Search is not available for this dataset
text
string | meta
dict |
---|---|
------------------------------------------------------------------------
-- The Agda standard library
--
-- A categorical view of Stream
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe --sized-types #-}
module Codata.Stream.Categorical where
open import Data.Product using (<_,_>)
open import Codata.Stream
open import Function
open import Category.Functor
open import Category.Applicative
open import Category.Comonad
functor : ∀ {ℓ i} → RawFunctor {ℓ} (λ A → Stream A i)
functor = record { _<$>_ = λ f → map f }
applicative : ∀ {ℓ i} → RawApplicative {ℓ} (λ A → Stream A i)
applicative = record
{ pure = repeat
; _⊛_ = ap
}
comonad : ∀ {ℓ} → RawComonad {ℓ} (λ A → Stream A _)
comonad = record
{ extract = head
; extend = unfold ∘′ < tail ,_>
}
|
{
"alphanum_fraction": 0.5425790754,
"avg_line_length": 25.6875,
"ext": "agda",
"hexsha": "0380b5571c17025d892f61eadea7842f06dcb67c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Codata/Stream/Categorical.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Codata/Stream/Categorical.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Codata/Stream/Categorical.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 221,
"size": 822
}
|
module Issue470 where
data Bool : Set where
true false : Bool
_and_ : Bool → Bool → Bool
true and x = x
false and x = false
infixr 5 _∷_
data Foo : Bool → Set where
[] : Foo true
_∷_ : ∀ {b} (x : Bool) → Foo b → Foo (x and b)
Baz : Bool → Set
Baz true = Bool
Baz false = Foo false
data Bar : ∀ {b} → Foo b → Set where
[] : Bar []
_∷_ : ∀ {b} {foo : Foo b} {x} (g : Baz x) → (bar : Bar foo) → Bar (x ∷ foo)
foo : Foo false
foo = false ∷ true ∷ []
bar : Bar foo
bar = (false ∷ []) ∷ false ∷ [] -- ← is yellow
{-
_59 := _55 ∷ false ∷ [] [blocked by problem 75]
[75] ["apply" (_53 ∷ true ∷ [])] == ["apply" (false ∷ true ∷ [])] : Foo
(_53 and (true and true)) → Set [blocked by problem 76]
[76] (_53 and (true and true)) = false : Bool
_54 := false ∷ [] :? Baz _53
-}
|
{
"alphanum_fraction": 0.5445292621,
"avg_line_length": 21.2432432432,
"ext": "agda",
"hexsha": "f3fd8d2d5c1ca389602f33d82b4c7ebd95291b1a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue470.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue470.agda",
"max_line_length": 77,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue470.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 304,
"size": 786
}
|
module Data.Permutation where
open import Prelude
open import Data.Fin as Fin hiding (_==_; _<_)
open import Data.Nat
open import Data.Vec
open import Logic.Identity
open import Logic.Base
import Logic.ChainReasoning
-- What is a permutation?
-- Answer 1: A bijection between Fin n and itself
data Permutation (n : Nat) : Set where
permutation :
(π π⁻¹ : Fin n -> Fin n) ->
(forall {i} -> π (π⁻¹ i) ≡ i) ->
Permutation n
module Permutation {n : Nat}(P : Permutation n) where
private
π' : Permutation n -> Fin n -> Fin n
π' (permutation x _ _) = x
π⁻¹' : Permutation n -> Fin n -> Fin n
π⁻¹' (permutation _ x _) = x
proof : (P : Permutation n) -> forall {i} -> π' P (π⁻¹' P i) ≡ i
proof (permutation _ _ x) = x
π : Fin n -> Fin n
π = π' P
π⁻¹ : Fin n -> Fin n
π⁻¹ = π⁻¹' P
module Proofs where
ππ⁻¹-id : {i : Fin n} -> π (π⁻¹ i) ≡ i
ππ⁻¹-id = proof P
open module Chain = Logic.ChainReasoning.Poly.Homogenous _≡_ (\x -> refl) (\x y z -> trans)
π⁻¹-inj : (i j : Fin n) -> π⁻¹ i ≡ π⁻¹ j -> i ≡ j
π⁻¹-inj i j h =
chain> i
=== π (π⁻¹ i) by sym ππ⁻¹-id
=== π (π⁻¹ j) by cong π h
=== j by ππ⁻¹-id
-- Generalise
lem : {n : Nat}(f g : Fin n -> Fin n)
-> (forall i -> f (g i) ≡ i)
-> (forall i -> g (f i) ≡ i)
lem {zero} f g inv ()
lem {suc n} f g inv i = ?
where
gz≠gs : {i : Fin n} -> g fzero ≢ g (fsuc i)
gz≠gs {i} gz=gs = fzero≠fsuc $
chain> fzero
=== f (g fzero) by sym (inv fzero)
=== f (g (fsuc i)) by cong f gz=gs
=== fsuc i by inv (fsuc i)
z≠f-thin-gz : {i : Fin n} -> fzero ≢ f (thin (g fzero) i)
z≠f-thin-gz {i} z=f-thin-gz = ?
-- f (g fzero)
-- = fzero
-- = f (thin (g fzero) i)
g' : Fin n -> Fin n
g' j = thick (g fzero) (g (fsuc j)) gz≠gs
f' : Fin n -> Fin n
f' j = thick fzero (f (thin (g fzero) j)) ?
g'f' : forall j -> g' (f' j) ≡ j
g'f' = lem {n} f' g' ?
π⁻¹π-id : forall {i} -> π⁻¹ (π i) ≡ i
π⁻¹π-id = ?
-- Answer 2: A Vec (Fin n) n with no duplicates
{-
infixr 40 _◅_ _↦_,_
infixr 20 _○_
data Permutation : Nat -> Set where
ε : Permutation zero
_◅_ : {n : Nat} -> Fin (suc n) -> Permutation n -> Permutation (suc n)
_↦_,_ : {n : Nat}(i j : Fin (suc n)) -> Permutation n -> Permutation (suc n)
fzero ↦ j , π = j ◅ π
fsuc i ↦ j , j' ◅ π = thin j j' ◅ i ↦ ? , π
indices : {n : Nat} -> Permutation n -> Vec (Fin n) n
indices ε = []
indices (i ◅ π) = i :: map (thin i) (indices π)
-- permute (i ◅ π) xs with xs [!] i where
-- permute₁ (i ◅ π) .(insert i x xs) (ixV x xs) = x :: permute π xs
permute : {n : Nat}{A : Set} -> Permutation n -> Vec A n -> Vec A n
permute (i ◅ π) xs = permute' π i xs (xs [!] i)
where
permute' : {n : Nat}{A : Set} -> Permutation n -> (i : Fin (suc n))(xs : Vec A (suc n)) ->
IndexView i xs -> Vec A (suc n)
permute' π i .(insert i x xs') (ixV x xs') = x :: permute π xs'
delete : {n : Nat} -> Fin (suc n) -> Permutation (suc n) -> Permutation n
delete fzero (j ◅ π) = π
delete {zero} (fsuc ()) _
delete {suc _} (fsuc i) (j ◅ π) = ? ◅ delete i π
identity : {n : Nat} -> Permutation n
identity {zero } = ε
identity {suc n} = fzero ◅ identity
_⁻¹ : {n : Nat} -> Permutation n -> Permutation n
ε ⁻¹ = ε
(i ◅ π) ⁻¹ = ?
_○_ : {n : Nat} -> Permutation n -> Permutation n -> Permutation n
ε ○ π₂ = ε
i ◅ π₁ ○ π₂ = (indices π₂ ! i) ◅ (π₁ ○ delete i π₂)
-}
|
{
"alphanum_fraction": 0.5268691589,
"avg_line_length": 26.1374045802,
"ext": "agda",
"hexsha": "9db4549f15adf1152a36f5d04d6bba22e04d7264",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Permutation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Permutation.agda",
"max_line_length": 95,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Permutation.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 1435,
"size": 3424
}
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import cohomology.Theory
module cw.cohomology.TopGrid {i} (OT : OrdinaryTheory i)
(n : ℤ) {X Y Z : Ptd i} (f : X ⊙→ Y) (g : Y ⊙→ Z) where
{-
X --> Y ---> Z
| | this |
v v one v
1 -> Y/X -> Z/X
-}
open OrdinaryTheory OT
open import cohomology.PtdMapSequence cohomology-theory
open import cw.cohomology.GridPtdMap f g using (Y/X-to-Z/X)
top-grid-comm-sqr : CommSquare (fst g) (fst Y/X-to-Z/X) cfcod cfcod
top-grid-comm-sqr = comm-sqr λ _ → idp
C-top-grid-commutes : CommSquareᴳ
(C-fmap n Y/X-to-Z/X) (C-fmap n g) (C-fmap n (⊙cfcod' (g ⊙∘ f))) (C-fmap n (⊙cfcod' f))
C-top-grid-commutes = C-comm-square n top-grid-comm-sqr
|
{
"alphanum_fraction": 0.6151724138,
"avg_line_length": 27.8846153846,
"ext": "agda",
"hexsha": "fd003316db28d02fe24fd80ffcbc8106023e9ed0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "theorems/cw/cohomology/TopGrid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "theorems/cw/cohomology/TopGrid.agda",
"max_line_length": 91,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "theorems/cw/cohomology/TopGrid.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 284,
"size": 725
}
|
module my-nat where
open import product
open import bool
open import eq
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
infixl 10 _*_
infixl 9 _+_
--infixl 8 _<_ _=ℕ_ _≤_ _>_ _≥_
_+_ : ℕ → ℕ → ℕ
zero + n = n
suc m + n = suc (m + n)
0+ : ∀ (x : ℕ) → 0 + x ≡ x
0+ x = refl
+0 : ∀ (x : ℕ) → x + 0 ≡ x
+0 zero = refl
+0 (suc x) rewrite +0 x = refl
+assoc : ∀ (x y z : ℕ) → x + (y + z) ≡ (x + y) + z
+assoc zero y z = refl
+assoc (suc x) y z rewrite +assoc x y z = refl
+suc : ∀ (x y : ℕ) → x + (suc y) ≡ suc(x + y)
+suc zero y = refl
+suc (suc x) y rewrite +suc x y = refl
+comm : ∀ (x y : ℕ) → x + y ≡ y + x
+comm zero y rewrite +0 y = refl
+comm (suc x) y rewrite +suc y x | +comm x y = refl
_*_ : ℕ → ℕ → ℕ
zero * n = zero
suc m * n = n + (m * n)
*distribr : ∀ (x y z : ℕ) → (x + y) * z ≡ x * z + y * z
--*distribr : ∀ (x y z : ℕ) → (x + y) * z ≡ x * z + y * z
*distribr zero y z = refl
*distribr (suc x) y z rewrite *distribr x y z = +assoc z (x * z) (y * z)
*0 : ∀ (x : ℕ) → x * 0 ≡ 0
*0 zero = refl
*0 (suc x) = *0 x
*suc : ∀ (x y : ℕ) → x * (suc y) ≡ x + x * y
*suc zero y = refl
*suc (suc x) y rewrite *suc x y
| +assoc y x (x * y)
| +assoc x y (x * y)
| +comm x y = refl
*comm : ∀ (x y : ℕ) → x * y ≡ y * x
*comm zero y rewrite *0 y = refl
*comm (suc x) y rewrite *suc y x | *comm x y = refl
*assoc : ∀ (x y z : ℕ) → x * (y * z) ≡ (x * y) * z
*assoc zero y z = refl
*assoc (suc x) y z rewrite *distribr y (x * y) z
| *assoc x y z = refl
_<_ : ℕ → ℕ → 𝔹
0 < 0 = ff
0 < (suc y) = tt
(suc x) < (suc y) = x < y
(suc x) < 0 = ff
_=ℕ_ : ℕ → ℕ → 𝔹
0 =ℕ 0 = tt
suc x =ℕ suc y = x =ℕ y
_ =ℕ _ = ff
=ℕ-refl : ∀ (x : ℕ) → (x =ℕ x) ≡ tt
=ℕ-refl zero = refl
=ℕ-refl (suc x) = =ℕ-refl x
=ℕ-to-≡ : ∀ {x y : ℕ} → x =ℕ y ≡ tt → x ≡ y
=ℕ-to-≡ {zero} {zero} u = refl
=ℕ-to-≡ {zero} {suc y} ()
=ℕ-to-≡ {suc x} {zero} ()
=ℕ-to-≡ {suc x} {suc y} u rewrite =ℕ-to-≡ {x} {y} u = refl
=ℕ-from-≡ : ∀ {x y : ℕ} → x ≡ y → x =ℕ y ≡ tt
=ℕ-from-≡ {x} {.x} refl = =ℕ-refl x
is-even : ℕ → 𝔹
is-odd : ℕ → 𝔹
is-even 0 = tt
is-even (suc x) = is-odd x
is-odd 0 = ff
is-odd (suc x) = is-even x
even~odd : ∀ (x : ℕ) → is-even x ≡ ~ is-odd x
odd~even : ∀ (x : ℕ) → is-odd x ≡ ~ is-even x
even~odd zero = refl
even~odd (suc x) = odd~even x
odd~even zero = refl
odd~even (suc x) = even~odd x
|
{
"alphanum_fraction": 0.4661936561,
"avg_line_length": 22.6037735849,
"ext": "agda",
"hexsha": "5681e4ad1dd05269c07f98c3481d356ff00cb7c2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2ad96390a9be5c238e73709a21533c7354cedd0c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "logicshan/IAL",
"max_forks_repo_path": "my-nat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2ad96390a9be5c238e73709a21533c7354cedd0c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "logicshan/IAL",
"max_issues_repo_path": "my-nat.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2ad96390a9be5c238e73709a21533c7354cedd0c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "logicshan/IAL",
"max_stars_repo_path": "my-nat.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1163,
"size": 2396
}
|
module Common where
∗ : Set₁
∗ = Set
_∘_ : {A B C : ∗} → (B → C) → (A → B) → (A → C)
f ∘ g = λ a → f (g a)
infixr 2 _×_
infixr 1 _⊎_
data _×_ (A B : ∗) : ∗ where
_,_ : A → B → A × B
proj₁ : ∀ {A B} → A × B → A
proj₁ (a , b) = a
proj₂ : ∀ {A B} → A × B → B
proj₂ (a , b) = b
uncurry : {A B C : ∗} → (A → B → C) → (A × B → C)
uncurry f (a , b) = f a b
data _⊎_ (A B : ∗) : ∗ where
inj₁ : (x : A) → A ⊎ B
inj₂ : (y : B) → A ⊎ B
|
{
"alphanum_fraction": 0.3665254237,
"avg_line_length": 18.1538461538,
"ext": "agda",
"hexsha": "2b7ec3285a75c604497a89685cbf13886752478f",
"lang": "Agda",
"max_forks_count": 399,
"max_forks_repo_forks_event_max_datetime": "2022-03-31T11:18:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-10-05T09:36:10.000Z",
"max_forks_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "AriFordsham/plutus",
"max_forks_repo_path": "papers/unraveling-recursion/Common.agda",
"max_issues_count": 2493,
"max_issues_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T15:31:31.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-09-28T19:28:17.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "AriFordsham/plutus",
"max_issues_repo_path": "papers/unraveling-recursion/Common.agda",
"max_line_length": 51,
"max_stars_count": 1299,
"max_stars_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "AriFordsham/plutus",
"max_stars_repo_path": "papers/unraveling-recursion/Common.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-28T01:10:02.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-02T13:41:39.000Z",
"num_tokens": 257,
"size": 472
}
|
open import Agda.Builtin.Equality
open import Agda.Builtin.Size
postulate
P : (A : Set₁) → A → Set₁
p : (i : Size) (f : {_ : Size< i} → Set) (x : _) →
P ({_ : Size< i} → Set) f
|
{
"alphanum_fraction": 0.544973545,
"avg_line_length": 21,
"ext": "agda",
"hexsha": "070a637c1a575467560aa496023241e8e00ed433",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2927.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2927.agda",
"max_line_length": 52,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2927.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 76,
"size": 189
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Foundations.Path where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Univalence
open import Cubical.Reflection.StrictEquiv
private
variable
ℓ ℓ' : Level
A : Type ℓ
-- Less polymorphic version of `cong`, to avoid some unresolved metas
cong′ : ∀ {B : Type ℓ'} (f : A → B) {x y : A} (p : x ≡ y)
→ Path B (f x) (f y)
cong′ f = cong f
{-# INLINE cong′ #-}
PathP≡Path : ∀ (P : I → Type ℓ) (p : P i0) (q : P i1) →
PathP P p q ≡ Path (P i1) (transport (λ i → P i) p) q
PathP≡Path P p q i = PathP (λ j → P (i ∨ j)) (transport-filler (λ j → P j) p i) q
PathP≡Path⁻ : ∀ (P : I → Type ℓ) (p : P i0) (q : P i1) →
PathP P p q ≡ Path (P i0) p (transport⁻ (λ i → P i) q)
PathP≡Path⁻ P p q i = PathP (λ j → P (~ i ∧ j)) p (transport⁻-filler (λ j → P j) q i)
PathP≃Path : ∀ (P : I → Type ℓ) (p : P i0) (q : P i1) →
PathP P p q ≃ Path (P i1) (transport (λ i → P i) p) q
PathP≃Path P p q = transportEquiv (PathP≡Path P p q)
-- Alternative more unfolded proof
toPathP-isEquiv : ∀ (A : I → Type ℓ) {x y} → isEquiv (toPathP {A = A} {x} {y})
toPathP-isEquiv A {x} {y} = isoToIsEquiv (iso toPathP fromPathP to-from from-to)
where
to-from : ∀ (p : PathP A x y) → toPathP (fromPathP p) ≡ p
to-from p h i = outS (hcomp-unique (λ { j (i = i0) → x ; j (i = i1) → fromPathP p j })
(inS (transp (λ j → A (i ∧ j)) (~ i) x))
\ h → inS (sq1 h i))
h
where
sq1 : (\ h → A [ x ≡ transp (\ j → A (h ∨ j)) h (p h) ]) [ (\ i → transp (λ j → A (i ∧ j)) (~ i) x) ≡ p ]
sq1 = \ h i → comp (\ z → (hcomp (\ w →
\ { (z = i1) → A (i ∧ (w ∨ h))
; (z = i0) → A (i ∧ h)
; (i = i0) → A i0
; (i = i1) → A (h ∨ (w ∧ z))
; (h = i0) → A (i ∧ (w ∧ z))
; (h = i1) → A i})
((A (i ∧ h)))))
(\ z → \ { (i = i0) → x
; (i = i1) → transp (\ j → A (h ∨ (z ∧ j))) (h ∨ ~ z) (p h)
; (h = i0) → transp (λ j → A ((i ∧ z) ∧ j)) (~ (i ∧ z)) x
; (h = i1) → p i })
(p (i ∧ h))
from-to : ∀ (q : transp (\ i → A i) i0 x ≡ y) → fromPathP (toPathP {A = A} q) ≡ q
from-to q = (\ h i → outS (transp-hcomp i {A' = A i1} (\ j → inS (A (i ∨ j)))
((λ { j (i = i0) → x ; j (i = i1) → q j }))
(inS ((transp (λ j → A (i ∧ j)) (~ i) x))))
h)
∙ (\ h i → outS (hcomp-unique {A = A i1} ((λ { j (i = i0) → transp (\ i → A i) i0 x ; j (i = i1) → q j }))
(inS ((transp (λ j → A (i ∨ j)) i (transp (λ j → A (i ∧ j)) (~ i) x))))
\ h → inS (sq2 h i))
h)
∙ sym (lUnit q)
where
sq2 : (\ h → transp (\ i → A i) i0 x ≡ q h) [ (\ i → transp (\ j → A (i ∨ j)) i (transp (\ j → A (i ∧ j)) (~ i) x)) ≡ refl ∙ q ]
sq2 = \ h i → comp (\ z → hcomp (\ w → \ { (i = i1) → A i1
; (i = i0) → A (h ∨ (w ∧ z))
; (h = i0) → A (i ∨ (w ∧ z))
; (h = i1) → A i1
; (z = i0) → A (i ∨ h)
; (z = i1) → A ((i ∨ h) ∨ w) })
(A (i ∨ h)))
(\ z → \ { (i = i0) → transp (λ j → A ((z ∨ h) ∧ j)) (~ z ∧ ~ h) x
; (i = i1) → q (z ∧ h)
; (h = i1) → compPath-filler refl q z i
; (h = i0) → transp (\ j → A (i ∨ (z ∧ j))) (i ∨ ~ z) (transp (\ j → A (i ∧ j)) (~ i) x)
})
(transp (\ j → A ((i ∨ h) ∧ j)) (~ (i ∨ h)) x)
PathP≡compPath : ∀ {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : y ≡ z) (r : x ≡ z)
→ (PathP (λ i → x ≡ q i) p r) ≡ (p ∙ q ≡ r)
PathP≡compPath p q r k = PathP (λ i → p i0 ≡ q (i ∨ k)) (λ j → compPath-filler p q k j) r
PathP≡doubleCompPathˡ : ∀ {A : Type ℓ} {w x y z : A} (p : w ≡ y) (q : w ≡ x) (r : y ≡ z) (s : x ≡ z)
→ (PathP (λ i → p i ≡ s i) q r) ≡ (p ⁻¹ ∙∙ q ∙∙ s ≡ r)
PathP≡doubleCompPathˡ p q r s k = PathP (λ i → p (i ∨ k) ≡ s (i ∨ k))
(λ j → doubleCompPath-filler (p ⁻¹) q s k j) r
PathP≡doubleCompPathʳ : ∀ {A : Type ℓ} {w x y z : A} (p : w ≡ y) (q : w ≡ x) (r : y ≡ z) (s : x ≡ z)
→ (PathP (λ i → p i ≡ s i) q r) ≡ (q ≡ p ∙∙ r ∙∙ s ⁻¹)
PathP≡doubleCompPathʳ p q r s k = PathP (λ i → p (i ∧ (~ k)) ≡ s (i ∧ (~ k)))
q (λ j → doubleCompPath-filler p r (s ⁻¹) k j)
compPathl-cancel : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : x ≡ z) → p ∙ (sym p ∙ q) ≡ q
compPathl-cancel p q = p ∙ (sym p ∙ q) ≡⟨ assoc p (sym p) q ⟩
(p ∙ sym p) ∙ q ≡⟨ cong (_∙ q) (rCancel p) ⟩
refl ∙ q ≡⟨ sym (lUnit q) ⟩
q ∎
compPathr-cancel : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : z ≡ y) (q : x ≡ y) → (q ∙ sym p) ∙ p ≡ q
compPathr-cancel {x = x} p q i j =
hcomp-equivFiller (doubleComp-faces (λ _ → x) (sym p) j) (inS (q j)) (~ i)
compPathl-isEquiv : {x y z : A} (p : x ≡ y) → isEquiv (λ (q : y ≡ z) → p ∙ q)
compPathl-isEquiv p = isoToIsEquiv (iso (p ∙_) (sym p ∙_) (compPathl-cancel p) (compPathl-cancel (sym p)))
compPathlEquiv : {x y z : A} (p : x ≡ y) → (y ≡ z) ≃ (x ≡ z)
compPathlEquiv p = (p ∙_) , compPathl-isEquiv p
compPathr-isEquiv : {x y z : A} (p : y ≡ z) → isEquiv (λ (q : x ≡ y) → q ∙ p)
compPathr-isEquiv p = isoToIsEquiv (iso (_∙ p) (_∙ sym p) (compPathr-cancel p) (compPathr-cancel (sym p)))
compPathrEquiv : {x y z : A} (p : y ≡ z) → (x ≡ y) ≃ (x ≡ z)
compPathrEquiv p = (_∙ p) , compPathr-isEquiv p
-- Variations of isProp→isSet for PathP
isProp→SquareP : ∀ {B : I → I → Type ℓ} → ((i j : I) → isProp (B i j))
→ {a : B i0 i0} {b : B i0 i1} {c : B i1 i0} {d : B i1 i1}
→ (r : PathP (λ j → B j i0) a c) (s : PathP (λ j → B j i1) b d)
→ (t : PathP (λ j → B i0 j) a b) (u : PathP (λ j → B i1 j) c d)
→ SquareP B t u r s
isProp→SquareP {B = B} isPropB {a = a} r s t u i j =
hcomp (λ { k (i = i0) → isPropB i0 j (base i0 j) (t j) k
; k (i = i1) → isPropB i1 j (base i1 j) (u j) k
; k (j = i0) → isPropB i i0 (base i i0) (r i) k
; k (j = i1) → isPropB i i1 (base i i1) (s i) k
}) (base i j) where
base : (i j : I) → B i j
base i j = transport (λ k → B (i ∧ k) (j ∧ k)) a
isProp→isPropPathP : ∀ {ℓ} {B : I → Type ℓ} → ((i : I) → isProp (B i))
→ (b0 : B i0) (b1 : B i1)
→ isProp (PathP (λ i → B i) b0 b1)
isProp→isPropPathP {B = B} hB b0 b1 = isProp→SquareP (λ _ → hB) refl refl
isProp→isContrPathP : {A : I → Type ℓ} → (∀ i → isProp (A i))
→ (x : A i0) (y : A i1)
→ isContr (PathP A x y)
isProp→isContrPathP h x y = isProp→PathP h x y , isProp→isPropPathP h x y _
-- Flipping a square along its diagonal
flipSquare : {a₀₀ a₀₁ : A} {a₀₋ : a₀₀ ≡ a₀₁}
{a₁₀ a₁₁ : A} {a₁₋ : a₁₀ ≡ a₁₁}
{a₋₀ : a₀₀ ≡ a₁₀} {a₋₁ : a₀₁ ≡ a₁₁}
→ Square a₀₋ a₁₋ a₋₀ a₋₁ → Square a₋₀ a₋₁ a₀₋ a₁₋
flipSquare sq i j = sq j i
module _ {a₀₀ a₀₁ : A} {a₀₋ : a₀₀ ≡ a₀₁} {a₁₀ a₁₁ : A} {a₁₋ : a₁₀ ≡ a₁₁}
{a₋₀ : a₀₀ ≡ a₁₀} {a₋₁ : a₀₁ ≡ a₁₁}
where
flipSquareEquiv : Square a₀₋ a₁₋ a₋₀ a₋₁ ≃ Square a₋₀ a₋₁ a₀₋ a₁₋
unquoteDef flipSquareEquiv = defStrictEquiv flipSquareEquiv flipSquare flipSquare
flipSquarePath : Square a₀₋ a₁₋ a₋₀ a₋₁ ≡ Square a₋₀ a₋₁ a₀₋ a₁₋
flipSquarePath = ua flipSquareEquiv
module _ {a₀₀ a₁₁ : A} {a₋ : a₀₀ ≡ a₁₁}
{a₁₀ : A} {a₁₋ : a₁₀ ≡ a₁₁} {a₋₀ : a₀₀ ≡ a₁₀} where
slideSquareFaces : (i j k : I) → Partial (i ∨ ~ i ∨ j ∨ ~ j) A
slideSquareFaces i j k (i = i0) = a₋ (j ∧ ~ k)
slideSquareFaces i j k (i = i1) = a₁₋ j
slideSquareFaces i j k (j = i0) = a₋₀ i
slideSquareFaces i j k (j = i1) = a₋ (i ∨ ~ k)
slideSquare : Square a₋ a₁₋ a₋₀ refl → Square refl a₁₋ a₋₀ a₋
slideSquare sq i j = hcomp (slideSquareFaces i j) (sq i j)
slideSquareEquiv : (Square a₋ a₁₋ a₋₀ refl) ≃ (Square refl a₁₋ a₋₀ a₋)
slideSquareEquiv = isoToEquiv (iso slideSquare slideSquareInv fillerTo fillerFrom) where
slideSquareInv : Square refl a₁₋ a₋₀ a₋ → Square a₋ a₁₋ a₋₀ refl
slideSquareInv sq i j = hcomp (λ k → slideSquareFaces i j (~ k)) (sq i j)
fillerTo : ∀ p → slideSquare (slideSquareInv p) ≡ p
fillerTo p k i j = hcomp-equivFiller (λ k → slideSquareFaces i j (~ k)) (inS (p i j)) (~ k)
fillerFrom : ∀ p → slideSquareInv (slideSquare p) ≡ p
fillerFrom p k i j = hcomp-equivFiller (slideSquareFaces i j) (inS (p i j)) (~ k)
-- The type of fillers of a square is equivalent to the double composition identites
Square≃doubleComp : {a₀₀ a₀₁ a₁₀ a₁₁ : A}
(a₀₋ : a₀₀ ≡ a₀₁) (a₁₋ : a₁₀ ≡ a₁₁)
(a₋₀ : a₀₀ ≡ a₁₀) (a₋₁ : a₀₁ ≡ a₁₁)
→ Square a₀₋ a₁₋ a₋₀ a₋₁ ≃ (a₋₀ ⁻¹ ∙∙ a₀₋ ∙∙ a₋₁ ≡ a₁₋)
Square≃doubleComp a₀₋ a₁₋ a₋₀ a₋₁ = transportEquiv (PathP≡doubleCompPathˡ a₋₀ a₀₋ a₁₋ a₋₁)
-- sym induces an equivalence on identity types of paths
symIso : {a b : A} (p q : a ≡ b) → Iso (p ≡ q) (q ≡ p)
symIso p q = iso sym sym (λ _ → refl) λ _ → refl
|
{
"alphanum_fraction": 0.4269839709,
"avg_line_length": 51.8826530612,
"ext": "agda",
"hexsha": "9443d5cc9303f2e60a8c00a9048adea8f1609e2f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Edlyr/cubical",
"max_forks_repo_path": "Cubical/Foundations/Path.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Edlyr/cubical",
"max_issues_repo_path": "Cubical/Foundations/Path.agda",
"max_line_length": 135,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Edlyr/cubical",
"max_stars_repo_path": "Cubical/Foundations/Path.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4108,
"size": 10169
}
|
-- Andreas, 2019-09-10, issue #4065, reported by nad
-- If the set of filtered unsolved constraints is empty, Agda
-- should print at least something like "Unsolved constraints"
postulate
A : Set
record R (F : A → Set) : Set where
module M (r : (F : A → Set) → R F) where
module T (F : _) = R (r (λ ℓ → F ℓ))
-- WAS (master after 2.6.0):
-- <no error> when checking the module application ...
-- Expected:
-- Unsolved constraints when checking the module application ...
|
{
"alphanum_fraction": 0.6597510373,
"avg_line_length": 24.1,
"ext": "agda",
"hexsha": "3a77ae4fc8d8f4c8903afb60b3877c40d9e2a1ed",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue4065.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue4065.agda",
"max_line_length": 64,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue4065.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 143,
"size": 482
}
|
module _ (A : Set) where
id : A → A
id x = x
|
{
"alphanum_fraction": 0.5106382979,
"avg_line_length": 7.8333333333,
"ext": "agda",
"hexsha": "9475a8e89e5c022299099c1f5f650c5f6cf29a2e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/ParameterisedAnonymousModule.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/ParameterisedAnonymousModule.agda",
"max_line_length": 24,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/ParameterisedAnonymousModule.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 21,
"size": 47
}
|
{-# OPTIONS --without-K --safe --exact-split #-}
module Constructive.Axiom.Properties where
open import Constructive.Axiom.Properties.Base public
open import Constructive.Axiom.Properties.Transport public
open import Constructive.Axiom.Properties.Bool public
|
{
"alphanum_fraction": 0.816091954,
"avg_line_length": 32.625,
"ext": "agda",
"hexsha": "b56f1f274aeffb65f4b7788109b187f674eacc0e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "Constructive/Axiom/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "Constructive/Axiom/Properties.agda",
"max_line_length": 58,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "Constructive/Axiom/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 53,
"size": 261
}
|
module TemporalOps.OtherOps where
open import CategoryTheory.Instances.Reactive
open import CategoryTheory.Functor
open import CategoryTheory.Monad
open import CategoryTheory.Comonad
open import CategoryTheory.NatTrans
open import CategoryTheory.BCCCs
open import CategoryTheory.CartesianStrength
open import TemporalOps.Next
open import TemporalOps.Delay
open import TemporalOps.Diamond
open import TemporalOps.Box
open import TemporalOps.Common.Other
open import Relation.Binary.PropositionalEquality as ≡
open import Data.Product
open import Data.Sum
open import Data.Nat hiding (_*_)
open import Data.Nat.Properties
using (+-identityʳ ; +-comm ; +-suc ; +-assoc)
open import Holes.Term using (⌞_⌟)
open import Holes.Cong.Propositional
open Monad M-◇
open Comonad W-□
private module F-◇ = Functor F-◇
private module F-□ = Functor F-□
open ≡.≡-Reasoning
-- | Natural transformations between modalities
-- delay A by 1 is the same as ▹ A
▹¹-to-▹ : F-delay 1 ⟺ F-▹
▹¹-to-▹ = record
{ to = record { at = λ A n x → x ; nat-cond = refl }
; from = record { at = λ A n x → x ; nat-cond = refl }
; iso1 = refl
; iso2 = refl
}
-- □ A is always available, in particular, after a delay by k
□-to-▹ᵏ : ∀(k : ℕ) -> F-□ ⟹ F-delay k
□-to-▹ᵏ k = record
{ at = at-□-▹ᵏ k
; nat-cond = nat-cond-□-▹ᵏ k
}
where
at-□-▹ᵏ : ∀(k : ℕ)(A : τ) -> □ A ⇴ delay A by k
at-□-▹ᵏ zero A n a = a n
at-□-▹ᵏ (suc k) A zero a = top.tt
at-□-▹ᵏ (suc k) A (suc n) a = at-□-▹ᵏ k A n a
nat-cond-□-▹ᵏ : ∀(k : ℕ){A B : τ} {f : A ⇴ B} →
Functor.fmap (F-delay k) f ∘ at-□-▹ᵏ k A ≈
at-□-▹ᵏ k B ∘ Functor.fmap F-□ f
nat-cond-□-▹ᵏ zero {A} {B} {f} {n} {a} = refl
nat-cond-□-▹ᵏ (suc k) {A} {B} {f} {zero} {a} = refl
nat-cond-□-▹ᵏ (suc k) {A} {B} {f} {suc n} {a} = nat-cond-□-▹ᵏ k
-- If A is delayed by k, then it is delayed
▹ᵏ-to-◇ : ∀(k : ℕ) -> F-delay k ⟹ F-◇
▹ᵏ-to-◇ k = record
{ at = λ A n a → k , a
; nat-cond = refl
}
-- □ A is always available, in particular, after any delay
□-to-◇ : ∀{k} -> F-□ ⟹ F-◇
□-to-◇ {k} = ▹ᵏ-to-◇ k ⊚ □-to-▹ᵏ k
-- | Monadic operations for ◇
return : ∀{A : τ} -> A ⇴ ◇ A
return {A} = η.at A
-- Monadic extension
_⋆ : ∀{A B : τ} -> (A ⇴ ◇ B) -> (◇ A ⇴ ◇ B)
_⋆ {A} {B} f = μ.at B ∘ F-◇.fmap f
infixl 55 _⋆
-- Bind operator
_>>=_ : ∀{A B : τ}{n : ℕ} -> (◇ A) n -> (A ⇴ (◇ B)) -> (◇ B) n
_>>=_ {n = n} a f = (f ⋆) n a
-- Bind is associative
>>=-assoc : ∀{A B C : τ}{n : ℕ} -> (a : (◇ A) n) -> (f : (A ⇴ (◇ B))) -> (g : (B ⇴ (◇ C)))
-> (a >>= f) >>= g ≡ a >>= (λ k x → (f k x) >>= g)
>>=-assoc {A}{B}{C} {n} a f g =
begin
((a >>= f) >>= g)
≡⟨⟩
μ.at C n ⌞ (((fmap g ∘ μ.at B) ∘ fmap f) n a) ⌟
≡⟨ cong! (≈-cong-left {f = fmap g} (μ.nat-cond {B} {◇ C} {g} {n} {fmap f n a}) {n} {a >>= f}) ⟩
(((μ.at C ∘ μ.at (◇ C)) ∘ fmap (fmap g)) ∘ fmap f) n a
≡⟨ lemma ⟩
(((μ.at C ∘ fmap (μ.at C)) ∘ fmap (fmap g)) ∘ fmap f) n a
≡⟨ cong (μ.at C n) (≈-cong-left {f = fmap g} (sym (fmap-∘ {a = fmap f n a})) {n} {a >>= f}) ⟩
μ.at C n ((fmap (μ.at C ∘ fmap g) ∘ fmap f) n a)
≡⟨ cong (μ.at C n) (sym (fmap-∘ {a = a})) ⟩
μ.at C n (fmap ((μ.at C ∘ fmap g) ∘ f) n a)
≡⟨⟩
(a >>= (λ k x → f k x >>= g))
∎
where
open Functor F-◇
lemma : (((μ.at C ∘ μ.at (◇ C)) ∘ fmap (fmap g)) ∘ fmap f) n a
≡ (((μ.at C ∘ fmap (μ.at C)) ∘ fmap (fmap g)) ∘ fmap f) n a
lemma rewrite μ-assoc {C} {n} {((fmap (fmap g)) ∘ fmap f) n a} = refl
-- Return is left unit to bind
>>=-unit-left : ∀{A B : τ}{n : ℕ} -> (a : A n)(f : A ⇴ ◇ B)
-> (η.at A n a) >>= f ≡ f n a
>>=-unit-left a f = η-unit1
-- Return is right unit to bind
>>=-unit-right : ∀{A : τ}{n : ℕ} -> (a : (◇ A) n)
-> a >>= η.at A ≡ a
>>=-unit-right a = η-unit2
|
{
"alphanum_fraction": 0.5050900548,
"avg_line_length": 30.4047619048,
"ext": "agda",
"hexsha": "2744f359ac25a018e4b0584e733e57b586596e2f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DimaSamoz/temporal-type-systems",
"max_forks_repo_path": "src/TemporalOps/OtherOps.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DimaSamoz/temporal-type-systems",
"max_issues_repo_path": "src/TemporalOps/OtherOps.agda",
"max_line_length": 99,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DimaSamoz/temporal-type-systems",
"max_stars_repo_path": "src/TemporalOps/OtherOps.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z",
"num_tokens": 1736,
"size": 3831
}
|
primitive
primSetOmega : _
|
{
"alphanum_fraction": 0.7586206897,
"avg_line_length": 9.6666666667,
"ext": "agda",
"hexsha": "de41f874ec028be89d8d6a2bac307be5b11426e5",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue3318-4.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue3318-4.agda",
"max_line_length": 18,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue3318-4.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 8,
"size": 29
}
|
-- Basic intuitionistic propositional calculus, without ∨ or ⊥.
-- Gentzen-style formalisation of syntax.
-- Normal forms, neutrals, and spines.
module BasicIPC.Syntax.GentzenSpinalNormalForm where
open import BasicIPC.Syntax.Gentzen public
-- Derivations.
mutual
-- Normal forms, or introductions.
infix 3 _⊢ⁿᶠ_
data _⊢ⁿᶠ_ (Γ : Cx Ty) : Ty → Set where
neⁿᶠ : ∀ {P} → Γ ⊢ⁿᵉ α P → Γ ⊢ⁿᶠ α P
lamⁿᶠ : ∀ {A B} → Γ , A ⊢ⁿᶠ B → Γ ⊢ⁿᶠ A ▻ B
pairⁿᶠ : ∀ {A B} → Γ ⊢ⁿᶠ A → Γ ⊢ⁿᶠ B → Γ ⊢ⁿᶠ A ∧ B
unitⁿᶠ : Γ ⊢ⁿᶠ ⊤
-- Neutrals, or eliminations.
infix 3 _⊢ⁿᵉ_
data _⊢ⁿᵉ_ (Γ : Cx Ty) : Ty → Set where
spⁿᵉ : ∀ {A C} → A ∈ Γ → Γ ⊢ˢᵖ A ⦙ C → Γ ⊢ⁿᵉ C
-- Spines.
infix 3 _⊢ˢᵖ_⦙_
data _⊢ˢᵖ_⦙_ (Γ : Cx Ty) : Ty → Ty → Set where
nilˢᵖ : ∀ {C} → Γ ⊢ˢᵖ C ⦙ C
appˢᵖ : ∀ {A B C} → Γ ⊢ˢᵖ B ⦙ C → Γ ⊢ⁿᶠ A → Γ ⊢ˢᵖ A ▻ B ⦙ C
fstˢᵖ : ∀ {A B C} → Γ ⊢ˢᵖ A ⦙ C → Γ ⊢ˢᵖ A ∧ B ⦙ C
sndˢᵖ : ∀ {A B C} → Γ ⊢ˢᵖ B ⦙ C → Γ ⊢ˢᵖ A ∧ B ⦙ C
-- Translation from normal forms to simple terms.
mutual
nf→tm : ∀ {A Γ} → Γ ⊢ⁿᶠ A → Γ ⊢ A
nf→tm (neⁿᶠ t) = ne→tm t
nf→tm (lamⁿᶠ t) = lam (nf→tm t)
nf→tm (pairⁿᶠ t u) = pair (nf→tm t) (nf→tm u)
nf→tm unitⁿᶠ = unit
ne→tm : ∀ {A Γ} → Γ ⊢ⁿᵉ A → Γ ⊢ A
ne→tm (spⁿᵉ i xs) = sp→tm (var i) xs
sp→tm : ∀ {A C Γ} → Γ ⊢ A → Γ ⊢ˢᵖ A ⦙ C → Γ ⊢ C
sp→tm t nilˢᵖ = t
sp→tm t (appˢᵖ xs u) = sp→tm (app t (nf→tm u)) xs
sp→tm t (fstˢᵖ xs) = sp→tm (fst t) xs
sp→tm t (sndˢᵖ xs) = sp→tm (snd t) xs
-- Monotonicity with respect to context inclusion.
mutual
mono⊢ⁿᶠ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢ⁿᶠ A → Γ′ ⊢ⁿᶠ A
mono⊢ⁿᶠ η (neⁿᶠ t) = neⁿᶠ (mono⊢ⁿᵉ η t)
mono⊢ⁿᶠ η (lamⁿᶠ t) = lamⁿᶠ (mono⊢ⁿᶠ (keep η) t)
mono⊢ⁿᶠ η (pairⁿᶠ t u) = pairⁿᶠ (mono⊢ⁿᶠ η t) (mono⊢ⁿᶠ η u)
mono⊢ⁿᶠ η unitⁿᶠ = unitⁿᶠ
mono⊢ⁿᵉ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢ⁿᵉ A → Γ′ ⊢ⁿᵉ A
mono⊢ⁿᵉ η (spⁿᵉ i xs) = spⁿᵉ (mono∈ η i) (mono⊢ˢᵖ η xs)
mono⊢ˢᵖ : ∀ {A C Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢ˢᵖ A ⦙ C → Γ′ ⊢ˢᵖ A ⦙ C
mono⊢ˢᵖ η nilˢᵖ = nilˢᵖ
mono⊢ˢᵖ η (appˢᵖ xs u) = appˢᵖ (mono⊢ˢᵖ η xs) (mono⊢ⁿᶠ η u)
mono⊢ˢᵖ η (fstˢᵖ xs) = fstˢᵖ (mono⊢ˢᵖ η xs)
mono⊢ˢᵖ η (sndˢᵖ xs) = sndˢᵖ (mono⊢ˢᵖ η xs)
|
{
"alphanum_fraction": 0.5253222836,
"avg_line_length": 30.5915492958,
"ext": "agda",
"hexsha": "2e219116e89c89bbcb9488095eb64cc85bcbaa57",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/hilbert-gentzen",
"max_forks_repo_path": "BasicIPC/Syntax/GentzenSpinalNormalForm.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/hilbert-gentzen",
"max_issues_repo_path": "BasicIPC/Syntax/GentzenSpinalNormalForm.agda",
"max_line_length": 63,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/hilbert-gentzen",
"max_stars_repo_path": "BasicIPC/Syntax/GentzenSpinalNormalForm.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z",
"num_tokens": 1436,
"size": 2172
}
|
module Agda.Builtin.FromNat where
open import Agda.Primitive
open import Agda.Builtin.Nat
record Number {a} (A : Set a) : Set (lsuc a) where
field
Constraint : Nat → Set a
fromNat : ∀ n → {{_ : Constraint n}} → A
open Number {{...}} public using (fromNat)
{-# BUILTIN FROMNAT fromNat #-}
{-# DISPLAY Number.fromNat _ n = fromNat n #-}
|
{
"alphanum_fraction": 0.6542857143,
"avg_line_length": 21.875,
"ext": "agda",
"hexsha": "de4acc8a433fbb2ec911663420f4ce8ae20efca1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/FromNat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/FromNat.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/FromNat.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 105,
"size": 350
}
|
open import Everything
module Test.Factsurj3 where
module Test0
{𝔵 𝔭 𝔯 ℓ} {𝔛 : Ø 𝔵}
(𝔓 : π̂ 𝔭 𝔛)
(_≈_ : ∀̇ π̂² ℓ 𝔓)
(_≈'_ : ∀̇ π̂² ℓ 𝔓)
(ℜ : π̂² 𝔯 𝔛)
(ε : Reflexivity.type ℜ)
(_◃_ : Smaphomarrow!.type ℜ 𝔓)
(_◃'_ : Smaphomarrow!.type ℜ 𝔓)
where
test-class' : ⦃ _ : Leftunit,smaphomarrow.class ℜ 𝔓 ε surjection _◃_ _≈_ ⦄ → Leftunit,smaphomarrow.class ℜ 𝔓 ε surjection _◃_ _≈_
test-class' = !
test-method' : ⦃ _ : Leftunit,smaphomarrow.class ℜ 𝔓 ε surjection _◃_ _≈_ ⦄ → Leftunit,smaphomarrow.type ℜ 𝔓 ε surjection _◃_ _≈_
test-method' = leftunit
test-class : ∀
{𝔵 𝔭 𝔯 ℓ} {𝔛 : Ø 𝔵}
{𝔓 : π̂ 𝔭 𝔛}
⦃ _ : ∀ {x} → HasEquivalence (𝔓 x) ℓ ⦄
{ℜ : π̂² 𝔯 𝔛}
⦃ _ : Reflexivity.class ℜ ⦄
⦃ _ : Smaphomarrow!.class ℜ 𝔓 ⦄
→ ⦃ _ : Leftunit,equivalence,smaphomarrow!.class ℜ 𝔓 ⦄
→ Leftunit,equivalence,smaphomarrow!.class ℜ 𝔓
test-class = !
|
{
"alphanum_fraction": 0.6082949309,
"avg_line_length": 28,
"ext": "agda",
"hexsha": "db764e457e6aa7405d8a5a7cb74fabb23681b1e8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Test/Factsurj3.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Test/Factsurj3.agda",
"max_line_length": 131,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Test/Factsurj3.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 474,
"size": 868
}
|
module Haskell.Prim.Foldable where
open import Haskell.Prim
open import Haskell.Prim.Num
open import Haskell.Prim.Eq
open import Haskell.Prim.List
open import Haskell.Prim.Int
open import Haskell.Prim.Bool
open import Haskell.Prim.Maybe
open import Haskell.Prim.Either
open import Haskell.Prim.Tuple
open import Haskell.Prim.Monoid
--------------------------------------------------
-- Foldable
record Foldable (t : Set → Set) : Set₁ where
field
foldMap : ⦃ Monoid b ⦄ → (a → b) → t a → b
foldr : (a → b → b) → b → t a → b
foldr f z t = foldMap ⦃ MonoidEndo ⦄ f t z
foldl : (b → a → b) → b → t a → b
foldl f z t = foldMap ⦃ MonoidEndoᵒᵖ ⦄ (flip f) t z
any : (a → Bool) → t a → Bool
any = foldMap ⦃ MonoidDisj ⦄
all : (a → Bool) → t a → Bool
all = foldMap ⦃ MonoidConj ⦄
and : t Bool → Bool
and = all id
or : t Bool → Bool
or = any id
null : t a → Bool
null = all (const false)
concat : t (List a) → List a
concat = foldMap id
concatMap : (a → List b) → t a → List b
concatMap = foldMap
elem : ⦃ Eq a ⦄ → a → t a → Bool
elem x = foldMap ⦃ MonoidDisj ⦄ (x ==_)
notElem : ⦃ Eq a ⦄ → a → t a → Bool
notElem x t = not (elem x t)
toList : t a → List a
toList = foldr _∷_ []
sum : ⦃ iNum : Num a ⦄ → t a → a
sum = foldMap ⦃ MonoidSum ⦄ id
product : ⦃ iNum : Num a ⦄ → t a → a
product = foldMap ⦃ MonoidProduct ⦄ id
length : t a → Int
length = foldMap ⦃ MonoidSum ⦄ (const 1)
open Foldable ⦃ ... ⦄ public
instance
iFoldableList : Foldable List
iFoldableList .foldMap f [] = mempty
iFoldableList .foldMap f (x ∷ xs) = f x <> foldMap f xs
iFoldableMaybe : Foldable Maybe
iFoldableMaybe .foldMap _ Nothing = mempty
iFoldableMaybe .foldMap f (Just x) = f x
iFoldableEither : Foldable (Either a)
iFoldableEither .foldMap _ (Left _) = mempty
iFoldableEither .foldMap f (Right x) = f x
iFoldablePair : Foldable (a ×_)
iFoldablePair .foldMap f (_ , x) = f x
|
{
"alphanum_fraction": 0.6104028557,
"avg_line_length": 23.3452380952,
"ext": "agda",
"hexsha": "f12a519a12e060d11dd2b1f2d83d8eab50b7a585",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4cb28f1b5032948b19b977b390fa260be292abf6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "flupe/agda2hs",
"max_forks_repo_path": "lib/Haskell/Prim/Foldable.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4cb28f1b5032948b19b977b390fa260be292abf6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "flupe/agda2hs",
"max_issues_repo_path": "lib/Haskell/Prim/Foldable.agda",
"max_line_length": 57,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4cb28f1b5032948b19b977b390fa260be292abf6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "flupe/agda2hs",
"max_stars_repo_path": "lib/Haskell/Prim/Foldable.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 743,
"size": 1961
}
|
{-
This file defines cohomology of a type with
coefficients in a dependent spectrum over it.
* Cohom and Cohom' are two versions of the cohomology groups
- the only difference is the carrier type.
* 'commDegreeΩ' commutes Ωs with degree shifts of the spectrum
* 'cohomMap' implement the application of the cohomology functors
to maps between types
This general cohomology coincides with ZCohomology when the coefficients
are constantly the Eilenberg-MacLane spectrum for ℤ (not proven here/yet)
-}
{-# OPTIONS --safe #-}
module Cubical.Cohomology.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Pointed.Base
open import Cubical.Foundations.Pointed.Properties
open import Cubical.Foundations.Isomorphism using (isoToEquiv)
open import Cubical.Foundations.Function using (_∘_)
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence using (ua)
open import Cubical.Functions.FunExtEquiv using (funExtEquiv)
open import Cubical.Algebra.Group.Base using (Group; GroupStr)
open import Cubical.Algebra.AbGroup.Base
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Data.Int.Base hiding (_·_)
open import Cubical.Data.Nat.Base using (ℕ)
open import Cubical.Data.Sigma
open import Cubical.Homotopy.Group.Base
open import Cubical.HITs.SetTruncation hiding (map)
open import Cubical.Homotopy.Spectrum
open import Cubical.Homotopy.Loopspace renaming (EH to isCommΩ)
open import Cubical.Structures.Successor
private
variable
ℓ : Level
open Spectrum
module _ (X : Type ℓ) (A : (x : X) → Spectrum ℓ) where
CohomClasses : ℤ → Pointed ℓ
CohomClasses k = Πᵘ∙ X (λ x → space (A x) k)
CohomType : ℤ → Type ℓ
CohomType k = ∥ (fst (CohomClasses k)) ∥₂
private
commDegreeΩOnce : (k : ℤ) → (CohomClasses k) ≃∙ Πᵘ∙ X (λ x → Ω (space (A x) (sucℤ k)))
commDegreeΩOnce k =
(equivΠCod (λ x → fst (equivΩAt x))) ,
λ i x → snd (equivΩAt x) i
where equivΩAt : (x : X) → space (A x) k ≃∙ Ω (space (A x) (sucℤ k))
equivΩAt x = (fst (map (A x) k) , equiv (A x) k) , snd (map (A x) k)
commDegreeΩOnce' : (k : ℤ) → (CohomClasses k) ≃∙ Ω (CohomClasses (sucℤ k))
commDegreeΩOnce' k =
compEquiv∙ (commDegreeΩOnce k)
(funExtEquiv , refl)
commDegreeΩ : (k : ℤ) (n : ℕ) → (CohomClasses k) ≃∙ (Ω^ n) (CohomClasses (k + (pos n)))
commDegreeΩ k ℕ.zero = idEquiv∙ _
commDegreeΩ k (ℕ.suc n) =
CohomClasses k ≃∙⟨ commDegreeΩ k n ⟩
(Ω^ n) (CohomClasses (k + (pos n))) ≃∙⟨ Ω^≃∙ n (commDegreeΩOnce' (k + pos n)) ⟩
(Ω^ n) (Ω (CohomClasses (sucℤ (k + (pos n))))) ≃∙⟨ invEquiv∙ (e n) ⟩
(Ω^ (ℕ.suc n)) (CohomClasses (sucℤ (k + (pos n)))) ∎≃∙
where e : {A : Pointed ℓ} (n : ℕ) → (Ω^ (ℕ.suc n)) A ≃∙ (Ω^ n) (Ω A)
e ℕ.zero = isoToEquiv (flipΩIso ℕ.zero) , transportRefl refl
e (ℕ.suc n) = isoToEquiv (flipΩIso (ℕ.suc n)) , flipΩrefl n
{-
Abelian group structure
-}
module abGroupStr (k : ℤ) where
{-
Use an equivalent type, where the group structure is just
given by the homotopy group functor
(index of homotopy groups is off by one below, we actually take π₂,
to get an abelian group)
-}
CohomAsGroup : Group ℓ
CohomAsGroup = (πGr 1) (Πᵘ∙ X (λ x → (space (A x) (k + 2))))
open GroupStr (snd CohomAsGroup)
isComm : (a b : fst CohomAsGroup) → a · b ≡ b · a
isComm = elim2 (λ _ _ → isSetPathImplicit)
λ a b → ∣ a ∙ b ∣₂ ≡⟨ cong ∣_∣₂ (isCommΩ 0 a b) ⟩
∣ b ∙ a ∣₂ ∎
π₂AbGroup : AbGroup ℓ
π₂AbGroup = Group→AbGroup CohomAsGroup isComm
module _ (k : ℤ) where
Cohom' : AbGroup ℓ
Cohom' = abGroupStr.π₂AbGroup k
CohomType' : Type ℓ
CohomType' = fst (abGroupStr.π₂AbGroup k)
private
shiftΩTwicePath : fst (abGroupStr.π₂AbGroup k) ≡ CohomType k
shiftΩTwicePath = sym (cong ∥_∥₂ (ua (fst (commDegreeΩ k 2))))
Cohom : AbGroup ℓ
Cohom = CohomType k , subst AbGroupStr shiftΩTwicePath (snd (abGroupStr.π₂AbGroup k))
CohomPath : Cohom' ≡ Cohom
CohomPath = ΣPathTransport→PathΣ Cohom' Cohom (shiftΩTwicePath , refl)
CohomEquiv : AbGroupEquiv Cohom' Cohom
CohomEquiv = fst (invEquiv (AbGroupPath Cohom' Cohom)) CohomPath
{-
Functoriality in the type argument
-}
module _ {Y X : Type ℓ} (f : Y → X) (A : (x : X) → Spectrum ℓ) where
{-
The following will be used as coefficients for the
cohomology of Y
-}
fA : (y : Y) → Spectrum ℓ
fA y = A (f y)
cohomMap' : (k : ℤ) → AbGroupHom (Cohom' X A k) (Cohom' Y fA k)
cohomMap' k = πHom 1 mapOnClasses -- apply π₂ to a map on cohomology classes
where
mapOnClasses : CohomClasses X A (k + 2) →∙ CohomClasses Y fA (k + 2)
mapOnClasses = (λ l → (λ y → l (f y))) ,
refl
cohomMap : (k : ℤ) → AbGroupHom (Cohom X A k) (Cohom Y fA k)
cohomMap k = compGroupHom
(compGroupHom (GroupEquiv→GroupHom (invGroupEquiv (CohomEquiv X A k)))
(cohomMap' k))
(GroupEquiv→GroupHom (CohomEquiv Y fA k))
|
{
"alphanum_fraction": 0.6336445037,
"avg_line_length": 36.2,
"ext": "agda",
"hexsha": "a7e1620841686827fd0486c5b45be620371cdec8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Cohomology/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Cohomology/Base.agda",
"max_line_length": 98,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Cohomology/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 1902,
"size": 5249
}
|
open import Agda.Primitive using (lzero; lsuc; _⊔_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import SingleSorted.Substitution
open import Data.Nat using (ℕ; zero; suc)
import MultiSorted.Context as Context
module MultiSorted.Group where
data 𝒜 : Set₀ where
A : 𝒜
single-sort : ∀ (X : 𝒜) → X ≡ A
single-sort A = refl
open import MultiSorted.AlgebraicTheory
open import MultiSorted.AlgebraicTheory
data GroupOp : Set where
e : GroupOp
inv : GroupOp
mul : GroupOp
ctx : ∀ (n : ℕ) → Context.Context 𝒜
ctx zero = Context.ctx-empty
ctx (suc n) = Context.ctx-concat (ctx n) (Context.ctx-slot A)
-- the signature of the theory of small groups
-- has one constant, one unary operation, one binary operation
Σ : Signature {lzero} {lzero}
Σ = record { sort = 𝒜
; oper = GroupOp
; oper-arity = λ{ e → ctx 0 ; inv → ctx 1 ; mul → ctx 2}
; oper-sort = λ{ e → A ; inv → A ; mul → A}
}
open Signature Σ
singleton-context : (var (ctx-slot A)) → var (ctx-concat ctx-empty (ctx-slot A))
singleton-context (var-var {A}) = var-inr (var-var {A})
single-sort-context : ∀ {Γ : Context} (x : var Γ) → sort-of Γ x ≡ A
single-sort-context {Γ} x = single-sort (Context.sort-of 𝒜 Γ x)
single-sort-terms : ∀ {X : 𝒜} {Γ : Context} → Term Γ X ≡ Term Γ A
single-sort-terms {A} = refl
σ : ∀ {Γ : Context} {t : Term Γ A} → Γ ⇒s (ctx 1)
σ {Γ} {t} = λ{ (var-inr var-var) → t}
δ : ∀ {Γ : Context} {t : Term Γ A} {s : Term Γ A} → Γ ⇒s (ctx 2)
δ {Γ} {t} {s} = sub
where
sub : Γ ⇒s (ctx 2)
sub (var-inl x) rewrite (single-sort-terms {(sort-of (ctx 2) (var-inl x))} {Γ}) = t
sub (var-inr y) rewrite (single-sort-terms {(sort-of (ctx 2) (var-inr y))} {Γ}) = s
-- helper functions for creating terms
e' : ∀ {Γ : Context} → Term Γ A
e' {Γ} = tm-oper e λ()
_∗_ : ∀ {Γ} → Term Γ A → Term Γ A → Term Γ A
t ∗ s = tm-oper mul λ{ xs → δ {t = t} {s = s} xs}
_ⁱ : ∀ {Γ : Context} → Term Γ A → Term Γ A
t ⁱ = tm-oper inv λ{ x → σ {t = t} x}
-- _∗_ : ∀ {Γ} → Term Γ A → Term Γ A → Term Γ A
-- _∗_ {Γ} t s = tm-oper mul λ{ (var-inl i) → {!!} ; (var-inr i) → {!!}}
-- _ⁱ : ∀ {Γ : Context} → Term Γ A → Term Γ A
-- t ⁱ = tm-oper inv λ{ x → t }
infixl 5 _∗_
infix 6 _ⁱ
_ : Term (ctx 2) A
_ = tm-var (var-inl (var-inr var-var)) ∗ tm-var (var-inr var-var)
-- group equations
data GroupEq : Set where
mul-assoc e-left e-right inv-left inv-right : GroupEq
mul-assoc-eq : Equation Σ
e-left-eq : Equation Σ
e-right-eq : Equation Σ
inv-left-eq : Equation Σ
inv-right-eq : Equation Σ
mul-assoc-eq = record { eq-ctx = ctx 3
; eq-lhs = x ∗ y ∗ z
; eq-rhs = x ∗ (y ∗ z)
}
where
x : Term (ctx 3) A
y : Term (ctx 3) A
z : Term (ctx 3) A
x = tm-var (var-inl (var-inl (var-inr var-var)))
y = tm-var (var-inl (var-inr var-var))
z = tm-var (var-inr var-var)
e-left-eq = record { eq-ctx = ctx 1 ; eq-lhs = e' ∗ x ; eq-rhs = x }
where
x : Term (ctx 1) A
x = tm-var (var-inr var-var)
e-right-eq = record { eq-ctx = ctx 1 ; eq-lhs = x ∗ e' ; eq-rhs = x }
where
x : Term (ctx 1) A
x = tm-var (var-inr var-var)
inv-left-eq = record { eq-ctx = ctx 1 ; eq-lhs = x ⁱ ∗ x ; eq-rhs = e' }
where
x : Term (ctx 1) A
x = tm-var (var-inr var-var)
inv-right-eq = record { eq-ctx = ctx 1 ; eq-lhs = x ∗ x ⁱ ; eq-rhs = e' }
where
x : Term (ctx 1) A
x = tm-var (var-inr var-var)
𝒢 : Theory lzero Σ
𝒢 = record { ax = GroupEq
; ax-eq = λ{ mul-assoc → mul-assoc-eq
; e-left → e-left-eq
; e-right → e-right-eq
; inv-left → inv-left-eq
; inv-right → inv-right-eq
}
}
|
{
"alphanum_fraction": 0.5426478284,
"avg_line_length": 28.7368421053,
"ext": "agda",
"hexsha": "6175c5c1ec886cbca5ab478886e273f2b51e2006",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z",
"max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/formaltt",
"max_forks_repo_path": "src/MultiSorted/Group.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/formaltt",
"max_issues_repo_path": "src/MultiSorted/Group.agda",
"max_line_length": 85,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cilinder/formaltt",
"max_stars_repo_path": "src/MultiSorted/Group.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z",
"num_tokens": 1400,
"size": 3822
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Induction over _<_ for ℕᵇ.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Nat.Binary.Induction where
open import Data.Nat.Binary.Base
open import Data.Nat.Binary.Properties
open import Data.Nat.Base as ℕ using (ℕ)
import Data.Nat.Induction as ℕ
open import Induction.WellFounded
------------------------------------------------------------------------
-- _<_ is wellFounded
<-wellFounded : WellFounded _<_
<-wellFounded x = Subrelation.accessible <⇒<ℕ toℕ[x]-acc
where
toℕ[x]-acc = InverseImage.accessible toℕ (ℕ.<-wellFounded (toℕ x))
|
{
"alphanum_fraction": 0.5123966942,
"avg_line_length": 30.25,
"ext": "agda",
"hexsha": "13bdb874caca60e0436cd801c8172ed14a9bc745",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Nat/Binary/Induction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Nat/Binary/Induction.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Nat/Binary/Induction.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 162,
"size": 726
}
|
-- Andreas, 2018-05-28, issue #3095, cannot make hidden shadowing variable visible
data Nat : Set where
suc : {n : Nat} → Nat
data IsSuc : Nat → Set where
isSuc : ∀{n} → IsSuc (suc {n})
test : ∀{n} → IsSuc n → Set
test p = aux p
where
aux : ∀{n} → IsSuc n → Set
aux isSuc = {!n!} -- Split on n here
-- Context:
-- p : IsSuc n
-- n : Nat (not in scope)
-- n₁ : Nat (not in scope)
-- WAS: ERROR
-- Ambiguous variable n
-- when checking that the expression ? has type Set
|
{
"alphanum_fraction": 0.6024590164,
"avg_line_length": 21.2173913043,
"ext": "agda",
"hexsha": "eb0c35733b35aa3c279dda43e09c28e7ecb6c9b7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "phadej/agda",
"max_forks_repo_path": "test/interaction/Issue3095.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "phadej/agda",
"max_issues_repo_path": "test/interaction/Issue3095.agda",
"max_line_length": 82,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "phadej/agda",
"max_stars_repo_path": "test/interaction/Issue3095.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 173,
"size": 488
}
|
{-# OPTIONS --cubical #-}
module PathWith where
open import Agda.Builtin.Cubical.Path
open import Agda.Primitive.Cubical
open import Agda.Builtin.Nat
pred : Nat → Nat
pred (suc n) = n
pred 0 = 0
f : Nat → Nat
f n with pred n
... | zero = zero
... | suc m = suc m
module _ (qqq : Nat) where
test1 : f ≡ pred
test1 i n with pred n
... | zero = zero
... | suc q = suc q
test2 : test1 ≡ test1
test2 i n j x with pred x
... | zero = zero
... | suc q = suc q
|
{
"alphanum_fraction": 0.6132478632,
"avg_line_length": 16.1379310345,
"ext": "agda",
"hexsha": "753dea1d1f06dec8cbe1b156476845e9cc533113",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/PathWith.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/PathWith.agda",
"max_line_length": 37,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/PathWith.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 168,
"size": 468
}
|
-- a few random examples
module Test where
import Agda.Builtin.Bool
data Nat : Set where zero : Nat -- Comment which gets eaten
suc : Nat -> Nat --Comment which is preserved
plus {- preserved comment {- which may be nested -} -} :
{- comment after Colon, also preserved-}
{-comments are essentially whitespace, even through they get parsed-} Nat -> {-comment, preserved-} Nat -> Nat
{-# BUILTIN NATURAL
Nat #-}
plus zero m = m
plus (suc n) m = suc (plus n m)
{-# BUILTIN NATPLUS plus #-}
--excess brackets are not preserved
minus : ((Nat)) -> Nat
-- We can nest holes correctly
minus a = {! ? {! Hole inside hole !} !}
-- Seriously long and complicated function type
func : {A : Set} ->
{B : A -> Set} ->
{C : (x : A) -> B x -> Set} ->
(f : {x : A} -> (y : B x) -> C x y) ->
(g : (x : A) -> B x) ->
(x : A) ->
C x (g x)
func f g x = f (g x)
-- Holes can go here as well
id : {a : Set} -> a -> {! !}
id x = x
-- and the code from the planning report, rewritten in Baby-Agda
data List (A : Set) : Set where
empty : List A
cons : A -> List A -> List A
append : {A : Set} -> List A -> List A -> List A
append empty ys = ys
append (cons x xs) ys = cons x (append xs ys)
-- proposed code after refactoring
data List2 (A : Set) : Nat -> Set where
empty2 : List2 A 0
cons2 : {n : Nat} -> A -> List2 A n -> List2 A (plus 1 n)
append2 : {n : Nat} -> {m : Nat} -> {A : Set} ->
List2 A m -> List2 A n -> List2 A (plus m n)
append2 empty2 ys = ys
append2 (cons2 x xs) ys = cons2 x (append2 xs ys)
|
{
"alphanum_fraction": 0.5708836618,
"avg_line_length": 27.1206896552,
"ext": "agda",
"hexsha": "18c12b19a0849193da4e59da89bc6f9568d7811c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-01-31T08:40:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-01-31T08:40:41.000Z",
"max_forks_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "omega12345/RefactorAgda",
"max_forks_repo_path": "RefactorAgdaEngine/Test/Tests/input/Test.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_issues_repo_issues_event_max_datetime": "2019-02-05T12:53:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-31T08:03:07.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "omega12345/RefactorAgda",
"max_issues_repo_path": "RefactorAgdaEngine/Test/Tests/input/Test.agda",
"max_line_length": 114,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "omega12345/RefactorAgda",
"max_stars_repo_path": "RefactorAgdaEngine/Test/Tests/input/Test.agda",
"max_stars_repo_stars_event_max_datetime": "2019-05-03T10:03:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-31T14:10:18.000Z",
"num_tokens": 498,
"size": 1573
}
|
module Structure.Category.NaturalTransformation.Equiv where
import Function.Equals
open Function.Equals.Dependent
import Lvl
open import Logic
open import Logic.Predicate
open import Structure.Category
open import Structure.Category.Functor
open import Structure.Category.NaturalTransformation
open import Structure.Setoid
open import Structure.Relator.Equivalence
open import Structure.Relator.Properties
open import Type
module _
{ℓₗₒ ℓₗₘ ℓₗₑ ℓᵣₒ ℓᵣₘ ℓᵣₑ}
{catₗ : CategoryObject{ℓₗₒ}{ℓₗₘ}{ℓₗₑ}}
{catᵣ : CategoryObject{ℓᵣₒ}{ℓᵣₘ}{ℓᵣₑ}}
{F₁ : catₗ →ᶠᵘⁿᶜᵗᵒʳ catᵣ}
{F₂ : catₗ →ᶠᵘⁿᶜᵗᵒʳ catᵣ}
where
_≡ᴺᵀ_ : (F₁ →ᴺᵀ F₂) → (F₁ →ᴺᵀ F₂) → Stmt
[∃]-intro N₁ ≡ᴺᵀ [∃]-intro N₂ = N₁ ⊜ N₂
instance
[≡ᴺᵀ]-reflexivity : Reflexivity(_≡ᴺᵀ_)
Reflexivity.proof [≡ᴺᵀ]-reflexivity = reflexivity(_⊜_)
instance
[≡ᴺᵀ]-symmetry : Symmetry(_≡ᴺᵀ_)
Symmetry.proof [≡ᴺᵀ]-symmetry = symmetry(_⊜_)
instance
[≡ᴺᵀ]-transitivity : Transitivity(_≡ᴺᵀ_)
Transitivity.proof [≡ᴺᵀ]-transitivity = transitivity(_⊜_)
instance
[≡ᴺᵀ]-equivalence : Equivalence(_≡ᴺᵀ_)
[≡ᴺᵀ]-equivalence = intro
instance
[→ᴺᵀ]-equiv : Equiv(F₁ →ᴺᵀ F₂)
[→ᴺᵀ]-equiv = intro(_≡ᴺᵀ_) ⦃ [≡ᴺᵀ]-equivalence ⦄
|
{
"alphanum_fraction": 0.7005695688,
"avg_line_length": 26.1489361702,
"ext": "agda",
"hexsha": "50b915177c809cd12b69c0196d24cc00e2885236",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Category/NaturalTransformation/Equiv.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Category/NaturalTransformation/Equiv.agda",
"max_line_length": 61,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Category/NaturalTransformation/Equiv.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 615,
"size": 1229
}
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import Functions.Definition
open import Sets.CantorBijection.Proofs
module Sets.CantorBijection.CantorBijection where
open Sets.CantorBijection.Proofs using (cantorInverse ; cantorInverseLemma) public
cantorBijection : Bijection cantorInverse
Bijection.inj cantorBijection {x} {y} = cantorInverseInjective x y
Bijection.surj cantorBijection = cantorInverseSurjective
|
{
"alphanum_fraction": 0.8243559719,
"avg_line_length": 32.8461538462,
"ext": "agda",
"hexsha": "89e319d8e74bbbaa870b1607100d7a4d9c229421",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Sets/CantorBijection/CantorBijection.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Sets/CantorBijection/CantorBijection.agda",
"max_line_length": 82,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Sets/CantorBijection/CantorBijection.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 120,
"size": 427
}
|
module UniDB.Basic where
open import UniDB.Spec
open import UniDB.Subst
open import Function
module _
{T : STX} {{vrT : Vr T}} {{wkT : Wk T}} {{apTT : Ap T T}} {{apVrT : ApVr T}} {{apWkTT : ApWk T T}}
{Ξ : MOR} {{upΞ : Up Ξ}} {{compΞ : Comp Ξ}} {{lkTΞ : Lk T Ξ}} {{lkUpTΞ : LkUp T Ξ}}
{{lkCompTΞ : LkCompAp T Ξ}} where
⊙-↑₁-pointwise : {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Ξ γ₁ γ₂) (ξ₂ : Ξ γ₂ γ₃) →
[ T ] ((ξ₁ ⊙ ξ₂) ↑₁) ≃ (ξ₁ ↑₁ ⊙ ξ₂ ↑₁)
lk≃ (⊙-↑₁-pointwise ξ₁ ξ₂) zero = begin
lk {T} ((ξ₁ ⊙ ξ₂) ↑₁) zero ≡⟨ lk-↑₁-zero (ξ₁ ⊙ ξ₂) ⟩
vr zero ≡⟨ sym (lk-↑₁-zero ξ₂) ⟩
lk (ξ₂ ↑₁) zero ≡⟨ sym (ap-vr {T} (ξ₂ ↑₁) zero) ⟩
ap {T} (ξ₂ ↑₁) (vr zero) ≡⟨ cong (ap {T} (ξ₂ ↑₁)) (sym (lk-↑₁-zero ξ₁)) ⟩
ap {T} (ξ₂ ↑₁) (lk (ξ₁ ↑₁) zero) ≡⟨ sym (lk-⊙-ap {T} (ξ₁ ↑₁) (ξ₂ ↑₁) zero) ⟩
lk (ξ₁ ↑₁ ⊙ ξ₂ ↑₁) zero ∎
lk≃ (⊙-↑₁-pointwise ξ₁ ξ₂) (suc i) = begin
lk ((ξ₁ ⊙ ξ₂) ↑₁) (wk₁ i) ≡⟨ lk-↑₁-suc (ξ₁ ⊙ ξ₂) i ⟩
wk₁ (lk (ξ₁ ⊙ ξ₂) i) ≡⟨ cong wk₁ (lk-⊙-ap {T} ξ₁ ξ₂ i) ⟩
wk₁ (ap {T} ξ₂ (lk ξ₁ i)) ≡⟨ sym (ap-wk₁ {T} ξ₂ (lk ξ₁ i)) ⟩
ap {T} (ξ₂ ↑₁) (wk₁ (lk ξ₁ i)) ≡⟨ cong (ap {T} (ξ₂ ↑₁)) (sym (lk-↑₁-suc ξ₁ i)) ⟩
ap {T} (ξ₂ ↑₁) (lk (ξ₁ ↑₁) (wk₁ i)) ≡⟨ sym (lk-⊙-ap {T} (ξ₁ ↑₁) (ξ₂ ↑₁) (wk₁ i) ) ⟩
lk (ξ₁ ↑₁ ⊙ ξ₂ ↑₁) (wk₁ i) ∎
|
{
"alphanum_fraction": 0.4268204758,
"avg_line_length": 47.8275862069,
"ext": "agda",
"hexsha": "dc966c366aaf566bfaa5cda3fda99e0ec489a092",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "skeuchel/unidb-agda",
"max_forks_repo_path": "UniDB/Basic.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "skeuchel/unidb-agda",
"max_issues_repo_path": "UniDB/Basic.agda",
"max_line_length": 100,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "skeuchel/unidb-agda",
"max_stars_repo_path": "UniDB/Basic.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 793,
"size": 1387
}
|
{-# OPTIONS --without-K --safe #-}
open import Algebra
open import Relation.Unary
open import Relation.Binary hiding (Decidable)
module Data.FingerTree.Split
{r m}
(ℳ : Monoid r m)
{s}
{ℙ : Pred (Monoid.Carrier ℳ) s}
(ℙ-resp : ℙ Respects (Monoid._≈_ ℳ))
(ℙ? : Decidable ℙ)
where
open import Relation.Nullary using (¬_; yes; no; Dec)
open import Level using (_⊔_)
open import Data.Product
open import Function
open import Data.List as List using (List; _∷_; [])
open import Data.FingerTree.Measures ℳ
open import Data.FingerTree.Structures ℳ
open import Data.FingerTree.Reasoning ℳ
open import Data.FingerTree.View ℳ using (deepₗ; deepᵣ)
open import Data.FingerTree.Cons ℳ using (listToTree)
open import Relation.Nullary using (Dec; yes; no)
open import Relation.Nullary.Decidable using (True; toWitness; False; toWitnessFalse)
open σ ⦃ ... ⦄
open Monoid ℳ renaming (Carrier to 𝓡)
open import Data.FingerTree.Relation.Binary.Reasoning.FasterInference.Setoid setoid
open import Data.FingerTree.Split.Point ℳ ℙ-resp ℙ?
open import Data.FingerTree.Split.StoredPredicate ℳ ℙ-resp ℙ?
open import Data.FingerTree.Split.Intermediate ℳ ℙ-resp ℙ?
open import Data.FingerTree.Split.Structures ℳ ℙ-resp ℙ?
record Split {a} (Σ : Set a) ⦃ _ : σ Σ ⦄ : Set (a ⊔ r ⊔ m ⊔ s) where
constructor _∷⟨_⟩∷_[_]
field
left : Tree Σ
focus : Σ
right : Tree Σ
is-split : μ left ∣ μ focus
open Split public
instance
σ-Split : ∀ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄ → σ (Split Σ)
μ ⦃ σ-Split ⦄ (l ∷⟨ x ⟩∷ r [ _ ]) = μ l ∙ (μ x ∙ μ r)
split : ∀ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄
→ {¬ℙ⟨ε⟩ : False (ℙ? ε)}
→ (xs : Tree Σ)
→ {ℙ⟨xs⟩ : True (ℙ? (μ xs))}
→ μ⟨ Split Σ ⟩≈ μ xs
split {¬ℙ⟨ε⟩ = ¬ℙ⟨ε⟩} xs {ℙ⟨xs⟩} with splitTree ε xs (init-ℙ ¬ℙ⟨ε⟩ ℙ⟨xs⟩) ≈[ identityˡ _ ]
... | xs′ ∷⟨ x ⟩∷ ys [ p ] ⇑[ p₂ ] = xs′ ∷⟨ x ⟩∷ ys [ Relation.Nullary.recompute (_ ∣? _) p ≈◄⟅ identityˡ _ ⟆ ] ⇑[ sym (identityˡ _) ⍮ p₂ ]
|
{
"alphanum_fraction": 0.6447436561,
"avg_line_length": 30.6507936508,
"ext": "agda",
"hexsha": "92b6a451de209ab3ecf05c5fb76da8c53e863bda",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-indexed-fingertree",
"max_forks_repo_path": "src/Data/FingerTree/Split.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-indexed-fingertree",
"max_issues_repo_path": "src/Data/FingerTree/Split.agda",
"max_line_length": 140,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-indexed-fingertree",
"max_stars_repo_path": "src/Data/FingerTree/Split.agda",
"max_stars_repo_stars_event_max_datetime": "2019-02-26T07:04:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-26T07:04:54.000Z",
"num_tokens": 759,
"size": 1931
}
|
open import prelude renaming (_≟Nat_ to _≟_)
infixl 5 _$_
-- Copied pretty much verbatim
Var = Nat
data Term : Set where
var : Var → Term
fun : Term → Term
_$_ : Term → Term → Term
-- Doing full reduction, so values are either of the form
-- (fun v) or (x v1 ... vN)
data VarHeaded : Term → Set
data Value : Term → Set
data VarHeaded where
var : (x : Var) → VarHeaded(var x)
_$_ : ∀ {t u} → VarHeaded(t) → Value(u) → VarHeaded(t $ u)
data Value where
var : (x : Var) → Value(var x)
fun : ∀ {t} → Value(t) → Value(fun t)
_$_ : ∀ {t u} → VarHeaded(t) → Value(u) → Value(t $ u)
-- Substitution is now total!
shift : Var → Var → Term → Term
shift c d (var x) = if (c ≤? x) (var (d + x)) (var x)
shift c d (fun t) = fun (shift (1 + c) d t)
shift c d (t₁ $ t₂) = (shift c d t₁) $ (shift c d t₂)
[_↦_]_ : Var → Term → Term → Term
[ x ↦ s ] var y = if (x ≟ y) (shift x 0 s) (if (x ≤? y) (var (y - 1)) (var y))
[ x ↦ s ] fun t = fun ([ (1 + x) ↦ s ] t)
[ x ↦ s ] (t₁ $ t₂) = ([ x ↦ s ] t₁) $ ([ x ↦ s ] t₂)
-- Reduction is as per TAPL
data _⟶_ : Term → Term → Set where
E─App1 : ∀ {t₁ t₁′ t₂} →
(t₁ ⟶ t₁′) →
------------------------
(t₁ $ t₂) ⟶ (t₁′ $ t₂)
E─App2 : ∀ {t₁ t₂ t₂′} →
(t₂ ⟶ t₂′) →
------------------------
(t₁ $ t₂) ⟶ (t₁ $ t₂′)
E─AppAbs : ∀ {t₁ t₂} →
---------------------------------
(fun t₁ $ t₂) ⟶ ([ 0 ↦ t₂ ] t₁)
-- Needed for full reduction!
E─FunCong : ∀ {t t′} →
(t ⟶ t′) →
----------------
fun t ⟶ fun t′
-- A redex is a term which can reduce
data Redex : Term → Set where
redex : ∀ {t t′} →
t ⟶ t′ →
--------
Redex(t)
-- Proving that every closed term is a value or a redex
data ValueOrRedex : Term → Set where
value : ∀ {t} →
(Value(t)) →
---------------
ValueOrRedex(t)
redex : ∀ {t t′} →
t ⟶ t′ →
---------------
ValueOrRedex(t)
valueOrRedex : (t : Term) → ValueOrRedex(t)
valueOrRedex (var x) = value (var x)
valueOrRedex (fun t) = helper (valueOrRedex t) where
helper : ValueOrRedex(t) → ValueOrRedex(fun t)
helper (value v) = value (fun v)
helper (redex r) = redex (E─FunCong r)
valueOrRedex (t₁ $ t₂) = helper₁ (valueOrRedex t₁) where
helper₃ : ∀ {t₁} → Value(t₁) → Value(t₂) → ValueOrRedex(t₁ $ t₂)
helper₃ (var x) v = value (var x $ v)
helper₃ (fun t) v = redex E─AppAbs
helper₃ (t $ u) v = value (t $ u $ v)
helper₂ : Value(t₁) → ValueOrRedex(t₂) → ValueOrRedex(t₁ $ t₂)
helper₂ v₁ (value v₂) = helper₃ v₁ v₂
helper₂ v₁ (redex r) = redex (E─App2 r)
helper₁ : ValueOrRedex(t₁) → ValueOrRedex(t₁ $ t₂)
helper₁ (value v₁) = helper₂ v₁ (valueOrRedex t₂)
helper₁ (redex r) = redex (E─App1 r)
-- Interpreter!
data _⟶*_ : Term → Term → Set where
done : ∀ {t} →
--------
t ⟶* t
redex : ∀ {t t′ t″} →
t ⟶ t′ →
t′ ⟶* t″ →
----------
t ⟶* t″
-- An interpreter result
data Result : Term → Set where
result : ∀ {t t′} →
t ⟶* t′ →
Value(t′) →
---------
Result(t)
-- The interpreter just calls `valueOrRedex` until it is a value.
-- This might not terminate!
{-# NON_TERMINATING #-}
interp : (t : Term) → Result(t)
interp t = helper₂ (valueOrRedex t) where
helper₁ : ∀ {t′} → (t ⟶ t′) → Result(t′) → Result(t)
helper₁ r (result s v) = result (redex r s) v
helper₂ : ValueOrRedex(t) → Result(t)
helper₂ (value v) = result done v
helper₂ (redex {t′ = t′} r) = helper₁ r (interp t′)
-- Examples
zer : Term
zer = fun (fun (var 1))
succ : Term
succ = fun (fun (fun (var 0 $ var 2)))
add : Term
add = fun (fun (var 1 $ var 0 $ succ))
two : Term
two = succ $ (succ $ zer)
four : Term
four = add $ two $ two
-- DANGER! Do not run interp loop
loop : Term
loop = (fun (var 0 $ var 0)) $ (fun (var 0 $ var 0))
|
{
"alphanum_fraction": 0.5212233061,
"avg_line_length": 21.1899441341,
"ext": "agda",
"hexsha": "7622b7ff3cb33a1e29973f2c3656aa1dd694978d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "de2ae6c24d001b85a5032c9e06cc731557dbc5e5",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "asajeffrey/tapl",
"max_forks_repo_path": "ch6.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "de2ae6c24d001b85a5032c9e06cc731557dbc5e5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "asajeffrey/tapl",
"max_issues_repo_path": "ch6.agda",
"max_line_length": 79,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "de2ae6c24d001b85a5032c9e06cc731557dbc5e5",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "asajeffrey/tapl",
"max_stars_repo_path": "ch6.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-15T12:09:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-03-12T22:44:19.000Z",
"num_tokens": 1478,
"size": 3793
}
|
module Data.Graph where
open import Data.List as List using (List; []; _∷_)
open import Data.Nat hiding (_⊔_)
open import Data.Product
open import Data.Vec as Vec using (Vec; []; _∷_)
open import Data.Vec.Properties
open import Level as ℓ using (Level; _⊔_)
open import Finite
open import Finite.Pigeonhole
open import Function
open import Relation.Binary
open import Relation.Binary.Construct.Closure.ReflexiveTransitive
open import Relation.Binary.HeterogeneousEquality as ≅
open import Relation.Binary.PropositionalEquality as ≡
open import Relation.Nullary
open IsFinite
module Path {ℓᵥ ℓₑ} {V : Set ℓᵥ} (_↦_ : V → V → Set ℓₑ) where
data Path a : V → ℕ → Set (ℓᵥ ⊔ ℓₑ) where
[] : Path a a zero
_∷_ : ∀ {b c n} → a ↦ b → Path b c n → Path a c (suc n)
Path≤ = λ a b n → ∃ λ m → m ≤ n × Path a b m
Path< = λ a b n → ∃ λ m → m < n × Path a b m
infixr 5 _∷ʳ_
_∷ʳ_ : ∀ {a b c n} → Path a b n → b ↦ c → Path a c (suc n)
[] ∷ʳ e = e ∷ []
(e ∷ p) ∷ʳ e′ = e ∷ p ∷ʳ e′
unsnoc : ∀ {n a c}
(p : Path a c (suc n)) →
∃ λ b →
∃₂ λ (p′ : Path a b n) (e : b ↦ c) →
p ≡ p′ ∷ʳ e
unsnoc (e ∷ []) = -, [] , e , refl
unsnoc (e ∷ d ∷ p) with unsnoc (d ∷ p)
… | b , p′ , e′ , eq rewrite eq = b , e ∷ p′ , e′ , refl
infixl 5 _++_
_++_ : ∀ {a b c m n} → Path a b m → Path b c n → Path a c (m + n)
[] ++ q = q
(e ∷ p) ++ q = e ∷ (p ++ q)
trail : ∀ {a b n} → Path a b n → Vec V n
trail [] = []
trail {a} (e ∷ p) = a ∷ trail p
toStar : ∀ {a b n} → Path a b n → Star _↦_ a b
toStar [] = ε
toStar (e ∷ p) = e ◅ toStar p
starLength : ∀ {a b} → Star _↦_ a b → ℕ
starLength = fold _ (const suc) zero
fromStar : ∀ {a b} (p : Star _↦_ a b) → Path a b (starLength p)
fromStar ε = []
fromStar (e ◅ p) = e ∷ fromStar p
toStar-fromStar : ∀ {a b} (p : Star _↦_ a b) → p ≡ toStar (fromStar p)
toStar-fromStar ε = refl
toStar-fromStar (e ◅ p) = ≡.cong (e ◅_) (toStar-fromStar p)
starLength-toStar : ∀ {a b n} (p : Path a b n) → n ≡ starLength (toStar p)
starLength-toStar [] = refl
starLength-toStar (e ∷ p) = ≡.cong suc (starLength-toStar p)
fromStar-toStar : ∀ {a b n} (p : Path a b n) → p ≅ fromStar (toStar p)
fromStar-toStar [] = refl
fromStar-toStar (e ∷ p) =
≅.icong (Path _ _) {B = λ {x} _ → Path _ _ (suc x)}
(starLength-toStar p)
(e ∷_)
(fromStar-toStar p)
starTrail : ∀ {a b} (p : Star _↦_ a b) → Vec V (starLength p)
starTrail ε = []
starTrail {a} (e ◅ p) = a ∷ starTrail p
trail-fromStar : ∀ {a b} (p : Star _↦_ a b) → starTrail p ≡ trail (fromStar p)
trail-fromStar ε = refl
trail-fromStar (e ◅ p) = ≡.cong (_ ∷_) (trail-fromStar p)
starTrail-toStar : ∀ {a b n} (p : Path a b n) → trail p ≅ starTrail (toStar p)
starTrail-toStar [] = refl
starTrail-toStar {a} {b} {suc n} (e ∷ p) =
≅.icong (λ i → Vec V i) {B = λ {i} _ → Vec V (suc i)}
(starLength-toStar p) (λ as → a ∷ as) (starTrail-toStar p)
module Embed {ℓᵥ ℓᵥ′ ℓₑ ℓₑ′}
{V : Set ℓᵥ} {V′ : Set ℓᵥ′} {_↦_ : V → V → Set ℓₑ} {_↦′_ : V′ → V′ → Set ℓₑ′} {f}
(r : _↦_ =[ f ]⇒ _↦′_) where
open Path
embedPath : ∀ {a b n} → Path _↦_ a b n → Path _↦′_ (f a) (f b) n
embedPath [] = []
embedPath (e ∷ es) = r e ∷ embedPath es
record FiniteGraph ℓᵥ ℓₑ : Set (ℓ.suc ℓᵥ ⊔ ℓ.suc ℓₑ) where
field
{Vertex} : Set ℓᵥ
{Edge} : Vertex → Vertex → Set ℓₑ
{{vertexFinite}} : IsFinite Vertex
{{edgeFinite}} : ∀ a → IsFinite (∃ (Edge a))
decEqVertex : (a b : Vertex) → Dec (a ≡ b)
open Path Edge public
|
{
"alphanum_fraction": 0.5538154897,
"avg_line_length": 31.6396396396,
"ext": "agda",
"hexsha": "d910fec225343c5503f082d54b60135b929aab46",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0196cf8a136a4933cd6358e4c9692aaf919ca603",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "kcsmnt0/graph",
"max_forks_repo_path": "src/Data/Graph.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0196cf8a136a4933cd6358e4c9692aaf919ca603",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "kcsmnt0/graph",
"max_issues_repo_path": "src/Data/Graph.agda",
"max_line_length": 83,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0196cf8a136a4933cd6358e4c9692aaf919ca603",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "kcsmnt0/graph",
"max_stars_repo_path": "src/Data/Graph.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1511,
"size": 3512
}
|
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommAlgebra.Instances.Unit where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Unit
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.Instances.Unit
open import Cubical.Algebra.CommAlgebra
private
variable
ℓ ℓ' : Level
open CommAlgebraStr
module _ (R : CommRing ℓ) where
UnitCommAlgebra : CommAlgebra R ℓ'
UnitCommAlgebra = commAlgebraFromCommRing
UnitCommRing
(λ _ _ → tt*) (λ _ _ _ → refl) (λ _ _ _ → refl)
(λ _ _ _ → refl) (λ _ → refl) (λ _ _ _ → refl)
|
{
"alphanum_fraction": 0.722675367,
"avg_line_length": 23.5769230769,
"ext": "agda",
"hexsha": "cbccbeaf919d66402d38856b9ab177a88e92ce8c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "howsiyu/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommAlgebra/Instances/Unit.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "howsiyu/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommAlgebra/Instances/Unit.agda",
"max_line_length": 55,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "howsiyu/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommAlgebra/Instances/Unit.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 185,
"size": 613
}
|
factorial : ℕ → ℕ
factorial zero = 1
factorial (suc n) = suc n * factorial n
|
{
"alphanum_fraction": 0.6753246753,
"avg_line_length": 19.25,
"ext": "agda",
"hexsha": "7d45856f0af3eac00104077867aabab96725355e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9ad63ea473a958506c041077f1d810c0c7c8c18d",
"max_forks_repo_licenses": [
"Info-ZIP"
],
"max_forks_repo_name": "seanwallawalla-forks/RosettaCodeData",
"max_forks_repo_path": "Task/Factorial/Agda/factorial.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9ad63ea473a958506c041077f1d810c0c7c8c18d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Info-ZIP"
],
"max_issues_repo_name": "seanwallawalla-forks/RosettaCodeData",
"max_issues_repo_path": "Task/Factorial/Agda/factorial.agda",
"max_line_length": 39,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9ad63ea473a958506c041077f1d810c0c7c8c18d",
"max_stars_repo_licenses": [
"Info-ZIP"
],
"max_stars_repo_name": "LaudateCorpus1/RosettaCodeData",
"max_stars_repo_path": "Task/Factorial/Agda/factorial.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T13:42:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-05-05T13:42:20.000Z",
"num_tokens": 28,
"size": 77
}
|
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-}
module Cubical.Data.Queue.Truncated2List where
open import Cubical.Foundations.Everything
open import Cubical.Foundations.SIP
open import Cubical.Structures.Queue
open import Cubical.Data.Maybe
open import Cubical.Data.List
open import Cubical.Data.Sigma
open import Cubical.Data.Queue.1List
module Truncated2List {ℓ} (A : Type ℓ) (Aset : isSet A) where
open Queues-on A Aset
data Q : Type ℓ where
Q⟨_,_⟩ : (xs ys : List A) → Q
tilt : ∀ xs ys z → Q⟨ xs ++ [ z ] , ys ⟩ ≡ Q⟨ xs , ys ++ [ z ] ⟩
trunc : (q q' : Q) (α β : q ≡ q') → α ≡ β
multitilt : (xs ys zs : List A) → Q⟨ xs ++ rev zs , ys ⟩ ≡ Q⟨ xs , ys ++ zs ⟩
multitilt xs ys [] = cong₂ Q⟨_,_⟩ (++-unit-r xs) (sym (++-unit-r ys))
multitilt xs ys (z ∷ zs) =
cong (λ ws → Q⟨ ws , ys ⟩) (sym (++-assoc xs (rev zs) [ z ]))
∙ tilt (xs ++ rev zs) ys z
∙ multitilt xs (ys ++ [ z ]) zs
∙ cong (λ ws → Q⟨ xs , ws ⟩) (++-assoc ys [ z ] zs)
-- enq into the first list, deq from the second if possible
emp : Q
emp = Q⟨ [] , [] ⟩
enq : A → Q → Q
enq a Q⟨ xs , ys ⟩ = Q⟨ a ∷ xs , ys ⟩
enq a (tilt xs ys z i) = tilt (a ∷ xs) ys z i
enq a (trunc q q' α β i j) =
trunc _ _ (cong (enq a) α) (cong (enq a) β) i j
deqFlush : List A → Maybe (Q × A)
deqFlush [] = nothing
deqFlush (x ∷ xs) = just (Q⟨ [] , xs ⟩ , x)
deq : Q → Maybe (Q × A)
deq Q⟨ xs , [] ⟩ = deqFlush (rev xs)
deq Q⟨ xs , y ∷ ys ⟩ = just (Q⟨ xs , ys ⟩ , y)
deq (tilt xs [] z i) = path i
where
path : deqFlush (rev (xs ++ [ z ])) ≡ just (Q⟨ xs , [] ⟩ , z)
path =
cong deqFlush (rev-++ xs [ z ])
∙ cong (λ q → just (q , z)) (sym (multitilt [] [] (rev xs)))
∙ cong (λ ys → just (Q⟨ ys , [] ⟩ , z)) (rev-rev xs)
deq (tilt xs (y ∷ ys) z i) = just (tilt xs ys z i , y)
deq (trunc q q' α β i j) =
isOfHLevelMaybe 0
(isSetΣ trunc λ _ → Aset)
(deq q) (deq q') (cong deq α) (cong deq β)
i j
Raw : RawQueue
Raw = (Q , emp , enq , deq)
-- We construct an equivalence to 1Lists and prove this is an equivalence of queue structures
private
module One = 1List A Aset
open One renaming (Q to Q₁; emp to emp₁; enq to enq₁; deq to deq₁) using ()
quot : Q₁ → Q
quot xs = Q⟨ xs , [] ⟩
eval : Q → Q₁
eval Q⟨ xs , ys ⟩ = xs ++ rev ys
eval (tilt xs ys z i) = path i
where
path : (xs ++ [ z ]) ++ rev ys ≡ xs ++ rev (ys ++ [ z ])
path =
++-assoc xs [ z ] (rev ys)
∙ cong (_++_ xs) (sym (rev-++ ys [ z ]))
eval (trunc q q' α β i j) = -- truncated case
isOfHLevelList 0 Aset (eval q) (eval q') (cong eval α) (cong eval β) i j
quot∘eval : ∀ q → quot (eval q) ≡ q
quot∘eval Q⟨ xs , ys ⟩ = multitilt xs [] ys
quot∘eval (tilt xs ys z i) = -- truncated case
isOfHLevelPathP'
{A = λ i → quot (eval (tilt xs ys z i)) ≡ tilt xs ys z i}
0
(trunc _ _)
(multitilt (xs ++ [ z ]) [] ys) (multitilt xs [] (ys ++ [ z ]))
.fst i
quot∘eval (trunc q q' α β i j) = -- truncated case
isOfHLevelPathP'
{A = λ i →
PathP (λ j → quot (eval (trunc q q' α β i j)) ≡ trunc q q' α β i j)
(quot∘eval q) (quot∘eval q')}
0
(isOfHLevelPathP' 1 (isOfHLevelSuc 2 trunc _ _) _ _)
(cong quot∘eval α) (cong quot∘eval β)
.fst i j
eval∘quot : ∀ xs → eval (quot xs) ≡ xs
eval∘quot = ++-unit-r
-- We get our desired equivalence
quotEquiv : Q₁ ≃ Q
quotEquiv = isoToEquiv (iso quot eval quot∘eval eval∘quot)
-- Now it only remains to prove that this is an equivalence of queue structures
quot∘emp : quot emp₁ ≡ emp
quot∘emp = refl
quot∘enq : ∀ x xs → quot (enq₁ x xs) ≡ enq x (quot xs)
quot∘enq x xs = refl
quot∘deq : ∀ xs → deqMap quot (deq₁ xs) ≡ deq (quot xs)
quot∘deq [] = refl
quot∘deq (x ∷ []) = refl
quot∘deq (x ∷ x' ∷ xs) =
deqMap-∘ quot (enq₁ x) (deq₁ (x' ∷ xs))
∙ sym (deqMap-∘ (enq x) quot (deq₁ (x' ∷ xs)))
∙ cong (deqMap (enq x)) (quot∘deq (x' ∷ xs))
∙ lemma x x' (rev xs)
where
lemma : ∀ x x' ys
→ deqMap (enq x) (deqFlush (ys ++ [ x' ]))
≡ deqFlush ((ys ++ [ x' ]) ++ [ x ])
lemma x x' [] i = just (tilt [] [] x i , x')
lemma x x' (y ∷ ys) i = just (tilt [] (ys ++ [ x' ]) x i , y)
quotEquivHasQueueEquivStr : RawQueueEquivStr One.Raw Raw quotEquiv
quotEquivHasQueueEquivStr = quot∘emp , quot∘enq , quot∘deq
-- And we get a path between the raw 1Lists and 2Lists
Raw-1≡2 : One.Raw ≡ Raw
Raw-1≡2 = sip rawQueueUnivalentStr _ _ (quotEquiv , quotEquivHasQueueEquivStr)
-- We derive the axioms for 2List from those for 1List
WithLaws : Queue
WithLaws = Q , str Raw , subst (uncurry QueueAxioms) Raw-1≡2 (snd (str One.WithLaws))
WithLaws-1≡2 : One.WithLaws ≡ WithLaws
WithLaws-1≡2 = sip queueUnivalentStr _ _ (quotEquiv , quotEquivHasQueueEquivStr)
Finite : FiniteQueue
Finite = Q , str WithLaws , subst (uncurry FiniteQueueAxioms) WithLaws-1≡2 (snd (str One.Finite))
|
{
"alphanum_fraction": 0.57181015,
"avg_line_length": 32.2317880795,
"ext": "agda",
"hexsha": "dd0b469e5cd48fca6abb8a9a0d714aa9362ed747",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Data/Queue/Truncated2List.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Data/Queue/Truncated2List.agda",
"max_line_length": 98,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Data/Queue/Truncated2List.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1961,
"size": 4867
}
|
module Soundness where
{-
open import Relation.Binary.PropositionalEquality
open import Data.Nat hiding (_>_)
-}
open import StdLibStuff
open import Syntax
open import STT
open import FSC
open import DerivedProps
open import HelpDefs
mutual
sound : {n : ℕ} {Γ-t : Ctx n} (Γ : FSC-Ctx n Γ-t) (F : Form Γ-t $o) →
Γ ⊢ F →
⊢ (hypos Γ F)
sound Γ .(F || G) (||-I-l {F} {G} p) = inf-V (traverse-hypos F (F || G) Γ ax-2-s) (sound Γ F p)
sound Γ .(F || G) (||-I-r {F} {G} p) = inf-V (traverse-hypos G (F || G) Γ (inf-V (inf-V ax-4-s ax-3-s) ax-2-s)) (sound Γ G p)
sound Γ .(F & G) (&-I {F} {G} pF pG) = inf-V (inf-V (traverse-hypos-pair-I F G Γ) (sound Γ F pF)) (sound Γ G pG)
sound Γ .(F => G) (=>-I {F} {G} p) = sound (F ∷h Γ) G p
sound Γ .(~ F) (~-I {F} p) = inf-V (traverse-hypos (F => $false) (~ F) Γ (lem10 F)) (sound (F ∷h Γ) $false p)
sound Γ .(![ t ] F) (!-I {t} {F} p) = traverse-=>-I-dep t F Γ (inf-VI-s (sound (t ∷ Γ) F p))
sound Γ .(!'[ t ] F) (!'-I {t} {F} p) = traverse-=>-I-dep' t F Γ (sound (t ∷ Γ) (weak F · $ this {refl}) p)
sound Γ F (elim x p) = inf-V (traverse-hypos-elim F Γ x) (sound-elim Γ (lookup-hyp Γ x) F p)
sound Γ F (ac {t} p) = inf-V (traverse-hypos ((![ t > $o ] ((?[ t ] (var (next this) refl · var this refl)) => (var this refl · (ι t (var (next this) refl · var this refl))))) => F) F Γ (inf-V (lemb3 (![ t > $o ] ((?[ t ] (var (next this) refl · var this refl)) => (var this refl · ι t (var (next this) refl · var this refl)))) F) (inf-VI-s (ax-11-s {_} {(t > $o) ∷ _} {t} {var (next this) refl · var this refl})))) (sound-elim Γ (![ t > $o ] ((?[ t ] (var (next this) refl · var this refl)) => (var this refl · (ι t (var (next this) refl · var this refl))))) F p)
sound Γ F (ac' {t} p) = inf-V (traverse-hypos ((![ t > $o ] ((?[ t ] ($ (next this) {refl} · $ this {refl})) => ($ this {refl} · ι' t ($ this {refl})))) => F) F Γ (inf-V (lemb3 (![ t > $o ] ((?[ t ] ($ (next this) {refl} · $ this {refl})) => ($ this {refl} · ι' t ($ this {refl})))) F) (inf-VI-s (ax-11-s2 ($ this {refl}))))) (sound-elim Γ (![ t > $o ] ((?[ t ] ($ (next this) {refl} · $ this {refl})) => ($ this {refl} · ι' t ($ this {refl})))) F p)
sound Γ .(?[ t ] F) (?-I {t} {F} G p) = inf-V (traverse-hypos (sub G F) (?[ t ] F) Γ (inf-V ax-3-s (ax-5-s (~ F) G))) (sound Γ (sub G F) p)
sound Γ .(?'[ t ] F) (?'-I {t} {F} G p) = inf-V (traverse-hypos (app F G) (?'[ t ] F) Γ (inf-V ax-3-s (ax-5-s2 F G))) (sound Γ (app F G) p)
sound Γ .$true $true-I = traverse-hypos-use $true Γ (inf-VI-s (inf-V (inf-V ax-4-s ax-1-s) ax-2-s))
sound Γ .(F == G) (==-I {t} {F} {G} p) = sound-== Γ t F G p
sound Γ .(F ((^[ t ] G) · H)) (reduce {t} {u} {F} {G} {H} p) = inf-V (traverse-hypos (F (sub H G)) (F ((^[ t ] G) · H)) Γ (inf-III-samectx (λ x → (F x)) G H)) (sound Γ (F (sub H G)) p)
sound Γ F (raa p) = inf-V (traverse-hypos (~ (~ F)) F Γ (lemb2 F)) (sound _ _ p)
sound-elim : ∀ {n Γ-t} → (Γ : FSC-Ctx n Γ-t) (F G : Form Γ-t $o) →
Γ , F ⊢ G →
⊢ (hypos Γ (F => G))
sound-elim Γ F G (use p) = inf-V (traverse-hypos (G == F) (F => G) Γ (lem13 F G)) (sound-↔ Γ $o G F p)
sound-elim Γ .(F & G) H (&-E-l {F} {G} p) = inf-V (traverse-hypos (F => H) ((F & G) => H) Γ (lem6 F G H)) (sound-elim Γ F H p)
sound-elim Γ .(F & G) H (&-E-r {F} {G} p) = inf-V (traverse-hypos (G => H) ((F & G) => H) Γ (lem6b F G H)) (sound-elim Γ G H p)
sound-elim Γ .(F => G) H (=>-E {F} {G} p₁ p₂) = inf-V (inf-V (traverse-hypos2 F (G => H) ((F => G) => H) Γ (lem7 F G H)) (sound Γ F p₁)) (sound-elim Γ G H p₂)
sound-elim Γ .(~ F) H (~-E {F} p) = inf-V (traverse-hypos F (~ F => H) Γ (lemb4 F H)) (sound Γ F p)
sound-elim Γ .(![ t ] F) H (!-E {t} {F} G p) = inf-V (traverse-hypos (sub G F => H) (![ t ] F => H) Γ (inf-V (lem9 (![ t ] F) (sub G F) H) (ax-5-s F G))) (sound-elim Γ (sub G F) H p)
sound-elim Γ .(!'[ t ] F) H (!'-E {t} {F} G p) = inf-V (traverse-hypos ((F · G) => H) (!'[ t ] F => H) Γ (inf-V (lem9 (!'[ t ] F) (F · G) H) (ax-5-s3 F G))) (sound-elim Γ (F · G) H p)
sound-elim Γ .$false H $false-E = traverse-hypos-use ($false => H) Γ (lem11 H)
sound-elim Γ .(F || G) H (||-E {F} {G} p₁ p₂) = inf-V (inf-V (traverse-hypos2 (F => H) (G => H) ((F || G) => H) Γ (lemb5 F G H)) (sound _ _ p₁)) (sound _ _ p₂)
sound-elim Γ .(?[ t ] F) H (?-E {t} {F} p) = inf-V (traverse-hypos (sub (ι t F) F => H) (?[ t ] F => H) Γ (inf-V (lem9 (?[ t ] F) (sub (ι t F) F) H) (ax-11-s {_} {_} {_} {F}))) (sound-elim Γ (sub (ι t F) F) H p)
sound-elim Γ .(?'[ t ] F) H (?'-E {t} {F} p) = inf-V (traverse-hypos ((F · ι' _ F) => H) (?'[ t ] F => H) Γ (inf-V (lem9 (?'[ t ] F) (F · ι' t F) H) (ax-11-s2 F))) (sound-elim Γ (F · ι' _ F) H p)
sound-elim Γ .(F ((^[ t ] G) · H)) I (reduce {t} {u} {F} {G} {H} p) = inf-V (traverse-hypos (F (sub H G) => I) (F ((^[ t ] G) · H) => I) Γ (inf-V (lem9 (F ((^[ t ] G) · H)) (F (sub H G)) I) (inf-II-samectx (λ x → (F x)) G H))) (sound-elim Γ (F (sub H G)) I p)
sound-elim Γ .(F == G) H (r-bool-ext {F} {G} p) = inf-V (traverse-hypos (((F => G) & (G => F)) => H) ((F == G) => H) Γ (inf-V (lem9 (F == G) ((F => G) & (G => F)) H) (inf-V (lem2 (F == G) (F => G) (G => F)) (inf-V (inf-V (lemb1 ((F == G) => (F => G)) ((F == G) => (G => F))) (inf-V ax-3-s (inf-V (inf-V ax-4-s (inf-V (lem5 (F == G) (G == F)) (lem15 F G))) (inf-V ax-3-s (lem13 F G))))) (lem13 G F))))) (sound-elim Γ ((F => G) & (G => F)) H p)
sound-elim Γ .(F == G) H (r-fun-ext {t} {u} {F} {G} I p) = inf-V (traverse-hypos (((F · I) == (G · I)) => H) ((F == G) => H) Γ (inf-V (lem9 (F == G) ((F · I) == (G · I)) H) (inf-V (inf-V (lem4 (F == G) (I == I) ((F · I) == (G · I))) (lem16 F G I I)) (lem12 I)))) (sound-elim Γ ((F · I) == (G · I)) H p)
sound-== : ∀ {n Γ-t} → (Γ : FSC-Ctx n Γ-t) (t : Type n) (F G : Form Γ-t t) →
Γ ⊢ t ∋ F == G →
⊢ (hypos Γ (F == G))
sound-== Γ t F G (simp p) = sound-↔ Γ t F G p
sound-== Γ t F G (step F' G' x p₁ p₂ p₃) = inf-V (inf-V (inf-V (traverse-hypos3 (F == F') (F' == G') (G' == G) (F == G) Γ (lem14 F F' G' G)) (sound-↔ Γ t F F' p₂)) (inf-V (traverse-hypos-elim (F' == G') Γ x) (sound-==-elim Γ (lookup-hyp Γ x) t F' G' p₁))) (sound-== Γ t G' G p₃)
sound-== Γ .$o F G (bool-ext p) = inf-V (traverse-hypos ((F => G) & (G => F)) (F == G) Γ ax-10-a-s) (sound _ _ p)
sound-== Γ .(t > u) F G (fun-ext {t} {u} p) = inf-V (traverse-hypos (![ t ] (((weak F) · $ this {refl}) == ((weak G) · $ this {refl}))) (F == G) Γ ax-10-b-s2) (traverse-=>-I-dep t ((weak F · $ this {refl}) == (weak G · $ this {refl})) Γ (inf-VI-s (sound-== (t ∷ Γ) u (weak F · $ this {refl}) (weak G · $ this {refl}) p)))
sound-↔ : ∀ {n Γ-t} → (Γ : FSC-Ctx n Γ-t) (t : Type n) (F G : Form Γ-t t) →
Γ ⊢ t ∋ F ↔ G →
⊢ (hypos Γ (F == G))
sound-↔ Γ t .(var x p) .(var x p) (head-var ._ x p) = traverse-hypos-use (var x p == var x p) Γ (lem12 (var x p))
sound-↔ Γ .t .c .c (head-const t c) = traverse-hypos-use (c == c) Γ (lem12 c)
sound-↔ Γ .t₂ .(F₁ · G₁) .(F₂ · G₂) (head-app t₁ t₂ F₁ F₂ G₁ G₂ p₁ p₂) = inf-V (inf-V (traverse-hypos2 (F₁ == F₂) (G₁ == G₂) ((F₁ · G₁) == (F₂ · G₂)) Γ (lem16 F₁ F₂ G₁ G₂)) (sound-== Γ _ F₁ F₂ p₁)) (sound-== Γ _ G₁ G₂ p₂)
sound-↔ Γ .(t₁ > t₂) .(lam t₁ F₁) .(lam t₁ F₂) (head-lam t₁ t₂ F₁ F₂ p) = traverse-hypos-eq-=>-I F₁ F₂ Γ (sound-== (t₁ ∷ Γ) t₂ F₁ F₂ p)
sound-↔ Γ .(t₁ > t₂) .F₁ .(lam t₁ F₂) (head-lam-eta-left t₁ t₂ F₁ F₂ p) = inf-V (traverse-hypos (![ t₁ ] ((weak F₁ · $ this {refl}) == F₂)) (F₁ == lam t₁ F₂) Γ (inf-V (inf-V ax-4-s ax-10-b-s2) (subst (λ z → ⊢ ((![ t₁ ] ((weak F₁ · $ this {refl}) == z)) => (![ t₁ ] ((weak F₁ · $ this {refl}) == (weak (^[ t₁ ] F₂) · $ this {refl}))))) (sub-sub-weak-weak-p-3 F₂) (inf-III _ (t₁ ∷ ε) (λ z → ![ t₁ ] ((weak F₁ · $ this {refl}) == z)) (weak-i (t₁ ∷ ε) _ F₂) ($ this {refl}))))) (tst3' {_} {_} {ε} ((weak F₁ · $ this {refl}) == F₂) Γ refl (sound-== (t₁ ∷ Γ) t₂ (weak F₁ · $ this {refl}) F₂ p))
sound-↔ Γ .(t₁ > t₂) .(lam t₁ F₂) .F₁ (head-lam-eta-right t₁ t₂ F₁ F₂ p) = inf-V (traverse-hypos (![ t₁ ] (F₂ == (weak F₁ · $ this {refl}))) (lam t₁ F₂ == F₁) Γ (inf-V (inf-V ax-4-s ax-10-b-s2) (subst (λ z → ⊢ ((![ t₁ ] (z == (weak F₁ · $ this {refl}))) => (![ t₁ ] ((weak (^[ t₁ ] F₂) · $ this {refl}) == (weak F₁ · $ this {refl}))))) (sub-sub-weak-weak-p-3 F₂) (inf-III _ (t₁ ∷ ε) (λ z → ![ t₁ ] (z == (weak F₁ · $ this {refl}))) (weak-i (t₁ ∷ ε) _ F₂) ($ this {refl}))))) (tst3' {_} {_} {ε} (F₂ == (weak F₁ · $ this {refl})) Γ refl (sound-== (t₁ ∷ Γ) t₂ F₂ (weak F₁ · $ this {refl}) p))
sound-↔ Γ t .(F₁ ((^[ u ] G') · H)) G (reduce-l {.t} {u} {v} {F₁} {G'} {H} p) = inf-V (traverse-hypos (F₁ (sub H G') == G) (F₁ ((^[ u ] G') · H) == G) Γ (inf-III-samectx (λ x → (F₁ x == G)) G' H)) (sound-↔ Γ t (F₁ (sub H G')) G p)
sound-↔ Γ t F .(F₂ ((^[ u ] G) · H)) (reduce-r {.t} {u} {v} {F₂} {G} {H} p) = inf-V (traverse-hypos (F == F₂ (sub H G)) (F == F₂ ((^[ u ] G) · H)) Γ (inf-III-samectx (λ x → (F == F₂ x)) G H)) (sound-↔ Γ t F (F₂ (sub H G)) p)
sound-==-elim : ∀ {n Γ-t} → (Γ : FSC-Ctx n Γ-t) (F : Form Γ-t $o) (t : Type n) (G H : Form Γ-t t) →
Γ , F ⊢ G == H →
⊢ (hypos Γ (F => (G == H)))
sound-==-elim Γ .(G == H) t G H use = traverse-hypos-use ((G == H) => (G == H)) Γ (inf-V (inf-V ax-4-s ax-1-s) ax-2-s)
sound-==-elim Γ F t G H (use' p) = traverse-hypos-use (F => (G == H)) Γ (hn-form (λ z → z => (G == H)) _ 2 (subst (λ z → ⊢ (z => (G == H))) p (hn-form (λ z → headNorm 2 (G == H) => z) _ 2 (inf-V (inf-V ax-4-s ax-1-s) ax-2-s))))
sound-==-elim Γ .(H == G) t G H use-sym = traverse-hypos-use ((H == G) => (G == H)) Γ (lem15 H G)
sound-==-elim Γ .(F & G') t G H (&-E-l {F} {G'} p) = inf-V (traverse-hypos (F => (G == H)) ((F & G') => (G == H)) Γ (lem6 F G' (G == H))) (sound-==-elim Γ F t G H p)
sound-==-elim Γ .(F & G') t G H (&-E-r {F} {G'} p) = inf-V (traverse-hypos (G' => (G == H)) ((F & G') => (G == H)) Γ (lem6b F G' (G == H))) (sound-==-elim Γ G' t G H p)
sound-==-elim Γ .(F => G') t G H (=>-E {F} {G'} p₁ p₂) = inf-V (inf-V (traverse-hypos2 F (G' => (G == H)) ((F => G') => (G == H)) Γ (lem7 F G' (G == H))) (sound Γ F p₁)) (sound-==-elim Γ G' t G H p₂)
sound-==-elim Γ .(![ u ] F) t G H (!-E {u} {F} G' p) = inf-V (traverse-hypos (sub G' F => (G == H)) (![ u ] F => (G == H)) Γ (inf-V (lem9 (![ u ] F) (sub G' F) (G == H)) (ax-5-s F G'))) (sound-==-elim Γ (sub G' F) t G H p)
sound-==-elim Γ .(!'[ u ] F) t G H (!'-E {u} {F} G' p) = inf-V (traverse-hypos ((F · G') => (G == H)) (!'[ u ] F => (G == H)) Γ (inf-V (lem9 (!'[ u ] F) (F · G') (G == H)) (ax-5-s3 F G'))) (sound-==-elim Γ (F · G') t G H p)
sound-==-elim Γ .(?[ u ] F) t G H (?-E {u} {F} p) = inf-V (traverse-hypos (sub (ι u F) F => (G == H)) (?[ u ] F => (G == H)) Γ (inf-V (lem9 (?[ u ] F) (sub (ι u F) F) (G == H)) (ax-11-s {_} {_} {_} {F}))) (sound-==-elim Γ (sub (ι u F) F) t G H p)
sound-==-elim Γ .(?'[ u ] F) t G H (?'-E {u} {F} p) = inf-V (traverse-hypos ((F · ι' u F) => (G == H)) (?'[ u ] F => (G == H)) Γ (inf-V (lem9 (?'[ u ] F) (F · ι' u F) (G == H)) (ax-11-s2 F))) (sound-==-elim Γ (F · ι' u F) t G H p)
sound-==-elim Γ .(F ((^[ u ] G') · H')) t G H (reduce {u} {v} {F} {G'} {H'} p) = inf-V (traverse-hypos (F (sub H' G') => (G == H)) (F ((^[ u ] G') · H') => (G == H)) Γ (inf-V (lem9 (F ((^[ u ] G') · H')) (F (sub H' G')) (G == H)) (inf-II-samectx (λ x → (F x)) G' H'))) (sound-==-elim Γ (F (sub H' G')) t G H p)
sound-==-elim Γ .(F == G) t H I (r-bool-ext {F} {G} p) = inf-V (traverse-hypos (((F => G) & (G => F)) => (H == I)) ((F == G) => (H == I)) Γ (inf-V (lem9 (F == G) ((F => G) & (G => F)) (H == I)) (inf-V (lem2 (F == G) (F => G) (G => F)) (inf-V (inf-V (lemb1 ((F == G) => (F => G)) ((F == G) => (G => F))) (inf-V ax-3-s (inf-V (inf-V ax-4-s (inf-V (lem5 (F == G) (G == F)) (lem15 F G))) (inf-V ax-3-s (lem13 F G))))) (lem13 G F))))) (sound-==-elim Γ ((F => G) & (G => F)) t H I p)
sound-==-elim Γ .(F == G) t H I (r-fun-ext {u} {v} {F} {G} J p) = inf-V (traverse-hypos (((F · J) == (G · J)) => (H == I)) ((F == G) => (H == I)) Γ (inf-V (lem9 (F == G) ((F · J) == (G · J)) (H == I)) (inf-V (inf-V (lem4 (F == G) (J == J) ((F · J) == (G · J))) (lem16 F G J J)) (lem12 J)))) (sound-==-elim Γ ((F · J) == (G · J)) t H I p)
sound-top : {n : ℕ} (F : Form {n} ε $o) →
ε ⊢ F →
⊢ F
sound-top = sound ε
|
{
"alphanum_fraction": 0.4554512516,
"avg_line_length": 121.44,
"ext": "agda",
"hexsha": "9f2bb374843069b82491d1291a4e0b4c594a52a3",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-01-15T11:51:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-17T20:28:10.000Z",
"max_forks_repo_head_hexsha": "032efd5f42e4b56d436ac8e0c3c0f5127b8dc1f7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "frelindb/agsyHOL",
"max_forks_repo_path": "soundness/Soundness.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "032efd5f42e4b56d436ac8e0c3c0f5127b8dc1f7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "frelindb/agsyHOL",
"max_issues_repo_path": "soundness/Soundness.agda",
"max_line_length": 590,
"max_stars_count": 17,
"max_stars_repo_head_hexsha": "032efd5f42e4b56d436ac8e0c3c0f5127b8dc1f7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "frelindb/agsyHOL",
"max_stars_repo_path": "soundness/Soundness.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-19T20:53:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-04T14:38:28.000Z",
"num_tokens": 5726,
"size": 12144
}
|
{-# OPTIONS --show-implicit #-}
-- {-# OPTIONS -v tc.polarity:10 #-}
module Issue44 where
data Ty : Set where
ι : Ty
_⇒_ : Ty -> Ty -> Ty
data Con : Set where
ε : Con
_<_ : Con -> Ty -> Con
data Var : Con -> Ty -> Set where
vZ : forall {Γ σ} -> Var (Γ < σ) σ
vS : forall {Γ σ}{τ : Ty} -> Var Γ σ -> Var (Γ < τ) σ
{-
stren : forall {Γ σ} -> Var Γ σ -> Con
stren (vZ {Γ}) = Γ
stren (vS {τ = τ} v) = stren v < τ
_/_ : forall Γ {σ} -> Var Γ σ -> Con
Γ / v = stren v
-}
-- However if I make stren a local function:
_/_ : forall Γ {σ} -> Var Γ σ -> Con
Γ / v = stren v where
stren : forall {Γ σ} -> Var Γ σ -> Con
stren (vZ {Γ}) = Γ
stren (vS {τ = τ} v) = stren v < τ
thin : forall {Γ σ τ}(v : Var Γ σ) -> Var (Γ / v) τ -> Var Γ τ
thin vZ v' = vS v'
thin (vS v) vZ = vZ
thin (vS v) (vS v') = vS (thin v v')
|
{
"alphanum_fraction": 0.5126964933,
"avg_line_length": 21.7631578947,
"ext": "agda",
"hexsha": "d1345972aca5222273349cc82fd57c1e6f4774d0",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue44.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue44.agda",
"max_line_length": 62,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue44.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 351,
"size": 827
}
|
open import Agda.Builtin.Nat
open import Agda.Builtin.FromNat
open import Data.Unit using (⊤)
open import Function using (const)
module Data.Nat.FromNat where
instance
NumberNat : Number Nat
NumberNat = record { Constraint = const ⊤ ; fromNat = λ n → n }
|
{
"alphanum_fraction": 0.7432950192,
"avg_line_length": 23.7272727273,
"ext": "agda",
"hexsha": "392fa60e7c95956e61144a43ab79c261e8437dfa",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-09-05T08:58:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-05T08:58:13.000Z",
"max_forks_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "pepijnkokke/nodcap",
"max_forks_repo_path": "src/cpnd1/Data/Nat/FromNat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "pepijnkokke/nodcap",
"max_issues_repo_path": "src/cpnd1/Data/Nat/FromNat.agda",
"max_line_length": 65,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "wenkokke/nodcap",
"max_stars_repo_path": "src/cpnd1/Data/Nat/FromNat.agda",
"max_stars_repo_stars_event_max_datetime": "2019-09-24T20:16:35.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-09-05T08:58:11.000Z",
"num_tokens": 72,
"size": 261
}
|
module _ where
open import Agda.Builtin.IO
open import Agda.Builtin.String
open import Agda.Builtin.Unit
data D (A : Set) : Set where
L : A → D A
R : A → D A
data T : Set where
Var : (s : D String) → T
test : T → String
test (Var (L "abc")) = ""
test (Var (L s)) = ""
test (Var (R s)) = ""
|
{
"alphanum_fraction": 0.5880398671,
"avg_line_length": 15.8421052632,
"ext": "agda",
"hexsha": "38bc22caa15419d21060b8c2d87b8d27d0d4ab04",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2953.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2953.agda",
"max_line_length": 31,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2953.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 108,
"size": 301
}
|
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl)
open import Data.Nat using (ℕ; zero; suc)
open import Relation.Nullary using (Dec; yes; no)
data _≤_ : ℕ → ℕ → Set where
z≤n : ∀ {n : ℕ} → zero ≤ n
s≤s : ∀ {m n : ℕ} → m ≤ n → suc m ≤ suc n
_≤?_ : ∀ (m n : ℕ) → Dec (m ≤ n)
zero ≤? n = yes z≤n
suc m ≤? zero = no λ()
suc m ≤? suc n with m ≤? n
... | yes m≤n = yes (s≤s m≤n)
... | no ¬m≤n = no λ{ (s≤s m≤n) → ¬m≤n m≤n }
_ : 2 ≤? 4 ≡ yes (s≤s (s≤s z≤n))
_ = refl
_ : 4 ≤? 2 ≡ no {!!}
_ = refl
{-
Using ^C ^N, the term
4 ≤? 2
evaluates to
no (λ { (s≤s m≤n) → (λ { (s≤s m≤n) → (λ ()) 1 m≤n }) m≤n })
The 1 is spurious.
-}
|
{
"alphanum_fraction": 0.4984802432,
"avg_line_length": 21.9333333333,
"ext": "agda",
"hexsha": "9160fe4dc46f708081c3128f8be0187430390de3",
"lang": "Agda",
"max_forks_count": 304,
"max_forks_repo_forks_event_max_datetime": "2022-03-28T11:35:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-07-16T18:24:59.000Z",
"max_forks_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "manikdv/plfa.github.io",
"max_forks_repo_path": "extra/extra/DecidableBroken.agda",
"max_issues_count": 323,
"max_issues_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T07:42:57.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-05T22:34:34.000Z",
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "manikdv/plfa.github.io",
"max_issues_repo_path": "extra/extra/DecidableBroken.agda",
"max_line_length": 61,
"max_stars_count": 1003,
"max_stars_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "manikdv/plfa.github.io",
"max_stars_repo_path": "extra/extra/DecidableBroken.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-27T07:03:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-07-05T18:15:14.000Z",
"num_tokens": 330,
"size": 658
}
|
module Matrix where
open import Data.Nat
open import Data.Vec
Matrix : (A : Set) → ℕ → ℕ → Set
Matrix A m n = Vec (Vec A m) n
transpose : ∀ {A m n} → Matrix A m n → Matrix A n m
transpose [] = replicate []
transpose (xs ∷ xss) = zipWith _∷_ xs (transpose xss)
a = (1 ∷ 2 ∷ 3 ∷ []) ∷ (4 ∷ 5 ∷ 6 ∷ []) ∷ []
b = transpose a
|
{
"alphanum_fraction": 0.5753846154,
"avg_line_length": 21.6666666667,
"ext": "agda",
"hexsha": "0d86e59df63200ebaa6b07ee0cd76954933601b9",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-11-09T22:08:40.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-11-09T22:08:40.000Z",
"max_forks_repo_head_hexsha": "9ad63ea473a958506c041077f1d810c0c7c8c18d",
"max_forks_repo_licenses": [
"Info-ZIP"
],
"max_forks_repo_name": "seanwallawalla-forks/RosettaCodeData",
"max_forks_repo_path": "Task/Matrix-transposition/Agda/matrix-transposition-1.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9ad63ea473a958506c041077f1d810c0c7c8c18d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Info-ZIP"
],
"max_issues_repo_name": "seanwallawalla-forks/RosettaCodeData",
"max_issues_repo_path": "Task/Matrix-transposition/Agda/matrix-transposition-1.agda",
"max_line_length": 53,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9ad63ea473a958506c041077f1d810c0c7c8c18d",
"max_stars_repo_licenses": [
"Info-ZIP"
],
"max_stars_repo_name": "LaudateCorpus1/RosettaCodeData",
"max_stars_repo_path": "Task/Matrix-transposition/Agda/matrix-transposition-1.agda",
"max_stars_repo_stars_event_max_datetime": "2018-11-09T22:08:38.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-11-09T22:08:38.000Z",
"num_tokens": 126,
"size": 325
}
|
-- Andreas, 2015-07-01, Issue 1599:
-- abstract data needs to be positivity checked!
-- {-# OPTIONS -v tc.pos:80 #-}
data ⊥ : Set where
abstract
T : Set → Set
T X = X → ⊥
data D : Set where
lam : T D → D
app : D → D → ⊥
app (lam f) = f
omega : D
omega = lam λ x → app x x
Omega : ⊥
Omega = app omega omega
absurd : ⊥
absurd = Omega
|
{
"alphanum_fraction": 0.5509641873,
"avg_line_length": 13.4444444444,
"ext": "agda",
"hexsha": "445e385e62220ae736ceeaad9bab81ec8f9ec889",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/PositivityAbstract.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/PositivityAbstract.agda",
"max_line_length": 48,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/PositivityAbstract.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 135,
"size": 363
}
|
-- submitted by Nisse, 2011-06-21
-- {-# OPTIONS -v tc.lhs.unify:15 --show-implicit #-}
module Issue423 where
-- import Common.Level
------------------------------------------------------------------------
-- Prelude
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
record Σ (A : Set) (B : A → Set) : Set where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
curry : {A C : Set} {B : A → Set} →
(Σ A B → C) → ((x : A) → B x → C)
curry f x y = f (x , y)
uncurry : {A C : Set} {B : A → Set} →
((x : A) → (y : B x) → C) → (Σ A B → C)
uncurry f (x , y) = f x y
------------------------------------------------------------------------
-- Preliminaries
postulate
U : Set
El : U → Set
mutual
data Ctxt : Set where
_▻_ : (Γ : Ctxt) (σ : Type Γ) → Ctxt
Type : Ctxt → Set
Type Γ = Env Γ → U
Env : Ctxt → Set
Env (Γ ▻ σ) = Σ (Env Γ) λ γ → El (σ γ)
postulate
Γ : Ctxt
σ : Type Γ
------------------------------------------------------------------------
-- Problem
-- The following equalites hold definitionally.
curry∘uncurry : (τ : (γ : Env Γ) → El (σ γ) → U) →
curry (uncurry τ) ≡ τ
curry∘uncurry τ = refl
uncurry∘curry : (τ : Env (Γ ▻ σ) → U) →
uncurry (curry τ) ≡ τ
uncurry∘curry τ = refl
-- Bug was:
-- However, the two sides of curry∘uncurry behave differently.
works : (τ₁ τ₂ : (γ : Env Γ) → El (σ γ) → U) →
τ₁ ≡ τ₂ → Set₁
works τ .τ refl = Set
works′ : (τ₁ τ₂ : (γ : Env Γ) → El (σ γ) → U) →
curry (uncurry τ₁) ≡ τ₂ → Set₁
works′ τ .τ refl = Set
fails : (τ₁ τ₂ : (γ : Env Γ) → El (σ γ) → U) →
τ₁ ≡ curry (uncurry τ₂) → Set₁
fails τ .τ refl = Set
fails′ : (τ₁ τ₂ : (γ : Env Γ) → El (σ γ) → U) →
curry (uncurry τ₁) ≡ curry (uncurry τ₂) → Set₁
fails′ τ .τ refl = Set
-- Bug was:
-- I find it interesting that works′ works, whereas the symmetric
-- variant fails fails.
|
{
"alphanum_fraction": 0.4639874739,
"avg_line_length": 21.7727272727,
"ext": "agda",
"hexsha": "9e2a49b9ef0b6fdbcead462c31547f4d46b718c9",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue423.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue423.agda",
"max_line_length": 72,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue423.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 694,
"size": 1916
}
|
{-# OPTIONS --cubical --safe --postfix-projections #-}
module Relation.Nullary.Decidable.Base where
open import Level
open import Data.Bool
open import Data.Empty
data Reflects {a} (A : Type a) : Bool → Type a where
ofʸ : (p : A) → Reflects A true
ofⁿ : (¬p : ¬ A) → Reflects A false
record Dec {a} (A : Type a) : Type a where
constructor _because_
field
does : Bool
why : Reflects A does
open Dec public
pattern yes p = true because ofʸ p
pattern no ¬p = false because ofⁿ ¬p
map-reflects : ∀ {d} → (A → B) → (¬ A → ¬ B) → Reflects A d → Reflects B d
map-reflects to fro (ofʸ p) = ofʸ (to p)
map-reflects to fro (ofⁿ ¬p) = ofⁿ (fro ¬p)
map-dec : (A → B) → (¬ A → ¬ B) → Dec A → Dec B
map-dec to fro dec .does = dec .does
map-dec to fro dec .why = map-reflects to fro (dec .why)
⟦yes_,no_⟧ : (A → B) → (B → A) → Dec A → Dec B
⟦yes to ,no fro ⟧ = map-dec to λ ¬A ¬B → ¬A (fro ¬B)
∣_∣yes⇒_∣no⇒_ : Dec A → (A → B) → (¬ A → ¬ B) → Dec B
∣ d ∣yes⇒ y ∣no⇒ n = map-dec y n d
|
{
"alphanum_fraction": 0.5841584158,
"avg_line_length": 28.0555555556,
"ext": "agda",
"hexsha": "0c20ab0f85f392fa5b7b5e1442f7151de8326bda",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Relation/Nullary/Decidable/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Relation/Nullary/Decidable/Base.agda",
"max_line_length": 74,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Relation/Nullary/Decidable/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z",
"num_tokens": 419,
"size": 1010
}
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Numbers.Naturals.Definition
open import Numbers.Naturals.Order
open import Numbers.Naturals.Naturals -- for length
open import Lists.Lists
open import Orders.Partial.Definition
open import Orders.Total.Definition
open import Functions.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Groups.FinitePermutations
open import Boolean.Definition
module Lists.SortList where
isSorted : {a b : _} {A : Set a} (ord : TotalOrder A) (l : List A) → Set (a ⊔ b)
isSorted ord [] = True'
isSorted ord (x :: []) = True'
isSorted ord (x :: (y :: l)) = (TotalOrder._≤_ ord x y) && (isSorted ord (y :: l))
sortedTailIsSorted : {a b : _} {A : Set a} (ord : TotalOrder A) → (x : A) → (l : List A) → (isSorted ord (x :: l)) → isSorted ord l
sortedTailIsSorted ord x [] pr = record {}
sortedTailIsSorted ord x (y :: l) (fst ,, snd) = snd
insert : {a b : _} {A : Set a} (ord : TotalOrder A) → (l : List A) → (isSorted ord l) → (x : A) → List A
insert ord [] pr x = [ x ]
insert ord (y :: l) pr x with TotalOrder.totality ord x y
insert ord (y :: l) pr x | inl (inl x<y) = x :: (y :: l)
insert ord (y :: l) pr x | inl (inr y<x) = y :: insert ord l (sortedTailIsSorted ord y l pr) x
insert ord (y :: l) pr x | inr x=y = x :: (y :: l)
insertionIncreasesLength : {a b : _} {A : Set a} (ord : TotalOrder A) → (l : List A) → (x : A) → (pr : isSorted ord l) → length (insert ord l pr x) ≡ succ (length l)
insertionIncreasesLength ord [] x pr = refl
insertionIncreasesLength ord (y :: l) x pr with TotalOrder.totality ord x y
insertionIncreasesLength ord (y :: l) x pr | inl (inl x<y) = refl
insertionIncreasesLength ord (y :: l) x pr | inl (inr y<x) = applyEquality succ (insertionIncreasesLength ord l x (sortedTailIsSorted ord y l pr))
insertionIncreasesLength ord (y :: l) x pr | inr x=y = refl
isEmpty : {a : _} {A : Set a} (l : List A) → Bool
isEmpty [] = BoolTrue
isEmpty (x :: l) = BoolFalse
minList : {a b : _} {A : Set a} (ord : TotalOrder A) → (l : List A) → (isEmpty l ≡ BoolFalse) → A
minList ord [] ()
minList ord (x :: []) pr = x
minList ord (x :: (y :: l)) refl with minList ord (y :: l) refl
minList ord (x :: (y :: l)) refl | minSoFar with TotalOrder.totality ord x minSoFar
minList ord (x :: (y :: l)) refl | minSoFar | inl (inl x<m) = x
minList ord (x :: (y :: l)) refl | minSoFar | inl (inr m<x) = minSoFar
minList ord (x :: (y :: l)) refl | minSoFar | inr x=m = x
insertionSorts : {a b : _} {A : Set a} (ord : TotalOrder A) → (l : List A) → (pr : isSorted ord l) → (x : A) → isSorted ord (insert ord l pr x)
insertionSorts ord [] _ _ = record {}
insertionSorts ord (y :: l) pr x with TotalOrder.totality ord x y
insertionSorts ord (y :: l) pr x | inl (inl x<y) = inl x<y ,, pr
insertionSorts ord (y :: l) pr x | inl (inr y<x) with insertionSorts ord l (sortedTailIsSorted ord y l pr) x
... | bl = {!!}
insertionSorts ord (y :: l) pr x | inr x=y = inr x=y ,, pr
orderNotLessThanAndEqual : {a b : _} {A : Set a} (ord : TotalOrder A) → {x y : A} → (x ≡ y) → TotalOrder._<_ ord x y → False
orderNotLessThanAndEqual ord {x} {y} x=y x<y rewrite x=y = PartialOrder.irreflexive (TotalOrder.order ord) x<y
orderToDecidableEquality : {a b : _} {A : Set a} (ord : TotalOrder A) → {x y : A} → (x ≡ y) || ((x ≡ y) → False)
orderToDecidableEquality ord {x} {y} with TotalOrder.totality ord x y
orderToDecidableEquality ord {x} {y} | inl (inl x<y) = inr λ x=y → orderNotLessThanAndEqual ord x=y x<y
orderToDecidableEquality ord {x} {y} | inl (inr y<x) = inr λ x=y → orderNotLessThanAndEqual ord (equalityCommutative x=y) y<x
orderToDecidableEquality ord {x} {y} | inr x=y = inl x=y
--SortingAlgorithm : {a b : _} → Set (lsuc a ⊔ lsuc b)
--SortingAlgorithm {a} {b} = {A : Set a} → (ord : TotalOrder {a} {b} A) → (input : List A) → Sg (List A) (λ l → isSorted ord l && isPermutation (orderToDecidableEquality ord) l input)
insertionSort : {a b : _} {A : Set a} (ord : TotalOrder A) (l : List A) → List A
insertionSortIsSorted : {a b : _} {A : Set a} (ord : TotalOrder A) (l : List A) → isSorted ord (insertionSort ord l)
insertionSort ord [] = []
insertionSort ord (x :: l) = insert ord (insertionSort ord l) (insertionSortIsSorted ord l) x
insertionSortIsSorted ord [] = record {}
insertionSortIsSorted ord (x :: l) = insertionSorts ord (insertionSort ord l) (insertionSortIsSorted ord l) x
insertionSortLength : {a b : _} {A : Set a} (ord : TotalOrder A) (l : List A) → length l ≡ length (insertionSort ord l)
insertionSortLength ord [] = refl
insertionSortLength ord (x :: l) rewrite insertionIncreasesLength ord (insertionSort ord l) x (insertionSortIsSorted ord l) = {!!} --applyEquality succ (insertionSortLength ord l)
isPermutation : {a b : _} {A : Set a} (ord : TotalOrder A) → (l m : List A) → Set a
isPermutation ord l m = insertionSort ord l ≡ insertionSort ord m
--insertionSort : {a b : _} → SortingAlgorithm {a} {b}
--insertionSort {A = A} ord l = {!!}
-- where
-- lemma : Sg (List A) (isSorted ord) → (x : A) → Sg (List A) (isSorted ord)
-- lemma (l , b) x = insert ord l b x , insertionSorts ord l b x
--InsertionSort : {a b : _} → SortingAlgorithm {a} {b}
--InsertionSort ord l = insertionSort ord l
lexicographicOrderRel : {a b : _} {A : Set a} → (TotalOrder A) → Rel {a} {a ⊔ b} (List A)
lexicographicOrderRel _ [] [] = False'
lexicographicOrderRel _ [] (x :: l2) = True'
lexicographicOrderRel _ (x :: l1) [] = False'
lexicographicOrderRel order (x :: l1) (y :: l2) = (TotalOrder._<_ order x y) || ((x ≡ y) && lexicographicOrderRel order l1 l2)
lexIrrefl : {a b : _} {A : Set a} (o : TotalOrder A) → {x : List A} → lexicographicOrderRel o x x → False
lexIrrefl o {[]} ()
lexIrrefl o {x :: l} (inl x<x) = PartialOrder.irreflexive (TotalOrder.order o) x<x
lexIrrefl o {x :: l} (inr (pr ,, l=l)) = lexIrrefl o {l} l=l
lexTransitive : {a b : _} {A : Set a} (o : TotalOrder A) → {x y z : List A} → lexicographicOrderRel o x y → lexicographicOrderRel o y z → lexicographicOrderRel o x z
lexTransitive o {[]} {[]} {z} x<y y<z = y<z
lexTransitive o {[]} {x :: y} {[]} record {} y<z = y<z
lexTransitive o {[]} {x :: y} {x₁ :: z} record {} y<z = record {}
lexTransitive o {x :: xs} {[]} {z} () y<z
lexTransitive o {x :: xs} {y :: ys} {[]} (inl x<y) ()
lexTransitive o {x :: xs} {y :: ys} {z :: zs} (inl x<y) (inl y<z) = inl (PartialOrder.<Transitive (TotalOrder.order o) x<y y<z)
lexTransitive o {x :: xs} {y :: ys} {.y :: zs} (inl x<y) (inr (refl ,, ys<zs)) = inl x<y
lexTransitive o {x :: xs} {.x :: ys} {[]} (inr (refl ,, xs<ys)) ()
lexTransitive o {x :: xs} {.x :: ys} {z :: zs} (inr (refl ,, xs<ys)) (inl y<z) = inl y<z
lexTransitive o {x :: xs} {.x :: ys} {.x :: zs} (inr (refl ,, xs<ys)) (inr (refl ,, u)) = inr (refl ,, lexTransitive o xs<ys u)
lexTotal : {a b : _} {A : Set a} (o : TotalOrder A) → (x y : List A) → ((lexicographicOrderRel o x y) || (lexicographicOrderRel o y x)) || (x ≡ y)
lexTotal o [] [] = inr refl
lexTotal o [] (x :: y) = inl (inl (record {}))
lexTotal o (x :: xs) [] = inl (inr (record {}))
lexTotal o (x :: xs) (y :: ys) with TotalOrder.totality o x y
lexTotal o (x :: xs) (y :: ys) | inl (inl x<y) = inl (inl (inl x<y))
lexTotal o (x :: xs) (y :: ys) | inl (inr y<x) = inl (inr (inl y<x))
lexTotal o (x :: xs) (y :: ys) | inr x=y with lexTotal o xs ys
lexTotal o (x :: xs) (y :: ys) | inr x=y | inl (inl xs<ys) = inl (inl (inr (x=y ,, xs<ys)))
lexTotal o (x :: xs) (y :: ys) | inr x=y | inl (inr ys<xs) = inl (inr (inr (equalityCommutative x=y ,, ys<xs)))
lexTotal o (x :: xs) (y :: ys) | inr x=y | inr xs=ys rewrite x=y | xs=ys = inr refl
lexicographicOrder : {a b : _} {A : Set a} → (TotalOrder A) → TotalOrder (List A)
PartialOrder._<_ (TotalOrder.order (lexicographicOrder order)) = lexicographicOrderRel order
PartialOrder.irreflexive (TotalOrder.order (lexicographicOrder order)) = lexIrrefl order
PartialOrder.<Transitive (TotalOrder.order (lexicographicOrder order)) = lexTransitive order
TotalOrder.totality (lexicographicOrder order) = lexTotal order
badSort : {a b : _} {A : Set a} (order : TotalOrder A) → ℕ → List A → List A
badSortLength : {a b : _} {A : Set a} (order : TotalOrder A) → (n : ℕ) → (l : List A) → length (badSort order n l) ≡ length l
allTrueRespectsBadsort : {a b c : _} {A : Set a} (order : TotalOrder A) → (n : ℕ) → (l : List A) → (pred : A → Set c) → allTrue pred l → allTrue pred (badSort order n l)
badSort order zero = insertionSort order
badSort order (succ n) [] = []
badSort {A = A} order (succ n) (x :: l) = head (badSort (lexicographicOrder order) n (permutations (x :: l))) bsNonempty
where
bs : List (List A)
bs = badSort (lexicographicOrder order) n (permutations (x :: l))
bsNonempty : 0 <N length bs
bsNonempty with bs
bsNonempty | [] = {!!}
bsNonempty | bl :: _ = succIsPositive _
allTrueRespectsBadsort order n [] pred record {} = {!!}
allTrueRespectsBadsort order n (x :: l) pred (fst ,, snd) = {!!}
badSortLength order zero [] = refl
badSortLength order zero (x :: l) = transitivity (insertionIncreasesLength order (insertionSort order l) x (insertionSortIsSorted order l)) (applyEquality succ (equalityCommutative (insertionSortLength order l)))
badSortLength order (succ n) [] = refl
badSortLength order (succ n) (x :: l) = {!!}
where
allLen : allTrue (λ i → length i ≡ succ (length l)) (badSort (lexicographicOrder order) n (flatten (map (allInsertions x) (permutations l))))
allLen = {!!}
-- TODO: show that insertion sort actually produces a permutation
|
{
"alphanum_fraction": 0.6197644649,
"avg_line_length": 59.9079754601,
"ext": "agda",
"hexsha": "d65b2e54b30f599680b270304770ad3324771d2b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Lists/SortList.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Lists/SortList.agda",
"max_line_length": 214,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Lists/SortList.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 3495,
"size": 9765
}
|
-- Andreas, 2017-11-12, issue #2803
-- Problem: names of hidden variable patterns
-- can get lost during case splitting.
-- They actually get lost already during lhs type checking,
-- but it is noticed only when printed back to the user
-- during case splitting.
-- {-# OPTIONS -v tc.lhs:40 #-}
record HFun (A B : Set) : Set where
field apply : {a : A} → B
postulate A : Set
test : HFun A (A → A)
HFun.apply test {β} = {!!} -- C-c C-c
-- YIELDS:
-- HFun.apply test {a} x = ?
-- EXPECTED:
-- HFun.apply test {β} x = ?
|
{
"alphanum_fraction": 0.6337760911,
"avg_line_length": 21.08,
"ext": "agda",
"hexsha": "18cd5779a5b14b1846a7202d3379de355baacbc1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "asr/eagda",
"max_forks_repo_path": "test/interaction/Issue2803.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "asr/eagda",
"max_issues_repo_path": "test/interaction/Issue2803.agda",
"max_line_length": 59,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "asr/eagda",
"max_stars_repo_path": "test/interaction/Issue2803.agda",
"max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z",
"num_tokens": 161,
"size": 527
}
|
{-# OPTIONS --injective-type-constructors #-}
module InjectiveTypeConstructors where
data D (A : Set) : Set where
data _==_ (A : Set) : Set → Set where
refl : A == A
D' = D
injD : ∀ {A B} → D A == D' B → A == B
injD refl = refl
|
{
"alphanum_fraction": 0.5872340426,
"avg_line_length": 16.7857142857,
"ext": "agda",
"hexsha": "8f001b68e6846adf85b916abd2d607d35dbe9e1e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/InjectiveTypeConstructors.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/InjectiveTypeConstructors.agda",
"max_line_length": 45,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/InjectiveTypeConstructors.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 84,
"size": 235
}
|
------------------------------------------------------------------------
-- A quotient inductive-inductive definition of the lifting
-- construction on ω-cpos
------------------------------------------------------------------------
-- The code in this module is based on a suggestion from Paolo
-- Capriotti.
{-# OPTIONS --erased-cubical --safe #-}
open import Omega-cpo
module Lifting {ℓ} (cpo : ω-cpo ℓ ℓ) where
import Equality.Path as P
open import Equality.Propositional.Cubical
open import Logical-equivalence using (_⇔_)
open import Prelude hiding (⊥)
open import Bijection equality-with-J using (_↔_)
open import Equivalence equality-with-J as Eq using (_≃_)
open import Function-universe equality-with-J hiding (_∘_)
open import H-level equality-with-J
open import H-level.Closure equality-with-J
private
module CPO = ω-cpo cpo
------------------------------------------------------------------------
-- An ω-cppo
-- The carrier type (Carrier) and the information ordering (_⊑_) are
-- defined simultaneously.
infix 4 _⊑_ _⊒_
data Carrier : Type ℓ
data _⊑_ : Carrier → Carrier → Type ℓ
_⊒_ : Carrier → Carrier → Type ℓ
x ⊒ y = y ⊑ x
private
variable
x y : Carrier
-- Increasing sequences.
Increasing-sequence : Type ℓ
Increasing-sequence = ∃ λ (f : ℕ → Carrier) → ∀ n → f n ⊑ f (suc n)
-- Projection functions for Increasing-sequence.
infix 30 _[_]
_[_] : Increasing-sequence → ℕ → Carrier
_[_] = proj₁
increasing : (s : Increasing-sequence) →
∀ n → s [ n ] ⊑ s [ suc n ]
increasing = proj₂
-- Upper bounds.
Is-upper-bound : Increasing-sequence → Carrier → Type ℓ
Is-upper-bound s x = ∀ n → s [ n ] ⊑ x
-- Originally these types were postulated. After the release of
-- Cubical Agda they were turned into a QIIT, but in order to not get
-- any extra computation rules they were made abstract.
abstract
-- _⊥ "constructors".
data Carrier where
never′ : Carrier
now′ : CPO.Carrier → Carrier
⨆′ : Increasing-sequence → Carrier
antisymmetry′ : x ⊑ y → x ⊒ y → x P.≡ y
-- We have chosen to explicitly make the type set-truncated.
-- However, this constructor is only used in the definition of the
-- eliminator below.
≡-propositional′ : P.Is-set Carrier
-- _⊑_ "constructors".
data _⊑_ where
⊑-refl′ : ∀ x → x ⊑ x
⊑-trans′ : ∀ x y z → x ⊑ y → y ⊑ z → x ⊑ z
never⊑′ : ∀ x → never′ ⊑ x
upper-bound′ : ∀ s → Is-upper-bound s (⨆′ s)
least-upper-bound′ : ∀ s ub → Is-upper-bound s ub → ⨆′ s ⊑ ub
now-mono′ : ∀ {x y} → x CPO.⊑ y → now′ x ⊑ now′ y
now-⨆″ : ∀ s →
now′ (CPO.⨆ s) ⊑
⨆′ (Σ-map (now′ ∘_) (now-mono′ ∘_) s)
⊑-propositional′ : ∀ {x y} → P.Is-proposition (x ⊑ y)
never : Carrier
never = never′
now : CPO.Carrier → Carrier
now = now′
⨆ : Increasing-sequence → Carrier
⨆ = ⨆′
antisymmetry : x ⊑ y → y ⊑ x → x ≡ y
antisymmetry = λ p q → _↔_.from ≡↔≡ (antisymmetry′ p q)
⊑-refl : ∀ x → x ⊑ x
⊑-refl = ⊑-refl′
⊑-trans : ∀ x y z → x ⊑ y → y ⊑ z → x ⊑ z
⊑-trans = ⊑-trans′
never⊑ : ∀ x → never ⊑ x
never⊑ = never⊑′
upper-bound : ∀ s → Is-upper-bound s (⨆ s)
upper-bound = upper-bound′
least-upper-bound : ∀ s ub → Is-upper-bound s ub → ⨆ s ⊑ ub
least-upper-bound = least-upper-bound′
now-mono : ∀ {x y} → x CPO.⊑ y → now x ⊑ now y
now-mono = now-mono′
now-⨆′ : ∀ s → now (CPO.⨆ s) ⊑ ⨆ (Σ-map (now ∘_) (now-mono ∘_) s)
now-⨆′ = now-⨆″
⊑-propositional : ∀ {x y} → Is-proposition (x ⊑ y)
⊑-propositional {x = x} {y = y} =
$⟨ ⊑-propositional′ ⟩
P.Is-proposition (x ⊑ y) ↝⟨ _↔_.from (H-level↔H-level 1) ⟩□
Is-proposition (x ⊑ y) □
-- The construction above is an ω-cppo.
cppo : ω-cppo ℓ ℓ
cppo = record
{ cpo = record
{ Carrier = Carrier
; _⊑_ = _⊑_
; reflexivity = ⊑-refl _
; antisymmetry = antisymmetry
; transitivity = ⊑-trans _ _ _
; ⊑-propositional = ⊑-propositional
; ⨆ = ⨆
; upper-bound = upper-bound
; least-upper-bound = least-upper-bound _ _
}
; least = never
; least⊑ = never⊑ _
}
------------------------------------------------------------------------
-- Dependent eliminators
-- Predicate transformer related to increasing sequences.
Inc : ∀ {p q}
(P : Carrier → Type p)
(Q : ∀ {x y} → P x → P y → x ⊑ y → Type q) →
Increasing-sequence → Type (p ⊔ q)
Inc P Q s =
∃ λ (p : ∀ n → P (s [ n ])) →
∀ n → Q (p n) (p (suc n)) (increasing s n)
-- Record wrapping up the eliminators' arguments.
record Rec-args
{p q}
(P : Carrier → Type p)
(Q : ∀ {x y} → P x → P y → x ⊑ y → Type q) :
Type (ℓ ⊔ p ⊔ q) where
field
pe : P never
po : ∀ x → P (now x)
pl : ∀ s (pq : Inc P Q s) → P (⨆ s)
pa : ∀ {x y} (x⊑y : x ⊑ y) (x⊒y : x ⊒ y)
(p-x : P x) (p-y : P y)
(q-x⊑y : Q p-x p-y x⊑y) (q-x⊒y : Q p-y p-x x⊒y) →
subst P (antisymmetry x⊑y x⊒y) p-x ≡ p-y
pp : ∀ {x} {p₁ p₂ : P x} → Is-proposition (p₁ ≡ p₂)
qr : ∀ x (p : P x) → Q p p (⊑-refl x)
qt : ∀ {x y z}
(x⊑y : x ⊑ y) (y⊑z : y ⊑ z)
(p-x : P x) (p-y : P y) (p-z : P z) →
Q p-x p-y x⊑y → Q p-y p-z y⊑z →
Q p-x p-z (⊑-trans x y z x⊑y y⊑z)
qe : ∀ x (p : P x) → Q pe p (never⊑ x)
qu : ∀ s (pq : Inc P Q s) n →
Q (proj₁ pq n) (pl s pq) (upper-bound s n)
ql : ∀ s ub is-ub (pq : Inc P Q s) (pu : P ub)
(qu : ∀ n → Q (proj₁ pq n) pu (is-ub n)) →
Q (pl s pq) pu (least-upper-bound s ub is-ub)
qm : ∀ {x y} (le : x CPO.⊑ y) →
Q (po x) (po y) (now-mono le)
q⨆ : ∀ s →
Q (po (CPO.⨆ s))
(pl (Σ-map (now ∘_) (now-mono ∘_) s)
( (λ n → po (s CPO.[ n ]))
, (λ n → qm (CPO.increasing s n))
))
(now-⨆′ s)
qp : ∀ {x y} (p-x : P x) (p-y : P y) (x⊑y : x ⊑ y) →
Is-proposition (Q p-x p-y x⊑y)
-- The eliminators.
module _ {p q}
{P : Carrier → Type p}
{Q : ∀ {x y} → P x → P y → x ⊑ y → Type q}
(args : Rec-args P Q) where
open Rec-args args
mutual
inc-rec : (s : Increasing-sequence) → Inc P Q s
inc-rec (s , inc) = (λ n → ⊥-rec (s n))
, (λ n → ⊑-rec (inc n))
abstract
⊥-rec : (x : Carrier) → P x
⊥-rec never′ = pe
⊥-rec (now′ x) = po x
⊥-rec (⨆′ s) = pl s (inc-rec s)
⊥-rec (antisymmetry′ {x = x} {y = y} p q i) =
subst≡→[]≡
{B = P}
{eq = antisymmetry′ p q}
(pa p q (⊥-rec x) (⊥-rec y) (⊑-rec p) (⊑-rec q)) i
⊥-rec (≡-propositional′ {x = x} {y = y} p q i j) = lemma i j
where
≡-propositional : P.Is-set Carrier
≡-propositional = ≡-propositional′
lemma :
P.[ (λ i → P.[ (λ j → P (≡-propositional p q i j)) ]
⊥-rec x ≡ ⊥-rec y) ]
(λ i → ⊥-rec (p i)) ≡ (λ i → ⊥-rec (q i))
lemma = P.heterogeneous-UIP
(λ x → _↔_.to (H-level↔H-level 2) (pp {x = x}))
(≡-propositional′ p q)
_ _
⊑-rec : (x⊑y : x ⊑ y) → Q (⊥-rec x) (⊥-rec y) x⊑y
⊑-rec (⊑-refl′ x) = qr x (⊥-rec x)
⊑-rec (⊑-trans′ x y z p q) =
qt p q (⊥-rec x) (⊥-rec y) (⊥-rec z) (⊑-rec p) (⊑-rec q)
⊑-rec (never⊑′ x) = qe x (⊥-rec x)
⊑-rec (upper-bound′ s n) = qu s (inc-rec s) n
⊑-rec (least-upper-bound′ s ub is-ub) =
ql s ub is-ub (inc-rec s) (⊥-rec ub)
(λ n → ⊑-rec {x = proj₁ s n} (is-ub n))
⊑-rec (now-mono′ x) = qm x
⊑-rec (now-⨆″ s) = q⨆ s
⊑-rec (⊑-propositional′ {x = x} {y = y} p q i) = lemma i
where
⊑-propositional″ : ∀ {x y} → P.Is-proposition (x ⊑ y)
⊑-propositional″ = ⊑-propositional′
lemma : P.[ (λ i → Q (⊥-rec x) (⊥-rec y)
(⊑-propositional″ p q i)) ]
⊑-rec p ≡ ⊑-rec q
lemma =
P.heterogeneous-irrelevance
(λ p → _↔_.to (H-level↔H-level 1)
(qp (⊥-rec x) (⊥-rec y) p))
-- Some computation rules.
⊥-rec-never : ⊥-rec never ≡ pe
⊥-rec-never = refl
⊥-rec-now : ∀ x → ⊥-rec (now x) ≡ po x
⊥-rec-now _ = refl
⊥-rec-⨆ : ∀ s → ⊥-rec (⨆ s) ≡ pl s (inc-rec s)
⊥-rec-⨆ _ = refl
------------------------------------------------------------------------
-- Some lemmas
-- The inequality now-⨆′ can be strengthened to an equality.
now-⨆ : (s : CPO.Increasing-sequence) →
now (CPO.⨆ s) ≡ ⨆ (Σ-map (now ∘_) (now-mono ∘_) s)
now-⨆ s =
antisymmetry
(now-⨆′ s)
(least-upper-bound _ _ λ n → now-mono (CPO.upper-bound s n))
private
-- A lemma.
Carrier-is-set-and-equality-characterisation : Is-set Carrier × _
Carrier-is-set-and-equality-characterisation =
Eq.propositional-identity≃≡
(λ x y → x ⊑ y × x ⊒ y)
(λ _ _ → ×-closure 1 ⊑-propositional ⊑-propositional)
(λ x → ⊑-refl x , ⊑-refl x)
(λ x y → uncurry {B = λ _ → x ⊒ y} antisymmetry)
-- Carrier is a set. (This lemma is analogous to Theorem 11.3.9 in
-- "Homotopy Type Theory: Univalent Foundations of Mathematics" (first
-- edition).)
Carrier-is-set : Is-set Carrier
Carrier-is-set = proj₁ Carrier-is-set-and-equality-characterisation
-- Equality characterisation lemma for Carrier.
equality-characterisation-Carrier :
∀ {x y} → (x ⊑ y × x ⊒ y) ≃ (x ≡ y)
equality-characterisation-Carrier =
proj₂ Carrier-is-set-and-equality-characterisation ext
-- Equality characterisation lemma for increasing sequences.
equality-characterisation-increasing :
{s₁ s₂ : Increasing-sequence} →
(∀ n → s₁ [ n ] ≡ s₂ [ n ]) ↔ s₁ ≡ s₂
equality-characterisation-increasing {s₁} {s₂} =
(∀ n → s₁ [ n ] ≡ s₂ [ n ]) ↔⟨ Eq.extensionality-isomorphism ext ⟩
proj₁ s₁ ≡ proj₁ s₂ ↝⟨ ignore-propositional-component
(Π-closure ext 1 λ _ →
⊑-propositional) ⟩□
s₁ ≡ s₂ □
|
{
"alphanum_fraction": 0.486831761,
"avg_line_length": 29.325648415,
"ext": "agda",
"hexsha": "879b431bbe9749a15573731c09ab1a55cd3f3a2e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/partiality-monad",
"max_forks_repo_path": "src/Lifting.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/partiality-monad",
"max_issues_repo_path": "src/Lifting.agda",
"max_line_length": 72,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/partiality-monad",
"max_stars_repo_path": "src/Lifting.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z",
"num_tokens": 3805,
"size": 10176
}
|
{-# OPTIONS --without-K #-}
module Explore.Subset where
open import Relation.Binary.PropositionalEquality
-- TODO
|
{
"alphanum_fraction": 0.7586206897,
"avg_line_length": 16.5714285714,
"ext": "agda",
"hexsha": "83ffa53b1b75f429742d6135c122a7f9b7d309cb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "crypto-agda/explore",
"max_forks_repo_path": "lib/Explore/Subset.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "crypto-agda/explore",
"max_issues_repo_path": "lib/Explore/Subset.agda",
"max_line_length": 49,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "crypto-agda/explore",
"max_stars_repo_path": "lib/Explore/Subset.agda",
"max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z",
"num_tokens": 24,
"size": 116
}
|
{-# OPTIONS --safe #-}
module Cubical.HITs.FreeAbGroup where
open import Cubical.HITs.FreeAbGroup.Base public
|
{
"alphanum_fraction": 0.7747747748,
"avg_line_length": 22.2,
"ext": "agda",
"hexsha": "5a71a34d3efa5baafe2ee74a8320e42c4e9e1801",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/HITs/FreeAbGroup.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/HITs/FreeAbGroup.agda",
"max_line_length": 48,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/HITs/FreeAbGroup.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 29,
"size": 111
}
|
-- Inductive types
-- See Chapter 15 of "Practical Foundations for Programming Languages" by Robert Harper
module ITypes where
open import Data.Vec
open import Data.Nat
open import Data.List
open import Data.Fin.Base
-- auxiliary
data Bool : Set where
True False : Bool
_if_else_ : {A : Set} → A → Bool → A → A
A if True else B = A
A if False else B = B
-- end of auxiliary
{-- required later on
data IType' (n : ℕ) : Set
data IType' n where
Unit Nat : IType' n
Pair Sum : IType n → IType n → IType' n
Map'[_,_]_ : ∀ {n} → Fin n → IType' n → IType n → IType' n
Map'[ var , Unit ] type' = Unit
Map'[ var , Nat ] type' = Nat
Map'[ var , Pair x x₁ ] type' = Pair (Map[ var , x ] type') (Map[ var , x₁ ] type')
Map'[ var , Sum x x₁ ] type' = Sum (Map[ var , x ] type') (Map[ var , x₁ ] type')
--}
data IType (n : ℕ) : Set
data IType n where
Unit Nat : IType n
Pair Sum : IType n → IType n → IType n
Ind : IType (suc n) → IType n
Var : Fin n → IType n
Func : IType n → IType n → IType n
FinEq : ∀ {n} → Fin n → Fin n → Bool
FinEq zero zero = True
FinEq zero (suc b) = False
FinEq (suc a) zero = False
FinEq (suc a) (suc b) = FinEq a b
-- Substitute type' for var in type
Map[_,_]_ : ∀ {n} → Fin (suc n) → IType (suc n) → IType n → IType n
Map[ var , Unit ] type' = Unit
Map[ var , Nat ] type' = Nat
Map[ var , Pair type type₁ ] type' = Pair (Map[ var , type ] type') (Map[ var , type₁ ] type')
Map[ var , Sum type type₁ ] type' = Pair (Map[ var , type ] type') (Map[ var , type₁ ] type')
Map[ var , Ind x ] type' = {!!} --Ind (Map[ var , x ] type')
Map[ var , Func a b ] type' = Func (Map[ var , a ] type') (Map[ var , b ] type')
Map[ var , Var x ] type' = type' if (FinEq var x) else Var {!!}
-- Alternative notation
[_/_]_ : ∀ {n} → IType n → Fin (suc n) → IType (suc n) → IType n
[ type' / var ] type = Map[ var , type ] type'
Env : ℕ → Set
Env n = List (IType n)
-- Environment lookup
data _∈`_ {n} : IType n → Env n → Set where
here : ∀ {φ A} → A ∈` (A ∷ φ)
there : ∀ {φ A A'} → A ∈` φ → A ∈` (A' ∷ φ)
-- Expressions
data Expr {n} : Env n → IType n → Set where
-- Fold : ∀ {ϕ t τ} → Expr ϕ ([ Ind τ / t ] τ) → Expr ϕ (Ind τ)
-- Rec : ∀ {ϕ t τ ρ} → Expr ((Map[ t , τ ] ρ) ∷ ϕ) ρ → Expr ϕ (Ind τ) → {!!}
FoldNat : ∀ {ϕ} → Expr ϕ (Sum Unit Nat) → Expr ϕ Nat
RecNat : ∀ {ϕ} → Expr (Sum Unit Nat ∷ ϕ) Nat → Expr ϕ Nat → Expr ϕ Nat
Var : ∀ {φ τ} → τ ∈` φ → Expr φ τ
Abs : ∀ {φ τ τ'} → Expr (τ ∷ φ) τ' → Expr φ (Func τ τ')
App : ∀ {φ τ τ'} → Expr φ (Func τ τ') → Expr φ τ → Expr φ τ'
-- Expression substitution
[_//_] : ∀ {n ϕ} {τ τ' : IType n} → Expr (τ' ∷ ϕ) τ → Expr ϕ τ' → Expr ϕ τ
-- TODO
data _↦_ {n ϕ} : {τ : IType n} → Expr ϕ τ → Expr ϕ τ → Set where
ξ-RecNat : ∀ {e} {e' e''}
→ e' ↦ e''
→ _↦_ {τ = Nat} (RecNat e e') (RecNat e e'')
β-RecNat : ∀ {e e'}
→ _↦_ {τ = Nat} (RecNat e (FoldNat e')) [ e // e' ]
-- IValue
-- data IValue (n : ℕ) : Set where
-- Interpreter
-- int : ∀ {n} → IType n → Set
-- int' : ∀ {n} → IType' n → Set
--- int {n} (Ind it') = IValue n (int' it')
|
{
"alphanum_fraction": 0.5145510836,
"avg_line_length": 31.9801980198,
"ext": "agda",
"hexsha": "0460e509ce6d2a6e2d055e298a54187a8b80e077",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-14T17:52:29.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-14T17:52:29.000Z",
"max_forks_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "kcaliban/ldlc",
"max_forks_repo_path": "src/sigmatypes/ITypes.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "kcaliban/ldlc",
"max_issues_repo_path": "src/sigmatypes/ITypes.agda",
"max_line_length": 94,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "kcaliban/ldlc",
"max_stars_repo_path": "src/sigmatypes/ITypes.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1241,
"size": 3230
}
|
module Numeric.Nat.BinarySearch where
open import Prelude
open import Numeric.Nat.Properties
open import Tactic.Nat
open import Control.WellFounded
open import Numeric.Nat.DivMod
data SearchResult! {a} (P : Nat → Set a) (lo hi : Nat) : Set a where
here : ∀ k (!pk : ¬ P k) (psk : P (suc k)) (lo≤k : lo ≤ k) (k<hi : k < hi) → SearchResult! P lo hi
data SearchResult {a} (P : Nat → Set a) (lo hi : Nat) : Set a where
here : ∀ k (!pk : ¬ P k) (psk : P (suc k)) (lo≤k : lo ≤ k) (k<hi : k < hi) → SearchResult P lo hi
below : P lo → SearchResult P lo hi
none : ¬ P hi → SearchResult P lo hi
bad-range : lo > hi → SearchResult P lo hi
private
infixr 0 _⟨=<⟩_ _⟨<=⟩_
_⟨=<⟩_ : ∀ {a : Nat} {b c} → a ≡ b → b < c → a < c
refl ⟨=<⟩ b<c = b<c
_⟨<=⟩_ : ∀ {a : Nat} {b c} → a < b → b ≡ c → a < c
a<b ⟨<=⟩ refl = a<b
private
lem-half : ∀ n → suc n div 2 < suc n
lem-half n with suc n div 2 | suc n mod 2 | divmod-sound 2 (suc n)
lem-half n | zero | r | eq = auto
lem-half n | suc q | r | eq = by eq
lem-half-nonzero : ∀ n → NonZero ((2 + n) div 2)
lem-half-nonzero n with (2 + n) div 2 | (2 + n) mod 2 | divmod-sound 2 (2 + n) | mod-less 2 (2 + n)
lem-half-nonzero n | zero | ._ | refl | lt = refute lt
lem-half-nonzero n | suc q | r | _ | _ = _
lem-upper : ∀ {lo hi d} d′ {{_ : NonZero d′}} →
hi ≡ suc (d + lo) → hi - (d′ + lo) ≤ d
lem-upper zero {{}}
lem-upper {d = d} (suc d′) refl = by (sub-leq d d′)
search : ∀ {a} {P : Nat → Set a} lo hi d → hi ≡ d + lo → Acc _<_ d →
(∀ n → Dec (P n)) →
¬ P lo → P hi → SearchResult! P lo hi
search lo .lo 0 refl wf check !plo phi = ⊥-elim (!plo phi)
search lo .(suc lo) 1 refl wf check !plo phi = here lo !plo phi (diff! 0) (diff! 0)
search lo hi (suc (suc d₀)) eq (acc wf) check !plo phi =
let d = suc d₀
d′ = suc d div 2
m = d′ + lo
d′<d : d′ < suc d
d′<d = lem-half d in
case check m of λ
{ (yes pm) →
case search lo m d′ refl (wf _ d′<d) check !plo pm of λ
{ (here k !pk psk lo≤k k<m) → here k !pk psk lo≤k $
k<m ⟨<⟩ by d′<d ⟨<=⟩ sym eq
}
; (no !pm) →
let m≤hi : m ≤ hi
m≤hi = by d′<d ⟨≤⟩ diff 1 (cong suc eq)
instance d′≠0 : NonZero d′
d′≠0 = lem-half-nonzero d₀
eq′ : hi ≡ hi - m + m
eq′ = eraseEquality (sym (sub-less m≤hi))
in
case search m hi (hi - m) eq′ (wf (hi - m) (lem-upper d′ eq)) check !pm phi of λ
{ (here k !pk psk m≤k k<hi) → here k !pk psk (auto ⟨≤⟩ m≤k) k<hi }
}
private
unbang : ∀ {a} {P : Nat → Set a} {lo hi} → SearchResult! P lo hi → SearchResult P lo hi
unbang (here k x x₁ x₂ x₃) = here k x x₁ x₂ x₃
binarySearch : ∀ {a} {P : Nat → Set a} lo hi →
(∀ n → Dec (P n)) →
SearchResult P lo hi
binarySearch lo hi check with compare lo hi
... | greater lo>hi = bad-range lo>hi
binarySearch lo .lo check | equal refl =
case check lo of λ
{ (yes p) → below p
; (no !p) → none !p
}
binarySearch lo ._ check | less (diff! d) =
let hi = suc d + lo in
case check lo of λ
{ (yes p) → below p
; (no !p) →
case check hi of λ
{ (yes p) → unbang $ search lo hi (suc d) refl (wfNat (suc d)) check !p p
; (no !p) → none !p }
}
|
{
"alphanum_fraction": 0.5055108728,
"avg_line_length": 35.3368421053,
"ext": "agda",
"hexsha": "fe90b7edede4e7958040082864356f2af1bfba9d",
"lang": "Agda",
"max_forks_count": 24,
"max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z",
"max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "t-more/agda-prelude",
"max_forks_repo_path": "src/Numeric/Nat/BinarySearch.agda",
"max_issues_count": 59,
"max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "t-more/agda-prelude",
"max_issues_repo_path": "src/Numeric/Nat/BinarySearch.agda",
"max_line_length": 104,
"max_stars_count": 111,
"max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "t-more/agda-prelude",
"max_stars_repo_path": "src/Numeric/Nat/BinarySearch.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z",
"num_tokens": 1304,
"size": 3357
}
|
-- Andreas, 2011-10-04
-- I'd like to infer the type of a even though it is irrelevant
-- E.g. when pressing C-c C-.
module InferIrrelevant where
f : (A : Set)(g : .A → A).(a : A) → A
f A g a = {!a!}
|
{
"alphanum_fraction": 0.605,
"avg_line_length": 28.5714285714,
"ext": "agda",
"hexsha": "2650038bcb50825a48a65994f786aecca3bb7f01",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/interaction/InferIrrelevant.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/interaction/InferIrrelevant.agda",
"max_line_length": 63,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/interaction/InferIrrelevant.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 74,
"size": 200
}
|
{-
Copyright 2019 Lisandra Silva
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-}
open import Prelude
open import Data.Vec.Bounded renaming ([] to Vec≤[])
open import Data.Vec renaming ( _++_ to _v++_
; [_] to v[_]
; head to headV
; _∷ʳ_ to _v∷ʳ_
; tail to vTail)
open import Data.List
open import StateMachineModel
module Examples.ProducerConsumer
{ℓ : Level}
(Message : Set ℓ) -- Message type
(Size : ℕ) -- Size of the bounded buffer
where
record State : Set (lsuc ℓ) where
field
buffer : Vec≤ Message Size -- The numSpaces ≅ Vec≤.length
produced : List Message
consumed : List Message
open State
data MyEvent : Set ℓ where
produce : Message → MyEvent
consume : Message → MyEvent
data MyEnabled : MyEvent → State → Set ℓ where
prodEnabled : ∀ {st : State} {msg}
→ Vec≤.length (buffer st) < Size
→ MyEnabled (produce msg) st
consEnabled : ∀ {st : State} {msg}
→ 0 < Vec≤.length (buffer st)
→ msg ≡ headV {!!}
→ MyEnabled (consume msg) st
MyAction : ∀ {preState : State} {event : MyEvent}
→ MyEnabled event preState
→ State
MyAction {preSt} {produce m} (prodEnabled x) =
record preSt
{ buffer = Vec≤.vec (buffer preSt) v∷ʳ m , x
; produced = produced preSt ++ [ m ]
}
MyAction {preSt} {consume m} enabled =
record preSt
{ buffer = (vTail (Vec≤.vec {!!})) , {!!}
; produced = consumed preSt ++ [ m ]
}
initialState : State
initialState = record
{ buffer = Vec≤[]
; produced = []
; consumed = []
}
MyStateMachine : StateMachine State MyEvent
MyStateMachine = record
{ initial = λ state → state ≡ initialState
; enabled = MyEnabled
; action = MyAction
}
MyEventSet : EventSet {Event = MyEvent}
MyEventSet (produce x) = ⊥
MyEventSet (consume x) = ⊤
data MyWeakFairness : EventSet → Set ℓ where
wf : MyWeakFairness MyEventSet
MySystem : System State MyEvent
MySystem = record
{ stateMachine = MyStateMachine
; weakFairness = MyWeakFairness
}
|
{
"alphanum_fraction": 0.5683673469,
"avg_line_length": 27.7358490566,
"ext": "agda",
"hexsha": "27ae40f58b48d086e31f52c2aa943d82f8a1c829",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "391e148f391dc2d246249193788a0d203285b38e",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "lisandrasilva/agda-liveness",
"max_forks_repo_path": "src/Examples/ProducerConsumer.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "391e148f391dc2d246249193788a0d203285b38e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "lisandrasilva/agda-liveness",
"max_issues_repo_path": "src/Examples/ProducerConsumer.agda",
"max_line_length": 74,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "391e148f391dc2d246249193788a0d203285b38e",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "lisandrasilva/agda-liveness",
"max_stars_repo_path": "src/Examples/ProducerConsumer.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 749,
"size": 2940
}
|
module LecSigma where
open import CS410-Prelude
open import CS410-Nat
open import CS410-Functor
-- look in the Prelude
-- talk about *
-- talk about +
_N>_ : Nat -> Nat -> Set
m N> n = m N>= suc n
Fin : Nat -> Set
Fin n = Sg Nat \ m -> n N> m
foo : Fin 7
foo = 5 , <>
-- command-response systems
_<|_ : (C : Set)(R : C -> Set) -> Set -> Set
(C <| R) X = Sg C (\ c -> R c -> X)
containerFunctor : (C : Set)(R : C -> Set) -> Functor (C <| R)
containerFunctor C R = record
{ map = \ {f (c , k) -> c , (f o k)}
; mapid = \ _ -> refl
; mapcomp = \ _ _ _ -> refl
}
IC : Set -> Set
IC = One <| \ c -> One
LC : Set -> Set
LC = Nat <| Fin
nil : {X : Set} -> LC X
nil = 0 , (\ { (m , ()) })
cons : {X : Set} -> X -> LC X -> LC X
cons x (n , k) = (suc n) , (\
{ (zero , p) -> x
; (suc m , p) -> k (m , p)
})
{-
look : {X : Set} -> IC X -> Zero
look (<> , snd) = {!!}
-}
postulate goAway : {X : Set} -> X
-- the free monad on a command-response system
module FREEMONAD (C : Set)(R : C -> Set) where
data Free (X : Set) : Set where
ret : X -> Free X
do : (C <| R) (Free X) -> Free X
graft : {X Y : Set} -> Free X -> (X -> Free Y) -> Free Y
graft (ret x) k = k x
graft (do (c , rx)) k = do (c , (\ r -> graft (rx r) k))
graftLawHelp : {X : Set}(c : C)(rx : R c -> Free X)(r : R c) ->
graft (rx r) ret == rx r
graftLaw2 : {X : Set}(t : Free X) -> graft t ret == t
graftLaw2 (ret x) = refl
graftLaw2 (do (c , rx)) rewrite (ext (graftLawHelp c rx)) = refl
graftLawHelp c rx r = graftLaw2 (rx r)
freeMonad : Monad Free
freeMonad = record
{ return = ret
; _>>=_ = graft
; law1 = \ _ _ -> refl
; law2 = graftLaw2
; law3 = goAway
}
-- tree-like data
-- shapes and positions
|
{
"alphanum_fraction": 0.4997170345,
"avg_line_length": 20.3103448276,
"ext": "agda",
"hexsha": "9131c2419b074d8ff4d82c942c1c180ba788c6ab",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "clarkdm/CS410",
"max_forks_repo_path": "LecSigma.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "clarkdm/CS410",
"max_issues_repo_path": "LecSigma.agda",
"max_line_length": 66,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "clarkdm/CS410",
"max_stars_repo_path": "LecSigma.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 670,
"size": 1767
}
|
open import Oscar.Class.Similarity
open import Oscar.Class.Reflexivity
open import Oscar.Class.Surjection
open import Oscar.Class.Leftunit
open import Oscar.Class.Smap
open import Oscar.Class.Symmetrical
open import Oscar.Class.Unit
open import Oscar.Data.Surjcollation
open import Oscar.Prelude
module Oscar.Class.Smapoid where
module _
{𝔵₁} {𝔛₁ : Ø 𝔵₁}
{𝔵₂} {𝔛₂ : Ø 𝔵₂}
{𝔯} (ℜ : 𝔛₁ → 𝔛₁ → Ø 𝔯)
{𝔭₁} (𝔓₁ : 𝔛₂ → Ø 𝔭₁)
{𝔭₂} (𝔓₂ : 𝔛₂ → Ø 𝔭₂)
{𝔯̇} (ℜ̇ : ∀ {x y} → ℜ x y → ℜ x y → Ø 𝔯̇)
{𝔭̇₁₁} (𝔓̇₁₁ : ∀ {x} → 𝔓₁ x → 𝔓₁ x → Ø 𝔭̇₁₁)
{𝔭̇₂₂} (𝔓̇₂₂ : ∀ {x} → 𝔓₂ x → 𝔓₂ x → Ø 𝔭̇₂₂)
{𝔭̇₁₂} (𝔓̇₁₂ : ∀ {x} → 𝔓₁ x → 𝔓₂ x → Ø 𝔭̇₁₂)
where
record IsSmapoid : Ø 𝔵₁ ∙̂ 𝔵₂ ∙̂ 𝔯 ∙̂ 𝔯̇ ∙̂ 𝔭₁ ∙̂ 𝔭₂ ∙̂ 𝔭̇₁₁ ∙̂ 𝔭̇₂₂ ∙̂ 𝔭̇₁₂ where
constructor ∁
field
⦃ `Surjection ⦄ : Surjection.class 𝔛₁ 𝔛₂
-- ℜ 𝓂 𝓃 → 𝔓₁ (surjection 𝓂) → 𝔓₂ (surjection 𝓃)
⦃ `Smaparrow ⦄ : Smaparrow.class ℜ 𝔓₁ 𝔓₂ surjection surjection -- epfs, Smap
-- 𝒫 ₁≈₁ 𝒬 → 𝒻 ◃ 𝒫 ₂≈₂ 𝒻 ◃ 𝒬
⦃ `leftSim ⦄ : Similarity,smaparrow!.class ℜ 𝔓₁ 𝔓₂ 𝔓̇₁₁ 𝔓̇₂₂ -- fact5, Similarity, Smaparrowleftsimilarity
⦃ `𝓡eflexivity ⦄ : Reflexivity.class ℜ
-- 𝒫 ₁≈₂ 𝒖 ◃ 𝒫
⦃ `leftyunit ⦄ : ∀ {x} {p : 𝔓₁ (surjection x)}
→ Leftunit.class (flip (𝔓̇₁₂ {surjection x})) ε smap p
module _
{𝔵₁} {𝔛₁ : Ø 𝔵₁}
{𝔵₂} {𝔛₂ : Ø 𝔵₂}
{𝔯} (ℜ : 𝔛₁ → 𝔛₁ → Ø 𝔯)
{𝔭₁} (𝔓₁ : 𝔛₂ → Ø 𝔭₁)
{𝔭₂} (𝔓₂ : 𝔛₂ → Ø 𝔭₂)
{𝔯̇} (ℜ̇ : ∀ {x y} → ℜ x y → ℜ x y → Ø 𝔯̇)
{𝔭̇₁₁} (𝔓̇₁₁ : ∀ {x} → 𝔓₁ x → 𝔓₁ x → Ø 𝔭̇₁₁)
{𝔭̇₂₂} (𝔓̇₂₂ : ∀ {x} → 𝔓₂ x → 𝔓₂ x → Ø 𝔭̇₂₂)
{𝔭̇₁₂} (𝔓̇₁₂ : ∀ {x} → 𝔓₁ x → 𝔓₂ x → Ø 𝔭̇₁₂)
where
record IsSmapoidR : Ø 𝔵₁ ∙̂ 𝔵₂ ∙̂ 𝔯 ∙̂ 𝔯̇ ∙̂ 𝔭₁ ∙̂ 𝔭₂ ∙̂ 𝔭̇₁₁ ∙̂ 𝔭̇₂₂ ∙̂ 𝔭̇₁₂ where
constructor ∁
field
⦃ `IsSmapoid ⦄ : IsSmapoid ℜ 𝔓₁ 𝔓₂ ℜ̇ 𝔓̇₁₁ 𝔓̇₂₂ 𝔓̇₁₂
-- 𝒻 ᵣ≈ᵣ ℊ → 𝒻 ◃ 𝒫 ₂≈₂ ℊ ◃ 𝒫
⦃ `rightSim ⦄ : Similarity,cosmaparrow!.class ℜ 𝔓₁ 𝔓₂ ℜ̇ 𝔓̇₂₂ -- fact6, Similarity, Smaparrowrightsimilarity
-- TODO add these somewhere?
-- fact4 needs Propergroup's Nothing -- ⦃ `Leftstar ⦄ : Leftstar.class
-- left-identity-∧ needs Propergroup
-- fact1 -- ⦃ `Symmetrical ⦄ : ∀ {m} → Symmetrical (surjcollation[ 𝔓 ]⟦ ℜ / 𝔓̇ ⟧ {m}) (λ { (∁ f) (∁ g) → {!f {m}!}})
-- Properties-fact1
|
{
"alphanum_fraction": 0.5472636816,
"avg_line_length": 31.5857142857,
"ext": "agda",
"hexsha": "077d3d50a0aea1b9fcfcc72cdea5ade7ba7c542d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Smapoid.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Smapoid.agda",
"max_line_length": 116,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Smapoid.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1378,
"size": 2211
}
|
module list-test where
open import bool
open import list
open import nat
open import list-to-string
open import bool-to-string
open import eq
test1 : 𝕃 𝔹
test1 = tt :: tt :: tt :: []
test2 : 𝕃 𝔹
test2 = ff :: ff :: []
test3 = test1 ++ test2
test-lem : test3 ≡ tt :: tt :: tt :: ff :: ff :: []
test-lem = refl
test-lem2 : reverse test3 ≡ ff :: ff :: tt :: tt :: tt :: []
test-lem2 = refl
test3-string = 𝕃-to-string 𝔹-to-string ", " test3
test4-even = filter is-even (1 :: 2 :: 3 :: 4 :: 5 :: 6 :: 7 :: [])
|
{
"alphanum_fraction": 0.58984375,
"avg_line_length": 19.6923076923,
"ext": "agda",
"hexsha": "3171b843d33d9e612be32cfa102d766bc60c5c3c",
"lang": "Agda",
"max_forks_count": 17,
"max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z",
"max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rfindler/ial",
"max_forks_repo_path": "list-test.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rfindler/ial",
"max_issues_repo_path": "list-test.agda",
"max_line_length": 67,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rfindler/ial",
"max_stars_repo_path": "list-test.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z",
"num_tokens": 181,
"size": 512
}
|
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
module lib.types.Bool where
{-
data Bool : Type₀ where
true : Bool
false : Bool
{-# BUILTIN BOOL Bool #-}
{-# BUILTIN FALSE false #-}
{-# BUILTIN TRUE true #-}
-}
Bool = ⊤ ⊔ ⊤
pattern true = inl unit
pattern false = inr unit
⊙Bool : Ptd₀
⊙Bool = ⊙[ Bool , true ]
Bool-elim : ∀ {i} {P : Bool → Type i} → P true → P false → Π Bool P
Bool-elim true* false* true = true*
Bool-elim true* false* false = false*
Bool-rec : ∀ {i} {A : Type i} → A → A → (Bool → A)
Bool-rec {A = A} = Bool-elim {P = λ _ → A}
private
Bool-true≠false-type : Bool → Type₀
Bool-true≠false-type true = Unit
Bool-true≠false-type false = Empty
abstract
Bool-true≠false : true ≠ false
Bool-true≠false p = transport Bool-true≠false-type p unit
Bool-false≠true : false ≠ true
Bool-false≠true p = transport Bool-true≠false-type (! p) unit
Bool-has-dec-eq : has-dec-eq Bool
Bool-has-dec-eq true true = inl idp
Bool-has-dec-eq true false = inr Bool-true≠false
Bool-has-dec-eq false true = inr Bool-false≠true
Bool-has-dec-eq false false = inl idp
Bool-is-set : is-set Bool
Bool-is-set = dec-eq-is-set Bool-has-dec-eq
instance
Bool-level : {n : ℕ₋₂} → has-level (S (S n)) Bool
Bool-level = set-has-level-SS Bool-is-set
|
{
"alphanum_fraction": 0.64374034,
"avg_line_length": 23.1071428571,
"ext": "agda",
"hexsha": "01ddc93118edf9b8d4bdd509ad31ff4ff637b7ca",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/Bool.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/Bool.agda",
"max_line_length": 67,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/Bool.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 452,
"size": 1294
}
|
open import Coinduction using ( ∞ ; ♯_ ; ♭ )
open import Data.Product using ( _×_ ; _,_ ; proj₁ )
open import FRP.LTL.Time.Bound using
( Time∞ ; _≼_ ; _≺_ ; fin ; +∞ ; +∞-top
; ≼-refl ; _≼-trans_ ; ≡-impl-≽ ; ≺-impl-≼ ; ≺-impl-⋡ ; t≺+∞
; _≼-case_ ; lt ; eq ; gt )
open import FRP.LTL.Time.Interval using ( [_⟩ ; _⊑_ ; _~_ ; _⌢_∵_ )
open import FRP.LTL.ISet.Causal using ( _⊵_ ; _∙_⊸_∙_ ; done ; inp ; out ; _/_/_ )
open import FRP.LTL.ISet.Core using ( ISet ; [_] ; _,_ ; ⟦_⟧ ; M⟦_⟧ ; splitM⟦_⟧ ; subsumM⟦_⟧ )
open import FRP.LTL.ISet.Stateless using ( _⇒_ )
open import FRP.LTL.Util using ( ⊥-elim ; ≡-relevant )
open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl )
module FRP.LTL.ISet.Product where
_∧_ : ISet → ISet → ISet
A ∧ B = [ (λ i → M⟦ A ⟧ i × M⟦ B ⟧ i) , split , subsum ] where
split : ∀ i j i~j →
(M⟦ A ⟧ (i ⌢ j ∵ i~j) × M⟦ B ⟧ (i ⌢ j ∵ i~j)) →
((M⟦ A ⟧ i × M⟦ B ⟧ i) × (M⟦ A ⟧ j × M⟦ B ⟧ j))
split i j i~j (σ , τ) with splitM⟦ A ⟧ i j i~j σ | splitM⟦ B ⟧ i j i~j τ
split i j i~j (σ , τ) | (σ₁ , σ₂) | (τ₁ , τ₂) = ((σ₁ , τ₁) , (σ₂ , τ₂))
subsum : ∀ i j → (i ⊑ j) → (M⟦ A ⟧ j × M⟦ B ⟧ j) → (M⟦ A ⟧ i × M⟦ B ⟧ i)
subsum i j i⊑j (σ , τ) = (subsumM⟦ A ⟧ i j i⊑j σ , subsumM⟦ B ⟧ i j i⊑j τ)
-- We could define fst and snd in terms of arr, but we define them explictly for efficiency.
π₁ : ∀ {A B} t → ((A ∧ B) ∙ t ⊸ A ∙ t)
π₁ {A} {B} +∞ = done refl
π₁ {A} {B} (fin t) = inp ≼-refl t≺+∞ P where
P : ∀ {u} .(t≺u : fin t ≺ u) → M⟦ A ∧ B ⟧ [ t≺u ⟩ → ∞ ((A ∧ B) ∙ u ⊸ A ∙ fin t)
P {u} t≺u [ σ , τ ] = ♯ out t≺u σ (♯ π₁ u)
fst : ∀ {A B} → ⟦ A ∧ B ⊵ A ⟧
fst = [ (λ t t∈i → π₁ (fin t)) ]
π₂ : ∀ {A B} t → ((A ∧ B) ∙ t ⊸ B ∙ t)
π₂ {A} {B} +∞ = done refl
π₂ {A} {B} (fin t) = inp ≼-refl t≺+∞ Q where
Q : ∀ {u} .(t≺u : fin t ≺ u) → M⟦ A ∧ B ⟧ [ t≺u ⟩ → ∞ ((A ∧ B) ∙ u ⊸ B ∙ fin t)
Q {u} t≺u [ σ , τ ] = ♯ out t≺u τ (♯ π₂ u)
snd : ∀ {A B} → ⟦ A ∧ B ⊵ B ⟧
snd = [ (λ t t∈i → π₂ (fin t)) ]
-- Mediating morphism
_&&_ : ∀ {A B C s t} → (A ∙ s ⊸ B ∙ t) → (A ∙ s ⊸ C ∙ t) → (A ∙ s ⊸ (B ∧ C) ∙ t)
inp s≼t t≺∞ P && Q = inp s≼t t≺∞ (λ s≺u σ → ♯ (♭ (P s≺u σ) && (Q / s≺u / σ)))
P && inp s≼t t≺∞ Q = inp s≼t t≺∞ (λ s≺u σ → ♯ ((P / s≺u / σ) && ♭ (Q s≺u σ)))
P && done t≡∞ = done t≡∞
done t≡∞ && Q = done t≡∞
out {u} t≺u σ P && out {v} t≺v τ Q with u ≼-case v
out t≺u σ P && out t≺v τ Q | lt u≺v with splitM⟦ _ ⟧ [ t≺u ⟩ [ u≺v ⟩ refl τ
out t≺u σ P && out t≺v τ Q | lt u≺v | (τ₁ , τ₂) = out t≺u [ σ , τ₁ ] (♯ (♭ P && out u≺v τ₂ Q))
out t≺u σ P && out t≺v τ Q | eq u≡v with ≡-relevant u≡v
out t≺u σ P && out t≺v τ Q | eq u≡v | refl = out t≺u [ σ , τ ] (♯ (♭ P && ♭ Q))
out t≺u σ P && out t≺v τ Q | gt v≺u with splitM⟦ _ ⟧ [ t≺v ⟩ [ v≺u ⟩ refl σ
out t≺u σ P && out t≺v τ Q | gt v≺u | (σ₁ , σ₂) = out t≺v [ σ₁ , τ ] (♯ (out v≺u σ₂ P && ♭ Q))
_&&&_ : ∀ {A B C} → ⟦ (A ⊵ B) ⇒ (A ⊵ C) ⇒ (A ⊵ (B ∧ C)) ⟧
[ [ f ] ] &&& [ [ g ] ] = [ (λ t t∈i → f t t∈i && g t t∈i) ]
|
{
"alphanum_fraction": 0.4283828383,
"avg_line_length": 45.9090909091,
"ext": "agda",
"hexsha": "565d491d6193563face20ee18a214f875c20ba3c",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:04.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-01T07:33:00.000Z",
"max_forks_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-frp-ltl",
"max_forks_repo_path": "src/FRP/LTL/ISet/Product.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_issues_repo_issues_event_max_datetime": "2015-03-02T15:23:53.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-01T07:01:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-frp-ltl",
"max_issues_repo_path": "src/FRP/LTL/ISet/Product.agda",
"max_line_length": 98,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-frp-ltl",
"max_stars_repo_path": "src/FRP/LTL/ISet/Product.agda",
"max_stars_repo_stars_event_max_datetime": "2020-06-15T02:51:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-02T20:25:05.000Z",
"num_tokens": 1658,
"size": 3030
}
|
module UselessAbstractPrimitive where
postulate Int : Set
{-# BUILTIN INTEGER Int #-}
abstract
primitive
primIntegerPlus : Int -> Int -> Int
|
{
"alphanum_fraction": 0.72,
"avg_line_length": 15,
"ext": "agda",
"hexsha": "3c01787a91956b017bf57793c06a03ddeae907dc",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/UselessAbstractPrimitive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/UselessAbstractPrimitive.agda",
"max_line_length": 39,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Fail/UselessAbstractPrimitive.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 35,
"size": 150
}
|
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-}
-- This library is licensed under 0BSD. You can read more about it at its GitHub repository: https://github.com/Zambonifofex/lightlib
module index where
-- The `Light.Libary` file exports modules referencing interface files and other miscellaneous files in the library.
import Light.Library
-- The `Light.Implementation` file exports modules referencing files that provide an implementation for the interfaces above.
import Light.Implementation
-- The `Light` file can be used conveniently to use the given implementation for their appropriate interfaces.
import Light
-- The `Light.Implementation.Standard` file provides an implementation that uses definitions from the standard library: https://github.com/agda/agda-stdlib
import Light.Implementation.Standard
|
{
"alphanum_fraction": 0.8030660377,
"avg_line_length": 47.1111111111,
"ext": "agda",
"hexsha": "49e0cd7a7c3dce3b72686b4f10669b737837f99a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "Zambonifofex/lightlib",
"max_forks_repo_path": "other/index.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "Zambonifofex/lightlib",
"max_issues_repo_path": "other/index.agda",
"max_line_length": 155,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "zamfofex/lightlib",
"max_stars_repo_path": "other/index.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z",
"num_tokens": 167,
"size": 848
}
|
open import Everything
module Test.Test7 where
𝓅rop-id : ∀
{𝔵} {𝔛 : Ø 𝔵}
{𝔞} {𝔄 : 𝔛 → Ø 𝔞}
{𝔟} {𝔅 : 𝔛 → Ø 𝔟}
(let _∼_ = Arrow 𝔄 𝔅)
{ℓ̇} {_∼̇_ : ∀ {x y} → x ∼ y → x ∼ y → Ø ℓ̇}
⦃ _ : Transitivity.class _∼_ ⦄
⦃ _ : Reflexivity.class _∼_ ⦄
⦃ _ : Transleftidentity!.class _∼_ _∼̇_ ⦄
⦃ _ : ∀ {x y} → Symmetry.class (_∼̇_ {x} {y}) ⦄
{m n}
{ℓ} {f : m ∼ n} (P : ExtensionṖroperty ℓ (Arrow 𝔄 𝔅 m) _∼̇_) (let P₀ = π₀ (π₀ P))
→ P₀ f
→ P₀ (ε ∙ f)
𝓅rop-id P Pf = hmap _ P Pf
|
{
"alphanum_fraction": 0.4550669216,
"avg_line_length": 23.7727272727,
"ext": "agda",
"hexsha": "b98daa02b18bbccc046cd7a244165bd8b7efcf81",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Test/Test7.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Test/Test7.agda",
"max_line_length": 86,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Test/Test7.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 302,
"size": 523
}
|
{-
Types Summer School 2007
Bertinoro
Aug 19 - 31, 2007
Agda
Ulf Norell
-}
-- Now we're getting somewhere! Inductive families of datatypes.
module Families where
-- You can import modules defined in other files.
-- More details later...
-- open import Nat
data Nat : Set where
zero : Nat
suc : Nat -> Nat
_+_ : Nat -> Nat -> Nat
zero + m = m
suc n + m = suc (n + m)
-- Think of an inductive family...
data Vec (A : Set) : Nat -> Set where
[] : Vec A zero
_::_ : {n : Nat} -> A -> Vec A n -> Vec A (suc n)
infixr 40 _::_
-- Some simple functions
head : {A : Set}{n : Nat} -> Vec A (suc n) -> A
head (x :: _) = x -- no need for a [] case
-- Does the definition look familiar?
map : {A B : Set}{n : Nat} -> (A -> B) -> Vec A n -> Vec B n
map f [] = []
map f (x :: xs) = f x :: map f xs
infixr 40 _++_
_++_ : {A : Set}{n m : Nat} -> Vec A n -> Vec A m -> Vec A (n + m)
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)
-- Why does this type check? Let's walk through it slowly.
-- When pattern matching on the first vector, n is instantiated.
-- What happens if we make the lengths explicit?
cat : {A : Set}(n m : Nat) -> Vec A n -> Vec A m -> Vec A (n + m)
cat .zero m [] ys = ys
cat .(suc n) m (_::_ {n} x xs) ys = x :: (cat n m xs ys)
-- Patterns which get instantiated by pattern matching on other stuff
-- get tagged by a dot. If you erase all the dotted things you get a
-- well-formed linear first-order pattern.
-- Inside the dot we could have arbitrary terms. For instance,
data Image_∋_ {A B : Set}(f : A -> B) : B -> Set where
im : (x : A) -> Image f ∋ f x
inv : {A B : Set}(f : A -> B)(y : B) -> Image f ∋ y -> A
inv f .(f x) (im x) = x
-- Let's do some other interesting families.
-- The identity type.
data _==_ {A : Set} : A -> A -> Set where
refl : (x : A) -> x == x
subst : {A : Set}(C : A -> Set)(x y : A) -> x == y -> C x -> C y
subst C .x .x (refl x) cx = cx
-- Finite sets
{-
Fin zero -
Fin (suc zero) fzero
Fin 2 fzero, fsuc fzero
-}
data Fin : Nat -> Set where
fzero : {n : Nat} -> Fin (suc n)
fsuc : {n : Nat} -> Fin n -> Fin (suc n)
_!_ : {A : Set}{n : Nat} -> Vec A n -> Fin n -> A
[] ! ()
(x :: xs) ! fzero = x
(x :: xs) ! fsuc i = xs ! i
{-
What's next?
-}
-- Actually, inductive families are sufficiently fun that
-- you'll never get bored, but there's even more fun to be had.
-- Move on to: Filter.agda
|
{
"alphanum_fraction": 0.535898453,
"avg_line_length": 22.3097345133,
"ext": "agda",
"hexsha": "7f9e86f494d167ec284841c3dd98a80781194c00",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/SummerSchool07/Lecture/Families.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/SummerSchool07/Lecture/Families.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/SummerSchool07/Lecture/Families.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 839,
"size": 2521
}
|
{-# OPTIONS -Wall #-}
module noinfixdecl where
-- warning acts on data constructors
data #2 : Set where
one : #2
two : #2
neg_ : #2 → #2
-- warning acts on definitions
infixl 3 _⊓_
_⊔_ : #2 → #2 → #2
_⊓_ : #2 → #2 → #2
one ⊔ n = n
two ⊔ n = two
(neg v) ⊔ n = neg (v ⊓ neg n)
one ⊓ n = one
two ⊓ n = n
(neg m) ⊓ n = neg (m ⊔ (neg n))
-- warning acts on postulates
postulate _≤_ : #2 → #2 → Set
-- warning does not act on 'closed' mixfix definitions
postulate [_] : #2 → Set
|
{
"alphanum_fraction": 0.5496031746,
"avg_line_length": 17.3793103448,
"ext": "agda",
"hexsha": "126b9c9a536d60ab8844d1dfb8cd7903066773a6",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/noinfixdecl.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/noinfixdecl.agda",
"max_line_length": 54,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/noinfixdecl.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 206,
"size": 504
}
|
{-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.NType2
open import lib.types.Nat
open import lib.types.TLevel
open import lib.types.Empty
open import lib.types.Pi
open import lib.types.Sigma
open import lib.types.Truncation
open import lib.types.Pointed
open import lib.types.Group
open import lib.types.LoopSpace
open import lib.groups.TruncationGroup
open import lib.groups.GroupProduct
open import lib.groups.Homomorphisms
open import lib.groups.Unit
module lib.groups.HomotopyGroup where
{- Higher homotopy groups -}
module _ {i} where
πS : (n : ℕ) (X : Ptd i) → Group i
πS n X = Trunc-group (Ω^S-group-structure n X)
fundamental-group : (X : Ptd i) → Group i
fundamental-group X = πS 0 X
{- π_(n+1) of a space is π_n of its loop space -}
abstract
πS-inner-iso : ∀ {i} (n : ℕ) (X : Ptd i)
→ πS (S n) X == πS n (⊙Ω X)
πS-inner-iso n X = group-ua
(record {
f = Trunc-fmap (Ω^-inner-out (S n) X);
pres-comp =
Trunc-elim (λ _ → Π-level (λ _ → =-preserves-level _ Trunc-level))
(λ p → Trunc-elim (λ _ → =-preserves-level _ Trunc-level)
(λ q → ap [_] (Ω^S-inner-out-conc^S n X p q)))} ,
is-equiv-Trunc 0 (Ω^-inner-out (S n) X) (Ω^-inner-is-equiv (S n) X))
{- We can shift the truncation inside the loop in the definition of π -}
module _ {i} where
private
record Ω^STs-PreIso (m : ℕ₋₂) (n : ℕ) (k : ℕ₋₂) (X : Ptd i)
: Type i where
field
F : fst (⊙Ω^ (S n) (⊙Trunc k X) ⊙→ ⊙Trunc m (⊙Ω^ (S n) X))
pres-comp : ∀ (p q : Ω^ (S n) (⊙Trunc k X))
→ fst F (conc^S n p q) == Trunc-fmap2 (conc^S n) (fst F p) (fst F q)
e : is-equiv (fst F)
Ω^S-Trunc-shift-preiso : (n : ℕ) (m : ℕ₋₂) (X : Ptd i)
→ Ω^STs-PreIso m n (⟨ S n ⟩₋₂ +2+ m) X
Ω^S-Trunc-shift-preiso O m X =
record { F = (–> (Trunc=-equiv [ snd X ] [ snd X ]) , idp);
pres-comp = Trunc=-∙-comm;
e = snd (Trunc=-equiv [ snd X ] [ snd X ]) }
Ω^S-Trunc-shift-preiso (S n) m X =
let
r : Ω^STs-PreIso (S m) n (⟨ S n ⟩₋₂ +2+ S m) X
r = Ω^S-Trunc-shift-preiso n (S m) X
H = (–> (Trunc=-equiv [ idp^ (S n) ] [ idp^ (S n) ]) , idp)
G = ap^ 1 (Ω^STs-PreIso.F r)
in
transport (λ k → Ω^STs-PreIso m (S n) k X)
(+2+-βr ⟨ S n ⟩₋₂ m)
(record {
F = H ⊙∘ G;
pres-comp = λ p q →
ap (fst H) (ap^S-conc^S 0 (Ω^STs-PreIso.F r) p q)
∙ (Trunc=-∙-comm (fst G p) (fst G q));
e = snd (Trunc=-equiv [ idp^ (S n) ] [ idp^ (S n) ]
∘e equiv-ap^ 1 (Ω^STs-PreIso.F r) (Ω^STs-PreIso.e r))})
πS-Trunc-shift-iso : (n : ℕ) (X : Ptd i)
→ Ω^S-group n (⊙Trunc ⟨ S n ⟩ X) Trunc-level == πS n X
πS-Trunc-shift-iso n X = group-ua (group-hom (fst F) pres-comp , e)
where
n-eq : ∀ (n : ℕ) → ⟨ n ⟩₋₂ +2+ 0 == ⟨ n ⟩
n-eq O = idp
n-eq (S n) = ap S (n-eq n)
r = transport (λ k → Ω^STs-PreIso 0 n k X)
(n-eq (S n)) (Ω^S-Trunc-shift-preiso n 0 X)
open Ω^STs-PreIso r
abstract
πS-below-trunc : ∀ {i} (n : ℕ) (m : ℕ₋₂) (X : Ptd i)
→ (⟨ S n ⟩ ≤T m) → πS n (⊙Trunc m X) == πS n X
πS-below-trunc n m X lte =
πS n (⊙Trunc m X)
=⟨ ! (πS-Trunc-shift-iso n (⊙Trunc m X)) ⟩
Ω^S-group n (⊙Trunc ⟨ S n ⟩ (⊙Trunc m X)) Trunc-level
=⟨ lemma ⟩
Ω^S-group n (⊙Trunc ⟨ S n ⟩ X) Trunc-level
=⟨ πS-Trunc-shift-iso n X ⟩
πS n X ∎
where
lemma : Ω^S-group n (⊙Trunc ⟨ S n ⟩ (⊙Trunc m X)) Trunc-level
== Ω^S-group n (⊙Trunc ⟨ S n ⟩ X) Trunc-level
lemma = ap (uncurry $ Ω^S-group n) $
pair=
(⊙ua (⊙≃-in (fuse-Trunc (fst X) ⟨ S n ⟩ m) idp) ∙
ap (λ k → ⊙Trunc k X) (minT-out-l lte))
(prop-has-all-paths-↓ has-level-is-prop)
πS-above-trunc : ∀ {i} (n : ℕ) (m : ℕ₋₂) (X : Ptd i)
→ (m <T ⟨ S n ⟩) → πS n (⊙Trunc m X) == 0ᴳ
πS-above-trunc n m X lt =
πS n (⊙Trunc m X)
=⟨ ! (πS-Trunc-shift-iso n (⊙Trunc m X)) ⟩
Ω^S-group n (⊙Trunc ⟨ S n ⟩ (⊙Trunc m X)) Trunc-level
=⟨ contr-is-0ᴳ _ $ inhab-prop-is-contr
(Group.ident (Ω^S-group n (⊙Trunc ⟨ S n ⟩ (⊙Trunc m X)) Trunc-level))
(Ω^-level-in -1 (S n) _ $ Trunc-preserves-level ⟨ S n ⟩ $
raise-level-≤T
(transport (λ k → m ≤T k) (+2+-comm -1 ⟨ S n ⟩₋₂) (<T-to-≤T lt))
(Trunc-level {n = m})) ⟩
0ᴳ ∎
πS-above-level : ∀ {i} (n : ℕ) (m : ℕ₋₂) (X : Ptd i)
→ (m <T ⟨ S n ⟩) → has-level m (fst X)
→ πS n X == 0ᴳ
πS-above-level n m X lt pX =
ap (πS n) (! (⊙ua (⊙≃-in (unTrunc-equiv _ pX) idp)))
∙ πS-above-trunc n m X lt
{- πₙ(X × Y) == πₙ(X) × πₙ(Y) -}
module _ {i j} (n : ℕ) (X : Ptd i) (Y : Ptd j) where
πS-× : πS n (X ⊙× Y) == πS n X ×ᴳ πS n Y
πS-× =
group-ua (Trunc-group-iso f pres-comp (is-eq f g f-g g-f))
∙ Trunc-group-× _ _
where
f : Ω^ (S n) (X ⊙× Y) → Ω^ (S n) X × Ω^ (S n) Y
f r = (fst (ap^ (S n) ⊙fst) r , fst (ap^ (S n) ⊙snd) r)
g : Ω^ (S n) X × Ω^ (S n) Y → Ω^ (S n) (X ⊙× Y)
g = fst (ap2^ (S n) (⊙idf _))
f-g : (s : Ω^ (S n) X × Ω^ (S n) Y) → f (g s) == s
f-g (p , q) = pair×=
(app= (ap fst (ap^-ap2^ (S n) ⊙fst (⊙idf _) ∙ ap2^-fst (S n))) (p , q))
(app= (ap fst (ap^-ap2^ (S n) ⊙snd (⊙idf _) ∙ ap2^-snd (S n))) (p , q))
g-f : (r : Ω^ (S n) (X ⊙× Y)) → g (f r) == r
g-f = app= $ ap fst $
ap (λ h → h ⊙∘ ⊙diag) (ap2^-ap^ (S n) (⊙idf _) ⊙fst ⊙snd)
∙ ap2^-diag (S n) (⊙idf _ ⊙∘ pair⊙→ ⊙fst ⊙snd)
∙ ap^-idf (S n)
pres-comp : (p q : Ω^ (S n) (X ⊙× Y))
→ f (conc^S n p q) == (conc^S n (fst (f p)) (fst (f q)) ,
conc^S n (snd (f p)) (snd (f q)))
pres-comp p q = pair×= (ap^S-conc^S n ⊙fst p q) (ap^S-conc^S n ⊙snd p q)
module _ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} (f : fst (X ⊙→ Y)) where
πS-fmap : πS n X →ᴳ πS n Y
πS-fmap = Trunc-group-hom (fst (ap^ (S n) f)) (ap^S-conc^S n f)
|
{
"alphanum_fraction": 0.4858728557,
"avg_line_length": 35.8192771084,
"ext": "agda",
"hexsha": "6e3d0235ef0865ae0c50584207f6d43aab1af24c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "core/lib/groups/HomotopyGroup.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "core/lib/groups/HomotopyGroup.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "core/lib/groups/HomotopyGroup.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2695,
"size": 5946
}
|
module Human.Test where
open import Human.Humanity
-- sum 7
-- 0 + 1 + 2 + 3 + 4 + 5 + 6
-- function sum(x) {
-- var result = 0;
-- for (var i = 0; i < 10; ++i) {
-- result = result + i;
-- }
-- return result;
-- }
sum : Nat → Nat
sum i =
init 0
for i from 0 to 10 do:
λ result → result + 1
|
{
"alphanum_fraction": 0.5063291139,
"avg_line_length": 14.3636363636,
"ext": "agda",
"hexsha": "80806f14678bac1dcf040faf57457b31b6f71c54",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MaisaMilena/JuiceMaker",
"max_forks_repo_path": "src/Human/Test.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MaisaMilena/JuiceMaker",
"max_issues_repo_path": "src/Human/Test.agda",
"max_line_length": 35,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MaisaMilena/JuiceMaker",
"max_stars_repo_path": "src/Human/Test.agda",
"max_stars_repo_stars_event_max_datetime": "2020-11-28T05:46:27.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-03-29T17:35:20.000Z",
"num_tokens": 124,
"size": 316
}
|
------------------------------------------------------------------------
-- A small library of derived parser combinators
------------------------------------------------------------------------
module TotalParserCombinators.Lib where
open import Category.Monad
open import Codata.Musical.Notation
open import Function.Base
open import Function.Equality using (_⟶_; _⟨$⟩_)
open import Function.Injection using (Injection; Injective)
open import Function.Inverse using (_↔_; module Inverse)
open import Data.Bool hiding (_≤?_)
open import Data.Char as Char using (Char; _==_)
open import Data.List as List
import Data.List.Categorical
open import Data.List.Membership.Propositional
import Data.List.Membership.Propositional.Properties as ∈
open import Data.List.NonEmpty as List⁺ using (List⁺; _∷_)
open import Data.List.Relation.Unary.Any
open import Data.Maybe hiding (_>>=_)
open import Data.Nat hiding (_^_)
open import Data.Product as Prod
open import Data.Unit using (⊤)
open import Data.Vec as Vec using (Vec; []; _∷_)
import Level
open import Relation.Binary
open import Relation.Binary.HeterogeneousEquality as H using (_≅_)
open import Relation.Binary.PropositionalEquality as P using (_≡_)
import Relation.Binary.PropositionalEquality.WithK as P
open import Relation.Nullary
open import Relation.Nullary.Decidable
private
open module ListMonad =
RawMonad {f = Level.zero} Data.List.Categorical.monad
using ()
renaming (_<$>_ to _<$>′_; _⊛_ to _⊛′_; _>>=_ to _>>=′_)
import TotalParserCombinators.InitialBag as I
open import TotalParserCombinators.Parser
open import TotalParserCombinators.Semantics as S
hiding (_≅_; return; token)
------------------------------------------------------------------------
-- Kleene star
-- The intended semantics of the Kleene star.
infixr 5 _∷_
infix 4 _∈[_]⋆·_
data _∈[_]⋆·_ {Tok R xs} :
List R → Parser Tok R xs → List Tok → Set₁ where
[] : ∀ {p} → [] ∈[ p ]⋆· []
_∷_ : ∀ {x xs s₁ s₂ p} →
(x∈p : x ∈ p · s₁) (xs∈p⋆ : xs ∈[ p ]⋆· s₂) →
x ∷ xs ∈[ p ]⋆· s₁ ++ s₂
-- An implementation which requires that the argument parser is not
-- nullable.
infix 55 _⋆ _+
mutual
_⋆ : ∀ {Tok R} →
Parser Tok R [] →
Parser Tok (List R) [ [] ]
p ⋆ = return [] ∣ p +
_+ : ∀ {Tok R} →
Parser Tok R [] →
Parser Tok (List R) []
p + = _∷_ <$> p ⊛ ♯ (p ⋆)
module KleeneStar where
-- The implementation is correct.
sound : ∀ {Tok R xs s} {p : Parser Tok R []} →
xs ∈ p ⋆ · s → xs ∈[ p ]⋆· s
sound (∣-left S.return) = []
sound (∣-right ._ (<$> x∈p ⊛ xs∈p⋆)) = x∈p ∷ sound xs∈p⋆
complete : ∀ {Tok R xs s} {p : Parser Tok R []} →
xs ∈[ p ]⋆· s → xs ∈ p ⋆ · s
complete [] = ∣-left S.return
complete (_∷_ {s₁ = []} x∈p xs∈p⋆) with I.complete x∈p
... | ()
complete (_∷_ {s₁ = _ ∷ _} x∈p xs∈p⋆) =
∣-right [ [] ] ([ ○ - ◌ ] <$> x∈p ⊛ complete xs∈p⋆)
complete∘sound :
∀ {Tok R xs s} {p : Parser Tok R []} (xs∈ : xs ∈ p ⋆ · s) →
complete (sound xs∈) ≡ xs∈
complete∘sound (∣-left S.return) = P.refl
complete∘sound (∣-right ._ (_⊛_ {s₁ = _ ∷ _} (<$> x∈p) xs∈p⋆))
rewrite complete∘sound xs∈p⋆ = P.refl
complete∘sound (∣-right ._ (_⊛_ {s₁ = []} (<$> x∈p) xs∈p⋆))
with I.complete x∈p
... | ()
sound∘complete : ∀ {Tok R xs s} {p : Parser Tok R []}
(xs∈ : xs ∈[ p ]⋆· s) →
sound (complete xs∈) ≡ xs∈
sound∘complete [] = P.refl
sound∘complete (_∷_ {s₁ = []} x∈p xs∈p⋆) with I.complete x∈p
... | ()
sound∘complete (_∷_ {s₁ = _ ∷ _} x∈p xs∈p⋆) =
P.cong (_∷_ x∈p) $ sound∘complete xs∈p⋆
correct : ∀ {Tok R xs s} {p : Parser Tok R []} →
xs ∈ p ⋆ · s ↔ xs ∈[ p ]⋆· s
correct = record
{ to = P.→-to-⟶ sound
; from = P.→-to-⟶ complete
; inverse-of = record
{ left-inverse-of = complete∘sound
; right-inverse-of = sound∘complete
}
}
-- The definition of _⋆ is restricted to non-nullable parsers. This
-- restriction cannot be removed: an unrestricted Kleene star
-- operator would be incomplete because, in the present framework, a
-- parser can only return a finite number of results.
unrestricted-incomplete :
∀ {R Tok} →
R →
(f : ∀ {xs} → Parser Tok R xs → List (List R)) →
(_⋆′ : ∀ {xs} (p : Parser Tok R xs) → Parser Tok (List R) (f p)) →
¬ (∀ {xs ys s} {p : Parser Tok R ys} →
xs ∈[ p ]⋆· s → xs ∈ p ⋆′ · s)
unrestricted-incomplete {R} x f _⋆′ complete =
∈.finite (record { to = to; injective = injective })
(f (return x)) (I.complete ∘ complete ∘ lemma)
where
to : P.setoid ℕ ⟶ P.setoid (List R)
to = P.→-to-⟶ (flip replicate x)
helper : ∀ {xs ys} → _≡_ {A = List R} (x ∷ xs) (x ∷ ys) → xs ≡ ys
helper P.refl = P.refl
injective : Injective to
injective {zero} {zero} _ = P.refl
injective {suc m} {suc n} eq = P.cong suc $
injective $ helper eq
injective {zero} {suc n} ()
injective {suc m} {zero} ()
lemma : ∀ i → replicate i x ∈[ return x ]⋆· []
lemma zero = []
lemma (suc i) = S.return ∷ lemma i
------------------------------------------------------------------------
-- A combinator for recognising a string a fixed number of times
infixl 55 _^_ _↑_
^-initial : ∀ {R} → List R → (n : ℕ) → List (Vec R n)
^-initial xs zero = [ [] ]
^-initial xs (suc n) = List.map _∷_ xs ⊛′ ^-initial xs n
_^_ : ∀ {Tok R xs} →
Parser Tok R xs → (n : ℕ) → Parser Tok (Vec R n) (^-initial xs n)
p ^ 0 = return []
p ^ suc n = _∷_ <$> p ⊛ p ^ n
mutual
-- A variant.
-- The two functions below are not actually mutually recursive, but
-- are placed in a mutual block to ensure that the constraints
-- generated by the second function can be used to instantiate the
-- underscores in the body of the first.
↑-initial : ∀ {R} → List R → ℕ → List (List R)
↑-initial _ _ = _
_↑_ : ∀ {Tok R xs} →
Parser Tok R xs → (n : ℕ) → Parser Tok (List R) (↑-initial xs n)
p ↑ n = Vec.toList <$> p ^ n
-- Some lemmas relating _↑_ to _⋆.
module Exactly where
↑≲⋆ : ∀ {Tok R} {p : Parser Tok R []} n → p ↑ n ≲ p ⋆
↑≲⋆ {R = R} {p} n (<$> ∈pⁿ) = KleeneStar.complete $ helper n ∈pⁿ
where
helper : ∀ n {xs s} → xs ∈ p ^ n · s → Vec.toList xs ∈[ p ]⋆· s
helper zero S.return = []
helper (suc n) (<$> ∈p ⊛ ∈pⁿ) = ∈p ∷ helper n ∈pⁿ
⋆≲∃↑ : ∀ {Tok R} {p : Parser Tok R []} {xs s} →
xs ∈ p ⋆ · s → ∃ λ i → xs ∈ p ↑ i · s
⋆≲∃↑ {R = R} {p} ∈p⋆ with helper $ KleeneStar.sound ∈p⋆
where
helper : ∀ {xs s} → xs ∈[ p ]⋆· s →
∃₂ λ i (ys : Vec R i) →
xs ≡ Vec.toList ys × ys ∈ p ^ i · s
helper [] = (0 , [] , P.refl , S.return)
helper (∈p ∷ ∈p⋆) =
Prod.map suc (λ {i} →
Prod.map (_∷_ _) (
Prod.map (P.cong (_∷_ _))
(λ ∈pⁱ → [ ○ - ○ ] <$> ∈p ⊛ ∈pⁱ)))
(helper ∈p⋆)
... | (i , ys , P.refl , ∈pⁱ) = (i , <$> ∈pⁱ)
------------------------------------------------------------------------
-- A parser which returns any element in a given list
return⋆ : ∀ {Tok R} (xs : List R) → Parser Tok R xs
return⋆ [] = fail
return⋆ (x ∷ xs) = return x ∣ return⋆ xs
module Return⋆ where
sound : ∀ {Tok R x} {s : List Tok}
(xs : List R) → x ∈ return⋆ xs · s → s ≡ [] × x ∈ xs
sound [] ()
sound (y ∷ ys) (∣-left S.return) = (P.refl , here P.refl)
sound (y ∷ ys) (∣-right .([ y ]) x∈ys) =
Prod.map id there $ sound ys x∈ys
complete : ∀ {Tok R x} {xs : List R} →
x ∈ xs → x ∈ return⋆ {Tok} xs · []
complete (here P.refl) = ∣-left S.return
complete (there x∈xs) =
∣-right [ _ ] (complete x∈xs)
complete∘sound : ∀ {Tok R x} {s : List Tok}
(xs : List R) (x∈xs : x ∈ return⋆ xs · s) →
complete {Tok = Tok} (proj₂ $ sound xs x∈xs) ≅ x∈xs
complete∘sound [] ()
complete∘sound (y ∷ ys) (∣-left S.return) = H.refl
complete∘sound (y ∷ ys) (∣-right .([ y ]) x∈ys)
with sound ys x∈ys | complete∘sound ys x∈ys
complete∘sound (y ∷ ys) (∣-right .([ y ]) .(complete p))
| (P.refl , p) | H.refl = H.refl
sound∘complete : ∀ {Tok R x} {xs : List R} (x∈xs : x ∈ xs) →
sound {Tok = Tok} {s = []} xs (complete x∈xs) ≡
(P.refl , x∈xs)
sound∘complete (here P.refl) = P.refl
sound∘complete {Tok} (there {xs = xs} x∈xs)
with sound {Tok = Tok} xs (complete x∈xs)
| sound∘complete {Tok} {xs = xs} x∈xs
sound∘complete (there x∈xs) | .(P.refl , x∈xs) | P.refl = P.refl
correct : ∀ {Tok R} {xs : List R} {x s} →
(s ≡ [] × x ∈ xs) ↔ x ∈ return⋆ {Tok} xs · s
correct {xs = xs} {x} = record
{ to = P.→-to-⟶ complete′
; from = P.→-to-⟶ $ sound xs
; inverse-of = record
{ left-inverse-of = sound∘complete′
; right-inverse-of = complete′∘sound xs
}
}
where
complete′ : ∀ {Tok R x} {xs : List R} {s : List Tok} →
s ≡ [] × x ∈ xs → x ∈ return⋆ xs · s
complete′ (P.refl , x∈xs) = complete x∈xs
sound∘complete′ : ∀ {Tok R x} {xs : List R} {s : List Tok}
(p : s ≡ [] × x ∈ xs) → sound xs (complete′ p) ≡ p
sound∘complete′ (P.refl , x∈xs) = sound∘complete x∈xs
complete′∘sound : ∀ {Tok R x} {s : List Tok}
(xs : List R) (x∈xs : x ∈ return⋆ xs · s) →
complete′ (sound xs x∈xs) ≡ x∈xs
complete′∘sound xs x∈ with sound xs x∈ | complete∘sound xs x∈
complete′∘sound xs .(complete x∈xs) | (P.refl , x∈xs) | H.refl =
P.refl
------------------------------------------------------------------------
-- The sat parser
module Sat where
-- Helper functions for sat.
mutual
ok-bag : {R : Set} → Maybe R → List R
ok-bag nothing = _
ok-bag (just _) = _
ok : {Tok R : Set} → (x : Maybe R) → Parser Tok R (ok-bag x)
ok nothing = fail
ok (just x) = return x
ok-correct : ∀ {Tok R x s} (m : Maybe R) →
(s ≡ [] × m ≡ just x) ↔ x ∈ ok {Tok} m · s
ok-correct {Tok} {x = x} m = record
{ to = P.→-to-⟶ (to m)
; from = P.→-to-⟶ (from m)
; inverse-of = record
{ left-inverse-of = from∘to m
; right-inverse-of = to∘from m
}
}
where
to : ∀ {s} m → (s ≡ [] × m ≡ just x) → x ∈ ok {Tok} m · s
to (just .x) (P.refl , P.refl) = S.return
to nothing (P.refl , ())
from : ∀ {s} m → x ∈ ok {Tok} m · s → s ≡ [] × m ≡ just x
from (just .x) S.return = (P.refl , P.refl)
from nothing ()
from∘to : ∀ {s} m (eqs : s ≡ [] × m ≡ just x) →
from m (to m eqs) ≡ eqs
from∘to (just .x) (P.refl , P.refl) = P.refl
from∘to nothing (P.refl , ())
to∘from : ∀ {s} m (x∈ : x ∈ ok {Tok} m · s) →
to m (from m x∈) ≡ x∈
to∘from (just .x) S.return = P.refl
to∘from nothing ()
-- sat p accepts a single token t iff p t ≡ just x for some x. The
-- returned value is x.
sat : ∀ {Tok R} → (Tok → Maybe R) → Parser Tok R _
sat p = token >>= (ok ∘ p)
correct : ∀ {Tok R x s} (p : Tok → Maybe R) →
(∃ λ t → s ≡ [ t ] × p t ≡ just x) ↔ x ∈ sat p · s
correct {x = x} p = record
{ to = P.→-to-⟶ to
; from = P.→-to-⟶ from
; inverse-of = record
{ left-inverse-of = from∘to
; right-inverse-of = to∘from
}
}
where
to : ∀ {s} → (∃ λ t → s ≡ [ t ] × p t ≡ just x) → x ∈ sat p · s
to (t , P.refl , p-t≡just-x) =
[ ○ - ○ ] S.token >>=
(Inverse.to (ok-correct (p t)) ⟨$⟩ (P.refl , p-t≡just-x))
from : ∀ {s} → x ∈ sat p · s → ∃ λ t → s ≡ [ t ] × p t ≡ just x
from (S.token {x = t} >>= x∈ok-p-t) =
(t , Prod.map (P.cong (_∷_ t)) id
(Inverse.from (ok-correct (p t)) ⟨$⟩ x∈ok-p-t))
from∘to : ∀ {s} (eqs : ∃ λ t → s ≡ [ t ] × p t ≡ just x) →
from (to eqs) ≡ eqs
from∘to (t , P.refl , p-t≡just-x) =
P.cong₂ (λ eq₁ eq₂ → (t , eq₁ , eq₂))
(P.≡-irrelevant _ _)
(P.≡-irrelevant _ _)
to∘from : ∀ {s} (x∈ : x ∈ sat p · s) → to (from x∈) ≡ x∈
to∘from (S.token {x = t} >>= x∈ok-p-t)
with Inverse.from (ok-correct (p t)) ⟨$⟩ x∈ok-p-t
| Inverse.right-inverse-of (ok-correct (p t)) x∈ok-p-t
to∘from (S.token {x = t} >>= .(Inverse.to (ok-correct (p t)) ⟨$⟩
(P.refl , p-t≡just-x)))
| (P.refl , p-t≡just-x) | P.refl = P.refl
open Sat public using (sat)
-- A simplified variant of sat. Does not return anything interesting.
sat′ : ∀ {Tok} → (Tok → Bool) → Parser Tok ⊤ _
sat′ p = sat (boolToMaybe ∘ p)
-- Accepts a single whitespace character (from a limited set of such
-- characters).
whitespace : Parser Char ⊤ _
whitespace = sat′ isSpace
where
isSpace = λ c →
(c == ' ') ∨ (c == '\t') ∨ (c == '\n') ∨ (c == '\r')
------------------------------------------------------------------------
-- A parser for a given token
module Token
(Tok : Set)
(_≟_ : Decidable (_≡_ {A = Tok}))
where
private
p : Tok → Tok → Maybe Tok
p t t′ = if ⌊ t ≟ t′ ⌋ then just t′ else nothing
tok : Tok → Parser Tok Tok []
tok t = sat (p t)
sound : ∀ t {t′ s} →
t′ ∈ tok t · s → t ≡ t′ × s ≡ [ t′ ]
sound t t′∈ with Inverse.from (Sat.correct (p t)) ⟨$⟩ t′∈
sound t t′∈ | (t″ , P.refl , p-t-t″≡just-t′) with t ≟ t″
sound t t∈ | (.t , P.refl , P.refl) | yes P.refl = (P.refl , P.refl)
sound t t′∈ | (t″ , P.refl , ()) | no _
private
p-lemma : ∀ t → p t t ≡ just t
p-lemma t with t ≟ t
... | yes P.refl = P.refl
... | no t≢t with t≢t P.refl
... | ()
complete : ∀ {t} → t ∈ tok t · [ t ]
complete {t} =
Inverse.to (Sat.correct (p t)) ⟨$⟩ (t , P.refl , p-lemma t)
η : ∀ {t} (t∈ : t ∈ tok t · [ t ]) → t∈ ≡ complete {t = t}
η {t = t} t∈ = H.≅-to-≡ $ helper t∈ P.refl
where
helper₂ : (t∈ : t ∈ Sat.ok {Tok = Tok} (p t t) · []) →
t∈ ≡ Inverse.to (Sat.ok-correct (p t t)) ⟨$⟩
(P.refl , p-lemma t)
helper₂ t∈ with t ≟ t
helper₂ S.return | yes P.refl = P.refl
helper₂ t∈ | no t≢t with t≢t P.refl
helper₂ t∈ | no t≢t | ()
helper : ∀ {s} (t∈ : t ∈ tok t · s) → s ≡ [ t ] →
t∈ ≅ complete {t = t}
helper (S.token >>= t∈) P.refl rewrite helper₂ t∈ = H.refl
------------------------------------------------------------------------
-- Map then choice
-- y ∈ ⋁ f xs · s iff ∃ x ∈ xs. y ∈ f x · s.
⋁ : ∀ {Tok R₁ R₂} {f : R₁ → List R₂} →
((x : R₁) → Parser Tok R₂ (f x)) → (xs : List R₁) →
Parser Tok R₂ (xs >>=′ f)
⋁ f xs = return⋆ xs >>= f
module ⋁ where
sound : ∀ {Tok R₁ R₂ y s} {i : R₁ → List R₂} →
(f : (x : R₁) → Parser Tok R₂ (i x)) (xs : List R₁) →
y ∈ ⋁ f xs · s → ∃ λ x → (x ∈ xs) × (y ∈ f x · s)
sound f xs (∈ret⋆ >>= y∈fx) with Return⋆.sound xs ∈ret⋆
... | (P.refl , x∈xs) = (_ , x∈xs , y∈fx)
complete : ∀ {Tok R₁ R₂ x y s} {i : R₁ → List R₂} →
(f : (x : R₁) → Parser Tok R₂ (i x)) {xs : List R₁} →
x ∈ xs → y ∈ f x · s → y ∈ ⋁ f xs · s
complete f x∈xs y∈fx =
[ ○ - ○ ] Return⋆.complete x∈xs >>= y∈fx
complete∘sound : ∀ {Tok R₁ R₂ y s} {i : R₁ → List R₂} →
(f : (x : R₁) → Parser Tok R₂ (i x)) (xs : List R₁)
(y∈⋁fxs : y ∈ ⋁ f xs · s) →
let p = proj₂ $ sound f xs y∈⋁fxs in
complete f (proj₁ p) (proj₂ p) ≡ y∈⋁fxs
complete∘sound f xs (∈ret⋆ >>= y∈fx)
with Return⋆.sound xs ∈ret⋆
| Inverse.right-inverse-of Return⋆.correct ∈ret⋆
complete∘sound f xs (.(Return⋆.complete x∈xs) >>= y∈fx)
| (P.refl , x∈xs) | P.refl = P.refl
sound∘complete :
∀ {Tok R₁ R₂ x y s} {i : R₁ → List R₂} →
(f : (x : R₁) → Parser Tok R₂ (i x)) {xs : List R₁} →
(x∈xs : x ∈ xs) (y∈fx : y ∈ f x · s) →
sound f xs (complete f x∈xs y∈fx) ≡ (x , x∈xs , y∈fx)
sound∘complete {Tok} f {xs} x∈xs y∈fx
with Return⋆.sound {Tok = Tok} xs (Return⋆.complete x∈xs)
| Inverse.left-inverse-of (Return⋆.correct {Tok = Tok})
(P.refl , x∈xs)
... | (P.refl , .x∈xs) | P.refl = P.refl
------------------------------------------------------------------------
-- Digits and numbers
-- Digits.
digit = sat (λ t → if in-range t then just (to-number t) else nothing)
where
in-range : Char → Bool
in-range t = ⌊ Char.toℕ '0' ≤? Char.toℕ t ⌋ ∧
⌊ Char.toℕ t ≤? Char.toℕ '9' ⌋
to-number : Char → ℕ
to-number t = Char.toℕ t ∸ Char.toℕ '0'
-- Numbers.
number : Parser Char ℕ _
number = digit + >>= (return ∘ foldl (λ n d → 10 * n + d) 0)
|
{
"alphanum_fraction": 0.4789083358,
"avg_line_length": 33.9134808853,
"ext": "agda",
"hexsha": "c73a67d76fe4835ede902dabb05f1847d6dfdfcc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "TotalParserCombinators/Lib.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "TotalParserCombinators/Lib.agda",
"max_line_length": 73,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/parser-combinators",
"max_stars_repo_path": "TotalParserCombinators/Lib.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z",
"num_tokens": 6383,
"size": 16855
}
|
{-
Definition of various kinds of categories.
This library follows the UniMath terminology, that is:
Concept Ob C Hom C Univalence
Precategory Type Type No
Category Type Set No
Univalent Category Type Set Yes
The most useful notion is Category and the library is hence based on
them. If one needs precategories then they can be found in
Cubical.Categories.Category.Precategory
-}
{-# OPTIONS --safe #-}
module Cubical.Categories.Category where
open import Cubical.Categories.Category.Base public
open import Cubical.Categories.Category.Properties public
|
{
"alphanum_fraction": 0.7163232964,
"avg_line_length": 28.6818181818,
"ext": "agda",
"hexsha": "f92b528338ef30a704bf4eeba5ffe937b03332de",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Seanpm2001-web/cubical",
"max_forks_repo_path": "Cubical/Categories/Category.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Seanpm2001-web/cubical",
"max_issues_repo_path": "Cubical/Categories/Category.agda",
"max_line_length": 70,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "FernandoLarrain/cubical",
"max_stars_repo_path": "Cubical/Categories/Category.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z",
"num_tokens": 135,
"size": 631
}
|
{-# OPTIONS --without-K --safe #-}
open import Algebra
open import Relation.Unary
open import Relation.Binary hiding (Decidable)
module Data.FingerTree.Split.StoredPredicate
{r m}
(ℳ : Monoid r m)
{s}
{ℙ : Pred (Monoid.Carrier ℳ) s}
(ℙ-resp : ℙ Respects (Monoid._≈_ ℳ))
(ℙ? : Decidable ℙ)
where
open Monoid ℳ renaming (Carrier to 𝓡)
open import Level using (_⊔_)
open import Relation.Nullary
infixl 2 _≈ℙ_[_]
record ⟪ℙ⟫ (x : 𝓡) : Set (s ⊔ r ⊔ m) where
constructor _≈ℙ_[_]
field
result : Dec (ℙ x)
stored : 𝓡
equiv : stored ≈ x
open ⟪ℙ⟫ public
⟪ℙ?⟫ : ∀ x → ⟪ℙ⟫ x
result (⟪ℙ?⟫ x) = ℙ? x
stored (⟪ℙ?⟫ x) = x
equiv (⟪ℙ?⟫ x) = refl
|
{
"alphanum_fraction": 0.6189759036,
"avg_line_length": 20.1212121212,
"ext": "agda",
"hexsha": "74221fdc9e9f87229373438931aa2d5564d0725c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-indexed-fingertree",
"max_forks_repo_path": "src/Data/FingerTree/Split/StoredPredicate.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-indexed-fingertree",
"max_issues_repo_path": "src/Data/FingerTree/Split/StoredPredicate.agda",
"max_line_length": 46,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-indexed-fingertree",
"max_stars_repo_path": "src/Data/FingerTree/Split/StoredPredicate.agda",
"max_stars_repo_stars_event_max_datetime": "2019-02-26T07:04:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-26T07:04:54.000Z",
"num_tokens": 287,
"size": 664
}
|
------------------------------------------------------------------------
-- Commutative semirings with some additional structure ("almost"
-- commutative rings), used by the ring solver
------------------------------------------------------------------------
module Algebra.RingSolver.AlmostCommutativeRing where
open import Relation.Binary
open import Algebra
open import Algebra.Structures
open import Algebra.FunctionProperties
open import Algebra.Morphism
open import Data.Function
------------------------------------------------------------------------
-- Definitions
record IsAlmostCommutativeRing {A} (_≈_ : Rel A)
(_+_ _*_ : Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Set where
field
isCommutativeSemiring : IsCommutativeSemiring _≈_ _+_ _*_ 0# 1#
-‿pres-≈ : -_ Preserves _≈_ ⟶ _≈_
-‿*-distribˡ : ∀ x y → ((- x) * y) ≈ (- (x * y))
-‿+-comm : ∀ x y → ((- x) + (- y)) ≈ (- (x + y))
open IsCommutativeSemiring isCommutativeSemiring public
record AlmostCommutativeRing : Set₁ where
infix 8 -_
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
carrier : Set
_≈_ : Rel carrier
_+_ : Op₂ carrier
_*_ : Op₂ carrier
-_ : Op₁ carrier
0# : carrier
1# : carrier
isAlmostCommutativeRing :
IsAlmostCommutativeRing _≈_ _+_ _*_ -_ 0# 1#
open IsAlmostCommutativeRing isAlmostCommutativeRing public
commutativeSemiring : CommutativeSemiring
commutativeSemiring =
record { isCommutativeSemiring = isCommutativeSemiring }
open CommutativeSemiring commutativeSemiring public
using ( setoid
; +-semigroup; +-monoid; +-commutativeMonoid
; *-semigroup; *-monoid; *-commutativeMonoid
; semiring
)
rawRing : RawRing
rawRing = record
{ _≈_ = _≈_
; _+_ = _+_
; _*_ = _*_
; -_ = -_
; 0# = 0#
; 1# = 1#
}
------------------------------------------------------------------------
-- Homomorphisms
_-Raw-AlmostCommutative⟶_ : RawRing → AlmostCommutativeRing → Set
from -Raw-AlmostCommutative⟶ to = from -RawRing⟶ rawRing to
where open AlmostCommutativeRing
-raw-almostCommutative⟶
: ∀ r →
AlmostCommutativeRing.rawRing r -Raw-AlmostCommutative⟶ r
-raw-almostCommutative⟶ r = record
{ ⟦_⟧ = id
; +-homo = λ _ _ → refl
; *-homo = λ _ _ → refl
; -‿homo = λ _ → refl
; 0-homo = refl
; 1-homo = refl
}
where open AlmostCommutativeRing r
------------------------------------------------------------------------
-- Conversions
-- Commutative rings are almost commutative rings.
fromCommutativeRing : CommutativeRing → AlmostCommutativeRing
fromCommutativeRing cr = record
{ isAlmostCommutativeRing = record
{ isCommutativeSemiring = isCommutativeSemiring
; -‿pres-≈ = -‿pres-≈
; -‿*-distribˡ = -‿*-distribˡ
; -‿+-comm = -‿∙-comm
}
}
where
open CommutativeRing cr
import Algebra.Props.Ring as R; open R ring
import Algebra.Props.AbelianGroup as AG; open AG +-abelianGroup
-- Commutative semirings can be viewed as almost commutative rings by
-- using identity as the "almost negation".
fromCommutativeSemiring : CommutativeSemiring → AlmostCommutativeRing
fromCommutativeSemiring cs = record
{ -_ = id
; isAlmostCommutativeRing = record
{ isCommutativeSemiring = isCommutativeSemiring
; -‿pres-≈ = id
; -‿*-distribˡ = λ _ _ → refl
; -‿+-comm = λ _ _ → refl
}
}
where open CommutativeSemiring cs
|
{
"alphanum_fraction": 0.5453572384,
"avg_line_length": 31.1416666667,
"ext": "agda",
"hexsha": "6e08f30d72158334e95ca4efc54d95e92bd982db",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Algebra/RingSolver/AlmostCommutativeRing.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Algebra/RingSolver/AlmostCommutativeRing.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Algebra/RingSolver/AlmostCommutativeRing.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 1098,
"size": 3737
}
|
module Prelude.Nat.Properties where
open import Prelude.Bool
open import Prelude.Nat.Core
open import Prelude.Equality
open import Prelude.Semiring
suc-inj : ∀ {n m} → suc n ≡ suc m → n ≡ m
suc-inj refl = refl
--- Addition ---
add-zero-r : (n : Nat) → n + 0 ≡ n
add-zero-r zero = refl
add-zero-r (suc n) = suc $≡ add-zero-r n
add-suc-r : (n m : Nat) → n + suc m ≡ suc (n + m)
add-suc-r zero m = refl
add-suc-r (suc n) m = suc $≡ add-suc-r n m
add-commute : (a b : Nat) → a + b ≡ b + a
add-commute zero b = sym (add-zero-r _)
add-commute (suc a) b = suc $≡ add-commute a b ⟨≡⟩ʳ add-suc-r b _
add-assoc : (a b c : Nat) → a + (b + c) ≡ a + b + c
add-assoc zero b c = refl
add-assoc (suc a) b c = suc $≡ add-assoc a b c
add-inj₂ : (a b c : Nat) → a + b ≡ a + c → b ≡ c
add-inj₂ zero b c eq = eq
add-inj₂ (suc a) b c eq = add-inj₂ a b c (suc-inj eq)
add-inj₁ : (a b c : Nat) → a + c ≡ b + c → a ≡ b
add-inj₁ a b c eq = add-inj₂ c a b (add-commute c a ⟨≡⟩ eq ⟨≡⟩ add-commute b c)
--- Subtraction ---
--- Multiplication ---
mul-one-r : (x : Nat) → x * 1 ≡ x
mul-one-r zero = refl
mul-one-r (suc x) = suc $≡ mul-one-r x
mul-zero-r : (x : Nat) → x * 0 ≡ 0
mul-zero-r zero = refl
mul-zero-r (suc x) = mul-zero-r x
mul-distr-r : (x y z : Nat) → (x + y) * z ≡ x * z + y * z
mul-distr-r zero y z = refl
mul-distr-r (suc x) y z = z +_ $≡ mul-distr-r x y z ⟨≡⟩ add-assoc z _ _
private
shuffle : (a b c d : Nat) → a + b + (c + d) ≡ a + c + (b + d)
shuffle a b c d = add-assoc a _ _ ʳ⟨≡⟩
a +_ $≡ (add-assoc b c d ⟨≡⟩ _+ d $≡ add-commute b c ⟨≡⟩ʳ add-assoc c b d) ⟨≡⟩
add-assoc a _ _
mul-distr-l : (x y z : Nat) → x * (y + z) ≡ x * y + x * z
mul-distr-l zero y z = refl
mul-distr-l (suc x) y z = y + z +_ $≡ mul-distr-l x y z ⟨≡⟩ shuffle y z (x * y) (x * z)
mul-assoc : (x y z : Nat) → x * (y * z) ≡ x * y * z
mul-assoc zero y z = refl
mul-assoc (suc x) y z = y * z +_ $≡ mul-assoc x y z ⟨≡⟩ʳ mul-distr-r y (x * y) z
mul-commute : (x y : Nat) → x * y ≡ y * x
mul-commute x zero = mul-zero-r x
mul-commute x (suc y) = mul-distr-l x 1 y ⟨≡⟩ _+ x * y $≡ mul-one-r x ⟨≡⟩ x +_ $≡ mul-commute x y
mul-inj₁ : (x y z : Nat) {{_ : NonZero z}} → x * z ≡ y * z → x ≡ y
mul-inj₁ x y zero {{}}
mul-inj₁ zero zero (suc z) eq = refl
mul-inj₁ zero (suc y) (suc z) ()
mul-inj₁ (suc x) zero (suc z) ()
mul-inj₁ (suc x) (suc y) (suc z) eq = suc $≡ mul-inj₁ x y (suc z) (add-inj₂ z _ _ (suc-inj eq))
mul-inj₂ : (x y z : Nat) {{_ : NonZero x}} → x * y ≡ x * z → y ≡ z
mul-inj₂ x y z eq = mul-inj₁ y z x (mul-commute y x ⟨≡⟩ eq ⟨≡⟩ mul-commute x z)
|
{
"alphanum_fraction": 0.5229950589,
"avg_line_length": 32.8875,
"ext": "agda",
"hexsha": "356c41f6c253821e2c4a36025ff75e85db08f15e",
"lang": "Agda",
"max_forks_count": 24,
"max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z",
"max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "L-TChen/agda-prelude",
"max_forks_repo_path": "src/Prelude/Nat/Properties.agda",
"max_issues_count": 59,
"max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "L-TChen/agda-prelude",
"max_issues_repo_path": "src/Prelude/Nat/Properties.agda",
"max_line_length": 98,
"max_stars_count": 111,
"max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "L-TChen/agda-prelude",
"max_stars_repo_path": "src/Prelude/Nat/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z",
"num_tokens": 1168,
"size": 2631
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Keys for AVL trees -- the original key type extended with a new
-- minimum and maximum.
-----------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Data.AVL.Key
{a ℓ₁ ℓ₂} (strictTotalOrder : StrictTotalOrder a ℓ₁ ℓ₂)
where
open import Level
open import Data.Empty
open import Data.Unit
open import Data.Product
open import Relation.Binary.PropositionalEquality using (_≡_ ; refl)
open import Relation.Nullary.Construct.Add.Extrema
as AddExtremaToSet using (_±)
open import Relation.Binary.Construct.Add.Extrema.Strict
as AddExtremaToOrder using ()
open StrictTotalOrder strictTotalOrder renaming (Carrier to Key)
-----------------------------------------------------------------------
-- Keys are augmented with new extrema (i.e. an artificial minimum and
-- maximum)
Key⁺ : Set a
Key⁺ = Key ±
open AddExtremaToSet public
using ([_]; [_]-injective)
renaming
( ⊥± to ⊥⁺
; ⊤± to ⊤⁺
)
-----------------------------------------------------------------------
-- The order is extended in a corresponding manner
open AddExtremaToOrder _<_ public
using () renaming
(_<±_ to _<⁺_
; [_] to [_]ᴿ
; ⊥±<⊤± to ⊥⁺<⊤⁺
; [_]<⊤± to [_]<⊤⁺
; ⊥±<[_] to ⊥⁺<[_]
)
-- A pair of ordering constraints.
infix 4 _<_<_
_<_<_ : Key⁺ → Key → Key⁺ → Set (a ⊔ ℓ₂)
l < x < u = l <⁺ [ x ] × [ x ] <⁺ u
-- Properties
⊥⁺<[_]<⊤⁺ : ∀ k → ⊥⁺ < k < ⊤⁺
⊥⁺<[ k ]<⊤⁺ = ⊥⁺<[ k ] , [ k ]<⊤⁺
trans⁺ : ∀ l {m u} → l <⁺ m → m <⁺ u → l <⁺ u
trans⁺ l = AddExtremaToOrder.<±-trans _<_ trans
|
{
"alphanum_fraction": 0.518694362,
"avg_line_length": 24.7794117647,
"ext": "agda",
"hexsha": "eb8a9f5e3e8f281019740c022ff17eb29ef80040",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/AVL/Key.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/AVL/Key.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/AVL/Key.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 534,
"size": 1685
}
|
open import Data.Nat
ten : ℕ
ten = 10
|
{
"alphanum_fraction": 0.6666666667,
"avg_line_length": 7.8,
"ext": "agda",
"hexsha": "fe431f2166cdf7f8127a6bfa80fec274235726ad",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c134875eae37d265936199fda278416e2a3c1224",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "supeterlau/bedev",
"max_forks_repo_path": "agda/nats.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c134875eae37d265936199fda278416e2a3c1224",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "supeterlau/bedev",
"max_issues_repo_path": "agda/nats.agda",
"max_line_length": 20,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c134875eae37d265936199fda278416e2a3c1224",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "supeterlau/bedev",
"max_stars_repo_path": "agda/nats.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 15,
"size": 39
}
|
module Data.Collection.Inclusion where
open import Data.Collection.Equivalence
open import Data.Collection.Core
open import Function using (id; _∘_)
open import Function.Equivalence using (equivalence)
open import Level using (Level; suc; zero)
open import Relation.Unary hiding (_⇒_)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
≋⇒⊆ : _≋_ ⇒ _⊆_
≋⇒⊆ P≋Q ∈P = nach P≋Q ∈P
⊆-Transitive : ∀ {a ℓ} {A : Set a} → Transitive {_} {_} {Pred A ℓ} _⊆_
⊆-Transitive P⊆Q Q⊆R = Q⊆R ∘ P⊆Q
⊆-IsPreorder : IsPreorder _≋_ _⊆_
⊆-IsPreorder = record
{ isEquivalence = ≋-IsEquivalence
; reflexive = ≋⇒⊆
; trans = ⊆-Transitive
}
⊆-Preorder : Preorder _ _ _
⊆-Preorder = record
{ Carrier = Pred String zero
; _≈_ = _≋_
; _∼_ = _⊆_
; isPreorder = ⊆-IsPreorder
}
⊆-Antisymmetric : Antisymmetric _≋_ _⊆_
⊆-Antisymmetric P⊆Q Q⊆P = equivalence P⊆Q Q⊆P
⊆-IsPartialOrder : IsPartialOrder _≋_ _⊆_
⊆-IsPartialOrder = record
{ isPreorder = ⊆-IsPreorder
; antisym = ⊆-Antisymmetric
}
⊆-Poset : Poset _ _ _
⊆-Poset = record
{ Carrier = Pred String zero
; _≈_ = _≋_
; _≤_ = _⊆_
; isPartialOrder = ⊆-IsPartialOrder
}
--------------------------------------------------------------------------------
-- Conditional Inclusion
--------------------------------------------------------------------------------
_⊆[_]_ : ∀ {a ℓ₀ ℓ₁ ℓ₂} {A : Set a} → Pred A ℓ₀ → Pred A ℓ₁ → Pred A ℓ₂ → Set _
A ⊆[ P ] B = ∀ {x} → x ∈ P → x ∈ A → x ∈ B
_⊈[_]_ : ∀ {a ℓ₀ ℓ₁ ℓ₂} {A : Set a} → Pred A ℓ₀ → Pred A ℓ₁ → Pred A ℓ₂ → Set _
A ⊈[ P ] B = ∀ {x} → x ∈ P → x ∉ A → x ∉ B
-- prefix version of _⊆[_]_, with the predicate being the first argument
[_]⊆ : ∀ {a ℓ₀ ℓ₁ ℓ₂} {A : Set a} → Pred A ℓ₁ → Pred A ℓ₀ → Pred A ℓ₂ → Set _
[ P ]⊆ A B = A ⊆[ P ] B
≋[]⇒⊆[] : ∀ {a} {P : Pred Element a} → [ P ]≋ ⇒ [ P ]⊆
≋[]⇒⊆[] A≋B = nach ∘ A≋B
⊆[]-Transitive : ∀ {a ℓ} {P : Pred Element a} → Transitive {_} {_} {Pred String ℓ} [ P ]⊆
⊆[]-Transitive A⊆B B⊆C ∈P = B⊆C ∈P ∘ A⊆B ∈P
⊆[]-IsPreorder : ∀ {a} {P : Pred Element a} → IsPreorder [ P ]≋ [ P ]⊆
⊆[]-IsPreorder = record
{ isEquivalence = ≋[]-IsEquivalence
; reflexive = ≋[]⇒⊆[]
; trans = ⊆[]-Transitive
}
⊆[]-Preorder : ∀ {a} {P : Pred Element a} → Preorder _ _ _
⊆[]-Preorder {_} {P} = record
{ Carrier = Pred String zero
; _≈_ = [ P ]≋
; _∼_ = [ P ]⊆
; isPreorder = ⊆[]-IsPreorder
}
⊆[]-Antisymmetric : ∀ {a} {P : Pred Element a} → Antisymmetric [ P ]≋ [ P ]⊆
⊆[]-Antisymmetric P⊆Q Q⊆P ∈P = equivalence (P⊆Q ∈P) (Q⊆P ∈P)
⊆[]-IsPartialOrder : ∀ {a} {P : Pred Element a} → IsPartialOrder [ P ]≋ [ P ]⊆
⊆[]-IsPartialOrder = record
{ isPreorder = ⊆[]-IsPreorder
; antisym = ⊆[]-Antisymmetric
}
⊆[]-Poset : ∀ {a} {P : Pred Element a} → Poset _ _ _
⊆[]-Poset {_} {P} = record
{ Carrier = Pred String zero
; _≈_ = [ P ]≋
; _≤_ = [ P ]⊆
; isPartialOrder = ⊆[]-IsPartialOrder
}
|
{
"alphanum_fraction": 0.5319727891,
"avg_line_length": 28.5436893204,
"ext": "agda",
"hexsha": "2e3752dc3fed438710e561ba0075c5ee7992bd67",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f81b116473582ab7956adc4bf1d7ebf1ae2a213a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/lambda-calculus",
"max_forks_repo_path": "Data/Collection/Inclusion.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f81b116473582ab7956adc4bf1d7ebf1ae2a213a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/lambda-calculus",
"max_issues_repo_path": "Data/Collection/Inclusion.agda",
"max_line_length": 89,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f81b116473582ab7956adc4bf1d7ebf1ae2a213a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/lambda-calculus",
"max_stars_repo_path": "Data/Collection/Inclusion.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1298,
"size": 2940
}
|
{-# OPTIONS --without-K #-}
module well-typed-syntax-pre-interpreter where
open import common public
open import well-typed-syntax
open import well-typed-syntax-helpers
max-level : Level
max-level = lsuc lzero
module inner
(context-pick-if' : ∀ ℓ (P : Context → Set ℓ)
(Γ : Context)
(dummy : P (ε ▻ ‘Σ’ ‘Context’ ‘Typ’))
(val : P Γ) →
P (ε ▻ ‘Σ’ ‘Context’ ‘Typ’))
(context-pick-if-refl' : ∀ ℓ P dummy val →
context-pick-if' ℓ P (ε ▻ ‘Σ’ ‘Context’ ‘Typ’) dummy val ≡ val)
where
context-pick-if : ∀ {ℓ} {P : Context → Set ℓ}
{Γ : Context}
(dummy : P (ε ▻ ‘Σ’ ‘Context’ ‘Typ’))
(val : P Γ) →
P (ε ▻ ‘Σ’ ‘Context’ ‘Typ’)
context-pick-if {P = P} dummy val = context-pick-if' _ P _ dummy val
context-pick-if-refl : ∀ {ℓ P dummy val} →
context-pick-if {ℓ} {P} {ε ▻ ‘Σ’ ‘Context’ ‘Typ’} dummy val ≡ val
context-pick-if-refl {P = P} = context-pick-if-refl' _ P _ _
private
dummy : Typ ε
dummy = ‘Context’
cast-helper : ∀ {X T A} {x : Term X} → A ≡ T → Term {ε} (T ‘’ x ‘→'’ A ‘’ x)
cast-helper refl = ‘λ∙’ ‘VAR₀’
cast'-proof : ∀ {T} → Term {ε} (context-pick-if {P = Typ} (W dummy) T ‘’ ‘existT’ ⌜ ε ▻ ‘Σ’ ‘Context’ ‘Typ’ ⌝c ⌜ T ⌝T
‘→'’ T ‘’ ‘existT’ ⌜ ε ▻ ‘Σ’ ‘Context’ ‘Typ’ ⌝c ⌜ T ⌝T)
cast'-proof {T} = cast-helper {‘Σ’ ‘Context’ ‘Typ’}
{context-pick-if {P = Typ} {ε ▻ ‘Σ’ ‘Context’ ‘Typ’} (W dummy) T}
{T} (sym (context-pick-if-refl {P = Typ} {dummy = W dummy}))
cast-proof : ∀ {T} → Term {ε} (T ‘’ ‘existT’ ⌜ ε ▻ ‘Σ’ ‘Context’ ‘Typ’ ⌝c ⌜ T ⌝T
‘→'’ context-pick-if {P = Typ} (W dummy) T ‘’ ‘existT’ ⌜ ε ▻ ‘Σ’ ‘Context’ ‘Typ’ ⌝c ⌜ T ⌝T)
cast-proof {T} = cast-helper {‘Σ’ ‘Context’ ‘Typ’} {T}
{context-pick-if {P = Typ} {ε ▻ ‘Σ’ ‘Context’ ‘Typ’} (W dummy) T}
(context-pick-if-refl {P = Typ} {dummy = W dummy})
‘idfun’ : ∀ {T} → Term {ε} (T ‘→'’ T)
‘idfun’ = ‘λ∙’ ‘VAR₀’
mutual
Context⇓ : (Γ : Context) → Set (lsuc max-level)
Typ⇓ : {Γ : Context} → Typ Γ → Context⇓ Γ → Set max-level
Context⇓ ε = ⊤
Context⇓ (Γ ▻ T) = Σ (Context⇓ Γ) (λ Γ' → Typ⇓ T Γ')
Typ⇓ (T₁ ‘’ x) Γ⇓ = Typ⇓ T₁ (Γ⇓ , Term⇓ x Γ⇓)
Typ⇓ (T₂ ‘’₁ a) (Γ⇓ , A⇓) = Typ⇓ T₂ ((Γ⇓ , Term⇓ a Γ⇓) , A⇓)
Typ⇓ (T₃ ‘’₂ a) ((Γ⇓ , A⇓) , B⇓) = Typ⇓ T₃ (((Γ⇓ , Term⇓ a Γ⇓) , A⇓) , B⇓)
Typ⇓ (T₃ ‘’₃ a) (((Γ⇓ , A⇓) , B⇓) , C⇓) = Typ⇓ T₃ ((((Γ⇓ , Term⇓ a Γ⇓) , A⇓) , B⇓) , C⇓)
Typ⇓ (W T₁) (Γ⇓ , _) = Typ⇓ T₁ Γ⇓
Typ⇓ (W1 T₂) ((Γ⇓ , A⇓) , B⇓) = Typ⇓ T₂ (Γ⇓ , B⇓)
Typ⇓ (W2 T₃) (((Γ⇓ , A⇓) , B⇓) , C⇓) = Typ⇓ T₃ ((Γ⇓ , B⇓) , C⇓)
Typ⇓ (T ‘→’ T₁) Γ⇓ = (T⇓ : Typ⇓ T Γ⇓) → Typ⇓ T₁ (Γ⇓ , T⇓)
Typ⇓ ‘Context’ Γ⇓ = Lifted Context
Typ⇓ ‘Typ’ (Γ⇓ , T⇓) = Lifted (Typ (lower T⇓))
Typ⇓ ‘Term’ (Γ⇓ , T⇓ , t⇓) = Lifted (Term (lower t⇓))
Typ⇓ (‘Σ’ T T₁) Γ⇓ = Σ (Typ⇓ T Γ⇓) (λ T⇓ → Typ⇓ T₁ (Γ⇓ , T⇓))
Term⇓ : ∀ {Γ : Context} {T : Typ Γ} → Term T → (Γ⇓ : Context⇓ Γ) → Typ⇓ T Γ⇓
Term⇓ (w t) (Γ⇓ , A⇓) = Term⇓ t Γ⇓
Term⇓ (‘λ∙’ t) Γ⇓ T⇓ = Term⇓ t (Γ⇓ , T⇓)
Term⇓ (t ‘’ₐ t₁) Γ⇓ = Term⇓ t Γ⇓ (Term⇓ t₁ Γ⇓)
Term⇓ ‘VAR₀’ (Γ⇓ , A⇓) = A⇓
Term⇓ (⌜ Γ ⌝c) Γ⇓ = lift Γ
Term⇓ (⌜ T ⌝T) Γ⇓ = lift T
Term⇓ (⌜ t ⌝t) Γ⇓ = lift t
Term⇓ ‘quote-term’ Γ⇓ (lift T⇓) = lift ⌜ T⇓ ⌝t
Term⇓ (‘quote-sigma’ {Γ₀} {Γ₁}) Γ⇓ (lift Γ , lift T) = lift (‘existT’ {Γ₁} ⌜ Γ ⌝c ⌜ T ⌝T)
Term⇓ ‘cast’ Γ⇓ T⇓ = lift (context-pick-if
{P = Typ}
{lower (Σ.proj₁ T⇓)}
(W dummy)
(lower (Σ.proj₂ T⇓)))
Term⇓ (SW t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (weakenTyp-substTyp-tProd t) Γ⇓ T⇓ = Term⇓ t Γ⇓ T⇓
Term⇓ (substTyp-weakenTyp1-VAR₀ t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (weakenTyp-tProd t) Γ⇓ T⇓ = Term⇓ t Γ⇓ T⇓
Term⇓ (weakenTyp-tProd-inv t) Γ⇓ T⇓ = Term⇓ t Γ⇓ T⇓
Term⇓ (weakenTyp-weakenTyp-tProd t) Γ⇓ T⇓ = Term⇓ t Γ⇓ T⇓
Term⇓ (substTyp1-tProd t) Γ⇓ T⇓ = Term⇓ t Γ⇓ T⇓
Term⇓ (weakenTyp1-tProd t) Γ⇓ T⇓ = Term⇓ t Γ⇓ T⇓
Term⇓ (substTyp2-tProd t) Γ⇓ T⇓ = Term⇓ t Γ⇓ T⇓
Term⇓ (substTyp1-substTyp-weakenTyp-inv t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (substTyp1-substTyp-weakenTyp t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (weakenTyp-weakenTyp-substTyp1-substTyp-weakenTyp t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (weakenTyp-substTyp2-substTyp1-substTyp-weakenTyp-inv t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (substTyp2-substTyp1-substTyp-weakenTyp t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (weakenTyp-substTyp2-substTyp1-substTyp-tProd t) Γ⇓ T⇓ = Term⇓ t Γ⇓ T⇓
Term⇓ (weakenTyp2-weakenTyp1 t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (weakenTyp1-weakenTyp t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (weakenTyp1-weakenTyp-inv t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (weakenTyp1-weakenTyp1-weakenTyp t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (substTyp1-weakenTyp1 t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (weakenTyp1-substTyp-weakenTyp1-inv t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (weakenTyp1-substTyp-weakenTyp1 t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (weakenTyp-substTyp-substTyp-weakenTyp1 t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (weakenTyp-substTyp-substTyp-weakenTyp1-inv t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (substTyp-weakenTyp1-weakenTyp t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (substTyp3-substTyp2-substTyp1-substTyp-weakenTyp t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (weakenTyp-substTyp2-substTyp1-substTyp-weakenTyp1 t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (substTyp1-substTyp-tProd t) Γ⇓ T⇓ = Term⇓ t Γ⇓ T⇓
Term⇓ (substTyp2-substTyp-substTyp-weakenTyp1-weakenTyp-weakenTyp t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (substTyp1-substTyp-weakenTyp2-weakenTyp t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (weakenTyp-weakenTyp1-weakenTyp t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (beta-under-subst t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ ‘proj₁'’ Γ⇓ (x , p) = x
Term⇓ ‘proj₂'’ (Γ⇓ , (x , p)) = p
Term⇓ (‘existT’ x p) Γ⇓ = Term⇓ x Γ⇓ , Term⇓ p Γ⇓
Term⇓ (f ‘‘’’ x) Γ⇓ = lift (lower (Term⇓ f Γ⇓) ‘’ lower (Term⇓ x Γ⇓))
Term⇓ (f w‘‘’’ x) Γ⇓ = lift (lower (Term⇓ f Γ⇓) ‘’ lower (Term⇓ x Γ⇓))
Term⇓ (f ‘‘→'’’ x) Γ⇓ = lift (lower (Term⇓ f Γ⇓) ‘→'’ lower (Term⇓ x Γ⇓))
Term⇓ (f w‘‘→'’’ x) Γ⇓ = lift (lower (Term⇓ f Γ⇓) ‘→'’ lower (Term⇓ x Γ⇓))
Term⇓ (w→ x) Γ⇓ A⇓ = Term⇓ x (Σ.proj₁ Γ⇓) A⇓
Term⇓ w‘‘→'’’→‘‘→'’’ Γ⇓ T⇓ = T⇓
Term⇓ ‘‘→'’’→w‘‘→'’’ Γ⇓ T⇓ = T⇓
Term⇓ ‘tApp-nd’ Γ⇓ f⇓ x⇓ = lift (SW (lower f⇓ ‘’ₐ lower x⇓))
Term⇓ ⌜←'⌝ Γ⇓ T⇓ = T⇓
Term⇓ ⌜→'⌝ Γ⇓ T⇓ = T⇓
Term⇓ (‘‘fcomp-nd’’ {A} {B} {C}) Γ⇓ g⇓ f⇓ = lift (_‘∘’_ {ε} (lower g⇓) (lower f⇓))
Term⇓ (⌜‘’⌝ {B} {A} {b}) Γ⇓ = lift (‘λ∙’ {ε} (‘VAR₀’ {ε} {_‘’_ {ε} A b}))
Term⇓ (⌜‘’⌝' {B} {A} {b}) Γ⇓ = lift (‘λ∙’ {ε} (‘VAR₀’ {ε} {_‘’_ {ε} A b}))
Term⇓ (‘cast-refl’ {T}) Γ⇓ = lift (cast-proof {T})
Term⇓ (‘cast-refl'’ {T}) Γ⇓ = lift (cast'-proof {T})
Term⇓ (‘s→→’ {T} {B} {b} {c} {v}) Γ⇓ = lift (‘idfun’ {_‘’_ {ε} (lower (Term⇓ b tt (Term⇓ v Γ⇓))) (lower (Term⇓ c tt (Term⇓ v Γ⇓)))})
Term⇓ (‘s←←’ {T} {B} {b} {c} {v}) Γ⇓ = lift (‘idfun’ {_‘’_ {ε} (lower (Term⇓ b tt (Term⇓ v Γ⇓))) (lower (Term⇓ c tt (Term⇓ v Γ⇓)))})
|
{
"alphanum_fraction": 0.4813411897,
"avg_line_length": 51.2805755396,
"ext": "agda",
"hexsha": "8b595a714e96453efcf686669aa21f9dd0569ab9",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-07-17T18:53:37.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-17T18:53:37.000Z",
"max_forks_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JasonGross/lob",
"max_forks_repo_path": "internal/well-typed-syntax-pre-interpreter.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3",
"max_issues_repo_issues_event_max_datetime": "2015-07-17T20:20:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-17T20:20:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JasonGross/lob",
"max_issues_repo_path": "internal/well-typed-syntax-pre-interpreter.agda",
"max_line_length": 136,
"max_stars_count": 19,
"max_stars_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JasonGross/lob",
"max_stars_repo_path": "internal/well-typed-syntax-pre-interpreter.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-17T14:04:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-17T17:53:30.000Z",
"num_tokens": 3912,
"size": 7128
}
|
-- Andreas, 2016-06-20
-- Issue #191, reported 2009-12-02 by Nisse
data T (A : Set) : Set → Set1 where
c₁ : {B : Set} → T A B
c₂ : T A A
foo : {A B C : Set} → T A (B → C) → T A B → Set₁
foo c₁ y = Set
foo x y = {!y!}
-- WAS:
-- Perform the indicated case split. Agda will happily replace the
-- last clause with two separate clauses, one for each constructor
-- of T, but the resulting file is not type correct:
-- Bug.agda:8,1-10,13
-- Cannot split on the constructor c₂
-- when checking the definition of foo
-- In this case Agda should not modify the source file, it is
-- preferable to just give an error indicating that the split cannot
-- be performed.
-- NOW (Agda-2.5.2):
-- I'm not sure if there should be a case for the constructor c₂,
-- because I get stuck when trying to solve the following unification
-- problems (inferred index ≟ expected index):
-- A ≟ A → C
-- when checking that the expression ? has type Set₁
-- Current behavior (not splitting) is correct.
|
{
"alphanum_fraction": 0.6719840479,
"avg_line_length": 30.3939393939,
"ext": "agda",
"hexsha": "8c677386669f50212cd83aa3c4ffde8cc59a436b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue191.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/interaction/Issue191.agda",
"max_line_length": 69,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/interaction/Issue191.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 297,
"size": 1003
}
|
------------------------------------------------------------------------
-- Equivalence relations
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Equality
module Equivalence-relation
{e⁺} (eq : ∀ {a p} → Equality-with-J a p e⁺) where
open Derived-definitions-and-properties eq
open import Prelude
open import H-level eq
open import H-level.Closure eq
private
variable
a r r₁ r₂ : Level
A A₁ A₂ B B₁ B₂ C : Type a
R R₁ R₂ : A → B → Type r
------------------------------------------------------------------------
-- The definition
-- The definition of "equivalence relation".
record Is-equivalence-relation
{A : Type a} (R : A → A → Type r) : Type (a ⊔ r) where
field
reflexive : ∀ {x} → R x x
symmetric : ∀ {x y} → R x y → R y x
transitive : ∀ {x y z} → R x y → R y z → R x z
------------------------------------------------------------------------
-- Some examples of equivalence relations/equivalence relation
-- transformers
-- A trivial binary relation.
Trivial : A → B → Type r
Trivial _ _ = ↑ _ ⊤
-- Homogeneous instances of Trivial are equivalence relations.
Trivial-is-equivalence-relation :
Is-equivalence-relation (Trivial {A = A} {r = r})
Trivial-is-equivalence-relation = _
-- Trivial is propositional.
Trivial-is-propositional :
{x y : A} → Is-proposition (Trivial {r = r} x y)
Trivial-is-propositional = ↑-closure 1 (mono₁ 0 ⊤-contractible)
-- The superscript P used in the names of the definitions in this
-- section stands for "pointwise".
-- Lifts binary relations from B to A → B.
infix 0 _→ᴾ_
_→ᴾ_ :
(A : Type a) →
(B → C → Type r) →
((A → B) → (A → C) → Type (a ⊔ r))
(_ →ᴾ R) f g = ∀ x → R (f x) (g x)
-- _→ᴾ_ preserves equivalence relations.
→ᴾ-preserves-Is-equivalence-relation :
Is-equivalence-relation R →
Is-equivalence-relation (A →ᴾ R)
→ᴾ-preserves-Is-equivalence-relation R-equiv = record
{ reflexive = λ _ → reflexive
; symmetric = λ f∼g x → symmetric (f∼g x)
; transitive = λ f∼g g∼h x → transitive (f∼g x) (g∼h x)
}
where
open Is-equivalence-relation R-equiv
-- _→ᴾ_ preserves Is-proposition (assuming extensionality).
→ᴾ-preserves-Is-proposition :
{A : Type a} (R : B → C → Type r) →
Extensionality a r →
(∀ {x y} → Is-proposition (R x y)) →
∀ {f g} → Is-proposition ((A →ᴾ R) f g)
→ᴾ-preserves-Is-proposition _ ext R-prop =
Π-closure ext 1 λ _ →
R-prop
-- Lifts binary relations from A and B to A ⊎ B.
infixr 1 _⊎ᴾ_
_⊎ᴾ_ :
(A₁ → A₂ → Type r) →
(B₁ → B₂ → Type r) →
(A₁ ⊎ B₁ → A₂ ⊎ B₂ → Type r)
(P ⊎ᴾ Q) (inj₁ x) (inj₁ y) = P x y
(P ⊎ᴾ Q) (inj₂ x) (inj₂ y) = Q x y
(P ⊎ᴾ Q) _ _ = ⊥
-- _⊎ᴾ_ preserves Is-equivalence-relation.
⊎ᴾ-preserves-Is-equivalence-relation :
Is-equivalence-relation R₁ →
Is-equivalence-relation R₂ →
Is-equivalence-relation (R₁ ⊎ᴾ R₂)
⊎ᴾ-preserves-Is-equivalence-relation R₁-equiv R₂-equiv = record
{ reflexive = λ { {x = inj₁ _} → reflexive R₁-equiv
; {x = inj₂ _} → reflexive R₂-equiv
}
; symmetric = λ { {x = inj₁ _} {y = inj₁ _} → symmetric R₁-equiv
; {x = inj₂ _} {y = inj₂ _} → symmetric R₂-equiv
; {x = inj₁ _} {y = inj₂ _} ()
; {x = inj₂ _} {y = inj₁ _} ()
}
; transitive = λ
{ {x = inj₁ _} {y = inj₁ _} {z = inj₁ _} → transitive R₁-equiv
; {x = inj₂ _} {y = inj₂ _} {z = inj₂ _} → transitive R₂-equiv
; {x = inj₁ _} {y = inj₂ _} ()
; {x = inj₂ _} {y = inj₁ _} ()
; {y = inj₁ _} {z = inj₂ _} _ ()
; {y = inj₂ _} {z = inj₁ _} _ ()
}
}
where
open Is-equivalence-relation
-- _⊎ᴾ_ preserves Is-proposition.
⊎ᴾ-preserves-Is-proposition :
(∀ {x y} → Is-proposition (R₁ x y)) →
(∀ {x y} → Is-proposition (R₂ x y)) →
∀ {x y} → Is-proposition ((R₁ ⊎ᴾ R₂) x y)
⊎ᴾ-preserves-Is-proposition = λ where
R₁-prop R₂-prop {inj₁ _} {inj₁ _} → R₁-prop
R₁-prop R₂-prop {inj₁ _} {inj₂ _} → ⊥-propositional
R₁-prop R₂-prop {inj₂ _} {inj₁ _} → ⊥-propositional
R₁-prop R₂-prop {inj₂ _} {inj₂ _} → R₂-prop
-- Lifts a binary relation from A to Maybe A.
Maybeᴾ :
(A → B → Type r) →
(Maybe A → Maybe B → Type r)
Maybeᴾ R = Trivial ⊎ᴾ R
-- Maybeᴾ preserves Is-equivalence-relation.
Maybeᴾ-preserves-Is-equivalence-relation :
Is-equivalence-relation R →
Is-equivalence-relation (Maybeᴾ R)
Maybeᴾ-preserves-Is-equivalence-relation =
⊎ᴾ-preserves-Is-equivalence-relation Trivial-is-equivalence-relation
-- Maybeᴾ preserves Is-proposition.
Maybeᴾ-preserves-Is-proposition :
(∀ {x y} → Is-proposition (R x y)) →
∀ {x y} → Is-proposition (Maybeᴾ R x y)
Maybeᴾ-preserves-Is-proposition =
⊎ᴾ-preserves-Is-proposition λ {x} →
Trivial-is-propositional {x = x}
-- Lifts binary relations from A and B to A × B.
infixr 2 _×ᴾ_
_×ᴾ_ :
(A₁ → B₁ → Type r₁) →
(A₂ → B₂ → Type r₂) →
(A₁ × A₂ → B₁ × B₂ → Type (r₁ ⊔ r₂))
(P ×ᴾ Q) (x₁ , x₂) (y₁ , y₂) = P x₁ y₁ × Q x₂ y₂
-- _×ᴾ_ preserves Is-equivalence-relation.
×ᴾ-preserves-Is-equivalence-relation :
Is-equivalence-relation R₁ →
Is-equivalence-relation R₂ →
Is-equivalence-relation (R₁ ×ᴾ R₂)
×ᴾ-preserves-Is-equivalence-relation R₁-equiv R₂-equiv = λ where
.Is-equivalence-relation.reflexive →
E₁.reflexive , E₂.reflexive
.Is-equivalence-relation.symmetric →
Σ-map E₁.symmetric E₂.symmetric
.Is-equivalence-relation.transitive →
Σ-zip E₁.transitive E₂.transitive
where
module E₁ = Is-equivalence-relation R₁-equiv
module E₂ = Is-equivalence-relation R₂-equiv
-- _×ᴾ_ preserves Is-proposition.
×ᴾ-preserves-Is-proposition :
(∀ {x y} → Is-proposition (R₁ x y)) →
(∀ {x y} → Is-proposition (R₂ x y)) →
∀ {x y} → Is-proposition ((R₁ ×ᴾ R₂) x y)
×ᴾ-preserves-Is-proposition R₁-prop R₂-prop =
×-closure 1 R₁-prop R₂-prop
|
{
"alphanum_fraction": 0.5834893617,
"avg_line_length": 28.5194174757,
"ext": "agda",
"hexsha": "7acee8c9252da690d8f3320c394ba65421a4de5f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Equivalence-relation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Equivalence-relation.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Equivalence-relation.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 2145,
"size": 5875
}
|
module Types4Crib where
open import Basics public
_<=_ : Nat -> Nat -> Set
ze <= y = One
su x <= ze = Zero
su x <= su y = x <= y
cmp : (x y : Nat) -> (x <= y) + (y <= x)
cmp ze y = inl <>
cmp (su x) ze = inr <>
cmp (su x) (su y) = cmp x y
data Bnd : Set where
bot : Bnd
# : Nat -> Bnd
top : Bnd
_<B=_ : Bnd -> Bnd -> Set
bot <B= _ = One
# x <B= # y = x <= y
_ <B= top = One
_ <B= _ = Zero
data T23 (l u : Bnd) : Nat -> Set where
leaf : (lu : l <B= u) -> T23 l u ze
node2 : forall {h} x
(tlx : T23 l (# x) h)(txu : T23 (# x) u h) ->
T23 l u (su h)
node3 : forall {h} x y
(tlx : T23 l (# x) h)(txy : T23 (# x) (# y) h)(tyu : T23 (# y) u h) ->
T23 l u (su h)
data Intv (l u : Bnd) : Set where
intv : (x : Nat)(lx : l <B= # x)(xu : # x <B= u) -> Intv l u
TooBig : Bnd -> Bnd -> Nat -> Set
TooBig l u h = Sg Nat \ x -> T23 l (# x) h * T23 (# x) u h
insert : forall {h l u} -> Intv l u -> T23 l u h ->
TooBig l u h + T23 l u h
insert (intv x lx xu) (leaf lu) = inl (x , (leaf lx , leaf xu))
insert (intv x lx xu) (node2 y tly tyu) with cmp x y
insert (intv x lx xu) (node2 y tly tyu) | inl xy with insert (intv x lx xy) tly
insert (intv x lx xu) (node2 y tly tyu) | inl xy | inl (z , tlz , tzu)
= inr (node3 z y tlz tzu tyu)
insert (intv x lx xu) (node2 y tly tyu) | inl xy | inr tly'
= inr (node2 y tly' tyu)
insert (intv x lx xu) (node2 y tly tyu) | inr yx with insert (intv x yx xu) tyu
insert (intv x lx xu) (node2 y tly tyu) | inr yx | inl (v , tyv , tvu) = inr (node3 y v tly tyv tvu)
insert (intv x lx xu) (node2 y tly tyu) | inr yx | inr tyv' = inr (node2 y tly tyv')
insert (intv x lx xu) (node3 y z tly tyz tzu) with cmp x y
insert (intv x lx xu) (node3 y z tly tyz tzu) | inl xy with insert (intv x lx xy) tly
insert (intv x lx xu) (node3 y z tly tyz tzu) | inl xy | inl (v , tlv , tvy) = inl (y , node2 v tlv tvy , node2 z tyz tzu)
insert (intv x lx xu) (node3 y z tly tyz tzu) | inl xy | inr tly' = inr (node3 y z tly' tyz tzu)
insert (intv x lx xu) (node3 y z tly tyz tzu) | inr yx with cmp x z
insert (intv x lx xu) (node3 y z tly tyz tzu) | inr yx | inl xz with insert (intv x yx xz) tyz
insert (intv x lx xu) (node3 y z tly tyz tzu) | inr yx | inl xz | inl (v , tyv , tvz)
= inl (v , node2 y tly tyv , node2 z tvz tzu)
insert (intv x lx xu) (node3 y z tly tyz tzu) | inr yx | inl xz | inr tyz'
= inr (node3 y z tly tyz' tzu)
insert (intv x lx xu) (node3 y z tly tyz tzu) | inr yx | inr zx with insert (intv x zx xu) tzu
insert (intv x lx xu) (node3 y z tly tyz tzu) | inr yx | inr zx | inl (v , tzv , tvu) = inl (z , node2 y tly tyz , node2 v tzv tvu)
insert (intv x lx xu) (node3 y z tly tyz tzu) | inr yx | inr zx | inr tzu' = inr (node3 y z tly tyz tzu')
|
{
"alphanum_fraction": 0.5698610095,
"avg_line_length": 41.4242424242,
"ext": "agda",
"hexsha": "608ff6c6725cdf5158af6c4b56dd21cb754106bb",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-06-09T05:39:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-09T05:39:02.000Z",
"max_forks_repo_head_hexsha": "21ac5be5a0a04fc75699d595c08b5ae4b7d7712d",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "pigworker/WhatRTypes4",
"max_forks_repo_path": "Types4Crib.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "21ac5be5a0a04fc75699d595c08b5ae4b7d7712d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "pigworker/WhatRTypes4",
"max_issues_repo_path": "Types4Crib.agda",
"max_line_length": 131,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "21ac5be5a0a04fc75699d595c08b5ae4b7d7712d",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "pigworker/WhatRTypes4",
"max_stars_repo_path": "Types4Crib.agda",
"max_stars_repo_stars_event_max_datetime": "2019-06-09T05:38:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-11T09:12:25.000Z",
"num_tokens": 1236,
"size": 2734
}
|
{-# OPTIONS --safe #-}
module Cubical.Algebra.AbGroup.Instances.Direct-Sum where
open import Cubical.Foundations.Prelude
open import Cubical.Algebra.AbGroup
open import Cubical.Algebra.Direct-Sum.Base
open import Cubical.Algebra.Direct-Sum.Properties
open import Cubical.Algebra.Polynomials.Multivariate.Base
private variable
ℓ ℓ' : Level
module _ (Idx : Type ℓ) (P : Idx → Type ℓ') (AGP : (r : Idx) → AbGroupStr (P r)) where
open AbGroupStr
⊕-AbGr : AbGroup (ℓ-max ℓ ℓ')
fst ⊕-AbGr = ⊕ Idx P AGP
0g (snd ⊕-AbGr) = neutral
_+_ (snd ⊕-AbGr) = _add_
- snd ⊕-AbGr = inv Idx P AGP
isAbGroup (snd ⊕-AbGr) = makeIsAbGroup trunc addAssoc addRid (rinv Idx P AGP) addComm
|
{
"alphanum_fraction": 0.7074235808,
"avg_line_length": 26.4230769231,
"ext": "agda",
"hexsha": "42c4d24bfb64076f9e1bd809781723fecc5fecfd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "howsiyu/cubical",
"max_forks_repo_path": "Cubical/Algebra/AbGroup/Instances/Direct-Sum.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "howsiyu/cubical",
"max_issues_repo_path": "Cubical/Algebra/AbGroup/Instances/Direct-Sum.agda",
"max_line_length": 87,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "howsiyu/cubical",
"max_stars_repo_path": "Cubical/Algebra/AbGroup/Instances/Direct-Sum.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 245,
"size": 687
}
|
-- Testing the version option when used without type-check the file.
--
-- N.B. It is necessary to change the Issue1244b.out file when using
-- different versions of Agda.
|
{
"alphanum_fraction": 0.75,
"avg_line_length": 34.4,
"ext": "agda",
"hexsha": "3aceaaa3c00648935ab9f214236f9d7da74a9f13",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue1244b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue1244b.agda",
"max_line_length": 68,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue1244b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 40,
"size": 172
}
|
-- Andreas, 2019-04-30, issue #3731
-- Compiler backend: Do not look for a main function if not the main module.
open import Agda.Builtin.Nat
module Issue3731 where
module M where
module main where
record R : Set where
field
main : Nat
data Main : Set where
main : Main
module N where
data main : Set where
module O where
record main : Set where
module P where
postulate
main : Nat
module Q where
abstract
main : Nat
main = 1
main : Nat
main = 0
|
{
"alphanum_fraction": 0.6747474747,
"avg_line_length": 14.5588235294,
"ext": "agda",
"hexsha": "cb2bed9957160994358c22a6c78b52b44e81085d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue3731.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue3731.agda",
"max_line_length": 76,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue3731.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 146,
"size": 495
}
|
module Function.Multi.Functions where
open import Data
import Data.Option.Functions as Option
open import Data.Tuple renaming (curry to curry₁ ; uncurry to uncurry₁) using (_⨯_ ; _,_)
open import Data.Tuple.Raise
import Data.Tuple.Raiseᵣ.Functions as Raise
open import Data.Tuple.RaiseTypeᵣ
open import Data.Tuple.RaiseTypeᵣ.Functions
open import Function.Multi
open import Functional using (_→ᶠ_ ; id ; _∘_ ; _∘ᵢₙₛₜ_ ; _⦗_⦘_) renaming (const to const₁ ; apply to apply₁ ; swap to swap₁ ; _$_ to _$₁_)
open import Logic
import Lvl
import Lvl.MultiFunctions as Lvl
open import Numeral.Finite
open import Numeral.Finite.Bound
open import Numeral.Natural
open import Syntax.Function
open import Syntax.Number
open import Type
private variable ℓ ℓ₁ ℓ₂ ℓ₃ : Lvl.Level
private variable n n₁ n₂ : ℕ
private variable ℓ𝓈 ℓ𝓈₁ ℓ𝓈₂ : Lvl.Level ^ n
private variable A B C : Type{ℓ}
private variable As Bs Cs : Types{n}(ℓ𝓈)
-- TODO: Make all n, n₁, n₂ explicit. Find a way to do this while having generalized variables
-- TODO: Some of these functions can be generalised to arbitrary categories instead of using the function type (_→_). This makes it possible to skip the specialized variants for different parameter types (e.g. compose and composeᵢₙₛₜ)
-- A constant function of many variables.
-- Lifts a value to being a number of nested functions.
-- Examples:
-- const(x) _ _ _ ... = x
-- const(x)
-- = (const₁ ∘ const₁ ∘ const₁ ∘ ...)(x)
-- = (_ ↦ (_ ↦ (_ ↦ x)))
-- = (_ ↦ _ ↦ _ ↦ x)
const : (n : ℕ) → ∀{ℓ𝓈}{As : Types{n}(ℓ𝓈)}{ℓ}{B : Type{ℓ}} → B → (As ⇉ B)
const(0) = id
const(1) = const₁
const(𝐒(𝐒(n))) = const₁ ∘ const(𝐒(n))
-- A projection function of many variables.
-- Returns one of the specified arguments.
-- Examples:
-- proj(2)(0) x y = x
-- proj(2)(1) x y = y
-- proj(3)(0) x y z = x
-- proj(3)(1) x y z = y
-- proj(3)(2) x y z = z
-- proj(4)(0) x y z w = x
-- proj(4)(1) x y z w = y
-- proj(4)(2) x y z w = z
-- proj(4)(3) x y z w = w
proj : (n : ℕ) → ∀{ℓ𝓈}{As : Types{n}(ℓ𝓈)} → (i : 𝕟(n)) → (As ⇉ index i As)
proj(1) 𝟎 x = x
proj(𝐒(𝐒(n))) 𝟎 x = const(𝐒(n)) x
proj(𝐒(𝐒(n))) (𝐒(i)) _ = proj(𝐒(n)) i
-- Applies a function on the return value of a multivariate function.
-- Composes the first argument and the last function of the second argument.
-- Can also be seen as lifting the function type to the structure of (As ⇉_).
-- Examples:
-- f ∘ᵣ g = (((f ∘_) ∘_) ∘_) ..
-- ((((f ∘ᵣ g) x₁) x₂) x₃) .. = f((((g x₁) x₂) x₃) ..)
-- (f ∘ᵣ g) x₁ x₂ x₃ .. = f(g x₁ x₂ x₃ ..)
-- Note: This can be used to specify the `map` function of a functor (As ⇉_).
compose : (n : ℕ) → ∀{ℓ𝓈}{As : Types{n}(ℓ𝓈)}{ℓ₁}{B : Type{ℓ₁}}{ℓ₂}{C : Type{ℓ₂}} → (B → C) → (As ⇉ B) → (As ⇉ C)
compose(0) = id
compose(1) = _∘_
compose(𝐒(𝐒(n))) f = compose(𝐒(n)) f ∘_
_∘ᵣ_ : ∀{As : Types{n}(ℓ𝓈)}{B : Type{ℓ₁}}{C : Type{ℓ₂}} → (B → C) → (As ⇉ B) → (As ⇉ C)
_∘ᵣ_ {n = n} = compose(n)
composeᵢₙₛₜ : (n : ℕ) → ∀{ℓ𝓈}{As : Types{n}(ℓ𝓈)}{ℓ₁}{B : Type{ℓ₁}}{ℓ₂}{C : Type{ℓ₂}} → (B → C) → (As ⇉ᵢₙₛₜ B) → (As ⇉ᵢₙₛₜ C)
composeᵢₙₛₜ(0) = id
composeᵢₙₛₜ(1) f g = f(g)
composeᵢₙₛₜ(𝐒(𝐒(n))) f g = composeᵢₙₛₜ(𝐒(n)) f g
-- Puts the second function on every argument of the first function.
-- Example:
-- (f on g) x₁ x₂ x₃ .. = f (g x₁) (g x₂) (g x₃) ..
composeOnEvery : (n : ℕ) → ∀{ℓ₁}{A : Type{ℓ₁}}{ℓ₂}{B : Type{ℓ₂}}{ℓ₃}{C : Type{ℓ₃}} → (repeat n B ⇉ C) → (A → B) → (repeat n A ⇉ C)
composeOnEvery 0 = const₁
composeOnEvery 1 = _∘_
composeOnEvery (𝐒(𝐒(n))) f g x = composeOnEvery(𝐒(n)) (f(g(x))) g
_on_ : ∀{A : Type{ℓ₁}}{B : Type{ℓ₂}}{C : Type{ℓ₃}} → (repeat n B ⇉ C) → (A → B) → (repeat n A ⇉ C)
_on_ {n = n} = composeOnEvery(n)
applyTwice : (n : ℕ) → ∀{ℓ𝓈}{As : Types{n}(ℓ𝓈)}{ℓ}{B : Type{ℓ}} → (As ⇉ As ⇉ B) → (As ⇉ B)
applyTwice(0) = id
applyTwice(1) f(x) = f(x)(x)
applyTwice(𝐒(𝐒(n))) f(x) = applyTwice(𝐒(n)) ((_$₁ x) ∘ᵣ (f(x)))
swap : (n₁ n₂ : ℕ) → ∀{ℓ𝓈₁}{As : Types{n₁}(ℓ𝓈₁)}{ℓ𝓈₂}{Bs : Types{n₂}(ℓ𝓈₂)}{ℓ}{C : Type{ℓ}} → (As ⇉ Bs ⇉ C) → (Bs ⇉ As ⇉ C)
swap(n₁)(0) = id
swap(n₁)(1) f b = (_$₁ b) ∘ᵣ f
swap(n₁)(𝐒(𝐒(n₂))) f b = swap(n₁)(𝐒(n₂)) ((_$₁ b) ∘ᵣ f)
-- Lifts a function/operator pointwise.
-- A generalized variant of `(_∘ᵣ_)` that allows the left function to have multiple arguments.
-- Example:
-- (f ∘ₗ g₁ g₂ g₃ ...) x₁ x₂ x₃ ... = f (g₁ x₁ x₂ x₃ ...) (g₂ x₁ x₂ x₃ ...) (g₃ x₁ x₂ x₃ ...) ...
-- (f ∘ₗ g) x₁ x₂ x₃ ... = (f ∘ᵣ g) x₁ x₂ x₃ ...
-- pointwise(1)(2) (_+_) = (f ↦ g ↦ x ↦ f(x) + g(x))
pointwise : (n₁ n₂ : ℕ) → ∀{ℓ𝓈₁}{As : Types{n₁}(ℓ𝓈₁)}{ℓ𝓈₂}{Bs : Types{n₂}(ℓ𝓈₂)}{ℓ}{C : Type{ℓ}} → (Bs ⇉ C) → (map (As ⇉_) Bs) ⇉ (As ⇉ C)
pointwise(n₁)(0) = const(n₁)
pointwise(n₁)(1) = compose(n₁)
pointwise(n₁)(𝐒(𝐒(n₂))) {As = As}{Bs = B , Bs}{C = C} f g = p{n = 𝐒(n₂)} (pointwise(n₁)(𝐒(n₂))) (f ∘ᵣ g) where
p : ∀{Ts : Types{n}(ℓ𝓈)} → ((Bs ⇉ C) → (Ts ⇉ As ⇉ C)) → ((As ⇉ Bs ⇉ C) → (Ts ⇉ As ⇉ C)) -- TODO: Is it possible to simplify this helper function?
p{n = n}{Ts = Ts} f g = compose(n) (applyTwice(n₁)) (swap(n₁)(n) (compose(n₁) f g))
_∘ₗ : ∀{As : Types{n₁}(ℓ𝓈₁)}{Bs : Types{n₂}(ℓ𝓈₂)}{C : Type{ℓ}} → (Bs ⇉ C) → (map (As ⇉_) Bs) ⇉ (As ⇉ C)
_∘ₗ {n₁ = n₁}{n₂ = n₂} = pointwise(n₁)(n₂)
-- Converts a function using a tuple to represent its arguments to a curried function (nested function types).
-- Example:
-- curry((x,y,z,...) ↦ φ) = (x ↦ y ↦ z ↦ ... ↦ φ)
-- curry(0) = id : (A₁ → B) → (A₁ → B)
-- curry(1) = curry₁ : ((A₁ ⨯ A₂) → B) → (A₁ → A₂ → B)
-- curry(2) = curry₁ ∘ curry₁ : ((A₁ ⨯ A₂ ⨯ A₃) → B) → (A₁ → A₂ → A₃ → B)
-- curry(3) = curry₁ ∘ curry₁ ∘ curry₁ : ((A₁ ⨯ A₂ ⨯ A₃ ⨯ A₄) → B) → (A₁ → A₂ → A₃ → A₄ → B)
-- Note: If there is a nested uncurry and curry, one can often use (_∘ᵣ_) instead (I think?).
curry : (n : ℕ) → ∀{ℓ𝓈}{As : Types{𝐒(n)}(ℓ𝓈)}{ℓ}{B : Type{ℓ}} → (reduceᵣ(_⨯_) As → B) → (As ⇉ B)
curry(𝟎) = id
curry(𝐒(n)) f x = curry(n) (f ∘ (x ,_))
-- Converts a curried function (nested function types) to a function using a tuple to represent its arguments.
-- Example:
-- uncurry(x ↦ y ↦ z ↦ ... ↦ φ) = ((x,y,z,...) ↦ φ)
uncurry : (n : ℕ) → ∀{ℓ𝓈}{As : Types{𝐒(n)}(ℓ𝓈)}{ℓ}{B : Type{ℓ}} → (As ⇉ B) → (reduceᵣ(_⨯_) As → B)
uncurry(𝟎) = id
uncurry(𝐒(n)) f (x , xs) = uncurry(n) (f(x)) xs
-- Applies a tuple as arguments to a multivariate function.
-- Example:
-- apply(x,y,z,...) (x ↦ y ↦ z ↦ ... ↦ φ) = φ
applyTuple : (n : ℕ) → ∀{ℓ𝓈}{As : Types{𝐒(n)}(ℓ𝓈)}{ℓ}{B : Type{ℓ}} → (reduceᵣ(_⨯_) As) → (As ⇉ B) → B
applyTuple(n) = swap₁(uncurry(n))
-- Applies an argument to a specific position in the arguments of an argument list of a multivariate function.
-- Examples:
-- applyAt 0 (x ↦ y ↦ ... ↦ f(x,y)) a = (y ↦ ... ↦ f(a,y))
-- applyAt 1 (x ↦ y ↦ ... ↦ f(x,y)) b = (x ↦ ... ↦ f(x,b))
-- applyAt 0 (x ↦ y ↦ z ↦ ... ↦ f(x,y,z)) a = (y ↦ z ↦ ... ↦ f(a,y,z))
-- applyAt 1 (x ↦ y ↦ z ↦ ... ↦ f(x,y,z)) b = (x ↦ z ↦ ... ↦ f(x,b,z))
-- applyAt 2 (x ↦ y ↦ z ↦ ... ↦ f(x,y,z)) c = (x ↦ y ↦ ... ↦ f(x,y,c))
applyAt : (n : ℕ) → ∀{ℓ𝓈}{As : Types{𝐒(n)}(ℓ𝓈)}{ℓ}{B : Type{ℓ}} → (i : 𝕟(𝐒(n))) → (index i As) → (As ⇉ B) → (without i As ⇉ B)
applyAt(0) 𝟎 xi f = f xi
applyAt(1) 𝟎 xi f x = f xi x
applyAt(1) (𝐒(𝟎)) xi f x = f x xi
applyAt(𝐒(𝐒(n))) 𝟎 xi f xs = f xi xs
applyAt(𝐒(𝐒(n))) (𝐒(i)) xi f x = applyAt(𝐒(n)) i xi (f(x))
-- Puts the second and each succeeding functions on the respective arguments of the first function.
-- Applies each argument `xₙ` on the inner function `gₙ`, and then apply the value of these as the arguments to an outer function `f`.
-- This is similiar to (_on_) but uses different functions for every argument and each argument is applied to its respective function instead.
-- Example:
-- (onMany(n) f g₁ g₂ g₃ ...) x₁ x₂ x₃ ... = f (g₁ x₁) (g₂ x₂) (g₃ x₃) ...
-- TODO: Try to get rid of the curry/uncurry by using (_∘ᵣ_)
onEach : (n : ℕ) → ∀{ℓ𝓈₁}{As : Types{n}(ℓ𝓈₁)}{ℓ𝓈₂}{Bs : Types{n}(ℓ𝓈₂)}{C : Type{ℓ}} → (Bs ⇉ C) → (As ⦗ map₂(_→ᶠ_) ⦘ Bs) ⇉ (As ⇉ C)
onEach(0) = id
onEach(1) = _∘_
onEach(𝐒(𝐒(n))) f g = curry(n) (gs ↦ x ↦ uncurry(n) (onEach(𝐒(n)) (f(g(x)))) gs)
-- Note: One of the parts of being an "applicative functor". The other being `const`
liftedApply : (n : ℕ) → ∀{ℓ𝓈}{As : Types{n}(ℓ𝓈)}{ℓ₁}{B : Type{ℓ₁}}{ℓ₂}{C : Type{ℓ₂}} → (As ⇉ (B → C)) → ((As ⇉ B) → (As ⇉ C))
liftedApply(0) = id
liftedApply(1) f g x = f x (g x)
liftedApply(𝐒(𝐒(n))) f g x = liftedApply(𝐒(n)) (f(x)) (g(x))
lifted-[,] : (n : ℕ) → ∀{ℓ𝓈}{As : Types{n}(ℓ𝓈)}{ℓ₁}{B : Type{ℓ₁}}{ℓ₂}{C : Type{ℓ₂}} → (As ⇉ B) → (As ⇉ C) → (As ⇉ (B ⨯ C))
lifted-[,](n) f g = liftedApply(n) ((swap₁ _,_) ∘ᵣ g) f
-- TODO: How to implement something like this
--(F(x) ▫ F(y)) ▫ F(x . y)
--_aryᵣFromBinaryOperator_ : (n : ℕ) → ∀{X : Type{ℓ₁}}{Y : Type{ℓ₂}} → (_▫_ : X → Y → X) →
-- _aryᵣFromBinaryOperator_ : (n : ℕ) → ∀{F}{_○_} → (_▫_ : ∀{x y} → F(x) → F(y) → F(x ○ y)) →
-- _aryᵣFromBinaryOperator_ : (n : ℕ) → ∀{F} → (_▫_ : ∀{x y z} → F(x)(y) → F(y)(z) → F(x)(z)) →
-- CategoricalOperator₊ : ℕ → {Obj : Type{ℓ₁}} → (Obj → Obj → Type{ℓ₂}) → Type
-- CategoricalOperator₊(0) F = ∀{x₁ x₂} → F(x₁)(x₂) → F(x₁)(x₂)
-- CategoricalOperator₊(1) F = ∀{x₁ x₂ x₃} → F(x₂)(x₃) → F(x₁)(x₂) → F(x₁)(x₃)
-- CategoricalOperator₊(𝐒(𝐒(n))) F = {!!}
-- Nested binary type relations that associate to the right.
-- Used to define n-ary binary relations that accepts any types.
-- Example:
-- binaryTypeRelator₊(4)(_▫_) A B C D = A ▫ (B ▫ (C ▫ D))
-- TODO: It is possible to generalize the levels
binaryTypeRelator₊ : (n : ℕ) → (∀{ℓ₁ ℓ₂} → Type{ℓ₁} → Type{ℓ₂} → Type{ℓ₁ Lvl.⊔ ℓ₂}) → (∀{ℓ} → Type{ℓ}) → ∀{ℓ𝓈} → TypesOfTypes{n}(ℓ𝓈) ⇉ Type{Lvl.⨆(ℓ𝓈)}
binaryTypeRelator₊(0) (_▫_) id = id
binaryTypeRelator₊(1) (_▫_) _ A = A
binaryTypeRelator₊(𝐒(𝐒(n))) (_▫_) id A = compose(𝐒(n)) (A ▫_) (binaryTypeRelator₊(𝐒(n)) (_▫_) id)
-- Nested quantifiers over multiple values.
-- Used to define nested universal and existential quantifications.
-- Example:
-- quantifier₊(3) □(P) = □(x ↦ □(y ↦ □(z ↦ P(x)(y)(z))))
quantifier₊ : (n : ℕ) → ∀{ℓ𝓈}{As : Types{n}(ℓ𝓈)} → (∀{ℓ₁ ℓ₂}{T : Type{ℓ₁}} → (T → Stmt{ℓ₂}) → Stmt{ℓ₁ Lvl.⊔ ℓ₂}) → (As ⇉ Stmt{ℓ}) → Stmt{ℓ Lvl.⊔ (Lvl.⨆(ℓ𝓈))}
quantifier₊(0) □(P) = P
quantifier₊(1) □(P) = □(P)
quantifier₊(𝐒(𝐒(n))) □(P) = □(x ↦ quantifier₊(𝐒(n)) □(P(x)))
quantifier₊ᵢₘₚₗ : (n : ℕ) → ∀{ℓ𝓈}{As : Types{n}(ℓ𝓈)} → (∀{ℓ₁ ℓ₂}{T : Type{ℓ₁}} → (T → Stmt{ℓ₂}) → Stmt{ℓ₁ Lvl.⊔ ℓ₂}) → (As ⇉ᵢₘₚₗ Stmt{ℓ}) → Stmt{ℓ Lvl.⊔ (Lvl.⨆(ℓ𝓈))}
quantifier₊ᵢₘₚₗ(0) □(P) = P
quantifier₊ᵢₘₚₗ(1) □(P) = □(x ↦ P{x})
quantifier₊ᵢₘₚₗ(𝐒(𝐒(n))) □(P) = □(x ↦ quantifier₊ᵢₘₚₗ(𝐒(n)) □(P{x}))
quantifier₊ᵢₙₛₜ : (n : ℕ) → ∀{ℓ𝓈}{As : Types{n}(ℓ𝓈)} → (∀{ℓ₁ ℓ₂}{T : Type{ℓ₁}} → (T → Stmt{ℓ₂}) → Stmt{ℓ₁ Lvl.⊔ ℓ₂}) → (As ⇉ᵢₙₛₜ Stmt{ℓ}) → Stmt{ℓ Lvl.⊔ (Lvl.⨆(ℓ𝓈))}
quantifier₊ᵢₙₛₜ(0) □(P) = P
quantifier₊ᵢₙₛₜ(1) □(P) = □(x ↦ P ⦃ x ⦄)
quantifier₊ᵢₙₛₜ(𝐒(𝐒(n))) □(P) = □(x ↦ quantifier₊ᵢₙₛₜ(𝐒(n)) □(P ⦃ x ⦄))
quantify : (n : ℕ) → ∀{ℓ𝓈}{As : Types{n}(ℓ𝓈)} → (As ⇉ Stmt{ℓ}) → Stmt{ℓ Lvl.⊔ (Lvl.⨆(ℓ𝓈))}
quantify(n) P = quantifier₊(n) (Pred ↦ (∀(x) → Pred(x))) P
quantifyᵢₘₚₗ : (n : ℕ) → ∀{ℓ𝓈}{As : Types{n}(ℓ𝓈)} → (As ⇉ᵢₘₚₗ Stmt{ℓ}) → Stmt{ℓ Lvl.⊔ (Lvl.⨆(ℓ𝓈))}
quantifyᵢₘₚₗ(n) P = quantifier₊ᵢₘₚₗ(n) (Pred ↦ (∀{x} → Pred(x))) P
quantifyᵢₙₛₜ : (n : ℕ) → ∀{ℓ𝓈}{As : Types{n}(ℓ𝓈)} → (As ⇉ᵢₙₛₜ Stmt{ℓ}) → Stmt{ℓ Lvl.⊔ (Lvl.⨆(ℓ𝓈))}
quantifyᵢₙₛₜ(n) P = quantifier₊ᵢₙₛₜ(n) (Pred ↦ (∀ ⦃ x ⦄ → Pred(x))) P
quantifierSpecific : (n : ℕ) → ∀{ℓ𝓈}{As : Types{n}(ℓ𝓈)} → (∀{i} → (index i As → Stmt{ℓ}) → Stmt{ℓ}) → (As ⇉ Stmt{ℓ}) → Stmt{ℓ}
quantifierSpecific(0) □(P) = P
quantifierSpecific(1) □(P) = □{𝟎}(P)
quantifierSpecific(𝐒(𝐒(n))) □(P) = □{𝟎}(x ↦ quantifierSpecific(𝐒(n)) (\{i} → □{𝐒(i)})(P(x)))
{- TODO: MOre general levels
quantifierSpecific : (n : ℕ) → ∀{ℓ𝓈}{As : Types{n}(ℓ𝓈)} → (∀{i} → (index i As → Stmt{Raise.index i ℓ𝓈}) → Stmt{ℓ}) → (As ⇉ Stmt{Lvl.⨆(ℓ𝓈)}) → Stmt{(Raise.head₀ ℓ𝓈) Option.or ℓ}
quantifierSpecific(0) □(P) = {!!}
quantifierSpecific(1) □(P) = □{𝟎}(P)
quantifierSpecific(𝐒(𝐒(n))) □(P) = □{𝟎}(x ↦ {!quantifierSpecific(𝐒(n)) (\{i} → □{𝐒(i)})(P(x))!})
-}
expl-to-impl : (n : ℕ) → ∀{ℓ𝓈}{As : Types{n}(ℓ𝓈)}{ℓ}{B : Type{ℓ}} → (As ⇉ B) → (As ⇉ᵢₘₚₗ B)
expl-to-impl 0 f = f
expl-to-impl 1 f{x} = f(x)
expl-to-impl (𝐒(𝐒(n))) f{x} = expl-to-impl(𝐒(n)) (f(x))
expl-to-inst : (n : ℕ) → ∀{ℓ𝓈}{As : Types{n}(ℓ𝓈)}{ℓ}{B : Type{ℓ}} → (As ⇉ B) → (As ⇉ᵢₙₛₜ B)
expl-to-inst 0 f = f
expl-to-inst 1 f ⦃ x ⦄ = f(x)
expl-to-inst (𝐒(𝐒(n))) f ⦃ x ⦄ = expl-to-inst(𝐒(n)) (f(x))
impl-to-expl : (n : ℕ) → ∀{ℓ𝓈}{As : Types{n}(ℓ𝓈)}{ℓ}{B : Type{ℓ}} → (As ⇉ᵢₘₚₗ B) → (As ⇉ B)
impl-to-expl 0 f = f
impl-to-expl 1 f(x) = f{x}
impl-to-expl (𝐒(𝐒(n))) f(x) = impl-to-expl(𝐒(n)) (f{x})
inst-to-expl : (n : ℕ) → ∀{ℓ𝓈}{As : Types{n}(ℓ𝓈)}{ℓ}{B : Type{ℓ}} → (As ⇉ᵢₙₛₜ B) → (As ⇉ B)
inst-to-expl 0 f = f
inst-to-expl 1 f(x) = f ⦃ x ⦄
inst-to-expl (𝐒(𝐒(n))) f(x) = inst-to-expl(𝐒(n)) (f ⦃ x ⦄)
|
{
"alphanum_fraction": 0.5305100182,
"avg_line_length": 51.874015748,
"ext": "agda",
"hexsha": "efe7c7112426dac2b0d3b367c5a262e4d534e8b5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Function/Multi/Functions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Function/Multi/Functions.agda",
"max_line_length": 234,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Function/Multi/Functions.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 6600,
"size": 13176
}
|
open import Mockingbird.Forest using (Forest)
-- Gödel's Forest
module Mockingbird.Problems.Chapter17 {b ℓ} (forest : Forest {b} {ℓ}) where
open import Data.Empty using (⊥-elim)
open import Data.Product using (_×_; _,_; proj₁; proj₂; ∃-syntax)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Function using (_$_; _⇔_; Equivalence; mk⇔)
open import Function.Equivalence.Reasoning renaming (begin_ to ⇔-begin_; _∎ to _⇔-∎)
open import Level using (_⊔_)
open import Relation.Binary using (_Respects_)
open import Relation.Nullary using (¬_)
open import Relation.Unary using (Pred; _∈_)
open Forest forest
open import Mockingbird.Problems.Chapter15 forest using (⇔-¬; ⇔-↯)
record HasMate {s} (Sings : Pred Bird s) : Set (s ⊔ b) where
field
_′ : Bird → Bird
isMate : ∀ {x} y → Sings (x ′ ∙ y) ⇔ (¬ Sings (x ∙ y))
open HasMate ⦃ ... ⦄
record HasAssociate {s} (Sings : Pred Bird s) : Set (s ⊔ b) where
field
_* : Bird → Bird
isAssociate : ∀ {x} y → Sings (x * ∙ y) ⇔ Sings (x ∙ (y ∙ y))
open HasAssociate ⦃ ... ⦄
weakLEM : ∀ {a} (A : Set a) → ¬ ¬ (A ⊎ ¬ A)
weakLEM A ¬[A⊎¬A] =
let ¬A : ¬ A
¬A a = ¬[A⊎¬A] (inj₁ a)
A⊎¬A : A ⊎ ¬ A
A⊎¬A = inj₂ ¬A
in ¬[A⊎¬A] A⊎¬A
module _ {n s} (IsNightingale : Pred Bird n) (Sings : Pred Bird s) (𝒩 : Bird)
(respects : Sings Respects _≈_)
(LEM : ∀ x → Sings x ⊎ (¬ Sings x))
(C₁ : ∀ {x} → IsNightingale x → Sings x)
⦃ C₂ : HasMate Sings ⦄
⦃ C₃ : HasAssociate Sings ⦄
(C₄ : ∀ x → Sings (𝒩 ∙ x) ⇔ IsNightingale x) where
private
doubleNegation : ∀ x → ¬ ¬ Sings x → Sings x
doubleNegation x ¬¬x-sings with LEM x
... | inj₁ x-sings = x-sings
... | inj₂ ¬x-sings = ⊥-elim $ ¬¬x-sings ¬x-sings
doubleNegation-⇔ : ∀ x → (¬ ¬ Sings x) ⇔ Sings x
doubleNegation-⇔ x = mk⇔ (doubleNegation x) (λ x-sings ¬x-sings → ¬x-sings x-sings)
problem₁ : ∃[ 𝒢 ] (Sings 𝒢 × ¬ IsNightingale 𝒢)
problem₁ = (𝒢 , conclusion)
where
𝒩′ = 𝒩 ′
𝒩′* = 𝒩′ *
𝒢 = 𝒩′* ∙ 𝒩′*
𝒢-sings⇔¬𝒩𝒢-sings : Sings 𝒢 ⇔ (¬ Sings (𝒩 ∙ 𝒢))
𝒢-sings⇔¬𝒩𝒢-sings = ⇔-begin
Sings 𝒢 ⇔⟨⟩
Sings (𝒩′* ∙ 𝒩′*) ⇔⟨ isAssociate 𝒩′* ⟩
Sings (𝒩′ ∙ (𝒩′* ∙ 𝒩′*)) ⇔⟨⟩
Sings (𝒩′ ∙ 𝒢) ⇔⟨ isMate 𝒢 ⟩
(¬ Sings (𝒩 ∙ 𝒢)) ⇔-∎
¬𝒢-sings⇔𝒢-isNightingale : (¬ Sings 𝒢) ⇔ IsNightingale 𝒢
¬𝒢-sings⇔𝒢-isNightingale = ⇔-begin
¬ Sings 𝒢 ⇔⟨ ⇔-¬ 𝒢-sings⇔¬𝒩𝒢-sings ⟩
¬ ¬ Sings (𝒩 ∙ 𝒢) ⇔⟨ doubleNegation-⇔ $ 𝒩 ∙ 𝒢 ⟩
Sings (𝒩 ∙ 𝒢) ⇔⟨ C₄ 𝒢 ⟩
IsNightingale 𝒢 ⇔-∎
𝒢-sings⇔¬𝒢-isNightingale : Sings 𝒢 ⇔ (¬ IsNightingale 𝒢)
𝒢-sings⇔¬𝒢-isNightingale = ⇔-begin
Sings 𝒢 ⇔˘⟨ doubleNegation-⇔ 𝒢 ⟩
¬ ¬ Sings 𝒢 ⇔⟨ ⇔-¬ ¬𝒢-sings⇔𝒢-isNightingale ⟩
(¬ IsNightingale 𝒢) ⇔-∎
conclusion : Sings 𝒢 × ¬ IsNightingale 𝒢
conclusion with LEM 𝒢
... | inj₁ 𝒢-sings = (𝒢-sings , Equivalence.f 𝒢-sings⇔¬𝒢-isNightingale 𝒢-sings)
... | inj₂ ¬𝒢-sings = ⊥-elim $ ¬𝒢-sings $ C₁ $ Equivalence.f ¬𝒢-sings⇔𝒢-isNightingale ¬𝒢-sings
problem₂ : ∃[ 𝒢 ] (Sings 𝒢 × ¬ IsNightingale 𝒢)
problem₂ = (𝒢 , conclusion)
where
𝒩* = 𝒩 *
𝒩*′ = 𝒩* ′
𝒢 = 𝒩*′ ∙ 𝒩*′
-- Note: this proof (and the definition of 𝒢) is the only difference to
-- the proof of problem 1.
𝒢-sings⇔¬𝒩𝒢-sings : Sings 𝒢 ⇔ (¬ Sings (𝒩 ∙ 𝒢))
𝒢-sings⇔¬𝒩𝒢-sings = ⇔-begin
Sings 𝒢 ⇔⟨⟩
Sings (𝒩*′ ∙ 𝒩*′) ⇔⟨ isMate 𝒩*′ ⟩
¬ Sings (𝒩* ∙ 𝒩*′) ⇔⟨ ⇔-¬ $ isAssociate 𝒩*′ ⟩
¬ Sings (𝒩 ∙ (𝒩*′ ∙ 𝒩*′)) ⇔⟨⟩
(¬ Sings (𝒩 ∙ 𝒢)) ⇔-∎
¬𝒢-sings⇔𝒢-isNightingale : (¬ Sings 𝒢) ⇔ IsNightingale 𝒢
¬𝒢-sings⇔𝒢-isNightingale = ⇔-begin
¬ Sings 𝒢 ⇔⟨ ⇔-¬ 𝒢-sings⇔¬𝒩𝒢-sings ⟩
¬ ¬ Sings (𝒩 ∙ 𝒢) ⇔⟨ doubleNegation-⇔ $ 𝒩 ∙ 𝒢 ⟩
Sings (𝒩 ∙ 𝒢) ⇔⟨ C₄ 𝒢 ⟩
IsNightingale 𝒢 ⇔-∎
𝒢-sings⇔¬𝒢-isNightingale : Sings 𝒢 ⇔ (¬ IsNightingale 𝒢)
𝒢-sings⇔¬𝒢-isNightingale = ⇔-begin
Sings 𝒢 ⇔˘⟨ doubleNegation-⇔ 𝒢 ⟩
¬ ¬ Sings 𝒢 ⇔⟨ ⇔-¬ ¬𝒢-sings⇔𝒢-isNightingale ⟩
(¬ IsNightingale 𝒢) ⇔-∎
conclusion : Sings 𝒢 × ¬ IsNightingale 𝒢
conclusion with LEM 𝒢
... | inj₁ 𝒢-sings = (𝒢-sings , Equivalence.f 𝒢-sings⇔¬𝒢-isNightingale 𝒢-sings)
... | inj₂ ¬𝒢-sings = ⊥-elim $ ¬𝒢-sings $ C₁ $ Equivalence.f ¬𝒢-sings⇔𝒢-isNightingale ¬𝒢-sings
_Represents_ : ∀ {r} → (A : Bird) → (𝒮 : Pred Bird r) → Set (b ⊔ s ⊔ r)
A Represents 𝒮 = ∀ x → Sings (A ∙ x) ⇔ x ∈ 𝒮
IsSociety : ∀ {r} → (𝒮 : Pred Bird r) → Set (b ⊔ s ⊔ r)
IsSociety 𝒮 = ∃[ A ] A Represents 𝒮
_ : IsSociety IsNightingale
_ = (𝒩 , C₄)
problem₃ : ¬ IsSociety Sings
problem₃ 𝒮@(A , A-represents) =
let A′ = A ′
A′* = A′ *
𝒮ᶜ : IsSociety λ x → ¬ Sings x
𝒮ᶜ =
( A′
, λ x → ⇔-begin
Sings (A′ ∙ x) ⇔⟨ isMate x ⟩
¬ Sings (A ∙ x) ⇔⟨ ⇔-¬ $ A-represents x ⟩
(¬ Sings x) ⇔-∎
)
A′*A′*-sings⇔¬A′*A′*-sings : Sings (A′* ∙ A′*) ⇔ (¬ Sings (A′* ∙ A′*))
A′*A′*-sings⇔¬A′*A′*-sings = ⇔-begin
Sings (A′* ∙ A′*) ⇔⟨ isAssociate A′* ⟩
Sings (A′ ∙ (A′* ∙ A′*)) ⇔⟨ proj₂ 𝒮ᶜ (A′* ∙ A′*) ⟩
(¬ Sings (A′* ∙ A′*)) ⇔-∎
in ⇔-↯ A′*A′*-sings⇔¬A′*A′*-sings
|
{
"alphanum_fraction": 0.4959469418,
"avg_line_length": 34.5732484076,
"ext": "agda",
"hexsha": "3a7aea3377fb137af69bd86948c12ae71ffd0dba",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "splintah/combinatory-logic",
"max_forks_repo_path": "Mockingbird/Problems/Chapter17.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "splintah/combinatory-logic",
"max_issues_repo_path": "Mockingbird/Problems/Chapter17.agda",
"max_line_length": 100,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "splintah/combinatory-logic",
"max_stars_repo_path": "Mockingbird/Problems/Chapter17.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T23:44:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-28T23:44:42.000Z",
"num_tokens": 2692,
"size": 5428
}
|
------------------------------------------------------------------------
-- A definitional interpreter
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
module Lambda.Delay-monad.Interpreter where
open import Equality.Propositional
open import Prelude
open import Prelude.Size
open import Maybe equality-with-J
open import Monad equality-with-J
open import Vec.Function equality-with-J
open import Delay-monad
open import Delay-monad.Bisimilarity
open import Delay-monad.Monad
open import Lambda.Syntax hiding ([_])
open Closure Tm
------------------------------------------------------------------------
-- An interpreter monad
-- The interpreter monad.
M : ∀ {ℓ} → Size → Type ℓ → Type ℓ
M i = MaybeT (λ A → Delay A i)
-- A variant of the interpreter monad.
M′ : ∀ {ℓ} → Size → Type ℓ → Type ℓ
M′ i = MaybeT (λ A → Delay′ A i)
-- A lifted variant of later.
laterM : ∀ {i a} {A : Type a} → M′ i A → M i A
run (laterM x) = later (run x)
-- A lifted variant of weak bisimilarity.
infix 4 _≈M_
_≈M_ : ∀ {a} {A : Type a} → M ∞ A → M ∞ A → Type a
x ≈M y = run x ≈ run y
------------------------------------------------------------------------
-- The interpreter
infix 10 _∙_
mutual
⟦_⟧ : ∀ {i n} → Tm n → Env n → M i Value
⟦ con i ⟧ ρ = return (con i)
⟦ var x ⟧ ρ = return (ρ x)
⟦ ƛ t ⟧ ρ = return (ƛ t ρ)
⟦ t₁ · t₂ ⟧ ρ = ⟦ t₁ ⟧ ρ >>= λ v₁ →
⟦ t₂ ⟧ ρ >>= λ v₂ →
v₁ ∙ v₂
_∙_ : ∀ {i} → Value → Value → M i Value
con i ∙ v₂ = fail
ƛ t₁ ρ ∙ v₂ = laterM (⟦ t₁ ⟧′ (cons v₂ ρ))
⟦_⟧′ : ∀ {i n} → Tm n → Env n → M′ i Value
force (run (⟦ t ⟧′ ρ)) = run (⟦ t ⟧ ρ)
------------------------------------------------------------------------
-- An example
-- The semantics of Ω is the non-terminating computation never.
Ω-loops : ∀ {i} → [ i ] run (⟦ Ω ⟧ nil) ∼ never
Ω-loops = later λ { .force → Ω-loops }
|
{
"alphanum_fraction": 0.4722941481,
"avg_line_length": 24.4430379747,
"ext": "agda",
"hexsha": "1b63bbbb83dccc2c1639f98f95dacb1df43f09ff",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/partiality-monad",
"max_forks_repo_path": "src/Lambda/Delay-monad/Interpreter.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/partiality-monad",
"max_issues_repo_path": "src/Lambda/Delay-monad/Interpreter.agda",
"max_line_length": 72,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/partiality-monad",
"max_stars_repo_path": "src/Lambda/Delay-monad/Interpreter.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z",
"num_tokens": 612,
"size": 1931
}
|
{-
This file contains:
Properties of FreeGroupoid:
- Induction principle for the FreeGroupoid on hProps
- ∥freeGroupoid∥₂ is a Group
- FreeGroup A ≡ ∥ FreeGroupoid A ∥₂
-}
{-# OPTIONS --safe #-}
module Cubical.HITs.FreeGroupoid.Properties where
open import Cubical.HITs.FreeGroupoid.Base
open import Cubical.HITs.FreeGroup renaming (elimProp to freeGroupElimProp)
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.BiInvertible
open import Cubical.Foundations.Univalence using (ua)
open import Cubical.HITs.SetTruncation renaming (rec to recTrunc)
open import Cubical.Algebra.Group
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.Monoid.Base
open import Cubical.Algebra.Semigroup.Base
private
variable
ℓ ℓ' : Level
A : Type ℓ
-- The induction principle for the FreeGroupoid for hProps
elimProp : ∀ {B : FreeGroupoid A → Type ℓ'}
→ ((x : FreeGroupoid A) → isProp (B x))
→ ((a : A) → B (η a))
→ ((g1 g2 : FreeGroupoid A) → B g1 → B g2 → B (g1 · g2))
→ (B ε)
→ ((g : FreeGroupoid A) → B g → B (inv g))
→ (x : FreeGroupoid A)
→ B x
elimProp {B = B} Bprop η-ind ·-ind ε-ind inv-ind = induction where
induction : ∀ g → B g
induction (η a) = η-ind a
induction (g1 · g2) = ·-ind g1 g2 (induction g1) (induction g2)
induction ε = ε-ind
induction (inv g) = inv-ind g (induction g)
induction (assoc g1 g2 g3 i) = path i where
p1 : B g1
p1 = induction g1
p2 : B g2
p2 = induction g2
p3 : B g3
p3 = induction g3
path : PathP (λ i → B (assoc g1 g2 g3 i)) (·-ind g1 (g2 · g3) p1 (·-ind g2 g3 p2 p3))
(·-ind (g1 · g2) g3 (·-ind g1 g2 p1 p2) p3)
path = isProp→PathP (λ i → Bprop (assoc g1 g2 g3 i)) (·-ind g1 (g2 · g3) p1 (·-ind g2 g3 p2 p3))
(·-ind (g1 · g2) g3 (·-ind g1 g2 p1 p2) p3)
induction (idr g i) = path i where
p : B g
p = induction g
pε : B ε
pε = induction ε
path : PathP (λ i → B (idr g i)) p (·-ind g ε p pε)
path = isProp→PathP (λ i → Bprop (idr g i)) p (·-ind g ε p pε)
induction (idl g i) = path i where
p : B g
p = induction g
pε : B ε
pε = induction ε
path : PathP (λ i → B (idl g i)) p (·-ind ε g pε p)
path = isProp→PathP (λ i → Bprop (idl g i)) p (·-ind ε g pε p)
induction (invr g i) = path i where
p : B g
p = induction g
pinv : B (inv g)
pinv = inv-ind g p
pε : B ε
pε = induction ε
path : PathP (λ i → B (invr g i)) (·-ind g (inv g) p pinv) pε
path = isProp→PathP (λ i → Bprop (invr g i)) (·-ind g (inv g) p pinv) pε
induction (invl g i) = path i where
p : B g
p = induction g
pinv : B (inv g)
pinv = inv-ind g p
pε : B ε
pε = induction ε
path : PathP (λ i → B (invl g i)) (·-ind (inv g) g pinv p) pε
path = isProp→PathP (λ i → Bprop (invl g i)) (·-ind (inv g) g pinv p) pε
-- The truncation of the FreeGroupoid is a group and is equal to FreeGroup
∥freeGroupoid∥₂IsSet : isSet ∥ FreeGroupoid A ∥₂
∥freeGroupoid∥₂IsSet = squash₂
_∣·∣₂_ : ∥ FreeGroupoid A ∥₂ → ∥ FreeGroupoid A ∥₂ → ∥ FreeGroupoid A ∥₂
_∣·∣₂_ = rec2 ∥freeGroupoid∥₂IsSet (λ g1 g2 → ∣ g1 · g2 ∣₂)
∥freeGroupoid∥₂IsSemiGroup : ∀ {ℓ}{A : Type ℓ} → IsSemigroup _∣·∣₂_
∥freeGroupoid∥₂IsSemiGroup {A = A} = issemigroup ∥freeGroupoid∥₂IsSet |assoc∣₂ where
inuctionBase : ∀ g1 g2 g3 → ∣ g1 ∣₂ ∣·∣₂ (∣ g2 ∣₂ ∣·∣₂ ∣ g3 ∣₂) ≡ (∣ g1 ∣₂ ∣·∣₂ ∣ g2 ∣₂) ∣·∣₂ ∣ g3 ∣₂
inuctionBase g1 g2 g3 = cong (λ x → ∣ x ∣₂) (assoc g1 g2 g3)
Bset : ∀ x y z → isSet (x ∣·∣₂ (y ∣·∣₂ z) ≡ (x ∣·∣₂ y) ∣·∣₂ z)
Bset x y z = isProp→isSet (squash₂ (x ∣·∣₂ (y ∣·∣₂ z)) ((x ∣·∣₂ y) ∣·∣₂ z))
|assoc∣₂ : (x y z : ∥ FreeGroupoid A ∥₂) → x ∣·∣₂ (y ∣·∣₂ z) ≡ (x ∣·∣₂ y) ∣·∣₂ z
|assoc∣₂ = elim3 Bset inuctionBase
∣ε∣₂ : ∥ FreeGroupoid A ∥₂
∣ε∣₂ = ∣ ε ∣₂
∥freeGroupoid∥₂IsMonoid : IsMonoid {A = ∥ FreeGroupoid A ∥₂} ∣ε∣₂ _∣·∣₂_
∥freeGroupoid∥₂IsMonoid = ismonoid ∥freeGroupoid∥₂IsSemiGroup
(λ x → elim (λ g → isProp→isSet (squash₂ (g ∣·∣₂ ∣ε∣₂) g)) (λ g → cong (λ g' → ∣ g' ∣₂) (sym (idr g))) x)
(λ x → elim (λ g → isProp→isSet (squash₂ (∣ε∣₂ ∣·∣₂ g) g)) (λ g → cong (λ g' → ∣ g' ∣₂) (sym (idl g))) x)
∣inv∣₂ : ∥ FreeGroupoid A ∥₂ → ∥ FreeGroupoid A ∥₂
∣inv∣₂ = map inv
∥freeGroupoid∥₂IsGroup : IsGroup {G = ∥ FreeGroupoid A ∥₂} ∣ε∣₂ _∣·∣₂_ ∣inv∣₂
∥freeGroupoid∥₂IsGroup = isgroup ∥freeGroupoid∥₂IsMonoid
(λ x → elim (λ g → isProp→isSet (squash₂ (g ∣·∣₂ (∣inv∣₂ g)) ∣ε∣₂)) (λ g → cong (λ g' → ∣ g' ∣₂) (invr g)) x)
(λ x → elim (λ g → isProp→isSet (squash₂ ((∣inv∣₂ g) ∣·∣₂ g) ∣ε∣₂)) (λ g → cong (λ g' → ∣ g' ∣₂) (invl g)) x)
∥freeGroupoid∥₂GroupStr : GroupStr ∥ FreeGroupoid A ∥₂
∥freeGroupoid∥₂GroupStr = groupstr ∣ε∣₂ _∣·∣₂_ ∣inv∣₂ ∥freeGroupoid∥₂IsGroup
∥freeGroupoid∥₂Group : Type ℓ → Group ℓ
∥freeGroupoid∥₂Group A = ∥ FreeGroupoid A ∥₂ , ∥freeGroupoid∥₂GroupStr
forgetfulHom : GroupHom (freeGroupGroup A) (∥freeGroupoid∥₂Group A)
forgetfulHom = rec (λ a → ∣ η a ∣₂)
forgetfulHom⁻¹ : GroupHom (∥freeGroupoid∥₂Group A) (freeGroupGroup A)
forgetfulHom⁻¹ = invf , isHom where
invf : ∥ FreeGroupoid A ∥₂ → FreeGroup A
invf = recTrunc freeGroupIsSet aux where
aux : FreeGroupoid A → FreeGroup A
aux (η a) = η a
aux (g1 · g2) = (aux g1) · (aux g2)
aux ε = ε
aux (inv g) = inv (aux g)
aux (assoc g1 g2 g3 i) = assoc (aux g1) (aux g2) (aux g3) i
aux (idr g i) = idr (aux g) i
aux (idl g i) = idl (aux g) i
aux (invr g i) = invr (aux g) i
aux (invl g i) = invl (aux g) i
isHom : IsGroupHom {A = ∥ FreeGroupoid A ∥₂} {B = FreeGroup A} ∥freeGroupoid∥₂GroupStr invf freeGroupGroupStr
IsGroupHom.pres· isHom x y = elim2 (λ x y → isProp→isSet (freeGroupIsSet (invf (x ∣·∣₂ y)) ((invf x) · (invf y)))) ind x y where
ind : ∀ g1 g2 → invf (∣ g1 ∣₂ ∣·∣₂ ∣ g2 ∣₂) ≡ (invf ∣ g1 ∣₂) · (invf ∣ g2 ∣₂)
ind g1 g2 = refl
IsGroupHom.pres1 isHom = refl
IsGroupHom.presinv isHom x = elim (λ x → isProp→isSet (freeGroupIsSet (invf (∣inv∣₂ x)) (inv (invf x)))) ind x where
ind : ∀ g → invf (∣inv∣₂ ∣ g ∣₂) ≡ inv (invf ∣ g ∣₂)
ind g = refl
freeGroupTruncIdempotentBiInvEquiv : BiInvEquiv (FreeGroup A) ∥ FreeGroupoid A ∥₂
freeGroupTruncIdempotentBiInvEquiv = biInvEquiv f invf rightInv invf leftInv where
f : FreeGroup A → ∥ FreeGroupoid A ∥₂
f = fst forgetfulHom
invf : ∥ FreeGroupoid A ∥₂ → FreeGroup A
invf = fst forgetfulHom⁻¹
rightInv : ∀ (x : ∥ FreeGroupoid A ∥₂) → f (invf x) ≡ x
rightInv x = elim (λ x → isProp→isSet (squash₂ (f (invf x)) x)) ind x where
ind : ∀ (g : FreeGroupoid A) → f (invf ∣ g ∣₂) ≡ ∣ g ∣₂
ind g = elimProp Bprop η-ind ·-ind ε-ind inv-ind g where
Bprop : ∀ g → isProp (f (invf ∣ g ∣₂) ≡ ∣ g ∣₂)
Bprop g = squash₂ (f (invf ∣ g ∣₂)) ∣ g ∣₂
η-ind : ∀ a → f (invf ∣ η a ∣₂) ≡ ∣ η a ∣₂
η-ind a = refl
·-ind : ∀ g1 g2 → f (invf ∣ g1 ∣₂) ≡ ∣ g1 ∣₂ → f (invf ∣ g2 ∣₂) ≡ ∣ g2 ∣₂ → f (invf ∣ g1 · g2 ∣₂) ≡ ∣ g1 · g2 ∣₂
·-ind g1 g2 ind1 ind2 =
f (invf ∣ g1 · g2 ∣₂)
≡⟨ cong f (IsGroupHom.pres· (snd forgetfulHom⁻¹) ∣ g1 ∣₂ ∣ g2 ∣₂) ⟩
f ((invf ∣ g1 ∣₂) · (invf ∣ g2 ∣₂))
≡⟨ IsGroupHom.pres· (snd forgetfulHom) (invf ∣ g1 ∣₂) (invf ∣ g2 ∣₂) ⟩
(f (invf ∣ g1 ∣₂)) ∣·∣₂ (f (invf ∣ g2 ∣₂))
≡⟨ cong (λ x → x ∣·∣₂ (f (invf ∣ g2 ∣₂))) ind1 ⟩
∣ g1 ∣₂ ∣·∣₂ (f (invf ∣ g2 ∣₂))
≡⟨ cong (λ x → ∣ g1 ∣₂ ∣·∣₂ x) ind2 ⟩
∣ g1 · g2 ∣₂ ∎
ε-ind : f (invf ∣ ε ∣₂) ≡ ∣ ε ∣₂
ε-ind = refl
inv-ind : ∀ g → f (invf ∣ g ∣₂) ≡ ∣ g ∣₂ → f (invf ∣ inv g ∣₂) ≡ ∣ inv g ∣₂
inv-ind g ind =
f (invf ∣ inv g ∣₂)
≡⟨ refl ⟩
f (invf (∣inv∣₂ ∣ g ∣₂))
≡⟨ cong f (IsGroupHom.presinv (snd forgetfulHom⁻¹) ∣ g ∣₂) ⟩
f (inv (invf ∣ g ∣₂))
≡⟨ IsGroupHom.presinv (snd forgetfulHom) (invf ∣ g ∣₂) ⟩
∣inv∣₂ (f (invf ∣ g ∣₂))
≡⟨ cong ∣inv∣₂ ind ⟩
∣inv∣₂ ∣ g ∣₂
≡⟨ refl ⟩
∣ inv g ∣₂ ∎
leftInv : ∀ (g : FreeGroup A) → invf (f g) ≡ g
leftInv g = freeGroupElimProp Bprop η-ind ·-ind ε-ind inv-ind g where
Bprop : ∀ g → isProp (invf (f g) ≡ g)
Bprop g = freeGroupIsSet (invf (f g)) g
η-ind : ∀ a → invf (f (η a)) ≡ (η a)
η-ind a = refl
·-ind : ∀ g1 g2 → invf (f g1) ≡ g1 → invf (f g2) ≡ g2 → invf (f (g1 · g2)) ≡ g1 · g2
·-ind g1 g2 ind1 ind2 =
invf (f (g1 · g2))
≡⟨ cong invf (IsGroupHom.pres· (snd forgetfulHom) g1 g2) ⟩
invf ((f g1) ∣·∣₂ (f g2))
≡⟨ IsGroupHom.pres· (snd forgetfulHom⁻¹) (f g1) (f g2) ⟩
(invf (f g1)) · (invf (f g2))
≡⟨ cong (λ x → x · (invf (f g2))) ind1 ⟩
g1 · (invf (f g2))
≡⟨ cong (λ x → g1 · x) ind2 ⟩
g1 · g2 ∎
ε-ind : invf (f ε) ≡ ε
ε-ind = refl
inv-ind : ∀ g → invf (f g) ≡ g → invf (f (inv g)) ≡ inv g
inv-ind g ind =
invf (f (inv g))
≡⟨ cong invf (IsGroupHom.presinv (snd forgetfulHom) g) ⟩
invf (∣inv∣₂ (f g))
≡⟨ IsGroupHom.presinv (snd forgetfulHom⁻¹) (f g) ⟩
inv (invf (f g))
≡⟨ cong inv ind ⟩
inv g ∎
freeGroupTruncIdempotent≃ : FreeGroup A ≃ ∥ FreeGroupoid A ∥₂
freeGroupTruncIdempotent≃ = biInvEquiv→Equiv-right freeGroupTruncIdempotentBiInvEquiv
freeGroupTruncIdempotent : FreeGroup A ≡ ∥ FreeGroupoid A ∥₂
freeGroupTruncIdempotent = ua freeGroupTruncIdempotent≃
|
{
"alphanum_fraction": 0.5573650694,
"avg_line_length": 40.7617021277,
"ext": "agda",
"hexsha": "4093d2063af0103b043eb712c8ef9ebb82cfce50",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/HITs/FreeGroupoid/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/HITs/FreeGroupoid/Properties.agda",
"max_line_length": 130,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/HITs/FreeGroupoid/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4326,
"size": 9579
}
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
-- This is a selection of useful functions and definitions
-- from the standard library that we tend to use a lot.
module Util.Prelude where
open import Haskell.Prelude public
open import Dijkstra.All public
open import Level
renaming (suc to ℓ+1; zero to ℓ0; _⊔_ to _ℓ⊔_)
public
1ℓ : Level
1ℓ = ℓ+1 0ℓ
open import Agda.Builtin.Unit
public
open import Function
using (_∘_; _∘′_; case_of_; _on_; _∋_)
public
identity = Function.id
open import Data.Unit.NonEta
public
open import Data.Empty
public
-- NOTE: This function is defined to give extra documentation when discharging
-- absurd cases where Agda can tell by pattern matching that `A` is not
-- inhabited. For example:
-- > absurd (just v ≡ nothing) case impossibleProof of λ ()
infix 0 absurd_case_of_
absurd_case_of_ : ∀ {ℓ₁ ℓ₂} (A : Set ℓ₁) {B : Set ℓ₂} → A → (A → ⊥) → B
absurd A case x of f = ⊥-elim (f x)
open import Data.Nat
renaming (_≟_ to _≟ℕ_; _≤?_ to _≤?ℕ_; _≥?_ to _≥?ℕ_; compare to compareℕ; Ordering to Orderingℕ)
public
max = _⊔_
min = _⊓_
open import Data.Nat.Properties
hiding (≡-irrelevant ; _≟_)
public
open import Data.List
renaming (map to List-map ; filter to List-filter ; lookup to List-lookup;
tabulate to List-tabulate; foldl to List-foldl)
hiding (fromMaybe; [_])
public
open import Data.List.Properties
renaming (≡-dec to List-≡-dec; length-map to List-length-map; map-compose to List-map-compose; filter-++ to List-filter-++; length-filter to List-length-filter)
using (∷-injective; length-++; map-++-commute; sum-++-commute; map-tabulate; tabulate-lookup; ++-identityʳ; ++-identityˡ)
public
open import Data.List.Relation.Binary.Subset.Propositional
renaming (_⊆_ to _⊆List_)
public
open import Data.List.Relation.Unary.Any
using (Any; here; there)
renaming (lookup to Any-lookup; map to Any-map; satisfied to Any-satisfied
;index to Any-index; any to Any-any)
public
open import Data.List.Relation.Unary.Any.Properties
using (¬Any[])
renaming ( map⁺ to Any-map⁺
; map⁻ to Any-map⁻
; concat⁺ to Any-concat⁺
; concat⁻ to Any-concat⁻
; ++⁻ to Any-++⁻
; ++⁺ʳ to Any-++ʳ
; ++⁺ˡ to Any-++ˡ
; singleton⁻ to Any-singleton⁻
; tabulate⁺ to Any-tabulate⁺
; filter⁻ to Any-filter⁻
)
public
open import Data.List.Relation.Unary.All
using (All; []; _∷_)
renaming (head to All-head; tail to All-tail;
lookup to All-lookup; tabulate to All-tabulate;
reduce to All-reduce; map to All-map)
public
open import Data.List.Relation.Unary.All.Properties
hiding (All-map)
renaming ( tabulate⁻ to All-tabulate⁻
; tabulate⁺ to All-tabulate⁺
; map⁺ to All-map⁺
; map⁻ to All-map⁻
; ++⁺ to All-++
)
public
open import Data.List.Membership.Propositional
using (_∈_; _∉_)
public
open import Data.List.Membership.Propositional.Properties
renaming (∈-filter⁺ to List-∈-filter⁺; ∈-filter⁻ to List-∈-filter⁻)
public
open import Data.Vec
using (Vec; []; _∷_)
renaming (replicate to Vec-replicate; lookup to Vec-lookup
;map to Vec-map; head to Vec-head; tail to Vec-tail
;updateAt to Vec-updateAt; tabulate to Vec-tabulate
;allFin to Vec-allFin; toList to Vec-toList; fromList to Vec-fromList
;_++_ to _Vec-++_)
public
open import Data.Vec.Relation.Unary.All
using ([]; _∷_)
renaming (All to Vec-All; lookup to Vec-All-lookup)
public
open import Data.Vec.Properties
using ()
renaming (updateAt-minimal to Vec-updateAt-minimal
;[]=⇒lookup to Vec-[]=⇒lookup
;lookup⇒[]= to Vec-lookup⇒[]=
;lookup∘tabulate to Vec-lookup∘tabulate
;≡-dec to Vec-≡-dec)
public
open import Data.List.Relation.Binary.Pointwise
using (decidable-≡)
public
open import Data.Bool
renaming (_≟_ to _≟Bool_)
hiding (_≤?_; _<_; _<?_; _≤_; not)
public
open import Data.Maybe
renaming (map to Maybe-map; maybe to Maybe-maybe; zip to Maybe-zip ; _>>=_ to _Maybe->>=_)
hiding (align; alignWith; zipWith)
public
-- a non-dependent eliminator
-- note the traditional argument order is "switched", hence the 'S'
maybeS : ∀ {a b} {A : Set a} {B : Set b} →
(x : Maybe A) → B → ((x : A) → B) → B
maybeS {B = B} x f t = Maybe-maybe {B = const B} t f x
-- A Dijkstra version of maybeS, implemented using the version in
-- Dijkstra.Syntax which has traditional argument order
maybeSD : ∀ {ℓ₁ ℓ₂} {M : Set ℓ₁ → Set ℓ₂} ⦃ mmd : MonadMaybeD M ⦄
→ ∀ {A B : Set ℓ₁} → Maybe A → M B → (A → M B) → M B
maybeSD ⦃ mmd ⦄ x y z = maybeD y z x
module _ {Ev Wr St A B : Set} where
maybeSMP-RWS : RWS Ev Wr St (Maybe A)
→ B
→ (A → RWS Ev Wr St B)
→ RWS Ev Wr St B
maybeSMP-RWS x y z = maybeMP-RWS y z x
open import Data.Maybe.Relation.Unary.Any
renaming (Any to Maybe-Any; dec to Maybe-Any-dec)
hiding (map; zip; zipWith; unzip ; unzipWith)
public
maybe-any-⊥ : ∀{a}{A : Set a} → Maybe-Any {A = A} (λ _ → ⊤) nothing → ⊥
maybe-any-⊥ ()
headMay : ∀ {A : Set} → List A → Maybe A
headMay [] = nothing
headMay (x ∷ _) = just x
lastMay : ∀ {A : Set} → List A → Maybe A
lastMay [] = nothing
lastMay (x ∷ []) = just x
lastMay (_ ∷ x ∷ xs) = lastMay (x ∷ xs)
open import Data.Maybe.Properties
using (just-injective)
renaming (≡-dec to Maybe-≡-dec)
public
open import Data.Fin
using (Fin; suc; zero; fromℕ; fromℕ< ; toℕ ; cast)
renaming (_≟_ to _≟Fin_; _≤?_ to _≤?Fin_; _≤_ to _≤Fin_ ; _<_ to _<Fin_;
inject₁ to Fin-inject₁; inject+ to Fin-inject+; inject≤ to Fin-inject≤)
public
fins : (n : ℕ) → List (Fin n)
fins n = Vec-toList (Vec-allFin n)
open import Data.Fin.Properties
using (toℕ-injective; toℕ<n)
renaming (<-cmp to Fin-<-cmp; <⇒≢ to <⇒≢Fin; suc-injective to Fin-suc-injective)
public
open import Relation.Binary.PropositionalEquality
hiding (decSetoid)
public
open import Relation.Binary.HeterogeneousEquality
using (_≅_)
renaming (cong to ≅-cong; cong₂ to ≅-cong₂)
public
open import Relation.Binary
public
≡-irrelevant : ∀{a}{A : Set a} → Irrelevant {a} {A} _≡_
≡-irrelevant refl refl = refl
to-witness-lemma : ∀{ℓ}{A : Set ℓ}{a : A}{f : Maybe A}(x : Is-just f)
→ to-witness x ≡ a → f ≡ just a
to-witness-lemma (just x) refl = refl
open import Relation.Nullary
hiding (Irrelevant; proof)
public
open import Relation.Nullary.Decidable
hiding (map)
public
open import Data.Sum
renaming (map to ⊎-map; map₁ to ⊎-map₁; map₂ to ⊎-map₂)
public
open import Data.Sum.Properties
using (inj₁-injective ; inj₂-injective)
public
⊎-elimˡ : ∀ {ℓ₀ ℓ₁}{A₀ : Set ℓ₀}{A₁ : Set ℓ₁} → ¬ A₀ → A₀ ⊎ A₁ → A₁
⊎-elimˡ ¬a = either (⊥-elim ∘ ¬a) id
⊎-elimʳ : ∀ {ℓ₀ ℓ₁}{A₀ : Set ℓ₀}{A₁ : Set ℓ₁} → ¬ A₁ → A₀ ⊎ A₁ → A₀
⊎-elimʳ ¬a = either id (⊥-elim ∘ ¬a)
open import Data.Product
renaming (map to ×-map; map₂ to ×-map₂; map₁ to ×-map₁; <_,_> to split; swap to ×-swap)
hiding (zip)
public
open import Data.Product.Properties
public
module _ {ℓA} {A : Set ℓA} where
NoneOfKind : ∀ {ℓ} {P : A → Set ℓ} → List A → (p : (a : A) → Dec (P a)) → Set ℓA
NoneOfKind xs p = List-filter p xs ≡ []
postulate -- TODO-1: Replace with or prove using library properties? Move to Lemmas?
NoneOfKind⇒ : ∀ {ℓ} {P : A → Set ℓ} {Q : A → Set ℓ} {xs : List A}
→ (p : (a : A) → Dec (P a))
→ {q : (a : A) → Dec (Q a)}
→ (∀ {a} → P a → Q a) -- TODO-1: Use proper notation (Relation.Unary?)
→ NoneOfKind xs q
→ NoneOfKind xs p
infix 4 _<?ℕ_
_<?ℕ_ : Decidable _<_
m <?ℕ n = suc m ≤?ℕ n
infix 0 if-yes_then_else_
infix 0 if-dec_then_else_
if-yes_then_else_ : ∀ {ℓA ℓB} {A : Set ℓA} {B : Set ℓB} → Dec A → (A → B) → (¬ A → B) → B
if-yes (yes prf) then f else _ = f prf
if-yes (no prf) then _ else g = g prf
if-dec_then_else_ : ∀ {ℓA ℓB} {A : Set ℓA} {B : Set ℓB} → Dec A → B → B → B
if-dec x then f else g = if-yes x then const f else const g
open import Relation.Nullary.Negation
using (contradiction; contraposition)
public
open import Relation.Binary
using (Setoid; IsPreorder)
public
open import Relation.Unary
using (_∪_)
public
open import Relation.Unary.Properties
using (_∪?_)
public
-- Injectivity for a function of two potentially different types (A and B) via functions to a
-- common type (C).
Injective' : ∀ {b c d e}{B : Set b}{C : Set c}{D : Set d} → (hB : B → D) → (hC : C → D) → (_≈_ : B → C → Set e) → Set _
Injective' {C = C} hB hC _≈_ = ∀ {b c} → hB b ≡ hC c → b ≈ c
Injective : ∀ {c d e}{C : Set c}{D : Set d} → (h : C → D) → (_≈_ : Rel C e) → Set _
Injective h _≈_ = Injective' h h _≈_
Injective-≡ : ∀ {c d}{C : Set c}{D : Set d} → (h : C → D) → Set _
Injective-≡ h = Injective h _≡_
Injective-int : ∀{a b c d e}{A : Set a}{B : Set b}{C : Set c}{D : Set d}
→ (_≈_ : A → B → Set e)
→ (h : C → D)
→ (f₁ : A → C)
→ (f₂ : B → C)
→ Set (a ℓ⊔ b ℓ⊔ d ℓ⊔ e)
Injective-int _≈_ h f₁ f₂ = ∀ {a₁} {b₁} → h (f₁ a₁) ≡ h (f₂ b₁) → a₁ ≈ b₁
NonInjective : ∀{a b c}{A : Set a}{B : Set b}
→ (_≈_ : Rel A c)
→ (A → B) → Set (a ℓ⊔ b ℓ⊔ c)
NonInjective {A = A} _≈_ f
= Σ (A × A) (λ { (x₁ , x₂) → ¬ (x₁ ≈ x₂) × f x₁ ≡ f x₂ })
NonInjective-≡ : ∀{a b}{A : Set a}{B : Set b}
→ (A → B) → Set (a ℓ⊔ b)
NonInjective-≡ = NonInjective _≡_
NonInjective-≡-preds : ∀{a b}{A : Set a}{B : Set b}{ℓ₁ ℓ₂ : Level}
→ (A → Set ℓ₁)
→ (A → Set ℓ₂)
→ (A → B) → Set (a ℓ⊔ b ℓ⊔ ℓ₁ ℓ⊔ ℓ₂)
NonInjective-≡-preds Pred1 Pred2 f = Σ (NonInjective _≡_ f) λ { ((a₀ , a₁) , _ , _) → Pred1 a₀ × Pred2 a₁ }
NonInjective-≡-pred : ∀{a b}{A : Set a}{B : Set b}{ℓ : Level}
→ (P : A → Set ℓ)
→ (A → B) → Set (a ℓ⊔ b ℓ⊔ ℓ)
NonInjective-≡-pred Pred = NonInjective-≡-preds Pred Pred
NonInjective-∘ : ∀{a b c}{A : Set a}{B : Set b}{C : Set c}
→ {f : A → B}(g : B → C)
→ NonInjective-≡ f
→ NonInjective-≡ (g ∘ f)
NonInjective-∘ g ((x0 , x1) , (x0≢x1 , fx0≡fx1))
= ((x0 , x1) , x0≢x1 , (cong g fx0≡fx1))
--------------------------------------------
-- Handy fmap and bind for specific types --
_<M$>_ : ∀{a b}{A : Set a}{B : Set b}
→ (f : A → B)
→ Maybe A → Maybe B
_<M$>_ = Maybe-map
<M$>-univ : ∀{a b}{A : Set a}{B : Set b}
→ (f : A → B)(x : Maybe A)
→ {y : B} → f <M$> x ≡ just y
→ ∃[ x' ] (x ≡ just x' × f x' ≡ y)
<M$>-univ f (just x) refl = x , (refl , refl)
maybe-lift : {A : Set}
→ {mx : Maybe A}{x : A}
→ (P : A → Set)
→ P x → mx ≡ just x
→ Maybe-maybe {B = const Set} P ⊥ mx
maybe-lift {mx = just .x} {x} P px refl = px
<M$>-nothing : ∀ {a b}{A : Set a}{B : Set b}(f : A → B)
→ f <M$> nothing ≡ nothing
<M$>-nothing _ = refl
_<⊎$>_ : ∀{a b c}{A : Set a}{B : Set b}{C : Set c}
→ (A → B) → C ⊎ A → C ⊎ B
f <⊎$> (inj₁ hb) = inj₁ hb
f <⊎$> (inj₂ x) = inj₂ (f x)
_⊎⟫=_ : ∀{a b c}{A : Set a}{B : Set b}{C : Set c}
→ C ⊎ A → (A → C ⊎ B) → C ⊎ B
(inj₁ x) ⊎⟫= _ = inj₁ x
(inj₂ a) ⊎⟫= f = f a
-- a non-dependent eliminator
-- note the traditional argument order is "switched", hence the 'S'
eitherS : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c}
(x : Either A B) → ((x : A) → C) → ((x : B) → C) → C
eitherS eab fa fb = case eab of λ where
(Left a) → fa a
(Right b) → fb b
-- A Dijkstra version of eitherS, implemented using the version in
-- Dijkstra.Syntax which has traditional argument order
eitherSD : ∀ {ℓ₁ ℓ₂ ℓ₃} {M : Set ℓ₁ → Set ℓ₂} ⦃ med : MonadEitherD M ⦄
→ ∀ {EL : Set ℓ₁ → Set ℓ₁ → Set ℓ₃} ⦃ _ : EitherLike EL ⦄
→ ∀ {E A B : Set ℓ₁} → EL E A → (E → M B) → (A → M B) → M B
eitherSD ⦃ med ⦄ ⦃ el ⦄ x y z = eitherD y z x
open import Data.String as String
hiding (_==_ ; _≟_ ; concat)
check : Bool → List String → Either String Unit
check b t = if b then inj₂ unit else inj₁ (String.intersperse "; " t)
toWitnessT : ∀{ℓ}{P : Set ℓ}{d : Dec P} → ⌊ d ⌋ ≡ true → P
toWitnessT {d = yes proof} _ = proof
toWitnessF : ∀{ℓ}{P : Set ℓ}{d : Dec P} → ⌊ d ⌋ ≡ false → ¬ P
toWitnessF{d = no proof} _ = proof
Any-satisfied-∈ : ∀{a ℓ}{A : Set a}{P : A → Set ℓ}{xs : List A}
→ Any P xs → Σ A (λ x → P x × x ∈ xs)
Any-satisfied-∈ (here px) = _ , (px , here refl)
Any-satisfied-∈ (there p) = let (a , px , prf) = Any-satisfied-∈ p
in (a , px , there prf)
f-sum : ∀{a}{A : Set a} → (A → ℕ) → List A → ℕ
f-sum f = sum ∘ List-map f
maybeSMP : ∀ {ℓ} {A B : Set} {m : Set → Set ℓ} ⦃ _ : Monad m ⦄ → m (Maybe A) → B → (A → m B) → m B
maybeSMP ma b f = do
x ← ma
case x of λ where
nothing → pure b
(just j) → f j
open import LibraBFT.Base.Util public
-- Like a Haskell list-comprehension for ℕ : [ n | n <- [from .. to] ]
fromToList : ℕ → ℕ → List ℕ
fromToList from to with from ≤′? to
... | no ¬pr = []
... | yes pr = fromToList-le from to pr []
where
fromToList-le : ∀ (from to : ℕ) (klel : from ≤′ to) (acc : List ℕ) → List ℕ
fromToList-le from ._ ≤′-refl acc = from ∷ acc
fromToList-le from (suc to) (≤′-step klel) acc = fromToList-le from to klel (suc to ∷ acc)
_ : fromToList 1 1 ≡ 1 ∷ []
_ = refl
_ : fromToList 1 2 ≡ 1 ∷ 2 ∷ []
_ = refl
_ : fromToList 2 1 ≡ []
_ = refl
|
{
"alphanum_fraction": 0.5409012728,
"avg_line_length": 32.8846153846,
"ext": "agda",
"hexsha": "3b1c8ae4977ee2a91a7793294ce7cb66df75daa6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/Util/Prelude.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/Util/Prelude.agda",
"max_line_length": 164,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/Util/Prelude.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5385,
"size": 14535
}
|
module Data.List.Primitive where
-- In Agda 2.2.10 and below, there's no FFI binding for the stdlib
-- List type, so we have to roll our own. This will change.
data #List (X : Set) : Set where
[] : #List X
_∷_ : X → #List X → #List X
{-# COMPILED_DATA #List [] [] (:) #-}
|
{
"alphanum_fraction": 0.6223021583,
"avg_line_length": 27.8,
"ext": "agda",
"hexsha": "5184caa4c6e27d88598f30563cb73613cb6758e6",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:14.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:40:14.000Z",
"max_forks_repo_head_hexsha": "84d51967e20bf248e9f73af37f52972922ffc77c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-data-bindings",
"max_forks_repo_path": "src/Data/List/Primitive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "84d51967e20bf248e9f73af37f52972922ffc77c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-data-bindings",
"max_issues_repo_path": "src/Data/List/Primitive.agda",
"max_line_length": 66,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "84d51967e20bf248e9f73af37f52972922ffc77c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-data-bindings",
"max_stars_repo_path": "src/Data/List/Primitive.agda",
"max_stars_repo_stars_event_max_datetime": "2019-10-24T13:51:16.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-02T23:17:59.000Z",
"num_tokens": 94,
"size": 278
}
|
{-# OPTIONS --safe --experimental-lossy-unification #-}
-- This file could be proven using the file Sn
-- However the proofs are easier than in Sn
-- And so kept for pedagologic reasons
module Cubical.ZCohomology.CohomologyRings.S1 where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Transport
open import Cubical.Foundations.HLevels
open import Cubical.Data.Unit
open import Cubical.Data.Nat renaming (_+_ to _+n_ ; _·_ to _·n_ ; snotz to nsnotz)
open import Cubical.Data.Int
open import Cubical.Data.Vec
open import Cubical.Data.FinData
open import Cubical.Algebra.Group
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.Group.Instances.Int renaming (ℤGroup to ℤG)
open import Cubical.Algebra.DirectSum.Base
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.FGIdeal
open import Cubical.Algebra.CommRing.QuotientRing
open import Cubical.Algebra.Polynomials.Multivariate.Base renaming (base to baseP)
open import Cubical.Algebra.CommRing.Instances.Int renaming (ℤCommRing to ℤCR)
open import Cubical.Algebra.CommRing.Instances.MultivariatePoly
open import Cubical.Algebra.CommRing.Instances.MultivariatePoly-Quotient
open import Cubical.Algebra.CommRing.Instances.MultivariatePoly-notationZ
open import Cubical.HITs.Truncation
open import Cubical.HITs.SetQuotients as SQ renaming (_/_ to _/sq_)
open import Cubical.HITs.PropositionalTruncation as PT
open import Cubical.HITs.Sn
open import Cubical.ZCohomology.Base
open import Cubical.ZCohomology.GroupStructure
open import Cubical.ZCohomology.RingStructure.CupProduct
open import Cubical.ZCohomology.RingStructure.CohomologyRing
open import Cubical.ZCohomology.Groups.Sn
open Iso
module Equiv-S1-Properties where
-----------------------------------------------------------------------------
-- Definitions
open CommRingStr (snd ℤCR) using ()
renaming
( 0r to 0ℤ
; 1r to 1ℤ
; _+_ to _+ℤ_
; -_ to -ℤ_
; _·_ to _·ℤ_
; +Assoc to +ℤAssoc
; +Identity to +ℤIdentity
; +Lid to +ℤLid
; +Rid to +ℤRid
; +Inv to +ℤInv
; +Linv to +ℤLinv
; +Rinv to +ℤRinv
; +Comm to +ℤComm
; ·Assoc to ·ℤAssoc
; ·Identity to ·ℤIdentity
; ·Lid to ·ℤLid
; ·Rid to ·ℤRid
; ·Rdist+ to ·ℤRdist+
; ·Ldist+ to ·ℤLdist+
; is-set to isSetℤ )
open RingStr (snd (H*R (S₊ 1))) using ()
renaming
( 0r to 0H*
; 1r to 1H*
; _+_ to _+H*_
; -_ to -H*_
; _·_ to _cup_
; +Assoc to +H*Assoc
; +Identity to +H*Identity
; +Lid to +H*Lid
; +Rid to +H*Rid
; +Inv to +H*Inv
; +Linv to +H*Linv
; +Rinv to +H*Rinv
; +Comm to +H*Comm
; ·Assoc to ·H*Assoc
; ·Identity to ·H*Identity
; ·Lid to ·H*Lid
; ·Rid to ·H*Rid
; ·Rdist+ to ·H*Rdist+
; ·Ldist+ to ·H*Ldist+
; is-set to isSetH* )
open CommRingStr (snd ℤ[X]) using ()
renaming
( 0r to 0Pℤ
; 1r to 1Pℤ
; _+_ to _+Pℤ_
; -_ to -Pℤ_
; _·_ to _·Pℤ_
; +Assoc to +PℤAssoc
; +Identity to +PℤIdentity
; +Lid to +PℤLid
; +Rid to +PℤRid
; +Inv to +PℤInv
; +Linv to +PℤLinv
; +Rinv to +PℤRinv
; +Comm to +PℤComm
; ·Assoc to ·PℤAssoc
; ·Identity to ·PℤIdentity
; ·Lid to ·PℤLid
; ·Rid to ·PℤRid
; ·Comm to ·PℤComm
; ·Rdist+ to ·PℤRdist+
; ·Ldist+ to ·PℤLdist+
; is-set to isSetPℤ )
open CommRingStr (snd ℤ[X]/X²) using ()
renaming
( 0r to 0PℤI
; 1r to 1PℤI
; _+_ to _+PℤI_
; -_ to -PℤI_
; _·_ to _·PℤI_
; +Assoc to +PℤIAssoc
; +Identity to +PℤIIdentity
; +Lid to +PℤILid
; +Rid to +PℤIRid
; +Inv to +PℤIInv
; +Linv to +PℤILinv
; +Rinv to +PℤIRinv
; +Comm to +PℤIComm
; ·Assoc to ·PℤIAssoc
; ·Identity to ·PℤIIdentity
; ·Lid to ·PℤILid
; ·Rid to ·PℤIRid
; ·Rdist+ to ·PℤIRdist+
; ·Ldist+ to ·PℤILdist+
; is-set to isSetPℤI )
-----------------------------------------------------------------------------
-- Direct Sens on ℤ[x]
ℤ[x]→H*-S¹ : ℤ[x] → H* (S₊ 1)
ℤ[x]→H*-S¹ = Poly-Rec-Set.f _ _ _ isSetH*
0H*
base-trad
_+H*_
+H*Assoc
+H*Rid
+H*Comm
base-neutral-eq
base-add-eq
where
e : _
e = Hᵐ-Sⁿ
base-trad : _
base-trad (zero ∷ []) a = base 0 (inv (fst (Hᵐ-Sⁿ 0 1)) a)
base-trad (one ∷ []) a = base 1 (inv (fst (Hᵐ-Sⁿ 1 1)) a)
base-trad (suc (suc n) ∷ []) a = 0H*
base-neutral-eq : _
base-neutral-eq (zero ∷ []) = cong (base 0) (IsGroupHom.pres1 (snd (invGroupIso (Hᵐ-Sⁿ 0 1)))) ∙ base-neutral _
base-neutral-eq (one ∷ []) = cong (base 1) (IsGroupHom.pres1 (snd (invGroupIso (Hᵐ-Sⁿ 1 1)))) ∙ base-neutral _
base-neutral-eq (suc (suc n) ∷ []) = refl
base-add-eq : _
base-add-eq (zero ∷ []) a b = (base-add _ _ _) ∙ (cong (base 0) (sym (IsGroupHom.pres· (snd (invGroupIso (Hᵐ-Sⁿ 0 1))) a b)))
base-add-eq (one ∷ []) a b = (base-add _ _ _) ∙ (cong (base 1) (sym (IsGroupHom.pres· (snd (invGroupIso (Hᵐ-Sⁿ 1 1))) a b)))
base-add-eq (suc (suc n) ∷ []) a b = +H*Rid _
-----------------------------------------------------------------------------
-- Morphism on ℤ[x]
ℤ[x]→H*-S¹-pres1Pℤ : ℤ[x]→H*-S¹ (1Pℤ) ≡ 1H*
ℤ[x]→H*-S¹-pres1Pℤ = refl
ℤ[x]→H*-S¹-pres+ : (x y : ℤ[x]) → ℤ[x]→H*-S¹ (x +Pℤ y) ≡ ℤ[x]→H*-S¹ x +H* ℤ[x]→H*-S¹ y
ℤ[x]→H*-S¹-pres+ x y = refl
-- cup product on H⁰ → H⁰ → H⁰
T0 : (z : ℤ) → coHom 0 (S₊ 1)
T0 = λ z → inv (fst (Hᵐ-Sⁿ 0 1)) z
T0g : IsGroupHom (ℤG .snd) (fst (invGroupIso (Hᵐ-Sⁿ 0 1)) .fun) (coHomGr 0 (S₊ (suc 0)) .snd)
T0g = snd (invGroupIso (Hᵐ-Sⁿ 0 1))
-- idea : control of the unfolding + simplification of T0 on the left
pres·-base-case-00 : (a : ℤ) → (b : ℤ) →
T0 (a ·ℤ b) ≡ (T0 a) ⌣ (T0 b)
pres·-base-case-00 (pos zero) b = (IsGroupHom.pres1 T0g)
pres·-base-case-00 (pos (suc n)) b = ((IsGroupHom.pres· T0g b (pos n ·ℤ b)))
∙ (cong (λ X → (T0 b) +ₕ X) (pres·-base-case-00 (pos n) b))
pres·-base-case-00 (negsuc zero) b = IsGroupHom.presinv T0g b
pres·-base-case-00 (negsuc (suc n)) b = cong T0 (+ℤComm (-ℤ b) (negsuc n ·ℤ b)) -- ·ℤ and ·₀ are defined asymetrically !
∙ IsGroupHom.pres· T0g (negsuc n ·ℤ b) (-ℤ b)
∙ cong₂ _+ₕ_ (pres·-base-case-00 (negsuc n) b)
(IsGroupHom.presinv T0g b)
-- cup product on H⁰ → H¹ → H¹
T1 : (z : ℤ) → coHom 1 (S₊ 1)
T1 = λ z → inv (fst (Hᵐ-Sⁿ 1 1)) z
-- idea : control of the unfolding + simplification of T0 on the left
T1g : IsGroupHom (ℤG .snd) (fst (invGroupIso (Hᵐ-Sⁿ 1 1)) .fun) (coHomGr 1 (S₊ 1) .snd)
T1g = snd (invGroupIso (Hᵐ-Sⁿ 1 1))
pres·-base-case-01 : (a : ℤ) → (b : ℤ) →
T1 (a ·ℤ b) ≡ (T0 a) ⌣ (T1 b)
pres·-base-case-01 (pos zero) b = (IsGroupHom.pres1 T1g)
pres·-base-case-01 (pos (suc n)) b = ((IsGroupHom.pres· T1g b (pos n ·ℤ b)))
∙ (cong (λ X → (T1 b) +ₕ X) (pres·-base-case-01 (pos n) b))
pres·-base-case-01 (negsuc zero) b = IsGroupHom.presinv T1g b
pres·-base-case-01 (negsuc (suc n)) b = cong T1 (+ℤComm (-ℤ b) (negsuc n ·ℤ b)) -- ·ℤ and ·₀ are defined asymetrically !
∙ IsGroupHom.pres· T1g (negsuc n ·ℤ b) (-ℤ b)
∙ cong₂ _+ₕ_ (pres·-base-case-01 (negsuc n) b)
(IsGroupHom.presinv T1g b)
-- Nice packaging of the proof
pres·-base-case-int : (n : ℕ) → (a : ℤ) → (m : ℕ) → (b : ℤ) →
ℤ[x]→H*-S¹ (baseP (n ∷ []) a ·Pℤ baseP (m ∷ []) b)
≡ ℤ[x]→H*-S¹ (baseP (n ∷ []) a) cup ℤ[x]→H*-S¹ (baseP (m ∷ []) b)
pres·-base-case-int zero a zero b = cong (base 0) (pres·-base-case-00 a b)
pres·-base-case-int zero a one b = cong (base 1) (pres·-base-case-01 a b)
pres·-base-case-int zero a (suc (suc m)) b = refl
pres·-base-case-int one a zero b = cong ℤ[x]→H*-S¹ (·PℤComm (baseP (1 ∷ []) a) (baseP (zero ∷ []) b))
∙ pres·-base-case-int 0 b 1 a
∙ gradCommRing (S₊ 1) 0 1 (inv (fst (Hᵐ-Sⁿ 0 1)) b) (inv (fst (Hᵐ-Sⁿ 1 1)) a)
pres·-base-case-int one a one b = sym (base-neutral 2) ∙
cong (base 2) (isOfHLevelRetractFromIso 1 (fst (Hⁿ-Sᵐ≅0 1 0 nsnotz)) isPropUnit _ _)
pres·-base-case-int one a (suc (suc m)) b = refl
pres·-base-case-int (suc (suc n)) a m b = refl
pres·-base-case-vec : (v : Vec ℕ 1) → (a : ℤ) → (v' : Vec ℕ 1) → (b : ℤ) →
ℤ[x]→H*-S¹ (baseP v a ·Pℤ baseP v' b)
≡ ℤ[x]→H*-S¹ (baseP v a) cup ℤ[x]→H*-S¹ (baseP v' b)
pres·-base-case-vec (n ∷ []) a (m ∷ []) b = pres·-base-case-int n a m b
-- proof of the morphism
ℤ[x]→H*-S¹-pres· : (x y : ℤ[x]) → ℤ[x]→H*-S¹ (x ·Pℤ y) ≡ ℤ[x]→H*-S¹ x cup ℤ[x]→H*-S¹ y
ℤ[x]→H*-S¹-pres· = Poly-Ind-Prop.f _ _ _
(λ x p q i y j → isSetH* _ _ (p y) (q y) i j)
(λ y → refl)
base-case
λ {U V} ind-U ind-V y → cong₂ _+H*_ (ind-U y) (ind-V y)
where
base-case : _
base-case (n ∷ []) a = Poly-Ind-Prop.f _ _ _ (λ _ → isSetH* _ _)
(sym (RingTheory.0RightAnnihilates (H*R (S₊ 1)) _))
(λ v' b → pres·-base-case-vec (n ∷ []) a v' b)
λ {U V} ind-U ind-V → (cong₂ _+H*_ ind-U ind-V) ∙ sym (·H*Rdist+ _ _ _)
-----------------------------------------------------------------------------
-- Function on ℤ[x]/x + morphism
ℤ[x]→H*-S¹-cancelX : (k : Fin 1) → ℤ[x]→H*-S¹ (<X²> k) ≡ 0H*
ℤ[x]→H*-S¹-cancelX zero = refl
ℤ[X]→H*-S¹ : RingHom (CommRing→Ring ℤ[X]) (H*R (S₊ 1))
fst ℤ[X]→H*-S¹ = ℤ[x]→H*-S¹
snd ℤ[X]→H*-S¹ = makeIsRingHom ℤ[x]→H*-S¹-pres1Pℤ ℤ[x]→H*-S¹-pres+ ℤ[x]→H*-S¹-pres·
ℤ[X]/X²→H*R-S¹ : RingHom (CommRing→Ring ℤ[X]/X²) (H*R (S₊ 1))
ℤ[X]/X²→H*R-S¹ = Quotient-FGideal-CommRing-Ring.f ℤ[X] (H*R (S₊ 1)) ℤ[X]→H*-S¹ <X²> ℤ[x]→H*-S¹-cancelX
ℤ[x]/x²→H*-S¹ : ℤ[x]/x² → H* (S₊ 1)
ℤ[x]/x²→H*-S¹ = fst ℤ[X]/X²→H*R-S¹
-----------------------------------------------------------------------------
-- Converse Sens on ℤ[X] + ℤ[x]/x
H*-S¹→ℤ[x] : H* (S₊ 1) → ℤ[x]
H*-S¹→ℤ[x] = DS-Rec-Set.f _ _ _ _ isSetPℤ
0Pℤ
base-trad
_+Pℤ_
+PℤAssoc
+PℤRid
+PℤComm
base-neutral-eq
base-add-eq
where
base-trad : _
base-trad zero a = baseP (0 ∷ []) (fun (fst (Hᵐ-Sⁿ 0 1)) a)
base-trad one a = baseP (1 ∷ []) (fun (fst (Hᵐ-Sⁿ 1 1)) a)
base-trad (suc (suc n)) a = 0Pℤ
base-neutral-eq : _
base-neutral-eq zero = cong (baseP (0 ∷ [])) (IsGroupHom.pres1 (snd (Hᵐ-Sⁿ 0 1))) ∙ base-0P _
base-neutral-eq one = cong (baseP (1 ∷ [])) (IsGroupHom.pres1 (snd (Hᵐ-Sⁿ 1 1))) ∙ base-0P _
base-neutral-eq (suc (suc n)) = refl
base-add-eq : _
base-add-eq zero a b = (base-poly+ _ _ _) ∙ (cong (baseP (0 ∷ [])) (sym (IsGroupHom.pres· (snd (Hᵐ-Sⁿ 0 1)) a b)))
base-add-eq one a b = (base-poly+ _ _ _) ∙ (cong (baseP (1 ∷ [])) (sym (IsGroupHom.pres· (snd (Hᵐ-Sⁿ 1 1)) a b)))
base-add-eq (suc (suc n)) a b = +PℤRid _
H*-S¹→ℤ[x]-pres+ : (x y : H* (S₊ 1)) → H*-S¹→ℤ[x] ( x +H* y) ≡ H*-S¹→ℤ[x] x +Pℤ H*-S¹→ℤ[x] y
H*-S¹→ℤ[x]-pres+ x y = refl
H*-S¹→ℤ[x]/x² : H* (S₊ 1) → ℤ[x]/x²
H*-S¹→ℤ[x]/x² = [_] ∘ H*-S¹→ℤ[x]
H*-S¹→ℤ[x]/x²-pres+ : (x y : H* (S₊ 1)) → H*-S¹→ℤ[x]/x² (x +H* y) ≡ (H*-S¹→ℤ[x]/x² x) +PℤI (H*-S¹→ℤ[x]/x² y)
H*-S¹→ℤ[x]/x²-pres+ x y = refl
-----------------------------------------------------------------------------
-- Section
e-sect : (x : H* (S₊ 1)) → ℤ[x]/x²→H*-S¹ (H*-S¹→ℤ[x]/x² x) ≡ x
e-sect = DS-Ind-Prop.f _ _ _ _ (λ _ → isSetH* _ _)
refl
base-case
λ {U V} ind-U ind-V → cong₂ _+H*_ ind-U ind-V
where
base-case : _
base-case zero a = cong (base 0) (leftInv (fst (Hᵐ-Sⁿ 0 1)) a)
base-case one a = cong (base 1) (leftInv (fst (Hᵐ-Sⁿ 1 1)) a)
base-case (suc (suc n)) a = (sym (base-neutral (suc (suc n))))
∙ cong (base (suc (suc n))) (isOfHLevelRetractFromIso 1 (fst (Hⁿ-Sᵐ≅0 (suc n) 0 nsnotz)) isPropUnit _ _)
-----------------------------------------------------------------------------
-- Retraction
e-retr : (x : ℤ[x]/x²) → H*-S¹→ℤ[x]/x² (ℤ[x]/x²→H*-S¹ x) ≡ x
e-retr = SQ.elimProp (λ _ → isSetPℤI _ _)
(Poly-Ind-Prop.f _ _ _ (λ _ → isSetPℤI _ _)
refl
base-case
λ {U V} ind-U ind-V → cong₂ _+PℤI_ ind-U ind-V)
where
base-case : _
base-case (zero ∷ []) a = cong [_] (cong (baseP (0 ∷ [])) (rightInv (fst (Hᵐ-Sⁿ 0 1)) a))
base-case (one ∷ []) a = cong [_] (cong (baseP (1 ∷ [])) (rightInv (fst (Hᵐ-Sⁿ 1 1)) a))
base-case (suc (suc n) ∷ []) a = eq/ 0Pℤ (baseP (suc (suc n) ∷ []) a) ∣ ((λ x → baseP (n ∷ []) (-ℤ a)) , helper) ∣₁
where
helper : _
helper = (+PℤLid _) ∙ cong₂ baseP (cong (λ X → X ∷ []) (sym (+-comm n 2))) (sym (·ℤRid _)) ∙ (sym (+PℤRid _))
-----------------------------------------------------------------------------
-- Computation of the Cohomology Ring
module _ where
open Equiv-S1-Properties
S¹-CohomologyRing : RingEquiv (CommRing→Ring ℤ[X]/X²) (H*R (S₊ 1))
fst S¹-CohomologyRing = isoToEquiv is
where
is : Iso ℤ[x]/x² (H* (S₊ 1))
fun is = ℤ[x]/x²→H*-S¹
inv is = H*-S¹→ℤ[x]/x²
rightInv is = e-sect
leftInv is = e-retr
snd S¹-CohomologyRing = snd ℤ[X]/X²→H*R-S¹
CohomologyRing-S¹ : RingEquiv (H*R (S₊ 1)) (CommRing→Ring ℤ[X]/X²)
CohomologyRing-S¹ = RingEquivs.invEquivRing S¹-CohomologyRing
|
{
"alphanum_fraction": 0.4776918501,
"avg_line_length": 40.344,
"ext": "agda",
"hexsha": "e6f4db3c63300407e9568ac1ae62971f8b700daa",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "xekoukou/cubical",
"max_forks_repo_path": "Cubical/ZCohomology/CohomologyRings/S1.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "xekoukou/cubical",
"max_issues_repo_path": "Cubical/ZCohomology/CohomologyRings/S1.agda",
"max_line_length": 147,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "xekoukou/cubical",
"max_stars_repo_path": "Cubical/ZCohomology/CohomologyRings/S1.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5883,
"size": 15129
}
|
{-# OPTIONS --type-in-type
--no-termination-check
--no-positivity-check #-}
module IMDesc where
--********************************************
-- Prelude
--********************************************
-- Some preliminary stuffs, to avoid relying on the stdlib
--****************
-- Sigma and friends
--****************
data Sigma (A : Set)(B : A -> Set) : Set where
_,_ : (x : A)(y : B x) -> Sigma A B
_*_ : (A B : Set) -> Set
A * B = Sigma A \_ -> B
fst : {A : Set}{B : A -> Set} -> Sigma A B -> A
fst (a , _) = a
snd : {A : Set}{B : A -> Set} (p : Sigma A B) -> B (fst p)
snd (a , b) = b
data Zero : Set where
record One : Set where
--****************
-- Sum and friends
--****************
data _+_ (A B : Set) : Set where
l : A -> A + B
r : B -> A + B
--****************
-- Prop
--****************
data EProp : Set where
Trivial : EProp
Prf : EProp -> Set
Prf _ = {! !}
--****************
-- Enum
--****************
data EnumU : Set where
data EnumT (E : EnumU) : Set where
Branches : (E : EnumU) -> (P : EnumT E -> Set) -> Set
Branches _ _ = {! !}
switch : (E : EnumU) -> (e : EnumT E) -> (P : EnumT E -> Set) -> Branches E P -> P e
switch = {! !}
--********************************************
-- IMDesc
--********************************************
--****************
-- Code
--****************
data IDesc (I : Set) : Set where
iat : (i : I) -> IDesc I
ipi : (S : Set)(T : S -> IDesc I) -> IDesc I
isigma : (S : Set)(T : S -> IDesc I) -> IDesc I
iprf : (Q : EProp) -> IDesc I
iprod : (D : IDesc I)(D : IDesc I) -> IDesc I
ifsigma : (E : EnumU)(f : Branches E (\ _ -> IDesc I)) -> IDesc I
--****************
-- Interpretation
--****************
desc : (I : Set)(D : IDesc I)(P : I -> Set) -> Set
desc I (iat i) P = P i
desc I (ipi S T) P = (s : S) -> desc I (T s) P
desc I (isigma S T) P = Sigma S (\ s -> desc I (T s) P)
desc I (iprf q) P = Prf q
desc I (iprod D D') P = Sigma (desc I D P) (\ _ -> desc I D' P)
desc I (ifsigma E B) P = Sigma (EnumT E) (\ e -> desc I (switch E e (\ _ -> IDesc I) B) P)
--****************
-- Curried and uncurried interpretations
--****************
curryD : (I : Set)(D : IDesc I)(P : I -> Set)(R : desc I D P -> Set) -> Set
curryD I (iat i) P R = (x : P i) -> R x
curryD I (ipi S T) P R = (f : (s : S) -> desc I (T s) P) -> R f
curryD I (isigma S T) P R = (s : S) -> curryD I (T s) P (\ d -> R (s , d))
curryD I (iprf Q) P R = (x : Prf Q) -> R x
curryD I (iprod D D') P R = curryD I D P (\ d ->
curryD I D' P (\ d' -> R (d , d')))
curryD I (ifsigma E B) P R = Branches E (\e -> curryD I (switch E e (\_ -> IDesc I) B) P (\d -> R (e , d)))
uncurryD : (I : Set)(D : IDesc I)(P : I -> Set)(R : desc I D P -> Set) ->
curryD I D P R -> (xs : desc I D P) -> R xs
uncurryD I (iat i) P R f xs = f xs
uncurryD I (ipi S T) P R F f = F f
uncurryD I (isigma S T) P R f (s , d) = uncurryD I (T s) P (\d -> R (s , d)) (f s) d
uncurryD I (iprf Q) P R f q = f q
uncurryD I (iprod D D') P R f (d , d') = uncurryD I D' P ((\ d' → R (d , d')))
(uncurryD I D P ((\ x → curryD I D' P (\ d0 → R (x , d0)))) f d) d'
uncurryD I (ifsigma E B) P R br (e , d) = uncurryD I (switch E e (\ _ -> IDesc I) B) P
(\ d -> R ( e , d ))
(switch E e ( \ e -> R ( e , d)) br) d
--****************
-- Everywhere
--****************
box : (I : Set)(D : IDesc I)(P : I -> Set) -> desc I D P -> IDesc (Sigma I P)
box I (iat i) P x = iat (i , x)
box I (ipi S T) P f = ipi S (\ s -> box I (T s) P (f s))
box I (isigma S T) P (s , d) = box I (T s) P d
box I (iprf Q) P q = iprf Trivial
box I (iprod D D') P (d , d') = iprod (box I D P d) (box I D' P d')
box I (ifsigma E B) P (e , d) = box I (switch E e (\ _ -> IDesc I) B) P d
mapbox : (I : Set)(D : IDesc I)(Z : I -> Set)(P : Sigma I Z -> Set) ->
((x : Sigma I Z) -> P x) ->
( d : desc I D Z) -> desc (Sigma I Z) (box I D Z d) P
mapbox = {!!}
--****************
-- Fix-point
--****************
data IMu (I : Set)(D : I -> IDesc I)(i : I) : Set where
Con : desc I (D i) (\ j -> IMu I D j) -> IMu I D i
--****************
-- Induction, curried
--****************
inductionC : (I : Set)(D : I -> IDesc I)(i : I)(v : IMu I D i)
(P : Sigma I (IMu I D) -> Set)
(m : (i : I) ->
curryD I (D i) (IMu I D) (\xs ->
curryD (Sigma I (IMu I D))
(box I (D i) (IMu I D) xs)
P
(\ _ -> P (i , Con xs)))) ->
P ( i , v )
inductionC I D i (Con x) P m =
let t = uncurryD I
(D i)
(IMu I D)
(\xs ->
curryD (Sigma I (IMu I D))
(box I (D i) (IMu I D) xs)
P
(\ _ -> P (i , Con xs)))
(m i)
x
in
uncurryD (Sigma I (IMu I D))
( box I (D i) (IMu I D) x)
P
(\ _ -> P ( i , Con x))
t
(mapbox I ( D i) ( IMu I D) P ind x)
where ind : (x' : Sigma I (IMu I D)) -> P x'
ind ( i , x) = inductionC I D i x P m
|
{
"alphanum_fraction": 0.3777818314,
"avg_line_length": 29.4731182796,
"ext": "agda",
"hexsha": "f241905418cc6bdad4f94f8104d8686da5485127",
"lang": "Agda",
"max_forks_count": 12,
"max_forks_repo_forks_event_max_datetime": "2022-02-11T01:57:40.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-08-14T21:36:35.000Z",
"max_forks_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mietek/epigram",
"max_forks_repo_path": "models/IMDesc.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mietek/epigram",
"max_issues_repo_path": "models/IMDesc.agda",
"max_line_length": 110,
"max_stars_count": 48,
"max_stars_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mietek/epigram",
"max_stars_repo_path": "models/IMDesc.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-11T01:55:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-01-09T17:36:19.000Z",
"num_tokens": 1907,
"size": 5482
}
|
module Lib.Fin where
open import Lib.Nat
open import Lib.Bool
open import Lib.Id
data Fin : Nat -> Set where
zero : {n : Nat} -> Fin (suc n)
suc : {n : Nat} -> Fin n -> Fin (suc n)
fromNat : (n : Nat) -> Fin (suc n)
fromNat zero = zero
fromNat (suc n) = suc (fromNat n)
toNat : {n : Nat} -> Fin n -> Nat
toNat zero = zero
toNat (suc n) = suc (toNat n)
weaken : {n : Nat} -> Fin n -> Fin (suc n)
weaken zero = zero
weaken (suc n) = suc (weaken n)
lem-toNat-weaken : forall {n} (i : Fin n) -> toNat i ≡ toNat (weaken i)
lem-toNat-weaken zero = refl
lem-toNat-weaken (suc i) with toNat i | lem-toNat-weaken i
... | .(toNat (weaken i)) | refl = refl
lem-toNat-fromNat : (n : Nat) -> toNat (fromNat n) ≡ n
lem-toNat-fromNat zero = refl
lem-toNat-fromNat (suc n) with toNat (fromNat n) | lem-toNat-fromNat n
... | .n | refl = refl
finEq : {n : Nat} -> Fin n -> Fin n -> Bool
finEq zero zero = true
finEq zero (suc _) = false
finEq (suc _) zero = false
finEq (suc i) (suc j) = finEq i j
-- A view telling you if a given element is the maximal one.
data MaxView {n : Nat} : Fin (suc n) -> Set where
theMax : MaxView (fromNat n)
notMax : (i : Fin n) -> MaxView (weaken i)
maxView : {n : Nat}(i : Fin (suc n)) -> MaxView i
maxView {zero} zero = theMax
maxView {zero} (suc ())
maxView {suc n} zero = notMax zero
maxView {suc n} (suc i) with maxView i
maxView {suc n} (suc .(fromNat n)) | theMax = theMax
maxView {suc n} (suc .(weaken i)) | notMax i = notMax (suc i)
-- The non zero view
data NonEmptyView : {n : Nat} -> Fin n -> Set where
ne : {n : Nat}{i : Fin (suc n)} -> NonEmptyView i
nonEmpty : {n : Nat}(i : Fin n) -> NonEmptyView i
nonEmpty zero = ne
nonEmpty (suc _) = ne
-- The thinning view
thin : {n : Nat} -> Fin (suc n) -> Fin n -> Fin (suc n)
thin zero j = suc j
thin (suc i) zero = zero
thin (suc i) (suc j) = suc (thin i j)
data EqView : {n : Nat} -> Fin n -> Fin n -> Set where
equal : {n : Nat}{i : Fin n} -> EqView i i
notequal : {n : Nat}{i : Fin (suc n)}(j : Fin n) -> EqView i (thin i j)
compare : {n : Nat}(i j : Fin n) -> EqView i j
compare zero zero = equal
compare zero (suc j) = notequal j
compare (suc i) zero with nonEmpty i
... | ne = notequal zero
compare (suc i) (suc j) with compare i j
compare (suc i) (suc .i) | equal = equal
compare (suc i) (suc .(thin i j)) | notequal j = notequal (suc j)
|
{
"alphanum_fraction": 0.5903861956,
"avg_line_length": 30.425,
"ext": "agda",
"hexsha": "f83c36e385fd814f198e8aa1b4fdac6f15255b7e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/simple-lib/Lib/Fin.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/simple-lib/Lib/Fin.agda",
"max_line_length": 73,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/simple-lib/Lib/Fin.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 916,
"size": 2434
}
|
------------------------------------------------------------------------
-- Integer division
------------------------------------------------------------------------
module Data.Nat.DivMod where
open import Data.Nat
open import Data.Nat.Properties
open SemiringSolver
open import Data.Fin as Fin using (Fin; zero; suc; toℕ; fromℕ)
import Data.Fin.Props as Fin
open import Induction.Nat
open import Relation.Nullary.Decidable
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
open import Data.Function
------------------------------------------------------------------------
-- Some boring lemmas
private
lem₁ : ∀ m k → _
lem₁ m k = cong suc $ begin
m
≡⟨ Fin.inject+-lemma m k ⟩
toℕ (Fin.inject+ k (fromℕ m))
≡⟨ solve 1 (λ x → x := x :+ con 0) refl _ ⟩
toℕ (Fin.inject+ k (fromℕ m)) + 0
∎
lem₂ : ∀ n → _
lem₂ = solve 1 (λ n → con 1 :+ n := con 1 :+ (n :+ con 0)) refl
lem₃ : ∀ n k q r eq → _
lem₃ n k q r eq = begin
suc n + k
≡⟨ solve 2 (λ n k → con 1 :+ n :+ k := n :+ (con 1 :+ k))
refl n k ⟩
n + suc k
≡⟨ cong (_+_ n) eq ⟩
n + (toℕ r + q * n)
≡⟨ solve 3 (λ n r q → n :+ (r :+ q :* n) :=
r :+ (con 1 :+ q) :* n)
refl n (toℕ r) q ⟩
toℕ r + suc q * n
∎
------------------------------------------------------------------------
-- Division
-- A specification of integer division.
data DivMod : ℕ → ℕ → Set where
result : {divisor : ℕ} (q : ℕ) (r : Fin divisor) →
DivMod (toℕ r + q * divisor) divisor
-- Sometimes the following type is more usable; functions in indices
-- can be inconvenient.
data DivMod' (dividend divisor : ℕ) : Set where
result : (q : ℕ) (r : Fin divisor)
(eq : dividend ≡ toℕ r + q * divisor) →
DivMod' dividend divisor
-- Integer division with remainder.
-- Note that Induction.Nat.<-rec is used to ensure termination of
-- division. The run-time complexity of this implementation of integer
-- division should be linear in the size of the dividend, assuming
-- that well-founded recursion and the equality type are optimised
-- properly (see "Inductive Families Need Not Store Their Indices"
-- (Brady, McBride, McKinna, TYPES 2003)).
_divMod'_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} →
DivMod' dividend divisor
_divMod'_ m n {≢0} = <-rec Pred dm m n {≢0}
where
Pred : ℕ → Set
Pred dividend = (divisor : ℕ) {≢0 : False (divisor ≟ 0)} →
DivMod' dividend divisor
1+_ : ∀ {k n} → DivMod' (suc k) n → DivMod' (suc n + k) n
1+_ {k} {n} (result q r eq) = result (1 + q) r (lem₃ n k q r eq)
dm : (dividend : ℕ) → <-Rec Pred dividend → Pred dividend
dm m rec zero {≢0 = ()}
dm zero rec (suc n) = result 0 zero refl
dm (suc m) rec (suc n) with compare m n
dm (suc m) rec (suc .(suc m + k)) | less .m k = result 0 r (lem₁ m k)
where r = suc (Fin.inject+ k (fromℕ m))
dm (suc m) rec (suc .m) | equal .m = result 1 zero (lem₂ m)
dm (suc .(suc n + k)) rec (suc n) | greater .n k =
1+ rec (suc k) le (suc n)
where le = s≤′s (s≤′s (n≤′m+n n k))
-- A variant.
_divMod_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} →
DivMod dividend divisor
_divMod_ m n {≢0} with _divMod'_ m n {≢0}
.(toℕ r + q * n) divMod n | result q r refl = result q r
-- Integer division.
_div_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → ℕ
_div_ m n {≢0} with _divMod_ m n {≢0}
.(toℕ r + q * n) div n | result q r = q
-- The remainder after integer division.
_mod_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → Fin divisor
_mod_ m n {≢0} with _divMod_ m n {≢0}
.(toℕ r + q * n) mod n | result q r = r
|
{
"alphanum_fraction": 0.5192056441,
"avg_line_length": 33.2782608696,
"ext": "agda",
"hexsha": "a1dbdc530ebbf77cfa5024e96aab9426f9e037b5",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Data/Nat/DivMod.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Data/Nat/DivMod.agda",
"max_line_length": 79,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Data/Nat/DivMod.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 1273,
"size": 3827
}
|
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
-- {-# OPTIONS --without-K #-}
-- [1] Hofmann, Martin and Thomas Streicher (1998). “The groupoid
-- interpretation on type theory”. In: Twenty-five Years of
-- Constructive Type Theory. Ed. by Giovanni Sambin and Jan
-- M. Smith. Oxford University Press. Chap. 6.
module UIP where
data Id (A : Set)(x : A) : A → Set where
refl : Id A x x
K : (A : Set)(x : A)(P : Id A x x → Set) → P refl → (p : Id A x x ) → P p
K A x P pr refl = pr
-- From [1, p. 88].
UIP : (A : Set)(a a' : A)(p p' : Id A a a') → Id (Id A a a') p p'
UIP A a .a refl refl = refl
|
{
"alphanum_fraction": 0.5450704225,
"avg_line_length": 32.2727272727,
"ext": "agda",
"hexsha": "3d32f6bab19db8eec9a46596bca0241e299fd7b2",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/k-axiom/UIP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/k-axiom/UIP.agda",
"max_line_length": 73,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/k-axiom/UIP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 230,
"size": 710
}
|
-- Jesper, 2019-05-20: When checking confluence of two rewrite rules,
-- we disable all reductions during unification of the left-hand
-- sides. However, we should not disable reductions at the type-level,
-- as shown by this (non-confluent) example.
{-# OPTIONS --rewriting --confluence-check #-}
open import Agda.Builtin.Unit
open import Agda.Builtin.Bool
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Rewrite
data Unit : Set where unit : Unit
A : Unit → Set
A unit = ⊤
postulate
a b : (u : Unit) → A u
f : (u : Unit) → A u → Bool
f-a : (u : Unit) → f u (a u) ≡ true
f-b : (u : Unit) → f u (b u) ≡ false
{-# REWRITE f-a #-}
{-# REWRITE f-b #-}
cong-f : (u : Unit) (x y : A u) → x ≡ y → f u x ≡ f u y
cong-f u x y refl = refl
boom : true ≡ false
boom = cong-f unit (a unit) (b unit) refl
|
{
"alphanum_fraction": 0.6420798065,
"avg_line_length": 25.84375,
"ext": "agda",
"hexsha": "02c78b54d1f8f92f5181d9b8245f6f11845f7111",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/ConfluenceTypeLevelReduction.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Fail/ConfluenceTypeLevelReduction.agda",
"max_line_length": 70,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Fail/ConfluenceTypeLevelReduction.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 275,
"size": 827
}
|
module UniDB.Morph.Weaken where
open import UniDB.Spec
--------------------------------------------------------------------------------
data Weaken : MOR where
weaken : {γ : Dom} (δ : Dom) → Weaken γ (γ ∪ δ)
instance
iLkWeaken : {T : STX} {{vrT : Vr T}} → Lk T Weaken
lk {{iLkWeaken}} (weaken δ) i = vr (wk δ i)
iWkmWeaken : Wkm Weaken
wkm {{iWkmWeaken}} = weaken
iIdmWeaken : Idm Weaken
idm {{iIdmWeaken}} γ = weaken 0
iWkWeaken : {γ₁ : Dom} → Wk (Weaken γ₁)
wk₁ {{iWkWeaken}} (weaken δ) = weaken (suc δ)
wk {{iWkWeaken}} zero x = x
wk {{iWkWeaken}} (suc δ) x = wk₁ (wk δ x)
wk-zero {{iWkWeaken}} x = refl
wk-suc {{iWkWeaken}} δ x = refl
iLkWkmWeaken : {T : STX} {{vrT : Vr T}} → LkWkm T Weaken
lk-wkm {{iLkWkmWeaken}} δ i = refl
iCompWeaken : Comp Weaken
_⊙_ {{iCompWeaken}} ξ (weaken δ) = wk δ ξ
wk₁-comp : {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Weaken γ₁ γ₂) (ξ₂ : Weaken γ₂ γ₃) →
wk₁ (ξ₁ ⊙ ξ₂) ≡ ξ₁ ⊙ wk₁ ξ₂
wk₁-comp ξ₁ (weaken δ) = refl
wk-comp : {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Weaken γ₁ γ₂) (ξ₂ : Weaken γ₂ γ₃)
(δ : Dom) → wk δ (ξ₁ ⊙ ξ₂) ≡ ξ₁ ⊙ wk δ ξ₂
wk-comp ξ₁ ξ₂ zero = refl
wk-comp ξ₁ ξ₂ (suc δ) =
trans (cong wk₁ (wk-comp ξ₁ ξ₂ δ)) (wk₁-comp ξ₁ (wk δ ξ₂))
module _ (T : STX) {{vrT : Vr T}} where
lk-wk₁-weaken : {{wkT : Wk T}} {{wkVrT : WkVr T}}
{γ₁ γ₂ : Dom} (ξ : Weaken γ₁ γ₂) (i : Ix γ₁) →
lk {T} {Weaken} (wk₁ ξ) i ≡ wk₁ (lk {T} {Weaken} ξ i)
lk-wk₁-weaken (weaken δ) i = sym (wk₁-vr {T} (wk δ i))
lk-wk-weaken : {{wkT : Wk T}} {{wkVrT : WkVr T}}
{γ₁ γ₂ : Dom} (δ : Dom) (ξ : Weaken γ₁ γ₂) (i : Ix γ₁) →
lk {T} {Weaken} (wk δ ξ) i ≡ wk δ (lk {T} {Weaken} ξ i)
lk-wk-weaken zero ξ i = sym (wk-zero (lk {T} {Weaken} ξ i))
lk-wk-weaken (suc δ) ξ i =
trans
(lk-wk₁-weaken (wk δ ξ) i)
(trans
(cong wk₁ (lk-wk-weaken δ ξ i))
(sym (wk-suc {T} δ (lk {T} {Weaken} ξ i)))
)
instance
iLkRenWeaken : {T : STX} {{vrT : Vr T}} → LkRen T Weaken
lk-ren {{iLkRenWeaken}} (weaken δ) i = refl
iLkRenCompWeaken :
{T : STX} {{vrT : Vr T}} {{wkT : Wk T}} {{wkVrT : WkVr T}} →
LkRenComp T Weaken
lk-ren-comp {{iLkRenCompWeaken {T}}} ξ₁ (weaken δ) i = begin
lk {T} {Weaken} (wk δ ξ₁) i ≡⟨ lk-wk-weaken T δ ξ₁ i ⟩
wk δ (lk {T} {Weaken} ξ₁ i) ≡⟨ cong (wk δ) (lk-ren {T} {Weaken} ξ₁ i) ⟩
wk δ (vr {T} (lk {Ix} {Weaken} ξ₁ i)) ≡⟨ wk-vr {T} δ (lk {Ix} {Weaken} ξ₁ i) ⟩
vr {T} (wk δ (lk {Ix} {Weaken} ξ₁ i)) ∎
iCompIdmWeaken : CompIdm Weaken
⊙-idm {{iCompIdmWeaken}} ξ = refl
idm-⊙ {{iCompIdmWeaken}} (weaken zero) = refl
idm-⊙ {{iCompIdmWeaken}} (weaken (suc δ)) =
cong wk₁ (idm-⊙ {Weaken} (weaken δ))
iCompAssocWeaken : CompAssoc Weaken
⊙-assoc {{iCompAssocWeaken}} ξ₁ ξ₂ (weaken δ) = sym (wk-comp ξ₁ ξ₂ δ)
--------------------------------------------------------------------------------
|
{
"alphanum_fraction": 0.5212691771,
"avg_line_length": 33.3488372093,
"ext": "agda",
"hexsha": "e58ce0380684a38960713e3b523ccb718ac90abc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "skeuchel/unidb-agda",
"max_forks_repo_path": "UniDB/Morph/Weaken.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "skeuchel/unidb-agda",
"max_issues_repo_path": "UniDB/Morph/Weaken.agda",
"max_line_length": 83,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "skeuchel/unidb-agda",
"max_stars_repo_path": "UniDB/Morph/Weaken.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1346,
"size": 2868
}
|
-- Jesper, 2017-01-23: when instantiating a variable during unification,
-- we should check that the type of the variable is equal to the type
-- of the equation (and not just a subtype of it). See Issue 2407.
open import Agda.Builtin.Equality
open import Agda.Builtin.Size
data D : Size → Set where
J= : ∀ {ℓ} {s : Size} (x₀ : D s)
→ (P : (x : D s) → _≡_ {A = D s} x₀ x → Set ℓ)
→ P x₀ refl → (x : D s) (e : _≡_ {A = D s} x₀ x) → P x e
J= _ P p _ refl = p
J< : ∀ {ℓ} {s : Size} {s' : Size< s} (x₀ : D s)
→ (P : (x : D s) → _≡_ {A = D s} x₀ x → Set ℓ)
→ P x₀ refl → (x : D s') (e : _≡_ {A = D s} x₀ x) → P x e
J< _ P p _ refl = p
J> : ∀ {ℓ} {s : Size} {s' : Size< s} (x₀ : D s')
→ (P : (x : D s) → _≡_ {A = D s} x₀ x → Set ℓ)
→ P x₀ refl → (x : D s) (e : _≡_ {A = D s} x₀ x) → P x e
J> _ P p _ refl = p
J~ : ∀ {ℓ} {s : Size} {s' s'' : Size< s} (x₀ : D s')
→ (P : (x : D s) → _≡_ {A = D s} x₀ x → Set ℓ)
→ P x₀ refl → (x : D s'') (e : _≡_ {A = D s} x₀ x) → P x e
J~ _ P p _ refl = p
|
{
"alphanum_fraction": 0.4768015795,
"avg_line_length": 33.7666666667,
"ext": "agda",
"hexsha": "ef66911af05ddfee0a79f2a577a352c7611d8603",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/UnificationAndSubtyping.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/UnificationAndSubtyping.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/UnificationAndSubtyping.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 488,
"size": 1013
}
|
-- WARNING: This file was generated automatically by Vehicle
-- and should not be modified manually!
-- Metadata
-- - Agda version: 2.6.2
-- - AISEC version: 0.1.0.1
-- - Time generated: ???
open import AISEC.Utils
open import Data.Real as ℝ using (ℝ)
open import Data.List
module MyTestModule where
f : Tensor ℝ (1 ∷ []) → Tensor ℝ (1 ∷ [])
f = evaluate record
{ databasePath = DATABASE_PATH
; networkUUID = NETWORK_UUID
}
monotonic : ∀ (x1 : Tensor ℝ (1 ∷ [])) → ∀ (x2 : Tensor ℝ (1 ∷ [])) → let y1 = f (x1)
y2 = f (x2) in x1 0 ℝ.≤ x2 0 → y1 0 ℝ.≤ y2 0
monotonic = checkProperty record
{ databasePath = DATABASE_PATH
; propertyUUID = ????
}
|
{
"alphanum_fraction": 0.6359516616,
"avg_line_length": 26.48,
"ext": "agda",
"hexsha": "c123451546ec194051e793d550920b1310ef6e4d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7cdd7734fe0d50cc7d5a3b3c6bdddba778cfe6df",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Yiergot/vehicle",
"max_forks_repo_path": "examples/network/monotonicity/monotonicity-output.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cdd7734fe0d50cc7d5a3b3c6bdddba778cfe6df",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "Yiergot/vehicle",
"max_issues_repo_path": "examples/network/monotonicity/monotonicity-output.agda",
"max_line_length": 85,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7cdd7734fe0d50cc7d5a3b3c6bdddba778cfe6df",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "Yiergot/vehicle",
"max_stars_repo_path": "examples/network/monotonicity/monotonicity-output.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 232,
"size": 662
}
|
module Numeral.Natural.Oper.Proofs.Structure where
open import Logic.Predicate
open import Numeral.Natural
open import Numeral.Natural.Oper.Proofs
open import Numeral.Natural.Oper
open import Relator.Equals
open import Relator.Equals.Proofs
open import Structure.Operator.Monoid
instance
[+]-monoid : Monoid(_+_)
Monoid.identity-existence [+]-monoid = [∃]-intro(𝟎)
instance
[⋅]-monoid : Monoid(_⋅_)
Monoid.identity-existence [⋅]-monoid = [∃]-intro(𝐒(𝟎))
|
{
"alphanum_fraction": 0.7612903226,
"avg_line_length": 25.8333333333,
"ext": "agda",
"hexsha": "5f87d0afe73a895e0119c41f310ef8a2a7e1af2c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Natural/Oper/Proofs/Structure.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Natural/Oper/Proofs/Structure.agda",
"max_line_length": 56,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Natural/Oper/Proofs/Structure.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 146,
"size": 465
}
|
{-# OPTIONS --without-K #-}
module Computability.Function where
open import Computability.Prelude
import Function
variable
l₀ l₁ : Level
Injective : {A : Set l₀}{B : Set l₁} → (A → B) → Set _
Injective = Function.Injective _≡_ _≡_
Surjective : {A : Set l₀}{B : Set l₁} → (A → B) → Set _
Surjective {A = A} {B = B} = Function.Surjective {A = A} {B = B} _≡_ _≡_
Bijective : {A : Set l₀}{B : Set l₁} → (A → B) → Set _
Bijective = Function.Bijective _≡_ _≡_
|
{
"alphanum_fraction": 0.6290672451,
"avg_line_length": 25.6111111111,
"ext": "agda",
"hexsha": "e05e4ede036213ad08609aeebf068482037d83b1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b5cf338eb0adb90c1897383e05251ddd954efff",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jesyspa/computability-in-agda",
"max_forks_repo_path": "Computability/Function.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b5cf338eb0adb90c1897383e05251ddd954efff",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jesyspa/computability-in-agda",
"max_issues_repo_path": "Computability/Function.agda",
"max_line_length": 72,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "1b5cf338eb0adb90c1897383e05251ddd954efff",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jesyspa/computability-in-agda",
"max_stars_repo_path": "Computability/Function.agda",
"max_stars_repo_stars_event_max_datetime": "2021-04-30T11:15:51.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-19T15:51:22.000Z",
"num_tokens": 171,
"size": 461
}
|
{-# OPTIONS --safe #-}
module Cubical.HITs.FreeGroup where
open import Cubical.HITs.FreeGroup.Base public
open import Cubical.HITs.FreeGroup.Properties public
|
{
"alphanum_fraction": 0.7950310559,
"avg_line_length": 23,
"ext": "agda",
"hexsha": "65ec2892bcd0d156bf72f11c37fa3654f9167214",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/HITs/FreeGroup.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/HITs/FreeGroup.agda",
"max_line_length": 52,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/HITs/FreeGroup.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 39,
"size": 161
}
|
mutual
data ℕμ : Set where
zero : ℕμ
succ : ℕμ → ℕμ
delay : ℕν → ℕμ
record ℕν : Set where
coinductive
field step : ℕμ
open ℕν public
mutual
data _≤μ_ : ℕμ → ℕμ → Set where
-- Standard part of the order
le₀ : (y : ℕμ) → zero ≤μ y
leₛ : {x y : ℕμ} → x ≤μ y → succ x ≤μ succ y
-- We can have finite delays on the left and on the right...
le-stepₗ : {m : ℕν} {y : ℕμ} → step m ≤μ y → delay m ≤μ y
le-stepᵣ : {x : ℕμ} {n : ℕν} → x ≤μ step n → x ≤μ delay n
-- or an abritrary sequence of delays on both sides.
le-step : {m n : ℕν} → m ≤ n → delay m ≤μ delay n
record _≤_ (m n : ℕν) : Set where
coinductive
field step≤ : (step m) ≤μ (step m)
open _≤_ public
≤μ-refl : (x : ℕμ) → x ≤μ x
≤-refl : (m : ℕν) → m ≤ m
step≤ (≤-refl m) = ≤μ-refl (step m)
≤μ-refl zero = le₀ zero
≤μ-refl (succ x) = leₛ (≤μ-refl x)
≤μ-refl (delay x) = le-step (≤-refl x)
|
{
"alphanum_fraction": 0.5420765027,
"avg_line_length": 24.0789473684,
"ext": "agda",
"hexsha": "fd3b152962b458588fb88adf32a930790014ae1b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hbasold/Sandbox",
"max_forks_repo_path": "TypeTheory/Partial.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hbasold/Sandbox",
"max_issues_repo_path": "TypeTheory/Partial.agda",
"max_line_length": 64,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hbasold/Sandbox",
"max_stars_repo_path": "TypeTheory/Partial.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 396,
"size": 915
}
|
module Issue329b where
abstract
infixl 0 D Undeclared
data D : Set where
|
{
"alphanum_fraction": 0.746835443,
"avg_line_length": 11.2857142857,
"ext": "agda",
"hexsha": "0dde1de65ec7cbbb68beaab71131c3d3d77f6634",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/Issue329b.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/Issue329b.agda",
"max_line_length": 23,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Fail/Issue329b.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 26,
"size": 79
}
|
{-# OPTIONS --without-K --safe #-}
open import Level hiding (zero)
open import Relation.Binary
module SDG.Extra.OrderedAlgebra.Structures {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) where
open import Algebra.Structures
open import Algebra.FunctionProperties
record IsOrderedCommutativeRing
(_<_ : Rel A ℓ)
(_+_ _*_ : Op₂ A)
(-_ : Op₁ A)
(0# 1# : A) : Set (a ⊔ ℓ) where
field
isCommutativeRing : IsCommutativeRing _≈_ _+_ _*_ -_ 0# 1#
<-isStrictTotalOrder : IsStrictTotalOrder _≈_ _<_
<-+ : ∀ (a b c) → a < b → (a + c) < (b + c)
<-* : ∀ (a b) → 0# < a → 0# < b → 0# < (a * b)
open IsCommutativeRing isCommutativeRing public
--using (zero)
open IsStrictTotalOrder <-isStrictTotalOrder public
|
{
"alphanum_fraction": 0.625,
"avg_line_length": 28,
"ext": "agda",
"hexsha": "414838d16aa68b2f56100aaacc56b62b5bba0a47",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6814e6f0baffff35efe14ef70d469343cd9b3ba0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "wrrnhttn/agda-sdg",
"max_forks_repo_path": "SDG/Extra/OrderedAlgebra/Structures.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "6814e6f0baffff35efe14ef70d469343cd9b3ba0",
"max_issues_repo_issues_event_max_datetime": "2019-09-18T15:47:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-07-18T20:00:23.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "wrrnhttn/agda-sdg",
"max_issues_repo_path": "SDG/Extra/OrderedAlgebra/Structures.agda",
"max_line_length": 82,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "6814e6f0baffff35efe14ef70d469343cd9b3ba0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "wrrnhttn/agda-sdg",
"max_stars_repo_path": "SDG/Extra/OrderedAlgebra/Structures.agda",
"max_stars_repo_stars_event_max_datetime": "2020-11-13T09:36:38.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-11-13T09:36:38.000Z",
"num_tokens": 261,
"size": 728
}
|
{-# OPTIONS --no-termination-check #-}
module PiPath where
open import Level
open import Data.Empty
open import Data.Unit
open import Data.Sum
open import Data.Product
open import Relation.Binary.PropositionalEquality
------------------------------------------------------------------------------
-- Universe of types
-- The type < v > is the singleton type containing the one value v. We can
-- construct values of this type using (singleton v' proof) where the proof
-- asserts that v is propositionally equal to v.
data <_> {a : Level} {A : Set a} (x : A) : Set a where
singleton : (y : A) → y ≡ x → < x >
-- The types of Pi include 0, 1, +, * as usual but
data B : Set where
ZERO : B
ONE : B
PLUS : B → B → B
TIMES : B → B → B
RECIP : B → (B → B) → B
⟦_⟧ : B → Set
⟦ ZERO ⟧ = ⊥
⟦ ONE ⟧ = ⊤
⟦ PLUS b₁ b₂ ⟧ = ⟦ b₁ ⟧ ⊎ ⟦ b₂ ⟧
⟦ TIMES b₁ b₂ ⟧ = ⟦ b₁ ⟧ × ⟦ b₂ ⟧
⟦ RECIP b ⟧ = (v : ⟦ b ⟧) → ⊤
------------------------------------------------------------------------------
-- syntax and types of combinators ⟷ refers to eval
-- eval refers to evalB
-- evalB refers to eval and reverse
-- reverse refers to reverse'
-- reverse' refers to reverse
-- syntax and types of combinators
data _⟷_ : B → B → Set₁ where
unite₊ : {b : B} → PLUS ZERO b ⟷ b
uniti₊ : {b : B} → b ⟷ PLUS ZERO b
swap₊ : {b₁ b₂ : B} → PLUS b₁ b₂ ⟷ PLUS b₂ b₁
assocl₊ : { b₁ b₂ b₃ : B } → PLUS b₁ (PLUS b₂ b₃) ⟷ PLUS (PLUS b₁ b₂) b₃
assocr₊ : { b₁ b₂ b₃ : B } → PLUS (PLUS b₁ b₂) b₃ ⟷ PLUS b₁ (PLUS b₂ b₃)
unite⋆ : { b : B } → TIMES ONE b ⟷ b
uniti⋆ : { b : B } → b ⟷ TIMES ONE b
swap⋆ : {b₁ b₂ : B} → TIMES b₁ b₂ ⟷ TIMES b₂ b₁
assocl⋆ : { b₁ b₂ b₃ : B } → TIMES b₁ (TIMES b₂ b₃) ⟷ TIMES (TIMES b₁ b₂) b₃
assocr⋆ : { b₁ b₂ b₃ : B } → TIMES (TIMES b₁ b₂) b₃ ⟷ TIMES b₁ (TIMES b₂ b₃)
id⟷ : {b : B } → b ⟷ b
op : { b₁ b₂ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₁)
_◎_ : { b₁ b₂ b₃ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₃) → (b₁ ⟷ b₃)
_⊕_ : { b₁ b₂ b₃ b₄ : B } →
(b₁ ⟷ b₃) → (b₂ ⟷ b₄) → (PLUS b₁ b₂ ⟷ PLUS b₃ b₄)
_⊗_ : { b₁ b₂ b₃ b₄ : B } →
(b₁ ⟷ b₃) → (b₂ ⟷ b₄) → (TIMES b₁ b₂ ⟷ TIMES b₃ b₄)
ε : {b₁ : B} → TIMES b₁ (TIMES b₁ (RECIP b₁)) ⟷ b₁
-- Semantics
mutual
eval : {b₁ b₂ : B} → (c : b₁ ⟷ b₂) → ⟦ b₁ ⟧ → ⟦ b₂ ⟧
eval unite₊ (inj₁ ())
eval unite₊ (inj₂ v) = v
eval uniti₊ v = inj₂ v
eval swap₊ (inj₁ x) = inj₂ x
eval swap₊ (inj₂ y) = inj₁ y
eval assocl₊ (inj₁ x) = inj₁ (inj₁ x)
eval assocl₊ (inj₂ (inj₁ x)) = inj₁ (inj₂ x)
eval assocl₊ (inj₂ (inj₂ x)) = inj₂ x
eval assocr₊ (inj₁ (inj₁ x)) = inj₁ x
eval assocr₊ (inj₁ (inj₂ y)) = inj₂ (inj₁ y)
eval assocr₊ (inj₂ y) = inj₂ (inj₂ y)
eval unite⋆ (tt , x) = x
eval uniti⋆ v = ( tt , v)
eval swap⋆ (v₁ , v₂) = (v₂ , v₁)
eval assocl⋆ (x , (y , z)) = ((x , y), z)
eval assocr⋆ ((x , y), z) = (x , (y , z))
eval id⟷ v = v
eval (op c) v = evalB c v
eval (c₁ ◎ c₂) v = eval c₂ (eval c₁ v)
eval (c₁ ⊕ c₂) (inj₁ x) = inj₁ (eval c₁ x)
eval (c₁ ⊕ c₂) (inj₂ y) = inj₂ (eval c₂ y)
eval (c₁ ⊗ c₂) (x , y) = (eval c₁ x , eval c₂ y)
eval ε (x , y , z) = x
evalB : {b₁ b₂ : B} → (c : b₁ ⟷ b₂) → ⟦ b₂ ⟧ → ⟦ b₁ ⟧
evalB uniti₊ (inj₁ ())
evalB uniti₊ (inj₂ v) = v
evalB unite₊ v = inj₂ v
evalB swap₊ (inj₁ x) = inj₂ x
evalB swap₊ (inj₂ y) = inj₁ y
evalB assocr₊ (inj₁ x) = inj₁ (inj₁ x)
evalB assocr₊ (inj₂ (inj₁ x)) = inj₁ (inj₂ x)
evalB assocr₊ (inj₂ (inj₂ x)) = inj₂ x
evalB assocl₊ (inj₁ (inj₁ x)) = inj₁ x
evalB assocl₊ (inj₁ (inj₂ y)) = inj₂ (inj₁ y)
evalB assocl₊ (inj₂ y) = inj₂ (inj₂ y)
evalB uniti⋆ (tt , x) = x
evalB unite⋆ v = ( tt , v)
evalB swap⋆ (v₁ , v₂) = (v₂ , v₁)
evalB assocr⋆ (x , (y , z)) = ((x , y), z)
evalB assocl⋆ ((x , y), z) = (x , (y , z))
evalB id⟷ v = v
evalB (op c) v = eval c v
evalB (c₁ ◎ c₂) v = evalB c₁ (evalB c₂ v)
evalB (c₁ ⊕ c₂) (inj₁ x) = inj₁ (evalB c₁ x)
evalB (c₁ ⊕ c₂) (inj₂ y) = inj₂ (evalB c₂ y)
evalB (c₁ ⊗ c₂) (x , y) = (evalB c₁ x , evalB c₂ y)
evalB ε x = x , x , (λ _ → tt)
-- reversibility
mutual
reverse : {b₁ b₂ : B} (c : b₁ ⟷ b₂) → (v : ⟦ b₁ ⟧) → v ≡ evalB c (eval c v)
reverse unite₊ (inj₁ ())
reverse unite₊ (inj₂ y) = refl
reverse uniti₊ v = refl
reverse swap₊ (inj₁ x) = refl
reverse swap₊ (inj₂ y) = refl
reverse assocl₊ (inj₁ x) = refl
reverse assocl₊ (inj₂ (inj₁ x)) = refl
reverse assocl₊ (inj₂ (inj₂ y)) = refl
reverse assocr₊ (inj₁ (inj₁ x)) = refl
reverse assocr₊ (inj₁ (inj₂ y)) = refl
reverse assocr₊ (inj₂ y) = refl
reverse unite⋆ v = refl
reverse uniti⋆ v = refl
reverse swap⋆ v = refl
reverse assocl⋆ v = refl
reverse assocr⋆ v = refl
reverse id⟷ v = refl
reverse (op c) v = reverse' c v
reverse (c ◎ c₁) v = trans (reverse c v)
(cong (evalB c) (reverse c₁ (eval c v)))
reverse (c ⊕ _) (inj₁ x) = cong inj₁ (reverse c x)
reverse (_ ⊕ c) (inj₂ y) = cong inj₂ (reverse c y)
reverse (c₁ ⊗ c₂) (x , y) = cong₂ _,_ (reverse c₁ x) (reverse c₂ y)
reverse ε (x , y , z) = {!!}
reverse' : {b₁ b₂ : B} (c : b₁ ⟷ b₂) → (w : ⟦ b₂ ⟧) → w ≡ eval c (evalB c w)
reverse' unite₊ w = refl
reverse' uniti₊ (inj₁ ())
reverse' uniti₊ (inj₂ y) = refl
reverse' swap₊ (inj₁ x) = refl
reverse' swap₊ (inj₂ y) = refl
reverse' assocl₊ (inj₁ (inj₁ x)) = refl
reverse' assocl₊ (inj₁ (inj₂ y)) = refl
reverse' assocl₊ (inj₂ y) = refl
reverse' assocr₊ (inj₁ x) = refl
reverse' assocr₊ (inj₂ (inj₁ x)) = refl
reverse' assocr₊ (inj₂ (inj₂ y)) = refl
reverse' unite⋆ w = refl
reverse' uniti⋆ w = refl
reverse' swap⋆ w = refl
reverse' assocl⋆ w = refl
reverse' assocr⋆ w = refl
reverse' id⟷ w = refl
reverse' (op c) w = reverse c w
reverse' (c ◎ c₁) w = trans (reverse' c₁ w)
(cong (eval c₁) (reverse' c (evalB c₁ w)))
reverse' (c ⊕ _) (inj₁ x) = cong inj₁ (reverse' c x)
reverse' (_ ⊕ c) (inj₂ y) = cong inj₂ (reverse' c y)
reverse' (c₁ ⊗ c₂) (x , y) = cong₂ _,_ (reverse' c₁ x) (reverse' c₂ y)
reverse' ε _ = refl
------------------------------------------------------------------------------
-- Proofs of reversibility
{-
-- they are properly inverse of each other
-- easy direction
η∘ε : {b : B} (v : ⟦ b ⟧) → eval {b} (η ◎ ε) v ≡ v
η∘ε _ = refl
-- hard direction.
ε∘η : {b : B} (v : ⟦ b ⟧) → { w : Σ < v > (λ _ → < v > → ⊤) }
→ (eval {DTIMES b (leftIdemp {b}) } {_} (ε ◎ η) (v , w)) ≡ (v , w)
ε∘η {b} v {(singleton .v refl , r )} = cong f {v , v , (singleton v refl)} refl
where f : Σ ⟦ b ⟧ (λ x → Σ ⟦ b ⟧ (λ y → < v >)) →
Σ ⟦ b ⟧ (λ z → Σ < z > (λ x → < z > → ⊤ ))
f (_ , (_ , j)) = (v , j , r)
------------------------------------------------------------------------------
-- Examples
-- Now need to write some actual programs...
makeFunc : {b₁ b₂ : B} → (c : b₁ ⟷ b₂) →
b₁ ⟷ DTIMES b₁ (λ x → TIMES (SING (eval c x)) (RECIP x))
makeFunc c = η ◎ slide (λ {_} → (lift c refl) ⊗ id⟷)
-}
------------------------------------------------------------------------------
------------------------------------------------------------------------------
|
{
"alphanum_fraction": 0.4971106413,
"avg_line_length": 35.2985074627,
"ext": "agda",
"hexsha": "38c8ea832bc83baf3ec010119ef3d9bad1cde15f",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "agda/PiPath.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "agda/PiPath.agda",
"max_line_length": 79,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "agda/PiPath.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 3124,
"size": 7095
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.