Search is not available for this dataset
text
string
meta
dict
module Data.Maybe where data Maybe (a : Set) : Set where nothing : Maybe a just : a -> Maybe a
{ "alphanum_fraction": 0.625, "avg_line_length": 13, "ext": "agda", "hexsha": "ae9670febdfe4765f0eb92a488f08e59a3c4dd00", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Maybe.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Maybe.agda", "max_line_length": 32, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Maybe.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 32, "size": 104 }
{-# OPTIONS --cubical-compatible --rewriting --confluence-check #-} module Issue1719.Common where ofType : ∀ {i} (A : Set i) → A → A ofType A x = x syntax ofType A x = x :> A infixr 3 ofType postulate _↦_ : ∀ {i} {A : Set i} → A → A → Set i idr : ∀ {i} {A : Set i} {a : A} → a ↦ a {-# BUILTIN REWRITE _↦_ #-} infixr 3 _==_ data _==_ {i} {A : Set i} (a : A) : A → Set i where idp : a == a HetEq : ∀ {i} {A B : Set i} (e : A == B) (a : A) (b : B) → Set i HetEq idp a b = (a == b) PathOver : ∀ {i j} {A : Set i} (B : A → Set j) {x y : A} (p : x == y) (u : B x) (v : B y) → Set j PathOver B idp u v = (u == v) syntax PathOver B p u v = u == v [ B ↓ p ] postulate PathOver-rewr : ∀ {i j} {A : Set i} {B : Set j} {x y : A} (p : x == y) (u v : B) → (PathOver (λ _ → B) p u v) ↦ (u == v) {-# REWRITE PathOver-rewr #-} -- Note that this is both [ap] and [apd], as a [PathOver] in a constant family -- reduces to the usual identity type. ap : ∀ {i j} {A : Set i} {B : A → Set j} (f : (a : A) → B a) {x y : A} → (p : x == y) → PathOver B p (f x) (f y) ap f idp = idp postulate ap-cst : ∀ {i j} {A : Set i} {B : Set j} (b : B) {x y : A} (p : x == y) → ap (λ _ → b) p ↦ idp {-# REWRITE ap-cst #-}
{ "alphanum_fraction": 0.4816326531, "avg_line_length": 26.0638297872, "ext": "agda", "hexsha": "9f51acee20a1a062bb806a36c211d8091456fd40", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue1719/Common.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue1719/Common.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue1719/Common.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 546, "size": 1225 }
module A where import B import C
{ "alphanum_fraction": 0.7647058824, "avg_line_length": 6.8, "ext": "agda", "hexsha": "452b85a4f7fed7eab7825d909ccc8fc8aaf534ab", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/uptodate/A.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/uptodate/A.agda", "max_line_length": 14, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/uptodate/A.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 10, "size": 34 }
{-# OPTIONS --without-K #-} module Util.HoTT.Univalence where open import Util.HoTT.Univalence.Axiom public open import Util.HoTT.Univalence.Beta public open import Util.HoTT.Univalence.ContrFormulation public using ( UnivalenceContr ; UnivalenceProp ; univalenceContr ; univalenceProp ) open import Util.HoTT.Univalence.Statement public
{ "alphanum_fraction": 0.8123167155, "avg_line_length": 37.8888888889, "ext": "agda", "hexsha": "0071d1609415996ecf2a89c08950c1a21039ea3f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/msc-thesis-code", "max_forks_repo_path": "src/Util/HoTT/Univalence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/msc-thesis-code", "max_issues_repo_path": "src/Util/HoTT/Univalence.agda", "max_line_length": 73, "max_stars_count": 5, "max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/msc-thesis-code", "max_stars_repo_path": "src/Util/HoTT/Univalence.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z", "num_tokens": 84, "size": 341 }
module plfa.part1.Induction where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong; sym) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; step-≡; _∎) open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_) _ : (3 + 4) + 5 ≡ 3 + (4 + 5) _ = begin (3 + 4) + 5 ≡⟨⟩ 7 + 5 ≡⟨⟩ 12 ≡⟨⟩ 3 + 9 ≡⟨⟩ 3 + (4 + 5) ∎ +-assoc : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p) +-assoc zero n p = refl +-assoc (suc m) n p = cong suc (+-assoc m n p) +-suc : ∀ (m n : ℕ) → m + suc n ≡ suc (m + n) +-suc zero n = refl +-suc (suc m) n = cong suc (+-suc m n) +-commu : ∀ (m n : ℕ) → m + n ≡ n + m +-commu zero zero = refl +-commu zero (suc n) = cong suc (+-commu zero n) +-commu (suc m) zero = cong suc (+-commu m zero) +-commu (suc m) (suc n) rewrite +-suc m n rewrite +-suc n m = cong suc (cong suc (+-commu m n)) +-identityʳ : ∀ (m : ℕ) → m + zero ≡ m +-identityʳ m rewrite +-commu m zero = refl +-swap : ∀ (m n p : ℕ) → m + (n + p) ≡ n + (m + p) +-swap m n p rewrite +-commu m (n + p) rewrite +-assoc n p m rewrite +-commu p m = refl *-assoc : ∀ (m n p : ℕ) → (m + n) * p ≡ m * p + n * p *-assoc zero n p = refl *-assoc (suc m) n p rewrite +-commu (suc m) n rewrite +-assoc p (m * p) (n * p) = cong (λ n → p + n) (*-assoc m n p)
{ "alphanum_fraction": 0.4980901451, "avg_line_length": 25.1730769231, "ext": "agda", "hexsha": "c01d1d026e4cb0b68268b15579777dca5c4a10cf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "275ecc582b3a6a1da1af387251c6b4d74d9a5203", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "sym-cereal/proofs", "max_forks_repo_path": "plfa/part1/Induction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "275ecc582b3a6a1da1af387251c6b4d74d9a5203", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "sym-cereal/proofs", "max_issues_repo_path": "plfa/part1/Induction.agda", "max_line_length": 72, "max_stars_count": 6, "max_stars_repo_head_hexsha": "275ecc582b3a6a1da1af387251c6b4d74d9a5203", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UnsoundWitch/proofs", "max_stars_repo_path": "plfa/part1/Induction.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-18T10:58:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-03T03:29:40.000Z", "num_tokens": 584, "size": 1309 }
------------------------------------------------------------------------ -- Specifications of output-restricted deques (single-ended queues -- with cons) ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Equality module Queue {c⁺} (eq : ∀ {a p} → Equality-with-J a p c⁺) where open Derived-definitions-and-properties eq open import Prelude open import Bijection eq as Bijection using (_↔_) import Equivalence eq as Eq open import Function-universe eq as F hiding (id; _∘_) open import List eq as L hiding (map) open import Maybe eq open import Surjection eq using (_↠_) private variable a ℓ ℓ₁ ℓ₂ : Level A B : Type a P Q : ∀ {ℓ} → Type ℓ → Type ℓ p q x : A f : A → B xs : List A -- A specification of when (and how) a type constructor implements -- output-restricted deques. record Is-queue -- A family of queue types. (Q : ∀ {ℓ} → Type ℓ → Type ℓ) -- Some operations are only available for carrier types -- satisfying this predicate. (P : ∀ {ℓ} → Type ℓ → Type ℓ) ℓ : Type (lsuc ℓ) where field -- Conversion functions. to-List : {A : Type ℓ} → P A → Q A → List A from-List : {A : Type ℓ} → List A → Q A to-List-from-List : to-List p (from-List xs) ≡ xs -- Enqueues an element. enqueue : {A : Type ℓ} → A → Q A → Q A to-List-enqueue : to-List p (enqueue x q) ≡ to-List p q ++ x ∷ [] -- Dequeues an element, if possible. dequeue : {A : Type ℓ} → P A → Q A → Maybe (A × Q A) to-List-dequeue : ⊎-map id (Σ-map id (to-List p)) (dequeue p q) ≡ _↔_.to List↔Maybe[×List] (to-List p q) -- The "inverse" of the dequeue operation. dequeue⁻¹ : {A : Type ℓ} → Maybe (A × Q A) → Q A to-List-dequeue⁻¹ : to-List p (dequeue⁻¹ x) ≡ _↔_.from List↔Maybe[×List] (⊎-map id (Σ-map id (to-List p)) x) -- This module exports universe-polymorphic queue -- operations/properties. module Is-queue⁺ ⦃ is-queue : ∀ {ℓ} → Is-queue Q P ℓ ⦄ where private module Q {ℓ} = Is-queue (is-queue {ℓ = ℓ}) open Q public -- A split surjection from queues to lists. Queue↠List : P A → Q A ↠ List A Queue↠List p = record { logical-equivalence = record { to = to-List p ; from = from-List } ; right-inverse-of = λ _ → to-List-from-List } -- An empty queue. empty : Q A empty = dequeue⁻¹ nothing to-List-empty : to-List p empty ≡ ([] ⦂ List A) to-List-empty {p = p} = to-List p empty ≡⟨⟩ to-List p (dequeue⁻¹ nothing) ≡⟨ to-List-dequeue⁻¹ ⟩ _↔_.from List↔Maybe[×List] (⊎-map id (Σ-map id (to-List p)) nothing) ≡⟨⟩ [] ∎ -- Adds an element to the front of a queue. cons : A → Q A → Q A cons x q = dequeue⁻¹ (just (x , q)) to-List-cons : to-List p (cons x q) ≡ x ∷ to-List p q to-List-cons {p = p} {x = x} {q = q} = to-List p (cons x q) ≡⟨⟩ to-List p (dequeue⁻¹ (just (x , q))) ≡⟨ to-List-dequeue⁻¹ ⟩ _↔_.from List↔Maybe[×List] (⊎-map id (Σ-map id (to-List p)) (just (x , q))) ≡⟨⟩ x ∷ to-List p q ∎ open Is-queue⁺ public -- A specification of when (and how) a type constructor implements -- output-restricted deques with a map function. record Is-queue-with-map (Q : ∀ {ℓ} → Type ℓ → Type ℓ) ⦃ is-queue : ∀ {ℓ} → Is-queue Q P ℓ ⦄ ℓ₁ ℓ₂ : Type (lsuc (ℓ₁ ⊔ ℓ₂)) where field -- A map function. map : {A : Type ℓ₁} {B : Type ℓ₂} → (A → B) → Q A → Q B to-List-map : {p₁ : P B} {p₂ : P A} → to-List p₁ (map f q) ≡ L.map f (to-List p₂ q) -- This module exports universe-polymorphic queue -- operations/properties. module Is-queue-with-map⁺ ⦃ is-queue : ∀ {ℓ} → Is-queue Q P ℓ ⦄ ⦃ is-queue-with-map : ∀ {ℓ₁ ℓ₂} → Is-queue-with-map Q ℓ₁ ℓ₂ ⦄ where private module Q {ℓ₁ ℓ₂} = Is-queue-with-map (is-queue-with-map {ℓ₁ = ℓ₁} {ℓ₂ = ℓ₂}) open Q public open Is-queue-with-map⁺ public -- A specification of when (and how) a type constructor implements -- output-restricted deques with unique representations. record Is-queue-with-unique-representations (Q : ∀ {ℓ} → Type ℓ → Type ℓ) ⦃ is-queue : ∀ {ℓ} → Is-queue Q P ℓ ⦄ ℓ : Type (lsuc ℓ) where field -- The from-List function is a left inverse of to-List. from-List-to-List : {A : Type ℓ} {p : P A} {q : Q A} → from-List (to-List p q) ≡ q -- This module exports universe-polymorphic queue -- operations/properties. module Is-queue-with-unique-representations⁺ ⦃ is-queue : ∀ {ℓ} → Is-queue Q P ℓ ⦄ ⦃ is-queue-with-unique-representations : ∀ {ℓ} → Is-queue-with-unique-representations Q ℓ ⦄ where private module Q {ℓ} = Is-queue-with-unique-representations (is-queue-with-unique-representations {ℓ = ℓ}) open Q public -- A bijection between queues and lists. Queue↔List : P A → Q A ↔ List A Queue↔List p = record { surjection = Queue↠List p ; left-inverse-of = λ _ → from-List-to-List } -- There is a bijection between equality of two queues and equality -- of the corresponding lists. ≡-for-lists↔≡ : {A : Type a} {p : P A} {q₁ q₂ : Q A} → to-List p q₁ ≡ to-List p q₂ ↔ q₁ ≡ q₂ ≡-for-lists↔≡ {p = p} {q₁ = q₁} {q₂ = q₂} = to-List p q₁ ≡ to-List p q₂ ↔⟨ Eq.≃-≡ $ Eq.↔⇒≃ $ Queue↔List _ ⟩□ q₁ ≡ q₂ □ -- A variant of Queue↔List. Maybe[×Queue]↔List : P A → Maybe (A × Q A) ↔ List A Maybe[×Queue]↔List {A = A} p = Maybe (A × Q A) ↝⟨ F.id ⊎-cong F.id ×-cong Queue↔List p ⟩ Maybe (A × List A) ↝⟨ inverse List↔Maybe[×List] ⟩□ List A □ -- The function dequeue p is an inverse of dequeue⁻¹. Queue↔Maybe[×Queue] : P A → Q A ↔ Maybe (A × Q A) Queue↔Maybe[×Queue] {A = A} p = Bijection.with-other-function (Bijection.with-other-inverse (Q A ↝⟨ Queue↔List p ⟩ List A ↝⟨ inverse (Maybe[×Queue]↔List p) ⟩□ Maybe (A × Q A) □) dequeue⁻¹ (λ x → _↔_.from-to (inverse $ Queue↔List p) ( to-List p (dequeue⁻¹ x) ≡⟨ to-List-dequeue⁻¹ ⟩∎ _↔_.to (Maybe[×Queue]↔List p) x ∎))) (dequeue p) (λ q → _↔_.to-from (Maybe[×Queue]↔List p) ( _↔_.to (Maybe[×Queue]↔List p) (dequeue p q) ≡⟨⟩ _↔_.from List↔Maybe[×List] (⊎-map id (Σ-map id (to-List p)) (dequeue p q)) ≡⟨ cong (_↔_.from List↔Maybe[×List]) to-List-dequeue ⟩ _↔_.from List↔Maybe[×List] (_↔_.to List↔Maybe[×List] (to-List p q)) ≡⟨ _↔_.left-inverse-of List↔Maybe[×List] _ ⟩∎ to-List p q ∎)) _ : {A : Type a} {p : P A} → _↔_.to (Queue↔Maybe[×Queue] p) ≡ dequeue p _ = refl _ _ : {A : Type a} {p : P A} → _↔_.from (Queue↔Maybe[×Queue] p) ≡ dequeue⁻¹ _ = refl _ -- The function from-List can be expressed using enqueue and empty. from-List≡foldl-enqueue-empty : {A : Type a} {xs : List A} → P A → from-List xs ≡ foldl (flip enqueue) empty xs from-List≡foldl-enqueue-empty {A = A} {xs = xs} p = _↔_.to ≡-for-lists↔≡ ( to-List p (from-List xs) ≡⟨ to-List-from-List ⟩ xs ≡⟨⟩ [] ++ xs ≡⟨ cong (_++ _) $ sym to-List-empty ⟩ to-List p empty ++ xs ≡⟨ lemma _ _ ⟩∎ to-List p (foldl (flip enqueue) empty xs) ∎) where lemma : ∀ xs (q : Q A) → to-List p q ++ xs ≡ to-List p (foldl (flip enqueue) q xs) lemma [] q = to-List p q ++ [] ≡⟨ ++-right-identity _ ⟩∎ to-List p q ∎ lemma (x ∷ xs) q = to-List p q ++ x ∷ xs ≡⟨ ++-associative (to-List _ _) _ _ ⟩ (to-List p q ++ x ∷ []) ++ xs ≡⟨ cong (_++ _) $ sym to-List-enqueue ⟩ to-List p (enqueue x q) ++ xs ≡⟨ lemma _ _ ⟩ to-List p (foldl (flip enqueue) (enqueue x q) xs) ≡⟨⟩ to-List p (foldl (flip enqueue) q (x ∷ xs)) ∎ -- A corollary. to-List-foldl-enqueue-empty : {A : Type a} {p : P A} (xs : List A) → to-List p (foldl (flip enqueue) empty xs) ≡ xs to-List-foldl-enqueue-empty {p = p} xs = to-List p (foldl (flip enqueue) empty xs) ≡⟨ cong (to-List p) $ sym $ from-List≡foldl-enqueue-empty p ⟩ to-List p (from-List xs) ≡⟨ to-List-from-List ⟩∎ xs ∎ open Is-queue-with-unique-representations⁺ public instance -- Lists can be seen as queues. List-is-queue : Is-queue List (λ _ → ↑ _ ⊤) ℓ List-is-queue .Is-queue.to-List = λ _ → id List-is-queue .Is-queue.from-List = id List-is-queue .Is-queue.enqueue = λ x xs → xs ++ x ∷ [] List-is-queue .Is-queue.dequeue = λ _ → _↔_.to List↔Maybe[×List] List-is-queue .Is-queue.dequeue⁻¹ = _↔_.from List↔Maybe[×List] List-is-queue .Is-queue.to-List-from-List = refl _ List-is-queue .Is-queue.to-List-enqueue = refl _ List-is-queue .Is-queue.to-List-dequeue {q = []} = refl _ List-is-queue .Is-queue.to-List-dequeue {q = _ ∷ _} = refl _ List-is-queue .Is-queue.to-List-dequeue⁻¹ {x = nothing} = refl _ List-is-queue .Is-queue.to-List-dequeue⁻¹ {x = just _} = refl _ List-is-queue-with-map : Is-queue-with-map List ℓ₁ ℓ₂ List-is-queue-with-map .Is-queue-with-map.map = L.map List-is-queue-with-map .Is-queue-with-map.to-List-map = refl _ List-is-queue-with-unique-representations : Is-queue-with-unique-representations List ℓ List-is-queue-with-unique-representations .Is-queue-with-unique-representations.from-List-to-List = refl _
{ "alphanum_fraction": 0.5216277466, "avg_line_length": 33.1666666667, "ext": "agda", "hexsha": "d3e7d3941316bdb9dbb5554386728064677583d7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Queue.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Queue.agda", "max_line_length": 114, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Queue.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 3583, "size": 10149 }
-- Andreas, 2017-12-04, issue #2862, reported by m0davis -- Regression in development version 2.5.4 -- Scope checker allowed definition in different module than signature -- {-# OPTIONS -v scope.data.def:30 #-} open import Agda.Builtin.Equality data N : Set module Z where data N where -- should be rejected since signature lives in different module zero : N unitary-N : (x y : N) → x ≡ y unitary-N zero zero = refl data N where zero : N suc : N → N data ⊥ : Set where one : N one = suc zero ¬zero≡one : zero ≡ one → ⊥ ¬zero≡one () zero≡one : zero ≡ one zero≡one = Z.unitary-N zero one boom : ⊥ boom = ¬zero≡one zero≡one
{ "alphanum_fraction": 0.6646058733, "avg_line_length": 18.4857142857, "ext": "agda", "hexsha": "cdb86ee27a99060cbb2d01eba691204ad783b7b7", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2862.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2862.agda", "max_line_length": 79, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2862.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 214, "size": 647 }
module Acc where data Acc ( A : Set ) ( Lt : A -> A -> Set) : A -> Set where acc : ( b : A ) -> ( ( a : A ) -> Lt a b -> Acc A Lt a ) -> ( Acc A Lt b ) data Nat : Set where zero : Nat succ : Nat -> Nat data Lt : Nat -> Nat -> Set where ltzero : ( x : Nat ) -> Lt zero (succ x) ltsucc : ( x : Nat ) -> (y : Nat) -> Lt x y -> Lt (succ x) (succ y) ltstep : (x : Nat) -> Lt x (succ x) ltstep zero = ltzero _ ltstep (succ x) = ltsucc _ _ (ltstep x) notLt0 : ( x : Nat ) -> Lt x zero -> (C : Set) -> C notLt0 x () wkLt : ( x y : Nat ) -> Lt (succ x) (succ y) -> Lt x y wkLt zero (succ y) _ = ltzero y wkLt x zero (ltsucc .x .zero ()) wkLt x y (ltsucc .x .y p) = p {- wkLt1 : ( x y : Nat ) -> Lt (succ x) y -> Lt x y wkLt1 x zero () wkLt1 zero (succ y) _ = ltzero y wkLt1 (succ x) (succ y) (ltsucc .(succ x) .y p) = ltsucc x y (wkLt1 x y p) -} wkLt2 : (x y : Nat ) -> Lt x y -> Lt x (succ y) wkLt2 x zero () wkLt2 zero y p = ltzero y wkLt2 (succ x) (succ y) (ltsucc .x .y p) = ltsucc x (succ y) (wkLt2 x y p) ltcase : ( x : Nat ) -> ( y : Nat ) -> Lt x (succ y) -> ( P : Nat -> Set ) -> ( (x' : Nat ) -> Lt x' y -> P x') -> P y -> P x ltcase zero zero _ P hx' hy = hy ltcase zero (succ y') _ P hx' hy = hx' zero (ltzero y') ltcase (succ x') zero (ltsucc .x' .zero ()) _ _ _ ltcase (succ x') (succ y') (ltsucc .x' .(succ y') p) P hx' hy = ltcase x' y' p (\ n -> P (succ n)) (\ x'' p' -> hx' (succ x'') (ltsucc x'' y' p')) hy accSucc : (x : Nat) -> Acc Nat Lt x -> Acc Nat Lt (succ x) accSucc x (acc .x h) = acc (succ x) (\ y p -> ltcase y x p (Acc Nat Lt) h (acc x h)) accLt : ( x : Nat ) -> Acc Nat Lt x accLt zero = acc zero (\a -> \p -> notLt0 a p (Acc Nat Lt a) ) accLt (succ x) = accSucc x (accLt x) -- subtraction x - y sub : Nat -> Nat -> Nat sub zero y = zero sub (succ x) zero = succ x sub (succ x) (succ y) = sub x y subLt : (x y : Nat) -> Lt (sub (succ x) (succ y)) (succ x) subLt zero y = ltzero _ subLt (succ x') zero = ltstep (succ x') subLt (succ x') (succ y') = wkLt2 _ _ (subLt x' y') -- division x / (y + 1) div' : (x y : Nat) -> Acc Nat Lt x -> Nat div' zero _ _ = zero div' (succ x') y' (acc ._ h) = succ (div' z y' (h _ p)) where z = sub (succ x') (succ y') p = subLt x' y' ---- data WO ( A : Set ) ( Lt : A -> A -> Set ) : Set where wo : ((x : A) -> Acc A Lt x) -> WO A Lt woLt : WO Nat Lt woLt = wo accLt
{ "alphanum_fraction": 0.5028854081, "avg_line_length": 27.5681818182, "ext": "agda", "hexsha": "e3ec5b648993552555e8d0e7316088178e4bb95a", "lang": "Agda", "max_forks_count": 5, "max_forks_repo_forks_event_max_datetime": "2021-08-16T07:47:36.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-30T00:17:04.000Z", "max_forks_repo_head_hexsha": "4a674eddcc8950f37fcc723b26f81d5164b05f08", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andreasabel/miniagda", "max_forks_repo_path": "examples/AccP.agda", "max_issues_count": 7, "max_issues_repo_head_hexsha": "4a674eddcc8950f37fcc723b26f81d5164b05f08", "max_issues_repo_issues_event_max_datetime": "2020-03-17T08:09:01.000Z", "max_issues_repo_issues_event_min_datetime": "2016-12-16T15:48:25.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andreasabel/miniagda", "max_issues_repo_path": "examples/AccP.agda", "max_line_length": 84, "max_stars_count": 85, "max_stars_repo_head_hexsha": "4a674eddcc8950f37fcc723b26f81d5164b05f08", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andreasabel/miniagda", "max_stars_repo_path": "examples/AccP.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-12T16:54:56.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-16T15:53:24.000Z", "num_tokens": 986, "size": 2426 }
module Binders.Var where data Var (a b : Set) : Set where Free : a -> Var a b Bound : b -> Var a b
{ "alphanum_fraction": 0.5391304348, "avg_line_length": 16.4285714286, "ext": "agda", "hexsha": "6abf4bd3dce3ed6c64c2ed4818eecc98bf71a035", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e0de23b3c78313a7f6856c3d48c3d6a2ce3962dd", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "hopper-lang/hopper-v0", "max_forks_repo_path": "models/agda/Binders/Var.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "e0de23b3c78313a7f6856c3d48c3d6a2ce3962dd", "max_issues_repo_issues_event_max_datetime": "2020-02-19T01:08:47.000Z", "max_issues_repo_issues_event_min_datetime": "2020-02-19T01:08:47.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "hopper-lang/hopper-v0", "max_issues_repo_path": "models/agda/Binders/Var.agda", "max_line_length": 35, "max_stars_count": 17, "max_stars_repo_head_hexsha": "e0de23b3c78313a7f6856c3d48c3d6a2ce3962dd", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "hopper-lang/hopper-v0", "max_stars_repo_path": "models/agda/Binders/Var.agda", "max_stars_repo_stars_event_max_datetime": "2019-03-18T03:02:06.000Z", "max_stars_repo_stars_event_min_datetime": "2016-09-23T16:03:03.000Z", "num_tokens": 39, "size": 115 }
module LearnYouAgda where data ℕ : Set where zero : ℕ -- one : ℕ suc : ℕ -> ℕ -- define arithmetic operations _+_ : ℕ → ℕ → ℕ zero + zero = zero zero + n = n (suc n) + n′ = suc (n + n′)
{ "alphanum_fraction": 0.5117370892, "avg_line_length": 17.75, "ext": "agda", "hexsha": "282bced96335fab548efc5ff71fed830e2b8e221", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c134875eae37d265936199fda278416e2a3c1224", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "supeterlau/bedev", "max_forks_repo_path": "agda/LearnYouAgda.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c134875eae37d265936199fda278416e2a3c1224", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "supeterlau/bedev", "max_issues_repo_path": "agda/LearnYouAgda.agda", "max_line_length": 31, "max_stars_count": null, "max_stars_repo_head_hexsha": "c134875eae37d265936199fda278416e2a3c1224", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "supeterlau/bedev", "max_stars_repo_path": "agda/LearnYouAgda.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 81, "size": 213 }
{-# OPTIONS --without-K #-} open import Base open import Homotopy.TruncatedHIT open import Integers module Algebra.FreeGroupProps {i} (A : Set i) ⦃ p : is-set A ⦄ where import Algebra.FreeGroup open Algebra.FreeGroup A abstract freegroup-is-set : is-set freegroup freegroup-is-set = spheres-filled-is-truncated _ freegroup (λ ()) (λ f → (top f , rays f)) x·-is-equiv : (x : A) → is-equiv (λ u → x · u) x·-is-equiv x = iso-is-eq (λ u → x · u) (λ u → x ⁻¹· u) (right-inverse-· x) (left-inverse-· x)
{ "alphanum_fraction": 0.6434108527, "avg_line_length": 23.4545454545, "ext": "agda", "hexsha": "8d7b2a3c4a27128cb552f79b31cfdf6543adac53", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "old/Algebra/FreeGroupProps.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "old/Algebra/FreeGroupProps.agda", "max_line_length": 75, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "old/Algebra/FreeGroupProps.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 174, "size": 516 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.NType2 open import lib.types.Modality open import lib.types.Truncation module lib.modalities.Truncation where Trunc-modality : ∀ {i} n → Modality i Trunc-modality n = record { is-local = has-level n; is-local-is-prop = has-level-is-prop; ◯ = Trunc n; ◯-is-local = Trunc-level; η = [_]; ◯-elim = λ f → Trunc-elim {{f}}; ◯-elim-β = λ _ _ _ → idp; ◯-=-is-local = λ _ _ → =-preserves-level Trunc-level}
{ "alphanum_fraction": 0.6519114688, "avg_line_length": 24.85, "ext": "agda", "hexsha": "fc7bb6db4c4630dfe5071c7a0d132d587e9ec13c", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "core/lib/modalities/Truncation.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "core/lib/modalities/Truncation.agda", "max_line_length": 55, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "core/lib/modalities/Truncation.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 166, "size": 497 }
{-# OPTIONS --without-K --safe #-} open import Categories.Bicategory using (Bicategory) -- A Pseudofunctor is a homomorphism of Bicategories -- Follow Bénabou's definition, which is basically that of a Functor -- Note that what is in nLab is an "exploded" version of the simpler version below module Categories.Pseudofunctor {o ℓ e t o′ ℓ′ e′ t′} (C : Bicategory o ℓ e t) (D : Bicategory o′ ℓ′ e′ t′) where open import Level open import Data.Product using (_,_) import Categories.Bicategory.Extras as BicategoryExtras open import Categories.Category using (Category; _[_,_]; module Commutation) open import Categories.Category.Instance.One using (shift) open import Categories.Category.Product using (_⁂_) open import Categories.Functor using (Functor; _∘F_) renaming (id to idF) open import Categories.NaturalTransformation using (NaturalTransformation) open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; _≃_) open BicategoryExtras using (module ComHom) open Category using (Obj) open NaturalIsomorphism using (F⇒G; F⇐G) private module C = BicategoryExtras C module D = BicategoryExtras D record Pseudofunctor : Set (o ⊔ ℓ ⊔ e ⊔ t ⊔ o′ ⊔ ℓ′ ⊔ e′ ⊔ t′) where field P₀ : C.Obj → D.Obj P₁ : {x y : C.Obj} → Functor (C.hom x y) (D.hom (P₀ x) (P₀ y)) -- For maximal generality, shift the levels of One. P preserves id P-identity : {A : C.Obj} → D.id {P₀ A} ∘F shift o′ ℓ′ e′ ≃ P₁ ∘F (C.id {A}) -- P preserves composition P-homomorphism : {x y z : C.Obj} → D.⊚ ∘F (P₁ ⁂ P₁) ≃ P₁ ∘F C.⊚ {x} {y} {z} -- P preserves ≃ module P₁ {x} {y} = Functor (P₁ {x} {y}) module unitˡ {A} = NaturalTransformation (F⇒G (P-identity {A})) module unitʳ {A} = NaturalTransformation (F⇐G (P-identity {A})) module Hom {x} {y} {z} = NaturalTransformation (F⇒G (P-homomorphism {x} {y} {z})) -- For notational convenience, shorten some functor applications private F₀ = λ {x y} f → Functor.F₀ (P₁ {x} {y}) f F₁ = λ {x y f g} α → Functor.F₁ (P₁ {x} {y}) {f} {g} α Pid = λ {A} → NaturalTransformation.η (F⇒G (P-identity {A})) _ Phom = λ {x} {y} {z} f,g → NaturalTransformation.η (F⇒G (P-homomorphism {x} {y} {z})) f,g field unitaryˡ : {x y : C.Obj} → let open ComHom D in {f : Obj (C.hom x y)} → [ D.id₁ D.⊚₀ F₀ f ⇒ F₀ f ]⟨ Pid D.⊚₁ D.id₂ ⇒⟨ F₀ C.id₁ D.⊚₀ F₀ f ⟩ Phom (C.id₁ , f) ⇒⟨ F₀ (C.id₁ C.⊚₀ f) ⟩ F₁ C.unitorˡ.from ≈ D.unitorˡ.from ⟩ unitaryʳ : {x y : C.Obj} → let open ComHom D in {f : Obj (C.hom x y)} → [ F₀ f D.⊚₀ D.id₁ ⇒ F₀ f ]⟨ D.id₂ D.⊚₁ Pid ⇒⟨ F₀ f D.⊚₀ F₀ C.id₁ ⟩ Phom (f , C.id₁) ⇒⟨ F₀ (f C.⊚₀ C.id₁) ⟩ F₁ C.unitorʳ.from ≈ D.unitorʳ.from ⟩ assoc : {x y z w : C.Obj} → let open ComHom D in {f : Obj (C.hom x y)} {g : Obj (C.hom y z)} {h : Obj (C.hom z w)} → [ (F₀ h D.⊚₀ F₀ g) D.⊚₀ F₀ f ⇒ F₀ (h C.⊚₀ (g C.⊚₀ f)) ]⟨ Phom (h , g) D.⊚₁ D.id₂ ⇒⟨ F₀ (h C.⊚₀ g) D.⊚₀ F₀ f ⟩ Phom (_ , f) ⇒⟨ F₀ ((h C.⊚₀ g) C.⊚₀ f) ⟩ F₁ C.associator.from ≈ D.associator.from ⇒⟨ F₀ h D.⊚₀ (F₀ g D.⊚₀ F₀ f) ⟩ D.id₂ D.⊚₁ Phom (g , f) ⇒⟨ F₀ h D.⊚₀ F₀ (g C.⊚₀ f) ⟩ Phom (h , _) ⟩ -- Useful shorthands ₀ = P₀ module ₁ = P₁
{ "alphanum_fraction": 0.5268729642, "avg_line_length": 38.7789473684, "ext": "agda", "hexsha": "6e2a03be04a583bf19d9bda81256b818a5a76b2b", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Pseudofunctor.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Pseudofunctor.agda", "max_line_length": 83, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Pseudofunctor.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 1386, "size": 3684 }
{-# OPTIONS --allow-unsolved-metas --universe-polymorphism #-} module Issue203 where postulate Level : Set zero : Level suc : Level → Level max : Level → Level → Level {-# BUILTIN LEVEL Level #-} {-# BUILTIN LEVELZERO zero #-} {-# BUILTIN LEVELSUC suc #-} {-# BUILTIN LEVELMAX max #-} -- Should work but give unsolved metas (type of b) data ↓ {a b} (A : Set a) : Set a where [_] : (x : A) → ↓ A mutual -- avoid freezing -- Shouldn't instantiate the level of Σ to a data Σ {a b} (A : Set a) (B : A → Set b) : Set _ where _,_ : (x : A) (y : B x) → Σ A B instantiateToMax : ∀ {a b}(A : Set a)(B : A → Set b) → Set (max a b) instantiateToMax = Σ
{ "alphanum_fraction": 0.5861561119, "avg_line_length": 23.4137931034, "ext": "agda", "hexsha": "e7885e099f85d97e0e7367b9a7dc09415b3b7378", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/succeed/Issue203.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/succeed/Issue203.agda", "max_line_length": 70, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue203.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 228, "size": 679 }
module Test where -- To compile code: stack exec -- agda Test.agda -c -- or: agda Test.agda -c --ghc-flag=-dynamic open import IO -- All of these are not necessary but they help to reduce clutter when looking -- at the types of the different things in the code import Agda.Builtin.List as List open import Agda.Builtin.Unit using (⊤) open List using (_∷_) import Agda.Builtin.String as String main = run (putStrLn "Hello, World!") data Bool : Set where true : Bool false : Bool if_then_else_ : { A : Set } → Bool → A → A → A if true then t else e = t if false then t else e = e
{ "alphanum_fraction": 0.7006802721, "avg_line_length": 25.5652173913, "ext": "agda", "hexsha": "0b836b9f5ffa6396b0efdf0c2864d4989a2d6d4e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "helq/old_code", "max_forks_repo_path": "proglangs-learning/Agda/Test.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_issues_repo_issues_event_max_datetime": "2021-06-07T15:39:48.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-10T19:20:21.000Z", "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "helq/old_code", "max_issues_repo_path": "proglangs-learning/Agda/Test.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "helq/old_code", "max_stars_repo_path": "proglangs-learning/Agda/Test.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 172, "size": 588 }
{-# OPTIONS --without-K --safe #-} module TypeTheory.HoTT.Function.Properties where -- agda-stdlib open import Axiom.Extensionality.Propositional open import Level -- agda-misc open import TypeTheory.HoTT.Base private variable a b : Level A : Set a B : Set b module _ {a b} {A : Set a} {B : Set b} where isProp-→ : Extensionality a b → isProp B → isProp (A → B) isProp-→ ext B-isProp f g = ext λ x → B-isProp (f x) (g x)
{ "alphanum_fraction": 0.6576576577, "avg_line_length": 21.1428571429, "ext": "agda", "hexsha": "3c4a8f0d6c9df2e0ae88a7a7651263d9cdd17088", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "TypeTheory/HoTT/Function/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "TypeTheory/HoTT/Function/Properties.agda", "max_line_length": 60, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "TypeTheory/HoTT/Function/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 146, "size": 444 }
{-# OPTIONS --rewriting --without-K #-} open import Agda.Primitive open import Prelude open import GSeTT.Syntax open import GSeTT.Rules {- Type theory for globular sets -} module GSeTT.Uniqueness-Derivations where has-all-paths-∈ : ∀ {Γ x A} → Γ ⊢C → has-all-paths (x # A ∈ Γ) has-all-paths-∈ {Γ :: (y , B)} {x} {A} (cc Γ⊢ γ⊢A idp) (inl x∈Γ) (inl x∈'Γ) = ap inl (has-all-paths-∈ Γ⊢ x∈Γ x∈'Γ) has-all-paths-∈ {Γ :: (y , B)} {x} {A} (cc Γ⊢ γ⊢A idp) (inl x∈Γ) (inr (idp , idp)) = ⊥-elim (lΓ∉Γ Γ⊢ x∈Γ) has-all-paths-∈ {Γ :: (y , B)} {x} {A} (cc Γ⊢ γ⊢A idp) (inr (idp , idp)) (inl x∈Γ) = ⊥-elim (lΓ∉Γ Γ⊢ x∈Γ) has-all-paths-∈ {Γ :: (y , B)} {x} {A} (cc Γ⊢ γ⊢A idp) (inr (idp , idp)) (inr (p' , q')) = ap inr (,= (is-prop-has-all-paths (is-setℕ x (length Γ)) idp p') (is-prop-has-all-paths ((eqdec-is-set eqdec-PreTy) A B) idp q')) has-all-paths-⊢C : ∀ {Γ} → has-all-paths (Γ ⊢C) has-all-paths-⊢T : ∀ {Γ A} → has-all-paths (Γ ⊢T A) has-all-paths-⊢t : ∀ {Γ A t} → has-all-paths (Γ ⊢t t # A) has-all-paths-⊢S : ∀ {Δ Γ γ} → has-all-paths (Δ ⊢S γ > Γ) has-all-paths-⊢C {nil} ec ec = idp has-all-paths-⊢C {Γ :: (x , A)} (cc Γ⊢ Γ⊢A p) (cc Γ⊢' Γ⊢'A q) = ap³ cc ((has-all-paths-⊢C Γ⊢ Γ⊢')) ((has-all-paths-⊢T Γ⊢A Γ⊢'A)) (is-prop-has-all-paths (is-setℕ x (length Γ)) p q) has-all-paths-⊢T {Γ} {∗} (ob Γ⊢) (ob Γ⊢') = ap ob (has-all-paths-⊢C Γ⊢ Γ⊢') has-all-paths-⊢T {Γ} {⇒ A t u} (ar Γ⊢t:A Γ⊢u:A) (ar Γ⊢'t:A Γ⊢'u:A) = ap² ar (has-all-paths-⊢t Γ⊢t:A Γ⊢'t:A) (has-all-paths-⊢t Γ⊢u:A Γ⊢'u:A) has-all-paths-⊢t {Γ} {A} {Var x} (var Γ⊢ x∈Γ) (var Γ⊢' x∈'Γ) = ap² var (has-all-paths-⊢C Γ⊢ Γ⊢') (has-all-paths-∈ Γ⊢ x∈Γ x∈'Γ) has-all-paths-⊢S {Δ} {Γ} {<>} (es Δ⊢) (es Δ⊢')= ap es (has-all-paths-⊢C Δ⊢ Δ⊢') has-all-paths-⊢S {Δ} {Γ :: (y , A)} {γ :: (x , t)} (sc Δ⊢γ Γ+⊢ Δ⊢t p) (sc Δ⊢'γ Γ+⊢' Δ⊢'t q) = ap⁴ sc (has-all-paths-⊢S Δ⊢γ Δ⊢'γ) (has-all-paths-⊢C Γ+⊢ Γ+⊢') (has-all-paths-⊢t Δ⊢t Δ⊢'t) (is-prop-has-all-paths (is-setℕ y x) p q) is-prop-⊢C : ∀ Γ → is-prop (Γ ⊢C) is-prop-⊢T : ∀ Γ A → is-prop (Γ ⊢T A) is-prop-⊢t : ∀ Γ A t → is-prop (Γ ⊢t t # A) is-prop-⊢S : ∀ Δ Γ γ → is-prop (Δ ⊢S γ > Γ) is-prop-⊢C Γ = has-all-paths-is-prop has-all-paths-⊢C is-prop-⊢T Γ A = has-all-paths-is-prop has-all-paths-⊢T is-prop-⊢t Γ A t = has-all-paths-is-prop has-all-paths-⊢t is-prop-⊢S Γ Δ γ = has-all-paths-is-prop has-all-paths-⊢S Γ⊢→length∉ : ∀ {Γ A n} → length Γ ≤ n → Γ ⊢C → ¬ (n # A ∈ Γ) Γ⊢→length∉ {.(_ :: (length _ , _))} Sl≤n (cc Γ⊢ x₁ idp) (inl n∈Γ) = Γ⊢→length∉ (Sn≤m→n≤m Sl≤n) Γ⊢ n∈Γ Γ⊢→length∉ {.(_ :: (length _ , _))} Sl≤l (cc Γ⊢ x₁ idp) (inr (idp , idp)) = Sn≰n _ Sl≤l unique-type : ∀ {Γ t u A B} → (Γ ⊢t t # A) → (Γ ⊢t u # B) → t == u → A == B unique-type {Γ :: a} (var _ (inr (idp , idp))) (var _ (inr (idp , idp))) _ = idp unique-type {Γ :: .(_ , _)} (var x (inl x∈Γ)) (var (cc Γ⊢ _ p) (inl x'∈Γ)) idp = unique-type (var Γ⊢ x∈Γ) (var Γ⊢ x'∈Γ ) idp unique-type {Γ :: .(_ , _)} (var _ (inl x∈Γ)) (var (cc Γ⊢ _ idp) (inr (idp , idp))) idp = ⊥-elim (Γ⊢→length∉ (n≤n _) Γ⊢ x∈Γ) unique-type {Γ :: .(_ , _)} (var (cc Γ⊢ _ idp) (inr (idp , idp))) (var _ (inl x∈Γ)) idp = ⊥-elim (Γ⊢→length∉ (n≤n _) Γ⊢ x∈Γ)
{ "alphanum_fraction": 0.5139240506, "avg_line_length": 58.5185185185, "ext": "agda", "hexsha": "a3898402382a824d0465e20723cdfeb82f0e843c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thibautbenjamin/catt-formalization", "max_forks_repo_path": "GSeTT/Uniqueness-Derivations.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thibautbenjamin/catt-formalization", "max_issues_repo_path": "GSeTT/Uniqueness-Derivations.agda", "max_line_length": 181, "max_stars_count": null, "max_stars_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thibautbenjamin/catt-formalization", "max_stars_repo_path": "GSeTT/Uniqueness-Derivations.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1863, "size": 3160 }
import SOAS.Families.Core -- Combinators for context maps module SOAS.ContextMaps.Combinators {T : Set} (open SOAS.Families.Core {T}) (𝒳 : Familyₛ) where open import SOAS.Common open import SOAS.Context {T} open import SOAS.Sorting open import SOAS.Variable open import SOAS.Families.Isomorphism open import SOAS.Families.BCCC private variable Γ Γ′ Δ Δ′ Θ : Ctx α β τ : T -- Sub from the empty context empty : ∅ ~[ 𝒳 ]↝ Δ empty () -- Combine two maps into the same context by concatenating the domain copair : Γ ~[ 𝒳 ]↝ Θ → Δ ~[ 𝒳 ]↝ Θ → (Γ ∔ Δ) ~[ 𝒳 ]↝ Θ copair {∅} σ ς v = ς v copair {α ∙ Γ} σ ς new = σ new copair {α ∙ Γ} σ ς (old v) = copair {Γ} (σ ∘ old) ς v copair≈₁ : {σ₁ σ₂ : Γ ~[ 𝒳 ]↝ Θ}(ς : Δ ~[ 𝒳 ]↝ Θ){v : ℐ α (Γ ∔ Δ)} → ({τ : T}(v : ℐ τ Γ) → σ₁ v ≡ σ₂ v) → copair σ₁ ς v ≡ copair σ₂ ς v copair≈₁ ς {v} p = cong (λ - → copair (λ {τ} → - {τ}) ς v) (dext (λ y → p y)) copair≈₂ : (σ : Γ ~[ 𝒳 ]↝ Θ){ς₁ ς₂ : Δ ~[ 𝒳 ]↝ Θ}{v : ℐ α (Γ ∔ Δ)} → ({τ : T}(v : ℐ τ Δ) → ς₁ v ≡ ς₂ v) → copair σ ς₁ v ≡ copair σ ς₂ v copair≈₂ σ {v = v} p = cong (λ - → copair σ (λ {τ} → - {τ}) v) (dext (λ y → p y)) -- Split a map from a combined context into two maps split : (Γ ∔ Δ) ~[ 𝒳 ]↝ Θ → Γ ~[ 𝒳 ]↝ Θ × Δ ~[ 𝒳 ]↝ Θ split {∅} σ = (λ ()) , σ split {α ∙ Γ} σ with split {Γ} (σ ∘ old) ... | ς₁ , ς₂ = (λ{ new → σ new ; (old v) → ς₁ v}) , ς₂ -- Expand the codomain of a renaming expandʳ : ({Γ} Δ : Ctx) → Γ ↝ Γ ∔ Δ expandʳ {α ∙ Γ} Δ new = new expandʳ {α ∙ Γ} Δ (old v) = old (expandʳ Δ v) expandˡ : (Γ {Δ} : Ctx) → Δ ↝ Γ ∔ Δ expandˡ ∅ v = v expandˡ (α ∙ Γ) v = old (expandˡ Γ v) -- Special cases of the above, when one of the contexts is a singleton -- and the map from the singleton context is isomorphic to a term -- Add a term to a context map add : 𝒳 α Δ → Γ ~[ 𝒳 ]↝ Δ → (α ∙ Γ) ~[ 𝒳 ]↝ Δ add t σ new = t add t σ (old v) = σ v -- Consider a term as a context map from the singleton context asMap : 𝒳 α Γ → ⌊ α ⌋ ~[ 𝒳 ]↝ Γ asMap t new = t -- Separate a compound context map into a term and a residual map detach : (τ ∙ Γ) ~[ 𝒳 ]↝ Δ → 𝒳 τ Δ × (Γ ~[ 𝒳 ]↝ Δ) detach {_}{∅} σ = σ new , (λ ()) detach {_}{(α ∙ Γ)} σ = σ new , σ ∘ old add[new][old] : (σ : τ ∙ Γ ~[ 𝒳 ]↝ Δ)(v : ℐ α (τ ∙ Γ)) → add (σ new) (σ ∘ old) v ≡ σ v add[new][old] σ new = refl add[new][old] σ (old v) = refl -- Remove a term from a compound context map remove : (τ ∙ Γ) ~[ 𝒳 ]↝ Δ → Γ ~[ 𝒳 ]↝ Δ remove {_} {∅} σ = λ () remove {_} {α ∙ Γ} σ = σ ∘ old -- Add and remove are inverses add∘remove : (σ : (τ ∙ Γ) ~[ 𝒳 ]↝ Δ) (v : ℐ α (τ ∙ Γ)) → add (σ new) (remove σ) v ≡ σ v add∘remove σ new = refl add∘remove σ (old new) = refl add∘remove σ (old (old v)) = refl remove∘add : (σ : Γ ~[ 𝒳 ]↝ Δ) (t : 𝒳 τ Δ)(v : ℐ α Γ) → remove (add t σ) v ≡ σ v remove∘add σ t new = refl remove∘add σ t (old v) = refl
{ "alphanum_fraction": 0.5287156283, "avg_line_length": 29.3163265306, "ext": "agda", "hexsha": "1c73be8d1ba82f4e72a434a5948dbe817fb98452", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "SOAS/ContextMaps/Combinators.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "SOAS/ContextMaps/Combinators.agda", "max_line_length": 81, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "SOAS/ContextMaps/Combinators.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 1323, "size": 2873 }
{- Constant structure: _ ↦ A -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Structures.Constant where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.SIP private variable ℓ ℓ' : Level -- Structured isomorphisms module _ (A : Type ℓ') where ConstantStructure : Type ℓ → Type ℓ' ConstantStructure _ = A ConstantEquivStr : StrEquiv {ℓ} ConstantStructure ℓ' ConstantEquivStr (_ , a) (_ , a') _ = a ≡ a' constantUnivalentStr : UnivalentStr {ℓ} ConstantStructure ConstantEquivStr constantUnivalentStr e = idEquiv _
{ "alphanum_fraction": 0.731078905, "avg_line_length": 20.7, "ext": "agda", "hexsha": "332170ac916a871ab6197708f5969ebf88e3fb3d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "RobertHarper/cubical", "max_forks_repo_path": "Cubical/Structures/Constant.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "RobertHarper/cubical", "max_issues_repo_path": "Cubical/Structures/Constant.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "RobertHarper/cubical", "max_stars_repo_path": "Cubical/Structures/Constant.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 185, "size": 621 }
record R : Set₁ where field _! : Set → Set open R F : Set → Set F ! = !
{ "alphanum_fraction": 0.5125, "avg_line_length": 8.8888888889, "ext": "agda", "hexsha": "2662e26ea5f9f8aaa3b8f090c8f88a5751e10c76", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/OpBind.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/OpBind.agda", "max_line_length": 21, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/OpBind.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 31, "size": 80 }
open import MJ.Types open import MJ.Classtable module MJ.Syntax {c}(Σ : Classtable c) where open import MJ.Syntax.Typed Σ public
{ "alphanum_fraction": 0.7709923664, "avg_line_length": 18.7142857143, "ext": "agda", "hexsha": "3bb010a5e264202f23071208bc8b4808f3beee15", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/MJ/Syntax.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/MJ/Syntax.agda", "max_line_length": 44, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/MJ/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 37, "size": 131 }
{-# OPTIONS --without-K --safe #-} module Data.Sigma.Base where open import Agda.Builtin.Sigma using (Σ; _,_; fst; snd) public open import Level infixr 4.5 ∃-syntax ∃-syntax : ∀ {a b} {A : Type a} (B : A → Type b) → Type (a ℓ⊔ b) ∃-syntax {A = A} = Σ A syntax ∃-syntax (λ x → e) = ∃ x × e infixr 4.5 Σ⦂-syntax Σ⦂-syntax : (A : Type a) (B : A → Type b) → Type (a ℓ⊔ b) Σ⦂-syntax = Σ syntax Σ⦂-syntax t (λ x → e) = Σ[ x ⦂ t ] × e infixr 4.5 _×_ _×_ : (A : Type a) → (B : Type b) → Type (a ℓ⊔ b) A × B = Σ A λ _ → B curry : ∀ {A : Type a} {B : A → Type b} {C : Σ A B → Type c} → ((p : Σ A B) → C p) → ((x : A) → (y : B x) → C (x , y)) curry f x y = f (x , y) {-# INLINE curry #-} uncurry : ∀ {A : Type a} {B : A → Type b} {C : Σ A B → Type c} → ((x : A) → (y : B x) → C (x , y)) → ((p : Σ A B) → C p) uncurry f (x , y) = f x y {-# INLINE uncurry #-} map-Σ : ∀ {p q} {P : A → Set p} {Q : B → Set q} → (f : A → B) → (∀ {x} → P x → Q (f x)) → Σ A P → Σ B Q map-Σ f g (x , y) = f x , g y {-# INLINE map-Σ #-} map₁ : (A → B) → A × C → B × C map₁ f = map-Σ f (λ x → x) {-# INLINE map₁ #-} map₁-Σ : ∀ {A : Set a} {B : Set b} {C : B → Set b} → (f : A → B) → Σ A (λ x → C (f x)) → Σ B C map₁-Σ f (x , y) = f x , y {-# INLINE map₁-Σ #-} map₂ : ∀ {A : Set a} {B : A → Set b} {C : A → Set c} → (∀ {x} → B x → C x) → Σ A B → Σ A C map₂ f = map-Σ (λ x → x) f {-# INLINE map₂ #-}
{ "alphanum_fraction": 0.4215955983, "avg_line_length": 25.5087719298, "ext": "agda", "hexsha": "0fcc92c6e0dfb871ddb11e6abccce7a4661bf93a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Sigma/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Sigma/Base.agda", "max_line_length": 64, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Sigma/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 700, "size": 1454 }
module Open1 where module M where data ⊤ : Set where tt : ⊤ module N where open M v : ⊤ v = tt open M open N module O where w : ⊤ w = tt x : ⊤ x = tt module P where open O using (w) renaming (x to x') y : ⊤ y = w open P module Q where open O hiding (w) renaming (x to x'') z : ⊤ z = x''
{ "alphanum_fraction": 0.42997543, "avg_line_length": 6.7833333333, "ext": "agda", "hexsha": "94cda66c0607c1ebdbd1383999a0acfbed03f75a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-01T16:38:14.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-01T16:38:14.000Z", "max_forks_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "msuperdock/agda-unused", "max_forks_repo_path": "data/declaration/Open1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "msuperdock/agda-unused", "max_issues_repo_path": "data/declaration/Open1.agda", "max_line_length": 23, "max_stars_count": 6, "max_stars_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "msuperdock/agda-unused", "max_stars_repo_path": "data/declaration/Open1.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-01T16:38:05.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-29T09:38:43.000Z", "num_tokens": 167, "size": 407 }
module Issue561 where open import Common.Prelude open import Common.MAlonzo using () -- if I do not include this, I get compilation errors -- MAlonzo/Code/Common/Prelude.hs:8:7: -- Not in scope: type constructor or class `Common.FFI.Nat' primitive primIsDigit : Char → Bool postulate return : ∀ {A} → A → IO A main : IO Bool main = return true
{ "alphanum_fraction": 0.6978021978, "avg_line_length": 17.3333333333, "ext": "agda", "hexsha": "3e151ef4cc6e3c7c11a02f8360e2a1c8e23a2192", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue561.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue561.agda", "max_line_length": 63, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/succeed/Issue561.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 107, "size": 364 }
------------------------------------------------------------------------------ -- Testing the --schematic-functions option ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- Fails because requires the above option. module RequiredOption.SchematicFunctions where postulate D : Set fix : (D → D) → D _≡_ : D → D → Set postulate fix-f : (f : D → D) → fix f ≡ f (fix f) {-# ATP axiom fix-f #-} -- We need to have at least one conjecture to generate a TPTP file. postulate refl : ∀ d → d ≡ d {-# ATP prove refl #-}
{ "alphanum_fraction": 0.4574175824, "avg_line_length": 29.12, "ext": "agda", "hexsha": "e9dbb23a93b7b43389adc27666ee8973b107498f", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Fail/Errors/RequiredOption/SchematicFunctions.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Fail/Errors/RequiredOption/SchematicFunctions.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Fail/Errors/RequiredOption/SchematicFunctions.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 158, "size": 728 }
module Problem2 where open import Problem1 infixr 40 _►_ data Vec (A : Set) : Nat -> Set where ε : Vec A zero _►_ : {n : Nat} -> A -> Vec A n -> Vec A (suc n) -- 2.1 vec : {A : Set}{n : Nat} -> A -> Vec A n vec {n = zero } x = ε vec {n = suc n} x = x ► vec x -- 2.2 infixl 80 _<*>_ _<*>_ : {A B : Set}{n : Nat} -> Vec (A -> B) n -> Vec A n -> Vec B n ε <*> ε = ε (f ► fs) <*> (x ► xs) = f x ► fs <*> xs -- 2.3 map : {A B : Set}{n : Nat} -> (A -> B) -> Vec A n -> Vec B n map f xs = vec f <*> xs -- 2.4 zip : {A B C : Set}{n : Nat} -> (A -> B -> C) -> Vec A n -> Vec B n -> Vec C n zip f xs ys = vec f <*> xs <*> ys
{ "alphanum_fraction": 0.4311926606, "avg_line_length": 18.1666666667, "ext": "agda", "hexsha": "3be2ea86ad9aae2e4ff43a70597c3c0ce8c47e8e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/SummerSchool07/Solutions/Problem2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/SummerSchool07/Solutions/Problem2.agda", "max_line_length": 68, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/SummerSchool07/Solutions/Problem2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 279, "size": 654 }
module Issue790 where open import Common.Level renaming (lzero to zero; lsuc to suc) open import Common.Prelude using (Bool; true; false; zero; suc) renaming (Nat to ℕ) even? : ℕ -> Bool even? 0 = true even? (suc (suc n)) = even? n even? _ = false -- Name overlap between Level's suc and Nat's suc should not matter, -- since only one is a constructor.
{ "alphanum_fraction": 0.6596858639, "avg_line_length": 29.3846153846, "ext": "agda", "hexsha": "f57df7375fd4e63ae8fd4ecbf6a1a7723db0ae32", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue790.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue790.agda", "max_line_length": 83, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue790.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 105, "size": 382 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Natural number division ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Nat.DivMod where open import Agda.Builtin.Nat using (div-helper; mod-helper) open import Data.Fin using (Fin; toℕ; fromℕ≤) open import Data.Fin.Properties using (toℕ-fromℕ≤) open import Data.Nat as Nat open import Data.Nat.DivMod.Core open import Data.Nat.Properties using (≤⇒≤″; +-assoc; +-comm; +-identityʳ) open import Function using (_$_) open import Relation.Nullary.Decidable using (False) open import Relation.Binary.PropositionalEquality open ≡-Reasoning ------------------------------------------------------------------------ -- Basic operations infixl 7 _div_ _%_ -- Integer division _div_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → ℕ (a div 0) {} (a div suc n) = div-helper 0 n a n -- Integer remainder (mod) _%_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → ℕ (a % 0) {} (a % suc n) = mod-helper 0 n a n ------------------------------------------------------------------------ -- Properties a≡a%n+[a/n]*n : ∀ a n → a ≡ a % suc n + (a div (suc n)) * suc n a≡a%n+[a/n]*n a n = division-lemma 0 0 a n a%1≡0 : ∀ a → a % 1 ≡ 0 a%1≡0 = a[modₕ]1≡0 a%n<n : ∀ a n → a % suc n < suc n a%n<n a n = s≤s (a[modₕ]n<n 0 a n) n%n≡0 : ∀ n → suc n % suc n ≡ 0 n%n≡0 n = n[modₕ]n≡0 0 n a%n%n≡a%n : ∀ a n → a % suc n % suc n ≡ a % suc n a%n%n≡a%n a n = modₕ-idem 0 a n [a+n]%n≡a%n : ∀ a n → (a + suc n) % suc n ≡ a % suc n [a+n]%n≡a%n a n = a+n[modₕ]n≡a[modₕ]n 0 a n [a+kn]%n≡a%n : ∀ a k n → (a + k * (suc n)) % suc n ≡ a % suc n [a+kn]%n≡a%n a zero n = cong (_% suc n) (+-identityʳ a) [a+kn]%n≡a%n a (suc k) n = begin (a + (m + k * m)) % m ≡⟨ cong (_% m) (sym (+-assoc a m (k * m))) ⟩ (a + m + k * m) % m ≡⟨ [a+kn]%n≡a%n (a + m) k n ⟩ (a + m) % m ≡⟨ [a+n]%n≡a%n a n ⟩ a % m ∎ where m = suc n kn%n≡0 : ∀ k n → k * (suc n) % suc n ≡ 0 kn%n≡0 = [a+kn]%n≡a%n 0 %-distribˡ-+ : ∀ a b n → (a + b) % suc n ≡ (a % suc n + b % suc n) % suc n %-distribˡ-+ a b n = begin (a + b) % m ≡⟨ cong (λ v → (v + b) % m) (a≡a%n+[a/n]*n a n) ⟩ (a % m + a div m * m + b) % m ≡⟨ cong (_% m) (+-assoc (a % m) _ b) ⟩ (a % m + (a div m * m + b)) % m ≡⟨ cong (λ v → (a % m + v) % m) (+-comm _ b) ⟩ (a % m + (b + a div m * m)) % m ≡⟨ cong (_% m) (sym (+-assoc (a % m) b _)) ⟩ (a % m + b + a div m * m) % m ≡⟨ [a+kn]%n≡a%n (a % m + b) (a div m) n ⟩ (a % m + b) % m ≡⟨ cong (λ v → (a % m + v) % m) (a≡a%n+[a/n]*n b n) ⟩ (a % m + (b % m + (b div m) * m)) % m ≡⟨ sym (cong (_% m) (+-assoc (a % m) (b % m) _)) ⟩ (a % m + b % m + (b div m) * m) % m ≡⟨ [a+kn]%n≡a%n (a % m + b % m) (b div m) n ⟩ (a % m + b % m) % m ∎ where m = suc n ------------------------------------------------------------------------ -- A specification of integer division. record DivMod (dividend divisor : ℕ) : Set where constructor result field quotient : ℕ remainder : Fin divisor property : dividend ≡ toℕ remainder + quotient * divisor _mod_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → Fin divisor (a mod 0) {} (a mod suc n) = fromℕ≤ (a%n<n a n) _divMod_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → DivMod dividend divisor (a divMod 0) {} (a divMod suc n) = result (a div suc n) (a mod suc n) $ begin a ≡⟨ a≡a%n+[a/n]*n a n ⟩ a % suc n + [a/n]*n ≡⟨ cong (_+ [a/n]*n) (sym (toℕ-fromℕ≤ (a%n<n a n))) ⟩ toℕ (fromℕ≤ (a%n<n a n)) + [a/n]*n ∎ where [a/n]*n = a div suc n * suc n
{ "alphanum_fraction": 0.4404982772, "avg_line_length": 34.3, "ext": "agda", "hexsha": "d22fd88ec51cc8e00dd5ab73a4cf8d979b880078", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/DivMod.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/DivMod.agda", "max_line_length": 93, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/DivMod.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1551, "size": 3773 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Pointwise equality over lists using propositional equality ------------------------------------------------------------------------ -- Note think carefully about using this module as pointwise -- propositional equality can usually be replaced with propositional -- equality. {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Data.List.Relation.Binary.Equality.Propositional {a} {A : Set a} where open import Data.List.Base import Data.List.Relation.Binary.Equality.Setoid as SetoidEquality open import Relation.Binary.PropositionalEquality as P using (_≡_) ------------------------------------------------------------------------ -- Re-export everything from setoid equality open SetoidEquality (P.setoid A) public ------------------------------------------------------------------------ -- ≋ is propositional ≋⇒≡ : _≋_ ⇒ _≡_ ≋⇒≡ [] = P.refl ≋⇒≡ (P.refl ∷ xs≈ys) = P.cong (_ ∷_) (≋⇒≡ xs≈ys) ≡⇒≋ : _≡_ ⇒ _≋_ ≡⇒≋ P.refl = ≋-refl
{ "alphanum_fraction": 0.5115848007, "avg_line_length": 30.8285714286, "ext": "agda", "hexsha": "1a9c993fbbfd08efbead8128d7623f6ab381ba06", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Equality/Propositional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Equality/Propositional.agda", "max_line_length": 77, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Equality/Propositional.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 258, "size": 1079 }
module Data.Union where open import Data.List using (List; _∷_; [_]; []) open import Data.List.Relation.Unary.Any using (here; there; _─_) open import Data.List.Membership.Propositional using (_∈_) open import Data.Maybe using (Maybe; just; nothing; _>>=_) open import Level using (Level; _⊔_) open import Function using (_∘_) -- ---------------------------------------------------------------------- -- Definition -- -- A union of the family B defined by the list of tags ts -- of type A data Union {a b} (A : Set a) (B : A → Set b) : List A → Set (a ⊔ b) where here : ∀ {t ts} → B t → Union A B (t ∷ ts) there : ∀ {t ts} → Union A B ts → Union A B (t ∷ ts) -- ---------------------------------------------------------------------- -- Injection and projections to (and from) unions private variable a b : Level A : Set a B : A → Set b t : A ts ts′ : List A inj : t ∈ ts → B t → Union A B ts inj (here t≡t′) x rewrite t≡t′ = here x inj (there t∈ts) x = there (inj t∈ts x) `_ : ⦃ t ∈ ts ⦄ → B t → Union A B ts `_ ⦃ t∈ts ⦄ x = inj t∈ts x proj : t ∈ ts → Union A B ts → Maybe (B t) proj (here t≡t′) (here x) rewrite t≡t′ = just x proj (there t∈ts) (here x) = nothing proj (here t≡t′) (there x) = nothing proj (there t∈ts) (there x) = proj t∈ts x `proj : ⦃ t ∈ ts ⦄ → Union A B ts → Maybe (B t) `proj ⦃ t∈ts ⦄ x = proj t∈ts x proj₀ : Union A B [ t ] → B t proj₀ (here x) = x remove : Union A B ts → (i : t ∈ ts) → Maybe (Union A B (ts ─ i)) remove (here x) (here _) = nothing remove (here x) (there _) = just (here x) remove (there x) (here _) = just x remove (there x) (there t∈ts) = remove x t∈ts >>= just ∘ there
{ "alphanum_fraction": 0.5379975875, "avg_line_length": 27.1803278689, "ext": "agda", "hexsha": "8ed7c869907f3add746b85fc9290a2a511292a1c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "921a0dc44a69a74391031ca61568c624ab7f9c94", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "johnyob/agda-union", "max_forks_repo_path": "src/Data/Union.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "921a0dc44a69a74391031ca61568c624ab7f9c94", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "johnyob/agda-union", "max_issues_repo_path": "src/Data/Union.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "921a0dc44a69a74391031ca61568c624ab7f9c94", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "johnyob/agda-union", "max_stars_repo_path": "src/Data/Union.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 591, "size": 1658 }
open import FRP.JS.Bool using ( Bool ; not ) open import FRP.JS.Maybe using ( Maybe ; just ; nothing ) renaming ( _≟[_]_ to _≟?[_]_ ) open import FRP.JS.Nat using ( ℕ ; zero ; suc ; _≟_ ; _<_ ) open import FRP.JS.Object using ( Object ; IObject ; [] ; _↦_∷_ ; object ; ⟪⟫ ; ⟪_ ; _↦_,_ ; _↦_⟫ ; _≟[_]_ ; _⊆[_]_ ; lookup ; lookup? ; map ; filter ) open import FRP.JS.QUnit using ( TestSuite ; ok ; test ; _,_ ) module FRP.JS.Test.Object where _≟*_ : Object ℕ → Object ℕ → Bool xs ≟* ys = xs ≟[ _≟_ ] ys _⊆*_ : Object ℕ → Object ℕ → Bool xs ⊆* ys = xs ⊆[ _≟_ ] ys _≟?_ : Maybe ℕ → Maybe ℕ → Bool xs ≟? ys = xs ≟?[ _≟_ ] ys _≟??_ : Maybe (Maybe ℕ) → Maybe (Maybe ℕ) → Bool xs ≟?? ys = xs ≟?[ _≟?_ ] ys iincr : ∀ {ks ks✓} → IObject ℕ ks ks✓ → IObject ℕ ks ks✓ iincr [] = [] iincr (k ↦ n ∷ ns) = k ↦ suc n ∷ iincr ns incr : Object ℕ → Object ℕ incr (object ns) = object (iincr ns) ⟪a↦0⟫ = ⟪ "a" ↦ 0 ⟫ ⟪a↦1⟫ = ⟪ "a" ↦ 1 ⟫ ⟪a↦0,b↦1⟫ = ⟪ "a" ↦ 0 , "b" ↦ 1 ⟫ ⟪a↦1,b↦2⟫ = ⟪ "a" ↦ 1 , "b" ↦ 2 ⟫ ⟪b↦0⟫ = ⟪ "b" ↦ 0 ⟫ ⟪b↦2⟫ = ⟪ "b" ↦ 2 ⟫ ⟪a↦n⟫ = ⟪ "a" ↦ nothing {A = ℕ} ⟫ ⟪a↦j0⟫ = ⟪ "a" ↦ just 0 ⟫ tests : TestSuite tests = ( test "≟" ( ok "⟪⟫ ≟ ⟪⟫" (⟪⟫ ≟* ⟪⟫) , ok "⟪a↦0⟫ ≟ ⟪⟫" (not (⟪a↦0⟫ ≟* ⟪⟫)) , ok "⟪⟫ ≟ ⟪a↦0⟫" (not (⟪⟫ ≟* ⟪a↦0⟫)) , ok "⟪a↦0⟫ ≟ ⟪a↦0⟫" (⟪a↦0⟫ ≟* ⟪a↦0⟫) , ok "⟪a↦0⟫ ≟ ⟪a↦1⟫" (not (⟪a↦0⟫ ≟* ⟪a↦1⟫)) , ok "⟪a↦0⟫ ≟ ⟪a↦0,b↦1⟫" (not (⟪a↦0⟫ ≟* ⟪a↦0,b↦1⟫)) , ok "⟪a↦0,b↦1⟫ ≟ ⟪a↦0⟫" (not (⟪a↦0,b↦1⟫ ≟* ⟪a↦0⟫)) , ok "⟪a↦0,b↦1⟫ ≟ ⟪a↦0,b↦1⟫" (⟪a↦0,b↦1⟫ ≟* ⟪a↦0,b↦1⟫) ) , test "⊆" ( ok "⟪⟫ ⊆ ⟪⟫" (⟪⟫ ⊆* ⟪⟫) , ok "⟪a↦0⟫ ⊆ ⟪⟫" (not (⟪a↦0⟫ ⊆* ⟪⟫)) , ok "⟪⟫ ⊆ ⟪a↦0⟫" (⟪⟫ ⊆* ⟪a↦0⟫) , ok "⟪a↦0⟫ ⊆ ⟪a↦0⟫" (⟪a↦0⟫ ⊆* ⟪a↦0⟫) , ok "⟪a↦0⟫ ⊆ ⟪a↦1⟫" (not (⟪a↦0⟫ ⊆* ⟪a↦1⟫)) , ok "⟪a↦0⟫ ⊆ ⟪a↦0,b↦1⟫" (⟪a↦0⟫ ⊆* ⟪a↦0,b↦1⟫) , ok "⟪a↦0,b↦1⟫ ⊆ ⟪a↦0⟫" (not (⟪a↦0,b↦1⟫ ⊆* ⟪a↦0⟫)) , ok "⟪a↦0,b↦1⟫ ⊆ ⟪a↦0,b↦1⟫" (⟪a↦0,b↦1⟫ ⊆* ⟪a↦0,b↦1⟫) ) , test "lookup" ( ok "lookup ⟪a↦0⟫ a" (lookup ⟪a↦0⟫ "a" ≟ 0) , ok "lookup ⟪a↦0,b↦1⟫ a" (lookup ⟪a↦0,b↦1⟫ "b" ≟ 1) , ok "lookup ⟪a↦0,b↦1⟫ a" (lookup ⟪a↦0,b↦1⟫ "a" ≟ 0) , ok "lookup ⟪a↦0,b↦1⟫ b" (lookup ⟪a↦0,b↦1⟫ "b" ≟ 1) , ok "lookup ⟪a↦j0⟫ a" (lookup ⟪a↦j0⟫ "a" ≟? just 0) , ok "lookup ⟪a↦n⟫ a" (lookup ⟪a↦n⟫ "a" ≟? nothing) , ok "lookup? ⟪⟫ a" (lookup? ⟪⟫ "a" ≟? nothing) , ok "lookup? ⟪a↦0⟫ a" (lookup? ⟪a↦0⟫ "a" ≟? just 0) , ok "lookup? ⟪a↦0⟫ b" (lookup? ⟪a↦0⟫ "b" ≟? nothing) , ok "lookup? ⟪a↦0,b↦1⟫ a" (lookup? ⟪a↦0,b↦1⟫ "a" ≟? just 0) , ok "lookup? ⟪a↦0,b↦1⟫ b" (lookup? ⟪a↦0,b↦1⟫ "b" ≟? just 1) , ok "lookup? ⟪a↦0,b↦1⟫ c" (lookup? ⟪a↦0,b↦1⟫ "c" ≟? nothing) , ok "lookup? ⟪a↦j0⟫ a" (lookup? ⟪a↦j0⟫ "a" ≟?? just (just 0)) , ok "lookup? ⟪a↦n⟫ a" (lookup? ⟪a↦n⟫ "a" ≟?? just nothing) ) , test "map" ( ok "map suc ⟪⟫" (map suc ⟪⟫ ≟* ⟪⟫) , ok "map suc ⟪a↦0⟫" (map suc ⟪a↦0⟫ ≟* ⟪a↦1⟫) , ok "map suc ⟪a↦0,b↦1⟫" (map suc ⟪a↦0,b↦1⟫ ≟* ⟪a↦1,b↦2⟫) , ok "incr ⟪⟫" (map suc ⟪⟫ ≟* incr ⟪⟫) , ok "incr ⟪a↦0⟫" (map suc ⟪a↦0⟫ ≟* incr ⟪a↦0⟫) , ok "incr ⟪a↦0,b↦1⟫" (map suc ⟪a↦0,b↦1⟫ ≟* incr ⟪a↦0,b↦1⟫) ) , test "filter" ( ok "filter 0< ⟪a↦1,b↦2⟫" (filter (_<_ 0) ⟪a↦1,b↦2⟫ ≟* ⟪a↦1,b↦2⟫) , ok "filter 1< ⟪a↦1,b↦2⟫" (filter (_<_ 1) ⟪a↦1,b↦2⟫ ≟* ⟪b↦2⟫) , ok "filter 2< ⟪a↦1,b↦2⟫" (filter (_<_ 2) ⟪a↦1,b↦2⟫ ≟* ⟪⟫) ) )
{ "alphanum_fraction": 0.4138863841, "avg_line_length": 40.0843373494, "ext": "agda", "hexsha": "3b85b31c25e7b2ff8641b1133e9b6485774a27ca", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z", "max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z", "max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_forks_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-frp-js", "max_forks_repo_path": "test/agda/FRP/JS/Test/Object.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-frp-js", "max_issues_repo_path": "test/agda/FRP/JS/Test/Object.agda", "max_line_length": 151, "max_stars_count": 63, "max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_stars_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-frp-js", "max_stars_repo_path": "test/agda/FRP/JS/Test/Object.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z", "num_tokens": 2273, "size": 3327 }
module container.w.core where open import level open import sum open import equality open import function.extensionality open import function.isomorphism open import function.isomorphism.properties open import function.overloading open import sets.empty open import sets.nat.core using (suc) open import sets.unit open import hott.level open import container.core open import container.fixpoint open import container.equality private module Definition {li la lb} (c : Container li la lb) where open Container c -- definition of indexed W-types using a type family data W (i : I) : Set (la ⊔ lb) where sup : (a : A i) → ((b : B a) → W (r b)) → W i -- initial F-algebra inW : F W →ⁱ W inW i (a , f) = sup a f module Elim {lx} {X : I → Set lx} (α : F X →ⁱ X) where -- catamorphisms fold : W →ⁱ X fold i (sup a f) = α i (a , λ b → fold _ (f b)) -- computational rule for catamorphisms -- this holds definitionally fold-β : ∀ {i} (x : F W i) → fold i (inW i x) ≡ α i (imap fold i x) fold-β x = refl -- η-rule, this is only propositional fold-η : (h : W →ⁱ X) → (∀ {i} (x : F W i) → h i (inW i x) ≡ α i (imap h i x)) → ∀ {i} (x : W i) → h i x ≡ fold i x fold-η h p {i} (sup a f) = p (a , λ b → f b) · lem where lem : α i (a , (λ b → h _ (f b))) ≡ α i (a , (λ b → fold _ (f b))) lem = ap (λ z → α i (a , z)) (funext λ b → fold-η h p (f b)) open Elim public head : ∀ {i} → W i → A i head (sup a f) = a tail : ∀ {i} (x : W i)(b : B (head x)) → W (r b) tail (sup a f) = f fixpoint : (i : I) → W i ≅ F W i fixpoint _ = iso f g H K where f : {i : I} → W i → F W i f (sup a f) = a , f g : {i : I} → F W i → W i g (a , f) = sup a f H : {i : I}(w : W i) → g (f w) ≡ w H (sup a f) = refl K : {i : I}(w : F W i) → f (g w) ≡ w K (a , f) = refl private module Properties {li la lb}{c : Container li la lb} where open Container c open Definition c open Equality c (fix W fixpoint) open Container equality using () renaming (F to F-≡') open Definition equality using () renaming ( W to W-≡ ; fixpoint to fixpoint-≡ ) F-≡ : ∀ {lx} → (∀ {i} → W i → W i → Set lx) → (∀ {i} → W i → W i → Set _) F-≡ X u v = F-≡' (λ {(i , u , v) → X {i} u v}) (_ , u , v) _≡W_ : ∀ {i} → W i → W i → Set _ _≡W_ {i} u v = W-≡ (i , u , v) fixpoint-W : ∀ {i}{u v : W i} → (u ≡ v) ≅ F-≡ _≡_ u v fixpoint-W {i}{sup a f}{sup a' f'} = begin (sup a f ≡ sup a' f') ≅⟨ iso≡ (fixpoint i) ⟩ (apply (fixpoint i) (sup a f) ≡ apply (fixpoint i) (sup a' f')) ≅⟨ sym≅ Σ-split-iso ⟩ (Σ (a ≡ a') λ p → subst (λ a → (b : B a) → W (r b)) p f ≡ f') ≅⟨ Σ-ap-iso refl≅ (substX-β f f') ⟩ (Σ (a ≡ a') λ p → ∀ b → f b ≡ substX p b (f' (subst B p b))) ∎ where open ≅-Reasoning str-iso : ∀ {i}{u v : W i} → (u ≡ v) ≅ (u ≡W v) str-iso {i}{sup a f}{sup a' f'} = begin (sup a f ≡ sup a' f') ≅⟨ fixpoint-W ⟩ (Σ (a ≡ a') λ p → ∀ b → f b ≡ substX p b (f' (subst B p b))) ≅⟨ Σ-ap-iso refl≅ (λ a → Π-ap-iso refl≅ λ b → str-iso) ⟩ (Σ (a ≡ a') λ p → ∀ b → f b ≡W substX p b (f' (subst B p b))) ≅⟨ sym≅ (fixpoint-≡ _) ⟩ (sup a f ≡W sup a' f') ∎ where open ≅-Reasoning -- w-level : ∀ {n} → ((i : I) → h (suc n) (A i)) → (i : I) → h (suc n) (W i) -- w-level hA i (sup a f) (sup a' f') = iso-level (sym≅ lem) -- (Σ-level (hA i a a') (λ p → Π-level λ b → w-level hA _ _ _)) -- where -- lem : ∀ {i}{a a' : A i} -- {f : (b : B a) → W (r b)} -- {f' : (b : B a') → W (r b)} -- → (sup a f ≡ sup a' f') -- ≅ Σ (a ≡ a') λ p → ∀ b → f b ≡ substX p b (f' (subst B p b)) -- lem = fixpoint-W open Definition public -- open Properties public using (w-level)
{ "alphanum_fraction": 0.4579462103, "avg_line_length": 30.7518796992, "ext": "agda", "hexsha": "c096598a4e806a4c028edf5148001dd84c30dbe7", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "container/w/core.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "HoTT/M-types", "max_issues_repo_path": "container/w/core.agda", "max_line_length": 79, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "container/w/core.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 1612, "size": 4090 }
{-# OPTIONS --without-K --safe #-} -- This module defines D<: normal form, proves its transitivity and shows its -- equivalence to the original D<:. It turns out that D<: normal form can be used to -- prove undecidability. module DsubEquivSimpler where open import Data.List as List open import Data.List.All as All open import Data.Nat as ℕ open import Data.Maybe as Maybe open import Data.Product open import Data.Sum open import Data.Empty renaming (⊥ to False) open import Data.Vec as Vec renaming (_∷_ to _‼_ ; [] to nil) hiding (_++_) open import Function open import Data.Maybe.Properties as Maybeₚ open import Data.Nat.Properties as ℕₚ open import Relation.Nullary open import Relation.Binary.PropositionalEquality as ≡ open import Induction.Nat open import DsubDef open import Dsub open import Utils -- D<: Normal Form -- -- The following judgment defines D<: normal form as in Figure 4. infix 4 _⊢″_<:_ data _⊢″_<:_ : Env → Typ → Typ → Set where <:⊤ : ∀ {Γ T} → Γ ⊢″ T <: ⊤ ⊥<: : ∀ {Γ T} → Γ ⊢″ ⊥ <: T refl : ∀ {Γ T} → Γ ⊢″ T <: T bnd : ∀ {Γ S U S′ U′} → Γ ⊢″ S′ <: S → Γ ⊢″ U <: U′ → Γ ⊢″ ⟨A: S ⋯ U ⟩ <: ⟨A: S′ ⋯ U′ ⟩ Π<: : ∀ {Γ S U S′ U′} → Γ ⊢″ S′ <: S → Γ ‣ S′ ! ⊢″ U <: U′ → Γ ⊢″ Π S ∙ U <: Π S′ ∙ U′ sel₁ : ∀ {Γ n T S} → env-lookup Γ n ≡ just T → Γ ⊢″ T <: ⟨A: S ⋯ ⊤ ⟩ → Γ ⊢″ S <: n ∙A sel₂ : ∀ {Γ n T U} → env-lookup Γ n ≡ just T → Γ ⊢″ T <: ⟨A: ⊥ ⋯ U ⟩ → Γ ⊢″ n ∙A <: U <:> : ∀ {Γ n T S U} → env-lookup Γ n ≡ just T → Γ ⊢″ T <: ⟨A: S ⋯ ⊤ ⟩ → Γ ⊢″ T <: ⟨A: ⊥ ⋯ U ⟩ → Γ ⊢″ S <: U -- First we show that D<: normal form admits weakening. <:″-weakening-gen : ∀ {Γ S U} → Γ ⊢″ S <: U → ∀ Γ₁ Γ₂ T → Γ ≡ Γ₁ ‣ Γ₂ → Γ₁ ‣ T ! ‣ Γ₂ ⇑ ⊢″ S ↑ length Γ₂ <: U ↑ length Γ₂ <:″-weakening-gen <:⊤ Γ₁ Γ₂ T eqΓ = <:⊤ <:″-weakening-gen ⊥<: Γ₁ Γ₂ T eqΓ = ⊥<: <:″-weakening-gen refl Γ₁ Γ₂ T eqΓ = refl <:″-weakening-gen (bnd S′<:S U<:U′) Γ₁ Γ₂ T eqΓ = bnd (<:″-weakening-gen S′<:S Γ₁ Γ₂ T eqΓ) (<:″-weakening-gen U<:U′ Γ₁ Γ₂ T eqΓ) <:″-weakening-gen (Π<: S′<:S U<:U′) Γ₁ Γ₂ T eqΓ = Π<: (<:″-weakening-gen S′<:S Γ₁ Γ₂ T eqΓ) (<:″-weakening-gen U<:U′ Γ₁ (_ ∷ Γ₂) T (cong (_ ∷_) eqΓ)) <:″-weakening-gen (sel₁ {_} {n} T∈Γ T<:B) Γ₁ Γ₂ T eqΓ rewrite ↑-var n (length Γ₂) = sel₁ (↦∈-weaken′ T∈Γ Γ₁ Γ₂ T eqΓ) (<:″-weakening-gen T<:B Γ₁ Γ₂ T eqΓ) <:″-weakening-gen (sel₂ {_} {n} T∈Γ T<:B) Γ₁ Γ₂ T eqΓ rewrite ↑-var n (length Γ₂) = sel₂ (↦∈-weaken′ T∈Γ Γ₁ Γ₂ T eqΓ) (<:″-weakening-gen T<:B Γ₁ Γ₂ T eqΓ) <:″-weakening-gen (<:> {_} {n} T∈Γ T<:B T<:B′) Γ₁ Γ₂ T eqΓ rewrite ↑-var n (length Γ₂) = <:> (↦∈-weaken′ T∈Γ Γ₁ Γ₂ T eqΓ) (<:″-weakening-gen T<:B Γ₁ Γ₂ T eqΓ) (<:″-weakening-gen T<:B′ Γ₁ Γ₂ T eqΓ) <:″-weakening : ∀ {Γ₁ Γ₂ S U} T → Γ₁ ‣ Γ₂ ⊢″ S <: U → Γ₁ ‣ T ! ‣ Γ₂ ⇑ ⊢″ S ↑ length Γ₂ <: U ↑ length Γ₂ <:″-weakening T S<:U = <:″-weakening-gen S<:U _ _ T refl <:″-weakening-hd : ∀ {Γ S U} T → Γ ⊢″ S <: U → Γ ‣ T ! ⊢″ S ↑ 0 <: U ↑ 0 <:″-weakening-hd T = <:″-weakening {Γ₂ = []} T -- Then we work on transitivity. module SimplerTransitivity where -- This predicate asserts that the first context replaces _one_ type in the second -- context with its subtype. That is, the first context is more "precise" than the -- second context. infix 4 _≺:[_]_ data _≺:[_]_ : Env → ℕ → Env → Set where ≺[_,_] : ∀ {Γ U} S → Γ ⊢″ S <: U → Γ ‣ S ! ≺:[ 0 ] Γ ‣ U ! _∷_ : ∀ {Γ₁ n Γ₂} T → Γ₁ ≺:[ n ] Γ₂ → Γ₁ ‣ T ! ≺:[ suc n ] Γ₂ ‣ T ! <:∈-find : ∀ {x T Γ Γ′ n} → x ↦ T ∈ Γ → Γ′ ≺:[ n ] Γ → x ≡ n × (∃ λ T′ → n ↦ T′ ∈ Γ′ × Γ′ ⊢″ T′ <: T) ⊎ x ≢ n × x ↦ T ∈ Γ′ <:∈-find hd ≺[ T′ , T′<:T ] = inj₁ (refl , T′ ↑ 0 , hd , <:″-weakening-hd T′ T′<:T) <:∈-find hd (T ∷ Γ′≺:Γ) = inj₂ ((λ ()) , hd) <:∈-find (tl T∈Γ) ≺[ T′ , T′<:T ] = inj₂ ((λ ()) , tl T∈Γ) <:∈-find (tl T∈Γ) (S ∷ Γ′≺:Γ) with <:∈-find T∈Γ Γ′≺:Γ ... | inj₁ (x≡n , T′ , T′∈Γ′ , T′<:T) = inj₁ (cong suc x≡n , T′ ↑ 0 , tl T′∈Γ′ , <:″-weakening-hd S T′<:T) ... | inj₂ (x≢n , T∈Γ′) = inj₂ (x≢n ∘ suc-injective , tl T∈Γ′) <:∈-find′ : ∀ {x T Γ Γ′ n} → env-lookup Γ x ≡ just T → Γ′ ≺:[ n ] Γ → x ≡ n × (∃ λ T′ → env-lookup Γ′ n ≡ just T′ × Γ′ ⊢″ T′ <: T) ⊎ x ≢ n × env-lookup Γ′ x ≡ just T <:∈-find′ T∈Γ Γ′≺Γ with <:∈-find (lookup⇒↦∈ T∈Γ) Γ′≺Γ ... | inj₁ (x≡n , T′ , T′∈Γ′ , T′<:T) = inj₁ (x≡n , T′ , ↦∈⇒lookup T′∈Γ′ , T′<:T) ... | inj₂ (x≢n , T∈Γ′) = inj₂ (x≢n , ↦∈⇒lookup T∈Γ′) private trans-on : Typ → Set trans-on T = ∀ {Γ S U} → Γ ⊢″ S <: T → Γ ⊢″ T <: U → Γ ⊢″ S <: U narrow-on : Typ → Set narrow-on T = ∀ {Γ Γ′ n S U} → Γ ⊢″ S <: U → Γ′ ≺:[ n ] Γ → env-lookup Γ n ≡ just T → Γ′ ⊢″ S <: U -- Per Definition 11, this defines type declaration hierarchy. ⟨A:⟩-layer : Typ → List Typ → Typ ⟨A:⟩-layer T [] = T ⟨A:⟩-layer T (S ∷ l) = ⟨A: S ⋯ ⟨A:⟩-layer T l ⟩ -- Now we start proving transitivity and narrowing via a mutual induction. This -- mutual induction begins exactly as presented in the paper: an induction of -- lexicographical order of the triple (T, 𝒟₁, 𝒟₂). Notice that this is -- automatically handled by Agda's termination checker, which makes the problem very -- nice to work with. -- -- If one loads this file from Emacs, one shall see that some cases below are -- highlighted. The reason is that those cases are not defined -- _definitionally_. More details can be found in: -- https://agda.readthedocs.io/en/v2.5.4.2/language/function-definitions.html#case-trees. -- -- In fact, those non-definitional cases hides many cases away, as they expand to -- numerous definitional cases, which is necessarily the case in Coq. The fact that -- Agda's termination checking is permissive and Agda allows non-definitional cases -- has significantly improved productivity of showing transitivity. In Coq, this -- would have required significant amount of technical setup which can easily wipe -- away the main idea of the proof and might not be finished within a reasonable -- time interval. mutual <:′-trans-rec : ∀ T → (∀ T′ → Typ-measure T′ < Typ-measure T → trans-on T′ × narrow-on T′) → trans-on T <:′-trans-rec (n ∙A) rec (sel₁ T∈Γ T<:B) (sel₂ T′∈Γ T<:B′) with ≡.trans (≡.sym T∈Γ) T′∈Γ ... | refl = <:> T′∈Γ T<:B T<:B′ <:′-trans-rec ⟨A: S′ ⋯ U′ ⟩ rec (bnd S′<:S U<:U′) (bnd S″<:S U′<:U″) = bnd (<:′-trans-rec S′ (λ T′ T′<S′ → rec T′ (≤-step (≤-stepsʳ _ T′<S′))) S″<:S S′<:S) (<:′-trans-rec U′ (λ T′ T′<U′ → rec T′ (≤-step (≤-stepsˡ _ T′<U′))) U<:U′ U′<:U″) <:′-trans-rec (Π S′ ∙ U′) rec (Π<: S′<:S″ U″<:U′) (Π<: S‴<:S′ U′<:U‴) = Π<: (<:′-trans-rec S′ (λ T′ T′<S′ → rec T′ (≤-step (≤-stepsʳ _ T′<S′))) S‴<:S′ S′<:S″) (<:′-trans-rec U′ (λ T′ T′<U′ → rec T′ (≤-step (≤-stepsˡ _ T′<U′))) (proj₂ (rec (S′ ↑ 0) (s≤s $ ≤-stepsʳ _ $ ≤-reflexive (Typ-measure-↑ S′ 0))) U″<:U′ ≺[ _ , S‴<:S′ ] refl) U′<:U‴) <:′-trans-rec T rec ⊥<: T<:U = ⊥<: <:′-trans-rec T rec refl T<:U = T<:U <:′-trans-rec T rec S<:T <:⊤ = <:⊤ <:′-trans-rec T rec S<:T refl = S<:T <:′-trans-rec T rec (sel₂ T′∈Γ T′<:B) T<:U = sel₂ T′∈Γ (⟨A<:⟩-traverseʳ T rec T<:U T′<:B _ refl) <:′-trans-rec T rec (<:> T′∈Γ T′<:B T′<:B′) T<:U = <:> T′∈Γ T′<:B (⟨A<:⟩-traverseʳ T rec T<:U T′<:B′ _ refl) <:′-trans-rec T rec S<:T (sel₁ T′∈Γ T′<:B) = sel₁ T′∈Γ (⟨A<:⟩-traverseˡ T rec S<:T T′<:B [] refl) <:′-trans-rec T rec S<:T (<:> T′∈Γ T′<:B T′<:B′) = <:> T′∈Γ (⟨A<:⟩-traverseˡ T rec S<:T T′<:B [] refl) T′<:B′ ⟨A<:⟩-traverseʳ : ∀ T → (∀ T′ → Typ-measure T′ < Typ-measure T → trans-on T′ × narrow-on T′) → ∀ {Γ U} → Γ ⊢″ T <: U → ∀ {S S′ T′} → Γ ⊢″ S <: ⟨A: S′ ⋯ T′ ⟩ → ∀ l → T′ ≡ ⟨A:⟩-layer T l → Γ ⊢″ S <: ⟨A: S′ ⋯ ⟨A:⟩-layer U l ⟩ ⟨A<:⟩-traverseʳ T rec T<:U ⊥<: l eqT′ = ⊥<: ⟨A<:⟩-traverseʳ T rec T<:U refl [] refl = bnd refl T<:U ⟨A<:⟩-traverseʳ T rec T<:U refl (S′ ∷ l) refl = bnd refl (⟨A<:⟩-traverseʳ T rec T<:U refl l refl) ⟨A<:⟩-traverseʳ T rec T<:U (bnd S₂<:S₁ U₁<:T) [] refl = bnd S₂<:S₁ (<:′-trans-rec T rec U₁<:T T<:U) ⟨A<:⟩-traverseʳ T rec T<:U (bnd S₂<:S₁ U₁<:U₂) (S′ ∷ l) refl = bnd S₂<:S₁ (⟨A<:⟩-traverseʳ T rec T<:U U₁<:U₂ l refl) ⟨A<:⟩-traverseʳ T rec T<:U (sel₂ T′∈Γ T′<:B) l refl = sel₂ T′∈Γ (⟨A<:⟩-traverseʳ T rec T<:U T′<:B (_ ∷ l) refl) ⟨A<:⟩-traverseʳ T rec T<:U (<:> T′∈Γ T′<:B T′<:B′) l refl = <:> T′∈Γ T′<:B (⟨A<:⟩-traverseʳ T rec T<:U T′<:B′ (_ ∷ l) refl) ⟨A<:⟩-traverseˡ : ∀ T → (∀ T′ → Typ-measure T′ < Typ-measure T → trans-on T′ × narrow-on T′) → ∀ {Γ S} → Γ ⊢″ S <: T → ∀ {S′ T′} → Γ ⊢″ S′ <: T′ → ∀ {U} l → T′ ≡ ⟨A:⟩-layer ⟨A: T ⋯ U ⟩ l → Γ ⊢″ S′ <: ⟨A:⟩-layer ⟨A: S ⋯ U ⟩ l ⟨A<:⟩-traverseˡ T rec S<:T <:⊤ [] () ⟨A<:⟩-traverseˡ T rec S<:T <:⊤ (_ ∷ l) () ⟨A<:⟩-traverseˡ T rec S<:T ⊥<: l eqT′ = ⊥<: ⟨A<:⟩-traverseˡ T rec S<:T refl [] refl = bnd S<:T refl ⟨A<:⟩-traverseˡ T rec S<:T refl (S′ ∷ l) refl = bnd refl (⟨A<:⟩-traverseˡ T rec S<:T refl l refl) ⟨A<:⟩-traverseˡ T rec S<:T (bnd T<:S₁ U₁<:U₂) [] refl = bnd (<:′-trans-rec T rec S<:T T<:S₁) U₁<:U₂ ⟨A<:⟩-traverseˡ T rec S<:T (bnd S₂<:S₁ U₁<:U₂) (S′ ∷ l) refl = bnd S₂<:S₁ (⟨A<:⟩-traverseˡ T rec S<:T U₁<:U₂ l refl) ⟨A<:⟩-traverseˡ T rec S<:T (Π<: S₂<:S₁ U₁<:U₂) [] () ⟨A<:⟩-traverseˡ T rec S<:T (Π<: S₂<:S₁ U₁<:U₂) (_ ∷ l) () ⟨A<:⟩-traverseˡ T rec S<:T (sel₁ T′∈Γ T′<:B) [] () ⟨A<:⟩-traverseˡ T rec S<:T (sel₁ T′∈Γ T′<:B) (_ ∷ l) () ⟨A<:⟩-traverseˡ T rec S<:T (sel₂ T′∈Γ T′<:B) {U} l refl = sel₂ T′∈Γ (⟨A<:⟩-traverseˡ T rec S<:T T′<:B {U} (_ ∷ l) refl) ⟨A<:⟩-traverseˡ T rec S<:T (<:> T′∈Γ T′<:B T′<:B′) l refl = <:> T′∈Γ T′<:B (⟨A<:⟩-traverseˡ T rec S<:T T′<:B′ (_ ∷ l) refl) <:″-narrow-on : ∀ T → (∀ T′ → Typ-measure T′ ≡ Typ-measure T → trans-on T′) → narrow-on T <:″-narrow-on T trans <:⊤ Γ′≺Γ T∈Γ = <:⊤ <:″-narrow-on T trans ⊥<: Γ′≺Γ T∈Γ = ⊥<: <:″-narrow-on T trans refl Γ′≺Γ T∈Γ = refl <:″-narrow-on T trans (bnd S′<:S U<:U′) Γ′≺Γ T∈Γ = bnd (<:″-narrow-on T trans S′<:S Γ′≺Γ T∈Γ) (<:″-narrow-on T trans U<:U′ Γ′≺Γ T∈Γ) <:″-narrow-on T trans {Γ} {Γ′} {n} (Π<: {S′ = S′} S′<:S U<:U′) Γ′≺Γ T∈Γ = Π<: (<:″-narrow-on T trans S′<:S Γ′≺Γ T∈Γ) (<:″-narrow-on (T ↑ 0) (λ T′ eq → trans T′ (≡.trans eq (Typ-measure-↑ T 0))) U<:U′ (_ ∷ Γ′≺Γ) (↦∈⇒lookup (tl {n} {T′ = S′} {Γ} (lookup⇒↦∈ T∈Γ)))) <:″-narrow-on T trans (sel₁ T′∈Γ T′<:B) Γ′≺Γ T∈Γ with <:∈-find′ T′∈Γ Γ′≺Γ ... | inj₁ (refl , T″ , T″∈Γ′ , T″<:T) rewrite just-injective (≡.trans (≡.sym T′∈Γ) T∈Γ) = sel₁ T″∈Γ′ (trans T refl T″<:T (<:″-narrow-on T trans T′<:B Γ′≺Γ T∈Γ)) ... | inj₂ (x≢n , T′∈Γ′) = sel₁ T′∈Γ′ (<:″-narrow-on T trans T′<:B Γ′≺Γ T∈Γ) <:″-narrow-on T trans (sel₂ T′∈Γ T′<:B) Γ′≺Γ T∈Γ with <:∈-find′ T′∈Γ Γ′≺Γ ... | inj₁ (refl , T″ , T″∈Γ′ , T″<:T) rewrite just-injective (≡.trans (≡.sym T′∈Γ) T∈Γ) = sel₂ T″∈Γ′ (trans T refl T″<:T (<:″-narrow-on T trans T′<:B Γ′≺Γ T∈Γ)) ... | inj₂ (x≢n , T′∈Γ′) = sel₂ T′∈Γ′ (<:″-narrow-on T trans T′<:B Γ′≺Γ T∈Γ) <:″-narrow-on T trans (<:> T′∈Γ T′<:B T′<:B′) Γ′≺Γ T∈Γ with <:∈-find′ T′∈Γ Γ′≺Γ ... | inj₁ (refl , T″ , T″∈Γ′ , T″<:T) rewrite just-injective (≡.trans (≡.sym T′∈Γ) T∈Γ) = <:> T″∈Γ′ (trans T refl T″<:T (<:″-narrow-on T trans T′<:B Γ′≺Γ T∈Γ)) (trans T refl T″<:T (<:″-narrow-on T trans T′<:B′ Γ′≺Γ T∈Γ)) ... | inj₂ (x≢n , T′∈Γ′) = <:> T′∈Γ′ (<:″-narrow-on T trans T′<:B Γ′≺Γ T∈Γ) (<:″-narrow-on T trans T′<:B′ Γ′≺Γ T∈Γ) -- The previous functions achieve the inductive hypotheses of the well-founded -- induction on the size of the type T, and the following function combines those -- inductive hypotheses and conclude transitivity and narrowing. <:″-trans-narrow : ∀ T → trans-on T × narrow-on T <:″-trans-narrow = wfRec _ aux where open Measure <-wellFounded Typ-measure aux : ∀ T → (∀ T′ → Typ-measure T′ < Typ-measure T → trans-on T′ × narrow-on T′) → trans-on T × narrow-on T aux T rec = <:′-trans-rec T rec , <:″-narrow-on T (λ T′ T′≡T → <:′-trans-rec T′ λ T″ T″<T′ → rec T″ (≤-trans T″<T′ (≤-reflexive T′≡T))) <:″-trans : ∀ {T} → trans-on T <:″-trans {T} = proj₁ (<:″-trans-narrow T) <:″-narrow : ∀ {T} → narrow-on T <:″-narrow {T} = proj₂ (<:″-trans-narrow T) open SimplerTransitivity using (<:″-trans ; <:″-narrow) public -- the following two functions show that the original D<: and D<: normal form are -- equivalent. <:⇒<:″ : ∀ {Γ S U} → Γ ⊢ S <: U → Γ ⊢″ S <: U <:⇒<:″ dtop = <:⊤ <:⇒<:″ dbot = ⊥<: <:⇒<:″ drefl = refl <:⇒<:″ (dtrans T S<:T T<:U) = <:″-trans (<:⇒<:″ S<:T) (<:⇒<:″ T<:U) <:⇒<:″ (dbnd S′<:S U<:U′) = bnd (<:⇒<:″ S′<:S) (<:⇒<:″ U<:U′) <:⇒<:″ (dall S′<:S U<:U′) = Π<: (<:⇒<:″ S′<:S) (<:⇒<:″ U<:U′) <:⇒<:″ (dsel₁ T∈Γ T<:B) = sel₁ T∈Γ (<:⇒<:″ T<:B) <:⇒<:″ (dsel₂ T∈Γ T<:B) = sel₂ T∈Γ (<:⇒<:″ T<:B) <:″⇒<: : ∀ {Γ S U} → Γ ⊢″ S <: U → Γ ⊢ S <: U <:″⇒<: <:⊤ = dtop <:″⇒<: ⊥<: = dbot <:″⇒<: refl = drefl <:″⇒<: (bnd S′<:S U<:U′) = dbnd (<:″⇒<: S′<:S) (<:″⇒<: U<:U′) <:″⇒<: (Π<: S′<:S U<:U′) = dall (<:″⇒<: S′<:S) (<:″⇒<: U<:U′) <:″⇒<: (sel₁ T∈Γ T<:B) = dsel₁ T∈Γ (<:″⇒<: T<:B) <:″⇒<: (sel₂ T∈Γ T<:B) = dsel₂ T∈Γ (<:″⇒<: T<:B) <:″⇒<: (<:> T∈Γ T<:B S<:B′) = dtrans _ (dsel₁ T∈Γ (dtrans _ (<:″⇒<: T<:B) (dbnd drefl dtop))) (dsel₂ T∈Γ (dtrans _ (<:″⇒<: S<:B′) (dbnd dbot drefl))) -- D<: subtyping is undecidable. module Undecidability′ where open import DsubReduced open FsubMinusToDsubR using (⟦_⟧ ; ⟪_⟫ ; D<:ᵣ⇒F<: ; F<:⇒D<:ᵣ ; ⟪⟫-contraEnv ; ⟦⟧-covar) open DsubInvProperties contraInvertible open import FsubMinus <:″⇒<:ᵣ : ∀ {Γ S U} → Γ ⊢″ S <: U → ContraEnv Γ → Covar S → Covar U → Γ ⊢ᵣ S <: U <:″⇒<:ᵣ <:⊤ cΓ cS cU = drtop cS <:″⇒<:ᵣ ⊥<: cΓ () cU <:″⇒<:ᵣ refl cΓ cS cU = drrefl cU <:″⇒<:ᵣ (bnd S′<:S U<:U′) cΓ cS () <:″⇒<:ᵣ (Π<: <:⊤ U<:U′) cΓ () cU <:″⇒<:ᵣ (Π<: ⊥<: U<:U′) cΓ cS () <:″⇒<:ᵣ (Π<: refl U<:U′) cΓ (cvΠ cS cU) (cvΠ cS′ cU′) = drall cS′ cU cS′ cU′ (drrefl cS′) (<:″⇒<:ᵣ U<:U′ (ctt cS′ ∷ cΓ) cU cU′) <:″⇒<:ᵣ (Π<: (bnd _ S′<:S) U<:U′) cΓ (cvΠ cS cU) (cvΠ cS′ cU′) = drall cS cU cS′ cU′ (<:″⇒<:ᵣ S′<:S cΓ cS′ cS) (<:″⇒<:ᵣ U<:U′ (ctt cS′ ∷ cΓ) cU cU′) <:″⇒<:ᵣ (Π<: (Π<: S′<:S S′<:S₁) U<:U′) cΓ () cU <:″⇒<:ᵣ (Π<: (sel₁ x S′<:S) U<:U′) cΓ () cU <:″⇒<:ᵣ (Π<: (sel₂ x S′<:S) U<:U′) cΓ cS () <:″⇒<:ᵣ (Π<: (<:> T∈Γ T<:B T<:B′) U<:U′) cΓ (cvΠ _ _) (cvΠ _ _) with lookupContraEnv T∈Γ cΓ ... | ctt _ = case ⟨A:⟩<:⟨A:⟩′ (<:″⇒<: T<:B) cΓ of λ () <:″⇒<:ᵣ (sel₁ T∈Γ T<:B) cΓ cS cU with lookupContraEnv T∈Γ cΓ ... | ctt _ rewrite ⟨A:⟩<:⟨A:⟩′ (<:″⇒<: T<:B) cΓ = case cS of λ () <:″⇒<:ᵣ (sel₂ T∈Γ T<:B) cΓ cS cU with lookupContraEnv T∈Γ cΓ ... | ctt cT = drsel T∈Γ cT (aux T<:B cΓ cT cU) where aux : ∀ {Γ T S U} → Γ ⊢″ ⟨A: ⊥ ⋯ T ⟩ <: ⟨A: S ⋯ U ⟩ → ContraEnv Γ → Covar T → Covar U → Γ ⊢ᵣ T <: U aux refl cΓ cT cU = drrefl cU aux (bnd _ T<:U) cΓ cT cU = <:″⇒<:ᵣ T<:U cΓ cT cU aux (<:> T′∈Γ T′<:B _) cΓ cT cU with lookupContraEnv T′∈Γ cΓ ... | ctt _ = case ⟨A:⟩<:⟨A:⟩′ (<:″⇒<: T′<:B) cΓ of λ () <:″⇒<:ᵣ (<:> T∈Γ T<:B T<:B′) cΓ cS cU with lookupContraEnv T∈Γ cΓ ... | ctt _ rewrite ⟨A:⟩<:⟨A:⟩′ (<:″⇒<: T<:B) cΓ = case cS of λ () <:ᵣ⇒<: : ∀ {Γ S U} → Γ ⊢ᵣ S <: U → Γ ⊢ S <: U <:ᵣ⇒<: (drtop _) = dtop <:ᵣ⇒<: (drrefl _) = drefl <:ᵣ⇒<: (drall _ _ _ _ S′<:S U<:U′) = dall (dbnd dbot (<:ᵣ⇒<: S′<:S)) (<:ᵣ⇒<: U<:U′) <:ᵣ⇒<: (drsel T∈Γ _ T<:B) = dtrans _ (dsel₂ T∈Γ drefl) (<:ᵣ⇒<: T<:B) open FsubMinus.FsubMinus F<:⇒D<: : ∀ {Γ S U} → Γ ⊢F S <: U → ⟪ Γ ⟫ ⊢ ⟦ S ⟧ <: ⟦ U ⟧ F<:⇒D<: = <:ᵣ⇒<: ∘ F<:⇒D<:ᵣ D<:⇒F<: : ∀ {Γ S U} → ⟪ Γ ⟫ ⊢ ⟦ S ⟧ <: ⟦ U ⟧ → Γ ⊢F S <: U D<:⇒F<: S<:U = D<:ᵣ⇒F<: (<:″⇒<:ᵣ (<:⇒<:″ S<:U) (⟪⟫-contraEnv _) (⟦⟧-covar _) (⟦⟧-covar _)) refl refl refl
{ "alphanum_fraction": 0.4035993824, "avg_line_length": 52.9042253521, "ext": "agda", "hexsha": "6f92880ee2b7d0f5d584e5a9a40be1640f5653b6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "48214a55ebb484fd06307df4320813d4a002535b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "HuStmpHrrr/popl20-artifact", "max_forks_repo_path": "agda/DsubEquivSimpler.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "48214a55ebb484fd06307df4320813d4a002535b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "HuStmpHrrr/popl20-artifact", "max_issues_repo_path": "agda/DsubEquivSimpler.agda", "max_line_length": 160, "max_stars_count": 1, "max_stars_repo_head_hexsha": "48214a55ebb484fd06307df4320813d4a002535b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "HuStmpHrrr/popl20-artifact", "max_stars_repo_path": "agda/DsubEquivSimpler.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-23T08:40:28.000Z", "max_stars_repo_stars_event_min_datetime": "2021-09-23T08:40:28.000Z", "num_tokens": 8737, "size": 18781 }
module imper-nouni where -- -- TO-DOs -- -- * change use of =string -- * prove that =string can't be both tt and ff -- * prove reverse theorems for passes/fails/chck -- * prove semantic equivalence for execs and execsTo -- + this would be s-thm and s-det open import lib open import eq-reas-nouni _=nat_ = _=ℕ_ _-nat_ = _∸_ cross = _×_ equiv = _≡_ bottom = ⊥ bottom-elim = ⊥-elim -- -- inspect/with-eq idiom -- data Singleton {a} {A : Set a} (x : A) : Set a where _with-eq_ : (y : A) → equiv x y → Singleton x inspect : forall {a} {A : Set a} (x : A) -> Singleton x inspect x = x with-eq refl -- -- variable identifiers -- Id : Set Id = string _=Id_ : Id -> Id -> bool _=Id_ = _=string_ -- -- values (just natural numbers here) -- Val : Set Val = nat -- -- value and variable expressions -- data Expn : Set where val : Val -> Expn var : Id -> Expn plus : Expn -> Expn -> Expn minus : Expn -> Expn -> Expn scaleBy : Expn -> Val -> Expn -- -- conditions on values and variables -- data Cond : Set where true : Cond false : Cond and : Cond -> Cond -> Cond or : Cond -> Cond -> Cond not : Cond -> Cond less : Expn -> Expn -> Cond equal : Expn -> Expn -> Cond -- -- stack frames containing variable bindings -- Frm : Set Frm = list (cross Id Val) -- -- program statements that transform a frame -- data Stmt : Set where skip : Stmt assign : Id -> Expn -> Stmt seq : Stmt -> Stmt -> Stmt ifThenElse : Cond -> Stmt -> Stmt -> Stmt repeatBy : Id -> Stmt -> Stmt returns : Expn -> Stmt -- -- functional SEMANTICS of frames -- lkup : Id -> Frm -> Val lkup x [] = 0 lkup x ((y , w) :: F) = if (x =Id y) then w else (lkup x F) update : Id -> Val -> Frm -> Frm update x v [] = (x , v) :: [] update x v ((y , w) :: F) = if (x =Id y) then (y , v) :: F else (y , w) :: (update x v F) -- -- functional SEMANTICS of expressions -- eval : Expn -> Frm -> Val eval (val v) F = v eval (var x) F = lkup x F eval (plus e1 e2) F = (eval e1 F) + (eval e2 F) eval (minus e1 e2) F = (eval e1 F) -nat (eval e2 F) eval (scaleBy e1 v2) F = (eval e1 F) * v2 -- -- functional SEMANTICS of conditions -- chck : Cond -> Frm -> bool chck true F = tt chck false F = ff chck (and c1 c2) F = (chck c1 F) && (chck c2 F) chck (or c1 c2) F = (chck c1 F) || (chck c2 F) chck (not c) F = ~ (chck c F) chck (less e1 e2) F = (eval e1 F) < (eval e2 F) chck (equal e1 e2) F = (eval e1 F) =nat (eval e2 F) -- -- functional SEMANTICS of program execution -- exec : Stmt -> Frm -> Frm repeatedly : Stmt -> Id -> nat -> Frm -> Frm repeatedly s x 0 F = F repeatedly s x (suc n) F = repeatedly s x n (update x n (exec s F)) exec skip F = F exec (seq s1 s2) F = (exec s2 (exec s1 F)) exec (assign x e) F = (update x (eval e F) F) exec (ifThenElse c s1 s2) F = if (chck c F) then (exec s1 F) else (exec s2 F) exec (repeatBy x s) F = repeatedly s x (lkup x F) F exec (returns e) F = (update "retval" (eval e F) F) -- -- SEMANTICS of stack bindings as a relation -- data mapsTo : Frm -> Id -> Val -> Set where var-undef : forall {x : Id} ---------------- -> (mapsTo [] x 0) var-match : forall {x y : Id} {F : Frm} {v : Val} -> (equiv (x =string y) tt) --------------------------- -> (mapsTo ((y , v) :: F) x v) var-mismatch : forall {x y : Id} {F : Frm} {v w : Val} -> (equiv (x =string y) ff) -> (mapsTo F x v) ---------------------------- -> (mapsTo ((y , w) :: F) x v) -- -- THEOREM: mapsTo agrees with lookup -- var-thm : forall (x : Id) (F : Frm) -> mapsTo F x (lkup x F) var-thm x [] = var-undef var-thm x ((y , w) :: F) with (inspect (x =string y)) ... | tt with-eq match = let lkup-is-w : (equiv (lkup x ((y , w) :: F)) w) lkup-is-w = cong3 if_then_else_ match refl refl in cong-pred (mapsTo ((y , w) :: F) x) (sym lkup-is-w) (var-match match) ... | ff with-eq mismatch = let lkup-is-lkup : (equiv (lkup x ((y , w) :: F)) (lkup x F)) lkup-is-lkup = cong3 if_then_else_ mismatch refl refl in cong-pred (mapsTo ((y , w) :: F) x) (sym lkup-is-lkup) (var-mismatch mismatch (var-thm x F)) postulate =Id-det : ∀ {x y : Id} -> (equiv (x =string y) tt) -> (equiv (x =string y) ff) -> bottom var-det : forall{x : Id}{F : Frm}{u1 u2 : Val} -> mapsTo F x u1 -> mapsTo F x u2 -> equiv u1 u2 var-det{x}{[]}{u1}{u2} var-undef var-undef = refl var-det{x}{(y , w) :: F}{u1}{u2} (var-match _) (var-match _) = refl var-det{x}{(y , w) :: F}{u1}{u2} (var-mismatch _ lkup-is-u1) (var-mismatch _ lkup-is-u2) = var-det lkup-is-u1 lkup-is-u2 var-det{x}{(y , w) :: F}{u1}{u2} (var-match{.x}{.y}{.F}{.u1} same) (var-mismatch{.x}{.y}{.F}{.u2} diff _) = bottom-elim (=Id-det{x}{y} same diff) var-det{x}{(y , w) :: F}{u1}{u2} (var-mismatch{.x}{.y}{.F}{.u1} diff _) (var-match{.x}{.y}{.F}{.u2} same) = bottom-elim (=Id-det{x}{y} same diff) -- -- SEMANTICS of expression evaluation as a relation -- data evalsTo : Frm -> Expn -> Val -> Set where e-val : forall {v : Val} {F : Frm} ------------------------ -> (evalsTo F (val v) v) e-var : forall {x : Id} {F : Frm} {v : Val} -> (mapsTo F x v) ------------------------ -> (evalsTo F (var x) v) e-add : forall {e1 e2 : Expn} {F : Frm} {v1 v2 : Val} -> (evalsTo F e1 v1) -> (evalsTo F e2 v2) ------------------------------------- -> (evalsTo F (plus e1 e2) (v1 + v2)) e-sub : forall {e1 e2 : Expn} {F : Frm} {v1 v2 : Val} -> (evalsTo F e1 v1) -> (evalsTo F e2 v2) ----------------------------------------- -> (evalsTo F (minus e1 e2) (v1 -nat v2)) e-scale : forall {e1 : Expn} {F : Frm} {v1 v2 : Val} -> (evalsTo F e1 v1) ---------------------------------------- -> (evalsTo F (scaleBy e1 v2) (v1 * v2)) e-thm : forall (e : Expn) -> (F : Frm) -> (evalsTo F e (eval e F)) e-thm (val e) F = e-val e-thm (var x) F = e-var (var-thm x F) e-thm (plus e1 e2) F = (e-add (e-thm e1 F) (e-thm e2 F)) e-thm (minus e1 e2) F = (e-sub (e-thm e1 F) (e-thm e2 F)) e-thm (scaleBy e1 v2) F = (e-scale (e-thm e1 F)) e-det : forall {e : Expn}{F : Frm}{u w : Val} -> (evalsTo F e u) -> (evalsTo F e w) -> (equiv u w) e-det{val v}{F}{u}{w} e-val e-val = refl e-det{var x}{F}{u}{w} (e-var var-lkup-u) (e-var var-lkup-v) = var-det var-lkup-u var-lkup-v e-det{plus e1 e2}{F}{u}{w} (e-add e-u1 e-u2) (e-add e-w1 e-w2) = cong2 _+_ (e-det e-u1 e-w1) (e-det e-u2 e-w2) e-det{minus e1 e2}{F}{u}{w} (e-sub e-u1 e-u2) (e-sub e-w1 e-w2) = cong2 _-nat_ (e-det e-u1 e-w1) (e-det e-u2 e-w2) e-det{scaleBy e1 v2}{F}{u}{w} (e-scale e-u1) (e-scale e-w1) = cong2 _*_ (e-det e-u1 e-w1) refl e-thm-fwd : forall {e : Expn}{F : Frm}{v : Val} -> (evalsTo F e v) -> (equiv v (eval e F)) e-thm-fwd{e}{F}{v} ev = let p1 : evalsTo F e (eval e F) p1 = e-thm e F in e-det ev p1 e-thm-rev : forall {e : Expn}{F : Frm}{v : Val} -> (equiv v (eval e F)) -> (evalsTo F e v) e-thm-rev{e}{F}{v} v-is = cong-pred (evalsTo F e) (sym v-is) (e-thm e F) -- -- SEMANTICS of conditions as a decidable relation -- data passes : Frm -> Cond -> Set data fails : Frm -> Cond -> Set data passes where c-tt : forall {F : Frm} ---------------- -> passes F true c-and : forall {c1 c2 : Cond} {F : Frm} -> passes F c1 -> passes F c2 ----------------------- -> passes F (and c1 c2) c-or1 : forall {c1 c2 : Cond} {F : Frm} -> passes F c1 ---------------------- -> passes F (or c1 c2) c-or2 : forall {c1 c2 : Cond} {F : Frm} -> passes F c2 ---------------------- -> passes F (or c1 c2) c-less : forall {e1 e2 : Expn} {F : Frm} {v1 v2 : Val} -> equiv (v1 < v2) tt -> evalsTo F e1 v1 -> evalsTo F e2 v2 ------------------------- -> passes F (less e1 e2) c-eq : forall {e1 e2 : Expn} {F : Frm} {v1 v2 : Val} -> equiv (v1 =nat v2) tt -> evalsTo F e1 v1 -> evalsTo F e2 v2 -------------------------- -> passes F (equal e1 e2) c-not : forall {c : Cond} {F : Frm} -> fails F c ------------------- -> passes F (not c) data fails where ~c-ff : forall {F : Frm} ---------------- -> fails F false ~c-or : forall {c1 c2 : Cond} {F : Frm} -> fails F c1 -> fails F c2 ----------------------- -> fails F (or c1 c2) ~c-and1 : forall {c1 c2 : Cond} {F : Frm} -> fails F c1 ---------------------- -> fails F (and c1 c2) ~c-and2 : forall {c1 c2 : Cond} {F : Frm} -> fails F c2 ---------------------- -> fails F (and c1 c2) ~c-less : forall {e1 e2 : Expn} {F : Frm} {v1 v2 : Val} -> equiv (v1 < v2) ff -> evalsTo F e1 v1 -> evalsTo F e2 v2 ------------------------- -> fails F (less e1 e2) ~c-eq : forall {e1 e2 : Expn} {F : Frm} {v1 v2 : Val} -> equiv (v1 =nat v2) ff -> evalsTo F e1 v1 -> evalsTo F e2 v2 -------------------------- -> fails F (equal e1 e2) ~c-not : forall {c : Cond} {F : Frm} -> passes F c ------------------- -> fails F (not c) c-thm-fwd : forall {c : Cond}{F : Frm} -> (passes F c) -> (equiv (chck c F) tt) ~c-thm-fwd : forall {c : Cond}{F : Frm} -> (fails F c) -> (equiv (chck c F) ff) c-thm-fwd (c-tt{F}) = refl c-thm-fwd (c-and{c1}{c2}{F} passes-c1 passes-c2) = cong2 _&&_ (c-thm-fwd passes-c1) (c-thm-fwd passes-c2) c-thm-fwd (c-or1{c1}{c2}{F} passes-c1) = cong2 _||_ (c-thm-fwd passes-c1) refl c-thm-fwd (c-or2{c1}{c2}{F} passes-c2) = trans (cong2 _||_ refl (c-thm-fwd passes-c2)) (||-tt (chck c1 F)) c-thm-fwd (c-less{e1}{e2}{F}{v1}{v2} v1-less-v2 evalsTo-e1-v1 evalsTo-e2-v2) = let eval-e1-is-v1 : (equiv (eval e1 F) v1) eval-e1-is-v1 = sym (e-thm-fwd evalsTo-e1-v1) eval-e2-is-v2 : (equiv (eval e2 F) v2) eval-e2-is-v2 = sym (e-thm-fwd evalsTo-e2-v2) in begin chck (less e1 e2) F equiv[ refl ] (eval e1 F) < (eval e2 F) equiv[ cong2 _<_ eval-e1-is-v1 eval-e2-is-v2 ] v1 < v2 equiv[ v1-less-v2 ] tt qed c-thm-fwd (c-eq{e1}{e2}{F}{v1}{v2} v1-equals-v2 evalsTo-e1-v1 evalsTo-e2-v2) = let eval-e1-is-v1 : (equiv (eval e1 F) v1) eval-e1-is-v1 = sym (e-thm-fwd evalsTo-e1-v1) eval-e2-is-v2 : (equiv (eval e2 F) v2) eval-e2-is-v2 = sym (e-thm-fwd evalsTo-e2-v2) in begin chck (equal e1 e2) F equiv[ refl ] (eval e1 F) =nat (eval e2 F) equiv[ cong2 _=nat_ eval-e1-is-v1 eval-e2-is-v2 ] v1 =nat v2 equiv[ v1-equals-v2 ] tt qed c-thm-fwd (c-not{c}{F} c-fails) = cong ~_ (~c-thm-fwd c-fails) ~c-thm-fwd (~c-ff{F}) = refl ~c-thm-fwd (~c-or{c1}{c2}{F} fails-c1 fails-c2) = cong2 _||_ (~c-thm-fwd fails-c1) (~c-thm-fwd fails-c2) ~c-thm-fwd (~c-and1{c1}{c2}{F} fails-c1) = cong2 _&&_ (~c-thm-fwd fails-c1) refl ~c-thm-fwd (~c-and2{c1}{c2}{F} fails-c2) = trans (cong2 _&&_ refl (~c-thm-fwd fails-c2)) (&&-ff (chck c1 F)) ~c-thm-fwd (~c-less{e1}{e2}{F}{v1}{v2} v1-not-less-v2 evalsTo-e1-v1 evalsTo-e2-v2) = let eval-e1-is-v1 : (equiv (eval e1 F) v1) eval-e1-is-v1 = sym (e-thm-fwd evalsTo-e1-v1) eval-e2-is-v2 : (equiv (eval e2 F) v2) eval-e2-is-v2 = sym (e-thm-fwd evalsTo-e2-v2) in begin chck (less e1 e2) F equiv[ refl ] (eval e1 F) < (eval e2 F) equiv[ cong2 _<_ eval-e1-is-v1 eval-e2-is-v2 ] v1 < v2 equiv[ v1-not-less-v2 ] ff qed ~c-thm-fwd (~c-eq{e1}{e2}{F}{v1}{v2} v1-not-equals-v2 evalsTo-e1-v1 evalsTo-e2-v2) = let eval-e1-is-v1 : (equiv (eval e1 F) v1) eval-e1-is-v1 = sym (e-thm-fwd evalsTo-e1-v1) eval-e2-is-v2 : (equiv (eval e2 F) v2) eval-e2-is-v2 = sym (e-thm-fwd evalsTo-e2-v2) in begin chck (equal e1 e2) F equiv[ refl ] (eval e1 F) =nat (eval e2 F) equiv[ cong2 _=nat_ eval-e1-is-v1 eval-e2-is-v2 ] v1 =nat v2 equiv[ v1-not-equals-v2 ] ff qed ~c-thm-fwd (~c-not{c}{F} c-passes) = cong ~_ (c-thm-fwd c-passes) -- These can probably be shown just by using -- the contrapositives of ~c-thm-fwd and ~~c-thm-fwd postulate c-thm-rev : forall {c : Cond}{F : Frm} -> (equiv (chck c F) tt) -> (passes F c) ~c-thm-rev : forall {c : Cond}{F : Frm} -> (equiv (chck c F) ff) -> (fails F c) -- -- SEMANTICS of program statements -- as a state transformation relation -- data execsTo : Frm -> Stmt -> Frm -> Set where s-skip : forall {F : Frm} ------------------- -> execsTo F skip F s-assign : forall {x : Id} {e : Expn} {F : Frm} {v : Val} -> evalsTo F e v ---------------------------------------- -> execsTo F (assign x e) (update x v F) s-seq : forall {s1 s2 : Stmt} {F0 F1 F2 : Frm} -> (execsTo F0 s1 F1) -> (execsTo F1 s2 F2) ------------------------------ -> (execsTo F0 (seq s1 s2) F2) s-if-then : forall {c : Cond} {s1 s2 : Stmt} {F F' : Frm} -> (passes F c) -> (execsTo F s1 F') -------------------------------------- -> (execsTo F (ifThenElse c s1 s2) F') s-if-else : forall {c : Cond} {s1 s2 : Stmt} {F F' : Frm} -> (fails F c) -> (execsTo F s2 F') -------------------------------------- -> (execsTo F (ifThenElse c s1 s2) F') s-repeat-0 : forall {s : Stmt} {x : Id} {F : Frm} -> (mapsTo F x 0) ------------------------------- -> (execsTo F (repeatBy x s) F) s-repeat-suc : forall {n : nat} {s : Stmt} {x : Id} {F F' : Frm} -> (mapsTo F x (suc n)) -> (execsTo F (seq (seq s (assign x (val n))) (repeatBy x s)) F') ----------------------------------------------------------------- -> (execsTo F (repeatBy x s) F') -- -- A lil cheat: "returns" is just assign; doesn't exit s-return : forall {e : Expn} {F : Frm} {rv : Val} -> (evalsTo F e rv) ------------------------------------------------- -> (execsTo F (returns e) (update "retval" rv F)) postulate frm-compare : Frm -> Frm -> bool frm-iso : Frm -> Frm -> Set frm-not-iso : Frm -> Frm -> Set postulate s-thm : forall {s : Stmt}{F Ff Fr : Frm} -> execsTo F s Fr -> equiv (exec s F) Ff ---------------------- -> frm-iso Ff Fr
{ "alphanum_fraction": 0.4914568037, "avg_line_length": 28.9146825397, "ext": "agda", "hexsha": "2b1095b86b3765d8a2004a442beddfff01262c8b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "80d9411b2869614cae488cd4a6272894146c9f3c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JimFixGroupResearch/imper-ial", "max_forks_repo_path": "imper-nouni.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "80d9411b2869614cae488cd4a6272894146c9f3c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JimFixGroupResearch/imper-ial", "max_issues_repo_path": "imper-nouni.agda", "max_line_length": 108, "max_stars_count": null, "max_stars_repo_head_hexsha": "80d9411b2869614cae488cd4a6272894146c9f3c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JimFixGroupResearch/imper-ial", "max_stars_repo_path": "imper-nouni.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5466, "size": 14573 }
{-# OPTIONS --exact-split #-} postulate I : Set P : I → Set record ∃ (P : I → Set) : Set where constructor _,_ field fst : I snd : P fst open ∃ data S : ∃ P → Set where s : (i : I) (x : P i) → S (i , x) Foo : (p : ∃ P) → S p → Set Foo p (s .(fst p) .(snd p)) = I
{ "alphanum_fraction": 0.4802867384, "avg_line_length": 13.95, "ext": "agda", "hexsha": "c20cec77a525f306c9b44fbd3d0eef3a38a16252", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1380b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1380b.agda", "max_line_length": 34, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1380b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 115, "size": 279 }
module hello-world where open import IO open import Level main = run {0ℓ} (putStrLn "Hello, World!")
{ "alphanum_fraction": 0.7281553398, "avg_line_length": 14.7142857143, "ext": "agda", "hexsha": "f72a9f414d57f820d2c060ed26d66c6cf8bae547", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c134875eae37d265936199fda278416e2a3c1224", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "supeterlau/bedev", "max_forks_repo_path": "agda/hello-world.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c134875eae37d265936199fda278416e2a3c1224", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "supeterlau/bedev", "max_issues_repo_path": "agda/hello-world.agda", "max_line_length": 42, "max_stars_count": null, "max_stars_repo_head_hexsha": "c134875eae37d265936199fda278416e2a3c1224", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "supeterlau/bedev", "max_stars_repo_path": "agda/hello-world.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 29, "size": 103 }
-- Andreas, 2011-05-10 -- {-# OPTIONS -v tc.term.con:20 -v tc.meta:20 #-} module Issue380 where data _==_ {A : Set}(a : A) : A -> Set where refl : a == a record Sigma (A : Set)(B : A -> Set) : Set where constructor _,_ field fst : A snd : B fst open Sigma public testProj : {A : Set}{B : A -> Set}(y z : Sigma A B) -> let X : Sigma A B X = _ in fst X == fst y -> snd X == snd z testProj y z = refl , refl {- OLD BEHAVIOR: Error message about telescope comparison unreadable This ill-typed term produces a weird error message: (z' : fst (fst z , _283 y z) == fst y) !=< when checking that the expression refl , refl has type fst (fst z , _283 y z) == fst y → snd (fst z , _283 y z) == snd z -} {- FIXED. Now it should complain that Sigma (_47 y z == _47 y z) (_45 y z) !=< fst (fst z , _43 y z) == fst y → snd (fst z , _43 y z) == snd z when checking that the expression refl , refl has type fst (fst z , _43 y z) == fst y → snd (fst z , _43 y z) == snd z -}
{ "alphanum_fraction": 0.5947315096, "avg_line_length": 30.84375, "ext": "agda", "hexsha": "0f3a60fea9f60461f2978889acc5f044d6bcbb23", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Fail/Issue380.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Fail/Issue380.agda", "max_line_length": 69, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/Issue380.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 339, "size": 987 }
module _ where open import Common.Bool private unused = true used = true private module Private where not-in-scope = true in-scope = used
{ "alphanum_fraction": 0.7133333333, "avg_line_length": 10, "ext": "agda", "hexsha": "b0218dba220a5273c24cf1476efb9a68b5818a7e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/TopScope.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/TopScope.agda", "max_line_length": 23, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/TopScope.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 42, "size": 150 }
record R : Set₁ where field ⟨_+_⟩ : Set open R -- Name parts coming from projections can not be used as part of the -- defined name. + : Set → Set + A = A
{ "alphanum_fraction": 0.6280487805, "avg_line_length": 13.6666666667, "ext": "agda", "hexsha": "d6e08e2ecfc2c63e9868323502f53e97bc622bbf", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue3400-2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue3400-2.agda", "max_line_length": 68, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue3400-2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 51, "size": 164 }
{-# OPTIONS --without-K #-} open import HoTT open import homotopy.elims.Lemmas open import homotopy.elims.CofPushoutSection module homotopy.elims.SuspSmash {i j k} {X : Ptd i} {Y : Ptd j} {P : Suspension (X ∧ Y) → Type k} (north* : P north) (south* : P south) (cod* : (s : fst X × fst Y) → north* == south* [ P ↓ merid (cfcod s) ]) where private base* = transport (λ κ → north* == south* [ P ↓ merid κ ]) (! (cfglue (winl (snd X)))) (cod* (snd X , snd Y)) coh* : (s : X ∧ Y) → north* == south* [ P ↓ merid s ] coh* = CofPushoutSection.elim (λ _ → tt) (λ _ → idp) base* (λ {(x , y) → (fst (fillX x) ∙ fst (fillY y)) ◃ fst fill0 ◃ cod* (x , y)}) (↓↓-from-squareover ∘ λ x → snd (fillX x) ↓⊡h∙ ap (λ p → p ◃ fst fill0 ◃ cod* (x , snd Y)) (! (ap (λ q → fst (fillX x) ∙ q) fillY-lemma ∙ ∙-unit-r _))) (↓↓-from-squareover ∘ λ y → snd (fillY y) ↓⊡h∙ ap (λ p → p ◃ fst fill0 ◃ cod* (snd X , y)) (! (ap (λ q → q ∙ fst (fillY y)) fillX-lemma))) where fill-lemma : (w : X ∨ Y) (α : north* == south* [ P ↓ merid (cfcod (∨-in-× X Y w)) ]) → Σ (north* == north*) (λ p → SquareOver P (natural-square merid (cfglue w)) base* (↓-ap-in _ _ (apd (λ _ → north*) (cfglue w))) (↓-ap-in _ _ (apd (λ _ → south*) (cfglue w))) (p ◃ α)) fill-lemma w α = fill-upper-right _ _ _ _ _ fill0 = fill-lemma (winl (snd X)) (cod* (snd X , snd Y)) fillX = λ x → fill-lemma (winl x) (fst fill0 ◃ cod* (x , snd Y)) fillY = λ y → fill-lemma (winr y) (fst fill0 ◃ cod* (snd X , y)) fillX-lemma : fst (fillX (snd X)) == idp fillX-lemma = ! $ fill-upper-right-unique _ _ _ _ _ idp (snd fill0 ↓⊡h∙ ! (idp◃ _)) fillY-lemma : fst (fillY (snd Y)) == idp fillY-lemma = ! $ fill-upper-right-unique _ _ _ _ _ idp (snd fill0 ↓⊡h∙ ! (idp◃ _)) ∙ ap (λ w → fst (fill-lemma w (fst fill0 ◃ cod* (∨-in-× X Y w)))) wglue susp-smash-elim : Π (Suspension (X ∧ Y)) P susp-smash-elim = Suspension-elim north* south* coh*
{ "alphanum_fraction": 0.5014150943, "avg_line_length": 36.5517241379, "ext": "agda", "hexsha": "d7ef8fccba58384166121778db0eeb3f1539936d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/elims/SuspSmash.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/elims/SuspSmash.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/elims/SuspSmash.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 836, "size": 2120 }
-- {-# OPTIONS -v term:20 #-} module Issue787 where data ⊥ : Set where data List (A : Set) : Set where [] : List A _∷_ : A → List A → List A data Rat' {X : Set} : List (List X) → List X → Set where cons : ∀{ss x xs} → Rat' ((x ∷ xs) ∷ ss) xs → Rat' ss (x ∷ xs) bad : {X : Set} (xs : List X) (acc : List (List X)) (p : Rat' acc xs) → ⊥ bad .(x ∷ xs) acc (cons {ss = .acc} {x = x} {xs = xs} p) = bad (x ∷ xs) acc (cons {ss = acc} {x = x} {xs = xs} p) -- Andreas, 2013-02-18 -- This should give a termination error. -- It did pass up to today because of the idempotency check -- excluded bad calls with embedded sub-matrices. -- Disabling matrix-shaped orders, which do not have a formal semantics -- anyway, bring the termination problem to Agda's attention.
{ "alphanum_fraction": 0.6025974026, "avg_line_length": 33.4782608696, "ext": "agda", "hexsha": "ed8548ce7a980c4b70043522515e08d490e7afe3", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue787.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue787.agda", "max_line_length": 73, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue787.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 272, "size": 770 }
module Warshall (X : Set) ((≤) : X -> X -> Prop) -- and axioms... where id : {A:Set} -> A -> A id x = x (∘) : {A B C:Set} -> (B -> C) -> (A -> B) -> A -> C f ∘ g = \x -> f (g x) -- Natural numbers -------------------------------------------------------- data Nat : Set where zero : Nat suc : Nat -> Nat (+) : Nat -> Nat -> Nat zero + m = m suc n + m = suc (n + m) -- Finite sets ------------------------------------------------------------ data Zero : Set where data Suc (A:Set) : Set where fzero_ : Suc A fsuc_ : A -> Suc A mutual data Fin (n:Nat) : Set where finI : Fin_ n -> Fin n Fin_ : Nat -> Set Fin_ zero = Zero Fin_ (suc n) = Suc (Fin n) fzero : {n:Nat} -> Fin (suc n) fzero = finI fzero_ fsuc : {n:Nat} -> Fin n -> Fin (suc n) fsuc i = finI (fsuc_ i) finE : {n:Nat} -> Fin n -> Fin_ n finE (finI i) = i infixr 15 :: -- Vectors ---------------------------------------------------------------- data Nil : Set where nil_ : Nil data Cons (Xs:Set) : Set where cons_ : X -> Xs -> Cons Xs mutual data Vec (n:Nat) : Set where vecI : Vec_ n -> Vec n Vec_ : Nat -> Set Vec_ zero = Nil Vec_ (suc n) = Cons (Vec n) nil : Vec zero nil = vecI nil_ (::) : {n:Nat} -> X -> Vec n -> Vec (suc n) x :: xs = vecI (cons_ x xs) vecE : {n:Nat} -> Vec n -> Vec_ n vecE (vecI xs) = xs vec : (n:Nat) -> X -> Vec n vec zero _ = nil vec (suc n) x = x :: vec n x map : {n:Nat} -> (X -> X) -> Vec n -> Vec n map {zero} f (vecI nil_) = nil map {suc n} f (vecI (cons_ x xs)) = f x :: map f xs (!) : {n:Nat} -> Vec n -> Fin n -> X (!) {suc n} (vecI (cons_ x _ )) (finI fzero_) = x (!) {suc n} (vecI (cons_ _ xs)) (finI (fsuc_ i)) = xs ! i upd : {n:Nat} -> Fin n -> X -> Vec n -> Vec n upd {suc n} (finI fzero_) x (vecI (cons_ _ xs)) = x :: xs upd {suc n} (finI (fsuc_ i)) x (vecI (cons_ y xs)) = y :: upd i x xs tabulate : {n:Nat} -> (Fin n -> X) -> Vec n tabulate {zero} f = nil tabulate {suc n} f = f fzero :: tabulate (\x -> f (fsuc x)) postulate (===) : {n:Nat} -> Vec n -> Vec n -> Prop module Proof (F : {n:Nat} -> Vec n -> Vec n) -- and axioms... where stepF : {n:Nat} -> Fin n -> Vec n -> Vec n stepF i xs = upd i (F xs ! i) xs unsafeF' : {n:Nat} -> Nat -> Vec (suc n) -> Vec (suc n) unsafeF' zero = id unsafeF' (suc m) = unsafeF' m ∘ stepF fzero unsafeF : {n:Nat} -> Vec n -> Vec n unsafeF {zero} = id unsafeF {suc n} = unsafeF' (suc n) thm : {n:Nat} -> (xs:Vec n) -> F xs === unsafeF xs thm = ?
{ "alphanum_fraction": 0.4685148515, "avg_line_length": 20.867768595, "ext": "agda", "hexsha": "33c957a2be3b8af2daa74d2526b2a26014bb60ac", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/Warshall.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/Warshall.agda", "max_line_length": 75, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/Warshall.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 1005, "size": 2525 }
module BTA4 where -- specialize two-level typed terms to untyped lambda calculus open import Data.Nat hiding (_<_) open import Data.Bool open import Data.Fin hiding (_≤_ ; pred; _+_) open import Data.List open import Data.Product open import Function open import Algebra.FunctionProperties using (Commutative; Identity; RightIdentity) open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; _≢_; refl; sym; cong; cong₂) open PropEq.≡-Reasoning open import Data.Nat.Properties open import Relation.Nullary -- Binding times data BT : Set where S : BT D : BT -- defining a data type [BT],where two members are -- [S] standing for "static" and [D] standing for dynamic. -- ``subsumption'' binding times; static can be treated as dynamic, -- but not vice versa _≼_ : BT → BT → Bool _≼_ D S = false _≼_ _ _ = true record True : Set where data False : Set where isTrue : Bool → Set isTrue true = True isTrue false = False -- an inductive type describing bt subsumption data _⊑_ : BT → BT → Set where bt-leq-refl : ∀ {bt} → bt ⊑ bt bt-leq-dyn : ∀ {bt} → bt ⊑ D bt-reify : ∀ bt1 bt2 → isTrue (bt1 ≼ bt2) → bt1 ⊑ bt2 bt-reify S S p = bt-leq-refl bt-reify S D p = bt-leq-dyn bt-reify D S () bt-reify D D p = bt-leq-refl bt-reflect : ∀ bt1 bt2 → bt1 ⊑ bt2 → isTrue (bt1 ≼ bt2) bt-reflect S S p = _ bt-reflect S D p = _ bt-reflect D S () bt-reflect D D p = _ -- More general purpose definitions (should also be in standard library) -- list membership infix 4 _∈_ data _∈_ {A : Set} : A → List A → Set where hd : ∀ {x xs} → x ∈ (x ∷ xs) tl : ∀ {x y xs} → x ∈ xs → x ∈ (y ∷ xs) -- Types of the calculus mutual -- s ^ BT data AType : Set where Ann : BT → SType → AType -- int | t -> t data SType : Set where SInt : SType SFun : AType → AType → SType -- aux definitions ATInt : BT → AType ATInt bt = Ann bt SInt ATFun : BT → AType → AType → AType ATFun bt at1 at2 = Ann bt (SFun at1 at2) -- projection: get the BT from a type btof : AType → BT btof (Ann bt _) = bt -- an alternative: have only wf types from the start data AType' : BT → Set where AInt : (bt : BT) → AType' bt AFun : (bt : BT) → ∀ {bt1 bt2} → AType' bt1 → AType' bt2 → bt ⊑ bt1 → bt ⊑ bt2 → AType' bt forget-wft : ∀ {bt} → AType' bt → AType forget-wft {bt} (AInt .bt) = ATInt bt forget-wft {bt} (AFun .bt at at₁ x x₁) = ATFun bt (forget-wft at) (forget-wft at₁) data LEQ-Problem : Set where LEQ-not-D⊑S : LEQ-Problem data WF-Problem : Set where WF-LEQ-right : LEQ-Problem → WF-Problem WF-LEQ-left : LEQ-Problem → WF-Problem WF-WF-left : WF-Problem → WF-Problem WF-WF-right : WF-Problem → WF-Problem data Inferred (E A : Set) : Set where Ok : A → Inferred E A Error : E → Inferred E A infer-bt-leq : ∀ bt1 bt2 → Inferred LEQ-Problem (bt1 ⊑ bt2) infer-bt-leq S S = Ok bt-leq-refl infer-bt-leq S D = Ok bt-leq-dyn infer-bt-leq D S = Error LEQ-not-D⊑S infer-bt-leq D D = Ok bt-leq-refl -- insufficiently constrained ... infer-wft' : (α : AType) → Inferred WF-Problem (AType' (btof α)) infer-wft' (Ann x SInt) = Ok (AInt x) infer-wft' (Ann x (SFun x₁ x₂)) with infer-wft' x₁ | infer-wft' x₂ | infer-bt-leq x (btof x₁) | infer-bt-leq x (btof x₂) infer-wft' (Ann x₄ (SFun x₁ x₂)) | Ok x | Ok x₃ | Ok x₅ | Ok x₆ = Ok (AFun x₄ x x₃ x₅ x₆) infer-wft' (Ann x₄ (SFun x₁ x₂)) | Ok x | Ok x₃ | Ok x₅ | Error x₆ = Error (WF-LEQ-right x₆) infer-wft' (Ann x₄ (SFun x₁ x₂)) | Ok x | Ok x₃ | Error x₅ | okbt2 = Error (WF-LEQ-left x₅) infer-wft' (Ann x₄ (SFun x₁ x₂)) | Ok x | Error x₃ | _ | _ = Error (WF-WF-right x₃) infer-wft' (Ann x₃ (SFun x₁ x₂)) | Error x | r2 | _ | _ = Error (WF-WF-left x) -- might be easier to infer a Σ type check-wft : (α : AType) → Inferred WF-Problem (∃ λ α' → α ≡ forget-wft {btof α} α') check-wft (Ann x SInt) = Ok (AInt x , refl) check-wft (Ann x (SFun x₁ x₂)) with check-wft x₁ | check-wft x₂ | infer-bt-leq x (btof x₁) | infer-bt-leq x (btof x₂) ... | Ok (α₁ , pr₁) | Ok (α₂ , pr₂) | Ok leq₁ | Ok leq₂ = Ok (AFun x α₁ α₂ leq₁ leq₂ , cong₂ (λ x₃ x₄ → Ann x (SFun x₃ x₄)) pr₁ pr₂) ... | Ok p₁ | Ok p₂ | Ok leq₁ | Error e₄ = Error (WF-LEQ-right e₄) ... | Ok p₁ | Ok p₂ | Error e₃ | _ = Error (WF-LEQ-left e₃) ... | Ok p₁ | Error e₂ | _ | _ = Error (WF-WF-right e₂) ... | Error e₁ | _ | _ | _ = Error (WF-WF-left e₁) unfold-forget : ∀ bt {bt₁} {bt₂} at₁ at₂ x₅ x₆ → forget-wft (AFun bt {bt₁} {bt₂} at₁ at₂ x₅ x₆) ≡ ATFun bt (forget-wft at₁) (forget-wft at₂) unfold-forget bt at₁ at₂ x₅ x₆ = refl -- well-formedness data wft : AType → Set where wf-int : ∀ {bt} → wft (Ann bt SInt) wf-fun : ∀ {bt at1 at2} → wft at1 → wft at2 → isTrue (bt ≼ btof at1) → isTrue (bt ≼ btof at2) → wft (Ann bt (SFun at1 at2)) infer-lemma-fun-left : ∀ σ₁ α₂ → ¬ wft (Ann D (SFun (Ann S σ₁) α₂)) infer-lemma-fun-left σ₁ α₂ (wf-fun v v₁ () x₁) infer-lemma-fun-right : ∀ α σ → ¬ wft (Ann D (SFun α (Ann S σ))) infer-lemma-fun-right α σ (wf-fun v v₁ x ()) infer-yes-yes : ∀ bt α₁ α₂ → (wf1 : wft α₁) (wf2 : wft α₂) → Dec (wft (Ann bt (SFun α₁ α₂))) infer-yes-yes S (Ann bt1 σ₁) (Ann bt2 σ₂) wf1 wf2 = yes (wf-fun wf1 wf2 _ _) infer-yes-yes D (Ann D σ₁) (Ann D σ₂) wf1 wf2 = yes (wf-fun wf1 wf2 _ _) infer-yes-yes D (Ann S σ₁) (Ann bt2 σ₂) wf1 wf2 = no (infer-lemma-fun-left σ₁ (Ann bt2 σ₂)) infer-yes-yes D (Ann bt1 σ₁) (Ann S σ₂) wf1 wf2 = no (infer-lemma-fun-right (Ann bt1 σ₁) σ₂) infer-lemma-arg-left : ∀ bt α₁ α₂ → ¬ wft α₁ → ¬ wft (Ann bt (SFun α₁ α₂)) infer-lemma-arg-left bt α₁ α₂ ¬wft1 (wf-fun v v₁ x x₁) = ¬wft1 v infer-lemma-arg-right : ∀ bt α₁ α₂ → ¬ wft α₂ → ¬ wft (Ann bt (SFun α₁ α₂)) infer-lemma-arg-right bt α₁ α₂ ¬wft2 (wf-fun v v₁ x x₁) = ¬wft2 v₁ infer-wft : (α : AType) → Dec (wft α) infer-wft (Ann bt SInt) = yes wf-int infer-wft (Ann bt (SFun α₁ α₂)) with infer-wft α₁ | infer-wft α₂ ... | yes wf1 | yes wf2 = infer-yes-yes bt α₁ α₂ wf1 wf2 ... | yes wf1 | no ¬wf2 = no (infer-lemma-arg-right bt α₁ α₂ ¬wf2) ... | no ¬wf1 | yes wf2 = no (infer-lemma-arg-left bt α₁ α₂ ¬wf1) ... | no ¬wf1 | no ¬wf2 = no (infer-lemma-arg-left bt α₁ α₂ ¬wf1) ---------------------------------------------------------------------- -- step 0 -- Untyped expressions, incorrect results data Exp : Set where EVar : ℕ → Exp EInt : ℕ → Exp EAdd : Exp → Exp → Exp ELam : Exp → Exp EApp : Exp → Exp → Exp -- mapping from annotated type to implementation type ImpTA : AType → Set ImpTA (Ann S SInt) = ℕ ImpTA (Ann S (SFun α β)) = ImpTA α → ImpTA β ImpTA (Ann D σ) = Exp -- test for dynamic by wellformedness data IsDynamic : AType → Set where is-dyn : ∀ σ → IsDynamic (Ann D σ) lem-IsDynamic-by-wf : ∀ α → isTrue (D ≼ btof α) → IsDynamic α lem-IsDynamic-by-wf (Ann S σ) () lem-IsDynamic-by-wf (Ann D σ) _ = is-dyn σ -- typed annotated expressions ACtx = List AType data AExp (Δ : ACtx) : AType → Set where AVar : ∀ {α} → α ∈ Δ → AExp Δ α AInt : (bt : BT) → ℕ → AExp Δ (ATInt bt) AAdd : (bt : BT) → AExp Δ (ATInt bt) → AExp Δ (ATInt bt) → AExp Δ (ATInt bt) ALam : ∀ {α₁ α₂} (bt : BT) → wft (ATFun bt α₂ α₁) → AExp (α₂ ∷ Δ) α₁ → AExp Δ (ATFun bt α₂ α₁) AApp : ∀ {α₁ α₂} (bt : BT) → wft (ATFun bt α₂ α₁) → AExp Δ (ATFun bt α₂ α₁) → AExp Δ α₂ → AExp Δ α₁ -- TODO: replace wellformedness of types in AApp with lemma -- the lemma does not require wft in AApp data wft-context : ACtx → Set where wft-[] : wft-context [] wft-:: : ∀ {α Δ} → wft α → wft-context Δ → wft-context (α ∷ Δ) lemma-wft-var : ∀ {α Δ} → wft-context Δ → α ∈ Δ → wft α lemma-wft-var (wft-:: x wc) hd = x lemma-wft-var (wft-:: x wc) (tl pf) = lemma-wft-var wc pf lemma-wft : ∀ {α Δ} → wft-context Δ → AExp Δ α → wft α lemma-wft wc (AVar x) = lemma-wft-var wc x lemma-wft wc (AInt bt x) = wf-int lemma-wft wc (AAdd bt ae₁ ae₂) = wf-int lemma-wft wc (ALam bt x ae) = x lemma-wft wc (AApp bt _ ae ae₁) with lemma-wft wc ae ... | (wf-fun w₁ w₂ d≤bt₁ d≤bt₂) = w₂ data AEnv0 (F : AType → Set) : ACtx -> Set where AE[] : AEnv0 F [] AE∷ : ∀ {Δ} α → F α → AEnv0 F Δ → AEnv0 F (α ∷ Δ) AEnv = AEnv0 ImpTA aelength : ∀ {F Δ} → AEnv0 F Δ → ℕ aelength AE[] = 0 aelength (AE∷ α x ae) = suc( aelength ae) lookup : ∀ {F Δ α} → AEnv0 F Δ → (o : α ∈ Δ ) → F α lookup (AE∷ α x env) hd = x lookup (AE∷ α x env) (tl o) = lookup env o -- partial evaluation peval : ∀ {α Δ } → AExp Δ α → AEnv Δ → ImpTA α peval (AVar x) env = lookup env x peval (AInt S x) env = x peval (AInt D x) env = EInt x peval (AAdd S e₁ e₂) env = peval e₁ env + peval e₂ env peval (AAdd D e₁ e₂) env = EAdd (peval e₁ env) (peval e₂ env) peval (ALam {α₂} {α₁} S w e) env = λ y → peval e (AE∷ α₁ y env) peval (ALam {α₂} {α₁} D (wf-fun w₁ w₂ d≤bt₁ d≤bt₂) e) env with lem-IsDynamic-by-wf α₁ d≤bt₁ | lem-IsDynamic-by-wf α₂ d≤bt₂ peval (ALam {.(Ann D σ₂)} {.(Ann D σ₁)} D (wf-fun _ _ d≤bt₁ d≤bt₂) e) env | is-dyn σ₁ | is-dyn σ₂ = ELam (peval e (AE∷ (Ann D σ₁) (EVar (aelength env)) env)) peval (AApp S w e e₁) env = peval e env (peval e₁ env) peval (AApp {α₂} {α₁} D (wf-fun w₁ w₂ d≤bt₁ d≤bt₂) e e₁) env with lem-IsDynamic-by-wf α₁ d≤bt₁ | lem-IsDynamic-by-wf α₂ d≤bt₂ peval (AApp {.(Ann D σ₂)} {.(Ann D σ₁)} D (wf-fun _ _ d≤bt₁ d≤bt₂) e e₁) env | is-dyn σ₁ | is-dyn σ₂ = EApp (peval e env) (peval e₁ env) ---------------------------------------------------------------------- -- step 1 -- Untyped expression, but correctly scoped data Exp' : ℕ → Set where EVar : ∀ {n} → Fin n → Exp' n EInt : ∀ {n} → ℕ → Exp' n EAdd : ∀ {n} → Exp' n → Exp' n → Exp' n ELam : ∀ {n} → Exp' (suc n) → Exp' n EApp : ∀ {n} → Exp' n → Exp' n → Exp' n --- m+1+n≡1+m+n : ∀ m n → m + suc n ≡ suc (m + n) m+1+n≡1+m+n zero n = refl m+1+n≡1+m+n (suc m) n = cong suc (m+1+n≡1+m+n m n) n+0≡n : ∀ n → n + 0 ≡ n n+0≡n zero = refl n+0≡n (suc n) = cong suc $ n+0≡n n +-comm : ∀ m n → m + n ≡ n + m +-comm zero n = sym (n+0≡n n) +-comm (suc m) n = begin suc m + n ≡⟨ refl ⟩ suc (m + n) ≡⟨ cong suc (+-comm m n) ⟩ suc (n + m) ≡⟨ sym (m+1+n≡1+m+n n m) ⟩ n + suc m ∎ ≤-refl : ∀ {n} → n ≤ n ≤-refl {zero} = z≤n ≤-refl {suc n} = s≤s ≤-refl ≤-trans : ∀ {a b c} → a ≤ b → b ≤ c → a ≤ c ≤-trans z≤n q = z≤n ≤-trans (s≤s p) (s≤s q) = s≤s (≤-trans p q) ≤-suc-right : ∀ {m n} → m ≤ n → m ≤ suc n ≤-suc-right z≤n = z≤n ≤-suc-right (s≤s p) = s≤s (≤-suc-right p) ≤-suc-left : ∀ {m n} → suc m ≤ n → m ≤ n ≤-suc-left (s≤s p) = ≤-suc-right p xlate : ∀ {m} {n} → Exp' (m + suc n) → Exp' (suc (n + m)) xlate {m} {n} e rewrite m+1+n≡1+m+n m n | +-comm m n = e shifter1 : ∀ {n} m → Exp' (suc n) → Exp' (suc (n + m)) shifter1 {n} m (EVar x) = xlate {m} (EVar (raise m x)) shifter1 m (EInt x) = EInt x shifter1 m (EAdd e₁ e₂) = EAdd (shifter1 m e₁) (shifter1 m e₂) shifter1 m (ELam e) = ELam (shifter1 m e) shifter1 m (EApp e e₁) = EApp (shifter1 m e) (shifter1 m e₁) shifter0 : ∀ m → Exp' zero → Exp' m shifter0 m (EVar ()) shifter0 m (EInt x) = EInt x shifter0 m (EAdd e₁ e₂) = EAdd (shifter0 m e₁) (shifter0 m e₂) shifter0 m (ELam e) = ELam (shifter1 m e) shifter0 m (EApp e e₁) = EApp (shifter0 m e) (shifter0 m e₁) shifter : ∀ m d → Exp' m → Exp' (m + d) shifter zero d e = shifter0 d e shifter (suc m) d e = shifter1 d e -- m+n∸m≡n : ∀ {m n} → m ≤ n → m + (n ∸ m) ≡ n -- m+n∸m≡n p helper : ∀ {m n} → n ≤ m → Exp' (n + (m ∸ n)) → Exp' m helper p e rewrite m+n∸m≡n p = e -- index m = nesting level of dynamic definitions Imp : (m : ℕ) → AType → Set Imp m (Ann S SInt) = ℕ Imp m (Ann S (SFun α₁ α₂)) = ∀ n → m ≤ n → (Imp n α₁ → Imp n α₂) Imp m (Ann D σ) = Exp' m -- index = nesting level of dynamic definitions data AEnv1 : ℕ → ACtx → Set where [] : AEnv1 0 [] consS : ∀ {m Δ o} → m ≤ o → (α : AType) → Imp o α → AEnv1 m Δ → AEnv1 o (α ∷ Δ) consD : ∀ {m Δ} → (α : AType) → isTrue (D ≼ btof α) → Imp (suc m) α → AEnv1 m Δ → AEnv1 (suc m) (α ∷ Δ) lift1 : ∀ {m n} α → m ≤ n → Imp m α → Imp n α lift1 (Ann S SInt) p v = v lift1 (Ann S (SFun x x₁)) p v = λ k n≤k → v k (≤-trans p n≤k) lift1 {m} {n} (Ann D σ) p v = helper p (shifter m (n ∸ m) v) lookup1 : ∀ {α Δ m n} → m  ≤ n → AEnv1 m Δ → α ∈ Δ → Imp n α lookup1 {α} p (consS _ .α x env) hd = lift1 α p x lookup1 {α} p (consD .α x x₁ env) hd = lift1 α p x₁ lookup1 p (consS p' .y x env) (tl {_} {y} x₁) = lookup1 (≤-trans p' p) env x₁ lookup1 p (consD .y x x₁ env) (tl {_} {y} x₂) = lookup1 (≤-suc-left p) env x₂ pe1 : ∀ {α Δ} m → AExp Δ α → AEnv1 m Δ → Imp m α pe1 m (AVar x) env = lookup1 ≤-refl env x pe1 m (AInt S x) env = x pe1 m (AInt D x) env = EInt x pe1 m (AAdd S e₁ e₂) env = pe1 m e₁ env + pe1 m e₂ env pe1 m (AAdd D e₁ e₂) env = EAdd (pe1 m e₁ env) (pe1 m e₂ env) pe1 m (ALam S x e) env = λ o p → λ v → pe1 o e (consS p _ v env) pe1 m (ALam {α₂} {α₁} D (wf-fun w₁ w₂ d≤bt₁ d≤bt₂) e) env with lem-IsDynamic-by-wf α₁ d≤bt₁ | lem-IsDynamic-by-wf α₂ d≤bt₂ pe1 m (ALam {.(Ann D σ₂)} {.(Ann D σ₁)} D (wf-fun _ _ d≤bt₁ d≤bt₂) e) env | is-dyn σ₁ | is-dyn σ₂ = ELam (pe1 (suc m) e (consD (Ann D σ₁) d≤bt₁ (EVar zero) env)) pe1 m (AApp S x e e₁) env = (pe1 m e env) m ≤-refl (pe1 m e₁ env) pe1 m (AApp {α₂} {α₁} D (wf-fun w₁ w₂ d≤bt₁ d≤bt₂) e e₁) env with lem-IsDynamic-by-wf α₁ d≤bt₁ | lem-IsDynamic-by-wf α₂ d≤bt₂ pe1 m (AApp {.(Ann D σ₂)} {.(Ann D σ₁)} D (wf-fun w₁ w₂ d≤bt₁ d≤bt₂) e e₁) env | is-dyn σ₁ | is-dyn σ₂ = EApp (pe1 m e env) (pe1 m e₁ env) term1 : AExp [] (ATInt D) term1 = AInt D 42 term2 : AExp [] (ATFun D (ATInt D) (ATInt D)) term2 = ALam D (wf-fun wf-int wf-int _ _) (AVar hd) -- Dλ y → let f = λ x → x D+ y in Dλ z → f z -- Dλ y → let f = λ x → (Dλ w → x D+ y) in Dλ z → f z -- Dλ y → (λ f → Dλ z → f z) (λ x → (Dλ w → x D+ y)) -- :: DInt D→ (DT D→ DInt) -- y : DInt, f : DInt → (DT D→ DInt) term3-0 : AExp (Ann D SInt ∷ Ann D SInt ∷ Ann D SInt ∷ []) (Ann D SInt) term3-0 = AAdd D (AVar (tl (tl hd))) (AVar (tl hd)) term3-1 : AExp (Ann D SInt ∷ Ann D SInt ∷ []) (Ann D (SFun (Ann D SInt) (Ann D SInt))) term3-1 = ALam D (wf-fun wf-int wf-int _ _) term3-0 term3-2 : AExp (Ann D SInt ∷ []) (Ann S (SFun (Ann D SInt) (Ann D (SFun (Ann D SInt) (Ann D SInt))))) term3-2 = ALam S (wf-fun wf-int (wf-fun wf-int wf-int _ _) _ _) term3-1 term3-3 : AExp (Ann D SInt ∷ Ann S (SFun (Ann D SInt) (Ann D (SFun (Ann D SInt) (Ann D SInt)))) ∷ Ann D SInt ∷ []) (Ann D (SFun (Ann D SInt) (Ann D SInt))) term3-3 = AApp S (wf-fun wf-int (wf-fun wf-int wf-int _ _) _ _) (AVar (tl hd)) (AVar hd) term3-4 : AExp (Ann S (SFun (Ann D SInt) (Ann D (SFun (Ann D SInt) (Ann D SInt)))) ∷ Ann D SInt ∷ []) (Ann D (SFun (Ann D SInt) (Ann D (SFun (Ann D SInt) (Ann D SInt))))) term3-4 = ALam D (wf-fun wf-int (wf-fun wf-int wf-int _ _) _ _) term3-3 term3-5 : AExp (Ann D SInt ∷ []) (Ann S (SFun (Ann S (SFun (Ann D SInt) (Ann D (SFun (Ann D SInt) (Ann D SInt))))) (Ann D (SFun (Ann D SInt) (Ann D (SFun (Ann D SInt) (Ann D SInt))))))) term3-5 = ALam S (wf-fun (wf-fun wf-int (wf-fun wf-int wf-int _ _) _ _) (wf-fun wf-int (wf-fun wf-int wf-int _ _) _ _) _ _) term3-4 term3-6 : AExp (Ann D SInt ∷ []) (Ann D (SFun (Ann D SInt) (Ann D (SFun (Ann D SInt) (Ann D SInt))))) term3-6 = AApp S (wf-fun (wf-fun wf-int (wf-fun wf-int wf-int _ _) _ _) (wf-fun wf-int (wf-fun wf-int wf-int _ _) _ _) _ _) term3-5 term3-2 term3 : AExp [] (Ann D (SFun (Ann D SInt) (Ann D (SFun (Ann D SInt) (Ann D (SFun (Ann D SInt) (Ann D SInt))))))) term3 = ALam D (wf-fun wf-int (wf-fun wf-int (wf-fun wf-int wf-int _ _) _ _) _ _) term3-6 -- conclusion: you want type inference ... ------------------------------------------------------------------------------- -- step 2 -- now let's do everything typed data Type : Set where Int : Type Fun : Type → Type → Type Ctx = List Type data _↝_ : Ctx → Ctx → Set where ↝-refl : ∀ {Γ} → Γ ↝ Γ ↝-extend : ∀ {Γ Γ' τ} → Γ ↝ Γ' → Γ ↝ (τ ∷ Γ') ↝-≤ : ∀ Γ Γ' → Γ ↝ Γ' → length Γ ≤ length Γ' ↝-≤ .Γ' Γ' ↝-refl = ≤-refl ↝-≤ Γ .(τ ∷ Γ') (↝-extend {.Γ} {Γ'} {τ} Γ↝Γ') = ≤-suc-right (↝-≤ Γ Γ' Γ↝Γ') ↝-no-left : ∀ Γ τ → ¬ (τ ∷ Γ) ↝ Γ ↝-no-left Γ τ p = 1+n≰n (↝-≤ (τ ∷ Γ) Γ p) ↝-trans : ∀ {Γ Γ' Γ''} → Γ ↝ Γ' → Γ' ↝ Γ'' → Γ ↝ Γ'' ↝-trans Γ↝Γ' ↝-refl = Γ↝Γ' ↝-trans Γ↝Γ' (↝-extend Γ'↝Γ'') = ↝-extend (↝-trans Γ↝Γ' Γ'↝Γ'') lem : ∀ x y xs xs' → (x ∷ xs) ↝ xs' → xs ↝ (y ∷ xs') lem x y xs .(x ∷ xs) ↝-refl = ↝-extend (↝-extend ↝-refl) lem x y xs .(x' ∷ xs') (↝-extend {.(x ∷ xs)} {xs'} {x'} p) = ↝-extend (lem x x' xs xs' p) data _↝_↝_ : Ctx → Ctx → Ctx → Set where ↝↝-base : ∀ {Γ Γ''} → Γ ↝ Γ'' → Γ ↝ [] ↝ Γ'' ↝↝-extend : ∀ {Γ Γ' Γ'' τ} → Γ ↝ Γ' ↝ Γ'' → (τ ∷ Γ) ↝ (τ ∷ Γ') ↝ (τ ∷ Γ'') -- Typed residula expressions data Exp'' (Γ : Ctx) : Type → Set where EVar : ∀ {τ} → τ ∈ Γ → Exp'' Γ τ EInt : ℕ → Exp'' Γ Int EAdd : Exp'' Γ Int → Exp'' Γ Int -> Exp'' Γ Int ELam : ∀ {τ τ'} → Exp'' (τ ∷ Γ) τ' → Exp'' Γ (Fun τ τ') EApp : ∀ {τ τ'} → Exp'' Γ (Fun τ τ') → Exp'' Γ τ → Exp'' Γ τ' -- erase annotations erase : AType → Type erase (Ann x SInt) = Int erase (Ann x (SFun x₁ x₂)) = Fun (erase x₁) (erase x₂) -- index Γ = nesting level of dynamic definitions / dynamic environment Imp'' : Ctx → AType → Set Imp'' Γ (Ann S SInt) = ℕ Imp'' Γ (Ann S (SFun α₁ α₂)) = ∀ Γ' → Γ ↝ Γ' → (Imp'' Γ' α₁ → Imp'' Γ' α₂) Imp'' Γ (Ann D σ) = Exp'' Γ (erase (Ann D σ)) -- index = nesting level of dynamic definitions data AEnv2 : Ctx → ACtx → Set where [] : AEnv2 [] [] consS : ∀ {Γ Δ Γ'} → Γ ↝ Γ' → (α : AType) → Imp'' Γ' α → AEnv2 Γ Δ → AEnv2 Γ' (α ∷ Δ) consD : ∀ {Γ Δ} → (α : AType) → isTrue (D ≼ btof α) → Imp'' (erase α ∷ Γ) α → AEnv2 Γ Δ → AEnv2 (erase α ∷ Γ) (α ∷ Δ) elevate-var : ∀ {Γ Γ' τ} → Γ ↝ Γ' → τ ∈ Γ → τ ∈ Γ' elevate-var ↝-refl x = x elevate-var (↝-extend Γ↝Γ') x = tl (elevate-var Γ↝Γ' x) elevate-var2 : ∀ {Γ Γ' Γ'' τ} → Γ ↝ Γ' ↝ Γ'' → τ ∈ Γ → τ ∈ Γ'' elevate-var2 (↝↝-base x) x₁ = elevate-var x x₁ elevate-var2 (↝↝-extend Γ↝Γ'↝Γ'') hd = hd elevate-var2 (↝↝-extend Γ↝Γ'↝Γ'') (tl x) = tl (elevate-var2 Γ↝Γ'↝Γ'' x) elevate : ∀ {Γ Γ' Γ'' τ} → Γ ↝ Γ' ↝ Γ'' → Exp'' Γ τ → Exp'' Γ'' τ elevate Γ↝Γ'↝Γ'' (EVar x) = EVar (elevate-var2 Γ↝Γ'↝Γ'' x) elevate Γ↝Γ'↝Γ'' (EInt x) = EInt x elevate Γ↝Γ'↝Γ'' (EAdd e e₁) = EAdd (elevate Γ↝Γ'↝Γ'' e) (elevate Γ↝Γ'↝Γ'' e₁) elevate Γ↝Γ'↝Γ'' (ELam e) = ELam (elevate (↝↝-extend Γ↝Γ'↝Γ'') e) elevate Γ↝Γ'↝Γ'' (EApp e e₁) = EApp (elevate Γ↝Γ'↝Γ'' e) (elevate Γ↝Γ'↝Γ'' e₁) lift2 : ∀ {Γ Γ'} α → Γ ↝ Γ' → Imp'' Γ α → Imp'' Γ' α lift2 (Ann S SInt) p v = v lift2 (Ann S (SFun x x₁)) Γ↝Γ' v = λ Γ'' Γ'↝Γ'' → v Γ'' (↝-trans Γ↝Γ' Γ'↝Γ'') lift2 (Ann D x₁) Γ↝Γ' v = elevate (↝↝-base Γ↝Γ') v lookup2 : ∀ {α Δ Γ Γ'} → Γ ↝ Γ' → AEnv2 Γ Δ → α ∈ Δ → Imp'' Γ' α lookup2 Γ↝Γ' (consS p α v env) hd = lift2 α Γ↝Γ' v lookup2 Γ↝Γ' (consS p α₁ v env) (tl x) = lookup2 (↝-trans p Γ↝Γ') env x lookup2 Γ↝Γ' (consD α D≼α v env) hd = lift2 α Γ↝Γ' v lookup2 ↝-refl (consD α₁ D≼α v env) (tl x) = lookup2 (↝-extend ↝-refl) env x lookup2 (↝-extend Γ↝Γ') (consD α₁ D≼α v env) (tl x) = lookup2 (lem (erase α₁) _ _ _ Γ↝Γ') env x pe2 : ∀ {α Δ} Γ → AExp Δ α → AEnv2 Γ Δ → Imp'' Γ α pe2 Γ (AVar x) env = lookup2 ↝-refl env x pe2 Γ (AInt S x) env = x pe2 Γ (AInt D x) env = EInt x pe2 Γ (AAdd S e₁ e₂) env = pe2 Γ e₁ env + pe2 Γ e₂ env pe2 Γ (AAdd D e₁ e₂) env = EAdd (pe2 Γ e₁ env) (pe2 Γ e₂ env) pe2 {Ann S (SFun α₂ α₁)} Γ (ALam .S w e) env = λ Γ' Γ↝Γ' → λ y → pe2 {α₁} Γ' e (consS Γ↝Γ' α₂ y env) pe2 Γ (ALam {α₂} {α₁} D (wf-fun w₁ w₂ d≤bt₁ d≤bt₂) e) env with lem-IsDynamic-by-wf α₁ d≤bt₁ | lem-IsDynamic-by-wf α₂ d≤bt₂ pe2 Γ (ALam {.(Ann D σ₂)} {.(Ann D σ₁)} D (wf-fun _ _ d≤bt₁ d≤bt₂) e) env | is-dyn σ₁ | is-dyn σ₂ = ELam (pe2 (erase (Ann D σ₁) ∷ Γ) e (consD (Ann D σ₁) d≤bt₁ (EVar hd) env)) pe2 Γ (AApp S w e₁ e₂) env = pe2 Γ e₁ env Γ ↝-refl (pe2 Γ e₂ env) pe2 Γ (AApp {α₂} {α₁} D (wf-fun w₁ w₂ d≤bt₁ d≤bt₂) e e₁) env with lem-IsDynamic-by-wf α₁ d≤bt₁ | lem-IsDynamic-by-wf α₂ d≤bt₂ pe2 Γ (AApp {.(Ann D σ₂)} {.(Ann D σ₁)} D (wf-fun w₁ w₂ d≤bt₁ d≤bt₂) e e₁) env | is-dyn σ₁ | is-dyn σ₂ = EApp (pe2 Γ e env) (pe2 Γ e₁ env) pe2-term1 = pe2 [] term1 [] pe2-term2 = pe2 [] term2 [] pe2-term3 = pe2 [] term3 []
{ "alphanum_fraction": 0.5639839034, "avg_line_length": 37.2983114447, "ext": "agda", "hexsha": "a5ba0a430d87cf4944f4af3fdcfc53109e506688", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-10-15T09:01:37.000Z", "max_forks_repo_forks_event_min_datetime": "2019-10-15T09:01:37.000Z", "max_forks_repo_head_hexsha": "ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "luminousfennell/polybta", "max_forks_repo_path": "BTA4.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "luminousfennell/polybta", "max_issues_repo_path": "BTA4.agda", "max_line_length": 139, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "luminousfennell/polybta", "max_stars_repo_path": "BTA4.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-15T04:35:29.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-15T04:35:29.000Z", "num_tokens": 9150, "size": 19880 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some defined operations (multiplication by natural number and -- exponentiation) ------------------------------------------------------------------------ open import Algebra module Algebra.Operations {s₁ s₂} (S : Semiring s₁ s₂) where open Semiring S renaming (zero to *-zero) open import Data.Nat using (zero; suc; ℕ) renaming (_+_ to _ℕ+_; _*_ to _ℕ*_) open import Data.Product using (module Σ) open import Function open import Relation.Binary open import Relation.Binary.PropositionalEquality as PropEq using (_≡_) import Relation.Binary.EqReasoning as EqR open EqR setoid ------------------------------------------------------------------------ -- Operations -- Multiplication by natural number. infixr 7 _×_ _×_ : ℕ → Carrier → Carrier 0 × x = 0# suc n × x = x + n × x -- A variant that includes a "redundant" case which ensures that 1 × y -- is definitionally equal to y. _×′_ : ℕ → Carrier → Carrier 0 ×′ x = 0# 1 ×′ x = x suc n ×′ x = x + n ×′ x -- Exponentiation. infixr 8 _^_ _^_ : Carrier → ℕ → Carrier x ^ zero = 1# x ^ suc n = x * x ^ n ------------------------------------------------------------------------ -- Some properties -- Unfolding lemma for _×′_. 1+×′ : ∀ n x → suc n ×′ x ≈ x + n ×′ x 1+×′ 0 x = begin x ≈⟨ sym $ Σ.proj₂ +-identity x ⟩ x + 0# ∎ 1+×′ (suc n) x = begin x + suc n ×′ x ≡⟨⟩ x + suc n ×′ x ∎ -- _×_ and _×′_ are extensionally equal (up to the setoid -- equivalence). ×≈×′ : ∀ n x → n × x ≈ n ×′ x ×≈×′ 0 x = begin 0# ∎ ×≈×′ (suc n) x = begin x + n × x ≈⟨ +-cong refl (×≈×′ n x) ⟩ x + n ×′ x ≈⟨ sym $ 1+×′ n x ⟩ suc n ×′ x ∎ -- _×_ is homomorphic with respect to _ℕ+_/_+_. ×-homo-+ : ∀ c m n → (m ℕ+ n) × c ≈ m × c + n × c ×-homo-+ c 0 n = begin n × c ≈⟨ sym $ Σ.proj₁ +-identity (n × c) ⟩ 0# + n × c ∎ ×-homo-+ c (suc m) n = begin c + (m ℕ+ n) × c ≈⟨ +-cong refl (×-homo-+ c m n) ⟩ c + (m × c + n × c) ≈⟨ sym $ +-assoc c (m × c) (n × c) ⟩ c + m × c + n × c ∎ -- _×′_ is homomorphic with respect to _ℕ+_/_+_. ×′-homo-+ : ∀ c m n → (m ℕ+ n) ×′ c ≈ m ×′ c + n ×′ c ×′-homo-+ c m n = begin (m ℕ+ n) ×′ c ≈⟨ sym $ ×≈×′ (m ℕ+ n) c ⟩ (m ℕ+ n) × c ≈⟨ ×-homo-+ c m n ⟩ m × c + n × c ≈⟨ +-cong (×≈×′ m c) (×≈×′ n c) ⟩ m ×′ c + n ×′ c ∎ -- _× 1# is homomorphic with respect to _ℕ*_/_*_. ×1-homo-* : ∀ m n → (m ℕ* n) × 1# ≈ (m × 1#) * (n × 1#) ×1-homo-* 0 n = begin 0# ≈⟨ sym $ Σ.proj₁ *-zero (n × 1#) ⟩ 0# * (n × 1#) ∎ ×1-homo-* (suc m) n = begin (n ℕ+ m ℕ* n) × 1# ≈⟨ ×-homo-+ 1# n (m ℕ* n) ⟩ n × 1# + (m ℕ* n) × 1# ≈⟨ +-cong refl (×1-homo-* m n) ⟩ n × 1# + (m × 1#) * (n × 1#) ≈⟨ sym $ +-cong (Σ.proj₁ *-identity (n × 1#)) refl ⟩ 1# * (n × 1#) + (m × 1#) * (n × 1#) ≈⟨ sym $ Σ.proj₂ distrib (n × 1#) 1# (m × 1#) ⟩ (1# + m × 1#) * (n × 1#) ∎ -- _×′ 1# is homomorphic with respect to _ℕ*_/_*_. ×′1-homo-* : ∀ m n → (m ℕ* n) ×′ 1# ≈ (m ×′ 1#) * (n ×′ 1#) ×′1-homo-* m n = begin (m ℕ* n) ×′ 1# ≈⟨ sym $ ×≈×′ (m ℕ* n) 1# ⟩ (m ℕ* n) × 1# ≈⟨ ×1-homo-* m n ⟩ (m × 1#) * (n × 1#) ≈⟨ *-cong (×≈×′ m 1#) (×≈×′ n 1#) ⟩ (m ×′ 1#) * (n ×′ 1#) ∎ -- _×_ preserves equality. ×-cong : _×_ Preserves₂ _≡_ ⟶ _≈_ ⟶ _≈_ ×-cong {n} {n′} {x} {x′} n≡n′ x≈x′ = begin n × x ≈⟨ reflexive $ PropEq.cong (λ n → n × x) n≡n′ ⟩ n′ × x ≈⟨ ×-congʳ n′ x≈x′ ⟩ n′ × x′ ∎ where ×-congʳ : ∀ n → (_×_ n) Preserves _≈_ ⟶ _≈_ ×-congʳ 0 x≈x′ = refl ×-congʳ (suc n) x≈x′ = x≈x′ ⟨ +-cong ⟩ ×-congʳ n x≈x′ -- _×′_ preserves equality. ×′-cong : _×′_ Preserves₂ _≡_ ⟶ _≈_ ⟶ _≈_ ×′-cong {n} {n′} {x} {x′} n≡n′ x≈x′ = begin n ×′ x ≈⟨ sym $ ×≈×′ n x ⟩ n × x ≈⟨ ×-cong n≡n′ x≈x′ ⟩ n′ × x′ ≈⟨ ×≈×′ n′ x′ ⟩ n′ ×′ x′ ∎ -- _^_ preserves equality. ^-cong : _^_ Preserves₂ _≈_ ⟶ _≡_ ⟶ _≈_ ^-cong {x} {x'} {n} {n'} x≈x' n≡n' = begin x ^ n ≈⟨ reflexive $ PropEq.cong (_^_ x) n≡n' ⟩ x ^ n' ≈⟨ ^-congˡ n' x≈x' ⟩ x' ^ n' ∎ where ^-congˡ : ∀ n → (λ x → x ^ n) Preserves _≈_ ⟶ _≈_ ^-congˡ zero x≈x' = refl ^-congˡ (suc n) x≈x' = x≈x' ⟨ *-cong ⟩ ^-congˡ n x≈x'
{ "alphanum_fraction": 0.4242137621, "avg_line_length": 28.9657534247, "ext": "agda", "hexsha": "4534d8a2650e7b48f8396ad93da0ffb28bb0af00", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Algebra/Operations.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Algebra/Operations.agda", "max_line_length": 91, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Algebra/Operations.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 2086, "size": 4229 }
module New.Types where open import Data.Integer public open import Data.Product public hiding (map) open import Data.Sum public hiding (map) infixr 5 _⇒_ data Type : Set where _⇒_ : (σ τ : Type) → Type int : Type pair : (σ τ : Type) → Type sum : (σ τ : Type) → Type ⟦_⟧Type : Type → Set ⟦ σ ⇒ τ ⟧Type = ⟦ σ ⟧Type → ⟦ τ ⟧Type ⟦ int ⟧Type = ℤ ⟦ pair σ τ ⟧Type = ⟦ σ ⟧Type × ⟦ τ ⟧Type ⟦ sum σ τ ⟧Type = ⟦ σ ⟧Type ⊎ ⟦ τ ⟧Type Δt : Type → Type Δt (σ ⇒ τ) = σ ⇒ Δt σ ⇒ Δt τ Δt int = int Δt (pair σ τ) = pair (Δt σ) (Δt τ) Δt (sum σ τ) = sum (sum (Δt σ) (Δt τ)) (sum σ τ)
{ "alphanum_fraction": 0.5736568458, "avg_line_length": 23.08, "ext": "agda", "hexsha": "f57c7d3561ecd60935fdae1e178ef208fc5e0424", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "New/Types.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "New/Types.agda", "max_line_length": 48, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "New/Types.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 266, "size": 577 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.RingSolver.CommRingAsAlmostRing where open import Cubical.Foundations.Prelude open import Cubical.Algebra.CommRing.Base open import Cubical.Algebra.RingSolver.AlmostRing open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.Group open import Cubical.Algebra.AbGroup open import Cubical.Algebra.Ring.Base open import Cubical.Algebra.Ring.Properties private variable ℓ : Level open Cubical.Algebra.Ring.Properties.Theory CommRingAsAlmostRing : CommRing {ℓ} → AlmostRing {ℓ} CommRingAsAlmostRing {ℓ} (R , commringstr _ _ _ _ _ (iscommring (isring (isabgroup (isgroup +-isMonoid inverse) +-comm) ·-isMonoid dist) ·-comm)) = let R' : CommRing {ℓ} R' = (R , commringstr _ _ _ _ _ (iscommring (isring (isabgroup (isgroup +-isMonoid inverse) +-comm) ·-isMonoid dist) ·-comm)) R″ = CommRing→Ring R' in almostring R _ _ _ _ _ (isalmostring +-isMonoid ·-isMonoid +-comm ·-comm (λ x y z → fst (dist x y z)) (λ x y z → snd (dist x y z)) (λ x y → sym (-DistL· R″ x y)) (λ x y → sym (-Dist R″ x y)) (λ x → 0LeftAnnihilates R″ x) λ x → 0RightAnnihilates R″ x)
{ "alphanum_fraction": 0.6156048676, "avg_line_length": 30.3695652174, "ext": "agda", "hexsha": "c52b84974801e4eae67c81248c6d9796c6b28e5d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Algebra/RingSolver/CommRingAsAlmostRing.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Algebra/RingSolver/CommRingAsAlmostRing.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Algebra/RingSolver/CommRingAsAlmostRing.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 423, "size": 1397 }
{-# OPTIONS --cubical --safe #-} module Yamanote where open import Data.Fin open import Data.List using (List; map) renaming (_∷_ to _L∷_; _++_ to _L++_; [] to L[]) open import Data.Maybe using (fromMaybe) open import Data.Nat open import Data.Product using (_×_; _,_; proj₁; proj₂) open import Function using (_∘_) open import Data.Vec using (Vec; []; _∷_; zip; toList) renaming (map to vmap) open import Relation.Binary.PropositionalEquality using (refl) open import Counterpoint open import Note open import Music open import MidiEvent open import Pitch open import Interval -- open import ScaleDegree open import Util -- Yamanoto melody transposed down an octave and with an additional d6 at the end. cantusFirmus : Vec Pitch 40 cantusFirmus = g 4 ∷ a 4 ∷ g 4 ∷ c 5 ∷ g 4 ∷ e 5 ∷ g 4 ∷ g 5 ∷ g 4 ∷ a 4 ∷ g 4 ∷ c 5 ∷ g 4 ∷ e 5 ∷ g 4 ∷ g 5 ∷ g 4 ∷ a 4 ∷ g 4 ∷ b 4 ∷ g 4 ∷ d 5 ∷ g 4 ∷ g 5 ∷ g 4 ∷ a 4 ∷ g 4 ∷ b 4 ∷ g 4 ∷ d 5 ∷ g 4 ∷ g 4 ∷ e 4 ∷ g 4 ∷ c 5 ∷ c 5 ∷ c 5 ∷ e 5 ∷ g 5 ∷ d 6 ∷ [] -- Counterpoint (composed on Aug 2, 2019) counterpoint : Vec Upi 40 counterpoint = maj6 ∷ min6 ∷ per8 ∷ maj3 ∷ per8 ∷ min3 ∷ maj6 ∷ maj6 ∷ maj6 ∷ min3 ∷ per5 ∷ maj3 ∷ maj6 ∷ min3 ∷ per8 ∷ maj3 ∷ maj10 ∷ per8 ∷ maj10 ∷ min6 ∷ per8 ∷ maj6 ∷ maj10 ∷ maj3 ∷ maj3 ∷ min3 ∷ per5 ∷ min6 ∷ maj6 ∷ min3 ∷ per8 ∷ maj6 ∷ min10 ∷ per8 ∷ maj10 ∷ per8 ∷ maj10 ∷ min10 ∷ per8 ∷ maj6 ∷ [] -- Counterpoint (composed on March 18, 2019) counterpoint0 : Vec Upi 40 counterpoint0 = maj6 ∷ min6 ∷ per8 ∷ maj3 ∷ per8 ∷ min3 ∷ maj6 ∷ maj6 ∷ maj6 ∷ min3 ∷ per5 ∷ maj3 ∷ maj6 ∷ min3 ∷ per8 ∷ maj3 ∷ maj10 ∷ per8 ∷ maj10 ∷ min6 ∷ per8 ∷ maj6 ∷ maj10 ∷ maj3 ∷ maj10 ∷ min6 ∷ per8 ∷ min3 ∷ per8 ∷ min3 ∷ per8 ∷ maj6 ∷ min10 ∷ per8 ∷ maj10 ∷ per8 ∷ maj10 ∷ min10 ∷ per8 ∷ maj6 ∷ [] yamanote-cfcp : Vec PitchInterval 40 yamanote-cfcp = zip cantusFirmus counterpoint fs : FirstSpecies fs = firstSpecies (g 5 , per8) (toList yamanote-cfcp) (c 6 , per8) refl refl refl refl yamanote counterp : List Note yamanote = tone 8th (g 5) L∷ map (tone 8th ∘ proj₁ ∘ pitchIntervalToPitchPair) (FirstSpecies.middleBars fs) L++ tone 8th (g 5) L∷ L[] counterp = tone 8th (g 6) L∷ map (tone 8th ∘ proj₂ ∘ pitchIntervalToPitchPair) (FirstSpecies.middleBars fs) L++ tone 8th (c 7) L∷ L[] ---- piano marimba : InstrumentNumber-1 piano = # 0 marimba = # 12 channel1 channel2 : Channel-1 channel1 = # 0 channel2 = # 1 tempo : ℕ tempo = 120 yVelocity cVelocity : Velocity yVelocity = # 60 cVelocity = # 30 yamanoteTrack : MidiTrack yamanoteTrack = track "Cantus Firmus" piano channel1 tempo (notes→events yVelocity yamanote) cpTrack : MidiTrack cpTrack = track "Counterpoint" marimba channel2 tempo (notes→events cVelocity counterp) ycpTracks : List MidiTrack ycpTracks = cpTrack L∷ yamanoteTrack L∷ L[]
{ "alphanum_fraction": 0.6520056298, "avg_line_length": 28.7070707071, "ext": "agda", "hexsha": "fc013d1c67b2987cf91ff322999f619ccb1617a4", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z", "max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/MusicTools", "max_forks_repo_path": "agda/Yamanote.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z", "max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/MusicTools", "max_issues_repo_path": "agda/Yamanote.agda", "max_line_length": 92, "max_stars_count": 28, "max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/MusicTools", "max_stars_repo_path": "agda/Yamanote.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z", "num_tokens": 1198, "size": 2842 }
module Examples.InfiniteBind where open import ActorMonad open import Prelude Box : InboxShape Box = [] binder : ∀ {i} → ∞ActorM i Box ⊤₁ [] (λ _ → []) binder .force = binder ∞>> binder
{ "alphanum_fraction": 0.6684210526, "avg_line_length": 15.8333333333, "ext": "agda", "hexsha": "53b32b23a1dc2bd56d50a91be0ba414b4d30fd51", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Zalastax/singly-typed-actors", "max_forks_repo_path": "src/Examples/InfiniteBind.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Zalastax/singly-typed-actors", "max_issues_repo_path": "src/Examples/InfiniteBind.agda", "max_line_length": 47, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Zalastax/thesis", "max_stars_repo_path": "src/Examples/InfiniteBind.agda", "max_stars_repo_stars_event_max_datetime": "2018-02-02T16:44:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-02-02T16:44:43.000Z", "num_tokens": 58, "size": 190 }
{-# OPTIONS --cubical #-} module Miscellaneous.LimNatural where import Lvl open import Numeral.Natural as ℕ using (ℕ) open import Numeral.Sign as Sign using (−|+ ; −|0|+ ; ➖ ; ➕) open import Type.Cubical open import Type.Cubical.Path.Equality open import Type data ℕ∞ : Type{Lvl.𝟎} where 𝟎 : ℕ∞ 𝐒 : ℕ∞ → ℕ∞ ∞ : ℕ∞ 𝐒-fixpoint : (𝐒(∞) ≡ ∞) 𝐏₀ : ℕ∞ → ℕ∞ 𝐏₀(𝟎) = 𝟎 𝐏₀(𝐒(n)) = n 𝐏₀(∞) = ∞ 𝐏₀(𝐒-fixpoint i) = ∞ _+_ : ℕ∞ → ℕ∞ → ℕ∞ x + 𝟎 = x x + 𝐒(y) = 𝐒(x + y) _ + ∞ = ∞ x + 𝐒-fixpoint i = 𝐒-fixpoint i _⋅_ : ℕ∞ → ℕ∞ → ℕ∞ x ⋅ 𝟎 = 𝟎 x ⋅ 𝐒(y) = x + (x ⋅ y) x ⋅ ∞ = ∞ x ⋅ 𝐒-fixpoint i = ∞ infixl 10010 _+_ infixl 10020 _⋅_ open import Structure.Function.Domain open import Structure.Function open import Structure.Relator.Properties open import Syntax.Transitivity open import Type.Cubical.Path.Proofs private variable x y z : ℕ∞ 𝐒-∞-involutive : (𝐒(𝐒(∞)) ≡ ∞) 𝐒-∞-involutive = congruence₁(𝐒) 𝐒-fixpoint 🝖 𝐒-fixpoint instance 𝐒-injectivity : Injective(𝐒) Injective.proof 𝐒-injectivity = congruence₁(𝐏₀) [+]-baseₗ : (𝟎 + x ≡ x) [+]-baseₗ {𝟎} = reflexivity(_≡_) [+]-baseₗ {𝐒 x} = congruence₁(𝐒) ([+]-baseₗ {x}) [+]-baseₗ {∞} = reflexivity(_≡_) [+]-baseₗ {𝐒-fixpoint i} = reflexivity(_≡_) {𝐒-fixpoint i} [+]-stepₗ : (𝐒(x) + y ≡ 𝐒(x + y)) [+]-stepₗ {x} {𝟎} = reflexivity(_≡_) [+]-stepₗ {x} {𝐒 y} = congruence₁(𝐒) ([+]-stepₗ {x}{y}) [+]-stepₗ {x} {∞} = symmetry(_≡_) 𝐒-fixpoint [+]-stepₗ {x} {𝐒-fixpoint i} = symmetry(_≡_) (Interval.hComp diagram {!!}) where diagram : Interval → Interval.Partial(Interval.farBound i) _ diagram _ (i = Interval.𝟎) = congruence₁(𝐒) 𝐒-fixpoint diagram _ (i = Interval.𝟏) = 𝐒-fixpoint {- i0 j0 𝐒∞ i0 j1 𝐒𝐒∞ i1 j0 ∞ i1 j1 𝐒∞ -} -- test : ∀{i} → (𝐒(𝐒-fixpoint i) ≡ 𝐒-fixpoint i) -- test {i} j = {!!} {- i0 j0 𝐒𝐒∞ i0 j1 𝐒∞ i1 j0 𝐒∞ i1 j1 ∞ -}
{ "alphanum_fraction": 0.5772357724, "avg_line_length": 22.5, "ext": "agda", "hexsha": "befb7040b2e19936786506ddf302670737d0af99", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Miscellaneous/LimNatural.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Miscellaneous/LimNatural.agda", "max_line_length": 80, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Miscellaneous/LimNatural.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 976, "size": 1845 }
{-# OPTIONS --cubical #-} open import Agda.Primitive.Cubical open import Agda.Builtin.Cubical.Path open import Agda.Builtin.Cubical.Id reflPath : ∀ {ℓ} {A : Set ℓ} {x : A} → x ≡ x reflPath {x = x} = λ i → x reflId : ∀ {ℓ} {A : Set ℓ} {x : A} → Id x x reflId {x = x} = conid i1 reflPath Id-comp-Id : ∀ {ℓ ℓ'} {A : Set ℓ} {x : A} (P : ∀ y → Id x y → Set ℓ') → (b : P x reflId) → Id (primIdJ P b reflId) b Id-comp-Id P b = reflId Id-comp-Path : ∀ {ℓ ℓ'} {A : Set ℓ} {x : A} (P : ∀ y → Id x y → Set ℓ') → (b : P x reflId) → (primIdJ P b reflId) ≡ b Id-comp-Path P b = λ i → b
{ "alphanum_fraction": 0.5274542429, "avg_line_length": 30.05, "ext": "agda", "hexsha": "536d5371788803ef142ce61158ea4f5f2e82f106", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2846.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2846.agda", "max_line_length": 71, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2846.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 267, "size": 601 }
module Issue246 where module James where data Nat : Set where zero : Nat suc : Nat -> Nat data Zero : Set where data One : Set where void : One propLEQ : Nat -> Nat -> Set propLEQ zero _ = One propLEQ (suc n) (suc m) = propLEQ n m propLEQ (suc n) zero = Zero data Fin : Nat -> Set where fzero : {n : Nat} -> Fin (suc n) fsuc : {n : Nat} -> Fin n -> Fin (suc n) toFin : {n : Nat} -> (i : Nat) -> (propLEQ (suc i) n) -> Fin n toFin {zero} zero () toFin {zero} (suc _) () toFin {suc n} zero k = fzero toFin {suc n} (suc i) k = fsuc (toFin i k) one : Nat one = suc zero two : Nat two = suc one three : Nat three = suc two null : Fin three null = toFin zero void module Conor where data Nat : Set where ze : Nat su : Nat -> Nat data Bool : Set where tt ff : Bool record One : Set where data Zero : Set where So : Bool -> Set So tt = One So ff = Zero _<_ : Nat -> Nat -> Bool _ < ze = ff ze < su n = tt su m < su n = m < n data Lt (m n : Nat) : Set where lt : So (m < n) -> Lt m n boo : {m n : Nat} -> So (m < n) -> Lt (su m) (su n) boo p = lt p module Alan where data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} {-# BUILTIN ZERO zero #-} {-# BUILTIN SUC suc #-} data Bool : Set where true false : Bool infixr 5 _∷_ _lt_ : ℕ → ℕ → Bool _ lt zero = false zero lt suc _ = true suc x lt suc y = x lt y data List<? (X : ℕ → Set) (n : ℕ) : Bool → Set where [] : List<? X n true _∷_ : {m : ℕ} → (x : X m) → (List<? X m true) → (List<? X n (m lt n)) List< : (ℕ → Set) → ℕ → Set List< X n = List<? X n true data A : ℕ → Set where a1 : A 1 a2 : A 2 as : List< A 3 as = a2 ∷ a1 ∷ ([] {A}) as' : List< A 3 as' = a2 ∷ a1 ∷ []
{ "alphanum_fraction": 0.5026910657, "avg_line_length": 17.8653846154, "ext": "agda", "hexsha": "a2b82f4e36a1bf31cbedcd99b1527e6a31a69ba6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/succeed/Issue246.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/succeed/Issue246.agda", "max_line_length": 73, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue246.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 736, "size": 1858 }
{-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Data.Conat.PropertiesI where open import FOTC.Base open import FOTC.Data.Conat open import FOTC.Data.Conat.PropertiesI open import FOTC.Data.Nat ------------------------------------------------------------------------------ -- 25 April 2014, Failed with --without-K. -- {-# TERMINATING #-} Conat→N : ∀ {n} → Conat n → N n Conat→N Cn with Conat-out Cn ... | inj₁ prf = subst N (sym prf) nzero ... | inj₂ (n' , refl , Cn') = nsucc (Conat→N Cn')
{ "alphanum_fraction": 0.5231481481, "avg_line_length": 30.8571428571, "ext": "agda", "hexsha": "7569dc376ba03d7d446ffb8a8812cfa9ec5ecb50", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Data/Conat/PropertiesI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Data/Conat/PropertiesI.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Data/Conat/PropertiesI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 174, "size": 648 }
{-# OPTIONS --warning=ignore #-} module Issue2596 where {-# REWRITE #-}
{ "alphanum_fraction": 0.6438356164, "avg_line_length": 14.6, "ext": "agda", "hexsha": "d250d137430b4e25f22839499d192cdfe74076c2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2596.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2596.agda", "max_line_length": 32, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2596.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 17, "size": 73 }
module Pi-.NoRepeat where open import Data.Empty open import Data.Unit open import Data.Sum open import Data.Product open import Relation.Binary.Core open import Relation.Binary open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Data.Nat open import Data.Nat.Properties open import Data.List as L open import Function using (_∘_) open import Pi-.Syntax open import Pi-.Opsem open import Pi-.AuxLemmas import RevNoRepeat -- Forward deterministic deterministic : ∀ {st st₁ st₂} → st ↦ st₁ → st ↦ st₂ → st₁ ≡ st₂ deterministic (↦⃗₁ {b = b₁}) (↦⃗₁ {b = b₂}) with base-is-prop _ b₁ b₂ ... | refl = refl deterministic ↦⃗₂ ↦⃗₂ = refl deterministic ↦⃗₃ ↦⃗₃ = refl deterministic ↦⃗₄ ↦⃗₄ = refl deterministic ↦⃗₅ ↦⃗₅ = refl deterministic ↦⃗₆ ↦⃗₆ = refl deterministic ↦⃗₇ ↦⃗₇ = refl deterministic ↦⃗₈ ↦⃗₈ = refl deterministic ↦⃗₉ ↦⃗₉ = refl deterministic ↦⃗₁₀ ↦⃗₁₀ = refl deterministic ↦⃗₁₁ ↦⃗₁₁ = refl deterministic ↦⃗₁₂ ↦⃗₁₂ = refl deterministic {[ c ∣ _ ∣ κ ]◁} {⟨ _ ∣ v ∣ _ ⟩◁} {[ _ ∣ _ ∣ _ ]▷} ↦⃖₁ r with Lemma₅ r ... | refl , refl with Lemma₆ r ... | refl , refl with Lemma₇ r ... | refl with v ... | () deterministic {[ c ∣ _ ∣ _ ]◁} {⟨ _ ∣ v ∣ _ ⟩◁} {⟨ _ ∣ v' ∣ _ ⟩◁} ↦⃖₁ r with Lemma₁ r ... | refl , refl with Lemma₂ r deterministic {[ unite₊l ∣ _ ∣ κ ]◁} {⟨ _ ∣ inj₂ y ∣ κ ⟩◁} {⟨ _ ∣ inj₂ y ∣ κ ⟩◁} ↦⃖₁ ↦⃖₁ | refl , refl | refl , refl = refl deterministic {[ uniti₊l ∣ _ ∣ κ ]◁} {⟨ _ ∣ v ∣ κ ⟩◁} {⟨ _ ∣ v ∣ κ ⟩◁} ↦⃖₁ ↦⃖₁ | refl , refl | refl , refl = refl deterministic {[ swap₊ ∣ _ ∣ κ ]◁} {⟨ _ ∣ inj₁ x ∣ κ ⟩◁} {⟨ _ ∣ inj₁ x ∣ κ ⟩◁} ↦⃖₁ ↦⃖₁ | refl , refl | refl , refl = refl deterministic {[ swap₊ ∣ _ ∣ κ ]◁} {⟨ _ ∣ inj₂ y ∣ κ ⟩◁} {⟨ _ ∣ inj₂ y ∣ κ ⟩◁} ↦⃖₁ ↦⃖₁ | refl , refl | refl , refl = refl deterministic {[ assocl₊ ∣ _ ∣ κ ]◁} {⟨ _ ∣ inj₁ x ∣ κ ⟩◁} {⟨ _ ∣ inj₁ x ∣ κ ⟩◁} ↦⃖₁ ↦⃖₁ | refl , refl | refl , refl = refl deterministic {[ assocl₊ ∣ _ ∣ κ ]◁} {⟨ _ ∣ inj₁ x ∣ κ ⟩◁} {⟨ _ ∣ inj₂ (inj₁ y) ∣ κ ⟩◁} ↦⃖₁ (() ) | refl , refl | refl , refl deterministic {[ assocl₊ ∣ _ ∣ κ ]◁} {⟨ _ ∣ inj₁ x ∣ κ ⟩◁} {⟨ _ ∣ inj₂ (inj₂ z) ∣ κ ⟩◁} ↦⃖₁ (() ) | refl , refl | refl , refl deterministic {[ assocl₊ ∣ _ ∣ κ ]◁} {⟨ _ ∣ inj₂ (inj₁ y) ∣ κ ⟩◁} {⟨ _ ∣ inj₂ (inj₁ y) ∣ κ ⟩◁} ↦⃖₁ ↦⃖₁ | refl , refl | refl , refl = refl deterministic {[ assocl₊ ∣ _ ∣ κ ]◁} {⟨ _ ∣ inj₂ (inj₂ z) ∣ κ ⟩◁} {⟨ _ ∣ inj₂ (inj₂ z) ∣ κ ⟩◁} ↦⃖₁ ↦⃖₁ | refl , refl | refl , refl = refl deterministic {[ assocr₊ ∣ _ ∣ κ ]◁} {⟨ _ ∣ inj₁ (inj₁ x) ∣ κ ⟩◁} {⟨ _ ∣ inj₁ (inj₁ x) ∣ κ ⟩◁} ↦⃖₁ ↦⃖₁ | refl , refl | refl , refl = refl deterministic {[ assocr₊ ∣ _ ∣ κ ]◁} {⟨ _ ∣ inj₁ (inj₂ y) ∣ κ ⟩◁} {⟨ _ ∣ inj₁ (inj₂ y) ∣ κ ⟩◁} ↦⃖₁ ↦⃖₁ | refl , refl | refl , refl = refl deterministic {[ assocr₊ ∣ _ ∣ κ ]◁} {⟨ _ ∣ inj₂ z ∣ κ ⟩◁} {⟨ _ ∣ inj₁ (inj₁ x) ∣ κ ⟩◁} ↦⃖₁ (() ) | refl , refl | refl , refl deterministic {[ assocr₊ ∣ _ ∣ κ ]◁} {⟨ _ ∣ inj₂ z ∣ κ ⟩◁} {⟨ _ ∣ inj₁ (inj₂ y) ∣ κ ⟩◁} ↦⃖₁ (() ) | refl , refl | refl , refl deterministic {[ assocr₊ ∣ _ ∣ κ ]◁} {⟨ _ ∣ inj₂ z ∣ κ ⟩◁} {⟨ _ ∣ inj₂ z ∣ κ ⟩◁} ↦⃖₁ ↦⃖₁ | refl , refl | refl , refl = refl deterministic {[ unite⋆l ∣ _ ∣ κ ]◁} {⟨ _ ∣ (tt , v) ∣ κ ⟩◁} {⟨ _ ∣ (tt , v) ∣ κ ⟩◁} ↦⃖₁ ↦⃖₁ | refl , refl | refl , refl = refl deterministic {[ uniti⋆l ∣ _ ∣ κ ]◁} {⟨ _ ∣ v ∣ κ ⟩◁} {⟨ _ ∣ v ∣ κ ⟩◁} ↦⃖₁ ↦⃖₁ | refl , refl | refl , refl = refl deterministic {[ swap⋆ ∣ _ ∣ κ ]◁} {⟨ _ ∣ (x , y) ∣ κ ⟩◁} {⟨ _ ∣ (x , y) ∣ κ ⟩◁} ↦⃖₁ ↦⃖₁ | refl , refl | refl , refl = refl deterministic {[ assocl⋆ ∣ _ ∣ κ ]◁} {⟨ _ ∣ (x , (y , z)) ∣ κ ⟩◁} {⟨ _ ∣ (x , (y , z)) ∣ κ ⟩◁} ↦⃖₁ ↦⃖₁ | refl , refl | refl , refl = refl deterministic {[ assocr⋆ ∣ _ ∣ κ ]◁} {⟨ _ ∣ ((x , y) , z) ∣ κ ⟩◁} {⟨ _ ∣ ((x , y) , z) ∣ κ ⟩◁} ↦⃖₁ ↦⃖₁ | refl , refl | refl , refl = refl deterministic {[ dist ∣ _ ∣ κ ]◁} {⟨ _ ∣ (inj₁ x , z) ∣ κ ⟩◁} {⟨ _ ∣ (inj₁ x , z) ∣ κ ⟩◁} ↦⃖₁ ↦⃖₁ | refl , refl | refl , refl = refl deterministic {[ dist ∣ _ ∣ κ ]◁} {⟨ _ ∣ (inj₂ y , z) ∣ κ ⟩◁} {⟨ _ ∣ (inj₂ y , z) ∣ κ ⟩◁} ↦⃖₁ ↦⃖₁ | refl , refl | refl , refl = refl deterministic {[ factor ∣ _ ∣ κ ]◁} {⟨ _ ∣ inj₁ (x , z) ∣ κ ⟩◁} {⟨ _ ∣ inj₁ (x , z) ∣ κ ⟩◁} ↦⃖₁ ↦⃖₁ | refl , refl | refl , refl = refl deterministic {[ factor ∣ _ ∣ κ ]◁} {⟨ _ ∣ inj₂ (y , z) ∣ κ ⟩◁} {⟨ _ ∣ inj₂ (y , z) ∣ κ ⟩◁} ↦⃖₁ ↦⃖₁ | refl , refl | refl , refl = refl deterministic {[ unite₊l ∣ _ ∣ _ ]◁} {⟨ _ ∣ _ ∣ _ ⟩◁} {[ _ ∣ _ ∣ _ ]◁} ↦⃖₁ () deterministic {[ uniti₊l ∣ _ ∣ _ ]◁} {⟨ _ ∣ _ ∣ _ ⟩◁} {[ _ ∣ _ ∣ _ ]◁} ↦⃖₁ () deterministic {[ swap₊ ∣ _ ∣ _ ]◁} {⟨ _ ∣ _ ∣ _ ⟩◁} {[ _ ∣ _ ∣ _ ]◁} ↦⃖₁ () deterministic {[ assocl₊ ∣ _ ∣ _ ]◁} {⟨ _ ∣ _ ∣ _ ⟩◁} {[ _ ∣ _ ∣ _ ]◁} ↦⃖₁ () deterministic {[ assocr₊ ∣ _ ∣ _ ]◁} {⟨ _ ∣ _ ∣ _ ⟩◁} {[ _ ∣ _ ∣ _ ]◁} ↦⃖₁ () deterministic {[ unite⋆l ∣ _ ∣ _ ]◁} {⟨ _ ∣ _ ∣ _ ⟩◁} {[ _ ∣ _ ∣ _ ]◁} ↦⃖₁ () deterministic {[ uniti⋆l ∣ _ ∣ _ ]◁} {⟨ _ ∣ _ ∣ _ ⟩◁} {[ _ ∣ _ ∣ _ ]◁} ↦⃖₁ () deterministic {[ swap⋆ ∣ _ ∣ _ ]◁} {⟨ _ ∣ _ ∣ _ ⟩◁} {[ _ ∣ _ ∣ _ ]◁} ↦⃖₁ () deterministic {[ assocl⋆ ∣ _ ∣ _ ]◁} {⟨ _ ∣ _ ∣ _ ⟩◁} {[ _ ∣ _ ∣ _ ]◁} ↦⃖₁ () deterministic {[ assocr⋆ ∣ _ ∣ _ ]◁} {⟨ _ ∣ _ ∣ _ ⟩◁} {[ _ ∣ _ ∣ _ ]◁} ↦⃖₁ () deterministic {[ dist ∣ _ ∣ _ ]◁} {⟨ _ ∣ _ ∣ _ ⟩◁} {[ _ ∣ _ ∣ _ ]◁} ↦⃖₁ () deterministic {[ factor ∣ _ ∣ _ ]◁} {⟨ _ ∣ _ ∣ _ ⟩◁} {[ _ ∣ _ ∣ _ ]◁} ↦⃖₁ () deterministic {[ id↔ ∣ _ ∣ _ ]◁} {⟨ _ ∣ _ ∣ _ ⟩◁} {[ _ ∣ _ ∣ _ ]◁} (↦⃖₁ {b = ()}) deterministic {[ _ ⨾ _ ∣ _ ∣ _ ]◁} {⟨ _ ∣ _ ∣ _ ⟩◁} {[ _ ∣ _ ∣ _ ]◁} (↦⃖₁ {b = ()}) deterministic {[ _ ⊕ _ ∣ _ ∣ _ ]◁} {⟨ _ ∣ _ ∣ _ ⟩◁} {[ _ ∣ _ ∣ _ ]◁} (↦⃖₁ {b = ()}) deterministic {[ _ ⊗ _ ∣ _ ∣ _ ]◁} {⟨ _ ∣ _ ∣ _ ⟩◁} {[ _ ∣ _ ∣ _ ]◁} (↦⃖₁ {b = ()}) deterministic {[ η₊ ∣ _ ∣ _ ]◁} {⟨ _ ∣ _ ∣ _ ⟩◁} {[ _ ∣ _ ∣ _ ]◁} (↦⃖₁ {b = ()}) deterministic {[ ε₊ ∣ _ ∣ _ ]◁} {⟨ _ ∣ _ ∣ _ ⟩◁} {[ _ ∣ _ ∣ _ ]◁} (↦⃖₁ {b = ()}) deterministic ↦⃖₂ ↦⃖₂ = refl deterministic ↦⃖₃ ↦⃖₃ = refl deterministic ↦⃖₄ ↦⃖₄ = refl deterministic ↦⃖₅ ↦⃖₅ = refl deterministic ↦⃖₆ ↦⃖₆ = refl deterministic ↦⃖₇ ↦⃖₇ = refl deterministic ↦⃖₈ ↦⃖₈ = refl deterministic ↦⃖₉ ↦⃖₉ = refl deterministic ↦⃖₁₀ ↦⃖₁₀ = refl deterministic {[ c₁ ⊕ c₂ ∣ inj₁ v ∣ κ ]◁} {[ c₁ ∣ v ∣ ☐⊕ c₂ • κ ]◁} {⟨ _ ∣ x ∣ _ ⟩◁} ↦⃖₁₁ r with Lemma₁ r ... | refl , refl with Lemma₂ r ... | refl , refl with Lemma₃ r ... | inj₂ refl with Lemma₄ r ... | inj₁ () ... | inj₂ () deterministic {[ c₁ ⊕ c₂ ∣ _ ∣ _ ]◁} {[ _ ∣ _ ∣ _ ]◁} {[ _ ∣ _ ∣ _ ]◁} ↦⃖₁₁ ↦⃖₁₁ = refl deterministic {[ c₁ ⊕ c₂ ∣ inj₂ v ∣ _ ]◁} {[ _ ∣ _ ∣ _ ]◁} {⟨ _ ∣ x ∣ _ ⟩◁} ↦⃖₁₂ r with Lemma₁ r ... | refl , refl with Lemma₂ r ... | refl , refl with Lemma₃ r ... | inj₂ refl with Lemma₄ r ... | inj₁ () ... | inj₂ () deterministic {[ c₁ ⊕ c₂ ∣ _ ∣ _ ]◁} {[ _ ∣ _ ∣ _ ]◁} {[ _ ∣ _ ∣ _ ]◁} ↦⃖₁₂ ↦⃖₁₂ = refl deterministic {[ η₊ ∣ inj₁ v ∣ _ ]◁} {[ η₊ ∣ _ ∣ _ ]▷} {[ _ ∣ _ ∣ _ ]▷} ↦η₁ ↦η₁ = refl deterministic {[ η₊ ∣ inj₁ v ∣ _ ]◁} {[ η₊ ∣ _ ∣ _ ]▷} {⟨ η₊ ∣ v' ∣ _ ⟩◁} ↦η₁ r with Lemma₁ r ... | refl , refl with Lemma₂ r ... | refl , refl with v' ... | () deterministic {[ η₊ ∣ inj₂ (- v) ∣ _ ]◁} {[ η₊ ∣ _ ∣ _ ]▷} {[ _ ∣ _ ∣ _ ]▷} ↦η₂ ↦η₂ = refl deterministic {[ η₊ ∣ inj₂ (- v) ∣ _ ]◁} {[ η₊ ∣ _ ∣ _ ]▷} {⟨ η₊ ∣ v' ∣ _ ⟩◁} ↦η₂ r with Lemma₁ r ... | refl , refl with Lemma₂ r ... | refl , refl with v' ... | () deterministic ↦ε₁ ↦ε₁ = refl deterministic ↦ε₂ ↦ε₂ = refl -- Backward deterministic deterministicᵣₑᵥ : ∀ {st st₁ st₂} → st₁ ↦ st → st₂ ↦ st → st₁ ≡ st₂ deterministicᵣₑᵥ {[ c ∣ _ ∣ κ ]▷} {⟨ c ∣ v ∣ κ ⟩▷} {⟨ c' ∣ v' ∣ κ' ⟩▷} ↦⃗₁ r with Lemma₈ r ... | refl , refl with Lemma₉ r deterministicᵣₑᵥ {[ unite₊l ∣ _ ∣ κ ]▷} {⟨ _ ∣ inj₂ y ∣ κ ⟩▷} {⟨ _ ∣ inj₂ y ∣ κ ⟩▷} ↦⃗₁ ↦⃗₁ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ uniti₊l ∣ _ ∣ κ ]▷} {⟨ _ ∣ v ∣ κ ⟩▷} {⟨ _ ∣ v ∣ κ ⟩▷} ↦⃗₁ ↦⃗₁ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ swap₊ ∣ _ ∣ κ ]▷} {⟨ _ ∣ inj₁ x ∣ κ ⟩▷} {⟨ _ ∣ inj₁ x ∣ κ ⟩▷} ↦⃗₁ ↦⃗₁ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ swap₊ ∣ _ ∣ κ ]▷} {⟨ _ ∣ inj₂ y ∣ κ ⟩▷} {⟨ _ ∣ inj₂ y ∣ κ ⟩▷} ↦⃗₁ ↦⃗₁ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ assocl₊ ∣ _ ∣ κ ]▷} {⟨ _ ∣ inj₁ x ∣ κ ⟩▷} {⟨ _ ∣ inj₁ x ∣ κ ⟩▷} ↦⃗₁ ↦⃗₁ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ assocl₊ ∣ _ ∣ κ ]▷} {⟨ _ ∣ inj₁ x ∣ κ ⟩▷} {⟨ _ ∣ inj₂ (inj₁ y) ∣ κ ⟩▷} ↦⃗₁ () | refl , refl | refl , refl deterministicᵣₑᵥ {[ assocl₊ ∣ _ ∣ κ ]▷} {⟨ _ ∣ inj₁ x ∣ κ ⟩▷} {⟨ _ ∣ inj₂ (inj₂ z) ∣ κ ⟩▷} ↦⃗₁ () | refl , refl | refl , refl deterministicᵣₑᵥ {[ assocl₊ ∣ _ ∣ κ ]▷} {⟨ _ ∣ inj₂ (inj₁ y) ∣ κ ⟩▷} {⟨ _ ∣ inj₂ (inj₁ y) ∣ κ ⟩▷} ↦⃗₁ ↦⃗₁ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ assocl₊ ∣ _ ∣ κ ]▷} {⟨ _ ∣ inj₂ (inj₂ z) ∣ κ ⟩▷} {⟨ _ ∣ inj₂ (inj₂ z) ∣ κ ⟩▷} ↦⃗₁ ↦⃗₁ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ assocr₊ ∣ _ ∣ κ ]▷} {⟨ _ ∣ inj₁ (inj₁ x) ∣ κ ⟩▷} {⟨ _ ∣ inj₁ (inj₁ x) ∣ κ ⟩▷} ↦⃗₁ ↦⃗₁ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ assocr₊ ∣ _ ∣ κ ]▷} {⟨ _ ∣ inj₁ (inj₂ y) ∣ κ ⟩▷} {⟨ _ ∣ inj₁ (inj₂ y) ∣ κ ⟩▷} ↦⃗₁ ↦⃗₁ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ assocr₊ ∣ _ ∣ κ ]▷} {⟨ _ ∣ inj₂ z ∣ κ ⟩▷} {⟨ _ ∣ inj₁ (inj₁ x) ∣ κ ⟩▷} ↦⃗₁ () | refl , refl | refl , refl deterministicᵣₑᵥ {[ assocr₊ ∣ _ ∣ κ ]▷} {⟨ _ ∣ inj₂ z ∣ κ ⟩▷} {⟨ _ ∣ inj₁ (inj₂ y) ∣ κ ⟩▷} ↦⃗₁ () | refl , refl | refl , refl deterministicᵣₑᵥ {[ assocr₊ ∣ _ ∣ κ ]▷} {⟨ _ ∣ inj₂ z ∣ κ ⟩▷} {⟨ _ ∣ inj₂ z ∣ κ ⟩▷} ↦⃗₁ ↦⃗₁ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ unite⋆l ∣ _ ∣ κ ]▷} {⟨ _ ∣ (tt , v) ∣ κ ⟩▷} {⟨ _ ∣ (tt , v) ∣ κ ⟩▷} ↦⃗₁ ↦⃗₁ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ uniti⋆l ∣ _ ∣ κ ]▷} {⟨ _ ∣ v ∣ κ ⟩▷} {⟨ _ ∣ v ∣ κ ⟩▷} ↦⃗₁ ↦⃗₁ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ swap⋆ ∣ _ ∣ κ ]▷} {⟨ _ ∣ (x , y) ∣ κ ⟩▷} {⟨ _ ∣ (x , y) ∣ κ ⟩▷} ↦⃗₁ ↦⃗₁ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ assocl⋆ ∣ _ ∣ κ ]▷} {⟨ _ ∣ (x , (y , z)) ∣ κ ⟩▷} {⟨ _ ∣ (x , (y , z)) ∣ κ ⟩▷} ↦⃗₁ ↦⃗₁ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ assocr⋆ ∣ _ ∣ κ ]▷} {⟨ _ ∣ ((x , y) , z) ∣ κ ⟩▷} {⟨ _ ∣ ((x , y) , z) ∣ κ ⟩▷} ↦⃗₁ ↦⃗₁ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ dist ∣ _ ∣ κ ]▷} {⟨ _ ∣ (inj₁ x , z) ∣ κ ⟩▷} {⟨ _ ∣ (inj₁ x , z) ∣ κ ⟩▷} ↦⃗₁ ↦⃗₁ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ dist ∣ _ ∣ κ ]▷} {⟨ _ ∣ (inj₂ y , z) ∣ κ ⟩▷} {⟨ _ ∣ (inj₂ y , z) ∣ κ ⟩▷} ↦⃗₁ ↦⃗₁ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ factor ∣ _ ∣ κ ]▷} {⟨ _ ∣ inj₁ (x , z) ∣ κ ⟩▷} {⟨ _ ∣ inj₁ (x , z) ∣ κ ⟩▷} ↦⃗₁ ↦⃗₁ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ factor ∣ _ ∣ κ ]▷} {⟨ _ ∣ inj₂ (y , z) ∣ κ ⟩▷} {⟨ _ ∣ inj₂ (y , z) ∣ κ ⟩▷} ↦⃗₁ ↦⃗₁ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ unite₊l ∣ _ ∣ κ ]▷} {⟨ _ ∣ v ∣ κ ⟩▷} {[ c' ∣ v' ∣ κ' ]▷} ↦⃗₁ () deterministicᵣₑᵥ {[ uniti₊l ∣ _ ∣ κ ]▷} {⟨ _ ∣ v ∣ κ ⟩▷} {[ c' ∣ v' ∣ κ' ]▷} ↦⃗₁ () deterministicᵣₑᵥ {[ swap₊ ∣ _ ∣ κ ]▷} {⟨ _ ∣ v ∣ κ ⟩▷} {[ c' ∣ v' ∣ κ' ]▷} ↦⃗₁ () deterministicᵣₑᵥ {[ assocl₊ ∣ _ ∣ κ ]▷} {⟨ _ ∣ v ∣ κ ⟩▷} {[ c' ∣ v' ∣ κ' ]▷} ↦⃗₁ () deterministicᵣₑᵥ {[ assocr₊ ∣ _ ∣ κ ]▷} {⟨ _ ∣ v ∣ κ ⟩▷} {[ c' ∣ v' ∣ κ' ]▷} ↦⃗₁ () deterministicᵣₑᵥ {[ unite⋆l ∣ _ ∣ κ ]▷} {⟨ _ ∣ v ∣ κ ⟩▷} {[ c' ∣ v' ∣ κ' ]▷} ↦⃗₁ () deterministicᵣₑᵥ {[ uniti⋆l ∣ _ ∣ κ ]▷} {⟨ _ ∣ v ∣ κ ⟩▷} {[ c' ∣ v' ∣ κ' ]▷} ↦⃗₁ () deterministicᵣₑᵥ {[ swap⋆ ∣ _ ∣ κ ]▷} {⟨ _ ∣ v ∣ κ ⟩▷} {[ c' ∣ v' ∣ κ' ]▷} ↦⃗₁ () deterministicᵣₑᵥ {[ assocl⋆ ∣ _ ∣ κ ]▷} {⟨ _ ∣ v ∣ κ ⟩▷} {[ c' ∣ v' ∣ κ' ]▷} ↦⃗₁ () deterministicᵣₑᵥ {[ assocr⋆ ∣ _ ∣ κ ]▷} {⟨ _ ∣ v ∣ κ ⟩▷} {[ c' ∣ v' ∣ κ' ]▷} ↦⃗₁ () deterministicᵣₑᵥ {[ dist ∣ _ ∣ κ ]▷} {⟨ _ ∣ v ∣ κ ⟩▷} {[ c' ∣ v' ∣ κ' ]▷} ↦⃗₁ () deterministicᵣₑᵥ {[ factor ∣ _ ∣ κ ]▷} {⟨ _ ∣ v ∣ κ ⟩▷} {[ c' ∣ v' ∣ κ' ]▷} ↦⃗₁ () deterministicᵣₑᵥ {[ id↔ ∣ _ ∣ κ ]▷} {⟨ _ ∣ v ∣ κ ⟩▷} {[ c' ∣ v' ∣ κ' ]▷} (↦⃗₁ {b = ()}) deterministicᵣₑᵥ {[ c₁ ⨾ c₂ ∣ _ ∣ κ ]▷} {⟨ _ ∣ v ∣ κ ⟩▷} {[ c' ∣ v' ∣ κ' ]▷} (↦⃗₁ {b = ()}) deterministicᵣₑᵥ {[ c₁ ⊕ c₂ ∣ _ ∣ κ ]▷} {⟨ _ ∣ v ∣ κ ⟩▷} {[ c' ∣ v' ∣ κ' ]▷} (↦⃗₁ {b = ()}) deterministicᵣₑᵥ {[ c₁ ⊗ c₂ ∣ _ ∣ κ ]▷} {⟨ _ ∣ v ∣ κ ⟩▷} {[ c' ∣ v' ∣ κ' ]▷} (↦⃗₁ {b = ()}) deterministicᵣₑᵥ {[ c ∣ _ ∣ κ ]▷} {⟨ c ∣ v ∣ κ ⟩▷} {[ _ ∣ _ ∣ _ ]◁} ↦⃗₁ r with Lemma₅ r ... | refl , refl with Lemma₆ r ... | refl , refl with Lemma₇ r ... | refl with v ... | () deterministicᵣₑᵥ ↦⃗₂ ↦⃗₂ = refl deterministicᵣₑᵥ ↦⃗₃ ↦⃗₃ = refl deterministicᵣₑᵥ ↦⃗₄ ↦⃗₄ = refl deterministicᵣₑᵥ ↦⃗₅ ↦⃗₅ = refl deterministicᵣₑᵥ ↦⃗₆ ↦⃗₆ = refl deterministicᵣₑᵥ ↦⃗₇ ↦⃗₇ = refl deterministicᵣₑᵥ ↦⃗₈ ↦⃗₈ = refl deterministicᵣₑᵥ ↦⃗₉ ↦⃗₉ = refl deterministicᵣₑᵥ ↦⃗₁₀ ↦⃗₁₀ = refl deterministicᵣₑᵥ {[ c₁ ⊕ c₂ ∣ inj₁ v ∣ κ ]▷} {_} {⟨ _ ∣ _ ∣ _ ⟩▷} ↦⃗₁₁ r with Lemma₈ r ... | refl , refl with Lemma₉ r ... | refl , refl with Lemma₁₀ r ... | inj₂ refl with Lemma₁₁ r ... | inj₁ () ... | inj₂ () deterministicᵣₑᵥ {[ c₁ ⊕ c₂ ∣ inj₁ v ∣ κ ]▷} {_} {[ _ ∣ _ ∣ _ ]▷} ↦⃗₁₁ ↦⃗₁₁ = refl deterministicᵣₑᵥ {[ c₁ ⊕ c₂ ∣ inj₂ v ∣ κ ]▷} {_} {⟨ _ ∣ _ ∣ _ ⟩▷} ↦⃗₁₂ r with Lemma₈ r ... | refl , refl with Lemma₉ r ... | refl , refl with Lemma₁₀ r ... | inj₂ refl with Lemma₁₁ r ... | inj₁ () ... | inj₂ () deterministicᵣₑᵥ {[ c₁ ⊕ c₂ ∣ inj₂ v ∣ κ ]▷} {_} {[ _ ∣ _ ∣ _ ]▷} ↦⃗₁₂ ↦⃗₁₂ = refl deterministicᵣₑᵥ (↦⃖₁ {b = b₁}) (↦⃖₁ {b = b₂}) with base-is-prop _ b₁ b₂ ... | refl = refl deterministicᵣₑᵥ ↦⃖₂ ↦⃖₂ = refl deterministicᵣₑᵥ ↦⃖₃ ↦⃖₃ = refl deterministicᵣₑᵥ ↦⃖₄ ↦⃖₄ = refl deterministicᵣₑᵥ ↦⃖₅ ↦⃖₅ = refl deterministicᵣₑᵥ ↦⃖₆ ↦⃖₆ = refl deterministicᵣₑᵥ ↦⃖₇ ↦⃖₇ = refl deterministicᵣₑᵥ ↦⃖₈ ↦⃖₈ = refl deterministicᵣₑᵥ ↦⃖₉ ↦⃖₉ = refl deterministicᵣₑᵥ ↦⃖₁₀ ↦⃖₁₀ = refl deterministicᵣₑᵥ ↦⃖₁₁ ↦⃖₁₁ = refl deterministicᵣₑᵥ ↦⃖₁₂ ↦⃖₁₂ = refl deterministicᵣₑᵥ {_} {[ η₊ ∣ inj₁ _ ∣ _ ]◁} {⟨ _ ∣ v ∣ _ ⟩▷} ↦η₁ r with Lemma₈ r ... | refl , refl with Lemma₉ r ... | refl , refl with Lemma₁₀ r ... | inj₁ () ... | inj₂ () deterministicᵣₑᵥ {_} {[ η₊ ∣ inj₁ v ∣ _ ]◁} {[ _ ∣ _ ∣ _ ]◁} ↦η₁ ↦η₁ = refl deterministicᵣₑᵥ {_} {[ η₊ ∣ inj₂ (- v) ∣ _ ]◁} {⟨ c ∣ x ∣ x₁ ⟩▷} ↦η₂ r with Lemma₈ r ... | refl , refl with Lemma₉ r ... | refl , refl with Lemma₁₀ r ... | inj₁ () ... | inj₂ () deterministicᵣₑᵥ {_} {[ η₊ ∣ inj₂ (- v) ∣ _ ]◁} {[ _ ∣ _ ∣ _ ]◁} ↦η₂ ↦η₂ = refl deterministicᵣₑᵥ ↦ε₁ ↦ε₁ = refl deterministicᵣₑᵥ ↦ε₂ ↦ε₂ = refl -- Non-repeating Lemma open RevNoRepeat (record { State = State ; _↦_ = _↦_ ; deterministic = deterministic ; deterministicᵣₑᵥ = deterministicᵣₑᵥ }) public NoRepeatPi- : ∀ {A B stₙ stₘ n m} (c : A ↔ B) (v : ⟦ A ⟧) → n < m → ⟨ c ∣ v ∣ ☐ ⟩▷ ↦[ n ] stₙ → ⟨ c ∣ v ∣ ☐ ⟩▷ ↦[ m ] stₘ → stₙ ≢ stₘ NoRepeatPi- c v n<m st₀↦stₙ st₀↦stₘ = NoRepeat (λ ()) n<m st₀↦stₙ st₀↦stₘ
{ "alphanum_fraction": 0.4531662716, "avg_line_length": 64.1956521739, "ext": "agda", "hexsha": "bd855ab0b0ba769477ac0230dcfa3a3c977ea44c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "Pi-/NoRepeat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "Pi-/NoRepeat.agda", "max_line_length": 141, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "Pi-/NoRepeat.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 9487, "size": 14765 }
{-# OPTIONS --cubical --no-import-sorts #-} open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Function.Base using (_∋_; _$_) open import Cubical.Data.Sigma renaming (_×_ to infixr 4 _×_) open import Cubical.Data.Empty renaming (elim to ⊥-elim; ⊥ to ⊥⊥) -- `⊥` and `elim` open import Cubical.HITs.PropositionalTruncation.Base -- ∣_∣ import Cubical.HITs.PropositionalTruncation.Properties as PTrunc open import Cubical.Foundations.Logic renaming ( inl to inlᵖ ; inr to inrᵖ ; _⇒_ to infixr 0 _⇒_ -- shifting by -6 ; _⇔_ to infixr -2 _⇔_ -- ; ∃[]-syntax to infix -4 ∃[]-syntax -- ; ∃[∶]-syntax to infix -4 ∃[∶]-syntax -- ; ∀[∶]-syntax to infix -4 ∀[∶]-syntax -- ; ∀[]-syntax to infix -4 ∀[]-syntax -- ) open import Utils open import MoreLogic.Reasoning open import MoreLogic.Definitions renaming ( _ᵗ⇒_ to infixr 0 _ᵗ⇒_ ; ∀ᵖ[∶]-syntax to infix -4 ∀ᵖ[∶]-syntax ; ∀ᵖ〚∶〛-syntax to infix -4 ∀ᵖ〚∶〛-syntax ; ∀ᵖ!〚∶〛-syntax to infix -4 ∀ᵖ!〚∶〛-syntax ; ∀〚∶〛-syntax to infix -4 ∀〚∶〛-syntax ; Σᵖ[]-syntax to infix -4 Σᵖ[]-syntax ; Σᵖ[∶]-syntax to infix -4 Σᵖ[∶]-syntax ) hiding (≡ˢ-syntax) open import MoreLogic.Properties open import MorePropAlgebra.Definitions hiding (_≤''_) open import MorePropAlgebra.Consequences open import MorePropAlgebra.Bundles module MorePropAlgebra.Properties.AlmostPartiallyOrderedField {ℓ} {ℓ'} (assumptions : AlmostPartiallyOrderedField {ℓ} {ℓ'}) (let F = AlmostPartiallyOrderedField.Carrier assumptions _≡ˢ_ = λ(x y : F) → MoreLogic.Definitions.≡ˢ-syntax x y {AlmostPartiallyOrderedField.is-set assumptions} infixl 4 _≡ˢ_ ) where import MorePropAlgebra.Properties.Group module Group'Properties = MorePropAlgebra.Properties.Group record { AlmostPartiallyOrderedField assumptions ; is-Group = AlmostPartiallyOrderedField.+-Group assumptions } module Group' = Group record { AlmostPartiallyOrderedField assumptions ; is-Group = AlmostPartiallyOrderedField.+-Group assumptions } ( Group') = Group ∋ record { AlmostPartiallyOrderedField assumptions ; is-Group = AlmostPartiallyOrderedField.+-Group assumptions } module GroupLemmas' = Group'Properties.GroupLemmas' import MorePropAlgebra.Properties.Ring module Ring'Properties = MorePropAlgebra.Properties.Ring record { AlmostPartiallyOrderedField assumptions } module Ring' = Ring record { AlmostPartiallyOrderedField assumptions } ( Ring') = Ring ∋ record { AlmostPartiallyOrderedField assumptions } module RingTheory' = Ring'Properties.RingTheory' open AlmostPartiallyOrderedField assumptions -- renaming (Carrier to F; _-_ to _-_) -- Bridges' definition of _≤__ _≤''_ : hPropRel F F (ℓ-max ℓ ℓ') x ≤'' y = ∀[ ε ] (y < ε) ⇒ (x < ε) infixl 4 _≤''_ private -- infixl 4 _≡ˢ_ -- _≡ˢ_ = λ(x y : F) → MoreLogic.Definitions.≡ˢ-syntax x y {is-set} -- [ is-set ] x ≡ˢ y ≡ˢ-sym : ∀ a b → [ (a ≡ˢ b) ⇔ (b ≡ˢ a) ] ≡ˢ-sym a b .fst a≡b = sym a≡b ≡ˢ-sym a b .snd b≡a = sym b≡a ≡ˢ-symᵗ : ∀ a b → (a ≡ˢ b) ≡ (b ≡ˢ a) ≡ˢ-symᵗ a b = let (p , q) = ≡ˢ-sym a b in ⇔toPath p q abstract -dist' : ∀ a b → -(a + b) ≡ (- b) + (- a) -dist : ∀ a b → -(a + b) ≡ (- a) + (- b) ·-inv#0 : ∀ x y → x · y ≡ 1f → [ (x # 0f) ⊓ (y # 0f) ] ·-reflects-≡ : (a b c : F) → [ c # 0f ⇒ (a · c ≡ˢ b · c) ⇒ (a ≡ˢ b) ]; _ : [ operation _·_ reflects _≡ˢ_ when (λ c → c # 0f) ]; _ = ·-reflects-≡ ·-rinv-unique'' : (x y z : F) → [ x · y ≡ˢ 1f ] → [ x · z ≡ˢ 1f ] → [ y ≡ˢ z ] _⁻¹'' : ∀ x → {{[ x # 0f ]}} → Σ[ y ∈ F ] x · y ≡ 1f _⁻¹ : ∀ x → {{[ x # 0f ]}} → F infix 9 _⁻¹ ·-rinv : ∀ x → (p : [ x # 0f ]) → [ x · (x ⁻¹) {{p}} ≡ˢ 1f ] ·-linv : ∀ x → (p : [ x # 0f ]) → [ (x ⁻¹) {{p}} · x ≡ˢ 1f ] ·-linv-unique : (x y : F) → x · y ≡ 1f → (p : [ y # 0f ]) → x ≡ (y ⁻¹) {{p}} <-≤-trans : ∀ x y z → [ x < y ⇒ y ≤ z ⇒ x < z ] ≤-<-trans : ∀ x y z → [ x ≤ y ⇒ y < z ⇒ x < z ] ≤-⇔-≤'' : ∀ x y → [ (x ≤ y) ⇔ (x ≤'' y) ] ≤-reflects-≡ : ∀ x y → [ (∀[ z ] z ≤ x ⇔ z ≤ y) ⇔ x ≡ˢ y ] -dist' a b = GroupLemmas'.invDistr a b -dist a b = -dist' a b ∙ +-comm _ _ ·-inv#0 x y x·y≡1 .fst = ·-inv'' x .fst ∣ (y , x·y≡1) ∣ ·-inv#0 x y x·y≡1 .snd = ·-inv'' y .fst ∣ (x , ·-comm y x ∙ x·y≡1) ∣ ·-reflects-≡ a b c p = PTrunc.rec (isProp[] ((a · c ≡ˢ b · c) ⇒ (a ≡ˢ b) )) γ (·-inv'' c .snd p) where γ : Σ[ c⁻¹ ∈ F ] [ c · c⁻¹ ≡ˢ 1f ] → [ (a · c ≡ˢ b · c) ⇒ a ≡ˢ b ] γ (c⁻¹ , c·c⁻¹≡1) a·c≡b·c = a ≡⟨ sym (fst (·-identity a)) ∙ cong (a ·_) (sym c·c⁻¹≡1) ∙ ·-assoc _ _ _ ⟩ (a · c) · (c⁻¹) ≡⟨ cong (_· c⁻¹) a·c≡b·c ⟩ (b · c) · (c⁻¹) ≡⟨ sym (·-assoc _ _ _) ∙ cong (b ·_) c·c⁻¹≡1 ∙ fst (·-identity b) ⟩ b ∎ -- uniqueness of inverses from `·-assoc` + `·-comm` + `·-lid` + `·-rid` ·-rinv-unique'' x y z x·y≡1 x·z≡1 = ( x · y ≡ˢ 1f ⇒ᵖ⟨ (λ x·y≡1 i → z · x·y≡1 i) ⟩ z · (x · y) ≡ˢ z · 1f ⇒ᵖ⟨ pathTo⇒ (λ i → ·-assoc z x y i ≡ˢ ·-rid z i) ⟩ (z · x) · y ≡ˢ z ⇒ᵖ⟨ pathTo⇒ (λ i → (·-comm z x i) · y ≡ˢ z) ⟩ (x · z) · y ≡ˢ z ⇒ᵖ⟨ pathTo⇒ (λ i → x·z≡1 i · y ≡ˢ z) ⟩ 1f · y ≡ˢ z ⇒ᵖ⟨ pathTo⇒ (λ i → ·-lid y i ≡ˢ z) ⟩ y ≡ˢ z ◼ᵖ) .snd x·y≡1 -- inverse function from `·-rinv-unique''` and `∀[ x ] (∃[ y ] x · y ≡ˢ 1f) ⇔ x # 0f` (x ⁻¹'') {{x#0f}} = PTrunc.rec γ (λ p → p) (·-inv'' x .snd x#0f) where γ : isProp (Σ[ y ∈ F ] x · y ≡ 1f) γ (a , x·a≡1) (b , x·b≡1) = let a≡b = ·-rinv-unique'' x a b x·a≡1 x·b≡1 in Σ≡Prop (λ c → isProp[] (x · c ≡ˢ 1f)) a≡b (x ⁻¹) {{p}} = (x ⁻¹'') .fst ·-rinv x p = (x ⁻¹'') {{p}} .snd ·-linv x p = ·-comm _ _ ∙ ·-rinv x p ·-linv-unique x y x·y≡1 p = sym $ ·-rinv-unique'' y ((y ⁻¹) {{p}}) x (·-rinv y p) (·-comm _ _ ∙ x·y≡1) <-≤-trans x y z x<y y≤z = ⊔-elim (x < z) (z < y) (λ _ → x < z) (λ x<z → x<z) (λ z<y → ⊥-elim (y≤z z<y)) (<-cotrans _ _ x<y z) ≤-<-trans x y z x≤y y<z = ⊔-elim (y < x) (x < z) (λ _ → x < z) (λ y<x → ⊥-elim (x≤y y<x)) (λ x<z → x<z) (<-cotrans y z y<z x) -- Booij's _≤_ ⇔ Brigdes' _≤''_ ≤-⇔-≤'' x y .fst x≤y ε y<ε = ≤-<-trans x y ε x≤y y<ε ≤-⇔-≤'' x y .snd x≤''y y<x = <-irrefl x (x≤''y x y<x) ≤-reflects-≡ x y .fst z≤x⇔z≤y = ≤-antisym x y (z≤x⇔z≤y x .fst (≤-refl x)) (z≤x⇔z≤y y .snd (≤-refl y)) ≤-reflects-≡ x y .snd x≡y z .fst = subst (λ p → [ z ≤ p ]) x≡y ≤-reflects-≡ x y .snd x≡y z .snd = subst (λ p → [ z ≤ p ]) (sym x≡y)
{ "alphanum_fraction": 0.5041359603, "avg_line_length": 46.4965034965, "ext": "agda", "hexsha": "b42acc5a575ae0433971c7d24ba3c52f75d48707", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "agda/MorePropAlgebra/Properties/AlmostPartiallyOrderedField.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "agda/MorePropAlgebra/Properties/AlmostPartiallyOrderedField.agda", "max_line_length": 173, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "agda/MorePropAlgebra/Properties/AlmostPartiallyOrderedField.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 3124, "size": 6649 }
data ⊤ : Set where tt : ⊤ postulate A : Set B : A → Set a : A b : B a G : ∀ x → B x → Set postulate tt' : ⊤ poo : G a b poo with tt | a ... | _ | _ = {!!}
{ "alphanum_fraction": 0.4319526627, "avg_line_length": 10.5625, "ext": "agda", "hexsha": "b70c1bde60795d38774846a5be22582acb9ff836", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2763.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2763.agda", "max_line_length": 25, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2763.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 79, "size": 169 }
{-# OPTIONS --universe-polymorphism #-} -- {-# OPTIONS --verbose tc.rec:15 #-} -- {-# OPTIONS --verbose tc.records.ifs:15 #-} -- {-# OPTIONS --verbose tc.constr.findInScope:15 #-} -- {-# OPTIONS --verbose tc.term.args.ifs:15 #-} module 05-equality-std2 where open import Relation.Binary open import Data.Bool hiding (_≟_) open DecSetoid {{...}} test = isDecEquivalence test2 = false ≟ false
{ "alphanum_fraction": 0.6658227848, "avg_line_length": 24.6875, "ext": "agda", "hexsha": "277234e8c2af29e95bfb3fecf3cda7277db185a3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "examples/instance-arguments/05-equality-std2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "examples/instance-arguments/05-equality-std2.agda", "max_line_length": 53, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "examples/instance-arguments/05-equality-std2.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 109, "size": 395 }
{- This file contains: - Natural functions from FreeGroupoid into FreeGroupoid - Proofs that they induce equivalences - Natural paths in Universe from FreeGroupoid to FreeGroupoid - Proofs that these functions and paths respect the groupoid structure of FreeGroupoid -} {-# OPTIONS --safe #-} module Cubical.HITs.FreeGroupoid.GroupoidActions where open import Cubical.HITs.FreeGroupoid.Base open import Cubical.Foundations.Prelude open import Cubical.Foundations.Univalence open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.BiInvertible open import Cubical.Foundations.Function private variable ℓ : Level A : Type ℓ -- A function for every element of FreeGroupoid A action : ∀ (a : FreeGroupoid A) → FreeGroupoid A → FreeGroupoid A action a g = g · a invAction : FreeGroupoid A → FreeGroupoid A → FreeGroupoid A invAction a = action (inv a) -- Naturality properties of the FreeGroupoid operations multNaturality : (g1 g2 : FreeGroupoid A) → action (g1 · g2) ≡ (action g2 ∘ action g1) multNaturality g1 g2 = funExt (pointwise g1 g2) where pointwise : (g1 g2 g3 : FreeGroupoid A) → action (g1 · g2) g3 ≡ (action g2 ∘ action g1) g3 pointwise g1 g2 g3 = action (g1 · g2) g3 ≡⟨ assoc g3 g1 g2 ⟩ (action g2 ∘ action g1) g3 ∎ idNaturality : action ε ≡ idfun (FreeGroupoid A) idNaturality = funExt pointwise where pointwise : (g : FreeGroupoid A) → action ε g ≡ idfun (FreeGroupoid A) g pointwise g = action ε g ≡⟨ sym (idr g) ⟩ idfun _ g ∎ rCancelAction : ∀ (a : FreeGroupoid A) → action a ∘ invAction a ≡ idfun (FreeGroupoid A) rCancelAction a = action a ∘ invAction a ≡⟨ sym (multNaturality (inv a) a) ⟩ action ((inv a) · a) ≡⟨ cong action (invl a) ⟩ action ε ≡⟨ idNaturality ⟩ idfun _ ∎ lCancelAction : ∀ (a : FreeGroupoid A) → invAction a ∘ action a ≡ idfun (FreeGroupoid A) lCancelAction a = invAction a ∘ action a ≡⟨ sym (multNaturality a (inv a)) ⟩ action (a · (inv a)) ≡⟨ cong action (invr a) ⟩ action ε ≡⟨ idNaturality ⟩ idfun _ ∎ -- Characterization of the action functions actionCharacterization : ∀ (f : FreeGroupoid A → FreeGroupoid A) → (∀ g1 g2 → f (g1 · g2) ≡ g1 · (f g2)) → Σ[ a ∈ FreeGroupoid A ] (f ≡ action a) actionCharacterization f property = f ε , (funExt pointwise) where pointwise : ∀ g → f g ≡ action (f ε) g pointwise g = f g ≡⟨ cong f (idr g) ⟩ f (g · ε) ≡⟨ property g ε ⟩ action (f ε) g ∎ -- Actions induce equivalences biInvAction : FreeGroupoid A → BiInvEquiv (FreeGroupoid A) (FreeGroupoid A) biInvAction a = biInvEquiv (action a) (invAction a) (rhomotopy a) (invAction a) (lhomotopy a) where rhomotopy : ∀ a g → (action a ∘ invAction a) g ≡ g rhomotopy a g = cong (λ f → f g) (rCancelAction a) lhomotopy : ∀ a g → (invAction a ∘ action a) g ≡ g lhomotopy a g = cong (λ f → f g) (lCancelAction a) equivs : FreeGroupoid A → (FreeGroupoid A) ≃ (FreeGroupoid A) equivs a = biInvEquiv→Equiv-right (biInvAction a) -- Naturality properties of the equivs group multEquivsNaturality : ∀ (k1 k2 : FreeGroupoid A) → equivs (k1 · k2) ≡ compEquiv (equivs k1) (equivs k2) multEquivsNaturality k1 k2 = equivEq h where h : (equivs (k1 · k2)) .fst ≡ (compEquiv (equivs k1) (equivs k2)) .fst h = equivs (k1 · k2) .fst ≡⟨ multNaturality k1 k2 ⟩ compEquiv (equivs k1) (equivs k2) .fst ∎ idEquivsNaturality : equivs ε ≡ idEquiv (FreeGroupoid A) idEquivsNaturality = equivEq h where h : (equivs ε) .fst ≡ idEquiv (FreeGroupoid A) .fst h = (equivs ε) .fst ≡⟨ idNaturality ⟩ idEquiv _ .fst ∎ invEquivsNaturality : ∀ (g : FreeGroupoid A) → equivs (inv g) ≡ invEquiv (equivs g) invEquivsNaturality g = equivEq refl -- Actions induce paths in Universe pathsInU : {A : Type ℓ} → FreeGroupoid A → (FreeGroupoid A) ≡ (FreeGroupoid A) pathsInU a = ua (equivs a) -- Naturality properties of the paths group multPathsInUNaturality : ∀ (g1 g2 : FreeGroupoid A) → pathsInU (g1 · g2) ≡ (pathsInU g1) ∙ (pathsInU g2) multPathsInUNaturality g1 g2 = pathsInU (g1 · g2) ≡⟨ cong ua (multEquivsNaturality g1 g2) ⟩ ua (compEquiv (equivs g1) (equivs g2)) ≡⟨ uaCompEquiv (equivs g1) (equivs g2) ⟩ (pathsInU g1) ∙ (pathsInU g2) ∎ idPathsInUNaturality : pathsInU {A = A} ε ≡ refl idPathsInUNaturality = pathsInU ε ≡⟨ cong ua idEquivsNaturality ⟩ ua (idEquiv _) ≡⟨ uaIdEquiv ⟩ refl ∎ invPathsInUNaturality : ∀ (g : FreeGroupoid A) → pathsInU (inv g) ≡ sym (pathsInU g) invPathsInUNaturality g = pathsInU (inv g) ≡⟨ cong ua (invEquivsNaturality g) ⟩ ua (invEquiv (equivs g)) ≡⟨ uaInvEquiv (equivs g) ⟩ sym (pathsInU g) ∎
{ "alphanum_fraction": 0.679835924, "avg_line_length": 30.6754966887, "ext": "agda", "hexsha": "7f906dc309850e8fc765b2520c6cf2f88972287d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/HITs/FreeGroupoid/GroupoidActions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/HITs/FreeGroupoid/GroupoidActions.agda", "max_line_length": 104, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/HITs/FreeGroupoid/GroupoidActions.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 1770, "size": 4632 }
------------------------------------------------------------------------------ -- ABP terms ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.ABP.Terms where open import FOTC.Base open import FOTC.Base.Loop open import FOTC.Data.Bool ------------------------------------------------------------------------------ -- N.B. We did not define @Bit = Bool@ due to the issue #11. Bit : D → Set Bit b = Bool b {-# ATP definition Bit #-} F T : D F = false T = true {-# ATP definition F T #-} postulate <_,_> : D → D → D ok : D → D
{ "alphanum_fraction": 0.392338177, "avg_line_length": 25.2333333333, "ext": "agda", "hexsha": "bc9984d4accf5b224a022b25719a0cd55b96c4c6", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/ABP/Terms.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/ABP/Terms.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/ABP/Terms.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 157, "size": 757 }
-- An implementation of Olivier Danvy's Type-Directed Partial Evaluation (POPL 1996) -- for STLC with sum types using continuations in form of shift and reset. -- -- The algorithm was originally for a two-level lambda-calculus. -- Our use of Kripke semantics makes the effect of fresh variable generation explicit and formal. open import Library module DanvyShiftReset where data Base : Set where α β : Base -- import Formulas ; open module Form = Formulas Base -- import Derivations; open module Der = Derivations Base open import Formulas Base open import Derivations Base -- -- Shift-reset continutation monad -- record M (A B C : Set) : Set where -- field run : (C → B) → A -- open M -- return : ∀{X A} → A → M X X A -- return x .run k = k x -- _>>=_ : ∀{X Y Z A B} (m : M X Y A) (f : A → M Y Z B) → M X Z B -- (m >>= f) .run k = m .run λ a → f a .run k -- _<$>_ : ∀{X Y A B} (f : A → B) (m : M X Y A) → M X Y B -- (f <$> m) .run k = m .run (k ∘ f) -- shift : ∀{X Y A} (f : (A → Y) → M X Y Y) → M X Y A -- shift f .run k = f k .run id -- shift' : ∀{X Y A} (f : (A → Y) → X) → M X Y A -- shift' f .run k = f k -- reset : ∀{X Y A} (m : M A Y Y) → M X X A -- reset m .run k = k (m .run id) -- Shift-reset continutation monad record M (A B C : Cxt → Set) (Γ : Cxt) : Set where field run : KFun (KFun C B) A Γ open M return : ∀{X A} → □ A →̇ M X X A return x .run τ k = k id≤ (x τ) return' : ∀{X A} → □ A →̇ M X X (□ A) return' x .run τ k = k id≤ λ τ₁ → x (τ₁ • τ) _>>=_ : ∀{X Y Z A B Γ} (m : M X Y A Γ) (f : KFun A (M Y Z B) Γ) → M X Z B Γ (m >>= f) .run σ k = m .run σ λ τ a → f (τ • σ) a .run id≤ λ τ′ → k (τ′ • τ) _<$>_ : ∀{X Y A B} (f : A →̇ B) → M X Y A →̇ M X Y B (f <$> m) .run σ k = m .run σ λ τ → k τ ∘ f -- liftA2 : ∀{X Y A B C} (f : ∀{Γ} → A Γ → B Γ → C Γ) → ∀{Γ} → M X Y A Γ → M X Y B Γ → M X Y C Γ -- liftA2 f ma mb .run σ k = ma .run σ λ τ a → {!mb .run!} K$ : ∀{X Y A B} → KFun A B →̇ KFun (M X Y A) (M X Y B) K$ f τ m .run σ k = m .run σ λ τ′ a → k τ′ (f (τ′ • (σ • τ)) a) shift' : ∀{X Y A Γ} (f : KFun (KFun A Y) X Γ) → M X Y A Γ shift' f .run σ k = f σ k shift : ∀{X Y A Γ} (f : KFun (KFun A Y) (M X Y Y) Γ) → M X Y A Γ shift f .run σ k = f σ k .run id≤ λ τ → id reset' : ∀{Y A} → M A Y Y →̇ A reset' m = m .run id≤ λ τ → id reset : ∀{X Y A} → M A Y Y →̇ M X X A reset m .run σ k = k id≤ (m .run σ λ τ → id) -- We use a continuation monad with answer type Nf. M' : (X : Cxt → Set) (Γ : Cxt) → Set M' X Γ = ∀ {C} → M (Nf' C) (Nf' C) X Γ T⟦_⟧ : (A : Form) (Γ : Cxt) → Set T⟦ Atom P ⟧ = Nf' (Atom P) T⟦ True ⟧ Γ = ⊤ T⟦ False ⟧ Γ = ⊥ T⟦ A ∨ B ⟧ Γ = T⟦ A ⟧ Γ ⊎ T⟦ B ⟧ Γ T⟦ A ∧ B ⟧ Γ = T⟦ A ⟧ Γ × T⟦ B ⟧ Γ T⟦ A ⇒ B ⟧ Γ = ∀{Δ} (τ : Δ ≤ Γ) → T⟦ A ⟧ Δ → M' T⟦ B ⟧ Δ -- Monotonicity of the model is proven by induction on the proposition. -- monT : ∀ A {Γ Δ} (τ : Δ ≤ Γ) → T⟦ A ⟧ Γ → T⟦ A ⟧ Δ monT : ∀ A → Mon T⟦ A ⟧ monT (Atom P) = monNf monT True = _ monT False τ () monT (A ∨ B) τ = map-⊎ (monT A τ) (monT B τ) monT (A ∧ B) τ (a , b) = monT A τ a , monT B τ b monT (A ⇒ B) τ f σ = f (σ • τ) -- Reflection / reification, proven simultaneously by induction on the proposition. -- Reflection is η-expansion (and recursively reflection); mutual reflect : ∀{Γ} A (t : Ne Γ A) → M' T⟦ A ⟧ Γ reflect (Atom P) t = return λ τ → ne (monNe τ t) reflect True t = return _ reflect False t = shift' λ τ k → falseE (monNe τ t) reflect (A ∨ B) t = shift' λ τ k → orE (monNe τ t) (reset' (K$ k (weak id≤) (inj₁ <$> reflect A (hyp top)))) (reset' (K$ k (weak id≤) (inj₂ <$> reflect B (hyp top)))) -- ((inj₂ <$> reflect B (hyp top)) .run λ τ → k (τ • weak id≤)) -- Wrong: -- (reset' (k (weak id≤) <$> (inj₁ <$> reflect A (hyp top)))) -- reflect (A ∧ B) t = do -- a ← reflect A (andE₁ t) -- b ← reflect B (andE₂ t) -- return (a , b) reflect (A ∧ B) t = reflect A (andE₁ t ) >>= λ τ a → reflect B (andE₂ (monNe τ t)) >>= λ τ′ b → return λ τ₁ → monT A (τ₁ • τ′) a , monT B τ₁ b reflect (A ⇒ B) t = return' λ τ a → reflect B (impE (monNe τ t) (reify A a)) reify : ∀{Γ} A (⟦f⟧ : T⟦ A ⟧ Γ) → Nf Γ A reify (Atom P) t = t reify True _ = trueI reify False () reify (A ∨ B) (inj₁ a) = orI₁ (reify A a) reify (A ∨ B) (inj₂ b) = orI₂ (reify B b) reify (A ∧ B) (a , b) = andI (reify A a) (reify B b) reify (A ⇒ B) f = impI $ reset' $ reflect A (hyp top) >>= λ τ a → reify B <$> f (τ • weak id≤) a -- Fundamental theorem -- Extension of T⟦_⟧ to contexts G⟦_⟧ : ∀ (Γ Δ : Cxt) → Set G⟦ ε ⟧ Δ = ⊤ G⟦ Γ ∙ A ⟧ Δ = G⟦ Γ ⟧ Δ × T⟦ A ⟧ Δ -- monG : ∀{Γ Δ Φ} (τ : Φ ≤ Δ) → G⟦ Γ ⟧ Δ → G⟦ Γ ⟧ Φ monG : ∀{Γ} → Mon G⟦ Γ ⟧ monG {ε} τ _ = _ monG {Γ ∙ A} τ (γ , a) = monG τ γ , monT A τ a -- Variable case. fundH : ∀{Γ Δ A} (x : Hyp A Γ) (γ : G⟦ Γ ⟧ Δ) → T⟦ A ⟧ Δ fundH top = proj₂ fundH (pop x) = fundH x ∘ proj₁ -- The fundamental theorem: -- A call-by-value interpreter. fund : ∀{Γ A} (t : Γ ⊢ A) {Δ} (γ : G⟦ Γ ⟧ Δ) → M' T⟦ A ⟧ Δ fund (hyp {A} x) γ = return λ τ → monT A τ (fundH x γ) fund (impI t) γ = return' λ τ a → fund t (monG τ γ , a) fund (impE t u) γ = fund t γ >>= λ τ f → fund u (monG τ γ) >>= λ τ′ a → f τ′ a fund (andI {A} {B} t u) γ = fund t γ >>= λ τ a → fund u (monG τ γ) >>= λ τ′ b → return λ τ₁ → monT A (τ₁ • τ′) a , monT B τ₁ b fund (andE₁ t) γ = proj₁ <$> fund t γ fund (andE₂ t) γ = proj₂ <$> fund t γ fund (orI₁ t) γ = inj₁ <$> fund t γ fund (orI₂ t) γ = inj₂ <$> fund t γ fund (orE t u v) γ = fund t γ >>= λ τ → [ (λ a → fund u (monG τ γ , a)) , (λ b → fund v (monG τ γ , b)) ] fund (falseE t) γ = fund t γ >>= λ τ () fund trueI γ = return _ -- Identity environment ide : ∀ Γ → □ (M' G⟦ Γ ⟧) Γ ide ε τ = return _ ide (Γ ∙ A) τ = ide Γ (τ • weak id≤) >>= λ τ₁ γ → reflect A (monNe (τ₁ • τ) (hyp top)) >>= λ τ₂ a → return λ τ₃ → monG (τ₃ • τ₂) γ , monT A τ₃ a -- Normalization norm : ∀{A Γ} (t : Γ ⊢ A) → Nf Γ A norm {A} {Γ} t = reset' $ ide Γ id≤ >>= λ _ γ → reify A <$> fund t γ idD : (A : Form) → ε ⊢ (A ⇒ A) idD A = impI (hyp top) test : let A = Atom α; B = Atom β in Nf ε (A ∨ B ⇒ A ∨ B) test = norm (idD (Atom α ∨ Atom β)) test2 = norm (idD (Atom α ∨ Atom β ∨ Atom α)) -- Q.E.D. -} -- -} -- -} -- -} -- -} -- -} -- -}
{ "alphanum_fraction": 0.4922517394, "avg_line_length": 27.0256410256, "ext": "agda", "hexsha": "ea73b62a4b527ca533319e2c578da780fc560e15", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-02-25T20:39:03.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-13T16:01:46.000Z", "max_forks_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "andreasabel/ipl", "max_forks_repo_path": "src/DanvyShiftReset.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "andreasabel/ipl", "max_issues_repo_path": "src/DanvyShiftReset.agda", "max_line_length": 97, "max_stars_count": 19, "max_stars_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "andreasabel/ipl", "max_stars_repo_path": "src/DanvyShiftReset.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-27T19:10:49.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-16T08:08:51.000Z", "num_tokens": 2835, "size": 6324 }
data C : Set₁ where c : Set → C data D : Set where d : D F : C → {y : D} → C → Set₁ F z (c _) = G d module M where G : D → Set₁ G _ = Set fail : Set fail = M.G
{ "alphanum_fraction": 0.4885057471, "avg_line_length": 10.875, "ext": "agda", "hexsha": "713099f3038ad79763780d844dd5201c445d8d5b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2776.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2776.agda", "max_line_length": 26, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2776.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 78, "size": 174 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT renaming (pt to ⊙pt) open import homotopy.Bouquet open import homotopy.FinWedge open import homotopy.LoopSpaceCircle open import homotopy.SphereEndomorphism open import groups.SphereEndomorphism open import cw.CW open import cw.FinCW open import cw.WedgeOfCells open import cw.DegreeByProjection {lzero} open import homotopy.DisjointlyPointedSet open import cohomology.Theory module cw.cohomology.cochainequiv.FirstCoboundaryAbstractDefs (OT : OrdinaryTheory lzero) (⊙fin-skel : ⊙FinSkeleton 1) where open OrdinaryTheory OT open import cohomology.Bouquet OT private ⊙skel = ⊙FinSkeleton-realize ⊙fin-skel fin-skel = ⊙FinSkeleton.skel ⊙fin-skel I = AttachedFinSkeleton.numCells fin-skel skel = ⊙Skeleton.skel ⊙skel dec = FinSkeleton-has-cells-with-dec-eq fin-skel endpoint = attaching-last skel I₋₁ = AttachedFinSkeleton.skel fin-skel ⊙head = ⊙cw-head ⊙skel pt = ⊙pt ⊙head open import cw.cohomology.reconstructed.TipCoboundary OT ⊙skel ⊙head-is-separable : is-separable ⊙head ⊙head-is-separable = Fin-has-dec-eq pt ⊙head-separate = separate-pt ⊙head-is-separable ⊙head-separate-equiv = (unite-pt ⊙head , separable-has-disjoint-pt ⊙head-is-separable)⁻¹ MinusPoint-⊙head-has-choice : has-choice 0 (MinusPoint ⊙head) lzero MinusPoint-⊙head-has-choice = MinusPoint-has-choice ⊙head-is-separable (Fin-has-choice 0 lzero) MinusPoint-⊙head-has-dec-eq : has-dec-eq (MinusPoint ⊙head) MinusPoint-⊙head-has-dec-eq = MinusPoint-has-dec-eq Fin-has-dec-eq ⊙function₀ : ⊙FinBouquet I 1 ⊙→ ⊙Susp (⊙Bouquet (MinusPoint ⊙head) 0) ⊙function₀ = ⊙Susp-fmap (⊙<– (Bouquet-⊙equiv-X ⊙head-is-separable)) ⊙∘ ⊙cw-∂-head'-before-Susp ⊙∘ ⊙–> (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ skel) function₁ : Fin I → MinusPoint ⊙head → Sphere-endo 0 function₁ <I b x with Fin-has-dec-eq (fst b) (endpoint <I x) function₁ <I b x | inl _ = false function₁ <I b x | inr _ = true abstract ⊙function₀' : ⊙FinBouquet I 1 ⊙→ ⊙Susp (⊙Bouquet (MinusPoint ⊙head) 0) ⊙function₀' = ⊙function₀ ⊙function₀'-β : ⊙function₀' == ⊙function₀ ⊙function₀'-β = idp function₁' : Fin I → MinusPoint ⊙head → Sphere-endo 0 function₁' = function₁ function₁'-β : ∀ <I b → function₁' <I b == function₁ <I b function₁'-β _ _ = idp private mega-reduction-cases : ∀ <I b x → bwproj MinusPoint-⊙head-has-dec-eq b (<– (Bouquet-equiv-X ⊙head-is-separable) (endpoint <I x)) == function₁ <I b x mega-reduction-cases <I b x with Fin-has-dec-eq pt (endpoint <I x) mega-reduction-cases <I b x | inl _ with Fin-has-dec-eq (fst b) (endpoint <I x) mega-reduction-cases <I b x | inl pt=end | inl b=end = ⊥-rec (snd b (pt=end ∙ ! b=end)) mega-reduction-cases <I b x | inl _ | inr _ = idp mega-reduction-cases <I b x | inr _ with Fin-has-dec-eq (fst b) (endpoint <I x) mega-reduction-cases <I b x | inr _ | inl b=end = bwproj MinusPoint-⊙head-has-dec-eq b (bwin (endpoint <I x , _) false) =⟨ ap (λ b' → bwproj MinusPoint-⊙head-has-dec-eq b (bwin b' false)) $ ! $ Subtype=-out (MinusPoint-prop ⊙head) b=end ⟩ bwproj MinusPoint-⊙head-has-dec-eq b (bwin b false) =⟨ bwproj-bwin-diag MinusPoint-⊙head-has-dec-eq b false ⟩ false =∎ mega-reduction-cases <I b x | inr _ | inr b≠end = bwproj-bwin-≠ MinusPoint-⊙head-has-dec-eq (b≠end ∘ ap fst) false mega-reduction : ∀ <I b → Susp-fmap (bwproj MinusPoint-⊙head-has-dec-eq b) ∘ fst ⊙function₀' ∘ fwin <I ∼ Susp-fmap (function₁' <I b) mega-reduction <I b = Susp-elim idp idp λ x → ↓-='-in' $ ! $ ap (Susp-fmap (bwproj MinusPoint-⊙head-has-dec-eq b) ∘ fst ⊙function₀ ∘ fwin <I) (merid x) =⟨ ap-∘ ( Susp-fmap (bwproj MinusPoint-⊙head-has-dec-eq b) ∘ Susp-fmap (<– (Bouquet-equiv-X ⊙head-is-separable)) ∘ cw-∂-head'-before-Susp) (Bouquet-to-Xₙ/Xₙ₋₁ skel ∘ fwin <I) (merid x) ⟩ ap ( Susp-fmap (bwproj MinusPoint-⊙head-has-dec-eq b) ∘ Susp-fmap (<– (Bouquet-equiv-X ⊙head-is-separable)) ∘ cw-∂-head'-before-Susp) (ap (Bouquet-to-Xₙ/Xₙ₋₁ skel ∘ fwin <I) (merid x)) =⟨ ap (ap ( Susp-fmap (bwproj MinusPoint-⊙head-has-dec-eq b) ∘ Susp-fmap (<– (Bouquet-equiv-X ⊙head-is-separable)) ∘ cw-∂-head'-before-Susp)) (Bouquet-to-Xₙ/Xₙ₋₁-in-merid-β skel <I x) ⟩ ap ( Susp-fmap (bwproj MinusPoint-⊙head-has-dec-eq b) ∘ Susp-fmap (<– (Bouquet-equiv-X ⊙head-is-separable)) ∘ cw-∂-head'-before-Susp) (cfglue (endpoint <I x) ∙' ap cfcod (spoke <I x)) =⟨ ap-∘ ( Susp-fmap (bwproj MinusPoint-⊙head-has-dec-eq b) ∘ Susp-fmap (<– (Bouquet-equiv-X ⊙head-is-separable))) cw-∂-head'-before-Susp (cfglue (endpoint <I x) ∙' ap cfcod (spoke <I x)) ⟩ ap ( Susp-fmap (bwproj MinusPoint-⊙head-has-dec-eq b) ∘ Susp-fmap (<– (Bouquet-equiv-X ⊙head-is-separable))) (ap cw-∂-head'-before-Susp (cfglue (endpoint <I x) ∙' ap cfcod (spoke <I x))) =⟨ ap (ap ( Susp-fmap (bwproj MinusPoint-⊙head-has-dec-eq b) ∘ Susp-fmap (<– (Bouquet-equiv-X ⊙head-is-separable)))) ( ap-∙' cw-∂-head'-before-Susp (cfglue (endpoint <I x)) (ap cfcod (spoke <I x)) ∙ ap2 _∙'_ (cw-∂-head'-before-Susp-glue-β (endpoint <I x)) ( ∘-ap cw-∂-head'-before-Susp cfcod (spoke <I x) ∙ ap-cst south (spoke <I x))) ⟩ ap ( Susp-fmap (bwproj MinusPoint-⊙head-has-dec-eq b) ∘ Susp-fmap (<– (Bouquet-equiv-X ⊙head-is-separable))) (merid (endpoint <I x)) =⟨ ap-∘ (Susp-fmap (bwproj MinusPoint-⊙head-has-dec-eq b)) (Susp-fmap (<– (Bouquet-equiv-X ⊙head-is-separable))) (merid (endpoint <I x)) ⟩ ap (Susp-fmap (bwproj MinusPoint-⊙head-has-dec-eq b)) (ap (Susp-fmap (<– (Bouquet-equiv-X ⊙head-is-separable))) (merid (endpoint <I x))) =⟨ ap (ap (Susp-fmap (bwproj MinusPoint-⊙head-has-dec-eq b))) (SuspFmap.merid-β (<– (Bouquet-equiv-X ⊙head-is-separable)) (endpoint <I x)) ⟩ ap (Susp-fmap (bwproj MinusPoint-⊙head-has-dec-eq b)) (merid (<– (Bouquet-equiv-X ⊙head-is-separable) (endpoint <I x))) =⟨ SuspFmap.merid-β (bwproj MinusPoint-⊙head-has-dec-eq b) (<– (Bouquet-equiv-X ⊙head-is-separable) (endpoint <I x)) ⟩ merid (bwproj MinusPoint-⊙head-has-dec-eq b (<– (Bouquet-equiv-X ⊙head-is-separable) (endpoint <I x))) =⟨ ap merid (mega-reduction-cases <I b x) ⟩ merid (function₁ <I b x) =⟨ ! $ SuspFmap.merid-β (function₁ <I b) x ⟩ ap (Susp-fmap (function₁ <I b)) (merid x) =∎ open DegreeAtOne skel dec degree-matches' : ∀ <I b → merid (function₁' <I b false) ∙ ! (merid (function₁' <I b true)) == loop^ (degree <I (fst b)) degree-matches' <I b with Fin-has-dec-eq (fst b) (endpoint <I false) degree-matches' <I b | inl _ with Fin-has-dec-eq (fst b) (endpoint <I true) degree-matches' <I b | inl _ | inl _ = !-inv-r (merid false) degree-matches' <I b | inl _ | inr _ = idp degree-matches' <I b | inr _ with Fin-has-dec-eq (fst b) (endpoint <I true) degree-matches' <I b | inr _ | inl _ = ap (_∙ ! (merid false)) (! (!-! (merid true))) ∙ ∙-! (! (merid true)) (merid false) degree-matches' <I b | inr _ | inr _ = !-inv-r (merid true) degree-matches : ∀ <I b → ⊙SphereS-endo-degree 0 (Susp-fmap (function₁' <I b) , idp) == degree <I (fst b) degree-matches <I b = equiv-adj' ΩS¹-equiv-ℤ $ ap (Susp-fmap (function₁ <I b)) loop =⟨ ap-∙ (Susp-fmap (function₁ <I b)) (merid false) (! (merid true)) ⟩ ap (Susp-fmap (function₁ <I b)) (merid false) ∙ ap (Susp-fmap (function₁ <I b)) (! (merid true)) =⟨ ap2 _∙_ (SuspFmap.merid-β (function₁ <I b) false) ( ap-! (Susp-fmap (function₁ <I b)) (merid true) ∙ ap ! (SuspFmap.merid-β (function₁ <I b) true)) ⟩ merid (function₁ <I b false) ∙ ! (merid (function₁ <I b true)) =⟨ degree-matches' <I b ⟩ loop^ (degree <I (fst b)) =∎
{ "alphanum_fraction": 0.6086849247, "avg_line_length": 43.3475935829, "ext": "agda", "hexsha": "d79af26bcb93f51670021a79fe2079610866babb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/cw/cohomology/cochainequiv/FirstCoboundaryAbstractDefs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/cw/cohomology/cochainequiv/FirstCoboundaryAbstractDefs.agda", "max_line_length": 124, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/cw/cohomology/cochainequiv/FirstCoboundaryAbstractDefs.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3142, "size": 8106 }
-- The ATP pragma with the role <axiom> can be used with data constructors. module ATPAxiomDataConstructors where postulate D : Set zero : D succ : D → D data N : D → Set where zN : N zero sN : ∀ {n} → N n → N (succ n) {-# ATP axiom zN #-}
{ "alphanum_fraction": 0.5851851852, "avg_line_length": 19.2857142857, "ext": "agda", "hexsha": "3f32c39e2fece07481930f94d806fa692b21bd41", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "examples/ATPAxiomDataConstructors.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "examples/ATPAxiomDataConstructors.agda", "max_line_length": 75, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "examples/ATPAxiomDataConstructors.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 88, "size": 270 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Relation.Binary.Construct.Never where open import Cubical.Core.Everything open import Cubical.Relation.Binary open import Cubical.Relation.Binary.Construct.Constant open import Cubical.Data.Empty.Polymorphic ------------------------------------------------------------------------ -- Definition Never : ∀ {a b ℓ} {A : Type a} {B : Type b} → REL A B ℓ Never = Const (⊥ , isProp⊥)
{ "alphanum_fraction": 0.6146993318, "avg_line_length": 29.9333333333, "ext": "agda", "hexsha": "1be4ba3a2bf5cb0df3c229aa0ad41770a9fc7051", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Relation/Binary/Construct/Never.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Relation/Binary/Construct/Never.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Relation/Binary/Construct/Never.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 111, "size": 449 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Matrix where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.HLevels open import Cubical.Foundations.Transport open import Cubical.Functions.FunExtEquiv import Cubical.Data.Empty as ⊥ open import Cubical.Data.Bool open import Cubical.Data.Nat hiding (_+_ ; +-comm ; +-assoc) open import Cubical.Data.Vec open import Cubical.Data.Sigma.Base open import Cubical.Data.FinData open import Cubical.Relation.Nullary open import Cubical.Algebra.Group hiding (⟨_⟩) open import Cubical.Algebra.AbGroup hiding (⟨_⟩) open import Cubical.Algebra.Monoid hiding (⟨_⟩) open import Cubical.Algebra.Ring open Iso private variable ℓ : Level A : Type ℓ -- Equivalence between Vec matrix and Fin function matrix FinMatrix : (A : Type ℓ) (m n : ℕ) → Type ℓ FinMatrix A m n = FinVec (FinVec A n) m VecMatrix : (A : Type ℓ) (m n : ℕ) → Type ℓ VecMatrix A m n = Vec (Vec A n) m FinMatrix→VecMatrix : {m n : ℕ} → FinMatrix A m n → VecMatrix A m n FinMatrix→VecMatrix M = FinVec→Vec (λ fm → FinVec→Vec (M fm)) VecMatrix→FinMatrix : {m n : ℕ} → VecMatrix A m n → FinMatrix A m n VecMatrix→FinMatrix M fn fm = lookup fm (lookup fn M) FinMatrix→VecMatrix→FinMatrix : {m n : ℕ} (M : FinMatrix A m n) → VecMatrix→FinMatrix (FinMatrix→VecMatrix M) ≡ M FinMatrix→VecMatrix→FinMatrix {m = zero} M = funExt (⊥.rec ∘ ¬Fin0) FinMatrix→VecMatrix→FinMatrix {n = zero} M = funExt₂ (λ _ → ⊥.rec ∘ ¬Fin0) FinMatrix→VecMatrix→FinMatrix {m = suc m} {n = suc n} M = funExt₂ goal where goal : (fm : Fin (suc m)) (fn : Fin (suc n)) → VecMatrix→FinMatrix (_ ∷ FinMatrix→VecMatrix (M ∘ suc)) fm fn ≡ M fm fn goal zero zero = refl goal zero (suc fn) i = FinVec→Vec→FinVec (M zero ∘ suc) i fn goal (suc fm) fn i = FinMatrix→VecMatrix→FinMatrix (M ∘ suc) i fm fn VecMatrix→FinMatrix→VecMatrix : {m n : ℕ} (M : VecMatrix A m n) → FinMatrix→VecMatrix (VecMatrix→FinMatrix M) ≡ M VecMatrix→FinMatrix→VecMatrix {m = zero} [] = refl VecMatrix→FinMatrix→VecMatrix {m = suc m} (M ∷ MS) i = Vec→FinVec→Vec M i ∷ VecMatrix→FinMatrix→VecMatrix MS i FinMatrixIsoVecMatrix : (A : Type ℓ) (m n : ℕ) → Iso (FinMatrix A m n) (VecMatrix A m n) fun (FinMatrixIsoVecMatrix A m n) = FinMatrix→VecMatrix inv (FinMatrixIsoVecMatrix A m n) = VecMatrix→FinMatrix rightInv (FinMatrixIsoVecMatrix A m n) = VecMatrix→FinMatrix→VecMatrix leftInv (FinMatrixIsoVecMatrix A m n) = FinMatrix→VecMatrix→FinMatrix FinMatrix≃VecMatrix : {m n : ℕ} → FinMatrix A m n ≃ VecMatrix A m n FinMatrix≃VecMatrix {_} {A} {m} {n} = isoToEquiv (FinMatrixIsoVecMatrix A m n) FinMatrix≡VecMatrix : (A : Type ℓ) (m n : ℕ) → FinMatrix A m n ≡ VecMatrix A m n FinMatrix≡VecMatrix _ _ _ = ua FinMatrix≃VecMatrix -- Define abelian group structure on matrices module FinMatrixAbGroup (G' : AbGroup {ℓ}) where open AbGroup G' renaming ( Carrier to G ; is-set to isSetG ) zeroFinMatrix : ∀ {m n} → FinMatrix G m n zeroFinMatrix _ _ = 0g negFinMatrix : ∀ {m n} → FinMatrix G m n → FinMatrix G m n negFinMatrix M i j = - M i j addFinMatrix : ∀ {m n} → FinMatrix G m n → FinMatrix G m n → FinMatrix G m n addFinMatrix M N i j = M i j + N i j isSetFinMatrix : ∀ {m n} → isSet (FinMatrix G m n) isSetFinMatrix = isSetΠ2 λ _ _ → isSetG addFinMatrixAssoc : ∀ {m n} → (M N K : FinMatrix G m n) → addFinMatrix M (addFinMatrix N K) ≡ addFinMatrix (addFinMatrix M N) K addFinMatrixAssoc M N K i j k = assoc (M j k) (N j k) (K j k) i addFinMatrix0r : ∀ {m n} → (M : FinMatrix G m n) → addFinMatrix M zeroFinMatrix ≡ M addFinMatrix0r M i j k = rid (M j k) i addFinMatrix0l : ∀ {m n} → (M : FinMatrix G m n) → addFinMatrix zeroFinMatrix M ≡ M addFinMatrix0l M i j k = lid (M j k) i addFinMatrixNegMatrixr : ∀ {m n} → (M : FinMatrix G m n) → addFinMatrix M (negFinMatrix M) ≡ zeroFinMatrix addFinMatrixNegMatrixr M i j k = invr (M j k) i addFinMatrixNegMatrixl : ∀ {m n} → (M : FinMatrix G m n) → addFinMatrix (negFinMatrix M) M ≡ zeroFinMatrix addFinMatrixNegMatrixl M i j k = invl (M j k) i addFinMatrixComm : ∀ {m n} → (M N : FinMatrix G m n) → addFinMatrix M N ≡ addFinMatrix N M addFinMatrixComm M N i k l = comm (M k l) (N k l) i FinMatrixAbGroup : (m n : ℕ) → AbGroup {ℓ} FinMatrixAbGroup m n = makeAbGroup {G = FinMatrix G m n} zeroFinMatrix addFinMatrix negFinMatrix isSetFinMatrix addFinMatrixAssoc addFinMatrix0r addFinMatrixNegMatrixr addFinMatrixComm -- Define a abelian group structure on vector matrices and prove that -- it is equal to FinMatrixAbGroup using the SIP module _ (G' : AbGroup {ℓ}) where open AbGroup G' renaming ( Carrier to G ) zeroVecMatrix : ∀ {m n} → VecMatrix G m n zeroVecMatrix = replicate (replicate 0g) negVecMatrix : ∀ {m n} → VecMatrix G m n → VecMatrix G m n negVecMatrix = map (map (λ x → - x)) addVec : ∀ {m} → Vec G m → Vec G m → Vec G m addVec [] [] = [] addVec (x ∷ xs) (y ∷ ys) = x + y ∷ addVec xs ys addVecMatrix : ∀ {m n} → VecMatrix G m n → VecMatrix G m n → VecMatrix G m n addVecMatrix [] [] = [] addVecMatrix (M ∷ MS) (N ∷ NS) = addVec M N ∷ addVecMatrix MS NS open FinMatrixAbGroup -- Proof that FinMatrix→VecMatrix is a group homorphism FinMatrix→VecMatrixHomAdd : (m n : ℕ) (M N : FinMatrix G m n) → FinMatrix→VecMatrix (addFinMatrix G' M N) ≡ addVecMatrix (FinMatrix→VecMatrix M) (FinMatrix→VecMatrix N) FinMatrix→VecMatrixHomAdd zero n M N = refl FinMatrix→VecMatrixHomAdd (suc m) n M N = λ i → lem n (M zero) (N zero) i ∷ FinMatrix→VecMatrixHomAdd m n (λ i j → M (suc i) j) (λ i j → N (suc i) j) i where lem : (n : ℕ) (V W : FinVec G n) → FinVec→Vec (λ j → V j + W j) ≡ addVec (FinVec→Vec V) (FinVec→Vec W) lem zero V W = refl lem (suc n) V W = λ i → V zero + W zero ∷ lem n (V ∘ suc) (W ∘ suc) i -- Combine everything to get an induced abelian group structure of -- VecMatrix that is equal to the one on FinMatrix VecMatrixAbGroup : (m n : ℕ) → AbGroup VecMatrixAbGroup m n = InducedAbGroup (FinMatrixAbGroup G' m n) (_ , addVecMatrix) FinMatrix≃VecMatrix (FinMatrix→VecMatrixHomAdd m n) FinMatrixAbGroup≡VecMatrixAbGroup : (m n : ℕ) → FinMatrixAbGroup G' m n ≡ VecMatrixAbGroup m n FinMatrixAbGroup≡VecMatrixAbGroup m n = InducedAbGroupPath (FinMatrixAbGroup G' m n) (_ , addVecMatrix) FinMatrix≃VecMatrix (FinMatrix→VecMatrixHomAdd m n) -- Define identity matrix and matrix multiplication for FinMatrix and -- prove that square matrices form a ring module _ (R' : Ring {ℓ}) where open Ring R' renaming ( Carrier to R ; is-set to isSetR ) open Theory R' open FinMatrixAbGroup (abgroup R _ _ _ (R' .Ring.+-isAbGroup)) oneFinMatrix : ∀ {n} → FinMatrix R n n oneFinMatrix i j = if i == j then 1r else 0r -- TODO: upstream and state for monoids ∑ : ∀ {n} → FinVec R n → R ∑ = foldrFin _+_ 0r mulFinMatrix : ∀ {m1 m2 m3} → FinMatrix R m1 m2 → FinMatrix R m2 m3 → FinMatrix R m1 m3 mulFinMatrix M N i k = ∑ λ j → M i j · N j k -- Properties sumVecExt : ∀ {n} → {V W : FinVec R n} → ((i : Fin n) → V i ≡ W i) → ∑ V ≡ ∑ W sumVecExt {n = zero} _ = refl sumVecExt {n = suc n} h i = h zero i + sumVecExt (h ∘ suc) i sumVecSplit : ∀ {n} → (V W : FinVec R n) → ∑ (λ i → V i + W i) ≡ ∑ V + ∑ W sumVecSplit {n = zero} V W = sym (+-rid 0r) sumVecSplit {n = suc n} V W = V zero + W zero + ∑ (λ i → V (suc i) + W (suc i)) ≡⟨ (λ i → V zero + W zero + sumVecSplit (V ∘ suc) (W ∘ suc) i) ⟩ V zero + W zero + (∑ (V ∘ suc) + ∑ (W ∘ suc)) ≡⟨ sym (+-assoc _ _ _) ⟩ V zero + (W zero + (∑ (V ∘ suc) + ∑ (W ∘ suc))) ≡⟨ cong (λ x → V zero + x) (+-assoc-comm1 _ _ _) ⟩ V zero + (∑ (V ∘ suc) + (W zero + (∑ (W ∘ suc)))) ≡⟨ +-assoc _ _ _ ⟩ V zero + ∑ (V ∘ suc) + (W zero + ∑ (W ∘ suc)) ∎ sumVec0r : (n : ℕ) → ∑ (λ (i : Fin n) → 0r) ≡ 0r sumVec0r zero = refl sumVec0r (suc n) = cong (λ x → 0r + x) (sumVec0r n) ∙ +-rid 0r sumVecExchange : ∀ {m n} → (M : FinMatrix R m n) → ∑ (λ i → ∑ (λ j → M i j)) ≡ ∑ (λ j → ∑ (λ i → M i j)) sumVecExchange {m = zero} {n = n} M = sym (sumVec0r n) sumVecExchange {m = suc m} {n = zero} M = cong (λ x → 0r + x) (sumVec0r m) ∙ +-rid 0r sumVecExchange {m = suc m} {n = suc n} M = let a = M zero zero L = ∑ λ j → M zero (suc j) C = ∑ λ i → M (suc i) zero N = ∑ λ i → ∑ λ j → M (suc i) (suc j) -- N reindexed N' = ∑ λ j → ∑ λ i → M (suc i) (suc j) in a + L + ∑ (λ i → ∑ (λ j → M (suc i) j)) ≡⟨ (λ k → a + L + sumVecSplit (λ i → M (suc i) zero) (λ i → ∑ (λ j → M (suc i) (suc j))) k) ⟩ a + L + (C + N) ≡⟨ (λ k → a + L + (C + sumVecExchange (λ i j → M (suc i) (suc j)) k)) ⟩ a + L + (C + N') ≡⟨ sym (+-assoc _ _ _) ⟩ a + (L + (C + N')) ≡⟨ (λ k → a + +-assoc-comm1 L C N' k) ⟩ a + (C + (L + N')) ≡⟨ +-assoc _ _ _ ⟩ a + C + (L + N') ≡⟨ (λ k → a + C + sumVecSplit (λ j → M zero (suc j)) (λ j → ∑ (λ i → M (suc i) (suc j))) (~ k)) ⟩ a + C + ∑ (λ j → ∑ (λ i → M i (suc j))) ∎ sumVecMulrdist : ∀ {n} → (x : R) → (V : FinVec R n) → x · ∑ V ≡ ∑ λ i → x · V i sumVecMulrdist {n = zero} x _ = 0-rightNullifies x sumVecMulrdist {n = suc n} x V = x · (V zero + ∑ (V ∘ suc)) ≡⟨ ·-rdist-+ _ _ _ ⟩ x · V zero + x · ∑ (V ∘ suc) ≡⟨ (λ i → x · V zero + sumVecMulrdist x (V ∘ suc) i) ⟩ x · V zero + ∑ (λ i → x · V (suc i)) ∎ sumVecMulldist : ∀ {n} → (x : R) → (V : FinVec R n) → (∑ V) · x ≡ ∑ λ i → V i · x sumVecMulldist {n = zero} x _ = 0-leftNullifies x sumVecMulldist {n = suc n} x V = (V zero + ∑ (V ∘ suc)) · x ≡⟨ ·-ldist-+ _ _ _ ⟩ V zero · x + (∑ (V ∘ suc)) · x ≡⟨ (λ i → V zero · x + sumVecMulldist x (V ∘ suc) i) ⟩ V zero · x + ∑ (λ i → V (suc i) · x) ∎ sumVecMulr0 : ∀ {n} → (V : FinVec R n) → ∑ (λ i → V i · 0r) ≡ 0r sumVecMulr0 V = sym (sumVecMulldist 0r V) ∙ 0-rightNullifies _ sumVecMul0r : ∀ {n} → (V : FinVec R n) → ∑ (λ i → 0r · V i) ≡ 0r sumVecMul0r V = sym (sumVecMulrdist 0r V) ∙ 0-leftNullifies _ sumVecMulr1 : (n : ℕ) (V : FinVec R n) → (j : Fin n) → ∑ (λ i → V i · (if i == j then 1r else 0r)) ≡ V j sumVecMulr1 (suc n) V zero = (λ k → ·-rid (V zero) k + sumVecMulr0 (V ∘ suc) k) ∙ +-rid (V zero) sumVecMulr1 (suc n) V (suc j) = (λ i → 0-rightNullifies (V zero) i + ∑ (λ x → V (suc x) · (if x == j then 1r else 0r))) ∙∙ +-lid _ ∙∙ sumVecMulr1 n (V ∘ suc) j sumVecMul1r : (n : ℕ) (V : FinVec R n) → (j : Fin n) → ∑ (λ i → (if j == i then 1r else 0r) · V i) ≡ V j sumVecMul1r (suc n) V zero = (λ k → ·-lid (V zero) k + sumVecMul0r (V ∘ suc) k) ∙ +-rid (V zero) sumVecMul1r (suc n) V (suc j) = (λ i → 0-leftNullifies (V zero) i + ∑ (λ i → (if j == i then 1r else 0r) · V (suc i))) ∙∙ +-lid _ ∙∙ sumVecMul1r n (V ∘ suc) j mulFinMatrixAssoc : ∀ {m n k l} → (M : FinMatrix R m n) → (N : FinMatrix R n k) → (K : FinMatrix R k l) → mulFinMatrix M (mulFinMatrix N K) ≡ mulFinMatrix (mulFinMatrix M N) K mulFinMatrixAssoc M N K = funExt₂ λ i j → ∑ (λ k → M i k · ∑ (λ l → N k l · K l j)) ≡⟨ sumVecExt (λ k → sumVecMulrdist (M i k) (λ l → N k l · K l j)) ⟩ ∑ (λ k → ∑ (λ l → M i k · (N k l · K l j))) ≡⟨ sumVecExt (λ k → sumVecExt (λ l → ·-assoc (M i k) (N k l) (K l j))) ⟩ ∑ (λ k → ∑ (λ l → M i k · N k l · K l j)) ≡⟨ sumVecExchange (λ k l → M i k · N k l · K l j) ⟩ ∑ (λ l → ∑ (λ k → M i k · N k l · K l j)) ≡⟨ sumVecExt (λ l → sym (sumVecMulldist (K l j) (λ k → M i k · N k l))) ⟩ ∑ (λ l → ∑ (λ k → M i k · N k l) · K l j) ∎ mulFinMatrixr1 : ∀ {m n} → (M : FinMatrix R m n) → mulFinMatrix M oneFinMatrix ≡ M mulFinMatrixr1 M = funExt₂ λ i j → sumVecMulr1 _ (M i) j mulFinMatrix1r : ∀ {m n} → (M : FinMatrix R m n) → mulFinMatrix oneFinMatrix M ≡ M mulFinMatrix1r M = funExt₂ λ i j → sumVecMul1r _ (λ x → M x j) i mulFinMatrixrDistrAddFinMatrix : ∀ {n} (M N K : FinMatrix R n n) → mulFinMatrix M (addFinMatrix N K) ≡ addFinMatrix (mulFinMatrix M N) (mulFinMatrix M K) mulFinMatrixrDistrAddFinMatrix M N K = funExt₂ λ i j → ∑ (λ k → M i k · (N k j + K k j)) ≡⟨ sumVecExt (λ k → ·-rdist-+ (M i k) (N k j) (K k j)) ⟩ ∑ (λ k → M i k · N k j + M i k · K k j) ≡⟨ sumVecSplit (λ k → M i k · N k j) (λ k → M i k · K k j) ⟩ ∑ (λ k → M i k · N k j) + ∑ (λ k → M i k · K k j) ∎ mulFinMatrixlDistrAddFinMatrix : ∀ {n} (M N K : FinMatrix R n n) → mulFinMatrix (addFinMatrix M N) K ≡ addFinMatrix (mulFinMatrix M K) (mulFinMatrix N K) mulFinMatrixlDistrAddFinMatrix M N K = funExt₂ λ i j → ∑ (λ k → (M i k + N i k) · K k j) ≡⟨ sumVecExt (λ k → ·-ldist-+ (M i k) (N i k) (K k j)) ⟩ ∑ (λ k → M i k · K k j + N i k · K k j) ≡⟨ sumVecSplit (λ k → M i k · K k j) (λ k → N i k · K k j) ⟩ ∑ (λ k → M i k · K k j) + ∑ (λ k → N i k · K k j) ∎ FinMatrixRing : (n : ℕ) → Ring {ℓ} FinMatrixRing n = makeRing {R = FinMatrix R n n} zeroFinMatrix oneFinMatrix addFinMatrix mulFinMatrix negFinMatrix isSetFinMatrix addFinMatrixAssoc addFinMatrix0r addFinMatrixNegMatrixr addFinMatrixComm mulFinMatrixAssoc mulFinMatrixr1 mulFinMatrix1r mulFinMatrixrDistrAddFinMatrix mulFinMatrixlDistrAddFinMatrix
{ "alphanum_fraction": 0.5709559088, "avg_line_length": 46.4983277592, "ext": "agda", "hexsha": "cd982ad5929d92b3eb16ec0e7be79f930c9ff297", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "knrafto/cubical", "max_forks_repo_path": "Cubical/Algebra/Matrix.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "knrafto/cubical", "max_issues_repo_path": "Cubical/Algebra/Matrix.agda", "max_line_length": 145, "max_stars_count": null, "max_stars_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "knrafto/cubical", "max_stars_repo_path": "Cubical/Algebra/Matrix.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5506, "size": 13903 }
module _ {A : Set} (P : A → Set) where instance postulate forbidden : {x : A} → P x
{ "alphanum_fraction": 0.5425531915, "avg_line_length": 15.6666666667, "ext": "agda", "hexsha": "f9b44eff6d0998cc1d58b32379cc6284534f40ec", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1452-warn.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1452-warn.agda", "max_line_length": 38, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1452-warn.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 35, "size": 94 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use -- Data.Vec.Relation.Binary.Equality.Propositional directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Vec.Relation.Equality.Propositional where open import Data.Vec.Relation.Binary.Equality.Propositional public {-# WARNING_ON_IMPORT "Data.Vec.Relation.Equality.Propositional was deprecated in v1.0. Use Data.Vec.Relation.Binary.Equality.Propositional instead." #-}
{ "alphanum_fraction": 0.5892255892, "avg_line_length": 33, "ext": "agda", "hexsha": "aa79ec472e1a4683e7f1e3bb31bc71b262dd46df", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Vec/Relation/Equality/Propositional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Vec/Relation/Equality/Propositional.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Vec/Relation/Equality/Propositional.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 113, "size": 594 }
{-# OPTIONS --without-K --safe #-} -- Singleton type and its 'inverse' module Singleton where open import Data.Unit using (⊤; tt) open import Data.Sum open import Data.Product open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst; cong ; cong₂ ; inspect ; [_]) -- open import Level -- using (zero) -- open import Axiom.Extensionality.Propositional -- using (Extensionality) is-contr : Set → Set is-contr A = Σ A (λ a → (x : A) → a ≡ x) is-prop : Set → Set is-prop A = (x y : A) → x ≡ y is-set : Set → Set is-set A = (x y : A) → is-prop (x ≡ y) contr-prop : {A : Set} → is-contr A → is-prop A contr-prop (a , ϕ) x y = trans (sym (ϕ x)) (ϕ y) apd : ∀ {a b} {A : Set a} {B : A → Set b} (f : (x : A) → B x) {x y} → (p : x ≡ y) → subst B p (f x) ≡ f y apd f refl = refl prop-set : {A : Set} → is-prop A → is-set A prop-set {A} ϕ x y p q = trans (l p) (sym (l q)) where g : (z : A) → x ≡ z g z = ϕ x z unitr : {y z : A} (p : y ≡ z) → refl ≡ trans (sym p) p unitr refl = refl l : {y z : A} (p : y ≡ z) → p ≡ trans (sym (g y)) (g z) l refl = unitr (g _) prop-contr : {A : Set} → is-prop A → A → is-contr A prop-contr ϕ a = a , ϕ a ------------------------------------------------------------------------------ -- Singleton type: A type with a distinguished point -- The 'interesting' part is that the point is both a parameter -- and a field. {-- record Singleton (A : Set) (v : A) : Set where constructor ⇑ field ● : A v≡● : v ≡ ● open Singleton public --} Singleton : (A : Set) → (v : A) → Set Singleton A v = ∃ (λ ● → v ≡ ●) -- Singleton types are contractible: pointed-contr : {A : Set} {v : A} → is-contr (Singleton A v) --pointed-contr {A} {v} = ⇑ v refl , λ { (⇑ ● refl) → refl } pointed-contr {A} {v} = (v , refl) , λ { ( ● , refl) → refl } -- and thus have all paths between them: pointed-all-paths : {A : Set} {v : A} {p q : Singleton A v} → p ≡ q pointed-all-paths = contr-prop pointed-contr _ _ -- What does Singleton of Singleton do? -- Values of type Singleton A v are of the form (w , p) where p : v ≡ w -- Values of type Singleton (Singleton A v) x ssv : (A : Set) (v : A) (x : Singleton A v) → Singleton (Singleton A v) x ssv A v (.v , refl) = (v , refl) , refl {-- ss=s : (A : Set) (v : A) (x : Singleton A v) → Singleton (Singleton A v) x ≡ Singleton A v ss=s A v (.v , refl) with pointed-contr {A} {v} ... | (.v , refl) , f = let p = f (v , refl) in {!!} -- ?? --} ------------------------------------------------------------------------------ -- The 'reciprocal' of a Singleton type is a function that accepts exactly -- that point, and returns no information. It acts as a 'witness' that -- the right point has been fed to it. {-- Recip : (A : Set) → (v : A) → Set Recip A v = (w : A) → (v ≡ w) → ⊤ --} Recip : (A : Set) → (v : A) → Set Recip A v = Singleton A v → ⊤ -- Recip A v = Singleton A v → ⊤ -- Recip is also contractible, if we're thinking of homotopy types. -- We need funext to prove it which is not --safe -- posulate -- funext : Extensionality zero zero -- recip-contr : {A : Set} {v : A} → is-contr (Recip A v) -- recip-contr = (λ _ _ → tt) , λ r → funext λ _ → funext λ _ → refl ------------------------------------------------------------------------------ -- Recip' : {A : Set} {v : A} → Singleton A v → Set -- Recip' {A} {v} (⇑ w v≡w) = v ≡ w -- Recip'-ptd : {A : Set} {v : A} → (p : Singleton A v) → Singleton (Recip' p) (v≡● p) -- Recip'-ptd (⇑ w v≡w) = ⇑ v≡w refl -- family of path types from arbitrary w to a fixed v Recip' : (A : Set) → (v : A) → Set Recip' A v = (w : A) → v ≡ w -- If A is a n-type, Recip' is a (n-1)-type -- recip'-contr : {A : Set} {v : A} → is-prop A → is-contr (Recip' A v) -- recip'-contr {A} {v} ϕ = (λ w → ϕ v w) , λ r → funext λ x → prop-set ϕ v x (ϕ v x) (r x) -- recip'-prop : {A : Set} {v : A} → is-set A → is-prop (Recip' A v) -- recip'-prop ϕ r s = funext (λ x → ϕ _ x (r x) (s x)) ------------------------------------------------------------------------------ -- Singleton is an idempotent bimonad on pointed sets -- (need to check some coherences) ∙Set = Σ Set (λ X → X) ∙Set[_,_] : ∙Set → ∙Set → Set ∙Set[ (A , a) , (B , b) ] = Σ (A → B) λ f → f a ≡ b _∙×_ : ∙Set → ∙Set → ∙Set (A , a) ∙× (B , b) = (A × B) , (a , b) -- left version, there's also a right version -- note that this isn't a coproduct -- wedge sum is the coproduct _∙+_ : ∙Set → ∙Set → ∙Set (A , a) ∙+ (B , b) = (A ⊎ B) , inj₁ a ∙id : ∀{∙A} → ∙Set[ ∙A , ∙A ] ∙id = (λ a → a) , refl _∘_ : ∀ {∙A ∙B ∙C} → ∙Set[ ∙A , ∙B ] → ∙Set[ ∙B , ∙C ] → ∙Set[ ∙A , ∙C ] (f , p) ∘ (g , q) = (λ x → g (f x)) , trans (cong g p) q -- terminal and initial ∙1 : ∙Set ∙1 = ⊤ , tt ∙![_] : ∀ ∙A → ∙Set[ ∙A , ∙1 ] ∙![ (A , a) ] = (λ _ → tt) , refl ∙!-uniq : ∀ {∙A} {x : ∙A .proj₁} → (∙f : ∙Set[ ∙A , ∙1 ]) → (∙f .proj₁) x ≡ (∙![ ∙A ] .proj₁) x ∙!-uniq {A , a} {x} (f , p) = refl ∙¡[_] : ∀ ∙A → ∙Set[ ∙1 , ∙A ] ∙¡[ A , a ] = (λ _ → a) , refl ∙¡-uniq : ∀ {∙A} → (∙f : ∙Set[ ∙1 , ∙A ]) → (∙f .proj₁) tt ≡ (∙¡[ ∙A ] .proj₁) tt ∙¡-uniq (f , p) = p record ∙Iso[_,_] (∙A ∙B : ∙Set) : Set where constructor iso field ∙f : ∙Set[ ∙A , ∙B ] ∙g : ∙Set[ ∙B , ∙A ] f = ∙f .proj₁ g = ∙g .proj₁ field f-g : ∀ b → f (g b) ≡ b g-f : ∀ a → g (f a) ≡ a open ∙Iso[_,_] ∙Iso⁻¹ : ∀ {∙A ∙B} → ∙Iso[ ∙A , ∙B ] → ∙Iso[ ∙B , ∙A ] ∙Iso⁻¹ (iso ∙f ∙g f-g g-f) = iso ∙g ∙f g-f f-g Sing : ∙Set → ∙Set Sing (A , a) = Singleton A a , a , refl Sing[_,_] : ∀ ∙A ∙B → ∙Set[ ∙A , ∙B ] → ∙Set[ Sing ∙A , Sing ∙B ] Sing[ (A , a) , (B , .(f a)) ] (f , refl) = (λ { (x , refl) → f x , refl }) , refl -- monad η[_] : ∀ ∙A → ∙Set[ ∙A , Sing ∙A ] η[ (A , a) ] = (λ x → a , refl) , refl -- Sing(A) is terminal η-uniq : ∀ {∙A} {x : ∙A .proj₁} → (∙f : ∙Set[ ∙A , Sing ∙A ]) → (∙f .proj₁) x ≡ (η[ ∙A ] .proj₁) x η-uniq {A , a} (f , p) = pointed-all-paths Sing≃1 : ∀ {∙A} → ∙Iso[ Sing ∙A , ∙1 ] Sing≃1 {∙A@(A , a)} = iso ∙![ Sing ∙A ] ( ((λ _ → a) , refl) ∘ η[ ∙A ]) (λ _ → refl) (λ _ → pointed-all-paths) μ[_] : ∀ ∙A → ∙Iso[ Sing (Sing ∙A) , Sing ∙A ] μ[ (A , a) ] = iso ((λ { (.(a , refl) , refl) → a , refl }) , refl) ((λ { (a , refl) → (a , refl) , refl }) , refl) (λ { (a , refl) → refl}) (λ { ((a , refl) , refl) → refl }) -- check Sη-μ : ∀ {∙A} → ((Sing[ ∙A , Sing ∙A ] η[ ∙A ] ∘ (μ[ ∙A ] .∙f)) .proj₁) (∙A .proj₂ , refl) ≡ (∙A .proj₂ , refl) Sη-μ = refl ηS-μ : ∀ {∙A} → ((Sing[ Sing ∙A , Sing (Sing ∙A) ] η[ Sing ∙A ] ∘ (μ[ Sing ∙A ] .∙f)) .proj₁) ((∙A .proj₂ , refl) , refl) ≡ ((∙A .proj₂ , refl) , refl) ηS-μ = refl -- strength σ×[_,_] : ∀ ∙A ∙B → ∙Set[ Sing ∙A ∙× ∙B , Sing (∙A ∙× ∙B) ] σ×[ (A , a) , (B , b) ] = (λ { ((a , refl) , _) → (a , b) , refl }) , refl τ×[_,_] : ∀ ∙A ∙B → ∙Set[ ∙A ∙× Sing ∙B , Sing (∙A ∙× ∙B) ] τ×[ (A , a) , (B , b) ] = (λ { (_ , (b , refl)) → (a , b) , refl }) , refl σ+[_,_] : ∀ ∙A ∙B → ∙Set[ Sing ∙A ∙+ ∙B , Sing (∙A ∙+ ∙B) ] σ+[ (A , a) , (B , b) ] = (λ _ → inj₁ a , refl) , refl τ+[_,_] : ∀ ∙A ∙B → ∙Set[ ∙A ∙+ Sing ∙B , Sing (∙A ∙+ ∙B) ] τ+[ (A , a) , (B , b) ] = (λ _ → inj₁ a , refl) , refl -- comonad ε[_] : ∀ ∙A → ∙Set[ Sing ∙A , ∙A ] ε[ (A , a) ] = (λ { (x , refl) → x }) , refl δ[_] : ∀ ∙A → ∙Iso[ Sing ∙A , Sing (Sing ∙A) ] δ[ ∙A ] = ∙Iso⁻¹ μ[ ∙A ] -- check δ-Sε : ∀ {∙A} → ((δ[ ∙A ] .∙f ∘ Sing[ Sing ∙A , ∙A ] ε[ ∙A ]) .proj₁) (∙A .proj₂ , refl) ≡ (∙A .proj₂ , refl) δ-Sε = refl δ-εS : ∀ {∙A} → ((δ[ Sing ∙A ] .∙f ∘ Sing[ Sing (Sing ∙A) , Sing ∙A ] ε[ Sing ∙A ]) .proj₁) ((∙A .proj₂ , refl) , refl) ≡ ((∙A .proj₂ , refl) , refl) δ-εS = refl -- costrength σ'×[_,_] : ∀ ∙A ∙B → ∙Set[ Sing (∙A ∙× ∙B) , Sing ∙A ∙× ∙B ] σ'×[ (A , a) , (B , b) ] = (λ { (.(a , b) , refl) → (a , refl) , b }) , refl τ'×[_,_] : ∀ ∙A ∙B → ∙Set[ Sing (∙A ∙× ∙B) , ∙A ∙× Sing ∙B ] τ'×[ (A , a) , (B , b) ] = (λ { (.(a , b) , refl) → a , (b , refl) }) , refl σ'+[_,_] : ∀ ∙A ∙B → ∙Set[ Sing (∙A ∙+ ∙B) , Sing ∙A ∙+ ∙B ] σ'+[ (A , a) , (B , b) ] = (λ _ → inj₁ (a , refl)) , refl τ'+[_,_] : ∀ ∙A ∙B → ∙Set[ Sing (∙A ∙+ ∙B) , ∙A ∙+ Sing ∙B ] τ'+[ (A , a) , (B , b) ] = (λ _ → inj₁ a) , refl -- even better, strong monoidal functor ν×[_,_] : ∀ ∙A ∙B → ∙Iso[ Sing ∙A ∙× Sing ∙B , Sing (∙A ∙× ∙B) ] ν×[ (A , a) , (B , b) ] = iso ((λ _ → (a , b) , refl) , refl) ((λ _ → (a , refl) , b , refl) , refl) (λ { (.(a , b) , refl) → refl }) (λ { ((a , refl) , (b , refl)) → refl }) -- this one is only lax ν+[_,_] : ∀ ∙A ∙B → ∙Set[ Sing ∙A ∙+ Sing ∙B , Sing (∙A ∙+ ∙B) ] ν+[ (A , a) , (B , b) ] = (λ _ → inj₁ a , refl) , refl -- free pointed set U : ∙Set → Set U = proj₁ U[_,_] : ∀ ∙A ∙B → ∙Set[ ∙A , ∙B ] → (U ∙A → U ∙B) U[ _ , _ ] = proj₁ F : Set → ∙Set F A = (A ⊎ ⊤) , inj₂ tt F[_,_] : ∀ A B → (A → B) → ∙Set[ F A , F B ] F[ A , B ] f = (λ { (inj₁ a) → inj₁ (f a) ; (inj₂ tt) → inj₂ tt }) , refl ->adj : ∀ {A ∙B} → (A → U ∙B) → ∙Set[ F A , ∙B ] ->adj f = (λ { (inj₁ a) → f a ; (inj₂ tt) → _ }) , refl <-adj : ∀ {A ∙B} → ∙Set[ F A , ∙B ] → (A → U ∙B) <-adj (f , refl) a = f (inj₁ a) η-adj : ∀ {A} → (A → U (F A)) η-adj = <-adj ∙id ε-adj : ∀ {∙A} → ∙Set[ F (U ∙A), ∙A ] ε-adj = ->adj λ x → x -- maybe monad T : Set → Set T A = U (F A) T-η[_] : ∀ A → (A → T A) T-η[ A ] = η-adj T-μ[_] : ∀ A → (T (T A) → T A) T-μ[ A ] = U[ F (T A) , F A ] ε-adj -- comaybe comonad D : ∙Set → ∙Set D ∙A = F (U ∙A) D-ε[_] : ∀ ∙A → ∙Set[ D ∙A , ∙A ] D-ε[ ∙A ] = ε-adj D-δ[_] : ∀ ∙A → ∙Set[ D ∙A , D (D ∙A) ] D-δ[ ∙A ] = F[ U ∙A , U (D ∙A) ] η-adj -- but also D-η[_] : ∀ ∙A → ∙Set[ ∙A , D ∙A ] D-η[ ∙A ] = (λ _ → inj₂ tt) , refl -- D ∙A is not contractible -- distributive laws? -- same as ∙Set[ ∙1 , D ∙1 ] so follows D-η Λ : ∀ {∙A} → ∙Set[ Sing (D ∙A) , D (Sing ∙A) ] Λ = (λ { (.(inj₂ tt) , refl) → inj₂ tt }) , refl
{ "alphanum_fraction": 0.4375572519, "avg_line_length": 30.7993730408, "ext": "agda", "hexsha": "0ec54904ef9ae3e6f8039e3004035d13472975ae", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "fracGC/Singleton.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "fracGC/Singleton.agda", "max_line_length": 151, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "fracGC/Singleton.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 4565, "size": 9825 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Categories.Equivalence.Properties where open import Cubical.Foundations.Prelude open import Cubical.Data.Sigma open import Cubical.Categories.Category open import Cubical.Categories.Functor open import Cubical.Categories.NaturalTransformation open import Cubical.Categories.Morphism open import Cubical.Categories.Equivalence.Base open import Cubical.HITs.PropositionalTruncation.Base open Precategory open Functor open NatIso open CatIso open NatTrans open isEquivalence private variable ℓC ℓC' ℓD ℓD' : Level -- Equivalence implies Full, Faithul, and Essentially Surjective module _ {C : Precategory ℓC ℓC'} {D : Precategory ℓD ℓD'} where symEquiv : ∀ {F : Functor C D} → (e : isEquivalence F) → isEquivalence (e .invFunc) symEquiv {F} record { invFunc = G ; η = η ; ε = ε } = record { invFunc = F ; η = symNatIso ε ; ε = symNatIso η } isEquiv→Faithful : ∀ {F : Functor C D} → isEquivalence F → isFaithful F isEquiv→Faithful {F} record { invFunc = G ; η = η ; ε = _ } c c' f g p = f ≡⟨ sqRL η ⟩ cIso .mor ⋆⟨ C ⟩ G ⟪ F ⟪ f ⟫ ⟫ ⋆⟨ C ⟩ c'Iso .inv ≡⟨ cong (λ v → cIso .mor ⋆⟨ C ⟩ (G ⟪ v ⟫) ⋆⟨ C ⟩ c'Iso .inv) p ⟩ cIso .mor ⋆⟨ C ⟩ G ⟪ F ⟪ g ⟫ ⟫ ⋆⟨ C ⟩ c'Iso .inv ≡⟨ sym (sqRL η) ⟩ g ∎ where -- isomorphism between c and GFc cIso = isIso→CatIso (η .nIso c) -- isomorphism between c' and GFc' c'Iso = isIso→CatIso (η .nIso c') module _ {C : Precategory ℓC ℓC'} {D : Precategory ℓD ℓD'} where isEquiv→Full : ∀ {F : Functor C D} → isEquivalence F → isFull F isEquiv→Full {F} eq@record { invFunc = G ; η = η ; ε = _ } c c' g = ∣ h , isEquiv→Faithful (symEquiv eq) _ _ _ _ GFh≡Gg ∣ -- apply faithfulness of G where -- isomorphism between c and GFc cIso = isIso→CatIso (η .nIso c) -- isomorphism between c' and GFc' c'Iso = isIso→CatIso (η .nIso c') -- reverses cIso⁻ = symCatIso cIso c'Iso⁻ = symCatIso c'Iso h = cIso .mor ⋆⟨ C ⟩ G ⟪ g ⟫ ⋆⟨ C ⟩ c'Iso .inv -- we show that both `G ⟪ g ⟫` and `G ⟪ F ⟪ h ⟫ ⟫` -- are equal to the same thing -- namely : cIso .inv ⋆⟨ C ⟩ h ⋆⟨ C ⟩ c'Iso .mor Gg≡ηhη : G ⟪ g ⟫ ≡ cIso .inv ⋆⟨ C ⟩ h ⋆⟨ C ⟩ c'Iso .mor Gg≡ηhη = invMoveL cAreInv move-c' ∙ sym (C .⋆Assoc _ _ _) where cAreInv : areInv (cIso .mor) (cIso .inv) cAreInv = CatIso→areInv cIso c'AreInv : areInv (c'Iso .mor) (c'Iso .inv) c'AreInv = CatIso→areInv c'Iso move-c' : cIso .mor ⋆⟨ C ⟩ G ⟪ g ⟫ ≡ h ⋆⟨ C ⟩ c'Iso .mor move-c' = invMoveR (symAreInv c'AreInv) refl GFh≡Gg : G ⟪ F ⟪ h ⟫ ⟫ ≡ G ⟪ g ⟫ GFh≡Gg = G ⟪ F ⟪ h ⟫ ⟫ ≡⟨ sqLR η ⟩ cIso .inv ⋆⟨ C ⟩ h ⋆⟨ C ⟩ c'Iso .mor ≡⟨ sym Gg≡ηhη ⟩ G ⟪ g ⟫ ∎ isEquiv→Surj : ∀ {F : Functor C D} → isEquivalence F → isEssentiallySurj F isEquiv→Surj isE d = (isE .invFunc ⟅ d ⟆) , isIso→CatIso ((isE .ε .nIso) d)
{ "alphanum_fraction": 0.5172721858, "avg_line_length": 36.1075268817, "ext": "agda", "hexsha": "462072d528d32532d386e10779b62fa97dfa48c3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Categories/Equivalence/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Categories/Equivalence/Properties.agda", "max_line_length": 114, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Categories/Equivalence/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1269, "size": 3358 }
------------------------------------------------------------------------------ -- Properties of the Collatz function ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.Collatz.PropertiesATP where open import FOTC.Base open import FOTC.Data.Nat open import FOTC.Data.Nat.PropertiesATP using ( ∸-N ) open import FOTC.Data.Nat.UnaryNumbers open import FOTC.Data.Nat.UnaryNumbers.TotalityATP using ( 2-N ) open import FOTC.Program.Collatz.Collatz open import FOTC.Program.Collatz.Data.Nat open import FOTC.Program.Collatz.Data.Nat.PropertiesATP ------------------------------------------------------------------------------ helper : ∀ {n} → N n → collatz (2' ^ succ₁ n) ≡ collatz (2' ^ n) helper nzero = prf where postulate prf : collatz (2' ^ succ₁ zero) ≡ collatz (2' ^ zero) {-# ATP prove prf #-} helper (nsucc {n} Nn) = prf where postulate prf : collatz (2' ^ succ₁ (succ₁ n)) ≡ collatz (2' ^ succ₁ n) {-# ATP prove prf +∸2 ^-N 2-N 2^x≢0 2^[x+1]≢1 div-2^[x+1]-2≡2^x x-Even→SSx-Even ∸-N ∸-Even 2^[x+1]-Even 2-Even #-} collatz-2^x : ∀ {n} → N n → collatz (2' ^ n) ≡ 1' collatz-2^x nzero = prf where postulate prf : collatz (2' ^ 0') ≡ 1' {-# ATP prove prf #-} collatz-2^x (nsucc {n} Nn) = prf (collatz-2^x Nn) where postulate prf : collatz (2' ^ n) ≡ 1' → collatz (2' ^ succ₁ n) ≡ 1' {-# ATP prove prf helper #-}
{ "alphanum_fraction": 0.5161691542, "avg_line_length": 39.2195121951, "ext": "agda", "hexsha": "e864b352e6809fb9934687c5a58c5f5f1f95f5ae", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/Collatz/PropertiesATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/Collatz/PropertiesATP.agda", "max_line_length": 79, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/Collatz/PropertiesATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 509, "size": 1608 }
{-# OPTIONS --sized-types #-} module SNat where open import Data.Nat hiding (_+_) open import Size data SNat : {ι : Size} → Set where zero : {ι : Size} → SNat {↑ ι} succ : {ι : Size} → SNat {ι} → SNat {↑ ι} subtyping : {ι : Size} → SNat {ι} → SNat {↑ ι} subtyping zero = zero subtyping (succ n) = succ (subtyping n) _/2 : {ι : Size} → SNat { ι} → SNat {ι} zero /2 = zero (succ zero) /2 = zero (succ (succ n)) /2 = subtyping (succ (n /2)) log₂ : {ι : Size} → SNat {ι} → SNat {ι} log₂ zero = zero log₂ (succ zero) = zero log₂ (succ (succ n)) = succ (log₂ (succ (n /2))) _+_ : SNat → SNat → SNat zero + n = n (succ m) + n = succ (m + n) toNat : SNat → ℕ toNat zero = zero toNat (succ n) = suc (toNat n)
{ "alphanum_fraction": 0.5259067358, "avg_line_length": 22.0571428571, "ext": "agda", "hexsha": "701dd3da97934720031f5458f53dd6a9c15a98d9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/SNat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/SNat.agda", "max_line_length": 48, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/SNat.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 291, "size": 772 }
module nat-log-test where open import eq open import nat open import nat-log test : log-result 11 3 test = log 11 3 refl refl exp-from-test : ℕ exp-from-test with test exp-from-test | pos-power e s p = e exp-from-test | no-power p = 0
{ "alphanum_fraction": 0.7142857143, "avg_line_length": 17, "ext": "agda", "hexsha": "25d96ec5109803b715265f8f5f95e1ae1513c862", "lang": "Agda", "max_forks_count": 17, "max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z", "max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rfindler/ial", "max_forks_repo_path": "nat-log-test.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rfindler/ial", "max_issues_repo_path": "nat-log-test.agda", "max_line_length": 35, "max_stars_count": 29, "max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rfindler/ial", "max_stars_repo_path": "nat-log-test.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z", "max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z", "num_tokens": 73, "size": 238 }
------------------------------------------------------------------------ -- The Agda standard library -- -- The Thunk wrappers for sized codata, copredicates and corelations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} module Codata.Thunk where open import Size open import Relation.Unary ------------------------------------------------------------------------ -- Basic types. record Thunk {ℓ} (F : Size → Set ℓ) (i : Size) : Set ℓ where coinductive field force : {j : Size< i} → F j open Thunk public Thunk^P : ∀ {f p} {F : Size → Set f} (P : Size → F ∞ → Set p) (i : Size) (tf : Thunk F ∞) → Set p Thunk^P P i tf = Thunk (λ i → P i (tf .force)) i Thunk^R : ∀ {f g r} {F : Size → Set f} {G : Size → Set g} (R : Size → F ∞ → G ∞ → Set r) (i : Size) (tf : Thunk F ∞) (tg : Thunk G ∞) → Set r Thunk^R R i tf tg = Thunk (λ i → R i (tf .force) (tg .force)) i ------------------------------------------------------------------------ -- Syntax Thunk-syntax : ∀ {ℓ} → (Size → Set ℓ) → Size → Set ℓ Thunk-syntax = Thunk syntax Thunk-syntax (λ j → e) i = Thunk[ j < i ] e ------------------------------------------------------------------------ -- Basic functions. -- Thunk is a functor module _ {p q} {P : Size → Set p} {Q : Size → Set q} where map : ∀[ P ⇒ Q ] → ∀[ Thunk P ⇒ Thunk Q ] map f p .force = f (p .force) -- Thunk is a comonad module _ {p} {P : Size → Set p} where extract : ∀[ Thunk P ] → P ∞ extract p = p .force duplicate : ∀[ Thunk P ⇒ Thunk (Thunk P) ] duplicate p .force .force = p .force module _ {p q} {P : Size → Set p} {Q : Size → Set q} where infixl 1 _<*>_ _<*>_ : ∀[ Thunk (P ⇒ Q) ⇒ Thunk P ⇒ Thunk Q ] (f <*> p) .force = f .force (p .force) -- We can take cofixpoints of functions only making Thunk'd recursive calls module _ {p} (P : Size → Set p) where cofix : ∀[ Thunk P ⇒ P ] → ∀[ P ] cofix f = f λ where .force → cofix f
{ "alphanum_fraction": 0.458958959, "avg_line_length": 29.3823529412, "ext": "agda", "hexsha": "4da100a2c1cb52c8182746aaee47bf68df89ff72", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Codata/Thunk.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Codata/Thunk.agda", "max_line_length": 75, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Codata/Thunk.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 622, "size": 1998 }
{-# OPTIONS --cubical #-} module TranspComputing where open import Agda.Builtin.Cubical.Path open import Agda.Primitive.Cubical open import Agda.Builtin.List transpList : ∀ (φ : I) (A : Set) x xs → primTransp (λ _ → List A) φ (x ∷ xs) ≡ (primTransp (λ i → A) φ x ∷ primTransp (λ i → List A) φ xs) transpList φ A x xs = \ _ → primTransp (λ _ → List A) φ (x ∷ xs) data S¹ : Set where base : S¹ loop : base ≡ base -- This should be refl. transpS¹ : ∀ (φ : I) (u0 : S¹) → primTransp (λ _ → S¹) φ u0 ≡ u0 transpS¹ φ u0 = \ _ → u0
{ "alphanum_fraction": 0.6231343284, "avg_line_length": 26.8, "ext": "agda", "hexsha": "333eaa32ea99528886e89632b80ab275e22a8310", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/TranspComputing.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/TranspComputing.agda", "max_line_length": 138, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/TranspComputing.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 214, "size": 536 }
-- {-# OPTIONS -v interaction:50 #-} module Issue841 where postulate D : Set c : (A : Set) (B : Set1) → D e : (A : Set) (B : Set1) (C : Set2) (X : Set3) → D -- When the following is refined the goals end up being the wrong way -- around. bad : D bad = {!c ?!} -- I.e. bad ?3 ?2 instead of bad ?2 ?3. -- Andreas, 2013-05-01 should now be correct. bad' : D bad' = {!e ? ?!} -- This works: good : D good = {!c!} also-good : D also-good = {!c ? ?!}
{ "alphanum_fraction": 0.5502183406, "avg_line_length": 16.962962963, "ext": "agda", "hexsha": "2b673a733c970a3ec4ac6362e6e751454d17f1b0", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue841.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue841.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue841.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 172, "size": 458 }
{-# OPTIONS --cubical-compatible #-} module Common.Maybe where data Maybe {a} (A : Set a) : Set a where nothing : Maybe A just : A → Maybe A
{ "alphanum_fraction": 0.6308724832, "avg_line_length": 21.2857142857, "ext": "agda", "hexsha": "d8630b1bc305e10fb7f264d938c7716e2b541464", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Common/Maybe.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Common/Maybe.agda", "max_line_length": 40, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Common/Maybe.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 44, "size": 149 }
module Reduction where open import Data.Sum open import Library open import Terms open import Substitution open import TermShape open import SN data βECxt (Γ : Cxt) : (Δ : Cxt) (a b : Ty) → Set where appl : ∀ {a b} (u : Tm Γ a) → βECxt Γ Γ (a →̂ b) b appr : ∀ {a b} (t : Tm Γ (a →̂ b)) → βECxt Γ Γ a b abs : ∀ {a b} → βECxt Γ (a ∷ Γ) b (a →̂ b) data βEhole {Γ : Cxt} : {Δ : Cxt} {b a : Ty} → Tm Γ b → βECxt Γ Δ a b → Tm Δ a → Set where appl : ∀ {a b} {t : Tm Γ (a →̂ b)} (u : Tm Γ a) → βEhole (app t u) (appl u) t appr : ∀ {a b u} (t : Tm Γ (a →̂ b)) → βEhole (app t u) (appr t) u abs : ∀ {a b} {t : Tm (a ∷ Γ) b} → βEhole (abs t) abs t -- Plugging a hole mkHole : ∀ {Γ Δ} {a b} (E : βECxt Γ Δ a b) {t} → ∃ λ E[t] → βEhole E[t] E t mkHole (appl u) = _ , appl u mkHole (appr t) = _ , appr t mkHole abs = _ , abs data _⇒β_ {Γ} : ∀ {a} → Tm Γ a → Tm Γ a → Set where β : ∀ {a b}{t : Tm (a ∷ Γ) b}{u} → (app (abs t) u) ⇒β subst0 u t cong : ∀ {Δ a b t t' Et Et'}{E : βECxt Γ Δ a b} → (𝑬𝒕 : βEhole Et E t) → (𝑬𝒕' : βEhole Et' E t') → (t⇒β : t ⇒β t') → Et ⇒β Et' subst⇒β : ∀ {m vt a Γ} {t t' : Tm Γ a} {Δ} (σ : RenSub {m} vt Γ Δ) → t ⇒β t' → subst σ t ⇒β subst σ t' subst⇒β σ (β {t = t} {u = u}) = ≡.subst (λ t' → app (abs (subst (lifts σ) t)) (subst σ u) ⇒β t') (sgs-lifts-term {σ = σ} {u} {t}) β subst⇒β σ (cong (appl u) (appl .u) t⇒) = cong (appl _) (appl _) (subst⇒β σ t⇒) subst⇒β σ (cong (appr t) (appr .t) t⇒) = cong (appr _) (appr _) (subst⇒β σ t⇒) subst⇒β σ (cong abs abs t⇒) = cong abs abs (subst⇒β (lifts σ) t⇒) -- Multi-step β-reduction (β-reduction sequences). -- Reflexive-transitive closure of single-step β-reduction. infix 7 _⇒β_ _⇒β*_ data _⇒β*_ {Γ} {a} : Tm Γ a → Tm Γ a → Set where [] : ∀ {t} → t ⇒β* t _∷_ : ∀ {ti tm to} → ti ⇒β tm → tm ⇒β* to → ti ⇒β* to -- Concatenating β-reduction sequences _++β_ : ∀ {Γ} {a} {t₀ t₁ t₂ : Tm Γ a} → t₀ ⇒β* t₁ → t₁ ⇒β* t₂ → t₀ ⇒β* t₂ [] ++β ys = ys (x ∷ xs) ++β ys = x ∷ (xs ++β ys) -- Multi-step β-reduction is compatible with term constructors. cong* : ∀ {a Γ Δ} {b} {t tβ* : Tm Γ a} {E : βECxt Δ Γ a b} {E[t] E[tβ*]} → βEhole E[t] E t → βEhole E[tβ*] E tβ* → t ⇒β* tβ* → E[t] ⇒β* E[tβ*] cong* E1 E2 (x ∷ t⇒) = cong E1 (proj₂ (mkHole _)) x ∷ cong* (proj₂ (mkHole _)) E2 t⇒ cong* (appl u) (appl .u) [] = [] cong* (appr t₁) (appr .t₁) [] = [] cong* abs abs [] = [] EC→βEC : ∀ {Γ} {a b} (E : ECxt Γ a b) → βECxt Γ Γ a b EC→βEC (appl u) = appl u mkHole4 : ∀ {Γ} {a b} (E : ECxt Γ a b) {t : Tm Γ a} → βEhole (E [ t ]) (EC→βEC E) t mkHole4 (appl u) = appl u cong*3 : ∀ {Γ a b t t'}(E : ECxt* Γ a b) → (t⇒ : t ⇒β t') → E [ t ]* ⇒β E [ t' ]* cong*3 [] t⇒ = t⇒ cong*3 (x ∷ E) t⇒ = cong*3 E (cong (mkHole4 x) (mkHole4 x) t⇒) cong*4 : ∀ {Γ a b t t'}(E : ECxt* Γ a b) → (t⇒ : t ⇒β* t') → E [ t ]* ⇒β* E [ t' ]* cong*4 E [] = [] cong*4 E (x ∷ xs) = cong*3 E x ∷ cong*4 E xs subst⇒β*₀ : ∀ {m vt a Γ} {t t' : Tm Γ a} {Δ} (σ : RenSub {m} vt Γ Δ) → t ⇒β* t' → subst σ t ⇒β* subst σ t' subst⇒β*₀ σ [] = [] subst⇒β*₀ σ (x ∷ xs) = (subst⇒β σ x) ∷ (subst⇒β*₀ σ xs) mutual subst⇒β* : ∀ {m vt a Γ} {Δ} {σ ρ : RenSub {m} vt Γ Δ} → (∀ {b} (x : Var Γ b) → vt2tm _ (σ x) ⇒β* vt2tm _ (ρ x)) → (t : Tm Γ a) → subst σ t ⇒β* subst ρ t subst⇒β* σ₁ (var x) = σ₁ x subst⇒β* {vt = vt} σ₁ (abs t) = cong* abs abs (subst⇒β* (lifts⇒β* {vt = vt} σ₁) t) subst⇒β* σ₁ (app t t₁) = cong* (appl _) (appl _) (subst⇒β* σ₁ t) ++β cong* (appr _) (appr _) (subst⇒β* σ₁ t₁) lifts⇒β* : ∀ {m vt a Γ} {Δ} {σ ρ : RenSub {m} vt Γ Δ} → (∀ {b} (x : Var Γ b) → vt2tm _ (σ x) ⇒β* vt2tm _ (ρ x)) → ∀ {b} (x : Var (a ∷ Γ) b) → vt2tm _ (lifts {a = a} σ x) ⇒β* vt2tm _ (lifts {a = a} ρ x) lifts⇒β* {vt = `Var} σ (zero) = [] lifts⇒β* {vt = `Tm} σ (zero) = [] lifts⇒β* {vt = `Var} σ (suc x) = subst⇒β*₀ {vt = `Var} suc (σ x) lifts⇒β* {vt = `Tm} σ (suc x) = subst⇒β*₀ {vt = `Var} suc (σ x) -- Altenkirch's weak standardization lemma. mutual beta-shr : ∀ {i a Γ} {t tβ th : Tm Γ a} → t ⇒β tβ → t ⟨ i ⟩⇒ th → (tβ ≡ th) ⊎ ∃ λ t' → tβ ⟨ i ⟩⇒ t' × th ⇒β* t' beta-shr β (β 𝒖) = inj₁ ≡.refl beta-shr (cong (appl u) (appl .u) (cong abs abs tβ⇒)) (β 𝒖) = inj₂ (_ , β 𝒖 , (subst⇒β (sgs u) tβ⇒ ∷ [])) beta-shr (cong (appr ._) (appr ._) tβ⇒) (β {t = t} 𝒖) = inj₂ (_ , β (mapβSN tβ⇒ 𝒖) , subst⇒β* {vt = `Tm} (λ { {._} (zero) → tβ⇒ ∷ [] ; (suc x) → [] }) t) beta-shr β (cong (appl u) (appl .u) (cong () 𝑬𝒕' th⇒)) beta-shr (cong E1 E2 t⇒) (cong E0 E3 th⇒) = helper E1 E2 t⇒ E0 E3 th⇒ where helper : ∀ {i}{a Γ} {t tβ th : Tm Γ a} {Δ a₁} {t₁ ta : Tm Δ a₁} {E : βECxt Γ Δ a₁ a} {a₂} {t₂ tb : Tm Γ a₂} {E₁ : ECxt Γ a₂ a} → βEhole t E t₁ → βEhole tβ E ta → t₁ ⇒β ta → Ehole t E₁ t₂ → Ehole th E₁ tb → t₂ ⟨ i ⟩⇒ tb → tβ ≡ th ⊎ ∃ λ t' → tβ ⟨ i ⟩⇒ t' × th ⇒β* t' helper (appl u) (appl .u) t⇒₁ (appl .u) (appl .u) th⇒₁ with beta-shr t⇒₁ th⇒₁ helper (appl u) (appl .u) t⇒₁ (appl .u) (appl .u) th⇒₁ | inj₁ ≡.refl = inj₁ ≡.refl helper (appl u) (appl .u) t⇒₁ (appl .u) (appl .u) th⇒₁ | inj₂ (tm , h⇒tm , tm⇒β) = inj₂ (_ , cong (appl _) (appl _) h⇒tm , cong* (appl _) (appl _) tm⇒β) helper (appr t₂) (appr .t₂) t⇒₁ (appl t₁) (appl .t₁) th⇒₁ = inj₂ (_ , cong (appl _) (appl _) th⇒₁ , (cong (appr _) (appr _) t⇒₁ ∷ [])) -- SNe is preserved under reduction. mapβSNe : ∀ {i a Γ} {t t' : Tm Γ a} → t ⇒β t' → SNe {i} t → SNe {i} t' mapβSNe (cong (appl u) (appl .u) t⇒) (elim 𝒏 (appl 𝒖)) = elim (mapβSNe t⇒ 𝒏) (appl 𝒖) mapβSNe (cong (appr u) (appr .u) t⇒) (elim 𝒏 (appl 𝒖)) = elim 𝒏 (appl (mapβSN t⇒ 𝒖)) -- The other cases are impossible mapβSNe (cong abs abs t⇒) (elim 𝒏 ()) mapβSNe β (elim (elim 𝒏 ()) (appl 𝒖)) -- SN is preserved under reduction. mapβSN : ∀ {i a Γ} {t t' : Tm Γ a} → t ⇒β t' → SN {i} t → SN {i} t' mapβSN t⇒ (ne 𝒏) = ne (mapβSNe t⇒ 𝒏) mapβSN (cong abs abs t⇒) (abs 𝒕) = abs (mapβSN t⇒ 𝒕) mapβSN t⇒ (exp t⇒₁ 𝒕) with beta-shr t⇒ t⇒₁ mapβSN t⇒ (exp t⇒₁ 𝒕) | inj₁ ≡.refl = 𝒕 mapβSN t⇒ (exp t⇒₁ 𝒕) | inj₂ (_ , t⇒h , t⇒β*) = exp t⇒h (mapβ*SN t⇒β* 𝒕) -- SN is preserved under multi-step reduction. mapβ*SN : ∀ {i a Γ} {t t' : Tm Γ a} → t ⇒β* t' → SN {i} t → SN {i} t' mapβ*SN [] 𝒕 = 𝒕 mapβ*SN (t⇒ ∷ t⇒β*) 𝒕 = mapβ*SN t⇒β* (mapβSN t⇒ 𝒕)
{ "alphanum_fraction": 0.4495786109, "avg_line_length": 39.1022727273, "ext": "agda", "hexsha": "86e2a84bacd45720d9a95383fd714ee9daa6a604", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2018-02-23T18:22:17.000Z", "max_forks_repo_forks_event_min_datetime": "2017-11-10T16:44:52.000Z", "max_forks_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "ryanakca/strong-normalization", "max_forks_repo_path": "agda-aplas14/Reduction.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_issues_repo_issues_event_max_datetime": "2018-02-20T14:54:18.000Z", "max_issues_repo_issues_event_min_datetime": "2018-02-14T16:42:36.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "ryanakca/strong-normalization", "max_issues_repo_path": "agda-aplas14/Reduction.agda", "max_line_length": 140, "max_stars_count": 32, "max_stars_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "ryanakca/strong-normalization", "max_stars_repo_path": "agda-aplas14/Reduction.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-05T12:12:03.000Z", "max_stars_repo_stars_event_min_datetime": "2017-05-22T14:33:27.000Z", "num_tokens": 3456, "size": 6882 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} open import Cubical.Relation.Binary.Base open import Cubical.Core.Everything module Cubical.Relation.Binary.Raw.Structures {a ℓ} {A : Type a} -- The underlying type (_<>_ : RawRel A ℓ) -- The relation where open import Cubical.Foundations.Prelude using (refl; sym) open import Cubical.Foundations.Function using (_∘_) open import Cubical.Data.Prod.Base using (proj₁; proj₂; _,_) open import Cubical.Relation.Nullary.Decidable open import Cubical.Relation.Binary.Raw.Definitions open import Cubical.Relation.Binary.Raw.Properties private variable ℓ₂ : Level ------------------------------------------------------------------------ -- Preorders ------------------------------------------------------------------------ record IsPreorder : Type (ℓ-max a ℓ) where constructor ispreorder field reflexive : Reflexive _<>_ transitive : Transitive _<>_ fromEq : FromEq _<>_ fromEq = reflx→fromeq _<>_ reflexive ------------------------------------------------------------------------ -- Equivalences ------------------------------------------------------------------------ record IsPartialEquivalence : Type (ℓ-max a ℓ) where constructor ispartialeq field symmetric : Symmetric _<>_ transitive : Transitive _<>_ record IsEquivalence : Type (ℓ-max a ℓ) where constructor isequivalence field reflexive : Reflexive _<>_ isPartialEquivalence : IsPartialEquivalence open IsPartialEquivalence isPartialEquivalence public from-≡ : FromEq _<>_ from-≡ = reflx→fromeq _<>_ reflexive isPreorder : IsPreorder isPreorder = record { reflexive = reflexive ; transitive = transitive } record IsDecEquivalence : Type (ℓ-max a ℓ) where constructor isdeceq infix 4 _≟_ field isEquivalence : IsEquivalence _≟_ : Decidable _<>_ open IsEquivalence isEquivalence public ------------------------------------------------------------------------ -- Partial orders ------------------------------------------------------------------------ record IsPartialOrder : Type (ℓ-max a ℓ) where constructor ispartialorder field isPreorder : IsPreorder antisym : Antisymmetric _<>_ open IsPreorder isPreorder public record IsDecPartialOrder : Type (ℓ-max a ℓ) where constructor isdecpartialorder infix 4 _≤?_ field isPartialOrder : IsPartialOrder _≤?_ : Decidable _<>_ open IsPartialOrder isPartialOrder public private lemma : ∀ {x y} → ¬ x <> y → ¬ x ≡ y lemma x≰y x≡y = x≰y (fromEq x≡y) _≟_ : Discrete A _≟_ x y with x ≤? y ... | no ¬p = no (lemma ¬p) ... | yes p with y ≤? x ... | no ¬q = no (lemma ¬q ∘ sym) ... | yes q = yes (antisym p q) record IsStrictPartialOrder : Type (ℓ-max a ℓ) where constructor isstrictpartialorder field irrefl : Irreflexive _<>_ transitive : Transitive _<>_ asym : Asymmetric _<>_ asym {x} {y} = trans∧irr→asym _<>_ transitive irrefl record IsDecStrictPartialOrder : Type (ℓ-max a ℓ) where constructor isdecstrictpartialorder infix 4 _<?_ field isStrictPartialOrder : IsStrictPartialOrder _<?_ : Decidable _<>_ open IsStrictPartialOrder isStrictPartialOrder public ------------------------------------------------------------------------ -- Total orders ------------------------------------------------------------------------ record IsTotalOrder : Type (ℓ-max a ℓ) where constructor istotalorder field isPartialOrder : IsPartialOrder total : PropTotal _<>_ open IsPartialOrder isPartialOrder public record IsDecTotalOrder : Type (ℓ-max a ℓ) where constructor isdectotalorder infix 4 _≤?_ field isTotalOrder : IsTotalOrder _≤?_ : Decidable _<>_ open IsTotalOrder isTotalOrder public isDecPartialOrder : IsDecPartialOrder isDecPartialOrder = record { isPartialOrder = isPartialOrder ; _≤?_ = _≤?_ } open IsDecPartialOrder isDecPartialOrder public using (_≟_) -- Note that these orders are decidable. The current implementation -- of `Trichotomous` subsumes irreflexivity and asymmetry. Any reasonable -- definition capturing these three properties implies decidability -- as `Trichotomous` necessarily separates out the equality case. record IsStrictTotalOrder : Type (ℓ-max a ℓ) where constructor isstricttotalorder field transitive : Transitive _<>_ compare : Trichotomous _<>_ infix 4 _<?_ _<?_ : Decidable _<>_ _<?_ = tri→dec< _<>_ compare _≟_ : Discrete A _≟_ = tri→dec≡ _<>_ compare isStrictPartialOrder : IsStrictPartialOrder isStrictPartialOrder = record { irrefl = tri→irr _<>_ compare ; transitive = transitive } isDecStrictPartialOrder : IsDecStrictPartialOrder isDecStrictPartialOrder = record { isStrictPartialOrder = isStrictPartialOrder ; _<?_ = _<?_ } open IsStrictPartialOrder isStrictPartialOrder public hiding (transitive)
{ "alphanum_fraction": 0.616978876, "avg_line_length": 26.4105263158, "ext": "agda", "hexsha": "ae4bdf93762835d7fe4fa00b5560ba75fc26cde8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Relation/Binary/Raw/Structures.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Relation/Binary/Raw/Structures.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Relation/Binary/Raw/Structures.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1367, "size": 5018 }
module Algebra where -- Core graph construction primitives data Graph (A : Set) : Set where ε : Graph A -- Empty graph v : A -> Graph A -- Graph comprising a single vertex _+_ : Graph A -> Graph A -> Graph A -- Overlay two graphs _*_ : Graph A -> Graph A -> Graph A -- Connect two graphs infixl 4 _≡_ infixl 8 _+_ infixl 9 _*_ infix 10 _⊆_ -- Equational theory of graphs data _≡_ {A} : (x y : Graph A) -> Set where -- Equivalence relation reflexivity : ∀ {x : Graph A} -> x ≡ x symmetry : ∀ {x y : Graph A} -> x ≡ y -> y ≡ x transitivity : ∀ {x y z : Graph A} -> x ≡ y -> y ≡ z -> x ≡ z -- Congruence +left-congruence : ∀ {x y z : Graph A} -> x ≡ y -> x + z ≡ y + z +right-congruence : ∀ {x y z : Graph A} -> x ≡ y -> z + x ≡ z + y *left-congruence : ∀ {x y z : Graph A} -> x ≡ y -> x * z ≡ y * z *right-congruence : ∀ {x y z : Graph A} -> x ≡ y -> z * x ≡ z * y -- Axioms of + +commutativity : ∀ {x y : Graph A} -> x + y ≡ y + x +associativity : ∀ {x y z : Graph A} -> x + (y + z) ≡ (x + y) + z -- Axioms of * *left-identity : ∀ {x : Graph A} -> ε * x ≡ x *right-identity : ∀ {x : Graph A} -> x * ε ≡ x *associativity : ∀ {x y z : Graph A} -> x * (y * z) ≡ (x * y) * z -- Other axioms left-distributivity : ∀ {x y z : Graph A} -> x * (y + z) ≡ x * y + x * z right-distributivity : ∀ {x y z : Graph A} -> (x + y) * z ≡ x * z + y * z decomposition : ∀ {x y z : Graph A} -> x * y * z ≡ x * y + x * z + y * z -- Subgraph relation _⊆_ : ∀ {A} -> Graph A -> Graph A -> Set x ⊆ y = x + y ≡ y
{ "alphanum_fraction": 0.4566103669, "avg_line_length": 38.1555555556, "ext": "agda", "hexsha": "231a43654a6cd07684fac0cbc45573f79f9f058d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "01f5f9f53ea81f692215300744aa77e26d8bf332", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/alga", "max_forks_repo_path": "src/Algebra.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "01f5f9f53ea81f692215300744aa77e26d8bf332", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/alga", "max_issues_repo_path": "src/Algebra.agda", "max_line_length": 85, "max_stars_count": null, "max_stars_repo_head_hexsha": "01f5f9f53ea81f692215300744aa77e26d8bf332", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/alga", "max_stars_repo_path": "src/Algebra.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 659, "size": 1717 }
-- Andreas, 2014-01-10, reported by fredrik.forsberg record ⊤ : Set where record Σ (A : Set) (B : A → Set) : Set where syntax Σ A (λ x → B) = Σ[ x ∈ A ] B test : Set test = {! Σ[ x ∈ ⊤ ] ?!} -- Fredrik's report: -- Using the darcs version of Agda from today 10 January, -- if I load the file and give (or refine) in the hole, I end up with -- -- test = Σ ⊤ (λ x → {!!}) -- -- i.e. Agda has translated away the syntax Σ[ x ∈ ⊤ ] {!!} for me. -- I would of course expect -- -- test = Σ[ x ∈ ⊤ ] {!!} -- -- instead, and I think this used to be the behaviour? (Using the Σ from -- the standard library, this is more annoying, as one gets -- -- test = Σ-syntax ⊤ (λ x → {!!}) -- -- as a result.) -- -- This might be related to issue 994? -- Expected test case behavior: -- -- Bad (at the time of report: -- -- (agda2-give-action 0 "Σ ⊤ (λ x → ?)") -- -- Good: -- -- (agda2-give-action 0 'no-paren)
{ "alphanum_fraction": 0.5723684211, "avg_line_length": 21.2093023256, "ext": "agda", "hexsha": "d10a607f6a1a5a6a5f61bbac364d464e5a689d71", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue1020.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue1020.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue1020.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 316, "size": 912 }
module heap.libraryNat where open import Data.Nat renaming (_⊔_ to _⊔n_; _≟_ to _≟ℕ_) hiding ( _<_ ) open import Data.Bool open import Data.Fin hiding (pred) open import Data.Unit open import Data.Empty open import Function open import Relation.Nullary open import Relation.Binary.PropositionalEquality {- --- WARNING USES TODO postulate TODO : {A : Set} → A -} _==b_ : ℕ → ℕ → Bool zero ==b zero = true zero ==b suc a' = false suc a ==b zero = false suc a ==b suc a' = a ==b a' transferℕ : (P : ℕ → Set) → (a a' : ℕ) → T (a ==b a') → P a → P a' transferℕ P zero zero aa' q = q transferℕ P zero (suc a') () q transferℕ P (suc a) zero () q transferℕ P (suc a) (suc a') aa' q = transferℕ (P ∘ suc) a a' aa' q _<ℕb_ : ℕ → ℕ → Bool _ <ℕb zero = false zero <ℕb suc a' = true suc a <ℕb suc a' = a <ℕb a' _<ℕ_ : ℕ → ℕ → Set n <ℕ m = T (n <ℕb m) _≦ℕb_ : ℕ → ℕ → Bool zero ≦ℕb _ = true suc a ≦ℕb zero = false suc a ≦ℕb suc a' = a ≦ℕb a' _≧ℕb_ : ℕ → ℕ → Bool n ≧ℕb m = m ≦ℕb n <ℕb-suc : {a b : ℕ} → T (a <ℕb b) → T (a <ℕb suc b) <ℕb-suc{zero} = λ _ → tt <ℕb-suc{_}{zero} () <ℕb-suc{suc a}{suc b} = <ℕb-suc{a}{b} <ℕb-suc' : {a b : ℕ} → T (a ≦ℕb b) → T (a <ℕb suc b) <ℕb-suc' {zero} {zero} ab = ab <ℕb-suc' {zero} {suc b} ab = ab <ℕb-suc' {suc a} {zero} ab = ab <ℕb-suc' {suc a} {suc b} ab = <ℕb-suc'{a}{b} ab n<sucnLem : {n m : ℕ} → T (n ==b m) → T (n <ℕb suc m) n<sucnLem {zero} {zero} nm = tt n<sucnLem {zero} {suc m} () n<sucnLem {suc n} {zero} () n<sucnLem {suc n} {suc m} nm = n<sucnLem {n} {m} nm n<mImpliesn/=m : (n m : ℕ) → T (m <ℕb n) → ¬ T (n ==b m) n<mImpliesn/=m zero m () n<mImpliesn/=m (suc n) zero p () n<mImpliesn/=m (suc n) (suc m) p q = n<mImpliesn/=m n m p q le : {n m : ℕ} → ¬ (n ==b m) ≡ false → T (n ==b m) le{zero}{zero} p = tt le {zero} {suc n} p = p refl le {suc n} {zero} p = p refl le {suc n} {suc m} p = le{n}{m} p refl==b : {n : ℕ} → T (n ==b n) refl==b {zero} = tt refl==b {suc n} = refl==b {n} symb : (n m : ℕ) → T (n ==b m) → T (m ==b n) symb zero zero p = tt symb zero (suc m) () symb (suc n) zero () symb (suc n) (suc m) p = symb n m p neqsymb : (n m : ℕ) → ¬ T (n ==b m) → ¬ T (m ==b n) neqsymb n m p q = p (symb m n q) n<ℕbsucn : {n : ℕ} → T (n <ℕb suc n) n<ℕbsucn {zero} = tt n<ℕbsucn {suc n} = n<ℕbsucn{n} n≦ℕbsucn : {n : ℕ} → T (n ≦ℕb suc n) n≦ℕbsucn {zero} = tt n≦ℕbsucn {suc n} = n≦ℕbsucn {n} ¬n<ℕbn : {n : ℕ} → ¬ (T (n <ℕb n)) ¬n<ℕbn {zero} () ¬n<ℕbn {suc n} p = ¬n<ℕbn {n} p refl≦ℕb : (n : ℕ) → T (n ≦ℕb n) refl≦ℕb zero = tt refl≦ℕb (suc n) = refl≦ℕb n trans≦ℕb : (n m k : ℕ) → T (n ≦ℕb m) → T (m ≦ℕb k) → T (n ≦ℕb k) trans≦ℕb zero m k nm mk = tt trans≦ℕb (suc n) zero k () mk trans≦ℕb (suc n) (suc m) zero nm () trans≦ℕb (suc n) (suc m) (suc k) nm mk = trans≦ℕb n m k nm mk ⊔isMaxl : {n m : ℕ} → T (n ≦ℕb (n ⊔n m )) ⊔isMaxl {zero} {m} = tt ⊔isMaxl {suc n} {zero} = refl≦ℕb (suc n) ⊔isMaxl {suc n} {suc m} = ⊔isMaxl {n} {m} ⊔isMaxr : {n m : ℕ} → T (m ≦ℕb (n ⊔n m )) ⊔isMaxr {n} {zero} = tt ⊔isMaxr {zero} {suc m} = refl≦ℕb (suc m) ⊔isMaxr {suc n} {suc m} = ⊔isMaxr {n} {m} ⊔zero : {n : ℕ} → (n ⊔n zero) ≡ n ⊔zero {zero} = refl ⊔zero {suc n} = refl ⊔isMaxl' : {n m k : ℕ} → T (n ≦ℕb m ) → T (n ≦ℕb (m ⊔n k )) ⊔isMaxl' {zero} {m} {k} = λ _ → tt ⊔isMaxl' {suc n} {zero} {k} = λ () ⊔isMaxl' {suc n} {suc m} {zero} = λ z → z ⊔isMaxl' {suc n} {suc m} {suc k} = ⊔isMaxl'{n}{m} ⊔isMax<l : {n m k : ℕ} → T ((n ⊔n m) <ℕb k) → T (n <ℕb k) ⊔isMax<l {n} {m} {zero} p = p ⊔isMax<l {zero} {m} {suc k} p = tt ⊔isMax<l {suc n} {zero} {suc k} p = p ⊔isMax<l {suc n} {suc m} {suc k} p = ⊔isMax<l {n} {m} {k} p ⊔isMax<r : {n m k : ℕ} → T ((n ⊔n m) <ℕb k) → T (m <ℕb k) ⊔isMax<r {n} {zero} {zero} p = p ⊔isMax<r {n} {zero} {suc k} p = tt ⊔isMax<r {zero} {suc m} {k} p = p ⊔isMax<r {suc n} {suc m} {zero} p = p ⊔isMax<r {suc n} {suc m} {suc k} p = ⊔isMax<r{n}{m}{k} p sucinvertible : {n m : ℕ} → suc n ≡ suc m → n ≡ m sucinvertible {n} {m} = cong pred ¬n≡m→¬sucn≡sucm : {n m : ℕ} → ¬ (n ≡ m) → ¬ (suc n ≡ suc m) ¬n≡m→¬sucn≡sucm {n} {m} p q = p (sucinvertible q) <impliesnoteq : {n m : ℕ} → T (n <ℕb m) → ¬ (n ≡ m) <impliesnoteq {n} {zero} p = λ _ → p <impliesnoteq {zero} {suc m} p = λ () <impliesnoteq {suc n} {suc m} p = ¬n≡m→¬sucn≡sucm {n}{m} (<impliesnoteq{n}{m} p) <impliesNot= = <impliesnoteq -- {- Fin n related lemmata -} -- fromℕ< : ∀ {n m} → n <ℕ m → Fin m -- fromℕ< {_} {zero} () -- fromℕ< {zero} {suc m} p = zero -- fromℕ< {suc n} {suc m} p = suc (fromℕ< {n} {m} p) update : {A : Set} (f : ℕ → A) (n : ℕ) (a : A) → ℕ → A update {A} f n a m = aux (n ≟ℕ m) module updateaux where aux : Dec (n ≡ m) → A aux (yes _) = a aux (no _) = f m updateLem : {A : Set}(Q : A → Set)(f : ℕ → A)(n : ℕ)(a : A) → (m : ℕ) → ¬ (n ≡ m) → Q (f m) → Q (update f n a m) updateLem {A} Q f n a m nm Qfm = aux (n ≟ℕ m) module updateLemaux where aux : (x : Dec (n ≡ m)) → Q(updateaux.aux f n a m x) aux (yes p) = ⊥-elim (nm p) aux (no ¬p) = Qfm updateLem2 : {A : Set}(f : ℕ → A)(n : ℕ)(a : A)(m : ℕ) → (n ≡ m) → update f n a m ≡ a updateLem2 {A} f n a m nm = aux (n ≟ℕ m) module updateLem2aux where aux : (x : Dec (n ≡ m)) → updateaux.aux f n a m x ≡ a aux (yes p) = refl aux (no ¬p) = ⊥-elim (¬p nm) updateLem3 : {A : Set}(f : ℕ → A)(n : ℕ)(a : A)(m : ℕ) → ¬ (n ≡ m) → update f n a m ≡ f m updateLem3 f n a m nm = updateLem (λ a' → a' ≡ f m) f n a m nm refl leqEmbedLem : (P : ℕ → Set) → (l : (n : ℕ) → P n → P (suc n)) → (n m : ℕ) → T (n ≦ℕb m) → P n → P m leqEmbedLem P l zero zero nm p = p leqEmbedLem P l zero (suc m) nm p = l m (leqEmbedLem P l zero m tt p) leqEmbedLem P l (suc n) zero () p leqEmbedLem P l (suc n) (suc m) nm p = leqEmbedLem (P ∘ suc) (l ∘ suc) n m nm p
{ "alphanum_fraction": 0.4955947137, "avg_line_length": 25.8859649123, "ext": "agda", "hexsha": "ff938d7ecd7af8e9716e532eb2e2fc337bf5ec04", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "stephanadls/state-dependent-gui", "max_forks_repo_path": "src/heap/libraryNat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "stephanadls/state-dependent-gui", "max_issues_repo_path": "src/heap/libraryNat.agda", "max_line_length": 80, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "stephanadls/state-dependent-gui", "max_stars_repo_path": "src/heap/libraryNat.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-31T17:20:59.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T15:37:39.000Z", "num_tokens": 3068, "size": 5902 }
{-# OPTIONS --cubical --no-import-sorts #-} module Number.Instances.QuoIntFromInt where open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero) open import Cubical.Foundations.Everything hiding (⋆) renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Cubical.Foundations.Logic renaming (inl to inlᵖ; inr to inrᵖ) open import Cubical.Relation.Nullary.Base renaming (¬_ to ¬ᵗ_) open import Cubical.Relation.Binary.Base open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_) open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_) open import Cubical.Data.Sigma open import Cubical.Data.Bool as Bool using (Bool; not; true; false) open import Cubical.Data.Empty renaming (elim to ⊥-elim; ⊥ to ⊥⊥) -- `⊥` and `elim` open import Cubical.Foundations.Logic renaming (¬_ to ¬ᵖ_; inl to inlᵖ; inr to inrᵖ) open import Function.Base using (it; _∋_; _$_) open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.HITs.PropositionalTruncation --.Properties open import Utils using (!_; !!_) open import MoreLogic.Reasoning open import MoreLogic.Definitions open import MoreLogic.Properties open import MorePropAlgebra.Definitions hiding (_≤''_) open import MorePropAlgebra.Structures open import MorePropAlgebra.Bundles open import MorePropAlgebra.Consequences open import Number.Structures2 open import Number.Bundles2 import Agda.Builtin.Int as Builtin import Data.Integer.Base as BuiltinBase import Data.Integer.Properties as BuiltinProps open import Cubical.Data.Nat.Literals open import Number.Prelude.Nat open import Number.Prelude.Int import Cubical.Data.Int as Int import Number.Instances.Int open import Cubical.HITs.Ints.QuoInt as QuoInt using ( ℤ ; _+_ ; -_ ; Int≡ℤ ; signed ; posneg ; ℤ→Int ; sucℤ ; predℤ ; sign ; abs ; pos ; neg ; +-comm ; +-assoc ; sucℤ-+ʳ ) renaming ( _*_ to _·_ ) ℤ≡Int = sym Int≡ℤ private _·ᵗʳ_ : Int → Int → Int _·ᵗʳ_ = transport (λ i → (ℤ≡Int i → ℤ≡Int i → ℤ≡Int i)) _·_ ·≡·ᵗʳ : PathP (λ i → (ℤ≡Int i → ℤ≡Int i → ℤ≡Int i)) _·_ _·ᵗʳ_ ·≡·ᵗʳ i = transp (λ j → ℤ≡Int (i ∧ j) → ℤ≡Int (i ∧ j) → ℤ≡Int (i ∧ j)) (~ i) _·_ lemma1 : ∀ a b → b +ⁿ a ·ⁿ suc b ≡ a ·ⁿ b +ⁿ (a +ⁿ b) lemma1 a b = b +ⁿ a ·ⁿ suc b ≡⟨ (λ i → b +ⁿ ·ⁿ-suc a b i) ⟩ b +ⁿ (a +ⁿ a ·ⁿ b) ≡⟨ +ⁿ-assoc b a (a ·ⁿ b) ⟩ (b +ⁿ a) +ⁿ a ·ⁿ b ≡⟨ (λ i → +ⁿ-comm b a i +ⁿ a ·ⁿ b) ⟩ (a +ⁿ b) +ⁿ a ·ⁿ b ≡⟨ +ⁿ-comm (a +ⁿ b) (a ·ⁿ b) ⟩ a ·ⁿ b +ⁿ (a +ⁿ b) ∎ ·ᵗʳ≡'·ᶻ : ∀ a b → a ·ᵗʳ b ≡ a ·ᶻ b ·ᵗʳ≡'·ᶻ (posᶻ 0 ) (posᶻ 0 ) = refl ·ᵗʳ≡'·ᶻ (posᶻ 0 ) (posᶻ (suc b)) = refl ·ᵗʳ≡'·ᶻ (posᶻ (suc a)) (posᶻ 0 ) = refl ·ᵗʳ≡'·ᶻ (posᶻ (suc a)) (posᶻ (suc b)) = refl ·ᵗʳ≡'·ᶻ (posᶻ 0 ) (negsucᶻ b ) = refl ·ᵗʳ≡'·ᶻ (posᶻ (suc a)) (negsucᶻ b ) i = negsucᶻ (lemma1 a b i) ·ᵗʳ≡'·ᶻ (negsucᶻ a ) (posᶻ 0 ) i = ℤ→Int (signed sneg (·ⁿ-nullifiesʳ a i)) ·ᵗʳ≡'·ᶻ (negsucᶻ a ) (posᶻ (suc b)) i = negsucᶻ (lemma1 a b i) ·ᵗʳ≡'·ᶻ (negsucᶻ a ) (negsucᶻ b ) = refl ·ᵗʳ≡·ᶻ : _·ᵗʳ_ ≡ _·ᶻ_ ·ᵗʳ≡·ᶻ i a b = ·ᵗʳ≡'·ᶻ a b i ·≡·ᶻ : PathP (λ i → (ℤ≡Int i → ℤ≡Int i → ℤ≡Int i)) _·_ _·ᶻ_ ·≡·ᶻ = J (λ _⋆_ _ → PathP (λ i → (ℤ≡Int i → ℤ≡Int i → ℤ≡Int i)) _·_ _⋆_) ·≡·ᵗʳ ·ᵗʳ≡·ᶻ -- ·-assoc''''' : ∀ a b c → a · (b · c) ≡ (a · b) · c -- ·-assoc''''' = transport γ ·-assoc where -- γ : ((m n o : Z) → m · (n · o) ≡ (m · n) · o) -- ≡ ((a b c : ℤ) → a · (b · c) ≡ (a · b) · c) -- γ i = let _⋆_ = QuoInt·≡· i in (x y z : ℤ≡Int i) → x ⋆ (y ⋆ z) ≡ (x ⋆ y) ⋆ z sucInt-preserves-ℤ→Int : ∀ a → sucInt (ℤ→Int a) ≡ ℤ→Int (sucℤ a) sucInt-preserves-ℤ→Int (signed spos n) = refl sucInt-preserves-ℤ→Int (signed sneg zero) = refl sucInt-preserves-ℤ→Int (signed sneg (suc zero)) = refl sucInt-preserves-ℤ→Int (signed sneg (suc (suc n))) = refl sucInt-preserves-ℤ→Int (posneg i) = refl predInt-preserves-ℤ→Int : ∀ a → predInt (ℤ→Int a) ≡ ℤ→Int (predℤ a) predInt-preserves-ℤ→Int (signed spos zero) = refl predInt-preserves-ℤ→Int (signed spos (suc n)) = refl predInt-preserves-ℤ→Int (signed sneg zero) = refl predInt-preserves-ℤ→Int (signed sneg (suc n)) = refl predInt-preserves-ℤ→Int (posneg i) = refl -sucℤ-sucℤ≡id : ∀ a → - sucℤ (- sucℤ a) ≡ a -sucℤ-sucℤ≡id (signed spos n) = refl -sucℤ-sucℤ≡id (signed sneg zero) = posneg -sucℤ-sucℤ≡id (signed sneg (suc n)) = refl -sucℤ-sucℤ≡id (posneg i) j = posneg (i ∧ j) sucℤ-sucℤ-≡id : ∀ a → sucℤ (- sucℤ (- a)) ≡ a sucℤ-sucℤ-≡id (signed spos zero) i = posneg (~ i) sucℤ-sucℤ-≡id (signed spos (suc n)) = refl sucℤ-sucℤ-≡id (signed sneg n) = refl sucℤ-sucℤ-≡id (posneg i) j = posneg (i ∨ (~ j)) -sucℤ-sucℤ≡sucℤ-sucℤ- : ∀ a → - sucℤ (- sucℤ a) ≡ sucℤ (- sucℤ (- a)) -sucℤ-sucℤ≡sucℤ-sucℤ- a = -sucℤ-sucℤ≡id a ∙ sym (sucℤ-sucℤ-≡id a) private _+ᵗʳ_ : Int → Int → Int _+ᵗʳ_ = transport (λ i → (ℤ≡Int i → ℤ≡Int i → ℤ≡Int i)) _+_ +≡+ᵗʳ : PathP (λ i → (ℤ≡Int i → ℤ≡Int i → ℤ≡Int i)) _+_ _+ᵗʳ_ +≡+ᵗʳ i = transp (λ j → ℤ≡Int (i ∧ j) → ℤ≡Int (i ∧ j) → ℤ≡Int (i ∧ j)) (~ i) _+_ +ᵗʳ≡'+ᶻ : ∀ a b → a +ᵗʳ b ≡ a +ᶻ b +ᵗʳ≡'+ᶻ (posᶻ 0 ) (posᶻ 0 ) = refl +ᵗʳ≡'+ᶻ (posᶻ 0 ) (posᶻ (suc b)) i = sucInt (Int.+-comm (posᶻ b) 0 i) +ᵗʳ≡'+ᶻ (posᶻ (suc a)) (posᶻ 0 ) i = ℤ→Int (sucℤ (+-comm (pos a) 0 i)) +ᵗʳ≡'+ᶻ (posᶻ (suc a)) (posᶻ (suc b)) = (posᶻ (suc a) +ᵗʳ posᶻ (suc b)) ≡⟨ sym (sucInt-preserves-ℤ→Int (signed spos a + signed spos (suc b))) ⟩ sucInt (posᶻ a +ᵗʳ posᶻ (suc b)) ≡⟨ (λ i → sucInt $ (+ᵗʳ≡'+ᶻ (posᶻ a) (posᶻ (suc b)) ∙ sucInt+ (posᶻ a) (posᶻ b)) i) ⟩ sucInt (posᶻ (suc a) +pos b) ∎ +ᵗʳ≡'+ᶻ (posᶻ 0 ) (negsucᶻ b ) = sym (+negsuc-identityˡ b) +ᵗʳ≡'+ᶻ (posᶻ (suc a)) (negsucᶻ b ) = (posᶻ (suc a) +ᵗʳ negsucᶻ b) ≡⟨ sym $ sucInt-preserves-ℤ→Int (signed spos a + signed sneg (suc b)) ⟩ sucInt (posᶻ a +ᵗʳ negsucᶻ b) ≡⟨ (λ i → sucInt $ +ᵗʳ≡'+ᶻ (posᶻ a) (negsucᶻ b) i) ⟩ sucInt (posᶻ a +ᶻ negsucᶻ b) ≡⟨ sucInt+ (posᶻ a) (negsucᶻ b) ⟩ (posᶻ (suc a) +negsuc b) ∎ +ᵗʳ≡'+ᶻ (negsucᶻ a ) (posᶻ 0 ) i = ℤ→Int $ -_ $ sucℤ $ -_ $ +-comm (signed sneg a) (pos 0) i +ᵗʳ≡'+ᶻ (negsucᶻ a ) (posᶻ (suc b)) = (negsucᶻ a +ᵗʳ posᶻ (suc b)) ≡⟨ (λ i → ℤ→Int $ - sucℤ (- sucℤ-+ʳ (signed sneg a) (signed spos b) (~ i))) ⟩ ℤ→Int (- sucℤ (- sucℤ (signed sneg a + signed spos b))) ≡⟨ (λ i → ℤ→Int $ -sucℤ-sucℤ≡sucℤ-sucℤ- (signed sneg a + signed spos b) i) ⟩ ℤ→Int (sucℤ (- sucℤ (- (signed sneg a + signed spos b)))) ≡⟨ sym $ sucInt-preserves-ℤ→Int (- sucℤ (- (signed sneg a + signed spos b))) ⟩ sucInt (negsucᶻ a +ᵗʳ posᶻ b) ≡⟨ (λ i → sucInt $ +ᵗʳ≡'+ᶻ (negsucᶻ a) (posᶻ b) i) ⟩ sucInt (negsucᶻ a +pos b) ∎ +ᵗʳ≡'+ᶻ (negsucᶻ zero) (negsucᶻ b) = sym $ negsuc+negsuc≡+ⁿ 0 b +ᵗʳ≡'+ᶻ (negsucᶻ (suc a)) (negsucᶻ b) = (negsucᶻ (suc a) +ᵗʳ negsucᶻ b) ≡⟨ sym $ predInt-preserves-ℤ→Int (- sucℤ (- (signed sneg a + signed sneg (suc b)))) ⟩ predInt (negsucᶻ a +ᵗʳ negsucᶻ b) ≡⟨ (λ i → predInt $ +ᵗʳ≡'+ᶻ (negsucᶻ a) (negsucᶻ b) i) ⟩ predInt (negsucᶻ a +ᶻ negsucᶻ b) ≡⟨ predInt+ (negsucᶻ a) (negsucᶻ b) ⟩ (negsucᶻ (suc a) +negsuc b) ∎ +ᵗʳ≡+ᶻ : _+ᵗʳ_ ≡ _+ᶻ_ +ᵗʳ≡+ᶻ i a b = +ᵗʳ≡'+ᶻ a b i +≡+ᶻ : PathP (λ i → (ℤ≡Int i → ℤ≡Int i → ℤ≡Int i)) _+_ _+ᶻ_ +≡+ᶻ = J (λ _+ᵗʳ_ _ → PathP (λ i → (ℤ≡Int i → ℤ≡Int i → ℤ≡Int i)) _+_ _+ᵗʳ_) +≡+ᵗʳ +ᵗʳ≡+ᶻ private -ᵗʳ_ : Int → Int -ᵗʳ_ = transport (λ i → (ℤ≡Int i → ℤ≡Int i)) -_ -≡-ᵗʳ : PathP (λ i → (ℤ≡Int i → ℤ≡Int i)) -_ -ᵗʳ_ -≡-ᵗʳ i = transp (λ j → ℤ≡Int (i ∧ j) → ℤ≡Int (i ∧ j)) (~ i) -_ -ᵗʳ≡'-ᶻ : ∀ a → -ᵗʳ a ≡ -ᶻ a -ᵗʳ≡'-ᶻ (posᶻ zero) = refl -ᵗʳ≡'-ᶻ (posᶻ (suc n)) = refl -ᵗʳ≡'-ᶻ (negsucᶻ n) = refl -ᵗʳ≡-ᶻ : (-ᵗʳ_) ≡ (-ᶻ_) -ᵗʳ≡-ᶻ i a = -ᵗʳ≡'-ᶻ a i -≡-ᶻ : PathP (λ i → (ℤ≡Int i → ℤ≡Int i)) (-_) (-ᶻ_) -≡-ᶻ = J (λ -ᵗʳ_ _ → PathP (λ i → (ℤ≡Int i → ℤ≡Int i)) -_ -ᵗʳ_) -≡-ᵗʳ -ᵗʳ≡-ᶻ min : ℤ → ℤ → ℤ min x y with sign x | sign y ... | spos | spos = pos (minⁿ (abs x) (abs y)) ... | spos | sneg = y ... | sneg | spos = x ... | sneg | sneg = neg (maxⁿ (abs x) (abs y)) max : ℤ → ℤ → ℤ max x y with sign x | sign y ... | spos | spos = pos (maxⁿ (abs x) (abs y)) ... | spos | sneg = x ... | sneg | spos = y ... | sneg | sneg = neg (minⁿ (abs x) (abs y)) private minᵗʳ : Int → Int → Int minᵗʳ = transport (λ i → (ℤ≡Int i → ℤ≡Int i → ℤ≡Int i)) min maxᵗʳ : Int → Int → Int maxᵗʳ = transport (λ i → (ℤ≡Int i → ℤ≡Int i → ℤ≡Int i)) max min≡minᵗʳ : PathP (λ i → (ℤ≡Int i → ℤ≡Int i → ℤ≡Int i)) min minᵗʳ min≡minᵗʳ i = transp (λ j → ℤ≡Int (i ∧ j) → ℤ≡Int (i ∧ j) → ℤ≡Int (i ∧ j)) (~ i) min max≡maxᵗʳ : PathP (λ i → (ℤ≡Int i → ℤ≡Int i → ℤ≡Int i)) max maxᵗʳ max≡maxᵗʳ i = transp (λ j → ℤ≡Int (i ∧ j) → ℤ≡Int (i ∧ j) → ℤ≡Int (i ∧ j)) (~ i) max minᵗʳ≡'minᶻ : ∀ a b → minᵗʳ a b ≡ minᶻ a b minᵗʳ≡'minᶻ (posᶻ 0 ) (posᶻ 0 ) = refl minᵗʳ≡'minᶻ (posᶻ 0 ) (posᶻ (suc b)) = refl minᵗʳ≡'minᶻ (posᶻ (suc a)) (posᶻ 0 ) = refl minᵗʳ≡'minᶻ (posᶻ (suc a)) (posᶻ (suc b)) = refl minᵗʳ≡'minᶻ (posᶻ 0 ) (negsucᶻ b ) = refl minᵗʳ≡'minᶻ (posᶻ (suc a)) (negsucᶻ b ) = refl minᵗʳ≡'minᶻ (negsucᶻ a ) (posᶻ 0 ) = refl minᵗʳ≡'minᶻ (negsucᶻ a ) (posᶻ (suc b)) = refl minᵗʳ≡'minᶻ (negsucᶻ a ) (negsucᶻ b ) = refl maxᵗʳ≡'maxᶻ : ∀ a b → maxᵗʳ a b ≡ maxᶻ a b maxᵗʳ≡'maxᶻ (posᶻ 0 ) (posᶻ 0 ) = refl maxᵗʳ≡'maxᶻ (posᶻ 0 ) (posᶻ (suc b)) = refl maxᵗʳ≡'maxᶻ (posᶻ (suc a)) (posᶻ 0 ) = refl maxᵗʳ≡'maxᶻ (posᶻ (suc a)) (posᶻ (suc b)) = refl maxᵗʳ≡'maxᶻ (posᶻ 0 ) (negsucᶻ b ) = refl maxᵗʳ≡'maxᶻ (posᶻ (suc a)) (negsucᶻ b ) = refl maxᵗʳ≡'maxᶻ (negsucᶻ a ) (posᶻ 0 ) = refl maxᵗʳ≡'maxᶻ (negsucᶻ a ) (posᶻ (suc b)) = refl maxᵗʳ≡'maxᶻ (negsucᶻ a ) (negsucᶻ b ) = refl minᵗʳ≡minᶻ : minᵗʳ ≡ minᶻ minᵗʳ≡minᶻ i a b = minᵗʳ≡'minᶻ a b i maxᵗʳ≡maxᶻ : maxᵗʳ ≡ maxᶻ maxᵗʳ≡maxᶻ i a b = maxᵗʳ≡'maxᶻ a b i min≡min : PathP (λ i → (ℤ≡Int i → ℤ≡Int i → ℤ≡Int i)) min minᶻ min≡min = J (λ minᵗʳ _ → PathP (λ i → (ℤ≡Int i → ℤ≡Int i → ℤ≡Int i)) min minᵗʳ) min≡minᵗʳ minᵗʳ≡minᶻ max≡max : PathP (λ i → (ℤ≡Int i → ℤ≡Int i → ℤ≡Int i)) max maxᶻ max≡max = J (λ maxᵗʳ _ → PathP (λ i → (ℤ≡Int i → ℤ≡Int i → ℤ≡Int i)) max maxᵗʳ) max≡maxᵗʳ maxᵗʳ≡maxᶻ infixl 4 _<_ _<_ : ∀(x y : ℤ) → hProp ℓ-zero x < y with sign x | sign y ... | spos | spos = abs x <ⁿ abs y ... | spos | sneg = ⊥ ... | sneg | spos = ⊤ ... | sneg | sneg = abs y <ⁿ abs x private _<ᵗʳ_ : Int → Int → hProp ℓ-zero _<ᵗʳ_ = transport (λ i → (ℤ≡Int i → ℤ≡Int i → hProp ℓ-zero)) _<_ <≡<ᵗʳ : PathP (λ i → (ℤ≡Int i → ℤ≡Int i → hProp ℓ-zero)) _<_ _<ᵗʳ_ <≡<ᵗʳ i = transp (λ j → ℤ≡Int (i ∧ j) → ℤ≡Int (i ∧ j) → hProp ℓ-zero) (~ i) _<_ <ᵗʳ⇔<ᶻ : ∀ a b → [ (a <ᵗʳ b) ⇔ (a <ᶻ b) ] <ᵗʳ⇔<ᶻ (posᶻ 0 ) (posᶻ 0 ) .fst pᵗʳ = pᵗʳ <ᵗʳ⇔<ᶻ (posᶻ 0 ) (posᶻ (suc b)) .fst pᵗʳ = pᵗʳ <ᵗʳ⇔<ᶻ (posᶻ (suc a)) (posᶻ 0 ) .fst pᵗʳ = pᵗʳ <ᵗʳ⇔<ᶻ (posᶻ (suc a)) (posᶻ (suc b)) .fst pᵗʳ = pᵗʳ <ᵗʳ⇔<ᶻ (posᶻ 0 ) (negsucᶻ b ) .fst pᵗʳ = pᵗʳ <ᵗʳ⇔<ᶻ (posᶻ (suc a)) (negsucᶻ b ) .fst pᵗʳ = pᵗʳ <ᵗʳ⇔<ᶻ (negsucᶻ a ) (posᶻ 0 ) .fst pᵗʳ = pᵗʳ <ᵗʳ⇔<ᶻ (negsucᶻ a ) (posᶻ (suc b)) .fst pᵗʳ = pᵗʳ <ᵗʳ⇔<ᶻ (negsucᶻ a ) (negsucᶻ b ) .fst pᵗʳ = sucⁿ-creates-<ⁿ b a .snd pᵗʳ <ᵗʳ⇔<ᶻ (posᶻ 0 ) (posᶻ 0 ) .snd p = p <ᵗʳ⇔<ᶻ (posᶻ 0 ) (posᶻ (suc b)) .snd p = p <ᵗʳ⇔<ᶻ (posᶻ (suc a)) (posᶻ 0 ) .snd p = p <ᵗʳ⇔<ᶻ (posᶻ (suc a)) (posᶻ (suc b)) .snd p = p <ᵗʳ⇔<ᶻ (negsucᶻ a ) (posᶻ 0 ) .snd p = p <ᵗʳ⇔<ᶻ (negsucᶻ a ) (posᶻ (suc b)) .snd p = p <ᵗʳ⇔<ᶻ (negsucᶻ a ) (negsucᶻ b ) .snd p = sucⁿ-creates-<ⁿ b a .fst p <ᵗʳ≡<ᶻ : _<ᵗʳ_ ≡ _<ᶻ_ <ᵗʳ≡<ᶻ i a b = ⇔toPath {P = a <ᵗʳ b} {Q = a <ᶻ b} (<ᵗʳ⇔<ᶻ a b .fst) (<ᵗʳ⇔<ᶻ a b .snd) i <≡<ᶻ : PathP (λ i → (ℤ≡Int i → ℤ≡Int i → hProp ℓ-zero)) _<_ _<ᶻ_ <≡<ᶻ = J (λ _<ᵗʳ_ _ → PathP (λ i → (ℤ≡Int i → ℤ≡Int i → hProp ℓ-zero)) _<_ _<ᵗʳ_) <≡<ᵗʳ <ᵗʳ≡<ᶻ is-LinearlyOrderedCommRing : [ isLinearlyOrderedCommRing 0 1 _+_ _·_ -_ _<_ min max ] is-LinearlyOrderedCommRing = transport γ is-LinearlyOrderedCommRingᶻ where γ : ([ isLinearlyOrderedCommRing 0 1 _+ᶻ_ _·ᶻ_ (-ᶻ_) _<ᶻ_ minᶻ maxᶻ ]) ≡ [ isLinearlyOrderedCommRing 0 1 _+_ _·_ -_ _<_ min max ] γ i = [ isLinearlyOrderedCommRing 0ⁱ 1ⁱ _+ⁱ_ _·ⁱ_ -ⁱ_ _<ⁱ_ minⁱ maxⁱ ] where 0ⁱ = transport (λ j → ℤ≡Int (~ i ∧ j)) 0 1ⁱ = transport (λ j → ℤ≡Int (~ i ∧ j)) 1 _+ⁱ_ = +≡+ᶻ (~ i) _·ⁱ_ = ·≡·ᶻ (~ i) -ⁱ_ = -≡-ᶻ (~ i) _<ⁱ_ = <≡<ᶻ (~ i) minⁱ = min≡min (~ i) maxⁱ = max≡max (~ i) bundle : LinearlyOrderedCommRing {ℓ-zero} {ℓ-zero} bundle .LinearlyOrderedCommRing.Carrier = ℤ bundle .LinearlyOrderedCommRing.0f = 0 bundle .LinearlyOrderedCommRing.1f = 1 bundle .LinearlyOrderedCommRing._+_ = _+_ bundle .LinearlyOrderedCommRing._·_ = _·_ bundle .LinearlyOrderedCommRing.-_ = -_ bundle .LinearlyOrderedCommRing.min = min bundle .LinearlyOrderedCommRing.max = max bundle .LinearlyOrderedCommRing._<_ = _<_ bundle .LinearlyOrderedCommRing.is-LinearlyOrderedCommRing = is-LinearlyOrderedCommRing ·-reflects-< : (x y z : ℤ) → [ 0 < z ] → [ (x · z) < (y · z) ] → [ x < y ] ·-reflects-< = transport γ ·ᶻ-reflects-<ᶻ where γ : ((x y z : Int) → [ 0 <ᶻ z ] → [ x ·ᶻ z <ᶻ y ·ᶻ z ] → [ x <ᶻ y ]) ≡ ((x y z : ℤ) → [ 0 < z ] → [ (x · z) < (y · z) ] → [ x < y ]) γ i = let _·'_ = ·≡·ᶻ (~ i); _<'_ = <≡<ᶻ (~ i); 0ⁱ = transport (λ j → ℤ≡Int (~ i ∧ j)) 0 in ((x y z : ℤ≡Int (~ i)) → [ 0ⁱ <' z ] → [ (x ·' z) <' (y ·' z) ] → [ x <' y ])
{ "alphanum_fraction": 0.5434477667, "avg_line_length": 41.6769230769, "ext": "agda", "hexsha": "251d848472e642b9ae61b640ed04694a3e9f721b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "agda/Number/Instances/QuoIntFromInt.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "agda/Number/Instances/QuoIntFromInt.agda", "max_line_length": 140, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "agda/Number/Instances/QuoIntFromInt.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 8005, "size": 13545 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Nat open import lib.types.Group open import lib.types.TLevel module lib.types.Int where data ℤ : Type₀ where pos : (n : ℕ) → ℤ negsucc : (n : ℕ) → ℤ Int = ℤ {-# BUILTIN INTEGER Int #-} {-# BUILTIN INTEGERPOS pos #-} {-# BUILTIN INTEGERNEGSUC negsucc #-} {- literal overloading -} instance ℤ-reader : FromNat ℤ FromNat.in-range ℤ-reader _ = ⊤ FromNat.read ℤ-reader n = pos n ℤ-neg-reader : FromNeg ℤ FromNeg.in-range ℤ-neg-reader _ = ⊤ FromNeg.read ℤ-neg-reader O = pos O FromNeg.read ℤ-neg-reader (S n) = negsucc n {- succ and pred -} succ : ℤ → ℤ succ (pos n) = pos (S n) succ (negsucc O) = pos O succ (negsucc (S n)) = negsucc n pred : ℤ → ℤ pred (pos O) = negsucc O pred (pos (S n)) = pos n pred (negsucc n) = negsucc (S n) abstract succ-pred : (n : ℤ) → succ (pred n) == n succ-pred (pos O) = idp succ-pred (pos (S n)) = idp succ-pred (negsucc n) = idp pred-succ : (n : ℤ) → pred (succ n) == n pred-succ (pos n) = idp pred-succ (negsucc O) = idp pred-succ (negsucc (S n)) = idp succ-equiv : ℤ ≃ ℤ succ-equiv = equiv succ pred succ-pred pred-succ pred-injective : (z₁ z₂ : ℤ) → pred z₁ == pred z₂ → z₁ == z₂ pred-injective z₁ z₂ p = ! (succ-pred z₁) ∙ ap succ p ∙ succ-pred z₂ succ-injective : (z₁ z₂ : ℤ) → succ z₁ == succ z₂ → z₁ == z₂ succ-injective z₁ z₂ p = ! (pred-succ z₁) ∙ ap pred p ∙ pred-succ z₂ {- Converting between ℤ, ℕ, and ℕ₋₂ -} ℤ-to-ℕ₋₂ : ℤ → ℕ₋₂ ℤ-to-ℕ₋₂ (pos m) = ⟨ m ⟩ ℤ-to-ℕ₋₂ (negsucc O) = -1 ℤ-to-ℕ₋₂ (negsucc _) = -2 ℕ-to-ℤ : ℕ → ℤ ℕ-to-ℤ n = pos n {- Proof that [ℤ] has decidable equality and hence is a set -} private ℤ-get-pos : ℤ → ℕ ℤ-get-pos (pos n) = n ℤ-get-pos (negsucc n) = O ℤ-get-negsucc : ℤ → ℕ ℤ-get-negsucc (pos n) = O ℤ-get-negsucc (negsucc n) = n ℤ-negsucc≠pos-type : ℤ → Type₀ ℤ-negsucc≠pos-type (pos n) = Empty ℤ-negsucc≠pos-type (negsucc n) = Unit abstract pos-injective : (n m : ℕ) (p : pos n == pos m) → n == m pos-injective n m p = ap ℤ-get-pos p pos-≠ : {n m : ℕ} (p : n ≠ m) → pos n ≠ pos m pos-≠ p = p ∘ pos-injective _ _ negsucc-injective : (n m : ℕ) (p : negsucc n == negsucc m) → n == m negsucc-injective n m p = ap ℤ-get-negsucc p ℤ-negsucc≠pos : (n m : ℕ) → negsucc n ≠ pos m ℤ-negsucc≠pos n m p = transport ℤ-negsucc≠pos-type p unit ℤ-pos≠negsucc : (n m : ℕ) → pos n ≠ negsucc m ℤ-pos≠negsucc n m p = transport ℤ-negsucc≠pos-type (! p) unit ℤ-has-dec-eq : has-dec-eq ℤ ℤ-has-dec-eq (pos n) (pos m) with ℕ-has-dec-eq n m ℤ-has-dec-eq (pos n) (pos m) | inl p = inl (ap pos p) ℤ-has-dec-eq (pos n) (pos m) | inr p⊥ = inr (pos-≠ p⊥) ℤ-has-dec-eq (pos n) (negsucc m) = inr (ℤ-pos≠negsucc n m) ℤ-has-dec-eq (negsucc n) (pos m) = inr (ℤ-negsucc≠pos n m) ℤ-has-dec-eq (negsucc n) (negsucc m) with ℕ-has-dec-eq n m ℤ-has-dec-eq (negsucc n) (negsucc m) | inl p = inl (ap negsucc p) ℤ-has-dec-eq (negsucc n) (negsucc m) | inr p⊥ = inr (λ p → p⊥ (negsucc-injective n m p)) ℤ-is-set : is-set ℤ ℤ-is-set = dec-eq-is-set ℤ-has-dec-eq ℤ-level = ℤ-is-set {- ℤ is also a group! -} -- inv ℤ~ : ℤ → ℤ ℤ~ (pos (S n)) = negsucc n ℤ~ (pos O) = pos O ℤ~ (negsucc n) = pos (S n) -- comp infixl 80 _ℤ+_ _ℤ+_ : ℤ → ℤ → ℤ pos O ℤ+ z = z pos (S n) ℤ+ z = succ (pos n ℤ+ z) negsucc O ℤ+ z = pred z negsucc (S n) ℤ+ z = pred (negsucc n ℤ+ z) -- unit-l ℤ+-unit-l : ∀ z → pos O ℤ+ z == z ℤ+-unit-l _ = idp -- unit-r private ℤ+-unit-r-pos : ∀ n → pos n ℤ+ pos O == pos n ℤ+-unit-r-pos O = idp ℤ+-unit-r-pos (S n) = ap succ $ ℤ+-unit-r-pos n ℤ+-unit-r-negsucc : ∀ n → negsucc n ℤ+ pos O == negsucc n ℤ+-unit-r-negsucc O = idp ℤ+-unit-r-negsucc (S n) = ap pred $ ℤ+-unit-r-negsucc n ℤ+-unit-r : ∀ z → z ℤ+ pos O == z ℤ+-unit-r (pos n) = ℤ+-unit-r-pos n ℤ+-unit-r (negsucc n) = ℤ+-unit-r-negsucc n -- assoc succ-ℤ+ : ∀ z₁ z₂ → succ z₁ ℤ+ z₂ == succ (z₁ ℤ+ z₂) succ-ℤ+ (pos n) _ = idp succ-ℤ+ (negsucc O) _ = ! $ succ-pred _ succ-ℤ+ (negsucc (S _)) _ = ! $ succ-pred _ pred-ℤ+ : ∀ z₁ z₂ → pred z₁ ℤ+ z₂ == pred (z₁ ℤ+ z₂) pred-ℤ+ (negsucc _) _ = idp pred-ℤ+ (pos O) _ = idp pred-ℤ+ (pos (S n)) _ = ! $ pred-succ _ ℤ+-assoc : ∀ z₁ z₂ z₃ → (z₁ ℤ+ z₂) ℤ+ z₃ == z₁ ℤ+ (z₂ ℤ+ z₃) ℤ+-assoc (pos O) z₂ z₃ = idp ℤ+-assoc (pos (S n₁)) z₂ z₃ = succ (pos n₁ ℤ+ z₂) ℤ+ z₃ =⟨ succ-ℤ+ (pos n₁ ℤ+ z₂) z₃ ⟩ succ ((pos n₁ ℤ+ z₂) ℤ+ z₃) =⟨ ap succ $ ℤ+-assoc (pos n₁) z₂ z₃ ⟩ succ (pos n₁ ℤ+ (z₂ ℤ+ z₃)) ∎ ℤ+-assoc (negsucc O) z₂ z₃ = pred-ℤ+ z₂ z₃ ℤ+-assoc (negsucc (S n₁)) z₂ z₃ = pred (negsucc n₁ ℤ+ z₂) ℤ+ z₃ =⟨ pred-ℤ+ (negsucc n₁ ℤ+ z₂) z₃ ⟩ pred ((negsucc n₁ ℤ+ z₂) ℤ+ z₃) =⟨ ap pred $ ℤ+-assoc (negsucc n₁) z₂ z₃ ⟩ pred (negsucc n₁ ℤ+ (z₂ ℤ+ z₃)) ∎ --comm ℤ+-succ : ∀ z₁ z₂ → z₁ ℤ+ succ z₂ == succ (z₁ ℤ+ z₂) ℤ+-succ (pos O) z₂ = idp ℤ+-succ (pos (S n)) z₂ = ap succ (ℤ+-succ (pos n) z₂) ℤ+-succ (negsucc O) z₂ = pred-succ z₂ ∙ ! (succ-pred z₂) ℤ+-succ (negsucc (S n)) z₂ = pred (negsucc n ℤ+ succ z₂) =⟨ ap pred (ℤ+-succ (negsucc n) z₂) ⟩ pred (succ (negsucc n ℤ+ z₂)) =⟨ pred-succ (negsucc n ℤ+ z₂) ⟩ negsucc n ℤ+ z₂ =⟨ ! $ succ-pred (negsucc n ℤ+ z₂) ⟩ succ (pred (negsucc n ℤ+ z₂)) ∎ ℤ+-pred : ∀ z₁ z₂ → z₁ ℤ+ pred z₂ == pred (z₁ ℤ+ z₂) ℤ+-pred (pos O) z₂ = idp ℤ+-pred (pos (S n)) z₂ = succ (pos n ℤ+ pred z₂) =⟨ ap succ (ℤ+-pred (pos n) z₂) ⟩ succ (pred (pos n ℤ+ z₂)) =⟨ succ-pred (pos n ℤ+ z₂) ⟩ pos n ℤ+ z₂ =⟨ ! $ pred-succ (pos n ℤ+ z₂) ⟩ pred (succ (pos n ℤ+ z₂)) ∎ ℤ+-pred (negsucc O) z₂ = idp ℤ+-pred (negsucc (S n)) z₂ = ap pred (ℤ+-pred (negsucc n) z₂) ℤ+-comm : ∀ z₁ z₂ → z₁ ℤ+ z₂ == z₂ ℤ+ z₁ ℤ+-comm (pos O) z₂ = ! $ ℤ+-unit-r z₂ ℤ+-comm (pos (S n₁)) z₂ = succ (pos n₁ ℤ+ z₂) =⟨ ℤ+-comm (pos n₁) z₂ |in-ctx succ ⟩ succ (z₂ ℤ+ pos n₁) =⟨ ! $ ℤ+-succ z₂ (pos n₁) ⟩ z₂ ℤ+ pos (S n₁) ∎ ℤ+-comm (negsucc O) z₂ = pred z₂ =⟨ ! $ ℤ+-unit-r z₂ |in-ctx pred ⟩ pred (z₂ ℤ+ pos O) =⟨ ! $ ℤ+-pred z₂ (pos O) ⟩ z₂ ℤ+ negsucc O ∎ ℤ+-comm (negsucc (S n)) z₂ = pred (negsucc n ℤ+ z₂) =⟨ ℤ+-comm (negsucc n) z₂ |in-ctx pred ⟩ pred (z₂ ℤ+ negsucc n) =⟨ ! $ ℤ+-pred z₂ (negsucc n) ⟩ z₂ ℤ+ negsucc (S n) ∎ private pos-S-ℤ+-negsucc-S : ∀ n₁ n₂ → pos (S n₁) ℤ+ negsucc (S n₂) == pos n₁ ℤ+ negsucc n₂ pos-S-ℤ+-negsucc-S O n₂ = idp pos-S-ℤ+-negsucc-S (S n₁) n₂ = ap succ $ pos-S-ℤ+-negsucc-S n₁ n₂ negsucc-S-ℤ+-pos-S : ∀ n₁ n₂ → negsucc (S n₁) ℤ+ pos (S n₂) == negsucc n₁ ℤ+ pos n₂ negsucc-S-ℤ+-pos-S O n₂ = idp negsucc-S-ℤ+-pos-S (S n₁) n₂ = ap pred $ negsucc-S-ℤ+-pos-S n₁ n₂ ℤ~-inv-r : ∀ z → z ℤ+ ℤ~ z == 0 ℤ~-inv-r (pos O) = idp ℤ~-inv-r (pos (S O)) = idp ℤ~-inv-r (pos (S (S n))) = pos (S (S n)) ℤ+ negsucc (S n) =⟨ pos-S-ℤ+-negsucc-S (S n) n ⟩ pos (S n) ℤ+ negsucc n =⟨ ℤ~-inv-r (pos (S n)) ⟩ 0 ∎ ℤ~-inv-r (negsucc O) = idp ℤ~-inv-r (negsucc (S n)) = negsucc (S n) ℤ+ pos (S (S n)) =⟨ negsucc-S-ℤ+-pos-S n (S n) ⟩ negsucc n ℤ+ pos (S n) =⟨ ℤ~-inv-r (negsucc n) ⟩ 0 ∎ ℤ~-inv-l : ∀ z → ℤ~ z ℤ+ z == 0 ℤ~-inv-l (pos O) = idp ℤ~-inv-l (pos (S n)) = ℤ~-inv-r (negsucc n) ℤ~-inv-l (negsucc n) = ℤ~-inv-r (pos (S n)) ℤ-group-structure : GroupStructure ℤ ℤ-group-structure = record { ident = 0 ; inv = ℤ~ ; comp = _ℤ+_ ; unitl = ℤ+-unit-l ; unitr = ℤ+-unit-r ; assoc = ℤ+-assoc ; invr = ℤ~-inv-r ; invl = ℤ~-inv-l } ℤ-group : Group₀ ℤ-group = group _ ℤ-is-set ℤ-group-structure -- More properties about [ℤ~] ℤ~-succ : ∀ z → ℤ~ (succ z) == pred (ℤ~ z) ℤ~-succ (pos 0) = idp ℤ~-succ (pos (S n)) = idp ℤ~-succ (negsucc 0) = idp ℤ~-succ (negsucc (S n)) = idp ℤ~-pred : ∀ z → ℤ~ (pred z) == succ (ℤ~ z) ℤ~-pred (pos 0) = idp ℤ~-pred (pos 1) = idp ℤ~-pred (pos (S (S n))) = idp ℤ~-pred (negsucc 0) = idp ℤ~-pred (negsucc (S n)) = idp ℤ~-ℤ+ : ∀ z₁ z₂ → ℤ~ (z₁ ℤ+ z₂) == ℤ~ z₁ ℤ+ ℤ~ z₂ ℤ~-ℤ+ (pos 0) z₂ = idp ℤ~-ℤ+ (pos 1) z₂ = ℤ~-succ z₂ ℤ~-ℤ+ (pos (S (S n))) z₂ = ℤ~-succ (pos (S n) ℤ+ z₂) ∙ ap pred (ℤ~-ℤ+ (pos (S n)) z₂) ℤ~-ℤ+ (negsucc O) z₂ = ℤ~-pred z₂ ℤ~-ℤ+ (negsucc (S n)) z₂ = ℤ~-pred (negsucc n ℤ+ z₂) ∙ ap succ (ℤ~-ℤ+ (negsucc n) z₂)
{ "alphanum_fraction": 0.5414735301, "avg_line_length": 27.6026936027, "ext": "agda", "hexsha": "4499739cc10b48e0ee629b81bf4f4fec7dd18338", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Int.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Int.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Int.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4036, "size": 8198 }
-- Andreas, 2016-11-03, issue #2291 reported by Aerate test = let {{_}} = _ in _ -- WAS: Internal error -- NOW: Could not parse the left-hand side {{_}}
{ "alphanum_fraction": 0.6451612903, "avg_line_length": 22.1428571429, "ext": "agda", "hexsha": "b783fb1975e49a2f51d7e6570d50fb50b8a8ed95", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2291-instance.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2291-instance.agda", "max_line_length": 54, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2291-instance.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 49, "size": 155 }
module Issue4130 where module Foo where data D : Set where con : D module Bar (S : Set) where open Foo public using (con) open Bar using (con) open Foo using (D; con) data B : Set where tt : B ff : B module _ (S : Set) where open Bar S f : D -> B -- 'con' is not ambiguous, because although 'con' may refer to -- 'Foo.D.con' or 'Bar.con', they are two different names of the -- same constructor. f con = tt
{ "alphanum_fraction": 0.6353211009, "avg_line_length": 18.1666666667, "ext": "agda", "hexsha": "fe8d07eeedb8c18915790dbcd52633fd35ca19fb", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/Issue4130.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue4130.agda", "max_line_length": 66, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue4130.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 139, "size": 436 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Group.Morphism where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Algebra open import Cubical.Algebra.Monoid.Morphism open import Cubical.Algebra.Properties open import Cubical.Relation.Binary.Reasoning.Equality private variable g h : Level -- The following definitions of GroupHom and GroupEquiv are level-wise heterogeneous. -- This allows for example to deduce that G ≡ F from a chain of isomorphisms -- G ≃ H ≃ F, even if H does not lie in the same level as G and F. record IsGroupHom (G : Group g) (H : Group h) (f : ⟨ G ⟩ → ⟨ H ⟩) : Type (ℓ-max g h) where constructor isgrouphom private module G = Group G module H = Group H field preservesOp : Homomorphic₂ f G._•_ H._•_ preservesId : Homomorphic₀ f G.ε H.ε preservesId = H.cancelʳ _ ( f G.ε H.• f G.ε ≡˘⟨ preservesOp G.ε G.ε ⟩ f (G.ε G.• G.ε) ≡⟨ cong f (G.identityˡ G.ε) ⟩ f G.ε ≡˘⟨ H.identityˡ (f G.ε) ⟩ H.ε H.• f G.ε ∎) preservesInv : Homomorphic₁ f G._⁻¹ H._⁻¹ preservesInv x = H.inv-uniqueʳ _ _ ( f (x G.⁻¹) H.• f x ≡˘⟨ preservesOp (x G.⁻¹) x ⟩ f (x G.⁻¹ G.• x) ≡⟨ cong f (G.inverseˡ x) ⟩ f G.ε ≡⟨ preservesId ⟩ H.ε ∎) record GroupHom (G : Group g) (H : Group h) : Type (ℓ-max g h) where constructor grouphom field fun : ⟨ G ⟩ → ⟨ H ⟩ isHom : IsGroupHom G H fun open IsGroupHom isHom public record GroupEquiv (G : Group g) (H : Group h) : Type (ℓ-max g h) where constructor groupequiv field eq : ⟨ G ⟩ ≃ ⟨ H ⟩ isHom : IsGroupHom G H (equivFun eq) open IsGroupHom isHom public hom : GroupHom G H hom = grouphom (equivFun eq) isHom instance GroupHomOperators : HomOperators (Group g) (Group h) (ℓ-max g h) GroupHomOperators = record { _⟶ᴴ_ = GroupHom; _≃ᴴ_ = GroupEquiv } private variable G : Group g H : Group h isPropIsMonoidHom : {f : ⟨ G ⟩ → ⟨ H ⟩} → isProp (IsMonoidHom (Group.monoid G) (Group.monoid H) f) isPropIsMonoidHom {G = G} {H = H} {f = f} (ismonoidhom aOp aId) (ismonoidhom bOp bId) = cong₂ ismonoidhom (isPropHomomorphic₂ (Group.is-set H) f (Group._•_ G) (Group._•_ H) aOp bOp) (isPropHomomorphic₀ (Group.is-set H) f (Group.ε G) (Group.ε H) aId bId) isPropIsGroupHom : {f : ⟨ G ⟩ → ⟨ H ⟩} → isProp (IsGroupHom G H f) isPropIsGroupHom {G = G} {H = H} {f = f} (isgrouphom aHom) (isgrouphom bHom) = cong isgrouphom (isPropHomomorphic₂ (Group.is-set H) f (Group._•_ G) (Group._•_ H) aHom bHom) IsGroupHom→IsMonoidHom : {f : ⟨ G ⟩ → ⟨ H ⟩} → IsGroupHom G H f → IsMonoidHom (Group.monoid G) (Group.monoid H) f IsGroupHom→IsMonoidHom hom .IsMonoidHom.preservesOp = hom .IsGroupHom.preservesOp IsGroupHom→IsMonoidHom hom .IsMonoidHom.preservesId = IsGroupHom.preservesId hom IsMonoidHom→IsGroupHom : {f : ⟨ G ⟩ → ⟨ H ⟩} → IsMonoidHom (Group.monoid G) (Group.monoid H) f → IsGroupHom G H f IsMonoidHom→IsGroupHom hom .IsGroupHom.preservesOp = hom .IsMonoidHom.preservesOp IsGroupHom≃IsMonoidHom : {f : ⟨ G ⟩ → ⟨ H ⟩} → IsGroupHom G H f ≃ IsMonoidHom (Group.monoid G) (Group.monoid H) f IsGroupHom≃IsMonoidHom {G = G} {H = H} = isoToEquiv (iso IsGroupHom→IsMonoidHom IsMonoidHom→IsGroupHom (λ _ → isPropIsMonoidHom {G = G} {H = H} _ _) (λ _ → isPropIsGroupHom _ _)) GroupHom→MonoidHom : (G ⟶ᴴ H) → (Group.monoid G ⟶ᴴ Group.monoid H) GroupHom→MonoidHom hom .MonoidHom.fun = hom .GroupHom.fun GroupHom→MonoidHom hom .MonoidHom.isHom = IsGroupHom→IsMonoidHom (hom .GroupHom.isHom) MonoidHom→GroupHom : (Group.monoid G ⟶ᴴ Group.monoid H) → (G ⟶ᴴ H) MonoidHom→GroupHom hom .GroupHom.fun = hom .MonoidHom.fun MonoidHom→GroupHom hom .GroupHom.isHom = IsMonoidHom→IsGroupHom (hom .MonoidHom.isHom) GroupHom≃MonoidHom : (G ⟶ᴴ H) ≃ (Group.monoid G ⟶ᴴ Group.monoid H) GroupHom≃MonoidHom {G = G} {H = H} = isoToEquiv (iso GroupHom→MonoidHom MonoidHom→GroupHom MonoidHom→GroupHom→MonoidHom GroupHom→MonoidHom→GroupHom) where MonoidHom→GroupHom→MonoidHom : section (GroupHom→MonoidHom {G = G} {H = H}) (MonoidHom→GroupHom {G = G} {H = H}) MonoidHom→GroupHom→MonoidHom (monoidhom fun prf) = cong₂ monoidhom refl (isPropIsMonoidHom {G = G} {H = H} _ _) GroupHom→MonoidHom→GroupHom : retract (GroupHom→MonoidHom {G = G} {H = H}) (MonoidHom→GroupHom {G = G} {H = H}) GroupHom→MonoidHom→GroupHom (grouphom fun prf) = cong₂ grouphom refl (isPropIsGroupHom _ _) GroupEquiv→MonoidEquiv : G ≃ᴴ H → Group.monoid G ≃ᴴ Group.monoid H GroupEquiv→MonoidEquiv eq .MonoidEquiv.eq = eq .GroupEquiv.eq GroupEquiv→MonoidEquiv eq .MonoidEquiv.isHom = IsGroupHom→IsMonoidHom (eq .GroupEquiv.isHom) MonoidEquiv→GroupEquiv : Group.monoid G ≃ᴴ Group.monoid H → G ≃ᴴ H MonoidEquiv→GroupEquiv eq .GroupEquiv.eq = eq .MonoidEquiv.eq MonoidEquiv→GroupEquiv eq .GroupEquiv.isHom = IsMonoidHom→IsGroupHom (eq .MonoidEquiv.isHom) GroupEquiv≃MonoidEquiv : G ≃ᴴ H ≃ Group.monoid G ≃ᴴ Group.monoid H GroupEquiv≃MonoidEquiv {G = G} {H = H} = isoToEquiv (iso GroupEquiv→MonoidEquiv MonoidEquiv→GroupEquiv MonoidEquiv→GroupEquiv→MonoidEquiv GroupEquiv→MonoidEquiv→GroupEquiv) where MonoidEquiv→GroupEquiv→MonoidEquiv : section (GroupEquiv→MonoidEquiv {G = G} {H = H}) (MonoidEquiv→GroupEquiv {G = G} {H = H}) MonoidEquiv→GroupEquiv→MonoidEquiv (monoidequiv eq prf) = cong₂ monoidequiv refl (isPropIsMonoidHom {G = G} {H = H} _ _) GroupEquiv→MonoidEquiv→GroupEquiv : retract (GroupEquiv→MonoidEquiv {G = G} {H = H}) (MonoidEquiv→GroupEquiv {G = G} {H = H}) GroupEquiv→MonoidEquiv→GroupEquiv (groupequiv eq prf) = cong₂ groupequiv refl (isPropIsGroupHom _ _)
{ "alphanum_fraction": 0.6593572146, "avg_line_length": 38.2948717949, "ext": "agda", "hexsha": "1f6c5c89a15480ff5b1267b11475e8f61363cd7d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Algebra/Group/Morphism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Algebra/Group/Morphism.agda", "max_line_length": 95, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Algebra/Group/Morphism.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2238, "size": 5974 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.RingSolver.CommRingExamples where open import Cubical.Foundations.Prelude open import Cubical.Data.FinData open import Cubical.Data.Nat using (ℕ) open import Cubical.Data.Vec.Base open import Cubical.Algebra.CommRing open import Cubical.Algebra.RingSolver.NatAsAlmostRing open import Cubical.Algebra.RingSolver.RawAlgebra renaming (⟨_⟩ to ⟨_⟩ᵣ) open import Cubical.Algebra.RingSolver.CommRingSolver -- In scope for debugging: open import Cubical.Algebra.RingSolver.CommRingHornerForms private variable ℓ : Level module MultivariateSolving (R : CommRing {ℓ}) where -- In scope for debuggin: -- In scope for solver use: open CommRingStr (snd R) AsAlgebra = CommRing→RawℤAlgebra R X : ℤExpr R 3 X = ∣ Fin.zero Y : ℤExpr R 3 Y = ∣ (suc Fin.zero) Z : ℤExpr R 3 Z = ∣ (suc (suc Fin.zero)) _ : (x y z : (fst R)) → x · y · z ≡ z · y · x _ = λ x y z → let lhs = X ·' Y ·' Z rhs = Z ·' Y ·' X in solve R lhs rhs (x ∷ y ∷ z ∷ []) refl _ : (x y z : (fst R)) → x · (y + z) ≡ z · x + y · x _ = λ x y z → let lhs = X ·' (Y +' Z) rhs = Z ·' X +' Y ·' X in solve R lhs rhs (x ∷ y ∷ z ∷ []) refl _ : (x y z : (fst R)) → x · (y - z) ≡ (- z) · x + y · x _ = λ x y z → let lhs = X ·' (Y +' (-' Z)) rhs = (-' Z) ·' X +' (Y ·' X) in solve R lhs rhs (x ∷ y ∷ z ∷ []) refl {- A bigger example, copied from 'Example.agda' -} _ : (x y z : (fst R)) → (x + y) · (x + y) · (x + y) · (x + y) ≡ x · x · x · x + (scalar R 4) · x · x · x · y + (scalar R 6) · x · x · y · y + (scalar R 4) · x · y · y · y + y · y · y · y _ = λ x y z → let lhs = (X +' Y) ·' (X +' Y) ·' (X +' Y) ·' (X +' Y) rhs = X ·' X ·' X ·' X +' (K 4) ·' X ·' X ·' X ·' Y +' (K 6) ·' X ·' X ·' Y ·' Y +' (K 4) ·' X ·' Y ·' Y ·' Y +' Y ·' Y ·' Y ·' Y in solve R lhs rhs (x ∷ y ∷ z ∷ []) refl _ : (x y z : (fst R)) → (x + y) · (x - y) ≡ (x · x - y · y) _ = λ x y z → let lhs = (X +' Y) ·' (X +' (-' Y)) rhs = (X ·' X) +' (-' (Y ·' Y)) in solve R lhs rhs (x ∷ y ∷ z ∷ []) refl
{ "alphanum_fraction": 0.4322554237, "avg_line_length": 29.4337349398, "ext": "agda", "hexsha": "2be2b91bae41acbb36911833e4877e08b9712619", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "apabepa10/cubical", "max_forks_repo_path": "Cubical/Algebra/RingSolver/CommRingExamples.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "apabepa10/cubical", "max_issues_repo_path": "Cubical/Algebra/RingSolver/CommRingExamples.agda", "max_line_length": 93, "max_stars_count": null, "max_stars_repo_head_hexsha": "3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "apabepa10/cubical", "max_stars_repo_path": "Cubical/Algebra/RingSolver/CommRingExamples.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 905, "size": 2443 }
{-# OPTIONS --safe #-} module Cubical.Algebra.AbGroup.Instances.DirectSumFun where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat open import Cubical.Algebra.AbGroup open import Cubical.Algebra.DirectSum.DirectSumFun.Base open import Cubical.Algebra.DirectSum.DirectSumFun.Properties private variable ℓ : Level module _ (G : (n : ℕ) → Type ℓ) (Gstr : (n : ℕ) → AbGroupStr (G n)) where open AbGroupStr open DSF-properties G Gstr ⊕Fun-AbGr : AbGroup ℓ fst ⊕Fun-AbGr = ⊕Fun G Gstr 0g (snd ⊕Fun-AbGr) = 0⊕Fun AbGroupStr._+_ (snd ⊕Fun-AbGr) = _+⊕Fun_ - snd ⊕Fun-AbGr = Inv⊕Fun isAbGroup (snd ⊕Fun-AbGr) = makeIsAbGroup isSet⊕Fun +⊕FunAssoc +⊕FunRid +⊕FunInvR +⊕FunComm
{ "alphanum_fraction": 0.7215189873, "avg_line_length": 27.3461538462, "ext": "agda", "hexsha": "64c1bb4ff21e6d09a88e158bd68867cd8d232c29", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/AbGroup/Instances/DirectSumFun.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/AbGroup/Instances/DirectSumFun.agda", "max_line_length": 93, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/AbGroup/Instances/DirectSumFun.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 270, "size": 711 }
{-# OPTIONS --cubical --safe #-} module Data.Tree.Rose where open import Prelude open import Data.List mutual Forest : Type a → Type a Forest A = List (Tree A) infixr 5 _&_ record Tree {a} (A : Type a) : Type a where inductive constructor _&_ field root : A children : Forest A open Tree public module WikiTree where open import Data.List.Syntax wikiTree : Tree ℕ wikiTree = 1 & [ 2 & [ 5 & [ 9 & [] , 10 & [] ] , 6 & [] ] , 3 & [] , 4 & [ 7 & [ 11 & [] , 12 & [] ] , 8 & [] ] ]
{ "alphanum_fraction": 0.4347826087, "avg_line_length": 17.1025641026, "ext": "agda", "hexsha": "d92ffc7367e200a685c571d27aab7fd53b1f1a27", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Tree/Rose.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Tree/Rose.agda", "max_line_length": 45, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Tree/Rose.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 193, "size": 667 }
{-# OPTIONS --cubical #-} module Demos.Printf where open import Data.List open import Data.String open import Prelude open import Data.Nat.Show data Fstr : Type where [] : Fstr %s_ : Fstr → Fstr %i_ : Fstr → Fstr _∷_ : Char → Fstr → Fstr parse : String → Fstr parse = go ∘ unpack where go : List Char → Fstr go ('%' ∷ 's' ∷ xs) = %s go xs go ('%' ∷ 'i' ∷ xs) = %i go xs go [] = [] go (x ∷ xs) = x ∷ go xs Format : Fstr → Type Format [] = String Format (%s xs) = String → Format xs Format (%i xs) = ℕ → Format xs Format (x ∷ xs) = Format xs format : (xs : Fstr) → Format xs format = go pack where go : (List Char → String) → (xs : Fstr) → Format xs go k [] = k [] go k (%s xs) s = go (k ∘ (unpack s ++_)) xs go k (%i xs) i = go (k ∘ (unpack (showℕ i) ++_)) xs go k (x ∷ xs) = go (k ∘ (x ∷_)) xs printf : (fstr : String) → Format (parse fstr) printf fstr = format (parse fstr) -- Example: -- -- >>> printf "%s, %i: %s" "hello" 2 "you" -- "hello, 2: you"
{ "alphanum_fraction": 0.5528700906, "avg_line_length": 21.1276595745, "ext": "agda", "hexsha": "f32188d7480ef06b6fed417a561d464abf124268", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Demos/Printf.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Demos/Printf.agda", "max_line_length": 53, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Demos/Printf.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 390, "size": 993 }
{-# OPTIONS --cubical-compatible #-} -- Andreas, 2020-02-07, instances of #906 needing --cubical-compatible to throw -- off the termination checker. module Issue906WithoutK where module Issue3081 where postulate X : Set P : (x : X) → Set any : {X : Set} → X record W : Set where field x : X p : P x record Category : Set₁ where field z : W s : W → W {- Termination checking failed for the following functions: functor Problematic calls: W.x (functor .Category.s u) W.x (functor .Category.z) -} functor : Category functor .Category.z .W.x = any functor .Category.z .W.p = any functor .Category.s u .W.x = any functor .Category.s u .W.p = any module Issue3081Ulf where open import Agda.Builtin.Nat record R : Set where field a : Nat b : Nat record S : Set where field r : R -- works if we give r and h the same number of arguments h : Nat → R open R open S f : S f .r .a = 0 f .r .b = f .r .a f .h n .a = n f .h n .b = f .h n .a -- Should all pass the termination checker.
{ "alphanum_fraction": 0.5841409692, "avg_line_length": 18.3064516129, "ext": "agda", "hexsha": "25831de4a2c6d4d155f8b6c5459b741123635378", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue906WithoutK.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue906WithoutK.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue906WithoutK.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 366, "size": 1135 }
{-# OPTIONS --warning=error --safe --without-K #-} open import LogicalFormulae open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Functions.Definition open import Setoids.Setoids open import Setoids.Subset open import Graphs.Definition module Graphs.Bipartite where Bipartite : {a b : _} {c : _} {V' : Set a} {V : Setoid {a} {b} V'} (G : Graph c V) → Set _ Bipartite {V' = V'} {V = V} G = Sg (V' → Set) (λ partition → ((x y : V') → (Setoid._∼_ V x y) → partition x → partition y) & ((x : V') → (partition x) || ((partition x) → False)) & ((x y : V') → (Graph._<->_ G x y) → (partition x) → ((partition y) → False)))
{ "alphanum_fraction": 0.6228482003, "avg_line_length": 45.6428571429, "ext": "agda", "hexsha": "48214f7e5ffaee47f442620769c3349eb156a3ef", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Graphs/Bipartite.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Graphs/Bipartite.agda", "max_line_length": 258, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Graphs/Bipartite.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 224, "size": 639 }
module Typing where import IO.Primitive as Prim --open import Data.Unit open import ParseTree open import Data.Nat open import Data.List open import Data.String open import Data.Unit {-# FOREIGN GHC import InteractWithAgda #-} postulate getTypes : List ParseTree -> ℕ -> List Expr -> String -> Prim.IO (List Expr) {-# COMPILE GHC getTypes = getTypes #-} postulate getEnvironment : List ParseTree -> ℕ -> String -> Prim.IO (List TypeSignature) {-# COMPILE GHC getEnvironment = getEnvironment #-} postulate output : String -> Prim.IO ⊤ {-# COMPILE GHC output = output #-}
{ "alphanum_fraction": 0.7291666667, "avg_line_length": 27.4285714286, "ext": "agda", "hexsha": "971d71512b0cd377d74123d32556213851141bbf", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "omega12345/RefactorAgda", "max_forks_repo_path": "RefactorAgdaEngine/Typing.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_issues_repo_issues_event_max_datetime": "2019-02-05T12:53:36.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-31T08:03:07.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "omega12345/RefactorAgda", "max_issues_repo_path": "RefactorAgdaEngine/Typing.agda", "max_line_length": 89, "max_stars_count": 5, "max_stars_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "omega12345/RefactorAgda", "max_stars_repo_path": "RefactorAgdaEngine/Typing.agda", "max_stars_repo_stars_event_max_datetime": "2019-05-03T10:03:36.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-31T14:10:18.000Z", "num_tokens": 141, "size": 576 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.TLevel open import lib.types.Pi open import lib.types.Sigma open import lib.NType2 module lib.types.Truncation where module _ {i} where postulate -- HIT Trunc : (n : ℕ₋₂) (A : Type i) → Type i [_] : {n : ℕ₋₂} {A : Type i} → A → Trunc n A instance Trunc-level : {n : ℕ₋₂} {A : Type i} → has-level n (Trunc n A) module TruncElim {n : ℕ₋₂} {A : Type i} {j} {P : Trunc n A → Type j} {{p : (x : Trunc n A) → has-level n (P x)}} (d : (a : A) → P [ a ]) where postulate -- HIT f : Π (Trunc n A) P [_]-β : ∀ a → f [ a ] ↦ d a {-# REWRITE [_]-β #-} open TruncElim public renaming (f to Trunc-elim) module TruncRec {i j} {n : ℕ₋₂} {A : Type i} {B : Type j} {{p : has-level n B}} (d : A → B) where private module M = TruncElim {{λ x → p}} d f : Trunc n A → B f = M.f open TruncRec public renaming (f to Trunc-rec) module TruncRecType {i j} {n : ℕ₋₂} {A : Type i} (d : A → n -Type j) where open TruncRec {{n -Type-level j}} d public flattening-Trunc : Σ (Trunc (S n) A) (fst ∘ f) ≃ Trunc (S n) (Σ A (fst ∘ d)) flattening-Trunc = equiv to from to-from from-to where to-aux : (x : Trunc (S n) A) → (fst (f x) → Trunc (S n) (Σ A (fst ∘ d))) to-aux = Trunc-elim (λ a b → [ (a , b) ]) to : Σ (Trunc (S n) A) (fst ∘ f) → Trunc (S n) (Σ A (fst ∘ d)) to (x , y) = to-aux x y from-aux : Σ A (fst ∘ d) → Σ (Trunc (S n) A) (fst ∘ f) from-aux (a , b) = ([ a ] , b) from : Trunc (S n) (Σ A (fst ∘ d)) → Σ (Trunc (S n) A) (fst ∘ f) from = Trunc-rec {{Σ-level ⟨⟩ (λ x → raise-level _ (snd (f x)))}} from-aux where to-from : (x : Trunc (S n) (Σ A (fst ∘ d))) → to (from x) == x to-from = Trunc-elim (λ _ → idp) from-to-aux : (a : Trunc (S n) A) (b : fst (f a)) → from (to-aux a b) == (a , b) from-to-aux = Trunc-elim {{λ _ → Π-level (λ _ → =-preserves-level (Σ-level ⟨⟩ (λ x → raise-level _ (snd (f x)))))}} (λ a b → idp) from-to : (x : Σ (Trunc (S n) A) (fst ∘ f)) → from (to x) == x from-to (a , b) = from-to-aux a b ⊙Trunc : ∀ {i} → ℕ₋₂ → Ptd i → Ptd i ⊙Trunc n ⊙[ A , a ] = ⊙[ Trunc n A , [ a ] ] module _ {i} {n : ℕ₋₂} {A : Type i} where Trunc= : (a b : Trunc (S n) A) → n -Type i Trunc= = Trunc-elim (λ a → Trunc-elim ((λ b → (Trunc n (a == b) , Trunc-level)))) Trunc=-equiv : (a b : Trunc (S n) A) → (a == b) ≃ fst (Trunc= a b) Trunc=-equiv a b = equiv (to a b) (from a b) (to-from a b) (from-to a b) where to-aux : (a : Trunc (S n) A) → fst (Trunc= a a) to-aux = Trunc-elim {{λ x → raise-level _ (snd (Trunc= x x))}} (λ a → [ idp ]) to : (a b : Trunc (S n) A) → (a == b → fst (Trunc= a b)) to a .a idp = to-aux a from-aux : (a b : A) → a == b → [ a ] == [ b ] :> Trunc (S n) A from-aux a .a idp = idp from : (a b : Trunc (S n) A) → (fst (Trunc= a b) → a == b) from = Trunc-elim (λ a → Trunc-elim (λ b → Trunc-rec (from-aux a b))) to-from-aux : (a b : A) → (p : a == b) → to _ _ (from-aux a b p) == [ p ] to-from-aux a .a idp = idp to-from : (a b : Trunc (S n) A) (x : fst (Trunc= a b)) → to a b (from a b x) == x to-from = Trunc-elim {{λ x → Π-level (λ y → Π-level (λ _ → =-preserves-level (raise-level _ (snd (Trunc= x y)))))}} (λ a → Trunc-elim {{λ x → Π-level (λ _ → =-preserves-level (raise-level _ (snd (Trunc= [ a ] x))))}} (λ b → Trunc-elim (to-from-aux a b))) from-to-aux : (a : Trunc (S n) A) → from a a (to-aux a) == idp from-to-aux = Trunc-elim (λ _ → idp) from-to : (a b : Trunc (S n) A) (p : a == b) → from a b (to a b p) == p from-to a .a idp = from-to-aux a Trunc=-path : (a b : Trunc (S n) A) → (a == b) == fst (Trunc= a b) Trunc=-path a b = ua (Trunc=-equiv a b) {- Universal property -} abstract Trunc-rec-is-equiv : ∀ {i j} (n : ℕ₋₂) (A : Type i) (B : Type j) {{p : has-level n B}} → is-equiv (Trunc-rec {{p}} :> ((A → B) → (Trunc n A → B))) Trunc-rec-is-equiv n A B {{p}} = is-eq _ (λ f → f ∘ [_]) (λ f → λ= (Trunc-elim (λ a → idp))) (λ f → idp) Trunc-preserves-level : ∀ {i} {A : Type i} {n : ℕ₋₂} (m : ℕ₋₂) → has-level n A → has-level n (Trunc m A) Trunc-preserves-level {n = ⟨-2⟩} _ p = has-level-in ([ contr-center p ] , Trunc-elim (λ a → ap [_] (contr-path p a))) Trunc-preserves-level ⟨-2⟩ _ = contr-has-level Trunc-level Trunc-preserves-level {n = (S n)} (S m) c = has-level-in (λ t₁ t₂ → Trunc-elim {{λ s₁ → prop-has-level-S {A = has-level n (s₁ == t₂)} has-level-is-prop}} (λ a₁ → Trunc-elim {{λ s₂ → prop-has-level-S {A = has-level n ([ a₁ ] == s₂)} has-level-is-prop}} (λ a₂ → equiv-preserves-level ((Trunc=-equiv [ a₁ ] [ a₂ ])⁻¹) {{Trunc-preserves-level {n = n} m (has-level-apply c a₁ a₂)}}) t₂) t₁) {- an n-type is equivalent to its n-truncation -} unTrunc-equiv : ∀ {i} {n : ℕ₋₂} (A : Type i) {{_ : has-level n A}} → Trunc n A ≃ A unTrunc-equiv A = equiv f [_] (λ _ → idp) g-f where f = Trunc-rec (idf _) g-f = Trunc-elim (λ _ → idp) ⊙unTrunc-equiv : ∀ {i} {n : ℕ₋₂} (X : Ptd i) {{_ : has-level n (de⊙ X)}} → ⊙Trunc n X ⊙≃ X ⊙unTrunc-equiv {n = n} X = ≃-to-⊙≃ (unTrunc-equiv (de⊙ X)) idp -- Equivalence associated to the universal property Trunc-extend-equiv : ∀ {i j} (n : ℕ₋₂) (A : Type i) (B : Type j) {{p : has-level n B}} → (A → B) ≃ (Trunc n A → B) Trunc-extend-equiv n A B = (Trunc-rec , Trunc-rec-is-equiv n A B) Trunc-fmap : ∀ {i j} {n : ℕ₋₂} {A : Type i} {B : Type j} → ((A → B) → (Trunc n A → Trunc n B)) Trunc-fmap f = Trunc-rec ([_] ∘ f) ⊙Trunc-fmap : ∀ {i j} {n : ℕ₋₂} {X : Ptd i} {Y : Ptd j} → ((X ⊙→ Y) → (⊙Trunc n X ⊙→ ⊙Trunc n Y)) ⊙Trunc-fmap F = Trunc-fmap (fst F) , ap [_] (snd F) Trunc-fmap2 : ∀ {i j k} {n : ℕ₋₂} {A : Type i} {B : Type j} {C : Type k} → ((A → B → C) → (Trunc n A → Trunc n B → Trunc n C)) Trunc-fmap2 f = Trunc-rec (λ a → Trunc-fmap (f a)) -- XXX What is the naming convention? Trunc-fpmap : ∀ {i j} {n : ℕ₋₂} {A : Type i} {B : Type j} {f g : A → B} → f ∼ g → Trunc-fmap {n = n} f ∼ Trunc-fmap g Trunc-fpmap h = Trunc-elim (ap [_] ∘ h) Trunc-fmap-idf : ∀ {i} {n : ℕ₋₂} {A : Type i} → ∀ x → Trunc-fmap {n = n} (idf A) x == x Trunc-fmap-idf = Trunc-elim (λ _ → idp) Trunc-fmap-∘ : ∀ {i j k} {n : ℕ₋₂} {A : Type i} {B : Type j} {C : Type k} → (g : B → C) → (f : A → B) → ∀ x → Trunc-fmap {n = n} g (Trunc-fmap f x) == Trunc-fmap (g ∘ f) x Trunc-fmap-∘ g f = Trunc-elim (λ _ → idp) Trunc-csmap : ∀ {i₀ i₁ j₀ j₁} {n : ℕ₋₂} {A₀ : Type i₀} {A₁ : Type i₁} {B₀ : Type j₀} {B₁ : Type j₁} {f : A₀ → B₀} {g : A₁ → B₁} {hA : A₀ → A₁} {hB : B₀ → B₁} → CommSquare f g hA hB → CommSquare (Trunc-fmap {n = n} f) (Trunc-fmap g) (Trunc-fmap hA) (Trunc-fmap hB) Trunc-csmap (comm-sqr cs) = comm-sqr $ Trunc-elim (ap [_] ∘ cs) {- Pushing concatentation through Trunc= -} module _ {i} {n : ℕ₋₂} {A : Type i} where {- concatenation in Trunc= -} Trunc=-∙ : {ta tb tc : Trunc (S n) A} → fst (Trunc= ta tb) → fst (Trunc= tb tc) → fst (Trunc= ta tc) Trunc=-∙ {ta = ta} {tb = tb} {tc = tc} = Trunc-elim {P = λ ta → C ta tb tc} {{λ ta → level ta tb tc}} (λ a → Trunc-elim {P = λ tb → C [ a ] tb tc} {{λ tb → level [ a ] tb tc}} (λ b → Trunc-elim {P = λ tc → C [ a ] [ b ] tc} {{λ tc → level [ a ] [ b ] tc}} (λ c → Trunc-fmap2 _∙_) tc) tb) ta where C : (ta tb tc : Trunc (S n) A) → Type i C ta tb tc = fst (Trunc= ta tb) → fst (Trunc= tb tc) → fst (Trunc= ta tc) level : (ta tb tc : Trunc (S n) A) → has-level (S n) (C ta tb tc) level ta tb tc = raise-level _ $ Π-level (λ _ → Π-level (λ _ → snd (Trunc= ta tc))) {- XXX naming convention -} Trunc=-∙-comm : {x y z : Trunc (S n) A } (p : x == y) (q : y == z) → –> (Trunc=-equiv x z) (p ∙ q) == Trunc=-∙ {ta = x} (–> (Trunc=-equiv x y) p) (–> (Trunc=-equiv y z) q) Trunc=-∙-comm {x = x} idp idp = Trunc-elim {P = λ x → –> (Trunc=-equiv x x) idp == Trunc=-∙ {ta = x} (–> (Trunc=-equiv x x) idp) (–> (Trunc=-equiv x x) idp)} {{λ x → raise-level _ $ =-preserves-level (snd (Trunc= x x))}} (λ a → idp) x {- naturality of Trunc=-equiv -} module _ {i j} {n : ℕ₋₂} {A : Type i} {B : Type j} (f : A → B) where Trunc=-fmap : ∀ (a₀ a₁ : Trunc (S n) A) → (fst (Trunc= {n = n} a₀ a₁) → fst (Trunc= {n = n} (Trunc-fmap f a₀) (Trunc-fmap f a₁))) Trunc=-fmap = Trunc-elim {P = λ a₀ → ∀ a₁ → (fst (Trunc= a₀ a₁) → fst (Trunc= (Trunc-fmap f a₀) (Trunc-fmap f a₁)))} {{λ a₀ → Π-level λ a₁ → Π-level λ _ → raise-level _ $ snd (Trunc= (Trunc-fmap f a₀) (Trunc-fmap f a₁))}} (λ a₀ → Trunc-elim {P = λ a₁ → (fst (Trunc= [ a₀ ] a₁) → fst (Trunc= [ f a₀ ] (Trunc-fmap f a₁)))} {{λ a₁ → Π-level λ _ → raise-level _ $ snd (Trunc= [ f a₀ ] (Trunc-fmap f a₁))}} (λ a₁ → Trunc-fmap (ap f))) module _ {i j} {n : ℕ₋₂} {A : Type i} {B : Type j} (f : A → B) where Trunc=-equiv-nat : ∀ (a₀ a₁ : Trunc (S n) A) (p : a₀ == a₁) → –> (Trunc=-equiv (Trunc-fmap f a₀) (Trunc-fmap f a₁)) (ap (Trunc-fmap f) p) == Trunc=-fmap f a₀ a₁ (–> (Trunc=-equiv a₀ a₁) p) Trunc=-equiv-nat a₀ .a₀ idp = Trunc-elim {P = λ a → –> (Trunc=-equiv (Trunc-fmap f a) (Trunc-fmap f a)) idp == Trunc=-fmap f a a (–> (Trunc=-equiv a a) idp)} {{λ a → raise-level _ $ =-preserves-level $ snd ((Trunc= (Trunc-fmap f a) (Trunc-fmap f a)))}} (λ _ → idp) a₀ {- Truncation preserves equivalences - more convenient than univalence+ap - when we need to know the forward or backward function explicitly -} module _ {i j} {n : ℕ₋₂} {A : Type i} {B : Type j} where Trunc-isemap : {f : A → B} → is-equiv f → is-equiv (Trunc-fmap {n = n} f) Trunc-isemap {f-orig} ie = is-eq f g f-g g-f where f = Trunc-fmap f-orig g = Trunc-fmap (is-equiv.g ie) f-g : ∀ tb → f (g tb) == tb f-g = Trunc-elim (ap [_] ∘ is-equiv.f-g ie) g-f : ∀ ta → g (f ta) == ta g-f = Trunc-elim (ap [_] ∘ is-equiv.g-f ie) Trunc-emap : A ≃ B → Trunc n A ≃ Trunc n B Trunc-emap (f , f-ie) = Trunc-fmap f , Trunc-isemap f-ie Trunc-csemap : ∀ {i₀ i₁ j₀ j₁} {n : ℕ₋₂} {A₀ : Type i₀} {A₁ : Type i₁} {B₀ : Type j₀} {B₁ : Type j₁} {f : A₀ → B₀} {g : A₁ → B₁} {hA : A₀ → A₁} {hB : B₀ → B₁} → CommSquareEquiv f g hA hB → CommSquareEquiv (Trunc-fmap {n = n} f) (Trunc-fmap g) (Trunc-fmap hA) (Trunc-fmap hB) Trunc-csemap (cs , hA-ise , hB-ise) = Trunc-csmap cs , Trunc-isemap hA-ise , Trunc-isemap hB-ise transport-Trunc : ∀ {i j} {A : Type i} {n : ℕ₋₂} (P : A → Type j) {x y : A} (p : x == y) (b : P x) → transport (Trunc n ∘ P) p [ b ] == [ transport P p b ] transport-Trunc _ idp _ = idp Trunc-fuse : ∀ {i} (A : Type i) (m n : ℕ₋₂) → Trunc m (Trunc n A) ≃ Trunc (minT m n) A Trunc-fuse A m n = equiv (Trunc-rec {{raise-level-≤T (minT≤l m n) Trunc-level}} (Trunc-rec {{raise-level-≤T (minT≤r m n) Trunc-level}} [_])) (Trunc-rec ([_] ∘ [_])) (Trunc-elim (λ _ → idp)) (Trunc-elim (Trunc-elim {{λ _ → =-preserves-level (Trunc-preserves-level _ Trunc-level)}} (λ _ → idp))) where instance l : has-level (minT m n) (Trunc m (Trunc n A)) l with (minT-out m n) l | inl p = transport (λ k → has-level k (Trunc m (Trunc n A))) (! p) Trunc-level l | inr q = Trunc-preserves-level _ (transport (λ k → has-level k (Trunc n A)) (! q) Trunc-level) Trunc-fuse-≤ : ∀ {i} (A : Type i) {m n : ℕ₋₂} (m≤n : m ≤T n) → Trunc m (Trunc n A) ≃ Trunc m A Trunc-fuse-≤ A m≤n = equiv (Trunc-rec (Trunc-rec {{raise-level-≤T m≤n Trunc-level}} [_])) (Trunc-rec ([_] ∘ [_])) (Trunc-elim (λ _ → idp)) (Trunc-elim (Trunc-elim {{λ _ → =-preserves-level (Trunc-preserves-level _ Trunc-level)}} (λ _ → idp))) {- Truncating a binary product is equivalent to truncating its components -} Trunc-×-econv : ∀ {i} {j} (n : ℕ₋₂) (A : Type i) (B : Type j) → Trunc n (A × B) ≃ Trunc n A × Trunc n B Trunc-×-econv n A B = equiv f g f-g g-f where f : Trunc n (A × B) → Trunc n A × Trunc n B f = Trunc-rec (λ {(a , b) → [ a ] , [ b ]}) g : Trunc n A × Trunc n B → Trunc n (A × B) g (ta , tb) = Trunc-rec (λ a → Trunc-rec (λ b → [ a , b ]) tb) ta f-g : ∀ p → f (g p) == p f-g (ta , tb) = Trunc-elim {P = λ ta → f (g (ta , tb)) == (ta , tb)} (λ a → Trunc-elim {P = λ tb → f (g ([ a ] , tb)) == ([ a ] , tb)} (λ b → idp) tb) ta g-f : ∀ tab → g (f tab) == tab g-f = Trunc-elim {P = λ tab → g (f tab) == tab} (λ ab → idp) Trunc-×-conv : ∀ {i} {j} (n : ℕ₋₂) (A : Type i) (B : Type j) → Trunc n (A × B) == Trunc n A × Trunc n B Trunc-×-conv n A B = ua (Trunc-×-econv n A B)
{ "alphanum_fraction": 0.5, "avg_line_length": 38.082111437, "ext": "agda", "hexsha": "06b8f632a53575ac293a5b5ec2c202f53c9fddbf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Truncation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Truncation.agda", "max_line_length": 119, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Truncation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5557, "size": 12986 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.HSpace renaming (HSpaceStructure to HSS) open import homotopy.Pi2HSusp open import homotopy.WedgeExtension open import lib.types.TwoSemiCategory open import lib.two-semi-categories.FundamentalCategory module homotopy.Pi2HSuspCompose {i} {X : Ptd i} {{_ : has-level 1 (de⊙ X)}} {{is-0-connected : is-connected 0 (de⊙ X)}} (H-X : HSS X) (H-X-assoc : associator H-X) (coh-assoc-unit-l-r-pentagon : coh-unit-l-r-pentagon H-X H-X-assoc) where private A = de⊙ X e = pt X open Pi2HSusp H-X public infixr 80 _∙₁_ _∙₁_ : {x y z : Susp A} → Trunc 1 (x == y) → Trunc 1 (y == z) → Trunc 1 (x == z) _∙₁_ {x} {y} {z} p q = _∙ₜ_ {A = Susp A} {ta = [ x ]} {tb = [ y ]} {tc = [ z ]} p q module _ {k} {B : Type k} where add-path-inverse-l : {x y z : B} → (p : x == y) (q : x == z) → p == (q ∙ ! q) ∙ p add-path-inverse-l p q = ap (_∙ p) (! (!-inv-r q)) add-path-inverse-r : {x y z : B} → (p : x == y) (r : y == z) → p == p ∙ (r ∙ ! r) add-path-inverse-r p r = ! (∙-unit-r p) ∙ ap (p ∙_) (! (!-inv-r r)) abstract add-path-inverse-coh : {x y : B} (p : x == x) (q : x == y) → add-path-inverse-r p q ◃∙ ap (_∙ (q ∙ ! q)) (add-path-inverse-l p q) ◃∙ ∙-assoc (q ∙ ! q) p (q ∙ ! q) ◃∎ =ₛ add-path-inverse-l p q ◃∙ ap ((q ∙ ! q) ∙_) (add-path-inverse-r p q) ◃∎ add-path-inverse-coh p idp = add-path-inverse-r p idp ◃∙ idp ◃∙ idp ◃∎ =ₛ⟨ 1 & 1 & expand [] ⟩ add-path-inverse-r p idp ◃∙ idp ◃∎ =ₛ⟨ 1 & 1 & expand [] ⟩ add-path-inverse-r p idp ◃∎ =ₛ₁⟨ ! (ap-idf (add-path-inverse-r p idp)) ⟩ ap (λ q → q) (add-path-inverse-r p idp) ◃∎ =ₛ⟨ 0 & 0 & contract ⟩ add-path-inverse-l p idp ◃∙ ap (λ q → q) (add-path-inverse-r p idp) ◃∎ ∎ₛ comp-l-seq : (a' : A) → η (μ e a') =-= η e ∙ η a' comp-l-seq a' = η (μ e a') =⟪ ap η (μ.unit-l a') ⟫ η a' =⟪ add-path-inverse-l (η a') (merid e) ⟫ η e ∙ η a' ∎∎ comp-l : (a' : A) → η (μ e a') == η e ∙ η a' comp-l a' = ↯ (comp-l-seq a') comp-r-seq : (a : A) → η (μ a e) =-= η a ∙ η e comp-r-seq a = η (μ a e) =⟪ ap η (μ.unit-r a) ⟫ η a =⟪ add-path-inverse-r (η a) (merid e) ⟫ η a ∙ η e ∎∎ comp-r : (a : A) → η (μ a e) == η a ∙ η e comp-r a = ↯ (comp-r-seq a) comp-lr-coh : comp-l e == comp-r e comp-lr-coh = ap2 (λ p₁ p₂ → ap η p₁ ∙ p₂) μ.coh (add-path-inverse-lr-coh (merid e)) where add-path-inverse-lr-coh : {B : Type i} {b b' : B} (p : b == b') → add-path-inverse-l (p ∙ ! p) p == add-path-inverse-r (p ∙ ! p) p add-path-inverse-lr-coh idp = idp comp-l₁ : (a' : A) → [ η (μ e a') ]₁ == [ η e ∙ η a' ]₁ comp-l₁ = ap [_]₁ ∘ comp-l comp-r₁ : (a : A) → [ η (μ a e) ]₁ == [ η a ∙ η e ]₁ comp-r₁ = ap [_]₁ ∘ comp-r comp-args : args {i} {i} {A} {e} {A} {e} comp-args = record { m = -1; n = -1; P = λ a a' → (Q a a' , ⟨⟩); f = comp-r₁; g = comp-l₁; p = ap (ap [_]₁) (! comp-lr-coh) } where Q : A → A → Type i Q a a' = [ η (μ a a' ) ]₁ == [ η a ∙ η a' ]₁ module Comp = WedgeExt {i} {i} {A} {e} {A} {e} comp-args comp : (a a' : A) → [ η (μ a a') ]₁ == [ η a ]₁ ∙₁ [ η a' ]₁ comp = Comp.ext comp-unit-l : (a' : A) → comp e a' == comp-l₁ a' comp-unit-l a' = Comp.β-r a' comp-unit-r : (a : A) → comp a e == comp-r₁ a comp-unit-r a = Comp.β-l a module CoherenceProof (a' : A) where P : A → A → Type i P a a'' = comp (μ a a') a'' ◃∙ ap (_∙₁ [ η a'' ]₁) (comp a a') ◃∙ ap [_]₁ (∙-assoc (η a) (η a') (η a'')) ◃∎ =ₛ ap ([_]₁ ∘ η) (H-X-assoc a a' a'') ◃∙ comp a (μ a' a'') ◃∙ ap ([ η a ]₁ ∙₁_) (comp a' a'') ◃∎ P-is-prop : ∀ a a'' → is-prop (P a a'') P-is-prop a a'' = =ₛ-level (Trunc-level {n = 1}) Q : A → A → hProp i Q a a'' = P a a'' , P-is-prop a a'' inner-coh : comp-r (μ e a') ◃∙ ap (_∙ η e) (comp-l a') ◃∙ ∙-assoc (η e) (η a') (η e) ◃∎ =ₛ ap η (H-X-assoc e a' e) ◃∙ comp-l (μ a' e) ◃∙ ap (η e ∙_) (comp-r a') ◃∎ inner-coh = comp-r (μ e a') ◃∙ ap (_∙ η e) (comp-l a') ◃∙ ∙-assoc (η e) (η a') (η e) ◃∎ =ₛ⟨ 0 & 1 & expand (comp-r-seq (μ e a')) ⟩ ap η (μ.unit-r (μ e a')) ◃∙ add-path-inverse-r (η (μ e a')) (merid e) ◃∙ ap (_∙ η e) (comp-l a') ◃∙ ∙-assoc (η e) (η a') (η e) ◃∎ =ₛ⟨ 2 & 1 & ap-seq-∙ (_∙ η e) (comp-l-seq a') ⟩ ap η (μ.unit-r (μ e a')) ◃∙ add-path-inverse-r (η (μ e a')) (merid e) ◃∙ ap (_∙ η e) (ap η (μ.unit-l a')) ◃∙ ap (_∙ η e) (add-path-inverse-l (η a') (merid e)) ◃∙ ∙-assoc (η e) (η a') (η e) ◃∎ =ₛ⟨ 1 & 2 & !ₛ $ homotopy-naturality-from-idf (_∙ η e) (λ r → add-path-inverse-r r (merid e)) (ap η (μ.unit-l a')) ⟩ ap η (μ.unit-r (μ e a')) ◃∙ ap η (μ.unit-l a') ◃∙ add-path-inverse-r (η a') (merid e) ◃∙ ap (_∙ η e) (add-path-inverse-l (η a') (merid e)) ◃∙ ∙-assoc (η e) (η a') (η e) ◃∎ =ₛ⟨ 2 & 3 & add-path-inverse-coh (η a') (merid e) ⟩ ap η (μ.unit-r (μ e a')) ◃∙ ap η (μ.unit-l a') ◃∙ add-path-inverse-l (η a') (merid e) ◃∙ ap (η e ∙_) (add-path-inverse-r (η a') (merid e)) ◃∎ =ₛ⟨ 0 & 2 & ap-seq-=ₛ η (coh-assoc-unit-l-r-pentagon a') ⟩ ap η (H-X-assoc e a' e) ◃∙ ap η (μ.unit-l (μ a' e)) ◃∙ ap η (μ.unit-r a') ◃∙ add-path-inverse-l (η a') (merid e) ◃∙ ap (η e ∙_) (add-path-inverse-r (η a') (merid e)) ◃∎ =ₛ⟨ 2 & 2 & homotopy-naturality-from-idf (η e ∙_) (λ v → add-path-inverse-l v (merid e)) (ap η (μ.unit-r a')) ⟩ ap η (H-X-assoc e a' e) ◃∙ ap η (μ.unit-l (μ a' e)) ◃∙ add-path-inverse-l (η (μ a' e)) (merid e) ◃∙ ap (η e ∙_) (ap η (μ.unit-r a')) ◃∙ ap (η e ∙_) (add-path-inverse-r (η a') (merid e)) ◃∎ =ₛ⟨ 3 & 2 & ∙-ap-seq (η e ∙_) (comp-r-seq a')⟩ ap η (H-X-assoc e a' e) ◃∙ ap η (μ.unit-l (μ a' e)) ◃∙ add-path-inverse-l (η (μ a' e)) (merid e) ◃∙ ap (η e ∙_) (comp-r a') ◃∎ =ₛ⟨ 1 & 2 & contract ⟩ ap η (H-X-assoc e a' e) ◃∙ comp-l (μ a' e) ◃∙ ap (η e ∙_) (comp-r a') ◃∎ ∎ₛ coh : P e e coh = comp (μ e a') e ◃∙ ap (_∙₁ [ η e ]₁) (comp e a') ◃∙ ap [_]₁ (∙-assoc (η e) (η a') (η e)) ◃∎ =ₛ₁⟨ 0 & 1 & comp-unit-r (μ e a') ⟩ comp-r₁ (μ e a') ◃∙ ap (_∙₁ [ η e ]₁) (comp e a') ◃∙ ap [_]₁ (∙-assoc (η e) (η a') (η e)) ◃∎ =ₛ₁⟨ 1 & 1 & step₂ ⟩ comp-r₁ (μ e a') ◃∙ ap [_]₁ (ap (_∙ η e) (comp-l a')) ◃∙ ap [_]₁ (∙-assoc (η e) (η a') (η e)) ◃∎ =ₛ⟨ 0 & 3 & ap-seq-=ₛ [_]₁ inner-coh ⟩ ap [_]₁ (ap η (H-X-assoc e a' e)) ◃∙ comp-l₁ (μ a' e) ◃∙ ap [_]₁ (ap (η e ∙_) (comp-r a')) ◃∎ =ₛ₁⟨ 0 & 1 & ∘-ap [_]₁ η (H-X-assoc e a' e) ⟩ ap ([_]₁ ∘ η) (H-X-assoc e a' e) ◃∙ comp-l₁ (μ a' e) ◃∙ ap [_]₁ (ap (η e ∙_) (comp-r a')) ◃∎ =ₛ₁⟨ 1 & 1 & ! (comp-unit-l (μ a' e)) ⟩ ap ([_]₁ ∘ η) (H-X-assoc e a' e) ◃∙ comp e (μ a' e) ◃∙ ap [_]₁ (ap (η e ∙_) (comp-r a')) ◃∎ =ₛ₁⟨ 2 & 1 & step₈ ⟩ ap ([_]₁ ∘ η) (H-X-assoc e a' e) ◃∙ comp e (μ a' e) ◃∙ ap ([ η e ]₁ ∙₁_) (comp a' e) ◃∎ ∎ₛ where step₂ : ap (_∙₁ [ η e ]₁) (comp e a') == ap [_]₁ (ap (_∙ η e) (comp-l a')) step₂ = ap (_∙₁ [ η e ]₁) (comp e a') =⟨ ap (ap (_∙₁ [ η e ]₁)) (comp-unit-l a') ⟩ ap (_∙₁ [ η e ]₁) (comp-l₁ a') =⟨ ∘-ap (_∙₁ [ η e ]₁) [_]₁ (comp-l a') ⟩ ap ([_]₁ ∘ (_∙ η e)) (comp-l a') =⟨ ap-∘ [_]₁ (_∙ η e) (comp-l a') ⟩ ap [_]₁ (ap (_∙ η e) (comp-l a')) =∎ step₈ : ap [_]₁ (ap (η e ∙_) (comp-r a')) == ap ([ η e ]₁ ∙₁_) (comp a' e) step₈ = ap [_]₁ (ap (η e ∙_) (comp-r a')) =⟨ ∘-ap [_]₁ (η e ∙_) (comp-r a') ⟩ ap (λ v → [ η e ∙ v ]₁) (comp-r a') =⟨ ap-∘ ([ η e ]₁ ∙₁_) [_]₁ (comp-r a') ⟩ ap ([ η e ]₁ ∙₁_) (comp-r₁ a') =⟨ ! (ap (ap ([ η e ]₁ ∙₁_)) (comp-unit-r a')) ⟩ ap ([ η e ]₁ ∙₁_) (comp a' e) =∎ abstract comp-coh : (a a' a'' : A) → comp (μ a a') a'' ◃∙ ap (λ v → v ∙₁ [ η a'' ]₁) (comp a a') ◃∙ ap [_]₁ (∙-assoc (η a) (η a') (η a'')) ◃∎ =ₛ ap ([_]₁ ∘ η) (H-X-assoc a a' a'') ◃∙ comp a (μ a' a'') ◃∙ ap (λ v → [ η a ] ∙₁ v) (comp a' a'') ◃∎ comp-coh a a' a'' = prop-over-connected {A = A} {a = e} {{is-0-connected}} (λ a → CoherenceProof.Q a' a a'') (prop-over-connected {A = A} {a = e} {{is-0-connected}} (λ a'' → CoherenceProof.Q a' e a'') (CoherenceProof.coh a') a'') a comp-functor : (pentagon : coh-assoc-pentagon H-X H-X-assoc) → TwoSemiFunctor (HSpace-2-semi-category H-X {{⟨⟩}} H-X-assoc pentagon) (=ₜ-fundamental-cat (Susp (de⊙ X))) comp-functor _ = record { F₀ = λ _ → [ north ] ; F₁ = λ x → [ η x ] ; pres-comp = comp ; pres-comp-coh = comp-coh }
{ "alphanum_fraction": 0.4020142677, "avg_line_length": 33.8014184397, "ext": "agda", "hexsha": "a0a80d4c38e4c530002c79fecb49a38f6be09432", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/Pi2HSuspCompose.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/Pi2HSuspCompose.agda", "max_line_length": 85, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/Pi2HSuspCompose.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 4429, "size": 9532 }
module Basics where _%_ : {A B : Set}{C : B -> Set} (f : (x : B) -> C x)(g : A -> B)(x : A) -> C (g x) f % g = \x -> f (g x) -- Logic data False : Set where record True : Set where tt : True tt = _ ¬_ : Set -> Set ¬ A = A -> False record ∃ {A : Set}(P : A -> Set) : Set where field witness : A proof : P witness ∃-intro : {A : Set}{P : A -> Set}(x : A) -> P x -> ∃ P ∃-intro x p = record { witness = x; proof = p } infixr 15 _/\_ _×_ data _×_ (A B : Set) : Set where _,_ : A -> B -> A × B _/\_ = _×_ -- Maybe data Lift (A : Set) : Set where bot : Lift A lift : A -> Lift A _=<<_ : {A B : Set} -> (A -> Lift B) -> Lift A -> Lift B f =<< bot = bot f =<< lift v = f v -- Nat data Nat : Set where zero : Nat suc : Nat -> Nat -- Identity infix 10 _==_ data _==_ {A : Set}(x : A) : A -> Set where refl : x == x data Id {A : Set}(x : A) : Set where it : (y : A) -> x == y -> Id x -- Booleans data Bool : Set where true : Bool false : Bool data LR : Set where left : LR right : LR if_then_else_ : {A : Set} -> Bool -> A -> A -> A if true then x else y = x if false then x else y = y -- Lists infixr 50 _::_ data List (A : Set) : Set where [] : List A _::_ : A -> List A -> List A data Elem {A : Set}(x : A) : List A -> Set where hd : forall {xs} -> Elem x (x :: xs) tl : forall {y xs} -> Elem x xs -> Elem x (y :: xs)
{ "alphanum_fraction": 0.4903502502, "avg_line_length": 16.4588235294, "ext": "agda", "hexsha": "ace6a18a6b536261c0d1cff2ce2f19fc6047e7d9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/cbs/Basics.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/cbs/Basics.agda", "max_line_length": 56, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/cbs/Basics.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 550, "size": 1399 }
module Cryptol where open import Bool open import Nat open import Eq postulate Int : Set Float : Set Char : Set String : Set {-# BUILTIN INTEGER Int #-} {-# BUILTIN FLOAT Float #-} {-# BUILTIN CHAR Char #-} {-# BUILTIN STRING String #-} data List (A : Set) : Set where Nil : List A Cons : A → List A → List A {-# BUILTIN LIST List #-} {-# BUILTIN NIL Nil #-} {-# BUILTIN CONS Cons #-} append : {A : Set} → List A → List A → List A append Nil ys = ys append (Cons x xs) ys = Cons x (append xs ys) infixr 5 _::_ data Vec (A : Set) : ℕ → Set where Nil : Vec A Z _::_ : {n : ℕ} → A → Vec A n → Vec A (S n) _++_ : ∀ {A m n} → Vec A m → Vec A n → Vec A (m + n) Nil ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) data Bit : Set where O : Bit I : Bit Word : ℕ → Set Word n = Vec Bit n data SnocView {A : Set} : List A → Set where Nil : SnocView Nil Snoc : (xs : List A) → (x : A) → SnocView (append xs (Cons x Nil)) view : {A : Set} → (xs : List A) → SnocView xs view Nil = Nil view (Cons x xs) with view xs view (Cons x _) | Nil = Snoc Nil x view (Cons x _) | Snoc ys y = Snoc (Cons x ys) y rotateRight : {A : Set} → List A → List A rotateRight xs with view xs rotateRight _ | Nil = Nil rotateRight _ | Snoc ys y = Cons y ys take : ∀ {A m} → (n : ℕ) → Vec A (n + m) → Vec A n take Z l = Nil take (S k) (x :: xs) = x :: take k xs drop : ∀ {A m} → (n : ℕ) → Vec A (n + m) → Vec A m drop Z xs = xs drop (S k) (x :: xs) = drop k xs split : ∀ {A} → (n : ℕ) → (m : ℕ) → Vec A (m × n) → Vec (Vec A n) m split n Z Nil = Nil split n (S k) xs = (take n xs) :: (split n k (drop n xs)) concat : ∀ {A n m} → Vec (Vec A n) m → Vec A (m × n) concat Nil = Nil concat (xs :: xss) = xs ++ concat xss postulate splitConcatLemma : ∀ {A : Set} → (m : ℕ) → (n : ℕ) → (xs : Vec A (m × n)) → concat (split n m xs) ≡ xs takeDropLemma : ∀ {A : Set} → (n : ℕ) → (m : ℕ) → (xs : Vec A (n + m)) → ((take n xs) ++ (drop n xs)) ≡ xs takeDropLemma Z m _ = Refl takeDropLemma (S k) m (x :: xs) with ((take k xs) ++ (drop k xs)) | takeDropLemma k _ xs takeDropLemma (S k) m (x :: xs) | ._ | Refl = Refl data SplitView {A : Set} : {n : ℕ} → (m : ℕ) → Vec A (m × n) → Set where [_] : ∀ {m n} → (xss : Vec (Vec A n) m) → SplitView m (concat xss) splitView : {A : Set} → (n : ℕ) → (m : ℕ) → (xs : Vec A (m × n)) → SplitView m xs splitView n m xs with concat (split n m xs) | [ split n m xs ] | splitConcatLemma m n xs splitView n m xs | _ | v | Refl = v data TakeView (A : Set) (m : ℕ) (n : ℕ) : Vec A (m + n) → Set where Take : (xs : Vec A m) → (ys : Vec A n) → TakeView A m n (xs ++ ys) --sv : {A : Set} → (n : ℕ) → (m : ℕ) → Vec a swab : Word 32 → Word 32 swab xs with splitView 8 4 xs swab _ | [ a :: b :: c :: d :: Nil ] = concat (b :: a :: c :: d :: Nil)
{ "alphanum_fraction": 0.520168362, "avg_line_length": 27.1523809524, "ext": "agda", "hexsha": "6fb2b038093e7a9b32921520e6836b06e43f06f7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76743baacba0f07992bac5234ba8045d18706893", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "mjhopkins/PowerOfPi", "max_forks_repo_path": "Cryptol.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76743baacba0f07992bac5234ba8045d18706893", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "mjhopkins/PowerOfPi", "max_issues_repo_path": "Cryptol.agda", "max_line_length": 106, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76743baacba0f07992bac5234ba8045d18706893", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "mjhopkins/PowerOfPi", "max_stars_repo_path": "Cryptol.agda", "max_stars_repo_stars_event_max_datetime": "2018-07-25T13:12:15.000Z", "max_stars_repo_stars_event_min_datetime": "2018-07-25T13:12:15.000Z", "num_tokens": 1101, "size": 2851 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Setoids.Setoids open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Groups.Definition open import Groups.Actions.Definition open import Sets.EquivalenceRelations module Groups.Actions.Orbit where data Orbit {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A → A → A} {G : Group S _+_} (action : GroupAction G T) (x : B) : Set (a ⊔ b ⊔ c ⊔ d) where orbitElt : (g : A) → Orbit action x orbitSetoid : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A → A → A} {G : Group S _+_} (action : GroupAction G T) (x : B) → Setoid (Orbit action x) Setoid._∼_ (orbitSetoid {T = T} action x) (orbitElt a) (orbitElt b) = Setoid._∼_ T (GroupAction.action action a x) (GroupAction.action action b x) Equivalence.reflexive (Setoid.eq (orbitSetoid {T = T} action x)) {orbitElt g} = Equivalence.reflexive (Setoid.eq T) Equivalence.symmetric (Setoid.eq (orbitSetoid {T = T} action x)) {orbitElt g} {orbitElt h} = Equivalence.symmetric (Setoid.eq T) Equivalence.transitive (Setoid.eq (orbitSetoid {T = T} action x)) {orbitElt g} {orbitElt h} {orbitElt i} = Equivalence.transitive (Setoid.eq T)
{ "alphanum_fraction": 0.6626506024, "avg_line_length": 65.5263157895, "ext": "agda", "hexsha": "4c8f41fcb999a18869489bcca171a2efdfcf4d8e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/Actions/Orbit.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/Actions/Orbit.agda", "max_line_length": 194, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/Actions/Orbit.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 449, "size": 1245 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.Polynomials.Multivariate.Properties where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat renaming(_+_ to _+n_; _·_ to _·n_) open import Cubical.Data.Vec open import Cubical.Data.Vec.OperationsNat open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.Polynomials.Multivariate.Base private variable ℓ ℓ' : Level module Nth-Poly-structure (A' : CommRing ℓ) (n : ℕ) where private A = fst A' Ar = CommRing→Ring A' open CommRingStr (snd A') open RingTheory Ar ----------------------------------------------------------------------------- poly-com-adv : (P Q R S : Poly A' n) → ((P poly+ Q) poly+ (R poly+ S) ≡ (P poly+ R) poly+ (Q poly+ S)) poly-com-adv P Q R S = ((P poly+ Q) poly+ (R poly+ S) ≡⟨ poly+Assoc (P poly+ Q) R S ⟩ (((P poly+ Q) poly+ R) poly+ S) ≡⟨ cong (λ X → X poly+ S) (sym (poly+Assoc P Q R)) ⟩ ((P poly+ (Q poly+ R)) poly+ S) ≡⟨ cong (λ X → (P poly+ X) poly+ S) (poly+Comm Q R) ⟩ ((P poly+ (R poly+ Q)) poly+ S) ≡⟨ cong (λ X → X poly+ S) (poly+Assoc P R Q) ⟩ (((P poly+ R) poly+ Q) poly+ S) ≡⟨ sym (poly+Assoc (P poly+ R) Q S) ⟩ ((P poly+ R) poly+ (Q poly+ S)) ∎) poly+IdL : (P : Poly A' n) → 0P poly+ P ≡ P poly+IdL P = (poly+Comm 0P P) ∙ (poly+IdR P) polyInv : Poly A' n → Poly A' n polyInv = Poly-Rec-Set.f A' n (Poly A' n) trunc 0P (λ v a → base v (- a)) (λ PS RS → PS poly+ RS) poly+Assoc poly+IdR poly+Comm (λ v → base v (- 0r) ≡⟨ cong (base v) 0Selfinverse ⟩ base v 0r ≡⟨ base-0P v ⟩ 0P ∎) λ v a b → (base-poly+ v (- a) (- b)) ∙ (cong (base v) (-Dist a b)) polyInvol : (P : Poly A' n) → polyInv (polyInv P) ≡ P polyInvol = Poly-Ind-Prop.f A' n (λ P → polyInv (polyInv P) ≡ P) (λ _ → trunc _ _) refl (λ v a → cong (base v) (-Idempotent a)) λ {P Q} ind-P ind-Q → cong₂ _poly+_ ind-P ind-Q poly+InvR : (P : Poly A' n ) → P poly+ (polyInv P) ≡ 0P poly+InvR = Poly-Ind-Prop.f A' n (λ P → (P poly+ polyInv P) ≡ 0P) (λ _ → trunc _ _) (poly+IdR 0P) (λ v a → (base-poly+ v a (- a)) ∙ cong (base v) (+Rinv a) ∙ base-0P v) λ {P Q} ind-P ind-Q → ((P poly+ Q) poly+ ((polyInv P) poly+ (polyInv Q))) ≡⟨ poly-com-adv P Q (polyInv P) (polyInv Q) ⟩ ((P poly+ polyInv P) poly+ (Q poly+ polyInv Q)) ≡⟨ cong₂ _poly+_ ind-P ind-Q ⟩ (0P poly+ 0P) ≡⟨ poly+IdR 0P ⟩ 0P ∎ poly+InvL : (P : Poly A' n) → (polyInv P) poly+ P ≡ 0P poly+InvL = Poly-Ind-Prop.f A' n _ (λ _ → trunc _ _) (poly+IdR 0P) (λ v a → (base-poly+ v (- a) a) ∙ cong (base v) (snd (+Inv a)) ∙ base-0P v) λ {U V} ind-U ind-V → poly-com-adv (polyInv U) (polyInv V) U V ∙ cong₂ _poly+_ ind-U ind-V ∙ poly+IdR 0P ----------------------------------------------------------------------------- _poly*_ : Poly A' n → Poly A' n → Poly A' n _poly*_ = -- Induction Left Argument Poly-Rec-Set.f A' n (Poly A' n → Poly A' n) (λ f g p q i j Q → trunc (f Q) (g Q) (λ X → p X Q) (λ X → q X Q) i j ) (λ Q → 0P) (λ v a → -- Induction Right Argument Poly-Rec-Set.f A' n (Poly A' n) trunc 0P (λ v' a' → base (v +n-vec v') (a · a')) _poly+_ poly+Assoc poly+IdR poly+Comm (λ v' → (cong (base (v +n-vec v')) (0RightAnnihilates a)) ∙ (base-0P (v +n-vec v'))) λ v' b c → (base-poly+ (v +n-vec v') (a · b) (a · c)) ∙ (cong (base (v +n-vec v')) (sym (·Rdist+ a b c)))) -- End Right induction (λ PS QS Q → (PS Q) poly+ (QS Q) ) (λ PS QS RS i Q → poly+Assoc (PS Q) (QS Q) (RS Q) i) (λ PS i Q → poly+IdR (PS Q) i) (λ PS QS i Q → poly+Comm (PS Q) (QS Q) i) (λ v → funExt ( -- Induction Right Argument Poly-Ind-Prop.f A' n _ (λ _ → trunc _ _) refl (λ v' a' → (cong (base (v +n-vec v')) (0LeftAnnihilates a')) ∙ (base-0P (v +n-vec v'))) λ {P Q} ind-P ind-Q → (cong₂ _poly+_ ind-P ind-Q) ∙ (poly+IdR 0P) )) -- End Right Induction λ v a b → funExt ( -- Induction Right Argument Poly-Ind-Prop.f A' n _ (λ _ → trunc _ _) (poly+IdR 0P) (λ v' c → (base-poly+ (v +n-vec v') (a · c) (b · c)) ∙ (cong (base (v +n-vec v')) (sym (·Ldist+ a b c)))) λ {P Q} ind-P ind-Q → (poly-com-adv _ _ _ _) ∙ (cong₂ _poly+_ ind-P ind-Q)) -- End Right Induction -- End Left Induction poly*Assoc : (P Q R : Poly A' n) → P poly* (Q poly* R) ≡ (P poly* Q) poly* R poly*Assoc = Poly-Ind-Prop.f A' n _ (λ P p q i Q R j → trunc (P poly* (Q poly* R)) ((P poly* Q) poly* R) (p Q R) (q Q R) i j) (λ _ _ → refl) (λ v a → Poly-Ind-Prop.f A' n _ (λ Q p q i R j → trunc (base v a poly* (Q poly* R)) ((base v a poly* Q) poly* R) (p R) (q R) i j) (λ _ → refl) (λ v' a' → Poly-Ind-Prop.f A' n _ (λ _ → trunc _ _) refl (λ v'' a'' → cong₂ base (+n-vec-assoc v v' v'') (·Assoc a a' a'')) (λ {U V} ind-U ind-V → cong₂ _poly+_ ind-U ind-V)) (λ {U V} ind-U ind-V R → cong₂ _poly+_ (ind-U R) (ind-V R))) λ {U V} ind-U ind-V Q R → cong₂ _poly+_ (ind-U Q R) (ind-V Q R) poly*AnnihilL : (P : Poly A' n) → 0P poly* P ≡ 0P poly*AnnihilL P = refl poly*AnnihilR : (P : Poly A' n) → P poly* 0P ≡ 0P poly*AnnihilR = Poly-Ind-Prop.f A' n (λ P → (P poly* 0P) ≡ 0P) (λ _ → trunc _ _) refl (λ _ _ → refl) λ {P Q} ind-P ind-Q → (cong₂ _poly+_ ind-P ind-Q) ∙ (poly+IdR 0P) 1P : Poly A' n 1P = base (replicate zero) 1r poly*IdR : (P : Poly A' n) → P poly* 1P ≡ P poly*IdR = Poly-Ind-Prop.f A' n (λ P → (P poly* 1P) ≡ P) (λ _ → trunc _ _) refl (λ v a → cong₂ base (+n-vec-rid v) (·Rid a)) (λ {P Q} ind-P ind-Q → cong₂ _poly+_ ind-P ind-Q) poly*IdL : (P : Poly A' n) → 1P poly* P ≡ P poly*IdL = Poly-Ind-Prop.f A' n (λ P → (1P poly* P) ≡ P) (λ _ → trunc _ _) refl (λ v a → cong₂ base (+n-vec-lid v) (·Lid a)) λ {P Q} ind-P ind-Q → cong₂ _poly+_ ind-P ind-Q poly*DistR : (P Q R : Poly A' n) → P poly* (Q poly+ R) ≡ (P poly* Q) poly+ (P poly* R) poly*DistR = Poly-Ind-Prop.f A' n _ (λ P p q i Q R j → trunc (P poly* (Q poly+ R)) ((P poly* Q) poly+ (P poly* R)) (p Q R) (q Q R) i j) (λ _ _ → sym (poly+IdR 0P)) (λ v a → λ Q R → refl) λ {U V} ind-U ind-V Q R → (cong₂ _poly+_ (ind-U Q R) (ind-V Q R)) ∙ poly-com-adv (U poly* Q) (U poly* R) (V poly* Q) (V poly* R) poly*DistL : (P Q R : Poly A' n) → (P poly+ Q) poly* R ≡ (P poly* R) poly+ (Q poly* R) poly*DistL P Q R = refl poly*Comm : (P Q : Poly A' n) → P poly* Q ≡ Q poly* P poly*Comm = Poly-Ind-Prop.f A' n _ (λ P p q i Q j → trunc (P poly* Q) (Q poly* P) (p Q) (q Q) i j) (λ Q → sym (poly*AnnihilR Q)) (λ v a → Poly-Ind-Prop.f A' n _ (λ _ → trunc _ _) refl (λ v' a' → cong₂ base (+n-vec-comm v v') (·Comm a a')) (λ {U V} ind-U ind-V → cong₂ _poly+_ ind-U ind-V)) λ {U V} ind-U ind-V Q → ((cong₂ _poly+_ (ind-U Q) (ind-V Q)) ∙ sym (poly*DistR Q U V))
{ "alphanum_fraction": 0.4154220215, "avg_line_length": 45.6984126984, "ext": "agda", "hexsha": "c115bd3c51e9962a4bb8af3c73f07b32cdcadba9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ce3120d3f8d692847b2744162bcd7a01f0b687eb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "guilhermehas/cubical", "max_forks_repo_path": "Cubical/Algebra/Polynomials/Multivariate/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ce3120d3f8d692847b2744162bcd7a01f0b687eb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "guilhermehas/cubical", "max_issues_repo_path": "Cubical/Algebra/Polynomials/Multivariate/Properties.agda", "max_line_length": 143, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ce3120d3f8d692847b2744162bcd7a01f0b687eb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "guilhermehas/cubical", "max_stars_repo_path": "Cubical/Algebra/Polynomials/Multivariate/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 2968, "size": 8637 }
module AKS.Binary where open import AKS.Binary.Base public
{ "alphanum_fraction": 0.8166666667, "avg_line_length": 15, "ext": "agda", "hexsha": "a9b4cd94696564f4034d35bf344e4bbc3c3b3e09", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mckeankylej/thesis", "max_forks_repo_path": "proofs/AKS/Binary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mckeankylej/thesis", "max_issues_repo_path": "proofs/AKS/Binary.agda", "max_line_length": 34, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mckeankylej/thesis", "max_stars_repo_path": "proofs/AKS/Binary.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z", "num_tokens": 14, "size": 60 }