ne neM (whrDet* (red D₁ , ℕₙ) (red D′ , ne neM)))
goodCases (ne′ K D neK K≡K) (Emptyᵣ D₁) (ne₌ M D′ neM K≡M) =
⊥-elim (Empty≢ne neM (whrDet* (red D₁ , Emptyₙ) (red D′ , ne neM)))
goodCases (ne′ K D neK K≡K) (Unitᵣ D₁) (ne₌ M D′ neM K≡M) =
⊥-elim (Unit≢ne neM (whrDet* (red D₁ , Unitₙ) (red D′ , ne neM)))
goodCases (ne′ K D neK K≡K) (Bᵣ′ W F G D₁ ⊢F ⊢G A≡A [F] [G] G-ext) (ne₌ M D′ neM K≡M) =
⊥-elim (B≢ne W neM (whrDet* (red D₁ , ⟦ W ⟧ₙ) (red D′ , ne neM)))
-- Π ≡ _
goodCases (Bᵣ′ BΠ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Uᵣ ⊢Γ)
(B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) with whnfRed* D′ Uₙ
... | ()
goodCases (Bᵣ′ BΠ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (ℕᵣ D₁)
(B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) with whrDet* (red D₁ , ℕₙ) (D′ , Πₙ)
... | ()
goodCases (Bᵣ′ BΠ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Emptyᵣ D₁)
(B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) with whrDet* (red D₁ , Emptyₙ) (D′ , Πₙ)
... | ()
goodCases (Bᵣ′ BΠ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Unitᵣ D₁)
(B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) with whrDet* (red D₁ , Unitₙ) (D′ , Πₙ)
... | ()
goodCases (Bᵣ′ BΠ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Bᵣ′ BΣ F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext′)
(B₌ F′₁ G′₁ D′₁ A≡B [F≡F′] [G≡G′]) with whrDet* (red D′ , Σₙ) (D′₁ , Πₙ)
... | ()
goodCases (Bᵣ′ BΠ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (ne′ K D₁ neK K≡K)
(B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
⊥-elim (B≢ne BΠ neK (whrDet* (D′ , Πₙ) (red D₁ , ne neK)))
-- Σ ≡ _
goodCases (Bᵣ′ BΣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Uᵣ ⊢Γ)
(B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) with whnfRed* D′ Uₙ
... | ()
goodCases (Bᵣ′ BΣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (ℕᵣ D₁)
(B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) with whrDet* (red D₁ , ℕₙ) (D′ , Σₙ)
... | ()
goodCases (Bᵣ′ BΣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Emptyᵣ D₁)
(B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) with whrDet* (red D₁ , Emptyₙ) (D′ , Σₙ)
... | ()
goodCases (Bᵣ′ BΣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Unitᵣ D₁)
(B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) with whrDet* (red D₁ , Unitₙ) (D′ , Σₙ)
... | ()
goodCases (Bᵣ′ BΣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Bᵣ′ BΠ F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext′)
(B₌ F′₁ G′₁ D′₁ A≡B [F≡F′] [G≡G′]) with whrDet* (red D′ , Πₙ) (D′₁ , Σₙ)
... | ()
goodCases (Bᵣ′ BΣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (ne′ K D₁ neK K≡K)
(B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
⊥-elim (B≢ne BΣ neK (whrDet* (D′ , Σₙ) (red D₁ , ne neK)))
-- Construct an shape view between two derivations of the same type
goodCasesRefl : ∀ {l l′ Γ A} ([A] : Γ ⊩⟨ l ⟩ A) ([A′] : Γ ⊩⟨ l′ ⟩ A)
→ ShapeView Γ l l′ A A [A] [A′]
goodCasesRefl [A] [A′] = goodCases [A] [A′] (reflEq [A])
-- A view for constructor equality between three types
data ShapeView₃ Γ : ∀ l l′ l″ A B C
(p : Γ ⊩⟨ l ⟩ A)
(q : Γ ⊩⟨ l′ ⟩ B)
(r : Γ ⊩⟨ l″ ⟩ C) → Set where
Uᵥ : ∀ {l l′ l″} UA UB UC → ShapeView₃ Γ l l′ l″ U U U (Uᵣ UA) (Uᵣ UB) (Uᵣ UC)
ℕᵥ : ∀ {A B C l l′ l″} ℕA ℕB ℕC
→ ShapeView₃ Γ l l′ l″ A B C (ℕᵣ ℕA) (ℕᵣ ℕB) (ℕᵣ ℕC)
Emptyᵥ : ∀ {A B C l l′ l″} EmptyA EmptyB EmptyC
→ ShapeView₃ Γ l l′ l″ A B C (Emptyᵣ EmptyA) (Emptyᵣ EmptyB) (Emptyᵣ EmptyC)
Unitᵥ : ∀ {A B C l l′ l″} UnitA UnitB UnitC
→ ShapeView₃ Γ l l′ l″ A B C (Unitᵣ UnitA) (Unitᵣ UnitB) (Unitᵣ UnitC)
ne : ∀ {A B C l l′ l″} neA neB neC
→ ShapeView₃ Γ l l′ l″ A B C (ne neA) (ne neB) (ne neC)
Bᵥ : ∀ {A B C l l′ l″} W BA BB BC
→ ShapeView₃ Γ l l′ l″ A B C (Bᵣ W BA) (Bᵣ W BB) (Bᵣ W BC)
emb⁰¹¹ : ∀ {A B C l l′ p q r}
→ ShapeView₃ Γ ⁰ l l′ A B C p q r
→ ShapeView₃ Γ ¹ l l′ A B C (emb 0<1 p) q r
emb¹⁰¹ : ∀ {A B C l l′ p q r}
→ ShapeView₃ Γ l ⁰ l′ A B C p q r
→ ShapeView₃ Γ l ¹ l′ A B C p (emb 0<1 q) r
emb¹¹⁰ : ∀ {A B C l l′ p q r}
→ ShapeView₃ Γ l l′ ⁰ A B C p q r
→ ShapeView₃ Γ l l′ ¹ A B C p q (emb 0<1 r)
-- Combines two two-way views into a three-way view
combine : ∀ {Γ l l′ l″ l‴ A B C [A] [B] [B]′ [C]}
→ ShapeView Γ l l′ A B [A] [B]
→ ShapeView Γ l″ l‴ B C [B]′ [C]
→ ShapeView₃ Γ l l′ l‴ A B C [A] [B] [C]
-- Diagonal cases
combine (Uᵥ UA₁ UB₁) (Uᵥ UA UB) = Uᵥ UA₁ UB₁ UB
combine (ℕᵥ ℕA₁ ℕB₁) (ℕᵥ ℕA ℕB) = ℕᵥ ℕA₁ ℕB₁ ℕB
combine (Emptyᵥ EmptyA₁ EmptyB₁) (Emptyᵥ EmptyA EmptyB) = Emptyᵥ EmptyA₁ EmptyB₁ EmptyB
combine (Unitᵥ UnitA₁ UnitB₁) (Unitᵥ UnitA UnitB) = Unitᵥ UnitA₁ UnitB₁ UnitB
combine (ne neA₁ neB₁) (ne neA neB) = ne neA₁ neB₁ neB
combine (Bᵥ BΠ ΠA₁ ΠB₁) (Bᵥ BΠ ΠA ΠB) = Bᵥ BΠ ΠA₁ ΠB₁ ΠB
combine (Bᵥ BΣ ΣA₁ ΣB₁) (Bᵥ BΣ ΣA ΣB) = Bᵥ BΣ ΣA₁ ΣB₁ ΣB
combine (emb⁰¹ [AB]) [BC] = emb⁰¹¹ (combine [AB] [BC])
combine (emb¹⁰ [AB]) [BC] = emb¹⁰¹ (combine [AB] [BC])
combine [AB] (emb⁰¹ [BC]) = combine [AB] [BC]
combine [AB] (emb¹⁰ [BC]) = emb¹¹⁰ (combine [AB] [BC])
-- Refutable cases
-- U ≡ _
combine (Uᵥ UA UB) (ℕᵥ ℕA ℕB) with whnfRed* (red ℕA) Uₙ
... | ()
combine (Uᵥ UA UB) (Emptyᵥ EmptyA EmptyB) with whnfRed* (red EmptyA) Uₙ
... | ()
combine (Uᵥ UA UB) (Unitᵥ UnA UnB) with whnfRed* (red UnA) Uₙ
... | ()
combine (Uᵥ UA UB) (ne (ne K D neK K≡K) neB) =
⊥-elim (U≢ne neK (whnfRed* (red D) Uₙ))
combine (Uᵥ UA UB) (Bᵥ W (Bᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) BB) =
⊥-elim (U≢B W (whnfRed* (red D) Uₙ))
-- ℕ ≡ _
combine (ℕᵥ ℕA ℕB) (Uᵥ UA UB) with whnfRed* (red ℕB) Uₙ
... | ()
combine (ℕᵥ ℕA ℕB) (Emptyᵥ EmptyA EmptyB) with whrDet* (red ℕB , ℕₙ) (red EmptyA , Emptyₙ)
... | ()
combine (ℕᵥ ℕA ℕB) (Unitᵥ UnA UnB) with whrDet* (red ℕB , ℕₙ) (red UnA , Unitₙ)
... | ()
combine (ℕᵥ ℕA ℕB) (ne (ne K D neK K≡K) neB) =
⊥-elim (ℕ≢ne neK (whrDet* (red ℕB , ℕₙ) (red D , ne neK)))
combine (ℕᵥ ℕA ℕB) (Bᵥ W (Bᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) BB) =
⊥-elim (ℕ≢B W (whrDet* (red ℕB , ℕₙ) (red D , ⟦ W ⟧ₙ)))
-- Empty ≡ _
combine (Emptyᵥ EmptyA EmptyB) (Uᵥ UA UB) with whnfRed* (red EmptyB) Uₙ
... | ()
combine (Emptyᵥ EmptyA EmptyB) (ℕᵥ ℕA ℕB) with whrDet* (red EmptyB , Emptyₙ) (red ℕA , ℕₙ)
... | ()
combine (Emptyᵥ EmptyA EmptyB) (Unitᵥ UnA UnB) with whrDet* (red EmptyB , Emptyₙ) (red UnA , Unitₙ)
... | ()
combine (Emptyᵥ EmptyA EmptyB) (ne (ne K D neK K≡K) neB) =
⊥-elim (Empty≢ne neK (whrDet* (red EmptyB , Emptyₙ) (red D , ne neK)))
combine (Emptyᵥ EmptyA EmptyB) (Bᵥ W (Bᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) BB) =
⊥-elim (Empty≢B W (whrDet* (red EmptyB , Emptyₙ) (red D , ⟦ W ⟧ₙ)))
-- Unit ≡ _
combine (Unitᵥ UnitA UnitB) (Uᵥ UA UB) with whnfRed* (red UnitB) Uₙ
... | ()
combine (Unitᵥ UnitA UnitB) (ℕᵥ ℕA ℕB) with whrDet* (red UnitB , Unitₙ) (red ℕA , ℕₙ)
... | ()
combine (Unitᵥ UnitA UnitB) (Emptyᵥ EmptyA EmptyB) with whrDet* (red UnitB , Unitₙ) (red EmptyA , Emptyₙ)
... | ()
combine (Unitᵥ UnitA UnitB) (ne (ne K D neK K≡K) neB) =
⊥-elim (Unit≢ne neK (whrDet* (red UnitB , Unitₙ) (red D , ne neK)))
combine (Unitᵥ UnitA UnitB) (Bᵥ W (Bᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) BB) =
⊥-elim (Unit≢B W (whrDet* (red UnitB , Unitₙ) (red D , ⟦ W ⟧ₙ)))
-- ne ≡ _
combine (ne neA (ne K D neK K≡K)) (Uᵥ UA UB) =
⊥-elim (U≢ne neK (whnfRed* (red D) Uₙ))
combine (ne neA (ne K D neK K≡K)) (ℕᵥ ℕA ℕB) =
⊥-elim (ℕ≢ne neK (whrDet* (red ℕA , ℕₙ) (red D , ne neK)))
combine (ne neA (ne K D neK K≡K)) (Emptyᵥ EmptyA EmptyB) =
⊥-elim (Empty≢ne neK (whrDet* (red EmptyA , Emptyₙ) (red D , ne neK)))
combine (ne neA (ne K D neK K≡K)) (Unitᵥ UnA UnB) =
⊥-elim (Unit≢ne neK (whrDet* (red UnA , Unitₙ) (red D , ne neK)))
combine (ne neA (ne K D neK K≡K)) (Bᵥ W (Bᵣ F G D₁ ⊢F ⊢G A≡A [F] [G] G-ext) BB) =
⊥-elim (B≢ne W neK (whrDet* (red D₁ , ⟦ W ⟧ₙ) (red D , ne neK)))
-- Π/Σ ≡ _
combine (Bᵥ W BA (Bᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (Uᵥ UA UB) =
⊥-elim (U≢B W (whnfRed* (red D) Uₙ))
combine (Bᵥ W BA (Bᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (ℕᵥ ℕA ℕB) =
⊥-elim (ℕ≢B W (whrDet* (red ℕA , ℕₙ) (red D , ⟦ W ⟧ₙ)))
combine (Bᵥ W BA (Bᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (Emptyᵥ EmptyA EmptyB) =
⊥-elim (Empty≢B W (whrDet* (red EmptyA , Emptyₙ) (red D , ⟦ W ⟧ₙ)))
combine (Bᵥ W BA (Bᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (Unitᵥ UnitA UnitB) =
⊥-elim (Unit≢B W (whrDet* (red UnitA , Unitₙ) (red D , ⟦ W ⟧ₙ)))
combine (Bᵥ W BA (Bᵣ F G D₁ ⊢F ⊢G A≡A [F] [G] G-ext)) (ne (ne K D neK K≡K) neB) =
⊥-elim (B≢ne W neK (whrDet* (red D₁ , ⟦ W ⟧ₙ) (red D , ne neK)))
combine (Bᵥ BΠ ΠA (Bᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (Bᵥ BΣ (Bᵣ F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext′) ΣA)
with whrDet* (red D , Πₙ) (red D′ , Σₙ)
... | ()
combine (Bᵥ BΣ ΣA (Bᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (Bᵥ BΠ (Bᵣ F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext′) ΠA)
with whrDet* (red D , Σₙ) (red D′ , Πₙ)
... | ()
|
{
"alphanum_fraction": 0.528692907,
"avg_line_length": 42.5086580087,
"ext": "agda",
"hexsha": "a360e70f81bac7783c817df940b6a1dc9e17865d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Vtec234/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/ShapeView.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Vtec234/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/ShapeView.agda",
"max_line_length": 108,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Vtec234/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/ShapeView.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 11070,
"size": 19639
}
|
open import Prelude hiding (id; Bool; _∷_; [])
module Examples.PartialResolution where
data TC : Set where
tc-int : TC
tc-bool : TC
_tc≟_ : (a b : TC) → Dec (a ≡ b)
tc-int tc≟ tc-int = yes refl
tc-int tc≟ tc-bool = no (λ ())
tc-bool tc≟ tc-int = no (λ ())
tc-bool tc≟ tc-bool = yes refl
open import Implicits.Syntax
open import Implicits.WellTyped
open import Implicits.Substitutions
open import Implicits.Syntax.Type.Unification
open import Implicits.Resolution.Infinite.Algorithm
open import Data.Maybe
open import Data.List
open import Category.Monad.Partiality
Bool : ∀ {n} → Type n
Bool = simpl (tc tc-bool)
Int : ∀ {n} → Type n
Int = simpl (tc tc-int)
module Ex₁ where
Δ : ICtx zero
Δ = Bool ∷ Int ∷ []
-- resolves directly using a value from the implicit context
r = run_for_steps (resolve Δ Int) 10
p : isNow r ≡ true
p = refl
module Ex₂ where
Δ : ICtx zero
Δ = Bool ∷ (Bool ⇒ Int) ∷ []
-- resolves using implicit application
r = run_for_steps (resolve Δ Int) 10
p : r resolved? ≡ true
p = refl
module Ex₃ where
Δ : ICtx zero
Δ = Bool ∷ (∀' (Bool ⇒ (simpl (tvar zero)))) ∷ []
-- resolves using polymorphic appliation + implicit application
r = run_for_steps (resolve Δ Int) 10
p : r resolved? ≡ true
p = refl
module Ex₄ where
Δ : ICtx zero
Δ = Bool ∷ (∀' ((simpl (tvar zero)) ⇒ Int)) ∷ []
r = run_for_steps (resolve Δ Int) 10
-- Maybe surprisingly this fails.
-- But we should note that unification on the codomain of the rule does not fix the domain to a
-- concrete type, such that it's instantiation is left ambiguous.
-- Like Oliveira we reject those rules, because they lead to ambiguous terms.
p : r failed? ≡ true
p = refl
module Ex₅ where
-- The following context would not resolved Int in Oliveira's deterministic calculus.
-- Demonstratint that partial resolution is more powerful for terminating contexts.
Δ : ICtx zero
Δ = (Bool ⇒ Int) ∷ Int ∷ []
r = run_for_steps (resolve Δ Int) 10
p : r resolved? ≡ true
p = refl
module Ex₆ where
Δ : ICtx zero
Δ = Bool ∷ (∀' (Bool ⇒ (simpl (tvar zero)))) ∷ []
-- resolves rule types
r = run_for_steps (resolve Δ (Bool ⇒ Int)) 10
p : r resolved? ≡ true
p = refl
module Ex₇ where
Δ : ICtx zero
Δ = Bool ∷ (∀' (Bool ⇒ (simpl (tvar zero)))) ∷ []
q : Type zero
q = (∀' (Bool ⇒ (simpl (tvar zero))))
-- Resolves polymorphic types.
-- Note that it doesn't resolve to the rule in the context directly.
-- Instead, it will apply r-tabs and r-iabs, to obtain resolve Δ' ⊢ᵣ (∀' (tvar zero))
r = run_for_steps (resolve Δ q) 10
p : r resolved? ≡ true
p = refl
module Ex₈ where
Δ : ICtx zero
Δ = Bool ∷ (∀' ((simpl (tvar zero)) ⇒ (simpl (tvar zero)))) ∷ []
-- infinite derivation exists: not decidable
r = run_for_steps (resolve Δ Int) 10
p : r resolved? ≡ false
p = refl
¬p : r failed? ≡ false
¬p = refl
module Ex₉ where
Δ : ICtx zero
Δ = (∀' ((Int ⇒ simpl (tvar zero)) ⇒ ((simpl (tvar zero)) ⇒ Int))) ∷ (Int ⇒ Bool) ∷ []
r = run_for_steps (resolve Δ (Bool ⇒ Int)) 10
p : r resolved? ≡ false
p = refl
¬p : r failed? ≡ true
¬p = refl
-- Below p' demonstrates however that a derivation exists!
-- The algorithm doesn't find it because we left the ⊢unamb predicate from oliveira implicit.
-- at some point the algorithm has to match ((simpl (mvar zero) ⇒ Int)) with Int.
-- However, when we match the codomain Int with the goal Int (note the open mvar):
test : mgu {m = suc zero} {ν = zero} (to-meta Int) (tc tc-int) ≡ nothing
test = refl
-- Because mgu requires that all meta variables are instantiated by unification
-- and in this example (mvar zero) does not occur and thus can't be unified.
open import Implicits.Resolution.Infinite.Resolution
open import Coinduction
p' : Δ ⊢ᵣ (Bool ⇒ Int)
p' = r-iabs
(r-simp
(there (here refl))
(i-tabs
(simpl (tc tc-bool))
(i-iabs
(♯ (r-iabs (r-simp (there (here refl)) (i-simp (tc tc-bool)))))
(i-iabs (♯ (r-simp (here refl) (i-simp (tc tc-bool)))) (i-simp (tc tc-int)))
)
)
)
|
{
"alphanum_fraction": 0.6364515349,
"avg_line_length": 24.7724550898,
"ext": "agda",
"hexsha": "ba2623722cdb288ec77237c0845d6635e95df344",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Examples/PartialResolution.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Examples/PartialResolution.agda",
"max_line_length": 97,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Examples/PartialResolution.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 1337,
"size": 4137
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of operations on characters
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Char.Properties where
open import Data.Bool using (Bool)
open import Data.Char.Base
import Data.Nat.Properties as ℕₚ
open import Function
open import Relation.Nullary using (yes; no)
open import Relation.Nullary.Decidable using (map′; ⌊_⌋)
open import Relation.Binary using (Decidable; Setoid; DecSetoid; StrictTotalOrder)
open import Relation.Binary.PropositionalEquality.Core
import Relation.Binary.Construct.On as On
import Relation.Binary.PropositionalEquality as PropEq
------------------------------------------------------------------------
-- Primitive properties
open import Agda.Builtin.Char.Properties
renaming ( primCharToNatInjective to toNat-injective)
public
------------------------------------------------------------------------
-- Decidable equality
infix 4 _≟_
_≟_ : Decidable {A = Char} _≡_
x ≟ y = map′ (toNat-injective x y) (cong toNat)
$ toNat x ℕₚ.≟ toNat y
------------------------------------------------------------------------
-- Boolean equality test.
--
-- Why is the definition _==_ = primCharEquality not used? One reason
-- is that the present definition can sometimes improve type
-- inference, at least with the version of Agda that is current at the
-- time of writing: see unit-test below.
infix 4 _==_
_==_ : Char → Char → Bool
c₁ == c₂ = ⌊ c₁ ≟ c₂ ⌋
private
-- The following unit test does not type-check (at the time of
-- writing) if _==_ is replaced by primCharEquality.
data P : (Char → Bool) → Set where
p : (c : Char) → P (c ==_)
unit-test : P ('x' ==_)
unit-test = p _
------------------------------------------------------------------------
-- Structures
setoid : Setoid _ _
setoid = PropEq.setoid Char
decSetoid : DecSetoid _ _
decSetoid = PropEq.decSetoid _≟_
strictTotalOrder : StrictTotalOrder _ _ _
strictTotalOrder = On.strictTotalOrder ℕₚ.<-strictTotalOrder toNat
|
{
"alphanum_fraction": 0.5784037559,
"avg_line_length": 29.1780821918,
"ext": "agda",
"hexsha": "916bb092872b632d370e1b6293785caf582a1e8b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Char/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Char/Properties.agda",
"max_line_length": 82,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Char/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 494,
"size": 2130
}
|
-- This module is copied from Agda's standard library. It has been
-- renamed (original name is Size) to avoid name clash in case you
-- have the standard library installed.
------------------------------------------------------------------------
-- The Agda standard library
--
-- Sizes for Agda's sized types
------------------------------------------------------------------------
module Sized where
postulate
Size : Set
↑_ : Size → Size
∞ : Size
{-# BUILTIN SIZE Size #-}
{-# BUILTIN SIZESUC ↑_ #-}
{-# BUILTIN SIZEINF ∞ #-}
|
{
"alphanum_fraction": 0.481884058,
"avg_line_length": 26.2857142857,
"ext": "agda",
"hexsha": "93d4942e5bc3c881b0d55e4ae96acc7a10d5eb09",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "jstolarek/dep-typed-wbl-heaps",
"max_forks_repo_path": "src/Sized.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "jstolarek/dep-typed-wbl-heaps",
"max_issues_repo_path": "src/Sized.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "jstolarek/dep-typed-wbl-heaps",
"max_stars_repo_path": "src/Sized.agda",
"max_stars_repo_stars_event_max_datetime": "2018-05-02T21:48:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-02T21:48:43.000Z",
"num_tokens": 114,
"size": 552
}
|
{-# OPTIONS --safe #-}
module Cubical.HITs.Sn.Properties where
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.Path
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Univalence
open import Cubical.HITs.S1 renaming (_·_ to _*_)
open import Cubical.HITs.S2
open import Cubical.HITs.S3
open import Cubical.Data.Nat hiding (elim)
open import Cubical.Data.Sigma
open import Cubical.HITs.Sn.Base
open import Cubical.HITs.Susp renaming (toSusp to σ)
open import Cubical.HITs.Truncation
open import Cubical.Homotopy.Connected
open import Cubical.HITs.Join renaming (joinS¹S¹→S³ to joinS¹S¹→S3)
open import Cubical.Data.Bool
private
variable
ℓ : Level
open Iso
IsoSucSphereSusp : (n : ℕ) → Iso (S₊ (suc n)) (Susp (S₊ n))
IsoSucSphereSusp zero = S¹IsoSuspBool
IsoSucSphereSusp (suc n) = idIso
IsoSucSphereSusp∙ : (n : ℕ)
→ Iso.inv (IsoSucSphereSusp n) north ≡ ptSn (suc n)
IsoSucSphereSusp∙ zero = refl
IsoSucSphereSusp∙ (suc n) = refl
-- Elimination principles for spheres
sphereElim : (n : ℕ) {A : (S₊ (suc n)) → Type ℓ} → ((x : S₊ (suc n)) → isOfHLevel (suc n) (A x))
→ A (ptSn (suc n))
→ (x : S₊ (suc n)) → A x
sphereElim zero hlev pt = toPropElim hlev pt
sphereElim (suc n) hlev pt north = pt
sphereElim (suc n) {A = A} hlev pt south = subst A (merid (ptSn (suc n))) pt
sphereElim (suc n) {A = A} hlev pt (merid a i) =
sphereElim n {A = λ a → PathP (λ i → A (merid a i)) pt (subst A (merid (ptSn (suc n))) pt)}
(λ a → isOfHLevelPathP' (suc n) (hlev south) _ _)
(λ i → transp (λ j → A (merid (ptSn (suc n)) (i ∧ j))) (~ i) pt)
a i
sphereElim2 : ∀ {ℓ} (n : ℕ) {A : (S₊ (suc n)) → (S₊ (suc n)) → Type ℓ}
→ ((x y : S₊ (suc n)) → isOfHLevel (suc n) (A x y))
→ A (ptSn (suc n)) (ptSn (suc n))
→ (x y : S₊ (suc n)) → A x y
sphereElim2 n hlev pt = sphereElim n (λ _ → isOfHLevelΠ (suc n) λ _ → hlev _ _)
(sphereElim n (hlev _ ) pt)
private
compPath-lem : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : z ≡ y)
→ PathP (λ i → (p ∙ sym q) i ≡ y) p q
compPath-lem {y = y} p q i j =
hcomp (λ k → λ { (i = i0) → p j
; (i = i1) → q (~ k ∨ j)
; (j = i1) → y })
(p (j ∨ i))
sphereToPropElim : (n : ℕ) {A : (S₊ (suc n)) → Type ℓ} → ((x : S₊ (suc n)) → isProp (A x))
→ A (ptSn (suc n))
→ (x : S₊ (suc n)) → A x
sphereToPropElim zero = toPropElim
sphereToPropElim (suc n) hlev pt north = pt
sphereToPropElim (suc n) {A = A} hlev pt south = subst A (merid (ptSn (suc n))) pt
sphereToPropElim (suc n) {A = A} hlev pt (merid a i) =
isProp→PathP {B = λ i → A (merid a i)} (λ _ → hlev _) pt (subst A (merid (ptSn (suc n))) pt) i
-- Elimination rule for fibrations (x : Sⁿ) → (y : Sᵐ) → A x y of h-Level (n + m).
-- The following principle is just the special case of the "Wedge Connectivity Lemma"
-- for spheres (See Cubical.Homotopy.WedgeConnectivity or chapter 8.6 in the HoTT book).
-- We prove it directly here for three reasons:
-- (i) it should perform better
-- (ii) we get a slightly stronger statement for spheres: one of the homotopies will, by design, be refl
-- (iii) the fact that the two homotopies only differ by (composition with) the homotopy leftFunction(base) ≡ rightFunction(base)
-- is close to trivial
wedgeconFun : (n m : ℕ) {A : (S₊ (suc n)) → (S₊ (suc m)) → Type ℓ}
→ ((x : S₊ (suc n)) (y : S₊ (suc m)) → isOfHLevel ((suc n) + (suc m)) (A x y))
→ (f : (x : _) → A (ptSn (suc n)) x)
→ (g : (x : _) → A x (ptSn (suc m)))
→ (g (ptSn (suc n)) ≡ f (ptSn (suc m)))
→ (x : S₊ (suc n)) (y : S₊ (suc m)) → A x y
wedgeconLeft : (n m : ℕ) {A : (S₊ (suc n)) → (S₊ (suc m)) → Type ℓ}
→ (hLev : ((x : S₊ (suc n)) (y : S₊ (suc m)) → isOfHLevel ((suc n) + (suc m)) (A x y)))
→ (f : (x : _) → A (ptSn (suc n)) x)
→ (g : (x : _) → A x (ptSn (suc m)))
→ (hom : g (ptSn (suc n)) ≡ f (ptSn (suc m)))
→ (x : _) → wedgeconFun n m hLev f g hom (ptSn (suc n)) x ≡ f x
wedgeconRight : (n m : ℕ) {A : (S₊ (suc n)) → (S₊ (suc m)) → Type ℓ}
→ (hLev : ((x : S₊ (suc n)) (y : S₊ (suc m)) → isOfHLevel ((suc n) + (suc m)) (A x y)))
→ (f : (x : _) → A (ptSn (suc n)) x)
→ (g : (x : _) → A x (ptSn (suc m)))
→ (hom : g (ptSn (suc n)) ≡ f (ptSn (suc m)))
→ (x : _) → wedgeconFun n m hLev f g hom x (ptSn (suc m)) ≡ g x
wedgeconFun zero zero {A = A} hlev f g hom = F
where
helper : SquareP (λ i j → A (loop i) (loop j)) (cong f loop) (cong f loop)
(λ i → hcomp (λ k → λ { (i = i0) → hom k
; (i = i1) → hom k })
(g (loop i)))
λ i → hcomp (λ k → λ { (i = i0) → hom k
; (i = i1) → hom k })
(g (loop i))
helper = toPathP (isOfHLevelPathP' 1 (hlev _ _) _ _ _ _)
F : (x y : S¹) → A x y
F base y = f y
F (loop i) base = hcomp (λ k → λ { (i = i0) → hom k
; (i = i1) → hom k })
(g (loop i))
F (loop i) (loop j) = helper i j
wedgeconFun zero (suc m) {A = A} hlev f g hom = F₀
module _ where
transpLemma₀ : (x : S₊ (suc m)) → transport (λ i₁ → A base (merid x i₁)) (g base) ≡ f south
transpLemma₀ x = cong (transport (λ i₁ → A base (merid x i₁)))
hom
∙ (λ i → transp (λ j → A base (merid x (i ∨ j))) i
(f (merid x i)))
pathOverMerid₀ : (x : S₊ (suc m)) → PathP (λ i₁ → A base (merid x i₁))
(g base)
(transport (λ i₁ → A base (merid (ptSn (suc m)) i₁))
(g base))
pathOverMerid₀ x i = hcomp (λ k → λ { (i = i0) → g base
; (i = i1) → (transpLemma₀ x ∙ sym (transpLemma₀ (ptSn (suc m)))) k})
(transp (λ i₁ → A base (merid x (i₁ ∧ i))) (~ i)
(g base))
pathOverMeridId₀ : pathOverMerid₀ (ptSn (suc m)) ≡ λ i → transp (λ i₁ → A base (merid (ptSn (suc m)) (i₁ ∧ i))) (~ i)
(g base)
pathOverMeridId₀ =
(λ j i → hcomp (λ k → λ {(i = i0) → g base
; (i = i1) → rCancel (transpLemma₀ (ptSn (suc m))) j k})
(transp (λ i₁ → A base (merid (ptSn (suc m)) (i₁ ∧ i))) (~ i)
(g base)))
∙ λ j i → hfill (λ k → λ { (i = i0) → g base
; (i = i1) → transport (λ i₁ → A base (merid (ptSn (suc m)) i₁))
(g base)})
(inS (transp (λ i₁ → A base (merid (ptSn (suc m)) (i₁ ∧ i))) (~ i)
(g base))) (~ j)
indStep₀ : (x : _) (a : _) → PathP (λ i → A x (merid a i))
(g x)
(subst (λ y → A x y) (merid (ptSn (suc m)))
(g x))
indStep₀ = wedgeconFun zero m (λ _ _ → isOfHLevelPathP' (2 + m) (hlev _ _) _ _)
pathOverMerid₀
(λ a i → transp (λ i₁ → A a (merid (ptSn (suc m)) (i₁ ∧ i))) (~ i)
(g a))
(sym pathOverMeridId₀)
F₀ : (x : S¹) (y : Susp (S₊ (suc m))) → A x y
F₀ x north = g x
F₀ x south = subst (λ y → A x y) (merid (ptSn (suc m))) (g x)
F₀ x (merid a i) = indStep₀ x a i
wedgeconFun (suc n) m {A = A} hlev f g hom = F₁
module _ where
transpLemma₁ : (x : S₊ (suc n)) → transport (λ i₁ → A (merid x i₁) (ptSn (suc m))) (f (ptSn (suc m))) ≡ g south
transpLemma₁ x = cong (transport (λ i₁ → A (merid x i₁) (ptSn (suc m))))
(sym hom)
∙ (λ i → transp (λ j → A (merid x (i ∨ j)) (ptSn (suc m))) i
(g (merid x i)))
pathOverMerid₁ : (x : S₊ (suc n)) → PathP (λ i₁ → A (merid x i₁) (ptSn (suc m)))
(f (ptSn (suc m)))
(transport (λ i₁ → A (merid (ptSn (suc n)) i₁) (ptSn (suc m)))
(f (ptSn (suc m))))
pathOverMerid₁ x i = hcomp (λ k → λ { (i = i0) → f (ptSn (suc m))
; (i = i1) → (transpLemma₁ x ∙ sym (transpLemma₁ (ptSn (suc n)))) k })
(transp (λ i₁ → A (merid x (i₁ ∧ i)) (ptSn (suc m))) (~ i)
(f (ptSn (suc m))))
pathOverMeridId₁ : pathOverMerid₁ (ptSn (suc n)) ≡ λ i → transp (λ i₁ → A (merid (ptSn (suc n)) (i₁ ∧ i)) (ptSn (suc m))) (~ i)
(f (ptSn (suc m)))
pathOverMeridId₁ =
(λ j i → hcomp (λ k → λ { (i = i0) → f (ptSn (suc m))
; (i = i1) → rCancel (transpLemma₁ (ptSn (suc n))) j k })
(transp (λ i₁ → A (merid (ptSn (suc n)) (i₁ ∧ i)) (ptSn (suc m))) (~ i)
(f (ptSn (suc m)))))
∙ λ j i → hfill (λ k → λ { (i = i0) → f (ptSn (suc m))
; (i = i1) → transport (λ i₁ → A (merid (ptSn (suc n)) i₁) (ptSn (suc m)))
(f (ptSn (suc m))) })
(inS (transp (λ i₁ → A (merid (ptSn (suc n)) (i₁ ∧ i)) (ptSn (suc m))) (~ i)
(f (ptSn (suc m))))) (~ j)
indStep₁ : (a : _) (y : _) → PathP (λ i → A (merid a i) y)
(f y)
(subst (λ x → A x y) (merid (ptSn (suc n)))
(f y))
indStep₁ = wedgeconFun n m (λ _ _ → isOfHLevelPathP' (suc (n + suc m)) (hlev _ _) _ _)
(λ a i → transp (λ i₁ → A (merid (ptSn (suc n)) (i₁ ∧ i)) a) (~ i)
(f a))
pathOverMerid₁
pathOverMeridId₁
F₁ : (x : Susp (S₊ (suc n))) (y : S₊ (suc m)) → A x y
F₁ north y = f y
F₁ south y = subst (λ x → A x y) (merid (ptSn (suc n))) (f y)
F₁ (merid a i) y = indStep₁ a y i
wedgeconRight zero zero {A = A} hlev f g hom = right
where
right : (x : S¹) → _
right base = sym hom
right (loop i) j = hcomp (λ k → λ { (i = i0) → hom (~ j ∧ k)
; (i = i1) → hom (~ j ∧ k)
; (j = i1) → g (loop i) })
(g (loop i))
wedgeconRight zero (suc m) {A = A} hlev f g hom x = refl
wedgeconRight (suc n) m {A = A} hlev f g hom = right
where
lem : (x : _) → indStep₁ n m hlev f g hom x (ptSn (suc m)) ≡ _
lem = wedgeconRight n m (λ _ _ → isOfHLevelPathP' (suc (n + suc m)) (hlev _ _) _ _)
(λ a i → transp (λ i₁ → A (merid (ptSn (suc n)) (i₁ ∧ i)) a) (~ i)
(f a))
(pathOverMerid₁ n m hlev f g hom)
(pathOverMeridId₁ n m hlev f g hom)
right : (x : Susp (S₊ (suc n))) → _ ≡ g x
right north = sym hom
right south = cong (subst (λ x → A x (ptSn (suc m)))
(merid (ptSn (suc n))))
(sym hom)
∙ λ i → transp (λ j → A (merid (ptSn (suc n)) (i ∨ j)) (ptSn (suc m))) i
(g (merid (ptSn (suc n)) i))
right (merid a i) j =
hcomp (λ k → λ { (i = i0) → hom (~ j)
; (i = i1) → transpLemma₁ n m hlev f g hom (ptSn (suc n)) j
; (j = i0) → lem a (~ k) i
; (j = i1) → g (merid a i)})
(hcomp (λ k → λ { (i = i0) → hom (~ j)
; (i = i1) → compPath-lem (transpLemma₁ n m hlev f g hom a) (transpLemma₁ n m hlev f g hom (ptSn (suc n))) k j
; (j = i1) → g (merid a i)})
(hcomp (λ k → λ { (i = i0) → hom (~ j)
; (j = i0) → transp (λ i₂ → A (merid a (i₂ ∧ i)) (ptSn (suc m))) (~ i)
(f (ptSn (suc m)))
; (j = i1) → transp (λ j → A (merid a (i ∧ (j ∨ k))) (ptSn (suc m))) (k ∨ ~ i)
(g (merid a (i ∧ k))) })
(transp (λ i₂ → A (merid a (i₂ ∧ i)) (ptSn (suc m))) (~ i)
(hom (~ j)))))
wedgeconLeft zero zero {A = A} hlev f g hom x = refl
wedgeconLeft zero (suc m) {A = A} hlev f g hom = help
where
left₁ : (x : _) → indStep₀ m hlev f g hom base x ≡ _
left₁ = wedgeconLeft zero m (λ _ _ → isOfHLevelPathP' (2 + m) (hlev _ _) _ _)
(pathOverMerid₀ m hlev f g hom)
(λ a i → transp (λ i₁ → A a (merid (ptSn (suc m)) (i₁ ∧ i))) (~ i)
(g a))
(sym (pathOverMeridId₀ m hlev f g hom))
help : (x : S₊ (suc (suc m))) → _
help north = hom
help south = cong (subst (A base) (merid (ptSn (suc m)))) hom
∙ λ i → transp (λ j → A base (merid (ptSn (suc m)) (i ∨ j))) i
(f (merid (ptSn (suc m)) i))
help (merid a i) j =
hcomp (λ k → λ { (i = i0) → hom j
; (i = i1) → transpLemma₀ m hlev f g hom (ptSn (suc m)) j
; (j = i0) → left₁ a (~ k) i
; (j = i1) → f (merid a i)})
(hcomp (λ k → λ { (i = i0) → hom j
; (i = i1) → compPath-lem (transpLemma₀ m hlev f g hom a)
(transpLemma₀ m hlev f g hom (ptSn (suc m))) k j
; (j = i1) → f (merid a i)})
(hcomp (λ k → λ { (i = i0) → hom j
; (j = i0) → transp (λ i₂ → A base (merid a (i₂ ∧ i))) (~ i)
(g base)
; (j = i1) → transp (λ j → A base (merid a (i ∧ (j ∨ k)))) (k ∨ ~ i)
(f (merid a (i ∧ k)))})
(transp (λ i₂ → A base (merid a (i₂ ∧ i))) (~ i)
(hom j))))
wedgeconLeft (suc n) m {A = A} hlev f g hom _ = refl
---------- Connectedness -----------
sphereConnected : (n : HLevel) → isConnected (suc n) (S₊ n)
sphereConnected n = ∣ ptSn n ∣ , elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _)
(λ a → sym (spoke ∣_∣ (ptSn n)) ∙ spoke ∣_∣ a)
-- The fact that path spaces of Sn are connected can be proved directly for Sⁿ.
-- (Unfortunately, this does not work for higher paths)
pathIdTruncSⁿ : (n : ℕ) (x y : S₊ (suc n))
→ Path (hLevelTrunc (2 + n) (S₊ (suc n))) ∣ x ∣ ∣ y ∣
→ hLevelTrunc (suc n) (x ≡ y)
pathIdTruncSⁿ n = sphereElim n (λ _ → isOfHLevelΠ (suc n) λ _ → isOfHLevelΠ (suc n) λ _ → isOfHLevelTrunc (suc n))
(sphereElim n (λ _ → isOfHLevelΠ (suc n) λ _ → isOfHLevelTrunc (suc n))
λ _ → ∣ refl ∣)
pathIdTruncSⁿ⁻ : (n : ℕ) (x y : S₊ (suc n))
→ hLevelTrunc (suc n) (x ≡ y)
→ Path (hLevelTrunc (2 + n) (S₊ (suc n))) ∣ x ∣ ∣ y ∣
pathIdTruncSⁿ⁻ n x y = rec (isOfHLevelTrunc (2 + n) _ _)
(J (λ y _ → Path (hLevelTrunc (2 + n) (S₊ (suc n))) ∣ x ∣ ∣ y ∣) refl)
pathIdTruncSⁿretract : (n : ℕ) (x y : S₊ (suc n)) → (p : hLevelTrunc (suc n) (x ≡ y)) → pathIdTruncSⁿ n x y (pathIdTruncSⁿ⁻ n x y p) ≡ p
pathIdTruncSⁿretract n =
sphereElim n (λ _ → isOfHLevelΠ (suc n) λ _ → isOfHLevelΠ (suc n) λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _)
λ y → elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _)
(J (λ y p → pathIdTruncSⁿ n (ptSn (suc n)) y (pathIdTruncSⁿ⁻ n (ptSn (suc n)) y ∣ p ∣) ≡ ∣ p ∣)
(cong (pathIdTruncSⁿ n (ptSn (suc n)) (ptSn (suc n))) (transportRefl refl) ∙ pm-help n))
where
pm-help : (n : ℕ) → pathIdTruncSⁿ n (ptSn (suc n)) (ptSn (suc n)) refl ≡ ∣ refl ∣
pm-help zero = refl
pm-help (suc n) = refl
isConnectedPathSⁿ : (n : ℕ) (x y : S₊ (suc n)) → isConnected (suc n) (x ≡ y)
isConnectedPathSⁿ n x y =
isContrRetract
(pathIdTruncSⁿ⁻ n x y)
(pathIdTruncSⁿ n x y)
(pathIdTruncSⁿretract n x y)
((isContr→isProp (sphereConnected (suc n)) ∣ x ∣ ∣ y ∣)
, isProp→isSet (isContr→isProp (sphereConnected (suc n))) _ _ _)
-- Some lemmas on the H space structure on S¹
rUnitS¹ : (x : S¹) → x * base ≡ x
rUnitS¹ base = refl
rUnitS¹ (loop i₁) = refl
commS¹ : (a x : S¹) → a * x ≡ x * a
commS¹ = wedgeconFun _ _ (λ _ _ → isGroupoidS¹ _ _)
(sym ∘ rUnitS¹)
rUnitS¹
refl
assocS¹ : (x y z : S¹) → x * (y * z) ≡ (x * y) * z
assocS¹ = wedgeconFun _ _ (λ _ _ → isSetΠ λ _ → isGroupoidS¹ _ _)
(λ _ _ → refl)
(λ x z i → (rUnitS¹ x (~ i)) * z)
refl
invLooperDistr : (x y : S¹) → invLooper (x * y) ≡ invLooper x * invLooper y
invLooperDistr =
wedgeconFun 0 0 (λ _ _ → isGroupoidS¹ _ _) (λ _ → refl)
(λ x → cong invLooper (rUnitS¹ x) ∙ sym (rUnitS¹ (invLooper x)))
(sym (rUnit refl))
SuspS¹-hom : (a x : S¹)
→ Path (Path (hLevelTrunc 4 (S₊ 2)) _ _)
(cong ∣_∣ₕ (σ (S₊∙ 1) (a * x)))
(cong ∣_∣ₕ (σ (S₊∙ 1) a)
∙ (cong ∣_∣ₕ (σ (S₊∙ 1) x)))
SuspS¹-hom = wedgeconFun _ _ (λ _ _ → isOfHLevelTrunc 4 _ _ _ _)
(λ x → lUnit _
∙ cong (_∙ cong ∣_∣ₕ (σ (S₊∙ 1) x))
(cong (cong ∣_∣ₕ) (sym (rCancel (merid base)))))
(λ x → (λ i → cong ∣_∣ₕ (σ (S₊∙ 1) (rUnitS¹ x i)))
∙∙ rUnit _
∙∙ cong (cong ∣_∣ₕ (σ (S₊∙ 1) x) ∙_)
(cong (cong ∣_∣ₕ) (sym (rCancel (merid base)))))
(sym (l (cong ∣_∣ₕ (σ (S₊∙ 1) base))
(cong (cong ∣_∣ₕ) (sym (rCancel (merid base))))))
where
l : ∀ {ℓ} {A : Type ℓ} {x : A} (p : x ≡ x) (P : refl ≡ p)
→ lUnit p ∙ cong (_∙ p) P ≡ rUnit p ∙ cong (p ∙_) P
l p = J (λ p P → lUnit p ∙ cong (_∙ p) P ≡ rUnit p ∙ cong (p ∙_) P) refl
rCancelS¹ : (x : S¹) → ptSn 1 ≡ x * (invLooper x)
rCancelS¹ base = refl
rCancelS¹ (loop i) j =
hcomp (λ r → λ {(i = i0) → base ; (i = i1) → base ; (j = i0) → base})
base
SuspS¹-inv : (x : S¹) → Path (Path (hLevelTrunc 4 (S₊ 2)) _ _)
(cong ∣_∣ₕ (σ (S₊∙ 1) (invLooper x)))
(cong ∣_∣ₕ (sym (σ (S₊∙ 1) x)))
SuspS¹-inv x = (lUnit _
∙∙ cong (_∙ cong ∣_∣ₕ (σ (S₊∙ 1) (invLooper x)))
(sym (lCancel (cong ∣_∣ₕ (σ (S₊∙ 1) x))))
∙∙ sym (assoc _ _ _))
∙∙ cong (sym (cong ∣_∣ₕ (σ (S₊∙ 1) x)) ∙_) lem
∙∙ (assoc _ _ _
∙∙ cong (_∙ (cong ∣_∣ₕ (sym (σ (S₊∙ 1) x))))
(lCancel (cong ∣_∣ₕ (σ (S₊∙ 1) x)))
∙∙ sym (lUnit _))
where
lem : cong ∣_∣ₕ (σ (S₊∙ 1) x)
∙ cong ∣_∣ₕ (σ (S₊∙ 1) (invLooper x))
≡ cong ∣_∣ₕ (σ (S₊∙ 1) x)
∙ cong ∣_∣ₕ (sym (σ (S₊∙ 1) x))
lem = sym (SuspS¹-hom x (invLooper x))
∙ ((λ i → cong ∣_∣ₕ (σ (S₊∙ 1) (rCancelS¹ x (~ i))))
∙ cong (cong ∣_∣ₕ) (rCancel (merid base))) ∙ sym (rCancel _)
-------------------- join Sⁿ Sᵐ ≃ Sⁿ⁺¹⁺ᵐ -------------------------
{-
This section contains a proof that join Sⁿ Sᵐ ≃ Sⁿ⁺ᵐ⁺¹. This is easy using
various properties proved in HITs.Join. However, we would like the map
join Sⁿ Sᵐ → Sⁿ⁺ᵐ⁺¹
to be nice, in particular when n = m = 1. Therefore, we put in some extra work into
the equivalence.
-}
{- We begin with join S¹ S¹ ≃ S³. The iso is induced by: -}
S¹×S¹→S² : S¹ → S¹ → S₊ 2
S¹×S¹→S² base y = north
S¹×S¹→S² (loop i) base = north
S¹×S¹→S² (loop i) (loop j) =
(sym (rCancel (merid base))
∙∙ (λ i → merid (loop i) ∙ sym (merid base))
∙∙ rCancel (merid base)) i j
joinS¹S¹→S³ : join S¹ S¹ → S₊ 3
joinS¹S¹→S³ (inl x) = north
joinS¹S¹→S³ (inr x) = south
joinS¹S¹→S³ (push a b i) = merid (S¹×S¹→S² a b) i
{- Proving that this is an equivalence directly is painful,
so we simply prove that it is equal to the old definition of
the equivalence join S¹ S¹ ≃ S³ ≃ S₊ 3
To this end, we start by rephrasing the map -}
private
3cell : (r i j k : I) → S₊ 3
3cell r i j k =
hfill (λ r → λ {(i = i0) → merid (merid base j) (k ∧ ~ r)
; (i = i1) → merid (merid base j) (k ∧ ~ r)
; (j = i0) → merid north (k ∧ ~ r)
; (j = i1) → merid south (k ∧ ~ r)
; (k = i0) → north
; (k = i1) → merid (merid base j) (~ r)})
(inS (merid (merid (loop i) j) k))
r
joinS¹S¹→S³' : join S¹ S¹ → S₊ 3
joinS¹S¹→S³' (inl x) = north
joinS¹S¹→S³' (inr x) = north
joinS¹S¹→S³' (push base b i) = north
joinS¹S¹→S³' (push (loop i₁) base i) = north
joinS¹S¹→S³' (push (loop i₁) (loop i₂) i) = 3cell i1 i₁ i₂ i
{- These two maps are equal -}
joinS¹S¹→S³'≡joinS¹S¹→S³' : (x : _) → joinS¹S¹→S³ x ≡ joinS¹S¹→S³' x
joinS¹S¹→S³'≡joinS¹S¹→S³' (inl base) = refl
joinS¹S¹→S³'≡joinS¹S¹→S³' (inl (loop i)) = refl
joinS¹S¹→S³'≡joinS¹S¹→S³' (inr base) = sym (merid north)
joinS¹S¹→S³'≡joinS¹S¹→S³' (inr (loop i)) = sym (merid north)
joinS¹S¹→S³'≡joinS¹S¹→S³' (push base base i) k = merid north (~ k ∧ i)
joinS¹S¹→S³'≡joinS¹S¹→S³' (push base (loop i₁) i) k = merid north (~ k ∧ i)
joinS¹S¹→S³'≡joinS¹S¹→S³' (push (loop i₁) base i) k = (merid north) (~ k ∧ i)
joinS¹S¹→S³'≡joinS¹S¹→S³' (push (loop i) (loop j) k) l =
hcomp (λ r → λ { (i = i0) → merid (sym (rCancel (merid base)) (~ r) j)
(~ l ∧ k)
; (i = i1) → merid (sym (rCancel (merid base)) (~ r) j)
(~ l ∧ k)
; (j = i0) → merid north (~ l ∧ k)
; (j = i1) → merid north (~ l ∧ k)
; (k = i0) → north
; (k = i1) → merid (sym (rCancel (merid base)) (~ r) j) (~ l)
; (l = i0) → merid (doubleCompPath-filler
(sym (rCancel (merid base)))
(cong (σ (S₊∙ 1)) loop)
(rCancel (merid base)) r i j) k
; (l = i1) → 3cell i1 i j k})
(hcomp (λ r → λ {(i = i0) → merid (cp-fill base r j) (k ∧ ~ l)
; (i = i1) → merid (cp-fill base r j) (k ∧ ~ l)
; (j = i0) → merid north (~ l ∧ k)
; (j = i1) → merid (merid base (~ r)) (~ l ∧ k)
; (k = i0) → north
; (k = i1) → merid (cp-fill base r j) (~ l)
; (l = i0) → merid (cp-fill (loop i) r j) k
; (l = i1) → 3cell i1 i j k})
(hcomp (λ r → λ {(i = i0) → merid (merid base j) (k ∧ (~ r ∨ ~ l))
; (i = i1) → merid (merid base j) (k ∧ (~ r ∨ ~ l))
; (j = i0) → merid north (k ∧ (~ l ∨ ~ r))
; (j = i1) → merid south (k ∧ (~ l ∨ ~ r))
; (k = i0) → north
; (k = i1) → merid (merid base j) (~ r ∨ ~ l)
; (l = i0) → merid (merid (loop i) j) k
; (l = i1) → 3cell r i j k})
(merid (merid (loop i) j) k)))
where
cp-fill : (a : S¹) → _
cp-fill a = compPath-filler (merid a) (sym (merid base))
{- joinS¹S¹→S³' is equal to the original
equivalence (modulo a flipping of interval variables) -}
joinS¹S¹→S³'Id : (x : join S¹ S¹)
→ joinS¹S¹→S³' x ≡ (Iso.fun IsoS³S3 ∘ flip₀₂S³ ∘ joinS¹S¹→S3) x
joinS¹S¹→S³'Id (inl x) = refl
joinS¹S¹→S³'Id (inr x) = refl
joinS¹S¹→S³'Id (push base base i) = refl
joinS¹S¹→S³'Id (push base (loop i₁) i) = refl
joinS¹S¹→S³'Id (push (loop i₁) base i) = refl
joinS¹S¹→S³'Id (push (loop i) (loop j) k) l =
hcomp (λ r → λ {(i = i0) → merid (merid base (j ∧ ~ l)) (~ r ∧ k)
; (i = i1) → merid (merid base (j ∧ ~ l)) (~ r ∧ k)
; (j = i0) → merid north (k ∧ ~ r)
; (j = i1) → merid (merid base (~ l)) (~ r ∧ k)
; (k = i0) → north
; (k = i1) → merid (merid base (j ∧ ~ l)) (~ r)
; (l = i0) → 3cell r i j k
; (l = i1) → Iso.fun (IsoType→IsoSusp S²IsoSuspS¹)
(meridian-contraction-2 k j i r)})
(merid (S²Cube i j l) k)
where
S²Cube : Cube {A = S₊ 2} (λ j l → merid base (j ∧ ~ l))
(λ j l → merid base (j ∧ ~ l))
(λ i l → north)
(λ i l → merid base (~ l))
(λ i j → merid (loop i) j)
λ i j → fun S²IsoSuspS¹ (surf j i)
S²Cube i j l =
hcomp (λ r → λ {(i = i0) → merid base (j ∧ (~ l ∨ ~ r))
; (i = i1) → merid base (j ∧ (~ l ∨ ~ r))
; (j = i0) → north
; (j = i1) → merid base (~ l ∨ ~ r)
; (l = i0) → merid (loop i) j
; (l = i1) → meridian-contraction j i r})
(merid (loop i) j)
{-So, finally our map joinS¹S¹→S³ is an iso. We state its inverse explicitly. -}
Iso-joinS¹S¹-S³ : Iso (join S¹ S¹) (S₊ 3)
fun Iso-joinS¹S¹-S³ = joinS¹S¹→S³
inv Iso-joinS¹S¹-S³ = S³→joinS¹S¹ ∘ flip₀₂S³ ∘ Iso.inv IsoS³S3
rightInv Iso-joinS¹S¹-S³ x =
joinS¹S¹→S³'≡joinS¹S¹→S³'
((S³→joinS¹S¹ ∘ flip₀₂S³ ∘ Iso.inv IsoS³S3) x)
∙∙ joinS¹S¹→S³'Id ((S³→joinS¹S¹ ∘ flip₀₂S³ ∘ Iso.inv IsoS³S3) x)
∙∙ Iso.leftInv (compIso (invIso IsoS³S3)
(compIso flip₀₂S³Iso (S³IsojoinS¹S¹))) x
leftInv Iso-joinS¹S¹-S³ x =
cong (S³→joinS¹S¹ ∘ flip₀₂S³ ∘ inv IsoS³S3)
(joinS¹S¹→S³'≡joinS¹S¹→S³' x ∙ joinS¹S¹→S³'Id x)
∙ Iso.rightInv (compIso (invIso IsoS³S3) (compIso flip₀₂S³Iso (S³IsojoinS¹S¹))) x
{- We now get the full iso Sⁿ * Sᵐ ≃ Sⁿ⁺ᵐ⁺¹ -}
IsoSphereJoin : (n m : ℕ)
→ Iso (join (S₊ n) (S₊ m)) (S₊ (suc (n + m)))
IsoSphereJoin zero zero = compIso (invIso Susp-iso-joinBool) (invIso S¹IsoSuspBool)
IsoSphereJoin zero (suc m) = compIso join-comm (invIso Susp-iso-joinBool)
IsoSphereJoin (suc zero) zero = (invIso Susp-iso-joinBool)
IsoSphereJoin (suc zero) (suc zero) = Iso-joinS¹S¹-S³
IsoSphereJoin (suc zero) (suc (suc m)) =
compIso join-comm
(compIso (compIso (Iso-joinSusp-suspJoin {A = S₊∙ (suc m)} {B = S₊∙ (suc zero)})
(congSuspIso join-comm))
(congSuspIso (IsoSphereJoin (suc zero) (suc m))))
IsoSphereJoin (suc (suc n)) m =
compIso (Iso-joinSusp-suspJoin {A = S₊∙ (suc n)} {B = S₊∙ m}) (congSuspIso (IsoSphereJoin (suc n) m))
{- Pointedness holds by refl.
This is due to the explicit definition of Iso-joinSusp-suspJoin -}
IsoSphereJoinPres∙ : (n m : ℕ)
→ Iso.fun (IsoSphereJoin n m) (inl (ptSn n)) ≡ ptSn (suc (n + m))
IsoSphereJoinPres∙ zero zero = refl
IsoSphereJoinPres∙ zero (suc m) = refl
IsoSphereJoinPres∙ (suc zero) zero = refl
IsoSphereJoinPres∙ (suc zero) (suc zero) = refl
IsoSphereJoinPres∙ (suc zero) (suc (suc m)) = refl
IsoSphereJoinPres∙ (suc (suc n)) m = refl
IsoSphereJoin⁻Pres∙ : (n m : ℕ)
→ Iso.inv (IsoSphereJoin n m) (ptSn (suc (n + m))) ≡ inl (ptSn n)
IsoSphereJoin⁻Pres∙ n m =
cong (Iso.inv (IsoSphereJoin n m)) (sym (IsoSphereJoinPres∙ n m))
∙ Iso.leftInv (IsoSphereJoin n m) (inl (ptSn n))
-- Inversion on spheres
invSphere : {n : ℕ} → S₊ n → S₊ n
invSphere {n = zero} = not
invSphere {n = (suc zero)} = invLooper
invSphere {n = (suc (suc n))} = invSusp
invSphere² : (n : ℕ) (x : S₊ n) → invSphere (invSphere x) ≡ x
invSphere² zero = notnot
invSphere² (suc zero) base = refl
invSphere² (suc zero) (loop i) = refl
invSphere² (suc (suc n)) = invSusp²
-- Interaction between σ and invSphere
σ-invSphere : (n : ℕ) (x : S₊ (suc n))
→ σ (S₊∙ (suc n)) (invSphere x)
≡ sym (σ (S₊∙ (suc n)) x)
σ-invSphere zero base =
rCancel (merid base) ∙∙ refl ∙∙ cong sym (sym (rCancel (merid base)))
σ-invSphere zero (loop i) j =
hcomp (λ k → λ { (j = i0) → doubleCompPath-filler
(sym (rCancel (merid base)))
(λ i → (σ (S₊∙ 1) (loop (~ i))))
(rCancel (merid base)) (~ k) i
; (j = i1) → doubleCompPath-filler
(sym (cong sym (rCancel (merid base))))
(λ i → sym (σ (S₊∙ 1) (loop i)))
(cong sym (rCancel (merid base))) (~ k) i})
(sym≡cong-sym (sym (rCancel (merid base))
∙∙ (λ i → (σ (S₊∙ 1) (loop i)))
∙∙ (rCancel (merid base))) j i)
σ-invSphere (suc n) x = toSusp-invSusp (S₊∙ (suc n)) x
-- Some facts about the map S¹×S¹→S²
-- Todo: generalise to Sⁿ×Sᵐ→Sⁿ⁺ᵐ
S¹×S¹→S²rUnit : (a : S¹) → S¹×S¹→S² a base ≡ north
S¹×S¹→S²rUnit base = refl
S¹×S¹→S²rUnit (loop i) = refl
S¹×S¹→S²x+x : (x : S¹) → S¹×S¹→S² x x ≡ north
S¹×S¹→S²x+x base = refl
S¹×S¹→S²x+x (loop i) k = lem k i
where
lem : cong₂ S¹×S¹→S² loop loop ≡ refl
lem = cong₂Funct S¹×S¹→S² loop loop
∙ (λ i → rUnit (cong (λ x → S¹×S¹→S²rUnit x i) loop) (~ i))
S¹×S¹→S²-antiComm : (a b : S¹) → S¹×S¹→S² a b ≡ S¹×S¹→S² b (invLooper a)
S¹×S¹→S²-antiComm base base = refl
S¹×S¹→S²-antiComm base (loop i) = refl
S¹×S¹→S²-antiComm (loop i) base = refl
S¹×S¹→S²-antiComm (loop i) (loop j) k =
sym≡flipSquare (λ j i → S¹×S¹→S² (loop i) (loop j)) (~ k) i j
private
S¹×S¹→S²-Distr-filler : (i : I)
→ cong₂ (λ b c → S¹×S¹→S² ((loop i) * b) c) loop loop
≡ cong (S¹×S¹→S² (loop i)) loop
S¹×S¹→S²-Distr-filler i =
cong₂Funct (λ b c → S¹×S¹→S² ((loop i) * b) c) loop loop
∙∙ (λ j → cong (λ x → S¹×S¹→S²rUnit (rotLoop x i) j) loop ∙
cong (λ c → S¹×S¹→S² (loop i) c) loop)
∙∙ sym (lUnit _)
S¹×S¹→S²-Distr : (a b : S¹) → S¹×S¹→S² (a * b) b ≡ S¹×S¹→S² a b
S¹×S¹→S²-Distr a base j = S¹×S¹→S² (rUnitS¹ a j) base
S¹×S¹→S²-Distr base (loop i) k = S¹×S¹→S²-Distr-filler i0 k i
S¹×S¹→S²-Distr (loop i₁) (loop i) k = S¹×S¹→S²-Distr-filler i₁ k i
invSusp∘S¹×S¹→S² : (a b : S¹)
→ S¹×S¹→S² a (invLooper b) ≡ invSusp (S¹×S¹→S² a b)
invSusp∘S¹×S¹→S² base b = merid base
invSusp∘S¹×S¹→S² (loop i) base = merid base
invSusp∘S¹×S¹→S² (loop i) (loop j) k =
hcomp (λ r → λ {(i = i0) → i-Boundary₂ r j k
; (i = i1) → i-Boundary₂ r j k
; (j = i0) → m-b k
; (j = i1) → m-b k
; (k = i0) → doubleCompPath-filler
rCancel-mb⁻¹ (cong σ₁ loop) rCancel-mb r i (~ j)
; (k = i1)
→ invSusp (doubleCompPath-filler
rCancel-mb⁻¹ (cong σ₁ loop) rCancel-mb r i j)})
(hcomp (λ r → λ {(i = i0) → i-Boundary r (~ j) k
; (i = i1) → i-Boundary r (~ j) k
; (j = i0) → merid base (~ r ∨ k)
; (j = i1) → merid base (r ∧ k)
; (k = i0) → cp-filler (loop i) r (~ j)
; (k = i1) → invSusp (cp-filler (loop i) r j)})
(merid (loop i) (~ j)))
where
σ₁ = σ (S₊∙ 1)
m-b = merid base
rCancel-mb = rCancel m-b
rCancel-mb⁻¹ = sym (rCancel m-b)
cp-filler : (a : S¹) (i j : I) → S₊ 2
cp-filler a i j = compPath-filler (merid a) (sym (merid base)) i j
i-Boundary : I → I → I → S₊ 2
i-Boundary r j k =
hfill (λ r → λ{(j = i0) → m-b (k ∧ r)
; (j = i1) → m-b (~ r ∨ k)
; (k = i0) → cp-filler base r j
; (k = i1) → invSusp (cp-filler base r (~ j))})
(inS (m-b j))
r
i-Boundary₂ : I → I → I → S₊ 2
i-Boundary₂ r j k =
hcomp (λ i → λ {(r = i0) → i-Boundary i (~ j) k
; (r = i1) → m-b k
; (j = i0) → m-b (k ∨ (~ i ∧ ~ r))
; (j = i1) → m-b (k ∧ (i ∨ r))
; (k = i0) → rCancel-filler m-b i r (~ j)
; (k = i1) → invSusp (rCancel-filler m-b i r j) })
(hcomp (λ i → λ {(r = i0) → m-b (~ j ∨ (~ i ∧ k))
; (r = i1) → m-b (k ∨ (~ i ∧ ~ j))
; (j = i0) → m-b (k ∨ (~ r ∨ ~ i))
; (j = i1) → m-b (k ∧ (~ i ∨ r))
; (k = i0) → m-b (~ j ∧ (~ r ∨ ~ i))
; (k = i1) → m-b ((~ j ∨ ~ i) ∨ r) })
(m-b (~ j ∨ k)))
|
{
"alphanum_fraction": 0.4571861734,
"avg_line_length": 47.5216138329,
"ext": "agda",
"hexsha": "dfbf46b6edda47a351d1eef6e6cd628569b89e2b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "howsiyu/cubical",
"max_forks_repo_path": "Cubical/HITs/Sn/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "howsiyu/cubical",
"max_issues_repo_path": "Cubical/HITs/Sn/Properties.agda",
"max_line_length": 138,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "howsiyu/cubical",
"max_stars_repo_path": "Cubical/HITs/Sn/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 12853,
"size": 32980
}
|
module Numeral.Finite.Oper where
open import Data
open import Data.Boolean.Stmt
open import Data.Option
open import Logic.Propositional
open import Logic.Predicate
import Lvl
open import Numeral.Finite as 𝕟 using (𝕟 ; 𝕟₌ ; 𝕟-to-ℕ)
open import Numeral.Finite.Bound
open import Numeral.Natural hiding (𝟎 ; 𝐒 ; 𝐏)
open import Numeral.Natural.Function
open import Numeral.Natural.Function.Proofs
import Numeral.Natural.Oper as ℕ
import Numeral.Natural.Oper.Comparisons as ℕ
open import Numeral.Natural.Relation.Order
open import Numeral.Natural.Relation.Order.Proofs
open import Relator.Equals
open import Relator.Equals.Proofs
open import Syntax.Number
module Exact where
-- Predecessor bounded at the minimum (0) for both the value and the maximum.
-- Example: (𝐏₀(5): 𝕟(8)) = (4: 𝕟(7))
𝐏₀ : ∀{n} → 𝕟(ℕ.𝐒(ℕ.𝐒(n))) → 𝕟(ℕ.𝐒(n))
𝐏₀(𝕟.𝟎) = 𝕟.𝟎
𝐏₀(𝕟.𝐒(n)) = n
-- Addition for both the value and the maximum.
-- Example: (5: 𝕟(8)) + (4: 𝕟(6)) = ((5+4): 𝕟(8+6)) = (9: 𝕟(14))
_+_ : ∀{b₁ b₂} → 𝕟(b₁) → 𝕟(b₂) → 𝕟(b₁ ℕ.+ b₂)
_+_ {ℕ.𝐒(b₁)}{ℕ.𝐒(b₂)} 𝕟.𝟎 𝕟.𝟎 = 𝕟.𝟎
_+_ {ℕ.𝐒(b₁)}{ℕ.𝐒(b₂)} 𝕟.𝟎 (𝕟.𝐒(b)) = 𝕟.𝐒(𝕟.𝟎{b₁} + b)
_+_ {ℕ.𝐒(b₁)}{ℕ.𝐒(b₂)} (𝕟.𝐒(a)) b = 𝕟.𝐒(a + b)
-- Distance between two numbers.
-- Examples:
-- (3: 𝕟(8)) 𝄩 (5: 𝕟(6)) = ((3𝄩5): 𝕟(max 8 6)) = (2: 𝕟(8))
-- (5: 𝕟(8)) 𝄩 (3: 𝕟(6)) = ((5𝄩3): 𝕟(max 8 6)) = (2: 𝕟(8))
-- (7: 𝕟(8)) 𝄩 (0: 𝕟(6)) = ((7𝄩0): 𝕟(max 8 6)) = (7: 𝕟(8))
_𝄩_ : ∀{b₁ b₂} → 𝕟(b₁) → 𝕟(b₂) → 𝕟(max b₁ b₂)
_𝄩_ {ℕ.𝐒 b₁} {ℕ.𝐒 b₂} 𝕟.𝟎 𝕟.𝟎 = 𝕟.𝟎
_𝄩_ {ℕ.𝐒 ℕ.𝟎} {ℕ.𝐒 b₂} 𝕟.𝟎 (𝕟.𝐒 b) = 𝕟.𝐒 b
_𝄩_ {ℕ.𝐒 (ℕ.𝐒 b₁)} {ℕ.𝐒 b₂} 𝕟.𝟎 (𝕟.𝐒 b) = 𝕟.𝐒(𝕟.𝟎 𝄩 b)
_𝄩_ {ℕ.𝐒 b₁} {ℕ.𝐒 b₂} (𝕟.𝐒 a) (𝕟.𝐒 b) = bound-𝐒(a 𝄩 b)
_𝄩_ {ℕ.𝐒 b₁} {ℕ.𝐒 ℕ.𝟎} (𝕟.𝐒 a) 𝕟.𝟎 = 𝕟.𝐒 a
_𝄩_ {ℕ.𝐒 b₁} {ℕ.𝐒 (ℕ.𝐒 b₂)} (𝕟.𝐒 a) 𝕟.𝟎 = 𝕟.𝐒(a 𝄩 𝕟.𝟎)
_⋅_ : ∀{b₁ b₂} → 𝕟(b₁) → 𝕟(b₂) → 𝕟(b₁ ℕ.⋅ b₂)
_⋅_ {ℕ.𝐒 b₁} {ℕ.𝐒 b₂} a 𝕟.𝟎 = 𝕟.𝟎
_⋅_ {ℕ.𝐒 b₁} {ℕ.𝐒 b₂} a (𝕟.𝐒 b) = a + (a ⋅ b)
module Bounded where
-- Predecessor bounded at the minimum (0) for the value only.
-- Example: (𝐏₀(5): 𝕟(8)) = (4: 𝕟(8))
𝐏₀ : ∀{n} → 𝕟(n) → 𝕟(n)
𝐏₀ {ℕ.𝐒(b)} (𝕟.𝟎) = 𝕟.𝟎
𝐏₀ {ℕ.𝐒(b)} (𝕟.𝐒(𝕟.𝟎)) = 𝕟.𝟎
𝐏₀ {ℕ.𝐒(b)} (𝕟.𝐒(𝕟.𝐒(n))) = 𝕟.𝐒(𝐏₀ {b} (𝕟.𝐒(n)))
module Total where
𝐒 : ∀{b} → (n : 𝕟(b)) → ⦃ _ : IsTrue(ℕ.𝐒(𝕟-to-ℕ (n)) ℕ.<? b) ⦄ → 𝕟(b)
𝐒 {ℕ.𝐒(ℕ.𝐒(b))} (𝕟.𝟎) = 𝕟.𝐒(𝕟.𝟎)
𝐒 {ℕ.𝐒(ℕ.𝐒(b))} (𝕟.𝐒(n)) = 𝕟.𝐒(𝐒(n))
module Optional where
minimum : ∀{n} → Option(𝕟(n))
minimum{ℕ.𝟎} = None
minimum{ℕ.𝐒(_)} = Some 𝕟.minimum
maximum : ∀{n} → Option(𝕟(n))
maximum{ℕ.𝟎} = None
maximum{ℕ.𝐒(n)} = Some 𝕟.maximum
_+₀ₗ_ : ∀{b₁ b₂} → Option(𝕟(b₁)) → 𝕟(b₂) → 𝕟(b₁ ℕ.+ b₂)
_+₀ₗ_ None 𝕟.𝟎 = 𝕟.𝟎
_+₀ₗ_ {b₁} None (𝕟.𝐒(b)) = 𝕟.𝐒(_+₀ₗ_ {b₁} None b)
_+₀ₗ_ (Some a) b = a Exact.+ b
_+₀ᵣ_ : ∀{b₁ b₂} → 𝕟(b₁) → Option(𝕟(b₂)) → 𝕟(b₁ ℕ.+ b₂)
_+₀ᵣ_ 𝕟.𝟎 None = 𝕟.𝟎
_+₀ᵣ_ (𝕟.𝐒(a)) None = 𝕟.𝐒(_+₀ᵣ_ a None)
{-# CATCHALL #-}
_+₀ᵣ_ a (Some b) = a Exact.+ b
module Unclosed where
_+ₙₗ_ : ∀{b₂} → (b₁ : ℕ) → 𝕟(b₂) → 𝕟(b₁ ℕ.+ b₂)
ℕ.𝟎 +ₙₗ b = b
ℕ.𝐒(a) +ₙₗ b = 𝕟.𝐒(a +ₙₗ b)
_+ₙᵣ_ : ∀{b₁} → 𝕟(b₁) → (b₂ : ℕ) → 𝕟(b₁ ℕ.+ b₂)
a +ₙᵣ ℕ.𝟎 = a
a +ₙᵣ ℕ.𝐒(b) = 𝕟.𝐒(a +ₙᵣ b)
-- Example: shrink-subtract(5) (7 : 𝕟(6 + 5)) = (2 : 𝕟(6))
shrink-subtractₗ : ∀{b₁} → (b₂ : ℕ) → 𝕟(ℕ.𝐒(b₁) ℕ.+ b₂) → 𝕟(ℕ.𝐒(b₁))
shrink-subtractₗ _ 𝕟.𝟎 = 𝕟.𝟎
shrink-subtractₗ ℕ.𝟎 (𝕟.𝐒 a) = 𝕟.𝐒 a
shrink-subtractₗ {ℕ.𝟎} (ℕ.𝐒 b₂) (𝕟.𝐒 a) = 𝕟.𝟎
shrink-subtractₗ {ℕ.𝐒 b₁} (ℕ.𝐒 b₂) (𝕟.𝐒 a) = shrink-subtractₗ {ℕ.𝐒 b₁} (b₂) (a)
shrink-subtractᵣ : (b₁ : ℕ) → ∀{b₂} → 𝕟(b₁ ℕ.+ ℕ.𝐒(b₂)) → 𝕟(ℕ.𝐒(b₂))
shrink-subtractᵣ _ 𝕟.𝟎 = 𝕟.𝟎
shrink-subtractᵣ ℕ.𝟎 (𝕟.𝐒 a) = 𝕟.𝐒 a
shrink-subtractᵣ (ℕ.𝐒 b₁) {ℕ.𝟎} (𝕟.𝐒 a) = 𝕟.𝟎
shrink-subtractᵣ (ℕ.𝐒 b₁) {ℕ.𝐒 b₂} (𝕟.𝐒 a) = shrink-subtractᵣ (b₁) {ℕ.𝐒 b₂} (a)
{-_⋅ₙₗ_ : ∀{b₂} → (b₁ : ℕ) → 𝕟(b₂) → 𝕟(ℕ.𝐒(b₁ ℕ.⋅ b₂))
_⋅ₙₗ_ {ℕ.𝐒 _} ℕ.𝟎 _ = 𝕟.𝟎
_⋅ₙₗ_ {ℕ.𝐒 _} (ℕ.𝐒 a) b = {!b Exact.+ (a ⋅ₙₗ b)!}
-}
_⋅ₙᵣ_ : ∀{b₁} → 𝕟(b₁) → (b₂ : ℕ) → 𝕟(ℕ.𝐒(b₁ ℕ.⋅ b₂)) -- TODO: Bounds is too great
_⋅ₙᵣ_ {ℕ.𝐒 _} a ℕ.𝟎 = 𝕟.𝟎
_⋅ₙᵣ_ {ℕ.𝐒 _} a (ℕ.𝐒 b) = a Exact.+ (a ⋅ₙᵣ b)
module Wrapping where
-- Wrapping subtraction.
-- Essentially: _[−]_ {b₁}{b₂} a b = (a −ℤ b) mod b₁
_[−]_ : ∀{b₁ b₂} → 𝕟(b₁) → 𝕟(b₂) → 𝕟(b₁)
_[−]_ {_} {ℕ.𝐒 _} a 𝕟.𝟎 = a
_[−]_ {ℕ.𝐒 b₁} {ℕ.𝐒 _} 𝕟.𝟎 (𝕟.𝐒 b) = 𝕟.maximum {b₁} [−] b
_[−]_ {ℕ.𝐒 b₁} {ℕ.𝐒 b₂} (𝕟.𝐒 a) (𝕟.𝐒 b) = _[−]_ {ℕ.𝐒 b₁}{b₂} (bound-𝐒 a) b
-- Wrapping negation (Flipping around the symmetric point).
-- Essentially: [−]_ {b} n = (−ℤ n) mod b
[−]_ : ∀{b} → 𝕟(b) → 𝕟(b)
[−]_ {ℕ.𝐒 b} n = 𝕟.maximum {b} [−] n
{- TODO: Cannot solve first. Unsure why
[𝐒]-not-0 : ∀{b : ℕ}{n : 𝕟(ℕ.𝐒(b))} → (𝐒{b}(n) ≢ 𝟎{ℕ.𝐒(b)})
[𝐒]-not-0 ()
𝐏keep : ∀{b} → (n : 𝕟(𝐒(b))) → ⦃ _ : n ≢ 𝟎 ⦄ → 𝕟(𝐒(b))
𝐏keep {ℕ.𝟎} (𝟎) ⦃ proof ⦄ with proof([≡]-intro)
... | ()
𝐏keep {ℕ.𝐒(b)} (𝟎) ⦃ _ ⦄ = 𝟎
𝐏keep {ℕ.𝐒(b)} (𝐒(𝟎)) ⦃ _ ⦄ = 𝟎
𝐏keep {ℕ.𝐒(b)} (𝐒(𝐒(n))) ⦃ proof ⦄ = 𝐒(𝐏keep {b} (𝐒(n)) ⦃ [𝐒]-not-0 ⦄)
-}
-- _ : ∀{b} → (n : 𝕟(b)) → (𝕟-to-ℕ (n) < b)
-- _+small_ : ∀{b₁ b₂} → (x : 𝕟(𝐒(b₁))) → (y : 𝕟(𝐒(b₂))) → 𝕟(ℕ.𝐒(𝕟-to-ℕ (x) ℕ.+ 𝕟-to-ℕ (y)))
-- _+small_ 𝟎 𝟎 = 𝟎
-- _+small_ {b₁} (𝐒(a)) 𝟎 = 𝐒(a +small 𝟎)
-- _+small_ a (𝐒(b)) = 𝐒(a +small b)
-- _−small_ : ∀{b} → (x : 𝕟(𝐒(b))) → (y : 𝕟(ℕ.𝐒(𝕟-to-ℕ (x)))) → 𝕟(ℕ.𝐒(𝕟-to-ℕ (x) ℕ.−₀ 𝕟-to-ℕ (y)))
-- 𝟎 −small 𝟎 = 𝟎
-- 𝐒(a) −small 𝟎 = 𝐒(a −small 𝟎)
-- 𝐒(a) −small 𝐒(b) = a −small b
{- TODO: Will not work like this
-- Modulo subtraction.
-- Essentially: a [−] b mod n = (a −ℤ b) mod n
_[−]_mod_ : ℕ → ℕ → (n : ℕ) → 𝕟₌(n)
_ [−] _ mod 𝟎 = 𝟎
𝟎 [−] 𝟎 mod 𝐒(n) = 𝟎
𝐒(a) [−] 𝟎 mod 𝐒(n) = a [−] n mod 𝐒(n)
𝟎 [−] 𝐒(b) mod 𝐒(n) = n [−] b mod 𝐒(n)
𝐒(a) [−] 𝐒(b) mod 𝐒(n) = a [−] b mod 𝐒(n)
open import Data
test1 : [−]_ {4} 1 ≡ 3
test1 = [≡]-intro
-}
-- _−_ : ∀{b} → (x : 𝕟(𝐒(b))) → (y : 𝕟(ℕ.𝐒(𝕟-to-ℕ (x)))) → 𝕟(𝐒(b))
-- 𝟎 − 𝟎 = 𝟎
-- 𝐒(a) − 𝟎 = 𝐒(a)
-- 𝐒(a) − 𝐒(b) = bound-𝐒(a − b)
-- TODO: Wrapping and bounded operations
|
{
"alphanum_fraction": 0.4630017733,
"avg_line_length": 35.4457142857,
"ext": "agda",
"hexsha": "263971be52ed09a02951d7fe9ccdcdcabaf11ad8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Finite/Oper.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Finite/Oper.agda",
"max_line_length": 98,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Finite/Oper.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 4232,
"size": 6203
}
|
------------------------------------------------------------------------
-- The circle with an erased higher constructor
------------------------------------------------------------------------
{-# OPTIONS --erased-cubical --safe #-}
-- Partly following the HoTT book.
-- The module is parametrised by a notion of equality. The higher
-- constructor of the HIT defining the circle uses path equality, but
-- the supplied notion of equality is used for many other things.
import Equality.Path as P
module Circle.Erased
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq hiding (elim)
open import Prelude
open import Bijection equality-with-J using (_↔_)
open import Circle eq as C using (𝕊¹)
open import Equality.Groupoid equality-with-J
open import Equality.Path.Isomorphisms eq
open import Equality.Path.Isomorphisms.Univalence eq
open import Equivalence equality-with-J as Eq using (_≃_)
import Equivalence P.equality-with-J as PE
open import Erased.Cubical eq
open import Function-universe equality-with-J hiding (id; _∘_)
open import Group equality-with-J as G using (_≃ᴳ_)
open import H-level equality-with-J
open import H-level.Truncation.Propositional.Erased eq as T using (∥_∥ᴱ)
open import H-level.Truncation.Propositional.One-step eq as O
using (∥_∥¹)
open import H-level.Truncation.Propositional.One-step.Erased eq as OE
using (∥_∥¹ᴱ)
open import Integer equality-with-J using (ℤ; +_; ℤ-group)
open import Nat equality-with-J
open import Pointed-type equality-with-J as PT using (_≃ᴮ_)
open import Pointed-type.Homotopy-group eq
private
variable
a p : Level
A : Type p
P : A → Type p
b ℓ : A
------------------------------------------------------------------------
-- The type and some eliminators
-- The circle.
data 𝕊¹ᴱ : Type where
base : 𝕊¹ᴱ
@0 loopᴾ : base P.≡ base
@0 loop : base ≡ base
loop = _↔_.from ≡↔≡ loopᴾ
-- A dependent eliminator, expressed using paths.
elimᴾ :
(P : 𝕊¹ᴱ → Type p)
(b : P base) →
@0 P.[ (λ i → P (loopᴾ i)) ] b ≡ b →
(x : 𝕊¹ᴱ) → P x
elimᴾ P b ℓ base = b
elimᴾ P b ℓ (loopᴾ i) = ℓ i
-- A non-dependent eliminator, expressed using paths.
recᴾ : (b : A) → @0 b P.≡ b → 𝕊¹ᴱ → A
recᴾ = elimᴾ _
-- A dependent eliminator.
elim :
(P : 𝕊¹ᴱ → Type p)
(b : P base) →
@0 subst P loop b ≡ b →
(x : 𝕊¹ᴱ) → P x
elim P b ℓ = elimᴾ P b (subst≡→[]≡ ℓ)
-- A "computation" rule.
@0 elim-loop :
dcong (elim P b ℓ) loop ≡ ℓ
elim-loop = dcong-subst≡→[]≡ (refl _)
-- Every dependent function of type (x : 𝕊¹ᴱ) → P x can be expressed
-- using elim.
η-elim :
{f : (x : 𝕊¹ᴱ) → P x} →
f ≡ elim P (f base) (dcong f loop)
η-elim {P = P} {f = f} =
⟨ext⟩ $ elim _ (refl _)
(subst (λ x → f x ≡ elim P (f base) (dcong f loop) x) loop (refl _) ≡⟨ subst-in-terms-of-trans-and-dcong ⟩
trans (sym (dcong f loop))
(trans (cong (subst P loop) (refl _))
(dcong (elim P (f base) (dcong f loop)) loop)) ≡⟨ cong (trans (sym (dcong f loop))) $
trans (cong (flip trans _) $ cong-refl _) $
trans-reflˡ _ ⟩
trans (sym (dcong f loop))
(dcong (elim P (f base) (dcong f loop)) loop) ≡⟨ cong (trans (sym (dcong f loop))) elim-loop ⟩
trans (sym (dcong f loop)) (dcong f loop) ≡⟨ trans-symˡ _ ⟩∎
refl _ ∎)
-- A non-dependent eliminator.
rec : (b : A) → @0 b ≡ b → 𝕊¹ᴱ → A
rec b ℓ = recᴾ b (_↔_.to ≡↔≡ ℓ)
-- A "computation" rule.
@0 rec-loop : cong (rec b ℓ) loop ≡ ℓ
rec-loop = cong-≡↔≡ (refl _)
-- Every function from 𝕊¹ᴱ to A can be expressed using rec.
η-rec : {f : 𝕊¹ᴱ → A} → f ≡ rec (f base) (cong f loop)
η-rec {f = f} =
⟨ext⟩ $ elim _ (refl _)
(subst (λ x → f x ≡ rec (f base) (cong f loop) x) loop (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩
trans (sym (cong f loop))
(trans (refl _) (cong (rec (f base) (cong f loop)) loop)) ≡⟨ cong (trans (sym (cong f loop))) $ trans-reflˡ _ ⟩
trans (sym (cong f loop)) (cong (rec (f base) (cong f loop)) loop) ≡⟨ cong (trans (sym (cong f loop))) rec-loop ⟩
trans (sym (cong f loop)) (cong f loop) ≡⟨ trans-symˡ _ ⟩∎
refl _ ∎)
------------------------------------------------------------------------
-- Conversion functions
-- In erased contexts 𝕊¹ is equivalent to 𝕊¹ᴱ.
@0 𝕊¹≃𝕊¹ᴱ : 𝕊¹ ≃ 𝕊¹ᴱ
𝕊¹≃𝕊¹ᴱ = Eq.↔→≃
𝕊¹→𝕊¹ᴱ
𝕊¹ᴱ→𝕊¹
(elim _ (refl _)
(subst (λ x → 𝕊¹→𝕊¹ᴱ (𝕊¹ᴱ→𝕊¹ x) ≡ x) loop (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩
trans (sym (cong (𝕊¹→𝕊¹ᴱ ∘ 𝕊¹ᴱ→𝕊¹) loop))
(trans (refl _) (cong id loop)) ≡⟨ cong (trans _) $
trans (trans-reflˡ _) $
sym $ cong-id _ ⟩
trans (sym (cong (𝕊¹→𝕊¹ᴱ ∘ 𝕊¹ᴱ→𝕊¹) loop)) loop ≡⟨ cong (flip trans _) $ cong sym $
trans (sym $ cong-∘ _ _ _) $
trans (cong (cong 𝕊¹→𝕊¹ᴱ)
rec-loop) $
C.rec-loop ⟩
trans (sym loop) loop ≡⟨ trans-symˡ _ ⟩∎
refl _ ∎))
(C.elim _ (refl _)
(subst (λ x → 𝕊¹ᴱ→𝕊¹ (𝕊¹→𝕊¹ᴱ x) ≡ x) C.loop (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩
trans (sym (cong (𝕊¹ᴱ→𝕊¹ ∘ 𝕊¹→𝕊¹ᴱ) C.loop))
(trans (refl _) (cong id C.loop)) ≡⟨ cong (trans _) $
trans (trans-reflˡ _) $
sym $ cong-id _ ⟩
trans (sym (cong (𝕊¹ᴱ→𝕊¹ ∘ 𝕊¹→𝕊¹ᴱ) C.loop)) C.loop ≡⟨ cong (flip trans _) $ cong sym $
trans (sym $ cong-∘ _ _ _) $
trans (cong (cong 𝕊¹ᴱ→𝕊¹)
C.rec-loop) $
rec-loop ⟩
trans (sym C.loop) C.loop ≡⟨ trans-symˡ _ ⟩∎
refl _ ∎))
where
𝕊¹→𝕊¹ᴱ = C.rec base loop
𝕊¹ᴱ→𝕊¹ = rec C.base C.loop
-- In erased contexts there is a based equivalence between 𝕊¹ , C.base
-- and 𝕊¹ᴱ , base.
@0 𝕊¹≃ᴮ𝕊¹ᴱ : (𝕊¹ , C.base) ≃ᴮ (𝕊¹ᴱ , base)
𝕊¹≃ᴮ𝕊¹ᴱ = 𝕊¹≃𝕊¹ᴱ , refl _
-- The one-step truncation of the unit type is equivalent to 𝕊¹ᴱ.
--
-- Paolo Capriotti informed me about the corresponding result without
-- erasure.
∥⊤∥¹ᴱ≃𝕊¹ᴱ : ∥ ⊤ ∥¹ᴱ ≃ 𝕊¹ᴱ
∥⊤∥¹ᴱ≃𝕊¹ᴱ = _↔_.from ≃↔≃ $ PE.↔→≃
(OE.recᴾ λ where
.OE.∣∣ʳ _ → base
.OE.∣∣-constantʳ _ _ → loopᴾ)
(recᴾ OE.∣ _ ∣ (OE.∣∣-constantᴾ _ _))
(elimᴾ _ P.refl (λ _ → P.refl))
(OE.elimᴾ λ where
.OE.∣∣ʳ _ → P.refl
.OE.∣∣-constantʳ _ _ _ → P.refl)
------------------------------------------------------------------------
-- The loop space of 𝕊¹ᴱ
-- The function trans is commutative for the loop space of 𝕊¹ᴱ.
trans-commutative : (p q : base ≡ base) → trans p q ≡ trans q p
trans-commutative =
flip $ Transitivity-commutative.commutative base _∙_ ∙-base base-∙
where
_∙_ : 𝕊¹ᴱ → 𝕊¹ᴱ → 𝕊¹ᴱ
x ∙ y = rec x (elim (λ x → x ≡ x) loop lemma x) y
where
@0 lemma : subst (λ x → x ≡ x) loop loop ≡ loop
lemma = ≡⇒↝ _ (sym [subst≡]≡[trans≡trans]) (refl _)
base-∙ : ∀ x → x ∙ base ≡ x
base-∙ _ = refl _
∙-base : ∀ y → base ∙ y ≡ y
∙-base =
elim _ (refl _)
(subst (λ x → rec base loop x ≡ x) loop (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩
trans (sym (cong (rec base loop) loop))
(trans (refl _) (cong id loop)) ≡⟨ cong (trans _) $ trans-reflˡ _ ⟩
trans (sym (cong (rec base loop) loop)) (cong id loop) ≡⟨ cong₂ (trans ∘ sym)
rec-loop
(sym $ cong-id _) ⟩
trans (sym loop) loop ≡⟨ trans-symˡ _ ⟩∎
refl _ ∎)
-- The loop space is equivalent to x ≡ x, for any x : 𝕊¹ᴱ.
base≡base≃≡ : {x : 𝕊¹ᴱ} → (base ≡ base) ≃ (x ≡ x)
base≡base≃≡ = elim
(λ x → (base ≡ base) ≃ (x ≡ x))
Eq.id
(Eq.lift-equality ext $ ⟨ext⟩ λ eq →
_≃_.to (subst (λ x → (base ≡ base) ≃ (x ≡ x)) loop Eq.id) eq ≡⟨ cong (_$ eq) Eq.to-subst ⟩
subst (λ x → base ≡ base → x ≡ x) loop id eq ≡⟨ subst-→ ⟩
subst (λ x → x ≡ x) loop (subst (λ _ → base ≡ base) (sym loop) eq) ≡⟨ cong (subst (λ x → x ≡ x) loop) $ subst-const _ ⟩
subst (λ x → x ≡ x) loop eq ≡⟨ ≡⇒↝ _ (sym [subst≡]≡[trans≡trans]) (
trans eq loop ≡⟨ trans-commutative _ _ ⟩∎
trans loop eq ∎) ⟩∎
eq ∎)
_
-- In erased contexts the loop space of 𝕊¹ᴱ is equivalent to the type
-- of integers.
@0 base≡base≃ℤ : (base ≡ base) ≃ ℤ
base≡base≃ℤ =
base ≡ base ↝⟨ Eq.≃-≡ 𝕊¹≃𝕊¹ᴱ ⟩
C.base ≡ C.base ↝⟨ C.base≡base≃ℤ univ ⟩□
ℤ □
-- In erased contexts the fundamental group of 𝕊¹ᴱ is equivalent to
-- the group of integers.
@0 Fundamental-group≃ℤ : Fundamental-group (𝕊¹ᴱ , base) ≃ᴳ ℤ-group
Fundamental-group≃ℤ =
G.↝ᴳ-trans (G.≃ᴳ-sym $ ≃ᴮ→≃ᴳ _ _ 0 𝕊¹≃ᴮ𝕊¹ᴱ)
(C.Fundamental-group≃ℤ univ)
-- 𝕊¹ᴱ is a groupoid (in erased contexts).
@0 𝕊¹ᴱ-groupoid : H-level 3 𝕊¹ᴱ
𝕊¹ᴱ-groupoid = $⟨ (λ {_ _ _ _} → C.𝕊¹-groupoid univ) ⟩
H-level 3 𝕊¹ ↝⟨ H-level-cong _ 3 𝕊¹≃𝕊¹ᴱ ⦂ (_ → _) ⟩□
H-level 3 𝕊¹ᴱ □
-- The type of endofunctions on 𝕊¹ᴱ is equivalent to
-- ∃ λ (x : 𝕊¹ᴱ) → Erased (x ≡ x).
𝕊¹ᴱ→𝕊¹ᴱ≃Σ𝕊¹ᴱ-Erased≡ : (𝕊¹ᴱ → 𝕊¹ᴱ) ≃ ∃ λ (x : 𝕊¹ᴱ) → Erased (x ≡ x)
𝕊¹ᴱ→𝕊¹ᴱ≃Σ𝕊¹ᴱ-Erased≡ = Eq.↔→≃ to from to-from from-to
where
to : (𝕊¹ᴱ → 𝕊¹ᴱ) → ∃ λ (x : 𝕊¹ᴱ) → Erased (x ≡ x)
to f = f base , [ cong f loop ]
from : (∃ λ (x : 𝕊¹ᴱ) → Erased (x ≡ x)) → (𝕊¹ᴱ → 𝕊¹ᴱ)
from (x , [ eq ]) = rec x eq
to-from : ∀ p → to (from p) ≡ p
to-from (x , [ eq ]) = cong (x ,_)
([ cong (rec x eq) loop ] ≡⟨ []-cong [ rec-loop ] ⟩∎
[ eq ] ∎)
from-to : ∀ f → from (to f) ≡ f
from-to f =
rec (f base) (cong f loop) ≡⟨ sym η-rec ⟩∎
f ∎
-- The type of endofunctions on 𝕊¹ᴱ is equivalent to 𝕊¹ᴱ × Erased ℤ.
𝕊¹ᴱ→𝕊¹ᴱ≃𝕊¹ᴱ×Erased-ℤ : (𝕊¹ᴱ → 𝕊¹ᴱ) ≃ (𝕊¹ᴱ × Erased ℤ)
𝕊¹ᴱ→𝕊¹ᴱ≃𝕊¹ᴱ×Erased-ℤ =
(𝕊¹ᴱ → 𝕊¹ᴱ) ↝⟨ 𝕊¹ᴱ→𝕊¹ᴱ≃Σ𝕊¹ᴱ-Erased≡ ⟩
(∃ λ (x : 𝕊¹ᴱ) → Erased (x ≡ x)) ↝⟨ (∃-cong λ _ → Erased-cong (inverse base≡base≃≡)) ⟩
𝕊¹ᴱ × Erased (base ≡ base) ↝⟨ (∃-cong λ _ → Erased-cong base≡base≃ℤ) ⟩□
𝕊¹ᴱ × Erased ℤ □
-- The forward direction of 𝕊¹ᴱ→𝕊¹ᴱ≃𝕊¹ᴱ×Erased-ℤ maps the identity
-- function to base , [ + 1 ].
𝕊¹ᴱ→𝕊¹ᴱ≃𝕊¹ᴱ×Erased-ℤ-id :
_≃_.to 𝕊¹ᴱ→𝕊¹ᴱ≃𝕊¹ᴱ×Erased-ℤ id ≡ (base , [ + 1 ])
𝕊¹ᴱ→𝕊¹ᴱ≃𝕊¹ᴱ×Erased-ℤ-id = _≃_.from-to 𝕊¹ᴱ→𝕊¹ᴱ≃𝕊¹ᴱ×Erased-ℤ
(rec base (cong (_≃_.to 𝕊¹≃𝕊¹ᴱ) (trans (refl C.base) C.loop)) ≡⟨ cong (λ ([ ℓ ]) → rec base ℓ) $ []-cong [ lemma ] ⟩
rec base (cong id loop) ≡⟨ sym η-rec ⟩∎
id ∎)
where
@0 lemma : _
lemma =
cong (_≃_.to 𝕊¹≃𝕊¹ᴱ) (trans (refl C.base) C.loop) ≡⟨ cong (cong (_≃_.to 𝕊¹≃𝕊¹ᴱ)) $ trans-reflˡ _ ⟩
cong (_≃_.to 𝕊¹≃𝕊¹ᴱ) C.loop ≡⟨ C.rec-loop ⟩
loop ≡⟨ cong-id _ ⟩∎
cong id loop ∎
-- The forward direction of 𝕊¹ᴱ→𝕊¹ᴱ≃𝕊¹ᴱ×Erased-ℤ maps the constant
-- function returning base to base , [ + 0 ].
𝕊¹ᴱ→𝕊¹ᴱ≃𝕊¹ᴱ×Erased-ℤ-const :
_≃_.to 𝕊¹ᴱ→𝕊¹ᴱ≃𝕊¹ᴱ×Erased-ℤ (const base) ≡ (base , [ + 0 ])
𝕊¹ᴱ→𝕊¹ᴱ≃𝕊¹ᴱ×Erased-ℤ-const = _≃_.from-to 𝕊¹ᴱ→𝕊¹ᴱ≃𝕊¹ᴱ×Erased-ℤ
(rec base (cong (_≃_.to 𝕊¹≃𝕊¹ᴱ) (refl C.base)) ≡⟨ cong (λ ([ ℓ ]) → rec base ℓ) $ []-cong [ lemma ] ⟩
rec base (cong (const base) loop) ≡⟨ sym η-rec ⟩∎
const base ∎)
where
@0 lemma : _
lemma =
cong (_≃_.to 𝕊¹≃𝕊¹ᴱ) (refl C.base) ≡⟨ cong-refl _ ⟩
refl _ ≡⟨ sym $ cong-const _ ⟩∎
cong (const base) loop ∎
------------------------------------------------------------------------
-- Some negative results
-- The equality loop is not equal to refl base.
loop≢refl : loop ≢ refl base
loop≢refl =
Stable-¬
[ loop ≡ refl base ↔⟨ inverse $ Eq.≃-≡ $ inverse $ Eq.≃-≡ $ inverse 𝕊¹≃𝕊¹ᴱ ⟩
cong (_≃_.from 𝕊¹≃𝕊¹ᴱ) loop ≡ cong (_≃_.from 𝕊¹≃𝕊¹ᴱ) (refl base) ↝⟨ trans (sym rec-loop) ∘ flip trans (cong-refl _) ⟩
C.loop ≡ refl C.base ↝⟨ C.loop≢refl ⟩□
⊥ □
]
-- 𝕊¹ᴱ is not a set.
¬-𝕊¹ᴱ-set : ¬ Is-set 𝕊¹ᴱ
¬-𝕊¹ᴱ-set =
Stable-¬
[ Is-set 𝕊¹ᴱ ↝⟨ H-level-cong _ 2 $ inverse 𝕊¹≃𝕊¹ᴱ ⟩
Is-set 𝕊¹ ↝⟨ C.¬-𝕊¹-set ⟩□
⊥ □
]
-- It is not necessarily the case that the one-step truncation of a
-- proposition is a proposition.
¬-Is-proposition-∥∥¹ᴱ :
¬ ({A : Type a} → Is-proposition A → Is-proposition ∥ A ∥¹ᴱ)
¬-Is-proposition-∥∥¹ᴱ {a = a} =
Stable-¬
[ ({A : Type a} → Is-proposition A → Is-proposition ∥ A ∥¹ᴱ) ↝⟨ (implicit-∀-cong _ $ ∀-cong _ λ _ → H-level-cong _ 1 O.∥∥¹ᴱ≃∥∥¹) ⟩
({A : Type a} → Is-proposition A → Is-proposition ∥ A ∥¹) ↝⟨ C.¬-Is-proposition-∥∥¹ ⟩□
⊥ □
]
-- A function with the type of refl (for 𝕊¹ᴱ) that is not equal to
-- refl. The function is available in erased contexts.
@0 not-refl : (x : 𝕊¹ᴱ) → x ≡ x
not-refl x = $⟨ C.not-refl (_≃_.from 𝕊¹≃𝕊¹ᴱ x) ⟩
_≃_.from 𝕊¹≃𝕊¹ᴱ x ≡ _≃_.from 𝕊¹≃𝕊¹ᴱ x ↝⟨ Eq.≃-≡ $ inverse 𝕊¹≃𝕊¹ᴱ ⟩□
x ≡ x □
-- The function not-refl is not equal to refl.
not-refl≢refl : not-refl ≢ refl
not-refl≢refl =
Stable-¬
[ not-refl ≡ refl ↔⟨⟩
_≃_.to (Eq.≃-≡ $ inverse 𝕊¹≃𝕊¹ᴱ) ∘ C.not-refl ∘ _≃_.from 𝕊¹≃𝕊¹ᴱ ≡
refl ↝⟨ flip trans (⟨ext⟩ lemma) ⟩
_≃_.to (Eq.≃-≡ $ inverse 𝕊¹≃𝕊¹ᴱ) ∘ C.not-refl ∘ _≃_.from 𝕊¹≃𝕊¹ᴱ ≡
_≃_.to (Eq.≃-≡ $ inverse 𝕊¹≃𝕊¹ᴱ) ∘ refl ∘ _≃_.from 𝕊¹≃𝕊¹ᴱ ↔⟨ (Eq.≃-≡ $ inverse $
Π-cong ext (inverse 𝕊¹≃𝕊¹ᴱ) λ _ →
inverse $ Eq.≃-≡ $ inverse 𝕊¹≃𝕊¹ᴱ) ⟩
C.not-refl ≡ refl ↝⟨ C.not-refl≢refl ⟩□
⊥ □
]
where
@0 lemma : _
lemma x = sym $ _≃_.from-to (Eq.≃-≡ $ Eq.inverse 𝕊¹≃𝕊¹ᴱ)
(_≃_.from (Eq.≃-≡ $ Eq.inverse 𝕊¹≃𝕊¹ᴱ) (refl x) ≡⟨⟩
cong (_≃_.from 𝕊¹≃𝕊¹ᴱ) (refl x) ≡⟨ cong-refl _ ⟩∎
refl (_≃_.from 𝕊¹≃𝕊¹ᴱ x) ∎)
-- For every universe level there is a type A such that
-- (x : A) → x ≡ x is not a proposition.
¬-type-of-refl-propositional :
∃ λ (A : Type a) → ¬ Is-proposition ((x : A) → x ≡ x)
¬-type-of-refl-propositional {a = a} =
↑ _ 𝕊¹ᴱ
, Stable-¬
[ Is-proposition ((x : ↑ _ 𝕊¹ᴱ) → x ≡ x) ↝⟨ (H-level-cong _ 1 $
Π-cong ext (↑-cong $ inverse 𝕊¹≃𝕊¹ᴱ) λ _ →
inverse $ Eq.≃-≡ $ ↑-cong $ inverse 𝕊¹≃𝕊¹ᴱ) ⟩
Is-proposition ((x : ↑ _ 𝕊¹) → x ≡ x) ↝⟨ proj₂ C.¬-type-of-refl-propositional ⟩□
⊥ □
]
-- Every value of type 𝕊¹ᴱ is merely equal to the base point (using
-- ∥_∥ᴱ to express "merely").
--
-- A variant of this lemma was mentioned by Mike Shulman in a blog
-- post (http://homotopytypetheory.org/2013/07/24/cohomology/).
all-points-on-the-circle-are-merely-equal :
(x : 𝕊¹ᴱ) → ∥ x ≡ base ∥ᴱ
all-points-on-the-circle-are-merely-equal =
elim _
T.∣ refl base ∣
(T.truncation-is-proposition _ _)
-- Every value of type 𝕊¹ᴱ is not not equal to the base point.
all-points-on-the-circle-are-¬¬-equal :
(x : 𝕊¹ᴱ) → ¬ ¬ x ≡ base
all-points-on-the-circle-are-¬¬-equal x =
Stable-¬
[ x ≢ base ↔⟨ →-cong ext (inverse $ Eq.≃-≡ $ inverse 𝕊¹≃𝕊¹ᴱ) Eq.id ⟩
_≃_.from 𝕊¹≃𝕊¹ᴱ x ≢ C.base ↝⟨ C.all-points-on-the-circle-are-¬¬-equal _ ⟩□
⊥ □
]
-- It is not the case that every value of type 𝕊¹ᴱ is equal to the
-- base point.
¬-all-points-on-the-circle-are-equal :
¬ ((x : 𝕊¹ᴱ) → x ≡ base)
¬-all-points-on-the-circle-are-equal =
Stable-¬
[ ((x : 𝕊¹ᴱ) → x ≡ base) ↔⟨ (Π-cong ext (inverse 𝕊¹≃𝕊¹ᴱ) λ _ →
inverse $ Eq.≃-≡ $ Eq.inverse 𝕊¹≃𝕊¹ᴱ) ⟩
((x : 𝕊¹) → x ≡ C.base) ↝⟨ C.¬-all-points-on-the-circle-are-equal ⟩□
⊥ □
]
-- Double-negation shift for Type-valued predicates over 𝕊¹ᴱ does not
-- hold in general.
¬-double-negation-shift :
¬ ({P : 𝕊¹ᴱ → Type} → ((x : 𝕊¹ᴱ) → ¬ ¬ P x) → ¬ ¬ ((x : 𝕊¹ᴱ) → P x))
¬-double-negation-shift =
Stable-¬
[ ({P : 𝕊¹ᴱ → Type} → ((x : 𝕊¹ᴱ) → ¬ ¬ P x) → ¬ ¬ ((x : 𝕊¹ᴱ) → P x)) ↔⟨ (implicit-Π-cong ext
(→-cong₁ {k₂ = equivalence} ext $ inverse 𝕊¹≃𝕊¹ᴱ) λ _ →
→-cong ext (inverse $ Π-cong ext 𝕊¹≃𝕊¹ᴱ λ _ → Eq.id) $
¬-cong ext $ ¬-cong ext $ inverse $ Π-cong ext 𝕊¹≃𝕊¹ᴱ λ _ → Eq.id) ⟩
({P : 𝕊¹ → Type} → ((x : 𝕊¹) → ¬ ¬ P x) → ¬ ¬ ((x : 𝕊¹) → P x)) ↝⟨ C.¬-double-negation-shift ⟩□
⊥ □
]
-- H-level.Closure.proj₁-closure cannot be generalised by replacing
-- the assumption ∀ a → B a with ∀ a → ∥ B a ∥ᴱ.
--
-- A variant of this observation is due to Andrea Vezzosi.
¬-generalised-proj₁-closure :
¬ ({A : Type} {B : A → Type} →
(∀ a → ∥ B a ∥ᴱ) →
∀ n → H-level n (Σ A B) → H-level n A)
¬-generalised-proj₁-closure generalised-proj₁-closure =
$⟨ singleton-contractible _ ⟩
Contractible (Σ 𝕊¹ᴱ (_≡ base)) ↝⟨ generalised-proj₁-closure
all-points-on-the-circle-are-merely-equal
0 ⟩
Contractible 𝕊¹ᴱ ↝⟨ ¬-𝕊¹ᴱ-set ∘ mono (zero≤ 2) ⟩□
⊥ □
-- There is no based equivalence between 𝕊¹ᴱ and the product of 𝕊¹ᴱ
-- with itself.
𝕊¹ᴱ≄ᴮ𝕊¹ᴱ×𝕊¹ᴱ : ¬ (𝕊¹ᴱ , base) ≃ᴮ ((𝕊¹ᴱ , base) PT.× (𝕊¹ᴱ , base))
𝕊¹ᴱ≄ᴮ𝕊¹ᴱ×𝕊¹ᴱ =
Stable-¬
[ (𝕊¹ᴱ , base) ≃ᴮ ((𝕊¹ᴱ , base) PT.× (𝕊¹ᴱ , base)) ↝⟨ PT.↝ᴮ-trans 𝕊¹≃ᴮ𝕊¹ᴱ ∘
flip PT.↝ᴮ-trans (PT.≃ᴮ-sym (𝕊¹≃ᴮ𝕊¹ᴱ PT.×-cong-≃ᴮ 𝕊¹≃ᴮ𝕊¹ᴱ)) ⟩
(𝕊¹ , C.base) ≃ᴮ ((𝕊¹ , C.base) PT.× (𝕊¹ , C.base)) ↝⟨ C.𝕊¹≄ᴮ𝕊¹×𝕊¹ ⟩□
⊥ □
]
-- 𝕊¹ᴱ is not equivalent to 𝕊¹ᴱ × 𝕊¹ᴱ.
𝕊¹ᴱ≄𝕊¹ᴱ×𝕊¹ᴱ : ¬ 𝕊¹ᴱ ≃ (𝕊¹ᴱ × 𝕊¹ᴱ)
𝕊¹ᴱ≄𝕊¹ᴱ×𝕊¹ᴱ =
Stable-¬
[ 𝕊¹ᴱ ≃ (𝕊¹ᴱ × 𝕊¹ᴱ) ↔⟨ Eq.≃-preserves ext (inverse 𝕊¹≃𝕊¹ᴱ) (inverse $ 𝕊¹≃𝕊¹ᴱ ×-cong 𝕊¹≃𝕊¹ᴱ) ⟩
𝕊¹ ≃ (𝕊¹ × 𝕊¹) ↝⟨ C.𝕊¹≄𝕊¹×𝕊¹ ⟩□
⊥ □
]
|
{
"alphanum_fraction": 0.457252022,
"avg_line_length": 38.4599236641,
"ext": "agda",
"hexsha": "048d52b32f4a2d39f25724b4e61baa45794587a7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Circle/Erased.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Circle/Erased.agda",
"max_line_length": 146,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Circle/Erased.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 8480,
"size": 20153
}
|
module _ (_ : Set) where
open import Imports.Issue5198 Set
data D : Set where
r : D
F : D → Set₂
F r = R
f : {d : D} → F d → F d
f x = x
_ : R
_ = f record {A = Set}
|
{
"alphanum_fraction": 0.5344827586,
"avg_line_length": 10.2352941176,
"ext": "agda",
"hexsha": "7ecdcc96e69a380d9737c4aceea0d39e14c4b91c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue5198.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue5198.agda",
"max_line_length": 33,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue5198.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 73,
"size": 174
}
|
-- Andreas, 2017-01-12, issue #2386
postulate
A : Set
data _≡_ (x : A) : A → Set where
refl : x ≡ x
{-# BUILTIN EQUALITY _≡_ #-}
-- Monomorphic equality is not accepted.
-- If needed, this could change in the future.
|
{
"alphanum_fraction": 0.6327433628,
"avg_line_length": 16.1428571429,
"ext": "agda",
"hexsha": "abb4d1f5fc156b0f74c0d706566f9d61e684a243",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2386MonomorphicEquality.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2386MonomorphicEquality.agda",
"max_line_length": 46,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2386MonomorphicEquality.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 77,
"size": 226
}
|
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-}
module Light.Library.Data.These where
open import Light.Level using (Setω ; Level)
open import Light.Variable.Levels
open import Light.Variable.Sets
record Dependencies : Setω where
record Library (dependencies : Dependencies) : Setω where
field
ℓf : Level → Level → Level
These : Set aℓ → Set bℓ → Set (ℓf aℓ bℓ)
this : 𝕒 → These 𝕒 𝕓
that : 𝕓 → These 𝕒 𝕓
these : 𝕒 → 𝕓 → These 𝕒 𝕓
open Library ⦃ ... ⦄ public
|
{
"alphanum_fraction": 0.6303571429,
"avg_line_length": 29.4736842105,
"ext": "agda",
"hexsha": "2470c76bf0bd6e6804aded3032aebb30b67eff9c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "Zambonifofex/lightlib",
"max_forks_repo_path": "Light/Library/Data/These.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "Zambonifofex/lightlib",
"max_issues_repo_path": "Light/Library/Data/These.agda",
"max_line_length": 79,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "zamfofex/lightlib",
"max_stars_repo_path": "Light/Library/Data/These.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z",
"num_tokens": 169,
"size": 560
}
|
-- {-# OPTIONS --show-implicit #-}
-- {-# OPTIONS -v tc.meta:25 #-}
module NoBlockOnLevel where
open import Common.Level
open import Common.Product
BSetoid : ∀ c → Set (lsuc c)
BSetoid c = Set c
infixr 0 _⟶_
postulate
_⟶_ : ∀ {f t} → BSetoid f → BSetoid t → Set (f ⊔ t)
→-to-⟶ : ∀ {a b} {A : Set a} {B : BSetoid b} →
(A → B) → A ⟶ B
postulate
a b p : Level
A : Set a
B : Set b
P : A → B → Set p
-- This will leave unsolved metas if we give up on an unsolved level constraint
-- when checking argument spines. Since we can't match on levels it's safe to keep
-- checking later constraints even if they depend on the unsolved levels.
f : (∃ λ x → ∃ λ y → P x y) ⟶ (∃ λ y → ∃ λ x → P x y)
f = →-to-⟶ λ p → proj₁ (proj₂ p) , proj₁ p , proj₂ (proj₂ p)
|
{
"alphanum_fraction": 0.5971685972,
"avg_line_length": 25.9,
"ext": "agda",
"hexsha": "74f5bb65437897cafbbd0c31f01c6b801537af8c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/NoBlockOnLevel.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/NoBlockOnLevel.agda",
"max_line_length": 82,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/NoBlockOnLevel.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 287,
"size": 777
}
|
-- {-# OPTIONS -v term:20 -v tc.term:20 #-}
-- {-# OPTIONS -v tc.def.alias:100 -v tc.term.expr.coind:100 #-}
module Issue807 where
open import Common.Coinduction
data Stream : Set where
cons : ∞ Stream → Stream
mutual
-- s : Stream
s = cons s′
-- s′ : ∞ _
s′ = ♯ s
-- Under 2.3.0.1: The code is accepted.
-- Under 2.3.2: The termination checker complains.
-- Bug was that aliases did not lead to construction of ♯-auxiliary function.
|
{
"alphanum_fraction": 0.6387665198,
"avg_line_length": 20.6363636364,
"ext": "agda",
"hexsha": "5864ad555148d25cd5e3d67557ce409bfb432958",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/Issue807.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/Issue807.agda",
"max_line_length": 77,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/Issue807.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 146,
"size": 454
}
|
{-# OPTIONS --erased-cubical --save-metas #-}
module Erased-cubical-Pattern-matching-Erased where
open import Agda.Builtin.String
open import Erased-cubical-Pattern-matching-Cubical
-- If c₁ and c₂ are treated as erased, then f might be compiled to
-- something akin to ⊥-elim. However, the main module uses
-- --cubical, not --erased-cubical, so f should not be compiled in
-- that way.
f : D → String
f c₁ = "Success\n"
f c₂ = "Failure\n"
|
{
"alphanum_fraction": 0.7235955056,
"avg_line_length": 27.8125,
"ext": "agda",
"hexsha": "4eacb1c6ba004b7cee9b55618e0992716af9c642",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "Seanpm2001-Agda-lang/agda",
"max_forks_repo_path": "test/Compiler/simple/Erased-cubical-Pattern-matching-Erased.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "Seanpm2001-Agda-lang/agda",
"max_issues_repo_path": "test/Compiler/simple/Erased-cubical-Pattern-matching-Erased.agda",
"max_line_length": 66,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "6b13364d36eeb60d8ec15eaf8effe23c73401900",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "sseefried/agda",
"max_stars_repo_path": "test/Compiler/simple/Erased-cubical-Pattern-matching-Erased.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-05T00:25:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-05T00:25:14.000Z",
"num_tokens": 134,
"size": 445
}
|
{-# OPTIONS --cubical #-}
module Type.Cubical.InductiveInterval where
open import Functional
import Lvl
open import Type
import Type.Cubical as Cubical
import Type.Cubical.Path as Cubical
import Type.Cubical.Path.Proofs as Cubical
private variable ℓ ℓ₁ ℓ₂ : Lvl.Level
private variable A B P : Type{ℓ}
data Interval : Type{Lvl.𝟎} where
𝟎 : Interval
𝟏 : Interval
segment : Cubical.Path 𝟎 𝟏
elim : (P : Interval → Type{ℓ}) → (p0 : P(𝟎)) → (p1 : P(𝟏)) → (Cubical.PathP(\i → P(segment i)) p0 p1) → ((i : Interval) → P(i))
elim(P) p0 _ _ 𝟎 = p0
elim(P) _ p1 _ 𝟏 = p1
elim(P) _ _ ps (segment i) = ps(i)
flip : Interval → Interval
flip 𝟎 = 𝟏
flip 𝟏 = 𝟎
flip (segment i) = segment(Cubical.Interval.flip i)
min : Interval → Interval → Interval
min 𝟎 𝟎 = 𝟎
min 𝟎 𝟏 = 𝟎
min 𝟏 𝟎 = 𝟎
min 𝟏 𝟏 = 𝟏
min 𝟎 (segment i) = 𝟎
min 𝟏 (segment i) = segment i
min (segment i) 𝟎 = 𝟎
min (segment i) 𝟏 = segment i
min (segment i) (segment j) = segment(Cubical.Interval.min i j)
max : Interval → Interval → Interval
max = flip ∘₂ (min on₂ flip)
open import Structure.Relator.Properties
open import Type.Cubical.Path.Equality
open import Type.Properties.Singleton
instance
Interval-unit : IsUnit(Interval)
IsUnit.unit Interval-unit = 𝟏
IsUnit.uniqueness Interval-unit {𝟎} = segment
IsUnit.uniqueness Interval-unit {𝟏} = reflexivity(Cubical.Path)
IsUnit.uniqueness Interval-unit {segment i} j = segment(Cubical.Interval.max i j)
transp : (P : Interval → Type{ℓ}) → P(𝟎) → P(𝟏)
transp(P) = sub₂(Cubical.Path)(_→ᶠ_) (Cubical.map P(segment))
|
{
"alphanum_fraction": 0.6493902439,
"avg_line_length": 28.7719298246,
"ext": "agda",
"hexsha": "b11defe370581e21fd703922185b4853dc12bd4d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Type/Cubical/InductiveInterval.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Type/Cubical/InductiveInterval.agda",
"max_line_length": 128,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Type/Cubical/InductiveInterval.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 619,
"size": 1640
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties related to negation
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Relation.Nullary.Negation where
open import Category.Monad
open import Data.Bool.Base using (Bool; false; true; if_then_else_)
open import Data.Empty
open import Data.Product as Prod
open import Data.Sum as Sum using (_⊎_; inj₁; inj₂; [_,_])
open import Function
open import Level
open import Relation.Nullary
open import Relation.Unary
contradiction : ∀ {p w} {P : Set p} {Whatever : Set w} →
P → ¬ P → Whatever
contradiction p ¬p = ⊥-elim (¬p p)
contraposition : ∀ {p q} {P : Set p} {Q : Set q} →
(P → Q) → ¬ Q → ¬ P
contraposition f ¬q p = contradiction (f p) ¬q
-- Note also the following use of flip:
private
note : ∀ {p q} {P : Set p} {Q : Set q} →
(P → ¬ Q) → Q → ¬ P
note = flip
-- If we can decide P, then we can decide its negation.
¬? : ∀ {p} {P : Set p} → Dec P → Dec (¬ P)
¬? (yes p) = no (λ ¬p → ¬p p)
¬? (no ¬p) = yes ¬p
------------------------------------------------------------------------
-- Quantifier juggling
∃⟶¬∀¬ : ∀ {a p} {A : Set a} {P : A → Set p} →
∃ P → ¬ (∀ x → ¬ P x)
∃⟶¬∀¬ = flip uncurry
∀⟶¬∃¬ : ∀ {a p} {A : Set a} {P : A → Set p} →
(∀ x → P x) → ¬ ∃ λ x → ¬ P x
∀⟶¬∃¬ ∀xPx (x , ¬Px) = ¬Px (∀xPx x)
¬∃⟶∀¬ : ∀ {a p} {A : Set a} {P : A → Set p} →
¬ ∃ (λ x → P x) → ∀ x → ¬ P x
¬∃⟶∀¬ = curry
∀¬⟶¬∃ : ∀ {a p} {A : Set a} {P : A → Set p} →
(∀ x → ¬ P x) → ¬ ∃ (λ x → P x)
∀¬⟶¬∃ = uncurry
∃¬⟶¬∀ : ∀ {a p} {A : Set a} {P : A → Set p} →
∃ (λ x → ¬ P x) → ¬ (∀ x → P x)
∃¬⟶¬∀ = flip ∀⟶¬∃¬
------------------------------------------------------------------------
-- Double-negation
¬¬-map : ∀ {p q} {P : Set p} {Q : Set q} →
(P → Q) → ¬ ¬ P → ¬ ¬ Q
¬¬-map f = contraposition (contraposition f)
-- Stability under double-negation.
Stable : ∀ {ℓ} → Set ℓ → Set ℓ
Stable P = ¬ ¬ P → P
-- Everything is stable in the double-negation monad.
stable : ∀ {p} {P : Set p} → ¬ ¬ Stable P
stable ¬[¬¬p→p] = ¬[¬¬p→p] (λ ¬¬p → ⊥-elim (¬¬p (¬[¬¬p→p] ∘ const)))
-- Negated predicates are stable.
negated-stable : ∀ {p} {P : Set p} → Stable (¬ P)
negated-stable ¬¬¬P P = ¬¬¬P (λ ¬P → ¬P P)
-- Decidable predicates are stable.
decidable-stable : ∀ {p} {P : Set p} → Dec P → Stable P
decidable-stable (yes p) ¬¬p = p
decidable-stable (no ¬p) ¬¬p = ⊥-elim (¬¬p ¬p)
¬-drop-Dec : ∀ {p} {P : Set p} → Dec (¬ ¬ P) → Dec (¬ P)
¬-drop-Dec (yes ¬¬p) = no ¬¬p
¬-drop-Dec (no ¬¬¬p) = yes (negated-stable ¬¬¬p)
-- Double-negation is a monad (if we assume that all elements of ¬ ¬ P
-- are equal).
¬¬-Monad : ∀ {p} → RawMonad (λ (P : Set p) → ¬ ¬ P)
¬¬-Monad = record
{ return = contradiction
; _>>=_ = λ x f → negated-stable (¬¬-map f x)
}
¬¬-push : ∀ {p q} {P : Set p} {Q : P → Set q} →
¬ ¬ ((x : P) → Q x) → (x : P) → ¬ ¬ Q x
¬¬-push ¬¬P⟶Q P ¬Q = ¬¬P⟶Q (λ P⟶Q → ¬Q (P⟶Q P))
-- A double-negation-translated variant of excluded middle (or: every
-- nullary relation is decidable in the double-negation monad).
excluded-middle : ∀ {p} {P : Set p} → ¬ ¬ Dec P
excluded-middle ¬h = ¬h (no (λ p → ¬h (yes p)))
-- If Whatever is instantiated with ¬ ¬ something, then this function
-- is call with current continuation in the double-negation monad, or,
-- if you will, a double-negation translation of Peirce's law.
--
-- In order to prove ¬ ¬ P one can assume ¬ P and prove ⊥. However,
-- sometimes it is nice to avoid leaving the double-negation monad; in
-- that case this function can be used (with Whatever instantiated to
-- ⊥).
call/cc : ∀ {w p} {Whatever : Set w} {P : Set p} →
((P → Whatever) → ¬ ¬ P) → ¬ ¬ P
call/cc hyp ¬p = hyp (λ p → ⊥-elim (¬p p)) ¬p
-- The "independence of premise" rule, in the double-negation monad.
-- It is assumed that the index set (Q) is inhabited.
independence-of-premise
: ∀ {p q r} {P : Set p} {Q : Set q} {R : Q → Set r} →
Q → (P → Σ Q R) → ¬ ¬ (Σ[ x ∈ Q ] (P → R x))
independence-of-premise {P = P} q f = ¬¬-map helper excluded-middle
where
helper : Dec P → _
helper (yes p) = Prod.map id const (f p)
helper (no ¬p) = (q , ⊥-elim ∘′ ¬p)
-- The independence of premise rule for binary sums.
independence-of-premise-⊎
: ∀ {p q r} {P : Set p} {Q : Set q} {R : Set r} →
(P → Q ⊎ R) → ¬ ¬ ((P → Q) ⊎ (P → R))
independence-of-premise-⊎ {P = P} f = ¬¬-map helper excluded-middle
where
helper : Dec P → _
helper (yes p) = Sum.map const const (f p)
helper (no ¬p) = inj₁ (⊥-elim ∘′ ¬p)
private
-- Note that independence-of-premise-⊎ is a consequence of
-- independence-of-premise (for simplicity it is assumed that Q and
-- R have the same type here):
corollary : ∀ {p ℓ} {P : Set p} {Q R : Set ℓ} →
(P → Q ⊎ R) → ¬ ¬ ((P → Q) ⊎ (P → R))
corollary {P = P} {Q} {R} f =
¬¬-map helper (independence-of-premise
true ([ _,_ true , _,_ false ] ∘′ f))
where
helper : ∃ (λ b → P → if b then Q else R) → (P → Q) ⊎ (P → R)
helper (true , f) = inj₁ f
helper (false , f) = inj₂ f
------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 1.0
Excluded-Middle : (ℓ : Level) → Set (suc ℓ)
Excluded-Middle p = {P : Set p} → Dec P
{-# WARNING_ON_USAGE Excluded-Middle
"Warning: Excluded-Middle was deprecated in v1.0.
Please use ExcludedMiddle from `Axiom.ExcludedMiddle` instead."
#-}
Double-Negation-Elimination : (ℓ : Level) → Set (suc ℓ)
Double-Negation-Elimination p = {P : Set p} → Stable P
{-# WARNING_ON_USAGE Double-Negation-Elimination
"Warning: Double-Negation-Elimination was deprecated in v1.0.
Please use DoubleNegationElimination from `Axiom.DoubleNegationElimination` instead."
#-}
|
{
"alphanum_fraction": 0.5183280809,
"avg_line_length": 31.7315789474,
"ext": "agda",
"hexsha": "158ce718d928634240a04970f2369299cfea35d6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Nullary/Negation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Nullary/Negation.agda",
"max_line_length": 85,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Nullary/Negation.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2151,
"size": 6029
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Strings
------------------------------------------------------------------------
module Data.String where
open import Data.List as List using (_∷_; []; List)
open import Data.Vec as Vec using (Vec)
open import Data.Colist as Colist using (Colist)
open import Data.Char as Char using (Char)
open import Data.Bool using (Bool; true; false)
open import Function
open import Relation.Nullary
open import Relation.Nullary.Decidable
open import Relation.Binary
open import Relation.Binary.List.StrictLex as StrictLex
import Relation.Binary.On as On
open import Relation.Binary.PropositionalEquality as PropEq using (_≡_)
open import Relation.Binary.PropositionalEquality.TrustMe
import Data.String.Core as Core
open Core public using (String)
open Core
-- Possibly infinite strings.
Costring : Set
Costring = Colist Char
------------------------------------------------------------------------
-- Operations
infixr 5 _++_
_++_ : String → String → String
_++_ = primStringAppend
toList : String → List Char
toList = primStringToList
fromList : List Char → String
fromList = primStringFromList
toList∘fromList : ∀ s → toList (fromList s) ≡ s
toList∘fromList s = trustMe
fromList∘toList : ∀ s → fromList (toList s) ≡ s
fromList∘toList s = trustMe
toVec : (s : String) → Vec Char (List.length (toList s))
toVec s = Vec.fromList (toList s)
toCostring : String → Costring
toCostring = Colist.fromList ∘ toList
unlines : List String → String
unlines [] = ""
unlines (x ∷ xs) = x ++ "\n" ++ unlines xs
show : String → String
show = primShowString
-- Informative equality test.
_≟_ : Decidable {A = String} _≡_
s₁ ≟ s₂ with primStringEquality s₁ s₂
... | true = yes trustMe
... | false = no whatever
where postulate whatever : _
-- Boolean equality test.
--
-- Why is the definition _==_ = primStringEquality not used? One
-- reason is that the present definition can sometimes improve type
-- inference, at least with the version of Agda that is current at the
-- time of writing: see unit-test below.
infix 4 _==_
_==_ : String → String → Bool
s₁ == s₂ = ⌊ s₁ ≟ s₂ ⌋
private
-- The following unit test does not type-check (at the time of
-- writing) if _==_ is replaced by primStringEquality.
data P : (String → Bool) → Set where
p : (c : String) → P (_==_ c)
unit-test : P (_==_ "")
unit-test = p _
setoid : Setoid _ _
setoid = PropEq.setoid String
decSetoid : DecSetoid _ _
decSetoid = PropEq.decSetoid _≟_
-- Lexicographic ordering of strings.
strictTotalOrder : StrictTotalOrder _ _ _
strictTotalOrder =
On.strictTotalOrder
(StrictLex.<-strictTotalOrder Char.strictTotalOrder)
toList
|
{
"alphanum_fraction": 0.6637522769,
"avg_line_length": 25.1834862385,
"ext": "agda",
"hexsha": "7a4ff66cb02a24f73db9fe8ebaf54165f094dc06",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Data/String.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Data/String.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Data/String.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 718,
"size": 2745
}
|
{-# OPTIONS --no-auto-inline #-}
-- Agda doesn't have an Int type (only Word64). With some work we
-- can represent signed ints using Word64.
module Haskell.Prim.Int where
open import Agda.Builtin.Nat
open import Agda.Builtin.Word renaming (primWord64ToNat to w2n; primWord64FromNat to n2w)
open import Agda.Builtin.List
open import Agda.Builtin.Char
open import Agda.Builtin.String
open import Agda.Builtin.Unit
open import Agda.Builtin.Int using (pos; negsuc)
open import Agda.Builtin.Equality
open import Haskell.Prim
open import Haskell.Prim.Word
open import Haskell.Prim.Integer
open import Haskell.Prim.Bool
--------------------------------------------------
-- Definition
data Int : Set where
int64 : Word64 → Int
intToWord : Int → Word64
intToWord (int64 a) = a
unsafeIntToNat : Int → Nat
unsafeIntToNat a = w2n (intToWord a)
--------------------------------------------------
-- Literals
private
2⁶⁴ : Nat
2⁶⁴ = 18446744073709551616
2⁶³ : Nat
2⁶³ = 9223372036854775808
maxInt : Nat
maxInt = 2⁶³ - 1
instance
iNumberInt : Number Int
iNumberInt .Number.Constraint n = IsTrue (n < 2⁶³)
iNumberInt .fromNat n = int64 (n2w n)
iNegativeInt : Negative Int
iNegativeInt .Negative.Constraint n = IsTrue (n < 1 + 2⁶³)
iNegativeInt .fromNeg n = int64 (n2w (2⁶⁴ - n))
--------------------------------------------------
-- Arithmetic
isNegativeInt : Int → Bool
isNegativeInt (int64 w) = maxInt < w2n w
eqInt : Int → Int → Bool
eqInt (int64 a) (int64 b) = w2n a == w2n b
negateInt : Int → Int
negateInt (int64 a) = int64 (n2w (2⁶⁴ - w2n a))
intToInteger : Int → Integer
intToInteger a = if isNegativeInt a then negsuc (unsafeIntToNat (negateInt a) - 1)
else pos (unsafeIntToNat a)
integerToInt : Integer → Int
integerToInt (pos n) = int64 (n2w n)
integerToInt (negsuc n) = negateInt (int64 (n2w (suc n)))
private
ltPosInt : Int → Int → Bool
ltPosInt (int64 a) (int64 b) = ltWord a b
ltInt : Int → Int → Bool
ltInt a b with isNegativeInt a | isNegativeInt b
... | true | false = true
... | false | true = false
... | true | true = ltPosInt (negateInt b) (negateInt a)
... | false | false = ltPosInt a b
addInt : Int → Int → Int
addInt (int64 a) (int64 b) = int64 (addWord a b)
subInt : Int → Int → Int
subInt a b = addInt a (negateInt b)
mulInt : Int → Int → Int
mulInt (int64 a) (int64 b) = int64 (mulWord a b)
absInt : Int → Int
absInt a = if isNegativeInt a then negateInt a else a
signInt : Int → Int
signInt a = if isNegativeInt a then -1
else if eqInt a 0 then 0 else 1
showInt : Int → List Char
showInt a = showInteger (intToInteger a)
--------------------------------------------------
-- Constraints
IsNonNegativeInt : Int → Set
IsNonNegativeInt a@(int64 _) =
if isNegativeInt a then TypeError (primStringAppend (primStringFromList (showInt a)) " is negative")
else ⊤
intToNat : (a : Int) → ⦃ IsNonNegativeInt a ⦄ → Nat
intToNat a = unsafeIntToNat a
|
{
"alphanum_fraction": 0.638510143,
"avg_line_length": 25.0583333333,
"ext": "agda",
"hexsha": "b2241ed59ed60d6c16798bd3d1619423832d0895",
"lang": "Agda",
"max_forks_count": 18,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z",
"max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "seanpm2001/agda2hs",
"max_forks_repo_path": "lib/Haskell/Prim/Int.agda",
"max_issues_count": 63,
"max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "seanpm2001/agda2hs",
"max_issues_repo_path": "lib/Haskell/Prim/Int.agda",
"max_line_length": 102,
"max_stars_count": 55,
"max_stars_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dxts/agda2hs",
"max_stars_repo_path": "lib/Haskell/Prim/Int.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z",
"num_tokens": 961,
"size": 3007
}
|
module Vecs.Reverse where
open import Vecs
open import Nats
open import Equality
open import Function
------------------------------------------------------------------------
-- internal stuffs
private
-- rev$v:a=a:rev$v : ∀ {n m} {A : Set n} (a : A) (v : Vec A m) →
-- rev (v ∷ʳ a) ≡ a ∷ rev v
-- rev$v:a=a:rev$v _ [] = refl
-- rev$v:a=a:rev$v a (_ ∷ xs) with rev (xs ∷ʳ a) | rev$v:a=a:rev$v a xs
-- ... | .(a ∷ rev xs) | refl = refl
rev$v:a=a:rev$v : ∀ {n m} {A : Set n} (a : A) (v : Vec A m) →
reverse (v ∷ʳ a) ≡ a ∷ reverse v
rev$v:a=a:rev$v _ [] = refl
rev$v:a=a:rev$v a (_ ∷ xs)
rewrite rev$v:a=a:rev$v a xs
= refl
rev∘rev=id : ∀ {n m} {A : Set n} (v : Vec A m) → reverse (reverse v) ≡ v
rev∘rev=id [] = refl
rev∘rev=id (x ∷ xs)
rewrite rev$v:a=a:rev$v x $ reverse xs
| rev∘rev=id xs
= refl
------------------------------------------------------------------------
-- public aliases
vec-rev-rev-id : ∀ {n m} {A : Set n} (v : Vec A m) → reverse (reverse v) ≡ v
vec-rev-rev-id = rev∘rev=id
|
{
"alphanum_fraction": 0.4262877442,
"avg_line_length": 29.6315789474,
"ext": "agda",
"hexsha": "7e55305376d4ca16fc685913382ef14dddea4fd3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "ice1k/Theorems",
"max_forks_repo_path": "src/Vecs/Reverse.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "ice1k/Theorems",
"max_issues_repo_path": "src/Vecs/Reverse.agda",
"max_line_length": 76,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "ice1k/Theorems",
"max_stars_repo_path": "src/Vecs/Reverse.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z",
"num_tokens": 389,
"size": 1126
}
|
-- This file needs to be rewritten so that Rng's are defined as a
-- record (as is the case for other algebraic structures like
-- rings). As this file isn't used for anything at the moment this
-- rewrite has been postponed.
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Experiments.Rng where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.SIP
open import Cubical.Data.Sigma
open import Cubical.Structures.Axioms
open import Cubical.Structures.Auto
open import Cubical.Structures.Macro
open import Cubical.Algebra.Semigroup hiding (⟨_⟩)
open import Cubical.Algebra.AbGroup
private
variable
ℓ ℓ' : Level
module _ {ℓ} where
rawRngDesc : Desc ℓ
rawRngDesc = autoDesc (λ (X : Type ℓ) → (X → X → X) × (X → X → X))
open Macro ℓ rawRngDesc public renaming
( structure to RawRngStructure
; equiv to RawRngEquivStr
; univalent to rawRngUnivalentStr
)
RngAxioms : (X : Type ℓ) (s : RawRngStructure X) → Type ℓ
RngAxioms X (_·_ , _+_) =
AbGroupΣTheory.AbGroupAxioms X _·_ ×
SemigroupΣTheory.SemigroupAxioms X _+_ ×
((x y z : X) → x · (y + z) ≡ (x · y) + (x · z)) × ((x y z : X) → (x + y) · z ≡ (x · z) + (y · z))
RngStructure : Type ℓ → Type ℓ
RngStructure = AxiomsStructure RawRngStructure RngAxioms
Rng : Type (ℓ-suc ℓ)
Rng {ℓ} = TypeWithStr ℓ RngStructure
RngEquivStr : StrEquiv RngStructure ℓ
RngEquivStr = AxiomsEquivStr RawRngEquivStr RngAxioms
isPropRngAxioms : (X : Type ℓ) (s : RawRngStructure X) → isProp (RngAxioms X s)
isPropRngAxioms X (_·_ , _+_) = isPropΣ (AbGroupΣTheory.isPropAbGroupAxioms X _·_)
λ _ → isPropΣ (SemigroupΣTheory.isPropSemigroupAxioms X _+_)
λ { (isSetX , _) → isPropΣ (isPropΠ3 (λ _ _ _ → isSetX _ _))
λ _ → isPropΠ3 (λ _ _ _ → isSetX _ _)}
rngUnivalentStr : UnivalentStr {ℓ} RngStructure RngEquivStr
rngUnivalentStr = axiomsUnivalentStr _ isPropRngAxioms rawRngUnivalentStr
RngPath : (M N : Rng {ℓ}) → (M ≃[ RngEquivStr ] N) ≃ (M ≡ N)
RngPath = SIP rngUnivalentStr
|
{
"alphanum_fraction": 0.6822386679,
"avg_line_length": 35.4426229508,
"ext": "agda",
"hexsha": "62d261172facde73bc8391faf7be9fb053d49a5e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "knrafto/cubical",
"max_forks_repo_path": "Cubical/Experiments/Rng.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "knrafto/cubical",
"max_issues_repo_path": "Cubical/Experiments/Rng.agda",
"max_line_length": 99,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "knrafto/cubical",
"max_stars_repo_path": "Cubical/Experiments/Rng.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 760,
"size": 2162
}
|
module Issue27 where
infix 4 _≡_
infixl 4 _>_ _<_
infixr 1 _∨_
postulate ℝ : Set
------------------------------------------------------------------------------
-- Logic stuff
-- The identity type on the universe of discourse.
data _≡_ (x : ℝ) : ℝ → Set where
refl : x ≡ x
data _∨_ (A B : Set) : Set where
inj₁ : A → A ∨ B
inj₂ : B → A ∨ B
case : ∀ {A B} → {C : Set} → (A → C) → (B → C) → A ∨ B → C
case f g (inj₁ a) = f a
case f g (inj₂ b) = g b
------------------------------------------------------------------------------
-- Real numbers stuff
postulate _>_ : ℝ → ℝ → Set
_<_ : ℝ → ℝ → Set
y < x = x > y
{-# ATP definition _<_ #-}
postulate
trichotomy : (x y : ℝ) → (x > y) ∨ (x ≡ y) ∨ (x < y)
{-# ATP axiom trichotomy #-}
------------------------------------------------------------------------------
rmin : ℝ → ℝ → ℝ
rmin x y = case (λ _ → y) (λ h → case (λ _ → x) (λ _ → x) h) (trichotomy x y)
{-# ATP definition rmin #-}
postulate foo : ∀ x y → rmin x y ≡ rmin x y
{-# ATP prove foo #-}
{-
Error:
$ apia --check Issue27.agda
apia: tptp4X found an error/warning in the file /tmp/Issue27/44-foo.fof
Please report this as a bug
WARNING: Line 34 Char 159 Token "," : Multiple arity symbol n_62__46_8405600604384089447, arity 0 and now 2
WARNING: Line 34 Char 259 Token ")" : Multiple arity symbol n_60__48_8405600604384089447, arity 0 and now 2
WARNING: Line 34 Char 387 Token "," : Multiple arity symbol n_60__48_8405600604384089447, arity 0 and now 2
WARNING: Line 34 Char 460 Token ")" : Multiple arity symbol case_32_8405600604384089447, arity 5 and now 6
-}
|
{
"alphanum_fraction": 0.5355122564,
"avg_line_length": 27.4310344828,
"ext": "agda",
"hexsha": "a851ba8327702e8aecd2fc34a78dd7d6476ea910",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "issues/Issue27.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "issues/Issue27.agda",
"max_line_length": 107,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "issues/Issue27.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 531,
"size": 1591
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- The identity function
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Function.Construct.Identity where
open import Data.Product using (_,_)
open import Function using (id)
open import Function.Bundles
import Function.Definitions as Definitions
import Function.Structures as Structures
open import Level
open import Relation.Binary
open import Relation.Binary.PropositionalEquality using (_≡_; setoid)
private
variable
a ℓ : Level
A : Set a
------------------------------------------------------------------------
-- Properties
module _ (_≈_ : Rel A ℓ) where
open Definitions _≈_ _≈_
injective : Injective id
injective = id
surjective : Reflexive _≈_ → Surjective id
surjective refl x = x , refl
bijective : Reflexive _≈_ → Bijective id
bijective refl = injective , surjective refl
inverseˡ : Reflexive _≈_ → Inverseˡ id id
inverseˡ refl x = refl
inverseʳ : Reflexive _≈_ → Inverseʳ id id
inverseʳ refl x = refl
inverseᵇ : Reflexive _≈_ → Inverseᵇ id id
inverseᵇ refl = inverseˡ refl , inverseʳ refl
------------------------------------------------------------------------
-- Structures
module _ {_≈_ : Rel A ℓ} (isEq : IsEquivalence _≈_) where
open Structures _≈_ _≈_
open IsEquivalence isEq
isCongruent : IsCongruent id
isCongruent = record
{ cong = id
; isEquivalence₁ = isEq
; isEquivalence₂ = isEq
}
isInjection : IsInjection id
isInjection = record
{ isCongruent = isCongruent
; injective = injective _≈_
}
isSurjection : IsSurjection id
isSurjection = record
{ isCongruent = isCongruent
; surjective = surjective _≈_ refl
}
isBijection : IsBijection id
isBijection = record
{ isInjection = isInjection
; surjective = surjective _≈_ refl
}
isLeftInverse : IsLeftInverse id id
isLeftInverse = record
{ isCongruent = isCongruent
; cong₂ = id
; inverseˡ = inverseˡ _≈_ refl
}
isRightInverse : IsRightInverse id id
isRightInverse = record
{ isCongruent = isCongruent
; cong₂ = id
; inverseʳ = inverseʳ _≈_ refl
}
isInverse : IsInverse id id
isInverse = record
{ isLeftInverse = isLeftInverse
; inverseʳ = inverseʳ _≈_ refl
}
------------------------------------------------------------------------
-- Setoid bundles
module _ (S : Setoid a ℓ) where
open Setoid S
injection : Injection S S
injection = record
{ f = id
; cong = id
; injective = injective _≈_
}
surjection : Surjection S S
surjection = record
{ f = id
; cong = id
; surjective = surjective _≈_ refl
}
bijection : Bijection S S
bijection = record
{ f = id
; cong = id
; bijective = bijective _≈_ refl
}
equivalence : Equivalence S S
equivalence = record
{ f = id
; g = id
; cong₁ = id
; cong₂ = id
}
leftInverse : LeftInverse S S
leftInverse = record
{ f = id
; g = id
; cong₁ = id
; cong₂ = id
; inverseˡ = inverseˡ _≈_ refl
}
rightInverse : RightInverse S S
rightInverse = record
{ f = id
; g = id
; cong₁ = id
; cong₂ = id
; inverseʳ = inverseʳ _≈_ refl
}
inverse : Inverse S S
inverse = record
{ f = id
; f⁻¹ = id
; cong₁ = id
; cong₂ = id
; inverse = inverseᵇ _≈_ refl
}
------------------------------------------------------------------------
-- Propositional bundles
module _ (A : Set a) where
id-↣ : A ↣ A
id-↣ = injection (setoid A)
id-↠ : A ↠ A
id-↠ = surjection (setoid A)
id-⤖ : A ⤖ A
id-⤖ = bijection (setoid A)
id-⇔ : A ⇔ A
id-⇔ = equivalence (setoid A)
id-↩ : A ↩ A
id-↩ = leftInverse (setoid A)
id-↪ : A ↪ A
id-↪ = rightInverse (setoid A)
id-↔ : A ↔ A
id-↔ = inverse (setoid A)
|
{
"alphanum_fraction": 0.5405935737,
"avg_line_length": 21.3455497382,
"ext": "agda",
"hexsha": "2207a5789894e6497f96028bb47d708c27d0845e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Function/Construct/Identity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Function/Construct/Identity.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Function/Construct/Identity.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1251,
"size": 4077
}
|
------------------------------------------------------------------------
-- Coinductive axiomatisation of subtyping
------------------------------------------------------------------------
module RecursiveTypes.Subtyping.Axiomatic.Coinductive where
import Data.Empty as E
open import Data.Fin using (Fin; zero; suc)
open import Data.Nat using (ℕ; zero; suc)
open import Codata.Musical.Notation
open import Relation.Nullary
open import RecursiveTypes.Syntax
open import RecursiveTypes.Substitution
open import RecursiveTypes.Semantics
open import RecursiveTypes.Subtyping.Semantic.Coinductive as Sem
using (_≤∞P_; _≤Coind_; ⟦_⟧P; ⌜_⌝; ⊥; ⊤; var; _⟶_; _≤⟨_⟩_)
------------------------------------------------------------------------
-- Definition
-- This definition uses mixed induction and coinduction. Induction is
-- used for rules like transitivity, whereas coinduction is used for
-- structural rules. Benjamin Pierce observed in Types and Programming
-- Languages that coinductive inference systems cannot be
-- "declarative" (including rules like transitivity); they can be
-- "algorithmic" (syntax-directed), though. However, by mixing
-- induction and coinduction one can combine the benefits of
-- coinduction and declarative inference systems.
infixr 10 _⟶_
infix 4 _≤_
infix 3 _∎
infixr 2 _≤⟨_⟩_
data _≤_ {n} : Ty n → Ty n → Set where
-- Structural rules. Note that the rule for _⟶_ is coinductive.
⊥ : ∀ {τ} → ⊥ ≤ τ
⊤ : ∀ {σ} → σ ≤ ⊤
_⟶_ : ∀ {σ₁ σ₂ τ₁ τ₂} (τ₁≤σ₁ : ∞ (τ₁ ≤ σ₁)) (σ₂≤τ₂ : ∞ (σ₂ ≤ τ₂)) →
σ₁ ⟶ σ₂ ≤ τ₁ ⟶ τ₂
-- Rules for folding and unfolding μ.
unfold : ∀ {τ₁ τ₂} → μ τ₁ ⟶ τ₂ ≤ unfold[μ τ₁ ⟶ τ₂ ]
fold : ∀ {τ₁ τ₂} → unfold[μ τ₁ ⟶ τ₂ ] ≤ μ τ₁ ⟶ τ₂
-- Reflexivity.
_∎ : ∀ τ → τ ≤ τ
-- Transitivity.
_≤⟨_⟩_ : ∀ τ₁ {τ₂ τ₃} (τ₁≤τ₂ : τ₁ ≤ τ₂) (τ₂≤τ₃ : τ₂ ≤ τ₃) → τ₁ ≤ τ₃
------------------------------------------------------------------------
-- Equivalence
-- The axiomatisation is equivalent to the semantic definitions of
-- subtyping.
soundP : ∀ {n} {σ τ : Ty n} → σ ≤ τ → ⟦ σ ⟧ ≤∞P ⟦ τ ⟧
soundP ⊥ = ⊥
soundP ⊤ = ⊤
soundP (τ₁≤σ₁ ⟶ σ₂≤τ₂) = ♯ soundP (♭ τ₁≤σ₁) ⟶ ♯ soundP (♭ σ₂≤τ₂)
soundP unfold = ⌜ Sem.unfold ⌝
soundP fold = ⌜ Sem.fold ⌝
soundP (τ ∎) = ⌜ Sem.refl∞ _ ⌝
soundP (τ₁ ≤⟨ τ₁≤τ₂ ⟩ τ₂≤τ₃) = _ ≤⟨ soundP τ₁≤τ₂ ⟩ soundP τ₂≤τ₃
sound : ∀ {n} {σ τ : Ty n} → σ ≤ τ → σ ≤Coind τ
sound σ≤τ = ⟦ soundP σ≤τ ⟧P
complete : ∀ {n} (σ τ : Ty n) → σ ≤Coind τ → σ ≤ τ
complete ⊥ _ _ = ⊥
complete _ ⊤ _ = ⊤
complete ⊤ ⊥ ()
complete ⊤ (var x) ()
complete ⊤ (σ ⟶ τ) ()
complete ⊤ (μ σ ⟶ τ) ()
complete (var x) ⊥ ()
complete (var x) (var .x) var = var x ∎
complete (var x) (σ ⟶ τ) ()
complete (var x) (μ σ ⟶ τ) ()
complete (σ₁ ⟶ σ₂) ⊥ ()
complete (σ₁ ⟶ σ₂) (var x) ()
complete (σ₁ ⟶ σ₂) (τ₁ ⟶ τ₂) (τ₁≤σ₁ ⟶ σ₂≤τ₂) =
♯ complete τ₁ σ₁ (♭ τ₁≤σ₁) ⟶ ♯ complete σ₂ τ₂ (♭ σ₂≤τ₂)
complete (σ₁ ⟶ σ₂) (μ τ₁ ⟶ τ₂) (τ₁≤σ₁ ⟶ σ₂≤τ₂) =
σ₁ ⟶ σ₂ ≤⟨ ♯ complete _ _ (♭ τ₁≤σ₁) ⟶
♯ complete _ _ (♭ σ₂≤τ₂) ⟩
unfold[μ τ₁ ⟶ τ₂ ] ≤⟨ fold ⟩
μ τ₁ ⟶ τ₂ ∎
complete (μ σ₁ ⟶ σ₂) ⊥ ()
complete (μ σ₁ ⟶ σ₂) (var x) ()
complete (μ σ₁ ⟶ σ₂) (τ₁ ⟶ τ₂) (τ₁≤σ₁ ⟶ σ₂≤τ₂) =
μ σ₁ ⟶ σ₂ ≤⟨ unfold ⟩
unfold[μ σ₁ ⟶ σ₂ ] ≤⟨ ♯ complete _ _ (♭ τ₁≤σ₁) ⟶
♯ complete _ _ (♭ σ₂≤τ₂) ⟩
(τ₁ ⟶ τ₂) ∎
complete (μ σ₁ ⟶ σ₂) (μ τ₁ ⟶ τ₂) (τ₁≤σ₁ ⟶ σ₂≤τ₂) =
μ σ₁ ⟶ σ₂ ≤⟨ unfold ⟩
unfold[μ σ₁ ⟶ σ₂ ] ≤⟨ ♯ complete _ _ (♭ τ₁≤σ₁) ⟶
♯ complete _ _ (♭ σ₂≤τ₂) ⟩
unfold[μ τ₁ ⟶ τ₂ ] ≤⟨ fold ⟩
μ τ₁ ⟶ τ₂ ∎
------------------------------------------------------------------------
-- The reflexivity constructor is essential
-- Minor point: the constructor _∎ cannot be omitted. In
-- RecursiveTypes.Subtyping.Axiomatic.Incorrect it is shown that
-- _≤⟨_⟩_ is also essential.
module ∎-Is-Essential where
infixr 10 _⟶_
infix 4 _≤′_
infixr 2 _≤⟨_⟩_
data _≤′_ {n} : Ty n → Ty n → Set where
⊥ : ∀ {τ} → ⊥ ≤′ τ
⊤ : ∀ {σ} → σ ≤′ ⊤
_⟶_ : ∀ {σ₁ σ₂ τ₁ τ₂}
(τ₁≤σ₁ : ∞ (τ₁ ≤′ σ₁)) (σ₂≤τ₂ : ∞ (σ₂ ≤′ τ₂)) →
σ₁ ⟶ σ₂ ≤′ τ₁ ⟶ τ₂
unfold : ∀ {τ₁ τ₂} → μ τ₁ ⟶ τ₂ ≤′ unfold[μ τ₁ ⟶ τ₂ ]
fold : ∀ {τ₁ τ₂} → unfold[μ τ₁ ⟶ τ₂ ] ≤′ μ τ₁ ⟶ τ₂
_≤⟨_⟩_ : ∀ τ₁ {τ₂ τ₃}
(τ₁≤τ₂ : τ₁ ≤′ τ₂) (τ₂≤τ₃ : τ₂ ≤′ τ₃) → τ₁ ≤′ τ₃
sound′ : ∀ {n} {σ τ : Ty n} → σ ≤′ τ → σ ≤ τ
sound′ ⊥ = ⊥
sound′ ⊤ = ⊤
sound′ (τ₁≤σ₁ ⟶ σ₂≤τ₂) = ♯ sound′ (♭ τ₁≤σ₁) ⟶ ♯ sound′ (♭ σ₂≤τ₂)
sound′ unfold = unfold
sound′ fold = fold
sound′ (_ ≤⟨ τ₁≤τ₂ ⟩ τ₂≤τ₃) = _ ≤⟨ sound′ τ₁≤τ₂ ⟩ sound′ τ₂≤τ₃
x : Ty 1
x = var zero
x≰′x : ¬ x ≤′ x
x≰′x (.x ≤⟨ x≤′σ ⟩ σ≤x) = helper x≤′σ σ≤x
where
helper : ∀ {σ} → x ≤′ σ → σ ≤′ x → E.⊥
helper (.x ≤⟨ x≤σ₁ ⟩ σ₁≤σ₂) σ₂≤′x = helper x≤σ₁ (_ ≤⟨ σ₁≤σ₂ ⟩ σ₂≤′x)
helper ⊤ ⊤≤′x with sound (sound′ ⊤≤′x)
... | ()
incomplete : ¬ (∀ {n} {σ τ : Ty n} → σ ≤ τ → σ ≤′ τ)
incomplete hyp with x≰′x (hyp (x ∎))
... | ()
|
{
"alphanum_fraction": 0.4712359977,
"avg_line_length": 34.4248366013,
"ext": "agda",
"hexsha": "c05e5e7fae571794d0c53cb5c8f75677f6ff1408",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/codata",
"max_forks_repo_path": "RecursiveTypes/Subtyping/Axiomatic/Coinductive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/codata",
"max_issues_repo_path": "RecursiveTypes/Subtyping/Axiomatic/Coinductive.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/codata",
"max_stars_repo_path": "RecursiveTypes/Subtyping/Axiomatic/Coinductive.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z",
"num_tokens": 2230,
"size": 5267
}
|
-- Basic intuitionistic modal logic S4, without ∨, ⊥, or ◇.
-- Hilbert-style formalisation of syntax with context pairs.
-- Sequences of terms.
module BasicIS4.Syntax.DyadicHilbertSequential where
open import BasicIS4.Syntax.Common public
-- Derivations.
infix 3 _⊦⊢_
data _⊦⊢_ : Cx² Ty Ty → Cx Ty → Set where
nil : ∀ {Γ Δ} → Γ ⁏ Δ ⊦⊢ ∅
var : ∀ {Ξ A Γ Δ} → A ∈ Γ → Γ ⁏ Δ ⊦⊢ Ξ → Γ ⁏ Δ ⊦⊢ Ξ , A
mp : ∀ {Ξ A B Γ Δ} → A ▻ B ∈ Ξ → A ∈ Ξ → Γ ⁏ Δ ⊦⊢ Ξ → Γ ⁏ Δ ⊦⊢ Ξ , B
ci : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ ⊦⊢ Ξ → Γ ⁏ Δ ⊦⊢ Ξ , A ▻ A
ck : ∀ {Ξ A B Γ Δ} → Γ ⁏ Δ ⊦⊢ Ξ → Γ ⁏ Δ ⊦⊢ Ξ , A ▻ B ▻ A
cs : ∀ {Ξ A B C Γ Δ} → Γ ⁏ Δ ⊦⊢ Ξ → Γ ⁏ Δ ⊦⊢ Ξ , (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C
mvar : ∀ {Ξ A Γ Δ} → A ∈ Δ → Γ ⁏ Δ ⊦⊢ Ξ → Γ ⁏ Δ ⊦⊢ Ξ , A
nec : ∀ {Ξ Ξ′ A Γ Δ} → ∅ ⁏ Δ ⊦⊢ Ξ′ , A → Γ ⁏ Δ ⊦⊢ Ξ → Γ ⁏ Δ ⊦⊢ Ξ , □ A
cdist : ∀ {Ξ A B Γ Δ} → Γ ⁏ Δ ⊦⊢ Ξ → Γ ⁏ Δ ⊦⊢ Ξ , □ (A ▻ B) ▻ □ A ▻ □ B
cup : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ ⊦⊢ Ξ → Γ ⁏ Δ ⊦⊢ Ξ , □ A ▻ □ □ A
cdown : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ ⊦⊢ Ξ → Γ ⁏ Δ ⊦⊢ Ξ , □ A ▻ A
cpair : ∀ {Ξ A B Γ Δ} → Γ ⁏ Δ ⊦⊢ Ξ → Γ ⁏ Δ ⊦⊢ Ξ , A ▻ B ▻ A ∧ B
cfst : ∀ {Ξ A B Γ Δ} → Γ ⁏ Δ ⊦⊢ Ξ → Γ ⁏ Δ ⊦⊢ Ξ , A ∧ B ▻ A
csnd : ∀ {Ξ A B Γ Δ} → Γ ⁏ Δ ⊦⊢ Ξ → Γ ⁏ Δ ⊦⊢ Ξ , A ∧ B ▻ B
unit : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊦⊢ Ξ → Γ ⁏ Δ ⊦⊢ Ξ , ⊤
infix 3 _⊢_
_⊢_ : Cx² Ty Ty → Ty → Set
Γ ⁏ Δ ⊢ A = ∃ (λ Ξ → Γ ⁏ Δ ⊦⊢ Ξ , A)
-- Monotonicity with respect to context inclusion.
mono⊦⊢ : ∀ {Ξ Γ Γ′ Δ} → Γ ⊆ Γ′ → Γ ⁏ Δ ⊦⊢ Ξ → Γ′ ⁏ Δ ⊦⊢ Ξ
mono⊦⊢ η nil = nil
mono⊦⊢ η (var i ts) = var (mono∈ η i) (mono⊦⊢ η ts)
mono⊦⊢ η (mp i j ts) = mp i j (mono⊦⊢ η ts)
mono⊦⊢ η (ci ts) = ci (mono⊦⊢ η ts)
mono⊦⊢ η (ck ts) = ck (mono⊦⊢ η ts)
mono⊦⊢ η (cs ts) = cs (mono⊦⊢ η ts)
mono⊦⊢ η (mvar i ts) = mvar i (mono⊦⊢ η ts)
mono⊦⊢ η (nec ss ts) = nec ss (mono⊦⊢ η ts)
mono⊦⊢ η (cdist ts) = cdist (mono⊦⊢ η ts)
mono⊦⊢ η (cup ts) = cup (mono⊦⊢ η ts)
mono⊦⊢ η (cdown ts) = cdown (mono⊦⊢ η ts)
mono⊦⊢ η (cpair ts) = cpair (mono⊦⊢ η ts)
mono⊦⊢ η (cfst ts) = cfst (mono⊦⊢ η ts)
mono⊦⊢ η (csnd ts) = csnd (mono⊦⊢ η ts)
mono⊦⊢ η (unit ts) = unit (mono⊦⊢ η ts)
mono⊢ : ∀ {A Γ Γ′ Δ} → Γ ⊆ Γ′ → Γ ⁏ Δ ⊢ A → Γ′ ⁏ Δ ⊢ A
mono⊢ η (Ξ , ts) = Ξ , mono⊦⊢ η ts
-- Monotonicity with respect to modal context inclusion.
mmono⊦⊢ : ∀ {Ξ Γ Δ Δ′} → Δ ⊆ Δ′ → Γ ⁏ Δ ⊦⊢ Ξ → Γ ⁏ Δ′ ⊦⊢ Ξ
mmono⊦⊢ θ nil = nil
mmono⊦⊢ θ (var i ts) = var i (mmono⊦⊢ θ ts)
mmono⊦⊢ θ (mp i j ts) = mp i j (mmono⊦⊢ θ ts)
mmono⊦⊢ θ (ci ts) = ci (mmono⊦⊢ θ ts)
mmono⊦⊢ θ (ck ts) = ck (mmono⊦⊢ θ ts)
mmono⊦⊢ θ (cs ts) = cs (mmono⊦⊢ θ ts)
mmono⊦⊢ θ (mvar i ts) = mvar (mono∈ θ i) (mmono⊦⊢ θ ts)
mmono⊦⊢ θ (nec ss ts) = nec (mmono⊦⊢ θ ss) (mmono⊦⊢ θ ts)
mmono⊦⊢ θ (cdist ts) = cdist (mmono⊦⊢ θ ts)
mmono⊦⊢ θ (cup ts) = cup (mmono⊦⊢ θ ts)
mmono⊦⊢ θ (cdown ts) = cdown (mmono⊦⊢ θ ts)
mmono⊦⊢ θ (cpair ts) = cpair (mmono⊦⊢ θ ts)
mmono⊦⊢ θ (cfst ts) = cfst (mmono⊦⊢ θ ts)
mmono⊦⊢ θ (csnd ts) = csnd (mmono⊦⊢ θ ts)
mmono⊦⊢ θ (unit ts) = unit (mmono⊦⊢ θ ts)
mmono⊢ : ∀ {A Γ Δ Δ′} → Δ ⊆ Δ′ → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ′ ⊢ A
mmono⊢ θ (Ξ , ts) = Ξ , mmono⊦⊢ θ ts
-- Concatenation of derivations.
_⧺⊦_ : ∀ {Γ Δ Ξ Ξ′} → Γ ⁏ Δ ⊦⊢ Ξ → Γ ⁏ Δ ⊦⊢ Ξ′ → Γ ⁏ Δ ⊦⊢ Ξ ⧺ Ξ′
us ⧺⊦ nil = us
us ⧺⊦ var i ts = var i (us ⧺⊦ ts)
us ⧺⊦ mp i j ts = mp (mono∈ weak⊆⧺₂ i) (mono∈ weak⊆⧺₂ j) (us ⧺⊦ ts)
us ⧺⊦ ci ts = ci (us ⧺⊦ ts)
us ⧺⊦ ck ts = ck (us ⧺⊦ ts)
us ⧺⊦ cs ts = cs (us ⧺⊦ ts)
us ⧺⊦ mvar i ts = mvar i (us ⧺⊦ ts)
us ⧺⊦ nec ss ts = nec ss (us ⧺⊦ ts)
us ⧺⊦ cdist ts = cdist (us ⧺⊦ ts)
us ⧺⊦ cup ts = cup (us ⧺⊦ ts)
us ⧺⊦ cdown ts = cdown (us ⧺⊦ ts)
us ⧺⊦ cpair ts = cpair (us ⧺⊦ ts)
us ⧺⊦ cfst ts = cfst (us ⧺⊦ ts)
us ⧺⊦ csnd ts = csnd (us ⧺⊦ ts)
us ⧺⊦ unit ts = unit (us ⧺⊦ ts)
-- Modus ponens and necessitation in expanded form.
app : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ▻ B → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ B
app {A} {B} (Ξ , ts) (Ξ′ , us) = Ξ″ , vs
where Ξ″ = (Ξ′ , A) ⧺ (Ξ , A ▻ B)
vs = mp top (mono∈ (weak⊆⧺₁ (Ξ , A ▻ B)) top) (us ⧺⊦ ts)
box : ∀ {A Γ Δ} → ∅ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ □ A
box (Ξ , ts) = ∅ , nec ts nil
|
{
"alphanum_fraction": 0.4435663127,
"avg_line_length": 36.8090909091,
"ext": "agda",
"hexsha": "96b8218061045498aea45855217cdb124a049a69",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/hilbert-gentzen",
"max_forks_repo_path": "BasicIS4/Syntax/DyadicHilbertSequential.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/hilbert-gentzen",
"max_issues_repo_path": "BasicIS4/Syntax/DyadicHilbertSequential.agda",
"max_line_length": 83,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/hilbert-gentzen",
"max_stars_repo_path": "BasicIS4/Syntax/DyadicHilbertSequential.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z",
"num_tokens": 2652,
"size": 4049
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
open import Cubical.Core.Everything
open import Cubical.Foundations.HLevels
module Cubical.Algebra.Monoid.Construct.Free {ℓ} (Aˢ : hSet ℓ) where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Path
open import Cubical.Algebra.Monoid
open import Cubical.Data.Empty.Polymorphic
open import Cubical.Data.Prod
open import Cubical.Relation.Binary.Reasoning.Equality
private
A = ⟨ Aˢ ⟩
isSetA = Aˢ .snd
------------------------------------------------------------------------
-- The direct free monoid type
data FreeM : Type ℓ where
inj : A → FreeM
_•_ : Op₂ FreeM
ε : FreeM
•-assoc : Associative _•_
ε-identityˡ : LeftIdentity ε _•_
ε-identityʳ : RightIdentity ε _•_
squash : isSet FreeM
ε-identity : Identity ε _•_
ε-identity = ε-identityˡ , ε-identityʳ
elim : ∀ {ℓ′} {B : FreeM → Type ℓ′} →
(∀ x → isSet (B x)) →
(∀ x → B (inj x)) →
(op : ∀ {x y} → B x → B y → B (x • y)) →
(e : B ε) →
(∀ {x y z} (a : B x) (b : B y) (c : B z) → PathP (λ i → B (•-assoc x y z i)) (op (op a b) c) (op a (op b c))) →
(∀ {x} (a : B x) → PathP (λ i → B (ε-identityˡ x i)) (op e a) a) →
(∀ {x} (a : B x) → PathP (λ i → B (ε-identityʳ x i)) (op a e) a) →
(x : FreeM) → B x
elim isSetB f op e assc idˡ idʳ (inj x) = f x
elim isSetB f op e assc idˡ idʳ (x • y) = op (elim isSetB f op e assc idˡ idʳ x) (elim isSetB f op e assc idˡ idʳ y)
elim isSetB f op e assc idˡ idʳ ε = e
elim isSetB f op e assc idˡ idʳ (•-assoc x y z i) = assc (elim isSetB f op e assc idˡ idʳ x)
(elim isSetB f op e assc idˡ idʳ y)
(elim isSetB f op e assc idˡ idʳ z) i
elim isSetB f op e assc idˡ idʳ (ε-identityˡ x i) = idˡ (elim isSetB f op e assc idˡ idʳ x) i
elim isSetB f op e assc idˡ idʳ (ε-identityʳ x i) = idʳ (elim isSetB f op e assc idˡ idʳ x) i
elim isSetB f op e assc idˡ idʳ (squash x y p q i j) =
isOfHLevel→isOfHLevelDep 2 isSetB
(elim isSetB f op e assc idˡ idʳ x) (elim isSetB f op e assc idˡ idʳ y)
(cong (elim isSetB f op e assc idˡ idʳ) p) (cong (elim isSetB f op e assc idˡ idʳ) q) (squash x y p q) i j
------------------------------------------------------------------------
-- The simplified free monoid type
-- Defined in Cubical.Data.List
open import Cubical.Data.List
open Structures isSetA public
------------------------------------------------------------------------
-- Proving the two types are equivalent
List→FreeM : List A → FreeM
List→FreeM [] = ε
List→FreeM (x ∷ xs) = inj x • List→FreeM xs
FreeM→List : FreeM → List A
FreeM→List = elim (λ _ → isOfHLevelList 0 isSetA) [_] _++_ [] ++-assoc ++-identityˡ ++-identityʳ
++-hom : Homomorphic₂ List→FreeM _++_ _•_
++-hom [] ys = sym (ε-identityˡ _)
++-hom (x ∷ xs) ys = cong (inj x •_) (++-hom xs ys) ∙ sym (•-assoc (inj x) (List→FreeM xs) (List→FreeM ys))
List→FreeM→List : retract List→FreeM FreeM→List
List→FreeM→List [] = refl
List→FreeM→List (x ∷ xs) = cong (x ∷_) (List→FreeM→List xs)
FreeM→List→FreeM : section List→FreeM FreeM→List
FreeM→List→FreeM = elim (λ _ → isSet→isGroupoid squash _ _) (λ _ → ε-identityʳ _) sectionOp refl
(λ _ _ _ → isOfHLevelPathP' 0 (squash _ _) _ _ .fst)
(λ _ → isOfHLevelPathP' 0 (squash _ _) _ _ .fst)
(λ _ → isOfHLevelPathP' 0 (squash _ _) _ _ .fst)
where
sectionOp : ∀ {x y} → List→FreeM (FreeM→List x) ≡ x →
List→FreeM (FreeM→List y) ≡ y →
List→FreeM (FreeM→List (x • y)) ≡ (x • y)
sectionOp {x} {y} p q =
List→FreeM (FreeM→List (x • y)) ≡⟨⟩
List→FreeM (FreeM→List x ++ FreeM→List y) ≡⟨ ++-hom (FreeM→List x) (FreeM→List y) ⟩
List→FreeM (FreeM→List x) • List→FreeM (FreeM→List y) ≡⟨ cong₂ _•_ p q ⟩
x • y ∎
List≃FreeM : List A ≃ FreeM
List≃FreeM = isoToEquiv (iso List→FreeM FreeM→List FreeM→List→FreeM List→FreeM→List)
List≡FreeM : List A ≡ FreeM
List≡FreeM = ua List≃FreeM
------------------------------------------------------------------------
-- Monoid structure
FreeM-isMonoid : IsMonoid FreeM _•_ ε
FreeM-isMonoid = record
{ isSemigroup = record
{ isMagma = record { is-set = squash }
; assoc = •-assoc
}
; identity = ε-identity
}
FreeMonoid : Monoid ℓ
FreeMonoid = record { isMonoid = FreeM-isMonoid }
EquivFreeM : MonoidEquiv ListMonoid FreeMonoid
EquivFreeM = record
{ eq = List≃FreeM
; isHom = record
{ preservesOp = ++-hom
; preservesId = refl
}
}
FreeMonoid≡ : ListMonoid ≡ FreeMonoid
FreeMonoid≡ = uaMonoid EquivFreeM
|
{
"alphanum_fraction": 0.5577355406,
"avg_line_length": 35.4565217391,
"ext": "agda",
"hexsha": "c5a84f1f78221fe46c40a31cc975e0cb82a51a33",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Algebra/Monoid/Construct/Free.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Algebra/Monoid/Construct/Free.agda",
"max_line_length": 119,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Algebra/Monoid/Construct/Free.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1776,
"size": 4893
}
|
module SolveAll-Norm where
open import Common.Equality
open import Common.List
open import Common.Nat
example = 0 ∷ 1 ∷ 2 ∷ []
test1 : length example ≡ {!!}
test1 = refl
reverse : {A : Set} → List A → List A
reverse = go [] where
go : {A : Set} → List A → List A → List A
go acc [] = acc
go acc (x ∷ xs) = go (x ∷ acc) xs
test2 : reverse example ≡ {!!}
test2 = refl
|
{
"alphanum_fraction": 0.6015625,
"avg_line_length": 18.2857142857,
"ext": "agda",
"hexsha": "b261ef75c1c1afbdd89e695cd04757d607e23540",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/SolveAll-Norm.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/SolveAll-Norm.agda",
"max_line_length": 43,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/SolveAll-Norm.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 132,
"size": 384
}
|
open import Agda.Primitive
open import Agda.Builtin.Equality
open import Agda.Builtin.List
open import Agda.Builtin.Reflection
testQuote : quoteTerm Setω ≡ agda-sort (inf 0)
testQuote = refl
macro
doUnquote : Term → Term → TC _
doUnquote t hole = bindTC (unquoteTC t) (unify hole)
testUnquote : doUnquote (agda-sort (inf 0))
testUnquote = ∀ ℓ → Set ℓ
|
{
"alphanum_fraction": 0.7458100559,
"avg_line_length": 23.8666666667,
"ext": "agda",
"hexsha": "c2721b12eca202d9cda4ae444a4c5735ebfc3c67",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Succeed/QuoteSetOmega.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Succeed/QuoteSetOmega.agda",
"max_line_length": 54,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Succeed/QuoteSetOmega.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 115,
"size": 358
}
|
module Issue62 where
module A where
data A : Set where
a : A
module B where
open A
data B : Set where
a : B
open B
-- Note that a : A.A is not in scope here, so the following should not
-- type check.
foo : A.A -> A.A
foo a = a
|
{
"alphanum_fraction": 0.609561753,
"avg_line_length": 10.9130434783,
"ext": "agda",
"hexsha": "c6bede648163b67800408769fc7346ca18c616c0",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue62.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue62.agda",
"max_line_length": 70,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue62.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 81,
"size": 251
}
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Base.Types
import LibraBFT.Impl.Consensus.ConsensusTypes.ProposalMsg as ProposalMsg
import LibraBFT.Impl.Consensus.ConsensusTypes.VoteMsg as VoteMsg
open import LibraBFT.ImplShared.Base.Types
open import LibraBFT.ImplShared.Consensus.Types
open import LibraBFT.ImplShared.NetworkMsg
open import Optics.All
open import Util.Prelude
module LibraBFT.Impl.Consensus.Network where
processProposal : {- NodeId → -} ProposalMsg → Epoch → ValidatorVerifier → Either (Either ErrLog InfoLog) Unit
processProposal {- peerId -} proposal myEpoch vv =
case pProposal of λ where
(Left e) → Left (Left e)
(Right unit) →
grd‖ proposal ^∙ pmProposal ∙ bEpoch == myEpoch ≔
pure unit
-- TODO : push this onto a queue if epoch is in future (is this still relevant?)
‖ proposal ^∙ pmProposal ∙ bEpoch == myEpoch + 1 ≔
Left (Right fakeInfo) -- proposal in new epoch arrived before my epoch change
‖ otherwise≔
Left (Left fakeErr) -- proposal for wrong epoch
where
pProposal = do
ProposalMsg.verify proposal vv
-- Note that our model does not assume knowledge of who sends a message, and therefore we do not
-- check that the proposal is *sent* by the given peer (of course it must be *signed* by the
-- peer, which is verified elsewhere). Our proof should not require this.
{- lcheck (proposal ^∙ pmProposal ∙ bAuthor == just peerId) -}
processVote : {- NodeId → -} VoteMsg → Epoch → ValidatorVerifier → Either (Either ErrLog InfoLog) Unit
processVote {- peerId -} voteMsg myEpoch vv =
case pVote of λ where
(Left e) → Left (Left e)
(Right unit) →
grd‖ voteMsg ^∙ vmEpoch == myEpoch ≔
pure unit
-- IMPL-TODO : push this onto a queue if epoch is in future (is this still relevant?)
-- NOTE : epoch might be mismatched because
-- - vote for EpochChange proposal round + 2 arrives
-- after leader already already formed a quorum
-- - timeout votes for previous or subsequent epochs arrive after the epoch change
‖ voteMsg ^∙ vmVote ∙ vVoteData ∙ vdProposed ∙ biEpoch + 1 == myEpoch ≔
Left (Right (fakeInfo {- (here $ "vote for previous epoch arrived after my epoch change" ∷ lsE myEpoch ∷ []) -}))
‖ voteMsg ^∙ vmVote ∙ vVoteData ∙ vdProposed ∙ biEpoch == myEpoch + 1 ≔
Left (Right (fakeInfo {- (here $ "vote for previous epoch arrived before my epoch change" ∷ lsE myEpoch ∷ []) -}))
‖ otherwise≔
Left (Left (fakeErr {- (here $ "vote for wrong epoch" ∷ lsE myEpoch ∷ [])-}))
where
-- here t = "Network" ∷ "processVote" ∷ lsVM voteMsg ∷ t
pVote : Either ErrLog Unit
pVote = do
-- See comment above about checking which peer *sent* the message.
-- lcheck (voteMsg ^∙ vmVote ∙ vAuthor == peerId)
-- (here $ "vote received must be from the sending peer" ∷ lsA peerId ∷ [])
VoteMsg.verify voteMsg vv
|
{
"alphanum_fraction": 0.6725912067,
"avg_line_length": 49.3384615385,
"ext": "agda",
"hexsha": "11b62fe12e23f85565a1b0576216be2b94de1a92",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/Consensus/Network.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/Consensus/Network.agda",
"max_line_length": 125,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/Consensus/Network.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 882,
"size": 3207
}
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Semirings.Definition
module Semirings.Lemmas {a : _} {A : Set a} {Zero One : A} {_+_ _*_ : A → A → A} (S : Semiring Zero One _+_ _*_) where
open Semiring S
doubleIsAddTwo : (a : A) → (a + a) ≡ (One + One) * a
doubleIsAddTwo a = transitivity (equalityCommutative (+WellDefined (productOneLeft a) (productOneLeft a))) (equalityCommutative (+DistributesOver*' One One a))
|
{
"alphanum_fraction": 0.6875,
"avg_line_length": 38.6666666667,
"ext": "agda",
"hexsha": "8deefe45b11c6f9d853e30aaeb0363cbbc484672",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Semirings/Lemmas.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Semirings/Lemmas.agda",
"max_line_length": 159,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Semirings/Lemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 149,
"size": 464
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Integers
------------------------------------------------------------------------
module Data.Integer where
open import Data.Nat as ℕ
using (ℕ) renaming (_+_ to _ℕ+_; _*_ to _ℕ*_)
import Data.Nat.Show as ℕ
open import Data.Sign as Sign using (Sign) renaming (_*_ to _S*_)
open import Data.Product as Prod
open import Data.String using (String; _++_)
open import Function
open import Data.Sum as Sum
open import Relation.Nullary
import Relation.Nullary.Decidable as Dec
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; refl; sym; cong; cong₂)
open PropEq.≡-Reasoning
infix 8 +_ -_
infixl 7 _*_ _⊓_
infixl 6 _+_ _-_ _⊖_ _⊔_
infix 4 _≤_ _≤?_
------------------------------------------------------------------------
-- The types
-- Integers.
data ℤ : Set where
-[1+_] : (n : ℕ) → ℤ -- -[1+ n ] stands for - (1 + n).
+_ : (n : ℕ) → ℤ -- + n stands for n.
------------------------------------------------------------------------
-- Conversions
-- Absolute value.
∣_∣ : ℤ → ℕ
∣ + n ∣ = n
∣ -[1+ n ] ∣ = ℕ.suc n
-- Gives the sign. For zero the sign is arbitrarily chosen to be +.
sign : ℤ → Sign
sign (+ _) = Sign.+
sign -[1+ _ ] = Sign.-
-- Decimal string representation.
show : ℤ → String
show i = showSign (sign i) ++ ℕ.show ∣ i ∣
where
showSign : Sign → String
showSign Sign.- = "-"
showSign Sign.+ = ""
------------------------------------------------------------------------
-- A view of integers as sign + absolute value
infix 5 _◂_ _◃_
_◃_ : Sign → ℕ → ℤ
_ ◃ ℕ.zero = + ℕ.zero
Sign.+ ◃ n = + n
Sign.- ◃ ℕ.suc n = -[1+ n ]
◃-left-inverse : ∀ i → sign i ◃ ∣ i ∣ ≡ i
◃-left-inverse -[1+ n ] = refl
◃-left-inverse (+ ℕ.zero) = refl
◃-left-inverse (+ ℕ.suc n) = refl
◃-cong : ∀ {i j} → sign i ≡ sign j → ∣ i ∣ ≡ ∣ j ∣ → i ≡ j
◃-cong {i} {j} sign-≡ abs-≡ = begin
i ≡⟨ sym $ ◃-left-inverse i ⟩
sign i ◃ ∣ i ∣ ≡⟨ cong₂ _◃_ sign-≡ abs-≡ ⟩
sign j ◃ ∣ j ∣ ≡⟨ ◃-left-inverse j ⟩
j ∎
data SignAbs : ℤ → Set where
_◂_ : (s : Sign) (n : ℕ) → SignAbs (s ◃ n)
signAbs : ∀ i → SignAbs i
signAbs i = PropEq.subst SignAbs (◃-left-inverse i) $
sign i ◂ ∣ i ∣
------------------------------------------------------------------------
-- Equality is decidable
infix 4 _≟_
_≟_ : Decidable {A = ℤ} _≡_
i ≟ j with Sign._≟_ (sign i) (sign j) | ℕ._≟_ ∣ i ∣ ∣ j ∣
i ≟ j | yes sign-≡ | yes abs-≡ = yes (◃-cong sign-≡ abs-≡)
i ≟ j | no sign-≢ | _ = no (sign-≢ ∘ cong sign)
i ≟ j | _ | no abs-≢ = no (abs-≢ ∘ cong ∣_∣)
decSetoid : DecSetoid _ _
decSetoid = PropEq.decSetoid _≟_
------------------------------------------------------------------------
-- Arithmetic
-- Negation.
-_ : ℤ → ℤ
- (+ ℕ.suc n) = -[1+ n ]
- (+ ℕ.zero) = + ℕ.zero
- -[1+ n ] = + ℕ.suc n
-- Subtraction of natural numbers.
_⊖_ : ℕ → ℕ → ℤ
m ⊖ ℕ.zero = + m
ℕ.zero ⊖ ℕ.suc n = -[1+ n ]
ℕ.suc m ⊖ ℕ.suc n = m ⊖ n
-- Addition.
_+_ : ℤ → ℤ → ℤ
-[1+ m ] + -[1+ n ] = -[1+ ℕ.suc (m ℕ+ n) ]
-[1+ m ] + + n = n ⊖ ℕ.suc m
+ m + -[1+ n ] = m ⊖ ℕ.suc n
+ m + + n = + (m ℕ+ n)
-- Subtraction.
_-_ : ℤ → ℤ → ℤ
i - j = i + - j
-- Successor.
suc : ℤ → ℤ
suc i = + 1 + i
private
suc-is-lazy⁺ : ∀ n → suc (+ n) ≡ + ℕ.suc n
suc-is-lazy⁺ n = refl
suc-is-lazy⁻ : ∀ n → suc -[1+ ℕ.suc n ] ≡ -[1+ n ]
suc-is-lazy⁻ n = refl
-- Predecessor.
pred : ℤ → ℤ
pred i = - + 1 + i
private
pred-is-lazy⁺ : ∀ n → pred (+ ℕ.suc n) ≡ + n
pred-is-lazy⁺ n = refl
pred-is-lazy⁻ : ∀ n → pred -[1+ n ] ≡ -[1+ ℕ.suc n ]
pred-is-lazy⁻ n = refl
-- Multiplication.
_*_ : ℤ → ℤ → ℤ
i * j = sign i S* sign j ◃ ∣ i ∣ ℕ* ∣ j ∣
-- Maximum.
_⊔_ : ℤ → ℤ → ℤ
-[1+ m ] ⊔ -[1+ n ] = -[1+ ℕ._⊓_ m n ]
-[1+ m ] ⊔ + n = + n
+ m ⊔ -[1+ n ] = + m
+ m ⊔ + n = + (ℕ._⊔_ m n)
-- Minimum.
_⊓_ : ℤ → ℤ → ℤ
-[1+ m ] ⊓ -[1+ n ] = -[1+ ℕ._⊔_ m n ]
-[1+ m ] ⊓ + n = -[1+ m ]
+ m ⊓ -[1+ n ] = -[1+ n ]
+ m ⊓ + n = + (ℕ._⊓_ m n)
------------------------------------------------------------------------
-- Ordering
data _≤_ : ℤ → ℤ → Set where
-≤+ : ∀ {m n} → -[1+ m ] ≤ + n
-≤- : ∀ {m n} → (n≤m : ℕ._≤_ n m) → -[1+ m ] ≤ -[1+ n ]
+≤+ : ∀ {m n} → (m≤n : ℕ._≤_ m n) → + m ≤ + n
drop‿+≤+ : ∀ {m n} → + m ≤ + n → ℕ._≤_ m n
drop‿+≤+ (+≤+ m≤n) = m≤n
drop‿-≤- : ∀ {m n} → -[1+ m ] ≤ -[1+ n ] → ℕ._≤_ n m
drop‿-≤- (-≤- n≤m) = n≤m
_≤?_ : Decidable _≤_
-[1+ m ] ≤? -[1+ n ] = Dec.map′ -≤- drop‿-≤- (ℕ._≤?_ n m)
-[1+ m ] ≤? + n = yes -≤+
+ m ≤? -[1+ n ] = no λ ()
+ m ≤? + n = Dec.map′ +≤+ drop‿+≤+ (ℕ._≤?_ m n)
decTotalOrder : DecTotalOrder _ _ _
decTotalOrder = record
{ Carrier = ℤ
; _≈_ = _≡_
; _≤_ = _≤_
; isDecTotalOrder = record
{ isTotalOrder = record
{ isPartialOrder = record
{ isPreorder = record
{ isEquivalence = PropEq.isEquivalence
; reflexive = refl′
; trans = trans
}
; antisym = antisym
}
; total = total
}
; _≟_ = _≟_
; _≤?_ = _≤?_
}
}
where
module ℕO = DecTotalOrder ℕ.decTotalOrder
refl′ : _≡_ ⇒ _≤_
refl′ { -[1+ n ]} refl = -≤- ℕO.refl
refl′ {+ n} refl = +≤+ ℕO.refl
trans : Transitive _≤_
trans -≤+ (+≤+ n≤m) = -≤+
trans (-≤- n≤m) -≤+ = -≤+
trans (-≤- n≤m) (-≤- k≤n) = -≤- (ℕO.trans k≤n n≤m)
trans (+≤+ m≤n) (+≤+ n≤k) = +≤+ (ℕO.trans m≤n n≤k)
antisym : Antisymmetric _≡_ _≤_
antisym -≤+ ()
antisym (-≤- n≤m) (-≤- m≤n) = cong -[1+_] $ ℕO.antisym m≤n n≤m
antisym (+≤+ m≤n) (+≤+ n≤m) = cong +_ $ ℕO.antisym m≤n n≤m
total : Total _≤_
total (-[1+ m ]) (-[1+ n ]) = [ inj₂ ∘′ -≤- , inj₁ ∘′ -≤- ]′ $ ℕO.total m n
total (-[1+ m ]) (+ n ) = inj₁ -≤+
total (+ m ) (-[1+ n ]) = inj₂ -≤+
total (+ m ) (+ n ) = [ inj₁ ∘′ +≤+ , inj₂ ∘′ +≤+ ]′ $ ℕO.total m n
poset : Poset _ _ _
poset = DecTotalOrder.poset decTotalOrder
import Relation.Binary.PartialOrderReasoning as POR
module ≤-Reasoning = POR poset
renaming (_≈⟨_⟩_ to _≡⟨_⟩_)
|
{
"alphanum_fraction": 0.4195292621,
"avg_line_length": 24.8537549407,
"ext": "agda",
"hexsha": "f106a9f994bfe354725e712ffcc9f14f1ab72be2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Data/Integer.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Data/Integer.agda",
"max_line_length": 77,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Data/Integer.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 2655,
"size": 6288
}
|
{-# OPTIONS --without-K #-}
{-
Imports everything that is not imported by something else.
This is not supposed to be used anywhere, this is just a simple way to
do `make all'
This file is intentionally named index.agda so that
Agda will generate index.html.
-}
module index where
import Base
import Spaces.IntervalProps
import Algebra.F2NotCommutative
import Spaces.LoopSpaceCircle
import Spaces.LoopSpaceDecidableWedgeCircles
import Homotopy.PullbackIsPullback
import Homotopy.PushoutIsPushout
import Homotopy.Truncation
import Sets.QuotientUP
import Spaces.PikSn
import Homotopy.VanKampen
import Homotopy.Cover
import Homotopy.Cover.ExamplePi1Circle
|
{
"alphanum_fraction": 0.8307926829,
"avg_line_length": 24.2962962963,
"ext": "agda",
"hexsha": "1e22ec3ba13d9ab61128ef9704f6bf6e0171d5f3",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/index.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/index.agda",
"max_line_length": 70,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "old/index.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 170,
"size": 656
}
|
data M : Set where
m : (I : _) → (I → M) → M
-- inferred
-- m : (I : Set) → (I → M) → M
|
{
"alphanum_fraction": 0.3804347826,
"avg_line_length": 13.1428571429,
"ext": "agda",
"hexsha": "f3a03e534cd95ece881f8267027d849c18d1b333",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Fail/Issue4461.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue4461.agda",
"max_line_length": 30,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue4461.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 43,
"size": 92
}
|
{-# OPTIONS --cubical --no-import-sorts --guardedness --safe #-}
module Cubical.Codata.M.AsLimit.itree where
open import Cubical.Data.Unit
open import Cubical.Data.Prod
open import Cubical.Data.Nat as ℕ using (ℕ ; suc ; _+_ )
open import Cubical.Data.Sum
open import Cubical.Data.Empty
open import Cubical.Data.Bool
open import Cubical.Foundations.Function
open import Cubical.Foundations.Prelude
open import Cubical.Codata.M.AsLimit.Container
open import Cubical.Codata.M.AsLimit.M
open import Cubical.Codata.M.AsLimit.Coalg
-- Delay monad defined as an M-type
delay-S : (R : Type₀) -> Container ℓ-zero
delay-S R = (Unit ⊎ R) , λ { (inr _) -> ⊥ ; (inl tt) -> Unit }
delay : (R : Type₀) -> Type₀
delay R = M (delay-S R)
delay-ret : {R : Type₀} -> R -> delay R
delay-ret r = in-fun (inr r , λ ())
delay-tau : {R : Type₀} -> delay R -> delay R
delay-tau S = in-fun (inl tt , λ x → S)
-- Bottom element raised
data ⊥₁ : Type₁ where
-- TREES
tree-S : (E : Type₀ -> Type₁) (R : Type₀) -> Container (ℓ-suc ℓ-zero)
tree-S E R = (R ⊎ (Σ[ A ∈ Type₀ ] (E A))) , (λ { (inl _) -> ⊥₁ ; (inr (A , e)) -> Lift A } )
tree : (E : Type₀ -> Type₁) (R : Type₀) -> Type₁
tree E R = M (tree-S E R)
tree-ret : ∀ {E} {R} -> R -> tree E R
tree-ret {E} {R} r = in-fun (inl r , λ ())
tree-vis : ∀ {E} {R} -> ∀ {A} -> E A -> (A -> tree E R) -> tree E R
tree-vis {A = A} e k = in-fun (inr (A , e) , λ { (lift x) -> k x } )
-- ITrees (and buildup examples)
-- https://arxiv.org/pdf/1906.00046.pdf
-- Interaction Trees: Representing Recursive and Impure Programs in Coq
-- Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, Steve Zdancewic
itree-S : ∀ (E : Type₀ -> Type₁) (R : Type₀) -> Container (ℓ-suc ℓ-zero)
itree-S E R = ((Unit ⊎ R) ⊎ (Σ[ A ∈ Type₀ ] (E A))) , (λ { (inl (inl _)) -> Lift Unit ; (inl (inr _)) -> ⊥₁ ; (inr (A , e)) -> Lift A } )
itree : ∀ (E : Type₀ -> Type₁) (R : Type₀) -> Type₁
itree E R = M (itree-S E R)
ret' : ∀ {E} {R} -> R -> P₀ (itree-S E R) (itree E R)
ret' {E} {R} r = inl (inr r) , λ ()
tau' : {E : Type₀ -> Type₁} -> {R : Type₀} -> itree E R -> P₀ (itree-S E R) (itree E R)
tau' t = inl (inl tt) , λ x → t
vis' : ∀ {E} {R} -> ∀ {A : Type₀} -> E A -> (A -> itree E R) -> P₀ (itree-S E R) (itree E R)
vis' {A = A} e k = inr (A , e) , λ { (lift x) -> k x }
ret : ∀ {E} {R} -> R -> itree E R
ret = in-fun ∘ ret'
tau : {E : Type₀ -> Type₁} -> {R : Type₀} -> itree E R -> itree E R
tau = in-fun ∘ tau'
vis : ∀ {E} {R} -> ∀ {A : Type₀} -> E A -> (A -> itree E R) -> itree E R
vis {A = A} e = in-fun ∘ (vis' {A = A} e)
|
{
"alphanum_fraction": 0.5654024768,
"avg_line_length": 34,
"ext": "agda",
"hexsha": "ad5894d5b424a0146ec9fff97e221f96125c9e72",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Codata/M/AsLimit/itree.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Codata/M/AsLimit/itree.agda",
"max_line_length": 137,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Codata/M/AsLimit/itree.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1023,
"size": 2584
}
|
-- Andreas, 2017-01-12
data D {A : Set} : A → Set where
c : (a : A) → D {!!} -- fill with a
d : (a : A) → {!!} -- fill with D a
|
{
"alphanum_fraction": 0.437037037,
"avg_line_length": 22.5,
"ext": "agda",
"hexsha": "006235b6025ce91e7905ec5cea67e955e0ef0fe1",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/InductiveFamilyNoTarget.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/InductiveFamilyNoTarget.agda",
"max_line_length": 38,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/InductiveFamilyNoTarget.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 60,
"size": 135
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Finite.Fin.Instance.Triangle where
open import Data.Nat using (ℕ)
open import Data.Fin
open import Data.Fin.Patterns
open import Relation.Binary.PropositionalEquality as ≡
open import Categories.Category.Finite.Fin
open import Categories.Category
private
variable
a b c d : Fin 3
-- the diagram is the following:
--
-- 0
-- | \
-- | \
-- | \
-- | \
-- v v
-- 1 ---> 2
--
-- all morphisms are 0 (because there is at most one morphism between each pair of objects).
TriangleShape : FinCatShape
TriangleShape = record
{ size = 3
; ∣_⇒_∣ = morph
; hasShape = record
{ id = id
; _∘_ = _∘_
; assoc = assoc
; identityˡ = identityˡ
; identityʳ = identityʳ
}
}
where morph : Fin 3 → Fin 3 → ℕ
morph 0F 0F = 1
morph 0F 1F = 1
morph 0F 2F = 1
morph 1F 1F = 1
morph 1F 2F = 1
morph 2F 2F = 1
morph _ _ = 0
id : Fin (morph a a)
id {0F} = 0F
id {1F} = 0F
id {2F} = 0F
_∘_ : ∀ {a b c} → Fin (morph b c) → Fin (morph a b) → Fin (morph a c)
_∘_ {0F} {0F} {0F} 0F 0F = 0F
_∘_ {0F} {0F} {1F} 0F 0F = 0F
_∘_ {0F} {0F} {2F} 0F 0F = 0F
_∘_ {0F} {1F} {1F} 0F 0F = 0F
_∘_ {0F} {1F} {2F} 0F 0F = 0F
_∘_ {0F} {2F} {2F} 0F 0F = 0F
_∘_ {1F} {1F} {1F} 0F 0F = 0F
_∘_ {1F} {1F} {2F} 0F 0F = 0F
_∘_ {1F} {2F} {2F} 0F 0F = 0F
_∘_ {2F} {2F} {2F} 0F 0F = 0F
assoc : ∀ {f : Fin (morph a b)} {g : Fin (morph b c)} {h : Fin (morph c d)} →
((h ∘ g) ∘ f) ≡ (h ∘ (g ∘ f))
assoc {0F} {0F} {0F} {0F} {0F} {0F} {0F} = refl
assoc {0F} {0F} {0F} {1F} {0F} {0F} {0F} = refl
assoc {0F} {0F} {0F} {2F} {0F} {0F} {0F} = refl
assoc {0F} {0F} {1F} {1F} {0F} {0F} {0F} = refl
assoc {0F} {0F} {1F} {2F} {0F} {0F} {0F} = refl
assoc {0F} {0F} {2F} {2F} {0F} {0F} {0F} = refl
assoc {0F} {1F} {1F} {1F} {0F} {0F} {0F} = refl
assoc {0F} {1F} {1F} {2F} {0F} {0F} {0F} = refl
assoc {0F} {1F} {2F} {2F} {0F} {0F} {0F} = refl
assoc {0F} {2F} {2F} {2F} {0F} {0F} {0F} = refl
assoc {1F} {1F} {1F} {1F} {0F} {0F} {0F} = refl
assoc {1F} {1F} {1F} {2F} {0F} {0F} {0F} = refl
assoc {1F} {1F} {2F} {2F} {0F} {0F} {0F} = refl
assoc {1F} {2F} {2F} {2F} {0F} {0F} {0F} = refl
assoc {2F} {2F} {2F} {2F} {0F} {0F} {0F} = refl
identityˡ : ∀ {f : Fin (morph a b)} → (id ∘ f) ≡ f
identityˡ {0F} {0F} {0F} = refl
identityˡ {0F} {1F} {0F} = refl
identityˡ {0F} {2F} {0F} = refl
identityˡ {1F} {1F} {0F} = refl
identityˡ {1F} {2F} {0F} = refl
identityˡ {2F} {2F} {0F} = refl
identityʳ : ∀ {f : Fin (morph a b)} → (f ∘ id) ≡ f
identityʳ {0F} {0F} {0F} = refl
identityʳ {0F} {1F} {0F} = refl
identityʳ {0F} {2F} {0F} = refl
identityʳ {1F} {1F} {0F} = refl
identityʳ {1F} {2F} {0F} = refl
identityʳ {2F} {2F} {0F} = refl
Triangle : Category _ _ _
Triangle = FinCategory TriangleShape
module Triangle = Category Triangle
|
{
"alphanum_fraction": 0.475069681,
"avg_line_length": 31.0480769231,
"ext": "agda",
"hexsha": "ce15528945b86749baa56f081e8a2ba91cf96a4d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Finite/Fin/Instance/Triangle.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Finite/Fin/Instance/Triangle.agda",
"max_line_length": 93,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Finite/Fin/Instance/Triangle.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1547,
"size": 3229
}
|
module Nats.Multiply.Assoc where
open import Nats
open import Equality
open import Function
open import Nats.Multiply.Comm
open import Nats.Multiply.Distrib
------------------------------------------------------------------------
-- internal stuffs
private
a*1+b=a+a*b : ∀ a b → a * suc b ≡ a + a * b
a*1+b=a+a*b a b
rewrite nat-multiply-comm a $ suc b
| nat-multiply-comm a b
= refl
a*/b*c/=/a*b/*c : ∀ a b c → a * b * c ≡ a * (b * c)
a*/b*c/=/a*b/*c zero b c = refl
a*/b*c/=/a*b/*c (suc a) b c
rewrite a*/b*c/=/a*b/*c a b c
| nat-multiply-comm a b
| sym $ nat-multiply-distrib b (b * a) c
| sym $ a*/b*c/=/a*b/*c a b c
| nat-multiply-comm a b
= refl
------------------------------------------------------------------------
-- public aliases
nat-multiply-assoc : ∀ a b c → a * b * c ≡ a * (b * c)
nat-multiply-assoc = a*/b*c/=/a*b/*c
|
{
"alphanum_fraction": 0.447761194,
"avg_line_length": 26.0555555556,
"ext": "agda",
"hexsha": "b216a5018178a83af0170b8d04bcd59e381159c9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "ice1k/Theorems",
"max_forks_repo_path": "src/Nats/Multiply/Assoc.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "ice1k/Theorems",
"max_issues_repo_path": "src/Nats/Multiply/Assoc.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "ice1k/Theorems",
"max_stars_repo_path": "src/Nats/Multiply/Assoc.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z",
"num_tokens": 298,
"size": 938
}
|
open import Reflection hiding (return; _>>=_)
open import Data.List renaming (_++_ to _++l_)
open import Data.Vec as V using (Vec; updateAt)
open import Data.Unit
open import Data.Nat as N
open import Data.Nat.Properties
open import Data.Fin using (Fin; #_; suc; zero)
open import Data.Maybe hiding (_>>=_; map)
open import Function
open import Data.Bool
open import Data.Product hiding (map)
open import Data.String renaming (_++_ to _++s_; concat to sconc; length to slen)
open import Data.Char renaming (_≈?_ to _c≈?_)
open import Relation.Binary.PropositionalEquality hiding ([_])
open import Relation.Nullary
open import Relation.Nullary.Decidable hiding (map)
open import Data.Nat.Show renaming (show to showNat)
open import Level renaming (zero to lzero; suc to lsuc)
open import Category.Monad using (RawMonad)
open RawMonad {{...}} public
instance
monadMB : ∀ {f} → RawMonad {f} Maybe
monadMB = record { return = just ; _>>=_ = Data.Maybe._>>=_ }
monadTC : ∀ {f} → RawMonad {f} TC
monadTC = record { return = Reflection.return ; _>>=_ = Reflection._>>=_ }
data Err {a} (A : Set a) : Set a where
error : String → Err A
ok : A → Err A
instance
monadErr : ∀ {f} → RawMonad {f} Err
monadErr = record {
return = ok ;
_>>=_ = λ { (error s) f → error s ; (ok a) f → f a }
}
record RawMonoid {a}(A : Set a) : Set a where
field
_++_ : A → A → A
ε : A
++/_ : List A → A
++/ [] = ε
++/ (x ∷ a) = x ++ ++/ a
infixr 5 _++_
open RawMonoid {{...}} public
instance
monoidLst : ∀ {a}{A : Set a} → RawMonoid (List A)
monoidLst {A = A} = record {
_++_ = _++l_;
ε = []
}
monoidStr : RawMonoid String
monoidStr = record {
_++_ = _++s_;
ε = ""
}
monoidErrStr : RawMonoid (Err String)
monoidErrStr = record {
_++_ = λ where
(error s) _ → error s
_ (error s) → error s
(ok s₁) (ok s₂) → ok (s₁ ++ s₂)
;
ε = ok ""
}
monoidErrLst : ∀{a}{A : Set a} → RawMonoid (Err $ List A)
monoidErrLst = record {
_++_ = λ where
(error s) _ → error s
_ (error s) → error s
(ok s₁) (ok s₂) → ok (s₁ ++ s₂)
;
ε = ok []
}
defToTerm : Name → Definition → List (Arg Term) → Term
defToTerm _ (function cs) as = pat-lam cs as
defToTerm _ (constructor′ d) as = con d as
defToTerm _ _ _ = unknown
derefImmediate : Term → TC Term
derefImmediate (def f args) = getDefinition f >>= λ f' → return (defToTerm f f' args)
derefImmediate x = return x
derefT : Term → TC Term
derefT (def f args) = getType f
derefT (con f args) = getType f
derefT x = return x
defName : Term → Maybe Name
defName (def f args) = just f
defName _ = nothing
Ctx = List $ Arg Type
pi-to-ctx : Term → Ctx
-- we have a Ctx for the entire function, now we want to build
-- a context for the given variables in the clause. To do so
-- we merge function's ctx with patterns of the given clause
-- and we grab the types that correspond to the variables within
-- the patterns.
--pats-ctx : Ctx → (List $ Arg Pattern) → TC $ Maybe Ctx
macro
reflect : Term → Term → TC ⊤
reflect f a = (derefImmediate f)
>>= quoteTC >>= unify a
reflect-ty : Name → Type → TC ⊤
reflect-ty f a = getType f >>= quoteTC >>= normalise >>= unify a
rtest : Term → Term → TC ⊤
rtest f a = do
t ← derefT f
v ← derefImmediate f
--v ← pat-lam-no--rm v (pi-to-ctx t)
--q ← quoteTC v
q ← quoteTC (pi-to-ctx t)
unify a q
rmkstring : Term → Term → TC ⊤
rmkstring f a = unify (lit (string "Test")) a
infert : Type → Term → TC ⊤
infert t a = inferType t >>= quoteTC >>= unify a
-- FIXME we probably want to error out on these two functions.
pi-to-ctx (Π[ s ∶ a ] x) = (a ∷ pi-to-ctx x)
pi-to-ctx _ = []
Prog = Err $ List String
infixl 5 _#p_
_#p_ = _++_
okl : String → Prog
okl s = ok ([ s ])
-- reduce a list of Progs with a delimiter
_/#p_ : List Prog → (delim : String) → Prog
[] /#p d = ok []
(x ∷ []) /#p d = x
(x ∷ xs@(_ ∷ _)) /#p d = x #p okl d #p xs /#p d
-- Normalise the name of functions that we obtain from showName,
-- i.e. remove dots, replace weird symbols by ascii.
nnorm : String → Prog
nnorm s = okl
$ replace '.' '_'
$ replace '-' '_'
$ s
where
repchar : (t f x : Char) → Char
repchar f t x with x c≈? f
... | yes _ = t
... | no _ = x
replace : (from to : Char) → String → String
replace f t s = fromList $ map (repchar f t) $ toList s
data NumClauses : Set where
Many One : NumClauses
record State : Set where
constructor st
field
--arg-ctx : Ctx
--ret-typ : String
var-names : List String
retvar : String
cls : NumClauses
open State
--compile-clause : Clause → State → Prog
-- Pack the information about new variables generated
-- by patterns in the clause, assignments to these,
-- and the list of conditions. E.g.
-- foo : List ℕ → ℕ
-- foo (x ∷ xs) 2 = ...
--
-- Assume that we named top-level arguments [a, b]
-- Then, new variables for this clause are going to be
-- [x, xs]
-- Assignments are:
-- [x = hd a, xs = tl a]
-- Conditions are:
-- [is-cons a, b = 2]
record ClCond : Set where
constructor clcond
field
vars : List String
assigns : List String
conds : List String
data MbClCond : Set where
ok : ClCond → MbClCond
error : String → MbClCond
_#c_ : MbClCond → MbClCond → MbClCond
error s #c _ = error s
_ #c error s = error s
ok (clcond a b c) #c ok (clcond a' b' c') = ok (clcond (a ++ a') (b ++ b') (c ++ c'))
{-# TERMINATING #-}
clause-ctx-vars : (pats : List $ Arg Pattern) → (vars : List String) → (counter : ℕ) → MbClCond
showLitProg : Literal → Prog
comp-term : Term → (varctx : List String) → Prog
sjoin : List String → String → String
sjoin [] delim = ""
sjoin (x ∷ []) delim = x
sjoin (x ∷ xs@(_ ∷ _)) delim = x ++s delim ++s sjoin xs delim
join' : List String → (delim : String) → (empty : String) → String
join' [] _ e = e
join' x@(_ ∷ _) d _ = sjoin x d
compile-cls : List Clause → State → Prog
compile-cls [] s = error "comile-cls: expected at least one clause"
compile-cls (clause ps t ∷ []) s with clause-ctx-vars ps (var-names s) 0
... | error msg = error msg
... | ok (clcond vars assgns conds) = let
as = sconc (map (_++s "\n") assgns)
rv = retvar s ++s " = "
in okl (as ++s rv) #p comp-term t vars #p okl ";"
compile-cls (absurd-clause ps ∷ []) s with clause-ctx-vars ps (var-names s) 0
... | error msg = error msg
... | ok (clcond vars assgns conds) = okl "unreachable ();"
compile-cls (clause ps t ∷ xs@(_ ∷ _)) s with clause-ctx-vars ps (var-names s) 0
... | error msg = error msg
... | ok (clcond vars assgns conds) = let
cs = join' conds " && " "true"
as = sconc (map (_++s "\n") assgns)
rv = retvar s ++s " = "
in okl ("if (" ++s cs ++s ") {" ++s as ++s rv) #p comp-term t vars #p okl "; }"
#p okl "else {"
#p compile-cls xs s
#p okl "}"
compile-cls (absurd-clause ps ∷ xs@(_ ∷ _)) s with clause-ctx-vars ps (var-names s) 0
... | error msg = error msg
... | ok (clcond vars assgns conds) = let
-- XXX it would be weird if conds were empty... catch it?
cs = join' conds " && " "true"
in okl ("if (" ++s cs ++s ") { unreachable (); } else {" )
#p compile-cls xs s
#p okl "}"
clause-ctx-vars (arg i (con c ps) ∷ l) (v ∷ vars) vcnt with showName c
... | "Agda.Builtin.List.List.[]" =
ok (clcond [] [] [ "emptyvec_p (" ++s v ++s ")" ])
#c clause-ctx-vars l vars vcnt
... | "Agda.Builtin.List.List._∷_" =
ok (clcond [] [] [ "nonemptyvec_p (" ++s v ++s ")" ])
#c clause-ctx-vars (ps ++ l) (("hd (" ++s v ++s ")") ∷ ("tl (" ++s v ++s ")") ∷ vars) vcnt
... | "Agda.Builtin.Bool.Bool.true" =
ok (clcond [] [] [ v {- == true -} ])
#c clause-ctx-vars l vars vcnt
... | "Agda.Builtin.Bool.Bool.false" =
ok (clcond [] [] [ "! " ++s v ])
#c clause-ctx-vars l vars vcnt
... | "Agda.Builtin.Nat.Nat.suc" =
ok (clcond [] [] [ v ++s " > 0" ])
#c clause-ctx-vars (ps ++ l) ((v ++s " - 1") ∷ vars) vcnt
... | "Agda.Builtin.Nat.Nat.zero" =
ok (clcond [] [] [ v ++s " == 0" ])
#c clause-ctx-vars l vars vcnt
... | "Data.Fin.Base.Fin.zero" =
ok (clcond [] [] [ v ++s " == 0" ]) -- XXX can also add v < u
#c clause-ctx-vars l vars vcnt
... | "Data.Fin.Base.Fin.suc" =
ok (clcond [] [] [ v ++s " > 0" ]) -- XXX can also add v < u
#c clause-ctx-vars l vars vcnt
... | "Data.Vec.Base.Vec.[]" =
ok (clcond [] [] [ "emptyvec_p (" ++s v ++s ")" ])
#c clause-ctx-vars l vars vcnt
... | "Data.Vec.Base.Vec._∷_" =
ok (clcond [] [] [ "nonemptyvec_p (" ++s v ++s ")" ])
#c clause-ctx-vars (ps ++ l) (("len (" ++s v ++s ") - 1") ∷ ("hd (" ++s v ++s ")") ∷ ("tl (" ++s v ++s ")") ∷ vars) vcnt
-- Well, let's see how far we can go with this hack
... | "Array.Base.Ar.imap" =
--... | "test-extract.Ar'.imap" =
ok (clcond [ "IMAP_" ++s v ] [ "\n#define IMAP_" ++s v ++s "(__x) " ++s v ++s "[__x]\n" ] [ "true" ])
#c clause-ctx-vars l vars vcnt
... | x = error ("clause-ctx-vars: don't know what to do with `" ++s x ++s "` constructor in patterns")
clause-ctx-vars (arg i dot ∷ l) (v ∷ vars) vcnt =
-- Dot patterns are skipped.
clause-ctx-vars l vars vcnt
clause-ctx-vars (arg (arg-info visible r) (var s) ∷ l) (v ∷ vars) vcnt =
-- If we have "_" as a variable, we need to insert it
-- into the list, but we don't generate an assignment for it.
let asgn = case s ≈? "_" of λ where
-- XXX hopefully this is fine, otherwise
-- we can do the same thing as for hidden
-- vars.
(yes p) → []
(no ¬p) → [ s ++s " = " ++s v ++s ";" ]
in ok (clcond [ s ] asgn [])
#c clause-ctx-vars l vars vcnt
clause-ctx-vars (arg (arg-info hidden r) (var s) ∷ l) (v ∷ vars) vcnt =
-- Hidden variables are simply added to the context
-- as regular variables
let s , vcnt = case s ≈? "_" of λ where
(yes p) → s ++ "_" ++ showNat vcnt , 1 + vcnt
(no ¬p) → s , vcnt
in ok (clcond [ s ] [ s ++ " = " ++ v ++ ";" ] [])
#c clause-ctx-vars l vars vcnt
clause-ctx-vars (arg (arg-info instance′ r) (var s) ∷ l) (v ∷ vars) vcnt =
error "FIXME handle instance variables"
clause-ctx-vars (arg i (lit x) ∷ l) (v ∷ vars) vcnt =
case showLitProg x of λ where
(error s) → error s
(ok s) → ok (clcond [] [] [ v ++s " == " ++s (sconc s) ])
#c clause-ctx-vars l vars vcnt
clause-ctx-vars (arg i (proj f) ∷ l) (v ∷ vars) vcnt =
error "FIXME proj pattern"
clause-ctx-vars (arg i absurd ∷ l) (v ∷ vars) vcnt =
-- I assume that absurd can only appear in the
-- absurd clause, therefore, we don't need a condition
-- for this pattern, so we just skip it.
clause-ctx-vars l vars vcnt
clause-ctx-vars [] [] _ =
ok (clcond [] [] [])
clause-ctx-vars _ _ _ =
error "mismatching number of patterns and types"
showLitProg (name x) = error ("Found name `" ++s (showName x) ++s "` as literal")
showLitProg (meta x) = error ("Found meta `" ++s (showMeta x) ++s "` as literal")
showLitProg x = okl (showLiteral x)
var-lkup : List String → ℕ → Prog
var-lkup [] n = error ("Variable not found")
var-lkup (x ∷ l) zero = okl x
var-lkup (x ∷ l) (suc n) = var-lkup l n
-- Compile each arg and join them with ", "
comp-arglist : List $ Arg Term → (varctx : List String) → Prog
comp-arglist args varctx = map (λ {(arg i x) → comp-term x varctx}) args /#p ", "
-- Helper for comp-arglist-mask
mk-mask : (n : ℕ) → List (Fin n) → List Bool
mk-mask n xs = V.toList $ go (V.replicate {n = n} false) xs
where go : _ → _ → _
go e [] = e
go e (x ∷ xs) = go (updateAt x (λ _ → true) e) xs
comp-arglist-mask : List $ Arg Term → (mask : List Bool) → (varctx : List String) → Prog
comp-arglist-mask args mask varctx = go args mask varctx /#p ", "
where
go : List $ Arg Term → (mask : List Bool) → (varctx : List String) → List Prog
go [] [] _ = []
go [] (x ∷ mask) _ = [ error "Incorrect argument mask" ]
go (x ∷ args) [] _ = [ error "Incorrect argument mask" ]
go (x ∷ args) (false ∷ mask) vars = go args mask vars
go (arg i x ∷ args) (true ∷ mask) vars = comp-term x vars ∷ go args mask vars
comp-term (var x []) vars = var-lkup (reverse vars) x
comp-term (var x args@(_ ∷ _)) vars = var-lkup (reverse vars) x #p okl "(" #p comp-arglist args vars #p okl ")"
--comp-term (var x (x₁ ∷ args)) vars with var-lkup (reverse vars) x
--comp-term (var x (x₁ ∷ args)) vars | ok l = error ("Variable " ++s (sconc l) ++s " used as a function call")
--comp-term (var x (x₁ ∷ args)) vars | error s = error s
comp-term (lit l) vars = showLitProg l
comp-term exp@(con c args) vars with showName c
... | "Data.Vec.Base.Vec.[]" =
okl "[]"
... | "Data.Vec.Base.Vec._∷_" =
okl "cons (" #p comp-arglist-mask args (mk-mask 5 $ # 3 ∷ # 4 ∷ []) vars #p okl ")"
... | "Agda.Builtin.Nat.Nat.suc" =
okl "(1 + " #p comp-arglist-mask args (mk-mask 1 $ # 0 ∷ []) vars #p okl ")"
... | "Data.Fin.Base.Fin.zero" =
okl "0"
... | "Data.Fin.Base.Fin.suc" =
okl "(1 + " #p comp-arglist-mask args (mk-mask 2 $ # 1 ∷ []) vars #p okl ")"
... | "Array.Base.Ar.imap" =
--... | "test-extract.Ar'.imap" =
case args of λ where
(_ ∷ _ ∷ _ ∷ arg _ s ∷ arg _ (vLam x e) ∷ []) → let
p = comp-term e (vars ++ [ x ])
sh = comp-term s vars --infert exp
in okl ("with { (. <= " ++s x ++s " <= .): ") #p p #p okl "; }: genarray (" #p sh #p okl ")"
_ →
error "comp-term: don't recognize arguments to imap"
... | "Array.Base.Ix.[]" =
okl "[]"
... | "Array.Base.Ix._∷_" =
okl "cons (" #p comp-arglist-mask args (mk-mask 5 $ # 3 ∷ # 4 ∷ []) vars #p okl ")"
... | n = error ("comp-term: don't know constructor `" ++s n ++s "`")
comp-term (def f args) vars with showName f
... | "Agda.Builtin.Nat._+_" =
okl "_add_SxS_ (" #p comp-arglist args vars #p okl ")"
... | "Agda.Builtin.Nat._*_" =
okl "_mul_SxS_ (" #p comp-arglist args vars #p okl ")"
... | "Data.Nat.DivMod._/_" =
okl "_div_SxS_ (" #p comp-arglist-mask args (mk-mask 3 $ # 0 ∷ # 1 ∷ []) vars #p okl ")"
... | "Data.Fin.#_" =
comp-arglist-mask args (mk-mask 3 $ # 0 ∷ []) vars
... | "Array.Base.ix-lookup" =
case args of λ where
(_ ∷ _ ∷ arg _ iv ∷ arg _ el ∷ []) → let
iv′ = comp-term iv vars
el′ = comp-term el vars
in iv′ #p okl "[" #p el′ #p okl "]"
_ →
error "comp-term: don't recognize arguments to ix-lookup"
... | "Data.Vec.Base.[_]" =
case args of λ where
(_ ∷ _ ∷ arg _ x ∷ []) → okl "[" #p comp-term x vars #p okl "]"
_ →
error "comp-term: don't recognize arguments to Vec.[_]"
... | "Data.Fin.Base.raise" =
-- Note that "raise" is a total junk, as it only makes sure that the
-- Fin value is valid in some context; all we are interested in is the
-- value of that Fin.
case args of λ where
(_ ∷ _ ∷ arg _ x ∷ []) → comp-term x vars
_ →
error "comp-term: don't recognize arguments to Data.Fin.raise"
-- XXX we need to figure out what are we going to do with recursive functions,
-- as clearly its name can't be known in advance. Probably add it to the
-- state? Or maintain a list of functions?
... | n = nnorm n #p okl " (" #p comp-arglist args vars #p okl ")"
--... | n = error ("comp-term: don't know definition `" ++s n ++s "`")
comp-term (lam v t) vars = error "comp-term: lambdas are not supported"
comp-term (pat-lam cs args) vars = error "comp-term: pattern-matching lambdas are not supported"
comp-term (pi a b) vars = error "comp-term: pi types are not supported"
comp-term (sort s) vars = error "comp-term: sorts are not supported"
comp-term (meta x x₁) vars = error "comp-term: metas are not supported"
comp-term unknown vars = error "comp-term: unknowns are not supported"
record Pistate : Set where
constructor pist-vc=_cv=_vctx=_tctx=_rv=_ret=_cons=_
field
var-counter : ℕ
cur-var : String
var-ctx : List String
type-ctx : List String
ret-var : String
ret : Prog
-- XXX come up with a better type for
-- constraints on variables.
cons : List (String × Prog)
open Pistate
trav-pi : Type → Pistate → Pistate
trav-pi (Π[ s ∶ arg i x ] y) pst
= let
varname = case s of λ where
"_" → "x_" ++s (showNat $ var-counter pst)
n → n
tp = trav-pi x (record pst {cur-var = varname}) -- ; cons = []})
in case ret tp of λ where
(error s) → tp
(ok l) → trav-pi y (record pst {var-counter = 1 + var-counter pst ;
cur-var = ret-var pst ;
var-ctx = var-ctx pst ++ [ varname ] ;
type-ctx = type-ctx pst ++ [ (sjoin l "") ] ;
cons = cons tp}) --cons pst ++ cons tp })
trav-pi (con c args) pst with showName c
... | x = record pst {ret = error ("trav-pi: don't know how to handle `" ++s x ++s "` constructor")}
trav-pi (def f args) pst with showName f
... | "Agda.Builtin.Nat.ℕ" = record pst {ret = okl "int"}
... | "Agda.Builtin.Nat.Nat" = record pst {ret = okl "int"}
... | "Agda.Builtin.Bool.Bool" = record pst {ret = okl "bool"}
... | "Agda.Builtin.List.List" =
-- We encode lists as 1-d arrays of their argument type.
case args of λ where
(_ ∷ arg i x ∷ _) → let tp = trav-pi x (record pst {cons = []})
in case ret tp of λ where
(error s) → tp
(ok l) → record tp {ret = okl $ (sjoin l "") ++s "[.]"}
_ → record pst {ret = error "trav-pi: incorrect arguments to List"}
... | "Data.Vec.Base.Vec" =
-- Vectors are also 1-d arrays (such as lists) but we extract
-- a bit of extra infromation from these.
case args of λ where
(_ ∷ arg _ t ∷ arg _ x ∷ []) → let tp = trav-pi t (record pst {cur-var = "" {- XXX well, typeof (cur-var pst) is the thing -}
}) --cons = []})
p = comp-term x (var-ctx pst)
in record tp {ret = ret tp #p okl "[.]" ;
cons = (cons tp)
++ [ cur-var pst ,
okl ("/* assert (shape (" ++s (cur-var pst) ++s ")[[0]] == ") #p p #p okl ") */" ]
}
_ → record pst {ret = error "trav-pi: incorrect arguments to Vec"}
... | "Data.Fin.Base.Fin" =
case args of λ where
(arg _ x ∷ []) → let
p = comp-term x (var-ctx pst)
in record pst {
ret = okl "int";
cons = (cons pst)
++ [ cur-var pst ,
okl ("/* assert (" ++s (cur-var pst) ++s " < ") #p p #p okl ") */"]
}
_ →
record pst {ret = error "trav-pi: incorrect arguments to Fin"}
... | "Array.Base.Ar" =
--... | "test-extract.Ar'" =
case args of λ where
(_ ∷ arg _ ty ∷ arg _ dim ∷ arg _ sh ∷ []) → let
ty′ = trav-pi ty pst
dim′ = comp-term dim (var-ctx pst)
sh′ = comp-term sh (var-ctx pst)
in record ty′ {
ret = ret ty′ #p okl "[*]" ;
cons = cons ty′
++ [ cur-var pst ,
okl ("/* assert (dim (" ++s (cur-var pst) ++s ") == ") #p dim′ #p okl " )*/" ]
++ [ cur-var pst ,
okl ("/* assert (shape (" ++s (cur-var pst) ++s ") == ") #p sh′ #p okl " )*/" ]
}
_ →
record pst {ret = error "trav-pi: incorrect arguments to Ar"}
... | x = record pst {ret = error ("trav-pi: don't know the `" ++s x ++s "` type")}
trav-pi _ pst = record pst {ret = error "trav-pi ERRR"}
find : List String → String → Bool
find [] x = false
find (y ∷ l) x with x ≈? y
... | yes _ = true
... | no _ = find l x
collect-var-cons : List (String × Prog) → (accum : List String) → List (String × Prog)
collect-var-cons [] acc = []
collect-var-cons ((x , v) ∷ l) acc with find acc x
... | true = collect-var-cons l acc
... | false = (x , v #p collect l x) ∷ collect-var-cons l (x ∷ acc)
where
collect : _ → _ → _
collect [] x = ok []
collect ((y , v) ∷ l) x with y ≈? x
... | yes _ = v #p collect l x
... | no _ = collect l x
-- Get the value bound to the given variable or return (ok [])
lkup-var-cons : List (String × Prog) → String → Prog
lkup-var-cons [] s = ok []
lkup-var-cons ((x , v) ∷ xs) s with x ≈? s
... | yes _ = v
... | no _ = lkup-var-cons xs s
fltr : List (String × Prog) → (var : String) → List (String × Prog)
fltr [] x = []
fltr ((y , v) ∷ l) x with x ≈? y
... | yes _ = fltr l x
... | no _ = (y , v) ∷ fltr l x
mkfun : Name → _ → Pistate → NumClauses → Prog
mkfun n cls ps nc = let
rv = (ret-var ps)
cs = collect-var-cons (cons ps) []
arg-cons = map proj₂ $ fltr cs rv
ret-cons = lkup-var-cons cs rv
in (okl $ "// Function " ++s (showName n) ++s "\n")
#p ret ps #p okl "\n"
#p (nnorm $ showName n ++s "(")
#p tvl (var-ctx ps) (type-ctx ps)
#p okl ") {\n"
--#p (cons ps) /#p "\n"
#p arg-cons /#p "\n"
#p ret ps #p okl (" " ++s rv ++s ";\n")
#p compile-cls cls (st (var-ctx ps) rv nc)
#p ret-cons
#p okl ("return " ++s rv ++s ";\n}\n\n")
where
tvl : List String → List String → Prog
tvl [] [] = ok []
tvl [] (t ∷ typs) = error "more types than variables"
tvl (x ∷ vars) [] = error "more variables than types"
tvl (x ∷ []) (t ∷ []) = okl (t ++s " " ++s x)
tvl (x ∷ []) (_ ∷ _ ∷ _) = error "more types than variables"
tvl (_ ∷ _ ∷ _) (_ ∷ []) = error "more variables than types"
tvl (x ∷ xs@(_ ∷ _)) (t ∷ ts@(_ ∷ _)) = okl (t ++s " " ++s x ++s ", ") #p tvl xs ts
compile' : (lam : Term) → (sig : Type) → (name : Maybe Name) → TC Prog
compile' (pat-lam cs args) t nm with nm
compile' (pat-lam cs args) t nm | nothing =
return $ error "compile' got invalid function name"
compile' (pat-lam [] args) t nm | just x =
return $ error "compile' got zero clauses in the lambda term"
compile' (pat-lam cs@(_ ∷ []) args) t nm | just x =
-- XXX currently the name `__ret` is hardcoded.
let ps = trav-pi t (pist-vc= 1 cv= "" vctx= [] tctx= [] rv= "__ret" ret= error "" cons= [])
in return (mkfun x cs ps One)
compile' (pat-lam cs@(_ ∷ _ ∷ _) args) t nm | just x =
-- XXX currently the name `__ret` is hardcoded.
let ps = trav-pi t (pist-vc= 1 cv= "" vctx= [] tctx= [] rv= "__ret" ret= error "" cons= [])
in return (mkfun x cs ps Many)
compile' x _ _ =
return (error "compile' expected pattern-matching lambda")
macro
compile : Term → Term → TC ⊤
compile f a = do
t ← derefT f
v ← derefImmediate f
let ctx = pi-to-ctx t
let n = defName f
--v ← pat-lam-norm v ctx
let v = return v
case v of λ where
(ok v) → do
v ← compile' v t n
q ← quoteTC v
unify a q
e@(error s) →
return e >>= quoteTC >>= unify a
---===== These are just all examples to play around ====---
tst-triv : ℕ → ℕ
tst-triv x = x + 1
-- Test pattern contraction
tst-ss : ℕ → ℕ
tst-ss (suc (suc x)) = x
tst-ss _ = 0
-- Here we have the (+ 0) in the last clause that
-- stays in the generated code.
tst-rew0 : ℕ → Bool → ℕ → ℕ
tst-rew0 x true y = let a = x * x in a + y
tst-rew0 x false y = x + 2 + 0
-- XXX can't do with clauses yet, but that shouldn
tst-with : ℕ → ℕ
tst-with x with x >? 0
tst-with x | yes p = 0
tst-with x | no ¬p = 1
-- Trivial test with Lists
lst-test : List ℕ → ℕ
lst-test [] = 0
lst-test (_∷_ x y) = x + 1
data Test : Set where
cstctr : {x : ℕ} → x > 0 → Test
test-test : Test → ℕ
test-test (cstctr p) = 1
test-dot : (a : ℕ) → a > 0 → ℕ
test-dot a@(.(suc _)) (s≤s pf) = a
data Square : ℕ → Set where
sq : (m : ℕ) → Square (m * m)
root : (m : ℕ) (n : ℕ) → Square n → ℕ
root a .(m * m) (sq m) =
-- This is to show that square pattern is skipped
-- from the context. In the above case, the clause is
-- represetned as: a , . , (sq m) ==ctx==> a , m
-- and the expression is (var 0) + (var 1)
m + a
open import Data.Vec hiding (concat)
tst-vec : ∀ {n} → Vec ℕ n → Vec ℕ (n + n * n) → ℕ
tst-vec [] _ = 0
tst-vec (x ∷ a) b = x
a = (reflect-ty tst-vec)
tst-undsc : _ → ℕ
tst-undsc n = 1 + n
vec-sum : ∀ {n} → Vec ℕ n → Vec ℕ (n) → Vec ℕ n
vec-sum [] _ = []
vec-sum (x ∷ a) (y ∷ b) = x + y ∷ vec-sum a b
vec-and-1 : ∀ {n} → Vec Bool n → Bool
vec-and-1 (x ∷ xs) = x ∧ vec-and-1 xs
vec-and-1 _ = true
vec-and : ∀ {n} → Vec Bool n → Vec Bool n → Vec Bool n
vec-and [] _ = []
vec-and (x ∷ a) (y ∷ b) = x ∧ y ∷ vec-and a b
vec-+ : ∀ {n} → Vec ℕ n → ℕ
vec-+ (x ∷ xs) = x + vec-+ xs
vec-+ _ = 0
f : ℕ → ℕ
f x = x * x
vec-tst : ∀ n → Vec ℕ (n) → ℕ
vec-tst 0 [] = 0
vec-tst (suc n) x = n * 2 -- (x ∷ xs) = n * 2
def-pst = (pist-vc= 1 cv= "" vctx= [] tctx= [] rv= "__ret" ret= error "" cons= []) --pist 1 [] [] (error "")
q : List String × List String × Prog
q = let (pist-vc= _ cv= _ vctx= v tctx= t rv= _ ret= r cons= _) = (trav-pi (reflect-ty vec-sum) def-pst) in (v , t , r)
--open import Data.Fin
xxx : Fin 5 → Fin 6
xxx zero = suc zero
xxx (suc _) = zero
fun-in-ty : (f : ℕ → ℕ) → Vec ℕ (f 3) → ℕ
fun-in-ty f x = 1 -- V.replicate 1
open import Array
data Ar' {a} (X : Set a) (d : ℕ) : (Vec ℕ d) → Set a where
imap : ∀ s → (Ix d s → X) → Ar' X d s
add-2v : ∀ {n} → let X = Ar ℕ 1 (n ∷ []) in X → X → X
add-2v (imap a) (imap b) = imap λ iv → a iv + b iv
postulate
asum : ∀ {n} → Ar ℕ 1 (n ∷ []) → ℕ
asum' : ∀ {n} → Ar' ℕ 1 (n ∷ []) → ℕ
--sum (imap a)
mm : ∀ {m n k} → let Mat a b = Ar ℕ 2 (a ∷ b ∷ []) in
Mat m n → Mat n k → Mat m k
mm (imap a) (imap b) = imap λ iv → let i = ix-lookup iv (# 0)
j = ix-lookup iv (# 1)
in asum (imap λ kv → let k = ix-lookup kv (# 0)
in a (i ∷ k ∷ []) * b (k ∷ j ∷ []))
conv : ∀ {n} → let Ar1d n = Ar ℕ 1 V.[ n ] in
Ar1d (3 + n) → Ar1d 3 → Ar1d (1 + n)
conv (imap inp) (imap ker) = imap λ iv → let i = ix-lookup iv (# 0)
in ( inp (raise 2 i ∷ []) * ker (# 0 ∷ [])
+ inp (raise 1 (suc i) ∷ []) * ker (# 1 ∷ [])
+ inp (raise 0 (suc (suc i)) ∷ []) * ker (# 2 ∷ [])
) / 3
where open import Data.Fin using (raise)
open import Data.Nat.DivMod
test-fin : Fin 3 → Fin 4
test-fin x = suc x
w : String
w = case compile mm of λ where
(error s) → s
(ok l) → sjoin l ""
|
{
"alphanum_fraction": 0.5094151568,
"avg_line_length": 35.5158027813,
"ext": "agda",
"hexsha": "7474e678f32f63b4647b287062646e4d3d0e4b76",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-10-12T07:19:48.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-10-12T07:19:48.000Z",
"max_forks_repo_head_hexsha": "584fedb30552f820c0668cedae53ec3d926860b5",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "ashinkarov/agda-array",
"max_forks_repo_path": "ExExtract.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "584fedb30552f820c0668cedae53ec3d926860b5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "ashinkarov/agda-array",
"max_issues_repo_path": "ExExtract.agda",
"max_line_length": 147,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "584fedb30552f820c0668cedae53ec3d926860b5",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "ashinkarov/agda-array",
"max_stars_repo_path": "ExExtract.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-15T14:21:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-09T13:53:46.000Z",
"num_tokens": 9202,
"size": 28093
}
|
{-# OPTIONS --without-K #-}
module hott.equivalence.logical where
open import sum
open import function.isomorphism.core
open import hott.level.core
_↔_ : ∀ {i j} → Set i → Set j → Set _
X ↔ Y = (X → Y) × (Y → X)
module _ {i j}{X : Set i}{Y : Set j} where
≅⇒↔ : X ≅ Y → X ↔ Y
≅⇒↔ φ = to , from
where open _≅_ φ
↔⇒≅ : h 1 X → h 1 Y → X ↔ Y → X ≅ Y
↔⇒≅ hX hY (f , g) = iso f g (λ x → h1⇒prop hX _ x) (λ y → h1⇒prop hY _ y)
|
{
"alphanum_fraction": 0.5298165138,
"avg_line_length": 24.2222222222,
"ext": "agda",
"hexsha": "c355fae91005f8a86098bc0952919c6dae46adb1",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/hott/equivalence/logical.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/hott/equivalence/logical.agda",
"max_line_length": 75,
"max_stars_count": 20,
"max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pcapriotti/agda-base",
"max_stars_repo_path": "src/hott/equivalence/logical.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z",
"num_tokens": 201,
"size": 436
}
|
open import FRP.JS.Level using ( Level ; _⊔_ ) renaming ( zero to o ; suc to ↑ )
open import FRP.JS.Time using ( Time ; _≤_ ; _<_ )
open import FRP.JS.Bool using ( Bool ; true ; false ; not ; _≟_ )
open import FRP.JS.True using ( True ; tt )
module FRP.JS.Model where
-- This model is essentially System F-omega with a kind time
-- together with a type for the partial order on time,
-- and expressions for reflexivity and transitivity.
-- We prove parametricity, and then show that parametricity implies causality.
-- Note that this is a "deep" notion of causality, not the "shallow"
-- causality usually used in FRP. The pragmatic upshot of this is that
-- there is only one time model: nested signals are in the same time
-- model, not a simulated time model. This fits with the JS implementation,
-- which uses wall clock time for all signals.
-- Propositional equality
data _≡_ {α} {A : Set α} (a : A) : A → Set α where
refl : a ≡ a
sym : ∀ {α} {A : Set α} {a b : A} → (a ≡ b) → (b ≡ a)
sym refl = refl
trans : ∀ {α} {A : Set α} {a b c : A} → (a ≡ b) → (b ≡ c) → (a ≡ c)
trans refl refl = refl
cong : ∀ {α β} {A : Set α} {B : Set β} (f : A → B) {a₁ a₂ : A} →
(a₁ ≡ a₂) → (f a₁ ≡ f a₂)
cong f refl = refl
apply : ∀ {α β} {A : Set α} {B : Set β} {F G : A → B} → (F ≡ G) →
∀ {a b} → (a ≡ b) → (F a ≡ G b)
apply refl refl = refl
cast : ∀ {α} {A B : Set α} → (A ≡ B) → A → B
cast refl a = a
cast² : ∀ {α} {A B : Set α} {ℜ ℑ : A → B → Set α} → (ℜ ≡ ℑ) → ∀ {a b} → ℜ a b → ℑ a b
cast² refl aℜb = aℜb
irrel : ∀ b → (b₁ b₂ : True b) → (b₁ ≡ b₂)
irrel true tt tt = refl
irrel false () ()
-- Postulates (including dependent extensionality)
data _≤?_ (t u : Time) : Set where
leq : True (t ≤ u) → (t ≤? u)
geq : True (u ≤ t) → (t ≤? u)
postulate
≤-refl : ∀ t → True (t ≤ t)
≤-trans : ∀ t u v → True (t ≤ u) → True (u ≤ v) → True (t ≤ v)
≤-asym : ∀ t u → True (t ≤ u) → True (u ≤ t) → (t ≡ u)
≤-total : ∀ t u → (t ≤? u)
dext : ∀ {α β} {A : Set α} {B : A → Set β} {F G : ∀ a → B a} → (∀ a → F a ≡ G a) → (F ≡ G)
ext : ∀ {α β} {A : Set α} {B : Set β} {F G : A → B} →
(∀ a → F a ≡ G a) → (F ≡ G)
ext = dext
iext : ∀ {α β} {A : Set α} {B : A → Set β} {F G : ∀ {a} → B a} →
(∀ a → F {a} ≡ G {a}) → ((λ {a} → F {a}) ≡ (λ {a} → G {a}))
iext F≈G = cong (λ X {a} → X a) (dext F≈G)
-- Finite products
record ⊤ {α} : Set α where
constructor tt
open ⊤ public
record Σ {α β} (A : Set α) (B : A → Set β) : Set (α ⊔ β) where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
open Σ public
_×_ : ∀ {α β} → Set α → Set β → Set (α ⊔ β)
A × B = Σ A (λ a → B)
_ײ_ : ∀ {α β} {A C : Set α} {B D : Set β} →
(A → C → Set α) → (B → D → Set β) → ((A × B) → (C × D) → Set (α ⊔ β))
(ℜ ײ ℑ) (a , b) (c , d) = (ℜ a c × ℑ b d)
_→²_ : ∀ {α β} {A C : Set α} {B D : Set β} →
(A → C → Set α) → (B → D → Set β) → ((A → B) → (C → D) → Set (α ⊔ β))
(ℜ →² ℑ) f g = ∀ {a b} → ℜ a b → ℑ (f a) (g b)
-- Case on booleans
data Case (c : Bool) : Set where
_,_ : ∀ b → True (b ≟ c) → Case c
switch : ∀ b → Case b
switch true = (true , tt)
switch false = (false , tt)
-- Reactive sets
RSet : ∀ α → Set (↑ α)
RSet α = Time → Set α
-- Equalitional reasoning
infix 4 _IsRelatedTo_
infix 2 _∎
infixr 2 _≡⟨_⟩_
infix 1 begin_
data _IsRelatedTo_ {α} {A : Set α} (a b : A) : Set α where
relTo : (a≡b : a ≡ b) → a IsRelatedTo b
begin_ : ∀ {α} {A : Set α} {a b : A} → a IsRelatedTo b → a ≡ b
begin relTo a≡b = a≡b
_≡⟨_⟩_ : ∀ {α} {A : Set α} a {b c : A} → a ≡ b → b IsRelatedTo c → a IsRelatedTo c
_ ≡⟨ a≡b ⟩ relTo b≡c = relTo (trans a≡b b≡c)
_∎ : ∀ {α} {A : Set α} (a : A) → a IsRelatedTo a
_∎ _ = relTo refl
-- Kinds
data Kind : Set where
time : Kind
set : Level → Kind
_⇒_ : Kind → Kind → Kind
level : Kind → Level
level time = o
level (set α) = ↑ α
level (K ⇒ L) = level K ⊔ level L
K⟦_⟧ : ∀ K → Set (level K)
K⟦ time ⟧ = Time
K⟦ set α ⟧ = Set α
K⟦ K ⇒ L ⟧ = K⟦ K ⟧ → K⟦ L ⟧
_∋_↔_ : ∀ K → K⟦ K ⟧ → K⟦ K ⟧ → Set (level K)
time ∋ t ↔ u = (t ≡ u)
set α ∋ A ↔ B = A → B → Set α
(K ⇒ L) ∋ F ↔ G = ∀ {A B} → (K ∋ A ↔ B) → (L ∋ F A ↔ G B)
-- ≡ can be used as a structural equivalence on relations.
struct : ∀ K {A B C D} → (A ≡ B) → (K ∋ B ↔ D) → (C ≡ D) → (K ∋ A ↔ C)
struct K refl ℜ refl = ℜ
struct-ext : ∀ K L {A B} {F G H I : K⟦ K ⇒ L ⟧}
(F≈G : ∀ A → F A ≡ G A) (ℜ : (K ⇒ L) ∋ G ↔ I) (H≈I : ∀ B → H B ≡ I B) (ℑ : K ∋ A ↔ B) →
struct L (F≈G A) (ℜ ℑ) (H≈I B) ≡ struct (K ⇒ L) (ext F≈G) ℜ (ext H≈I) ℑ
struct-ext K L {A} {B} F≈G ℜ H≈I ℑ
with ext F≈G | ext H≈I | F≈G A | H≈I B
... | refl | refl | refl | refl = refl
struct-apply : ∀ K L {F G H I A B C D} →
(F≡G : F ≡ G) (ℜ : (K ⇒ L) ∋ G ↔ I) (H≡I : H ≡ I) →
(A≡B : A ≡ B) (ℑ : K ∋ B ↔ D) (C≡D : C ≡ D) →
struct (K ⇒ L) F≡G ℜ H≡I (struct K A≡B ℑ C≡D)
≡ struct L (apply F≡G A≡B) (ℜ ℑ) (apply H≡I C≡D)
struct-apply K L refl ℜ refl refl ℑ refl = refl
struct-cast : ∀ {α A B C D} (ℜ : set α ∋ B ↔ D) (A≡B : A ≡ B) (C≡D : C ≡ D) {a c} →
struct (set α) A≡B ℜ C≡D a c → ℜ (cast A≡B a) (cast C≡D c)
struct-cast ℜ refl refl aℜc = aℜc
struct-sym : ∀ K {A B C D ℑ ℜ} → (A≡B : A ≡ B) → (C≡D : C ≡ D) →
(ℑ ≡ struct K A≡B ℜ C≡D) →
(ℜ ≡ struct K (sym A≡B) ℑ (sym C≡D))
struct-sym K refl refl refl = refl
struct-trans : ∀ K {A B C D E F}
(A≡B : A ≡ B) (B≡C : B ≡ C) (ℜ : K ∋ C ↔ F) (E≡F : E ≡ F) (D≡E : D ≡ E) →
struct K A≡B (struct K B≡C ℜ E≡F) D≡E ≡
struct K (trans A≡B B≡C) ℜ (trans D≡E E≡F)
struct-trans K refl refl ℜ refl refl = refl
-- Type contexts
infixr 4 _∷_
data Kinds : Set where
[] : Kinds
_∷_ : Kind → Kinds → Kinds
levels : Kinds → Level
levels [] = o
levels (K ∷ Σ) = level K ⊔ levels Σ
Σ⟦_⟧ : ∀ Σ → Set (levels Σ)
Σ⟦ [] ⟧ = ⊤
Σ⟦ K ∷ Σ ⟧ = K⟦ K ⟧ × Σ⟦ Σ ⟧
_∋_↔*_ : ∀ Σ → Σ⟦ Σ ⟧ → Σ⟦ Σ ⟧ → Set (levels Σ)
[] ∋ tt ↔* tt = ⊤
(K ∷ Σ) ∋ (A , As) ↔* (B , Bs) = (K ∋ A ↔ B) × (Σ ∋ As ↔* Bs)
-- Inclusion order on type contexts.
-- Credited by Randy Pollack to Geuvers and Nederhof, JAR 1991.
-- http://thread.gmane.org/gmane.comp.lang.agda/3259/focus=3267
data _⊑_ : Kinds → Kinds → Set where
id : ∀ {Σ} → Σ ⊑ Σ
keep : ∀ K {Σ Υ} → (Σ ⊑ Υ) → ((K ∷ Σ) ⊑ (K ∷ Υ))
skip : ∀ K {Σ Υ} → (Σ ⊑ Υ) → (Σ ⊑ (K ∷ Υ))
⊑⟦_⟧ : ∀ {Σ Υ} → (Σ ⊑ Υ) → Σ⟦ Υ ⟧ → Σ⟦ Σ ⟧
⊑⟦ id ⟧ As = As
⊑⟦ keep K Σ⊑Υ ⟧ (A , As) = (A , ⊑⟦ Σ⊑Υ ⟧ As)
⊑⟦ skip K Σ⊑Υ ⟧ (A , As) = ⊑⟦ Σ⊑Υ ⟧ As
⊑⟦_⟧² : ∀ {Σ Υ} → (Σ⊑Υ : Σ ⊑ Υ) → ∀ {As Bs} → (Υ ∋ As ↔* Bs) → (Σ ∋ ⊑⟦ Σ⊑Υ ⟧ As ↔* ⊑⟦ Σ⊑Υ ⟧ Bs)
⊑⟦ id ⟧² ℜs = ℜs
⊑⟦ keep K Σ⊑Υ ⟧² (ℜ , ℜs) = (ℜ , ⊑⟦ Σ⊑Υ ⟧² ℜs)
⊑⟦ skip K Σ⊑Υ ⟧² (ℜ , ℜs) = ⊑⟦ Σ⊑Υ ⟧² ℜs
-- Concatenation of type contexts
_++_ : Kinds → Kinds → Kinds
[] ++ Υ = Υ
(K ∷ Σ) ++ Υ = K ∷ (Σ ++ Υ)
_∋_++_∋_ : ∀ Σ → Σ⟦ Σ ⟧ → ∀ Υ → Σ⟦ Υ ⟧ → Σ⟦ Σ ++ Υ ⟧
[] ∋ tt ++ Υ ∋ Bs = Bs
(K ∷ Σ) ∋ (A , As) ++ Υ ∋ Bs = (A , (Σ ∋ As ++ Υ ∋ Bs))
_∋_++²_∋_ : ∀ Σ {As Bs} → (Σ ∋ As ↔* Bs) → ∀ Υ {Cs Ds} → (Υ ∋ Cs ↔* Ds) →
((Σ ++ Υ) ∋ (Σ ∋ As ++ Υ ∋ Cs) ↔* (Σ ∋ Bs ++ Υ ∋ Ds))
[] ∋ tt ++² Υ ∋ ℑs = ℑs
(K ∷ Σ) ∋ (ℜ , ℜs) ++² Υ ∋ ℑs = (ℜ , (Σ ∋ ℜs ++² Υ ∋ ℑs))
-- Type variables
data TVar (K : Kind) : Kinds → Set where
zero : ∀ {Σ} → TVar K (K ∷ Σ)
suc : ∀ {L Σ} → TVar K Σ → TVar K (L ∷ Σ)
τ⟦_⟧ : ∀ {Σ K} (τ : TVar K Σ) → Σ⟦ Σ ⟧ → K⟦ K ⟧
τ⟦ zero ⟧ (A , As) = A
τ⟦ suc τ ⟧ (A , As) = τ⟦ τ ⟧ As
τ⟦_⟧² : ∀ {Σ K} (τ : TVar K Σ) {As Bs} → (Σ ∋ As ↔* Bs) → (K ∋ τ⟦ τ ⟧ As ↔ τ⟦ τ ⟧ Bs)
τ⟦ zero ⟧² (ℜ , ℜs) = ℜ
τ⟦ suc τ ⟧² (ℜ , ℜs) = τ⟦ τ ⟧² ℜs
-- Type constants
data TConst : Kind → Set where
prod fun : ∀ {α β} → TConst (set α ⇒ (set β ⇒ set (α ⊔ β)))
leq : TConst (time ⇒ (time ⇒ set o))
univ : ∀ K {α} → TConst ((K ⇒ set α) ⇒ set (level K ⊔ α))
C⟦_⟧ : ∀ {K} → (TConst K) → K⟦ K ⟧
C⟦ prod ⟧ = λ A B → (A × B)
C⟦ fun ⟧ = λ A B → (A → B)
C⟦ leq ⟧ = λ t u → True (t ≤ u)
C⟦ univ K ⟧ = λ F → ∀ A → F A
C⟦_⟧² : ∀ {K} (C : TConst K) → (K ∋ C⟦ C ⟧ ↔ C⟦ C ⟧)
C⟦ prod ⟧² = λ ℜ ℑ → (ℜ ײ ℑ)
C⟦ fun ⟧² = λ ℜ ℑ → (ℜ →² ℑ)
C⟦ leq ⟧² = λ _ _ _ _ → ⊤
C⟦ univ K ⟧² = λ ℜ f g → ∀ {a b} ℑ → ℜ ℑ (f a) (g b)
-- Types
data Typ (Σ : Kinds) : Kind → Set where
const : ∀ {K} → TConst K → Typ Σ K
abs : ∀ K {L} → Typ (K ∷ Σ) L → Typ Σ (K ⇒ L)
app : ∀ {K L} → Typ Σ (K ⇒ L) → Typ Σ K → Typ Σ L
var : ∀ {K} → TVar K Σ → Typ Σ K
tlevel : ∀ {Σ α} → Typ Σ (set α) → Level
tlevel {Σ} {α} T = α
T⟦_⟧ : ∀ {Σ K} (T : Typ Σ K) → Σ⟦ Σ ⟧ → K⟦ K ⟧
T⟦ const C ⟧ As = C⟦ C ⟧
T⟦ abs K T ⟧ As = λ A → T⟦ T ⟧ (A , As)
T⟦ app T U ⟧ As = T⟦ T ⟧ As (T⟦ U ⟧ As)
T⟦ var τ ⟧ As = τ⟦ τ ⟧ As
T⟦_⟧² : ∀ {Σ K} (T : Typ Σ K) {As Bs} → (Σ ∋ As ↔* Bs) → (K ∋ T⟦ T ⟧ As ↔ T⟦ T ⟧ Bs)
T⟦ const C ⟧² ℜs = C⟦ C ⟧²
T⟦ abs K T ⟧² ℜs = λ ℜ → T⟦ T ⟧² (ℜ , ℜs)
T⟦ app T U ⟧² ℜs = T⟦ T ⟧² ℜs (T⟦ U ⟧² ℜs)
T⟦ var τ ⟧² ℜs = τ⟦ τ ⟧² ℜs
-- Type shorthands
app₂ : ∀ {Σ K L M} → Typ Σ (K ⇒ (L ⇒ M)) → Typ Σ K → Typ Σ L → Typ Σ M
app₂ T U V = app (app T U) V
capp : ∀ {Σ K L} → TConst (K ⇒ L) → Typ Σ K → Typ Σ L
capp C = app (const C)
capp₂ : ∀ {Σ K L M} → TConst (K ⇒ (L ⇒ M)) → Typ Σ K → Typ Σ L → Typ Σ M
capp₂ C = app₂ (const C)
_⊗_ : ∀ {Σ α β} → Typ Σ (set α) → Typ Σ (set β) → Typ Σ (set (α ⊔ β))
_⊗_ = capp₂ prod
_⊸_ : ∀ {Σ α β} → Typ Σ (set α) → Typ Σ (set β) → Typ Σ (set (α ⊔ β))
_⊸_ = capp₂ fun
_≼_ : ∀ {Σ} → Typ Σ time → Typ Σ time → Typ Σ (set o)
_≼_ = capp₂ leq
Π : ∀ {Σ α} K → Typ (K ∷ Σ) (set α) → Typ Σ (set (level K ⊔ α))
Π K T = capp (univ K) (abs K T)
tvar₀ : ∀ {Σ K} → Typ (K ∷ Σ) K
tvar₀ = var zero
tvar₁ : ∀ {Σ K L} → Typ (L ∷ K ∷ Σ) K
tvar₁ = var (suc zero)
tvar₂ : ∀ {Σ K L M} → Typ (M ∷ L ∷ K ∷ Σ) K
tvar₂ = var (suc (suc zero))
tvar₃ : ∀ {Σ K L M N} → Typ (N ∷ M ∷ L ∷ K ∷ Σ) K
tvar₃ = var (suc (suc (suc zero)))
rset : Level → Kind
rset α = time ⇒ set α
rset₀ : Kind
rset₀ = rset o
prodʳ : ∀ {Σ α β} → Typ Σ (rset α ⇒ (rset β ⇒ rset (α ⊔ β)))
prodʳ {Σ} {α} {β} = abs (rset α) (abs (rset β) (abs time (app tvar₂ tvar₀ ⊗ app tvar₁ tvar₀)))
_⊗ʳ_ : ∀ {Σ α β} → Typ Σ (rset α) → Typ Σ (rset β) → Typ Σ (rset (α ⊔ β))
_⊗ʳ_ = app₂ prodʳ
funʳ : ∀ {Σ α β} → Typ Σ (rset α ⇒ (rset β ⇒ rset (α ⊔ β)))
funʳ {Σ} {α} {β} = abs (rset α) (abs (rset β) (abs time (app tvar₂ tvar₀ ⊸ app tvar₁ tvar₀)))
_⊸ʳ_ : ∀ {Σ α β} → Typ Σ (rset α) → Typ Σ (rset β) → Typ Σ (rset (α ⊔ β))
_⊸ʳ_ = app₂ funʳ
always : ∀ {Σ α} → Typ Σ (set α ⇒ rset α)
always {Σ} {α} = abs (set α) (abs time tvar₁)
interval : ∀ {Σ α} → Typ Σ (rset α ⇒ (time ⇒ (time ⇒ set α)))
interval {Σ} {α} = abs (rset α) (abs time (abs time (Π time
((tvar₂ ≼ tvar₀) ⊸ ((tvar₀ ≼ tvar₁) ⊸ app tvar₃ tvar₀)))))
_[_,_] : ∀ {Σ α} → Typ Σ (rset α) → Typ Σ time → Typ Σ time → Typ Σ (set α)
T [ t , u ] = app (app (app interval T) t) u
constreq : ∀ {Σ α β} → Typ Σ (rset α ⇒ (rset β ⇒ rset (α ⊔ β)))
constreq {Σ} {α} {β} = abs (rset α) (abs (rset β) (abs time (Π time
((tvar₁ ≼ tvar₀) ⊸ ((tvar₃ [ tvar₁ , tvar₀ ]) ⊸ app tvar₂ tvar₀)))))
_⊵_ : ∀ {Σ α β} → Typ Σ (rset α) → Typ Σ (rset β) → Typ Σ (rset (α ⊔ β))
T ⊵ U = app₂ constreq T U
-- Contexts
data Typs (Σ : Kinds) : Set where
[] : Typs Σ
_∷_ : ∀ {α} → (Typ Σ (set α)) → Typs Σ → Typs Σ
tlevels : ∀ {Σ} → Typs Σ → Level
tlevels [] = o
tlevels (T ∷ Γ) = tlevel T ⊔ tlevels Γ
Γ⟦_⟧ : ∀ {Σ} (Γ : Typs Σ) → Σ⟦ Σ ⟧ → Set (tlevels Γ)
Γ⟦ [] ⟧ As = ⊤
Γ⟦ T ∷ Γ ⟧ As = T⟦ T ⟧ As × Γ⟦ Γ ⟧ As
Γ⟦_⟧² : ∀ {Σ} (Γ : Typs Σ) {As Bs} (ℜs : Σ ∋ As ↔* Bs) → (Γ⟦ Γ ⟧ As → Γ⟦ Γ ⟧ Bs → Set (tlevels Γ))
Γ⟦ [] ⟧² ℜs tt tt = ⊤
Γ⟦ T ∷ Γ ⟧² ℜs (a , as) (b , bs) = T⟦ T ⟧² ℜs a b × Γ⟦ Γ ⟧² ℜs as bs
-- Weakening of type variables
τweaken : ∀ {Σ Υ K} → (Σ ⊑ Υ) → TVar K Σ → TVar K Υ
τweaken id x = x
τweaken (keep K Σ⊑Υ) zero = zero
τweaken (keep K Σ⊑Υ) (suc x) = suc (τweaken Σ⊑Υ x)
τweaken (skip K Σ⊑Υ) x = suc (τweaken Σ⊑Υ x)
τweaken⟦_⟧ : ∀ {Σ Υ K} (τ : TVar K Σ) (Σ⊑Υ : Σ ⊑ Υ) (As : Σ⟦ Υ ⟧) →
τ⟦ τ ⟧ (⊑⟦ Σ⊑Υ ⟧ As) ≡ τ⟦ τweaken Σ⊑Υ τ ⟧ As
τweaken⟦ τ ⟧ id As = refl
τweaken⟦ zero ⟧ (keep K Σ⊑Υ) (A , As) = refl
τweaken⟦ suc τ ⟧ (keep K Σ⊑Υ) (A , As) = τweaken⟦ τ ⟧ Σ⊑Υ As
τweaken⟦ τ ⟧ (skip K Σ⊑Υ) (A , As) = τweaken⟦ τ ⟧ Σ⊑Υ As
τweaken⟦_⟧² : ∀ {Σ Υ K} (τ : TVar K Σ) (Σ⊑Υ : Σ ⊑ Υ) {As Bs} (ℜs : Υ ∋ As ↔* Bs) →
τ⟦ τ ⟧² (⊑⟦ Σ⊑Υ ⟧² ℜs) ≡
struct K (τweaken⟦ τ ⟧ Σ⊑Υ As) (τ⟦ τweaken Σ⊑Υ τ ⟧² ℜs) (τweaken⟦ τ ⟧ Σ⊑Υ Bs)
τweaken⟦ τ ⟧² id ℜs = refl
τweaken⟦ zero ⟧² (keep K Σ⊑Υ) (ℜ , ℜs) = refl
τweaken⟦ suc τ ⟧² (keep K Σ⊑Υ) (ℜ , ℜs) = τweaken⟦ τ ⟧² Σ⊑Υ ℜs
τweaken⟦ τ ⟧² (skip K Σ⊑Υ) (ℜ , ℜs) = τweaken⟦ τ ⟧² Σ⊑Υ ℜs
-- Weakening of types
weaken : ∀ {Σ Υ K} → (Σ ⊑ Υ) → Typ Σ K → Typ Υ K
weaken Σ⊑Υ (const C) = const C
weaken Σ⊑Υ (abs K T) = abs K (weaken (keep K Σ⊑Υ) T)
weaken Σ⊑Υ (app T U) = app (weaken Σ⊑Υ T) (weaken Σ⊑Υ U)
weaken Σ⊑Υ (var τ) = var (τweaken Σ⊑Υ τ)
weaken⟦_⟧ : ∀ {Σ Υ K} (T : Typ Σ K) (Σ⊑Υ : Σ ⊑ Υ) (As : Σ⟦ Υ ⟧) →
T⟦ T ⟧ (⊑⟦ Σ⊑Υ ⟧ As) ≡ T⟦ weaken Σ⊑Υ T ⟧ As
weaken⟦ const C ⟧ Σ⊑Υ As = refl
weaken⟦ abs K T ⟧ Σ⊑Υ As = ext (λ A → weaken⟦ T ⟧ (keep K Σ⊑Υ) (A , As))
weaken⟦ app T U ⟧ Σ⊑Υ As = apply (weaken⟦ T ⟧ Σ⊑Υ As) (weaken⟦ U ⟧ Σ⊑Υ As)
weaken⟦ var τ ⟧ Σ⊑Υ As = τweaken⟦ τ ⟧ Σ⊑Υ As
weaken⟦_⟧² : ∀ {Σ Υ K} (T : Typ Σ K) (Σ⊑Υ : Σ ⊑ Υ) {As Bs} (ℜs : Υ ∋ As ↔* Bs) →
T⟦ T ⟧² (⊑⟦ Σ⊑Υ ⟧² ℜs) ≡ struct K (weaken⟦ T ⟧ Σ⊑Υ As) (T⟦ weaken Σ⊑Υ T ⟧² ℜs) (weaken⟦ T ⟧ Σ⊑Υ Bs)
weaken⟦ const C ⟧² Σ⊑Υ ℜs = refl
weaken⟦ abs K {L} T ⟧² Σ⊑Υ {As} {Bs} ℜs =
iext (λ A → iext (λ B → ext (λ ℜ → begin
T⟦ abs K T ⟧² (⊑⟦ Σ⊑Υ ⟧² ℜs) ℜ
≡⟨ weaken⟦ T ⟧² (keep K Σ⊑Υ) (ℜ , ℜs) ⟩
struct L
(weaken⟦ T ⟧ (keep K Σ⊑Υ) (A , As))
(T⟦ weaken (keep K Σ⊑Υ) T ⟧² (ℜ , ℜs))
(weaken⟦ T ⟧ (keep K Σ⊑Υ) (B , Bs))
≡⟨ struct-ext K L
(λ A → weaken⟦ T ⟧ (keep K Σ⊑Υ) (A , As))
(λ ℜ → T⟦ weaken (keep K Σ⊑Υ) T ⟧² (ℜ , ℜs))
(λ B → weaken⟦ T ⟧ (keep K Σ⊑Υ) (B , Bs)) ℜ ⟩
struct (K ⇒ L)
(weaken⟦ abs K T ⟧ Σ⊑Υ As)
(T⟦ weaken Σ⊑Υ (abs K T) ⟧² ℜs)
(weaken⟦ abs K T ⟧ Σ⊑Υ Bs) ℜ
∎)))
weaken⟦ app {K} {L} T U ⟧² Σ⊑Υ {As} {Bs} ℜs =
begin
T⟦ app T U ⟧² (⊑⟦ Σ⊑Υ ⟧² ℜs)
≡⟨ cong (T⟦ T ⟧² (⊑⟦ Σ⊑Υ ⟧² ℜs)) (weaken⟦ U ⟧² Σ⊑Υ ℜs) ⟩
T⟦ T ⟧² (⊑⟦ Σ⊑Υ ⟧² ℜs)
(struct K (weaken⟦ U ⟧ Σ⊑Υ As) (T⟦ weaken Σ⊑Υ U ⟧² ℜs) (weaken⟦ U ⟧ Σ⊑Υ Bs))
≡⟨ cong (λ X → X (struct K (weaken⟦ U ⟧ Σ⊑Υ As) (T⟦ weaken Σ⊑Υ U ⟧² ℜs) (weaken⟦ U ⟧ Σ⊑Υ Bs)))
(weaken⟦ T ⟧² Σ⊑Υ ℜs) ⟩
(struct (K ⇒ L) (weaken⟦ T ⟧ Σ⊑Υ As) (T⟦ weaken Σ⊑Υ T ⟧² ℜs) (weaken⟦ T ⟧ Σ⊑Υ Bs))
(struct K (weaken⟦ U ⟧ Σ⊑Υ As) (T⟦ weaken Σ⊑Υ U ⟧² ℜs) (weaken⟦ U ⟧ Σ⊑Υ Bs))
≡⟨ struct-apply K L
(weaken⟦ T ⟧ Σ⊑Υ As) (T⟦ weaken Σ⊑Υ T ⟧² ℜs) (weaken⟦ T ⟧ Σ⊑Υ Bs)
(weaken⟦ U ⟧ Σ⊑Υ As) (T⟦ weaken Σ⊑Υ U ⟧² ℜs) (weaken⟦ U ⟧ Σ⊑Υ Bs) ⟩
struct L
(weaken⟦ app T U ⟧ Σ⊑Υ As)
(T⟦ weaken Σ⊑Υ (app T U) ⟧² ℜs)
(weaken⟦ app T U ⟧ Σ⊑Υ Bs)
∎
weaken⟦ var τ ⟧² Σ⊑Υ ℜs = τweaken⟦ τ ⟧² Σ⊑Υ ℜs
-- Weakening on type contexts
weakens : ∀ {Σ Υ} → (Σ ⊑ Υ) → Typs Σ → Typs Υ
weakens Σ⊑Υ [] = []
weakens Σ⊑Υ (T ∷ Γ) = weaken Σ⊑Υ T ∷ weakens Σ⊑Υ Γ
weakens⟦_⟧ : ∀ {Σ Υ} (Γ : Typs Σ) (Σ⊑Υ : Σ ⊑ Υ) (As : Σ⟦ Υ ⟧) →
Γ⟦ Γ ⟧ (⊑⟦ Σ⊑Υ ⟧ As) → Γ⟦ weakens Σ⊑Υ Γ ⟧ As
weakens⟦ [] ⟧ Σ⊑Υ As tt = tt
weakens⟦ T ∷ Γ ⟧ Σ⊑Υ As (B , Bs) = (cast (weaken⟦ T ⟧ Σ⊑Υ As) B , weakens⟦ Γ ⟧ Σ⊑Υ As Bs)
weakens⟦_⟧² : ∀ {Σ Υ} (Γ : Typs Σ) (Σ⊑Υ : Σ ⊑ Υ) {As Bs} (ℜs : Υ ∋ As ↔* Bs) {as bs} →
Γ⟦ Γ ⟧² (⊑⟦ Σ⊑Υ ⟧² ℜs) as bs →
Γ⟦ weakens Σ⊑Υ Γ ⟧² ℜs (weakens⟦ Γ ⟧ Σ⊑Υ As as) (weakens⟦ Γ ⟧ Σ⊑Υ Bs bs)
weakens⟦ [] ⟧² Σ⊑Υ ℜs tt
= tt
weakens⟦ T ∷ Γ ⟧² Σ⊑Υ ℜs (aℜb , asℜbs)
= ( struct-cast (T⟦ weaken Σ⊑Υ T ⟧² ℜs)
(weaken⟦ T ⟧ Σ⊑Υ _) (weaken⟦ T ⟧ Σ⊑Υ _) (cast² (weaken⟦ T ⟧² Σ⊑Υ ℜs) aℜb)
, weakens⟦ Γ ⟧² Σ⊑Υ ℜs asℜbs)
-- Susbtitution on type variables under a context
τsubstn+ : ∀ Σ {Υ K L} → TVar K (Σ ++ (L ∷ Υ)) → Typ Υ L → Typ (Σ ++ Υ) K
τsubstn+ [] zero U = U
τsubstn+ [] (suc τ) U = var τ
τsubstn+ (K ∷ Σ) zero U = var zero
τsubstn+ (K ∷ Σ) (suc τ) U = weaken (skip K id) (τsubstn+ Σ τ U)
τsubstn+_⟦_⟧⟦_⟧ : ∀ Σ {Υ K L} (τ : TVar K (Σ ++ (L ∷ Υ))) (U : Typ Υ L)
(As : Σ⟦ Σ ⟧) (Bs : Σ⟦ Υ ⟧) →
τ⟦ τ ⟧ (Σ ∋ As ++ (L ∷ Υ) ∋ (T⟦ U ⟧ Bs , Bs)) ≡
T⟦ τsubstn+ Σ τ U ⟧ (Σ ∋ As ++ Υ ∋ Bs)
τsubstn+ [] ⟦ zero ⟧⟦ U ⟧ tt Bs = refl
τsubstn+ [] ⟦ suc τ ⟧⟦ U ⟧ tt Bs = refl
τsubstn+ (K ∷ Σ) ⟦ zero ⟧⟦ U ⟧ (A , As) Bs = refl
τsubstn+ (K ∷ Σ) ⟦ suc τ ⟧⟦ U ⟧ (A , As) Bs = trans
(τsubstn+ Σ ⟦ τ ⟧⟦ U ⟧ As Bs)
(weaken⟦ τsubstn+ Σ τ U ⟧ (skip K id) (A , (Σ ∋ As ++ _ ∋ Bs)))
τsubstn+_⟦_⟧⟦_⟧² : ∀ Σ {Υ L K} (τ : TVar K (Σ ++ (L ∷ Υ))) (U : Typ Υ L) {As Bs Cs Ds}
(ℜs : Σ ∋ As ↔* Bs) → (ℑs : Υ ∋ Cs ↔* Ds) →
τ⟦ τ ⟧² (Σ ∋ ℜs ++² (L ∷ Υ) ∋ (T⟦ U ⟧² ℑs , ℑs)) ≡
struct K
(τsubstn+ Σ ⟦ τ ⟧⟦ U ⟧ As Cs)
(T⟦ τsubstn+ Σ τ U ⟧² (Σ ∋ ℜs ++² Υ ∋ ℑs) )
(τsubstn+ Σ ⟦ τ ⟧⟦ U ⟧ Bs Ds)
τsubstn+ [] ⟦ zero ⟧⟦ U ⟧² tt ℑs = refl
τsubstn+ [] ⟦ suc τ ⟧⟦ U ⟧² tt ℑs = refl
τsubstn+ (J ∷ Σ) ⟦ zero ⟧⟦ U ⟧² (ℜ , ℜs) ℑs = refl
τsubstn+_⟦_⟧⟦_⟧² (J ∷ Σ) {Υ} {L} {K} (suc τ) U {A , As} {B , Bs} {Cs} {Ds} (ℜ , ℜs) ℑs =
begin
τ⟦ τ ⟧² (Σ ∋ ℜs ++² (L ∷ Υ) ∋ (T⟦ U ⟧² ℑs , ℑs))
≡⟨ τsubstn+ Σ ⟦ τ ⟧⟦ U ⟧² ℜs ℑs ⟩
struct K
(τsubstn+ Σ ⟦ τ ⟧⟦ U ⟧ As Cs)
(T⟦ τsubstn+ Σ τ U ⟧² (Σ ∋ ℜs ++² Υ ∋ ℑs))
(τsubstn+ Σ ⟦ τ ⟧⟦ U ⟧ Bs Ds)
≡⟨ cong (λ X → struct K (τsubstn+ Σ ⟦ τ ⟧⟦ U ⟧ As Cs) X (τsubstn+ Σ ⟦ τ ⟧⟦ U ⟧ Bs Ds))
(weaken⟦ τsubstn+ Σ τ U ⟧² (skip J id) (ℜ , (Σ ∋ ℜs ++² Υ ∋ ℑs))) ⟩
struct K
(τsubstn+ Σ ⟦ τ ⟧⟦ U ⟧ As Cs)
(struct K
(weaken⟦ τsubstn+ Σ τ U ⟧ (skip J id) (A , (Σ ∋ As ++ Υ ∋ Cs)))
(T⟦ weaken (skip J id) (τsubstn+ Σ τ U) ⟧² (ℜ , (Σ ∋ ℜs ++² Υ ∋ ℑs)))
(weaken⟦ τsubstn+ Σ τ U ⟧ (skip J id) (B , (Σ ∋ Bs ++ Υ ∋ Ds))))
(τsubstn+ Σ ⟦ τ ⟧⟦ U ⟧ Bs Ds)
≡⟨ struct-trans K
(τsubstn+ Σ ⟦ τ ⟧⟦ U ⟧ As Cs)
(weaken⟦ τsubstn+ Σ τ U ⟧ (skip J id) (A , (Σ ∋ As ++ Υ ∋ Cs)))
(T⟦ weaken (skip J id) (τsubstn+ Σ τ U) ⟧² (ℜ , (Σ ∋ ℜs ++² Υ ∋ ℑs)))
(weaken⟦ τsubstn+ Σ τ U ⟧ (skip J id) (B , (Σ ∋ Bs ++ Υ ∋ Ds)))
(τsubstn+ Σ ⟦ τ ⟧⟦ U ⟧ Bs Ds) ⟩
struct K
(τsubstn+ (J ∷ Σ) ⟦ suc τ ⟧⟦ U ⟧ (A , As) Cs)
(T⟦ τsubstn+ (J ∷ Σ) (suc τ) U ⟧² (ℜ , (Σ ∋ ℜs ++² Υ ∋ ℑs)) )
(τsubstn+ (J ∷ Σ) ⟦ suc τ ⟧⟦ U ⟧ (B , Bs) Ds)
∎
-- Substitution on types under a context
substn+ : ∀ Σ {Υ K L} → Typ (Σ ++ (L ∷ Υ)) K → Typ Υ L → Typ (Σ ++ Υ) K
substn+ Σ (const C) U = const C
substn+ Σ (abs K T) U = abs K (substn+ (K ∷ Σ) T U)
substn+ Σ (app S T) U = app (substn+ Σ S U) (substn+ Σ T U)
substn+ Σ (var τ) U = τsubstn+ Σ τ U
substn+_⟦_⟧⟦_⟧ : ∀ Σ {Υ K L} (T : Typ (Σ ++ (L ∷ Υ)) K) (U : Typ Υ L)
(As : Σ⟦ Σ ⟧) (Bs : Σ⟦ Υ ⟧) →
T⟦ T ⟧ (Σ ∋ As ++ (L ∷ Υ) ∋ (T⟦ U ⟧ Bs , Bs)) ≡
T⟦ substn+ Σ T U ⟧ (Σ ∋ As ++ Υ ∋ Bs)
substn+ Σ ⟦ const C ⟧⟦ U ⟧ As Bs = refl
substn+ Σ ⟦ abs K T ⟧⟦ U ⟧ As Bs = ext (λ A → substn+ K ∷ Σ ⟦ T ⟧⟦ U ⟧ (A , As) Bs)
substn+ Σ ⟦ app S T ⟧⟦ U ⟧ As Bs = apply (substn+ Σ ⟦ S ⟧⟦ U ⟧ As Bs) (substn+ Σ ⟦ T ⟧⟦ U ⟧ As Bs)
substn+ Σ ⟦ var τ ⟧⟦ U ⟧ As Bs = τsubstn+ Σ ⟦ τ ⟧⟦ U ⟧ As Bs
substn+_⟦_⟧⟦_⟧² : ∀ Σ {Υ L K} (T : Typ (Σ ++ (L ∷ Υ)) K) (U : Typ Υ L) {As Bs Cs Ds}
(ℜs : Σ ∋ As ↔* Bs) → (ℑs : Υ ∋ Cs ↔* Ds) →
T⟦ T ⟧² (Σ ∋ ℜs ++² (L ∷ Υ) ∋ (T⟦ U ⟧² ℑs , ℑs)) ≡
struct K
(substn+ Σ ⟦ T ⟧⟦ U ⟧ As Cs)
(T⟦ substn+ Σ T U ⟧² (Σ ∋ ℜs ++² Υ ∋ ℑs) )
(substn+ Σ ⟦ T ⟧⟦ U ⟧ Bs Ds)
substn+ Σ ⟦ const C ⟧⟦ U ⟧² ℜs ℑs = refl
substn+_⟦_⟧⟦_⟧² Σ {Υ} {L} (abs J {K} T) U {As} {Bs} {Cs} {Ds} ℜs ℑs =
iext (λ A → iext (λ B → ext (λ ℜ → begin
T⟦ abs J T ⟧² (Σ ∋ ℜs ++² (L ∷ Υ) ∋ (T⟦ U ⟧² ℑs , ℑs)) ℜ
≡⟨ substn+ (J ∷ Σ) ⟦ T ⟧⟦ U ⟧² (ℜ , ℜs) ℑs ⟩
struct K
(substn+ J ∷ Σ ⟦ T ⟧⟦ U ⟧ (A , As) Cs)
(T⟦ substn+ (J ∷ Σ) T U ⟧² ((J ∷ Σ) ∋ (ℜ , ℜs) ++² Υ ∋ ℑs))
(substn+ J ∷ Σ ⟦ T ⟧⟦ U ⟧ (B , Bs) Ds)
≡⟨ struct-ext J K
(λ A → substn+ J ∷ Σ ⟦ T ⟧⟦ U ⟧ (A , As) Cs)
(λ ℜ → T⟦ substn+ (J ∷ Σ) T U ⟧² ((J ∷ Σ) ∋ ℜ , ℜs ++² Υ ∋ ℑs))
(λ B → substn+ J ∷ Σ ⟦ T ⟧⟦ U ⟧ (B , Bs) Ds) ℜ ⟩
struct (J ⇒ K)
(substn+ Σ ⟦ abs J T ⟧⟦ U ⟧ As Cs)
(T⟦ substn+ Σ (abs J T) U ⟧² (Σ ∋ ℜs ++² Υ ∋ ℑs))
(substn+ Σ ⟦ abs J T ⟧⟦ U ⟧ Bs Ds) ℜ
∎)))
substn+_⟦_⟧⟦_⟧² Σ {Υ} {L} (app {J} {K} S T) U {As} {Bs} {Cs} {Ds} ℜs ℑs =
begin
T⟦ app S T ⟧² (Σ ∋ ℜs ++² L ∷ Υ ∋ (T⟦ U ⟧² ℑs , ℑs))
≡⟨ cong (T⟦ S ⟧² (Σ ∋ ℜs ++² L ∷ Υ ∋ (T⟦ U ⟧² ℑs , ℑs))) (substn+ Σ ⟦ T ⟧⟦ U ⟧² ℜs ℑs) ⟩
T⟦ S ⟧² (Σ ∋ ℜs ++² L ∷ Υ ∋ (T⟦ U ⟧² ℑs , ℑs))
(struct J
(substn+ Σ ⟦ T ⟧⟦ U ⟧ As Cs)
(T⟦ substn+ Σ T U ⟧² (Σ ∋ ℜs ++² Υ ∋ ℑs))
(substn+ Σ ⟦ T ⟧⟦ U ⟧ Bs Ds))
≡⟨ cong (λ X → X (struct J
(substn+ Σ ⟦ T ⟧⟦ U ⟧ As Cs)
(T⟦ substn+ Σ T U ⟧² (Σ ∋ ℜs ++² Υ ∋ ℑs))
(substn+ Σ ⟦ T ⟧⟦ U ⟧ Bs Ds)))
(substn+ Σ ⟦ S ⟧⟦ U ⟧² ℜs ℑs) ⟩
struct (J ⇒ K)
(substn+ Σ ⟦ S ⟧⟦ U ⟧ As Cs)
(T⟦ substn+ Σ S U ⟧² (Σ ∋ ℜs ++² Υ ∋ ℑs))
(substn+ Σ ⟦ S ⟧⟦ U ⟧ Bs Ds)
(struct J
(substn+ Σ ⟦ T ⟧⟦ U ⟧ As Cs)
(T⟦ substn+ Σ T U ⟧² (Σ ∋ ℜs ++² Υ ∋ ℑs))
(substn+ Σ ⟦ T ⟧⟦ U ⟧ Bs Ds))
≡⟨ struct-apply J K
(substn+ Σ ⟦ S ⟧⟦ U ⟧ As Cs)
(T⟦ substn+ Σ S U ⟧² (Σ ∋ ℜs ++² Υ ∋ ℑs))
(substn+ Σ ⟦ S ⟧⟦ U ⟧ Bs Ds)
(substn+ Σ ⟦ T ⟧⟦ U ⟧ As Cs)
(T⟦ substn+ Σ T U ⟧² (Σ ∋ ℜs ++² Υ ∋ ℑs))
(substn+ Σ ⟦ T ⟧⟦ U ⟧ Bs Ds) ⟩
struct K
(substn+ Σ ⟦ app S T ⟧⟦ U ⟧ As Cs)
(T⟦ substn+ Σ (app S T) U ⟧² (Σ ∋ ℜs ++² Υ ∋ ℑs))
(substn+ Σ ⟦ app S T ⟧⟦ U ⟧ Bs Ds)
∎
substn+ Σ ⟦ var τ ⟧⟦ U ⟧² ℜs ℑs = τsubstn+ Σ ⟦ τ ⟧⟦ U ⟧² ℜs ℑs
-- Substitution on types
substn : ∀ {Σ K L} → Typ (L ∷ Σ) K → Typ Σ L → Typ Σ K
substn = substn+ []
substn⟦_⟧⟦_⟧ : ∀ {Σ K L} (T : Typ (L ∷ Σ) K) (U : Typ Σ L) (As : Σ⟦ Σ ⟧)→
T⟦ T ⟧ (T⟦ U ⟧ As , As) ≡ T⟦ substn T U ⟧ As
substn⟦ T ⟧⟦ U ⟧ = substn+ [] ⟦ T ⟧⟦ U ⟧ tt
substn⟦_⟧⟦_⟧² : ∀ {Σ K L} (T : Typ (L ∷ Σ) K) (U : Typ Σ L) {As Bs} (ℜs : Σ ∋ As ↔* Bs) →
T⟦ T ⟧² (T⟦ U ⟧² ℜs , ℜs) ≡
struct K (substn⟦ T ⟧⟦ U ⟧ As) (T⟦ substn T U ⟧² ℜs) (substn⟦ T ⟧⟦ U ⟧ Bs)
substn⟦ T ⟧⟦ U ⟧² = substn+ [] ⟦ T ⟧⟦ U ⟧² tt
-- Eta-beta equivalence on types
data _∋_≣_ {Σ} : ∀ K → Typ Σ K → Typ Σ K → Set where
abs : ∀ K {L T U} → (L ∋ T ≣ U) → ((K ⇒ L) ∋ abs K T ≣ abs K U)
app : ∀ {K L F G T U} → ((K ⇒ L) ∋ F ≣ G) → (K ∋ T ≣ U) → (L ∋ app F T ≣ app G U)
beta : ∀ {K L} T U → (L ∋ app (abs K T) U ≣ substn T U)
eta : ∀ {K L} T → ((K ⇒ L) ∋ T ≣ abs K (app (weaken (skip K id) T) tvar₀))
≣-refl : ∀ {K T} → (K ∋ T ≣ T)
≣-sym : ∀ {K T U} → (K ∋ T ≣ U) → (K ∋ U ≣ T)
≣-trans : ∀ {K T U V} → (K ∋ T ≣ U) → (K ∋ U ≣ V) → (K ∋ T ≣ V)
≣⟦_⟧ : ∀ {Σ K} {T U : Typ Σ K} → (K ∋ T ≣ U) → ∀ As → T⟦ T ⟧ As ≡ T⟦ U ⟧ As
≣⟦ abs K T≣U ⟧ As = ext (λ A → ≣⟦ T≣U ⟧ (A , As))
≣⟦ app F≣G T≣U ⟧ As = apply (≣⟦ F≣G ⟧ As) (≣⟦ T≣U ⟧ As)
≣⟦ beta T U ⟧ As = substn⟦ T ⟧⟦ U ⟧ As
≣⟦ eta {K} T ⟧ As = ext (λ A → apply (weaken⟦ T ⟧ (skip K id) (A , As)) refl)
≣⟦ ≣-refl ⟧ As = refl
≣⟦ ≣-sym T≣U ⟧ As = sym (≣⟦ T≣U ⟧ As)
≣⟦ ≣-trans T≣U U≣V ⟧ As = trans (≣⟦ T≣U ⟧ As) (≣⟦ U≣V ⟧ As)
≣⟦_⟧² : ∀ {Σ K} {T U : Typ Σ K} (T≣U : K ∋ T ≣ U) {As Bs} (ℜs : Σ ∋ As ↔* Bs) →
T⟦ T ⟧² ℜs ≡ struct K (≣⟦ T≣U ⟧ As) (T⟦ U ⟧² ℜs) (≣⟦ T≣U ⟧ Bs)
≣⟦ abs K {L} {T} {U} T≣U ⟧² {As} {Bs} ℜs =
iext (λ A → iext (λ B → ext (λ ℜ → begin
T⟦ T ⟧² (ℜ , ℜs)
≡⟨ ≣⟦ T≣U ⟧² (ℜ , ℜs) ⟩
struct L (≣⟦ T≣U ⟧ (A , As)) (T⟦ U ⟧² (ℜ , ℜs)) (≣⟦ T≣U ⟧ (B , Bs))
≡⟨ struct-ext K L (λ A → ≣⟦ T≣U ⟧ (A , As)) (λ ℜ' → T⟦ U ⟧² (ℜ' , ℜs)) (λ B → ≣⟦ T≣U ⟧ (B , Bs)) ℜ ⟩
struct (K ⇒ L) (≣⟦ abs K T≣U ⟧ As) (T⟦ abs K U ⟧² ℜs) (≣⟦ abs K T≣U ⟧ Bs) ℜ
∎)))
≣⟦ app {K} {L} {F} {G} {T} {U} F≣G T≣U ⟧² {As} {Bs} ℜs =
begin
T⟦ app F T ⟧² ℜs
≡⟨ cong (T⟦ F ⟧² ℜs) (≣⟦ T≣U ⟧² ℜs) ⟩
T⟦ F ⟧² ℜs (struct K (≣⟦ T≣U ⟧ As) (T⟦ U ⟧² ℜs) (≣⟦ T≣U ⟧ Bs))
≡⟨ cong (λ X → X (struct K (≣⟦ T≣U ⟧ As) (T⟦ U ⟧² ℜs) (≣⟦ T≣U ⟧ Bs)))
(≣⟦ F≣G ⟧² ℜs) ⟩
struct (K ⇒ L) (≣⟦ F≣G ⟧ As) (T⟦ G ⟧² ℜs) (≣⟦ F≣G ⟧ Bs)
(struct K (≣⟦ T≣U ⟧ As) (T⟦ U ⟧² ℜs) (≣⟦ T≣U ⟧ Bs))
≡⟨ struct-apply K L
(≣⟦ F≣G ⟧ As) (T⟦ G ⟧² ℜs) (≣⟦ F≣G ⟧ Bs)
(≣⟦ T≣U ⟧ As) (T⟦ U ⟧² ℜs) (≣⟦ T≣U ⟧ Bs) ⟩
struct L (≣⟦ app F≣G T≣U ⟧ As) (T⟦ app G U ⟧² ℜs) (≣⟦ app F≣G T≣U ⟧ Bs)
∎
≣⟦ beta T U ⟧² ℜs = substn⟦ T ⟧⟦ U ⟧² ℜs
≣⟦ eta {K} {L} T ⟧² {As} {Bs} ℜs = iext (λ A → iext (λ B → ext (λ ℜ →
begin
T⟦ T ⟧² ℜs ℜ
≡⟨ cong (λ X → X ℜ) (weaken⟦ T ⟧² (skip K id) (ℜ , ℜs)) ⟩
struct (K ⇒ L)
(weaken⟦ T ⟧ (skip K id) (A , As))
(T⟦ weaken (skip K id) T ⟧² (ℜ , ℜs))
(weaken⟦ T ⟧ (skip K id) (B , Bs)) ℜ
≡⟨ struct-apply K L
(weaken⟦ T ⟧ (skip K id) (A , As))
(T⟦ weaken (skip K id) T ⟧² (ℜ , ℜs))
(weaken⟦ T ⟧ (skip K id) (B , Bs)) refl ℜ refl ⟩
struct L
(apply (weaken⟦ T ⟧ (skip K id) (A , As)) refl)
(T⟦ weaken (skip K id) T ⟧² (ℜ , ℜs) ℜ)
(apply (weaken⟦ T ⟧ (skip K id) (B , Bs)) refl)
≡⟨ struct-ext K L
(λ A → apply (weaken⟦ T ⟧ (skip K id) (A , As)) refl)
(λ ℜ → T⟦ weaken (skip K id) T ⟧² (ℜ , ℜs) ℜ)
(λ B → apply (weaken⟦ T ⟧ (skip K id) (B , Bs)) refl) ℜ ⟩
struct (K ⇒ L)
(≣⟦ eta T ⟧ As)
(T⟦ abs K (app (weaken (skip K id) T) (var zero)) ⟧² ℜs)
(≣⟦ eta T ⟧ Bs) ℜ
∎)))
≣⟦ ≣-refl ⟧² ℜs = refl
≣⟦ ≣-sym {K} {T} {U} T≣U ⟧² {As} {Bs} ℜs =
struct-sym K (≣⟦ T≣U ⟧ As) (≣⟦ T≣U ⟧ Bs) (≣⟦ T≣U ⟧² ℜs)
≣⟦ ≣-trans {K} {T} {U} {V} T≣U U≣V ⟧² {As} {Bs} ℜs =
begin
T⟦ T ⟧² ℜs
≡⟨ ≣⟦ T≣U ⟧² ℜs ⟩
struct K (≣⟦ T≣U ⟧ As) (T⟦ U ⟧² ℜs) (≣⟦ T≣U ⟧ Bs)
≡⟨ cong (λ X → struct K (≣⟦ T≣U ⟧ As) X (≣⟦ T≣U ⟧ Bs)) (≣⟦ U≣V ⟧² ℜs) ⟩
struct K (≣⟦ T≣U ⟧ As) (struct K (≣⟦ U≣V ⟧ As) (T⟦ V ⟧² ℜs) (≣⟦ U≣V ⟧ Bs)) (≣⟦ T≣U ⟧ Bs)
≡⟨ struct-trans K (≣⟦ T≣U ⟧ As) (≣⟦ U≣V ⟧ As) (T⟦ V ⟧² ℜs) (≣⟦ U≣V ⟧ Bs) (≣⟦ T≣U ⟧ Bs) ⟩
struct K (≣⟦ ≣-trans T≣U U≣V ⟧ As) (T⟦ V ⟧² ℜs) (≣⟦ ≣-trans T≣U U≣V ⟧ Bs)
∎
-- Variables
data Var {Σ : Kinds} {α} (T : Typ Σ (set α)) : Typs Σ → Set where
zero : ∀ {Γ} → Var T (T ∷ Γ)
suc : ∀ {β Γ} {U : Typ Σ (set β)} → Var T Γ → Var T (U ∷ Γ)
x⟦_⟧ : ∀ {Σ} {Γ : Typs Σ} {α} {T : Typ Σ (set α)} →
Var T Γ → (As : Σ⟦ Σ ⟧) → (as : Γ⟦ Γ ⟧ As) → (T⟦ T ⟧ As)
x⟦ zero ⟧ As (a , as) = a
x⟦ suc x ⟧ As (a , as) = x⟦ x ⟧ As as
x⟦_⟧² : ∀ {Σ} {Γ : Typs Σ} {α} {T : Typ Σ (set α)} (x : Var T Γ) →
∀ {As Bs} (ℜs : Σ ∋ As ↔* Bs) {as bs} →
(Γ⟦ Γ ⟧² ℜs as bs) → (T⟦ T ⟧² ℜs (x⟦ x ⟧ As as) (x⟦ x ⟧ Bs bs))
x⟦ zero ⟧² ℜs (aℜb , asℜbs) = aℜb
x⟦ suc x ⟧² ℜs (aℜb , asℜbs) = x⟦ x ⟧² ℜs asℜbs
-- Constants
data Const {Σ : Kinds} : ∀ {α} → Typ Σ (set α) → Set where
pair : ∀ {α β} → Const (Π (set α) (Π (set β) (tvar₁ ⊸ (tvar₀ ⊸ (tvar₁ ⊗ tvar₀)))))
fst : ∀ {α β} → Const (Π (set α) (Π (set β) ((tvar₁ ⊗ tvar₀) ⊸ tvar₁)))
snd : ∀ {α β} → Const (Π (set α) (Π (set β) ((tvar₁ ⊗ tvar₀) ⊸ tvar₀)))
≼-refl : Const (Π time (tvar₀ ≼ tvar₀))
≼-trans : Const (Π time (Π time (Π time ((tvar₂ ≼ tvar₁) ⊸ ((tvar₁ ≼ tvar₀) ⊸ (tvar₂ ≼ tvar₀))))))
≼-antisym : ∀ {α} → Const (Π (rset α) (Π time (Π time ((tvar₁ ≼ tvar₀) ⊸ ((tvar₀ ≼ tvar₁) ⊸ (app tvar₂ tvar₁ ⊸ app tvar₂ tvar₀))))))
≼-case : ∀ {α} → Const (Π (set α) (Π time (Π time (((tvar₁ ≼ tvar₀) ⊸ tvar₂) ⊸ (((tvar₀ ≼ tvar₁) ⊸ tvar₂) ⊸ tvar₂)))))
≤-antisym : ∀ {α} (A : RSet α) t u → True (t ≤ u) → True (u ≤ t) → A t → A u
≤-antisym A t u t≤u u≤t a with ≤-asym t u t≤u u≤t
≤-antisym A t .t _ _ a | refl = a
≤-case′ : ∀ {α} {A : Set α} {t u} → (t ≤? u) → (True (t ≤ u) → A) → (True (u ≤ t) → A) → A
≤-case′ (leq t≤u) f g = f t≤u
≤-case′ (geq u≤t) f g = g u≤t
≤-case : ∀ {α} (A : Set α) t u → (True (t ≤ u) → A) → (True (u ≤ t) → A) → A
≤-case A t u = ≤-case′ (≤-total t u)
c⟦_⟧ : ∀ {Σ} {α} {T : Typ Σ (set α)} →
Const T → (As : Σ⟦ Σ ⟧) → (T⟦ T ⟧ As)
c⟦ pair ⟧ As = λ A B a b → (a , b)
c⟦ fst ⟧ As = λ A B → proj₁
c⟦ snd ⟧ As = λ A B → proj₂
c⟦ ≼-refl ⟧ As = ≤-refl
c⟦ ≼-trans ⟧ As = ≤-trans
c⟦ ≼-antisym ⟧ As = ≤-antisym
c⟦ ≼-case ⟧ As = ≤-case
c⟦_⟧² : ∀ {Σ} {α} {T : Typ Σ (set α)} (c : Const T) →
∀ {As Bs} (ℜs : Σ ∋ As ↔* Bs) →
(T⟦ T ⟧² ℜs (c⟦ c ⟧ As) (c⟦ c ⟧ Bs))
c⟦ pair ⟧² ℜs = λ ℜ ℑ aℜb cℑd → (aℜb , cℑd)
c⟦ fst ⟧² ℜs = λ ℜ ℑ → proj₁
c⟦ snd ⟧² ℜs = λ ℜ ℑ → proj₂
c⟦ ≼-refl ⟧² ℜs = _
c⟦ ≼-trans ⟧² ℜs = _
c⟦ ≼-antisym {α} ⟧² ℜs = lemma where
lemma : ∀ {α} {A B : RSet α} (ℜ : rset α ∋ A ↔ B) →
{t u : Time} → (t≡u : t ≡ u) → {v w : Time} → (v≡w : v ≡ w) →
{t≤v : True (t ≤ v)} {u≤w : True (u ≤ w)} → ⊤ →
{v≤t : True (v ≤ t)} {w≤u : True (w ≤ u)} → ⊤ →
{a : A t} {b : B u} → ℜ t≡u a b →
ℜ v≡w (≤-antisym A t v t≤v v≤t a) (≤-antisym B u w u≤w w≤u b)
lemma ℜ {t} refl {v} refl {t≤v} {u≤w} tt {v≤t} {w≤u} tt aℜb
with irrel (t ≤ v) t≤v u≤w | irrel (v ≤ t) v≤t w≤u
lemma ℜ {t} refl {v} refl {t≤v} tt {v≤t} tt aℜb
| refl | refl with ≤-asym t v t≤v v≤t
lemma ℜ refl refl tt tt aℜb
| refl | refl | refl = aℜb
c⟦ ≼-case {α} ⟧² ℜs = lemma where
lemma : ∀ {α} {A B : Set α} (ℜ : set α ∋ A ↔ B) →
∀ {t u : Time} → (t≡u : t ≡ u) → ∀ {v w : Time} → (v≡w : v ≡ w) →
∀ {f g} → (∀ {t≤v} {u≤w} → ⊤ → ℜ (f t≤v) (g u≤w)) →
∀ {h i} → (∀ {v≤t} {w≤u} → ⊤ → ℜ (h v≤t) (i w≤u)) →
ℜ (≤-case A t v f h) (≤-case B u w g i)
lemma ℜ {t} refl {v} refl {f} {g} fℜg {h} {i} hℜi = lemma′ (≤-total t v) where
lemma′ : ∀ t≤?v → ℜ (≤-case′ t≤?v f h) (≤-case′ t≤?v g i)
lemma′ (leq t≤v) = fℜg {t≤v} {t≤v} tt
lemma′ (geq v≤t) = hℜi {v≤t} {v≤t} tt
-- Expressions
data Exp {Σ : Kinds} (Γ : Typs Σ) : ∀ {α} → Typ Σ (set α) → Set where
const : ∀ {α} {T : Typ Σ (set α)} → Const T → Exp Γ T
abs : ∀ {α β} (T : Typ Σ (set α)) {U : Typ Σ (set β)} (M : Exp (T ∷ Γ) U) → Exp Γ (T ⊸ U)
app : ∀ {α β} {T : Typ Σ (set α)} {U : Typ Σ (set β)} (M : Exp Γ (T ⊸ U)) (N : Exp Γ T) → Exp Γ U
var : ∀ {α} {T : Typ Σ (set α)} → Var T Γ → Exp Γ T
tabs : ∀ K {α} {T : Typ (K ∷ Σ) (set α)} (M : Exp (weakens (skip K id) Γ) T) → Exp Γ (Π K T)
tapp : ∀ {K α} {T : Typ (K ∷ Σ) (set α)} → Exp Γ (Π K T) → ∀ U → Exp Γ (substn T U)
eq : ∀ {α T U} → (set α ∋ T ≣ U) → (Exp Γ T) → (Exp Γ U)
ctxt : ∀ {Σ Γ α T} → Exp {Σ} Γ {α} T → Typs Σ
ctxt {Σ} {Γ} M = Γ
M⟦_⟧ : ∀ {Σ} {Γ : Typs Σ} {α} {T : Typ Σ (set α)} →
Exp Γ T → (As : Σ⟦ Σ ⟧) → (as : Γ⟦ Γ ⟧ As) → (T⟦ T ⟧ As)
M⟦ const c ⟧ As as = c⟦ c ⟧ As
M⟦ abs T M ⟧ As as = λ a → M⟦ M ⟧ As (a , as)
M⟦ app M N ⟧ As as = M⟦ M ⟧ As as (M⟦ N ⟧ As as)
M⟦ var x ⟧ As as = x⟦ x ⟧ As as
M⟦ tabs K M ⟧ As as = λ A →
M⟦ M ⟧ (A , As) (weakens⟦ ctxt (tabs K M) ⟧ (skip K id) (A , As) as)
M⟦ tapp {T = T} M U ⟧ As as =
cast (substn⟦ T ⟧⟦ U ⟧ As) (M⟦ M ⟧ As as (T⟦ U ⟧ As))
M⟦ eq T≣U M ⟧ As as = cast (≣⟦ T≣U ⟧ As) (M⟦ M ⟧ As as)
M⟦_⟧² : ∀ {Σ} {Γ : Typs Σ} {α} {T : Typ Σ (set α)} (M : Exp Γ T) →
∀ {As Bs} (ℜs : Σ ∋ As ↔* Bs) {as bs} →
(Γ⟦ Γ ⟧² ℜs as bs) → (T⟦ T ⟧² ℜs (M⟦ M ⟧ As as) (M⟦ M ⟧ Bs bs))
M⟦ const c ⟧² ℜs asℜbs = c⟦ c ⟧² ℜs
M⟦ abs T M ⟧² ℜs asℜbs = λ aℜb → M⟦ M ⟧² ℜs (aℜb , asℜbs)
M⟦ app M N ⟧² ℜs asℜbs = M⟦ M ⟧² ℜs asℜbs (M⟦ N ⟧² ℜs asℜbs)
M⟦ var x ⟧² ℜs asℜbs = x⟦ x ⟧² ℜs asℜbs
M⟦ tabs K M ⟧² ℜs asℜbs = λ ℜ →
M⟦ M ⟧² (ℜ , ℜs) (weakens⟦ ctxt (tabs K M) ⟧² (skip K id) (ℜ , ℜs) asℜbs)
M⟦ tapp {T = T} M U ⟧² ℜs asℜbs =
struct-cast (T⟦ substn T U ⟧² ℜs) (substn⟦ T ⟧⟦ U ⟧ _) (substn⟦ T ⟧⟦ U ⟧ _)
(cast² (substn⟦ T ⟧⟦ U ⟧² ℜs) (M⟦ M ⟧² ℜs asℜbs (T⟦ U ⟧² ℜs)))
M⟦ eq {α} {T} {U} T≣U M ⟧² {As} {Bs} ℜs asℜbs =
struct-cast (T⟦ U ⟧² ℜs) (≣⟦ T≣U ⟧ As) (≣⟦ T≣U ⟧ Bs) (cast² (≣⟦ T≣U ⟧² ℜs) (M⟦ M ⟧² ℜs asℜbs))
-- Types with a chosen free world variable
_∷ʳ_ : Kinds → Kind → Kinds
[] ∷ʳ K = K ∷ []
(T ∷ Σ) ∷ʳ K = T ∷ (Σ ∷ʳ K)
TVar+ : Kind → Kinds → Set
TVar+ K Σ = TVar K (Σ ∷ʳ rset₀)
Typ+ : Kinds → Kind → Set
Typ+ Σ = Typ (Σ ∷ʳ rset₀)
wvar : ∀ Σ → TVar+ rset₀ Σ
wvar [] = zero
wvar (K ∷ Σ) = suc (wvar Σ)
world : ∀ {Σ} → Typ+ Σ rset₀
world {Σ} = var (wvar Σ)
World : Time → Set
World t = ⊤
taut : ∀ {Σ α} → Typ+ Σ (rset α ⇒ set α)
taut {Σ} {α} = abs (rset α) (Π time
(app (world {time ∷ rset α ∷ Σ}) tvar₀ ⊸ app tvar₁ tvar₀))
-- Surface types
data STyp : Kind → Set where
⟨_⟩ : ∀ {α} → STyp (set α) → STyp (rset α)
[_] : ∀ {α} → STyp (rset α) → STyp (set α)
_⊠_ _↦_ : ∀ {α β} → STyp (set α) → STyp (set β) → STyp (set (α ⊔ β))
_∧_ _⇒_ : ∀ {α β} → STyp (rset α) → STyp (rset β) → STyp (rset (α ⊔ β))
□ : ∀ {α} → STyp (rset α) → STyp (rset α)
⟪_⟫ : ∀ {K} → STyp K → Typ+ [] K
⟪ ⟨ T ⟩ ⟫ = app always ⟪ T ⟫
⟪ [ T ] ⟫ = app (taut {[]}) ⟪ T ⟫
⟪ T ⊠ U ⟫ = ⟪ T ⟫ ⊗ ⟪ U ⟫
⟪ T ↦ U ⟫ = ⟪ T ⟫ ⊸ ⟪ U ⟫
⟪ T ∧ U ⟫ = ⟪ T ⟫ ⊗ʳ ⟪ U ⟫
⟪ T ⇒ U ⟫ = ⟪ T ⟫ ⊸ʳ ⟪ U ⟫
⟪ □ T ⟫ = tvar₀ ⊵ ⟪ T ⟫
T⟪_⟫ : ∀ {K} → STyp K → K⟦ K ⟧
T⟪ T ⟫ = T⟦ ⟪ T ⟫ ⟧ (World , tt)
-- Signals of T are iso to □ T
Signal : ∀ {α} → RSet α → RSet α
Signal A s = ∀ t → True (s ≤ t) → A t
sig : ∀ {α} (T : STyp (rset α)) s →
T⟪ □ T ⟫ s → Signal T⟪ T ⟫ s
sig T s σ t s≤t = σ t s≤t _
sig⁻¹ : ∀ {α} (T : STyp (rset α)) s →
Signal T⟪ T ⟫ s → T⟪ □ T ⟫ s
sig⁻¹ T s σ t s≤t _ = σ t s≤t
sig-iso : ∀ {α} (T : STyp (rset α)) s σ →
(sig T s (sig⁻¹ T s σ) ≡ σ)
sig-iso T s σ = refl
sig-iso⁻¹ : ∀ {α} (T : STyp (rset α)) s σ →
(sig⁻¹ T s (sig T s σ) ≡ σ)
sig-iso⁻¹ T s σ = refl
-- Signal functions from T to U are iso to □ T ⇒ □ U
SF : ∀ {α β} → RSet α → RSet β → RSet (α ⊔ β)
SF A B s = Signal A s → Signal B s
sf : ∀ {α β} (T : STyp (rset α)) (U : STyp (rset β)) s →
T⟪ □ T ⇒ □ U ⟫ s → SF T⟪ T ⟫ T⟪ U ⟫ s
sf T U s f σ = sig U s (f (sig⁻¹ T s σ))
sf⁻¹ : ∀ {α β} (T : STyp (rset α)) (U : STyp (rset β)) s →
SF T⟪ T ⟫ T⟪ U ⟫ s → T⟪ □ T ⇒ □ U ⟫ s
sf⁻¹ T U s f σ = sig⁻¹ U s (f (sig T s σ))
sf-iso : ∀ {α β} (T : STyp (rset α)) (U : STyp (rset β)) s f →
(sf T U s (sf⁻¹ T U s f) ≡ f)
sf-iso T U s f = refl
sf-iso⁻¹ : ∀ {α β} (T : STyp (rset α)) (U : STyp (rset β)) s f →
(sf⁻¹ T U s (sf T U s f) ≡ f)
sf-iso⁻¹ T U s f = refl
-- Causality
mutual
_at_⊨_≈[_]_ : ∀ {α} (T : STyp (rset α)) s → T⟪ T ⟫ s → Time → T⟪ T ⟫ s → Set α
⟨ T ⟩ at s ⊨ a ≈[ u ] b = T ⊨ a ≈[ u ] b
(T ∧ U) at s ⊨ (a , b) ≈[ u ] (c , d) = (T at s ⊨ a ≈[ u ] c) × (U at s ⊨ b ≈[ u ] d)
(T ⇒ U) at s ⊨ f ≈[ u ] g = ∀ a b → (T at s ⊨ a ≈[ u ] b) → (U at s ⊨ f a ≈[ u ] g b)
□ T at s ⊨ σ ≈[ u ] τ = (∀ t s≤t → True (t ≤ u) → (T at t ⊨ σ t s≤t _ ≈[ u ] τ t s≤t _))
_⊨_≈[_]_ : ∀ {α} → (T : STyp (set α)) → T⟪ T ⟫ → Time → T⟪ T ⟫ → Set α
[ T ] ⊨ σ ≈[ u ] τ = ∀ s → True (s ≤ u) → (T at s ⊨ σ s _ ≈[ u ] τ s _)
(T ⊠ U) ⊨ (a , b) ≈[ u ] (c , d) = (T ⊨ a ≈[ u ] c) × (U ⊨ b ≈[ u ] d)
(T ↦ U) ⊨ f ≈[ u ] g = ∀ a b → (T ⊨ a ≈[ u ] b) → (U ⊨ f a ≈[ u ] g b)
Causal : ∀ {α β} (T : STyp (set α)) (U : STyp (set β)) → T⟪ T ↦ U ⟫ → Set (α ⊔ β)
Causal T U f = ∀ u σ τ →
(T ⊨ σ ≈[ u ] τ) → (U ⊨ f σ ≈[ u ] f τ)
-- Parametricity implies causality
ℜ[_] : Time → (rset o ∋ World ↔ World)
ℜ[ u ] {t} s≡t tt tt = True (t ≤ u)
mutual
ℜ-impl-≈_at : ∀ {α} (T : STyp (rset α)) s u → True (s ≤ u) → ∀ a b →
(T⟦ ⟪ T ⟫ ⟧² (ℜ[ u ] , tt) refl a b) → (T at s ⊨ a ≈[ u ] b)
ℜ-impl-≈ ⟨ T ⟩ at s u s≤u a b aℜb
= ℜ-impl-≈ T u a b aℜb
ℜ-impl-≈ (T ∧ U) at s u s≤u (a , b) (c , d) (aℜc , bℜd)
= (ℜ-impl-≈ T at s u s≤u a c aℜc , ℜ-impl-≈ U at s u s≤u b d bℜd)
ℜ-impl-≈ (T ⇒ U) at s u s≤u f g fℜg
= λ a b a≈b → ℜ-impl-≈ U at s u s≤u (f a) (g b) (fℜg (≈-impl-ℜ T at s u s≤u a b a≈b))
ℜ-impl-≈_at (□ T) s u s≤u σ τ σℜτ = λ t s≤t t≤u →
ℜ-impl-≈ T at t u t≤u (σ t s≤t _) (τ t s≤t _)
(σℜτ refl tt (λ {r} _ _ {r≤t} _ → ≤-trans r t u r≤t t≤u))
≈-impl-ℜ_at : ∀ {α} (T : STyp (rset α)) s u → True (s ≤ u) → ∀ a b →
(T at s ⊨ a ≈[ u ] b) → (T⟦ ⟪ T ⟫ ⟧² (ℜ[ u ] , tt) refl a b)
≈-impl-ℜ ⟨ T ⟩ at s u s≤u a b a≈b
= ≈-impl-ℜ T u a b a≈b
≈-impl-ℜ (T ∧ U) at s u s≤u (a , b) (c , d) (a≈c , b≈d)
= (≈-impl-ℜ T at s u s≤u a c a≈c , ≈-impl-ℜ U at s u s≤u b d b≈d)
≈-impl-ℜ (T ⇒ U) at s u s≤u f g f≈g
= λ {a} {b} aℜb → ≈-impl-ℜ U at s u s≤u (f a) (g b) (f≈g a b (ℜ-impl-≈ T at s u s≤u a b aℜb))
≈-impl-ℜ (□ T) at s u s≤u σ τ σ≈τ = lemma where
lemma : T⟦ ⟪ □ T ⟫ ⟧² (ℜ[ u ] , tt) {s} refl σ τ
lemma {t} refl {s≤t} {s≤t′} tt kℜk′ with irrel (s ≤ t) s≤t s≤t′
lemma {t} refl {s≤t} tt kℜk′ | refl
= ≈-impl-ℜ T at t u t≤u (σ t s≤t _) (τ t s≤t _) (σ≈τ t s≤t t≤u) where
t≤u = kℜk′ {t} refl {s≤t} {s≤t} tt {≤-refl t} {≤-refl t} tt
ℜ-impl-≈ : ∀ {α} (T : STyp (set α)) (u : Time) (a b : T⟪ T ⟫) →
(T⟦ ⟪ T ⟫ ⟧² (ℜ[ u ] , tt) a b) → (T ⊨ a ≈[ u ] b)
ℜ-impl-≈ (T ⊠ U) u (a , b) (c , d) (aℜc , bℜd)
= (ℜ-impl-≈ T u a c aℜc , ℜ-impl-≈ U u b d bℜd)
ℜ-impl-≈ (T ↦ U) u f g fℜg
= λ a b a≈b → ℜ-impl-≈ U u (f a) (g b) (fℜg (≈-impl-ℜ T u a b a≈b))
ℜ-impl-≈ [ T ] u σ τ σℜτ
= λ s s≤u → ℜ-impl-≈ T at s u s≤u (σ s _) (τ s _) (σℜτ refl s≤u)
≈-impl-ℜ : ∀ {α} (T : STyp (set α)) (u : Time) (a b : T⟪ T ⟫) →
(T ⊨ a ≈[ u ] b) → (T⟦ ⟪ T ⟫ ⟧² (ℜ[ u ] , tt) a b)
≈-impl-ℜ (T ⊠ U) u (a , b) (c , d) (a≈c , b≈d)
= (≈-impl-ℜ T u a c a≈c , ≈-impl-ℜ U u b d b≈d)
≈-impl-ℜ (T ↦ U) u f g f≈g
= λ {a} {b} aℜb → ≈-impl-ℜ U u (f a) (g b) (f≈g a b (ℜ-impl-≈ T u a b aℜb))
≈-impl-ℜ [ T ] u σ τ σ≈τ = lemma where
lemma : T⟦ ⟪ [ T ] ⟫ ⟧² (ℜ[ u ] , tt) σ τ
lemma {s} refl s≤u = ≈-impl-ℜ T at s u s≤u (σ s _) (τ s _) (σ≈τ s s≤u)
-- Every F-omega function is causal
causality : ∀ {α β} (T : STyp (set α)) (U : STyp (set β)) (M : Exp [] ⟪ T ↦ U ⟫) →
Causal T U (M⟦ M ⟧ (World , tt) tt)
causality T U M u
= ℜ-impl-≈ (T ↦ U) u
(M⟦ M ⟧ (World , tt) tt)
(M⟦ M ⟧ (World , tt) tt)
(M⟦ M ⟧² (ℜ[ u ] , _) tt)
|
{
"alphanum_fraction": 0.4363592635,
"avg_line_length": 37.1608738828,
"ext": "agda",
"hexsha": "3fb837cf23c0bc7bf7e37cf48d1152a487aa51bc",
"lang": "Agda",
"max_forks_count": 7,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z",
"max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_forks_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_forks_repo_name": "agda/agda-frp-js",
"max_forks_repo_path": "src/agda/FRP/JS/Model.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_issues_repo_name": "agda/agda-frp-js",
"max_issues_repo_path": "src/agda/FRP/JS/Model.agda",
"max_line_length": 134,
"max_stars_count": 63,
"max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_stars_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_stars_repo_name": "agda/agda-frp-js",
"max_stars_repo_path": "src/agda/FRP/JS/Model.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z",
"num_tokens": 22276,
"size": 37421
}
|
module x00-playpen where
-- prove properties of inductive naturals and operations on them via induction
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; cong; sym)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; step-≡; _∎)
open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_; _^_)
*-assoc : ∀ (m n p : ℕ)
→ (m * n) * p
≡ m * (n * p)
*-assoc m n p = {!!}
+-xx : ∀ (n : ℕ)
→ (n ^ 3) ∸ ((n * n) * n)
≡ zero
+-xx zero = refl
+-xx (suc n) = {!!}
{-
begin
(n * (n ^ 2)) ∸ ((n * n) * n)
≡⟨⟩
(n * (n * (n ^ 1))) ∸ ((n * n) * n)
≡⟨⟩
(n * (n * (n * (n ^ 0)))) ∸ ((n * n) * n)
≡⟨⟩
(n * (n * (n * 1 ))) ∸ ((n * n) * n)
≡⟨⟩
(n * (n * n )) ∸ ((n * n) * n)
≡⟨ cong ( ((n * (n * n))) ∸_) (*-assoc n n n) ⟩
(n * (n * n )) ∸ ( n * (n * n))
∎
-}
|
{
"alphanum_fraction": 0.3713033954,
"avg_line_length": 26.0857142857,
"ext": "agda",
"hexsha": "995d37bbba0f82cc8955d762cd9938e0d21bd349",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x00-playpen.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x00-playpen.agda",
"max_line_length": 78,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x00-playpen.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 405,
"size": 913
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.Queue where
open import Cubical.Data.Queue.Base public
open import Cubical.Data.Queue.Finite public
|
{
"alphanum_fraction": 0.7586206897,
"avg_line_length": 21.75,
"ext": "agda",
"hexsha": "b47e6aca5f1887c56eaa546157144c936f2e7867",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Data/Queue.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Data/Queue.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Data/Queue.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 41,
"size": 174
}
|
module Numeral.CoordinateVector where
import Lvl
open import Data.Boolean
open import Functional
open import Lang.Instance
open import Numeral.Finite
open import Numeral.Finite.Bound
open import Numeral.Finite.Oper
open import Numeral.Finite.Oper.Comparisons
open import Numeral.Natural
import Numeral.Natural.Oper as ℕ
open import Numeral.Natural.Function
open import Numeral.Natural.Function.Proofs
open import Type
private variable ℓ : Lvl.Level
private variable T A B C : Type{ℓ}
private variable d d₁ d₂ : ℕ
-- Accessor of data in 1-dimensional finite space (Implies bounded).
-- Like a homogenous tuple or a fixed-size list.
-- The type is defined as the type of the vector projection function (A cell in the vector).
Vector : ℕ → Type{ℓ} → Type
Vector(d)(T) = 𝕟(d) → T
-- Type of elements in the vector
Element : Vector(d)(T) → Type
Element{T = T} = const T
-- The maximum number of dimensions of a space that the vector can describe points in
dim : Vector(d)(T) → ℕ
dim{d = d} = const d
-- The projection function (which also is the function itself).
proj : Vector(d)(T) → 𝕟(d) → T
proj = id
-- TODO: Move this to a separate "Relations" file
open import Logic
open import Relator.Equals.Proofs.Equivalence
open import Structure.Function.Domain
open import Structure.Setoid
private variable ℓₑ : Lvl.Level
-- The vector's elements are all distinct (the vector contains no duplicate elements).
Distinct : ⦃ equiv : Equiv{ℓₑ}(T) ⦄ → Vector(d)(T) → Stmt
Distinct = Injective ⦃ [≡]-equiv ⦄
-- The first element of a non-empty vector
head : Vector(𝐒(d))(T) → T
head(v) = v(𝟎)
-- The list without the first element of a non-empty vector
tail : Vector(𝐒(d))(T) → Vector(d)(T)
(tail{𝐒(_)}(v)) (i) = v(𝐒(i))
-- The list without the first element if there were any
tail₀ : Vector(d)(T) → Vector(Numeral.Natural.𝐏(d))(T)
tail₀{𝟎} = id
tail₀{𝐒(_)} = tail
-- The last element of a non-empty vector
last : Vector(𝐒(d))(T) → T
last(v) = v(maximum)
-- The list without the last element if there were any
withoutLast : Vector(𝐒(d))(T) → Vector(d)(T)
(withoutLast v)(i) = v(bound-𝐒(i))
-- Applies a function on every value of the vector
map : (A → B) → Vector(d)(A) → Vector(d)(B)
(map f(v))(i) = f(v(i))
-- Applies a binary operation on every pair of values, each from 2 vectors elementwise
-- Example:
-- map₂(_+_) [1,2,3] [10,20,30] = [1+10 , 2+20 , 3+30] = [11,22,33]
map₂ : (A → B → C) → Vector(d)(A) → Vector(d)(B) → Vector(d)(C)
(map₂(_▫_) (v₁)(v₂))(i) = v₁(i) ▫ v₂(i)
map₂-min : (A → B → C) → ∀{d₁ d₂} → Vector(d₁)(A) → Vector(d₂)(B) → Vector(min d₁ d₂)(C)
(map₂-min(_▫_) (v₁)(v₂))(i) = v₁(bound-[≤] infer i) ▫ v₂(bound-[≤] infer i)
-- Example:
-- foldₗ (_▫_) (0) [1,2,3,4]
-- = (((0 ▫ 1) ▫ 2) ▫ 3) ▫ 4
foldₗ : (B → A → B) → B → Vector(d)(A) → B
foldₗ {d = 𝟎} (_▫_) (init) (v) = init
foldₗ {d = 𝐒(d)} (_▫_) (init) (v) = foldₗ {d = d} (_▫_) (init ▫ (head v)) (tail v)
-- Example:
-- reduceₗ (_▫_) [1,2,3,4]
-- = ((1 ▫ 2) ▫ 3) ▫ 4
reduceₗ : (A → A → A) → Vector(𝐒(d))(A) → A
reduceₗ(_▫_) v = foldₗ(_▫_) (head v) (tail v)
-- Example:
-- reduceOrₗ (_▫_) 0 [1,2,3,4]
-- = ((1 ▫ 2) ▫ 3) ▫ 4
reduceOrₗ : (A → A → A) → A → Vector(d)(A) → A
reduceOrₗ {d = 𝟎} _ empty _ = empty
reduceOrₗ {d = 𝐒(d)} (_▫_) empty v = foldₗ(_▫_) (head v) (tail v)
-- Example:
-- foldᵣ (_▫_) (0) [1,2,3,4]
-- = 1 ▫ (2 ▫ (3 ▫ (4 ▫ 0)))
foldᵣ : (A → B → B) → B → Vector(d)(A) → B
foldᵣ {d = 𝟎} (_▫_) (init) (v) = init
foldᵣ {d = 𝐒(d)} (_▫_) (init) (v) = (head v) ▫ (foldᵣ {d = d} (_▫_) (init) (tail v))
-- Example:
-- foldᵣ-init (_▫_) (0) [1,2,3,4]
-- = 0 ▫ (1 ▫ (2 ▫ (3 ▫ 4)))
foldᵣ-init : (A → A → A) → A → Vector(d)(A) → A
foldᵣ-init {d = 𝟎} (_▫_) (init) (v) = init
foldᵣ-init {d = 𝐒(d)} (_▫_) (init) (v) = init ▫ (foldᵣ-init {d = d} (_▫_) (head v) (tail v))
-- Example:
-- reduceᵣ (_▫_) [1,2,3,4]
-- = 1 ▫ (2 ▫ (3 ▫ 4))
reduceᵣ : (T → T → T) → Vector(𝐒(d))(T) → T
reduceᵣ {d = 𝟎} (_▫_) (v) = head v
reduceᵣ {d = 𝐒(d)} (_▫_) (v) = (head v) ▫ (reduceᵣ (_▫_) (tail v))
-- Example:
-- reduceOrᵣ (_▫_) (0) [1,2,3,4]
-- = 1 ▫ (2 ▫ (3 ▫ 4))
reduceOrᵣ : (T → T → T) → T → Vector(d)(T) → T
reduceOrᵣ {d = 𝟎} _ empty v = empty
reduceOrᵣ {d = 𝐒(d)} (_▫_) empty v = reduceᵣ(_▫_) v
-- A vector filled with multiple copies of a single element.
fill : T → Vector(d)(T)
fill(elem) = const(elem)
-- An empty vector.
empty : Vector(0)(T)
empty()
-- A vector with a single element.
singleton : T → Vector(1)(T)
singleton x 𝟎 = x
-- A vector with two elements.
pair : T → T → Vector(2)(T)
pair x _ (𝟎) = x
pair _ y (𝐒 𝟎) = y
-- A vector with an additional element at the start.
prepend : T → Vector(d)(T) → Vector(𝐒(d))(T)
(prepend(x)(_)) (𝟎) = x
(prepend(_)(v)) (𝐒(n)) = v(n)
-- A vector with an additional element inserted at an already existing position.
-- Examples:
-- insert 0 x [a,b,c] = [x,a,b,c]
-- insert 1 x [a,b,c] = [a,x,b,c]
-- insert 2 x [a,b,c] = [a,b,x,c]
-- insert 3 x [a,b,c] is a type error because 3 is not an existing position.
insert : 𝕟(d) → T → Vector(d)(T) → Vector(𝐒(d))(T)
insert 𝟎 = prepend
insert (𝐒 _) _ v 𝟎 = v(𝟎)
insert (𝐒 i) x v (𝐒 n) = insert i x (tail v) n
-- A vector with an additional element inserted at a position.
-- Note: The difference compared to insert is that this includes the postpending operation.
-- Examples:
-- insert₊ 0 x [a,b] = [x,a,b]
-- insert₊ 0 x [a,b] 0 ≟ [x,a,b] 0 = x
-- insert₊ 0 x [a,b] 1 ≟ [x,a,b] 1 = a
-- insert₊ 0 x [a,b] 2 ≟ [x,a,b] 2 = b
-- insert₊ 1 x [a,b] = [a,x,b]
-- insert₊ 1 x [a,b] 0 = a
-- insert₊ 1 x [a,b] 1 = insert₊ 0 x [b] 0 = x
-- insert₊ 1 x [a,b] 2 = insert₊ 0 x [b] 1 = [x,b] 1 = b
-- insertv 2 x [a,b] = [a,b,x]
-- insert₊ 2 x [a,b] 0 = a
-- insert₊ 2 x [a,b] 1 = insert₊ 1 x [b] 0 = b
-- insert₊ 2 x [a,b] 2 = insert₊ 1 x [b] 1 = insert₊ 0 x [] 0 = [x] 0 = x
insert₊ : 𝕟₌(d) → T → Vector(d)(T) → Vector(𝐒(d))(T)
insert₊{_} 𝟎 = prepend
insert₊{𝐒 _} (𝐒 _) _ v 𝟎 = v(𝟎)
insert₊{𝐒 _} (𝐒 i) x v (𝐒 n) = insert₊ i x (tail v) n
-- A vector concatenated with another vector
_++_ : Vector(d₁)(T) → Vector(d₂)(T) → Vector(d₁ ℕ.+ d₂)(T)
_++_ {d₁ = 𝟎} {d₂ = d₂} v₁ v₂ = v₂
_++_ {d₁ = 𝐒(d₁)} {d₂ = d₂} v₁ v₂ (𝟎) = v₁(𝟎)
_++_ {d₁ = 𝐒(d₁)} {d₂ = d₂} v₁ v₂ (𝐒(i)) = _++_ {d₁ = d₁} {d₂ = d₂} (v₁ ∘ 𝐒) v₂ i
count : (T → Bool) → Vector(d)(T) → ℕ
count {d = 𝟎} (f)(v) = 𝟎
count {d = 𝐒(n)} (f)(v) = (if f(head v) then 𝐒 else id) (count{d = n} (f)(tail v))
reverse : Vector(d)(T) → Vector(d)(T)
(reverse(v)) (n) = v(Wrapping.[−] n)
indexProject : 𝕟(d) → T → T → Vector(d)(T)
indexProject n true false i = if(n ≡? i) then true else false
-- A vector without the element at the specified index
-- TODO: Implement Numeral.Finite.Bound.bound-𝐏
-- without : ∀{T}{d} → 𝕟(𝐒(d)) → Vector(𝐒(d))(T) → Vector(d)(T)
-- Vector.proj (without {_}{𝐒(_)} (𝟎) (v)) (i) = Vector.proj(v)(𝐒(i))
-- Vector.proj (without {_}{𝐒(_)} (𝐒(n))(v)) (i) = if(i ≤? n) then Vector.proj(v)(𝐒(i)) else Vector.proj(v)(bound-𝐏(i))
-- postpend : ∀{T}{d} → T → Vector(d)(T) → Vector(𝐒(d))(T)
-- Vector.proj(postpend{_}{d} (x)(_)) (n) = if (n ≡? d) then x else Vector.proj(v)(n)
-- concat : ∀{T}{d₁ d₂} → Vector(d₁)(T) → Vector(d₂)(T) → Vector(d₁ + d₂)(T)
-- Vector.proj(concat(v₁)(v₂)) (n) with (n < d₁ ≡ 𝑇)
-- ... () = Vector.proj(v₁) (n)
-- ... () = Vector.proj(v₂) (n)
-- TODO: take / truncate
-- TODO: Equality by function equality
|
{
"alphanum_fraction": 0.5698331539,
"avg_line_length": 34.4074074074,
"ext": "agda",
"hexsha": "1cd1777e559a12577c81dd70feb29103e399b0b3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/CoordinateVector.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/CoordinateVector.agda",
"max_line_length": 119,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/CoordinateVector.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 3191,
"size": 7432
}
|
{-# OPTIONS --cubical #-}
module Issue4365 where
open import Agda.Primitive.Cubical
open import Agda.Builtin.Cubical.Path
postulate
A : Set
a : A
_ : primTransp (\ i → A) i0 a ≡ a
_ = \ _ → a
|
{
"alphanum_fraction": 0.655,
"avg_line_length": 14.2857142857,
"ext": "agda",
"hexsha": "9fc203d764643dd06d60cfcfd3e324a98d55c3a4",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Fail/Issue4365.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Fail/Issue4365.agda",
"max_line_length": 37,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Fail/Issue4365.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 71,
"size": 200
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Instance.Cats where
-- The (large) category of (small) categories.
-- Even though Agda can figure out the levels, it is worth making them explicit,
-- to see the large level jumps involved.
open import Level
open import Categories.Category using (Category)
open import Categories.Functor using (Functor; id; _∘F_)
open import Categories.NaturalTransformation.NaturalIsomorphism
using (NaturalIsomorphism; associator; unitorˡ; unitorʳ; unitor²; isEquivalence; _ⓘₕ_; sym)
private
variable
o ℓ e : Level
C D E : Category o ℓ e
F G H I : Functor C D
Cats : ∀ o ℓ e → Category (suc (o ⊔ ℓ ⊔ e)) (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e)
Cats o ℓ e = record
{ Obj = Category o ℓ e
; _⇒_ = Functor
; _≈_ = NaturalIsomorphism
; id = id
; _∘_ = _∘F_
; assoc = λ {_ _ _ _ F G H} → associator F G H
; sym-assoc = λ {_ _ _ _ F G H} → sym (associator F G H)
; identityˡ = unitorˡ
; identityʳ = unitorʳ
; identity² = unitor²
; equiv = isEquivalence
; ∘-resp-≈ = _ⓘₕ_
}
|
{
"alphanum_fraction": 0.6368663594,
"avg_line_length": 31.9117647059,
"ext": "agda",
"hexsha": "77b2ab8bf5fab1ad919cc61380cef34ccd077dfb",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Instance/Cats.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Instance/Cats.agda",
"max_line_length": 93,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Instance/Cats.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 380,
"size": 1085
}
|
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-}
module Cubical.HITs.InfNat where
open import Cubical.HITs.InfNat.Base public
open import Cubical.HITs.InfNat.Properties public
|
{
"alphanum_fraction": 0.7664974619,
"avg_line_length": 28.1428571429,
"ext": "agda",
"hexsha": "3351f76da6569b74f5da2fc950889aa2d7ffb0c6",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/InfNat.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/InfNat.agda",
"max_line_length": 67,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/InfNat.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 53,
"size": 197
}
|
module LFRef.Readme where
open import LFRef.Syntax
open import LFRef.Welltyped
open import LFRef.Eval
open import LFRef.Properties.Soundness
open import LFRef.Properties.Confluence
|
{
"alphanum_fraction": 0.8516483516,
"avg_line_length": 22.75,
"ext": "agda",
"hexsha": "126095c5c9d0030aad6d912966b67433e7dc48fa",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ef2e347a4470e55083c83b743efbc2902ef1ad22",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ElessarWebb/implicits.agda",
"max_forks_repo_path": "src/LFRef/Readme.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ef2e347a4470e55083c83b743efbc2902ef1ad22",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ElessarWebb/implicits.agda",
"max_issues_repo_path": "src/LFRef/Readme.agda",
"max_line_length": 39,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "ef2e347a4470e55083c83b743efbc2902ef1ad22",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ajrouvoet/implicits.agda",
"max_stars_repo_path": "src/LFRef/Readme.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 44,
"size": 182
}
|
open import Prelude
open import dynamics-core
module lemmas-consistency where
-- type consistency is symmetric
~sym : {t1 t2 : htyp} → t1 ~ t2 → t2 ~ t1
~sym TCRefl = TCRefl
~sym TCHole1 = TCHole2
~sym TCHole2 = TCHole1
~sym (TCArr p1 p2) = TCArr (~sym p1) (~sym p2)
~sym (TCSum p1 p2) = TCSum (~sym p1) (~sym p2)
~sym (TCProd p1 p2) = TCProd (~sym p1) (~sym p2)
-- type consistency isn't transitive
not-trans : ((t1 t2 t3 : htyp) → t1 ~ t2 → t2 ~ t3 → t1 ~ t3) → ⊥
not-trans t with t (num ==> num) ⦇-⦈ num TCHole1 TCHole2
... | ()
-- every pair of types is either consistent or not consistent
~dec : (t1 t2 : htyp) → ((t1 ~ t2) + (t1 ~̸ t2))
-- this takes care of all hole cases, so we don't consider them below
~dec _ ⦇-⦈ = Inl TCHole1
~dec ⦇-⦈ _ = Inl TCHole2
~dec num num = Inl TCRefl
~dec num (t2 ==> t3) = Inr (λ ())
~dec num (t2 ⊕ t3) = Inr (λ ())
~dec (t1 ==> t3) num = Inr (λ ())
~dec (t1 ==> t3) (t2 ==> t4)
with ~dec t1 t2 | ~dec t3 t4
... | Inl x | Inl x₁ = Inl (TCArr x x₁)
... | Inl x | Inr x₁ = Inr λ{ TCRefl → x₁ TCRefl ; (TCArr x₂ x₃) → x₁ x₃}
... | Inr x | w = Inr λ{ TCRefl → x TCRefl ; (TCArr x₁ x₂) → x x₁}
~dec (t1 ==> t3) (t2 ⊕ t4) = Inr (λ ())
~dec (t1 ⊕ t3) num = Inr (λ ())
~dec (t1 ⊕ t3) (t2 ==> t4) = Inr (λ ())
~dec (t1 ⊕ t3) (t2 ⊕ t4)
with ~dec t1 t2 | ~dec t3 t4
... | Inl x | Inl x₁ = Inl (TCSum x x₁)
... | Inl x | Inr x₁ = Inr λ{ TCRefl → x₁ TCRefl ; (TCSum x₂ x₃) → x₁ x₃}
... | Inr x | w = Inr λ{ TCRefl → x TCRefl ; (TCSum x₁ x₂) → x x₁}
~dec num (t2 ⊠ t4) = Inr (λ ())
~dec (t1 ==> t3) (t2 ⊠ t4) = Inr (λ ())
~dec (t1 ⊕ t3) (t2 ⊠ t4) = Inr (λ ())
~dec (t1 ⊠ t3) num = Inr (λ ())
~dec (t1 ⊠ t3) (t2 ==> t4) = Inr (λ ())
~dec (t1 ⊠ t3) (t2 ⊕ t4) = Inr (λ ())
~dec (t1 ⊠ t3) (t2 ⊠ t4)
with ~dec t1 t2 | ~dec t3 t4
... | Inl x | Inl x₁ = Inl (TCProd x x₁)
... | Inl x | Inr x₁ = Inr λ{ TCRefl → x₁ TCRefl ; (TCProd x₂ x₃) → x₁ x₃}
... | Inr x | w = Inr λ{ TCRefl → x TCRefl ; (TCProd x₁ x₂) → x x₁}
-- if arrows are consistent, their components are consistent
~arr : ∀{τ1 τ2 τ3 τ4} →
(τ1 ==> τ2) ~ (τ3 ==> τ4) →
(τ1 ~ τ3) × (τ2 ~ τ4)
~arr TCRefl = TCRefl , TCRefl
~arr (TCArr con con₁) = con , con₁
-- if sums are consistent, their components are consistent
~sum : ∀{τ1 τ2 τ3 τ4} →
(τ1 ⊕ τ2) ~ (τ3 ⊕ τ4) →
(τ1 ~ τ3) × (τ2 ~ τ4)
~sum TCRefl = TCRefl , TCRefl
~sum (TCSum con con₁) = con , con₁
-- if products are consistent, their components are consistent
~prod : ∀{τ1 τ2 τ3 τ4} →
(τ1 ⊠ τ2) ~ (τ3 ⊠ τ4) →
(τ1 ~ τ3) × (τ2 ~ τ4)
~prod TCRefl = TCRefl , TCRefl
~prod (TCProd con con₁) = con , con₁
|
{
"alphanum_fraction": 0.5192943771,
"avg_line_length": 37.2739726027,
"ext": "agda",
"hexsha": "1c6b9cd31933ad90cfa35ba7259e104213e20d1c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-agda",
"max_forks_repo_path": "lemmas-consistency.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-agda",
"max_issues_repo_path": "lemmas-consistency.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-agda",
"max_stars_repo_path": "lemmas-consistency.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1299,
"size": 2721
}
|
module Operator.Equals {ℓ ℓₑ} where
open import Data.Boolean
open import Logic
open import Structure.Setoid
open import Type.Properties.Decidable
open import Type
DecidableEquiv : (T : Type{ℓ}) ⦃ equiv : Equiv{ℓₑ}(T) ⦄ → Stmt
DecidableEquiv(T) = Decidable(2)(_≡_)
_==_ : ∀{T : Type{ℓ}} ⦃ equiv : Equiv{ℓₑ}(T) ⦄ ⦃ _ : DecidableEquiv(T) ⦄ → (T → T → Bool)
_==_ = decide(2)(_≡_)
|
{
"alphanum_fraction": 0.6701846966,
"avg_line_length": 27.0714285714,
"ext": "agda",
"hexsha": "8baa6a469ff8676ceeeadf0525ebca60e405d793",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Operator/Equals.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Operator/Equals.agda",
"max_line_length": 89,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Operator/Equals.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 153,
"size": 379
}
|
module Issue175 where
data List (A : Set) : Set where
[] : List A
_∷_ : A → List A → List A
{-# BUILTIN LIST List #-}
{-# BUILTIN NIL [] #-}
{-# BUILTIN CONS _∷_ #-}
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
postulate
Char : Set
String : Set
{-# BUILTIN CHAR Char #-}
{-# BUILTIN STRING String #-}
primitive primStringToList : String → List Char
lemma : primStringToList "0" ≡ ('0' ∷ [])
lemma = refl
|
{
"alphanum_fraction": 0.5688487585,
"avg_line_length": 17.72,
"ext": "agda",
"hexsha": "118bae1011168434f4ec61f010953cd45bd7f90d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Issue175.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Issue175.agda",
"max_line_length": 47,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/Issue175.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 148,
"size": 443
}
|
import Issue2447.Operator-error
|
{
"alphanum_fraction": 0.875,
"avg_line_length": 16,
"ext": "agda",
"hexsha": "b2f4865b29c3318c241b4af1c3da1d8c063a4467",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue2447d.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue2447d.agda",
"max_line_length": 31,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue2447d.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 7,
"size": 32
}
|
{-# OPTIONS --rewriting --prop --confluence-check #-}
open import Agda.Primitive
open import Agda.Builtin.Bool
open import Agda.Builtin.Nat
open import Agda.Builtin.List
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Rewrite
open import Agda.Builtin.Sigma
open import Agda.Builtin.Unit
open import Data.Vec.Base
open import Data.Bool
open import Data.Sum
-- sigma type in Prop used to handle telescopes.
record Tel {a b} (A : Prop a) (B : A → Prop b) : Prop (a ⊔ b) where
constructor _,_
field
fstC : A
sndC : B fstC
open Tel public
infixr 4 _,_
record ΣCov {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where
constructor _,_
field
fstCov : A
sndCov : B fstCov
open ΣCov public
record prod {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
constructor _,_
field
fstprod : A
sndprod : B
open prod public
variable ℓ ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level
-- a bit of boilerplate to deal with Prop
data ⊥ : Prop where
record ⊤P : Prop ℓ where
constructor ttP
record Box (A : Prop ℓ) : Set ℓ where
constructor box
field
unbox : A
open Box public
_×_ : ∀ (A : Prop ℓ) (B : Prop ℓ₁) → Prop (ℓ ⊔ ℓ₁)
A × B = Tel A (λ _ → B)
-- we need this for cumulativity
record i (A : Prop ℓ) : Prop (ℓ ⊔ ℓ₁) where
constructor inj
field
uninj : A
open i public
record iS (A : Set ℓ) : Set (ℓ ⊔ ℓ₁) where
constructor inj
field
uninj : A
open iS public
{-
Axiomatisation of Id, Id-refl, transport (for proposition), cast
Note that Id-refl, transport are axioms in Prop,
so we don't need to give them a computation content.
Also transport-refl is useless for transport on Prop
-}
postulate Id : (A : Set ℓ) → A → A → Prop ℓ
postulate cast : (A B : Set ℓ) (e : Id (Set ℓ) A B) → A → B
postulate Id-refl : {A : Set ℓ} (x : A) → Id A x x
postulate cast-refl : {A : Set ℓ} (e : Id _ A A) (a : A) → Id A (cast A A e a) a
postulate transport : {A : Set ℓ} (P : A → Prop ℓ₁) (x : A) (t : P x) (y : A) (e : Id A x y) → P y
-- cast-refl' : {A : Set ℓ} (e : Id (Set ℓ) A A) (a : A) → Id A (cast A A e a) a
-- cast-refl' {A = A} e a = transport (λ z → Id A z a) {!!} (Id-refl a) {!!} {!!}
-- direct derived functions
ap : {A : Set ℓ} {B : Set ℓ₁} {x y : A} (f : A → B) (e : Id A x y) →
Id B (f x) (f y)
ap {ℓ} {ℓ₁} {A} {B} {x} {y} f e = transport (λ z → Id B (f x) (f z)) x (Id-refl _) y e
transport-Id : {A : Set ℓ} (P : A → Set ℓ₁) (x : A) (t : P x) (y : A) (e : Id A x y) → P y
transport-Id P x t y e = cast (P x) (P y) (ap P e) t
transport-refl : {A : Set ℓ} (P : A → Set ℓ₁) (x : A) (t : P x) (e : Id A x x) → Id _ (transport-Id P x t x e) t
transport-refl P x t e = cast-refl (ap P e) t
inverse : (A : Set ℓ) {x y : A} (p : Id {ℓ} A x y) → Id A y x
inverse A {x} {y} p = transport (λ z → Id A z x) x (Id-refl x) y p
concatId : (A : Set ℓ) {x y z : A} (p : Id {ℓ} A x y)
(q : Id {ℓ} A y z) → Id A x z
concatId A {x} {y} {z} p q = transport (λ t → Id A x t) y p z q
-- we now state rewrite rules for the identity type
postulate Id-Pi : (A : Set ℓ) (B : A → Set ℓ₁) (f g : (a : A) → B a) →
Id ((a : A) → B a) f g ≡ ((a : A) → Id (B a) (f a) (g a))
{-# REWRITE Id-Pi #-}
-- rewrite rules on Id-refl are not needed because it is in Prop
refl-Pi : (A : Set ℓ) (B : A → Set ℓ₁) (f : (a : A) → B a) →
box (Id-refl f) ≡ box (λ a → Id-refl (f a))
refl-Pi A B f = refl
-- sanity check for funext
funext : (A : Set ℓ) (B : A → Set ℓ₁) (f g : (a : A) → B a) →
((a : A) → Id (B a) (f a) (g a)) → Id ((a : A) → B a) f g
funext A B f g e = e
postulate Id-Sigma : (A : Set ℓ) (B : A → Set ℓ₁) (a a' : A)
(b : B a) (b' : B a') →
Id (Σ A B) (a , b) (a' , b') ≡
Tel (Id A a a')
(λ e → Id (B a') (transport-Id B a b a' e) b')
{-# REWRITE Id-Sigma #-}
postulate Id-SigmaCov : (A : Set ℓ) (B : A → Set ℓ₁) (a a' : A)
(b : B a) (b' : B a') →
Id (ΣCov A B) (a , b) (a' , b') ≡
Tel (Id A a a')
(λ e → Id (B a) b (transport-Id B a' b' a (inverse A e)))
{-# REWRITE Id-SigmaCov #-}
postulate Id-prod : (A : Set ℓ) (B : Set ℓ₁) (a a' : A)
(b b' : B) →
Id (prod A B) (a , b) (a' , b') ≡
(Id A a a') × (Id B b b')
{-# REWRITE Id-prod #-}
postulate Id-Box : (A : Prop ℓ) (p q : A) → Id (Box A) (box p) (box q) ≡ ⊤P
{-# REWRITE Id-Box #-}
postulate Id-Unit : (p q : ⊤) → Id ⊤ p q ≡ ⊤P
{-# REWRITE Id-Unit #-}
postulate Id-list-nil-nil : (A : Set ℓ) →
Id (List A) [] [] ≡ ⊤P
-- postulate Id-list-nil-cons : (A : Set ℓ) (a' : A) (l' : List A) →
-- Id (List A) [] (a' ∷ l') ≡ i ⊥
-- postulate Id-list-cons-nil : (A : Set ℓ) (a : A) (l : List A) →
-- Id (List A) (a ∷ l) [] ≡ i ⊥
postulate Id-list-cons-cons : (A : Set ℓ) (a a' : A) (l l' : List A) →
Id (List A) (a ∷ l) (a' ∷ l') ≡
Id A a a' × Id (List A) l l'
{-# REWRITE Id-list-nil-nil #-}
{-# REWRITE Id-list-cons-cons #-}
postulate Id-nat-zero-zero : Id Nat 0 0 ≡ ⊤P
-- postulate Id-nat-zero-suc : (n : Nat) →
-- Id Nat 0 (suc n) ≡ i ⊥
-- postulate Id-nat-suc-zero : (n : Nat) →
-- Id Nat (suc n) zero ≡ i ⊥
postulate Id-nat-suc-suc : (n n' : Nat) →
Id Nat (suc n) (suc n') ≡
Id Nat n n'
{-# REWRITE Id-nat-zero-zero #-}
{-# REWRITE Id-nat-suc-suc #-}
postulate Id-bool-true-true : Id Bool true true ≡ ⊤P
postulate Id-bool-false-false : Id Bool false false ≡ ⊤P
{-# REWRITE Id-bool-true-true #-}
{-# REWRITE Id-bool-false-false #-}
postulate Id-sum-inj₁-inj₁ : (A : Set ℓ) (B : Set ℓ₁) (a a' : A) →
Id (A ⊎ B) (inj₁ a) (inj₁ a') ≡
i {ℓ = ℓ} {ℓ₁ = ℓ₁} (Id A a a')
postulate Id-sum-inj₂-inj₂ : (A : Set ℓ) (B : Set ℓ₁) (b b' : B) →
Id (A ⊎ B) (inj₂ b) (inj₂ b') ≡
i {ℓ = ℓ₁} {ℓ₁ = ℓ} (Id B b b')
{-# REWRITE Id-sum-inj₁-inj₁ #-}
{-# REWRITE Id-sum-inj₂-inj₂ #-}
-- rewrite rules for the identity type on the universe
telescope-Sigma : Set (lsuc (ℓ ⊔ ℓ₁))
telescope-Sigma {ℓ} {ℓ₁} = ΣCov (Set ℓ) (λ A → A → Set ℓ₁)
postulate Id-Type-Sigma : (A A' : Set ℓ) (B : A → Set ℓ₁) (B' : A' → Set ℓ₁) →
Id (Set (ℓ ⊔ ℓ₁)) (Σ A B) (Σ A' B') ≡
Id telescope-Sigma (A , B) (A' , B')
{-# REWRITE Id-Type-Sigma #-}
telescope-Forall : Set (lsuc (ℓ ⊔ ℓ₁))
telescope-Forall {ℓ} {ℓ₁} = Σ (Set ℓ) (λ A → A → Set ℓ₁)
postulate Id-Type-Pi : (A A' : Set ℓ) (B : A → Set ℓ₁) (B' : A' → Set ℓ₁) →
Id (Set (ℓ ⊔ ℓ₁)) ((a : A) → B a) ((a' : A') → B' a') ≡
Id telescope-Forall (A , B) (A' , B')
{-# REWRITE Id-Type-Pi #-}
telescope-Sum : Set (lsuc (ℓ ⊔ ℓ₁))
telescope-Sum {ℓ} {ℓ₁} = Σ (Set ℓ) (λ _ → Set ℓ₁)
postulate Id-Type-Sum : (A A' : Set ℓ) (B B' : Set ℓ₁) →
Id (Set (ℓ ⊔ ℓ₁)) (A ⊎ B) (A' ⊎ B') ≡
Id telescope-Sum (A , B) (A' , B')
{-# REWRITE Id-Type-Sum #-}
postulate Id-Type-prod : (A A' : Set ℓ) (B B' : Set ℓ₁) →
Id (Set (ℓ ⊔ ℓ₁)) (prod A B) (prod A' B') ≡
Id telescope-Sum (A , B) (A' , B')
{-# REWRITE Id-Type-prod #-}
telescope-List : Set (lsuc ℓ)
telescope-List {ℓ} = Set ℓ
postulate Id-Type-List : (A A' : Set ℓ) →
Id (Set ℓ) (List A) (List A') ≡
Id telescope-List A A'
{-# REWRITE Id-Type-List #-}
postulate Id-Type-Unit : Id Set ⊤ ⊤ ≡ ⊤P
{-# REWRITE Id-Type-Unit #-}
postulate Id-Type-Nat : Id Set Nat Nat ≡ Id Set ⊤ ⊤
{-# REWRITE Id-Type-Nat #-}
postulate Id-Type-Bool : Id Set Bool Bool ≡ Id Set ⊤ ⊤
{-# REWRITE Id-Type-Bool #-}
telescope-Box : Set (lsuc ℓ)
telescope-Box {ℓ} = Prop ℓ
postulate Id-Type-Box : (P P' : Prop ℓ) → Id (Set ℓ) (Box P) (Box P') ≡ Id telescope-Box P P'
{-# REWRITE Id-Type-Box #-}
-- rewrite rules for the identity type on Prop : Prop ext modulo cumul
postulate Id-prop : (P Q : Prop ℓ) → Id (Prop ℓ) P Q ≡ i (P → Q) × (Q → P)
{-# REWRITE Id-prop #-}
postulate Id-set : Id (Set (lsuc ℓ₁)) (Set ℓ₁) (Set ℓ₁) ≡ ⊤P
{-# REWRITE Id-set #-}
-- non-diagonal cases
{- There are n^2 cases, that's a pain, this is not exhaustive for the moment -}
postulate Id-set-nat : Id _ (Set ℓ) (iS Nat) ≡ i ⊥
postulate Id-nat-set : Id (Set (lsuc ℓ)) (iS Nat) (Set ℓ) ≡ i ⊥
postulate Id-set-bool : Id _ (Set ℓ) (iS Bool) ≡ i ⊥
postulate Id-bool-set : Id (Set (lsuc ℓ)) (iS Bool) (Set ℓ) ≡ i ⊥
postulate Id-bool-nat : Id _ Bool Nat ≡ i ⊥
postulate Id-nat-bool : Id _ Nat Bool ≡ i ⊥
postulate Id-set-pi : (A : Set ℓ₁) (B : A → Set ℓ₂) → Id (Set (lsuc ℓ ⊔ ℓ₁ ⊔ ℓ₂)) (iS {lsuc ℓ} {lsuc ℓ ⊔ ℓ₁ ⊔ ℓ₂} (Set ℓ))
(iS {ℓ₁ ⊔ ℓ₂} {lsuc ℓ ⊔ ℓ₁ ⊔ ℓ₂} ((a : A) → B a)) ≡ i ⊥
postulate Id-pi-set : (A : Set ℓ₁) (B : A → Set ℓ₂) → Id (Set (lsuc ℓ ⊔ ℓ₁ ⊔ ℓ₂)) (iS {ℓ₁ ⊔ ℓ₂} {lsuc ℓ ⊔ ℓ₁ ⊔ ℓ₂} ((a : A) → B a))
(iS {lsuc ℓ} {lsuc ℓ ⊔ ℓ₁ ⊔ ℓ₂} (Set ℓ)) ≡ i ⊥
postulate Id-set-sigma : (A : Set ℓ₁) (B : A → Set ℓ₂) → Id (Set (lsuc ℓ ⊔ ℓ₁ ⊔ ℓ₂)) (iS {lsuc ℓ} {lsuc ℓ ⊔ ℓ₁ ⊔ ℓ₂} (Set ℓ))
(iS {ℓ₁ ⊔ ℓ₂} {lsuc ℓ ⊔ ℓ₁ ⊔ ℓ₂} (Σ A B)) ≡ i ⊥
postulate Id-sigma-set : (A : Set ℓ₁) (B : A → Set ℓ₂) → Id (Set (lsuc ℓ ⊔ ℓ₁ ⊔ ℓ₂)) (iS {ℓ₁ ⊔ ℓ₂} {lsuc ℓ ⊔ ℓ₁ ⊔ ℓ₂} (Σ A B))
(iS {lsuc ℓ} {lsuc ℓ ⊔ ℓ₁ ⊔ ℓ₂} (Set ℓ)) ≡ i ⊥
{-# REWRITE Id-set-nat Id-nat-set Id-set-bool Id-bool-set Id-bool-nat Id-nat-bool Id-set-pi Id-pi-set Id-set-sigma Id-sigma-set #-}
--- Contractibility of singletons and J can be defined
contr-sing : (A : Set ℓ) {x y : A} (p : Id {ℓ} A x y) →
Id (Σ A (λ y → Box (Id A x y))) (x , box (Id-refl x)) (y , box p)
contr-sing A {x} {y} p = p , ttP
J : (A : Set ℓ) (x : A) (P : (y : A) → Id A x y → Prop ℓ₁)
(t : P x (Id-refl x)) (y : A) (e : Id A x y) → P y e
J A x P t y e = transport (λ z → P (fst z) (unbox (snd z))) (x , box (Id-refl x)) t (y , box e) (contr-sing A e)
-- tranporting back and forth is the identity
-- cast-inv : (A B : Set ℓ) (e : Id _ A B) (a : A) →
-- Id A (cast B A (inverse (Set ℓ) {x = A} {y = B} e) (cast A B e a)) a
-- cast-inv {ℓ} A B e a = let e-refl = cast-refl (Id-refl A) a in
-- let e-refl-cast = cast-refl (Id-refl A) (cast A A (Id-refl A) a) in
-- J (Set ℓ) A (λ B e → Id A (cast B A (inverse (Set ℓ) {x = A} {y = B} e) (cast A B e a)) a)
-- (concatId A e-refl-cast e-refl) B e
postulate cast-set : (A : Set ℓ) (e : _) → cast (Set ℓ) (Set ℓ) e A ≡ A
{-# REWRITE cast-set #-}
postulate cast-prop : (A : Prop ℓ) (e : _) → cast (Prop ℓ) (Prop ℓ) e A ≡ A
{-# REWRITE cast-prop #-}
postulate cast-type-family : (A A' : Set ℓ) (f : (a : A) → Set ℓ₁) (e : _) →
cast ((a : A) → Set ℓ₁) ((a' : A') → Set ℓ₁) e f ≡
λ (a' : A') → let a = cast A' A (inverse (Set ℓ) {x = A} {y = A'} (fstC e)) a' in f a
{-# REWRITE cast-type-family #-}
postulate cast-Pi : (A A' : Set ℓ) (B : A → Set ℓ₁) (B' : A' → Set ℓ₁) (f : (a : A) → B a) (e : Id _ ((a : A) → B a) ((a' : A') → B' a')) →
cast ((a : A) → B a) ((a' : A') → B' a') e f ≡
λ (a' : A') → let a = cast A' A (inverse (Set ℓ) {x = A} {y = A'} (fstC e)) a' in
cast _ _ (sndC e a') (f a)
{-# REWRITE cast-Pi #-}
postulate cast-Sigma : (A A' : Set ℓ) (B : A → Set ℓ₁) (B' : A' → Set ℓ₁) (x : A) (y : B x) (e : _) →
let eA = fstC e in
let x' = cast A A' eA x in
let eB = sndC e x in
cast (Σ A B) (Σ A' B') e (x , y) ≡
(cast A A' eA x , cast (B x) (B' x') eB y)
{-# REWRITE cast-Sigma #-}
postulate cast-prod : (A A' : Set ℓ) (B B' : Set ℓ₁) (x : A) (y : B) (e : _) →
let eA = fstC e in
let eB = sndC e in
cast (prod A B) (prod A' B') e (x , y) ≡
(cast A A' eA x , cast B B' eB y)
{-# REWRITE cast-prod #-}
postulate cast-Sum-inj₁ : (A A' : Set ℓ) (B B' : Set ℓ₁) (a : A) (e : _) →
let eA = fstC e in
let eB = sndC e in
cast (A ⊎ B) (A' ⊎ B') e (inj₁ a) ≡
inj₁ (cast A A' eA a)
postulate cast-Sum-inj₂ : (A A' : Set ℓ) (B B' : Set ℓ₁) (b : B) (e : _) →
let eA = fstC e in
let eB = sndC e in
cast (A ⊎ B) (A' ⊎ B') e (inj₂ b) ≡
inj₂ (cast B B' eB b)
{-# REWRITE cast-Sum-inj₁ #-}
{-# REWRITE cast-Sum-inj₂ #-}
postulate cast-List-nil : (A A' : Set ℓ) (e : _) →
cast (List A) (List A') e [] ≡ []
postulate cast-List-cons : (A A' : Set ℓ) (e : _) (a : A) (l : List A) →
cast (List A) (List A') e (a ∷ l) ≡
cast A A' e a ∷ cast _ _ e l
{-# REWRITE cast-List-nil #-}
{-# REWRITE cast-List-cons #-}
postulate cast-Nat : (e : _) (n : Nat) → cast Nat Nat e n ≡ n
{-# REWRITE cast-Nat #-}
postulate cast-Bool : (e : _) (b : Bool) → cast Bool Bool e b ≡ b
{-# REWRITE cast-Bool #-}
postulate cast-Unit : (e : _) (t : ⊤) → cast ⊤ ⊤ e t ≡ t
{-# REWRITE cast-Unit #-}
postulate cast-Box : (A A' : Prop ℓ) (a : A) (f : _) (g : _) →
cast (Box A) (Box A') (f , g) (box a) ≡ box (uninj f a)
{-# REWRITE cast-Box #-}
-- sanity check on closed terms
foo : transport-Id (λ (T : Σ Set (λ A → Σ A (λ _ → A → Set))) → ((snd (snd T)) (fst (snd T))))
(Nat , (0 , λ _ → Nat))
3
(Nat , (0 , λ _ → Nat))
(Id-refl {A = Σ Set (λ A → Σ A (λ _ → A → Set))} (Nat , (0 , λ _ → Nat)))
≡ 3
foo = refl
test-J-refl-on-closed-term : (X : Set ℓ) (x : X) →
transport-Id (λ z → Σ ⊤ (λ z → ⊤)) x (tt , tt) x (Id-refl x) ≡ (tt , tt)
test-J-refl-on-closed-term X x = refl
-- Quotient types
{-
Note that r s and t are not used in the definitions, they are just here
to make sure the theory stays consistent, because postulating the quotient,
we can derive them. In particular, with R = λ - - → ⊥, we would get
a direct inconsistency using Id-refl
-}
record quotient-data ℓ : Set (lsuc ℓ) where
constructor q-data
field
carrier : Set ℓ
rel : carrier → carrier → Prop ℓ
rel-refl : (x : carrier) → rel x x
rel-sym : (x y : carrier) → rel x y → rel y x
rel-trans : (x y z : carrier) → rel x y → rel y z → rel x z
open quotient-data public
postulate Quotient : (Q : quotient-data ℓ) →
Set ℓ
postulate pi : {Q : quotient-data ℓ} →
carrier Q → Quotient Q
telescope-Quotient : Set (lsuc ℓ)
telescope-Quotient {ℓ} = Σ (Set ℓ) (λ A → A → A → Prop ℓ)
postulate Id-Quotient : (Q : quotient-data ℓ)
(a a' : carrier Q) →
Id (Quotient Q)
(pi a) (pi a') ≡ rel Q a a'
{-# REWRITE Id-Quotient #-}
postulate Quotient-elim : (Q : quotient-data ℓ)
(P : Quotient Q → Set ℓ₁)
(p : (x : carrier Q) → P (pi x))
(e : (x y : carrier Q) → (r : rel Q x y) →
Id _ (transport-Id P (pi x) (p x) (pi y) r) (p y))
(w : Quotient Q) → P w
postulate Quotient-elim-red : (Q : quotient-data ℓ)
(P : Quotient Q → Set ℓ₁)
(p : (x : carrier Q) → P (pi x))
(e : (x y : carrier Q) → (r : rel Q x y) →
Id _ (transport-Id P (pi x) (p x) (pi y) r) (p y))
(a : carrier Q) →
Quotient-elim Q P p e (pi a)
≡ p a
{-# REWRITE Quotient-elim-red #-}
postulate Quotient-elim-prop : (Q : quotient-data ℓ)
(P : Quotient Q → Prop ℓ₁)
(p : (x : carrier Q) → P (pi x))
(w : Quotient Q) → P w
postulate Id-Type-Quotient : (Q Q' : quotient-data ℓ) →
Id (Set ℓ) (Quotient Q) (Quotient Q')
≡
Id telescope-Quotient (carrier Q , rel Q) (carrier Q' , rel Q')
{-# REWRITE Id-Type-Quotient #-}
postulate cast-Quotient : (Q Q' : quotient-data ℓ)
(a : carrier Q) (e : _) →
cast (Quotient Q) (Quotient Q') e (pi a) ≡
pi (cast (carrier Q) (carrier Q') (fstC e) a)
{-# REWRITE cast-Quotient #-}
-- double induction principle
Quotient-elim2-aux : (Q : quotient-data ℓ)
(P : Quotient Q → Quotient Q → Set ℓ₁)
(p : (x y : carrier Q) → P (pi x) (pi y))
(e : (x x' y y' : carrier Q) → (Q-rel1 : rel Q x x') → (Q-rel2 : rel Q y y') →
Id _ (transport-Id (P (pi x')) (pi y) (transport-Id (λ x → P x (pi y)) (pi x) (p x y) (pi x') Q-rel1) (pi y') Q-rel2) (p x' y')) (x : carrier Q) (w : Quotient Q) → P w (pi x)
Quotient-elim2-aux Q P p e x = Quotient-elim Q (λ w → P w (pi x)) (λ y → p y x) (λ y y' r → let e-cst = e y y' x x r (rel-refl Q x) in transport (λ e → Id (P (pi y') (pi x))
(e
(cast (P (pi y) (pi x)) (P (pi y') (pi x)) (ap (λ y → P y (pi x)) r) (p y x)))
(p y' x)) (cast (P (pi y') (pi x)) (P (pi y') (pi x)) (ap (P (pi y')) (rel-refl Q x)))
e-cst (λ w → w) λ a → cast-refl {A = P (pi y') (pi x)} (Id-refl (P (pi y') (pi x))) a )
Quotient-elim2 : (Q : quotient-data ℓ)
(P : Quotient Q → Quotient Q → Set ℓ₁)
(p : (x y : carrier Q) → P (pi x) (pi y))
(e : (x x' y y' : carrier Q) → (Q-rel1 : rel Q x x') → (Q-rel2 : rel Q y y') →
Id _ (transport-Id (P (pi x')) (pi y) (transport-Id (λ x → P x (pi y)) (pi x) (p x y) (pi x') Q-rel1) (pi y') Q-rel2) (p x' y'))
(w w' : Quotient Q) → P w w'
Quotient-elim2 Q P p e w =
Quotient-elim Q (P w) (λ x → Quotient-elim2-aux Q P p e x w)
(λ x x' r → Quotient-elim-prop Q (λ w → Id (P w (pi x'))
(transport-Id (P w) (pi x) (Quotient-elim2-aux Q P p e x w) (pi x') r)
(Quotient-elim2-aux Q P p e x' w)) (λ y → let e-cst = e y y x x' (rel-refl Q y) r in
transport (λ e → Id (P (pi y) (pi x'))
(cast (P (pi y) (pi x)) (P (pi y) (pi x')) (ap (P (pi y)) r) (e (p y x)))
(p y x')) (cast (P (pi y) (pi x)) (P (pi y) (pi x)) (ap (P (pi y)) (rel-refl Q x)))
e-cst (λ w → w) λ a → cast-refl {A = P (pi y) (pi x)} (Id-refl (P (pi y) (pi x))) a ) w)
{-
-- Sanity Check: transport-refl on quotient type
transport-refl-Quotient : (X : Set ℓ)
(carrier Q : X -> Set ℓ₁)
(R : (x : X) → carrier Q x → carrier Q x → Prop ℓ₁)
(r : (z : X) (x : carrier Q z) → R z x x)
(s : (z : X) (x y : carrier Q z) → R z x y → R z y x)
(t : (zz : X) (x y z : carrier Q zz) → R zz x y → R zz y z → R zz x z)
(x : X) (q : Quotient (carrier Q x) (R x) (r x) (s x) (t x))
(e : Id X x x) →
Id _
(transport-Id (λ x → Quotient (carrier Q x) (R x) (r x) (s x) (t x))
x q x e)
q
transport-refl-Quotient X carrier Q R r s t x q e =
Quotient-elim-prop (carrier Q x) (R x) (r x) (s x) (t x)
((λ a → Id _ (transport-Id (λ (x : X) → Quotient (carrier Q x) (R x) (r x) (s x) (t x)) x a x e) a))
(λ a → transport (λ a' → R x a' a) a (r x a) (cast (carrier Q x) (carrier Q x) _ a) (inverse (carrier Q x) (transport-refl carrier Q x a e)))
q
-}
-- Now for Path
telescope-Path : Set (lsuc ℓ)
telescope-Path {ℓ} = Σ (Set ℓ) (λ A → prod A A)
postulate Id-Path : (A : Set ℓ) (x : A) (y : A) (e e' : _)→
Id (x ≡ y) e e' ≡ ⊤P
{-# REWRITE Id-Path #-}
postulate Id-Type-Path : (A A' : Set ℓ) (x y : A) (x' y' : A') →
Id (Set ℓ) (x ≡ y) (x' ≡ y') ≡
Id telescope-Path
(A , (x , y))
(A' , (x' , y' ))
{-# REWRITE Id-Type-Path #-}
-- not enough to get canonicity
-- postulate cast-Path : (A A' : Set ℓ) (x : A) (x' : A') (e : _) →
-- cast (x ≡ x) (x' ≡ x') e refl ≡ refl
-- {-# REWRITE cast-Path #-}
transport-Path : {A : Set ℓ} (x : A) (P : (y : A) → Set ℓ₁) (t : P x) (y : A) (e : x ≡ y) → P y
transport-Path P x t y refl = t
transport-Path-refl : {A : Set ℓ} (P : A → Prop ℓ₁) (x : A) (t : P x) (y : A) (e : x ≡ y) → P y
transport-Path-refl P x t .x refl = t
path-to-Id : {A : Set ℓ} {x y : A} → x ≡ y → Id A x y
path-to-Id {ℓ} {A} {x} {y} = transport-Path-refl (Id A x) x (Id-refl x) y
-- we treat cast X (a ≡ b) e x as a new constructor of equality
postulate IdPath : {A : Set ℓ} {x y : A} → Id A x y → x ≡ y
postulate transport-Path-cast-refl : {A B : Set ℓ} (a : A) (b b' : B) (e : Id (Set ℓ) (a ≡ a) (b ≡ b')) →
cast (a ≡ a) (b ≡ b') e refl ≡
IdPath ( let X = fstC (sndC e) in let Y = sndC (sndC e) in concatId B (inverse B X) Y)
{-# REWRITE transport-Path-cast-refl #-}
postulate transport-Path-IdPath : {A : Set ℓ} (x : A) (P : (y : A) → Set ℓ₁) (t : P x) (y : A) (e : Id A x y) →
transport-Path x P t y (IdPath e) ≡ transport-Id P x t y e
{-# REWRITE transport-Path-IdPath #-}
postulate transport-Path-cast-IdPath : {A B : Set ℓ} (a a' : A) (b b' : B) (ea : Id A a a') (e : Id (Set ℓ) (a ≡ a') (b ≡ b')) →
cast (a ≡ a') (b ≡ b') e (IdPath ea) ≡
IdPath (concatId B (inverse B (fstC (sndC e)))
(concatId B (ap (cast A B (fstC e)) ea) (sndC (sndC e))))
{-# REWRITE transport-Path-cast-IdPath #-}
transport-refl-Path : {A : Set ℓ} (P : A → Set ℓ₁) (x : A) (t : P x) → transport-Path x P t x refl ≡ t
transport-refl-Path P x t = refl
funext-Path : (A : Set ℓ) (B : A → Set ℓ₁) (f g : (a : A) → B a) →
((a : A) → f a ≡ g a) → f ≡ g
funext-Path A B f g e = IdPath (λ a → path-to-Id (e a))
etaBool : (a : Bool) → a ≡ (if a then true else false)
etaBool true = refl
etaBool false = refl
eq_fun : (λ (b : Bool) → b) ≡ (λ (b : Bool) → if b then true else false)
eq_fun = funext-Path Bool (λ - → Bool) _ _ λ a → etaBool a
-- standard boolean using equality
std-bool : Bool
std-bool = transport-Path (λ (b : Bool) → b) (λ f → Bool) true (λ (b : Bool) → if b then true else false) eq_fun
sanity-check : std-bool ≡ true
sanity-check = refl
|
{
"alphanum_fraction": 0.4591687462,
"avg_line_length": 35.9783281734,
"ext": "agda",
"hexsha": "c54027ed98195706bee262dcca64d930393d7ba5",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "setoid_rr.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "setoid_rr.agda",
"max_line_length": 202,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "setoid_rr.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 8927,
"size": 23242
}
|
------------------------------------------------------------------------
-- A parser for PBM images; illustrates "essential" use of bind
------------------------------------------------------------------------
-- Note that I am using the simple "Plain PBM" format, and I try to
-- adhere to the following statement from the pbm man page:
--
-- "Programs that read this format should be as lenient as possible,
-- accepting anything that looks remotely like a bitmap."
-- I got the idea to write this particular parser from "The Power of
-- Pi" by Oury and Swierstra.
module StructurallyRecursiveDescentParsing.PBM where
import Data.Vec as Vec
import Data.List as List
open import Codata.Musical.Notation
open import Data.Bool
open import Data.Char using (_==_)
import Data.Char.Properties as Char
import Data.String as String
open import Data.Unit
open import Function
open import Relation.Binary.PropositionalEquality
open import StructurallyRecursiveDescentParsing.Grammar
open import StructurallyRecursiveDescentParsing.Lib
open import StructurallyRecursiveDescentParsing.DepthFirst
open Token Char.decSetoid
open import TotalParserCombinators.Examples.PBM using (module PBM)
open PBM
mutual
comment : Parser EmptyNT _ _ _
comment = tt <$ tok '#'
<⊛ sat' (not ∘ _==_ '\n') ⋆
<⊛ tok '\n'
colour = white <$ tok '0'
∣ black <$ tok '1'
pbm =
w∣c ⋆ ⊛>
theString (String.toVec "P1") ⊛>
w∣c ⋆ ⊛>
number !>>= λ cols → ♯ -- _>>=_ works just as well.
(w∣c + ⊛>
number >>= λ rows → -- _!>>=_ works just as well.
w∣c ⊛>
(toPBM <$> exactly rows (exactly cols (w∣c ⋆ ⊛> colour))) <⊛
any ⋆)
where w∣c = whitespace ∣ comment
module Example where
open Vec
image = toPBM ((white ∷ black ∷ white ∷ []) ∷
(black ∷ white ∷ black ∷ []) ∷
(white ∷ black ∷ white ∷ []) ∷ [])
ex : parseComplete (⟦ pbm ⟧ emptyGrammar)
(String.toList (show image)) ≡
List.[_] image
ex = refl
|
{
"alphanum_fraction": 0.6010794897,
"avg_line_length": 29.5362318841,
"ext": "agda",
"hexsha": "1a47a279c5eb69faf254d93ce90e97df735b2f9b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "StructurallyRecursiveDescentParsing/PBM.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "StructurallyRecursiveDescentParsing/PBM.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/parser-combinators",
"max_stars_repo_path": "StructurallyRecursiveDescentParsing/PBM.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z",
"num_tokens": 554,
"size": 2038
}
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import Setoids.Setoids
open import Rings.Definition
open import Rings.IntegralDomains.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Rings.PrincipalIdealDomains.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} (intDom : IntegralDomain R) where
open import Rings.Ideals.Principal.Definition R
open import Rings.Ideals.Definition R
PrincipalIdealDomain : {c : _} → Set (a ⊔ b ⊔ lsuc c)
PrincipalIdealDomain {c} = {pred : A → Set c} → (ideal : Ideal pred) → PrincipalIdeal ideal
|
{
"alphanum_fraction": 0.7050243112,
"avg_line_length": 38.5625,
"ext": "agda",
"hexsha": "7f78703985c4577e54511912f1ca24ad2dc8d96f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Rings/PrincipalIdealDomains/Definition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Rings/PrincipalIdealDomains/Definition.agda",
"max_line_length": 167,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Rings/PrincipalIdealDomains/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 191,
"size": 617
}
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Lists.Definition
open import Lists.Concat
module Lists.Reversal.Reversal where
rev : {a : _} → {A : Set a} → List A → List A
rev [] = []
rev (x :: l) = (rev l) ++ [ x ]
revIsHom : {a : _} → {A : Set a} → (l1 : List A) → (l2 : List A) → (rev (l1 ++ l2) ≡ (rev l2) ++ (rev l1))
revIsHom l1 [] = applyEquality rev (appendEmptyList l1)
revIsHom [] (x :: l2) with (rev l2 ++ [ x ])
... | r = equalityCommutative (appendEmptyList r)
revIsHom (w :: l1) (x :: l2) = transitivity t (equalityCommutative s)
where
s : ((rev l2 ++ [ x ]) ++ (rev l1 ++ [ w ])) ≡ (((rev l2 ++ [ x ]) ++ rev l1) ++ [ w ])
s = equalityCommutative (concatAssoc (rev l2 ++ (x :: [])) (rev l1) ([ w ]))
t' : rev (l1 ++ (x :: l2)) ≡ rev (x :: l2) ++ rev l1
t' = revIsHom l1 (x :: l2)
t : (rev (l1 ++ (x :: l2)) ++ [ w ]) ≡ ((rev l2 ++ [ x ]) ++ rev l1) ++ [ w ]
t = applyEquality (λ r → r ++ [ w ]) {rev (l1 ++ (x :: l2))} {((rev l2) ++ [ x ]) ++ rev l1} (transitivity t' (applyEquality (λ r → r ++ rev l1) {rev l2 ++ (x :: [])} {rev l2 ++ (x :: [])} refl))
revRevIsId : {a : _} → {A : Set a} → (l : List A) → (rev (rev l) ≡ l)
revRevIsId [] = refl
revRevIsId (x :: l) = t
where
s : rev (rev l ++ [ x ] ) ≡ [ x ] ++ rev (rev l)
s = revIsHom (rev l) [ x ]
t : rev (rev l ++ [ x ] ) ≡ [ x ] ++ l
t = identityOfIndiscernablesRight _≡_ s (applyEquality (λ n → [ x ] ++ n) (revRevIsId l))
|
{
"alphanum_fraction": 0.498655914,
"avg_line_length": 43.7647058824,
"ext": "agda",
"hexsha": "e2fa9d3c2f10c1b1e7023ef280678487c5eb9854",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Lists/Reversal/Reversal.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Lists/Reversal/Reversal.agda",
"max_line_length": 199,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Lists/Reversal/Reversal.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 595,
"size": 1488
}
|
{-# OPTIONS --without-K --safe --exact-split #-}
module Experiment.Omniscience where
open import Level using () renaming (zero to lzero)
open import Data.Nat using (ℕ; zero; suc; _≤_; _+_)
open import Data.Nat.Properties using (≤-refl; +-identityʳ)
open import Data.Product using (Σ; _,_; proj₁; proj₂; ∃; _×_)
open import Data.Bool using (Bool; true; false; _∧_; not)
open import Data.Bool.Properties using (∧-assoc; ∧-idem)
open import Function.Base using (_$_)
open import Relation.Binary using (Rel)
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; subst; sym; _≢_; cong; module ≡-Reasoning)
infix 5 _≤ᵇ_
_≤ᵇ_ : Bool → Bool → Bool
false ≤ᵇ false = true
true ≤ᵇ false = false
false ≤ᵇ true = true
true ≤ᵇ true = true
x≤ᵇtrue≡true : ∀ x → x ≤ᵇ true ≡ true
x≤ᵇtrue≡true false = refl
x≤ᵇtrue≡true true = refl
Decrease : (ℕ → Bool) → Set
Decrease α = ∀ i → α (suc i) ≤ᵇ α i ≡ true
ℕ∞ : Set
ℕ∞ = Σ (ℕ → Bool) Decrease
-- less n i ≡ true <=> n > i
less : ℕ → ℕ → Bool
less zero zero = false
less zero (suc n) = false
less (suc m) zero = true
less (suc m) (suc n) = less m n
less-decrease : ∀ n → Decrease (less n)
less-decrease zero zero = refl
less-decrease zero (suc i) = refl
less-decrease (suc n) zero = x≤ᵇtrue≡true (less n 0)
less-decrease (suc n) (suc i) = less-decrease n i
toℕ∞ : ℕ → ℕ∞
toℕ∞ n = less n , less-decrease n
_≈C_ : Rel (ℕ → Bool) lzero
α ≈C β = ∀ i → α i ≡ β i
_≈_ : Rel ℕ∞ lzero
x ≈ y = proj₁ x ≈C proj₁ y
_#C_ : Rel (ℕ → Bool) lzero
α #C β = ∃ λ i → α i ≢ β i
_#_ : Rel ℕ∞ lzero
x # y = proj₁ x #C proj₁ y
-- retract
𝓇 : (ℕ → Bool) → (ℕ → Bool)
𝓇 α zero = α 0
𝓇 α (suc n) = α (suc n) ∧ 𝓇 α n
𝓇-decrease : ∀ α → Decrease (𝓇 α)
𝓇-decrease α i = lemma (α (suc i)) (𝓇 α i)
where
lemma : ∀ x y → x ∧ y ≤ᵇ y ≡ true
lemma false false = refl
lemma false true = refl
lemma true false = refl
lemma true true = refl
𝓇-idem : ∀ α → 𝓇 (𝓇 α) ≈C 𝓇 α
𝓇-idem α zero = refl
𝓇-idem α (suc i) = begin
(α (suc i) ∧ 𝓇 α i) ∧ 𝓇 (𝓇 α) i
≡⟨ cong (λ v → (α (suc i) ∧ 𝓇 α i) ∧ v) $ 𝓇-idem α i ⟩
(α (suc i) ∧ 𝓇 α i) ∧ 𝓇 α i
≡⟨ ∧-assoc (α (suc i)) (𝓇 α i) (𝓇 α i) ⟩
α (suc i) ∧ (𝓇 α i ∧ 𝓇 α i)
≡⟨ cong (λ v → α (suc i) ∧ v) $ ∧-idem (𝓇 α i) ⟩
α (suc i) ∧ 𝓇 α i ∎
where open ≡-Reasoning
⟦_⟧ : ℕ∞ → (ℕ → Bool)
⟦_⟧ = proj₁
private
contraposition-Bool : ∀ {x y z} → (x ≡ z → y ≡ z) → y ≡ not z → x ≡ not z
contraposition-Bool {false} {false} {true} f e = refl
contraposition-Bool {false} {true} {false} f e = (λ ()) $ f refl
contraposition-Bool {true} {false} {true} f e = (λ ()) $ f refl
contraposition-Bool {true} {true} {false} f e = refl
≤ᵇ-to-fun : ∀ {x y} → x ≤ᵇ y ≡ true → x ≡ true → y ≡ true
≤ᵇ-to-fun {true} {true} _ _ = refl
lemma-3-2-lemma : ∀ (x : ℕ∞) m n → ⟦ x ⟧ n ≡ false → ⟦ x ⟧ (m + n) ≡ false
lemma-3-2-lemma x@(α , d) zero n αn≡false = αn≡false
lemma-3-2-lemma x@(α , d) (suc m) n αn≡false =
contraposition-Bool (≤ᵇ-to-fun (d (m + n))) (lemma-3-2-lemma x m n αn≡false)
lemma-3-2 : ∀ (x : ℕ∞) n → ⟦ x ⟧ n ≡ false → ∃ λ k → k ≤ n × x ≈ toℕ∞ k
lemma-3-2 x@(α , d) zero αn≡false = 0 , (≤-refl , f)
where
f : ∀ i → α i ≡ less 0 i
f zero = αn≡false
f (suc i) = subst (λ v → α (suc v) ≡ false) (+-identityʳ i) $
lemma-3-2-lemma x (suc i) 0 αn≡false
lemma-3-2 (α , d) (suc n) αn≡false = {! !}
-- α i ≡ less 0 i
|
{
"alphanum_fraction": 0.562592483,
"avg_line_length": 29.1293103448,
"ext": "agda",
"hexsha": "7c815e955cbd70c0a5dd33efa94fe3416c980621",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "Experiment/Omniscience.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "Experiment/Omniscience.agda",
"max_line_length": 78,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "Experiment/Omniscience.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 1582,
"size": 3379
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.Monoid.Construct.Unit where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Algebra.Monoid
open import Cubical.Data.Prod using (_,_)
open import Cubical.Data.Unit
import Cubical.Algebra.Semigroup.Construct.Unit as ⊤Semigroup
open ⊤Semigroup public hiding (⊤-isSemigroup; ⊤-Semigroup)
◯-identityˡ : LeftIdentity tt _◯_
◯-identityˡ _ = refl
◯-identityʳ : RightIdentity tt _◯_
◯-identityʳ _ = refl
◯-identity : Identity tt _◯_
◯-identity = ◯-identityˡ , ◯-identityʳ
⊤-isMonoid : IsMonoid ⊤ _◯_ tt
⊤-isMonoid = record
{ isSemigroup = ⊤Semigroup.⊤-isSemigroup
; identity = ◯-identity
}
⊤-Monoid : Monoid ℓ-zero
⊤-Monoid = record { isMonoid = ⊤-isMonoid }
|
{
"alphanum_fraction": 0.7303797468,
"avg_line_length": 24.6875,
"ext": "agda",
"hexsha": "364f861418b542be487ab5df0cd7ce93587b3b48",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Algebra/Monoid/Construct/Unit.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Algebra/Monoid/Construct/Unit.agda",
"max_line_length": 61,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Algebra/Monoid/Construct/Unit.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 282,
"size": 790
}
|
module Data.List.All.Properties.Extra {a}{A : Set a} where
open import Relation.Binary.PropositionalEquality
open import Data.Nat
open import Data.Fin
open import Data.List as List hiding (reverse)
open import Data.List.Relation.Unary.Any hiding (tail)
open import Data.List.Membership.Propositional
open import Data.List.Properties.Extra
open import Data.List.At
open import Data.List.Relation.Unary.All as All hiding (_[_]=_)
open import Data.List.Relation.Unary.All.Properties
open import Data.Product
open import Function
map-map : ∀ {p q r}{P : A → Set p}{Q : A → Set q}{R : A → Set r}{l : List A}(ps : All P l)
{f : ∀ {x : A} → P x → Q x}{g : ∀ {x : A} → Q x → R x} →
All.map g (All.map f ps) ≡ All.map (g ∘ f) ps
map-map [] = refl
map-map (px ∷ ps) = cong₂ _∷_ refl (map-map ps)
drop-all : ∀ {p}{P : A → Set p}{l : List A} n → All P l → All P (drop n l)
drop-all zero px = px
drop-all (suc n) [] = []
drop-all (suc n) (px ∷ pxs) = drop-all n pxs
split-++ : ∀ {p}{P : A → Set p}(l m : List A) → All P (l ++ m) → All P l × All P m
split-++ [] m pxs = [] , pxs
split-++ (x ∷ l) m (px ∷ pxs) with split-++ l m pxs
... | lp , rp = px ∷ lp , rp
_++-all_ : ∀ {l m p}{P : A → Set p} → All P l → All P m → All P (l ++ m)
[] ++-all pm = pm
(px ∷ pl) ++-all pm = px ∷ (pl ++-all pm)
∈-all : ∀ {p}{P : A → Set p}{l : List A}{x} → x ∈ l → All P l → P x
∈-all (here refl) (px ∷ q) = px
∈-all (there p) (px ∷ q) = ∈-all p q
-- proof matters; update a particular witness of a property
_All[_]≔_ : ∀ {p}{P : A → Set p} {xs : List A} {i x} →
All P xs → xs [ i ]= x → P x → All P xs
_All[_]≔_ [] ()
_All[_]≔_ {xs = .(_ ∷ _)} {zero} (px ∷ xs) refl px' = px' ∷ xs
_All[_]≔_ {xs = .(_ ∷ _)} {suc i} (px ∷ xs) q px' = px ∷ (xs All[ q ]≔ px')
-- strong update
-- _All[_]≔!_ : ∀ {p}{P : A → Set p} {xs : List A} {x} →
-- All P xs → (i : Fin (length xs)) → P x → All P (xs [ i ]≔ x)
-- [] All[ () ]≔! y
-- (px ∷ xs) All[ zero ]≔! y = y ∷ xs
-- (px ∷ xs) All[ suc i ]≔! y = px ∷ xs All[ i ]≔! y
_all-∷ʳ_ : ∀ {p}{l : List A} {x} {P : A → Set p} → All P l → P x → All P (l ∷ʳ x)
_all-∷ʳ_ [] q = q ∷ []
_all-∷ʳ_ (px ∷ p) q = px ∷ (p all-∷ʳ q)
-- All≔'∘map : ∀ {p q}{P : A → Set p}{Q : A → Set q}{xs : List A} {x}(pxs : All P xs)(e : x ∈ xs)(px : P x)(f : ∀ {x} → P x → Q x) →
-- (All.map f pxs) All[ e ]≔' (f px) ≡ All.map f (pxs All[ e ]≔' px)
-- All≔'∘map [] ()
-- All≔'∘map (px ∷ pxs) (here refl) qx f = refl
-- All≔'∘map (px ∷ pxs) (there e) qx f = cong₂ _∷_ refl (All≔'∘map pxs e qx f)
all-∷ʳ∘map : ∀ {p q}{P : A → Set p}{Q : A → Set q}{xs : List A} {x}(pxs : All P xs)(px : P x)(f : ∀ {x} → P x → Q x) →
(All.map f pxs) all-∷ʳ (f px) ≡ All.map f (pxs all-∷ʳ px)
all-∷ʳ∘map [] px f = refl
all-∷ʳ∘map (px₁ ∷ pxs) px f = cong₂ _∷_ refl (all-∷ʳ∘map pxs px f)
lookup∘map : ∀ {p q}{P : A → Set p}{Q : A → Set q}{xs : List A} {x}(pxs : All P xs)(e : x ∈ xs)(f : ∀ {x} → P x → Q x) →
All.lookup (All.map f pxs) e ≡ f (All.lookup pxs e)
lookup∘map [] ()
lookup∘map (px ∷ pxs) (here refl) f = refl
lookup∘map (px ∷ pxs) (there e) f = lookup∘map pxs e f
erase : ∀ {p b}{P : A → Set p}{l : List A}{B : Set b} → (∀ {x} → P x → B) → All P l → List B
erase f [] = []
erase f (px ∷ xs₁) = f px ∷ erase f xs₁
-- pop₁ : ∀ {x : A}{p xs}{P : A → Set p} → All P (x ∷ xs) → P x × All P xs
-- pop₁ st = head st , tail st
-- open import Data.List.Properties
-- popₙ : ∀ (as : List A){p xs}{P : A → Set p} → All P (as ++ xs) → All P (List.reverse as) × All P xs
-- popₙ [] st = [] , st
-- popₙ (x ∷ xs) (px ∷ pxs) rewrite unfold-reverse x xs =
-- let pys , pzs = popₙ xs pxs in (pys all-∷ʳ px) , pzs
-- open import Relation.Binary.Core
-- open import Data.List.Relation.Pointwise hiding (Rel)
-- module _ {a ℓ}{A : Set a}(_∼_ : Rel A ℓ) where
-- pw-map : ∀ {l m p}{P : A → Set p} → (∀ {a b} → a ∼ b → P a → P b) → Pointwise _∼_ l m → All P l → All P m
-- pw-map f [] [] = []
-- pw-map f (x∼y ∷ r) (px ∷ xs) = f x∼y px ∷ pw-map f r xs
|
{
"alphanum_fraction": 0.5106276569,
"avg_line_length": 42.0947368421,
"ext": "agda",
"hexsha": "e99789fe359e11fcdf076fb10b91700d07dff703",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "metaborg/mj.agda",
"max_forks_repo_path": "src/Data/List/All/Properties/Extra.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "metaborg/mj.agda",
"max_issues_repo_path": "src/Data/List/All/Properties/Extra.agda",
"max_line_length": 132,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "metaborg/mj.agda",
"max_stars_repo_path": "src/Data/List/All/Properties/Extra.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z",
"num_tokens": 1747,
"size": 3999
}
|
module Examples.OpSem where
open import Luau.OpSem using (_⊢_⟶ᴱ_⊣_; _⊢_⟶ᴮ_⊣_; subst)
open import Luau.Syntax using (Block; var; nil; local_←_; _∙_; done; return; block_is_end)
open import Luau.Heap using (∅)
ex1 : ∅ ⊢ (local (var "x") ← nil ∙ return (var "x") ∙ done) ⟶ᴮ (return nil ∙ done) ⊣ ∅
ex1 = subst
|
{
"alphanum_fraction": 0.6601941748,
"avg_line_length": 34.3333333333,
"ext": "agda",
"hexsha": "c4cfc5e5c79a09558b820e0aaed4af98841b7255",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Tr4shh/Roblox-Luau",
"max_forks_repo_path": "prototyping/Examples/OpSem.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Tr4shh/Roblox-Luau",
"max_issues_repo_path": "prototyping/Examples/OpSem.agda",
"max_line_length": 90,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Tr4shh/Roblox-Luau",
"max_stars_repo_path": "prototyping/Examples/OpSem.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 134,
"size": 309
}
|
------------------------------------------------------------------------------
-- Testing Agda internal term: @Con@
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- The following hint uses the internal Agda term @Con@.
module AgdaInternalTerms.ConTerm where
-- We add 3 to the fixities of the standard library.
infixl 9 _+_
infix 7 _≡_
------------------------------------------------------------------------------
data ℕ : Set where
zero : ℕ
succ : ℕ → ℕ
data _≡_ (n : ℕ) : ℕ → Set where
refl : n ≡ n
_+_ : ℕ → ℕ → ℕ
zero + n = n
succ m + n = succ (m + n)
+-0x : ∀ n → zero + n ≡ n
+-0x n = refl
{-# ATP hint +-0x #-}
postulate foo : ∀ n → zero + n ≡ n
{-# ATP prove foo #-}
|
{
"alphanum_fraction": 0.4026548673,
"avg_line_length": 24.4324324324,
"ext": "agda",
"hexsha": "efa349e2bb7a8af450d202cb999eea4846740ecc",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "issues/Issue16/sharing/AgdaInternalTerms/ConTerm.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "issues/Issue16/sharing/AgdaInternalTerms/ConTerm.agda",
"max_line_length": 78,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "issues/Issue16/sharing/AgdaInternalTerms/ConTerm.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 219,
"size": 904
}
|
open import Prelude
open import Data.Maybe using (Maybe; just; nothing)
open import RW.Language.RTerm
open import RW.Language.RTermUtils using (hole2Abs)
open import RW.Language.Instantiation using (RSubst)
open import RW.Utils.Error
open import RW.Strategy
module RW.Strategy.PropEq where
pattern pat-≡ = (rdef (quote _≡_))
private
open UData
≡-when : RTermName → RTermName → Bool
≡-when pat-≡ pat-≡ = true
≡-when _ _ = false
fixTrs : Trs → RTerm ⊥ → RTerm ⊥
fixTrs Symmetry term = rapp (rdef (quote sym)) (term ∷ [])
≡-how : Name → UData → Err StratErr (RTerm ⊥)
≡-how act (u-data g□ σ trs)
= i2 (rapp (rdef (quote cong))
( hole2Abs g□
∷ foldr fixTrs (makeApp act σ) trs
∷ [])
)
≡-strat : TStrat
≡-strat = record
{ when = ≡-when
; how = ≡-how
}
open import RW.RW (≡-strat ∷ [])
by*-≡ : by*-tactic
by*-≡ = by* (quote trans)
|
{
"alphanum_fraction": 0.5756951596,
"avg_line_length": 23.119047619,
"ext": "agda",
"hexsha": "c1577dfbd23bdec0351d1d0aa8e08b9ddbd85ce2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "VictorCMiraldo/agda-rw",
"max_forks_repo_path": "RW/Strategy/PropEq.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_issues_repo_issues_event_max_datetime": "2015-05-28T14:48:03.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-06T15:03:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "VictorCMiraldo/agda-rw",
"max_issues_repo_path": "RW/Strategy/PropEq.agda",
"max_line_length": 62,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "VictorCMiraldo/agda-rw",
"max_stars_repo_path": "RW/Strategy/PropEq.agda",
"max_stars_repo_stars_event_max_datetime": "2019-10-24T17:38:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-02-09T15:43:38.000Z",
"num_tokens": 339,
"size": 971
}
|
module Id where
id : {A : Set} -> A -> A
id x = {!!}
|
{
"alphanum_fraction": 0.4444444444,
"avg_line_length": 10.8,
"ext": "agda",
"hexsha": "1473515d354edcc0b92a8bd69e585d4de459244b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "baf979ef78b5ec0f4783240b03f9547490bc5d42",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "carlostome/martin",
"max_forks_repo_path": "data/test-files/Id.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "baf979ef78b5ec0f4783240b03f9547490bc5d42",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "carlostome/martin",
"max_issues_repo_path": "data/test-files/Id.agda",
"max_line_length": 24,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "baf979ef78b5ec0f4783240b03f9547490bc5d42",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "carlostome/martin",
"max_stars_repo_path": "data/test-files/Id.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 21,
"size": 54
}
|
------------------------------------------------------------------------------
-- Proving mirror (mirror t) = t using mutual data types
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.Program.Mirror.MirrorMutualSL where
infixr 5 _∷_ _++_
open import Function
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
------------------------------------------------------------------------------
-- The mutual data types
data Tree (A : Set) : Set
data Forest (A : Set) : Set
data Tree A where
tree : A → Forest A → Tree A
data Forest A where
[] : Forest A
_∷_ : Tree A → Forest A → Forest A
------------------------------------------------------------------------------
-- Auxiliary functions
_++_ : {A : Set} → Forest A → Forest A → Forest A
[] ++ ys = ys
(a ∷ xs) ++ ys = a ∷ xs ++ ys
map : {A B : Set} → (Tree A → Tree B) → Forest A → Forest B
map f [] = []
map f (a ∷ ts) = f a ∷ map f ts
reverse : {A : Set} → Forest A → Forest A
reverse [] = []
reverse (a ∷ ts) = reverse ts ++ a ∷ []
postulate
map-++ : {A B : Set}(f : Tree A → Tree B)(xs ys : Forest A) →
map f (xs ++ ys) ≡ map f xs ++ map f ys
reverse-++ : {A : Set}(xs ys : Forest A) →
reverse (xs ++ ys) ≡ reverse ys ++ reverse xs
------------------------------------------------------------------------------
-- The mirror function.
{-# TERMINATING #-}
mirror : {A : Set} → Tree A → Tree A
mirror (tree a ts) = tree a (reverse (map mirror ts))
------------------------------------------------------------------------------
-- The proof of the property.
mirror-involutive : {A : Set} → (t : Tree A) → mirror (mirror t) ≡ t
helper : {A : Set} → (ts : Forest A) →
reverse (map mirror (reverse (map mirror ts))) ≡ ts
mirror-involutive (tree a []) = refl
mirror-involutive (tree a (t ∷ ts)) =
begin
tree a (reverse (map mirror (reverse (map mirror ts) ++ mirror t ∷ [])))
≡⟨ cong (tree a) (helper (t ∷ ts)) ⟩
tree a (t ∷ ts)
∎
helper [] = refl
helper (t ∷ ts) =
begin
reverse (map mirror (reverse (map mirror ts) ++ mirror t ∷ []))
≡⟨ cong reverse
(map-++ mirror (reverse (map mirror ts)) (mirror t ∷ []))
⟩
reverse (map mirror (reverse (map mirror ts)) ++
(map mirror (mirror t ∷ [])))
≡⟨ subst (λ x → (reverse (map mirror (reverse (map mirror ts)) ++
(map mirror (mirror t ∷ [])))) ≡ x)
(reverse-++ (map mirror (reverse (map mirror ts)))
(map mirror (mirror t ∷ [])))
refl
⟩
reverse (map mirror (mirror t ∷ [])) ++
reverse (map mirror (reverse (map mirror ts)))
≡⟨ refl ⟩
mirror (mirror t) ∷ reverse (map mirror (reverse (map mirror ts)))
≡⟨ cong (flip _∷_ (reverse (map mirror (reverse (map mirror ts)))))
(mirror-involutive t)
⟩
t ∷ reverse (map mirror (reverse (map mirror ts)))
≡⟨ cong (_∷_ t) (helper ts) ⟩
t ∷ ts
∎
|
{
"alphanum_fraction": 0.4525862069,
"avg_line_length": 32.8080808081,
"ext": "agda",
"hexsha": "184359c9471fcd0acb0a4d81629e219a8ac7276b",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/Program/Mirror/MirrorMutualSL.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/Program/Mirror/MirrorMutualSL.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/Program/Mirror/MirrorMutualSL.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 869,
"size": 3248
}
|
module Data.Tree.Instance where
open import Class.Functor
open import Class.Monad
open import Class.Monoid
open import Class.Show
open import Class.Traversable
open import Data.List
open import Data.List.Instance
open import Data.String using (String)
open import Data.String.Instance
open import Data.Tree.Base
instance
{-# TERMINATING #-}
Tree-Functor : Functor Tree
Tree-Functor = record { _<$>_ = helper }
where
helper : ∀ {A B} -> (A -> B) -> Tree A -> Tree B
helper f (Node x x₁) = Node (f x) (map (helper f) x₁)
{-# TERMINATING #-}
Tree-Show : ∀ {A} {{_ : Show A}} -> Show (Tree A)
Tree-Show = record { show = helper show }
where
helper : ∀ {A} -> (A -> String) -> Tree A -> String
helper f (Node x x₁) = "Node (" + f x + ") " + show (map (helper f) x₁)
{-# TERMINATING #-}
Tree-Traversable : Traversable Tree
Tree-Traversable = record { sequence = helper }
where
helper : {M : Set → Set} {{_ : Monad M}} {A : Set} → Tree (M A) → M (Tree A)
helper (Node x y) = do
x' <- x
y' <- sequence (map helper y)
return (Node x' y')
|
{
"alphanum_fraction": 0.6019590383,
"avg_line_length": 29.5526315789,
"ext": "agda",
"hexsha": "2273adbaccf1c2125defcad5d4cdb0712810e92f",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z",
"max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "WhatisRT/meta-cedille",
"max_forks_repo_path": "stdlib-exts/Data/Tree/Instance.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "WhatisRT/meta-cedille",
"max_issues_repo_path": "stdlib-exts/Data/Tree/Instance.agda",
"max_line_length": 82,
"max_stars_count": 35,
"max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "WhatisRT/meta-cedille",
"max_stars_repo_path": "stdlib-exts/Data/Tree/Instance.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z",
"num_tokens": 332,
"size": 1123
}
|
-- Getting projection like functions right was a little tricky.
-- Here are the cases that didn't work and weren't caught by
-- existing test cases.
module ProjectionLikeFunctions where
record Wrap (A : Set) : Set where
constructor [_]
field unwrap : A
postulate
Nat : Set
n : Nat
Thm : Nat → Set
prf : ∀ n → Thm n
module M x (p : Thm x) (w : Wrap Nat) where
module W = Wrap w
module M′ = M n (prf n) ([ n ])
test₁ : Thm M′.W.unwrap
test₁ = prf n
eq! : ∀ x (S : Thm x) → Wrap Nat → Nat
eq! s S [n] = W.unwrap
module Local where
module W = Wrap [n]
test₂ : Thm (eq! n (prf n) [ n ])
test₂ = prf n
|
{
"alphanum_fraction": 0.6145339652,
"avg_line_length": 20.4193548387,
"ext": "agda",
"hexsha": "d0a41a9ca2e8056c03805efcffb27bbd01939c20",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/ProjectionLikeFunctions.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/ProjectionLikeFunctions.agda",
"max_line_length": 63,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/ProjectionLikeFunctions.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 217,
"size": 633
}
|
module IsPropositionalFormula where
open import OscarPrelude
open import Formula
open import Term
open import PredicateName
open import HasNeitherNor
data IsPropositionalFormula : Formula → Set
where
atomic : (𝑃 : PredicateName) → (τs : Terms) → IsPropositionalFormula $ 𝑃[ 𝑃 ♭ τs ]
logical : {φ₁ : Formula} → IsPropositionalFormula φ₁ → {φ₂ : Formula} → IsPropositionalFormula φ₂ → IsPropositionalFormula (φ₁ ⊗ φ₂)
instance EqIsPropositionalFormula : ∀ {φ} → Eq (IsPropositionalFormula φ)
Eq._==_ EqIsPropositionalFormula (atomic _ _) (atomic _ _ ) = yes refl
Eq._==_ EqIsPropositionalFormula (logical φ₁₁ φ₁₂) (logical φ₂₁ φ₂₂) with φ₁₁ ≟ φ₂₁ | φ₁₂ ≟ φ₂₂
Eq._==_ EqIsPropositionalFormula (logical φ₁₁ φ₁₂) (logical φ₂₁ φ₂₂) | yes refl | yes refl = yes refl
Eq._==_ EqIsPropositionalFormula (logical φ₁₁ φ₁₂) (logical φ₂₁ φ₂₂) | yes refl | no φ₁₂≢φ₂₂ = no λ {refl → φ₁₂≢φ₂₂ refl}
Eq._==_ EqIsPropositionalFormula (logical φ₁₁ φ₁₂) (logical φ₂₁ φ₂₂) | no φ₁₁≢φ₂₁ | _ = no λ {refl → φ₁₁≢φ₂₁ refl}
{-
-- need to use coinduction to prove this
foo : ¬ ∃ λ φ → ∃ λ (p₁ : IsPropositionalFormula φ) → ∃ λ (p₂ : IsPropositionalFormula φ) → p₁ ≢ p₂
foo (atomic x x₁ , atomic .x .x₁ , atomic .x .x₁ , snd₁) = snd₁ refl
foo (logical fst₁ fst₂ , logical fst₃ fst₄ , logical fst₅ fst₆ , snd₁) with fst₃ ≟ fst₅ | fst₄ ≟ fst₆
foo (logical fst₁ fst₂ , logical fst₃ fst₄ , logical .fst₃ .fst₄ , snd₁) | yes refl | (yes refl) = snd₁ refl
foo (logical fst₁ fst₂ , logical fst₃ fst₄ , logical .fst₃ fst₆ , snd₁) | yes refl | (no x₁) = foo (fst₂ , fst₄ , fst₆ , λ xs → x₁ xs)
foo (logical fst₁ fst₂ , logical fst₃ fst₄ , logical fst₅ fst₆ , snd₁) | no x | (yes x₁) = {!!}
foo (logical fst₁ fst₂ , logical fst₃ fst₄ , logical fst₅ fst₆ , snd₁) | no x | (no x₁) = {!!}
foo (quantified x fst₁ , () , fst₃ , snd₁)
-}
|
{
"alphanum_fraction": 0.6960621187,
"avg_line_length": 53.0294117647,
"ext": "agda",
"hexsha": "71abb2a1cb68493b5eb98e5bfa23f962083238ce",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/IsPropositionalFormula.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/IsPropositionalFormula.agda",
"max_line_length": 134,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/IsPropositionalFormula.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 705,
"size": 1803
}
|
open import Agda.Builtin.Reflection
open import Agda.Builtin.List
open import Agda.Builtin.Unit
macro
m-0 : Term → TC ⊤
m-0 goal =
bindTC (inferType goal) λ where
(pi (arg (arg-info _ (modality _ quantity-0)) _) _) →
bindTC (quoteTC (λ (_ : Set) → Set))
(unify goal)
type → typeError (termErr type ∷ [])
m-ω : Term → TC ⊤
m-ω goal =
bindTC (inferType goal) λ where
(pi (arg (arg-info _ (modality _ quantity-ω)) _) _) →
bindTC (quoteTC (λ (_ : Set) → Set))
(unify goal)
type → typeError (termErr type ∷ [])
_ : @0 Set → Set₁
_ = m-0
_ : @ω Set → Set₁
_ = m-ω
postulate
f : @0 Set₁ → Set₁
macro
m₁ : Set₁ → Term → TC ⊤
m₁ A goal =
bindTC (quoteTC A) λ A →
unify goal
(def (quote f)
(arg (arg-info visible (modality relevant quantity-0)) A ∷
[]))
_ : Set₁ → Set₁
_ = λ A → m₁ A
macro
m₂ : Set₁ → Term → TC ⊤
m₂ A goal =
bindTC (quoteTC A) λ A →
unify goal
(def (quote f)
-- The modality is ignored.
(arg (arg-info visible (modality irrelevant quantity-ω)) A ∷
[]))
_ : Set₁ → Set₁
_ = λ A → m₂ A
|
{
"alphanum_fraction": 0.5296080067,
"avg_line_length": 20.6724137931,
"ext": "agda",
"hexsha": "5e186fa3e3269e09fdeb9d4992a78e96bba4a2e0",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue5317.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue5317.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue5317.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 408,
"size": 1199
}
|
{-# OPTIONS --warning=error --safe --without-K #-}
open import LogicalFormulae
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Functions.Definition
open import Setoids.Setoids
open import Setoids.Subset
open import Graphs.Definition
open import Sets.FinSet.Definition
open import Numbers.Naturals.Semiring
module Graphs.Colouring where
Colouring : (n : ℕ) {a b c : _} {V' : Set a} {V : Setoid {a} {b} V'} (G : Graph c V) → Set (a ⊔ c)
Colouring n {V' = V'} G = {x y : V'} → (Graph._<->_ G x y) → FinSet n
inheritColouring : {n : ℕ} {a b c : _} {V' : Set a} {V : Setoid {a} {b} V'} {G : Graph c V} → (k : Colouring n G) → {e : _} {pred : V' → Set e} {sub : subset V pred} {d : _} {_<->'_ : Rel {_} {d} (Sg V' pred)} (H : Subgraph G sub _<->'_) → Colouring n (subgraphIsGraph H)
inheritColouring k H {v1 , _} {v2 , _} x-y = k (Subgraph.inherits H x-y)
Monochromatic : {a b c : Level} {V' : Set a} {V : Setoid {a} {b} V'} {G : Graph c V} {n : ℕ} → (k : Colouring n G) → {d e : _} {pred : V' → Set d} {sub : subset V pred} {_<->'_ : Rel {_} {e} (Sg V' pred)} (H : Subgraph G sub _<->'_) → Set (a ⊔ d ⊔ e)
Monochromatic {V' = V'} {n = n} k {pred = pred} {sub = sub} {_<->'_} H = Sg (FinSet n) (λ c → {x : Sg V' pred} {y : Sg V' pred} (edge : x <->' y) → (inheritColouring k H) edge ≡ c)
|
{
"alphanum_fraction": 0.5816793893,
"avg_line_length": 59.5454545455,
"ext": "agda",
"hexsha": "ad3ef1ffeff506a426a15a212a89238145d3e7de",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Graphs/Colouring.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Graphs/Colouring.agda",
"max_line_length": 271,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Graphs/Colouring.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 523,
"size": 1310
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.