Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --without-K #-} module FinEquivTypeEquiv where -- The goal is to establish that finite sets and equivalences form a -- commutative semiring. import Level using (zero) open import Data.Nat using (ℕ; _+_; _*_) open import Data.Fin using (Fin) open import Relation.Binary using (IsEquivalence) open import Algebra using (CommutativeSemiring) open import Algebra.Structures using (IsSemigroup; IsCommutativeMonoid; IsCommutativeSemiring) open import Equiv using (_≃_; id≃; sym≃; trans≃; _●_; _⊎≃_; _×≃_) open import TypeEquiv using (assocl₊equiv; unite₊equiv; unite₊′equiv; swap₊equiv; unite⋆equiv; unite⋆′equiv; swap⋆equiv; assocl⋆equiv; distzequiv; distzrequiv; distequiv; distlequiv) open import FinEquivPlusTimes using (F0≃⊥; module Plus; Fin1≃⊤; module Times) open Plus using (+≃⊎; ⊎≃+) open Times using (*≃×; ×≃*) ------------------------------------------------------------------------------ -- This is the relation we are interested in showing is a commutative -- semiring. _fin≃_ : (m n : ℕ) → Set m fin≃ n = Fin m ≃ Fin n ------------------------------------------------------------------------------ -- Additive monoid module PlusE where infix 9 _+F_ -- additive monoid equivalences -- unite+ unite+ : {m : ℕ} → Fin (0 + m) ≃ Fin m unite+ = unite₊equiv ● F0≃⊥ ⊎≃ id≃ ● +≃⊎ -- and on the other side as well unite+r : {m : ℕ} → Fin (m + 0) ≃ Fin m unite+r = unite₊′equiv ● id≃ ⊎≃ F0≃⊥ ● +≃⊎ -- swap₊ swap+ : {m n : ℕ} → Fin (m + n) ≃ Fin (n + m) swap+ {m} = ⊎≃+ ● swap₊equiv ● +≃⊎ {m} -- associativity assocl+ : {m n o : ℕ} → Fin (m + (n + o)) ≃ Fin ((m + n) + o) assocl+ {m} = ⊎≃+ ● ⊎≃+ ⊎≃ id≃ ● assocl₊equiv ● id≃ ⊎≃ +≃⊎ ● +≃⊎ {m} -- congruence _+F_ : {m n o p : ℕ} → (Fin m ≃ Fin n) → (Fin o ≃ Fin p) → Fin (m + o) ≃ Fin (n + p) Fm≃Fn +F Fo≃Fp = ⊎≃+ ● Fm≃Fn ⊎≃ Fo≃Fp ● +≃⊎ uniti+ : {m : ℕ} → Fin m ≃ Fin (0 + m) uniti+ = sym≃ unite+ uniti+r : {m : ℕ} → Fin m ≃ Fin (m + 0) uniti+r = sym≃ unite+r assocr+ : {m n o : ℕ} → Fin ((m + n) + o) ≃ Fin (m + (n + o)) assocr+ {m} = sym≃ (assocl+ {m}) sswap+ : {m n : ℕ} → Fin (n + m) ≃ Fin (m + n) sswap+ {m} {n} = sym≃ (swap+ {m} {n}) ----------------------------------------------------------------------------- -- Multiplicative monoid module TimesE where infixl 7 _*F_ -- multiplicative monoid equivalences -- unite* unite* : {m : ℕ} → Fin (1 * m) ≃ Fin m unite* {m} = unite⋆equiv ● Fin1≃⊤ ×≃ id≃ ● *≃× -- unite*r unite*r : {m : ℕ} → Fin (m * 1) ≃ Fin m unite*r {m} = unite⋆′equiv ● id≃ ×≃ Fin1≃⊤ ● *≃× -- swap* swap* : {m n : ℕ} → Fin (m * n) ≃ Fin (n * m) swap* {m} {n} = ×≃* ● swap⋆equiv ● *≃× {m} -- associativity assocl* : {m n o : ℕ} → Fin (m * (n * o)) ≃ Fin ((m * n) * o) assocl* {m} {n} {o} = ×≃* ● ×≃* ×≃ id≃ ● assocl⋆equiv ● id≃ ×≃ *≃× ● *≃× {m} -- congruence _*F_ : {m n o p : ℕ} → Fin m ≃ Fin n → Fin o ≃ Fin p → Fin (m * o) ≃ Fin (n * p) Fm≃Fn *F Fo≃Fp = ×≃* ● Fm≃Fn ×≃ Fo≃Fp ● *≃× uniti* : {m : ℕ} → Fin m ≃ Fin (1 * m) uniti* = sym≃ unite* uniti*r : {m : ℕ} → Fin m ≃ Fin (m * 1) uniti*r = sym≃ unite*r assocr* : {m n o : ℕ} → Fin ((m * n) * o) ≃ Fin (m * (n * o)) assocr* {m} {n} {o} = sym≃ (assocl* {m}) sswap* : {m n : ℕ} → Fin (n * m) ≃ Fin (m * n) sswap* {m} {n} = sym≃ (swap* {m} {n}) ------------------------------------------------------------------------------ -- Distributivity of multiplication over addition module PlusTimesE where -- now that we have two monoids, we need to check distributivity -- note that the sequence below is "logically right", *but* could be -- replaced by id≃ ! distz : {m : ℕ} → Fin (0 * m) ≃ Fin 0 distz {m} = sym≃ F0≃⊥ ● distzequiv ● F0≃⊥ ×≃ id≃ ● *≃× {0} {m} where open Times distzr : {m : ℕ} → Fin (m * 0) ≃ Fin 0 distzr {m} = sym≃ F0≃⊥ ● distzrequiv ● id≃ ×≃ F0≃⊥ ● *≃× {m} {0} where open Times dist : {m n o : ℕ} → Fin ((m + n) * o) ≃ Fin ((m * o) + (n * o)) dist {m} {n} {o} = ⊎≃+ {m * o} {n * o} ● ×≃* {m} ⊎≃ ×≃* ● distequiv ● +≃⊎ ×≃ id≃ ● *≃× where open Times open Plus distl : {m n o : ℕ} → Fin (m * (n + o)) ≃ Fin ((m * n) + (m * o)) distl {m} {n} {o} = ⊎≃+ {m * n} {m * o} ● ×≃* {m} ⊎≃ ×≃* ● distlequiv ● id≃ ×≃ +≃⊎ ● *≃× where open Plus open Times factorzr : {n : ℕ} → Fin 0 ≃ Fin (n * 0) factorzr {n} = sym≃ (distzr {n}) factorz : {m : ℕ} → Fin 0 ≃ Fin (0 * m) factorz {m} = sym≃ (distz {m}) factor : {m n o : ℕ} → Fin ((m * o) + (n * o)) ≃ Fin ((m + n) * o) factor {m} = sym≃ (dist {m}) factorl : {m n o : ℕ} → Fin ((m * n) + (m * o)) ≃ Fin (m * (n + o)) factorl {m} = sym≃ (distl {m}) ------------------------------------------------------------------------------ -- Summarizing... we have a commutative semiring structure fin≃IsEquiv : IsEquivalence _fin≃_ fin≃IsEquiv = record { refl = id≃ ; sym = sym≃ ; trans = trans≃ } finPlusIsSG : IsSemigroup _fin≃_ _+_ finPlusIsSG = record { isEquivalence = fin≃IsEquiv ; assoc = λ m n o → PlusE.assocr+ {m} {n} {o} ; ∙-cong = PlusE._+F_ } finTimesIsSG : IsSemigroup _fin≃_ _*_ finTimesIsSG = record { isEquivalence = fin≃IsEquiv ; assoc = λ m n o → TimesE.assocr* {m} {n} {o} ; ∙-cong = TimesE._*F_ } finPlusIsCM : IsCommutativeMonoid _fin≃_ _+_ 0 finPlusIsCM = record { isSemigroup = finPlusIsSG ; identityˡ = λ m → id≃ ; comm = λ m n → PlusE.swap+ {m} {n} } finTimesIsCM : IsCommutativeMonoid _fin≃_ _*_ 1 finTimesIsCM = record { isSemigroup = finTimesIsSG ; identityˡ = λ m → TimesE.unite* {m} ; comm = λ m n → TimesE.swap* {m} {n} } finIsCSR : IsCommutativeSemiring _fin≃_ _+_ _*_ 0 1 finIsCSR = record { +-isCommutativeMonoid = finPlusIsCM ; *-isCommutativeMonoid = finTimesIsCM ; distribʳ = λ o m n → PlusTimesE.dist {m} {n} {o} ; zeroˡ = λ m → PlusTimesE.distz {m} } finCSR : CommutativeSemiring Level.zero Level.zero finCSR = record { Carrier = ℕ ; _≈_ = _fin≃_ ; _+_ = _+_ ; _*_ = _*_ ; 0# = 0 ; 1# = 1 ; isCommutativeSemiring = finIsCSR } ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.4915803109, "avg_line_length": 27.3274336283, "ext": "agda", "hexsha": "9013106eca5090535b8718d924a17cc5ab0e60c9", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/FinEquivTypeEquiv.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/FinEquivTypeEquiv.agda", "max_line_length": 90, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/FinEquivTypeEquiv.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 2608, "size": 6176 }
{-# OPTIONS --cubical #-} module Erased-cubical-Module-application.Cubical (_ : Set₁) where open import Agda.Builtin.Cubical.Path data ∥_∥ (A : Set) : Set where ∣_∣ : A → ∥ A ∥ trivial : (x y : ∥ A ∥) → x ≡ y
{ "alphanum_fraction": 0.5954545455, "avg_line_length": 22, "ext": "agda", "hexsha": "d113f887a0f40c68d12a2c57276beda461fb24fc", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Fail/Erased-cubical-Module-application/Cubical.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Fail/Erased-cubical-Module-application/Cubical.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Fail/Erased-cubical-Module-application/Cubical.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 87, "size": 220 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.RingSolver.AlmostRing where open import Cubical.Foundations.Prelude open import Cubical.Data.Sigma open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.AbGroup private variable ℓ : Level record IsAlmostRing {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) : Type ℓ where constructor isalmostring field +IsMonoid : IsMonoid 0r _+_ ·IsMonoid : IsMonoid 1r _·_ +Comm : (x y : R) → x + y ≡ y + x ·Comm : (x y : R) → x · y ≡ y · x ·DistR+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z) ·DistL+ : (x y z : R) → (x + y) · z ≡ (x · z) + (y · z) -Comm· : (x y : R) → - (x · y) ≡ (- x) · y -Dist+ : (x y : R) → - (x + y) ≡ (- x) + (- y) open IsMonoid +IsMonoid public renaming ( assoc to +Assoc ; identity to +Identity ; lid to +Lid ; rid to +Rid ; isSemigroup to +IsSemigroup) open IsMonoid ·IsMonoid public renaming ( assoc to ·Assoc ; identity to ·Identity ; lid to ·Lid ; rid to ·Rid ; isSemigroup to ·IsSemigroup ) hiding ( is-set ) -- We only want to export one proof of this record AlmostRing : Type (ℓ-suc ℓ) where constructor almostring field Carrier : Type ℓ 0r : Carrier 1r : Carrier _+_ : Carrier → Carrier → Carrier _·_ : Carrier → Carrier → Carrier -_ : Carrier → Carrier isAlmostRing : IsAlmostRing 0r 1r _+_ _·_ -_ infixl 8 _·_ infixl 7 -_ infixl 6 _+_ open IsAlmostRing isAlmostRing public -- Extractor for the carrier type ⟨_⟩ : AlmostRing → Type ℓ ⟨_⟩ = AlmostRing.Carrier isSetAlmostRing : (R : AlmostRing {ℓ}) → isSet ⟨ R ⟩ isSetAlmostRing R = R .AlmostRing.isAlmostRing .IsAlmostRing.·IsMonoid .IsMonoid.isSemigroup .IsSemigroup.is-set
{ "alphanum_fraction": 0.5744245524, "avg_line_length": 26.4189189189, "ext": "agda", "hexsha": "008d0db5febd7a55c5cf1418c969ea79ddea8154", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/Algebra/RingSolver/AlmostRing.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/Algebra/RingSolver/AlmostRing.agda", "max_line_length": 112, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/Algebra/RingSolver/AlmostRing.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 691, "size": 1955 }
module Issue326 where open import Common.Prelude postulate QName : Set Unit : Set IO : Set → Set printBool : Bool → IO Unit {-# BUILTIN QNAME QName #-} {-# BUILTIN IO IO #-} {-# COMPILED_TYPE IO IO #-} {-# COMPILED_TYPE Unit () #-} {-# COMPILED printBool print #-} primitive primQNameEquality : QName → QName → Bool main : IO Unit main = printBool (primQNameEquality (quote Unit) (quote IO))
{ "alphanum_fraction": 0.6691176471, "avg_line_length": 18.5454545455, "ext": "agda", "hexsha": "eac3a71c8072cf53c914f9b9e8da213876a457e5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dagit/agda", "max_forks_repo_path": "test/succeed/Issue326.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dagit/agda", "max_issues_repo_path": "test/succeed/Issue326.agda", "max_line_length": 60, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue326.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T07:26:06.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T07:26:06.000Z", "num_tokens": 113, "size": 408 }
module REMatch where open import Data.Char import Data.Nat --open import Data.List open import Data.Bool open import Data.Product import Algebra import Algebra.FunctionProperties open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Data.List open import Data.List.Properties open import Data.Sum open import Data.List.NonEmpty --open List-solver renaming (nil to :[]; _⊕_ to _:++_; _⊜_ to _:≡_; solve to listSolve; prove to listProve) open import Algebra import Algebra.FunctionProperties as FunProp open import Data.Maybe open import Data.Nat open import RETypes import Relation.Binary.Reflection as Ref import Data.Bool.Properties listDivisions : List Char -> List (List Char × List Char) listDivisions [] = ( [] , []) ∷ [] listDivisions (h ∷ t) = ([] , h ∷ t ) ∷ (Data.List.map (λ p -> ( (h ∷ proj₁ p) , proj₂ p )) (listDivisions t) ) elementMatches : {A : Set} (f : A -> Bool) -> List A -> Bool elementMatches f [] = false elementMatches f (h ∷ t) = (f h) ∨ elementMatches f t {- mutual starMatch : {n : Null?} -> (RE n) -> List Char -> List Char -> (List Char -> Bool) -> Bool starMatch (r *) s1 (sh ∷ st) k = (acc r (s1 ++ Data.List.[ sh ]) null ∧ acc ( r *) st k ) ∨ starMatch (r *) (s1 ++ Data.List.[ sh ]) st k starMatch (r *) s1 [] k = false starMatch _ _ _ _ = false -} {-# TERMINATING #-} acc : {n : Null?} -> RE n -> List Char -> (List Char -> Bool) -> Bool acc ε s k = k s acc ∅ _ _ = false acc (Lit _) [] _ = false acc (Lit c) (sFirst ∷ sRest) k with (c Data.Char.≟ sFirst) ... | yes pf = (k sRest) ... | no _ = false acc (r₁ + r₂) s k = (acc r₁ s k) ∨ (acc r₂ s k) acc (r₁ · r₂) s k = acc r₁ s (λ s' -> acc r₂ s' k) acc (r *) [] k = (k []) acc (r *) (ch ∷ ct) k = let cs = ch ∷ ct in k cs ∨ acc r cs (\cs' -> acc (r *) cs' k) --acc r cs (\cs' -> acc (r) cs' k) --acc (r *) (sFirst ∷ sRest) k = starMatch r (sFirst ∷ [] ) sRest k accept : {n : Null?} -> RE n -> List Char -> Bool accept r s = acc r s null concatPreservesNonNull : {s1 : List Char} -> {s2 : List Char} -> (∃ λ (h : Char) -> ∃ λ (t : List Char) -> (s1 ≡ h ∷ t) ) -> (∃ λ (h : Char) -> ∃ λ (t : List Char) -> (s1 ++ s2 ≡ h ∷ t) ) concatPreservesNonNull {s1} {s2 = []} (sh , st , pf) = let concatPf : s1 ++ [] ≡ s1 concatPf = (solve (suc zero) (λ x → x ⊕ nil , x) (λ {x} → refl)) s1 --Should be easy, I might have already proved something similar, --This is probably a good place to try the List prover stuff in sh , st , trans concatPf pf where open List-solver concatPreservesNonNull {s1} {s2 = x ∷ s2} (sh , st , pf) = let --subProof : (∃ λ (h : Char) -> ∃ λ (t : List Char) -> (s1 ++ s2 ≡ h ∷ t) ) (h , t , subProof) = concatPreservesNonNull {s1} {s2} (sh , st , pf) p2 : ((sh ∷ st) ++ s2 ≡ h ∷ t) p2 = subst (λ x₁ → x₁ ++ s2 ≡ h ∷ t) pf subProof in sh , (st ++ (x ∷ s2)) , cong (λ x₁ → x₁ ++ x ∷ s2) pf concatPreservesNonNull2 : {s1 : List Char} -> {s2 : List Char} -> (∃ λ (h : Char) -> ∃ λ (t : List Char) -> (s2 ≡ h ∷ t) ) -> (∃ λ (h : Char) -> ∃ λ (t : List Char) -> (s1 ++ s2 ≡ h ∷ t) ) concatPreservesNonNull2 {[]} (sh , st , pf) = sh , st , pf concatPreservesNonNull2 {x ∷ s1} {s2} (sh , st , pf) = x , s1 ++ s2 , refl open ≡-Reasoning nullCorrect : (r : RE NonNull) -> (s : List Char ) -> (REMatch s r) -> (∃ λ (h : Char) -> ∃ λ (t : List Char) -> (s ≡ h ∷ t) ) nullCorrect .(Lit c) .(c ∷ []) (LitMatch c) = c , [] , refl nullCorrect ._ s (LeftPlusMatch {nb = BothNullB} {r1 = r1} r2 match) = nullCorrect r1 s match nullCorrect ._ s (RightPlusMatch {nb = BothNullB} r1 {r2 = r2} match) = nullCorrect r2 s match nullCorrect .(r1 · r2) s (ConcatMatch {nt = LeftNullT} {s1 = s1} {s2 = s2} {spf = spf} {r1 = r1} {r2 = r2} match1 match2) = let sh , st , subPf = concatPreservesNonNull2 {s1 = s1} {s2 = s2} (nullCorrect r2 s2 match2) in sh , st , trans (sym spf) subPf --subH , subT , ? nullCorrect ._ s (ConcatMatch {nt = BothNonNullT} {s1 = s1} {s2 = s2} {spf = spf} {r1 = r1} {r2 = r2} match1 match2) = let sh , st , subPf = concatPreservesNonNull2 {s1 = s1} {s2 = s2} (nullCorrect r2 s2 match2) in sh , st , trans (sym spf) subPf nullCorrect ._ s (ConcatMatch {nt = RightNullT} {s1 = s1} {s2 = s2} {spf = spf} {r1 = r1} {r2 = r2} match1 match2) = let sh , st , subPf = concatPreservesNonNull {s1 = s1} {s2 = s2} (nullCorrect r1 s1 match1) in sh , st , trans (sym spf) subPf -- concatPreservesNonNull (nullCorrect r1 s1 match1) --Taken from http://gelisam.blogspot.ca/2010/10/equality-is-useless-transmutation.html --Can probably be done with more complicated existing stuff, but this is easier mySubst : {X : Set} → (P : X → Set) → (x y : X) → x ≡ y → P x → P y mySubst P v .v refl p = p orLemma1 : {x : Bool} {y : Bool} -> (y ≡ true) -> (y ∨ x) ≡ true orLemma1 {x} {true} pf = refl orLemma1 {x} {false} () andElim1 : {x : Bool} {y : Bool} -> (x ∧ y) ≡ true -> (x ≡ true) andElim1 {true} pf = refl andElim1 {false} () --TODO Pattern match on and first andElim2 : {x : Bool} {y : Bool} -> (x ∧ y) ≡ true -> (y ≡ true) andElim2 {y = true} pf = refl andElim2 {true} {false} () andElim2 {false} {false} () andCombine : {x : Bool} {y : Bool} -> x ≡ true -> y ≡ true -> (x ∧ y) ≡ true andCombine {true} pfx pfy = pfy andCombine {false} () {- orCommut : {x : Bool} {y : Bool} -> (y ∨ x) ≡ (x ∨ y) orCommut {true} {true} = refl orCommut {false} {true} = refl orCommut {true} {false} = refl orCommut {false} {false} = refl -} orLemma2 : {x : Bool} {y : Bool} -> (y ≡ true) -> (x ∨ y) ≡ true orLemma2 {true} {true} pf = refl orLemma2 {false} {true} pf = refl orLemma2 {true} {false} pf = refl orLemma2 {false} {false} () orCases : {x : Bool} {y : Bool} -> (x ∨ y ≡ true) -> (x ≡ true) ⊎ (y ≡ true) orCases {true} y = inj₁ refl orCases {false} y = inj₂ y listRightIdent : { x : List Char} -> (x ++ []) ≡ x listRightIdent {[]} = refl listRightIdent {x ∷ x₁} = cong (_∷_ x) (listRightIdent {x₁}) listAssoc : {x y z : List Char} -> (x ++ y) ++ z ≡ x ++ (y ++ z) listAssoc {[]} = λ {y} {z} → refl listAssoc {xh ∷ xt} {y} {z} = cong (_∷_ xh) (listAssoc {xt} {y} {z}) maybeHead : List Char -> Maybe Char maybeHead [] = nothing maybeHead (x ∷ _) = just x fakeTail : List Char -> List Char fakeTail [] = [] fakeTail (_ ∷ t) = t myFromJust : Maybe Char -> Char myFromJust (just x) = x myFromJust (nothing) = 'a' sameHead : {a : Char}{b : Char}{l1 : List Char}{l2 : List Char} -> ((a ∷ l1) ≡ (b ∷ l2)) -> (a ≡ b) sameHead {a} {b} {l1} {l2} pf = let maybeSameHead : (just a) ≡ (just b) maybeSameHead = cong (maybeHead) pf in cong myFromJust maybeSameHead sameTail : {a : Char}{b : Char}{l1 : List Char}{l2 : List Char} -> ((a ∷ l1) ≡ (b ∷ l2)) -> (l1 ≡ l2) sameTail {a} {b} {l1} {l2} pf = cong fakeTail pf emptyMiddleList : {c : Char}{s1 s2 : List Char} -> (c ∷ s1 ≡ (c ∷ []) ++ s2 ) -> s1 ≡ s2 emptyMiddleList {c} {s1} {s2} spf = let p0 : (s1 ≡ [] ++ s2 ) p0 = cong fakeTail spf p1 : [] ++ s2 ≡ s2 p1 = refl in trans p0 p1 accCorrect : {n : Null? } (r : RE n) (s : List Char) (s1 : List Char) (s2 : List Char) (k : (List Char -> Bool)) -> ( (s1 ++ s2) ≡ s) -> (REMatch s1 r) -> (k s2 ≡ true) -> (acc r s k ≡ true ) --accCorrect ∅ [] [] [] k _ () kproof accCorrect ε [] ._ [] k _ EmptyMatch kproof = kproof accCorrect (Lit .c) (c1 ∷ srest ) (.c ∷ []) s2 k stringProof (LitMatch c) kproof with (c Data.Char.≟ c1) ... | yes eqPf = let sameHeads : c ≡ c1 sameHeads = sameHead stringProof p0 : c Data.List.∷ srest ≡ c1 Data.List.∷ srest p0 = cong (λ x → x ∷ srest) sameHeads flipProof : (c1 ∷ srest ) ≡ (c ∷ []) ++ s2 flipProof = sym stringProof cFlip : (c ∷ srest ) ≡ (c ∷ []) ++ s2 cFlip = trans p0 flipProof restProof : srest ≡ s2 restProof = emptyMiddleList cFlip primEq : (Dec (c ≡ c1)) primEq = yes sameHeads pf3 = cong (λ theChar -> acc (Lit c) (c ∷ srest) k ) sameHeads in trans (cong k restProof) kproof accCorrect (Lit .c) (c1 ∷ srest ) (.c ∷ []) s2 k stringProof (LitMatch c) () | no pf {- let sameHeads = sameHead stringProof primEq : (Dec (c ≡ c1)) primEq = yes sameHeads pf3 = cong (λ theChar -> acc (Lit c) (c ∷ srest) k ) sameHeads restProof : srest ≡ s2 restProof = {!!} in cong k restProof -} accCorrect (.r1 · .r2 ) s .s1 s2 k split1 (ConcatMatch {_} {_} {n3} {nt} {s1'} {s2'} {s1} {spf'} {r1} {r2} subMatch1 subMatch2) kproof = let --s1 = s1' ++ s2' split2 : (s1' ++ s2') ≡ s1 split2 = spf' --refl split3 : (s1' ++ s2') ++ s2 ≡ s1 ++ s2 split3 = cong (λ x -> x ++ s2) split2 split4 : s1' ++ s2' ++ s2 ≡ (s1' ++ s2') ++ s2 split4 = sym (listAssoc {s1'} {s2'} {s2}) transChain : s1' ++ s2' ++ s2 ≡ s transChain = trans split4 (trans split3 split1) in accCorrect r1 s s1' (s2' ++ s2) (\cs -> acc r2 cs k) transChain subMatch1 (accCorrect r2 (s2' ++ s2) s2' s2 k refl subMatch2 kproof) accCorrect (.r1 + .r2 ) s .s1 s2 k splitProof (LeftPlusMatch {_} {_} {n3} {nb} {s1} {r1} (r2) subMatch) kproof = orLemma1 (accCorrect r1 s s1 s2 k splitProof subMatch kproof ) accCorrect (.r1 + .r2) s .s1 s2 k splitProof (RightPlusMatch {_} {_} {n3} {nb} {s1} (r1) {r2} subMatch) kproof = let subCorrect = accCorrect r2 s s1 s2 k splitProof subMatch kproof in orLemma2 {acc r1 s k} {acc r2 s k} subCorrect accCorrect (.r *) [] ._ [] k _ (EmptyStarMatch {r}) kproof = kproof accCorrect {MaybeNull} (.r *) (sh ∷ st ) .s1 s2 k split1 (StarMatch {c1} {s1t'} {s2'} {s1} {spf} {r} subMatch1 subMatch2) kproof = let s = (sh ∷ st ) s1' = (c1 ∷ s1t') split2 : (s1' ++ s2') ≡ s1 split2 = spf split3 : (s1' ++ s2') ++ s2 ≡ s1 ++ s2 split3 = cong (λ x -> x ++ s2) split2 split4 : s1' ++ s2' ++ s2 ≡ (s1' ++ s2') ++ s2 split4 = sym (listAssoc {s1'} {s2'} {s2}) transChain : s1' ++ s2' ++ s2 ≡ s transChain = trans split4 (trans split3 split1) sub2' : REMatch {MaybeNull} s2' (r *) sub2' = subMatch2 subCorrect : acc (r *) (s2' ++ s2) k ≡ true subCorrect = accCorrect (r *) (s2' ++ s2) s2' s2 k refl subMatch2 kproof rightCorrect : acc r s (\cs' -> acc (r *) cs' k) ≡ true rightCorrect = accCorrect r s s1' (s2' ++ s2) (λ cs → acc (r *) cs k) transChain subMatch1 subCorrect orCorrect : (k s ∨ acc r s (\cs' -> acc (r *) cs' k) ) ≡ true orCorrect = orLemma2 {x = k s} rightCorrect --TODO pass in x and y explicitly in orCorrect --accCorrect r s s1' (s2' ++ s2) (\cs -> acc (r *) cs k) transChain --subMatch1 (accCorrect (r *) (s2' ++ s2) s2' s2 k refl subMatch2 kproof) accCorrect (r *) (sh ∷ st) [] s2 k sp1 _ kproof = let s = sh ∷ st sp2 : s2 ≡ s sp2 = sp1 kproof2 : k s ≡ k s2 kproof2 = cong k (sym sp1) kproof3 : k s ≡ true kproof3 = trans kproof2 kproof --orProof : (k s ∨ starMatch r [] s k) ≡ true orProof = orLemma1 kproof3 in orProof --accCorrect r s s1' (s2' ++ s2) (\cs -> acc (r *) cs k) transChain --subMatch1 (accCorrect (r *) (s2' ++ s2) s2' s2 k refl subMatch2 kproof) --accCorrect (.r *) s ._ s2 k sp1 (StarMatch {s1'} {s1''} {r} sub1 sub2) kproof = ? accCorrect ∅ _ _ _ _ _ () accCorrect ε (_ ∷ _ ) _ _ _ () _ accCorrect _ [] (_ ∷ _ ) _ _ () _ _ accCorrect _ [] _ (_ ∷ _ ) _ () _ _ accCorrect (Lit _) [] _ _ _ () _ _ accCorrect {._} (_* _) [] [] [] _ _ (StarMatch {_} {_} {_} {._} {()} {._} _ _) _ --accCorrect _ _ _ _ _ _ _ _ = {!!} --This case should disappear when I finish star boolExclMiddle : {x : Bool} { y : Bool } -> (x ∨ y ≡ true ) -> (x ≡ false) -> (y ≡ true) boolExclMiddle {true} p1 () boolExclMiddle {false} p1 p2 = p1 {-# TERMINATING #-} accComplete : {n : Null?} (r : RE n) (s : List Char) (k : (List Char -> Bool)) -> (acc r s k ≡ true) -> ∃ (λ s1 -> ∃ (λ s2 -> (s1 ++ s2 ≡ s) × ( k s2 ≡ true) × (REMatch s1 r ) ) ) accComplete ε [] k pf = [] , [] , refl , pf , EmptyMatch accComplete ε s k pf = [] , s , refl , pf , EmptyMatch accComplete (Lit c) (c1 ∷ srest) k accProof with (c Data.Char.≟ c1) ...| yes eqProof = let charsEqual : c ≡ c1 charsEqual = eqProof in Data.List.[ c ] , srest , cong (λ x → x ∷ srest) charsEqual , accProof , LitMatch c accComplete (Lit c) (c1 ∷ srest) k () | no _ accComplete (_·_ {n1} {n2} r1 r2) s k pf = let sub1 : acc r1 s (λ s' -> acc r2 s' k) ≡ true sub1 = pf s11 , s2' , psub1 , psub2 , match1 = accComplete r1 s (λ s' -> acc r2 s' k) pf s12 , s2 , p1 , p2 , match2 = accComplete r2 s2' k psub2 localAssoc : s11 ++ (s12 ++ s2) ≡ (s11 ++ s12) ++ s2 localAssoc = sym (listAssoc {s11} {s12} {s2}) subProof1 : s11 ++ s2' ≡ s11 ++ (s12 ++ s2) subProof1 = sym ( cong (λ x -> s11 ++ x) p1 ) subProof2 : s11 ++ s2' ≡ (s11 ++ s12) ++ s2 subProof2 = trans subProof1 localAssoc stringProof = trans (sym subProof2) psub1 in (s11 ++ s12 ) , s2 , stringProof , p2 , (ConcatMatch {spf = refl} match1 match2) accComplete (r1 + r2) s k accProof with (orCases accProof) ... | inj₁ leftTrue = let s1 , s2 , p1 , p2 , match = accComplete r1 s k leftTrue in s1 , s2 , p1 , p2 , LeftPlusMatch r2 match ... | inj₂ rightTrue = let s1 , s2 , p1 , p2 , match = accComplete r2 s k rightTrue in s1 , s2 , p1 , p2 , RightPlusMatch r1 match accComplete (r *) [] k pf = [] , [] , refl , pf , EmptyStarMatch accComplete {MaybeNull} (r *) (sh ∷ st) k accProof with (orCases accProof) ... | inj₁ leftTrue = [] , (sh ∷ st) , refl , leftTrue , EmptyStarMatch ... | inj₂ rightTrue = let rTest : RE NonNull rTest = r s = sh ∷ st sub1 : acc r s (λ s' -> acc (r *) s' k) ≡ true sub1 = rightTrue s11 , s2' , psub1 , psub2 , match1 = accComplete r s (λ s' -> acc (r *) s' k) rightTrue s12 , s2 , p1 , p2 , match2 = accComplete (r *) s2' k psub2 localAssoc : s11 ++ (s12 ++ s2) ≡ (s11 ++ s12) ++ s2 localAssoc = sym (listAssoc {s11} {s12} {s2}) subProof1 : s11 ++ s2' ≡ s11 ++ (s12 ++ s2) subProof1 = sym ( cong (λ x -> s11 ++ x) p1 ) subProof2 : s11 ++ s2' ≡ (s11 ++ s12) ++ s2 subProof2 = trans subProof1 localAssoc stringProof = trans (sym subProof2) psub1 s11h , s11t , nnpf = nullCorrect r s11 match1 nonNullPf : s11 ≡ s11h ∷ s11t nonNullPf = nnpf m1 : REMatch (s11h ∷ s11t) r m1 = mySubst (λ str → REMatch str r) s11 (s11h ∷ s11t) (nonNullPf) match1 m2 : REMatch s12 (r *) m2 = match2 newSpf : (s11h ∷ s11t) ++ s2' ≡ s11 ++ s2' newSpf = {!!} --ourMatch : REMatch (s11 ++ s12) (r *) ourMatch = StarMatch {spf = newSpf} {r = rTest} m1 ? --m2 in (s11 ++ s12 ) , s2 , stringProof , p2 , {!!} --ourMatch accComplete ∅ _ _ () accComplete (Lit _) [] _ () acceptCorrect : {n : Null? } (r : RE n) (s : List Char) -> (REMatch s r) -> (accept r s ≡ true ) acceptCorrect r s match = accCorrect r s s [] null listRightIdent match refl nullEq : {x : List Char} -> (null x ≡ true ) -> (x ≡ []) nullEq {[]} pf = refl nullEq {x ∷ x₁} () substMatch : {n : Null?}{r : RE n}{s s1 : List Char} -> s1 ≡ s -> REMatch s1 r -> REMatch s r substMatch refl m = m acceptComplete : {n : Null? } (r : RE n) (s : List Char) -> (accept r s ≡ true ) -> REMatch s r acceptComplete r s pf = let s1 , s2 , sproof , ks2Proof , match = accComplete r s null pf s2Null : s2 ≡ [] s2Null = nullEq ks2Proof sp3 : s1 ++ s2 ≡ s1 ++ [] sp3 = cong (λ x -> s1 ++ x) s2Null sp4 : s1 ++ s2 ≡ s1 sp4 = trans sp3 listRightIdent sp5 : s1 ≡ s sp5 = sym (trans (sym sproof) sp4) in substMatch sp5 match --match
{ "alphanum_fraction": 0.5549974887, "avg_line_length": 35.0837004405, "ext": "agda", "hexsha": "9e99b4555b98ab39a773d7919dbfe6ce1af64a1e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1e28103ff7dd1d4f3351ef21397833aa4490b7ea", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "JoeyEremondi/agda-parikh", "max_forks_repo_path": "REMatch.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1e28103ff7dd1d4f3351ef21397833aa4490b7ea", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "JoeyEremondi/agda-parikh", "max_issues_repo_path": "REMatch.agda", "max_line_length": 141, "max_stars_count": null, "max_stars_repo_head_hexsha": "1e28103ff7dd1d4f3351ef21397833aa4490b7ea", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "JoeyEremondi/agda-parikh", "max_stars_repo_path": "REMatch.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6334, "size": 15928 }
-- Define the integers as a HIT by identifying +0 and -0 {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Ints.QuoInt.Base where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Transport open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Relation.Nullary open import Cubical.Data.Int as Int using (Int; sucInt; predInt; discreteInt; isSetInt) open import Cubical.Data.Nat as ℕ using (ℕ; zero; suc) open import Cubical.Data.Bool as Bool using (Bool; not; notnot) variable l : Level Sign : Type₀ Sign = Bool pattern spos = Bool.false pattern sneg = Bool.true _·S_ : Sign → Sign → Sign _·S_ = Bool._⊕_ data ℤ : Type₀ where signed : (s : Sign) (n : ℕ) → ℤ posneg : signed spos 0 ≡ signed sneg 0 pattern pos n = signed spos n pattern neg n = signed sneg n sign : ℤ → Sign sign (signed _ zero) = spos sign (signed s (suc _)) = s sign (posneg i) = spos sign-pos : ∀ n → sign (pos n) ≡ spos sign-pos zero = refl sign-pos (suc n) = refl abs : ℤ → ℕ abs (signed _ n) = n abs (posneg i) = zero signed-inv : ∀ n → signed (sign n) (abs n) ≡ n signed-inv (pos zero) = refl signed-inv (neg zero) = posneg signed-inv (signed s (suc n)) = refl signed-inv (posneg i) j = posneg (i ∧ j) signed-zero : ∀ s₁ s₂ → signed s₁ zero ≡ signed s₂ zero signed-zero spos spos = refl signed-zero sneg sneg = refl signed-zero spos sneg = posneg signed-zero sneg spos = sym posneg rec : ∀ {A : Type l} → (pos' neg' : ℕ → A) → pos' 0 ≡ neg' 0 → ℤ → A rec pos' neg' eq (pos m) = pos' m rec pos' neg' eq (neg m) = neg' m rec pos' neg' eq (posneg i) = eq i elim : ∀ (P : ℤ → Type l) → (pos' : ∀ n → P (pos n)) → (neg' : ∀ n → P (neg n)) → (λ i → P (posneg i)) [ pos' 0 ≡ neg' 0 ] → ∀ z → P z elim P pos' neg' eq (pos n) = pos' n elim P pos' neg' eq (neg n) = neg' n elim P pos' neg' eq (posneg i) = eq i Int→ℤ : Int → ℤ Int→ℤ (Int.pos n) = pos n Int→ℤ (Int.negsuc n) = neg (suc n) ℤ→Int : ℤ → Int ℤ→Int (pos n) = Int.pos n ℤ→Int (neg zero) = Int.pos 0 ℤ→Int (neg (suc n)) = Int.negsuc n ℤ→Int (posneg _) = Int.pos 0 ℤ→Int→ℤ : ∀ (n : ℤ) → Int→ℤ (ℤ→Int n) ≡ n ℤ→Int→ℤ (pos n) _ = pos n ℤ→Int→ℤ (neg zero) i = posneg i ℤ→Int→ℤ (neg (suc n)) _ = neg (suc n) ℤ→Int→ℤ (posneg j) i = posneg (j ∧ i) Int→ℤ→Int : ∀ (n : Int) → ℤ→Int (Int→ℤ n) ≡ n Int→ℤ→Int (Int.pos n) _ = Int.pos n Int→ℤ→Int (Int.negsuc n) _ = Int.negsuc n Int≡ℤ : Int ≡ ℤ Int≡ℤ = isoToPath (iso Int→ℤ ℤ→Int ℤ→Int→ℤ Int→ℤ→Int) discreteℤ : Discrete ℤ discreteℤ = subst Discrete Int≡ℤ discreteInt isSetℤ : isSet ℤ isSetℤ = subst isSet Int≡ℤ isSetInt -_ : ℤ → ℤ - signed s n = signed (not s) n - posneg i = posneg (~ i) negate-invol : ∀ n → - - n ≡ n negate-invol (signed s n) i = signed (notnot s i) n negate-invol (posneg i) _ = posneg i negateEquiv : ℤ ≃ ℤ negateEquiv = isoToEquiv (iso -_ -_ negate-invol negate-invol) negateEq : ℤ ≡ ℤ negateEq = ua negateEquiv infixl 6 _+_ infixl 7 _·_ sucℤ : ℤ → ℤ sucℤ (pos n) = pos (suc n) sucℤ (neg zero) = pos 1 sucℤ (neg (suc n)) = neg n sucℤ (posneg _) = pos 1 predℤ : ℤ → ℤ predℤ = subst (λ Z → (Z → Z)) negateEq sucℤ -- definitionally equal to λ n → - (sucℤ (- n)) -- strictly more useful than the direct pattern matching version, -- see negateSuc and negatePred sucPredℤ : ∀ n → sucℤ (predℤ n) ≡ n sucPredℤ (pos zero) = sym posneg sucPredℤ (pos (suc _)) = refl sucPredℤ (neg _) = refl sucPredℤ (posneg i) j = posneg (i ∨ ~ j) predSucℤ : ∀ n → predℤ (sucℤ n) ≡ n predSucℤ (pos _) = refl predSucℤ (neg zero) = posneg predSucℤ (neg (suc _)) = refl predSucℤ (posneg i) j = posneg (i ∧ j) _+_ : ℤ → ℤ → ℤ (signed _ zero) + n = n (posneg _) + n = n (pos (suc m)) + n = sucℤ (pos m + n) (neg (suc m)) + n = predℤ (neg m + n) sucPathℤ : ℤ ≡ ℤ sucPathℤ = isoToPath (iso sucℤ predℤ sucPredℤ predSucℤ) -- We do the same trick as in Cubical.Data.Int to prove that addition -- is an equivalence addEqℤ : ℕ → ℤ ≡ ℤ addEqℤ zero = refl addEqℤ (suc n) = addEqℤ n ∙ sucPathℤ predPathℤ : ℤ ≡ ℤ predPathℤ = isoToPath (iso predℤ sucℤ predSucℤ sucPredℤ) subEqℤ : ℕ → ℤ ≡ ℤ subEqℤ zero = refl subEqℤ (suc n) = subEqℤ n ∙ predPathℤ addℤ : ℤ → ℤ → ℤ addℤ (pos m) n = transport (addEqℤ m) n addℤ (neg m) n = transport (subEqℤ m) n addℤ (posneg _) n = n isEquivAddℤ : (m : ℤ) → isEquiv (addℤ m) isEquivAddℤ (pos n) = isEquivTransport (addEqℤ n) isEquivAddℤ (neg n) = isEquivTransport (subEqℤ n) isEquivAddℤ (posneg _) = isEquivTransport refl addℤ≡+ℤ : addℤ ≡ _+_ addℤ≡+ℤ i (pos (suc m)) n = sucℤ (addℤ≡+ℤ i (pos m) n) addℤ≡+ℤ i (neg (suc m)) n = predℤ (addℤ≡+ℤ i (neg m) n) addℤ≡+ℤ i (pos zero) n = n addℤ≡+ℤ i (neg zero) n = n addℤ≡+ℤ _ (posneg _) n = n isEquiv+ℤ : (m : ℤ) → isEquiv (m +_) isEquiv+ℤ = subst (λ _+_ → (m : ℤ) → isEquiv (m +_)) addℤ≡+ℤ isEquivAddℤ _·_ : ℤ → ℤ → ℤ m · n = signed (sign m ·S sign n) (abs m ℕ.· abs n) private ·-abs : ∀ m n → abs (m · n) ≡ abs m ℕ.· abs n ·-abs m n = refl -- Natural number and negative integer literals for ℤ open import Cubical.Data.Nat.Literals public instance fromNatℤ : HasFromNat ℤ fromNatℤ = record { Constraint = λ _ → Unit ; fromNat = λ n → pos n } instance fromNegℤ : HasFromNeg ℤ fromNegℤ = record { Constraint = λ _ → Unit ; fromNeg = λ n → neg n }
{ "alphanum_fraction": 0.6195732156, "avg_line_length": 25.1666666667, "ext": "agda", "hexsha": "7b9257e98ffb996f614d07be6e689866f01fe514", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/Ints/QuoInt/Base.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/Ints/QuoInt/Base.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/Ints/QuoInt/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2337, "size": 5436 }
module Oscar.Data.Term.internal.SubstituteAndSubstitution {𝔣} (FunctionName : Set 𝔣) where open import Oscar.Category.Action open import Oscar.Category.Category open import Oscar.Category.CategoryAction open import Oscar.Category.Functor open import Oscar.Category.Morphism open import Oscar.Category.Semifunctor open import Oscar.Category.Semigroupoid open import Oscar.Category.Setoid open import Oscar.Category.SemigroupoidAction open import Oscar.Data.Equality open import Oscar.Data.Equality.properties open import Oscar.Data.Fin open import Oscar.Data.Nat open import Oscar.Data.Term FunctionName open import Oscar.Data.Vec open import Oscar.Function open import Oscar.Level open import Oscar.Relation 𝕞₁ : Morphism _ _ _ 𝕞₁ = Fin ⇨ Term 𝕞₂ : Morphism _ _ _ 𝕞₂ = Term ⇨ Term 𝕞₂ₛ : Nat → Morphism _ _ _ 𝕞₂ₛ N = Terms N ⇨ Terms N module 𝔐₁ = Morphism 𝕞₁ module 𝔐₂ = Morphism 𝕞₂ module 𝔐₂ₛ (N : Nat) where open Morphism (𝕞₂ₛ N) public using () renaming (_↦_ to _[_↦_]) private infix 19 _◂_ _◂s_ mutual _◂_ : ∀ {m n} → m 𝔐₁.↦ n → m 𝔐₂.↦ n σ̇ ◂ i 𝑥 = σ̇ 𝑥 _ ◂ leaf = leaf σ̇ ◂ (τl fork τr) = (σ̇ ◂ τl) fork (σ̇ ◂ τr) σ̇ ◂ (function fn τs) = function fn (σ̇ ◂s τs) where _◂s_ : ∀ {m n} → m ⊸ n → ∀ {N} → N 𝔐₂ₛ.[ m ↦ n ] -- Vec (Term m) N → Vec (Term n) N f ◂s [] = [] f ◂s (t ∷ ts) = f ◂ t ∷ f ◂s ts _∙_ : ∀ {m n} → m ⊸ n → ∀ {l} → l ⊸ m → l ⊸ n _∙_ f g = (f ◂_) ∘ g mutual ◂-extensionality : ∀ {m n} {f g : m ⊸ n} → f ≡̇ g → f ◂_ ≡̇ g ◂_ ◂-extensionality p (i x) = p x ◂-extensionality p leaf = refl ◂-extensionality p (s fork t) = cong₂ _fork_ (◂-extensionality p s) (◂-extensionality p t) ◂-extensionality p (function fn ts) = cong (function fn) (◂s-extensionality p ts) ◂s-extensionality : ∀ {m n} {f g : m ⊸ n} → f ≡̇ g → ∀ {N} → _◂s_ f {N} ≡̇ _◂s_ g ◂s-extensionality p [] = refl ◂s-extensionality p (t ∷ ts) = cong₂ _∷_ (◂-extensionality p t) (◂s-extensionality p ts) mutual ◂-associativity : ∀ {l m} (f : l ⊸ m) {n} (g : m ⊸ n) → (g ∙ f) ◂_ ≡̇ (g ◂_) ∘ (f ◂_) ◂-associativity _ _ (i _) = refl ◂-associativity _ _ leaf = refl ◂-associativity _ _ (τ₁ fork τ₂) = cong₂ _fork_ (◂-associativity _ _ τ₁) (◂-associativity _ _ τ₂) ◂-associativity f g (function fn ts) = cong (function fn) (◂s-associativity f g ts) ◂s-associativity : ∀ {l m n} (f : l ⊸ m) (g : m ⊸ n) → ∀ {N} → (_◂s_ (g ∙ f) {N}) ≡̇ (g ◂s_) ∘ (f ◂s_) ◂s-associativity _ _ [] = refl ◂s-associativity _ _ (τ ∷ τs) = cong₂ _∷_ (◂-associativity _ _ τ) (◂s-associativity _ _ τs) ∙-associativity : ∀ {k l} (f : k ⊸ l) {m} (g : l ⊸ m) {n} (h : m ⊸ n) → (h ∙ g) ∙ f ≡̇ h ∙ (g ∙ f) ∙-associativity f g h x rewrite ◂-associativity g h (f x) = refl ∙-extensionality : ∀ {l m} {f₁ f₂ : l ⊸ m} → f₁ ≡̇ f₂ → ∀ {n} {g₁ g₂ : m ⊸ n} → g₁ ≡̇ g₂ → g₁ ∙ f₁ ≡̇ g₂ ∙ f₂ ∙-extensionality {f₂ = f₂} f₁≡̇f₂ g₁≡̇g₂ x rewrite f₁≡̇f₂ x = ◂-extensionality g₁≡̇g₂ (f₂ x) instance IsSemigroupoid𝕞₁∙ : IsSemigroupoid 𝕞₁ _∙_ IsSemigroupoid.extensionality IsSemigroupoid𝕞₁∙ = ∙-extensionality IsSemigroupoid.associativity IsSemigroupoid𝕞₁∙ = ∙-associativity 𝕘₁ : Semigroupoid _ _ _ 𝕘₁ = 𝕞₁ , _∙_ 𝕘₂ : Semigroupoid _ _ _ 𝕘₂ = 𝕞₂ , (λ ‵ → _∘_ ‵) 𝕘₂ₛ : Nat → Semigroupoid _ _ _ 𝕘₂ₛ N = 𝕞₂ₛ N , (λ ‵ → _∘_ ‵) 𝕘₁,₂ : Semigroupoids _ _ _ _ _ _ 𝕘₁,₂ = 𝕘₁ , 𝕘₂ instance IsSemifunctor𝕘₁₂◂ : IsSemifunctor 𝕘₁,₂ _◂_ IsSemifunctor.extensionality IsSemifunctor𝕘₁₂◂ = ◂-extensionality IsSemifunctor.distributivity IsSemifunctor𝕘₁₂◂ = ◂-associativity 𝕗◂ : Semifunctor _ _ _ _ _ _ 𝕗◂ = 𝕘₁,₂ , _◂_ 𝕘₁,₂ₛ : Nat → Semigroupoids _ _ _ _ _ _ 𝕘₁,₂ₛ N = 𝕘₁ , 𝕘₂ₛ N instance IsSemifunctor𝕘₁,₂ₛ◂s : ∀ {N} → IsSemifunctor (𝕘₁,₂ₛ N) (λ ‵ → _◂s_ ‵) IsSemifunctor.extensionality IsSemifunctor𝕘₁,₂ₛ◂s f≡̇g τs = ◂s-extensionality f≡̇g τs IsSemifunctor.distributivity IsSemifunctor𝕘₁,₂ₛ◂s f g x = ◂s-associativity f g x 𝕗◂s : Nat → Semifunctor _ _ _ _ _ _ 𝕗◂s N = 𝕘₁,₂ₛ N , (λ ‵ → _◂s_ ‵) 𝕒₂ : Action _ _ _ 𝕒₂ = actionΣ Term 𝕒₂ₛ : Nat → Action _ _ _ 𝕒₂ₛ N = actionΣ (Terms N) instance IsSemigroupoidAction𝕘₁𝕒₂◂ : IsSemigroupoidAction 𝕘₁ 𝕒₂ _◂_ IsSemigroupoidAction.extensionality IsSemigroupoidAction𝕘₁𝕒₂◂ {s₁ = s₁} refl f₁≡̇f₂ = ◂-extensionality f₁≡̇f₂ s₁ IsSemigroupoidAction.associativity IsSemigroupoidAction𝕘₁𝕒₂◂ s f g = ◂-associativity f g s IsSemigroupoidAction𝕘₁𝕒₂ₛ◂s : ∀ {N} → IsSemigroupoidAction 𝕘₁ (𝕒₂ₛ N) (λ ‵ → _◂s_ ‵) IsSemigroupoidAction.extensionality IsSemigroupoidAction𝕘₁𝕒₂ₛ◂s {s₁ = s₁} refl f₁≡̇f₂ = ◂s-extensionality f₁≡̇f₂ s₁ IsSemigroupoidAction.associativity IsSemigroupoidAction𝕘₁𝕒₂ₛ◂s s f g = ◂s-associativity f g s 𝕟◂ : SemigroupoidAction _ _ _ _ _ 𝕟◂ = [ 𝕘₁ / 𝕒₂ ] _◂_ 𝕟◂s : Nat → SemigroupoidAction _ _ _ _ _ 𝕟◂s N = [ 𝕘₁ / 𝕒₂ₛ N ] (λ ‵ → _◂s_ ‵) private ε : ∀ {m} → m ⊸ m ε = i mutual ◂-identity : ∀ {m} (t : Term m) → ε ◂ t ≡ t ◂-identity (i x) = refl ◂-identity leaf = refl ◂-identity (s fork t) = cong₂ _fork_ (◂-identity s) (◂-identity t) ◂-identity (function fn ts) = cong (function fn) (◂s-identity ts) ◂s-identity : ∀ {N m} (t : Vec (Term m) N) → ε ◂s t ≡ t ◂s-identity [] = refl ◂s-identity (t ∷ ts) = cong₂ _∷_ (◂-identity t) (◂s-identity ts) ∙-left-identity : ∀ {m n} (f : m ⊸ n) → ε ∙ f ≡̇ f ∙-left-identity f = ◂-identity ∘ f ∙-right-identity : ∀ {m n} (f : m ⊸ n) → f ∙ ε ≡̇ f ∙-right-identity _ _ = refl instance IsCategory𝕘₁ε : IsCategory 𝕘₁ ε IsCategory.left-identity IsCategory𝕘₁ε = ∙-left-identity IsCategory.right-identity IsCategory𝕘₁ε = ∙-right-identity 𝔾₁ : Category _ _ _ 𝔾₁ = 𝕘₁ , ε 𝔾₂ : Category _ _ _ 𝔾₂ = 𝕘₂ , id 𝔾₂ₛ : Nat → Category _ _ _ 𝔾₂ₛ N = 𝕘₂ₛ N , id 𝔾₁,₂ : Categories _ _ _ _ _ _ 𝔾₁,₂ = 𝔾₁ , 𝔾₂ 𝔾₁,₂ₛ : Nat → Categories _ _ _ _ _ _ 𝔾₁,₂ₛ N = 𝔾₁ , 𝔾₂ₛ N instance IsFunctor𝔾₁,₂◂ : IsFunctor 𝔾₁,₂ _◂_ IsFunctor.identity IsFunctor𝔾₁,₂◂ _ = ◂-identity 𝔽◂ : Functor _ _ _ _ _ _ 𝔽◂ = 𝔾₁,₂ , _◂_ instance IsFunctor𝔾₁,₂ₛ◂ : ∀ {N} → IsFunctor (𝔾₁,₂ₛ N) (λ ‵ → _◂s_ ‵) IsFunctor.identity IsFunctor𝔾₁,₂ₛ◂ _ = ◂s-identity -- ◂-identity 𝔽s : Nat → Functor _ _ _ _ _ _ 𝔽s N = 𝔾₁,₂ₛ N , (λ ‵ → _◂s_ ‵) instance IsCategoryAction𝔾₁𝕒₂◂ : IsCategoryAction 𝔾₁ 𝕒₂ _◂_ IsCategoryAction.identity IsCategoryAction𝔾₁𝕒₂◂ = ◂-identity IsCategoryAction𝔾₁𝕒₂ₛ◂s : ∀ {N} → IsCategoryAction 𝔾₁ (𝕒₂ₛ N) (λ ‵ → _◂s_ ‵) IsCategoryAction.identity IsCategoryAction𝔾₁𝕒₂ₛ◂s = ◂s-identity ℕ◂ : CategoryAction _ _ _ _ _ ℕ◂ = [ 𝔾₁ / 𝕒₂ ] _◂_ ℕ◂s : Nat → CategoryAction _ _ _ _ _ ℕ◂s N = [ 𝔾₁ / 𝕒₂ₛ N ] (λ ‵ → _◂s_ ‵)
{ "alphanum_fraction": 0.6256709094, "avg_line_length": 29.7762557078, "ext": "agda", "hexsha": "a108f0c85174309b4c6156f0d09844008a1448b6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Data/Term/internal/SubstituteAndSubstitution.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Data/Term/internal/SubstituteAndSubstitution.agda", "max_line_length": 117, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Data/Term/internal/SubstituteAndSubstitution.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3208, "size": 6521 }
module Lemmachine.Default where open import Lemmachine resource : Hooks resource = [] main = runResolve (toApp resource)
{ "alphanum_fraction": 0.7804878049, "avg_line_length": 15.375, "ext": "agda", "hexsha": "3d219df6fed750f6e14b5e7bd801921bc713d36e", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "src/Lemmachine/Default.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "src/Lemmachine/Default.agda", "max_line_length": 34, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "src/Lemmachine/Default.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 27, "size": 123 }
import Lvl -- TODO: Just testing how it goes with creating an axiomatic system module Geometry.Test2 (Point : Set(Lvl.𝟎)) where open import Functional open import Logic.Propositional{Lvl.𝟎} open import Logic.Predicate{Lvl.𝟎}{Lvl.𝟎} open import Relator.Equals{Lvl.𝟎}{Lvl.𝟎} -- open import Structure.Setoid.Uniqueness{Lvl.𝟎}{Lvl.𝟎}{Lvl.𝟎} hiding (Theorems) open import Structure.Relator.Equivalence{Lvl.𝟎}{Lvl.𝟎} open import Structure.Relator.Ordering{Lvl.𝟎}{Lvl.𝟎} -- open import Structure.Relator.Properties{Lvl.𝟎}{Lvl.𝟎} hiding (Theorems) -- A line of finite length record Line : Set(Lvl.𝟎) where constructor line field a : Point b : Point -- A circle record Circle : Set(Lvl.𝟎) where constructor circle field middle : Point outer : Point record Theory : Set(Lvl.𝐒(Lvl.𝟎)) where -- Symbols field PointOnLine : Point → Line → Set(Lvl.𝟎) -- The point lies on the line PointOnCircle : Point → Circle → Set(Lvl.𝟎) -- The point lies on the circle _≾_ : Line → Line → Set(Lvl.𝟎) -- Comparison of line length _≿_ : Line → Line → Set(Lvl.𝟎) -- Comparison of line length _≿_ l₁ l₂ = l₂ ≾ l₁ _≋_ : Line → Line → Set(Lvl.𝟎) -- Equality of line length _≋_ l₁ l₂ = (l₁ ≾ l₂) ∧ (l₁ ≿ l₂) -- Axioms field [≾]-weak-total-order : Weak.TotalOrder(_≾_)(_≋_) -- (_≾_) is a weak total order point-on-line-existence : ∀{l : Line} → ∃(p ↦ PointOnLine(p)(l)) -- There is a point on a line endpoint1-on-line : ∀{l : Line} → PointOnLine(Line.a(l))(l) endpoint2-on-line : ∀{l : Line} → PointOnLine(Line.b(l))(l) single-point-line : ∀{p : Point}{x : Point} → PointOnLine(x) (line(p)(p)) → (x ≡ p) -- There is only a simgle point on a line of zero length point-on-circle-existence : ∀{c : Circle} → ∃(p ↦ PointOnCircle(p)(c)) -- There is a point on a circle outer-on-circle : ∀{c : Circle} → PointOnCircle(Circle.outer(c))(c) single-point-circle : ∀{p : Point}{x : Point} → PointOnCircle(x) (circle(p)(p)) → (x ≡ p) -- There is only a simgle point on a circle of zero radius line-symmetry : ∀{a : Point}{b : Point} → (line(a)(b) ≡ line(b)(a)) -- A line is non-directional circle-intersection : ∀{a : Point}{b : Point} → ∃(i ↦ PointOnCircle(i)(circle(a)(b)) ∧ PointOnCircle(i)(circle(b)(a))) ∧ ∃(i ↦ PointOnCircle(i)(circle(a)(b)) ∧ PointOnCircle(i)(circle(b)(a))) module Theorems ⦃ _ : Theory ⦄ where open Theory ⦃ ... ⦄ -- middlepoint : Line → Point -- middlepoint(line(a)(b)) =
{ "alphanum_fraction": 0.6462474645, "avg_line_length": 38.515625, "ext": "agda", "hexsha": "44b77f2953650c8e6806fa912af8f7bb4044e7d8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Geometry/Test2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Geometry/Test2.agda", "max_line_length": 195, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Geometry/Test2.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 898, "size": 2465 }
{-# OPTIONS --rewriting #-} -- Interface to the standard library. -- Place to add own auxiliary definitions. module Library where open import Size public open import Level public using () renaming (zero to lzero) open import Data.Unit public using (⊤) open import Data.Empty public using (⊥; ⊥-elim) open import Data.Product public using (Σ; ∃; _×_; _,_; proj₁; proj₂; <_,_>; curry; uncurry) renaming (map to map-×) open import Data.Sum public using (_⊎_; inj₁; inj₂; [_,_]; [_,_]′) renaming (map to map-⊎) open import Data.List public using (List; []; _∷_) hiding (module List) open import Data.List.Relation.Unary.All public using (All; []; _∷_) hiding (module All) open import Data.List.Relation.Unary.Any public using (here; there) open import Data.List.Membership.Propositional public using (_∈_) open import Data.List.Relation.Binary.Sublist.Propositional public using (_⊆_; []; _∷_; _∷ʳ_; ⊆-refl; ⊆-trans) renaming (lookup to ⊆-lookup) open import Function public using (_∘_; _∘′_; id; _$_; _ˢ_; case_of_; const; flip) open import Relation.Binary.PropositionalEquality public using (_≡_; refl; sym; trans; cong; cong₂; subst; _≗_) {-# BUILTIN REWRITE _≡_ #-} module All where open import Data.List.Relation.Unary.All public module Any where open import Data.List.Relation.Unary.Any public -- open import Axiom.Extensionality.Propositional public using (Extensionality) -- postulate -- funExt : ∀{a b} → Extensionality a b -- inline to avoid library incomp. postulate funExt : ∀{a b} {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g funExtH : ∀{a b} {A : Set a} {B : A → Set b} {f g : {x : A} → B x} → (∀ {x} → f {x} ≡ g {x}) → (λ {x} → f {x}) ≡ g ⊥-elim-ext : ∀{a b} {A : Set a} {B : Set b} {f : A → ⊥} {g : A → B} → ⊥-elim {b} {B} ∘ f ≡ g ⊥-elim-ext {f = f} = funExt λ a → ⊥-elim (f a) cong₃ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} (f : A → B → C → D) {a a' b b' c c'} → a ≡ a' → b ≡ b' → c ≡ c' → f a b c ≡ f a' b' c' cong₃ f refl refl refl = refl _×̇_ : ∀{A B C D : Set} → (A → C) → (B → D) → A × B → C × D (f ×̇ g) (x , y) = f x , g y -- Application (S-combinator) apply : ∀{A B C : Set} (f : C → A → B) (d : C → A) → C → B apply f a = λ c → f c (a c) -- Kripke application kapply : ∀{A B C D : Set} (f : C → A → B) (τ : D → C) (d : D → A) → D → B kapply f τ a = apply (f ∘ τ) a -- kapply f τ a = λ d → f (τ d) (a d) caseof : ∀{A B C D : Set} (f : C → A ⊎ B) (g : C × A → D) (h : C × B → D) → C → D caseof f g h = λ c → [ curry g c , curry h c ]′ (f c) sum-eta : ∀{A B : Set} (x : A ⊎ B) → [ inj₁ , inj₂ ] x ≡ x sum-eta (inj₁ x) = refl sum-eta (inj₂ y) = refl caseof-eta : ∀{A B C : Set} (f : C → A ⊎ B) → caseof f (inj₁ ∘ proj₂) (inj₂ ∘ proj₂) ≡ f caseof-eta f = funExt λ c → sum-eta (f c) sum-perm : ∀{A B C D : Set} (k : C → D) {g : A → C} {h : B → C} (x : A ⊎ B) → [ k ∘ g , k ∘ h ]′ x ≡ k ([ g , h ]′ x) sum-perm k (inj₁ x) = refl sum-perm k (inj₂ y) = refl caseof-perm' : ∀{A B C D E : Set} (k : C → D → E) {f : C → A ⊎ B} {g : C × A → D} {h : C × B → D} → caseof f (apply (k ∘ proj₁) g) (apply (k ∘ proj₁) h) ≡ apply k (caseof f g h) caseof-perm' k {f} = funExt λ c → sum-perm (k c) (f c) caseof-perm : ∀{A B C D E : Set} (k : D → E) {f : C → A ⊎ B} {g : C × A → D} {h : C × B → D} → caseof f (k ∘ g) (k ∘ h) ≡ k ∘ caseof f g h caseof-perm = caseof-perm' ∘ const caseof-wk : ∀{A B C D E : Set} (k : D → C) {f : C → A ⊎ B} {g : C × A → E} {h : C × B → E} → caseof (f ∘ k) (g ∘ (k ×̇ id)) (h ∘ (k ×̇ id)) ≡ caseof f g h ∘ k caseof-wk {A} {B} {C} {D} {E} k {f} {g} {h} = refl caseof-apply : ∀{A B C D E : Set} (f : C → A ⊎ B) {g : C × A → D → E} {h : C × B → D → E} (d : C → D) → caseof f (apply g (d ∘ proj₁)) (apply h (d ∘ proj₁)) ≡ apply (caseof f g h) d caseof-apply f {g} {h} d = funExt λ c → sum-perm (λ z → z (d c)) {curry g c} {curry h c} (f c) -- caseof-apply {A} {B} {C} {D} {E} d {f} {g} {h} = funExt λ c → aux (f c) -- where -- aux : ∀ {c : C} (w : A ⊎ B) → -- [ (λ y → curry g c y (d c)) , (λ y → curry h c y (d c)) ]′ w ≡ -- [ curry g c , curry h c ]′ w (d c) -- aux (inj₁ a) = refl -- aux (inj₂ b) = refl -- caseof (f ∘ τ) -- (apply (g ∘ (τ ×̇ id)) (a ∘ proj₁)) -- (apply (h ∘ (τ ×̇ id)) (a ∘ proj₁)) -- ≡ -- apply (caseof f g h ∘ τ) a caseof-kapply : ∀{A B C D E F : Set} (f : C → A ⊎ B) (g : C × A → E → F) (h : C × B → E → F) (τ : D → C) (a : D → E) → caseof (f ∘ τ) (kapply g (τ ×̇ id) (a ∘ proj₁)) (kapply h (τ ×̇ id) (a ∘ proj₁)) ≡ kapply (caseof f g h) τ a caseof-kapply f g h τ a = caseof-apply (f ∘ τ) a caseof-swap : ∀{A B C D X Y : Set} (f : C → X ⊎ Y) (i : C × X → A ⊎ B) (j : C × Y → A ⊎ B) (g : C → A → D) (h : C → B → D) → caseof f (caseof i (uncurry (g ∘ proj₁)) (uncurry (h ∘ proj₁))) (caseof j (uncurry (g ∘ proj₁)) (uncurry (h ∘ proj₁))) ≡ caseof (caseof f i j) (uncurry g) (uncurry h) caseof-swap {A} {B} {C} {D} {X} {Y} f i j g h = funExt λ c → sum-perm [ (g c) , (h c) ] (f c)
{ "alphanum_fraction": 0.500974279, "avg_line_length": 37.1884057971, "ext": "agda", "hexsha": "ccd61d8fc02f1e52bdfc4254521725eacc0c6540", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-02-25T20:39:03.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-13T16:01:46.000Z", "max_forks_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "andreasabel/ipl", "max_forks_repo_path": "src/Library.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "andreasabel/ipl", "max_issues_repo_path": "src/Library.agda", "max_line_length": 142, "max_stars_count": 19, "max_stars_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "andreasabel/ipl", "max_stars_repo_path": "src/Library.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-27T19:10:49.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-16T08:08:51.000Z", "num_tokens": 2259, "size": 5132 }
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- The syntax of types with the Nehemiah plugin. ------------------------------------------------------------------------ module Nehemiah.Syntax.Type where import Parametric.Syntax.Type as Type data Base : Type.Structure where base-int : Base base-bag : Base open Type.Structure Base public pattern int = base base-int pattern bag = base base-bag
{ "alphanum_fraction": 0.5131004367, "avg_line_length": 24.1052631579, "ext": "agda", "hexsha": "cc494f6b2d55388c483137bac23a74ecc94ed4bc", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Nehemiah/Syntax/Type.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Nehemiah/Syntax/Type.agda", "max_line_length": 72, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Nehemiah/Syntax/Type.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 85, "size": 458 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Relations between properties of scaling and other operations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Algebra.Module.Consequences where open import Algebra.Core using (Op₂; Opₗ; Opᵣ) import Algebra.Definitions as Defs open import Algebra.Module.Definitions open import Function.Base using (flip) open import Level using (Level) open import Relation.Binary using (Rel; Setoid) import Relation.Binary.Reasoning.Setoid as Rea private variable a b c ℓ ℓa : Level A : Set a B : Set b module _ (_≈ᴬ_ : Rel {a} A ℓa) (S : Setoid c ℓ) where open Setoid S open Rea S open Defs _≈ᴬ_ private module L = LeftDefs A _≈_ module R = RightDefs A _≈_ module B = BiDefs A A _≈_ module _ {_*_ : Op₂ A} {_*ₗ_ : Opₗ A Carrier} where private _*ᵣ_ = flip _*ₗ_ *ₗ-assoc+comm⇒*ᵣ-assoc : L.RightCongruent _≈ᴬ_ _*ₗ_ → L.Associative _*_ _*ₗ_ → Commutative _*_ → R.Associative _*_ _*ᵣ_ *ₗ-assoc+comm⇒*ᵣ-assoc *ₗ-congʳ *ₗ-assoc *-comm m x y = begin (m *ᵣ x) *ᵣ y ≈⟨ refl ⟩ y *ₗ (x *ₗ m) ≈˘⟨ *ₗ-assoc _ _ _ ⟩ (y * x) *ₗ m ≈⟨ *ₗ-congʳ (*-comm y x) ⟩ (x * y) *ₗ m ≈⟨ refl ⟩ m *ᵣ (x * y) ∎ *ₗ-assoc+comm⇒*ₗ-*ᵣ-assoc : L.RightCongruent _≈ᴬ_ _*ₗ_ → L.Associative _*_ _*ₗ_ → Commutative _*_ → B.Associative _*ₗ_ _*ᵣ_ *ₗ-assoc+comm⇒*ₗ-*ᵣ-assoc *ₗ-congʳ *ₗ-assoc *-comm x m y = begin ((x *ₗ m) *ᵣ y) ≈⟨ refl ⟩ (y *ₗ (x *ₗ m)) ≈˘⟨ *ₗ-assoc _ _ _ ⟩ ((y * x) *ₗ m) ≈⟨ *ₗ-congʳ (*-comm y x) ⟩ ((x * y) *ₗ m) ≈⟨ *ₗ-assoc _ _ _ ⟩ (x *ₗ (y *ₗ m)) ≈⟨ refl ⟩ (x *ₗ (m *ᵣ y)) ∎ module _ {_*_ : Op₂ A} {_*ᵣ_ : Opᵣ A Carrier} where private _*ₗ_ = flip _*ᵣ_ *ᵣ-assoc+comm⇒*ₗ-assoc : R.LeftCongruent _≈ᴬ_ _*ᵣ_ → R.Associative _*_ _*ᵣ_ → Commutative _*_ → L.Associative _*_ _*ₗ_ *ᵣ-assoc+comm⇒*ₗ-assoc *ᵣ-congˡ *ᵣ-assoc *-comm x y m = begin ((x * y) *ₗ m) ≈⟨ refl ⟩ (m *ᵣ (x * y)) ≈⟨ *ᵣ-congˡ (*-comm x y) ⟩ (m *ᵣ (y * x)) ≈˘⟨ *ᵣ-assoc _ _ _ ⟩ ((m *ᵣ y) *ᵣ x) ≈⟨ refl ⟩ (x *ₗ (y *ₗ m)) ∎ *ᵣ-assoc+comm⇒*ₗ-*ᵣ-assoc : R.LeftCongruent _≈ᴬ_ _*ᵣ_ → R.Associative _*_ _*ᵣ_ → Commutative _*_ → B.Associative _*ₗ_ _*ᵣ_ *ᵣ-assoc+comm⇒*ₗ-*ᵣ-assoc *ᵣ-congˡ *ᵣ-assoc *-comm x m y = begin ((x *ₗ m) *ᵣ y) ≈⟨ refl ⟩ ((m *ᵣ x) *ᵣ y) ≈⟨ *ᵣ-assoc _ _ _ ⟩ (m *ᵣ (x * y)) ≈⟨ *ᵣ-congˡ (*-comm x y) ⟩ (m *ᵣ (y * x)) ≈˘⟨ *ᵣ-assoc _ _ _ ⟩ ((m *ᵣ y) *ᵣ x) ≈⟨ refl ⟩ (x *ₗ (m *ᵣ y)) ∎
{ "alphanum_fraction": 0.5001848429, "avg_line_length": 31.091954023, "ext": "agda", "hexsha": "f4b581c5297b91edfa64ed8551b11b76c6e754b9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Algebra/Module/Consequences.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Algebra/Module/Consequences.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Algebra/Module/Consequences.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1329, "size": 2705 }
module Module where data ℕ : Set where zero : ℕ suc : ℕ → ℕ _+_ : ℕ → ℕ → ℕ zero + n = zero suc m + n = suc (m + n) import Data.Nat using (ℕ; zero; suc; _+_)
{ "alphanum_fraction": 0.5542168675, "avg_line_length": 12.7692307692, "ext": "agda", "hexsha": "e8c6d7bf46ef803307ab8ab4307760bf5588811f", "lang": "Agda", "max_forks_count": 304, "max_forks_repo_forks_event_max_datetime": "2022-03-28T11:35:02.000Z", "max_forks_repo_forks_event_min_datetime": "2018-07-16T18:24:59.000Z", "max_forks_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "manikdv/plfa.github.io", "max_forks_repo_path": "extra/extra/Module.agda", "max_issues_count": 323, "max_issues_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_issues_repo_issues_event_max_datetime": "2022-03-30T07:42:57.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-05T22:34:34.000Z", "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "manikdv/plfa.github.io", "max_issues_repo_path": "extra/extra/Module.agda", "max_line_length": 41, "max_stars_count": 1003, "max_stars_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "manikdv/plfa.github.io", "max_stars_repo_path": "extra/extra/Module.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-27T07:03:28.000Z", "max_stars_repo_stars_event_min_datetime": "2018-07-05T18:15:14.000Z", "num_tokens": 65, "size": 166 }
-- Andreas, 2015-05-10 Report wrong hiding for copattern {-# OPTIONS --copatterns #-} record ⊤ : Set where record Foo (A : Set) : Set where field foo : A bar : Foo ⊤ Foo.foo {bar} = _ -- Error WAS: Unexpected implicit argument -- Better error: -- Wrong hiding used for projection Foo.foo -- when checking that the clause Foo.foo {bar} = _ has type Foo ⊤
{ "alphanum_fraction": 0.6657608696, "avg_line_length": 19.3684210526, "ext": "agda", "hexsha": "6a077139e6fa8cd02f9a9712779988487dd5d08f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue1413WrongHiding.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue1413WrongHiding.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue1413WrongHiding.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 105, "size": 368 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Basic definitions for Characters ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Char.Base where open import Level using (zero) import Data.Nat.Base as ℕ open import Function open import Relation.Binary using (Rel) open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------ -- Re-export the type, and renamed primitives open import Agda.Builtin.Char public using ( Char ) renaming -- testing ( primIsLower to isLower ; primIsDigit to isDigit ; primIsAlpha to isAlpha ; primIsSpace to isSpace ; primIsAscii to isAscii ; primIsLatin1 to isLatin1 ; primIsPrint to isPrint ; primIsHexDigit to isHexDigit -- transforming ; primToUpper to toUpper ; primToLower to toLower -- converting ; primCharToNat to toℕ ; primNatToChar to fromℕ ) open import Agda.Builtin.String public using () renaming ( primShowChar to show ) infix 4 _≈_ _≈_ : Rel Char zero _≈_ = _≡_ on toℕ infix 4 _<_ _<_ : Rel Char zero _<_ = ℕ._<_ on toℕ ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 1.1 toNat = toℕ {-# WARNING_ON_USAGE toNat "Warning: toNat was deprecated in v1.1. Please use toℕ instead." #-} fromNat = fromℕ {-# WARNING_ON_USAGE fromNat "Warning: fromNat was deprecated in v1.1. Please use fromℕ instead." #-}
{ "alphanum_fraction": 0.5653689715, "avg_line_length": 24.9420289855, "ext": "agda", "hexsha": "3e58c1bcc113c8195dcb325aaacbd839e829a7e6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Char/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Char/Base.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Char/Base.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 414, "size": 1721 }
{-# OPTIONS --without-K --safe #-} private variable A : Set a : A variable A : Set private A = B where B = Set
{ "alphanum_fraction": 0.5303030303, "avg_line_length": 10.1538461538, "ext": "agda", "hexsha": "834247dc3945937ff365a98bef84d9c3e19cfb3f", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-03-12T21:33:35.000Z", "max_forks_repo_forks_event_min_datetime": "2019-10-07T01:38:12.000Z", "max_forks_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "dubinsky/intellij-dtlc", "max_forks_repo_path": "testData/parse/agda/complex-nested-layouts.agda", "max_issues_count": 16, "max_issues_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be", "max_issues_repo_issues_event_max_datetime": "2021-03-15T17:04:36.000Z", "max_issues_repo_issues_event_min_datetime": "2019-03-30T04:29:32.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "dubinsky/intellij-dtlc", "max_issues_repo_path": "testData/parse/agda/complex-nested-layouts.agda", "max_line_length": 34, "max_stars_count": 30, "max_stars_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "dubinsky/intellij-dtlc", "max_stars_repo_path": "testData/parse/agda/complex-nested-layouts.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-29T13:18:34.000Z", "max_stars_repo_stars_event_min_datetime": "2019-05-11T16:26:38.000Z", "num_tokens": 45, "size": 132 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Instance.Properties.Setoids.Choice where open import Categories.Category using (Category) open import Categories.Category.Exact using (Exact) open import Categories.Category.Instance.Setoids using (Setoids) open import Data.Product using (∃; proj₁; proj₂; _,_; Σ-syntax; _×_; -,_; map; zip; swap; map₂) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Function.Equality as SΠ using (Π; _⇨_) renaming (id to ⟶-id; _∘_ to _∘⟶_) open import Level open import Relation.Binary using (Setoid; Rel; REL; IsEquivalence) import Relation.Binary.Reasoning.Setoid as SR open import Data.Nat.Base import Relation.Binary.PropositionalEquality.Core as P open Setoid renaming (_≈_ to [_][_≈_]; Carrier to ∣_∣) using (isEquivalence; refl; sym; trans) open Π using (_⟨$⟩_; cong) module _ ℓ where private S = Setoids ℓ ℓ open Category S hiding (_≈_) module S = Category S open import Categories.Category.Instance.Properties.Setoids.Exact open import Categories.Object.InternalRelation using (Relation) -- Presentation axiom, aka CoSHEP (http://nlab-pages.s3.us-east-2.amazonaws.com/nlab/show/presentation+axiom) record CoSHEP (A : Setoid ℓ ℓ) : Set (Level.suc ℓ) where field {P} : Setoid ℓ ℓ pre : P ⇒ A surj : SSurj ℓ pre split : {X : Setoid ℓ ℓ} (f : X ⇒ P) → SSurj ℓ f → Σ[ g ∈ ∣ P ⇨ X ∣ ] [ P ⇨ P ][ f ∘ g ≈ id ] Setoid-CoSHEP : (A : Setoid ℓ ℓ) → CoSHEP A Setoid-CoSHEP A = record { P = record { Carrier = ∣ A ∣ ; _≈_ = P._≡_ ; isEquivalence = record { refl = P.refl ; sym = P.sym ; trans = P.trans } } ; pre = record { _⟨$⟩_ = λ x → x ; cong = λ {x} eq → P.subst (λ z → [ A ][ x ≈ z ]) eq (refl A) } ; surj = λ x → x , refl A ; split = λ {X} f surj → record { _⟨$⟩_ = λ y → let x , _ = surj y in x ; cong = λ {x}{y} x≡y → P.subst (λ z → [ X ][ proj₁ (surj x) ≈ proj₁ (surj z) ]) x≡y (refl X) } , λ {x}{y} x≡y → let z , eq = surj x in P.trans eq x≡y } entire : {A B : Setoid ℓ ℓ} → (R : Relation S A B) → Set ℓ entire {A} R = ∀ (x : ∣ A ∣) → Σ[ e ∈ ∣ dom ∣ ] [ A ][ p₁ ⟨$⟩ e ≈ x ] where open Relation R ℕ-Setoid : Setoid ℓ ℓ ℕ-Setoid = record { Carrier = Lift _ ℕ ; _≈_ = P._≡_ ; isEquivalence = record { refl = P.refl ; sym = P.sym ; trans = P.trans } } record DepChoice {A : Setoid ℓ ℓ} (R : Relation S A A) (inhb : ∣ A ∣) (ent : entire R) : Set (Level.suc ℓ) where open Relation R field pair : ℕ → ∣ dom ∣ chain : ∀ (n : ℕ) → [ A ][ p₁ ⟨$⟩ pair (ℕ.suc n) ≈ p₂ ⟨$⟩ pair n ] -- Dependent choice for setoids Setoid-DepChoice : {A : Setoid ℓ ℓ} (R : Relation S A A) (inhb : ∣ A ∣) (ent : entire R) → DepChoice R inhb ent Setoid-DepChoice {A} R inhb ent = record { pair = pair ; chain = chain } where open Relation R pair : ℕ → ∣ dom ∣ pair ℕ.zero = proj₁ (ent inhb) pair (ℕ.suc n) = let x , _ = ent (p₂ ⟨$⟩ pair n) in x chain : (n : ℕ) → [ A ][ p₁ ⟨$⟩ proj₁ (ent (p₂ ⟨$⟩ pair n)) ≈ p₂ ⟨$⟩ pair n ] chain ℕ.zero = let _ , eq = ent (p₂ ⟨$⟩ proj₁ (ent inhb)) in eq chain (ℕ.suc n) = let x , eq = ent (p₂ ⟨$⟩ proj₁ (ent (p₂ ⟨$⟩ pair n))) in eq -- Countable choice for setoids ℕ-Choice : ∀ {A : Setoid ℓ ℓ} (f : A ⇒ ℕ-Setoid) → SSurj ℓ f → Σ[ g ∈ ∣ ℕ-Setoid ⇨ A ∣ ] [ ℕ-Setoid ⇨ ℕ-Setoid ][ f ∘ g ≈ id ] ℕ-Choice {A} f surj = record { _⟨$⟩_ = λ n → let x , eq = surj n in x ; cong = λ {n}{m} eq → let x , _ = surj n; y , _ = surj m in P.subst (λ m → [ A ][ proj₁ (surj n) ≈ proj₁ (surj m) ]) eq (refl A) } , λ {n}{m} n≡m → let _ , eq = surj n in P.trans eq n≡m
{ "alphanum_fraction": 0.5507246377, "avg_line_length": 39.1237113402, "ext": "agda", "hexsha": "8cb94825b2d9ffc25a451429c7a3a953247a2404", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Instance/Properties/Setoids/Choice.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Instance/Properties/Setoids/Choice.agda", "max_line_length": 134, "max_stars_count": 5, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Instance/Properties/Setoids/Choice.agda", "max_stars_repo_stars_event_max_datetime": "2019-05-22T03:54:24.000Z", "max_stars_repo_stars_event_min_datetime": "2019-05-21T17:07:19.000Z", "num_tokens": 1440, "size": 3795 }
------------------------------------------------------------------------ -- Properties of functions ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --exact-split #-} module Math.Combinatorics.ListFunction.Properties where -- agda-stdlib open import Data.List hiding (_∷ʳ_) import Data.List.Properties as Lₚ open import Data.List.Membership.Propositional using (_∈_; _∉_) import Data.List.Membership.Propositional.Properties as ∈ₚ open import Data.List.Relation.Binary.BagAndSetEquality open import Data.List.Relation.Binary.Sublist.Propositional using (_⊆_; []; _∷_; _∷ʳ_) import Data.List.Relation.Binary.Sublist.Propositional.Properties as Sublistₚ open import Data.List.Relation.Unary.All as All using (All; []; _∷_) import Data.List.Relation.Unary.All.Properties as Allₚ open import Data.List.Relation.Unary.AllPairs using (AllPairs; []; _∷_) open import Data.List.Relation.Unary.Any as Any using (Any; here; there) import Data.List.Relation.Unary.Unique.Propositional as UniqueP import Data.List.Relation.Unary.Unique.Propositional.Properties as UniquePₚ import Data.List.Relation.Unary.Unique.Setoid as UniqueS import Data.List.Relation.Unary.Unique.Setoid.Properties as UniqueSₚ open import Data.Nat open import Data.Product as Prod using (_×_; _,_; ∃; proj₁; proj₂) open import Data.Sum using (inj₁; inj₂) open import Function.Base open import Function.Equivalence using (_⇔_; equivalence) -- TODO: use new packages open import Relation.Binary.PropositionalEquality as P -- agda-combinatorics open import Math.Combinatorics.Function open import Math.Combinatorics.Function.Properties open import Math.Combinatorics.ListFunction import Math.Combinatorics.ListFunction.Properties.Lemma as Lemma ------------------------------------------------------------------------ -- Properties of `applyEach` module _ {a} {A : Set a} where open ≡-Reasoning length-applyEach : ∀ (f : A → A) (xs : List A) → length (applyEach f xs) ≡ length xs length-applyEach f [] = refl length-applyEach f (x ∷ xs) = begin 1 + length (map (x ∷_) (applyEach f xs)) ≡⟨ cong suc $ Lₚ.length-map (x ∷_) (applyEach f xs ) ⟩ 1 + length (applyEach f xs) ≡⟨ cong suc $ length-applyEach f xs ⟩ 1 + length xs ∎ All-length-applyEach : ∀ (f : A → A) (xs : List A) → All (λ ys → length ys ≡ length xs) (applyEach f xs) All-length-applyEach f [] = [] All-length-applyEach f (x ∷ xs) = refl ∷ (Allₚ.map⁺ $ All.map (cong suc) $ All-length-applyEach f xs) applyEach-cong : ∀ (f g : A → A) (xs : List A) → (∀ x → f x ≡ g x) → applyEach f xs ≡ applyEach g xs applyEach-cong f g [] f≡g = refl applyEach-cong f g (x ∷ xs) f≡g = begin (f x ∷ xs) ∷ map (_∷_ x) (applyEach f xs) ≡⟨ cong₂ (λ u v → (u ∷ xs) ∷ map (_∷_ x) v) (f≡g x) (applyEach-cong f g xs f≡g) ⟩ (g x ∷ xs) ∷ map (_∷_ x) (applyEach g xs) ∎ ------------------------------------------------------------------------ -- Properties of `combinations` module _ {a} {A : Set a} where open ≡-Reasoning length-combinations : ∀ (k : ℕ) (xs : List A) → length (combinations k xs) ≡ C (length xs) k length-combinations 0 xs = refl length-combinations (suc k) [] = refl length-combinations (suc k) (x ∷ xs) = begin length (map (x ∷_) (combinations k xs) ++ combinations (suc k) xs) ≡⟨ Lₚ.length-++ (map (x ∷_) (combinations k xs)) ⟩ length (map (x ∷_) (combinations k xs)) + length (combinations (suc k) xs) ≡⟨ cong₂ _+_ (Lₚ.length-map (x ∷_) (combinations k xs)) refl ⟩ length (combinations k xs) + length (combinations (suc k) xs) ≡⟨ cong₂ _+_ (length-combinations k xs) (length-combinations (suc k) xs) ⟩ C (length xs) k + C (length xs) (suc k) ≡⟨ sym $ C[1+n,1+k]≡C[n,k]+C[n,1+k] (length xs) k ⟩ C (length (x ∷ xs)) (suc k) ∎ All-length-combinations : ∀ (k : ℕ) (xs : List A) → All (λ ys → length ys ≡ k) (combinations k xs) All-length-combinations 0 xs = refl ∷ [] All-length-combinations (suc k) [] = [] All-length-combinations (suc k) (x ∷ xs) = Allₚ.++⁺ (Allₚ.map⁺ $ All.map (cong suc) $ All-length-combinations k xs) (All-length-combinations (suc k) xs) ∈-length-combinations : ∀ (xs : List A) k ys → xs ∈ combinations k ys → length xs ≡ k ∈-length-combinations xs k ys xs∈combinations[k,ys] = All.lookup (All-length-combinations k ys) xs∈combinations[k,ys] combinations-⊆⇒∈ : ∀ {xs ys : List A} → xs ⊆ ys → xs ∈ combinations (length xs) ys combinations-⊆⇒∈ {[]} {ys} xs⊆ys = here refl combinations-⊆⇒∈ {x ∷ xs} {y ∷ ys} (.y ∷ʳ x∷xs⊆ys) = ∈ₚ.∈-++⁺ʳ (map (y ∷_) (combinations (length xs) ys)) (combinations-⊆⇒∈ x∷xs⊆ys) combinations-⊆⇒∈ {x ∷ xs} {.x ∷ ys} (refl ∷ xs⊆ys) = ∈ₚ.∈-++⁺ˡ $ ∈ₚ.∈-map⁺ (x ∷_) $ combinations-⊆⇒∈ xs⊆ys combinations-∈⇒⊆ : ∀ {xs ys : List A} → xs ∈ combinations (length xs) ys → xs ⊆ ys combinations-∈⇒⊆ {[]} {ys} _ = Lemma.[]⊆xs ys combinations-∈⇒⊆ {x ∷ xs} {y ∷ ys} x∷xs∈c[len[x∷xs],y∷ys] with ∈ₚ.∈-++⁻ (map (y ∷_) (combinations (length xs) ys)) x∷xs∈c[len[x∷xs],y∷ys] ... | inj₁ x∷xs∈map[y∷-][c[len[xs],ys]] with ∈ₚ.∈-map⁻ (y ∷_) x∷xs∈map[y∷-][c[len[xs],ys]] -- ∷ ∃ λ zs → zs ∈ combinations (length xs) ys × x ∷ xs ≡ y ∷ zs combinations-∈⇒⊆ {x ∷ xs} {y ∷ ys} _ | inj₁ _ | zs , (zs∈c[len[xs],ys] , x∷xs≡y∷zs) = x≡y ∷ xs⊆ys where xs≡zs : xs ≡ zs xs≡zs = Lₚ.∷-injectiveʳ x∷xs≡y∷zs x≡y : x ≡ y x≡y = Lₚ.∷-injectiveˡ x∷xs≡y∷zs xs⊆ys : xs ⊆ ys xs⊆ys = combinations-∈⇒⊆ $ subst (λ v → v ∈ combinations (length xs) ys) (sym xs≡zs) zs∈c[len[xs],ys] combinations-∈⇒⊆ {x ∷ xs} {y ∷ ys} _ | inj₂ x∷xs∈c[len[x∷xs],ys] = y ∷ʳ x∷xs⊆ys where x∷xs⊆ys : x ∷ xs ⊆ ys x∷xs⊆ys = combinations-∈⇒⊆ x∷xs∈c[len[x∷xs],ys] combinations-∈⇔⊆ : ∀ {xs ys : List A} → (xs ∈ combinations (length xs) ys) ⇔ (xs ⊆ ys) combinations-∈⇔⊆ = equivalence combinations-∈⇒⊆ combinations-⊆⇒∈ All-⊆-combinations : ∀ k (xs : List A) → All (_⊆ xs) (combinations k xs) All-⊆-combinations k xs = All.tabulate λ {ys} ys∈combinations[k,xs] → combinations-∈⇒⊆ $ subst (λ v → ys ∈ combinations v xs) (sym $ ∈-length-combinations ys k xs ys∈combinations[k,xs]) ys∈combinations[k,xs] combinations-∈⇒⊆∧length : ∀ {xs : List A} {k ys} → xs ∈ combinations k ys → (xs ⊆ ys × length xs ≡ k) combinations-∈⇒⊆∧length {xs} {k} {ys} xs∈c[k,ys] = combinations-∈⇒⊆ xs∈c[len[xs],ys] , length[xs]≡k where length[xs]≡k : length xs ≡ k length[xs]≡k = ∈-length-combinations xs k ys xs∈c[k,ys] xs∈c[len[xs],ys] : xs ∈ combinations (length xs) ys xs∈c[len[xs],ys] = subst (λ v → xs ∈ combinations v ys) (sym length[xs]≡k) xs∈c[k,ys] combinations-⊆∧length⇒∈ : ∀ {xs ys : List A} {k} → (xs ⊆ ys × length xs ≡ k) → xs ∈ combinations k ys combinations-⊆∧length⇒∈ {xs} {ys} {k} (xs⊆ys , len[xs]≡k) = subst (λ v → xs ∈ combinations v ys) len[xs]≡k (combinations-⊆⇒∈ xs⊆ys) combinations-∈⇔⊆∧length : ∀ {xs : List A} {k} {ys} → xs ∈ combinations k ys ⇔ (xs ⊆ ys × length xs ≡ k) combinations-∈⇔⊆∧length = equivalence combinations-∈⇒⊆∧length combinations-⊆∧length⇒∈ unique-combinations : ∀ k {xs : List A} → UniqueP.Unique xs → UniqueP.Unique (combinations k xs) unique-combinations 0 {xs} xs-unique = [] ∷ [] unique-combinations (suc k) {[]} xs-unique = [] unique-combinations (suc k) {x ∷ xs} (All[x≢-]xs ∷ xs-unique) = UniquePₚ.++⁺ {_} {_} {map (x ∷_) (combinations k xs)} {combinations (suc k) xs} (UniquePₚ.map⁺ Lₚ.∷-injectiveʳ (unique-combinations k {xs} xs-unique)) (unique-combinations (suc k) {xs} xs-unique) λ {vs} vs∈map[x∷-]c[k,xs]×vs∈c[1+k,xs] → let vs∈map[x∷-]c[k,xs] = proj₁ vs∈map[x∷-]c[k,xs]×vs∈c[1+k,xs] vs∈c[1+k,xs] = proj₂ vs∈map[x∷-]c[k,xs]×vs∈c[1+k,xs] proof = ∈ₚ.∈-map⁻ (x ∷_) vs∈map[x∷-]c[k,xs] us = proj₁ proof vs≡x∷us : vs ≡ x ∷ us vs≡x∷us = proj₂ (proj₂ proof) x∈vs : x ∈ vs x∈vs = subst (x ∈_) (sym vs≡x∷us) (here refl) vs⊆xs : vs ⊆ xs vs⊆xs = proj₁ $ combinations-∈⇒⊆∧length {vs} {suc k} {xs} vs∈c[1+k,xs] All[x≢-]vs : All (x ≢_) vs All[x≢-]vs = Sublistₚ.All-resp-⊆ vs⊆xs All[x≢-]xs x∉vs : x ∉ vs x∉vs = Allₚ.All¬⇒¬Any All[x≢-]vs in x∉vs x∈vs {- -- unique⇒drop-cons-set : ∀ {a} {A : Set a} {x : A} {xs ys} → unique-combinations-set : ∀ k {xs : List A} → UniqueP.Unique xs → UniqueS.Unique ([ set ]-Equality A) (combinations k xs) unique-combinations-set 0 xs-unique = [] ∷ [] unique-combinations-set (suc k) {[]} xs-unique = [] unique-combinations-set (suc k) {x ∷ xs} (this ∷ xs-unique) = UniqueSₚ.++⁺ ([ set ]-Equality A) (UniqueSₚ.map⁺ ([ set ]-Equality A) ([ set ]-Equality A) (λ → {! !}) (unique-combinations-set k {xs} xs-unique)) (unique-combinations-set (suc k) {xs} xs-unique) {! !} -- {- x∉xs -} Unique -[ set ] xs → Unique -[ set ] (x ∷ xs) -} module _ {a b} {A : Set a} {B : Set b} where combinations-map : ∀ k (f : A → B) (xs : List A) → combinations k (map f xs) ≡ map (map f) (combinations k xs) combinations-map 0 f xs = refl combinations-map (suc k) f [] = refl combinations-map (suc k) f (x ∷ xs) = begin map (f x ∷_) (combinations k (map f xs)) ++ combinations (suc k) (map f xs) ≡⟨ cong₂ _++_ (cong (map (f x ∷_)) (combinations-map k f xs)) (combinations-map (suc k) f xs) ⟩ map (f x ∷_) (map (map f) (combinations k xs)) ++ map (map f) (combinations (suc k) xs) ≡⟨ cong (_++ map (map f) (combinations (suc k) xs)) $ Lemma.lemma₁ f x (combinations k xs) ⟩ map (map f) (map (x ∷_) (combinations k xs)) ++ map (map f) (combinations (suc k) xs) ≡⟨ sym $ Lₚ.map-++-commute (map f) (map (x ∷_) (combinations k xs)) (combinations (suc k) xs) ⟩ map (map f) (map (x ∷_) (combinations k xs) ++ combinations (suc k) xs) ∎ where open ≡-Reasoning ------------------------------------------------------------------------ -- Properties of `combinationsWithComplement` module _ {a} {A : Set a} where open ≡-Reasoning map-proj₁-combinationsWithComplement : ∀ k (xs : List A) → map proj₁ (combinationsWithComplement k xs) ≡ combinations k xs map-proj₁-combinationsWithComplement 0 xs = refl map-proj₁-combinationsWithComplement (suc k) [] = refl map-proj₁-combinationsWithComplement (suc k) (x ∷ xs) = begin map proj₁ (map f ys ++ map g zs) ≡⟨ Lₚ.map-++-commute proj₁ (map f ys) (map g zs) ⟩ map proj₁ (map f ys) ++ map proj₁ (map g zs) ≡⟨ sym $ Lₚ.map-compose ys ⟨ cong₂ _++_ ⟩ Lₚ.map-compose zs ⟩ map (proj₁ ∘′ f) ys ++ map (λ v → proj₁ (g v)) zs ≡⟨ Lₚ.map-cong lemma₁ ys ⟨ cong₂ _++_ ⟩ Lₚ.map-cong lemma₂ zs ⟩ map ((x ∷_) ∘′ proj₁) ys ++ map proj₁ zs ≡⟨ cong (_++ map proj₁ zs) $ Lₚ.map-compose ys ⟩ map (x ∷_) (map proj₁ ys) ++ map proj₁ zs ≡⟨ cong (map (x ∷_)) (map-proj₁-combinationsWithComplement k xs) ⟨ cong₂ _++_ ⟩ map-proj₁-combinationsWithComplement (suc k) xs ⟩ map (x ∷_) (combinations k xs) ++ combinations (suc k) xs ∎ where ys = combinationsWithComplement k xs zs = combinationsWithComplement (suc k) xs f g : List A × List A → List A × List A f = Prod.map₁ (x ∷_) g = Prod.map₂ (x ∷_) lemma₁ : ∀ (t : List A × List A) → proj₁ (Prod.map₁ (x ∷_) t) ≡ x ∷ proj₁ t lemma₁ t = Lemma.proj₁-map₁ (x ∷_) t lemma₂ : ∀ (t : List A × List A) → Lemma.proj₁′ {_} {_} {_} {List A} (Prod.map₂ (x ∷_) t) ≡ proj₁ t lemma₂ t = Lemma.proj₁-map₂ (x ∷_) t length-combinationsWithComplement : ∀ k (xs : List A) → length (combinationsWithComplement k xs) ≡ C (length xs) k length-combinationsWithComplement k xs = begin length (combinationsWithComplement k xs) ≡⟨ sym $ Lₚ.length-map proj₁ (combinationsWithComplement k xs) ⟩ length (map proj₁ (combinationsWithComplement k xs)) ≡⟨ cong length $ map-proj₁-combinationsWithComplement k xs ⟩ length (combinations k xs) ≡⟨ length-combinations k xs ⟩ C (length xs) k ∎ ------------------------------------------------------------------------ -- Properties of `splits₂` module _ {a} {A : Set a} where open ≡-Reasoning open Prod using (map₁; map₂) length-splits₂ : ∀ (xs : List A) → length (splits₂ xs) ≡ 1 + length xs length-splits₂ [] = refl length-splits₂ (x ∷ xs) = begin 1 + length (map (map₁ (x ∷_)) (splits₂ xs)) ≡⟨ cong (1 +_) $ Lₚ.length-map (map₁ (x ∷_)) (splits₂ xs) ⟩ 1 + length (splits₂ xs) ≡⟨ cong (1 +_) $ length-splits₂ xs ⟩ 1 + length (x ∷ xs) ∎ splits₂-defn : ∀ (xs : List A) → splits₂ xs ≡ zip (inits xs) (tails xs) splits₂-defn [] = refl splits₂-defn (x ∷ xs) = begin splits₂ (x ∷ xs) ≡⟨⟩ ([] , x ∷ xs) ∷ map (map₁ (x ∷_)) (splits₂ xs) ≡⟨ cong (([] , x ∷ xs) ∷_) (begin map (map₁ (x ∷_)) (splits₂ xs) ≡⟨ cong (map (map₁ (x ∷_))) $ splits₂-defn xs ⟩ map (map₁ (x ∷_)) (zip is ts) ≡⟨ Lₚ.map-zipWith _,_ (map₁ (x ∷_)) is ts ⟩ zipWith (λ ys zs → map₁ (x ∷_) (ys , zs)) is ts ≡⟨ sym $ Lₚ.zipWith-map _,_ (x ∷_) id is ts ⟩ zip (map (x ∷_) is) (map id ts) ≡⟨ cong (zip (map (x ∷_) is)) $ Lₚ.map-id ts ⟩ zip (map (x ∷_) is) ts ∎) ⟩ ([] , x ∷ xs) ∷ zip (map (x ∷_) is) ts ∎ where is = inits xs ts = tails xs All-++-splits₂ : (xs : List A) → All (Prod.uncurry (λ ys zs → ys ++ zs ≡ xs)) (splits₂ xs) All-++-splits₂ [] = refl ∷ [] All-++-splits₂ (x ∷ xs) = All._∷_ refl $ Allₚ.map⁺ $ All.map (cong (x ∷_)) $ All-++-splits₂ xs splits₂-∈⇒++ : {xs ys zs : List A} → (ys , zs) ∈ splits₂ xs → ys ++ zs ≡ xs splits₂-∈⇒++ {xs = xs} = All.lookup (All-++-splits₂ xs) private [],xs∈splits₂[xs] : (xs : List A) → ([] , xs) ∈ splits₂ xs [],xs∈splits₂[xs] [] = here refl [],xs∈splits₂[xs] (x ∷ xs) = here refl ∈-split₂-++ : (xs ys : List A) → (xs , ys) ∈ splits₂ (xs ++ ys) ∈-split₂-++ [] ys = [],xs∈splits₂[xs] ys ∈-split₂-++ (x ∷ xs) ys = Any.there $ ∈ₚ.∈-map⁺ (map₁ (x ∷_)) $ ∈-split₂-++ xs ys splits₂-++⇒∈ : {xs ys zs : List A} → xs ++ ys ≡ zs → (xs , ys) ∈ splits₂ zs splits₂-++⇒∈ {xs} {ys} {zs} xs++ys≡zs = subst (λ v → (xs , ys) ∈ splits₂ v) xs++ys≡zs (∈-split₂-++ xs ys) splits₂-∈⇔++ : {xs ys zs : List A} → (xs , ys) ∈ splits₂ zs ⇔ xs ++ ys ≡ zs splits₂-∈⇔++ = equivalence splits₂-∈⇒++ splits₂-++⇒∈ module _ {a b} {A : Set a} {B : Set b} where open ≡-Reasoning {- splits₂-map : ∀ (f : A → B) (xs : List A) → splits₂ (map f xs) ≡ map (Prod.map (map f) (map f)) (splits₂ xs) splits₂-map f [] = refl splits₂-map f (x ∷ xs) = {! !} -} -- length[xs]<k⇒combinations[k,xs]≡[] -- All-unique-combinations : UniqueP.Unique xs → All (UniqueP.Unique) (combinations k xs) -- All-unique-combinations-set : UniqueP.Unique xs → All (UniqueS.Unique [ set ]-Equality A) (combinations k xs) -- unique-combinations-PW : UniqueS.Unique S xs → UniqueS.Unique (Equality S) (combinations k xs) -- unique-combinations-set : UniqueP.Unique xs → Unique (_-[ set ]_) (combinations k xs) -- sorted-combinations : Sorted _<_ xs → Sorted {- Lex._<_ _<_ -} (combinations k xs) -- All-sorted-combinations : Sorted _<_ xs → All (Sorted _<_) (combinations k xs) -- filter-combinations = filter P ∘ combinations k xs -- each-disjoint-combinationsWithComplement : Unique zs → (xs , ys) ∈ combinationsWithComplement k zs → Disjoint xs ys -- combinationsWithComplement-∈⇒⊆ : (xs , ys) ∈ combinationsWithComplement (length xs) zs → xs ⊆ zs × ys ⊆ zs -- length-splits : length (splits k xs) ≡ C (length xs + k ∸ 1) (length xs) -- length-partitionsAll : length (partitionsAll xs) ≡ B (length xs) -- length-insertEverywhere : length (insertEverywhere x xs) ≡ 1 + length xs -- All-length-insertEverywhere : All (λ ys → length ys ≡ 1 + length xs) (insertEverywhere x xs) -- length-permutations : length (permutations xs) ≡ length xs !
{ "alphanum_fraction": 0.5605802048, "avg_line_length": 46.6136363636, "ext": "agda", "hexsha": "4a5161698d4659779b09b67653f8b924c6f277e7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9fafa35c940ff7b893a80120f6a1f22b0a3917b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-combinatorics", "max_forks_repo_path": "Math/Combinatorics/ListFunction/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9fafa35c940ff7b893a80120f6a1f22b0a3917b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-combinatorics", "max_issues_repo_path": "Math/Combinatorics/ListFunction/Properties.agda", "max_line_length": 135, "max_stars_count": 3, "max_stars_repo_head_hexsha": "9fafa35c940ff7b893a80120f6a1f22b0a3917b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-combinatorics", "max_stars_repo_path": "Math/Combinatorics/ListFunction/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-25T07:25:27.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-25T08:24:15.000Z", "num_tokens": 6328, "size": 16408 }
-- Andreas, 2017-11-01, issue #2824 -- allow built-in pragmas in parametrized modules data Nat : Set where zero : Nat suc : Nat → Nat module M (A : Set) where {-# BUILTIN NATURAL Nat #-} test = 5
{ "alphanum_fraction": 0.6394230769, "avg_line_length": 16, "ext": "agda", "hexsha": "fc91c64c8f2d5b2843d32c01f7c571ac3b07fce5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2824Nat.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2824Nat.agda", "max_line_length": 49, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2824Nat.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 70, "size": 208 }
open import Common.Prelude open import Common.Reflection id : {A : Set} → A → A id x = x idTerm : Term idTerm = lam visible (abs "x" (def (quote id) (arg₁ ∷ arg₂ ∷ []))) where arg₁ = arg (argInfo hidden relevant) (def (quote Nat) []) arg₂ = arg (argInfo visible relevant) (var 0 []) -- Should fail since idTerm "λ z → id {Nat} z" id₂ : {A : Set} → A → A id₂ = unquote (give idTerm)
{ "alphanum_fraction": 0.6161616162, "avg_line_length": 23.2941176471, "ext": "agda", "hexsha": "eed96222ac60f133b6decfe2594f9f01640307fa", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1012.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1012.agda", "max_line_length": 66, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1012.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 137, "size": 396 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Categories.Adjoint where open import Cubical.Foundations.Prelude open import Cubical.Data.Sigma open import Cubical.Categories.Category open import Cubical.Categories.Functor open import Cubical.Categories.NaturalTransformation open import Cubical.Foundations.Isomorphism open Functor open Iso open Precategory {- ============================================== Overview ============================================== This module contains two definitions for adjoint functors, and functions witnessing their logical (and maybe eventually actual?) equivalence. -} private variable ℓC ℓC' ℓD ℓD' : Level {- ============================================== Adjoint definitions ============================================== We provide two alternative definitions for adjoint functors: the unit-counit definition, followed by the natural bijection definition. -} module UnitCounit where -- Adjoint def 1: unit-counit record _⊣_ {C : Precategory ℓC ℓC'} {D : Precategory ℓD ℓD'} (F : Functor C D) (G : Functor D C) : Type (ℓ-max (ℓ-max ℓC ℓC') (ℓ-max ℓD ℓD')) where field -- unit η : 𝟙⟨ C ⟩ ⇒ (funcComp G F) -- counit ε : (funcComp F G) ⇒ 𝟙⟨ D ⟩ -- triangle identities Δ₁ : PathP (λ i → NatTrans (F-lUnit {F = F} i) (F-rUnit {F = F} i)) (seqTransP F-assoc (F ∘ʳ η) (ε ∘ˡ F)) (1[ F ]) Δ₂ : PathP (λ i → NatTrans (F-rUnit {F = G} i) (F-lUnit {F = G} i)) (seqTransP (sym F-assoc) (η ∘ˡ G) (G ∘ʳ ε)) (1[ G ]) {- Helper function for building unit-counit adjunctions between categories, using that equality of natural transformations in a category is equality on objects -} module _ {ℓC ℓC' ℓD ℓD'} {C : Precategory ℓC ℓC'} {D : Precategory ℓD ℓD'} {F : Functor C D} {G : Functor D C} ⦃ isCatC : isCategory C ⦄ ⦃ isCatD : isCategory D ⦄ (η : 𝟙⟨ C ⟩ ⇒ (funcComp G F)) (ε : (funcComp F G) ⇒ 𝟙⟨ D ⟩) (Δ₁ : ∀ c → F ⟪ η ⟦ c ⟧ ⟫ ⋆⟨ D ⟩ ε ⟦ F ⟅ c ⟆ ⟧ ≡ D .id (F ⟅ c ⟆)) (Δ₂ : ∀ d → η ⟦ G ⟅ d ⟆ ⟧ ⋆⟨ C ⟩ G ⟪ ε ⟦ d ⟧ ⟫ ≡ C .id (G ⟅ d ⟆)) where make⊣ : F ⊣ G make⊣ ._⊣_.η = η make⊣ ._⊣_.ε = ε make⊣ ._⊣_.Δ₁ = makeNatTransPathP F-lUnit F-rUnit (funExt λ c → cong (D ._⋆_ (F ⟪ η ⟦ c ⟧ ⟫)) (transportRefl _) ∙ Δ₁ c) make⊣ ._⊣_.Δ₂ = makeNatTransPathP F-rUnit F-lUnit (funExt λ d → cong (C ._⋆_ (η ⟦ G ⟅ d ⟆ ⟧)) (transportRefl _) ∙ Δ₂ d) module NaturalBijection where -- Adjoint def 2: natural bijection record _⊣_ {C : Precategory ℓC ℓC'} {D : Precategory ℓD ℓD'} (F : Functor C D) (G : Functor D C) : Type (ℓ-max (ℓ-max ℓC ℓC') (ℓ-max ℓD ℓD')) where field adjIso : ∀ {c d} → Iso (D [ F ⟅ c ⟆ , d ]) (C [ c , G ⟅ d ⟆ ]) infix 40 _♭ infix 40 _♯ _♭ : ∀ {c d} → (D [ F ⟅ c ⟆ , d ]) → (C [ c , G ⟅ d ⟆ ]) (_♭) {_} {_} = adjIso .fun _♯ : ∀ {c d} → (C [ c , G ⟅ d ⟆ ]) → (D [ F ⟅ c ⟆ , d ]) (_♯) {_} {_} = adjIso .inv field adjNatInD : ∀ {c : C .ob} {d d'} (f : D [ F ⟅ c ⟆ , d ]) (k : D [ d , d' ]) → (f ⋆⟨ D ⟩ k) ♭ ≡ f ♭ ⋆⟨ C ⟩ G ⟪ k ⟫ adjNatInC : ∀ {c' c d} (g : C [ c , G ⟅ d ⟆ ]) (h : C [ c' , c ]) → (h ⋆⟨ C ⟩ g) ♯ ≡ F ⟪ h ⟫ ⋆⟨ D ⟩ g ♯ {- ============================================== Proofs of equivalence ============================================== This first unnamed module provides a function adj'→adj which takes you from the second definition to the first. The second unnamed module does the reverse. -} module _ {C : Precategory ℓC ℓC'} {D : Precategory ℓD ℓD'} (F : Functor C D) (G : Functor D C) where open UnitCounit open NaturalBijection renaming (_⊣_ to _⊣²_) module _ (adj : F ⊣² G) where open _⊣²_ adj open _⊣_ -- Naturality condition implies that a commutative square in C -- appears iff the transpose in D is commutative as well -- Used in adj'→adj adjNat' : ∀ {c c' d d'} {f : D [ F ⟅ c ⟆ , d ]} {k : D [ d , d' ]} → {h : C [ c , c' ]} {g : C [ c' , G ⟅ d' ⟆ ]} -- commutativity of squares is iff → ((f ⋆⟨ D ⟩ k ≡ F ⟪ h ⟫ ⋆⟨ D ⟩ g ♯) → (f ♭ ⋆⟨ C ⟩ G ⟪ k ⟫ ≡ h ⋆⟨ C ⟩ g)) × ((f ♭ ⋆⟨ C ⟩ G ⟪ k ⟫ ≡ h ⋆⟨ C ⟩ g) → (f ⋆⟨ D ⟩ k ≡ F ⟪ h ⟫ ⋆⟨ D ⟩ g ♯)) adjNat' {c} {c'} {d} {d'} {f} {k} {h} {g} = D→C , C→D where D→C : (f ⋆⟨ D ⟩ k ≡ F ⟪ h ⟫ ⋆⟨ D ⟩ g ♯) → (f ♭ ⋆⟨ C ⟩ G ⟪ k ⟫ ≡ h ⋆⟨ C ⟩ g) D→C eq = f ♭ ⋆⟨ C ⟩ G ⟪ k ⟫ ≡⟨ sym (adjNatInD _ _) ⟩ ((f ⋆⟨ D ⟩ k) ♭) ≡⟨ cong _♭ eq ⟩ (F ⟪ h ⟫ ⋆⟨ D ⟩ g ♯) ♭ ≡⟨ sym (cong _♭ (adjNatInC _ _)) ⟩ (h ⋆⟨ C ⟩ g) ♯ ♭ ≡⟨ adjIso .rightInv _ ⟩ h ⋆⟨ C ⟩ g ∎ C→D : (f ♭ ⋆⟨ C ⟩ G ⟪ k ⟫ ≡ h ⋆⟨ C ⟩ g) → (f ⋆⟨ D ⟩ k ≡ F ⟪ h ⟫ ⋆⟨ D ⟩ g ♯) C→D eq = f ⋆⟨ D ⟩ k ≡⟨ sym (adjIso .leftInv _) ⟩ (f ⋆⟨ D ⟩ k) ♭ ♯ ≡⟨ cong _♯ (adjNatInD _ _) ⟩ (f ♭ ⋆⟨ C ⟩ G ⟪ k ⟫) ♯ ≡⟨ cong _♯ eq ⟩ (h ⋆⟨ C ⟩ g) ♯ ≡⟨ adjNatInC _ _ ⟩ F ⟪ h ⟫ ⋆⟨ D ⟩ g ♯ ∎ open NatTrans -- note : had to make this record syntax because termination checker was complaining -- due to referencing η and ε from the definitions of Δs adj'→adj : ⦃ isCatC : isCategory C ⦄ ⦃ isCatD : isCategory D ⦄ → F ⊣ G adj'→adj = record { η = η' ; ε = ε' ; Δ₁ = Δ₁' ; Δ₂ = Δ₂' } where -- ETA -- trivial commutative diagram between identities in D commInD : ∀ {x y} (f : C [ x , y ]) → (D .id _) ⋆⟨ D ⟩ F ⟪ f ⟫ ≡ F ⟪ f ⟫ ⋆⟨ D ⟩ (D .id _) commInD f = (D .⋆IdL _) ∙ sym (D .⋆IdR _) sharpen1 : ∀ {x y} (f : C [ x , y ]) → F ⟪ f ⟫ ⋆⟨ D ⟩ (D .id _) ≡ F ⟪ f ⟫ ⋆⟨ D ⟩ (D .id _) ♭ ♯ sharpen1 f = cong (λ v → F ⟪ f ⟫ ⋆⟨ D ⟩ v) (sym (adjIso .leftInv _)) η' : 𝟙⟨ C ⟩ ⇒ G ∘F F η' .N-ob x = (D .id _) ♭ η' .N-hom f = sym (fst (adjNat') (commInD f ∙ sharpen1 f)) -- EPSILON -- trivial commutative diagram between identities in C commInC : ∀ {x y} (g : D [ x , y ]) → (C .id _) ⋆⟨ C ⟩ G ⟪ g ⟫ ≡ G ⟪ g ⟫ ⋆⟨ C ⟩ (C .id _) commInC g = (C .⋆IdL _) ∙ sym (C .⋆IdR _) sharpen2 : ∀ {x y} (g : D [ x , y ]) → (C .id _ ♯ ♭) ⋆⟨ C ⟩ G ⟪ g ⟫ ≡ (C .id _) ⋆⟨ C ⟩ G ⟪ g ⟫ sharpen2 g = cong (λ v → v ⋆⟨ C ⟩ G ⟪ g ⟫) (adjIso .rightInv _) ε' : F ∘F G ⇒ 𝟙⟨ D ⟩ ε' .N-ob x = (C .id _) ♯ ε' .N-hom g = sym (snd adjNat' (sharpen2 g ∙ commInC g)) -- DELTA 1 expL : ∀ (c) → (seqTransP F-assoc (F ∘ʳ η') (ε' ∘ˡ F) .N-ob c) ≡ F ⟪ η' ⟦ c ⟧ ⟫ ⋆⟨ D ⟩ ε' ⟦ F ⟅ c ⟆ ⟧ expL c = seqTransP F-assoc (F ∘ʳ η') (ε' ∘ˡ F) .N-ob c ≡⟨ refl ⟩ seqP {C = D} {p = refl} (F ⟪ η' ⟦ c ⟧ ⟫) (ε' ⟦ F ⟅ c ⟆ ⟧) ≡⟨ seqP≡seq {C = D} _ _ ⟩ F ⟪ η' ⟦ c ⟧ ⟫ ⋆⟨ D ⟩ ε' ⟦ F ⟅ c ⟆ ⟧ ∎ body : ∀ (c) → (idTrans F) ⟦ c ⟧ ≡ (seqTransP F-assoc (F ∘ʳ η') (ε' ∘ˡ F) .N-ob c) body c = (idTrans F) ⟦ c ⟧ ≡⟨ refl ⟩ D .id _ ≡⟨ sym (D .⋆IdL _) ⟩ D .id _ ⋆⟨ D ⟩ D .id _ ≡⟨ snd adjNat' (cong (λ v → (η' ⟦ c ⟧) ⋆⟨ C ⟩ v) (G .F-id)) ⟩ F ⟪ η' ⟦ c ⟧ ⟫ ⋆⟨ D ⟩ ε' ⟦ F ⟅ c ⟆ ⟧ ≡⟨ sym (expL c) ⟩ seqTransP F-assoc (F ∘ʳ η') (ε' ∘ˡ F) .N-ob c ∎ Δ₁' : PathP (λ i → NatTrans (F-lUnit {F = F} i) (F-rUnit {F = F} i)) (seqTransP F-assoc (F ∘ʳ η') (ε' ∘ˡ F)) (1[ F ]) Δ₁' = makeNatTransPathP F-lUnit F-rUnit (sym (funExt body)) -- DELTA 2 body2 : ∀ (d) → seqP {C = C} {p = refl} ((η' ∘ˡ G) ⟦ d ⟧) ((G ∘ʳ ε') ⟦ d ⟧) ≡ C .id (G .F-ob d) body2 d = seqP {C = C} {p = refl} ((η' ∘ˡ G) ⟦ d ⟧) ((G ∘ʳ ε') ⟦ d ⟧) ≡⟨ seqP≡seq {C = C} _ _ ⟩ ((η' ∘ˡ G) ⟦ d ⟧) ⋆⟨ C ⟩ ((G ∘ʳ ε') ⟦ d ⟧) ≡⟨ refl ⟩ (η' ⟦ G ⟅ d ⟆ ⟧) ⋆⟨ C ⟩ (G ⟪ ε' ⟦ d ⟧ ⟫) ≡⟨ fst adjNat' (cong (λ v → v ⋆⟨ D ⟩ (ε' ⟦ d ⟧)) (sym (F .F-id))) ⟩ C .id _ ⋆⟨ C ⟩ C .id _ ≡⟨ C .⋆IdL _ ⟩ C .id (G .F-ob d) ∎ Δ₂' : PathP (λ i → NatTrans (F-rUnit {F = G} i) (F-lUnit {F = G} i)) (seqTransP (sym F-assoc) (η' ∘ˡ G) (G ∘ʳ ε')) (1[ G ]) Δ₂' = makeNatTransPathP F-rUnit F-lUnit (funExt body2) module _ (adj : F ⊣ G) where open _⊣_ adj open _⊣²_ open NatTrans -- helper functions for working with this Adjoint definition δ₁ : ∀ {c} → (F ⟪ η ⟦ c ⟧ ⟫ ⋆⟨ D ⟩ ε ⟦ F ⟅ c ⟆ ⟧) ≡ D .id _ δ₁ {c} = (F ⟪ η ⟦ c ⟧ ⟫ ⋆⟨ D ⟩ ε ⟦ F ⟅ c ⟆ ⟧) ≡⟨ sym (seqP≡seq {C = D} _ _) ⟩ seqP {C = D} {p = refl} (F ⟪ η ⟦ c ⟧ ⟫) (ε ⟦ F ⟅ c ⟆ ⟧) ≡⟨ (λ j → (Δ₁ j) .N-ob c) ⟩ D .id _ ∎ δ₂ : ∀ {d} → (η ⟦ G ⟅ d ⟆ ⟧ ⋆⟨ C ⟩ G ⟪ ε ⟦ d ⟧ ⟫) ≡ C .id _ δ₂ {d} = (η ⟦ G ⟅ d ⟆ ⟧ ⋆⟨ C ⟩ G ⟪ ε ⟦ d ⟧ ⟫) ≡⟨ sym (seqP≡seq {C = C} _ _) ⟩ seqP {C = C} {p = refl} (η ⟦ G ⟅ d ⟆ ⟧) (G ⟪ ε ⟦ d ⟧ ⟫) ≡⟨ (λ j → (Δ₂ j) .N-ob d) ⟩ C .id _ ∎ adj→adj' : F ⊣² G -- ∀ {c d} → Iso (D [ F ⟅ c ⟆ , d ]) (C [ c , G ⟅ d ⟆ ]) -- takes f to Gf precomposed with the unit adj→adj' .adjIso {c = c} .fun f = η ⟦ c ⟧ ⋆⟨ C ⟩ G ⟪ f ⟫ -- takes g to Fg postcomposed with the counit adj→adj' .adjIso {d = d} .inv g = F ⟪ g ⟫ ⋆⟨ D ⟩ ε ⟦ d ⟧ -- invertibility follows from the triangle identities adj→adj' .adjIso {c = c} {d} .rightInv g = η ⟦ c ⟧ ⋆⟨ C ⟩ G ⟪ F ⟪ g ⟫ ⋆⟨ D ⟩ ε ⟦ d ⟧ ⟫ -- step0 ∙ step1 ∙ step2 ∙ (C .⋆IdR _) ≡⟨ cong (λ v → η ⟦ c ⟧ ⋆⟨ C ⟩ v) (G .F-seq _ _) ⟩ η ⟦ c ⟧ ⋆⟨ C ⟩ (G ⟪ F ⟪ g ⟫ ⟫ ⋆⟨ C ⟩ G ⟪ ε ⟦ d ⟧ ⟫) ≡⟨ sym (C .⋆Assoc _ _ _) ⟩ η ⟦ c ⟧ ⋆⟨ C ⟩ G ⟪ F ⟪ g ⟫ ⟫ ⋆⟨ C ⟩ G ⟪ ε ⟦ d ⟧ ⟫ -- apply naturality ≡⟨ rPrecatWhisker {C = C} _ _ _ natu ⟩ (g ⋆⟨ C ⟩ η ⟦ G ⟅ d ⟆ ⟧) ⋆⟨ C ⟩ G ⟪ ε ⟦ d ⟧ ⟫ ≡⟨ C .⋆Assoc _ _ _ ⟩ g ⋆⟨ C ⟩ (η ⟦ G ⟅ d ⟆ ⟧ ⋆⟨ C ⟩ G ⟪ ε ⟦ d ⟧ ⟫) ≡⟨ lPrecatWhisker {C = C} _ _ _ δ₂ ⟩ g ⋆⟨ C ⟩ C .id _ ≡⟨ C .⋆IdR _ ⟩ g ∎ where natu : η ⟦ c ⟧ ⋆⟨ C ⟩ G ⟪ F ⟪ g ⟫ ⟫ ≡ g ⋆⟨ C ⟩ η ⟦ G ⟅ d ⟆ ⟧ natu = sym (η .N-hom _) adj→adj' .adjIso {c = c} {d} .leftInv f = F ⟪ η ⟦ c ⟧ ⋆⟨ C ⟩ G ⟪ f ⟫ ⟫ ⋆⟨ D ⟩ ε ⟦ d ⟧ ≡⟨ cong (λ v → v ⋆⟨ D ⟩ ε ⟦ d ⟧) (F .F-seq _ _) ⟩ F ⟪ η ⟦ c ⟧ ⟫ ⋆⟨ D ⟩ F ⟪ G ⟪ f ⟫ ⟫ ⋆⟨ D ⟩ ε ⟦ d ⟧ ≡⟨ D .⋆Assoc _ _ _ ⟩ F ⟪ η ⟦ c ⟧ ⟫ ⋆⟨ D ⟩ (F ⟪ G ⟪ f ⟫ ⟫ ⋆⟨ D ⟩ ε ⟦ d ⟧) -- apply naturality ≡⟨ lPrecatWhisker {C = D} _ _ _ natu ⟩ F ⟪ η ⟦ c ⟧ ⟫ ⋆⟨ D ⟩ (ε ⟦ F ⟅ c ⟆ ⟧ ⋆⟨ D ⟩ f) ≡⟨ sym (D .⋆Assoc _ _ _) ⟩ F ⟪ η ⟦ c ⟧ ⟫ ⋆⟨ D ⟩ ε ⟦ F ⟅ c ⟆ ⟧ ⋆⟨ D ⟩ f -- apply triangle identity ≡⟨ rPrecatWhisker {C = D} _ _ _ δ₁ ⟩ (D .id _) ⋆⟨ D ⟩ f ≡⟨ D .⋆IdL _ ⟩ f ∎ where natu : F ⟪ G ⟪ f ⟫ ⟫ ⋆⟨ D ⟩ ε ⟦ d ⟧ ≡ ε ⟦ F ⟅ c ⟆ ⟧ ⋆⟨ D ⟩ f natu = ε .N-hom _ -- follows directly from functoriality adj→adj' .adjNatInD {c = c} f k = cong (λ v → η ⟦ c ⟧ ⋆⟨ C ⟩ v) (G .F-seq _ _) ∙ (sym (C .⋆Assoc _ _ _)) adj→adj' .adjNatInC {d = d} g h = cong (λ v → v ⋆⟨ D ⟩ ε ⟦ d ⟧) (F .F-seq _ _) ∙ D .⋆Assoc _ _ _
{ "alphanum_fraction": 0.3964081208, "avg_line_length": 36.01875, "ext": "agda", "hexsha": "fef75eeb35ddb4292c74aa68c1d6df51a6ed9a3f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/Categories/Adjoint.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/Categories/Adjoint.agda", "max_line_length": 149, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/Categories/Adjoint.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5516, "size": 11526 }
module my-integer where open import bool open import bool-thms2 open import eq open import nat open import nat-thms open import product --open import product-thms open import sum -- open import unit data ⊤ : Set where triv : ⊤ ℤ-pos-t : ℕ → Set ℤ-pos-t 0 = ⊤ ℤ-pos-t (suc _) = 𝔹 data ℤ : Set where mkℤ : (n : ℕ) → ℤ-pos-t n → ℤ 0ℤ : ℤ 0ℤ = mkℤ 0 triv 1ℤ : ℤ 1ℤ = mkℤ 1 tt -1ℤ : ℤ -1ℤ = mkℤ 1 ff abs-val : ℤ → ℕ abs-val (mkℤ n _) = n is-evenℤ : ℤ → 𝔹 is-evenℤ (mkℤ n _) = is-even n is-oddℤ : ℤ → 𝔹 is-oddℤ (mkℤ n _) = is-odd n {- subtract the second natural number from the first, returning an integer. This is mostly a helper for _+ℤ_ -} diffℤ : ℕ → ℕ → ℤ diffℤ n m with ℕ-trichotomy n m diffℤ n m | inj₁ p with <∸suc{m}{n} p -- n < m diffℤ n m | inj₁ p | x , _ = mkℤ (suc x) ff diffℤ n m | inj₂ (inj₁ p) = mkℤ 0 triv -- n = m diffℤ n m | inj₂ (inj₂ p) with <∸suc{n}{m} p diffℤ n m | inj₂ (inj₂ p) | x , _ = mkℤ (suc x) tt -- m < n _+ℤ_ : ℤ → ℤ → ℤ (mkℤ 0 _) +ℤ x = x x +ℤ (mkℤ 0 _) = x (mkℤ (suc n) p1) +ℤ (mkℤ (suc m) p2) with p1 xor p2 (mkℤ (suc n) p1) +ℤ (mkℤ (suc m) p2) | ff = mkℤ (suc n + suc m) p1 (mkℤ (suc n) p1) +ℤ (mkℤ (suc m) p2) | tt = if p1 imp p2 then diffℤ m n else diffℤ n m
{ "alphanum_fraction": 0.5759036145, "avg_line_length": 21.8421052632, "ext": "agda", "hexsha": "e4ac923c9ed576415051df5c9fe45b4d943be856", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2ad96390a9be5c238e73709a21533c7354cedd0c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "logicshan/IAL", "max_forks_repo_path": "my-integer.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2ad96390a9be5c238e73709a21533c7354cedd0c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "logicshan/IAL", "max_issues_repo_path": "my-integer.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "2ad96390a9be5c238e73709a21533c7354cedd0c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "logicshan/IAL", "max_stars_repo_path": "my-integer.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 618, "size": 1245 }
{- This files contains: - Lots of useful properties about (this) decidable predicates on finite sets. (P.S. We use the alternative definition of decidability for computational effectivity.) -} {-# OPTIONS --safe #-} module Cubical.Data.FinSet.DecidablePredicate where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv renaming (_∙ₑ_ to _⋆_) open import Cubical.Foundations.Equiv.Properties open import Cubical.HITs.PropositionalTruncation as Prop open import Cubical.Data.Bool open import Cubical.Data.Empty as Empty open import Cubical.Data.Sigma open import Cubical.Data.Fin open import Cubical.Data.SumFin renaming (Fin to SumFin) open import Cubical.Data.FinSet.Base open import Cubical.Data.FinSet.Properties open import Cubical.Relation.Nullary open import Cubical.Relation.Nullary.DecidablePropositions hiding (DecProp) renaming (DecProp' to DecProp) private variable ℓ ℓ' ℓ'' ℓ''' : Level module _ (X : Type ℓ)(p : isFinOrd X) where isDecProp¬' : isDecProp (¬ X) isDecProp¬' = _ , invEquiv (preCompEquiv (p .snd)) ⋆ SumFin¬ _ isDecProp∥∥' : isDecProp ∥ X ∥ isDecProp∥∥' = _ , propTrunc≃ (p .snd) ⋆ SumFin∥∥DecProp _ module _ (X : Type ℓ )(p : isFinOrd X) (P : X → Type ℓ') (dec : (x : X) → isDecProp (P x)) where private e = p .snd isFinOrdSub : isFinOrd (Σ X P) isFinOrdSub = _ , Σ-cong-equiv {B' = λ x → P (invEq e x)} e (transpFamily p) ⋆ Σ-cong-equiv-snd (λ x → dec (invEq e x) .snd) ⋆ SumFinSub≃ _ (fst ∘ dec ∘ invEq e) isDecProp∃' : isDecProp ∥ Σ X P ∥ isDecProp∃' = _ , Prop.propTrunc≃ ( Σ-cong-equiv {B' = λ x → P (invEq e x)} e (transpFamily p) ⋆ Σ-cong-equiv-snd (λ x → dec (invEq e x) .snd)) ⋆ SumFin∃≃ _ (fst ∘ dec ∘ invEq e) isDecProp∀' : isDecProp ((x : X) → P x) isDecProp∀' = _ , equivΠ {B' = λ x → P (invEq e x)} e (transpFamily p) ⋆ equivΠCod (λ x → dec (invEq e x) .snd) ⋆ SumFin∀≃ _ (fst ∘ dec ∘ invEq e) module _ (X : Type ℓ )(p : isFinOrd X) (a b : X) where private e = p .snd isDecProp≡' : isDecProp (a ≡ b) isDecProp≡' .fst = SumFin≡ _ (e .fst a) (e .fst b) isDecProp≡' .snd = congEquiv e ⋆ SumFin≡≃ _ _ _ module _ (X : FinSet ℓ) (P : X .fst → DecProp ℓ') where isFinSetSub : isFinSet (Σ (X .fst) (λ x → P x .fst)) isFinSetSub = Prop.rec isPropIsFinSet (λ p → isFinOrd→isFinSet (isFinOrdSub (X .fst) (_ , p) (λ x → P x .fst) (λ x → P x .snd))) (X .snd .snd) isDecProp∃ : isDecProp ∥ Σ (X .fst) (λ x → P x .fst) ∥ isDecProp∃ = Prop.rec isPropIsDecProp (λ p → isDecProp∃' (X .fst) (_ , p) (λ x → P x .fst) (λ x → P x .snd)) (X .snd .snd) isDecProp∀ : isDecProp ((x : X .fst) → P x .fst) isDecProp∀ = Prop.rec isPropIsDecProp (λ p → isDecProp∀' (X .fst) (_ , p) (λ x → P x .fst) (λ x → P x .snd)) (X .snd .snd) module _ (X : FinSet ℓ) (Y : X .fst → FinSet ℓ') (Z : (x : X .fst) → Y x .fst → DecProp ℓ'') where isDecProp∀2 : isDecProp ((x : X .fst) → (y : Y x .fst) → Z x y .fst) isDecProp∀2 = isDecProp∀ X (λ x → _ , isDecProp∀ (Y x) (Z x)) module _ (X : FinSet ℓ) (Y : X .fst → FinSet ℓ') (Z : (x : X .fst) → Y x .fst → FinSet ℓ'') (W : (x : X .fst) → (y : Y x .fst) → Z x y .fst → DecProp ℓ''') where isDecProp∀3 : isDecProp ((x : X .fst) → (y : Y x .fst) → (z : Z x y .fst) → W x y z .fst) isDecProp∀3 = isDecProp∀ X (λ x → _ , isDecProp∀2 (Y x) (Z x) (W x)) module _ (X : FinSet ℓ) where isDecProp≡ : (a b : X .fst) → isDecProp (a ≡ b) isDecProp≡ a b = Prop.rec isPropIsDecProp (λ p → isDecProp≡' (X .fst) (_ , p) a b) (X .snd .snd) module _ (P : DecProp ℓ ) (Q : DecProp ℓ') where isDecProp× : isDecProp (P .fst × Q .fst) isDecProp× .fst = P .snd .fst and Q .snd .fst isDecProp× .snd = Σ-cong-equiv (P .snd .snd) (λ _ → Q .snd .snd) ⋆ Bool→Type×≃ _ _ module _ (X : FinSet ℓ) where isDecProp¬ : isDecProp (¬ (X .fst)) isDecProp¬ = Prop.rec isPropIsDecProp (λ p → isDecProp¬' (X .fst) (_ , p)) (X .snd .snd) isDecProp∥∥ : isDecProp ∥ X .fst ∥ isDecProp∥∥ = Prop.rec isPropIsDecProp (λ p → isDecProp∥∥' (X .fst) (_ , p)) (X .snd .snd)
{ "alphanum_fraction": 0.6040332147, "avg_line_length": 29.4755244755, "ext": "agda", "hexsha": "65025ff805f6a03cb774bffb15ff827c1f55573e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Data/FinSet/DecidablePredicate.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Data/FinSet/DecidablePredicate.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Data/FinSet/DecidablePredicate.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1740, "size": 4215 }
open import Relation.Ternary.Separation module Relation.Ternary.Separation.Construct.ListOf {a} (A : Set a) {{ r : RawSep A }} {{ _ : IsSep r }} where open import Level open import Data.Product open import Data.List open import Data.List.Properties using (++-isMonoid) open import Data.List.Relation.Binary.Equality.Propositional open import Data.List.Relation.Binary.Permutation.Inductive open import Relation.Binary.PropositionalEquality as P hiding ([_]) open import Relation.Unary hiding (_∈_; _⊢_) open import Relation.Ternary.Separation.Morphisms private Carrier = List A variable xˡ xʳ x y z : A xsˡ xsʳ xs ys zs : Carrier data Split : (xs ys zs : Carrier) → Set a where divide : xˡ ⊎ xʳ ≣ x → Split xs ys zs → Split (xˡ ∷ xs) (xʳ ∷ ys) (x ∷ zs) to-left : Split xs ys zs → Split (z ∷ xs) ys (z ∷ zs) to-right : Split xs ys zs → Split xs (z ∷ ys) (z ∷ zs) [] : Split [] [] [] -- Split yields a separation algebra instance splits : RawSep Carrier RawSep._⊎_≣_ splits = Split split-is-sep : IsSep splits -- commutes IsSep.⊎-comm split-is-sep (divide τ σ) = divide (⊎-comm τ) (⊎-comm σ) IsSep.⊎-comm split-is-sep (to-left σ) = to-right (⊎-comm σ) IsSep.⊎-comm split-is-sep (to-right σ) = to-left (⊎-comm σ) IsSep.⊎-comm split-is-sep [] = [] -- reassociates IsSep.⊎-assoc split-is-sep σ₁ (to-right σ₂) with ⊎-assoc σ₁ σ₂ ... | _ , σ₄ , σ₅ = -, to-right σ₄ , to-right σ₅ IsSep.⊎-assoc split-is-sep (to-left σ₁) (divide τ σ₂) with ⊎-assoc σ₁ σ₂ ... | _ , σ₄ , σ₅ = -, divide τ σ₄ , to-right σ₅ IsSep.⊎-assoc split-is-sep (to-right σ₁) (divide τ σ₂) with ⊎-assoc σ₁ σ₂ ... | _ , σ₄ , σ₅ = -, to-right σ₄ , divide τ σ₅ IsSep.⊎-assoc split-is-sep (divide τ σ₁) (to-left σ) with ⊎-assoc σ₁ σ ... | _ , σ₄ , σ₅ = -, divide τ σ₄ , to-left σ₅ IsSep.⊎-assoc split-is-sep (to-left σ₁) (to-left σ) with ⊎-assoc σ₁ σ ... | _ , σ₄ , σ₅ = -, to-left σ₄ , σ₅ IsSep.⊎-assoc split-is-sep (to-right σ₁) (to-left σ) with ⊎-assoc σ₁ σ ... | _ , σ₄ , σ₅ = -, to-right σ₄ , to-left σ₅ IsSep.⊎-assoc split-is-sep [] [] = -, [] , [] IsSep.⊎-assoc split-is-sep (divide lr σ₁) (divide rl σ₂) with ⊎-assoc σ₁ σ₂ | ⊎-assoc lr rl ... | _ , σ₃ , σ₄ | _ , τ₃ , τ₄ = -, divide τ₃ σ₃ , divide τ₄ σ₄ split-is-unital : IsUnitalSep splits [] IsUnitalSep.⊎-idˡ split-is-unital {[]} = [] IsUnitalSep.⊎-idˡ split-is-unital {x ∷ Φ} = to-right ⊎-idˡ IsUnitalSep.⊎-id⁻ˡ split-is-unital (to-right σ) rewrite ⊎-id⁻ˡ σ = refl IsUnitalSep.⊎-id⁻ˡ split-is-unital [] = refl split-has-concat : IsConcattative splits IsConcattative._∙_ split-has-concat = _++_ IsConcattative.⊎-∙ₗ split-has-concat {Φₑ = []} σ = σ IsConcattative.⊎-∙ₗ split-has-concat {Φₑ = x ∷ Φₑ} σ = to-left (⊎-∙ₗ σ) split-separation : Separation _ split-separation = record { Carrier = List A } split-monoidal : MonoidalSep _ split-monoidal = record { monoid = ++-isMonoid } list-positive : IsPositive splits list-positive = record { ⊎-εˡ = λ where [] → refl } unspliceᵣ : ∀ {xs ys zs : Carrier} {y} → xs ⊎ (y ∷ ys) ≣ zs → ∃ λ zs₁ → xs ⊎ [ y ] ≣ zs₁ × zs₁ ⊎ ys ≣ zs unspliceᵣ σ with ⊎-unassoc σ (⊎-∙ {Φₗ = [ _ ]}) ... | _ , σ₁ , σ₂ = -, σ₁ , σ₂
{ "alphanum_fraction": 0.6032806804, "avg_line_length": 37.4090909091, "ext": "agda", "hexsha": "eb810c4184e7e565e034dea948e61d6b40413bbe", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z", "max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z", "max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "laMudri/linear.agda", "max_forks_repo_path": "src/Relation/Ternary/Separation/Construct/ListOf.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "laMudri/linear.agda", "max_issues_repo_path": "src/Relation/Ternary/Separation/Construct/ListOf.agda", "max_line_length": 104, "max_stars_count": 34, "max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "laMudri/linear.agda", "max_stars_repo_path": "src/Relation/Ternary/Separation/Construct/ListOf.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z", "num_tokens": 1342, "size": 3292 }
module drawingProgram where open import Unit open import Data.Bool.Base open import Data.Char.Base renaming (primCharEquality to charEquality) open import Data.Nat.Base hiding (_≟_;_⊓_; _+_; _*_) open import Data.List.Base hiding (_++_) open import Data.Integer.Base hiding (suc) open import Data.String.Base open import Data.Maybe.Base open import NativeIO open import Function open import Size renaming (Size to AgdaSize) open import SizedIO.Base open import SizedIO.IOGraphicsLib hiding (GraphicsCommands; GraphicsResponses; GraphicsInterface; IOGraphics; getWindowEvent; openWindow; drawInWindow; closeWindow; translateIOGraphicsLocal; translateIOGraphics) open import NativeInt -- open import NativeIOSafe data GraphicsCommands : Set where closeWindow : Window → GraphicsCommands maybeGetWindowEvent : Window → GraphicsCommands getWindowEvent : Window → GraphicsCommands openWindowNotEx : String → Size → GraphicsCommands openWindow : String → (Maybe Point) → (Maybe Size) → RedrawMode → (Maybe Word32) → GraphicsCommands timeGetTime : GraphicsCommands drawInWindow : Window → Graphic → GraphicsCommands print : String → GraphicsCommands GraphicsResponses : GraphicsCommands → Set GraphicsResponses (maybeGetWindowEvent w) = Maybe Event GraphicsResponses (getWindowEvent w) = Event GraphicsResponses (closeWindow w) = Unit GraphicsResponses (openWindowNotEx s s') = Window GraphicsResponses (openWindow s p s' r w) = Window GraphicsResponses timeGetTime = Word32 GraphicsResponses _ = Unit GraphicsInterface : IOInterface Command GraphicsInterface = GraphicsCommands Response GraphicsInterface = GraphicsResponses IOGraphics : AgdaSize → Set → Set IOGraphics i = IO GraphicsInterface i translateIOGraphicsLocal : (c : GraphicsCommands) → NativeIO (GraphicsResponses c) translateIOGraphicsLocal (maybeGetWindowEvent w) = nativeMaybeGetWindowEvent w translateIOGraphicsLocal (getWindowEvent w) = nativeGetWindowEvent w translateIOGraphicsLocal (closeWindow w) = nativeCloseWindow w translateIOGraphicsLocal (openWindowNotEx str size) = nativeOpenWindow str size translateIOGraphicsLocal (openWindow str point size mode word) = nativeOpenWindowEx str point size mode word translateIOGraphicsLocal timeGetTime = nativeTimeGetTime translateIOGraphicsLocal (drawInWindow w g) = nativeDrawInWindow w g translateIOGraphicsLocal (print s) = nativePutStrLn s translateIOGraphics : {A : Set} → IOGraphics ∞ A → NativeIO A translateIOGraphics = translateIO translateIOGraphicsLocal integerLess : ℤ → ℤ → Bool integerLess x y with ∣(y - (x ⊓ y))∣ ... | zero = true ... | z = false line : Point → Point → Graphic line p newpoint = withColor red (polygon (nativePoint x y ∷ nativePoint a b ∷ nativePoint (a + xAddition) (b + yAddition) ∷ nativePoint (x + xAddition) (y + yAddition) ∷ [] ) ) where x = nativeProj1Point p y = nativeProj2Point p a = nativeProj1Point newpoint b = nativeProj2Point newpoint diffx = + ∣ (a - x) ∣ diffy = + ∣ (b - y) ∣ diffx*3 = diffx * (+ 3) diffy*3 = diffy * (+ 3) condition = (integerLess diffx diffy*3) ∧ (integerLess diffy diffx*3) xAddition = if condition then + 2 else + 1 yAddition = if condition then + 2 else + 1 State = Maybe Point loop : ∀{i} → Window → State → IOGraphics i Unit force (loop w s) = do' (getWindowEvent w) λ{ (Key c t) → if charEquality c 'x' then do (closeWindow w) return else loop w s ; (MouseMove p₂) → case s of λ{ nothing → loop w (just p₂) ; (just p₁) → do (drawInWindow w (line p₁ p₂)) λ _ → loop w (just p₂) } ; _ → loop w s } program : ∀{i} → IOGraphics i Unit program = do (openWindow "Drawing Program" nothing (just (size (+ 1000) (+ 1000))) nativeDrawGraphic nothing) λ window → loop window nothing main : NativeIO Unit main = nativeRunGraphics (translateIOGraphics program)
{ "alphanum_fraction": 0.6552506237, "avg_line_length": 34.9920634921, "ext": "agda", "hexsha": "9d00986b9ae7e10db18ec0e7dc2bfb88246a378c", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/drawingProgram.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/drawingProgram.agda", "max_line_length": 211, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/drawingProgram.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 1115, "size": 4409 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category -- Lifts a 1-Category into a bicategory module Categories.Bicategory.Construction.1-Category {o ℓ e} b (C : Category o ℓ e) where open import Level using (Lift; lift) open import Data.Unit using (⊤; tt) open import Data.Product using (uncurry) open import Relation.Binary using (Setoid) open import Categories.Bicategory open import Categories.Category.Construction.0-Groupoid using (0-Groupoid) open import Categories.Category.Instance.Cats using (Cats) open import Categories.Category.Monoidal using (Monoidal) open import Categories.Category.Monoidal.Instance.Cats using (module Product) open import Categories.Category.Groupoid using (Groupoid; IsGroupoid) open import Categories.Functor using (Functor; _∘F_) renaming (id to idF) open import Categories.Functor.Construction.Constant using (const) open import Categories.Functor.Bifunctor using (Bifunctor) private module C = Category C open C hiding (id) 1-Category : Bicategory ℓ e b o 1-Category = record { enriched = record { Obj = Obj ; hom = hom ; id = id ; ⊚ = ⊚ ; ⊚-assoc = ⊚-assoc ; unitˡ = unitˡ ; unitʳ = unitʳ } ; triangle = lift tt ; pentagon = lift tt } where open Monoidal (Product.Cats-Monoidal {ℓ} {e} {b}) open Category.Commutation (Cats ℓ e b) -- Since we are doing Setoid-enriched category theory, we don't -- lift homsets to discrete hom-categories, but hom-setoids to -- thin hom-groupoids. hom : C.Obj → C.Obj → Category ℓ e b hom A B = Groupoid.category (0-Groupoid b (hom-setoid {A} {B})) id : ∀ {A} → Functor unit (hom A A) id = const C.id ⊚ : ∀ {A B C} → Bifunctor (hom B C) (hom A B) (hom A C) ⊚ {A} {B} {C} = record { F₀ = uncurry _∘_ ; F₁ = uncurry ∘-resp-≈ ; identity = lift tt ; homomorphism = lift tt ; F-resp-≈ = λ _ → lift tt } ⊚-assoc : ∀ {A B C D} → [ (hom C D ⊗₀ hom B C) ⊗₀ hom A B ⇒ hom A D ]⟨ ⊚ ⊗₁ idF ⇒⟨ hom B D ⊗₀ hom A B ⟩ ⊚ ≈ associator.from ⇒⟨ hom C D ⊗₀ (hom B C ⊗₀ hom A B) ⟩ idF ⊗₁ ⊚ ⇒⟨ hom C D ⊗₀ hom A C ⟩ ⊚ ⟩ ⊚-assoc = record { F⇒G = record { η = λ _ → assoc ; commute = λ _ → lift tt } ; F⇐G = record { η = λ _ → sym-assoc ; commute = λ _ → lift tt } ; iso = λ _ → record { isoˡ = lift tt ; isoʳ = lift tt } } unitˡ : ∀ {A B} → [ unit ⊗₀ hom A B ⇒ hom A B ]⟨ id ⊗₁ idF ⇒⟨ hom B B ⊗₀ hom A B ⟩ ⊚ ≈ unitorˡ.from ⟩ unitˡ = record { F⇒G = record { η = λ _ → identityˡ ; commute = λ _ → lift tt } ; F⇐G = record { η = λ _ → Equiv.sym identityˡ ; commute = λ _ → lift tt } ; iso = λ _ → record { isoˡ = lift tt ; isoʳ = lift tt } } unitʳ : ∀ {A B} → [ hom A B ⊗₀ unit ⇒ hom A B ]⟨ idF ⊗₁ id ⇒⟨ hom A B ⊗₀ hom A A ⟩ ⊚ ≈ unitorʳ.from ⟩ unitʳ = record { F⇒G = record { η = λ _ → identityʳ ; commute = λ _ → lift tt } ; F⇐G = record { η = λ _ → Equiv.sym identityʳ ; commute = λ _ → lift tt } ; iso = λ _ → record { isoˡ = lift tt ; isoʳ = lift tt } } open Bicategory 1-Category -- The hom-categories are hom-groupoids hom-isGroupoid : ∀ {A B} → IsGroupoid (hom A B) hom-isGroupoid = Groupoid.isGroupoid (0-Groupoid b hom-setoid)
{ "alphanum_fraction": 0.5720116618, "avg_line_length": 31.4678899083, "ext": "agda", "hexsha": "d22f24d67337d0a8ce23a987fedb6e9f4299eaa2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Bicategory/Construction/1-Category.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Bicategory/Construction/1-Category.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Bicategory/Construction/1-Category.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1194, "size": 3430 }
------------------------------------------------------------------------ -- Lexicographic products of binary relations ------------------------------------------------------------------------ -- The definition of lexicographic product used here is suitable if -- the left-hand relation is a strict partial order. module Relation.Binary.Product.StrictLex where open import Data.Function open import Data.Product open import Data.Sum open import Data.Empty open import Relation.Nullary.Product open import Relation.Nullary.Sum open import Relation.Binary open import Relation.Binary.Consequences open import Relation.Binary.Product.Pointwise as Pointwise using (_×-Rel_) private module Dummy {a₁ a₂ : Set} where ×-Lex : (≈₁ <₁ : Rel a₁) → (≤₂ : Rel a₂) → Rel (a₁ × a₂) ×-Lex ≈₁ <₁ ≤₂ = (<₁ on₁ proj₁) -⊎- (≈₁ on₁ proj₁) -×- (≤₂ on₁ proj₂) -- Some properties which are preserved by ×-Lex (under certain -- assumptions). ×-reflexive : ∀ ≈₁ ∼₁ {≈₂} ≤₂ → ≈₂ ⇒ ≤₂ → (≈₁ ×-Rel ≈₂) ⇒ (×-Lex ≈₁ ∼₁ ≤₂) ×-reflexive _ _ _ refl₂ = λ x≈y → inj₂ (proj₁ x≈y , refl₂ (proj₂ x≈y)) _×-irreflexive_ : ∀ {≈₁ <₁} → Irreflexive ≈₁ <₁ → ∀ {≈₂ <₂} → Irreflexive ≈₂ <₂ → Irreflexive (≈₁ ×-Rel ≈₂) (×-Lex ≈₁ <₁ <₂) (ir₁ ×-irreflexive ir₂) x≈y (inj₁ x₁<y₁) = ir₁ (proj₁ x≈y) x₁<y₁ (ir₁ ×-irreflexive ir₂) x≈y (inj₂ x≈<y) = ir₂ (proj₂ x≈y) (proj₂ x≈<y) ×-transitive : ∀ {≈₁ <₁} → IsEquivalence ≈₁ → <₁ Respects₂ ≈₁ → Transitive <₁ → ∀ {≤₂} → Transitive ≤₂ → Transitive (×-Lex ≈₁ <₁ ≤₂) ×-transitive {≈₁ = ≈₁} {<₁ = <₁} eq₁ resp₁ trans₁ {≤₂ = ≤₂} trans₂ {x} {y} {z} = trans {x} {y} {z} where module Eq₁ = IsEquivalence eq₁ trans : Transitive (×-Lex ≈₁ <₁ ≤₂) trans (inj₁ x₁<y₁) (inj₁ y₁<z₁) = inj₁ (trans₁ x₁<y₁ y₁<z₁) trans (inj₁ x₁<y₁) (inj₂ y≈≤z) = inj₁ (proj₁ resp₁ (proj₁ y≈≤z) x₁<y₁) trans (inj₂ x≈≤y) (inj₁ y₁<z₁) = inj₁ (proj₂ resp₁ (Eq₁.sym $ proj₁ x≈≤y) y₁<z₁) trans (inj₂ x≈≤y) (inj₂ y≈≤z) = inj₂ ( Eq₁.trans (proj₁ x≈≤y) (proj₁ y≈≤z) , trans₂ (proj₂ x≈≤y) (proj₂ y≈≤z) ) ×-antisymmetric : ∀ {≈₁ <₁} → Symmetric ≈₁ → Irreflexive ≈₁ <₁ → Asymmetric <₁ → ∀ {≈₂ ≤₂} → Antisymmetric ≈₂ ≤₂ → Antisymmetric (≈₁ ×-Rel ≈₂) (×-Lex ≈₁ <₁ ≤₂) ×-antisymmetric {≈₁ = ≈₁} {<₁ = <₁} sym₁ irrefl₁ asym₁ {≈₂ = ≈₂} {≤₂ = ≤₂} antisym₂ {x} {y} = antisym {x} {y} where antisym : Antisymmetric (≈₁ ×-Rel ≈₂) (×-Lex ≈₁ <₁ ≤₂) antisym (inj₁ x₁<y₁) (inj₁ y₁<x₁) = ⊥-elim {_ × _} $ asym₁ x₁<y₁ y₁<x₁ antisym (inj₁ x₁<y₁) (inj₂ y≈≤x) = ⊥-elim {_ × _} $ irrefl₁ (sym₁ $ proj₁ y≈≤x) x₁<y₁ antisym (inj₂ x≈≤y) (inj₁ y₁<x₁) = ⊥-elim {_ × _} $ irrefl₁ (sym₁ $ proj₁ x≈≤y) y₁<x₁ antisym (inj₂ x≈≤y) (inj₂ y≈≤x) = proj₁ x≈≤y , antisym₂ (proj₂ x≈≤y) (proj₂ y≈≤x) ×-asymmetric : ∀ {≈₁ <₁} → Symmetric ≈₁ → <₁ Respects₂ ≈₁ → Asymmetric <₁ → ∀ {<₂} → Asymmetric <₂ → Asymmetric (×-Lex ≈₁ <₁ <₂) ×-asymmetric {≈₁ = ≈₁} {<₁ = <₁} sym₁ resp₁ asym₁ {<₂ = <₂} asym₂ {x} {y} = asym {x} {y} where irrefl₁ : Irreflexive ≈₁ <₁ irrefl₁ = asym⟶irr resp₁ sym₁ asym₁ asym : Asymmetric (×-Lex ≈₁ <₁ <₂) asym (inj₁ x₁<y₁) (inj₁ y₁<x₁) = asym₁ x₁<y₁ y₁<x₁ asym (inj₁ x₁<y₁) (inj₂ y≈<x) = irrefl₁ (sym₁ $ proj₁ y≈<x) x₁<y₁ asym (inj₂ x≈<y) (inj₁ y₁<x₁) = irrefl₁ (sym₁ $ proj₁ x≈<y) y₁<x₁ asym (inj₂ x≈<y) (inj₂ y≈<x) = asym₂ (proj₂ x≈<y) (proj₂ y≈<x) ×-≈-respects₂ : ∀ {≈₁ <₁} → IsEquivalence ≈₁ → <₁ Respects₂ ≈₁ → ∀ {≈₂ <₂} → <₂ Respects₂ ≈₂ → (×-Lex ≈₁ <₁ <₂) Respects₂ (≈₁ ×-Rel ≈₂) ×-≈-respects₂ {≈₁ = ≈₁} {<₁ = <₁} eq₁ resp₁ {≈₂ = ≈₂} {<₂ = <₂} resp₂ = (λ {x y z} → resp¹ {x} {y} {z}) , (λ {x y z} → resp² {x} {y} {z}) where < = ×-Lex ≈₁ <₁ <₂ open IsEquivalence eq₁ renaming (sym to sym₁; trans to trans₁) resp¹ : ∀ {x} → (< x) Respects (≈₁ ×-Rel ≈₂) resp¹ y≈y' (inj₁ x₁<y₁) = inj₁ (proj₁ resp₁ (proj₁ y≈y') x₁<y₁) resp¹ y≈y' (inj₂ x≈<y) = inj₂ ( trans₁ (proj₁ x≈<y) (proj₁ y≈y') , proj₁ resp₂ (proj₂ y≈y') (proj₂ x≈<y) ) resp² : ∀ {y} → (flip₁ < y) Respects (≈₁ ×-Rel ≈₂) resp² x≈x' (inj₁ x₁<y₁) = inj₁ (proj₂ resp₁ (proj₁ x≈x') x₁<y₁) resp² x≈x' (inj₂ x≈<y) = inj₂ ( trans₁ (sym₁ $ proj₁ x≈x') (proj₁ x≈<y) , proj₂ resp₂ (proj₂ x≈x') (proj₂ x≈<y) ) ×-decidable : ∀ {≈₁ <₁} → Decidable ≈₁ → Decidable <₁ → ∀ {≤₂} → Decidable ≤₂ → Decidable (×-Lex ≈₁ <₁ ≤₂) ×-decidable dec-≈₁ dec-<₁ dec-≤₂ = λ x y → dec-<₁ (proj₁ x) (proj₁ y) ⊎-dec (dec-≈₁ (proj₁ x) (proj₁ y) ×-dec dec-≤₂ (proj₂ x) (proj₂ y)) ×-total : ∀ {≈₁ <₁} → Total <₁ → ∀ {≤₂} → Total (×-Lex ≈₁ <₁ ≤₂) ×-total {≈₁ = ≈₁} {<₁ = <₁} total₁ {≤₂ = ≤₂} = total where total : Total (×-Lex ≈₁ <₁ ≤₂) total x y with total₁ (proj₁ x) (proj₁ y) ... | inj₁ x₁<y₁ = inj₁ (inj₁ x₁<y₁) ... | inj₂ x₁>y₁ = inj₂ (inj₁ x₁>y₁) ×-compare : ∀ {≈₁ <₁} → Symmetric ≈₁ → Trichotomous ≈₁ <₁ → ∀ {≈₂ <₂} → Trichotomous ≈₂ <₂ → Trichotomous (≈₁ ×-Rel ≈₂) (×-Lex ≈₁ <₁ <₂) ×-compare {≈₁} {<₁} sym₁ compare₁ {≈₂} {<₂} compare₂ = cmp where cmp : Trichotomous (≈₁ ×-Rel ≈₂) (×-Lex ≈₁ <₁ <₂) cmp (x₁ , x₂) (y₁ , y₂) with compare₁ x₁ y₁ ... | tri< x₁<y₁ x₁≉y₁ x₁≯y₁ = tri< (inj₁ x₁<y₁) (x₁≉y₁ ∘ proj₁) [ x₁≯y₁ , x₁≉y₁ ∘ sym₁ ∘ proj₁ ] ... | tri> x₁≮y₁ x₁≉y₁ x₁>y₁ = tri> [ x₁≮y₁ , x₁≉y₁ ∘ proj₁ ] (x₁≉y₁ ∘ proj₁) (inj₁ x₁>y₁) ... | tri≈ x₁≮y₁ x₁≈y₁ x₁≯y₁ with compare₂ x₂ y₂ ... | tri< x₂<y₂ x₂≉y₂ x₂≯y₂ = tri< (inj₂ (x₁≈y₁ , x₂<y₂)) (x₂≉y₂ ∘ proj₂) [ x₁≯y₁ , x₂≯y₂ ∘ proj₂ ] ... | tri> x₂≮y₂ x₂≉y₂ x₂>y₂ = tri> [ x₁≮y₁ , x₂≮y₂ ∘ proj₂ ] (x₂≉y₂ ∘ proj₂) (inj₂ (sym₁ x₁≈y₁ , x₂>y₂)) ... | tri≈ x₂≮y₂ x₂≈y₂ x₂≯y₂ = tri≈ [ x₁≮y₁ , x₂≮y₂ ∘ proj₂ ] (x₁≈y₁ , x₂≈y₂) [ x₁≯y₁ , x₂≯y₂ ∘ proj₂ ] -- Some collections of properties which are preserved by ×-Lex. _×-isPreorder_ : ∀ {≈₁ ∼₁} → IsPreorder ≈₁ ∼₁ → ∀ {≈₂ ∼₂} → IsPreorder ≈₂ ∼₂ → IsPreorder (≈₁ ×-Rel ≈₂) (×-Lex ≈₁ ∼₁ ∼₂) _×-isPreorder_ {≈₁ = ≈₁} {∼₁ = ∼₁} pre₁ {∼₂ = ∼₂} pre₂ = record { isEquivalence = Pointwise._×-isEquivalence_ (isEquivalence pre₁) (isEquivalence pre₂) ; reflexive = λ {x y} → ×-reflexive ≈₁ ∼₁ ∼₂ (reflexive pre₂) {x} {y} ; trans = λ {x y z} → ×-transitive (isEquivalence pre₁) (∼-resp-≈ pre₁) (trans pre₁) {≤₂ = ∼₂} (trans pre₂) {x} {y} {z} ; ∼-resp-≈ = ×-≈-respects₂ (isEquivalence pre₁) (∼-resp-≈ pre₁) (∼-resp-≈ pre₂) } where open IsPreorder _×-isStrictPartialOrder_ : ∀ {≈₁ <₁} → IsStrictPartialOrder ≈₁ <₁ → ∀ {≈₂ <₂} → IsStrictPartialOrder ≈₂ <₂ → IsStrictPartialOrder (≈₁ ×-Rel ≈₂) (×-Lex ≈₁ <₁ <₂) _×-isStrictPartialOrder_ {<₁ = <₁} spo₁ {<₂ = <₂} spo₂ = record { isEquivalence = Pointwise._×-isEquivalence_ (isEquivalence spo₁) (isEquivalence spo₂) ; irrefl = λ {x y} → _×-irreflexive_ {<₁ = <₁} (irrefl spo₁) {<₂ = <₂} (irrefl spo₂) {x} {y} ; trans = λ {x y z} → ×-transitive {<₁ = <₁} (isEquivalence spo₁) (<-resp-≈ spo₁) (trans spo₁) {≤₂ = <₂} (trans spo₂) {x} {y} {z} ; <-resp-≈ = ×-≈-respects₂ (isEquivalence spo₁) (<-resp-≈ spo₁) (<-resp-≈ spo₂) } where open IsStrictPartialOrder _×-isStrictTotalOrder_ : ∀ {≈₁ <₁} → IsStrictTotalOrder ≈₁ <₁ → ∀ {≈₂ <₂} → IsStrictTotalOrder ≈₂ <₂ → IsStrictTotalOrder (≈₁ ×-Rel ≈₂) (×-Lex ≈₁ <₁ <₂) _×-isStrictTotalOrder_ {<₁ = <₁} spo₁ {<₂ = <₂} spo₂ = record { isEquivalence = Pointwise._×-isEquivalence_ (isEquivalence spo₁) (isEquivalence spo₂) ; trans = λ {x y z} → ×-transitive {<₁ = <₁} (isEquivalence spo₁) (<-resp-≈ spo₁) (trans spo₁) {≤₂ = <₂} (trans spo₂) {x} {y} {z} ; compare = ×-compare (Eq.sym spo₁) (compare spo₁) (compare spo₂) ; <-resp-≈ = ×-≈-respects₂ (isEquivalence spo₁) (<-resp-≈ spo₁) (<-resp-≈ spo₂) } where open IsStrictTotalOrder open Dummy public -- "Packages" (e.g. preorders) can also be combined. _×-preorder_ : Preorder → Preorder → Preorder p₁ ×-preorder p₂ = record { isPreorder = isPreorder p₁ ×-isPreorder isPreorder p₂ } where open Preorder _×-strictPartialOrder_ : StrictPartialOrder → StrictPartialOrder → StrictPartialOrder s₁ ×-strictPartialOrder s₂ = record { isStrictPartialOrder = isStrictPartialOrder s₁ ×-isStrictPartialOrder isStrictPartialOrder s₂ } where open StrictPartialOrder _×-strictTotalOrder_ : StrictTotalOrder → StrictTotalOrder → StrictTotalOrder s₁ ×-strictTotalOrder s₂ = record { isStrictTotalOrder = isStrictTotalOrder s₁ ×-isStrictTotalOrder isStrictTotalOrder s₂ } where open StrictTotalOrder
{ "alphanum_fraction": 0.4762900976, "avg_line_length": 40.313253012, "ext": "agda", "hexsha": "5d7ead0cb7fe950ead26eeddc759fbf4bc48282c", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Relation/Binary/Product/StrictLex.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Relation/Binary/Product/StrictLex.agda", "max_line_length": 73, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Relation/Binary/Product/StrictLex.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 4114, "size": 10038 }
module Issue556 (A : Set) (x : A) where y : A y = x
{ "alphanum_fraction": 0.5471698113, "avg_line_length": 10.6, "ext": "agda", "hexsha": "13da9490eb8fc72508f5847c9e946aee00d27773", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue556.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue556.agda", "max_line_length": 39, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue556.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 23, "size": 53 }
{-# OPTIONS --cubical-compatible #-} module Issue1025 where data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x postulate mySpace : Set postulate myPoint : mySpace data Foo : myPoint ≡ myPoint → Set where foo : Foo refl test : {e : myPoint ≡ myPoint} → (a : Foo e) → (i : a ≡ a) → i ≡ refl test foo refl = {!!}
{ "alphanum_fraction": 0.6018518519, "avg_line_length": 20.25, "ext": "agda", "hexsha": "c92ffb0cd3f3b4b146e8bbcb59b9199369e26b6f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Fail/Issue1025.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Fail/Issue1025.agda", "max_line_length": 69, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Fail/Issue1025.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 117, "size": 324 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Non empty trie, basic type and operations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} open import Relation.Binary using (StrictTotalOrder) module Data.Trie.NonEmpty {k e r} (S : StrictTotalOrder k e r) where open import Level open import Size open import Category.Monad open import Data.Product as Prod using (∃; uncurry; -,_) open import Data.List.Base as List using (List; []; _∷_; _++_) open import Data.List.NonEmpty as List⁺ using (List⁺; [_]; concatMap) open import Data.Maybe.Base as Maybe using (Maybe; nothing; just; maybe′) hiding (module Maybe) open import Data.These as These using (These; this; that; these) open import Function as F import Function.Identity.Categorical as Identity open import Relation.Unary using (_⇒_; IUniversal) open StrictTotalOrder S using (module Eq) renaming (Carrier to Key) open import Data.List.Relation.Binary.Equality.Setoid Eq.setoid open import Data.AVL.Value hiding (Value) open import Data.AVL.Value ≋-setoid using (Value) open import Data.AVL.NonEmpty S as Tree⁺ using (Tree⁺) open Value ------------------------------------------------------------------------ -- Definition -- A Trie⁺ is a tree branching over an alphabet of Keys. It stores values -- indexed over the Word (i.e. List Key) that was read to reach them. -- Each node in the Trie⁺ contains either a value, a non-empty Tree of -- sub-Trie⁺ reached by reading an extra letter, or both. Word : Set k Word = List Key eat : ∀ {v} → Value v → Word → Value v family (eat V ks) = family V ∘′ (ks ++_) respects (eat V ks) = respects V ∘′ ++⁺ ≋-refl data Trie⁺ {v} (V : Value v) : Size → Set (v ⊔ k ⊔ e ⊔ r) Tries⁺ : ∀ {v} (V : Value v) (i : Size) → Set (v ⊔ k ⊔ e ⊔ r) map : ∀ {v w} (V : Value v) (W : Value w) {i} → ∀[ family V ⇒ family W ] → Trie⁺ V i → Trie⁺ W i data Trie⁺ V where node : ∀ {i} → These (family V []) (Tries⁺ V i) → Trie⁺ V (↑ i) Tries⁺ V j = Tree⁺ $ MkValue (λ k → Trie⁺ (eat V (k ∷ [])) j) $ λ eq → map _ _ (respects V (eq ∷ ≋-refl)) map V W f (node t) = node $ These.map f (Tree⁺.map (map _ _ f)) t ------------------------------------------------------------------------ -- Query lookup : ∀ {v} {V : Value v} ks → Trie⁺ V ∞ → Maybe (These (family V ks) (Tries⁺ (eat V ks) ∞)) lookup [] (node nd) = just (These.map₂ (Tree⁺.map id) nd) lookup (k ∷ ks) (node nd) = let open Maybe in do ts ← These.fromThat nd t ← Tree⁺.lookup k ts lookup ks t module _ {v} {V : Value v} where lookupValue : ∀ (ks : Word) → Trie⁺ V ∞ → Maybe (family V ks) lookupValue ks t = lookup ks t Maybe.>>= These.fromThis lookupTries⁺ : ∀ ks → Trie⁺ V ∞ → Maybe (Tries⁺ (eat V ks) ∞) lookupTries⁺ ks t = lookup ks t Maybe.>>= These.fromThat lookupTrie⁺ : ∀ k → Trie⁺ V ∞ → Maybe (Trie⁺ (eat V (k ∷ [])) ∞) lookupTrie⁺ k t = lookupTries⁺ [] t Maybe.>>= Tree⁺.lookup k ------------------------------------------------------------------------ -- Construction singleton : ∀ {v} {V : Value v} ks → family V ks → Trie⁺ V ∞ singleton [] v = node (this v) singleton (k ∷ ks) v = node (that (Tree⁺.singleton k (singleton ks v))) insertWith : ∀ {v} {V : Value v} ks → (Maybe (family V ks) → family V ks) → Trie⁺ V ∞ → Trie⁺ V ∞ insertWith [] f (node nd) = node (These.fold (this ∘ f ∘ just) (these (f nothing)) (these ∘ f ∘ just) nd) insertWith {v} {V} (k ∷ ks) f (node {j} nd) = node $ These.fold (λ v → these v (Tree⁺.singleton k end)) (that ∘′ rec) (λ v → these v ∘′ rec) nd where end : Trie⁺ (eat V (k ∷ [])) ∞ end = singleton ks (f nothing) rec : Tries⁺ V ∞ → Tries⁺ V ∞ rec = Tree⁺.insertWith k (maybe′ (insertWith ks f) end) module _ {v} {V : Value v} where private Val = family V insert : ∀ ks → Val ks → Trie⁺ V ∞ → Trie⁺ V ∞ insert ks = insertWith ks ∘′ F.const fromList⁺ : List⁺ (∃ Val) → Trie⁺ V ∞ fromList⁺ = List⁺.foldr (uncurry insert) (uncurry singleton) toList⁺ : ∀ {v} {V : Value v} {i} → let Val = Value.family V in Trie⁺ V i → List⁺ (∃ Val) toList⁺ (node nd) = These.mergeThese List⁺._⁺++⁺_ $ These.map fromVal fromTries⁺ nd where fromVal = [_] ∘′ -,_ fromTries⁺ = concatMap (uncurry λ k → List⁺.map (Prod.map (k ∷_) id) ∘′ toList⁺) ∘′ Tree⁺.toList⁺ ------------------------------------------------------------------------ -- Modification -- Deletion deleteWith : ∀ {v} {V : Value v} {i} ks → (∀ {i} → Trie⁺ (eat V ks) i → Maybe (Trie⁺ (eat V ks) i)) → Trie⁺ V i → Maybe (Trie⁺ V i) deleteWith [] f t = f t deleteWith (k ∷ ks) f t@(node nd) = let open RawMonad Identity.monad in do just ts ← These.fromThat nd where _ → just t -- This would be a lot cleaner if we had -- Tree⁺.updateWith : ∀ k → (Maybe (V k) → Maybe (V k)) → AVL → AVL -- Instead we lookup the subtree, update it and either put it back in -- or delete the corresponding leaf depending on whether the result is successful. just t′ ← Tree⁺.lookup k ts where _ → just t Maybe.map node ∘′ Maybe.align (These.fromThis nd) $′ case deleteWith ks f t′ of λ where nothing → Tree⁺.delete k ts (just u) → just (Tree⁺.insert k u ts) module _ {v} {V : Value v} where deleteTrie⁺ : ∀ {i} (ks : Word) → Trie⁺ V i → Maybe (Trie⁺ V i) deleteTrie⁺ ks = deleteWith ks (F.const nothing) deleteValue : ∀ {i} (ks : Word) → Trie⁺ V i → Maybe (Trie⁺ V i) deleteValue ks = deleteWith ks $ λ where (node nd) → Maybe.map node $′ These.deleteThis nd deleteTries⁺ : ∀ {i} (ks : Word) → Trie⁺ V i → Maybe (Trie⁺ V i) deleteTries⁺ ks = deleteWith ks $ λ where (node nd) → Maybe.map node $′ These.deleteThat nd
{ "alphanum_fraction": 0.5591288072, "avg_line_length": 36.0552147239, "ext": "agda", "hexsha": "447cd68fa71342efae4840684f67a5662fc846ce", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Trie/NonEmpty.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Trie/NonEmpty.agda", "max_line_length": 95, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Trie/NonEmpty.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1917, "size": 5877 }
module Basic where open import Prelude data List (A : Set) : Set data List A where nil : List A cons : A -> List A -> List A append : {A : Set} -> List A -> List A -> List A append nil ys = ys append (cons x xs) ys = cons x (append xs ys) record Equiv {A : Set} (R : A -> A -> Set) : Set record Equiv {A} R where constructor equiv field ref : (x : A) -> R x x sym : (x : A) (y : A) -> R x y -> R y x trans : {x y z : A} -> R x y -> R y z -> R x z open Equiv trans1 : {A : Set}{R : A -> A -> Set}{x y z : A} -> Equiv R -> R x y -> R y z -> R x z trans1 eq p q = trans eq p q postulate symId : {A : Set} (x y : A) -> x == y -> y == x transId : {A : Set} {x y z : A} -> x == y -> y == z -> x == z equivId : {A : Set} -> Equiv {A} (\x y -> x == y) equivId {A} = equiv (\x -> refl) symId (\ x y z -> transId) record Sigma (A : Set) (B : A -> Set) : Set record Sigma A B where constructor pair field fst : A snd : B fst record True : Set record True where constructor tt
{ "alphanum_fraction": 0.5210991168, "avg_line_length": 22.152173913, "ext": "agda", "hexsha": "74921cdf813d84e83d4a7cbfcc87bddc8ab433d9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "src/prototyping/term/examples/Basic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "src/prototyping/term/examples/Basic.agda", "max_line_length": 86, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "src/prototyping/term/examples/Basic.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 381, "size": 1019 }
{- This file contains: - An implementation of the free groupoid (a free group that has no limitiations over the high dimensional path structure). An intermediate construction used to calculate the fundamental group of a Bouquet. -} {-# OPTIONS --safe #-} module Cubical.HITs.FreeGroupoid.Base where open import Cubical.Foundations.Prelude private variable ℓ : Level data FreeGroupoid (A : Type ℓ) : Type ℓ where η : A → FreeGroupoid A _·_ : FreeGroupoid A → FreeGroupoid A → FreeGroupoid A ε : FreeGroupoid A inv : FreeGroupoid A → FreeGroupoid A assoc : ∀ x y z → x · (y · z) ≡ (x · y) · z idr : ∀ x → x ≡ x · ε idl : ∀ x → x ≡ ε · x invr : ∀ x → x · (inv x) ≡ ε invl : ∀ x → (inv x) · x ≡ ε
{ "alphanum_fraction": 0.6296791444, "avg_line_length": 24.9333333333, "ext": "agda", "hexsha": "3f766f97208fd972e9740ff4a8f46ae4b0a5df31", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/HITs/FreeGroupoid/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/HITs/FreeGroupoid/Base.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/HITs/FreeGroupoid/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 252, "size": 748 }
{-# OPTIONS --without-K --exact-split #-} module encode-decode where import 05-identity-types open 05-identity-types public record Lift {i j : Level} (A : UU i) : UU (i ⊔ j) where field raise : A module Coprod where code-left : {i j : Level} {A : UU i} {B : UU j} → A → (coprod A B) → (UU i) code-left a₀ (inl a) = Id a₀ a code-left a₀ (inr b) = Lift 𝟘 code-right : {i j : Level} {A : UU i} {B : UU j} → B → (coprod A B) → (UU j) code-right b₀ (inr b) = Id b₀ b code-right b₀ (inl a) = Lift 𝟘 encode-left : {i j : Level} {A : UU i} {B : UU j} → (a₀ : A) → (x : coprod A B) → (p : Id (inl a₀) x) → (code-left a₀ x) encode-left a₀ x p = tr (code-left a₀) p refl decode-left : {i j : Level} {A : UU i} {B : UU j} → (a₀ : A) → (x : coprod A B) → (c : (code-left a₀ x)) → Id (inl a₀) x decode-left a₀ (inl a) refl = refl decode-left a₀ (inr b) c = ind-empty (Lift.raise c) module Nats where code : ℕ → ℕ → (UU lzero) code zero-ℕ zero-ℕ = 𝟙 code (succ-ℕ m) zero-ℕ = Lift 𝟘 code zero-ℕ (succ-ℕ n) = Lift 𝟘 code (succ-ℕ m) (succ-ℕ n) = code m n recursion : (n : ℕ) → code n n recursion zero-ℕ = star recursion (succ-ℕ n) = recursion n encode : (m n : ℕ) → (Id m n) → (code m n) encode m n p = tr (code m) p (recursion m) decode : (m n : ℕ) → (code m n) → (Id m n) decode zero-ℕ zero-ℕ s = refl decode (succ-ℕ m) zero-ℕ e = ind-empty (Lift.raise e) decode zero-ℕ (succ-ℕ n) e = ind-empty (Lift.raise e) decode (succ-ℕ m) (succ-ℕ n) c = ap succ-ℕ (decode m n c) -- This doesn't work. constant-fn : (n : ℕ) → code n n constant-fn n = star
{ "alphanum_fraction": 0.5538648813, "avg_line_length": 32.2156862745, "ext": "agda", "hexsha": "a30b10e5e17e9351ea51b7c2589984194685fc3e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "hemangandhi/HoTT-Intro", "max_forks_repo_path": "Agda/univalent-hott/encode-decode.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "hemangandhi/HoTT-Intro", "max_issues_repo_path": "Agda/univalent-hott/encode-decode.agda", "max_line_length": 122, "max_stars_count": null, "max_stars_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "hemangandhi/HoTT-Intro", "max_stars_repo_path": "Agda/univalent-hott/encode-decode.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 702, "size": 1643 }
------------------------------------------------------------------------------ -- Properties of the mirror function ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.Mirror.PropertiesI where open import Common.FOL.Relation.Binary.EqReasoning open import FOTC.Base open import FOTC.Base.List open import FOTC.Base.List.PropertiesI open import FOTC.Data.List open import FOTC.Data.List.PropertiesI open import FOTC.Program.Mirror.Type open import FOTC.Program.Mirror.Forest.PropertiesI as ForestP open import FOTC.Program.Mirror.Forest.TotalityI open import FOTC.Program.Mirror.Mirror open import FOTC.Program.Mirror.Tree.TotalityI ------------------------------------------------------------------------------ mirror-involutive : ∀ {t} → Tree t → mirror · (mirror · t) ≡ t helper : ∀ {ts} → Forest ts → reverse (map mirror (reverse (map mirror ts))) ≡ ts mirror-involutive (tree d fnil) = mirror · (mirror · (node d [])) ≡⟨ subst (λ x → mirror · (mirror · (node d [])) ≡ mirror · x) (mirror-eq d []) refl ⟩ mirror · node d (reverse (map mirror [])) ≡⟨ subst (λ x → mirror · node d (reverse (map mirror [])) ≡ mirror · node d (reverse x)) (map-[] mirror) refl ⟩ mirror · node d (reverse []) ≡⟨ subst (λ x → mirror · node d (reverse []) ≡ mirror · node d x) (rev-[] []) refl ⟩ mirror · node d [] ≡⟨ mirror-eq d [] ⟩ node d (reverse (map mirror [])) ≡⟨ subst (λ x → node d (reverse (map mirror [])) ≡ node d (reverse x)) (map-[] mirror) refl ⟩ node d (reverse []) ≡⟨ subst (λ x → node d (reverse []) ≡ node d x) (rev-[] []) refl ⟩ node d [] ∎ mirror-involutive (tree d (fcons {t} {ts} Tt Fts)) = mirror · (mirror · node d (t ∷ ts)) ≡⟨ subst (λ x → mirror · (mirror · node d (t ∷ ts)) ≡ mirror · x) (mirror-eq d (t ∷ ts)) refl ⟩ mirror · node d (reverse (map mirror (t ∷ ts))) ≡⟨ subst (λ x → mirror · node d (reverse (map mirror (t ∷ ts))) ≡ x) (mirror-eq d (reverse (map mirror (t ∷ ts)))) refl ⟩ node d (reverse (map mirror (reverse (map mirror (t ∷ ts))))) ≡⟨ subst (λ x → node d (reverse (map mirror (reverse (map mirror (t ∷ ts))))) ≡ node d x) (helper (fcons Tt Fts)) refl ⟩ node d (t ∷ ts) ∎ helper fnil = reverse (map mirror (reverse (map mirror []))) ≡⟨ reverseCong (mapCong₂ (reverseCong (map-[] mirror))) ⟩ reverse (map mirror (reverse [])) ≡⟨ reverseCong (mapCong₂ (rev-[] [])) ⟩ reverse (map mirror []) ≡⟨ reverseCong (map-[] mirror) ⟩ reverse [] ≡⟨ rev-[] [] ⟩ [] ∎ helper (fcons {t} {ts} Tt Fts) = reverse (map mirror (reverse (map mirror (t ∷ ts)))) ≡⟨ reverseCong (mapCong₂ (reverseCong (map-∷ mirror t ts))) ⟩ reverse (map mirror (reverse (mirror · t ∷ map mirror ts))) ≡⟨ reverseCong (mapCong₂ (ForestP.reverse-∷ (mirror-Tree Tt) (map-Forest mirror mirror-Tree Fts))) ⟩ reverse (map mirror (reverse (map mirror ts) ++ (mirror · t ∷ []))) ≡⟨ reverseCong (ForestP.map-++ mirror mirror-Tree (reverse-Forest (map-Forest mirror mirror-Tree Fts)) (mirror · t ∷ [])) ⟩ reverse (map mirror (reverse (map mirror ts)) ++ (map mirror (mirror · t ∷ []))) ≡⟨ subst (λ x → (reverse (map mirror (reverse (map mirror ts)) ++ (map mirror (mirror · t ∷ [])))) ≡ x) (ForestP.reverse-++ (map-Forest mirror mirror-Tree (reverse-Forest (map-Forest mirror mirror-Tree Fts))) (map-Forest mirror mirror-Tree (fcons (mirror-Tree Tt) fnil))) refl ⟩ reverse (map mirror (mirror · t ∷ [])) ++ reverse (map mirror (reverse (map mirror ts))) ≡⟨ subst (λ x → reverse (map mirror (mirror · t ∷ [])) ++ n₁ ≡ reverse x ++ n₁) (map-∷ mirror (mirror · t) []) refl ⟩ reverse (mirror · (mirror · t) ∷ map mirror []) ++ n₁ ≡⟨ subst (λ x → reverse (mirror · (mirror · t) ∷ map mirror []) ++ n₁ ≡ reverse (mirror · (mirror · t) ∷ x) ++ n₁) (map-[] mirror) refl ⟩ reverse (mirror · (mirror · t) ∷ []) ++ n₁ ≡⟨ ++-leftCong (reverse-[x]≡[x] (mirror · (mirror · t))) ⟩ (mirror · (mirror · t) ∷ []) ++ n₁ ≡⟨ ++-∷ (mirror · (mirror · t)) [] n₁ ⟩ mirror · (mirror · t) ∷ [] ++ n₁ ≡⟨ subst (λ x → mirror · (mirror · t) ∷ [] ++ n₁ ≡ mirror · (mirror · t) ∷ x) (++-leftIdentity n₁) refl ⟩ mirror · (mirror · t) ∷ reverse (map mirror (reverse (map mirror ts))) ≡⟨ ∷-leftCong (mirror-involutive Tt) ⟩ t ∷ reverse (map mirror (reverse (map mirror ts))) ≡⟨ ∷-rightCong (helper Fts) ⟩ t ∷ ts ∎ where n₁ : D n₁ = reverse (map mirror (reverse (map mirror ts))) Fn₁ : Forest n₁ Fn₁ = rev-Forest (map-Forest mirror mirror-Tree (reverse-Forest (map-Forest mirror mirror-Tree Fts))) fnil
{ "alphanum_fraction": 0.4849354376, "avg_line_length": 35.9741935484, "ext": "agda", "hexsha": "cfe762fc482594fc5adc9df76957465b4440c85c", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/Mirror/PropertiesI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/Mirror/PropertiesI.agda", "max_line_length": 83, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/Mirror/PropertiesI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1646, "size": 5576 }
module UnequalTerms where data Zero : Set where data One : Set where one : One err1 : Zero err1 = one err2 : One -> One err2 = \(x : Zero) -> one
{ "alphanum_fraction": 0.6381578947, "avg_line_length": 11.6923076923, "ext": "agda", "hexsha": "816e6a0bb0ac3c822b5dc9947b078e89e5eb6c57", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/UnequalTerms.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/UnequalTerms.agda", "max_line_length": 31, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/UnequalTerms.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 51, "size": 152 }
-- Andreas, 2015-02-26 -- {-# OPTIONS -v interaction:100 #-} data D : Set where c : D goal : D goal = {! !} -- C-c C-r gave a parse error here, as there was a (single) space. g1 : D g1 = {! !} g2 : D g2 = {! !} -- works now
{ "alphanum_fraction": 0.5276595745, "avg_line_length": 13.8235294118, "ext": "agda", "hexsha": "4f97fabf038fdf81ef79ae09281db839b545a34c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue1447.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue1447.agda", "max_line_length": 80, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue1447.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 90, "size": 235 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Code related to vector equality over propositional equality that -- makes use of heterogeneous equality ------------------------------------------------------------------------ {-# OPTIONS --with-K --safe #-} module Data.Vec.Relation.Binary.Equality.Propositional.WithK {a} {A : Set a} where open import Data.Vec open import Data.Vec.Relation.Binary.Equality.Propositional {A = A} open import Relation.Binary.PropositionalEquality open import Relation.Binary.HeterogeneousEquality as H using (_≅_) ≋⇒≅ : ∀ {m n} {xs : Vec A m} {ys : Vec A n} → xs ≋ ys → xs ≅ ys ≋⇒≅ p with length-equal p ... | refl = H.≡-to-≅ (≋⇒≡ p)
{ "alphanum_fraction": 0.554200542, "avg_line_length": 33.5454545455, "ext": "agda", "hexsha": "1c0144b77602d34e5ebaae47bd7a1cb2abb2312f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Binary/Equality/Propositional/WithK.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Binary/Equality/Propositional/WithK.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Binary/Equality/Propositional/WithK.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 192, "size": 738 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Relation.Binary.Construct.Constant where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels using (hProp) open import Cubical.Relation.Binary open import Cubical.Structures.Carrier ------------------------------------------------------------------------ -- Definition Const : ∀ {a b ℓ} {A : Type a} {B : Type b} → hProp ℓ → REL A B ℓ Const I = λ _ _ → I ------------------------------------------------------------------------ -- Properties module _ {a c} {A : Type a} {C : hProp c} where reflexive : ⟨ C ⟩ → Reflexive {A = A} (Const C) reflexive c = c symmetric : Symmetric {A = A} (Const C) symmetric c = c transitive : Transitive {A = A} (Const C) transitive c d = c isPartialEquivalence : IsPartialEquivalence {A = A} (Const C) isPartialEquivalence = record { symmetric = λ {x} {y} → symmetric {x} {y} ; transitive = λ {x} {y} {z} → transitive {x} {y} {z} } partialEquivalence : PartialEquivalence A c partialEquivalence = record { isPartialEquivalence = isPartialEquivalence } isEquivalence : ⟨ C ⟩ → IsEquivalence {A = A} (Const C) isEquivalence c = record { isPartialEquivalence = isPartialEquivalence ; reflexive = λ {x} → reflexive c {x} } equivalence : ⟨ C ⟩ → Equivalence A c equivalence x = record { isEquivalence = isEquivalence x }
{ "alphanum_fraction": 0.6011004127, "avg_line_length": 30.2916666667, "ext": "agda", "hexsha": "ccd09d0be12de25ce74c9a53a3ad10f49de0aaf1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Relation/Binary/Construct/Constant.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Relation/Binary/Construct/Constant.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Relation/Binary/Construct/Constant.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 411, "size": 1454 }
{-# OPTIONS --cubical --save-metas #-} module Erased-cubical-Pattern-matching-Cubical where data D : Set where c₁ c₂ : D
{ "alphanum_fraction": 0.696, "avg_line_length": 17.8571428571, "ext": "agda", "hexsha": "2fd7d8ab431811536ba6233fcde6d9451d078704", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "Seanpm2001-Agda-lang/agda", "max_forks_repo_path": "test/Compiler/simple/Erased-cubical-Pattern-matching-Cubical.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "Seanpm2001-Agda-lang/agda", "max_issues_repo_path": "test/Compiler/simple/Erased-cubical-Pattern-matching-Cubical.agda", "max_line_length": 52, "max_stars_count": 1, "max_stars_repo_head_hexsha": "6b13364d36eeb60d8ec15eaf8effe23c73401900", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "sseefried/agda", "max_stars_repo_path": "test/Compiler/simple/Erased-cubical-Pattern-matching-Cubical.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:25:14.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:25:14.000Z", "num_tokens": 40, "size": 125 }
{-# OPTIONS --cubical #-} module Numeral.Natural.Equiv.Path where open import Data.Boolean.Equiv.Path open import Functional open import Logic.Propositional open import Numeral.Natural.Oper.Comparisons open import Numeral.Natural open import Relator.Equals.Proofs.Equivalence using () renaming ([≡]-equiv to Id-equiv ; [≡]-symmetry to Id-symmetry ; [≡]-to-function to Id-to-function ; [≡]-function to Id-function) open import Structure.Function.Domain open import Structure.Function open import Structure.Relator.Properties open import Type.Cubical.Path.Equality open import Type.Cubical.Path open import Type.Identity instance 𝐒-injective : Injective(𝐒) Injective.proof 𝐒-injective p = congruence₁(𝐏) p ℕ-Path-to-Id : ∀{x y : ℕ} → (Path x y) → (Id x y) ℕ-Path-to-Id {𝟎} {𝟎} p = intro ℕ-Path-to-Id {𝟎} {𝐒 y} = [⊥]-elim ∘ Bool-different-values ∘ congruence₁(positive?) ℕ-Path-to-Id {𝐒 x} {𝟎} = [⊥]-elim ∘ Bool-different-values ∘ symmetry(Path) ∘ congruence₁(positive?) ℕ-Path-to-Id {𝐒 x} {𝐒 y} p = congruence₁ ⦃ Id-equiv ⦄ ⦃ Id-equiv ⦄ (ℕ.𝐒) ⦃ Id-function ⦄ (ℕ-Path-to-Id {x}{y} (injective(ℕ.𝐒) p))
{ "alphanum_fraction": 0.7110912343, "avg_line_length": 41.4074074074, "ext": "agda", "hexsha": "a473a3045719932ff810e434f7793386f779b558", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Equiv/Path.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Equiv/Path.agda", "max_line_length": 183, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Equiv/Path.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 410, "size": 1118 }
module List.Order.Bounded {A : Set}(_≤_ : A → A → Set) where open import Bound.Total A open import Bound.Total.Order _≤_ open import Data.List data _≤*_ : List A → Bound → Set where lenx : {t : Bound} → [] ≤* t lecx : {t : Bound}{x : A}{xs : List A} → LeB (val x) t → xs ≤* t → (x ∷ xs) ≤* t data _*≤_ : Bound → List A → Set where genx : {b : Bound} → b *≤ [] gecx : {b : Bound}{x : A}{xs : List A} → LeB b (val x) → b *≤ xs → b *≤ (x ∷ xs)
{ "alphanum_fraction": 0.5342163355, "avg_line_length": 32.3571428571, "ext": "agda", "hexsha": "05b689d82ee781ee9b1f03d25629876fb9d5a3d4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/List/Order/Bounded.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/List/Order/Bounded.agda", "max_line_length": 82, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/List/Order/Bounded.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 188, "size": 453 }
{-# OPTIONS --safe --without-K #-} module Source.Size.Substitution.Theory where open import Source.Size open import Source.Size.Substitution.Canonical as SC using (Sub⊢) open import Source.Size.Substitution.Universe as SU using (⟨_⟩ ; Sub⊢ᵤ) open import Util.Prelude record SubTheory (A : Ctx → Set) : Set where infixl 5 _[_] _[_]ᵤ field _[_] : A Ω → SC.Sub Δ Ω → A Δ [Id] : ∀ {Δ} (a : A Δ) → a [ SC.Id ] ≡ a [>>] : ∀ {Δ Δ′ Δ″} (σ : SC.Sub Δ Δ′) (τ : SC.Sub Δ′ Δ″) a → a [ σ SC.>> τ ] ≡ a [ τ ] [ σ ] abstract [Id]′ : ∀ {Δ} {σ : SC.Sub Δ Δ} a → σ ≡ SC.Id → a [ σ ] ≡ a [Id]′ a refl = [Id] a [>>]′ : ∀ {Δ Δ′ Δ″} (ι : SC.Sub Δ Δ″) (σ : SC.Sub Δ Δ′) (τ : SC.Sub Δ′ Δ″) a → ι ≡ σ SC.>> τ → a [ ι ] ≡ a [ τ ] [ σ ] [>>]′ ι σ τ a refl = [>>] σ τ a [>>]″ : ∀ {Δ Δ′ Δ″} (σ : SC.Sub Δ Δ′) (τ : SC.Sub Δ′ Δ″) → ∀ (σ′ : SC.Sub Δ Ω) (τ′ : SC.Sub Ω Δ″) a → σ SC.>> τ ≡ σ′ SC.>> τ′ → a [ τ ] [ σ ] ≡ a [ τ′ ] [ σ′ ] [>>]″ σ τ σ′ τ′ a eq = trans (sym ([>>] σ τ a)) (trans (cong (λ σ → a [ σ ]) eq) ([>>] σ′ τ′ a)) _[_]ᵤ : A Ω → SU.Sub Δ Ω → A Δ a [ σ ]ᵤ = a [ ⟨ σ ⟩ ] abstract []ᵤ-resp-≈ : ∀ {Δ Ω} {σ τ : SU.Sub Δ Ω} → σ SU.≈ τ → ∀ a → a [ σ ]ᵤ ≡ a [ τ ]ᵤ []ᵤ-resp-≈ (SU.≈⁺ p) a = cong (λ σ → a [ σ ]) p [Id]ᵤ : ∀ {Δ} (a : A Δ) → a [ SU.Id ]ᵤ ≡ a [Id]ᵤ a = [Id] a [Id]ᵤ′ : ∀ {Δ} {σ : SU.Sub Δ Δ} (a : A Δ) → σ SU.≈ SU.Id → a [ σ ]ᵤ ≡ a [Id]ᵤ′ a (SU.≈⁺ p) = [Id]′ a p [>>]ᵤ : ∀ {Δ Δ′ Δ″} (σ : SU.Sub Δ Δ′) (τ : SU.Sub Δ′ Δ″) (a : A Δ″) → a [ σ SU.>> τ ]ᵤ ≡ a [ τ ]ᵤ [ σ ]ᵤ [>>]ᵤ σ τ a = [>>] _ _ _ [>>]ᵤ′ : ∀ {Δ Δ′ Δ″} (ι : SU.Sub Δ Δ″) (σ : SU.Sub Δ Δ′) (τ : SU.Sub Δ′ Δ″) a → ι SU.≈ σ SU.>> τ → a [ ι ]ᵤ ≡ a [ τ ]ᵤ [ σ ]ᵤ [>>]ᵤ′ ι σ τ a (SU.≈⁺ p) = [>>]′ ⟨ ι ⟩ ⟨ σ ⟩ ⟨ τ ⟩ a p [>>]ᵤ″ : ∀ {Δ Δ′ Δ″} (σ : SU.Sub Δ Δ′) (τ : SU.Sub Δ′ Δ″) → ∀ (σ′ : SU.Sub Δ Ω) (τ′ : SU.Sub Ω Δ″) a → σ SU.>> τ SU.≈ σ′ SU.>> τ′ → a [ τ ]ᵤ [ σ ]ᵤ ≡ a [ τ′ ]ᵤ [ σ′ ]ᵤ [>>]ᵤ″ σ τ σ′ τ′ a (SU.≈⁺ p) = [>>]″ ⟨ σ ⟩ ⟨ τ ⟩ ⟨ σ′ ⟩ ⟨ τ′ ⟩ a p open SubTheory {{...}} public instance SubTheory-Size : SubTheory Size SubTheory-Size = record { _[_] = λ n σ → SC.sub σ n ; [Id] = λ n → SC.sub-Id n refl ; [>>] = λ σ τ n → SC.sub->> n refl }
{ "alphanum_fraction": 0.3790322581, "avg_line_length": 26.1777777778, "ext": "agda", "hexsha": "ecf82ca956f0c8617aaa8ab66403be053363b36e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/msc-thesis-code", "max_forks_repo_path": "src/Source/Size/Substitution/Theory.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/msc-thesis-code", "max_issues_repo_path": "src/Source/Size/Substitution/Theory.agda", "max_line_length": 81, "max_stars_count": 5, "max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/msc-thesis-code", "max_stars_repo_path": "src/Source/Size/Substitution/Theory.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z", "num_tokens": 1218, "size": 2356 }
{-# OPTIONS --allow-unsolved-metas #-} module LateExpansionOfRecordMeta where postulate I : Set i : I A : I → Set a : A i data D : Set₁ where d : (P : A i → Set) → P a → D record R (P : A i → Set) : Set where field p : P a record ID : Set₁ where field P : (i : I) → A i → Set isR : R (P i) at : ID → D at id = d (ID.P id i) (R.p (ID.isR id)) postulate T : D → Set F : (id : ID) → T (at id) → Set id : ID foo : T (at id) → Set foo t = F _ t
{ "alphanum_fraction": 0.5103305785, "avg_line_length": 14.6666666667, "ext": "agda", "hexsha": "985b54db90ad884a0330d9ad45bd7b02f2a406f2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/LateExpansionOfRecordMeta.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/LateExpansionOfRecordMeta.agda", "max_line_length": 39, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/LateExpansionOfRecordMeta.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 201, "size": 484 }
module lib.libraryString where open import Data.String open import Data.Bool open import Agda.Builtin.String using ( primStringEquality ) open import Data.String public using () renaming (toList to primStringToList; _++_ to _++Str_) _==Str_ : String → String → Bool _==Str_ = primStringEquality
{ "alphanum_fraction": 0.6260162602, "avg_line_length": 30.75, "ext": "agda", "hexsha": "7ef7e036c3ba07294c1854d3d670653e61354aec", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "src/lib/libraryString.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "src/lib/libraryString.agda", "max_line_length": 68, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "src/lib/libraryString.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 76, "size": 369 }
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-} module Light.Variable.Levels where open import Light.Level using (Level) variable ℓ aℓ bℓ cℓ dℓ eℓ fℓ gℓ hℓ : Level
{ "alphanum_fraction": 0.7386934673, "avg_line_length": 24.875, "ext": "agda", "hexsha": "efca169a0ea285fe1b552d3e02c75fabb48fc9f0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "Zambonifofex/lightlib", "max_forks_repo_path": "Light/Variable/Levels.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "Zambonifofex/lightlib", "max_issues_repo_path": "Light/Variable/Levels.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "zamfofex/lightlib", "max_stars_repo_path": "Light/Variable/Levels.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z", "num_tokens": 63, "size": 199 }
module ReasoningEx where open import Prelude open import T open import Contexts open import Eq open import Eq.Theory open import Eq.ObsTheory ---- some example programs -- boy, de bruijn indexes are unreadable w = weaken-closed plus-rec : ∀{Γ} → TExp Γ nat → TExp Γ nat → TExp Γ nat plus-rec n m = rec n m (suc (var Z)) t-plus1 : TCExp (nat ⇒ nat ⇒ nat) t-plus1 = Λ (Λ (plus-rec (var Z) (var (S Z)))) t-plus2 : TCExp (nat ⇒ nat ⇒ nat) t-plus2 = Λ (Λ (plus-rec (var (S Z)) (var Z))) plus-adds : ∀{Γ} → (n : Nat) (m : Nat) → Γ ⊢ plus-rec (t-numeral n) (t-numeral m) ≅ t-numeral (n +n m) :: nat plus-adds Z m = obs-contains-def def-rec-z plus-adds {Γ} (S n) m with (def-rec-s {Γ} {e = (t-numeral n)} {e0 = t-numeral m} {es = suc (var Z)}) -- If I don't name the def eq thing above and use it directly, agda uses all my core. ... | bullshit-workaround with obs-contains-def bullshit-workaround ... | step-eq with obs-congruence (plus-adds {Γ} n m) (suc ∘) ... | reccase = obs-trans step-eq reccase help : (n : Nat) → ObservEq (nat :: []) nat (rec (t-numeral n) (var Z) (suc (var Z))) (rec (var Z) (t-numeral n) (suc (var Z))) help n = {!!} plus-commutes : [] ⊢ t-plus1 ≅ t-plus2 :: nat ⇒ nat ⇒ nat plus-commutes with def-cong (def-beta {e = Λ (plus-rec (var Z) (var (S Z)))} {e' = var (S Z)}) (∘ $e var Z) | def-cong (def-beta {e = Λ (plus-rec (var (S Z)) (var Z))} {e' = var (S Z)}) (∘ $e var Z) ... | beq1 | beq2 with def-beta {e = plus-rec (var Z) (var (S (S Z)))} {e' = var Z} | def-beta {e = plus-rec (var (S (S Z))) (var Z)} {e' = var Z} ... | beq1' | beq2' with obs-contains-def (def-trans beq1 beq1') | obs-contains-def (def-trans beq2 beq2') ... | oeq1 | oeq2 with function-induction-obs help ... | main-eq with obs-trans oeq1 (obs-trans main-eq (obs-sym oeq2)) ... | lol = function-ext-obs (function-ext-obs lol)
{ "alphanum_fraction": 0.5844700944, "avg_line_length": 39.7083333333, "ext": "agda", "hexsha": "fceb0f0a964fccbe6fc9af70214038f99fdf8d87", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-05-04T22:37:18.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-26T11:39:14.000Z", "max_forks_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "msullivan/godels-t", "max_forks_repo_path": "ReasoningEx.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "msullivan/godels-t", "max_issues_repo_path": "ReasoningEx.agda", "max_line_length": 106, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "msullivan/godels-t", "max_stars_repo_path": "ReasoningEx.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-22T00:28:03.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-25T01:52:57.000Z", "num_tokens": 703, "size": 1906 }
{-# OPTIONS --rewriting --confluence-check #-} module Issue4333.N where open import Issue4333.M open import Issue4333.N0 open import Issue4333.N1 postulate of-type : (X : Set) (x : X) → Set -- Subject reduction violated for b₁' = b. _ = of-type (B a₁') b₁' _ = of-type (B a₀') b
{ "alphanum_fraction": 0.6725352113, "avg_line_length": 20.2857142857, "ext": "agda", "hexsha": "531030db68d3c3d2662967f09bbd64cc6193dcb3", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue4333/N.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue4333/N.agda", "max_line_length": 46, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue4333/N.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 94, "size": 284 }
{-# OPTIONS --without-K #-} open import HoTT module homotopy.ConstantToSetFactorization {i j} {A : Type i} {B : Type j} (B-is-set : is-set B) (f : A → B) (f-is-const : ∀ a₁ a₂ → f a₁ == f a₂) where private Skel = SetQuotient {A = A} (λ _ _ → Unit) abstract Skel-has-all-paths : has-all-paths Skel Skel-has-all-paths = SetQuot-elim (λ _ → Π-is-set λ _ → =-preserves-set SetQuotient-is-set) (λ a₁ → SetQuot-elim {P = λ s₂ → q[ a₁ ] == s₂} (λ _ → =-preserves-set SetQuotient-is-set) (λ _ → quot-rel _) (λ _ → prop-has-all-paths-↓ (SetQuotient-is-set _ _))) (λ {a₁ a₂} _ → ↓-cst→app-in λ s₂ → prop-has-all-paths-↓ (SetQuotient-is-set _ _)) Skel-is-prop : is-prop Skel Skel-is-prop = all-paths-is-prop Skel-has-all-paths Skel-lift : Skel → B Skel-lift = SetQuot-rec B-is-set f (λ {a₁ a₂} _ → f-is-const a₁ a₂) cst-extend : Trunc -1 A → B cst-extend = Skel-lift ∘ Trunc-rec Skel-is-prop q[_] -- The beta rule. -- This is definitionally true, so you don't need it. cst-extend-β : cst-extend ∘ [_] == f cst-extend-β = idp
{ "alphanum_fraction": 0.5588737201, "avg_line_length": 31.6756756757, "ext": "agda", "hexsha": "663835c3d65c7058b2fe00ec31debf0017331ca0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/ConstantToSetFactorization.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/ConstantToSetFactorization.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/ConstantToSetFactorization.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 428, "size": 1172 }
module Cats.Functor.Representable where open import Data.Product using (_×_ ; _,_) open import Relation.Binary using (Setoid) open import Cats.Bifunctor using (Bifunctor) open import Cats.Category open import Cats.Category.Op using (_ᵒᵖ) open import Cats.Category.Setoids as Setoids using (Setoids ; ≈-intro) open import Cats.Util.Simp using (simp!) open import Cats.Util.SetoidReasoning import Relation.Binary.PropositionalEquality as ≡ module Build {lo la l≈} (C : Category lo la l≈) where open Category C renaming (Hom to Homset) open Setoids._⇒_ using (arr ; resp) private module S = Category (Setoids la l≈) fmap : ∀ {A B A′ B′} → (A′ ⇒ A) × (B ⇒ B′) → Homset A B S.⇒ Homset A′ B′ fmap {A} {B} {A′} {B′} (f , g) = record { arr = λ h → g ∘ h ∘ f ; resp = λ h≈i → ∘-resp-r (∘-resp-l h≈i) } Hom : Bifunctor (C ᵒᵖ) C (Setoids la l≈) Hom = record { fobj = λ { (A , B) → Homset A B } ; fmap = fmap ; fmap-resp = λ where (f≈g , h≈i) → ≈-intro λ x≈y → ∘-resp h≈i (∘-resp x≈y f≈g) ; fmap-id = ≈-intro λ x≈y → ≈.trans id-l (≈.trans id-r x≈y) ; fmap-∘ = λ where {A , B} {A′ , B′} {A″ , B″} {f , f′} {g , g′} → ≈-intro λ {x} {y} x≈y → begin⟨ Homset A″ B″ ⟩ f′ ∘ (g′ ∘ x ∘ g) ∘ f ≈⟨ simp! C ⟩ (f′ ∘ g′) ∘ x ∘ g ∘ f ≈⟨ ∘-resp-r (∘-resp-l x≈y) ⟩ (f′ ∘ g′) ∘ y ∘ g ∘ f ∎ } open Build public using () renaming (Hom to Hom[_])
{ "alphanum_fraction": 0.5248838752, "avg_line_length": 30.14, "ext": "agda", "hexsha": "44e398f0b18b27ad1e427b6554403141d1298492", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Functor/Representable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Functor/Representable.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Functor/Representable.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 609, "size": 1507 }
{-# OPTIONS --without-K #-} module Computability.Prelude where open import Data.Bool public using (Bool; false; true) open import Data.Empty public using (⊥; ⊥-elim) open import Data.Nat public using (ℕ; zero; suc; _+_; _*_) open import Data.Product public using (Σ; Σ-syntax; _×_; _,_; proj₁; proj₂) open import Data.Sum public using (_⊎_) open import Data.Unit public using (⊤) open import Relation.Binary.PropositionalEquality public using (_≡_; refl) open import Level public using (Level) renaming (zero to lzero; suc to lsuc)
{ "alphanum_fraction": 0.7415730337, "avg_line_length": 41.0769230769, "ext": "agda", "hexsha": "4144d0fb36f20e537c2318e4c3bbd5f3287f4fe8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b5cf338eb0adb90c1897383e05251ddd954efff", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jesyspa/computability-in-agda", "max_forks_repo_path": "Computability/Prelude.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b5cf338eb0adb90c1897383e05251ddd954efff", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jesyspa/computability-in-agda", "max_issues_repo_path": "Computability/Prelude.agda", "max_line_length": 76, "max_stars_count": 2, "max_stars_repo_head_hexsha": "1b5cf338eb0adb90c1897383e05251ddd954efff", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jesyspa/computability-in-agda", "max_stars_repo_path": "Computability/Prelude.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-30T11:15:51.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-19T15:51:22.000Z", "num_tokens": 146, "size": 534 }
module UniDB.Morph.Bla where open import UniDB.Spec open import UniDB.Morph.WeakenOne open import UniDB.Morph.Sub open import UniDB.Morph.ShiftsPrime open import UniDB.Morph.Subs -- mutual -- data BlaSubst (T : STX) : MOR where -- blasubst : {γ₁ γ₂ : Dom} → BlaSubst T γ₁ γ₂ mutual data BlaWeak* (T : STX) : MOR where reflW : {γ : Dom} → BlaWeak* T γ γ inclW : {γ₁ γ₂ : Dom} → BlaWeak+ T γ₁ γ₂ → BlaWeak* T γ₁ γ₂ skipW : {γ₁ γ₂ : Dom} → Bla T γ₁ γ₂ → BlaWeak* T (suc γ₁) (suc γ₂) data BlaWeak+ (T : STX) : MOR where stepW : {γ₁ γ₂ γ₃ : Dom} → Weaken₁ γ₁ γ₂ → BlaWeak* T γ₂ γ₃ → BlaWeak T γ₁ γ₃ data BlaSubs* (T : STX) : MOR where reflS : {γ : Dom} → BlaSubs* T γ γ inclS : {γ₁ γ₂ : Dom} → BlaSubs+ T γ₁ γ₂ → BlaSubs* T γ₁ γ₂ skipS : {γ₁ γ₂ : Dom} → Bla T γ₁ γ₂ → BlaSubs* T (suc γ₁) (suc γ₂) data BlaSubs+ (T : STX) : MOR where stepS : {γ₁ γ₂ γ₃ : Dom} → BlaSubs* T γ₁ γ₂ → Single T γ₂ γ₃ → BlaWeak T γ₁ γ₃ data Bla (T : STX) : MOR where refl : {γ : Dom} → Shifts* γ γ incl : {γ₁ γ₂ : Dom} (ξ : Shifts+ γ₁ γ₂) → Shifts* γ₁ γ₂ data Shifts+ : MOR where step : {γ₁ γ₂ : Dom} (ξ : Shifts* γ₁ γ₂) → Shifts+ γ₁ (suc γ₂) skip : {γ₁ γ₂ : Dom} (ξ : Shifts+ γ₁ γ₂) → Shifts+ (suc γ₁) (suc γ₂)
{ "alphanum_fraction": 0.5908372828, "avg_line_length": 33.3157894737, "ext": "agda", "hexsha": "8002e6a53678e26dcd31786d7ecc2ace4e07f71d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "skeuchel/unidb-agda", "max_forks_repo_path": "UniDB/Morph/Bla.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "skeuchel/unidb-agda", "max_issues_repo_path": "UniDB/Morph/Bla.agda", "max_line_length": 82, "max_stars_count": null, "max_stars_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "skeuchel/unidb-agda", "max_stars_repo_path": "UniDB/Morph/Bla.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 586, "size": 1266 }
open import Categories.Category using (Category) import Categories.Category.CartesianClosed open import Data.Fin using (Fin) renaming (zero to fzero; suc to fsuc) open import Data.List using (List; []; _∷_) open import Data.Product using (Σ; Σ-syntax; proj₁; proj₂) open import Syntax open import Level using (_⊔_; suc) module Semantics {o ℓ e} (𝒞 : Category o ℓ e) (CC : Categories.Category.CartesianClosed.CartesianClosed 𝒞) {ℓ₁ ℓ₂} (Sg : Signature ℓ₁ ℓ₂) where open Categories.Category.CartesianClosed 𝒞 open import Categories.Category.Cartesian 𝒞 open import Categories.Category.BinaryProducts 𝒞 open import Categories.Object.Terminal 𝒞 open import Categories.Object.Product 𝒞 open Category 𝒞 open CartesianClosed CC open Cartesian cartesian open BinaryProducts products private module T = Terminal terminal open Signature Sg open Term Sg module I (⟦_⟧G : Gr -> Obj) where ⟦_⟧T : Type -> Obj ⟦ ⌊ g ⌋ ⟧T = ⟦ g ⟧G ⟦ Unit ⟧T = T.⊤ ⟦ A * A₁ ⟧T = ⟦ A ⟧T × ⟦ A₁ ⟧T ⟦ A => A₁ ⟧T = ⟦ A ⟧T ⇨ ⟦ A₁ ⟧T record Structure : Set (o ⊔ ℓ ⊔ ℓ₁ ⊔ ℓ₂) where field ⟦_⟧G : Gr -> Obj open I ⟦_⟧G public field ⟦_⟧F : (f : Func) -> ⟦ dom f ⟧T ⇒ ⟦ cod f ⟧T ⟦_⟧C : Context -> Obj ⟦ [] ⟧C = T.⊤ ⟦ A ∷ Γ ⟧C = ⟦ Γ ⟧C × ⟦ A ⟧T ⟦_⟧ : forall {Γ A} -> Γ ⊢ A -> ⟦ Γ ⟧C ⇒ ⟦ A ⟧T ⟦_⟧S : forall {Γ Γ′} -> Γ ⊨ Γ′ -> ⟦ Γ ⟧C ⇒ ⟦ Γ′ ⟧C ⟦ func f e ⟧ = ⟦ f ⟧F ∘ ⟦ e ⟧ ⟦ var ⟧ = π₂ ⟦ unit ⟧ = T.! ⟦ pair e e₁ ⟧ = ⟨ ⟦ e ⟧ , ⟦ e₁ ⟧ ⟩ ⟦ fst e ⟧ = π₁ ∘ ⟦ e ⟧ ⟦ snd e ⟧ = π₂ ∘ ⟦ e ⟧ ⟦ abs e ⟧ = λg ⟦ e ⟧ ⟦ app e e₁ ⟧ = eval′ ∘ ⟨ ⟦ e ⟧ , ⟦ e₁ ⟧ ⟩ ⟦ e [ γ ] ⟧ = ⟦ e ⟧ ∘ ⟦ γ ⟧S ⟦ id ⟧S = Category.id 𝒞 ⟦ γ ∙ γ₁ ⟧S = ⟦ γ ⟧S ∘ ⟦ γ₁ ⟧S ⟦ weaken ⟧S = π₁ ⟦ ext γ e ⟧S = ⟨ ⟦ γ ⟧S , ⟦ e ⟧ ⟩ ⟦ ! ⟧S = T.! ⟦_⟧G_ : Gr -> (M : Structure) -> Obj ⟦_⟧G_ g M = Structure.⟦_⟧G M g ⟦_⟧T_ : Type -> (M : Structure) -> Obj ⟦_⟧T_ A M = Structure.⟦_⟧T M A ⟦_⟧F_ : (f : Func) -> (M : Structure) -> Structure.⟦_⟧T M (dom f) ⇒ Structure.⟦_⟧T M (cod f) ⟦_⟧F_ f M = Structure.⟦_⟧F M f ⟦_⟧_ : forall {Γ A} -> Γ ⊢ A -> (M : Structure) -> Structure.⟦_⟧C M Γ ⇒ Structure.⟦_⟧T M A ⟦_⟧_ e M = Structure.⟦_⟧ M e
{ "alphanum_fraction": 0.5299145299, "avg_line_length": 26.4642857143, "ext": "agda", "hexsha": "2b23533e75bf63565113acca5ce7992740482bf9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "elpinal/exsub-ccc", "max_forks_repo_path": "Semantics.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "elpinal/exsub-ccc", "max_issues_repo_path": "Semantics.agda", "max_line_length": 94, "max_stars_count": 3, "max_stars_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "elpinal/exsub-ccc", "max_stars_repo_path": "Semantics.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T13:30:48.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-05T06:16:32.000Z", "num_tokens": 1049, "size": 2223 }
{-# OPTIONS --without-K #-} module Util.Induction.WellFounded where open import Induction.WellFounded public using ( Acc ; acc ; WellFounded ; module Subrelation ; module InverseImage ; module TransitiveClosure ; module Lexicographic ) open import Relation.Binary using (Rel) open import Util.HoTT.FunctionalExtensionality using (funext) open import Util.HoTT.HLevel using (IsProp ; ∀-IsProp) open import Util.Prelude module _ {α β} {A : Set α} {_<_ : Rel A β} where Acc-IsProp : ∀ {x} → IsProp (Acc _<_ x) Acc-IsProp (acc rs₀) (acc rs₁) = cong acc (funext λ y → funext λ y<x → Acc-IsProp _ _) WellFounded-IsProp : IsProp (WellFounded _<_) WellFounded-IsProp = ∀-IsProp λ _ → Acc-IsProp wfInd-acc : ∀ {γ} (P : A → Set γ) → (∀ x → (∀ y → y < x → P y) → P x) → ∀ x → Acc _<_ x → P x wfInd-acc P f x (acc rs) = f x (λ y y<x → wfInd-acc P f y (rs y y<x)) mutual wfIndΣ-acc : ∀ {γ} (P : A → Set γ) → (Q : ∀ x y → P x → P y → Set) → (f : ∀ x → (g : ∀ y → y < x → P y) → (∀ y y<x z z<x → Q y z (g y y<x) (g z z<x)) → P x) → (∀ x g g-resp y h h-resp → (∀ z z<x z′ z′<y → Q z z′ (g z z<x) (h z′ z′<y)) → Q x y (f x g g-resp) (f y h h-resp)) → ∀ x → Acc _<_ x → P x wfIndΣ-acc P Q f f-resp x (acc rs) = f x (λ y y<x → wfIndΣ-acc P Q f f-resp y (rs y y<x)) (λ y y<x z z<x → wfIndΣ-acc-resp P Q f f-resp y (rs y y<x) z (rs z z<x)) wfIndΣ-acc-resp : ∀ {γ} (P : A → Set γ) → (Q : ∀ x y → P x → P y → Set) → (f : ∀ x → (g : ∀ y → y < x → P y) → (∀ y y<x z z<x → Q y z (g y y<x) (g z z<x)) → P x) → (f-resp : ∀ x g g-resp y h h-resp → (∀ z z<x z′ z′<y → Q z z′ (g z z<x) (h z′ z′<y)) → Q x y (f x g g-resp) (f y h h-resp)) → ∀ x x-acc y y-acc → Q x y (wfIndΣ-acc P Q f f-resp x x-acc) (wfIndΣ-acc P Q f f-resp y y-acc) wfIndΣ-acc-resp P Q f f-resp x (acc rsx) y (acc rsy) = f-resp _ _ _ _ _ _ λ z z<x z′ z′<y → wfIndΣ-acc-resp P Q f f-resp z (rsx z z<x) z′ (rsy z′ z′<y) module Build (<-wf : WellFounded _<_) where wfInd : ∀ {γ} (P : A → Set γ) → (∀ x → (∀ y → y < x → P y) → P x) → ∀ x → P x wfInd P f x = wfInd-acc P f x (<-wf x) wfRec : ∀ {γ} {B : Set γ} → (∀ x → (∀ y → y < x → B) → B) → A → B wfRec = wfInd _ wfInd-unfold : ∀ {γ} (P : A → Set γ) → (f : ∀ x → (∀ y → y < x → P y) → P x) → (x : A) → wfInd P f x ≡ f x (λ y _ → wfInd P f y) wfInd-unfold P f x with <-wf x ... | acc rs = cong (f x) (funext λ y → funext λ y<x → cong (wfInd-acc P f y) (Acc-IsProp (rs y y<x) (<-wf y))) wfRec-unfold : ∀ {γ} {B : Set γ} → (f : ∀ x → (∀ y → y < x → B) → B) → (x : A) → wfRec f x ≡ f x (λ y _ → wfRec f y) wfRec-unfold = wfInd-unfold _ wfInd-ind : ∀ {γ} {P : A → Set γ} → (Q : ∀ x → P x → Set) → {f : ∀ x → (∀ y → y < x → P y) → P x} → (∀ x g → (∀ y y<x → Q y (g y y<x)) → Q x (f x g)) → {x : A} → Q x (wfInd P f x) wfInd-ind {P = P} Q {f} f-resp = wfInd (λ x → Q x (wfInd P f x)) (λ x rec → subst (Q x) (sym (wfInd-unfold P f x)) (f-resp _ _ rec)) _ module _ {γ} (P : A → Set γ) (Q : ∀ x y → P x → P y → Set) (f : ∀ x → (g : ∀ y → y < x → P y) → (∀ y y<x z z<x → Q y z (g y y<x) (g z z<x)) → P x) (f-resp : ∀ x g g-resp y h h-resp → (∀ z z<x z′ z′<y → Q z z′ (g z z<x) (h z′ z′<y)) → Q x y (f x g g-resp) (f y h h-resp)) where wfIndΣ : Σ[ f ∈ (∀ x → P x) ] (∀ x y → Q x y (f x) (f y)) wfIndΣ = (λ x → wfIndΣ-acc P Q f f-resp x (<-wf x)) , λ x y → wfIndΣ-acc-resp P Q f f-resp x (<-wf x) y (<-wf y) wfIndΣ-unfold : ∀ {x} → wfIndΣ .proj₁ x ≡ f x (λ y y<x → wfIndΣ .proj₁ y) (λ y y<x z z<x → wfIndΣ .proj₂ y z) wfIndΣ-unfold {x} with <-wf x ... | acc rs = go rs (λ y y<x → <-wf y) where go : (p q : (y : A) → y < x → Acc _<_ y) → f x (λ y y<x → wfIndΣ-acc P Q f f-resp y (p y y<x)) (λ y y<x z z<x → wfIndΣ-acc-resp P Q f f-resp y (p y y<x) z (p z z<x)) ≡ f x (λ y y<x → wfIndΣ-acc P Q f f-resp y (q y y<x)) (λ y y<x z z<x → wfIndΣ-acc-resp P Q f f-resp y (q y y<x) z (q z z<x)) go p q rewrite (funext λ y → funext λ y<x → Acc-IsProp (p y y<x) (q y y<x)) = refl wfIndΣ′ : Σ[ g ∈ (∀ x → P x) ] Σ[ g-param ∈ (∀ x y → Q x y (g x) (g y)) ] (∀ {x} → g x ≡ f x (λ y y<x → g y) (λ y y<x z z<x → g-param y z)) wfIndΣ′ = wfIndΣ .proj₁ , wfIndΣ .proj₂ , wfIndΣ-unfold open Build public module _ {α β γ δ} {A : Set α} {B : Set β} where ×-Rel : Rel A γ → Rel B δ → Rel (A × B) (γ ⊔ℓ δ) ×-Rel R S (a , b) (a′ , b′) = R a a′ × S b b′ ×-wellFounded : {R : Rel A γ} {S : Rel B δ} → WellFounded R → WellFounded S → WellFounded (×-Rel R S) ×-wellFounded {R} {S} R-wf S-wf (a , b) = ×-acc (R-wf a) (S-wf b) where ×-acc : ∀ {x y} → Acc R x → Acc S y → Acc (×-Rel R S) (x , y) ×-acc (acc rsa) (acc rsb) = acc (λ { (a , b) (a<x , b<y) → ×-acc (rsa a a<x) (rsb b b<y) }) -- This is not in Build because the implementation uses wfInd at -- (×-Rel _<_ _<_), but within Build, we can only use wfInd at -- _<_. wfInd-ind₂ : ∀ {α β} {A : Set α} {_<_ : Rel A β} → (<-wf : WellFounded _<_) → ∀ {γ} {P : A → Set γ} → (R : ∀ x y → P x → P y → Set) → {f : ∀ x → (∀ y → y < x → P y) → P x} → (∀ x x′ g g′ → (∀ y y′ y<x y′<x → R y y′ (g y y<x) (g′ y′ y′<x)) → R x x′ (f x g) (f x′ g′)) → {x x′ : A} → R x x′ (wfInd <-wf P f x) (wfInd <-wf P f x′) wfInd-ind₂ <-wf {P = P} R {f} f-resp = wfInd (×-wellFounded <-wf <-wf) (λ { (x , x′) → R x x′ (wfInd <-wf P f x) (wfInd <-wf P f x′)}) (λ where (x , y) rec → subst₂ (R x y) (sym (wfInd-unfold <-wf P f x)) (sym (wfInd-unfold <-wf P f y)) (f-resp x y _ _ λ x′ y′ x′<x y′<y → rec (x′ , y′) (x′<x , y′<y))) _
{ "alphanum_fraction": 0.4251592357, "avg_line_length": 31.5577889447, "ext": "agda", "hexsha": "aaf5540ecc450bc94ae65e558a21b467ef7f6eec", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/msc-thesis-code", "max_forks_repo_path": "src/Util/Induction/WellFounded.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/msc-thesis-code", "max_issues_repo_path": "src/Util/Induction/WellFounded.agda", "max_line_length": 81, "max_stars_count": 5, "max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/msc-thesis-code", "max_stars_repo_path": "src/Util/Induction/WellFounded.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z", "num_tokens": 2675, "size": 6280 }
-- WARNING: This file was generated automatically by Vehicle -- and should not be modified manually! -- Metadata -- - Agda version: 2.6.2 -- - AISEC version: 0.1.0.1 -- - Time generated: ??? {-# OPTIONS --allow-exec #-} open import Vehicle open import Vehicle.Data.Tensor open import Data.Rational as ℚ using (ℚ) open import Data.List open import Relation.Binary.PropositionalEquality module autoencoderError-output where private VEHICLE_PROJECT_FILE = "TODO_projectFile" encode : Tensor ℚ (5 ∷ []) → Tensor ℚ (2 ∷ []) encode = evaluate record { projectFile = VEHICLE_PROJECT_FILE ; networkUUID = "TODO_networkUUID" } decode : Tensor ℚ (2 ∷ []) → Tensor ℚ (5 ∷ []) decode = evaluate record { projectFile = VEHICLE_PROJECT_FILE ; networkUUID = "TODO_networkUUID" } abstract identity : ∀ (x : Tensor ℚ (5 ∷ [])) → decode (encode x) ≡ x identity = checkProperty record { projectFile = VEHICLE_PROJECT_FILE ; propertyUUID = "TODO_propertyUUID" }
{ "alphanum_fraction": 0.6985743381, "avg_line_length": 25.8421052632, "ext": "agda", "hexsha": "d80741e89f8bf9fb68dade465fe0cd1a06b66f17", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2021-11-16T14:30:47.000Z", "max_forks_repo_forks_event_min_datetime": "2021-03-15T15:22:31.000Z", "max_forks_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "wenkokke/vehicle", "max_forks_repo_path": "examples/network/autoencoderError/autoencoderError-output.agda", "max_issues_count": 53, "max_issues_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674", "max_issues_repo_issues_event_max_datetime": "2021-12-15T22:42:01.000Z", "max_issues_repo_issues_event_min_datetime": "2021-04-16T07:26:42.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "wenkokke/vehicle", "max_issues_repo_path": "examples/network/autoencoderError/autoencoderError-output.agda", "max_line_length": 62, "max_stars_count": 11, "max_stars_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "wenkokke/vehicle", "max_stars_repo_path": "examples/network/autoencoderError/autoencoderError-output.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T01:35:39.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-24T05:55:15.000Z", "num_tokens": 274, "size": 982 }
{-# OPTIONS --without-K --rewriting #-} {- Imports everything that is not imported by something else. This is not supposed to be used anywhere, this is just a simple way to do `make all' This file is intentionally named index.agda so that Agda will generate index.html. favonia: On 2017/05/08, I further partition the results into multiple independent index[n].agda files because the garbage collection is not really working. -} module index1 where {- some group theory results -} import groups.ReducedWord import groups.ProductRepr import groups.CoefficientExtensionality {- homotopy groups of circles -} import homotopy.LoopSpaceCircle import homotopy.PinSn import homotopy.HopfJunior import homotopy.Hopf {- cohomology -} import cohomology.EMModel import cohomology.Sigma import cohomology.Coproduct import cohomology.Torus import cohomology.InverseInSusp import cohomology.MayerVietoris -- import cohomology.MayerVietorisExact -- FIXME {- prop * prop is still a prop -} import homotopy.PropJoinProp {- a space with preassigned homotopy groups -} import homotopy.SpaceFromGroups {- pushout 3x3 lemma -} {- These takes lots of time and memory to check. -} -- import homotopy.3x3.Commutes -- commented out because this does not run on travis. -- import homotopy.JoinAssoc3x3 -- commented out because this does not run on travis. {- covering spaces -} import homotopy.GroupSetsRepresentCovers import homotopy.AnyUniversalCoverIsPathSet import homotopy.PathSetIsInitalCover import homotopy.CircleCover {- van kampen -} -- see index3.agda {- blakers massey -} -- see index3.agda {- cw complexes -} -- see index2.agda -- There are some unported theorems -- import Spaces.IntervalProps -- import Algebra.F2NotCommutative -- import Spaces.LoopSpaceDecidableWedgeCircles -- import Homotopy.PullbackIsPullback -- import Homotopy.PushoutIsPushout -- import Homotopy.Truncation -- import Sets.QuotientUP
{ "alphanum_fraction": 0.7869791667, "avg_line_length": 25.6, "ext": "agda", "hexsha": "f9f2c9bdbdd4cbdabe200b97a2bb4cdfb888baba", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/index1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/index1.agda", "max_line_length": 85, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/index1.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 513, "size": 1920 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.NConnected open import lib.NType2 open import lib.types.Paths open import lib.types.Pi open import lib.types.Truncation open import lib.types.Unit open import lib.types.Bool open import lib.types.Suspension open import lib.types.IteratedSuspension module lib.types.Circle where {- Idea : data S¹ : Type₀ where base : S¹ loop : base == base I’m using Dan Licata’s trick to have a higher inductive type with definitional reduction rule for [base] -} {- favonia (2016/05): Now [Circle] is defined as [Sphere 1]. -} module _ where -- (already defined in IteratedSuspension.agda) -- S¹ : Type₀ -- S¹ = Sphere 1 base : S¹ base = north loop : base == base loop = σloop ⊙Bool false module S¹Elim {i} {P : S¹ → Type i} (base* : P base) (loop* : base* == base* [ P ↓ loop ]) where private north* = base* south* = transport P (merid false) base* merid*-general : ∀ {x : S¹} (p q : base == x) (loop* : base* == base* [ P ↓ p ∙ ! q ]) (b : Bool) → base* == transport P p base* [ P ↓ Bool-rec q p b ] merid*-general idp q loop* false = idp merid*-general idp q loop* true = !ᵈ' loop* merid* : ∀ (b : Bool) → north* == south* [ P ↓ merid b ] merid* false = merid*-general (merid false) (merid true) loop* false merid* true = merid*-general (merid false) (merid true) loop* true module SE = SuspElim north* south* merid* f : Π S¹ P f = SE.f private merid*-general-lemma : ∀ {x : S¹} (p q : base == x) (loop* : base* == base* [ P ↓ p ∙ ! q ]) → merid*-general p q loop* false ◃ !ᵈ (merid*-general p q loop* true) == loop* merid*-general-lemma idp q loop* = idp◃ _ ∙ !ᵈ-!ᵈ' loop* loop-β : apd f loop == loop* loop-β = apd f loop =⟨ apd-∙ f (merid false) (! (merid true)) ⟩ apd f (merid false) ◃ apd f (! (merid true)) =⟨ apd-! f (merid true) |in-ctx apd f (merid false) ◃_ ⟩ apd f (merid false) ◃ !ᵈ (apd f (merid true)) =⟨ SE.merid-β false |in-ctx _◃ !ᵈ (apd f (merid true)) ⟩ merid* false ◃ !ᵈ (apd f (merid true)) =⟨ SE.merid-β true |in-ctx (λ p → merid* false ◃ !ᵈ p) ⟩ merid* false ◃ !ᵈ (merid* true) =⟨ merid*-general-lemma (merid false) (merid true) loop* ⟩ loop* =∎ open S¹Elim public using () renaming (f to S¹-elim) module S¹Rec {i} {A : Type i} (base* : A) (loop* : base* == base*) where private module M = S¹Elim base* (↓-cst-in loop*) f : S¹ → A f = M.f loop-β : ap f loop == loop* loop-β = apd=cst-in {f = f} M.loop-β open S¹Rec public using () renaming (f to S¹-rec) S¹-rec-η : ∀ {i} {A : Type i} (f : S¹ → A) → ∀ x → S¹-rec (f base) (ap f loop) x == f x S¹-rec-η f = S¹-elim idp (↓-='-in' $ ! $ S¹Rec.loop-β (f base) (ap f loop)) module S¹RecType {i} (A : Type i) (e : A ≃ A) where open S¹Rec A (ua e) public coe-loop-β : (a : A) → coe (ap f loop) a == –> e a coe-loop-β a = coe (ap f loop) a =⟨ loop-β |in-ctx (λ u → coe u a) ⟩ coe (ua e) a =⟨ coe-β e a ⟩ –> e a =∎ coe!-loop-β : (a : A) → coe! (ap f loop) a == <– e a coe!-loop-β a = coe! (ap f loop) a =⟨ loop-β |in-ctx (λ u → coe! u a) ⟩ coe! (ua e) a =⟨ coe!-β e a ⟩ <– e a =∎ ↓-loop-out : {a a' : A} → a == a' [ f ↓ loop ] → –> e a == a' ↓-loop-out {a} {a'} p = –> e a =⟨ ! (coe-loop-β a) ⟩ coe (ap f loop) a =⟨ to-transp p ⟩ a' =∎ import lib.types.Generic1HIT as Generic1HIT module S¹G = Generic1HIT Unit Unit (idf _) (idf _) module P = S¹G.RecType (cst A) (cst e) private generic-S¹ : Σ S¹ f == Σ S¹G.T P.f generic-S¹ = eqv-tot where module To = S¹Rec (S¹G.cc tt) (S¹G.pp tt) to = To.f module From = S¹G.Rec (cst base) (cst loop) from : S¹G.T → S¹ from = From.f abstract to-from : (x : S¹G.T) → to (from x) == x to-from = S¹G.elim (λ _ → idp) (λ _ → ↓-∘=idf-in' to from (ap to (ap from (S¹G.pp tt)) =⟨ From.pp-β tt |in-ctx ap to ⟩ ap to loop =⟨ To.loop-β ⟩ S¹G.pp tt =∎)) from-to : (x : S¹) → from (to x) == x from-to = S¹-elim idp (↓-∘=idf-in' from to (ap from (ap to loop) =⟨ To.loop-β |in-ctx ap from ⟩ ap from (S¹G.pp tt) =⟨ From.pp-β tt ⟩ loop =∎)) eqv : S¹ ≃ S¹G.T eqv = equiv to from to-from from-to eqv-fib : f == P.f [ (λ X → (X → Type _)) ↓ ua eqv ] eqv-fib = ↓-app→cst-in (λ {t} p → S¹-elim {P = λ t → f t == P.f (–> eqv t)} idp (↓-='-in' (ap (P.f ∘ (–> eqv)) loop =⟨ ap-∘ P.f to loop ⟩ ap P.f (ap to loop) =⟨ To.loop-β |in-ctx ap P.f ⟩ ap P.f (S¹G.pp tt) =⟨ P.pp-β tt ⟩ ua e =⟨ ! loop-β ⟩ ap f loop =∎)) t ∙ ap P.f (↓-idf-ua-out eqv p)) eqv-tot : Σ S¹ f == Σ S¹G.T P.f eqv-tot = ap (uncurry Σ) (pair= (ua eqv) eqv-fib) import lib.types.Flattening as Flattening module FlatteningS¹ = Flattening Unit Unit (idf _) (idf _) (cst A) (cst e) open FlatteningS¹ public hiding (flattening-equiv; module P) flattening-S¹ : Σ S¹ f == Wt flattening-S¹ = generic-S¹ ∙ ua FlatteningS¹.flattening-equiv instance S¹-conn : is-connected 0 S¹ S¹-conn = Sphere-conn 1
{ "alphanum_fraction": 0.5239322533, "avg_line_length": 29.8461538462, "ext": "agda", "hexsha": "8d4e411c119f019966161abd62bde5d09f106f19", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Circle.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Circle.agda", "max_line_length": 86, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Circle.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2147, "size": 5432 }
module _ where open import Common.Prelude open import Common.Reflection postulate stuck : TC ⊤ macro not-so-good : Tactic not-so-good hole = stuck fail : Nat fail = not-so-good
{ "alphanum_fraction": 0.7180851064, "avg_line_length": 11.75, "ext": "agda", "hexsha": "c25a2db3ca1e4bfad8e2f4937b52dd9d10df3ebc", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/PostulateMacro.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/PostulateMacro.agda", "max_line_length": 29, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/PostulateMacro.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 54, "size": 188 }
import Issue2447.Type-error
{ "alphanum_fraction": 0.8571428571, "avg_line_length": 14, "ext": "agda", "hexsha": "29c090a6a134659ca3bdf7c886571a4b76fcb8b8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue2447b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue2447b.agda", "max_line_length": 27, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue2447b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 7, "size": 28 }
-- Monoidal categories {-# OPTIONS --safe #-} module Cubical.Categories.Monoidal.Base where open import Cubical.Categories.Category.Base open import Cubical.Categories.Constructions.BinProduct open import Cubical.Categories.Functor.Base open import Cubical.Categories.Functor.BinProduct open import Cubical.Categories.Morphism open import Cubical.Categories.NaturalTransformation.Base open import Cubical.Foundations.Prelude module _ {ℓ ℓ' : Level} (C : Category ℓ ℓ') where open Category C private record TensorStr : Type (ℓ-max ℓ ℓ') where field ─⊗─ : Functor (C × C) C unit : ob open Functor -- Useful tensor product notation _⊗_ : ob → ob → ob x ⊗ y = ─⊗─ .F-ob (x , y) _⊗ₕ_ : ∀ {x y z w} → Hom[ x , y ] → Hom[ z , w ] → Hom[ x ⊗ z , y ⊗ w ] f ⊗ₕ g = ─⊗─ .F-hom (f , g) record StrictMonStr : Type (ℓ-max ℓ ℓ') where field tenstr : TensorStr open TensorStr tenstr public field -- Axioms - strict assoc : ∀ x y z → x ⊗ (y ⊗ z) ≡ (x ⊗ y) ⊗ z idl : ∀ x → unit ⊗ x ≡ x idr : ∀ x → x ⊗ unit ≡ x record MonoidalStr : Type (ℓ-max ℓ ℓ') where field tenstr : TensorStr open TensorStr tenstr public private -- Private names to make the axioms below look nice x⊗[y⊗z] : Functor (C × C × C) C x⊗[y⊗z] = ─⊗─ ∘F (𝟙⟨ C ⟩ ×F ─⊗─) [x⊗y]⊗z : Functor (C × C × C) C [x⊗y]⊗z = ─⊗─ ∘F (─⊗─ ×F 𝟙⟨ C ⟩) ∘F (×C-assoc C C C) x = 𝟙⟨ C ⟩ 1⊗x = ─⊗─ ∘F (rinj C C unit) x⊗1 = ─⊗─ ∘F (linj C C unit) field -- "Axioms" - up to natural isomorphism α : x⊗[y⊗z] ≅ᶜ [x⊗y]⊗z η : 1⊗x ≅ᶜ x ρ : x⊗1 ≅ᶜ x open NatIso -- More nice notations α⟨_,_,_⟩ : (x y z : ob) → Hom[ x ⊗ (y ⊗ z) , (x ⊗ y) ⊗ z ] α⟨ x , y , z ⟩ = α .trans ⟦ ( x , y , z ) ⟧ η⟨_⟩ : (x : ob) → Hom[ unit ⊗ x , x ] η⟨ x ⟩ = η .trans ⟦ x ⟧ ρ⟨_⟩ : (x : ob) → Hom[ x ⊗ unit , x ] ρ⟨ x ⟩ = ρ .trans ⟦ x ⟧ field -- Coherence conditions pentagon : ∀ w x y z → id ⊗ₕ α⟨ x , y , z ⟩ ⋆ α⟨ w , x ⊗ y , z ⟩ ⋆ α⟨ w , x , y ⟩ ⊗ₕ id ≡ α⟨ w , x , y ⊗ z ⟩ ⋆ α⟨ w ⊗ x , y , z ⟩ triangle : ∀ x y → α⟨ x , unit , y ⟩ ⋆ ρ⟨ x ⟩ ⊗ₕ id ≡ id ⊗ₕ η⟨ y ⟩ open isIso -- Inverses of α, η, ρ for convenience α⁻¹⟨_,_,_⟩ : (x y z : ob) → Hom[ (x ⊗ y) ⊗ z , x ⊗ (y ⊗ z) ] α⁻¹⟨ x , y , z ⟩ = α .nIso (x , y , z) .inv η⁻¹⟨_⟩ : (x : ob) → Hom[ x , unit ⊗ x ] η⁻¹⟨ x ⟩ = η .nIso (x) .inv ρ⁻¹⟨_⟩ : (x : ob) → Hom[ x , x ⊗ unit ] ρ⁻¹⟨ x ⟩ = ρ .nIso (x) .inv record StrictMonCategory ℓ ℓ' : Type (ℓ-suc (ℓ-max ℓ ℓ')) where field C : Category ℓ ℓ' sms : StrictMonStr C open Category C public open StrictMonStr sms public record MonoidalCategory ℓ ℓ' : Type (ℓ-suc (ℓ-max ℓ ℓ')) where field C : Category ℓ ℓ' monstr : MonoidalStr C open Category C public open MonoidalStr monstr public
{ "alphanum_fraction": 0.5026845638, "avg_line_length": 24.4262295082, "ext": "agda", "hexsha": "21a2c05fb810308dfb216bd0d18956daa3434ef5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Categories/Monoidal/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Categories/Monoidal/Base.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Categories/Monoidal/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1349, "size": 2980 }
{-# OPTIONS --copatterns #-} module SplitResult where open import Common.Product test : {A B : Set} (a : A) (b : B) → A × B test a b = {!!} testFun : {A B : Set} (a : A) (b : B) → A × B testFun = {!!}
{ "alphanum_fraction": 0.5242718447, "avg_line_length": 15.8461538462, "ext": "agda", "hexsha": "c546e94dfde065392185a63d743ce078b33bbbdf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/interaction/SplitResult.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/interaction/SplitResult.agda", "max_line_length": 45, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/interaction/SplitResult.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 75, "size": 206 }
-- | NOTE: This module can only represent file paths which are valid strings. -- On Linux, a file path may be an arbitrary sequence of bytes, but using anything -- except utf8 for file paths is a terrible idea. -- -- What should happen if we come across a non utf8 path from an untrusted source? -- crash -> denial-of-service -- ignore -> maybe security holes -- -- Currently, the behaviour for non-textual file paths is undefined. module System.FilePath where open import Prelude.Unit open import Prelude.String data Kind : Set where Rel : Kind Abs : Kind abstract record Path (kind : Kind) : Set where constructor mkPath field path : String open import Prelude.Monoid open Path _//_ : ∀ {k} → Path k → Path Rel → Path k x // y = mkPath (path x <> "/" <> path y) _∙_ : ∀ {k} → Path k → String → Path k p ∙ ext = mkPath (path p <> "." <> ext) toString : ∀ {k} → Path k → String toString p = path p relative : String → Path Rel relative = mkPath absolute : String → Path Abs absolute = mkPath
{ "alphanum_fraction": 0.6650717703, "avg_line_length": 24.880952381, "ext": "agda", "hexsha": "fde40973d328974b2f66dd7279a3b749ee782699", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "t-more/agda-prelude", "max_forks_repo_path": "src/System/FilePath.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "t-more/agda-prelude", "max_issues_repo_path": "src/System/FilePath.agda", "max_line_length": 82, "max_stars_count": 111, "max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "t-more/agda-prelude", "max_stars_repo_path": "src/System/FilePath.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 284, "size": 1045 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.CommRing.Integers where open import Cubical.Foundations.Prelude open import Cubical.Algebra.CommRing open import Cubical.HITs.Ints.BiInvInt renaming ( _+_ to _+ℤ_; -_ to _-ℤ_; +-assoc to +ℤ-assoc; +-comm to +ℤ-comm ) BiInvIntAsCommRing : CommRing {ℓ-zero} BiInvIntAsCommRing = makeCommRing zero (suc zero) _+ℤ_ _·_ _-ℤ_ isSetBiInvInt +ℤ-assoc +-zero +-invʳ +ℤ-comm ·-assoc ·-identityʳ (λ x y z → sym (·-distribˡ x y z)) ·-comm
{ "alphanum_fraction": 0.6636363636, "avg_line_length": 22.9166666667, "ext": "agda", "hexsha": "a759762e226d60a93ff538a4ff2b64fe58f8d7ef", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Algebra/CommRing/Integers.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Algebra/CommRing/Integers.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Algebra/CommRing/Integers.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 204, "size": 550 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import LibraBFT.Lemmas open import LibraBFT.Base.PKCS open import LibraBFT.Base.Types open import LibraBFT.Abstract.Types open import LibraBFT.Yasm.Base open import LibraBFT.Yasm.AvailableEpochs using (AvailableEpochs) renaming (lookup'' to EC-lookup) import LibraBFT.Yasm.AvailableEpochs as AE -- This module provides some definitions and properties that facilitate -- proofs of properties about a distributed system modeled by Yasm.System -- paramaterized by some SystemParameters. module LibraBFT.Yasm.Properties (parms : SystemParameters) where open import LibraBFT.Yasm.System parms open SystemParameters parms open EpochConfig -- A ValidPartForPK collects the assumptions about what a /part/ in the outputs of an honest verifier -- satisfies: (i) the epoch field is consistent with the existent epochs and (ii) the verifier is -- a member of the associated epoch config, and (iii) has the given PK in that epoch. record ValidPartForPK {e}(𝓔s : AvailableEpochs e)(part : Part)(pk : PK) : Set₁ where constructor mkValidPartForPK field vp-epoch : part-epoch part < e vp-ec : EpochConfig vp-ec-≡ : AE.lookup'' 𝓔s vp-epoch ≡ vp-ec vp-member : Member vp-ec vp-key : getPubKey vp-ec vp-member ≡ pk open ValidPartForPK public -- A valid part remains valid when new epochs are added ValidPartForPK-stable-epoch : ∀{e part pk}{𝓔s : AvailableEpochs e}(𝓔 : EpochConfigFor e) → ValidPartForPK 𝓔s part pk → ValidPartForPK (AE.append 𝓔 𝓔s) part pk ValidPartForPK-stable-epoch {pk = pk} {𝓔s} 𝓔 (mkValidPartForPK e ec refl emem vpk) = record { vp-epoch = ≤-step e ; vp-ec = ec ; vp-ec-≡ = AE.lookup''-≤-step-lemma 𝓔s 𝓔 e ; vp-member = emem ; vp-key = vpk } -- A valid part remains valid ValidPartForPK-stable : ∀{e e'}{st : SystemState e}{st' : SystemState e'} → Step* st st' → ∀{part pk} → ValidPartForPK (availEpochs st) part pk → ValidPartForPK (availEpochs st') part pk ValidPartForPK-stable step-0 v = v ValidPartForPK-stable (step-s st (step-epoch 𝓔)) v = ValidPartForPK-stable-epoch 𝓔 (ValidPartForPK-stable st v) ValidPartForPK-stable (step-s st (step-peer _)) v = ValidPartForPK-stable st v -- We say that an implementation produces only valid parts iff all parts of every message in the -- output of a 'StepPeerState' are either: (i) a valid new part (i.e., the part is valid and has -- not been included in a previously sent message with the same signature), or (ii) the part been -- included in a previously sent message with the same signature. StepPeerState-AllValidParts : Set₁ StepPeerState-AllValidParts = ∀{e s m part pk outs α}{𝓔s : AvailableEpochs e}{st : SystemState e} → (r : ReachableSystemState st) → Meta-Honest-PK pk → StepPeerState α 𝓔s (msgPool st) (Map-lookup α (peerStates st)) s outs → m ∈ outs → part ⊂Msg m → (ver : WithVerSig pk part) -- NOTE: this doesn't DIRECTLY imply that nobody else has sent a -- message with the same signature just that the author of the part -- hasn't. → (ValidPartForPK 𝓔s part pk × ¬ (MsgWithSig∈ pk (ver-signature ver) (msgPool st))) ⊎ MsgWithSig∈ pk (ver-signature ver) (msgPool st) -- A /part/ was introduced by a specific step when: IsValidNewPart : ∀{e e'}{pre : SystemState e}{post : SystemState e'} → Signature → PK → Step pre post → Set₁ IsValidNewPart _ _ (step-epoch _) = Lift (ℓ+1 0ℓ) ⊥ -- said step is a /step-peer/ and IsValidNewPart {pre = pre} sig pk (step-peer pstep) -- the part has never been seen before = ¬ (MsgWithSig∈ pk sig (msgPool pre)) × Σ (MsgWithSig∈ pk sig (msgPool (StepPeer-post pstep))) (λ m → ValidPartForPK (availEpochs pre) (msgPart m) pk) -- When we can prove that the implementation provided by 'parms' at the -- top of this module satisfies 'StepPeerState-AllValidParts', we can -- prove a number of useful structural properties: -- TODO-2: Refactor into a file (LibraBFT.Yasm.Properties.Structural) later on -- if this grows too large. module Structural (sps-avp : StepPeerState-AllValidParts) where -- We can unwind the state and highlight the step where a part was -- originally sent. This 'unwind' function combined with Any-Step-elim -- enables a powerful form of reasoning. The 'honestVoteEpoch' below -- exemplifies this well. unwind : ∀{e}{st : SystemState e}(tr : ReachableSystemState st) → ∀{p m σ pk} → Meta-Honest-PK pk → p ⊂Msg m → (σ , m) ∈ msgPool st → (ver : WithVerSig pk p) → Any-Step ((IsValidNewPart (ver-signature ver) pk)) tr unwind (step-s tr (step-epoch _)) hpk p⊂m m∈sm sig = step-there (unwind tr hpk p⊂m m∈sm sig) unwind (step-s tr (step-peer {pid = β} {outs = outs} {pre = pre} sp)) hpk p⊂m m∈sm sig with Any-++⁻ (List-map (β ,_) outs) {msgPool pre} m∈sm ...| inj₂ furtherBack = step-there (unwind tr hpk p⊂m furtherBack sig) ...| inj₁ thisStep with sp ...| step-cheat fm isCheat with thisStep ...| here refl with isCheat p⊂m sig ...| inj₁ abs = ⊥-elim (hpk abs) ...| inj₂ sentb4 with unwind tr {p = msgPart sentb4} hpk (msg⊆ sentb4) (msg∈pool sentb4) (msgSigned sentb4) ...| res rewrite msgSameSig sentb4 = step-there res unwind (step-s tr (step-peer {pid = β} {outs = outs} {pre = pre} sp)) hpk p⊂m m∈sm sig | inj₁ thisStep | step-honest x with Any-satisfied-∈ (Any-map⁻ thisStep) ...| (m , refl , m∈outs) with sps-avp tr hpk x m∈outs p⊂m sig ...| inj₂ sentb4 with unwind tr {p = msgPart sentb4} hpk (msg⊆ sentb4) (msg∈pool sentb4) (msgSigned sentb4) ...| res rewrite msgSameSig sentb4 = step-there res unwind (step-s tr (step-peer {pid = β} {outs = outs} {pre = pre} sp)) {p} hpk p⊂m m∈sm sig | inj₁ thisStep | step-honest x | (m , refl , m∈outs) | inj₁ (valid-part , notBefore) = step-here tr (notBefore , MsgWithSig∈-++ˡ (mkMsgWithSig∈ _ _ p⊂m β thisStep sig refl) , valid-part) -- Unwind is inconvenient to use by itself because we have to do -- induction on Any-Step-elim. The 'honestPartValid' property below -- provides a fairly general result conveniently: for every part -- verifiable with an honest PK, there is a msg with the same -- signature that is valid for some pid. honestPartValid : ∀ {e st} → ReachableSystemState {e} st → ∀ {pk nm v sender} → Meta-Honest-PK pk → v ⊂Msg nm → (sender , nm) ∈ msgPool st → (ver : WithVerSig pk v) → Σ (MsgWithSig∈ pk (ver-signature ver) (msgPool st)) (λ msg → (ValidPartForPK (availEpochs st) (msgPart msg) pk)) honestPartValid {e} {st} r {pk = pk} hpk v⊂m m∈pool ver -- We extract two pieces of important information from the place where the part 'v' -- was first sent: (a) there is a message with the same signature /in the current pool/ -- and (b) its epoch is less than e. = Any-Step-elim (λ { {st = step-epoch _} () ; {st = step-peer ps} (_ , new , valid) tr → MsgWithSig∈-Step* tr new , ValidPartForPK-stable tr (subst (λ P → ValidPartForPK _ P pk) (MsgWithSig∈-Step*-part tr new) valid) }) (unwind r hpk v⊂m m∈pool ver) -- Unforgeability is also an important property stating that every part that is -- verified with an honest public key has either been sent by α or is a replay -- of another message sent before. ext-unforgeability' : ∀{e α m part pk}{st : SystemState e} → ReachableSystemState st -- If a message m has been sent by α, containing part → (α , m) ∈ msgPool st → part ⊂Msg m -- And the part can be verified with an honest public key, → (sig : WithVerSig pk part) → Meta-Honest-PK pk -- then either the part is a valid part by α (meaning that α can -- sign the part itself) or a message with the same signature has -- been sent previously. → ValidPartForPK (availEpochs st) part pk ⊎ MsgWithSig∈ pk (ver-signature sig) (msgPool st) ext-unforgeability' (step-s st (step-epoch 𝓔)) m∈sm p⊆m sig hpk = ⊎-map (ValidPartForPK-stable-epoch 𝓔) id (ext-unforgeability' st m∈sm p⊆m sig hpk) ext-unforgeability' {part = part} (step-s st (step-peer {pid = β} {outs = outs} {pre = pre} sp)) m∈sm p⊆m sig hpk with Any-++⁻ (List-map (β ,_) outs) {msgPool pre} m∈sm ...| inj₂ furtherBack = MsgWithSig∈-++ʳ <⊎$> (ext-unforgeability' st furtherBack p⊆m sig hpk) ...| inj₁ thisStep with sp ...| step-cheat fm isCheat with thisStep ...| here refl with isCheat p⊆m sig ...| inj₁ abs = ⊥-elim (hpk abs) ...| inj₂ sentb4 = inj₂ (MsgWithSig∈-++ʳ sentb4) ext-unforgeability' {m = m} {part = part} (step-s st (step-peer {pid = β} {outs = outs} {pre = pre} sp)) m∈sm p⊆m sig hpk | inj₁ thisStep | step-honest x with Any-satisfied-∈ (Any-map⁻ thisStep) ...| (m , refl , m∈outs) = ⊎-map proj₁ MsgWithSig∈-++ʳ (sps-avp st hpk x m∈outs p⊆m sig) -- The ext-unforgeability' property can be collapsed in a single clause. -- TODO-2: so far, ext-unforgeability is used only to get a MsgWithSig∈ that is passed to -- msgWithSigSentByAuthor, which duplicates some of the reasoning in the proof of -- ext-unforgeability'; should these properties possibly be combined into one simpler proof? ext-unforgeability : ∀{e α₀ m part pk}{st : SystemState e} → ReachableSystemState st → (α₀ , m) ∈ msgPool st → part ⊂Msg m → (sig : WithVerSig pk part) → Meta-Honest-PK pk → MsgWithSig∈ pk (ver-signature sig) (msgPool st) ext-unforgeability {_} {α₀} {m} {st = st} rst m∈sm p⊂m sig hpk with ext-unforgeability' rst m∈sm p⊂m sig hpk ...| inj₁ p = mkMsgWithSig∈ _ _ p⊂m α₀ m∈sm sig refl ...| inj₂ sentb4 = sentb4 ¬cheatForgeNew : ∀ {e pid pk vsig mst outs m}{st : SystemState e} → (sp : StepPeer st pid mst outs) → outs ≡ m ∷ [] → (ic : isCheat sp) → Meta-Honest-PK pk → MsgWithSig∈ pk vsig ((pid , m) ∷ msgPool st) → MsgWithSig∈ pk vsig (msgPool st) ¬cheatForgeNew sc@(step-cheat fm isCheat) refl _ hpk mws with msg∈pool mws ...| there m∈pool = mkMsgWithSig∈ (msgWhole mws) (msgPart mws) (msg⊆ mws) (msgSender mws) m∈pool (msgSigned mws) (msgSameSig mws) ...| here m∈pool with isCheat (subst (msgPart mws ⊂Msg_) (cong proj₂ m∈pool) (msg⊆ mws)) (msgSigned mws) ...| inj₁ dis = ⊥-elim (hpk dis) ...| inj₂ mws' rewrite msgSameSig mws = mws' msgWithSigSentByAuthor : ∀ {e pk sig}{st : SystemState e} → ReachableSystemState st → Meta-Honest-PK pk → MsgWithSig∈ pk sig (msgPool st) → Σ (MsgWithSig∈ pk sig (msgPool st)) λ mws → ValidPartForPK (availEpochs st) (msgPart mws) pk msgWithSigSentByAuthor step-0 _ () msgWithSigSentByAuthor (step-s {pre = pre} preach (step-epoch 𝓔)) hpk mws rewrite step-epoch-does-not-send pre 𝓔 with msgWithSigSentByAuthor preach hpk mws ...| mws' , vpb = mws' , ValidPartForPK-stable {st = pre} (step-s step-0 (step-epoch 𝓔)) vpb msgWithSigSentByAuthor {pk = pk} (step-s {pre = pre} preach (step-peer theStep@(step-cheat fm cheatCons))) hpk mws with (¬cheatForgeNew theStep refl unit hpk mws) ...| mws' with msgWithSigSentByAuthor preach hpk mws' ...| mws'' , vpb'' = MsgWithSig∈-++ʳ mws'' , vpb'' msgWithSigSentByAuthor {e} (step-s {pre = pre} preach (step-peer {pid = pid} {outs = outs} (step-honest sps))) hpk mws with Any-++⁻ (List-map (pid ,_) outs) {msgPool pre} (msg∈pool mws) ...| inj₂ furtherBack with msgWithSigSentByAuthor preach hpk (MsgWithSig∈-transp mws furtherBack) ...| mws' , vpb' = MsgWithSig∈-++ʳ mws' , vpb' msgWithSigSentByAuthor {e} (step-s {pre = pre} preach (step-peer {pid = pid} {outs = outs} (step-honest sps))) hpk mws | inj₁ thisStep with Any-satisfied-∈ (Any-map⁻ thisStep) ...| (m' , refl , m∈outs) with sps-avp preach hpk sps m∈outs (msg⊆ mws) (msgSigned mws) ...| inj₁ (vpbα₀ , _) = mws , vpbα₀ ...| inj₂ mws' with msgWithSigSentByAuthor preach hpk mws' ...| mws'' , vpb'' rewrite sym (msgSameSig mws) = MsgWithSig∈-++ʳ mws'' , vpb''
{ "alphanum_fraction": 0.6101365977, "avg_line_length": 52.537254902, "ext": "agda", "hexsha": "bdfc81a45210c2a94bf14eaa0b73c8351632ae5e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b7dd98dd90d98fbb934ef8cb4f3314940986790d", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "lisandrasilva/bft-consensus-agda-1", "max_forks_repo_path": "LibraBFT/Yasm/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b7dd98dd90d98fbb934ef8cb4f3314940986790d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "lisandrasilva/bft-consensus-agda-1", "max_issues_repo_path": "LibraBFT/Yasm/Properties.agda", "max_line_length": 134, "max_stars_count": null, "max_stars_repo_head_hexsha": "b7dd98dd90d98fbb934ef8cb4f3314940986790d", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "lisandrasilva/bft-consensus-agda-1", "max_stars_repo_path": "LibraBFT/Yasm/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4195, "size": 13397 }
module Issue3080 where open import Agda.Builtin.Nat open import Agda.Builtin.Equality data Fin (m : Nat) : Set where fzero' : (n : Nat) (p : m ≡ suc n) → Fin m fsuc' : (n : Nat) (p : m ≡ suc n) (i : Fin n) → Fin m lift : (m : Nat) (i : Fin m) → Fin (suc m) lift m (fzero' n p) = {!p!} lift m (fsuc' n p i) = {!p!} -- Split on p here module PatternSynonyms where pattern fzero n = fzero' n refl pattern fsuc n i = fsuc' n refl i -- Splitting produces -- -- lift .(suc n) (.Issue3080.PatternSynonyms.fsuc n i) = ? -- -- which fails to parse.
{ "alphanum_fraction": 0.5905096661, "avg_line_length": 22.76, "ext": "agda", "hexsha": "0af32696a6b97f91e57e08b41bcc3b29f336ebf9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue3080.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue3080.agda", "max_line_length": 60, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue3080.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 217, "size": 569 }
open import Relation.Binary.Core module InsertSort.Impl1.Correctness.Order {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) where open import Data.List open import Data.Sum open import InsertSort.Impl1 _≤_ tot≤ open import List.Sorted _≤_ lemma-insert-sorted : {xs : List A}(x : A) → Sorted xs → Sorted (insert x xs) lemma-insert-sorted {xs = .[]} x nils = singls x lemma-insert-sorted {xs = .([ y ])} x (singls y) with tot≤ x y ... | inj₁ x≤y = conss x≤y (singls y) ... | inj₂ y≤x = conss y≤x (singls x) lemma-insert-sorted x (conss {y} {z} {ys} y≤z szys) with tot≤ x y ... | inj₁ x≤y = conss x≤y (conss y≤z szys) ... | inj₂ y≤x with tot≤ x z | lemma-insert-sorted x szys ... | inj₁ x≤z | _ = conss y≤x (conss x≤z szys) ... | inj₂ z≤x | h = conss y≤z h theorem-insertSort-sorted : (xs : List A) → Sorted (insertSort xs) theorem-insertSort-sorted [] = nils theorem-insertSort-sorted (x ∷ xs) = lemma-insert-sorted x (theorem-insertSort-sorted xs)
{ "alphanum_fraction": 0.614017769, "avg_line_length": 32.6774193548, "ext": "agda", "hexsha": "3068da93d10bacba9fe4bcf79b488018e4f890ae", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/InsertSort/Impl1/Correctness/Order.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/InsertSort/Impl1/Correctness/Order.agda", "max_line_length": 90, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/InsertSort/Impl1/Correctness/Order.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 377, "size": 1013 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Natural numbers represented in binary natively in Agda. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Nat.Binary where open import Data.Nat.Binary.Base public open import Data.Nat.Binary.Properties public using (_≟_)
{ "alphanum_fraction": 0.4739454094, "avg_line_length": 28.7857142857, "ext": "agda", "hexsha": "9b84b0102e4814c473d7725f63986e13e9c913d6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Nat/Binary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Nat/Binary.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Nat/Binary.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 62, "size": 403 }
open import Common.Prelude open import Common.Reflection module TermSplicingLooping where mutual f : Set -> Set f = unquote (give (def (quote f) []))
{ "alphanum_fraction": 0.7243589744, "avg_line_length": 17.3333333333, "ext": "agda", "hexsha": "b3a53e0ab722a88bea496c8862651002b8242b20", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Fail/TermSplicingLooping.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Fail/TermSplicingLooping.agda", "max_line_length": 39, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Fail/TermSplicingLooping.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 44, "size": 156 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Instance.Properties.Setoids.Complete where open import Level open import Data.Product using (Σ; proj₁; proj₂; _,_; Σ-syntax; _×_; -,_) open import Function.Equality using (Π) open import Relation.Binary using (Setoid; Rel) open import Categories.Category using (Category; _[_,_]) open import Categories.Functor open import Categories.Category.Instance.Setoids open import Categories.Category.Complete import Categories.Category.Construction.Cones as Co open Π using (_⟨$⟩_) Setoids-Complete : (o ℓ e c ℓ′ : Level) → Complete o ℓ e (Setoids (c ⊔ ℓ ⊔ o ⊔ ℓ′) (o ⊔ ℓ′)) Setoids-Complete o ℓ e c ℓ′ {J} F = record { terminal = record { ⊤ = record { N = record { Carrier = Σ (∀ j → F₀.Carrier j) (λ S → ∀ {X Y} (f : J [ X , Y ]) → [ F₀ Y ] F₁ f ⟨$⟩ S X ≈ S Y) ; _≈_ = λ { (S₁ , _) (S₂ , _) → ∀ j → [ F₀ j ] S₁ j ≈ S₂ j } ; isEquivalence = record { refl = λ j → F₀.refl j ; sym = λ a≈b j → F₀.sym j (a≈b j) ; trans = λ a≈b b≈c j → F₀.trans j (a≈b j) (b≈c j) } } ; apex = record { ψ = λ j → record { _⟨$⟩_ = λ { (S , _) → S j } ; cong = λ eq → eq j } ; commute = λ { {X} {Y} X⇒Y {_ , eq} {y} f≈g → F₀.trans Y (eq X⇒Y) (f≈g Y) } } } ; ⊤-is-terminal = record { ! = λ {K} → let module K = Cone K in record { arr = record { _⟨$⟩_ = λ x → (λ j → K.ψ j ⟨$⟩ x) , λ f → K.commute f (Setoid.refl K.N) ; cong = λ a≈b j → Π.cong (K.ψ j) a≈b } ; commute = λ x≈y → Π.cong (K.ψ _) x≈y } ; !-unique = λ {K} f x≈y j → let module K = Cone K in F₀.sym j (Cone⇒.commute f (Setoid.sym K.N x≈y)) } } } where open Functor F open Co F module J = Category J module F₀ j = Setoid (F₀ j) [_]_≈_ = Setoid._≈_
{ "alphanum_fraction": 0.4826560951, "avg_line_length": 32.0317460317, "ext": "agda", "hexsha": "fd386cbd4891687b16a73c85b3c063ee3dc826df", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Instance/Properties/Setoids/Complete.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Instance/Properties/Setoids/Complete.agda", "max_line_length": 92, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Instance/Properties/Setoids/Complete.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 736, "size": 2018 }
module Ints.Add.Assoc where open import Ints open import Nats renaming (suc to nsuc; _+_ to _:+:_) open import Nats.Add.Assoc open import Nats.Add.Comm open import Ints.Add.Comm open import Equality open import Function ------------------------------------------------------------------------ -- internal stuffs private 0+a=a : ∀ a → + 0 + a ≡ a 0+a=a (+ n ) = refl 0+a=a (-[1+ n ]) = refl a+0=a : ∀ a → a + + 0 ≡ a a+0=a a rewrite int-add-comm a (+ 0) | 0+a=a a = refl z+/b+c/=/z+b/+c : ∀ b c → + 0 + (b + c) ≡ (+ 0 + b) + c z+/b+c/=/z+b/+c (+ a ) (+ b ) = refl z+/b+c/=/z+b/+c (-[1+ a ]) (-[1+ b ]) = refl z+/b+c/=/z+b/+c (+ a ) (-[1+ b ]) rewrite 0+a=a (a ⊖ nsuc b) = refl z+/b+c/=/z+b/+c (-[1+ a ]) (+ b ) rewrite 0+a=a (b ⊖ nsuc a) = refl a+b=a--b : ∀ a b → a + b ≡ a - (- b) a+b=a--b a (+ zero ) = refl a+b=a--b a (+ nsuc n) rewrite a+b=a--b a (+ n) = refl a+b=a--b a (-[1+ n ]) = refl a-b+c=a+c-b : ∀ a b c → a ⊖ b + + c ≡ a :+: c ⊖ b a-b+c=a+c-b zero zero _ = refl a-b+c=a+c-b zero (nsuc _) _ = refl a-b+c=a+c-b (nsuc _) zero _ = refl a-b+c=a+c-b (nsuc a) (nsuc b) c = a-b+c=a+c-b a b c a+/b-c/=a+b-c : ∀ a b c → + a + (b ⊖ c) ≡ a :+: b ⊖ c a+/b-c/=a+b-c a b c rewrite int-add-comm (+ a) $ b ⊖ c | a-b+c=a+c-b b c a | nat-add-comm a b = refl b-c-a=b-/c+a/ : ∀ a b c → b ⊖ c + -[1+ a ] ≡ b ⊖ (nsuc c :+: a) b-c-a=b-/c+a/ _ zero zero = refl b-c-a=b-/c+a/ _ zero (nsuc _) = refl b-c-a=b-/c+a/ _ (nsuc _) zero = refl b-c-a=b-/c+a/ a (nsuc b) (nsuc c) = b-c-a=b-/c+a/ a b c -a+/b-c/=b-/a+c/ : ∀ a b c → -[1+ a ] + (b ⊖ c) ≡ b ⊖ (nsuc a :+: c) -a+/b-c/=b-/a+c/ a b c rewrite int-add-comm -[1+ a ] $ b ⊖ c | b-c-a=b-/c+a/ a b c | nat-add-comm a c = refl a+/b+c/=/a+b/+c : ∀ a b c → a + (b + c) ≡ a + b + c a+/b+c/=/a+b/+c (+ zero) b c rewrite 0+a=a (b + c) | 0+a=a b = refl a+/b+c/=/a+b/+c a (+ zero) c rewrite 0+a=a c | a+0=a a = refl a+/b+c/=/a+b/+c a b (+ zero) rewrite a+0=a b | a+0=a (a + b) = refl a+/b+c/=/a+b/+c (+ a) (+ b) (+ c) rewrite nat-add-assoc a b c = refl a+/b+c/=/a+b/+c -[1+ a ] -[1+ b ] (+ nsuc c) rewrite -a+/b-c/=b-/a+c/ a c b = refl a+/b+c/=/a+b/+c -[1+ a ] (+ nsuc b) -[1+ c ] rewrite -a+/b-c/=b-/a+c/ a b c | b-c-a=b-/c+a/ c b a = refl a+/b+c/=/a+b/+c (+ nsuc a) -[1+ b ] -[1+ c ] rewrite b-c-a=b-/c+a/ c a b = refl a+/b+c/=/a+b/+c (+ nsuc a) -[1+ b ] (+ nsuc c) rewrite a-b+c=a+c-b a b $ nsuc c | a+/b-c/=a+b-c (nsuc a) c b | sym $ nat-add-assoc a 1 c | nat-add-comm a 1 = refl a+/b+c/=/a+b/+c -[1+ a ] (+ nsuc b) (+ nsuc c) rewrite a-b+c=a+c-b b a (nsuc c) = refl a+/b+c/=/a+b/+c -[1+ a ] -[1+ b ] -[1+ c ] rewrite nat-add-comm a $ nsuc $ b :+: c | nat-add-comm (b :+: c) a | nat-add-assoc a b c = refl a+/b+c/=/a+b/+c (+ nsuc a) (+ nsuc b) -[1+ c ] rewrite a+/b-c/=a+b-c (nsuc a) b c | sym $ nat-add-assoc a 1 b | nat-add-comm a 1 = refl ------------------------------------------------------------------------ -- public aliases int-add-assoc : ∀ a b c → a + (b + c) ≡ a + b + c int-add-assoc = a+/b+c/=/a+b/+c
{ "alphanum_fraction": 0.4029535865, "avg_line_length": 31.9038461538, "ext": "agda", "hexsha": "d04f404e542244a215f564e981e3571ed953af1b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ice1k/Theorems", "max_forks_repo_path": "src/Ints/Add/Assoc.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ice1k/Theorems", "max_issues_repo_path": "src/Ints/Add/Assoc.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ice1k/Theorems", "max_stars_repo_path": "src/Ints/Add/Assoc.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z", "num_tokens": 1453, "size": 3318 }
mutual data D : Set where c : R → D record R : Set where inductive field out : D open R f : D → {A : Set} → A f (c x) = f (out x) -- should termination check
{ "alphanum_fraction": 0.527173913, "avg_line_length": 11.5, "ext": "agda", "hexsha": "89d9e4ae6bf9feb377cd4bf8c103245e2c365240", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/TerminationInductiveProjectionFromVariable.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/TerminationInductiveProjectionFromVariable.agda", "max_line_length": 27, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/TerminationInductiveProjectionFromVariable.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 68, "size": 184 }
{- Functions building DUARels on constant families -} {-# OPTIONS --safe #-} module Cubical.Displayed.Constant where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Displayed.Base open import Cubical.Displayed.Subst private variable ℓ ℓA ℓA' ℓP ℓ≅A ℓ≅A' ℓB ℓB' ℓ≅B ℓ≅B' ℓC ℓ≅C : Level -- constant DUARel module _ {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) {B : Type ℓB} (𝒮-B : UARel B ℓ≅B) where open UARel 𝒮-B open DUARel 𝒮ᴰ-const : DUARel 𝒮-A (λ _ → B) ℓ≅B 𝒮ᴰ-const ._≅ᴰ⟨_⟩_ b _ b' = b ≅ b' 𝒮ᴰ-const .uaᴰ b p b' = ua b b' -- SubstRel for an arbitrary constant family module _ {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) (B : Type ℓB) where open SubstRel 𝒮ˢ-const : SubstRel 𝒮-A (λ _ → B) 𝒮ˢ-const .SubstRel.act _ = idEquiv B 𝒮ˢ-const .SubstRel.uaˢ p b = transportRefl b
{ "alphanum_fraction": 0.6615384615, "avg_line_length": 21.125, "ext": "agda", "hexsha": "0689104c28a440e5e8224b4a42b4cbd15fd72e7b", "lang": "Agda", "max_forks_count": 134, "max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z", "max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "marcinjangrzybowski/cubical", "max_forks_repo_path": "Cubical/Displayed/Constant.agda", "max_issues_count": 584, "max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "marcinjangrzybowski/cubical", "max_issues_repo_path": "Cubical/Displayed/Constant.agda", "max_line_length": 62, "max_stars_count": 301, "max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "marcinjangrzybowski/cubical", "max_stars_repo_path": "Cubical/Displayed/Constant.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z", "num_tokens": 397, "size": 845 }
{-# OPTIONS --without-K #-} module sets.finite where open import sets.finite.core public
{ "alphanum_fraction": 0.7333333333, "avg_line_length": 18, "ext": "agda", "hexsha": "704e074db002e2f72cd0fe089cfdde941855984b", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/sets/finite.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/sets/finite.agda", "max_line_length": 35, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/sets/finite.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 20, "size": 90 }
-- A Typed version of a subset of Landin's ISWIM from "The Next 700 Programming -- Languages" module ISWIM where data Nat : Set where zero : Nat suc : Nat -> Nat _+_ : Nat -> Nat -> Nat zero + m = m suc n + m = suc (n + m) {-# BUILTIN NATURAL Nat #-} {-# BUILTIN ZERO zero #-} {-# BUILTIN SUC suc #-} {-# BUILTIN NATPLUS _+_ #-} data Bool : Set where true : Bool false : Bool module Syntax where infixl 100 _∙_ infixl 80 _WHERE_ _PP_ infixr 60 _─→_ infixl 40 _,_ data Type : Set where nat : Type bool : Type _─→_ : Type -> Type -> Type data Context : Set where ε : Context _,_ : Context -> Type -> Context data Var : Context -> Type -> Set where vz : {Γ : Context}{τ : Type} -> Var (Γ , τ) τ vs : {Γ : Context}{σ τ : Type} -> Var Γ τ -> Var (Γ , σ) τ data Expr (Γ : Context) : Type -> Set where var : {τ : Type} -> Var Γ τ -> Expr Γ τ litNat : Nat -> Expr Γ nat litBool : Bool -> Expr Γ bool plus : Expr Γ (nat ─→ nat ─→ nat) if : {τ : Type} -> Expr Γ (bool ─→ τ ─→ τ ─→ τ) _∙_ : {σ τ : Type} -> Expr Γ (σ ─→ τ) -> Expr Γ σ -> Expr Γ τ _WHERE_ : {σ τ ρ : Type} -> Expr (Γ , σ ─→ τ) ρ -> Expr (Γ , σ) τ -> Expr Γ ρ _PP_ : {σ τ ρ : Type} -> Expr (Γ , σ ─→ τ) ρ -> Expr (Γ , σ) ρ -> Expr Γ ρ -- ƛ x. e = f where f x = e ƛ : {Γ : Context}{σ τ : Type} -> Expr (Γ , σ) τ -> Expr Γ (σ ─→ τ) ƛ e = var vz WHERE e module Cont (R : Set) where C : Set -> Set C a = (a -> R) -> R callcc : {a : Set} -> (({b : Set} -> a -> C b) -> C a) -> C a callcc {a} g = \k -> g (\x _ -> k x) k return : {a : Set} -> a -> C a return x = \k -> k x infixr 10 _>>=_ _>>=_ : {a b : Set} -> C a -> (a -> C b) -> C b (m >>= k) ret = m \x -> k x ret module Semantics (R : Set) where open module C = Cont R open Syntax infix 60 _!_ infixl 40 _||_ ⟦_⟧type : Type -> Set ⟦_⟧type' : Type -> Set ⟦ nat ⟧type' = Nat ⟦ bool ⟧type' = Bool ⟦ σ ─→ τ ⟧type' = ⟦ σ ⟧type' -> ⟦ τ ⟧type ⟦ τ ⟧type = C ⟦ τ ⟧type' data ⟦_⟧ctx : Context -> Set where ★ : ⟦ ε ⟧ctx _||_ : {Γ : Context}{τ : Type} -> ⟦ Γ ⟧ctx -> ⟦ τ ⟧type' -> ⟦ Γ , τ ⟧ctx _!_ : {Γ : Context}{τ : Type} -> ⟦ Γ ⟧ctx -> Var Γ τ -> ⟦ τ ⟧type' ★ ! () (ρ || v) ! vz = v (ρ || v) ! vs x = ρ ! x ⟦_⟧ : {Γ : Context}{τ : Type} -> Expr Γ τ -> ⟦ Γ ⟧ctx -> ⟦ τ ⟧type ⟦ var x ⟧ ρ = return (ρ ! x) ⟦ litNat n ⟧ ρ = return n ⟦ litBool b ⟧ ρ = return b ⟦ plus ⟧ ρ = return \n -> return \m -> return (n + m) ⟦ f ∙ e ⟧ ρ = ⟦ e ⟧ ρ >>= \v -> ⟦ f ⟧ ρ >>= \w -> w v ⟦ e WHERE f ⟧ ρ = ⟦ e ⟧ (ρ || (\x -> ⟦ f ⟧ (ρ || x))) ⟦ e PP f ⟧ ρ = callcc \k -> let throw = \x -> ⟦ f ⟧ (ρ || x) >>= k in ⟦ e ⟧ (ρ || throw) ⟦ if ⟧ ρ = return \x -> return \y -> return \z -> return (iff x y z) where iff : {A : Set} -> Bool -> A -> A -> A iff true x y = x iff false x y = y module Test where open Syntax open module C = Cont Nat open module S = Semantics Nat run : Expr ε nat -> Nat run e = ⟦ e ⟧ ★ \x -> x -- 1 + 1 two : Expr ε nat two = plus ∙ litNat 1 ∙ litNat 1 -- f 1 + f 2 where f x = x three : Expr ε nat three = plus ∙ (var vz ∙ litNat 1) ∙ (var vz ∙ litNat 2) WHERE var vz -- 1 + f 1 where pp f x = x one : Expr ε nat one = plus ∙ litNat 1 ∙ (var vz ∙ litNat 1) PP var vz open Test data _==_ {a : Set}(x : a) : a -> Set where refl : x == x twoOK : run two == 2 twoOK = refl threeOK : run three == 3 threeOK = refl oneOK : run one == 1 oneOK = refl open Cont open Syntax open Semantics
{ "alphanum_fraction": 0.4648838466, "avg_line_length": 23.5796178344, "ext": "agda", "hexsha": "edfaa245d96a9151a45665eeffc99333fc2afdbc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "examples/ISWIM.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "examples/ISWIM.agda", "max_line_length": 81, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/ISWIM.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 1535, "size": 3702 }
postulate P : {A : Set} → A → A → Set p : {A : Set} {x : A} → P x x q : {A : Set} (x : A) {y : A} → P x y → P x y A : Set record R (F : Set → Set) : Set₁ where field f₁ : (A → A) → F A → F A f₂ : P (f₁ (λ x → x)) (λ (x : F A) → x) open R ⦃ … ⦄ public instance r : R (λ O → O → O) r = record { f₁ = λ f g x → f (g x) ; f₂ = p } postulate F : Set → Set instance rF : R F Foo : P (f₁ (λ x → x)) (λ (x : F A) → x) Foo = q (f₁ (λ x → x)) f₂ -- An internal error has occurred. Please report this as a bug. -- Location of the error: -- src/full/Agda/TypeChecking/InstanceArguments.hs:224
{ "alphanum_fraction": 0.4825949367, "avg_line_length": 18.0571428571, "ext": "agda", "hexsha": "1010e6175276654524de33021b215d27e60f4ee3", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1466.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1466.agda", "max_line_length": 63, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1466.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 275, "size": 632 }
{- Reflection-based tools for converting between iterated record types, particularly between record types and iterated Σ-types. See end of file for examples. -} {-# OPTIONS --cubical --no-exact-split --safe #-} module Cubical.Reflection.RecordEquiv where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Data.List as List open import Cubical.Data.Nat open import Cubical.Data.Maybe as Maybe open import Cubical.Data.Sigma open import Agda.Builtin.String import Agda.Builtin.Reflection as R open import Cubical.Reflection.Base Projections = Maybe (List R.Name) -- Describes a correspondence between two iterated record types RecordAssoc = List (Projections × Projections) -- Describes a correspondence between a record type and an iterated Σ-types; -- more convenient than RecordAssoc for this special case data ΣFormat : Type where leaf : R.Name → ΣFormat _,_ : ΣFormat → ΣFormat → ΣFormat unit : ΣFormat infixr 4 _,_ flipRecordAssoc : RecordAssoc → RecordAssoc flipRecordAssoc = List.map λ {p .fst → p .snd; p .snd → p .fst} fstIdRecordAssoc : RecordAssoc → RecordAssoc fstIdRecordAssoc = List.map λ {p .fst → p .fst; p .snd → p .fst} List→ΣFormat : List R.Name → ΣFormat List→ΣFormat [] = unit List→ΣFormat (x ∷ []) = leaf x List→ΣFormat (x ∷ y ∷ xs) = leaf x , List→ΣFormat (y ∷ xs) ΣFormat→RecordAssoc : ΣFormat → RecordAssoc ΣFormat→RecordAssoc = go [] where go : List R.Name → ΣFormat → RecordAssoc go prefix unit = [ just prefix , nothing ] go prefix (leaf fieldName) = [ just prefix , just [ fieldName ] ] go prefix (sig₁ , sig₂) = go (quote fst ∷ prefix) sig₁ ++ go (quote snd ∷ prefix) sig₂ -- Derive the shape of the compound Σ-type ΣFormat→Ty : ΣFormat → R.Type ΣFormat→Ty unit = R.def (quote Unit) [] ΣFormat→Ty (leaf _) = R.unknown ΣFormat→Ty (sig₁ , sig₂) = R.def (quote Σ) (ΣFormat→Ty sig₁ v∷ R.lam R.visible (R.abs "_" (ΣFormat→Ty sig₂)) v∷ []) recordName→isoTy : R.Name → R.Term → R.TC R.Term recordName→isoTy name σShape = R.inferType (R.def name []) >>= R.normalise >>= go [] where go : List R.ArgInfo → R.Type → R.TC R.Term go acc (R.pi (R.arg i argTy) (R.abs s ty)) = liftTC (λ t → R.pi (R.arg i' argTy) (R.abs s t)) (go (i ∷ acc) ty) where i' = R.arg-info R.hidden (R.modality R.relevant R.quantity-ω) go acc (R.agda-sort _) = R.returnTC (R.def (quote Iso) (R.def name (makeArgs 0 [] acc) v∷ σShape v∷ [])) where makeArgs : ℕ → List (R.Arg R.Term) → List R.ArgInfo → List (R.Arg R.Term) makeArgs n acc [] = acc makeArgs n acc (i ∷ infos) = makeArgs (suc n) (R.arg i (v n) ∷ acc) infos go _ _ = R.typeError (R.strErr "Not a record type name: " ∷ R.nameErr name ∷ []) projNames→Patterns : List R.Name → List (R.Arg R.Pattern) projNames→Patterns = go [] where go : List (R.Arg R.Pattern) → List R.Name → List (R.Arg R.Pattern) go acc [] = acc go acc (π ∷ projs) = go (varg (R.proj π) ∷ acc) projs projNames→Term : R.Term → List R.Name → R.Term projNames→Term term [] = term projNames→Term term (π ∷ projs) = R.def π [ varg (projNames→Term term projs) ] convertClauses : RecordAssoc → R.Term → List R.Clause convertClauses al term = fixIfEmpty (List.filterMap makeClause al) where makeClause : Projections × Projections → Maybe R.Clause makeClause (projl , just projr) = just (R.clause [] (goPat [] projr) (Maybe.rec R.unknown goTm projl)) where goPat : List (R.Arg R.Pattern) → List R.Name → List (R.Arg R.Pattern) goPat acc [] = acc goPat acc (π ∷ projs) = goPat (varg (R.proj π) ∷ acc) projs goTm : List R.Name → R.Term goTm [] = term goTm (π ∷ projs) = R.def π [ varg (goTm projs) ] makeClause (_ , nothing) = nothing fixIfEmpty : List R.Clause → List R.Clause fixIfEmpty [] = [ R.clause [] [] R.unknown ] fixIfEmpty (c ∷ cs) = c ∷ cs mapClause : (List (String × R.Arg R.Type) → List (String × R.Arg R.Type)) → (List (R.Arg R.Pattern) → List (R.Arg R.Pattern)) → (R.Clause → R.Clause) mapClause f g (R.clause tel ps t) = R.clause (f tel) (g ps) t mapClause f g (R.absurd-clause tel ps) = R.absurd-clause (f tel) (g ps) recordIsoΣClauses : ΣFormat → List R.Clause recordIsoΣClauses σ = funClauses (quote Iso.fun) Σ↔R ++ funClauses (quote Iso.inv) R↔Σ ++ pathClauses (quote Iso.rightInv) R↔Σ ++ pathClauses (quote Iso.leftInv) Σ↔R where R↔Σ = ΣFormat→RecordAssoc σ Σ↔R = flipRecordAssoc R↔Σ funClauses : R.Name → RecordAssoc → List R.Clause funClauses name al = List.map (mapClause (("_" , varg R.unknown) ∷_) (λ ps → R.proj name v∷ R.var 0 v∷ ps)) (convertClauses al (v 0)) pathClauses : R.Name → RecordAssoc → List R.Clause pathClauses name al = List.map (mapClause (λ vs → ("_" , varg R.unknown) ∷ ("_" , varg R.unknown) ∷ vs) (λ ps → R.proj name v∷ R.var 1 v∷ R.var 0 v∷ ps)) (convertClauses (fstIdRecordAssoc al) (v 1)) recordIsoΣTerm : ΣFormat → R.Term recordIsoΣTerm σ = R.pat-lam (recordIsoΣClauses σ) [] -- with a provided ΣFormat for the record declareRecordIsoΣ' : R.Name → ΣFormat → R.Name → R.TC Unit declareRecordIsoΣ' idName σ recordName = let σTy = ΣFormat→Ty σ in recordName→isoTy recordName σTy >>= λ isoTy → R.declareDef (varg idName) isoTy >> R.defineFun idName (recordIsoΣClauses σ) -- using the right-associated Σ given by the record fields declareRecordIsoΣ : R.Name → R.Name → R.TC Unit declareRecordIsoΣ idName recordName = R.getDefinition recordName >>= λ where (R.record-type _ fs) → let σ = List→ΣFormat (List.map (λ {(R.arg _ n) → n}) fs) in declareRecordIsoΣ' idName σ recordName _ → R.typeError (R.strErr "Not a record type name:" ∷ R.nameErr recordName ∷ []) private module Example where variable ℓ ℓ' : Level A : Type ℓ B : A → Type ℓ' record Example0 {A : Type ℓ} (B : A → Type ℓ') : Type (ℓ-max ℓ ℓ') where no-eta-equality -- works with or without eta equality field cool : A fun : A wow : B cool -- Declares a function `Example0IsoΣ` that gives an isomorphism between the record type and a -- right-associated nested Σ-type (with the parameters to Example0 as implict arguments). unquoteDecl Example0IsoΣ = declareRecordIsoΣ Example0IsoΣ (quote Example0) -- `Example0IsoΣ` has the type we expect test0 : Iso (Example0 B) (Σ[ a ∈ A ] (Σ[ _ ∈ A ] B a)) test0 = Example0IsoΣ -- A record with no fields is isomorphic to Unit record Example1 : Type where unquoteDecl Example1IsoΣ = declareRecordIsoΣ Example1IsoΣ (quote Example1) test1 : Iso Example1 Unit test1 = Example1IsoΣ
{ "alphanum_fraction": 0.6648777579, "avg_line_length": 34.2244897959, "ext": "agda", "hexsha": "bba9fcd7973087ccdbd171286a7563a42de98b98", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Reflection/RecordEquiv.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Reflection/RecordEquiv.agda", "max_line_length": 97, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Reflection/RecordEquiv.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2233, "size": 6708 }
module Oscar.Builtin.Nat where open import Agda.Builtin.Nat public using () renaming (Nat to ℕ; zero to ∅; suc to ↑_)
{ "alphanum_fraction": 0.7016129032, "avg_line_length": 17.7142857143, "ext": "agda", "hexsha": "fbf56a8fd992158d4ef34f5fafdc7792990d31e2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Builtin/Nat.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Builtin/Nat.agda", "max_line_length": 43, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Builtin/Nat.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 38, "size": 124 }
-- -- Created by Dependently-Typed Lambda Calculus on 2020-10-07 -- Isomorphism -- Author: dplaindoux -- {-# OPTIONS --without-K --no-sized-types --no-guardedness bbbbb#-} import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong; cong-app) open Eq.≡-Reasoning open import Data.Nat using (ℕ; zero; suc; _+_) open import Data.Nat.Properties using (+-comm) module Isomorphism where _∘_ : ∀ {A B C : Set} → (B → C) → (A → B) → (A → C) (g ∘ f) = λ x → g (f x) -- Extensionality and function equivalence _+′_ : ℕ → ℕ → ℕ m +′ zero = m m +′ suc n = suc (m +′ n) same-app : ∀ (m n : ℕ) → m +′ n ≡ m + n same-app m n rewrite +-comm m n = helper m n where helper : ∀ (m n : ℕ) → m +′ n ≡ n + m helper m zero = refl helper m (suc n) = cong suc (helper m n) postulate extensionality : ∀ {A B : Set} {f g : A → B} → (∀ (x : A) → f x ≡ g x) ----------------------- → f ≡ g postulate ∀-extensionality : ∀ {A : Set} {B : A → Set} {f g : ∀(x : A) → B x} → (∀ (x : A) → f x ≡ g x) ----------------------- → f ≡ g same : _+′_ ≡ _+_ same = ∀-extensionality (λ m → ∀-extensionality (λ n → same-app m n)) -- Isomorphism definition infix 0 _≃_ record _≃_ (A B : Set) : Set where field to : A → B from : B → A from∘to : ∀ (x : A) → from (to x) ≡ x to∘from : ∀ (y : B) → to (from y) ≡ y open _≃_ ≃-refl : ∀ {A : Set} ----- → A ≃ A ≃-refl = record { to = λ{x → x} ; from = λ{y → y} ; from∘to = λ{x → refl} ; to∘from = λ{y → refl} } ≃-sym : ∀ {A B : Set} → A ≃ B ----- → B ≃ A ≃-sym A≃B = record { to = from A≃B ; from = to A≃B ; from∘to = to∘from A≃B ; to∘from = from∘to A≃B } ≃-trans : ∀ {A B C : Set} → A ≃ B → B ≃ C ----- → A ≃ C ≃-trans A≃B B≃C = record { to = to B≃C ∘ to A≃B ; from = from A≃B ∘ from B≃C ; from∘to = λ{x → begin ((from A≃B ∘ from B≃C) ∘ (to B≃C ∘ to A≃B)) x ≡⟨⟩ (from A≃B ∘ from B≃C) ((to B≃C ∘ to A≃B) x) ≡⟨⟩ from A≃B (from B≃C (to B≃C (to A≃B x))) ≡⟨ cong (from A≃B) (from∘to B≃C (to A≃B x)) ⟩ from A≃B (to A≃B x) ≡⟨ from∘to A≃B x ⟩ x ∎} ; to∘from = λ{y → begin ((to B≃C ∘ to A≃B) ∘ (from A≃B ∘ from B≃C)) y ≡⟨⟩ (to B≃C ∘ to A≃B) ((from A≃B ∘ from B≃C) y) ≡⟨⟩ to B≃C (to A≃B (from A≃B (from B≃C y))) ≡⟨ cong (to B≃C) (to∘from A≃B (from B≃C y)) ⟩ to B≃C (from B≃C y) ≡⟨ to∘from B≃C y ⟩ y ∎} } module ≃-Reasoning where infix 1 ≃-begin_ infixr 2 _≃⟨_⟩_ infix 3 _≃-∎ ≃-begin_ : ∀ {A B : Set} → A ≃ B ----- → A ≃ B ≃-begin A≃B = A≃B _≃⟨_⟩_ : ∀ (A : Set) {B C : Set} → A ≃ B → B ≃ C ----- → A ≃ C A ≃⟨ A≃B ⟩ B≃C = ≃-trans A≃B B≃C _≃-∎ : ∀ (A : Set) ----- → A ≃ A A ≃-∎ = ≃-refl open ≃-Reasoning infix 0 _≲_ record _≲_ (A B : Set) : Set where field to : A → B from : B → A from∘to : ∀ (x : A) → from (to x) ≡ x open _≲_ ≲-refl : ∀ {A : Set} ----- → A ≲ A ≲-refl = record { to = λ{x → x} ; from = λ{y → y} ; from∘to = λ{x → refl} } ≲-trans : ∀ {A B C : Set} → A ≲ B → B ≲ C ----- → A ≲ C ≲-trans A≲B B≲C = record { to = λ{x → to B≲C (to A≲B x)} ; from = λ{y → from A≲B (from B≲C y)} ; from∘to = λ{x → begin ((from A≲B ∘ from B≲C) ∘ (to B≲C ∘ to A≲B)) x ≡⟨⟩ (from A≲B ∘ from B≲C) ((to B≲C ∘ to A≲B) x) ≡⟨⟩ from A≲B (from B≲C (to B≲C (to A≲B x))) ≡⟨ cong (from A≲B) (from∘to B≲C (to A≲B x)) ⟩ from A≲B (to A≲B x) ≡⟨ from∘to A≲B x ⟩ x ∎} } ≲-antisym : ∀ {A B : Set} → (A≲B : A ≲ B) → (B≲A : B ≲ A) → (to A≲B ≡ from B≲A) → (from A≲B ≡ to B≲A) ------------------- → A ≃ B ≲-antisym A≲B B≲A to≡from from≡to = record { to = to A≲B ; from = from A≲B ; from∘to = from∘to A≲B ; to∘from = λ{y → begin (to A≲B ∘ from A≲B) y ≡⟨⟩ to A≲B (from A≲B y) ≡⟨ cong (to A≲B) (cong-app from≡to y) ⟩ to A≲B (to B≲A y) ≡⟨ cong-app to≡from (to B≲A y) ⟩ from B≲A (to B≲A y) ≡⟨ from∘to B≲A y ⟩ y ∎} }
{ "alphanum_fraction": 0.4032294746, "avg_line_length": 20.7405660377, "ext": "agda", "hexsha": "9e663fa6a13d048c475408ae39fd6a11e92b1bce", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a81447af3ab2ba898bb7d57be71369abbba12d81", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "d-plaindoux/colca", "max_forks_repo_path": "src/exercices/Isomorphism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a81447af3ab2ba898bb7d57be71369abbba12d81", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "d-plaindoux/colca", "max_issues_repo_path": "src/exercices/Isomorphism.agda", "max_line_length": 69, "max_stars_count": 2, "max_stars_repo_head_hexsha": "a81447af3ab2ba898bb7d57be71369abbba12d81", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "d-plaindoux/colca", "max_stars_repo_path": "src/exercices/Isomorphism.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-04T09:35:36.000Z", "max_stars_repo_stars_event_min_datetime": "2021-03-12T18:31:14.000Z", "num_tokens": 2104, "size": 4397 }
------------------------------------------------------------------------------ -- Logical Theory of Constructions for PCF (LTC-PCF) ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- Code accompanying the paper "Embedding a Logical Theory of -- Constructions in Agda" by Ana Bove, Peter Dybjer and Andrés -- Sicard-Ramírez (PLPV'09). -- The code presented here does not match the paper exactly. module LTC-PCF.README where ------------------------------------------------------------------------------ -- Description -- Formalization of (a version of) Azcel's Logical Theory of -- Constructions for PCF. ------------------------------------------------------------------------------ -- The axioms open import LTC-PCF.Base -- Properties open import LTC-PCF.Base.Properties ------------------------------------------------------------------------------ -- Booleans -- The inductive predicate open import LTC-PCF.Data.Bool.Type -- Properties open import LTC-PCF.Data.Bool.Properties ------------------------------------------------------------------------------ -- Natural numberes -- The arithmetical functions open import LTC-PCF.Data.Nat -- The inductive predicate open import LTC-PCF.Data.Nat.Type -- Properties open import LTC-PCF.Data.Nat.Properties -- Divisibility relation open import LTC-PCF.Data.Nat.Divisibility.NotBy0.Properties -- Induction open import LTC-PCF.Data.Nat.Induction.NonAcc.Lexicographic open import LTC-PCF.Data.Nat.Induction.NonAcc.WF -- Inequalites open import LTC-PCF.Data.Nat.Inequalities.EliminationProperties open import LTC-PCF.Data.Nat.Inequalities.Properties -- The recursive operator open import LTC-PCF.Data.Nat.Rec.ConversionRules ------------------------------------------------------------------------------ -- A looping combinator open import LTC-PCF.Loop ------------------------------------------------------------------------------ -- Verification of programs -- The division algorithm: A non-structurally recursive algorithm open import LTC-PCF.Program.Division.CorrectnessProof -- The GCD algorithm: A non-structurally recursive algorithm open import LTC-PCF.Program.GCD.Partial.CorrectnessProof open import LTC-PCF.Program.GCD.Total.CorrectnessProof
{ "alphanum_fraction": 0.5596860801, "avg_line_length": 30.6455696203, "ext": "agda", "hexsha": "eea83a65d25dd855848678959d155dcae93c9979", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/LTC-PCF/README.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/LTC-PCF/README.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/LTC-PCF/README.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 479, "size": 2421 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Functor.Bifunctor module Categories.Diagram.Coend {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F : Bifunctor (Category.op C) C D) where private module C = Category C module D = Category D open D open HomReasoning variable A B : Obj f g : A ⇒ B open import Level open import Data.Product using (Σ; _,_) open import Categories.Functor open import Categories.Functor.Construction.Constant open import Categories.NaturalTransformation.Dinatural open import Categories.Morphism.Reasoning D open Functor F record Cowedge : Set (levelOfTerm F) where field E : Obj dinatural : DinaturalTransformation F (const E) module dinatural = DinaturalTransformation dinatural Cowedge-∘ : (W : Cowedge) → Cowedge.E W ⇒ A → Cowedge Cowedge-∘ {A = A} W f = record { E = A ; dinatural = extranaturalˡ (λ X → f ∘ dinatural.α X) (assoc ○ ∘-resp-≈ʳ (extranatural-commˡ dinatural) ○ ⟺ assoc) } where open Cowedge W record Coend : Set (levelOfTerm F) where field cowedge : Cowedge module cowedge = Cowedge cowedge open cowedge public open Cowedge field factor : (W : Cowedge) → cowedge.E ⇒ E W universal : ∀ {W : Cowedge} {A} → factor W ∘ cowedge.dinatural.α A ≈ dinatural.α W A unique : ∀ {W : Cowedge} {g : cowedge.E ⇒ E W} → (∀ {A} → g ∘ cowedge.dinatural.α A ≈ dinatural.α W A) → factor W ≈ g η-id : factor cowedge ≈ D.id η-id = unique identityˡ unique′ :(∀ {A} → f ∘ cowedge.dinatural.α A ≈ g ∘ cowedge.dinatural.α A) → f ≈ g unique′ {f = f} {g = g} eq = ⟺ (unique {W = Cowedge-∘ cowedge f} refl) ○ unique (⟺ eq)
{ "alphanum_fraction": 0.6446233468, "avg_line_length": 28.5081967213, "ext": "agda", "hexsha": "779b6442200727c4fcbc5fb72f6b967e066fccfd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Taneb/agda-categories", "max_forks_repo_path": "Categories/Diagram/Coend.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Taneb/agda-categories", "max_issues_repo_path": "Categories/Diagram/Coend.agda", "max_line_length": 124, "max_stars_count": null, "max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Taneb/agda-categories", "max_stars_repo_path": "Categories/Diagram/Coend.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 594, "size": 1739 }
module Plus where data Nat : Set where zero : Nat suc : Nat -> Nat infixr 40 _+_ infix 10 _==_ _+_ : Nat -> Nat -> Nat zero + m = m suc n + m = suc (n + m) data _==_ (x, y : Nat) : Set where -- ... postulate refl : {n : Nat} -> n == n cong : (f : Nat -> Nat){n, m : Nat} -> n == m -> f n == f m plusZero : {n : Nat} -> n + zero == n plusZero {zero} = refl plusZero {suc n} = cong suc plusZero
{ "alphanum_fraction": 0.513253012, "avg_line_length": 15.9615384615, "ext": "agda", "hexsha": "fda792d5c4bd00fcd8ae80ca74b82de638869124", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "notes/talks/MetaVars/Plus.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "notes/talks/MetaVars/Plus.agda", "max_line_length": 61, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "notes/talks/MetaVars/Plus.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 166, "size": 415 }
open import Common.Prelude renaming (return to foo) main : IO Unit main = foo unit
{ "alphanum_fraction": 0.75, "avg_line_length": 16.8, "ext": "agda", "hexsha": "405aefc652fe4ca768cd4d45995dcd730d74bcdc", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Compiler/simple/Issue1855.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Compiler/simple/Issue1855.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Compiler/simple/Issue1855.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 21, "size": 84 }
-- There's something very strange going on with mutual and parameterised -- modules. Can't reproduce the bug... :( module Mutual where data True : Set where tt : True data False : Set where data _\/_ (A B : Set) : Set where inl : A -> A \/ B inr : B -> A \/ B swap : {A B : Set} -> A \/ B -> B \/ A swap (inl a) = inr a swap (inr b) = inl b module Foo (A : Set)(P : A -> Set) where Q : A -> A -> Set Q x y = P x \/ P y mutual data Nat : Set where zero : Nat suc : Nat -> Nat Even : Nat -> Set Even zero = True Even (suc zero) = False Even (suc (suc n)) = Even n f : Nat -> Set f zero = True f (suc n) = Q n (suc n) where open module F = Foo Nat Even g : (n : Nat) -> f n g zero = tt g (suc zero) = inl tt g (suc (suc n)) = swap (g (suc n))
{ "alphanum_fraction": 0.5345679012, "avg_line_length": 17.6086956522, "ext": "agda", "hexsha": "d851dbbc9cd5bc71b2c3636c4d0730babf3bba94", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/bugs/Mutual.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/bugs/Mutual.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/bugs/Mutual.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 306, "size": 810 }
open import Agda.Builtin.Bool F : Bool → Set F true = Bool F _ = Bool
{ "alphanum_fraction": 0.6486486486, "avg_line_length": 12.3333333333, "ext": "agda", "hexsha": "179aa0be5be554ee8655328386f20838aea20f3f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3187.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3187.agda", "max_line_length": 29, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3187.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 25, "size": 74 }
open import Relation.Binary.Core module BHeap.Height {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) where open import Bound.Lower A open import Bound.Lower.Order _≤_ open import BHeap _≤_ open import BHeap.Properties _≤_ open import Data.Nat renaming (_≤_ to _≤ₙ_) open import Data.Nat.Properties open import Data.Sum open import Relation.Binary open import Relation.Binary.PropositionalEquality hiding (trans) open DecTotalOrder decTotalOrder hiding (refl) theorem-height-merge : {b : Bound}{x : A}(b≤x : LeB b (val x))(l r : BHeap (val x)) → height (merge tot≤ l r) ≤ₙ height (nd b≤x l r) theorem-height-merge _ lf r = ≤-step (reflexive refl) theorem-height-merge _ l lf rewrite lemma-merge-lf tot≤ l with total (height l) zero ... | inj₁ hl≤0 rewrite antisym hl≤0 z≤n = ≤-step (reflexive refl) ... | inj₂ 0≤hl = ≤-step (reflexive refl) theorem-height-merge b≤x (nd {x = y} x≤y l r) (nd {x = y'} x≤y' l' r') with tot≤ y y' | total (height (nd x≤y l r)) (height (nd x≤y' l' r')) ... | inj₁ y≤y' | inj₁ hylr≤hy'l'r' with total (height (merge tot≤ l r)) (height (nd (lexy y≤y') l' r')) ... | inj₁ hmlr≤hy'l'r' = reflexive refl ... | inj₂ hy'l'r'≤hmlr rewrite antisym (trans (theorem-height-merge x≤y l r) hylr≤hy'l'r') hy'l'r'≤hmlr = reflexive refl theorem-height-merge b≤x (nd {x = y} x≤y l r) (nd {x = y'} x≤y' l' r') | inj₁ y≤y' | inj₂ hy'l'r'≤hylr with total (height (merge tot≤ l r)) (height (nd (lexy y≤y') l' r')) ... | inj₁ hmlr≤hy'l'r' = s≤s hy'l'r'≤hylr ... | inj₂ hy'l'r'≤hmlr = s≤s (theorem-height-merge x≤y l r) theorem-height-merge b≤x (nd {x = y} x≤y l r) (nd {x = y'} x≤y' l' r') | inj₂ y'≤y | inj₁ hylr≤hy'l'r' with total (height (nd (lexy y'≤y) l r)) (height (merge tot≤ l' r')) ... | inj₁ hylr≤hml'r' = s≤s (theorem-height-merge x≤y' l' r') ... | inj₂ hml'r'≤hylr = s≤s hylr≤hy'l'r' theorem-height-merge b≤x (nd {x = y} x≤y l r) (nd {x = y'} x≤y' l' r') | inj₂ y'≤y | inj₂ hy'l'r'≤hylr with total (height (nd (lexy y'≤y) l r)) (height (merge tot≤ l' r')) ... | inj₁ hylr≤hml'r' rewrite antisym (trans (theorem-height-merge x≤y' l' r') hy'l'r'≤hylr) hylr≤hml'r' = reflexive refl ... | inj₂ hml'r'≤hylr = reflexive refl
{ "alphanum_fraction": 0.6118391324, "avg_line_length": 51.4651162791, "ext": "agda", "hexsha": "4ca8346c9ef57b9883c636d3f4acf1d933ef54b1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/BHeap/Height.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/BHeap/Height.agda", "max_line_length": 132, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/BHeap/Height.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 936, "size": 2213 }
module Cats.Category.Constructions.Iso where open import Relation.Binary using (IsEquivalence ; Setoid) open import Level open import Cats.Category.Base open import Cats.Util.Conv import Relation.Binary.EqReasoning as EqReasoning import Cats.Category.Constructions.Epi as Epi import Cats.Category.Constructions.Mono as Mono module Build {lo la l≈} (Cat : Category lo la l≈) where private open module Cat = Category Cat open Cat.≈-Reasoning open Epi.Build Cat open Mono.Build Cat record _≅_ (A B : Obj) : Set (lo ⊔ la ⊔ l≈) where field forth : A ⇒ B back : B ⇒ A back-forth : back ∘ forth ≈ id forth-back : forth ∘ back ≈ id open _≅_ instance HasArrow-≅ : ∀ {A B} → HasArrow (A ≅ B) lo la l≈ HasArrow-≅ = record { Cat = Cat ; _⃗ = forth } ≅-equiv : IsEquivalence _≅_ ≅-equiv = record { refl = refl ; sym = sym ; trans = trans } where refl : ∀ {A} → A ≅ A refl {A} = record { forth = id ; back = id ; back-forth = id-l ; forth-back = id-l } sym : ∀ {A B} → A ≅ B → B ≅ A sym iso = record { forth = back iso ; back = forth iso ; back-forth = forth-back iso ; forth-back = back-forth iso } trans : ∀ {A B C : Obj} → A ≅ B → B ≅ C → A ≅ C trans {A} {B} {C} A≅B B≅C = record { forth = forth B≅C ∘ forth A≅B ; back = back A≅B ∘ back B≅C ; back-forth = begin (back A≅B ∘ back B≅C) ∘ forth B≅C ∘ forth A≅B ≈⟨ assoc ⟩ back A≅B ∘ back B≅C ∘ forth B≅C ∘ forth A≅B ≈⟨ ∘-resp-r (≈.trans unassoc (∘-resp-l (back-forth B≅C))) ⟩ back A≅B ∘ id ∘ forth A≅B ≈⟨ ∘-resp-r id-l ⟩ back A≅B ∘ forth A≅B ≈⟨ back-forth A≅B ⟩ id ∎ ; forth-back = begin (forth B≅C ∘ forth A≅B) ∘ back A≅B ∘ back B≅C ≈⟨ assoc ⟩ forth B≅C ∘ forth A≅B ∘ back A≅B ∘ back B≅C ≈⟨ ∘-resp-r (≈.trans unassoc (∘-resp-l (forth-back A≅B))) ⟩ forth B≅C ∘ id ∘ back B≅C ≈⟨ ∘-resp-r id-l ⟩ forth B≅C ∘ back B≅C ≈⟨ forth-back B≅C ⟩ id ∎ } ≅-Setoid : Setoid lo (lo ⊔ la ⊔ l≈) ≅-Setoid = record { Carrier = Obj ; _≈_ = _≅_ ; isEquivalence = ≅-equiv } module ≅ = IsEquivalence ≅-equiv module ≅-Reasoning = EqReasoning ≅-Setoid iso-mono : ∀ {A B} (iso : A ≅ B) → IsMono (forth iso) iso-mono iso {g = g} {h} iso∘g≈iso∘h = begin g ≈⟨ ≈.sym id-l ⟩ id ∘ g ≈⟨ ∘-resp-l (≈.sym (back-forth iso)) ⟩ (back iso ∘ forth iso) ∘ g ≈⟨ assoc ⟩ back iso ∘ forth iso ∘ g ≈⟨ ∘-resp-r iso∘g≈iso∘h ⟩ back iso ∘ forth iso ∘ h ≈⟨ unassoc ⟩ (back iso ∘ forth iso) ∘ h ≈⟨ ∘-resp-l (back-forth iso) ⟩ id ∘ h ≈⟨ id-l ⟩ h ∎ iso-epi : ∀ {A B} (iso : A ≅ B) → IsEpi (forth iso) iso-epi iso {g = g} {h} g∘iso≈h∘iso = begin g ≈⟨ ≈.sym id-r ⟩ g ∘ id ≈⟨ ∘-resp-r (≈.sym (forth-back iso)) ⟩ g ∘ forth iso ∘ back iso ≈⟨ unassoc ⟩ (g ∘ forth iso) ∘ back iso ≈⟨ ∘-resp-l g∘iso≈h∘iso ⟩ (h ∘ forth iso) ∘ back iso ≈⟨ assoc ⟩ h ∘ forth iso ∘ back iso ≈⟨ ∘-resp-r (forth-back iso) ⟩ h ∘ id ≈⟨ id-r ⟩ h ∎
{ "alphanum_fraction": 0.4425694066, "avg_line_length": 26.2428571429, "ext": "agda", "hexsha": "9bfe04ea246b31345e4ad3e8d0031f6f9e0c8426", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Category/Constructions/Iso.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Category/Constructions/Iso.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Category/Constructions/Iso.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1396, "size": 3674 }
{-# OPTIONS --type-in-type #-} module Fusion where open import Data.Product renaming (proj₁ to ₁; proj₂ to ₂) hiding (map; zip) open import Relation.Binary.PropositionalEquality open import Data.Sum hiding (map) open import Data.Bool open import Data.Nat open import Data.Unit open import Data.Empty open import Function open import Data.Maybe hiding (map; zip; zipWith) open import Data.List hiding (map; zip; _++_; filter; foldr; foldl; zipWith; drop; take) module Stream1 where data Step (S A : Set) : Set where stop : Step S A yield : A → S → Step S A skip : S → Step S A mapStep : ∀ {A A' S S'} → (A → A') → (S → S') → Step S A → Step S' A' mapStep f g stop = stop mapStep f g (yield a s) = yield (f a) (g s) mapStep f g (skip s) = skip (g s) record Stream (A : Set) : Set where constructor stream field S : Set seed : S step : S → Step S A open Stream public infixr 4 _++_ _++_ : ∀ {A} → Stream A → Stream A → Stream A S (xs ++ ys) = S xs ⊎ S ys seed (xs ++ ys) = inj₁ (seed xs) step (xs ++ ys) (inj₁ s ) with step xs s ... | stop = skip (inj₂ (seed ys)) ... | yield a s' = yield a (inj₁ s') ... | skip s' = skip (inj₁ s') step (xs ++ ys) (inj₂ s) = mapStep id inj₂ (step ys s) filter : ∀ {A} → (A → Bool) → Stream A → Stream A S (filter f as) = S as seed (filter f as) = seed as step (filter f as) s with step as s ... | stop = stop ... | yield a s' = if f a then yield a s' else skip s' ... | skip s' = skip s' map : ∀ {A B} → (A → B) → Stream A → Stream B S (map f as) = S as seed (map f as) = seed as step (map f as) = mapStep f id ∘ step as empty : ∀ {A} → Stream A S empty = ⊤ seed empty = tt step empty = λ _ → stop pure : ∀ {A} → A → Stream A S (pure a) = Bool seed (pure a) = true step (pure a) false = stop step (pure a) true = yield a false bind : ∀ {A B} → Stream A → (A → Stream B) → Stream B S (bind as f) = S as ⊎ (S as × ∃ (S ∘ f)) seed (bind as f) = inj₁ (seed as) step (bind as f) (inj₁ s) with step as s ... | stop = stop ... | yield a s' = skip (inj₂ (s' , a , seed (f a))) ... | skip s' = skip (inj₁ s') step (bind as f) (inj₂ (s , a , s')) with step (f a) s' ... | stop = skip (inj₁ s) ... | yield b s'' = yield b (inj₂ (s , a , s'')) ... | skip s'' = skip (inj₂ (s , a , s'')) zip : ∀ {A B} → Stream A → Stream B → Stream (A × B) S (zip {A} as bs) = S as × S bs × Maybe A seed (zip {A} as bs) = seed as , seed bs , nothing step (zip {A} as bs) (sa , sb , nothing) with step as sa ... | stop = stop ... | yield a sa' = skip (sa' , sb , just a) ... | skip sa' = skip (sa' , sb , nothing) step (zip {A} as bs) (sa , sb , just a) with step bs sb ... | stop = stop ... | yield b sb' = yield (a , b) (sa , sb' , nothing) ... | skip sb' = skip (sa , sb' , just a) {-# NON_TERMINATING #-} foldr : ∀ {A B : Set} → (A → B → B) → B → Stream A → B foldr f b (stream S s step) with step s ... | stop = b ... | yield a s' = f a (foldr f b (stream S s' step)) ... | skip s' = foldr f b (stream S s' step) {-# NON_TERMINATING #-} foldl : ∀ {A B : Set} → (B → A → B) → B → Stream A → B foldl f b (stream S s step) with step s ... | stop = b ... | yield a s' = foldl f (f b a) (stream S s' step) ... | skip s' = foldl f b (stream S s' step) module Stream2 where data Step (S A : Set) : Set where stop : Step S A yield : A → S → Step S A skip : S → Step S A mapStep : ∀ {A A' S S'} → (A → A') → (S → S') → Step S A → Step S' A' mapStep f g stop = stop mapStep f g (yield a s) = yield (f a) (g s) mapStep f g (skip s) = skip (g s) record Prod (A : Set) : Set where constructor stream field S : Set seed : S step : S → Step S A open Prod public infixr 4 _++_ data Stream (A : Set) : Set where prod : Prod A → Stream A _++_ : Stream A → Stream A → Stream A bind : ∀ {B} → Stream B → (B → Stream A) → Stream A zipWith : ∀ {B C} → (B → C → A) → Stream B → Stream C → Stream A filter : ∀ {A} → (A → Bool) → Stream A → Stream A filter f (prod x) = {!!} filter f (str ++ str₁) = filter f str ++ filter f str₁ filter f (bind str g) = bind str λ b → filter f (g b) filter f (zipWith x str str₁) = {!!} -- issue map : ∀ {A B} → (A → B) → Stream A → Stream B map f (prod as) = {!!} map f (as ++ as') = map f as ++ map f as' map f (bind bs g) = bind bs λ b → map f (g b) -- no bind fusion! (i.e. monad laws) map f (zipWith g bc cs) = {!!} -- can convert to prod, but better to freely add map... -- but then we don't have map fusion unless we just add it -- perhaps first-order syntax is OK, if we hand-write -- enough fusion? {-# NON_TERMINATING #-} foldr : ∀ {A B : Set} → (A → B → B) → B → Stream A → B foldr f b (prod x) = {!!} foldr f b (as ++ as') = foldr f (foldr f b as') as foldr {A} {B} f b (bind {C} cs g) = foldr (λ c b → foldr f b (g c)) b cs foldr {A} {B} f b (zipWith {C} {D} g cs ds) = {!!} -- first I have to convert cs/ds to producers to fold them! -- this means that optimization from first-order rep is blocked at the first zip! -- general solution: robust producer-to-state-machine compilation module Stream3 where Step : Set → Set → Set Step S A = (Step : Set) → Step → (A → S → Step) → Step record Pull (A : Set) : Set where constructor pull field S : Set seed : S step : S → Step S A open Pull public zip : ∀ {A B} → Pull A → Pull B → Pull (A × B) S (zip as bs) = S as × S bs seed (zip as bs) = seed as , seed bs step (zip as bs) (sa , sb) _ stop yield = step as sa _ stop λ a sa' → step bs sb _ stop λ b sb' → yield (a , b) (sa , sb') map : ∀ {A B} → (A → B) → Pull A → Pull B S (map f as) = S as seed (map f as) = seed as step (map f as) s _ stop yield = step as s _ stop λ a s → yield (f a) s {-# NON_TERMINATING #-} find : ∀ {A S} → (A → Bool) → (S → Step S A) → S → Step S A find f step s _ stop yield = step s _ stop λ a s → if f a then yield a s else find f step s _ stop yield -- fusing filter without Skip! -- we can inline continuations in tail-recursive functions, and skipping to the next -- yield is such a loop filter : ∀ {A} → (A → Bool) → Pull A → Pull A S (filter f as) = S as seed (filter f as) = seed as step (filter f as) = find f (step as) {-# NON_TERMINATING #-} drop' : ∀ {A S} → ℕ → (S → Step S A) → S → S drop' zero step s = s drop' (suc n) step s = step s _ s λ a s → drop' n step s drop : ∀ {A} → ℕ → Pull A → Pull A S (drop n as) = S as seed (drop n as) = drop' n (step as) (seed as) step (drop n as) = step as take : ∀ {A} → ℕ → Pull A → Pull A S (take n as) = S as × ℕ seed (take n as) = seed as , n step (take n as) (s , zero) _ stop yield = stop step (take n as) (s , suc x) _ stop yield = step as s _ stop λ a s → yield a (s , x) infixr 4 _++_ _++_ : ∀ {A} → Pull A → Pull A → Pull A S (xs ++ ys) = S xs ⊎ S ys seed (xs ++ ys) = inj₁ (seed xs) step (xs ++ ys) (inj₁ s) _ stop yield = step xs s _ (step ys (seed ys) _ stop λ a s → yield a (inj₂ s)) λ a s → yield a (inj₁ s) step (xs ++ ys) (inj₂ s) _ stop yield = step ys s _ stop λ a s → yield a (inj₂ s) {-# NON_TERMINATING #-} bind' : ∀ {A B : Set} (as : Pull A) (f : A → Pull B) → S as × Maybe (∃ (S ∘ f)) → Step (S as × Maybe (∃ (S ∘ f))) B bind' as f (sa , nothing) _ stop yield = step as sa _ stop λ a sa → step (f a) (seed (f a)) _ (bind' as f (sa , nothing) _ stop yield) λ b sb → yield b (sa , (just (a , sb))) bind' as f (sa , just (a , sb)) _ stop yield = step (f a) sb _ (bind' as f (sa , nothing) _ stop yield) λ b sb → yield b (sa , just (a , sb)) {-# NON_TERMINATING #-} bindNothing' : ∀ {A B : Set} (as : Pull A) (f : A → Pull B) → S as → Step (S as × Maybe (∃ (S ∘ f))) B bindJust' : ∀ {A B : Set} (as : Pull A) (f : A → Pull B) → S as × ∃ (S ∘ f) → Step (S as × Maybe (∃ (S ∘ f))) B bindNothing' as f sa _ stop yield = step as sa _ stop λ a sa → bindJust' as f (sa , a , seed (f a)) _ stop yield bindJust' as f (sa , a , sb) _ stop yield = step (f a) sb _ (bindNothing' as f sa _ stop yield) λ b sb → yield b (sa , just (a , sb)) bind : ∀ {A B} → Pull A → (A → Pull B) → Pull B S (bind as f) = S as × Maybe (∃ (S ∘ f)) seed (bind as f) = seed as , nothing step (bind as f) (sa , nothing) _ stop yield = bindNothing' as f sa _ stop yield step (bind as f) (sa , just x) _ stop yield = bindJust' as f (sa , x) _ stop yield
{ "alphanum_fraction": 0.5102939557, "avg_line_length": 33.5166051661, "ext": "agda", "hexsha": "089bcbb8833046e0c0d17c54ae53750d3586d417", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8876a92136e5d37f67e7a8cf52c88253ddf77d9f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AndrasKovacs/staged", "max_forks_repo_path": "notes/Fusion.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "8876a92136e5d37f67e7a8cf52c88253ddf77d9f", "max_issues_repo_issues_event_max_datetime": "2022-02-05T10:17:38.000Z", "max_issues_repo_issues_event_min_datetime": "2021-07-16T04:06:01.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AndrasKovacs/staged", "max_issues_repo_path": "notes/Fusion.agda", "max_line_length": 91, "max_stars_count": 78, "max_stars_repo_head_hexsha": "8876a92136e5d37f67e7a8cf52c88253ddf77d9f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AndrasKovacs/staged", "max_stars_repo_path": "notes/Fusion.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-29T20:12:54.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-22T12:51:02.000Z", "num_tokens": 3273, "size": 9083 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Results concerning uniqueness of identity proofs, with axiom K ------------------------------------------------------------------------ {-# OPTIONS --with-K --safe #-} module Axiom.UniquenessOfIdentityProofs.WithK where open import Axiom.UniquenessOfIdentityProofs open import Relation.Binary.PropositionalEquality.Core -- Axiom K implies UIP. uip : ∀ {a A} → UIP {a} A uip refl refl = refl
{ "alphanum_fraction": 0.5337301587, "avg_line_length": 28, "ext": "agda", "hexsha": "a644b08db48a3faa6f993599fbb498ff33665eab", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Axiom/UniquenessOfIdentityProofs/WithK.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Axiom/UniquenessOfIdentityProofs/WithK.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Axiom/UniquenessOfIdentityProofs/WithK.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 100, "size": 504 }
-- examples for termination checking mutual recursion module Mutual where data Odd : Set data Even : Set where zeroE : Even succE : Odd -> Even data Odd where succO : Even -> Odd addEO : Even -> Odd -> Odd addOO : Odd -> Odd -> Even addOO (succO x) y = succE (addEO x y) addEO zeroE y = y addEO (succE x) y = succO (addOO x y)
{ "alphanum_fraction": 0.6539589443, "avg_line_length": 15.5, "ext": "agda", "hexsha": "6d580f8906da2fefaa69cbcecb32130ed9bfb77f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/Termination/Mutual.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/Termination/Mutual.agda", "max_line_length": 53, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/Termination/Mutual.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 109, "size": 341 }
--{-# OPTIONS -v tc.pos:100 #-} open import Agda.Builtin.Equality data ⊥ : Set where postulate A : Set R : A → Set magic : ⊥ → A magic () test : (a : ⊥) → magic a ≡ magic _ test a = refl
{ "alphanum_fraction": 0.5714285714, "avg_line_length": 12.25, "ext": "agda", "hexsha": "bbf2eef60d33ce52a5ed19f190ef53f603983ccb", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/AbsurdMatchIsNeutral.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/AbsurdMatchIsNeutral.agda", "max_line_length": 34, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/AbsurdMatchIsNeutral.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 70, "size": 196 }
module Main where {-# IMPORT System.IO #-} {-# IMPORT System.Environment #-} open import Base open import IO open import IO.File postulate getArgs : IO (List String) {-# COMPILED getArgs getArgs #-} _`bindIO`_ : {A B : Set} -> IO A -> (A -> IO B) -> IO B _`bindIO`_ = bindIO main : IO Unit main = getArgs `bindIO` mainWithArgs where mainWithArgs : List String -> IO Unit mainWithArgs [] = putStrLn "Give a file name silly" mainWithArgs (file :: []) = runFileIO ( openFile file readMode >>= \h -> -- hGetLine h hd >>= \s -> -- hClose h hd >>= \_ -> hGetContents h hd >>= \s -> return s ) `bindIO` \s -> putStrLn s mainWithArgs (_ :: _ :: _) = putStrLn "Just one file will do, thank you very much."
{ "alphanum_fraction": 0.5604938272, "avg_line_length": 23.8235294118, "ext": "agda", "hexsha": "55c57c56df5907dd4b53122b16123a95574f13ec", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/fileIO/Main.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/fileIO/Main.agda", "max_line_length": 60, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/fileIO/Main.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 229, "size": 810 }
-- A term model à la Beth open import Library hiding (_∈_) module TermModel (Base : Set) where import Formulas ; open module Form = Formulas Base import Derivations; open module Der = Derivations Base -- Beth model data Cover (Δ : Cxt) : Set where idc : Cover Δ bot : (t : Δ ⊢ False) → Cover Δ node : ∀{A B} (t : Δ ⊢ A ∨ B) (C : Cover (Δ ∙ A)) (D : Cover (Δ ∙ B)) → Cover Δ data _∈_ Γ : ({Δ} : Cxt) (C : Cover Δ) → Set where here : Γ ∈ idc {Γ} left : ∀{Δ A B C D}{t : Δ ⊢ A ∨ B} (e : Γ ∈ C) → Γ ∈ node t C D right : ∀{Δ A B C D}{t : Δ ⊢ A ∨ B} (e : Γ ∈ D) → Γ ∈ node t C D coverWk : ∀{Γ Δ} {C : Cover Δ} (e : Γ ∈ C) → Γ ≤ Δ coverWk here = id≤ coverWk (left e) = coverWk e • weak id≤ coverWk (right e) = coverWk e • weak id≤ transC : ∀{Γ} (C : Cover Γ) (f : ∀{Δ} → Δ ∈ C → Cover Δ) → Cover Γ transC idc f = f here transC (bot t) f = bot t transC (node t C D) f = node t (transC C (f ∘ left)) (transC D (f ∘ right)) -- UNUSED: trans∈ : ∀{Γ} (C : Cover Γ) (f : ∀{Δ} → Δ ∈ C → Cover Δ) → ∀ {Φ} {Δ} (e : Δ ∈ C) → Φ ∈ f e → Φ ∈ transC C f trans∈ idc f here = id trans∈ (bot t) f () trans∈ (node t C D) f (left e) = left ∘ trans∈ C (f ∘ left ) e trans∈ (node t C D) f (right e) = right ∘ trans∈ D (f ∘ right) e split∈ : ∀{Γ} (C : Cover Γ) (f : ∀{Δ} → Δ ∈ C → Cover Δ) {Φ} (e : Φ ∈ transC C f) → ∃ λ Δ → ∃ λ (e : Δ ∈ C) → Φ ∈ f e split∈ idc f e = _ , _ , e split∈ (bot t) f () split∈ (node t C D) f (left e) with split∈ C (f ∘ left) e ... | Δ , e₁ , e₂ = Δ , left e₁ , e₂ split∈ (node t C D) f (right e) with split∈ D (f ∘ right) e ... | Δ , e₁ , e₂ = Δ , right e₁ , e₂ -- Empty cover EmptyCover : (Γ : Cxt) → Set EmptyCover Γ = Σ (Cover Γ) λ C → ∀{Δ} → Δ ∈ C → ⊥ -- Empty cover is isomorphic to a witness of inconsistency toEmptyCover : ∀{Γ} (t : Γ ⊢ False) → EmptyCover Γ toEmptyCover t = bot t , λ() fromEmptyCover : ∀{Γ} (ec : EmptyCover Γ) → Γ ⊢ False fromEmptyCover (C , f) = reifyF C f where reifyF : ∀ {Γ} (C : Cover Γ) (f : ∀ {Δ} → Δ ∈ C → ⊥) → Γ ⊢ False reifyF idc f = ⊥-elim (f here) reifyF (bot t) f = t reifyF (node t C D) f = orE t (reifyF C (f ∘ left)) (reifyF D (f ∘ right)) transE : ∀{Γ} (C : Cover Γ) (f : ∀{Δ} → Δ ∈ C → EmptyCover Δ) → EmptyCover Γ transE C f = transC C (proj₁ ∘ f) , λ e → let _ , e₁ , e₂ = split∈ C (proj₁ ∘ f) e in f e₁ .proj₂ e₂ -- Paste (from Thorsten) paste' : ∀{A Γ} (C : Cover Γ) (f : ∀{Δ} (e : Δ ∈ C) → Δ ⊢ A) → Γ ⊢ A paste' idc f = f here paste' (bot t) f = falseE t paste' (node t C D) f = orE t (paste' C (f ∘ left)) (paste' D (f ∘ right)) -- Weakening Covers monC : ∀{Γ Δ} (τ : Δ ≤ Γ) (C : Cover Γ) → Cover Δ monC τ idc = idc monC τ (bot t) = bot (monD τ t) monC τ (node t C D) = node (monD τ t) (monC (lift τ) C) (monC (lift τ) D) mon∈ : ∀{Γ Δ Φ} (C : Cover Γ) (τ : Δ ≤ Γ) (e : Φ ∈ monC τ C) → ∃ λ Ψ → Ψ ∈ C × Φ ≤ Ψ mon∈ {Γ} {Δ} {.Δ} idc τ here = _ , here , τ mon∈ {Γ} {Δ} {Φ} (bot t) τ () mon∈ {Γ} {Δ} {Φ} (node t C D) τ (left e) with mon∈ C (lift τ) e ... | Ψ , e' , σ = Ψ , left e' , σ mon∈ {Γ} {Δ} {Φ} (node t C D) τ (right e) with mon∈ D (lift τ) e ... | Ψ , e' , σ = Ψ , right e' , σ -- The syntactic Beth model T⟦_⟧ : (A : Form) (Γ : Cxt) → Set T⟦ Atom P ⟧ Γ = Γ ⊢ Atom P T⟦ True ⟧ Γ = ⊤ T⟦ False ⟧ Γ = EmptyCover Γ T⟦ A ∨ B ⟧ Γ = ∃ λ (C : Cover Γ) → ∀{Δ} → Δ ∈ C → T⟦ A ⟧ Δ ⊎ T⟦ B ⟧ Δ T⟦ A ∧ B ⟧ Γ = T⟦ A ⟧ Γ × T⟦ B ⟧ Γ T⟦ A ⇒ B ⟧ Γ = ∀{Δ} (τ : Δ ≤ Γ) → T⟦ A ⟧ Δ → T⟦ B ⟧ Δ monT : ∀ A {Γ Δ} (τ : Δ ≤ Γ) → T⟦ A ⟧ Γ → T⟦ A ⟧ Δ monT (Atom P) τ t = monD τ t monT True τ _ = _ monT False τ (C , f) = monC τ C , λ {Φ} e → f (proj₁ (proj₂ (mon∈ C τ e))) monT (A ∨ B) {Γ} {Δ} τ (C , f) = monC τ C , λ {Φ} e → let Ψ , e' , σ = mon∈ C τ e in map-⊎ (monT A σ) (monT B σ) (f {Ψ} e') monT (A ∧ B) τ (a , b) = monT A τ a , monT B τ b monT (A ⇒ B) τ f σ = f (σ • τ) -- Reflection / reification mutual reflect : ∀{Γ} A (t : Γ ⊢ A) → T⟦ A ⟧ Γ reflect (Atom P) t = t reflect True t = _ reflect False = toEmptyCover reflect (A ∨ B) t = node t idc idc , aux where aux : ∀{Δ} → Δ ∈ node t idc idc → T⟦ A ⟧ Δ ⊎ T⟦ B ⟧ Δ aux (left here) = inj₁ (reflect A (hyp top)) aux (right here) = inj₂ (reflect B (hyp top)) reflect (A ∧ B) t = reflect A (andE₁ t) , reflect B (andE₂ t) reflect (A ⇒ B) t τ a = reflect B (impE (monD τ t) (reify A a)) reify : ∀{Γ} A (⟦f⟧ : T⟦ A ⟧ Γ) → Γ ⊢ A reify (Atom P) t = t reify True _ = trueI reify False = fromEmptyCover reify (A ∨ B) (C , f) = paste' C ([ orI₁ ∘ reify A , orI₂ ∘ reify B ] ∘ f) reify (A ∧ B) (a , b) = andI (reify A a) (reify B b) reify (A ⇒ B) ⟦f⟧ = impI (reify B (⟦f⟧ (weak id≤) (reflect A (hyp top)))) -- In the absurd world, every proposition holds. absurd : ∀{Γ A} (t : Γ ⊢ False) → T⟦ A ⟧ Γ absurd t = reflect _ (falseE t) -- We can paste in the model thanks to reflection and reification. -- (However, this does not look nice, since it goes through terms.) -- paste : ∀ {A Γ} (C : Cover Γ) (f : ∀{Δ} (e : Δ ∈ C) → T⟦ A ⟧ Δ) → T⟦ A ⟧ Γ -- paste C f = reflect _ (paste' C (reify _ ∘ f)) -- Semantic paste: paste : ∀ A {Γ} (C : Cover Γ) (f : ∀{Δ} (e : Δ ∈ C) → T⟦ A ⟧ Δ) → T⟦ A ⟧ Γ paste (Atom P) = paste' paste True C f = _ paste False C f = transE C f paste (A ∨ B) C f = transC C (proj₁ ∘ f) , λ e → let _ , e₁ , e₂ = split∈ C (proj₁ ∘ f) e in f e₁ .proj₂ e₂ paste (A ∧ B) C f = paste A C (proj₁ ∘ f) , paste B C (proj₂ ∘ f) paste (A ⇒ B) C f τ a = paste B (monC τ C) λ {Δ} e → let Ψ , e' , σ = mon∈ C τ e in f e' σ (monT A (coverWk e) a) -- Fundamental theorem -- Extension of T⟦_⟧ to contexts G⟦_⟧ : ∀ (Γ Δ : Cxt) → Set G⟦ ε ⟧ Δ = ⊤ G⟦ Γ ∙ A ⟧ Δ = G⟦ Γ ⟧ Δ × T⟦ A ⟧ Δ monG : ∀{Γ Δ Φ} (τ : Φ ≤ Δ) → G⟦ Γ ⟧ Δ → G⟦ Γ ⟧ Φ monG {ε} τ _ = _ monG {Γ ∙ A} τ (γ , a) = monG τ γ , monT A τ a -- Variable case fundH : ∀{Γ Δ A} (x : Hyp A Γ) (γ : G⟦ Γ ⟧ Δ) → T⟦ A ⟧ Δ fundH top = proj₂ fundH (pop x) = fundH x ∘ proj₁ -- A lemma for the orElim case. orElim : ∀ {Γ A B X} (C : Cover Γ) (f : {Δ : Cxt} → Δ ∈ C → T⟦ A ⟧ Δ ⊎ T⟦ B ⟧ Δ) → (∀{Δ} (τ : Δ ≤ Γ) → T⟦ A ⟧ Δ → T⟦ X ⟧ Δ) → (∀{Δ} (τ : Δ ≤ Γ) → T⟦ B ⟧ Δ → T⟦ X ⟧ Δ) → T⟦ X ⟧ Γ orElim C f g h = paste _ C λ e → [ g (coverWk e) , h (coverWk e) ] (f e) -- falseElim : falseElim : ∀{Γ A} (C : Cover Γ) (f : ∀{Δ} → Δ ∈ C → ⊥) → T⟦ A ⟧ Γ falseElim C f = paste _ C (⊥-elim ∘ f) -- The fundamental theorem fund : ∀{Γ A} (t : Γ ⊢ A) {Δ} (γ : G⟦ Γ ⟧ Δ) → T⟦ A ⟧ Δ fund (hyp x) = fundH x fund (impI t) γ τ a = fund t (monG τ γ , a) fund (impE t u) γ = fund t γ id≤ (fund u γ) fund (andI t u) γ = fund t γ , fund u γ fund (andE₁ t) = proj₁ ∘ fund t fund (andE₂ t) = proj₂ ∘ fund t fund (orI₁ t) γ = idc , inj₁ ∘ λ{ here → fund t γ } fund (orI₂ t) γ = idc , inj₂ ∘ λ{ here → fund t γ } fund (orE t u v) γ = uncurry orElim (fund t γ) (λ τ a → fund u (monG τ γ , a)) (λ τ b → fund v (monG τ γ , b)) fund (falseE t) γ = uncurry falseElim (fund t γ) fund trueI γ = _ -- -} -- -} -- Example:
{ "alphanum_fraction": 0.5, "avg_line_length": 33.1866028708, "ext": "agda", "hexsha": "9aa0f99af0f73c7c9ea05e256e26b33afe46741d", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-02-25T20:39:03.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-13T16:01:46.000Z", "max_forks_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "andreasabel/ipl", "max_forks_repo_path": "src/TermModel.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "andreasabel/ipl", "max_issues_repo_path": "src/TermModel.agda", "max_line_length": 114, "max_stars_count": 19, "max_stars_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "andreasabel/ipl", "max_stars_repo_path": "src/TermModel.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-27T19:10:49.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-16T08:08:51.000Z", "num_tokens": 3327, "size": 6936 }
------------------------------------------------------------------------ -- Decoding types and subtypes into SK terms and equality ------------------------------------------------------------------------ {-# OPTIONS --safe --exact-split --without-K #-} module FOmegaInt.Undecidable.Decoding where open import Data.List using ([]; _∷_) open import Data.Product using (_,_; proj₁; proj₂; _×_) open import Data.Fin using (zero; suc) open import Data.Fin.Substitution open import Data.Fin.Substitution.ExtraLemmas open import Function using (_∘_) open import Relation.Binary.PropositionalEquality hiding ([_]) open import FOmegaInt.Syntax open import FOmegaInt.Kinding.Canonical as Canonical open import FOmegaInt.Kinding.Canonical.Reduced as Reduced open import FOmegaInt.Undecidable.SK open import FOmegaInt.Undecidable.Encoding open Syntax open ElimCtx open Substitution hiding (subst) open Canonical.Kinding using (_⊢_<:_; _⊢_<:_⇇_; <:-⇇) open Reduced.Kinding open Encoding open ≡-Reasoning module V = VarSubst module EL = TermLikeLemmas Substitution.termLikeLemmasElim module ELV = LiftAppLemmas EL.varLiftAppLemmas ------------------------------------------------------------------------ -- Decoding of types into SK? terms decode : Elim |Γ| → SK?Term decode (var x₀ ∙ (a ∷ b ∷ _)) = K · (decode a) · (decode b) decode (var x₁ ∙ (a ∷ b ∷ c ∷ _)) = S · (decode a) · (decode b) · (decode c) decode (var x₂ ∙ (a ∷ b ∷ _)) = K · (decode a) · (decode b) decode (var x₃ ∙ (a ∷ b ∷ c ∷ _)) = S · (decode a) · (decode b) · (decode c) decode (var x₄ ∙ (a ∷ b ∷ _)) = decode a · decode b decode (var x₅ ∙ _) = K decode (var x₆ ∙ _) = S decode (⊥ ∙ _) = ⊥ decode (⊤ ∙ _) = ⊤ {-# CATCHALL #-} decode _ = ⊤ -- Decoding is the left-inverse of encoding. -- -- NOTE. We encode SK terms but decode to SK? terms, so decoding is -- strictly speaking only left-inverse when restricted to (pure) SK -- terms. Hence the use of `inject' here. decode-encode : ∀ t → decode (encode t) ≡ inject t decode-encode S = refl decode-encode K = refl decode-encode (s · t) = cong₂ _·_ (decode-encode s) (decode-encode t) -- Decoding subsumes squashing decode-squash : ∀ (a : Elim |Γ|) → decode (squashElim a) ≡ decode a decode-squash (var x₀ ∙ []) = refl -- degenerate case decode-squash (var x₀ ∙ (_ ∷ [])) = refl -- degenerate case decode-squash (var x₀ ∙ (a ∷ b ∷ _)) = cong₂ (λ a b → K · a · b) (decode-squash a) (decode-squash b) decode-squash (var x₁ ∙ []) = refl -- degenerate case decode-squash (var x₁ ∙ (_ ∷ [])) = refl -- degenerate case decode-squash (var x₁ ∙ (_ ∷ _ ∷ [])) = refl -- degenerate case decode-squash (var x₁ ∙ (a ∷ b ∷ c ∷ _)) = trans (cong (S · _ · _ ·_) (decode-squash c)) (cong₂ (λ a b → S · a · b · _) (decode-squash a) (decode-squash b)) decode-squash (var x₂ ∙ []) = refl -- degenerate case decode-squash (var x₂ ∙ (_ ∷ [])) = refl -- degenerate case decode-squash (var x₂ ∙ (a ∷ b ∷ _)) = cong₂ (λ a b → K · a · b) (decode-squash a) (decode-squash b) decode-squash (var x₃ ∙ []) = refl -- degenerate case decode-squash (var x₃ ∙ (_ ∷ [])) = refl -- degenerate case decode-squash (var x₃ ∙ (_ ∷ _ ∷ [])) = refl -- degenerate case decode-squash (var x₃ ∙ (a ∷ b ∷ c ∷ _)) = trans (cong (S · _ · _ ·_) (decode-squash c)) (cong₂ (λ a b → S · a · b · _) (decode-squash a) (decode-squash b)) decode-squash (var x₄ ∙ []) = refl -- degenerate case decode-squash (var x₄ ∙ (_ ∷ [])) = refl -- degenerate case decode-squash (var x₄ ∙ (a ∷ b ∷ _)) = cong₂ _·_ (decode-squash a) (decode-squash b) decode-squash (var x₅ ∙ as) = refl decode-squash (var x₆ ∙ as) = refl decode-squash (⊥ ∙ as) = refl decode-squash (⊤ ∙ as) = refl -- squashed cases decode-squash (Π k a ∙ as) = refl decode-squash ((a ⇒ b) ∙ as) = refl decode-squash (Λ k a ∙ as) = refl decode-squash (ƛ a b ∙ as) = refl decode-squash (a ⊡ b ∙ as) = refl -- Helper lemmas to be used when decoding kinding derivations. ⌜⌝-⌞⌟-∙∙ : ∀ {n} (a : Elim n) → ⌜ ⌞ a ⌟ ⌝ ∙∙ [] ≡ a ⌜⌝-⌞⌟-∙∙ a = begin ⌜ ⌞ a ⌟ ⌝ ∙∙ [] ≡⟨ ∙∙-[] ⌜ ⌞ a ⌟ ⌝ ⟩ ⌜ ⌞ a ⌟ ⌝ ≡⟨ ⌜⌝∘⌞⌟-id a ⟩ a ∎ ⌜⌝-⌞⌟-weaken-sub₁ : ∀ {n} (a b : Elim n) → (⌜ weaken ⌞ a ⌟ ⌝ ∙∙ []) Elim[ ⌞ b ⌟ ] ≡ a ⌜⌝-⌞⌟-weaken-sub₁ a b = begin (⌜ weaken ⌞ a ⌟ ⌝ ∙∙ []) Elim[ ⌞ b ⌟ ] ≡˘⟨ cong (λ a → (⌜ a ⌝ ∙∙ []) Elim[ ⌞ b ⌟ ]) (⌞⌟-/Var a) ⟩ (⌜ ⌞ weakenElim a ⌟ ⌝ ∙∙ []) Elim[ ⌞ b ⌟ ] ≡⟨ cong (_Elim[ ⌞ b ⌟ ]) (⌜⌝-⌞⌟-∙∙ (weakenElim a)) ⟩ weakenElim a Elim[ ⌞ b ⌟ ] ≡⟨ EL.weaken-sub a ⟩ a ∎ ⌜⌝-⌞⌟-weaken-sub₂ : ∀ {n} (a b c : Elim n) → ((⌜ weaken (weaken ⌞ a ⌟) ⌝ ∙∙ []) Elim/ sub ⌞ b ⌟ ↑) Elim[ ⌞ c ⌟ ] ≡ a ⌜⌝-⌞⌟-weaken-sub₂ a b c = begin ((⌜ weaken (weaken ⌞ a ⌟) ⌝ ∙∙ []) Elim/ sub ⌞ b ⌟ ↑) Elim[ ⌞ c ⌟ ] ≡˘⟨ cong (λ a → ((⌜ a ⌝ ∙∙ []) Elim/ sub ⌞ b ⌟ ↑) Elim[ ⌞ c ⌟ ]) (trans (⌞⌟-/Var (weakenElim a)) (cong weaken (⌞⌟-/Var a))) ⟩ ((⌜ ⌞ weakenElim (weakenElim a) ⌟ ⌝ ∙∙ []) Elim/ sub ⌞ b ⌟ ↑) Elim[ ⌞ c ⌟ ] ≡⟨ cong (λ a → (a Elim/ sub ⌞ b ⌟ ↑) Elim[ ⌞ c ⌟ ]) (⌜⌝-⌞⌟-∙∙ (weakenElim (weakenElim a))) ⟩ (weakenElim (weakenElim a) Elim/ sub ⌞ b ⌟ ↑) Elim[ ⌞ c ⌟ ] ≡⟨ cong (_Elim[ ⌞ c ⌟ ]) (sym (EL.weaken-/ (weakenElim a))) ⟩ weakenElim (weakenElim a Elim/ sub ⌞ b ⌟) Elim[ ⌞ c ⌟ ] ≡⟨ cong ((_Elim[ ⌞ c ⌟ ]) ∘ weakenElim) (EL.weaken-sub a) ⟩ weakenElim a Elim[ ⌞ c ⌟ ] ≡⟨ EL.weaken-sub a ⟩ a ∎ -- Decoding of (reduced) canonical type order into the SK? term order. mutual decode-∼ : ∀ {a b} → Γ-SK? ⊢ a ∼ b → decode a ≤SK? decode b decode-∼ (∼-trans a∼b b∼c) = ≤?-trans (decode-∼ a∼b) (decode-∼ b∼c) decode-∼ (∼-⊥ b⇉b⋯b) = ≤?-⊥ decode-∼ (∼-⊤ a⇉a⋯a) = ≤?-⊤ decode-∼ (∼-∙ (⇉-var x₀ _ refl) (∼-∷ _ _ a₁∼b₁ (∼-∷ _ _ a₂∼b₂ ∼-[]))) = ≤?-· (≤?-· ≤?-refl (decode-∼ a₁∼b₁)) (decode-∼ a₂∼b₂) decode-∼ (∼-∙ (⇉-var x₁ _ refl) (∼-∷ _ _ a₁∼b₁ (∼-∷ _ _ a₂∼b₂ (∼-∷ _ _ a₃∼b₃ ∼-[])))) = ≤?-· (≤?-· (≤?-· ≤?-refl (decode-∼ a₁∼b₁)) (decode-∼ a₂∼b₂)) (decode-∼ a₃∼b₃) decode-∼ (∼-∙ (⇉-var x₂ _ refl) (∼-∷ _ _ a₁∼b₁ (∼-∷ _ _ a₂∼b₂ ∼-[]))) = ≤?-· (≤?-· ≤?-refl (decode-∼ a₁∼b₁)) (decode-∼ a₂∼b₂) decode-∼ (∼-∙ (⇉-var x₃ _ refl) (∼-∷ _ _ a₁∼b₁ (∼-∷ _ _ a₂∼b₂ (∼-∷ _ _ a₃∼b₃ ∼-[])))) = ≤?-· (≤?-· (≤?-· ≤?-refl (decode-∼ a₁∼b₁)) (decode-∼ a₂∼b₂)) (decode-∼ a₃∼b₃) decode-∼ (∼-∙ (⇉-var x₄ _ refl) (∼-∷ _ _ a₁∼b₁ (∼-∷ _ _ a₂∼b₂ ∼-[]))) = ≤?-· (decode-∼ a₁∼b₁) (decode-∼ a₂∼b₂) decode-∼ (∼-∙ (⇉-var x₅ _ refl) ∼-[]) = ≤?-refl decode-∼ (∼-∙ (⇉-var x₆ _ refl) ∼-[]) = ≤?-refl decode-∼ (∼-⟨| a⇉b⋯c) = proj₁ (decode-Ne⇉ a⇉b⋯c) decode-∼ (∼-|⟩ a⇉b⋯c) = proj₂ (decode-Ne⇉ a⇉b⋯c) decode-Ne⇉ : ∀ {a b c} → Γ-SK? ⊢Ne a ⇉ b ⋯ c → decode b ≤SK? decode a × decode a ≤SK? decode c decode-Ne⇉ (⇉-∙ (⇉-var x₀ _ refl) (⇉-∷ {a} a∈* (⇉-∷ {b} b∈* ⇉-[]))) = subst (λ a′ → decode a′ ≤SK? K · (decode a) · (decode b)) (sym (⌜⌝-⌞⌟-weaken-sub₁ a b)) ≤?-Kexp , subst₂ (λ a′ b′ → K · decode a · decode b ≤SK? K · decode a′ · decode b′) (sym (⌜⌝-⌞⌟-weaken-sub₁ a b)) (sym (⌜⌝-⌞⌟-∙∙ b)) ≤?-refl decode-Ne⇉ (⇉-∙ (⇉-var x₁ _ refl) (⇉-∷ {a} a∈* (⇉-∷ {b} b∈* (⇉-∷ {c} c∈* ⇉-[])))) = subst₂ (λ a′ b′ → decode a′ · decode c′ · (decode b′ · decode c′) ≤SK? S · decode a · decode b · decode c) (sym (⌜⌝-⌞⌟-weaken-sub₂ a b c)) (sym (⌜⌝-⌞⌟-weaken-sub₁ b c)) (subst (λ c′ → decode a · decode c′ · (decode b · decode c′) ≤SK? S · decode a · decode b · decode c) (sym (⌜⌝-⌞⌟-∙∙ c)) ≤?-Sexp) , subst₂ (λ a′ b′ → S · decode a · decode b · decode c ≤SK? S · decode a′ · decode b′ · decode c′) (sym (⌜⌝-⌞⌟-weaken-sub₂ a b c)) (sym (⌜⌝-⌞⌟-weaken-sub₁ b c)) (subst (λ c′ → S · decode a · decode b · decode c ≤SK? S · decode a · decode b · decode c′) (sym (⌜⌝-⌞⌟-∙∙ c)) ≤?-refl) where c′ = ⌜ ⌞ c ⌟ ⌝ ∙∙ [] decode-Ne⇉ (⇉-∙ (⇉-var x₂ _ refl) (⇉-∷ {a} a∈* (⇉-∷ {b} b∈* ⇉-[]))) = subst₂ (λ a′ b′ → K · decode a′ · decode b′ ≤SK? K · decode a · decode b) (sym (⌜⌝-⌞⌟-weaken-sub₁ a b)) (sym (⌜⌝-⌞⌟-∙∙ b)) ≤?-refl , subst (λ a′ → K · decode a · decode b ≤SK? decode a′) (sym (⌜⌝-⌞⌟-weaken-sub₁ a b)) ≤?-Kred decode-Ne⇉ (⇉-∙ (⇉-var x₃ _ refl) (⇉-∷ {a} a∈* (⇉-∷ {b} b∈* (⇉-∷ {c} c∈* ⇉-[])))) = subst₂ (λ a′ b′ → S · decode a′ · decode b′ · decode c′ ≤SK? S · decode a · decode b · decode c) (sym (⌜⌝-⌞⌟-weaken-sub₂ a b c)) (sym (⌜⌝-⌞⌟-weaken-sub₁ b c)) (subst (λ c′ → S · decode a · decode b · decode c′ ≤SK? S · decode a · decode b · decode c) (sym (⌜⌝-⌞⌟-∙∙ c)) ≤?-refl) , subst₂ (λ a′ b′ → S · decode a · decode b · decode c ≤SK? decode a′ · decode c′ · (decode b′ · decode c′)) (sym (⌜⌝-⌞⌟-weaken-sub₂ a b c)) (sym (⌜⌝-⌞⌟-weaken-sub₁ b c)) (subst (λ c′ → S · decode a · decode b · decode c ≤SK? decode a · decode c′ · (decode b · decode c′)) (sym (⌜⌝-⌞⌟-∙∙ c)) ≤?-Sred) where c′ = ⌜ ⌞ c ⌟ ⌝ ∙∙ [] decode-Ne⇉ (⇉-∙ (⇉-var x₄ _ refl) (⇉-∷ a∈* (⇉-∷ b∈* ⇉-[]))) = ≤?-⊥ , ≤?-⊤ decode-Ne⇉ (⇉-∙ (⇉-var x₅ _ refl) ⇉-[]) = ≤?-⊥ , ≤?-⊤ decode-Ne⇉ (⇉-∙ (⇉-var x₆ _ refl) ⇉-[]) = ≤?-⊥ , ≤?-⊤ -- The SK? signature is a first-order context. kdS-fo : FOKind (kdS {0}) kdS-fo = fo-⋯ kdK-fo : FOKind (kdK {0}) kdK-fo = fo-⋯ kdApp-fo : FOKind (kdApp {0}) kdApp-fo = fo-Π (fo-Π fo-⋯) kdSRed-fo : FOKind (kdSRed {0}) kdSRed-fo = fo-Π (fo-Π (fo-Π fo-⋯)) kdKRed-fo : FOKind (kdKRed {0}) kdKRed-fo = fo-Π (fo-Π fo-⋯) kdSExp-fo : FOKind (kdSExp {0}) kdSExp-fo = fo-Π (fo-Π (fo-Π fo-⋯)) kdKExp-fo : FOKind (kdKExp {0}) kdKExp-fo = fo-Π (fo-Π fo-⋯) Γ-SK?-fo : FOCtx Γ-SK? Γ-SK?-fo = fo-∷ (fo-kd kdKExp-fo) (fo-∷ (fo-kd kdSExp-fo) (fo-∷ (fo-kd kdKRed-fo) (fo-∷ (fo-kd kdSRed-fo) (fo-∷ (fo-kd kdApp-fo) (fo-∷ (fo-kd kdK-fo) (fo-∷ (fo-kd kdS-fo) fo-[])))))) -- Decoding of canonical subtyping into the SK? term order. decode-<: : ∀ {a b} → Γ-SK? ⊢ a <: b → decode a ≤SK? decode b decode-<: {a} {b} a<:b = subst₂ (_≤SK?_) (decode-squash a) (decode-squash b) (decode-∼ (reduce-<: Γ-SK?-fo a<:b)) decode-<:⇇ : ∀ {a b} → Γ-SK? ⊢ a <: b ⇇ ⌜*⌝ → decode a ≤SK? decode b decode-<:⇇ {a} {b} (<:-⇇ _ _ a<:b) = decode-<: a<:b -- Full decoding to SK term equality. decode-<:⇇-encode : ∀ {s t} → Γ-SK? ⊢ encode s <: encode t ⇇ ⌜*⌝ → s ≡SK t decode-<:⇇-encode {s} {t} es<:et⇇* = inject-≤SK?-≡SK (subst₂ (_≤SK?_) (decode-encode s) (decode-encode t) (decode-<:⇇ es<:et⇇*))
{ "alphanum_fraction": 0.4743356389, "avg_line_length": 41.7794676806, "ext": "agda", "hexsha": "467fcb3e3a08f6ff96170ae773297c89bd19b655", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Blaisorblade/f-omega-int-agda", "max_forks_repo_path": "src/FOmegaInt/Undecidable/Decoding.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Blaisorblade/f-omega-int-agda", "max_issues_repo_path": "src/FOmegaInt/Undecidable/Decoding.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Blaisorblade/f-omega-int-agda", "max_stars_repo_path": "src/FOmegaInt/Undecidable/Decoding.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5281, "size": 10988 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.ZCohomology.Groups.WedgeOfSpheres where open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.Groups.Unit open import Cubical.ZCohomology.Groups.Sn open import Cubical.ZCohomology.Groups.Wedge open import Cubical.ZCohomology.Groups.Connected open import Cubical.HITs.Sn open import Cubical.HITs.S1 open import Cubical.Foundations.Prelude open import Cubical.HITs.Susp open import Cubical.HITs.Wedge open import Cubical.HITs.Pushout open import Cubical.HITs.Truncation renaming (elim to trElim) open import Cubical.Algebra.Group S¹⋁S¹ : Type₀ S¹⋁S¹ = S₊∙ 1 ⋁ S₊∙ 1 S²⋁S¹⋁S¹ : Type₀ S²⋁S¹⋁S¹ = S₊∙ 2 ⋁ (S¹⋁S¹ , inl base) ------------- H⁰(S¹⋁S¹) ------------ H⁰-S¹⋁S¹ : GroupIso (coHomGr 0 S¹⋁S¹) intGroup H⁰-S¹⋁S¹ = H⁰-connected (inl base) (wedgeConnected _ _ (Sn-connected 0) (Sn-connected 0)) ------------- H¹(S¹⋁S¹) ------------ H¹-S¹⋁S¹ : GroupIso (coHomGr 1 S¹⋁S¹) (dirProd intGroup intGroup) H¹-S¹⋁S¹ = (Hⁿ-⋁ _ _ 0) □ dirProdGroupIso coHom1S1≃ℤ coHom1S1≃ℤ ------------- H⁰(S²⋁S¹⋁S¹) --------- H⁰-S²⋁S¹⋁S¹ : GroupIso (coHomGr 0 S²⋁S¹⋁S¹) intGroup H⁰-S²⋁S¹⋁S¹ = H⁰-connected (inl north) (wedgeConnected _ _ (Sn-connected 1) (wedgeConnected _ _ (Sn-connected 0) (Sn-connected 0))) ------------- H¹(S²⋁S¹⋁S¹) --------- H¹-S²⋁S¹⋁S¹ : GroupIso (coHomGr 1 S²⋁S¹⋁S¹) (dirProd intGroup intGroup) H¹-S²⋁S¹⋁S¹ = Hⁿ-⋁ (S₊∙ 2) (S¹⋁S¹ , inl base) 0 □ dirProdGroupIso (H¹-Sⁿ≅0 0) H¹-S¹⋁S¹ □ lUnitGroupIso ------------- H²(S²⋁S¹⋁S¹) --------- H²-S²⋁S¹⋁S¹ : GroupIso (coHomGr 2 S²⋁S¹⋁S¹) intGroup H²-S²⋁S¹⋁S¹ = compGroupIso (Hⁿ-⋁ _ _ 1) (dirProdGroupIso {B = trivialGroup} (invGroupIso (Hⁿ-Sⁿ≅ℤ 1)) ((Hⁿ-⋁ _ _ 1) □ dirProdGroupIso (Hⁿ-S¹≅0 0) (Hⁿ-S¹≅0 0) □ rUnitGroupIso) □ rUnitGroupIso) private open import Cubical.Data.Int open import Cubical.Foundations.Equiv open import Cubical.Data.Sigma to₂ : coHom 2 S²⋁S¹⋁S¹ → Int to₂ = GroupHom.fun (GroupIso.map H²-S²⋁S¹⋁S¹) from₂ : Int → coHom 2 S²⋁S¹⋁S¹ from₂ = GroupIso.inv H²-S²⋁S¹⋁S¹ to₁ : coHom 1 S²⋁S¹⋁S¹ → Int × Int to₁ = GroupHom.fun (GroupIso.map H¹-S²⋁S¹⋁S¹) from₁ : Int × Int → coHom 1 S²⋁S¹⋁S¹ from₁ = GroupIso.inv H¹-S²⋁S¹⋁S¹ to₀ : coHom 0 S²⋁S¹⋁S¹ → Int to₀ = GroupHom.fun (GroupIso.map H⁰-S²⋁S¹⋁S¹) from₀ : Int → coHom 0 S²⋁S¹⋁S¹ from₀ = GroupIso.inv H⁰-S²⋁S¹⋁S¹ {- -- Computes (a lot slower than for the torus) test : to₁ (from₁ (1 , 0) +ₕ from₁ (0 , 1)) ≡ (1 , 1) test = refl -- Does not compute: test2 : to₂ (from₂ 0) ≡ 0 test2 = refl -}
{ "alphanum_fraction": 0.6403574088, "avg_line_length": 30.1797752809, "ext": "agda", "hexsha": "408d3c9c20cca3e21fdcb737f89cd56a04fc51b4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ayberkt/cubical", "max_forks_repo_path": "Cubical/ZCohomology/Groups/WedgeOfSpheres.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ayberkt/cubical", "max_issues_repo_path": "Cubical/ZCohomology/Groups/WedgeOfSpheres.agda", "max_line_length": 89, "max_stars_count": null, "max_stars_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ayberkt/cubical", "max_stars_repo_path": "Cubical/ZCohomology/Groups/WedgeOfSpheres.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1297, "size": 2686 }
open import Agda.Builtin.Size mutual data Unit (i : Size) : Set where c : Unit′ i → Unit i record Unit′ (i : Size) : Set where coinductive field force : {j : Size< i} → Unit j open Unit′ public tail : Unit ∞ → Unit ∞ tail (c x) = force x u : (∀ {i} → Unit′ i → Unit i) → ∀ {i} → Unit i u cons = tail (cons λ { .force → u cons }) bad : Unit ∞ bad = u c
{ "alphanum_fraction": 0.5454545455, "avg_line_length": 16.0416666667, "ext": "agda", "hexsha": "bd48583b211301d854a9e7dfff09d2cc583bd879", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2985-1.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2985-1.agda", "max_line_length": 42, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2985-1.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 143, "size": 385 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT -- custom pushout for Blakers-Massey module homotopy.blakersmassey.Pushout {i j k} {A : Type i} {B : Type j} (Q : A → B → Type k) where bmspan : Span {i} {j} {lmax i (lmax j k)} bmspan = span A B (Σ A λ a → Σ B λ b → Q a b) fst (fst ∘ snd) BMPushout : Type (lmax i (lmax j k)) BMPushout = Pushout bmspan bmleft : A → BMPushout bmleft = left bmright : B → BMPushout bmright = right bmglue : ∀ {a b} → Q a b → bmleft a == bmright b bmglue {a} {b} q = glue (a , b , q) module BMPushoutElim {l} {P : BMPushout → Type l} (bmleft* : (a : A) → P (bmleft a)) (bmright* : (b : B) → P (bmright b)) (bmglue* : ∀ {a b} (q : Q a b) → bmleft* a == bmright* b [ P ↓ bmglue q ]) where private module P = PushoutElim {d = bmspan} {P = P} bmleft* bmright* (λ c → bmglue* (snd (snd c))) f = P.f glue-β : ∀ {a b} (q : Q a b) → apd f (bmglue q) == bmglue* q glue-β q = P.glue-β (_ , _ , q) BMPushout-elim = BMPushoutElim.f module BMPushoutRec {l} {D : Type l} (bmleft* : A → D) (bmright* : B → D) (bmglue* : ∀ {a b} (q : Q a b) → bmleft* a == bmright* b) where private module P = PushoutRec {d = bmspan} {D = D} bmleft* bmright* (λ c → bmglue* (snd (snd c))) f = P.f glue-β : ∀ {a b} (q : Q a b) → ap f (bmglue q) == bmglue* q glue-β q = P.glue-β (_ , _ , q)
{ "alphanum_fraction": 0.5544918999, "avg_line_length": 26.1153846154, "ext": "agda", "hexsha": "e438251be9da9b368be52bb4574e4f0c71931eba", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/blakersmassey/Pushout.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/blakersmassey/Pushout.agda", "max_line_length": 82, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/blakersmassey/Pushout.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 582, "size": 1358 }
{-# OPTIONS --without-K --safe #-} -- The category build from ObjectRestriction can be done so Functorially module Categories.Functor.Construction.ObjectRestriction where open import Level open import Data.Product using (proj₁) open import Relation.Unary using (Pred) open import Function using () renaming (id to id→) open import Categories.Category.Core open import Categories.Category.Construction.ObjectRestriction open import Categories.Functor.Core open import Categories.Functor.Properties using (Faithful; Full) private variable o ℓ e ℓ′ : Level C : Category o ℓ e RestrictionFunctor : {ℓ′ : Level} → (C : Category o ℓ e) → (E : Pred (Category.Obj C) ℓ′) → Functor (ObjectRestriction C E) C RestrictionFunctor C E = record { F₀ = proj₁ ; F₁ = id→ ; identity = Equiv.refl ; homomorphism = Equiv.refl ; F-resp-≈ = id→ } where open Category C RF-Faithful : {E : Pred (Category.Obj C) ℓ′} → Faithful (RestrictionFunctor C E) RF-Faithful _ _ = id→ RF-Full : {E : Pred (Category.Obj C) ℓ′} → Full (RestrictionFunctor C E) RF-Full {C = C} = record { from = record { _⟨$⟩_ = id→ ; cong = id→ } ; right-inverse-of = λ _ → Category.Equiv.refl C }
{ "alphanum_fraction": 0.6917293233, "avg_line_length": 27.2045454545, "ext": "agda", "hexsha": "aa1174b9121961b3d7d8cfe90f6c703824006292", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Functor/Construction/ObjectRestriction.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Functor/Construction/ObjectRestriction.agda", "max_line_length": 125, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Functor/Construction/ObjectRestriction.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 371, "size": 1197 }
open import Data.Nat using (_+_; _*_; zero; suc; ℕ) open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; _≢_; refl; cong) import Data.Nat.Properties open Data.Nat.Properties.SemiringSolver using (solve; _:=_; con; var; _:+_; _:*_; :-_; _:-_) open PropEq.≡-Reasoning lem1 : (4 + 6 ≡ 10) lem1 = refl lem3 : (x : ℕ) → (2 * (x + 4) ≡ 8 + 2 * x) lem3 = solve 1 (λ x' → con 2 :* (x' :+ con 4) := con 8 :+ con 2 :* x') refl sum : ℕ → ℕ sum zero = 0 sum (suc n) = 1 + 2 * n + sum n theorem : (n : ℕ) → (sum n ≡ n * n) theorem 0 = refl theorem (suc p) = begin sum (suc p) ≡⟨ refl ⟩ 1 + 2 * p + sum p ≡⟨ cong (λ x → 1 + 2 * p + x) (theorem p)⟩ 1 + 2 * p + p * p ≡⟨ solve 1 (λ p → con 1 :+ con 2 :* p :+ p :* p := (con 1 :+ p) :* (con 1 :+ p)) refl p ⟩ (1 + p) * (1 + p) ≡⟨ refl ⟩ (suc p) * (suc p) ∎
{ "alphanum_fraction": 0.4994179278, "avg_line_length": 26.0303030303, "ext": "agda", "hexsha": "e85dd84ef58f8150694b82e8d876356adf84a123", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-07-18T22:03:24.000Z", "max_forks_repo_forks_event_min_datetime": "2019-07-18T22:03:24.000Z", "max_forks_repo_head_hexsha": "9319c5c1e7d6eec0dc22bc8ae690dc362e9113b9", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jota191/pml", "max_forks_repo_path": "tests/comparison/sumodd.agda", "max_issues_count": 36, "max_issues_repo_head_hexsha": "9319c5c1e7d6eec0dc22bc8ae690dc362e9113b9", "max_issues_repo_issues_event_max_datetime": "2020-02-08T09:43:31.000Z", "max_issues_repo_issues_event_min_datetime": "2017-11-01T16:27:45.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jota191/pml", "max_issues_repo_path": "tests/comparison/sumodd.agda", "max_line_length": 91, "max_stars_count": 15, "max_stars_repo_head_hexsha": "9319c5c1e7d6eec0dc22bc8ae690dc362e9113b9", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jota191/pml", "max_stars_repo_path": "tests/comparison/sumodd.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-17T18:31:08.000Z", "max_stars_repo_stars_event_min_datetime": "2017-12-22T12:10:16.000Z", "num_tokens": 402, "size": 859 }
-- test for pattern matching on Strings module StringPattern where open import Common.IO open import Common.Unit open import Common.String f : String → String f "bla" = "found-bla" f x = x -- expected: -- no-bla -- found-bla main : IO Unit main = putStrLn (f "no-bla") ,, putStrLn (f "bla")
{ "alphanum_fraction": 0.6845637584, "avg_line_length": 15.6842105263, "ext": "agda", "hexsha": "67fe1b11625367cee4e259b098783f182aca9a31", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Compiler/simple/StringPattern.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Compiler/simple/StringPattern.agda", "max_line_length": 39, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Compiler/simple/StringPattern.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 87, "size": 298 }
module Issue183 where postulate A : Set T : Set T = A → A data L (A : Set) : Set where data E (x : T) : T → Set where e : E x x foo : (f : A → A) → L (E f (λ x → f x)) foo = λ _ → e -- Previously: -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/Syntax/Translation/AbstractToConcrete.hs:705 -- Should now give a proper error message. -- E (_8 f) (_8 f) !=< L (E f f) of type Set -- when checking that the expression e has type L (E f f)
{ "alphanum_fraction": 0.6274900398, "avg_line_length": 20.9166666667, "ext": "agda", "hexsha": "24776b845f0a09fe430fee7e6c5d9a54e19f9d20", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue183.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue183.agda", "max_line_length": 84, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/fail/Issue183.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 167, "size": 502 }
module Type.Proofs where open import Logic import Lvl open import Type
{ "alphanum_fraction": 0.7662337662, "avg_line_length": 12.8333333333, "ext": "agda", "hexsha": "06d6a32d14f432e7755593a2e2da4b2dbe2090a7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Type/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Type/Proofs.agda", "max_line_length": 24, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Type/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 19, "size": 77 }