Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --without-K --rewriting #-} module Sharp where open import Basics open import Flat open import lib.NType2 open import lib.Equivalence2 open import lib.types.Modality -- -------------------------------------------------------------------------------------- -- Postulating the ♯ Modality -- -------------------------------------------------------------------------------------- postulate -- Here, I've tried to implement the rules for ♯ as in Shulman as closely as possible -- to the sequents in Figure 3 of Section 3. -- I'm pretty convinced now that this approach will work -- However, as currently (02/18/19) rewrite rules do not see the ♭ modality, -- it is not fully operational (and, clearly, has not been cleaned up). -- The litmus is proving the lexness of ♯ along the lines of Shulman 3.7 {- We implement the ♯ typing operations in two ways. First, naively, as follows: -} -- Rule 1/5: Given a type A, we may form ♯ A ♯ : {i : ULevel} → Type i → Type i -- Rule 2/5: Given an a : A, we may form a^♯ : ♯ A _^♯ : {i : ULevel} {A : Type i} → A → ♯ A -- Rule 3/5: Given a crisp a :: ♯ A, we may form a ↓♯ : A _↓♯ : {@♭ i : ULevel} {@♭ A : Type i} → ♯ A ::→ A {- Rule 4/5 Given a :: A, we have that (a ^♯) ↓♯ ≡ a. Δ | ∙ ⊢ a : A ------------------------- Δ | Γ ⊢ (a ^♯) ↓♯ ≡ a : A A and a are crisp, but we can have any other context Γ appear which is fine, we just don't mention it. -} ^↓♯ : {@♭ i : ULevel} {@♭ A : Type i} (@♭ a : A) → ((a ^♯) ↓♯) ↦ a {-# REWRITE ^↓♯ #-} {- Rule 5/5 Given a : ♯ A in any context, we have (a ↓♯) ^♯ ≡ a Δ | Γ ⊢ a : ♯ A --------------- Δ | Γ ⊢ (a ↓♯) ^♯ ≡ a : ♯ A Here we can do this in any context, but for agda that might mean "factoring through" the ptwise operations first... [WARNING] This implementation needs A to be crisp, and so doesn't express the above sequent (I think...) -} ↓^♯ : {@♭ i : ULevel} {@♭ A : Type i} (@♭ a : ♯ A) → ((a ↓♯) ^♯) ↦ a {-# REWRITE ↓^♯ #-} {- Now, we will postulate "pointwise" versions of the above operations which take in an additional crisp "context" Γ or Δ. The name Γ or Δ is chosen to match the role of the explicit "context" with its analogy in Shulman. In each of these, the context either becomes cohesive or not, according to the rules from Shulman (which are reproduced here for comparison). -} {- Rule 1/5, pointwise version If one has a crisp context Γ and a type A which depends crisply on Γ, Then one may form ♯ A which depends cohesively on Γ. Or, read backwards, to construct ♯ A in the context Γ, it suffices to assume That every variable x : Γ appearing in A is crisp. Δ, Γ | ∙ ⊢ A : Type ------------------- Δ | Γ ⊢ ♯ A : Type -} -- compare to ♯ : {i : ULevel} → Type i → Type i ♯-ptwise : {@♭ i : ULevel} {@♭ Γ : Type i} {j : ULevel} (A : Γ ::→ Type j) → (Γ → Type j) {- We relate the pointwise # with the naive one in the obvious way. That is, if we apply a pointwise operation to a crisp variable of the "context", this is the same as applying the naive operation pointwise to that variable. We take this sameness to be a judgemental equality, implemented as a rewrite rule. -} ♯-law : {@♭ i : ULevel} {@♭ Γ : Type i} {j : ULevel} (A : Γ ::→ Type j) (@♭ x : Γ) → (♯-ptwise A) x ↦ ♯ (A x) {-# REWRITE ♯-law #-} {- Rule 2/5, pointwise version If one has a : A in a crisp context Γ, one may form a ^♯ : ♯ A in the cohesive context Γ. Δ, Γ | ∙ ⊢ a : A ------------------- Δ | Γ ⊢ a ^♯ : ♯ A -} ^♯-ptwise : {@♭ i : ULevel} {@♭ Γ : Type i} {j : ULevel} {A : Γ ::→ Type j} (a : (@♭ x : Γ) → A x) → (x : Γ) → (♯-ptwise A) x {- Relate the pointwise ^# with the naive one -} -- ^♯-law : {@♭ i : ULevel} {@♭ Γ : Type i} {j : ULevel} -- {A : Γ ::→ Type j} (a : (@♭ x : Γ) → A x) -- (@♭ x : Γ) → (^♯-ptwise a) x ↦ ((a x) ^♯) -- {-# REWRITE ^♯-law #-} {- Rule 3/5, pointwise version If one has a :: ♯ A in a crisp context Γ, one may form a ↓♯ : A, also in a crisp context Γ Δ | ∙ ⊢ a : ♯ A --------------- Δ | Γ ⊢ a ↓♯ : A It seems to me that to have a crisp variable of ♯ A requires A to be crisp... But this pointwise definition one doesn't. It just requires that the context is crisp. -} ↓♯-ptwise : {@♭ i : ULevel} {@♭ Δ : Type i} {j : ULevel} {A : Δ ::→ Type j} (a : (@♭ x : Δ) → (♯-ptwise A) x) → (@♭ x : Δ) → A x {- Rule 4/5, pointwise version -} ^↓♯-ptwise : {@♭ i : ULevel} {@♭ Γ : Type i} {j : ULevel} {A : Γ ::→ Type j} (a : (@♭ x : Γ) → A x) (@♭ x : Γ) → (((^♯-ptwise a) x) ↓♯) ↦ a x {- Rule 5/5, pointwise version I'm having a difficulty implementing the ptwise version of ↓^♯ that will fire whether or not A and a are crisp. I think this is because if they are, it is a special case of the ↓^♯ rule, But it is not strictly more general, since it keeps track of the "explicit context" Δ Or, if I take everything in ↓♯-ptwise to be crisp, then it doesn't typecheck at this generality. -} ↓^♯-ptwise : {@♭ i : ULevel} {j : ULevel} {@♭ Δ : Type i} {A : Δ ::→ Type j} (a : (@♭ x : Δ) → (♯-ptwise A) x) (@♭ x : Δ) → (((↓♯-ptwise a) x) ^♯) ↦ a x -- ^^^ : (♯-ptwise A) x -- ^^^^^^^^^^^ : (@♭ x : Δ) → A x -- ^^^^^^^^^^^^^^^^ : A x -- ^^^^^^^^^^^^^^^^^^^^^ : # (A x) {-# REWRITE ↓^♯-ptwise #-} -- [WARNING] When normalizing λ A x → (^♯-ptwise a) x, the rewrite ^♯-law will fire -- turning it into ((a x) ^♯), which is ill typed on cohesive x : Γ (and the typechecker -- complains) ↓♯-law : {@♭ i : ULevel} {@♭ Δ : Type i} {@♭ j : ULevel} {@♭ A : Δ ::→ Type j} (@♭ a : (@♭ x : Δ) → (♯-ptwise A) x) (@♭ x : Δ) → (↓♯-ptwise a) x ↦ ((a x) ↓♯) {-# REWRITE ↓♯-law #-} {- Finally, we define some convenient notation for the ptwise operations. To see how these work in practice, see below. -} syntax ♯-ptwise (λ γ → A) ctx = let♯ γ ::= ctx in♯-♯ A syntax ^♯-ptwise (λ γ → a) ctx = let♯ γ ::= ctx in♯ a ^^♯ ^♯-ptwise-explicit : {@♭ i : ULevel} {@♭ Γ : Type i} {j : ULevel} (A : Γ ::→ Type j) (a : (@♭ x : Γ) → A x) → (x : Γ) → (♯-ptwise A) x ^♯-ptwise-explicit A = ^♯-ptwise {A = A} syntax ^♯-ptwise-explicit A (λ γ → t) ctx = let♯ γ ::= ctx in♯ t ^^♯-in-family A syntax ↓♯-ptwise (λ γ → a) ctx = let♯ γ ::= ctx in♯ a ↓↓♯ -- ---------------------------------------------------------------------------------------------- -- End of Postulates -- ---------------------------------------------------------------------------------------------- -- We have to leave the universe levels out and assume they are crisp, -- otherwise the "context record" becomes large. -- It shouldn't matter tho, since ULevel is discrete. module _ {@♭ i j : ULevel} where private record Γ : Type (lsucc (lmax i j)) where constructor ctx field ᶜA : Type i ᶜB : Type j ᶜf : ᶜA → ᶜB ᶜa : ♯ ᶜA open Γ -- Functoriality of ♯ ♯→ : {A : Type i} {B : Type j} (f : A → B) → (♯ A) → (♯ B) ♯→ {A} {B} f a = let♯ γ ::= (ctx A B f a) in♯ (ᶜf γ (ᶜa γ ↓♯)) ^^♯ -- (f (a ↓♯)) ^♯ -- The naturality square of the unit (judgemental!) ♯→-nat : {A : Type i} {B : Type j} (f : A → B) (a : A) → ((f a) ^♯) == ((♯→ f) (a ^♯)) ♯→-nat {A} {B} f a = refl -- ♯-elmination (Shulman Theorem 3.4) {- The general form of these definitions is: Take the context (or the part of the context) you want to make crisp, and make a private record Γ with fields ᶜx for every variable x in the context. Then use the let♯ notation to crispify in the context. -} module _ {@♭ i j : ULevel} where private record Γ : Type (lsucc (lmax i j)) where constructor ctx field ᶜA : Type i ᶜB : (♯ ᶜA) → Type j ᶜf : (a : ᶜA) → ♯ (ᶜB (a ^♯)) ᶜa : ♯ ᶜA open Γ ♯-elim : {A : Type i} (B : ♯ A → Type j) (f : (a : A) → ♯ (B (a ^♯))) → ((a : ♯ A) → ♯ (B a)) ♯-elim {A} B f a = let♯ γ ::= (ctx A B f a) in♯ (ᶜf γ (ᶜa γ ↓♯)) ↓♯ ^^♯ syntax ♯-elim B (λ x → t) a = let♯ x ^♯:= a in♯ t in-family B -- Elimination with implicit family, ♯-elim' : {A : Type i} {B : ♯ A → Type j} (f : (a : A) → ♯ (B (a ^♯))) → ((a : ♯ A) → ♯ (B a)) ♯-elim' {A} {B} f a = ♯-elim {A} B f a syntax ♯-elim' (λ x → t) a = let♯ x ^♯:= a in♯ t -- Crisp eliminators ♯-elim-crisp : {@♭ A : Type i} (@♭ B : ♯ A → Type j) (f : (@♭ a : A) → ♯ (B (a ^♯))) → (@♭ a : ♯ A) → ♯ (B a) ♯-elim-crisp B f a = let♯ ᶜf ::= f in♯ ((ᶜf (a ↓♯)) ↓♯) ^^♯ syntax ♯-elim-crisp B (λ x → t) a = let♯ x ^♯::= a in♯ t in-family B -- β holds judgementally :) ♯-elim-β : {A : Type i} {B : ♯ A → Type j} (f : (a : A) → ♯ (B (a ^♯))) (a : A) → (♯-elim B f (a ^♯)) == (f a) ♯-elim-β f a = refl -- ♯-elim is inverse to precomposition by _^♯ -- This proves that ♯ is a uniquely eliminating modality ♯-universal : {A : Type i} (B : ♯ A → Type j) → ((a : ♯ A) → ♯ (B a)) ≃ ((a : A) → ♯ (B (a ^♯))) ♯-universal {A} B = equiv to fro to-fro fro-to where to : (f : (a : ♯ A) → ♯ (B a)) → (a : A) → ♯ (B (a ^♯)) to f = f ∘ _^♯ fro : ((a : A) → ♯ (B (a ^♯))) → ((a : ♯ A) → ♯ (B a)) fro = ♯-elim B to-fro : (f : (a : A) → ♯ (B (a ^♯))) → to (fro f) == f to-fro f = refl fro-to : (f : (a : ♯ A) → ♯ (B a)) → fro (to f) == f fro-to f = refl -- A type is codiscrete if the inclusion a ↦ a ^♯ is an equivalence. _is-codiscrete : {i : ULevel} (A : Type i) → Type i A is-codiscrete = (_^♯ {A = A}) is-an-equiv codisc-eq : {i : ULevel} {A : Type i} (p : A is-codiscrete) → A ≃ (♯ A) codisc-eq = _^♯ ,_ un♯ : {i : ULevel} {A : Type i} (p : A is-codiscrete) → ♯ A → A un♯ p = <– (codisc-eq p) _is-codisc-is-a-prop : {i : ULevel} (A : Type i) → (A is-codiscrete) is-a-prop A is-codisc-is-a-prop = is-equiv-is-prop -- Shulman Theorem 3.5 -- ♯ A is codiscrete. module _ {@♭ i : ULevel} where private record Γ : Type (lsucc i) where constructor ctx field ᶜA : Type i ᶜa : ♯ (♯ ᶜA) open Γ ♯-is-codiscrete : (A : Type i) → (♯ A) is-codiscrete ♯-is-codiscrete = λ A → (_^♯ {A = ♯ A}) is-an-equivalence-because fro is-inverse-by to-fro and fro-to where fro : {A : Type i} → ♯ (♯ A) → ♯ A fro {A} a = let♯ γ ::= (ctx A a) in♯ ((ᶜa γ ↓♯) ↓♯) ^^♯ to-fro : {A : Type i} → (a : ♯ (♯ A)) → ((fro a) ^♯) == a to-fro a = refl fro-to : {A : Type i} → (a : ♯ A) → fro (a ^♯) == a fro-to a = refl {- module _ {@♭ i j : ULevel} {@♭ i j : Type i} where private record Γ : Type (lsucc (lmax i j)) where constructor ctx field ᶜA : Δ ::→ Type j ᶜx : Δ open Γ ♯-ptwise-is-codiscrete : (A : Δ ::→ Type j) (x : Δ) → ((♯-ptwise A) x) is-codiscrete ♯-ptwise-is-codiscrete = λ A x → {!(_^\# {A = (♯-ptwise A) x}) is-an-equivalence-because fro is-inverse-by to-fro and fro-to!} where module _ {A : Δ ::→ Type j} {x : Δ} where fro : ♯ ((♯-ptwise A) x) → (♯-ptwise A) x fro = {!!} -- to-fro : (a : ♯ ((♯-ptwise A) x)) → ((fro a) ^♯) == a -- to-fro = {!!} -- fro-to : ∀ a → fro (a ^♯) == a -- fro-to = {!!} -} module _ {@♭ i j : ULevel} where record CTX-uncrisp {@♭ A : Type i} : Type (lsucc (lmax i j)) where constructor ctx field ᶜB : A → Type j ᶜf : (@♭ a : A) → ♯ (ᶜB a) ᶜa : A uncrisp : {@♭ A : Type i} (B : A → Type j) → ((@♭ a : A) → ♯ (B a)) → ((a : A) → ♯ (B a)) uncrisp B f a = let♯ γ ::= (ctx B f a) in♯ (((ᶜf γ) (ᶜa γ)) ↓♯) ^^♯ where open CTX-uncrisp Π-codisc : {@♭ i j : ULevel} {A : Type i} (B : A → Type j) → ((a : A) → ♯ (B a)) is-codiscrete Π-codisc {A = A} B = _^♯ is-an-equivalence-because (λ f a → let♯ g ^♯:= f in♯ (g a)) is-inverse-by (λ _ → refl) and (λ _ → refl) -- The map ♯ (x == y) → (x == y) for x y : ♯ A, following RSS Lemma 1.25 module _ {@♭ i : ULevel} {A : Type i} {x y : ♯ A} where private constx : ♯ (x == y) → ♯ A constx _ = x consty : ♯ (x == y) → ♯ A consty _ = y lemma₀ : (constx ∘ _^♯) == (consty ∘ _^♯) lemma₀ = λ= (λ p → p) lemma₁ : constx == consty lemma₁ = -- constx == consty because they are equalized by _^♯, via the universal prop of ♯ –>-is-inj (♯-universal (λ (_ : ♯ (x == y)) → A)) constx consty lemma₀ ♯-=-retract : ♯ (x == y) → x == y ♯-=-retract p = app= lemma₁ p -- To prove a type is an equivalence, it suffices to give a retract of _^♯ _is-codiscrete-because_is-retract-by_ : {@♭ i : ULevel} (A : Type i) (r : ♯ A → A) (p : (a : A) → r (a ^♯) == a) → A is-codiscrete A is-codiscrete-because r is-retract-by p = (_^♯ {A = A}) is-an-equivalence-because r is-inverse-by (λ a → -- Given an a : ♯ A, we will show ♯ ((r a)^♯ == a) (let♯ b ^♯:= a in♯ -- We suppose a is b ^♯ ((ap _^♯ (p b)) ^♯) -- apply p to b to get r (b ^♯) == b, -- then apply _^♯ to get (r b^♯)^♯ == b^♯ -- then hit it with _^♯ to get ♯ ((r b^♯)^♯ == b^♯) in-family (λ (a : ♯ A) → ((r a) ^♯) == a) -- which is ♯ ((r a)^♯ == a) by our hypothesis, ) -- and we can strip the ♯ becacuse equality types in ♯ are codiscrete. |> (♯-=-retract {x = (r a) ^♯} {a}) ) and p -- We follow RSS Lemma 1.25 =-is-codiscrete : {@♭ i : ULevel} {A : Type i} (x y : ♯ A) → (x == y) is-codiscrete =-is-codiscrete {A = A} x y = (x == y) is-codiscrete-because ♯-=-retract is-retract-by proof where abstract -- UNFINISHED proof : (p : x == y) → (♯-=-retract (p ^♯)) == p proof = trust-me where postulate trust-me : (p : x == y) → (♯-=-retract (p ^♯)) == p ♯-modality : {@♭ i : ULevel} → Modality i ♯-modality {i} = record { is-local = _is-codiscrete ; is-local-is-prop = λ {A} → A is-codisc-is-a-prop ; ◯ = ♯ ; ◯-is-local = λ {A} → ♯-is-codiscrete A ; η = _^♯ ; ◯-elim = λ {A} {B} p f a → un♯ (p a) (♯-elim B (λ a → (f a) ^♯) a) ; ◯-elim-β = λ {A} {B} p f a → <–-inv-l (codisc-eq (p (a ^♯))) (f a) ; ◯-=-is-local = =-is-codiscrete } _is-infinitesimal : {@♭ i : ULevel} → Type i → Type i _is-infinitesimal = Modality.is-◯-connected ♯-modality ♯→e : {@♭ i : ULevel} {A B : Type i} → A ≃ B → (♯ A) ≃ (♯ B) ♯→e = Modality.◯-emap ♯-modality ♯-Σ : ∀ {@♭ i} {A : Type i} (B : A → Type i) → A is-codiscrete → ((a : A) → (B a) is-codiscrete) → (Σ A B) is-codiscrete ♯-Σ {i} = (Modality.Σ-is-local {i}) ♯-modality ♯-Π : ∀ {@♭ i} {A : Type i} {B : A → Type i} (w : (a : A) → (B a) is-codiscrete) → (Π A B) is-codiscrete ♯-Π {i} = (Modality.Π-is-local {i}) ♯-modality -- Theorem 6.22 of Shulman -- Points of ♯ A are the points of A, and ♯ of the points of A is ♯ A. ♭♯-eq : {@♭ i : ULevel} {@♭ A : Type i} → ♭ (♯ A) ≃ ♭ A ♭♯-eq {A = A} = equiv to fro to-fro fro-to where to : ♭ (♯ A) → ♭ A to (a ^♭) = (a ↓♯) ^♭ fro : ♭ A → ♭ (♯ A) fro (a ^♭) = (a ^♯) ^♭ to-fro : (a : ♭ A) → to (fro a) == a to-fro (a ^♭) = refl fro-to : (a : ♭ (♯ A)) → fro (to a) == a fro-to (a ^♭) = ♭-ap _^♭ refl ♯♭-eq : {@♭ i : ULevel} {@♭ A : Type i} → ♯ (♭ A) ≃ ♯ A ♯♭-eq {A = A} = equiv to fro to-fro fro-to where to : ♯ (♭ A) → ♯ A to a = let♯ u ^♯:= a in♯ let♭ v ^♭:= u in♭ (v ^♯) fro : ♯ A → ♯ (♭ A) fro a = let♯ u ^♯:= a in♯ let♯ v ::= u in♯ (v ^♭) ^^♯ abstract to-fro : (a : ♯ A) → to (fro a) == a to-fro a = -- It suffices to show ♯ (to fro a == a), (let♯ u ^♯:= a in♯ -- which lets us assume a = u^♯ refl ^♯ -- so that the equality follows judgementally. in-family (λ a → to (fro a) == a)) |> ♯-=-retract fro-to : (a : ♯ (♭ A)) → fro (to a) == a fro-to a = -- It suffices to show ♯ (fro to a == a), (let♯ u ^♯:= a in♯ -- which lets us assume a = u^♯ with u : ♭ A, (let♭ v ^♭:= u in♭ -- so we can assume u = v^♭, refl ^♯ -- so that the equality follows judgementally. in-family (λ u → ♯ (fro (to (u ^♯)) == (u ^♯)))) in-family (λ a → fro (to a) == a)) |> ♯-=-retract -- Theorem 6.27 of Shulman -- The adjunction between ♭ and ♯ ♭♯-adjoint : {@♭ i j : ULevel} {@♭ A : Type i} {@♭ B : A → Type j} → ♭ ((a : ♭ A) → B (a ↓♭)) ≃ ♭ ((a : A) → ♯ (B a)) ♭♯-adjoint {A = A} {B = B} = equiv to fro to-fro fro-to where to : ♭ ((a : ♭ A) → B (a ↓♭)) → ♭ ((a : A) → ♯ (B a)) to (f ^♭) = (λ a → let♯ u ::= a in♯ f (u ^♭) ^^♯) ^♭ fro : ♭ ((a : A) → ♯ (B a)) → ♭ ((a : ♭ A) → B (a ↓♭)) fro (f ^♭) = (λ a → let♭ u ^♭:= a in♭ ((f u) ↓♯) in-family (λ a → B (a ↓♭))) ^♭ to-fro : ∀ f → to (fro f) == f to-fro (f ^♭) = refl fro-to : ∀ f → fro (to f) == f fro-to (f ^♭) = ♭-ap _^♭ -- We can strip ^♭ from both sides, ( λ= (λ a → let♭ u ^♭:= a in♭ -- then, working at a crisp argument u, refl -- we find both sides are judgementally the same. in-family (λ a → ♭-elim (λ a₁ → B (a₁ ↓♭)) (λ (@♭ u : _) → f (u ^♭)) a == f a) ) ) -- The "in family" gibberish just reminds agda what we are trying to prove. -- Shulman Theorem 3.7 -- ♯ is left exact, in that x^♯ == y^♯ is ♯ (x == y) module _ {@♭ i : ULevel} where private record CTX-code : Type (lsucc i) where constructor ctx field ᶜA : Type i ᶜx : ♯ ᶜA ᶜy : ♯ ᶜA code : {A : Type i} → ♯ A → ♯ A → Type i code {A} x y = let♯ γ ::= (ctx A x y) in♯-♯ (((ᶜx γ) ↓♯) == ((ᶜy γ) ↓♯)) where open CTX-code private record CTX-r : Type (lsucc i) where constructor ctx field ᶜA : Type i ᶜx : ♯ ᶜA r : {A : Type i} (x : ♯ A) → code x x r {A} x = let♯ γ ::= (ctx A x) in♯ (idp {a = (ᶜx γ) ↓♯}) ^^♯ where open CTX-r -- for some reason, I can't use refl here, I need idp??? encode : {A : Type i} {a b : ♯ A} → (a == b) → code a b encode {A} {a} {b} p = transport (λ y → code a y) p (r a) decode : {A : Type i} {a b : ♯ A} → code a b → (a == b) decode {A} {a} {b} = -- It suffices to give ♯ (code a b → a == b) by lemma. lemma a b (decode' a b) where lemma : {A : Type i} (a b : ♯ A) → ♯ (code a b → (a == b)) → code a b → (a == b) lemma a b p e = ♯-=-retract $ -- it suffices to show ♯ (a == b) let♯ q ^♯:= p in♯ ((q e) ^♯) -- so we can assume p is of the form q ^♯. decode' : {A : Type i} (a b : ♯ A) → ♯ (code a b → (a == b)) decode' {A} a b = let♯ u ^♯:= a in♯ -- By ♯-elim, we can assume a and b are of the form let♯ v ^♯:= b in♯ -- u ^♯ and v ^♯, and we'll give -- code (u ^♯) (v ^♯) → (u ^♯) == (v ^♯). (λ p → ♯-=-retract -- Assuming a code p, it suffices to give -- ♯ (u ^♯ == v ^♯). (let♯ q ^♯:= p in♯ ((ap _^♯ q)^♯)) )^♯ -- So, we let p be q^♯ -- with q : u == v, and then -- push this through the unit. in-family (λ b' → code (u ^♯) b' → (u ^♯) == b') in-family (λ a' → code a' b → a' == b) private -- context for encode-decode' record CTX-encode-decode : Type (lsucc i) where constructor ctx field ᶜA : Type i ᶜa : ♯ ᶜA ᶜb : ♯ ᶜA -- ᶜp : code ᶜa ᶜb open CTX-encode-decode {- encode-decode' : {A : Type i} {a b : ♯ A} → ♯ ((encode {a = a}{b = b})∘ decode == (idf (code a b))) encode-decode' {A} {a} {b} = let♯ γ ::= (ctx A a b) in♯ {!let♯ u ^♯:= (ᶜa γ) in♯ ? in-family (λ a' → (encode {a = a'}{b = ᶜb γ})∘ decode == (idf (code a' (ᶜb γ))))!} ^^♯-in-family (λ γ' → (encode {a = ᶜa γ'}{b = ᶜb γ'})∘ decode == (idf (code (ᶜa γ') (ᶜb γ')))) -- [WARNING] I get an error here complaining about A in (a ↓♯) == (b ↓♯) if doing this at -- p : code a b (I believe this to be because rewrite rules do not see the ♭ modality) encode-decode : {A : Type i} {a b : ♯ A} → (encode {a = a}{b = b})∘ decode == (idf (code a b)) encode-decode {A} {a} {b} = λ= (λ p → {!!}) -} -- For now, we'll just postulate it ♯-=-compare : {@♭ i : ULevel} {A : Type i} {x y : A} → ♯ (x == y) → (x ^♯) == (y ^♯) ♯-=-compare {x = x} {y = y} p = ♯-=-retract $ -- it suffices to give ♯ (x ^♯ == y ^♯) let♯ q ^♯:= p in♯ -- in which case we may assume p = q ^♯ with q : x == y ((ap _^♯ q) ^♯) -- and so we can push this through. module _ {@♭ i : ULevel} where private record CTX-♯-lex : Type (lsucc i) where constructor ctx field ᶜA : Type i ᶜx : ᶜA ᶜy : ᶜA postulate ♯-lex : {A : Type i} {x y : A} → (♯-=-compare {x = x} {y = y}) is-an-equiv ♯-lex-eq : {A : Type i} {x y : A} → (♯ (x == y)) ≃ ((x ^♯) == (y ^♯)) ♯-lex-eq {A}{x}{y} = ♯-=-compare , ♯-lex test : {A : Type i} {x y : ♯ A} → ♯ ((x ^♯) == (y ^♯) → ♯ (x == y)) test {A} {x} {y} = let♯ γ ::= (ctx (♯ A) x y) in♯ (λ p → let♯ q ::= p in♯ (♭-ap _↓♯ q) ^^♯-in-family (λ _ → (ᶜx γ == ᶜy γ))) ^^♯-in-family (λ γ → ((ᶜx γ) ^♯) == ((ᶜy γ) ^♯) → ♯ ((ᶜx γ) == (ᶜy γ))) where open CTX-♯-lex ♯-has-level-is-codisc : {@♭ i : ULevel} {A : Type i} {n : ℕ₋₂} → (has-level n (♯ A)) is-codiscrete ♯-has-level-is-codisc {i} {A} {n} = replete helper (has-level-def-eq ⁻¹) where replete = (Modality.local-is-replete {i}) ♯-modality helper : {A : Type i} {n : ℕ₋₂} → (has-level-aux n (♯ A)) is-codiscrete helper {A} {⟨-2⟩} = ♯-Σ (λ x → (y : ♯ A) → x == y) (♯-is-codiscrete A) $ λ x → ♯-Π (λ y → =-is-codiscrete x y) helper {A} {n = S n} = ♯-Π (λ x → ♯-Π (λ y → replete (replete (helper {A = (x == y)} {n}) (has-level-def-eq ⁻¹)) (≃-preserves-level-eq ((codisc-eq $ =-is-codiscrete x y) ⁻¹)))) ♯-preserves-level : {@♭ i : ULevel} {A : Type i} {n : ℕ₋₂} (p : has-level n A) → has-level n (♯ A) ♯-preserves-level {i} {A} {⟨-2⟩} p = has-level-in ( ((contr-center p)^♯) , (λ y → ♯-=-retract $ -- It suffices to prove ♯ (center == y) let♯ u ^♯:= y in♯ -- so we can assume y is u ^♯ ap _^♯ (contr-path p u) ^♯ -- and then apply _^♯ to the contractibility of A. in-family (λ y → ((contr-center p) ^♯) == y)) ) ♯-preserves-level {i} {A} {S n} p = has-level-in (λ x y → -- Given x y : ♯ A, we need to show that x == y has level n. ≃-preserves-level ((codisc-eq (=-is-codiscrete x y))⁻¹) lemma ) -- since x == y is ♯ (x == y), it will suffice to show that has level n. where lemma : {x y : ♯ A} → has-level n (♯ (x == y)) lemma {x} {y} = -- Since has-level is codiscrete on codiscretes, un♯ ♯-has-level-is-codisc $ -- we can let x and y be u^♯ and v^♯. let♯ u ^♯:= x in♯ -- Then, we use the lex-ness of ♯ and a bit of jiggling let♯ v ^♯:= y in♯ -- to show that we might as well prove the result of (≃-preserves-level (e u v) -- ♯ (u == v), which we can do by recursing. (♯-preserves-level (has-level-apply p u v)))^♯ in-family (λ y → has-level n (♯ ((u ^♯) == y))) in-family (λ x → has-level n (♯ (x == y))) where e : (u v : A) → ♯ (u == v) ≃ ♯ ((u ^♯) == (v ^♯)) e u v = ♯ (u == v) ≃⟨ codisc-eq (♯-is-codiscrete (u == v)) ⟩ ♯ (♯ (u == v)) ≃⟨ ♯→e ♯-lex-eq ⟩ ♯ ((u ^♯) == (v ^♯)) ≃∎ ♯ₙ : {@♭ i : ULevel} {n : ℕ₋₂} → (A : n -Type i) → (n -Type i) ♯ₙ A = (♯ (fst A)) , ♯-preserves-level (snd A)
{ "alphanum_fraction": 0.4205736666, "avg_line_length": 36.9404255319, "ext": "agda", "hexsha": "fc83b3365b4cb67214ec806cf65cd6d06521bd6a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "glangmead/formalization", "max_forks_repo_path": "cohesion/david_jaz_261/Sharp.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "glangmead/formalization", "max_issues_repo_path": "cohesion/david_jaz_261/Sharp.agda", "max_line_length": 103, "max_stars_count": 6, "max_stars_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "glangmead/formalization", "max_stars_repo_path": "cohesion/david_jaz_261/Sharp.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-13T05:51:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-06T17:39:22.000Z", "num_tokens": 10149, "size": 26043 }
------------------------------------------------------------------------------ -- Example of a nested recursive function using the Bove-Capretta -- method ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- From: Bove, A. and Capretta, V. (2001). Nested General Recursion -- and Partiality in Type Theory. In: Theorem Proving in Higher Order -- Logics (TPHOLs 2001). Ed. by Boulton, R. J. and Jackson, -- P. B. Vol. 2152. LNCS. Springer, pp. 121–135. module FOT.FOTC.Program.Nest.NestBC-SL where open import Data.Nat renaming ( suc to succ ) open import Data.Nat.Properties open import Induction open import Induction.Nat open import Relation.Binary ------------------------------------------------------------------------------ -- The original non-terminating function. {-# TERMINATING #-} nestI : ℕ → ℕ nestI 0 = 0 nestI (succ n) = nestI (nestI n) -- ≤′-trans : Transitive _≤′_ -- ≤′-trans i≤′j j≤′k = ≤⇒≤′ (NDTO.trans (≤′⇒≤ i≤′j) (≤′⇒≤ j≤′k)) mutual -- The domain predicate of the nest function. data NestDom : ℕ → Set where nestDom0 : NestDom 0 nestDomS : ∀ {n} → (h₁ : NestDom n) → (h₂ : NestDom (nestD n h₁)) → NestDom (succ n) -- The nest function by structural recursion on the domain predicate. nestD : ∀ n → NestDom n → ℕ nestD .0 nestDom0 = 0 nestD .(succ n) (nestDomS {n} h₁ h₂) = nestD (nestD n h₁) h₂ nestD-≤′ : ∀ n → (h : NestDom n) → nestD n h ≤′ n nestD-≤′ .0 nestDom0 = ≤′-refl nestD-≤′ .(succ n) (nestDomS {n} h₁ h₂) = ≤′-trans (≤′-trans (nestD-≤′ (nestD n h₁) h₂) (nestD-≤′ n h₁)) (≤′-step ≤′-refl) -- The nest function is total. allNestDom : ∀ n → NestDom n allNestDom = build <′-recBuilder P ih where P : ℕ → Set P = NestDom ih : ∀ y → <′-Rec P y → P y ih zero rec = nestDom0 ih (succ y) rec = nestDomS nd-y (rec (nestD y nd-y) (s≤′s (nestD-≤′ y nd-y))) where helper : ∀ x → x <′ y → P x helper x Sx≤′y = rec x (≤′-step Sx≤′y) nd-y : NestDom y nd-y = ih y helper -- The nest function. nest : ℕ → ℕ nest n = nestD n (allNestDom n)
{ "alphanum_fraction": 0.5203111495, "avg_line_length": 30.4473684211, "ext": "agda", "hexsha": "078e81c8a4f3d43d0de0f1ec6d5890277c747494", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Program/Nest/NestBC-SL.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Program/Nest/NestBC-SL.agda", "max_line_length": 79, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Program/Nest/NestBC-SL.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 779, "size": 2314 }
{- Maybe structure: X ↦ Maybe (S X) -} {-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.Structures.Relational.Maybe where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Structure open import Cubical.Foundations.RelationalStructure open import Cubical.Data.Unit open import Cubical.Data.Empty open import Cubical.Data.Maybe open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation as Trunc open import Cubical.HITs.SetQuotients open import Cubical.Structures.Maybe private variable ℓ ℓ₁ ℓ₁' ℓ₁'' : Level -- Structured relations MaybeRelStr : {S : Type ℓ → Type ℓ₁} {ℓ₁' : Level} → StrRel S ℓ₁' → StrRel (λ X → Maybe (S X)) ℓ₁' MaybeRelStr ρ R = MaybeRel (ρ R) maybeSuitableRel : {S : Type ℓ → Type ℓ₁} {ρ : StrRel S ℓ₁'} → SuitableStrRel S ρ → SuitableStrRel (MaybeStructure S) (MaybeRelStr ρ) maybeSuitableRel θ .quo (X , nothing) R _ .fst = nothing , _ maybeSuitableRel θ .quo (X , nothing) R _ .snd (nothing , _) = refl maybeSuitableRel θ .quo (X , just s) R c .fst = just (θ .quo (X , s) R c .fst .fst) , θ .quo (X , s) R c .fst .snd maybeSuitableRel θ .quo (X , just s) R c .snd (just s' , r) = cong (λ {(t , r') → just t , r'}) (θ .quo (X , s) R c .snd (s' , r)) maybeSuitableRel θ .symmetric R {nothing} {nothing} r = _ maybeSuitableRel θ .symmetric R {just s} {just t} r = θ .symmetric R r maybeSuitableRel θ .transitive R R' {nothing} {nothing} {nothing} r r' = _ maybeSuitableRel θ .transitive R R' {just s} {just t} {just u} r r' = θ .transitive R R' r r' maybeSuitableRel θ .set setX = isOfHLevelMaybe 0 (θ .set setX) maybeSuitableRel θ .prop propR nothing nothing = isOfHLevelLift 1 isPropUnit maybeSuitableRel θ .prop propR nothing (just y) = isOfHLevelLift 1 isProp⊥ maybeSuitableRel θ .prop propR (just x) nothing = isOfHLevelLift 1 isProp⊥ maybeSuitableRel θ .prop propR (just x) (just y) = θ .prop propR x y maybeRelMatchesEquiv : {S : Type ℓ → Type ℓ₁} (ρ : StrRel S ℓ₁') {ι : StrEquiv S ℓ₁''} → StrRelMatchesEquiv ρ ι → StrRelMatchesEquiv (MaybeRelStr ρ) (MaybeEquivStr ι) maybeRelMatchesEquiv ρ μ (X , nothing) (Y , nothing) _ = Lift≃Lift (idEquiv _) maybeRelMatchesEquiv ρ μ (X , nothing) (Y , just y) _ = Lift≃Lift (idEquiv _) maybeRelMatchesEquiv ρ μ (X , just x) (Y , nothing) _ = Lift≃Lift (idEquiv _) maybeRelMatchesEquiv ρ μ (X , just x) (Y , just y) = μ (X , x) (Y , y) maybeRelAction : {S : Type ℓ → Type ℓ₁} {ρ : StrRel S ℓ₁'} → StrRelAction ρ → StrRelAction (MaybeRelStr ρ) maybeRelAction α .actStr f = map-Maybe (α .actStr f) maybeRelAction α .actStrId s = funExt⁻ (cong map-Maybe (funExt (α .actStrId))) s ∙ map-Maybe-id s maybeRelAction α .actRel h nothing nothing = _ maybeRelAction α .actRel h (just s) (just t) r = α .actRel h s t r maybePositiveRel : {S : Type ℓ → Type ℓ₁} {ρ : StrRel S ℓ₁'} {θ : SuitableStrRel S ρ} → PositiveStrRel θ → PositiveStrRel (maybeSuitableRel θ) maybePositiveRel σ .act = maybeRelAction (σ .act) maybePositiveRel σ .reflexive nothing = _ maybePositiveRel σ .reflexive (just s) = σ .reflexive s maybePositiveRel σ .detransitive R R' {nothing} {nothing} r = ∣ nothing , _ , _ ∣ maybePositiveRel σ .detransitive R R' {just s} {just u} rr' = Trunc.map (λ {(t , r , r') → just t , r , r'}) (σ .detransitive R R' rr') maybePositiveRel {S = S} {ρ = ρ} {θ = θ} σ .quo {X} R = subst isEquiv (funExt (elimProp (λ _ → maybeSuitableRel θ .set squash/ _ _) (λ {nothing → refl; (just _) → refl}))) (compEquiv (isoToEquiv isom) (congMaybeEquiv (_ , σ .quo R)) .snd) where fwd : Maybe (S X) / MaybeRel (ρ (R .fst .fst)) → Maybe (S X / ρ (R .fst .fst)) fwd [ nothing ] = nothing fwd [ just s ] = just [ s ] fwd (eq/ nothing nothing r i) = nothing fwd (eq/ (just s) (just t) r i) = just (eq/ s t r i) fwd (squash/ _ _ p q i j) = isOfHLevelMaybe 0 squash/ _ _ (cong fwd p) (cong fwd q) i j bwd : Maybe (S X / ρ (R .fst .fst)) → Maybe (S X) / MaybeRel (ρ (R .fst .fst)) bwd nothing = [ nothing ] bwd (just [ s ]) = [ just s ] bwd (just (eq/ s t r i)) = eq/ (just s) (just t) r i bwd (just (squash/ _ _ p q i j)) = squash/ _ _ (cong (bwd ∘ just) p) (cong (bwd ∘ just) q) i j open Iso isom : Iso (Maybe (S X) / MaybeRel (ρ (R .fst .fst))) (Maybe (S X / ρ (R .fst .fst))) isom .fun = fwd isom .inv = bwd isom .rightInv nothing = refl isom .rightInv (just x) = elimProp {B = λ x → fwd (bwd (just x)) ≡ just x} (λ _ → isOfHLevelMaybe 0 squash/ _ _) (λ _ → refl) x isom .leftInv = elimProp (λ _ → squash/ _ _) (λ {nothing → refl; (just _) → refl}) maybeRelMatchesTransp : {S : Type ℓ → Type ℓ₁} (ρ : StrRel S ℓ₁') (α : EquivAction S) → StrRelMatchesEquiv ρ (EquivAction→StrEquiv α) → StrRelMatchesEquiv (MaybeRelStr ρ) (EquivAction→StrEquiv (maybeEquivAction α)) maybeRelMatchesTransp _ _ μ (X , nothing) (Y , nothing) _ = isContr→Equiv (isOfHLevelLift 0 isContrUnit) isContr-nothing≡nothing maybeRelMatchesTransp _ _ μ (X , nothing) (Y , just y) _ = uninhabEquiv lower ¬nothing≡just maybeRelMatchesTransp _ _ μ (X , just x) (Y , nothing) _ = uninhabEquiv lower ¬just≡nothing maybeRelMatchesTransp _ _ μ (X , just x) (Y , just y) e = compEquiv (μ (X , x) (Y , y) e) (_ , isEmbedding-just _ _)
{ "alphanum_fraction": 0.6645814167, "avg_line_length": 42.4609375, "ext": "agda", "hexsha": "5e521278e5316e83e43e0d0db20e20db2f71bf77", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Structures/Relational/Maybe.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Structures/Relational/Maybe.agda", "max_line_length": 93, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Structures/Relational/Maybe.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2049, "size": 5435 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} {- This file defines integers as equivalence classes of pairs of natural numbers using a direct & untruncated HIT definition (cf. HITs.Ints.DiffInt) and some basic operations, and the zero value: succ : DeltaInt → DeltaInt pred : DeltaInt → DeltaInt zero : {a : ℕ} → DeltaInt and conversion function for ℕ and Int: fromℕ : ℕ → DeltaInt fromInt : Int → DeltaInt toInt : DeltaInt → Int and a generalized version of cancel: cancelN : ∀ a b n → a ⊖ b ≡ (n + a) ⊖ n + b -} module Cubical.HITs.Ints.DeltaInt.Base where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat hiding (zero) open import Cubical.Data.Int hiding (abs; sgn; _+_) infixl 5 _⊖_ data DeltaInt : Type₀ where _⊖_ : ℕ → ℕ → DeltaInt cancel : ∀ a b → a ⊖ b ≡ suc a ⊖ suc b succ : DeltaInt → DeltaInt succ (x ⊖ y) = suc x ⊖ y succ (cancel a b i) = cancel (suc a) b i pred : DeltaInt → DeltaInt pred (x ⊖ y) = x ⊖ suc y pred (cancel a b i) = cancel a (suc b) i zero : {a : ℕ} → DeltaInt zero {a} = a ⊖ a fromℕ : ℕ → DeltaInt fromℕ n = n ⊖ 0 fromInt : Int → DeltaInt fromInt (pos n) = fromℕ n fromInt (negsuc n) = 0 ⊖ suc n toInt : DeltaInt → Int toInt (x ⊖ y) = x ℕ- y toInt (cancel a b i) = a ℕ- b cancelN : ∀ a b n → a ⊖ b ≡ (n + a) ⊖ n + b cancelN a b 0 = refl cancelN a b (suc n) = cancelN a b n ∙ cancel (n + a) (n + b)
{ "alphanum_fraction": 0.6436865022, "avg_line_length": 22.2258064516, "ext": "agda", "hexsha": "846dd201c708c5e10c86c4c937baa4bcda9963d4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/HITs/Ints/DeltaInt/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/HITs/Ints/DeltaInt/Base.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/HITs/Ints/DeltaInt/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 505, "size": 1378 }
-- Andreas, 2014-11-01, reported by Andrea Vezzosi -- Non-printable characters in line comments -- Soft hyphen in comment creates lexical error: -- ­ (SOFT HYPHEN \- 0xAD) -- Or parse error: -- A ­
{ "alphanum_fraction": 0.6915422886, "avg_line_length": 20.1, "ext": "agda", "hexsha": "8be305ca0b36255f7e57d9ad7a689688614b00af", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1337.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1337.agda", "max_line_length": 50, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1337.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 61, "size": 201 }
{-# OPTIONS --without-K --safe #-} -- The category of Cats is Monoidal module Categories.Category.Monoidal.Instance.Cats where open import Level open import Data.Product using (Σ; _×_; _,_; proj₁; proj₂; uncurry) open import Categories.Category open import Categories.Functor using (Functor; _∘F_) renaming (id to idF) open import Categories.Category.Instance.Cats open import Categories.Category.Monoidal open import Categories.Functor.Bifunctor open import Categories.Category.Instance.One open import Categories.Category.Product open import Categories.Category.Product.Properties import Categories.Category.Cartesian as Cartesian open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism) -- Cats is a Monoidal Category with Product as Bifunctor module Product {o ℓ e : Level} where private C = Cats o ℓ e open Cartesian C Cats-has-all : BinaryProducts Cats-has-all = record { product = λ {A} {B} → record { A×B = Product A B ; π₁ = πˡ ; π₂ = πʳ ; ⟨_,_⟩ = _※_ ; project₁ = λ {_} {h} {i} → project₁ {i = h} {j = i} ; project₂ = λ {_} {h} {i} → project₂ {i = h} {j = i} ; unique = unique } } Cats-is : Cartesian Cats-is = record { terminal = One-⊤ ; products = Cats-has-all } private module Cart = Cartesian.Cartesian Cats-is Cats-Monoidal : Monoidal C Cats-Monoidal = Cart.monoidal
{ "alphanum_fraction": 0.7083032491, "avg_line_length": 30.1086956522, "ext": "agda", "hexsha": "ba8988335ab600d24271d569552d4c81765e01b9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-categories", "max_forks_repo_path": "src/Categories/Category/Monoidal/Instance/Cats.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-categories", "max_issues_repo_path": "src/Categories/Category/Monoidal/Instance/Cats.agda", "max_line_length": 90, "max_stars_count": 5, "max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bblfish/agda-categories", "max_stars_repo_path": "src/Categories/Category/Monoidal/Instance/Cats.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 386, "size": 1385 }
module VecReplicate where open import Prelude replicate : forall {A} -> (n : Nat) -> A -> Vec A n replicate count x = {!!}
{ "alphanum_fraction": 0.648, "avg_line_length": 17.8571428571, "ext": "agda", "hexsha": "c17c069be0f795e76e59c1f54b416ee720da8f33", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "baf979ef78b5ec0f4783240b03f9547490bc5d42", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "carlostome/martin", "max_forks_repo_path": "data/test-files/VecReplicate.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "baf979ef78b5ec0f4783240b03f9547490bc5d42", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "carlostome/martin", "max_issues_repo_path": "data/test-files/VecReplicate.agda", "max_line_length": 51, "max_stars_count": null, "max_stars_repo_head_hexsha": "baf979ef78b5ec0f4783240b03f9547490bc5d42", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "carlostome/martin", "max_stars_repo_path": "data/test-files/VecReplicate.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 37, "size": 125 }
module Function where import Lvl open import Type -- The domain type of a function. domain : ∀{ℓ₁ ℓ₂} {A : Type{ℓ₁}}{B : Type{ℓ₂}} → (A → B) → Type{ℓ₁} domain{A = A} _ = A -- The codomain type of a function. codomain : ∀{ℓ₁ ℓ₂} {A : Type{ℓ₁}}{B : Type{ℓ₂}} → (A → B) → Type{ℓ₂} codomain{B = B} _ = B
{ "alphanum_fraction": 0.5844155844, "avg_line_length": 23.6923076923, "ext": "agda", "hexsha": "0de069db55154cbb7b8037390226be58b124a29f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Function.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Function.agda", "max_line_length": 69, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Function.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 136, "size": 308 }
{-# OPTIONS --without-K #-} open import HoTT module homotopy.HSpace where -- This is just an approximation because -- not all higher cells are killed. record HSpaceStructure {i} (A : Type i) : Type i where constructor hSpaceStructure field e : A μ : A → A → A μ-e-l : (a : A) → μ e a == a μ-e-r : (a : A) → μ a e == a μ-coh : μ-e-l e == μ-e-r e module ConnectedHSpace {i} (A : Type i) (c : is-connected 0 A) (hA : HSpaceStructure A) where open HSpaceStructure hA {- Given that [A] is 0-connected, to prove that each [μ a] is an equivalence we only need to prove that one of them is. But for [a] = [e], [μ a] is the identity so we’re done. -} μ-e-l-is-equiv : (a : A) → is-equiv (λ a' → μ a' a) μ-e-l-is-equiv = prop-over-connected {a = e} c (λ a → (is-equiv (λ a' → μ a' a) , is-equiv-is-prop (λ a' → μ a' a))) (transport! is-equiv (λ= μ-e-r) (idf-is-equiv A)) μ-e-r-is-equiv : (a : A) → is-equiv (μ a) μ-e-r-is-equiv = prop-over-connected {a = e} c (λ a → (is-equiv (μ a) , is-equiv-is-prop (μ a))) (transport! is-equiv (λ= μ-e-l) (idf-is-equiv A)) μ-e-l-equiv : A → A ≃ A μ-e-l-equiv a = _ , μ-e-l-is-equiv a μ-e-r-equiv : A → A ≃ A μ-e-r-equiv a = _ , μ-e-r-is-equiv a
{ "alphanum_fraction": 0.5674381484, "avg_line_length": 28.4772727273, "ext": "agda", "hexsha": "c95ca5d07c9147265d5f7314be0a37ee91118236", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/HSpace.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/HSpace.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/HSpace.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 459, "size": 1253 }
{-# OPTIONS --without-K --safe --no-sized-types --no-guardedness #-} module Agda.Builtin.Float where open import Agda.Builtin.Bool open import Agda.Builtin.Nat open import Agda.Builtin.Int open import Agda.Builtin.String postulate Float : Set {-# BUILTIN FLOAT Float #-} primitive primFloatEquality : Float → Float → Bool primFloatLess : Float → Float → Bool primFloatNumericalEquality : Float → Float → Bool primFloatNumericalLess : Float → Float → Bool primNatToFloat : Nat → Float primFloatPlus : Float → Float → Float primFloatMinus : Float → Float → Float primFloatTimes : Float → Float → Float primFloatNegate : Float → Float primFloatDiv : Float → Float → Float primFloatSqrt : Float → Float primRound : Float → Int primFloor : Float → Int primCeiling : Float → Int primExp : Float → Float primLog : Float → Float primSin : Float → Float primCos : Float → Float primTan : Float → Float primASin : Float → Float primACos : Float → Float primATan : Float → Float primATan2 : Float → Float → Float primShowFloat : Float → String
{ "alphanum_fraction": 0.6278501629, "avg_line_length": 32.3157894737, "ext": "agda", "hexsha": "e96c3c748c57538e90426841db3dfa69c1a62f89", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "phadej/agda", "max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/Float.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "phadej/agda", "max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/Float.agda", "max_line_length": 68, "max_stars_count": null, "max_stars_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "phadej/agda", "max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/Float.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 329, "size": 1228 }
module Human.Unit where -- Do I need a record and the built-in ⊤? Why? data Unit : Set where unit : Unit
{ "alphanum_fraction": 0.6851851852, "avg_line_length": 18, "ext": "agda", "hexsha": "a88b1e0e98f39e668d70e1f9f146ca635020b85f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MaisaMilena/JuiceMaker", "max_forks_repo_path": "src/Human/Unit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MaisaMilena/JuiceMaker", "max_issues_repo_path": "src/Human/Unit.agda", "max_line_length": 46, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MaisaMilena/JuiceMaker", "max_stars_repo_path": "src/Human/Unit.agda", "max_stars_repo_stars_event_max_datetime": "2020-11-28T05:46:27.000Z", "max_stars_repo_stars_event_min_datetime": "2019-03-29T17:35:20.000Z", "num_tokens": 31, "size": 108 }
module Data.Word.Primitive where postulate Word : Set Word8 : Set Word16 : Set Word32 : Set Word64 : Set {-# IMPORT Data.Word #-} {-# COMPILED_TYPE Word Data.Word.Word #-} {-# COMPILED_TYPE Word8 Data.Word.Word8 #-} {-# COMPILED_TYPE Word16 Data.Word.Word16 #-} {-# COMPILED_TYPE Word32 Data.Word.Word32 #-} {-# COMPILED_TYPE Word64 Data.Word.Word64 #-}
{ "alphanum_fraction": 0.6885245902, "avg_line_length": 22.875, "ext": "agda", "hexsha": "6eb1fb879fb0ae5f2ae333129753b573173064eb", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:14.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:40:14.000Z", "max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ilya-fiveisky/agda-system-io", "max_forks_repo_path": "src/Data/Word/Primitive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ilya-fiveisky/agda-system-io", "max_issues_repo_path": "src/Data/Word/Primitive.agda", "max_line_length": 45, "max_stars_count": 2, "max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ilya-fiveisky/agda-system-io", "max_stars_repo_path": "src/Data/Word/Primitive.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-24T13:51:16.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-02T23:17:59.000Z", "num_tokens": 102, "size": 366 }
open import Mockingbird.Forest.Base using (Forest) module Mockingbird.Forest.Birds {b ℓ} (forest : Forest {b} {ℓ}) where open import Level using (_⊔_) open import Data.Product using (_×_; ∃-syntax) open import Relation.Unary using (Pred) open import Relation.Binary using (Rel) open Forest forest -- TODO: consider using implicit arguments in the predicates, e.g. -- IsMockingbird M = ∀ {x} → M ∙ x ≈ x ∙ x. IsComposition : (A B C : Bird) → Set (b ⊔ ℓ) IsComposition A B C = ∀ x → C ∙ x ≈ A ∙ (B ∙ x) -- A forest ‘has composition’ if for every two birds A and B there exists a bird -- C = A ∘ B such that C is the composition of A and B. record HasComposition : Set (b ⊔ ℓ) where infixr 6 _∘_ field _∘_ : (A B : Bird) → Bird isComposition : ∀ A B → IsComposition A B (A ∘ B) open HasComposition ⦃ ... ⦄ public IsMockingbird : Pred Bird (b ⊔ ℓ) IsMockingbird M = ∀ x → M ∙ x ≈ x ∙ x record HasMockingbird : Set (b ⊔ ℓ) where field M : Bird isMockingbird : IsMockingbird M open HasMockingbird ⦃ ... ⦄ public infix 4 _IsFondOf_ _IsFondOf_ : Rel Bird ℓ A IsFondOf B = A ∙ B ≈ B IsEgocentric : Pred Bird ℓ IsEgocentric A = A IsFondOf A Agree : (A B x : Bird) → Set ℓ Agree A B x = A ∙ x ≈ B ∙ x IsAgreeable : Pred Bird (b ⊔ ℓ) IsAgreeable A = ∀ B → ∃[ x ] Agree A B x Compatible : Rel Bird (b ⊔ ℓ) Compatible A B = ∃[ x ] ∃[ y ] (A ∙ x ≈ y) × (B ∙ y ≈ x) IsHappy : Pred Bird (b ⊔ ℓ) IsHappy A = Compatible A A IsNormal : Pred Bird (b ⊔ ℓ) IsNormal A = ∃[ x ] A IsFondOf x infix 4 _IsFixatedOn_ _IsFixatedOn_ : Rel Bird (b ⊔ ℓ) A IsFixatedOn B = ∀ x → A ∙ x ≈ B IsHopelesslyEgocentric : Pred Bird (b ⊔ ℓ) IsHopelesslyEgocentric A = A IsFixatedOn A IsKestrel : Pred Bird (b ⊔ ℓ) IsKestrel K = ∀ x y → (K ∙ x) ∙ y ≈ x -- Alternative definition: -- IsKestrel K = ∀ x → K ∙ x IsFixatedOn x record HasKestrel : Set (b ⊔ ℓ) where field K : Bird isKestrel : IsKestrel K open HasKestrel ⦃ ... ⦄ public IsIdentity : Pred Bird (b ⊔ ℓ) IsIdentity I = ∀ x → I ∙ x ≈ x record HasIdentity : Set (b ⊔ ℓ) where field I : Bird isIdentity : IsIdentity I open HasIdentity ⦃ ... ⦄ public IsLark : Pred Bird (b ⊔ ℓ) IsLark L = ∀ x y → (L ∙ x) ∙ y ≈ x ∙ (y ∙ y) record HasLark : Set (b ⊔ ℓ) where field L : Bird isLark : IsLark L IsSageBird : Pred Bird (b ⊔ ℓ) IsSageBird Θ = ∀ x → x IsFondOf (Θ ∙ x) open HasLark ⦃ ... ⦄ public record HasSageBird : Set (b ⊔ ℓ) where field Θ : Bird isSageBird : IsSageBird Θ IsBluebird : Pred Bird (b ⊔ ℓ) IsBluebird B = ∀ x y z → B ∙ x ∙ y ∙ z ≈ x ∙ (y ∙ z) open HasSageBird ⦃ ... ⦄ public record HasBluebird : Set (b ⊔ ℓ) where field B : Bird isBluebird : IsBluebird B open HasBluebird ⦃ ... ⦄ public IsDove : Pred Bird (b ⊔ ℓ) IsDove D = ∀ x y z w → D ∙ x ∙ y ∙ z ∙ w ≈ x ∙ y ∙ (z ∙ w) record HasDove : Set (b ⊔ ℓ) where field D : Bird isDove : IsDove D open HasDove ⦃ ... ⦄ public IsBlackbird : Pred Bird (b ⊔ ℓ) IsBlackbird B₁ = ∀ x y z w → B₁ ∙ x ∙ y ∙ z ∙ w ≈ x ∙ (y ∙ z ∙ w) record HasBlackbird : Set (b ⊔ ℓ) where field B₁ : Bird isBlackbird : IsBlackbird B₁ open HasBlackbird ⦃ ... ⦄ public IsEagle : Pred Bird (b ⊔ ℓ) IsEagle E = ∀ x y z w v → E ∙ x ∙ y ∙ z ∙ w ∙ v ≈ x ∙ y ∙ (z ∙ w ∙ v) record HasEagle : Set (b ⊔ ℓ) where field E : Bird isEagle : IsEagle E open HasEagle ⦃ ... ⦄ public IsBunting : Pred Bird (b ⊔ ℓ) IsBunting B₂ = ∀ x y z w v → B₂ ∙ x ∙ y ∙ z ∙ w ∙ v ≈ x ∙ (y ∙ z ∙ w ∙ v) record HasBunting : Set (b ⊔ ℓ) where field B₂ : Bird isBunting : IsBunting B₂ open HasBunting ⦃ ... ⦄ public IsDickcissel : Pred Bird (b ⊔ ℓ) IsDickcissel D₁ = ∀ x y z w v → D₁ ∙ x ∙ y ∙ z ∙ w ∙ v ≈ x ∙ y ∙ z ∙ (w ∙ v) record HasDickcissel : Set (b ⊔ ℓ) where field D₁ : Bird isDickcissel : IsDickcissel D₁ open HasDickcissel ⦃ ... ⦄ public IsBecard : Pred Bird (b ⊔ ℓ) IsBecard B₃ = ∀ x y z w → B₃ ∙ x ∙ y ∙ z ∙ w ≈ x ∙ (y ∙ (z ∙ w)) record HasBecard : Set (b ⊔ ℓ) where field B₃ : Bird isBecard : IsBecard B₃ open HasBecard ⦃ ... ⦄ public IsDovekie : Pred Bird (b ⊔ ℓ) IsDovekie D₂ = ∀ x y z w v → D₂ ∙ x ∙ y ∙ z ∙ w ∙ v ≈ x ∙ (y ∙ z) ∙ (w ∙ v) record HasDovekie : Set (b ⊔ ℓ) where field D₂ : Bird isDovekie : IsDovekie D₂ open HasDovekie ⦃ ... ⦄ public IsBaldEagle : Pred Bird (b ⊔ ℓ) IsBaldEagle Ê = ∀ x y₁ y₂ y₃ z₁ z₂ z₃ → Ê ∙ x ∙ y₁ ∙ y₂ ∙ y₃ ∙ z₁ ∙ z₂ ∙ z₃ ≈ x ∙ (y₁ ∙ y₂ ∙ y₃) ∙ (z₁ ∙ z₂ ∙ z₃) record HasBaldEagle : Set (b ⊔ ℓ) where field Ê : Bird isBaldEagle : IsBaldEagle Ê open HasBaldEagle ⦃ ... ⦄ public IsWarbler : Pred Bird (b ⊔ ℓ) IsWarbler W = ∀ x y → W ∙ x ∙ y ≈ x ∙ y ∙ y record HasWarbler : Set (b ⊔ ℓ) where field W : Bird isWarbler : IsWarbler W open HasWarbler ⦃ ... ⦄ public IsCardinal : Pred Bird (b ⊔ ℓ) IsCardinal C = ∀ x y z → C ∙ x ∙ y ∙ z ≈ x ∙ z ∙ y record HasCardinal : Set (b ⊔ ℓ) where field C : Bird isCardinal : IsCardinal C open HasCardinal ⦃ ... ⦄ public IsThrush : Pred Bird (b ⊔ ℓ) IsThrush T = ∀ x y → T ∙ x ∙ y ≈ y ∙ x record HasThrush : Set (b ⊔ ℓ) where field T : Bird isThrush : IsThrush T open HasThrush ⦃ ... ⦄ public Commute : (x y : Bird) → Set ℓ Commute x y = x ∙ y ≈ y ∙ x IsRobin : Pred Bird (b ⊔ ℓ) IsRobin R = ∀ x y z → R ∙ x ∙ y ∙ z ≈ y ∙ z ∙ x record HasRobin : Set (b ⊔ ℓ) where field R : Bird isRobin : IsRobin R open HasRobin ⦃ ... ⦄ public IsFinch : Pred Bird (b ⊔ ℓ) IsFinch F = ∀ x y z → F ∙ x ∙ y ∙ z ≈ z ∙ y ∙ x record HasFinch : Set (b ⊔ ℓ) where field F : Bird isFinch : IsFinch F open HasFinch ⦃ ... ⦄ public IsVireo : Pred Bird (b ⊔ ℓ) IsVireo V = ∀ x y z → V ∙ x ∙ y ∙ z ≈ z ∙ x ∙ y record HasVireo : Set (b ⊔ ℓ) where field V : Bird isVireo : IsVireo V open HasVireo ⦃ ... ⦄ public IsCardinalOnceRemoved : Pred Bird (b ⊔ ℓ) IsCardinalOnceRemoved C* = ∀ x y z w → C* ∙ x ∙ y ∙ z ∙ w ≈ x ∙ y ∙ w ∙ z record HasCardinalOnceRemoved : Set (b ⊔ ℓ) where field C* : Bird isCardinalOnceRemoved : IsCardinalOnceRemoved C* open HasCardinalOnceRemoved ⦃ ... ⦄ public IsRobinOnceRemoved : Pred Bird (b ⊔ ℓ) IsRobinOnceRemoved R* = ∀ x y z w → R* ∙ x ∙ y ∙ z ∙ w ≈ x ∙ z ∙ w ∙ y record HasRobinOnceRemoved : Set (b ⊔ ℓ) where field R* : Bird isRobinOnceRemoved : IsRobinOnceRemoved R* open HasRobinOnceRemoved ⦃ ... ⦄ public IsFinchOnceRemoved : Pred Bird (b ⊔ ℓ) IsFinchOnceRemoved F* = ∀ x y z w → F* ∙ x ∙ y ∙ z ∙ w ≈ x ∙ w ∙ z ∙ y record HasFinchOnceRemoved : Set (b ⊔ ℓ) where field F* : Bird isFinchOnceRemoved : IsFinchOnceRemoved F* open HasFinchOnceRemoved ⦃ ... ⦄ public IsVireoOnceRemoved : Pred Bird (b ⊔ ℓ) IsVireoOnceRemoved V* = ∀ x y z w → V* ∙ x ∙ y ∙ z ∙ w ≈ x ∙ w ∙ y ∙ z record HasVireoOnceRemoved : Set (b ⊔ ℓ) where field V* : Bird isVireoOnceRemoved : IsVireoOnceRemoved V* open HasVireoOnceRemoved ⦃ ... ⦄ public IsCardinalTwiceRemoved : Pred Bird (b ⊔ ℓ) IsCardinalTwiceRemoved C** = ∀ x y z₁ z₂ z₃ → C** ∙ x ∙ y ∙ z₁ ∙ z₂ ∙ z₃ ≈ x ∙ y ∙ z₁ ∙ z₃ ∙ z₂ record HasCardinalTwiceRemoved : Set (b ⊔ ℓ) where field C** : Bird isCardinalTwiceRemoved : IsCardinalTwiceRemoved C** open HasCardinalTwiceRemoved ⦃ ... ⦄ public IsRobinTwiceRemoved : Pred Bird (b ⊔ ℓ) IsRobinTwiceRemoved R** = ∀ x y z₁ z₂ z₃ → R** ∙ x ∙ y ∙ z₁ ∙ z₂ ∙ z₃ ≈ x ∙ y ∙ z₂ ∙ z₃ ∙ z₁ record HasRobinTwiceRemoved : Set (b ⊔ ℓ) where field R** : Bird isRobinTwiceRemoved : IsRobinTwiceRemoved R** open HasRobinTwiceRemoved ⦃ ... ⦄ public IsFinchTwiceRemoved : Pred Bird (b ⊔ ℓ) IsFinchTwiceRemoved F** = ∀ x y z₁ z₂ z₃ → F** ∙ x ∙ y ∙ z₁ ∙ z₂ ∙ z₃ ≈ x ∙ y ∙ z₃ ∙ z₂ ∙ z₁ record HasFinchTwiceRemoved : Set (b ⊔ ℓ) where field F** : Bird isFinchTwiceRemoved : IsFinchTwiceRemoved F** open HasFinchTwiceRemoved ⦃ ... ⦄ public IsVireoTwiceRemoved : Pred Bird (b ⊔ ℓ) IsVireoTwiceRemoved V** = ∀ x y z₁ z₂ z₃ → V** ∙ x ∙ y ∙ z₁ ∙ z₂ ∙ z₃ ≈ x ∙ y ∙ z₃ ∙ z₁ ∙ z₂ record HasVireoTwiceRemoved : Set (b ⊔ ℓ) where field V** : Bird isVireoTwiceRemoved : IsVireoTwiceRemoved V** open HasVireoTwiceRemoved ⦃ ... ⦄ public IsQueerBird : Pred Bird (b ⊔ ℓ) IsQueerBird Q = ∀ x y z → Q ∙ x ∙ y ∙ z ≈ y ∙ (x ∙ z) record HasQueerBird : Set (b ⊔ ℓ) where field Q : Bird isQueerBird : IsQueerBird Q open HasQueerBird ⦃ ... ⦄ public IsQuixoticBird : Pred Bird (b ⊔ ℓ) IsQuixoticBird Q₁ = ∀ x y z → Q₁ ∙ x ∙ y ∙ z ≈ x ∙ (z ∙ y) record HasQuixoticBird : Set (b ⊔ ℓ) where field Q₁ : Bird isQuixoticBird : IsQuixoticBird Q₁ open HasQuixoticBird ⦃ ... ⦄ public IsQuizzicalBird : Pred Bird (b ⊔ ℓ) IsQuizzicalBird Q₂ = ∀ x y z → Q₂ ∙ x ∙ y ∙ z ≈ y ∙ (z ∙ x) record HasQuizzicalBird : Set (b ⊔ ℓ) where field Q₂ : Bird isQuizzicalBird : IsQuizzicalBird Q₂ open HasQuizzicalBird ⦃ ... ⦄ public IsQuirkyBird : Pred Bird (b ⊔ ℓ) IsQuirkyBird Q₃ = ∀ x y z → Q₃ ∙ x ∙ y ∙ z ≈ z ∙ (x ∙ y) record HasQuirkyBird : Set (b ⊔ ℓ) where field Q₃ : Bird isQuirkyBird : IsQuirkyBird Q₃ open HasQuirkyBird ⦃ ... ⦄ public IsQuackyBird : Pred Bird (b ⊔ ℓ) IsQuackyBird Q₄ = ∀ x y z → Q₄ ∙ x ∙ y ∙ z ≈ z ∙ (y ∙ x) record HasQuackyBird : Set (b ⊔ ℓ) where field Q₄ : Bird isQuackyBird : IsQuackyBird Q₄ open HasQuackyBird ⦃ ... ⦄ public IsGoldfinch : Pred Bird (b ⊔ ℓ) IsGoldfinch G = ∀ x y z w → G ∙ x ∙ y ∙ z ∙ w ≈ x ∙ w ∙ (y ∙ z) record HasGoldfinch : Set (b ⊔ ℓ) where field G : Bird isGoldfinch : IsGoldfinch G open HasGoldfinch ⦃ ... ⦄ public IsDoubleMockingbird : Pred Bird (b ⊔ ℓ) IsDoubleMockingbird M₂ = ∀ x y → M₂ ∙ x ∙ y ≈ x ∙ y ∙ (x ∙ y) record HasDoubleMockingbird : Set (b ⊔ ℓ) where field M₂ : Bird isDoubleMockingbird : IsDoubleMockingbird M₂ open HasDoubleMockingbird ⦃ ... ⦄ public IsConverseWarbler : Pred Bird (b ⊔ ℓ) IsConverseWarbler W′ = ∀ x y → W′ ∙ x ∙ y ≈ y ∙ x ∙ x record HasConverseWarbler : Set (b ⊔ ℓ) where field W′ : Bird isConverseWarbler : IsConverseWarbler W′ open HasConverseWarbler ⦃ ... ⦄ public IsWarblerOnceRemoved : Pred Bird (b ⊔ ℓ) IsWarblerOnceRemoved W* = ∀ x y z → W* ∙ x ∙ y ∙ z ≈ x ∙ y ∙ z ∙ z record HasWarblerOnceRemoved : Set (b ⊔ ℓ) where field W* : Bird isWarblerOnceRemoved : IsWarblerOnceRemoved W* open HasWarblerOnceRemoved ⦃ ... ⦄ public IsWarblerTwiceRemoved : Pred Bird (b ⊔ ℓ) IsWarblerTwiceRemoved W** = ∀ x y z w → W** ∙ x ∙ y ∙ z ∙ w ≈ x ∙ y ∙ z ∙ w ∙ w record HasWarblerTwiceRemoved : Set (b ⊔ ℓ) where field W** : Bird isWarblerTwiceRemoved : IsWarblerTwiceRemoved W** open HasWarblerTwiceRemoved ⦃ ... ⦄ public IsHummingbird : Pred Bird (b ⊔ ℓ) IsHummingbird H = ∀ x y z → H ∙ x ∙ y ∙ z ≈ x ∙ y ∙ z ∙ y record HasHummingbird : Set (b ⊔ ℓ) where field H : Bird isHummingbird : IsHummingbird H open HasHummingbird ⦃ ... ⦄ public IsStarling : Pred Bird (b ⊔ ℓ) IsStarling S = ∀ x y z → S ∙ x ∙ y ∙ z ≈ x ∙ z ∙ (y ∙ z) record HasStarling : Set (b ⊔ ℓ) where field S : Bird isStarling : IsStarling S open HasStarling ⦃ ... ⦄ public IsPhoenix : Pred Bird (b ⊔ ℓ) IsPhoenix Φ = ∀ x y z w → Φ ∙ x ∙ y ∙ z ∙ w ≈ x ∙ (y ∙ w) ∙ (z ∙ w) record HasPhoenix : Set (b ⊔ ℓ) where field Φ : Bird isPhoenix : IsPhoenix Φ open HasPhoenix ⦃ ... ⦄ public IsPsiBird : Pred Bird (b ⊔ ℓ) IsPsiBird Ψ = ∀ x y z w → Ψ ∙ x ∙ y ∙ z ∙ w ≈ x ∙ (y ∙ z) ∙ (y ∙ w) record HasPsiBird : Set (b ⊔ ℓ) where field Ψ : Bird isPsiBird : IsPsiBird Ψ open HasPsiBird ⦃ ... ⦄ public IsTuringBird : Pred Bird (b ⊔ ℓ) IsTuringBird U = ∀ x y → U ∙ x ∙ y ≈ y ∙ (x ∙ x ∙ y) record HasTuringBird : Set (b ⊔ ℓ) where field U : Bird isTuringBird : IsTuringBird U open HasTuringBird ⦃ ... ⦄ public IsOwl : Pred Bird (b ⊔ ℓ) IsOwl O = ∀ x y → O ∙ x ∙ y ≈ y ∙ (x ∙ y) record HasOwl : Set (b ⊔ ℓ) where field O : Bird isOwl : IsOwl O open HasOwl ⦃ ... ⦄ public IsChoosy : Pred Bird (b ⊔ ℓ) IsChoosy A = ∀ x → A IsFondOf x → IsSageBird x IsJaybird : Pred Bird (b ⊔ ℓ) IsJaybird J = ∀ x y z w → J ∙ x ∙ y ∙ z ∙ w ≈ x ∙ y ∙ (x ∙ w ∙ z) record HasJaybird : Set (b ⊔ ℓ) where field J : Bird isJaybird : IsJaybird J open HasJaybird ⦃ ... ⦄ public
{ "alphanum_fraction": 0.601125921, "avg_line_length": 23.454368932, "ext": "agda", "hexsha": "19db6bbf8b22364efec1253f6b68f8d2320e6a26", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "splintah/combinatory-logic", "max_forks_repo_path": "Mockingbird/Forest/Birds.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "splintah/combinatory-logic", "max_issues_repo_path": "Mockingbird/Forest/Birds.agda", "max_line_length": 113, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "splintah/combinatory-logic", "max_stars_repo_path": "Mockingbird/Forest/Birds.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T23:44:42.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-28T23:44:42.000Z", "num_tokens": 5327, "size": 12079 }
-- WARNING: This file was generated automatically by Vehicle -- and should not be modified manually! -- Metadata -- - Agda version: 2.6.2 -- - AISEC version: 0.1.0.1 -- - Time generated: ??? {-# OPTIONS --allow-exec #-} open import Vehicle open import Vehicle.Data.Tensor open import Data.Nat as ℕ using (ℕ) open import Data.Fin as Fin using (Fin; #_) open import Data.List module simple-tensor-temp-output where zeroD : Tensor ℕ [] zeroD = 2 oneD : Tensor ℕ (2 ∷ []) oneD = zeroD ∷ (1 ∷ []) twoD : Tensor ℕ (2 ∷ (2 ∷ [])) twoD = oneD ∷ ((2 ∷ (3 ∷ [])) ∷ []) lookup2D : ℕ lookup2D = twoD (# 0) (# 1)
{ "alphanum_fraction": 0.6305418719, "avg_line_length": 21.75, "ext": "agda", "hexsha": "640b9d65e4886db7a1c60a12bc1502788fde5665", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vehicle-lang/vehicle", "max_forks_repo_path": "test/Test/Compile/Golden/simple-tensor/simple-tensor-output.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0", "max_issues_repo_issues_event_max_datetime": "2022-03-31T20:49:39.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-07T14:09:13.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "vehicle-lang/vehicle", "max_issues_repo_path": "test/Test/Compile/Golden/simple-tensor/simple-tensor-output.agda", "max_line_length": 60, "max_stars_count": 9, "max_stars_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "vehicle-lang/vehicle", "max_stars_repo_path": "test/Test/Compile/Golden/simple-tensor/simple-tensor-output.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-17T18:51:05.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-10T12:56:42.000Z", "num_tokens": 204, "size": 609 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category -- The core of a category. -- See https://ncatlab.org/nlab/show/core module Categories.Category.Construction.Core {o ℓ e} (𝒞 : Category o ℓ e) where open import Level using (_⊔_) open import Function using (flip) open import Categories.Category.Groupoid using (Groupoid; IsGroupoid) open import Categories.Morphism 𝒞 as Morphism open import Categories.Morphism.IsoEquiv 𝒞 as IsoEquiv open Category 𝒞 open _≃_ Core : Category o (ℓ ⊔ e) e Core = record { Obj = Obj ; _⇒_ = _≅_ ; _≈_ = _≃_ ; id = ≅.refl ; _∘_ = flip ≅.trans ; assoc = ⌞ assoc ⌟ ; sym-assoc = ⌞ sym-assoc ⌟ ; identityˡ = ⌞ identityˡ ⌟ ; identityʳ = ⌞ identityʳ ⌟ ; identity² = ⌞ identity² ⌟ ; equiv = ≃-isEquivalence ; ∘-resp-≈ = λ where ⌞ eq₁ ⌟ ⌞ eq₂ ⌟ → ⌞ ∘-resp-≈ eq₁ eq₂ ⌟ } Core-isGroupoid : IsGroupoid Core Core-isGroupoid = record { _⁻¹ = ≅.sym ; iso = λ {_ _ f} → record { isoˡ = ⌞ isoˡ f ⌟ ; isoʳ = ⌞ isoʳ f ⌟ } } where open _≅_ CoreGroupoid : Groupoid o (ℓ ⊔ e) e CoreGroupoid = record { category = Core; isGroupoid = Core-isGroupoid } module CoreGroupoid = Groupoid CoreGroupoid -- Useful shorthands for reasoning about isomorphisms and morphisms of -- 𝒞 in the same module. module Shorthands where module Commutationᵢ where open Commutation Core public using () renaming ([_⇒_]⟨_≈_⟩ to [_≅_]⟨_≈_⟩) infixl 2 connectᵢ connectᵢ : ∀ {A C : Obj} (B : Obj) → A ≅ B → B ≅ C → A ≅ C connectᵢ B f g = ≅.trans f g syntax connectᵢ B f g = f ≅⟨ B ⟩ g open _≅_ public open _≃_ public open Morphism public using (module _≅_) open IsoEquiv public using (⌞_⌟) renaming (module _≃_ to _≈ᵢ_) open CoreGroupoid public using (_⁻¹) renaming ( _⇒_ to _≅_ ; _≈_ to _≈ᵢ_ ; id to idᵢ ; _∘_ to _∘ᵢ_ ; iso to ⁻¹-iso ; module Equiv to Equivᵢ ; module HomReasoning to HomReasoningᵢ ; module iso to ⁻¹-iso )
{ "alphanum_fraction": 0.5981713186, "avg_line_length": 27.7066666667, "ext": "agda", "hexsha": "4dc229fa7babb31e2e0d2dc4473ae34100f8783c", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Construction/Core.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Construction/Core.agda", "max_line_length": 79, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Construction/Core.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 801, "size": 2078 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some derivable properties ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Algebra module Algebra.Properties.AbelianGroup {a ℓ} (G : AbelianGroup a ℓ) where open AbelianGroup G open import Function open import Relation.Binary.Reasoning.Setoid setoid ------------------------------------------------------------------------ -- Publicly re-export group properties open import Algebra.Properties.Group group public ------------------------------------------------------------------------ -- Properties of abelian groups xyx⁻¹≈y : ∀ x y → x ∙ y ∙ x ⁻¹ ≈ y xyx⁻¹≈y x y = begin x ∙ y ∙ x ⁻¹ ≈⟨ ∙-congʳ $ comm _ _ ⟩ y ∙ x ∙ x ⁻¹ ≈⟨ assoc _ _ _ ⟩ y ∙ (x ∙ x ⁻¹) ≈⟨ ∙-congˡ $ inverseʳ _ ⟩ y ∙ ε ≈⟨ identityʳ _ ⟩ y ∎ ⁻¹-∙-comm : ∀ x y → x ⁻¹ ∙ y ⁻¹ ≈ (x ∙ y) ⁻¹ ⁻¹-∙-comm x y = begin x ⁻¹ ∙ y ⁻¹ ≈˘⟨ ⁻¹-anti-homo-∙ y x ⟩ (y ∙ x) ⁻¹ ≈⟨ ⁻¹-cong $ comm y x ⟩ (x ∙ y) ⁻¹ ∎
{ "alphanum_fraction": 0.4162112933, "avg_line_length": 28.1538461538, "ext": "agda", "hexsha": "a5e2368447cdc2ad67f17d869e1504ac78858af0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Algebra/Properties/AbelianGroup.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Algebra/Properties/AbelianGroup.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Algebra/Properties/AbelianGroup.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 375, "size": 1098 }
------------------------------------------------------------------------ -- By indexing the program and WHNF types on a universe one can handle -- several types at the same time ------------------------------------------------------------------------ module UniverseIndex where open import Codata.Musical.Notation open import Codata.Musical.Stream open import Data.Product infixr 5 _∷_ infixr 4 _,_ data U : Set₁ where lift : Set → U stream : U → U product : U → U → U El : U → Set El (lift A) = A El (stream a) = Stream (El a) El (product a b) = El a × El b data ElP : U → Set₁ where interleave : ∀ {a} → ElP (stream a) → ElP (stream a) → ElP (stream a) fst : ∀ {a b} → ElP (product a b) → ElP a snd : ∀ {a b} → ElP (product a b) → ElP b data ElW : U → Set₁ where _∷_ : ∀ {a} → ElW a → ElP (stream a) → ElW (stream a) _,_ : ∀ {a b} → ElW a → ElW b → ElW (product a b) ⌈_⌉ : ∀ {A} → A → ElW (lift A) interleaveW : ∀ {a} → ElW (stream a) → ElP (stream a) → ElW (stream a) interleaveW (x ∷ xs) ys = x ∷ interleave ys xs fstW : ∀ {a b} → ElW (product a b) → ElW a fstW (x , y) = x sndW : ∀ {a b} → ElW (product a b) → ElW b sndW (x , y) = y whnf : ∀ {a} → ElP a → ElW a whnf (interleave xs ys) = interleaveW (whnf xs) ys whnf (fst p) = fstW (whnf p) whnf (snd p) = sndW (whnf p) mutual ⟦_⟧W : ∀ {a} → ElW a → El a ⟦ x ∷ xs ⟧W = ⟦ x ⟧W ∷ ♯ ⟦ xs ⟧P ⟦ x , y ⟧W = (⟦ x ⟧W , ⟦ y ⟧W) ⟦ ⌈ x ⌉ ⟧W = x ⟦_⟧P : ∀ {a} → ElP a → El a ⟦ p ⟧P = ⟦ whnf p ⟧W
{ "alphanum_fraction": 0.4811197917, "avg_line_length": 26.4827586207, "ext": "agda", "hexsha": "2c6bf2a9257e071f2bc4969b2722766ef72e6e7d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "UniverseIndex.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "UniverseIndex.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "UniverseIndex.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 622, "size": 1536 }
{-# OPTIONS --without-K #-} module hott where open import hott.level public open import hott.equivalence public open import hott.loop public open import hott.univalence public open import hott.truncation public
{ "alphanum_fraction": 0.7981220657, "avg_line_length": 21.3, "ext": "agda", "hexsha": "c09f67c61797e8056d2251af051315571dac1cb0", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/hott.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/hott.agda", "max_line_length": 35, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/hott.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 44, "size": 213 }
module NamedImplicit where postulate T : Set -> Set map' : (A B : Set) -> (A -> B) -> T A -> T B map : {A B : Set} -> (A -> B) -> T A -> T B map = map' _ _ data Nat : Set where zero : Nat suc : Nat -> Nat data Bool : Set where true : Bool false : Bool id : {A : Set} -> A -> A id x = x const : {A B : Set} -> A -> B -> A const x y = x postulate unsafeCoerce : {A B : Set} -> A -> B test1 = map {B = Nat} id test2 = map {A = Nat} (const zero) test3 = map {B = Bool} (unsafeCoerce {A = Nat}) test4 = map {B = Nat -> Nat} (const {B = Bool} id) f : {A B C D : Set} -> D -> D f {D = X} = \(x : X) -> x
{ "alphanum_fraction": 0.4904458599, "avg_line_length": 16.972972973, "ext": "agda", "hexsha": "891fc59962542882f7b756aad76eb403d84b7cf9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/NamedImplicit.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/NamedImplicit.agda", "max_line_length": 50, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/NamedImplicit.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 252, "size": 628 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.ZCohomology.CohomologyRings.Sn where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Transport open import Cubical.Foundations.HLevels open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Unit open import Cubical.Data.Nat renaming (_+_ to _+n_ ; +-comm to +n-comm ; _·_ to _·n_ ; snotz to nsnotz) open import Cubical.Data.Nat.Order open import Cubical.Data.Int hiding (_+'_) open import Cubical.Data.Sigma open import Cubical.Data.Vec open import Cubical.Data.FinData open import Cubical.Relation.Nullary open import Cubical.Algebra.Group open import Cubical.Algebra.Group.Instances.Int renaming (ℤGroup to ℤG) open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.DirectSum.Base open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.FGIdeal open import Cubical.Algebra.CommRing.QuotientRing open import Cubical.Algebra.Polynomials.Multivariate.Base renaming (base to baseP) open import Cubical.Algebra.CommRing.Instances.Int renaming (ℤCommRing to ℤCR) open import Cubical.Algebra.CommRing.Instances.MultivariatePoly open import Cubical.Algebra.CommRing.Instances.MultivariatePoly-Quotient open import Cubical.Algebra.CommRing.Instances.MultivariatePoly-notationZ open import Cubical.HITs.SetQuotients as SQ renaming (_/_ to _/sq_) open import Cubical.HITs.PropositionalTruncation as PT open import Cubical.HITs.SetTruncation as ST open import Cubical.HITs.Truncation open import Cubical.HITs.Sn open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.RingStructure.CupProduct open import Cubical.ZCohomology.RingStructure.RingLaws open import Cubical.ZCohomology.RingStructure.CohomologyRing open import Cubical.ZCohomology.Groups.Sn open Iso ----------------------------------------------------------------------------- -- Somme properties over H⁰-Sⁿ≅ℤ module Properties-H⁰-Sⁿ≅ℤ where open RingStr T0m : (m : ℕ) → (z : ℤ) → coHom 0 (S₊ (suc m)) T0m m = inv (fst (H⁰-Sⁿ≅ℤ m)) T0mg : (m : ℕ) → IsGroupHom (snd ℤG) (T0m m) (coHomGr 0 (S₊ (suc m)) .snd) T0mg m = snd (invGroupIso (H⁰-Sⁿ≅ℤ m)) T0m-pres1 : (m : ℕ) → base 0 ((T0m m) 1) ≡ 1r (snd (H*R (S₊ (suc m)))) T0m-pres1 zero = refl T0m-pres1 (suc m) = refl T0m-pos0 : (m : ℕ) → {l : ℕ} → (x : coHom l (S₊ (suc m))) → (T0m m) (pos zero) ⌣ x ≡ 0ₕ l T0m-pos0 zero = ST.elim (λ x → isProp→isSet (squash₂ _ _)) λ x → refl T0m-pos0 (suc m) = ST.elim (λ x → isProp→isSet (squash₂ _ _)) λ x → refl T0m-posS : (m : ℕ) → {l : ℕ} → (k : ℕ) → (x : coHom l (S₊ (suc m))) → T0m m (pos (suc k)) ⌣ x ≡ x +ₕ (T0m m (pos k) ⌣ x) T0m-posS zero k = ST.elim (λ x → isProp→isSet (squash₂ _ _)) (λ x → refl) T0m-posS (suc m) k = ST.elim (λ x → isProp→isSet (squash₂ _ _)) (λ x → refl) T0m-neg0 : (m : ℕ) → {l : ℕ} → (x : coHom l (S₊ (suc m))) → T0m m (negsuc zero) ⌣ x ≡ -ₕ x T0m-neg0 zero = ST.elim (λ x → isProp→isSet (squash₂ _ _)) (λ x → refl) T0m-neg0 (suc m) = ST.elim (λ x → isProp→isSet (squash₂ _ _)) (λ x → refl) T0m-negS : (m : ℕ) → {l : ℕ} → (k : ℕ) → (x : coHom l (S₊ (suc m))) → T0m m (negsuc (suc k)) ⌣ x ≡ (T0m m (negsuc k) ⌣ x) +ₕ (-ₕ x) T0m-negS zero k = ST.elim (λ x → isProp→isSet (squash₂ _ _)) (λ x → refl) T0m-negS (suc m) k = ST.elim (λ x → isProp→isSet (squash₂ _ _)) (λ x → refl) ----------------------------------------------------------------------------- -- Definitions module Equiv-Sn-Properties (n : ℕ) where open IsGroupHom open Properties-H⁰-Sⁿ≅ℤ open CommRingStr (snd ℤCR) using () renaming ( 0r to 0ℤ ; 1r to 1ℤ ; _+_ to _+ℤ_ ; -_ to -ℤ_ ; _·_ to _·ℤ_ ; +Assoc to +ℤAssoc ; +Identity to +ℤIdentity ; +Lid to +ℤLid ; +Rid to +ℤRid ; +Inv to +ℤInv ; +Linv to +ℤLinv ; +Rinv to +ℤRinv ; +Comm to +ℤComm ; ·Assoc to ·ℤAssoc ; ·Identity to ·ℤIdentity ; ·Lid to ·ℤLid ; ·Rid to ·ℤRid ; ·Rdist+ to ·ℤRdist+ ; ·Ldist+ to ·ℤLdist+ ; is-set to isSetℤ ) open RingStr (snd (H*R (S₊ (suc n)))) using () renaming ( 0r to 0H* ; 1r to 1H* ; _+_ to _+H*_ ; -_ to -H*_ ; _·_ to _cup_ ; +Assoc to +H*Assoc ; +Identity to +H*Identity ; +Lid to +H*Lid ; +Rid to +H*Rid ; +Inv to +H*Inv ; +Linv to +H*Linv ; +Rinv to +H*Rinv ; +Comm to +H*Comm ; ·Assoc to ·H*Assoc ; ·Identity to ·H*Identity ; ·Lid to ·H*Lid ; ·Rid to ·H*Rid ; ·Rdist+ to ·H*Rdist+ ; ·Ldist+ to ·H*Ldist+ ; is-set to isSetH* ) open CommRingStr (snd ℤ[X]) using () renaming ( 0r to 0Pℤ ; 1r to 1Pℤ ; _+_ to _+Pℤ_ ; -_ to -Pℤ_ ; _·_ to _·Pℤ_ ; +Assoc to +PℤAssoc ; +Identity to +PℤIdentity ; +Lid to +PℤLid ; +Rid to +PℤRid ; +Inv to +PℤInv ; +Linv to +PℤLinv ; +Rinv to +PℤRinv ; +Comm to +PℤComm ; ·Assoc to ·PℤAssoc ; ·Identity to ·PℤIdentity ; ·Lid to ·PℤLid ; ·Rid to ·PℤRid ; ·Comm to ·PℤComm ; ·Rdist+ to ·PℤRdist+ ; ·Ldist+ to ·PℤLdist+ ; is-set to isSetPℤ ) open CommRingStr (snd ℤ[X]/X²) using () renaming ( 0r to 0PℤI ; 1r to 1PℤI ; _+_ to _+PℤI_ ; -_ to -PℤI_ ; _·_ to _·PℤI_ ; +Assoc to +PℤIAssoc ; +Identity to +PℤIIdentity ; +Lid to +PℤILid ; +Rid to +PℤIRid ; +Inv to +PℤIInv ; +Linv to +PℤILinv ; +Rinv to +PℤIRinv ; +Comm to +PℤIComm ; ·Assoc to ·PℤIAssoc ; ·Identity to ·PℤIIdentity ; ·Lid to ·PℤILid ; ·Rid to ·PℤIRid ; ·Rdist+ to ·PℤIRdist+ ; ·Ldist+ to ·PℤILdist+ ; is-set to isSetPℤI ) ----------------------------------------------------------------------------- -- Partition of ℕ data partℕ (k : ℕ) : Type ℓ-zero where is0 : (k ≡ 0) → partℕ k isSn : (k ≡ suc n) → partℕ k else : (k ≡ 0 → ⊥) × (k ≡ suc n → ⊥) → partℕ k part : (k : ℕ) → partℕ k part k with (discreteℕ k 0) ... | yes p = is0 p ... | no ¬p with (discreteℕ k (suc n)) ... | yes q = isSn q ... | no ¬q = else (¬p , ¬q) part0 : part 0 ≡ is0 refl part0 = refl partSn : (x : partℕ (suc n)) → x ≡ isSn refl partSn (is0 x) = ⊥.rec (nsnotz x) partSn (isSn x) = cong isSn (isSetℕ _ _ _ _) partSn (else x) = ⊥.rec (snd x refl) ----------------------------------------------------------------------------- -- As we are in the general case, the definition are now up to a path and not definitional -- Hence when need to add transport to go from coHom 0 X to coHom 0 X -- This some notation and usefull lemma substCoHom : {k l : ℕ} → (x : k ≡ l) → (a : coHom k (S₊ (suc n))) → coHom l (S₊ (suc n)) substCoHom x a = subst (λ X → coHom X (S₊ (suc n))) x a -- solve a pbl of project with the notation substReflCoHom : {k : ℕ} → (a : coHom k (S₊ (suc n))) → subst (λ X → coHom X (S₊ (suc n))) refl a ≡ a substReflCoHom a = substRefl a subst-0 : (k l : ℕ) → (x : k ≡ l) → substCoHom x (0ₕ k) ≡ 0ₕ l subst-0 k l x = J (λ l x → substCoHom x (0ₕ k) ≡ 0ₕ l) (substReflCoHom (0ₕ k)) x subst-+ : (k : ℕ) → (a b : coHom k (S₊ (suc n))) → (l : ℕ) → (x : k ≡ l) → substCoHom x (a +ₕ b) ≡ substCoHom x a +ₕ substCoHom x b subst-+ k a b l x = J (λ l x → substCoHom x (a +ₕ b) ≡ substCoHom x a +ₕ substCoHom x b) (substReflCoHom (a +ₕ b) ∙ sym (cong₂ _+ₕ_ (substReflCoHom a) (substReflCoHom b))) x subst-⌣ : (k : ℕ) → (a b : coHom k (S₊ (suc n))) → (l : ℕ) → (x : k ≡ l) → substCoHom (cong₂ _+'_ x x) (a ⌣ b) ≡ substCoHom x a ⌣ substCoHom x b subst-⌣ k a b l x = J (λ l x → substCoHom (cong₂ _+'_ x x) (a ⌣ b) ≡ substCoHom x a ⌣ substCoHom x b) (substReflCoHom (a ⌣ b) ∙ sym (cong₂ _⌣_ (substReflCoHom a) (substReflCoHom b))) x ----------------------------------------------------------------------------- -- Direct Sens on ℤ[x] ℤ[x]→H*-Sⁿ : ℤ[x] → H* (S₊ (suc n)) ℤ[x]→H*-Sⁿ = Poly-Rec-Set.f _ _ _ isSetH* 0H* base-trad _+H*_ +H*Assoc +H*Rid +H*Comm base-neutral-eq base-add-eq where base-trad : _ base-trad (zero ∷ []) a = base 0 (inv (fst (H⁰-Sⁿ≅ℤ n)) a) base-trad (one ∷ []) a = base (suc n) (inv (fst (Hⁿ-Sⁿ≅ℤ n)) a) base-trad (suc (suc k) ∷ []) a = 0H* base-neutral-eq : _ base-neutral-eq (zero ∷ []) = cong (base 0) (pres1 (snd (invGroupIso (H⁰-Sⁿ≅ℤ n)))) ∙ base-neutral _ base-neutral-eq (one ∷ []) = cong (base (suc n)) (pres1 (snd (invGroupIso (Hⁿ-Sⁿ≅ℤ n)))) ∙ base-neutral _ base-neutral-eq (suc (suc k) ∷ []) = refl base-add-eq : _ base-add-eq (zero ∷ []) a b = base-add _ _ _ ∙ cong (base 0) (sym (pres· (snd (invGroupIso (H⁰-Sⁿ≅ℤ n))) a b)) base-add-eq (one ∷ []) a b = base-add _ _ _ ∙ cong (base (suc n)) (sym (pres· (snd (invGroupIso (Hⁿ-Sⁿ≅ℤ n))) a b)) base-add-eq (suc (suc k) ∷ []) a b = +H*Rid _ ----------------------------------------------------------------------------- -- Morphism on ℤ[x] -- doesn't compute without an abstract value ! ℤ[x]→H*-Sⁿ-pres1 : ℤ[x]→H*-Sⁿ (1Pℤ) ≡ 1H* ℤ[x]→H*-Sⁿ-pres1 = T0m-pres1 n ℤ[x]→H*-Sⁿ-pres+ : (x y : ℤ[x]) → ℤ[x]→H*-Sⁿ (x +Pℤ y) ≡ ℤ[x]→H*-Sⁿ x +H* ℤ[x]→H*-Sⁿ y ℤ[x]→H*-Sⁿ-pres+ x y = refl T0 = T0m n T0g = T0mg n T0-pos0 = T0m-pos0 n T0-posS = T0m-posS n T0-neg0 = T0m-neg0 n T0-negS = T0m-negS n -- cup product on H⁰ → Hⁿ → Hⁿ module _ (l : ℕ) (Tl : (z : ℤ) → coHom l (S₊ (suc n))) (Tlg : IsGroupHom (ℤG .snd) Tl (coHomGr l (S₊ (suc n)) .snd)) where pres·-base-case-0l : (a : ℤ) → (b : ℤ) → Tl (a ·ℤ b) ≡ (T0 a) ⌣ (Tl b) pres·-base-case-0l (pos zero) b = pres1 Tlg ∙ sym (T0-pos0 (Tl b)) pres·-base-case-0l (pos (suc k)) b = pres· Tlg b (pos k ·ℤ b) ∙ cong (λ X → (Tl b) +ₕ X) (pres·-base-case-0l (pos k) b) ∙ sym (T0-posS k (Tl b)) pres·-base-case-0l (negsuc zero) b = presinv Tlg b ∙ sym (T0-neg0 (Tl b)) pres·-base-case-0l (negsuc (suc k)) b = cong Tl (+ℤComm (-ℤ b) (negsuc k ·ℤ b)) ∙ pres· Tlg (negsuc k ·ℤ b) (-ℤ b) ∙ cong₂ _+ₕ_ (pres·-base-case-0l (negsuc k) b) (presinv Tlg b) ∙ sym (T0-negS k (Tl b)) -- Nice packging of the proof pres·-base-case-int : (k : ℕ) → (a : ℤ) → (l : ℕ) → (b : ℤ) → ℤ[x]→H*-Sⁿ (baseP (k ∷ []) a ·Pℤ baseP (l ∷ []) b) ≡ ℤ[x]→H*-Sⁿ (baseP (k ∷ []) a) cup ℤ[x]→H*-Sⁿ (baseP (l ∷ []) b) pres·-base-case-int zero a zero b = cong (base 0) (pres·-base-case-0l 0 (inv (fst (H⁰-Sⁿ≅ℤ n))) (snd (invGroupIso (H⁰-Sⁿ≅ℤ n))) a b) pres·-base-case-int zero a one b = cong (base (suc n)) (pres·-base-case-0l (suc n) (inv (fst (Hⁿ-Sⁿ≅ℤ n))) (snd (invGroupIso (Hⁿ-Sⁿ≅ℤ n))) a b) pres·-base-case-int zero a (suc (suc l)) b = refl pres·-base-case-int one a zero b = cong ℤ[x]→H*-Sⁿ (·PℤComm (baseP (one ∷ []) a) (baseP (zero ∷ []) b)) ∙ pres·-base-case-int zero b one a ∙ gradCommRing (S₊ (suc n)) 0 (suc n) (inv (fst (H⁰-Sⁿ≅ℤ n)) b) (inv (fst (Hⁿ-Sⁿ≅ℤ n)) a) pres·-base-case-int one a one b = sym (base-neutral (suc n +' suc n)) ∙ cong (base (suc n +' suc n)) (isOfHLevelRetractFromIso 1 (fst (Hⁿ-Sᵐ≅0 (suc (n +n n)) n (λ p → <→≢ (n , (+n-comm n (suc n))) (sym p)))) isPropUnit _ _) pres·-base-case-int one a (suc (suc l)) b = refl pres·-base-case-int (suc (suc k)) a l b = refl pres·-base-case-vec : (v : Vec ℕ 1) → (a : ℤ) → (v' : Vec ℕ 1) → (b : ℤ) → ℤ[x]→H*-Sⁿ (baseP v a ·Pℤ baseP v' b) ≡ ℤ[x]→H*-Sⁿ (baseP v a) cup ℤ[x]→H*-Sⁿ (baseP v' b) pres·-base-case-vec (k ∷ []) a (l ∷ []) b = pres·-base-case-int k a l b -- proof of the morphism ℤ[x]→H*-Sⁿ-pres· : (x y : ℤ[x]) → ℤ[x]→H*-Sⁿ (x ·Pℤ y) ≡ ℤ[x]→H*-Sⁿ x cup ℤ[x]→H*-Sⁿ y ℤ[x]→H*-Sⁿ-pres· = Poly-Ind-Prop.f _ _ _ (λ x p q i y j → isSetH* _ _ (p y) (q y) i j) (λ y → refl) base-case λ {U V} ind-U ind-V y → cong₂ _+H*_ (ind-U y) (ind-V y) where base-case : _ base-case (k ∷ []) a = Poly-Ind-Prop.f _ _ _ (λ _ → isSetH* _ _) (sym (RingTheory.0RightAnnihilates (H*R (S₊ (suc n))) _)) (λ v' b → pres·-base-case-vec (k ∷ []) a v' b) λ {U V} ind-U ind-V → (cong₂ _+H*_ ind-U ind-V) ∙ sym (·H*Rdist+ _ _ _) ----------------------------------------------------------------------------- -- Function on ℤ[x]/x + morphism ℤ[x]→H*-Sⁿ-cancelX : (k : Fin 1) → ℤ[x]→H*-Sⁿ (<X²> k) ≡ 0H* ℤ[x]→H*-Sⁿ-cancelX zero = refl ℤ[X]→H*-Sⁿ : RingHom (CommRing→Ring ℤ[X]) (H*R (S₊ (suc n))) fst ℤ[X]→H*-Sⁿ = ℤ[x]→H*-Sⁿ snd ℤ[X]→H*-Sⁿ = makeIsRingHom ℤ[x]→H*-Sⁿ-pres1 ℤ[x]→H*-Sⁿ-pres+ ℤ[x]→H*-Sⁿ-pres· ℤ[X]/X²→H*R-Sⁿ : RingHom (CommRing→Ring ℤ[X]/X²) (H*R (S₊ (suc n))) ℤ[X]/X²→H*R-Sⁿ = Quotient-FGideal-CommRing-Ring.f ℤ[X] (H*R (S₊ (suc n))) ℤ[X]→H*-Sⁿ <X²> ℤ[x]→H*-Sⁿ-cancelX ℤ[x]/x²→H*-Sⁿ : ℤ[x]/x² → H* (S₊ (suc n)) ℤ[x]/x²→H*-Sⁿ = fst ℤ[X]/X²→H*R-Sⁿ ----------------------------------------------------------------------------- -- Converse Sens on ℤ[X] + ℤ[x]/x base-trad-H* : (k : ℕ) → (a : coHom k (S₊ (suc n))) → (x : partℕ k) → ℤ[x] base-trad-H* k a (is0 x) = baseP (0 ∷ []) (fun (fst (H⁰-Sⁿ≅ℤ n)) (substCoHom x a)) base-trad-H* k a (isSn x) = baseP (1 ∷ []) (fun (fst (Hⁿ-Sⁿ≅ℤ n)) (substCoHom x a)) base-trad-H* k a (else x) = 0Pℤ H*-Sⁿ→ℤ[x] : H* (S₊ (suc n)) → ℤ[x] H*-Sⁿ→ℤ[x] = DS-Rec-Set.f _ _ _ _ isSetPℤ 0Pℤ (λ k a → base-trad-H* k a (part k)) _+Pℤ_ +PℤAssoc +PℤRid +PℤComm (λ k → base-neutral-eq k (part k)) λ k a b → base-add-eq k a b (part k) where base-neutral-eq : (k : ℕ) → (x : partℕ k) → base-trad-H* k (0ₕ k) x ≡ 0Pℤ base-neutral-eq k (is0 x) = cong (baseP (0 ∷ [])) (cong (fun (fst (H⁰-Sⁿ≅ℤ n))) (subst-0 k 0 x)) ∙ cong (baseP (0 ∷ [])) (pres1 (snd (H⁰-Sⁿ≅ℤ n))) ∙ base-0P (0 ∷ []) base-neutral-eq k (isSn x) = cong (baseP (1 ∷ [])) (cong (fun (fst (Hⁿ-Sⁿ≅ℤ n))) (subst-0 k (suc n) x)) ∙ cong (baseP (1 ∷ [])) (pres1 (snd (Hⁿ-Sⁿ≅ℤ n))) ∙ base-0P (1 ∷ []) base-neutral-eq k (else x) = refl base-add-eq : (k : ℕ) → (a b : coHom k (S₊ (suc n))) → (x : partℕ k) → base-trad-H* k a x +Pℤ base-trad-H* k b x ≡ base-trad-H* k (a +ₕ b) x base-add-eq k a b (is0 x) = base-poly+ _ _ _ ∙ cong (baseP (0 ∷ [])) (sym (pres· (snd (H⁰-Sⁿ≅ℤ n)) _ _)) ∙ cong (baseP (0 ∷ [])) (cong (fun (fst (H⁰-Sⁿ≅ℤ n))) (sym (subst-+ k a b 0 x))) base-add-eq k a b (isSn x) = base-poly+ _ _ _ ∙ cong (baseP (1 ∷ [])) (sym (pres· (snd (Hⁿ-Sⁿ≅ℤ n)) _ _)) ∙ cong (baseP (1 ∷ [])) (cong (fun (fst (Hⁿ-Sⁿ≅ℤ n))) (sym (subst-+ k a b (suc n) x))) base-add-eq k a b (else x) = +PℤRid _ H*-Sⁿ→ℤ[x]-pres+ : (x y : H* (S₊ (suc n))) → H*-Sⁿ→ℤ[x] ( x +H* y) ≡ H*-Sⁿ→ℤ[x] x +Pℤ H*-Sⁿ→ℤ[x] y H*-Sⁿ→ℤ[x]-pres+ x y = refl H*-Sⁿ→ℤ[x]/x² : H* (S₊ (suc n)) → ℤ[x]/x² H*-Sⁿ→ℤ[x]/x² = [_] ∘ H*-Sⁿ→ℤ[x] H*-Sⁿ→ℤ[x]/x²-pres+ : (x y : H* (S₊ (suc n))) → H*-Sⁿ→ℤ[x]/x² (x +H* y) ≡ (H*-Sⁿ→ℤ[x]/x² x) +PℤI (H*-Sⁿ→ℤ[x]/x² y) H*-Sⁿ→ℤ[x]/x²-pres+ x y = refl ----------------------------------------------------------------------------- -- Section e-sect-base : (k : ℕ) → (a : coHom k (S₊ (suc n))) → (x : partℕ k) → ℤ[x]/x²→H*-Sⁿ [ (base-trad-H* k a x) ] ≡ base k a e-sect-base k a (is0 x) = cong (base 0) (leftInv (fst (H⁰-Sⁿ≅ℤ n)) (substCoHom x a)) ∙ sym (constSubstCommSlice (λ x → coHom x (S₊ (suc n))) (H* (S₊ (suc n))) base x a) e-sect-base k a (isSn x) = cong (base (suc n)) (leftInv (fst (Hⁿ-Sⁿ≅ℤ n)) (substCoHom x a)) ∙ sym (constSubstCommSlice (λ x → coHom x (S₊ (suc n))) (H* (S₊ (suc n))) base x a) e-sect-base k a (else x) = sym (base-neutral k) ∙ constSubstCommSlice ((λ x → coHom x (S₊ (suc n)))) ((H* (S₊ (suc n)))) base (suc-predℕ k (fst x)) (0ₕ k) ∙ cong (base (suc (predℕ k))) ((isOfHLevelRetractFromIso 1 (fst (Hⁿ-Sᵐ≅0 (predℕ k) n λ p → snd x (suc-predℕ k (fst x) ∙ cong suc p))) isPropUnit _ _)) ∙ sym (constSubstCommSlice ((λ x → coHom x (S₊ (suc n)))) ((H* (S₊ (suc n)))) base (suc-predℕ k (fst x)) a) e-sect : (x : H* (S₊ (suc n))) → ℤ[x]/x²→H*-Sⁿ (H*-Sⁿ→ℤ[x]/x² x) ≡ x e-sect = DS-Ind-Prop.f _ _ _ _ (λ _ → isSetH* _ _) refl (λ k a → e-sect-base k a (part k)) λ {U V} ind-U ind-V → cong₂ _+H*_ ind-U ind-V ----------------------------------------------------------------------------- -- Retraction e-retr : (x : ℤ[x]/x²) → H*-Sⁿ→ℤ[x]/x² (ℤ[x]/x²→H*-Sⁿ x) ≡ x e-retr = SQ.elimProp (λ _ → isSetPℤI _ _) (Poly-Ind-Prop.f _ _ _ (λ _ → isSetPℤI _ _) refl base-case λ {U V} ind-U ind-V → cong₂ _+PℤI_ ind-U ind-V) where base-case : _ base-case (zero ∷ []) a = cong [_] (cong (base-trad-H* 0 (inv (fst (H⁰-Sⁿ≅ℤ n)) a)) part0) ∙ cong [_] (cong (baseP (0 ∷ [])) (cong (fun (fst (H⁰-Sⁿ≅ℤ n))) (substReflCoHom (inv (fst (H⁰-Sⁿ≅ℤ n)) a)))) ∙ cong [_] (cong (baseP (0 ∷ [])) (rightInv (fst (H⁰-Sⁿ≅ℤ n)) a)) base-case (one ∷ []) a = cong [_] (cong (base-trad-H* (suc n) (inv (fst (Hⁿ-Sⁿ≅ℤ n)) a)) (partSn (part (suc n)))) ∙ cong [_] (cong (baseP (1 ∷ [])) (cong (fun (fst (Hⁿ-Sⁿ≅ℤ n))) (substReflCoHom (inv (fst (Hⁿ-Sⁿ≅ℤ n)) a)))) ∙ cong [_] (cong (baseP (1 ∷ [])) (rightInv (fst (Hⁿ-Sⁿ≅ℤ n)) a)) base-case (suc (suc k) ∷ []) a = eq/ 0Pℤ (baseP (suc (suc k) ∷ []) a) ∣ ((λ x → baseP (k ∷ []) (-ℤ a)) , helper) ∣₁ where helper : _ helper = (+PℤLid _) ∙ cong₂ baseP (cong (λ X → X ∷ []) (sym (+n-comm k 2))) (sym (·ℤRid _)) ∙ (sym (+PℤRid _)) ----------------------------------------------------------------------------- -- Computation of the Cohomology Ring module _ (n : ℕ) where open Equiv-Sn-Properties n Sⁿ-CohomologyRing : RingEquiv (CommRing→Ring ℤ[X]/X²) (H*R (S₊ (suc n))) fst Sⁿ-CohomologyRing = isoToEquiv is where is : Iso ℤ[x]/x² (H* (S₊ (suc n))) fun is = ℤ[x]/x²→H*-Sⁿ inv is = H*-Sⁿ→ℤ[x]/x² rightInv is = e-sect leftInv is = e-retr snd Sⁿ-CohomologyRing = snd ℤ[X]/X²→H*R-Sⁿ CohomologyRing-Sⁿ : RingEquiv (H*R (S₊ (suc n))) (CommRing→Ring ℤ[X]/X²) CohomologyRing-Sⁿ = RingEquivs.invEquivRing Sⁿ-CohomologyRing
{ "alphanum_fraction": 0.4610948239, "avg_line_length": 41.6973947896, "ext": "agda", "hexsha": "827d202c9346b10b715f74a85e7ac5f9643230a0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xekoukou/cubical", "max_forks_repo_path": "Cubical/ZCohomology/CohomologyRings/Sn.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xekoukou/cubical", "max_issues_repo_path": "Cubical/ZCohomology/CohomologyRings/Sn.agda", "max_line_length": 146, "max_stars_count": null, "max_stars_repo_head_hexsha": "b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xekoukou/cubical", "max_stars_repo_path": "Cubical/ZCohomology/CohomologyRings/Sn.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 8349, "size": 20807 }
{-# OPTIONS --type-in-type #-} data ⊥ : Set where ℘ : ∀ {ℓ} → Set ℓ → Set _ ℘ {ℓ} S = S → Set U : Set U = ∀ (X : Set) → (℘ (℘ X) → X) → ℘ (℘ X) {- If using two impredicative universe layers instead of type-in-type: U : Set₁ U = ∀ (X : Set₁) → (℘ (℘ X) → X) → ℘ (℘ X) -} τ : ℘ (℘ U) → U τ t = λ X f p → t (λ x → p (f (x X f))) σ : U → ℘ (℘ U) σ s = s U τ Δ : ℘ U Δ y = (∀ p → σ y p → p (τ (σ y))) → ⊥ Ω : U Ω = τ (λ p → (∀ x → σ x p → p x)) R : ∀ p → (∀ x → σ x p → p x) → p Ω R _ 𝟙 = 𝟙 Ω (λ x → 𝟙 (τ (σ x))) M : ∀ x → σ x Δ → Δ x M _ 𝟚 𝟛 = 𝟛 Δ 𝟚 (λ p → 𝟛 (λ y → p (τ (σ y)))) L : (∀ p → (∀ x → σ x p → p x) → p Ω) → ⊥ L 𝟘 = 𝟘 Δ M (λ p → 𝟘 (λ y → p (τ (σ y)))) false : ⊥ false = L R
{ "alphanum_fraction": 0.3674351585, "avg_line_length": 18.2631578947, "ext": "agda", "hexsha": "0bdb33a245e87c059b1d20d535bc900079280c90", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d54cdaf24391b2726e491a18cba2d2d8ae3ac20b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ionathanch/ionathanch.github.io", "max_forks_repo_path": "_assets/agda/Girard.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d54cdaf24391b2726e491a18cba2d2d8ae3ac20b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ionathanch/ionathanch.github.io", "max_issues_repo_path": "_assets/agda/Girard.agda", "max_line_length": 70, "max_stars_count": null, "max_stars_repo_head_hexsha": "d54cdaf24391b2726e491a18cba2d2d8ae3ac20b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ionathanch/ionathanch.github.io", "max_stars_repo_path": "_assets/agda/Girard.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 395, "size": 694 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Group where open import Cubical.Algebra.Group.Base public open import Cubical.Algebra.Group.Properties public open import Cubical.Algebra.Group.Morphism public open import Cubical.Algebra.Group.MorphismProperties public open import Cubical.Algebra.Group.Algebra public
{ "alphanum_fraction": 0.8226744186, "avg_line_length": 38.2222222222, "ext": "agda", "hexsha": "3b3372086b2c851dcc0a411c5a26d634f48fa619", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Algebra/Group.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Algebra/Group.agda", "max_line_length": 59, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Algebra/Group.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 76, "size": 344 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Signs ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Sign where open import Relation.Binary using (Decidable) open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Relation.Nullary using (yes; no) -- Signs. data Sign : Set where - : Sign + : Sign -- Decidable equality. infix 4 _≟_ _≟_ : Decidable {A = Sign} _≡_ - ≟ - = yes refl - ≟ + = no λ() + ≟ - = no λ() + ≟ + = yes refl -- The opposite sign. opposite : Sign → Sign opposite - = + opposite + = - -- "Multiplication". infixl 7 _*_ _*_ : Sign → Sign → Sign + * s₂ = s₂ - * s₂ = opposite s₂
{ "alphanum_fraction": 0.5026041667, "avg_line_length": 17.4545454545, "ext": "agda", "hexsha": "9eeaaef4216291a1f3777167cc42d08d78478d99", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Sign.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Sign.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Sign.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 204, "size": 768 }
module RAdjunctions.RAdj2RMon where open import Function open import Relation.Binary.HeterogeneousEquality open import Categories open import Functors open import RMonads open import RAdjunctions open Cat open Fun open RAdj Adj2Mon : ∀{a b c d e f}{C : Cat {a}{b}}{D : Cat {c}{d}}{E : Cat {e}{f}} {J : Fun C D} → RAdj J E → RMonad J Adj2Mon {C = C}{D}{E}{J} A = record{ T = OMap (R A) ∘ OMap (L A); η = left A (iden E); bind = HMap (R A) ∘ right A; law1 = trans (cong (HMap (R A)) (lawa A (iden E))) (fid (R A)); law2 = λ {_ _ f} → trans (cong (comp D (HMap (R A) (right A f))) (trans (sym (idr D)) (cong (comp D (left A (iden E))) (sym (fid J))))) (trans (natleft A (iden C) (right A f) (iden E)) (trans (cong (left A) (trans (cong (comp E (right A f)) (trans (idl E) (fid (L A)))) (idr E))) (lawb A f))); law3 = λ{_ _ _ f g} → trans (cong (HMap (R A)) (trans (trans (cong (right A) (cong (comp D (HMap (R A) (right A g))) (trans (sym (idr D)) (cong (comp D f) (sym (fid J)))))) (trans (natright A (iden C) (right A g) f) (trans (sym (ass E)) (cong (comp E (comp E (right A g) (right A f))) (fid (L A)))))) (idr E))) (fcomp (R A))}
{ "alphanum_fraction": 0.3668831169, "avg_line_length": 41.0666666667, "ext": "agda", "hexsha": "b9828cad4aa42f8f605dcb524249543143e68d4d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "RAdjunctions/RAdj2RMon.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "RAdjunctions/RAdj2RMon.agda", "max_line_length": 79, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "RAdjunctions/RAdj2RMon.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 504, "size": 1848 }
{-# OPTIONS --safe --postfix-projections #-} module Cubical.Algebra.OrderedCommMonoid.PropCompletion where {- The completion of an ordered monoid, viewed as monoidal prop-enriched category. This is used in the construction of the upper naturals, which is an idea of David Jaz Myers presented here https://felix-cherubini.de/myers-slides-II.pdf It should be straight forward, but tedious, to generalize this to enriched monoidal categories. -} open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.Structure open import Cubical.Foundations.HLevels open import Cubical.Functions.Logic open import Cubical.Functions.Embedding open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation renaming (rec to propTruncRec; rec2 to propTruncRec2) open import Cubical.Algebra.CommMonoid.Base open import Cubical.Algebra.OrderedCommMonoid open import Cubical.Relation.Binary.Poset private variable ℓ : Level module PropCompletion (ℓ : Level) (M : OrderedCommMonoid ℓ ℓ) where open OrderedCommMonoidStr (snd M) _≤p_ : fst M → fst M → hProp ℓ n ≤p m = (n ≤ m) , (is-prop-valued _ _) isUpwardClosed : (s : fst M → hProp ℓ) → Type _ isUpwardClosed s = (n m : fst M) → n ≤ m → fst (s n) → fst (s m) isPropUpwardClosed : (N : fst M → hProp ℓ) → isProp (isUpwardClosed N) isPropUpwardClosed N = isPropΠ4 (λ _ m _ _ → snd (N m)) isSetM→Prop : isSet (fst M → hProp ℓ) isSetM→Prop = isOfHLevelΠ 2 λ _ → isSetHProp M↑ : Type _ M↑ = Σ[ s ∈ (fst M → hProp ℓ)] isUpwardClosed s isSetM↑ : isSet M↑ isSetM↑ = isOfHLevelΣ 2 isSetM→Prop λ s → isOfHLevelSuc 1 (isPropUpwardClosed s) _isUpperBoundOf_ : fst M → M↑ → Type ℓ n isUpperBoundOf s = fst (fst s n) isBounded : (s : M↑) → Type _ isBounded s = ∃[ m ∈ (fst M) ] (m isUpperBoundOf s) isPropIsBounded : (s : M↑) → isProp (isBounded s) isPropIsBounded s = isPropPropTrunc _^↑ : fst M → M↑ n ^↑ = n ≤p_ , isUpwardClosed≤ where isUpwardClosed≤ : {m : fst M} → isUpwardClosed (m ≤p_) isUpwardClosed≤ = λ {_ _ n≤k m≤n → is-trans _ _ _ m≤n n≤k} isBounded^ : (m : fst M) → isBounded (m ^↑) isBounded^ m = ∣ (m , (is-refl m)) ∣₁ 1↑ : M↑ 1↑ = ε ^↑ _·↑_ : M↑ → M↑ → M↑ s ·↑ l = seq , seqIsUpwardClosed where seq : fst M → hProp ℓ seq n = (∃[ (a , b) ∈ (fst M) × (fst M) ] fst ((fst s a) ⊓ (fst l b) ⊓ ((a · b) ≤p n) )) , isPropPropTrunc seqIsUpwardClosed : isUpwardClosed seq seqIsUpwardClosed n m n≤m = propTruncRec isPropPropTrunc λ {((a , b) , wa , (wb , a·b≤n)) → ∣ (a , b) , wa , (wb , is-trans _ _ _ a·b≤n n≤m) ∣₁} ·presBounded : (s l : M↑) (bs : isBounded s) (bl : isBounded l) → isBounded (s ·↑ l) ·presBounded s l = propTruncRec2 isPropPropTrunc λ {(m , s≤m) (k , l≤k) → ∣ (m · k) , ∣ (m , k) , (s≤m , (l≤k , (is-refl (m · k)))) ∣₁ ∣₁ } {- convenience functions for the proof that ·↑ is the multiplication of a monoid -} typeAt : fst M → M↑ → Type _ typeAt n s = fst (fst s n) M↑Path : {s l : M↑} → ((n : fst M) → typeAt n s ≡ typeAt n l) → s ≡ l M↑Path {s = s} {l = l} pwPath = path where seqPath : fst s ≡ fst l seqPath i n = subtypePathReflection (λ A → isProp A , isPropIsProp) (fst s n) (fst l n) (pwPath n) i path : s ≡ l path = subtypePathReflection (λ s → isUpwardClosed s , isPropUpwardClosed s) s l seqPath pathFromImplications : (s l : M↑) → ((n : fst M) → typeAt n s → typeAt n l) → ((n : fst M) → typeAt n l → typeAt n s) → s ≡ l pathFromImplications s l s→l l→s = M↑Path λ n → cong fst (propPath n) where propPath : (n : fst M) → fst s n ≡ fst l n propPath n = ⇒∶ s→l n ⇐∶ l→s n ^↑Pres· : (x y : fst M) → (x · y) ^↑ ≡ (x ^↑) ·↑ (y ^↑) ^↑Pres· x y = pathFromImplications ((x · y) ^↑) ((x ^↑) ·↑ (y ^↑)) (⇐) ⇒ where ⇐ : (n : fst M) → typeAt n ((x · y) ^↑) → typeAt n ((x ^↑) ·↑ (y ^↑)) ⇐ n x·y≤n = ∣ (x , y) , ((is-refl _) , ((is-refl _) , x·y≤n)) ∣₁ ⇒ : (n : fst M) → typeAt n ((x ^↑) ·↑ (y ^↑)) → typeAt n ((x · y) ^↑) ⇒ n = propTruncRec (snd (fst ((x · y) ^↑) n)) λ {((m , l) , x≤m , (y≤l , m·l≤n)) → is-trans _ _ _ (is-trans _ _ _ (MonotoneR x≤m) (MonotoneL y≤l)) m·l≤n } ·↑Comm : (s l : M↑) → s ·↑ l ≡ l ·↑ s ·↑Comm s l = M↑Path λ n → cong fst (propPath n) where implication : (s l : M↑) (n : fst M) → fst (fst (s ·↑ l) n) → fst (fst (l ·↑ s) n) implication s l n = propTruncRec isPropPropTrunc (λ {((a , b) , wa , (wb , a·b≤n)) → ∣ (b , a) , wb , (wa , subst (λ k → fst (k ≤p n)) (·Comm a b) a·b≤n) ∣₁ }) propPath : (n : fst M) → fst (s ·↑ l) n ≡ fst (l ·↑ s) n propPath n = ⇒∶ implication s l n ⇐∶ implication l s n ·↑Rid : (s : M↑) → s ·↑ 1↑ ≡ s ·↑Rid s = pathFromImplications (s ·↑ 1↑) s (⇒) ⇐ where ⇒ : (n : fst M) → typeAt n (s ·↑ 1↑) → typeAt n s ⇒ n = propTruncRec (snd (fst s n)) (λ {((a , b) , sa , (1b , a·b≤n)) → (snd s) a n ( subst (_≤ n) (·IdR a) (is-trans _ _ _ (MonotoneL 1b) a·b≤n)) sa }) ⇐ : (n : fst M) → typeAt n s → typeAt n (s ·↑ 1↑) ⇐ n = λ sn → ∣ (n , ε) , (sn , (is-refl _ , subst (_≤ n) (sym (·IdR n)) (is-refl _))) ∣₁ ·↑Assoc : (s l k : M↑) → s ·↑ (l ·↑ k) ≡ (s ·↑ l) ·↑ k ·↑Assoc s l k = pathFromImplications (s ·↑ (l ·↑ k)) ((s ·↑ l) ·↑ k) (⇒) ⇐ where ⇒ : (n : fst M) → typeAt n (s ·↑ (l ·↑ k)) → typeAt n ((s ·↑ l) ·↑ k) ⇒ n = propTruncRec isPropPropTrunc λ {((a , b) , sa , (l·kb , a·b≤n)) → propTruncRec isPropPropTrunc (λ {((a' , b') , la' , (kb' , a'·b'≤b)) → ∣ ((a · a') , b') , ∣ (a , a') , (sa , (la' , is-refl _)) ∣₁ , kb' , (let a·⟨a'·b'⟩≤n = (is-trans _ _ _ (MonotoneL a'·b'≤b) a·b≤n) in subst (_≤ n) (·Assoc a a' b') a·⟨a'·b'⟩≤n) ∣₁ }) l·kb } ⇐ : _ ⇐ n = propTruncRec isPropPropTrunc λ {((a , b) , s·l≤a , (k≤b , a·b≤n)) → propTruncRec isPropPropTrunc (λ {((a' , b') , s≤a' , (l≤b' , a'·b'≤a)) → ∣ (a' , b' · b) , s≤a' , ( ∣ (b' , b) , l≤b' , (k≤b , is-refl _) ∣₁ , (let ⟨a'·b'⟩·b≤n = (is-trans _ _ _ (MonotoneR a'·b'≤a) a·b≤n) in subst (_≤ n) (sym (·Assoc a' b' b)) ⟨a'·b'⟩·b≤n) ) ∣₁ }) s·l≤a } asCommMonoid : CommMonoid (ℓ-suc ℓ) asCommMonoid = makeCommMonoid 1↑ _·↑_ isSetM↑ ·↑Assoc ·↑Rid ·↑Comm {- Poset structure on M↑ -} _≤↑_ : (s l : M↑) → Type _ s ≤↑ l = (m : fst M) → fst ((fst l) m) → fst ((fst s) m) isBounded→≤↑ : (s : M↑) → isBounded s → ∃[ m ∈ fst M ] (s ≤↑ (m ^↑)) isBounded→≤↑ s = propTruncRec isPropPropTrunc λ {(m , mIsBound) → ∣ m , (λ n m≤n → snd s m n m≤n mIsBound) ∣₁ } ≤↑IsProp : (s l : M↑) → isProp (s ≤↑ l) ≤↑IsProp s l = isPropΠ2 (λ x p → snd (fst s x)) ≤↑IsRefl : (s : M↑) → s ≤↑ s ≤↑IsRefl s = λ m x → x ≤↑IsTrans : (s l t : M↑) → s ≤↑ l → l ≤↑ t → s ≤↑ t ≤↑IsTrans s l t p q x = (p x) ∘ (q x) ≤↑IsAntisym : (s l : M↑) → s ≤↑ l → l ≤↑ s → s ≡ l ≤↑IsAntisym s l p q = pathFromImplications _ _ q p {- Compatability with the monoid structure -} ·↑IsRMonotone : (l t s : M↑) → l ≤↑ t → (l ·↑ s) ≤↑ (t ·↑ s) ·↑IsRMonotone l t s p x = propTruncRec isPropPropTrunc λ { ((a , b) , l≤a , (s≤b , a·b≤x)) → ∣ (a , b) , p a l≤a , s≤b , a·b≤x ∣₁} ·↑IsLMonotone : (l t s : M↑) → l ≤↑ t → (s ·↑ l) ≤↑ (s ·↑ t) ·↑IsLMonotone l t s p x = propTruncRec isPropPropTrunc λ {((a , b) , s≤a , (l≤b , a·b≤x)) → ∣ (a , b) , s≤a , p b l≤b , a·b≤x ∣₁} asOrderedCommMonoid : OrderedCommMonoid (ℓ-suc ℓ) ℓ asOrderedCommMonoid .fst = _ asOrderedCommMonoid .snd .OrderedCommMonoidStr._≤_ = _≤↑_ asOrderedCommMonoid .snd .OrderedCommMonoidStr._·_ = _·↑_ asOrderedCommMonoid .snd .OrderedCommMonoidStr.ε = 1↑ asOrderedCommMonoid .snd .OrderedCommMonoidStr.isOrderedCommMonoid = IsOrderedCommMonoidFromIsCommMonoid (CommMonoidStr.isCommMonoid (snd asCommMonoid)) ≤↑IsProp ≤↑IsRefl ≤↑IsTrans ≤↑IsAntisym ·↑IsRMonotone ·↑IsLMonotone boundedSubstructure : OrderedCommMonoid (ℓ-suc ℓ) ℓ boundedSubstructure = makeOrderedSubmonoid asOrderedCommMonoid (λ s → (isBounded s , isPropIsBounded s)) ·presBounded (isBounded^ ε) PropCompletion : OrderedCommMonoid ℓ ℓ → OrderedCommMonoid (ℓ-suc ℓ) ℓ PropCompletion M = PropCompletion.asOrderedCommMonoid _ M BoundedPropCompletion : OrderedCommMonoid ℓ ℓ → OrderedCommMonoid (ℓ-suc ℓ) ℓ BoundedPropCompletion M = PropCompletion.boundedSubstructure _ M isSetBoundedPropCompletion : (M : OrderedCommMonoid ℓ ℓ) → isSet (⟨ BoundedPropCompletion M ⟩) isSetBoundedPropCompletion M = isSetΣSndProp (isSetOrderedCommMonoid (PropCompletion M)) λ x → PropCompletion.isPropIsBounded _ M x
{ "alphanum_fraction": 0.4996459998, "avg_line_length": 37.0299625468, "ext": "agda", "hexsha": "1f9c315f17d0a0c68f36c8f50ec6076e9282a02f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/OrderedCommMonoid/PropCompletion.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/OrderedCommMonoid/PropCompletion.agda", "max_line_length": 107, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/OrderedCommMonoid/PropCompletion.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3847, "size": 9887 }
-- Andreas, 2018-10-18, re issue #2757 -- -- Extracted this snippet from the standard library -- as it caused problems during work in #2757 -- (runtime erasue using 0-quantity). -- {-# OPTIONS -v tc.lhs.unify:65 -v tc.irr:50 #-} open import Agda.Builtin.Size data ⊥ : Set where mutual data Conat (i : Size) : Set where zero : Conat i suc : ∞Conat i → Conat i record ∞Conat (i : Size) : Set where coinductive field force : ∀{j : Size< i} → Conat j open ∞Conat infinity : ∀ {i} → Conat i infinity = suc λ where .force → infinity data Finite : Conat ∞ → Set where zero : Finite zero suc : ∀ {n} → Finite (n .force) → Finite (suc n) ¬Finite∞ : Finite infinity → ⊥ ¬Finite∞ (suc p) = ¬Finite∞ p -- The problem was that the usableMod check in the -- unifier (LHS.Unify) refuted this pattern match -- because a runtime-erased argument ∞ (via meta-variable) -- the the extended lambda.
{ "alphanum_fraction": 0.6567982456, "avg_line_length": 24.6486486486, "ext": "agda", "hexsha": "224874210130a2017bf0e63e3c52acb8e5ee89cd", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Conat-Sized.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Conat-Sized.agda", "max_line_length": 58, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Conat-Sized.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 302, "size": 912 }
open import MJ.Types open import MJ.Classtable import MJ.Syntax as Syntax import MJ.Semantics.Values as Values -- -- Substitution-free interpretation of welltyped MJ -- module MJ.Semantics.Functional {c} (Σ : CT c) (ℂ : Syntax.Impl Σ) where open import Prelude open import Data.Vec hiding (init) open import Data.Vec.All.Properties.Extra as Vec∀++ open import Data.Sum open import Data.List as List open import Data.List.All as List∀ hiding (lookup) open import Data.List.All.Properties.Extra open import Data.List.Any open import Data.List.Prefix open import Data.List.Properties.Extra as List+ open import Data.Maybe as Maybe using (Maybe; just; nothing) open import Relation.Binary.PropositionalEquality open import Data.Star.Indexed import Data.Vec.All as Vec∀ open Membership-≡ open Values Σ open CT Σ open Syntax Σ -- open import MJ.Semantics.Objects.Hierarchical Σ ℂ using (encoding) open import MJ.Semantics.Objects.Flat Σ ℂ using (encoding) open ObjEncoding encoding open Heap encoding ⊒-res : ∀ {a}{I : World c → Set a}{W W'} → W' ⊒ W → Res I W' → Res I W ⊒-res {W = W} p (W' , ext' , μ' , v) = W' , ⊑-trans p ext' , μ' , v mutual -- -- object initialization -- init : ∀ {W} cid → Cont (fromList (Class.constr (clookup cid))) (λ W → Obj W cid) W init cid E μ with Impl.bodies ℂ cid init cid E μ | impl super-args defs with evalₙ (defs FLD) E μ ... | W₁ , ext₁ , μ₁ , vs with clookup cid | inspect clookup cid -- case *without* super initialization init cid E μ | impl nothing defs | (W₁ , ext₁ , μ₁ , vs) | (class nothing constr decls) | [ eq ] = W₁ , ext₁ , μ₁ , vs -- case *with* super initialization init cid E μ | impl (just sc) defs | (W₁ , ext₁ , μ₁ , vs) | (class (just x) constr decls) | [ eq ] with evalₑ-all sc (Vec∀.map (coerce ext₁) E) μ₁ ... | W₂ , ext₂ , μ₂ , svs with init x (all-fromList svs) μ₂ ... | W₃ , ext₃ , μ₃ , inherited = W₃ , ⊑-trans (⊑-trans ext₁ ext₂) ext₃ , μ₃ , (List∀.map (coerce (⊑-trans ext₂ ext₃)) vs ++-all inherited) {-} init cid E μ with Impl.bodies ℂ cid init cid E μ | impl super-args defs with evalₙ (defs FLD) E μ ... | W₁ , ext₁ , μ₁ , vs with clookup cid | inspect clookup cid -- case *without* super initialization init cid E μ | impl nothing defs | (W₁ , ext₁ , μ₁ , vs) | (class nothing constr decls) | [ eq ] = , ext₁ , μ₁ , record { own = λ{ MTH → List∀.tabulate (λ _ → tt) ; FLD → subst (λ C → All _ (Class.decls C FLD)) (sym eq) vs }; inherited = subst (λ C → Maybe.All _ (Class.parent C)) (sym eq) nothing } -- case *with* super initialization init cid E μ | impl (just sc) defs | (W₁ , ext₁ , μ₁ , vs) | (class (just x) constr decls) | [ eq ] with evalₑ-all sc (Vec∀.map (coerce ext₁) E) μ₁ ... | W₂ , ext₂ , μ₂ , svs with init x (all-fromList svs) μ₂ ... | W₃ , ext₃ , μ₃ , sO = , ⊑-trans (⊑-trans ext₁ ext₂) ext₃ , μ₃ , record { own = λ{ MTH → List∀.tabulate (λ _ → tt) ; FLD → subst (λ C → All _ (Class.decls C FLD)) (sym eq) (List∀.map (coerce (⊑-trans ext₂ ext₃)) vs) }; inherited = subst (λ C → Maybe.All _ (Class.parent C)) (sym eq) (just sO) } -} evalₑ-all : ∀ {n}{Γ : Ctx c n}{as} → All (Expr Γ) as → ∀ {W} → Cont Γ (λ W' → All (Val W') as) W evalₑ-all [] E μ = , ⊑-refl , μ , [] evalₑ-all (px ∷ exps) E μ with evalₑ px E μ ... | W' , ext' , μ' , v with evalₑ-all exps (Vec∀.map (coerce ext') E) μ' ... | W'' , ext'' , μ'' , vs = W'' , ⊑-trans ext' ext'' , μ'' , coerce ext'' v ∷ vs -- -- evaluation of expressions -- {-# TERMINATING #-} evalₑ : ∀ {n}{Γ : Ctx c n}{a} → Expr Γ a → ∀ {W} → Cont Γ (flip Val a) W evalₑ (upcast sub e) E μ with evalₑ e E μ ... | W' , ext' , μ' , (ref r s) = W' , ext' , μ' , ref r (<:-trans s sub) -- primitive values evalₑ unit = pure (const unit) evalₑ (num n) = pure (const (num n)) -- variable lookup evalₑ (var i) = pure (λ E → Vec∀.lookup i E) -- object allocation evalₑ (new C args) {W} E μ with evalₑ-all args E μ -- create the object, typed under the current heap shape ... | W₁ , ext₁ , μ₁ , vs with init C (all-fromList vs) μ₁ ... | W₂ , ext₂ , μ₂ , O = let -- extension fact for the heap extended with the new object allocation ext = ∷ʳ-⊒ (obj C) W₂ in , ⊑-trans (⊑-trans ext₁ ext₂) ext , all-∷ʳ (List∀.map (coerce ext) μ₂) (coerce ext (obj C O)) , ref (∈-∷ʳ W₂ (obj C)) refl -- value typed under the extended heap -- binary interger operations evalₑ (iop f l r) E μ with evalₑ l E μ ... | W₁ , ext₁ , μ₁ , (num i) with evalₑ r (Vec∀.map (coerce ext₁) E) μ₁ ... | W₂ , ext₂ , μ₂ , (num j) = W₂ , ⊑-trans ext₁ ext₂ , μ₂ , num (f i j) -- method calls evalₑ (call {C} e mtd args) E μ with evalₑ e E μ -- eval obj expression ... | W₁ , ext₁ , μ₁ , r@(ref o sub) with ∈-all o μ₁ -- lookup obj on the heap ... | val () ... | obj cid O with evalₑ-all args (Vec∀.map (coerce ext₁) E) μ₁ -- eval arguments ... | W₂ , ext₂ , μ₂ , vs = -- and finally eval the body of the method under the environment -- generated from the call arguments and the object's "this" ⊒-res (⊑-trans ext₁ ext₂) (eval-body cmd (ref (∈-⊒ o ext₂) <:-fact Vec∀.∷ all-fromList vs) μ₂) where -- get the method definition cmd = getDef C mtd ℂ -- get a subtyping fact <:-fact = <:-trans sub (proj₁ (proj₂ mtd)) -- field lookup in the heap evalₑ (get e fld) E μ with evalₑ e E μ ... | W' , ext' , μ' , ref o C<:C₁ with ∈-all o μ' ... | (val ()) -- apply the runtime subtyping fact to weaken the member fact ... | obj cid O = W' , ext' , μ' , getter O (mem-inherit Σ C<:C₁ fld) -- -- command evaluation -- evalc : ∀ {n m}{I : Ctx c n}{O : Ctx c m}{W : World c}{a} → -- we use a sum for abrupt returns Cmd I a O → Cont I (λ W → (Val W a) ⊎ (Env O W)) W -- new locals variable evalc (loc x e) E μ with evalₑ e E μ ... | W₁ , ext₁ , μ₁ , v = W₁ , ext₁ , μ₁ , inj₂ (v Vec∀.∷ (Vec∀.map (coerce ext₁) E)) -- assigning to a local evalc (asgn i x) E μ with evalₑ x E μ ... | W₁ , ext₁ , μ₁ , v = W₁ , ext₁ , μ₁ , inj₂ (Vec∀.map (coerce ext₁) E Vec∀++.[ i ]≔ v) -- setting a field -- start by lookuping up the referenced object on the heap & eval the expression to assign it evalc (set rf fld e) E μ with evalₑ rf E μ ... | W₁ , ext₁ , μ₁ , ref p s with List∀.lookup μ₁ p | evalₑ e (Vec∀.map (coerce ext₁) E) μ₁ ... | (val ()) | _ ... | (obj cid O) | (W₂ , ext₂ , μ₂ , v) = let ext = ⊑-trans ext₁ ext₂ in , ext , (μ₂ All[ ∈-⊒ p ext₂ ]≔' -- update the store at the reference location -- update the object at the member location obj cid ( setter (coerce ext₂ O) (mem-inherit Σ s fld) v ) ) , (inj₂ $ Vec∀.map (coerce ext) E) -- side-effectful expressions evalc (do x) E μ with evalₑ x E μ ... | W₁ , ext₁ , μ₁ , _ = W₁ , ext₁ , μ₁ , inj₂ (Vec∀.map (coerce ext₁) E) -- early returns evalc (ret x) E μ with evalₑ x E μ ... | W₁ , ext₁ , μ₁ , v = W₁ , ext₁ , μ₁ , inj₁ v eval-body : ∀ {n}{I : Ctx c n}{W : World c}{a} → Body I a → Cont I (λ W → Val W a) W eval-body (body ε re) E μ = evalₑ re E μ eval-body (body (x ◅ xs) re) E μ with evalc x E μ ... | W₁ , ext₁ , μ₁ , inj₂ E₁ = ⊒-res ext₁ (eval-body (body xs re) E₁ μ₁) ... | W₁ , ext₁ , μ₁ , inj₁ v = _ , ext₁ , μ₁ , v evalₙ : ∀ {n}{I : Ctx c n}{W : World c}{as} → All (Body I) as → Cont I (λ W → All (Val W) as) W evalₙ [] E μ = , ⊑-refl , μ , [] evalₙ (px ∷ bs) E μ with eval-body px E μ ... | W₁ , ext₁ , μ₁ , v with evalₙ bs (Vec∀.map (coerce ext₁) E) μ₁ ... | W₂ , ext₂ , μ₂ , vs = W₂ , ⊑-trans ext₁ ext₂ , μ₂ , coerce ext₂ v ∷ vs eval : ∀ {a} → Prog a → ∃ λ W → Store W × Val W a eval (lib , main) with eval-body main Vec∀.[] [] ... | W , ext , μ , v = W , μ , v
{ "alphanum_fraction": 0.5696170747, "avg_line_length": 35.7174887892, "ext": "agda", "hexsha": "d498dd5e7ae81bd30a199a8d7cfcc6e110e2bb63", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/MJ/Semantics/Functional.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/MJ/Semantics/Functional.agda", "max_line_length": 100, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/MJ/Semantics/Functional.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 3009, "size": 7965 }
{-# OPTIONS --allow-unsolved-metas #-} module LiteralFormula where open import OscarPrelude open import IsLiteralFormula open import HasNegation open import Formula record LiteralFormula : Set where constructor ⟨_⟩ field {formula} : Formula isLiteralFormula : IsLiteralFormula formula open LiteralFormula public instance EqLiteralFormula : Eq LiteralFormula Eq._==_ EqLiteralFormula (⟨_⟩ {φ₁} lf₁) (⟨_⟩ {φ₂} lf₂) with φ₁ ≟ φ₂ … | no φ₁≢φ₂ = no (λ {refl → φ₁≢φ₂ refl}) Eq._==_ EqLiteralFormula (⟨_⟩ {φ₁} lf₁) (⟨_⟩ {φ₂} lf₂) | yes refl = case (eqIsLiteralFormula lf₁ lf₂) of λ {refl → yes refl} instance HasNegationLiteralFormula : HasNegation LiteralFormula HasNegation.~ HasNegationLiteralFormula ⟨ atomic 𝑃 τs ⟩ = ⟨ logical 𝑃 τs ⟩ HasNegation.~ HasNegationLiteralFormula ⟨ logical 𝑃 τs ⟩ = ⟨ atomic 𝑃 τs ⟩ open import Interpretation open import Vector open import Term open import Elements open import TruthValue module _ where open import HasSatisfaction instance HasSatisfactionLiteralFormula : HasSatisfaction LiteralFormula HasSatisfaction._⊨_ HasSatisfactionLiteralFormula I ⟨ atomic 𝑃 τs ⟩ = 𝑃⟦ I ⟧ 𝑃 ⟨ ⟨ τ⟦ I ⟧ <$> vector (terms τs) ⟩ ⟩ ≡ ⟨ true ⟩ HasSatisfaction._⊨_ HasSatisfactionLiteralFormula I ⟨ logical 𝑃 τs ⟩ = 𝑃⟦ I ⟧ 𝑃 ⟨ ⟨ τ⟦ I ⟧ <$> vector (terms τs) ⟩ ⟩ ≡ ⟨ false ⟩ instance HasDecidableSatisfactionLiteralFormula : HasDecidableSatisfaction LiteralFormula HasDecidableSatisfaction._⊨?_ HasDecidableSatisfactionLiteralFormula I ⟨ atomic 𝑃 τs ⟩ with 𝑃⟦ I ⟧ 𝑃 ⟨ ⟨ τ⟦ I ⟧ <$> vector (terms τs) ⟩ ⟩ … | ⟨ true ⟩ = yes refl … | ⟨ false ⟩ = no λ () HasDecidableSatisfaction._⊨?_ HasDecidableSatisfactionLiteralFormula I ⟨ logical 𝑃 τs ⟩ with 𝑃⟦ I ⟧ 𝑃 ⟨ ⟨ τ⟦ I ⟧ <$> vector (terms τs) ⟩ ⟩ … | ⟨ true ⟩ = no λ () … | ⟨ false ⟩ = yes refl instance HasDecidableValidationLiteralFormula : HasDecidableValidation LiteralFormula HasDecidableValidation.⊨? HasDecidableValidationLiteralFormula = {!!} module _ where open import HasSubstantiveDischarge postulate instance cs' : CanonicalSubstitution LiteralFormula instance hpu' : HasPairUnification LiteralFormula (CanonicalSubstitution.S cs') instance HasSubstantiveDischargeLiteralFormula : HasSubstantiveDischarge LiteralFormula --HasSubstantiveDischarge._o≽o_ HasSubstantiveDischargeLiteralFormula φ₁ φ₂ = φ₁ ≡ φ₂ HasSubstantiveDischarge.hasNegation HasSubstantiveDischargeLiteralFormula = it HasSubstantiveDischarge.≽-reflexive HasSubstantiveDischargeLiteralFormula = {!!} HasSubstantiveDischarge.≽-consistent HasSubstantiveDischargeLiteralFormula = {!!} HasSubstantiveDischarge.≽-contrapositive HasSubstantiveDischargeLiteralFormula = {!!} instance HasDecidableSubstantiveDischargeLiteralFormula : HasDecidableSubstantiveDischarge LiteralFormula HasDecidableSubstantiveDischarge.hasSubstantiveDischarge HasDecidableSubstantiveDischargeLiteralFormula = it HasDecidableSubstantiveDischarge._≽?_ HasDecidableSubstantiveDischargeLiteralFormula φ+ φ- = {!!} -- φ+ ≟ φ-
{ "alphanum_fraction": 0.7626446281, "avg_line_length": 39.8026315789, "ext": "agda", "hexsha": "bf05023c154ed1b6778752f63b9cf166ec0fd933", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/LiteralFormula.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/LiteralFormula.agda", "max_line_length": 130, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/LiteralFormula.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 961, "size": 3025 }
{-# OPTIONS --cubical --safe #-} module Cubical.Foundations.Bundle where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.Foundations.Fibration open import Cubical.Foundations.Structure open import Cubical.Structures.TypeEqvTo open import Cubical.Data.Sigma.Properties open import Cubical.HITs.PropositionalTruncation module _ {ℓb ℓf} {B : Type ℓb} {F : Type ℓf} {ℓ} where {- A fiber bundle with base space B and fibers F is a map `p⁻¹ : B → TypeEqvTo F` taking points in the base space to their respective fibers. e.g. a double cover is a map `B → TypeEqvTo Bool` -} Total : (p⁻¹ : B → TypeEqvTo ℓ F) → Type (ℓ-max ℓb ℓ) Total p⁻¹ = Σ[ x ∈ B ] p⁻¹ x .fst pr : (p⁻¹ : B → TypeEqvTo ℓ F) → Total p⁻¹ → B pr p⁻¹ = fst inc : (p⁻¹ : B → TypeEqvTo ℓ F) (x : B) → p⁻¹ x .fst → Total p⁻¹ inc p⁻¹ x = (x ,_) fibPrEquiv : (p⁻¹ : B → TypeEqvTo ℓ F) (x : B) → fiber (pr p⁻¹) x ≃ p⁻¹ x .fst fibPrEquiv p⁻¹ x = fiberEquiv (λ x → typ (p⁻¹ x)) x module _ {ℓb ℓf} (B : Type ℓb) (ℓ : Level) (F : Type ℓf) where private ℓ' = ℓ-max ℓb ℓ {- Equivalently, a fiber bundle with base space B and fibers F is a type E and a map `p : E → B` with fibers merely equivalent to F. -} bundleEquiv : (B → TypeEqvTo ℓ' F) ≃ (Σ[ E ∈ Type ℓ' ] Σ[ p ∈ (E → B) ] ∀ x → ∥ fiber p x ≃ F ∥) bundleEquiv = compEquiv (compEquiv PiΣ (pathToEquiv p)) assocΣ where e = fibrationEquiv B ℓ p : (Σ[ p⁻¹ ∈ (B → Type ℓ') ] ∀ x → ∥ p⁻¹ x ≃ F ∥) ≡ (Σ[ p ∈ (Σ[ E ∈ Type ℓ' ] (E → B)) ] ∀ x → ∥ fiber (snd p) x ≃ F ∥ ) p i = Σ[ q ∈ ua e (~ i) ] ∀ x → ∥ ua-unglue e (~ i) q x ≃ F ∥
{ "alphanum_fraction": 0.5950317735, "avg_line_length": 33.9411764706, "ext": "agda", "hexsha": "b9b15de0cf009161f3d00561c3aba4b6b801a405", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "borsiemir/cubical", "max_forks_repo_path": "Cubical/Foundations/Bundle.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "borsiemir/cubical", "max_issues_repo_path": "Cubical/Foundations/Bundle.agda", "max_line_length": 98, "max_stars_count": null, "max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "borsiemir/cubical", "max_stars_repo_path": "Cubical/Foundations/Bundle.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 718, "size": 1731 }
module Generic.Property.Reify where open import Generic.Core data ExplView : Visibility -> Set where yes-expl : ExplView expl no-expl : ∀ {v} -> ExplView v explView : ∀ v -> ExplView v explView expl = yes-expl explView v = no-expl ExplMaybe : ∀ {α} -> Visibility -> Set α -> Set α ExplMaybe v A with explView v ... | yes-expl = A ... | no-expl = ⊤ caseExplMaybe : ∀ {α π} {A : Set α} (P : Visibility -> Set π) -> (A -> P expl) -> (∀ {v} -> P v) -> ∀ v -> ExplMaybe v A -> P v caseExplMaybe P f y v x with explView v ... | yes-expl = f x ... | no-expl = y Prod : ∀ {α} β -> Visibility -> Set α -> Set (α ⊔ β) -> Set (α ⊔ β) Prod β v A B with explView v ... | yes-expl = A × B ... | no-expl = B uncurryProd : ∀ {α β γ} {A : Set α} {B : Set (α ⊔ β)} {C : Set γ} v -> Prod β v A B -> (ExplMaybe v A -> B -> C) -> C uncurryProd v p g with explView v | p ... | yes-expl | (x , y) = g x y ... | no-expl | y = g tt y SemReify : ∀ {i β} {I : Set i} -> Desc I β -> Set SemReify (var i) = ⊤ SemReify (π i q C) = ⊥ SemReify (D ⊛ E) = SemReify D × SemReify E mutual ExtendReify : ∀ {i β} {I : Set i} -> Desc I β -> Set β ExtendReify (var i) = ⊤ ExtendReify (π i q C) = ExtendReifyᵇ i C q ExtendReify (D ⊛ E) = SemReify D × ExtendReify E ExtendReifyᵇ : ∀ {ι α β γ q} {I : Set ι} i -> Binder α β γ i q I -> α ≤ℓ β -> Set β ExtendReifyᵇ {β = β} i (coerce (A , D)) q = Coerce′ q $ Prod β (visibility i) (Reify A) (∀ {x} -> ExtendReify (D x)) -- Can't reify an irrelevant thing into its relevant representation. postulate reifyᵢ : ∀ {α} {A : Set α} {{aReify : Reify A}} -> .A -> Term instance {-# TERMINATING #-} DataReify : ∀ {i β} {I : Set i} {D : Data (Desc I β)} {j} {{reD : All ExtendReify (consTypes D)}} -> Reify (μ D j) DataReify {ι} {β} {I} {D₀} = record { reify = reifyMu } where mutual reifySem : ∀ D {{reD : SemReify D}} -> ⟦ D ⟧ (μ D₀) -> Term reifySem (var i) d = reifyMu d reifySem (π i q C) {{()}} reifySem (D ⊛ E) {{reD , reE}} (x , y) = sate _,_ (reifySem D {{reD}} x) (reifySem E {{reE}} y) reifyExtend : ∀ {j} D {{reD : ExtendReify D}} -> Extend D (μ D₀) j -> List Term reifyExtend (var i) lrefl = [] reifyExtend (π i q C) p = reifyExtendᵇ i C q p reifyExtend (D ⊛ E) {{reD , reE}} (x , e) = reifySem D {{reD}} x ∷ reifyExtend E {{reE}} e reifyExtendᵇ : ∀ {α γ q j} i (C : Binder α β γ i q I) q′ {{reC : ExtendReifyᵇ i C q′}} -> Extendᵇ i C q′ (μ D₀) j -> List Term reifyExtendᵇ i (coerce (A , D)) q {{reC}} p = uncurryProd (visibility i) (uncoerce′ q reC) λ mreA reD -> split q p λ x e -> let es = reifyExtend (D x) {{reD}} e in caseExplMaybe _ (λ reA -> elimRelValue _ (reify {{reA}}) (reifyᵢ {{reA}}) x ∷ es) es (visibility i) mreA reifyDesc : ∀ {j} D {{reD : ExtendReify D}} -> Name -> Extend D (μ D₀) j -> Term reifyDesc D n e = vis appCon n (reifyExtend D e) reifyAny : ∀ {j} (Ds : List (Desc I β)) {{reD : All ExtendReify Ds}} -> ∀ d a b ns -> Node D₀ (packData d a b Ds ns) j -> Term reifyAny [] d a b tt () reifyAny (D ∷ []) {{reD , _}} d a b (n , ns) e = reifyDesc D {{reD}} n e reifyAny (D ∷ E ∷ Ds) {{reD , reDs}} d a b (n , ns) (inj₁ e) = reifyDesc D {{reD}} n e reifyAny (D ∷ E ∷ Ds) {{reD , reDs}} d a b (n , ns) (inj₂ r) = reifyAny (E ∷ Ds) {{reDs}} d a b ns r reifyMu : ∀ {j} -> μ D₀ j -> Term reifyMu (node e) = reifyAny (consTypes D₀) (dataName D₀) (parsTele D₀) (indsTele D₀) (consNames D₀) e
{ "alphanum_fraction": 0.4781304674, "avg_line_length": 40.01, "ext": "agda", "hexsha": "a370ad0ff28f4b60678f3de32caf5fcce8edbd67", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z", "max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z", "max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "turion/Generic", "max_forks_repo_path": "src/Generic/Property/Reify.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z", "max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "turion/Generic", "max_issues_repo_path": "src/Generic/Property/Reify.agda", "max_line_length": 93, "max_stars_count": 30, "max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "turion/Generic", "max_stars_repo_path": "src/Generic/Property/Reify.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z", "num_tokens": 1489, "size": 4001 }
module Issue1760g where data ⊥ : Set where {-# NO_POSITIVITY_CHECK #-} {-# NON_TERMINATING #-} mutual record U : Set where constructor roll field ap : U → U lemma : U → ⊥ lemma (roll u) = lemma (u (roll u)) bottom : ⊥ bottom = lemma (roll λ x → x)
{ "alphanum_fraction": 0.5948905109, "avg_line_length": 16.1176470588, "ext": "agda", "hexsha": "ef04ee4da2b2cf472d7d6110e0b7e8bce9e3d754", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1760g.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Succeed/Issue1760g.agda", "max_line_length": 37, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Succeed/Issue1760g.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 88, "size": 274 }
{-# OPTIONS --without-K --safe #-} open import Algebra.Structures.Bundles.Field module Algebra.Linear.Morphism.VectorSpace {k ℓᵏ} (K : Field k ℓᵏ) where open import Level open import Algebra.FunctionProperties as FP import Algebra.Linear.Morphism.Definitions as LinearMorphismDefinitions import Algebra.Morphism as Morphism open import Relation.Binary using (Rel; Setoid) open import Relation.Binary.Morphism.Structures open import Algebra.Morphism open import Algebra.Linear.Core open import Algebra.Linear.Structures.VectorSpace K open import Algebra.Linear.Structures.Bundles module LinearDefinitions {a₁ a₂ ℓ₂} (A : Set a₁) (B : Set a₂) (_≈_ : Rel B ℓ₂) where open Morphism.Definitions A B _≈_ public open LinearMorphismDefinitions K A B _≈_ public module _ {a₁ ℓ₁} (From : VectorSpace K a₁ ℓ₁) {a₂ ℓ₂} (To : VectorSpace K a₂ ℓ₂) where private module F = VectorSpace From module T = VectorSpace To K' : Set k K' = Field.Carrier K open F using () renaming (Carrier to A; _≈_ to _≈₁_; _+_ to _+₁_; _∙_ to _∙₁_) open T using () renaming (Carrier to B; _≈_ to _≈₂_; _+_ to _+₂_; _∙_ to _∙₂_) open import Function open LinearDefinitions (VectorSpace.Carrier From) (VectorSpace.Carrier To) _≈₂_ record IsLinearMap (⟦_⟧ : Morphism) : Set (k ⊔ a₁ ⊔ a₂ ⊔ ℓ₁ ⊔ ℓ₂) where field isAbelianGroupMorphism : IsAbelianGroupMorphism F.abelianGroup T.abelianGroup ⟦_⟧ ∙-homo : ScalarHomomorphism ⟦_⟧ _∙₁_ _∙₂_ open IsAbelianGroupMorphism isAbelianGroupMorphism public renaming (∙-homo to +-homo; ε-homo to 0#-homo) distrib-linear : ∀ (a b : K') (u v : A) -> ⟦ a ∙₁ u +₁ b ∙₁ v ⟧ ≈₂ a ∙₂ ⟦ u ⟧ +₂ b ∙₂ ⟦ v ⟧ distrib-linear a b u v = T.trans (+-homo (a ∙₁ u) (b ∙₁ v)) (T.+-cong (∙-homo a u) (∙-homo b v)) record IsLinearMonomorphism (⟦_⟧ : Morphism) : Set (k ⊔ a₁ ⊔ a₂ ⊔ ℓ₁ ⊔ ℓ₂) where field isLinearMap : IsLinearMap ⟦_⟧ injective : Injective _≈₁_ _≈₂_ ⟦_⟧ open IsLinearMap isLinearMap public record IsLinearIsomorphism (⟦_⟧ : Morphism) : Set (k ⊔ a₁ ⊔ a₂ ⊔ ℓ₁ ⊔ ℓ₂) where field isLinearMonomorphism : IsLinearMonomorphism ⟦_⟧ surjective : Surjective _≈₁_ _≈₂_ ⟦_⟧ open IsLinearMonomorphism isLinearMonomorphism public module _ {a ℓ} (V : VectorSpace K a ℓ) where open VectorSpace V open LinearDefinitions Carrier Carrier _≈_ IsLinearEndomorphism : Morphism -> Set (k ⊔ a ⊔ ℓ) IsLinearEndomorphism ⟦_⟧ = IsLinearMap V V ⟦_⟧ IsLinearAutomorphism : Morphism -> Set (k ⊔ a ⊔ ℓ) IsLinearAutomorphism ⟦_⟧ = IsLinearIsomorphism V V ⟦_⟧
{ "alphanum_fraction": 0.6839258114, "avg_line_length": 31.5609756098, "ext": "agda", "hexsha": "b45d42badcf6e0c9c0e82b96bdd5f641e7650820", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "felko/linear-algebra", "max_forks_repo_path": "src/Algebra/Linear/Morphism/VectorSpace.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "felko/linear-algebra", "max_issues_repo_path": "src/Algebra/Linear/Morphism/VectorSpace.agda", "max_line_length": 100, "max_stars_count": 15, "max_stars_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "felko/linear-algebra", "max_stars_repo_path": "src/Algebra/Linear/Morphism/VectorSpace.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-30T06:18:08.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-02T14:11:00.000Z", "num_tokens": 953, "size": 2588 }
module helloworld where open import IO main = run (putStrLn "Hello World")
{ "alphanum_fraction": 0.7631578947, "avg_line_length": 15.2, "ext": "agda", "hexsha": "888b18f62b4d08c865b1ad8c17ed67a645e5ec2f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e410da7ee2b55e078aa53325a10f0f4ff0372566", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "P3trur0/vagrant-agda", "max_forks_repo_path": "src/helloworld.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e410da7ee2b55e078aa53325a10f0f4ff0372566", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "P3trur0/vagrant-agda", "max_issues_repo_path": "src/helloworld.agda", "max_line_length": 35, "max_stars_count": 1, "max_stars_repo_head_hexsha": "e410da7ee2b55e078aa53325a10f0f4ff0372566", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "P3trur0/vagrant-agda", "max_stars_repo_path": "src/helloworld.agda", "max_stars_repo_stars_event_max_datetime": "2018-04-09T19:56:39.000Z", "max_stars_repo_stars_event_min_datetime": "2018-04-09T19:56:39.000Z", "num_tokens": 19, "size": 76 }
{-# OPTIONS --without-K #-} module hott.types where open import hott.types.nat public open import hott.types.coproduct public
{ "alphanum_fraction": 0.7578125, "avg_line_length": 18.2857142857, "ext": "agda", "hexsha": "92967ca54ed23ee0ccd5082dc949a2049dbefcb5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "piyush-kurur/hott", "max_forks_repo_path": "agda/hott/types.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "piyush-kurur/hott", "max_issues_repo_path": "agda/hott/types.agda", "max_line_length": 39, "max_stars_count": null, "max_stars_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "piyush-kurur/hott", "max_stars_repo_path": "agda/hott/types.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 28, "size": 128 }
module README where ---------------------------------------------------------------------- -- The Agda smallib library, version 0.1 ---------------------------------------------------------------------- -- -- This library implements a type theory which is described in the -- Appendix of the HoTT book. It also contains some properties derived -- from the rules of this theory. ---------------------------------------------------------------------- -- -- This project is meant to be a practice for the author but as a -- secondary goal it would be nice to create a small library which is -- less intimidating than the standard one. -- -- This version was tested using Agda 2.6.1. ---------------------------------------------------------------------- ---------------------------------------------------------------------- -- High-level overview of contents ---------------------------------------------------------------------- -- -- The top-level module L is not implemented (yet), it's sole purpose -- is to prepend all of the module names with something to avoid -- possible name clashes with the standard library. -- -- The structure of the library is the following: -- -- • Base -- The derivation rules of the implemented type theory and some -- useful properties which can be derived from these. To make a -- clear distinction between these every type has a Core and a -- Properties submodule. In some cases the latter might be empty. -- -- • Data -- ◦ Bool -- A specialized form of the Coproduct type. It implements if as -- an elimination rule. The following operations are defined on -- them: not, ∧, ∨, xor. ---------------------------------------------------------------------- ---------------------------------------------------------------------- -- Some useful modules ---------------------------------------------------------------------- -- -- • To use several things at once import L.Base -- Type theory with it's properties. import L.Base.Core -- Derivation rules. -- -- • To use only one base type import L.Base.Sigma -- Products (universe polymorphic). import L.Base.Coproduct -- Disjoint sums (universe polymorphic). import L.Base.Empty -- Empty type. import L.Base.Unit -- Unit type. import L.Base.Nat -- Natural numbers. import L.Base.Id -- Propositional equality (universe poly.). -- -- • To use the properties of the above import L.Base.Sigma.Properties import L.Base.Coproduct.Properties import L.Base.Empty.Properties import L.Base.Unit.Properties import L.Base.Nat.Properties import L.Base.Id.Properties -- -- • Some datatypes import L.Data.Bool -- Booleans. ---------------------------------------------------------------------- ---------------------------------------------------------------------- -- Notes ---------------------------------------------------------------------- -- -- • L.Base exports L.Coproduct.Core._+_ as _⊎_ to avoid multiple -- definitions of _+_, as L.Base.Nat declares it as well. ----------------------------------------------------------------------
{ "alphanum_fraction": 0.5001629195, "avg_line_length": 39.8571428571, "ext": "agda", "hexsha": "0ce4cbd781e87043acb5b4a30ef03828845d232c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "borszag/smallib", "max_forks_repo_path": "README.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_issues_repo_issues_event_max_datetime": "2020-11-09T16:40:39.000Z", "max_issues_repo_issues_event_min_datetime": "2020-10-19T10:13:16.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "borszag/smallib", "max_issues_repo_path": "README.agda", "max_line_length": 70, "max_stars_count": null, "max_stars_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "borszag/smallib", "max_stars_repo_path": "README.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 529, "size": 3069 }
{-# OPTIONS --without-K #-} open import HoTT open import cohomology.SuspAdjointLoopIso open import cohomology.WithCoefficients open import cohomology.Theory open import cohomology.Exactness open import cohomology.Choice {- A spectrum (family (Eₙ | n : ℤ) such that ΩEₙ₊₁ = Eₙ) - gives rise to a cohomology theory C with Cⁿ(S⁰) = π₁(Eₙ₊₁). -} module cohomology.SpectrumModel {i} (E : ℤ → Ptd i) (spectrum : (n : ℤ) → ⊙Ω (E (succ n)) == E n) where module SpectrumModel where {- Definition of cohomology group C -} module _ (n : ℤ) (X : Ptd i) where C : Group i C = →Ω-group X (E (succ n)) {- convenient abbreviations -} CEl = Group.El C ⊙CEl = Group.⊙El C Cid = Group.ident C {- before truncation -} uCEl = fst (X ⊙→ ⊙Ω (E (succ n))) {- Cⁿ(X) is an abelian group -} C-abelian : (n : ℤ) (X : Ptd i) → is-abelian (C n X) C-abelian n X = transport (is-abelian ∘ →Ω-group X) (spectrum (succ n)) $ Trunc-group-abelian (→Ω-group-structure _ _) $ λ {(f , fpt) (g , gpt) → ⊙λ= (λ x → conc^2-comm (f x) (g x)) (pt-lemma fpt gpt)} where pt-lemma : ∀ {i} {A : Type i} {x : A} {p q : idp {a = x} == idp {a = x}} (α : p == idp) (β : q == idp) → ap (uncurry _∙_) (ap2 _,_ α β) ∙ idp == conc^2-comm p q ∙ ap (uncurry _∙_) (ap2 _,_ β α) ∙ idp pt-lemma idp idp = idp {- CF, the functorial action of C: - contravariant functor from pointed spaces to abelian groups -} module _ (n : ℤ) {X Y : Ptd i} where CF-hom : fst (X ⊙→ Y) → (C n Y →ᴳ C n X) CF-hom f = →Ω-group-dom-act f (E (succ n)) CF : fst (X ⊙→ Y) → fst (⊙CEl n Y ⊙→ ⊙CEl n X) CF F = GroupHom.⊙f (CF-hom F) {- CF-hom is a functor from pointed spaces to abelian groups -} module _ (n : ℤ) {X : Ptd i} where CF-ident : CF-hom n {X} {X} (⊙idf X) == idhom (C n X) CF-ident = →Ω-group-dom-idf (E (succ n)) CF-comp : {Y Z : Ptd i} (g : fst (Y ⊙→ Z)) (f : fst (X ⊙→ Y)) → CF-hom n (g ⊙∘ f) == CF-hom n f ∘ᴳ CF-hom n g CF-comp g f = →Ω-group-dom-∘ g f (E (succ n)) -- Eilenberg-Steenrod Axioms {- Suspension Axiom -} private C-Susp' : {E₁ E₀ : Ptd i} (p : ⊙Ω E₁ == E₀) (X : Ptd i) → →Ω-group (⊙Susp X) E₁ ≃ᴳ →Ω-group X E₀ C-Susp' {E₁ = E₁} idp X = SuspAdjointLoopIso.iso X E₁ C-SuspF' : {E₁ E₀ : Ptd i} (p : ⊙Ω E₁ == E₀) {X Y : Ptd i} (f : fst (X ⊙→ Y)) → fst (C-Susp' p X) ∘ᴳ →Ω-group-dom-act (⊙susp-fmap f) E₁ == →Ω-group-dom-act f E₀ ∘ᴳ fst (C-Susp' p Y) C-SuspF' {E₁ = E₁} idp f = SuspAdjointLoopIso.nat-dom f E₁ C-Susp : (n : ℤ) (X : Ptd i) → C (succ n) (⊙Susp X) ≃ᴳ C n X C-Susp n X = C-Susp' (spectrum (succ n)) X C-SuspF : (n : ℤ) {X Y : Ptd i} (f : fst (X ⊙→ Y)) → fst (C-Susp n X) ∘ᴳ CF-hom (succ n) (⊙susp-fmap f) == CF-hom n f ∘ᴳ fst (C-Susp n Y) C-SuspF n f = C-SuspF' (spectrum (succ n)) f {- Non-truncated Exactness Axiom -} module _ (n : ℤ) {X Y : Ptd i} where {- precomposing [⊙cfcod' f] and then [f] gives [0] -} exact-itok-lemma : (f : fst (X ⊙→ Y)) (g : uCEl n (⊙Cof f)) → (g ⊙∘ ⊙cfcod' f) ⊙∘ f == ⊙cst exact-itok-lemma (f , fpt) (g , gpt) = ⊙λ= (λ x → ap g (! (cfglue' f x)) ∙ gpt) (ap (g ∘ cfcod) fpt ∙ ap g (ap cfcod (! fpt) ∙ ! (cfglue (snd X))) ∙ gpt =⟨ lemma cfcod g fpt (! (cfglue (snd X))) gpt ⟩ ap g (! (cfglue (snd X))) ∙ gpt =⟨ ! (∙-unit-r _) ⟩ (ap g (! (cfglue (snd X))) ∙ gpt) ∙ idp ∎) where lemma : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} {a₁ a₂ : A} {b : B} {c : C} (f : A → B) (g : B → C) (p : a₁ == a₂) (q : f a₁ == b) (r : g b == c) → ap (g ∘ f) p ∙ ap g (ap f (! p) ∙ q) ∙ r == ap g q ∙ r lemma f g idp idp idp = idp {- if g ⊙∘ f is constant then g factors as h ⊙∘ ⊙cfcod' f -} exact-ktoi-lemma : (f : fst (X ⊙→ Y)) (g : uCEl n Y) → g ⊙∘ f == ⊙cst → Σ (uCEl n (⊙Cof f)) (λ h → h ⊙∘ ⊙cfcod' f == g) exact-ktoi-lemma (f , fpt) (h , hpt) p = ((g , ! q ∙ hpt) , pair= idp (! (∙-assoc q (! q) hpt) ∙ ap (_∙ hpt) (!-inv-r q))) where g : Cofiber f → Ω (E (succ n)) g = CofiberRec.f idp h (! ∘ app= (ap fst p)) q : h (snd Y) == g (cfbase' f) q = ap g (snd (⊙cfcod' (f , fpt))) {- Truncated Exactness Axiom -} module _ (n : ℤ) {X Y : Ptd i} where {- in image of (CF n (⊙cfcod' f)) ⇒ in kernel of (CF n f) -} abstract C-exact-itok : (f : fst (X ⊙→ Y)) → is-exact-itok (CF-hom n (⊙cfcod' f)) (CF-hom n f) C-exact-itok f = itok-alt-in (CF-hom n (⊙cfcod' f)) (CF-hom n f) $ Trunc-elim (λ _ → =-preserves-level _ (Trunc-level {n = 0})) (ap [_] ∘ exact-itok-lemma n f) {- in kernel of (CF n f) ⇒ in image of (CF n (⊙cfcod' f)) -} abstract C-exact-ktoi : (f : fst (X ⊙→ Y)) → is-exact-ktoi (CF-hom n (⊙cfcod' f)) (CF-hom n f) C-exact-ktoi f = Trunc-elim (λ _ → Π-level (λ _ → raise-level _ Trunc-level)) (λ h tp → Trunc-rec Trunc-level (lemma h) (–> (Trunc=-equiv _ _) tp)) where lemma : (h : uCEl n Y) → h ⊙∘ f == ⊙cst → Trunc -1 (Σ (CEl n (⊙Cof f)) (λ tk → fst (CF n (⊙cfcod' f)) tk == [ h ])) lemma h p = [ [ fst wit ] , ap [_] (snd wit) ] where wit : Σ (uCEl n (⊙Cof f)) (λ k → k ⊙∘ ⊙cfcod' f == h) wit = exact-ktoi-lemma n f h p C-exact : (f : fst (X ⊙→ Y)) → is-exact (CF-hom n (⊙cfcod' f)) (CF-hom n f) C-exact f = record {itok = C-exact-itok f; ktoi = C-exact-ktoi f} {- Additivity Axiom -} module _ (n : ℤ) {A : Type i} (X : A → Ptd i) (ac : (W : A → Type i) → has-choice 0 A W) where into : CEl n (⊙BigWedge X) → Trunc 0 (Π A (uCEl n ∘ X)) into = Trunc-rec Trunc-level (λ H → [ (λ a → H ⊙∘ ⊙bwin a) ]) module Out' (K : Π A (uCEl n ∘ X)) = BigWedgeRec idp (fst ∘ K) (! ∘ snd ∘ K) out : Trunc 0 (Π A (uCEl n ∘ X)) → CEl n (⊙BigWedge X) out = Trunc-rec Trunc-level (λ K → [ Out'.f K , idp ]) into-out : ∀ y → into (out y) == y into-out = Trunc-elim (λ _ → =-preserves-level _ Trunc-level) (λ K → ap [_] (λ= (λ a → pair= idp $ ap (Out'.f K) (! (bwglue a)) ∙ idp =⟨ ∙-unit-r _ ⟩ ap (Out'.f K) (! (bwglue a)) =⟨ ap-! (Out'.f K) (bwglue a) ⟩ ! (ap (Out'.f K) (bwglue a)) =⟨ ap ! (Out'.glue-β K a) ⟩ ! (! (snd (K a))) =⟨ !-! (snd (K a)) ⟩ snd (K a) ∎))) out-into : ∀ x → out (into x) == x out-into = Trunc-elim {P = λ tH → out (into tH) == tH} (λ _ → =-preserves-level _ Trunc-level) (λ {(h , hpt) → ap [_] $ pair= (λ= (out-into-fst (h , hpt))) (↓-app=cst-in $ ! $ ap (λ w → w ∙ hpt) (app=-β (out-into-fst (h , hpt)) bwbase) ∙ !-inv-l hpt)}) where lemma : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {a₁ a₂ : A} {b : B} (p : a₁ == a₂) (q : f a₁ == b) → ! q ∙ ap f p == ! (ap f (! p) ∙ q) lemma f idp idp = idp out-into-fst : (H : fst (⊙BigWedge X ⊙→ ⊙Ω (E (succ n)))) → ∀ w → Out'.f (λ a → H ⊙∘ ⊙bwin a) w == fst H w out-into-fst (h , hpt) = BigWedge-elim (! hpt) (λ _ _ → idp) (λ a → ↓-='-in $ ! hpt ∙ ap h (bwglue a) =⟨ lemma h (bwglue a) hpt ⟩ ! (ap h (! (bwglue a)) ∙ hpt) =⟨ ! (Out'.glue-β (λ a → (h , hpt) ⊙∘ ⊙bwin a) a) ⟩ ap (Out'.f (λ a → (h , hpt) ⊙∘ ⊙bwin a)) (bwglue a) ∎) abstract C-additive : is-equiv (GroupHom.f (Πᴳ-hom-in (CF-hom n ∘ ⊙bwin {X = X}))) C-additive = transport is-equiv (λ= $ Trunc-elim (λ _ → =-preserves-level _ $ Π-level $ λ _ → Trunc-level) (λ _ → idp)) ((ac (uCEl n ∘ X)) ∘ise (is-eq into out into-out out-into)) open SpectrumModel spectrum-cohomology : CohomologyTheory i spectrum-cohomology = record { C = C; CF-hom = CF-hom; CF-ident = CF-ident; CF-comp = CF-comp; C-abelian = C-abelian; C-Susp = C-Susp; C-SuspF = C-SuspF; C-exact = C-exact; C-additive = C-additive} spectrum-C-S⁰ : (n : ℤ) → C n (⊙Lift ⊙S⁰) == πS 0 (E (succ n)) spectrum-C-S⁰ n = Bool⊙→Ω-is-π₁ (E (succ n))
{ "alphanum_fraction": 0.4767329132, "avg_line_length": 35.114893617, "ext": "agda", "hexsha": "274ad4b2acbe7737e00b3abe9058e7ad98d9a77a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "theorems/cohomology/SpectrumModel.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "theorems/cohomology/SpectrumModel.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "theorems/cohomology/SpectrumModel.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3649, "size": 8252 }
{-# OPTIONS --warning=error --safe --without-K #-} open import LogicalFormulae open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Functions.Definition open import Setoids.Setoids open import Setoids.Subset module Graphs.Definition where record Graph {a b : _} (c : _) {V' : Set a} (V : Setoid {a} {b} V') : Set (a ⊔ b ⊔ lsuc c) where field _<->_ : Rel {a} {c} V' noSelfRelation : (x : V') → x <-> x → False symmetric : {x y : V'} → x <-> y → y <-> x wellDefined : {x y r s : V'} → Setoid._∼_ V x y → Setoid._∼_ V r s → x <-> r → y <-> s record GraphIso {a b c d e m : _} {V1' : Set a} {V2' : Set b} {V1 : Setoid {a} {c} V1'} {V2 : Setoid {b} {d} V2'} (G : Graph e V1) (H : Graph m V2) (f : V1' → V2') : Set (a ⊔ b ⊔ c ⊔ d ⊔ e ⊔ m) where field bij : SetoidBijection V1 V2 f respects : (x y : V1') → Graph._<->_ G x y → Graph._<->_ H (f x) (f y) respects' : (x y : V1') → Graph._<->_ H (f x) (f y) → Graph._<->_ G x y record Subgraph {a b c d e : _} {V' : Set a} {V : Setoid {a} {b} V'} (G : Graph c V) {pred : V' → Set d} (sub : subset V pred) (_<->'_ : Rel {_} {e} (Sg V' pred)) : Set (a ⊔ b ⊔ c ⊔ d ⊔ e) where field inherits : {x y : Sg V' pred} → (x <->' y) → (Graph._<->_ G (underlying x) (underlying y)) symmetric : {x y : Sg V' pred} → (x <->' y) → (y <->' x) wellDefined : {x y r s : Sg V' pred} → Setoid._∼_ (subsetSetoid V sub) x y → Setoid._∼_ (subsetSetoid V sub) r s → x <->' r → y <->' s subgraphIsGraph : {a b c d e : _} {V' : Set a} {V : Setoid {a} {b} V'} {G : Graph c V} {pred : V' → Set d} {sub : subset V pred} {rel : Rel {_} {e} (Sg V' pred)} (H : Subgraph G sub rel) → Graph e (subsetSetoid V sub) Graph._<->_ (subgraphIsGraph {rel = rel} H) = rel Graph.noSelfRelation (subgraphIsGraph {G = G} H) (v , isSub) v=v = Graph.noSelfRelation G v (Subgraph.inherits H v=v) Graph.symmetric (subgraphIsGraph H) v1=v2 = Subgraph.symmetric H v1=v2 Graph.wellDefined (subgraphIsGraph H) = Subgraph.wellDefined H
{ "alphanum_fraction": 0.5647590361, "avg_line_length": 56.9142857143, "ext": "agda", "hexsha": "5c4dc2f00dc65d6589cdf27af58589bc738f5de9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Graphs/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Graphs/Definition.agda", "max_line_length": 217, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Graphs/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 807, "size": 1992 }
{- A defintion of the real projective spaces following: [BR17] U. Buchholtz, E. Rijke, The real projective spaces in homotopy type theory. (2017) https://arxiv.org/abs/1704.05770 -} {-# OPTIONS --cubical --safe #-} module Cubical.HITs.RPn.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.Properties open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.HLevels open import Cubical.Foundations.Bundle open import Cubical.Foundations.SIP open import Cubical.Structures.Pointed open import Cubical.Structures.TypeEqvTo open import Cubical.Data.Bool open import Cubical.Data.Nat hiding (elim) open import Cubical.Data.NatMinusOne open import Cubical.Data.Sigma open import Cubical.Data.Unit open import Cubical.Data.Empty as ⊥ hiding (elim) open import Cubical.Data.Sum as ⊎ hiding (elim) open import Cubical.Data.Prod renaming (_×_ to _×'_; _×Σ_ to _×_; swapΣEquiv to swapEquiv) hiding (swapEquiv) open import Cubical.HITs.PropositionalTruncation as PropTrunc hiding (elim) open import Cubical.HITs.Sn open import Cubical.HITs.Susp open import Cubical.HITs.Join open import Cubical.HITs.Pushout open import Cubical.HITs.Pushout.Flattening private variable ℓ ℓ' ℓ'' : Level -- Definition II.1 in [BR17], see also Cubical.Foundations.Bundle 2-EltType₀ = TypeEqvTo ℓ-zero Bool -- Σ[ X ∈ Type₀ ] ∥ X ≃ Bool ∥ 2-EltPointed₀ = PointedEqvTo ℓ-zero Bool -- Σ[ X ∈ Type₀ ] X × ∥ X ≃ Bool ∥ Bool* : 2-EltType₀ Bool* = Bool , ∣ idEquiv _ ∣ -- Our first goal is to 'lift' `_⊕_ : Bool → Bool ≃ Bool` to a function `_⊕_ : A → A ≃ Bool` -- for any 2-element type (A, ∣e∣). -- `isContr-BoolPointedIso` and `isContr-2-EltPointed-iso` are contained in the proof -- of Lemma II.2 in [BR17], though we prove `isContr-BoolPointedIso` more directly -- with ⊕ -- [BR17] proves it for just the x = false case and uses notEquiv to get -- the x = true case. -- (λ y → x ⊕ y) is the unqiue pointed isomorphism (Bool , false) ≃ (Bool , x) isContr-BoolPointedIso : ∀ x → isContr ((Bool , false) ≃[ pointed-iso ] (Bool , x)) fst (isContr-BoolPointedIso x) = ((λ y → x ⊕ y) , isEquiv-⊕ x) , ⊕-comm x false snd (isContr-BoolPointedIso x) (e , p) = ΣProp≡ (λ e → isSetBool (equivFun e false) x) (ΣProp≡ isPropIsEquiv (funExt λ { false → ⊕-comm x false ∙ sym p ; true → ⊕-comm x true ∙ sym q })) where q : e .fst true ≡ not x q with dichotomyBool (invEq e (not x)) ... | inl q = invEq≡→equivFun≡ e q ... | inr q = ⊥.rec (not≢const x (sym (invEq≡→equivFun≡ e q) ∙ p)) -- Since isContr is a mere proposition, we can eliminate a witness ∣e∣ : ∥ X ≃ Bool ∥ to get -- that there is therefore a unique pointed isomorphism (Bool , false) ≃ (X , x) for any -- 2-element pointed type (X , x, ∣e∣). isContr-2-EltPointed-iso : (X∙ : 2-EltPointed₀) → isContr ((Bool , false , ∣ idEquiv Bool ∣) ≃[ PointedEqvTo-iso Bool ] X∙) isContr-2-EltPointed-iso (X , x , ∣e∣) = PropTrunc.rec isPropIsContr (λ e → J (λ X∙ _ → isContr ((Bool , false) ≃[ pointed-iso ] X∙)) (isContr-BoolPointedIso (e .fst x)) (sym (pointed-sip _ _ (e , refl)))) ∣e∣ -- This unique isomorphism must be _⊕_ 'lifted' to X. This idea is alluded to at the end of the -- proof of Theorem III.4 in [BR17], where the authors reference needing ⊕-comm. module ⊕* (X : 2-EltType₀) where _⊕*_ : typ X → typ X → Bool y ⊕* z = invEquiv (fst (fst (isContr-2-EltPointed-iso (fst X , y , snd X)))) .fst z -- we've already shown that this map is an equivalence on the right isEquivʳ : (y : typ X) → isEquiv (y ⊕*_) isEquivʳ y = invEquiv (fst (fst (isContr-2-EltPointed-iso (fst X , y , snd X)))) .snd Equivʳ : typ X → typ X ≃ Bool Equivʳ y = (y ⊕*_) , isEquivʳ y -- any mere proposition that holds for (Bool, _⊕_) holds for (typ X, _⊕*_) -- this amounts to just carefully unfolding the PropTrunc.elim and J in isContr-2-EltPointed-iso elim : ∀ {ℓ'} (P : (A : Type₀) (_⊕'_ : A → A → Bool) → Type ℓ') (propP : ∀ A _⊕'_ → isProp (P A _⊕'_)) → P Bool _⊕_ → P (typ X) _⊕*_ elim {ℓ'} P propP r = PropTrunc.elim {P = λ ∣e∣ → P (typ X) (R₁ ∣e∣)} (λ _ → propP _ _) (λ e → EquivJ (λ A e → P A (R₂ A e)) r e) (snd X) where R₁ : ∥ fst X ≃ Bool ∥ → typ X → typ X → Bool R₁ ∣e∣ y = invEq (fst (fst (isContr-2-EltPointed-iso (fst X , y , ∣e∣)))) R₂ : (B : Type₀) → B ≃ Bool → B → B → Bool R₂ A e y = invEq (fst (fst (J (λ A∙ _ → isContr ((Bool , false) ≃[ pointed-iso ] A∙)) (isContr-BoolPointedIso (e .fst y)) (sym (pointed-sip (A , y) (Bool , e .fst y) (e , refl)))))) -- as a consequence, we get that ⊕* is commutative, and is therefore also an equivalence on the left comm : (y z : typ X) → y ⊕* z ≡ z ⊕* y comm = elim (λ A _⊕'_ → (x y : A) → x ⊕' y ≡ y ⊕' x) (λ _ _ → isPropPi (λ _ → isPropPi (λ _ → isSetBool _ _))) ⊕-comm isEquivˡ : (y : typ X) → isEquiv (_⊕* y) isEquivˡ y = subst isEquiv (funExt (λ z → comm y z)) (isEquivʳ y) Equivˡ : typ X → typ X ≃ Bool Equivˡ y = (_⊕* y) , isEquivˡ y -- Lemma II.2 in [BR17], though we do not use it here -- Note: Lemma II.3 is `pointed-sip`, used in `PointedEqvTo-sip` isContr-2-EltPointed : isContr (2-EltPointed₀) fst isContr-2-EltPointed = (Bool , false , ∣ idEquiv Bool ∣) snd isContr-2-EltPointed A∙ = PointedEqvTo-sip Bool _ A∙ (fst (isContr-2-EltPointed-iso A∙)) -------------------------------------------------------------------------------- -- Now we mutually define RP n and its double cover (Definition III.1 in [BR17]), -- and show that the total space of this double cover is S n (Theorem III.4). RP : ℕ₋₁ → Type₀ cov⁻¹ : (n : ℕ₋₁) → RP n → 2-EltType₀ -- (see Cubical.Foundations.Bundle) RP neg1 = ⊥ RP (ℕ→ℕ₋₁ n) = Pushout (pr (cov⁻¹ (-1+ n))) (λ _ → tt) {- tt Total (cov⁻¹ (n-1)) — — — > Unit | ∙ pr | ∙ inr | ∙ V V RP (n-1) ∙ ∙ ∙ ∙ ∙ ∙ > RP n := Pushout pr (const tt) inl -} cov⁻¹ neg1 x = Bool* cov⁻¹ (ℕ→ℕ₋₁ n) (inl x) = cov⁻¹ (-1+ n) x cov⁻¹ (ℕ→ℕ₋₁ n) (inr _) = Bool* cov⁻¹ (ℕ→ℕ₋₁ n) (push (x , y) i) = ua ((λ z → y ⊕* z) , ⊕*.isEquivʳ (cov⁻¹ (-1+ n) x) y) i , ∣p∣ i where open ⊕* (cov⁻¹ (-1+ n) x) ∣p∣ = isProp→PathP (λ i → squash {A = ua (⊕*.Equivʳ (cov⁻¹ (-1+ n) x) y) i ≃ Bool}) (str (cov⁻¹ (-1+ n) x)) (∣ idEquiv _ ∣) {- tt Total (cov⁻¹ (n-1)) — — — > Unit | | pr | // ua α // | Bool | | V V RP (n-1) - - - - - - > Type cov⁻¹ (n-1) where α : ∀ (x : Total (cov⁻¹ (n-1))) → cov⁻¹ (n-1) (pr x) ≃ Bool α (x , y) = (λ z → y ⊕* z) , ⊕*.isEquivʳ y -} TotalCov≃Sn : ∀ n → Total (cov⁻¹ n) ≃ S n TotalCov≃Sn neg1 = isoToEquiv (iso (λ { () }) (λ { () }) (λ { () }) (λ { () })) TotalCov≃Sn (ℕ→ℕ₋₁ n) = Total (cov⁻¹ (ℕ→ℕ₋₁ n)) ≃⟨ i ⟩ Pushout Σf Σg ≃⟨ ii ⟩ join (Total (cov⁻¹ (-1+ n))) Bool ≃⟨ iii ⟩ S (ℕ→ℕ₋₁ n) ■ where {- (i) First we want to show that `Total (cov⁻¹ (ℕ→ℕ₋₁ n))` is equivalent to a pushout. We do this using the flattening lemma, which states: Given f,g,F,G,e such that the following square commutes: g A — — — — > C Define: E : Pushout f g → Type | | E (inl b) = F b f | ua e | G E (inr c) = G c V V E (push a i) = ua (e a) i B — — — — > Type F Then, the total space `Σ (Pushout f g) E` is the following pushout: Σg := (g , e a) Σ[ a ∈ A ] F (f a) — — — — — — — — > Σ[ c ∈ C ] G c | ∙ Σf := (f , id) | ∙ V V Σ[ b ∈ B ] F b ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ > Σ (Pushout f g) E In our case, setting `f = pr (cov⁻¹ (n-1))`, `g = λ _ → tt`, `F = cov⁻¹ (n-1)`, `G = λ _ → Bool`, and `e = λ (x , y) → ⊕*.Equivʳ (cov⁻¹ (n-1) x) y` makes E equal (up to funExt) to `cov⁻¹ n`. Thus the flattening lemma gives us that `Total (cov⁻¹ n) ≃ Pushout Σf Σg`. -} open FlatteningLemma {- f = -} (λ x → pr (cov⁻¹ (-1+ n)) x) {- g = -} (λ _ → tt) {- F = -} (λ x → typ (cov⁻¹ (-1+ n) x)) {- G = -} (λ _ → Bool) {- e = -} (λ { (x , y) → ⊕*.Equivʳ (cov⁻¹ (-1+ n) x) y }) hiding (Σf ; Σg) cov⁻¹≃E : ∀ x → typ (cov⁻¹ (ℕ→ℕ₋₁ n) x) ≃ E x cov⁻¹≃E (inl x) = idEquiv _ cov⁻¹≃E (inr x) = idEquiv _ cov⁻¹≃E (push a i) = idEquiv _ -- for easier reference, we copy these definitons here Σf : Σ[ x ∈ Total (cov⁻¹ (-1+ n)) ] typ (cov⁻¹ (-1+ n) (fst x)) → Total (cov⁻¹ (-1+ n)) Σg : Σ[ x ∈ Total (cov⁻¹ (-1+ n)) ] typ (cov⁻¹ (-1+ n) (fst x)) → Unit × Bool Σf ((x , y) , z) = (x , z) -- ≡ (f a , x) Σg ((x , y) , z) = (tt , y ⊕* z) -- ≡ (g a , (e a) .fst x) where open ⊕* (cov⁻¹ (-1+ n) x) i : Total (cov⁻¹ (ℕ→ℕ₋₁ n)) ≃ Pushout Σf Σg i = (Σ[ x ∈ RP (ℕ→ℕ₋₁ n) ] typ (cov⁻¹ (ℕ→ℕ₋₁ n) x)) ≃⟨ congΣEquiv cov⁻¹≃E ⟩ (Σ[ x ∈ RP (ℕ→ℕ₋₁ n) ] E x) ≃⟨ flatten ⟩ Pushout Σf Σg ■ {- (ii) Next we want to show that `Pushout Σf Σg` is equivalent to `join (Total (cov⁻¹ (n-1))) Bool`. Since both are pushouts, this can be done by defining a diagram equivalence: Σf Σg Total (cov⁻¹ (n-1)) < — — Σ[ x ∈ Total (cov⁻¹ (n-1)) ] cov⁻¹ (n-1) (pr x) — — > Unit × Bool | ∙ | id |≃ u ∙≃ snd |≃ V V V Total (cov⁻¹ (n-1)) < — — — — — — — Total (cov⁻¹ (n-1)) × Bool — — — — — — — — — > Bool proj₁ proj₂ where the equivalence u above must therefore satisfy: `u .fst x ≡ (Σf x , snd (Σg x))` Unfolding this, we get: `u .fst ((x , y) , z) ≡ ((x , z) , (y ⊕* z))` It suffices to show that the map y ↦ y ⊕* z is an equivalence, since we can then express u as the following composition of equivalences: ((x , y) , z) ↦ (x , (y , z)) ↦ (x , (z , y)) ↦ (x , (z , y ⊕* z)) ↦ ((x , z) , y ⊕* z) This was proved above by ⊕*.isEquivˡ. -} u : ∀ {n} → (Σ[ x ∈ Total (cov⁻¹ n) ] typ (cov⁻¹ n (fst x))) ≃ (Total (cov⁻¹ n) ×' Bool) u {n} = Σ[ x ∈ Total (cov⁻¹ n) ] typ (cov⁻¹ n (fst x)) ≃⟨ assocΣ ⟩ Σ[ x ∈ RP n ] (typ (cov⁻¹ n x)) × (typ (cov⁻¹ n x)) ≃⟨ congΣEquiv (λ x → swapEquiv _ _) ⟩ Σ[ x ∈ RP n ] (typ (cov⁻¹ n x)) × (typ (cov⁻¹ n x)) ≃⟨ congΣEquiv (λ x → congΣEquiv (λ y → ⊕*.Equivˡ (cov⁻¹ n x) y)) ⟩ Σ[ x ∈ RP n ] (typ (cov⁻¹ n x)) × Bool ≃⟨ invEquiv assocΣ ⟩ Total (cov⁻¹ n) × Bool ≃⟨ invEquiv A×B≃A×ΣB ⟩ Total (cov⁻¹ n) ×' Bool ■ H : ∀ x → u .fst x ≡ (Σf x , snd (Σg x)) H x = refl nat : 3-span-equiv (3span Σf Σg) (3span {A2 = Total (cov⁻¹ (-1+ n)) ×' Bool} proj₁ proj₂) nat = record { e0 = idEquiv _ ; e2 = u ; e4 = ΣUnit _ ; H1 = λ x → cong proj₁ (H x) ; H3 = λ x → cong proj₂ (H x) } ii : Pushout Σf Σg ≃ join (Total (cov⁻¹ (-1+ n))) Bool ii = compEquiv (pathToEquiv (spanEquivToPushoutPath nat)) (joinPushout≃join _ _) {- (iii) Finally, it's trivial to show that `join (Total (cov⁻¹ (n-1))) Bool` is equivalent to `Susp (Total (cov⁻¹ (n-1)))`. Induction then gives us that `Susp (Total (cov⁻¹ (n-1)))` is equivalent to `S n`, which completes the proof. -} iii : join (Total (cov⁻¹ (-1+ n))) Bool ≃ S (ℕ→ℕ₋₁ n) iii = join (Total (cov⁻¹ (-1+ n))) Bool ≃⟨ invEquiv Susp≃joinBool ⟩ Susp (Total (cov⁻¹ (-1+ n))) ≃⟨ congSuspEquiv (TotalCov≃Sn (-1+ n)) ⟩ S (ℕ→ℕ₋₁ n) ■ -- the usual covering map S n → RP n, with fibers exactly cov⁻¹ cov : (n : ℕ₋₁) → S n → RP n cov n = pr (cov⁻¹ n) ∘ invEq (TotalCov≃Sn n) fibcov≡cov⁻¹ : ∀ n (x : RP n) → fiber (cov n) x ≡ cov⁻¹ n x .fst fibcov≡cov⁻¹ n x = fiber (cov n) x ≡[ i ]⟨ fiber {A = ua e i} (pr (cov⁻¹ n) ∘ ua-unglue e i) x ⟩ fiber (pr (cov⁻¹ n)) x ≡⟨ ua (fibPrEquiv (cov⁻¹ n) x) ⟩ cov⁻¹ n x .fst ∎ where e = invEquiv (TotalCov≃Sn n) -------------------------------------------------------------------------------- -- Finally, we state the trivial equivalences for RP 0 and RP 1 (Example III.3 in [BR17]) RP0≃Unit : RP 0 ≃ Unit RP0≃Unit = isoToEquiv (iso (λ _ → tt) (λ _ → inr tt) (λ _ → refl) (λ { (inr tt) → refl })) RP1≡S1 : RP 1 ≡ S 1 RP1≡S1 = Pushout {A = Total (cov⁻¹ 0)} {B = RP 0} (pr (cov⁻¹ 0)) (λ _ → tt) ≡⟨ i ⟩ Pushout {A = Total (cov⁻¹ 0)} {B = Unit} (λ _ → tt) (λ _ → tt) ≡⟨ ii ⟩ Pushout {A = S 0} {B = Unit} (λ _ → tt) (λ _ → tt) ≡⟨ PushoutSusp≡Susp ⟩ S 1 ∎ where i = λ i → Pushout {A = Total (cov⁻¹ 0)} {B = ua RP0≃Unit i} (λ x → ua-gluePt RP0≃Unit i (pr (cov⁻¹ 0) x)) (λ _ → tt) ii = λ j → Pushout {A = ua (TotalCov≃Sn 0) j} (λ _ → tt) (λ _ → tt)
{ "alphanum_fraction": 0.4765892122, "avg_line_length": 45.0660377358, "ext": "agda", "hexsha": "45449153c301272a2071ef42dd6f73a926e03d27", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "borsiemir/cubical", "max_forks_repo_path": "Cubical/HITs/RPn/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "borsiemir/cubical", "max_issues_repo_path": "Cubical/HITs/RPn/Base.agda", "max_line_length": 104, "max_stars_count": null, "max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "borsiemir/cubical", "max_stars_repo_path": "Cubical/HITs/RPn/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5449, "size": 14331 }
{-# OPTIONS --allow-unsolved-metas #-} open import Agda.Builtin.Bool postulate A : Set F : Bool → Set F true = A F false = A data D {b : Bool} (x : F b) : Set where variable b : Bool x : F b postulate f : D x → (P : F b → Set) → P x
{ "alphanum_fraction": 0.5685483871, "avg_line_length": 12.4, "ext": "agda", "hexsha": "cc19019014678b6e82f6984324b5589b2087e15c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue3655b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue3655b.agda", "max_line_length": 39, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue3655b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 94, "size": 248 }
-- {-# OPTIONS -v scope.clash:20 #-} -- Andreas, 2012-10-19 test case for Issue 719 module ShadowModule2 where open import Common.Size as YesDuplicate import Common.Size as NotDuplicate private open module YesDuplicate = NotDuplicate -- should report: -- Duplicate definition of module YesDuplicate. -- NOT: Duplicate definition of module NotDuplicate.
{ "alphanum_fraction": 0.7774647887, "avg_line_length": 29.5833333333, "ext": "agda", "hexsha": "bf432051e72c1a6baeb78b50eaa821973f4085e7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/ShadowModule2.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/ShadowModule2.agda", "max_line_length": 52, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/ShadowModule2.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 81, "size": 355 }
------------------------------------------------------------------------ -- Various forms of induction for natural numbers ------------------------------------------------------------------------ module Induction.Nat where open import Data.Function open import Data.Nat open import Data.Fin open import Data.Fin.Props open import Data.Product open import Data.Unit open import Induction import Induction.WellFounded as WF open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------ -- Ordinary induction Rec : RecStruct ℕ Rec P zero = ⊤ Rec P (suc n) = P n rec-builder : RecursorBuilder Rec rec-builder P f zero = tt rec-builder P f (suc n) = f n (rec-builder P f n) rec : Recursor Rec rec = build rec-builder ------------------------------------------------------------------------ -- Complete induction CRec : RecStruct ℕ CRec P zero = ⊤ CRec P (suc n) = P n × CRec P n cRec-builder : RecursorBuilder CRec cRec-builder P f zero = tt cRec-builder P f (suc n) = f n ih , ih where ih = cRec-builder P f n cRec : Recursor CRec cRec = build cRec-builder ------------------------------------------------------------------------ -- Complete induction based on _<′_ open WF _<′_ using (acc) renaming (Acc to <-Acc) <-allAcc : ∀ n → <-Acc n <-allAcc n = acc (helper n) where helper : ∀ n m → m <′ n → <-Acc m helper zero _ () helper (suc n) .n ≤′-refl = acc (helper n) helper (suc n) m (≤′-step m<n) = helper n m m<n open WF _<′_ public using () renaming (WfRec to <-Rec) open WF.All _<′_ <-allAcc public renaming ( wfRec-builder to <-rec-builder ; wfRec to <-rec ) ------------------------------------------------------------------------ -- Complete induction based on _≺_ open WF _≺_ renaming (Acc to ≺-Acc) <-Acc⇒≺-Acc : ∀ {n} → <-Acc n → ≺-Acc n <-Acc⇒≺-Acc (acc rs) = acc (λ m m≺n → <-Acc⇒≺-Acc (rs m (≺⇒<′ m≺n))) ≺-allAcc : ∀ n → ≺-Acc n ≺-allAcc n = <-Acc⇒≺-Acc (<-allAcc n) open WF _≺_ public using () renaming (WfRec to ≺-Rec) open WF.All _≺_ ≺-allAcc public renaming ( wfRec-builder to ≺-rec-builder ; wfRec to ≺-rec ) ------------------------------------------------------------------------ -- Examples private module Examples where -- The half function. HalfPred : ℕ → Set HalfPred _ = ℕ half₁ : ℕ → ℕ half₁ = cRec HalfPred half₁' where half₁' : ∀ n → CRec HalfPred n → HalfPred n half₁' zero _ = zero half₁' (suc zero) _ = zero half₁' (suc (suc n)) (_ , half₁n , _) = suc half₁n half₂ : ℕ → ℕ half₂ = <-rec HalfPred half₂' where half₂' : ∀ n → <-Rec HalfPred n → HalfPred n half₂' zero _ = zero half₂' (suc zero) _ = zero half₂' (suc (suc n)) rec = suc (rec n (≤′-step ≤′-refl))
{ "alphanum_fraction": 0.4972144847, "avg_line_length": 26.1090909091, "ext": "agda", "hexsha": "c3cdf5dde82ec6e6e33c5aa8a635d4b1a049c622", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Induction/Nat.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Induction/Nat.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Induction/Nat.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 846, "size": 2872 }
{-# OPTIONS --prop #-} module Issue3526-2 where open import Agda.Builtin.Equality record Truth (P : Prop) : Set where constructor [_] field truth : P open Truth public data ⊥' : Prop where ⊥ = Truth ⊥' ¬ : Set → Set ¬ A = A → ⊥ unique : {A : Set} (x y : ¬ A) → x ≡ y unique x y = refl ⊥-elim : (A : Set) → ⊥ → A ⊥-elim A b = {!!} open import Agda.Builtin.Bool open import Agda.Builtin.Unit set : Bool → Set set false = ⊥ set true = ⊤ set-elim : ∀ b → set b → Set set-elim b x = {!!}
{ "alphanum_fraction": 0.5753968254, "avg_line_length": 14, "ext": "agda", "hexsha": "4a8ada2856f2a51ee2af65e338f658d07c2f46e9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue3526-2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue3526-2.agda", "max_line_length": 38, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue3526-2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 187, "size": 504 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Notation for freely adding extrema to any set ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Nullary.Construct.Add.Extrema where open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Relation.Nullary.Construct.Add.Infimum as Infimum using (_₋) open import Relation.Nullary.Construct.Add.Supremum as Supremum using (_⁺) ------------------------------------------------------------------------ -- Definition _± : ∀ {a} → Set a → Set a A ± = A ₋ ⁺ pattern ⊥± = Supremum.[ Infimum.⊥₋ ] pattern [_] k = Supremum.[ Infimum.[ k ] ] pattern ⊤± = Supremum.⊤⁺ ------------------------------------------------------------------------ -- Properties [_]-injective : ∀ {a} {A : Set a} {k l : A} → [ k ] ≡ [ l ] → k ≡ l [_]-injective refl = refl
{ "alphanum_fraction": 0.4540709812, "avg_line_length": 31.9333333333, "ext": "agda", "hexsha": "2f525621f0df691630df89448ecc7ed6793f53f7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Nullary/Construct/Add/Extrema.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Nullary/Construct/Add/Extrema.agda", "max_line_length": 74, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Nullary/Construct/Add/Extrema.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 227, "size": 958 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Groupoid.Product where open import Data.Product open import Categories.Category open import Categories.Groupoid open import Categories.Morphisms import Categories.Product as ProductC Product : ∀ {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂} {C : Category o₁ ℓ₁ e₁} {D : Category o₂ ℓ₂ e₂} → Groupoid C → Groupoid D → Groupoid (ProductC.Product C D) Product c₁ c₂ = record { _⁻¹ = λ {(x₁ , x₂) → Groupoid._⁻¹ c₁ x₁ , Groupoid._⁻¹ c₂ x₂} ; iso = record { isoˡ = Iso.isoˡ (Groupoid.iso c₁) , Iso.isoˡ (Groupoid.iso c₂) ; isoʳ = Iso.isoʳ (Groupoid.iso c₁) , Iso.isoʳ (Groupoid.iso c₂) } }
{ "alphanum_fraction": 0.5806028834, "avg_line_length": 36.3333333333, "ext": "agda", "hexsha": "4fe0c77bc1ea2779227ae3c1212403ca8fde0126", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "copumpkin/categories", "max_forks_repo_path": "Categories/Groupoid/Product.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "copumpkin/categories", "max_issues_repo_path": "Categories/Groupoid/Product.agda", "max_line_length": 79, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Groupoid/Product.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 222, "size": 763 }
------------------------------------------------------------------------------ -- Some properties of the function iter₀ ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.Iter0.PropertiesATP where open import FOTC.Program.Iter0.Iter0 open import FOTC.Base open import FOTC.Base.List ------------------------------------------------------------------------------ postulate iter₀-0 : ∀ f → iter₀ f zero ≡ [] {-# ATP prove iter₀-0 #-}
{ "alphanum_fraction": 0.3996960486, "avg_line_length": 31.3333333333, "ext": "agda", "hexsha": "fb25a0efc94f509358c6efd39405f2877f938d5c", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/Iter0/PropertiesATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/Iter0/PropertiesATP.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/Iter0/PropertiesATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 110, "size": 658 }
{-# OPTIONS --safe #-} module Cubical.HITs.Pushout.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Data.Unit open import Cubical.Data.Sigma open import Cubical.HITs.Susp.Base data Pushout {ℓ ℓ' ℓ''} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} (f : A → B) (g : A → C) : Type (ℓ-max ℓ (ℓ-max ℓ' ℓ'')) where inl : B → Pushout f g inr : C → Pushout f g push : (a : A) → inl (f a) ≡ inr (g a) -- cofiber (equivalent to Cone in Cubical.HITs.MappingCones.Base) cofib : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (f : A → B) → Type _ cofib f = Pushout (λ _ → tt) f cfcod : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (f : A → B) → B → cofib f cfcod f = inr -- Symmetry of pushout symPushout : {ℓ ℓ' ℓ'' : Level} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} → (f : A → B) (g : A → C) → Pushout f g ≃ Pushout g f symPushout f g = isoToEquiv (iso (λ { (inl x) → inr x ; (inr x) → inl x ; (push x i) → push x (~ i)}) (λ { (inl x) → inr x ; (inr x) → inl x ; (push x i) → push x (~ i)}) (λ { (inl x) → refl ; (inr x) → refl ; (push x i) → refl}) (λ { (inl x) → refl ; (inr x) → refl ; (push x i) → refl})) -- Suspension defined as a pushout PushoutSusp : ∀ {ℓ} (A : Type ℓ) → Type ℓ PushoutSusp A = Pushout {A = A} {B = Unit} {C = Unit} (λ _ → tt) (λ _ → tt) PushoutSusp→Susp : ∀ {ℓ} {A : Type ℓ} → PushoutSusp A → Susp A PushoutSusp→Susp (inl _) = north PushoutSusp→Susp (inr _) = south PushoutSusp→Susp (push a i) = merid a i Susp→PushoutSusp : ∀ {ℓ} {A : Type ℓ} → Susp A → PushoutSusp A Susp→PushoutSusp north = inl tt Susp→PushoutSusp south = inr tt Susp→PushoutSusp (merid a i) = push a i Susp→PushoutSusp→Susp : ∀ {ℓ} {A : Type ℓ} (x : Susp A) → PushoutSusp→Susp (Susp→PushoutSusp x) ≡ x Susp→PushoutSusp→Susp north = refl Susp→PushoutSusp→Susp south = refl Susp→PushoutSusp→Susp (merid _ _) = refl PushoutSusp→Susp→PushoutSusp : ∀ {ℓ} {A : Type ℓ} (x : PushoutSusp A) → Susp→PushoutSusp (PushoutSusp→Susp x) ≡ x PushoutSusp→Susp→PushoutSusp (inl _) = refl PushoutSusp→Susp→PushoutSusp (inr _) = refl PushoutSusp→Susp→PushoutSusp (push _ _) = refl PushoutSuspIsoSusp : ∀ {ℓ} {A : Type ℓ} → Iso (PushoutSusp A) (Susp A) Iso.fun PushoutSuspIsoSusp = PushoutSusp→Susp Iso.inv PushoutSuspIsoSusp = Susp→PushoutSusp Iso.rightInv PushoutSuspIsoSusp = Susp→PushoutSusp→Susp Iso.leftInv PushoutSuspIsoSusp = PushoutSusp→Susp→PushoutSusp PushoutSusp≃Susp : ∀ {ℓ} {A : Type ℓ} → PushoutSusp A ≃ Susp A PushoutSusp≃Susp = isoToEquiv PushoutSuspIsoSusp PushoutSusp≡Susp : ∀ {ℓ} {A : Type ℓ} → PushoutSusp A ≡ Susp A PushoutSusp≡Susp = isoToPath PushoutSuspIsoSusp -- Generalised pushout, used in e.g. BlakersMassey data PushoutGen {ℓ₁ ℓ₂ ℓ₃ : Level} {X : Type ℓ₁} {Y : Type ℓ₂} (Q : X → Y → Type ℓ₃) : Type (ℓ-max (ℓ-max ℓ₁ ℓ₂) ℓ₃) where inl : X → PushoutGen Q inr : Y → PushoutGen Q push : {x : X} {y : Y} → Q x y → inl x ≡ inr y -- The usual pushout is a special case of the above module _ {ℓ₁ ℓ₂ ℓ₃ : Level} {A : Type ℓ₁} {B : Type ℓ₂} {C : Type ℓ₃} (f : A → B) (g : A → C) where open Iso doubleFib : B → C → Type _ doubleFib b c = Σ[ a ∈ A ] (f a ≡ b) × (g a ≡ c) PushoutGenFib = PushoutGen doubleFib Pushout→PushoutGen : Pushout f g → PushoutGenFib Pushout→PushoutGen (inl x) = inl x Pushout→PushoutGen (inr x) = inr x Pushout→PushoutGen (push a i) = push (a , refl , refl) i PushoutGen→Pushout : PushoutGenFib → Pushout f g PushoutGen→Pushout (inl x) = inl x PushoutGen→Pushout (inr x) = inr x PushoutGen→Pushout (push (x , p , q) i) = ((λ i → inl (p (~ i))) ∙∙ push x ∙∙ (λ i → inr (q i))) i IsoPushoutPushoutGen : Iso (Pushout f g) (PushoutGenFib) fun IsoPushoutPushoutGen = Pushout→PushoutGen inv IsoPushoutPushoutGen = PushoutGen→Pushout rightInv IsoPushoutPushoutGen (inl x) = refl rightInv IsoPushoutPushoutGen (inr x) = refl rightInv IsoPushoutPushoutGen (push (x , p , q) i) j = lem x p q j i where lem : {b : B} {c : C} (x : A) (p : f x ≡ b) (q : g x ≡ c) → cong Pushout→PushoutGen (cong PushoutGen→Pushout (push (x , p , q))) ≡ push (x , p , q) lem {c = c} x = J (λ b p → (q : g x ≡ c) → cong Pushout→PushoutGen (cong PushoutGen→Pushout (push (x , p , q))) ≡ push (x , p , q)) (J (λ c q → cong Pushout→PushoutGen (cong PushoutGen→Pushout (push (x , refl , q))) ≡ push (x , refl , q)) (cong (cong Pushout→PushoutGen) (sym (rUnit (push x))))) leftInv IsoPushoutPushoutGen (inl x) = refl leftInv IsoPushoutPushoutGen (inr x) = refl leftInv IsoPushoutPushoutGen (push a i) j = rUnit (push a) (~ j) i
{ "alphanum_fraction": 0.6091977727, "avg_line_length": 37.8828125, "ext": "agda", "hexsha": "35630a5a3defef3330795dc551a8283de61cc38b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/HITs/Pushout/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/HITs/Pushout/Base.agda", "max_line_length": 76, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/HITs/Pushout/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 1930, "size": 4849 }
{-# OPTIONS --without-K --safe --erased-cubical --no-import-sorts #-} module SUtil where open import Prelude _∈_ : Name → List Name → Bool n ∈ [] = false n ∈ (x ∷ ns) = if n == x then true else n ∈ ns -- treat list as set insert : Name → List Name → List Name insert n ns = if n ∈ ns then ns else n ∷ ns lookup : {A : Type} → List (Name × List A) → Name → List A lookup [] n = [] lookup ((m , x) ∷ xs) n = if n == m then x else lookup xs n nameSet : List Name → List Name nameSet = foldr insert [] iterate : {A : Type} → ℕ → (A → A) → A → A iterate zero f x = x iterate (suc k) f x = iterate k f (f x) 2ⁿSpeed : ℕ → List Note → List Note 2ⁿSpeed n = map (iterate n doubleSpeed) zipFull : {A : Type} → List (List A) → List (List A) → List (List A) zipFull [] yss = yss zipFull xss@(_ ∷ _) [] = xss zipFull (xs ∷ xss) (ys ∷ yss) = (xs ++ ys) ∷ zipFull xss yss _+1 : {n : ℕ} → Fin n → Fin n _+1 {suc n} k = (suc (toℕ k)) mod (suc n) emptyVec : {n : ℕ}{A : Type} → Vec (List A) n emptyVec {zero} = [] emptyVec {suc n} = [] ∷ emptyVec {n} foldIntoVector : {n : ℕ} {A : Type} → List (List A) → Vec (List A) (suc n) foldIntoVector {n} {A} xss = fiv fz emptyVec xss where fiv : Fin (suc n) → Vec (List A) (suc n) → List (List A) → Vec (List A) (suc n) fiv k xss [] = xss fiv k xss (ys ∷ yss) = fiv (k +1) (updateAt k (_++ ys) xss) yss
{ "alphanum_fraction": 0.5495750708, "avg_line_length": 30.6956521739, "ext": "agda", "hexsha": "f3774b7b089565c0bc381ad767bbe290da1a3f66", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:05:31.000Z", "max_forks_repo_forks_event_min_datetime": "2020-11-10T04:05:31.000Z", "max_forks_repo_head_hexsha": "5d9a1bbfbe52f55acf33d960763dce0872689c2b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/Music", "max_forks_repo_path": "Soundness/agda/SUtil.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5d9a1bbfbe52f55acf33d960763dce0872689c2b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/Music", "max_issues_repo_path": "Soundness/agda/SUtil.agda", "max_line_length": 87, "max_stars_count": 1, "max_stars_repo_head_hexsha": "5d9a1bbfbe52f55acf33d960763dce0872689c2b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/Music", "max_stars_repo_path": "Soundness/agda/SUtil.agda", "max_stars_repo_stars_event_max_datetime": "2020-11-10T04:05:28.000Z", "max_stars_repo_stars_event_min_datetime": "2020-11-10T04:05:28.000Z", "num_tokens": 541, "size": 1412 }
------------------------------------------------------------------------ -- Various parser combinator laws ------------------------------------------------------------------------ -- Note that terms like "monad" and "Kleene algebra" are interpreted -- liberally in the modules listed below. module TotalParserCombinators.Laws where open import Algebra open import Category.Monad open import Codata.Musical.Notation open import Data.List as List import Data.List.Categorical open import Data.List.Properties open import Data.List.Relation.Binary.BagAndSetEquality as Eq using (bag) renaming (_∼[_]_ to _List-∼[_]_) open import Data.Maybe hiding (_>>=_) open import Function import Level open import Relation.Binary.PropositionalEquality as P using (_≡_) private module BagMonoid {k} {A : Set} = CommutativeMonoid (Eq.commutativeMonoid k A) open module ListMonad = RawMonad {f = Level.zero} Data.List.Categorical.monad using () renaming (_⊛_ to _⊛′_) open import TotalParserCombinators.Derivative using (D) open import TotalParserCombinators.Congruence hiding (return; fail; token) open import TotalParserCombinators.Lib hiding (module Return⋆) open import TotalParserCombinators.Parser ------------------------------------------------------------------------ -- Reexported modules -- Laws related to _∣_. import TotalParserCombinators.Laws.AdditiveMonoid module AdditiveMonoid = TotalParserCombinators.Laws.AdditiveMonoid -- Laws related to D. import TotalParserCombinators.Laws.Derivative module D = TotalParserCombinators.Laws.Derivative hiding (left-zero-⊛; right-zero-⊛; left-zero->>=; right-zero->>=) -- Laws related to return⋆. import TotalParserCombinators.Laws.ReturnStar module Return⋆ = TotalParserCombinators.Laws.ReturnStar -- Laws related to _⊛_. import TotalParserCombinators.Laws.ApplicativeFunctor module ApplicativeFunctor = TotalParserCombinators.Laws.ApplicativeFunctor -- Laws related to _>>=_. import TotalParserCombinators.Laws.Monad module Monad = TotalParserCombinators.Laws.Monad -- Do the parser combinators form a Kleene algebra? import TotalParserCombinators.Laws.KleeneAlgebra module KleeneAlgebra = TotalParserCombinators.Laws.KleeneAlgebra ------------------------------------------------------------------------ -- Some laws for _<$>_ module <$> where open D -- _<$>_ could have been defined using return and _⊛_. return-⊛ : ∀ {Tok R₁ R₂ xs} {f : R₁ → R₂} (p : Parser Tok R₁ xs) → f <$> p ≅P return f ⊛ p return-⊛ {xs = xs} {f} p = BagMonoid.reflexive (lemma xs) ∷ λ t → ♯ ( f <$> D t p ≅⟨ return-⊛ (D t p) ⟩ return f ⊛ D t p ≅⟨ sym $ D-return-⊛ f p ⟩ D t (return f ⊛ p) ∎) where lemma : ∀ xs → List.map f xs ≡ ([ f ] ⊛′ xs) lemma [] = P.refl lemma (x ∷ xs) = P.cong (_∷_ (f x)) $ lemma xs -- fail is a zero for _<$>_. zero : ∀ {Tok R₁ R₂} {f : R₁ → R₂} → f <$> fail {Tok = Tok} ≅P fail zero {f = f} = f <$> fail ≅⟨ return-⊛ fail ⟩ return f ⊛ fail ≅⟨ ApplicativeFunctor.right-zero (return f) ⟩ fail ∎ -- A variant of ApplicativeFunctor.homomorphism. homomorphism : ∀ {Tok R₁ R₂} (f : R₁ → R₂) {x} → f <$> return {Tok = Tok} x ≅P return (f x) homomorphism f {x} = f <$> return x ≅⟨ return-⊛ {f = f} (return x) ⟩ return f ⊛ return x ≅⟨ ApplicativeFunctor.homomorphism f x ⟩ return (f x) ∎ -- Adjacent uses of _<$>_ can be fused. <$>-<$> : ∀ {Tok R₁ R₂ R₃ xs} {f : R₂ → R₃} {g : R₁ → R₂} {p : Parser Tok R₁ xs} → f <$> (g <$> p) ≅P (f ∘ g) <$> p <$>-<$> = BagMonoid.reflexive (P.sym (map-compose _)) ∷ λ _ → ♯ <$>-<$> ------------------------------------------------------------------------ -- A law for nonempty module Nonempty where -- fail is a zero for nonempty. zero : ∀ {Tok R} → nonempty {Tok = Tok} {R = R} fail ≅P fail zero = BagMonoid.refl ∷ λ t → ♯ (fail ∎) -- nonempty (return x) is parser equivalent to fail. nonempty-return : ∀ {Tok R} {x : R} → nonempty {Tok = Tok} (return x) ≅P fail nonempty-return = BagMonoid.refl ∷ λ t → ♯ (fail ∎) -- nonempty can be defined in terms of token, _>>=_ and D. private nonempty′ : ∀ {Tok R xs} (p : Parser Tok R xs) → Parser Tok R [] nonempty′ p = token >>= λ t → D t p nonempty-definable : ∀ {Tok R xs} (p : Parser Tok R xs) → nonempty p ≅P nonempty′ p nonempty-definable p = BagMonoid.refl ∷ λ t → ♯ ( D t p ≅⟨ sym $ Monad.left-identity t (λ t′ → D t′ p) ⟩ ret-D t ≅⟨ sym $ AdditiveMonoid.right-identity (ret-D t) ⟩ ret-D t ∣ fail ≅⟨ (ret-D t ∎) ∣ sym (Monad.left-zero _) ⟩ D t (nonempty′ p) ∎) where ret-D = λ (t : _) → return t >>= (λ t′ → D t′ p) ------------------------------------------------------------------------ -- A law for cast module Cast where -- Casts can be erased. correct : ∀ {Tok R xs₁ xs₂} {xs₁≈xs₂ : xs₁ List-∼[ bag ] xs₂} {p : Parser Tok R xs₁} → cast xs₁≈xs₂ p ≅P p correct {xs₁≈xs₂ = xs₁≈xs₂} {p} = BagMonoid.sym xs₁≈xs₂ ∷ λ t → ♯ (D t p ∎) ------------------------------------------------------------------------ -- A law for subst module Subst where -- Uses of subst can be erased. correct : ∀ {Tok R xs₁ xs₂} (xs₁≡xs₂ : xs₁ ≡ xs₂) {p : Parser Tok R xs₁} → P.subst (Parser Tok R) xs₁≡xs₂ p ≅P p correct P.refl {p} = p ∎ correct∞ : ∀ {Tok R xs₁ xs₂ A} {m : Maybe A} (xs₁≡xs₂ : xs₁ ≡ xs₂) (p : ∞⟨ m ⟩Parser Tok R xs₁) → ♭? (P.subst (∞⟨ m ⟩Parser Tok R) xs₁≡xs₂ p) ≅P ♭? p correct∞ P.refl p = ♭? p ∎
{ "alphanum_fraction": 0.5533472803, "avg_line_length": 31.5164835165, "ext": "agda", "hexsha": "bd9161fdb292e9738728527d3c7736cdb8240692", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "TotalParserCombinators/Laws.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "TotalParserCombinators/Laws.agda", "max_line_length": 73, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "TotalParserCombinators/Laws.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 1838, "size": 5736 }
{-# OPTIONS --without-K #-} module Util.HoTT.Univalence.Beta where open import Util.HoTT.Equiv open import Util.HoTT.Equiv.Induction open import Util.HoTT.Univalence.Axiom open import Util.Prelude open import Util.Relation.Binary.PropositionalEquality using ( Σ-≡⁻ ; cast ) private variable α β γ : Level A B C : Set α ≃→≡-β : ≃→≡ (≃-refl {A = A}) ≡ refl ≃→≡-β = ≃→≡∘≡→≃ refl cast-≃→≡ : ∀ (A≃B : A ≃ B) {x} → cast (≃→≡ A≃B) x ≡ A≃B .forth x cast-≃→≡ A≃B {x} = J-≃ (λ A B A≃B → ∀ x → cast (≃→≡ A≃B) x ≡ A≃B .forth x) (λ A x → subst (λ p → cast p x ≡ x) (sym ≃→≡-β) refl) A≃B x cast-≅→≡ : ∀ (A≅B : A ≅ B) {x} → cast (≅→≡ A≅B) x ≡ A≅B .forth x cast-≅→≡ = cast-≃→≡ ∘ ≅→≃
{ "alphanum_fraction": 0.5357142857, "avg_line_length": 21.875, "ext": "agda", "hexsha": "7df8386167630ade13f4002d427bdb441fd4b1fa", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/msc-thesis-code", "max_forks_repo_path": "src/Util/HoTT/Univalence/Beta.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/msc-thesis-code", "max_issues_repo_path": "src/Util/HoTT/Univalence/Beta.agda", "max_line_length": 65, "max_stars_count": 5, "max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/msc-thesis-code", "max_stars_repo_path": "src/Util/HoTT/Univalence/Beta.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z", "num_tokens": 360, "size": 700 }
------------------------------------------------------------------------------ -- Testing records ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module Record where postulate D : Set P₁ : D → Set P₂ : D → D → Set record P (a b : D) : Set where constructor is field property₁ : P₁ a property₂ : P₂ a b {-# ATP axiom is #-} postulate p₁ : ∀ a → P₁ a p₂ : ∀ a b → P₂ a b {-# ATP axiom p₁ #-} {-# ATP axiom p₂ #-} thm₁ : ∀ a b → P a b thm₁ a b = is (p₁ a) (p₂ a b) postulate thm₂ : ∀ a b → P a b {-# ATP prove thm₂ #-}
{ "alphanum_fraction": 0.4072096128, "avg_line_length": 21.4, "ext": "agda", "hexsha": "c951c3f57dc612d444beb223f33046e62a4c21be", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Succeed/fol-theorems/Record.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Succeed/fol-theorems/Record.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Succeed/fol-theorems/Record.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 202, "size": 749 }
module Structure.Container.SetLike.Proofs where {- open import Data.Boolean open import Data.Boolean.Stmt open import Functional open import Lang.Instance import Lvl open import Logic open import Logic.Propositional open import Logic.Predicate open import Structure.Container.SetLike open import Structure.Function.Domain open import Structure.Function open import Structure.Operator open import Structure.Relator.Equivalence open import Structure.Relator.Properties open import Structure.Relator hiding (module Names) open import Structure.Setoid renaming (_≡_ to _≡ₛ_ ; _≢_ to _≢ₛ_) open import Type.Properties.Inhabited open import Type private variable ℓ ℓ₁ ℓ₂ ℓ₃ ℓ₄ ℓ₅ ℓ₆ ℓ₇ ℓ₈ ℓ₉ ℓ₁₀ ℓₗ ℓₗ₁ ℓₗ₂ ℓₗ₃ : Lvl.Level private variable A B C C₁ C₂ Cₒ Cᵢ E E₁ E₂ : Type{ℓ} private variable _∈_ _∈ₒ_ _∈ᵢ_ : E → C import Data import Data.Either as Either import Data.Tuple as Tuple open import Logic.Predicate.Theorems open import Logic.Propositional.Theorems open import Structure.Relator.Ordering open import Structure.Relator.Proofs open import Syntax.Transitivity module _ ⦃ setLike : SetLike{ℓ₁}{ℓ₁}{ℓ₂}{C}{C} (_∈_) {ℓ₄}{ℓ₅} ⦄ where open SetLike(setLike) module _ ⦃ _ : Equiv{ℓₗ}(C) ⦄ where private instance big-intersection-filter-unary-relator : ⦃ _ : Equiv{ℓₗ}(E) ⦄ ⦃ _ : BinaryRelator{B = C}(_∈_) ⦄ → ∀{As} → UnaryRelator(\a → ∀{A} → (A ∈ As) → (a ∈ A)) big-intersection-filter-unary-relator ⦃ [∈]-binaryRelator ⦄ = [∀]-unaryRelator ⦃ rel-P = \{A} → [→]-unaryRelator ⦃ rel-P = const-unaryRelator ⦄ ⦃ rel-Q = BinaryRelator.left (binaryRelator(_∈_)) {A} ⦄ ⦄ filter-big-union-to-big-intersection : ⦃ _ : BinaryRelator(_∈_) ⦄ ⦃ _ : FilterFunction(_∈_){ℓ = ℓ₁ Lvl.⊔ ℓ₂} ⦄ ⦃ _ : BigUnionOperator(_∈_)(_∈_) ⦄ → BigIntersectionOperator(_∈_)(_∈_) BigIntersectionOperator.⋂ filter-big-union-to-big-intersection As = filter(\a → ∀{A} → (A ∈ As) → (a ∈ A))(⋃ As) Tuple.left (BigIntersectionOperator.membership filter-big-union-to-big-intersection {As} eAs {a}) p = [↔]-to-[←] Filter.membership ([∧]-intro ([↔]-to-[←] BigUnion.membership ([∃]-map-proof (aAs ↦ [∧]-intro aAs (p aAs)) eAs)) (\{x} → p{x})) Tuple.right (BigIntersectionOperator.membership filter-big-union-to-big-intersection {As} eAs {a}) xfilter {A} AAs = [∧]-elimᵣ([↔]-to-[→] Filter.membership xfilter) AAs module _ ⦃ _ : Equiv{ℓₗ}(C) ⦄ ⦃ _ : BinaryRelator(_∈_) ⦄ where -- Also called: Russell's paradox. filter-universal-contradiction : ⦃ _ : FilterFunction(_∈_){ℓ = ℓ₂} ⦄ ⦃ _ : UniversalSet(_∈_) ⦄ → ⊥ filter-universal-contradiction = proof-not-in proof-in where instance filter-unary-relator : UnaryRelator(x ↦ (x ∉ x)) filter-unary-relator = [¬]-unaryRelator ⦃ rel-P = binary-unaryRelator ⦄ notInSelf : C notInSelf = filter (x ↦ (x ∉ x))(𝐔) proof-not-in : (notInSelf ∉ notInSelf) proof-not-in pin = [∧]-elimᵣ([↔]-to-[→] Filter.membership pin) pin proof-in : (notInSelf ∈ notInSelf) proof-in = [↔]-to-[←] Filter.membership ([∧]-intro Universal.membership proof-not-in) module _ ⦃ setLike : SetLike{ℓ₁}{ℓ₂}{ℓ₃}{C}{E} (_∈_) {ℓ₄}{ℓ₅} ⦄ where open SetLike(setLike) private variable a b c : C private variable x y z : E [⊇]-membership : ∀{a b} → (a ⊇ b) ↔ (∀{x} → (x ∈ a) ← (x ∈ b)) [⊇]-membership = [⊆]-membership module _ ⦃ _ : Equiv{ℓₗ}(E) ⦄ where pair-to-singleton : ⦃ _ : PairSet(_∈_) ⦄ → SingletonSet(_∈_) SingletonSet.singleton pair-to-singleton e = pair e e SingletonSet.membership pair-to-singleton = [↔]-transitivity Pair.membership ([↔]-intro [∨]-introₗ ([∨]-elim id id)) filter-to-empty : let _ = c in ⦃ _ : FilterFunction(_∈_){ℓ = Lvl.𝟎} ⦄ → EmptySet(_∈_) EmptySet.∅ (filter-to-empty {c = c}) = filter (const ⊥) c EmptySet.membership filter-to-empty p = [∧]-elimᵣ ([↔]-to-[→] Filter.membership p) module _ ⦃ _ : Equiv{ℓₗ}(C) ⦄ ⦃ _ : BinaryRelator(_∈_) ⦄ where filter-to-intersection : ⦃ _ : FilterFunction(_∈_){ℓ = ℓ₃} ⦄ → IntersectionOperator(_∈_) IntersectionOperator._∩_ filter-to-intersection a b = filter (_∈ b) ⦃ unaryRelator = BinaryRelator.left infer ⦄ a IntersectionOperator.membership filter-to-intersection = Filter.membership ⦃ unaryRelator = BinaryRelator.left infer ⦄ module _ ⦃ equivalence : Equivalence(_≡_) ⦄ where private instance [≡]-equiv : Equiv{ℓ₅}(C) Equiv._≡_ [≡]-equiv = _≡_ Equiv.equivalence [≡]-equiv = equivalence [∈]-unaryOperatorᵣ : UnaryRelator(x ∈_) UnaryRelator.substitution [∈]-unaryOperatorᵣ xy = [↔]-to-[→] ([↔]-to-[→] [≡]-membership xy) module _ ⦃ _ : Equiv{ℓₗ₂}(E) ⦄ ⦃ _ : Weak.PartialOrder(_⊆_)(_≡_) ⦄ ⦃ _ : BinaryRelator(_∈_) ⦄ ⦃ _ : (_≡_) ⊆₂ (_⊆_) ⦄ ⦃ _ : (_≡_) ⊆₂ (_⊇_) ⦄ where [⊆]-binaryRelator : BinaryRelator(_⊆_) BinaryRelator.substitution [⊆]-binaryRelator p1 p2 ps = sub₂(_≡_)(_⊇_) p1 🝖 ps 🝖 sub₂(_≡_)(_⊆_) p2 [⊇]-binaryRelator : BinaryRelator(_⊇_) BinaryRelator.substitution [⊇]-binaryRelator = swap(substitute₂(_⊆_) ⦃ [⊆]-binaryRelator ⦄) [≡]-to-[⊆] : (_≡_) ⊆₂ (_⊆_) _⊆₂_.proof [≡]-to-[⊆] = [↔]-to-[←] [⊆]-membership ∘ [∀][→]-distributivity [↔]-to-[→] ∘ [↔]-to-[→] [≡]-membership [≡]-to-[⊇] : (_≡_) ⊆₂ (_⊇_) _⊆₂_.proof [≡]-to-[⊇] = [↔]-to-[←] [⊆]-membership ∘ [∀][→]-distributivity [↔]-to-[←] ∘ [↔]-to-[→] [≡]-membership [⊆]-reflexivity : Reflexivity(_⊆_) Reflexivity.proof [⊆]-reflexivity = [↔]-to-[←] [⊆]-membership [→]-reflexivity [⊆]-antisymmetry : Antisymmetry(_⊆_)(_≡_) Antisymmetry.proof [⊆]-antisymmetry ab ba = [↔]-to-[←] [≡]-membership ([↔]-intro ([↔]-to-[→] [⊇]-membership ba) ([↔]-to-[→] [⊆]-membership ab)) [⊆]-transitivity : Transitivity(_⊆_) Transitivity.proof [⊆]-transitivity xy yz = [↔]-to-[←] [⊆]-membership ([→]-transitivity ([↔]-to-[→] [⊆]-membership xy) ([↔]-to-[→] [⊆]-membership yz)) [⊆]-partialOrder : Weak.PartialOrder(_⊆_)(_≡_) [⊆]-partialOrder = Weak.intro ⦃ [⊆]-antisymmetry ⦄ ⦃ [⊆]-transitivity ⦄ ⦃ [⊆]-reflexivity ⦄ [≡]-reflexivity : Reflexivity(_≡_) Reflexivity.proof [≡]-reflexivity = [↔]-to-[←] [≡]-membership [↔]-reflexivity [≡]-symmetry : Symmetry(_≡_) Symmetry.proof [≡]-symmetry = [↔]-to-[←] [≡]-membership ∘ [∀][→]-distributivity [↔]-symmetry ∘ [↔]-to-[→] [≡]-membership [≡]-transitivity : Transitivity(_≡_) Transitivity.proof [≡]-transitivity xy yz = [↔]-to-[←] [≡]-membership ([↔]-transitivity ([↔]-to-[→] [≡]-membership xy) ([↔]-to-[→] [≡]-membership yz)) [≡]-equivalence : Equivalence(_≡_) [≡]-equivalence = intro ⦃ [≡]-reflexivity ⦄ ⦃ [≡]-symmetry ⦄ ⦃ [≡]-transitivity ⦄ -- TODO: These are unneccessary if one uses Structure.Operator.SetAlgebra or lattices module _ ⦃ _ : EmptySet(_∈_) ⦄ ⦃ _ : UniversalSet(_∈_) ⦄ ⦃ _ : ComplementOperator(_∈_) ⦄ where ∁-of-∅ : (∁(∅) ≡ 𝐔) ∁-of-∅ = [↔]-to-[←] [≡]-membership ([↔]-intro ([↔]-to-[←] Complement.membership ∘ const Empty.membership) (const Universal.membership)) ∁-of-𝐔 : (∁(𝐔) ≡ ∅) ∁-of-𝐔 = [↔]-to-[←] [≡]-membership ([↔]-intro ([⊥]-elim ∘ Empty.membership) ([⊥]-elim ∘ apply Universal.membership ∘ [↔]-to-[→] Complement.membership)) module _ ⦃ setLike : SetLike{ℓ₁}{ℓ₂}{ℓ₃}{C}{E} (_∈_) {ℓ₄}{ℓ₅} ⦄ where open SetLike(setLike) open import Logic.Classical open import Structure.Operator.Lattice open import Structure.Operator.Properties module _ where private instance equiv-C : Equiv{ℓ₅}(C) equiv-C = intro(_≡_) ⦃ [≡]-equivalence ⦄ module _ ⦃ _ : ComplementOperator(_∈_) ⦄ where instance [∁]-function : Function(∁) Function.congruence [∁]-function xy = [↔]-to-[←] [≡]-membership ( Complement.membership ⦗ [↔]-transitivity ⦘ᵣ [¬]-unaryOperator ([↔]-to-[→] [≡]-membership xy) ⦗ [↔]-transitivity ⦘ᵣ [↔]-symmetry Complement.membership ) instance [∁]-involution : ⦃ _ : ∀{x y} → Classical(x ∈ y) ⦄ → Involution(∁) Involution.proof [∁]-involution = [↔]-to-[←] [≡]-membership ( Complement.membership ⦗ [↔]-transitivity ⦘ᵣ [¬]-unaryOperator Complement.membership ⦗ [↔]-transitivity ⦘ᵣ [↔]-intro [¬¬]-intro [¬¬]-elim ) module _ ⦃ _ : UnionOperator(_∈_) ⦄ where instance [∪]-binaryOperator : BinaryOperator(_∪_) BinaryOperator.congruence [∪]-binaryOperator xy₁ xy₂ = [↔]-to-[←] [≡]-membership ( Union.membership ⦗ [↔]-transitivity ⦘ᵣ [↔]-intro (Either.map ([↔]-to-[←] ([↔]-to-[→] [≡]-membership xy₁)) ([↔]-to-[←] ([↔]-to-[→] [≡]-membership xy₂))) (Either.map ([↔]-to-[→] ([↔]-to-[→] [≡]-membership xy₁)) ([↔]-to-[→] ([↔]-to-[→] [≡]-membership xy₂))) ⦗ [↔]-transitivity ⦘ᵣ [↔]-symmetry Union.membership ) instance [∪]-commutativity : Commutativity(_∪_) Commutativity.proof [∪]-commutativity {x} {y} = [↔]-to-[←] [≡]-membership ( Union.membership ⦗ [↔]-transitivity ⦘ᵣ [↔]-intro [∨]-symmetry [∨]-symmetry ⦗ [↔]-transitivity ⦘ᵣ [↔]-symmetry Union.membership ) instance [∪]-associativity : Associativity(_∪_) Associativity.proof [∪]-associativity {x} {y} = [↔]-to-[←] [≡]-membership ( Union.membership ⦗ [↔]-transitivity ⦘ᵣ [↔]-intro (Either.mapLeft ([↔]-to-[←] Union.membership)) (Either.mapLeft ([↔]-to-[→] Union.membership)) ⦗ [↔]-transitivity ⦘ᵣ [∨]-associativity ⦗ [↔]-transitivity ⦘ᵣ [↔]-symmetry([↔]-intro (Either.mapRight ([↔]-to-[←] Union.membership)) (Either.mapRight ([↔]-to-[→] Union.membership))) ⦗ [↔]-transitivity ⦘ᵣ [↔]-symmetry Union.membership ) module _ ⦃ _ : EmptySet(_∈_) ⦄ where instance [∪]-identityₗ : Identityₗ(_∪_)(∅) Identityₗ.proof [∪]-identityₗ {x} = [↔]-to-[←] [≡]-membership ( Union.membership ⦗ [↔]-transitivity ⦘ᵣ [↔]-intro (Either.mapLeft [⊥]-elim) (Either.mapLeft Empty.membership) ⦗ [↔]-transitivity ⦘ᵣ [↔]-intro [∨]-introᵣ [∨]-identityₗ ) module _ ⦃ _ : IntersectionOperator(_∈_) ⦄ where instance [∩]-binaryOperator : BinaryOperator(_∩_) BinaryOperator.congruence [∩]-binaryOperator xy₁ xy₂ = [↔]-to-[←] [≡]-membership ( Intersection.membership ⦗ [↔]-transitivity ⦘ᵣ [↔]-intro (Tuple.map ([↔]-to-[←] ([↔]-to-[→] [≡]-membership xy₁)) ([↔]-to-[←] ([↔]-to-[→] [≡]-membership xy₂))) (Tuple.map ([↔]-to-[→] ([↔]-to-[→] [≡]-membership xy₁)) ([↔]-to-[→] ([↔]-to-[→] [≡]-membership xy₂))) ⦗ [↔]-transitivity ⦘ᵣ [↔]-symmetry Intersection.membership ) instance [∩]-commutativity : Commutativity(_∩_) Commutativity.proof [∩]-commutativity {x} {y} = [↔]-to-[←] [≡]-membership ( Intersection.membership ⦗ [↔]-transitivity ⦘ᵣ [↔]-intro [∧]-symmetry [∧]-symmetry ⦗ [↔]-transitivity ⦘ᵣ [↔]-symmetry Intersection.membership ) instance [∩]-associativity : Associativity(_∩_) Associativity.proof [∩]-associativity {x} {y} = [↔]-to-[←] [≡]-membership ( Intersection.membership ⦗ [↔]-transitivity ⦘ᵣ [↔]-intro (Tuple.mapLeft ([↔]-to-[←] Intersection.membership)) (Tuple.mapLeft ([↔]-to-[→] Intersection.membership)) ⦗ [↔]-transitivity ⦘ᵣ [∧]-associativity ⦗ [↔]-transitivity ⦘ᵣ [↔]-symmetry([↔]-intro (Tuple.mapRight ([↔]-to-[←] Intersection.membership)) (Tuple.mapRight ([↔]-to-[→] Intersection.membership))) ⦗ [↔]-transitivity ⦘ᵣ [↔]-symmetry Intersection.membership ) module _ ⦃ _ : UniversalSet(_∈_) ⦄ where instance [∩]-identityₗ : Identityₗ(_∩_)(𝐔) Identityₗ.proof [∩]-identityₗ {x} = [↔]-to-[←] [≡]-membership ( Intersection.membership ⦗ [↔]-transitivity ⦘ᵣ [↔]-intro (Tuple.mapLeft {ℓ₁} (const Universal.membership)) (Tuple.mapLeft (const [⊤]-intro)) ⦗ [↔]-transitivity ⦘ᵣ [↔]-intro ([∧]-intro [⊤]-intro) [∧]-elimᵣ ) module _ ⦃ _ : UnionOperator(_∈_) ⦄ ⦃ _ : IntersectionOperator(_∈_) ⦄ where instance [∩][∪]-distributivityₗ : Distributivityₗ(_∩_)(_∪_) Distributivityₗ.proof [∩][∪]-distributivityₗ {x} {y} {z} = [↔]-to-[←] [≡]-membership ( Intersection.membership ⦗ [↔]-transitivity ⦘ᵣ [↔]-intro (Tuple.mapRight ([↔]-to-[←] Union.membership)) (Tuple.mapRight ([↔]-to-[→] Union.membership)) ⦗ [↔]-transitivity ⦘ᵣ [∧][∨]-distributivityₗ ⦗ [↔]-transitivity ⦘ᵣ [↔]-intro (Either.map ([↔]-to-[→] Intersection.membership) ([↔]-to-[→] Intersection.membership)) (Either.map ([↔]-to-[←] Intersection.membership) ([↔]-to-[←] Intersection.membership)) ⦗ [↔]-transitivity ⦘ᵣ [↔]-symmetry Union.membership ) instance [∪][∩]-distributivityₗ : Distributivityₗ(_∪_)(_∩_) Distributivityₗ.proof [∪][∩]-distributivityₗ {x} {y} {z} = [↔]-to-[←] [≡]-membership ( Union.membership ⦗ [↔]-transitivity ⦘ᵣ [↔]-intro (Either.mapRight ([↔]-to-[←] Intersection.membership)) (Either.mapRight ([↔]-to-[→] Intersection.membership)) ⦗ [↔]-transitivity ⦘ᵣ [∨][∧]-distributivityₗ ⦗ [↔]-transitivity ⦘ᵣ [↔]-intro (Tuple.map ([↔]-to-[→] Union.membership) ([↔]-to-[→] Union.membership)) (Tuple.map ([↔]-to-[←] Union.membership) ([↔]-to-[←] Union.membership)) ⦗ [↔]-transitivity ⦘ᵣ [↔]-symmetry Intersection.membership ) instance [∩][∪]-absorptionₗ : Absorptionₗ(_∩_)(_∪_) Absorptionₗ.proof [∩][∪]-absorptionₗ {x} {y} = [↔]-to-[←] [≡]-membership ( Intersection.membership ⦗ [↔]-transitivity ⦘ [↔]-intro (ax ↦ [∧]-intro ax ([↔]-to-[←] Union.membership ([∨]-introₗ ax))) [∧]-elimₗ ) instance [∪][∩]-absorptionₗ : Absorptionₗ(_∪_)(_∩_) Absorptionₗ.proof [∪][∩]-absorptionₗ {x} {y} = [↔]-to-[←] [≡]-membership ( Union.membership ⦗ [↔]-transitivity ⦘ [↔]-intro [∨]-introₗ ([∨]-elim id ([∧]-elimₗ ∘ [↔]-to-[→] Intersection.membership)) ) instance [∪][∩]-lattice : Lattice(C) (_∪_)(_∩_) Lattice.[∨]-operator [∪][∩]-lattice = [∪]-binaryOperator Lattice.[∧]-operator [∪][∩]-lattice = [∩]-binaryOperator Lattice.[∨]-commutativity [∪][∩]-lattice = [∪]-commutativity Lattice.[∧]-commutativity [∪][∩]-lattice = [∩]-commutativity Lattice.[∨]-associativity [∪][∩]-lattice = [∪]-associativity Lattice.[∧]-associativity [∪][∩]-lattice = [∩]-associativity Lattice.[∨][∧]-absorptionₗ [∪][∩]-lattice = [∪][∩]-absorptionₗ Lattice.[∧][∨]-absorptionₗ [∪][∩]-lattice = [∩][∪]-absorptionₗ instance [∪][∩]-distributiveLattice : Lattice.Distributive([∪][∩]-lattice) [∪][∩]-distributiveLattice = intro module _ ⦃ _ : EmptySet(_∈_) ⦄ ⦃ _ : UniversalSet(_∈_) ⦄ where instance [∪][∩]-boundedLattice : Lattice.Bounded([∪][∩]-lattice)(∅)(𝐔) Lattice.Bounded.[∨]-identityₗ [∪][∩]-boundedLattice = [∪]-identityₗ Lattice.Bounded.[∧]-identityₗ [∪][∩]-boundedLattice = [∩]-identityₗ module _ ⦃ _ : ComplementOperator(_∈_) ⦄ where -}
{ "alphanum_fraction": 0.5646756583, "avg_line_length": 45.1304347826, "ext": "agda", "hexsha": "62460984e51531d7d05d3425d44a1599fd9868ae", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Container/SetLike/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Container/SetLike/Proofs.agda", "max_line_length": 249, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Container/SetLike/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 6125, "size": 15570 }
module Issue835 where data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x postulate A : Set x y : A F : x ≡ y → Set F ()
{ "alphanum_fraction": 0.5073529412, "avg_line_length": 9.7142857143, "ext": "agda", "hexsha": "294de7e13ce27566c48cc7868a767ed948726ad4", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue835.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue835.agda", "max_line_length": 42, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue835.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 60, "size": 136 }
-- 2014-05-02 -- This looped in the epic backend after Andreas' big projection refactoring (Oct 2013) data ℕ : Set where zero : ℕ suc : (n : ℕ) → ℕ {-# BUILTIN NATURAL ℕ #-} -- Essential f : ℕ → ℕ f zero = zero f (suc m) = m postulate IO : Set → Set {-# COMPILED_TYPE IO IO #-} postulate return : ∀ {A} → A → IO A {-# COMPILED_EPIC return (u1 : Unit, a : Any) -> Any = ioreturn(a) #-} main : IO ℕ main = return zero
{ "alphanum_fraction": 0.5886363636, "avg_line_length": 16.2962962963, "ext": "agda", "hexsha": "67caa7a87b66125ff812e65c37f4fc5141dc8611", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Succeed/Issue1119.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Succeed/Issue1119.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/Issue1119.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 157, "size": 440 }
module Issue4924 where record R (T : Set) : Set where field f : T → T module _ {A B : Set} (ra : R A) (rb : R B) (pri : {T : Set} → {{r : R T}} → T) where open R ra open R rb instance _ = ra _ : A _ = f pri
{ "alphanum_fraction": 0.4978354978, "avg_line_length": 14.4375, "ext": "agda", "hexsha": "f2f95f00f06058b5efdbdf50459e6c69617aa556", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Fail/Issue4924.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue4924.agda", "max_line_length": 84, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue4924.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 96, "size": 231 }
{-# OPTIONS --without-K --safe #-} -- https://www.cs.bham.ac.uk/~mhe/papers/omniscient-journal-revised.pdf module Constructive.Omniscience where open import Level renaming (zero to lzero; suc to lsuc) import Data.Bool as 𝔹 using (_≤_) open import Data.Bool as 𝔹 using (Bool; true; false; T; f≤t; b≤b; _∧_; not; _∨_) import Data.Bool.Properties as 𝔹ₚ open import Data.Empty open import Data.Unit using (tt) open import Data.Nat open import Data.Nat.Properties open import Data.Product as Prod open import Data.Sum as Sum open import Function.Base open import Relation.Binary as B open import Relation.Binary.PropositionalEquality open import Relation.Nullary open import Relation.Nullary.Decidable import Relation.Unary as U -- agda-misc open import Constructive.Axiom open import Constructive.Axiom.Properties open import Constructive.Axiom.Properties.Base.Lemma open import Constructive.Common open import Constructive.Combinators ℕ∞ : Set ℕ∞ = Σ (ℕ → Bool) λ x → ∀ i → T (x (suc i)) → T (x i) ⟦_⟧C : ℕ → ℕ → Bool ⟦ n ⟧C = λ m → isYes (m <? n) ⟦_⟧C-con : ∀ n i → T (⟦ n ⟧C (suc i)) → T (⟦ n ⟧C i) ⟦ n ⟧C-con i True[si<n] = fromWitness (m+n≤o⇒n≤o 1 $ toWitness True[si<n]) ⟦_⟧ : ℕ → ℕ∞ ⟦ n ⟧ = ⟦ n ⟧C , ⟦ n ⟧C-con ∞ : ℕ∞ ∞ = (λ _ → true) , (λ i _ → tt) _≈_ : Rel (ℕ → Bool) lzero α ≈ β = ∀ i → α i ≡ β i _≉_ : Rel (ℕ → Bool) lzero α ≉ β = ¬ (α ≈ β) _#_ : Rel (ℕ → Bool) lzero α # β = ∃ λ i → α i ≢ β i #⇒≉ : {α β : ℕ → Bool} → α # β → α ≉ β #⇒≉ {α} {β} (i , αi≢βi) α≈β = αi≢βi (α≈β i) ≈-refl : {α : ℕ → Bool} → α ≈ α ≈-refl _ = refl ≈-sym : {α β : ℕ → Bool} → α ≈ β → β ≈ α ≈-sym α≈β i = sym (α≈β i) ≈-trans : {α β γ : ℕ → Bool} → α ≈ β → β ≈ γ → α ≈ γ ≈-trans α≈β β≈γ i = trans (α≈β i) (β≈γ i) _≈∞_ : Rel ℕ∞ lzero x ≈∞ y = proj₁ x ≈ proj₁ y _≉∞_ : Rel ℕ∞ lzero x ≉∞ y = proj₁ x ≉ proj₁ y _#∞_ : Rel ℕ∞ lzero x #∞ y = proj₁ x # proj₁ y ⟦⟧-cong : ∀ {m n} → m ≡ n → ⟦ m ⟧ ≈∞ ⟦ n ⟧ ⟦⟧-cong {m} {n} m≡n i = cong (λ x → ⟦ x ⟧C i) m≡n -- Proposition 3.1 -- r = ≤-all ≤-all : (ℕ → Bool) → (ℕ → Bool) ≤-all α zero = α 0 ≤-all α (suc n) = α (suc n) ∧ ≤-all α n ≤-all-idem : ∀ α → ≤-all (≤-all α) ≈ ≤-all α ≤-all-idem α zero = refl ≤-all-idem α (suc n) = begin (α (suc n) ∧ ≤-all α n) ∧ ≤-all (≤-all α) n ≡⟨ cong ((α (suc n) ∧ ≤-all α n) ∧_) $ ≤-all-idem α n ⟩ (α (suc n) ∧ ≤-all α n) ∧ ≤-all α n ≡⟨ 𝔹ₚ.∧-assoc (α (suc n)) (≤-all α n) (≤-all α n) ⟩ α (suc n) ∧ (≤-all α n ∧ ≤-all α n) ≡⟨ cong (α (suc n) ∧_) $ 𝔹ₚ.∧-idem (≤-all α n) ⟩ α (suc n) ∧ ≤-all α n ∎ where open ≡-Reasoning private T-∧-× : ∀ {x y} → T (x ∧ y) → (T x × T y) T-∧-× {true} {true} t = tt , tt T-×-∧ : ∀ {x y} → (T x × T y) → T (x ∧ y) T-×-∧ {true} {true} (tt , tt) = tt ≤⇒≡∨< : ∀ {m n} → m ≤ n → (m ≡ n) ⊎ (m < n) ≤⇒≡∨< {m} {n} m≤n with m ≟ n ... | yes m≡n = inj₁ m≡n ... | no m≢n = inj₂ (≤∧≢⇒< m≤n m≢n) ≤-all-convergent : ∀ α i → T (≤-all α (suc i)) → T (≤-all α i) ≤-all-convergent α n t = proj₂ (T-∧-× t) ≤-all-ℕ∞ : (ℕ → Bool) → ℕ∞ ≤-all-ℕ∞ α = ≤-all α , ≤-all-convergent α ≤-all-extract-by-≤ : ∀ α {n k} → k ≤ n → T (≤-all α n) → T (α k) ≤-all-extract-by-≤ α {zero} {.0} z≤n t = t ≤-all-extract-by-≤ α {suc n} {zero} z≤n t = ≤-all-extract-by-≤ α {n} {0} z≤n (proj₂ (T-∧-× t)) ≤-all-extract-by-≤ α {suc n} {suc k} (s≤s k≤n) t with ≤⇒≡∨< k≤n ... | inj₁ k≡n = subst (T ∘′ α ∘′ suc) (sym k≡n) (proj₁ (T-∧-× t)) ... | inj₂ suck≤n = ≤-all-extract-by-≤ α suck≤n (proj₂ (T-∧-× t)) ≤-all-extract : ∀ α n → T (≤-all α n) → T (α n) ≤-all-extract α n = ≤-all-extract-by-≤ α ≤-refl ≤-all-construct : ∀ α n → (∀ k → k ≤ n → T (α k)) → T (≤-all α n) ≤-all-construct α zero f = f zero ≤-refl ≤-all-construct α (suc n) f = T-×-∧ ((f (suc n) ≤-refl) , ≤-all-construct α n λ k k≤n → f k (≤-step k≤n)) private not-injective : ∀ {x y} → not x ≡ not y → x ≡ y not-injective {false} {false} refl = refl not-injective {true} {true} refl = refl x≢y⇒not[x]≡y : ∀ {x y} → x ≢ y → not x ≡ y x≢y⇒not[x]≡y {false} {false} x≢y = contradiction refl x≢y x≢y⇒not[x]≡y {false} {true} x≢y = refl x≢y⇒not[x]≡y {true} {false} x≢y = refl x≢y⇒not[x]≡y {true} {true} x≢y = contradiction refl x≢y x≡y⇒not[x]≢y : ∀ {x y} → x ≡ y → not x ≢ y x≡y⇒not[x]≢y {false} {false} p () x≡y⇒not[x]≢y {false} {true} () q x≡y⇒not[x]≢y {true} {false} () q x≡y⇒not[x]≢y {true} {true} p () not[x]≢y⇒x≡y : ∀ {x y} → not x ≢ y → x ≡ y not[x]≢y⇒x≡y {x} {y} not[x]≢y = subst (_≡ y) (𝔹ₚ.not-involutive x) $ x≢y⇒not[x]≡y not[x]≢y not[x]≡y⇒x≢y : ∀ {x y} → not x ≡ y → x ≢ y not[x]≡y⇒x≢y not[x]≡y x≡y = x≡y⇒not[x]≢y x≡y not[x]≡y -- LPO-Bool <=> ∀ x → (x #∞ ∞) ⊎ (x ≈∞ ∞) lpo-Bool⇒∀x→x#∞⊎x≈∞ : LPO-Bool ℕ → ∀ x → (x #∞ ∞) ⊎ (x ≈∞ ∞) lpo-Bool⇒∀x→x#∞⊎x≈∞ lpo-Bool (α , con) with lpo-Bool λ n → not (α n) ... | inj₁ (x , not[αx]≡true) = inj₁ (x , not[x]≡y⇒x≢y not[αx]≡true) ... | inj₂ ¬∃x→not[αx]≡true = inj₂ λ i → not[x]≢y⇒x≡y $′ ¬∃P→∀¬P ¬∃x→not[αx]≡true i private T-to-≡ : ∀ {x} → T x → x ≡ true T-to-≡ {true} tx = refl ≡-to-T : ∀ {x} → x ≡ true → T x ≡-to-T {true} x≡true = tt T-¬-not : ∀ {x} → ¬ (T x) → T (not x) T-¬-not {false} n = tt T-¬-not {true} n = n tt T-not-¬ : ∀ {x} → T (not x) → ¬ (T x) T-not-¬ {false} tt () T-not-¬ {true} () y ¬-T-not-to-T : ∀ {x} → ¬ T (not x) → T x ¬-T-not-to-T {x} ¬Tnotx = subst T (𝔹ₚ.not-involutive x) $ T-¬-not ¬Tnotx ≤-to-→ : ∀ {x y} → x 𝔹.≤ y → T x → T y ≤-to-→ {true} {true} x≤y _ = tt →-to-≤ : ∀ {x y} → (T x → T y) → x 𝔹.≤ y →-to-≤ {false} {false} Tx→Ty = b≤b →-to-≤ {false} {true} Tx→Ty = f≤t →-to-≤ {true} {false} Tx→Ty = ⊥-elim (Tx→Ty tt) →-to-≤ {true} {true} Tx→Ty = b≤b T-≡ : ∀ {x y} → (T x → T y) → (T y → T x) → x ≡ y T-≡ Tx→Ty Ty→Tx = 𝔹ₚ.≤-antisym (→-to-≤ Tx→Ty) (→-to-≤ Ty→Tx) ¬T-≤-all-to-≤ : ∀ α n → ¬ T (≤-all α n) → ∃ λ k → k ≤ n × ¬ T (α k) ¬T-≤-all-to-≤ α zero ¬T with 𝔹ₚ.T? (α 0) ... | yes Tα0 = contradiction Tα0 ¬T ... | no ¬Tα0 = 0 , (z≤n , ¬Tα0) ¬T-≤-all-to-≤ α (suc n) ¬T with 𝔹ₚ.T? (α (suc n)) ... | yes Tαsn = Prod.map₂ (Prod.map₁ ≤-step) $ ¬T-≤-all-to-≤ α n (contraposition (λ T≤-allαn → T-×-∧ (Tαsn , T≤-allαn)) ¬T) ... | no ¬Tαsn = suc n , ≤-refl , ¬Tαsn ¬T-≤-all-to-≤′ : ∀ α n → ¬ T (≤-all (not ∘′ α) n) → ∃ λ k → k ≤ n × T (α k) ¬T-≤-all-to-≤′ α n ¬T with ¬T-≤-all-to-≤ (not ∘ α) n ¬T ... | (k , k≤n , ¬Tnotαn) = k , (k≤n , ¬-T-not-to-T ¬Tnotαn) ¬T-≤-all-to-∃ : ∀ α n → ¬ T (≤-all α n) → ∃ λ k → ¬ T (α k) ¬T-≤-all-to-∃ α n ¬T = Prod.map₂ proj₂ (¬T-≤-all-to-≤ α n ¬T) ¬T-≤-all-to-∃′ : ∀ α n → ¬ T (≤-all (not ∘′ α) n) → ∃ λ k → T (α k) ¬T-≤-all-to-∃′ α n ¬T = Prod.map₂ proj₂ (¬T-≤-all-to-≤′ α n ¬T) ≤-to-¬T-≤-all : ∀ α n → ∃ (λ k → k ≤ n × ¬ T (α k)) → ¬ T (≤-all α n) ≤-to-¬T-≤-all α n (k , k≤n , ¬Tαk) ttt = ¬Tαk (≤-all-extract-by-≤ α k≤n ttt) ∀x→x#∞⊎x≈∞⇒lpo-Bool : (∀ x → (x #∞ ∞) ⊎ (x ≈∞ ∞)) → LPO-Bool ℕ ∀x→x#∞⊎x≈∞⇒lpo-Bool ≈∞? P with ≈∞? (≤-all-ℕ∞ (λ n → not (P n))) ... | inj₁ (x , ≤-all[not∘P,x]≢true) = inj₁ (Prod.map₂ T-to-≡ (¬T-≤-all-to-∃′ P x (contraposition T-to-≡ ≤-all[not∘P,x]≢true))) ... | inj₂ ∀i→≤-all[not∘P,i]≡true = inj₂ (∀¬P→¬∃P λ i → not[x]≡y⇒x≢y (T-to-≡ $ ≤-all-extract (not ∘ P) i $ ≡-to-T (∀i→≤-all[not∘P,i]≡true i))) -- Theorem 3.5 ε : (ℕ∞ → Bool) → ℕ∞ ε p = ≤-all-ℕ∞ λ n → p ⟦ n ⟧ T-⟦⟧C-to-< : ∀ {n i} → T (⟦ n ⟧C i) → i < n T-⟦⟧C-to-< t = toWitness t <-to-T-⟦⟧C : ∀ {n i} → i < n → T (⟦ n ⟧C i) <-to-T-⟦⟧C i<n = fromWitness i<n lemma-1-forward : ∀ (p : ℕ∞ → Bool) n → ε p ≈∞ ⟦ n ⟧ → ¬ T (p ⟦ n ⟧) × (∀ k → k < n → T (p ⟦ k ⟧)) lemma-1-forward p n εp≈∞⟦n⟧ = ¬T[p⟦n⟧] , i<n⇒Tp⟦i⟧ where ∀i→≤-all[p∘⟦⟧,i]≡⟦n⟧Ci : ∀ i → ≤-all (λ m → p ⟦ m ⟧) i ≡ ⟦ n ⟧C i ∀i→≤-all[p∘⟦⟧,i]≡⟦n⟧Ci = εp≈∞⟦n⟧ i<n⇒Tp⟦i⟧ : ∀ i → i < n → T (p ⟦ i ⟧) i<n⇒Tp⟦i⟧ i i<n = ≤-all-extract (p ∘′ ⟦_⟧) i T[≤-all[p∘⟦⟧,i]] where ⟦n⟧Ci≡true : ⟦ n ⟧C i ≡ true ⟦n⟧Ci≡true = T-to-≡ (<-to-T-⟦⟧C i<n) ≤-all[p∘⟦⟧,i]≡true : ≤-all (λ m → p ⟦ m ⟧) i ≡ true ≤-all[p∘⟦⟧,i]≡true = trans (∀i→≤-all[p∘⟦⟧,i]≡⟦n⟧Ci i) ⟦n⟧Ci≡true T[≤-all[p∘⟦⟧,i]] : T (≤-all (λ m → p ⟦ m ⟧) i) T[≤-all[p∘⟦⟧,i]] = ≡-to-T ≤-all[p∘⟦⟧,i]≡true ¬T[p⟦n⟧] : ¬ T (p ⟦ n ⟧) ¬T[p⟦n⟧] = contraposition (subst (T ∘′ p ∘′ ⟦_⟧) (sym m≡n)) ¬T[p⟦m⟧] where ⟦n⟧Cn≡false : ⟦ n ⟧C n ≡ false ⟦n⟧Cn≡false = not-injective (T-to-≡ (T-¬-not (contraposition T-⟦⟧C-to-< (n≮n n)))) ≤-all[p∘⟦⟧,n]≡false : ≤-all (λ m → p ⟦ m ⟧) n ≡ false ≤-all[p∘⟦⟧,n]≡false = trans (∀i→≤-all[p∘⟦⟧,i]≡⟦n⟧Ci n) ⟦n⟧Cn≡false ¬T-≤-all[p∘⟦⟧,n] : ¬ T (≤-all (λ m → p ⟦ m ⟧) n) ¬T-≤-all[p∘⟦⟧,n] = T-not-¬ (≡-to-T (cong not ≤-all[p∘⟦⟧,n]≡false)) ∃m→m≤n׬T[p⟦m⟧] : ∃ λ m → m ≤ n × ¬ T (p ⟦ m ⟧) ∃m→m≤n׬T[p⟦m⟧] = ¬T-≤-all-to-≤ (p ∘′ ⟦_⟧) n ¬T-≤-all[p∘⟦⟧,n] m : ℕ m = proj₁ ∃m→m≤n׬T[p⟦m⟧] m≤n : m ≤ n m≤n = proj₁ (proj₂ ∃m→m≤n׬T[p⟦m⟧]) ¬T[p⟦m⟧] : ¬ T (p ⟦ m ⟧) ¬T[p⟦m⟧] = proj₂ (proj₂ ∃m→m≤n׬T[p⟦m⟧]) m≮n : m ≮ n m≮n m<n = ¬T[p⟦m⟧] (i<n⇒Tp⟦i⟧ m m<n) m≡n : m ≡ n m≡n = ≤-antisym m≤n (≮⇒≥ m≮n) lemma-1-backwards : ∀ (p : ℕ∞ → Bool) n → ¬ T (p ⟦ n ⟧) × (∀ k → k < n → T (p ⟦ k ⟧)) → ε p ≈∞ ⟦ n ⟧ lemma-1-backwards p n (¬Tp⟦n⟧ , ∀k→k<n→Tp⟦k⟧) = ∀i→≤-all[p∘⟦⟧,i]≡⟦n⟧Ci where open ≡-Reasoning ∀i→≤-all[p∘⟦⟧,i]≡⟦n⟧Ci : ∀ i → ≤-all (λ m → p ⟦ m ⟧) i ≡ ⟦ n ⟧C i ∀i→≤-all[p∘⟦⟧,i]≡⟦n⟧Ci i with n ≤? i ... | yes n≤i = trans (not-injective (T-to-≡ (T-¬-not ¬T≤-all[p∘⟦⟧,i]))) (sym ⟦n⟧Ci≡false) where ⟦n⟧Ci≡false : ⟦ n ⟧C i ≡ false ⟦n⟧Ci≡false = not-injective (T-to-≡ (T-¬-not (contraposition T-⟦⟧C-to-< (≤⇒≯ n≤i)))) ¬T≤-all[p∘⟦⟧,i] : ¬ T (≤-all (λ m → p ⟦ m ⟧) i) ¬T≤-all[p∘⟦⟧,i] t = ¬Tp⟦n⟧ (≤-all-extract-by-≤ (p ∘′ ⟦_⟧) n≤i t) ... | no n≰i = begin ≤-all (λ m → p ⟦ m ⟧) i ≡⟨ T-to-≡ (≤-all-construct (p ∘ ⟦_⟧) i λ k k≤i → ∀k→k<n→Tp⟦k⟧ k (<-transʳ k≤i i<n)) ⟩ true ≡⟨ sym $ T-to-≡ (<-to-T-⟦⟧C i<n) ⟩ ⟦ n ⟧C i ∎ where i<n = ≰⇒> n≰i {- pp : ℕ∞ → Bool pp (x , _) = not (x 0) ∨ (x 0 ∧ not (x 1)) -} ε-correct : (P : ℕ∞ → Bool) → P (ε P) ≡ true → ∀ x → P x ≡ true ε-correct P P[εP]≡true x = {! !} searchable-Bool : Searchable-Bool ℕ∞ searchable-Bool = ε , ε-correct
{ "alphanum_fraction": 0.4531234629, "avg_line_length": 31.6666666667, "ext": "agda", "hexsha": "17dde8c91097ccf92aff0334d81ed403c9ec42cd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Constructive/Omniscience.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Constructive/Omniscience.agda", "max_line_length": 88, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Constructive/Omniscience.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 6039, "size": 10165 }
-- Some very simple problems just to test that things work properly. -- If everything has been installed properly following -- -- https://github.com/HoTT/EPIT-2020/tree/main/04-cubical-type-theory#installation-of-cubical-agda-and-agdacubical -- -- then this file should load fine and one should get 4 holes which -- one can fill with appropriate terms. Everything should work with -- both Agda 2.6.1.3 and agda/cubical v0.2 as well as with the -- development version of both Agda and agda/cubical. -- -- Solution how to fill the holes is written at the bottom of the file. -- {-# OPTIONS --cubical #-} module Warmup where open import Part1 variable A B C : Type ℓ -- Cong/ap satisfies a lot of nice equations: congRefl : (f : A → B) {x : A} → cong f (refl {x = x}) ≡ refl congRefl f = {!!} congId : {x y : A} (p : x ≡ y) → cong id p ≡ p congId p = {!!} _∘_ : (g : B → C) (f : A → B) → A → C (g ∘ f) x = g (f x) congComp : (f : A → B) (g : B → C) {x y : A} (p : x ≡ y) → cong (g ∘ f) p ≡ cong g (cong f p) congComp f g x = {!!} -- Sym is an involution: symInv : {x y : A} (p : x ≡ y) → sym (sym p) ≡ p symInv p = {!!} -- Solution: replace all holes by refl
{ "alphanum_fraction": 0.6044407895, "avg_line_length": 15.3924050633, "ext": "agda", "hexsha": "07536f56aa3bdd58aa7ea74200ad7315342fff9a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "54b18e4adf890b3533bbefda373912423be7f490", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "tomdjong/EPIT-2020", "max_forks_repo_path": "04-cubical-type-theory/material/Warmup.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "54b18e4adf890b3533bbefda373912423be7f490", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "tomdjong/EPIT-2020", "max_issues_repo_path": "04-cubical-type-theory/material/Warmup.agda", "max_line_length": 114, "max_stars_count": null, "max_stars_repo_head_hexsha": "54b18e4adf890b3533bbefda373912423be7f490", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "tomdjong/EPIT-2020", "max_stars_repo_path": "04-cubical-type-theory/material/Warmup.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 411, "size": 1216 }
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Values for standard evaluation (Def. 3.1 and 3.2, Fig. 4c and 4f). ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type module Parametric.Denotation.Value (Base : Type.Structure) where open import Base.Denotation.Notation open Type.Structure Base -- Extension point: Values for base types. Structure : Set₁ Structure = Base → Set module Structure (⟦_⟧Base : Structure) where -- We provide: Values for arbitrary types. ⟦_⟧Type : Type → Set ⟦ base ι ⟧Type = ⟦ ι ⟧Base ⟦ σ ⇒ τ ⟧Type = ⟦ σ ⟧Type → ⟦ τ ⟧Type instance -- This means: Overload ⟦_⟧ to mean ⟦_⟧Type. meaningOfType : Meaning Type meaningOfType = meaning ⟦_⟧Type -- We also provide: Environments of such values. open import Base.Denotation.Environment Type ⟦_⟧Type public
{ "alphanum_fraction": 0.5875402793, "avg_line_length": 27.3823529412, "ext": "agda", "hexsha": "af7048406be099612797bbd9b2ab9adb3569342d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Parametric/Denotation/Value.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Parametric/Denotation/Value.agda", "max_line_length": 72, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Parametric/Denotation/Value.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 256, "size": 931 }
{-# OPTIONS --safe #-} module Cubical.Data.FinSet.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Structure open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Equiv renaming (_∙ₑ_ to _⋆_) open import Cubical.HITs.PropositionalTruncation as Prop open import Cubical.Data.Nat open import Cubical.Data.Unit open import Cubical.Data.Bool open import Cubical.Data.Empty as Empty open import Cubical.Data.Sigma open import Cubical.Data.Fin.Base renaming (Fin to Finℕ) open import Cubical.Data.SumFin open import Cubical.Data.FinSet.Base open import Cubical.Relation.Nullary open import Cubical.Relation.Nullary.DecidableEq open import Cubical.Relation.Nullary.HLevels private variable ℓ ℓ' ℓ'' : Level A : Type ℓ B : Type ℓ' -- operators to more conveniently compose equivalences module _ {A : Type ℓ}{B : Type ℓ'}{C : Type ℓ''} where infixr 30 _⋆̂_ _⋆̂_ : ∥ A ≃ B ∥ → ∥ B ≃ C ∥ → ∥ A ≃ C ∥ _⋆̂_ = Prop.map2 (_⋆_) module _ {A : Type ℓ}{B : Type ℓ'} where ∣invEquiv∣ : ∥ A ≃ B ∥ → ∥ B ≃ A ∥ ∣invEquiv∣ = Prop.map invEquiv -- useful implications EquivPresIsFinSet : A ≃ B → isFinSet A → isFinSet B EquivPresIsFinSet e (_ , p) = _ , ∣ invEquiv e ∣ ⋆̂ p isFinSetFin : {n : ℕ} → isFinSet (Fin n) isFinSetFin = _ , ∣ idEquiv _ ∣ isFinSetUnit : isFinSet Unit isFinSetUnit = 1 , ∣ invEquiv Fin1≃Unit ∣ isFinSetBool : isFinSet Bool isFinSetBool = 2 , ∣ invEquiv SumFin2≃Bool ∣ isFinSet→Discrete : isFinSet A → Discrete A isFinSet→Discrete h = Prop.rec isPropDiscrete (λ p → EquivPresDiscrete (invEquiv p) discreteFin) (h .snd) isContr→isFinSet : isContr A → isFinSet A isContr→isFinSet h = 1 , ∣ isContr→≃Unit* h ⋆ invEquiv Unit≃Unit* ⋆ invEquiv Fin1≃Unit ∣ isDecProp→isFinSet : isProp A → Dec A → isFinSet A isDecProp→isFinSet h (yes p) = isContr→isFinSet (inhProp→isContr p h) isDecProp→isFinSet h (no ¬p) = 0 , ∣ uninhabEquiv ¬p (idfun _) ∣ isDec→isFinSet∥∥ : Dec A → isFinSet ∥ A ∥ isDec→isFinSet∥∥ dec = isDecProp→isFinSet isPropPropTrunc (Dec∥∥ dec) isFinSet→Dec∥∥ : isFinSet A → Dec ∥ A ∥ isFinSet→Dec∥∥ h = Prop.rec (isPropDec isPropPropTrunc) (λ p → EquivPresDec (propTrunc≃ (invEquiv p)) (Dec∥Fin∥ _)) (h .snd) isFinProp→Dec : isFinSet A → isProp A → Dec A isFinProp→Dec p h = subst Dec (propTruncIdempotent h) (isFinSet→Dec∥∥ p) PeirceLaw∥∥ : isFinSet A → NonEmpty ∥ A ∥ → ∥ A ∥ PeirceLaw∥∥ p = Dec→Stable (isFinSet→Dec∥∥ p) PeirceLaw : isFinSet A → NonEmpty A → ∥ A ∥ PeirceLaw p q = PeirceLaw∥∥ p (λ f → q (λ x → f ∣ x ∣)) -- transprot family towards Fin transpFamily : {A : Type ℓ}{B : A → Type ℓ'} → ((n , e) : isFinOrd A) → (x : A) → B x ≃ B (invEq e (e .fst x)) transpFamily {B = B} (n , e) x = pathToEquiv (λ i → B (retEq e x (~ i)))
{ "alphanum_fraction": 0.6914049016, "avg_line_length": 29.5612244898, "ext": "agda", "hexsha": "873870480f9ad81bb49035a96c7a0f7be0175871", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Data/FinSet/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Data/FinSet/Properties.agda", "max_line_length": 105, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Data/FinSet/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1143, "size": 2897 }
{-# OPTIONS --safe --warning=error --without-K --guardedness #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import LogicalFormulae open import Groups.Lemmas open import Groups.Definition open import Setoids.Orders.Partial.Definition open import Setoids.Orders.Total.Definition open import Setoids.Setoids open import Functions.Definition open import Sets.EquivalenceRelations open import Rings.Definition open import Rings.Orders.Total.Definition open import Rings.Orders.Partial.Definition open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Numbers.Modulo.Definition open import Semirings.Definition open import Orders.Total.Definition open import Sequences -- Note: totality is necessary here. The construction of a base-n expansion fundamentally relies on being able to take floors. module Rings.Orders.Total.BaseExpansion {a m p : _} {A : Set a} {S : Setoid {a} {m} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} {_<_ : Rel {_} {p} A} {pOrder : SetoidPartialOrder S _<_} {pOrderRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pOrderRing) {n : ℕ} (1<n : 1 <N n) where open Ring R open Group additiveGroup open Setoid S open Equivalence eq open SetoidPartialOrder pOrder open TotallyOrderedRing order open SetoidTotalOrder total open PartiallyOrderedRing pOrderRing open import Rings.Lemmas R open import Rings.Orders.Partial.Lemmas pOrderRing open import Rings.Orders.Total.Lemmas order open import Rings.InitialRing R open import Rings.IntegralDomains.Lemmas record FloorIs (a : A) (n : ℕ) : Set (m ⊔ p) where field prBelow : fromN n <= a prAbove : a < fromN (succ n) addOneToFloor : {a : A} {n : ℕ} → FloorIs a n → FloorIs (a + 1R) (succ n) FloorIs.prBelow (addOneToFloor record { prBelow = (inl x) ; prAbove = prAbove }) = inl (<WellDefined groupIsAbelian reflexive (orderRespectsAddition x 1R)) FloorIs.prBelow (addOneToFloor record { prBelow = (inr x) ; prAbove = prAbove }) = inr (transitive groupIsAbelian (+WellDefined x reflexive)) FloorIs.prAbove (addOneToFloor record { prBelow = x ; prAbove = prAbove }) = <WellDefined reflexive groupIsAbelian (orderRespectsAddition prAbove 1R) private 0<n : {x y : A} → (x < y) → 0R < fromN n 0<n x<y = fromNPreservesOrder (0<1 (anyComparisonImpliesNontrivial x<y)) (lessTransitive (succIsPositive 0) 1<n) 0<aFromN : {a : A} → (0<a : 0R < a) → 0R < (a * fromN n) 0<aFromN 0<a = orderRespectsMultiplication 0<a (0<n 0<a) floorWellDefinedLemma : {a : A} {n1 n2 : ℕ} → FloorIs a n1 → FloorIs a n2 → n1 <N n2 → False floorWellDefinedLemma {a} {n1} {n2} record { prAbove = prAbove1 } record { prBelow = inl prBelow } n1<n2 with TotalOrder.totality ℕTotalOrder (succ n1) n2 ... | inl (inl n1+1<n2) = irreflexive (<Transitive prAbove1 (<Transitive (fromNPreservesOrder (0<1 (anyComparisonImpliesNontrivial prBelow)) n1+1<n2) prBelow)) ... | inl (inr n2<n1+1) = noIntegersBetweenXAndSuccX n1 n1<n2 n2<n1+1 ... | inr refl = irreflexive (<Transitive prAbove1 prBelow) floorWellDefinedLemma {a} {n1} {n2} record { prBelow = (inl x) ; prAbove = prAbove1 } record { prBelow = (inr eq) ; prAbove = _ } n1<n2 with TotalOrder.totality ℕTotalOrder (succ n1) n2 ... | inl (inl n1+1<n2) = irreflexive (<Transitive prAbove1 (<WellDefined reflexive eq (fromNPreservesOrder (0<1 (anyComparisonImpliesNontrivial prAbove1)) n1+1<n2))) ... | inl (inr n2<n1+1) = noIntegersBetweenXAndSuccX n1 n1<n2 n2<n1+1 ... | inr refl = irreflexive (<WellDefined reflexive eq prAbove1) floorWellDefinedLemma {a} {n1} {n2} record { prBelow = (inr x) ; prAbove = prAbove1 } record { prBelow = (inr eq) ; prAbove = _ } n1<n2 = lessIrreflexive {n1} (fromNPreservesOrder' (anyComparisonImpliesNontrivial prAbove1) (<WellDefined reflexive (transitive eq (symmetric x)) (fromNPreservesOrder (0<1 (anyComparisonImpliesNontrivial prAbove1)) n1<n2))) floorWellDefined : {a : A} {n1 n2 : ℕ} → FloorIs a n1 → FloorIs a n2 → n1 ≡ n2 floorWellDefined {a} {n1} {n2} record { prBelow = prBelow1 ; prAbove = prAbove1 } record { prBelow = prBelow ; prAbove = prAbove } with TotalOrder.totality ℕTotalOrder n1 n2 ... | inr x = x floorWellDefined {a} {n1} {n2} f1 f2 | inl (inl x) = exFalso (floorWellDefinedLemma f1 f2 x) floorWellDefined {a} {n1} {n2} f1 f2 | inl (inr x) = exFalso (floorWellDefinedLemma f2 f1 x) floorWellDefined' : {a b : A} {n : ℕ} → (a ∼ b) → FloorIs a n → FloorIs b n FloorIs.prBelow (floorWellDefined' {a} {b} {n} a=b record { prBelow = (inl x) ; prAbove = s }) = inl (<WellDefined reflexive a=b x) FloorIs.prBelow (floorWellDefined' {a} {b} {n} a=b record { prBelow = (inr x) ; prAbove = s }) = inr (transitive x a=b) FloorIs.prAbove (floorWellDefined' {a} {b} {n} a=b record { prBelow = t ; prAbove = s }) = <WellDefined a=b reflexive s computeFloor' : {k : ℕ} → (fuel : ℕ) → .(k +N fuel ≡ n) → (a : A) → (0R < a) → .(a < fromN k) → Sg ℕ (FloorIs a) computeFloor' {zero} zero pr a 0<a a<f = exFalso (lessIrreflexive (lessTransitive 1<n (le 0 (applyEquality succ (equalityCommutative pr))))) computeFloor' {zero} (succ k) pr a 0<a a<f = exFalso (irreflexive (<Transitive 0<a a<f)) computeFloor' {succ k} n pr a 0<a a<f with totality 1R a ... | inl (inr a<1) = 0 , (record { prAbove = <WellDefined reflexive (symmetric identRight) a<1 ; prBelow = inl 0<a }) ... | inr 1=a = 1 , (record { prAbove = <WellDefined (transitive identRight 1=a) reflexive (fromNPreservesOrder (0<1 (anyComparisonImpliesNontrivial 0<a)) {1} (le 0 refl)) ; prBelow = inr (transitive identRight 1=a) }) ... | inl (inl 1<a) with computeFloor' {k} (succ n) (transitivity (transitivity (Semiring.commutative ℕSemiring k (succ n)) (applyEquality succ (Semiring.commutative ℕSemiring n k))) pr) (a + inverse 1R) (moveInequality 1<a) (<WellDefined reflexive (transitive groupIsAbelian (transitive +Associative (transitive (+WellDefined invLeft reflexive) identLeft))) (orderRespectsAddition a<f (inverse 1R))) ... | N , snd = succ N , floorWellDefined' (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invLeft) identRight)) (addOneToFloor snd) computeFloor : (a : A) → (0R < a) → .(a < fromN n) → Sg (ℤn n (lessTransitive (succIsPositive 0) 1<n)) (λ z → FloorIs a (ℤn.x z)) computeFloor a 0<a a<n with computeFloor' {n} 0 (Semiring.sumZeroRight ℕSemiring n) a 0<a a<n ... | floor , record { prBelow = inl p ; prAbove = prAbove } = record { x = floor ; xLess = fromNPreservesOrder' (anyComparisonImpliesNontrivial 0<a) (<Transitive p a<n) } , record { prBelow = inl p ; prAbove = prAbove } ... | floor , record { prBelow = inr p ; prAbove = prAbove } = record { x = floor ; xLess = fromNPreservesOrder' (anyComparisonImpliesNontrivial 0<a) (<WellDefined (symmetric p) reflexive a<n) } , record { prBelow = inr p ; prAbove = prAbove } firstDigit : (a : A) → 0R < a → .(a < 1R) → ℤn n (lessTransitive (succIsPositive 0) 1<n) firstDigit a 0<a a<1 = underlying (computeFloor (a * fromN n) (orderRespectsMultiplication 0<a (0<n 0<a)) (<WellDefined reflexive identIsIdent (ringCanMultiplyByPositive (0<n 0<a) a<1))) baseNExpansion : (a : A) → 0R < a → .(a < 1R) → Sequence (ℤn n (lessTransitive (succIsPositive 0) 1<n)) Sequence.head (baseNExpansion a 0<a a<1) = firstDigit a 0<a a<1 Sequence.tail (baseNExpansion a 0<a a<1) with computeFloor (a * fromN n) (0<aFromN 0<a) (<WellDefined reflexive identIsIdent (ringCanMultiplyByPositive (0<n 0<a) a<1)) ... | record { x = x ; xLess = xLess } , record { prBelow = inl prB ; prAbove = prA } = baseNExpansion ((a * fromN n) + inverse (fromN x)) (moveInequality prB) (<WellDefined reflexive (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invRight) identRight)) (orderRespectsAddition prA (inverse (fromN x)))) ... | record { x = x ; xLess = xLess } , record { prBelow = inr prB ; prAbove = prA } = constSequence (record { x = 0 ; xLess = lessTransitive (succIsPositive 0) 1<n }) private powerSeq : (i : A) → (start : A) → Sequence A Sequence.head (powerSeq i start) = start Sequence.tail (powerSeq i start) = powerSeq i (start * i) powerSeqInduction : (i : A) (start : A) → (m : ℕ) → (index (powerSeq i start) (succ m)) ∼ i * (index (powerSeq i start) m) powerSeqInduction i start zero = *Commutative powerSeqInduction i start (succ m) = powerSeqInduction i (start * i) m powerSeq' : (i : A) → Sequence A powerSeq' i = powerSeq i i dot : A → ℤn n (lessTransitive (succIsPositive 0) 1<n) → A dot 1/n^i x = fromN (ℤn.x {n} {lessTransitive (succIsPositive 0) 1<n} x) * 1/n^i dotWellDefined : {x y : A} {b : ℤn n (lessTransitive (succIsPositive 0) 1<n)} → (x ∼ y) → dot x b ∼ dot y b dotWellDefined eq = *WellDefined reflexive eq sequenceEntries : (b : A) → (b * fromN n ∼ 1R) → Sequence (ℤn n (lessTransitive (succIsPositive 0) 1<n)) → Sequence A sequenceEntries 1/n pr1/n s = apply dot (powerSeq' 1/n) s private partialSums' : A → Sequence A → Sequence A Sequence.head (partialSums' a seq) = a + Sequence.head seq Sequence.tail (partialSums' a seq) = partialSums' (a + Sequence.head seq) (Sequence.tail seq) partialSums'WellDefined : (a b : A) → (a ∼ b) → (s : Sequence A) → (m : ℕ) → (index (partialSums' a s) m) ∼ (index (partialSums' b s) m) partialSums'WellDefined a b a=b s zero = +WellDefined a=b reflexive partialSums'WellDefined a b a=b s (succ m) = partialSums'WellDefined (a + Sequence.head s) (b + Sequence.head s) (+WellDefined a=b reflexive) (Sequence.tail s) m partialSums'WellDefined' : (a : A) → (s1 s2 : Sequence A) → (equal : (m : ℕ) → index s1 m ∼ index s2 m) → (m : ℕ) → (index (partialSums' a s1) m) ∼ (index (partialSums' a s2) m) partialSums'WellDefined' a s1 s2 equal zero = +WellDefined reflexive (equal 0) partialSums'WellDefined' a s1 s2 equal (succ m) = transitive (partialSums'WellDefined (a + Sequence.head s1) (a + Sequence.head s2) (+WellDefined reflexive (equal 0)) _ m) (partialSums'WellDefined' (a + Sequence.head s2) (Sequence.tail s1) (Sequence.tail s2) (λ m → equal (succ m)) m) partialSums'Translate : (a b : A) → (s : Sequence A) → (m : ℕ) → (index (partialSums' (a + b) s) m) ∼ (b + index (partialSums' a s) m) partialSums'Translate a b s zero = transitive (+WellDefined groupIsAbelian reflexive) (symmetric +Associative) partialSums'Translate a b s (succ m) = transitive (partialSums'WellDefined _ _ (transitive (symmetric +Associative) (transitive (+WellDefined reflexive groupIsAbelian) +Associative)) (Sequence.tail s) m) (partialSums'Translate (a + Sequence.head s) b (Sequence.tail s) m) powerSeqWellDefined : {a b start1 start2 : A} → (a ∼ b) → (start1 ∼ start2) → (m : ℕ) → (index (powerSeq a start1) m) ∼ (index (powerSeq b start2) m) powerSeqWellDefined {a} {b} {s1} {s2} a=b s1=s2 zero = s1=s2 powerSeqWellDefined {a} {b} {s1} {s2} a=b s1=s2 (succ m) = powerSeqWellDefined a=b (*WellDefined s1=s2 a=b) m powerSeqMove : (a start : A) (m : ℕ) → index (powerSeq a (a * start)) m ∼ a * index (powerSeq a start) m powerSeqMove a start zero = reflexive powerSeqMove a start (succ m) = transitive (powerSeqWellDefined reflexive (transitive *Commutative (*WellDefined reflexive *Commutative)) m) (powerSeqMove _ _ m) partialSumsConst : (r s : A) → (m : ℕ) → index (partialSums' r (constSequence s)) m ∼ (r + (s * fromN (succ m))) partialSumsConst r s zero = +WellDefined reflexive (transitive (symmetric identIsIdent) (transitive *Commutative (*WellDefined reflexive (symmetric identRight)))) partialSumsConst r s (succ m) = transitive (partialSumsConst (r + s) s m) (transitive (symmetric +Associative) (+WellDefined reflexive (transitive (+WellDefined (symmetric (transitive *Commutative identIsIdent)) reflexive) (symmetric *DistributesOver+)))) applyWellDefined : {b : _} {B : Set b} (r1 r2 : Sequence A) (s : Sequence B) → (f : A → B → A) → ({x y : A} {b : B} → (x ∼ y) → f x b ∼ f y b) → ((m : ℕ) → index r1 m ∼ index r2 m) → (m : ℕ) → index (apply f r1 s) m ∼ index (apply f r2 s) m applyWellDefined r1 r2 s f wd eq zero = wd (eq 0) applyWellDefined r1 r2 s f wd eq (succ m) = applyWellDefined _ _ (Sequence.tail s) f wd (λ n → eq (succ n)) m partialSums : Sequence A → Sequence A partialSums = partialSums' 0R approximations : (b : A) → (b * (fromN n) ∼ 1R) → Sequence (ℤn n (lessTransitive (succIsPositive 0) 1<n)) → Sequence A approximations 1/n pr1/n s = partialSums (sequenceEntries 1/n pr1/n s) private multiplyZeroSequence : (s : Sequence A) (m : ℕ) → index (apply dot s (constSequence (record { x = 0 ; xLess = lessTransitive (succIsPositive 0) 1<n }))) m ∼ 0R multiplyZeroSequence s zero = timesZero' multiplyZeroSequence s (succ m) = multiplyZeroSequence _ m lemma1 : (x y : A) (s : Sequence (ℤn n (lessTransitive (succIsPositive 0) 1<n))) → (m : ℕ) → index (apply dot (powerSeq x (y * x)) s) m ∼ x * (index (apply dot (powerSeq x y) s) m) lemma1 x y s zero = transitive *Associative *Commutative lemma1 x y s (succ m) = lemma1 x (y * x) (Sequence.tail s) m lemma2 : (w x y z : A) (s : Sequence (ℤn n (lessTransitive (succIsPositive 0) 1<n))) → (m : ℕ) → (w * index (partialSums' x (apply dot (powerSeq y z) s)) m) ∼ index (partialSums' (w * x) (apply dot (powerSeq y (z * w)) s)) m lemma2 x y z w s zero = transitive *DistributesOver+ (+WellDefined reflexive (transitive (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (*WellDefined *Commutative reflexive))) *Commutative)) lemma2 x y z w s (succ m) = transitive (lemma2 x (y + dot w (Sequence.head s)) z (w * z) (Sequence.tail s) m) (transitive (partialSums'WellDefined _ (_ + dot (w * x) (Sequence.head s)) (transitive *DistributesOver+ (+WellDefined reflexive (transitive *Commutative (symmetric *Associative)))) _ m) (partialSums'WellDefined' _ _ _ (λ n → applyWellDefined (powerSeq z ((w * z) * x)) (powerSeq z ((w * x) * z)) (Sequence.tail s) dot (λ {m} {n} {s} m=n → dotWellDefined {m} {n} {s} m=n) (λ n → powerSeqWellDefined reflexive (transitive (transitive (symmetric *Associative) (*WellDefined reflexive *Commutative)) *Associative) n) n) m)) approximationComesFromBelow : (1/n : A) → (1/nPr : 1/n * (fromN n) ∼ 1R) → (a : A) → (0<a : 0R < a) → (a<1 : a < 1R) → (m : ℕ) → index (approximations 1/n 1/nPr (baseNExpansion a 0<a a<1)) m <= a approximationComesFromBelow 1/n 1/nPr a 0<a a<1 zero with computeFloor' 0 (Semiring.sumZeroRight ℕSemiring n) (a * fromN n) (0<aFromN 0<a) ((<WellDefined reflexive identIsIdent (ringCanMultiplyByPositive (0<n 0<a) a<1))) ... | x , record { prBelow = inl prBelow ; prAbove = prAbove } = inl (<WellDefined (symmetric identLeft) reflexive (ringCanCancelPositive (0<n prBelow) (<WellDefined (transitive (symmetric identIsIdent) (transitive *Commutative (transitive (*WellDefined reflexive (symmetric 1/nPr)) *Associative))) reflexive prBelow))) ... | x , record { prBelow = inr prBelow ; prAbove = prAbove } = inr (transitive identLeft (transitive (transitive (transitive (transitive (*WellDefined prBelow reflexive) (transitive (symmetric *Associative) (*WellDefined reflexive *Commutative))) (*WellDefined reflexive 1/nPr)) (*Commutative)) identIsIdent)) approximationComesFromBelow 1/n 1/nPr a 0<a a<1 (succ m) with computeFloor' 0 (Semiring.sumZeroRight ℕSemiring n) (a * fromN n) (0<aFromN 0<a) ((<WellDefined reflexive identIsIdent (ringCanMultiplyByPositive (0<n 0<a) a<1))) ... | x , record { prBelow = inr x=an ; prAbove = an<x+1 } = inr (transitive (partialSums'Translate 0G _ _ m) (transitive (+WellDefined (transitive (*WellDefined x=an reflexive) (transitive (symmetric *Associative) (*WellDefined reflexive (transitive *Commutative 1/nPr)))) reflexive) (transitive (+WellDefined (transitive *Commutative identIsIdent) (transitive (partialSums'WellDefined' 0G _ (constSequence 0G) (λ m → transitive (multiplyZeroSequence (powerSeq 1/n (1/n * 1/n)) m) (identityOfIndiscernablesRight _∼_ reflexive (equalityCommutative (indexAndConst 0G m)))) m) (transitive (partialSumsConst _ _ m) (transitive identLeft timesZero')))) identRight))) ... | x , record { prBelow = inl x<an ; prAbove = an<x+1 } with approximationComesFromBelow 1/n 1/nPr ((a * fromN n) + inverse (fromN x)) (moveInequality x<an) (<WellDefined reflexive (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invRight) identRight)) (orderRespectsAddition an<x+1 (inverse (fromN x)))) m ... | inl inter<an = inl (<WellDefined (symmetric (partialSums'Translate 0G (fromN x * 1/n) _ m)) reflexive (<WellDefined (+WellDefined reflexive (symmetric (partialSums'WellDefined 0G (fromN n * 0G) (symmetric timesZero) _ m))) reflexive (ringCanCancelPositive (0<n an<x+1) (<WellDefined (symmetric (transitive *DistributesOver+' (+WellDefined (transitive (symmetric *Associative) (transitive (*WellDefined reflexive 1/nPr) (transitive *Commutative identIsIdent))) (transitive *Commutative (transitive (lemma2 (fromN n) (fromN n * 0G) 1/n (1/n * 1/n) _ m) (transitive (partialSums'WellDefined _ 0G (transitive (*WellDefined reflexive timesZero) timesZero) _ m) (partialSums'WellDefined' 0G _ _ (λ m → applyWellDefined _ _ _ dot (λ {x} {y} {s} → dotWellDefined {x} {y} {s}) (λ m → powerSeqWellDefined {_} {1/n} {_} {1/n} reflexive (transitive (symmetric *Associative) (transitive (transitive *Commutative (*WellDefined 1/nPr reflexive)) identIsIdent)) m) m) m))))))) reflexive (<WellDefined groupIsAbelian (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invLeft) identRight)) (orderRespectsAddition inter<an (fromN x))))))) ... | inr inter=an = inr (transitive (partialSums'Translate 0G (fromN x * 1/n) _ m) (cancelIntDom' (isIntDom λ t → anyComparisonImpliesNontrivial a<1 (symmetric t)) ans λ t → irreflexive (<WellDefined reflexive t (fromNPreservesOrder (0<1 (anyComparisonImpliesNontrivial a<1)) (lessTransitive (succIsPositive 0) 1<n))))) where ans : (((fromN x * 1/n) + index (partialSums' 0G (apply dot (powerSeq 1/n (1/n * 1/n)) (baseNExpansion ((a * fromN n) + inverse (fromN x)) (moveInequality x<an) (<WellDefined reflexive (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invRight) identRight)) (orderRespectsAddition an<x+1 (inverse (fromN x))))))) m) * fromN n) ∼ a * fromN n ans = transitive (transitive *DistributesOver+' (+WellDefined (transitive (symmetric *Associative) (transitive (*WellDefined reflexive 1/nPr) (transitive *Commutative identIsIdent))) *Commutative)) (transitive (+WellDefined reflexive (transitive (lemma2 (fromN n) 0G 1/n (1/n * 1/n) _ m) (transitive (partialSums'WellDefined _ _ timesZero _ m) (partialSums'WellDefined' _ _ _ (λ m → applyWellDefined _ _ _ dot (λ {x} {y} {s} → dotWellDefined {x} {y} {s}) (λ m → powerSeqWellDefined reflexive (transitive (symmetric *Associative) (transitive (*WellDefined reflexive 1/nPr) (transitive *Commutative identIsIdent))) m) m) m)))) (transitive (+WellDefined reflexive inter=an) (transitive groupIsAbelian (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invLeft) identRight))))) pow : ℕ → A → A pow zero x = 1R pow (succ n) x = x * pow n x powPos : (m : ℕ) {a : A} → (0R < a) → 0R < pow m a powPos zero 0<a = 0<1 (anyComparisonImpliesNontrivial 0<a) powPos (succ m) 0<a = orderRespectsMultiplication 0<a (powPos m 0<a) approximationIsNear : (1/n : A) → (1/nPr : 1/n * (fromN n) ∼ 1R) → (a : A) → (0<a : 0R < a) → (a<1 : a < 1R) → (m : ℕ) → a < ((index (approximations 1/n 1/nPr (baseNExpansion a 0<a a<1)) m) + pow m 1/n) approximationIsNear 1/n 1/npr a 0<a a<1 zero with computeFloor' 0 (Semiring.sumZeroRight ℕSemiring n) (a * fromN n) (0<aFromN 0<a) (<WellDefined reflexive identIsIdent (ringCanMultiplyByPositive (0<n 0<a) a<1)) ... | x , record { prBelow = inl prBelow ; prAbove = prAbove } = <WellDefined reflexive (transitive (symmetric identLeft) +Associative) (ringCanCancelPositive (0<n prAbove) (<Transitive prAbove (<WellDefined reflexive (transitive (+WellDefined (transitive (*WellDefined reflexive (symmetric 1/npr)) *Associative) (symmetric identIsIdent)) (symmetric *DistributesOver+')) (<WellDefined reflexive (transitive groupIsAbelian (+WellDefined (transitive (symmetric identIsIdent) *Commutative) reflexive)) (orderRespectsAddition (<WellDefined identRight reflexive (fromNPreservesOrder (0<1 (anyComparisonImpliesNontrivial prAbove)) 1<n)) (fromN x)))))) ... | x , record { prBelow = inr prBelow ; prAbove = prAbove } = <WellDefined reflexive (symmetric (transitive (symmetric +Associative) identLeft)) (ringCanCancelPositive (0<n prAbove) (<WellDefined prBelow (symmetric (transitive *DistributesOver+' (+WellDefined (transitive (symmetric *Associative) (transitive *Commutative (transitive (*WellDefined 1/npr reflexive) identIsIdent))) identIsIdent))) (<WellDefined identLeft groupIsAbelian (orderRespectsAddition (0<n prAbove) (fromN x))))) approximationIsNear 1/n 1/npr a 0<a a<1 (succ m) with computeFloor' 0 (Semiring.sumZeroRight ℕSemiring n) (a * fromN n) (0<aFromN 0<a) (<WellDefined reflexive identIsIdent (ringCanMultiplyByPositive (0<n 0<a) a<1)) ... | x , record { prBelow = inl prBelow ; prAbove = prAbove } = <WellDefined reflexive (+WellDefined (symmetric (partialSums'Translate 0G (fromN x * 1/n) _ m)) reflexive) (ringCanCancelPositive (0<n prAbove) (<WellDefined reflexive (transitive (+WellDefined (transitive (+WellDefined (transitive (transitive (symmetric identIsIdent) (transitive *Commutative (*WellDefined reflexive (symmetric 1/npr))) ) *Associative) *Commutative) (symmetric *DistributesOver+')) (transitive (transitive (transitive (symmetric identIsIdent) (*WellDefined (transitive (symmetric 1/npr) *Commutative) reflexive)) (symmetric *Associative)) *Commutative)) (symmetric *DistributesOver+')) (<WellDefined reflexive (+WellDefined (+WellDefined reflexive (transitive (partialSums'WellDefined' _ _ _ (λ m → applyWellDefined _ _ _ dot (λ {_} {_} {s} → dotWellDefined {_} {_} {s}) (λ m → powerSeqWellDefined reflexive (transitive (transitive (transitive (symmetric identIsIdent) *Commutative) (*WellDefined reflexive (symmetric 1/npr))) *Associative) m) m) m) (symmetric (lemma2 (fromN n) 0G 1/n (1/n * 1/n) _ m)))) reflexive) (<WellDefined reflexive (+WellDefined (+WellDefined reflexive (partialSums'WellDefined _ _ (symmetric timesZero) _ m)) reflexive) (<WellDefined reflexive +Associative u))))) where t : ((a * fromN n) + inverse (fromN x)) < ((index (partialSums' 0R (apply dot (powerSeq 1/n 1/n) (baseNExpansion ((a * fromN n) + inverse (fromN x)) (moveInequality prBelow) _))) m) + pow m 1/n) t = approximationIsNear 1/n 1/npr ((a * fromN n) + inverse (fromN x)) (moveInequality prBelow) (<WellDefined reflexive (transitive (transitive (symmetric +Associative) (+WellDefined reflexive invRight)) identRight) (orderRespectsAddition prAbove (inverse (fromN x)))) m u : (a * fromN n) < (fromN x + ((index (partialSums' 0R (apply dot (powerSeq 1/n 1/n) (baseNExpansion ((a * fromN n) + inverse (fromN x)) (moveInequality prBelow) _))) m) + pow m 1/n)) u = <WellDefined (transitive (transitive (symmetric +Associative) (+WellDefined reflexive invLeft)) identRight) groupIsAbelian (orderRespectsAddition t (fromN x)) ... | x , record { prBelow = inr prBelow ; prAbove = prAbove } = <WellDefined reflexive (+WellDefined (symmetric (partialSums'Translate 0G (fromN x * 1/n) _ m)) reflexive) (ringCanCancelPositive (0<n prAbove) (<WellDefined reflexive (transitive (+WellDefined (transitive (+WellDefined (transitive (transitive (symmetric identIsIdent) (transitive *Commutative (*WellDefined reflexive (symmetric 1/npr))) ) *Associative) *Commutative) (symmetric *DistributesOver+')) (transitive (transitive (transitive (symmetric identIsIdent) (*WellDefined (transitive (symmetric 1/npr) *Commutative) reflexive)) (symmetric *Associative)) *Commutative)) (symmetric *DistributesOver+')) (<WellDefined reflexive (+WellDefined (+WellDefined reflexive (transitive (partialSums'WellDefined' _ _ _ (λ m → applyWellDefined _ _ _ dot (λ {_} {_} {s} → dotWellDefined {_} {_} {s}) (λ m → powerSeqWellDefined reflexive (transitive (transitive (transitive (symmetric identIsIdent) *Commutative) (*WellDefined reflexive (symmetric 1/npr))) *Associative) m) m) m) (symmetric (lemma2 (fromN n) 0G 1/n (1/n * 1/n) _ m)))) reflexive) (<WellDefined reflexive (+WellDefined (+WellDefined reflexive (partialSums'WellDefined _ _ (symmetric timesZero) _ m)) reflexive) (<WellDefined reflexive +Associative (<WellDefined (transitive identLeft prBelow) groupIsAbelian (orderRespectsAddition (<WellDefined reflexive (transitive (symmetric identLeft) (+WellDefined (symmetric (transitive (partialSums'WellDefined' 0R _ (constSequence 0R) (λ m → transitive (multiplyZeroSequence _ m) (identityOfIndiscernablesLeft _∼_ reflexive (indexAndConst 0G m))) m ) (transitive (partialSumsConst _ _ m) (transitive identLeft timesZero')))) reflexive)) (powPos m {1/n} (reciprocalPositive _ _ (0<n 0<a) (transitive *Commutative 1/npr)))) (fromN x))))))))
{ "alphanum_fraction": 0.7097163064, "avg_line_length": 119.6442307692, "ext": "agda", "hexsha": "02c449f6708c73c37588586b2826bb04e3fb88a0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/Orders/Total/BaseExpansion.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/Orders/Total/BaseExpansion.agda", "max_line_length": 1798, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/Orders/Total/BaseExpansion.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 8457, "size": 24886 }
-- Limits. -- Heavily inspired by https://github.com/UniMath/UniMath/blob/master/UniMath/CategoryTheory/limits/graphs/limits.v -- (except we're using categories instead of graphs to index limits) {-# OPTIONS --safe #-} module Cubical.Categories.Limits.Limits where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma.Base open import Cubical.Categories.Category open import Cubical.Categories.Functor open import Cubical.HITs.PropositionalTruncation.Base module _ {ℓJ ℓJ' ℓC ℓC' : Level} {J : Category ℓJ ℓJ'} {C : Category ℓC ℓC'} where open Category open Functor private ℓ = ℓ-max (ℓ-max (ℓ-max ℓJ ℓJ') ℓC) ℓC' record Cone (D : Functor J C) (c : ob C) : Type (ℓ-max (ℓ-max ℓJ ℓJ') ℓC') where constructor cone field coneOut : (v : ob J) → C [ c , F-ob D v ] coneOutCommutes : {u v : ob J} (e : J [ u , v ]) → coneOut u ⋆⟨ C ⟩ D .F-hom e ≡ coneOut v open Cone cone≡ : {D : Functor J C} {c : ob C} → {c1 c2 : Cone D c} → ((v : ob J) → coneOut c1 v ≡ coneOut c2 v) → c1 ≡ c2 coneOut (cone≡ h i) v = h v i coneOutCommutes (cone≡ {D} {_} {c1} {c2} h i) {u} {v} e = isProp→PathP (λ j → isSetHom C (h u j ⋆⟨ C ⟩ D .F-hom e) (h v j)) (coneOutCommutes c1 e) (coneOutCommutes c2 e) i -- TODO: can we automate this a bit? isSetCone : (D : Functor J C) (c : ob C) → isSet (Cone D c) isSetCone D c = isSetRetract toConeΣ fromConeΣ (λ _ → refl) (isSetΣSndProp (isSetΠ (λ _ → isSetHom C)) (λ _ → isPropImplicitΠ2 (λ _ _ → isPropΠ (λ _ → isSetHom C _ _)))) where ConeΣ = Σ[ f ∈ ((v : ob J) → C [ c , F-ob D v ]) ] ({u v : ob J} (e : J [ u , v ]) → f u ⋆⟨ C ⟩ D .F-hom e ≡ f v) toConeΣ : Cone D c → ConeΣ fst (toConeΣ x) = coneOut x snd (toConeΣ x) = coneOutCommutes x fromConeΣ : ConeΣ → Cone D c coneOut (fromConeΣ x) = fst x coneOutCommutes (fromConeΣ x) = snd x isConeMor : {c1 c2 : ob C} {D : Functor J C} (cc1 : Cone D c1) (cc2 : Cone D c2) → C [ c1 , c2 ] → Type (ℓ-max ℓJ ℓC') isConeMor cc1 cc2 f = (v : ob J) → f ⋆⟨ C ⟩ coneOut cc2 v ≡ coneOut cc1 v isPropIsConeMor : {c1 c2 : ob C} {D : Functor J C} (cc1 : Cone D c1) (cc2 : Cone D c2) (f : C [ c1 , c2 ]) → isProp (isConeMor cc1 cc2 f) isPropIsConeMor cc1 cc2 f = isPropΠ (λ _ → isSetHom C _ _) isLimCone : (D : Functor J C) (c0 : ob C) → Cone D c0 → Type ℓ isLimCone D c0 cc0 = (c : ob C) → (cc : Cone D c) → ∃![ f ∈ C [ c , c0 ] ] isConeMor cc cc0 f isPropIsLimCone : (D : Functor J C) (c0 : ob C) (cc0 : Cone D c0) → isProp (isLimCone D c0 cc0) isPropIsLimCone D c0 cc0 = isPropΠ2 λ _ _ → isProp∃! record LimCone (D : Functor J C) : Type ℓ where constructor climCone field lim : ob C limCone : Cone D lim univProp : isLimCone D lim limCone limOut : (v : ob J) → C [ lim , D .F-ob v ] limOut = coneOut limCone limOutCommutes : {u v : ob J} (e : J [ u , v ]) → limOut u ⋆⟨ C ⟩ D .F-hom e ≡ limOut v limOutCommutes = coneOutCommutes limCone limArrow : (c : ob C) → (cc : Cone D c) → C [ c , lim ] limArrow c cc = univProp c cc .fst .fst limArrowCommutes : (c : ob C) → (cc : Cone D c) (u : ob J) → limArrow c cc ⋆⟨ C ⟩ limOut u ≡ coneOut cc u limArrowCommutes c cc = univProp c cc .fst .snd limArrowUnique : (c : ob C) → (cc : Cone D c) (k : C [ c , lim ]) → isConeMor cc limCone k → limArrow c cc ≡ k limArrowUnique c cc k hk = cong fst (univProp c cc .snd (k , hk)) open LimCone limOfArrows : (D₁ D₂ : Functor J C) (CC₁ : LimCone D₁) (CC₂ : LimCone D₂) (f : (u : ob J) → C [ D₁ .F-ob u , D₂ .F-ob u ]) (fNat : {u v : ob J} (e : J [ u , v ]) → f u ⋆⟨ C ⟩ D₂ .F-hom e ≡ D₁ .F-hom e ⋆⟨ C ⟩ f v) → C [ CC₁ .lim , CC₂ .lim ] limOfArrows D₁ D₂ CC₁ CC₂ f fNat = limArrow CC₂ (CC₁ .lim) coneD₂Lim₁ where coneD₂Lim₁ : Cone D₂ (CC₁ .lim) coneOut coneD₂Lim₁ v = limOut CC₁ v ⋆⟨ C ⟩ f v coneOutCommutes coneD₂Lim₁ {u = u} {v = v} e = limOut CC₁ u ⋆⟨ C ⟩ f u ⋆⟨ C ⟩ D₂ .F-hom e ≡⟨ ⋆Assoc C _ _ _ ⟩ limOut CC₁ u ⋆⟨ C ⟩ (f u ⋆⟨ C ⟩ D₂ .F-hom e) ≡⟨ cong (λ x → seq' C (limOut CC₁ u) x) (fNat e) ⟩ limOut CC₁ u ⋆⟨ C ⟩ (D₁ .F-hom e ⋆⟨ C ⟩ f v) ≡⟨ sym (⋆Assoc C _ _ _) ⟩ limOut CC₁ u ⋆⟨ C ⟩ D₁ .F-hom e ⋆⟨ C ⟩ f v ≡⟨ cong (λ x → x ⋆⟨ C ⟩ f v) (limOutCommutes CC₁ e) ⟩ limOut CC₁ v ⋆⟨ C ⟩ f v ∎ -- A category is complete if it has all limits Limits : {ℓJ ℓJ' ℓC ℓC' : Level} → Category ℓC ℓC' → Type _ Limits {ℓJ} {ℓJ'} C = (J : Category ℓJ ℓJ') → (D : Functor J C) → LimCone D hasLimits : {ℓJ ℓJ' ℓC ℓC' : Level} → Category ℓC ℓC' → Type _ hasLimits {ℓJ} {ℓJ'} C = (J : Category ℓJ ℓJ') → (D : Functor J C) → ∥ LimCone D ∥ -- Limits of a specific shape J in a category C LimitsOfShape : {ℓJ ℓJ' ℓC ℓC' : Level} → Category ℓJ ℓJ' → Category ℓC ℓC' → Type _ LimitsOfShape J C = (D : Functor J C) → LimCone D -- Preservation of limits module _ {ℓJ ℓJ' ℓC1 ℓC1' ℓC2 ℓC2' : Level} {C1 : Category ℓC1 ℓC1'} {C2 : Category ℓC2 ℓC2'} (F : Functor C1 C2) where open Category open Functor open Cone private ℓ = ℓ-max (ℓ-max (ℓ-max (ℓ-max (ℓ-max ℓJ ℓJ') ℓC1) ℓC1') ℓC2) ℓC2' mapCone : {J : Category ℓJ ℓJ'} (D : Functor J C1) {x : ob C1} (ccx : Cone D x) → Cone (funcComp F D) (F .F-ob x) coneOut (mapCone D ccx) v = F .F-hom (coneOut ccx v) coneOutCommutes (mapCone D ccx) e = sym (F-seq F (coneOut ccx _) (D ⟪ e ⟫)) ∙ cong (F .F-hom) (coneOutCommutes ccx e) preservesLimit : {J : Category ℓJ ℓJ'} (D : Functor J C1) → (L : ob C1) → Cone D L → Type ℓ preservesLimit D L ccL = isLimCone D L ccL → isLimCone (funcComp F D) (F .F-ob L) (mapCone D ccL) -- TODO: prove that right adjoints preserve limits
{ "alphanum_fraction": 0.5507317875, "avg_line_length": 38.9807692308, "ext": "agda", "hexsha": "8ba2e7db0befe6a6a7caa1cc3811a409013f178e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Categories/Limits/Limits.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Categories/Limits/Limits.agda", "max_line_length": 115, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Categories/Limits/Limits.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2553, "size": 6081 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Object.Zero -- Cokernels of morphisms. -- https://ncatlab.org/nlab/show/cokernel module Categories.Object.Cokernel {o ℓ e} {𝒞 : Category o ℓ e} (𝟎 : Zero 𝒞) where open import Level open import Categories.Morphism 𝒞 open import Categories.Morphism.Reasoning 𝒞 hiding (glue) open Category 𝒞 open Zero 𝟎 open HomReasoning private variable A B X : Obj f h i j k : A ⇒ B record IsCokernel {A B K} (f : A ⇒ B) (k : B ⇒ K) : Set (o ⊔ ℓ ⊔ e) where field commute : k ∘ f ≈ zero⇒ universal : ∀ {X} {h : B ⇒ X} → h ∘ f ≈ zero⇒ → K ⇒ X factors : ∀ {eq : h ∘ f ≈ zero⇒} → h ≈ universal eq ∘ k unique : ∀ {eq : h ∘ f ≈ zero⇒} → h ≈ i ∘ k → i ≈ universal eq universal-resp-≈ : ∀ {eq : h ∘ f ≈ zero⇒} {eq′ : i ∘ f ≈ zero⇒} → h ≈ i → universal eq ≈ universal eq′ universal-resp-≈ h≈i = unique (⟺ h≈i ○ factors) universal-∘ : h ∘ k ∘ f ≈ zero⇒ universal-∘ {h = h} = begin h ∘ k ∘ f ≈⟨ refl⟩∘⟨ commute ⟩ h ∘ zero⇒ ≈⟨ zero-∘ˡ h ⟩ zero⇒ ∎ record Cokernel {A B} (f : A ⇒ B) : Set (o ⊔ ℓ ⊔ e) where field {cokernel} : Obj cokernel⇒ : B ⇒ cokernel isCokernel : IsCokernel f cokernel⇒ open IsCokernel isCokernel public IsCokernel⇒Cokernel : IsCokernel f k → Cokernel f IsCokernel⇒Cokernel {k = k} isCokernel = record { cokernel⇒ = k ; isCokernel = isCokernel }
{ "alphanum_fraction": 0.5914505957, "avg_line_length": 25.4821428571, "ext": "agda", "hexsha": "267f256b72327f95cbc72cc279095d627b19a65c", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Object/Cokernel.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Object/Cokernel.agda", "max_line_length": 81, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Object/Cokernel.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 617, "size": 1427 }
{-# OPTIONS --type-in-type #-} module DescTT where --******************************************** -- Prelude --******************************************** -- Some preliminary stuffs, to avoid relying on the stdlib --**************** -- Sigma and friends --**************** data Sigma (A : Set) (B : A -> Set) : Set where _,_ : (x : A) (y : B x) -> Sigma A B _*_ : (A : Set)(B : Set) -> Set A * B = Sigma A \_ -> B fst : {A : Set}{B : A -> Set} -> Sigma A B -> A fst (a , _) = a snd : {A : Set}{B : A -> Set} (p : Sigma A B) -> B (fst p) snd (a , b) = b data Zero : Set where data Unit : Set where Void : Unit --**************** -- Sum and friends --**************** data _+_ (A : Set)(B : Set) : Set where l : A -> A + B r : B -> A + B --**************** -- Equality --**************** data _==_ {A : Set}(x : A) : A -> Set where refl : x == x cong : {A B : Set}(f : A -> B){x y : A} -> x == y -> f x == f y cong f refl = refl cong2 : {A B C : Set}(f : A -> B -> C){x y : A}{z t : B} -> x == y -> z == t -> f x z == f y t cong2 f refl refl = refl postulate reflFun : {A : Set}{B : A -> Set}(f : (a : A) -> B a)(g : (a : A) -> B a)-> ((a : A) -> f a == g a) -> f == g --******************************************** -- Desc code --******************************************** data Desc : Set where id : Desc const : Set -> Desc prod : Desc -> Desc -> Desc sigma : (S : Set) -> (S -> Desc) -> Desc pi : (S : Set) -> (S -> Desc) -> Desc --******************************************** -- Desc interpretation --******************************************** [|_|]_ : Desc -> Set -> Set [| id |] Z = Z [| const X |] Z = X [| prod D D' |] Z = [| D |] Z * [| D' |] Z [| sigma S T |] Z = Sigma S (\s -> [| T s |] Z) [| pi S T |] Z = (s : S) -> [| T s |] Z --******************************************** -- Fixpoint construction --******************************************** data Mu (D : Desc) : Set where con : [| D |] (Mu D) -> Mu D --******************************************** -- Predicate: All --******************************************** All : (D : Desc)(X : Set)(P : X -> Set) -> [| D |] X -> Set All id X P x = P x All (const Z) X P x = Unit All (prod D D') X P (d , d') = (All D X P d) * (All D' X P d') All (sigma S T) X P (a , b) = All (T a) X P b All (pi S T) X P f = (s : S) -> All (T s) X P (f s) all : (D : Desc)(X : Set)(P : X -> Set)(R : (x : X) -> P x)(x : [| D |] X) -> All D X P x all id X P R x = R x all (const Z) X P R z = Void all (prod D D') X P R (d , d') = all D X P R d , all D' X P R d' all (sigma S T) X P R (a , b) = all (T a) X P R b all (pi S T) X P R f = \ s -> all (T s) X P R (f s) --******************************************** -- Map --******************************************** map : (D : Desc)(X Y : Set)(f : X -> Y)(v : [| D |] X) -> [| D |] Y map id X Y sig x = sig x map (const Z) X Y sig z = z map (prod D D') X Y sig (d , d') = map D X Y sig d , map D' X Y sig d' map (sigma S T) X Y sig (a , b) = (a , map (T a) X Y sig b) map (pi S T) X Y sig f = \x -> map (T x) X Y sig (f x) proof-map-id : (D : Desc)(X : Set)(v : [| D |] X) -> map D X X (\x -> x) v == v proof-map-id id X v = refl proof-map-id (const Z) X v = refl proof-map-id (prod D D') X (v , v') = cong2 (\x y -> (x , y)) (proof-map-id D X v) (proof-map-id D' X v') proof-map-id (sigma S T) X (a , b) = cong (\x -> (a , x)) (proof-map-id (T a) X b) proof-map-id (pi S T) X f = reflFun (\a -> map (T a) X X (\x -> x) (f a)) f (\a -> proof-map-id (T a) X (f a)) proof-map-compos : (D : Desc)(X Y Z : Set) (f : X -> Y)(g : Y -> Z) (v : [| D |] X) -> map D X Z (\x -> g (f x)) v == map D Y Z g (map D X Y f v) proof-map-compos id X Y Z f g v = refl proof-map-compos (const K) X Y Z f g v = refl proof-map-compos (prod D D') X Y Z f g (v , v') = cong2 (\x y -> (x , y)) (proof-map-compos D X Y Z f g v) (proof-map-compos D' X Y Z f g v') proof-map-compos (sigma S T) X Y Z f g (a , b) = cong (\x -> (a , x)) (proof-map-compos (T a) X Y Z f g b) proof-map-compos (pi S T) X Y Z f g fc = reflFun (\a -> map (T a) X Z (\x -> g (f x)) (fc a)) (\a -> map (T a) Y Z g (map (T a) X Y f (fc a))) (\a -> proof-map-compos (T a) X Y Z f g (fc a)) --******************************************** -- Elimination principle: induction --******************************************** {- induction : (D : Desc) (P : Mu D -> Set) -> ( (x : [| D |] (Mu D)) -> All D (Mu D) P x -> P (con x)) -> (v : Mu D) -> P v induction D P ms (con xs) = ms xs (all D (Mu D) P (\x -> induction D P ms x) xs) -} module Elim (D : Desc) (P : Mu D -> Set) (ms : (x : [| D |] (Mu D)) -> All D (Mu D) P x -> P (con x)) where mutual induction : (x : Mu D) -> P x induction (con xs) = ms xs (hyps D xs) hyps : (D' : Desc) (xs : [| D' |] (Mu D)) -> All D' (Mu D) P xs hyps id x = induction x hyps (const Z) z = Void hyps (prod D D') (d , d') = hyps D d , hyps D' d' hyps (sigma S T) (a , b) = hyps (T a) b hyps (pi S T) f = \s -> hyps (T s) (f s) induction : (D : Desc) (P : Mu D -> Set) -> ( (x : [| D |] (Mu D)) -> All D (Mu D) P x -> P (con x)) -> (v : Mu D) -> P v induction D P ms x = Elim.induction D P ms x --******************************************** -- Examples --******************************************** --**************** -- Nat --**************** data NatConst : Set where Ze : NatConst Suc : NatConst natCases : NatConst -> Desc natCases Ze = const Unit natCases Suc = id NatD : Desc NatD = sigma NatConst natCases Nat : Set Nat = Mu NatD ze : Nat ze = con (Ze , Void) suc : Nat -> Nat suc n = con (Suc , n) --**************** -- List --**************** data ListConst : Set where Nil : ListConst Cons : ListConst listCases : Set -> ListConst -> Desc listCases X Nil = const Unit listCases X Cons = sigma X (\_ -> id) ListD : Set -> Desc ListD X = sigma ListConst (listCases X) List : Set -> Set List X = Mu (ListD X) nil : {X : Set} -> List X nil = con ( Nil , Void ) cons : {X : Set} -> X -> List X -> List X cons x t = con ( Cons , ( x , t )) --**************** -- Tree --**************** data TreeConst : Set where Leaf : TreeConst Node : TreeConst treeCases : Set -> TreeConst -> Desc treeCases X Leaf = const Unit treeCases X Node = sigma X (\_ -> prod id id) TreeD : Set -> Desc TreeD X = sigma TreeConst (treeCases X) Tree : Set -> Set Tree X = Mu (TreeD X) leaf : {X : Set} -> Tree X leaf = con (Leaf , Void) node : {X : Set} -> X -> Tree X -> Tree X -> Tree X node x le ri = con (Node , (x , (le , ri))) --******************************************** -- Finite sets --******************************************** EnumU : Set EnumU = Nat nilE : EnumU nilE = ze consE : EnumU -> EnumU consE e = suc e {- data EnumU : Set where nilE : EnumU consE : EnumU -> EnumU -} data EnumT : (e : EnumU) -> Set where EZe : {e : EnumU} -> EnumT (consE e) ESu : {e : EnumU} -> EnumT e -> EnumT (consE e) casesSpi : (xs : [| NatD |] Nat) -> All NatD Nat (\e -> (P' : EnumT e -> Set) -> Set) xs -> (P' : EnumT (con xs) -> Set) -> Set casesSpi (Ze , Void) hs P' = Unit casesSpi (Suc , n) hs P' = P' EZe * hs (\e -> P' (ESu e)) spi : (e : EnumU)(P : EnumT e -> Set) -> Set spi e P = induction NatD (\e -> (P : EnumT e -> Set) -> Set) casesSpi e P {- spi : (e : EnumU)(P : EnumT e -> Set) -> Set spi nilE P = Unit spi (consE e) P = P EZe * spi e (\e -> P (ESu e)) -} casesSwitch : (xs : [| NatD |] Nat) -> All NatD Nat (\e -> (P' : EnumT e -> Set)(b' : spi e P')(x' : EnumT e) -> P' x') xs -> (P' : EnumT (con xs) -> Set)(b' : spi (con xs) P')(x' : EnumT (con xs)) -> P' x' casesSwitch (Ze , Void) hs P' b' () casesSwitch (Suc , n) hs P' b' EZe = fst b' casesSwitch (Suc , n) hs P' b' (ESu e') = hs (\e -> P' (ESu e)) (snd b') e' switch : (e : EnumU)(P : EnumT e -> Set)(b : spi e P)(x : EnumT e) -> P x switch e P b x = induction NatD (\e -> (P : EnumT e -> Set)(b : spi e P)(x : EnumT e) -> P x) casesSwitch e P b x {- switch : (e : EnumU)(P : EnumT e -> Set)(b : spi e P)(x : EnumT e) -> P x switch nilE P b () switch (consE e) P b EZe = fst b switch (consE e) P b (ESu n) = switch e (\e -> P (ESu e)) (snd b) n -} --******************************************** -- Tagged description --******************************************** TagDesc : Set TagDesc = Sigma EnumU (\e -> spi e (\_ -> Desc)) toDesc : TagDesc -> Desc toDesc (B , F) = sigma (EnumT B) (\e -> switch B (\_ -> Desc) F e) --******************************************** -- Catamorphism --******************************************** cata : (D : Desc) (T : Set) -> ([| D |] T -> T) -> (Mu D) -> T cata D T phi x = induction D (\_ -> T) (\x ms -> phi (replace D T x ms)) x where replace : (D' : Desc)(T : Set)(xs : [| D' |] (Mu D))(ms : All D' (Mu D) (\_ -> T) xs) -> [| D' |] T replace id T x y = y replace (const Z) T z z' = z replace (prod D D') T (x , x') (y , y') = replace D T x y , replace D' T x' y' replace (sigma A B) T (a , b) t = a , replace (B a) T b t replace (pi A B) T f t = \s -> replace (B s) T (f s) (t s) --******************************************** -- Free monad construction --******************************************** _**_ : TagDesc -> (X : Set) -> TagDesc (e , D) ** X = consE e , (const X , D) --******************************************** -- Substitution --******************************************** apply : (D : TagDesc)(X Y : Set) -> (X -> Mu (toDesc (D ** Y))) -> [| toDesc (D ** X) |] (Mu (toDesc (D ** Y))) -> Mu (toDesc (D ** Y)) apply (E , B) X Y sig (EZe , x) = sig x apply (E , B) X Y sig (ESu n , t) = con (ESu n , t) subst : (D : TagDesc)(X Y : Set) -> Mu (toDesc (D ** X)) -> (X -> Mu (toDesc (D ** Y))) -> Mu (toDesc (D ** Y)) subst D X Y x sig = cata (toDesc (D ** X)) (Mu (toDesc (D ** Y))) (apply D X Y sig) x
{ "alphanum_fraction": 0.398075824, "avg_line_length": 28.9201101928, "ext": "agda", "hexsha": "7da4bb5084c7885efd6cc6cdfebb5fdca4fc2a86", "lang": "Agda", "max_forks_count": 12, "max_forks_repo_forks_event_max_datetime": "2022-02-11T01:57:40.000Z", "max_forks_repo_forks_event_min_datetime": "2016-08-14T21:36:35.000Z", "max_forks_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mietek/epigram", "max_forks_repo_path": "models/DescTT.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mietek/epigram", "max_issues_repo_path": "models/DescTT.agda", "max_line_length": 113, "max_stars_count": 48, "max_stars_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mietek/epigram", "max_stars_repo_path": "models/DescTT.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-11T01:55:28.000Z", "max_stars_repo_stars_event_min_datetime": "2016-01-09T17:36:19.000Z", "num_tokens": 3553, "size": 10498 }
------------------------------------------------------------------------------ -- Testing the translation of definitions ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module Definition12 where infixl 9 _·_ infix 7 _≡_ postulate D : Set _≡_ : D → D → Set true if : D _·_ : D → D → D postulate if-true : ∀ d₁ {d₂} → if · true · d₁ · d₂ ≡ d₁ {-# ATP axiom if-true #-} if_then_else_ : D → D → D → D if b then d₁ else d₂ = if · b · d₁ · d₂ {-# ATP definition if_then_else_ #-} -- We test the translation of a definition with holes. postulate foo : ∀ d₁ d₂ → (if true then d₁ else d₂) ≡ d₁ {-# ATP prove foo #-}
{ "alphanum_fraction": 0.4577883472, "avg_line_length": 27.1290322581, "ext": "agda", "hexsha": "6be72c470175742dbd0bf2934e007ab422baa7f2", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Succeed/fol-theorems/Definition12.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Succeed/fol-theorems/Definition12.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Succeed/fol-theorems/Definition12.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 221, "size": 841 }
{-# OPTIONS --cubical --safe #-} module Cubical.HITs.ListedFiniteSet.Base where open import Cubical.Core.Everything open import Cubical.Foundations.Logic open import Cubical.Foundations.Everything private variable A : Type₀ infixr 20 _∷_ infix 30 _∈_ data LFSet (A : Type₀) : Type₀ where [] : LFSet A _∷_ : (x : A) → (xs : LFSet A) → LFSet A dup : ∀ x xs → x ∷ x ∷ xs ≡ x ∷ xs comm : ∀ x y xs → x ∷ y ∷ xs ≡ y ∷ x ∷ xs trunc : isSet (LFSet A) -- Membership. -- -- Doing some proofs with equational reasoning adds an extra "_∙ refl" -- at the end. -- We might want to avoid it, or come up with a more clever equational reasoning. _∈_ : A → LFSet A → hProp _ z ∈ [] = ⊥ z ∈ (y ∷ xs) = (z ≡ₚ y) ⊔ (z ∈ xs) z ∈ dup x xs i = proof i where -- proof : z ∈ (x ∷ x ∷ xs) ≡ z ∈ (x ∷ xs) proof = z ≡ₚ x ⊔ (z ≡ₚ x ⊔ z ∈ xs) ≡⟨ ⊔-assoc (z ≡ₚ x) (z ≡ₚ x) (z ∈ xs) ⟩ (z ≡ₚ x ⊔ z ≡ₚ x) ⊔ z ∈ xs ≡⟨ cong (_⊔ (z ∈ xs)) (⊔-idem (z ≡ₚ x)) ⟩ z ≡ₚ x ⊔ z ∈ xs ∎ z ∈ comm x y xs i = proof i where -- proof : z ∈ (x ∷ y ∷ xs) ≡ z ∈ (y ∷ x ∷ xs) proof = z ≡ₚ x ⊔ (z ≡ₚ y ⊔ z ∈ xs) ≡⟨ ⊔-assoc (z ≡ₚ x) (z ≡ₚ y) (z ∈ xs) ⟩ (z ≡ₚ x ⊔ z ≡ₚ y) ⊔ z ∈ xs ≡⟨ cong (_⊔ (z ∈ xs)) (⊔-comm (z ≡ₚ x) (z ≡ₚ y)) ⟩ (z ≡ₚ y ⊔ z ≡ₚ x) ⊔ z ∈ xs ≡⟨ sym (⊔-assoc (z ≡ₚ y) (z ≡ₚ x) (z ∈ xs)) ⟩ z ≡ₚ y ⊔ (z ≡ₚ x ⊔ z ∈ xs) ∎ x ∈ trunc xs ys p q i j = isSetHProp (x ∈ xs) (x ∈ ys) (cong (x ∈_) p) (cong (x ∈_) q) i j module LFSetElim {ℓ} (B : LFSet A → Type ℓ) ([]* : B []) (_∷*_ : (x : A) {xs : LFSet A} → B xs → B (x ∷ xs)) (comm* : (x y : A) {xs : LFSet A} (b : B xs) → PathP (λ i → B (comm x y xs i)) (x ∷* (y ∷* b)) (y ∷* (x ∷* b))) (dup* : (x : A) {xs : LFSet A} (b : B xs) → PathP (λ i → B (dup x xs i)) (x ∷* (x ∷* b)) (x ∷* b)) (trunc* : (xs : LFSet A) → isSet (B xs)) where f : ∀ x → B x f [] = []* f (x ∷ xs) = x ∷* f xs f (dup x xs i) = dup* x (f xs) i f (comm x y xs i) = comm* x y (f xs) i f (trunc x y p q i j) = isOfHLevel→isOfHLevelDep 2 trunc* (f x) (f y) (λ i → f (p i)) (λ i → f (q i)) (trunc x y p q) i j module LFSetRec {ℓ} {B : Type ℓ} ([]* : B) (_∷*_ : (x : A) → B → B) (comm* : (x y : A) (xs : B) → (x ∷* (y ∷* xs)) ≡ (y ∷* (x ∷* xs))) (dup* : (x : A) (b : B) → (x ∷* (x ∷* b)) ≡ (x ∷* b)) (trunc* : isSet B) where f : LFSet A → B f = LFSetElim.f _ []* (λ x xs → x ∷* xs) (λ x y b → comm* x y b) (λ x b → dup* x b) λ _ → trunc* module LFPropElim {ℓ} (B : LFSet A → Type ℓ) ([]* : B []) (_∷*_ : (x : A) {xs : LFSet A} → B xs → B (x ∷ xs)) (trunc* : (xs : LFSet A) → isProp (B xs)) where f : ∀ x → B x f = LFSetElim.f _ []* _∷*_ (λ _ _ _ → isOfHLevel→isOfHLevelDep 1 trunc* _ _ _) (λ _ _ → isOfHLevel→isOfHLevelDep 1 trunc* _ _ _) λ xs → isProp→isSet (trunc* xs)
{ "alphanum_fraction": 0.4445585216, "avg_line_length": 31.4193548387, "ext": "agda", "hexsha": "ab100b8f472117f2847a72f4f65e7e2dfcdcbdb7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "limemloh/cubical", "max_forks_repo_path": "Cubical/HITs/ListedFiniteSet/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "limemloh/cubical", "max_issues_repo_path": "Cubical/HITs/ListedFiniteSet/Base.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "limemloh/cubical", "max_stars_repo_path": "Cubical/HITs/ListedFiniteSet/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1423, "size": 2922 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.ImplShared.Util.Dijkstra.RWS open import LibraBFT.ImplShared.Util.Dijkstra.Syntax open import LibraBFT.Prelude open import Optics.All -- This module contains definitions allowing RWS programs to be written using -- Agda's do-notation, as well as convenient short names for operations -- (including lens operations). module LibraBFT.ImplShared.Util.Dijkstra.RWS.Syntax where private variable Ev Wr St : Set A B C : Set -- From this instance declaration, we get _<$>_, pure, and _<*>_ also. instance RWS-Monad : Monad (RWS Ev Wr St) Monad.return RWS-Monad = RWS-return Monad._>>=_ RWS-Monad = RWS-bind -- These instance declarations give us variant conditional operations that we -- can define to play nice with `RWS-weakestPre` instance RWS-MonadIfD : MonadIfD{ℓ₃ = ℓ0} (RWS Ev Wr St) MonadIfD.monad RWS-MonadIfD = RWS-Monad MonadIfD.ifD‖ RWS-MonadIfD = RWS-if RWS-MonadMaybeD : MonadMaybeD (RWS Ev Wr St) MonadMaybeD.monad RWS-MonadMaybeD = RWS-Monad MonadMaybeD.maybeSD RWS-MonadMaybeD = RWS-maybe RWS-MonadEitherD : MonadEitherD (RWS Ev Wr St) MonadEitherD.monad RWS-MonadEitherD = RWS-Monad MonadEitherD.eitherSD RWS-MonadEitherD = RWS-either gets : (St → A) → RWS Ev Wr St A gets = RWS-gets get : RWS Ev Wr St St get = gets id put : St → RWS Ev Wr St Unit put = RWS-put modify : (St → St) → RWS Ev Wr St Unit modify f = do st ← get put (f st) ask : RWS Ev Wr St Ev ask = RWS-ask tell : List Wr → RWS Ev Wr St Unit tell = RWS-tell tell1 : Wr → RWS Ev Wr St Unit tell1 x = tell (x ∷ []) act = tell1 void : RWS Ev Wr St A → RWS Ev Wr St Unit void m = do _ ← m pure unit -- -- Composition with error monad ok : A → RWS Ev Wr St (B ⊎ A) ok = pure ∘ Right bail : B → RWS Ev Wr St (B ⊎ A) bail = pure ∘ Left infixl 4 _∙?∙_ _∙?∙_ : RWS Ev Wr St (Either C A) → (A → RWS Ev Wr St (Either C B)) → RWS Ev Wr St (Either C B) _∙?∙_ = RWS-ebind maybeSM : RWS Ev Wr St (Maybe A) → RWS Ev Wr St B → (A → RWS Ev Wr St B) → RWS Ev Wr St B maybeSM mma mb f = do x ← mma caseMD x of λ where nothing → mb (just j) → f j maybeSMP-RWS : RWS Ev Wr St (Maybe A) → B → (A → RWS Ev Wr St B) → RWS Ev Wr St B maybeSMP-RWS ma b f = do x ← ma caseMD x of λ where nothing → pure b (just j) → f j infixl 4 _∙^∙_ _∙^∙_ : RWS Ev Wr St (Either B A) → (B → B) → RWS Ev Wr St (Either B A) m ∙^∙ f = do x ← m either (bail ∘ f) ok x RWS-weakestPre-∙^∙Post : (ev : Ev) (e : C → C) → RWS-Post Wr St (C ⊎ A) → RWS-Post Wr St (C ⊎ A) RWS-weakestPre-∙^∙Post ev e Post = RWS-weakestPre-bindPost ev (either (bail ∘ e) ok) Post -- Lens functionality -- -- If we make RWS work for different level State types, we will break use and -- modify because Lens does not support different levels, we define use and -- modify' here for RoundManager. We are ok as long as we can keep -- RoundManager in Set. If we ever need to make RoundManager at some higher -- Level, we will have to consider making Lens level-agnostic. Preliminary -- exploration by @cwjnkins showed this to be somewhat painful in particular -- around composition, so we are not pursuing it for now. use : Lens St A → RWS Ev Wr St A use f = gets (_^∙ f) modifyL : Lens St A → (A → A) → RWS Ev Wr St Unit modifyL l f = modify (over l f) syntax modifyL l f = l %= f setL : Lens St A → A → RWS Ev Wr St Unit setL l x = l %= const x syntax setL l x = l ∙= x setL? : Lens St (Maybe A) → A → RWS Ev Wr St Unit setL? l x = l ∙= just x syntax setL? l x = l ?= x
{ "alphanum_fraction": 0.6679968077, "avg_line_length": 28.2631578947, "ext": "agda", "hexsha": "c579f2a0c67a659156e911e932117081396ec709", "lang": "Agda", "max_forks_count": 6, "max_forks_repo_forks_event_max_datetime": "2022-02-18T01:04:32.000Z", "max_forks_repo_forks_event_min_datetime": "2020-12-16T19:43:52.000Z", "max_forks_repo_head_hexsha": "49f8b1b70823be805d84ffc3157c3b880edb1e92", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "oracle/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/ImplShared/Util/Dijkstra/RWS/Syntax.agda", "max_issues_count": 72, "max_issues_repo_head_hexsha": "49f8b1b70823be805d84ffc3157c3b880edb1e92", "max_issues_repo_issues_event_max_datetime": "2022-03-25T05:36:11.000Z", "max_issues_repo_issues_event_min_datetime": "2021-02-04T05:04:33.000Z", "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "oracle/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/ImplShared/Util/Dijkstra/RWS/Syntax.agda", "max_line_length": 111, "max_stars_count": 4, "max_stars_repo_head_hexsha": "49f8b1b70823be805d84ffc3157c3b880edb1e92", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "oracle/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/ImplShared/Util/Dijkstra/RWS/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-18T19:24:05.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-16T19:43:41.000Z", "num_tokens": 1348, "size": 3759 }
{-# OPTIONS --without-K #-} module combination where open import Type open import Data.Nat.NP open import Data.Nat.DivMod open import Data.Fin using (Fin; Fin′; zero; suc) renaming (toℕ to Fin▹ℕ) open import Data.Zero open import Data.One open import Data.Two open import Data.Sum open import Data.Product open import Data.Vec open import Function.NP open import Function.Related.TypeIsomorphisms.NP import Function.Inverse.NP as Inv open Inv using (_↔_; sym; inverses; module Inverse) renaming (_$₁_ to to; _$₂_ to from; id to idI; _∘_ to _∘I_) open import Relation.Binary.Product.Pointwise open import Relation.Binary.Sum import Relation.Binary.PropositionalEquality as ≡ open import factorial _/_ : ℕ → ℕ → ℕ x / y = _div_ x y {{!!}} module v0 where C : ℕ → ℕ → ℕ C n zero = 1 C zero (suc k) = 0 C (suc n) (suc k) = C n k + C n (suc k) D : ℕ → ℕ → ★ D n zero = 𝟙 D zero (suc k) = 𝟘 D (suc n) (suc k) = D n k ⊎ D n (suc k) FinC≅D : ∀ n k → Fin (C n k) ↔ D n k FinC≅D n zero = Fin1↔𝟙 FinC≅D zero (suc k) = Fin0↔𝟘 FinC≅D (suc n) (suc k) = FinC≅D n k ⊎-cong FinC≅D n (suc k) ∘I sym (Fin-⊎-+ (C n k) (C n (suc k))) module v! where C : ℕ → ℕ → ℕ C n k = n ! / (k ! * (n ∸ k)!) module v1 where C : ℕ → ℕ → ℕ C n 0 = 1 C n (suc k) = (C n k * (n ∸ k)) / suc k module v2 where C : ℕ → ℕ → ℕ C n zero = 1 C zero (suc k) = 0 C (suc n) (suc k) = (C n k * suc n) / suc k {- Σ_{0≤k<n} (C n k) ≡ 2ⁿ -} Σ𝟙F↔F : ∀ (F : 𝟙 → ★) → Σ 𝟙 F ↔ F _ Σ𝟙F↔F F = inverses proj₂ ,_ (λ _ → ≡.refl) (λ _ → ≡.refl) Bits = Vec 𝟚 Bits1↔𝟚 : Bits 1 ↔ 𝟚 Bits1↔𝟚 = {!!} open v0 foo : ∀ n → Σ (Fin (suc n)) (D (suc n) ∘ Fin▹ℕ) ↔ Bits (suc n) foo zero = ((sym Bits1↔𝟚 ∘I {!!}) ∘I Σ𝟙F↔F _) ∘I first-iso Fin1↔𝟙 foo (suc n) = {!!}
{ "alphanum_fraction": 0.5603732162, "avg_line_length": 23.6623376623, "ext": "agda", "hexsha": "dac01db1c808cab1a18f5c25bcc647b8f577b39f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "crypto-agda/explore", "max_forks_repo_path": "experimental-examples/combination.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "crypto-agda/explore", "max_issues_repo_path": "experimental-examples/combination.agda", "max_line_length": 111, "max_stars_count": 2, "max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "crypto-agda/explore", "max_stars_repo_path": "experimental-examples/combination.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z", "num_tokens": 827, "size": 1822 }
module eq-reasoning {A : Set} where open import eq infix 1 begin_ infixr 2 _≡⟨⟩_ _≡⟨_⟩_ infix 3 _∎ begin_ : ∀ {x y : A} → x ≡ y ----- → x ≡ y begin x≡y = x≡y _≡⟨⟩_ : ∀ (x : A) {y : A} → x ≡ y ----- → x ≡ y x ≡⟨⟩ x≡y = x≡y _≡⟨_⟩_ : ∀ (x : A) {y z : A} → x ≡ y → y ≡ z ----- → x ≡ z x ≡⟨ x≡y ⟩ y≡z = trans x≡y y≡z _∎ : ∀ (x : A) ----- → x ≡ x x ∎ = refl
{ "alphanum_fraction": 0.32, "avg_line_length": 14.0625, "ext": "agda", "hexsha": "127768b0636bcc437c4e61629c478ea663e7d53e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "80d9411b2869614cae488cd4a6272894146c9f3c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JimFixGroupResearch/imper-ial", "max_forks_repo_path": "eq-reasoning.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "80d9411b2869614cae488cd4a6272894146c9f3c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JimFixGroupResearch/imper-ial", "max_issues_repo_path": "eq-reasoning.agda", "max_line_length": 35, "max_stars_count": null, "max_stars_repo_head_hexsha": "80d9411b2869614cae488cd4a6272894146c9f3c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JimFixGroupResearch/imper-ial", "max_stars_repo_path": "eq-reasoning.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 252, "size": 450 }
{-# OPTIONS --without-K #-} module Util.HoTT.Univalence.Statement where open import Util.HoTT.Equiv open import Util.Prelude Univalence : ∀ α → Set (lsuc α) Univalence α = {A B : Set α} → IsEquiv (≡→≃ {A = A} {B = B})
{ "alphanum_fraction": 0.6515837104, "avg_line_length": 22.1, "ext": "agda", "hexsha": "9c9429b0f4292ead6bc49df6ae32c7a52e0ba6d8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/msc-thesis-code", "max_forks_repo_path": "src/Util/HoTT/Univalence/Statement.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/msc-thesis-code", "max_issues_repo_path": "src/Util/HoTT/Univalence/Statement.agda", "max_line_length": 60, "max_stars_count": 5, "max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/msc-thesis-code", "max_stars_repo_path": "src/Util/HoTT/Univalence/Statement.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z", "num_tokens": 74, "size": 221 }
module Luau.Heap where open import Agda.Builtin.Equality using (_≡_) open import FFI.Data.Maybe using (Maybe; just) open import FFI.Data.Vector using (Vector; length; snoc; empty) open import Luau.Addr using (Addr) open import Luau.Var using (Var) open import Luau.Syntax using (Block; Expr; nil; addr; function⟨_⟩_end) data HeapValue : Set where function_⟨_⟩_end : Var → Var → Block → HeapValue Heap = Vector HeapValue data _≡_⊕_↦_ : Heap → Heap → Addr → HeapValue → Set where defn : ∀ {H val} → ----------------------------------- (snoc H val) ≡ H ⊕ (length H) ↦ val lookup : Heap → Addr → Maybe HeapValue lookup = FFI.Data.Vector.lookup emp : Heap emp = empty data AllocResult (H : Heap) (V : HeapValue) : Set where ok : ∀ a H′ → (H′ ≡ H ⊕ a ↦ V) → AllocResult H V alloc : ∀ H V → AllocResult H V alloc H V = ok (length H) (snoc H V) defn next : Heap → Addr next = length allocated : Heap → HeapValue → Heap allocated = snoc -- next-emp : (length empty ≡ 0) next-emp = FFI.Data.Vector.length-empty -- lookup-next : ∀ V H → (lookup (allocated H V) (next H) ≡ just V) lookup-next = FFI.Data.Vector.lookup-snoc -- lookup-next-emp : ∀ V → (lookup (allocated emp V) 0 ≡ just V) lookup-next-emp = FFI.Data.Vector.lookup-snoc-empty
{ "alphanum_fraction": 0.6518282989, "avg_line_length": 25.6734693878, "ext": "agda", "hexsha": "1a0416e472bdad83a9ded3dca03908b866b48a6c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "FreakingBarbarians/luau", "max_forks_repo_path": "prototyping/Luau/Heap.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "FreakingBarbarians/luau", "max_issues_repo_path": "prototyping/Luau/Heap.agda", "max_line_length": 71, "max_stars_count": 1, "max_stars_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FreakingBarbarians/luau", "max_stars_repo_path": "prototyping/Luau/Heap.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-11T21:30:17.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-11T21:30:17.000Z", "num_tokens": 400, "size": 1258 }
open import Oscar.Prelude open import Oscar.Data.𝟘 module Oscar.Data.ProperlyExtensionNothing where module _ {𝔵} {𝔛 : Ø 𝔵} {𝔬} {𝔒 : 𝔛 → Ø 𝔬} {ℓ} {ℓ̇} {_↦_ : ∀ {x} → 𝔒 x → 𝔒 x → Ø ℓ̇} where record ProperlyExtensionNothing (P : ExtensionṖroperty ℓ 𝔒 _↦_) : Ø 𝔵 ∙̂ 𝔬 ∙̂ ℓ where constructor ∁ field π₀ : ∀ {n} {f : 𝔒 n} → π₀ (π₀ P) f → 𝟘 open ProperlyExtensionNothing public
{ "alphanum_fraction": 0.6004962779, "avg_line_length": 20.15, "ext": "agda", "hexsha": "06079f7a5fde6eb86489bde8b4d0ff0ed72de167", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Data/ProperlyExtensionNothing.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Data/ProperlyExtensionNothing.agda", "max_line_length": 88, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Data/ProperlyExtensionNothing.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 194, "size": 403 }
------------------------------------------------------------------------------ -- Totality properties respect to OrdTree ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.SortList.Properties.Totality.OrdTreeI where open import Common.FOL.Relation.Binary.EqReasoning open import FOTC.Base open import FOTC.Data.Bool open import FOTC.Data.Bool.PropertiesI open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.PropertiesI open import FOTC.Data.Nat.List.Type open import FOTC.Data.Nat.Type open import FOTC.Program.SortList.SortList open import FOTC.Program.SortList.Properties.Totality.BoolI open import FOTC.Program.SortList.Properties.Totality.TreeI ------------------------------------------------------------------------------ -- Subtrees -- If (node t₁ i t₂) is ordered then t₁ is ordered. leftSubTree-OrdTree : ∀ {t₁ i t₂} → Tree t₁ → N i → Tree t₂ → OrdTree (node t₁ i t₂) → OrdTree t₁ leftSubTree-OrdTree {t₁} {i} {t₂} Tt₁ Ni Tt₂ TOnode = ordTree t₁ ≡⟨ &&-list₂-t₁ (ordTree-Bool Tt₁) (&&-Bool (ordTree-Bool Tt₂) (&&-Bool (le-TreeItem-Bool Tt₁ Ni) (le-ItemTree-Bool Ni Tt₂))) (trans (sym (ordTree-node t₁ i t₂)) TOnode) ⟩ true ∎ -- If (node t₁ i t₂) is ordered then t₂ is ordered. rightSubTree-OrdTree : ∀ {t₁ i t₂} → Tree t₁ → N i → Tree t₂ → OrdTree (node t₁ i t₂) → OrdTree t₂ rightSubTree-OrdTree {t₁} {i} {t₂} Tt₁ Ni Tt₂ TOnode = ordTree t₂ ≡⟨ &&-list₂-t₁ (ordTree-Bool Tt₂) (&&-Bool (le-TreeItem-Bool Tt₁ Ni) (le-ItemTree-Bool Ni Tt₂)) (&&-list₂-t₂ (ordTree-Bool Tt₁) (&&-Bool (ordTree-Bool Tt₂) (&&-Bool (le-TreeItem-Bool Tt₁ Ni) (le-ItemTree-Bool Ni Tt₂))) (trans (sym (ordTree-node t₁ i t₂)) TOnode)) ⟩ true ∎ ------------------------------------------------------------------------------ -- Helper functions toTree-OrdTree-helper₁ : ∀ {i₁ i₂ t} → N i₁ → N i₂ → i₁ > i₂ → Tree t → ≤-TreeItem t i₁ → ≤-TreeItem (toTree · i₂ · t) i₁ toTree-OrdTree-helper₁ {i₁} {i₂} .{nil} Ni₁ Ni₂ i₁>i₂ tnil _ = le-TreeItem (toTree · i₂ · nil) i₁ ≡⟨ subst (λ t → le-TreeItem (toTree · i₂ · nil) i₁ ≡ le-TreeItem t i₁) (toTree-nil i₂) refl ⟩ le-TreeItem (tip i₂) i₁ ≡⟨ le-TreeItem-tip i₂ i₁ ⟩ le i₂ i₁ ≡⟨ x<y→x≤y Ni₂ Ni₁ i₁>i₂ ⟩ true ∎ toTree-OrdTree-helper₁ {i₁} {i₂} Ni₁ Ni₂ i₁>i₂ (ttip {j} Nj) t≤i₁ = case prf₁ prf₂ (x>y∨x≤y Nj Ni₂) where prf₁ : j > i₂ → ≤-TreeItem (toTree · i₂ · tip j) i₁ prf₁ j>i₂ = le-TreeItem (toTree · i₂ · tip j) i₁ ≡⟨ subst (λ t → le-TreeItem (toTree · i₂ · tip j) i₁ ≡ le-TreeItem t i₁) (toTree-tip i₂ j) refl ⟩ le-TreeItem (if (le j i₂) then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) i₁ ≡⟨ subst (λ t → le-TreeItem (if (le j i₂) then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) i₁ ≡ le-TreeItem (if t then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) i₁) (x>y→x≰y Nj Ni₂ j>i₂) refl ⟩ le-TreeItem (if false then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) i₁ ≡⟨ subst (λ t → le-TreeItem (if false then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) i₁ ≡ le-TreeItem t i₁) (if-false (node (tip i₂) j (tip j))) refl ⟩ le-TreeItem (node (tip i₂) j (tip j)) i₁ ≡⟨ le-TreeItem-node (tip i₂) j (tip j) i₁ ⟩ le-TreeItem (tip i₂) i₁ && le-TreeItem (tip j) i₁ ≡⟨ subst (λ t → le-TreeItem (tip i₂) i₁ && le-TreeItem (tip j) i₁ ≡ t && le-TreeItem (tip j) i₁) (le-TreeItem-tip i₂ i₁) refl ⟩ le i₂ i₁ && le-TreeItem (tip j) i₁ ≡⟨ subst (λ t → le i₂ i₁ && le-TreeItem (tip j) i₁ ≡ t && le-TreeItem (tip j) i₁) (x<y→x≤y Ni₂ Ni₁ i₁>i₂) refl ⟩ true && le-TreeItem (tip j) i₁ ≡⟨ subst (λ t → true && le-TreeItem (tip j) i₁ ≡ true && t) (le-TreeItem-tip j i₁) refl ⟩ true && le j i₁ ≡⟨ subst (λ t → true && le j i₁ ≡ true && t) -- j ≤ i₁ because by hypothesis we have (tip j) ≤ i₁. (trans (sym (le-TreeItem-tip j i₁)) t≤i₁) refl ⟩ true && true ≡⟨ t&&x≡x true ⟩ true ∎ prf₂ : j ≤ i₂ → ≤-TreeItem (toTree · i₂ · tip j) i₁ prf₂ j≤i₂ = le-TreeItem (toTree · i₂ · tip j) i₁ ≡⟨ subst (λ t → le-TreeItem (toTree · i₂ · tip j) i₁ ≡ le-TreeItem t i₁) (toTree-tip i₂ j) refl ⟩ le-TreeItem (if (le j i₂) then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) i₁ ≡⟨ subst (λ t → le-TreeItem (if (le j i₂) then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) i₁ ≡ le-TreeItem (if t then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) i₁) j≤i₂ refl ⟩ le-TreeItem (if true then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) i₁ ≡⟨ subst (λ t → le-TreeItem (if true then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) i₁ ≡ le-TreeItem t i₁) (if-true (node (tip j) i₂ (tip i₂))) refl ⟩ le-TreeItem (node (tip j) i₂ (tip i₂)) i₁ ≡⟨ le-TreeItem-node (tip j) i₂ (tip i₂) i₁ ⟩ le-TreeItem (tip j) i₁ && le-TreeItem (tip i₂) i₁ ≡⟨ subst (λ t → le-TreeItem (tip j) i₁ && le-TreeItem (tip i₂) i₁ ≡ t && le-TreeItem (tip i₂) i₁) (le-TreeItem-tip j i₁) refl ⟩ le j i₁ && le-TreeItem (tip i₂) i₁ ≡⟨ subst (λ t → le j i₁ && le-TreeItem (tip i₂) i₁ ≡ t && le-TreeItem (tip i₂) i₁) -- j ≤ i₁ because by hypothesis we have (tip j) ≤ i₁. (trans (sym (le-TreeItem-tip j i₁)) t≤i₁) refl ⟩ true && le-TreeItem (tip i₂) i₁ ≡⟨ subst (λ t → true && le-TreeItem (tip i₂) i₁ ≡ true && t) (le-TreeItem-tip i₂ i₁) refl ⟩ true && le i₂ i₁ ≡⟨ subst (λ t → true && le i₂ i₁ ≡ true && t) (x<y→x≤y Ni₂ Ni₁ i₁>i₂) refl ⟩ true && true ≡⟨ t&&x≡x true ⟩ true ∎ toTree-OrdTree-helper₁ {i₁} {i₂} Ni₁ Ni₂ i₁>i₂ (tnode {t₁} {j} {t₂} Tt₁ Nj Tt₂) t≤i₁ = case prf₁ prf₂ (x>y∨x≤y Nj Ni₂) where prf₁ : j > i₂ → ≤-TreeItem (toTree · i₂ · node t₁ j t₂) i₁ prf₁ j>i₂ = le-TreeItem (toTree · i₂ · node t₁ j t₂) i₁ ≡⟨ subst (λ t → le-TreeItem (toTree · i₂ · node t₁ j t₂) i₁ ≡ le-TreeItem t i₁) (toTree-node i₂ t₁ j t₂) refl ⟩ le-TreeItem (if (le j i₂) then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) i₁ ≡⟨ subst (λ t → le-TreeItem (if (le j i₂) then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) i₁ ≡ le-TreeItem (if t then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) i₁) (x>y→x≰y Nj Ni₂ j>i₂) refl ⟩ le-TreeItem (if false then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) i₁ ≡⟨ subst (λ t → le-TreeItem (if false then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) i₁ ≡ le-TreeItem t i₁) (if-false (node (toTree · i₂ · t₁) j t₂)) refl ⟩ le-TreeItem (node (toTree · i₂ · t₁) j t₂) i₁ ≡⟨ le-TreeItem-node (toTree · i₂ · t₁) j t₂ i₁ ⟩ le-TreeItem (toTree · i₂ · t₁) i₁ && le-TreeItem t₂ i₁ ≡⟨ subst (λ t → le-TreeItem (toTree · i₂ · t₁) i₁ && le-TreeItem t₂ i₁ ≡ t && le-TreeItem t₂ i₁) -- Inductive hypothesis. (toTree-OrdTree-helper₁ Ni₁ Ni₂ i₁>i₂ Tt₁ (&&-list₂-t₁ (le-TreeItem-Bool Tt₁ Ni₁) (le-TreeItem-Bool Tt₂ Ni₁) (trans (sym (le-TreeItem-node t₁ j t₂ i₁)) t≤i₁))) refl ⟩ true && le-TreeItem t₂ i₁ ≡⟨ subst (λ t → true && le-TreeItem t₂ i₁ ≡ true && t) -- t₂ ≤ i₁ because by hypothesis we have (node t₁ j t₂) ≤ i₁. (&&-list₂-t₂ (le-TreeItem-Bool Tt₁ Ni₁) (le-TreeItem-Bool Tt₂ Ni₁) (trans (sym (le-TreeItem-node t₁ j t₂ i₁)) t≤i₁)) refl ⟩ true && true ≡⟨ t&&x≡x true ⟩ true ∎ prf₂ : j ≤ i₂ → ≤-TreeItem (toTree · i₂ · node t₁ j t₂) i₁ prf₂ j≤i₂ = le-TreeItem (toTree · i₂ · node t₁ j t₂) i₁ ≡⟨ subst (λ t → le-TreeItem (toTree · i₂ · node t₁ j t₂) i₁ ≡ le-TreeItem t i₁) (toTree-node i₂ t₁ j t₂) refl ⟩ le-TreeItem (if (le j i₂) then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) i₁ ≡⟨ subst (λ t → le-TreeItem (if (le j i₂) then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) i₁ ≡ le-TreeItem (if t then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) i₁) (j≤i₂) refl ⟩ le-TreeItem (if true then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) i₁ ≡⟨ subst (λ t → le-TreeItem (if true then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) i₁ ≡ le-TreeItem t i₁) (if-true (node t₁ j (toTree · i₂ · t₂))) refl ⟩ le-TreeItem (node t₁ j (toTree · i₂ · t₂)) i₁ ≡⟨ le-TreeItem-node t₁ j (toTree · i₂ · t₂) i₁ ⟩ le-TreeItem t₁ i₁ && le-TreeItem (toTree · i₂ · t₂) i₁ ≡⟨ subst (λ t → le-TreeItem t₁ i₁ && le-TreeItem (toTree · i₂ · t₂) i₁ ≡ t && le-TreeItem (toTree · i₂ · t₂) i₁) -- t₁ ≤ i₁ because by hypothesis we have (node t₁ j t₂) ≤ i₁. (&&-list₂-t₁ (le-TreeItem-Bool Tt₁ Ni₁) (le-TreeItem-Bool Tt₂ Ni₁) (trans (sym (le-TreeItem-node t₁ j t₂ i₁)) t≤i₁)) refl ⟩ true && le-TreeItem (toTree · i₂ · t₂) i₁ ≡⟨ subst (λ t → true && le-TreeItem (toTree · i₂ · t₂) i₁ ≡ true && t) -- Inductive hypothesis. (toTree-OrdTree-helper₁ Ni₁ Ni₂ i₁>i₂ Tt₂ (&&-list₂-t₂ (le-TreeItem-Bool Tt₁ Ni₁) (le-TreeItem-Bool Tt₂ Ni₁) (trans (sym (le-TreeItem-node t₁ j t₂ i₁)) t≤i₁))) refl ⟩ true && true ≡⟨ t&&x≡x true ⟩ true ∎ ------------------------------------------------------------------------------ toTree-OrdTree-helper₂ : ∀ {i₁ i₂ t} → N i₁ → N i₂ → i₁ ≤ i₂ → Tree t → ≤-ItemTree i₁ t → ≤-ItemTree i₁ (toTree · i₂ · t) toTree-OrdTree-helper₂ {i₁} {i₂} .{nil} _ _ i₁≤i₂ tnil _ = le-ItemTree i₁ (toTree · i₂ · nil) ≡⟨ subst (λ t → le-ItemTree i₁ (toTree · i₂ · nil) ≡ le-ItemTree i₁ t) (toTree-nil i₂) refl ⟩ le-ItemTree i₁ (tip i₂) ≡⟨ le-ItemTree-tip i₁ i₂ ⟩ le i₁ i₂ ≡⟨ i₁≤i₂ ⟩ true ∎ toTree-OrdTree-helper₂ {i₁} {i₂} Ni₁ Ni₂ i₁≤i₂ (ttip {j} Nj) i₁≤t = case prf₁ prf₂ (x>y∨x≤y Nj Ni₂) where prf₁ : j > i₂ → ≤-ItemTree i₁ (toTree · i₂ · tip j) prf₁ j>i₂ = le-ItemTree i₁ (toTree · i₂ · tip j) ≡⟨ subst (λ t → le-ItemTree i₁ (toTree · i₂ · tip j) ≡ le-ItemTree i₁ t) (toTree-tip i₂ j) refl ⟩ le-ItemTree i₁ (if (le j i₂) then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) ≡⟨ subst (λ t → le-ItemTree i₁ (if (le j i₂) then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) ≡ le-ItemTree i₁ (if t then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j)))) (x>y→x≰y Nj Ni₂ j>i₂) refl ⟩ le-ItemTree i₁ (if false then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) ≡⟨ subst (λ t → le-ItemTree i₁ (if false then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) ≡ le-ItemTree i₁ t) (if-false (node (tip i₂) j (tip j))) refl ⟩ le-ItemTree i₁ (node (tip i₂) j (tip j)) ≡⟨ le-ItemTree-node i₁ (tip i₂) j (tip j) ⟩ le-ItemTree i₁ (tip i₂) && le-ItemTree i₁ (tip j) ≡⟨ subst (λ t → le-ItemTree i₁ (tip i₂) && le-ItemTree i₁ (tip j) ≡ t && le-ItemTree i₁ (tip j)) (le-ItemTree-tip i₁ i₂) refl ⟩ le i₁ i₂ && le-ItemTree i₁ (tip j) ≡⟨ subst (λ t → le i₁ i₂ && le-ItemTree i₁ (tip j) ≡ t && le-ItemTree i₁ (tip j)) i₁≤i₂ refl ⟩ true && le-ItemTree i₁ (tip j) ≡⟨ subst (λ t → true && le-ItemTree i₁ (tip j) ≡ true && t) (le-ItemTree-tip i₁ j) refl ⟩ true && le i₁ j ≡⟨ subst (λ t → true && le i₁ j ≡ true && t) -- i₁ ≤ j because by hypothesis we have i₁ ≤ (tip j). (trans (sym (le-ItemTree-tip i₁ j)) i₁≤t) refl ⟩ true && true ≡⟨ t&&x≡x true ⟩ true ∎ prf₂ : j ≤ i₂ → ≤-ItemTree i₁ (toTree · i₂ · tip j) prf₂ j≤i₂ = le-ItemTree i₁ (toTree · i₂ · tip j) ≡⟨ subst (λ t → le-ItemTree i₁ (toTree · i₂ · tip j) ≡ le-ItemTree i₁ t) (toTree-tip i₂ j) refl ⟩ le-ItemTree i₁ (if (le j i₂) then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) ≡⟨ subst (λ t → le-ItemTree i₁ (if (le j i₂) then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) ≡ le-ItemTree i₁ (if t then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j)))) j≤i₂ refl ⟩ le-ItemTree i₁ (if true then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) ≡⟨ subst (λ t → le-ItemTree i₁ (if true then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) ≡ le-ItemTree i₁ t) (if-true (node (tip j) i₂ (tip i₂))) refl ⟩ le-ItemTree i₁ (node (tip j) i₂ (tip i₂)) ≡⟨ le-ItemTree-node i₁ (tip j) i₂ (tip i₂) ⟩ le-ItemTree i₁ (tip j) && le-ItemTree i₁ (tip i₂) ≡⟨ subst (λ t → le-ItemTree i₁ (tip j) && le-ItemTree i₁ (tip i₂) ≡ t && le-ItemTree i₁ (tip i₂)) (le-ItemTree-tip i₁ j) refl ⟩ le i₁ j && le-ItemTree i₁ (tip i₂) ≡⟨ subst (λ t → le i₁ j && le-ItemTree i₁ (tip i₂) ≡ t && le-ItemTree i₁ (tip i₂)) -- i₁ ≤ j because by hypothesis we have i₁ ≤ (tip j). (trans (sym (le-ItemTree-tip i₁ j)) i₁≤t) refl ⟩ true && le-ItemTree i₁ (tip i₂) ≡⟨ subst (λ t → true && le-ItemTree i₁ (tip i₂) ≡ true && t) (le-ItemTree-tip i₁ i₂) refl ⟩ true && le i₁ i₂ ≡⟨ subst (λ t → true && le i₁ i₂ ≡ true && t) i₁≤i₂ refl ⟩ true && true ≡⟨ t&&x≡x true ⟩ true ∎ toTree-OrdTree-helper₂ {i₁} {i₂} Ni₁ Ni₂ i₁≤i₂ (tnode {t₁} {j} {t₂} Tt₁ Nj Tt₂) i₁≤t = case prf₁ prf₂ (x>y∨x≤y Nj Ni₂) where prf₁ : j > i₂ → ≤-ItemTree i₁ (toTree · i₂ · node t₁ j t₂) prf₁ j>i₂ = le-ItemTree i₁ (toTree · i₂ · node t₁ j t₂) ≡⟨ subst (λ t → le-ItemTree i₁ (toTree · i₂ · node t₁ j t₂) ≡ le-ItemTree i₁ t) (toTree-node i₂ t₁ j t₂) refl ⟩ le-ItemTree i₁ (if (le j i₂) then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) ≡⟨ subst (λ t → le-ItemTree i₁ (if (le j i₂) then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) ≡ le-ItemTree i₁ (if t then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂))) (x>y→x≰y Nj Ni₂ j>i₂) refl ⟩ le-ItemTree i₁ (if false then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) ≡⟨ subst (λ t → le-ItemTree i₁ (if false then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) ≡ le-ItemTree i₁ t) (if-false (node (toTree · i₂ · t₁) j t₂)) refl ⟩ le-ItemTree i₁ (node (toTree · i₂ · t₁) j t₂) ≡⟨ le-ItemTree-node i₁ (toTree · i₂ · t₁) j t₂ ⟩ le-ItemTree i₁ (toTree · i₂ · t₁) && le-ItemTree i₁ t₂ ≡⟨ subst (λ t → le-ItemTree i₁ (toTree · i₂ · t₁) && le-ItemTree i₁ t₂ ≡ t && le-ItemTree i₁ t₂) -- Inductive hypothesis. (toTree-OrdTree-helper₂ Ni₁ Ni₂ i₁≤i₂ Tt₁ (&&-list₂-t₁ (le-ItemTree-Bool Ni₁ Tt₁) (le-ItemTree-Bool Ni₁ Tt₂) (trans (sym (le-ItemTree-node i₁ t₁ j t₂)) i₁≤t))) refl ⟩ true && le-ItemTree i₁ t₂ ≡⟨ subst (λ t → true && le-ItemTree i₁ t₂ ≡ true && t) -- i₁ ≤ t₂ because by hypothesis we have i₁ ≤ (node t₁ j t₂). (&&-list₂-t₂ (le-ItemTree-Bool Ni₁ Tt₁) (le-ItemTree-Bool Ni₁ Tt₂) (trans (sym (le-ItemTree-node i₁ t₁ j t₂)) i₁≤t)) refl ⟩ true && true ≡⟨ t&&x≡x true ⟩ true ∎ prf₂ : j ≤ i₂ → ≤-ItemTree i₁ (toTree · i₂ · node t₁ j t₂) prf₂ j≤i₂ = le-ItemTree i₁ (toTree · i₂ · node t₁ j t₂) ≡⟨ subst (λ t → le-ItemTree i₁ (toTree · i₂ · node t₁ j t₂) ≡ le-ItemTree i₁ t) (toTree-node i₂ t₁ j t₂) refl ⟩ le-ItemTree i₁ (if (le j i₂) then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) ≡⟨ subst (λ t → le-ItemTree i₁ (if (le j i₂) then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) ≡ le-ItemTree i₁ (if t then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂))) j≤i₂ refl ⟩ le-ItemTree i₁ (if true then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) ≡⟨ subst (λ t → le-ItemTree i₁ (if true then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) ≡ le-ItemTree i₁ t) (if-true (node t₁ j (toTree · i₂ · t₂))) refl ⟩ le-ItemTree i₁ (node t₁ j (toTree · i₂ · t₂)) ≡⟨ le-ItemTree-node i₁ t₁ j (toTree · i₂ · t₂) ⟩ le-ItemTree i₁ t₁ && le-ItemTree i₁ (toTree · i₂ · t₂) ≡⟨ subst (λ t → le-ItemTree i₁ t₁ && le-ItemTree i₁ (toTree · i₂ · t₂) ≡ t && le-ItemTree i₁ (toTree · i₂ · t₂)) -- i₁ ≤ t₁ because by hypothesis we have i₁ ≤ (node t₁ j t₂). (&&-list₂-t₁ (le-ItemTree-Bool Ni₁ Tt₁) (le-ItemTree-Bool Ni₁ Tt₂) (trans (sym (le-ItemTree-node i₁ t₁ j t₂)) i₁≤t)) refl ⟩ true && le-ItemTree i₁ (toTree · i₂ · t₂) ≡⟨ subst (λ t → true && le-ItemTree i₁ (toTree · i₂ · t₂) ≡ true && t) -- Inductive hypothesis. (toTree-OrdTree-helper₂ Ni₁ Ni₂ i₁≤i₂ Tt₂ (&&-list₂-t₂ (le-ItemTree-Bool Ni₁ Tt₁) (le-ItemTree-Bool Ni₁ Tt₂) (trans (sym (le-ItemTree-node i₁ t₁ j t₂)) i₁≤t))) refl ⟩ true && true ≡⟨ t&&x≡x true ⟩ true ∎
{ "alphanum_fraction": 0.4140740741, "avg_line_length": 40.3339191564, "ext": "agda", "hexsha": "1363685b97bfa7ead3003e729980e3dbd8c38919", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/SortList/Properties/Totality/OrdTreeI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/SortList/Properties/Totality/OrdTreeI.agda", "max_line_length": 80, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/SortList/Properties/Totality/OrdTreeI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 7789, "size": 22950 }
module UniverseCollapse (down : Set₁ -> Set) (up : Set → Set₁) (iso : ∀ {A} → down (up A) → A) (osi : ∀ {A} → up (down A) → A) where anything : (A : Set) → A anything = {!!}
{ "alphanum_fraction": 0.4816753927, "avg_line_length": 21.2222222222, "ext": "agda", "hexsha": "0b6e1d84d9f6757298f1259195d3b4cc9b2884ee", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "danr/agder", "max_forks_repo_path": "problems/UniverseCollapse/UniverseCollapse.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "danr/agder", "max_issues_repo_path": "problems/UniverseCollapse/UniverseCollapse.agda", "max_line_length": 41, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "danr/agder", "max_stars_repo_path": "problems/UniverseCollapse/UniverseCollapse.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-17T12:07:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-05-17T12:07:03.000Z", "num_tokens": 72, "size": 191 }
module ctxt where open import lib open import cedille-types open import ctxt-types public open import subst open import general-util open import syntax-util new-sym-info-trie : trie sym-info new-sym-info-trie = trie-insert empty-trie compileFail-qual ((term-decl compileFailType) , "missing" , "missing") new-qualif : qualif new-qualif = trie-insert empty-trie compileFail (compileFail-qual , ArgsNil) qualif-nonempty : qualif → 𝔹 qualif-nonempty q = trie-nonempty (trie-remove q compileFail) new-ctxt : (filename modname : string) → ctxt new-ctxt fn mn = mk-ctxt (fn , mn , ParamsNil , new-qualif) (empty-trie , empty-trie , empty-trie , empty-trie , 0 , []) new-sym-info-trie empty-trie empty-trie empty-ctxt : ctxt empty-ctxt = new-ctxt "" "" ctxt-get-info : var → ctxt → maybe sym-info ctxt-get-info v (mk-ctxt _ _ i _ _) = trie-lookup i v ctxt-set-qualif : ctxt → qualif → ctxt ctxt-set-qualif (mk-ctxt (f , m , p , q') syms i sym-occurrences d) q = mk-ctxt (f , m , p , q) syms i sym-occurrences d ctxt-get-qualif : ctxt → qualif ctxt-get-qualif (mk-ctxt (_ , _ , _ , q) _ _ _ _) = q ctxt-get-qi : ctxt → var → maybe qualif-info ctxt-get-qi Γ = trie-lookup (ctxt-get-qualif Γ) ctxt-qualif-args-length : ctxt → maybeErased → var → maybe ℕ ctxt-qualif-args-length Γ me v = ctxt-get-qi Γ v ≫=maybe λ qv → just (me-args-length me (snd qv)) qi-var-if : maybe qualif-info → var → var qi-var-if (just (v , _)) _ = v qi-var-if nothing v = v ctxt-restore-info : ctxt → var → maybe qualif-info → maybe sym-info → ctxt ctxt-restore-info (mk-ctxt (fn , mn , ps , q) syms i symb-occs d) v qi si = mk-ctxt (fn , mn , ps , f qi v q) syms (f si (qi-var-if qi v) (trie-remove i (qi-var-if (trie-lookup q v) v))) symb-occs d where f : ∀{A : Set} → maybe A → string → trie A → trie A f (just a) s t = trie-insert t s a f nothing s t = trie-remove t s ctxt-restore-info* : ctxt → 𝕃 (string × maybe qualif-info × maybe sym-info) → ctxt ctxt-restore-info* Γ [] = Γ ctxt-restore-info* Γ ((v , qi , m) :: ms) = ctxt-restore-info* (ctxt-restore-info Γ v qi m) ms def-params : defScope → params → defParams def-params tt ps = nothing def-params ff ps = just ps -- TODO add renamectxt to avoid capture bugs? inst-type : ctxt → params → args → type → type inst-type Γ ps as T with mk-inst ps as ...| σ , ps' = abs-expand-type (substs-params Γ σ ps') (substs Γ σ T) inst-kind : ctxt → params → args → kind → kind inst-kind Γ ps as k with mk-inst ps as ...| σ , ps' = abs-expand-kind (substs-params Γ σ ps') (substs Γ σ k) qualif-x : ∀ {ℓ} {X : Set ℓ} → (ctxt → qualif → X) → ctxt → X qualif-x f Γ = f Γ (ctxt-get-qualif Γ) qualif-term = qualif-x $ substs {TERM} qualif-type = qualif-x $ substs {TYPE} qualif-kind = qualif-x $ substs {KIND} qualif-liftingType = qualif-x $ substs {LIFTINGTYPE} qualif-tk = qualif-x $ substs {TK} qualif-params = qualif-x substs-params qualif-args = qualif-x substs-args erased-margs : ctxt → stringset erased-margs = stringset-insert* empty-stringset ∘ (erased-params ∘ ctxt-get-current-params) ctxt-term-decl : posinfo → var → type → ctxt → ctxt ctxt-term-decl p v t Γ@(mk-ctxt (fn , mn , ps , q) syms i symb-occs d) = mk-ctxt (fn , mn , ps , (qualif-insert-params q v' v ParamsNil)) syms (trie-insert i v' ((term-decl (qualif-type Γ t)) , fn , p)) symb-occs d where v' = p % v ctxt-type-decl : posinfo → var → kind → ctxt → ctxt ctxt-type-decl p v k Γ@(mk-ctxt (fn , mn , ps , q) syms i symb-occs d) = mk-ctxt (fn , mn , ps , (qualif-insert-params q v' v ParamsNil)) syms (trie-insert i v' (type-decl (qualif-kind Γ k) , fn , p)) symb-occs d where v' = p % v ctxt-tk-decl : posinfo → var → tk → ctxt → ctxt ctxt-tk-decl p x (Tkt t) Γ = ctxt-term-decl p x t Γ ctxt-tk-decl p x (Tkk k) Γ = ctxt-type-decl p x k Γ -- TODO not sure how this and renaming interacts with module scope ctxt-var-decl-if : var → ctxt → ctxt ctxt-var-decl-if v Γ with Γ ... | mk-ctxt (fn , mn , ps , q) syms i symb-occs d with trie-lookup i v ... | just (rename-def _ , _) = Γ ... | just (var-decl , _) = Γ ... | _ = mk-ctxt (fn , mn , ps , (trie-insert q v (v , ArgsNil))) syms (trie-insert i v (var-decl , "missing" , "missing")) symb-occs d ctxt-rename-rep : ctxt → var → var ctxt-rename-rep (mk-ctxt m syms i _ _) v with trie-lookup i v ... | just (rename-def v' , _) = v' ... | _ = v -- we assume that only the left variable might have been renamed ctxt-eq-rep : ctxt → var → var → 𝔹 ctxt-eq-rep Γ x y = (ctxt-rename-rep Γ x) =string y {- add a renaming mapping the first variable to the second, unless they are equal. Notice that adding a renaming for v will overwrite any other declarations for v. -} ctxt-rename : var → var → ctxt → ctxt ctxt-rename v v' Γ @ (mk-ctxt (fn , mn , ps , q) syms i symb-occs d) = (mk-ctxt (fn , mn , ps , qualif-insert-params q v' v ps) syms (trie-insert i v (rename-def v' , "missing" , "missing")) symb-occs d) ---------------------------------------------------------------------- -- lookup functions ---------------------------------------------------------------------- -- lookup mod params from filename lookup-mod-params : ctxt → var → maybe params lookup-mod-params (mk-ctxt _ (syms , _ , mn-ps , id) _ _ _) fn = trie-lookup syms fn ≫=maybe λ { (mn , _) → trie-lookup mn-ps mn } -- look for a defined kind for the given var, which is assumed to be a type, -- then instantiate its parameters qual-lookup : ctxt → var → maybe (args × sym-info) qual-lookup Γ@(mk-ctxt (_ , _ , _ , q) _ i _ _) v = trie-lookup q v ≫=maybe λ qv → trie-lookup i (fst qv) ≫=maybe λ si → just (snd qv , si) env-lookup : ctxt → var → maybe sym-info env-lookup Γ@(mk-ctxt (_ , _ , _ , _) _ i _ _) v = trie-lookup i v -- look for a declared kind for the given var, which is assumed to be a type, -- otherwise look for a qualified defined kind ctxt-lookup-type-var : ctxt → var → maybe kind ctxt-lookup-type-var Γ v with qual-lookup Γ v ... | just (as , type-decl k , _) = just k ... | just (as , type-def (just ps) _ T k , _) = just (inst-kind Γ ps as k) ... | just (as , type-def nothing _ T k , _) = just k ... | just (as , datatype-def _ k , _) = just k ... | _ = nothing -- remove ? -- add-param-type : params → type → type -- add-param-type (ParamsCons (Decl pi pix e x tk _) ps) ty = Abs pi e pix x tk (add-param-type ps ty) -- add-param-type ParamsNil ty = ty ctxt-lookup-term-var : ctxt → var → maybe type ctxt-lookup-term-var Γ v with qual-lookup Γ v ... | just (as , term-decl T , _) = just T ... | just (as , term-def (just ps) _ t T , _) = just $ inst-type Γ ps as T ... | just (as , term-def nothing _ t T , _) = just T ... | just (as , const-def T , _) = just T ... | _ = nothing ctxt-lookup-tk-var : ctxt → var → maybe tk ctxt-lookup-tk-var Γ v with qual-lookup Γ v ... | just (as , term-decl T , _) = just $ Tkt T ... | just (as , type-decl k , _) = just $ Tkk k ... | just (as , term-def (just ps) _ t T , _) = just $ Tkt $ inst-type Γ ps as T ... | just (as , type-def (just ps) _ T k , _) = just $ Tkk $ inst-kind Γ ps as k ... | just (as , term-def nothing _ t T , _) = just $ Tkt T ... | just (as , type-def nothing _ T k , _) = just $ Tkk k ... | just (as , datatype-def _ k , _) = just $ Tkk k ... | _ = nothing ctxt-lookup-term-var-def : ctxt → var → maybe term ctxt-lookup-term-var-def Γ v with env-lookup Γ v ... | just (term-def nothing OpacTrans t _ , _) = just t ... | just (term-udef nothing OpacTrans t , _) = just t ... | just (term-def (just ps) OpacTrans t _ , _) = just $ lam-expand-term ps t ... | just (term-udef (just ps) OpacTrans t , _) = just $ lam-expand-term ps t ... | _ = nothing ctxt-lookup-type-var-def : ctxt → var → maybe type ctxt-lookup-type-var-def Γ v with env-lookup Γ v ... | just (type-def nothing OpacTrans T _ , _) = just T ... | just (type-def (just ps) OpacTrans T _ , _) = just $ lam-expand-type ps T ... | _ = nothing ctxt-lookup-kind-var-def : ctxt → var → maybe (params × kind) ctxt-lookup-kind-var-def Γ x with env-lookup Γ x ... | just (kind-def ps k , _) = just (ps , k) ... | _ = nothing ctxt-lookup-kind-var-def-args : ctxt → var → maybe (params × args) ctxt-lookup-kind-var-def-args Γ@(mk-ctxt (_ , _ , _ , q) _ i _ _) v with trie-lookup q v ... | just (v' , as) = ctxt-lookup-kind-var-def Γ v' ≫=maybe λ { (ps , k) → just (ps , as) } ... | _ = nothing ctxt-lookup-occurrences : ctxt → var → 𝕃 (var × posinfo × string) ctxt-lookup-occurrences (mk-ctxt _ _ _ symb-occs _) symbol with trie-lookup symb-occs symbol ... | just l = l ... | nothing = [] ---------------------------------------------------------------------- ctxt-var-location : ctxt → var → location ctxt-var-location (mk-ctxt _ _ i _ _) x with trie-lookup i x ... | just (_ , l) = l ... | nothing = "missing" , "missing" ctxt-clarify-def : ctxt → var → maybe (sym-info × ctxt) ctxt-clarify-def Γ@(mk-ctxt mod@(_ , _ , _ , q) syms i sym-occurrences d) x = trie-lookup i x ≫=maybe λ { (ci , l) → clarified x ci l } where ctxt' : var → ctxt-info → location → ctxt ctxt' v ci l = mk-ctxt mod syms (trie-insert i v (ci , l)) sym-occurrences d clarified : var → ctxt-info → location → maybe (sym-info × ctxt) clarified v ci@(term-def ps _ t T) l = just ((ci , l) , (ctxt' v (term-def ps OpacTrans t T) l)) clarified v ci@(term-udef ps _ t) l = just ((ci , l) , (ctxt' v (term-udef ps OpacTrans t) l)) clarified v ci@(type-def ps _ T k) l = just ((ci , l) , (ctxt' v (type-def ps OpacTrans T k) l)) clarified _ _ _ = nothing ctxt-set-sym-info : ctxt → var → sym-info → ctxt ctxt-set-sym-info (mk-ctxt mod syms i sym-occurrences d) x si = mk-ctxt mod syms (trie-insert i x si) sym-occurrences d ctxt-restore-clarified-def : ctxt → var → sym-info → ctxt ctxt-restore-clarified-def = ctxt-set-sym-info ctxt-set-current-file : ctxt → string → string → ctxt ctxt-set-current-file (mk-ctxt _ syms i symb-occs d) fn mn = mk-ctxt (fn , mn , ParamsNil , new-qualif) syms i symb-occs d ctxt-set-current-mod : ctxt → mod-info → ctxt ctxt-set-current-mod (mk-ctxt _ syms i symb-occs d) m = mk-ctxt m syms i symb-occs d ctxt-add-current-params : ctxt → ctxt ctxt-add-current-params Γ@(mk-ctxt m@(fn , mn , ps , _) (syms , mn-fn , mn-ps , ids) i symb-occs d) = mk-ctxt m (trie-insert syms fn (mn , []) , mn-fn , trie-insert mn-ps mn ps , ids) i symb-occs d ctxt-clear-symbol : ctxt → string → ctxt ctxt-clear-symbol Γ @ (mk-ctxt (fn , mn , pms , q) (syms , mn-fn) i symb-occs d) x = mk-ctxt (fn , mn , pms , (trie-remove q x)) (trie-map (λ ss → fst ss , remove _=string_ x (snd ss)) syms , mn-fn) (trie-remove i (qualif-var Γ x)) symb-occs d ctxt-clear-symbols : ctxt → 𝕃 string → ctxt ctxt-clear-symbols Γ [] = Γ ctxt-clear-symbols Γ (v :: vs) = ctxt-clear-symbols (ctxt-clear-symbol Γ v) vs ctxt-clear-symbols-of-file : ctxt → (filename : string) → ctxt ctxt-clear-symbols-of-file (mk-ctxt f (syms , mn-fn , mn-ps) i symb-occs d) fn = mk-ctxt f (trie-insert syms fn (fst p , []) , trie-insert mn-fn (fst p) fn , mn-ps) (hremove i (fst p) (snd p)) symb-occs d where p = trie-lookup𝕃2 syms fn hremove : ∀ {A : Set} → trie A → var → 𝕃 string → trie A hremove i mn [] = i hremove i mn (x :: xs) = hremove (trie-remove i (mn # x)) mn xs ctxt-add-current-id : ctxt → ctxt ctxt-add-current-id (mk-ctxt mod (syms , mn-fn , mn-ps , fn-ids , id , id-fns) is os d) = mk-ctxt mod (syms , mn-fn , mn-ps , trie-insert fn-ids (fst mod) (suc id) , suc id , (fst mod) :: id-fns) is os d ctxt-initiate-file : ctxt → (filename modname : string) → ctxt ctxt-initiate-file Γ fn mn = ctxt-add-current-id (ctxt-set-current-file (ctxt-clear-symbols-of-file Γ fn) fn mn) unqual : ctxt → var → string unqual (mk-ctxt (_ , _ , _ , q) _ _ _ _) v = if qualif-nonempty q then unqual-local (unqual-all q v) else v
{ "alphanum_fraction": 0.6158934852, "avg_line_length": 40.3445945946, "ext": "agda", "hexsha": "edbfdef78b2f249e4638c747f8a2a2890d825877", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xoltar/cedille", "max_forks_repo_path": "src/ctxt.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xoltar/cedille", "max_issues_repo_path": "src/ctxt.agda", "max_line_length": 160, "max_stars_count": null, "max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xoltar/cedille", "max_stars_repo_path": "src/ctxt.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3947, "size": 11942 }
{-# OPTIONS --copatterns #-} -- Andreas, 2013-11-05 Coverage checker needs clauses to reduce type! -- {-# OPTIONS -v tc.cover:20 #-} module Issue937a where open import Common.Prelude open import Common.Equality open import Common.Product T : (b : Bool) → Set T true = Nat T false = Bool → Nat test : Σ Bool T proj₁ test = false proj₂ test true = zero proj₂ test false = suc zero -- Error: unreachable clause module _ {_ : Set} where bla : Σ Bool T proj₁ bla = false proj₂ bla true = zero proj₂ bla false = suc zero -- Error: unreachable clause -- should coverage check
{ "alphanum_fraction": 0.6933560477, "avg_line_length": 20.9642857143, "ext": "agda", "hexsha": "ecaff836625bcc9ef8da44ddbe0cbd8a69f4ccfd", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue937a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue937a.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue937a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 167, "size": 587 }
module Sized.StatefulCell where open import Data.Product open import Data.String.Base open import SizedIO.Object open import SizedIO.IOObject open import SizedIO.ConsoleObject open import SizedIO.Console hiding (main) open import NativeIO open import Size --open import StateSizedIO.Base data CellState# : Set where empty full : CellState# data CellMethodEmpty A : Set where put : A → CellMethodEmpty A data CellMethodFull A : Set where get : CellMethodFull A put : A → CellMethodFull A CellMethod# : ∀{A} → CellState# → Set CellMethod#{A} empty = CellMethodEmpty A CellMethod#{A} full = CellMethodFull A CellResultFull : ∀{A} → CellMethodFull A → Set CellResultFull {A} get = A CellResultFull (put _) = Unit CellResultEmpty : ∀{A} → CellMethodEmpty A → Set CellResultEmpty (put _) = Unit CellResult# : ∀{A} → (s : CellState#) → CellMethod#{A} s → Set CellResult#{A} empty = CellResultEmpty{A} CellResult#{A} full = CellResultFull{A} n# : ∀{A} → (s : CellState#) → (c : CellMethod#{A} s) → (CellResult# s c) → CellState# n# empty (put x) unit = full n# full get z = full n# full (put x) unit = full
{ "alphanum_fraction": 0.7093639576, "avg_line_length": 22.64, "ext": "agda", "hexsha": "fe0baf42cf87224828647311bc2c1996b6223fb6", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "examples/Sized/StatefulCell.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "examples/Sized/StatefulCell.agda", "max_line_length": 86, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "examples/Sized/StatefulCell.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 347, "size": 1132 }
{-# OPTIONS --safe #-} module Cubical.Data.SumFin.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv renaming (_∙ₑ_ to _⋆_) open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Unit open import Cubical.Data.Bool open import Cubical.Data.Nat open import Cubical.Data.Nat.Order import Cubical.Data.Fin as Fin import Cubical.Data.Fin.LehmerCode as LehmerCode open import Cubical.Data.SumFin.Base as SumFin open import Cubical.Data.Sum open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation as Prop open import Cubical.Relation.Nullary private variable ℓ : Level k : ℕ SumFin→Fin : Fin k → Fin.Fin k SumFin→Fin = SumFin.elim (λ {k} _ → Fin.Fin k) Fin.fzero Fin.fsuc Fin→SumFin : Fin.Fin k → Fin k Fin→SumFin = Fin.elim (λ {k} _ → Fin k) fzero fsuc Fin→SumFin-fsuc : (fk : Fin.Fin k) → Fin→SumFin (Fin.fsuc fk) ≡ fsuc (Fin→SumFin fk) Fin→SumFin-fsuc = Fin.elim-fsuc (λ {k} _ → Fin k) fzero fsuc SumFin→Fin→SumFin : (fk : Fin k) → Fin→SumFin (SumFin→Fin fk) ≡ fk SumFin→Fin→SumFin = SumFin.elim (λ fk → Fin→SumFin (SumFin→Fin fk) ≡ fk) refl λ {k} {fk} eq → Fin→SumFin (Fin.fsuc (SumFin→Fin fk)) ≡⟨ Fin→SumFin-fsuc (SumFin→Fin fk) ⟩ fsuc (Fin→SumFin (SumFin→Fin fk)) ≡⟨ cong fsuc eq ⟩ fsuc fk ∎ Fin→SumFin→Fin : (fk : Fin.Fin k) → SumFin→Fin (Fin→SumFin fk) ≡ fk Fin→SumFin→Fin = Fin.elim (λ fk → SumFin→Fin (Fin→SumFin fk) ≡ fk) refl λ {k} {fk} eq → SumFin→Fin (Fin→SumFin (Fin.fsuc fk)) ≡⟨ cong SumFin→Fin (Fin→SumFin-fsuc fk) ⟩ Fin.fsuc (SumFin→Fin (Fin→SumFin fk)) ≡⟨ cong Fin.fsuc eq ⟩ Fin.fsuc fk ∎ SumFin≃Fin : ∀ k → Fin k ≃ Fin.Fin k SumFin≃Fin _ = isoToEquiv (iso SumFin→Fin Fin→SumFin Fin→SumFin→Fin SumFin→Fin→SumFin) SumFin≡Fin : ∀ k → Fin k ≡ Fin.Fin k SumFin≡Fin k = ua (SumFin≃Fin k) enum : (n : ℕ)(p : n < k) → Fin k enum n p = Fin→SumFin (n , p) enumElim : (P : Fin k → Type ℓ) → ((n : ℕ)(p : n < k) → P (enum _ p)) → (i : Fin k) → P i enumElim P f i = subst P (SumFin→Fin→SumFin i) (f (SumFin→Fin i .fst) (SumFin→Fin i .snd)) -- Closure properties of SumFin under type constructors SumFin⊎≃ : (m n : ℕ) → (Fin m ⊎ Fin n) ≃ (Fin (m + n)) SumFin⊎≃ 0 n = ⊎-swap-≃ ⋆ ⊎-⊥-≃ SumFin⊎≃ (suc m) n = ⊎-assoc-≃ ⋆ ⊎-equiv (idEquiv ⊤) (SumFin⊎≃ m n) SumFinΣ≃ : (n : ℕ)(f : Fin n → ℕ) → (Σ (Fin n) (λ x → Fin (f x))) ≃ (Fin (totalSum f)) SumFinΣ≃ 0 f = ΣEmpty _ SumFinΣ≃ (suc n) f = Σ⊎≃ ⋆ ⊎-equiv (ΣUnit (λ tt → Fin (f (inl tt)))) (SumFinΣ≃ n (λ x → f (inr x))) ⋆ SumFin⊎≃ (f (inl tt)) (totalSum (λ x → f (inr x))) SumFin×≃ : (m n : ℕ) → (Fin m × Fin n) ≃ (Fin (m · n)) SumFin×≃ m n = SumFinΣ≃ m (λ _ → n) ⋆ pathToEquiv (λ i → Fin (totalSumConst {m = m} n i)) SumFinΠ≃ : (n : ℕ)(f : Fin n → ℕ) → ((x : Fin n) → Fin (f x)) ≃ (Fin (totalProd f)) SumFinΠ≃ 0 _ = isContr→≃Unit (isContrΠ⊥) ⋆ invEquiv (⊎-⊥-≃) SumFinΠ≃ (suc n) f = Π⊎≃ ⋆ Σ-cong-equiv (ΠUnit (λ tt → Fin (f (inl tt)))) (λ _ → SumFinΠ≃ n (λ x → f (inr x))) ⋆ SumFin×≃ (f (inl tt)) (totalProd (λ x → f (inr x))) isNotZero : ℕ → ℕ isNotZero 0 = 0 isNotZero (suc n) = 1 SumFin∥∥≃ : (n : ℕ) → ∥ Fin n ∥ ≃ Fin (isNotZero n) SumFin∥∥≃ 0 = propTruncIdempotent≃ (isProp⊥) SumFin∥∥≃ (suc n) = isContr→≃Unit (inhProp→isContr ∣ inl tt ∣ isPropPropTrunc) ⋆ isContr→≃Unit (isContrUnit) ⋆ invEquiv (⊎-⊥-≃) ℕ→Bool : ℕ → Bool ℕ→Bool 0 = false ℕ→Bool (suc n) = true SumFin∥∥DecProp : (n : ℕ) → ∥ Fin n ∥ ≃ Bool→Type (ℕ→Bool n) SumFin∥∥DecProp 0 = uninhabEquiv (Prop.rec isProp⊥ ⊥.rec) ⊥.rec SumFin∥∥DecProp (suc n) = isContr→≃Unit (inhProp→isContr ∣ inl tt ∣ isPropPropTrunc) -- negation of SumFin SumFin¬ : (n : ℕ) → (¬ Fin n) ≃ Bool→Type (isZero n) SumFin¬ 0 = isContr→≃Unit isContr⊥→A SumFin¬ (suc n) = uninhabEquiv (λ f → f fzero) ⊥.rec -- SumFin 1 is equivalent to unit Fin1≃Unit : Fin 1 ≃ Unit Fin1≃Unit = ⊎-⊥-≃ isContrSumFin1 : isContr (Fin 1) isContrSumFin1 = isOfHLevelRespectEquiv 0 (invEquiv Fin1≃Unit) isContrUnit -- SumFin 2 is equivalent to Bool SumFin2≃Bool : Fin 2 ≃ Bool SumFin2≃Bool = ⊎-equiv (idEquiv _) ⊎-⊥-≃ ⋆ isoToEquiv Iso-⊤⊎⊤-Bool -- decidable predicate over SumFin SumFinℙ≃ : (n : ℕ) → (Fin n → Bool) ≃ Fin (2 ^ n) SumFinℙ≃ 0 = isContr→≃Unit (isContrΠ⊥) ⋆ invEquiv (⊎-⊥-≃) SumFinℙ≃ (suc n) = Π⊎≃ ⋆ Σ-cong-equiv (UnitToType≃ Bool ⋆ invEquiv SumFin2≃Bool) (λ _ → SumFinℙ≃ n) ⋆ SumFin×≃ 2 (2 ^ n) -- decidable subsets of SumFin Bool→ℕ : Bool → ℕ Bool→ℕ true = 1 Bool→ℕ false = 0 trueCount : {n : ℕ}(f : Fin n → Bool) → ℕ trueCount {n = 0} _ = 0 trueCount {n = suc n} f = Bool→ℕ (f (inl tt)) + (trueCount (f ∘ inr)) SumFinDec⊎≃ : (n : ℕ)(t : Bool) → (Bool→Type t ⊎ Fin n) ≃ (Fin (Bool→ℕ t + n)) SumFinDec⊎≃ _ true = idEquiv _ SumFinDec⊎≃ _ false = ⊎-swap-≃ ⋆ ⊎-⊥-≃ SumFinSub≃ : (n : ℕ)(f : Fin n → Bool) → Σ _ (Bool→Type ∘ f) ≃ Fin (trueCount f) SumFinSub≃ 0 _ = ΣEmpty _ SumFinSub≃ (suc n) f = Σ⊎≃ ⋆ ⊎-equiv (ΣUnit (Bool→Type ∘ f ∘ inl)) (SumFinSub≃ n (f ∘ inr)) ⋆ SumFinDec⊎≃ _ (f (inl tt)) -- decidable quantifier trueForSome : (n : ℕ)(f : Fin n → Bool) → Bool trueForSome 0 _ = false trueForSome (suc n) f = f (inl tt) or trueForSome n (f ∘ inr) trueForAll : (n : ℕ)(f : Fin n → Bool) → Bool trueForAll 0 _ = true trueForAll (suc n) f = f (inl tt) and trueForAll n (f ∘ inr) SumFin∃→ : (n : ℕ)(f : Fin n → Bool) → Σ _ (Bool→Type ∘ f) → Bool→Type (trueForSome n f) SumFin∃→ 0 _ = ΣEmpty _ .fst SumFin∃→ (suc n) f = Bool→Type⊎' _ _ ∘ map-⊎ (ΣUnit (Bool→Type ∘ f ∘ inl) .fst) (SumFin∃→ n (f ∘ inr)) ∘ Σ⊎≃ .fst SumFin∃← : (n : ℕ)(f : Fin n → Bool) → Bool→Type (trueForSome n f) → Σ _ (Bool→Type ∘ f) SumFin∃← 0 _ = ⊥.rec SumFin∃← (suc n) f = invEq Σ⊎≃ ∘ map-⊎ (invEq (ΣUnit (Bool→Type ∘ f ∘ inl))) (SumFin∃← n (f ∘ inr)) ∘ Bool→Type⊎ _ _ SumFin∃≃ : (n : ℕ)(f : Fin n → Bool) → ∥ Σ (Fin n) (Bool→Type ∘ f) ∥ ≃ Bool→Type (trueForSome n f) SumFin∃≃ n f = propBiimpl→Equiv isPropPropTrunc isPropBool→Type (Prop.rec isPropBool→Type (SumFin∃→ n f)) (∣_∣ ∘ SumFin∃← n f) SumFin∀≃ : (n : ℕ)(f : Fin n → Bool) → ((x : Fin n) → Bool→Type (f x)) ≃ Bool→Type (trueForAll n f) SumFin∀≃ 0 _ = isContr→≃Unit (isContrΠ⊥) SumFin∀≃ (suc n) f = Π⊎≃ ⋆ Σ-cong-equiv (ΠUnit (Bool→Type ∘ f ∘ inl)) (λ _ → SumFin∀≃ n (f ∘ inr)) ⋆ Bool→Type×≃ _ _ -- internal equality SumFin≡ : (n : ℕ) → (a b : Fin n) → Bool SumFin≡ 0 _ _ = true SumFin≡ (suc n) (inl tt) (inl tt) = true SumFin≡ (suc n) (inl tt) (inr y) = false SumFin≡ (suc n) (inr x) (inl tt) = false SumFin≡ (suc n) (inr x) (inr y) = SumFin≡ n x y isSetSumFin : (n : ℕ)→ isSet (Fin n) isSetSumFin 0 = isProp→isSet isProp⊥ isSetSumFin (suc n) = isSet⊎ (isProp→isSet isPropUnit) (isSetSumFin n) SumFin≡≃ : (n : ℕ) → (a b : Fin n) → (a ≡ b) ≃ Bool→Type (SumFin≡ n a b) SumFin≡≃ 0 _ _ = isContr→≃Unit (isProp→isContrPath isProp⊥ _ _) SumFin≡≃ (suc n) (inl tt) (inl tt) = isContr→≃Unit (inhProp→isContr refl (isSetSumFin _ _ _)) SumFin≡≃ (suc n) (inl tt) (inr y) = invEquiv (⊎Path.Cover≃Path _ _) ⋆ uninhabEquiv ⊥.rec* ⊥.rec SumFin≡≃ (suc n) (inr x) (inl tt) = invEquiv (⊎Path.Cover≃Path _ _) ⋆ uninhabEquiv ⊥.rec* ⊥.rec SumFin≡≃ (suc n) (inr x) (inr y) = invEquiv (_ , isEmbedding-inr x y) ⋆ SumFin≡≃ n x y -- propositional truncation of Fin -- decidability of Fin DecFin : (n : ℕ) → Dec (Fin n) DecFin 0 = no (idfun _) DecFin (suc n) = yes fzero -- propositional truncation of Fin Dec∥Fin∥ : (n : ℕ) → Dec ∥ Fin n ∥ Dec∥Fin∥ n = Dec∥∥ (DecFin n) -- some properties about cardinality fzero≠fone : {n : ℕ} → ¬ (fzero ≡ fsuc fzero) fzero≠fone {n = n} = SumFin≡≃ (suc (suc n)) fzero (fsuc fzero) .fst Fin>0→isInhab : (n : ℕ) → 0 < n → Fin n Fin>0→isInhab 0 p = ⊥.rec (¬-<-zero p) Fin>0→isInhab (suc n) p = fzero Fin>1→hasNonEqualTerm : (n : ℕ) → 1 < n → Σ[ i ∈ Fin n ] Σ[ j ∈ Fin n ] ¬ i ≡ j Fin>1→hasNonEqualTerm 0 p = ⊥.rec (snotz (≤0→≡0 p)) Fin>1→hasNonEqualTerm 1 p = ⊥.rec (snotz (≤0→≡0 (pred-≤-pred p))) Fin>1→hasNonEqualTerm (suc (suc n)) _ = fzero , fsuc fzero , fzero≠fone isEmpty→Fin≡0 : (n : ℕ) → ¬ Fin n → 0 ≡ n isEmpty→Fin≡0 0 _ = refl isEmpty→Fin≡0 (suc n) p = ⊥.rec (p fzero) isInhab→Fin>0 : (n : ℕ) → Fin n → 0 < n isInhab→Fin>0 0 i = ⊥.rec i isInhab→Fin>0 (suc n) _ = suc-≤-suc zero-≤ hasNonEqualTerm→Fin>1 : (n : ℕ) → (i j : Fin n) → ¬ i ≡ j → 1 < n hasNonEqualTerm→Fin>1 0 i _ _ = ⊥.rec i hasNonEqualTerm→Fin>1 1 i j p = ⊥.rec (p (isContr→isProp isContrSumFin1 i j)) hasNonEqualTerm→Fin>1 (suc (suc n)) _ _ _ = suc-≤-suc (suc-≤-suc zero-≤) Fin≤1→isProp : (n : ℕ) → n ≤ 1 → isProp (Fin n) Fin≤1→isProp 0 _ = isProp⊥ Fin≤1→isProp 1 _ = isContr→isProp isContrSumFin1 Fin≤1→isProp (suc (suc n)) p = ⊥.rec (¬-<-zero (pred-≤-pred p)) isProp→Fin≤1 : (n : ℕ) → isProp (Fin n) → n ≤ 1 isProp→Fin≤1 0 _ = ≤-solver 0 1 isProp→Fin≤1 1 _ = ≤-solver 1 1 isProp→Fin≤1 (suc (suc n)) p = ⊥.rec (fzero≠fone (p fzero (fsuc fzero))) -- automorphisms of SumFin SumFin≃≃ : (n : ℕ) → (Fin n ≃ Fin n) ≃ Fin (LehmerCode.factorial n) SumFin≃≃ _ = equivComp (SumFin≃Fin _) (SumFin≃Fin _) ⋆ LehmerCode.lehmerEquiv ⋆ LehmerCode.lehmerFinEquiv ⋆ invEquiv (SumFin≃Fin _)
{ "alphanum_fraction": 0.6042273266, "avg_line_length": 33.967032967, "ext": "agda", "hexsha": "896a6e3c565f3c81d9f7cd1673cfd01478ae7d34", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Data/SumFin/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Data/SumFin/Properties.agda", "max_line_length": 99, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Data/SumFin/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4413, "size": 9273 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Functions.Definition open import Lists.Definition open import Lists.Fold.Fold open import Lists.Length module Lists.Map.Map where map : {a b : _} {A : Set a} {B : Set b} (f : A → B) → List A → List B map f [] = [] map f (x :: list) = (f x) :: (map f list) map' : {a b : _} {A : Set a} {B : Set b} (f : A → B) → List A → List B map' f = fold (λ a → (f a) ::_ ) [] map=map' : {a b : _} {A : Set a} {B : Set b} (f : A → B) → (l : List A) → (map f l ≡ map' f l) map=map' f [] = refl map=map' f (x :: l) with map=map' f l ... | bl = applyEquality (f x ::_) bl mapId : {a : _} {A : Set a} (l : List A) → map id l ≡ l mapId [] = refl mapId (x :: l) rewrite mapId l = refl mapMap : {a b c : _} {A : Set a} {B : Set b} {C : Set c} → (l : List A) → {f : A → B} {g : B → C} → map g (map f l) ≡ map (g ∘ f) l mapMap [] = refl mapMap (x :: l) {f = f} {g} rewrite mapMap l {f} {g} = refl mapExtension : {a b : _} {A : Set a} {B : Set b} (l : List A) (f g : A → B) → ({x : A} → (f x ≡ g x)) → map f l ≡ map g l mapExtension [] f g pr = refl mapExtension (x :: l) f g pr rewrite mapExtension l f g pr | pr {x} = refl mapConcat : {a b : _} {A : Set a} {B : Set b} (l1 l2 : List A) (f : A → B) → map f (l1 ++ l2) ≡ (map f l1) ++ (map f l2) mapConcat [] l2 f = refl mapConcat (x :: l1) l2 f rewrite mapConcat l1 l2 f = refl lengthMap : {a b : _} {A : Set a} {B : Set b} → (l : List A) → {f : A → B} → length l ≡ length (map f l) lengthMap [] {f} = refl lengthMap (x :: l) {f} rewrite lengthMap l {f} = refl
{ "alphanum_fraction": 0.527375708, "avg_line_length": 37.8333333333, "ext": "agda", "hexsha": "faf757235ff89f89955b52b021a174b30d442e5b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Lists/Map/Map.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Lists/Map/Map.agda", "max_line_length": 131, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Lists/Map/Map.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 661, "size": 1589 }
module Structure.Container.SetLike where {- open import Data.Boolean open import Data.Boolean.Stmt open import Functional open import Lang.Instance import Lvl open import Logic open import Logic.Propositional open import Logic.Predicate open import Structure.Setoid renaming (_≡_ to _≡ₛ_ ; _≢_ to _≢ₛ_) open import Structure.Function.Domain open import Structure.Function open import Structure.Operator open import Structure.Relator.Equivalence open import Structure.Relator.Properties open import Structure.Relator hiding (module Names) open import Type.Properties.Inhabited open import Type private variable ℓ ℓ₁ ℓ₂ ℓ₃ ℓ₄ ℓ₅ ℓ₆ ℓ₇ ℓ₈ ℓ₉ ℓ₁₀ ℓₗ ℓₗ₁ ℓₗ₂ ℓₗ₃ : Lvl.Level private variable A B C C₁ C₂ Cₒ Cᵢ E E₁ E₂ : Type{ℓ} private variable _∈_ _∈ₒ_ _∈ᵢ_ : E → C module _ {C : Type{ℓ₁}} {E : Type{ℓ₂}} (_∈_ : E → C → Stmt{ℓ₃}) where -- TODO: Maybe generalize C so that it becomes "indexed": `(C : (i : I) → Type{ℓ₁(i)})`? Is it neccessary? Which set-like structures does not fit with the definitions below? record SetLike {ℓ₄} : Type{ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓ₃ Lvl.⊔ Lvl.𝐒(ℓ₄)} where field _≡_ : C → C → Stmt{ℓ₄} field [≡]-membership : ∀{a b} → (a ≡ b) ↔ (∀{x} → (x ∈ a) ↔ (x ∈ b)) _∋_ : C → E → Stmt _∋_ = swap(_∈_) _∉_ : E → C → Stmt _∉_ = (¬_) ∘₂ (_∈_) _≢_ : C → C → Stmt _≢_ = (¬_) ∘₂ (_≡_) -- A type such that its inhabitants is the elements of the set `S`. SetElement : C → Stmt SetElement(S) = ∃(_∈ S) record SubsetRelation {ℓ₄} : Type{ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓ₃ Lvl.⊔ Lvl.𝐒(ℓ₄)} where field _⊆_ : C → C → Stmt{ℓ₄} Membership = ∀{a b} → (a ⊆ b) ↔ (∀{x} → (x ∈ a) → (x ∈ b)) field [⊆]-membership : Membership _⊇_ : C → C → Stmt _⊇_ = swap(_⊆_) _⊈_ : C → C → Stmt _⊈_ = (¬_) ∘₂ (_⊆_) _⊉_ : C → C → Stmt _⊉_ = (¬_) ∘₂ (_⊇_) open SubsetRelation ⦃ ... ⦄ hiding (Membership ; membership) public module Subset ⦃ inst ⦄ = SubsetRelation(inst) module FunctionProperties where module Names where _closed-under₁_ : C → (E → E) → Stmt -- TODO: Maybe possible to generalize over n S closed-under₁ f = (∀{x} → (x ∈ S) → (f(x) ∈ S)) _closed-under₂_ : C → (E → E → E) → Stmt S closed-under₂ (_▫_) = (∀{x y} → (x ∈ S) → (y ∈ S) → ((x ▫ y) ∈ S)) open import Lang.Instance module _ (S : C) (f : E → E) where record _closed-under₁_ : Stmt{Lvl.of(S Names.closed-under₁ f)} where constructor intro field proof : S Names.closed-under₁ f _closureUnder₁_ = inst-fn _closed-under₁_.proof module _ (S : C) (_▫_ : E → E → E) where record _closed-under₂_ : Stmt{Lvl.of(S Names.closed-under₂ (_▫_))} where constructor intro field proof : S Names.closed-under₂ (_▫_) _closureUnder₂_ = inst-fn _closed-under₂_.proof module _ (_∈_ : _) ⦃ setLike : SetLike{ℓ₁}{ℓ₂}{ℓ₃}{C}{E} (_∈_) {ℓ₄} ⦄ where open SetLike(setLike) module Names where record EmptySet : Type{ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓ₃} where field ∅ : C Membership = ∀{x} → (x ∉ ∅) field membership : Membership open EmptySet ⦃ ... ⦄ hiding (Membership ; membership) public module Empty ⦃ inst ⦄ = EmptySet(inst) {-# DISPLAY EmptySet.∅ = ∅ #-} record UniversalSet : Type{ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓ₃} where field 𝐔 : C Membership = ∀{x} → (x ∈ 𝐔) field membership : Membership open UniversalSet ⦃ ... ⦄ hiding (Membership ; membership) public module Universal ⦃ inst ⦄ = UniversalSet(inst) record UnionOperator : Type{ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓ₃} where field _∪_ : C → C → C Membership = ∀{a b}{x} → (x ∈ (a ∪ b)) ↔ ((x ∈ a) ∨ (x ∈ b)) field membership : Membership open UnionOperator ⦃ ... ⦄ hiding (Membership ; membership) public module Union ⦃ inst ⦄ = UnionOperator(inst) record IntersectionOperator : Type{ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓ₃} where field _∩_ : C → C → C Membership = ∀{a b}{x} → (x ∈ (a ∩ b)) ↔ ((x ∈ a) ∧ (x ∈ b)) field membership : Membership open IntersectionOperator ⦃ ... ⦄ hiding (Membership ; membership) public module Intersection ⦃ inst ⦄ = IntersectionOperator(inst) {-# DISPLAY IntersectionOperator._∩_ = _∩_ #-} record WithoutOperator : Type{ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓ₃} where field _∖_ : C → C → C Membership = ∀{a b}{x} → (x ∈ (a ∖ b)) ↔ ((x ∈ a) ∧ (x ∉ b)) field membership : Membership open WithoutOperator ⦃ ... ⦄ hiding (Membership ; membership) public module Without ⦃ inst ⦄ = WithoutOperator(inst) record ComplementOperator : Type{ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓ₃} where field ∁ : C → C Membership = ∀{a}{x} → (x ∈ (∁ a)) ↔ (x ∉ a) field membership : Membership open ComplementOperator ⦃ ... ⦄ hiding (Membership ; membership) public module Complement ⦃ inst ⦄ = ComplementOperator(inst) module _ {I : Type{ℓ}} ⦃ equiv-I : Equiv{ℓₗ₁}(I) ⦄ ⦃ equiv-E : Equiv{ℓₗ₂}(E) ⦄ where record ImageOperator : Type{ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓ₃ Lvl.⊔ ℓ Lvl.⊔ ℓₗ₁ Lvl.⊔ ℓₗ₂} where field ⊶ : (f : I → E) → ⦃ func : Function(f) ⦄ → C Membership = ∀{f} ⦃ func : Function(f) ⦄ → ∀{y} → (y ∈ (⊶ f)) ↔ ∃(x ↦ f(x) ≡ₛ y) field membership : Membership open ImageOperator ⦃ ... ⦄ hiding (Membership ; membership) public module Image ⦃ inst ⦄ = ImageOperator(inst) module _ ⦃ _ : Equiv{ℓₗ}(E) ⦄ where record SingletonSet : Type{ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓ₃ Lvl.⊔ ℓₗ} where field singleton : E → C Membership = ∀{y}{x} → (x ∈ singleton(y)) ↔ (x ≡ₛ y) field membership : Membership open SingletonSet ⦃ ... ⦄ hiding (Membership ; membership) public module Singleton ⦃ inst ⦄ = SingletonSet(inst) record PairSet : Type{ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓ₃ Lvl.⊔ ℓₗ} where field pair : E → E → C Membership = ∀{y₁ y₂}{x} → (x ∈ pair y₁ y₂) ↔ (x ≡ₛ y₁)∨(x ≡ₛ y₂) field membership : Membership open PairSet ⦃ ... ⦄ hiding (Membership ; membership) public module Pair ⦃ inst ⦄ = PairSet(inst) record AddFunction : Type{ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓ₃ Lvl.⊔ ℓₗ} where field add : E → C → C Membership = ∀{y}{a}{x} → (x ∈ add y a) ↔ ((x ∈ a) ∨ (x ≡ₛ y)) field membership : Membership open AddFunction ⦃ ... ⦄ hiding (Membership ; membership) public module Add ⦃ inst ⦄ = AddFunction(inst) record RemoveFunction : Type{ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓ₃ Lvl.⊔ ℓₗ} where field remove : E → C → C Membership = ∀{y}{a}{x} → (x ∈ remove y a) ↔ ((x ∈ a) ∧ (x ≢ₛ y)) field membership : Membership open RemoveFunction ⦃ ... ⦄ hiding (Membership ; membership) public module Remove ⦃ inst ⦄ = RemoveFunction(inst) module _ {ℓ} where record FilterFunction : Type{ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓ₃ Lvl.⊔ Lvl.𝐒(ℓ) Lvl.⊔ ℓₗ} where field filter : (P : E → Stmt{ℓ}) ⦃ unaryRelator : UnaryRelator(P) ⦄ → (C → C) Membership = ∀{A}{P} ⦃ unaryRelator : UnaryRelator(P) ⦄ {x} → (x ∈ filter P(A)) ↔ ((x ∈ A) ∧ P(x)) field membership : Membership open FilterFunction ⦃ ... ⦄ hiding (Membership ; membership) public module Filter ⦃ inst ⦄ = FilterFunction(inst) record BooleanFilterFunction : Type{ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓ₃} where field boolFilter : (E → Bool) → (C → C) Membership = ∀{A}{P}{x} → (x ∈ boolFilter P(A)) ↔ ((x ∈ A) ∧ IsTrue(P(x))) field membership : Membership open BooleanFilterFunction ⦃ ... ⦄ hiding (Membership ; membership) public module BooleanFilter ⦃ inst ⦄ = BooleanFilterFunction(inst) module _ (_∈_ : _) ⦃ setLike : SetLike{ℓ₁}{ℓ₂}{ℓ₃}{C}{E} (_∈_) {ℓ₄} ⦄ ⦃ equiv-E : Equiv{ℓₗ₁}(E) ⦄ {O : Type{ℓ₆}} ⦃ equiv-O : Equiv{ℓₗ₂}(O) ⦄ where record UnapplyFunction : Type{ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓ₃ Lvl.⊔ ℓ₆ Lvl.⊔ ℓₗ₁ Lvl.⊔ ℓₗ₂} where field unapply : (f : E → O) ⦃ func : Function(f) ⦄ → O → C Membership = ∀{f} ⦃ func : Function(f) ⦄ {y}{x} → (x ∈ unapply f(y)) ↔ (f(x) ≡ₛ y) field membership : Membership open UnapplyFunction ⦃ ... ⦄ hiding (Membership ; membership) public module Unapply ⦃ inst ⦄ = UnapplyFunction(inst) module _ ⦃ equiv-E₁ : Equiv{ℓₗ₁}(E₁) ⦄ (_∈₁_ : _) ⦃ setLike₁ : SetLike{ℓ₁}{ℓ₂}{ℓ₃}{C₁}{E₁} (_∈₁_) {ℓ₄} ⦄ ⦃ equiv-E₂ : Equiv{ℓₗ₂}(E₂) ⦄ (_∈₂_ : _) ⦃ setLike₂ : SetLike{ℓ₆}{ℓ₇}{ℓ₈}{C₂}{E₂} (_∈₂_) {ℓ₉} ⦄ where open SetLike ⦃ … ⦄ record MapFunction : Type{ℓₗ₁ Lvl.⊔ ℓₗ₂ Lvl.⊔ ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓ₃ Lvl.⊔ ℓ₆ Lvl.⊔ ℓ₇ Lvl.⊔ ℓ₈} where field map : (f : E₁ → E₂) ⦃ func : Function(f) ⦄ → (C₁ → C₂) Membership = ∀{f} ⦃ func : Function(f) ⦄ {A}{y} → (y ∈₂ map f(A)) ↔ ∃(x ↦ (x ∈₁ A) ∧ (f(x) ≡ₛ y)) field membership : Membership open MapFunction ⦃ ... ⦄ hiding (Membership ; membership) public module Map ⦃ inst ⦄ = MapFunction(inst) record UnmapFunction : Type{ℓₗ₁ Lvl.⊔ ℓₗ₂ Lvl.⊔ ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓ₃ Lvl.⊔ ℓ₆ Lvl.⊔ ℓ₇ Lvl.⊔ ℓ₈} where field unmap : (f : E₁ → E₂) ⦃ func : Function(f) ⦄ → (C₂ → C₁) Membership = ∀{f} ⦃ func : Function(f) ⦄ {A}{x} → (x ∈₁ unmap f(A)) ↔ (f(x) ∈₂ A) field membership : Membership open UnmapFunction ⦃ ... ⦄ hiding (Membership ; membership) public module Unmap ⦃ inst ⦄ = UnmapFunction(inst) module _ (_∈ₒ_ : _) ⦃ outer-setLike : SetLike{ℓ₁}{ℓ₂}{ℓ₃}{Cₒ}{Cᵢ} (_∈ₒ_) {ℓ₄} ⦄ (_∈ᵢ_ : _) ⦃ inner-setLike : SetLike{ℓ₂}{ℓ₆}{ℓ₇}{Cᵢ}{E} (_∈ᵢ_) {ℓ₈} ⦄ where open SetLike ⦃ … ⦄ record PowerFunction ⦃ subset : SubsetRelation(_∈ᵢ_){ℓ₄ = ℓ₉} ⦄ : Type{ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓ₃ Lvl.⊔ ℓ₈} where field ℘ : Cᵢ → Cₒ Membership = ∀{A x} → (x ∈ₒ ℘(A)) ↔ (x ⊆ A) field membership : Membership open PowerFunction ⦃ ... ⦄ hiding (Membership ; membership) public module Power ⦃ inst ⦄ = PowerFunction(inst) record BigUnionOperator : Type{ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓ₃ Lvl.⊔ ℓ₆ Lvl.⊔ ℓ₇} where field ⋃ : Cₒ → Cᵢ Membership = ∀{A}{x} → (x ∈ᵢ (⋃ A)) ↔ ∃(a ↦ (a ∈ₒ A) ∧ (x ∈ᵢ a)) field membership : Membership open BigUnionOperator ⦃ ... ⦄ hiding (Membership ; membership) public module BigUnion ⦃ inst ⦄ = BigUnionOperator(inst) record BigIntersectionOperator : Type{ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓ₃ Lvl.⊔ ℓ₆ Lvl.⊔ ℓ₇} where field ⋂ : Cₒ → Cᵢ Membership = ∀{A} → ∃(_∈ₒ A) → ∀{x} → (x ∈ᵢ (⋂ A)) ↔ (∀{a} → (a ∈ₒ A) → (x ∈ᵢ a)) field membership : Membership open BigIntersectionOperator ⦃ ... ⦄ hiding (Membership ; membership) public module BigIntersection ⦃ inst ⦄ = BigIntersectionOperator(inst) module _ {I : Type{ℓ}} ⦃ equiv-I : Equiv{ℓₗ₁}(I) ⦄ ⦃ equiv-E : Equiv{ℓₗ₂}(E) ⦄ (_∈_ : _) ⦃ setLike : SetLike{ℓ₁}{ℓ₂}{ℓ₃}{C}{E} (_∈_) {ℓ₄}{ℓ₅} ⦄ where record IndexedBigUnionOperator : Type{ℓ Lvl.⊔ ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓ₃} where field ⋃ᵢ : (I → C) → C Membership = ∀{Ai}{x} → (x ∈ (⋃ᵢ Ai)) ↔ ∃(i ↦ (x ∈ Ai(i))) field membership : Membership open IndexedBigUnionOperator ⦃ ... ⦄ hiding (Membership ; membership) public module IndexedBigUnion ⦃ inst ⦄ = IndexedBigUnionOperator(inst) record IndexedBigIntersectionOperator : Type{ℓ Lvl.⊔ ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓ₃} where field ⋂ᵢ : (I → C) → C Membership = ∀{Ai} → ◊(I) → ∀{x} → (x ∈ (⋂ᵢ Ai)) ↔ (∀{i} → (x ∈ Ai(i))) field membership : Membership open IndexedBigIntersectionOperator ⦃ ... ⦄ hiding (Membership ; membership) public module IndexedBigIntersection ⦃ inst ⦄ = IndexedBigIntersectionOperator(inst) {- open SetLike ⦃ … ⦄ using ( _∈_ ; _⊆_ ; _≡_ ; _∋_ ; _⊇_ ; _∉_ ; _⊈_ ; _⊉_ ; _≢_ ; ∅ ; _∪_ ; _∩_ ; _∖_ ; singleton ; add ; remove ) -} -}
{ "alphanum_fraction": 0.5990532333, "avg_line_length": 42.4090909091, "ext": "agda", "hexsha": "9d15816a69dfbdb3686f27fea0128a3145becbc4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Container/SetLike.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Container/SetLike.agda", "max_line_length": 243, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Container/SetLike.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 4858, "size": 11196 }
{-# OPTIONS --cubical-compatible --show-implicit #-} -- {-# OPTIONS -v tc.data.sort:20 -v tc.lhs.split.well-formed:100 #-} module WithoutK5 where -- Equality defined with one index. data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x weak-K : {A : Set} {a b : A} (p q : a ≡ b) (α β : p ≡ q) → α ≡ β weak-K refl .refl refl refl = refl
{ "alphanum_fraction": 0.5843023256, "avg_line_length": 26.4615384615, "ext": "agda", "hexsha": "4e54ab93f02e0e0a87e6c36371551de910b74fd4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Fail/WithoutK5.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Fail/WithoutK5.agda", "max_line_length": 69, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Fail/WithoutK5.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 126, "size": 344 }
-- Andreas, 2016-02-21 issue 1862 reported by nad -- {-# OPTIONS -v tc.decl:10 -v tc.def.where:10 -v tc.meta:10 -v tc.size.solve:100 #-} open import Common.Size data Nat (i : Size) : Set where zero : Nat i suc : (j : Size< i) (n : Nat j) → Nat i id : ∀ i → Nat i → Nat i id _ zero = zero id _ (suc j n) = s where mutual s = suc _ r -- should not be instantiated to ∞x r = id _ n
{ "alphanum_fraction": 0.5717761557, "avg_line_length": 24.1764705882, "ext": "agda", "hexsha": "469e14f0cf826adecbe78b9400a89d0f2239992e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/SizeInfinity.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/SizeInfinity.agda", "max_line_length": 86, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/SizeInfinity.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 152, "size": 411 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Span open import lib.types.Pointed open import lib.types.Pushout open import lib.types.PushoutFlattening open import lib.types.Unit open import lib.types.Paths open import lib.types.Lift open import lib.cubical.Square -- Suspension is defined as a particular case of pushout module lib.types.Suspension where module _ {i} (A : Type i) where suspension-span : Span suspension-span = span Unit Unit A (λ _ → tt) (λ _ → tt) Suspension : Type i Suspension = Pushout suspension-span -- [north'] and [south'] explictly ask for [A] north' : Suspension north' = left tt south' : Suspension south' = right tt module _ {i} {A : Type i} where north : Suspension A north = north' A south : Suspension A south = south' A merid : A → north == south merid x = glue x module SuspensionElim {j} {P : Suspension A → Type j} (n : P north) (s : P south) (p : (x : A) → n == s [ P ↓ merid x ]) where open module P = PushoutElim (λ _ → n) (λ _ → s) p public using (f) renaming (glue-β to merid-β) open SuspensionElim public using () renaming (f to Suspension-elim) module SuspensionRec {j} {C : Type j} (n s : C) (p : A → n == s) where open module P = PushoutRec {d = suspension-span A} (λ _ → n) (λ _ → s) p public using (f) renaming (glue-β to merid-β) open SuspensionRec public using () renaming (f to Suspension-rec) module SuspensionRecType {j} (n s : Type j) (p : A → n ≃ s) = PushoutRecType {d = suspension-span A} (λ _ → n) (λ _ → s) p suspension-⊙span : ∀ {i} → Ptd i → ⊙Span suspension-⊙span X = ⊙span ⊙Unit ⊙Unit X (⊙cst {X = X}) (⊙cst {X = X}) ⊙Susp : ∀ {i} → Ptd i → Ptd i ⊙Susp (A , _) = ⊙[ Suspension A , north ] σloop : ∀ {i} (X : Ptd i) → fst X → north' (fst X) == north' (fst X) σloop (_ , x₀) x = merid x ∙ ! (merid x₀) σloop-pt : ∀ {i} {X : Ptd i} → σloop X (snd X) == idp σloop-pt {X = (_ , x₀)} = !-inv-r (merid x₀) module FlipSusp {i} {A : Type i} = SuspensionRec (south' A) north (! ∘ merid) flip-susp : ∀ {i} {A : Type i} → Suspension A → Suspension A flip-susp = FlipSusp.f ⊙flip-susp : ∀ {i} (X : Ptd i) → fst (⊙Susp X ⊙→ ⊙Susp X) ⊙flip-susp X = (flip-susp , ! (merid (snd X))) module _ {i j} where module SuspFmap {A : Type i} {B : Type j} (f : A → B) = SuspensionRec north south (merid ∘ f) susp-fmap : {A : Type i} {B : Type j} (f : A → B) → (Suspension A → Suspension B) susp-fmap = SuspFmap.f ⊙susp-fmap : {X : Ptd i} {Y : Ptd j} (f : fst (X ⊙→ Y)) → fst (⊙Susp X ⊙→ ⊙Susp Y) ⊙susp-fmap (f , fpt) = (susp-fmap f , idp) module _ {i} where susp-fmap-idf : (A : Type i) → ∀ a → susp-fmap (idf A) a == a susp-fmap-idf A = Suspension-elim idp idp $ λ a → ↓-='-in (ap-idf (merid a) ∙ ! (SuspFmap.merid-β (idf A) a)) ⊙susp-fmap-idf : (X : Ptd i) → ⊙susp-fmap (⊙idf X) == ⊙idf (⊙Susp X) ⊙susp-fmap-idf X = ⊙λ= (susp-fmap-idf (fst X)) idp module _ {i j} where susp-fmap-cst : {A : Type i} {B : Type j} (b : B) (a : Suspension A) → susp-fmap (cst b) a == north susp-fmap-cst b = Suspension-elim idp (! (merid b)) $ (λ a → ↓-app=cst-from-square $ SuspFmap.merid-β (cst b) a ∙v⊡ tr-square _) ⊙susp-fmap-cst : {X : Ptd i} {Y : Ptd j} → ⊙susp-fmap (⊙cst {X = X} {Y = Y}) == ⊙cst ⊙susp-fmap-cst = ⊙λ= (susp-fmap-cst _) idp module _ {i j k} where susp-fmap-∘ : {A : Type i} {B : Type j} {C : Type k} (g : B → C) (f : A → B) (σ : Suspension A) → susp-fmap (g ∘ f) σ == susp-fmap g (susp-fmap f σ) susp-fmap-∘ g f = Suspension-elim idp idp (λ a → ↓-='-in $ ap-∘ (susp-fmap g) (susp-fmap f) (merid a) ∙ ap (ap (susp-fmap g)) (SuspFmap.merid-β f a) ∙ SuspFmap.merid-β g (f a) ∙ ! (SuspFmap.merid-β (g ∘ f) a)) ⊙susp-fmap-∘ : {X : Ptd i} {Y : Ptd j} {Z : Ptd k} (g : fst (Y ⊙→ Z)) (f : fst (X ⊙→ Y)) → ⊙susp-fmap (g ⊙∘ f) == ⊙susp-fmap g ⊙∘ ⊙susp-fmap f ⊙susp-fmap-∘ g f = ⊙λ= (susp-fmap-∘ (fst g) (fst f)) idp {- Extract the 'glue component' of a pushout -} module _ {i j k} {s : Span {i} {j} {k}} where module ExtGlue = PushoutRec {d = s} {D = Suspension (Span.C s)} (λ _ → north) (λ _ → south) merid ext-glue = ExtGlue.f module _ {x₀ : Span.A s} where ⊙ext-glue : fst ((Pushout s , left x₀) ⊙→ (Suspension (Span.C s) , north)) ⊙ext-glue = (ext-glue , idp) module _ {i j} {A : Type i} {B : Type j} where equiv-Suspension : A ≃ B → Suspension A ≃ Suspension B equiv-Suspension eq = equiv to from to-from from-to where module To = SuspensionRec north south (λ a → merid (–> eq a)) module From = SuspensionRec north south (λ b → merid (<– eq b)) to : Suspension A → Suspension B to = To.f from : Suspension B → Suspension A from = From.f to-from : ∀ b → to (from b) == b to-from = Suspension-elim idp idp to-from-merid where to-from-merid : ∀ b → idp == idp [ (λ b → to (from b) == b) ↓ merid b ] to-from-merid b = ↓-app=idf-in $ idp ∙' merid b =⟨ ∙'-unit-l (merid b) ⟩ merid b =⟨ ! $ <–-inv-r eq b |in-ctx merid ⟩ merid (–> eq (<– eq b)) =⟨ ! $ To.merid-β (<– eq b) ⟩ ap to (merid (<– eq b)) =⟨ ! $ From.merid-β b |in-ctx ap To.f ⟩ ap to (ap from (merid b)) =⟨ ! $ ap-∘ to from (merid b) ⟩ ap (to ∘ from) (merid b) =⟨ ! $ ∙-unit-r (ap (to ∘ from) (merid b)) ⟩ ap (to ∘ from) (merid b) ∙ idp ∎ from-to : ∀ a → from (to a) == a from-to = Suspension-elim idp idp from-to-merid where from-to-merid : ∀ a → idp == idp [ (λ a → from (to a) == a) ↓ merid a ] from-to-merid a = ↓-app=idf-in $ idp ∙' merid a =⟨ ∙'-unit-l (merid a) ⟩ merid a =⟨ ! $ <–-inv-l eq a |in-ctx merid ⟩ merid (<– eq (–> eq a)) =⟨ ! $ From.merid-β (–> eq a) ⟩ ap from (merid (–> eq a)) =⟨ ! $ To.merid-β a |in-ctx ap From.f ⟩ ap from (ap to (merid a)) =⟨ ! $ ap-∘ from to (merid a) ⟩ ap (from ∘ to) (merid a) =⟨ ! $ ∙-unit-r (ap (from ∘ to) (merid a)) ⟩ ap (from ∘ to) (merid a) ∙ idp ∎ module _ {i j} {X : Ptd i} {Y : Ptd j} where ⊙equiv-⊙Susp : X ⊙≃ Y → ⊙Susp X ⊙≃ ⊙Susp Y ⊙equiv-⊙Susp ⊙eq = ⊙≃-in (equiv-Suspension (fst (⊙≃-out ⊙eq))) idp {- Interaction with [Lift] -} module _ {i j} (X : Type i) where Suspension-Lift-equiv-Lift-Suspension : Suspension (Lift {j = j} X) ≃ Lift {j = j} (Suspension X) Suspension-Lift-equiv-Lift-Suspension = lift-equiv ∘e equiv-Suspension lower-equiv Suspension-Lift : Suspension (Lift {j = j} X) == Lift {j = j} (Suspension X) Suspension-Lift = ua Suspension-Lift-equiv-Lift-Suspension module _ {i j} (X : Ptd i) where ⊙Susp-⊙Lift-⊙equiv-⊙Lift-⊙Susp : ⊙Susp (⊙Lift {j = j} X) ⊙≃ ⊙Lift {j = j} (⊙Susp X) ⊙Susp-⊙Lift-⊙equiv-⊙Lift-⊙Susp = ⊙lift-equiv {j = j} ⊙∘e ⊙equiv-⊙Susp {X = ⊙Lift {j = j} X} {Y = X} ⊙lower-equiv ⊙Susp-⊙Lift : ⊙Susp (⊙Lift {j = j} X) == ⊙Lift {j = j} (⊙Susp X) ⊙Susp-⊙Lift = ⊙ua ⊙Susp-⊙Lift-⊙equiv-⊙Lift-⊙Susp
{ "alphanum_fraction": 0.54539057, "avg_line_length": 31.8609865471, "ext": "agda", "hexsha": "a4f31aaadeb18845302a40d8f6e723d2c6d8befd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Suspension.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Suspension.agda", "max_line_length": 114, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Suspension.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2952, "size": 7105 }
module MLib.Algebra.PropertyCode.Core where open import MLib.Prelude open import MLib.Finite import MLib.Finite.Properties as FiniteProps open import MLib.Algebra.PropertyCode.RawStruct import Relation.Unary as U using (Decidable) open import Relation.Binary as B using (Setoid) open List.All using (All; _∷_; []) open import Data.List.Any using (Any; here; there) open import Data.List.Membership.Propositional using (_∈_) open import Data.Vec.N-ary open import Data.Product.Relation.SigmaPropositional as OverΣ using (OverΣ) open import Data.Bool using (T) open import Category.Applicative open LeftInverse using () renaming (_∘_ to _∘ⁱ_) open FE using (_⇨_; cong) open import Function.Equivalence using (Equivalence) open Table using (Table) open Algebra using (IdempotentCommutativeMonoid) -------------------------------------------------------------------------------- -- Extra theorems about bools -------------------------------------------------------------------------------- open Bool module BoolExtra where _⇒_ : Bool → Bool → Bool false ⇒ false = true false ⇒ true = true true ⇒ false = false true ⇒ true = true true⇒ : ∀ {x} → true ⇒ x ≡ x true⇒ {false} = ≡.refl true⇒ {true} = ≡.refl MP : ∀ {x y} → T (x ⇒ y) → T x → T y MP {false} {false} _ () MP {false} {true} _ _ = tt MP {true} {false} () MP {true} {true} _ _ = tt abs : ∀ {x y} → (T x → T y) → T (x ⇒ y) abs {false} {false} f = tt abs {false} {true} f = tt abs {true} {false} f = f tt abs {true} {true} f = tt ∧-elim : ∀ {x y} → T (x ∧ y) → T x × T y ∧-elim {false} {false} () ∧-elim {false} {true} () ∧-elim {true} {false} () ∧-elim {true} {true} p = tt , tt -------------------------------------------------------------------------------- -- Universe of properties -------------------------------------------------------------------------------- data PropKind : Set where associative commutative idempotent selective cancellative leftIdentity rightIdentity leftZero rightZero distributesOverˡ distributesOverʳ : PropKind opArities : PropKind → List ℕ opArities associative = 2 ∷ [] opArities commutative = 2 ∷ [] opArities idempotent = 2 ∷ [] opArities selective = 2 ∷ [] opArities cancellative = 2 ∷ [] opArities leftIdentity = 0 ∷ 2 ∷ [] opArities rightIdentity = 0 ∷ 2 ∷ [] opArities leftZero = 0 ∷ 2 ∷ [] opArities rightZero = 0 ∷ 2 ∷ [] opArities distributesOverˡ = 2 ∷ 2 ∷ [] opArities distributesOverʳ = 2 ∷ 2 ∷ [] module _ {c ℓ k} {K : ℕ → Set k} (rawStruct : RawStruct K c ℓ) where open RawStruct rawStruct open Algebra.FunctionProperties _≈_ interpret : (π : PropKind) → All K (opArities π) → Set (c ⊔ˡ ℓ) interpret associative (∙ ∷ []) = Associative ⟦ ∙ ⟧ interpret commutative (∙ ∷ []) = Commutative ⟦ ∙ ⟧ interpret idempotent (∙ ∷ []) = Idempotent ⟦ ∙ ⟧ interpret selective (∙ ∷ []) = Selective ⟦ ∙ ⟧ interpret cancellative (∙ ∷ []) = Cancellative ⟦ ∙ ⟧ interpret leftIdentity (ε ∷ ∙ ∷ []) = LeftIdentity ⟦ ε ⟧ ⟦ ∙ ⟧ interpret rightIdentity (ε ∷ ∙ ∷ []) = RightIdentity ⟦ ε ⟧ ⟦ ∙ ⟧ interpret leftZero (ω ∷ ∙ ∷ []) = LeftZero ⟦ ω ⟧ ⟦ ∙ ⟧ interpret rightZero (ω ∷ ∙ ∷ []) = RightZero ⟦ ω ⟧ ⟦ ∙ ⟧ interpret distributesOverˡ (* ∷ + ∷ []) = ⟦ * ⟧ DistributesOverˡ ⟦ + ⟧ interpret distributesOverʳ (* ∷ + ∷ []) = ⟦ * ⟧ DistributesOverʳ ⟦ + ⟧ Property : ∀ {k} (K : ℕ → Set k) → Set k Property K = ∃ (All K ∘ opArities) module PropertyC where natsEqual : ℕ → ℕ → Bool natsEqual Nat.zero Nat.zero = true natsEqual Nat.zero (Nat.suc y) = false natsEqual (Nat.suc x) Nat.zero = false natsEqual (Nat.suc x) (Nat.suc y) = natsEqual x y aritiesMatch : List ℕ → List ℕ → Bool aritiesMatch [] [] = true aritiesMatch [] (x ∷ ys) = false aritiesMatch (x ∷ xs) [] = false aritiesMatch (x ∷ xs) (y ∷ ys) = natsEqual x y ∧ aritiesMatch xs ys natsEqual-correct : ∀ {m n} → T (natsEqual m n) → m ≡ n natsEqual-correct {Nat.zero} {Nat.zero} p = ≡.refl natsEqual-correct {Nat.zero} {Nat.suc n} () natsEqual-correct {Nat.suc m} {Nat.zero} () natsEqual-correct {Nat.suc m} {Nat.suc n} p = ≡.cong Nat.suc (natsEqual-correct p) aritiesMatch-correct : ∀ {xs ys} → T (aritiesMatch xs ys) → xs ≡ ys aritiesMatch-correct {[]} {[]} p = ≡.refl aritiesMatch-correct {[]} {x ∷ ys} () aritiesMatch-correct {x ∷ xs} {[]} () aritiesMatch-correct {x ∷ xs} {y ∷ ys} p = let q , r = BoolExtra.∧-elim {natsEqual x y} p in ≡.cong₂ _∷_ (natsEqual-correct q) (aritiesMatch-correct r) _on_ : ∀ {k} {K : ℕ → Set k} {n : ℕ} (π : PropKind) {_ : T (aritiesMatch (opArities π) (n ∷ []))} → K n → Property K _on_ {K = K} π {match} κ = π , ≡.subst (All K) (≡.sym (aritiesMatch-correct {opArities π} match)) (κ ∷ []) _is_for_ : ∀ {k} {K : ℕ → Set k} {m n : ℕ} → K m → (π : PropKind) {_ : T (aritiesMatch (opArities π) (m ∷ n ∷ []))} → K n → Property K _is_for_ {K = K} α π {match} ∙ = π , ≡.subst (All K) (≡.sym (aritiesMatch-correct {opArities π} match)) (α ∷ ∙ ∷ []) _⟨_⟩ₚ_ = _is_for_ ⟦_⟧P : ∀ {c ℓ k} {K : ℕ → Set k} → Property K → RawStruct K c ℓ → Set (c ⊔ˡ ℓ) ⟦ π , ops ⟧P rawStruct = interpret rawStruct π ops PropKind-IsFiniteSet : IsFiniteSet PropKind _ PropKind-IsFiniteSet = record { ontoFin = record { to = ≡.→-to-⟶ to ; from = ≡.→-to-⟶ from ; left-inverse-of = left-inverse-of } } where open Fin using (#_) renaming (zero to z; suc to s_) N = 11 to : PropKind → Fin N to associative = # 0 to commutative = # 1 to idempotent = # 2 to selective = # 3 to cancellative = # 4 to leftIdentity = # 5 to rightIdentity = # 6 to leftZero = # 7 to rightZero = # 8 to distributesOverˡ = # 9 to distributesOverʳ = # 10 from : Fin N → PropKind from z = associative from (s z) = commutative from (s s z) = idempotent from (s s s z) = selective from (s s s s z) = cancellative from (s s s s s z) = leftIdentity from (s s s s s s z) = rightIdentity from (s s s s s s s z) = leftZero from (s s s s s s s s z) = rightZero from (s s s s s s s s s z) = distributesOverˡ from (s s s s s s s s s s z) = distributesOverʳ from (s s s s s s s s s s s ()) left-inverse-of : ∀ x → from (to x) ≡ x left-inverse-of associative = ≡.refl left-inverse-of commutative = ≡.refl left-inverse-of idempotent = ≡.refl left-inverse-of selective = ≡.refl left-inverse-of cancellative = ≡.refl left-inverse-of leftIdentity = ≡.refl left-inverse-of rightIdentity = ≡.refl left-inverse-of leftZero = ≡.refl left-inverse-of rightZero = ≡.refl left-inverse-of distributesOverˡ = ≡.refl left-inverse-of distributesOverʳ = ≡.refl finitePropKind : FiniteSet _ _ finitePropKind = record { isFiniteSetoid = PropKind-IsFiniteSet } -------------------------------------------------------------------------------- -- Subsets of properties over a particular operator code type -------------------------------------------------------------------------------- record Code k : Set (sucˡ k) where field K : ℕ → Set k boundAt : ℕ → ℕ isFiniteAt : ∀ n → IsFiniteSet (K n) (boundAt n) finiteSetAt : ℕ → FiniteSet _ _ finiteSetAt n = record { isFiniteSetoid = isFiniteAt n } module K n = FiniteSet (finiteSetAt n) module Property where finiteSet : FiniteSet _ _ finiteSet = record { isFiniteSetoid = Σ-isFiniteSetoid PropKind-IsFiniteSet (All-finiteSet finiteSetAt ∘ opArities) } open FiniteSet finiteSet public open FiniteProps finiteSet public ≈⇒≡ : ∀ {π π′} → π ≈ π′ → π ≡ π′ ≈⇒≡ {π , κ} {.π , κ′} (≡.refl , snd) with All′.PW-≡ _ snd ≈⇒≡ {π , κ} {.π , .κ} (≡.refl , snd) | ≡.refl = ≡.refl record IsSubcode {k k′} (sub : Code k) (sup : Code k′) : Set (k ⊔ˡ k′) where constructor subcode private module Sub = Code sub module Sup = Code sup field subK→supK : ∀ {n} → Sub.K n → Sup.K n supK→subK : ∀ {n} → Sup.K n → Maybe (Sub.K n) acrossSub : ∀ {n} (κ : Sub.K n) → supK→subK (subK→supK κ) ≡ just κ mapProperty : ∀ {k k′} {K : ℕ → Set k} {K′ : ℕ → Set k′} → (∀ {n} → K′ n → K n) → Property K′ → Property K mapProperty f (π , κs) = π , List.All.map f κs record Properties {k} (code : Code k) : Set k where constructor properties open Code code using (K; module Property) field hasProperty : Property K → Bool hasPropertyF : Property.setoid ⟶ ≡.setoid Bool _⟨$⟩_ hasPropertyF = hasProperty cong hasPropertyF (≡.refl , q) rewrite All′.PW-≡ K q = ≡.refl open Properties public module _ {k} {code : Code k} where open Code code using (K; module Property) Property-Func : Setoid _ _ Property-Func = Property.setoid ⇨ ≡.setoid Bool Properties-setoid : Setoid _ _ Properties-setoid = record { Carrier = Properties code ; _≈_ = λ Π Π′ → hasPropertyF Π ≈ hasPropertyF Π′ ; isEquivalence = record { refl = λ {Π} → refl {hasPropertyF Π} ; sym = λ {Π} {Π′} → sym {hasPropertyF Π} {hasPropertyF Π′} ; trans = λ {Π} {Π′} {Π′′} → trans {hasPropertyF Π} {hasPropertyF Π′} {hasPropertyF Π′′} } } where open Setoid Property-Func Properties↞Func : LeftInverse Properties-setoid Property-Func Properties↞Func = record { to = record { _⟨$⟩_ = hasPropertyF ; cong = id } ; from = record { _⟨$⟩_ = properties ∘ _⟨$⟩_ ; cong = id } ; left-inverse-of = left-inverse-of } where open Setoid Property.setoid using (_≈_) left-inverse-of : ∀ (Π : Properties code) {π π′} → π ≈ π′ → hasProperty Π π ≡ hasProperty Π π′ left-inverse-of Π (≡.refl , p) rewrite All′.PW-≡ K p = ≡.refl -- Properties↞ℕ : LeftInverse Properties-setoid (≡.setoid ℕ) -- Properties↞ℕ = asNat Property.finiteSet ∘ⁱ Properties↞Func -- Evaluates to 'true' only when every property is present. hasAll : Properties code → Bool hasAll Π = Property.foldMap Bool.∧-idempotentCommutativeMonoid (hasProperty Π) implies : Properties code → Properties code → Bool implies Π₁ Π₂ = Property.foldMap Bool.∧-idempotentCommutativeMonoid (λ π → hasProperty Π₁ π BoolExtra.⇒ hasProperty Π₂ π) -- The full set of properties True : Properties code hasProperty True _ = true -- The empty set of properties False : Properties code hasProperty False _ = false -- Inhabited if the given property is present. Suitable for use as an instance -- argument. record _∈ₚ_ (π : Property K) (Π : Properties code) : Set where instance constructor fromTruth field truth : T (hasProperty Π π) open _∈ₚ_ -- Inhabited if the first set of properties implies the second. Suitable for -- use as an instance argument but difficult to work with. record _⇒ₚ_ (Π₁ Π₂ : Properties code) : Set where instance constructor fromTruth field truth : T (implies Π₁ Π₂) ⊨ : Properties code → Set ⊨ Π = True ⇒ₚ Π -- Inhabited if the first set of properties implies the second. Unsuitable for -- use as an instance argument, but easy to work with. _→ₚ_ : Properties code → Properties code → Set k Π₁ →ₚ Π₂ = ∀ π → π ∈ₚ Π₁ → π ∈ₚ Π₂ ⊢ : Properties code → Set k ⊢ Π = True →ₚ Π -- The two forms of implication are equivalent to each other, as we would hope →ₚ-⇒ₚ : {Π₁ Π₂ : Properties code} → Π₁ →ₚ Π₂ → Π₁ ⇒ₚ Π₂ →ₚ-⇒ₚ {Π₁} {Π₂} p = _⇒ₚ_.fromTruth (Equivalence.from T-≡ ⟨$⟩ impl-true) where open ≡.Reasoning icm = Bool.∧-idempotentCommutativeMonoid impl-pointwise : ∀ π → hasProperty Π₁ π BoolExtra.⇒ hasProperty Π₂ π ≡ true impl-pointwise π = Equivalence.to T-≡ ⟨$⟩ BoolExtra.abs (truth ∘ p π ∘ fromTruth) impl-true : implies Π₁ Π₂ ≡ true impl-true = begin implies Π₁ Π₂ ≡⟨⟩ Property.foldMap icm (λ π → hasProperty Π₁ π BoolExtra.⇒ hasProperty Π₂ π) ≡⟨ Property.foldMap-cong icm impl-pointwise ⟩ Property.foldMap icm (λ _ → true) ≡⟨ proj₁ (IdempotentCommutativeMonoid.identity icm) _ ⟩ true ∧ Property.foldMap icm (λ _ → true) ≡⟨ Property.foldMap-const icm ⟩ true ∎ ⇒ₚ-→ₚ : {Π₁ Π₂ : Properties code} → Π₁ ⇒ₚ Π₂ → Π₁ →ₚ Π₂ ⇒ₚ-→ₚ {Π₁} {Π₂} (fromTruth p) π (fromTruth q) = fromTruth (BoolExtra.MP (Equivalence.from T-≡ ⟨$⟩ impl-π) q) where i = Property.toIx π open ≡.Reasoning icm = Bool.∧-idempotentCommutativeMonoid module ∧ = IdempotentCommutativeMonoid icm implies-true : implies Π₁ Π₂ ≡ true implies-true = Equivalence.to T-≡ ⟨$⟩ p implies-F : Property.setoid ⟶ ≡.setoid Bool implies-F = record { _⟨$⟩_ = λ π → hasProperty Π₁ π BoolExtra.⇒ hasProperty Π₂ π ; cong = λ { {π} {π′} p → ≡.cong₂ BoolExtra._⇒_ (cong (hasPropertyF Π₁) p) (cong (hasPropertyF Π₂) p)} } impl-π : hasProperty Π₁ π BoolExtra.⇒ hasProperty Π₂ π ≡ true impl-π = begin hasProperty Π₁ π BoolExtra.⇒ hasProperty Π₂ π ≡⟨ ≡.sym (proj₂ ∧.identity _) ⟩ (hasProperty Π₁ π BoolExtra.⇒ hasProperty Π₂ π) ∧ true ≡⟨ ∧.∙-cong (≡.refl {x = hasProperty Π₁ π BoolExtra.⇒ hasProperty Π₂ π}) (≡.sym implies-true) ⟩ (hasProperty Π₁ π BoolExtra.⇒ hasProperty Π₂ π) ∧ implies Π₁ Π₂ ≡⟨ Property.enumₜ-complete icm implies-F π ⟩ implies Π₁ Π₂ ≡⟨ implies-true ⟩ true ∎ -- Form a set of properties from a single property singleton : Property K → Properties code hasProperty (singleton π) π′ = ⌊ π Property.≟ π′ ⌋ -- Union of two sets of properties _∪ₚ_ : Properties code → Properties code → Properties code hasProperty (Π₁ ∪ₚ Π₂) π = hasProperty Π₁ π ∨ hasProperty Π₂ π -- Form a set of properties from a list of properties fromList : List (Property K) → Properties code fromList = List.foldr (_∪ₚ_ ∘ singleton) False π-∈ₚ-singleton : ∀ {π} → π ∈ₚ singleton π truth (π-∈ₚ-singleton {π}) with π Property.≟ π truth (π-∈ₚ-singleton {π}) | yes p = _ truth (π-∈ₚ-singleton {π}) | no ¬p = ¬p Property.refl _⊆_ : Properties code → Properties code → Properties code hasProperty (Π₁ ⊆ Π₂) π = not (hasProperty Π₁ π) ∨ hasProperty Π₂ π →ₚ-trans : ∀ {Π₁ Π₂ Π₃} → Π₁ →ₚ Π₂ → Π₂ →ₚ Π₃ → Π₁ →ₚ Π₃ →ₚ-trans {Π₁} p q π = q π ∘ p π ⇒ₚ-trans : ∀ {Π₁ Π₂ Π₃} → Π₁ ⇒ₚ Π₂ → Π₂ ⇒ₚ Π₃ → Π₁ ⇒ₚ Π₃ ⇒ₚ-trans {Π₁} p q = →ₚ-⇒ₚ (→ₚ-trans (⇒ₚ-→ₚ p) (⇒ₚ-→ₚ q)) ⇒ₚ-MP : ∀ {Π Π′ π} → π ∈ₚ Π′ → Π′ ⇒ₚ Π → π ∈ₚ Π ⇒ₚ-MP {Π = Π} {Π′} {π} hasπ has⇒ = ⇒ₚ-→ₚ has⇒ π hasπ ⇒ₚ-weaken : ∀ {Π Π′ Π′′ : Properties code} (hasΠ′ : Π′ ⇒ₚ Π) ⦃ hasΠ′′ : Π′′ ⇒ₚ Π′ ⦄ → Π′′ ⇒ₚ Π ⇒ₚ-weaken hasΠ′ ⦃ hasΠ′′ ⦄ = ⇒ₚ-trans hasΠ′′ hasΠ′ module _ {k k′} {sub : Code k} {sup : Code k′} (isSub : IsSubcode sub sup) where private module Sub = Code sub module Sup = Code sup open IsSubcode isSub public subcodeProperties : Properties sup → Properties sub hasProperty (subcodeProperties Π) = hasProperty Π ∘ mapProperty subK→supK supcodeProperties : Properties sub → Properties sup hasProperty (supcodeProperties Π) (π , κs) with List.All.traverse supK→subK κs hasProperty (supcodeProperties Π) (π , κs) | just κs′ = hasProperty Π (π , κs′) hasProperty (supcodeProperties Π) (π , κs) | nothing = false fromSubcode : ∀ {π} {Π : Properties sup} → π ∈ₚ subcodeProperties Π → mapProperty subK→supK π ∈ₚ Π fromSubcode (fromTruth truth) = fromTruth truth fromSupcode : ∀ {π} {Π : Properties sup} → mapProperty subK→supK π ∈ₚ Π → π ∈ₚ subcodeProperties Π fromSupcode (fromTruth truth) = fromTruth truth fromSupcode′ : ∀ {π} {Π : Properties sub} → π ∈ₚ Π → mapProperty subK→supK π ∈ₚ supcodeProperties Π fromSupcode′ {π , κs} π∈Π ._∈ₚ_.truth with lem where open ≡.Reasoning lem : List.All.traverse supK→subK (List.All.map subK→supK κs) ≡ just κs lem = begin List.All.traverse supK→subK (List.All.map subK→supK κs) ≡⟨ List-All.traverse-map supK→subK subK→supK κs ⟩ List.All.traverse (supK→subK ∘ subK→supK) κs ≡⟨ List-All.traverse-cong (supK→subK ∘ subK→supK) just acrossSub κs ⟩ List.All.traverse just κs ≡⟨ List-All.traverse-just κs ⟩ just κs ∎ fromSupcode′ {π , κs} π∈Π ._∈ₚ_.truth | p rewrite p = π∈Π ._∈ₚ_.truth module _ {c ℓ} (sup-rawStruct : RawStruct Sup.K c ℓ) (sub-isRawStruct : IsRawStruct (RawStruct._≈_ sup-rawStruct) (RawStruct.appOp sup-rawStruct ∘ subK→supK)) where sub-rawStruct : RawStruct Sub.K c ℓ sub-rawStruct = record { isRawStruct = sub-isRawStruct } reinterpret : ∀ (π : Property Sub.K) → ⟦ mapProperty subK→supK π ⟧P sup-rawStruct → ⟦ π ⟧P sub-rawStruct reinterpret (associative , ∙ ∷ []) = id reinterpret (commutative , ∙ ∷ []) = id reinterpret (idempotent , ∙ ∷ []) = id reinterpret (selective , ∙ ∷ []) = id reinterpret (cancellative , ∙ ∷ []) = id reinterpret (leftIdentity , α ∷ ∙ ∷ []) = id reinterpret (rightIdentity , α ∷ ∙ ∷ []) = id reinterpret (leftZero , α ∷ ∙ ∷ []) = id reinterpret (rightZero , α ∷ ∙ ∷ []) = id reinterpret (distributesOverˡ , * ∷ + ∷ []) = id reinterpret (distributesOverʳ , * ∷ + ∷ []) = id
{ "alphanum_fraction": 0.5890238313, "avg_line_length": 35.0522088353, "ext": "agda", "hexsha": "5137757817e75b58b4b87d769f52fc9cc0e411f4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bch29/agda-matrices", "max_forks_repo_path": "src/MLib/Algebra/PropertyCode/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bch29/agda-matrices", "max_issues_repo_path": "src/MLib/Algebra/PropertyCode/Core.agda", "max_line_length": 169, "max_stars_count": null, "max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bch29/agda-matrices", "max_stars_repo_path": "src/MLib/Algebra/PropertyCode/Core.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6406, "size": 17456 }
open import FRP.JS.Bool using ( Bool ; not ) open import FRP.JS.Maybe using ( Maybe ; just ; nothing ; _≟[_]_ ) open import FRP.JS.Nat using ( ℕ ; _≟_ ; _+_ ; _*_ ; _∸_ ; _/_ ; _/?_ ; _≤_ ; _<_ ; show ; float ) open import FRP.JS.Float using ( ℝ ) renaming ( _≟_ to _≟r_ ) open import FRP.JS.String using () renaming ( _≟_ to _≟s_ ) open import FRP.JS.QUnit using ( TestSuite ; ok ; ok! ; test ; _,_ ) module FRP.JS.Test.Nat where infixr 2 _≟?r_ _≟?r_ : Maybe ℝ → Maybe ℝ → Bool x ≟?r y = x ≟[ _≟r_ ] y tests : TestSuite tests = ( test "≟" ( ok "0 ≟ 0" (0 ≟ 0) , ok "1 ≟ 1" (1 ≟ 1) , ok "2 ≟ 2" (2 ≟ 2) , ok "0 != 1" (not (0 ≟ 1)) , ok "0 != 2" (not (0 ≟ 2)) , ok "1 != 2" (not (1 ≟ 2)) , ok "1 != 0" (not (1 ≟ 0)) ) , test "+" ( ok "0 + 0" (0 + 0 ≟ 0) , ok "1 + 1" (1 + 1 ≟ 2) , ok "37 + 0" (37 + 0 ≟ 37) , ok "37 + 1" (37 + 1 ≟ 38) , ok "37 + 5" (37 + 5 ≟ 42) ) , test "*" ( ok "0 * 0" (0 * 0 ≟ 0) , ok "1 * 1" (1 * 1 ≟ 1) , ok "37 * 0" (37 * 0 ≟ 0) , ok "37 * 1" (37 * 1 ≟ 37) , ok "37 * 5" (37 * 5 ≟ 185) ) , test "∸" ( ok "0 ∸ 0" (0 ∸ 0 ≟ 0) , ok "1 ∸ 1" (1 ∸ 1 ≟ 0) , ok "37 ∸ 0" (37 ∸ 0 ≟ 37) , ok "37 ∸ 1" (37 ∸ 1 ≟ 36) , ok "37 ∸ 5" (37 ∸ 5 ≟ 32) , ok "5 ∸ 37" (5 ∸ 37 ≟ 0) ) , test "/" ( ok "1 / 1" (1 / 1 ≟r 1.0) , ok "37 / 1" (37 / 1 ≟r 37.0) , ok "37 / 5" (37 / 5 ≟r 7.4) , ok "0 /? 0" (0 /? 0 ≟?r nothing) , ok "1 /? 1" (1 /? 1 ≟?r just 1.0) , ok "37 /? 0" (37 /? 0 ≟?r nothing) , ok "37 /? 1" (37 /? 1 ≟?r just 37.0) , ok "37 /? 5" (37 /? 5 ≟?r just 7.4) ) , test "≤" ( ok "0 ≤ 0" (0 ≤ 0) , ok "0 ≤ 1" (0 ≤ 1) , ok "1 ≤ 0" (not (1 ≤ 0)) , ok "1 ≤ 1" (1 ≤ 1) , ok "37 ≤ 0" (not (37 ≤ 0)) , ok "37 ≤ 1" (not (37 ≤ 1)) , ok "37 ≤ 5" (not (37 ≤ 5)) , ok "5 ≤ 37" (5 ≤ 37) ) , test "<" ( ok "0 < 0" (not (0 < 0)) , ok "0 < 1" (0 < 1) , ok "1 < 0" (not (1 < 0)) , ok "1 < 1" (not (1 < 1)) , ok "37 < 0" (not (37 < 0)) , ok "37 < 1" (not (37 < 1)) , ok "37 < 5" (not (37 < 5)) , ok "5 < 37" (5 < 37) ) , test "show" ( ok "show 0" (show 0 ≟s "0") , ok "show 1" (show 1 ≟s "1") , ok "show 5" (show 5 ≟s "5") , ok "show 37" (show 37 ≟s "37") ) , test "float" ( ok "float 0" (float 0 ≟r 0.0) , ok "float 1" (float 1 ≟r 1.0) , ok "float 5" (float 5 ≟r 5.0) , ok "float 37" (float 37 ≟r 37.0) ) )
{ "alphanum_fraction": 0.3865306122, "avg_line_length": 30.2469135802, "ext": "agda", "hexsha": "235bceb046a8a8646e92fdd04e32ed41299ce8f5", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z", "max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z", "max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_forks_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-frp-js", "max_forks_repo_path": "test/agda/FRP/JS/Test/Nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-frp-js", "max_issues_repo_path": "test/agda/FRP/JS/Test/Nat.agda", "max_line_length": 98, "max_stars_count": 63, "max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_stars_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-frp-js", "max_stars_repo_path": "test/agda/FRP/JS/Test/Nat.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z", "num_tokens": 1321, "size": 2450 }
{-# OPTIONS --cubical --safe --no-import-sorts #-} module Cubical.Algebra.CommAlgebra.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Reflection.StrictEquiv open import Cubical.Structures.Axioms open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.CommRing open import Cubical.Algebra.Ring open import Cubical.Algebra.Algebra hiding (⟨_⟩a) private variable ℓ ℓ′ : Level record IsCommAlgebra (R : CommRing {ℓ}) {A : Type ℓ} (0a : A) (1a : A) (_+_ : A → A → A) (_·_ : A → A → A) (-_ : A → A) (_⋆_ : ⟨ R ⟩ → A → A) : Type ℓ where constructor iscommalgebra field isAlgebra : IsAlgebra (CommRing→Ring R) 0a 1a _+_ _·_ -_ _⋆_ ·-comm : (x y : A) → x · y ≡ y · x open IsAlgebra isAlgebra public record CommAlgebra (R : CommRing {ℓ}) : Type (ℓ-suc ℓ) where constructor commalgebra field Carrier : Type ℓ 0a : Carrier 1a : Carrier _+_ : Carrier → Carrier → Carrier _·_ : Carrier → Carrier → Carrier -_ : Carrier → Carrier _⋆_ : ⟨ R ⟩ → Carrier → Carrier isCommAlgebra : IsCommAlgebra R 0a 1a _+_ _·_ -_ _⋆_ open IsCommAlgebra isCommAlgebra public module _ {R : CommRing {ℓ}} where open CommRingStr (snd R) using (1r) renaming (_+_ to _+r_; _·_ to _·s_) ⟨_⟩a : CommAlgebra R → Type ℓ ⟨_⟩a = CommAlgebra.Carrier CommAlgebra→Algebra : (A : CommAlgebra R) → Algebra (CommRing→Ring R) CommAlgebra→Algebra (commalgebra Carrier _ _ _ _ _ _ (iscommalgebra isAlgebra ·-comm)) = algebra Carrier _ _ _ _ _ _ isAlgebra CommAlgebra→CommRing : (A : CommAlgebra R) → CommRing {ℓ} CommAlgebra→CommRing (commalgebra Carrier _ _ _ _ _ _ (iscommalgebra isAlgebra ·-comm)) = _ , commringstr _ _ _ _ _ (iscommring (IsAlgebra.isRing isAlgebra) ·-comm) CommAlgebraEquiv : (R S : CommAlgebra R) → Type ℓ CommAlgebraEquiv R S = AlgebraEquiv (CommAlgebra→Algebra R) (CommAlgebra→Algebra S) makeIsCommAlgebra : {A : Type ℓ} {0a 1a : A} {_+_ _·_ : A → A → A} { -_ : A → A} {_⋆_ : ⟨ R ⟩ → A → A} (isSet-A : isSet A) (+-assoc : (x y z : A) → x + (y + z) ≡ (x + y) + z) (+-rid : (x : A) → x + 0a ≡ x) (+-rinv : (x : A) → x + (- x) ≡ 0a) (+-comm : (x y : A) → x + y ≡ y + x) (·-assoc : (x y z : A) → x · (y · z) ≡ (x · y) · z) (·-lid : (x : A) → 1a · x ≡ x) (·-ldist-+ : (x y z : A) → (x + y) · z ≡ (x · z) + (y · z)) (·-comm : (x y : A) → x · y ≡ y · x) (⋆-assoc : (r s : ⟨ R ⟩) (x : A) → (r ·s s) ⋆ x ≡ r ⋆ (s ⋆ x)) (⋆-ldist : (r s : ⟨ R ⟩) (x : A) → (r +r s) ⋆ x ≡ (r ⋆ x) + (s ⋆ x)) (⋆-rdist : (r : ⟨ R ⟩) (x y : A) → r ⋆ (x + y) ≡ (r ⋆ x) + (r ⋆ y)) (⋆-lid : (x : A) → 1r ⋆ x ≡ x) (⋆-lassoc : (r : ⟨ R ⟩) (x y : A) → (r ⋆ x) · y ≡ r ⋆ (x · y)) → IsCommAlgebra R 0a 1a _+_ _·_ -_ _⋆_ makeIsCommAlgebra {A} {0a} {1a} {_+_} {_·_} { -_} {_⋆_} isSet-A +-assoc +-rid +-rinv +-comm ·-assoc ·-lid ·-ldist-+ ·-comm ⋆-assoc ⋆-ldist ⋆-rdist ⋆-lid ⋆-lassoc = iscommalgebra (makeIsAlgebra isSet-A +-assoc +-rid +-rinv +-comm ·-assoc (λ x → x · 1a ≡⟨ ·-comm _ _ ⟩ 1a · x ≡⟨ ·-lid _ ⟩ x ∎) ·-lid (λ x y z → x · (y + z) ≡⟨ ·-comm _ _ ⟩ (y + z) · x ≡⟨ ·-ldist-+ _ _ _ ⟩ (y · x) + (z · x) ≡⟨ cong (λ u → (y · x) + u) (·-comm _ _) ⟩ (y · x) + (x · z) ≡⟨ cong (λ u → u + (x · z)) (·-comm _ _) ⟩ (x · y) + (x · z) ∎) ·-ldist-+ ⋆-assoc ⋆-ldist ⋆-rdist ⋆-lid ⋆-lassoc λ r x y → r ⋆ (x · y) ≡⟨ cong (λ u → r ⋆ u) (·-comm _ _) ⟩ r ⋆ (y · x) ≡⟨ sym (⋆-lassoc _ _ _) ⟩ (r ⋆ y) · x ≡⟨ ·-comm _ _ ⟩ x · (r ⋆ y) ∎) ·-comm module CommAlgebraΣTheory (R : CommRing {ℓ}) where open AlgebraΣTheory (CommRing→Ring R) CommAlgebraAxioms : (A : Type ℓ) (s : RawAlgebraStructure A) → Type ℓ CommAlgebraAxioms A (_+_ , _·_ , 1a , _⋆_) = AlgebraAxioms A (_+_ , _·_ , 1a , _⋆_) × ((x y : A) → x · y ≡ y · x) CommAlgebraStructure : Type ℓ → Type ℓ CommAlgebraStructure = AxiomsStructure RawAlgebraStructure CommAlgebraAxioms CommAlgebraΣ : Type (ℓ-suc ℓ) CommAlgebraΣ = TypeWithStr ℓ CommAlgebraStructure CommAlgebraEquivStr : StrEquiv CommAlgebraStructure ℓ CommAlgebraEquivStr = AxiomsEquivStr RawAlgebraEquivStr CommAlgebraAxioms isPropCommAlgebraAxioms : (A : Type ℓ) (s : RawAlgebraStructure A) → isProp (CommAlgebraAxioms A s) isPropCommAlgebraAxioms A (_+_ , _·_ , 1a , _⋆_) = isPropΣ (isPropAlgebraAxioms A (_+_ , _·_ , 1a , _⋆_)) λ isAlgebra → isPropΠ2 λ _ _ → (isSetAlgebraΣ (A , _ , isAlgebra)) _ _ CommAlgebra→CommAlgebraΣ : CommAlgebra R → CommAlgebraΣ CommAlgebra→CommAlgebraΣ (commalgebra _ _ _ _ _ _ _ (iscommalgebra G C)) = _ , _ , Algebra→AlgebraΣ (algebra _ _ _ _ _ _ _ G) .snd .snd , C CommAlgebraΣ→CommAlgebra : CommAlgebraΣ → CommAlgebra R CommAlgebraΣ→CommAlgebra (_ , _ , G , C) = commalgebra _ _ _ _ _ _ _ (iscommalgebra (AlgebraΣ→Algebra (_ , _ , G) .Algebra.isAlgebra) C) CommAlgebraIsoCommAlgebraΣ : Iso (CommAlgebra R) CommAlgebraΣ CommAlgebraIsoCommAlgebraΣ = iso CommAlgebra→CommAlgebraΣ CommAlgebraΣ→CommAlgebra (λ _ → refl) (λ _ → refl) commAlgebraUnivalentStr : UnivalentStr CommAlgebraStructure CommAlgebraEquivStr commAlgebraUnivalentStr = axiomsUnivalentStr _ isPropCommAlgebraAxioms rawAlgebraUnivalentStr CommAlgebraΣPath : (A B : CommAlgebraΣ) → (A ≃[ CommAlgebraEquivStr ] B) ≃ (A ≡ B) CommAlgebraΣPath = SIP commAlgebraUnivalentStr CommAlgebraEquivΣ : (A B : CommAlgebra R) → Type ℓ CommAlgebraEquivΣ A B = CommAlgebra→CommAlgebraΣ A ≃[ CommAlgebraEquivStr ] CommAlgebra→CommAlgebraΣ B CommAlgebraPath : (A B : CommAlgebra R) → (CommAlgebraEquiv A B) ≃ (A ≡ B) CommAlgebraPath A B = CommAlgebraEquiv A B ≃⟨ strictIsoToEquiv AlgebraEquivΣPath ⟩ CommAlgebraEquivΣ A B ≃⟨ CommAlgebraΣPath _ _ ⟩ CommAlgebra→CommAlgebraΣ A ≡ CommAlgebra→CommAlgebraΣ B ≃⟨ isoToEquiv (invIso (congIso CommAlgebraIsoCommAlgebraΣ)) ⟩ A ≡ B ■ CommAlgebraPath : (R : CommRing {ℓ}) → (A B : CommAlgebra R) → (CommAlgebraEquiv A B) ≃ (A ≡ B) CommAlgebraPath = CommAlgebraΣTheory.CommAlgebraPath
{ "alphanum_fraction": 0.5505157553, "avg_line_length": 41.1453488372, "ext": "agda", "hexsha": "6d4e8ea1675666115fc2c7b2157cb053c5849e9d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/Algebra/CommAlgebra/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/Algebra/CommAlgebra/Base.agda", "max_line_length": 104, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/Algebra/CommAlgebra/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2736, "size": 7077 }
{-# OPTIONS --without-K --safe #-} module Data.Binary.Relations where open import Data.Binary.Relations.Raw open import Data.Binary.Definitions open import Data.Binary.Operations.Addition open import Relation.Binary open import Relation.Nullary import Data.Empty.Irrelevant as Irrel infix 4 _≤_ _<_ record _≤_ (x y : 𝔹) : Set where constructor ≤! field .proof : ⟅ I ⟆ x ≺ y record _<_ (x y : 𝔹) : Set where constructor <! field .proof : ⟅ O ⟆ x ≺ y _≤?_ : Decidable _≤_ x ≤? y with I ! x ≺? y (x ≤? y) | yes x₁ = yes (≤! x₁) (x ≤? y) | no x₁ = no λ p → Irrel.⊥-elim (x₁ (_≤_.proof p)) _<?_ : Decidable _<_ x <? y with O ! x ≺? y (x <? y) | yes x₁ = yes (<! x₁) (x <? y) | no x₁ = no λ p → Irrel.⊥-elim (x₁ (_<_.proof p)) <⇒≤ : ∀ {x y} → x < y → x ≤ y <⇒≤ {x} {y} x<y = ≤! (weaken x y (_<_.proof x<y)) ≤-trans : Transitive _≤_ ≤-trans {i} {j} {k} i≤j j≤k = ≤! (≺-trans I I i j k (_≤_.proof i≤j) (_≤_.proof j≤k)) <-trans : Transitive _<_ <-trans {i} {j} {k} i<j j<k = <! (≺-trans O O i j k (_<_.proof i<j) (_<_.proof j<k)) n≤m+n : ∀ x y → x ≤ y + x n≤m+n x y = ≤! (≺-add y x)
{ "alphanum_fraction": 0.5563636364, "avg_line_length": 25, "ext": "agda", "hexsha": "375d93b72f50896e3fa0c28f3b54a6a6dddea18f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-binary", "max_forks_repo_path": "Data/Binary/Relations.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-binary", "max_issues_repo_path": "Data/Binary/Relations.agda", "max_line_length": 84, "max_stars_count": 1, "max_stars_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-binary", "max_stars_repo_path": "Data/Binary/Relations.agda", "max_stars_repo_stars_event_max_datetime": "2019-03-21T21:30:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-03-21T21:30:10.000Z", "num_tokens": 484, "size": 1100 }
module Test where open import Agda.Builtin.Bool using (Bool; false; true) open import Agda.Builtin.Unit _∧_ : Bool → Bool → Bool false ∧ x = false _ ∧ y = y
{ "alphanum_fraction": 0.649122807, "avg_line_length": 11.4, "ext": "agda", "hexsha": "61c59a9bb4bd1cce9d1a66976ed7aa15215741d9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-01T16:38:14.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-01T16:38:14.000Z", "max_forks_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "msuperdock/agda-unused", "max_forks_repo_path": "data/example/Test.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "msuperdock/agda-unused", "max_issues_repo_path": "data/example/Test.agda", "max_line_length": 29, "max_stars_count": 6, "max_stars_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "msuperdock/agda-unused", "max_stars_repo_path": "data/example/Test.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-01T16:38:05.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-29T09:38:43.000Z", "num_tokens": 61, "size": 171 }
------------------------------------------------------------------------------ -- The gcd program is correct ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- This module proves the correctness of the gcd program using -- the Euclid's algorithm. -- N.B This module does not contain combined proofs, but it imports -- modules which contain combined proofs. module FOTC.Program.GCD.Total.CorrectnessProofATP where open import FOTC.Base open import FOTC.Data.Nat.Type open import FOTC.Program.GCD.Total.CommonDivisorATP using ( gcdCD ) open import FOTC.Program.GCD.Total.Definitions using ( gcdSpec ) open import FOTC.Program.GCD.Total.DivisibleATP using ( gcdDivisible ) open import FOTC.Program.GCD.Total.GCD using ( gcd ) ------------------------------------------------------------------------------ -- The gcd is correct. postulate gcdCorrect : ∀ {m n} → N m → N n → gcdSpec m n (gcd m n) {-# ATP prove gcdCorrect gcdCD gcdDivisible #-}
{ "alphanum_fraction": 0.5587467363, "avg_line_length": 39.6206896552, "ext": "agda", "hexsha": "dc88f5de968228f73873c8ac47c2d53052f680b2", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/GCD/Total/CorrectnessProofATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/GCD/Total/CorrectnessProofATP.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/GCD/Total/CorrectnessProofATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 232, "size": 1149 }
{-# OPTIONS --without-K #-} open import Base module Spaces.Circle where {- Idea : data S¹ : Set where base : S¹ loop : base ≡ base I’m using Dan Licata’s trick to have a higher inductive type with definitional reduction rule for [base] -} private data #S¹ : Set where #base : #S¹ S¹ : Set S¹ = #S¹ base : S¹ base = #base postulate -- HIT loop : base ≡ base S¹-rec : ∀ {i} (P : S¹ → Set i) (x : P base) (p : transport P loop x ≡ x) → ((t : S¹) → P t) S¹-rec P x p #base = x postulate -- HIT S¹-β-loop : ∀ {i} (P : S¹ → Set i) (x : P base) (p : transport P loop x ≡ x) → apd (S¹-rec P x p) loop ≡ p S¹-rec-nondep : ∀ {i} (A : Set i) (x : A) (p : x ≡ x) → (S¹ → A) S¹-rec-nondep A x p #base = x postulate -- HIT S¹-β-loop-nondep : ∀ {i} (A : Set i) (x : A) (p : x ≡ x) → ap (S¹-rec-nondep A x p) loop ≡ p -- S¹-rec-nondep : ∀ {i} (A : Set i) (x : A) (p : x ≡ x) → (S¹ → A) -- S¹-rec-nondep A x p = S¹-rec (λ _ → A) x (trans-cst loop x ∘ p) -- β-nondep : ∀ {i} (A : Set i) (x : A) (p : x ≡ x) -- → ap (S¹-rec-nondep A x p) loop ≡ p -- β-nondep A x p = -- apd-trivial (S¹-rec-nondep A x p) loop ∘ -- (whisker-left (! (trans-cst loop _)) (β (λ _ → A) x (trans-cst loop _ ∘ p)) -- ∘ (! (concat-assoc (! (trans-cst loop _)) (trans-cst loop _) p) -- ∘ whisker-right p (opposite-left-inverse (trans-cst loop _))))
{ "alphanum_fraction": 0.5378398237, "avg_line_length": 23.8771929825, "ext": "agda", "hexsha": "e9b9f19661a92508b41c433b1d8f70ec2168cd09", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "old/Spaces/Circle.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "old/Spaces/Circle.agda", "max_line_length": 80, "max_stars_count": 294, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "old/Spaces/Circle.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 567, "size": 1361 }
{-# OPTIONS --cubical #-} module _ where open import Agda.Builtin.Equality uip : ∀ {a} {A : Set a} {x y : A} (p q : x ≡ y) → p ≡ q uip refl refl = refl
{ "alphanum_fraction": 0.5714285714, "avg_line_length": 19.25, "ext": "agda", "hexsha": "92c64b5eb39d8b5afeefc6971d7827fa02a0e888", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2790.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2790.agda", "max_line_length": 55, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2790.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 61, "size": 154 }
{-# OPTIONS --rewriting #-} -- 2015-02-17 Jesper and Andreas postulate A : Set R : A → A → Set f : A → A g : A → A r : R (f _) (g _) {-# BUILTIN REWRITE R #-} {-# REWRITE r #-}
{ "alphanum_fraction": 0.4947368421, "avg_line_length": 13.5714285714, "ext": "agda", "hexsha": "f8ac975fa85057d79c95f8c4fdac9f15dc4668e3", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/RewriteRuleOpenMeta.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/RewriteRuleOpenMeta.agda", "max_line_length": 32, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/RewriteRuleOpenMeta.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 73, "size": 190 }
{-# OPTIONS --cubical #-} module Type.Cubical.Univalence where open import Function.Axioms open import Functional open import Logic.Predicate open import Logic.Propositional import Lvl open import Structure.Function.Domain using (intro ; Inverseₗ ; Inverseᵣ) open import Structure.Relator.Properties open import Structure.Type.Identity open import Type.Cubical.Path.Equality open import Type.Cubical.Equiv open import Type.Cubical open import Type.Properties.MereProposition open import Type private variable ℓ ℓ₁ ℓ₂ : Lvl.Level private variable T A B P Q : Type{ℓ} -- TODO: Move primitive primGlue : (A : Type{ℓ₁}) → ∀{i : Interval} → (T : Interval.Partial i (Type{ℓ₂})) → (e : Interval.PartialP i (\o → T(o) ≍ A)) → Type{ℓ₂} type-extensionalityₗ : (A ≡ B) ← (A ≍ B) type-extensionalityₗ {A = A}{B = B} ab i = primGlue(B) (\{(i = Interval.𝟎) → A ; (i = Interval.𝟏) → B}) (\{(i = Interval.𝟎) → ab ; (i = Interval.𝟏) → reflexivity(_≍_)}) module _ ⦃ prop-P : MereProposition{ℓ}(P) ⦄ ⦃ prop-Q : MereProposition{ℓ}(Q) ⦄ where propositional-extensionalityₗ : (P ≡ Q) ← (P ↔ Q) propositional-extensionalityₗ pq = type-extensionalityₗ([∃]-intro pq ⦃ intro ⦄) where instance l : Inverseₗ([↔]-to-[←] pq)([↔]-to-[→] pq) Inverseᵣ.proof l = uniqueness(Q) instance r : Inverseᵣ([↔]-to-[←] pq)([↔]-to-[→] pq) Inverseᵣ.proof r = uniqueness(P) module _ {P Q : T → Type} ⦃ prop-P : ∀{x} → MereProposition{ℓ}(P(x)) ⦄ ⦃ prop-Q : ∀{x} → MereProposition{ℓ}(Q(x)) ⦄ where prop-set-extensionalityₗ : (P ≡ Q) ← (∀{x} → P(x) ↔ Q(x)) prop-set-extensionalityₗ pq = functionExtensionalityOn P Q (propositional-extensionalityₗ pq) -- module _ ⦃ uip-P : UniqueIdentityProofs{ℓ}(P) ⦄ ⦃ uip-Q : UniqueIdentityProofs{ℓ}(Q) ⦄ where -- TODO: Actual proof of univalence
{ "alphanum_fraction": 0.6638795987, "avg_line_length": 37.375, "ext": "agda", "hexsha": "ca57d5f222836b680079ce4383e7b08feef47da5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Type/Cubical/Univalence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Type/Cubical/Univalence.agda", "max_line_length": 146, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Type/Cubical/Univalence.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 657, "size": 1794 }
{-# OPTIONS --without-K #-} module container.m.from-nat where open import container.m.from-nat.core public open import container.m.from-nat.cone public open import container.m.from-nat.coalgebra public open import container.m.from-nat.bisimulation public
{ "alphanum_fraction": 0.796875, "avg_line_length": 32, "ext": "agda", "hexsha": "3ba0a9db824042f4f9976f6427c74daa0a808860", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "container/m/from-nat.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "HoTT/M-types", "max_issues_repo_path": "container/m/from-nat.agda", "max_line_length": 52, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "container/m/from-nat.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 59, "size": 256 }
------------------------------------------------------------------------------ -- Testing the translation of the logical constants ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LogicalConstants where infix 5 ¬_ infixr 4 _∧_ infixr 3 _∨_ infixr 2 _⇒_ infixr 1 _↔_ _⇔_ ------------------------------------------------------------------------------ -- Propositional logic -- The logical constants -- The logical constants are hard-coded in our implementation, -- i.e. the following symbols must be used (it is possible to use Agda -- non-dependent function space → instead of ⇒). postulate ⊥ ⊤ : Set -- N.B. the name of the tautology symbol is "\top" not T. ¬_ : Set → Set -- N.B. the right hole. _∧_ _∨_ : Set → Set → Set _⇒_ _↔_ _⇔_ : Set → Set → Set -- We postulate some formulae (which are translated as 0-ary -- predicates). postulate A B C : Set -- Testing the conditional using the non-dependent function type. postulate A→A : A → A {-# ATP prove A→A #-} -- Testing the conditional using the hard-coded function type. postulate A⇒A : A ⇒ A {-# ATP prove A⇒A #-} -- The introduction and elimination rules for the propositional -- connectives are theorems. postulate →I : (A → B) → A ⇒ B →E : (A ⇒ B) → A → B ∧I : A → B → A ∧ B ∧E₁ : A ∧ B → A ∧E₂ : A ∧ B → B ∨I₁ : A → A ∨ B ∨I₂ : B → A ∨ B ∨E : (A ⇒ C) → (B ⇒ C) → A ∨ B → C ⊥E : ⊥ → A ¬E : (¬ A → ⊥) → A {-# ATP prove →I #-} {-# ATP prove →E #-} {-# ATP prove ∧I #-} {-# ATP prove ∧E₁ #-} {-# ATP prove ∧E₂ #-} {-# ATP prove ∨I₁ #-} {-# ATP prove ∨I₂ #-} {-# ATP prove ∨E #-} {-# ATP prove ⊥E #-} {-# ATP prove ¬E #-} -- Testing other logical constants. postulate thm₁ : A ∧ ⊤ → A thm₂ : A ∨ ⊥ → A thm₃ : A ↔ A thm₄ : A ⇔ A {-# ATP prove thm₁ #-} {-# ATP prove thm₂ #-} {-# ATP prove thm₃ #-} {-# ATP prove thm₄ #-} ------------------------------------------------------------------------------ -- Predicate logic --- The universe of discourse. postulate D : Set -- The propositional equality is hard-coded in our implementation, i.e. the -- following symbol must be used. postulate _≡_ : D → D → Set -- Testing propositional equality. postulate refl : ∀ {x} → x ≡ x {-# ATP prove refl #-} -- The quantifiers are hard-coded in our implementation, i.e. the -- following symbols must be used (it is possible to use Agda -- dependent function space ∀ x → A instead of ⋀). postulate ∃ : (A : D → Set) → Set ⋀ : (A : D → Set) → Set -- We postulate some formulae and propositional functions. postulate A¹ B¹ : D → Set A² : D → D → Set -- The introduction and elimination rules for the quantifiers are -- theorems. postulate ∀I₁ : ((x : D) → A¹ x) → ⋀ A¹ ∀I₂ : ((x : D) → A¹ x) → ∀ x → A¹ x ∀E₁ : (t : D) → ⋀ A¹ → A¹ t ∀E₂ : (t : D) → (∀ x → A¹ x) → A¹ t {-# ATP prove ∀I₁ #-} {-# ATP prove ∀I₂ #-} {-# ATP prove ∀E₁ #-} {-# ATP prove ∀E₂ #-} postulate ∃I : (t : D) → A¹ t → ∃ A¹ {-# ATP prove ∃I #-} postulate ∃E : ∃ A¹ → ((x : D) → A¹ x → A) → A {-# ATP prove ∃E #-}
{ "alphanum_fraction": 0.513463324, "avg_line_length": 26.4836065574, "ext": "agda", "hexsha": "9e0ddda3d912656679c8eb2cdbc4268765e6e109", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Succeed/fol-theorems/LogicalConstants.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Succeed/fol-theorems/LogicalConstants.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Succeed/fol-theorems/LogicalConstants.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 1032, "size": 3231 }
-- Basic intuitionistic modal logic S4, without ∨, ⊥, or ◇. -- Tarski-style semantics with contexts as concrete worlds, and glueing for α, ▻, and □. -- Implicit syntax. module BasicIS4.Semantics.TarskiOvergluedImplicit where open import BasicIS4.Syntax.Common public open import Common.Semantics public -- Intuitionistic Tarski models. record Model : Set₁ where infix 3 _⊩ᵅ_ field -- Forcing for atomic propositions; monotonic. _⊩ᵅ_ : Cx Ty → Atom → Set mono⊩ᵅ : ∀ {P Γ Γ′} → Γ ⊆ Γ′ → Γ ⊩ᵅ P → Γ′ ⊩ᵅ P open Model {{…}} public module ImplicitSyntax (_[⊢]_ : Cx Ty → Ty → Set) (mono[⊢] : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ [⊢] A → Γ′ [⊢] A) where -- Forcing in a particular model. module _ {{_ : Model}} where infix 3 _⊩_ _⊩_ : Cx Ty → Ty → Set Γ ⊩ α P = Glue (Γ [⊢] (α P)) (Γ ⊩ᵅ P) Γ ⊩ A ▻ B = ∀ {Γ′} → Γ ⊆ Γ′ → Glue (Γ′ [⊢] (A ▻ B)) (Γ′ ⊩ A → Γ′ ⊩ B) Γ ⊩ □ A = ∀ {Γ′} → Γ ⊆ Γ′ → Glue (Γ′ [⊢] (□ A)) (Γ′ ⊩ A) Γ ⊩ A ∧ B = Γ ⊩ A × Γ ⊩ B Γ ⊩ ⊤ = 𝟙 infix 3 _⊩⋆_ _⊩⋆_ : Cx Ty → Cx Ty → Set Γ ⊩⋆ ∅ = 𝟙 Γ ⊩⋆ Ξ , A = Γ ⊩⋆ Ξ × Γ ⊩ A -- Monotonicity with respect to context inclusion. module _ {{_ : Model}} where mono⊩ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊩ A → Γ′ ⊩ A mono⊩ {α P} η s = mono[⊢] η (syn s) ⅋ mono⊩ᵅ η (sem s) mono⊩ {A ▻ B} η s = λ η′ → s (trans⊆ η η′) mono⊩ {□ A} η s = λ η′ → s (trans⊆ η η′) mono⊩ {A ∧ B} η s = mono⊩ {A} η (π₁ s) , mono⊩ {B} η (π₂ s) mono⊩ {⊤} η s = ∙ mono⊩⋆ : ∀ {Ξ Γ Γ′} → Γ ⊆ Γ′ → Γ ⊩⋆ Ξ → Γ′ ⊩⋆ Ξ mono⊩⋆ {∅} η ∙ = ∙ mono⊩⋆ {Ξ , A} η (ts , t) = mono⊩⋆ {Ξ} η ts , mono⊩ {A} η t -- Additional useful equipment. module _ {{_ : Model}} where _⟪$⟫_ : ∀ {A B Γ} → Γ ⊩ A ▻ B → Γ ⊩ A → Γ ⊩ B s ⟪$⟫ a = sem (s refl⊆) a ⟪S⟫ : ∀ {A B C Γ} → Γ ⊩ A ▻ B ▻ C → Γ ⊩ A ▻ B → Γ ⊩ A → Γ ⊩ C ⟪S⟫ s₁ s₂ a = (s₁ ⟪$⟫ a) ⟪$⟫ (s₂ ⟪$⟫ a) ⟪↓⟫ : ∀ {A Γ} → Γ ⊩ □ A → Γ ⊩ A ⟪↓⟫ s = sem (s refl⊆) -- Forcing in a particular world of a particular model, for sequents. module _ {{_ : Model}} where infix 3 _⊩_⇒_ _⊩_⇒_ : Cx Ty → Cx Ty → Ty → Set w ⊩ Γ ⇒ A = w ⊩⋆ Γ → w ⊩ A infix 3 _⊩_⇒⋆_ _⊩_⇒⋆_ : Cx Ty → Cx Ty → Cx Ty → Set w ⊩ Γ ⇒⋆ Ξ = w ⊩⋆ Γ → w ⊩⋆ Ξ -- Entailment, or forcing in all worlds of all models, for sequents. infix 3 _⊨_ _⊨_ : Cx Ty → Ty → Set₁ Γ ⊨ A = ∀ {{_ : Model}} {w : Cx Ty} → w ⊩ Γ ⇒ A infix 3 _⊨⋆_ _⊨⋆_ : Cx Ty → Cx Ty → Set₁ Γ ⊨⋆ Ξ = ∀ {{_ : Model}} {w : Cx Ty} → w ⊩ Γ ⇒⋆ Ξ -- Additional useful equipment, for sequents. module _ {{_ : Model}} where lookup : ∀ {A Γ w} → A ∈ Γ → w ⊩ Γ ⇒ A lookup top (γ , a) = a lookup (pop i) (γ , b) = lookup i γ _⟦$⟧_ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A ▻ B → w ⊩ Γ ⇒ A → w ⊩ Γ ⇒ B (s₁ ⟦$⟧ s₂) γ = s₁ γ ⟪$⟫ s₂ γ ⟦S⟧ : ∀ {A B C Γ w} → w ⊩ Γ ⇒ A ▻ B ▻ C → w ⊩ Γ ⇒ A ▻ B → w ⊩ Γ ⇒ A → w ⊩ Γ ⇒ C ⟦S⟧ s₁ s₂ a γ = ⟪S⟫ (s₁ γ) (s₂ γ) (a γ) ⟦↓⟧ : ∀ {A Γ w} → w ⊩ Γ ⇒ □ A → w ⊩ Γ ⇒ A ⟦↓⟧ s γ = ⟪↓⟫ (s γ) _⟦,⟧_ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A → w ⊩ Γ ⇒ B → w ⊩ Γ ⇒ A ∧ B (a ⟦,⟧ b) γ = a γ , b γ ⟦π₁⟧ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A ∧ B → w ⊩ Γ ⇒ A ⟦π₁⟧ s γ = π₁ (s γ) ⟦π₂⟧ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A ∧ B → w ⊩ Γ ⇒ B ⟦π₂⟧ s γ = π₂ (s γ)
{ "alphanum_fraction": 0.4287469287, "avg_line_length": 26.4715447154, "ext": "agda", "hexsha": "e929c40c0376d11c1902cef3f9c761a1038b2bbb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "BasicIS4/Semantics/TarskiOvergluedImplicit.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "BasicIS4/Semantics/TarskiOvergluedImplicit.agda", "max_line_length": 88, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "BasicIS4/Semantics/TarskiOvergluedImplicit.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 1777, "size": 3256 }
module lib-safe where open import datatypes-safe public open import logic public open import thms public open import termination public open import error public
{ "alphanum_fraction": 0.8343558282, "avg_line_length": 18.1111111111, "ext": "agda", "hexsha": "cbf14dd6a5fdd5c42b09974423fe85c9fc8027b6", "lang": "Agda", "max_forks_count": 17, "max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z", "max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rfindler/ial", "max_forks_repo_path": "lib-safe.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rfindler/ial", "max_issues_repo_path": "lib-safe.agda", "max_line_length": 33, "max_stars_count": 29, "max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rfindler/ial", "max_stars_repo_path": "lib-safe.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z", "max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z", "num_tokens": 33, "size": 163 }
------------------------------------------------------------------------------ -- Conversion rules for the Collatz function ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Program.Collatz.ConversionRulesI where open import Common.FOL.Relation.Binary.EqReasoning open import FOT.FOTC.Program.Collatz.CollatzConditionals open import FOTC.Base open import FOTC.Data.Nat open import FOTC.Data.Nat.UnaryNumbers open import FOTC.Program.Collatz.Data.Nat ------------------------------------------------------------------------------ private -- The steps -- Initially, the equation collatz-eq is used. collatz-s₁ : D → D collatz-s₁ n = if (iszero₁ n) then 1' else (if (iszero₁ (pred₁ n)) then 1' else (if (even n) then collatz (div n 2') else collatz (3' * n + 1'))) -- First if_then_else_ iszero₁ n = b. collatz-s₂ : D → D → D collatz-s₂ n b = if b then 1' else (if (iszero₁ (pred₁ n)) then 1' else (if (even n) then collatz (div n 2') else collatz (3' * n + 1'))) -- First if_then_else_ when if true .... collatz-s₃ : D → D collatz-s₃ n = 1' -- First if_then_else_ when if false .... collatz-s₄ : D → D collatz-s₄ n = if (iszero₁ (pred₁ n)) then 1' else (if (even n) then collatz (div n 2') else collatz (3' * n + 1')) -- Second if_then_else_ iszero₁ (pred₁ n) = b. collatz-s₅ : D → D → D collatz-s₅ n b = if b then 1' else (if (even n) then collatz (div n 2') else collatz (3' * n + 1')) -- Second if_then_else_ when if true .... collatz-s₆ : D → D collatz-s₆ n = 1' -- Second if_then_else_ when if false .... collatz-s₇ : D → D collatz-s₇ n = if (even n) then collatz (div n 2') else collatz (3' * n + 1') -- Third if_then_else_ even n b. collatz-s₈ : D → D → D collatz-s₈ n b = if b then collatz (div n 2') else collatz (3' * n + 1') -- Third if_then_else_ when if true .... collatz-s₉ : D → D collatz-s₉ n = collatz (div n 2') -- Third if_then_else_ when if false .... collatz-s₁₀ : D → D collatz-s₁₀ n = collatz (3' * n + 1') ---------------------------------------------------------------------------- -- The execution steps proof₀₋₁ : ∀ n → collatz n ≡ collatz-s₁ n proof₀₋₁ n = collatz-eq n proof₁₋₂ : ∀ {n b} → iszero₁ n ≡ b → collatz-s₁ n ≡ collatz-s₂ n b proof₁₋₂ {n} {b} h = subst (λ x → collatz-s₂ n x ≡ collatz-s₂ n b) (sym h) refl proof₂₋₃ : ∀ n → collatz-s₂ n true ≡ collatz-s₃ n proof₂₋₃ n = if-true (collatz-s₃ n) proof₂₋₄ : ∀ n → collatz-s₂ n false ≡ collatz-s₄ n proof₂₋₄ n = if-false (collatz-s₄ n) proof₄₋₅ : ∀ {n b} → iszero₁ (pred₁ n) ≡ b → collatz-s₄ n ≡ collatz-s₅ n b proof₄₋₅ {n} {b} h = subst (λ x → collatz-s₅ n x ≡ collatz-s₅ n b) (sym h) refl proof₅₋₆ : ∀ n → collatz-s₅ n true ≡ collatz-s₆ n proof₅₋₆ n = if-true (collatz-s₆ n) proof₅₋₇ : ∀ n → collatz-s₅ n false ≡ collatz-s₇ n proof₅₋₇ n = if-false (collatz-s₇ n) proof₇₋₈ : ∀ {n b} → even n ≡ b → collatz-s₇ n ≡ collatz-s₈ n b proof₇₋₈ {n} {b} h = subst (λ x → collatz-s₈ n x ≡ collatz-s₈ n b) (sym h) refl proof₈₋₉ : ∀ n → collatz-s₈ n true ≡ collatz-s₉ n proof₈₋₉ n = if-true (collatz-s₉ n) proof₈₋₁₀ : ∀ n → collatz-s₈ n false ≡ collatz-s₁₀ n proof₈₋₁₀ n = if-false (collatz-s₁₀ n) ------------------------------------------------------------------------------ -- Conversion rules for the Collatz function collatz-0 : collatz zero ≡ 1' collatz-0 = collatz zero ≡⟨ proof₀₋₁ zero ⟩ collatz-s₁ zero ≡⟨ proof₁₋₂ iszero-0 ⟩ collatz-s₂ zero true ≡⟨ proof₂₋₃ zero ⟩ 1' ∎ collatz-1 : collatz 1' ≡ 1' collatz-1 = collatz 1' ≡⟨ proof₀₋₁ 1' ⟩ collatz-s₁ 1' ≡⟨ proof₁₋₂ (iszero-S zero) ⟩ collatz-s₂ 1' false ≡⟨ proof₂₋₄ 1' ⟩ collatz-s₄ 1' ≡⟨ proof₄₋₅ (subst (λ x → iszero₁ x ≡ true) (sym (pred-S zero)) iszero-0) ⟩ collatz-s₅ 1' true ≡⟨ proof₅₋₆ 1' ⟩ 1' ∎ collatz-even : ∀ {n} → Even (succ₁ (succ₁ n)) → collatz (succ₁ (succ₁ n)) ≡ collatz (div (succ₁ (succ₁ n)) 2') collatz-even {n} h = collatz (succ₁ (succ₁ n)) ≡⟨ proof₀₋₁ (succ₁ (succ₁ n)) ⟩ collatz-s₁ (succ₁ (succ₁ n)) ≡⟨ proof₁₋₂ (iszero-S (succ₁ n)) ⟩ collatz-s₂ (succ₁ (succ₁ n)) false ≡⟨ proof₂₋₄ (succ₁ (succ₁ n)) ⟩ collatz-s₄ (succ₁ (succ₁ n)) ≡⟨ proof₄₋₅ (subst (λ x → iszero₁ x ≡ false) (sym (pred-S (succ₁ n))) (iszero-S n)) ⟩ collatz-s₅ (succ₁ (succ₁ n)) false ≡⟨ proof₅₋₇ (succ₁ (succ₁ n)) ⟩ collatz-s₇ (succ₁ (succ₁ n)) ≡⟨ proof₇₋₈ h ⟩ collatz-s₈ (succ₁ (succ₁ n)) true ≡⟨ proof₈₋₉ (succ₁ (succ₁ n)) ⟩ collatz (div (succ₁ (succ₁ n)) 2') ∎ collatz-noteven : ∀ {n} → NotEven (succ₁ (succ₁ n)) → collatz (succ₁ (succ₁ n)) ≡ collatz (3' * (succ₁ (succ₁ n)) + 1') collatz-noteven {n} h = collatz (succ₁ (succ₁ n)) ≡⟨ proof₀₋₁ (succ₁ (succ₁ n)) ⟩ collatz-s₁ (succ₁ (succ₁ n)) ≡⟨ proof₁₋₂ (iszero-S (succ₁ n)) ⟩ collatz-s₂ (succ₁ (succ₁ n)) false ≡⟨ proof₂₋₄ (succ₁ (succ₁ n)) ⟩ collatz-s₄ (succ₁ (succ₁ n)) ≡⟨ proof₄₋₅ (subst (λ x → iszero₁ x ≡ false) (sym (pred-S (succ₁ n))) (iszero-S n)) ⟩ collatz-s₅ (succ₁ (succ₁ n)) false ≡⟨ proof₅₋₇ (succ₁ (succ₁ n)) ⟩ collatz-s₇ (succ₁ (succ₁ n)) ≡⟨ proof₇₋₈ h ⟩ collatz-s₈ (succ₁ (succ₁ n)) false ≡⟨ proof₈₋₁₀ (succ₁ (succ₁ n)) ⟩ collatz (3' * (succ₁ (succ₁ n)) + 1') ∎
{ "alphanum_fraction": 0.4810066477, "avg_line_length": 32.5670103093, "ext": "agda", "hexsha": "6223cca23d2277e7a9d2272d2a8f300e5117ff60", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Program/Collatz/ConversionRulesI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Program/Collatz/ConversionRulesI.agda", "max_line_length": 79, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Program/Collatz/ConversionRulesI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 2315, "size": 6318 }
-- An ATP-pragma must appear in the same module where its argument is -- defined. -- This error is detected by TypeChecking.Monad.Signature. module ATPImports where open import Imports.ATP-A {-# ATP axiom p #-} postulate foo : a ≡ b {-# ATP prove foo #-}
{ "alphanum_fraction": 0.7076923077, "avg_line_length": 18.5714285714, "ext": "agda", "hexsha": "b224cb1882ae5d92b57ef291cbf068f5bdeeeb66", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "asr/eagda", "max_forks_repo_path": "test/fail/ATPImports.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "asr/eagda", "max_issues_repo_path": "test/fail/ATPImports.agda", "max_line_length": 69, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "asr/eagda", "max_stars_repo_path": "test/fail/ATPImports.agda", "max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z", "max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z", "num_tokens": 63, "size": 260 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT import homotopy.ConstantToSetExtendsToProp as ConstExt open import homotopy.Pigeonhole module homotopy.FinSet where -- the explicit type of finite sets, carrying the cardinality on its sleeve FinSet-exp : Type₁ FinSet-exp = Σ ℕ λ n → BAut (Fin n) FinSet-prop : SubtypeProp Type₀ (lsucc lzero) FinSet-prop = (λ A → Trunc -1 (Σ ℕ λ n → Fin n == A)) , λ A → Trunc-level -- the implicit type of finite sets, hiding the cardinality in prop. trunc. FinSet : Type₁ FinSet = Subtype FinSet-prop FinSet= : {A B : FinSet} → fst A == fst B → A == B FinSet= = Subtype=-out FinSet-prop FinFS : ℕ → FinSet FinFS n = Fin n , [ n , idp ] UnitFS : FinSet UnitFS = ⊤ , [ S O , ua Fin-equiv-Coprod ∙ ap (λ C → C ⊔ ⊤) (ua Fin-equiv-Empty) ∙ ua (Coprod-unit-l ⊤) ] Fin-inj-lemma : {n m : ℕ} → n < m → Fin m == Fin n → ⊥ Fin-inj-lemma {n} {m} n<m p = i≠j (<– (ap-equiv (coe-equiv p) i j) q) where i : Fin m i = fst (pigeonhole n<m (coe p)) j : Fin m j = fst (snd (pigeonhole n<m (coe p))) i≠j : i ≠ j i≠j = fst (snd (snd (pigeonhole n<m (coe p)))) q : coe p i == coe p j q = snd (snd (snd (pigeonhole n<m (coe p)))) Fin-inj : (n m : ℕ) → Fin n == Fin m → n == m Fin-inj n m p with ℕ-trichotomy n m Fin-inj n m p | inl q = q Fin-inj n m p | inr (inl q) = ⊥-rec (Fin-inj-lemma q (! p)) Fin-inj n m p | inr (inr q) = ⊥-rec (Fin-inj-lemma q p) FinSet-aux-prop : (A : Type₀) → SubtypeProp ℕ (lsucc lzero) FinSet-aux-prop A = (λ n → Trunc -1 (Fin n == A)) , (λ n → Trunc-level) FinSet-aux : (A : FinSet) → Subtype (FinSet-aux-prop (fst A)) FinSet-aux (A , tz) = CE.ext tz where to : (Σ ℕ λ n → Fin n == A) → Subtype (FinSet-aux-prop A) to (n , p) = n , [ p ] to-const : (z₁ z₂ : Σ ℕ λ n → Fin n == A) → to z₁ == to z₂ to-const (n₁ , p₁) (n₂ , p₂) = Subtype=-out (FinSet-aux-prop A) (Fin-inj n₁ n₂ (p₁ ∙ ! p₂)) module CE = ConstExt ⦃ Subtype-level (FinSet-aux-prop A) ⦄ to to-const card : FinSet → ℕ card A = fst (FinSet-aux A) card-conv : (A : FinSet) (n : ℕ) → Trunc -1 (Fin n == fst A) → card A == n card-conv (A , tz) n = Trunc-rec λ p → ap card (FinSet= {A , tz} {FinFS n} (! p)) FinSet-econv : FinSet-exp ≃ FinSet FinSet-econv = equiv to from to-from from-to where to : FinSet-exp → FinSet to (n , A , tp) = A , Trunc-rec (λ p → [ n , p ]) tp from : FinSet → FinSet-exp from A = card A , fst A , snd (FinSet-aux A) to-from : (A : FinSet) → to (from A) == A to-from A = pair= idp (prop-has-all-paths (snd (to (from A))) (snd A)) from-to : (A : FinSet-exp) → from (to A) == A from-to A = pair= (card-conv (to A) (fst A) (snd (snd A))) (↓-Subtype-in (λ n → BAut-prop (Fin n)) (↓-cst-in idp)) FinSet-elim-prop : ∀ {j} {P : FinSet → Type j} (p : (A : FinSet) → has-level -1 (P A)) (d : (n : ℕ) → P (FinFS n)) → (A : FinSet) → P A FinSet-elim-prop {j} {P} p d (A , tz) = Trunc-elim ⦃ λ tw → p (A , tw) ⦄ (λ {(n , p) → transport P (FinSet= p) (d n)}) tz finset-has-dec-eq : (A : FinSet) → has-dec-eq (fst A) finset-has-dec-eq = FinSet-elim-prop (λ A → has-dec-eq-is-prop) λ n → Fin-has-dec-eq -- todo: closure of FinSet under product, coproduct, exponential, etc.
{ "alphanum_fraction": 0.5671870217, "avg_line_length": 33.6804123711, "ext": "agda", "hexsha": "a6f8537070ca262226d45984add1084ad24ee99f", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/FinSet.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/FinSet.agda", "max_line_length": 95, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/FinSet.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 1295, "size": 3267 }
{-# OPTIONS --sized-types #-} module SList (A : Set) where open import Data.List open import Data.Product open import Size data SList : {ι : Size} → Set where snil : {ι : Size} → SList {↑ ι} _∙_ : {ι : Size}(x : A) → SList {ι} → SList {↑ ι} size : List A → SList size [] = snil size (x ∷ xs) = x ∙ (size xs) unsize : {ι : Size} → SList {ι} → List A unsize snil = [] unsize (x ∙ xs) = x ∷ unsize xs unsize× : {ι : Size} → SList {ι} × SList {ι} → List A × List A unsize× (xs , ys) = unsize xs , unsize ys _⊕_ : SList → SList → SList snil ⊕ ys = ys (x ∙ xs) ⊕ ys = x ∙ (xs ⊕ ys)
{ "alphanum_fraction": 0.5030674847, "avg_line_length": 19.1764705882, "ext": "agda", "hexsha": "41588a5bffde149ad0542e727c9d969d97746c5c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/SList.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/SList.agda", "max_line_length": 62, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/SList.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 252, "size": 652 }
{-# OPTIONS --safe #-} module Cubical.Algebra.AbGroup.Instances.NProd where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat using (ℕ) open import Cubical.Algebra.Group open import Cubical.Algebra.Group.Instances.NProd open import Cubical.Algebra.AbGroup private variable ℓ : Level open AbGroupStr NProd-AbGroup : (G : (n : ℕ) → Type ℓ) → (Gstr : (n : ℕ) → AbGroupStr (G n)) → AbGroup ℓ NProd-AbGroup G Gstr = Group→AbGroup (NProd-Group G (λ n → AbGroupStr→GroupStr (Gstr n))) λ f g → funExt λ n → +Comm (Gstr n) _ _
{ "alphanum_fraction": 0.6740994854, "avg_line_length": 29.15, "ext": "agda", "hexsha": "02c0cdf924c993303c99e982846557b3b2451b55", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/AbGroup/Instances/NProd.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/AbGroup/Instances/NProd.agda", "max_line_length": 89, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/AbGroup/Instances/NProd.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 179, "size": 583 }