Search is not available for this dataset
text
string | meta
dict |
---|---|
{-# OPTIONS --without-K #-}
module CPermCat where
open import Level using (zero)
open import Data.Nat using (ℕ; _+_; _*_)
open import Data.Fin using () renaming (zero to 0F)
open import Data.Product using (_,_; uncurry)
import Relation.Binary.PropositionalEquality as P
using (_≡_; refl; sym; cong₂; isEquivalence)
open import Categories.Category using (Category)
open import Categories.Groupoid using (Groupoid)
open import Categories.Monoidal using (Monoidal)
open import Categories.Monoidal.Helpers using (module MonoidalHelperFunctors)
open import Categories.Bifunctor using (Bifunctor)
open import Categories.NaturalIsomorphism using (NaturalIsomorphism)
open import Categories.Monoidal.Braided using (Braided)
open import Categories.Monoidal.Symmetric using (Symmetric)
open import Categories.RigCategory
using (RigCategory; module BimonoidalHelperFunctors)
--
open import ConcretePermutation using (CPerm)
open import Permutation using (idp; symp; _●p_; _⊎p_; _×p_)
open import PermutationProperties
using (assocp; lidp; ridp; rinv; linv; 1p⊎1p≡1p; ⊎p●p≡●p⊎p)
------------------------------------------------------------------------------
-- CPerm is is a category
-- Permutations can be compared by strict propositional equality
CPermCat : Category zero zero zero
CPermCat = record
{ Obj = ℕ
; _⇒_ = CPerm
; _≡_ = P._≡_
; id = idp
; _∘_ = _●p_
; assoc = λ {_} {_} {_} {_} {f} {g} {h} → assocp {p₁ = h} {g} {f}
; identityˡ = lidp
; identityʳ = ridp
; equiv = P.isEquivalence
; ∘-resp-≡ = λ { {_} {_} {_} {f} {.f} {g} {.g} P.refl P.refl → P.refl}
}
-- ... and a groupoid
CPermGroupoid : Groupoid CPermCat
CPermGroupoid = record
{ _⁻¹ = symp
; iso = λ {_} {_} {f} → record { isoˡ = linv f ; isoʳ = rinv f }
}
-- additive bifunctor and monoidal structure
⊎p-bifunctor : Bifunctor CPermCat CPermCat CPermCat
⊎p-bifunctor = record
{ F₀ = uncurry _+_
; F₁ = uncurry _⊎p_
; identity = 1p⊎1p≡1p
-- perhaps the weird order below means the underlying combinators should be fixed?
; homomorphism = λ { {_} {_} {_} {p₁ , p₂} {q₁ , q₂} → ⊎p●p≡●p⊎p {f = q₁} {q₂} {p₁} {p₂}}
; F-resp-≡ = uncurry (P.cong₂ _⊎p_)
}
-- the 0 below is the id from CPermMonoidal
module ⊎h = MonoidalHelperFunctors CPermCat ⊎p-bifunctor 0
{- these are all commented out because unite+p and companions are
no longer defined!
0⊕x≡x : NaturalIsomorphism ⊎h.id⊗x ⊎h.x
0⊕x≡x = record
{ F⇒G = record { η = λ _ → unite+p
; commute = λ f → unite+p∘[0⊎x]≡x∘unite+p (f 0F)
}
; F⇐G = record { η = λ _ → uniti+p
; commute = λ f → uniti+p∘x≡[0⊎x]∘uniti+p (f 0F)
}
; iso = λ X → record { isoˡ = linv uniti+p ; isoʳ = linv unite+p }
}
x⊕0≡x : NaturalIsomorphism ⊎h.x⊗id ⊎h.x
x⊕0≡x = record
{ F⇒G = record { η = λ _ → uniti+rp
; commute = λ f → uniti+rp∘[x⊎0]≡x∘uniti+rp (f 0F)
}
; F⇐G = record { η = λ _ → unite+rp
; commute = λ f → unite+rp∘[x⊎0]≡x∘unite+rp (f 0F)
}
; iso = λ X → record { isoˡ = linv unite+rp ; isoʳ = linv uniti+rp }
}
-}
{--
[x⊕y]⊕z≡x⊕[y⊕z] : NaturalIsomorphism ⊎h.[x⊗y]⊗z ⊎h.x⊗[y⊗z]
[x⊕y]⊕z≡x⊕[y⊕z] = record
{ F⇒G = record
{ η = {!!}
; commute = {!!}
}
; F⇐G = record
{ η = {!!}
; commute = {!!}
}
; iso = λ X → record { isoˡ = {!!} ; isoʳ = {!!} }
}
-- and a monoidal category (additive)
M⊕ : Monoidal CPermCat
M⊕ = record
{ ⊗ = ⊎p-bifunctor
; id = 0
; identityˡ = 0⊕x≡x
; identityʳ = x⊕0≡x
; assoc = [x⊕y]⊕z≡x⊕[y⊕z]
; triangle = {!!}
; pentagon = {!!}
}
-- multiplicative bifunctor and monoidal structure
×p-bifunctor : Bifunctor CPermCat CPermCat CPermCat
×p-bifunctor = record
{ F₀ = λ { (m , n) → m * n}
; F₁ = λ { (p₁ , p₂) → p₁ ×p p₂ }
; identity = λ { {m , n} → 1p×1p≡1p {m} }
; homomorphism = λ { {_} {_} {_} {p₁ , p₂} {q₁ , q₂} →
×p-distrib {p₁ = q₁} {q₂} {p₁} {p₂}}
; F-resp-≡ = λ {(p₁≡p₃ , p₂≡p₄) → P.cong₂ _×p_ p₁≡p₃ p₂≡p₄ }
}
module ×h = MonoidalHelperFunctors CPermCat ×p-bifunctor 1
1⊗x≡x : NaturalIsomorphism ×h.id⊗x ×h.x
1⊗x≡x = record
{ F⇒G = record
{ η = {!!}
; commute = {!!}
}
; F⇐G = record
{ η = {!!}
; commute = {!!}
}
; iso = λ X → record { isoˡ = {!!} ; isoʳ = {!!} }
}
x⊗1≡x : NaturalIsomorphism ×h.x⊗id ×h.x
x⊗1≡x = record
{ F⇒G = record
{ η = {!!}
; commute = {!!}
}
; F⇐G = record
{ η = {!!}
; commute = {!!}
}
; iso = λ X → record { isoˡ = {!!} ; isoʳ = {!!} }
}
[x⊗y]⊗z≡x⊗[y⊗z] : NaturalIsomorphism ×h.[x⊗y]⊗z ×h.x⊗[y⊗z]
[x⊗y]⊗z≡x⊗[y⊗z] = record
{ F⇒G = record
{ η = {!!}
; commute = {!!}
}
; F⇐G = record
{ η = {!!}
; commute = {!!}
}
; iso = λ X → record { isoˡ = {!!} ; isoʳ = {!!} }
}
-- and a monoidal category (multiplicative)
M⊗ : Monoidal CPermCat
M⊗ = record
{ ⊗ = ×p-bifunctor
; id = 1
; identityˡ = 1⊗x≡x
; identityʳ = x⊗1≡x
; assoc = [x⊗y]⊗z≡x⊗[y⊗z]
; triangle = {!!}
; pentagon = {!!}
}
x⊕y≡y⊕x : NaturalIsomorphism ⊎h.x⊗y ⊎h.y⊗x
x⊕y≡y⊕x = record
{ F⇒G = record { η = {!!} ; commute = {!!} }
; F⇐G = record { η = {!!} ; commute = {!!} }
; iso = λ X → record { isoˡ = {!!} ; isoʳ = {!!} } }
BM⊕ : Braided M⊕
BM⊕ = record
{ braid = x⊕y≡y⊕x
; hexagon₁ = {!!}
; hexagon₂ = {!!}
}
x⊗y≡y⊗x : NaturalIsomorphism ×h.x⊗y ×h.y⊗x
x⊗y≡y⊗x = record
{ F⇒G = record { η = {!!} ; commute = {!!} }
; F⇐G = record { η = {!!} ; commute = {!!} }
; iso = λ X → record { isoˡ = {!!} ; isoʳ = {!!} } }
BM⊗ : Braided M⊗
BM⊗ = record
{ braid = x⊗y≡y⊗x
; hexagon₁ = {!!}
; hexagon₂ = {!!}
}
-- with both monoidal structures being symmetric
SBM⊕ : Symmetric BM⊕
SBM⊕ = record { symmetry = {!!} }
SBM⊗ : Symmetric BM⊗
SBM⊗ = record { symmetry = {!!} }
module r = BimonoidalHelperFunctors BM⊕ BM⊗
x⊗0≡0 : NaturalIsomorphism r.x⊗0 r.0↑
x⊗0≡0 = record
{ F⇒G = record
{ η = {!!}
; commute = {!!}
}
; F⇐G = record
{ η = {!!}
; commute = {!!}
}
; iso = λ X → record { isoˡ = {!!} ; isoʳ = {!!} }
}
0⊗x≡0 : NaturalIsomorphism r.0⊗x r.0↑
0⊗x≡0 = record
{ F⇒G = record { η = {!!} ; commute = {!!} }
; F⇐G = record { η = {!!} ; commute = {!!} }
; iso = λ X → record { isoˡ = {!!} ; isoʳ = {!!} }
}
x⊗[y⊕z]≡[x⊗y]⊕[x⊗z] : NaturalIsomorphism r.x⊗[y⊕z] r.[x⊗y]⊕[x⊗z]
x⊗[y⊕z]≡[x⊗y]⊕[x⊗z] = record
{ F⇒G = record { η = {!!} ; commute = {!!} }
; F⇐G = record { η = {!!} ; commute = {!!} }
; iso = λ X → record { isoˡ = {!!} ; isoʳ = {!!} }
}
[x⊕y]⊗z≡[x⊗z]⊕[y⊗z] : NaturalIsomorphism r.[x⊕y]⊗z r.[x⊗z]⊕[y⊗z]
[x⊕y]⊗z≡[x⊗z]⊕[y⊗z] = record
{ F⇒G = record { η = {!!} ; commute = {!!} }
; F⇐G = record { η = {!!} ; commute = {!!} }
; iso = λ X → record { isoˡ = {!!} ; isoʳ = {!!} }
}
-- and the multiplicative structure distributing over the additive one
Pi1Rig : RigCategory SBM⊕ SBM⊗
Pi1Rig = record
{ distribₗ = x⊗[y⊕z]≡[x⊗y]⊕[x⊗z]
; distribᵣ = [x⊕y]⊗z≡[x⊗z]⊕[y⊗z]
; annₗ = 0⊗x≡0
; annᵣ = x⊗0≡0
; laplazaI = {!!}
; laplazaII = {!!}
; laplazaIV = {!!}
; laplazaVI = {!!}
; laplazaIX = {!!}
; laplazaX = {!!}
; laplazaXI = {!!}
; laplazaXIII = {!!}
; laplazaXV = {!!}
; laplazaXVI = {!!}
; laplazaXVII = {!!}
; laplazaXIX = {!!}
; laplazaXXIII = {!!}
}
--}
------------------------------------------------------------------------------
|
{
"alphanum_fraction": 0.5191680261,
"avg_line_length": 25.7202797203,
"ext": "agda",
"hexsha": "f4008d65f6bf7a5a68a7b7e94eac344f228f167e",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/CPermCat.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/CPermCat.agda",
"max_line_length": 91,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/CPermCat.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 3398,
"size": 7356
}
|
open import Common.Prelude hiding (_>>=_)
open import Common.Reflection
open import Common.Equality
record Functor (F : Set → Set) : Set₁ where
field
fmap : ∀ {A B} → (A → B) → F A → F B
IdF : Functor (λ A → A)
unquoteDef IdF =
defineFun IdF (clause (vArg (projP (quote Functor.fmap)) ∷ vArg (var "f") ∷ vArg (var "x") ∷ [])
(var 1 (vArg (var 0 []) ∷ [])) ∷ [])
check : ∀ {A B} (f : A → B) (x : A) → Functor.fmap IdF f x ≡ f x
check f x = refl
open Functor {{...}}
instance
InstF : Functor (λ A → A)
unquoteDef InstF =
defineFun InstF (clause (iArg (projP (quote fmap)) ∷ vArg (var "f") ∷ vArg (var "x") ∷ [])
(var 1 (vArg (var 0 []) ∷ [])) ∷ [])
check₁ : ∀ {A B} (f : A → B) (x : A) → fmap f x ≡ f x
check₁ f x = refl
|
{
"alphanum_fraction": 0.5194968553,
"avg_line_length": 27.4137931034,
"ext": "agda",
"hexsha": "facc12d00ab687d1a30a80c8e9aef1a6d6be7dc6",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/ReflectionCopatterns.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Succeed/ReflectionCopatterns.agda",
"max_line_length": 98,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Succeed/ReflectionCopatterns.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 293,
"size": 795
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category.Core
module Categories.Morphism.Regular.Properties {o ℓ e} (𝒞 : Category o ℓ e) where
open import Categories.Morphism 𝒞
open import Categories.Morphism.Regular 𝒞
open import Categories.Diagram.Equalizer 𝒞
open import Categories.Diagram.Equalizer.Properties 𝒞
open import Categories.Diagram.Coequalizer.Properties 𝒞
open Category 𝒞
private
variable
A B : Obj
f g : A ⇒ B
Section⇒RegularMono : f SectionOf g → RegularMono f
Section⇒RegularMono {f = f} {g = g} g∘f≈id = record
{ g = id
; h = f ∘ g
; equalizer = section-equalizer g∘f≈id
}
Retract⇒RegularEpi : f RetractOf g → RegularEpi f
Retract⇒RegularEpi {f = f} {g = g} f∘g≈id = record
{ h = g ∘ f
; g = id
; coequalizer = retract-coequalizer f∘g≈id
}
|
{
"alphanum_fraction": 0.702366127,
"avg_line_length": 24.3333333333,
"ext": "agda",
"hexsha": "38e485ca67430844f1bbac66f265ded754615c85",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "maxsnew/agda-categories",
"max_forks_repo_path": "src/Categories/Morphism/Regular/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "maxsnew/agda-categories",
"max_issues_repo_path": "src/Categories/Morphism/Regular/Properties.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "maxsnew/agda-categories",
"max_stars_repo_path": "src/Categories/Morphism/Regular/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 282,
"size": 803
}
|
module Categories.Monad.Algebra where
|
{
"alphanum_fraction": 0.8684210526,
"avg_line_length": 19,
"ext": "agda",
"hexsha": "ccd04907407df7bae1ebe0ec905711ce5b9b233b",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Monad/Algebra.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Monad/Algebra.agda",
"max_line_length": 37,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Monad/Algebra.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 7,
"size": 38
}
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import homotopy.PtdAdjoint
open import groups.FromSusp
open import groups.ToOmega
module groups.SuspAdjointLoop {i} where
import homotopy.SuspAdjointLoop {i} as A
module _ (X Y : Ptd i) where
private
pres-comp : preserves-comp
(GroupStructure.comp (⊙→Ω-group-structure (⊙Susp X) Y))
(GroupStructure.comp (⊙→Ω-group-structure X (⊙Ω Y)))
(–> (A.eq X (⊙Ω Y)))
abstract
pres-comp h₁ h₂ =
B.nat-cod h₁ h₂ ⊙Ω-∙
∙ ap (_⊙∘ ⊙fanout (–> (A.eq X (⊙Ω Y)) h₁) (–> (A.eq X (⊙Ω Y)) h₂))
arr2-lemma
where
module A× = RightAdjoint× A.hadj
module B = RightAdjointBinary A.hadj
ap2-lemma : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k}
(f : A × B → C) {r s : A × B} (p : r == s)
→ ap f p == ap2 (curry f) (ap fst p) (ap snd p)
ap2-lemma f idp = idp
⊙ap2-lemma : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
(f : X ⊙× Y ⊙→ Z)
→ ⊙Ω-fmap f == ⊙Ω-fmap2 f ⊙∘ ⊙fanout (⊙Ω-fmap ⊙fst) (⊙Ω-fmap ⊙snd)
⊙ap2-lemma (f , idp) = ⊙λ=' (ap2-lemma f) idp
arr2-lemma : B.arr2 ⊙Ω-∙ == ⊙Ω-∙
arr2-lemma =
⊙Ω-fmap ⊙Ω-∙ ⊙∘ A×.⊙out _ _
=⟨ ⊙ap2-lemma ⊙Ω-∙ |in-ctx _⊙∘ A×.⊙out _ _ ⟩
(⊙Ω-fmap2 ⊙Ω-∙ ⊙∘ A×.⊙into _ _) ⊙∘ A×.⊙out _ _
=⟨ ⊙λ= $ ⊙∘-assoc (⊙Ω-fmap2 ⊙Ω-∙) (A×.⊙into _ _) (A×.⊙out _ _) ⟩
⊙Ω-fmap2 ⊙Ω-∙ ⊙∘ (A×.⊙into _ _ ⊙∘ A×.⊙out _ _)
=⟨ A×.⊙into-out _ _ |in-ctx ⊙Ω-fmap2 ⊙Ω-∙ ⊙∘_ ⟩
⊙Ω-fmap2 ⊙Ω-∙
=⟨ ⊙Ω-fmap2-∙ ⟩
⊙Ω-∙ ∎
⊙→Ω-iso-⊙→Ω : ⊙→Ω-group-structure (⊙Susp X) Y ≃ᴳˢ ⊙→Ω-group-structure X (⊙Ω Y)
⊙→Ω-iso-⊙→Ω = ≃-to-≃ᴳˢ (A.eq X (⊙Ω Y)) pres-comp
Trunc-⊙→Ω-iso-Trunc-⊙→Ω : Trunc-⊙→Ω-group (⊙Susp X) Y ≃ᴳ Trunc-⊙→Ω-group X (⊙Ω Y)
Trunc-⊙→Ω-iso-Trunc-⊙→Ω = Trunc-group-emap ⊙→Ω-iso-⊙→Ω
abstract
Trunc-⊙→Ω-iso-Trunc-⊙→Ω-nat-dom : {X Y : Ptd i} (f : X ⊙→ Y) (Z : Ptd i)
→ fst (Trunc-⊙→Ω-iso-Trunc-⊙→Ω X Z) ∘ᴳ Trunc-⊙→Ω-group-fmap-dom (⊙Susp-fmap f) Z
== Trunc-⊙→Ω-group-fmap-dom f (⊙Ω Z) ∘ᴳ fst (Trunc-⊙→Ω-iso-Trunc-⊙→Ω Y Z)
Trunc-⊙→Ω-iso-Trunc-⊙→Ω-nat-dom f Z = group-hom= $ λ= $ Trunc-elim
(λ g → ap [_] (! (A.nat-dom f (⊙Ω Z) g)))
module _ (X Y : Ptd i) where
private
pres-comp'' : ∀ h₀ h₁ →
fst (<– (A.eq X Y) (GroupStructure.comp (⊙→Ω-group-structure X Y) (–> (A.eq X Y) h₀) (–> (A.eq X Y) h₁)))
∼ fst (GroupStructure.comp (Susp⊙→-group-structure X Y) h₀ h₁)
abstract
pres-comp'' (h₀ , idp) (h₁ , h₁-pt) =
Susp-elim
idp
(! h₁-pt ∙ ap h₁ (merid (pt X)))
(λ x → ↓-='-in' $
ap (fst (⊙Wedge-rec (h₀ , idp) (h₁ , h₁-pt)) ∘ pinch X) (merid x)
=⟨ ap-∘ (fst (⊙Wedge-rec (h₀ , idp) (h₁ , h₁-pt))) (pinch X) (merid x) ⟩
ap (fst (⊙Wedge-rec (h₀ , idp) (h₁ , h₁-pt))) (ap (pinch X) (merid x))
=⟨ ap (ap (fst (⊙Wedge-rec (h₀ , idp) (h₁ , h₁-pt)))) (Pinch.merid-β X x) ⟩
ap (fst (⊙Wedge-rec (h₀ , idp) (h₁ , h₁-pt))) (ap winl (σloop X x) ∙ wglue ∙ ap winr (merid x))
=⟨ ap-∙∙ (fst (⊙Wedge-rec (h₀ , idp) (h₁ , h₁-pt))) (ap winl (σloop X x)) wglue (ap winr (merid x)) ⟩
ap (fst (⊙Wedge-rec (h₀ , idp) (h₁ , h₁-pt))) (ap winl (σloop X x))
∙ ap (fst (⊙Wedge-rec (h₀ , idp) (h₁ , h₁-pt))) wglue
∙ ap (fst (⊙Wedge-rec (h₀ , idp) (h₁ , h₁-pt))) (ap winr (merid x))
=⟨ ap3 (λ p q r → p ∙ q ∙ r)
(∘-ap (fst (⊙Wedge-rec (h₀ , idp) (h₁ , h₁-pt))) winl (σloop X x))
(⊙WedgeRec.glue-β (h₀ , idp) (h₁ , h₁-pt))
(∘-ap (fst (⊙Wedge-rec (h₀ , idp) (h₁ , h₁-pt))) winr (merid x)) ⟩
ap h₀ (σloop X x) ∙ ! h₁-pt ∙ ap h₁ (merid x)
=⟨ lemma h₁ (ap h₀ (σloop X x)) h₁-pt (merid x) (merid (pt X)) h₁-pt ⟩
(ap h₀ (σloop X x) ∙ (! h₁-pt ∙ ap h₁ (σloop X x) ∙' h₁-pt)) ∙' (! h₁-pt ∙ ap h₁ (merid (pt X)))
=⟨ ap (λ p → p ∙' (! h₁-pt ∙ ap h₁ (merid (pt X)))) $
ap h₀ (σloop X x) ∙ (! h₁-pt ∙ ap h₁ (σloop X x) ∙' h₁-pt)
=⟨ ! $ ap (ap h₀ (σloop X x) ∙_) (Ω-fmap-β (h₁ , h₁-pt) (σloop X x)) ⟩
ap h₀ (σloop X x) ∙ Ω-fmap (h₁ , h₁-pt) (σloop X x)
=⟨ ! $ A.Eta.merid-β Y (ap h₀ (σloop X x) ∙ Ω-fmap (h₁ , h₁-pt) (σloop X x)) ⟩
ap (fst (A.ε Y)) (merid (ap h₀ (σloop X x) ∙ Ω-fmap (h₁ , h₁-pt) (σloop X x)))
=⟨ ! $ ap (ap (fst (A.ε Y))) (SuspFmap.merid-β (λ x → ap h₀ (σloop X x) ∙ Ω-fmap (h₁ , h₁-pt) (σloop X x)) x) ⟩
ap (fst (A.ε Y)) (ap (Susp-fmap (λ x → ap h₀ (σloop X x) ∙ Ω-fmap (h₁ , h₁-pt) (σloop X x))) (merid x))
=⟨ ∘-ap (fst (A.ε Y)) (Susp-fmap (λ x → ap h₀ (σloop X x) ∙ Ω-fmap (h₁ , h₁-pt) (σloop X x))) (merid x) ⟩
ap (fst (A.ε Y) ∘ Susp-fmap (λ x → ap h₀ (σloop X x) ∙ Ω-fmap (h₁ , h₁-pt) (σloop X x))) (merid x)
=∎ ⟩
ap (fst (A.ε Y) ∘ Susp-fmap (λ x → ap h₀ (σloop X x) ∙ Ω-fmap (h₁ , h₁-pt) (σloop X x))) (merid x)
∙' (! h₁-pt ∙ ap h₁ (merid (pt X)))
=∎)
where
lemma : ∀ {i j} {A : Type i} {B : Type j} (f : A → B)
{a₀ a₁ a₂ : A} {b₀ b₁ b₂ : B} (p₀ : b₀ == b₁) (p₁ : f a₀ == b₁)
(p₂ : a₀ == a₁) (p₃ : a₂ == a₁) (p₄ : f a₂ == b₂)
→ p₀ ∙ ! p₁ ∙ ap f p₂ == (p₀ ∙ (! p₁ ∙ ap f (p₂ ∙ ! p₃) ∙' p₄)) ∙' (! p₄ ∙ ap f p₃)
lemma f idp idp idp idp idp = idp
private
pres-comp' : ∀ h₀ h₁ →
<– (A.eq X Y) (GroupStructure.comp (⊙→Ω-group-structure X Y) (–> (A.eq X Y) h₀) (–> (A.eq X Y) h₁))
⊙∼ GroupStructure.comp (Susp⊙→-group-structure X Y) h₀ h₁
abstract
pres-comp' (h₀ , idp) (h₁ , h₁-pt) =
pres-comp'' (h₀ , idp) (h₁ , h₁-pt) , idp
private
pres-comp : preserves-comp
(GroupStructure.comp (Susp⊙→-group-structure X Y))
(GroupStructure.comp (⊙→Ω-group-structure X Y))
(–> (A.eq X Y))
abstract
pres-comp h₀ h₁ =
–> (A.eq X Y) (GroupStructure.comp (Susp⊙→-group-structure X Y) h₀ h₁)
=⟨ ! (ap (–> (A.eq X Y)) (⊙λ= (pres-comp' h₀ h₁))) ⟩
–> (A.eq X Y) (<– (A.eq X Y) (GroupStructure.comp (⊙→Ω-group-structure X Y) (–> (A.eq X Y) h₀) (–> (A.eq X Y) h₁)))
=⟨ <–-inv-r (A.eq X Y) (GroupStructure.comp (⊙→Ω-group-structure X Y) (–> (A.eq X Y) h₀) (–> (A.eq X Y) h₁)) ⟩
GroupStructure.comp (⊙→Ω-group-structure X Y) (–> (A.eq X Y) h₀) (–> (A.eq X Y) h₁)
=∎
Susp⊙→-iso-⊙→Ω : Susp⊙→-group-structure X Y ≃ᴳˢ ⊙→Ω-group-structure X Y
Susp⊙→-iso-⊙→Ω = ≃-to-≃ᴳˢ (A.eq X Y) pres-comp
Trunc-Susp⊙→-iso-Trunc-⊙→Ω : Trunc-Susp⊙→-group X Y ≃ᴳ Trunc-⊙→Ω-group X Y
Trunc-Susp⊙→-iso-Trunc-⊙→Ω = Trunc-group-emap Susp⊙→-iso-⊙→Ω
module _ (X Y : Ptd i) where
private
pres-comp : preserves-comp
(GroupStructure.comp (Susp⊙→-group-structure X Y))
(GroupStructure.comp (Susp⊙→-group-structure (⊙Susp X) (⊙Susp Y)))
(⊙Susp-fmap :> ((⊙Susp X ⊙→ Y) → _))
abstract
pres-comp = ∼-preserves-preserves-comp
(GroupStructure.comp (Susp⊙→-group-structure X Y))
(GroupStructure.comp (Susp⊙→-group-structure (⊙Susp X) (⊙Susp Y)))
(λ f →
<– (A.eq (⊙Susp X) (⊙Susp Y)) (<– (A.eq X (⊙Ω (⊙Susp Y))) (⊙Ω-fmap (A.η Y) ⊙∘ –> (A.eq X Y) f))
=⟨ ap (<– (A.eq (⊙Susp X) (⊙Susp Y)) ∘ <– (A.eq X (⊙Ω (⊙Susp Y)))) $ A.nat-cod X (A.η Y) f ⟩
<– (A.eq (⊙Susp X) (⊙Susp Y)) (<– (A.eq X (⊙Ω (⊙Susp Y))) (–> (A.eq X (⊙Ω (⊙Susp Y))) (A.η Y ⊙∘ f)))
=⟨ ap (<– (A.eq (⊙Susp X) (⊙Susp Y))) $ <–-inv-l (A.eq X (⊙Ω (⊙Susp Y))) (A.η Y ⊙∘ f) ⟩
<– (A.eq (⊙Susp X) (⊙Susp Y)) (A.η Y ⊙∘ f)
=⟨ ap (<– (A.eq (⊙Susp X) (⊙Susp Y))) $ A.η-natural f ⟩
<– (A.eq (⊙Susp X) (⊙Susp Y)) (–> (A.eq (⊙Susp X) (⊙Susp Y)) (⊙Susp-fmap f))
=⟨ <–-inv-l (A.eq (⊙Susp X) (⊙Susp Y)) (⊙Susp-fmap f) ⟩
⊙Susp-fmap f
=∎)
(GroupStructureHom.pres-comp $
GroupStructureIso.g-shom (Susp⊙→-iso-⊙→Ω (⊙Susp X) (⊙Susp Y))
∘ᴳˢ GroupStructureIso.g-shom (⊙→Ω-iso-⊙→Ω X (⊙Susp Y))
∘ᴳˢ ⊙→Ω-group-structure-fmap-codom X (A.η Y)
∘ᴳˢ GroupStructureIso.f-shom (Susp⊙→-iso-⊙→Ω X Y))
Susp⊙→-Susp-fmap-shom : Susp⊙→-group-structure X Y →ᴳˢ Susp⊙→-group-structure (⊙Susp X) (⊙Susp Y)
Susp⊙→-Susp-fmap-shom = group-structure-hom ⊙Susp-fmap pres-comp
Trunc-Susp⊙→-Susp-fmap-hom : Trunc-Susp⊙→-group X Y →ᴳ Trunc-Susp⊙→-group (⊙Susp X) (⊙Susp Y)
Trunc-Susp⊙→-Susp-fmap-hom = Trunc-group-fmap Susp⊙→-Susp-fmap-shom
|
{
"alphanum_fraction": 0.4643060458,
"avg_line_length": 50.7687861272,
"ext": "agda",
"hexsha": "55f68a1f643714c568a122d2e52c20505e6cded3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/groups/SuspAdjointLoop.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/groups/SuspAdjointLoop.agda",
"max_line_length": 131,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/groups/SuspAdjointLoop.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4256,
"size": 8783
}
|
open import Relation.Binary.Core
module BHeap.Everything {A : Set}
(_≤_ : A → A → Set)
(tot≤ : Total _≤_) where
open import BHeap.Heap _≤_
open import BHeap.Height _≤_ tot≤
|
{
"alphanum_fraction": 0.5781990521,
"avg_line_length": 23.4444444444,
"ext": "agda",
"hexsha": "a3a5c36a1a661c041210a0b7e04f1159b84a5058",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/BHeap/Everything.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/BHeap/Everything.agda",
"max_line_length": 42,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/BHeap/Everything.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 65,
"size": 211
}
|
{-# OPTIONS --cubical-compatible --show-implicit #-}
module WithoutK3 where
-- Homogeneous equality.
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
-- The J rule.
J : {A : Set} (P : {x y : A} → x ≡ y → Set) →
(∀ x → P (refl {x = x})) →
∀ {x y} (x≡y : x ≡ y) → P x≡y
J P p refl = p _
-- Heterogeneous equality.
data _≅_ {A : Set} (x : A) : {B : Set} → B → Set₁ where
refl : x ≅ x
-- Substitutivity.
subst : {A : Set} {x y : A} (P : A → Set) → x ≅ y → P x → P y
subst P refl p = p
-- The K rule. (The implementation is based on a construction in Conor
-- McBride's PhD thesis.)
K : {A : Set} {x : A} (P : {x : A} → x ≡ x → Set) →
(∀ x → P (refl {x = x})) →
∀ {x} (p : x ≡ x) → P p
K P p x≡x =
J (λ {x y} (p : x ≡ y) → (x≡x : x ≡ x) → p ≅ x≡x → P x≡x)
(λ x x≡x refl≅x≡x → subst P refl≅x≡x (p x))
x≡x x≡x refl
|
{
"alphanum_fraction": 0.4742990654,
"avg_line_length": 23.1351351351,
"ext": "agda",
"hexsha": "eb55c72084bbb2a1b97ef1107ee7db4b06f2b207",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Fail/WithoutK3.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Fail/WithoutK3.agda",
"max_line_length": 70,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Fail/WithoutK3.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 394,
"size": 856
}
|
{-# OPTIONS --without-K #-}
module Data.ByteString where
import Data.ByteString.Primitive as Prim
import Data.ByteString.Utf8 as Utf8
open import Data.Word8 using (Word8)
open import Data.Nat using (ℕ)
open import Data.Colist using (Colist)
open import Data.List using (List)
open import Data.String using (String)
open import Data.Bool using (Bool; true; false)
open import Data.Product using (_×_)
open import Data.Tuple using (Pair→×)
open import Relation.Nullary using (yes; no)
open import Relation.Nullary.Decidable using (⌊_⌋)
open import Relation.Binary using (Decidable)
open import Relation.Binary.PropositionalEquality as PropEq using (_≡_)
open import Relation.Binary.PropositionalEquality.TrustMe using (trustMe)
data ByteStringKind : Set where
Lazy Strict : ByteStringKind
ByteString : ByteStringKind → Set
ByteString Lazy = Prim.ByteStringLazy
ByteString Strict = Prim.ByteStringStrict
empty : ∀ {k} → ByteString k
empty {Lazy} = Prim.emptyLazy
empty {Strict} = Prim.emptyStrict
null : ∀ {k} → ByteString k → Bool
null {Lazy} = Prim.nullLazy
null {Strict} = Prim.nullStrict
length : ∀ {k} → ByteString k → ℕ
length {Lazy} bs = Prim.int64Toℕ (Prim.lengthLazy bs)
length {Strict} bs = Prim.IntToℕ (Prim.lengthStrict bs)
unsafeHead : ∀ {k} → ByteString k → Word8
unsafeHead {Lazy} = Prim.headLazy
unsafeHead {Strict} = Prim.headStrict
unsafeTail : ∀ {k} → ByteString k → ByteString k
unsafeTail {Lazy} = Prim.tailLazy
unsafeTail {Strict} = Prim.tailStrict
unsafeIndex : ∀ {k} → ByteString k → ℕ → Word8
unsafeIndex {Lazy} bs ix = Prim.indexLazy bs (Prim.ℕToInt64 ix)
unsafeIndex {Strict} bs ix = Prim.indexStrict bs (Prim.ℕToInt ix)
unsafeSplitAt : ∀ {k} → ℕ → ByteString k → (ByteString k) × (ByteString k)
unsafeSplitAt {Lazy} ix bs = Pair→× (Prim.splitAtLazy (Prim.ℕToInt64 ix) bs)
unsafeSplitAt {Strict} ix bs = Pair→× (Prim.splitAtStrict (Prim.ℕToInt ix) bs)
ByteStringRep : ByteStringKind → Set
ByteStringRep Lazy = Colist Word8
ByteStringRep Strict = List Word8
unpack : ∀ {k} → ByteString k → ByteStringRep k
unpack {Lazy} = Prim.Colist←Lazy
unpack {Strict} = Prim.List←Strict
pack : ∀ {k} → ByteStringRep k → ByteString k
pack {Lazy} = Prim.Colist→Lazy
pack {Strict} = Prim.List→Strict
infix 4 _≟_
_≟_ : ∀ {k} → Decidable {A = ByteString k} _≡_
_≟_ {Lazy} s₁ s₂ with Prim.lazy≟lazy s₁ s₂
... | true = yes trustMe
... | false = no whatever
where postulate whatever : _
_≟_ {Strict} s₁ s₂ with Prim.strict≟strict s₁ s₂
... | true = yes trustMe
... | false = no whatever
where postulate whatever : _
-- behind _==_ is the same idea as in Data.String
infix 4 _==_
_==_ : ∀ {k} → ByteString k → ByteString k → Bool
_==_ {k} s₁ s₂ = ⌊ s₁ ≟ s₂ ⌋
_++_ : ByteString Lazy → ByteString Lazy → ByteString Lazy
_++_ = Prim.appendLazy
fromChunks : List (ByteString Strict) → ByteString Lazy
fromChunks = Prim.fromChunks
toChunks : ByteString Lazy → List (ByteString Strict)
toChunks = Prim.toChunks
toLazy : ByteString Strict → ByteString Lazy
toLazy = Prim.toLazy
toStrict : ByteString Lazy → ByteString Strict
toStrict = Prim.toStrict
|
{
"alphanum_fraction": 0.7279220779,
"avg_line_length": 29.3333333333,
"ext": "agda",
"hexsha": "189861b0384510ca3c80c7c7d6c82af5a8e9d0e8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "semenov-vladyslav/bytes-agda",
"max_forks_repo_path": "src/Data/ByteString.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "semenov-vladyslav/bytes-agda",
"max_issues_repo_path": "src/Data/ByteString.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "semenov-vladyslav/bytes-agda",
"max_stars_repo_path": "src/Data/ByteString.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 895,
"size": 3080
}
|
module Base.Free where
-- Reexport definitions from Agda's standard library that are needed by the
-- generated code.
open import Function using (case_of_) public
open import Data.Bool using (if_then_else_) public
open import Size using (Size; ↑_) public
-- The `Free` monad over a container with shapes `S` and postions `P`.
data Free (S : Set) (P : S → Set) (A : Set) : Set where
pure : A → Free S P A
impure : (s : S) → (pf : P s → Free S P A) → Free S P A
infixl 1 _>>=_
_>>=_ : {S : Set} {P : S → Set} {A : Set} {B : Set} → Free S P A → (A → Free S P B) → Free S P B
pure x >>= k = k x
impure s pf >>= k = impure s λ p → pf p >>= k
|
{
"alphanum_fraction": 0.5732758621,
"avg_line_length": 36.6315789474,
"ext": "agda",
"hexsha": "49a0a6401a5b0084959032913e989effb54c64ca",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-05-14T07:48:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-08T11:23:46.000Z",
"max_forks_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "FreeProving/free-compiler",
"max_forks_repo_path": "base/agda/Base/Free.agda",
"max_issues_count": 120,
"max_issues_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9",
"max_issues_repo_issues_event_max_datetime": "2020-12-08T07:46:01.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-04-09T09:40:39.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "FreeProving/free-compiler",
"max_issues_repo_path": "base/agda/Base/Free.agda",
"max_line_length": 96,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "FreeProving/free-compiler",
"max_stars_repo_path": "base/agda/Base/Free.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-21T13:38:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-02-06T11:03:34.000Z",
"num_tokens": 227,
"size": 696
}
|
{-# OPTIONS --without-K --safe #-}
module Cats.Category.Presheaves.Facts where
open import Cats.Category.Presheaves.Facts.Exponential public using
( hasExponentials )
open import Cats.Category
open import Cats.Category.Presheaves
import Cats.Category.Fun.Facts as Fun
import Cats.Category.Setoids.Facts
module _ {lo la l≈} {C : Category lo la l≈} {l l′} where
-- We don't just re-export the following definitions from Fun because
-- we want to fill in their instance arguments.
instance
hasBinaryProducts : HasBinaryProducts (Presheaves C l l′)
hasBinaryProducts = Fun.hasBinaryProducts
hasTerminal : HasTerminal (Presheaves C l l′)
hasTerminal = Fun.hasTerminal
hasFiniteProducts : HasFiniteProducts (Presheaves C l l′)
hasFiniteProducts = Fun.hasFiniteProducts
isCCC : ∀ {l} {C : Category l l l} → IsCCC (Presheaves C l l)
isCCC = record { hasFiniteProducts = Fun.hasFiniteProducts }
-- record {} complains about ambiguity. Don't know if this is my fault or a bug.
|
{
"alphanum_fraction": 0.7391304348,
"avg_line_length": 28.9142857143,
"ext": "agda",
"hexsha": "1f494170c7ccfeb2eb933859fdaaa62399fd455b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-18T15:35:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-18T15:35:07.000Z",
"max_forks_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JLimperg/cats",
"max_forks_repo_path": "Cats/Category/Presheaves/Facts.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JLimperg/cats",
"max_issues_repo_path": "Cats/Category/Presheaves/Facts.agda",
"max_line_length": 80,
"max_stars_count": 24,
"max_stars_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JLimperg/cats",
"max_stars_repo_path": "Cats/Category/Presheaves/Facts.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-06T05:00:46.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-03T15:18:57.000Z",
"num_tokens": 264,
"size": 1012
}
|
open import Relation.Binary.Core
module PLRTree.Drop.Heap {A : Set}
(_≤_ : A → A → Set)
(tot≤ : Total _≤_)
(trans≤ : Transitive _≤_) where
open import PLRTree {A}
open import PLRTree.Compound {A}
open import PLRTree.Drop _≤_ tot≤
open import PLRTree.DropLast.Heap _≤_ tot≤
open import PLRTree.Heap _≤_
open import PLRTree.Order.Properties {A}
open import PLRTree.Push.Heap _≤_ tot≤ trans≤
lemma-drop-heap : {t : PLRTree} → Heap t → Heap (drop t)
lemma-drop-heap leaf = leaf
lemma-drop-heap (node {t} {x} (lf≤* .x) (lf≤* .x) leaf leaf) = leaf
lemma-drop-heap (node {t} {x} {r = node t' x' l' r'} (lf≤* .x) (nd≤* x≤x' x≤*l' x≤*r') leaf (node x'≤*l' x'≤*r' hl' hr'))
with dropLast (node t x leaf (node t' x' l' r')) | lemma-dropLast-heap (node {t} (lf≤* x) (nd≤* {t'} x≤x' x≤*l' x≤*r') leaf (node x'≤*l' x'≤*r' hl' hr'))
... | leaf | leaf = leaf
... | node t'' x'' l'' r'' | node x''≤*l'' x''≤*r'' hl'' hr'' =
let z = last (node t x leaf (node t' x' l' r')) compound
in lemma-push-heap t'' z hl'' hr'' (≺-wf (node t'' z l'' r''))
lemma-drop-heap (node {t} {x} {l = node t' x' l' r'} {r} (nd≤* x≤x' x≤*l' x≤*r') x≤*r (node x'≤*l' x'≤*r' hl' hr') hr)
with dropLast (node t x (node t' x' l' r') r) | lemma-dropLast-heap (node {t} (nd≤* {t'} x≤x' x≤*l' x≤*r') x≤*r (node x'≤*l' x'≤*r' hl' hr') hr)
... | leaf | leaf = leaf
... | node t'' x'' l'' r'' | node x''≤*l'' x''≤*r'' hl'' hr'' =
let z = last (node t x (node t' x' l' r') r) compound
in lemma-push-heap t'' z hl'' hr'' (≺-wf (node t'' z l'' r''))
|
{
"alphanum_fraction": 0.5119852489,
"avg_line_length": 52.4838709677,
"ext": "agda",
"hexsha": "c6d0b84e3b62ede95e26c3b576c7e4b470fda263",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/PLRTree/Drop/Heap.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/PLRTree/Drop/Heap.agda",
"max_line_length": 159,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/PLRTree/Drop/Heap.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 713,
"size": 1627
}
|
module explore where
import Explore.BigDistr
import Explore.BinTree
import Explore.Core
import Explore.Dice
import Explore.Examples
import Explore.Explorable
import Explore.Fin
import Explore.Group
import Explore.GuessingGameFlipping
import Explore.Isomorphism
import Explore.Monad
import Explore.One
import Explore.Product
import Explore.Properties
import Explore.README
import Explore.Subset
import Explore.Sum
import Explore.Summable
import Explore.Two
import Explore.Universe
import Explore.Universe.Base
import Explore.Universe.FromE
import Explore.Universe.Type
import Explore.Zero
-- BROKEN import Explore.Explorable.Fun
-- BROKEN import Explore.Function.Fin
|
{
"alphanum_fraction": 0.8588588589,
"avg_line_length": 23.7857142857,
"ext": "agda",
"hexsha": "f408edf7b26b5b931f26735da1a7c90a480d0494",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "crypto-agda/explore",
"max_forks_repo_path": "explore.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "crypto-agda/explore",
"max_issues_repo_path": "explore.agda",
"max_line_length": 39,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "crypto-agda/explore",
"max_stars_repo_path": "explore.agda",
"max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z",
"num_tokens": 149,
"size": 666
}
|
module Bool where
data Bool : Set where
false : Bool
true : Bool
data IsTrue : Bool -> Set where
isTrue : IsTrue true
open import Vec
open import All
allEnvs : {n : Nat} -> List (Vec Bool n)
allEnvs {zero } = ε :: []
allEnvs {suc n} = map (_►_ false) allEnvs ++ map (_►_ true) allEnvs
∈++left : {A : Set}{x : A}{xs ys : List A} -> x ∈ xs -> x ∈ (xs ++ ys)
∈++left (hd p) = hd p
∈++left (tl q) = tl (∈++left q)
∈++right : {A : Set}{x : A}{xs ys : List A} -> x ∈ ys -> x ∈ (xs ++ ys)
∈++right {xs = []} p = p
∈++right {xs = x :: xs} p = tl (∈++right {xs = xs} p)
∈map : {A B : Set}{f : A -> B}{x : A}{xs : List A} -> x ∈ xs -> f x ∈ map f xs
∈map (hd refl) = hd refl
∈map (tl q) = tl (∈map q)
covered : {n : Nat} -> (xs : Vec Bool n) -> xs ∈ allEnvs
covered ε = hd refl
covered (false ► xs) = ∈++left (∈map (covered xs))
covered (true ► xs) = ∈++right {xs = map (_►_ false) allEnvs}
(∈map (covered xs))
Sat : {A : Set} -> (A -> Bool) -> A -> Set
Sat f x = IsTrue (f x)
lem₁ : {n : Nat}(f : Vec Bool n -> Bool) ->
All (Sat f) allEnvs -> (xs : Vec Bool n) -> Sat f xs
lem₁ f p xs with p ! covered xs
... | (.xs , p , refl) = p
data False : Set where
¬_ : Set -> Set
¬ P = P -> False
data _∨_ (A B : Set) : Set where
inl : A -> A ∨ B
inr : B -> A ∨ B
¬IsTrue-false : ¬ IsTrue false
¬IsTrue-false ()
decide : {A : Set}(p : A -> Bool)(x : A) ->
Sat p x ∨ ¬ Sat p x
decide p x with p x
... | true = inl isTrue
... | false = inr ¬IsTrue-false
all : {A : Set}(p : A -> Bool)(xs : List A) ->
All (Sat p) xs ∨ Some (\x -> ¬ Sat p x) xs
all p [] = inl ∅
all p (x :: xs) with decide p x
... | inr ¬px = inr (hd ¬px)
... | inl px with all p xs
... | inl ps = inl (px ▹ ps)
... | inr q = inr (tl q)
data NoProof : Set where
no-proof : NoProof
Proof : {n : Nat} -> (Vec Bool n -> Bool) -> Set
Proof {n} f with all f allEnvs
... | inl _ = (xs : Vec Bool n) -> Sat f xs
... | inr _ = NoProof
prove : {n : Nat}(f : Vec Bool n -> Bool) -> Proof f
prove f with all f allEnvs
... | inl ps = lem₁ f ps
... | inr _ = no-proof
|
{
"alphanum_fraction": 0.5011820331,
"avg_line_length": 25.4819277108,
"ext": "agda",
"hexsha": "2f41756f64def9e877e832f70b543ecc8bfb5b8a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/tactics/bool/Bool.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/tactics/bool/Bool.agda",
"max_line_length": 78,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/tactics/bool/Bool.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 832,
"size": 2115
}
|
open import Nat
open import Prelude
open import dynamics-core
open import contexts
open import lemmas-consistency
open import lemmas-disjointness
open import lemmas-matching
open import weakening
module typed-elaboration where
mutual
typed-elaboration-synth : {Γ : tctx} {e : hexp} {τ : htyp} {d : ihexp} {Δ : hctx} →
Γ ⊢ e ⇒ τ ~> d ⊣ Δ →
Δ , Γ ⊢ d :: τ
typed-elaboration-synth ESNum = TANum
typed-elaboration-synth (ESPlus dis apt x₁ x₂)
with typed-elaboration-ana x₁ | typed-elaboration-ana x₂
... | con1 , ih1 | con2 , ih2 = TAPlus (TACast (weaken-ta-Δ1 apt ih1) con1) (TACast (weaken-ta-Δ2 apt ih2) con2)
typed-elaboration-synth (ESVar x₁) = TAVar x₁
typed-elaboration-synth (ESLam x₁ ex) = TALam x₁ (typed-elaboration-synth ex)
typed-elaboration-synth (ESAp {Δ1 = Δ1} _ d x₁ x₂ x₃ x₄)
with typed-elaboration-ana x₃ | typed-elaboration-ana x₄
... | con1 , ih1 | con2 , ih2 = TAAp (TACast (weaken-ta-Δ1 d ih1) con1) (TACast (weaken-ta-Δ2 {Δ1 = Δ1} d ih2) con2)
typed-elaboration-synth (ESEHole {Γ = Γ} {u = u}) with natEQ u u
... | Inr u≠u = abort (u≠u refl)
... | Inl refl = TAEHole (x∈■ u (Γ , ⦇-⦈)) (STAId (λ x τ z → z))
typed-elaboration-synth (ESNEHole {Γ = Γ} {τ = τ} {u = u} {Δ = Δ} (d1 , d2) ex)
with typed-elaboration-synth ex
... | ih1 = TANEHole {Δ = Δ ,, (u , Γ , ⦇-⦈)} (ctx-top Δ u (Γ , ⦇-⦈) (d2 u (lem-domsingle _ _))) (weaken-ta-Δ2 (d2 , d1) ih1) (STAId (λ x τ₁ z → z))
typed-elaboration-synth (ESAsc x)
with typed-elaboration-ana x
... | con , ih = TACast ih con
typed-elaboration-synth (ESPair x x₁ x₂ x₃)
with typed-elaboration-synth x₂ | typed-elaboration-synth x₃
... | ih1 | ih2 = TAPair (weaken-ta-Δ1 x₁ ih1) (weaken-ta-Δ2 x₁ ih2)
typed-elaboration-synth (ESFst x x₁ x₂)
with typed-elaboration-ana x₂
... | con , ih = TAFst (TACast ih con)
typed-elaboration-synth (ESSnd x x₁ x₂)
with typed-elaboration-ana x₂
... | con , ih = TASnd (TACast ih con)
typed-elaboration-ana : {Γ : tctx} {e : hexp} {τ τ' : htyp} {d : ihexp} {Δ : hctx} →
Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ →
(τ' ~ τ) × (Δ , Γ ⊢ d :: τ')
typed-elaboration-ana (EALam x₁ MAHole ex)
with typed-elaboration-ana ex
... | con , D = TCHole1 , TALam x₁ D
typed-elaboration-ana (EALam x₁ MAArr ex)
with typed-elaboration-ana ex
... | con , D = TCArr TCRefl con , TALam x₁ D
typed-elaboration-ana (EASubsume x x₁ x₂ x₃) = ~sym x₃ , typed-elaboration-synth x₂
typed-elaboration-ana (EAEHole {Γ = Γ} {u = u}) = TCRefl , TAEHole (x∈■ u (Γ , _)) (STAId (λ x τ z → z))
typed-elaboration-ana (EANEHole {Γ = Γ} {u = u} {τ = τ} {Δ = Δ} (d1 , d2) x)
with typed-elaboration-synth x
... | ih1 = TCRefl , TANEHole {Δ = Δ ,, (u , Γ , τ)} (ctx-top Δ u (Γ , τ) (d2 u (lem-domsingle _ _)) ) (weaken-ta-Δ2 (d2 , d1) ih1) (STAId (λ x₁ τ₁ z → z))
typed-elaboration-ana (EAInl MSHole x₁)
with typed-elaboration-ana x₁
... | con , D = TCHole1 , TAInl D
typed-elaboration-ana (EAInl MSSum x₁)
with typed-elaboration-ana x₁
... | con , D = TCSum con TCRefl , TAInl D
typed-elaboration-ana (EAInr MSHole x₁)
with typed-elaboration-ana x₁
... | con , D = TCHole1 , TAInr D
typed-elaboration-ana (EAInr MSSum x₁)
with typed-elaboration-ana x₁
... | con , D = TCSum TCRefl con , TAInr D
typed-elaboration-ana (EACase x x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈ x₉ x₁₀ x₁₁)
with typed-elaboration-synth x₈ |
typed-elaboration-ana x₁₀ | typed-elaboration-ana x₁₁
... | D | con1 , D1 | con2 , D2 =
let Δ##Δ1∪Δ2 = ##-comm (disjoint-parts (##-comm x₃) (##-comm x₄))
in let wtd = TACast (weaken-ta-Δ1 Δ##Δ1∪Δ2 D) (▸sum-consist x₉)
in let wtd1 = TACast (weaken-ta-Δ2 Δ##Δ1∪Δ2 (weaken-ta-Δ1 x₅ D1)) con1
in let wtd2 = TACast (weaken-ta-Δ2 Δ##Δ1∪Δ2 (weaken-ta-Δ2 x₅ D2)) con2
in let wt = TACase wtd x₆ wtd1 x₇ wtd2
in TCRefl , wt
|
{
"alphanum_fraction": 0.587631386,
"avg_line_length": 51.7848101266,
"ext": "agda",
"hexsha": "3980488e59af79655d05ed09085b6bc72a18f024",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-agda",
"max_forks_repo_path": "typed-elaboration.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-agda",
"max_issues_repo_path": "typed-elaboration.agda",
"max_line_length": 159,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-agda",
"max_stars_repo_path": "typed-elaboration.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1718,
"size": 4091
}
|
{-# OPTIONS --without-K --safe #-}
-- Adjoint Functor Theorem
module Categories.Adjoint.AFT where
open import Level
open import Data.Product
open import Data.Product using (Σ)
open import Categories.Category
open import Categories.Category.Complete
open import Categories.Category.Complete.Properties
open import Categories.Category.Construction.Cones
open import Categories.Category.Construction.Comma
open import Categories.Functor
open import Categories.Functor.Limits
open import Categories.Functor.Properties
open import Categories.Adjoint
open import Categories.Adjoint.Properties
open import Categories.Diagram.Limit as Lim
open import Categories.Diagram.Cone.Properties
open import Categories.Morphism as Mor
open import Categories.Morphism.Universal
import Categories.Adjoint.AFT.SolutionSet as SS
import Categories.Morphism.Reasoning as MR
private
variable
o ℓ e : Level
C D : Category o ℓ e
module _ {R : Functor C D} where
private
module C = Category C
module D = Category D
module R = Functor R
o-level : Level
o-level = C.o-level ⊔ C.ℓ-level ⊔ D.ℓ-level ⊔ D.e-level
ℓ-level : Level
ℓ-level = C.o-level ⊔ C.ℓ-level ⊔ D.ℓ-level ⊔ D.e-level
e-level : Level
e-level = C.o-level ⊔ C.ℓ-level ⊔ D.ℓ-level ⊔ D.e-level
open SS R using (SolutionSet′)
module _ {L : Functor D C} (L⊣R : L ⊣ R) where
private
module L = Functor L
open Adjoint L⊣R
L⊣R⇒solutionSet′ : SolutionSet′
L⊣R⇒solutionSet′ = record
{ S₀ = λ {_ X} _ → L.₀ X
; S₁ = Radjunct
; ϕ = λ _ → unit.η _
; commute = λ _ → LRadjunct≈id
}
module _ (Com : Complete o-level ℓ-level e-level C)
(Rcon : Continuous o-level ℓ-level e-level R)
(s : SolutionSet′) where
open SolutionSet′ s
open D.Equiv
open D.HomReasoning
open MR D
private
module _ X where
X↙R : Category (C.o-level ⊔ D.ℓ-level) (C.ℓ-level ⊔ D.e-level) C.e-level
X↙R = X ↙ R
module X↙R = Category X↙R
s′ : SolutionSet X↙R
s′ = record
{ D = D′
; arr = arr′
}
where D′ : X↙R.Obj → X↙R.Obj
D′ Z = record
{ f = ϕ Z.f
}
where module Z = CommaObj Z
arr′ : ∀ Z → X↙R [ D′ Z , Z ]
arr′ Z = record
{ h = S₁ Z.f
; commute = commute _ ○ ⟺ D.identityʳ
}
where module Z = CommaObj Z
open D.HomReasoning
module _ {J : Category o-level ℓ-level e-level} (F : Functor J X↙R) where
module J = Category J
module F = Functor F
F′ : Functor J C
F′ = Cod _ _ ∘F F
LimF′ : Limit F′
LimF′ = Com F′
module LimF′ = Limit LimF′
RLimF′ : Cone (R ∘F F′)
RLimF′ = F-map-Coneˡ R LimF′.limit
module RLimF′ = Cone _ RLimF′
LimRF′ : Limit (R ∘F F′)
LimRF′ = record
{ terminal = record
{ ⊤ = RLimF′
; ⊤-is-terminal = Rcon LimF′
}
}
module LimRF′ = Limit LimRF′
coneF : Cone (R ∘F F′)
coneF = record
{ N = X
; apex = record
{ ψ = λ j → CommaObj.f (F.₀ j)
; commute = λ f → Comma⇒.commute (F.₁ f) ○ D.identityʳ
}
}
⊤-arr : Cone⇒ (R ∘F F′) coneF RLimF′
⊤-arr = LimRF′.rep-cone coneF
module ⊤-arr = Cone⇒ (R ∘F F′) ⊤-arr
⊤ : Cone F
⊤ = record
{ N = record
{ f = ⊤-arr.arr
}
; apex = record
{ ψ = λ j → record
{ h = LimF′.proj j
; commute = begin
R.₁ (LimF′.proj j) D.∘ ⊤-arr.arr ≈⟨ ⊤-arr.commute ⟩
CommaObj.f (F.₀ j) ≈˘⟨ D.identityʳ ⟩
CommaObj.f (F.₀ j) D.∘ D.id ∎
}
; commute = λ f → -, LimF′.limit-commute f
}
}
K-conv : Cone F → Cone F′
K-conv = F-map-Coneˡ (Cod _ _)
K-conv′ : Cone F → Cone (R ∘F F′)
K-conv′ K = F-map-Coneˡ R (K-conv K)
! : (K : Cone F) → Cones F [ K , ⊤ ]
! K = record
{ arr = record
{ h = LimF′.rep (K-conv K)
; commute = ⟺ (LimRF′.terminal.!-unique (record
{ arr = R.₁ (LimF′.rep (K-conv K)) D.∘ CommaObj.f N
; commute = λ {j} → begin
LimRF′.proj j D.∘ R.₁ (LimF′.rep (K-conv K)) D.∘ CommaObj.f N
≈⟨ pullˡ ([ R ]-resp-∘ LimF′.commute) ⟩
R.₁ (Comma⇒.h (ψ j)) D.∘ CommaObj.f N
≈⟨ Comma⇒.commute (ψ j) ⟩
CommaObj.f (F.F₀ j) D.∘ D.id
≈⟨ D.identityʳ ⟩
CommaObj.f (F.₀ j)
∎
})) ○ ⟺ D.identityʳ
}
; commute = -, LimF′.commute
}
where open Cone _ K
!-unique : {K : Cone F} (f : Cones F [ K , ⊤ ]) → Cones F [ ! K ≈ f ]
!-unique f = -, LimF′.terminal.!-unique record
{ arr = Comma⇒.h f.arr
; commute = proj₂ f.commute
}
where module f = Cone⇒ _ f
complete : Limit F
complete = record
{ terminal = record
{ ⊤ = ⊤
; ⊤-is-terminal = record
{ ! = ! _
; !-unique = !-unique
}
}
}
solutionSet′⇒universalMorphism : UniversalMorphism X R
solutionSet′⇒universalMorphism = record
{ initial = SolutionSet⇒Initial {o′ = 0ℓ} {0ℓ} {0ℓ} {C = X ↙ R} complete s′
}
solutionSet⇒adjoint : Σ (Functor D C) (λ L → L ⊣ R)
solutionSet⇒adjoint = universalMophisms⇒adjoint solutionSet′⇒universalMorphism
|
{
"alphanum_fraction": 0.4709150327,
"avg_line_length": 30.297029703,
"ext": "agda",
"hexsha": "19d378cebdddfb5e5bad83cdfed9f424ddc89b59",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Adjoint/AFT.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Adjoint/AFT.agda",
"max_line_length": 85,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Adjoint/AFT.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 1919,
"size": 6120
}
|
{-# OPTIONS --cubical --safe #-}
module Equiv where
open import Agda.Builtin.Cubical.Glue public
using ( isEquiv
; equiv-proof
; _≃_)
open import Cubical.Foundations.Everything public using (ua)
open import Cubical.Foundations.Equiv public
using (equivToIso; isPropIsEquiv)
renaming (compEquiv to trans-≃; invEquiv to sym-≃)
|
{
"alphanum_fraction": 0.7171428571,
"avg_line_length": 25,
"ext": "agda",
"hexsha": "e72900c11f9017396ebd1b92e345693e43f13651",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Equiv.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Equiv.agda",
"max_line_length": 60,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Equiv.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 107,
"size": 350
}
|
open import Agda.Builtin.Equality
open import Agda.Builtin.Nat
data ⊥ : Set where
data Zero : Set where
zero : Zero
data One : Set where
suc : Zero → One
one : One
one = suc zero
data _≤_ : One → Zero → Set where
leq : ∀ m n → Nat → Nat → m ≤ n → ⊥
leq (suc m) zero = λ i j ()
test : Nat → one ≤ zero → ⊥
test = leq one zero 5
-- Normalise: test
-- Expected: λ j ()
|
{
"alphanum_fraction": 0.6052631579,
"avg_line_length": 14.6153846154,
"ext": "agda",
"hexsha": "506948505ddaf8057e5aec22499bca16da888694",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue3002.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue3002.agda",
"max_line_length": 35,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue3002.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 136,
"size": 380
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Categories.Functor where
open import Cubical.Categories.Functor.Base public
open import Cubical.Categories.Functor.Properties public
open import Cubical.Categories.Functor.Compose public
|
{
"alphanum_fraction": 0.8117647059,
"avg_line_length": 31.875,
"ext": "agda",
"hexsha": "3e7ddc0cca7a24fe079ff1deedffeaf9839218f8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Edlyr/cubical",
"max_forks_repo_path": "Cubical/Categories/Functor.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Edlyr/cubical",
"max_issues_repo_path": "Cubical/Categories/Functor.agda",
"max_line_length": 56,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Edlyr/cubical",
"max_stars_repo_path": "Cubical/Categories/Functor.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 56,
"size": 255
}
|
module Oscar.Data.Maybe.properties where
open import Data.Maybe public using (maybe)
|
{
"alphanum_fraction": 0.8045977011,
"avg_line_length": 17.4,
"ext": "agda",
"hexsha": "550b76125d6ec13c7a5c8992a7e3f96cc3a142f9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/Data/Maybe/properties.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/Data/Maybe/properties.agda",
"max_line_length": 43,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/Data/Maybe/properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 17,
"size": 87
}
|
module STLC2.Kovacs.Convertibility where
open import STLC2.Kovacs.Substitution public
--------------------------------------------------------------------------------
-- Convertibility (_~_ ; ~refl ; _~⁻¹ ; lam ; app ; β ; η)
infix 3 _∼_
data _∼_ : ∀ {Γ A} → Γ ⊢ A → Γ ⊢ A → Set
where
refl∼ : ∀ {Γ A} → {M : Γ ⊢ A}
→ M ∼ M
_⁻¹∼ : ∀ {Γ A} → {M₁ M₂ : Γ ⊢ A}
→ (p : M₁ ∼ M₂)
→ M₂ ∼ M₁
_⦙∼_ : ∀ {Γ A} → {M₁ M₂ M₃ : Γ ⊢ A}
→ (p : M₁ ∼ M₂) (q : M₂ ∼ M₃)
→ M₁ ∼ M₃
ƛ∼ : ∀ {Γ A B} → {M₁ M₂ : Γ , A ⊢ B}
→ (p : M₁ ∼ M₂)
→ ƛ M₁ ∼ ƛ M₂
_∙∼_ : ∀ {Γ A B} → {M₁ M₂ : Γ ⊢ A ⇒ B} {N₁ N₂ : Γ ⊢ A}
→ (p : M₁ ∼ M₂) (q : N₁ ∼ N₂)
→ M₁ ∙ N₁ ∼ M₂ ∙ N₂
_,∼_ : ∀ {Γ A B} → {M₁ M₂ : Γ ⊢ A} {N₁ N₂ : Γ ⊢ B}
→ (p : M₁ ∼ M₂) (q : N₁ ∼ N₂)
→ M₁ , N₁ ∼ M₂ , N₂
π₁∼ : ∀ {Γ A B} → {M₁ M₂ : Γ ⊢ A ⩕ B}
→ (p : M₁ ∼ M₂)
→ π₁ M₁ ∼ π₁ M₂
π₂∼ : ∀ {Γ A B} → {M₁ M₂ : Γ ⊢ A ⩕ B}
→ (p : M₁ ∼ M₂)
→ π₂ M₁ ∼ π₂ M₂
φ∼ : ∀ {Γ C} → {M₁ M₂ : Γ ⊢ ⫫}
→ (p : M₁ ∼ M₂)
→ φ {C = C} M₁ ∼ φ M₂
ι₁∼ : ∀ {Γ A B} → {M₁ M₂ : Γ ⊢ A}
→ (p : M₁ ∼ M₂)
→ ι₁ {B = B} M₁ ∼ ι₁ M₂
ι₂∼ : ∀ {Γ A B} → {M₁ M₂ : Γ ⊢ B}
→ (p : M₁ ∼ M₂)
→ ι₂ {A = A} M₁ ∼ ι₂ M₂
_⁇∼_∥∼_ : ∀ {Γ A B C} → {M₁ M₂ : Γ ⊢ A ⩖ B}
{N₁₁ N₁₂ : Γ , A ⊢ C} {N₂₁ N₂₂ : Γ , B ⊢ C}
→ (p : M₁ ∼ M₂) (q₁ : N₁₁ ∼ N₁₂) (q₂ : N₂₁ ∼ N₂₂)
→ M₁ ⁇ N₁₁ ∥ N₂₁ ∼ M₂ ⁇ N₁₂ ∥ N₂₂
red⇒ : ∀ {Γ A B} → (M : Γ , A ⊢ B) (N : Γ ⊢ A)
→ (ƛ M) ∙ N ∼ cut N M
red⩕₁ : ∀ {Γ A B} → (M : Γ ⊢ A) (N : Γ ⊢ B)
→ π₁ (M , N) ∼ M
red⩕₂ : ∀ {Γ A B} → (M : Γ ⊢ A) (N : Γ ⊢ B)
→ π₂ (M , N) ∼ N
red⩖₁ : ∀ {Γ A B C} → (M : Γ ⊢ A) (N₁ : Γ , A ⊢ C) (N₂ : Γ , B ⊢ C)
→ ι₁ M ⁇ N₁ ∥ N₂ ∼ cut M N₁
red⩖₂ : ∀ {Γ A B C} → (M : Γ ⊢ B) (N₁ : Γ , A ⊢ C) (N₂ : Γ , B ⊢ C)
→ ι₂ M ⁇ N₁ ∥ N₂ ∼ cut M N₂
exp⇒ : ∀ {Γ A B} → (M : Γ ⊢ A ⇒ B)
→ M ∼ ƛ (wk M ∙ 0)
exp⩕ : ∀ {Γ A B} → (M : Γ ⊢ A ⩕ B)
→ M ∼ π₁ M , π₂ M
exp⫪ : ∀ {Γ} → (M : Γ ⊢ ⫪)
→ M ∼ τ
exp⩖ : ∀ {Γ A B} → (M : Γ ⊢ A ⩖ B)
→ M ∼ M ⁇ ι₁ 0 ∥ ι₂ 0
comm⫫∙ : ∀ {Γ A B} → (M : Γ ⊢ ⫫) (N : Γ ⊢ A)
→ _∙_ {A = A} {B} (φ M) N ∼ φ M
comm⫫π₁ : ∀ {Γ A B} → (M : Γ ⊢ ⫫)
→ π₁ {A = A} {B} (φ M) ∼ φ M
comm⫫π₂ : ∀ {Γ A B} → (M : Γ ⊢ ⫫)
→ π₂ {A = A} {B} (φ M) ∼ φ M
comm⫫φ : ∀ {Γ C} → (M : Γ ⊢ ⫫)
→ φ {C = C} (φ M) ∼ φ M
comm⫫⁇∥ : ∀ {Γ A B C} → (M : Γ ⊢ ⫫) (N₁ : Γ , A ⊢ C) (N₂ : Γ , B ⊢ C)
→ φ M ⁇ N₁ ∥ N₂ ∼ φ M
comm⩖∙ : ∀ {Γ A B C D} → (M : Γ ⊢ A ⩖ B)
(N₁ : Γ , A ⊢ C ⇒ D)
(N₂ : Γ , B ⊢ C ⇒ D)
(O : Γ ⊢ C)
→ (M ⁇ N₁ ∥ N₂) ∙ O ∼
M ⁇ (N₁ ∙ wk O) ∥ (N₂ ∙ wk O)
comm⩖π₁ : ∀ {Γ A B C D} → (M : Γ ⊢ A ⩖ B)
(N₁ : Γ , A ⊢ C ⩕ D)
(N₂ : Γ , B ⊢ C ⩕ D)
→ π₁ (M ⁇ N₁ ∥ N₂) ∼
M ⁇ (π₁ N₁) ∥ (π₁ N₂)
comm⩖π₂ : ∀ {Γ A B C D} → (M : Γ ⊢ A ⩖ B)
(N₁ : Γ , A ⊢ C ⩕ D)
(N₂ : Γ , B ⊢ C ⩕ D)
→ π₂ (M ⁇ N₁ ∥ N₂) ∼
M ⁇ (π₂ N₁) ∥ (π₂ N₂)
comm⩖φ : ∀ {Γ A B C} → (M : Γ ⊢ A ⩖ B)
(N₁ : Γ , A ⊢ ⫫)
(N₂ : Γ , B ⊢ ⫫)
→ φ {C = C} (M ⁇ N₁ ∥ N₂) ∼
M ⁇ (φ N₁) ∥ (φ N₂)
comm⩖⁇∥ : ∀ {Γ A B C D E} → (M : Γ ⊢ A ⩖ B)
(N₁ : Γ , A ⊢ C ⩖ D)
(N₂ : Γ , B ⊢ C ⩖ D)
(O₁ : Γ , C ⊢ E)
(O₂ : Γ , D ⊢ E)
→ (M ⁇ N₁ ∥ N₂) ⁇ O₁ ∥ O₂ ∼
M ⁇ (N₁ ⁇ liftwk O₁ ∥ liftwk O₂)
∥ (N₂ ⁇ liftwk O₁ ∥ liftwk O₂)
≡→∼ : ∀ {Γ A} → {M₁ M₂ : Γ ⊢ A}
→ M₁ ≡ M₂
→ M₁ ∼ M₂
≡→∼ refl = refl∼
instance
per∼ : ∀ {Γ A} → PER (Γ ⊢ A) _∼_
per∼ =
record
{ _⁻¹ = _⁻¹∼
; _⦙_ = _⦙∼_
}
--------------------------------------------------------------------------------
renwk : ∀ {Γ Γ′ A B} → (η : Γ′ ⊇ Γ) (M : Γ ⊢ A)
→ (wk {B} ∘ ren η) M ≡
(ren (liftₑ η) ∘ wk) M
renwk η M = ren○ (wkₑ idₑ) η M ⁻¹
⦙ (λ η′ → ren (wkₑ η′) M) & ( rid○ η
⦙ lid○ η ⁻¹
)
⦙ ren○ (liftₑ η) (wkₑ idₑ) M
renliftwk : ∀ {Γ Γ′ A B C} → (η : Γ′ ⊇ Γ) (M : Γ , A ⊢ B)
→ (liftwk {C} ∘ ren (liftₑ η)) M ≡
(ren (liftₑ (liftₑ η)) ∘ liftwk) M
renliftwk η M = ren○ (liftₑ (wkₑ idₑ)) (liftₑ η) M ⁻¹
⦙ (λ η′ → ren (liftₑ (wkₑ η′)) M) & ( rid○ η
⦙ lid○ η ⁻¹
)
⦙ ren○ (liftₑ (liftₑ η)) (liftₑ (wkₑ idₑ)) M
rencut : ∀ {Γ Γ′ A B} → (η : Γ′ ⊇ Γ) (M : Γ ⊢ A) (N : Γ , A ⊢ B)
→ (cut (ren η M) ∘ ren (liftₑ η)) N ≡
(ren η ∘ cut M) N
rencut η M N = sub◑ (idₛ , ren η M) (liftₑ η) N ⁻¹
⦙ (λ σ → sub (σ , ren η M) N) & ( rid◑ η
⦙ lid◐ η ⁻¹
)
⦙ sub◐ η (idₛ , M) N
-- (~ₑ)
ren∼ : ∀ {Γ Γ′ A} → {M₁ M₂ : Γ ⊢ A}
→ (η : Γ′ ⊇ Γ) → M₁ ∼ M₂
→ ren η M₁ ∼ ren η M₂
ren∼ η refl∼ = refl∼
ren∼ η (p ⁻¹∼) = ren∼ η p ⁻¹
ren∼ η (p ⦙∼ q) = ren∼ η p ⦙ ren∼ η q
ren∼ η (ƛ∼ p) = ƛ∼ (ren∼ (liftₑ η) p)
ren∼ η (p ∙∼ q) = ren∼ η p ∙∼ ren∼ η q
ren∼ η (p ,∼ q) = ren∼ η p ,∼ ren∼ η q
ren∼ η (π₁∼ p) = π₁∼ (ren∼ η p)
ren∼ η (π₂∼ p) = π₂∼ (ren∼ η p)
ren∼ η (φ∼ p) = φ∼ (ren∼ η p)
ren∼ η (ι₁∼ p) = ι₁∼ (ren∼ η p)
ren∼ η (ι₂∼ p) = ι₂∼ (ren∼ η p)
ren∼ η (p ⁇∼ q₁ ∥∼ q₂) = ren∼ η p ⁇∼ ren∼ (liftₑ η) q₁
∥∼ ren∼ (liftₑ η) q₂
ren∼ η (red⇒ M N)
= coe (((ƛ (ren (liftₑ η) M) ∙ ren η N) ∼_)
& rencut η N M)
(red⇒ (ren (liftₑ η) M) (ren η N))
ren∼ η (red⩕₁ M N) = red⩕₁ (ren η M) (ren η N)
ren∼ η (red⩕₂ M N) = red⩕₂ (ren η M) (ren η N)
ren∼ η (red⩖₁ M N₁ N₂)
= coe (((ι₁ (ren η M) ⁇ ren (liftₑ η) N₁
∥ ren (liftₑ η) N₂) ∼_)
& rencut η M N₁)
(red⩖₁ (ren η M)
(ren (liftₑ η) N₁)
(ren (liftₑ η) N₂))
ren∼ η (red⩖₂ M N₁ N₂)
= coe (((ι₂ (ren η M) ⁇ ren (liftₑ η) N₁
∥ ren (liftₑ η) N₂) ∼_)
& rencut η M N₂)
(red⩖₂ (ren η M)
(ren (liftₑ η) N₁)
(ren (liftₑ η) N₂))
ren∼ η (exp⇒ M)
= coe ((λ M′ → ren η M ∼ ƛ (M′ ∙ 0))
& renwk η M)
(exp⇒ (ren η M))
ren∼ η (exp⩕ M) = exp⩕ (ren η M)
ren∼ η (exp⫪ M) = exp⫪ (ren η M)
ren∼ η (exp⩖ M) = exp⩖ (ren η M)
ren∼ η (comm⫫∙ M N) = comm⫫∙ (ren η M) (ren η N)
ren∼ η (comm⫫π₁ M) = comm⫫π₁ (ren η M)
ren∼ η (comm⫫π₂ M) = comm⫫π₂ (ren η M)
ren∼ η (comm⫫φ M) = comm⫫φ (ren η M)
ren∼ η (comm⫫⁇∥ M N₁ N₂) = comm⫫⁇∥ (ren η M)
(ren (liftₑ η) N₁)
(ren (liftₑ η) N₂)
ren∼ η (comm⩖∙ M N₁ N₂ O)
= coe ((((ren η M ⁇ ren (liftₑ η) N₁
∥ ren (liftₑ η) N₂) ∙ ren η O ) ∼_)
& ((λ N₁′ N₂′ → ren η M ⁇ N₁′ ∥ N₂′)
& ((λ O′ → ren (liftₑ η) N₁ ∙ O′)
& renwk η O)
⊗ ((λ O′ → ren (liftₑ η) N₂ ∙ O′)
& renwk η O)))
(comm⩖∙ (ren η M)
(ren (liftₑ η) N₁)
(ren (liftₑ η) N₂)
(ren η O))
ren∼ η (comm⩖π₁ M N₁ N₂) = comm⩖π₁ (ren η M)
(ren (liftₑ η) N₁)
(ren (liftₑ η) N₂)
ren∼ η (comm⩖π₂ M N₁ N₂) = comm⩖π₂ (ren η M)
(ren (liftₑ η) N₁)
(ren (liftₑ η) N₂)
ren∼ η (comm⩖φ M N₁ N₂) = comm⩖φ (ren η M)
(ren (liftₑ η) N₁)
(ren (liftₑ η) N₂)
ren∼ η (comm⩖⁇∥ M N₁ N₂ O₁ O₂)
= coe ((((ren η M ⁇ ren (liftₑ η) N₁
∥ ren (liftₑ η) N₂) ⁇ ren (liftₑ η) O₁
∥ ren (liftₑ η) O₂) ∼_)
& ((λ N₁′ N₂′ → ren η M ⁇ N₁′ ∥ N₂′)
& ((λ O₁′ O₂′ → ren (liftₑ η) N₁ ⁇ O₁′ ∥ O₂′)
& renliftwk η O₁ ⊗ renliftwk η O₂)
⊗ ((λ O₁′ O₂′ → ren (liftₑ η) N₂ ⁇ O₁′ ∥ O₂′)
& renliftwk η O₁ ⊗ renliftwk η O₂)))
(comm⩖⁇∥ (ren η M)
(ren (liftₑ η) N₁)
(ren (liftₑ η) N₂)
(ren (liftₑ η) O₁)
(ren (liftₑ η) O₂))
--------------------------------------------------------------------------------
|
{
"alphanum_fraction": 0.2577934135,
"avg_line_length": 35.6550522648,
"ext": "agda",
"hexsha": "214ceefe248fe68560db0bd300f13e7fa1a106d9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/coquand-kovacs",
"max_forks_repo_path": "src/STLC2/Kovacs/Convertibility.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/coquand-kovacs",
"max_issues_repo_path": "src/STLC2/Kovacs/Convertibility.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/coquand-kovacs",
"max_stars_repo_path": "src/STLC2/Kovacs/Convertibility.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4491,
"size": 10233
}
|
module Algebra.Dioid where
record Dioid A (_≡_ : A -> A -> Set) : Set where
field
zero : A
one : A
_+_ : A -> A -> A
_*_ : A -> A -> A
reflexivity : ∀ {r : A} -> r ≡ r
symmetry : ∀ {r s : A} -> r ≡ s -> s ≡ r
transitivity : ∀ {r s t : A} -> r ≡ s -> s ≡ t -> r ≡ t
+left-congruence : ∀ {r s t : A} -> r ≡ s -> (r + t) ≡ (s + t)
-- +right-congruence holds but as a theorem, please see below
*left-congruence : ∀ {r s t : A} -> r ≡ s -> (r * t) ≡ (s * t)
*right-congruence : ∀ {r s t : A} -> r ≡ s -> (t * r) ≡ (t * s)
+idempotence : ∀ {r : A} -> (r + r) ≡ r
+commutativity : ∀ {r s : A} -> (r + s) ≡ (s + r)
+associativity : ∀ {r s t : A} -> (r + (s + t)) ≡ ((r + s) + t)
+zero-identity : ∀ {r : A} -> (r + zero) ≡ r
*associativity : ∀ {r s t : A} -> (r * (s * t)) ≡ ((r * s) * t)
*left-zero : ∀ {r : A} -> (zero * r) ≡ zero
*right-zero : ∀ {r : A} -> (r * zero) ≡ zero
*left-identity : ∀ {r : A} -> (one * r) ≡ r
*right-identity : ∀ {r : A} -> (r * one) ≡ r
left-distributivity : ∀ {r s t : A} -> (r * (s + t)) ≡ ((r * s) + (r * t))
right-distributivity : ∀ {r s t : A} -> ((r + s) * t) ≡ ((r * t) + (s * t))
-- For convenience to avoid `Dioid._+_ d r s`
plus : A -> A -> A
plus x y = x + y
times : A -> A -> A
times x y = x * y
+right-congruence : ∀ {D eq} {d : Dioid D eq} {r s t : D} -> eq r s -> eq (Dioid.plus d t r) (Dioid.plus d t s)
+right-congruence {_} {_} {d} {r} {s} {t} e = trans commut (trans (Dioid.+left-congruence d e) commut)
where
trans = Dioid.transitivity d
commut = Dioid.+commutativity d
|
{
"alphanum_fraction": 0.4163802978,
"avg_line_length": 38.8,
"ext": "agda",
"hexsha": "fdb959123b24fa66fbb299406cebe83e7a0ecdb7",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2019-05-09T23:53:28.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-12-17T20:48:20.000Z",
"max_forks_repo_head_hexsha": "0fdb96c0233d9be83eba637f0434d0fd22aefb1d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "snowleopard/alga-proofs",
"max_forks_repo_path": "src/Algebra/Dioid.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "0fdb96c0233d9be83eba637f0434d0fd22aefb1d",
"max_issues_repo_issues_event_max_datetime": "2018-06-23T13:54:02.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-04-12T16:25:13.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "snowleopard/alga-proofs",
"max_issues_repo_path": "src/Algebra/Dioid.agda",
"max_line_length": 111,
"max_stars_count": 60,
"max_stars_repo_head_hexsha": "0fdb96c0233d9be83eba637f0434d0fd22aefb1d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "snowleopard/alga-proofs",
"max_stars_repo_path": "src/Algebra/Dioid.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T23:05:29.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-12-27T14:57:04.000Z",
"num_tokens": 736,
"size": 1746
}
|
------------------------------------------------------------------------
-- Pointers to results from the paper
------------------------------------------------------------------------
module README.Pointers-to-results-from-the-paper where
open import Prelude using (Type)
open import Prelude.Size using (∞)
import Colist
import Conat
import Omniscience
import Delay-monad
import Delay-monad.Bisimilarity
import Delay-monad.Monad
import Delay-monad.Quantitative-weak-bisimilarity
import Only-allocation
import Unbounded-space
import Upper-bounds
import Lambda.Compiler
import Lambda.Compiler-correctness
import Lambda.Compiler-correctness.Sizes-match
import Lambda.Compiler-correctness.Steps-match
import Lambda.Delay-crash
import Lambda.Delay-crash-trace
import Lambda.Interpreter
import Lambda.Interpreter.Stack-sizes
import Lambda.Interpreter.Stack-sizes.Counterexample
import Lambda.Interpreter.Stack-sizes.Example
import Lambda.Interpreter.Steps
import Lambda.Interpreter.Steps.Counterexample
import Lambda.Virtual-machine
import Lambda.Virtual-machine.Instructions
import Lambda.Syntax
------------------------------------------------------------------------
-- Section 2
-- Conatural numbers.
Conat = Conat.Conat
Conat′ = Conat.Conat′
-- Infinity.
infinity = Conat.infinity
-- Ordering.
[_]_≤_ = Conat.[_]_≤_
[_]_≤′_ = Conat.[_]_≤′_
-- Bisimilarity.
[_]_∼N_ = Conat.[_]_∼_
------------------------------------------------------------------------
-- Section 3
-- Programs.
Stmt = Only-allocation.Stmt
Program = Only-allocation.Program
-- Colists.
Colist = Colist.Colist
-- The interpreter.
modify = Unbounded-space.modify
⟦_⟧₁ = Unbounded-space.⟦_⟧
⟦_⟧′ = Unbounded-space.⟦_⟧′
-- Upper bounds.
[_]_⊑_ = Upper-bounds.[_]_⊑_
[_]_⊑′_ = Upper-bounds.[_]_⊑′_
-- The □ predicate.
□ = Colist.□
-- Least upper bounds.
LUB = Upper-bounds.LUB
-- Least upper bounds are unique up to bisimilarity.
lub-unique = Upper-bounds.lub-unique
-- Antisymmetry for conatural numbers.
antisymmetric = Conat.antisymmetric-≤
-- WLPO.
WLPO = Omniscience.WLPO
-- WLPO is classically valid: it follows from excluded middle and
-- extensionality for functions.
LEM→WLPO = Omniscience.LEM→WLPO
-- WLPO is logically equivalent to one formulation of "least upper
-- bounds exist for every colist".
wlpo⇔lub = Unbounded-space.wlpo⇔lub
-- Maximum heap usage.
Heap-usage = Unbounded-space.Heap-usage
-- This was not mentioned in the paper, but WLPO is also logically
-- equivalent to one formulation of "maximum heap usages exist for
-- every program".
wlpo⇔max = Unbounded-space.wlpo⇔max
-- The maximum heap usage is unique up to bisimilarity.
max-unique = Unbounded-space.max-unique
-- Some examples.
bounded = Only-allocation.bounded
bounded₂ = Only-allocation.bounded₂
unbounded = Only-allocation.unbounded
_∷′_ = Colist._∷′_
-- The example programs have infinitely long traces.
bounded-loops = Unbounded-space.bounded-loops
bounded₂-loops = Unbounded-space.bounded₂-loops
unbounded-loops = Unbounded-space.unbounded-loops
-- Properties showing that the example programs have certain maximum
-- heap usages.
max-bounded-1 = Unbounded-space.max-bounded-1
max-bounded₂-2 = Unbounded-space.max-bounded₂-2
max-unbounded-∞ = Unbounded-space.max-unbounded-∞
-- If no natural number is an upper bound of the heap usage of p, then
-- the maximum heap usage of p is infinity.
no-finite-max→infinite-max = Unbounded-space.no-finite-max→infinite-max
-- If no natural number is an upper bound of ms, but the conatural
-- number m is, then m is bisimilar to infinity.
no-finite→infinite = Upper-bounds.no-finite→infinite
------------------------------------------------------------------------
-- Section 4
-- The optimiser.
opt = Unbounded-space.opt
-- The optimiser improves the space complexity of at least one
-- program.
opt-improves = Unbounded-space.opt-improves
-- The semantics of optimise bounded-space₂ matches that of
-- bounded-space.
opt-bounded₂∼bounded = Unbounded-space.opt-bounded₂∼bounded
-- Bisimilarity of colists.
[_]_∼L_ = Colist.[_]_∼_
-- The maximum heap usage of an optimised program is at most as high
-- as that of the original program (assuming that these maximums
-- exist).
opt-correct = Unbounded-space.opt-correct
-- The [_]_≲_ relation.
[_]_≲_ = Upper-bounds.[_]_≲_
[_]_≲′_ = Upper-bounds.[_]_≲′_
-- If ms has the least upper bound m, and ns has the least upper bound
-- n, then ms is bounded by ns if and only if m is bounded by n.
≲⇔least-upper-bounds-≤ = Upper-bounds.≲⇔least-upper-bounds-≤
-- Four combinators that can be used to prove that one colist is
-- bounded by another.
[]≲ = Upper-bounds.[]≲
consʳ-≲ = Upper-bounds.consʳ-≲
consˡ-≲ = Upper-bounds.consˡ-≲
cons′-≲ = Upper-bounds.cons′-≲
Bounded = Upper-bounds.Bounded
-- If consʳ-≲ had taken the primed variant of the relation as an
-- argument instead, then one could have proved that any colist was
-- bounded by any infinite colist, and this leads to a contradiction.
consʳ-≲′→≲-infinite = Upper-bounds.consʳ-≲′→≲-infinite
¬-consʳ-≲′ = Upper-bounds.¬-consʳ-≲′
-- The [_]_≲_ relation is a preorder. (The transitivity result has a
-- type signature that differs slightly from that given in the paper.)
reflexive-≲ = Upper-bounds._□≲
transitive-≲ = Upper-bounds.step-≲
-- Transitivity cannot be made size-preserving in the second argument.
¬-transitivity-size-preservingʳ =
Upper-bounds.¬-transitivity-size-preservingʳ
-- A size-preserving variant of transitivity. (This result has a
-- type signature that differs slightly from that given in the paper.)
transitive-∼≲ = Upper-bounds.step-∼≲
-- The main lemma used to prove that the maximum heap usage of an
-- optimised program is at most as high as that of the original
-- program (assuming that these maximums exist).
opt-correct-≲ = Unbounded-space.opt-correct-≲
------------------------------------------------------------------------
-- Section 5
-- The delay monad.
Delay = Delay-monad.Delay
-- The non-terminating computation never.
never = Delay-monad.never
-- Monad instance.
monad-instance₁ = Delay-monad.Monad.delay-raw-monad
-- Strong bisimilarity.
[_]_∼D_ = Delay-monad.Bisimilarity.[_]_∼_
-- Monad laws.
left-identity₁ = Delay-monad.Monad.left-identity′
right-identity₁ = Delay-monad.Monad.right-identity′
associativity₁ = Delay-monad.Monad.associativity′
-- Weak bisimilarity. (This relation is not defined in exactly the
-- same way as in the paper.)
[_]_≈D_ = Delay-monad.Bisimilarity.[_]_≈_
------------------------------------------------------------------------
-- Section 6
-- Terms.
Tm = Lambda.Syntax.Tm
-- Environments and values. (The code uses a definition which is
-- parametrised by the type of terms. The same definition is used also
-- for virtual machine environments and values.)
Env = Lambda.Syntax.Closure.Env
Value = Lambda.Syntax.Closure.Value
-- DelayC (called Delay-crash in the code) and crash.
DelayC = Lambda.Delay-crash.Delay-crash
crash : {A : Type} → DelayC A ∞
crash = Lambda.Delay-crash.crash
-- The computation crash (in fact, any computation of the form now x)
-- is not weakly bisimilar to never.
now≉never = Delay-monad.Bisimilarity.now≉never
-- The interpreter.
_∙_ = Lambda.Interpreter._∙_
⟦_⟧₂ = Lambda.Interpreter.⟦_⟧
⟦if⟧ = Lambda.Interpreter.⟦if⟧
------------------------------------------------------------------------
-- Section 7
-- DelayCT (called Delay-crash-trace in the code).
DelayCT = Lambda.Delay-crash-trace.Delay-crash-trace
trace = Lambda.Delay-crash-trace.trace
delayC = Lambda.Delay-crash-trace.delay-crash
-- Monad instance.
monad-instance₂ = Lambda.Delay-crash-trace.raw-monad
-- Strong bisimilarity.
[_]_∼DCT_ = Lambda.Delay-crash-trace.[_]_∼_
-- Monad laws.
left-identity₂ = Lambda.Delay-crash-trace.left-identity
right-identity₂ = Lambda.Delay-crash-trace.right-identity
associativity₂ = Lambda.Delay-crash-trace.associativity
-- Instructions and code.
Instr = Lambda.Virtual-machine.Instructions.Instr
Code = Lambda.Virtual-machine.Instructions.Code
-- Environments and values. (The code uses a definition which is
-- parametrised by the type of terms. The same definition is used also
-- for the interpreter's environments and values.)
VM-Env = Lambda.Syntax.Closure.Env
VM-Value = Lambda.Syntax.Closure.Value
-- Stack elements and stacks.
Stack-element = Lambda.Virtual-machine.Instructions.Stack-element
Stack = Lambda.Virtual-machine.Instructions.Stack
-- States.
State = Lambda.Virtual-machine.Instructions.State
-- The virtual machine.
Result = Lambda.Virtual-machine.Instructions.Result
step = Lambda.Virtual-machine.step
exec⁺ = Lambda.Virtual-machine.exec⁺
exec⁺′ = Lambda.Virtual-machine.exec⁺′
exec = Lambda.Virtual-machine.exec
stack-sizes = Lambda.Virtual-machine.stack-sizes
------------------------------------------------------------------------
-- Section 8
-- Tail context information.
In-tail-context = Lambda.Compiler.In-tail-context
-- The compilation functions.
comp = Lambda.Compiler.comp
comp-body = Lambda.Compiler.comp-body
comp-name = Lambda.Compiler.comp-name
comp-env = Lambda.Compiler.comp-env
comp-val = Lambda.Compiler.comp-val
comp₀ = Lambda.Compiler.comp₀
-- Compiler correctness.
compiler-correct = Lambda.Compiler-correctness.correct
-- The key lemma used to prove compiler correctness.
key-lemma₁ = Lambda.Compiler-correctness.⟦⟧-correct
Cont-OK = Lambda.Compiler-correctness.Cont-OK
Stack-OK = Lambda.Compiler-correctness.Stack-OK
------------------------------------------------------------------------
-- Section 9
-- The instrumented interpreter.
[_,_]_∙S_ = Lambda.Interpreter.Stack-sizes.[_,_]_∙_
⟦_⟧S = Lambda.Interpreter.Stack-sizes.⟦_⟧
δ = Lambda.Interpreter.Stack-sizes.δ
⟦if⟧S = Lambda.Interpreter.Stack-sizes.⟦if⟧
scanl = Colist.scanl
numbers = Lambda.Interpreter.Stack-sizes.numbers
stack-sizesS = Lambda.Interpreter.Stack-sizes.stack-sizes
-- The instrumented semantics produces computations that are strongly
-- bisimilar to those produced by the other semantics.
⟦⟧∼⟦⟧ = Lambda.Interpreter.Stack-sizes.⟦⟧∼⟦⟧
-- If the trace of stack sizes produced by the instrumented semantics
-- has the least upper bound i, and the corresponding trace produced
-- by the virtual machine has the least upper bound v, then i and v
-- are bisimilar.
maximum-stack-sizes-match =
Lambda.Compiler-correctness.Sizes-match.maximum-stack-sizes-match
-- The trace of stack sizes produced by the virtual machine is not
-- necessarily bisimilar to that produced by the instrumented
-- interpreter.
stack-sizes-not-bisimilar =
Lambda.Interpreter.Stack-sizes.Counterexample.stack-sizes-not-bisimilar
-- The trace of stack sizes produced by the virtual machine and that
-- produced by the instrumented interpreter are upper bounds of each
-- other.
stack-sizes-related =
Lambda.Compiler-correctness.Sizes-match.stack-sizes-related
-- The [_]_≂_ relation.
[_]_≂_ = Upper-bounds.[_]_≂_
[_]_≂′_ = Upper-bounds.[_]_≂′_
-- Colists that are related by this relation have the same least upper
-- bounds (if any).
LUB-cong = Upper-bounds.LUB-cong
-- Some combinators that can be used to prove that two colists are
-- bounded by each other.
consʳ-≂ = Upper-bounds.consʳ-≂
consˡ-≂ = Upper-bounds.consˡ-≂
cons-≂ = Upper-bounds.cons-≂
cons′-≂ = Upper-bounds.cons′-≂
-- The [_]_≂_ relation is an equivalence relation. (The
-- transitivity-like results have type signatures that differ slightly
-- from those given in the paper.)
reflexive-≂ = Upper-bounds._□≂
symmetric-≂ = Upper-bounds.symmetric-≂
transitive-≂ = Upper-bounds.step-≂
transitive-∼≂ = Upper-bounds.step-∼≂
transitive-≂∼ = Upper-bounds.step-≂∼
-- The [_]_≂″_ relation.
[_]_≂″_ = Upper-bounds.[_]_≂″_
-- [_]_≂′_ and [_]_≂″_ are pointwise logically equivalent.
≂′⇔≂″ = Upper-bounds.≂′⇔≂″
-- This was not mentioned in the paper, but a corresponding relation
-- can also be defined for [_]_≲′_.
[_]_≲″_ = Upper-bounds.[_]_≲″_
≲′⇔≲″ = Upper-bounds.≲′⇔≲″
-- The key lemma used to prove correctness.
key-lemma₂ = Lambda.Compiler-correctness.Sizes-match.⟦⟧-correct
-- A non-terminating program that requires unbounded stack space.
Ω = Lambda.Syntax.Ω
Ω-loops = Lambda.Interpreter.Ω-loops′
Ω-requires-unbounded-space =
Lambda.Interpreter.Stack-sizes.Ω-requires-unbounded-space
-- A non-terminating program that runs in bounded stack space.
go = Lambda.Interpreter.Stack-sizes.Example.go
go-loops = Lambda.Interpreter.Stack-sizes.Example.go-loops
go-bounded-stack =
Lambda.Interpreter.Stack-sizes.Example.go-bounded-stack
------------------------------------------------------------------------
-- Section 10
-- The uninstrumented interpreter does not provide a suitable cost
-- measure, in the sense that there is a family of programs for which
-- the running "time" (number of steps) of the corresponding compiled
-- programs on the virtual machine is not linear in the running time
-- on the interpreter.
not-suitable-cost-measure =
Lambda.Interpreter.Steps.Counterexample.not-suitable-cost-measure
-- The instrumented interpreter.
✓_ = Lambda.Interpreter.Steps.✓_
_∙T_ = Lambda.Interpreter.Steps._∙_
⟦_⟧T = Lambda.Interpreter.Steps.⟦_⟧
⟦if⟧T = Lambda.Interpreter.Steps.⟦if⟧
-- The cost measure provided by the instrumented interpreter is
-- "suitable", in the sense that the cost of running a compiled
-- program on the virtual machine is linear in the cost of running the
-- corresponding source program on the interpreter, and vice versa.
the-cost-measure-is-suitable =
Lambda.Compiler-correctness.Steps-match.steps-match
-- Quantitative weak bisimilarity.
[_∣_∣_∣_∣_]_≈D_ =
Delay-monad.Quantitative-weak-bisimilarity.[_∣_∣_∣_∣_]_≈_
-- A characterisation of quantitative weak bisimilarity.
≈⇔≈×steps≤steps² =
Delay-monad.Quantitative-weak-bisimilarity.≈⇔≈×steps≤steps²
-- The left-to-right direction of the characterisation can be made
-- size-preserving.
≈→≈×steps≤steps² =
Delay-monad.Quantitative-weak-bisimilarity.≈→≈×steps≤steps²
-- The right-to-left direction of the characterisation can be made
-- size-preserving if and only if the carrier type is uninhabited
-- (assuming that Agda is not buggy).
≈×steps≤steps²→≈⇔uninhabited =
Delay-monad.Quantitative-weak-bisimilarity.≈×steps≤steps²→≈⇔uninhabited
-- Weakening.
weaken = Delay-monad.Quantitative-weak-bisimilarity.weaken
-- Two transitivity-like results.
transitive-≳∼ = Delay-monad.Quantitative-weak-bisimilarity.transitive-≳∼
transitive-≈∼ = Delay-monad.Quantitative-weak-bisimilarity.transitive-≈∼
transitive-∼≈ = Delay-monad.Quantitative-weak-bisimilarity.transitive-∼≈
-- The key lemma used to prove that the cost measure is "suitable".
key-lemma₃ = Lambda.Compiler-correctness.Steps-match.⟦⟧-correct
|
{
"alphanum_fraction": 0.6999130958,
"avg_line_length": 27.9085820896,
"ext": "agda",
"hexsha": "19c0610c5c60cdea32e4c66749d50700efae9f78",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/definitional-interpreters",
"max_forks_repo_path": "README/Pointers-to-results-from-the-paper.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/definitional-interpreters",
"max_issues_repo_path": "README/Pointers-to-results-from-the-paper.agda",
"max_line_length": 73,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/definitional-interpreters",
"max_stars_repo_path": "README/Pointers-to-results-from-the-paper.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4116,
"size": 14959
}
|
module Data.Lens.Proofs.LensPostulates where
open import Haskell.Prelude renaming (zero to Z; suc to S)
open import Data.Lens.Lens
open import Data.Logic
open import Agda.Primitive
open import Data.Lens.Proofs.LensLaws
---- Lens postulates
-- These are provable using the isomorphism to the getter+setter style
-- However, defining this isomorphism is quite a bit of work, so I didn't do it for now
postulate
-- view (l1 ∘ l2) ≡ view l2 ∘ view l1
-- This is clearly true from how view works
prop-view-compose : {a b c : Set}
-> (l1 : ValidLens a b)
-> (l2 : ValidLens b c)
-> (v : a)
-> (view ((toLens l1) ∘ (toLens l2))) v ≡ (view (toLens l2) ∘ view (toLens l1)) v
-- set (l1 ∘ l2) ≡ over l1 (set l2 t) v
-- This is clearly true from how set works
prop-set-compose : {a b c : Set}
-> (l1 : ValidLens a b)
-> (l2 : ValidLens b c)
-> (v : a) (t : c)
-> (set ((toLens l1) ∘ (toLens l2))) t v ≡ over (toLens l1) (set (toLens l2) t) v
-- over l ≡ set l (view l v) v
-- This is clearly true from how over works
prop-over-is-setget : {a b : Set}
-> (l : ValidLens a b)
-> (f : b -> b) (v : a)
-> over (toLens l) f v ≡ set (toLens l) (f (view (toLens l) v)) v
-- We can merge postulate 2 and 3
prop-set-compose-dir : {a b c : Set}
-> (l1 : ValidLens a b)
-> (l2 : ValidLens b c)
-> (v : a) (t : c)
-> (set ((toLens l1) ∘ (toLens l2))) t v ≡ set (toLens l1) ((set (toLens l2) t) (view (toLens l1) v)) v
prop-set-compose-dir vl1@(CValidLens l1 vs1 sv1 ss1) vl2@(CValidLens l2 vs2 sv2 ss2) v t =
begin
set (l1 ∘ l2) t v
=⟨ prop-set-compose vl1 vl2 v t ⟩
over l1 (set l2 t) v
=⟨ prop-over-is-setget vl1 (set l2 t) v ⟩
set l1 ((set l2 t) (view l1 v)) v
end
|
{
"alphanum_fraction": 0.5692475463,
"avg_line_length": 37.4285714286,
"ext": "agda",
"hexsha": "f4fdc1bae61c5a3a0744c92ba3bde1e0252e8c73",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "JonathanBrouwer/research-project",
"max_forks_repo_path": "src/Data/Lens/Proofs/LensPostulates.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "JonathanBrouwer/research-project",
"max_issues_repo_path": "src/Data/Lens/Proofs/LensPostulates.agda",
"max_line_length": 107,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "JonathanBrouwer/research-project",
"max_stars_repo_path": "src/Data/Lens/Proofs/LensPostulates.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-25T09:10:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-05-25T09:10:20.000Z",
"num_tokens": 673,
"size": 1834
}
|
module examplesPaperJFP.Collatz where
open import Data.Nat.Base
open import Data.Nat.DivMod
open import Data.Fin using (Fin; zero; suc)
open import examplesPaperJFP.Colists
collatzStep : ℕ → ListF ℕ ℕ
collatzStep 1 = nil
collatzStep n with n divMod 2
... | result q zero _ = cons n q
... | _ = cons n (1 + 3 * n)
collatzSequence : ℕ → Colist ℕ
collatzSequence = unfold collatzStep
open Colist
open import Data.List
displayList : Colist ℕ → ℕ → List ℕ
displayList s 0 = []
displayList s (suc m) with force s
... | nil = []
... | (cons k s′) = k ∷ displayList s′ m
displayCollatz : ℕ → ℕ → List ℕ
displayCollatz n m = displayList (collatzSequence n) m
|
{
"alphanum_fraction": 0.6479663394,
"avg_line_length": 23.7666666667,
"ext": "agda",
"hexsha": "6da90d2653fa6b7e8e9b103ea3be79826f242a21",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "examples/examplesPaperJFP/Collatz.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "examples/examplesPaperJFP/Collatz.agda",
"max_line_length": 54,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "examples/examplesPaperJFP/Collatz.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 226,
"size": 713
}
|
import Lvl
open import Type
module Type.Univalence where
open import Functional
import Logic.Predicate
import Relator.Equals
import Relator.Equals.Proofs
import Type.Cardinality
import Type.Cardinality.Proofs
import Type.Functions
import Type.Functions.Inverse
module _ {ℓₗ ℓₒ : Lvl.Level} where
open Logic.Predicate
open Relator.Equals{ℓₗ Lvl.⊔ ℓₒ}{Lvl.𝐒(ℓₒ)}
open Type.Cardinality {ℓₗ}
open Type.Cardinality.Proofs {ℓₗ}
open Type.Functions
UnivalenceAxiom : Type{ℓₗ Lvl.⊔ Lvl.𝐒(ℓₒ)}
UnivalenceAxiom = ∀{X Y : Type{ℓₒ}} → Bijective{ℓₗ Lvl.⊔ Lvl.𝐒(ℓₒ)} ([≡]-to-[≍] {ℓₒ} {X}{Y})
module _ {ℓₗ ℓₒ : Lvl.Level} {univalence : UnivalenceAxiom} where
open Logic.Predicate
open Relator.Equals
open Relator.Equals.Proofs
open Type.Cardinality
open Type.Cardinality.Proofs
open Type.Functions.Inverse
instance
[≡][≍]-bijection : ∀{X Y} → ((X ≡ Y) ≍ (X ≍ Y))
[≡][≍]-bijection {X}{Y} = [∃]-intro ([≡]-to-[≍] {ℓₗ}{ℓₒ} {X}{Y}) ⦃ univalence{X}{Y} ⦄
[≍]-to-[≡] : ∀{X Y : Type{ℓₒ}} → (X ≍ Y) → (X ≡ Y)
[≍]-to-[≡] {X}{Y} = inv([≡]-to-[≍] {ℓₗ}{ℓₒ} {X}{Y}) ⦃ univalence {X}{Y} ⦄
module _ {ℓₗ ℓₒ₁ ℓₒ₂ : Lvl.Level} {univalence : UnivalenceAxiom {ℓₗ Lvl.⊔ Lvl.𝐒(ℓₒ₁)}{ℓₒ₁}} where
open Logic.Predicate
open Relator.Equals
open Relator.Equals.Proofs
open Type.Cardinality {ℓₗ Lvl.⊔ Lvl.𝐒(ℓₒ₁)}
open Type.Cardinality.Proofs {ℓₗ Lvl.⊔ Lvl.𝐒(ℓₒ₁)}
open Type.Functions
_≡₂_ = _≡_ {ℓₗ}{ℓₒ₂}
_≡ₗ_ = _≡_ {ℓₗ}
-- For any type function P from an universe Type{ℓₒ₁} to Type{ℓₒ₂}
-- where subst, a substitution for P holds using (_≍_)
-- and where the substitution by reflexivity using (_≍_) gives the exact same proof (is a identity function),
-- then this substitution will give the same results as the standard substitution rule for equalities (_≡_) for this P.
postulate transport-theorem : ∀{P : Type{ℓₒ₁} → Type{ℓₒ₂}}
→ (subst : (∀{X Y} → (X ≍ Y) → P(X) → P(Y)))
→ (subst-id : (∀{X} → (px : P(X)) → (subst([≍]-reflexivity) (px) ≡₂ px)))
→ ∀{X Y}
→ (xy : (X ≍ Y))
→ (px : P(X))
→ (subst(xy) (px) ≡₂ [≡]-substitutionᵣ {ℓₗ Lvl.⊔ Lvl.𝐒(ℓₒ₁)}{Lvl.𝐒(ℓₒ₁)} ([≍]-to-[≡] {ℓₗ Lvl.⊔ Lvl.𝐒(ℓₒ₁)}{ℓₒ₁} {univalence} (xy)) {P} px)
-- transport-theorem {P} (subst) (subst-id) ([∃]-intro bijection ⦃ bijective ⦄) px =
-- subst(xy) (px)
-- = subst(inv bijection (bijection xy)) (px)
-- = [≡]-substitutionᵣ (bijection xy) {P} (px)
postulate substitution-is-bijective : ∀{P : Type{ℓₒ₁} → Type{ℓₒ₂}}
→ (subst : (∀{X Y} → (X ≍ Y) → P(X) → P(Y)))
→ (subst-id : (∀{X} → (px : P(X)) → (subst([≍]-reflexivity) (px) ≡₂ px)))
→ ∀{X Y}{xy : (X ≍ Y)} → Bijective{ℓₗ Lvl.⊔ Lvl.𝐒(ℓₒ₂)} (subst(xy))
-- TODO: univalence should probably have other level parameters from this point on
postulate [∘]ₗ-bijective : ∀{ℓₒ₃}{X : Type{ℓₒ₁}}{Y : Type{ℓₒ₂}}{Z : Type{ℓₒ₃}}{g : X → Y} → Bijective{ℓₗ}(g) → Bijective{ℓₗ}(\(f : Y → Z) → f ∘ g)
postulate [∘]ₗ-cancellationᵣ : ∀{ℓₒ₃}{X : Type{ℓₒ₁}}{Y : Type{ℓₒ₂}}{Z : Type{ℓₒ₃}}{f g : Y → Z}{h : X → Y} → Bijective{ℓₗ}(h) → (f ∘ h ≡ₗ g ∘ h) → (f ≡ₗ g)
-- subst{T} P {x}{y} xy fx = [≡]-substitutionᵣ{T}{x}{y} (xy) {P} fx
|
{
"alphanum_fraction": 0.5644871026,
"avg_line_length": 42.2025316456,
"ext": "agda",
"hexsha": "1e2fddf3d258456942a79b2f494dd2bfb061d0b3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "old/Type/Univalence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "old/Type/Univalence.agda",
"max_line_length": 160,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "old/Type/Univalence.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1489,
"size": 3334
}
|
module static where
open import Data.Nat using (ℕ; _+_; zero; suc)
open import Data.Fin using (Fin; toℕ; zero; suc)
open import Data.Vec using (lookup; _∷_; [])
open import Data.Bool using (Bool; true; false)
open import LSsyntax
open import Relation.Binary.PropositionalEquality -- using (_≡_; refl)
-- inference rules for typed terms
data STyped {n} (Γ : Ctx n) : GType → Set where
Sx : ∀ {S} (v : Fin n) → S ≡ lookup v Γ → STyped Γ S
Sb : Bool → (ℓ : Label) → STyped Γ (bool ℓ)
_S∧_ : ∀ {t₁ t₂} → STyped Γ t₁ → STyped Γ t₂ → STyped Γ (bool (getLabel t₁ ~⋎~ getLabel t₂))
_S∨_ : ∀ {t₁ t₂} → STyped Γ t₁ → STyped Γ t₂ → STyped Γ (bool (getLabel t₁ ~⋎~ getLabel t₂))
Sif : ∀ {t t₁ t₂} → STyped Γ t → STyped Γ t₁ → STyped Γ t₂ → STyped Γ (bool (getLabel (t₁ :∨: t₂) ~⋎~ getLabel t))
S∙ : ∀ {t₁ ℓ t₂ t₃} → STyped Γ ((t₁ ⇒ ℓ) t₂) → STyped Γ t₃ → t₃ ≾ t₁ → STyped Γ (bool ((getLabel t₂) ~⋎~ ℓ))
Sλ : ∀ t₁ {t₂} ℓ → STyped (t₁ ∷ Γ) t₂ → STyped Γ ((t₁ ⇒ ℓ) t₂)
erase : ∀ {n} {Γ : Ctx n} {t} → STyped Γ t → Term
erase (Sx v x) = var (toℕ v)
erase (Sb b ℓ) = litBool b ℓ
erase (t₁ S∧ t₂) = (erase t₁) ∧ erase t₂
erase (t₁ S∨ t₂) = (erase t₁) ∨ (erase t₂)
erase (Sif b t₁ t₂) = if (erase b) then (erase t₁) else (erase t₂)
erase (S∙ t₁ t₂ _) = (erase t₁) ∙ (erase t₂)
erase (Sλ t₁ ℓ t) = lam t₁ (erase t) ℓ
data Fromℕ (n : ℕ) : ℕ → Set where
yes : (m : Fin n) → Fromℕ n (toℕ m)
no : (m : ℕ) → Fromℕ n (n + m)
fromℕ : ∀ n m → Fromℕ n m
fromℕ zero m = no m
fromℕ (suc n) zero = yes zero
fromℕ (suc n) (suc m) with fromℕ n m
fromℕ (suc n) (suc .(toℕ m)) | yes m = yes (suc m)
fromℕ (suc n) (suc .(n + m)) | no m = no m
data Check {n} (Γ : Ctx n) : Term → Set where
yes : (τ : GType) (t : STyped Γ τ) → Check Γ (erase t)
no : {e : Term} → Check Γ e
staticCheck : ∀ {n} (Γ : Ctx n) (t : Term) → Check Γ t
staticCheck {n} Γ (var v) with fromℕ n v
staticCheck {n} Γ (var .(toℕ m)) | yes m = yes (lookup m Γ) (Sx m refl)
staticCheck {n} Γ (var .(n + m)) | no m = no
staticCheck Γ (litBool x ℓ) = yes (bool ℓ) (Sb x ℓ)
staticCheck Γ (lam x t ℓ) with staticCheck (x ∷ Γ) t
staticCheck Γ (lam x .(erase t) ℓ) | yes τ t = yes ((x ⇒ ℓ) τ) (Sλ x ℓ t)
staticCheck Γ (lam x t ℓ) | no = no
staticCheck Γ (t ∧ t₁) with staticCheck Γ t | staticCheck Γ t₁
staticCheck Γ (.(erase t₁) ∧ .(erase t)) | yes τ₁ t₁ | (yes τ t) = yes (bool (getLabel τ₁ ~⋎~ getLabel τ)) (t₁ S∧ t)
staticCheck Γ (.(erase t) ∧ t₁) | yes τ t | no = no
staticCheck Γ (t₁ ∧ .(erase t)) | no | yes τ t = no
staticCheck Γ (t ∧ t₁) | no | no = no
staticCheck Γ (t ∨ t₁) with staticCheck Γ t | staticCheck Γ t₁
staticCheck Γ (.(erase t₁) ∨ .(erase t)) | yes τ₁ t₁ | (yes τ t) = yes (bool (getLabel τ₁ ~⋎~ getLabel τ)) (t₁ S∨ t)
staticCheck Γ (.(erase t) ∨ t₁) | yes τ t | no = no
staticCheck Γ (t₁ ∨ .(erase t)) | no | yes τ t = no
staticCheck Γ (t ∨ t₁) | no | no = no
staticCheck Γ (t ∙ t₁) with staticCheck Γ t | staticCheck Γ t₁
staticCheck Γ (.(erase t) ∙ .(erase t₁)) | yes ((τ ⇒ ℓ) τ₂) t | (yes τ₁ t₁) with τ₁ ≾? τ
staticCheck Γ (.(erase t) ∙ .(erase t₁)) | yes ((τ ⇒ ℓ) τ₂) t | (yes τ₁ t₁) | (yes .τ₁ .τ) = yes (bool (getLabel τ₂ ~⋎~ ℓ)) (S∙ t t₁ (yes τ₁ τ))
staticCheck Γ (.(erase t) ∙ .(erase t₁)) | yes ((τ ⇒ ℓ) τ₂) t | (yes τ₁ t₁) | (no .τ₁ .τ) = no
staticCheck Γ (.(erase t) ∙ .(erase t₁)) | yes err t | (yes τ₁ t₁) = no
staticCheck Γ (.(erase t) ∙ .(erase t₁)) | yes (bool x) t | (yes τ₁ t₁) = no
staticCheck Γ (.(erase t) ∙ t₁) | yes τ t | no = no
staticCheck Γ (t₁ ∙ .(erase t)) | no | yes τ t = no
staticCheck Γ (t ∙ t₁) | no | no = no
staticCheck Γ (if b then t₁ else t₂) with staticCheck Γ b
staticCheck Γ (if .(erase t) then t₁ else t₂) | yes τ t with staticCheck Γ t₁ | staticCheck Γ t₂
staticCheck Γ (if .(erase t₂) then .(erase t₁) else .(erase t)) | yes τ₂ t₂ | (yes τ₁ t₁) | (yes τ t) = yes (bool (getLabel (τ₁ :∨: τ) ~⋎~ getLabel τ₂)) (Sif t₂ t₁ t)
staticCheck Γ (if .(erase t₁) then .(erase t) else t₂) | yes τ₁ t₁ | (yes τ t) | no = no
staticCheck Γ (if .(erase t₂) then t₁ else .(erase t)) | yes τ₁ t₂ | no | (yes τ t) = no
staticCheck Γ (if .(erase t) then t₁ else t₂) | yes τ t | no | no = no
staticCheck Γ (if b then t₁ else t₂) | no = no
staticCheck Γ error = no
-- examples from Section 3.5
-- Type : yes ((bool ⊥ ⇒ ⊥) (bool ⊥)) (Sλ (bool ⊥) ⊥ (Sx zero refl S∧ Sx zero refl))
f : Term
f = lam (bool ⊥) (var 0 ∨ var 0) ⊥
-- Type : yes ((bool ✭ ⇒ ⊥) (bool ✭)) (Sλ (bool ✭) ⊥ (Sx zero refl S∨ Sx zero refl))
g : Term
g = lam (bool ✭) (var 0 ∧ var 0) ⊥
-- Type : yes (bool ⊤) (Sb false ⊤)
v : Term
v = litBool false ⊤
test₁ : staticCheck [] (f ∙ v) ≡ no
test₁ = refl
|
{
"alphanum_fraction": 0.5643417426,
"avg_line_length": 44.5,
"ext": "agda",
"hexsha": "89667b112220afb00a2fc42bfaf67548f6ecf557",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "acf5a153e14a7bdc0c9332fa602fa369fe7add46",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "kellino/TypeSystems",
"max_forks_repo_path": "Agda/Gradual Security/static.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "acf5a153e14a7bdc0c9332fa602fa369fe7add46",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "kellino/TypeSystems",
"max_issues_repo_path": "Agda/Gradual Security/static.agda",
"max_line_length": 166,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "acf5a153e14a7bdc0c9332fa602fa369fe7add46",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "kellino/TypeSystems",
"max_stars_repo_path": "Agda/Gradual Security/static.agda",
"max_stars_repo_stars_event_max_datetime": "2017-05-26T23:06:17.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-27T08:05:40.000Z",
"num_tokens": 2046,
"size": 4717
}
|
module sets.nat.core where
open import level
open import decidable
open import equality.core
open import function.core
open import function.isomorphism.core
open import sets.empty
infixr 8 _^_
infixl 7 _*_
infixl 6 _+_
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
pred : ℕ → ℕ
pred zero = zero
pred (suc n) = n
_+_ : ℕ → ℕ → ℕ
zero + n = n
suc m + n = suc (m + n)
_*_ : ℕ → ℕ → ℕ
0 * n = zero
suc m * n = n + m * n
_^_ : ℕ → ℕ → ℕ
n ^ 0 = 1
n ^ (suc m) = n * (n ^ m)
suc-inj : injective suc
suc-inj = ap pred
_≟_ : (a b : ℕ) → Dec (a ≡ b)
zero ≟ zero = yes refl
zero ≟ suc _ = no (λ ())
suc _ ≟ zero = no (λ ())
suc a ≟ suc b with a ≟ b
suc a ≟ suc b | yes a≡b = yes $ ap suc a≡b
suc a ≟ suc b | no ¬a≡b = no $ (λ sa≡sb → ¬a≡b (ap pred sa≡sb))
|
{
"alphanum_fraction": 0.5618686869,
"avg_line_length": 16.8510638298,
"ext": "agda",
"hexsha": "669a079c1e2d4c5c41cdbcde36c49bd2da367b0e",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z",
"max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "HoTT/M-types",
"max_forks_repo_path": "sets/nat/core.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "HoTT/M-types",
"max_issues_repo_path": "sets/nat/core.agda",
"max_line_length": 63,
"max_stars_count": 27,
"max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "HoTT/M-types",
"max_stars_repo_path": "sets/nat/core.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z",
"num_tokens": 340,
"size": 792
}
|
module _ where
module First where
postulate
C : Set → Set
it : {A : Set} ⦃ _ : C A ⦄ → A
X : Set
module Second where
open First
postulate instance iCX : C X
module Nested where
open First
x : X
x = it -- Second.iCX is in scope
|
{
"alphanum_fraction": 0.5984555985,
"avg_line_length": 14.3888888889,
"ext": "agda",
"hexsha": "26ed20577ea662c16d48dd60ad126e6ad5b7e761",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2489.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2489.agda",
"max_line_length": 36,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2489.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 92,
"size": 259
}
|
-- Andreas, 2016-07-08
-- Better error message for private modules
module _ where
module M where
private module Private where
module ShouldFail = M.Private
-- Current:
-- No such module M.Private
-- Better:
-- M.Private is not in scope since it is declared as private
-- Or (simpler):
-- M.Private exists but is not in scope here
|
{
"alphanum_fraction": 0.7240356083,
"avg_line_length": 18.7222222222,
"ext": "agda",
"hexsha": "94f3468a9dfcb057b7ea31984f29f11167beaf44",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2089.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2089.agda",
"max_line_length": 60,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2089.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 85,
"size": 337
}
|
{-# OPTIONS --without-K #-}
open import Base
open import Homotopy.TruncatedHIT
open import Integers
module Algebra.FreeGroup {i} (A : Set i) where
{-
The definition is the following
(0)data freegroup : Set i where
e : freegroup
_·_ : A → freegroup → freegroup
_⁻¹·_ : A → freegroup → freegroup
right-inverse-· : (x : A) (u : freegroup) → x · (x ⁻¹· u) ≡ u
left-inverse-· : (x : A) (u : freegroup) → x ⁻¹· (x · u) ≡ u
("(0)data" means that it’s a higher inductive 0-truncated type)
-}
private
data #freegroup : Set i where
#e : #freegroup
#· : A → #freegroup → #freegroup
#⁻¹· : A → #freegroup → #freegroup
#top : (f : hSⁿ ⟨0⟩ → #freegroup) → #freegroup
freegroup : Set i
freegroup = #freegroup
e : freegroup
e = #e
_·_ : A → freegroup → freegroup
_·_ = #·
_⁻¹·_ : A → freegroup → freegroup
_⁻¹·_ = #⁻¹·
postulate -- HIT
right-inverse-· : (x : A) (u : freegroup) → x · (x ⁻¹· u) ≡ u
left-inverse-· : (x : A) (u : freegroup) → x ⁻¹· (x · u) ≡ u
top : (f : hSⁿ ⟨0⟩ → freegroup) → freegroup
top = #top
postulate -- HIT
rays : (f : hSⁿ ⟨0⟩ → freegroup) (x : hSⁿ ⟨0⟩) → top f ≡ f x
#freegroup-rec : ∀ {j} (P : freegroup → Set j)
(base : P e)
(g : (x : A) (u : freegroup) → P u → P (x · u))
(g' : (x : A) (u : freegroup) → P u → P (x ⁻¹· u))
(gg' : (x : A) (u : freegroup) (t : P u)
→ transport P (right-inverse-· x u) (g x _ (g' x u t)) ≡ t)
(g'g : (x : A) (u : freegroup) (t : P u)
→ transport P (left-inverse-· x u) (g' x _ (g x u t)) ≡ t)
(top* : (f : hSⁿ ⟨0⟩ → freegroup) (p : (x : hSⁿ ⟨0⟩) → P (f x)) → P (top f))
(rays* : (f : hSⁿ ⟨0⟩ → freegroup) (p : (x : hSⁿ ⟨0⟩) → P (f x)) (x : hSⁿ ⟨0⟩)
→ transport P (rays f x) (top* f p) ≡ p x)
→ ((t : freegroup) → P t)
#freegroup-rec P base g g' gg' g'g top* rays* #e = base
#freegroup-rec P base g g' gg' g'g top* rays* (#· x u) =
g x u (#freegroup-rec P base g g' gg' g'g top* rays* u)
#freegroup-rec P base g g' gg' g'g top* rays* (#⁻¹· x u) =
g' x u (#freegroup-rec P base g g' gg' g'g top* rays* u)
#freegroup-rec P base g g' gg' g'g top* rays* (#top f) =
top* f (λ x → #freegroup-rec P base g g' gg' g'g top* rays* (f x))
#freegroup-rec-nondep : ∀ {j} (B : Set j)
(base : B)
(g : A → B → B)
(g' : A → B → B)
(gg' : (x : A) (u : B) → (g x (g' x u)) ≡ u)
(g'g : (x : A) (u : B) → (g' x (g x u)) ≡ u)
(top* : (f : hSⁿ ⟨0⟩ → freegroup) (p : hSⁿ ⟨0⟩ → B) → B)
(rays* : (f : hSⁿ ⟨0⟩ → freegroup) (p : hSⁿ ⟨0⟩ → B) (x : hSⁿ ⟨0⟩)
→ top* f p ≡ p x)
→ freegroup → B
#freegroup-rec-nondep P base g g' gg' g'g top* rays* #e = base
#freegroup-rec-nondep P base g g' gg' g'g top* rays* (#· x u) =
g x (#freegroup-rec-nondep P base g g' gg' g'g top* rays* u)
#freegroup-rec-nondep P base g g' gg' g'g top* rays* (#⁻¹· x u) =
g' x (#freegroup-rec-nondep P base g g' gg' g'g top* rays* u)
#freegroup-rec-nondep P base g g' gg' g'g top* rays* (#top f) =
top* f (λ x → #freegroup-rec-nondep P base g g' gg' g'g top* rays* (f x))
freegroup-rec : ∀ {j} (P : freegroup → Set j)
(base : P e)
(g : (x : A) (u : freegroup) → P u → P (x · u))
(g' : (x : A) (u : freegroup) → P u → P (x ⁻¹· u))
(gg' : (x : A) (u : freegroup) (t : P u)
→ transport P (right-inverse-· x u) (g x _ (g' x u t)) ≡ t)
(g'g : (x : A) (u : freegroup) (t : P u)
→ transport P (left-inverse-· x u) (g' x _ (g x u t)) ≡ t)
(p : (u : freegroup) → is-set (P u))
→ ((t : freegroup) → P t)
freegroup-rec P base g g' gg' g'g p =
#freegroup-rec P base g g' gg' g'g
(λ f p₁ → π₁ (u f p₁))
(λ f p₁ → π₂ (u f p₁)) where
u = truncated-has-filling-dep freegroup P ⟨0⟩ (λ ()) (λ f → (top f , rays f))
freegroup-rec-nondep : ∀ {j} (B : Set j)
(base : B)
(g : A → B → B)
(g' : A → B → B)
(gg' : (x : A) (u : B) → (g x (g' x u)) ≡ u)
(g'g : (x : A) (u : B) → (g' x (g x u)) ≡ u)
(p : is-set B)
→ freegroup → B
freegroup-rec-nondep B base g g' gg' g'g p =
#freegroup-rec-nondep B base g g' gg' g'g
(λ _ p → π₁ (u p))
(λ _ p → π₂ (u p)) where
u = truncated-has-spheres-filled ⟨0⟩ _ p
|
{
"alphanum_fraction": 0.4966426859,
"avg_line_length": 35.0420168067,
"ext": "agda",
"hexsha": "d9a275e4baf8b1426707d80299eb488f3568f520",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/Algebra/FreeGroup.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/Algebra/FreeGroup.agda",
"max_line_length": 80,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda",
"max_stars_repo_path": "old/Algebra/FreeGroup.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 1833,
"size": 4170
}
|
{-# OPTIONS --cubical --safe --postfix-projections #-}
module Data.List.Relation.Binary.Permutation where
open import Prelude
open import Data.List
open import Data.Fin
open import Data.Fin.Properties
open import Data.List.Membership
open import Cubical.Foundations.Equiv
import Function.Isomorphism as Isomorphism
open import Relation.Binary
open import Cubical.Foundations.Prelude using (J; _∧_)
open import Cubical.Foundations.Transport using (isSet-subst)
open import Cubical.Data.Sigma.Properties
open import Data.Nat.Properties using (znots; snotz)
infixr 0 _↝_
_↝_ : {A : Type a} (xs ys : List A) → Type a
xs ↝ ys = ∀ x → x ∈ xs → x ∈ ys
infix 4 _↭_
_↭_ : {A : Type a} (xs ys : List A) → Type a
xs ↭ ys = ∀ x → (x ∈ xs) ⇔ (x ∈ ys)
reflₚ : ∀ {xs : List A} → xs ↭ xs
reflₚ _ = Isomorphism.refl-⇔
symₚ : {xs ys : List A} → xs ↭ ys → ys ↭ xs
symₚ xs↭ys x = Isomorphism.sym-⇔ (xs↭ys x)
transₚ : {xs ys zs : List A} → xs ↭ ys → ys ↭ zs → xs ↭ zs
transₚ xs↭ys ys↭zs x = Isomorphism.trans-⇔ (xs↭ys x) (ys↭zs x)
consₚ : ∀ x {xs ys : List A} → xs ↭ ys → x ∷ xs ↭ x ∷ ys
consₚ _ xs↭ys _ .fun (f0 , x≡x ) = f0 , x≡x
consₚ _ xs↭ys _ .fun (fs n , x∈xs) = push (xs↭ys _ .fun (n , x∈xs))
consₚ _ xs↭ys _ .inv (f0 , x≡x ) = f0 , x≡x
consₚ _ xs↭ys _ .inv (fs n , x∈xs) = push (xs↭ys _ .inv (n , x∈xs))
consₚ _ xs↭ys _ .leftInv (f0 , x≡x) = refl
consₚ _ xs↭ys _ .leftInv (fs n , x∈xs) i = push (xs↭ys _ .leftInv (n , x∈xs) i)
consₚ _ xs↭ys _ .rightInv (f0 , x≡x) = refl
consₚ _ xs↭ys _ .rightInv (fs n , x∈xs) i = push (xs↭ys _ .rightInv (n , x∈xs) i)
swapₚ-to : ∀ (x₁ x₂ : A) xs → x₁ ∷ x₂ ∷ xs ↝ x₂ ∷ x₁ ∷ xs
swapₚ-to _ _ _ _ (f0 , x≡x₁) = fs f0 , x≡x₁
swapₚ-to _ _ _ _ (fs f0 , x≡x₂) = f0 , x≡x₂
swapₚ-to _ _ _ _ (fs (fs n) , x∈xs) = fs (fs n) , x∈xs
swapₚ-inv : ∀ (x₁ x₂ : A) xs x x∈xs → swapₚ-to x₂ x₁ xs x (swapₚ-to x₁ x₂ xs x x∈xs) ≡ x∈xs
swapₚ-inv _ _ _ _ (f0 , x≡x₁) = refl
swapₚ-inv _ _ _ _ (fs f0 , x≡x₂) = refl
swapₚ-inv _ _ _ _ (fs (fs n) , x∈xs) = refl
swapₚ : ∀ x₁ x₂ (xs : List A) → x₁ ∷ x₂ ∷ xs ↭ x₂ ∷ x₁ ∷ xs
swapₚ x₁ x₂ xs x .fun = swapₚ-to x₁ x₂ xs x
swapₚ x₁ x₂ xs x .inv = swapₚ-to x₂ x₁ xs x
swapₚ x₁ x₂ xs x .leftInv = swapₚ-inv x₁ x₂ xs x
swapₚ x₁ x₂ xs x .rightInv = swapₚ-inv x₂ x₁ xs x
Fin-length : (xs : List A) → ∃ x × (x ∈ xs) ⇔ Fin (length xs)
Fin-length xs .inv n = xs ! n , n , refl
Fin-length xs .fun (x , n , p) = n
Fin-length xs .leftInv (x , n , p) i .fst = p i
Fin-length xs .leftInv (x , n , p) i .snd .fst = n
Fin-length xs .leftInv (x , n , p) i .snd .snd j = p (i ∧ j)
Fin-length xs .rightInv n = refl
Fin-length-cong : (xs ys : List A) →
xs ↭ ys →
Fin (length xs) ⇔ Fin (length ys)
Fin-length-cong xs ys xs↭ys =
sym-⇔ (Fin-length xs) ⟨ trans-⇔ ⟩ iso-Σ xs↭ys ⟨ trans-⇔ ⟩ Fin-length ys
index-commutes : ∀ (x : A) xs ys →
(xs↭ys : xs ↭ ys) (x∈xs : x ∈ xs) →
fst (xs↭ys x .fun x∈xs) ≡ Fin-length-cong xs ys xs↭ys .fun (x∈xs .fst)
index-commutes x xs ys xs↭ys (n , p) =
J (λ y y∈xs → xs↭ys y .fun (n , y∈xs) .fst ≡ xs↭ys (xs ! n) .fun (n , refl) .fst) refl p
index-equality-preserved : ∀ (x : A) xs ys (p q : x ∈ xs) →
(xs↭ys : xs ↭ ys) →
fst p ≡ fst q →
xs↭ys x .fun p .fst ≡ xs↭ys x .fun q .fst
index-equality-preserved x xs ys p q xs↭ys ip≡iq =
xs↭ys x .fun p .fst ≡⟨ index-commutes x xs ys xs↭ys p ⟩
Fin-length-cong xs ys xs↭ys .fun (p .fst) ≡⟨ cong (Fin-length-cong xs ys xs↭ys .fun) ip≡iq ⟩
Fin-length-cong xs ys xs↭ys .fun (q .fst) ≡˘⟨ index-commutes x xs ys xs↭ys q ⟩
xs↭ys x .fun q .fst ∎
where open import Path.Reasoning
perm-inj : ∀ (x : A) xs ys n →
(xs↭ys : x ∷ xs ↭ x ∷ ys) →
∀ z
(z∈ys : x ≡ z)
(x∈ys : x ≡ z)
(z∈xs : xs ! n ≡ z)
(p₁ : xs↭ys z .fun (fs n , z∈xs) ≡ (f0 , z∈ys))
(p₂ : xs↭ys z .fun (f0 , z∈ys) ≡ (f0 , x∈ys)) →
⊥
perm-inj x xs ys n xs↭ys z z∈ys x∈ys z∈xs p₁ p₂ = znots (cong FinToℕ p₆)
where
open import Path.Reasoning
p₃ = fs n , z∈xs ≡˘⟨ xs↭ys z .leftInv (fs n , z∈xs) ⟩
xs↭ys z .inv (xs↭ys z .fun (fs n , z∈xs)) ≡⟨ cong (xs↭ys z .inv) p₁ ⟩
xs↭ys z .inv (f0 , z∈ys) ∎
p₄ = f0 , z∈ys ≡˘⟨ xs↭ys z .leftInv (f0 , z∈ys) ⟩
xs↭ys z .inv (xs↭ys z .fun (f0 , z∈ys)) ≡⟨ cong (xs↭ys z .inv) p₂ ⟩
xs↭ys z .inv (f0 , x∈ys) ∎
p₅ = index-equality-preserved z (x ∷ ys) (x ∷ xs) (f0 , x∈ys) (f0 , z∈ys) (sym-⇔ ∘ xs↭ys) refl
p₆ = f0 ≡⟨ cong fst p₄ ⟩
xs↭ys z .inv (f0 , x∈ys) .fst ≡⟨ p₅ ⟩
xs↭ys z .inv (f0 , z∈ys) .fst ≡˘⟨ cong fst p₃ ⟩
fs n ∎
tailₚ-to : ∀ x (xs ys : List A) → x ∷ xs ↭ x ∷ ys → ∀ z → z ∈ xs → z ∈ ys
tailₚ-to x xs ys xs↭ys z (n , z∈xs) with xs↭ys z .fun (fs n , z∈xs) | inspect (xs↭ys z .fun) (fs n , z∈xs)
... | fs m , z∈ys | _ = m , z∈ys
... | f0 , z∈ys | 〖 p₁ 〗 with xs↭ys z .fun (f0 , z∈ys) | inspect (xs↭ys z .fun) (f0 , z∈ys)
... | fs o , x∈ys | _ = o , x∈ys
... | f0 , x∈ys | 〖 p₂ 〗 = ⊥-elim (perm-inj x xs ys n xs↭ys z z∈ys x∈ys z∈xs p₁ p₂)
pred-∈-eq : ∀ (x y : A) xs i j →
(x∈xs₁ : xs ! i ≡ x) →
(x∈xs₂ : xs ! j ≡ x) →
Path (x ∈ y ∷ xs) (fs i , x∈xs₁) (fs j , x∈xs₂) →
(i , x∈xs₁) ≡ (j , x∈xs₂)
pred-∈-eq x y xs i j x∈xs₁ x∈xs₂ =
J (λ { (fs n , x∈xs₃) _ → (i , x∈xs₁) ≡ (n , x∈xs₃)
; (f0 , x∈xs₃) → ⊥-elim ∘ snotz ∘ cong FinToℕ ∘ cong fst })
refl
open import Path.Reasoning
tailₚ-inv : ∀ x (xs ys : List A) →
(xs↭ys : x ∷ xs ↭ x ∷ ys) →
∀ z (i : z ∈ ys) →
tailₚ-to x xs ys xs↭ys z (tailₚ-to x ys xs (sym-⇔ ∘ xs↭ys) z i) ≡ i
tailₚ-inv x xs ys xs↭ys z (n , z∈ys) with xs↭ys z .inv (fs n , z∈ys) | inspect (xs↭ys z .inv) (fs n , z∈ys)
... | fs m , z∈xs | 〖 p₁ 〗 with xs↭ys z .fun (fs m , z∈xs) | inspect (xs↭ys z .fun) (fs m , z∈xs)
... | fs o , z∈ys₂ | 〖 p₂ 〗 = pred-∈-eq z x ys o n z∈ys₂ z∈ys p₃
where p₃ = fs o , z∈ys₂ ≡˘⟨ p₂ ⟩
xs↭ys z .fun (fs m , z∈xs) ≡˘⟨ cong (xs↭ys z .fun) p₁ ⟩
xs↭ys z .fun (xs↭ys z .inv (fs n , z∈ys)) ≡⟨ xs↭ys z .rightInv (fs n , z∈ys) ⟩
fs n , z∈ys ∎
... | f0 , z∈ys₂ | 〖 p₂ 〗 with xs↭ys z .fun (f0 , z∈ys₂) | inspect (xs↭ys z .fun) (f0 , z∈ys₂)
... | f0 , x∈ys₃ | 〖 p₃ 〗 = ⊥-elim (perm-inj x xs ys m xs↭ys z z∈ys₂ x∈ys₃ z∈xs p₂ p₃)
... | fs o , x∈ys₃ | 〖 p₃ 〗 = ⊥-elim (snotz (cong (FinToℕ ∘ fst) p₄))
where p₄ = fs n , z∈ys ≡˘⟨ xs↭ys z .rightInv (fs n , z∈ys) ⟩
xs↭ys z .fun (xs↭ys z .inv (fs n , z∈ys)) ≡⟨ cong (xs↭ys z .fun) p₁ ⟩
xs↭ys z .fun (fs m , z∈xs) ≡⟨ p₂ ⟩
f0 , z∈ys₂ ∎
tailₚ-inv x xs ys xs↭ys z (n , z∈ys) | f0 , z∈xs | 〖 p₁ 〗
with xs↭ys z .inv (f0 , z∈xs) | inspect (xs↭ys z .inv) (f0 , z∈xs)
... | f0 , z∈ys₂ | 〖 p₂ 〗 = ⊥-elim (perm-inj x ys xs n (sym-⇔ ∘ xs↭ys) z z∈xs z∈ys₂ z∈ys p₁ p₂)
... | fs o , z∈ys₂ | 〖 p₂ 〗 with xs↭ys z .fun (fs o , z∈ys₂) | inspect (xs↭ys z .fun) (fs o , z∈ys₂)
... | fs m , z∈ys₃ | 〖 p₃ 〗 = ⊥-elim (snotz (cong (FinToℕ ∘ fst) p₄))
where p₄ = fs m , z∈ys₃ ≡˘⟨ p₃ ⟩
xs↭ys z .fun (fs o , z∈ys₂) ≡˘⟨ cong (xs↭ys z .fun) p₂ ⟩
xs↭ys z .fun (xs↭ys z .inv (f0 , z∈xs)) ≡⟨ xs↭ys z .rightInv (f0 , z∈xs) ⟩
f0 , z∈xs ∎
... | f0 , z∈ys₃ | 〖 p₃ 〗 with xs↭ys z .fun (f0 , z∈ys₃) | inspect (xs↭ys z .fun) (f0 , z∈ys₃)
... | f0 , z∈ys₄ | 〖 p₄ 〗 = ⊥-elim (perm-inj x xs ys o xs↭ys z z∈ys₃ z∈ys₄ z∈ys₂ p₃ p₄)
... | fs l , z∈ys₄ | 〖 p₄ 〗 = pred-∈-eq z x ys l n z∈ys₄ z∈ys p₇
where
p₅ : Path (z ∈ x ∷ ys) (f0 , z∈xs) (f0 , z∈ys₃)
p₅ = (f0 , z∈xs) ≡˘⟨ xs↭ys z .rightInv (f0 , z∈xs) ⟩
xs↭ys z .fun (xs↭ys z .inv (f0 , z∈xs)) ≡⟨ cong (xs↭ys z .fun) p₂ ⟩
xs↭ys z .fun (fs o , z∈ys₂) ≡⟨ p₃ ⟩
(f0 , z∈ys₃) ∎
p₆ = z∈xs ≡˘⟨ isSet-subst {B = λ n → (x ∷ ys) ! n ≡ z} (Discrete→isSet discreteFin) (cong fst p₅) z∈xs ⟩
subst (λ n → (x ∷ ys) ! n ≡ z) (cong fst p₅) z∈xs
≡⟨ PathΣ→ΣPathTransport (f0 , z∈xs) (f0 , z∈ys₃) p₅ .snd ⟩
z∈ys₃ ∎
p₇ = fs l , z∈ys₄ ≡˘⟨ p₄ ⟩
xs↭ys z .fun (f0 , z∈ys₃) ≡˘⟨ cong (xs↭ys z .fun ∘ _,_ f0) p₆ ⟩
xs↭ys z .fun (f0 , z∈xs) ≡˘⟨ cong (xs↭ys z .fun) p₁ ⟩
xs↭ys z .fun (xs↭ys z .inv (fs n , z∈ys)) ≡⟨ xs↭ys z .rightInv (fs n , z∈ys) ⟩
fs n , z∈ys ∎
tailₚ : ∀ x (xs ys : List A) →
x ∷ xs ↭ x ∷ ys →
xs ↭ ys
tailₚ x xs ys x∷xs↭x∷ys k .fun = tailₚ-to x xs ys x∷xs↭x∷ys k
tailₚ x xs ys x∷xs↭x∷ys k .inv = tailₚ-to x ys xs (sym-⇔ ∘ x∷xs↭x∷ys) k
tailₚ x xs ys x∷xs↭x∷ys k .rightInv = tailₚ-inv x xs ys x∷xs↭x∷ys k
tailₚ x xs ys x∷xs↭x∷ys k .leftInv v = cong (λ z → tailₚ-to x ys xs (sym-⇔ ∘ x∷xs↭x∷ys) k (tailₚ-to x xs ys z k v)) (funExt (λ h → sym (sym-sym-iso (x∷xs↭x∷ys h)) )) ; tailₚ-inv x ys xs (sym-⇔ ∘ x∷xs↭x∷ys) k v
|
{
"alphanum_fraction": 0.5027926593,
"avg_line_length": 43.6467661692,
"ext": "agda",
"hexsha": "6d8503a129094445d956bd7a91b5b70bec566148",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/List/Relation/Binary/Permutation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/List/Relation/Binary/Permutation.agda",
"max_line_length": 211,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/List/Relation/Binary/Permutation.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 4630,
"size": 8773
}
|
module ImportTests.ExtractFunction where
open import ExtractFunction
open import Data.Nat
open import Data.Bool
checkFunction1 : ℕ
checkFunction1 = function1 2 3
checkFunction2 : ℕ
checkFunction2 = function2 4 true
|
{
"alphanum_fraction": 0.8256880734,
"avg_line_length": 18.1666666667,
"ext": "agda",
"hexsha": "1fa0c5fa4d35cd42dc85eaa2c152e5d87ccff87c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-01-31T08:40:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-01-31T08:40:41.000Z",
"max_forks_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "omega12345/RefactorAgda",
"max_forks_repo_path": "RefactorAgdaEngine/Test/Tests/output/ImportTests/ExtractFunction.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_issues_repo_issues_event_max_datetime": "2019-02-05T12:53:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-31T08:03:07.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "omega12345/RefactorAgda",
"max_issues_repo_path": "RefactorAgdaEngine/Test/Tests/output/ImportTests/ExtractFunction.agda",
"max_line_length": 40,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "omega12345/RefactorAgda",
"max_stars_repo_path": "RefactorAgdaEngine/Test/Tests/output/ImportTests/ExtractFunction.agda",
"max_stars_repo_stars_event_max_datetime": "2019-05-03T10:03:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-31T14:10:18.000Z",
"num_tokens": 57,
"size": 218
}
|
@0 F : @0 Set → Set
F A = λ { → A }
|
{
"alphanum_fraction": 0.3611111111,
"avg_line_length": 12,
"ext": "agda",
"hexsha": "a2963a4ea0e4a0cbb09f20a3535de85a2d92d231",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Fail/Issue4525c.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Fail/Issue4525c.agda",
"max_line_length": 19,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Fail/Issue4525c.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 18,
"size": 36
}
|
{-# OPTIONS --safe #-}
module Cubical.HITs.FreeComMonoids.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Function
private variable
ℓ : Level
A : Type ℓ
data FreeComMonoid (A : Type ℓ) : Type ℓ where
⟦_⟧ : A → FreeComMonoid A
ε : FreeComMonoid A
_·_ : FreeComMonoid A → FreeComMonoid A → FreeComMonoid A
comm : ∀ x y → x · y ≡ y · x
identityᵣ : ∀ x → x · ε ≡ x
identityₗ : ∀ x → ε · x ≡ x
assoc : ∀ x y z → x · (y · z) ≡ (x · y) · z
trunc : isSet (FreeComMonoid A)
module Elim {ℓ'} {B : FreeComMonoid A → Type ℓ'}
(⟦_⟧* : (x : A) → B ⟦ x ⟧)
(ε* : B ε)
(_·*_ : ∀ {x y} → B x → B y → B (x · y))
(comm* : ∀ {x y} → (xs : B x) (ys : B y)
→ PathP (λ i → B (comm x y i)) (xs ·* ys) (ys ·* xs))
(identityᵣ* : ∀ {x} → (xs : B x)
→ PathP (λ i → B (identityᵣ x i)) (xs ·* ε*) xs)
(identityₗ* : ∀ {x} → (xs : B x)
→ PathP (λ i → B (identityₗ x i)) (ε* ·* xs) xs)
(assoc* : ∀ {x y z} → (xs : B x) (ys : B y) (zs : B z)
→ PathP (λ i → B (assoc x y z i)) (xs ·* (ys ·* zs)) ((xs ·* ys) ·* zs))
(trunc* : ∀ xs → isSet (B xs)) where
f : (xs : FreeComMonoid A) → B xs
f ⟦ x ⟧ = ⟦ x ⟧*
f ε = ε*
f (xs · ys) = f xs ·* f ys
f (comm xs ys i) = comm* (f xs) (f ys) i
f (identityᵣ xs i) = identityᵣ* (f xs) i
f (identityₗ xs i) = identityₗ* (f xs) i
f (assoc xs ys zs i) = assoc* (f xs) (f ys) (f zs) i
f (trunc xs ys p q i j) = isOfHLevel→isOfHLevelDep 2 trunc* (f xs) (f ys)
(cong f p) (cong f q) (trunc xs ys p q) i j
module ElimProp {ℓ'} {B : FreeComMonoid A → Type ℓ'}
(BProp : {xs : FreeComMonoid A} → isProp (B xs))
(⟦_⟧* : (x : A) → B ⟦ x ⟧)
(ε* : B ε)
(_·*_ : ∀ {x y} → B x → B y → B (x · y)) where
f : (xs : FreeComMonoid A) → B xs
f = Elim.f ⟦_⟧* ε* _·*_
(λ {x y} xs ys → toPathP (BProp (transport (λ i → B (comm x y i)) (xs ·* ys)) (ys ·* xs)))
(λ {x} xs → toPathP (BProp (transport (λ i → B (identityᵣ x i)) (xs ·* ε*)) xs))
(λ {x} xs → toPathP (BProp (transport (λ i → B (identityₗ x i)) (ε* ·* xs)) xs))
(λ {x y z} xs ys zs → toPathP (BProp (transport (λ i → B (assoc x y z i)) (xs ·* (ys ·* zs))) ((xs ·* ys) ·* zs)))
(λ _ → (isProp→isSet BProp))
module Rec {ℓ'} {B : Type ℓ'} (BType : isSet B)
(⟦_⟧* : (x : A) → B)
(ε* : B)
(_·*_ : B → B → B)
(comm* : (x y : B) → x ·* y ≡ y ·* x)
(identityᵣ* : (x : B) → x ·* ε* ≡ x)
(identityₗ* : (x : B) → ε* ·* x ≡ x)
(assoc* : (x y z : B) → x ·* (y ·* z) ≡ (x ·* y) ·* z)
where
f : FreeComMonoid A → B
f = Elim.f ⟦_⟧* ε* _·*_ comm* identityᵣ* identityₗ* assoc* (const BType)
|
{
"alphanum_fraction": 0.4699057288,
"avg_line_length": 37.2702702703,
"ext": "agda",
"hexsha": "cd002b66d3ffc2df78eb3e0a3f0553f499a06070",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/HITs/FreeComMonoids/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/HITs/FreeComMonoids/Base.agda",
"max_line_length": 118,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/HITs/FreeComMonoids/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 1248,
"size": 2758
}
|
--{-# OPTIONS --allow-unsolved-metas #-}
module Theorem1 where
open import OscarPrelude
open import HasSatisfaction
open import HasSubstantiveDischarge
open import LiteralFormula
open import 𝑱udgement
open import HasSalvation
open import Membership
open import Interpretation
open import HasNegation
open import IsLiteralFormula
Theorem1 : (Φ : 𝑱udgement LiteralFormula) → ⊨ Φ ↔ ▷ Φ
Theorem1 Φ@(χs ⊢ ι) = Theorem1a , Theorem1b where
Theorem1a : ⊨ Φ → ▷ Φ
Theorem1a ⊨Φ with ▷? Φ
… | yes ▷Φ = ▷Φ
… | no ⋫Φ =
let I , I⊨χs , I⊭ι = Lemma1a in
⊥-elim ∘ I⊭ι $ ⊨Φ I I⊨χs
where
Lemma1a : ∃ λ I → I ⊨ χs × I ⊭ ι
Lemma1a = {!!}
{-
To construct the interpretation, consider a unique list, τ₀, τ₁, …, τₙ, of terms in ι ∷ χs. For each term, τ, we find <TODO> interpretations, 𝓘, such that for any I ∈ 𝓘, and any i ∈ 0, …, n, τ⟦ I ⟧ τᵢ = i. For each formula φ ∈ ι ∷ χs, we find <TODO> an interpretation I ∈ 𝓘 such that 𝑃⟦ I ⟧ φ = true when φ ∈ χs and 𝑃⟦ I ⟧ φ = false when φ = ι.
For all terms in ι ∷ χs, find a coding into Nat that uniquely determines each term. To do this, compute the maximum functional depth of terms, D, the maximal arity of terms, A, the maximal function name, F, and the maximal variable name, V. Each term can then be coded into Fin V + (D₀ = F + F * V + F * V ^ 2 + ... + F * V ^ A) + (D₀ ...
Encode each term in a discrimination network. Each new term stored is assigned a unique id
-}
Theorem1b : ▷ Φ → ⊨ Φ
Theorem1b (left ◁χs) I I⊨χs = {!!}
Theorem1b (right χs≽ι) I I⊨χs = {!!}
|
{
"alphanum_fraction": 0.655396619,
"avg_line_length": 36.619047619,
"ext": "agda",
"hexsha": "9f6793ee90517c45c0a0e160a4377b3c0b465daf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/Theorem1.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/Theorem1.agda",
"max_line_length": 344,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/Theorem1.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 593,
"size": 1538
}
|
-- Andreas, 2011-04-15
module NotStronglyRigidOccurrence where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
data _≡_ {A : Set}(a : A) : A -> Set where
refl : a ≡ a
-- Jason C. Read, PhD thesis, p. 109
test : (k : Nat) ->
let X : (Nat -> Nat) -> Nat
X = _
in (f : Nat -> Nat) -> X f ≡ suc (f (X (\ x -> k)))
test k f = refl -- {a = suc (f (suc k))}
-- leads to _30 : _22 k f ≡ suc (f (_22 k (λ x → k)))
-- this should give yellow, because above solution for _22 exists
|
{
"alphanum_fraction": 0.5324165029,
"avg_line_length": 26.7894736842,
"ext": "agda",
"hexsha": "bd32ad5d2524be628ca0a4c553e006b0b54f3fb7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/NotStronglyRigidOccurrence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/NotStronglyRigidOccurrence.agda",
"max_line_length": 65,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/NotStronglyRigidOccurrence.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 187,
"size": 509
}
|
{-# OPTIONS --rewriting #-}
module Oscar.AgdaRewriting where
open import Agda.Builtin.Equality
{-# BUILTIN REWRITE _≡_ #-}
record ⊤ : Set where
constructor tt
data List (A : Set) : Set where
∅ : List A
_∷_ : A → List A → List A
Nat = List ⊤
pattern ‼ xs = tt ∷ xs
syntax ‼ xs = ! xs
open import Agda.Builtin.Nat using (zero; suc) renaming (Nat to ℕ; _+_ to _+ℕ_)
toNat : ℕ → Nat
toNat zero = ∅
toNat (suc x) = tt ∷ toNat x
toℕ : Nat → ℕ
toℕ ∅ = zero
toℕ (x ∷ x₁) = suc (toℕ x₁)
ℕ-iso : ∀ n → toℕ (toNat n) ≡ n
ℕ-iso zero = refl
ℕ-iso (suc n) rewrite ℕ-iso n = refl
Nat-iso : ∀ n → toNat (toℕ n) ≡ n
Nat-iso ∅ = refl
Nat-iso (x ∷ n) rewrite Nat-iso n = refl
--{-# REWRITE ℕ-iso #-}
infixl 6 _+Nat_
_+Nat_ : Nat → Nat → Nat
m +Nat n = toNat (toℕ m +ℕ toℕ n)
infixl 7 _*Nat_
_*Nat_ : Nat → Nat → Nat
∅ *Nat _ = ∅
_ *Nat ∅ = ∅
(_ ∷ m) *Nat (_ ∷ n) = _ ∷ m +Nat n +Nat m *Nat n
NatComputation : Nat
NatComputation = toNat 5 *Nat toNat 7
butnowinℕ : ℕ
butnowinℕ = toℕ NatComputation
showme : ℕ
showme = {!!}
-- postulate
-- Nat≡ℕ : Nat ≡ ℕ
-- {-# REWRITE Nat≡ℕ #-}
-- data Fin : Nat → Set where
-- ∅ : ∀ {n} → Fin (! n)
-- ! : ∀ {n} → Fin n → Fin (! n)
-- -- record ⊤ : Set where
-- -- constructor tt
-- -- data List (A : Set) : Set where
-- -- ∅ : List A
-- -- _∷_ : A → List A → List A
-- -- Nat = List ⊤
-- -- pattern ‼ xs = tt ∷ xs
-- -- data Fin : Nat → Set where
-- -- ∅ : ∀ {n} → Fin (‼ n)
-- -- ! : ∀ {n} → Fin n → Fin (‼ n)
|
{
"alphanum_fraction": 0.5380434783,
"avg_line_length": 18.4,
"ext": "agda",
"hexsha": "4607cef012160e0fcbf0fc1340786afb4b7b5ba2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/AgdaRewriting.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/AgdaRewriting.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/AgdaRewriting.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 632,
"size": 1472
}
|
{-# OPTIONS --without-K --safe #-}
open import Algebra
module Data.FingerTree.Reasoning
{r m}
(ℳ : Monoid r m)
where
open Monoid ℳ renaming (Carrier to 𝓡)
open import Data.FingerTree.MonoidSolver ℳ using (solve-macro)
open import Data.Unit using (⊤)
open import Reflection using (TC; Term)
macro
_↯ : Term → Term → TC ⊤
_↯ = solve-macro
infixr 2 ∙≫_ ≪∙_
∙≫_ : ∀ {x y z} → x ≈ y → z ∙ x ≈ z ∙ y
∙≫_ = ∙-cong refl
≪∙_ : ∀ {x y z} → x ≈ y → x ∙ z ≈ y ∙ z
≪∙ x = ∙-cong x refl
infixl 1 _⍮_
_⍮_ : ∀ {x y z} → x ≈ y → y ≈ z → x ≈ z
_⍮_ = trans
infixl 1 trans⁻¹
trans⁻¹ : ∀ {x y z : 𝓡} → y ≈ z → x ≈ y → x ≈ z
trans⁻¹ x y = trans y x
syntax trans⁻¹ y≈z x≈y = x≈y ⍮′ y≈z
infixr 2 _↢_ ↣-syntax ↣↣-syntax
_↢_ : ∀ x {y} → x ≈ y → x ≈ y
_ ↢ x≈y = x≈y
↣-syntax : ∀ {x} y → x ≈ y → x ≈ y
↣-syntax _ x≈y = x≈y
syntax ↣-syntax y x≈y = x≈y ↣ y
↣↣-syntax : ∀ x y → x ≈ y → x ≈ y
↣↣-syntax _ _ x≈y = x≈y
syntax ↣↣-syntax x y x≈y = x ↣⟨ x≈y ⟩↣ y
infixl 6 _∙>_ _<∙_
_∙>_ : ∀ x {y z} → y ≈ z → x ∙ y ≈ x ∙ z
_ ∙> y≈z = ∙≫ y≈z
_<∙_ : ∀ {x y} → x ≈ y → ∀ z → x ∙ z ≈ y ∙ z
x≈y <∙ _ = ≪∙ x≈y
|
{
"alphanum_fraction": 0.496803653,
"avg_line_length": 18.8793103448,
"ext": "agda",
"hexsha": "943f2e6c1f95e7f2a649ceb6e839ec1f77eae565",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-indexed-fingertree",
"max_forks_repo_path": "src/Data/FingerTree/Reasoning.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-indexed-fingertree",
"max_issues_repo_path": "src/Data/FingerTree/Reasoning.agda",
"max_line_length": 62,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-indexed-fingertree",
"max_stars_repo_path": "src/Data/FingerTree/Reasoning.agda",
"max_stars_repo_stars_event_max_datetime": "2019-02-26T07:04:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-26T07:04:54.000Z",
"num_tokens": 622,
"size": 1095
}
|
module BBHeap.Perfect {A : Set}(_≤_ : A → A → Set) where
open import BBHeap _≤_
open import Bound.Lower A
open import Bound.Lower.Order _≤_
data Perfect {b : Bound} : BBHeap b → Set where
plf : Perfect (leaf {b})
pnd : {x : A}{l r : BBHeap (val x)}(b≤x : LeB b (val x))(l⋘r : l ⋘ r) → l ≃ r → Perfect (left b≤x l⋘r)
|
{
"alphanum_fraction": 0.6068111455,
"avg_line_length": 32.3,
"ext": "agda",
"hexsha": "3aae729b80de704b304a946684194951a74c16c6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/BBHeap/Perfect.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/BBHeap/Perfect.agda",
"max_line_length": 104,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/BBHeap/Perfect.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 135,
"size": 323
}
|
module Issue478 where
record Ko (Q : Set) : Set₁ where
field
T : Set
module Bo (P : Set) (ko : Ko P) where
open Ko ko
err : T
err = Set
{- The error message was:
Set₁ !=< T P ko of type Set₂
when checking that the expression Set has type T P ko
We now get the desired error message:
Set₁ !=< T of type Set₂
when checking that the expression Set has type T
-}
|
{
"alphanum_fraction": 0.6520618557,
"avg_line_length": 15.52,
"ext": "agda",
"hexsha": "a4b22f8220a24e0058a4b0007c0ae830cf0d383a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dagit/agda",
"max_forks_repo_path": "test/fail/Issue478.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dagit/agda",
"max_issues_repo_path": "test/fail/Issue478.agda",
"max_line_length": 55,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/Issue478.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T07:26:06.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T07:26:06.000Z",
"num_tokens": 121,
"size": 388
}
|
{-# OPTIONS --cubical --safe #-}
module Ag08 where
open import Cubical.Core.Everything
open import Cubical.Foundations.Everything
open import Cubical.Data.Everything
-- maybe helpful when case splitting
record Reveal_·_is_ {a b} {A : Set a} {B : A → Set b}
(f : (x : A) → B x) (x : A) (y : B x) :
Set (ℓ-max a b) where
constructor [_]
field eq : f x ≡ y
inspect : ∀ {a b} {A : Set a} {B : A → Set b}
(f : (x : A) → B x) (x : A) → Reveal f · x is f x
inspect f x = [ refl ]
-- Lift is necessary for Bool and Bool ≡ Bool are of different level. :-P
Bool≡[Bool≡Bool] : Lift Bool ≡ (Bool ≡ Bool)
Bool≡[Bool≡Bool] = {!!}
|
{
"alphanum_fraction": 0.5674074074,
"avg_line_length": 29.347826087,
"ext": "agda",
"hexsha": "9238320af9fd203ff2d16c3552536077ed7cd200",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-12-13T04:50:46.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-12-13T04:50:46.000Z",
"max_forks_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Brethland/LEARNING-STUFF",
"max_forks_repo_path": "Agda/Ag08.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Brethland/LEARNING-STUFF",
"max_issues_repo_path": "Agda/Ag08.agda",
"max_line_length": 73,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Brethland/LEARNING-STUFF",
"max_stars_repo_path": "Agda/Ag08.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-11T10:35:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-02-03T05:05:52.000Z",
"num_tokens": 233,
"size": 675
}
|
{-# OPTIONS --without-K #-}
open import Data.Nat
open import Data.Two
open import Data.Zero
open import Data.Fin.NP
open import Type
open import Function
open import Relation.Binary.PropositionalEquality.NP
import Explore.Universe.Base
open import Explore.Core
open import Explore.Zero
open import Explore.One
open import Explore.Two
open import Explore.Universe.Type
-- Exploring Fin comes in two flavors Regular & Custom
-- We recommend Regular if you want to work for arbitrary values of n.
-- We recommend Custom if you want to work for particular values of n (2, 6...).
module Explore.Fin where
module Regular n = Explore.Universe.Base (≃ᵁ (Finᵁ n) (Fin n) (Finᵁ≃Fin n))
module Custom where
module _ n where
open Explore.Universe.Base (≃ᵁ (Finᵁ' n) (Fin n) (Finᵁ'≃Fin n))
public
Finᵉ0-𝟘ᵉ : (λ {M : ★₀} (ε : M) op f → explore 0 ε op (f ∘ Fin▹𝟘)) ≡ 𝟘ᵉ
Finᵉ0-𝟘ᵉ = refl
Finᵉ1-𝟙ᵉ : (λ {M : ★₀} (ε : M) op f → explore 1 ε op (f ∘ Fin▹𝟙)) ≡ 𝟙ᵉ
Finᵉ1-𝟙ᵉ = refl
Finᵉ2-𝟚ᵉ : (λ {M : ★₀} (ε : M) op f → explore 2 ε op (f ∘ Fin▹𝟚)) ≡ 𝟚ᵉ
Finᵉ2-𝟚ᵉ = refl
module ByHand {ℓ} where
Finᵉ' : ∀ n → Explore ℓ (Fin n)
Finᵉ' zero z _⊕_ f = z
Finᵉ' (suc n) z _⊕_ f = f zero ⊕ Finᵉ' n z _⊕_ (f ∘ suc)
-- Finᵉ and Finᵉ' are extensionally equal.
-- Moreover the simplicity of the proof shows that the two functions are computing
-- in the same way.
Finᵉ-Finᵉ' : ∀ n {M} (ε : M) (_⊕_ : M → M → M) (f : Fin n → M) → Regular.explore n ε _⊕_ f ≡ Finᵉ' n ε _⊕_ f
Finᵉ-Finᵉ' zero ε _⊕_ f = idp
Finᵉ-Finᵉ' (suc n) ε _⊕_ f = ap (_⊕_ (f zero))
(Finᵉ-Finᵉ' n ε _⊕_ (f ∘ suc))
|
{
"alphanum_fraction": 0.6318042813,
"avg_line_length": 32.7,
"ext": "agda",
"hexsha": "a752e85d8b9f4a9659b441fe04d576a2d816a12e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "crypto-agda/explore",
"max_forks_repo_path": "lib/Explore/Fin.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "crypto-agda/explore",
"max_issues_repo_path": "lib/Explore/Fin.agda",
"max_line_length": 110,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "crypto-agda/explore",
"max_stars_repo_path": "lib/Explore/Fin.agda",
"max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z",
"num_tokens": 715,
"size": 1635
}
|
------------------------------------------------------------------------
-- Preimages
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
-- Partly based on Voevodsky's work on so-called univalent
-- foundations.
open import Equality
module Preimage
{reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where
open import Bijection eq as Bijection hiding (id; _∘_)
open Derived-definitions-and-properties eq
open import H-level eq as H-level
open import Injection eq hiding (id; _∘_)
open import Logical-equivalence using (module _⇔_)
open import Prelude
open import Surjection eq hiding (id; _∘_)
-- The preimage of y under f is denoted by f ⁻¹ y.
infix 5 _⁻¹_
_⁻¹_ : ∀ {a b} {A : Type a} {B : Type b} → (A → B) → B → Type (a ⊔ b)
f ⁻¹ y = ∃ λ x → f x ≡ y
-- Preimages under the identity function are contractible. (Note that
-- Singleton x is equal to id ⁻¹ x.)
id⁻¹-contractible : ∀ {a} {A : Type a} (y : A) →
Contractible (id ⁻¹ y)
id⁻¹-contractible = singleton-contractible
-- _⁻¹_ respects extensional equality of functions.
respects-extensional-equality :
∀ {a b} {A : Type a} {B : Type b} {f g : A → B} {y} →
(∀ x → f x ≡ g x) → (f ⁻¹ y) ↔ (g ⁻¹ y)
respects-extensional-equality {f = f} {g} {y} f≡g = record
{ surjection = record
{ logical-equivalence = record
{ to = to′
; from = from′
}
; right-inverse-of = right-inverse-of
}
; left-inverse-of = left-inverse-of
}
where
to′ : f ⁻¹ y → g ⁻¹ y
to′ (x , fx≡y) = x , (
g x ≡⟨ sym $ f≡g x ⟩
f x ≡⟨ fx≡y ⟩∎
y ∎)
from′ : g ⁻¹ y → f ⁻¹ y
from′ (x , gx≡y) = x , (
f x ≡⟨ f≡g x ⟩
g x ≡⟨ gx≡y ⟩∎
y ∎)
abstract
right-inverse-of : ∀ p → to′ (from′ p) ≡ p
right-inverse-of = λ g⁻¹y → cong (_,_ (proj₁ g⁻¹y)) (
let p = f≡g (proj₁ g⁻¹y); q = proj₂ g⁻¹y in
trans (sym p) (trans p q) ≡⟨ sym $ trans-assoc _ _ _ ⟩
trans (trans (sym p) p) q ≡⟨ cong (λ p → trans p q) (trans-symˡ _) ⟩
trans (refl _) q ≡⟨ trans-reflˡ _ ⟩∎
q ∎)
left-inverse-of : ∀ p → from′ (to′ p) ≡ p
left-inverse-of = λ f⁻¹y → cong (_,_ (proj₁ f⁻¹y))
let p = f≡g (proj₁ f⁻¹y); q = proj₂ f⁻¹y in
trans p (trans (sym p) q) ≡⟨ sym $ trans-assoc _ _ _ ⟩
trans (trans p (sym p)) q ≡⟨ cong (λ p → trans p q) (trans-symʳ _) ⟩
trans (refl _) q ≡⟨ trans-reflˡ _ ⟩∎
q ∎
-- Split surjections can be lifted to preimages.
lift-surjection :
∀ {a b} {A : Type a} {B : Type b} (A↠B : A ↠ B) → let open _↠_ A↠B in
∀ {y} → (from ∘ to ⁻¹ y) ↠ (from ⁻¹ y)
lift-surjection {A = A} {B} A↠B {y} = record
{ logical-equivalence = record
{ to = drop-∘
; from = add-∘
}
; right-inverse-of = right-inv
}
where
open _↠_ A↠B
-- Given a preimage under (f ∘ g) a preimage under f can be
-- constructed.
drop-∘ : (from ∘ to) ⁻¹ y → from ⁻¹ y
drop-∘ = Σ-map to id
-- If f is a left inverse of g then the other direction also
-- holds.
abstract
add-∘-lemma : ∀ {x} → from x ≡ y → from (to (from x)) ≡ y
add-∘-lemma {x} from-x≡y =
from (to (from x)) ≡⟨ cong from (right-inverse-of x) ⟩
from x ≡⟨ from-x≡y ⟩∎
y ∎
add-∘ : from ⁻¹ y → (from ∘ to) ⁻¹ y
add-∘ (x , from-x≡y) = (from x , add-∘-lemma from-x≡y)
abstract
-- add-∘ is a right inverse of drop-∘.
right-inv : (from⁻¹y : from ⁻¹ y) → drop-∘ (add-∘ from⁻¹y) ≡ from⁻¹y
right-inv (x , from-x≡y) =
(to (from x) , trans (cong from (right-inverse-of x)) from-x≡y) ≡⟨ sym $ lemma (right-inverse-of x) from-x≡y ⟩∎
(x , from-x≡y) ∎
where
lemma : ∀ {x y z} {f : B → A}
(y≡x : y ≡ x) (p : f x ≡ z) →
_≡_ {A = f ⁻¹ z} (x , p) (y , trans (cong f y≡x) p)
lemma {z = z} {f} = elim
(λ {y x} y≡x → (p : f x ≡ z) →
_≡_ {A = f ⁻¹ z} (x , p) (y , trans (cong f y≡x) p))
(λ x p → cong (_,_ x) (
p ≡⟨ sym $ trans-reflˡ _ ⟩
trans (refl (f x)) p ≡⟨ cong (λ q → trans q p) (sym (cong-refl f)) ⟩∎
trans (cong f (refl x)) p ∎))
-- A consequence of the lemmas above is that preimages under a
-- bijection are contractible.
bijection⁻¹-contractible :
∀ {a b} {A : Type a} {B : Type b} (A↔B : A ↔ B) → let open _↔_ A↔B in
∀ y → Contractible (to ⁻¹ y)
bijection⁻¹-contractible A↔B =
H-level.respects-surjection surj 0 ∘ id⁻¹-contractible
where
open _↔_ (Bijection.inverse A↔B)
surj : ∀ {y} → id ⁻¹ y ↠ from ⁻¹ y
surj {y} =
id ⁻¹ y ↠⟨ _↔_.surjection $
respects-extensional-equality (sym ∘ left-inverse-of) ⟩
from ∘ to ⁻¹ y ↠⟨ lift-surjection surjection ⟩□
from ⁻¹ y □
abstract
-- Preimages under an injection into a set are propositional.
injection⁻¹-propositional :
∀ {a b} {A : Type a} {B : Type b} (A↣B : A ↣ B) →
let open _↣_ A↣B in
Is-set B →
∀ y → Is-proposition (to ⁻¹ y)
injection⁻¹-propositional A↣B B-set y (x₁ , tox₁≡y) (x₂ , tox₂≡y) =
Σ-≡,≡→≡ (injective (to x₁ ≡⟨ tox₁≡y ⟩
y ≡⟨ sym tox₂≡y ⟩∎
to x₂ ∎))
(subst (λ x → to x ≡ y)
(injective (trans tox₁≡y (sym tox₂≡y)))
tox₁≡y ≡⟨ B-set _ _ ⟩∎
tox₂≡y ∎)
where
open _↣_ A↣B
|
{
"alphanum_fraction": 0.4851573677,
"avg_line_length": 32.323699422,
"ext": "agda",
"hexsha": "f6dd092e7f97dcf5550f9c52a0d9f960e607ba22",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Preimage.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Preimage.agda",
"max_line_length": 120,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Preimage.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 2191,
"size": 5592
}
|
module Money where
import Agda.Builtin.IO as Builtin using (IO)
import Data.Rational as ℚ using (_+_; _*_)
open import Codata.Musical.Notation using (♯_)
open import Data.Nat using (ℕ; suc)
open import Data.Integer as ℤ using (+_)
open import Data.List using (List; []; _∷_)
open import Data.Rational as ℚ using (ℚ; 0ℚ; _/_)
open import Data.String using (String)
open import Data.Unit using (⊤)
open import Function using (_∘_) renaming (_$_ to _$$_)
open import IO using (putStrLn; IO; _>>_; run; sequence)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; _≢_)
open import Relation.Binary using (Decidable)
open import Relation.Nullary using (yes; no)
open import Codata.Musical.Colist as Colist using (fromList)
open Colist renaming (_∷_ to _::_)
data Currency : Set where
€ : Currency
£ : Currency
$ : Currency
¥ : Currency
data Money : Currency → Set where
mkMoney : {c : Currency} → ℚ → Money c
noMoney : Money $
noMoney = mkMoney (+ 0 / 1)
_+_ : {c : Currency} → Money c → Money c → Money c
mkMoney x₁ + mkMoney x₂ = mkMoney (x₁ ℚ.+ x₂)
infix 30 _+_
_*_ : {c : Currency} → ℚ → Money c → Money c
x * mkMoney y = mkMoney (x ℚ.* y)
record SomeMoney : Set where
field
currency : Currency
money : Money currency
mkSomeMoney : Currency → ℚ → SomeMoney
mkSomeMoney currency amount = record { currency = currency; money = mkMoney amount }
record Trade : Set where
constructor mkTrade
field
tPrice : SomeMoney
tQty : ℚ
data Equal? (c₁ c₂ : Currency) : Set where
eq : c₁ ≡ c₂ → Equal? c₁ c₂
neq : c₁ ≢ c₂ → Equal? c₁ c₂
infix 4 _≟_
_≟_ : Decidable {A = Currency} _≡_
€ ≟ € = yes refl
€ ≟ £ = no (λ ())
€ ≟ $ = no (λ ())
€ ≟ ¥ = no (λ ())
£ ≟ € = no (λ ())
£ ≟ £ = yes refl
£ ≟ $ = no (λ ())
£ ≟ ¥ = no (λ ())
$ ≟ € = no (λ ())
$ ≟ £ = no (λ ())
$ ≟ $ = yes refl
$ ≟ ¥ = no (λ ())
¥ ≟ € = no (λ ())
¥ ≟ £ = no (λ ())
¥ ≟ $ = no (λ ())
¥ ≟ ¥ = yes refl
sumNotions : {c : Currency} → List Trade → Money c
sumNotions [] = mkMoney 0ℚ
sumNotions {c} (record { tPrice = record { currency = currency; money = money }; tQty = tQty } ∷ xs) with c ≟ currency
... | yes refl = (tQty * money) + sumNotions xs
... | no _ = sumNotions xs
_/1 : ℕ → ℚ
n /1 = + n / 1
testTrades : List Trade
testTrades =
mkTrade (mkSomeMoney £ (1 /1)) (100 /1)
∷ mkTrade (mkSomeMoney £ (2 /1)) (200 /1)
∷ mkTrade (mkSomeMoney $ (3 /1)) (300 /1)
∷ mkTrade (mkSomeMoney ¥ (5 /1)) (50 /1)
∷ []
open import Text.Printf using (printf)
showℚ : ℚ → String
showℚ record {numerator = n; denominator-1 = 0} = printf "%d" n
showℚ record {numerator = n; denominator-1 = d} = printf "%d/%u" n (suc d)
showCurrency : Currency → String
showCurrency € = "€"
showCurrency £ = "£"
showCurrency $ = "$"
showCurrency ¥ = "¥"
showMoney : {c : Currency} → Money c → String
showMoney {c} (mkMoney amount) = (printf "%s %s") (showCurrency c) (showℚ amount)
main : Builtin.IO (Colist ⊤)
main = run ∘ sequence ∘ fromList $$
putStrLn "Hello, World!"
∷ putStrLn (showMoney $$ sumNotions {€} testTrades)
∷ putStrLn (showMoney $$ sumNotions {£} testTrades)
∷ putStrLn (showMoney $$ sumNotions {$} testTrades)
∷ putStrLn (showMoney $$ sumNotions {¥} testTrades)
∷ []
|
{
"alphanum_fraction": 0.6219169529,
"avg_line_length": 27.6120689655,
"ext": "agda",
"hexsha": "1a7c130749c9b12ca483c231615717c043beb905",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f875dfb5f191e6a4a041a8aa4d08f98acdc5ab53",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "neosimsim/money-typed",
"max_forks_repo_path": "Money.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f875dfb5f191e6a4a041a8aa4d08f98acdc5ab53",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "neosimsim/money-typed",
"max_issues_repo_path": "Money.agda",
"max_line_length": 119,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f875dfb5f191e6a4a041a8aa4d08f98acdc5ab53",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "neosimsim/money-typed",
"max_stars_repo_path": "Money.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1118,
"size": 3203
}
|
import cedille-options
module elab-util (options : cedille-options.options) where
open import general-util
open import cedille-types
open import syntax-util
open import type-util
open import ctxt
open import conversion
open import constants
open import instances
open import subst
open import rename
open import rewriting
open import free-vars
open import toplevel-state options {IO}
open import datatype-util
open import bohm-out
rename-validify : string → string
rename-validify = 𝕃char-to-string ∘ (h ∘ string-to-𝕃char) where
validify-char : char → 𝕃 char
validify-char '/' = [ '-' ]
validify-char '.' = [ '-' ]
validify-char c with
(c =char 'a') ||
(c =char 'z') ||
(c =char 'A') ||
(c =char 'Z') ||
(c =char '\'') ||
(c =char '-') ||
(c =char '_') ||
is-digit c ||
(c =char qual-local-chr) ||
(('a' <char c) && (c <char 'z')) ||
(('A' <char c) && (c <char 'Z'))
...| tt = [ c ]
...| ff = 'Z' :: string-to-𝕃char (ℕ-to-string (toNat c)) ++ [ 'Z' ]
h : 𝕃 char → 𝕃 char
h [] = []
h (c :: cs) = validify-char c ++ h cs
-- Returns a fresh variable name by adding primes and replacing invalid characters
fresh-var' : string → (string → 𝔹) → string
fresh-var' x f = fresh-h f (rename-validify x)
rename-new_from_for_ : ∀ {X : Set} → var → ctxt → (var → X) → X
rename-new ignored-var from Γ for f = f $ fresh-var' "x" (ctxt-binds-var Γ)
rename-new x from Γ for f = f $ fresh-var' x (ctxt-binds-var Γ)
rename_from_for_ : ∀ {X : Set} → var → ctxt → (var → X) → X
rename ignored-var from Γ for f = f ignored-var
rename x from Γ for f = f $ fresh-var' x (ctxt-binds-var Γ)
get-renaming : renamectxt → var → var → var × renamectxt
get-renaming ρₓ xₒ x = let x' = fresh-var' x (renamectxt-in-field ρₓ) in x' , renamectxt-insert ρₓ xₒ x'
rename_-_from_for_ : ∀ {X : Set} → var → var → renamectxt → (var → renamectxt → X) → X
rename xₒ - ignored-var from ρₓ for f = f ignored-var ρₓ
rename xₒ - x from ρₓ for f = uncurry f $ get-renaming ρₓ xₒ x
rename_-_lookup_for_ : ∀ {X : Set} → var → var → renamectxt → (var → renamectxt → X) → X
rename xₒ - x lookup ρₓ for f with renamectxt-lookup ρₓ xₒ
...| nothing = rename xₒ - x from ρₓ for f
...| just x' = f x' ρₓ
rename_from_and_for_ : ∀ {X : Set} → var → ctxt → renamectxt → (var → ctxt → renamectxt → X) → X
rename ignored-var from Γ and ρ for f = f ignored-var Γ ρ
rename x from Γ and ρ for f =
let x' = fresh-var' x (λ x → ctxt-binds-var Γ x || renamectxt-in-field ρ x) in
f x' (ctxt-var-decl x' Γ) (renamectxt-insert ρ x x')
module reindexing (Γ : ctxt) (D I mn : var) (isₒ : indices) (psₜ : params) where
rnm : Set
rnm = qualif × stringset
rnm-insert : rnm → var → var → rnm
rnm-insert (q , s) xₒ xₙ = trie-insert q xₒ (xₙ , []) , stringset-insert s xₙ
rnm-add : rnm → var → var → args → rnm
rnm-add (q , s) xₒ xₙ as = trie-insert q xₒ (xₙ , as) , stringset-insert s xₙ
rnm-binds : rnm → var → 𝔹
rnm-binds (q , s) x = trie-contains q x || trie-contains s x
reindex-fresh-var : rnm → trie indices → var → var
reindex-fresh-var ρₓ is ignored-var = ignored-var
reindex-fresh-var ρₓ is x =
fresh-h (λ x' → ctxt-binds-var Γ x' || trie-contains is x' || rnm-binds ρₓ x') x
rename-indices' : rnm → trie indices → indices
rename-indices' ρₓ is = foldr {B = renamectxt → rnm → indices}
(λ {(Index x atk) f r ρₓ →
let x' = reindex-fresh-var ρₓ is x in
Index x' (substh Γ r empty-trie -tk atk) :: f (renamectxt-insert r x x') (rnm-insert ρₓ x x')})
(λ r ρₓ → []) isₒ empty-renamectxt ρₓ
reindex-t : Set → Set
reindex-t X = rnm → trie indices → X → X
{-# TERMINATING #-}
reindex : ∀ {ed} → reindex-t ⟦ ed ⟧
rc-is : rnm → indices → rnm
rc-is = foldr λ {(Index x atk) ρₓ → rnm-insert ρₓ x x}
is-index-var : maybe tpkd → 𝔹
is-index-var (just (Tkt (TpVar x))) = x =string I
is-index-var _ = ff
reindex {TERM} ρₓ is (AppEr t (Var x)) with trie-lookup is x
...| nothing = AppEr (reindex ρₓ is t) $ reindex ρₓ is $ Var x
...| just is' = indices-to-apps is' $ reindex ρₓ is t
reindex {TERM} ρₓ is (App t t') =
App (reindex ρₓ is t) (reindex ρₓ is t')
reindex {TERM} ρₓ is (AppE t tT) =
AppE (reindex ρₓ is t) (reindex ρₓ is -tT tT)
reindex {TERM} ρₓ is (Beta t t') =
Beta (reindex ρₓ is t) (reindex ρₓ is t')
reindex {TERM} ρₓ is (Delta b? T t) =
Delta (b? >>=c λ t₁ t₂ → just (reindex ρₓ is t₁ , reindex ρₓ is t₂))
(reindex ρₓ is T) (reindex ρₓ is t)
reindex {TERM} ρₓ is (Hole pi) =
Hole pi
reindex {TERM} ρₓ is (IotaPair t₁ t₂ x Tₓ) =
let x' = reindex-fresh-var ρₓ is x in
IotaPair (reindex ρₓ is t₁) (reindex ρₓ is t₂) x'
(reindex (rnm-insert ρₓ x x') is Tₓ)
reindex {TERM} ρₓ is (IotaProj t n) =
IotaProj (reindex ρₓ is t) n
reindex {TERM} ρₓ is (Lam me x tk? t) with is-index-var tk?
...| ff = let x' = reindex-fresh-var ρₓ is x in
Lam me x' (reindex ρₓ is -tk_ <$> tk?) (reindex (rnm-insert ρₓ x x') is t)
...| tt with rename-indices' ρₓ is
...| isₙ = indices-to-lams isₙ $ reindex (rc-is ρₓ isₙ) (trie-insert is x isₙ) t
reindex {TERM} ρₓ is (LetTm me x T? t t') =
let x' = reindex-fresh-var ρₓ is x in
LetTm me x' (reindex ρₓ is <$> T?) (reindex ρₓ is t) (reindex (rnm-insert ρₓ x x') is t')
reindex {TERM} ρₓ is (LetTp x k T t) =
let x' = reindex-fresh-var ρₓ is x in
LetTp x' (reindex ρₓ is k) (reindex ρₓ is T) (reindex (rnm-insert ρₓ x x') is t)
reindex {TERM} ρₓ is (Phi t₌ t₁ t₂) =
Phi (reindex ρₓ is t₌) (reindex ρₓ is t₁) (reindex ρₓ is t₂)
reindex {TERM} ρₓ is (Rho t₌ x Tₓ t) =
let x' = reindex-fresh-var ρₓ is x in
Rho (reindex ρₓ is t) x' (reindex (rnm-insert ρₓ x x') is Tₓ) (reindex ρₓ is t)
reindex {TERM} ρₓ is (VarSigma t) =
VarSigma (reindex ρₓ is t)
reindex {TERM} ρₓ is (Var x) =
maybe-else' (trie-lookup (fst ρₓ) x) (Var x) (uncurry (apps-term ∘ Var))
reindex {TERM} ρₓ is (Mu μ t Tₘ? f~ cs) = Var "template-mu-not-allowed"
reindex {TERM} ρₓ is (Sigma μ t Tₘ? f~ cs) = Var "template-sigma-not-allowed"
reindex {TYPE} ρₓ is (TpAbs me x atk T) with is-index-var (just atk)
...| ff = let x' = reindex-fresh-var ρₓ is x in
TpAbs me x' (reindex ρₓ is -tk atk) (reindex (rnm-insert ρₓ x x') is T)
...| tt = let isₙ = rename-indices' ρₓ is in
indices-to-alls isₙ $ reindex (rc-is ρₓ isₙ) (trie-insert is x isₙ) T
reindex {TYPE} ρₓ is (TpEq t₁ t₂) =
TpEq (reindex ρₓ is t₁) (reindex ρₓ is t₂)
reindex {TYPE} ρₓ is (TpIota x T T') =
let x' = reindex-fresh-var ρₓ is x in
TpIota x' (reindex ρₓ is T) (reindex (rnm-insert ρₓ x x') is T')
reindex {TYPE} ρₓ is (TpAppTm T (Var x)) with trie-lookup is x
...| nothing = TpAppTm (reindex ρₓ is T) $ reindex ρₓ is $ Var x
...| just is' = indices-to-tpapps is' $ reindex ρₓ is T
reindex {TYPE} ρₓ is (TpApp T tT) =
TpApp (reindex ρₓ is T) (reindex ρₓ is -tT tT)
reindex {TYPE} ρₓ is (TpHole pi) =
TpHole pi
reindex {TYPE} ρₓ is (TpLam x atk T) with is-index-var (just atk)
...| ff = let x' = reindex-fresh-var ρₓ is x in
TpLam x' (reindex ρₓ is -tk atk) (reindex (rnm-insert ρₓ x x') is T)
...| tt = let isₙ = rename-indices' ρₓ is in
indices-to-tplams isₙ $ reindex (rc-is ρₓ isₙ) (trie-insert is x isₙ) T
reindex {TYPE} ρₓ is (TpVar x) =
maybe-else' (trie-lookup (fst ρₓ) x) (TpVar x) (uncurry (apps-type ∘ TpVar))
reindex {KIND} ρₓ is (KdAbs x atk k) with is-index-var (just atk)
...| ff = let x' = reindex-fresh-var ρₓ is x in
KdAbs x' (reindex ρₓ is -tk atk) (reindex (rnm-insert ρₓ x x') is k)
...| tt = let isₙ = rename-indices' ρₓ is in
indices-to-kind isₙ $ reindex (rc-is ρₓ isₙ) (trie-insert is x isₙ) k
reindex {KIND} ρₓ is (KdHole pi) =
KdHole pi
reindex {KIND} ρₓ is KdStar =
KdStar
reindex-cmd : rnm → trie indices → cmd → cmd × rnm
reindex-cmd ρₓ is (CmdImport (Import p? fp mnᵢ q? as)) =
CmdImport (Import p? fp mnᵢ q? (reindex ρₓ is -arg_ <$> as)) , ρₓ
reindex-cmd ρₓ is (CmdDefTerm x t) =
let x' = D ^ "/" ^ x in
CmdDefTerm x' (lam-expand-term psₜ $ reindex ρₓ is t) ,
rnm-add ρₓ (mn # x) (ctxt.mn Γ # x') (params-to-args psₜ)
reindex-cmd ρₓ is (CmdDefType x k T) =
let x' = D ^ "/" ^ x in
CmdDefType x' (abs-expand-kind psₜ $ reindex ρₓ is k)
(lam-expand-type psₜ $ reindex ρₓ is T) ,
rnm-add ρₓ (mn # x) (ctxt.mn Γ # x') (params-to-args psₜ)
reindex-cmd ρₓ is (CmdDefKind x ps k) =
CmdDefKind x ps k , ρₓ
reindex-cmd ρₓ is (CmdDefData es x ps k cs) =
CmdDefData es x ps k cs , ρₓ
reindex-cmds : cmds → cmds
reindex-cmds cs =
foldr {B = rnm → cmds}
(λ c rec ρₓ → elim reindex-cmd ρₓ empty-trie c for λ c ρₓ → c :: rec ρₓ)
(λ ρₓ → []) cs (empty-trie , empty-stringset)
{- we have to erase params to work around a situation like
data MyData (x : {β ≃ β}) : ★ =
| MyCtr : MyData.
erased-problem : ∀ x : {β ≃ β}. MyData x ➔ MyData β{λ x. x} =
Λ x. λ d. μ' d { MyCtr ➔ MyCtr β{λ x. x} }.
^----------------------------------------^
... because the indicated term would elaborate to something like
Λ x. λ d. FixInd x ·MyData d ...
^-^ ^
and "x" is bound by an erased lambda, but is an unerased arg to FixInd!
(similar situations arise with fix-in/fix-out and with module parameters)
-}
reindex-file : ctxt → (D I modname : var) → indices → params → cmds → cmds
reindex-file Γ D I mn is ps cs =
let ps' = params-set-erased Erased (ctxt.ps Γ ++ ps)
open reindexing (add-params-to-ctxt ps' Γ) D I mn is ps' in
reindex-cmds cs
mendler-elab-mu : ctxt → datatype-info → var → term → type → cases → term
mendler-elab-mu-pure : ctxt → datatype-info → var → term → cases → term
mendler-elab-sigma : ctxt → datatype-info → maybe term → term → type → cases → term
mendler-elab-sigma-pure : ctxt → datatype-info → maybe term → term → cases → term
-- Maps over expression, elaborating all mu-terms
{-# TERMINATING #-}
choose-mu : ∀ {ed} → ctxt → renamectxt → ⟦ ed ⟧ → ⟦ ed ⟧
choose-mu {TERM} Γ ρ (App tm tm') =
App (choose-mu Γ ρ tm) (choose-mu Γ ρ tm')
choose-mu {TERM} Γ ρ (AppE tm tT) =
AppE (choose-mu Γ ρ tm) (choose-mu Γ ρ -tT tT)
choose-mu {TERM} Γ ρ (Beta tm tm') =
Beta (choose-mu Γ ρ tm) (choose-mu Γ ρ tm')
choose-mu {TERM} Γ ρ (Delta b? tp tm) =
maybe-else' (b? >>=c λ t₁ t₂ →
make-contradiction
(hnf Γ unfold-all (choose-mu Γ ρ t₁))
(hnf Γ unfold-all (choose-mu Γ ρ t₂)))
(Delta nothing (choose-mu Γ ρ tp) (choose-mu Γ ρ tm)) λ f →
rename "x" from Γ and ρ for λ x' _ _ →
Delta (just (tt-term , ff-term)) (choose-mu Γ ρ tp)
(Rho (choose-mu Γ ρ tm) x' (TpEq (App f (Var x')) ff-term) (Beta ff-term id-term))
choose-mu {TERM} Γ ρ (Hole pi) =
Hole pi
choose-mu {TERM} Γ ρ (IotaPair tm₁ tm₂ x Tₓ) =
rename x from Γ and ρ for λ x' Γ' ρ' →
IotaPair (choose-mu Γ ρ tm₁) (choose-mu Γ ρ tm₂) x' (choose-mu Γ' ρ' Tₓ)
choose-mu {TERM} Γ ρ (IotaProj tm n) =
IotaProj (choose-mu Γ ρ tm) n
choose-mu {TERM} Γ ρ (Lam e x tk? tm) =
rename x from Γ and ρ for λ x' Γ' ρ' →
Lam e x' (choose-mu Γ ρ -tk_ <$> tk?) (choose-mu Γ' ρ' tm)
choose-mu {TERM} Γ ρ (LetTm e x tp? tm tm') =
rename x from Γ and ρ for λ x' Γ' ρ' →
LetTm e x' (choose-mu Γ ρ <$> tp?) (choose-mu Γ ρ tm) (choose-mu Γ' ρ' tm')
choose-mu {TERM} Γ ρ (LetTp x k T t) =
rename x from Γ and ρ for λ x' Γ' ρ' →
LetTp x' (choose-mu Γ ρ k) (choose-mu Γ ρ T) (choose-mu Γ' ρ' t)
choose-mu {TERM} Γ ρ (Phi tm₌ tm₁ tm₂) =
Phi (choose-mu Γ ρ tm₌) (choose-mu Γ ρ tm₁) (choose-mu Γ ρ tm₂)
choose-mu {TERM} Γ ρ (Rho tm₌ x Tₓ tm) =
rename x from Γ and ρ for λ x' Γ' ρ' →
Rho (choose-mu Γ ρ tm₌) x' (choose-mu Γ' ρ' Tₓ) (choose-mu Γ ρ tm)
choose-mu {TERM} Γ ρ (VarSigma tm) =
VarSigma (choose-mu Γ ρ tm)
choose-mu {TERM} Γ ρ (Mu x t tp? t~ ms) =
choose-mu Γ ρ
(maybe-else' tp?
(mendler-elab-mu-pure Γ t~ x t ms)
(λ tp → mendler-elab-mu Γ t~ x t tp ms))
choose-mu {TERM} Γ ρ (Sigma mt t tp? t~ ms) =
choose-mu Γ ρ
(maybe-else' tp?
(mendler-elab-sigma-pure Γ t~ mt t ms)
(λ tp → mendler-elab-sigma Γ t~ mt t tp ms))
choose-mu {TERM} Γ ρ (Var x) =
Var (renamectxt-rep ρ x)
choose-mu {TYPE} Γ ρ (TpAbs e x tk tp) =
rename x from Γ and ρ for λ x' Γ' ρ' →
TpAbs e x' (choose-mu Γ ρ -tk tk) (choose-mu Γ' ρ' tp)
choose-mu {TYPE} Γ ρ (TpIota x tp₁ tp₂) =
rename x from Γ and ρ for λ x' Γ' ρ' →
TpIota x' (choose-mu Γ ρ tp₁) (choose-mu Γ' ρ' tp₂)
choose-mu {TYPE} Γ ρ (TpApp tp tT) =
TpApp (choose-mu Γ ρ tp) (choose-mu Γ ρ -tT tT)
choose-mu {TYPE} Γ ρ (TpEq tmₗ tmᵣ) =
TpEq (choose-mu Γ ρ tmₗ) (choose-mu Γ ρ tmᵣ)
choose-mu {TYPE} Γ ρ (TpHole pi) =
TpHole pi
choose-mu {TYPE} Γ ρ (TpLam x tk tp) =
rename x from Γ and ρ for λ x' Γ' ρ' →
TpLam x' (choose-mu Γ ρ -tk tk) (choose-mu Γ' ρ' tp)
choose-mu {TYPE} Γ ρ (TpVar x) =
TpVar (renamectxt-rep ρ x)
choose-mu {KIND} Γ ρ (KdAbs x tk kd) =
rename x from Γ and ρ for λ x' Γ' ρ' →
KdAbs x' (choose-mu Γ ρ -tk tk) (choose-mu Γ' ρ' kd)
choose-mu {KIND} Γ ρ (KdHole pi) =
KdHole pi
choose-mu {KIND} Γ ρ KdStar =
KdStar
-- Adds all Dₓ's encoding defs to the ctxt
ctxt-open-encoding-defs : var → ctxt → maybe ctxt
ctxt-open-encoding-defs Dₓ Γ =
trie-lookup (ctxt.μ~ Γ) Dₓ >>=r λ xs →
let tmd = λ t → term-def nothing opacity-open (just t) (TpHole pi-gen)
tpd = λ T → type-def nothing opacity-open (just T) (KdHole pi-gen) in
record Γ {
i = foldr (uncurry λ x tT i →
trie-insert i x
(either-else' tT
(tmd ∘ hnf (record Γ {i = i}) unfold-head)
(tpd ∘ hnf (record Γ {i = i}) unfold-head-elab) ,
missing-location)) (ctxt.i Γ) xs
}
ctxt-open-all-encoding-defs : ctxt → ctxt
ctxt-open-all-encoding-defs Γ =
foldr (λ Dₓ Γ → maybe-else Γ id $ ctxt-open-encoding-defs Dₓ Γ)
Γ (trie-strings (ctxt.μ~ Γ))
mk-ctr-fmap-t : Set → Set
mk-ctr-fmap-t X = ctxt → (var × type × term) → X
{-# TERMINATING #-}
mk-ctr-fmap-η+ : mk-ctr-fmap-t (term → type → term)
mk-ctr-fmap-η- : mk-ctr-fmap-t (term → type → term)
mk-ctr-fmap-η? : 𝔹 → mk-ctr-fmap-t (term → type → term)
mk-ctr-fmap-η= : 𝔹 → mk-ctr-fmap-t (term → type → term)
mk-ctr-fmapₖ-η+ : mk-ctr-fmap-t (type → kind → type)
mk-ctr-fmapₖ-η- : mk-ctr-fmap-t (type → kind → type)
mk-ctr-fmapₖ-η? : 𝔹 → mk-ctr-fmap-t (type → kind → type)
-- TODO: Join fmap+ and fmap- into one function, to handle this for both strictly positive and strictly negative parameter occurrences in other datatypes
mk-ctr-fmap-η= f Γ x @ (Aₓ , Bₓ , castₓ) body T with decompose-ctr-type Γ T
...| TpVar x'' , as , rs =
maybe-else' (data-lookup (add-params-to-ctxt as Γ) x'' rs) ((if f then mk-ctr-fmap-η+ else mk-ctr-fmap-η-) Γ x body T) λ where
d @ (mk-data-info X _ asₚ asᵢ ps kᵢ k cs csₚₛ eds gds) →
params-to-lams (if f then as else (substh-params Γ empty-renamectxt (trie-single Aₓ (, Bₓ)) as)) $
let Γ' = add-params-to-ctxt as Γ
recₓ = fresh-var Γ' "fmap"
Γ' = ctxt-var-decl recₓ Γ'
is = kind-to-indices Γ k
uₓ = fresh-var (add-indices-to-ctxt is Γ') "u"
vₓ = fresh-var (add-indices-to-ctxt is Γ') "v"
Γ'' = ctxt-var-decl vₓ $ ctxt-var-decl uₓ $ add-indices-to-ctxt is Γ' in
LetTm tt uₓ nothing
(Mu recₓ
(foldl
(λ {(Param me x'' (Tkt T)) body →
(if me then AppEr body else App body) $
mk-ctr-fmap-η? (~ f) Γ' x (Var x'') T;
(Param _ x'' (Tkk k)) body →
AppTp body $ mk-ctr-fmapₖ-η? (~ f) Γ' x (TpVar x'') k})
body as)
(just (indices-to-tplams is $
TpLam uₓ (Tkt $ indices-to-tpapps is $ recompose-tpapps (args-to-tmtps asₚ) (TpVar X)) $
TpIota vₓ (subst Γ'' Bₓ Aₓ (recompose-tpapps (args-to-tmtps asₚ) (TpVar X)))
(TpEq (Var vₓ) (Var uₓ)))) d $
flip map (map-snd (rename-var Γ'' (mu-Type/ recₓ) X) <$> inst-ctrs Γ'' ps asₚ cs) $ uncurry λ cₓ T → case decompose-ctr-type Γ T of λ where
(Tₕ , as , rs) →
Case cₓ (map (λ {(Param me x tk) → CaseArg me x (just tk)}) as)
(let Xₚₛ = recompose-tpapps (args-to-tmtps asₚ) (TpVar X)
cg = mu-Type/ recₓ , Xₚₛ ,
(indices-to-lams is $ Lam ff vₓ (just (Tkt (indices-to-tpapps is (TpVar (mu-Type/ recₓ))))) (Phi (IotaProj (App (indices-to-apps is (Var recₓ)) (Var vₓ)) ι2) (IotaProj (App (indices-to-apps is (Var recₓ)) (Var vₓ)) ι1) (Var vₓ)))
t = foldl
(λ {(Param me x'' (Tkt T)) body →
(if me then AppEr body else App body) $
mk-ctr-fmap-η? f Γ' x (mk-ctr-fmap-η? ff Γ' cg (Var x'') T) (subst Γ'' Xₚₛ (mu-Type/ recₓ) T);
(Param _ x'' (Tkk k)) body →
AppTp body $ mk-ctr-fmapₖ-η? f Γ' x (mk-ctr-fmapₖ-η? ff Γ' cg (TpVar x'') k) (subst Γ'' Xₚₛ (mu-Type/ recₓ) k)})
(subst (add-params-to-ctxt as Γ) Bₓ Aₓ (recompose-apps asₚ (Var cₓ))) as
tₑ = erase t in
IotaPair t (Beta tₑ tₑ) vₓ (TpEq (Var vₓ) tₑ))
rs)
(Phi (IotaProj (Var uₓ) ι2) (IotaProj (Var uₓ) ι1) (erase (params-to-apps as body)))
-- maybe-else' (ctxt-open-encoding-defs x'' Γ) (f Γ x body T)
-- λ Γ → f Γ x body (hnf-ctr Γ (fst x) T)
...| _ = (if f then mk-ctr-fmap-η+ else mk-ctr-fmap-η-) Γ x body T
mk-ctr-fmap-η? f Γ x body T with is-free-in (fst x) T
...| tt = mk-ctr-fmap-η= f Γ x body T
...| ff = body
mk-ctr-fmapₖ-η? f Γ x body k with is-free-in (fst x) k
...| tt = (if f then mk-ctr-fmapₖ-η+ else mk-ctr-fmapₖ-η-) Γ x body k
...| ff = body
mk-ctr-fmap-η+ Γ x @ (Aₓ , Bₓ , _) body T with decompose-ctr-type Γ T
...| Tₕ , as , _ =
params-to-lams as $
let Γ' = add-params-to-ctxt as Γ
tₓ' = case Tₕ of λ where
(TpIota x'' T₁ T₂) body →
let t₁ = mk-ctr-fmap-η+ Γ' x (IotaProj body ι1) T₁
t₂ = mk-ctr-fmap-η+ Γ' x (IotaProj body ι2) (subst Γ' t₁ x'' T₂) in
IotaPair t₁ t₂ x'' T₂
_ body → body
in
tₓ' $ foldl
(λ {(Param me x'' (Tkt T)) body →
(if me then AppEr body else App body) $
mk-ctr-fmap-η? ff Γ' x (Var x'') T;
(Param _ x'' (Tkk k)) body →
AppTp body $ mk-ctr-fmapₖ-η? ff Γ' x (TpVar x'') k})
body as
mk-ctr-fmap-η- Γ xₒ @ (Aₓ , Bₓ , castₓ) body T with decompose-ctr-type Γ T
...| TpVar x'' , as , rs =
params-to-lams (substh-params Γ empty-renamectxt (trie-single Aₓ (, Bₓ)) as) $
let Γ' = add-params-to-ctxt as Γ in
if x'' =string Aₓ
then App (recompose-apps (tmtps-to-args Erased rs) castₓ)
else id $
foldl (λ {(Param me x'' (Tkt T)) body →
(if me then AppEr body else App body) $
mk-ctr-fmap-η? tt Γ' xₒ (Var x'') T;
(Param me x'' (Tkk k)) body →
AppTp body $ mk-ctr-fmapₖ-η? tt Γ' xₒ (TpVar x'') k}) body as
...| TpIota x'' T₁ T₂ , as , [] =
let Γ' = add-params-to-ctxt as Γ
tₒ = foldl (λ where
(Param me x'' (Tkt T)) body →
(if me then AppEr body else App body) $
mk-ctr-fmap-η? tt Γ' xₒ (Var x'') T
(Param me x'' (Tkk k)) body →
AppTp body $ mk-ctr-fmapₖ-η? tt Γ' xₒ (TpVar x'') k
) body as
t₁ = mk-ctr-fmap-η? ff Γ' xₒ (IotaProj tₒ ι1) T₁
t₂ = mk-ctr-fmap-η? ff Γ' xₒ (IotaProj tₒ ι2) ([ Γ' - t₁ / x'' ] T₂) in
params-to-lams (substh-params Γ empty-renamectxt (trie-single Aₓ (, Bₓ)) as) $
IotaPair t₁ t₂ x'' (subst (ctxt-var-decl x'' Γ') Bₓ Aₓ T₂)
...| Tₕ , as , rs = body
mk-ctr-fmapₖ-η+ Γ xₒ @ (Aₓ , Bₓ , castₓ) body k =
let is = kind-to-indices Γ k in
indices-to-tplams is $
let Γ' = add-indices-to-ctxt is Γ in
foldl
(λ {(Index x'' (Tkt T)) → flip TpAppTm $ mk-ctr-fmap-η? ff Γ' xₒ (Var x'') T;
(Index x'' (Tkk k)) → flip TpAppTp $ mk-ctr-fmapₖ-η? ff Γ' xₒ (TpVar x'') k})
body is
mk-ctr-fmapₖ-η- Γ xₒ @ (Aₓ , Bₓ , castₓ) body k with kind-to-indices Γ k
...| is =
indices-to-tplams is $
let Γ' = add-indices-to-ctxt is Γ in
foldl (λ {(Index x'' (Tkt T)) → flip TpAppTm $ mk-ctr-fmap-η? tt Γ' xₒ (Var x'') T;
(Index x'' (Tkk k)) → flip TpApp $ Ttp $ mk-ctr-fmapₖ-η? tt Γ' xₒ (TpVar x'') k})
body is
mk-def : term → term
mk-def t = Phi (Beta t id-term) t (erase t)
top-type : type
top-type = TpEq id-term id-term
-- Index telescoping parameter
pattern IdxTele Iₓ = Param tt Iₓ (Tkk KdStar) :: []
pattern EncArgIdx I = ArgTp I
pattern EncArgCast Cast = ArgTp Cast
pattern EncArgCastIn cast-in = Arg cast-in
pattern EncArgCastOut cast-out = Arg cast-out
pattern EncArgCastIs cast-is = Arg cast-is
pattern EncArgFunctor Functor = ArgTp Functor
pattern EncArgFunctorIn functor-in = Arg functor-in
pattern EncArgFunctorOut functor-out = Arg functor-out
pattern EncArgFix Fix = ArgTp Fix
pattern EncArgFixIn fix-in = Arg fix-in
pattern EncArgFixOut fix-out = Arg fix-out
pattern EncArgLambek1 lambek1 = Arg lambek1
pattern EncArgLambek2 lambek2 = Arg lambek2
pattern EncArgFixInd fix-ind = Arg fix-ind
pattern EncArgs I Cast cast-in cast-out cast-is Functor functor-in functor-out
Fix fix-in fix-out lambek1 lambek2 fix-ind =
EncArgIdx I ::
EncArgCast Cast ::
EncArgCastIn cast-in ::
EncArgCastOut cast-out ::
EncArgCastIs cast-is ::
EncArgFunctor Functor ::
EncArgFunctorIn functor-in ::
EncArgFunctorOut functor-out ::
EncArgFix Fix ::
EncArgFixIn fix-in ::
EncArgFixOut fix-out ::
EncArgLambek1 lambek1 ::
EncArgLambek2 lambek2 ::
EncArgFixInd fix-ind :: []
pattern EncImp fp I Cast cast-in cast-out cast-is Functor functor-in functor-out
Fix fix-in fix-out lambek1 lambek2 fix-ind =
CmdImport (Import _ fp _ _ (EncArgs
I Cast cast-in cast-out cast-is Functor functor-in functor-out
Fix fix-in fix-out lambek1 lambek2 fix-ind))
encode-datatype : ctxt → encoding-defs → datatype → encoding-defs
encode-datatype Γ eds @ (mk-enc-defs ecs _
Cast cast-in cast-out cast-is
Functor functor-in functor-out
Fix fix-in fix-out
lambek1 lambek2 fix-ind)
(Data Dₓ' ps is cs) =
record eds {gcs = [: TypeF-cmd ⌟ IndF-cmd ⌟ fmap-cmd ⌟
D-cmd ⌟ Is-cmd ⌟ is-cmd ⌟ to-cmd ⌟
map ctr-cmd cs~ :] }
where
Γₚₛ = ctxt.ps Γ
psₜ = params-set-erased Erased (Γₚₛ ++ ps)
app-ps = params-to-apps psₜ ∘ Var
tpapp-ps = params-to-tpapps psₜ ∘ TpVar
-- Cast = tpapp-ps Castₓ
-- cast-in = app-ps cast-inₓ
-- cast-out = app-ps cast-outₓ
-- cast-is = app-ps cast-isₓ
-- Functor = tpapp-ps Functorₓ
-- functor-in = app-ps functor-inₓ
-- functor-out = app-ps functor-outₓ
-- Fix = tpapp-ps Fixₓ
-- fix-in = app-ps fix-inₓ
-- fix-out = app-ps fix-outₓ
-- lambek1 = app-ps lambek1ₓ
-- lambek2 = app-ps lambek2ₓ
-- fix-ind = app-ps fix-indₓ
mn = ctxt.mn Γ
Γ' = add-params-to-ctxt psₜ Γ
Dₓ = mn # Dₓ'
cs~ = map-snd (subst Γ' (params-to-tpapps psₜ (TpVar Dₓ)) Dₓ) <$> cs
cs' = map-snd (rename-var Γ' Dₓ Dₓ') <$> cs
topᵢ = indices-to-kind is $ KdAbs ignored-var (Tkt top-type) KdStar
mk-ctr-eterm : params → ctr → term
mk-ctr-eterm ps (Ctr x _) =
let xs = erase-params ps in
Beta id-term $ foldr
mlam
(foldl (flip App ∘ Var) (Var x) xs)
(map fst cs)
mk-ctr-etype : ctxt → ctr → var → type
mk-ctr-etype Γ (Ctr x T) X with decompose-ctr-type (ctxt-var-decl X Γ) T
...| Tₕ , as , rs =
params-to-alls as $
let rs' = if length rs =ℕ length psₜ + length is then drop (length psₜ) rs else rs in
TpAppTm (recompose-tpapps rs' $ TpVar X) $ mk-ctr-eterm as (Ctr x T)
{-
for the datatype
data Dₓ (p₁ : P₁) (p₂ : P₂)... : Π i₁ : I₁. Π i₂ : I₂. ... ★ =
| c₁ : Π/∀ a₁ : A₁. Π/∀ a₂ : A₂. ... (Dₓ r₁ r₂...)
| c₂ : ... .
produce the functor type
∀ X : Π i₁ : I₁. Π i₂ : I₂. ... Π _ : Top. ★.
(Π/∀ a₁ : A₁. Π/∀ a₂ : A₂. ... (X r₁ r₂ β<λ x. x>{λ c₁. λ c₂. ... |c₁ a₁ a₂...|})) →
... →
X i₁ i₂... ιₓ
-}
mk-ftype2 : ctxt → (asᵢ : 𝕃 tmtp) → (ιₓ : var) → ctrs → type
mk-ftype2 Γ asᵢ ιₓ cs =
let Γ = ctxt-var-decl ιₓ Γ in
rename "X" from Γ for λ X →
TpAbs tt X (Tkk topᵢ) $
foldr
(λ c → TpAbs ff ignored-var $ Tkt $ mk-ctr-etype Γ c X)
(TpAppTm (recompose-tpapps asᵢ $ TpVar X) $ Var ιₓ)
cs
mk-ctr-fterm : ctxt → ctr → ctrs → (as : params) → (rs : 𝕃 tmtp) → term
mk-ctr-fterm Γ' (Ctr x' T) cs as rs =
let Γ' = add-params-to-ctxt as Γ' in
rename "X" from Γ' for λ Xₓ →
rename "x" from Γ' for λ xₓ →
let tkₓ = just (Tkk (indices-to-kind is (KdAbs ignored-var (Tkt top-type) KdStar)))
fₜ = λ x T → Lam ff x (just (Tkt (mk-ctr-etype (ctxt-var-decl Xₓ Γ') (Ctr x T) Xₓ)))
t = Lam tt Xₓ tkₓ (foldr (uncurry fₜ) (params-to-apps as (Var x')) cs) in
IotaPair (Beta id-term (erase t)) t xₓ (mk-ftype2 (ctxt-var-decl xₓ Γ') rs xₓ cs)
mk-ctr-ftype : ctxt → ctr → ctrs → var → type
mk-ctr-ftype Γ (Ctr x T) cs X with decompose-ctr-type (ctxt-var-decl X Γ) T
...| Tₕ , as , rs =
params-to-alls as $
TpAppTm (recompose-tpapps rs $ TpVar X) $ mk-ctr-fterm (ctxt-var-decl X Γ) (Ctr x T) cs as rs
Is/D = tpapp-ps (data-Is/ Dₓ)
is/D = app-ps (data-is/ Dₓ)
to/D = app-ps (data-to/ Dₓ)
TypeF/D = tpapp-ps (data-TypeF/ Dₓ)
IndF/D = tpapp-ps (data-IndF/ Dₓ)
fmap/D = app-ps (data-fmap/ Dₓ)
D = tpapp-ps Dₓ
kᵢ = indices-to-kind is KdStar
tkᵢ = Tkk kᵢ
jtkᵢ = just tkᵢ
decl-Γ : ctxt → 𝕃 var → ctxt
decl-Γ = foldr ctxt-var-decl
{-
λ p₁ : P₁. λ p₂ : P₂. ...
λ Dₓ : Π i₁ : I₁. Π i₂ : I₂. ... ★.
λ i₁ : I₁. λ i₂ : I₂. ...
ι ιₓ : Top. mk-ftype2 (ctxt-var-decl ιₓ Γ') ιₓ cs.
-}
TypeF-cmd = CmdDefType (data-TypeF/ Dₓ')
(params-to-kind psₜ $ KdAbs ignored-var tkᵢ kᵢ) $
let Γ' = add-indices-to-ctxt is Γ' in
rename "x" from Γ' for λ ιₓ →
params-to-tplams psₜ $
TpLam Dₓ' (Tkk $ indices-to-kind is KdStar) $
indices-to-tplams is $
TpIota ιₓ top-type $ mk-ftype2 (ctxt-var-decl ιₓ Γ') (indices-to-tmtps is) ιₓ cs'
fmap-cmd = CmdDefTerm (data-fmap/ Dₓ') $
let Γ' = add-indices-to-ctxt is Γ' in
rename "A" from Γ' for λ Aₓ →
rename "B" from Γ' for λ Bₓ →
rename "c" from Γ' for λ cₓ →
rename "x" from Γ' for λ xₓ →
rename "X" from Γ' for λ Xₓ →
params-to-lams psₜ $
let cs-a = map-snd (rename-var Γ' Dₓ Aₓ) <$> cs
cs-b = map-snd (rename-var Γ' Dₓ Bₓ) <$> cs in
AppEr (AppTp functor-in TypeF/D) $
Lam tt Aₓ jtkᵢ $
Lam tt Bₓ jtkᵢ $
Lam tt cₓ (just (Tkt (TpAppTp (TpAppTp Cast (TpVar Aₓ)) (TpVar Bₓ)))) $
AppEr (AppEr (AppTp (AppTp cast-in (TpAppTp TypeF/D (TpVar Aₓ)))
(TpAppTp TypeF/D (TpVar Bₓ)))
(indices-to-lams is $
Lam ff xₓ (just (Tkt (indices-to-tpapps is (TpAppTp TypeF/D (TpVar Aₓ))))) $
IotaPair (IotaProj (Var xₓ) ι1)
(Lam tt Xₓ (just (Tkk topᵢ)) $
flip (foldr $ uncurry λ x T → Lam ff x (just (Tkt
(mk-ctr-etype (decl-Γ Γ' [: Aₓ ⌟ Bₓ ⌟ cₓ ⌟ xₓ ⌟ Xₓ :]) (x , T) Xₓ)))) cs-b $
foldl
(flip App ∘ uncurry
(λ bodyₓ T →
mk-ctr-fmap-η?
tt
(decl-Γ Γ' [: Aₓ ⌟ Bₓ ⌟ cₓ ⌟ xₓ ⌟ Xₓ :])
(Aₓ , TpVar Bₓ , AppEr (AppTp (AppTp cast-out (TpVar Aₓ)) (TpVar Bₓ)) (Var cₓ))
(Var bodyₓ)
(hnf-ctr (decl-Γ Γ' [: Aₓ ⌟ Bₓ ⌟ cₓ ⌟ xₓ ⌟ Xₓ :]) Aₓ T)))
(AppTp (IotaProj (Var xₓ) ι2) (TpVar Xₓ)) cs-a)
xₓ (mk-ftype2 (decl-Γ Γ' [: Aₓ ⌟ Bₓ ⌟ cₓ ⌟ xₓ :]) (indices-to-tmtps is) xₓ cs-b)))
(Beta id-term id-term)
IndF-cmd = CmdDefTerm (data-IndF/ Dₓ') $
params-to-lams psₜ $
Lam tt Dₓ' jtkᵢ $
indices-to-lams is $
let Γ' = add-indices-to-ctxt is Γ' in
rename "x" from Γ' for λ xₓ →
rename "y" from Γ' for λ yₓ →
rename "e" from Γ' for λ eₓ →
rename "X" from Γ' for λ Xₓ →
let T = indices-to-tpapps is (TpAppTp TypeF/D (TpVar Dₓ'))
Γ' = ctxt-var-decl xₓ (ctxt-var-decl Xₓ Γ') in
Lam ff xₓ (just $ Tkt T) $
Lam tt Xₓ (just $ Tkk $ indices-to-kind is $ KdAbs ignored-var (Tkt T) KdStar) $
flip (foldr λ c → Lam ff (fst c) (just (Tkt (mk-ctr-ftype Γ' c cs' Xₓ)))) cs' $
flip AppEr (Beta (Var xₓ) id-term) $
flip AppEr (Var xₓ) $
let Γ' = decl-Γ Γ' [: xₓ ⌟ yₓ ⌟ eₓ ⌟ Xₓ :] in
flip (foldl $ uncurry λ x' T' →
case decompose-ctr-type Γ' T' of λ where
(Tₕ , as , rs) →
flip App $
params-to-lams as $
Lam tt yₓ (just (Tkt (recompose-tpapps rs (TpAppTp TypeF/D Tₕ)))) $
Lam tt eₓ (just (Tkt (TpEq (Var yₓ) (mk-ctr-eterm as (Ctr x' T'))))) $
params-to-apps as $
Var x') cs' $
AppTp (IotaProj (Var xₓ) ι2) $
indices-to-tplams is $
TpLam xₓ (Tkt top-type) $
TpAbs tt yₓ (Tkt T) $
TpAbs tt eₓ (Tkt $ TpEq (Var yₓ) (Var xₓ)) $
TpAppTm (indices-to-tpapps is $ TpVar Xₓ) $
Phi (Var eₓ) (Var yₓ) (Var xₓ)
D-cmd = CmdDefType Dₓ' (params-to-kind (Γₚₛ ++ ps) kᵢ) $
params-to-tplams (Γₚₛ ++ ps) $
TpAppTm (TpApp Fix (Ttp TypeF/D)) fmap/D
is-projn : ctxt → type → type → term → type
is-projn Γ Tₘ Tₙ t =
rename "i" from Γ for λ iₓ →
TpIota iₓ
(indices-to-alls is
(TpAbs ff ignored-var (Tkt (indices-to-tpapps is Tₘ))
(indices-to-tpapps is Tₙ)))
(TpEq (Var iₓ) t)
is-proj1 = λ Γ T → is-projn Γ T D id-term
is-proj2 = λ Γ T → is-projn Γ T (TpAppTp TypeF/D T) fix-out
is-proj' : ctxt → var → term → term
is-proj' Γ Xₓ mu =
rename "c" from Γ for λ cₓ →
rename "o" from Γ for λ oₓ →
let t = App (AppTp mu (is-proj1 (decl-Γ Γ (cₓ :: oₓ :: [])) (TpVar Xₓ)))
(Lam ff cₓ (just (Tkt (is-proj1 (decl-Γ Γ (cₓ :: oₓ :: [])) (TpVar Xₓ))))
(Lam ff oₓ (just (Tkt (is-proj2 (decl-Γ Γ (cₓ :: oₓ :: [])) (TpVar Xₓ))))
(Var cₓ))) in
Phi (IotaProj t ι2) (IotaProj t ι1) id-term
Is-cmd = CmdDefType (data-Is/ Dₓ') (params-to-kind (Γₚₛ ++ ps) $ KdAbs ignored-var tkᵢ KdStar) $
params-to-tplams (Γₚₛ ++ ps) $
rename "X" from Γ' for λ Xₓ →
rename "Y" from Γ' for λ Yₓ →
TpLam Xₓ tkᵢ $
TpAbs tt Yₓ (Tkk KdStar) $
TpAbs ff ignored-var
(Tkt (TpAbs ff ignored-var (Tkt (is-proj1 (decl-Γ Γ' (Xₓ :: Yₓ :: [])) (TpVar Xₓ))) $
TpAbs ff ignored-var (Tkt (is-proj2 (decl-Γ Γ' (Xₓ :: Yₓ :: [])) (TpVar Xₓ))) $
TpVar Yₓ))
(TpVar Yₓ)
is-cmd = CmdDefTerm (data-is/ Dₓ') $
params-to-lams (Γₚₛ ++ ps) $
rename "Y" from Γ' for λ Yₓ →
rename "f" from Γ' for λ fₓ →
rename "x" from Γ' for λ xₓ →
let pair = λ t → IotaPair t (Beta (erase t) (erase t)) xₓ (TpEq (Var xₓ) (erase t)) in
Lam tt Yₓ (just (Tkk KdStar)) $
Lam ff fₓ (just (Tkt (TpAbs ff ignored-var (Tkt (is-proj1 (ctxt-var-decl Yₓ Γ') D)) $
TpAbs ff ignored-var (Tkt (is-proj2 (ctxt-var-decl Yₓ Γ') D)) $
TpVar Yₓ))) $
App (App (Var fₓ) (pair (indices-to-lams is (Lam ff xₓ (just (Tkt (indices-to-tpapps is D))) (Var xₓ)))))
(pair (AppEr (AppTp fix-out TypeF/D) fmap/D))
to-cmd = CmdDefTerm (data-to/ Dₓ') $
rename "Y" from Γ' for λ Yₓ →
rename "mu" from Γ' for λ muₓ →
params-to-lams (Γₚₛ ++ ps) $
Lam tt Yₓ jtkᵢ $
Lam tt muₓ (just (Tkt (TpApp Is/D (Ttp (TpVar Yₓ))))) $
is-proj' (decl-Γ Γ' (Yₓ :: muₓ :: [])) Yₓ (Var muₓ)
ctr-cmd : ctr → cmd
ctr-cmd (Ctr x' T) with subst Γ' D Dₓ' T
...| T' with decompose-ctr-type Γ' T'
...| Tₕ , as , rs = CmdDefTerm x' $
let Γ' = add-params-to-ctxt as Γ'
rs = drop (length (Γₚₛ ++ ps)) rs in
params-to-lams (Γₚₛ ++ ps) $
params-to-lams as $
App (recompose-apps (tmtps-to-args tt rs) $
AppEr (AppTp fix-in TypeF/D) fmap/D) $
mk-ctr-fterm Γ' (Ctr x' T) cs~ as rs
init-encoding : ctxt → file → datatype → string ⊎ encoding-defs
init-encoding Γ (Module mn (IdxTele Iₓ) mcs) d @ (Data Dₓ ps is cs) =
case reverse (reindex-file Γ Dₓ Iₓ mn is ps mcs) of λ where
(EncImp fp Iₓ'
Cast cast-in cast-out cast-is
Functor functor-in functor-out
Fix fix-in fix-out
lambek1 lambek2 fix-ind :: mcs) →
err⊎-guard (~ conv-type Γ Iₓ' (TpVar Iₓ))
"Index telescoping argument to last import differs from the parameter" >>
return (encode-datatype Γ (mk-enc-defs (reverse mcs) []
Cast cast-in cast-out cast-is
Functor functor-in functor-out
Fix fix-in fix-out
lambek1 lambek2 fix-ind) d)
(CmdImport (Import p? fn mn q? as) :: mcsᵣ) →
inj₁ $ "Expected 14 import args, but got" ^ rope-to-string (strRun Γ (args-to-string as))
mcsᵣ →
inj₁ "Datatype encodings must end with import ~/.cedille/Template.ced"
where open import to-string options
init-encoding Γ (Module mn mps mcs) (Data Dₓ ps is cs) =
inj₁ $ "Datatype encodings must have a single module parameter of kind star, " ^
"for index telescoping"
mendler-elab-mu-pure Γ (mk-data-info _ _ _ _ _ _ _ _ _ eds ecs) xₒ t ms =
let fix-ind = erase (encoding-defs.fix-ind eds)
msf = λ t → foldl
(λ {(Case mₓ cas mₜ asₜₚ) t →
App t (case-args-to-lams cas mₜ)})
t ms in
rename xₒ from Γ for λ x →
rename "y" from Γ for λ yₓ →
let subst-msf = subst-renamectxt Γ
(renamectxt-insert* empty-renamectxt ((xₒ , x) :: (yₓ , yₓ) :: [])) ∘ msf in
App (App fix-ind t) (Lam ff x nothing $ Lam ff yₓ nothing $ subst-msf (Var yₓ))
mendler-elab-mu Γ (mk-data-info X Xₒ asₚ asᵢ ps kᵢ k cs csₚₛ (mk-enc-defs ecs gcs Cast cast-in cast-out cast-is Functor functor-in functor-out Fix fix-in fix-out lambek1 lambek2 fix-ind) (mk-encd-defs Is/Dₓ is/Dₓ to/Dₓ TypeF/Dₓ indF/Dₓ fmap/Dₓ)) x t Tₘ ms =
let is = kind-to-indices Γ k
Γᵢₛ = add-indices-to-ctxt is $ add-params-to-ctxt ps $ add-params-to-ctxt (ctxt.ps Γ) Γ
is/X? = unless (X =string Xₒ) (Var (mu-isType/' Xₒ))
app-ps = recompose-apps (args-set-erased tt asₚ) ∘ Var
tpapp-ps = recompose-tpapps (args-to-tmtps asₚ) ∘ TpVar
app-ps' = inst-term Γ ps asₚ
tpapp-ps' = inst-type Γ ps asₚ
fmap/D = app-ps fmap/Dₓ
TypeF/D = tpapp-ps TypeF/Dₓ
indF/D = app-ps indF/Dₓ
Cast = tpapp-ps' Cast
cast-out = app-ps' cast-out
Functor = tpapp-ps' Functor
functor-in = app-ps' functor-in
functor-out = app-ps' functor-out
Fix = tpapp-ps' Fix
fix-in = app-ps' fix-in
fix-out = app-ps' fix-out
lambek1 = app-ps' lambek1
fix-ind = app-ps' fix-ind
Xₜₚ = recompose-tpapps (args-to-tmtps asₚ) (TpVar X)
Xₒₜₚ = if Xₒ =string X then Xₜₚ else TpVar Xₒ
toₓ = rename "to" from Γᵢₛ for id
outₓ = rename "out" from Γᵢₛ for id
to-tp = λ R → TpAppTp (TpAppTp Cast R) Xₜₚ
out-tp = λ R → TpIota outₓ (indices-to-alls is (TpAbs ff ignored-var (Tkt (indices-to-tpapps is R)) (indices-to-tpapps is (TpAppTp TypeF/D R)))) (TpEq (Var outₓ) fix-out)
ms' : trie term
ms' = foldr (λ c σ → case c of λ {(Case x cas t asₜₚ) →
let Γ' = add-caseArgs-to-ctxt cas Γᵢₛ in
trie-insert σ x $
rename "y" from Γ' for λ yₓ →
rename "e" from Γ' for λ eₓ →
rename "x" from Γ' for λ xₓ →
case-args-to-lams cas $
Lam tt yₓ (just (Tkt (recompose-tpapps (drop (length asₚ) asₜₚ) Xₜₚ))) $
Lam tt eₓ (just (Tkt (TpEq (App fix-in (foldr (uncurry λ x T → Lam ff (snd (split-var x)) nothing) (foldl (λ ca t → case ca of λ {(CaseArg ff x _) → App t (Var (snd (split-var x))); _ → t}) (Var (snd (split-var x))) cas) cs)) (Var yₓ)))) $
Rho (VarSigma (Var eₓ)) xₓ (TpAppTm (recompose-tpapps (drop (length asₚ) asₜₚ) Tₘ) (Var xₓ)) t})
empty-trie ms
in-fix = λ is/X? T asᵢ t →
(App (recompose-apps asᵢ (AppEr (AppTp fix-in TypeF/D) fmap/D)) (maybe-else' is/X? t λ is/X →
App (recompose-apps asᵢ (AppEr (AppTp (AppTp cast-out (TpAppTp TypeF/D T)) (TpAppTp TypeF/D Xₜₚ)) (AppEr (AppTp (AppTp fmap/D T) Xₜₚ) (App (AppTp is/X (to-tp T)) (Lam ff "to" (just (Tkt (to-tp T))) $ Lam ff "out" (just (Tkt (out-tp T))) $ Var "to"))))) t))
app-lambek = λ is/X? t T asᵢ body → AppEr (AppEr body (in-fix is/X? T asᵢ t))
(App (recompose-apps asᵢ (AppEr (AppTp lambek1 TypeF/D) fmap/D)) (in-fix is/X? T asᵢ t)) in
rename "x" from Γᵢₛ for λ xₓ →
rename "y" from Γᵢₛ for λ yₓ →
rename "y'" from ctxt-var-decl yₓ Γᵢₛ for λ y'ₓ →
rename "z" from Γᵢₛ for λ zₓ →
rename "e" from Γᵢₛ for λ eₓ →
rename "X" from Γᵢₛ for λ Xₓ →
maybe-else (Var "1") id $
foldl {B = maybe (term → term)} -- Agda hangs without this implicit argument...?
(uncurry λ x Tₓ rec → rec >>= λ rec → trie-lookup ms' x >>= λ t →
just λ tₕ → App (rec tₕ) t) (just λ t → t) cs >>= λ msf →
maybe-else (just $ Var "2") just $
just
(let Rₓ = mu-Type/ x
isRₓ = mu-isType/ x
fcₜ = AppEr (AppTp (AppTp cast-out (TpAppTp TypeF/D (TpVar Rₓ))) (TpAppTp TypeF/D Xₜₚ))
(AppEr (AppTp (AppTp fmap/D (TpVar Rₓ)) Xₜₚ) (Var toₓ))
Tₘₐ = TpLam Rₓ (Tkk (indices-to-kind is KdStar)) Tₘ
Tₘ-fmap = rename "A" from Γᵢₛ for λ Aₓ →
rename "B" from Γᵢₛ for λ Bₓ →
rename "c" from Γᵢₛ for λ cₓ →
rename "d" from Γᵢₛ for λ dₓ →
rename "q" from Γᵢₛ for λ qₓ →
let Γ' = foldr ctxt-var-decl Γ (Aₓ :: Bₓ :: cₓ :: dₓ :: qₓ :: [])
Tₘₐ' = TpAppTm (indices-to-tpapps is (TpAppTp Tₘₐ (TpVar Aₓ))) (Var dₓ)
Tₘₐₕ = hnf-ctr Γ' Aₓ Tₘₐ' in
Lam tt Aₓ (just (Tkk k)) $
Lam tt Bₓ (just (Tkk k)) $
Lam tt cₓ (just (Tkt (TpAppTp (TpAppTp Cast (TpVar Aₓ)) (TpVar Bₓ)))) $
indices-to-lams is $
Lam tt dₓ (just (Tkt (indices-to-tpapps is Xₜₚ))) $
IotaPair (Lam ff qₓ (just (Tkt Tₘₐ')) (mk-ctr-fmap-η? ff Γ' (Aₓ , TpVar Bₓ , AppEr (AppTp (AppTp cast-out (TpVar Aₓ)) (TpVar Bₓ)) (Var cₓ)) (Var qₓ) Tₘₐₕ)) (Beta id-term id-term) qₓ (TpEq (Var qₓ) id-term)
in
App (AppEr (AppTp (App (recompose-apps (tmtps-to-args tt asᵢ) (AppEr (AppTp fix-ind TypeF/D) fmap/D)) t) Tₘₐ) Tₘ-fmap)
(Lam tt Rₓ (just (Tkk k)) $
Lam tt toₓ (just (Tkt (to-tp (TpVar Rₓ)))) $
Lam tt outₓ (just (Tkt (out-tp (TpVar Rₓ)))) $
Lam ff x (just (Tkt (indices-to-alls is (TpAbs ff xₓ (Tkt (indices-to-tpapps is (TpVar Rₓ))) (TpAppTm (indices-to-tpapps is Tₘ) (App (indices-to-apps is (AppEr (AppTp (AppTp cast-out (TpVar Rₓ)) Xₜₚ) (Var toₓ))) (Var xₓ))))))) $
indices-to-lams is $
Lam ff yₓ (just (Tkt (indices-to-tpapps is (TpAppTp TypeF/D (TpVar Rₓ))))) $
LetTm tt isRₓ nothing
(Lam tt Xₓ (just (Tkk KdStar)) $
Lam ff xₓ (just (Tkt (TpAbs ff ignored-var (Tkt (to-tp (TpVar Rₓ)))
(TpAbs ff ignored-var (Tkt (out-tp (TpVar Rₓ)))
(TpVar Xₓ))))) $
App (App (Var xₓ) (Var toₓ)) (Var outₓ))
(app-lambek (just $ Var isRₓ) (Var yₓ) (TpVar Rₓ) (indices-to-args is) $ msf
(AppTp (Phi (Beta (Var yₓ) id-term) (App (indices-to-apps is (AppTp indF/D (TpVar Rₓ))) (Var yₓ)) (Var yₓ))
(indices-to-tplams is $
TpLam yₓ (Tkt $ indices-to-tpapps is (TpAppTp TypeF/D (TpVar Rₓ))) $
TpAbs tt y'ₓ (Tkt $ indices-to-tpapps is Xₜₚ) $
TpAbs tt eₓ (Tkt $ TpEq (App fix-in (Var yₓ)) (Var y'ₓ)) $
TpAppTm (indices-to-tpapps is Tₘ) (Phi (Var eₓ)
(App (indices-to-apps is (AppEr (AppTp fix-in TypeF/D) fmap/D))
(App (indices-to-apps is fcₜ) (Var yₓ)))
(Var y'ₓ)))))))
mendler-elab-sigma-pure Γ (mk-data-info _ _ _ _ _ _ _ _ _ eds ecs) x? t ms =
let fix-out = erase (encoding-defs.fix-out eds)
msf = λ t → foldl
(λ {(Case mₓ cas mₜ asₜₚ) t →
App t (case-args-to-lams cas mₜ)})
t ms in
msf (App fix-out t)
mendler-elab-sigma Γ (mk-data-info X Xₒ asₚ asᵢ ps kᵢ k cs csₚₛ (mk-enc-defs ecs gcs Cast cast-in cast-out cast-is Functor functor-in functor-out Fix fix-in fix-out lambek1 lambek2 fix-ind) (mk-encd-defs Is/Dₓ is/Dₓ to/Dₓ TypeF/Dₓ indF/Dₓ fmap/Dₓ)) mt t Tₘ ms =
let is = kind-to-indices Γ k
Γᵢₛ = add-indices-to-ctxt is $ add-params-to-ctxt ps $ add-params-to-ctxt (ctxt.ps Γ) Γ
is/X? = mt
app-ps = recompose-apps (args-set-erased tt asₚ) ∘ Var
tpapp-ps = recompose-tpapps (args-to-tmtps asₚ) ∘ TpVar
app-ps' = inst-term Γ ps asₚ
tpapp-ps' = inst-type Γ ps asₚ
fmap/D = app-ps fmap/Dₓ
TypeF/D = tpapp-ps TypeF/Dₓ
to/D = recompose-apps asₚ (Var to/Dₓ)
indF/D = app-ps indF/Dₓ
Cast = tpapp-ps' Cast
cast-out = app-ps' cast-out
functor-out = app-ps' functor-out
Fix = tpapp-ps' Fix
fix-in = app-ps' fix-in
fix-out = app-ps' fix-out
lambek1 = app-ps' lambek1
Xₜₚ = recompose-tpapps (args-to-tmtps asₚ) (TpVar X)
Xₒₜₚ = if Xₒ =string X then Xₜₚ else TpVar Xₒ
toₓ = rename "to" from Γᵢₛ for id
outₓ = rename "out" from Γᵢₛ for id
to-tp = λ R → TpAppTp (TpAppTp Cast R) Xₜₚ
out-tp = λ R → TpIota outₓ (indices-to-alls is (TpAbs ff ignored-var (Tkt (indices-to-tpapps is R)) (indices-to-tpapps is (TpAppTp TypeF/D R)))) (TpEq (Var outₓ) fix-out)
ms' : trie term
ms' = foldr (λ c σ → case c of λ {(Case x cas t asₜₚ) →
let Γ' = add-caseArgs-to-ctxt cas Γᵢₛ in
trie-insert σ x $
rename "y" from Γ' for λ yₓ →
rename "e" from Γ' for λ eₓ →
rename "x" from Γ' for λ xₓ →
case-args-to-lams cas $
Lam tt yₓ (just (Tkt (recompose-tpapps (drop (length asₚ) asₜₚ) Xₜₚ))) $
Lam tt eₓ (just (Tkt (TpEq (App fix-in (foldr (uncurry λ x T → Lam ff (snd (split-var x)) nothing) (foldl (λ ca t → case ca of λ {(CaseArg ff x _) → App t (Var (snd (split-var x))); _ → t}) (Var (snd (split-var x))) cas) cs)) (Var yₓ)))) $
Rho (VarSigma (Var eₓ)) xₓ (TpAppTm (recompose-tpapps (drop (length asₚ) asₜₚ) Tₘ) (Var xₓ)) t})
empty-trie ms
in-fix = λ is/X? T asᵢ t →
(maybe-else' (is/X? ||-maybe mt) t λ is/X → App (recompose-apps asᵢ (AppEr (AppTp (AppTp cast-out T) Xₜₚ) (App (AppTp is/X (to-tp T)) (Lam ff "to" (just (Tkt (to-tp T))) $ Lam ff "out" (just (Tkt (out-tp T))) $ Var "to")))) t)
app-lambek = λ is/X? t T asᵢ body → AppEr (AppEr body (in-fix is/X? T asᵢ t))
(App (recompose-apps asᵢ (AppEr (AppTp lambek1 TypeF/D) fmap/D)) (in-fix is/X? T asᵢ t)) in
rename "x" from Γᵢₛ for λ xₓ →
rename "y" from Γᵢₛ for λ yₓ →
rename "y'" from ctxt-var-decl yₓ Γᵢₛ for λ y'ₓ →
rename "z" from Γᵢₛ for λ zₓ →
rename "e" from Γᵢₛ for λ eₓ →
rename "X" from Γᵢₛ for λ Xₓ →
maybe-else (Var "1") id $
foldl {B = maybe (term → term)} -- Agda hangs without this implicit argument...?
(uncurry λ x Tₓ rec → rec >>= λ rec → trie-lookup ms' x >>= λ t →
just λ tₕ → App (rec tₕ) t) (just λ t → t) cs >>= λ msf →
maybe-else (just $ Var "2") just $
just $
(app-lambek is/X? t Xₒₜₚ
(tmtps-to-args tt asᵢ) (msf
(let Tₛ = maybe-else' is/X? Xₜₚ λ _ → Xₒₜₚ
fcₜ = maybe-else' is/X? id λ is/X → App $ indices-to-apps is $
AppEr (AppTp (AppTp cast-out (TpAppTp TypeF/D Tₛ)) (TpAppTp TypeF/D Xₜₚ))
(AppEr (AppTp (AppTp (AppEr (AppTp functor-out TypeF/D) fmap/D) Tₛ) Xₜₚ) (App (AppTp is/X (to-tp Tₛ)) (Lam ff "to" (just (Tkt (to-tp Tₛ))) $ Lam ff "out" (just (Tkt (out-tp Tₛ))) $ Var "to")))
out = maybe-else' is/X? (AppEr (AppTp fix-out TypeF/D) fmap/D) λ is/X →
let i = App (AppTp is/X (TpIota xₓ (indices-to-alls is (TpAbs ff ignored-var (Tkt (indices-to-tpapps is Tₛ)) (indices-to-tpapps is (TpAppTp TypeF/D Tₛ)))) (TpEq (Var xₓ) fix-out))) (Lam ff "to" (just (Tkt (to-tp Tₛ))) $ Lam ff "out" (just (Tkt (out-tp Tₛ))) $ Var "out") in
Phi (IotaProj i ι2) (IotaProj i ι1) fix-out in
AppTp (App (recompose-apps (tmtps-to-args tt asᵢ) (AppTp indF/D Tₛ)) (App (recompose-apps (tmtps-to-args tt asᵢ) out) t))
(indices-to-tplams is $ TpLam yₓ (Tkt $ indices-to-tpapps is (TpAppTp TypeF/D Tₛ)) $
TpAbs tt y'ₓ (Tkt $ indices-to-tpapps is Xₜₚ) $
TpAbs tt eₓ (Tkt (TpEq (App fix-in (Var yₓ)) (Var y'ₓ))) $
TpAppTm (indices-to-tpapps is Tₘ) (Phi (Var eₓ)
(App (indices-to-apps is (AppEr (AppTp fix-in TypeF/D) fmap/D)) (fcₜ (Var yₓ))) (Var y'ₓ))))))
{- ################################ IO ################################ -}
-- set show-qualified-vars to tt to show if there are bugs in parameter code, because
-- they should always be captured by the scope and unqualified as a binder name
open import to-string (record options {during-elaboration = tt; show-qualified-vars = tt; erase-types = ff; pretty-print = tt})
{-# TERMINATING #-}
cmds-to-string : (newline-before-after : 𝔹) → params → cmds → strM
cmd-to-string : params → cmd → strM
cmd-to-string ps (CmdDefTerm x t) = strBreak 2
0 [ strVar x >>str strAdd " =" ]
2 [ to-stringh (lam-expand-term ps t) >>str strAdd "." ]
cmd-to-string ps (CmdDefType x k T) = strBreak 3
0 [ strVar x >>str strAdd " :" ]
(3 + string-length x) [ to-stringh (abs-expand-kind ps k) >>str strAdd " =" ]
2 [ to-stringh (lam-expand-type ps T) >>str strAdd "." ]
cmd-to-string ps (CmdDefKind x psₖ k) = strBreak 2
0 [ strVar x ]
2 [ params-to-string'' (ps ++ psₖ) (to-stringh k) >>str strAdd "." ]
cmd-to-string ps (CmdDefData eds x psₓ k cs) =
cmds-to-string ff ps (encoding-defs.ecs eds) >>str
strList 2
(strBreak 2
0 [ strAdd "data " >>str strVar x ]
(5 + string-length x) [ params-to-string'' (ps ++ psₓ)
(strAdd ": " >>str to-stringh k) ] ::
map (uncurry λ x T → strBreak 2
0 [ strAdd "| " >>str strVar x >>str strAdd " :" ]
(5 + string-length x) [ to-stringh T ]) cs) >>str strAdd "."
cmd-to-string ps (CmdImport (Import p? fp mn q? as)) =
strAdd "import " >>str
strAdd mn >>str
maybe-else' q? strEmpty (λ x → strAdd " as " >>str strAdd x) >>str
args-to-string as >>str
strAdd "."
cmds-to-string b-a ps =
let b-a-tt : cmd → strM → strM
b-a-tt = λ c cs → strLine >>str strLine >>str cmd-to-string ps c >>str cs
b-a-ff : cmd → strM → strM
b-a-ff = λ c cs → cmd-to-string ps c >>str cs >>str strLine >>str strLine in
foldr (if b-a then b-a-tt else b-a-ff) strEmpty
file-to-string : file → strM
file-to-string (Module mn ps cs) =
strAdd "module " >>str
strAdd mn >>str
strAdd "." >>str
cmds-to-string tt [] cs
--cmds-to-string tt ps cs
record elab-info : Set where
constructor mk-elab-info
field
τ : toplevel-state
ρ : renamectxt
φ : renamectxt × trie file
ν : trie stringset -- dependency mapping
new-elab-info : toplevel-state → elab-info
new-elab-info ts = mk-elab-info ts empty-renamectxt (empty-renamectxt , empty-trie) empty-trie
ts-def : toplevel-state → var → tmtp → toplevel-state
ts-def ts x tT =
let Γ = toplevel-state.Γ ts
i = ctxt.i Γ
d = either-else' tT
(λ t → term-def nothing opacity-open (just t) (TpHole pi-gen))
(λ T → type-def nothing opacity-open (just T) (KdHole pi-gen)) in
record ts { Γ = record Γ { i = trie-insert i x (d , missing-location) } }
add-dep : elab-info → var → elab-info
add-dep (mk-elab-info τ ρ φ ν) mnᵢ =
let fp = ctxt.fn (toplevel-state.Γ τ)
mnᵢ-is = stringset-strings (trie-lookup-else empty-trie ν mnᵢ)
mn-is = trie-lookup-else empty-trie ν fp in
mk-elab-info τ ρ φ (trie-insert ν fp (foldr (flip stringset-insert) (stringset-insert mn-is mnᵢ) mnᵢ-is))
set-fn : elab-info → filepath → elab-info
set-fn (mk-elab-info τ ρ φ ν) fn = mk-elab-info (record τ { Γ = record (toplevel-state.Γ τ) { fn = fn } }) ρ φ ν
set-mn : elab-info → var → elab-info
set-mn (mk-elab-info τ ρ φ ν) mn = mk-elab-info (record τ { Γ = record (toplevel-state.Γ τ) { mn = mn } }) ρ φ ν
get-fn : elab-info → filepath
get-fn = ctxt.fn ∘' toplevel-state.Γ ∘' elab-info.τ
get-mn : elab-info → var
get-mn = ctxt.mn ∘' toplevel-state.Γ ∘' elab-info.τ
get-deps : elab-info → filepath → file → file
get-deps (mk-elab-info τ ρ φ ν) fp (Module mn ps es) =
Module mn ps (foldr (λ x → CmdImport (Import ff x (renamectxt-rep (fst φ) x) nothing []) ::_) es (stringset-strings (trie-lookup-else empty-stringset ν fp)))
{-# TERMINATING #-}
elab-file : elab-info → filepath → elab-info × var
elab-cmds : elab-info → params → cmds → elab-info × cmds
elab-cmds ei ps [] = ei , []
elab-cmds ei@(mk-elab-info τ ρ φ ν) ps (CmdDefTerm x t :: csᵣ) =
rename (get-mn ei # x) - x from ρ for λ x' ρ' →
let t' = choose-mu (toplevel-state.Γ τ) ρ (params-to-lams ps t) in
elim elab-cmds (mk-elab-info (ts-def τ x' (Ttm t')) ρ' φ ν) ps csᵣ for λ ei csᵣ →
ei , CmdDefTerm x' t' :: csᵣ
elab-cmds ei@(mk-elab-info τ ρ φ ν) ps (CmdDefType x k T :: csᵣ) =
rename (get-mn ei # x) - x from ρ for λ x' ρ' →
let k' = choose-mu (toplevel-state.Γ τ) ρ (params-to-kind ps k)
T' = choose-mu (toplevel-state.Γ τ) ρ (params-to-tplams ps T) in
elim elab-cmds (mk-elab-info (ts-def τ x' (Ttp T')) ρ' φ ν) ps csᵣ for λ ei csᵣ →
ei , CmdDefType x' k' T' :: csᵣ
elab-cmds ei ps (CmdDefKind x psₖ k :: csᵣ) =
elab-cmds ei ps csᵣ
elab-cmds ei ps (CmdDefData es x psₓ k cs :: csᵣ) =
elim elab-cmds ei [] (encoding-defs.ecs es) for λ ei ecs →
elim elab-cmds ei [] (encoding-defs.gcs es) for λ ei gcs →
elim elab-cmds ei ps csᵣ for λ ei rcs →
ei , ecs ++ gcs ++ rcs
elab-cmds ei ps (CmdImport (Import p? fp mn' q? as) :: csᵣ) =
let fpₒ = get-fn ei; mnₒ = get-mn ei in
elim elab-file ei fp for λ ei mn'' →
elab-cmds (add-dep (set-mn (set-fn ei fpₒ) mnₒ) fp) ps csᵣ
elab-file ei @ (mk-elab-info τ ρ φ ν) fp with trie-contains (snd φ) fp
...| tt = ei , renamectxt-rep (fst φ) fp
...| ff with get-include-elt-if τ fp >>= include-elt.ast~
...| nothing = ei , "error"
...| just (Module mn ps es) =
let p = elab-cmds (record (set-mn (set-fn ei fp) mn) { ν = trie-insert (elab-info.ν ei) fp empty-trie }) ps es
(mk-elab-info τ ρ φ ν) = fst p
es' = snd p
τ = record τ { Γ = record (toplevel-state.Γ τ) { ps = ps } } in
rename fp - mn from fst φ for λ mn' φ' →
mk-elab-info τ ρ (φ' , trie-insert (snd φ) fp (Module mn' ps es')) ν , mn'
elab-write-all : elab-info → (to : filepath) → IO ⊤
elab-write-all ei@(mk-elab-info τ ρ φ ν) to =
let Γ = toplevel-state.Γ τ
print = strRun Γ ∘ file-to-string in
foldr'
(createDirectoryIfMissing ff to)
(uncurry λ fₒ fₛ io →
let fₘ = renamectxt-rep (fst φ) fₒ
fₙ = combineFileNames to (fₘ ^ ".cdle") in
io >> writeRopeToFile fₙ (print (get-deps ei fₒ fₛ)))
(trie-mappings (snd φ))
elab-all : toplevel-state → (from to : filepath) → IO ⊤
elab-all ts fm to =
elab-write-all (fst (elab-file (new-elab-info ts) fm)) to >>
putStrLn ("0")
|
{
"alphanum_fraction": 0.5742395751,
"avg_line_length": 44.8938207137,
"ext": "agda",
"hexsha": "b548c9e25e7c9cece9d9c9219c19a29a168a748d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ice1k/cedille",
"max_forks_repo_path": "src/elab-util.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ice1k/cedille",
"max_issues_repo_path": "src/elab-util.agda",
"max_line_length": 286,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ice1k/cedille",
"max_stars_repo_path": "src/elab-util.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 20523,
"size": 51583
}
|
open import Nat
open import Prelude
open import List
open import core
open import judgemental-erase
open import checks
module constructability where
-- we construct expressions and types by induction on their
-- structure. for each sub term, we call the relevant theorem, then
-- assemble the results with carefully chosen lists of actions that allow
-- us to call the appropriate zipper lemmas and maintain well-typedness
-- at every stage of the contruction.
--
-- the proof term at each stage except subsumption is, morally, just the
-- mapping of the fragment of the action semantics used by the constructs
-- in the list in the current formation context into the list monoid.
-- construction of types
construct-type : (t : τ̇) → Σ[ L ∈ List action ] runtype (▹ ⦇-⦈ ◃) L (▹ t ◃)
construct-type num = [ construct num ] , DoType TMConNum DoRefl
construct-type ⦇-⦈ = [ del ] , DoType TMDel DoRefl
construct-type (t1 ==> t2) with construct-type t1 | construct-type t2
... | (l1 , ih1) | (l2 , ih2) = l1 ++ construct arrow :: l2 ++ [ move parent ] ,
runtype++ ih1
(DoType TMConArrow
(runtype++ (ziplem-tmarr2 ih2)
(DoType TMArrParent2 DoRefl)))
mutual
-- construction of expressions in synthetic positions
construct-synth : {Γ : ·ctx} {t : τ̇} {e : ė} → (Γ ⊢ e => t) →
Σ[ L ∈ List action ]
runsynth Γ ▹ ⦇-⦈ ◃ ⦇-⦈ L ▹ e ◃ t
-- the three base cases
construct-synth (SVar x) = [ construct (var _) ] , DoSynth (SAConVar x) DoRefl
construct-synth SNum = [ construct (numlit _) ] , DoSynth SAConNumlit DoRefl
construct-synth SEHole = [ del ] , DoSynth SADel DoRefl
-- the inductive cases
construct-synth {t = t} (SAsc x) with construct-type t | construct-ana x
... | (l1 , ih1) | (l2 , ih2) = construct asc :: (l1 ++ move parent :: move (child 1) :: (l2 ++ [ move parent ])) ,
DoSynth SAConAsc
(runsynth++ (ziplem-asc2 ETTop ETTop ih1)
(DoSynth (SAMove EMAscParent2)
(DoSynth (SAMove EMAscChild1)
(runsynth++ (ziplem-asc1 ih2)
(DoSynth (SAMove EMAscParent1) DoRefl)))))
construct-synth (SAp e1 m e2) with construct-synth e1 | construct-ana e2
... | (l1 , ih1) | (l2 , ih2) = l1 ++ construct ap :: (l2 ++ [ move parent ]) ,
runsynth++ ih1
(DoSynth (SAConApArr m)
(runsynth++ (ziplem-ap2 e1 m ih2)
(DoSynth (SAMove EMApParent2) DoRefl)))
construct-synth (SPlus e1 e2 ) with construct-ana e1 | construct-ana e2
... | (l1 , ih1) | (l2 , ih2) = construct plus :: (l2 ++ move parent :: move (child 1) :: (l1 ++ [ move parent ])) ,
DoSynth (SAConPlus1 TCHole2)
(runsynth++ (ziplem-plus2 ih2)
(DoSynth (SAMove EMPlusParent2)
(DoSynth (SAMove EMPlusChild1)
(runsynth++ (ziplem-plus1 ih1)
(DoSynth (SAMove EMPlusParent1) DoRefl)))))
construct-synth (SNEHole wt) with construct-synth wt
... | (l , ih) = l ++ construct nehole :: move parent :: [] ,
runsynth++ ih
(DoSynth SAConNEHole (DoSynth (SAMove EMNEHoleParent) DoRefl))
-- construction of expressions in analytic positions
construct-ana : {Γ : ·ctx} {t : τ̇} {e : ė} → (Γ ⊢ e <= t) →
Σ[ L ∈ List action ]
runana Γ ▹ ⦇-⦈ ◃ L ▹ e ◃ t
construct-ana (ASubsume x c) with construct-synth x
... | (l , ih) = construct nehole :: l ++ (move parent :: finish :: []) ,
DoAna (AASubsume EETop SEHole SAConNEHole TCHole1)
(runana++ (ziplem-nehole-b SEHole c ih)
(DoAna (AAMove EMNEHoleParent)
(DoAna (AAFinish (ASubsume x c)) DoRefl)))
construct-ana (ALam a m e) with construct-ana e
... | (l , ih) = construct (lam _) :: (l ++ [ move parent ]) ,
DoAna (AAConLam1 a m)
(runana++ (ziplem-lam a m ih)
(DoAna (AAMove EMLamParent) DoRefl))
|
{
"alphanum_fraction": 0.4953917051,
"avg_line_length": 54.8735632184,
"ext": "agda",
"hexsha": "28609445dd5ad3ec714e1daea084645b55335831",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-07-03T03:45:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-07-03T03:45:07.000Z",
"max_forks_repo_head_hexsha": "db3d21a1e3f17ef77ad557ed12374979f381b6b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/agda-popl17",
"max_forks_repo_path": "constructability.agda",
"max_issues_count": 37,
"max_issues_repo_head_hexsha": "db3d21a1e3f17ef77ad557ed12374979f381b6b7",
"max_issues_repo_issues_event_max_datetime": "2016-11-09T18:13:55.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-07-07T16:23:11.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/agda-popl17",
"max_issues_repo_path": "constructability.agda",
"max_line_length": 120,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "db3d21a1e3f17ef77ad557ed12374979f381b6b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/agda-popl17",
"max_stars_repo_path": "constructability.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-11T12:30:50.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-01T22:44:11.000Z",
"num_tokens": 1302,
"size": 4774
}
|
-- Andreas, 2015-05-02 Integrate copatterns with with.
{-# OPTIONS --copatterns #-}
open import Common.Prelude hiding (map)
open import Common.Product
open import Common.Equality
dup : {A : Set} → A → A × A
proj₁ (dup a) = a
proj₂ (dup a) with a
proj₂ (dup a) | x = x
record Stream (A : Set) : Set where
coinductive
constructor delay
field
force : A × Stream A
open Stream
map : ∀{A B} → (A → B) → Stream A → Stream B
force (map f s) with force s
... | a , as = f a , map f as
zipWith : ∀{A B C} → (A → B → C) → Stream A → Stream B → Stream C
force (zipWith f s t) with force s | force t
... | a , as | b , bs = f a b , zipWith f as bs
interleave : ∀{A} (s t : Stream A) → Stream A
force (interleave s t) with force s
... | a , as = a , interleave t as
mutual
evens : ∀{A} (s : Stream A) → Stream A
force (evens s) with force s
... | a , as = a , odds as
odds : ∀{A} (s : Stream A) → Stream A
odds s with force s
... | a , as = evens as
take : ∀{A} (n : Nat) (s : Stream A) → List A
take 0 s = []
take (suc n) s with force s
... | a , as = a ∷ take n as
record Bisim {A B} (R : A → B → Set) (s : Stream A) (t : Stream B) : Set where
coinductive
constructor ~delay
field
~force : let a , as = force s
b , bs = force t
in R a b × Bisim R as bs
open Bisim
SEq : ∀{A} (s t : Stream A) → Set
SEq = Bisim (_≡_)
~refl : ∀{A} (s : Stream A) → SEq s s
~force (~refl s) with force s
... | a , as = refl , ~refl as
~sym : ∀{A}{s t : Stream A} → SEq s t → SEq t s
~force (~sym p) with ~force p
... | q , r = sym q , ~sym r
~sym' : ∀{A} {s t : Stream A} → SEq s t → SEq t s
~force (~sym' {s = s} {t} p) with force s | force t | ~force p
... | a , as | b , bs | r , q rewrite r = refl , ~sym' q
-- ~sym' : ∀{A} {s t : Stream A} → SEq s t → SEq t s
-- ~force (~sym' {s = s} {t} p) with force s | force t | ~force p
-- ... | x | y | q , r = {!x!} -- C-c C-c prints internal with-name
~trans : ∀{A}{r s t : Stream A} → SEq r s → SEq s t → SEq r t
~force (~trans p q) with ~force p | ~force q
... | ph , pt | qh , qt = trans ph qh , ~trans pt qt
~take : ∀{A} (s t : Stream A) (p : SEq s t) (n : Nat) → take n s ≡ take n t
~take s t p zero = refl
~take s t p (suc n) with force s | force t | ~force p
~take s t p (suc n) | a , as | .a , bs | refl , q rewrite ~take as bs q n = refl
|
{
"alphanum_fraction": 0.5389196087,
"avg_line_length": 27.9880952381,
"ext": "agda",
"hexsha": "799c77f007eba9ea0f8112223694e721daca52b2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/CopatternsWith.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/CopatternsWith.agda",
"max_line_length": 80,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/CopatternsWith.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 922,
"size": 2351
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.FinData.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
import Cubical.Data.Empty as ⊥
open import Cubical.Data.Nat using (ℕ; zero; suc)
open import Cubical.Data.Bool.Base
open import Cubical.Relation.Nullary
private
variable
ℓ : Level
A B : Type ℓ
data Fin : ℕ → Type₀ where
zero : {n : ℕ} → Fin (suc n)
suc : {n : ℕ} (i : Fin n) → Fin (suc n)
toℕ : ∀ {n} → Fin n → ℕ
toℕ zero = 0
toℕ (suc i) = suc (toℕ i)
fromℕ : (n : ℕ) → Fin (suc n)
fromℕ zero = zero
fromℕ (suc n) = suc (fromℕ n)
¬Fin0 : ¬ Fin 0
¬Fin0 ()
_==_ : ∀ {n} → Fin n → Fin n → Bool
zero == zero = true
zero == suc _ = false
suc _ == zero = false
suc m == suc n = m == n
predFin : {n : ℕ} → Fin (suc (suc n)) → Fin (suc n)
predFin zero = zero
predFin (suc x) = x
foldrFin : ∀ {n} → (A → B → B) → B → (Fin n → A) → B
foldrFin {n = zero} _ b _ = b
foldrFin {n = suc n} f b l = f (l zero) (foldrFin f b (l ∘ suc))
elim
: ∀(P : ∀{k} → Fin k → Type ℓ)
→ (∀{k} → P {suc k} zero)
→ (∀{k} → {fn : Fin k} → P fn → P (suc fn))
→ {k : ℕ} → (fn : Fin k) → P fn
elim P fz fs {zero} = ⊥.rec ∘ ¬Fin0
elim P fz fs {suc k} zero = fz
elim P fz fs {suc k} (suc fj) = fs (elim P fz fs fj)
rec : ∀{k} → (a0 aS : A) → Fin k → A
rec a0 aS zero = a0
rec a0 aS (suc x) = aS
|
{
"alphanum_fraction": 0.5603197674,
"avg_line_length": 22.9333333333,
"ext": "agda",
"hexsha": "eae4309f9369664a7992896cb409095510842237",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Data/FinData/Base.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Data/FinData/Base.agda",
"max_line_length": 64,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Data/FinData/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 585,
"size": 1376
}
|
------------------------------------------------------------------------
-- Semi-heterogeneous vector equality
------------------------------------------------------------------------
module Data.Vec.Equality where
open import Data.Vec
open import Data.Nat using (suc)
open import Data.Function
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as PropEq using (_≡_)
module Equality (S : Setoid) where
private
open module SS = Setoid S
using () renaming (_≈_ to _≊_; carrier to A)
infix 4 _≈_
data _≈_ : ∀ {n¹} → Vec A n¹ →
∀ {n²} → Vec A n² → Set where
[]-cong : [] ≈ []
_∷-cong_ : ∀ {x¹ n¹} {xs¹ : Vec A n¹}
{x² n²} {xs² : Vec A n²}
(x¹≈x² : x¹ ≊ x²) (xs¹≈xs² : xs¹ ≈ xs²) →
x¹ ∷ xs¹ ≈ x² ∷ xs²
length-equal : ∀ {n¹} {xs¹ : Vec A n¹}
{n²} {xs² : Vec A n²} →
xs¹ ≈ xs² → n¹ ≡ n²
length-equal []-cong = PropEq.refl
length-equal (_ ∷-cong eq₂) = PropEq.cong suc $ length-equal eq₂
refl : ∀ {n} (xs : Vec A n) → xs ≈ xs
refl [] = []-cong
refl (x ∷ xs) = SS.refl ∷-cong refl xs
sym : ∀ {n m} {xs : Vec A n} {ys : Vec A m} →
xs ≈ ys → ys ≈ xs
sym []-cong = []-cong
sym (x¹≡x² ∷-cong xs¹≈xs²) = SS.sym x¹≡x² ∷-cong sym xs¹≈xs²
trans : ∀ {n m l} {xs : Vec A n} {ys : Vec A m} {zs : Vec A l} →
xs ≈ ys → ys ≈ zs → xs ≈ zs
trans []-cong []-cong = []-cong
trans (x≈y ∷-cong xs≈ys) (y≈z ∷-cong ys≈zs) =
SS.trans x≈y y≈z ∷-cong trans xs≈ys ys≈zs
_++-cong_ : ∀ {n₁¹ n₂¹} {xs₁¹ : Vec A n₁¹} {xs₂¹ : Vec A n₂¹}
{n₁² n₂²} {xs₁² : Vec A n₁²} {xs₂² : Vec A n₂²} →
xs₁¹ ≈ xs₁² → xs₂¹ ≈ xs₂² →
xs₁¹ ++ xs₂¹ ≈ xs₁² ++ xs₂²
[]-cong ++-cong eq₃ = eq₃
(eq₁ ∷-cong eq₂) ++-cong eq₃ = eq₁ ∷-cong (eq₂ ++-cong eq₃)
module DecidableEquality (D : DecSetoid) where
private module DS = DecSetoid D
open DS using () renaming (_≟_ to _≟′_ ; carrier to A)
open Equality DS.setoid
open import Relation.Nullary
_≟_ : ∀ {n m} (xs : Vec A n) (ys : Vec A m) → Dec (xs ≈ ys)
_≟_ [] [] = yes []-cong
_≟_ [] (y ∷ ys) = no (λ())
_≟_ (x ∷ xs) [] = no (λ())
_≟_ (x ∷ xs) (y ∷ ys) with xs ≟ ys | x ≟′ y
... | yes xs≈ys | yes x≊y = yes (x≊y ∷-cong xs≈ys)
... | no ¬xs≈ys | _ = no helper
where
helper : ¬ (x ∷ xs ≈ y ∷ ys)
helper (_ ∷-cong xs≈ys) = ¬xs≈ys xs≈ys
... | _ | no ¬x≊y = no helper
where
helper : ¬ (x ∷ xs ≈ y ∷ ys)
helper (x≊y ∷-cong _) = ¬x≊y x≊y
module HeterogeneousEquality {A : Set} where
open import Relation.Binary.HeterogeneousEquality as HetEq
using (_≅_)
open Equality (PropEq.setoid A)
to-≅ : ∀ {n m} {xs : Vec A n} {ys : Vec A m} →
xs ≈ ys → xs ≅ ys
to-≅ []-cong = HetEq.refl
to-≅ (PropEq.refl ∷-cong xs¹≈xs²) with length-equal xs¹≈xs²
... | PropEq.refl = HetEq.cong (_∷_ _) $ to-≅ xs¹≈xs²
|
{
"alphanum_fraction": 0.4806483626,
"avg_line_length": 33.5888888889,
"ext": "agda",
"hexsha": "174907047a161fd236757c0c3214199e4bc016e0",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Data/Vec/Equality.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Data/Vec/Equality.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Data/Vec/Equality.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 1246,
"size": 3023
}
|
module test where
open import cry.gfp
open import cry.ec
{-
-- open import IO.Primitive
-- open import Foreign.Haskell
open import Agda.Builtin.List using (List; []; _∷_)
open import Agda.Builtin.Char using (Char) renaming (primCharToNat to toNat)
open import Agda.Builtin.String using (String) renaming (primStringAppend to _++_; primStringToList to toList)
open import Agda.Builtin.Unit using (⊤)
-}
open import Data.Char using (Char; toNat)
open import Data.Nat as N using (ℕ; zero)
open import Data.Nat.Show using (show)
open import Data.List using (List; []; _∷_)
-- open import Data.Product using (_×_; _,_; proj₁)
open import Data.String using (String; _++_; toList)
open import Relation.Nullary using (yes; no)
open import IO using (IO; run; putStrLn)
open import Coinduction using (♯_)
open import Function using (_∘_; _$_)
-- open import Agda.Builtin.IO public using (IO)
_>>=_ : ∀ {a} {A B : Set a} → IO A → (A → IO B) → IO B
m >>= f = ♯ m IO.>>= λ a → ♯ f a
_>>_ : ∀ {a} {A B : Set a} → IO A → IO B → IO B
m >> n = ♯ m IO.>> ♯ n
open cry.ec using (module test-ec)
open test-ec
showElem : 𝔽 → String
showElem n = show n
read₁₀ : ℕ → List Char → ℕ × List Char
read₁₀ n [] = n , []
read₁₀ n (c ∷ cs) with toNat '0' N.≤? toNat c
... | no _ = n , cs
... | yes _ with toNat c N.≤? toNat '9'
... | no _ = n , cs
... | yes _ = read₁₀ (10 N.* n N.+ (toNat c N.∸ toNat '0')) cs
readsElem : List Char → 𝔽 × List Char
readsElem cs with read₁₀ 0 cs
... | n , cs′ = n , cs′ where
readElem : String → 𝔽
readElem = proj₁ ∘ readsElem ∘ toList
showPoint : Point → String
showPoint (x ∶ y ∶ z) = showElem x ++ ":" ++ showElem y ++ ":" ++ showElem z
readsPoint : List Char → Point × List Char
readsPoint s with readsElem s
... | x , s′ with readsElem s′
... | y , s″ with readsElem s″
... | z , s‴ = (x ∶ y ∶ z) , s‴ where
readPoint : String → Point
readPoint = proj₁ ∘ readsPoint ∘ toList
showPoint′ : Point → String
showPoint′ p = showPoint p ++ " = " ++ showPoint (aff p)
main′ : IO _
main′ = do
let
p = readPoint "4:2:1"
2p = dbl p
3p = add 2p p
3p′ = add p 2p
4p = dbl 2p
4p′ = add p 3p
4p″ = add p 3p′
5p = add 4p p
5p′ = add 2p 3p
5p+0 = add 5p 𝕆
6p = dbl 3p
6p′ = add 5p p
6p″ = add p 5p
putStrLn ("p = " ++ showPoint′ p)
putStrLn ("2p = " ++ showPoint′ 2p)
putStrLn ("3p = " ++ showPoint′ 3p)
putStrLn ("3p′ = " ++ showPoint′ 3p′)
putStrLn ("4p = " ++ showPoint′ 4p)
putStrLn ("4p′ = " ++ showPoint′ 4p′)
putStrLn ("4p″ = " ++ showPoint′ 4p″)
putStrLn ("5p = " ++ showPoint′ 5p)
putStrLn ("5p′ = " ++ showPoint′ 5p′)
putStrLn ("5p+0 = " ++ showPoint′ 5p+0)
putStrLn ("6p = " ++ showPoint′ 6p)
putStrLn ("6p′ = " ++ showPoint′ 6p′)
putStrLn ("6p″ = " ++ showPoint′ 6p″)
main = run main′
|
{
"alphanum_fraction": 0.5994256999,
"avg_line_length": 27.0485436893,
"ext": "agda",
"hexsha": "6020b79ab39fb3b0ac231e71a2c15ebe6be61a0a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "44297e5099d12dea7f3165c1f1d53924736ec058",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "semenov-vladyslav/cry-agda",
"max_forks_repo_path": "app/test.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "44297e5099d12dea7f3165c1f1d53924736ec058",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "semenov-vladyslav/cry-agda",
"max_issues_repo_path": "app/test.agda",
"max_line_length": 110,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "44297e5099d12dea7f3165c1f1d53924736ec058",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "semenov-vladyslav/cry-agda",
"max_stars_repo_path": "app/test.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1062,
"size": 2786
}
|
module GUIgeneric.GUIFeaturesPart2 where
open import GUIgeneric.Prelude renaming (addButton to addButton')
open import GUIgeneric.GUIDefinitions renaming (add to add'; add' to add)
open import GUIgeneric.GUI
open import GUIgeneric.GUIExampleLib
open import StateSizedIO.GUI.WxGraphicsLibLevel3 renaming (addButton to addButton')
open import GUIgeneric.GUIFeatures
open import GUIgeneric.GUIExample using (propOneBtn; propTwoBtn ; black ; oneColumnLayout)
open import Data.Product
open import Data.Fin
data ReturnTypeₛ (S : Set) : Set where
noChange : ReturnTypeₛ S
changedState : (snew : S) → ReturnTypeₛ S
-- handler GUI interface with separte state (i.e. state is a separte set instead of GUI)
-- We might later separte State into a gui state and property state i.e. have
-- GuiState : Set
-- AttrState : GuiState → Set
-- s2GUI : GuiState → GUI
-- s2prop : (g : GuiState)(prop : AttrState g) → properties (s2GUI g)
handlerGUIInterfₛ : (S : Set) (s2GUI : (s : S) → Frame)
→ Interfaceˢ
handlerGUIInterfₛ S s2GUI .Stateˢ = S
handlerGUIInterfₛ S s2GUI .Methodˢ s = methodsG (s2GUI s)
handlerGUIInterfₛ S s2GUI .Resultˢ s m = ReturnTypeₛ S
handlerGUIInterfₛ S s2GUI .nextˢ s m noChange = s
handlerGUIInterfₛ S s2GUI .nextˢ s m (changedState snew) = snew
handlerGUIObjectₛ : (i : Size)(S : Set) (s2GUI : (s : S) → Frame)(s : S) → Set
handlerGUIObjectₛ i S s2GUI s = IOObjectˢ- GuiLev1Interface (handlerGUIInterfₛ S s2GUI) i s
mutual
hGuiObjₛ2ord : (i : Size)(S : Set)
(s2GUI : (s : S) → Frame)
(s2prop : (s : S) → properties (s2GUI s))
(obj : (s : S) → handlerGUIObjectₛ i S s2GUI s)
(s : S)
→ HandlerObject i (s2GUI s)
method (hGuiObjₛ2ord i S s2GUI s2prop obj s) {j} m =
hGuiObjₛ2ordaux ∞ j S s2GUI s s2prop obj m (method (obj s) m )
hGuiObjₛ2ordaux' : (j : Size)(j' : Size)(S : Set)
(s2GUI : (s : S) → Frame)(s : S)
(s2prop : (s : S) → properties (s2GUI s))
(obj : (s : S) → handlerGUIObjectₛ j' S s2GUI s)
(m : methodsG (s2GUI s))
(prog : IO' GuiLev1Interface j
(ReturnTypeₛ S))
→ IO' GuiLev1Interface j
( Σ[ r ∈ returnType (s2GUI s) ]
(IOObjectˢ GuiLev1Interface handlerInterface j'
(nextˢ handlerInterface (s2GUI s) m r)))
hGuiObjₛ2ordaux' j j' S s2GUI s s2prop obj m (do' c f) = do' c (λ r → hGuiObjₛ2ordaux j j' S s2GUI s s2prop obj m (f r) )
hGuiObjₛ2ordaux' j j' S s2GUI s s2prop obj m (return' noChange ) = return' (noChange , hGuiObjₛ2ord j' S s2GUI s2prop obj s {-obj'-})
hGuiObjₛ2ordaux' j j' S s2GUI s s2prop obj m (return' (changedState snew)) = return' (changedGUI (s2GUI snew) (s2prop snew) , hGuiObjₛ2ord j' S s2GUI s2prop obj snew {- obj'-})
hGuiObjₛ2ordaux : (j : Size)(j' : Size)(S : Set)
(s2GUI : (s : S) → Frame)(s : S)
(s2prop : (s : S) → properties (s2GUI s))
(obj : (s : S) → handlerGUIObjectₛ j' S s2GUI s)
(m : methodsG (s2GUI s))
(prog : IO GuiLev1Interface j
(ReturnTypeₛ S))
→ IO GuiLev1Interface j
( Σ[ r ∈ returnType (s2GUI s) ]
(IOObjectˢ GuiLev1Interface handlerInterface j'
(nextˢ handlerInterface (s2GUI s) m r)))
force (hGuiObjₛ2ordaux j j' S s2GUI s s2prop obj m pr) {j''} = hGuiObjₛ2ordaux' j'' j' S s2GUI s s2prop obj m (force pr)
{- *** STATE MACHINES **** -}
sMachineHdl : (S : Set)(s : S) (f : Frame) → Set
sMachineHdl S s f = (m : methodsG f)
→ IO GuiLev1Interface ∞ (ReturnTypeₛ S)
record SMachineState (S : Set)(s : S) : Set where
field
fSM : Frame
propSM : properties fSM
handlSM : sMachineHdl S s fSM
SMachine : Set → Set
SMachine S = (s : S) → SMachineState S s
open SMachineState public
SMachine2HandlerGuiObjectₛ : (S : Set)
(sm : SMachine S)
(s : S)
→ handlerGUIObjectₛ ∞ S (λ s → sm s .fSM) s
method (SMachine2HandlerGuiObjectₛ S sm s) = sm s .handlSM
stateMachine2Obj : (S : Set)
(sm : SMachine S)
(s : S)
→ HandlerObject ∞ (sm s .fSM)
stateMachine2Obj S sm = hGuiObjₛ2ord ∞ S
(λ s → sm s .fSM)
(λ s → sm s .propSM)
(λ s → SMachine2HandlerGuiObjectₛ S sm s)
stateMachine2GUI : (S : Set) (sm : SMachine S) (s : S) → GUI
stateMachine2GUI S sm s .defFrame = sm s .fSM
stateMachine2GUI S sm s .property = sm s .propSM
stateMachine2GUI S sm s .obj = stateMachine2Obj S sm s
compileSMachine : {S : Set} (sm : SMachine S) (s : S)
→ NativeIO Unit
compileSMachine {S} sm s =
compileGUI (stateMachine2GUI S sm s)
{- **************** FEATURE MACHINE **** -}
-- an example of a feature machine wihout additional states:
record FeatureVMVers1 : Set₁ where
field
Features : Set
State : Set
GUIF : (f : Features) → SMachine State
record FMachine (BaseSt : Set) : Set₁ where
field
Features : Set
AddStateF : Set
GUIF : (f : Features) → SMachine (BaseSt ⊎ AddStateF)
State : Set
State = BaseSt ⊎ AddStateF
open FMachine public
featureVMFull2GUI : (BaseSt : Set)
(vm : FMachine BaseSt)
(f : vm .Features)
(s : State vm)
→ GUI
featureVMFull2GUI BaseSt vm f s =
stateMachine2GUI
(BaseSt ⊎ vm .AddStateF)
(vm .GUIF f) s
featureVMFull2IOˢprog : {BaseSt : Set}
(vm : FMachine BaseSt)
(f : vm .Features)
(s : State vm) → IOˢ GuiLev3Interface ∞ (λ _ → Unit) []
featureVMFull2IOˢprog {BaseSt} vm f s = guiFull2IOˢprog (featureVMFull2GUI BaseSt vm f s)
compileFeatureVM : {BaseSt : Set}
(vm : FMachine BaseSt)
(f : vm .Features)
(s : State vm)
→ NativeIO Unit
compileFeatureVM {BaseSt} vm f s = compileGUI (featureVMFull2GUI BaseSt vm f s)
{- methodsREduce creates from a method for the frame (addButon s g)
a method for g -}
mutual
methodsReduce : (g : Frame)(str : String)(m : MethodsStruct)
(u : methodsStruct2Method (addButton str g notOptimzed) m)
→ methodsStruct2Method g m
methodsReduce g str (fficom) (ffibtn , gcomp) = gcomp
methodsReduce g str (⊥^) ()
methodsReduce g str (m ⊎^unoptimized m₁) (inj₁ x) = inj₁ (methodsReduce g str m x)
methodsReduce g str (m ⊎^unoptimized m₁) (inj₂ y) = inj₂ (methodsReduce g str m₁ y)
methodsReduce g str (m ⊎^ m₁) x = methodsReduceaux g str m m₁
(methodsUnivIsEmpty m)
(methodsUnivIsEmpty m₁) x
methodsReduceaux : (g : Frame)(str : String)(m : MethodsStruct)
(m₁ : MethodsStruct)
(s : SemiDec (λ g' → methodsStruct2Method g' m))
(s₁ : SemiDec (λ g' → methodsStruct2Method g' m₁))
(u : methodsStruct2Methodaux
(addButton str g notOptimzed) m m₁ s s₁)
→ methodsStruct2Methodaux g m m₁ s s₁
methodsReduceaux g str m m₁ s (isEmpty s₁) u = methodsReduce g str m u
methodsReduceaux g str m m₁ (isEmpty x) posNonEmpty u = methodsReduce g str m₁ u
methodsReduceaux g str m m₁ posNonEmpty posNonEmpty (inj₁ x) = inj₁ (methodsReduce g str m x)
methodsReduceaux g str m m₁ posNonEmpty posNonEmpty (inj₂ y) = inj₂ (methodsReduce g str m₁ y)
subMethodToFullMethod : (btnStr : String)
(fr : Frame)
(m : methodsStruct2Method (addButton btnStr fr notOptimzed)
(methodStruct fr ))
→ methodsG fr
subMethodToFullMethod btnStr fr m = methodsReduce fr btnStr (methodStruct fr ) m
simpleAttr1Btn : (btnStr : String) → properties (addButton btnStr create-frame notOptimzed)
simpleAttr1Btn btnStr = black , oneColumnLayout
simpleSMState : {S : Set}
(btnStr : String)
{start : S}
(end : S)
→ SMachineState S start
simpleSMState btnStr end .fSM = addButton btnStr create-frame notOptimzed
simpleSMState btnStr end .propSM = simpleAttr1Btn btnStr
simpleSMState btnStr end .handlSM m .force = return' (changedState end)
baseF : FMachine StateV
baseF .Features = ⊤
baseF .AddStateF = ⊥
baseF .GUIF f (inj₁ s0) = simpleSMState "1Euro" (inj₁ s1)
baseF .GUIF f (inj₁ s1) = simpleSMState "Get Change" (inj₁ s2)
baseF .GUIF f (inj₁ s2) = simpleSMState "Soda" (inj₁ s0)
baseF .GUIF f (inj₂ ())
addBtn2StateMachine : {S : Set}{s : S}(sm : SMachineState S s)
(btnStr : String)(end : S)
→ SMachineState S s
addBtn2StateMachine sm btnStr end .fSM = addButton btnStr (sm .fSM) notOptimzed
addBtn2StateMachine sm btnStr end .propSM = black , sm .propSM
addBtn2StateMachine sm btnStr end .handlSM (inj₁ x) .force = return' (changedState end)
addBtn2StateMachine sm btnStr end .handlSM (inj₂ m) =
sm .handlSM (subMethodToFullMethod btnStr (sm .fSM) m)
simpleCancel : FMachine StateV → FMachine StateV
simpleCancel vm .Features = vm .Features × FeatureCancel
simpleCancel vm .AddStateF = vm .AddStateF
simpleCancel vm .GUIF (f , yesCancel) (inj₁ s1) =
addBtn2StateMachine (vm .GUIF f (inj₁ s1)) "Cancel" (inj₁ s0)
simpleCancel vm .GUIF (f , _) s = vm .GUIF f s
simpleCancelBase : FMachine StateV
simpleCancelBase = simpleCancel baseF
main1 : NativeIO Unit
main1 = compileFeatureVM baseF _ (inj₁ s0) --
main : NativeIO Unit
main = compileFeatureVM simpleCancelBase (_ , yesCancel) (inj₁ s0) --
|
{
"alphanum_fraction": 0.5861764706,
"avg_line_length": 38.202247191,
"ext": "agda",
"hexsha": "4b0dd628c7d294c4bd9bf78d3929b7b9e5028188",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "stephanadls/state-dependent-gui",
"max_forks_repo_path": "examples/GUIgeneric/GUIFeaturesPart2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "stephanadls/state-dependent-gui",
"max_issues_repo_path": "examples/GUIgeneric/GUIFeaturesPart2.agda",
"max_line_length": 178,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "stephanadls/state-dependent-gui",
"max_stars_repo_path": "examples/GUIgeneric/GUIFeaturesPart2.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-31T17:20:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T15:37:39.000Z",
"num_tokens": 3150,
"size": 10200
}
|
open import Agda.Builtin.Equality
open import Agda.Builtin.Nat
record Eta : Set where
constructor _,_
field fst : Nat
snd : Nat
open Eta
data ⊥ : Set where
hard-fail : (a : Eta) (x : Nat) → (fst a , x) ≡ a → ⊥
hard-fail a x () -- Should be error (refl is valid)
loop : ⊥
loop = hard-fail (0 , 0) 0 refl
|
{
"alphanum_fraction": 0.6149068323,
"avg_line_length": 16.9473684211,
"ext": "agda",
"hexsha": "2cc552abad6370c9ec5cceece5b2eeb231d5a214",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue4484a.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue4484a.agda",
"max_line_length": 53,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue4484a.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 118,
"size": 322
}
|
{-# OPTIONS --without-K --safe #-}
open import Agda.Builtin.Bool
open import Data.Maybe.Base using (just; nothing)
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
open import Data.Integer.Base
open import Data.Integer.Properties using (+-*-commutativeRing)
open import Tactic.RingSolver.Core.AlmostCommutativeRing using (fromCommutativeRing)
open import Tactic.RingSolver.NonReflective (fromCommutativeRing +-*-commutativeRing λ { +0 -> just refl; _ -> nothing}) public
|
{
"alphanum_fraction": 0.7972166998,
"avg_line_length": 41.9166666667,
"ext": "agda",
"hexsha": "1169f70468a9a6f44a1cd32127016c6eab9eac45",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6fbaca08b1d63b5765d184f6284fb0e58c9f5e52",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "z-murray/AnalysisAgda",
"max_forks_repo_path": "NonReflectiveZ.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6fbaca08b1d63b5765d184f6284fb0e58c9f5e52",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "z-murray/AnalysisAgda",
"max_issues_repo_path": "NonReflectiveZ.agda",
"max_line_length": 127,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "6fbaca08b1d63b5765d184f6284fb0e58c9f5e52",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "z-murray/AnalysisAgda",
"max_stars_repo_path": "NonReflectiveZ.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 119,
"size": 503
}
|
{-# OPTIONS --universe-polymorphism #-}
module Categories.Fibration where
open import Level hiding (lift)
open import Data.Product
open import Categories.Category
open import Categories.Functor hiding (_∘_; _≡_)
open import Categories.Morphism.Cartesian
import Categories.Morphisms as Morphisms
record CartesianLifting {o₀ ℓ₀ e₀} {o₁ ℓ₁ e₁} {E : Category o₀ ℓ₀ e₀} {B : Category o₁ ℓ₁ e₁}
(p : Functor E B) {a e} (f : B [ a , Functor.F₀ p e ]) : Set (o₀ ⊔ ℓ₀ ⊔ e₀ ⊔ o₁ ⊔ ℓ₁ ⊔ e₁) where
private module E = Category E
private module B = Category B
open B using (_∘_; _≡_)
open Functor p renaming (F₀ to p₀; F₁ to p₁)
open Morphisms B
field
e′ : E.Obj
φ : E [ e′ , e ]
proof : ∃ \ (h : a ≅ p₀ e′) → f ∘ _≅_.g h ≡ p₁ φ
φ-cartesian : Cartesian p φ
record Fibration {o₀ ℓ₀ e₀} {o₁ ℓ₁ e₁} (E : Category o₀ ℓ₀ e₀) (B : Category o₁ ℓ₁ e₁) : Set (o₀ ⊔ ℓ₀ ⊔ e₀ ⊔ o₁ ⊔ ℓ₁ ⊔ e₁) where
private module E = Category E
private module B = Category B
open B using (_∘_; _≡_)
field
p : Functor E B
open Functor p renaming (F₀ to p₀; F₁ to p₁)
open Morphisms B
field
lift : ∀ {a} e → (f : B [ a , p₀ e ]) → CartesianLifting p f
|
{
"alphanum_fraction": 0.622278057,
"avg_line_length": 27.7674418605,
"ext": "agda",
"hexsha": "200d8f3f53894bac975413cd00b6cd1bc44a706a",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Fibration.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Fibration.agda",
"max_line_length": 128,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Fibration.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 449,
"size": 1194
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Convenient syntax for "equational reasoning" using a preorder
------------------------------------------------------------------------
-- Example uses:
--
-- u∼y : u ∼ y
-- u∼y = begin
-- u ≈⟨ u≈v ⟩
-- v ≡⟨ v≡w ⟩
-- w ∼⟨ w∼y ⟩
-- y ≈⟨ z≈y ⟩
-- z ∎
--
-- u≈w : u ≈ w
-- u≈w = begin-equality
-- u ≈⟨ u≈v ⟩
-- v ≡⟨ v≡w ⟩
-- w ≡˘⟨ x≡w ⟩
-- x ∎
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Relation.Binary.Reasoning.Preorder
{p₁ p₂ p₃} (P : Preorder p₁ p₂ p₃) where
open Preorder P
------------------------------------------------------------------------
-- Publicly re-export the contents of the base module
open import Relation.Binary.Reasoning.Base.Double isPreorder public
------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 1.0
infixr 2 _≈⟨⟩_
_≈⟨⟩_ = _≡⟨⟩_
{-# WARNING_ON_USAGE _≈⟨⟩_
"Warning: _≈⟨⟩_ was deprecated in v1.0.
Please use _≡⟨⟩_ instead."
#-}
|
{
"alphanum_fraction": 0.4099766173,
"avg_line_length": 23.7592592593,
"ext": "agda",
"hexsha": "c9501aedfa2dec1ece7ee1b59f96f27480c95484",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Reasoning/Preorder.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Reasoning/Preorder.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Reasoning/Preorder.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 381,
"size": 1283
}
|
{-# OPTIONS --rewriting -v rewriting:80 #-}
open import Agda.Builtin.Equality
{-# BUILTIN REWRITE _≡_ #-}
postulate
A : Set
f : A → A
h : .A → A → A
rew : ∀ {x} → h x x ≡ x
{-# REWRITE rew #-}
test2 : (x y : A) → h x y ≡ y
test2 x y = refl
postulate
r : .A → A
s : .A → A
rewr : ∀ x → r x ≡ s x
{-# REWRITE rewr #-}
|
{
"alphanum_fraction": 0.5044776119,
"avg_line_length": 15.2272727273,
"ext": "agda",
"hexsha": "6c9d2f5f8f42343893d860d65d06783f74b8188f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/Issue2300.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/Issue2300.agda",
"max_line_length": 43,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/Issue2300.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 138,
"size": 335
}
|
module PrettyPrinter where
open import Agda.Builtin.IO using (IO)
open import Agda.Builtin.Int using (pos)
open import Agda.Builtin.Unit using (⊤)
open import FFI.IO using (getContents; putStrLn; _>>=_; _>>_)
open import FFI.Data.Aeson using (Value; eitherDecode)
open import FFI.Data.Either using (Left; Right)
open import FFI.Data.String using (String; _++_)
open import FFI.Data.Text.Encoding using (encodeUtf8)
open import FFI.System.Exit using (exitWith; ExitFailure)
open import Luau.Syntax using (Block)
open import Luau.Syntax.FromJSON using (blockFromJSON)
open import Luau.Syntax.ToString using (blockToString)
runBlock : ∀ {a} → Block a → IO ⊤
runBlock block = putStrLn (blockToString block)
runJSON : Value → IO ⊤
runJSON value with blockFromJSON(value)
runJSON value | (Left err) = putStrLn ("Luau error: " ++ err) >> exitWith (ExitFailure (pos 1))
runJSON value | (Right block) = runBlock block
runString : String → IO ⊤
runString txt with eitherDecode (encodeUtf8 txt)
runString txt | (Left err) = putStrLn ("JSON error: " ++ err) >> exitWith (ExitFailure (pos 1))
runString txt | (Right value) = runJSON value
main : IO ⊤
main = getContents >>= runString
|
{
"alphanum_fraction": 0.7419354839,
"avg_line_length": 35.696969697,
"ext": "agda",
"hexsha": "fdad32d6a95835df3288059fb7f9a4f3d0921355",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Tr4shh/Roblox-Luau",
"max_forks_repo_path": "prototyping/PrettyPrinter.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Tr4shh/Roblox-Luau",
"max_issues_repo_path": "prototyping/PrettyPrinter.agda",
"max_line_length": 95,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Tr4shh/Roblox-Luau",
"max_stars_repo_path": "prototyping/PrettyPrinter.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 322,
"size": 1178
}
|
{-# OPTIONS --without-K #-}
module hott.core.equality where
open import hott.core.universe
-- | The equality type. In hott we think of the equality type as paths
-- between two points in the space A. To simplify the types we first
-- fix the common parameters.
module common {a : Level}{A : Type a} where
data _≡_ (x : A) : (y : A) → Type a where
refl : x ≡ x
-- Induction principle for ≡ type.
induction≡ : {ℓ : Level}
→ (D : {x y : A} (p : x ≡ y) → Type ℓ)
→ (d : {x : A} → D {x} {x} refl)
→ {x y : A} → (p : x ≡ y) → D p
induction≡ D d refl = d
-- In hott view point, this function takes the inverse of the path
-- from x to y. As a relation you are proving that ≡ is symmetric.
_⁻¹ : ∀{x y}
→ x ≡ y → y ≡ x
refl ⁻¹ = refl
-- The path composition. This means transitivity of the ≡ relation.
_∙_ : ∀ {x y z}
→ x ≡ y → y ≡ z → x ≡ z
refl ∙ refl = refl
infixr 1 _≡_
-- Precedence of multiplication
infixl 70 _∙_
-- Precedence of exponentiation.
infixl 90 _⁻¹
-- Equational reasoning
-- To prove x_0 = x_n by a sequence of proofs
-- x_0 = x_1
-- x_1 = x_2
-- ... you can use the following syntax
--
-- begin x_0 ≅ x_1 by p1
-- ≅ x_2 by p2
-- ....
-- ≅ x_n by pn
-- ∎
--
-- In equational proofs, it is more readable to use by definition
-- than by refl
definition : ∀{x} → x ≡ x
definition = refl
begin_ : (x : A)
→ x ≡ x
begin_ x = refl
_≡_by_ : ∀ {x y : A}
→ x ≡ y
→ (z : A)
→ y ≡ z
→ x ≡ z
p ≡ z by q = p ∙ q
_∎ : ∀{x y : A}
→ (x ≡ y)
→ (x ≡ y)
proof ∎ = proof
infixl 2 begin_
infixl 1 _≡_by_
infixl 0 _∎
-- We now capture path transportation in the following submodule.
module Transport {ℓ : Level} where
-- Path transportation.
transport : ∀ {x y : A}
→ x ≡ y
→ {P : A → Type ℓ}
→ P x → P y
transport refl = λ z → z
-- Another symbol for transport. Use it when you do not want to
-- specify P.
_⋆ : {P : A → Type ℓ}
→ {x y : A}
→ x ≡ y
→ P x → P y
p ⋆ = transport p
open Transport public
open common public
{-# BUILTIN EQUALITY _≡_ #-}
{-# BUILTIN REFL refl #-}
-- The functional congruence, i.e. likes gives likes on application of
-- a function. In the HoTT perspective this says that functions are
-- functors.
ap : ∀ {a b : Level} {A : Type a}{B : Type b} {x y : A}
→ (f : A → B)
→ x ≡ y → (f x) ≡ (f y)
ap f refl = refl
-- The dependent version of ap. This requires transport for its
-- definition.
apd : ∀{a b : Level }{A : Type a}{B : A → Type b}
→ (f : (a : A) → B a)
→ {x y : A}
→ (p : x ≡ y)
→ (p ⋆) (f x) ≡ f y
apd f refl = refl
-- Better syntax fro ap in equational reasoning.
applying_on_ : ∀{ℓ₀ ℓ₁}{A : Type ℓ₀}{B : Type ℓ₁}
→ (f : A → B)
→ {x y : A}
→ (p : x ≡ y)
→ f x ≡ f y
applying_on_ f a = ap f a
-- Better syntax for dependent version of applying on both sides.
transporting_over_ : ∀{ℓ₀ ℓ₁}{A : Type ℓ₀}{B : A → Type ℓ₁}
→ (f : (a : A) → B(a)){x y : A}
→ (p : x ≡ y)
→ (p ⋆) (f x) ≡ f y
transporting f over p = apd f p
infixr 2 applying_on_
infixr 2 transporting_over_
|
{
"alphanum_fraction": 0.5146493045,
"avg_line_length": 23.9645390071,
"ext": "agda",
"hexsha": "7dea982a49fdd794a714b131416a6423396c5b21",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "piyush-kurur/hott",
"max_forks_repo_path": "agda/hott/core/equality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "piyush-kurur/hott",
"max_issues_repo_path": "agda/hott/core/equality.agda",
"max_line_length": 70,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "piyush-kurur/hott",
"max_stars_repo_path": "agda/hott/core/equality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1207,
"size": 3379
}
|
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.Empty where
open import Cubical.Data.Empty.Base public
open import Cubical.Data.Empty.Properties public
|
{
"alphanum_fraction": 0.7735849057,
"avg_line_length": 22.7142857143,
"ext": "agda",
"hexsha": "a72500f2459390af5f74a761c5715dc409403674",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/Data/Empty.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/Data/Empty.agda",
"max_line_length": 48,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/Data/Empty.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z",
"num_tokens": 34,
"size": 159
}
|
open import Agda.Builtin.Equality
open import Agda.Builtin.Nat
data D (A : Set) : Set → Set₁ where
c₁ : {B : Set} → D A B
c₂ : D A A
record P {A B : Set} (p : D A B) : Set₁ where
constructor c
field
d : D A B
Q : {A B₁ B₂ C : Set} {x : D A (B₁ → C)} {y : D A B₂} →
P x → P y → B₁ ≡ B₂ → Nat
Q (c c₁) _ refl = 0
Q _ (c c₁) refl = 1
Q _ _ _ = 2
module _ {A B C : Set} where
checkQ₀ : {x : D A (B → C)} {y : D A B} (px : P x) (py : P y) →
Q {x = x} {y = y} (c c₁) py refl ≡ 0
checkQ₀ _ _ = refl
checkQ₁ : {x : D (A → B) (A → B)} {y : D (A → B) A} (px : P x) (py : P y) →
Q {x = x} {y = y} (c c₂) (c c₁) refl ≡ 1
checkQ₁ _ _ = refl
checkQ₂ : {x : D (A → B) (A → B)} {y : D (A → B) (A → B)} (px : P x) (py : P y) (eq : A ≡ (A → B)) →
Q {x = x} {y = y} (c c₂) (c c₂) eq ≡ 2
checkQ₂ _ _ _ = refl
R : {A B₁ B₂ C : Set} {x : D A (B₁ → C)} {y : D A B₂} →
P x → P y → B₁ ≡ B₂ → Nat
R (c c₂) _ refl = 0
R _ (c c₂) refl = 1
R _ _ _ = 2
module _ {A B C : Set} where
checkR₀ : ∀ {B C} {x : D (B → C) (B → C)} {y : D (B → C) B} (px : P x) (py : P y) →
R {x = x} {y = y} (c c₂) py refl ≡ 0
checkR₀ _ _ = refl
checkR₁ : ∀ {A B} {x : D A (A → B)} {y : D A A} (px : P x) (py : P y) →
R {x = x} {y = y} (c c₁) (c c₂) refl ≡ 1
checkR₁ _ _ = refl
checkR₂ : ∀ {A B C} {x : D A (B → C)} {y : D A B} (px : P x) (py : P y) →
R {x = x} {y = y} (c c₁) (c c₁) refl ≡ 2
checkR₂ _ _ = refl
|
{
"alphanum_fraction": 0.4007782101,
"avg_line_length": 29.0943396226,
"ext": "agda",
"hexsha": "2ca41112885ebc1f101aa02cf411cec7cbee6a6a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue4254.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue4254.agda",
"max_line_length": 102,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue4254.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 768,
"size": 1542
}
|
module List.Order.Simple.Properties {A : Set}
(_≤_ : A → A → Set)
(trans≤ : {x y z : A} → x ≤ y → y ≤ z → x ≤ z) where
open import Data.List
open import List.Order.Simple _≤_
open import List.Sorted _≤_
lemma-≤-*≤ : {x y : A}{xs : List A} → xs *≤ y → y ≤ x → xs *≤ x
lemma-≤-*≤ lenx y≤x = lenx
lemma-≤-*≤ (lecx z≤y zs≤y) y≤x = lecx (trans≤ z≤y y≤x) (lemma-≤-*≤ zs≤y y≤x)
lemma-++-*≤ : {x y : A}{xs ys : List A} → y ≤ x → xs *≤ y → ys *≤ x → (xs ++ (y ∷ ys)) *≤ x
lemma-++-*≤ y≤x lenx ys≤x = lecx y≤x ys≤x
lemma-++-*≤ y≤x (lecx z≤y zs≤y) ys≤x = lecx (trans≤ z≤y y≤x) (lemma-++-*≤ y≤x zs≤y ys≤x)
lemma-≤-≤* : {x y : A}{xs : List A} → x ≤ y → y ≤* xs → x ≤* xs
lemma-≤-≤* x≤y genx = genx
lemma-≤-≤* x≤y (gecx y≤z y≤zs) = gecx (trans≤ x≤y y≤z) (lemma-≤-≤* x≤y y≤zs)
lemma-≤*-++ : {x y : A}{xs ys : List A} → x ≤ y → x ≤* xs → y ≤* ys → x ≤* (xs ++ (y ∷ ys))
lemma-≤*-++ x≤y genx y≤ys = gecx x≤y (lemma-≤-≤* x≤y y≤ys)
lemma-≤*-++ x≤y (gecx x≤z x≤zs) y≤ys = gecx x≤z (lemma-≤*-++ x≤y x≤zs y≤ys)
lemma-sorted++ : {x : A}{xs ys : List A} → xs *≤ x → x ≤* ys → Sorted xs → Sorted ys → Sorted (xs ++ (x ∷ ys))
lemma-sorted++ {x = x} lenx genx _ _ = singls x
lemma-sorted++ lenx (gecx u≤y _) _ sys = conss u≤y sys
lemma-sorted++ (lecx x≤u xs≤*u) u*≤ys (singls x) sys = conss x≤u (lemma-sorted++ xs≤*u u*≤ys nils sys)
lemma-sorted++ (lecx x≤u xs≤*u) u*≤ys (conss x≤z sxs) sys = conss x≤z (lemma-sorted++ xs≤*u u*≤ys sxs sys)
|
{
"alphanum_fraction": 0.4989775051,
"avg_line_length": 47.3225806452,
"ext": "agda",
"hexsha": "f0bd43056802e7785156f1613a6a6a2dab65fcdb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/List/Order/Simple/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/List/Order/Simple/Properties.agda",
"max_line_length": 110,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/List/Order/Simple/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 779,
"size": 1467
}
|
-- Andreas, 2020-03-21, issue #4456
{-# OPTIONS --safe #-}
postulate A : Set
|
{
"alphanum_fraction": 0.6075949367,
"avg_line_length": 13.1666666667,
"ext": "agda",
"hexsha": "50b6d0335bf8f5a4728a84025943c1217162cabc",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/HighlightSafePostulate.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/HighlightSafePostulate.agda",
"max_line_length": 35,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/HighlightSafePostulate.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 27,
"size": 79
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.Category.Instance.Simplex where
open import Level
open import Data.Product
open import Data.Fin
open import Data.Nat using (ℕ)
open import Function renaming (id to idF; _∘_ to _∙_)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
Δ : Category 0ℓ 0ℓ 0ℓ
Δ = record
{ Obj = ℕ
; _⇒_ = λ m n → Σ (Fin m → Fin n) (λ f → _≤_ =[ f ]⇒ _≤_)
; _≈_ = λ { (f , mf) (g , mg) → ∀ x → f x ≡ g x }
; id = idF , idF
; _∘_ = λ { (f , mf) (g , mg) → f ∙ g , mf ∙ mg }
; assoc = λ _ → refl
; sym-assoc = λ _ → refl
; identityˡ = λ _ → refl
; identityʳ = λ _ → refl
; identity² = λ _ → refl
; equiv = record
{ refl = λ _ → refl
; sym = λ eq x → sym (eq x)
; trans = λ eq₁ eq₂ x → trans (eq₁ x) (eq₂ x)
}
; ∘-resp-≈ = λ {_ _ _ f g h i} eq₁ eq₂ x → trans (cong (λ t → proj₁ f t) (eq₂ x)) (eq₁ (proj₁ i x))
}
|
{
"alphanum_fraction": 0.5465587045,
"avg_line_length": 28.2285714286,
"ext": "agda",
"hexsha": "228a7bd4c7426eeb1f8c2bb0d79dd633d99b761e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Instance/Simplex.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Instance/Simplex.agda",
"max_line_length": 102,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Instance/Simplex.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 385,
"size": 988
}
|
postulate
admit : ∀ {i} {X : Set i} → X
X Y Z : Set
data Id (z : Z) : Z → Set where
refl : Id z z
record Square : Set₁ where
field
U : Set
u : U
open Square
record RX : Set where
field x : X
open RX
record R : Set where
-- This definition isn't used; without it,
-- the internal error disappears.
r : Square
r .U = admit
r .u = admit
module M (z₀ z₁ : Z) where
f : Id z₀ z₁ → RX
f refl = {!λ where .x → ?!}
|
{
"alphanum_fraction": 0.5631929047,
"avg_line_length": 15.5517241379,
"ext": "agda",
"hexsha": "ca49f0740d04ebcba20adc498a44d299d34eaf0d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue4256.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue4256.agda",
"max_line_length": 44,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue4256.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 165,
"size": 451
}
|
open import Agda.Builtin.Nat
record Pointed (A : Set) : Set where
field point : A
it : ∀ {A : Set} {{x : A}} → A
it {{x}} = x
instance _ = record { point = 3 - 4 }
_ : Pointed Nat
_ = {!!}
|
{
"alphanum_fraction": 0.5515463918,
"avg_line_length": 14.9230769231,
"ext": "agda",
"hexsha": "b9757d2fbd34fe93fe5f9388a738d188bb37edc3",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue2700.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue2700.agda",
"max_line_length": 37,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue2700.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 72,
"size": 194
}
|
{-# OPTIONS --without-K --safe #-}
-- This is more a pair of constructions that a property...
-- but show that one can build a Cone for the Twisted Arrow functor from a Wedge
-- and vice-versa.
open import Categories.Category
open import Categories.Functor.Bifunctor
module Categories.Diagram.Wedge.Properties {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′}
(F : Bifunctor (Category.op C) C D) where
private
module C = Category C
module D = Category D
open D
open HomReasoning
variable
A : Obj
open import Level
open import Data.Product using (Σ; _,_)
open import Categories.Category.Construction.TwistedArrow
open import Categories.Category.Equivalence using (StrongEquivalence)
open import Categories.Category.Construction.Cones using (Cones)
open import Categories.Category.Construction.Wedges
open import Categories.Diagram.Cone
open import Categories.Diagram.Wedge F
open import Categories.Functor hiding (id)
open import Categories.Functor.Bifunctor.Properties
open import Categories.Functor.Construction.Constant
open import Categories.Functor.Instance.Twisted C D
import Categories.Morphism as M
open import Categories.Morphism.Reasoning D
open import Categories.NaturalTransformation.Dinatural
open import Categories.NaturalTransformation.NaturalIsomorphism using (niHelper)
open Functor F
-- There is a construction that builds a Cone (Twist F) from a Wedge
module _ (w : Wedge) where
open Wedge w
open DinaturalTransformation
open Morphism
open Morphism⇒
private
Wedge-to-Cone′ : {C C′ : C.Obj} (f : C C.⇒ C′) → Wedge.E w ⇒ F₀ (C , C′)
Wedge-to-Cone′ {C} {C′} f = F₁ (C.id , f) ∘ α dinatural C
Wedge-to-Cone : Cone (Twist F)
Wedge-to-Cone = record
{ N = E
; apex = record
{ ψ = λ Tw → Wedge-to-Cone′ (arr Tw)
; commute = λ { {record { dom = dom₁ ; cod = cod₁ ; arr = arr₁ }}
{record { dom = dom ; cod = cod ; arr = arr }}
(record { dom⇐ = dom⇐₁ ; cod⇒ = cod⇒₁; square = square₁}) → begin
F₁ (dom⇐₁ , cod⇒₁) ∘ F₁ (C.id , arr₁) ∘ dinatural.α dom₁ ≈⟨ pullˡ (Equiv.sym homomorphism) ⟩
F₁ (C.id C.∘ dom⇐₁ , cod⇒₁ C.∘ arr₁) ∘ dinatural.α dom₁ ≈⟨ ([ F ]-decompose₁ ⟩∘⟨refl) ⟩
(F₁ (C.id C.∘ dom⇐₁ , C.id) ∘ F₁ (C.id , cod⇒₁ C.∘ arr₁)) ∘ dinatural.α dom₁ ≈⟨ (F-resp-≈ (C.identityˡ , C.Equiv.refl) ⟩∘⟨refl ⟩∘⟨refl) ⟩
(F₁ (dom⇐₁ , C.id) ∘ F₁ (C.id , cod⇒₁ C.∘ arr₁)) ∘ dinatural.α dom₁ ≈⟨ pullʳ (extranatural-commʳ dinatural) ⟩
F₁ (dom⇐₁ , C.id) ∘ (F₁ (cod⇒₁ C.∘ arr₁ , C.id) ∘ dinatural.α cod) ≈⟨ pullˡ (Equiv.sym homomorphism) ⟩
F₁ ((cod⇒₁ C.∘ arr₁) C.∘ dom⇐₁ , C.id C.∘ C.id) ∘ dinatural.α cod ≈⟨ (F-resp-≈ (C.assoc , C.identity²) ⟩∘⟨refl) ⟩
F₁ (cod⇒₁ C.∘ arr₁ C.∘ dom⇐₁ , C.id) ∘ dinatural.α cod ≈⟨ (F-resp-≈ (square₁ , C.Equiv.refl) ⟩∘⟨refl) ⟩
F₁ (arr , C.id) ∘ dinatural.α cod ≈˘⟨ extranatural-commʳ dinatural ⟩
F₁ (C.id , arr) ∘ dinatural.α dom ∎ }
}
}
-- And a construction that builds a Wedge from a Cone (Twist F)
module _ (c : Cone (Twist F)) where
open Cone c
open DinaturalTransformation
private
fam : {A B : C.Obj} (f : A C.⇒ B) → N ⇒ F₀ (A , B)
fam f = ψ record { arr = f }
id² : {A B : C.Obj} (f : A C.⇒ B) → f C.∘ C.id C.∘ C.id C.≈ f
id² f = C.∘-resp-≈ʳ C.identity² HR.○ C.identityʳ
where
module HR = C.HomReasoning
Cone-to-Wedge : Wedge
Cone-to-Wedge = record
{ E = N
; dinatural = dtHelper record
{ α = λ _ → fam C.id
; commute = λ f → begin
F₁ (C.id , f) ∘ fam C.id ∘ id ≈⟨ pullˡ (Cone.commute c (mor⇒ (id² f))) ⟩
ψ (record { arr = f }) ∘ id ≈⟨ pushˡ (Equiv.sym (Cone.commute c (mor⇒ (C.identityˡ C.HomReasoning.○ C.identityˡ)))) ⟩
F₁ (f , C.id) ∘ fam C.id ∘ id ∎
}
}
ConeTwist⇒WedgeF : Functor (Cones (Twist F)) (Wedges F)
ConeTwist⇒WedgeF = record
{ F₀ = Cone-to-Wedge
; F₁ = λ c⇒ → record
{ u = Cone⇒.arr c⇒
; commute = Cone⇒.commute c⇒
}
; identity = Equiv.refl
; homomorphism = Equiv.refl
; F-resp-≈ = λ f≈g → f≈g
}
Wedge⇒ConeTwistF : Functor (Wedges F) (Cones (Twist F))
Wedge⇒ConeTwistF = record
{ F₀ = Wedge-to-Cone
; F₁ = λ {A} {B} f → record
{ arr = u f
; commute = pullʳ (commute f)
}
; identity = Equiv.refl
; homomorphism = Equiv.refl
; F-resp-≈ = λ f≈g → f≈g
}
where
open Wedge-Morphism
ConesTwist≅Wedges : StrongEquivalence (Cones (Twist F)) (Wedges F)
ConesTwist≅Wedges = record
{ F = ConeTwist⇒WedgeF
; G = Wedge⇒ConeTwistF
; weak-inverse = record
{ F∘G≈id = niHelper record
{ η = λ _ → record { u = id ; commute = id-comm ○ (Equiv.sym identity ⟩∘⟨refl) }
; η⁻¹ = λ _ → record { u = id ; commute = assoc ○ identity ⟩∘⟨refl ○ (identityˡ ○ identityʳ) }
; commute = λ _ → id-comm-sym
; iso = λ X → record { isoˡ = identity² ; isoʳ = identity² }
}
; G∘F≈id = niHelper record
{ η = λ Co → record
{ arr = id
; commute = λ {X} →
let m = record { dom⇐ = C.id; cod⇒ = Morphism.arr X; square = (C.∘-resp-≈ʳ C.identity²) C.HomReasoning.○ C.identityʳ}
a = record { arr = C.id } in begin
ψ (apex Co) X ∘ id ≈⟨ identityʳ ⟩
ψ (apex Co) X ≈˘⟨ commute Co m ⟩
F₁ (C.id , arr X) ∘ ψ (apex Co) a ∎ --
}
; η⁻¹ = λ Co → record
{ arr = id
; commute = λ {X} →
let m = record { dom⇐ = C.id; cod⇒ = Morphism.arr X; square = (C.∘-resp-≈ʳ C.identity²) C.HomReasoning.○ C.identityʳ}
a = record { arr = C.id } in begin
(F₁ (C.id , arr X) ∘ ψ (apex Co) a) ∘ id ≈⟨ identityʳ ⟩
F₁ (C.id , arr X) ∘ ψ (apex Co) a ≈⟨ commute Co m ⟩
ψ (apex Co) X ∎
}
; commute = λ f → id-comm-sym
; iso = λ X → record { isoˡ = identity² ; isoʳ = identity² }
}
}
}
where
open Cone
open Apex
open Morphism
|
{
"alphanum_fraction": 0.5684470008,
"avg_line_length": 37.7950310559,
"ext": "agda",
"hexsha": "f9457e46c46e076926bce14820bee264abf73136",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Diagram/Wedge/Properties.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Diagram/Wedge/Properties.agda",
"max_line_length": 146,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Diagram/Wedge/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 2351,
"size": 6085
}
|
{-# OPTIONS --safe --cubical #-}
module Erased-cubical.Cubical where
open import Agda.Builtin.Cubical.Path
data ∥_∥ (A : Set) : Set where
∣_∣ : A → ∥ A ∥
trivial : (x y : ∥ A ∥) → x ≡ y
data D′ : Set where
@0 c′ : D′
|
{
"alphanum_fraction": 0.5584415584,
"avg_line_length": 17.7692307692,
"ext": "agda",
"hexsha": "a54b71013857a956f089320004a368b797ee5d91",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Succeed/Erased-cubical/Cubical.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Succeed/Erased-cubical/Cubical.agda",
"max_line_length": 37,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Succeed/Erased-cubical/Cubical.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 97,
"size": 231
}
|
-- Andreas, 2015-12-01, test case to trigger error ModuleArityMismatch EmptyTel
module _ where
module M where
module M′ = M Set
|
{
"alphanum_fraction": 0.7388059701,
"avg_line_length": 19.1428571429,
"ext": "agda",
"hexsha": "5e36b9caea6185a9a6f3b0a5afcbf3b9ebefc2a0",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/ModuleArityMismatchEmptyTel.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/ModuleArityMismatchEmptyTel.agda",
"max_line_length": 79,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/ModuleArityMismatchEmptyTel.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 40,
"size": 134
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of vector's Any
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Vec.Relation.Unary.Any.Properties where
open import Function
open import Function.Inverse using (_↔_; inverse)
renaming (_∘_ to _∘↔_; id to id↔)
open import Data.Vec
using ( Vec; []; _∷_; _++_; [_]; _>>=_
; toList; fromList; map; concat; tabulate; lookup )
open import Data.Vec.Relation.Unary.Any as Any using (Any; here; there)
open import Data.Nat using (suc; zero)
open import Data.Fin using (Fin) renaming (suc to fsuc; zero to fzero)
open import Data.Empty using (⊥)
open import Data.Sum as Sum using (_⊎_; inj₁; inj₂; [_,_]′)
open import Data.Sum.Function.Propositional using (_⊎-cong_)
open import Data.Product as Prod using (∃; ∃₂; _×_; _,_; proj₁; proj₂)
open import Relation.Nullary using (¬_)
open import Relation.Unary hiding (_∈_)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P using (_≡_; _≗_; refl)
------------------------------------------------------------------------
-- Equality properties
module _ {a p ℓ} {A : Set a} {P : A → Set p} {_≈_ : Rel A ℓ} where
open import Data.Vec.Relation.Binary.Pointwise.Inductive using (Pointwise; []; _∷_)
lift-resp : ∀ {n} → P Respects _≈_ → (Any P {n}) Respects (Pointwise _≈_)
lift-resp resp [] ()
lift-resp resp (x∼y ∷ xs∼ys) (here px) = here (resp x∼y px)
lift-resp resp (x∼y ∷ xs∼ys) (there pxs) = there (lift-resp resp xs∼ys pxs)
module _ {a p} {A : Set a} {P : Pred A p} where
here-injective : ∀ {n x xs} {p q : P x} →
here {P = P} {n = n} {xs = xs} p ≡ here q → p ≡ q
here-injective refl = refl
there-injective : ∀ {n x xs} {p q : Any P xs} →
there {n = n} {x = x} p ≡ there q → p ≡ q
there-injective refl = refl
------------------------------------------------------------------------
-- Misc
¬Any[] : ¬ Any P []
¬Any[] ()
lookup-index : ∀ {m} {xs : Vec A m} (p : Any P xs) →
P (lookup xs (Any.index p))
lookup-index (here px) = px
lookup-index (there p) = lookup-index p
------------------------------------------------------------------------
-- Convert from/to List.Any
open import Data.List.Relation.Unary.Any as List using (here; there)
open import Data.List using ([]; _∷_)
fromList⁺ : ∀ {xs} → List.Any P xs → Any P (fromList xs)
fromList⁺ (here px) = here px
fromList⁺ (there v) = there (fromList⁺ v)
fromList⁻ : ∀ {xs} → Any P (fromList xs) → List.Any P xs
fromList⁻ {[]} ()
fromList⁻ {x ∷ xs} (here px) = here px
fromList⁻ {x ∷ xs} (there pxs) = there (fromList⁻ pxs)
toList⁺ : ∀ {n} {xs : Vec A n} → Any P xs → List.Any P (toList xs)
toList⁺ (here px) = here px
toList⁺ (there v) = there (toList⁺ v)
toList⁻ : ∀ {n} {xs : Vec A n} → List.Any P (toList xs) → Any P xs
toList⁻ {xs = []} ()
toList⁻ {xs = x ∷ xs} (here px) = here px
toList⁻ {xs = x ∷ xs} (there pxs) = there (toList⁻ pxs)
------------------------------------------------------------------------
-- map
map-id : ∀ {a p} {A : Set a} {P : A → Set p} (f : P ⊆ P) {n xs} →
(∀ {x} (p : P x) → f p ≡ p) →
(p : Any P {n} xs) → Any.map f p ≡ p
map-id f hyp (here p) = P.cong here (hyp p)
map-id f hyp (there p) = P.cong there $ map-id f hyp p
map-∘ : ∀ {a p q r}
{A : Set a} {P : A → Set p} {Q : A → Set q} {R : A → Set r}
(f : Q ⊆ R) (g : P ⊆ Q)
{n xs} (p : Any P {n} xs) →
Any.map (f ∘ g) p ≡ Any.map f (Any.map g p)
map-∘ f g (here p) = refl
map-∘ f g (there p) = P.cong there $ map-∘ f g p
------------------------------------------------------------------------
-- Swapping
module _ {a b ℓ} {A : Set a} {B : Set b} {P : A → B → Set ℓ} where
swap : ∀ {n m} {xs : Vec A n} {ys : Vec B m} →
Any (λ x → Any (P x) ys) xs →
Any (λ y → Any (flip P y) xs) ys
swap (here pys) = Any.map here pys
swap (there pxys) = Any.map there (swap pxys)
swap-there : ∀ {n m x xs ys} → (any : Any (λ x → Any (P x) {n} ys) {m} xs) →
swap (Any.map (there {x = x}) any) ≡ there (swap any)
swap-there (here pys) = refl
swap-there (there pxys) = P.cong (Any.map there) (swap-there pxys)
module _ {a b ℓ} {A : Set a} {B : Set b} {P : A → B → Set ℓ} where
swap-invol : ∀ {n m} {xs : Vec A n} {ys : Vec B m} →
(any : Any (λ x → Any (P x) ys) xs) →
swap (swap any) ≡ any
swap-invol (here (here _)) = refl
swap-invol (here (there pys)) = P.cong (Any.map there) (swap-invol (here pys))
swap-invol (there pxys) = P.trans (swap-there (swap pxys))
$ P.cong there (swap-invol pxys)
module _ {a b ℓ} {A : Set a} {B : Set b} {P : A → B → Set ℓ} where
swap↔ : ∀ {n m} {xs : Vec A n} {ys : Vec B m} →
Any (λ x → Any (P x) ys) xs ↔ Any (λ y → Any (flip P y) xs) ys
swap↔ = inverse swap swap swap-invol swap-invol
------------------------------------------------------------------------
-- Lemmas relating Any to ⊥
⊥↔Any⊥ : ∀ {a} {A : Set a} {n} {xs : Vec A n} → ⊥ ↔ Any (const ⊥) xs
⊥↔Any⊥ = inverse (λ ()) (λ p → from p) (λ ()) (λ p → from p)
where
from : ∀ {n xs} → Any (const ⊥) {n} xs → ∀ {b} {B : Set b} → B
from (here ())
from (there p) = from p
⊥↔Any[] : ∀ {a p} {A : Set a} {P : A → Set p} → ⊥ ↔ Any P []
⊥↔Any[] = inverse (λ()) (λ()) (λ()) (λ())
------------------------------------------------------------------------
-- Sums commute with Any
module _ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} where
Any-⊎⁺ : ∀ {n} {xs : Vec A n} → Any P xs ⊎ Any Q xs → Any (λ x → P x ⊎ Q x) xs
Any-⊎⁺ = [ Any.map inj₁ , Any.map inj₂ ]′
Any-⊎⁻ : ∀ {n} {xs : Vec A n} → Any (λ x → P x ⊎ Q x) xs → Any P xs ⊎ Any Q xs
Any-⊎⁻ (here (inj₁ p)) = inj₁ (here p)
Any-⊎⁻ (here (inj₂ q)) = inj₂ (here q)
Any-⊎⁻ (there p) = Sum.map there there (Any-⊎⁻ p)
⊎↔ : ∀ {n} {xs : Vec A n} → (Any P xs ⊎ Any Q xs) ↔ Any (λ x → P x ⊎ Q x) xs
⊎↔ = inverse Any-⊎⁺ Any-⊎⁻ from∘to to∘from
where
from∘to : ∀ {n} {xs : Vec A n} (p : Any P xs ⊎ Any Q xs) → Any-⊎⁻ (Any-⊎⁺ p) ≡ p
from∘to (inj₁ (here p)) = refl
from∘to (inj₁ (there p)) rewrite from∘to (inj₁ p) = refl
from∘to (inj₂ (here q)) = refl
from∘to (inj₂ (there q)) rewrite from∘to (inj₂ q) = refl
to∘from : ∀ {n} {xs : Vec A n} (p : Any (λ x → P x ⊎ Q x) xs) →
Any-⊎⁺ (Any-⊎⁻ p) ≡ p
to∘from (here (inj₁ p)) = refl
to∘from (here (inj₂ q)) = refl
to∘from (there p) with Any-⊎⁻ p | to∘from p
to∘from (there .(Any.map inj₁ p)) | inj₁ p | refl = refl
to∘from (there .(Any.map inj₂ q)) | inj₂ q | refl = refl
------------------------------------------------------------------------
-- Products "commute" with Any.
module _ {a b p q} {A : Set a} {B : Set b} {P : Pred A p} {Q : Pred B q} where
open import Data.Vec.Membership.Propositional using (_∈_; find; lose)
Any-×⁺ : ∀ {n m} {xs : Vec A n} {ys : Vec B m} → Any P xs × Any Q ys →
Any (λ x → Any (λ y → P x × Q y) ys) xs
Any-×⁺ (p , q) = Any.map (λ p → Any.map (p ,_) q) p
Any-×⁻ : ∀ {n m} {xs : Vec A n} {ys : Vec B m} →
Any (λ x → Any (λ y → P x × Q y) ys) xs →
Any P xs × Any Q ys
Any-×⁻ pq with find pq
... | x , x∈xs , pxys with find pxys
... | y , y∈ys , px , py = lose x∈xs px , lose y∈ys py
------------------------------------------------------------------------
-- Invertible introduction (⁺) and elimination (⁻) rules for various
-- vector functions
------------------------------------------------------------------------
-- Singleton ([_])
module _ {a p} {A : Set a} {P : Pred A p} where
singleton⁺ : ∀ {x} → P x → Any P [ x ]
singleton⁺ Px = here Px
singleton⁻ : ∀ {x} → Any P [ x ] → P x
singleton⁻ (here Px) = Px
singleton⁻ (there ())
singleton⁺∘singleton⁻ : ∀ {x} (p : Any P [ x ]) →
singleton⁺ (singleton⁻ p) ≡ p
singleton⁺∘singleton⁻ (here px) = refl
singleton⁺∘singleton⁻ (there ())
singleton⁻∘singleton⁺ : ∀ {x} (p : P x) →
singleton⁻ (singleton⁺ p) ≡ p
singleton⁻∘singleton⁺ p = refl
singleton↔ : ∀ {x} → P x ↔ Any P [ x ]
singleton↔ = inverse singleton⁺ singleton⁻ singleton⁻∘singleton⁺ singleton⁺∘singleton⁻
------------------------------------------------------------------------
-- map
module _ {a b} {A : Set a} {B : Set b} {f : A → B} where
map⁺ : ∀ {p} {P : B → Set p} {n} {xs : Vec A n} →
Any (P ∘ f) xs → Any P (map f xs)
map⁺ (here p) = here p
map⁺ (there p) = there $ map⁺ p
map⁻ : ∀ {p} {P : B → Set p} {n} {xs : Vec A n} →
Any P (map f xs) → Any (P ∘ f) xs
map⁻ {xs = []} ()
map⁻ {xs = x ∷ xs} (here p) = here p
map⁻ {xs = x ∷ xs} (there p) = there $ map⁻ p
map⁺∘map⁻ : ∀ {p} {P : B → Set p} {n} {xs : Vec A n} →
(p : Any P (map f xs)) → map⁺ (map⁻ p) ≡ p
map⁺∘map⁻ {xs = []} ()
map⁺∘map⁻ {xs = x ∷ xs} (here p) = refl
map⁺∘map⁻ {xs = x ∷ xs} (there p) = P.cong there (map⁺∘map⁻ p)
map⁻∘map⁺ : ∀ {p} (P : B → Set p) {n} {xs : Vec A n} →
(p : Any (P ∘ f) xs) → map⁻ {P = P} (map⁺ p) ≡ p
map⁻∘map⁺ P (here p) = refl
map⁻∘map⁺ P (there p) = P.cong there (map⁻∘map⁺ P p)
map↔ : ∀ {p} {P : B → Set p} {n} {xs : Vec A n} →
Any (P ∘ f) xs ↔ Any P (map f xs)
map↔ = inverse map⁺ map⁻ (map⁻∘map⁺ _) map⁺∘map⁻
------------------------------------------------------------------------
-- _++_
module _ {a p} {A : Set a} {P : A → Set p} where
++⁺ˡ : ∀ {n m} {xs : Vec A n} {ys : Vec A m} → Any P xs → Any P (xs ++ ys)
++⁺ˡ (here p) = here p
++⁺ˡ (there p) = there (++⁺ˡ p)
++⁺ʳ : ∀ {n m} (xs : Vec A n) {ys : Vec A m} → Any P ys → Any P (xs ++ ys)
++⁺ʳ [] p = p
++⁺ʳ (x ∷ xs) p = there (++⁺ʳ xs p)
++⁻ : ∀ {n m} (xs : Vec A n) {ys : Vec A m} → Any P (xs ++ ys) → Any P xs ⊎ Any P ys
++⁻ [] p = inj₂ p
++⁻ (x ∷ xs) (here p) = inj₁ (here p)
++⁻ (x ∷ xs) (there p) = Sum.map there id (++⁻ xs p)
++⁺∘++⁻ : ∀ {n m} (xs : Vec A n) {ys : Vec A m} (p : Any P (xs ++ ys)) →
[ ++⁺ˡ , ++⁺ʳ xs ]′ (++⁻ xs p) ≡ p
++⁺∘++⁻ [] p = refl
++⁺∘++⁻ (x ∷ xs) (here p) = refl
++⁺∘++⁻ (x ∷ xs) (there p) with ++⁻ xs p | ++⁺∘++⁻ xs p
++⁺∘++⁻ (x ∷ xs) (there p) | inj₁ p′ | ih = P.cong there ih
++⁺∘++⁻ (x ∷ xs) (there p) | inj₂ p′ | ih = P.cong there ih
++⁻∘++⁺ : ∀ {n m} (xs : Vec A n) {ys : Vec A m} (p : Any P xs ⊎ Any P ys) →
++⁻ xs ([ ++⁺ˡ , ++⁺ʳ xs ]′ p) ≡ p
++⁻∘++⁺ [] (inj₁ ())
++⁻∘++⁺ [] (inj₂ p) = refl
++⁻∘++⁺ (x ∷ xs) (inj₁ (here p)) = refl
++⁻∘++⁺ (x ∷ xs) {ys} (inj₁ (there p)) rewrite ++⁻∘++⁺ xs {ys} (inj₁ p) = refl
++⁻∘++⁺ (x ∷ xs) (inj₂ p) rewrite ++⁻∘++⁺ xs (inj₂ p) = refl
++↔ : ∀ {n m} {xs : Vec A n} {ys : Vec A m} →
(Any P xs ⊎ Any P ys) ↔ Any P (xs ++ ys)
++↔ {xs = xs} = inverse [ ++⁺ˡ , ++⁺ʳ xs ]′ (++⁻ xs) (++⁻∘++⁺ xs) (++⁺∘++⁻ xs)
++-comm : ∀ {n m} (xs : Vec A n) (ys : Vec A m) →
Any P (xs ++ ys) → Any P (ys ++ xs)
++-comm xs ys = [ ++⁺ʳ ys , ++⁺ˡ ]′ ∘ ++⁻ xs
++-comm∘++-comm : ∀ {n m} (xs : Vec A n) {ys : Vec A m} (p : Any P (xs ++ ys)) →
++-comm ys xs (++-comm xs ys p) ≡ p
++-comm∘++-comm [] {ys} p
rewrite ++⁻∘++⁺ ys {ys = []} (inj₁ p) = refl
++-comm∘++-comm (x ∷ xs) {ys} (here p)
rewrite ++⁻∘++⁺ ys {ys = x ∷ xs} (inj₂ (here p)) = refl
++-comm∘++-comm (x ∷ xs) (there p) with ++⁻ xs p | ++-comm∘++-comm xs p
++-comm∘++-comm (x ∷ xs) {ys} (there .([ ++⁺ʳ xs , ++⁺ˡ ]′ (++⁻ ys (++⁺ʳ ys p))))
| inj₁ p | refl
rewrite ++⁻∘++⁺ ys (inj₂ p)
| ++⁻∘++⁺ ys (inj₂ $ there {x = x} p) = refl
++-comm∘++-comm (x ∷ xs) {ys} (there .([ ++⁺ʳ xs , ++⁺ˡ ]′ (++⁻ ys (++⁺ˡ p))))
| inj₂ p | refl
rewrite ++⁻∘++⁺ ys {ys = xs} (inj₁ p)
| ++⁻∘++⁺ ys {ys = x ∷ xs} (inj₁ p) = refl
++↔++ : ∀ {n m} (xs : Vec A n) (ys : Vec A m) → Any P (xs ++ ys) ↔ Any P (ys ++ xs)
++↔++ xs ys = inverse (++-comm xs ys) (++-comm ys xs)
(++-comm∘++-comm xs) (++-comm∘++-comm ys)
++-insert : ∀ {n m x} (xs : Vec A n) {ys : Vec A m} → P x → Any P (xs ++ [ x ] ++ ys)
++-insert xs Px = ++⁺ʳ xs (++⁺ˡ (singleton⁺ Px))
------------------------------------------------------------------------
-- concat
module _ {a p} {A : Set a} {P : A → Set p} where
concat⁺ : ∀ {n m} {xss : Vec (Vec A n) m} → Any (Any P) xss → Any P (concat xss)
concat⁺ (here p) = ++⁺ˡ p
concat⁺ (there {x = xs} p) = ++⁺ʳ xs (concat⁺ p)
concat⁻ : ∀ {n m} (xss : Vec (Vec A n) m) → Any P (concat xss) → Any (Any P) xss
concat⁻ [] ()
concat⁻ (xs ∷ xss) p = [ here , there ∘ concat⁻ xss ]′ (++⁻ xs p)
concat⁻∘++⁺ˡ : ∀ {n m xs} (xss : Vec (Vec A n) m) (p : Any P xs) →
concat⁻ (xs ∷ xss) (++⁺ˡ p) ≡ here p
concat⁻∘++⁺ˡ xss p rewrite ++⁻∘++⁺ _ {concat xss} (inj₁ p) = refl
concat⁻∘++⁺ʳ : ∀ {n m} xs (xss : Vec (Vec A n) m) (p : Any P (concat xss)) →
concat⁻ (xs ∷ xss) (++⁺ʳ xs p) ≡ there (concat⁻ xss p)
concat⁻∘++⁺ʳ xs xss p rewrite ++⁻∘++⁺ xs (inj₂ p) = refl
concat⁺∘concat⁻ : ∀ {n m} (xss : Vec (Vec A n) m) (p : Any P (concat xss)) →
concat⁺ (concat⁻ xss p) ≡ p
concat⁺∘concat⁻ [] ()
concat⁺∘concat⁻ (xs ∷ xss) p with ++⁻ xs p | P.inspect (++⁻ xs) p
... | inj₁ pxs | P.[ p=inj₁ ]
= P.trans (P.cong [ ++⁺ˡ , ++⁺ʳ xs ]′ (P.sym p=inj₁))
$ ++⁺∘++⁻ xs p
... | inj₂ pxss | P.[ p=inj₂ ] rewrite concat⁺∘concat⁻ xss pxss
= P.trans (P.cong [ ++⁺ˡ , ++⁺ʳ xs ]′ (P.sym p=inj₂))
$ ++⁺∘++⁻ xs p
concat⁻∘concat⁺ : ∀ {n m} {xss : Vec (Vec A n) m} (p : Any (Any P) xss) →
concat⁻ xss (concat⁺ p) ≡ p
concat⁻∘concat⁺ {xss = xs ∷ xss} (here p)
rewrite ++⁻∘++⁺ xs {concat xss} (inj₁ p) = refl
concat⁻∘concat⁺ {xss = xs ∷ xss} (there p)
rewrite ++⁻∘++⁺ xs {concat xss} (inj₂ (concat⁺ p))
| concat⁻∘concat⁺ p = refl
concat↔ : ∀ {n m} {xss : Vec (Vec A n) m} → Any (Any P) xss ↔ Any P (concat xss)
concat↔ {xss = xss} = inverse concat⁺ (concat⁻ xss) concat⁻∘concat⁺ (concat⁺∘concat⁻ xss)
------------------------------------------------------------------------
-- tabulate
module _ {a p} {A : Set a} {P : A → Set p} where
tabulate⁺ : ∀ {n} {f : Fin n → A} i → P (f i) → Any P (tabulate f)
tabulate⁺ fzero p = here p
tabulate⁺ (fsuc i) p = there (tabulate⁺ i p)
tabulate⁻ : ∀ {n} {f : Fin n → A} →
Any P (tabulate f) → ∃ λ i → P (f i)
tabulate⁻ {zero} ()
tabulate⁻ {suc n} (here p) = fzero , p
tabulate⁻ {suc n} (there p) = Prod.map fsuc id (tabulate⁻ p)
------------------------------------------------------------------------
-- mapWith∈
module _ {a b p} {A : Set a} {B : Set b} {P : B → Set p} where
open import Data.Vec.Membership.Propositional using (_∈_; mapWith∈)
mapWith∈⁺ : ∀ {n} {xs : Vec A n} (f : ∀ {x} → x ∈ xs → B) →
(∃₂ λ x (x∈xs : x ∈ xs) → P (f x∈xs)) →
Any P (mapWith∈ xs f)
mapWith∈⁺ f (_ , here refl , p) = here p
mapWith∈⁺ f (_ , there x∈xs , p) =
there $ mapWith∈⁺ (f ∘ there) (_ , x∈xs , p)
mapWith∈⁻ : ∀ {n} (xs : Vec A n) (f : ∀ {x} → x ∈ xs → B) →
Any P (mapWith∈ xs f) →
∃₂ λ x (x∈xs : x ∈ xs) → P (f x∈xs)
mapWith∈⁻ [] f ()
mapWith∈⁻ (y ∷ xs) f (here p) = (y , here refl , p)
mapWith∈⁻ (y ∷ xs) f (there p) =
Prod.map id (Prod.map there id) $ mapWith∈⁻ xs (f ∘ there) p
mapWith∈↔ : ∀ {n} {xs : Vec A n} {f : ∀ {x} → x ∈ xs → B} →
(∃₂ λ x (x∈xs : x ∈ xs) → P (f x∈xs)) ↔ Any P (mapWith∈ xs f)
mapWith∈↔ = inverse (mapWith∈⁺ _) (mapWith∈⁻ _ _) (from∘to _) (to∘from _ _)
where
from∘to : ∀ {n} {xs : Vec A n} (f : ∀ {x} → x ∈ xs → B)
(p : ∃₂ λ x (x∈xs : x ∈ xs) → P (f x∈xs)) →
mapWith∈⁻ xs f (mapWith∈⁺ f p) ≡ p
from∘to f (_ , here refl , p) = refl
from∘to f (_ , there x∈xs , p)
rewrite from∘to (f ∘ there) (_ , x∈xs , p) = refl
to∘from : ∀ {n} (xs : Vec A n) (f : ∀ {x} → x ∈ xs → B)
(p : Any P (mapWith∈ xs f)) →
mapWith∈⁺ f (mapWith∈⁻ xs f p) ≡ p
to∘from [] f ()
to∘from (y ∷ xs) f (here p) = refl
to∘from (y ∷ xs) f (there p) =
P.cong there $ to∘from xs (f ∘ there) p
------------------------------------------------------------------------
-- _∷_
module _ {a p} {A : Set a} where
∷↔ : ∀ {n} (P : Pred A p) {x} {xs : Vec A n} → (P x ⊎ Any P xs) ↔ Any P (x ∷ xs)
∷↔ P {x} {xs} = ++↔ ∘↔ (singleton↔ ⊎-cong id↔)
------------------------------------------------------------------------
-- _>>=_
module _ {ℓ p} {A B : Set ℓ} {P : B → Set p} {m} {f : A → Vec B m} where
>>=↔ : ∀ {n} {xs : Vec A n} → Any (Any P ∘ f) xs ↔ Any P (xs >>= f)
>>=↔ = concat↔ ∘↔ map↔
|
{
"alphanum_fraction": 0.4341934724,
"avg_line_length": 39.1105990783,
"ext": "agda",
"hexsha": "b5608435d95ba3928e46794623e37b9e601e357f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Unary/Any/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Unary/Any/Properties.agda",
"max_line_length": 91,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Unary/Any/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 7035,
"size": 16974
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
open import Cubical.Core.Everything
open import Cubical.Foundations.HLevels
module Cubical.Algebra.Magma.Construct.Right {ℓ} (Aˢ : hSet ℓ) where
open import Cubical.Foundations.Prelude
open import Cubical.Algebra.Magma
private
A = ⟨ Aˢ ⟩
isSetA = Aˢ .snd
_▸_ : Op₂ A
x ▸ y = y
------------------------------------------------------------------------
-- Properties
▸-identityˡ : ∀ x → LeftIdentity x _▸_
▸-identityˡ _ _ = refl
▸-zeroʳ : ∀ x → RightZero x _▸_
▸-zeroʳ _ _ = refl
------------------------------------------------------------------------
-- Magma definition
Right-isMagma : IsMagma A _▸_
Right-isMagma = record { is-set = isSetA }
RightMagma : Magma ℓ
RightMagma = record { isMagma = Right-isMagma }
|
{
"alphanum_fraction": 0.5628205128,
"avg_line_length": 21.0810810811,
"ext": "agda",
"hexsha": "f0758d96474a9fb717659caca9265084795aa261",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Algebra/Magma/Construct/Right.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Algebra/Magma/Construct/Right.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Algebra/Magma/Construct/Right.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 236,
"size": 780
}
|
module Foundation.Equivalence where
open import Foundation.Primitive
record IsEquivalence {a} {A : Set a} {ℓ} (_≈_ : A → A → Set ℓ) : ℞ a ⊔ ℓ where
field
reflexivity : ∀ x → x ≈ x
symmetry : ∀ x y → x ≈ y → y ≈ x
transitivity : ∀ x y z → x ≈ y → y ≈ z → x ≈ z
open IsEquivalence ⦃ … ⦄ public
record Equivalence {a} (A : Set a) ℓ : ℞ a ⊔ ⟰ ℓ where
infix 4 _≈_
field
_≈_ : A → A → Set ℓ
instance ⦃ isEquivalence ⦄ : IsEquivalence _≈_
open Equivalence ⦃ … ⦄ public
open import Foundation.Bottom
infix 4 _≉_
_≉_ : ∀ {a} {A : Set a} {ℓ} ⦃ _ : Equivalence A ℓ ⦄ {b} ⦃ _ : Bottom b ℓ ⦄ → A → A → Set (b ⊔ ℓ)
_≉_ {ℓ = ℓ} x y = ¬ (x ≈ y)
|
{
"alphanum_fraction": 0.5572289157,
"avg_line_length": 24.5925925926,
"ext": "agda",
"hexsha": "482ab72bd90bd605ed53bf5fb6222704ac8ca636",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/Foundation/Equivalence.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/Foundation/Equivalence.agda",
"max_line_length": 97,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/Foundation/Equivalence.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 299,
"size": 664
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Categories.Morphism where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Sigma
open import Cubical.Categories.Category
private
variable
ℓ ℓ' : Level
module _ {C : Precategory ℓ ℓ'} where
open Precategory C
private
variable
x y z w : ob
isMonic : (Hom[ x , y ]) → Type (ℓ-max ℓ ℓ')
isMonic {x} {y} f = ∀ {z : ob} {a a' : Hom[ z , x ]}
→ (f ∘ a ≡ f ∘ a') → (a ≡ a')
isEpic : (Hom[ x , y ]) → Type (ℓ-max ℓ ℓ')
isEpic {x} {y} g = ∀ {z : ob} {b b' : Hom[ y , z ]}
→ (b ∘ g ≡ b' ∘ g) → (b ≡ b')
-- A morphism is split monic if it has a *retraction*
isSplitMon : (Hom[ x , y ]) → Type ℓ'
isSplitMon {x} {y} f = ∃[ r ∈ Hom[ y , x ] ] r ∘ f ≡ id x
-- A morphism is split epic if it has a *section*
isSplitEpi : (Hom[ x , y ]) → Type ℓ'
isSplitEpi {x} {y} g = ∃[ s ∈ Hom[ y , x ] ] g ∘ s ≡ id y
record areInv (f : Hom[ x , y ]) (g : Hom[ y , x ]) : Type ℓ' where
field
sec : g ⋆ f ≡ id y
ret : f ⋆ g ≡ id x
open areInv
symAreInv : ∀ {f : Hom[ x , y ]} {g : Hom[ y , x ]}
→ areInv f g
→ areInv g f
symAreInv record { sec = sec ; ret = ret } = record { sec = ret ; ret = sec }
-- equational reasoning with inverses
invMoveR : ∀ {f : Hom[ x , y ]} {g : Hom[ y , x ]} {h : Hom[ z , x ]} {k : Hom[ z , y ]}
→ areInv f g
→ h ⋆ f ≡ k
→ h ≡ k ⋆ g
invMoveR {f = f} {g} {h} {k} ai p
= h
≡⟨ sym (⋆IdR _) ⟩
(h ⋆ id _)
≡⟨ cong (h ⋆_) (sym (ai .ret)) ⟩
(h ⋆ (f ⋆ g))
≡⟨ sym (⋆Assoc _ _ _) ⟩
((h ⋆ f) ⋆ g)
≡⟨ cong (_⋆ g) p ⟩
k ⋆ g
∎
invMoveL : ∀ {f : Hom[ x , y ]} {g : Hom[ y , x ]} {h : Hom[ y , z ]} {k : Hom[ x , z ]}
→ areInv f g
→ f ⋆ h ≡ k
→ h ≡ g ⋆ k
invMoveL {f = f} {g} {h} {k} ai p
= h
≡⟨ sym (⋆IdL _) ⟩
id _ ⋆ h
≡⟨ cong (_⋆ h) (sym (ai .sec)) ⟩
(g ⋆ f) ⋆ h
≡⟨ ⋆Assoc _ _ _ ⟩
g ⋆ (f ⋆ h)
≡⟨ cong (g ⋆_) p ⟩
(g ⋆ k)
∎
record isIso (f : Hom[ x , y ]) : Type ℓ' where
field
inv : Hom[ y , x ]
sec : inv ⋆ f ≡ id y
ret : f ⋆ inv ≡ id x
open isIso
isIso→areInv : ∀ {f : Hom[ x , y ]}
→ (isI : isIso f)
→ areInv f (isI .inv)
isIso→areInv record { inv = inv ; sec = sec ; ret = ret } = record { sec = sec ; ret = ret }
open CatIso
-- isIso agrees with CatIso
isIso→CatIso : ∀ {f : C [ x , y ]}
→ isIso f
→ CatIso {C = C} x y
isIso→CatIso {f = f} record { inv = f⁻¹ ; sec = sec ; ret = ret } = catiso f f⁻¹ sec ret
CatIso→isIso : (cIso : CatIso {C = C} x y)
→ isIso (cIso .mor)
CatIso→isIso (catiso mor inv sec ret) = record { inv = inv ; sec = sec ; ret = ret }
CatIso→areInv : (cIso : CatIso {C = C} x y)
→ areInv (cIso .mor) (cIso .inv)
CatIso→areInv cIso = isIso→areInv (CatIso→isIso cIso)
-- reverse of an iso is also an iso
symCatIso : ∀ {x y}
→ CatIso {C = C} x y
→ CatIso {C = C} y x
symCatIso (catiso mor inv sec ret) = catiso inv mor ret sec
|
{
"alphanum_fraction": 0.4605678233,
"avg_line_length": 27.8070175439,
"ext": "agda",
"hexsha": "0b0b3cd4157eb2397de86eb04ab0596df4bcf880",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Categories/Morphism.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Categories/Morphism.agda",
"max_line_length": 94,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Categories/Morphism.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1350,
"size": 3170
}
|
module Structure.Real where
import Lvl
open import Data.Boolean
open import Data.Boolean.Proofs
import Data.Either as Either
open import Functional
open import Logic
open import Logic.Classical
open import Logic.Propositional
open import Logic.Predicate
open import Numeral.Natural using (ℕ)
import Numeral.Natural.Relation.Order as ℕ
open import Relator.Ordering
open import Structure.Setoid
open import Structure.Function.Ordering
open import Structure.Operator.Field
open import Structure.Operator.Monoid
open import Structure.Operator.Group
open import Structure.Operator.Proofs
open import Structure.Operator.Properties
open import Structure.Relator.Ordering
open Structure.Relator.Ordering.Weak.Properties
open import Structure.Relator.Properties
open import Structure.OrderedField
import Structure.OrderedField.AbsoluteValue
open import Syntax.Transitivity
open import Type
private variable ℓ ℓ₁ ℓ₂ ℓₑ : Lvl.Level
-- Theory defining the axioms of ℝ in classical logic.
-- The axioms are the following:
-- • An ordered field.
-- • Monotone convergence.
record RealTheory {R : Type{ℓ₁}} ⦃ equiv-R : Equiv{ℓₑ}(R) ⦄ (_+_ _⋅_ : R → R → R) (_≤_ : R → R → Stmt{ℓ₂}) ⦃ classical : ∀{ℓ}{P : Stmt{ℓ}} → Classical(P) ⦄ : Type{ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓₑ} where
field
⦃ orderedField ⦄ : OrderedField(_+_)(_⋅_)(_≤_)
open OrderedField(orderedField) public
open Structure.OrderedField.AbsoluteValue(_+_)(_⋅_)(_≤_)
field
sup-fn : (f : ℕ → R) → ⦃ Increasing(ℕ._≤_)(_≤_)(f) ⦄ → ⦃ UpperBounded(ℕ._≤_)(_≤_)(f) ⦄ → R
monotone-convergence : ∀{f} → ⦃ inc : Increasing(ℕ._≤_)(_≤_)(f) ⦄ → ⦃ bound : UpperBounded(ℕ._≤_)(_≤_)(f) ⦄ → ∃{Obj = R → ℕ}(N ↦ ∀{ε} → (ε > 𝟎) → ∀{n} → (n ℕ.> N(ε)) → (‖ f(n) − sup-fn (f) ⦃ inc ⦄ ⦃ bound ⦄ ‖ < ε))
-- TODO: Consider adding something that relates addition and multiplication so that it conform to the axioms of arithmetic and their definitions of addition and multiplication. This is so that one should be able to prove (x + x ≡ 𝐒(𝐒(𝟎)) ⋅ x) or (2.5 ⋅ x = x + x + x/2) (when 𝐒, the successor function is defined as (1 +_)) for easier to write statements. In other words: add ((1 + x) ⋅ y = x + (x ⋅ y)) as an axiom. (20201210 Is this TODO outdated?)
|
{
"alphanum_fraction": 0.7032025259,
"avg_line_length": 46.1875,
"ext": "agda",
"hexsha": "ba295b28bf4d05889377d8672d654cff7b0e9993",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Real.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Real.agda",
"max_line_length": 452,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Real.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 743,
"size": 2217
}
|
Id₁ Id₂ Id₃ : {A B : Set} → (A → B) → A → B
Id₁ F = F
Id₂ = Id₁
Id₃ = Id₁
syntax Id₁ (λ X → B) = ƛ X ⟶ B
syntax Id₂ (λ X → B) = X ↦ B
syntax Id₃ (λ X → B) = X ↦ B •
postulate
A : Set
a : A
module One where
example₀ : (A → A) → A
example₀ = ƛ _ ⟶ a
example₁ : A → A
example₁ = ƛ !_! ⟶ (!_!)
example₂ : A → A
example₂ = ƛ !_!_ ⟶ (!_!_)
example₃ : A → A
example₃ = ƛ _!_! ⟶ (_!_!)
example₄ : A → A
example₄ = ƛ _!_!_!_ ⟶ (_!_!_!_)
example₅ : (A → A) → (A → A)
example₅ = ƛ !_! ⟶ λ a → ! a !
example₆ : (A → A → A) → (A → A → A)
example₆ = ƛ !_!_ ⟶ λ a b → ! a ! b
example₇ : (A → A → A) → (A → A → A)
example₇ = ƛ _!_! ⟶ λ a b → a ! b !
example₈ : (A → A → A → A → A) → (A → A → A → A → A)
example₈ = ƛ _!_!_!_ ⟶ λ a b c → a !_! b ! c
example₉ : (A → A) → A
example₉ = ƛ !_! ⟶ (! a !)
example₁₀ : (A → A → A) → A
example₁₀ = ƛ !_!_ ⟶ (! a ! a)
example₁₁ : (A → A → A) → A
example₁₁ = ƛ _!_! ⟶ (a ! a !)
example₁₂ : (A → A → A → A → A) → (A → A)
example₁₂ = ƛ _!_!_!_ ⟶ (a ! a !_! a)
module Two where
example₀ : (A → A) → A
example₀ = _ ↦ a
example₁ : A → A
example₁ = !_! ↦ (!_!)
example₂ : A → A
example₂ = !_!_ ↦ (!_!_)
example₃ : A → A
example₃ = _!_! ↦ (_!_!)
example₄ : A → A
example₄ = _!_!_!_ ↦ (_!_!_!_)
example₅ : (A → A) → (A → A)
example₅ = !_! ↦ λ a → ! a !
example₆ : (A → A → A) → (A → A → A)
example₆ = !_!_ ↦ λ a b → ! a ! b
example₇ : (A → A → A) → (A → A → A)
example₇ = _!_! ↦ λ a b → a ! b !
example₈ : (A → A → A → A → A) → (A → A → A → A → A)
example₈ = _!_!_!_ ↦ λ a b c → a !_! b ! c
example₉ : (A → A) → A
example₉ = !_! ↦ (! a !)
example₁₀ : (A → A → A) → A
example₁₀ = !_!_ ↦ (! a ! a)
example₁₁ : (A → A → A) → A
example₁₁ = _!_! ↦ (a ! a !)
example₁₂ : (A → A → A → A → A) → (A → A)
example₁₂ = _!_!_!_ ↦ (a ! a !_! a)
module Three where
example₀ : (A → A) → A
example₀ = _ ↦ a •
example₁ : A → A
example₁ = !_! ↦ (!_!) •
example₂ : A → A
example₂ = !_!_ ↦ (!_!_) •
example₃ : A → A
example₃ = _!_! ↦ (_!_!) •
example₄ : A → A
example₄ = _!_!_!_ ↦ (_!_!_!_) •
example₅ : (A → A) → (A → A)
example₅ = !_! ↦ (λ a → ! a !) •
example₆ : (A → A → A) → (A → A → A)
example₆ = !_!_ ↦ (λ a b → ! a ! b) •
example₇ : (A → A → A) → (A → A → A)
example₇ = _!_! ↦ (λ a b → a ! b !) •
example₈ : (A → A → A → A → A) → (A → A → A → A → A)
example₈ = _!_!_!_ ↦ (λ a b c → a !_! b ! c) •
example₉ : (A → A) → A
example₉ = !_! ↦ (! a !) •
example₁₀ : (A → A → A) → A
example₁₀ = !_!_ ↦ (! a ! a) •
example₁₁ : (A → A → A) → A
example₁₁ = _!_! ↦ (a ! a !) •
example₁₂ : (A → A → A → A → A) → (A → A)
example₁₂ = _!_!_!_ ↦ (a ! a !_! a) •
|
{
"alphanum_fraction": 0.4221818182,
"avg_line_length": 20.2205882353,
"ext": "agda",
"hexsha": "955aa3edd90be75b422334197fc5bf25ef35f78c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1951.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1951.agda",
"max_line_length": 54,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1951.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 1417,
"size": 2750
}
|
{-# OPTIONS --universe-polymorphism #-}
-- Support stuff mostly stolen or adapted from the Agda standard library
module Support where
data Level : Set where
zero : Level
suc : (i : Level) → Level
{-# BUILTIN LEVEL Level #-}
{-# BUILTIN LEVELZERO zero #-}
{-# BUILTIN LEVELSUC suc #-}
-- Maximum.
infixl 6 _⊔_
infixr 2 _×_
_⊔_ : Level → Level → Level
zero ⊔ j = j
suc i ⊔ zero = suc i
suc i ⊔ suc j = suc (i ⊔ j)
{-# BUILTIN LEVELMAX _⊔_ #-}
infix 4 _≣_
data _≣_ {ℓ} {A : Set ℓ} (x : A) : A → Set ℓ where
≣-refl : x ≣ x
{-# BUILTIN EQUALITY _≣_ #-}
{-# BUILTIN REFL ≣-refl #-}
≣-trans : ∀ {a} {A : Set a} → ∀ {x y z : A} → y ≣ z → x ≣ y → x ≣ z
≣-trans ≣-refl ≣-refl = ≣-refl
≣-sym : ∀ {a} {A : Set a} → ∀ {x y : A} → x ≣ y → y ≣ x
≣-sym ≣-refl = ≣-refl
≣-subst : ∀ {a p} {A : Set a} → (P : A → Set p) → ∀ {x y} → x ≣ y → P x → P y
≣-subst P ≣-refl x = x
≣-subst₂ : ∀ {a b p} {A : Set a} {B : Set b} (P : A → B → Set p)
{x₁ x₂ y₁ y₂} → x₁ ≣ x₂ → y₁ ≣ y₂ → P x₁ y₁ → P x₂ y₂
≣-subst₂ P ≣-refl ≣-refl p = p
≣-cong : ∀ {a b} {A : Set a} {B : Set b}
(f : A → B) {x y} → x ≣ y → f x ≣ f y
≣-cong f ≣-refl = ≣-refl
≣-cong₂ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c}
(f : A → B → C) {x y u v} → x ≣ y → u ≣ v → f x u ≣ f y v
≣-cong₂ f ≣-refl ≣-refl = ≣-refl
infixr 4 _,_
record Σ {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
open Σ public
∃ : ∀ {a b} {A : Set a} → (A → Set b) → Set (a ⊔ b)
∃ = Σ _
∃₂ : ∀ {a b c} {A : Set a} {B : A → Set b}
(C : (x : A) → B x → Set c) → Set (a ⊔ b ⊔ c)
∃₂ C = ∃ λ a → ∃ λ b → C a b
record Σ′ {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where
constructor _,_
field
proj₁′ : A
.proj₂′ : B proj₁′
open Σ′ public
∃′ : ∀ {a b} {A : Set a} → (A → Set b) → Set (a ⊔ b)
∃′ = Σ′ _
∃₂′ : ∀ {a b c} {A : Set a} {B : A → Set b}
(C : (x : A) → B x → Set c) → Set (a ⊔ b ⊔ c)
∃₂′ C = ∃ λ a → ∃′ λ b → C a b
record _×_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
constructor _,_
field
fst : A
snd : B
open _×_ public
⟨_,_⟩ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} → (A → B) → (C → D) → A × C → B × D
⟨ f , g ⟩ (x , y) = f x , g y
⟨_&_⟩ : ∀ {a b d} {A : Set a} {B : Set b} {D : Set d} → (A → B) → (A → D) → A → B × D
⟨ f & g ⟩ x = f x , g x
_∙_ : ∀ {a b c}
{A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} →
(∀ {x} (y : B x) → C y) → (g : (x : A) → B x) →
((x : A) → C (g x))
f ∙ g = λ x → f (g x)
∙-assoc : ∀ {a b c d} {A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} {D : {x : A} {y : B x} → C y → Set d} → (f : ∀ {x} {y : B x} (z : C y) → D z) → (g : ∀ {x} (y : B x) → C y) → (h : (x : A) → B x) → {x : A} → (f ∙ (g ∙ h)) x ≣ ((f ∙ g) ∙ h) x
∙-assoc f g h {x} = ≣-refl
_∙′_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} →
(B → C) → (A → B) → (A → C)
f ∙′ g = _∙_ f g
_∙₂_ : ∀ {a b c d}
{A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c}
{D : {x : A} {y : B x} → C y → Set d} →
(∀ {x} {y : B x} (z : C y) → D z) → (g : (x : A) (y : B x) → C y) →
((x : A) (y : B x) → D (g x y))
f ∙₂ g = λ x y → f (g x y)
_∙₃_ : ∀ {a b c d e}
{A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c}
{D : {x : A} {y : B x} → C y → Set d}
{E : {x : A} {y : B x} {z : C y} → D z → Set e} →
(∀ {x} {y : B x} {z : C y} (w : D z) → E w) →
(g : (x : A) (y : B x) (z : C y) → D z) →
((x : A) (y : B x) (z : C y) → E (g x y z))
f ∙₃ g = λ x y z → f (g x y z)
flip : ∀ {a b c} {A : Set a} {B : Set b} {C : A → B → Set c} →
((x : A) (y : B) → C x y) → ((y : B) (x : A) → C x y)
flip f = λ x y → f y x
_$↑_ : ∀ {a b c}
{A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} →
(∀ {x} (y : B x) → C y) → (g : (x : A) → B x) →
((x : A) → C (g x))
_$↑_ = _∙_
_$⇈_ : ∀ {ℓ a b}
{T : Set ℓ} {A : T → Set a} {B : (i : T) → (x : A i) → Set b} →
(f : (i : T) → ∀ (x : A i) → B i x) → (x : (i : T) → A i) →
((i : T) → B i (x i))
f $⇈ x = λ i → f i (x i)
{- John Major equality would be nice for stating this result ... -}
$⇈-obs : ∀ {ℓ a b}
{T : Set ℓ} {A : T → Set a} {B : (i : T) → (x : A i) → Set b} →
{f f′ : (i : T) → ∀ (x : A i) → B i x}
(eq-f : ∀ {i} {x : A i} → f i x ≣ f′ i x) →
{x x′ : (i : T) → A i} (eq-x : ∀ {i} → x i ≣ x′ i) →
∀ {i} → (≣-subst (B i) (eq-x {i}) ((f $⇈ x) i) ≣ (f′ $⇈ x′) i)
$⇈-obs eq-f {x} {x′} eq-x {i} rewrite eq-x {i} | eq-f {i} {x′ i} = ≣-refl
lift↑ : ∀ {ℓ a b}
{T : Set ℓ} {A : T → Set a} {B : (i : T) → A i → Set b} →
(f : ∀ {i} (x : A i) → B i x) → (x : (i : T) → A i) →
((i : T) → B i (x i))
lift↑ = _$↑_
lift↑₂ : ∀ {ℓ a b c}
{T : Set ℓ} {A : T → Set a} {B : (i : T) → Set b}
{C : (i : T) → A i → B i → Set c} →
(f : ∀ {i} (x : A i) (y : B i) → C i x y) →
(x : (i : T) → A i) (y : (i : T) → B i) →
((i : T) → C i (x i) (y i))
lift↑₂ = λ f x y → (lift↑ f x) $⇈ y
Rel : ∀ {a} → Set a → (ℓ : Level) → Set (a ⊔ suc ℓ)
Rel A ℓ = A → A → Set ℓ
private
_⇒_ : ∀ {a ℓ₁ ℓ₂} {A : Set a} →
Rel A ℓ₁ → Rel A ℓ₂ → Set _
P ⇒ Q = ∀ {i j} → P i j → Q i j
_Respects_ : ∀ {a ℓ₁ ℓ₂} {A : Set a} → (A → Set ℓ₁) → Rel A ℓ₂ → Set _
P Respects _∼_ = ∀ {x y} → x ∼ y → P x → P y
_Respects₂_ : ∀ {a ℓ₁ ℓ₂} {A : Set a} → Rel A ℓ₁ → Rel A ℓ₂ → Set _
P Respects₂ _∼_ =
(∀ {x} → P x Respects _∼_) ×
(∀ {y} → flip P y Respects _∼_)
record IsEquivalence {a ℓ} {A : Set a}
(_≈_ : Rel A ℓ) : Set (a ⊔ ℓ) where
field
refl : ∀ {x} → x ≈ x
sym : ∀ {x y} → x ≈ y → y ≈ x
trans : ∀ {x y z} → x ≈ y → y ≈ z → x ≈ z
-- a helper to promote propositional equality to equivalence
.prop : ∀ {x y} → x ≣ y → x ≈ y
prop ≣-refl = refl
record IsPreorder {a ℓ₁ ℓ₂} {A : Set a}
(_≈_ : Rel A ℓ₁) -- The underlying equality.
(_∼_ : Rel A ℓ₂) -- The relation.
: Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
field
isEquivalence : IsEquivalence _≈_
-- Reflexivity is expressed in terms of an underlying equality:
reflexive : _≈_ ⇒ _∼_
trans : ∀ {x y z} → x ∼ y → y ∼ z → x ∼ z
module Eq = IsEquivalence isEquivalence
refl : ∀ {x} → x ∼ x
refl = reflexive Eq.refl
∼-resp-≈ : _∼_ Respects₂ _≈_
∼-resp-≈ = (λ x≈y z∼x → trans z∼x (reflexive x≈y))
, (λ x≈y x∼z → trans (reflexive (Eq.sym x≈y)) x∼z)
record Preorder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _∼_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ₁ -- The underlying equality.
_∼_ : Rel Carrier ℓ₂ -- The relation.
isPreorder : IsPreorder _≈_ _∼_
open IsPreorder isPreorder public
record Setoid c ℓ : Set (suc (c ⊔ ℓ)) where
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
.isEquivalence : IsEquivalence _≈_
record SetoidFunction {c ℓ c′ ℓ′} (X : Setoid c ℓ) (Y : Setoid c′ ℓ′) : Set (c ⊔ ℓ ⊔ c′ ⊔ ℓ′) where
field
F : Setoid.Carrier X → Setoid.Carrier Y
.cong : ∀ {x y} → Setoid._≈_ X x y → Setoid._≈_ Y (F x) (F y)
module SetoidReasoning {s₁ s₂} (S : Setoid s₁ s₂) where
open Setoid S
infix 4 _IsRelatedTo_
infix 2 _∎
infixr 2 _≈⟨_⟩_
infixr 2 _↓⟨_⟩_
infixr 2 _↑⟨_⟩_
infixr 2 _↓≣⟨_⟩_
infixr 2 _↑≣⟨_⟩_
infixr 2 _↕_
infix 1 begin_
-- This seemingly unnecessary type is used to make it possible to
-- infer arguments even if the underlying equality evaluates.
data _IsRelatedTo_ (x y : Carrier) : Set s₂ where
relTo : (x∼y : x ≈ y) → x IsRelatedTo y
.begin_ : ∀ {x y} → x IsRelatedTo y → x ≈ y
begin relTo x∼y = x∼y
._↓⟨_⟩_ : ∀ x {y z} → x ≈ y → y IsRelatedTo z → x IsRelatedTo z
_ ↓⟨ x∼y ⟩ relTo y∼z = relTo (trans x∼y y∼z)
where open IsEquivalence isEquivalence
._↑⟨_⟩_ : ∀ x {y z} → y ≈ x → y IsRelatedTo z → x IsRelatedTo z
_ ↑⟨ y∼x ⟩ relTo y∼z = relTo (trans (sym y∼x) y∼z)
where open IsEquivalence isEquivalence
-- the syntax of the ancients, for compatibility
._≈⟨_⟩_ : ∀ x {y z} → x ≈ y → y IsRelatedTo z → x IsRelatedTo z
_≈⟨_⟩_ = _↓⟨_⟩_
._↓≣⟨_⟩_ : ∀ x {y z} → x ≣ y → y IsRelatedTo z → x IsRelatedTo z
_ ↓≣⟨ ≣-refl ⟩ y∼z = y∼z
._↑≣⟨_⟩_ : ∀ x {y z} → y ≣ x → y IsRelatedTo z → x IsRelatedTo z
_ ↑≣⟨ ≣-refl ⟩ y∼z = y∼z
._↕_ : ∀ x {z} → x IsRelatedTo z → x IsRelatedTo z
_ ↕ x∼z = x∼z
._∎ : ∀ x → x IsRelatedTo x
_∎ _ = relTo refl
where open IsEquivalence isEquivalence
≣-is-equivalence : ∀ {ℓ} (A : Set ℓ) → IsEquivalence (_≣_ {A = A})
≣-is-equivalence A = record { refl = λ {x} → ≣-refl
; sym = λ {x} {y} → ≣-sym
; trans = λ {x} {y} {z} → flip ≣-trans }
SetAsSetoid : ∀ {ℓ} (A : Set ℓ) → Setoid ℓ ℓ
SetAsSetoid A = record { Carrier = A
; _≈_ = _≣_
; isEquivalence = ≣-is-equivalence A }
module ≣-reasoning {ℓ} (S : Set ℓ) where
infix 4 _IsRelatedTo_
infix 2 _∎
infixr 2 _≈⟨_⟩_
infixr 2 _↓⟨_⟩_
infixr 2 _↑⟨_⟩_
infixr 2 _↕_
infix 1 begin_
-- This seemingly unnecessary type is used to make it possible to
-- infer arguments even if the underlying equality evaluates.
data _IsRelatedTo_ (x y : S) : Set ℓ where
relTo : (x∼y : x ≣ y) → x IsRelatedTo y
begin_ : ∀ {x y} → x IsRelatedTo y → x ≣ y
begin relTo x∼y = x∼y
-- the syntax of the ancients, for compatibility
_≈⟨_⟩_ : ∀ x {y z} → x ≣ y → y IsRelatedTo z → x IsRelatedTo z
_ ≈⟨ x∼y ⟩ relTo y∼z = relTo (≣-trans y∼z x∼y)
_↓⟨_⟩_ : ∀ x {y z} → x ≣ y → y IsRelatedTo z → x IsRelatedTo z
_ ↓⟨ x∼y ⟩ relTo y∼z = relTo (≣-trans y∼z x∼y)
_↑⟨_⟩_ : ∀ x {y z} → y ≣ x → y IsRelatedTo z → x IsRelatedTo z
_ ↑⟨ y∼x ⟩ relTo y∼z = relTo (≣-trans y∼z (≣-sym y∼x))
_↕_ : ∀ x {z} → x IsRelatedTo z → x IsRelatedTo z
_ ↕ x∼z = x∼z
_∎ : ∀ x → x IsRelatedTo x
_∎ _ = relTo ≣-refl
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN SUC suc #-}
data Fin : ℕ → Set where
zero : ∀ {n} → Fin (suc n)
suc : ∀ {n} → Fin n → Fin (suc n)
data ⊥ : Set where
¬_ : ∀ {a} (A : Set a) → Set a
¬ A = A → ⊥
record ⊤ {ℓ} : Set ℓ where
constructor tt
type-signature : ∀ {a} (A : Set a) → A → A
type-signature A x = x
syntax type-signature A x = x ∶ A
data Either {l r : Level} (L : Set l) (R : Set r) : Set (l ⊔ r) where
inl : L → Either L R
inr : R → Either L R
either₀ : ∀ {l r ℓ : Level} {L : Set l} {R : Set r} {A : Set ℓ} (f : L → A) (g : R → A) (v : Either L R) → A
either₀ f _ (inl x) = f x
either₀ _ g (inr y) = g y
∙-dist-either₀ : ∀ {l r ℓ ℓ′} {L : Set l} {R : Set r} {A : Set ℓ} {A′ : Set ℓ′} (f : L → A) (g : R → A) (h : A → A′) {v : Either L R} → (h ∙ either₀ f g) v ≣ either₀ (h ∙ f) (h ∙ g) v
∙-dist-either₀ f g h {inl y} = ≣-refl
∙-dist-either₀ f g h {inr y} = ≣-refl
either₀-obsˡ : ∀ {l r ℓ : Level} {L : Set l} {R : Set r} {A : Set ℓ}
{f : L → A} {f′ : L → A}
(eq : ∀ {x} → f x ≣ f′ x) (g : R → A) →
∀ {v} → (either₀ f g v ≣ either₀ f′ g v)
either₀-obsˡ eq g {inl y} = eq
either₀-obsˡ eq g {inr y} = ≣-refl
either₀-obsʳ : ∀ {l r ℓ : Level} {L : Set l} {R : Set r} {A : Set ℓ}
{g : R → A} {g′ : R → A}
(f : L → A) (eq : ∀ {x} → g x ≣ g′ x) →
∀ {v} → (either₀ f g v ≣ either₀ f g′ v)
either₀-obsʳ f eq {inl y} = ≣-refl
either₀-obsʳ f eq {inr y} = eq
either₀-correlate : ∀ {l r ℓ ℓ′ : Level} {L : Set l} {R : Set r} {A : Set ℓ} {A′ : Set ℓ′ } (f : L → A′ → A) (g : R → A′ → A) (f′ : L → A′) (g′ : R → A′) (v : Either L R) → either₀ (either₀ f g v ∙ f′) (either₀ f g v ∙ g′) v ≣ either₀ (f $⇈ f′) (g $⇈ g′) v
either₀-correlate f g f′ g′ (inl v) = ≣-refl
either₀-correlate f g f′ g′ (inr v) = ≣-refl
either : ∀ {l r ℓ} {L : Set l} {R : Set r} {L′ : L → Set ℓ} {R′ : R → Set ℓ} (f : (x : L) → L′ x) (g : (y : R) → R′ y) (v : Either L R) → either₀ L′ R′ v
either f _ (inl x) = f x
either _ g (inr y) = g y
either′ : ∀ {l r ℓ} {L : Set l} {R : Set r} {A : Either L R → Set ℓ} (f : (x : L) → A (inl x)) (g : (y : R) → A (inr y)) (v : Either L R) → A v
either′ f _ (inl x) = f x
either′ _ g (inr y) = g y
left : ∀ {l l′ r} {L : Set l} {R : Set r} {L′ : Set l′} (f : L → L′) (v : Either L R) → Either L′ R
left f (inl x) = inl (f x)
left _ (inr y) = inr y
right : ∀ {l r r′} {L : Set l} {R : Set r} {R′ : Set r′} (g : R → R′) (v : Either L R) → Either L R′
right _ (inl x) = inl x
right g (inr y) = inr (g y)
_+++_ : ∀ {l l′} {L : Set l} {L′ : Set l′} (f : L → L′) {r r′} {R : Set r} {R′ : Set r′} (g : R → R′) (v : Either L R) → Either L′ R′
(f +++ _) (inl x) = inl (f x)
(_ +++ g) (inr y) = inr (g y)
uncurry₀ : ∀ {x y z} {X : Set x} {Y : Set y} {Z : Set z} (f : X → Y → Z) → X × Y → Z
uncurry₀ f (x , y) = f x y
∙-commute-uncurry₀ : ∀ {x y z z′} {X : Set x} {Y : Set y} {Z : Set z} {Z′ : Set z′} (g : Z → Z′) (f : X → Y → Z) → (g ∙ uncurry₀ f) ≣ uncurry₀ (g ∙₂ f)
∙-commute-uncurry₀ g f = ≣-refl
∙₂-commute-uncurry₀ : ∀ {x y z w w′} {X : Set x} {Y : Set y} {Z : Set z} {W : Set w} {W′ : Set w′} (g : W → W′) (f : X → Y → Z → W) → (g ∙₂ uncurry₀ f) ≣ uncurry₀ (g ∙₃ f)
∙₂-commute-uncurry₀ g f = ≣-refl
uncurry₀-obs : ∀ {x y z} {X : Set x} {Y : Set y} {Z : Set z} {f : X → Y → Z} → (f-obs : ∀ {x x′ y y′} → x ≣ x′ → y ≣ y′ → f x y ≣ f x′ y′) {x,y x,y′ : X × Y} (eq : x,y ≣ x,y′) → uncurry₀ f x,y ≣ uncurry₀ f x,y′
uncurry₀-obs f-obs eq rewrite f-obs (≣-cong fst eq) (≣-cong snd eq) = ≣-refl
uncurry₀-obs′₁ : ∀ {x y z w} {X : Set x} {Y : Set y} {Z : Set z} {W : Z → Set w} {f f′ : X → Y → (c : Z) → W c} → (∀ a b c → f a b c ≣ f′ a b c) → ∀ a,b c → uncurry₀ f a,b c ≣ uncurry₀ f′ a,b c
uncurry₀-obs′₁ f-obs a,b c rewrite f-obs (fst a,b) (snd a,b) c = ≣-refl
uncurry : ∀ {x y z} {X : Set x} {Y : Set y} {Z : X → Y → Set z} (f : (x : X) → (y : Y) → Z x y) → (x,y : X × Y) → uncurry₀ Z x,y
uncurry f (x , y) = f x y
prop→obs : ∀ {a b} {A : Set a} {B : A → Set b} {f : (x : A) → B x} {g : (x : A) → B x} (eq : f ≣ g) → ∀ {x} → f x ≣ g x
prop→obs ≣-refl {x} = ≣-refl
|
{
"alphanum_fraction": 0.4478002546,
"avg_line_length": 33.0327102804,
"ext": "agda",
"hexsha": "b04cbf42645f22d83d28dd645720d8697794e4db",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Support.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Support.agda",
"max_line_length": 256,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Support.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 6919,
"size": 14138
}
|
{-# OPTIONS --without-K --safe #-}
open import Algebra
module Data.FingerTree.Cons
{r m}
(ℳ : Monoid r m)
where
open import Data.Product
open import Data.FingerTree.Measures ℳ
open import Data.FingerTree.Structures ℳ
open import Data.FingerTree.Reasoning ℳ
open σ ⦃ ... ⦄
open Monoid ℳ renaming (Carrier to 𝓡)
infixr 5 _◂_
infixl 5 _▸_
_◂_ : ∀ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄ → (x : Σ) → (xs : Tree Σ) → μ⟨ Tree Σ ⟩≈ (μ x ∙ μ xs)
a ◂ empty = single a ⇑[ ℳ ↯ ]
a ◂ single b = deep ⟪ D₁ a & empty & D₁ b ⇓⟫ ⇑[ ℳ ↯ ]
a ◂ deep (𝓂 ↤ D₁ b & m & rs ⇑[ 𝓂≈ ]) = deep (μ a ∙ 𝓂 ↤ D₂ a b & m & rs ⇑[ assoc _ _ _ ⍮ ∙≫ 𝓂≈ ]) ⇑
a ◂ deep (𝓂 ↤ D₂ b c & m & rs ⇑[ 𝓂≈ ]) = deep (μ a ∙ 𝓂 ↤ D₃ a b c & m & rs ⇑[ assoc _ _ _ ⍮ ∙≫ 𝓂≈ ]) ⇑
a ◂ deep (𝓂 ↤ D₃ b c d & m & rs ⇑[ 𝓂≈ ]) = deep (μ a ∙ 𝓂 ↤ D₄ a b c d & m & rs ⇑[ assoc _ _ _ ⍮ ∙≫ 𝓂≈ ]) ⇑
a ◂ deep (𝓂 ↤ D₄ b c d e & m & rs ⇑[ 𝓂≈ ]) with ⟪ N₃ c d e ⇓⟫ ◂ m
... | m′ ⇑[ m′≈ ] = deep (μ a ∙ 𝓂 ↤ D₂ a b & m′ & rs ⇑[ ∙≫ ≪∙ m′≈ ] ≈[ ℳ ↯ ] ≈[ ∙≫ 𝓂≈ ]′) ⇑
_▸_ : ∀ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄ → (xs : Tree Σ) → (x : Σ) → μ⟨ Tree Σ ⟩≈ (μ xs ∙ μ x)
empty ▸ a = single a ⇑[ ℳ ↯ ]
single a ▸ b = deep ⟪ D₁ a & empty & D₁ b ⇓⟫ ⇑[ ℳ ↯ ]
deep (𝓂 ↤ ls & m & D₁ a ⇑[ 𝓂≈ ]) ▸ b = deep (𝓂 ∙ μ b ↤ ls & m & D₂ a b ⇑[ ℳ ↯ ⍮′ ≪∙ 𝓂≈ ]) ⇑
deep (𝓂 ↤ ls & m & D₂ a b ⇑[ 𝓂≈ ]) ▸ c = deep (𝓂 ∙ μ c ↤ ls & m & D₃ a b c ⇑[ ℳ ↯ ⍮′ ≪∙ 𝓂≈ ]) ⇑
deep (𝓂 ↤ ls & m & D₃ a b c ⇑[ 𝓂≈ ]) ▸ d = deep (𝓂 ∙ μ d ↤ ls & m & D₄ a b c d ⇑[ ℳ ↯ ⍮′ ≪∙ 𝓂≈ ]) ⇑
deep (𝓂 ↤ ls & m & D₄ a b c d ⇑[ 𝓂≈ ]) ▸ e with m ▸ ⟪ N₃ a b c ⇓⟫
... | m′ ⇑[ m′≈ ] = deep (𝓂 ∙ μ e ↤ ls & m′ & D₂ d e ⇑[ ∙≫ ≪∙ m′≈ ] ≈[ ℳ ↯ ] ≈[ ≪∙ 𝓂≈ ]′) ⇑
open import Data.List as List using (List; _∷_; [])
listToTree : ∀ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄ → (xs : List Σ) → μ⟨ Tree Σ ⟩≈ (μ xs)
listToTree [] = empty ⇑
listToTree (x ∷ xs) = [ ℳ ↯ ]≈ do
ys ← listToTree xs [ μ x ∙> s ⟿ s ]
x ◂ ys
|
{
"alphanum_fraction": 0.4279661017,
"avg_line_length": 39.3333333333,
"ext": "agda",
"hexsha": "b136681a5b999760985f16c38a27c5c03555b3d8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-indexed-fingertree",
"max_forks_repo_path": "src/Data/FingerTree/Cons.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-indexed-fingertree",
"max_issues_repo_path": "src/Data/FingerTree/Cons.agda",
"max_line_length": 108,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-indexed-fingertree",
"max_stars_repo_path": "src/Data/FingerTree/Cons.agda",
"max_stars_repo_stars_event_max_datetime": "2019-02-26T07:04:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-26T07:04:54.000Z",
"num_tokens": 1135,
"size": 1888
}
|
-- Check that we can solve level inequalities involving three variables.
module _ where
open import Agda.Primitive
open import Agda.Builtin.Equality
data Constraint : Set where
mkConstraint : (a b : Level) → a ≡ b → Constraint
infix 0 _:=_
pattern _:=_ x y = mkConstraint x y refl
postulate l : Level
mutual-block : Set
a b c : Level
a = _
b = _
c = _
_ = a := a ⊔ b ⊔ c
_ = b := a ⊔ b ⊔ c
_ = c := a ⊔ b ⊔ c
_ = l := a ⊔ b ⊔ c -- to actually solve it
mutual-block = Level
|
{
"alphanum_fraction": 0.6344969199,
"avg_line_length": 16.2333333333,
"ext": "agda",
"hexsha": "00849f6bb6fcfb3c32b53c89fe8e4b4413fc39bd",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/LevelTriplets.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/LevelTriplets.agda",
"max_line_length": 72,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/LevelTriplets.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 164,
"size": 487
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Instance.Posets where
-- The category of partially ordered sets and order-preserving maps.
open import Level
open import Relation.Binary using (Poset; IsEquivalence; _Preserves_⟶_)
open import Relation.Binary.Morphism using (IsOrderHomomorphism)
open import Relation.Binary.Morphism.Bundles using (PosetHomomorphism)
import Relation.Binary.Morphism.Construct.Identity as Id
import Relation.Binary.Morphism.Construct.Composition as Comp
open import Categories.Category
open Poset renaming (_≈_ to ₍_₎_≈_; _≤_ to ₍_₎_≤_)
open PosetHomomorphism using (⟦_⟧; cong)
private
variable
a₁ a₂ a₃ b₁ b₂ b₃ : Level
A B C : Poset a₁ a₂ a₃
module _ {A : Poset a₁ a₂ a₃} {B : Poset b₁ b₂ b₃} where
infix 4 _≗_
-- Pointwise equality (on order preserving maps).
_≗_ : (f g : PosetHomomorphism A B) → Set (a₁ ⊔ b₂)
f ≗ g = ∀ {x} → ₍ B ₎ ⟦ f ⟧ x ≈ ⟦ g ⟧ x
≗-isEquivalence : IsEquivalence _≗_
≗-isEquivalence = record
{ refl = Eq.refl B
; sym = λ f≈g → Eq.sym B f≈g
; trans = λ f≈g g≈h → Eq.trans B f≈g g≈h
}
module ≗ = IsEquivalence ≗-isEquivalence
-- The category of posets and order-preserving maps.
Posets : ∀ c ℓ₁ ℓ₂ → Category (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) (c ⊔ ℓ₁ ⊔ ℓ₂) (c ⊔ ℓ₁)
Posets c ℓ₁ ℓ₂ = record
{ Obj = Poset c ℓ₁ ℓ₂
; _⇒_ = PosetHomomorphism
; _≈_ = _≗_
; id = λ {A} → Id.posetHomomorphism A
; _∘_ = λ f g → Comp.posetHomomorphism g f
; assoc = λ {_ _ _ D} → Eq.refl D
; sym-assoc = λ {_ _ _ D} → Eq.refl D
; identityˡ = λ {_ B} → Eq.refl B
; identityʳ = λ {_ B} → Eq.refl B
; identity² = λ {A} → Eq.refl A
; equiv = ≗-isEquivalence
; ∘-resp-≈ = λ {_ _ C _ h} f≈h g≈i → Eq.trans C f≈h (cong h g≈i)
}
|
{
"alphanum_fraction": 0.6283783784,
"avg_line_length": 30.6206896552,
"ext": "agda",
"hexsha": "3bf4e753f45908252a465c932caf58d22388b59a",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Instance/Posets.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Instance/Posets.agda",
"max_line_length": 72,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Instance/Posets.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 701,
"size": 1776
}
|
{-# OPTIONS --without-K #-}
open import Type
open import Data.Zero
open import Data.Fin using (Fin; zero; suc; #_)
open import Relation.Binary.PropositionalEquality.NP using (_≡_; refl)
open import HoTT
open Equivalences
open import Explore.Core
open import Explore.Properties
open import Explore.Explorable
open import Explore.Universe.Type {𝟘}
open import Explore.Universe.Base
module Explore.Dice where
data Dice : ★₀ where
⚀ ⚁ ⚂ ⚃ ⚄ ⚅ : Dice
module ByHand where
exploreDice : ∀ {m} → Explore m Dice
exploreDice ε _∙_ f = f ⚀ ∙ (f ⚁ ∙ (f ⚂ ∙ (f ⚃ ∙ (f ⚄ ∙ f ⚅))))
exploreDice-ind : ∀ {m p} → ExploreInd p (exploreDice {m})
exploreDice-ind P ε _∙_ f = f ⚀ ∙ (f ⚁ ∙ (f ⚂ ∙ (f ⚃ ∙ (f ⚄ ∙ f ⚅))))
open FromExploreInd exploreDice-ind public
using ()
renaming (sum to sumDice; product to productDice; reify to reifyDice; unfocus to unfocusDice)
Dice≃Fin6 : Dice ≃ Fin 6
Dice≃Fin6 = equiv (⇒) (⇐) ⇒⇐ ⇐⇒
module Dice≃Fin6 where
S = Dice
T = Fin 6
⇒ : S → T
⇒ ⚀ = # 0
⇒ ⚁ = # 1
⇒ ⚂ = # 2
⇒ ⚃ = # 3
⇒ ⚄ = # 4
⇒ ⚅ = # 5
⇐ : T → S
⇐ zero = ⚀
⇐ (suc zero) = ⚁
⇐ (suc (suc zero)) = ⚂
⇐ (suc (suc (suc zero))) = ⚃
⇐ (suc (suc (suc (suc zero)))) = ⚄
⇐ (suc (suc (suc (suc (suc zero))))) = ⚅
⇐ (suc (suc (suc (suc (suc (suc ()))))))
⇐⇒ : ∀ x → ⇐ (⇒ x) ≡ x
⇐⇒ ⚀ = refl
⇐⇒ ⚁ = refl
⇐⇒ ⚂ = refl
⇐⇒ ⚃ = refl
⇐⇒ ⚄ = refl
⇐⇒ ⚅ = refl
⇒⇐ : ∀ x → ⇒ (⇐ x) ≡ x
⇒⇐ zero = refl
⇒⇐ (suc zero) = refl
⇒⇐ (suc (suc zero)) = refl
⇒⇐ (suc (suc (suc zero))) = refl
⇒⇐ (suc (suc (suc (suc zero)))) = refl
⇒⇐ (suc (suc (suc (suc (suc zero))))) = refl
⇒⇐ (suc (suc (suc (suc (suc (suc ()))))))
-- By using FinU' instead of FinU one get a special case for Fin 1 thus avoiding
-- a final ε in the exploration function.
module DiceE = Explore.Universe.Base (≃ᵁ (Finᵁ' 6) Dice (Finᵁ'≃Fin 6 ≃-∙ ≃-! Dice≃Fin6))
module _ {m} where
open ByHand
_≡ᵉ_ : (e₀ e₁ : Explore m Dice) → ★_ _
_≡ᵉ_ = _≡_
same-as-by-hand : exploreDice ≡ᵉ DiceE.explore
same-as-by-hand = refl
|
{
"alphanum_fraction": 0.5377672209,
"avg_line_length": 26.9871794872,
"ext": "agda",
"hexsha": "8015a0d4f3678884951b2771539cfe376fa71235",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "crypto-agda/explore",
"max_forks_repo_path": "lib/Explore/Dice.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "crypto-agda/explore",
"max_issues_repo_path": "lib/Explore/Dice.agda",
"max_line_length": 99,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "crypto-agda/explore",
"max_stars_repo_path": "lib/Explore/Dice.agda",
"max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z",
"num_tokens": 971,
"size": 2105
}
|
------------------------------------------------------------------------------
-- First-order Peano arithmetic
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module PA.README where
------------------------------------------------------------------------------
-- Description
-- Two formalizations of first-order Peano arithmetic using axioms and
-- inductive definitions.
------------------------------------------------------------------------------
-- Axiomatic PA
open import PA.Axiomatic.Standard.README
-- Inductive PA
open import PA.Inductive.README
|
{
"alphanum_fraction": 0.3877284595,
"avg_line_length": 31.9166666667,
"ext": "agda",
"hexsha": "d713d623205320d53aaf15fd13704b505d0f851c",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/PA/README.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/PA/README.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/PA/README.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 106,
"size": 766
}
|
module Issue3879 where
open import Issue3879.Fin using (Fin ; zero ; suc)
open import Agda.Builtin.Nat using (Nat ; zero ; suc)
foo : Nat → Nat → Nat
foo zero m = {!!}
foo (suc n) m = {!!}
-- WAS: case-splitting on m produces Issue3879.Fin.0F patterns
-- WANT: unqualified 0F is not in scope: do not resugar!
|
{
"alphanum_fraction": 0.6793650794,
"avg_line_length": 26.25,
"ext": "agda",
"hexsha": "f2d296cec1042f2615a57d0f53af07b3f248bc21",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue3879.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue3879.agda",
"max_line_length": 62,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue3879.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 99,
"size": 315
}
|
----------------------------------------------------------------------------
-- Well-founded induction on the natural numbers
----------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.Nat.Induction.NonAcc.WF-I where
open import FOTC.Base
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.Inequalities.EliminationPropertiesI
open import FOTC.Data.Nat.Inequalities.PropertiesI
open import FOTC.Data.Nat.Type
------------------------------------------------------------------------------
-- Well-founded induction on the natural numbers.
-- Adapted from http://code.haskell.org/~dolio/agda-share/induction/.
module WFInd where
<-wfind : (A : D → Set) →
(∀ {n} → N n → (∀ {m} → N m → m < n → A m) → A n) →
∀ {n} → N n → A n
<-wfind A h Nn = h Nn (helper Nn)
where
helper : ∀ {n m} → N n → N m → m < n → A m
helper nzero Nm m<0 = ⊥-elim (x<0→⊥ Nm m<0)
helper (nsucc _) nzero 0<Sn = h nzero (λ Nm' m'<0 → ⊥-elim (x<0→⊥ Nm' m'<0))
helper (nsucc {n} Nn) (nsucc {m} Nm) Sm<Sn = h (nsucc Nm)
(λ {m'} Nm' m'<Sm →
let Sm'≤Sm : succ₁ m' ≤ succ₁ m
Sm'≤Sm = x<y→Sx≤y Nm' (nsucc Nm) m'<Sm
Sm≤n : succ₁ m ≤ n
Sm≤n = Sx≤Sy→x≤y (x<y→Sx≤y (nsucc Nm) (nsucc Nn) Sm<Sn)
Sm'≤n : succ₁ m' ≤ n
Sm'≤n = ≤-trans (nsucc Nm') (nsucc Nm) Nn Sm'≤Sm Sm≤n
m'<n : m' < n
m'<n = Sx≤y→x<y Nm' Nn Sm'≤n
in helper Nn Nm' m'<n
)
------------------------------------------------------------------------------
-- Well-founded induction on the natural numbers (using different
-- properties of inequalities).
module WFInd' where
<-wfind : (A : D → Set) →
(∀ {n} → N n → (∀ {m} → N m → m < n → A m) → A n) →
∀ {n} → N n → A n
<-wfind A h Nn = h Nn (helper Nn)
where
helper : ∀ {n m} → N n → N m → m < n → A m
helper nzero Nm m<0 = ⊥-elim (x<0→⊥ Nm m<0)
helper (nsucc _) nzero 0<Sn = h nzero (λ Nm' m'<0 → ⊥-elim (x<0→⊥ Nm' m'<0))
helper (nsucc {n} Nn) (nsucc {m} Nm) Sm<Sn = h (nsucc Nm)
(λ {m'} Nm' m'<Sm →
let m<n : m < n
m<n = Sx<Sy→x<y Sm<Sn
m'<n : m' < n
m'<n = case (λ m'<m → <-trans Nm' Nm Nn m'<m m<n)
(λ m'≡m → x≡y→y<z→x<z m'≡m m<n)
(x<Sy→x<y∨x≡y Nm' Nm m'<Sm)
in helper Nn Nm' m'<n
)
|
{
"alphanum_fraction": 0.4291698401,
"avg_line_length": 35.0133333333,
"ext": "agda",
"hexsha": "bb2c11cfcae64916ef37002848a7f56146abc398",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Data/Nat/Induction/NonAcc/WF-I.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Data/Nat/Induction/NonAcc/WF-I.agda",
"max_line_length": 80,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Data/Nat/Induction/NonAcc/WF-I.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 943,
"size": 2626
}
|
module L.Base.Coproduct.Core where
open import Agda.Primitive
-- Introducing Coproduct types
data _+_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
inl : A → A + B
inr : B → A + B
case : ∀{a b c} {A : Set a} {B : Set b}
→ (C : A + B → Set c)
→ ((x : A) → C (inl x)) → ((y : B) → C (inr y))
→ (e : A + B) → C e
case C c d (inl a) = c a
case C c d (inr b) = d b
|
{
"alphanum_fraction": 0.4732824427,
"avg_line_length": 23.1176470588,
"ext": "agda",
"hexsha": "c847c78ea9fb042d975cfc04666e50bfe16e1474",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "borszag/smallib",
"max_forks_repo_path": "src/L/Base/Coproduct/Core.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_issues_repo_issues_event_max_datetime": "2020-11-09T16:40:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-10-19T10:13:16.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "borszag/smallib",
"max_issues_repo_path": "src/L/Base/Coproduct/Core.agda",
"max_line_length": 58,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "borszag/smallib",
"max_stars_repo_path": "src/L/Base/Coproduct/Core.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 171,
"size": 393
}
|
{-# OPTIONS --cubical-compatible --rewriting #-}
module Generalize where
open import Agda.Primitive
-- Generalization in definitions
module Definitions where
variable
ℓ : Level
A B C : Set ℓ
A₀ B₀ : Set
a b c : A
-- Function signature
id : A → A
id x = x
-- Module signature
module M (a : A) where
identity = a
-- Data parameters and constructors
data Eq (a : A) : A → Setω where
refl : Eq a a
trans : Eq a b → Eq b c → Eq a c
record R (a : A) : Set₁ where
field
fld : B₀
open M a
alias = fld
K : B → C → B
K x _ = x
field
fld₁ : B₀
-- Original content (postulates only)
data _≡_ {ℓ}{A : Set ℓ} (x : A) : A → Set ℓ where
refl : x ≡ x
infix 4 _≡_
{-# BUILTIN REWRITE _≡_ #-}
------------------------------------------------------------------
postulate Con : Set
postulate Ty : (Γ : Con) → Set
postulate Tms : (Γ Δ : Con) → Set
postulate Tm : (Γ : Con)(A : Ty Γ) → Set
------------------------------------------------------------------
variable {Γ Δ Θ} : Con
postulate • : Con -- • is \bub
postulate _▹_ : ∀ Γ → Ty Γ → Con -- ▹ is \tw2
infixl 5 _▹_
variable {A B C} : Ty _
postulate _∘ᵀ_ : Ty Δ → Tms Γ Δ → Ty Γ
infixl 6 _∘ᵀ_
variable {σ δ ν} : Tms _ _
postulate _∘_ : Tms Θ Δ → Tms Γ Θ → Tms Γ Δ
infixr 7 _∘_
postulate id : Tms Γ Γ
postulate ε : Tms Γ •
postulate _,_ : (σ : Tms Γ Δ) → Tm Γ (A ∘ᵀ σ) → Tms Γ (Δ ▹ A)
infixl 5 _,_
postulate π₁ : Tms Γ (Δ ▹ A) → Tms Γ Δ
variable {t u v} : Tm _ _
postulate π₂ : (σ : Tms Γ (Δ ▹ A)) → Tm Γ (A ∘ᵀ π₁ σ)
postulate _∘ᵗ_ : Tm Δ A → (σ : Tms Γ Δ) → Tm Γ (A ∘ᵀ σ)
infixl 6 _∘ᵗ_
postulate ass : (σ ∘ δ) ∘ ν ≡ σ ∘ δ ∘ ν
{-# REWRITE ass #-}
postulate idl : id ∘ δ ≡ δ
{-# REWRITE idl #-}
postulate idr : δ ∘ id ≡ δ
{-# REWRITE idr #-}
postulate εη : δ ≡ ε -- can't rewrite, so we specialize this in the next two cases
postulate εηid : id ≡ ε
{-# REWRITE εηid #-}
postulate εη∘ : ε ∘ δ ≡ ε
{-# REWRITE εη∘ #-}
postulate ,β₁ : π₁ (δ , t) ≡ δ
{-# REWRITE ,β₁ #-}
postulate ,β₂ : π₂ (δ , t) ≡ t
{-# REWRITE ,β₂ #-}
postulate ,η : (π₁ δ , π₂ δ) ≡ δ
{-# REWRITE ,η #-}
postulate [id]ᵀ : A ∘ᵀ id ≡ A
{-# REWRITE [id]ᵀ #-}
postulate [∘]ᵀ : A ∘ᵀ δ ∘ᵀ σ ≡ A ∘ᵀ δ ∘ σ
{-# REWRITE [∘]ᵀ #-}
postulate ,∘ : (δ , t) ∘ σ ≡ δ ∘ σ , t ∘ᵗ σ
{-# REWRITE ,∘ #-}
postulate [∘]ᵗ : t ∘ᵗ σ ∘ᵗ δ ≡ t ∘ᵗ σ ∘ δ
{-# REWRITE [∘]ᵗ #-}
postulate π₁∘ : π₁ δ ∘ σ ≡ π₁ (δ ∘ σ)
{-# REWRITE π₁∘ #-}
postulate π₂∘ : π₂ δ ∘ᵗ σ ≡ π₂ (δ ∘ σ)
{-# REWRITE π₂∘ #-}
postulate ∘id : t ∘ᵗ id ≡ t
{-# REWRITE ∘id #-}
_↑_ : ∀ σ A → Tms (Γ ▹ A ∘ᵀ σ) (Δ ▹ A)
σ ↑ A = σ ∘ π₁ id , π₂ id
⟨_⟩ : Tm Γ A → Tms Γ (Γ ▹ A)
⟨ t ⟩ = id , t
------------------------------------------------------------------
postulate U : Ty Γ
variable {a b c} : Tm _ U
postulate El : Tm Γ U → Ty Γ
postulate U[] : U ∘ᵀ σ ≡ U
{-# REWRITE U[] #-}
postulate El[] : El a ∘ᵀ σ ≡ El (a ∘ᵗ σ)
{-# REWRITE El[] #-}
------------------------------------------------------------------
postulate Π : (a : Tm Γ U) → Ty (Γ ▹ El a) → Ty Γ
postulate Π[] : Π a B ∘ᵀ σ ≡ Π (a ∘ᵗ σ) (B ∘ᵀ σ ↑ El a)
{-# REWRITE Π[] #-}
postulate app : Tm Γ (Π a B) → Tm (Γ ▹ El a) B
postulate app[] : app t ∘ᵗ (σ ↑ El a) ≡ app (t ∘ᵗ σ)
{-# REWRITE app[] #-}
|
{
"alphanum_fraction": 0.4084915612,
"avg_line_length": 26.3333333333,
"ext": "agda",
"hexsha": "3230b9d8230f3af9b94bf11a41102a2abf88dfcd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Succeed/Generalize.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Succeed/Generalize.agda",
"max_line_length": 102,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Succeed/Generalize.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1511,
"size": 3792
}
|
open import Relation.Binary.PropositionalEquality using
( _≡_ ; refl ; sym ; trans ; subst ; subst₂ ; cong ; cong₂ )
import AssocFree.STLambdaC.Typ
import AssocFree.STLambdaC.Exp
import AssocFree.STLambdaC.NF
module AssocFree.STLambdaC.Redn
(TConst : Set)
(Const : AssocFree.STLambdaC.Typ.Typ TConst → Set) where
open module Typ = AssocFree.STLambdaC.Typ TConst using
( Typ ; Ctxt ; const ; _⇝_ ; [_] ; [] ; _∷_ ; _++_ ; case )
open module Exp = AssocFree.STLambdaC.Exp TConst Const using
( Exp ; const ; abs ; app ; var ; var₀
; substn ; weaken ; weaken* ; weaken+ ; weaken-comm ; weaken-substn ; weaken+-var₀ )
open module Redn = AssocFree.STLambdaC.NF TConst Const using
( NF ; Atom ; app ; abs )
-- Small-step reduction
data _⇒_ {Γ} : ∀ {T : Typ} → Exp Γ T → Exp Γ T → Set where
beta : ∀ {T U} (M : Exp (T ∷ Γ) U) (N : Exp Γ T) →
(app (abs {Γ} T M) N) ⇒ substn N M
eta : ∀ {T U} (M : Exp Γ (T ⇝ U)) →
(M ⇒ (abs {Γ} T (app (weaken T M) (var₀ {Γ}))))
lhs : ∀ {T U} {L M : Exp Γ (T ⇝ U)} {N : Exp Γ T} →
(L ⇒ M) → (app L N ⇒ app M N)
rhs : ∀ {T U} {L : Exp Γ (T ⇝ U)} {M N : Exp Γ T} →
(M ⇒ N) → (app L M ⇒ app L N)
abs : ∀ T {U} {M N : Exp (T ∷ Γ) U} →
(M ⇒ N) → (abs {Γ} T M ⇒ abs {Γ} T N)
-- Reduction to normal form
data _⇓ {Γ T} (M : Exp Γ T) : Set where
nf : NF M → (M ⇓)
redn : ∀ {N} → (M ⇒ N) → (N ⇓) → (M ⇓)
-- Reduction to atomic form
data _⇓′ {Γ T} (M : Exp Γ T) : Set where
atom : Atom M → (M ⇓′)
redn : ∀ {N} → (M ⇒ N) → (N ⇓′) → (M ⇓′)
-- Target of normalization
tgt : ∀ {Γ T} {M : Exp Γ T} → (M ⇓) → Exp Γ T
tgt {Γ} {T} {M} (nf M⇓) = M
tgt (redn M⇒N N⇓) = tgt N⇓
-- Normalization is closed under abstraction and application
⇓abs : ∀ {Γ} T {U} {M : Exp (T ∷ Γ) U} → (M ⇓) → (abs {Γ} T M ⇓)
⇓abs {Γ} T (nf M) = nf (abs {Γ} T M)
⇓abs {Γ} T (redn M⇒N N⇓) = redn (abs T M⇒N) (⇓abs {Γ} T N⇓)
⇓app : ∀ {Γ T U} {M : Exp Γ (T ⇝ U)} {N : Exp Γ T} → (M ⇓′) → (N ⇓) → (app M N ⇓′)
⇓app (atom M) (nf N) = atom (app M N)
⇓app (atom L) (redn L⇒M M⇓) = redn (rhs L⇒M) (⇓app (atom L) M⇓)
⇓app (redn L⇒M M⇓) N⇓ = redn (lhs L⇒M) (⇓app M⇓ N⇓)
-- Weakening
rweaken+ : ∀ B Γ Δ {T} {M N : Exp (B ++ Δ) T} → (M ⇒ N) → (weaken+ B Γ Δ M ⇒ weaken+ B Γ Δ N)
rweaken+ B Γ Δ (beta {T} M N) =
subst (λ X → weaken+ B Γ Δ (app (abs {B ++ Δ} T M) N) ⇒ X)
(weaken-substn B Γ Δ N M)
(beta (weaken+ (T ∷ B) Γ Δ M) (weaken+ B Γ Δ N))
rweaken+ B Γ Δ (eta {T} M) =
subst₂ (λ X Y → weaken+ B Γ Δ M ⇒ abs T (app X Y))
(weaken-comm T B Γ Δ M) (sym (weaken+-var₀ B Γ Δ))
(eta (weaken+ B Γ Δ M))
rweaken+ B Γ Δ (lhs M⇒N) = lhs (rweaken+ B Γ Δ M⇒N)
rweaken+ B Γ Δ (rhs M⇒N) = rhs (rweaken+ B Γ Δ M⇒N)
rweaken+ B Γ Δ (abs T M⇒N) = abs T (rweaken+ (T ∷ B) Γ Δ M⇒N)
rweaken* : ∀ Γ {Δ T} {M N : Exp Δ T} → (M ⇒ N) → (weaken* Γ M ⇒ weaken* Γ N)
rweaken* Γ {Δ} = rweaken+ [] Γ Δ
rweaken : ∀ T {Δ U} {M N : Exp Δ U} → (M ⇒ N) → (weaken T M ⇒ weaken T N)
rweaken T = rweaken* [ T ]
|
{
"alphanum_fraction": 0.5100133511,
"avg_line_length": 35.2470588235,
"ext": "agda",
"hexsha": "bfd5ae18d22b8f2588a13ee0dc1944bae2545b6f",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:38:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-03-03T04:39:31.000Z",
"max_forks_repo_head_hexsha": "08337fdb8375137a52cc9b3ade766305191b2394",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-assoc-free",
"max_forks_repo_path": "src/AssocFree/STLambdaC/Redn.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "08337fdb8375137a52cc9b3ade766305191b2394",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-assoc-free",
"max_issues_repo_path": "src/AssocFree/STLambdaC/Redn.agda",
"max_line_length": 93,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "08337fdb8375137a52cc9b3ade766305191b2394",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-assoc-free",
"max_stars_repo_path": "src/AssocFree/STLambdaC/Redn.agda",
"max_stars_repo_stars_event_max_datetime": "2020-08-27T20:56:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-11-22T11:48:31.000Z",
"num_tokens": 1412,
"size": 2996
}
|
module ModuleDefinedInOtherFile where
import Imports.B
|
{
"alphanum_fraction": 0.8448275862,
"avg_line_length": 9.6666666667,
"ext": "agda",
"hexsha": "f84546622d7f7e68d6d2d219c6e8adf05e1af31d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/ModuleDefinedInOtherFile.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/ModuleDefinedInOtherFile.agda",
"max_line_length": 37,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/ModuleDefinedInOtherFile.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 13,
"size": 58
}
|
module Issue530 where
data Unit : Set where
unit : Unit
postulate
A : Set
a : A
k : A → Unit
data P (a : A) : Unit → Set where
p : P a (k a)
F : (u : Unit) → P a u → Set₁
F unit _ = Set
f : F (k a) p
f with k a
f | _ = ?
|
{
"alphanum_fraction": 0.5254237288,
"avg_line_length": 11.8,
"ext": "agda",
"hexsha": "ffd162d917b9c5e44ffe6a783002760d0de2114c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/Issue530.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/Issue530.agda",
"max_line_length": 33,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/Issue530.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 99,
"size": 236
}
|
-- WARNING: This file was generated automatically by Vehicle
-- and should not be modified manually!
-- Metadata
-- - Agda version: 2.6.2
-- - AISEC version: 0.1.0.1
-- - Time generated: ???
{-# OPTIONS --allow-exec #-}
open import Vehicle
open import Vehicle.Data.Tensor
open import Data.Product
open import Data.Integer as ℤ using (ℤ)
open import Data.Rational as ℚ using (ℚ)
open import Data.Fin as Fin using (Fin; #_)
open import Data.List
module windController-temp-output where
InputVector : Set
InputVector = Tensor ℚ (2 ∷ [])
currentSensor : ∀ {_x0 : Set} {{_x1 : HasNatLits _x0}} → _x0
currentSensor = 0
previousSensor : ∀ {_x4 : Set} {{_x5 : HasNatLits _x4}} → _x4
previousSensor = 1
postulate controller : InputVector → Tensor ℚ (1 ∷ [])
SafeInput : InputVector → Set
SafeInput x = ∀ (i : Fin 2) → ℚ.- (ℤ.+ 13 ℚ./ 4) ℚ.≤ x i × x i ℚ.≤ ℤ.+ 13 ℚ./ 4
SafeOutput : InputVector → Set
SafeOutput x = ℚ.- (ℤ.+ 5 ℚ./ 4) ℚ.< (controller x (# 0) ℚ.+ (ℤ.+ 2 ℚ./ 1) ℚ.* x currentSensor) ℚ.- x previousSensor × (controller x (# 0) ℚ.+ (ℤ.+ 2 ℚ./ 1) ℚ.* x currentSensor) ℚ.- x previousSensor ℚ.< ℤ.+ 5 ℚ./ 4
abstract
safe : ∀ (x : Tensor ℚ (2 ∷ [])) → SafeInput x → SafeOutput x
safe = checkSpecification record
{ proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp"
}
|
{
"alphanum_fraction": 0.6531082118,
"avg_line_length": 31.7804878049,
"ext": "agda",
"hexsha": "6b7225766336ddab29b55ea33b9eebb24b4b91a1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "vehicle-lang/vehicle",
"max_forks_repo_path": "test/Test/Compile/Golden/windController/windController-output.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T20:49:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-07T14:09:13.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "vehicle-lang/vehicle",
"max_issues_repo_path": "test/Test/Compile/Golden/windController/windController-output.agda",
"max_line_length": 214,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "vehicle-lang/vehicle",
"max_stars_repo_path": "test/Test/Compile/Golden/windController/windController-output.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-17T18:51:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-10T12:56:42.000Z",
"num_tokens": 468,
"size": 1303
}
|
{-# OPTIONS --cubical-compatible #-}
module Issue765 where
infixr 1 _⊎_
infixr 4 _,_
infix 4 _≡_
data ⊥ : Set where
⊥-elim : {A : Set} → ⊥ → A
⊥-elim ()
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
data _⊎_ (A : Set) (B : Set) : Set where
inj₁ : (x : A) → A ⊎ B
inj₂ : (y : B) → A ⊎ B
[_,_]₁ : ∀ {A : Set} {B : Set} {C : A ⊎ B → Set₁} →
((x : A) → C (inj₁ x)) → ((x : B) → C (inj₂ x)) →
((x : A ⊎ B) → C x)
[ f , g ]₁ (inj₁ x) = f x
[ f , g ]₁ (inj₂ y) = g y
record Σ (A : Set) (B : A → Set) : Set where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
open Σ public
infix 5 _◃_
infixr 1 _⊎C_
record Container : Set₁ where
constructor _◃_
field
Shape : Set
Position : Shape → Set
open Container public
constC : Set → Container
constC X = X ◃ λ _ → ⊥
_⊎C_ : Container → Container → Container
S ◃ P ⊎C S′ ◃ P′ = (S ⊎ S′) ◃ [ P , P′ ]₁
data μ (C : Container) : Set where
sup : (s : Shape C) (k : Position C s → μ C) → μ C
_⋆_ : Container → Set → Set
C ⋆ X = μ (constC X ⊎C C)
to : ∀ {C X} → C ⋆ X → C ⋆ (C ⋆ X)
to m = sup (inj₁ m) ⊥-elim
injective : ∀ {C X}{m n : C ⋆ X} → to m ≡ to n → m ≡ n
injective refl = refl
|
{
"alphanum_fraction": 0.5025125628,
"avg_line_length": 18.65625,
"ext": "agda",
"hexsha": "8fe07abc587ec417d6039c7d111e41a2482492f8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Fail/Issue765.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Fail/Issue765.agda",
"max_line_length": 57,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Fail/Issue765.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 551,
"size": 1194
}
|
------------------------------------------------------------------------------
-- The unary numbers are FOTC total natural numbers
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.Nat.UnaryNumbers.TotalityI where
open import FOTC.Base
open import FOTC.Data.Nat.Type
open import FOTC.Data.Nat.UnaryNumbers
------------------------------------------------------------------------------
0-N : N 0'
0-N = nzero
1-N : N 1'
1-N = nsucc 0-N
2-N : N 2'
2-N = nsucc 1-N
|
{
"alphanum_fraction": 0.403202329,
"avg_line_length": 26.4230769231,
"ext": "agda",
"hexsha": "c0cb2f21b055ab371d56b2ca172d815b42c3c8da",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Data/Nat/UnaryNumbers/TotalityI.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Data/Nat/UnaryNumbers/TotalityI.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Data/Nat/UnaryNumbers/TotalityI.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 139,
"size": 687
}
|
open import Agda.Builtin.Bool
open import Agda.Builtin.Nat
open import Agda.Builtin.Equality
_^_ : Nat → Nat → Nat
x ^ zero = 1
x ^ suc y = x * (x ^ y)
data Enum : Set where
makeEnum : (size : Nat) → (variants : Nat) →
.{{ _ : (variants < size) ≡ true }} → Enum
five : Enum
five = makeEnum (2 ^ 32) 5
data Expr : (t : Enum) → Set where
constant : (x : Nat) → Expr five
func : ∀ {t} → Expr t → Bool
func (constant x) = false
|
{
"alphanum_fraction": 0.5883668904,
"avg_line_length": 20.3181818182,
"ext": "agda",
"hexsha": "8a371b665d4c820afcc7ffc9a9424f0587bc1fdd",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue3554.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue3554.agda",
"max_line_length": 55,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue3554.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 156,
"size": 447
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Categories.Functor where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Sigma
open import Cubical.Categories.Category
private
variable
ℓC ℓC' ℓD ℓD' : Level
record Functor (C : Precategory ℓC ℓC') (D : Precategory ℓD ℓD') : Type (ℓ-max (ℓ-max ℓC ℓC') (ℓ-max ℓD ℓD')) where
no-eta-equality
open Precategory
field
F-ob : C .ob → D .ob
F-hom : {x y : C .ob} → C [ x , y ] → D [(F-ob x) , (F-ob y)]
F-id : {x : C .ob} → F-hom (C .id x) ≡ D .id (F-ob x)
F-seq : {x y z : C .ob} (f : C [ x , y ]) (g : C [ y , z ]) → F-hom (f ⋆⟨ C ⟩ g) ≡ (F-hom f) ⋆⟨ D ⟩ (F-hom g)
isFull = (x y : _) (F[f] : D [(F-ob x) , (F-ob y)]) → ∃ (C [ x , y ]) (λ f → F-hom f ≡ F[f])
isFaithful = (x y : _) (f g : C [ x , y ]) → F-hom f ≡ F-hom g → f ≡ g
-- Functor results
module _ (C : Precategory ℓC ℓC') (D : Precategory ℓC ℓC') (F : Functor C D ) where
open Precategory
open Functor F
open CatIso
-- functors preserve isomorphisms
preserveIsosF : ∀ {x y : C .ob} → CatIso {C = C} x y → CatIso {C = D} (F-ob x) (F-ob y)
preserveIsosF {x} {y} (catiso f f⁻¹ sec' ret') =
catiso
g g⁻¹
-- sec
( (g⁻¹ ⋆⟨ D ⟩ g)
≡⟨ sym (F-seq f⁻¹ f) ⟩
F-hom (f⁻¹ ⋆⟨ C ⟩ f)
≡⟨ cong F-hom sec' ⟩
F-hom (C .id y)
≡⟨ F-id ⟩
D .id y'
∎ )
-- ret
( (g ⋆⟨ D ⟩ g⁻¹)
≡⟨ sym (F-seq f f⁻¹) ⟩
F-hom (f ⋆⟨ C ⟩ f⁻¹)
≡⟨ cong F-hom ret' ⟩
F-hom (C .id x)
≡⟨ F-id ⟩
D .id x'
∎ )
where
x' : D .ob
x' = F-ob x
y' : D .ob
y' = F-ob y
g : D [ x' , y' ]
g = F-hom f
g⁻¹ : D [ y' , x' ]
g⁻¹ = F-hom f⁻¹
|
{
"alphanum_fraction": 0.4584511023,
"avg_line_length": 25.6376811594,
"ext": "agda",
"hexsha": "a1c53762ffdc7799e1e087ac60dd2cd867de48ff",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "apabepa10/cubical",
"max_forks_repo_path": "Cubical/Categories/Functor.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "apabepa10/cubical",
"max_issues_repo_path": "Cubical/Categories/Functor.agda",
"max_line_length": 115,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "apabepa10/cubical",
"max_stars_repo_path": "Cubical/Categories/Functor.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 807,
"size": 1769
}
|
open import Agda.Builtin.Nat
bar : Nat → Nat
bar n = let _!_ : Nat → Nat → Nat
x ! y = 2 * x ! y -- should give scope error in RHS
in n ! n
|
{
"alphanum_fraction": 0.5214723926,
"avg_line_length": 20.375,
"ext": "agda",
"hexsha": "8ca45a8d35bf9fac28ea231e5b6eb1a2db0bb073",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue917.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue917.agda",
"max_line_length": 64,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue917.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 56,
"size": 163
}
|
{-# OPTIONS --safe #-}
{- Ad-hoc polymorphism -}
module AdHoc where
open import Data.Char as C
open import Data.String as S
open import Data.List as L
open import Data.Integer as I
open import Data.Nat as N
open import Data.Bool as B
open import Agda.Builtin.Nat renaming (_==_ to natEquals)
record Eq {l} (A : Set l) : Set l where
field
_===_ : A → A → Bool
open Eq ⦃ ... ⦄ public
_=/=_ : ∀ {l} {A : Set l} ⦃ _ : Eq A ⦄ → A → A → Bool
a =/= b = not (a === b)
instance
eqInt : Eq ℤ
_===_ ⦃ eqInt ⦄ (+ m) (+ n) = natEquals m n
_===_ ⦃ eqInt ⦄ (-[1+ m ]) (-[1+ n ]) = natEquals m n
_===_ ⦃ eqInt ⦄ _ _ = false
eqNat : Eq ℕ
_===_ ⦃ eqNat ⦄ = natEquals
eqChar : Eq Char
_===_ ⦃ eqChar ⦄ = C._==_
eqBool : Eq Bool
_===_ ⦃ eqBool ⦄ a b = not (a xor b)
eqStr : Eq String
_===_ ⦃ eqStr ⦄ = S._==_
eqList : ∀ {l} {A : Set l} ⦃ _ : Eq A ⦄ → Eq (List A)
_===_ ⦃ eqList ⦄ [] [] = true
_===_ ⦃ eqList ⦄ (x ∷ xs) (y ∷ ys) = (x === y) ∧ (xs === ys)
_===_ ⦃ eqList ⦄ _ _ = false
|
{
"alphanum_fraction": 0.5261083744,
"avg_line_length": 22.0652173913,
"ext": "agda",
"hexsha": "c130f0a6a1c31bd89f86aaa021338aabbba051ad",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9576d5b76e6a868992dbe52930712ac67697bed2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "anqurvanillapy/fpl",
"max_forks_repo_path": "agda/AdHoc.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9576d5b76e6a868992dbe52930712ac67697bed2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "anqurvanillapy/fpl",
"max_issues_repo_path": "agda/AdHoc.agda",
"max_line_length": 62,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9576d5b76e6a868992dbe52930712ac67697bed2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "anqurvanillapy/fpl",
"max_stars_repo_path": "agda/AdHoc.agda",
"max_stars_repo_stars_event_max_datetime": "2019-08-24T22:47:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-24T22:47:47.000Z",
"num_tokens": 442,
"size": 1015
}
|
{-# OPTIONS --safe #-}
module Cubical.Algebra.AbGroup.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport
open import Cubical.Foundations.SIP
open import Cubical.Data.Sigma
open import Cubical.Data.Unit
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.CommMonoid
open import Cubical.Algebra.Group
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.Group.DirProd
open import Cubical.Displayed.Base
open import Cubical.Displayed.Auto
open import Cubical.Displayed.Record
open import Cubical.Displayed.Universe
open Iso
private
variable
ℓ ℓ' : Level
record IsAbGroup {G : Type ℓ}
(0g : G) (_+_ : G → G → G) (-_ : G → G) : Type ℓ where
constructor isabgroup
field
isGroup : IsGroup 0g _+_ -_
comm : (x y : G) → x + y ≡ y + x
open IsGroup isGroup public
record AbGroupStr (A : Type ℓ) : Type (ℓ-suc ℓ) where
constructor abgroupstr
field
0g : A
_+_ : A → A → A
-_ : A → A
isAbGroup : IsAbGroup 0g _+_ -_
infix 8 -_
infixr 7 _+_
open IsAbGroup isAbGroup public
AbGroup : ∀ ℓ → Type (ℓ-suc ℓ)
AbGroup ℓ = TypeWithStr ℓ AbGroupStr
makeIsAbGroup : {G : Type ℓ} {0g : G} {_+_ : G → G → G} { -_ : G → G}
(is-setG : isSet G)
(assoc : (x y z : G) → x + (y + z) ≡ (x + y) + z)
(rid : (x : G) → x + 0g ≡ x)
(rinv : (x : G) → x + (- x) ≡ 0g)
(comm : (x y : G) → x + y ≡ y + x)
→ IsAbGroup 0g _+_ -_
makeIsAbGroup is-setG assoc rid rinv comm =
isabgroup (makeIsGroup is-setG assoc rid (λ x → comm _ _ ∙ rid x) rinv (λ x → comm _ _ ∙ rinv x)) comm
makeAbGroup : {G : Type ℓ} (0g : G) (_+_ : G → G → G) (-_ : G → G)
(is-setG : isSet G)
(assoc : (x y z : G) → x + (y + z) ≡ (x + y) + z)
(rid : (x : G) → x + 0g ≡ x)
(rinv : (x : G) → x + (- x) ≡ 0g)
(comm : (x y : G) → x + y ≡ y + x)
→ AbGroup ℓ
makeAbGroup 0g _+_ -_ is-setG assoc rid rinv comm =
_ , abgroupstr 0g _+_ -_ (makeIsAbGroup is-setG assoc rid rinv comm)
open GroupStr
open AbGroupStr
open IsAbGroup
AbGroupStr→GroupStr : {G : Type ℓ} → AbGroupStr G → GroupStr G
AbGroupStr→GroupStr A .1g = A .0g
AbGroupStr→GroupStr A ._·_ = A ._+_
AbGroupStr→GroupStr A .inv = A .-_
AbGroupStr→GroupStr A .isGroup = A .isAbGroup .isGroup
AbGroup→Group : AbGroup ℓ → Group ℓ
fst (AbGroup→Group A) = fst A
snd (AbGroup→Group A) = AbGroupStr→GroupStr (snd A)
Group→AbGroup : (G : Group ℓ) → ((x y : fst G) → _·_ (snd G) x y ≡ _·_ (snd G) y x) → AbGroup ℓ
fst (Group→AbGroup G comm) = fst G
AbGroupStr.0g (snd (Group→AbGroup G comm)) = 1g (snd G)
AbGroupStr._+_ (snd (Group→AbGroup G comm)) = _·_ (snd G)
AbGroupStr.- snd (Group→AbGroup G comm) = inv (snd G)
IsAbGroup.isGroup (AbGroupStr.isAbGroup (snd (Group→AbGroup G comm))) = isGroup (snd G)
IsAbGroup.comm (AbGroupStr.isAbGroup (snd (Group→AbGroup G comm))) = comm
AbGroup→CommMonoid : AbGroup ℓ → CommMonoid ℓ
AbGroup→CommMonoid (_ , abgroupstr _ _ _ G) =
_ , commmonoidstr _ _ (iscommmonoid (IsAbGroup.isMonoid G) (IsAbGroup.comm G))
isSetAbGroup : (A : AbGroup ℓ) → isSet ⟨ A ⟩
isSetAbGroup A = isSetGroup (AbGroup→Group A)
AbGroupHom : (G : AbGroup ℓ) (H : AbGroup ℓ') → Type (ℓ-max ℓ ℓ')
AbGroupHom G H = GroupHom (AbGroup→Group G) (AbGroup→Group H)
AbGroupIso : (G : AbGroup ℓ) (H : AbGroup ℓ') → Type (ℓ-max ℓ ℓ')
AbGroupIso G H = GroupIso (AbGroup→Group G) (AbGroup→Group H)
IsAbGroupEquiv : {A : Type ℓ} {B : Type ℓ'}
(G : AbGroupStr A) (e : A ≃ B) (H : AbGroupStr B) → Type (ℓ-max ℓ ℓ')
IsAbGroupEquiv G e H = IsGroupHom (AbGroupStr→GroupStr G) (e .fst) (AbGroupStr→GroupStr H)
AbGroupEquiv : (G : AbGroup ℓ) (H : AbGroup ℓ') → Type (ℓ-max ℓ ℓ')
AbGroupEquiv G H = Σ[ e ∈ (G .fst ≃ H .fst) ] IsAbGroupEquiv (G .snd) e (H .snd)
isPropIsAbGroup : {G : Type ℓ} (0g : G) (_+_ : G → G → G) (- : G → G)
→ isProp (IsAbGroup 0g _+_ -)
isPropIsAbGroup 0g _+_ -_ (isabgroup GG GC) (isabgroup HG HC) =
λ i → isabgroup (isPropIsGroup _ _ _ GG HG i) (isPropComm GC HC i)
where
isSetG : isSet _
isSetG = GG .IsGroup.isMonoid .IsMonoid.isSemigroup .IsSemigroup.is-set
isPropComm : isProp ((x y : _) → x + y ≡ y + x)
isPropComm = isPropΠ2 λ _ _ → isSetG _ _
𝒮ᴰ-AbGroup : DUARel (𝒮-Univ ℓ) AbGroupStr ℓ
𝒮ᴰ-AbGroup =
𝒮ᴰ-Record (𝒮-Univ _) IsAbGroupEquiv
(fields:
data[ _+_ ∣ autoDUARel _ _ ∣ pres· ]
data[ 0g ∣ autoDUARel _ _ ∣ pres1 ]
data[ -_ ∣ autoDUARel _ _ ∣ presinv ]
prop[ isAbGroup ∣ (λ _ _ → isPropIsAbGroup _ _ _) ])
where
open AbGroupStr
open IsGroupHom
-- Extract the characterization of equality of groups
AbGroupPath : (G H : AbGroup ℓ) → (AbGroupEquiv G H) ≃ (G ≡ H)
AbGroupPath = ∫ 𝒮ᴰ-AbGroup .UARel.ua
-- TODO: Induced structure results are temporarily inconvenient while we transition between algebra
-- representations
module _ (G : AbGroup ℓ) {A : Type ℓ} (m : A → A → A)
(e : ⟨ G ⟩ ≃ A)
(p· : ∀ x y → e .fst (G .snd ._+_ x y) ≡ m (e .fst x) (e .fst y))
where
private
module G = AbGroupStr (G .snd)
FamilyΣ : Σ[ B ∈ Type ℓ ] (B → B → B) → Type ℓ
FamilyΣ (B , n) =
Σ[ e ∈ B ]
Σ[ i ∈ (B → B) ]
IsAbGroup e n i
inducedΣ : FamilyΣ (A , m)
inducedΣ =
subst FamilyΣ
(UARel.≅→≡ (autoUARel (Σ[ B ∈ Type ℓ ] (B → B → B))) (e , p·))
(G.0g , G.-_ , G.isAbGroup)
InducedAbGroup : AbGroup ℓ
InducedAbGroup .fst = A
InducedAbGroup .snd ._+_ = m
InducedAbGroup .snd .0g = inducedΣ .fst
InducedAbGroup .snd .-_ = inducedΣ .snd .fst
InducedAbGroup .snd .isAbGroup = inducedΣ .snd .snd
InducedAbGroupPath : G ≡ InducedAbGroup
InducedAbGroupPath = AbGroupPath _ _ .fst (e , makeIsGroupHom p·)
open IsMonoid
open IsSemigroup
open IsGroup
dirProdAb : AbGroup ℓ → AbGroup ℓ' → AbGroup (ℓ-max ℓ ℓ')
dirProdAb A B =
Group→AbGroup (DirProd (AbGroup→Group A) (AbGroup→Group B))
λ p q → ΣPathP (comm (isAbGroup (snd A)) _ _
, comm (isAbGroup (snd B)) _ _)
trivialAbGroup : ∀ {ℓ} → AbGroup ℓ
fst trivialAbGroup = Unit*
0g (snd trivialAbGroup) = tt*
_+_ (snd trivialAbGroup) _ _ = tt*
(- snd trivialAbGroup) _ = tt*
is-set (isSemigroup (isMonoid (isGroup (isAbGroup (snd trivialAbGroup))))) =
isProp→isSet isPropUnit*
assoc (isSemigroup (isMonoid (isGroup (isAbGroup (snd trivialAbGroup))))) _ _ _ = refl
identity (isMonoid (isGroup (isAbGroup (snd trivialAbGroup)))) _ = refl , refl
inverse (isGroup (isAbGroup (snd trivialAbGroup))) _ = refl , refl
comm (isAbGroup (snd trivialAbGroup)) _ _ = refl
-- useful lemma
move4 : ∀ {ℓ} {A : Type ℓ} (x y z w : A) (_+_ : A → A → A)
→ ((x y z : A) → x + (y + z) ≡ (x + y) + z)
→ ((x y : A) → x + y ≡ y + x)
→ (x + y) + (z + w) ≡ ((x + z) + (y + w))
move4 x y z w _+_ assoc comm =
sym (assoc x y (z + w))
∙∙ cong (x +_) (assoc y z w ∙∙ cong (_+ w) (comm y z) ∙∙ sym (assoc z y w))
∙∙ assoc x z (y + w)
---- The type of homomorphisms A → B is an AbGroup if B is -----
module _ {ℓ ℓ' : Level} (AGr : Group ℓ) (BGr : AbGroup ℓ') where
private
strA = snd AGr
strB = snd BGr
_* = AbGroup→Group
A = fst AGr
B = fst BGr
open IsGroupHom
open AbGroupStr strB
renaming (_+_ to _+B_ ; -_ to -B_ ; 0g to 0B
; rid to ridB ; lid to lidB
; assoc to assocB ; comm to commB
; invr to invrB ; invl to invlB)
open GroupStr strA
renaming (_·_ to _∙A_ ; inv to -A_
; 1g to 1A ; rid to ridA)
trivGroupHom : GroupHom AGr (BGr *)
fst trivGroupHom x = 0B
snd trivGroupHom = makeIsGroupHom λ _ _ → sym (ridB 0B)
compHom : GroupHom AGr (BGr *) → GroupHom AGr (BGr *) → GroupHom AGr (BGr *)
fst (compHom f g) x = fst f x +B fst g x
snd (compHom f g) =
makeIsGroupHom λ x y
→ cong₂ _+B_ (pres· (snd f) x y) (pres· (snd g) x y)
∙ move4 (fst f x) (fst f y) (fst g x) (fst g y)
_+B_ assocB commB
invHom : GroupHom AGr (BGr *) → GroupHom AGr (BGr *)
fst (invHom (f , p)) x = -B f x
snd (invHom (f , p)) =
makeIsGroupHom
λ x y → cong -B_ (pres· p x y)
∙∙ GroupTheory.invDistr (BGr *) (f x) (f y)
∙∙ commB _ _
open AbGroupStr
open IsAbGroup
open IsGroup
open IsMonoid
open IsSemigroup
HomGroup : AbGroup (ℓ-max ℓ ℓ')
fst HomGroup = GroupHom AGr (BGr *)
0g (snd HomGroup) = trivGroupHom
AbGroupStr._+_ (snd HomGroup) = compHom
AbGroupStr.- snd HomGroup = invHom
is-set (isSemigroup (isMonoid (isGroup (isAbGroup (snd HomGroup))))) =
isSetGroupHom
assoc (isSemigroup (isMonoid (isGroup (isAbGroup (snd HomGroup))))) (f , p) (g , q) (h , r) =
Σ≡Prop (λ _ → isPropIsGroupHom _ _)
(funExt λ x → assocB _ _ _)
fst (identity (isMonoid (isGroup (isAbGroup (snd HomGroup)))) (f , p)) =
Σ≡Prop (λ _ → isPropIsGroupHom _ _) (funExt λ y → ridB _)
snd (identity (isMonoid (isGroup (isAbGroup (snd HomGroup)))) (f , p)) =
Σ≡Prop (λ _ → isPropIsGroupHom _ _) (funExt λ x → lidB _)
fst (inverse (isGroup (isAbGroup (snd HomGroup))) (f , p)) =
Σ≡Prop (λ _ → isPropIsGroupHom _ _) (funExt λ x → invrB (f x))
snd (inverse (isGroup (isAbGroup (snd HomGroup))) (f , p)) =
Σ≡Prop (λ _ → isPropIsGroupHom _ _) (funExt λ x → invlB (f x))
comm (isAbGroup (snd HomGroup)) (f , p) (g , q) =
Σ≡Prop (λ _ → isPropIsGroupHom _ _)
(funExt λ x → commB _ _)
|
{
"alphanum_fraction": 0.6082822086,
"avg_line_length": 34.3157894737,
"ext": "agda",
"hexsha": "1a8b245772bf61994694fff6bae9d6d9863d95fa",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1d9b9691d375659fa8ebd9cbf8b63678955b196b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "gmagaf/cubical",
"max_forks_repo_path": "Cubical/Algebra/AbGroup/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1d9b9691d375659fa8ebd9cbf8b63678955b196b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "gmagaf/cubical",
"max_issues_repo_path": "Cubical/Algebra/AbGroup/Base.agda",
"max_line_length": 104,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1d9b9691d375659fa8ebd9cbf8b63678955b196b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "gmagaf/cubical",
"max_stars_repo_path": "Cubical/Algebra/AbGroup/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3741,
"size": 9780
}
|
module _ where
data ⊤ : Set where tt : ⊤
pattern id x = x
postulate
X : Set
loops : X
loops = tt
|
{
"alphanum_fraction": 0.6057692308,
"avg_line_length": 8,
"ext": "agda",
"hexsha": "b7f814c4fd494f3e86eea1567a1c679265e4ef0a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2828.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2828.agda",
"max_line_length": 25,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2828.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 38,
"size": 104
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Existential lifting of predicates over Vectors
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Vec.Functional.Relation.Unary.Any where
open import Data.Fin.Base
open import Data.Fin.Properties
open import Data.Nat.Base
open import Data.Product as Σ using (Σ; ∃; _×_; _,_; proj₁; proj₂)
open import Data.Vec.Functional as VF hiding (map)
open import Function
open import Level using (Level)
open import Relation.Unary
private
variable
a b p q ℓ : Level
A : Set a
B : Set b
------------------------------------------------------------------------
-- Definition
Any : Pred A ℓ → ∀ {n} → Vector A n → Set ℓ
Any P xs = ∃ λ i → P (xs i)
------------------------------------------------------------------------
-- Operations
module _ {P : Pred A p} where
here : ∀ {x n} {v : Vector A n} → P x → Any P (x ∷ v)
here px = zero , px
there : ∀ {x n} {v : Vector A n} → Any P v → Any P (x ∷ v)
there = Σ.map suc id
module _ {P : Pred A p} {Q : Pred A q} where
map : P ⊆ Q → ∀ {n} → Any P {n = n} ⊆ Any Q
map p⊆q = Σ.map id p⊆q
------------------------------------------------------------------------
-- Properties of predicates preserved by Any
module _ {P : Pred A p} where
any : Decidable P → ∀ {n} → Decidable (Any P {n = n})
any p? xs = any? λ i → p? (xs i)
|
{
"alphanum_fraction": 0.4633649932,
"avg_line_length": 26.8,
"ext": "agda",
"hexsha": "e50cb24eeef2146f6431c2ffe7d34d62768e1331",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Vec/Functional/Relation/Unary/Any.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Vec/Functional/Relation/Unary/Any.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Vec/Functional/Relation/Unary/Any.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 395,
"size": 1474
}
|
module cfg where
open import jarsec using (Parser ; run-parser ; partial-parse ; _>>=_ ; _>>_ ; _<*>_)
open import Data.Bool
open import Data.List hiding (lookup)
open import Data.Vec renaming ([_] to V[_] ; _++_ to _vv_) hiding (_>>=_)
open import Data.Fin hiding (_+_)
open import Data.Char
open import Agda.Builtin.Char renaming ( primCharEquality to charEq )
open import Data.Nat
open import Relation.Binary.PropositionalEquality using (_≡_ ; refl)
open import Data.Maybe
open import Data.Sum hiding (map)
open import Data.String hiding (length ; _++_) renaming (primStringToList to 𝕊→𝕃 ; primStringFromList to 𝕃→𝕊)
open import Data.Product hiding (map)
open import Agda.Builtin.Unit
postulate
𝕃⇄𝕊 : ∀ (cs : List Char) → (𝕊→𝕃 (𝕃→𝕊 cs)) ≡ cs
_at_ : ∀ {n} {A : Set} → Vec A n → Fin n → A
(x ∷ xs) at zero = x
(x ∷ xs) at suc i = xs at i
A : Set
A = Char
data Cfg : ℕ → Set where
emp : ∀ {n} → Cfg n
eps : ∀ {n} → Cfg n
lit : ∀ {n} → A → Cfg n
var : ∀ {n} → Fin n → Cfg n
seq : ∀ {n} → Cfg n → Cfg n → Cfg n
alt : ∀ {n} → Cfg n → Cfg n → Cfg n
many : ∀ {n} → Cfg n → Cfg n
fix : ∀ {n} → Cfg (suc n) → Cfg n
Env : ℕ → Set
Env n = Vec (Cfg n) n
_⊖_ : ∀ (n : ℕ) → Fin n → ℕ
(suc n) ⊖ zero = n
(suc n) ⊖ suc i = suc (n ⊖ i)
_⊕_ : ℕ → ℕ → ℕ
zero ⊕ n = n
suc m ⊕ n = m ⊕ suc n
introd-var : ∀ {n : ℕ} (i : Fin n) → Fin (n ⊖ i) → Fin n
introd-var zero x = suc x
introd-var (suc i) zero = zero
introd-var (suc i) (suc x) = suc (introd-var i x)
introd : ∀ {n : ℕ} (i : Fin n) → Cfg (n ⊖ i) → Cfg n
introd i emp = emp
introd i eps = eps
introd i (lit l) = lit l
introd i (var x) = var (introd-var i x)
introd i (seq e₁ e₂) = seq (introd i e₁) (introd i e₂)
introd i (alt e₁ e₂) = alt (introd i e₁) (introd i e₂)
introd i (many e) = many (introd i e)
introd i (fix e) = fix (introd (suc i) e)
-- used in subst
introd-var-N : ∀ {n : ℕ} (m : ℕ) → Fin n → Fin (m ⊕ n)
introd-var-N zero x = x
introd-var-N (suc m) x = introd-var-N m (introd-var zero x)
-- used in subst
intro : ∀ {n : ℕ} → Cfg n → Cfg (suc n)
intro = introd zero
subst-var : ∀ {n : ℕ} (m : ℕ) (x : Fin n) → Cfg (m ⊕ (n ⊖ x)) → Fin n → Cfg (m ⊕ (n ⊖ x))
subst-var m zero v zero = v
subst-var m zero v (suc y) = var (introd-var-N m y)
subst-var m (suc x) v zero = var (introd-var-N m zero)
subst-var m (suc x) v (suc y) = subst-var (suc m) x v y
subst : ∀ {n : ℕ} (x : Fin n) → Cfg (n ⊖ x) → Cfg n → Cfg (n ⊖ x)
subst y v emp = emp
subst y v eps = eps
subst y v (lit l) = lit l
subst y v (var x) = subst-var zero y v x
subst y v (seq e₁ e₂) = seq (subst y v e₁) (subst y v e₂)
subst y v (alt e₁ e₂) = alt (subst y v e₁) (subst y v e₂)
subst y v (many e) = many (subst y v e)
subst y v (fix e) = fix (subst (suc y) (intro v) e)
sub : ∀ {n : ℕ} → Cfg n → Cfg (suc n) → Cfg n
sub = subst zero
data _∈[_] : List A → Cfg 0 → Set where
eps : [] ∈[ eps ]
lit : ∀ (c : A) → [ c ] ∈[ lit c ]
seq : ∀ {s₁ s₂ : List A} {cfg₁ cfg₂ : Cfg 0}
→ s₁ ∈[ cfg₁ ]
→ s₂ ∈[ cfg₂ ]
→ (s₁ ++ s₂) ∈[ seq cfg₁ cfg₂ ]
alt₁ : {s : List A} {cfg₁ cfg₂ : Cfg 0}
→ s ∈[ cfg₁ ]
→ s ∈[ alt cfg₁ cfg₂ ]
alt₂ : {s : List A} {cfg₁ cfg₂ : Cfg 0}
→ s ∈[ cfg₂ ]
→ s ∈[ alt cfg₁ cfg₂ ]
many0 : {cfg : Cfg 0}
→ [] ∈[ many cfg ]
many+ : {s₁ s₂ : List A} {cfg : Cfg 0}
→ s₁ ∈[ cfg ]
→ s₂ ∈[ many cfg ]
→ (s₁ ++ s₂) ∈[ many cfg ]
unroll : {s : List A}
→ {cfg : Cfg 1}
→ s ∈[ sub (fix cfg) cfg ]
→ s ∈[ fix cfg ]
abstract
instance
block : ⊤
block = tt
unblock : block ≡ tt
unblock = refl
delayed : ∀ {A : Set} → ⊤ → A → A
delayed tt x = x
delay : ∀ {A : Set} → A → A
delay = delayed block
{-# TERMINATING #-}
interp : Cfg 0 → Parser (List A)
interp emp = Parser.mk-parser (λ _ → [])
interp eps = Parser.mk-parser (λ str → [ ([] , str) ])
interp (lit c) = do
c′ ← jarsec.satisfy (charEq c)
jarsec.unit [ c′ ]
interp (var ())
interp (seq cfg₁ cfg₂) = do
x ← (interp cfg₁)
y ← (interp cfg₂)
jarsec.unit (x ++ y)
interp (alt cfg₁ cfg₂) = jarsec.combine (interp cfg₁) (interp cfg₂)
interp (many cfg) = interp (alt eps (seq cfg (delay (many cfg))))
interp (fix cfg) = interp (sub (fix cfg) cfg)
a : Fin 2
a = zero
b : Fin 2
b = (suc zero)
xX-or-ε : Cfg 0
xX-or-ε = fix (alt (seq (lit 'x') (var zero)) eps)
-- _ : interp xX-or-ε ≡ {! !}
-- _ = refl
_ : (𝕊→𝕃 "xx") ∈[ fix {n = 0} (alt (seq (lit 'x') (var zero)) (eps)) ]
_ = unroll (alt₁ (seq (lit 'x') (unroll (alt₁ (seq (lit 'x') (unroll (alt₂ eps)))))))
_ : (𝕊→𝕃 "xx") ∈[ xX-or-ε ]
_ =
unroll
(alt₁ (seq (lit 'x') (
unroll
(alt₁ (seq (lit 'x') (
unroll
(alt₂ eps)))))))
_ : ( 'a' ∷ 'a' ∷ []) ∈[ many (lit 'a') ]
_ = many+ (lit 'a') (many+ (lit 'a') many0)
|
{
"alphanum_fraction": 0.5471053194,
"avg_line_length": 26.0055555556,
"ext": "agda",
"hexsha": "1388f0d4fa56af0a65572d9b07d05ca7d5192e1e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "40cca331810f1d3f7dc099614ddca4fa96bd695c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jaywunder/jarsec-verified",
"max_forks_repo_path": "src/cfg.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "40cca331810f1d3f7dc099614ddca4fa96bd695c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jaywunder/jarsec-verified",
"max_issues_repo_path": "src/cfg.agda",
"max_line_length": 109,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "40cca331810f1d3f7dc099614ddca4fa96bd695c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jaywunder/jarsec-verified",
"max_stars_repo_path": "src/cfg.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1959,
"size": 4681
}
|
-- 2010-09-06 Andreas
module IrrelevantVar where
-- type checker should fail and complain that x is irrelevant and cannot be used
f : {A : Set} -> .A -> A -> A
f x y = x
|
{
"alphanum_fraction": 0.6647398844,
"avg_line_length": 19.2222222222,
"ext": "agda",
"hexsha": "53c5293ad893060bfcd78d15d7321bc313725bda",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/IrrelevantVar.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/IrrelevantVar.agda",
"max_line_length": 80,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/IrrelevantVar.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 53,
"size": 173
}
|
{-# OPTIONS --type-in-type #-}
open import Data.Unit
open import Data.Product hiding ( curry ; uncurry )
open import Data.List hiding ( concat )
open import Data.String
open import Relation.Binary.PropositionalEquality
module Spire.Examples.PropositionalLevDesc where
----------------------------------------------------------------------
Label : Set
Label = String
Enum : Set
Enum = List Label
data Tag : Enum → Set where
here : ∀{l E} → Tag (l ∷ E)
there : ∀{l E} → Tag E → Tag (l ∷ E)
Cases : (E : Enum) (P : Tag E → Set) → Set
Cases [] P = ⊤
Cases (l ∷ E) P = P here × Cases E λ t → P (there t)
case : (E : Enum) (P : Tag E → Set) (cs : Cases E P) (t : Tag E) → P t
case (l ∷ E) P (c , cs) here = c
case (l ∷ E) P (c , cs) (there t) = case E (λ t → P (there t)) cs t
UncurriedCases : (E : Enum) (P : Tag E → Set) (X : Set)
→ Set
UncurriedCases E P X = Cases E P → X
CurriedCases : (E : Enum) (P : Tag E → Set) (X : Set)
→ Set
CurriedCases [] P X = X
CurriedCases (l ∷ E) P X = P here → CurriedCases E (λ t → P (there t)) X
curryCases : (E : Enum) (P : Tag E → Set) (X : Set)
(f : UncurriedCases E P X) → CurriedCases E P X
curryCases [] P X f = f tt
curryCases (l ∷ E) P X f = λ c → curryCases E (λ t → P (there t)) X (λ cs → f (c , cs))
uncurryCases : (E : Enum) (P : Tag E → Set) (X : Set)
(f : CurriedCases E P X) → UncurriedCases E P X
uncurryCases [] P X x tt = x
uncurryCases (l ∷ E) P X f (c , cs) = uncurryCases E (λ t → P (there t)) X (f c) cs
----------------------------------------------------------------------
data Desc (I : Set) : Set₁ where
`End : (i : I) → Desc I
`Rec : (i : I) (D : Desc I) → Desc I
`Arg : (A : Set) (B : A → Desc I) → Desc I
`RecFun : (A : Set) (B : A → I) (D : Desc I) → Desc I
ISet : Set → Set₁
ISet I = I → Set
El : (I : Set) (D : Desc I) (X : ISet I) → ISet I
El I (`End j) X i = j ≡ i
El I (`Rec j D) X i = X j × El I D X i
El I (`Arg A B) X i = Σ A (λ a → El I (B a) X i)
El I (`RecFun A B D) X i = ((a : A) → X (B a)) × El I D X i
Hyps : (I : Set) (D : Desc I) (X : ISet I) (P : (i : I) → X i → Set) (i : I) (xs : El I D X i) → Set
Hyps I (`End j) X P i q = ⊤
Hyps I (`Rec j D) X P i (x , xs) = P j x × Hyps I D X P i xs
Hyps I (`Arg A B) X P i (a , b) = Hyps I (B a) X P i b
Hyps I (`RecFun A B D) X P i (f , xs) = ((a : A) → P (B a) (f a)) × Hyps I D X P i xs
----------------------------------------------------------------------
TagDesc : (I : Set) → Set
TagDesc I = Σ Enum (λ E → Cases E (λ _ → Desc I))
toCase : (I : Set) (E,cs : TagDesc I) → Tag (proj₁ E,cs) → Desc I
toCase I (E , cs) = case E (λ _ → Desc I) cs
toDesc : (I : Set) → TagDesc I → Desc I
toDesc I (E , cs) = `Arg (Tag E) (toCase I (E , cs))
----------------------------------------------------------------------
UncurriedEl : (I : Set) (D : Desc I) (X : ISet I) → Set
UncurriedEl I D X = {i : I} → El I D X i → X i
CurriedEl : (I : Set) (D : Desc I) (X : ISet I) → Set
CurriedEl I (`End i) X = X i
CurriedEl I (`Rec j D) X = (x : X j) → CurriedEl I D X
CurriedEl I (`Arg A B) X = (a : A) → CurriedEl I (B a) X
CurriedEl I (`RecFun A B D) X = ((a : A) → X (B a)) → CurriedEl I D X
curryEl : (I : Set) (D : Desc I) (X : ISet I)
(cn : UncurriedEl I D X) → CurriedEl I D X
curryEl I (`End i) X cn = cn refl
curryEl I (`Rec i D) X cn = λ x → curryEl I D X (λ xs → cn (x , xs))
curryEl I (`Arg A B) X cn = λ a → curryEl I (B a) X (λ xs → cn (a , xs))
curryEl I (`RecFun A B D) X cn = λ f → curryEl I D X (λ xs → cn (f , xs))
uncurryEl : (I : Set) (D : Desc I) (X : ISet I)
(cn : CurriedEl I D X) → UncurriedEl I D X
uncurryEl I (`End i) X cn refl = cn
uncurryEl I (`Rec i D) X cn (x , xs) = uncurryEl I D X (cn x) xs
uncurryEl I (`Arg A B) X cn (a , xs) = uncurryEl I (B a) X (cn a) xs
uncurryEl I (`RecFun A B D) X cn (f , xs) = uncurryEl I D X (cn f) xs
----------------------------------------------------------------------
CasesD : (I : Set) (E : Enum) → Set
CasesD I E = Cases E (λ _ → Desc I)
Args : (I : Set) (E : Enum) (t : Tag E) (cs : CasesD I E) → Desc I
Args I E t cs = case E (λ _ → Desc I) cs t
----------------------------------------------------------------------
data μ (I : Set) (E : Enum) (cs : CasesD I E) : I → Set where
con : (t : Tag E) → UncurriedEl I (Args I E t cs) (μ I E cs)
con2 : (I : Set) (E : Enum) (cs : CasesD I E) (t : Tag E)
→ CurriedEl I (Args I E t cs) (μ I E cs)
con2 I E cs t = curryEl I (Args I E t cs) (μ I E cs) (con t)
----------------------------------------------------------------------
UncurriedHyps : (I : Set) (D : Desc I) (X : ISet I)
(P : (i : I) → X i → Set)
(cn : {i : I} → El I D X i → X i)
→ Set
UncurriedHyps I D X P cn =
(i : I) (xs : El I D X i) → Hyps I D X P i xs → P i (cn xs)
CurriedHyps : (I : Set) (D : Desc I) (X : ISet I)
(P : (i : I) → X i → Set)
(cn : UncurriedEl I D X)
→ Set
CurriedHyps I (`End i) X P cn =
P i (cn refl)
CurriedHyps I (`Rec i D) X P cn =
(x : X i) → P i x → CurriedHyps I D X P (λ xs → cn (x , xs))
CurriedHyps I (`Arg A B) X P cn =
(a : A) → CurriedHyps I (B a) X P (λ xs → cn (a , xs))
CurriedHyps I (`RecFun A B D) X P cn =
(f : (a : A) → X (B a)) (ihf : (a : A) → P (B a) (f a)) → CurriedHyps I D X P (λ xs → cn (f , xs))
curryHyps : (I : Set) (D : Desc I) (X : ISet I)
(P : (i : I) → X i → Set)
(cn : UncurriedEl I D X)
(pf : UncurriedHyps I D X P cn)
→ CurriedHyps I D X P cn
curryHyps I (`End i) X P cn pf =
pf i refl tt
curryHyps I (`Rec i D) X P cn pf =
λ x ih → curryHyps I D X P (λ xs → cn (x , xs)) (λ i xs ihs → pf i (x , xs) (ih , ihs))
curryHyps I (`Arg A B) X P cn pf =
λ a → curryHyps I (B a) X P (λ xs → cn (a , xs)) (λ i xs ihs → pf i (a , xs) ihs)
curryHyps I (`RecFun A B D) X P cn pf =
λ f ihf → curryHyps I D X P (λ xs → cn (f , xs)) (λ i xs ihs → pf i (f , xs) (ihf , ihs))
uncurryHyps : (I : Set) (D : Desc I) (X : ISet I)
(P : (i : I) → X i → Set)
(cn : UncurriedEl I D X)
(pf : CurriedHyps I D X P cn)
→ UncurriedHyps I D X P cn
uncurryHyps I (`End .i) X P cn pf i refl tt =
pf
uncurryHyps I (`Rec j D) X P cn pf i (x , xs) (ih , ihs) =
uncurryHyps I D X P (λ ys → cn (x , ys)) (pf x ih) i xs ihs
uncurryHyps I (`Arg A B) X P cn pf i (a , xs) ihs =
uncurryHyps I (B a) X P (λ ys → cn (a , ys)) (pf a) i xs ihs
uncurryHyps I (`RecFun A B D) X P cn pf i (f , xs) (ihf , ihs) =
uncurryHyps I D X P (λ ys → cn (f , ys)) (pf f ihf) i xs ihs
----------------------------------------------------------------------
ind :
(I : Set)
(E : Enum)
(cs : CasesD I E)
(P : (i : I) → μ I E cs i → Set)
(pcon : (t : Tag E) → UncurriedHyps I (Args I E t cs) (μ I E cs) P (con t))
(i : I)
(x : μ I E cs i)
→ P i x
hyps :
(I : Set)
(E : Enum)
(cs : CasesD I E)
(P : (i : I) → μ I E cs i → Set)
(pcon : (t : Tag E) → UncurriedHyps I (Args I E t cs) (μ I E cs) P (con t))
(D : Desc I)
(i : I)
(xs : El I D (μ I E cs) i)
→ Hyps I D (μ I E cs) P i xs
ind I E cs P pcon i (con t as) = pcon t i as (hyps I E cs P pcon (Args I E t cs) i as)
hyps I E cs P pcon (`End j) i q = tt
hyps I E cs P pcon (`Rec j A) i (x , xs) = ind I E cs P pcon j x , hyps I E cs P pcon A i xs
hyps I E cs P pcon (`Arg A B) i (a , b) = hyps I E cs P pcon (B a) i b
hyps I E cs P pcon (`RecFun A B D) i (f , xs) = (λ a → ind I E cs P pcon (B a) (f a)) , hyps I E cs P pcon D i xs
----------------------------------------------------------------------
ind2 :
(I : Set)
(E : Enum)
(cs : CasesD I E)
(P : (i : I) → μ I E cs i → Set)
(pcon : (t : Tag E) → CurriedHyps I (Args I E t cs) (μ I E cs) P (con t))
(i : I)
(x : μ I E cs i)
→ P i x
ind2 I E cs P pcon i x =
ind I E cs P (λ t → uncurryHyps I (Args I E t cs) (μ I E cs) P (con t) (pcon t)) i x
elim :
(I : Set)
(E : Enum)
(cs : CasesD I E)
(P : (i : I) → μ I E cs i → Set)
→ let
Q = λ t → CurriedHyps I (Args I E t cs) (μ I E cs) P (con t)
X = (i : I) (x : μ I E cs i) → P i x
in UncurriedCases E Q X
elim I E cs P ds i x =
let Q = λ t → CurriedHyps I (Args I E t cs) (μ I E cs) P (con t)
in ind2 I E cs P (case E Q ds) i x
elim2 :
(I : Set)
(E : Enum)
(cs : CasesD I E)
(P : (i : I) → μ I E cs i → Set)
→ let
Q = λ t → CurriedHyps I (Args I E t cs) (μ I E cs) P (con t)
X = (i : I) (x : μ I E cs i) → P i x
in CurriedCases E Q X
elim2 I E cs P =
let
Q = λ t → CurriedHyps I (Args I E t cs) (μ I E cs) P (con t)
X = (i : I) (x : μ I E cs i) → P i x
in curryCases E Q X (elim I E cs P)
----------------------------------------------------------------------
ℕT : Enum
ℕT = "zero" ∷ "suc" ∷ []
VecT : Enum
VecT = "nil" ∷ "cons" ∷ []
ℕD : CasesD ⊤ ℕT
ℕD =
`End tt
, `Rec tt (`End tt)
, tt
ℕ : ⊤ → Set
ℕ = μ ⊤ ℕT ℕD
zero : ℕ tt
zero = con here refl
suc : ℕ tt → ℕ tt
suc n = con (there here) (n , refl)
zero2 : ℕ tt
zero2 = con2 ⊤ ℕT ℕD here
suc2 : ℕ tt → ℕ tt
suc2 = con2 ⊤ ℕT ℕD (there here)
VecD : (A : Set) → CasesD (ℕ tt) VecT
VecD A =
`End zero
, `Arg (ℕ tt) (λ n → `Arg A λ _ → `Rec n (`End (suc n)))
, tt
Vec : (A : Set) (n : ℕ tt) → Set
Vec A n = μ (ℕ tt) VecT (VecD A) n
nil : (A : Set) → Vec A zero
nil A = con here refl
cons : (A : Set) (n : ℕ tt) (x : A) (xs : Vec A n) → Vec A (suc n)
cons A n x xs = con (there here) (n , x , xs , refl)
nil2 : (A : Set) → Vec A zero
nil2 A = con2 (ℕ tt) VecT (VecD A) here
cons2 : (A : Set) (n : ℕ tt) (x : A) (xs : Vec A n) → Vec A (suc n)
cons2 A = con2 (ℕ tt) VecT (VecD A) (there here)
----------------------------------------------------------------------
module GenericEliminator where
add : ℕ tt → ℕ tt → ℕ tt
add = elim2 ⊤ ℕT ℕD _
(λ n → n)
(λ m ih n → suc (ih n))
tt
mult : ℕ tt → ℕ tt → ℕ tt
mult = elim2 ⊤ ℕT ℕD _
(λ n → zero)
(λ m ih n → add n (ih n))
tt
append : (A : Set) (m : ℕ tt) (xs : Vec A m) (n : ℕ tt) (ys : Vec A n) → Vec A (add m n)
append A = elim2 (ℕ tt) VecT (VecD A) _
(λ n ys → ys)
(λ m x xs ih n ys → cons A (add m n) x (ih n ys))
concat : (A : Set) (m n : ℕ tt) (xss : Vec (Vec A m) n) → Vec A (mult n m)
concat A m = elim2 (ℕ tt) VecT (VecD (Vec A m)) _
(nil A)
(λ n xs xss ih → append A m xs (mult n m) ih)
----------------------------------------------------------------------
|
{
"alphanum_fraction": 0.4754676329,
"avg_line_length": 31.613003096,
"ext": "agda",
"hexsha": "1e12795a1de1b23355a346ad926a900d1c06a654",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-08-17T21:00:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-08-17T21:00:07.000Z",
"max_forks_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "spire/spire",
"max_forks_repo_path": "formalization/agda/Spire/Examples/PropositionalLevDesc.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "spire/spire",
"max_issues_repo_path": "formalization/agda/Spire/Examples/PropositionalLevDesc.agda",
"max_line_length": 113,
"max_stars_count": 43,
"max_stars_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "spire/spire",
"max_stars_repo_path": "formalization/agda/Spire/Examples/PropositionalLevDesc.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T17:10:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-28T23:25:33.000Z",
"num_tokens": 4231,
"size": 10211
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.