Search is not available for this dataset
text
string
meta
dict
module Sets.IterativeSet.Relator where import Lvl open import Logic.Propositional open import Logic.Predicate open import Numeral.Natural open import Sets.IterativeSet open import Syntax.Function open import Type module _ where private variable {ℓ ℓ₁ ℓ₂} : Lvl.Level private variable {A B} : Iset{ℓ} open Iset _≡_ : (A : Iset{ℓ₁}) → (B : Iset{ℓ₂}) → Type{ℓ₁ Lvl.⊔ ℓ₂} record _⊆_ (A : Iset{ℓ₁}) (B : Iset{ℓ₂}) : Type{ℓ₁ Lvl.⊔ ℓ₂} _⊇_ : Iset{ℓ₁} → Iset{ℓ₂} → Type{ℓ₁ Lvl.⊔ ℓ₂} -- Set equality is by definition the antisymmetric property of the subset relation. _≡_ A B = (A ⊇ B) ∧ (A ⊆ B) -- Set membership is the existence of an index in the set that points to a set equal element to the element. _∈_ : Iset{ℓ₁} → Iset{ℓ₂} → Type{ℓ₁ Lvl.⊔ ℓ₂} a ∈ B = ∃{Obj = Index(B)} (ib ↦ a ≡ elem(B)(ib)) -- Set subset is a mapping between the indices such that they point to the same element in both sets. record _⊆_ A B where constructor intro inductive eta-equality field map : Index(A) → Index(B) proof : ∀{ia} → (elem(A)(ia) ≡ elem(B)(map(ia))) A ⊇ B = B ⊆ A module _⊇_ where open _⊆_ public _∉_ : Iset{ℓ₁} → Iset{ℓ₂} → Type{ℓ₁ Lvl.⊔ ℓ₂} a ∉ B = ¬(a ∈ B)
{ "alphanum_fraction": 0.6334693878, "avg_line_length": 29.1666666667, "ext": "agda", "hexsha": "f08f12a7a217f69bafee8b9bc66130f9a14e0008", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Sets/IterativeSet/Relator.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Sets/IterativeSet/Relator.agda", "max_line_length": 110, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Sets/IterativeSet/Relator.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 497, "size": 1225 }
module SizedIO.Object where open import Data.Product record Interface : Set₁ where field Method : Set Result : (m : Method) → Set open Interface public -- A simple object just returns for a method the response -- and the object itself record Object (i : Interface) : Set where coinductive field objectMethod : (m : Method i) → Result i m × Object i open Object public _▹_ : {A : Set} → {B : Set} → A → (A → B) → B a ▹ f = f a
{ "alphanum_fraction": 0.6548672566, "avg_line_length": 19.652173913, "ext": "agda", "hexsha": "2882d3943169078ea7330b332b9d02fa1a8589a0", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "stephanadls/state-dependent-gui", "max_forks_repo_path": "src/SizedIO/Object.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "stephanadls/state-dependent-gui", "max_issues_repo_path": "src/SizedIO/Object.agda", "max_line_length": 57, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "src/SizedIO/Object.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 137, "size": 452 }
A : Set B : Set₁ B = Set C : Set
{ "alphanum_fraction": 0.4857142857, "avg_line_length": 5, "ext": "agda", "hexsha": "9d2c7e45adb0f338e9a5dcad041d0c3c33d72bc7", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue3233.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue3233.agda", "max_line_length": 8, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue3233.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 17, "size": 35 }
-- Andreas, AIM XXIII, 2016-04-26 flight EDI-GOT home -- {-# OPTIONS -v impossible:10 #-} -- Parameter arguments of overloaded projection applications -- should not be skipped! record R A : Set where field f : A open R record S A : Set where field f : A open S module _ (A B : Set) (a : A) where r : R A f r = a test1 = f {A = A} r test2 = f {A} r test = f {A = B} r
{ "alphanum_fraction": 0.6041131105, "avg_line_length": 15.56, "ext": "agda", "hexsha": "cde49fe14cffe540e0811e4d76c653ff3518c2ef", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pthariensflame/agda", "max_forks_repo_path": "test/Fail/Issue1944-checkParams2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pthariensflame/agda", "max_issues_repo_path": "test/Fail/Issue1944-checkParams2.agda", "max_line_length": 60, "max_stars_count": 3, "max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pthariensflame/agda", "max_stars_repo_path": "test/Fail/Issue1944-checkParams2.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 137, "size": 389 }
-- Andreas, 2011-10-03 {-# OPTIONS --experimental-irrelevance #-} module MatchOnIrrelevantData1 where data Nat : Set where zero : Nat suc : Nat -> Nat -- the index does not determine the constructor data Fin : Nat -> Set where zero : (n : Nat) -> Fin (suc n) suc : (n : Nat) -> Fin n -> Fin (suc n) -- should fail: toNat : (n : Nat) → .(Fin n) -> Nat toNat (suc n) (zero .n) = zero toNat (suc n) (suc .n i) = suc (toNat n i) -- Cannot split on argument of irrelevant datatype Fin (suc @0) -- when checking the definition of toNat
{ "alphanum_fraction": 0.6348623853, "avg_line_length": 24.7727272727, "ext": "agda", "hexsha": "f161a8c28bffb42814225b3499faed73dadd65e6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/MatchOnIrrelevantData1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/MatchOnIrrelevantData1.agda", "max_line_length": 63, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/MatchOnIrrelevantData1.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 181, "size": 545 }
module Ints.Add.Comm where open import Ints open import Nats.Add.Comm open import Equality ------------------------------------------------------------------------ -- internal stuffs private a+b=b+a : ∀ a b → a + b ≡ b + a a+b=b+a (+ a) (+ b) = + (a :+: b) ≡⟨ cong +_ (nat-add-comm a b) ⟩ + (b :+: a) QED a+b=b+a (+ a ) (-[1+ b ]) rewrite nat-add-comm a b = refl a+b=b+a (-[1+ a ]) (+ b ) rewrite nat-add-comm a b = refl a+b=b+a (-[1+ a ]) (-[1+ b ]) rewrite nat-add-comm a b = refl ------------------------------------------------------------------------ -- public aliases int-add-comm : ∀ a b → a + b ≡ b + a int-add-comm = a+b=b+a
{ "alphanum_fraction": 0.4, "avg_line_length": 24.1071428571, "ext": "agda", "hexsha": "24259fb94f3a3fde5ba42e57d6df4fbf89ba576f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ice1k/Theorems", "max_forks_repo_path": "src/Ints/Add/Comm.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ice1k/Theorems", "max_issues_repo_path": "src/Ints/Add/Comm.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ice1k/Theorems", "max_stars_repo_path": "src/Ints/Add/Comm.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z", "num_tokens": 206, "size": 675 }
-- 2010-09-07 Andreas -- 2011-10-04 may not work even in the presence of experimental irr. {-# OPTIONS --experimental-irrelevance #-} module SplitOnIrrelevant where data Bool : Set where true false : Bool not : .Bool -> Bool not true = false -- needs to fail not false = true
{ "alphanum_fraction": 0.7117437722, "avg_line_length": 23.4166666667, "ext": "agda", "hexsha": "18a798bc9d9a243ea3d9fa7e6ebf5235cad9a238", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/SplitOnIrrelevant.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/SplitOnIrrelevant.agda", "max_line_length": 68, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/SplitOnIrrelevant.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 79, "size": 281 }
{-# OPTIONS --cubical --safe #-} module Cubical.Algebra.BasicProp where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.Structures.Group private variable ℓ ℓ' : Level --------------------------------------------------------------------- -- Groups basic properties --------------------------------------------------------------------- -- We will use the multiplicative notation for groups module _ (G : Group {ℓ}) where open group-·syntax G private ₁· = group-lid G ·₁ = group-rid G ·-assoc = group-assoc G ⁻¹· = group-linv G ·⁻¹ = group-rinv G id-is-unique : isContr (Σ[ x ∈ ⟨ G ⟩ ] ∀ (y : ⟨ G ⟩) → (x · y ≡ y) × (y · x ≡ y)) id-is-unique = (₁ , λ y → ₁· y , ·₁ y) , λ { (e , is-unit) → ΣProp≡ (λ x → isPropΠ λ y → isPropΣ (group-is-set G _ _) λ _ → group-is-set G _ _) (₁ ≡⟨ sym (snd (is-unit ₁)) ⟩ ₁ · e ≡⟨ ₁· e ⟩ e ∎ )} are-inverses : ∀ (x y : ⟨ G ⟩) → x · y ≡ ₁ → (y ≡ x ⁻¹) × (x ≡ y ⁻¹) are-inverses x y eq = (y ≡⟨ sym (₁· y) ⟩ ₁ · y ≡⟨ sym (·-assoc _ _ _ ∙ cong (_· y) (⁻¹· _)) ⟩ (x ⁻¹) · (x · y) ≡⟨ cong ((x ⁻¹) ·_) eq ⟩ (x ⁻¹) · ₁ ≡⟨ ·₁ _ ⟩ x ⁻¹ ∎) , (x ≡⟨ sym (·₁ x) ⟩ x · ₁ ≡⟨ cong (x ·_) (sym (·⁻¹ y)) ∙ ·-assoc _ _ _ ⟩ (x · y) · (y ⁻¹) ≡⟨ cong (_· (y ⁻¹)) eq ⟩ ₁ · (y ⁻¹) ≡⟨ ₁· _ ⟩ y ⁻¹ ∎) inv-involutive : ∀ (x : ⟨ G ⟩) → (x ⁻¹) ⁻¹ ≡ x inv-involutive x = sym (snd (are-inverses x (x ⁻¹) (·⁻¹ x))) inv-distr : ∀ (x y : ⟨ G ⟩) → (x · y) ⁻¹ ≡ (y ⁻¹) · (x ⁻¹) inv-distr x y = sym (fst (are-inverses _ _ γ)) where γ : (x · y) · ((y ⁻¹) · (x ⁻¹)) ≡ ₁ γ = (x · y) · ((y ⁻¹) · (x ⁻¹)) ≡⟨ sym (cong (x ·_) (sym (·-assoc _ _ _)) ∙ ·-assoc _ _ _) ⟩ x · ((y · (y ⁻¹)) · (x ⁻¹)) ≡⟨ cong (λ - → x · (- · (x ⁻¹))) (·⁻¹ y) ⟩ x · (₁ · (x ⁻¹)) ≡⟨ cong (x ·_) (₁· (x ⁻¹)) ⟩ x · (x ⁻¹) ≡⟨ ·⁻¹ x ⟩ ₁ ∎ left-cancel : ∀ (x y z : ⟨ G ⟩) → x · y ≡ x · z → y ≡ z left-cancel x y z eq = y ≡⟨ sym (cong (_· y) (⁻¹· x) ∙ ₁· y) ⟩ ((x ⁻¹) · x) · y ≡⟨ sym (·-assoc _ _ _) ⟩ (x ⁻¹) · (x · y) ≡⟨ cong ((x ⁻¹) ·_) eq ⟩ (x ⁻¹) · (x · z) ≡⟨ ·-assoc _ _ _ ⟩ ((x ⁻¹) · x) · z ≡⟨ cong (_· z) (⁻¹· x) ∙ ₁· z ⟩ z ∎ right-cancel : ∀ (x y z : ⟨ G ⟩) → x · z ≡ y · z → x ≡ y right-cancel x y z eq = x ≡⟨ sym (cong (x ·_) (·⁻¹ z) ∙ ·₁ x) ⟩ x · (z · (z ⁻¹)) ≡⟨ ·-assoc _ _ _ ⟩ (x · z) · (z ⁻¹) ≡⟨ cong (_· (z ⁻¹)) eq ⟩ (y · z) · (z ⁻¹) ≡⟨ sym (·-assoc _ _ _) ⟩ y · (z · (z ⁻¹)) ≡⟨ cong (y ·_) (·⁻¹ z) ∙ ·₁ y ⟩ y ∎
{ "alphanum_fraction": 0.3027681661, "avg_line_length": 38.9662921348, "ext": "agda", "hexsha": "804248b8d8ddcbe8369c448ea30f20e459140352", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmester0/cubical", "max_forks_repo_path": "Cubical/Algebra/BasicProp.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmester0/cubical", "max_issues_repo_path": "Cubical/Algebra/BasicProp.agda", "max_line_length": 102, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmester0/cubical", "max_stars_repo_path": "Cubical/Algebra/BasicProp.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z", "max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z", "num_tokens": 1309, "size": 3468 }
{-# OPTIONS --without-K #-} module overloading where -- An overloading system based on instance arguments. See `overloading.core` for -- more details and documentation. open import overloading.bundle public open import overloading.core public open import overloading.level public
{ "alphanum_fraction": 0.7915194346, "avg_line_length": 25.7272727273, "ext": "agda", "hexsha": "5b5b3ba7afee200ee70551a0ac6c5f8cc569e56c", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/overloading.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/overloading.agda", "max_line_length": 80, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/overloading.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 56, "size": 283 }
-- Raw terms, weakening (renaming) and substitution. {-# OPTIONS --without-K --safe #-} module Definition.Untyped where open import Tools.Fin open import Tools.Nat open import Tools.Product open import Tools.List import Tools.PropositionalEquality as PE infixl 30 _∙_ infix 30 Π_▹_ infixr 22 _▹▹_ infix 30 Σ_▹_ infixr 22 _××_ infix 30 ⟦_⟧_▹_ infixl 30 _ₛ•ₛ_ _•ₛ_ _ₛ•_ infix 25 _[_] infix 25 _[_]↑ -- Typing contexts (length indexed snoc-lists, isomorphic to lists). -- Terms added to the context are well scoped in the sense that it cannot -- contain more unbound variables than can be looked up in the context. data Con (A : Nat → Set) : Nat → Set where ε : Con A 0 -- Empty context. _∙_ : {n : Nat} → Con A n → A n → Con A (1+ n) -- Context extension. private variable n m ℓ : Nat -- Representation of sub terms using a list of binding levels data GenTs (A : Nat → Set) : Nat → List Nat → Set where [] : {n : Nat} → GenTs A n [] _∷_ : {n b : Nat} {bs : List Nat} (t : A (b + n)) (ts : GenTs A n bs) → GenTs A n (b ∷ bs) -- Kinds are indexed on the number of expected sub terms -- and the number of new variables bound by each sub term data Kind : (ns : List Nat) → Set where Ukind : Kind [] Pikind : Kind (0 ∷ 1 ∷ []) Lamkind : Kind (1 ∷ []) Appkind : Kind (0 ∷ 0 ∷ []) Sigmakind : Kind (0 ∷ 1 ∷ []) Prodkind : Kind (0 ∷ 0 ∷ []) Fstkind : Kind (0 ∷ []) Sndkind : Kind (0 ∷ []) Natkind : Kind [] Zerokind : Kind [] Suckind : Kind (0 ∷ []) Natreckind : Kind (1 ∷ 0 ∷ 0 ∷ 0 ∷ []) Unitkind : Kind [] Starkind : Kind [] Emptykind : Kind [] Emptyreckind : Kind (0 ∷ 0 ∷ []) -- Terms are indexed by its number of unbound variables and are either: -- de Bruijn style variables or -- generic terms, formed by their kind and sub terms data Term (n : Nat) : Set where var : (x : Fin n) → Term n gen : {bs : List Nat} (k : Kind bs) (c : GenTs Term n bs) → Term n private variable A F H t u v : Term n B E G : Term (1+ n) -- The Grammar of our language. -- We represent the expressions of our language as de Bruijn terms. -- Variables are natural numbers interpreted as de Bruijn indices. -- Π, lam, and natrec are binders. -- Type constructors. U : Term n -- Universe. U = gen Ukind [] Π_▹_ : (A : Term n) (B : Term (1+ n)) → Term n -- Dependent function type (B is a binder). Π A ▹ B = gen Pikind (A ∷ B ∷ []) Σ_▹_ : (A : Term n) (B : Term (1+ n)) → Term n -- Dependent sum type (B is a binder). Σ A ▹ B = gen Sigmakind (A ∷ B ∷ []) ℕ : Term n -- Type of natural numbers. ℕ = gen Natkind [] Empty : Term n -- Empty type Empty = gen Emptykind [] Unit : Term n -- Unit type Unit = gen Unitkind [] lam : (t : Term (1+ n)) → Term n -- Function abstraction (binder). lam t = gen Lamkind (t ∷ []) _∘_ : (t u : Term n) → Term n -- Application. t ∘ u = gen Appkind (t ∷ u ∷ []) prod : (t u : Term n) → Term n -- Dependent products prod t u = gen Prodkind (t ∷ u ∷ []) fst : (t : Term n) → Term n -- First projection fst t = gen Fstkind (t ∷ []) snd : (t : Term n) → Term n -- Second projection snd t = gen Sndkind (t ∷ []) -- Introduction and elimination of natural numbers. zero : Term n -- Natural number zero. zero = gen Zerokind [] suc : (t : Term n) → Term n -- Successor. suc t = gen Suckind (t ∷ []) natrec : (A : Term (1+ n)) (t u v : Term n) → Term n -- Natural number recursor (A is a binder). natrec A t u v = gen Natreckind (A ∷ t ∷ u ∷ v ∷ []) star : Term n -- Unit element star = gen Starkind [] Emptyrec : (A e : Term n) → Term n -- Empty type recursor Emptyrec A e = gen Emptyreckind (A ∷ e ∷ []) -- Binding types data BindingType : Set where BΠ : BindingType BΣ : BindingType ⟦_⟧_▹_ : BindingType → Term n → Term (1+ n) → Term n ⟦ BΠ ⟧ F ▹ G = Π F ▹ G ⟦ BΣ ⟧ F ▹ G = Σ F ▹ G -- Injectivity of term constructors w.r.t. propositional equality. -- If W F G = W H E then F = H and G = E. B-PE-injectivity : ∀ W → ⟦ W ⟧ F ▹ G PE.≡ ⟦ W ⟧ H ▹ E → F PE.≡ H × G PE.≡ E B-PE-injectivity BΠ PE.refl = PE.refl , PE.refl B-PE-injectivity BΣ PE.refl = PE.refl , PE.refl -- If suc n = suc m then n = m. suc-PE-injectivity : suc t PE.≡ suc u → t PE.≡ u suc-PE-injectivity PE.refl = PE.refl -- Neutral terms. -- A term is neutral if it has a variable in head position. -- The variable blocks reduction of such terms. data Neutral : Term n → Set where var : (x : Fin n) → Neutral (var x) ∘ₙ : Neutral t → Neutral (t ∘ u) fstₙ : Neutral t → Neutral (fst t) sndₙ : Neutral t → Neutral (snd t) natrecₙ : Neutral v → Neutral (natrec G t u v) Emptyrecₙ : Neutral t → Neutral (Emptyrec A t) -- Weak head normal forms (whnfs). -- These are the (lazy) values of our language. data Whnf {n : Nat} : Term n → Set where -- Type constructors are whnfs. Uₙ : Whnf U Πₙ : Whnf (Π A ▹ B) Σₙ : Whnf (Σ A ▹ B) ℕₙ : Whnf ℕ Unitₙ : Whnf Unit Emptyₙ : Whnf Empty -- Introductions are whnfs. lamₙ : Whnf (lam t) zeroₙ : Whnf zero sucₙ : Whnf (suc t) starₙ : Whnf star prodₙ : Whnf (prod t u) -- Neutrals are whnfs. ne : Neutral t → Whnf t -- Whnf inequalities. -- Different whnfs are trivially distinguished by propositional equality. -- (The following statements are sometimes called "no-confusion theorems".) U≢ne : Neutral A → U PE.≢ A U≢ne () PE.refl ℕ≢ne : Neutral A → ℕ PE.≢ A ℕ≢ne () PE.refl Empty≢ne : Neutral A → Empty PE.≢ A Empty≢ne () PE.refl Unit≢ne : Neutral A → Unit PE.≢ A Unit≢ne () PE.refl B≢ne : ∀ W → Neutral A → ⟦ W ⟧ F ▹ G PE.≢ A B≢ne BΠ () PE.refl B≢ne BΣ () PE.refl U≢B : ∀ W → U PE.≢ ⟦ W ⟧ F ▹ G U≢B BΠ () U≢B BΣ () ℕ≢B : ∀ W → ℕ PE.≢ ⟦ W ⟧ F ▹ G ℕ≢B BΠ () ℕ≢B BΣ () Empty≢B : ∀ W → Empty PE.≢ ⟦ W ⟧ F ▹ G Empty≢B BΠ () Empty≢B BΣ () Unit≢B : ∀ W → Unit PE.≢ ⟦ W ⟧ F ▹ G Unit≢B BΠ () Unit≢B BΣ () zero≢ne : Neutral t → zero PE.≢ t zero≢ne () PE.refl suc≢ne : Neutral t → suc u PE.≢ t suc≢ne () PE.refl -- Several views on whnfs (note: not recursive). -- A whnf of type ℕ is either zero, suc t, or neutral. data Natural {n : Nat} : Term n → Set where zeroₙ : Natural zero sucₙ : Natural (suc t) ne : Neutral t → Natural t -- A (small) type in whnf is either Π A B, Σ A B, ℕ, Empty, Unit or neutral. -- Large types could also be U. data Type {n : Nat} : Term n → Set where Πₙ : Type (Π A ▹ B) Σₙ : Type (Σ A ▹ B) ℕₙ : Type ℕ Emptyₙ : Type Empty Unitₙ : Type Unit ne : Neutral t → Type t ⟦_⟧-type : ∀ (W : BindingType) → Type (⟦ W ⟧ F ▹ G) ⟦ BΠ ⟧-type = Πₙ ⟦ BΣ ⟧-type = Σₙ -- A whnf of type Π A ▹ B is either lam t or neutral. data Function {n : Nat} : Term n → Set where lamₙ : Function (lam t) ne : Neutral t → Function t -- A whnf of type Σ A ▹ B is either prod t u or neutral. data Product {n : Nat} : Term n → Set where prodₙ : Product (prod t u) ne : Neutral t → Product t -- These views classify only whnfs. -- Natural, Type, Function and Product are a subsets of Whnf. naturalWhnf : Natural t → Whnf t naturalWhnf sucₙ = sucₙ naturalWhnf zeroₙ = zeroₙ naturalWhnf (ne x) = ne x typeWhnf : Type A → Whnf A typeWhnf Πₙ = Πₙ typeWhnf Σₙ = Σₙ typeWhnf ℕₙ = ℕₙ typeWhnf Emptyₙ = Emptyₙ typeWhnf Unitₙ = Unitₙ typeWhnf (ne x) = ne x functionWhnf : Function t → Whnf t functionWhnf lamₙ = lamₙ functionWhnf (ne x) = ne x productWhnf : Product t → Whnf t productWhnf prodₙ = prodₙ productWhnf (ne x) = ne x ⟦_⟧ₙ : (W : BindingType) → Whnf (⟦ W ⟧ F ▹ G) ⟦_⟧ₙ BΠ = Πₙ ⟦_⟧ₙ BΣ = Σₙ ------------------------------------------------------------------------ -- Weakening -- In the following we define untyped weakenings η : Wk. -- The typed form could be written η : Γ ≤ Δ with the intention -- that η transport a term t living in context Δ to a context Γ -- that can bind additional variables (which cannot appear in t). -- Thus, if Δ ⊢ t : A and η : Γ ≤ Δ then Γ ⊢ wk η t : wk η A. -- -- Even though Γ is "larger" than Δ we write Γ ≤ Δ to be conformant -- with subtyping A ≤ B. With subtyping, relation Γ ≤ Δ could be defined as -- ``for all x ∈ dom(Δ) have Γ(x) ≤ Δ(x)'' (in the sense of subtyping) -- and this would be the natural extension of weakenings. data Wk : Nat → Nat → Set where id : {n : Nat} → Wk n n -- η : Γ ≤ Γ. step : {n m : Nat} → Wk m n → Wk (1+ m) n -- If η : Γ ≤ Δ then step η : Γ∙A ≤ Δ. lift : {n m : Nat} → Wk m n → Wk (1+ m) (1+ n) -- If η : Γ ≤ Δ then lift η : Γ∙A ≤ Δ∙A. -- Composition of weakening. -- If η : Γ ≤ Δ and η′ : Δ ≤ Φ then η • η′ : Γ ≤ Φ. infixl 30 _•_ _•_ : {l m n : Nat} → Wk l m → Wk m n → Wk l n id • η′ = η′ step η • η′ = step (η • η′) lift η • id = lift η lift η • step η′ = step (η • η′) lift η • lift η′ = lift (η • η′) liftn : {k m : Nat} → Wk k m → (n : Nat) → Wk (n + k) (n + m) liftn ρ Nat.zero = ρ liftn ρ (1+ n) = lift (liftn ρ n) -- Weakening of variables. -- If η : Γ ≤ Δ and x ∈ dom(Δ) then wkVar η x ∈ dom(Γ). wkVar : {m n : Nat} (ρ : Wk m n) (x : Fin n) → Fin m wkVar id x = x wkVar (step ρ) x = (wkVar ρ x) +1 wkVar (lift ρ) x0 = x0 wkVar (lift ρ) (x +1) = (wkVar ρ x) +1 -- Weakening of terms. -- If η : Γ ≤ Δ and Δ ⊢ t : A then Γ ⊢ wk η t : wk η A. mutual wkGen : {m n : Nat} {bs : List Nat} (ρ : Wk m n) (c : GenTs Term n bs) → GenTs Term m bs wkGen ρ [] = [] wkGen ρ (_∷_ {b = b} t c) = (wk (liftn ρ b) t) ∷ (wkGen ρ c) wk : {m n : Nat} (ρ : Wk m n) (t : Term n) → Term m wk ρ (var x) = var (wkVar ρ x) wk ρ (gen k c) = gen k (wkGen ρ c) -- Adding one variable to the context requires wk1. -- If Γ ⊢ t : B then Γ∙A ⊢ wk1 t : wk1 B. wk1 : Term n → Term (1+ n) wk1 = wk (step id) -- Weakening of a neutral term. wkNeutral : ∀ ρ → Neutral t → Neutral {n} (wk ρ t) wkNeutral ρ (var n) = var (wkVar ρ n) wkNeutral ρ (∘ₙ n) = ∘ₙ (wkNeutral ρ n) wkNeutral ρ (fstₙ n) = fstₙ (wkNeutral ρ n) wkNeutral ρ (sndₙ n) = sndₙ (wkNeutral ρ n) wkNeutral ρ (natrecₙ n) = natrecₙ (wkNeutral ρ n) wkNeutral ρ (Emptyrecₙ e) = Emptyrecₙ (wkNeutral ρ e) -- Weakening can be applied to our whnf views. wkNatural : ∀ ρ → Natural t → Natural {n} (wk ρ t) wkNatural ρ sucₙ = sucₙ wkNatural ρ zeroₙ = zeroₙ wkNatural ρ (ne x) = ne (wkNeutral ρ x) wkType : ∀ ρ → Type t → Type {n} (wk ρ t) wkType ρ Πₙ = Πₙ wkType ρ Σₙ = Σₙ wkType ρ ℕₙ = ℕₙ wkType ρ Emptyₙ = Emptyₙ wkType ρ Unitₙ = Unitₙ wkType ρ (ne x) = ne (wkNeutral ρ x) wkFunction : ∀ ρ → Function t → Function {n} (wk ρ t) wkFunction ρ lamₙ = lamₙ wkFunction ρ (ne x) = ne (wkNeutral ρ x) wkProduct : ∀ ρ → Product t → Product {n} (wk ρ t) wkProduct ρ prodₙ = prodₙ wkProduct ρ (ne x) = ne (wkNeutral ρ x) wkWhnf : ∀ ρ → Whnf t → Whnf {n} (wk ρ t) wkWhnf ρ Uₙ = Uₙ wkWhnf ρ Πₙ = Πₙ wkWhnf ρ Σₙ = Σₙ wkWhnf ρ ℕₙ = ℕₙ wkWhnf ρ Emptyₙ = Emptyₙ wkWhnf ρ Unitₙ = Unitₙ wkWhnf ρ lamₙ = lamₙ wkWhnf ρ prodₙ = prodₙ wkWhnf ρ zeroₙ = zeroₙ wkWhnf ρ sucₙ = sucₙ wkWhnf ρ starₙ = starₙ wkWhnf ρ (ne x) = ne (wkNeutral ρ x) -- Non-dependent version of Π. _▹▹_ : Term n → Term n → Term n A ▹▹ B = Π A ▹ wk1 B -- Non-dependent products. _××_ : Term n → Term n → Term n A ×× B = Σ A ▹ wk1 B ------------------------------------------------------------------------ -- Substitution -- The substitution operation subst σ t replaces the free de Bruijn indices -- of term t by chosen terms as specified by σ. -- The substitution σ itself is a map from natural numbers to terms. Subst : Nat → Nat → Set Subst m n = Fin n → Term m -- Given closed contexts ⊢ Γ and ⊢ Δ, -- substitutions may be typed via Γ ⊢ σ : Δ meaning that -- Γ ⊢ σ(x) : (subst σ Δ)(x) for all x ∈ dom(Δ). -- -- The substitution operation is then typed as follows: -- If Γ ⊢ σ : Δ and Δ ⊢ t : A, then Γ ⊢ subst σ t : subst σ A. -- -- Although substitutions are untyped, typing helps us -- to understand the operation on substitutions. -- We may view σ as the infinite stream σ 0, σ 1, ... -- Extract the substitution of the first variable. -- -- If Γ ⊢ σ : Δ∙A then Γ ⊢ head σ : subst σ A. head : Subst m (1+ n) → Term m head σ = σ x0 -- Remove the first variable instance of a substitution -- and shift the rest to accommodate. -- -- If Γ ⊢ σ : Δ∙A then Γ ⊢ tail σ : Δ. tail : Subst m (1+ n) → Subst m n tail σ x = σ (x +1) -- Substitution of a variable. -- -- If Γ ⊢ σ : Δ then Γ ⊢ substVar σ x : (subst σ Δ)(x). substVar : (σ : Subst m n) (x : Fin n) → Term m substVar σ x = σ x -- Identity substitution. -- Replaces each variable by itself. -- -- Γ ⊢ idSubst : Γ. idSubst : Subst n n idSubst = var -- Weaken a substitution by one. -- -- If Γ ⊢ σ : Δ then Γ∙A ⊢ wk1Subst σ : Δ. wk1Subst : Subst m n → Subst (1+ m) n wk1Subst σ x = wk1 (σ x) -- Lift a substitution. -- -- If Γ ⊢ σ : Δ then Γ∙A ⊢ liftSubst σ : Δ∙A. liftSubst : (σ : Subst m n) → Subst (1+ m) (1+ n) liftSubst σ x0 = var x0 liftSubst σ (x +1) = wk1Subst σ x liftSubstn : {k m : Nat} → Subst k m → (n : Nat) → Subst (n + k) (n + m) liftSubstn σ Nat.zero = σ liftSubstn σ (1+ n) = liftSubst (liftSubstn σ n) -- Transform a weakening into a substitution. -- -- If ρ : Γ ≤ Δ then Γ ⊢ toSubst ρ : Δ. toSubst : Wk m n → Subst m n toSubst pr x = var (wkVar pr x) -- Apply a substitution to a term. -- -- If Γ ⊢ σ : Δ and Δ ⊢ t : A then Γ ⊢ subst σ t : subst σ A. mutual substGen : {bs : List Nat} (σ : Subst m n) (g : GenTs Term n bs) → GenTs Term m bs substGen σ [] = [] substGen σ (_∷_ {b = b} t ts) = subst (liftSubstn σ b) t ∷ (substGen σ ts) subst : (σ : Subst m n) (t : Term n) → Term m subst σ (var x) = substVar σ x subst σ (gen x c) = gen x (substGen σ c) -- Extend a substitution by adding a term as -- the first variable substitution and shift the rest. -- -- If Γ ⊢ σ : Δ and Γ ⊢ t : subst σ A then Γ ⊢ consSubst σ t : Δ∙A. consSubst : Subst m n → Term m → Subst m (1+ n) consSubst σ t x0 = t consSubst σ t (x +1) = σ x -- Singleton substitution. -- -- If Γ ⊢ t : A then Γ ⊢ sgSubst t : Γ∙A. sgSubst : Term n → Subst n (1+ n) sgSubst = consSubst idSubst -- Compose two substitutions. -- -- If Γ ⊢ σ : Δ and Δ ⊢ σ′ : Φ then Γ ⊢ σ ₛ•ₛ σ′ : Φ. _ₛ•ₛ_ : Subst ℓ m → Subst m n → Subst ℓ n _ₛ•ₛ_ σ σ′ x = subst σ (σ′ x) -- Composition of weakening and substitution. -- -- If ρ : Γ ≤ Δ and Δ ⊢ σ : Φ then Γ ⊢ ρ •ₛ σ : Φ. _•ₛ_ : Wk ℓ m → Subst m n → Subst ℓ n _•ₛ_ ρ σ x = wk ρ (σ x) -- If Γ ⊢ σ : Δ and ρ : Δ ≤ Φ then Γ ⊢ σ ₛ• ρ : Φ. _ₛ•_ : Subst ℓ m → Wk m n → Subst ℓ n _ₛ•_ σ ρ x = σ (wkVar ρ x) -- Substitute the first variable of a term with an other term. -- -- If Γ∙A ⊢ t : B and Γ ⊢ s : A then Γ ⊢ t[s] : B[s]. _[_] : (t : Term (1+ n)) (s : Term n) → Term n t [ s ] = subst (sgSubst s) t -- Substitute the first variable of a term with an other term, -- but let the two terms share the same context. -- -- If Γ∙A ⊢ t : B and Γ∙A ⊢ s : A then Γ∙A ⊢ t[s]↑ : B[s]↑. _[_]↑ : (t : Term (1+ n)) (s : Term (1+ n)) → Term (1+ n) t [ s ]↑ = subst (consSubst (wk1Subst idSubst) s) t B-subst : (σ : Subst m n) (W : BindingType) (F : Term n) (G : Term (1+ n)) → subst σ (⟦ W ⟧ F ▹ G) PE.≡ ⟦ W ⟧ (subst σ F) ▹ (subst (liftSubst σ) G) B-subst σ BΠ F G = PE.refl B-subst σ BΣ F G = PE.refl
{ "alphanum_fraction": 0.5697226502, "avg_line_length": 26.9015544041, "ext": "agda", "hexsha": "b8658d985f26d897f85d7c88527a22ffde1c711d", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-11-27T15:58:33.000Z", "max_forks_repo_forks_event_min_datetime": "2017-10-18T14:18:20.000Z", "max_forks_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "fhlkfy/logrel-mltt", "max_forks_repo_path": "Definition/Untyped.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391", "max_issues_repo_issues_event_max_datetime": "2021-02-22T10:37:24.000Z", "max_issues_repo_issues_event_min_datetime": "2017-06-22T12:49:23.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "fhlkfy/logrel-mltt", "max_issues_repo_path": "Definition/Untyped.agda", "max_line_length": 97, "max_stars_count": 30, "max_stars_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "fhlkfy/logrel-mltt", "max_stars_repo_path": "Definition/Untyped.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:01:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-05-20T03:05:21.000Z", "num_tokens": 6105, "size": 15576 }
module A.Issue1635 (A : Set₁) where data Foo : Set where foo : Foo
{ "alphanum_fraction": 0.661971831, "avg_line_length": 11.8333333333, "ext": "agda", "hexsha": "d672e39013eba47b178961db3741389c840655fe", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/A/Issue1635.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/A/Issue1635.agda", "max_line_length": 35, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/A/Issue1635.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 26, "size": 71 }
module _ where import Agda.Builtin.Equality open import Agda.Builtin.Sigma open import Agda.Builtin.Unit open import Agda.Primitive open import Common.IO data ⊥ : Set where record R₁ a : Set (lsuc a) where field R : {A : Set a} → A → A → Set a r : {A : Set a} (x : A) → R x x P : Set a → Set a P A = (x y : A) → R x y record R₂ (r : ∀ ℓ → R₁ ℓ) : Set₁ where field f : {X Y : Σ Set (R₁.P (r lzero))} → R₁.R (r (lsuc lzero)) X Y → fst X → fst Y module M (r₁ : ∀ ℓ → R₁ ℓ) (r₂ : R₂ r₁) where open module R₁′ {ℓ} = R₁ (r₁ ℓ) public using (P) open module R₂′ = R₂ r₂ public ⊥-elim : {A : Set} → ⊥ → A ⊥-elim () p : P ⊥ p x = ⊥-elim x open Agda.Builtin.Equality r₁ : ∀ ℓ → R₁ ℓ R₁.R (r₁ _) = _≡_ R₁.r (r₁ _) = λ _ → refl r₂ : R₂ r₁ R₂.f r₂ refl x = x open M r₁ r₂ data Unit : Set where unit : Unit g : Σ Unit λ _ → P (Σ Set P) → ⊥ g = unit , λ h → f (h (⊤ , λ _ _ → refl) (⊥ , p)) tt main : IO ⊤ main = return _
{ "alphanum_fraction": 0.5338114754, "avg_line_length": 17.7454545455, "ext": "agda", "hexsha": "a0cd97c142725e09ae2d31bbcae32e057a06271c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Compiler/simple/Issue4169-2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Compiler/simple/Issue4169-2.agda", "max_line_length": 52, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Compiler/simple/Issue4169-2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 436, "size": 976 }
module kripke-semantics where open import level open import bool open import closures open import empty open import eq open import level open import list open import list-thms open import nat open import product open import relations open import string open import sum open import unit data formula : Set where $ : string → formula True : formula Implies : formula → formula → formula And : formula → formula → formula ctxt : Set ctxt = 𝕃 formula data _⊢_ : ctxt → formula → Set where Assume : ∀{Γ f} → (f :: Γ) ⊢ f Weaken : ∀{Γ f f'} → Γ ⊢ f → (f' :: Γ) ⊢ f ImpliesI : ∀{f1 f2 Γ} → (f1 :: Γ) ⊢ f2 → Γ ⊢ (Implies f1 f2) ImpliesE : ∀{f1 f2 Γ} → Γ ⊢ (Implies f1 f2) → Γ ⊢ f1 → Γ ⊢ f2 TrueI : ∀ {Γ} → Γ ⊢ True AndI : ∀{f1 f2 Γ} → Γ ⊢ f1 → Γ ⊢ f2 → Γ ⊢ (And f1 f2) AndE : ∀(b : 𝔹){f1 f2 Γ} → Γ ⊢ (And f1 f2) → Γ ⊢ (if b then f1 else f2) sample-pf : [] ⊢ Implies ($ "p") (And ($ "p") ($ "p")) sample-pf = ImpliesI{$ "p"} (AndI (Assume{[]}) (Assume)) record struct : Set1 where field W : Set -- a set of worlds R : W → W → Set preorderR : preorder R -- a proof that R is a preorder (reflexive and transitive) V : W → string → Set -- a valuation telling whether atomic formula i is true or false in a given world monoV : ∀ { w w' } → R w w' → ∀ { i } → V w i → V w' i reflR : reflexive R reflR = fst preorderR transR : transitive R transR = snd preorderR open struct _,_⊨_ : ∀(k : struct) → W k → formula → Set k , w ⊨ ($ x) = V k w x k , w ⊨ True = ⊤ k , w ⊨ Implies f1 f2 = ∀ {w' : W k} → R k w w' → k , w' ⊨ f1 → k , w' ⊨ f2 k , w ⊨ And f1 f2 = k , w ⊨ f1 ∧ k , w ⊨ f2 module ⊨-example where data world : Set where w0 : world w1 : world w2 : world data rel : world → world → Set where r00 : rel w0 w0 r11 : rel w1 w1 r22 : rel w2 w2 r01 : rel w0 w1 r02 : rel w0 w2 rel-refl : reflexive rel rel-refl {w0} = r00 rel-refl {w1} = r11 rel-refl {w2} = r22 rel-trans : transitive rel rel-trans r00 r00 = r00 rel-trans r00 r01 = r01 rel-trans r00 r02 = r02 rel-trans r11 r11 = r11 rel-trans r22 r22 = r22 rel-trans r01 r11 = r01 rel-trans r02 r22 = r02 data val : world → string → Set where v1p : val w1 "p" v1q : val w1 "q" v2p : val w2 "p" v2q : val w2 "q" mono-val : ∀{w w'} → rel w w' → ∀ { i } → val w i → val w' i mono-val r00 p = p mono-val r11 p = p mono-val r22 p = p mono-val r01 () mono-val r02 () k : struct k = record { W = world ; R = rel ; preorderR = (rel-refl , rel-trans) ; V = val ; monoV = mono-val } test-sem : Set test-sem = k , w0 ⊨ Implies ($ "p") ($ "q") pf-test-sem : k , w0 ⊨ Implies ($ "p") ($ "q") pf-test-sem r00 () pf-test-sem r01 p = v1q pf-test-sem r02 p = v2q mono⊨ : ∀{k : struct}{w1 w2 : W k}{f : formula} → R k w1 w2 → k , w1 ⊨ f → k , w2 ⊨ f mono⊨{k} {f = $ x} r p = monoV k r p mono⊨{k} {f = True} r p = triv mono⊨{k} {f = Implies f1 f2} r p r' p' = p (transR k r r') p' mono⊨{k} {f = And f1 f2} r (p1 , p2) = mono⊨{f = f1} r p1 , mono⊨{f = f2} r p2 _,_⊨ctxt_ : ∀(k : struct) → W k → ctxt → Set k , w ⊨ctxt [] = ⊤ k , w ⊨ctxt (f :: Γ) = (k , w ⊨ f) ∧ (k , w ⊨ctxt Γ) mono⊨ctxt : ∀{k : struct}{Γ : ctxt}{w1 w2 : W k} → R k w1 w2 → k , w1 ⊨ctxt Γ → k , w2 ⊨ctxt Γ mono⊨ctxt{k}{[]} _ _ = triv mono⊨ctxt{k}{f :: Γ} r (u , v) = mono⊨{k}{f = f} r u , mono⊨ctxt{k}{Γ} r v _⊩_ : ctxt → formula → Set1 Γ ⊩ f = ∀{k : struct}{w : W k} → k , w ⊨ctxt Γ → k , w ⊨ f Soundness : ∀{Γ : ctxt}{f : formula} → Γ ⊢ f → Γ ⊩ f Soundness Assume g = fst g Soundness (Weaken p) g = Soundness p (snd g) Soundness (ImpliesI p) g r u' = Soundness p (u' , mono⊨ctxt r g) Soundness (ImpliesE p p') {k} g = (Soundness p g) (reflR k) (Soundness p' g) Soundness TrueI g = triv Soundness (AndI p p') g = (Soundness p g , Soundness p' g) Soundness (AndE tt p) g = fst (Soundness p g) Soundness (AndE ff p) g = snd (Soundness p g) data _≼_ : 𝕃 formula → 𝕃 formula → Set where ≼-refl : ∀ {Γ} → Γ ≼ Γ ≼-cons : ∀ {Γ Γ' f} → Γ ≼ Γ' → Γ ≼ (f :: Γ') ≼-trans : ∀ {Γ Γ' Γ''} → Γ ≼ Γ' → Γ' ≼ Γ'' → Γ ≼ Γ'' ≼-trans u ≼-refl = u ≼-trans u (≼-cons u') = ≼-cons (≼-trans u u') Weaken≼ : ∀ {Γ Γ'}{f : formula} → Γ ≼ Γ' → Γ ⊢ f → Γ' ⊢ f Weaken≼ ≼-refl p = p Weaken≼ (≼-cons d) p = Weaken (Weaken≼ d p) U : struct U = record { W = ctxt ; R = _≼_ ; preorderR = ≼-refl , ≼-trans ; V = λ Γ n → Γ ⊢ $ n ; monoV = λ d p → Weaken≼ d p } CompletenessU : ∀{f : formula}{Γ : W U} → U , Γ ⊨ f → Γ ⊢ f SoundnessU : ∀{f : formula}{Γ : W U} → Γ ⊢ f → U , Γ ⊨ f CompletenessU {$ x} u = u CompletenessU {True} u = TrueI CompletenessU {And f f'} u = AndI (CompletenessU{f} (fst u)) (CompletenessU{f'} (snd u)) CompletenessU {Implies f f'}{Γ} u = ImpliesI (CompletenessU {f'} (u (≼-cons ≼-refl) (SoundnessU {f} (Assume {Γ})))) SoundnessU {$ x} p = p SoundnessU {True} p = triv SoundnessU {And f f'} p = SoundnessU{f} (AndE tt p) , SoundnessU{f'} (AndE ff p) SoundnessU {Implies f f'} p r u = SoundnessU (ImpliesE (Weaken≼ r p) (CompletenessU {f} u)) ctxt-id : ∀{Γ : ctxt} → U , Γ ⊨ctxt Γ ctxt-id{[]} = triv ctxt-id{f :: Γ} = SoundnessU{f} Assume , mono⊨ctxt (≼-cons ≼-refl) (ctxt-id {Γ}) Completeness : ∀{Γ : ctxt}{f : formula} → Γ ⊩ f → Γ ⊢ f Completeness{Γ} p = CompletenessU (p{U}{Γ} (ctxt-id{Γ})) Universality1 : ∀{Γ : ctxt}{f : formula} → Γ ⊩ f → U , Γ ⊨ f Universality1{Γ}{f} p = SoundnessU (Completeness{Γ}{f} p) Universality2 : ∀{Γ : ctxt}{f : formula} → U , Γ ⊨ f → Γ ⊩ f Universality2{Γ}{f} p = Soundness (CompletenessU{f}{Γ} p) nbe : ∀ {Γ f} → Γ ⊢ f → Γ ⊢ f nbe {Γ} p = Completeness (Soundness p) module tests where -- here we see several proofs which normalize to just TrueI using the nbe function a : [] ⊢ True a = AndE tt (AndI TrueI TrueI) a' = nbe a b : [] ⊢ True b = ImpliesE (ImpliesE (ImpliesI (ImpliesI (Assume))) TrueI) TrueI b' = nbe b c : [] ⊢ (Implies ($ "p") ($ "p")) c = ImpliesI (ImpliesE (ImpliesI Assume) Assume) c' = nbe c d : [ $ "q" ] ⊢ (Implies ($ "p") ($ "q")) d = ImpliesI (ImpliesE (ImpliesI (Weaken (Weaken Assume))) Assume) d' = nbe d e : [] ⊢ (Implies (And ($ "p") ($ "q")) (And ($ "p") ($ "q"))) e = ImpliesI Assume e' = nbe e f : [] ⊢ (Implies (Implies ($ "p") ($ "q")) (Implies ($ "p") ($ "q"))) f = ImpliesI Assume f' = nbe f
{ "alphanum_fraction": 0.5370456303, "avg_line_length": 29.5205479452, "ext": "agda", "hexsha": "cab35fbc27b7b94309b54cf43dc48f9082c1c2f3", "lang": "Agda", "max_forks_count": 17, "max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z", "max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rfindler/ial", "max_forks_repo_path": "kripke-semantics.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rfindler/ial", "max_issues_repo_path": "kripke-semantics.agda", "max_line_length": 118, "max_stars_count": 29, "max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rfindler/ial", "max_stars_repo_path": "kripke-semantics.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z", "max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z", "num_tokens": 2778, "size": 6465 }
{-# OPTIONS --without-K #-} open import HoTT hiding (_::_) module algebra.DecidableFreeGroupIsReducedWord {i} (A : Type i) (dec : has-dec-eq A) where open import algebra.Word A open import algebra.ReducedWord A dec -- Some helper functions. tail-is-reduced : (x : A) (w : Word) → is-reduced (x :: w) → is-reduced w tail-is-reduced x nil red = lift unit tail-is-reduced x (y :: w) red = red tail-is-reduced x (y inv:: w) red = snd red tail'-is-reduced : (x : A) (w : Word) → is-reduced (x inv:: w) → is-reduced w tail'-is-reduced x nil red = lift unit tail'-is-reduced x (y :: w) red = snd red tail'-is-reduced x (y inv:: w) red = red -- Conversion function. ReducedWord→FreeGroup : ReducedWord → FreeGroup A ReducedWord→FreeGroup (w , red) = f w red where f : (w : Word) → is-reduced w → FreeGroup A f nil _ = fg-nil f (x :: w) r = x fg:: f w (tail-is-reduced x w r) f (x inv:: w) r = x fg-inv:: f w (tail'-is-reduced x w r) infixr 60 _rw::_ _rw-inv::_ _rw::_ : A → ReducedWord → ReducedWord x rw:: (nil , red) = ((x :: nil) , lift unit) x rw:: ((y :: w) , red) = ((x :: y :: w) , red) x rw:: ((y inv:: w) , red) with dec x y x rw:: ((y inv:: w) , red) | inl x=y = (w , tail'-is-reduced y w red) x rw:: ((y inv:: w) , red) | inr x≠y = ((x :: y inv:: w) , (x≠y , red)) _rw-inv::_ : A → ReducedWord → ReducedWord x rw-inv:: (nil , red) = ((x inv:: nil) , lift unit) x rw-inv:: ((y inv:: w) , red) = ((x inv:: y inv:: w) , red) x rw-inv:: ((y :: w) , red) with dec x y x rw-inv:: ((y :: w) , red) | inl eq = (w , tail-is-reduced y w red) x rw-inv:: ((y :: w) , red) | inr neq = ((x inv:: y :: w) , (neq , red)) abstract rw-inv-r : ∀ x w → x rw:: x rw-inv:: w == w rw-inv-r x (nil , red) with dec x x rw-inv-r x (nil , red) | inl x=x = idp rw-inv-r x (nil , red) | inr x≠x = ⊥-rec (x≠x idp) rw-inv-r x ((y :: w) , red) with dec x y rw-inv-r x ((y :: nil) , red) | inl x=y = x=y |in-ctx _ rw-inv-r x ((y :: z :: w) , red) | inl x=y = x=y |in-ctx _ rw-inv-r x ((y :: z inv:: w) , red) | inl x=y with dec x z rw-inv-r x ((y :: z inv:: w) , red) | inl x=y | inl x=z = ⊥-rec (fst red (! x=y ∙ x=z)) rw-inv-r x ((y :: z inv:: w) , red) | inl x=y | inr x≠z = ReducedWord=-in (x=y |in-ctx _) rw-inv-r x ((y :: w) , red) | inr x≠y with dec x x rw-inv-r x ((y :: w) , red) | inr x≠y | inl x=x = idp rw-inv-r x ((y :: w) , red) | inr x≠y | inr x≠x = ⊥-rec (x≠x idp) rw-inv-r x ((y inv:: w) , red) with dec x x rw-inv-r x ((y inv:: w) , red) | inl x=x = idp rw-inv-r x ((y inv:: w) , red) | inr x≠x = ⊥-rec (x≠x idp) abstract rw-inv-l : ∀ x w → x rw-inv:: x rw:: w == w rw-inv-l x (nil , red) with dec x x rw-inv-l x (nil , red) | inl x=x = idp rw-inv-l x (nil , red) | inr x≠x = ⊥-rec (x≠x idp) rw-inv-l x ((y inv:: w) , red) with dec x y rw-inv-l x ((y inv:: nil) , red) | inl x=y = x=y |in-ctx _ rw-inv-l x ((y inv:: z inv:: w) , red) | inl x=y = x=y |in-ctx _ rw-inv-l x ((y inv:: z :: w) , red) | inl x=y with dec x z rw-inv-l x ((y inv:: z :: w) , red) | inl x=y | inl x=z = ⊥-rec (fst red (! x=y ∙ x=z)) rw-inv-l x ((y inv:: z :: w) , red) | inl x=y | inr x≠z = ReducedWord=-in (x=y |in-ctx _) rw-inv-l x ((y inv:: w) , red) | inr x≠y with dec x x rw-inv-l x ((y inv:: w) , red) | inr x≠y | inl x=x = idp rw-inv-l x ((y inv:: w) , red) | inr x≠y | inr x≠x = ⊥-rec (x≠x idp) rw-inv-l x ((y :: w) , red) with dec x x rw-inv-l x ((y :: w) , red) | inl x=x = idp rw-inv-l x ((y :: w) , red) | inr x≠x = ⊥-rec (x≠x idp) FreeGroup→ReducedWord : FreeGroup A → ReducedWord FreeGroup→ReducedWord = FreeGroup-rec ReducedWord-is-set (nil , lift unit) (λ x _ rw → x rw:: rw) (λ x _ rw → x rw-inv:: rw) (λ x {_} rw → rw-inv-l x rw) (λ x {_} rw → rw-inv-r x rw) abstract rw::-reduced : ∀ x w (red : is-reduced (x :: w)) → x rw:: (w , tail-is-reduced x w red) == ((x :: w) , red) rw::-reduced x nil red = idp rw::-reduced x (y :: w) red = idp rw::-reduced x (y inv:: w) red with dec x y rw::-reduced x (y inv:: w) red | inl x=y = ⊥-rec (fst red x=y) rw::-reduced x (y inv:: w) red | inr x≠y = ReducedWord=-in idp abstract rw-inv::-reduced : ∀ x w (red : is-reduced (x inv:: w)) → x rw-inv:: (w , tail'-is-reduced x w red) == ((x inv:: w) , red) rw-inv::-reduced x nil red = idp rw-inv::-reduced x (y inv:: w) red = idp rw-inv::-reduced x (y :: w) red with dec x y rw-inv::-reduced x (y :: w) red | inl x=y = ⊥-rec (fst red x=y) rw-inv::-reduced x (y :: w) red | inr x≠y = ReducedWord=-in idp ReducedWord→FreeGroup→ReducedWord : ∀ w → FreeGroup→ReducedWord (ReducedWord→FreeGroup w) == w ReducedWord→FreeGroup→ReducedWord (w , red) = f w red where f : ∀ w red → FreeGroup→ReducedWord (ReducedWord→FreeGroup (w , red)) == w , red f nil _ = idp f (x :: w) red = x rw:: FreeGroup→ReducedWord (ReducedWord→FreeGroup (w , tail-is-reduced x w red)) =⟨ f w (tail-is-reduced x w red) |in-ctx (λ w → x rw:: w) ⟩ x rw:: (w , tail-is-reduced x w red) =⟨ rw::-reduced x w red ⟩ (x :: w) , red ∎ f (x inv:: w) red = x rw-inv:: FreeGroup→ReducedWord (ReducedWord→FreeGroup (w , tail'-is-reduced x w red)) =⟨ f w (tail'-is-reduced x w red) |in-ctx (λ w → x rw-inv:: w) ⟩ x rw-inv:: (w , tail'-is-reduced x w red) =⟨ rw-inv::-reduced x w red ⟩ (x inv:: w) , red ∎ ReducedWord→FreeGroup-rw:: : ∀ x w → ReducedWord→FreeGroup (x rw:: w) == x fg:: ReducedWord→FreeGroup w ReducedWord→FreeGroup-rw:: x (nil , red) = idp ReducedWord→FreeGroup-rw:: x ((y :: w) , red) = idp ReducedWord→FreeGroup-rw:: x ((y inv:: w) , red) with dec x y ReducedWord→FreeGroup-rw:: x ((.x inv:: w) , red) | inl idp = ! (fg-inv-r x (ReducedWord→FreeGroup (w , tail'-is-reduced x w red))) ReducedWord→FreeGroup-rw:: x ((y inv:: w) , red) | inr x≠y = idp ReducedWord→FreeGroup-rw-inv:: : ∀ x w → ReducedWord→FreeGroup (x rw-inv:: w) == x fg-inv:: ReducedWord→FreeGroup w ReducedWord→FreeGroup-rw-inv:: x (nil , red) = idp ReducedWord→FreeGroup-rw-inv:: x ((y inv:: w) , red) = idp ReducedWord→FreeGroup-rw-inv:: x ((y :: w) , red) with dec x y ReducedWord→FreeGroup-rw-inv:: x ((.x :: w) , red) | inl idp = ! (fg-inv-l x (ReducedWord→FreeGroup (w , tail-is-reduced x w red))) ReducedWord→FreeGroup-rw-inv:: x ((y :: w) , red) | inr x≠y = idp FreeGroup→ReducedWord→FreeGroup : ∀ fg → ReducedWord→FreeGroup (FreeGroup→ReducedWord fg) == fg FreeGroup→ReducedWord→FreeGroup = FreeGroup-elim (λ _ → =-preserves-set FreeGroup-is-set) idp (λ x {fg} fg* → ReducedWord→FreeGroup (x rw:: FreeGroup→ReducedWord fg) =⟨ ReducedWord→FreeGroup-rw:: x (FreeGroup→ReducedWord fg) ⟩ x fg:: ReducedWord→FreeGroup (FreeGroup→ReducedWord fg) =⟨ fg* |in-ctx (_fg::_ x) ⟩ x fg:: fg ∎) (λ x {fg} fg* → ReducedWord→FreeGroup (x rw-inv:: FreeGroup→ReducedWord fg) =⟨ ReducedWord→FreeGroup-rw-inv:: x (FreeGroup→ReducedWord fg) ⟩ x fg-inv:: ReducedWord→FreeGroup (FreeGroup→ReducedWord fg) =⟨ fg* |in-ctx (_fg-inv::_ x) ⟩ x fg-inv:: fg ∎) (λ x {fg} fg* → prop-has-all-paths-↓ (FreeGroup-is-set _ _)) (λ x {fg} fg* → prop-has-all-paths-↓ (FreeGroup-is-set _ _)) FreeGroup≃ReducedWord : FreeGroup A ≃ ReducedWord FreeGroup≃ReducedWord = FreeGroup→ReducedWord , is-eq _ ReducedWord→FreeGroup ReducedWord→FreeGroup→ReducedWord FreeGroup→ReducedWord→FreeGroup
{ "alphanum_fraction": 0.5293969533, "avg_line_length": 44.6235955056, "ext": "agda", "hexsha": "d7ca5b7d08fc947b3a51143a32a50c6f49b93aa7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "theorems/algebra/DecidableFreeGroupIsReducedWord.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "theorems/algebra/DecidableFreeGroupIsReducedWord.agda", "max_line_length": 96, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "theorems/algebra/DecidableFreeGroupIsReducedWord.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3059, "size": 7943 }
module GotoDefinition where data ℕ : Set where Z : ℕ S : ℕ → ℕ _+_ : ℕ → ℕ → ℕ x + y = {! !}
{ "alphanum_fraction": 0.5050505051, "avg_line_length": 14.1428571429, "ext": "agda", "hexsha": "43238f6610951cbe639a7b8863bd9e148a7f45c0", "lang": "Agda", "max_forks_count": 22, "max_forks_repo_forks_event_max_datetime": "2022-03-15T11:37:47.000Z", "max_forks_repo_forks_event_min_datetime": "2020-05-29T12:07:13.000Z", "max_forks_repo_head_hexsha": "7628c254e87374a924a781cf15ea3abd715fd2d3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "SNU-2D/agda-mode-vscode", "max_forks_repo_path": "test/tests/assets/GotoDefinition.agda", "max_issues_count": 84, "max_issues_repo_head_hexsha": "7628c254e87374a924a781cf15ea3abd715fd2d3", "max_issues_repo_issues_event_max_datetime": "2022-03-26T11:43:19.000Z", "max_issues_repo_issues_event_min_datetime": "2020-06-03T13:16:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "SNU-2D/agda-mode-vscode", "max_issues_repo_path": "test/tests/assets/GotoDefinition.agda", "max_line_length": 27, "max_stars_count": 98, "max_stars_repo_head_hexsha": "7628c254e87374a924a781cf15ea3abd715fd2d3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "EdNutting/agda-mode-vscode", "max_stars_repo_path": "test/tests/assets/GotoDefinition.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-18T09:35:55.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-29T07:46:51.000Z", "num_tokens": 41, "size": 99 }
{-# OPTIONS --no-unicode #-} module Issue2937.NoUnicode where foo : _ -> _ -> Set foo bar x = \x -> foo (bar x {!!}) x
{ "alphanum_fraction": 0.5702479339, "avg_line_length": 17.2857142857, "ext": "agda", "hexsha": "ed4456a7e9ba1cb761cbc51579256e770a778fb3", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/interaction/Issue2937/NoUnicode.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue2937/NoUnicode.agda", "max_line_length": 36, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue2937/NoUnicode.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 38, "size": 121 }
-- Possible improvements: -- * Parts of the code are not reachable from main. -- * The following primitives are not used at all: primPOr, primComp, -- primHComp, prim^glueU and prim^unglueU. {-# OPTIONS --erased-cubical --save-metas #-} -- The code from Agda.Builtin.Cubical.Glue should not be compiled. open import Agda.Builtin.Cubical.Glue open import Agda.Builtin.Cubical.HCompU open import Agda.Builtin.Cubical.Id open import Agda.Builtin.Cubical.Path open import Agda.Builtin.Cubical.Sub open import Agda.Builtin.IO open import Agda.Builtin.Nat open import Agda.Builtin.Sigma open import Agda.Builtin.String open import Agda.Builtin.Unit open import Agda.Primitive.Cubical open import Erased-cubical-Cubical postulate putStr : String → IO ⊤ {-# FOREIGN GHC import qualified Data.Text.IO #-} {-# COMPILE GHC putStr = Data.Text.IO.putStr #-} {-# COMPILE JS putStr = function (x) { return function(cb) { process.stdout.write(x); cb(0); }; } #-} i₁ : I i₁ = primIMax (primIMax (primINeg i0) i1) (primIMin i1 i0) i₁-1 : IsOne i₁ i₁-1 = IsOne1 (primIMax (primINeg i0) i1) (primIMin i1 i0) (IsOne2 (primINeg i0) i1 itIsOne) p₁ : Partial i1 Nat p₁ = λ _ → 12 p₂ : PartialP i1 (λ _ → Nat) p₂ = λ _ → 12 p₃ : PartialP i0 (λ _ → Nat) p₃ = isOneEmpty p₄ : 12 ≡ 12 p₄ = λ _ → 12 n₁ : Nat n₁ = p₄ i0 s : Sub Nat i1 (λ _ → 13) s = inc 13 n₂ : Nat n₂ = primSubOut s i₂ : I i₂ = primFaceForall (λ _ → i1) i₃ : Id 12 12 i₃ = conid i0 p₄ i₄ : I i₄ = primDepIMin i1 (λ _ → i0) i₅ : I i₅ = primIdFace i₃ p₅ : 12 ≡ 12 p₅ = primIdPath i₃ n₃ : Nat n₃ = primIdJ (λ _ _ → Nat) 14 i₃ n₄ : Nat n₄ = primIdElim (λ _ _ → Nat) (λ _ _ _ → 14) i₃ infix 2 _⊎_ data _⊎_ (A B : Set) : Set where inj₁ : A → A ⊎ B inj₂ : B → A ⊎ B data ⊥ : Set where ⊥-elim : {A : Set} → ⊥ → A ⊥-elim () -- Some "standard" path functions. refl : {A : Set} (x : A) → x ≡ x refl x = λ _ → x sym : {A : Set} {x y : A} → x ≡ y → y ≡ x sym p i = p (primINeg i) cong : {A B : Set} {x y : A} (f : A → B) → x ≡ y → f x ≡ f y cong f p i = f (p i) J : {A : Set} {x y : A} (P : (x y : A) → x ≡ y → Set) → (∀ x → P x x (refl x)) → (x≡y : x ≡ y) → P x y x≡y J {x = x} P p x≡y = primTransp (λ i → P _ _ (λ j → x≡y (primIMin i j))) i0 (p x) subst : {A : Set} {x y : A} (P : A → Set) → x ≡ y → P x → P y subst P eq p = primTransp (λ i → P (eq i)) i0 p subst-refl : {A : Set} {x : A} (P : A → Set) {p : P x} → subst P (refl x) p ≡ p subst-refl {x = x} P {p = p} i = primTransp (λ _ → P x) i p -- The following definitions are perhaps less standard when paths are -- used. trans : {A : Set} {x y z : A} → x ≡ y → y ≡ z → x ≡ z trans x≡y y≡z = subst (_ ≡_) y≡z x≡y trans-refl-refl : {A : Set} (x : A) → trans (refl x) (refl x) ≡ refl x trans-refl-refl x = subst-refl (x ≡_) trans-sym : {A : Set} {x y : A} (x≡y : x ≡ y) → trans x≡y (sym x≡y) ≡ refl x trans-sym = J (λ x y x≡y → trans x≡y (sym x≡y) ≡ refl x) trans-refl-refl -- Propositions and sets. Is-proposition : Set → Set Is-proposition A = (x y : A) → x ≡ y Is-set : Set → Set Is-set A = (x y : A) → Is-proposition (x ≡ y) -- Following Hedberg's "A coherence theorem for Martin-Löf's type -- theory". decidable-equality→is-set : {A : Set} → ((x y : A) → x ≡ y ⊎ (x ≡ y → ⊥)) → Is-set A decidable-equality→is-set dec = constant⇒set (λ x y → decidable⇒constant (dec x y)) where Constant : {A B : Set} → (A → B) → Set Constant f = ∀ x y → f x ≡ f y _Left-inverse-of_ : {A B : Set} → (B → A) → (A → B) → Set g Left-inverse-of f = ∀ x → g (f x) ≡ x proposition : {A : Set} → (f : Σ (A → A) Constant) → Σ _ (_Left-inverse-of (fst f)) → Is-proposition A proposition (f , constant) (g , left-inverse) x y = trans (sym (left-inverse x)) (trans (cong g (constant x y)) (left-inverse y)) left-inverse : {A : Set} (f : (x y : A) → x ≡ y → x ≡ y) → ∀ {x y} → Σ _ (_Left-inverse-of (f x y)) left-inverse {A = A} f {x = x} {y = y} = (λ x≡y → trans x≡y (sym (f y y (refl y)))) , J (λ x y x≡y → trans (f x y x≡y) (sym (f y y (refl y))) ≡ x≡y) (λ _ → trans-sym _) constant⇒set : {A : Set} → ((x y : A) → Σ (x ≡ y → x ≡ y) Constant) → Is-set A constant⇒set constant x y = proposition (constant x y) (left-inverse λ x y → fst (constant x y)) decidable⇒constant : {A : Set} → A ⊎ (A → ⊥) → Σ (A → A) Constant decidable⇒constant (inj₁ x) = (λ _ → x) , (λ _ _ → refl x) decidable⇒constant (inj₂ ¬A) = (λ x → x) , (λ x → ⊥-elim (¬A x)) if_then_else_ : {A : Set₁} → Bool → A → A → A if true then x else y = x if false then x else y = y Bool-set : Is-set Bool Bool-set = decidable-equality→is-set λ where false false → inj₁ λ _ → false true true → inj₁ λ _ → true false true → inj₂ λ eq → primTransp (λ i → if eq i then ⊥ else ⊤) i0 _ true false → inj₂ λ eq → primTransp (λ i → if eq i then ⊤ else ⊥) i0 _ data ∥_∥ᴱ (A : Set) : Set where ∣_∣ : A → ∥ A ∥ᴱ @0 trivial : Is-proposition ∥ A ∥ᴱ recᴱ : {A B : Set} → @0 Is-proposition B → (A → B) → ∥ A ∥ᴱ → B recᴱ p f ∣ x ∣ = f x recᴱ p f (trivial x y i) = p (recᴱ p f x) (recᴱ p f y) i -- Following Vezzosi, Mörtberg and Abel's "Cubical Agda: A Dependently -- Typed Programming Language with Univalence and Higher Inductive -- Types". data _/_ (A : Set) (R : A → A → Set) : Set where [_] : A → A / R []-respects-relation : (x y : A) → R x y → [ x ] ≡ [ y ] is-set : Is-set (A / R) rec : {A B : Set} {R : A → A → Set} → Is-set B → (f : A → B) → ((x y : A) → R x y → f x ≡ f y) → A / R → B rec s f g [ x ] = f x rec s f g ([]-respects-relation x y r i) = g x y r i rec s f g (is-set x y p q i j) = s (rec s f g x) (rec s f g y) (λ k → rec s f g (p k)) (λ k → rec s f g (q k)) i j const-true : I → Bool const-true i = rec {R = _≡_} Bool-set (λ x → x) (λ _ _ x≡y → x≡y) (is-set _ _ ([]-respects-relation true true (refl true)) (refl _) i i) main : IO ⊤ main = putStr (recᴱ easy (λ where true → "Success\n" false → "Failure\n") ∣ const-true i0 ∣) -- It should be possible to mention things that are not compiled in -- type signatures. u₁ : Not-compiled → ⊤ u₁ _ = tt @0 A : Set₁ A = Set u₂ : A → ⊤ u₂ _ = tt
{ "alphanum_fraction": 0.5359901143, "avg_line_length": 23.2877697842, "ext": "agda", "hexsha": "b6a174dd36ee1d85873a81d9e88e8dcbe918cd40", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "Seanpm2001-Agda-lang/agda", "max_forks_repo_path": "test/Compiler/simple/Erased-cubical.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "Seanpm2001-Agda-lang/agda", "max_issues_repo_path": "test/Compiler/simple/Erased-cubical.agda", "max_line_length": 70, "max_stars_count": 1, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Compiler/simple/Erased-cubical.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:25:14.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:25:14.000Z", "num_tokens": 2703, "size": 6474 }
{-# OPTIONS --prop --rewriting #-} module Examples.Gcd.Euclid where open import Calf.CostMonoid import Calf.CostMonoids as CM {- This file defines the parameters of the analysis of Euclid's algorithm for gcd and its cost recurrence relation. -} open import Calf CM.ℕ-CostMonoid open import Calf.Types.Nat open import Data.Nat open import Relation.Binary.PropositionalEquality as P open import Induction.WellFounded open import Induction open import Data.Nat.Properties open import Data.Nat.DivMod open import Relation.Nullary.Decidable using (False) open import Data.Nat.Induction using (<-wellFounded) open import Data.Product open import Agda.Builtin.Nat using (div-helper; mod-helper) open import Relation.Binary using (Rel) open import Relation.Unary using (Pred; _⊆′_) mod-tp : (x y : val nat) → cmp (meta (False (y ≟ 0))) → tp pos mod-tp x y h = Σ++ nat λ z → (U (meta (z ≡ _%_ x y {h}))) mod : cmp ( Π nat λ x → Π nat λ y → Π (U (meta (False (y ≟ 0)))) λ h → F (mod-tp x y h)) mod x y h = step (F (mod-tp x y h)) 1 (ret {mod-tp x y h} (_%_ x y {h} , refl)) gcd/depth/helper : ∀ n → ((m : ℕ) → m < n → (k : ℕ) → (k > m) → ℕ) → (m : ℕ) → (m > n) → ℕ gcd/depth/helper zero h m h' = 0 gcd/depth/helper n@(suc n') h m h' = suc (h (m % n) (m%n<n m n') n (m%n<n m n')) gcd/i = Σ++ nat λ x → Σ++ nat λ y → U (meta (x > y)) m>n = val gcd/i gcd/depth : m>n → ℕ gcd/depth (x , (y , g)) = All.wfRec <-wellFounded _ (λ y → (x : ℕ) → x > y → ℕ) gcd/depth/helper y x g gcd/depth/helper-ext : (x₁ : ℕ) {IH IH′ : WfRec _<_ (λ y₁ → (x₂ : ℕ) → x₂ > y₁ → ℕ) x₁} → ({y = y₁ : ℕ} (y<x : y₁ < x₁) → IH y₁ y<x ≡ IH′ y₁ y<x) → gcd/depth/helper x₁ IH ≡ gcd/depth/helper x₁ IH′ gcd/depth/helper-ext zero h = refl gcd/depth/helper-ext (suc x) h = funext λ m → funext λ h1 → P.cong suc ( let g = h {m % suc x} (m%n<n m x) in P.cong-app (P.cong-app g _) _ ) module irr {a r ℓ} {A : Set a} {_<_ : Rel A r} (wf : WellFounded _<_) (P : Pred A ℓ) (f : WfRec _<_ P ⊆′ P) (f-ext : (x : A) {IH IH′ : WfRec _<_ P x} → (∀ {y} y<x → IH y y<x ≡ IH′ y y<x) → f x IH ≡ f x IH′) where some-wfRecBuilder-irrelevant : ∀ x → (q q′ : Acc _<_ x) → Some.wfRecBuilder P f x q ≡ Some.wfRecBuilder P f x q′ some-wfRecBuilder-irrelevant = All.wfRec wf _ ((λ x → (q q′ : Acc _<_ x) → Some.wfRecBuilder P f x q ≡ Some.wfRecBuilder P f x q′)) ((λ { x IH (acc rs) (acc rs') → funext λ y → funext λ h → f-ext y λ {y'} h' → let g = IH y h (rs y h) (rs' y h) in P.cong-app (P.cong-app g y') h' })) gcd/depth-unfold-zero : ∀ {x h} → gcd/depth (x , 0 , h) ≡ 0 gcd/depth-unfold-zero = refl gcd/depth-unfold-suc : ∀ {x y h} → gcd/depth (x , suc y , h) ≡ suc (gcd/depth (suc y , x % suc y , m%n<n x y)) gcd/depth-unfold-suc {x} {y} {h} = P.cong suc ( P.subst (λ ih → gcd/depth/helper (mod-helper 0 y x y) (ih) (suc y) (m%n<n x y) ≡ gcd/depth/helper (mod-helper 0 y x y) (All.wfRecBuilder <-wellFounded _ (λ y₁ → (x₁ : ℕ) → x₁ > y₁ → ℕ) gcd/depth/helper (mod-helper 0 y x y)) (suc y) (m%n<n x y)) (irr.some-wfRecBuilder-irrelevant <-wellFounded (λ y → (x : ℕ) → x > y → ℕ) gcd/depth/helper (gcd/depth/helper-ext) (x % suc y) (<-wellFounded (mod-helper 0 y x y)) (Subrelation.accessible ≤⇒≤′ (Data.Nat.Induction.<′-wellFounded′ (suc y) (mod-helper 0 y x y) (≤⇒≤′ (m%n<n x y))))) refl ) m%n<n' : ∀ m n h → _%_ m n {h} < n m%n<n' m (suc n) h = m%n<n m n
{ "alphanum_fraction": 0.5424143556, "avg_line_length": 36.78, "ext": "agda", "hexsha": "1bb26fd9736409da86a171d2c015390676f88ce7", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/Examples/Gcd/Euclid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/Examples/Gcd/Euclid.agda", "max_line_length": 119, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/Examples/Gcd/Euclid.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 1390, "size": 3678 }
data Bin : Set where ⟨⟩ : Bin _O : Bin → Bin _I : Bin → Bin inc : Bin → Bin inc n = ?
{ "alphanum_fraction": 0.5053763441, "avg_line_length": 11.625, "ext": "agda", "hexsha": "d94e123e6ea790d06c12ce15ca142d6abe18a852", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "64a93f8639a1029e5635fe426991d2936868e83a", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "FintanH/plfa.github.io", "max_forks_repo_path": "src/plfa/part1/Bin.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "64a93f8639a1029e5635fe426991d2936868e83a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "FintanH/plfa.github.io", "max_issues_repo_path": "src/plfa/part1/Bin.agda", "max_line_length": 20, "max_stars_count": null, "max_stars_repo_head_hexsha": "64a93f8639a1029e5635fe426991d2936868e83a", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "FintanH/plfa.github.io", "max_stars_repo_path": "src/plfa/part1/Bin.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 38, "size": 93 }
module Generic where import Category.Functor import Category.Monad open import Data.List using (List ; length ; replicate) renaming ([] to []L ; _∷_ to _∷L_) open import Data.Maybe using (Maybe ; just ; nothing) renaming (setoid to MaybeEq) open import Data.Nat using (ℕ ; zero ; suc) open import Data.Product using (_×_ ; _,_) open import Data.Vec using (Vec ; toList ; fromList ; map) renaming ([] to []V ; _∷_ to _∷V_) open import Data.Vec.Equality using () renaming (module Equality to VecEq) open import Data.Vec.Properties using (map-cong) open import Function using (_∘_ ; id ; flip) open import Function.Equality using (_⟶_) open import Level using () renaming (zero to ℓ₀) open import Relation.Binary using (Setoid ; module Setoid) open import Relation.Binary.Core using (_≡_ ; refl) open import Relation.Binary.Indexed using (_at_) renaming (Setoid to ISetoid) open import Relation.Binary.PropositionalEquality using (_≗_ ; cong ; subst ; trans ; cong₂) renaming (setoid to EqSetoid) open Setoid using () renaming (_≈_ to _∋_≈_) open Category.Functor.RawFunctor {Level.zero} Data.Maybe.functor using (_<$>_) open Category.Monad.RawMonad {Level.zero} Data.Maybe.monad using (_>>=_) ≡-to-Π : {A B : Set} → (A → B) → EqSetoid A ⟶ EqSetoid B ≡-to-Π f = record { _⟨$⟩_ = f; cong = cong f } just-injective : {A : Set} → {x y : A} → Maybe.just x ≡ Maybe.just y → x ≡ y just-injective refl = refl length-replicate : {A : Set} {a : A} → (n : ℕ) → length (replicate n a) ≡ n length-replicate zero = refl length-replicate (suc n) = cong suc (length-replicate n) sequenceV : {A : Set} {n : ℕ} → Vec (Maybe A) n → Maybe (Vec A n) sequenceV []V = just []V sequenceV (x ∷V xs) = x >>= (λ y → (_∷V_ y) <$> sequenceV xs) mapMV : {A B : Set} {n : ℕ} → (A → Maybe B) → Vec A n → Maybe (Vec B n) mapMV f = sequenceV ∘ map f mapMV-cong : {A B : Set} {f g : A → Maybe B} → f ≗ g → {n : ℕ} → mapMV {n = n} f ≗ mapMV g mapMV-cong f≗g v = cong sequenceV (map-cong f≗g v) mapMV-purity : {A B : Set} {n : ℕ} → (f : A → B) → (v : Vec A n) → mapMV (Maybe.just ∘ f) v ≡ just (map f v) mapMV-purity f []V = refl mapMV-purity f (x ∷V xs) = cong (_<$>_ (_∷V_ (f x))) (mapMV-purity f xs) maybeEq-from-≡ : {A : Set} {a b : Maybe A} → a ≡ b → MaybeEq (EqSetoid A) ∋ a ≈ b maybeEq-from-≡ {a = just x} {b = .(just x)} refl = just refl maybeEq-from-≡ {a = nothing} {b = .nothing} refl = nothing maybeEq-to-≡ : {A : Set} {a b : Maybe A} → MaybeEq (EqSetoid A) ∋ a ≈ b → a ≡ b maybeEq-to-≡ (just refl) = refl maybeEq-to-≡ nothing = refl subst-cong : {A : Set} → (T : A → Set) → {g : A → A} → {a b : A} → (f : {c : A} → T c → T (g c)) → (p : a ≡ b) → f ∘ subst T p ≗ subst T (cong g p) ∘ f subst-cong T f refl _ = refl subst-fromList : {A : Set} {x y : List A} → (p : y ≡ x) → subst (Vec A) (cong length p) (fromList y) ≡ fromList x subst-fromList refl = refl subst-subst : {A : Set} (T : A → Set) {a b c : A} → (p : a ≡ b) → (p′ : b ≡ c) → (x : T a) → subst T p′ (subst T p x) ≡ subst T (trans p p′) x subst-subst T refl p′ x = refl toList-fromList : {A : Set} → (l : List A) → toList (fromList l) ≡ l toList-fromList []L = refl toList-fromList (x ∷L xs) = cong (_∷L_ x) (toList-fromList xs) toList-subst : {A : Set} → {n m : ℕ} (v : Vec A n) → (p : n ≡ m) → toList (subst (Vec A) p v) ≡ toList v toList-subst v refl = refl VecISetoid : Setoid ℓ₀ ℓ₀ → ISetoid ℕ ℓ₀ ℓ₀ VecISetoid S = record { Carrier = Vec (Setoid.Carrier S) ; _≈_ = λ x → VecEq._≈_ S x ; isEquivalence = record { refl = VecEq.refl S _ ; sym = VecEq.sym S ; trans = VecEq.trans S } }
{ "alphanum_fraction": 0.6013179572, "avg_line_length": 42.8470588235, "ext": "agda", "hexsha": "9f1172db868b626d799e90b0a0ad87d659a6cadd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jvoigtlaender/bidiragda", "max_forks_repo_path": "Generic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jvoigtlaender/bidiragda", "max_issues_repo_path": "Generic.agda", "max_line_length": 122, "max_stars_count": null, "max_stars_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jvoigtlaender/bidiragda", "max_stars_repo_path": "Generic.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1358, "size": 3642 }
-- WARNING: This file was generated automatically by Vehicle -- and should not be modified manually! -- Metadata -- - Agda version: 2.6.2 -- - AISEC version: 0.1.0.1 -- - Time generated: ??? {-# OPTIONS --allow-exec #-} open import Vehicle open import Vehicle.Data.Tensor open import Data.Product open import Data.Integer as ℤ using (ℤ) open import Data.Rational as ℚ using (ℚ) open import Data.List open import Relation.Binary.PropositionalEquality module reachability-temp-output where postulate f : Tensor ℚ (2 ∷ []) → Tensor ℚ (1 ∷ []) abstract reachable : ∃ λ (x : Tensor ℚ (2 ∷ [])) → f x ≡ ℤ.+ 0 ℚ./ 1 ∷ [] reachable = checkSpecification record { proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp" }
{ "alphanum_fraction": 0.689608637, "avg_line_length": 28.5, "ext": "agda", "hexsha": "5e08f17255e7c09dfd22a05adc344f78c12712ac", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vehicle-lang/vehicle", "max_forks_repo_path": "test/Test/Compile/Golden/reachability/reachability-output.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0", "max_issues_repo_issues_event_max_datetime": "2022-03-31T20:49:39.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-07T14:09:13.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "vehicle-lang/vehicle", "max_issues_repo_path": "test/Test/Compile/Golden/reachability/reachability-output.agda", "max_line_length": 71, "max_stars_count": 9, "max_stars_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "vehicle-lang/vehicle", "max_stars_repo_path": "test/Test/Compile/Golden/reachability/reachability-output.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-17T18:51:05.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-10T12:56:42.000Z", "num_tokens": 220, "size": 741 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Group.Higher where open import Cubical.Core.Everything open import Cubical.Data.Nat open import Cubical.Data.Sigma open import Cubical.Data.Unit open import Cubical.Foundations.HLevels open import Cubical.Foundations.Prelude hiding (comp) open import Cubical.Foundations.Pointed open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Homotopy.Loopspace open import Cubical.Homotopy.Connected open import Cubical.Homotopy.Base open import Cubical.Homotopy.PointedFibration open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.EilenbergMacLane1 open import Cubical.HITs.EilenbergMacLane1 open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.Morphism open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.Properties open import Cubical.HITs.PropositionalTruncation renaming (rec to propRec) open import Cubical.HITs.Truncation.FromNegOne as Trunc renaming (rec to trRec) open import Cubical.HITs.SetTruncation open import Cubical.Functions.Surjection open import Cubical.Functions.Embedding import Cubical.Foundations.GroupoidLaws as GL private variable ℓ ℓ' : Level record HigherGroup ℓ : Type (ℓ-suc ℓ) where constructor highergroup field base : Pointed ℓ isConn : isConnected 2 (typ base) record BGroup ℓ (n k : ℕ) : Type (ℓ-suc ℓ) where no-eta-equality constructor bgroup field base : Pointed ℓ isConn : isConnected (k + 1) (typ base) isTrun : isOfHLevel (n + k + 2) (typ base) BGroupΣ : {ℓ : Level} (n k : ℕ) → Type (ℓ-suc ℓ) BGroupΣ {ℓ} n k = Σ[ A ∈ Type ℓ ] A × (isConnected (k + 1) A) × (isOfHLevel (n + k + 2) A) module _ where open BGroup η-BGroup : {n k : ℕ} {BG BH : BGroup ℓ n k} → (p : typ (base BG) ≡ typ (base BH)) → (q : PathP (λ i → p i) (pt (base BG)) (pt (base BH))) → BG ≡ BH base (η-BGroup p q i) .fst = p i base (η-BGroup p q i) .snd = q i isConn (η-BGroup {k = k} {BG = BG} {BH = BH} p q i) = r i where r : PathP (λ i → isConnected (k + 1) (p i)) (isConn BG) (isConn BH) r = isProp→PathP (λ _ → isPropIsOfHLevel 0) (isConn BG) (isConn BH) isTrun (η-BGroup {n = n} {k = k} {BG = BG} {BH = BH} p q i) = s i where s : PathP (λ i → isOfHLevel (n + k + 2) (p i)) (isTrun BG) (isTrun BH) s = isProp→PathP (λ i → isPropIsOfHLevel (n + k + 2)) (isTrun BG) (isTrun BH) -- morphisms BGroupHom : {n k : ℕ} (G : BGroup ℓ n k) (H : BGroup ℓ' n k) → Type (ℓ-max ℓ ℓ') BGroupHom G H = (BGroup.base G) →∙ (BGroup.base H) BGroupHomΣ : {n k : ℕ} (BG : BGroupΣ {ℓ} n k) (BH : BGroupΣ {ℓ'} n k) → Type (ℓ-max ℓ ℓ') BGroupHomΣ (base , pt , _) (base' , pt' , _) = (base , pt) →∙ (base' , pt') isOfHLevel-BGroupHomΣ : {n k : ℕ} (BG : BGroupΣ {ℓ} n k) (BH : BGroupΣ {ℓ'} n k) → isOfHLevel (n + 2) (BGroupHomΣ BG BH) isOfHLevel-BGroupHomΣ {n = n} {k = k} BG BH = x' where z : isOfHLevel (n + k + 2) (fst BH) z = snd (snd (snd BH)) z' : isOfHLevel (n + 1 + 1 + k) (fst BH) z' = subst (λ m → isOfHLevel m (fst BH)) (n + k + 2 ≡⟨ sym (+-assoc n k 2) ⟩ n + (k + 2) ≡⟨ cong (n +_) (+-comm k 2) ⟩ n + (2 + k) ≡⟨ +-assoc n 2 k ⟩ (n + 2) + k ≡⟨ cong (_+ k) (+-assoc n 1 1) ⟩ n + 1 + 1 + k ∎) z x : isOfHLevel (n + 1 + 1) (BGroupHomΣ BG BH) x = sec∙Trunc (fst BG , fst (snd BG)) (fst (snd (snd BG))) λ _ → (fst BH , fst (snd BH)) , z' x' : isOfHLevel (n + 2) (BGroupHomΣ BG BH) x' = subst (λ m → isOfHLevel m (BGroupHomΣ BG BH)) (sym (+-assoc n 1 1)) x BGroupIso : {n k : ℕ} (G : BGroup ℓ n k) (H : BGroup ℓ' n k) → Type (ℓ-max ℓ ℓ') BGroupIso G H = (BGroup.base G) ≃∙ (BGroup.base H) BGroupIdIso : {n k : ℕ} (BG : BGroup ℓ n k) → BGroupIso BG BG BGroupIdIso BG = idEquiv∙ (BGroup.base BG) BGroupIso→≡ : {n k : ℕ} {BG BH : BGroup ℓ n k} (f : BGroupIso BG BH) → BG ≡ BH BGroupIso→≡ {BG = BG} {BH = BH} f = η-BGroup (ua (≃∙→≃ f)) (toPathP ((uaβ ((≃∙→≃ f)) (pt (BGroup.base BG))) ∙ f .fst .snd)) -- getters carrier : {ℓ : Level} {n k : ℕ} (G : BGroup ℓ n k) → Pointed ℓ carrier {k = k} BG = (Ω^ k) base where open BGroup BG basetype : {ℓ : Level} {n k : ℕ} (BG : BGroup ℓ n k) → Type ℓ basetype BG = typ (BGroup.base BG) basepoint : {ℓ : Level} {n k : ℕ} (BG : BGroup ℓ n k) → basetype BG basepoint BG = pt (BGroup.base BG) baseΣ : {ℓ : Level} {n k : ℕ} (BG : BGroupΣ {ℓ} n k) → Σ[ A ∈ Type ℓ ] A baseΣ (base , * , _ , _) = (base , *) -- special cases 1BGroup : (ℓ : Level) → Type (ℓ-suc ℓ) 1BGroup ℓ = BGroup ℓ 0 1 1BGroupΣ : {ℓ : Level} → Type (ℓ-suc ℓ) 1BGroupΣ {ℓ} = BGroupΣ {ℓ} 0 1 -- first fundamental group of 1BGroups π₁-1BGroup : {ℓ : Level} (BG : 1BGroup ℓ) → Group {ℓ} π₁-1BGroup BG = makeGroup {G = (pt base) ≡ (pt base)} refl _∙_ sym (isTrun (pt base) (pt base)) GL.assoc (λ a → sym (GL.rUnit a)) (λ g → sym (GL.lUnit g)) GL.rCancel GL.lCancel where open BGroup BG π₁-1BGroupΣ : {ℓ : Level} (BG : BGroupΣ {ℓ} 0 1) → Group {ℓ} π₁-1BGroupΣ (BG , pt , conn , trunc) = π₁-1BGroup (bgroup (BG , pt) conn trunc) -- coercions Group→1BGroup : (G : Group {ℓ}) → 1BGroup ℓ BGroup.base (Group→1BGroup G) .fst = EM₁ G BGroup.base (Group→1BGroup G) .snd = embase BGroup.isConn (Group→1BGroup G) = EM₁Connected G BGroup.isTrun (Group→1BGroup G) = EM₁Groupoid G -- functoriality of π₁ on 1BGroups module _ (BG : 1BGroup ℓ) (BH : 1BGroup ℓ') where private π₁BG = π₁-1BGroup BG π₁BH = π₁-1BGroup BH π₁-1BGroup-functor : BGroupHom BG BH → GroupHom π₁BG π₁BH GroupHom.fun (π₁-1BGroup-functor f) g = sym (snd f) ∙∙ cong (fst f) g ∙∙ snd f GroupHom.isHom (π₁-1BGroup-functor f) g g' = q where f₁ = fst f f₂ = snd f f₂- = sym (snd f) abstract q = (f₂- ∙∙ cong f₁ (g ∙ g') ∙∙ f₂) ≡⟨ doubleCompPath-elim' f₂- (cong f₁ (g ∙ g')) f₂ ⟩ f₂- ∙ cong f₁ (g ∙ g') ∙ f₂ ≡⟨ cong (λ z → (f₂- ∙ z ∙ f₂)) (congFunct f₁ g g') ⟩ f₂- ∙ (cong f₁ g ∙ cong f₁ g') ∙ f₂ ≡⟨ cong (λ z → (f₂- ∙ (cong f₁ g ∙ z) ∙ f₂)) (lUnit (cong f₁ g')) ⟩ f₂- ∙ (cong f₁ g ∙ refl ∙ cong f₁ g') ∙ f₂ ≡⟨ cong (λ z → (f₂- ∙ (cong f₁ g ∙ z ∙ cong f₁ g') ∙ f₂)) (sym (rCancel f₂)) ⟩ f₂- ∙ (cong f₁ g ∙ (f₂ ∙ f₂-) ∙ cong f₁ g') ∙ f₂ ≡⟨ cong (λ z → (f₂- ∙ (cong f₁ g ∙ z) ∙ f₂)) (sym (assoc _ _ _)) ⟩ f₂- ∙ (cong f₁ g ∙ (f₂ ∙ (f₂- ∙ cong f₁ g'))) ∙ f₂ ≡⟨ cong (λ z → (f₂- ∙ z ∙ f₂)) (assoc _ _ _) ⟩ (f₂- ∙ ((cong f₁ g ∙ f₂) ∙ (f₂- ∙ cong f₁ g')) ∙ f₂) ≡⟨ cong (f₂- ∙_) (sym (assoc _ _ _)) ⟩ (f₂- ∙ ((cong f₁ g ∙ f₂) ∙ ((f₂- ∙ cong f₁ g') ∙ f₂))) ≡⟨ cong (λ z → (f₂- ∙ ((cong f₁ g ∙ f₂) ∙ z))) (sym (assoc _ _ _)) ⟩ (f₂- ∙ ((cong f₁ g ∙ f₂) ∙ (f₂- ∙ cong f₁ g' ∙ f₂))) ≡⟨ assoc _ _ _ ⟩ (f₂- ∙ cong f₁ g ∙ f₂) ∙ (f₂- ∙ cong f₁ g' ∙ f₂) ≡⟨ cong (_∙ (f₂- ∙ cong f₁ g' ∙ f₂)) (sym (doubleCompPath-elim' f₂- (cong f₁ g) f₂)) ⟩ (f₂- ∙∙ cong f₁ g ∙∙ f₂) ∙ (f₂- ∙ cong f₁ g' ∙ f₂) ≡⟨ cong ((f₂- ∙∙ cong f₁ g ∙∙ f₂) ∙_) (sym (doubleCompPath-elim' f₂- (cong f₁ g') f₂)) ⟩ (f₂- ∙∙ cong f₁ g ∙∙ f₂) ∙ (f₂- ∙∙ cong f₁ g' ∙∙ f₂) ∎ -- π₁ is a left inverse to EM₁ π₁EM₁≃inv : (G : Group {ℓ}) → GroupEquiv G (π₁-1BGroup (Group→1BGroup G)) GroupEquiv.eq (π₁EM₁≃inv G) = isoToEquiv (invIso (ΩEM₁Iso G)) GroupEquiv.isHom (π₁EM₁≃inv G) g g' = emloop-comp G g g' π₁EM₁≃ : (G : Group {ℓ}) → GroupEquiv (π₁-1BGroup (Group→1BGroup G)) G π₁EM₁≃ G = invGroupEquiv (π₁EM₁≃inv G) -- the functorial action of EM₁ on groups -- is a left inverse to the functorial action of π₁ -- on 1BGroups. module _ (H : Group {ℓ}) (BG : 1BGroup ℓ') where private EM₁H = Group→1BGroup H π₁EM₁H = π₁-1BGroup EM₁H π₁BG = π₁-1BGroup BG -- from the EM construction it follows -- that there is a homomorphism H → π₁ (EM₁ H) H→π₁EM₁H : GroupHom H π₁EM₁H H→π₁EM₁H = GroupEquiv.hom (π₁EM₁≃inv H) -- the promised functorial left inverse -- split up into the three components: -- function, is equivalence and pointedness. -- pointedness component is trivial -- on the object level EM₁-functor-lInv-function : GroupHom π₁EM₁H π₁BG → basetype EM₁H → basetype BG EM₁-functor-lInv-function f = rec' H (BGroup.isTrun BG) (basepoint BG) (GroupHom.fun (compGroupHom H→π₁EM₁H f)) λ g h → sym (GroupHom.isHom (compGroupHom H→π₁EM₁H f) g h) EM₁-functor-lInv-pointed : (f : GroupHom π₁EM₁H π₁BG) → EM₁-functor-lInv-function f (basepoint EM₁H) ≡ basepoint BG EM₁-functor-lInv-pointed f = refl -- produces an equivalence proof when given a group iso EM₁-functor-lInv-onIso-isEquiv : (f : GroupEquiv π₁EM₁H π₁BG) → isEquiv (EM₁-functor-lInv-function (GroupEquiv.hom f)) EM₁-functor-lInv-onIso-isEquiv f = isEmbedding×isSurjection→isEquiv (isEmbedding-φ , isSurjection-φ) where φ₁ : basetype EM₁H → basetype BG φ₁ = EM₁-functor-lInv-function (GroupEquiv.hom f) abstract isEmbedding-φ : isEmbedding φ₁ isEmbedding-φ = reduceToBp isEmbPt where isEmb : (x y : basetype EM₁H) → Type (ℓ-max ℓ ℓ') isEmb x y = isEquiv (cong {x = x} {y = y} φ₁) isPropIsEmb : (x y : basetype EM₁H) → isProp (isEmb x y) isPropIsEmb x y = isPropIsEquiv (cong {x = x} {y = y} φ₁) f-equiv : (basepoint EM₁H ≡ basepoint EM₁H) ≃ (basepoint BG ≡ basepoint BG) f-equiv = GroupEquiv.eq f f₁ = fst f-equiv γ : ⟨ H ⟩ ≃ ⟨ π₁EM₁H ⟩ γ = GroupEquiv.eq (π₁EM₁≃inv H) β : ⟨ π₁EM₁H ⟩ ≃ typ (carrier BG) β = f-equiv δ : ⟨ H ⟩ ≃ typ (carrier BG) δ = compEquiv γ β p : equivFun δ ≡ (λ h → cong φ₁ (equivFun γ h)) p = refl η = (λ (h : ⟨ H ⟩) → cong φ₁ (equivFun γ h)) isEquiv-η : isEquiv η isEquiv-η = equivFun≡→isEquiv δ η λ _ → refl congφ∼f : (h : ⟨ H ⟩) → f₁ (GroupHom.fun H→π₁EM₁H h) ≡ cong φ₁ (GroupHom.fun H→π₁EM₁H h) congφ∼f p = refl isEmbPt : isEmb (basepoint EM₁H) (basepoint EM₁H) isEmbPt = equivCompLCancel γ (cong φ₁) isEquiv-η g : Unit → basetype EM₁H g _ = basepoint EM₁H isConn-g : isConnectedFun 1 g isConn-g = isConnectedPoint 1 (BGroup.isConn EM₁H) (basepoint EM₁H) reduceToBp1 : ((a : Unit) → isEmb (basepoint EM₁H) (g a)) → (h' : basetype EM₁H) → isEmb (basepoint EM₁H) h' reduceToBp1 = Iso.inv (elim.isIsoPrecompose g 1 (λ h' → (isEmb (basepoint EM₁H) h') , isPropIsEmb (basepoint EM₁H) h') isConn-g) reduceToBp1' : isEmb (basepoint EM₁H) (basepoint EM₁H) → (h' : basetype EM₁H) → isEmb (basepoint EM₁H) h' reduceToBp1' p = reduceToBp1 λ _ → p reduceToBp2 : (h' : basetype EM₁H) → isEmb (basepoint EM₁H) h' → ((a : Unit) → isEmb (g a) h') → (h : basetype EM₁H) → isEmb h h' reduceToBp2 h' p = Iso.inv (elim.isIsoPrecompose g 1 (λ h → (isEmb h h') , (isPropIsEmb h h')) isConn-g) reduceToBp2' : ((h' : basetype EM₁H) → isEmb (basepoint EM₁H) h') → (h h' : basetype EM₁H) → isEmb h h' reduceToBp2' Q h h' = reduceToBp2 h' (Q h') (λ _ → Q h') h reduceToBp : isEmb (basepoint EM₁H) (basepoint EM₁H) → (h h' : basetype EM₁H) → isEmb h h' reduceToBp p = reduceToBp2' (reduceToBp1' p) isSurjection-φ : isSurjection φ₁ isSurjection-φ g = propTruncΣ← (λ x → φ₁ x ≡ g) ∣ basepoint EM₁H , fst r ∣ where r : isContr ∥ φ₁ (basepoint EM₁H) ≡ g ∥ r = isContrRespectEquiv (invEquiv propTrunc≃Trunc1) (isConnectedPath 1 (BGroup.isConn BG) (φ₁ (basepoint EM₁H)) g)
{ "alphanum_fraction": 0.5333333333, "avg_line_length": 39.0718562874, "ext": "agda", "hexsha": "146ba1dc72a88ff88b560099811c57866cd88426", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/Algebra/Group/Higher.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/Algebra/Group/Higher.agda", "max_line_length": 123, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/Algebra/Group/Higher.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4992, "size": 13050 }
module Type.Properties.MereProposition {ℓ ℓₑ} where import Lvl open import Lang.Instance open import Structure.Setoid open import Type -- A type is a mere proposition type when there is at most one inhabitant (there is at most one object with this type). -- In other words: If there is an inhabitant of type T, it is unique (essentially only allowing empty or singleton types, but this is not provable (excluded middöe)). -- Also called: -- • "Irrelevance" / "Irrelevancy" / "Proof irrelevance" (in the context of proofs). -- A proof of the proposition T is unique (using equality to determine uniqueness). -- • "isProp" / "h-proposition" / "is of h-level 1" / "a mere proposition" (in homotopy type theory). -- Classically, when MereProposition(T), T is either empty or a singleton (which in the context of proofs corresponds to types isomorphic to ⊥ or ⊤). -- • "subsingleton" (in set theory) -- When a type and its inhabitants is interpreted as a set and its elements. -- • "subterminal object" (in category theory). module _ (T : Type{ℓ}) ⦃ _ : Equiv{ℓₑ}(T) ⦄ where record MereProposition : Type{ℓ Lvl.⊔ ℓₑ} where constructor intro field uniqueness : ∀{x y : T} → (x ≡ y) uniqueness = inst-fn MereProposition.uniqueness -- TODO: Consider using unicode ◐○●⧭⦵⦳
{ "alphanum_fraction": 0.7160589604, "avg_line_length": 51.56, "ext": "agda", "hexsha": "ffd712aea25936fa3c7eaa10c865d1bd38485b52", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Type/Properties/MereProposition.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Type/Properties/MereProposition.agda", "max_line_length": 166, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Type/Properties/MereProposition.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 377, "size": 1289 }
{-# OPTIONS --sized-types #-} open import Relation.Binary.Core module SelectSort.Correctness.Permutation {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_ ) where open import Data.List open import Data.Product open import Data.Sum open import List.Permutation.Base A open import List.Permutation.Base.Equivalence A open import Size open import SList open import SList.Properties open import SelectSort _≤_ tot≤ lemma-select∼ : {ι : Size}(x : A) → (xs : SList A {ι}) → unsize A (x ∙ xs) ∼ unsize A (proj₁ (select x xs) ∙ proj₂ (select x xs)) lemma-select∼ x snil = ∼x /head /head ∼[] lemma-select∼ x (y ∙ ys) with tot≤ x y ... | inj₁ x≤y = ∼x (/tail /head) (/tail /head) (lemma-select∼ x ys) ... | inj₂ y≤x = ∼x /head (/tail /head) (lemma-select∼ y ys) lemma-selectSort∼ : {ι : Size}(xs : SList A {ι}) → unsize A xs ∼ unsize A (selectSort xs) lemma-selectSort∼ snil = ∼[] lemma-selectSort∼ (x ∙ xs) = trans∼ (lemma-select∼ x xs) (∼x /head /head (lemma-selectSort∼ (proj₂ (select x xs)))) theorem-selectSort∼ : (xs : List A) → xs ∼ unsize A (selectSort (size A xs)) theorem-selectSort∼ xs = trans∼ (lemma-unsize-size A xs) (lemma-selectSort∼ (size A xs))
{ "alphanum_fraction": 0.643572621, "avg_line_length": 37.4375, "ext": "agda", "hexsha": "9e5ee691834dba882a4c688cbc80ffd96d7ab3b0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/SelectSort/Correctness/Permutation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/SelectSort/Correctness/Permutation.agda", "max_line_length": 129, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/SelectSort/Correctness/Permutation.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 412, "size": 1198 }
import Structure.Logic.Classical.NaturalDeduction -- TODO: Seems like Constructive does not work, but why? module Structure.Logic.Constructive.Syntax.Algebra {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} ⦃ classicalLogic : _ ⦄ where open Structure.Logic.Classical.NaturalDeduction.ClassicalLogic {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} (classicalLogic) import Lvl open import Syntax.Function open import Type -- Transitivitity through an operation on proofs record Transitivable{ℓ}{T : Type{ℓ}}(_▫_ : T → T → Formula) : Type{ℓₘₗ Lvl.⊔ ℓₒ Lvl.⊔ ℓ} where field _🝖_ : ∀{a b c} → Proof(a ▫ b) → Proof(b ▫ c) → Proof(a ▫ c) open Transitivable ⦃ ... ⦄ public Transitivity-to-Transitivable : ∀{_▫_ : Domain → Domain → Formula} → Proof(∀ₗ(a ↦ ∀ₗ(b ↦ ∀ₗ(c ↦ (a ▫ b)∧(b ▫ c) ⟶ (a ▫ c))))) → Transitivable(_▫_) _🝖_ ⦃ Transitivity-to-Transitivable proof ⦄ {a}{b}{c} ab bc = ([→].elim ([∀].elim ([∀].elim ([∀].elim proof {a}){b}){c}) ([∧].intro ab bc) ) instance [⟶]-transitivable : Transitivable(_⟶_) _🝖_ ⦃ [⟶]-transitivable ⦄ = [→].transitivity instance [⟷]-transitivable : Transitivable(_⟷_) _🝖_ ⦃ [⟷]-transitivable ⦄ = [↔].transitivity
{ "alphanum_fraction": 0.6432848589, "avg_line_length": 37.7096774194, "ext": "agda", "hexsha": "eef4401c8921f3a9552738b58f9a061a3f83c5ef", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Structure/Logic/Constructive/Syntax/Algebra.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Structure/Logic/Constructive/Syntax/Algebra.agda", "max_line_length": 146, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Structure/Logic/Constructive/Syntax/Algebra.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 483, "size": 1169 }
{-# OPTIONS --without-K --safe #-} module Categories.Functor.Hom where -- The Hom Functor from C.op × C to Setoids, -- the two 1-argument version fixing one object -- and some notation for the version where the category must be made explicit open import Data.Product open import Function using () renaming (_∘_ to _∙_) open import Categories.Category open import Categories.Functor hiding (id) open import Categories.Functor.Bifunctor open import Categories.Category.Instance.Setoids import Categories.Morphism.Reasoning as MR open import Relation.Binary using (Setoid) module Hom {o ℓ e} (C : Category o ℓ e) where open Category C open MR C Hom[-,-] : Bifunctor (Category.op C) C (Setoids ℓ e) Hom[-,-] = record { F₀ = F₀′ ; F₁ = λ where (f , g) → record { _⟨$⟩_ = λ h → g ∘ h ∘ f ; cong = ∘-resp-≈ʳ ∙ ∘-resp-≈ˡ } ; identity = identity′ ; homomorphism = homomorphism′ ; F-resp-≈ = F-resp-≈′ } where F₀′ : Obj × Obj → Setoid ℓ e F₀′ (A , B) = hom-setoid {A} {B} open HomReasoning identity′ : {A : Obj × Obj} {x y : uncurry _⇒_ A} → x ≈ y → id ∘ x ∘ id ≈ y identity′ {A} {x} {y} x≈y = begin id ∘ x ∘ id ≈⟨ identityˡ ⟩ x ∘ id ≈⟨ identityʳ ⟩ x ≈⟨ x≈y ⟩ y ∎ homomorphism′ : ∀ {X Y Z : Σ Obj (λ x → Obj)} {f : proj₁ Y ⇒ proj₁ X × proj₂ X ⇒ proj₂ Y} {g : proj₁ Z ⇒ proj₁ Y × proj₂ Y ⇒ proj₂ Z} {x y : proj₁ X ⇒ proj₂ X} → x ≈ y → (proj₂ g ∘ proj₂ f) ∘ x ∘ proj₁ f ∘ proj₁ g ≈ proj₂ g ∘ (proj₂ f ∘ y ∘ proj₁ f) ∘ proj₁ g homomorphism′ {f = f₁ , f₂} {g₁ , g₂} {x} {y} x≈y = begin (g₂ ∘ f₂) ∘ x ∘ f₁ ∘ g₁ ≈˘⟨ refl⟩∘⟨ assoc ⟩ (g₂ ∘ f₂) ∘ (x ∘ f₁) ∘ g₁ ≈⟨ pullʳ (pullˡ (∘-resp-≈ʳ (∘-resp-≈ˡ x≈y))) ⟩ g₂ ∘ (f₂ ∘ y ∘ f₁) ∘ g₁ ∎ F-resp-≈′ : ∀ {A B : Σ Obj (λ x → Obj)} {f g : Σ (proj₁ B ⇒ proj₁ A) (λ x → proj₂ A ⇒ proj₂ B)} → Σ (proj₁ f ≈ proj₁ g) (λ x → proj₂ f ≈ proj₂ g) → {x y : proj₁ A ⇒ proj₂ A} → x ≈ y → proj₂ f ∘ x ∘ proj₁ f ≈ proj₂ g ∘ y ∘ proj₁ g F-resp-≈′ {f = f₁ , f₂} {g₁ , g₂} (f₁≈g₁ , f₂≈g₂) {x} {y} x≈y = begin f₂ ∘ x ∘ f₁ ≈⟨ f₂≈g₂ ⟩∘⟨ x≈y ⟩∘⟨ f₁≈g₁ ⟩ g₂ ∘ y ∘ g₁ ∎ open Functor Hom[-,-] open Equiv open HomReasoning Hom[_,-] : Obj → Functor C (Setoids ℓ e) Hom[_,-] = appˡ Hom[-,-] Hom[-,_] : Obj → Contravariant C (Setoids ℓ e) Hom[-,_] = appʳ Hom[-,-] -- Notation for when the ambient Category must be specified explicitly. module _ {o ℓ e} (C : Category o ℓ e) where open Category C open Hom C Hom[_][-,-] : Bifunctor (Category.op C) C (Setoids ℓ e) Hom[_][-,-] = Hom[-,-] Hom[_][_,-] : Obj → Functor C (Setoids ℓ e) Hom[_][_,-] B = Hom[ B ,-] Hom[_][-,_] : Obj → Contravariant C (Setoids ℓ e) Hom[_][-,_] B = Hom[-, B ]
{ "alphanum_fraction": 0.4754202347, "avg_line_length": 35.0333333333, "ext": "agda", "hexsha": "d7271b5b4fb8529e3073c8f1182c4c2966bd9421", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Taneb/agda-categories", "max_forks_repo_path": "Categories/Functor/Hom.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Taneb/agda-categories", "max_issues_repo_path": "Categories/Functor/Hom.agda", "max_line_length": 85, "max_stars_count": null, "max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Taneb/agda-categories", "max_stars_repo_path": "Categories/Functor/Hom.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1212, "size": 3153 }
{-# OPTIONS --without-K --safe #-} module Quasigroup where open import Quasigroup.Bundles public open import Quasigroup.Definitions public open import Quasigroup.Structures public
{ "alphanum_fraction": 0.8021978022, "avg_line_length": 22.75, "ext": "agda", "hexsha": "49df12417026ea72cfd6eb0e237c5951c999a30a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_forks_repo_path": "src/Quasigroup.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_issues_repo_issues_event_max_datetime": "2021-10-09T08:24:56.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-04T05:30:30.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_issues_repo_path": "src/Quasigroup.agda", "max_line_length": 41, "max_stars_count": 2, "max_stars_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_stars_repo_path": "src/Quasigroup.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-17T09:14:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-08-15T06:16:13.000Z", "num_tokens": 42, "size": 182 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types import LibraBFT.Impl.Consensus.ConsensusTypes.VoteData as VoteData open import LibraBFT.Impl.OBM.Logging.Logging import LibraBFT.Impl.Types.LedgerInfoWithSignatures as LedgerInfoWithSignatures open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types open import Optics.All open import Util.Hash import Util.KVMap as Map open import Util.Prelude ------------------------------------------------------------------------------ open import Data.String using (String) module LibraBFT.Impl.Consensus.ConsensusTypes.QuorumCert where certificateForGenesisFromLedgerInfo : LedgerInfo → HashValue → QuorumCert certificateForGenesisFromLedgerInfo ledgerInfo genesisId = let ancestor = BlockInfo∙new (ledgerInfo ^∙ liEpoch + 1) 0 genesisId (ledgerInfo ^∙ liTransactionAccumulatorHash) (ledgerInfo ^∙ liVersion) --(ledgerInfo ^∙ liTimestamp) nothing voteData = VoteData.new ancestor ancestor li = LedgerInfo∙new ancestor (hashVD voteData) in QuorumCert∙new voteData (LedgerInfoWithSignatures∙new li Map.empty) verify : QuorumCert → ValidatorVerifier → Either ErrLog Unit verify self validator = do let voteHash = hashVD (self ^∙ qcVoteData) lcheck (self ^∙ qcSignedLedgerInfo ∙ liwsLedgerInfo ∙ liConsensusDataHash == voteHash) (here' ("Quorum Cert's hash mismatch LedgerInfo" ∷ [])) if (self ^∙ qcCertifiedBlock ∙ biRound == 0) -- TODO-?: It would be nice not to require the parens around the do block then (do lcheck (self ^∙ qcParentBlock == self ^∙ qcCertifiedBlock) (here' ("Genesis QC has inconsistent parent block with certified block" ∷ [])) lcheck (self ^∙ qcCertifiedBlock == self ^∙ qcLedgerInfo ∙ liwsLedgerInfo ∙ liCommitInfo) (here' ("Genesis QC has inconsistent commit block with certified block" ∷ [])) lcheck (Map.kvm-size (self ^∙ qcLedgerInfo ∙ liwsSignatures) == 0) (here' ("Genesis QC should not carry signatures" ∷ [])) ) else do withErrCtx' ("fail to verify QuorumCert" ∷ []) (LedgerInfoWithSignatures.verifySignatures (self ^∙ qcLedgerInfo) validator) VoteData.verify (self ^∙ qcVoteData) where here' : List String → List String here' t = "QuorumCert" ∷ "verify" {- ∷ lsQC self-} ∷ t
{ "alphanum_fraction": 0.6523620627, "avg_line_length": 45.4590163934, "ext": "agda", "hexsha": "19cb581494bdcb594c7b4d11afe0ad2ae69b6342", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/QuorumCert.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/QuorumCert.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/QuorumCert.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 725, "size": 2773 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} {- This file defines deltaIntSec : ∀ b → toInt (fromInt b) ≡ b succPred : ∀ n → succ (pred n) ≡ n predSucc : ∀ n → pred (succ n) ≡ n and proved DeltaInt ≡ DeltaInt by the above functions succPredEq : DeltaInt ≡ DeltaInt along with some interval-relevant lemmas cancelDiamond : ∀ a b i → cancel a b i ≡ cancel (suc a) (suc b) i cancelTriangle : ∀ a b i → a ⊖ b ≡ cancel a b i we also have DeltaInt ≡ Int proof DeltaInt≡Int : DeltaInt ≡ Int and we transported some proofs from Int to DeltaInt discreteDeltaInt : Discrete DeltaInt isSetDeltaInt : isSet DeltaInt -} module Cubical.HITs.Ints.DeltaInt.Properties where open import Cubical.Foundations.Everything open import Cubical.Data.Nat hiding (zero) open import Cubical.Data.Int hiding (abs; sgn; _+_) open import Cubical.HITs.Ints.DeltaInt.Base open import Cubical.Relation.Nullary using (Discrete) deltaIntSec : ∀ b → toInt (fromInt b) ≡ b deltaIntSec (pos n) = refl deltaIntSec (negsuc n) = refl cancelDiamond : ∀ a b i → cancel a b i ≡ cancel (suc a) (suc b) i cancelDiamond a b i j = hcomp (λ k → λ { (i = i0) → cancel a b j ; (i = i1) → cancel (suc a) (suc b) (j ∧ k) ; (j = i0) → cancel a b i ; (j = i1) → cancel (suc a) (suc b) (i ∧ k) }) (cancel a b (i ∨ j)) cancelTriangle : ∀ a b i → a ⊖ b ≡ cancel a b i cancelTriangle a b i j = hcomp (λ k → λ { (i = i0) → a ⊖ b ; (j = i0) → a ⊖ b ; (j = i1) → cancel a b (i ∧ k) }) (a ⊖ b) deltaIntRet : ∀ a → fromInt (toInt a) ≡ a deltaIntRet (x ⊖ 0) = refl deltaIntRet (0 ⊖ suc y) = refl deltaIntRet (suc x ⊖ suc y) = deltaIntRet (x ⊖ y) ∙ cancel x y deltaIntRet (cancel a 0 i) = cancelTriangle a 0 i deltaIntRet (cancel 0 (suc b) i) = cancelTriangle 0 (suc b) i deltaIntRet (cancel (suc a) (suc b) i) = deltaIntRet (cancel a b i) ∙ cancelDiamond a b i DeltaInt≡Int : DeltaInt ≡ Int DeltaInt≡Int = isoToPath (iso toInt fromInt deltaIntSec deltaIntRet) discreteDeltaInt : Discrete DeltaInt discreteDeltaInt = subst Discrete (sym DeltaInt≡Int) discreteInt isSetDeltaInt : isSet DeltaInt isSetDeltaInt = subst isSet (sym DeltaInt≡Int) isSetInt succPred : ∀ n → succ (pred n) ≡ n succPred (x ⊖ y) i = cancel x y (~ i) -- cancel (suc a) (suc b) i ≡ cancel a b i succPred (cancel a b i) = sym (cancelDiamond a b i) predSucc : ∀ n → pred (succ n) ≡ n predSucc (x ⊖ y) = succPred (x ⊖ y) predSucc (cancel a b i) = succPred (cancel a b i) succPredEq : DeltaInt ≡ DeltaInt succPredEq = isoToPath (iso succ pred succPred predSucc)
{ "alphanum_fraction": 0.6669319538, "avg_line_length": 28.8850574713, "ext": "agda", "hexsha": "d223ed2796a249beb01b4bb414ed02a15389979a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/Ints/DeltaInt/Properties.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/Ints/DeltaInt/Properties.agda", "max_line_length": 89, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/Ints/DeltaInt/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 933, "size": 2513 }
-- Andreas, 2017-03-08 -- Impredicative data types are incompatible with structural recursion -- (Coquand, Pattern Matching with Dependent Types, 1992) {-# OPTIONS --type-in-type #-} data ⊥ : Set where -- An impredicative data type data D : Set where c : (f : (A : Set) → A → A) → D -- Structural recursion with f args < c f is no longer valid. -- We should not be able to demonstrated that D is empty. empty : D → ⊥ empty (c f) = empty (f D (c f)) -- This gets us to absurdity quickly: inhabited : D inhabited = c λ A x → x absurd : ⊥ absurd = empty inhabited
{ "alphanum_fraction": 0.6637630662, "avg_line_length": 21.2592592593, "ext": "agda", "hexsha": "cd2a325fc66a4196f349b76e848700b66b961f5b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/ImpredicativeData.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/ImpredicativeData.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/ImpredicativeData.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 177, "size": 574 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} {-# OPTIONS --allow-unsolved-metas #-} open import Optics.All open import LibraBFT.Lemmas open import LibraBFT.Prelude open import LibraBFT.Base.PKCS open import LibraBFT.Impl.Consensus.Types open import LibraBFT.Impl.NetworkMsg open import LibraBFT.Impl.Util.Crypto open import LibraBFT.Impl.Properties.Aux open import LibraBFT.Concrete.System impl-sps-avp open import LibraBFT.Concrete.System.Parameters import LibraBFT.Concrete.Properties.VotesOnce as VO open import LibraBFT.Yasm.AvailableEpochs open import LibraBFT.Yasm.Base open import LibraBFT.Yasm.System ConcSysParms open import LibraBFT.Yasm.Properties ConcSysParms open Structural impl-sps-avp open import LibraBFT.Concrete.Obligations -- In this module, we (will) prove the two implementation obligations for the VotesOnce rule. Note -- that it is not yet 100% clear that the obligations are the best definitions to use. See comments -- in Concrete.VotesOnce. We will want to prove these obligations for the fake/simple -- implementation (or some variant on it) and streamline the proof before we proceed to tacke more -- ambitious properties. module LibraBFT.Impl.Properties.VotesOnce where postulate -- TODO-3 : prove vo₁ : VO.ImplObligation₁ vo₂ : VO.ImplObligation₂
{ "alphanum_fraction": 0.7915287889, "avg_line_length": 37.775, "ext": "agda", "hexsha": "d7f6764c727333e70c95c403203f73e5dbfad945", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b7dd98dd90d98fbb934ef8cb4f3314940986790d", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "lisandrasilva/bft-consensus-agda-1", "max_forks_repo_path": "LibraBFT/Impl/Properties/VotesOnce.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b7dd98dd90d98fbb934ef8cb4f3314940986790d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "lisandrasilva/bft-consensus-agda-1", "max_issues_repo_path": "LibraBFT/Impl/Properties/VotesOnce.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "b7dd98dd90d98fbb934ef8cb4f3314940986790d", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "lisandrasilva/bft-consensus-agda-1", "max_stars_repo_path": "LibraBFT/Impl/Properties/VotesOnce.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 409, "size": 1511 }
{- The module CanThetaContinuation contains the continuation-passing variant of Canθ, which is used as a tool to simplify Canθ-Can expressions. The lemmas are mainly about the function Canθ' defined by the equation unfold : ∀ sigs S'' p θ → Canθ sigs S'' p θ ≡ Canθ' sigs S'' (Can p) θ The main property proved here is that the search function Canθ is distributive over the environment: canθ'-←-distribute : ∀ sigs sigs' S'' r θ → Canθ (SigMap.union sigs sigs') S'' r θ ≡ Canθ' sigs S'' (Canθ sigs' S'' r) θ Other properties about how the search is performed are: canθ'-inner-shadowing-irr : ∀ sigs S'' sigs' p S status θ → S ∈ SigMap.keys sigs' → Canθ' sigs S'' (Canθ sigs' 0 p) (θ ← [ (S ₛ) ↦ status ]) ≡ Canθ' sigs S'' (Canθ sigs' 0 p) θ canθ'-search-acc : ∀ sigs S κ θ → ∀ S'' status → S'' ∉ map (_+_ S) (SigMap.keys sigs) → Canθ' sigs S κ (θ ← [ (S'' ₛ) ↦ status ]) ≡ Canθ' sigs S (κ ∘ (_← [ (S'' ₛ) ↦ status ])) θ -} module Esterel.Lang.CanFunction.CanThetaContinuation where open import utility open import utility renaming (_U̬_ to _∪_ ; _|̌_ to _-_) open import Esterel.Lang open import Esterel.Lang.Binding open import Esterel.Lang.CanFunction open import Esterel.Lang.CanFunction.Base open import Esterel.Context using (EvaluationContext1 ; EvaluationContext ; _⟦_⟧e ; _≐_⟦_⟧e) open import Esterel.Context.Properties using (plug ; unplug) open import Esterel.Environment as Env using (Env ; Θ ; _←_ ; Dom ; module SigMap ; module ShrMap ; module VarMap) open import Esterel.CompletionCode as Code using () renaming (CompletionCode to Code) open import Esterel.Variable.Signal as Signal using (Signal ; _ₛ) open import Esterel.Variable.Shared as SharedVar using (SharedVar ; _ₛₕ) open import Esterel.Variable.Sequential as SeqVar using (SeqVar) open EvaluationContext1 open _≐_⟦_⟧e open import Data.Bool using (Bool ; not ; if_then_else_) open import Data.Empty using (⊥ ; ⊥-elim) open import Data.List using (List ; [] ; _∷_ ; _++_ ; map ; concatMap ; foldr) open import Data.List.Properties using (map-id) open import Data.List.Any using (Any ; any ; here ; there) open import Data.List.Any.Properties using () renaming (++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ) open import Data.Maybe using (Maybe ; maybe ; just ; nothing) open import Data.Nat using (ℕ ; zero ; suc ; _≟_ ; _+_) open import Data.Nat.Properties.Simple using (+-comm) open import Data.Product using (Σ ; proj₁ ; proj₂ ; ∃ ; _,_ ; _,′_ ; _×_) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open import Function using (_∘_ ; id ; _∋_) open import Relation.Nullary using (¬_ ; Dec ; yes ; no) open import Relation.Nullary.Decidable using (⌊_⌋) open import Relation.Binary.PropositionalEquality using (_≡_ ; _≢_ ; refl ; trans ; sym ; cong ; subst ; module ≡-Reasoning) open ListSet Data.Nat._≟_ using (set-subtract ; set-subtract-[] ; set-subtract-split ; set-subtract-merge ; set-subtract-notin ; set-remove ; set-remove-mono-∈ ; set-remove-removed ; set-remove-not-removed ; set-subtract-[a]≡set-remove) open import Data.OrderedListMap Signal Signal.unwrap Signal.Status as SigM open import Data.OrderedListMap SharedVar SharedVar.unwrap (Σ SharedVar.Status (λ _ → ℕ)) as ShrM open import Data.OrderedListMap SeqVar SeqVar.unwrap ℕ as SeqM open ≡-Reasoning -- equation: Canθ sig S'' p θ = Canθ' sig S'' (Can p) θ Canθ' : SigMap.Map Signal.Status → ℕ → (Env → SigSet.ST × CodeSet.ST × ShrSet.ST) → Env → SigSet.ST × CodeSet.ST × ShrSet.ST Canθ' [] S κ θ = κ θ Canθ' (nothing ∷ sig') S κ θ = Canθ' sig' (suc S) κ θ Canθ' (just Signal.present ∷ sig') S κ θ = Canθ' sig' (suc S) κ (θ ← [S]-env-present (S ₛ)) Canθ' (just Signal.absent ∷ sig') S κ θ = Canθ' sig' (suc S) κ (θ ← [S]-env-absent (S ₛ)) Canθ' (just Signal.unknown ∷ sig') S κ θ with any (_≟_ S) (proj₁ (Canθ' sig' (suc S) κ (θ ← [S]-env (S ₛ)))) ... | yes S∈can-p-θ←[S] = Canθ' sig' (suc S) κ (θ ← [S]-env (S ₛ)) ... | no S∉can-p-θ←[S] = Canθ' sig' (suc S) κ (θ ← [S]-env-absent (S ₛ)) unfold : ∀ sigs S'' p θ → Canθ sigs S'' p θ ≡ Canθ' sigs S'' (Can p) θ unfold [] S'' p θ = refl unfold (nothing ∷ sigs) S'' p θ = unfold sigs (suc S'') p θ unfold (just Signal.present ∷ sigs) S'' p θ = unfold sigs (suc S'') p (θ ← [S]-env-present (S'' ₛ)) unfold (just Signal.absent ∷ sigs) S'' p θ = unfold sigs (suc S'') p (θ ← [S]-env-absent (S'' ₛ)) unfold (just Signal.unknown ∷ sigs) S'' p θ with any (_≟_ S'') (proj₁ (Canθ sigs (suc S'') p (θ ← [S]-env (S'' ₛ)))) | any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') (Can p) (θ ← [S]-env (S'' ₛ)))) ... | yes S''∈canθ-sigs-θ←[S''] | yes S''∈canθ'-sigs-θ←[S''] = unfold sigs (suc S'') p (θ ← [S]-env (S'' ₛ)) ... | no S''∉canθ-sigs-θ←[S''] | no S''∉canθ'-sigs-θ←[S''] = unfold sigs (suc S'') p (θ ← [S]-env-absent (S'' ₛ)) ... | yes S''∈canθ-sigs-θ←[S''] | no S''∉canθ'-sigs-θ←[S''] rewrite unfold sigs (suc S'') p (θ ← [S]-env (S'' ₛ)) = ⊥-elim (S''∉canθ'-sigs-θ←[S''] S''∈canθ-sigs-θ←[S'']) ... | no S''∉canθ-sigs-θ←[S''] | yes S''∈canθ'-sigs-θ←[S''] rewrite unfold sigs (suc S'') p (θ ← [S]-env (S'' ₛ)) = ⊥-elim (S''∉canθ-sigs-θ←[S''] S''∈canθ'-sigs-θ←[S'']) canθ'-cong : ∀ sigs S'' κ κ' θ → (∀ θ* → κ θ* ≡ κ' θ*) → Canθ' sigs S'' κ θ ≡ Canθ' sigs S'' κ' θ canθ'-cong [] S'' κ κ' θ κ≗κ' = κ≗κ' θ canθ'-cong (nothing ∷ sigs) S'' κ κ' θ κ≗κ' = canθ'-cong sigs (suc S'') κ κ' θ κ≗κ' canθ'-cong (just Signal.present ∷ sigs) S'' κ κ' θ κ≗κ' = canθ'-cong sigs (suc S'') κ κ' (θ ← [S]-env-present (S'' ₛ)) κ≗κ' canθ'-cong (just Signal.absent ∷ sigs) S'' κ κ' θ κ≗κ' = canθ'-cong sigs (suc S'') κ κ' (θ ← [S]-env-absent (S'' ₛ)) κ≗κ' canθ'-cong (just Signal.unknown ∷ sigs) S'' κ κ' θ κ≗κ' with any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') κ (θ ← [S]-env (S'' ₛ)))) | any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') κ' (θ ← [S]-env (S'' ₛ)))) ... | yes S''∈canθ'-sigs-κ-θ←[S''] | yes S''∈canθ'-sigs-κ'-θ←[S''] = canθ'-cong sigs (suc S'') κ κ' (θ ← [S]-env (S'' ₛ)) κ≗κ' ... | no S''∉canθ'-sigs-κ-θ←[S''] | no S''∉canθ'-sigs-κ'-θ←[S''] = canθ'-cong sigs (suc S'') κ κ' (θ ← [S]-env-absent (S'' ₛ)) κ≗κ' ... | yes S''∈canθ'-sigs-κ-θ←[S''] | no S''∉canθ'-sigs-κ'-θ←[S''] rewrite canθ'-cong sigs (suc S'') κ κ' (θ ← [S]-env (S'' ₛ)) κ≗κ' = ⊥-elim (S''∉canθ'-sigs-κ'-θ←[S''] S''∈canθ'-sigs-κ-θ←[S'']) ... | no S''∉canθ'-sigs-κ-θ←[S''] | yes S''∈canθ'-sigs-κ'-θ←[S''] rewrite canθ'-cong sigs (suc S'') κ κ' (θ ← [S]-env (S'' ₛ)) κ≗κ' = ⊥-elim (S''∉canθ'-sigs-κ-θ←[S''] S''∈canθ'-sigs-κ'-θ←[S'']) canθₛ'-cong : ∀ sigs S'' κ κ' θ → (∀ θ* → proj₁ (κ θ*) ≡ proj₁ (κ' θ*)) → proj₁ (Canθ' sigs S'' κ θ) ≡ proj₁ (Canθ' sigs S'' κ' θ) canθₛ'-cong [] S'' κ κ' θ κ≗κ' = κ≗κ' θ canθₛ'-cong (nothing ∷ sigs) S'' κ κ' θ κ≗κ' = canθₛ'-cong sigs (suc S'') κ κ' θ κ≗κ' canθₛ'-cong (just Signal.present ∷ sigs) S'' κ κ' θ κ≗κ' = canθₛ'-cong sigs (suc S'') κ κ' (θ ← [S]-env-present (S'' ₛ)) κ≗κ' canθₛ'-cong (just Signal.absent ∷ sigs) S'' κ κ' θ κ≗κ' = canθₛ'-cong sigs (suc S'') κ κ' (θ ← [S]-env-absent (S'' ₛ)) κ≗κ' canθₛ'-cong (just Signal.unknown ∷ sigs) S'' κ κ' θ κ≗κ' with any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') κ (θ ← [S]-env (S'' ₛ)))) | any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') κ' (θ ← [S]-env (S'' ₛ)))) ... | yes S''∈canθ'-sigs-κ-θ←[S''] | yes S''∈canθ'-sigs-κ'-θ←[S''] = canθₛ'-cong sigs (suc S'') κ κ' (θ ← [S]-env (S'' ₛ)) κ≗κ' ... | no S''∉canθ'-sigs-κ-θ←[S''] | no S''∉canθ'-sigs-κ'-θ←[S''] = canθₛ'-cong sigs (suc S'') κ κ' (θ ← [S]-env-absent (S'' ₛ)) κ≗κ' ... | yes S''∈canθ'-sigs-κ-θ←[S''] | no S''∉canθ'-sigs-κ'-θ←[S''] rewrite canθₛ'-cong sigs (suc S'') κ κ' (θ ← [S]-env (S'' ₛ)) κ≗κ' = ⊥-elim (S''∉canθ'-sigs-κ'-θ←[S''] S''∈canθ'-sigs-κ-θ←[S'']) ... | no S''∉canθ'-sigs-κ-θ←[S''] | yes S''∈canθ'-sigs-κ'-θ←[S''] rewrite canθₛ'-cong sigs (suc S'') κ κ' (θ ← [S]-env (S'' ₛ)) κ≗κ' = ⊥-elim (S''∉canθ'-sigs-κ-θ←[S''] S''∈canθ'-sigs-κ'-θ←[S'']) canθ'-map-comm : ∀ f sigs S κ θ → Canθ' sigs S (map-second f ∘ κ) θ ≡ map-second f (Canθ' sigs S κ θ) canθ'-map-comm f [] S κ θ = refl canθ'-map-comm f (nothing ∷ sigs) S κ θ = canθ'-map-comm f sigs (suc S) κ θ canθ'-map-comm f (just Signal.present ∷ sigs) S κ θ = canθ'-map-comm f sigs (suc S) κ (θ ← [S]-env-present (S ₛ)) canθ'-map-comm f (just Signal.absent ∷ sigs) S κ θ = canθ'-map-comm f sigs (suc S) κ (θ ← [S]-env-absent (S ₛ)) canθ'-map-comm f (just Signal.unknown ∷ sigs) S κ θ with any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (map-second f ∘ κ) (θ ← [S]-env (S ₛ)))) | any (_≟_ S) (proj₁ (Canθ' sigs (suc S) κ (θ ← [S]-env (S ₛ)))) ... | yes S∈canθ'-sigs-f∘κ-θ←[S] | yes S∈canθ'-sigs-κ-θ←[S] = canθ'-map-comm f sigs (suc S) κ (θ ← [S]-env (S ₛ)) ... | no S∉canθ'-sigs-f∘κ-θ←[S] | no S∉canθ'-sigs-κ-θ←[S] = canθ'-map-comm f sigs (suc S) κ (θ ← [S]-env-absent (S ₛ)) ... | yes S∈canθ'-sigs-f∘κ-θ←[S] | no S∉canθ'-sigs-κ-θ←[S] rewrite canθ'-map-comm f sigs (suc S) κ (θ ← [S]-env (S ₛ)) = ⊥-elim (S∉canθ'-sigs-κ-θ←[S] S∈canθ'-sigs-f∘κ-θ←[S]) ... | no S∉canθ'-sigs-f∘κ-θ←[S] | yes S∈canθ'-sigs-κ-θ←[S] rewrite canθ'-map-comm f sigs (suc S) κ (θ ← [S]-env (S ₛ)) = ⊥-elim (S∉canθ'-sigs-f∘κ-θ←[S] S∈canθ'-sigs-κ-θ←[S]) canθ'ₛ-add-sig-monotonic : ∀ sigs S'' κ θ S status → (∀ θ S status S' → S' ∈ proj₁ (κ (θ ← Θ SigMap.[ S ↦ status ] ShrMap.empty VarMap.empty)) → S' ∈ proj₁ (κ (θ ← [S]-env S))) → ∀ S' → S' ∈ proj₁ (Canθ' sigs S'' κ (θ ← Θ SigMap.[ S ↦ status ] ShrMap.empty VarMap.empty)) → S' ∈ proj₁ (Canθ' sigs S'' κ (θ ← [S]-env S)) canθ'ₛ-add-sig-monotonic [] S'' κ θ S status κ-add-sig-monotonic S' S'∈canθ'-sigs-p-θ←[S↦status] = κ-add-sig-monotonic θ S status S' S'∈canθ'-sigs-p-θ←[S↦status] canθ'ₛ-add-sig-monotonic (nothing ∷ sigs) S'' κ θ S status κ-add-sig-monotonic S' S'∈canθ'-sigs-p-θ←[S↦status] = canθ'ₛ-add-sig-monotonic sigs (suc S'') κ θ S status κ-add-sig-monotonic S' S'∈canθ'-sigs-p-θ←[S↦status] canθ'ₛ-add-sig-monotonic (just x ∷ sigs) S'' κ θ S status κ-add-sig-monotonic S' S'∈canθ'-sigs-p-θ←[S↦status] with Signal.unwrap S ≟ S'' canθ'ₛ-add-sig-monotonic (just Signal.present ∷ sigs) S'' κ θ S status κ-add-sig-monotonic S' S'∈canθ'-sigs-p-θ←[S↦status] | yes refl rewrite Env.sig-single-←-←-overwrite θ (S'' ₛ) Signal.unknown Signal.present | Env.sig-single-←-←-overwrite θ (S'' ₛ) status Signal.present = S'∈canθ'-sigs-p-θ←[S↦status] canθ'ₛ-add-sig-monotonic (just Signal.absent ∷ sigs) S'' κ θ S status κ-add-sig-monotonic S' S'∈canθ'-sigs-p-θ←[S↦status] | yes refl rewrite Env.sig-single-←-←-overwrite θ (S'' ₛ) Signal.unknown Signal.absent | Env.sig-single-←-←-overwrite θ (S'' ₛ) status Signal.absent = S'∈canθ'-sigs-p-θ←[S↦status] canθ'ₛ-add-sig-monotonic (just Signal.unknown ∷ sigs) S'' κ θ S status κ-add-sig-monotonic S' S'∈canθ'-sigs-p-θ←[S↦status] | yes refl with any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') κ ((θ ← [S]-env (S'' ₛ)) ← [S]-env (S'' ₛ)))) | any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') κ ((θ ← [ (S'' ₛ) ↦ status ]) ← [S]-env (S'' ₛ)))) ... | yes S''∈canθ'-sigs-κ-θ←[S''↦unknown]←[S''] | yes S''∈canθ'-sigs-κ-θ←[S''↦status]←[S''] rewrite Env.sig-single-←-←-overwrite θ (S'' ₛ) Signal.unknown Signal.unknown | Env.sig-single-←-←-overwrite θ (S'' ₛ) status Signal.unknown = S'∈canθ'-sigs-p-θ←[S↦status] ... | no S''∉canθ'-sigs-κ-θ←[S''↦unknown]←[S''] | no S''∉canθ'-sigs-κ-θ←[S''↦status]←[S''] rewrite Env.sig-single-←-←-overwrite θ (S'' ₛ) Signal.unknown Signal.absent | Env.sig-single-←-←-overwrite θ (S'' ₛ) status Signal.absent = S'∈canθ'-sigs-p-θ←[S↦status] ... | yes S''∈canθ'-sigs-κ-θ←[S''↦unknown]←[S''] | no S''∉canθ'-sigs-κ-θ←[S''↦status]←[S''] rewrite Env.sig-single-←-←-overwrite θ (S'' ₛ) Signal.unknown Signal.unknown | Env.sig-single-←-←-overwrite θ (S'' ₛ) status Signal.unknown = ⊥-elim (S''∉canθ'-sigs-κ-θ←[S''↦status]←[S''] S''∈canθ'-sigs-κ-θ←[S''↦unknown]←[S'']) ... | no S''∉canθ'-sigs-κ-θ←[S''↦unknown]←[S''] | yes S''∈canθ'-sigs-κ-θ←[S''↦status]←[S''] rewrite Env.sig-single-←-←-overwrite θ (S'' ₛ) Signal.unknown Signal.unknown | Env.sig-single-←-←-overwrite θ (S'' ₛ) status Signal.unknown = ⊥-elim (S''∉canθ'-sigs-κ-θ←[S''↦unknown]←[S''] S''∈canθ'-sigs-κ-θ←[S''↦status]←[S'']) canθ'ₛ-add-sig-monotonic (just Signal.present ∷ sigs) S'' κ θ S status κ-add-sig-monotonic S' S'∈canθ'-sigs-p-θ←[S↦status] | no S≢S'' rewrite Env.←-assoc-comm θ ([S]-env S) ([S]-env-present (S'' ₛ)) (Env.sig-single-noteq-distinct S Signal.unknown (S'' ₛ) Signal.present S≢S'') = canθ'ₛ-add-sig-monotonic sigs (suc S'') κ (θ ← [S]-env-present (S'' ₛ)) S status κ-add-sig-monotonic S' (subst (S' ∈_) (cong (proj₁ ∘ Canθ' sigs (suc S'') κ) (Env.←-assoc-comm θ [ S ↦ status ] ([S]-env-present (S'' ₛ)) (Env.sig-single-noteq-distinct S status (S'' ₛ) Signal.present S≢S''))) S'∈canθ'-sigs-p-θ←[S↦status]) canθ'ₛ-add-sig-monotonic (just Signal.absent ∷ sigs) S'' κ θ S status κ-add-sig-monotonic S' S'∈canθ'-sigs-p-θ←[S↦status] | no S≢S'' rewrite Env.←-assoc-comm θ ([S]-env S) ([S]-env-absent (S'' ₛ)) (Env.sig-single-noteq-distinct S Signal.unknown (S'' ₛ) Signal.absent S≢S'') = canθ'ₛ-add-sig-monotonic sigs (suc S'') κ (θ ← [S]-env-absent (S'' ₛ)) S status κ-add-sig-monotonic S' (subst (S' ∈_) (cong (proj₁ ∘ Canθ' sigs (suc S'') κ) (Env.←-assoc-comm θ [ S ↦ status ] ([S]-env-absent (S'' ₛ)) (Env.sig-single-noteq-distinct S status (S'' ₛ) Signal.absent S≢S''))) S'∈canθ'-sigs-p-θ←[S↦status]) canθ'ₛ-add-sig-monotonic (just Signal.unknown ∷ sigs) S'' κ θ S status κ-add-sig-monotonic S' S'∈canθ'-sigs-p-θ←[S↦status] | no S≢S'' with any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') κ ((θ ← [S]-env S) ← [S]-env (S'' ₛ)))) | any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') κ ((θ ← [ S ↦ status ]) ← [S]-env (S'' ₛ)))) ... | yes S''∈canθ'-sigs-κ-θ←[S↦unknown]←[S''] | yes S''∈canθ'-sigs-κ-θ←[S↦status]←[S''] rewrite Env.←-assoc-comm θ ([S]-env S) ([S]-env (S'' ₛ)) (Env.sig-single-noteq-distinct S Signal.unknown (S'' ₛ) Signal.unknown S≢S'') = canθ'ₛ-add-sig-monotonic sigs (suc S'') κ (θ ← [S]-env (S'' ₛ)) S status κ-add-sig-monotonic S' (subst (S' ∈_) (cong (proj₁ ∘ Canθ' sigs (suc S'') κ) (Env.←-assoc-comm θ [ S ↦ status ] ([S]-env (S'' ₛ)) (Env.sig-single-noteq-distinct S status (S'' ₛ) Signal.unknown S≢S''))) S'∈canθ'-sigs-p-θ←[S↦status]) ... | no S''∉canθ'-sigs-κ-θ←[S↦unknown]←[S''] | no S''∉canθ'-sigs-κ-θ←[S↦status]←[S''] rewrite Env.←-assoc-comm θ ([S]-env S) ([S]-env-absent (S'' ₛ)) (Env.sig-single-noteq-distinct S Signal.unknown (S'' ₛ) Signal.absent S≢S'') = canθ'ₛ-add-sig-monotonic sigs (suc S'') κ (θ ← [S]-env-absent (S'' ₛ)) S status κ-add-sig-monotonic S' (subst (S' ∈_) (cong (proj₁ ∘ Canθ' sigs (suc S'') κ) (Env.←-assoc-comm θ [ S ↦ status ] ([S]-env-absent (S'' ₛ)) (Env.sig-single-noteq-distinct S status (S'' ₛ) Signal.absent S≢S''))) S'∈canθ'-sigs-p-θ←[S↦status]) ... | yes S''∈canθ'-sigs-κ-θ←[S↦unknown]←[S''] | no S''∉canθ'-sigs-κ-θ←[S↦status]←[S''] rewrite Env.←-assoc-comm θ ([S]-env S) ([S]-env (S'' ₛ)) (Env.sig-single-noteq-distinct S Signal.unknown (S'' ₛ) Signal.unknown S≢S'') = canθ'ₛ-add-sig-monotonic sigs (suc S'') κ (θ ← [S]-env (S'' ₛ)) S status κ-add-sig-monotonic S' (subst (S' ∈_) (cong (proj₁ ∘ Canθ' sigs (suc S'') κ) (Env.←-assoc-comm θ [ S ↦ status ] ([S]-env (S'' ₛ)) (Env.sig-single-noteq-distinct S status (S'' ₛ) Signal.unknown S≢S''))) (canθ'ₛ-add-sig-monotonic sigs (suc S'') κ (θ ← [ S ↦ status ]) (S'' ₛ) Signal.absent κ-add-sig-monotonic S' S'∈canθ'-sigs-p-θ←[S↦status])) ... | no S''∉canθ'-sigs-κ-θ←[S↦unknown]←[S''] | yes S''∈canθ'-sigs-κ-θ←[S↦status]←[S''] rewrite Env.←-assoc-comm θ ([S]-env S) ([S]-env (S'' ₛ)) (Env.sig-single-noteq-distinct S Signal.unknown (S'' ₛ) Signal.unknown S≢S'') = ⊥-elim (S''∉canθ'-sigs-κ-θ←[S↦unknown]←[S''] (canθ'ₛ-add-sig-monotonic sigs (suc S'') κ (θ ← [S]-env (S'' ₛ)) S status κ-add-sig-monotonic S'' (subst (S'' ∈_) (cong (proj₁ ∘ Canθ' sigs (suc S'') κ) (Env.←-assoc-comm θ [ S ↦ status ] ([S]-env (S'' ₛ)) (Env.sig-single-noteq-distinct S status (S'' ₛ) Signal.unknown S≢S''))) S''∈canθ'-sigs-κ-θ←[S↦status]←[S'']))) canθ'ₛ-canθ-add-sig-monotonic : ∀ sigs S sigs' S' p θ S''' status → ∀ S'' → S'' ∈ proj₁ (Canθ' sigs S (Canθ sigs' S' p) (θ ← Θ SigMap.[ S''' ↦ status ] ShrMap.empty VarMap.empty)) → S'' ∈ proj₁ (Canθ' sigs S (Canθ sigs' S' p) (θ ← [S]-env S''')) canθ'ₛ-canθ-add-sig-monotonic sigs S sigs' S' p θ S''' status S'' S''∈canθ'-sigs-p-θ←[S↦status] = canθ'ₛ-add-sig-monotonic sigs S (Canθ sigs' S' p) θ S''' status (canθₛ-add-sig-monotonic sigs' S' p) S'' S''∈canθ'-sigs-p-θ←[S↦status] canθ'ₛ-subset-lemma : ∀ sigs S'' κ κ' θ → (∀ θ' S → S ∈ proj₁ (κ θ') → S ∈ proj₁ (κ' θ')) → (∀ θ S status S' → S' ∈ proj₁ (κ' (θ ← Θ SigMap.[ S ↦ status ] ShrMap.empty VarMap.empty)) → S' ∈ proj₁ (κ' (θ ← [S]-env S))) → ∀ S → S ∈ proj₁ (Canθ' sigs S'' κ θ) → S ∈ proj₁ (Canθ' sigs S'' κ' θ) canθ'ₛ-subset-lemma [] S'' κ κ' θ κ⊆κ' κ'-add-sig-monotonic S S∈canθ'-κ-θ = κ⊆κ' θ S S∈canθ'-κ-θ canθ'ₛ-subset-lemma (nothing ∷ sigs) S'' κ κ' θ κ⊆κ' κ'-add-sig-monotonic S S∈canθ'-κ-θ = canθ'ₛ-subset-lemma sigs (suc S'') κ κ' θ κ⊆κ' κ'-add-sig-monotonic S S∈canθ'-κ-θ canθ'ₛ-subset-lemma (just Signal.present ∷ sigs) S'' κ κ' θ κ⊆κ' κ'-add-sig-monotonic S S∈canθ'-κ-θ = canθ'ₛ-subset-lemma sigs (suc S'') κ κ' (θ ← [S]-env-present (S'' ₛ)) κ⊆κ' κ'-add-sig-monotonic S S∈canθ'-κ-θ canθ'ₛ-subset-lemma (just Signal.absent ∷ sigs) S'' κ κ' θ κ⊆κ' κ'-add-sig-monotonic S S∈canθ'-κ-θ = canθ'ₛ-subset-lemma sigs (suc S'') κ κ' (θ ← [S]-env-absent (S'' ₛ)) κ⊆κ' κ'-add-sig-monotonic S S∈canθ'-κ-θ canθ'ₛ-subset-lemma (just Signal.unknown ∷ sigs) S'' κ κ' θ κ⊆κ' κ'-add-sig-monotonic S S∈canθ'-κ-θ with any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') κ (θ ← [S]-env (S'' ₛ)))) | any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') κ' (θ ← [S]-env (S'' ₛ)))) ... | yes S''∈canθ'-κ-θ' | yes S''∈canθ-κ'-θ' = canθ'ₛ-subset-lemma sigs (suc S'') κ κ' (θ ← [S]-env (S'' ₛ)) κ⊆κ' κ'-add-sig-monotonic S S∈canθ'-κ-θ ... | no S''∉canθ'-κ-θ' | no S''∉canθ-q-θ' = canθ'ₛ-subset-lemma sigs (suc S'') κ κ' (θ ← [S]-env-absent (S'' ₛ)) κ⊆κ' κ'-add-sig-monotonic S S∈canθ'-κ-θ ... | yes S''∈canθ'-κ-θ' | no S''∉canθ-q-θ' = ⊥-elim (S''∉canθ-q-θ' (canθ'ₛ-subset-lemma sigs (suc S'') κ κ' (θ ← [S]-env (S'' ₛ)) κ⊆κ' κ'-add-sig-monotonic S'' S''∈canθ'-κ-θ')) ... | no S''∉canθ'-κ-θ' | yes S''∈canθ-κ'-θ' = canθ'ₛ-add-sig-monotonic sigs (suc S'') κ' θ (S'' ₛ) Signal.absent κ'-add-sig-monotonic S (canθ'ₛ-subset-lemma sigs (suc S'') κ κ' (θ ← [S]-env-absent (S'' ₛ)) κ⊆κ' κ'-add-sig-monotonic S S∈canθ'-κ-θ) canθ'-inner-shadowing-irr' : ∀ sigs S'' sigs' p S status θ θo → S ∈ SigMap.keys sigs' → Canθ' sigs S'' (Canθ sigs' 0 p) ((θ ← [ (S ₛ) ↦ status ]) ← θo) ≡ Canθ' sigs S'' (Canθ sigs' 0 p) (θ ← θo) canθ'-inner-shadowing-irr' [] S'' sigs' p S status θ θo S∈sigs' rewrite sym (map-id (SigMap.keys sigs')) = canθ-shadowing-irr' sigs' 0 p S status θ θo S∈sigs' canθ'-inner-shadowing-irr' (nothing ∷ sigs) S'' sigs' p S status θ θo S∈sigs' = canθ'-inner-shadowing-irr' sigs (suc S'') sigs' p S status θ θo S∈sigs' canθ'-inner-shadowing-irr' (just Signal.present ∷ sigs) S'' sigs' p S status θ θo S∈sigs' rewrite sym (Env.←-assoc (θ ← [ (S ₛ) ↦ status ]) θo ([S]-env-present (S'' ₛ))) | sym (Env.←-assoc θ θo ([S]-env-present (S'' ₛ))) = canθ'-inner-shadowing-irr' sigs (suc S'') sigs' p S status θ (θo ← ([S]-env-present (S'' ₛ))) S∈sigs' canθ'-inner-shadowing-irr' (just Signal.absent ∷ sigs) S'' sigs' p S status θ θo S∈sigs' rewrite sym (Env.←-assoc (θ ← [ (S ₛ) ↦ status ]) θo ([S]-env-absent (S'' ₛ))) | sym (Env.←-assoc θ θo ([S]-env-absent (S'' ₛ))) = canθ'-inner-shadowing-irr' sigs (suc S'') sigs' p S status θ (θo ← ([S]-env-absent (S'' ₛ))) S∈sigs' canθ'-inner-shadowing-irr' (just Signal.unknown ∷ sigs) S'' sigs' p S status θ θo S∈sigs' with any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') (Canθ sigs' 0 p) (((θ ← [ (S ₛ) ↦ status ]) ← θo) ← [S]-env (S'' ₛ)))) | any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') (Canθ sigs' 0 p) ((θ ← θo) ← [S]-env (S'' ₛ)))) ... | yes S''∈canθ'-sigs-Canθ-θ←[S]-absent←S←θo←[S''] | yes S''∈canθ'-sigs-Canθ-θ←[S]←S←θo←[S''] rewrite sym (Env.←-assoc (θ ← [ (S ₛ) ↦ status ]) θo ([S]-env (S'' ₛ))) | sym (Env.←-assoc θ θo ([S]-env (S'' ₛ))) = canθ'-inner-shadowing-irr' sigs (suc S'') sigs' p S status θ (θo ← ([S]-env (S'' ₛ))) S∈sigs' ... | no S''∉canθ'-sigs-Canθ-θ←[S]-absent←S←θo←[S''] | no S''∉canθ'-sigs-Canθ-θ←[S]←S←θo←[S''] rewrite sym (Env.←-assoc (θ ← [ (S ₛ) ↦ status ]) θo ([S]-env-absent (S'' ₛ))) | sym (Env.←-assoc θ θo ([S]-env-absent (S'' ₛ))) = canθ'-inner-shadowing-irr' sigs (suc S'') sigs' p S status θ (θo ← ([S]-env-absent (S'' ₛ))) S∈sigs' ... | yes S''∈canθ'-sigs-Canθ-θ←[S]-absent←S←θo←[S''] | no S''∉canθ'-sigs-Canθ-θ←[S]←S←θo←[S''] rewrite sym (Env.←-assoc (θ ← [ (S ₛ) ↦ status ]) θo ([S]-env (S'' ₛ))) | sym (Env.←-assoc θ θo ([S]-env (S'' ₛ))) | canθ'-inner-shadowing-irr' sigs (suc S'') sigs' p S status θ (θo ← ([S]-env (S'' ₛ))) S∈sigs' = ⊥-elim (S''∉canθ'-sigs-Canθ-θ←[S]←S←θo←[S''] S''∈canθ'-sigs-Canθ-θ←[S]-absent←S←θo←[S'']) ... | no S''∉canθ'-sigs-Canθ-θ←[S]-absent←S←θo←[S''] | yes S''∈canθ'-sigs-Canθ-θ←[S]←S←θo←[S''] rewrite sym (Env.←-assoc (θ ← [ (S ₛ) ↦ status ]) θo ([S]-env (S'' ₛ))) | sym (Env.←-assoc θ θo ([S]-env (S'' ₛ))) | canθ'-inner-shadowing-irr' sigs (suc S'') sigs' p S status θ (θo ← ([S]-env (S'' ₛ))) S∈sigs' = ⊥-elim (S''∉canθ'-sigs-Canθ-θ←[S]-absent←S←θo←[S''] S''∈canθ'-sigs-Canθ-θ←[S]←S←θo←[S'']) canθ'-inner-shadowing-irr : ∀ sigs S'' sigs' p S status θ → S ∈ SigMap.keys sigs' → Canθ' sigs S'' (Canθ sigs' 0 p) (θ ← [ (S ₛ) ↦ status ]) ≡ Canθ' sigs S'' (Canθ sigs' 0 p) θ canθ'-inner-shadowing-irr sigs S'' sigs' p S status θ S∈sigs' rewrite cong (Canθ' sigs S'' (Canθ sigs' 0 p)) (Env.←-comm Env.[]env θ distinct-empty-left) | cong (Canθ' sigs S'' (Canθ sigs' 0 p)) (Env.←-comm Env.[]env (θ ← [ (S ₛ) ↦ status ]) distinct-empty-left) = canθ'-inner-shadowing-irr' sigs S'' sigs' p S status θ Env.[]env S∈sigs' canθ'-search-acc : ∀ sigs S κ θ → ∀ S'' status → S'' ∉ map (_+_ S) (SigMap.keys sigs) → Canθ' sigs S κ (θ ← [ (S'' ₛ) ↦ status ]) ≡ Canθ' sigs S (κ ∘ (_← [ (S'' ₛ) ↦ status ])) θ canθ'-search-acc [] S κ θ S'' status S''∉map-+-S-sigs = refl canθ'-search-acc (nothing ∷ sigs) S κ θ S'' status S''∉map-+-S-sigs rewrite map-+-compose-suc S (SigMap.keys sigs) = canθ'-search-acc sigs (suc S) κ θ S'' status S''∉map-+-S-sigs canθ'-search-acc (just Signal.present ∷ sigs) S κ θ S'' status S''∉map-+-S-sigs rewrite map-+-compose-suc S (SigMap.keys sigs) | +-comm S 0 | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status ] ([S]-env-present (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status (S ₛ) Signal.present (S''∉map-+-S-sigs ∘ here)) = canθ'-search-acc sigs (suc S) κ (θ ← [S]-env-present (S ₛ)) S'' status (S''∉map-+-S-sigs ∘ there) canθ'-search-acc (just Signal.absent ∷ sigs) S κ θ S'' status S''∉map-+-S-sigs rewrite map-+-compose-suc S (SigMap.keys sigs) | +-comm S 0 | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status ] ([S]-env-absent (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status (S ₛ) Signal.absent (S''∉map-+-S-sigs ∘ here)) = canθ'-search-acc sigs (suc S) κ (θ ← [S]-env-absent (S ₛ)) S'' status (S''∉map-+-S-sigs ∘ there) canθ'-search-acc (just Signal.unknown ∷ sigs) S κ θ S'' status S''∉map-+-S-sigs with any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (λ θ* → κ (θ* ← [ (S'' ₛ) ↦ status ])) (θ ← [S]-env (S ₛ)))) | any (_≟_ S) (proj₁ (Canθ' sigs (suc S) κ ((θ ← [ (S'' ₛ) ↦ status ]) ← [S]-env (S ₛ)))) ... | yes S∈canθ'-⟨canθ-←[S'']⟩-θ←[S] | yes S∈canθ'-canθ-θ←[S'']←[S] rewrite map-+-compose-suc S (SigMap.keys sigs) | +-comm S 0 | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status ] ([S]-env (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status (S ₛ) Signal.unknown (S''∉map-+-S-sigs ∘ here)) = canθ'-search-acc sigs (suc S) κ (θ ← [S]-env (S ₛ)) S'' status (S''∉map-+-S-sigs ∘ there) ... | no S∉canθ'-⟨canθ-←[S'']⟩-θ←[S] | no S∉canθ'-canθ-θ←[S'']←[S] rewrite map-+-compose-suc S (SigMap.keys sigs) | +-comm S 0 | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status ] ([S]-env-absent (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status (S ₛ) Signal.absent (S''∉map-+-S-sigs ∘ here)) = canθ'-search-acc sigs (suc S) κ (θ ← [S]-env-absent (S ₛ)) S'' status (S''∉map-+-S-sigs ∘ there) ... | yes S∈canθ'-⟨canθ-←[S'']⟩-θ←[S] | no S∉canθ'-canθ-θ←[S'']←[S] rewrite map-+-compose-suc S (SigMap.keys sigs) | +-comm S 0 | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status ] ([S]-env (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status (S ₛ) Signal.unknown (S''∉map-+-S-sigs ∘ here)) | canθ'-search-acc sigs (suc S) κ (θ ← [S]-env (S ₛ)) S'' status (S''∉map-+-S-sigs ∘ there) = ⊥-elim (S∉canθ'-canθ-θ←[S'']←[S] S∈canθ'-⟨canθ-←[S'']⟩-θ←[S]) ... | no S∉canθ'-⟨canθ-←[S'']⟩-θ←[S] | yes S∈canθ'-canθ-θ←[S'']←[S] rewrite map-+-compose-suc S (SigMap.keys sigs) | +-comm S 0 | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status ] ([S]-env (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status (S ₛ) Signal.unknown (S''∉map-+-S-sigs ∘ here)) | canθ'-search-acc sigs (suc S) κ (θ ← [S]-env (S ₛ)) S'' status (S''∉map-+-S-sigs ∘ there) = ⊥-elim (S∉canθ'-⟨canθ-←[S'']⟩-θ←[S] S∈canθ'-canθ-θ←[S'']←[S]) canθ'-search-acc-set-irr : ∀ sigs S κ θ → ∀ S'' status status' → S'' ∉ map (_+_ S) (SigMap.keys sigs) → Canθ' sigs S κ (θ ← [ (S'' ₛ) ↦ status ]) ≡ Canθ' sigs S (κ ∘ (_← [ (S'' ₛ) ↦ status ])) (θ ← [ (S'' ₛ) ↦ status' ]) canθ'-search-acc-set-irr [] S κ θ S'' status status' S''∉map-+-S-sigs rewrite sym (Env.←-assoc θ [ (S'' ₛ) ↦ status' ] [ (S'' ₛ) ↦ status ]) | cong (θ ←_) (Env.←-single-overwrite-sig (S'' ₛ) status' [ (S'' ₛ) ↦ status ] (Env.sig-∈-single (S'' ₛ) status)) = refl canθ'-search-acc-set-irr (nothing ∷ sigs) S κ θ S'' status status' S''∉map-+-S-sigs rewrite map-+-compose-suc S (SigMap.keys sigs) = canθ'-search-acc-set-irr sigs (suc S) κ θ S'' status status' S''∉map-+-S-sigs canθ'-search-acc-set-irr (just Signal.present ∷ sigs) S κ θ S'' status status' S''∉map-+-S-sigs rewrite map-+-compose-suc S (SigMap.keys sigs) | +-comm S 0 | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status ] ([S]-env-present (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status (S ₛ) Signal.present (S''∉map-+-S-sigs ∘ here)) | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status' ] ([S]-env-present (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status' (S ₛ) Signal.present (S''∉map-+-S-sigs ∘ here)) = canθ'-search-acc-set-irr sigs (suc S) κ (θ ← [S]-env-present (S ₛ)) S'' status status' (S''∉map-+-S-sigs ∘ there) canθ'-search-acc-set-irr (just Signal.absent ∷ sigs) S κ θ S'' status status' S''∉map-+-S-sigs rewrite map-+-compose-suc S (SigMap.keys sigs) | +-comm S 0 | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status ] ([S]-env-absent (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status (S ₛ) Signal.absent (S''∉map-+-S-sigs ∘ here)) | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status' ] ([S]-env-absent (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status' (S ₛ) Signal.absent (S''∉map-+-S-sigs ∘ here)) = canθ'-search-acc-set-irr sigs (suc S) κ (θ ← [S]-env-absent (S ₛ)) S'' status status' (S''∉map-+-S-sigs ∘ there) canθ'-search-acc-set-irr (just Signal.unknown ∷ sigs) S κ θ S'' status status' S''∉map-+-S-sigs with any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (λ θ* → κ (θ* ← [ (S'' ₛ) ↦ status ])) ((θ ← [ (S'' ₛ) ↦ status' ]) ← [S]-env (S ₛ)))) | any (_≟_ S) (proj₁ (Canθ' sigs (suc S) κ ((θ ← [ (S'' ₛ) ↦ status ]) ← [S]-env (S ₛ)))) ... | yes S∈canθ'-⟨canθ-←[S'']⟩-θ←[S'']←[S] | yes S∈canθ'-canθ-θ←[S'']←[S] rewrite map-+-compose-suc S (SigMap.keys sigs) | +-comm S 0 | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status ] ([S]-env (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status (S ₛ) Signal.unknown (S''∉map-+-S-sigs ∘ here)) | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status' ] ([S]-env (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status' (S ₛ) Signal.unknown (S''∉map-+-S-sigs ∘ here)) = canθ'-search-acc-set-irr sigs (suc S) κ (θ ← [S]-env (S ₛ)) S'' status status' (S''∉map-+-S-sigs ∘ there) ... | no S∉canθ'-⟨canθ-←[S'']⟩-θ←[S'']←[S] | no S∉canθ'-canθ-θ←[S'']←[S] rewrite map-+-compose-suc S (SigMap.keys sigs) | +-comm S 0 | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status ] ([S]-env-absent (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status (S ₛ) Signal.absent (S''∉map-+-S-sigs ∘ here)) | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status' ] ([S]-env-absent (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status' (S ₛ) Signal.absent (S''∉map-+-S-sigs ∘ here)) = canθ'-search-acc-set-irr sigs (suc S) κ (θ ← [S]-env-absent (S ₛ)) S'' status status' (S''∉map-+-S-sigs ∘ there) ... | yes S∈canθ'-⟨canθ-←[S'']⟩-θ←[S'']←[S] | no S∉canθ'-canθ-θ←[S'']←[S] rewrite map-+-compose-suc S (SigMap.keys sigs) | +-comm S 0 | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status ] ([S]-env (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status (S ₛ) Signal.unknown (S''∉map-+-S-sigs ∘ here)) | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status' ] ([S]-env (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status' (S ₛ) Signal.unknown (S''∉map-+-S-sigs ∘ here)) | canθ'-search-acc-set-irr sigs (suc S) κ (θ ← [S]-env (S ₛ)) S'' status status' (S''∉map-+-S-sigs ∘ there) = ⊥-elim (S∉canθ'-canθ-θ←[S'']←[S] S∈canθ'-⟨canθ-←[S'']⟩-θ←[S'']←[S]) ... | no S∉canθ'-⟨canθ-←[S'']⟩-θ←[S'']←[S] | yes S∈canθ'-canθ-θ←[S'']←[S] rewrite map-+-compose-suc S (SigMap.keys sigs) | +-comm S 0 | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status ] ([S]-env (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status (S ₛ) Signal.unknown (S''∉map-+-S-sigs ∘ here)) | Env.←-assoc-comm θ [ (S'' ₛ) ↦ status' ] ([S]-env (S ₛ)) (Env.sig-single-noteq-distinct (S'' ₛ) status' (S ₛ) Signal.unknown (S''∉map-+-S-sigs ∘ here)) | canθ'-search-acc-set-irr sigs (suc S) κ (θ ← [S]-env (S ₛ)) S'' status status' (S''∉map-+-S-sigs ∘ there) = ⊥-elim (S∉canθ'-⟨canθ-←[S'']⟩-θ←[S'']←[S] S∈canθ'-canθ-θ←[S'']←[S]) canθ'-canθ-propagate-up-in : ∀ sigs S r θ → ∀ sigs' S' S'' → S' ∈ proj₁ (Canθ' sigs S (λ θ* → Canθ sigs' (suc S') r (θ* ← [S]-env (S' ₛ))) θ) → S'' ∈ proj₁ (Canθ' sigs S (λ θ* → Canθ sigs' (suc S') r (θ* ← [S]-env (S' ₛ))) θ) → S'' ∈ proj₁ (Canθ' sigs S (λ θ* → Canθ (just Signal.unknown ∷ sigs') S' r θ*) θ) canθ'-canθ-propagate-up-in [] S r θ sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ with any (_≟_ S') (Canθₛ sigs' (suc S') r (θ ← [S]-env (S' ₛ))) ... | yes S'∈canθ-sigs'-r-θ*←[S'] = S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ ... | no S'∉canθ-sigs'-r-θ*←[S'] = ⊥-elim (S'∉canθ-sigs'-r-θ*←[S'] S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩) canθ'-canθ-propagate-up-in (nothing ∷ sigs) S r θ sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ = canθ'-canθ-propagate-up-in sigs (suc S) r θ sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ canθ'-canθ-propagate-up-in (just Signal.present ∷ sigs) S r θ sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ = canθ'-canθ-propagate-up-in sigs (suc S) r (θ ← [S]-env-present (S ₛ)) sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ canθ'-canθ-propagate-up-in (just Signal.absent ∷ sigs) S r θ sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ = canθ'-canθ-propagate-up-in sigs (suc S) r (θ ← [S]-env-absent (S ₛ)) sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ canθ'-canθ-propagate-up-in (just Signal.unknown ∷ sigs) S r θ sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ with any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (Canθ (just Signal.unknown ∷ sigs') S' r) (θ ← [S]-env (S ₛ)))) | any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (λ θ* → Canθ sigs' (suc S') r (θ* ← [S]-env (S' ₛ))) (θ ← [S]-env (S ₛ)))) ... | yes S∈canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | yes S∈canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = canθ'-canθ-propagate-up-in sigs (suc S) r (θ ← [S]-env (S ₛ)) sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ ... | no S∉canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | no S∉canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = canθ'-canθ-propagate-up-in sigs (suc S) r (θ ← [S]-env-absent (S ₛ)) sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ ... | yes S∈canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | no S∉canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = canθ'ₛ-canθ-add-sig-monotonic sigs (suc S) (just Signal.unknown ∷ sigs') S' r θ (S ₛ) Signal.absent S'' (canθ'-canθ-propagate-up-in sigs (suc S) r (θ ← [S]-env-absent (S ₛ)) sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩) ... | no S∉canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | yes S∈canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = ⊥-elim (S∉canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] (canθ'-canθ-propagate-up-in sigs (suc S) r (θ ← [S]-env (S ₛ)) sigs' S' S S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S∈canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S])) canθₛ-a∷s⊆canθₛ-u∷s : ∀ sigs r S' θ S → S ∈ Canθₛ (just Signal.absent ∷ sigs) S' r θ → S ∈ Canθₛ (just Signal.unknown ∷ sigs) S' r θ canθₛ-a∷s⊆canθₛ-u∷s sigs r S' θ S S∈can-sigs-r-θ←[S↦absent] with any (_≟_ S') (Canθₛ sigs (suc S') r (θ ← [S]-env (S' ₛ))) ... | yes a = canθₛ-add-sig-monotonic sigs (suc S') r θ (S' ₛ) Signal.absent S S∈can-sigs-r-θ←[S↦absent] ... | no na = S∈can-sigs-r-θ←[S↦absent] canθ'-canθ-propagate-down-not-in : ∀ sigs S r θ → ∀ S' sigs' → S' ∉ proj₁ (Canθ' sigs S (λ θ* → Canθ (just Signal.unknown ∷ sigs') S' r θ*) θ) → Canθ' sigs S (λ θ* → Canθ (just Signal.unknown ∷ sigs') S' r θ*) θ ≡ Canθ' sigs S (λ θ* → Canθ sigs' (suc S') r (θ* ← [S]-env-absent (S' ₛ))) θ canθ'-canθ-propagate-down-not-in [] S r θ S' sigs' S'∉canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ with any (_≟_ S') (Canθₛ sigs' (suc S') r (θ ← [S]-env (S' ₛ))) ... | yes S'∈canθ-sigs'-r-θ←[S'] = ⊥-elim (S'∉canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ S'∈canθ-sigs'-r-θ←[S']) ... | no S'∉canθ-sigs'-r-θ←[S'] = refl canθ'-canθ-propagate-down-not-in (nothing ∷ sigs) S r θ S' sigs' S'∉canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ = canθ'-canθ-propagate-down-not-in sigs (suc S) r θ S' sigs' S'∉canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ canθ'-canθ-propagate-down-not-in (just Signal.present ∷ sigs) S r θ S' sigs' S'∉canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ = canθ'-canθ-propagate-down-not-in sigs (suc S) r (θ ← [S]-env-present (S ₛ)) S' sigs' S'∉canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ canθ'-canθ-propagate-down-not-in (just Signal.absent ∷ sigs) S r θ S' sigs' S'∉canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ = canθ'-canθ-propagate-down-not-in sigs (suc S) r (θ ← [S]-env-absent (S ₛ)) S' sigs' S'∉canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ canθ'-canθ-propagate-down-not-in (just Signal.unknown ∷ sigs) S r θ S' sigs' S'∉canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ with any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (λ θ* → Canθ (just Signal.unknown ∷ sigs') S' r θ*) (θ ← [S]-env (S ₛ)))) | any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (λ θ* → Canθ sigs' (suc S') r (θ* ← [S]-env-absent (S' ₛ))) (θ ← [S]-env (S ₛ)))) ... | yes a | yes b = canθ'-canθ-propagate-down-not-in sigs (suc S) r (θ ← [S]-env (S ₛ)) S' sigs' S'∉canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ ... | no na | no nb = canθ'-canθ-propagate-down-not-in sigs (suc S) r (θ ← [S]-env-absent (S ₛ)) S' sigs' S'∉canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ ... | yes a | no nb rewrite sym (canθ'-canθ-propagate-down-not-in sigs (suc S) r (θ ← [S]-env (S ₛ)) S' sigs' S'∉canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩) = ⊥-elim (nb a) ... | no na | yes b = ⊥-elim (na (canθ'ₛ-subset-lemma sigs (suc S) (Canθ (just Signal.absent ∷ sigs') S' r) (Canθ (just Signal.unknown ∷ sigs') S' r) (θ ← [S]-env (S ₛ)) (canθₛ-a∷s⊆canθₛ-u∷s sigs' r S') (canθₛ-add-sig-monotonic (just Signal.unknown ∷ sigs') S' r) S b)) canθ'-canθ-propagate-down-in : ∀ sigs S r θ → ∀ S' sigs' → S' ∈ proj₁ (Canθ' sigs S (λ θ* → Canθ (just Signal.unknown ∷ sigs') S' r θ*) θ) → Canθ' sigs S (λ θ* → Canθ (just Signal.unknown ∷ sigs') S' r θ*) θ ≡ Canθ' sigs S (λ θ* → Canθ sigs' (suc S') r (θ* ← [S]-env (S' ₛ))) θ canθ'-canθ-propagate-down-in [] S r θ S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ with any (_≟_ S') (Canθₛ sigs' (suc S') r (θ ← [S]-env (S' ₛ))) ... | yes S'∈canθ-sigs'-r-θ←[S'] = refl ... | no S'∉canθ-sigs'-r-θ←[S'] = ⊥-elim (S'∉canθ-sigs'-r-θ←[S'] (canθₛ-add-sig-monotonic sigs' (suc S') r θ (S' ₛ) Signal.absent S' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩)) canθ'-canθ-propagate-down-in (nothing ∷ sigs) S r θ S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ = canθ'-canθ-propagate-down-in sigs (suc S) r θ S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ canθ'-canθ-propagate-down-in (just Signal.present ∷ sigs) S r θ S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ = canθ'-canθ-propagate-down-in sigs (suc S) r (θ ← [S]-env-present (S ₛ)) S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ canθ'-canθ-propagate-down-in (just Signal.absent ∷ sigs) S r θ S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ = canθ'-canθ-propagate-down-in sigs (suc S) r (θ ← [S]-env-absent (S ₛ)) S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ canθ'-canθ-propagate-down-in (just Signal.unknown ∷ sigs) S r θ S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ with any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (Canθ (just Signal.unknown ∷ sigs') S' r) (θ ← [S]-env (S ₛ)))) | any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (λ θ* → Canθ sigs' (suc S') r (θ* ← [S]-env (S' ₛ))) (θ ← [S]-env (S ₛ)))) ... | yes S∈canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | yes S∈canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = canθ'-canθ-propagate-down-in sigs (suc S) r (θ ← [S]-env (S ₛ)) S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ ... | no S∉canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | no S∉canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = canθ'-canθ-propagate-down-in sigs (suc S) r (θ ← [S]-env-absent (S ₛ)) S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ ... | yes S∈canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | no S∉canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = ⊥-elim (S∉canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] (subst (S ∈_) (cong proj₁ (canθ'-canθ-propagate-down-in sigs (suc S) r (θ ← [S]-env (S ₛ)) S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩)) S∈canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S])) ... | no S∉canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | yes S∈canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = ⊥-elim (S∉canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] (subst (S ∈_) (cong proj₁ (sym (canθ'-canθ-propagate-down-in sigs (suc S) r (θ ← [S]-env (S ₛ)) S' sigs' (canθ'ₛ-canθ-add-sig-monotonic sigs (suc S) (just Signal.unknown ∷ sigs') S' r θ (S ₛ) Signal.absent S' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩)))) S∈canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S])) canθ'-canθ-propagate-up-in-set-irr : ∀ sigs S r θ status → ∀ sigs' S' S'' → S' ∈ proj₁ (Canθ' sigs S (λ θ* → Canθ sigs' (suc S') r (θ* ← [S]-env (S' ₛ))) θ) → S'' ∈ proj₁ (Canθ' sigs S (λ θ* → Canθ sigs' (suc S') r (θ* ← [S]-env (S' ₛ))) θ) → S'' ∈ proj₁ (Canθ' sigs S (λ θ* → Canθ (just Signal.unknown ∷ sigs') S' r (θ* ← [ (S' ₛ) ↦ status ])) θ) canθ'-canθ-propagate-up-in-set-irr [] S r θ status sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ with any (_≟_ S') (Canθₛ sigs' (suc S') r ((θ ← [ (S' ₛ) ↦ status ]) ← [S]-env (S' ₛ))) ... | yes S'∈canθ-sigs'-r-θ*←[S'] rewrite Env.sig-single-←-←-overwrite θ (S' ₛ) status Signal.unknown = S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ ... | no S'∉canθ-sigs'-r-θ*←[S'] rewrite Env.sig-single-←-←-overwrite θ (S' ₛ) status Signal.unknown = ⊥-elim (S'∉canθ-sigs'-r-θ*←[S'] S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩) canθ'-canθ-propagate-up-in-set-irr (nothing ∷ sigs) S r θ status sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ = canθ'-canθ-propagate-up-in-set-irr sigs (suc S) r θ status sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ canθ'-canθ-propagate-up-in-set-irr (just Signal.present ∷ sigs) S r θ status sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ = canθ'-canθ-propagate-up-in-set-irr sigs (suc S) r (θ ← [S]-env-present (S ₛ)) status sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ canθ'-canθ-propagate-up-in-set-irr (just Signal.absent ∷ sigs) S r θ status sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ = canθ'-canθ-propagate-up-in-set-irr sigs (suc S) r (θ ← [S]-env-absent (S ₛ)) status sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ canθ'-canθ-propagate-up-in-set-irr (just Signal.unknown ∷ sigs) S r θ status sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ with any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (λ θ* → Canθ (just Signal.unknown ∷ sigs') S' r (θ* ← [ (S' ₛ) ↦ status ])) (θ ← [S]-env (S ₛ)))) | any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (λ θ* → Canθ sigs' (suc S') r (θ* ← [S]-env (S' ₛ))) (θ ← [S]-env (S ₛ)))) ... | yes S∈canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | yes S∈canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = canθ'-canθ-propagate-up-in-set-irr sigs (suc S) r (θ ← [S]-env (S ₛ)) status sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ ... | no S∉canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | no S∉canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = canθ'-canθ-propagate-up-in-set-irr sigs (suc S) r (θ ← [S]-env-absent (S ₛ)) status sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ ... | yes S∈canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | no S∉canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = canθ'ₛ-add-sig-monotonic sigs (suc S) (Canθ (just Signal.unknown ∷ sigs') S' r ∘ (_← [ (S' ₛ) ↦ status ])) θ (S ₛ) Signal.absent (λ θ* S* status* S'' S''∈ → canθₛ-cong-←-add-sig-monotonic (just Signal.unknown ∷ sigs') S' r θ* [ (S' ₛ) ↦ status ] S* status* S'' S''∈) S'' (canθ'-canθ-propagate-up-in-set-irr sigs (suc S) r (θ ← [S]-env-absent (S ₛ)) status sigs' S' S'' S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S''∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩) ... | no S∉canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | yes S∈canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = ⊥-elim (S∉canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] (canθ'-canθ-propagate-up-in-set-irr sigs (suc S) r (θ ← [S]-env (S ₛ)) status sigs' S' S S'∈canθ'-sigs-⟨canθ-sigs'-r-θ*←[S']⟩ S∈canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S])) canθ'-canθ-propagate-down-in-set-irr : ∀ sigs S r θ status → ∀ S' sigs' → S' ∈ proj₁ (Canθ' sigs S (λ θ* → Canθ (just Signal.unknown ∷ sigs') S' r (θ* ← [ (S' ₛ) ↦ status ])) θ) → Canθ' sigs S (λ θ* → Canθ (just Signal.unknown ∷ sigs') S' r (θ* ← [ (S' ₛ) ↦ status ])) θ ≡ Canθ' sigs S (λ θ* → Canθ sigs' (suc S') r (θ* ← [S]-env (S' ₛ))) θ canθ'-canθ-propagate-down-in-set-irr [] S r θ status S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ with any (_≟_ S') (Canθₛ sigs' (suc S') r ((θ ← [ (S' ₛ) ↦ status ]) ← [S]-env (S' ₛ))) ... | yes S'∈canθ-sigs'-r-θ←[S'] rewrite Env.sig-single-←-←-overwrite θ (S' ₛ) status Signal.unknown = refl ... | no S'∉canθ-sigs'-r-θ←[S'] = ⊥-elim (S'∉canθ-sigs'-r-θ←[S'] (canθₛ-add-sig-monotonic sigs' (suc S') r (θ ← [ (S' ₛ) ↦ status ]) (S' ₛ) Signal.absent S' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩)) canθ'-canθ-propagate-down-in-set-irr (nothing ∷ sigs) S r θ status S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ = canθ'-canθ-propagate-down-in-set-irr sigs (suc S) r θ status S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ canθ'-canθ-propagate-down-in-set-irr (just Signal.present ∷ sigs) S r θ status S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ = canθ'-canθ-propagate-down-in-set-irr sigs (suc S) r (θ ← [S]-env-present (S ₛ)) status S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ canθ'-canθ-propagate-down-in-set-irr (just Signal.absent ∷ sigs) S r θ status S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ = canθ'-canθ-propagate-down-in-set-irr sigs (suc S) r (θ ← [S]-env-absent (S ₛ)) status S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ canθ'-canθ-propagate-down-in-set-irr (just Signal.unknown ∷ sigs) S r θ status S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ with any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (λ θ* → Canθ (just Signal.unknown ∷ sigs') S' r (θ* ← [ (S' ₛ) ↦ status ])) (θ ← [S]-env (S ₛ)))) | any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (λ θ* → Canθ sigs' (suc S') r (θ* ← [S]-env (S' ₛ))) (θ ← [S]-env (S ₛ)))) ... | yes S∈canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | yes S∈canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = canθ'-canθ-propagate-down-in-set-irr sigs (suc S) r (θ ← [S]-env (S ₛ)) status S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ ... | no S∉canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | no S∉canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = canθ'-canθ-propagate-down-in-set-irr sigs (suc S) r (θ ← [S]-env-absent (S ₛ)) status S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩ ... | yes S∈canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | no S∉canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = ⊥-elim (S∉canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] (subst (S ∈_) (cong proj₁ (canθ'-canθ-propagate-down-in-set-irr sigs (suc S) r (θ ← [S]-env (S ₛ)) status S' sigs' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩)) S∈canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S])) ... | no S∉canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] | yes S∈canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S] = ⊥-elim (S∉canθ'-sigs-⟨canθ-u∷sigs'-r⟩-θ←[S] (subst (S ∈_) (cong proj₁ (sym (canθ'-canθ-propagate-down-in-set-irr sigs (suc S) r (θ ← [S]-env (S ₛ)) status S' sigs' (canθ'ₛ-add-sig-monotonic sigs (suc S) (Canθ (just Signal.unknown ∷ sigs') S' r ∘ (λ section → section ← [ (S' ₛ) ↦ status ])) θ (S ₛ) Signal.absent (λ θ* S* status* → canθₛ-cong-←-add-sig-monotonic (just Signal.unknown ∷ sigs') S' r θ* [ (S' ₛ) ↦ status ] S* status*) S' S'∈canθ'-sigs-⟨Canθ-u∷sigs'-θ*⟩)))) S∈canθ'-sigs-⟨canθ-sigs'-θ*←[S']⟩-θ←[S])) canθ'-←-distribute : ∀ sigs sigs' S'' r θ → Canθ (SigMap.union sigs sigs') S'' r θ ≡ Canθ' sigs S'' (Canθ sigs' S'' r) θ canθ'-←-distribute [] sigs' S'' r θ = refl canθ'-←-distribute sigs [] S'' r θ rewrite SigMap.union-comm sigs SigMap.empty (λ _ _ ()) | unfold sigs S'' r θ = refl canθ'-←-distribute (nothing ∷ sigs) (nothing ∷ sigs') S'' r θ = canθ'-←-distribute sigs sigs' (suc S'') r θ canθ'-←-distribute (just Signal.present ∷ sigs) (nothing ∷ sigs') S'' r θ = canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-present (S'' ₛ)) canθ'-←-distribute (just Signal.absent ∷ sigs) (nothing ∷ sigs') S'' r θ = canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-absent (S'' ₛ)) canθ'-←-distribute (just Signal.unknown ∷ sigs) (nothing ∷ sigs') S'' r θ with any (_≟_ S'') (proj₁ (Canθ (SigMap.union sigs sigs') (suc S'') r (θ ← [S]-env (S'' ₛ)))) | any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') (Canθ sigs' (suc S'') r) (θ ← [S]-env (S'' ₛ)))) ... | yes S''∈canθ'-sigs←sigs'-r-θ←[S''] | yes S''∈canθ'-sigs-⟨canθ-sigs'⟩-θ←[S''] = canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ)) ... | no S''∉canθ'-sigs←sigs'-r-θ←[S''] | no S''∉canθ'-sigs-⟨canθ-sigs'⟩-θ←[S''] = canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-absent (S'' ₛ)) ... | yes S''∈canθ'-sigs←sigs'-r-θ←[S''] | no S''∉canθ'-sigs-⟨canθ-sigs'⟩-θ←[S''] rewrite canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ)) = ⊥-elim (S''∉canθ'-sigs-⟨canθ-sigs'⟩-θ←[S''] S''∈canθ'-sigs←sigs'-r-θ←[S'']) ... | no S''∉canθ'-sigs←sigs'-r-θ←[S''] | yes S''∈canθ'-sigs-⟨canθ-sigs'⟩-θ←[S''] rewrite canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ)) = ⊥-elim (S''∉canθ'-sigs←sigs'-r-θ←[S''] S''∈canθ'-sigs-⟨canθ-sigs'⟩-θ←[S'']) canθ'-←-distribute (nothing ∷ sigs) (just Signal.present ∷ sigs') S'' r θ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-present (S'' ₛ))) (canθ'-search-acc sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.present (n∉map-suc-n-+ S'' (SigMap.keys sigs))) canθ'-←-distribute (nothing ∷ sigs) (just Signal.absent ∷ sigs') S'' r θ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-absent (S'' ₛ))) (canθ'-search-acc sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.absent (n∉map-suc-n-+ S'' (SigMap.keys sigs))) canθ'-←-distribute (nothing ∷ sigs) (just Signal.unknown ∷ sigs') S'' r θ with any (_≟_ S'') (proj₁ (Canθ (SigMap.union sigs sigs') (suc S'') r (θ ← [S]-env (S'' ₛ)))) | any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') (Canθ (just Signal.unknown ∷ sigs') S'' r) θ)) ... | yes S''∈canθ'-sigs←sigs'-r-θ←[S''] | yes S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite canθ'-canθ-propagate-down-in sigs (suc S'') r θ S'' sigs' S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ))) (canθ'-search-acc sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))) ... | no S''∉canθ'-sigs←sigs'-r-θ←[S''] | no S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite canθ'-canθ-propagate-down-not-in sigs (suc S'') r θ S'' sigs' S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-absent (S'' ₛ))) (canθ'-search-acc sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.absent (n∉map-suc-n-+ S'' (SigMap.keys sigs))) ... | yes S''∈canθ'-sigs←sigs'-r-θ←[S''] | no S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ))) (canθ'-search-acc sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))) = ⊥-elim (S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ (canθ'-canθ-propagate-up-in sigs (suc S'') r θ sigs' S'' S'' S''∈canθ'-sigs←sigs'-r-θ←[S''] S''∈canθ'-sigs←sigs'-r-θ←[S''])) ... | no S''∉canθ'-sigs←sigs'-r-θ←[S''] | yes S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ))) (canθ'-search-acc sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))) = ⊥-elim (S''∉canθ'-sigs←sigs'-r-θ←[S''] (subst (S'' ∈_) (cong proj₁ (canθ'-canθ-propagate-down-in sigs (suc S'') r θ S'' sigs' S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩)) S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩)) canθ'-←-distribute (just Signal.present ∷ sigs) (just Signal.present ∷ sigs') S'' r θ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-present (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.present Signal.present (n∉map-suc-n-+ S'' (SigMap.keys sigs))) canθ'-←-distribute (just Signal.absent ∷ sigs) (just Signal.present ∷ sigs') S'' r θ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-present (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.present Signal.absent (n∉map-suc-n-+ S'' (SigMap.keys sigs))) canθ'-←-distribute (just Signal.unknown ∷ sigs) (just Signal.present ∷ sigs') S'' r θ with any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') (λ θ* → Canθ sigs' (suc S'') r (θ* ← [S]-env-present (S'' ₛ))) (θ ← [S]-env (S'' ₛ)))) ... | yes S''∈canθ'-sigs-⟨Canθ-sigs'-r-θ*←[S'']⟩-θ←[S''] = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-present (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.present Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))) ... | no S''∉canθ'-sigs-⟨Canθ-sigs'-r-θ*←[S'']⟩-θ←[S''] = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-present (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.present Signal.absent (n∉map-suc-n-+ S'' (SigMap.keys sigs))) canθ'-←-distribute (just Signal.present ∷ sigs) (just Signal.absent ∷ sigs') S'' r θ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-absent (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.absent Signal.present (n∉map-suc-n-+ S'' (SigMap.keys sigs))) canθ'-←-distribute (just Signal.absent ∷ sigs) (just Signal.absent ∷ sigs') S'' r θ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-absent (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.absent Signal.absent (n∉map-suc-n-+ S'' (SigMap.keys sigs))) canθ'-←-distribute (just Signal.unknown ∷ sigs) (just Signal.absent ∷ sigs') S'' r θ with any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') (λ θ* → Canθ sigs' (suc S'') r (θ* ← [S]-env-absent (S'' ₛ))) (θ ← [S]-env (S'' ₛ)))) ... | yes S''∈canθ'-sigs-⟨Canθ-sigs'-r-θ*←[S'']⟩-θ←[S''] = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-absent (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.absent Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))) ... | no S''∉canθ'-sigs-⟨Canθ-sigs'-r-θ*←[S'']⟩-θ←[S''] = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-absent (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.absent Signal.absent (n∉map-suc-n-+ S'' (SigMap.keys sigs))) canθ'-←-distribute (just Signal.present ∷ sigs) (just Signal.unknown ∷ sigs') S'' r θ with any (_≟_ S'') (proj₁ (Canθ (SigMap.union sigs sigs') (suc S'') r (θ ← [S]-env (S'' ₛ)))) | any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') (Canθ (just Signal.unknown ∷ sigs') S'' r) (θ ← [S]-env-present (S'' ₛ)))) ... | yes S''∈canθ'-sigs←sigs'-r-θ←[S''] | yes S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite canθ'-canθ-propagate-down-in sigs (suc S'') r (θ ← [S]-env-present (S'' ₛ)) S'' sigs' S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.unknown Signal.present (n∉map-suc-n-+ S'' (SigMap.keys sigs))) ... | no S''∉canθ'-sigs←sigs'-r-θ←[S''] | no S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite canθ'-canθ-propagate-down-not-in sigs (suc S'') r (θ ← [S]-env-present (S'' ₛ)) S'' sigs' S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-absent (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.absent Signal.present (n∉map-suc-n-+ S'' (SigMap.keys sigs))) ... | yes S''∈canθ'-sigs←sigs'-r-θ←[S''] | no S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ))) (canθ'-search-acc sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))) = ⊥-elim (S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ (subst (S'' ∈_) (sym (cong proj₁ (canθ'-search-acc sigs (suc S'') (Canθ (just Signal.unknown ∷ sigs') S'' r) θ S'' Signal.present (n∉map-suc-n-+ S'' (SigMap.keys sigs))))) (canθ'-canθ-propagate-up-in-set-irr sigs (suc S'') r θ Signal.present sigs' S'' S'' S''∈canθ'-sigs←sigs'-r-θ←[S''] S''∈canθ'-sigs←sigs'-r-θ←[S'']))) ... | no S''∉canθ'-sigs←sigs'-r-θ←[S''] | yes S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ))) (canθ'-search-acc sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))) | canθ'-search-acc sigs (suc S'') (Canθ (just Signal.unknown ∷ sigs') S'' r) θ S'' Signal.present (n∉map-suc-n-+ S'' (SigMap.keys sigs)) = ⊥-elim (S''∉canθ'-sigs←sigs'-r-θ←[S''] (subst (S'' ∈_) (cong proj₁ (canθ'-canθ-propagate-down-in-set-irr sigs (suc S'') r θ Signal.present S'' sigs' S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩)) S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩)) canθ'-←-distribute (just Signal.absent ∷ sigs) (just Signal.unknown ∷ sigs') S'' r θ with any (_≟_ S'') (proj₁ (Canθ (SigMap.union sigs sigs') (suc S'') r (θ ← [S]-env (S'' ₛ)))) | any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') (Canθ (just Signal.unknown ∷ sigs') S'' r) (θ ← [S]-env-absent (S'' ₛ)))) ... | yes S''∈canθ'-sigs←sigs'-r-θ←[S''] | yes S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite canθ'-canθ-propagate-down-in sigs (suc S'') r (θ ← [S]-env-absent (S'' ₛ)) S'' sigs' S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.unknown Signal.absent (n∉map-suc-n-+ S'' (SigMap.keys sigs))) ... | no S''∉canθ'-sigs←sigs'-r-θ←[S''] | no S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite canθ'-canθ-propagate-down-not-in sigs (suc S'') r (θ ← [S]-env-absent (S'' ₛ)) S'' sigs' S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-absent (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.absent Signal.absent (n∉map-suc-n-+ S'' (SigMap.keys sigs))) ... | yes S''∈canθ'-sigs←sigs'-r-θ←[S''] | no S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ))) (canθ'-search-acc sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))) = ⊥-elim (S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ (subst (S'' ∈_) (sym (cong proj₁ (canθ'-search-acc sigs (suc S'') (Canθ (just Signal.unknown ∷ sigs') S'' r) θ S'' Signal.absent (n∉map-suc-n-+ S'' (SigMap.keys sigs))))) (canθ'-canθ-propagate-up-in-set-irr sigs (suc S'') r θ Signal.absent sigs' S'' S'' S''∈canθ'-sigs←sigs'-r-θ←[S''] S''∈canθ'-sigs←sigs'-r-θ←[S'']))) ... | no S''∉canθ'-sigs←sigs'-r-θ←[S''] | yes S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ))) (canθ'-search-acc sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))) | canθ'-search-acc sigs (suc S'') (Canθ (just Signal.unknown ∷ sigs') S'' r) θ S'' Signal.absent (n∉map-suc-n-+ S'' (SigMap.keys sigs)) = ⊥-elim (S''∉canθ'-sigs←sigs'-r-θ←[S''] (subst (S'' ∈_) (cong proj₁ (canθ'-canθ-propagate-down-in-set-irr sigs (suc S'') r θ Signal.absent S'' sigs' S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩)) S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩)) canθ'-←-distribute (just Signal.unknown ∷ sigs) (just Signal.unknown ∷ sigs') S'' r θ with any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') (λ θ* → Canθ (just Signal.unknown ∷ sigs') S'' r θ*) (θ ← [S]-env (S'' ₛ)))) canθ'-←-distribute (just Signal.unknown ∷ sigs) (just Signal.unknown ∷ sigs') S'' r θ | yes p with any (_≟_ S'') (proj₁ (Canθ (SigMap.union sigs sigs') (suc S'') r (θ ← [S]-env (S'' ₛ)))) | any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') (Canθ (just Signal.unknown ∷ sigs') S'' r) (θ ← [S]-env (S'' ₛ)))) ... | yes S''∈canθ'-sigs←sigs'-r-θ←[S''] | yes S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite canθ'-canθ-propagate-down-in sigs (suc S'') r (θ ← [S]-env (S'' ₛ)) S'' sigs' S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.unknown Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))) ... | no S''∉canθ'-sigs←sigs'-r-θ←[S''] | no S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite canθ'-canθ-propagate-down-not-in sigs (suc S'') r (θ ← [S]-env (S'' ₛ)) S'' sigs' S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-absent (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.absent Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))) ... | yes S''∈canθ'-sigs←sigs'-r-θ←[S''] | no S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ))) (canθ'-search-acc sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))) = ⊥-elim (S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ (subst (S'' ∈_) (sym (cong proj₁ (canθ'-search-acc sigs (suc S'') (Canθ (just Signal.unknown ∷ sigs') S'' r) θ S'' Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))))) (canθ'-canθ-propagate-up-in-set-irr sigs (suc S'') r θ Signal.unknown sigs' S'' S'' S''∈canθ'-sigs←sigs'-r-θ←[S''] S''∈canθ'-sigs←sigs'-r-θ←[S'']))) ... | no S''∉canθ'-sigs←sigs'-r-θ←[S''] | yes S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ))) (canθ'-search-acc sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))) | canθ'-search-acc sigs (suc S'') (Canθ (just Signal.unknown ∷ sigs') S'' r) θ S'' Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs)) = ⊥-elim (S''∉canθ'-sigs←sigs'-r-θ←[S''] (subst (S'' ∈_) (cong proj₁ (canθ'-canθ-propagate-down-in-set-irr sigs (suc S'') r θ Signal.unknown S'' sigs' S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩)) S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩)) canθ'-←-distribute (just Signal.unknown ∷ sigs) (just Signal.unknown ∷ sigs') S'' r θ | no ¬p with any (_≟_ S'') (proj₁ (Canθ (SigMap.union sigs sigs') (suc S'') r (θ ← [S]-env (S'' ₛ)))) | any (_≟_ S'') (proj₁ (Canθ' sigs (suc S'') (Canθ (just Signal.unknown ∷ sigs') S'' r) (θ ← [S]-env-absent (S'' ₛ)))) ... | yes S''∈canθ'-sigs←sigs'-r-θ←[S''] | yes S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite canθ'-canθ-propagate-down-in sigs (suc S'') r (θ ← [S]-env-absent (S'' ₛ)) S'' sigs' S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.unknown Signal.absent (n∉map-suc-n-+ S'' (SigMap.keys sigs))) ... | no S''∉canθ'-sigs←sigs'-r-θ←[S''] | no S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite canθ'-canθ-propagate-down-not-in sigs (suc S'') r (θ ← [S]-env-absent (S'' ₛ)) S'' sigs' S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ = trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env-absent (S'' ₛ))) (canθ'-search-acc-set-irr sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.absent Signal.absent (n∉map-suc-n-+ S'' (SigMap.keys sigs))) ... | yes S''∈canθ'-sigs←sigs'-r-θ←[S''] | no S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ))) (canθ'-search-acc sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))) = ⊥-elim (S''∉canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ (subst (S'' ∈_) (sym (cong proj₁ (canθ'-search-acc sigs (suc S'') (Canθ (just Signal.unknown ∷ sigs') S'' r) θ S'' Signal.absent (n∉map-suc-n-+ S'' (SigMap.keys sigs))))) (canθ'-canθ-propagate-up-in-set-irr sigs (suc S'') r θ Signal.absent sigs' S'' S'' S''∈canθ'-sigs←sigs'-r-θ←[S''] S''∈canθ'-sigs←sigs'-r-θ←[S'']))) ... | no S''∉canθ'-sigs←sigs'-r-θ←[S''] | yes S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩ rewrite trans (canθ'-←-distribute sigs sigs' (suc S'') r (θ ← [S]-env (S'' ₛ))) (canθ'-search-acc sigs (suc S'') (Canθ sigs' (suc S'') r) θ S'' Signal.unknown (n∉map-suc-n-+ S'' (SigMap.keys sigs))) | canθ'-search-acc sigs (suc S'') (Canθ (just Signal.unknown ∷ sigs') S'' r) θ S'' Signal.absent (n∉map-suc-n-+ S'' (SigMap.keys sigs)) = ⊥-elim (S''∉canθ'-sigs←sigs'-r-θ←[S''] (subst (S'' ∈_) (cong proj₁ (canθ'-canθ-propagate-down-in-set-irr sigs (suc S'') r θ Signal.absent S'' sigs' S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩)) S''∈canθ'-sigs-⟨Canθ-u∷sigs'-r-θ⟩))
{ "alphanum_fraction": 0.533453726, "avg_line_length": 57.218616567, "ext": "agda", "hexsha": "cb25daa96908fe0feac180d21db72a56391b45e8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/Esterel/Lang/CanFunction/CanThetaContinuation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/Esterel/Lang/CanFunction/CanThetaContinuation.agda", "max_line_length": 251, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/Esterel/Lang/CanFunction/CanThetaContinuation.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 32042, "size": 67003 }
module Structure.Relator.Apartness where import Lvl open import Logic open import Logic.Propositional open import Structure.Relator.Properties hiding (irreflexivity ; symmetry ; cotransitivity) open import Type private variable ℓ₁ ℓ₂ : Lvl.Level -- An apartness relation is a irreflexive, symmetric and cotransitive relation. record Apartness {T : Type{ℓ₁}} (_#_ : T → T → Stmt{ℓ₂}) : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where instance constructor intro field instance ⦃ irreflexivity ⦄ : Irreflexivity (_#_) instance ⦃ symmetry ⦄ : Symmetry (_#_) instance ⦃ cotransitivity ⦄ : CoTransitivity (_#_)
{ "alphanum_fraction": 0.7214170692, "avg_line_length": 32.6842105263, "ext": "agda", "hexsha": "4c0e14df27686c2422263276ee632222b7d8a3a5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Relator/Apartness.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Relator/Apartness.agda", "max_line_length": 82, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Relator/Apartness.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 191, "size": 621 }
module Issue852 where open import Common.Level const : ∀ {a b} {A : Set a} {B : Set b} → A → B → A const x = λ _ → x ℓ : Level ℓ = const lzero (Set ℓ) ℓ′ : Level ℓ′ = const lzero (Set ℓ′) -- Error message using Agda 2.3.2 (the batch-mode command, not the -- Emacs interface): -- -- Termination checking failed for the following functions: -- ℓ, ℓ′ -- Problematic calls: -- ℓ -- ℓ (at [...]) -- ℓ′ -- ℓ′ -- (at [...]) -- -- With the current development version of Agda: -- -- Termination checking failed for the following functions: -- ℓ, ℓ′ -- Problematic calls: -- ℓ -- ℓ (at [...]) -- ℓ′ -- (at [...])
{ "alphanum_fraction": 0.5428571429, "avg_line_length": 19, "ext": "agda", "hexsha": "715ff74b94a5da700bf231bff52a773a488d6b20", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue852.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue852.agda", "max_line_length": 66, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/Issue852.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 225, "size": 665 }
open import IO using ( run ; putStrLn ) open import Data.String using ( _++_ ) open import Data.Natural using ( # ; _+_ ; toString ) module Data.Bindings.Examples.HelloFour where main = run (putStrLn ("Hello, " ++ toString (#(2) + #(2)) ++ "."))
{ "alphanum_fraction": 0.6518218623, "avg_line_length": 35.2857142857, "ext": "agda", "hexsha": "4f515aacb5164a7b9fd42c049d9520aa32c7aed8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:14.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:40:14.000Z", "max_forks_repo_head_hexsha": "84d51967e20bf248e9f73af37f52972922ffc77c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-data-bindings", "max_forks_repo_path": "src/Data/Bindings/Examples/HelloFour.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "84d51967e20bf248e9f73af37f52972922ffc77c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-data-bindings", "max_issues_repo_path": "src/Data/Bindings/Examples/HelloFour.agda", "max_line_length": 66, "max_stars_count": 2, "max_stars_repo_head_hexsha": "84d51967e20bf248e9f73af37f52972922ffc77c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-data-bindings", "max_stars_repo_path": "src/Data/Bindings/Examples/HelloFour.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-24T13:51:16.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-02T23:17:59.000Z", "num_tokens": 67, "size": 247 }
-- Import all the material (useful to check that everything typechecks) {-# OPTIONS --cubical #-} module Everything where import Warmup import Part1 import Part2 import Part3 import Part4 import ExerciseSession1 import ExerciseSession2 import ExerciseSession3
{ "alphanum_fraction": 0.8199233716, "avg_line_length": 20.0769230769, "ext": "agda", "hexsha": "60ffe71eebbf5870e0bc0cac4b4e206c44bbc939", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9a510959fb0e6da9bcc6b0faa0dea76a2821bbdb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "EgbertRijke/EPIT-2020", "max_forks_repo_path": "04-cubical-type-theory/material/Everything.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9a510959fb0e6da9bcc6b0faa0dea76a2821bbdb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "EgbertRijke/EPIT-2020", "max_issues_repo_path": "04-cubical-type-theory/material/Everything.agda", "max_line_length": 71, "max_stars_count": 1, "max_stars_repo_head_hexsha": "34742c0409818f8fe581ffc92992d1b5f29f6b47", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bafain/EPIT-2020", "max_stars_repo_path": "04-cubical-type-theory/material/Everything.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-03T16:28:06.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-03T16:28:06.000Z", "num_tokens": 61, "size": 261 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cw.CW module cw.examples.Unit where cw-unit-skel : Skeleton {lzero} 0 cw-unit-skel = Unit , Unit-is-set CWUnit = ⟦ cw-unit-skel ⟧ CWUnit-equiv-Unit : CWUnit ≃ Unit CWUnit-equiv-Unit = ide _
{ "alphanum_fraction": 0.6996197719, "avg_line_length": 18.7857142857, "ext": "agda", "hexsha": "15cf4335f00955082b1e90d6ad79210f378b61bc", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "theorems/cw/examples/Unit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "theorems/cw/examples/Unit.agda", "max_line_length": 39, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "theorems/cw/examples/Unit.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 82, "size": 263 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.DStructures.Structures.ReflGraph where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Structure open import Cubical.Functions.FunExtEquiv open import Cubical.Homotopy.Base open import Cubical.Data.Sigma open import Cubical.Relation.Binary open import Cubical.Algebra.Group open import Cubical.Structures.LeftAction open import Cubical.DStructures.Base open import Cubical.DStructures.Meta.Properties open import Cubical.DStructures.Structures.Constant open import Cubical.DStructures.Structures.Type open import Cubical.DStructures.Structures.Group open import Cubical.DStructures.Structures.SplitEpi open GroupLemmas open MorphismLemmas private variable ℓ ℓ' : Level --------------------------------------------- -- Reflexive graphs in the category of groups -- -- ReflGraph -- | -- SplitEpiB -- --------------------------------------------- module _ (ℓ ℓ' : Level) where -- type of internal reflexive graphs in the category of groups ReflGraph = Σ[ ((((G₀ , G₁) , ι , σ) , split-σ) , τ) ∈ (SplitEpiB ℓ ℓ') ] isGroupSplitEpi ι τ -- reflexive graphs displayed over split epimorphisms with an -- extra morphism back 𝒮ᴰ-ReflGraph : URGStrᴰ (𝒮-SplitEpiB ℓ ℓ') (λ ((((G , H) , f , b) , isRet) , b') → isGroupSplitEpi f b') ℓ-zero 𝒮ᴰ-ReflGraph = Subtype→Sub-𝒮ᴰ (λ ((((G , H) , f , b) , isRet) , b') → isGroupSplitEpi f b' , isPropIsGroupSplitEpi f b') (𝒮-SplitEpiB ℓ ℓ') -- the URG structure on the type of reflexive graphs 𝒮-ReflGraph : URGStr ReflGraph (ℓ-max ℓ ℓ') 𝒮-ReflGraph = ∫⟨ (𝒮-SplitEpiB ℓ ℓ') ⟩ 𝒮ᴰ-ReflGraph -------------------------------------------------- -- This module introduces convenient notation -- when working with a single reflexive graph --------------------------------------------------- module ReflGraphNotation (𝒢 : ReflGraph ℓ ℓ') where -- extract the components of the Σ-type G₁ = snd (fst (fst (fst (fst 𝒢)))) G₀ = fst (fst (fst (fst (fst 𝒢)))) σ = snd (snd (fst (fst (fst 𝒢)))) τ = snd (fst 𝒢) ι = fst (snd (fst (fst (fst 𝒢)))) split-τ = snd 𝒢 split-σ = snd (fst (fst 𝒢)) -- open other modules containing convenient notation open SplitEpiNotation ι σ split-σ public open GroupNotation₁ G₁ public open GroupNotation₀ G₀ public open GroupHom public -- underlying maps t = GroupHom.fun τ -- combinations of maps to reduce -- amount of parentheses in proofs 𝒾s = λ (g : ⟨ G₁ ⟩) → 𝒾 (s g) -- TODO: remove 𝒾t = λ (g : ⟨ G₁ ⟩) → 𝒾 (t g) -- TODO: remove it = λ (g : ⟨ G₁ ⟩) → 𝒾 (t g) ti = λ (g : ⟨ G₀ ⟩) → t (𝒾 g) -it = λ (x : ⟨ G₁ ⟩) → -₁ (𝒾t x) it- = λ (x : ⟨ G₁ ⟩) → 𝒾t (-₁ x) ι∘τ : GroupHom G₁ G₁ ι∘τ = compGroupHom τ ι -- extract what it means for σ and τ to be split σι-≡-fun : (g : ⟨ G₀ ⟩) → si g ≡ g σι-≡-fun = λ (g : ⟨ G₀ ⟩) → funExt⁻ (cong GroupHom.fun split-σ) g τι-≡-fun : (g : ⟨ G₀ ⟩) → ti g ≡ g τι-≡-fun = λ (g : ⟨ G₀ ⟩) → funExt⁻ (cong GroupHom.fun split-τ) g ------------------------------------------- -- Lemmas about reflexive graphs in groups ------------------------------------------- module ReflGraphLemmas (𝒢 : ReflGraph ℓ ℓ') where open ReflGraphNotation 𝒢 -- the property for two morphisms to be composable isComposable : (g f : ⟨ G₁ ⟩) → Type ℓ isComposable g f = s g ≡ t f -- isComposable is a proposition, because G₀ is a set isPropIsComposable : (g f : ⟨ G₁ ⟩) → isProp (isComposable g f) isPropIsComposable g f c c' = set₀ (s g) (t f) c c' -- further reductions that are used often abstract -- σ (g -₁ ι (σ g)) ≡ 0₀ σ-g--isg : (g : ⟨ G₁ ⟩) → s (g -₁ (𝒾s g)) ≡ 0₀ σ-g--isg g = s (g -₁ (𝒾s g)) ≡⟨ σ .isHom g (-₁ 𝒾s g) ⟩ s g +₀ s (-₁ 𝒾s g) ≡⟨ cong (s g +₀_) (mapInv σ (𝒾s g)) ⟩ s g -₀ s (𝒾s g) ≡⟨ cong (λ z → s g -₀ z) (σι-≡-fun (s g)) ⟩ s g -₀ s g ≡⟨ rCancel₀ (s g) ⟩ 0₀ ∎ -- g is composable with ι (σ g) isComp-g-isg : (g : ⟨ G₁ ⟩) → isComposable g (𝒾s g) isComp-g-isg g = sym (τι-≡-fun (s g)) -- ι (τ f) is composable with f isComp-itf-f : (f : ⟨ G₁ ⟩) → isComposable (it f) f isComp-itf-f f = σι-≡-fun (t f) -- ι (σ (-₁ ι g)) ≡ -₁ (ι g) ισ-ι : (g : ⟨ G₀ ⟩) → 𝒾s (-₁ (𝒾 g)) ≡ -₁ (𝒾 g) ισ-ι g = mapInv ι∘σ (𝒾 g) ∙ cong (λ z → -₁ (𝒾 z)) (σι-≡-fun g)
{ "alphanum_fraction": 0.5354931903, "avg_line_length": 32.7432432432, "ext": "agda", "hexsha": "0bd8d8bab6d69824c787510726b0ed9181ac50bc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/DStructures/Structures/ReflGraph.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/DStructures/Structures/ReflGraph.agda", "max_line_length": 95, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/DStructures/Structures/ReflGraph.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1729, "size": 4846 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Floating point numbers ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Float where ------------------------------------------------------------------------ -- Re-export base definitions and decidability of equality open import Data.Float.Base public open import Data.Float.Properties using (_≈?_; _<?_; _≟_; _==_) public
{ "alphanum_fraction": 0.4079207921, "avg_line_length": 31.5625, "ext": "agda", "hexsha": "dfd189623a5c0576f77442754a644a79e7b9e8bb", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Float.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Float.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Float.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 73, "size": 505 }
{-# OPTIONS --without-K --exact-split #-} module 1-type-theory where import 00-preamble open 00-preamble public -- Exercise 1.1 (From ../02-pi.agda) _∘-1-1_ : {i j k : Level} {A : UU i} {B : UU j} {C : UU k} → (B → C) → ((A → B) → (A → C)) (g ∘-1-1 f) a = g (f a) import 04-inductive-types open 04-inductive-types public -- Exercise 1.2 recursorOfProjections : {i j k : Level} {A : UU i} {B : UU j} {C : UU k} → (A → B → C) → (prod A B) → C recursorOfProjections f p = f (pr1 p) (pr2 p) -- Exercise 1.11 is neg-triple-neg exercise-1-12-i : {i j : Level} {A : UU i} {B : UU j} → A → B → A exercise-1-12-i x y = x exercise-1-12-ii : {i : Level} {A : UU i} → A → ¬ (¬ A) exercise-1-12-ii a = (\ f → f a) exercise-1-12-iii : {i j : Level} {A : UU i} {B : UU j} → (coprod (¬ A) (¬ B)) → (¬ (prod A B)) exercise-1-12-iii (inl fa) = (\ p → fa (pr1 p)) exercise-1-12-iii (inr fb) = (\ p → fb (pr2 p)) kian-ex-1-13 : {i : Level} {A : UU i} → ¬ (¬ (coprod A (¬ A))) kian-ex-1-13 = (\ f → (\ g → f (inr g)) (\ a → f (inl a))) import 05-identity-types open 05-identity-types public exercise-1-15 : {i j : Level} {A : UU i} (C : A → UU j) (x : A) (y : A) → (Id x y) → (C x) → (C y) exercise-1-15 C x y eq = ind-Id x (\ y' eq' → (C(x) → C(y'))) (\ x → x) y eq
{ "alphanum_fraction": 0.5160532498, "avg_line_length": 26.6041666667, "ext": "agda", "hexsha": "2348ff954ff9791a18a3e73feb7b8fd739c84b7b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "hemangandhi/HoTT-Intro", "max_forks_repo_path": "Agda/univalent-hott/1-type-theory.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "hemangandhi/HoTT-Intro", "max_issues_repo_path": "Agda/univalent-hott/1-type-theory.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "hemangandhi/HoTT-Intro", "max_stars_repo_path": "Agda/univalent-hott/1-type-theory.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 579, "size": 1277 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Lan where open import Level open import Categories.Category open import Categories.Functor hiding (_≡_) open import Categories.NaturalTransformation record Lan {o₀ ℓ₀ e₀} {o₁ ℓ₁ e₁} {o₂ ℓ₂ e₂} {A : Category o₀ ℓ₀ e₀} {B : Category o₁ ℓ₁ e₁} {C : Category o₂ ℓ₂ e₂} (F : Functor A B) (X : Functor A C) : Set (o₀ ⊔ ℓ₀ ⊔ e₀ ⊔ o₁ ⊔ ℓ₁ ⊔ e₁ ⊔ o₂ ⊔ ℓ₂ ⊔ e₂) where field L : Functor B C ε : NaturalTransformation X (L ∘ F) σ : (M : Functor B C) → (α : NaturalTransformation X (M ∘ F)) → NaturalTransformation L M .σ-unique : {M : Functor B C} → {α : NaturalTransformation X (M ∘ F)} → (σ′ : NaturalTransformation L M) → α ≡ (σ′ ∘ʳ F) ∘₁ ε → σ′ ≡ σ M α .commutes : (M : Functor B C) → (α : NaturalTransformation X (M ∘ F)) → α ≡ (σ M α ∘ʳ F) ∘₁ ε
{ "alphanum_fraction": 0.5955967555, "avg_line_length": 41.0952380952, "ext": "agda", "hexsha": "59156249d15f2b8fefa2bfb9520215d6565520a1", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Lan.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Lan.agda", "max_line_length": 103, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Lan.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 326, "size": 863 }
open import FRP.JS.Bool using ( Bool ; not ) open import FRP.JS.Event using ( Evt ; accumBy ) open import FRP.JS.RSet using ( RSet ; _⇒_ ; ⟦_⟧ ; ⟨_⟩ ) module FRP.JS.Behaviour where postulate Beh : RSet → RSet map : ∀ {A B} → ⟦ A ⇒ B ⟧ → ⟦ Beh A ⇒ Beh B ⟧ map2 : ∀ {A B C} → ⟦ A ⇒ B ⇒ C ⟧ → ⟦ Beh A ⇒ Beh B ⇒ Beh C ⟧ [_] : ∀ {A} → A → ⟦ Beh ⟨ A ⟩ ⟧ join : ∀ {A} → ⟦ Beh (Beh A) ⇒ Beh A ⟧ hold : ∀ {A} → ⟦ ⟨ A ⟩ ⇒ Evt ⟨ A ⟩ ⇒ Beh ⟨ A ⟩ ⟧ {-# COMPILED_JS map function(A) { return function(B) { return function(f) { return function(s) { return function(b) { return b.map(function (t,v) { return f(t)(v); }); }; }; }; }; } #-} {-# COMPILED_JS map2 function(A) { return function(B) { return function(C) { return function(f) { return function(s) { return function(a) { return function(b) { return a.map2(b, function (t,v1,v2) { return f(t)(v1)(v2); }); }; }; }; }; }; }; } #-} {-# COMPILED_JS [_] function(A) { return function(a) { return function(s) { return require("agda.frp").constant(a); }; }; } #-} {-# COMPILED_JS join function(A) { return function(s) { return function(b) { return b.join(); }; }; } #-} {-# COMPILED_JS hold function(A) { return function(s) { return function(a) { return function(e) { return e.hold(a); }; }; }; } #-} accumHoldBy : ∀ {A B} → ⟦ (⟨ B ⟩ ⇒ A ⇒ ⟨ B ⟩) ⟧ → B → ⟦ Evt A ⇒ Beh ⟨ B ⟩ ⟧ accumHoldBy f b σ = hold b (accumBy f b σ) not* : ⟦ Beh ⟨ Bool ⟩ ⇒ Beh ⟨ Bool ⟩ ⟧ not* = map not
{ "alphanum_fraction": 0.5398351648, "avg_line_length": 33.0909090909, "ext": "agda", "hexsha": "538ff1bd41f5ae03c10f836413e5f1943322c3e5", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z", "max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z", "max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_forks_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-frp-js", "max_forks_repo_path": "src/agda/FRP/JS/Behaviour.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-frp-js", "max_issues_repo_path": "src/agda/FRP/JS/Behaviour.agda", "max_line_length": 97, "max_stars_count": 63, "max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_stars_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-frp-js", "max_stars_repo_path": "src/agda/FRP/JS/Behaviour.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z", "num_tokens": 540, "size": 1456 }
module Records where open import Common.Nat open import Common.IO open import Common.Unit record Test : Set where constructor mkTest field a b c : Nat f : Test -> Nat f (mkTest a b c) = a + b + c open Test g : Nat g = (f (mkTest 34 12 54)) + (f (record {a = 100; b = 120; c = 140})) + a m + b m + c m where m = mkTest 200 300 400 main : IO Unit main = printNat g
{ "alphanum_fraction": 0.6253298153, "avg_line_length": 16.4782608696, "ext": "agda", "hexsha": "07bf7bb0186578ce8e71a679894f1ebaacd08f10", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Compiler/simple/Records.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Compiler/simple/Records.agda", "max_line_length": 86, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Compiler/simple/Records.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 138, "size": 379 }
------------------------------------------------------------------------ -- A depth-first backend ------------------------------------------------------------------------ -- Based on the parser combinators in Wadler's "How to Replace Failure -- by a List of Successes". module StructurallyRecursiveDescentParsing.DepthFirst where open import Data.Bool open import Data.Product as Prod import Data.List as L; open L using (List) import Data.List.Categorical open import Data.Nat open import Data.Nat.Properties open import Data.Vec using ([]; _∷_) open import Data.Vec.Bounded hiding ([]; _∷_) open import Function open import Category.Applicative.Indexed open import Category.Monad.Indexed open import Category.Monad.State open import Codata.Musical.Notation import Level open import StructurallyRecursiveDescentParsing.Simplified ------------------------------------------------------------------------ -- Parser monad private P : Set → IFun ℕ Level.zero P Tok = IStateT (Vec≤ Tok) List open module M₁ {Tok : Set} = RawIMonadPlus (StateTIMonadPlus (Vec≤ Tok) Data.List.Categorical.monadPlus) using () renaming ( return to return′ ; _>>=_ to _>>=′_ ; _>>_ to _>>′_ ; ∅ to fail′ ; _∣_ to _∣′_ ) open module M₂ {Tok : Set} = RawIMonadState (StateTIMonadState (Vec≤ Tok) Data.List.Categorical.monad) using () renaming ( get to get′ ; put to put′ ; modify to modify′ ) ------------------------------------------------------------------------ -- Run function for the parsers -- For every successful parse the run function returns the remaining -- string. (Since there can be several successful parses a list of -- strings is returned.) -- This function is structurally recursive with respect to the -- following lexicographic measure: -- -- 1) The upper bound of the length of the input string. -- 2) The parser's proper left corner tree. mutual parse↓ : ∀ {Tok e R} n → Parser Tok e R → P Tok n (if e then n else n ∸ 1) R parse↓ n (return x) = return′ x parse↓ n fail = fail′ parse↓ n (_∣_ {true} p₁ p₂) = parse↓ n p₁ ∣′ parse↑ n p₂ parse↓ n (_∣_ {false} {true} p₁ p₂) = parse↑ n p₁ ∣′ parse↓ n p₂ parse↓ n (_∣_ {false} {false} p₁ p₂) = parse↓ n p₁ ∣′ parse↓ n p₂ parse↓ n (p₁ ?>>= p₂) = parse↓ n p₁ >>=′ λ x → parse↓ n (p₂ x) parse↓ zero (p₁ !>>= p₂) = fail′ parse↓ (suc n) (p₁ !>>= p₂) = parse↓ (suc n) p₁ >>=′ λ x → parse↑ n (♭ (p₂ x)) parse↓ n token = get′ >>=′ eat where eat : ∀ {Tok n} → Vec≤ Tok n → P Tok n (n ∸ 1) Tok eat ([] , _) = fail′ eat s@(c ∷ _ , _) = put′ (drop 1 s) >>′ return′ c parse↑ : ∀ {e Tok R} n → Parser Tok e R → P Tok n n R parse↑ {true} n p = parse↓ n p parse↑ {false} zero p = fail′ parse↑ {false} (suc n) p = parse↓ (suc n) p >>=′ λ r → modify′ (≤-cast (n≤1+n _)) >>′ return′ r -- Exported run function. parse : ∀ {Tok i R} → Parser Tok i R → List Tok → List (R × List Tok) parse p s = L.map (Prod.map id toList) (parse↓ _ p (fromList s)) -- A variant which only returns parses which leave no remaining input. parseComplete : ∀ {Tok i R} → Parser Tok i R → List Tok → List R parseComplete p s = L.map proj₁ (L.boolFilter (L.null ∘ proj₂) (parse p s))
{ "alphanum_fraction": 0.5138091332, "avg_line_length": 35.8529411765, "ext": "agda", "hexsha": "aa24259155412ec0a14dd2d9b9f847270d07c0b1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "StructurallyRecursiveDescentParsing/DepthFirst.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "StructurallyRecursiveDescentParsing/DepthFirst.agda", "max_line_length": 95, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "StructurallyRecursiveDescentParsing/DepthFirst.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 1026, "size": 3657 }
------------------------------------------------------------------------------ -- Arithmetic properties using instances of the induction principle ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Data.Nat.Induction.AdditionalHypothesis.Instances.PropertiesATP where open import FOTC.Base open import FOTC.Data.Nat hiding ( N-ind ) ------------------------------------------------------------------------------ -- Induction principle with the additional hypothesis. N-ind₁ : (A : D → Set) → A zero → (∀ {n} → N n → A n → A (succ₁ n)) → ∀ {n} → N n → A n N-ind₁ A A0 h nzero = A0 N-ind₁ A A0 h (nsucc Nn) = h Nn (N-ind₁ A A0 h Nn) -- From now on we will use the N-ind₁ induction principle. N-ind = N-ind₁ ------------------------------------------------------------------------------ -- Totality properties pred-N-ind-instance : N (pred₁ zero) → (∀ {n} → N n → N (pred₁ n) → N (pred₁ (succ₁ n))) → ∀ {n} → N n → N (pred₁ n) pred-N-ind-instance = N-ind₁ (λ i → N (pred₁ i)) postulate pred-N : ∀ {n} → N n → N (pred₁ n) {-# ATP prove pred-N pred-N-ind-instance #-} +-N-ind-instance : ∀ {n} → N (zero + n) → (∀ {m} → N m → N (m + n) → N (succ₁ m + n)) → ∀ {m} → N m → N (m + n) +-N-ind-instance {n} = N-ind (λ i → N (i + n)) postulate +-N : ∀ {m n} → N m → N n → N (m + n) {-# ATP prove +-N +-N-ind-instance #-} ∸-N-ind-instance : ∀ {m} → N (m ∸ zero) → (∀ {n} → N n → N (m ∸ n) → N (m ∸ succ₁ n)) → ∀ {n} → N n → N (m ∸ n) ∸-N-ind-instance {n} = N-ind (λ i → N (n ∸ i)) postulate ∸-N : ∀ {m n} → N m → N n → N (m ∸ n) {-# ATP prove ∸-N ∸-N-ind-instance pred-N #-} *-N-ind-instance : ∀ {n} → N (zero * n) → (∀ {m} → N m → N (m * n) → N (succ₁ m * n)) → ∀ {m} → N m → N (m * n) *-N-ind-instance {n} = N-ind (λ i → N (i * n)) postulate *-N : ∀ {m n} → N m → N n → N (m * n) {-# ATP prove *-N *-N-ind-instance +-N #-} +-rightIdentity-ind-instance : zero + zero ≡ zero → (∀ {n} → N n → n + zero ≡ n → succ₁ n + zero ≡ succ₁ n) → ∀ {n} → N n → n + zero ≡ n +-rightIdentity-ind-instance = N-ind (λ i → i + zero ≡ i) postulate +-rightIdentity : ∀ {n} → N n → n + zero ≡ n {-# ATP prove +-rightIdentity +-rightIdentity-ind-instance #-} +-assoc-ind-instance : ∀ {n} {o} → zero + n + o ≡ zero + (n + o) → (∀ {m} → N m → m + n + o ≡ m + (n + o) → succ₁ m + n + o ≡ succ₁ m + (n + o)) → ∀ {m} → N m → m + n + o ≡ m + (n + o) +-assoc-ind-instance {n} {o} = N-ind (λ i → i + n + o ≡ i + (n + o)) postulate +-assoc : ∀ {m} → N m → ∀ n o → m + n + o ≡ m + (n + o) {-# ATP prove +-assoc +-assoc-ind-instance #-} x+Sy≡S[x+y]-ind-instance : ∀ {n} → zero + succ₁ n ≡ succ₁ (zero + n) → (∀ {m} → N m → m + succ₁ n ≡ succ₁ (m + n) → succ₁ m + succ₁ n ≡ succ₁ (succ₁ m + n)) → ∀ {m} → N m → m + succ₁ n ≡ succ₁ (m + n) x+Sy≡S[x+y]-ind-instance {n} = N-ind (λ i → i + succ₁ n ≡ succ₁ (i + n)) postulate x+Sy≡S[x+y] : ∀ {m} → N m → ∀ n → m + succ₁ n ≡ succ₁ (m + n) {-# ATP prove x+Sy≡S[x+y] x+Sy≡S[x+y]-ind-instance #-} +-comm-ind-instance : ∀ {n} → zero + n ≡ n + zero → (∀ {m} → N m → m + n ≡ n + m → succ₁ m + n ≡ n + succ₁ m) → ∀ {m} → N m → m + n ≡ n + m +-comm-ind-instance {n} = N-ind (λ i → i + n ≡ n + i) postulate +-comm : ∀ {m n} → N m → N n → m + n ≡ n + m {-# ATP prove +-comm +-comm-ind-instance +-rightIdentity x+Sy≡S[x+y] #-}
{ "alphanum_fraction": 0.4451631046, "avg_line_length": 32.036036036, "ext": "agda", "hexsha": "993adf66f26973cfa4e8dfbc87995408c8ba7018", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Data/Nat/Induction/AdditionalHypothesis/Instances/PropertiesATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Data/Nat/Induction/AdditionalHypothesis/Instances/PropertiesATP.agda", "max_line_length": 79, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Data/Nat/Induction/AdditionalHypothesis/Instances/PropertiesATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1334, "size": 3556 }
postulate A : Set data B (a : A) : Set where conB : B a → B a → B a data C (a : A) : B a → Set where conC : {bl br : B a} → C a bl → C a br → C a (conB bl br) -- Second bug, likely same as first bug. {- An internal error has occurred. Please report this as a bug. Location of the error: src/full/Agda/TypeChecking/Abstract.hs:133 -} data F : Set where conF : F boo : (a : A) (b : B a) (c : C a _) → Set boo a b (conC tl tr) with tr | conF ... | _ | _ = _
{ "alphanum_fraction": 0.5845824411, "avg_line_length": 22.2380952381, "ext": "agda", "hexsha": "b2f84a080ea6f061d0ade4bdaf8a423fee815d7b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2679b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2679b.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2679b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 176, "size": 467 }
------------------------------------------------------------------------ -- CCS ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} open import Prelude module Labelled-transition-system.CCS {ℓ} (Name : Type ℓ) where open import Equality.Propositional open import Prelude.Size open import Bool equality-with-J open import Function-universe equality-with-J hiding (id; _∘_) open import Labelled-transition-system ------------------------------------------------------------------------ -- Fixity declarations infix 12 _∙ infixr 12 _·_ _∙_ infix 10 !_ infix 8 _⊕_ infix 6 _∣_ infix 5 _[_] _[_]′ infix 4 _[_]⟶_ _∉_ ------------------------------------------------------------------------ -- CCS, roughly as defined in "Enhancements of the bisimulation proof -- method" by Pous and Sangiorgi, with support for corecursive -- processes (instead of the named process constants presented in -- "Coinduction All the Way Up" by Pous) -- Names with kinds: (a , true) stands for "a", and (a , false) stands -- for "a̅". Name-with-kind : Type ℓ Name-with-kind = Name × Bool -- Turns names of one kind into names of the other kind. co : Name-with-kind → Name-with-kind co (a , kind) = a , not kind -- Actions. data Action : Type ℓ where name : Name-with-kind → Action τ : Action -- The only silent action is τ. is-silent : Action → Bool is-silent (name _) = false is-silent τ = true -- Processes. mutual data Proc (i : Size) : Type ℓ where ∅ : Proc i _∣_ _⊕_ : Proc i → Proc i → Proc i _·_ : Action → Proc′ i → Proc i ⟨ν_⟩ : Name → Proc i → Proc i !_ : Proc i → Proc i record Proc′ (i : Size) : Type ℓ where coinductive field force : {j : Size< i} → Proc j open Proc′ public -- An inductive variant of _·_. _∙_ : ∀ {i} → Action → Proc i → Proc i μ ∙ P = μ · λ { .force → P } -- An abbreviation. _∙ : Name-with-kind → Proc ∞ a ∙ = name a ∙ ∅ -- The predicate a ∉ μ holds if a is not the underlying name of μ (if -- any). _∉_ : Name → Action → Type ℓ a ∉ name (b , _) = ¬ a ≡ b a ∉ τ = ↑ ℓ ⊤ -- Transition relation. data _[_]⟶_ : Proc ∞ → Action → Proc ∞ → Type ℓ where par-left : ∀ {P Q P′ μ} → P [ μ ]⟶ P′ → P ∣ Q [ μ ]⟶ P′ ∣ Q par-right : ∀ {P Q Q′ μ} → Q [ μ ]⟶ Q′ → P ∣ Q [ μ ]⟶ P ∣ Q′ par-τ : ∀ {P P′ Q Q′ a} → P [ name a ]⟶ P′ → Q [ name (co a) ]⟶ Q′ → P ∣ Q [ τ ]⟶ P′ ∣ Q′ sum-left : ∀ {P Q P′ μ} → P [ μ ]⟶ P′ → P ⊕ Q [ μ ]⟶ P′ sum-right : ∀ {P Q Q′ μ} → Q [ μ ]⟶ Q′ → P ⊕ Q [ μ ]⟶ Q′ action : ∀ {P μ} → μ · P [ μ ]⟶ force P restriction : ∀ {P P′ a μ} → a ∉ μ → P [ μ ]⟶ P′ → ⟨ν a ⟩ P [ μ ]⟶ ⟨ν a ⟩ P′ replication : ∀ {P P′ μ} → ! P ∣ P [ μ ]⟶ P′ → ! P [ μ ]⟶ P′ -- The CCS LTS. CCS : LTS ℓ CCS = record { Proc = Proc ∞ ; Label = Action ; _[_]⟶_ = _[_]⟶_ ; is-silent = is-silent } open LTS CCS public hiding (Proc; _[_]⟶_; is-silent) ------------------------------------------------------------------------ -- Contexts and some related definitions, roughly following -- "Enhancements of the bisimulation proof method" by Pous and -- Sangiorgi mutual -- Polyadic contexts. data Context (i : Size) (n : ℕ) : Type ℓ where hole : (x : Fin n) → Context i n ∅ : Context i n _∣_ _⊕_ : Context i n → Context i n → Context i n _·_ : (μ : Action) → Context′ i n → Context i n ⟨ν_⟩ : (a : Name) → Context i n → Context i n !_ : Context i n → Context i n record Context′ (i : Size) (n : ℕ) : Type ℓ where coinductive field force : {j : Size< i} → Context j n open Context′ public mutual -- Hole filling. _[_] : ∀ {i n} → Context i n → (Fin n → Proc ∞) → Proc i hole x [ Ps ] = Ps x ∅ [ Ps ] = ∅ C₁ ∣ C₂ [ Ps ] = (C₁ [ Ps ]) ∣ (C₂ [ Ps ]) C₁ ⊕ C₂ [ Ps ] = (C₁ [ Ps ]) ⊕ (C₂ [ Ps ]) μ · C [ Ps ] = μ · (C [ Ps ]′) ⟨ν a ⟩ C [ Ps ] = ⟨ν a ⟩ (C [ Ps ]) ! C [ Ps ] = ! (C [ Ps ]) _[_]′ : ∀ {i n} → Context′ i n → (Fin n → Proc ∞) → Proc′ i force (C [ Ps ]′) = force C [ Ps ] -- A context is weakly guarded if every hole is under a prefix (μ ·_). data Weakly-guarded {n : ℕ} : Context ∞ n → Type ℓ where ∅ : Weakly-guarded ∅ _∣_ : ∀ {C₁ C₂} → Weakly-guarded C₁ → Weakly-guarded C₂ → Weakly-guarded (C₁ ∣ C₂) _⊕_ : ∀ {C₁ C₂} → Weakly-guarded C₁ → Weakly-guarded C₂ → Weakly-guarded (C₁ ⊕ C₂) action : ∀ {μ C} → Weakly-guarded (μ · C) ⟨ν⟩ : ∀ {a C} → Weakly-guarded C → Weakly-guarded (⟨ν a ⟩ C) !_ : ∀ {C} → Weakly-guarded C → Weakly-guarded (! C) -- Turns processes into contexts without holes. context : ∀ {i n} → Proc i → Context i n context ∅ = ∅ context (P₁ ∣ P₂) = context P₁ ∣ context P₂ context (P₁ ⊕ P₂) = context P₁ ⊕ context P₂ context (μ · P) = μ · λ { .force → context (force P) } context (⟨ν a ⟩ P) = ⟨ν a ⟩ (context P) context (! P) = ! context P -- Non-degenerate contexts. mutual data Non-degenerate (i : Size) {n : ℕ} : Context ∞ n → Type ℓ where hole : ∀ {x} → Non-degenerate i (hole x) ∅ : Non-degenerate i ∅ _∣_ : ∀ {C₁ C₂} → Non-degenerate i C₁ → Non-degenerate i C₂ → Non-degenerate i (C₁ ∣ C₂) _⊕_ : ∀ {C₁ C₂} → Non-degenerate-summand i C₁ → Non-degenerate-summand i C₂ → Non-degenerate i (C₁ ⊕ C₂) action : ∀ {μ C} → Non-degenerate′ i (force C) → Non-degenerate i (μ · C) ⟨ν⟩ : ∀ {a C} → Non-degenerate i C → Non-degenerate i (⟨ν a ⟩ C) !_ : ∀ {C} → Non-degenerate i C → Non-degenerate i (! C) data Non-degenerate-summand (i : Size) {n : ℕ} : Context ∞ n → Type ℓ where process : ∀ P → Non-degenerate-summand i (context P) action : ∀ {μ C} → Non-degenerate′ i (force C) → Non-degenerate-summand i (μ · C) record Non-degenerate′ (i : Size) {n} (C : Context ∞ n) : Type ℓ where coinductive field force : {j : Size< i} → Non-degenerate j C open Non-degenerate′ public ------------------------------------------------------------------------ -- Very strong bisimilarity -- "Very strong" bisimilarity for processes: Equal ∞ P Q means that P -- and Q have the same structure. mutual data Equal (i : Size) : Proc ∞ → Proc ∞ → Type ℓ where ∅ : Equal i ∅ ∅ _∣_ : ∀ {P₁ P₂ Q₁ Q₂} → Equal i P₁ P₂ → Equal i Q₁ Q₂ → Equal i (P₁ ∣ Q₁) (P₂ ∣ Q₂) _⊕_ : ∀ {P₁ P₂ Q₁ Q₂} → Equal i P₁ P₂ → Equal i Q₁ Q₂ → Equal i (P₁ ⊕ Q₁) (P₂ ⊕ Q₂) _·_ : ∀ {μ₁ μ₂ P₁ P₂} → μ₁ ≡ μ₂ → Equal′ i (force P₁) (force P₂) → Equal i (μ₁ · P₁) (μ₂ · P₂) ⟨ν_⟩ : ∀ {a₁ a₂ P₁ P₂} → a₁ ≡ a₂ → Equal i P₁ P₂ → Equal i (⟨ν a₁ ⟩ P₁) (⟨ν a₂ ⟩ P₂) !_ : ∀ {P₁ P₂} → Equal i P₁ P₂ → Equal i (! P₁) (! P₂) record Equal′ (i : Size) (P₁ P₂ : Proc ∞) : Type ℓ where coinductive field force : {j : Size< i} → Equal j P₁ P₂ open Equal′ public -- Extensionality for very strong bisimilarity. Proc-extensionality : Type ℓ Proc-extensionality = ∀ {P Q} → Equal ∞ P Q → P ≡ Q ------------------------------------------------------------------------ -- Some lemmas -- The co function is involutive. co-involutive : ∀ a → co (co a) ≡ a co-involutive (a , kind) = (a , not (not kind)) ≡⟨ cong (_ ,_) $ not-involutive kind ⟩∎ (a , kind) ∎ -- A name is not equal to the corresponding coname. id≢co : ∀ {a} → a ≢ co a id≢co {a} = a ≡ co a ↝⟨ cong proj₂ ⟩ proj₂ a ≡ not (proj₂ a) ↝⟨ not≡⇒≢ _ _ ∘ sym ⟩ proj₂ a ≢ proj₂ a ↝⟨ _$ refl ⟩□ ⊥ □ -- A cancellation law. cancel-name : ∀ {a b} → name a ≡ name b → a ≡ b cancel-name refl = refl -- A disjointness law. name≢τ : ∀ {a} → name a ≢ τ name≢τ () -- The only silent label is τ. silent≡τ : ∀ {μ} → Silent μ → μ ≡ τ silent≡τ {τ} _ = refl silent≡τ {name _} () -- Names do not match (the only silent label) τ. ∉τ : ∀ {μ a} → Silent μ → a ∉ μ ∉τ s rewrite silent≡τ s = _ -- A variant of par-τ. par-τ′ : ∀ {P P′ Q Q′ a b} → b ≡ co a → P [ name a ]⟶ P′ → Q [ name b ]⟶ Q′ → P ∣ Q [ τ ]⟶ P′ ∣ Q′ par-τ′ refl = par-τ -- The process μ · P can only make μ-transitions. ·-only : ∀ {μ₁ μ₂ P Q} → μ₁ · P [ μ₂ ]⟶ Q → μ₁ ≡ μ₂ ·-only action = refl -- The process μ · P can only transition to force P. ·-only⟶ : ∀ {μ₁ μ₂ P Q} → μ₁ · P [ μ₂ ]⟶ Q → Q ≡ force P ·-only⟶ action = refl -- A simple corollary. names-are-not-inverted : ∀ {a P Q} → ¬ (name a · P [ name (co a) ]⟶ Q) names-are-not-inverted {a} {P} {Q} = name a · P [ name (co a) ]⟶ Q ↝⟨ ·-only ⟩ name a ≡ name (co a) ↝⟨ id≢co ∘ cancel-name ⟩□ ⊥ □ -- If P₁ and P₂ can only make μ-transitions, then P₁ ∣ P₂ can only -- make μ-transitions. ∣-only : ∀ {μ₀ P₁ P₂} → (∀ {P′ μ} → P₁ [ μ ]⟶ P′ → μ₀ ≡ μ) → (∀ {P′ μ} → P₂ [ μ ]⟶ P′ → μ₀ ≡ μ) → ∀ {P′ μ} → P₁ ∣ P₂ [ μ ]⟶ P′ → μ₀ ≡ μ ∣-only only₁ only₂ (par-left tr) = only₁ tr ∣-only only₁ only₂ (par-right tr) = only₂ tr ∣-only {μ₀} only₁ only₂ (par-τ {a = a} tr₁ tr₂) = ⊥-elim ( $⟨ only₁ tr₁ , only₂ tr₂ ⟩ μ₀ ≡ name a × μ₀ ≡ name (co a) ↝⟨ uncurry trans ∘ Σ-map sym id ⟩ name a ≡ name (co a) ↝⟨ id≢co ∘ cancel-name ⟩□ ⊥ □) -- If P can only make μ-transitions, then ! P can only make -- μ-transitions. !-only : ∀ {μ₀ P} → (∀ {P′ μ} → P [ μ ]⟶ P′ → μ₀ ≡ μ) → ∀ {P′ μ} → ! P [ μ ]⟶ P′ → μ₀ ≡ μ !-only only (replication (par-left tr)) = !-only only tr !-only only (replication (par-right tr)) = only tr !-only {μ₀} only (replication (par-τ {a = a} tr₁ tr₂)) = ⊥-elim ( $⟨ !-only only tr₁ , only tr₂ ⟩ μ₀ ≡ name a × μ₀ ≡ name (co a) ↝⟨ uncurry trans ∘ Σ-map sym id ⟩ name a ≡ name (co a) ↝⟨ id≢co ∘ cancel-name ⟩□ ⊥ □) -- If P₁ and P₂ can only make μ-transitions, then P₁ ⊕ P₂ can only -- make μ-transitions. ⊕-only : ∀ {μ₀ P₁ P₂} → (∀ {P′ μ} → P₁ [ μ ]⟶ P′ → μ₀ ≡ μ) → (∀ {P′ μ} → P₂ [ μ ]⟶ P′ → μ₀ ≡ μ) → ∀ {P′ μ} → P₁ ⊕ P₂ [ μ ]⟶ P′ → μ₀ ≡ μ ⊕-only only₁ only₂ (sum-left tr) = only₁ tr ⊕-only only₁ only₂ (sum-right tr) = only₂ tr -- If P can only make μ-transitions, then ⟨ν a ⟩ P can only make -- μ-transitions. ⟨ν⟩-only : ∀ {μ₀ a P} → (∀ {P′ μ} → P [ μ ]⟶ P′ → μ₀ ≡ μ) → ∀ {P′ μ} → ⟨ν a ⟩ P [ μ ]⟶ P′ → μ₀ ≡ μ ⟨ν⟩-only only (restriction _ tr) = only tr -- A simple lemma. ·⊕·-co : ∀ {a b c P Q R S} → name a · P ⊕ name b · Q [ name c ]⟶ R → name a · P ⊕ name b · Q [ name (co c) ]⟶ S → b ≡ co a × (R ≡ force P × S ≡ force Q ⊎ R ≡ force Q × S ≡ force P) ·⊕·-co (sum-left action) (sum-left tr) = ⊥-elim (names-are-not-inverted tr) ·⊕·-co (sum-left action) (sum-right action) = refl , inj₁ (refl , refl) ·⊕·-co (sum-right action) (sum-left action) = sym (co-involutive _) , inj₂ (refl , refl) ·⊕·-co (sum-right action) (sum-right tr) = ⊥-elim (names-are-not-inverted tr) -- Very strong bisimilarity is reflexive. Proc-refl : ∀ {i} P → Equal i P P Proc-refl ∅ = ∅ Proc-refl (P₁ ∣ P₂) = Proc-refl P₁ ∣ Proc-refl P₂ Proc-refl (P₁ ⊕ P₂) = Proc-refl P₁ ⊕ Proc-refl P₂ Proc-refl (μ · P) = refl · λ { .force → Proc-refl (force P) } Proc-refl (⟨ν a ⟩ P) = ⟨ν refl ⟩ (Proc-refl P) Proc-refl (! P) = ! Proc-refl P -- Very strong bisimilarity is symmetric. Proc-sym : ∀ {i P Q} → Equal i P Q → Equal i Q P Proc-sym ∅ = ∅ Proc-sym (P₁ ∣ P₂) = Proc-sym P₁ ∣ Proc-sym P₂ Proc-sym (P₁ ⊕ P₂) = Proc-sym P₁ ⊕ Proc-sym P₂ Proc-sym (p · P) = sym p · λ { .force → Proc-sym (force P) } Proc-sym (⟨ν p ⟩ P) = ⟨ν sym p ⟩ (Proc-sym P) Proc-sym (! P) = ! Proc-sym P -- Very strong bisimilarity is transitive. Proc-trans : ∀ {i P Q R} → Equal i P Q → Equal i Q R → Equal i P R Proc-trans ∅ ∅ = ∅ Proc-trans (P₁ ∣ P₂) (Q₁ ∣ Q₂) = Proc-trans P₁ Q₁ ∣ Proc-trans P₂ Q₂ Proc-trans (P₁ ⊕ P₂) (Q₁ ⊕ Q₂) = Proc-trans P₁ Q₁ ⊕ Proc-trans P₂ Q₂ Proc-trans (p · P) (q · Q) = trans p q · λ { .force → Proc-trans (force P) (force Q) } Proc-trans (⟨ν p ⟩ P) (⟨ν q ⟩ Q) = ⟨ν trans p q ⟩ (Proc-trans P Q) Proc-trans (! P) (! Q) = ! Proc-trans P Q -- Weakening of contexts. weaken : ∀ {i n} → Context i n → Context i (suc n) weaken (hole x) = hole (fsuc x) weaken ∅ = ∅ weaken (C₁ ∣ C₂) = weaken C₁ ∣ weaken C₂ weaken (C₁ ⊕ C₂) = weaken C₁ ⊕ weaken C₂ weaken (μ · C) = μ · λ { .force → weaken (force C) } weaken (⟨ν a ⟩ C) = ⟨ν a ⟩ (weaken C) weaken (! C) = ! weaken C -- A lemma relating weakening and hole filling. weaken-[] : ∀ {i n ps} (C : Context ∞ n) → Equal i (weaken C [ ps ]) (C [ ps ∘ fsuc ]) weaken-[] (hole x) = Proc-refl _ weaken-[] ∅ = ∅ weaken-[] (C₁ ∣ C₂) = weaken-[] C₁ ∣ weaken-[] C₂ weaken-[] (C₁ ⊕ C₂) = weaken-[] C₁ ⊕ weaken-[] C₂ weaken-[] (μ · C) = refl · λ { .force → weaken-[] (force C) } weaken-[] (⟨ν a ⟩ C) = ⟨ν refl ⟩ (weaken-[] C) weaken-[] (! C) = ! weaken-[] C -- The result of filling the holes in the context "context P" is P. context-[] : ∀ {i n} {Ps : Fin n → Proc ∞} P → Equal i P (context P [ Ps ]) context-[] ∅ = ∅ context-[] (P₁ ∣ P₂) = context-[] P₁ ∣ context-[] P₂ context-[] (P₁ ⊕ P₂) = context-[] P₁ ⊕ context-[] P₂ context-[] (μ · P) = refl · λ { .force → context-[] (force P) } context-[] (⟨ν a ⟩ P) = ⟨ν refl ⟩ (context-[] P) context-[] (! P) = ! (context-[] P) -- The contexts constructed by the context function are always -- non-degenerate. context-non-degenerate : ∀ {i n} (P : Proc ∞) → Non-degenerate i (context {n = n} P) context-non-degenerate ∅ = ∅ context-non-degenerate (P₁ ∣ P₂) = context-non-degenerate P₁ ∣ context-non-degenerate P₂ context-non-degenerate (P₁ ⊕ P₂) = process P₁ ⊕ process P₂ context-non-degenerate (μ · P) = action λ { .force → context-non-degenerate (force P) } context-non-degenerate (⟨ν a ⟩ P) = ⟨ν⟩ (context-non-degenerate P) context-non-degenerate (! P) = ! context-non-degenerate P mutual -- A relation expressing that a certain process matches a certain -- context. data Matches (i : Size) {n} : Proc ∞ → Context ∞ n → Type ℓ where hole : ∀ {P} (x : Fin n) → Matches i P (hole x) ∅ : Matches i ∅ ∅ _∣_ : ∀ {P₁ P₂ C₁ C₂} → Matches i P₁ C₁ → Matches i P₂ C₂ → Matches i (P₁ ∣ P₂) (C₁ ∣ C₂) _⊕_ : ∀ {P₁ P₂ C₁ C₂} → Matches i P₁ C₁ → Matches i P₂ C₂ → Matches i (P₁ ⊕ P₂) (C₁ ⊕ C₂) action : ∀ {μ P C} → Matches′ i (force P) (force C) → Matches i (μ · P) (μ · C) ⟨ν⟩ : ∀ {a P C} → Matches i P C → Matches i (⟨ν a ⟩ P) (⟨ν a ⟩ C) !_ : ∀ {P C} → Matches i P C → Matches i (! P) (! C) record Matches′ (i : Size) {n} (P : Proc ∞) (C : Context ∞ n) : Type ℓ where coinductive field force : {j : Size< i} → Matches j P C open Matches′ public -- The process obtained by filling a context's holes matches the -- context. Matches-[] : ∀ {i n Ps} (C : Context ∞ n) → Matches i (C [ Ps ]) C Matches-[] (hole x) = hole x Matches-[] ∅ = ∅ Matches-[] (C₁ ∣ C₂) = Matches-[] C₁ ∣ Matches-[] C₂ Matches-[] (C₁ ⊕ C₂) = Matches-[] C₁ ⊕ Matches-[] C₂ Matches-[] (μ · C) = action λ { .force → Matches-[] (force C) } Matches-[] (⟨ν a ⟩ C) = ⟨ν⟩ (Matches-[] C) Matches-[] (! C) = ! Matches-[] C -- Matches respects very strong bisimilarity. Matches-cong : ∀ {i P Q n} {C : Context ∞ n} → Equal i P Q → Matches i P C → Matches i Q C Matches-cong _ (hole x) = hole x Matches-cong ∅ ∅ = ∅ Matches-cong (p₁ ∣ p₂) (q₁ ∣ q₂) = Matches-cong p₁ q₁ ∣ Matches-cong p₂ q₂ Matches-cong (p₁ ⊕ p₂) (q₁ ⊕ q₂) = Matches-cong p₁ q₁ ⊕ Matches-cong p₂ q₂ Matches-cong (refl · p) (action q) = action λ { .force → Matches-cong (force p) (force q) } Matches-cong (⟨ν refl ⟩ p) (⟨ν⟩ q) = ⟨ν⟩ (Matches-cong p q) Matches-cong (! p) (! q) = ! Matches-cong p q -- A predicate that identifies a process as being finite. Note that -- this is an inductive definition. data Finite : Proc ∞ → Type ℓ where ∅ : Finite ∅ _∣_ : ∀ {P Q} → Finite P → Finite Q → Finite (P ∣ Q) _⊕_ : ∀ {P Q} → Finite P → Finite Q → Finite (P ⊕ Q) action : ∀ {μ P} → Finite (force P) → Finite (μ · P) ⟨ν_⟩ : ∀ {a P} → Finite P → Finite (⟨ν a ⟩ P) !_ : ∀ {P} → Finite P → Finite (! P) -- The transition relation takes finite processes to finite processes. finite→finite : ∀ {P μ Q} → P [ μ ]⟶ Q → Finite P → Finite Q finite→finite (par-left tr) (f₁ ∣ f₂) = finite→finite tr f₁ ∣ f₂ finite→finite (par-right tr) (f₁ ∣ f₂) = f₁ ∣ finite→finite tr f₂ finite→finite (par-τ tr₁ tr₂) (f₁ ∣ f₂) = finite→finite tr₁ f₁ ∣ finite→finite tr₂ f₂ finite→finite (sum-left tr) (f₁ ⊕ f₂) = finite→finite tr f₁ finite→finite (sum-right tr) (f₁ ⊕ f₂) = finite→finite tr f₂ finite→finite action (action f) = f finite→finite (restriction a∉ tr) ⟨ν f ⟩ = ⟨ν finite→finite tr f ⟩ finite→finite (replication tr) (! f) = finite→finite tr (! f ∣ f) -- Subprocess P Q means that P is a syntactic subprocess of Q. data Subprocess (P : Proc ∞) : Proc ∞ → Type ℓ where refl : ∀ {Q} → Equal ∞ P Q → Subprocess P Q par-left : ∀ {Q₁ Q₂} → Subprocess P Q₁ → Subprocess P (Q₁ ∣ Q₂) par-right : ∀ {Q₁ Q₂} → Subprocess P Q₂ → Subprocess P (Q₁ ∣ Q₂) sum-left : ∀ {Q₁ Q₂} → Subprocess P Q₁ → Subprocess P (Q₁ ⊕ Q₂) sum-right : ∀ {Q₁ Q₂} → Subprocess P Q₂ → Subprocess P (Q₁ ⊕ Q₂) action : ∀ {μ Q} → Subprocess P (force Q) → Subprocess P (μ · Q) restriction : ∀ {a Q} → Subprocess P Q → Subprocess P (⟨ν a ⟩ Q) replication : ∀ {Q} → Subprocess P Q → Subprocess P (! Q) -- A process is regular if it has a finite number of distinct -- subprocesses. Regular : Proc ∞ → Type ℓ Regular P = ∃ λ n → ∃ λ (Qs : Fin n → Proc ∞) → ∀ {Q} → Subprocess Q P → ∃ λ (i : Fin n) → Equal ∞ Q (Qs i) -- Lemma 6.2.15 from "Enhancements of the bisimulation proof method". -- That text claims that the lemma is proved by induction on the -- structure of the context. Perhaps that is possible, but the proof -- below uses induction on the structure of the transition relation, -- and in the replication case's recursive call the context is not -- structurally smaller. 6-2-15 : ∀ {n Ps μ P} (C : Context ∞ n) → Weakly-guarded C → C [ Ps ] [ μ ]⟶ P → ∃ λ (C′ : Context ∞ n) → P ≡ C′ [ Ps ] × ∀ Qs → C [ Qs ] [ μ ]⟶ C′ [ Qs ] 6-2-15 ∅ ∅ () 6-2-15 (C₁ ∣ C₂) (w₁ ∣ w₂) (par-left tr) = Σ-map (_∣ C₂) (Σ-map (cong (_∣ _)) (par-left ∘_)) (6-2-15 C₁ w₁ tr) 6-2-15 (C₁ ∣ C₂) (w₁ ∣ w₂) (par-right tr) = Σ-map (C₁ ∣_) (Σ-map (cong (_ ∣_)) (par-right ∘_)) (6-2-15 C₂ w₂ tr) 6-2-15 (C₁ ∣ C₂) (w₁ ∣ w₂) (par-τ tr₁ tr₂) = Σ-zip _∣_ (Σ-zip (cong₂ _) (λ trs₁ trs₂ Qs → par-τ (trs₁ Qs) (trs₂ Qs))) (6-2-15 C₁ w₁ tr₁) (6-2-15 C₂ w₂ tr₂) 6-2-15 (C₁ ⊕ C₂) (w₁ ⊕ w₂) (sum-left tr) = Σ-map id (Σ-map id (sum-left ∘_)) (6-2-15 C₁ w₁ tr) 6-2-15 (C₁ ⊕ C₂) (w₁ ⊕ w₂) (sum-right tr) = Σ-map id (Σ-map id (sum-right ∘_)) (6-2-15 C₂ w₂ tr) 6-2-15 (μ · C) action action = force C , refl , λ _ → action 6-2-15 (⟨ν a ⟩ C) (⟨ν⟩ w) (restriction a∉μ tr) = Σ-map ⟨ν a ⟩ (Σ-map (cong _) (restriction a∉μ ∘_)) (6-2-15 C w tr) 6-2-15 (! C) (! w) (replication tr) = Σ-map id (Σ-map id (replication ∘_)) (6-2-15 (! C ∣ C) (! w ∣ w) tr) -- A variant of the previous lemma. 6-2-15-nd : Proc-extensionality → ∀ {n Ps μ P} (C : Context ∞ n) → Weakly-guarded C → Non-degenerate ∞ C → C [ Ps ] [ μ ]⟶ P → ∃ λ (C′ : Context ∞ n) → Non-degenerate ∞ C′ × P ≡ C′ [ Ps ] × ∀ Qs → C [ Qs ] [ μ ]⟶ C′ [ Qs ] 6-2-15-nd ext ∅ ∅ ∅ () 6-2-15-nd ext (C₁ ∣ C₂) (w₁ ∣ w₂) (n₁ ∣ n₂) (par-left tr) = Σ-map (_∣ C₂) (Σ-map (_∣ n₂) (Σ-map (cong (_∣ _)) (par-left ∘_))) (6-2-15-nd ext C₁ w₁ n₁ tr) 6-2-15-nd ext (C₁ ∣ C₂) (w₁ ∣ w₂) (n₁ ∣ n₂) (par-right tr) = Σ-map (C₁ ∣_) (Σ-map (n₁ ∣_) (Σ-map (cong (_ ∣_)) (par-right ∘_))) (6-2-15-nd ext C₂ w₂ n₂ tr) 6-2-15-nd ext (C₁ ∣ C₂) (w₁ ∣ w₂) (n₁ ∣ n₂) (par-τ tr₁ tr₂) = Σ-zip _∣_ (Σ-zip _∣_ (Σ-zip (cong₂ _) (λ trs₁ trs₂ Qs → par-τ (trs₁ Qs) (trs₂ Qs)))) (6-2-15-nd ext C₁ w₁ n₁ tr₁) (6-2-15-nd ext C₂ w₂ n₂ tr₂) 6-2-15-nd ext (μ · C) action (action n) action = force C , force n , refl , λ _ → action 6-2-15-nd ext (⟨ν a ⟩ C) (⟨ν⟩ w) (⟨ν⟩ n) (restriction a∉μ tr) = Σ-map ⟨ν a ⟩ (Σ-map ⟨ν⟩ (Σ-map (cong _) (restriction a∉μ ∘_))) (6-2-15-nd ext C w n tr) 6-2-15-nd ext (! C) (! w) (! n) (replication tr) = Σ-map id (Σ-map id (Σ-map id (replication ∘_))) (6-2-15-nd ext (! C ∣ C) (! w ∣ w) (! n ∣ n) tr) 6-2-15-nd ext (C₁ ⊕ C₂) (w₁ ⊕ w₂) (action n₁ ⊕ n₂) (sum-left tr) = Σ-map id (Σ-map id (Σ-map id (sum-left ∘_))) (6-2-15-nd ext (_ · _) action (action n₁) tr) 6-2-15-nd ext {Ps = Ps} {P = P} (C₁ ⊕ C₂) (w₁ ⊕ w₂) (process P₁ ⊕ n₂) (sum-left tr) = context P , context-non-degenerate P , ext (context-[] P) , λ Qs → subst (_ [ _ ]⟶_) (ext $ context-[] P) $ subst (λ P → P ⊕ _ [ _ ]⟶ _) (context P₁ [ Ps ] ≡⟨ sym $ ext $ context-[] P₁ ⟩ P₁ ≡⟨ ext $ context-[] P₁ ⟩∎ context P₁ [ Qs ] ∎) $ sum-left tr 6-2-15-nd ext (C₁ ⊕ C₂) (w₁ ⊕ w₂) (n₁ ⊕ action n₂) (sum-right tr) = Σ-map id (Σ-map id (Σ-map id (sum-right ∘_))) (6-2-15-nd ext (_ · _) action (action n₂) tr) 6-2-15-nd ext {Ps = Ps} {P = P} (C₁ ⊕ C₂) (w₁ ⊕ w₂) (n₁ ⊕ process P₂) (sum-right tr) = context P , context-non-degenerate P , ext (context-[] P) , λ Qs → subst (_ [ _ ]⟶_) (ext $ context-[] P) $ subst (λ P → _ ⊕ P [ _ ]⟶ _) (context P₂ [ Ps ] ≡⟨ sym $ ext $ context-[] P₂ ⟩ P₂ ≡⟨ ext $ context-[] P₂ ⟩∎ context P₂ [ Qs ] ∎) $ sum-right tr
{ "alphanum_fraction": 0.4622649257, "avg_line_length": 38.6571428571, "ext": "agda", "hexsha": "8e718d4bb592630b00295c64709304d652276771", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/up-to", "max_forks_repo_path": "src/Labelled-transition-system/CCS.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/up-to", "max_issues_repo_path": "src/Labelled-transition-system/CCS.agda", "max_line_length": 147, "max_stars_count": null, "max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/up-to", "max_stars_repo_path": "src/Labelled-transition-system/CCS.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 8945, "size": 24354 }
True : Prop True = {P : Prop} → P → P
{ "alphanum_fraction": 0.4871794872, "avg_line_length": 9.75, "ext": "agda", "hexsha": "a87e9164bb532439488fa9fe842954046f53f0b0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Fail/Prop-NoImpredicativity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Fail/Prop-NoImpredicativity.agda", "max_line_length": 25, "max_stars_count": 1, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Fail/Prop-NoImpredicativity.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-07T10:49:57.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-07T10:49:57.000Z", "num_tokens": 17, "size": 39 }
{-# OPTIONS --keep-pattern-variables #-} open import Agda.Builtin.Nat open import Agda.Builtin.Equality test₁ : (m : Nat) → m ≡ 0 → Set test₁ m eq = {!eq!} test₂ : (A B : Set) → A ≡ B → Set test₂ A B eq = {!eq!}
{ "alphanum_fraction": 0.6046511628, "avg_line_length": 19.5454545455, "ext": "agda", "hexsha": "3f05e1e50f1cafb0b6a2ee978845f800e69587c2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/KeepPatternVariables.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/KeepPatternVariables.agda", "max_line_length": 40, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/KeepPatternVariables.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 79, "size": 215 }
module Logic where data Bool : Set where true : Bool false : Bool _∧_ : Bool → Bool → Bool false ∧ _ = false true ∧ b = b _∨_ : Bool → Bool → Bool true ∨ _ = true false ∨ b = b
{ "alphanum_fraction": 0.5945945946, "avg_line_length": 14.2307692308, "ext": "agda", "hexsha": "9389874d479931e16b98b09fdabdb0210eb795d1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "112a706f266941d6ec8cb107d18476f9d7ffbbc6", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "neosimsim/merkdas", "max_forks_repo_path": "dependently-typed-programming-in-agda_norell-chapman/Logic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "112a706f266941d6ec8cb107d18476f9d7ffbbc6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "neosimsim/merkdas", "max_issues_repo_path": "dependently-typed-programming-in-agda_norell-chapman/Logic.agda", "max_line_length": 24, "max_stars_count": 1, "max_stars_repo_head_hexsha": "112a706f266941d6ec8cb107d18476f9d7ffbbc6", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "neosimsim/merkdas", "max_stars_repo_path": "dependently-typed-programming-in-agda_norell-chapman/Logic.agda", "max_stars_repo_stars_event_max_datetime": "2020-05-26T08:08:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-26T08:08:13.000Z", "num_tokens": 68, "size": 185 }
{-# OPTIONS --allow-unsolved-metas #-} {-# OPTIONS --rewriting #-} module CBVNTranslations where open import Library open import Polarized -- Intuitionistic propositional logic data IPL : Set where Atom : (P : Atoms) → IPL True False : IPL _∨_ _∧_ _⇒_ : (A B : IPL) → IPL module CallByName where _⁻ : IPL → Form - Atom P ⁻ = Atom- P True ⁻ = True False ⁻ = Comp False (A ∨ B) ⁻ = Comp (Thunk (A ⁻) ∨ Thunk (B ⁻)) (A ∧ B) ⁻ = A ⁻ ∧ B ⁻ (A ⇒ B) ⁻ = Thunk (A ⁻) ⇒ B ⁻ module CallByValue where _⁺ : IPL → Form + Atom P ⁺ = Atom P True ⁺ = True False ⁺ = False (A ∨ B) ⁺ = A ⁺ ∨ B ⁺ (A ∧ B) ⁺ = A ⁺ ∧ B ⁺ (A ⇒ B) ⁺ = Thunk (A ⁺ ⇒ Comp (B ⁺)) mutual _⁺ : IPL → Form + Atom P ⁺ = Atom P True ⁺ = True False ⁺ = False (A ∨ B) ⁺ = A ⁺ ∨ B ⁺ (A ∧ B) ⁺ = A ⁺ ∧ B ⁺ (A ⇒ B) ⁺ = Thunk (A ⁺ ⇒ B ⁻) _⁻ : IPL → Form - Atom P ⁻ = Atom- P True ⁻ = True False ⁻ = Comp False (A ∨ B) ⁻ = Comp (A ⁺ ∨ B ⁺) (A ∧ B) ⁻ = A ⁻ ∧ B ⁻ (A ⇒ B) ⁻ = A ⁺ ⇒ B ⁻ -- Derivations infix 2 _⊢_ data _⊢_ (Γ : Cxt' IPL) : (A : IPL) → Set where hyp : ∀{A} (x : Hyp' IPL A Γ) → Γ ⊢ A impI : ∀{A B} (t : Γ ∙ A ⊢ B) → Γ ⊢ A ⇒ B impE : ∀{A B} (t : Γ ⊢ A ⇒ B) (u : Γ ⊢ A) → Γ ⊢ B andI : ∀{A B} (t : Γ ⊢ A) (u : Γ ⊢ B) → Γ ⊢ A ∧ B andE₁ : ∀{A B} (t : Γ ⊢ A ∧ B) → Γ ⊢ A andE₂ : ∀{A B} (t : Γ ⊢ A ∧ B) → Γ ⊢ B orI₁ : ∀{A B} (t : Γ ⊢ A) → Γ ⊢ A ∨ B orI₂ : ∀{A B} (t : Γ ⊢ B) → Γ ⊢ A ∨ B orE : ∀{A B C} (t : Γ ⊢ A ∨ B) (u : Γ ∙ A ⊢ C) (v : Γ ∙ B ⊢ C) → Γ ⊢ C falseE : ∀{C} (t : Γ ⊢ False) → Γ ⊢ C trueI : Γ ⊢ True Tm = λ A Γ → Γ ⊢ A -- Call-by value evaluation module CBV where V⟦_⟧ = λ A → ⟦ A ⁺ ⟧ C⟦_⟧ = λ A → ⟦ A ⁻ ⟧ return : ∀ A → V⟦ A ⟧ →̇ C⟦ A ⟧ return (Atom P) v = returnC v return True v = v return False v = returnC v return (A ∨ B) v = returnC v return (A ∧ B) (a , b) = return A a , return B b return (A ⇒ B) v = v run : ∀ A → C⟦ A ⟧ →̇ Cover ∞ ∞ V⟦ A ⟧ run (Atom P) c = c run True c = returnC c run False c = c run (A ∨ B) c = c run (A ∧ B) c = joinCover (mapCover' (λ τ a → mapCover' (λ τ' b → (mon⟦ A ⁺ ⟧ τ' a , b)) (run B (mon⟦ B ⁻ ⟧ τ (proj₂ c)))) (run A (proj₁ c))) run (A ⇒ B) c = returnC c -- Fundamental theorem -- Extension of ⟦_⟧ to contexts G⟦_⟧ : ∀ (Γ : Cxt' IPL) (Δ : Cxt) → Set G⟦ ε ⟧ Δ = ⊤ G⟦ Γ ∙ A ⟧ Δ = G⟦ Γ ⟧ Δ × V⟦ A ⟧ Δ -- monG : ∀{Γ Δ Φ} (τ : Φ ≤ Δ) → G⟦ Γ ⟧ Δ → G⟦ Γ ⟧ Φ monG : ∀{Γ} → Mon G⟦ Γ ⟧ monG {ε} τ _ = _ monG {Γ ∙ A} τ (γ , a) = monG τ γ , mon⟦ A ⁺ ⟧ τ a -- Variable case. lookup : ∀{Γ A} (x : Hyp' IPL A Γ) → G⟦ Γ ⟧ →̇ V⟦ A ⟧ lookup top = proj₂ lookup (pop x) = lookup x ∘ proj₁ impIntro : ∀ {A B Γ} (f : KFun (Cover ∞ ∞ ⟦ A ⟧) ⟦ B ⟧ Γ) → ⟦ A ⇒ B ⟧ Γ impIntro f τ a = f τ (returnC a) -- impElim : ∀ A B {Γ} → (f : C⟦ A ⇒ B ⟧ Γ) (a : C⟦ A ⟧ Γ) → C⟦ B ⟧ Γ -- impElim (Atom P) B f = paste (B ⁻) ∘ mapCover' f -- impElim False B f = paste (B ⁻) ∘ mapCover' f -- impElim True B f = f id≤ -- impElim (A ∨ A₁) B f = paste (B ⁻) ∘ mapCover' f -- impElim (A ∧ A₁) B f = {!paste (B ⁻) ∘ mapCover' f!} -- impElim (A ⇒ A₁) B f = f id≤ impElim : ∀ A B {Γ} → (f : C⟦ A ⇒ B ⟧ Γ) (a : C⟦ A ⟧ Γ) → C⟦ B ⟧ Γ impElim A B f a = paste (B ⁻) (mapCover' f (run A a)) -- A lemma for the orE case. orElim : ∀ A B C {Γ} → C⟦ A ∨ B ⟧ Γ → C⟦ A ⇒ C ⟧ Γ → C⟦ B ⇒ C ⟧ Γ → C⟦ C ⟧ Γ orElim A B C c g h = paste (C ⁻) (mapCover' (λ τ → [ g τ , h τ ]) c) -- A lemma for the falseE case. -- Casts an empty cover into any semantic value (by contradiction). falseElim : ∀ C → C⟦ False ⟧ →̇ C⟦ C ⟧ falseElim C = paste (C ⁻) ∘ mapCover ⊥-elim -- The fundamental theorem eval : ∀{A Γ} (t : Γ ⊢ A) → G⟦ Γ ⟧ →̇ C⟦ A ⟧ eval {A} (hyp x) = return A ∘ lookup x eval (impI t) γ τ a = eval t (monG τ γ , a) eval (impE {A} {B} t u) γ = impElim A B (eval t γ) (eval u γ) eval (andI t u) γ = eval t γ , eval u γ eval (andE₁ t) = proj₁ ∘ eval t eval (andE₂ t) = proj₂ ∘ eval t eval (orI₁ {A} {B} t) γ = mapCover inj₁ (run A (eval t γ)) eval (orI₂ {A} {B} t) γ = mapCover inj₂ (run B (eval t γ)) eval (orE {A} {B} {C} t u v) γ = orElim A B C (eval t γ) (λ τ a → eval u (monG τ γ , a)) (λ τ b → eval v (monG τ γ , b)) eval {C} (falseE t) γ = falseElim C (eval t γ) eval trueI γ = _ _⁺⁺ : (Γ : Cxt' IPL) → Cxt ε ⁺⁺ = ε (Γ ∙ A) ⁺⁺ = Γ ⁺⁺ ∙ A ⁻ -- Identity environment ide : ∀ Γ → Cover ∞ ∞ G⟦ Γ ⟧ (Γ ⁺⁺) ide ε = returnC _ ide (Γ ∙ A) = {!!} -- monG (weak id≤) (ide Γ) , {! reflectHyp (A ⁺) (λ τ a → a) !} {- -- Normalization norm : ∀{A : IPL} {Γ : Cxt' IPL} → Tm A Γ → RInv (Γ ⁺⁺) (A ⁻) norm t = reify- _ (eval t (ide _)) -- -} -- -}
{ "alphanum_fraction": 0.4461634957, "avg_line_length": 27.1761363636, "ext": "agda", "hexsha": "ecdf502608b084fb559cd5a5b05f71c0dc0ce387", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-02-25T20:39:03.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-13T16:01:46.000Z", "max_forks_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "andreasabel/ipl", "max_forks_repo_path": "src-focusing/CBVNTranslations.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "andreasabel/ipl", "max_issues_repo_path": "src-focusing/CBVNTranslations.agda", "max_line_length": 143, "max_stars_count": 19, "max_stars_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "andreasabel/ipl", "max_stars_repo_path": "src-focusing/CBVNTranslations.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-27T19:10:49.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-16T08:08:51.000Z", "num_tokens": 2370, "size": 4783 }
module UniDB.Morph.SubsPrime where open import UniDB.Spec open import Function open import Data.Product -------------------------------------------------------------------------------- mutual data Subs* (T : STX) : MOR where refl : {γ : Dom} → Subs* T γ γ incl : {γ₁ γ₂ : Dom} (ξ : Subs+ T γ₁ γ₂) → Subs* T γ₁ γ₂ data Subs+ (T : STX) : MOR where step : {γ₁ γ₂ : Dom} (ξ : Subs* T γ₁ γ₂) (t : T γ₂) → Subs+ T (suc γ₁) γ₂ skip : {γ₁ γ₂ : Dom} (ξ : Subs+ T γ₁ γ₂) → Subs+ T (suc γ₁) (suc γ₂) {- data Subs (T : STX) : MOR where refl : {γ : Dom} → Subs T γ γ step : {γ₁ γ₂ : Dom} (ξ : Subs T γ₁ γ₂) (t : T γ₂) → Subs T (suc γ₁) γ₂ skip : {γ₁ γ₂ : Dom} (ξ : Subs T γ₁ γ₂) → Subs T (suc γ₁) (suc γ₂) instance iUpSubs : {T : STX} → Up (Subs T) _↑₁ {{iUpSubs}} = skip _↑_ {{iUpSubs}} ξ 0 = ξ _↑_ {{iUpSubs}} ξ (suc δ⁺) = ξ ↑ δ⁺ ↑₁ ↑-zero {{iUpSubs}} ξ = refl ↑-suc {{iUpSubs}} ξ δ = refl module _ {T : STX} {{vrT : Vr T}} {{wkT : Wk T}} where instance iLkSubs : Lk T (Subs T) lk {{iLkSubs}} refl i = vr {T} i lk {{iLkSubs}} (step ξ t) zero = t lk {{iLkSubs}} (step ξ t) (suc i) = lk {T} {Subs T} ξ i lk {{iLkSubs}} (skip ξ) zero = vr {T} zero lk {{iLkSubs}} (skip ξ) (suc i) = wk₁ (lk {T} {Subs T} ξ i) -} --------------------------------------------------------------------------------
{ "alphanum_fraction": 0.4471086037, "avg_line_length": 31.5111111111, "ext": "agda", "hexsha": "d78e0b7214b6ad6b69e9b651f3468c99781478c1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "skeuchel/unidb-agda", "max_forks_repo_path": "UniDB/Morph/SubsPrime.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "skeuchel/unidb-agda", "max_issues_repo_path": "UniDB/Morph/SubsPrime.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "skeuchel/unidb-agda", "max_stars_repo_path": "UniDB/Morph/SubsPrime.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 613, "size": 1418 }
------------------------------------------------------------------------ -- Brzozowski-style derivatives of parsers ------------------------------------------------------------------------ module TotalParserCombinators.Derivative.Definition where open import Category.Monad open import Codata.Musical.Notation open import Data.List using (List; map) import Data.List.Categorical import Data.Maybe; open Data.Maybe.Maybe open import Level open RawMonadPlus {f = zero} Data.List.Categorical.monadPlus using () renaming ( return to return′ ; ∅ to fail′ ; _∣_ to _∣′_ ; _⊛_ to _⊛′_ ; _>>=_ to _>>=′_ ) open import TotalParserCombinators.Lib open import TotalParserCombinators.Parser -- A function which calculates the index of the derivative. D-bag : ∀ {Tok R xs} → Tok → Parser Tok R xs → List R D-bag t (return x) = fail′ D-bag t fail = fail′ D-bag t token = return′ t D-bag t (p₁ ∣ p₂) = D-bag t p₁ ∣′ D-bag t p₂ D-bag t (nonempty p) = D-bag t p D-bag t (cast eq p) = D-bag t p D-bag t (f <$> p) = map f (D-bag t p) D-bag t (p₁ ⊛ p₂) with forced? p₁ | forced? p₂ ... | just xs | nothing = D-bag t p₁ ⊛′ xs ... | just xs | just fs = D-bag t p₁ ⊛′ xs ∣′ fs ⊛′ D-bag t p₂ ... | nothing | nothing = fail′ ... | nothing | just fs = fs ⊛′ D-bag t p₂ D-bag t (p₁ >>= p₂) with forced? p₁ | forced?′ p₂ ... | just f | nothing = D-bag t p₁ >>=′ f ... | just f | just xs = (D-bag t p₁ >>=′ f) ∣′ (xs >>=′ λ x → D-bag t (p₂ x)) ... | nothing | nothing = fail′ ... | nothing | just xs = xs >>=′ λ x → D-bag t (p₂ x) -- "Derivative": x ∈ D t p · s iff x ∈ p · t ∷ s. D : ∀ {Tok R xs} (t : Tok) (p : Parser Tok R xs) → Parser Tok R (D-bag t p) D t (return x) = fail D t fail = fail D t token = return t D t (p₁ ∣ p₂) = D t p₁ ∣ D t p₂ D t (nonempty p) = D t p D t (cast eq p) = D t p D t (f <$> p) = f <$> D t p D t (p₁ ⊛ p₂) with forced? p₁ | forced? p₂ ... | just xs | nothing = D t p₁ ⊛ ♭ p₂ ... | just xs | just fs = D t p₁ ⊛ p₂ ∣ return⋆ fs ⊛ D t p₂ ... | nothing | nothing = ♯ D t (♭ p₁) ⊛ ♭ p₂ ... | nothing | just fs = ♯ D t (♭ p₁) ⊛ p₂ ∣ return⋆ fs ⊛ D t p₂ D t (p₁ >>= p₂) with forced? p₁ | forced?′ p₂ ... | just f | nothing = D t p₁ >>= (λ x → ♭ (p₂ x)) ... | just f | just xs = D t p₁ >>= (λ x → p₂ x) ∣ return⋆ xs >>= λ x → D t (p₂ x) ... | nothing | nothing = ♯ D t (♭ p₁) >>= (λ x → ♭ (p₂ x)) ... | nothing | just xs = ♯ D t (♭ p₁) >>= (λ x → p₂ x) ∣ return⋆ xs >>= λ x → D t (p₂ x)
{ "alphanum_fraction": 0.4835414302, "avg_line_length": 37.7571428571, "ext": "agda", "hexsha": "a5dd882f6be7b790150fe7022feb69b146eaf417", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "TotalParserCombinators/Derivative/Definition.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "TotalParserCombinators/Derivative/Definition.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "TotalParserCombinators/Derivative/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 990, "size": 2643 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Cone where open import Level open import Relation.Binary using (IsEquivalence; Setoid; module Setoid) open import Categories.Support.PropositionalEquality open import Categories.Category open import Categories.Functor hiding (_≡_; _∘_) module ConeOver {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {J : Category o′ ℓ′ e′} (F : Functor J C) where module J = Category J open Category C open Functor F record Cone : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′) where field N : Obj ψ : ∀ X → (N ⇒ F₀ X) .commute : ∀ {X Y} (f : J [ X , Y ]) → F₁ f ∘ ψ X ≡ ψ Y Cone′ = Cone record _≜_ (X Y : Cone) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′) where module X = Cone X module Y = Cone Y field N-≣ : X.N ≣ Y.N ψ-≡ : ∀ j → C [ X.ψ j ∼ Y.ψ j ] ≜-is-equivalence : IsEquivalence _≜_ ≜-is-equivalence = record { refl = record { N-≣ = ≣-refl; ψ-≡ = λ j → refl } ; sym = λ X≜Y → let module X≜Y = _≜_ X≜Y in record { N-≣ = ≣-sym X≜Y.N-≣ ; ψ-≡ = λ j → sym (X≜Y.ψ-≡ j) } ; trans = λ X≜Y Y≜Z → let module X≜Y = _≜_ X≜Y in let module Y≜Z = _≜_ Y≜Z in record { N-≣ = ≣-trans X≜Y.N-≣ Y≜Z.N-≣ ; ψ-≡ = λ j → trans (X≜Y.ψ-≡ j) (Y≜Z.ψ-≡ j) } } where open Heterogeneous C cone-setoid : Setoid _ _ cone-setoid = record { Carrier = Cone ; _≈_ = _≜_ ; isEquivalence = ≜-is-equivalence } record ConeUnder (N : Obj) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′) where field ψ′ : ∀ X → (N ⇒ F₀ X) .commute : ∀ {X Y} (f : J [ X , Y ]) → F₁ f ∘ ψ′ X ≡ ψ′ Y ConeUnder′ = ConeUnder untether : ∀ {N} → ConeUnder N → Cone untether {N} K = record { N = N; ψ = ψ′; commute = commute } where open ConeUnder K -- this Henry Ford bit is a little weird but it turns out to be handy tether : ∀ {N} → (K : Cone) → (N ≣ Cone.N K) → ConeUnder N tether K ≣-refl = record { ψ′ = Cone.ψ K; commute = Cone.commute K } record _≜′_ {N} (X Y : ConeUnder N) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′) where module X = ConeUnder X module Y = ConeUnder Y field .ψ′-≡ : ∀ j → C [ X.ψ′ j ≡ Y.ψ′ j ] ≜′-is-equivalence : (N : Obj) → IsEquivalence (_≜′_ {N}) ≜′-is-equivalence N = record { refl = record { ψ′-≡ = λ j → Equiv.refl } ; sym = λ X≜′Y → let module X≜′Y = _≜′_ X≜′Y in record { ψ′-≡ = λ j → Equiv.sym (X≜′Y.ψ′-≡ j) } ; trans = λ X≜′Y Y≜′Z → let module X≜′Y = _≜′_ X≜′Y in let module Y≜′Z = _≜′_ Y≜′Z in record { ψ′-≡ = λ j → Equiv.trans (X≜′Y.ψ′-≡ j) (Y≜′Z.ψ′-≡ j) } } where open Heterogeneous C cone-under-setoid : (N : Obj) → Setoid _ _ cone-under-setoid N = record { Carrier = ConeUnder N ; _≈_ = _≜′_ ; isEquivalence = ≜′-is-equivalence N } private .lemma₁ : ∀ {N j} {f : N ⇒ F₀ j} K → C [ f ∼ Cone.ψ K j ] → (pf : N ≣ Cone.N K) → f ≡ ConeUnder.ψ′ (tether K pf) j lemma₁ K eq ≣-refl = ∼⇒≡ eq where open Heterogeneous C -- allow replacing the N-≣ because sometimes refl is available at the place -- of use. in fact that's the main reason to even have ConeUnders. -- coincidentally, it makes this easier to write! homogenize : ∀ {K₁ K₂} → K₁ ≜ K₂ → (pf : Cone.N K₁ ≣ Cone.N K₂) → tether K₁ ≣-refl ≜′ tether K₂ pf homogenize {K₂ = K₂} K₁≜K₂ pf = record { ψ′-≡ = λ j → lemma₁ K₂ (ψ-≡ j) pf } where open _≜_ K₁≜K₂ open Heterogeneous C heterogenize : ∀ {N} {K₁ K₂ : ConeUnder N} → K₁ ≜′ K₂ → untether K₁ ≜ untether K₂ heterogenize {N} {K₁} {K₂} pf = record { N-≣ = ≣-refl ; ψ-≡ = λ j → Heterogeneous.≡⇒∼ (ψ′-≡ j) } where open _≜′_ pf open Setoid cone-setoid public renaming (refl to ≜-refl; sym to ≜-sym; trans to ≜-trans; reflexive to ≜-reflexive) module ≜′ {N : Obj} = Setoid (cone-under-setoid N) open ConeOver public using (cone-setoid) renaming (_≜_ to _[_≜_]; Cone′ to Cone; _≜′_ to _[_≜′_]; ConeUnder′ to ConeUnder) module Cone {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {J : Category o′ ℓ′ e′} {F : Functor J C} (K : ConeOver.Cone F) = ConeOver.Cone K
{ "alphanum_fraction": 0.5425898572, "avg_line_length": 33.0243902439, "ext": "agda", "hexsha": "ecd97f6f91c0f72422e59b8875f1afb41614b142", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Cone.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Cone.agda", "max_line_length": 133, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Cone.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 1770, "size": 4062 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Empty open import lib.types.Group open import lib.types.Word open import lib.groups.GeneratedGroup open import lib.groups.Homomorphism module lib.groups.FreeGroup where module FreeGroup {i} (A : Type i) where private module Gen = GeneratedGroup A empty-rel open Gen hiding (GenGroup) public FreeGroup : Group i FreeGroup = Gen.GenGroup module Freeness {j} (G : Group j) where private module G = Group G module HE = HomomorphismEquiv G extend-equiv : (A → G.El) ≃ (FreeGroup →ᴳ G) extend-equiv = HE.extend-equiv ∘e every-function-respects-empty-rel-equiv A G extend : (A → G.El) → (FreeGroup →ᴳ G) extend = –> extend-equiv extend-is-equiv : is-equiv extend extend-is-equiv = snd extend-equiv
{ "alphanum_fraction": 0.6891252955, "avg_line_length": 23.5, "ext": "agda", "hexsha": "ceaa2d4f7f22b89f6925c873bbf2701d462a32c1", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "core/lib/groups/FreeGroup.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "core/lib/groups/FreeGroup.agda", "max_line_length": 68, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "core/lib/groups/FreeGroup.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 232, "size": 846 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.NConnected open import lib.NType2 open import lib.types.Span open import lib.types.Pointed open import lib.types.Pushout open import lib.types.PushoutFlip open import lib.types.PushoutFmap open import lib.types.PushoutFlattening open import lib.types.Unit open import lib.types.Paths open import lib.types.Truncation open import lib.types.Lift open import lib.cubical.Square -- Suspension is defined as a particular case of pushout module lib.types.Suspension where module _ {i} (A : Type i) where susp-span : Span susp-span = span Unit Unit A (λ _ → tt) (λ _ → tt) Susp : Type i Susp = Pushout susp-span -- [north'] and [south'] explictly ask for [A] north' : Susp north' = left tt south' : Susp south' = right tt module _ {i} {A : Type i} where north : Susp A north = north' A south : Susp A south = south' A merid : A → north == south merid x = glue x module SuspElim {j} {P : Susp A → Type j} (n : P north) (s : P south) (p : (x : A) → n == s [ P ↓ merid x ]) where open module P = PushoutElim (λ _ → n) (λ _ → s) p public using (f) renaming (glue-β to merid-β) open SuspElim public using () renaming (f to Susp-elim) module SuspRec {j} {C : Type j} (n s : C) (p : A → n == s) where open module P = PushoutRec {d = susp-span A} (λ _ → n) (λ _ → s) p public using (f) renaming (glue-β to merid-β) open SuspRec public using () renaming (f to Susp-rec) module SuspRecType {j} (n s : Type j) (p : A → n ≃ s) = PushoutRecType {d = susp-span A} (λ _ → n) (λ _ → s) p susp-⊙span : ∀ {i} → Ptd i → ⊙Span susp-⊙span X = ⊙span ⊙Unit ⊙Unit X (⊙cst {X = X}) (⊙cst {X = X}) ⊙Susp : ∀ {i} → Ptd i → Ptd i ⊙Susp ⊙[ A , _ ] = ⊙[ Susp A , north ] σloop : ∀ {i} (X : Ptd i) → de⊙ X → north' (de⊙ X) == north' (de⊙ X) σloop ⊙[ _ , x₀ ] x = merid x ∙ ! (merid x₀) σloop-pt : ∀ {i} {X : Ptd i} → σloop X (pt X) == idp σloop-pt {X = ⊙[ _ , x₀ ]} = !-inv-r (merid x₀) ⊙σloop : ∀ {i} (X : Ptd i) → X ⊙→ ⊙[ north' (de⊙ X) == north' (de⊙ X) , idp ] ⊙σloop X = σloop X , σloop-pt module SuspFlip {i} {A : Type i} = SuspRec (south' A) north (! ∘ merid) Susp-flip : ∀ {i} {A : Type i} → Susp A → Susp A Susp-flip = SuspFlip.f ⊙Susp-flip : ∀ {i} (X : Ptd i) → ⊙Susp X ⊙→ ⊙Susp X ⊙Susp-flip X = (Susp-flip , ! (merid (pt X))) Susp-flip-equiv : ∀ {i} {A : Type i} → Susp A ≃ Susp A Susp-flip-equiv {A = A} = Pushout-flip-equiv (susp-span A) module _ {i j} where module SuspFmap {A : Type i} {B : Type j} (f : A → B) = SuspRec north south (merid ∘ f) Susp-fmap : {A : Type i} {B : Type j} (f : A → B) → (Susp A → Susp B) Susp-fmap = SuspFmap.f ⊙Susp-fmap : {X : Ptd i} {Y : Ptd j} (f : X ⊙→ Y) → ⊙Susp X ⊙→ ⊙Susp Y ⊙Susp-fmap (f , fpt) = (Susp-fmap f , idp) module _ {i} where Susp-fmap-idf : (A : Type i) → ∀ a → Susp-fmap (idf A) a == a Susp-fmap-idf A = Susp-elim idp idp $ λ a → ↓-='-in' (ap-idf (merid a) ∙ ! (SuspFmap.merid-β (idf A) a)) ⊙Susp-fmap-idf : (X : Ptd i) → ⊙Susp-fmap (⊙idf X) == ⊙idf (⊙Susp X) ⊙Susp-fmap-idf X = ⊙λ=' (Susp-fmap-idf (de⊙ X)) idp module _ {i j} where Susp-fmap-cst : {A : Type i} {B : Type j} (b : B) (a : Susp A) → Susp-fmap (cst b) a == north Susp-fmap-cst b = Susp-elim idp (! (merid b)) $ (λ a → ↓-app=cst-from-square $ SuspFmap.merid-β (cst b) a ∙v⊡ tr-square _) ⊙Susp-fmap-cst : {X : Ptd i} {Y : Ptd j} → ⊙Susp-fmap (⊙cst {X = X} {Y = Y}) == ⊙cst ⊙Susp-fmap-cst = ⊙λ=' (Susp-fmap-cst _) idp Susp-flip-fmap : {A : Type i} {B : Type j} (f : A → B) → ∀ σ → Susp-flip (Susp-fmap f σ) == Susp-fmap f (Susp-flip σ) Susp-flip-fmap f = Susp-elim idp idp $ λ y → ↓-='-in' $ ap-∘ (Susp-fmap f) Susp-flip (merid y) ∙ ap (ap (Susp-fmap f)) (SuspFlip.merid-β y) ∙ ap-! (Susp-fmap f) (merid y) ∙ ap ! (SuspFmap.merid-β f y) ∙ ! (SuspFlip.merid-β (f y)) ∙ ! (ap (ap Susp-flip) (SuspFmap.merid-β f y)) ∙ ∘-ap Susp-flip (Susp-fmap f) (merid y) module _ {i j k} where Susp-fmap-∘ : {A : Type i} {B : Type j} {C : Type k} (g : B → C) (f : A → B) (σ : Susp A) → Susp-fmap (g ∘ f) σ == Susp-fmap g (Susp-fmap f σ) Susp-fmap-∘ g f = Susp-elim idp idp (λ a → ↓-='-in' $ ap-∘ (Susp-fmap g) (Susp-fmap f) (merid a) ∙ ap (ap (Susp-fmap g)) (SuspFmap.merid-β f a) ∙ SuspFmap.merid-β g (f a) ∙ ! (SuspFmap.merid-β (g ∘ f) a)) ⊙Susp-fmap-∘ : {X : Ptd i} {Y : Ptd j} {Z : Ptd k} (g : Y ⊙→ Z) (f : X ⊙→ Y) → ⊙Susp-fmap (g ⊙∘ f) == ⊙Susp-fmap g ⊙∘ ⊙Susp-fmap f ⊙Susp-fmap-∘ g f = ⊙λ=' (Susp-fmap-∘ (fst g) (fst f)) idp {- Extract the 'glue component' of a pushout -} module _ {i j k} {s : Span {i} {j} {k}} where module ExtractGlue = PushoutRec {d = s} {D = Susp (Span.C s)} (λ _ → north) (λ _ → south) merid extract-glue = ExtractGlue.f module _ {x₀ : Span.A s} where ⊙extract-glue : ⊙[ Pushout s , left x₀ ] ⊙→ ⊙[ Susp (Span.C s) , north ] ⊙extract-glue = extract-glue , idp module _ {i j} {A : Type i} {B : Type j} (eq : A ≃ B) where susp-span-emap : SpanEquiv (susp-span A) (susp-span B) susp-span-emap = ( span-map (idf _) (idf _) (fst eq) (comm-sqr λ _ → idp) (comm-sqr λ _ → idp) , idf-is-equiv _ , idf-is-equiv _ , snd eq) Susp-emap : Susp A ≃ Susp B Susp-emap = Pushout-emap susp-span-emap private -- This is to make sure that we did not screw up [Susp-emap]. test₀ : fst Susp-emap == Susp-fmap (fst eq) test₀ = idp module _ {i j} {X : Ptd i} {Y : Ptd j} where ⊙Susp-emap : X ⊙≃ Y → ⊙Susp X ⊙≃ ⊙Susp Y ⊙Susp-emap ⊙eq = ≃-to-⊙≃ (Susp-emap (⊙≃-to-≃ ⊙eq)) idp {- Interaction with [Lift] -} module _ {i j} (X : Type i) where Susp-Lift-econv : Susp (Lift {j = j} X) ≃ Lift {j = j} (Susp X) Susp-Lift-econv = lift-equiv ∘e Susp-emap lower-equiv Susp-Lift-conv : Susp (Lift {j = j} X) == Lift {j = j} (Susp X) Susp-Lift-conv = ua Susp-Lift-econv module _ {i j} (X : Ptd i) where ⊙Susp-Lift-econv : ⊙Susp (⊙Lift {j = j} X) ⊙≃ ⊙Lift {j = j} (⊙Susp X) ⊙Susp-Lift-econv = ⊙lift-equiv {j = j} ⊙∘e ⊙Susp-emap {X = ⊙Lift {j = j} X} {Y = X} ⊙lower-equiv ⊙Susp-Lift-conv : ⊙Susp (⊙Lift {j = j} X) == ⊙Lift {j = j} (⊙Susp X) ⊙Susp-Lift-conv = ⊙ua ⊙Susp-Lift-econv {- Suspension of an n-connected space is n+1-connected -} abstract Susp-conn : ∀ {i} {A : Type i} {n : ℕ₋₂} → is-connected n A → is-connected (S n) (Susp A) Susp-conn {A = A} {n = n} cA = has-level-in ([ north ] , Trunc-elim (Susp-elim idp (Trunc-rec (λ a → ap [_] (merid a)) (contr-center cA)) (λ x → Trunc-elim {P = λ y → idp == Trunc-rec (λ a → ap [_] (merid a)) y [ (λ z → [ north ] == [ z ]) ↓ (merid x) ]} {{λ _ → ↓-preserves-level ⟨⟩}} (λ x' → ↓-cst=app-in (∙'-unit-l _ ∙ mers-eq n x x')) (contr-center cA)))) where instance _ = cA mers-eq : ∀ {i} {A : Type i} (n : ℕ₋₂) {{_ : is-connected n A}} → (x x' : A) → ap ([_] {n = S n}) (merid x) == Trunc-rec {{has-level-apply (Trunc-level {n = S n}) _ _}} (λ a → ap [_] (merid a)) [ x' ] mers-eq ⟨-2⟩ x x' = contr-has-all-paths _ _ mers-eq {A = A} (S n) x x' = conn-extend (pointed-conn-out A x) (λ y → ((ap [_] (merid x) == ap [_] (merid y)) , has-level-apply (has-level-apply (Trunc-level {n = S (S n)}) _ _) _ _)) (λ _ → idp) x'
{ "alphanum_fraction": 0.5379991986, "avg_line_length": 31.3263598326, "ext": "agda", "hexsha": "5142ec469c87002723df912c6587f905be90a97b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Suspension.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Suspension.agda", "max_line_length": 100, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Suspension.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3136, "size": 7487 }
-- {-# OPTIONS -v tc.meta:25 #-} module Issue418 where data _≡_ (A : Set₁) : Set₁ → Set₂ where refl : A ≡ A abstract A : Set₁ A = Set unfold-A : A ≡ _ unfold-A = refl -- I don't think we should solve the meta-variable corresponding to -- the underscore above. We have two obvious choices, A and Set, and -- these choices are not equivalent. -- Andreas, 2011-05-30 -- Meta-Variable should remain unsolved
{ "alphanum_fraction": 0.6674584323, "avg_line_length": 19.1363636364, "ext": "agda", "hexsha": "be84ed9c249980d845f8f677b79e7ab712027f39", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Fail/Issue418.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Fail/Issue418.agda", "max_line_length": 68, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/Issue418.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 128, "size": 421 }
module _ where id : (A B : Set₁) → (A → B) → A → B id _ _ f = f postulate P : (A : Set₁) → A → Set₁ cong : (A B : Set₁) (f : A → B) (x : A) → P A x → P B (f x) A : Set record R₀ (B : Set) : Set₁ where constructor mkR₀ no-eta-equality field proj₁ : Set proj₂ : B record R₁ (_ : Set) : Set₁ where constructor mkR₁ eta-equality field p : R₀ A X : Set X = R₀.proj₁ p record R₂ (r : R₁ A) : Set₁ where constructor mkR₂ eta-equality field g : R₀ (R₁.X r) should-succeed : (r₁ : R₁ A) (r₂ : R₂ r₁) → P (R₂ r₁) r₂ → P (R₀ (R₁.X r₁)) (R₂.g r₂) should-succeed r₁ r₂ = id (P _ _) (P (R₀ (R₁.X r₁)) (R₂.g r₂)) (cong _ _ R₂.g _)
{ "alphanum_fraction": 0.5231884058, "avg_line_length": 16.8292682927, "ext": "agda", "hexsha": "5e5a1b526cc2f95965bb3188f1cba506ec7d8c2f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2553.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Succeed/Issue2553.agda", "max_line_length": 61, "max_stars_count": 2, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Succeed/Issue2553.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 317, "size": 690 }
-- Jesper, 2018-12-04, Issue #3431 reported by François Thiré on the -- Agda mailing list -- (https://lists.chalmers.se/pipermail/agda/2018/010686.html) -- The instance of the Reduce typeclass for pairs did not have an -- implementation for reduceB' (only reduce'), which made it default -- to the standard implementation and forget the blocking tags. {-# OPTIONS --rewriting #-} open import Agda.Primitive open import Agda.Builtin.Equality {-# BUILTIN REWRITE _≡_ #-} 0ℓ : Level 0ℓ = lzero 1ℓ : Level 1ℓ = lsuc lzero record Lift {a} ℓ (A : Set a) : Set (a ⊔ ℓ) where constructor lift field lower : A postulate prod : {ℓ ℓ′ : Level} → (A : Set ℓ) → (B : Set ℓ′) → Set (ℓ ⊔ ℓ′) p : Set 1ℓ → Set 1ℓ q : Set 1ℓ → Set 1ℓ f : ∀ (c : Set 0ℓ) → p (Lift 1ℓ c) → q (Lift 1ℓ c) g : ∀ (a : Set 1ℓ) → ∀ (b : Set 1ℓ) → p (prod a b) a : Set 0ℓ b : Set 0ℓ canL : {ℓ ℓ′ ℓ″ : Level} → (A : Set ℓ) → (B : Set ℓ′) → (prod (Lift ℓ″ A) B) ≡ Lift (ℓ″ ⊔ ℓ′) (prod A B) canR : {ℓ ℓ′ ℓ″ : Level} → (A : Set ℓ) → (B : Set ℓ′) → (prod A (Lift ℓ″ B)) ≡ Lift (ℓ ⊔ ℓ″) (prod A B) canT : {ℓ ℓ′ ℓ″ : Level} → (A : Set ℓ) → Lift ℓ″ (Lift ℓ′ A) ≡ Lift (ℓ″ ⊔ ℓ′) A {-# REWRITE canL #-} {-# REWRITE canR #-} {-# REWRITE canT #-} ali : q (Lift 1ℓ (prod a b)) ali = f (prod a b) (g (Lift 1ℓ {!!}) (Lift 1ℓ b)) -- WAS: Set₁ != Set -- SHOULD: succeed (with unsolved metas and constraints)
{ "alphanum_fraction": 0.5763688761, "avg_line_length": 28.9166666667, "ext": "agda", "hexsha": "4ca84cbad7825149ec1cf8921b2447dd3f3f8a72", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "phadej/agda", "max_forks_repo_path": "test/Fail/Issue3431.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "phadej/agda", "max_issues_repo_path": "test/Fail/Issue3431.agda", "max_line_length": 107, "max_stars_count": null, "max_stars_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "phadej/agda", "max_stars_repo_path": "test/Fail/Issue3431.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 608, "size": 1388 }
open import Agda.Builtin.Equality open import Agda.Builtin.List open import Agda.Builtin.Reflection renaming (bindTC to _>>=_) open import Agda.Builtin.Unit macro pickWhatever : Term → TC ⊤ pickWhatever hole@(meta m _) = do (cand ∷ _) ← getInstances m where [] -> typeError (strErr "No candidates!" ∷ []) unify hole cand pickWhatever _ = typeError (strErr "Already solved!" ∷ []) -- Testing basic functionality data YesNo : Set where instance yes no : YesNo test₁ : YesNo test₁ = pickWhatever test₁-ok : test₁ ≡ yes test₁-ok = refl -- Testing if candidates are correctly filtered data IsYesNo : YesNo → Set where instance isYes : IsYesNo yes isNo : IsYesNo no test₂ : IsYesNo no test₂ = pickWhatever -- Testing local candidates test₃ : {{YesNo}} → YesNo test₃ = pickWhatever test₃-ok : ∀ {x} → test₃ {{x}} ≡ x test₃-ok = refl
{ "alphanum_fraction": 0.700814901, "avg_line_length": 22.6052631579, "ext": "agda", "hexsha": "29ad36c147b08777a364afdfda6bd8cdb3f1172b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Succeed/GetInstanceCandidates.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Succeed/GetInstanceCandidates.agda", "max_line_length": 62, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Succeed/GetInstanceCandidates.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 264, "size": 859 }
module Definitions where data ℕ : Set where zero : ℕ suc : (n : ℕ) → ℕ data _≡_ (x : ℕ) : ℕ → Set where refl : x ≡ x data _≢_ : ℕ → ℕ → Set where z≢s : ∀ {n} → zero ≢ suc n s≢z : ∀ {n} → suc n ≢ zero s≢s : ∀ {m n} → m ≢ n → suc m ≢ suc n data Equal? (m n : ℕ) : Set where yes : m ≡ n → Equal? m n no : m ≢ n → Equal? m n data ⊥ : Set where
{ "alphanum_fraction": 0.4848484848, "avg_line_length": 18.15, "ext": "agda", "hexsha": "dd49f1bd3528e36eb876e291eb75c01ec8e44207", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "danr/agder", "max_forks_repo_path": "problems/NatEquality/Definitions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "danr/agder", "max_issues_repo_path": "problems/NatEquality/Definitions.agda", "max_line_length": 39, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "danr/agder", "max_stars_repo_path": "problems/NatEquality/Definitions.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-17T12:07:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-05-17T12:07:03.000Z", "num_tokens": 169, "size": 363 }
module STLC where open import Data.Nat open import Data.Empty open import Relation.Binary.PropositionalEquality -- infix 4 _⊢_ -- infix 4 _∋_∶_ -- infixl 5 _,_ infixr 7 _⟶_ infix 5 ƛ_ infixl 7 _∙_ -- infix 9 `_ infixl 10 _∶_ -- infix 5 μ_ -- infix 8 `suc_ -- infix 9 S_ -- infix 9 #_ data Type : Set where _⟶_ : Type → Type → Type ⊤ : Type data Context : Set data Term : Set infix 4 _∋_∶_ data _∋_∶_ : Context → Term → Type → Set infixl 10 _,_∶_ data Context where ∅ : Context _,_∶_ : Context → Term → Type → Context data Term where ‵_ : ∀ {Γ x A} → Γ ∋ x ∶ A → Term ƛ_ : Term → Term _∙_ : Term → Term → Term _∶_ : Term → Type → Term tt : Term data _∋_∶_ where Z : ∀ {Γ x A} --------- → Γ , x ∶ A ∋ x ∶ A S_ : ∀ {Γ x A y B} → Γ ∋ x ∶ A --------- → Γ , y ∶ B ∋ x ∶ A -- lookup : Context → ℕ → Type -- lookup (Γ , A) zero = A -- lookup (Γ , _) (suc n) = lookup Γ n -- lookup ∅ _ = ⊥-elim impossible -- where postulate impossible : ⊥ -- count : ∀ {Γ} → (n : ℕ) → Γ ∋ lookup Γ n -- count {Γ , _} zero = Z -- count {Γ , _} (suc n) = S (count n) -- count {∅} _ = ⊥-elim impossible -- where postulate impossible : ⊥ -- -- #_ : ∀ {Γ} → (n : ℕ) → Γ ⊢ lookup Γ n -- -- # n = ` count n -- a = {! !} infix 4 _⊢_⇐_ infix 4 _⊢_⇒_ data _⊢_⇐_ : Context → Term → Type → Set data _⊢_⇒_ : Context → Term → Type → Set variable Γ : Context x e f : Term A B : Type data _⊢_⇒_ where Var : Γ ∋ x ∶ A ---------------------------- → Γ ⊢ x ⇒ A Anno : Γ ⊢ e ⇐ A ---------------------------- → Γ ⊢ (e ∶ A) ⇒ A ⟶E : Γ ⊢ f ⇒ (A ⟶ B) → Γ ⊢ e ⇐ A ---------------------------- → Γ ⊢ f ∙ e ⇒ B data _⊢_⇐_ where Sub : Γ ∋ e ∶ A → A ≡ B ---------------------------- → Γ ⊢ e ⇐ B ⊤I : ∀ {Γ} ---------------------------- → Γ ⊢ tt ⇐ ⊤ ⟶I : (Γ , x ∶ A) ⊢ e ⇐ B ---------------------------- → Γ ⊢ ƛ e ⇐ A ⟶ B 4-4-Synth : ∅ , x ∶ A ⊢ x ⇒ A 4-4-Synth = Var Z 4-4-Check : ∅ , x ∶ A ⊢ x ⇐ A 4-4-Check = Sub Z refl 4-4-Sym→Elim : ∅ , f ∶ (A ⟶ B) , x ∶ A ⊢ (f ∙ x) ⇒ B 4-4-Sym→Elim = ⟶E (Var (S Z)) (Sub Z refl)
{ "alphanum_fraction": 0.4162936437, "avg_line_length": 16.071942446, "ext": "agda", "hexsha": "dc3f7dcc30133c17d5f5bd3a44e5346d93748f04", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/bidirectional", "max_forks_repo_path": "LC/stash/STLC.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/bidirectional", "max_issues_repo_path": "LC/stash/STLC.agda", "max_line_length": 52, "max_stars_count": 2, "max_stars_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/bidirectional", "max_stars_repo_path": "LC/stash/STLC.agda", "max_stars_repo_stars_event_max_datetime": "2020-08-25T14:05:01.000Z", "max_stars_repo_stars_event_min_datetime": "2020-08-25T07:34:40.000Z", "num_tokens": 986, "size": 2234 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Categories.Instances.CommAlgebras where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Powerset open import Cubical.Foundations.HLevels open import Cubical.Data.Unit open import Cubical.Data.Sigma open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.Algebra open import Cubical.Algebra.CommAlgebra open import Cubical.Algebra.CommAlgebra.Instances.Unit open import Cubical.Categories.Category open import Cubical.Categories.Functor.Base open import Cubical.Categories.Limits.Terminal open import Cubical.Categories.Limits.Pullback open import Cubical.Categories.Instances.CommRings open import Cubical.HITs.PropositionalTruncation open Category hiding (_∘_) renaming (_⋆_ to _⋆c_) open CommAlgebraHoms open Cospan open Pullback private variable ℓ ℓ' ℓ'' : Level module _ (R : CommRing ℓ) where CommAlgebrasCategory : Category (ℓ-suc (ℓ-max ℓ ℓ')) (ℓ-max ℓ ℓ') ob CommAlgebrasCategory = CommAlgebra R _ Hom[_,_] CommAlgebrasCategory = CommAlgebraHom id CommAlgebrasCategory {A} = idCommAlgebraHom A _⋆c_ CommAlgebrasCategory {A} {B} {C} = compCommAlgebraHom A B C ⋆IdL CommAlgebrasCategory {A} {B} = compIdCommAlgebraHom {A = A} {B} ⋆IdR CommAlgebrasCategory {A} {B} = idCompCommAlgebraHom {A = A} {B} ⋆Assoc CommAlgebrasCategory {A} {B} {C} {D} = compAssocCommAlgebraHom {A = A} {B} {C} {D} isSetHom CommAlgebrasCategory = isSetAlgebraHom _ _ TerminalCommAlgebra : Terminal (CommAlgebrasCategory {ℓ' = ℓ'}) fst TerminalCommAlgebra = UnitCommAlgebra R fst (fst (snd TerminalCommAlgebra A)) = λ _ → tt* snd (fst (snd TerminalCommAlgebra A)) = makeIsAlgebraHom refl (λ _ _ → refl) (λ _ _ → refl) (λ _ _ → refl) snd (snd TerminalCommAlgebra A) f = AlgebraHom≡ (funExt (λ _ → refl)) module PullbackFromCommRing (R : CommRing ℓ) (commRingCospan : Cospan (CommRingsCategory {ℓ = ℓ})) (commRingPB : Pullback _ commRingCospan) (f₁ : CommRingHom R (commRingPB .pbOb)) (f₂ : CommRingHom R (commRingCospan .r)) (f₃ : CommRingHom R (commRingCospan .l)) (f₄ : CommRingHom R (commRingCospan .m)) where open AlgebraHoms open CommAlgChar R open CommAlgebraStr ⦃...⦄ private CommAlgCat = CommAlgebrasCategory {ℓ = ℓ} R {ℓ' = ℓ} A = commRingPB .pbOb B = commRingCospan .r C = commRingCospan .l D = commRingCospan .m g₁ = commRingPB .pbPr₂ g₂ = commRingPB .pbPr₁ g₃ = commRingCospan .s₂ g₄ = commRingCospan .s₁ {- g₁ A → B ⌟ g₂ ↓ ↓ g₃ C → D g₄ -} open RingHoms univPropCommRingWithHomHom : (isRHom₁ : isCommRingWithHomHom (A , f₁) (B , f₂) g₁) (isRHom₂ : isCommRingWithHomHom (A , f₁) (C , f₃) g₂) (isRHom₃ : isCommRingWithHomHom (B , f₂) (D , f₄) g₃) (isRHom₄ : isCommRingWithHomHom (C , f₃) (D , f₄) g₄) (E,f₅ : CommRingWithHom) (h₂ : CommRingWithHomHom E,f₅ (C , f₃)) (h₁ : CommRingWithHomHom E,f₅ (B , f₂)) → g₄ ∘r fst h₂ ≡ g₃ ∘r fst h₁ → ∃![ h₃ ∈ CommRingWithHomHom E,f₅ (A , f₁) ] (fst h₂ ≡ g₂ ∘r fst h₃) × (fst h₁ ≡ g₁ ∘r fst h₃) univPropCommRingWithHomHom isRHom₁ isRHom₂ isRHom₃ isRHom₄ (E , f₅) (h₂ , comm₂) (h₁ , comm₁) squareComm = ((h₃ , h₃∘f₅≡f₁) , h₂≡g₂∘h₃ , h₁≡g₁∘h₃) , λ h₃' → Σ≡Prop (λ _ → isProp× (isSetRingHom _ _ _ _) (isSetRingHom _ _ _ _)) (Σ≡Prop (λ _ → isSetRingHom _ _ _ _) (cong fst (commRingPB .univProp h₂ h₁ squareComm .snd (h₃' .fst .fst , h₃' .snd .fst , h₃' .snd .snd)))) where h₃ : CommRingHom E A h₃ = commRingPB .univProp h₂ h₁ squareComm .fst .fst h₂≡g₂∘h₃ : h₂ ≡ g₂ ∘r h₃ h₂≡g₂∘h₃ = commRingPB .univProp h₂ h₁ squareComm .fst .snd .fst h₁≡g₁∘h₃ : h₁ ≡ g₁ ∘r h₃ h₁≡g₁∘h₃ = commRingPB .univProp h₂ h₁ squareComm .fst .snd .snd -- the crucial obervation: -- we can apply the universal property to maps R → A fgSquare : g₄ ∘r f₃ ≡ g₃ ∘r f₂ fgSquare = isRHom₄ ∙ sym isRHom₃ h₃∘f₅≡f₁ : h₃ ∘r f₅ ≡ f₁ h₃∘f₅≡f₁ = cong fst (isContr→isProp (commRingPB .univProp f₃ f₂ fgSquare) (h₃ ∘r f₅ , triangle1 , triangle2) (f₁ , (sym isRHom₂) , sym isRHom₁)) where triangle1 : f₃ ≡ g₂ ∘r (h₃ ∘r f₅) triangle1 = sym comm₂ ∙∙ cong (compRingHom f₅) h₂≡g₂∘h₃ ∙∙ sym (compAssocRingHom f₅ h₃ g₂) triangle2 : f₂ ≡ g₁ ∘r (h₃ ∘r f₅) triangle2 = sym comm₁ ∙∙ cong (compRingHom f₅) h₁≡g₁∘h₃ ∙∙ sym (compAssocRingHom f₅ h₃ g₁) algCospan : (isRHom₁ : isCommRingWithHomHom (A , f₁) (B , f₂) g₁) (isRHom₂ : isCommRingWithHomHom (A , f₁) (C , f₃) g₂) (isRHom₃ : isCommRingWithHomHom (B , f₂) (D , f₄) g₃) (isRHom₄ : isCommRingWithHomHom (C , f₃) (D , f₄) g₄) → Cospan CommAlgCat l (algCospan isRHom₁ isRHom₂ isRHom₃ isRHom₄) = toCommAlg (C , f₃) m (algCospan isRHom₁ isRHom₂ isRHom₃ isRHom₄) = toCommAlg (D , f₄) r (algCospan isRHom₁ isRHom₂ isRHom₃ isRHom₄) = toCommAlg (B , f₂) s₁ (algCospan isRHom₁ isRHom₂ isRHom₃ isRHom₄) = toCommAlgebraHom _ _ g₄ isRHom₄ s₂ (algCospan isRHom₁ isRHom₂ isRHom₃ isRHom₄) = toCommAlgebraHom _ _ g₃ isRHom₃ algPullback : (isRHom₁ : isCommRingWithHomHom (A , f₁) (B , f₂) g₁) (isRHom₂ : isCommRingWithHomHom (A , f₁) (C , f₃) g₂) (isRHom₃ : isCommRingWithHomHom (B , f₂) (D , f₄) g₃) (isRHom₄ : isCommRingWithHomHom (C , f₃) (D , f₄) g₄) → Pullback CommAlgCat (algCospan isRHom₁ isRHom₂ isRHom₃ isRHom₄) pbOb (algPullback isRHom₁ isRHom₂ isRHom₃ isRHom₄) = toCommAlg (A , f₁) pbPr₁ (algPullback isRHom₁ isRHom₂ isRHom₃ isRHom₄) = toCommAlgebraHom _ _ g₂ isRHom₂ pbPr₂ (algPullback isRHom₁ isRHom₂ isRHom₃ isRHom₄) = toCommAlgebraHom _ _ g₁ isRHom₁ pbCommutes (algPullback isRHom₁ isRHom₂ isRHom₃ isRHom₄) = AlgebraHom≡ (cong fst (pbCommutes commRingPB)) univProp (algPullback isRHom₁ isRHom₂ isRHom₃ isRHom₄) {d = F} h₂' h₁' g₄∘h₂'≡g₃∘h₁' = (k , kComm₂ , kComm₁) , uniqueness where E = fromCommAlg F .fst f₅ = fromCommAlg F .snd h₁ : CommRingHom E B fst h₁ = fst h₁' IsRingHom.pres0 (snd h₁) = IsAlgebraHom.pres0 (snd h₁') IsRingHom.pres1 (snd h₁) = IsAlgebraHom.pres1 (snd h₁') IsRingHom.pres+ (snd h₁) = IsAlgebraHom.pres+ (snd h₁') IsRingHom.pres· (snd h₁) = IsAlgebraHom.pres· (snd h₁') IsRingHom.pres- (snd h₁) = IsAlgebraHom.pres- (snd h₁') h₁comm : h₁ ∘r f₅ ≡ f₂ h₁comm = RingHom≡ (funExt (λ x → IsAlgebraHom.pres⋆ (snd h₁') x 1a ∙∙ cong (fst f₂ x ·_) (IsAlgebraHom.pres1 (snd h₁')) ∙∙ ·Rid _)) where instance _ = snd F _ = snd (toCommAlg (B , f₂)) h₂ : CommRingHom E C fst h₂ = fst h₂' IsRingHom.pres0 (snd h₂) = IsAlgebraHom.pres0 (snd h₂') IsRingHom.pres1 (snd h₂) = IsAlgebraHom.pres1 (snd h₂') IsRingHom.pres+ (snd h₂) = IsAlgebraHom.pres+ (snd h₂') IsRingHom.pres· (snd h₂) = IsAlgebraHom.pres· (snd h₂') IsRingHom.pres- (snd h₂) = IsAlgebraHom.pres- (snd h₂') h₂comm : h₂ ∘r f₅ ≡ f₃ h₂comm = RingHom≡ (funExt (λ x → IsAlgebraHom.pres⋆ (snd h₂') x 1a ∙∙ cong (fst f₃ x ·_) (IsAlgebraHom.pres1 (snd h₂')) ∙∙ ·Rid _)) where instance _ = snd F _ = snd (toCommAlg (C , f₃)) commRingSquare : g₄ ∘r h₂ ≡ g₃ ∘r h₁ commRingSquare = RingHom≡ (funExt (λ x → funExt⁻ (cong fst g₄∘h₂'≡g₃∘h₁') x)) uniqueH₃ : ∃![ h₃ ∈ CommRingWithHomHom (E , f₅) (A , f₁) ] (h₂ ≡ g₂ ∘r fst h₃) × (h₁ ≡ g₁ ∘r fst h₃) uniqueH₃ = univPropCommRingWithHomHom isRHom₁ isRHom₂ isRHom₃ isRHom₄ (E , f₅) (h₂ , h₂comm) (h₁ , h₁comm) commRingSquare h₃ : CommRingHom E A h₃ = uniqueH₃ .fst .fst .fst h₃comm = uniqueH₃ .fst .fst .snd k : CommAlgebraHom F (toCommAlg (A , f₁)) fst k = fst h₃ IsAlgebraHom.pres0 (snd k) = IsRingHom.pres0 (snd h₃) IsAlgebraHom.pres1 (snd k) = IsRingHom.pres1 (snd h₃) IsAlgebraHom.pres+ (snd k) = IsRingHom.pres+ (snd h₃) IsAlgebraHom.pres· (snd k) = IsRingHom.pres· (snd h₃) IsAlgebraHom.pres- (snd k) = IsRingHom.pres- (snd h₃) IsAlgebraHom.pres⋆ (snd k) = λ r y → sym (fst f₁ r · fst h₃ y ≡⟨ cong (_· fst h₃ y) (sym (funExt⁻ (cong fst h₃comm) r)) ⟩ fst h₃ (fst f₅ r) · fst h₃ y ≡⟨ sym (IsRingHom.pres· (snd h₃) _ _) ⟩ fst h₃ (fst f₅ r · y) ≡⟨ refl ⟩ fst h₃ ((r ⋆ 1a) · y) ≡⟨ cong (fst h₃) (⋆-lassoc _ _ _) ⟩ fst h₃ (r ⋆ (1a · y)) ≡⟨ cong (λ x → fst h₃ (r ⋆ x)) (·Lid y) ⟩ fst h₃ (r ⋆ y) ∎) where instance _ = snd F _ = (toCommAlg (A , f₁) .snd) kComm₂ : h₂' ≡ toCommAlgebraHom _ _ g₂ isRHom₂ ∘a k kComm₂ = AlgebraHom≡ (cong fst (uniqueH₃ .fst .snd .fst)) kComm₁ : h₁' ≡ toCommAlgebraHom _ _ g₁ isRHom₁ ∘a k kComm₁ = AlgebraHom≡ (cong fst (uniqueH₃ .fst .snd .snd)) uniqueness : (y : Σ[ k' ∈ CommAlgebraHom F (toCommAlg (A , f₁)) ] (h₂' ≡ toCommAlgebraHom _ _ g₂ isRHom₂ ∘a k') × (h₁' ≡ toCommAlgebraHom _ _ g₁ isRHom₁ ∘a k')) → (k , kComm₂ , kComm₁) ≡ y uniqueness (k' , k'Comm₂ , k'Comm₁) = Σ≡Prop (λ _ → isProp× (isSetAlgebraHom _ _ _ _) (isSetAlgebraHom _ _ _ _)) (AlgebraHom≡ (cong (fst ∘ fst ∘ fst) uniqHelper)) where h₃' : CommRingHom E A fst h₃' = fst k' IsRingHom.pres0 (snd h₃') = IsAlgebraHom.pres0 (snd k') IsRingHom.pres1 (snd h₃') = IsAlgebraHom.pres1 (snd k') IsRingHom.pres+ (snd h₃') = IsAlgebraHom.pres+ (snd k') IsRingHom.pres· (snd h₃') = IsAlgebraHom.pres· (snd k') IsRingHom.pres- (snd h₃') = IsAlgebraHom.pres- (snd k') h₃'IsRHom : h₃' ∘r f₅ ≡ f₁ h₃'IsRHom = RingHom≡ (funExt (λ x → IsAlgebraHom.pres⋆ (snd k') x 1a ∙ cong (fst f₁ x ·_) (IsAlgebraHom.pres1 (snd k')) ∙ ·Rid (fst f₁ x))) where instance _ = snd F _ = (toCommAlg (A , f₁) .snd) h₃'Comm₂ : h₂ ≡ g₂ ∘r h₃' h₃'Comm₂ = RingHom≡ (cong fst k'Comm₂) h₃'Comm₁ : h₁ ≡ g₁ ∘r h₃' h₃'Comm₁ = RingHom≡ (cong fst k'Comm₁) -- basically saying that h₃≡h₃' but we have to give all the commuting triangles uniqHelper : uniqueH₃ .fst ≡ ((h₃' , h₃'IsRHom) , h₃'Comm₂ , h₃'Comm₁) uniqHelper = uniqueH₃ .snd ((h₃' , h₃'IsRHom) , h₃'Comm₂ , h₃'Comm₁) module PreSheafFromUniversalProp (C : Category ℓ ℓ') (P : ob C → Type ℓ) {R : CommRing ℓ''} (𝓕 : Σ (ob C) P → CommAlgebra R ℓ'') (uniqueHom : ∀ x y → C [ fst x , fst y ] → isContr (CommAlgebraHom (𝓕 y) (𝓕 x))) where private ∥P∥ : ℙ (ob C) ∥P∥ x = ∥ P x ∥ , isPropPropTrunc ΣC∥P∥Cat = ΣPropCat C ∥P∥ CommAlgCat = CommAlgebrasCategory {ℓ = ℓ''} R {ℓ' = ℓ''} 𝓕UniqueEquiv : (x : ob C) (p q : P x) → isContr (CommAlgebraEquiv (𝓕 (x , p)) (𝓕 (x , q))) 𝓕UniqueEquiv x = contrCommAlgebraHom→contrCommAlgebraEquiv (curry 𝓕 x) λ p q → uniqueHom _ _ (id C) theMap : (x : ob C) → ∥ P x ∥ → CommAlgebra R ℓ'' theMap x = recPT→CommAlgebra (curry 𝓕 x) (λ p q → 𝓕UniqueEquiv x p q .fst) λ p q r → 𝓕UniqueEquiv x p r .snd _ theAction : (x y : ob C) → C [ x , y ] → (p : ∥ P x ∥) (q : ∥ P y ∥) → isContr (CommAlgebraHom (theMap y q) (theMap x p)) theAction _ _ f = elim2 (λ _ _ → isPropIsContr) λ _ _ → uniqueHom _ _ f open Functor universalPShf : Functor (ΣC∥P∥Cat ^op) CommAlgCat F-ob universalPShf = uncurry theMap F-hom universalPShf {x = x} {y = y} f = theAction _ _ f (y .snd) (x. snd) .fst F-id universalPShf {x = x} = theAction (x .fst) (x .fst) (id C) (x .snd) (x .snd) .snd _ F-seq universalPShf {x = x} {z = z} f g = theAction _ _ (g ⋆⟨ C ⟩ f) (z .snd) (x .snd) .snd _ -- a big transport to help verifying the sheaf property module toSheaf (x y u v : ob ΣC∥P∥Cat) {f : C [ v .fst , y . fst ]} {g : C [ v .fst , u .fst ]} {h : C [ u .fst , x . fst ]} {k : C [ y .fst , x .fst ]} (Csquare : g ⋆⟨ C ⟩ h ≡ f ⋆⟨ C ⟩ k) {- v → y ↓ ↓ u → x -} (AlgCospan : Cospan CommAlgCat) (AlgPB : Pullback _ AlgCospan) (p₁ : AlgPB .pbOb ≡ F-ob universalPShf x) (p₂ : AlgCospan .l ≡ F-ob universalPShf u) (p₃ : AlgCospan .r ≡ F-ob universalPShf y) (p₄ : AlgCospan .m ≡ F-ob universalPShf v) where private -- just: 𝓕 k ⋆ 𝓕 f ≡ 𝓕 h ⋆ 𝓕 g inducedSquare : seq' CommAlgCat {x = F-ob universalPShf x} {y = F-ob universalPShf u} {z = F-ob universalPShf v} (F-hom universalPShf h) (F-hom universalPShf g) ≡ seq' CommAlgCat {x = F-ob universalPShf x} {y = F-ob universalPShf y} {z = F-ob universalPShf v} (F-hom universalPShf k) (F-hom universalPShf f) inducedSquare = F-square universalPShf Csquare f' = F-hom universalPShf {x = y} {y = v} f g' = F-hom universalPShf {x = u} {y = v} g h' = F-hom universalPShf {x = x} {y = u} h k' = F-hom universalPShf {x = x} {y = y} k gPathP : PathP (λ i → CommAlgCat [ p₂ i , p₄ i ]) (AlgCospan .s₁) g' gPathP = toPathP (sym (theAction _ _ g (v .snd) (u .snd) .snd _)) fPathP : PathP (λ i → CommAlgCat [ p₃ i , p₄ i ]) (AlgCospan .s₂) f' fPathP = toPathP (sym (theAction _ _ f (v .snd) (y .snd) .snd _)) kPathP : PathP (λ i → CommAlgCat [ p₁ i , p₃ i ]) (AlgPB .pbPr₂) k' kPathP = toPathP (sym (theAction _ _ k (y .snd) (x .snd) .snd _)) hPathP : PathP (λ i → CommAlgCat [ p₁ i , p₂ i ]) (AlgPB .pbPr₁) h' hPathP = toPathP (sym (theAction _ _ h (u .snd) (x .snd) .snd _)) fgCospan : Cospan CommAlgCat l fgCospan = F-ob universalPShf u m fgCospan = F-ob universalPShf v r fgCospan = F-ob universalPShf y s₁ fgCospan = g' s₂ fgCospan = f' cospanPath : AlgCospan ≡ fgCospan l (cospanPath i) = p₂ i m (cospanPath i) = p₄ i r (cospanPath i) = p₃ i s₁ (cospanPath i) = gPathP i s₂ (cospanPath i) = fPathP i squarePathP : PathP (λ i → hPathP i ⋆⟨ CommAlgCat ⟩ gPathP i ≡ kPathP i ⋆⟨ CommAlgCat ⟩ fPathP i) (AlgPB .pbCommutes) inducedSquare squarePathP = toPathP (CommAlgCat .isSetHom _ _ _ _) abstract lemma : isPullback CommAlgCat fgCospan {c = F-ob universalPShf x} h' k' inducedSquare lemma = transport (λ i → isPullback CommAlgCat (cospanPath i) {c = p₁ i} (hPathP i) (kPathP i) (squarePathP i)) (AlgPB .univProp)
{ "alphanum_fraction": 0.5695891297, "avg_line_length": 42.2267759563, "ext": "agda", "hexsha": "8bb81ec3ecebf8f700ef721dcfd188c669016e35", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Categories/Instances/CommAlgebras.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Categories/Instances/CommAlgebras.agda", "max_line_length": 102, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Categories/Instances/CommAlgebras.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6148, "size": 15455 }
module HT where open import Prelude open import T open import SubstTheory open import DynTheory module HT where ---- Halting and Hereditary Termination -- An old comment about lhs-halt -- Mostly for fun, I didn't want to include "and it halts" as part -- of the definition of HT for arrows, and I didn't want to define -- it in terms of evaluating to a lambda and then substituting. -- This seems to require being able to generate an inhabitant of an -- arbitrary type as well as a proof that it is HT. The former is -- easy in T and we accomplish the latter by appealing to all-HT, -- although we could have also generated the proof along with the -- inhabitant. This all seems to be handwaved away when doing it on -- paper. Things get more unclear when in a system where not all -- types are inhabited; if we know that either a type is inhabited or -- it is not, then we are fine. But since we are constructive, we would -- get tripped up by a language like System F in which type inhabitability -- is undecidable. (Of course, the proof is easy to repair in a number of -- ways by modifying the definition of HT.) -- -- When I went to make the system deterministic, I found that I now depended -- on HT-halts in all-HT, which broke the previous proof technique. -- I decided that proving the inhabitant we construct is HT would be -- annoying, so I decided to not bother and went back to hanging onto the -- proof that arrows halt. -- Extract that the lhs must halt if its application to something halts. -- I think this isn't actually useful, though, since to use it we would -- need to be able to produce an argument to the function. {- lhs-halt : {A B : TTp} {e : TCExp (A ⇒ B)} {e' : TCExp A} → THalts (e $ e') → THalts e lhs-halt (halts eval-refl ()) lhs-halt (halts (eval-cons (step-app-l S1) E) val) with lhs-halt (halts E val) ... | halts E' val' = halts (eval-cons S1 E') val' lhs-halt (halts (eval-cons step-beta E) val) = halts eval-refl val-lam -} -- I think the induction principle for this datatype is the definition of -- HTω from http://www.cs.cmu.edu/~rwh/courses/typesys/hw3/hw3-handout.pdf data HTω : TNat → Set where HT-z : {e : TNat} → (E : e ~>* zero) → HTω e HT-s : {e e' : TNat} → (E : e ~>* suc e') → (HT : HTω e') → HTω e -- definition of hereditary termination HT : (A : TTp) → TCExp A → Set HT nat e = THalts e -- It is kind of ugly to have to hang on to the halting proof. HT (A ⇒ B) e = THalts e × ((e' : TCExp A) → HT A e' → HT B (e $ e')) -- proof that hereditary termination implies termination HT-halts : ∀{A} → (e : TCExp A) → HT A e → THalts e HT-halts {nat} e h = h HT-halts {A ⇒ B} _ (h , _) = h -- extend HT to substitutions HTΓ : (Γ : Ctx) → TSubst Γ [] → Set HTΓ Γ γ = ∀{A} (x : A ∈ Γ) -> HT A (γ x) emptyHTΓ : ∀{γ : TSubst [] []} -> HTΓ [] γ emptyHTΓ () extendHTΓ : ∀{Γ A} {e : TCExp A} {γ : TSubst Γ []} -> HTΓ Γ γ -> HT A e -> HTΓ (A :: Γ) (extendγ γ e) extendHTΓ η ht Z = ht extendHTΓ {_} {_} {e} {γ} η ht {B} (S n) = ID.coe1 (HT B) (extend-nofail-s γ e n) (η n) -- head expansion lemma head-expansion : ∀{A} {e e' : TCExp A} → (e ~>* e') → HT A e' → HT A e head-expansion {nat} eval (halts eval₁ val) = halts (eval-trans eval eval₁) val head-expansion {A ⇒ B} eval (halts eval' val , ht-logic) = halts (eval-trans eval eval') val , (λ e' ht → head-expansion (eval-compat step-app-l eval) (ht-logic e' ht)) -- the main theorem all-HT : ∀{Γ A} {γ : TSubst Γ []} → (e : TExp Γ A) → HTΓ Γ γ → HT A (ssubst γ e) all-HT (var x) η = η x all-HT (e₁ $ e₂) η with all-HT e₁ η ... | _ , HT₁ = HT₁ (ssubst _ e₂) (all-HT e₂ η) all-HT zero η = halts eval-refl val-zero all-HT (suc e) η with all-HT e η ... | halts eval val = halts (eval-compat step-suc eval) (val-suc val) all-HT {Γ} {A ⇒ B} {γ} (Λ e) η = (halts eval-refl val-lam) , lam-case where lam-case : (e' : TCExp A) → HT A e' → HT B (Λ (ssubst (liftγ γ) e) $ e') lam-case e' ht' with all-HT {γ = extendγ γ e'} e (extendHTΓ η ht') ... | ht with eval-step (step-beta {e = (ssubst (liftγ γ) e)}) ... | steps-full with combine-subst-noob γ e e' ... | eq = head-expansion steps-full (ID.coe1 (HT B) eq ht) all-HT {Γ} {A} {γ} (rec e e₀ es) η with all-HT e η ... | halts E val = head-expansion (eval-compat step-rec E) (inner val) where inner : {n : TNat} → TVal n → HT A (rec n (ssubst γ e₀) (ssubst (liftγ γ) es)) inner val-zero = head-expansion (eval-step step-rec-z) (all-HT e₀ η) inner (val-suc v) with all-HT es (extendHTΓ η (inner v)) ... | ht with eval-step (step-rec-s v) ... | steps with combine-subst-noob γ es _ ... | eq = head-expansion steps (ID.coe1 (HT A) eq ht) -- Prove that all programs in Gödel's System T halt. all-halt : ∀{A} → (e : TCExp A) → THalts e all-halt {A} e = HT-halts e (ID.coe1 (HT A) (subid e) (all-HT e (emptyHTΓ {emptyγ}))) open HT public
{ "alphanum_fraction": 0.6106645756, "avg_line_length": 43.2288135593, "ext": "agda", "hexsha": "1ef8de03687edac624c588746be8e8fe7858aa93", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-05-04T22:37:18.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-26T11:39:14.000Z", "max_forks_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "msullivan/godels-t", "max_forks_repo_path": "HT.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "msullivan/godels-t", "max_issues_repo_path": "HT.agda", "max_line_length": 88, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "msullivan/godels-t", "max_stars_repo_path": "HT.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-22T00:28:03.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-25T01:52:57.000Z", "num_tokens": 1756, "size": 5101 }
{-# OPTIONS --copatterns --sized-types #-} module Copatterns where open import Size record Stream {i : Size} (A : Set) : Set where coinductive constructor _::_ field head : A tail : {j : Size< i} -> Stream {j} A open Stream map : ∀ {i A B} (f : A -> B) -> (s : Stream {i} A) -> Stream {i} B head (map {i} f s) = f (head s) tail (map {i} f s) {j} = map {j} f (tail s {j}) iter : {A : Set} -> (A -> A) -> A -> Stream A head (iter f a) = a tail (iter f a) = iter f (f a) repeat : {A : Set} -> A -> Stream A head (repeat a) = a tail (repeat a) = repeat a data Nat : Set where Z : Nat S : Nat -> Nat zipWith : ∀ {i : Size} {A B C : Set} -> (A -> B -> C) -> Stream {i} A -> Stream {i} B -> Stream {i} C head (zipWith {i} f as bs) = f (head as) (head bs) tail (zipWith {i} f as bs) {j} = zipWith {j} f (tail as {j}) (tail bs {j}) _+_ : Nat -> Nat -> Nat _+_ Z m = m _+_ (S n) m = S (n + m) _*_ : Nat -> Nat -> Nat _*_ Z m = Z _*_ (S n) m = m + (n * m) nats : Stream Nat nats = iter S Z nats' : ∀ {i : Size} -> Stream {i} Nat head (nats' {i}) = Z tail (nats' {i}) {j} = map {j} S (nats' {j}) fib : ∀ {i : Size} -> Stream {i} Nat head (fib {i}) = Z head (tail (fib {i}) {j}) = S Z tail (tail (fib {i}) {j}) {k} = zipWith {k} _+_ (fib {k}) (tail (fib {j}) {k}) {- pow2 : ∀ {i : Size} -> Stream {i} Nat head pow2 = S Z head (tail pow2) = S (S Z) tail (tail pow2) = zipWith _+_ (tail pow2) (tail pow2) -}
{ "alphanum_fraction": 0.5030885381, "avg_line_length": 23.5, "ext": "agda", "hexsha": "afb0af0923dc7817f9eaa214858b68038c329cf0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7e12781ad0174a5f57bf57f6f1077e134b6de9dc", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "tdidriksen/copatterns", "max_forks_repo_path": "src/agda/Copatterns.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7e12781ad0174a5f57bf57f6f1077e134b6de9dc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "tdidriksen/copatterns", "max_issues_repo_path": "src/agda/Copatterns.agda", "max_line_length": 101, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7e12781ad0174a5f57bf57f6f1077e134b6de9dc", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "tdidriksen/copatterns", "max_stars_repo_path": "src/agda/Copatterns.agda", "max_stars_repo_stars_event_max_datetime": "2020-11-27T15:37:01.000Z", "max_stars_repo_stars_event_min_datetime": "2020-11-27T15:37:01.000Z", "num_tokens": 601, "size": 1457 }
-- Kit instances and generic term traversals module Syntax.Substitution.Instances where open import Syntax.Types open import Syntax.Context open import Syntax.Terms open import Syntax.Substitution.Kits open import Data.Sum open import Relation.Binary.PropositionalEquality as ≡ using (_≡_ ; refl ; sym ; cong ; subst) open import Function using (id ; flip ; _∘_) open ≡.≡-Reasoning -- | Variable and term schemas Var : Schema Var = flip _∈_ Term : Schema Term = _⊢_ -- | Variable kit -- Variable kit 𝒱ar : Kit Var 𝒱ar = record { 𝓋 = id ; 𝓉 = var ; 𝓌 = pop ; 𝒶 = 𝒶-var } where 𝒶-var : ∀{A Γ} → Var Γ (A always) → Var (Γ ˢ) (A always) 𝒶-var top = top 𝒶-var (pop {B = B now} v) = 𝒶-var v 𝒶-var (pop {B = B always} v) = pop (𝒶-var v) -- Generic substitution in a variable to any schema subst-var : ∀ {𝒮 Γ Δ A} -> Subst 𝒮 Γ Δ → Var Γ A → 𝒮 Δ A subst-var ● () subst-var (σ ▸ T) top = T subst-var (σ ▸ T) (pop v) = subst-var σ v -- Substitutable variable kit 𝒱arₛ : SubstKit Var 𝒱arₛ = record { 𝓀 = 𝒱ar ; 𝓈 = subst-var } -- | Term traversal module K {𝒮 : Schema} (k : Kit 𝒮) where open Kit k -- | Type-preserving term traversal -- | Traverses the syntax tree of the term, applying -- | the given substitution to the variables. mutual traverse : ∀{Γ Δ A} -> Subst 𝒮 Γ Δ -> Γ ⊢ A -> Δ ⊢ A traverse σ (var x) = 𝓉 (subst-var σ x) traverse σ (lam M) = lam (traverse (σ ↑ k) M) traverse σ (M $ N) = traverse σ M $ traverse σ N traverse σ unit = unit traverse σ [ M ,, N ] = [ traverse σ M ,, traverse σ N ] traverse σ (fst M) = fst (traverse σ M) traverse σ (snd M) = snd (traverse σ M) traverse σ (inl M) = inl (traverse σ M) traverse σ (inr M) = inr (traverse σ M) traverse σ (case M inl↦ N₁ ||inr↦ N₂) = case traverse σ M inl↦ traverse (σ ↑ k) N₁ ||inr↦ traverse (σ ↑ k) N₂ traverse σ (sample M) = sample (traverse σ M) traverse σ (stable M) = stable (traverse (σ ↓ˢ k) M) traverse σ (sig M) = sig (traverse σ M) traverse σ (letSig S In M) = letSig traverse σ S In traverse (σ ↑ k) M traverse σ (event E) = event (traverse′ σ E) traverse′ : ∀{Γ Δ A} -> Subst 𝒮 Γ Δ -> Γ ⊨ A -> Δ ⊨ A traverse′ σ (pure M) = pure (traverse σ M) traverse′ σ (letSig S InC C) = letSig traverse σ S InC traverse′ (σ ↑ k) C traverse′ σ (letEvt E In C) = letEvt traverse σ E In traverse′ (σ ↓ˢ k ↑ k) C traverse′ σ (select E₁ ↦ C₁ || E₂ ↦ C₂ ||both↦ C₃) = select traverse σ E₁ ↦ traverse′ (σ ↓ˢ k ↑ k ↑ k) C₁ || traverse σ E₂ ↦ traverse′ (σ ↓ˢ k ↑ k ↑ k) C₂ ||both↦ traverse′ (σ ↓ˢ k ↑ k ↑ k) C₃ open K -- Renaming is a term traversal with variable substitutions rename : ∀{A Γ Δ} -> Subst Var Γ Δ -> Γ ⊢ A -> Δ ⊢ A rename = traverse 𝒱ar -- Weakening is a renaming with a weakening substitution weaken-top : ∀{B Γ A} -> Γ ⊢ A → Γ , B ⊢ A weaken-top = rename (weak-topₛ 𝒱arₛ) -- Weakening is a renaming with a weakening substitution weaken′-top : ∀{B Γ A} -> Γ ⊨ A → Γ , B ⊨ A weaken′-top = traverse′ 𝒱ar (weak-topₛ 𝒱arₛ) -- | Term kit -- Term kit 𝒯erm : Kit Term 𝒯erm = record { 𝓋 = var ; 𝓉 = id ; 𝓌 = weaken-top ; 𝒶 = 𝒶-term } where 𝒶-term : {Γ : Context} {A : Type} → Γ ⊢ A always → Γ ˢ ⊢ A always 𝒶-term {∙} M = M 𝒶-term {Γ , B now} (var (pop x)) = 𝒶-term (var x) 𝒶-term {Γ , B always} (var top) = var top 𝒶-term {Γ , B always} (var {A = A} (pop x)) = weaken-top (𝒶-term (var x)) 𝒶-term {Γ , B now} (stable M) = 𝒶-term {Γ} (stable M) 𝒶-term {Γ , B always} (stable {A = A} M) = stable (subst (λ x → x , B always ⊢ A now) (sym (ˢ-idemp Γ)) M) -- Substitution is a traversal with term substitutions substitute : ∀{Γ Δ A} -> Subst Term Γ Δ -> Γ ⊢ A -> Δ ⊢ A substitute = traverse 𝒯erm -- Computational substitution is a traversal with term substitutions substitute′ : ∀{Γ Δ A} -> Subst Term Γ Δ -> Γ ⊨ A -> Δ ⊨ A substitute′ = traverse′ 𝒯erm -- Substitutable term kit 𝒯ermₛ : SubstKit Term 𝒯ermₛ = record { 𝓀 = 𝒯erm ; 𝓈 = substitute }
{ "alphanum_fraction": 0.5432822362, "avg_line_length": 32.6176470588, "ext": "agda", "hexsha": "7a1995ae19a3817281e9eb11f325b7999481903d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DimaSamoz/temporal-type-systems", "max_forks_repo_path": "src/Syntax/Substitution/Instances.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DimaSamoz/temporal-type-systems", "max_issues_repo_path": "src/Syntax/Substitution/Instances.agda", "max_line_length": 77, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DimaSamoz/temporal-type-systems", "max_stars_repo_path": "src/Syntax/Substitution/Instances.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z", "num_tokens": 1573, "size": 4436 }
module Terminal where open import Base open import Category open import Unique open import Dual import Iso module Term (ℂ : Cat) where private ℂ' = η-Cat ℂ private open module C = Cat ℂ' private open module U = Uniq ℂ' private open module I = Iso ℂ' Terminal : (A : Obj) -> Set1 Terminal A = (B : Obj) -> ∃! \(f : B ─→ A) -> True toTerminal : {A B : Obj} -> Terminal A -> B ─→ A toTerminal term = getWitness (term _) terminalIso : {A B : Obj} -> Terminal A -> Terminal B -> A ≅ B terminalIso tA tB = iso (toTerminal tB) (toTerminal tA) p q where p : toTerminal tB ∘ toTerminal tA == id p = witnessEqual (tB _) tt tt q : toTerminal tA ∘ toTerminal tB == id q = witnessEqual (tA _) tt tt module Init (ℂ : Cat) = Term (η-Cat ℂ op) renaming ( Terminal to Initial ; toTerminal to fromInitial ; terminalIso to initialIso )
{ "alphanum_fraction": 0.6039173014, "avg_line_length": 22.4146341463, "ext": "agda", "hexsha": "146c5d20fc98bdb89ac19050f0616117556a73ef", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/cat/Terminal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/cat/Terminal.agda", "max_line_length": 64, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/cat/Terminal.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 301, "size": 919 }
module Ual.Eq where open import Agda.Primitive open import Ual.Void record Eq {a} (A : Set a) : Set (lsuc a) where infix 30 _==_ infix 30 _≠_ field _==_ : A → A → Set self : {x : A} → x == x sym : {x y : A} → x == y → y == x trans : {x y z : A} → x == y → y == z → x == z _≠_ : A → A → Set x ≠ y = ¬ (x == y) open Eq ⦃ ... ⦄ public data Equality {a} {A : Set a} ⦃ eqA : Eq A ⦄ : A → A → Set where equal : {x y : A} → x == y → Equality x y notEqual : {x y : A} → x ≠ y → Equality x y record Test {a} (A : Set a) : Set (lsuc a) where field ⦃ eqA ⦄ : Eq A test : (x : A) → (y : A) → Equality x y
{ "alphanum_fraction": 0.4698608964, "avg_line_length": 23.962962963, "ext": "agda", "hexsha": "4a8264dcd0852a13c8c5775a80b9d1b898c57589", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ea0260e1a0612ba581e4283dfb187f531a944dfd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "brunoczim/ual", "max_forks_repo_path": "Eq.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ea0260e1a0612ba581e4283dfb187f531a944dfd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "brunoczim/ual", "max_issues_repo_path": "Eq.agda", "max_line_length": 64, "max_stars_count": null, "max_stars_repo_head_hexsha": "ea0260e1a0612ba581e4283dfb187f531a944dfd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "brunoczim/ual", "max_stars_repo_path": "Eq.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 285, "size": 647 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Sets.EquivalenceRelations open import Functions open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Numbers.Naturals.Definition open import Numbers.Integers.Integers open import Numbers.Integers.Addition open import Sets.FinSet.Definition open import Groups.Homomorphisms.Definition open import Groups.Groups open import Groups.Subgroups.Definition open import Groups.Lemmas open import Groups.Subgroups.Definition open import Groups.Abelian.Definition open import Groups.Definition open import Groups.Cyclic.Definition open import Groups.Cyclic.DefinitionLemmas open import Semirings.Definition open import Rings.Definition module Groups.Cyclic.Lemmas {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_·_ : A → A → A} (G : Group S _·_) where elementPowerHom : (x : A) → GroupHom ℤGroup G (λ i → elementPower G x i) GroupHom.groupHom (elementPowerHom x) {a} {b} = symmetric (elementPowerCollapse G x a b) where open Equivalence (Setoid.eq S) GroupHom.wellDefined (elementPowerHom x) {.y} {y} refl = reflexive where open Equivalence (Setoid.eq S) subgroupOfCyclicIsCyclic : {c : _} {pred : A → Set c} → (sub : Subgroup G pred) → CyclicGroup G → CyclicGroup (subgroupIsGroup G sub) CyclicGroup.generator (subgroupOfCyclicIsCyclic {pred = pred} sub record { generator = g ; cyclic = cyclic }) = {!!} where leastPowerInGroup : (bound : ℕ) → ℕ leastPowerInGroup bound = {!!} CyclicGroup.cyclic (subgroupOfCyclicIsCyclic sub cyc) = {!!} -- Prefer to prove that subgroup of cyclic is cyclic, then deduce this like with abelian groups {- cyclicIsGroupProperty : {m n o p : _} {A : Set m} {B : Set o} {S : Setoid {m} {n} A} {T : Setoid {o} {p} B} {_+_ : A → A → A} {_*_ : B → B → B} {G : Group S _+_} {H : Group T _*_} → GroupsIsomorphic G H → CyclicGroup G → CyclicGroup H CyclicGroup.generator (cyclicIsGroupProperty {H = H} iso G) = GroupsIsomorphic.isomorphism iso (CyclicGroup.generator G) CyclicGroup.cyclic (cyclicIsGroupProperty {H = H} iso G) {a} with GroupIso.surj (GroupsIsomorphic.proof iso) {a} CyclicGroup.cyclic (cyclicIsGroupProperty {H = H} iso G) {a} | a' , b with CyclicGroup.cyclic G {a'} ... | pow , prPow = pow , {!!} -} cyclicGroupIsAbelian : (cyclic : CyclicGroup G) → AbelianGroup G AbelianGroup.commutative (cyclicGroupIsAbelian record { generator = generator ; cyclic = cyclic }) {a} {b} with cyclic {a} ... | bl with cyclic {b} AbelianGroup.commutative (cyclicGroupIsAbelian record { generator = generator ; cyclic = cyclic }) {a} {b} | nA , prA | nB , prB = transitive (+WellDefined (symmetric prA) (symmetric prB)) (transitive (symmetric (GroupHom.groupHom (elementPowerHom generator) {nA} {nB})) (transitive (transitive (elementPowerWellDefinedZ' G (nA +Z nB) (nB +Z nA) (Ring.groupIsAbelian ℤRing {nA} {nB}) {generator}) (GroupHom.groupHom (elementPowerHom generator) {nB} {nA})) (+WellDefined prB prA))) where open Setoid S open Equivalence eq open Group G
{ "alphanum_fraction": 0.7259646828, "avg_line_length": 52.724137931, "ext": "agda", "hexsha": "e3e6af609f3637d62b14ccfc845c1acb4feeb82e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/Cyclic/Lemmas.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/Cyclic/Lemmas.agda", "max_line_length": 480, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/Cyclic/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 952, "size": 3058 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Structures.Ring where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Structures.Axioms open import Cubical.Structures.Macro open import Cubical.Structures.Semigroup hiding (⟨_⟩) open import Cubical.Structures.Monoid hiding (⟨_⟩) open import Cubical.Structures.AbGroup hiding (⟨_⟩) open Iso private variable ℓ : Level record IsRing {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) : Type ℓ where constructor isring field +-isAbGroup : IsAbGroup 0r _+_ -_ ·-isMonoid : IsMonoid 1r _·_ dist : (x y z : R) → (x · (y + z) ≡ (x · y) + (x · z)) × ((x + y) · z ≡ (x · z) + (y · z)) -- This is in the Agda stdlib, but it's redundant -- zero : (x : R) → (x · 0r ≡ 0r) × (0r · x ≡ 0r) open IsAbGroup +-isAbGroup public renaming ( assoc to +-assoc ; identity to +-identity ; lid to +-lid ; rid to +-rid ; inverse to +-inv ; invl to +-linv ; invr to +-rinv ; comm to +-comm ; isSemigroup to +-isSemigroup ; isMonoid to +-isMonoid ; isGroup to +-isGroup ) open IsMonoid ·-isMonoid public renaming ( assoc to ·-assoc ; identity to ·-identity ; lid to ·-lid ; rid to ·-rid ; isSemigroup to ·-isSemigroup ) ·-rdist-+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z) ·-rdist-+ x y z = dist x y z .fst ·-ldist-+ : (x y z : R) → (x + y) · z ≡ (x · z) + (y · z) ·-ldist-+ x y z = dist x y z .snd -- TODO: prove these somewhere -- zero-lid : (x : R) → 0r · x ≡ 0r -- zero-lid x = zero x .snd -- zero-rid : (x : R) → x · 0r ≡ 0r -- zero-rid x = zero x .fst record Ring : Type (ℓ-suc ℓ) where constructor ring field Carrier : Type ℓ 0r : Carrier 1r : Carrier _+_ : Carrier → Carrier → Carrier _·_ : Carrier → Carrier → Carrier -_ : Carrier → Carrier isRing : IsRing 0r 1r _+_ _·_ -_ infix 8 -_ infixl 7 _·_ infixl 6 _+_ open IsRing isRing public -- Extractor for the carrier type ⟨_⟩ : Ring → Type ℓ ⟨_⟩ = Ring.Carrier isSetRing : (R : Ring {ℓ}) → isSet ⟨ R ⟩ isSetRing R = R .Ring.isRing .IsRing.·-isMonoid .IsMonoid.isSemigroup .IsSemigroup.is-set makeIsRing : {R : Type ℓ} {0r 1r : R} {_+_ _·_ : R → R → R} { -_ : R → R} (is-setR : isSet R) (+-assoc : (x y z : R) → x + (y + z) ≡ (x + y) + z) (+-rid : (x : R) → x + 0r ≡ x) (+-rinv : (x : R) → x + (- x) ≡ 0r) (+-comm : (x y : R) → x + y ≡ y + x) (+-assoc : (x y z : R) → x · (y · z) ≡ (x · y) · z) (·-rid : (x : R) → x · 1r ≡ x) (·-lid : (x : R) → 1r · x ≡ x) (·-rdist-+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z)) (·-ldist-+ : (x y z : R) → (x + y) · z ≡ (x · z) + (y · z)) → IsRing 0r 1r _+_ _·_ -_ makeIsRing is-setR assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-lid ·-rdist-+ ·-ldist-+ = isring (makeIsAbGroup is-setR assoc +-rid +-rinv +-comm) (makeIsMonoid is-setR ·-assoc ·-rid ·-lid) λ x y z → ·-rdist-+ x y z , ·-ldist-+ x y z makeRing : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) (is-setR : isSet R) (+-assoc : (x y z : R) → x + (y + z) ≡ (x + y) + z) (+-rid : (x : R) → x + 0r ≡ x) (+-rinv : (x : R) → x + (- x) ≡ 0r) (+-comm : (x y : R) → x + y ≡ y + x) (+-assoc : (x y z : R) → x · (y · z) ≡ (x · y) · z) (·-rid : (x : R) → x · 1r ≡ x) (·-lid : (x : R) → 1r · x ≡ x) (·-rdist-+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z)) (·-ldist-+ : (x y z : R) → (x + y) · z ≡ (x · z) + (y · z)) → Ring makeRing 0r 1r _+_ _·_ -_ is-setR assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-lid ·-rdist-+ ·-ldist-+ = ring _ 0r 1r _+_ _·_ -_ (makeIsRing is-setR assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-lid ·-rdist-+ ·-ldist-+ ) record RingEquiv (R S : Ring {ℓ}) : Type ℓ where constructor ringequiv private module R = Ring R module S = Ring S field e : ⟨ R ⟩ ≃ ⟨ S ⟩ pres1 : equivFun e R.1r ≡ S.1r isHom+ : (x y : ⟨ R ⟩) → equivFun e (x R.+ y) ≡ equivFun e x S.+ equivFun e y isHom· : (x y : ⟨ R ⟩) → equivFun e (x R.· y) ≡ equivFun e x S.· equivFun e y module RingΣTheory {ℓ} where open Macro ℓ (recvar (recvar var) , var , recvar (recvar var)) public renaming ( structure to RawRingStructure ; equiv to RawRingEquivStr ; univalent to rawRingUnivalentStr ) RingAxioms : (R : Type ℓ) (s : RawRingStructure R) → Type ℓ RingAxioms R (_+_ , 1r , _·_) = AbGroupΣTheory.AbGroupAxioms R _+_ × IsMonoid 1r _·_ × ((x y z : R) → (x · (y + z) ≡ (x · y) + (x · z)) × ((x + y) · z ≡ (x · z) + (y · z))) RingStructure : Type ℓ → Type ℓ RingStructure = AxiomsStructure RawRingStructure RingAxioms RingΣ : Type (ℓ-suc ℓ) RingΣ = TypeWithStr ℓ RingStructure RingEquivStr : StrEquiv RingStructure ℓ RingEquivStr = AxiomsEquivStr RawRingEquivStr RingAxioms isPropRingAxioms : (R : Type ℓ) (s : RawRingStructure R) → isProp (RingAxioms R s) isPropRingAxioms R (_+_ , 1r , _·_) = isProp× (AbGroupΣTheory.isPropAbGroupAxioms R _+_) (isPropΣ (isPropIsMonoid 1r _·_) λ R → isPropΠ3 λ _ _ _ → isProp× (IsSemigroup.is-set (R .IsMonoid.isSemigroup) _ _) (IsSemigroup.is-set (R .IsMonoid.isSemigroup) _ _)) Ring→RingΣ : Ring → RingΣ Ring→RingΣ (ring R 0r 1r _+_ _·_ -_ (isring +-isAbelianGroup ·-isMonoid dist)) = ( R , (_+_ , 1r , _·_) , AbGroupΣTheory.AbGroup→AbGroupΣ (abgroup _ _ _ _ +-isAbelianGroup) .snd .snd , ·-isMonoid , dist ) RingΣ→Ring : RingΣ → Ring RingΣ→Ring (_ , (y1 , y2 , y3) , z , w1 , w2) = ring _ _ y2 y1 y3 _ (isring (AbGroupΣTheory.AbGroupΣ→AbGroup (_ , _ , z ) .AbGroup.isAbGroup) w1 w2) RingIsoRingΣ : Iso Ring RingΣ RingIsoRingΣ = iso Ring→RingΣ RingΣ→Ring (λ _ → refl) (λ _ → refl) ringUnivalentStr : UnivalentStr RingStructure RingEquivStr ringUnivalentStr = axiomsUnivalentStr _ isPropRingAxioms rawRingUnivalentStr RingΣPath : (R S : RingΣ) → (R ≃[ RingEquivStr ] S) ≃ (R ≡ S) RingΣPath = SIP ringUnivalentStr RingEquivΣ : (R S : Ring) → Type ℓ RingEquivΣ R S = Ring→RingΣ R ≃[ RingEquivStr ] Ring→RingΣ S RingIsoΣPath : {R S : Ring} → Iso (RingEquiv R S) (RingEquivΣ R S) fun RingIsoΣPath (ringequiv e h1 h2 h3) = e , h2 , h1 , h3 inv RingIsoΣPath (e , h1 , h2 , h3) = ringequiv e h2 h1 h3 rightInv RingIsoΣPath _ = refl leftInv RingIsoΣPath _ = refl RingPath : (R S : Ring) → (RingEquiv R S) ≃ (R ≡ S) RingPath R S = RingEquiv R S ≃⟨ isoToEquiv RingIsoΣPath ⟩ RingEquivΣ R S ≃⟨ RingΣPath _ _ ⟩ Ring→RingΣ R ≡ Ring→RingΣ S ≃⟨ isoToEquiv (invIso (congIso RingIsoRingΣ)) ⟩ R ≡ S ■ RingPath : (R S : Ring {ℓ}) → (RingEquiv R S) ≃ (R ≡ S) RingPath = RingΣTheory.RingPath isPropIsRing : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) → isProp (IsRing 0r 1r _+_ _·_ -_) isPropIsRing 0r 1r _+_ _·_ -_ (isring RG RM RD) (isring SG SM SD) = λ i → isring (isPropIsAbGroup _ _ _ RG SG i) (isPropIsMonoid _ _ RM SM i) (isPropDistr RD SD i) where isSetR : isSet _ isSetR = RM .IsMonoid.isSemigroup .IsSemigroup.is-set isPropDistr : isProp ((x y z : _) → ((x · (y + z)) ≡ ((x · y) + (x · z))) × (((x + y) · z) ≡ ((x · z) + (y · z)))) isPropDistr = isPropΠ3 λ _ _ _ → isProp× (isSetR _ _) (isSetR _ _) -- Rings have an abelian group and a monoid Ring→AbGroup : Ring {ℓ} → AbGroup {ℓ} Ring→AbGroup (ring _ _ _ _ _ _ R) = abgroup _ _ _ _ (IsRing.+-isAbGroup R) Ring→Monoid : Ring {ℓ} → Monoid {ℓ} Ring→Monoid (ring _ _ _ _ _ _ R) = monoid _ _ _ (IsRing.·-isMonoid R) {- some basic calculations (used for example in QuotientRing.agda), that might should become obsolete or subject to change once we have a ring solver (see https://github.com/agda/cubical/issues/297) -} module Theory (R : Ring {ℓ}) where open Ring R implicitInverse : (x y : ⟨ R ⟩) → x + y ≡ 0r → y ≡ - x implicitInverse x y p = y ≡⟨ sym (+-lid y) ⟩ 0r + y ≡⟨ cong (λ u → u + y) (sym (+-linv x)) ⟩ (- x + x) + y ≡⟨ sym (+-assoc _ _ _) ⟩ (- x) + (x + y) ≡⟨ cong (λ u → (- x) + u) p ⟩ (- x) + 0r ≡⟨ +-rid _ ⟩ - x ∎ 0-selfinverse : - 0r ≡ 0r 0-selfinverse = sym (implicitInverse _ _ (+-rid 0r)) 0-idempotent : 0r + 0r ≡ 0r 0-idempotent = +-lid 0r +-idempotency→0 : (x : ⟨ R ⟩) → x ≡ x + x → 0r ≡ x +-idempotency→0 x p = 0r ≡⟨ sym (+-rinv _) ⟩ x + (- x) ≡⟨ cong (λ u → u + (- x)) p ⟩ (x + x) + (- x) ≡⟨ sym (+-assoc _ _ _) ⟩ x + (x + (- x)) ≡⟨ cong (λ u → x + u) (+-rinv _) ⟩ x + 0r ≡⟨ +-rid x ⟩ x ∎ 0-rightNullifies : (x : ⟨ R ⟩) → x · 0r ≡ 0r 0-rightNullifies x = let x·0-is-idempotent : x · 0r ≡ x · 0r + x · 0r x·0-is-idempotent = x · 0r ≡⟨ cong (λ u → x · u) (sym 0-idempotent) ⟩ x · (0r + 0r) ≡⟨ ·-rdist-+ _ _ _ ⟩ (x · 0r) + (x · 0r) ∎ in sym (+-idempotency→0 _ x·0-is-idempotent) 0-leftNullifies : (x : ⟨ R ⟩) → 0r · x ≡ 0r 0-leftNullifies x = let 0·x-is-idempotent : 0r · x ≡ 0r · x + 0r · x 0·x-is-idempotent = 0r · x ≡⟨ cong (λ u → u · x) (sym 0-idempotent) ⟩ (0r + 0r) · x ≡⟨ ·-ldist-+ _ _ _ ⟩ (0r · x) + (0r · x) ∎ in sym (+-idempotency→0 _ 0·x-is-idempotent) -commutesWithRight-· : (x y : ⟨ R ⟩) → x · (- y) ≡ - (x · y) -commutesWithRight-· x y = implicitInverse (x · y) (x · (- y)) (x · y + x · (- y) ≡⟨ sym (·-rdist-+ _ _ _) ⟩ x · (y + (- y)) ≡⟨ cong (λ u → x · u) (+-rinv y) ⟩ x · 0r ≡⟨ 0-rightNullifies x ⟩ 0r ∎) -commutesWithLeft-· : (x y : ⟨ R ⟩) → (- x) · y ≡ - (x · y) -commutesWithLeft-· x y = implicitInverse (x · y) ((- x) · y) (x · y + (- x) · y ≡⟨ sym (·-ldist-+ _ _ _) ⟩ (x - x) · y ≡⟨ cong (λ u → u · y) (+-rinv x) ⟩ 0r · y ≡⟨ 0-leftNullifies y ⟩ 0r ∎) -isDistributive : (x y : ⟨ R ⟩) → (- x) + (- y) ≡ - (x + y) -isDistributive x y = implicitInverse _ _ ((x + y) + ((- x) + (- y)) ≡⟨ sym (+-assoc _ _ _) ⟩ x + (y + ((- x) + (- y))) ≡⟨ cong (λ u → x + (y + u)) (+-comm _ _) ⟩ x + (y + ((- y) + (- x))) ≡⟨ cong (λ u → x + u) (+-assoc _ _ _) ⟩ x + ((y + (- y)) + (- x)) ≡⟨ cong (λ u → x + (u + (- x))) (+-rinv _) ⟩ x + (0r + (- x)) ≡⟨ cong (λ u → x + u) (+-lid _) ⟩ x + (- x) ≡⟨ +-rinv _ ⟩ 0r ∎) translatedDifference : (x a b : ⟨ R ⟩) → a - b ≡ (x + a) - (x + b) translatedDifference x a b = a - b ≡⟨ cong (λ u → a + u) (sym (+-lid _)) ⟩ (a + (0r + (- b))) ≡⟨ cong (λ u → a + (u + (- b))) (sym (+-rinv _)) ⟩ (a + ((x + (- x)) + (- b))) ≡⟨ cong (λ u → a + u) (sym (+-assoc _ _ _)) ⟩ (a + (x + ((- x) + (- b)))) ≡⟨ (+-assoc _ _ _) ⟩ ((a + x) + ((- x) + (- b))) ≡⟨ cong (λ u → u + ((- x) + (- b))) (+-comm _ _) ⟩ ((x + a) + ((- x) + (- b))) ≡⟨ cong (λ u → (x + a) + u) (-isDistributive _ _) ⟩ ((x + a) - (x + b)) ∎
{ "alphanum_fraction": 0.4563516896, "avg_line_length": 36.9479768786, "ext": "agda", "hexsha": "4c63c2550159a24f70c7d20d5e2f6fb18b0c7ba3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "RobertHarper/cubical", "max_forks_repo_path": "Cubical/Structures/Ring.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "RobertHarper/cubical", "max_issues_repo_path": "Cubical/Structures/Ring.agda", "max_line_length": 101, "max_stars_count": null, "max_stars_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "RobertHarper/cubical", "max_stars_repo_path": "Cubical/Structures/Ring.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4996, "size": 12784 }
{-# OPTIONS --no-positivity-check #-} {- This file gives a standard example showing that if arguments to constructors can use the datatype in a negative position (to the left of one or an odd number of arrows), then termination and logical consistency is lost. -} module neg-datatype-nonterm where open import empty data Bad : Set where bad : (Bad → ⊥) → Bad badFunc : Bad → ⊥ badFunc (bad f) = f (bad f) -- if you try to normalize the following, it will diverge inconsistency : ⊥ inconsistency = badFunc (bad badFunc)
{ "alphanum_fraction": 0.7132216015, "avg_line_length": 25.5714285714, "ext": "agda", "hexsha": "3826d52dde5dcbc4ac503df8db76163a6cd2d75e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2ad96390a9be5c238e73709a21533c7354cedd0c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "logicshan/IAL", "max_forks_repo_path": "neg-datatype-nonterm.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2ad96390a9be5c238e73709a21533c7354cedd0c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "logicshan/IAL", "max_issues_repo_path": "neg-datatype-nonterm.agda", "max_line_length": 67, "max_stars_count": null, "max_stars_repo_head_hexsha": "2ad96390a9be5c238e73709a21533c7354cedd0c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "logicshan/IAL", "max_stars_repo_path": "neg-datatype-nonterm.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 141, "size": 537 }
import PiCalculus.Utils import PiCalculus.Syntax import PiCalculus.Syntax.Properties import PiCalculus.Semantics import PiCalculus.Semantics.Properties import PiCalculus.LinearTypeSystem import PiCalculus.LinearTypeSystem.Algebras import PiCalculus.LinearTypeSystem.Algebras.Graded import PiCalculus.LinearTypeSystem.Algebras.Shared import PiCalculus.LinearTypeSystem.Algebras.Linear import PiCalculus.LinearTypeSystem.ContextLemmas import PiCalculus.LinearTypeSystem.Framing import PiCalculus.LinearTypeSystem.Weakening import PiCalculus.LinearTypeSystem.Exchange import PiCalculus.LinearTypeSystem.Strengthening import PiCalculus.LinearTypeSystem.Substitution import PiCalculus.LinearTypeSystem.SubjectCongruence import PiCalculus.LinearTypeSystem.SubjectReduction import PiCalculus.Examples
{ "alphanum_fraction": 0.9068010076, "avg_line_length": 39.7, "ext": "agda", "hexsha": "c13be81203f3a44a528f8dc739fd3696b6697ffc", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-14T16:24:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-25T13:57:13.000Z", "max_forks_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "guilhermehas/typing-linear-pi", "max_forks_repo_path": "Everything.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_issues_repo_issues_event_max_datetime": "2022-03-15T09:16:14.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-15T09:16:14.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "guilhermehas/typing-linear-pi", "max_issues_repo_path": "Everything.agda", "max_line_length": 52, "max_stars_count": 26, "max_stars_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "guilhermehas/typing-linear-pi", "max_stars_repo_path": "Everything.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-14T15:18:23.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-02T23:32:11.000Z", "num_tokens": 187, "size": 794 }
module UnifyMgu where open import UnifyTerm open import Data.Product using (∃; _,_) open import Data.Maybe using (Maybe; just; nothing) open import Category.Monad using (RawMonad) import Level open RawMonad (Data.Maybe.monad {Level.zero}) amgu : ∀ {m} (s t : Term m) (acc : ∃ (AList m)) -> Maybe (∃ (AList m)) amgu leaf leaf acc = just acc amgu leaf (s' fork t') acc = nothing amgu (s' fork t') leaf acc = nothing amgu (s1 fork s2) (t1 fork t2) acc = amgu s2 t2 =<< amgu s1 t1 acc amgu (i x) (i y) (m , anil) = just (flexFlex x y) amgu (i x) t (m , anil) = flexRigid x t amgu t (i x) (m , anil) = flexRigid x t amgu s t (n , σ asnoc r / z) = (λ σ -> σ ∃asnoc r / z) <$> amgu ((r for z) ◃ s) ((r for z) ◃ t) (n , σ) mgu : ∀ {m} -> (s t : Term m) -> Maybe (∃ (AList m)) mgu {m} s t = amgu s t (m , anil)
{ "alphanum_fraction": 0.5675990676, "avg_line_length": 31.7777777778, "ext": "agda", "hexsha": "86f3b69bbec96eb4ac36c1192b1f644f1897ee0f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/UnifyMgu.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/UnifyMgu.agda", "max_line_length": 70, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/UnifyMgu.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 330, "size": 858 }
module examplesPaperJFP.StatefulObject where open import Data.Product open import Data.String.Base as Str open import Data.Nat.Base as N open import Data.Vec as Vec using (Vec; []; _∷_; head; tail) open import SizedIO.Console hiding (main) open import Size open import NativeIO open import SizedIO.Base StackStateˢ = ℕ record Interfaceˢ : Set₁ where field Stateˢ : Set Methodˢ : (s : Stateˢ) → Set Resultˢ : (s : Stateˢ) → (m : Methodˢ s) → Set nextˢ : (s : Stateˢ) → (m : Methodˢ s) → (r : Resultˢ s m) → Stateˢ open Interfaceˢ public data StackMethodˢ (A : Set) : (n : StackStateˢ) → Set where push : ∀ {n} → A → StackMethodˢ A n pop : ∀ {n} → StackMethodˢ A (suc n) StackResultˢ : (A : Set) → (s : StackStateˢ) → StackMethodˢ A s → Set StackResultˢ A _ (push _) = Unit StackResultˢ A _ pop = A stackNextˢ : ∀ A n (m : StackMethodˢ A n) (r : StackResultˢ A n m) → StackStateˢ stackNextˢ _ n (push _) _ = suc n stackNextˢ _ (suc n) pop _ = n StackInterfaceˢ : (A : Set) → Interfaceˢ Stateˢ (StackInterfaceˢ A) = StackStateˢ Methodˢ (StackInterfaceˢ A) = StackMethodˢ A Resultˢ (StackInterfaceˢ A) = StackResultˢ A nextˢ (StackInterfaceˢ A) = stackNextˢ A record Objectˢ (I : Interfaceˢ) (s : Stateˢ I) : Set where coinductive field objectMethod : (m : Methodˢ I s) → Σ[ r ∈ Resultˢ I s m ] Objectˢ I (nextˢ I s m r) open Objectˢ public record IOObjectˢ (Iᵢₒ : IOInterface) (I : Interfaceˢ) (s : Stateˢ I) : Set where coinductive field method : (m : Methodˢ I s) → IO Iᵢₒ ∞ (Σ[ r ∈ Resultˢ I s m ] IOObjectˢ Iᵢₒ I (nextˢ I s m r)) open IOObjectˢ public stack : ∀{A}{n : ℕ} (as : Vec A n) → Objectˢ (StackInterfaceˢ A) n objectMethod (stack as) (push a) = unit , stack (a ∷ as) objectMethod (stack (a ∷ as)) pop = a , stack as
{ "alphanum_fraction": 0.6078132927, "avg_line_length": 32.85, "ext": "agda", "hexsha": "c15798218b907caa56370f53dfaffbcbbe78656a", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "examples/examplesPaperJFP/StatefulObject.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "examples/examplesPaperJFP/StatefulObject.agda", "max_line_length": 91, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "examples/examplesPaperJFP/StatefulObject.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 763, "size": 1971 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Coproduct open import lib.types.Fin open import lib.types.Pi open import lib.types.Truncation module lib.types.Choice where unchoose : ∀ {i j} {n : ℕ₋₂} {A : Type i} {B : A → Type j} → Trunc n (Π A B) → Π A (Trunc n ∘ B) unchoose = Trunc-rec (λ f → [_] ∘ f) has-choice : ∀ {i} (n : ℕ₋₂) (A : Type i) j → Type (lmax i (lsucc j)) has-choice {i} n A j = (B : A → Type j) → is-equiv (unchoose {n = n} {A} {B}) Empty-has-choice : ∀ {n} {j} → has-choice n Empty j Empty-has-choice {n} B = is-eq to from to-from from-to where to = unchoose {n = n} {Empty} {B} from : Π Empty (Trunc n ∘ B) → Trunc n (Π Empty B) from _ = [ (λ{()}) ] abstract to-from : ∀ f → to (from f) == f to-from _ = λ= λ{()} from-to : ∀ f → from (to f) == f from-to = Trunc-elim (λ _ → ap [_] (λ= λ{()})) Unit-has-choice : ∀ {n} {j} → has-choice n Unit j Unit-has-choice {n} B = is-eq to from to-from from-to where to = unchoose {n = n} {Unit} {B} Unit-elim' : B unit → Π Unit B Unit-elim' u unit = u from : Π Unit (Trunc n ∘ B) → Trunc n (Π Unit B) from f = Trunc-fmap Unit-elim' (f unit) abstract to-from : ∀ f → to (from f) == f to-from f = λ= λ{unit → Trunc-elim {P = λ f-unit → to (Trunc-fmap Unit-elim' f-unit) unit == f-unit} (λ _ → idp) (f unit)} from-to : ∀ f → from (to f) == f from-to = Trunc-elim (λ f → ap [_] (λ= λ{unit → idp})) Coprod-has-choice : ∀ {i j} {n} {A : Type i} {B : Type j} {k} → has-choice n A k → has-choice n B k → has-choice n (A ⊔ B) k Coprod-has-choice {n = n} {A} {B} A-hc B-hc C = is-eq to from to-from from-to where A-unchoose = unchoose {n = n} {A} {C ∘ inl} B-unchoose = unchoose {n = n} {B} {C ∘ inr} module A-unchoose = is-equiv (A-hc (C ∘ inl)) module B-unchoose = is-equiv (B-hc (C ∘ inr)) to = unchoose {n = n} {A ⊔ B} {C} from : Π (A ⊔ B) (Trunc n ∘ C) → Trunc n (Π (A ⊔ B) C) from f = Trunc-fmap2 Coprod-elim (A-unchoose.g (f ∘ inl)) (B-unchoose.g (f ∘ inr)) abstract to-from-inl' : ∀ f a → to (from f) (inl a) == A-unchoose (A-unchoose.g (f ∘ inl)) a to-from-inl' f a = Trunc-elim {P = λ f-inl → to (Trunc-fmap2 Coprod-elim f-inl (B-unchoose.g (f ∘ inr))) (inl a) == A-unchoose f-inl a} (λ f-inl → Trunc-elim {P = λ f-inr → to (Trunc-fmap2 Coprod-elim [ f-inl ] f-inr) (inl a) == [ f-inl a ]} (λ f-inr → idp) (B-unchoose.g (f ∘ inr))) (A-unchoose.g (f ∘ inl)) to-from-inl : ∀ f a → to (from f) (inl a) == f (inl a) to-from-inl f a = to-from-inl' f a ∙ app= (A-unchoose.f-g (f ∘ inl)) a to-from-inr' : ∀ f b → to (from f) (inr b) == B-unchoose (B-unchoose.g (f ∘ inr)) b to-from-inr' f b = Trunc-elim {P = λ f-inr → to (Trunc-fmap2 Coprod-elim (A-unchoose.g (f ∘ inl)) f-inr) (inr b) == B-unchoose f-inr b} (λ f-inr → Trunc-elim {P = λ f-inl → to (Trunc-fmap2 Coprod-elim f-inl [ f-inr ]) (inr b) == [ f-inr b ]} (λ f-inl → idp) (A-unchoose.g (f ∘ inl))) (B-unchoose.g (f ∘ inr)) to-from-inr : ∀ f b → to (from f) (inr b) == f (inr b) to-from-inr f b = to-from-inr' f b ∙ app= (B-unchoose.f-g (f ∘ inr)) b to-from : ∀ f → to (from f) == f to-from f = λ= λ{(inl a) → to-from-inl f a; (inr b) → to-from-inr f b} from-to : ∀ f → from (to f) == f from-to = Trunc-elim (λ f → Trunc-fmap2 Coprod-elim (A-unchoose.g (λ a → [ f (inl a)])) (B-unchoose.g (λ b → [ f (inr b)])) =⟨ ap2 (Trunc-fmap2 Coprod-elim) (A-unchoose.g-f [ f ∘ inl ]) (B-unchoose.g-f [ f ∘ inr ]) ⟩ [ Coprod-elim (f ∘ inl) (f ∘ inr) ] =⟨ ap [_] $ λ= (λ{(inl _) → idp; (inr _) → idp}) ⟩ [ f ] =∎) equiv-preserves-choice : ∀ {i j} {n} {A : Type i} {B : Type j} (e : A ≃ B) {k} → has-choice n A k → has-choice n B k equiv-preserves-choice {n = n} {A} {B} (f , f-ise) A-hc C = is-eq to from to-from from-to where module f = is-equiv f-ise A-unchoose = unchoose {n = n} {A} {C ∘ f} module A-unchoose = is-equiv (A-hc (C ∘ f)) to = unchoose {n = n} {B} {C} from' : Trunc n (Π A (C ∘ f)) → Trunc n (Π B C) from' = Trunc-fmap (λ g' b → transport C (f.f-g b) (g' (f.g b))) from : Π B (Trunc n ∘ C) → Trunc n (Π B C) from g = from' (A-unchoose.g (g ∘ f)) abstract to-from''' : ∀ (g-f' : Π A (C ∘ f)) {a a'} (path : f.g (f a) == a') → transport C (ap f path) (g-f' (f.g (f a))) == g-f' a' to-from''' g-f' idp = idp to-from'' : ∀ (g-f' : Π A (C ∘ f)) a → transport C (f.f-g (f a)) (g-f' (f.g (f a))) == g-f' a to-from'' g-f' a = transport C (f.f-g (f a)) (g-f' (f.g (f a))) =⟨ ! $ ap (λ p → transport C p (g-f' (f.g (f a)))) (f.adj a) ⟩ transport C (ap f (f.g-f a)) (g-f' (f.g (f a))) =⟨ to-from''' g-f' (f.g-f a) ⟩ g-f' a =∎ to-from' : ∀ g a → to (from g) (f a) == A-unchoose (A-unchoose.g (g ∘ f)) a to-from' g a = Trunc-elim {P = λ g-f → to (from' g-f) (f a) == A-unchoose g-f a} (λ g-f' → ap [_] $ to-from'' g-f' a) (A-unchoose.g (g ∘ f)) to-from : ∀ g → to (from g) == g to-from g = λ= λ b → transport (λ b → to (from g) b == g b) (f.f-g b) ( to (from g) (f (f.g b)) =⟨ to-from' g (f.g b) ⟩ A-unchoose (A-unchoose.g (g ∘ f)) (f.g b) =⟨ app= (A-unchoose.f-g (g ∘ f)) (f.g b) ⟩ g (f (f.g b)) =∎) from-to' : ∀ g {b b'} (path : f (f.g b) == b') → transport C path (g (f (f.g b))) == g b' from-to' g idp = idp from-to : ∀ g → from (to g) == g from-to = Trunc-elim {P = λ g → from (to g) == g} (λ g → from' (A-unchoose.g (λ a → [ g (f a) ])) =⟨ ap from' (A-unchoose.g-f [ (g ∘ f) ]) ⟩ from' [ (g ∘ f) ] =⟨ ap [_] $ λ= (λ b → from-to' g (f.f-g b)) ⟩ [ g ] =∎) Fin-has-choice : ∀ (n : ℕ₋₂) {m} l → has-choice n (Fin m) l Fin-has-choice _ {O} _ = equiv-preserves-choice (Fin-equiv-Empty ⁻¹) Empty-has-choice Fin-has-choice n {S m} l = equiv-preserves-choice (Fin-equiv-Coprod ⁻¹) (Coprod-has-choice (Fin-has-choice n l) Unit-has-choice)
{ "alphanum_fraction": 0.49039858, "avg_line_length": 35.6149425287, "ext": "agda", "hexsha": "062d0984c607752277fb5691986ede0c5e0a9de3", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Choice.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Choice.agda", "max_line_length": 111, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Choice.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 2599, "size": 6197 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} -- This module defines Outputs produced by handlers, as well as functions and properties relating -- these to Yasm Actions. open import LibraBFT.ImplShared.NetworkMsg open import LibraBFT.ImplShared.Consensus.Types open import Optics.All open import Util.KVMap open import Util.Prelude open import Yasm.Types module LibraBFT.ImplShared.Interface.Output where data Output : Set where --BroadcastEpochChangeProof : EpochChangeProof → List Author → Output -- TODO-1 BroadcastProposal : ProposalMsg → List Author → Output BroadcastSyncInfo : SyncInfo → List Author → Output LogErr : ErrLog → Output LogInfo : InfoLog → Output SendBRP : Author → BlockRetrievalResponse → Output SendVote : VoteMsg → List Author → Output open Output public SendVote-inj-v : ∀ {x1 x2 y1 y2} → SendVote x1 y1 ≡ SendVote x2 y2 → x1 ≡ x2 SendVote-inj-v refl = refl SendVote-inj-si : ∀ {x1 x2 y1 y2} → SendVote x1 y1 ≡ SendVote x2 y2 → y1 ≡ y2 SendVote-inj-si refl = refl IsSendVote : Output → Set IsSendVote (BroadcastProposal _ _) = ⊥ IsSendVote (BroadcastSyncInfo _ _) = ⊥ IsSendVote (LogErr _) = ⊥ IsSendVote (LogInfo _) = ⊥ IsSendVote (SendBRP _ _) = ⊥ IsSendVote (SendVote _ _) = ⊤ IsBroadcastProposal : Output → Set IsBroadcastProposal (BroadcastProposal _ _) = ⊤ IsBroadcastProposal (BroadcastSyncInfo _ _) = ⊥ IsBroadcastProposal (LogErr _) = ⊥ IsBroadcastProposal (LogInfo _) = ⊥ IsBroadcastProposal (SendBRP _ _) = ⊥ IsBroadcastProposal (SendVote _ _) = ⊥ IsBroadcastSyncInfo : Output → Set IsBroadcastSyncInfo (BroadcastProposal _ _) = ⊥ IsBroadcastSyncInfo (BroadcastSyncInfo _ _) = ⊤ IsBroadcastSyncInfo (LogErr _) = ⊥ IsBroadcastSyncInfo (LogInfo _) = ⊥ IsBroadcastSyncInfo (SendBRP _ _) = ⊥ IsBroadcastSyncInfo (SendVote _ _) = ⊥ IsLogErr : Output → Set IsLogErr (BroadcastProposal _ _) = ⊥ IsLogErr (BroadcastSyncInfo _ _) = ⊥ IsLogErr (LogErr _) = ⊤ IsLogErr (LogInfo _) = ⊥ IsLogErr (SendBRP _ _) = ⊥ IsLogErr (SendVote _ _) = ⊥ logErrMB : Output → Maybe ErrLog logErrMB (BroadcastProposal _ _) = nothing logErrMB (BroadcastSyncInfo _ _) = nothing logErrMB (LogErr e) = just e logErrMB (LogInfo _) = nothing logErrMB (SendBRP _ _) = nothing logErrMB (SendVote _ _) = nothing isSendVote? : (out : Output) → Dec (IsSendVote out) isSendVote? (BroadcastProposal _ _) = no λ () isSendVote? (BroadcastSyncInfo _ _) = no λ () isSendVote? (LogErr _) = no λ () isSendVote? (LogInfo _) = no λ () isSendVote? (SendBRP _ _) = no λ () isSendVote? (SendVote mv pid) = yes tt isBroadcastProposal? : (out : Output) → Dec (IsBroadcastProposal out) isBroadcastProposal? (BroadcastProposal _ _) = yes tt isBroadcastProposal? (BroadcastSyncInfo _ _) = no λ () isBroadcastProposal? (LogErr _) = no λ () isBroadcastProposal? (LogInfo _) = no λ () isBroadcastProposal? (SendBRP _ _) = no λ () isBroadcastProposal? (SendVote _ _) = no λ () isBroadcastSyncInfo? : (out : Output) → Dec (IsBroadcastSyncInfo out) isBroadcastSyncInfo? (BroadcastProposal _ _) = no λ () isBroadcastSyncInfo? (BroadcastSyncInfo _ _) = yes tt isBroadcastSyncInfo? (LogErr _) = no λ () isBroadcastSyncInfo? (LogInfo _) = no λ () isBroadcastSyncInfo? (SendBRP _ _) = no λ () isBroadcastSyncInfo? (SendVote _ _) = no λ () isLogErr? : (out : Output) → Dec (IsLogErr out) isLogErr? (BroadcastProposal x _) = no λ () isLogErr? (BroadcastSyncInfo x _) = no λ () isLogErr? (LogErr x) = yes tt isLogErr? (LogInfo x) = no λ () isLogErr? (SendBRP _ _) = no λ () isLogErr? (SendVote x x₁) = no λ () IsOutputMsg : Output → Set IsOutputMsg = IsBroadcastProposal ∪ IsBroadcastSyncInfo ∪ IsSendVote isOutputMsg? = isBroadcastProposal? ∪? (isBroadcastSyncInfo? ∪? isSendVote?) data _Msg∈Out_ : NetworkMsg → Output → Set where inBP : ∀ {pm pids} → P pm Msg∈Out BroadcastProposal pm pids inSV : ∀ {vm pids} → V vm Msg∈Out SendVote vm pids sendVote∉Output : ∀ {vm pid outs} → List-filter isSendVote? outs ≡ [] → ¬ (SendVote vm pid ∈ outs) sendVote∉Output () (here refl) sendVote∉Output{outs = x ∷ outs'} eq (there vm∈outs) with isSendVote? x ... | no proof = sendVote∉Output eq vm∈outs -- Note: the SystemModel allows anyone to receive any message sent, so intended recipient is ignored; -- it is included in the model only to facilitate future work on liveness properties, when we will need -- assumptions about message delivery between honest peers. outputToActions : RoundManager → Output → List (Action NetworkMsg) outputToActions rm (BroadcastProposal p rcvrs) = List-map (const (send (P p))) rcvrs outputToActions _ (BroadcastSyncInfo _ _) = [] outputToActions _ (LogErr x) = [] outputToActions _ (LogInfo x) = [] outputToActions _ (SendVote vm rcvrs) = List-map (const (send (V vm))) rcvrs outputToActions _ (SendBRP p brr) = [] -- TODO-1: Update `NetworkMsg` outputsToActions : ∀ {State} → List Output → List (Action NetworkMsg) outputsToActions {st} = concat ∘ List-map (outputToActions st) -- Lemmas about `outputsToActions` outputToActions-sendVote∉actions : ∀ {out vm st} → ¬ (IsSendVote out) → ¬ (send (V vm) ∈ outputToActions st out) outputToActions-sendVote∉actions {BroadcastProposal pm rcvrs}{vm}{st} ¬sv m∈acts = help rcvrs m∈acts where help : ∀ xs → ¬ (send (V vm) ∈ List-map (const (send (P pm))) xs) help (x ∷ xs) (there m∈acts) = help xs m∈acts outputToActions-sendVote∉actions {SendVote _ _} ¬sv m∈acts = ¬sv tt outputToActions-m∈sendVoteList : ∀ {m vm rcvrs} → send m ∈ List-map (const $ send (V vm)) rcvrs → m Msg∈Out SendVote vm rcvrs outputToActions-m∈sendVoteList {.(V vm)} {vm} {x ∷ rcvrs} (here refl) = inSV outputToActions-m∈sendVoteList {m} {vm} {x ∷ rcvrs} (there m∈svl) with outputToActions-m∈sendVoteList{rcvrs = rcvrs} m∈svl ... | inSV = inSV outputToActions-m∈sendProposalList : ∀ {m pm rcvrs} → send m ∈ List-map (const $ send (P pm)) rcvrs → m Msg∈Out BroadcastProposal pm rcvrs outputToActions-m∈sendProposalList {.(P pm)} {pm} {x ∷ rcvrs} (here refl) = inBP outputToActions-m∈sendProposalList {m} {pm} {x ∷ rcvrs} (there m∈spl) with outputToActions-m∈sendProposalList {rcvrs = rcvrs} m∈spl ... | inBP = inBP sendVote∉actions : ∀ {outs vm st} → [] ≡ List-filter isSendVote? outs → ¬ (send (V vm) ∈ outputsToActions{st} outs) sendVote∉actions {[]} {st = st} outs≡ () sendVote∉actions {x ∷ outs} {st = st} outs≡ m∈acts with Any-++⁻ (outputToActions st x) m∈acts ... | Left m∈[] with isSendVote? x ...| no proof = outputToActions-sendVote∉actions {st = st} proof m∈[] sendVote∉actions {x ∷ outs} {st = st} outs≡ m∈acts | Right m∈acts' with isSendVote? x ...| no proof = sendVote∉actions{outs = outs}{st = st} outs≡ m∈acts' sendVote∈actions : ∀ {vm vm' pids outs st} → SendVote vm pids ∷ [] ≡ List-filter isSendVote? outs → send (V vm') ∈ outputsToActions{st} outs → vm' ≡ vm sendVote∈actions {outs = (BroadcastProposal x rcvrs) ∷ outs}{st = st} outs≡ m∈acts with Any-++⁻ (outputToActions st (BroadcastProposal x rcvrs)) m∈acts ... | Left m∈[] = ⊥-elim (outputToActions-sendVote∉actions{out = BroadcastProposal x rcvrs}{st = st} id m∈[]) ... | Right m∈acts' = sendVote∈actions{outs = outs}{st = st} outs≡ m∈acts' sendVote∈actions {outs = (BroadcastSyncInfo x rcvrs) ∷ outs}{st = st} outs≡ m∈acts = sendVote∈actions{outs = outs}{st = st} outs≡ m∈acts sendVote∈actions {outs = LogErr x ∷ outs}{st = st} outs≡ m∈acts = sendVote∈actions{outs = outs}{st = st} outs≡ m∈acts sendVote∈actions {outs = LogInfo x ∷ outs}{st = st} outs≡ m∈acts = sendVote∈actions{outs = outs}{st = st} outs≡ m∈acts sendVote∈actions {vm}{vm'}{outs = SendBRP pid brr ∷ outs}{st = st} outs≡ m∈acts = sendVote∈actions{outs = outs}{st = st} outs≡ m∈acts sendVote∈actions {vm}{vm'}{outs = SendVote vm“ pids' ∷ outs}{st = st} outs≡ m∈acts with ∷-injective outs≡ ...| refl , tl≡ with Any-++⁻ (List-map (const (send (V vm“))) pids') m∈acts ... | Right m∈[] = ⊥-elim (sendVote∉actions{outs = outs}{st = st} tl≡ m∈[]) ... | Left m∈acts' = help pids' m∈acts' where help : ∀ pids → send (V vm') ∈ List-map (const (send (V vm“))) pids → vm' ≡ vm“ help (_ ∷ pids) (here refl) = refl help (_ ∷ pids) (there m∈acts) = help pids m∈acts sendMsg∈actions : ∀ {outs m st} → send m ∈ outputsToActions{st} outs → Σ[ out ∈ Output ] (out ∈ outs × m Msg∈Out out) sendMsg∈actions {BroadcastProposal pm rcvrs ∷ outs} {m} {st} m∈acts with Any-++⁻ (List-map (const $ send (P pm)) rcvrs) m∈acts ... | Left m∈bpl = BroadcastProposal pm rcvrs , here refl , outputToActions-m∈sendProposalList m∈bpl ... | Right m∈acts' with sendMsg∈actions{outs}{m}{st} m∈acts' ... | out , out∈outs , m∈out = out , there out∈outs , m∈out -- NOTE: When we represent sending `BroadcastSyncInfo` as an action, this will require updating sendMsg∈actions {BroadcastSyncInfo _ _ ∷ outs} {m} {st} m∈acts with sendMsg∈actions{outs}{m}{st} m∈acts ...| out , out∈outs , m∈out = out , there out∈outs , m∈out sendMsg∈actions {LogErr _ ∷ outs} {m} {st} m∈acts with sendMsg∈actions{outs}{m}{st} m∈acts ...| out , out∈outs , m∈out = out , there out∈outs , m∈out sendMsg∈actions {LogInfo _ ∷ outs} {m} {st} m∈acts with sendMsg∈actions{outs}{m}{st} m∈acts ...| out , out∈outs , m∈out = out , there out∈outs , m∈out sendMsg∈actions {SendBRP pid brr ∷ outs} {m} {st} m∈acts with sendMsg∈actions{outs}{m}{st} m∈acts ...| out , out∈outs , m∈out = out , there out∈outs , m∈out sendMsg∈actions {SendVote vm rcvrs ∷ outs} {m} {st} m∈acts with Any-++⁻ (List-map (const (send (V vm))) rcvrs) m∈acts ... | Left m∈svl = SendVote vm rcvrs , here refl , outputToActions-m∈sendVoteList m∈svl ... | Right m∈acts' with sendMsg∈actions{outs}{m}{st} m∈acts' ... | out , out∈outs , m∈out = out , there out∈outs , m∈out
{ "alphanum_fraction": 0.6391810669, "avg_line_length": 46.0952380952, "ext": "agda", "hexsha": "e153941886552aba726379a94a6c519a7d008d6a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/ImplShared/Interface/Output.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/ImplShared/Interface/Output.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/ImplShared/Interface/Output.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3678, "size": 10648 }
---------------------------------------------------------------------- -- Copyright: 2013, Jan Stolarek, Lodz University of Technology -- -- -- -- License: See LICENSE file in root of the repo -- -- Repo address: https://github.com/jstolarek/dep-typed-wbl-heaps -- -- -- -- This module re-exports all Basics/* modules for convenience. -- -- Note that both Basics.Nat and Basics.Ordering define ≥ operator. -- -- Here we re-export the one from Basics.Ordering as it will be -- -- used most of the time. -- -- This module also defines two type synonyms that will be helpful -- -- when working on heaps: Rank and Priority. -- ---------------------------------------------------------------------- module Basics where open import Basics.Bool public open import Basics.Nat public hiding (_≥_) open import Basics.Ordering public open import Basics.Reasoning public -- Rank of a weight biased leftist heap is defined as number of nodes -- in a heap. In other words it is size of a tree used to represent a -- heap. Rank : Set Rank = Nat -- Priority assigned to elements stored in a Heap. -- -- CONVENTION: Lower number means higher Priority. Therefore the -- highest Priority is zero. It will sometimes be more convenient not -- to use this inversed terminology. We will then use terms "smaller" -- and "greater" (in contrast to "lower" and "higher"). Example: -- Priority 3 is higher than 5, but 3 is smaller than 5. Priority : Set Priority = Nat -- Note that both Rank and Priority are Nat, which allows us to -- operate on them with functions that work for Nat.
{ "alphanum_fraction": 0.5759423503, "avg_line_length": 45.1, "ext": "agda", "hexsha": "315e509ac62ab88dbb411c87ff8a978479ac3aca", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_forks_repo_path": "src/Basics.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_issues_repo_path": "src/Basics.agda", "max_line_length": 70, "max_stars_count": 1, "max_stars_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_stars_repo_path": "src/Basics.agda", "max_stars_repo_stars_event_max_datetime": "2018-05-02T21:48:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-02T21:48:43.000Z", "num_tokens": 357, "size": 1804 }
module Example where open import Data.List -- reverse rev : ∀ {a} {A : Set a} → List A → List A rev [] = [] rev (x ∷ xs) = rev xs ++ [ x ] -- https://code.google.com/p/agda/issues/detail?id=1252 暫定対策 rev' = rev {-# COMPILED_EXPORT rev' rev' #-} private open import Relation.Binary.PropositionalEquality -- reverse2回で元に戻る証明 lemma : ∀ {a} {A : Set a} (x : A) (xs : List A) → rev (xs ∷ʳ x) ≡ x ∷ rev xs lemma x [] = refl lemma x (_ ∷ xs) rewrite lemma x xs = refl revrev-is-id : ∀ {a} {A : Set a} (xs : List A) → rev (rev xs) ≡ xs revrev-is-id [] = refl revrev-is-id (x ∷ xs) rewrite lemma x (rev xs) | revrev-is-id xs = refl open import Data.Empty head : ∀ {a} {A : Set a} (xs : List A) → {xs≢[] : xs ≢ []} → A head [] {xs≠[]} = ⊥-elim (xs≠[] refl) head (x ∷ xs) = x {- {-# COMPILED_EXPORT head safeHead' #-} -- エラーになる -- The type _≡_ cannot be translated to a Haskell type. -- when checking the pragma COMPILED_EXPORT head' safeHead -- -- つまり,証明オブジェクトを取るような関数は, -- そのままではCOMPILED_EXPORTできないことが多い -} open import Data.Maybe head' : ∀ {a} {A : Set a} (xs : List A) → Maybe A head' = go where go : ∀ {a} {A : Set a} (xs : List A) → Maybe A go [] = nothing go (x ∷ xs) = just (head (x ∷ xs) {λ ()}) {-# COMPILED_EXPORT head' safeHead' #-} -- つまり,安全なheadを使うには, -- 安全なものだけ渡せるようにしてjustで結果が得られ, -- それ以外についてはnothingになるように, -- 適切にラップしないとCOMPILED_EXPORTできない.
{ "alphanum_fraction": 0.5918079096, "avg_line_length": 24.4137931034, "ext": "agda", "hexsha": "39944a3437468127a76da36bdc6b24df553b4319", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9ad77d2aed8f950151e009135a9dfc02bc32ce65", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "notogawa/agda-haskell-example", "max_forks_repo_path": "src/Example.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9ad77d2aed8f950151e009135a9dfc02bc32ce65", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "notogawa/agda-haskell-example", "max_issues_repo_path": "src/Example.agda", "max_line_length": 78, "max_stars_count": 5, "max_stars_repo_head_hexsha": "9ad77d2aed8f950151e009135a9dfc02bc32ce65", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "notogawa/agda-haskell-example", "max_stars_repo_path": "src/Example.agda", "max_stars_repo_stars_event_max_datetime": "2017-11-07T01:35:46.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-28T05:04:58.000Z", "num_tokens": 600, "size": 1416 }
module Issue4373.A where postulate T : Set instance t : T
{ "alphanum_fraction": 0.6875, "avg_line_length": 9.1428571429, "ext": "agda", "hexsha": "9a8ae940936d8b376be9601d733037f5633eca88", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Fail/Issue4373/A.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue4373/A.agda", "max_line_length": 24, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue4373/A.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 22, "size": 64 }
module Languages.ILL.TypeSyntax where open import bool open import Utils.HaskellTypes {-# IMPORT Languages.ILL.TypeSyntax #-} data Type : Set where TVar : String → Type Top : Type Imp : Type → Type → Type Tensor : Type → Type → Type Bang : Type → Type {-# COMPILED_DATA Type Languages.ILL.TypeSyntax.Type Languages.ILL.TypeSyntax.TVar Languages.ILL.TypeSyntax.Top Languages.ILL.TypeSyntax.Imp Languages.ILL.TypeSyntax.Tensor Languages.ILL.TypeSyntax.Bang #-} _eq-type_ : Type → Type → 𝔹 (TVar _) eq-type (TVar _) = tt Top eq-type Top = tt (Imp A C) eq-type (Imp B D) = (A eq-type B) && (C eq-type D) (Tensor A C) eq-type (Tensor B D) = (A eq-type B) && (C eq-type D) (Bang A) eq-type (Bang B) = A eq-type B _ eq-type _ = ff
{ "alphanum_fraction": 0.5937136205, "avg_line_length": 28.6333333333, "ext": "agda", "hexsha": "cf5f830a2d5478a18e97e4b99484cbca779a6bdd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c83f5d8201362b26a749138f6dbff2dd509f85b1", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "heades/Agda-LLS", "max_forks_repo_path": "Source/ALL/Languages/ILL/TypeSyntax.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "c83f5d8201362b26a749138f6dbff2dd509f85b1", "max_issues_repo_issues_event_max_datetime": "2017-04-05T17:30:16.000Z", "max_issues_repo_issues_event_min_datetime": "2017-03-27T14:52:46.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "heades/Agda-LLS", "max_issues_repo_path": "Source/ALL/Languages/ILL/TypeSyntax.agda", "max_line_length": 66, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c83f5d8201362b26a749138f6dbff2dd509f85b1", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "heades/Agda-LLS", "max_stars_repo_path": "Source/ALL/Languages/ILL/TypeSyntax.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-02T23:41:23.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-09T20:53:53.000Z", "num_tokens": 232, "size": 859 }
-- Andreas, 2017-01-21, issue #2422 overloading inherited projections -- {-# OPTIONS -v tc.proj.amb:100 #-} -- {-# OPTIONS -v tc.mod.apply:100 #-} postulate A : Set record R : Set where field f : A record S : Set where field r : R open R r public -- The inherited projection (in the eyes of the scope checker) S.f -- is actually a composition of projections R.f ∘ S.r -- s .S.f = s .S.r .R.f open R -- works without this open S test : S → A test s = f s -- f is not really a projection, but a composition of projections -- it would be nice if overloading is still allowed. -- Error WAS: -- Cannot resolve overloaded projection f because no matching candidate found
{ "alphanum_fraction": 0.6729377713, "avg_line_length": 23.8275862069, "ext": "agda", "hexsha": "1acb6ac5c1a7d786d71be3b137491b01288e1fcc", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2422.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2422.agda", "max_line_length": 77, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2422.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 197, "size": 691 }
{- Type class for functors. -} module CategoryTheory.Functor where open import CategoryTheory.Categories open import Relation.Binary -- Functor between two categories record Functor {n} (ℂ : Category n) (𝔻 : Category n) : Set (lsuc n) where private module ℂ = Category ℂ private module 𝔻 = Category 𝔻 field -- || Definitions -- Object map omap : ℂ.obj -> 𝔻.obj -- Arrow map fmap : ∀{A B : ℂ.obj} -> (A ℂ.~> B) -> (omap A 𝔻.~> omap B) -- || Laws -- Functor preseres identities fmap-id : ∀{A : ℂ.obj} -> fmap (ℂ.id {A}) 𝔻.≈ 𝔻.id -- Functor preserves composition fmap-∘ : ∀{A B C : ℂ.obj} {g : B ℂ.~> C} {f : A ℂ.~> B} -> fmap (g ℂ.∘ f) 𝔻.≈ fmap g 𝔻.∘ fmap f -- Congruence of equality and fmap fmap-cong : ∀{A B : ℂ.obj} {f f′ : A ℂ.~> B} -> f ℂ.≈ f′ -> fmap f 𝔻.≈ fmap f′ -- Type synonym for endofunctors Endofunctor : ∀{n} -> Category n -> Set (lsuc n) Endofunctor ℂ = Functor ℂ ℂ -- Identity functor I : ∀ {n} {ℂ : Category n} -> Endofunctor ℂ I {n} {ℂ} = record { omap = λ a → a ; fmap = λ a → a ; fmap-id = IsEquivalence.refl (Category.≈-equiv ℂ) ; fmap-∘ = IsEquivalence.refl (Category.≈-equiv ℂ) ; fmap-cong = λ p → p } -- Functors are closed under composition. infixl 40 _◯_ _◯_ : ∀ {n} {𝔸 𝔹 ℂ : Category n} -> Functor 𝔹 ℂ -> Functor 𝔸 𝔹 -> Functor 𝔸 ℂ _◯_ {n} {𝔸} {𝔹} {ℂ} G F = record { omap = λ a → G.omap (F.omap a) ; fmap = λ f → G.fmap (F.fmap f) ; fmap-id = fmap-◯-id ; fmap-∘ = fmap-◯-∘ ; fmap-cong = λ p → G.fmap-cong (F.fmap-cong p)} where private module F = Functor F private module G = Functor G private module 𝔸 = Category 𝔸 private module 𝔹 = Category 𝔹 open Category ℂ fmap-◯-id : ∀{A : 𝔸.obj} -> G.fmap (F.fmap (𝔸.id {A})) ≈ id fmap-◯-id {A} = begin G.fmap (F.fmap (𝔸.id)) ≈⟨ G.fmap-cong (F.fmap-id) ⟩ G.fmap (𝔹.id) ≈⟨ G.fmap-id ⟩ id ∎ fmap-◯-∘ : ∀{A B C : 𝔸.obj} {g : B 𝔸.~> C} {f : A 𝔸.~> B} -> G.fmap (F.fmap (g 𝔸.∘ f)) ≈ G.fmap (F.fmap g) ∘ G.fmap (F.fmap f) fmap-◯-∘ {A} {g = g} {f = f} = begin G.fmap (F.fmap (g 𝔸.∘ f)) ≈⟨ G.fmap-cong (F.fmap-∘) ⟩ G.fmap ((F.fmap g) 𝔹.∘ (F.fmap f)) ≈⟨ G.fmap-∘ ⟩ G.fmap (F.fmap g) ∘ G.fmap (F.fmap f) ∎ -- Endofunctor tensor product infixl 40 _⨂_ _⨂_ : ∀ {n} {ℂ : Category n} -> Endofunctor ℂ -> Endofunctor ℂ -> Endofunctor ℂ (T ⨂ S) = T ◯ S -- Square and cube of an endofunctor _² : ∀ {n} {ℂ : Category n} -> Endofunctor ℂ -> Endofunctor ℂ F ² = F ⨂ F _³ : ∀ {n} {ℂ : Category n} -> Endofunctor ℂ -> Endofunctor ℂ F ³ = F ⨂ F ⨂ F
{ "alphanum_fraction": 0.4648862512, "avg_line_length": 33.7, "ext": "agda", "hexsha": "3cf4df50b39e01d9cc283ff90d96af91180b1cff", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DimaSamoz/temporal-type-systems", "max_forks_repo_path": "src/CategoryTheory/Functor.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DimaSamoz/temporal-type-systems", "max_issues_repo_path": "src/CategoryTheory/Functor.agda", "max_line_length": 79, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DimaSamoz/temporal-type-systems", "max_stars_repo_path": "src/CategoryTheory/Functor.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z", "num_tokens": 1179, "size": 3033 }
module Issue3579 where open import Agda.Builtin.String open import Agda.Builtin.Reflection data _==_ {A : Set} (a : A) : A → Set where refl : a == a {-# BUILTIN EQUALITY _==_ #-}
{ "alphanum_fraction": 0.6630434783, "avg_line_length": 18.4, "ext": "agda", "hexsha": "c847f35dcc3ed1114edc2725ff84bf8973fb5caf", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue3579.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue3579.agda", "max_line_length": 43, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue3579.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 58, "size": 184 }
{-# OPTIONS --safe --without-K #-} module Literals.Number where open import Agda.Builtin.FromNat public
{ "alphanum_fraction": 0.7358490566, "avg_line_length": 17.6666666667, "ext": "agda", "hexsha": "2c413a597a57032e59bde2af69488bf24186b668", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "9c5e8b6f546bee952e92db0b73bfc12592bf3152", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/masters-thesis", "max_forks_repo_path": "agda/Literals/Number.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9c5e8b6f546bee952e92db0b73bfc12592bf3152", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/masters-thesis", "max_issues_repo_path": "agda/Literals/Number.agda", "max_line_length": 39, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Literals/Number.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 24, "size": 106 }
module BTree.Complete.Alternative.Properties {A : Set} where open import BTree {A} open import BTree.Equality {A} open import BTree.Equality.Properties {A} open import BTree.Complete.Alternative {A} open import Data.Sum renaming (_⊎_ to _∨_) lemma-⋗-≃ : {t t' t'' : BTree} → t ⋗ t' → t' ≃ t'' → t ⋗ t'' lemma-⋗-≃ (⋗lf x) ≃lf = ⋗lf x lemma-⋗-≃ (⋗nd x x' l≃r l'≃r' l⋗l') (≃nd .x' x'' _ l''≃r'' l'≃l'') = ⋗nd x x'' l≃r l'≃l'' (lemma-⋗-≃ l⋗l' l''≃r'') lemma-≃-⋘ : {l r : BTree} → l ≃ r → l ⋘ r lemma-≃-⋘ ≃lf = lf⋘ lemma-≃-⋘ (≃nd x x' l≃r l≃l' l'≃r') = ll⋘ x x' (lemma-≃-⋘ l≃r) l'≃r' (trans≃ (symm≃ l≃r) l≃l') lemma-⋗-⋙ : {l r : BTree} → l ⋗ r → l ⋙ r lemma-⋗-⋙ (⋗lf x) = ⋙lf x lemma-⋗-⋙ (⋗nd x x' l≃r l'≃r' l⋗l') = ⋙rl x x' l≃r (lemma-≃-⋘ l'≃r') (lemma-⋗-≃ l⋗l' l'≃r')
{ "alphanum_fraction": 0.5071151358, "avg_line_length": 36.8095238095, "ext": "agda", "hexsha": "0e952dc79b8e163f2c2ab3e79943edfe3f6c7c9e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/BTree/Complete/Alternative/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/BTree/Complete/Alternative/Properties.agda", "max_line_length": 114, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/BTree/Complete/Alternative/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 486, "size": 773 }
open import Relation.Binary.PropositionalEquality using ( refl ) open import Web.Semantic.DL.ABox.Interp using ( Interp ; ⌊_⌋ ; ind ; _*_ ) open import Web.Semantic.DL.ABox.Model using ( _⊨a_ ; ⊨a-resp-≡³ ; ⊨a-impl-⊨b ; ⊨b-impl-⊨a ; _,_ ; inb ; on-bnode ; bnodes ) open import Web.Semantic.DL.Category.Object using ( Object ; IN ; iface ) open import Web.Semantic.DL.Category.Morphism using ( _⇒_ ; _,_ ; BN ; impl ; _⊑_ ; _≣_ ) open import Web.Semantic.DL.KB using ( _,_ ) open import Web.Semantic.DL.KB.Model using ( _⊨_ ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox using ( TBox ; _,_ ) open import Web.Semantic.DL.TBox.Interp using ( Δ ) open import Web.Semantic.Util using ( _⊕_⊕_ ; inode ) module Web.Semantic.DL.Category.Properties.Equivalence {Σ : Signature} {S T : TBox Σ} where ⊑-refl : ∀ {A B : Object S T} (F : A ⇒ B) → (F ⊑ F) ⊑-refl F I I⊨STA I⊨F = ⊨a-impl-⊨b I (impl F) I⊨F ⊑-trans : ∀ {A B : Object S T} (F G H : A ⇒ B) → (F ⊑ G) → (G ⊑ H) → (F ⊑ H) ⊑-trans {A} {B} F G H F⊑G G⊑H I I⊨STA I⊨F = (g , I⊨H) where f : BN G → Δ ⌊ I ⌋ f = inb (F⊑G I I⊨STA I⊨F) J : Interp Σ (IN A ⊕ BN G ⊕ IN B) J = bnodes I f J⊨STA : inode * J ⊨ (S , T) , iface A J⊨STA = I⊨STA J⊨G : J ⊨a impl G J⊨G = ⊨b-impl-⊨a (F⊑G I I⊨STA I⊨F) g : BN H → Δ ⌊ I ⌋ g = inb (G⊑H J J⊨STA J⊨G) K : Interp Σ (IN A ⊕ BN H ⊕ IN B) K = bnodes J g K⊨H : K ⊨a impl H K⊨H = ⊨b-impl-⊨a (G⊑H J J⊨STA J⊨G) I⊨H : bnodes I g ⊨a impl H I⊨H = ⊨a-resp-≡³ K (on-bnode g (ind I)) refl (impl H) K⊨H ≣-refl : ∀ {A B : Object S T} (F : A ⇒ B) → (F ≣ F) ≣-refl F = (⊑-refl F , ⊑-refl F) ≣-sym : ∀ {A B : Object S T} {F G : A ⇒ B} → (F ≣ G) → (G ≣ F) ≣-sym (F⊑G , G⊑F) = (G⊑F , F⊑G) ≣-trans : ∀ {A B : Object S T} {F G H : A ⇒ B} → (F ≣ G) → (G ≣ H) → (F ≣ H) ≣-trans {A} {B} {F} {G} {H} (F⊑G , G⊑F) (G⊑H , H⊑G) = (⊑-trans F G H F⊑G G⊑H , ⊑-trans H G F H⊑G G⊑F)
{ "alphanum_fraction": 0.5418181818, "avg_line_length": 33.1896551724, "ext": "agda", "hexsha": "8aeb57b69bd2900a0cb0583210901254c227d839", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z", "max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z", "max_forks_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-web-semantic", "max_forks_repo_path": "src/Web/Semantic/DL/Category/Properties/Equivalence.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-web-semantic", "max_issues_repo_path": "src/Web/Semantic/DL/Category/Properties/Equivalence.agda", "max_line_length": 77, "max_stars_count": 9, "max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-web-semantic", "max_stars_repo_path": "src/Web/Semantic/DL/Category/Properties/Equivalence.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z", "num_tokens": 1032, "size": 1925 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some properties imply others ------------------------------------------------------------------------ -- This file contains some core definitions which are reexported by -- Relation.Binary.Consequences. module Relation.Binary.Consequences.Core where open import Relation.Binary.Core open import Data.Product subst⟶resp₂ : ∀ {a ℓ p} {A : Set a} {∼ : Rel A ℓ} (P : Rel A p) → Substitutive ∼ p → P Respects₂ ∼ subst⟶resp₂ {∼ = ∼} P subst = (λ {x _ _} y'∼y Pxy' → subst (P x) y'∼y Pxy') , (λ {y _ _} x'∼x Px'y → subst (λ x → P x y) x'∼x Px'y)
{ "alphanum_fraction": 0.4889217134, "avg_line_length": 33.85, "ext": "agda", "hexsha": "515c0dd91286d79042d2924f585171900ec09c63", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Consequences/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Consequences/Core.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Consequences/Core.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 188, "size": 677 }
{-# OPTIONS --without-K --safe #-} module Data.Binary.Addition where open import Data.Binary.Definition open import Data.Binary.Increment add₁ : 𝔹 → 𝔹 → 𝔹 add₂ : 𝔹 → 𝔹 → 𝔹 add₁ 0ᵇ ys = inc ys add₁ (1ᵇ xs) 0ᵇ = 2ᵇ xs add₁ (2ᵇ xs) 0ᵇ = 1ᵇ inc xs add₁ (1ᵇ xs) (1ᵇ ys) = 1ᵇ add₁ xs ys add₁ (1ᵇ xs) (2ᵇ ys) = 2ᵇ add₁ xs ys add₁ (2ᵇ xs) (1ᵇ ys) = 2ᵇ add₁ xs ys add₁ (2ᵇ xs) (2ᵇ ys) = 1ᵇ add₂ xs ys add₂ 0ᵇ 0ᵇ = 2ᵇ 0ᵇ add₂ 0ᵇ (1ᵇ ys) = 1ᵇ inc ys add₂ 0ᵇ (2ᵇ ys) = 2ᵇ inc ys add₂ (1ᵇ xs) 0ᵇ = 1ᵇ inc xs add₂ (2ᵇ xs) 0ᵇ = 2ᵇ inc xs add₂ (1ᵇ xs) (1ᵇ ys) = 2ᵇ add₁ xs ys add₂ (1ᵇ xs) (2ᵇ ys) = 1ᵇ add₂ xs ys add₂ (2ᵇ xs) (1ᵇ ys) = 1ᵇ add₂ xs ys add₂ (2ᵇ xs) (2ᵇ ys) = 2ᵇ add₂ xs ys infixl 6 _+_ _+_ : 𝔹 → 𝔹 → 𝔹 0ᵇ + ys = ys 1ᵇ xs + 0ᵇ = 1ᵇ xs 2ᵇ xs + 0ᵇ = 2ᵇ xs 1ᵇ xs + 1ᵇ ys = 2ᵇ (xs + ys) 1ᵇ xs + 2ᵇ ys = 1ᵇ add₁ xs ys 2ᵇ xs + 1ᵇ ys = 1ᵇ add₁ xs ys 2ᵇ xs + 2ᵇ ys = 2ᵇ add₁ xs ys
{ "alphanum_fraction": 0.5639658849, "avg_line_length": 24.6842105263, "ext": "agda", "hexsha": "a40c889fdd58f89384bddb5afe94bab27b572f84", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Binary/Addition.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Binary/Addition.agda", "max_line_length": 36, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Binary/Addition.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 624, "size": 938 }
-- -- Created by Dependently-Typed Lambda Calculus on 2020-09-24 -- Equal -- Author: dplaindoux -- module Equal where open import Data.Nat using (ℕ; zero; suc) open import Data.Bool using (Bool; true; false) infix 30 _=?_ data Type : Set where nat : Type ▲_ : Type → Set ▲ nat = ℕ _=?_ : { a : Type } → ▲ a → ▲ a → Bool _=?_ {nat} zero zero = true _=?_ {nat} (suc m) (suc n) = m =? n _=?_ {nat} _ _ = false Nat : ∀self(P : Nat → Set) → ∀(zero : P(λz. λs. z)) → ∀(succ : ∀(n : Nat) → P (λz. λs. s n)) → P self
{ "alphanum_fraction": 0.5409836066, "avg_line_length": 17.7096774194, "ext": "agda", "hexsha": "1c45bfc7ca5528c76a40b182c55d12aba50ea34b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a81447af3ab2ba898bb7d57be71369abbba12d81", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "d-plaindoux/colca", "max_forks_repo_path": "src/exercices/Equal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a81447af3ab2ba898bb7d57be71369abbba12d81", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "d-plaindoux/colca", "max_issues_repo_path": "src/exercices/Equal.agda", "max_line_length": 61, "max_stars_count": 2, "max_stars_repo_head_hexsha": "a81447af3ab2ba898bb7d57be71369abbba12d81", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "d-plaindoux/colca", "max_stars_repo_path": "src/exercices/Equal.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-04T09:35:36.000Z", "max_stars_repo_stars_event_min_datetime": "2021-03-12T18:31:14.000Z", "num_tokens": 221, "size": 549 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Convenient syntax for "equational reasoning" in multiple Setoids ------------------------------------------------------------------------ -- Example use: -- -- open import Data.Maybe -- open import Relation.Binary.Reasoning.MultiSetoid -- -- begin⟨ S ⟩ -- x ≈⟨ drop-just (begin⟨ setoid S ⟩ -- just x ≈⟨ justx≈mz ⟩ -- mz ≈⟨ mz≈justy ⟩ -- just y ∎)⟩ -- y ≈⟨ y≈z ⟩ -- z ∎ {-# OPTIONS --without-K --safe #-} module Relation.Binary.Reasoning.MultiSetoid where open import Relation.Binary open import Relation.Binary.Reasoning.Setoid as EqR using (_IsRelatedTo_) open import Relation.Binary.PropositionalEquality open Setoid renaming (_≈_ to [_]_≈_) infix 1 begin⟨_⟩_ infixr 2 _≈⟨_⟩_ _≡⟨_⟩_ _≡˘⟨_⟩_ _≡⟨⟩_ infix 3 _∎ begin⟨_⟩_ : ∀ {c l} (S : Setoid c l) {x y} → _IsRelatedTo_ S x y → [ S ] x ≈ y begin⟨_⟩_ S p = EqR.begin_ S p _≈⟨_⟩_ : ∀ {c l} {S : Setoid c l} x {y z} → [ S ] x ≈ y → _IsRelatedTo_ S y z → _IsRelatedTo_ S x z _≈⟨_⟩_ {S = S} = EqR._≈⟨_⟩_ S _≡⟨_⟩_ : ∀ {c l} {S : Setoid c l} x {y z} → x ≡ y → _IsRelatedTo_ S y z → _IsRelatedTo_ S x z _≡⟨_⟩_ {S = S} = EqR._≡⟨_⟩_ S _≡˘⟨_⟩_ : ∀ {c l} {S : Setoid c l} x {y z} → y ≡ x → _IsRelatedTo_ S y z → _IsRelatedTo_ S x z _≡˘⟨_⟩_ {S = S} = EqR._≡˘⟨_⟩_ S _≡⟨⟩_ : ∀ {c l} {S : Setoid c l} x {y} → _IsRelatedTo_ S x y → _IsRelatedTo_ S x y _≡⟨⟩_ {S = S} = EqR._≡⟨⟩_ S _∎ : ∀ {c l} {S : Setoid c l} x → _IsRelatedTo_ S x x _∎ {S = S} = EqR._∎ S
{ "alphanum_fraction": 0.5189466924, "avg_line_length": 30.5294117647, "ext": "agda", "hexsha": "99c17301370b8c96e2c1da6abe3f7993ff902ab5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Reasoning/MultiSetoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Reasoning/MultiSetoid.agda", "max_line_length": 99, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Reasoning/MultiSetoid.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 676, "size": 1557 }
{-# OPTIONS --warning=error --safe --without-K #-} open import LogicalFormulae open import Lists.Lists open import Numbers.Naturals.Semiring open import Numbers.Naturals.Naturals open import Numbers.Naturals.Order open import Numbers.BinaryNaturals.Definition open import Numbers.BinaryNaturals.Addition open import Numbers.BinaryNaturals.SubtractionGo open import Numbers.BinaryNaturals.SubtractionGoPreservesCanonicalRight open import Orders.Total.Definition open import Semirings.Definition open import Maybe module Numbers.BinaryNaturals.Subtraction where private aMinusAGo : (a : BinNat) → mapMaybe canonical (go zero a a) ≡ yes [] aMinusAGo [] = refl aMinusAGo (zero :: a) with aMinusAGo a ... | bl with go zero a a aMinusAGo (zero :: a) | bl | yes x rewrite yesInjective bl = refl aMinusAGo (one :: a) with aMinusAGo a ... | bl with go zero a a aMinusAGo (one :: a) | bl | yes x rewrite yesInjective bl = refl aMinusALemma : (a : BinNat) → mapMaybe canonical (mapMaybe (_::_ zero) (go zero a a)) ≡ yes [] aMinusALemma a with inspect (go zero a a) aMinusALemma a | no with≡ x with aMinusAGo a ... | r rewrite x = exFalso (noNotYes r) aMinusALemma a | yes xs with≡ pr with inspect (canonical xs) aMinusALemma a | yes xs with≡ pr | [] with≡ pr2 rewrite pr | pr2 = refl aMinusALemma a | yes xs with≡ pr | (x :: t) with≡ pr2 with aMinusAGo a ... | b rewrite pr | pr2 = exFalso (nonEmptyNotEmpty (yesInjective b)) aMinusA : (a : BinNat) → mapMaybe canonical (a -B a) ≡ yes [] aMinusA [] = refl aMinusA (zero :: a) = aMinusALemma a aMinusA (one :: a) = aMinusALemma a goOne : (a b : BinNat) → mapMaybe canonical (go one (incr a) b) ≡ mapMaybe canonical (go zero a b) goOne [] [] = refl goOne [] (zero :: b) with inspect (go zero [] b) goOne [] (zero :: b) | no with≡ pr rewrite pr = refl goOne [] (zero :: b) | yes x with≡ pr with goZeroEmpty b pr ... | t with inspect (canonical x) goOne [] (zero :: b) | yes x with≡ pr | t | [] with≡ pr2 rewrite pr | pr2 = refl goOne [] (zero :: b) | yes x with≡ pr | t | (x₁ :: y) with≡ pr2 with goZeroEmpty' b pr ... | bl = exFalso (nonEmptyNotEmpty (transitivity (equalityCommutative pr2) bl)) goOne [] (one :: b) with inspect (go one [] b) goOne [] (one :: b) | no with≡ pr rewrite pr = refl goOne [] (one :: b) | yes x with≡ pr = exFalso (goOneEmpty b pr) goOne (zero :: a) [] = refl goOne (zero :: a) (zero :: b) = refl goOne (zero :: a) (one :: b) = refl goOne (one :: a) [] with inspect (go one (incr a) []) goOne (one :: a) [] | no with≡ pr with goOne a [] ... | bl rewrite pr | goEmpty a = exFalso (noNotYes bl) goOne (one :: a) [] | yes y with≡ pr with goOne a [] ... | bl rewrite pr = applyEquality (λ i → yes (one :: i)) (yesInjective (transitivity bl (applyEquality (mapMaybe canonical) (goEmpty a)))) goOne (one :: a) (zero :: b) with inspect (go zero a b) goOne (one :: a) (zero :: b) | no with≡ pr with inspect (go one (incr a) b) goOne (one :: a) (zero :: b) | no with≡ pr | no with≡ x rewrite pr | x = refl goOne (one :: a) (zero :: b) | no with≡ pr | yes y with≡ x with goOne a b ... | f rewrite pr | x = exFalso (noNotYes (equalityCommutative f)) goOne (one :: a) (zero :: b) | yes y with≡ pr with inspect (go one (incr a) b) goOne (one :: a) (zero :: b) | yes y with≡ pr | no with≡ x with goOne a b ... | f rewrite pr | x = exFalso (noNotYes f) goOne (one :: a) (zero :: b) | yes y with≡ pr | yes z with≡ x rewrite pr | x = applyEquality (λ i → yes (one :: i)) (yesInjective (transitivity (transitivity (applyEquality (mapMaybe canonical) (equalityCommutative x)) (goOne a b)) (applyEquality (mapMaybe canonical) pr))) goOne (one :: a) (one :: b) with inspect (go zero a b) goOne (one :: a) (one :: b) | no with≡ pr with inspect (go one (incr a) b) goOne (one :: a) (one :: b) | no with≡ pr | no with≡ pr2 rewrite pr | pr2 = refl goOne (one :: a) (one :: b) | no with≡ pr | yes x with≡ pr2 rewrite pr | pr2 = exFalso (noNotYes (transitivity (applyEquality (mapMaybe canonical) (equalityCommutative pr)) (transitivity (equalityCommutative (goOne a b)) (applyEquality (mapMaybe canonical) pr2)))) goOne (one :: a) (one :: b) | yes y with≡ pr with inspect (go one (incr a) b) goOne (one :: a) (one :: b) | yes y with≡ pr | yes z with≡ pr2 rewrite pr | pr2 = applyEquality yes t where u : canonical z ≡ canonical y u = yesInjective (transitivity (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr2)) (goOne a b)) (applyEquality (mapMaybe canonical) pr)) t : canonical (zero :: z) ≡ canonical (zero :: y) t with inspect (canonical z) t | [] with≡ pr1 rewrite equalityCommutative u | pr1 = refl t | (x :: bl) with≡ pr rewrite equalityCommutative u | pr = refl goOne (one :: a) (one :: b) | yes y with≡ pr | no with≡ pr2 rewrite pr | pr2 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr2)) (transitivity (goOne a b) (applyEquality (mapMaybe canonical) pr)))) plusThenMinus : (a b : BinNat) → mapMaybe canonical ((a +B b) -B b) ≡ yes (canonical a) plusThenMinus [] b = aMinusA b plusThenMinus (zero :: a) [] = refl plusThenMinus (zero :: a) (zero :: b) = t where t : mapMaybe canonical (mapMaybe (zero ::_) (go zero (a +B b) b)) ≡ yes (canonical (zero :: a)) t with inspect (go zero (a +B b) b) t | no with≡ x with plusThenMinus a b ... | bl rewrite x = exFalso (noNotYes bl) t | yes y with≡ x with plusThenMinus a b ... | f rewrite x = applyEquality yes u where u : canonical (zero :: y) ≡ canonical (zero :: a) u with inspect (canonical y) u | [] with≡ pr rewrite pr | equalityCommutative (yesInjective f) = refl u | (x :: bl) with≡ pr rewrite pr | equalityCommutative (yesInjective f) = refl plusThenMinus (zero :: a) (one :: b) = t where t : mapMaybe canonical (mapMaybe (zero ::_) (go zero (a +B b) b)) ≡ yes (canonical (zero :: a)) t with inspect (go zero (a +B b) b) t | no with≡ x with plusThenMinus a b ... | bl rewrite x = exFalso (noNotYes bl) t | yes y with≡ x with plusThenMinus a b ... | f rewrite x = applyEquality yes u where u : canonical (zero :: y) ≡ canonical (zero :: a) u with inspect (canonical y) u | [] with≡ pr rewrite pr | equalityCommutative (yesInjective f) = refl u | (x :: bl) with≡ pr rewrite pr | equalityCommutative (yesInjective f) = refl plusThenMinus (one :: a) [] = refl plusThenMinus (one :: a) (zero :: b) = t where t : mapMaybe canonical (mapMaybe (_::_ one) (go zero (a +B b) b)) ≡ yes (one :: canonical a) t with inspect (go zero (a +B b) b) t | no with≡ x with plusThenMinus a b ... | bl rewrite x = exFalso (noNotYes bl) t | yes y with≡ x with plusThenMinus a b ... | bl rewrite x = applyEquality (λ i → yes (one :: i)) (yesInjective bl) plusThenMinus (one :: a) (one :: b) = t where t : mapMaybe canonical (mapMaybe (_::_ one) (go one (incr (a +B b)) b)) ≡ yes (one :: canonical a) t with inspect (go one (incr (a +B b)) b) t | no with≡ x with goOne (a +B b) b ... | f rewrite x | plusThenMinus a b = exFalso (noNotYes f) t | yes y with≡ x with goOne (a +B b) b ... | f rewrite x | plusThenMinus a b = applyEquality (λ i → yes (one :: i)) (yesInjective f) subLemma : (a b : ℕ) → a <N b → succ (a +N a) <N b +N b subLemma a b a<b with TotalOrder.totality ℕTotalOrder (succ (a +N a)) (b +N b) subLemma a b a<b | inl (inl x) = x subLemma a b a<b | inl (inr x) = exFalso (noIntegersBetweenXAndSuccX (a +N a) (addStrongInequalities a<b a<b) x) subLemma a b a<b | inr x = exFalso (parity a b (transitivity (applyEquality (succ a +N_) (Semiring.sumZeroRight ℕSemiring a)) (transitivity x (applyEquality (b +N_) (equalityCommutative (Semiring.sumZeroRight ℕSemiring b)))))) subLemma2 : (a b : ℕ) → a <N b → 2 *N a <N succ (2 *N b) subLemma2 a b a<b with TotalOrder.totality ℕTotalOrder (2 *N a) (succ (2 *N b)) subLemma2 a b a<b | inl (inl x) = x subLemma2 a b a<b | inl (inr x) = exFalso (TotalOrder.irreflexive ℕTotalOrder (TotalOrder.<Transitive ℕTotalOrder x (TotalOrder.<Transitive ℕTotalOrder (lessRespectsMultiplicationLeft a b 2 a<b (le 1 refl)) (le 0 refl)))) subLemma2 a b a<b | inr x = exFalso (parity b a (equalityCommutative x)) subtraction : (a b : BinNat) → a -B b ≡ no → binNatToN a <N binNatToN b subtraction' : (a b : BinNat) → go one a b ≡ no → (binNatToN a <N binNatToN b) || (binNatToN a ≡ binNatToN b) subtraction' [] [] pr = inr refl subtraction' [] (x :: b) pr with TotalOrder.totality ℕTotalOrder 0 (binNatToN (x :: b)) subtraction' [] (x :: b) pr | inl (inl x₁) = inl x₁ subtraction' [] (x :: b) pr | inr x₁ = inr x₁ subtraction' (zero :: a) [] pr with subtraction' a [] (mapMaybePreservesNo pr) subtraction' (zero :: a) [] pr | inr x rewrite x = inr refl subtraction' (zero :: a) (zero :: b) pr with subtraction' a b (mapMaybePreservesNo pr) subtraction' (zero :: a) (zero :: b) pr | inl x = inl (lessRespectsMultiplicationLeft (binNatToN a) (binNatToN b) 2 x (le 1 refl)) subtraction' (zero :: a) (zero :: b) pr | inr x rewrite x = inr refl subtraction' (zero :: a) (one :: b) pr with subtraction' a b (mapMaybePreservesNo pr) subtraction' (zero :: a) (one :: b) pr | inl x = inl (subLemma2 (binNatToN a) (binNatToN b) x) subtraction' (zero :: a) (one :: b) pr | inr x rewrite x = inl (le zero refl) subtraction' (one :: a) (zero :: b) pr with subtraction a b (mapMaybePreservesNo pr) ... | t rewrite Semiring.sumZeroRight ℕSemiring (binNatToN a) | Semiring.sumZeroRight ℕSemiring (binNatToN b) = inl (subLemma (binNatToN a) (binNatToN b) t) subtraction' (one :: a) (one :: b) pr with subtraction' a b (mapMaybePreservesNo pr) subtraction' (one :: a) (one :: b) pr | inl x = inl (succPreservesInequality (lessRespectsMultiplicationLeft (binNatToN a) (binNatToN b) 2 x (le 1 refl))) subtraction' (one :: a) (one :: b) pr | inr x rewrite x = inr refl subtraction [] (zero :: b) pr with inspect (binNatToN b) subtraction [] (zero :: b) pr | zero with≡ pr1 = exFalso (noNotYes (transitivity (applyEquality (mapMaybe canonical) (equalityCommutative pr)) (transitivity (goPreservesCanonicalRight zero [] b) (transitivity (applyEquality (λ i → mapMaybe canonical (go zero [] i)) (binNatToNZero b pr1)) refl)))) subtraction [] (zero :: b) pr | (succ bl) with≡ pr1 rewrite pr | pr1 = succIsPositive _ subtraction [] (one :: b) pr = succIsPositive _ subtraction (zero :: a) (zero :: b) pr = lessRespectsMultiplicationLeft (binNatToN a) (binNatToN b) 2 u (le 1 refl) where u : binNatToN a <N binNatToN b u = subtraction a b (mapMaybePreservesNo pr) subtraction (zero :: a) (one :: b) pr with subtraction' a b (mapMaybePreservesNo pr) subtraction (zero :: a) (one :: b) pr | inl x = subLemma2 (binNatToN a) (binNatToN b) x subtraction (zero :: a) (one :: b) pr | inr x rewrite x = le zero refl subtraction (one :: a) (zero :: b) pr rewrite Semiring.sumZeroRight ℕSemiring (binNatToN a) | Semiring.sumZeroRight ℕSemiring (binNatToN b) = subLemma (binNatToN a) (binNatToN b) u where u : binNatToN a <N binNatToN b u = subtraction a b (mapMaybePreservesNo pr) subtraction (one :: a) (one :: b) pr = succPreservesInequality (lessRespectsMultiplicationLeft (binNatToN a) (binNatToN b) 2 u (le 1 refl)) where u : binNatToN a <N binNatToN b u = subtraction a b (mapMaybePreservesNo pr) subLemma4 : (a b : BinNat) {t : BinNat} → go one a b ≡ no → go zero a b ≡ yes t → canonical t ≡ [] subLemma4 [] [] {t} pr1 pr2 rewrite yesInjective (equalityCommutative pr2) = refl subLemma4 [] (x :: b) {t} pr1 pr2 = goZeroEmpty' (x :: b) pr2 subLemma4 (zero :: a) [] {t} pr1 pr2 with inspect (go one a []) subLemma4 (zero :: a) [] {t} pr1 pr2 | no with≡ pr3 with subLemma4 a [] pr3 (goEmpty a) ... | bl with applyEquality canonical (yesInjective pr2) ... | th rewrite bl = equalityCommutative th subLemma4 (zero :: a) [] {t} pr1 pr2 | yes x with≡ pr3 rewrite pr3 = exFalso (noNotYes (equalityCommutative pr1)) subLemma4 (zero :: a) (zero :: b) {t} pr1 pr2 with inspect (go one a b) subLemma4 (zero :: a) (zero :: b) {t} pr1 pr2 | no with≡ pr3 with inspect (go zero a b) subLemma4 (zero :: a) (zero :: b) {t} pr1 pr2 | no with≡ pr3 | no with≡ pr4 rewrite pr4 = exFalso (noNotYes pr2) subLemma4 (zero :: a) (zero :: b) {t} pr1 pr2 | no with≡ pr3 | yes x with≡ pr4 with subLemma4 a b pr3 pr4 ... | bl rewrite pr3 | pr4 = ans where ans : canonical t ≡ [] ans rewrite equalityCommutative (applyEquality canonical (yesInjective pr2)) | bl = refl subLemma4 (zero :: a) (zero :: b) {t} pr1 pr2 | yes x with≡ pr3 rewrite pr3 = exFalso (noNotYes (equalityCommutative pr1)) subLemma4 (zero :: a) (one :: b) {t} pr1 pr2 with go one a b ... | no = exFalso (noNotYes pr2) subLemma4 (zero :: a) (one :: b) {t} pr1 pr2 | yes x = exFalso (noNotYes (equalityCommutative pr1)) subLemma4 (one :: a) (zero :: b) {t} pr1 pr2 with go zero a b subLemma4 (one :: a) (zero :: b) {t} pr1 pr2 | no = exFalso (noNotYes pr2) subLemma4 (one :: a) (zero :: b) {t} pr1 pr2 | yes x = exFalso (noNotYes (equalityCommutative pr1)) subLemma4 (one :: a) (one :: b) {t} pr1 pr2 with inspect (go zero a b) subLemma4 (one :: a) (one :: b) {t} pr1 pr2 | no with≡ pr3 rewrite pr3 = exFalso (noNotYes pr2) subLemma4 (one :: a) (one :: b) {t} pr1 pr2 | yes x with≡ pr3 with inspect (go one a b) subLemma4 (one :: a) (one :: b) {t} pr1 pr2 | yes x with≡ pr3 | no with≡ pr4 with subLemma4 a b pr4 pr3 ... | bl rewrite pr3 | pr4 | bl = ans where ans : canonical t ≡ [] ans rewrite equalityCommutative (applyEquality canonical (yesInjective pr2)) | bl = refl subLemma4 (one :: a) (one :: b) {t} pr1 pr2 | yes x with≡ pr3 | yes x₁ with≡ pr4 rewrite pr4 = exFalso (noNotYes (equalityCommutative pr1)) goOneFromZero : (a b : BinNat) → go zero a b ≡ no → go one a b ≡ no goOneFromZero [] (zero :: b) pr = refl goOneFromZero [] (one :: b) pr = refl goOneFromZero (zero :: a) (zero :: b) pr rewrite goOneFromZero a b (mapMaybePreservesNo pr) = refl goOneFromZero (zero :: a) (one :: b) pr rewrite (mapMaybePreservesNo pr) = refl goOneFromZero (one :: a) (zero :: b) pr rewrite (mapMaybePreservesNo pr) = refl goOneFromZero (one :: a) (one :: b) pr rewrite goOneFromZero a b (mapMaybePreservesNo pr) = refl subLemma5 : (a b : BinNat) → mapMaybe canonical (go zero a b) ≡ yes [] → go one a b ≡ no subLemma5 [] b pr = goOneEmpty' b subLemma5 (zero :: a) [] pr with inspect (canonical a) subLemma5 (zero :: a) [] pr | (z :: zs) with≡ pr2 rewrite pr2 = exFalso (nonEmptyNotEmpty (yesInjective pr)) subLemma5 (zero :: a) [] pr | [] with≡ pr2 rewrite pr2 = applyEquality (mapMaybe (one ::_)) (subLemma5 a [] (transitivity (applyEquality (mapMaybe canonical) (goEmpty a)) (applyEquality yes pr2))) subLemma5 (zero :: a) (zero :: b) pr with inspect (go zero a b) subLemma5 (zero :: a) (zero :: b) pr | no with≡ pr2 rewrite pr2 = exFalso (noNotYes pr) subLemma5 (zero :: a) (zero :: b) pr | yes x with≡ pr2 with inspect (canonical x) subLemma5 (zero :: a) (zero :: b) pr | yes x with≡ pr2 | [] with≡ pr3 rewrite pr | pr2 | pr3 = applyEquality (mapMaybe (one ::_)) (subLemma5 a b (transitivity (applyEquality (mapMaybe canonical) pr2) (applyEquality yes pr3))) subLemma5 (zero :: a) (zero :: b) pr | yes x with≡ pr2 | (x₁ :: bl) with≡ pr3 rewrite pr | pr2 | pr3 = exFalso (nonEmptyNotEmpty (yesInjective pr)) subLemma5 (zero :: a) (one :: b) pr with (go one a b) subLemma5 (zero :: a) (one :: b) pr | no = exFalso (noNotYes pr) subLemma5 (zero :: a) (one :: b) pr | yes y = exFalso (nonEmptyNotEmpty (yesInjective pr)) subLemma5 (one :: a) (zero :: b) pr with go zero a b subLemma5 (one :: a) (zero :: b) pr | no = exFalso (noNotYes pr) subLemma5 (one :: a) (zero :: b) pr | yes x = exFalso (nonEmptyNotEmpty (yesInjective pr)) subLemma5 (one :: a) (one :: b) pr with inspect (go zero a b) subLemma5 (one :: a) (one :: b) pr | yes x with≡ pr2 with inspect (canonical x) subLemma5 (one :: a) (one :: b) pr | yes x with≡ pr2 | [] with≡ pr3 rewrite pr | pr2 | pr3 = applyEquality (mapMaybe (one ::_)) (subLemma5 a b (transitivity (applyEquality (mapMaybe canonical) pr2) (applyEquality yes pr3))) subLemma5 (one :: a) (one :: b) pr | yes x with≡ pr2 | (x₁ :: y) with≡ pr3 rewrite pr | pr2 | pr3 = exFalso (nonEmptyNotEmpty (yesInjective pr)) subLemma5 (one :: a) (one :: b) pr | no with≡ pr2 rewrite pr2 = exFalso (noNotYes pr) subLemma3 : (a b : BinNat) → go zero a b ≡ no → (go zero (incr a) b ≡ no) || (mapMaybe canonical (go zero (incr a) b) ≡ yes []) subLemma3 a b pr with inspect (go zero (incr a) b) subLemma3 a b pr | no with≡ x = inl x subLemma3 [] (zero :: b) pr | yes y with≡ pr1 rewrite pr = exFalso (noNotYes pr1) subLemma3 [] (one :: b) pr | yes y with≡ pr1 with inspect (go zero [] b) subLemma3 [] (one :: b) pr | yes y with≡ pr1 | no with≡ pr2 rewrite pr1 | pr2 = exFalso (noNotYes pr1) subLemma3 [] (one :: b) pr | yes y with≡ pr1 | yes x with≡ pr2 with goZeroEmpty' b pr2 ... | f rewrite pr1 | pr2 | equalityCommutative (yesInjective pr1) | f = inr refl subLemma3 (zero :: a) (zero :: b) pr | yes y with≡ pr1 rewrite mapMaybePreservesNo pr = exFalso (noNotYes pr1) subLemma3 (zero :: a) (one :: b) pr | yes y with≡ pr1 with inspect (go zero a b) subLemma3 (zero :: a) (one :: b) pr | yes y with≡ pr1 | no with≡ pr2 rewrite pr1 | pr2 = exFalso (noNotYes pr1) subLemma3 (zero :: a) (one :: b) pr | yes y with≡ pr1 | yes x with≡ pr2 with inspect (canonical x) ... | [] with≡ pr3 rewrite pr1 | pr2 | equalityCommutative (yesInjective pr1) | pr3 = inr refl ... | (z :: zs) with≡ pr3 with inspect (go one a b) subLemma3 (zero :: a) (one :: b) pr | yes y with≡ pr1 | yes x with≡ pr2 | (z :: zs) with≡ pr3 | no with≡ pr4 rewrite pr1 | pr2 | pr3 | pr4 = exFalso (nonEmptyNotEmpty (transitivity (equalityCommutative pr3) (subLemma4 a b pr4 pr2))) subLemma3 (zero :: a) (one :: b) pr | yes y with≡ pr1 | yes x with≡ pr2 | (z :: zs) with≡ pr3 | yes x₁ with≡ pr4 rewrite pr1 | pr2 | pr3 | pr4 = exFalso (noNotYes (equalityCommutative pr)) subLemma3 (one :: a) (zero :: b) pr | yes y with≡ pr1 with subLemma3 a b (mapMaybePreservesNo pr) subLemma3 (one :: a) (zero :: b) pr | yes y with≡ pr1 | inl x rewrite x = inl refl subLemma3 (one :: a) (zero :: b) pr | yes y with≡ pr1 | inr x with inspect (go zero (incr a) b) ... | no with≡ pr2 rewrite pr1 | pr2 = exFalso (noNotYes x) ... | yes z with≡ pr2 rewrite pr1 | pr2 = inr (applyEquality yes (transitivity (transitivity (applyEquality canonical (yesInjective (equalityCommutative pr1))) r) (yesInjective x))) where r : canonical (zero :: z) ≡ canonical z r rewrite yesInjective x = refl subLemma3 (one :: a) (one :: b) pr | yes y with≡ pr1 with subLemma3 a b (mapMaybePreservesNo pr) subLemma3 (one :: a) (one :: b) pr | yes y with≡ pr1 | inl x with inspect (go one (incr a) b) subLemma3 (one :: a) (one :: b) pr | yes y with≡ pr1 | inl th | no with≡ pr2 rewrite pr2 = exFalso (noNotYes pr1) subLemma3 (one :: a) (one :: b) pr | yes y with≡ pr1 | inl th | yes x with≡ pr2 with goOneFromZero (incr a) b th ... | bad rewrite pr2 = exFalso (noNotYes (equalityCommutative bad)) subLemma3 (one :: a) (one :: b) pr | yes y with≡ pr1 | inr x with inspect (go one (incr a) b) subLemma3 (one :: a) (one :: b) pr | yes y with≡ pr1 | inr x | no with≡ pr2 rewrite pr2 = exFalso (noNotYes pr1) subLemma3 (one :: a) (one :: b) pr | yes y with≡ pr1 | inr th | yes z with≡ pr2 with inspect (go zero (incr a) b) subLemma3 (one :: a) (one :: b) pr | yes y with≡ pr1 | inr th | yes z with≡ pr2 | no with≡ pr3 rewrite pr3 = exFalso (noNotYes th) subLemma3 (one :: a) (one :: b) pr | yes y with≡ pr1 | inr th | yes z with≡ pr2 | yes x with≡ pr3 with inspect (go zero a b) subLemma3 (one :: a) (one :: b) pr | yes y with≡ pr1 | inr th | yes z with≡ pr2 | yes x with≡ pr3 | no with≡ pr4 rewrite pr1 | th | pr2 | pr3 | pr4 | equalityCommutative (yesInjective pr1) = exFalso false where false : False false with applyEquality (mapMaybe canonical) pr3 ... | f rewrite th | subLemma5 (incr a) b f = exFalso (noNotYes pr2) subLemma3 (one :: a) (one :: b) pr | yes y with≡ pr1 | inr th | yes z with≡ pr2 | yes x with≡ pr3 | yes w with≡ pr4 rewrite pr4 = exFalso (noNotYes (equalityCommutative pr)) goIncrOne : (a b : BinNat) → mapMaybe canonical (go one a b) ≡ mapMaybe canonical (go zero a (incr b)) goIncrOne [] b rewrite goOneEmpty' b | goZeroIncr b = refl goIncrOne (zero :: a) [] = refl goIncrOne (zero :: a) (zero :: b) = refl goIncrOne (zero :: a) (one :: b) with inspect (go one a b) goIncrOne (zero :: a) (one :: b) | no with≡ pr1 with inspect (go zero a (incr b)) goIncrOne (zero :: a) (one :: b) | no with≡ pr1 | no with≡ pr2 rewrite pr1 | pr2 = refl goIncrOne (zero :: a) (one :: b) | no with≡ pr1 | yes x with≡ pr2 with goIncrOne a b ... | f rewrite pr1 | pr2 = exFalso (noNotYes f) goIncrOne (zero :: a) (one :: b) | yes x with≡ pr1 with inspect (go zero a (incr b)) goIncrOne (zero :: a) (one :: b) | yes x with≡ pr1 | no with≡ pr2 with goIncrOne a b ... | f rewrite pr1 | pr2 = exFalso (noNotYes (equalityCommutative f)) goIncrOne (zero :: a) (one :: b) | yes x with≡ pr1 | yes y with≡ pr2 with goIncrOne a b ... | f rewrite pr1 | pr2 | yesInjective f = refl goIncrOne (one :: a) [] rewrite goEmpty a = refl goIncrOne (one :: a) (zero :: b) = refl goIncrOne (one :: a) (one :: b) with inspect (go one a b) goIncrOne (one :: a) (one :: b) | no with≡ pr with inspect (go zero a (incr b)) goIncrOne (one :: a) (one :: b) | no with≡ pr | no with≡ pr2 with goIncrOne a b ... | f rewrite pr | pr2 = refl goIncrOne (one :: a) (one :: b) | no with≡ pr | yes x with≡ pr2 with goIncrOne a b ... | f rewrite pr | pr2 = exFalso (noNotYes f) goIncrOne (one :: a) (one :: b) | yes x with≡ pr with inspect (go zero a (incr b)) goIncrOne (one :: a) (one :: b) | yes x with≡ pr | no with≡ pr2 with goIncrOne a b ... | f rewrite pr | pr2 = exFalso (noNotYes (equalityCommutative f)) goIncrOne (one :: a) (one :: b) | yes x with≡ pr | yes y with≡ pr2 with goIncrOne a b ... | f rewrite pr | pr2 | yesInjective f = refl goIncrIncr : (a b : BinNat) → mapMaybe canonical (go zero (incr a) (incr b)) ≡ mapMaybe canonical (go zero a b) goIncrIncr [] [] = refl goIncrIncr [] (zero :: b) with inspect (go zero [] b) ... | no with≡ pr rewrite goIncrIncr [] b | pr = refl ... | yes y with≡ pr rewrite goIncrIncr [] b | pr | goZeroEmpty' b {y} pr = refl goIncrIncr [] (one :: b) rewrite goZeroIncr b = refl goIncrIncr (zero :: a) [] rewrite goEmpty a = refl goIncrIncr (zero :: a) (zero :: b) = refl goIncrIncr (zero :: a) (one :: b) with inspect (go zero a (incr b)) goIncrIncr (zero :: a) (one :: b) | no with≡ pr with inspect (go one a b) goIncrIncr (zero :: a) (one :: b) | no with≡ pr | no with≡ pr2 rewrite pr | pr2 = refl goIncrIncr (zero :: a) (one :: b) | no with≡ pr | yes x with≡ pr2 with goIncrOne a b ... | f rewrite pr | pr2 = exFalso (noNotYes (equalityCommutative f)) goIncrIncr (zero :: a) (one :: b) | yes y with≡ pr with inspect (go one a b) goIncrIncr (zero :: a) (one :: b) | yes y with≡ pr | yes z with≡ pr2 with goIncrOne a b ... | f rewrite pr | pr2 = applyEquality (λ i → yes (one :: i)) (equalityCommutative (yesInjective f)) goIncrIncr (zero :: a) (one :: b) | yes y with≡ pr | no with≡ pr2 with goIncrOne a b ... | f rewrite pr | pr2 = exFalso (noNotYes f) goIncrIncr (one :: a) [] with goOne a [] ... | f with go one (incr a) [] goIncrIncr (one :: a) [] | f | no rewrite goEmpty a = exFalso (noNotYes f) goIncrIncr (one :: a) [] | f | yes x rewrite goEmpty a | yesInjective f = refl goIncrIncr (one :: a) (zero :: b) with goOne a b ... | f with go one (incr a) b goIncrIncr (one :: a) (zero :: b) | f | no with go zero a b goIncrIncr (one :: a) (zero :: b) | f | no | no = refl goIncrIncr (one :: a) (zero :: b) | f | yes x with go zero a b goIncrIncr (one :: a) (zero :: b) | f | yes x | yes x₁ rewrite yesInjective f = refl goIncrIncr (one :: a) (one :: b) with goIncrIncr a b ... | f with go zero a b goIncrIncr (one :: a) (one :: b) | f | no with go zero (incr a) (incr b) goIncrIncr (one :: a) (one :: b) | f | no | no = refl goIncrIncr (one :: a) (one :: b) | f | yes x with go zero (incr a) (incr b) goIncrIncr (one :: a) (one :: b) | f | yes x | yes x₁ rewrite yesInjective f = refl subtractionConverse : (a b : ℕ) → a <N b → go zero (NToBinNat a) (NToBinNat b) ≡ no subtractionConverse zero (succ b) a<b with NToBinNat b subtractionConverse zero (succ b) a<b | [] = refl subtractionConverse zero (succ b) a<b | zero :: bl = refl subtractionConverse zero (succ b) a<b | one :: bl = goZeroIncr bl subtractionConverse (succ a) (succ b) a<b with inspect (NToBinNat a) subtractionConverse (succ a) (succ b) a<b | [] with≡ pr with inspect (NToBinNat b) subtractionConverse (succ a) (succ b) a<b | [] with≡ pr | [] with≡ pr2 rewrite NToBinNatZero a pr | NToBinNatZero b pr2 = exFalso (TotalOrder.irreflexive ℕTotalOrder a<b) subtractionConverse (succ a) (succ zero) a<b | [] with≡ pr | (zero :: y) with≡ pr2 rewrite NToBinNatZero a pr | pr2 = exFalso (TotalOrder.irreflexive ℕTotalOrder a<b) subtractionConverse (succ a) (succ (succ b)) a<b | [] with≡ pr | (zero :: y) with≡ pr2 with inspect (go zero [] y) ... | no with≡ pr3 rewrite NToBinNatZero a pr | pr2 | pr3 = refl ... | yes t with≡ pr3 with applyEquality canonical pr2 ... | g rewrite (goZeroEmpty y pr3) = exFalso (incrNonzero (NToBinNat b) g) subtractionConverse (succ a) (succ b) a<b | [] with≡ pr | (one :: y) with≡ pr2 rewrite NToBinNatZero a pr | pr2 = applyEquality (mapMaybe (one ::_)) (goZeroIncr y) subtractionConverse (succ a) (succ b) a<b | (zero :: y) with≡ pr with inspect (NToBinNat b) subtractionConverse (succ a) (succ b) a<b | (zero :: y) with≡ pr | [] with≡ pr2 rewrite NToBinNatZero b pr2 = exFalso (bad a<b) where bad : {a : ℕ} → succ a <N 1 → False bad {zero} (le zero ()) bad {zero} (le (succ x) ()) bad {succ a} (le zero ()) bad {succ a} (le (succ x) ()) subtractionConverse (succ a) (succ b) a<b | (zero :: y) with≡ pr | (zero :: z) with≡ pr2 rewrite pr | pr2 = applyEquality (mapMaybe (zero ::_)) (mapMaybePreservesNo u) where t : go zero (NToBinNat a) (NToBinNat b) ≡ no t = subtractionConverse a b (canRemoveSuccFrom<N a<b) u : go zero (zero :: y) (zero :: z) ≡ no u = transitivity (transitivity {x = _} {go zero (NToBinNat a) (zero :: z)} (applyEquality (λ i → go zero i (zero :: z)) (equalityCommutative pr)) (applyEquality (go zero (NToBinNat a)) (equalityCommutative pr2))) t subtractionConverse (succ a) (succ b) a<b | (zero :: y) with≡ pr | (one :: z) with≡ pr2 with subtractionConverse a (succ b) (le (succ (_<N_.x a<b)) (transitivity (applyEquality succ (transitivity (applyEquality succ (Semiring.commutative ℕSemiring (_<N_.x a<b) a)) (Semiring.commutative ℕSemiring (succ a) (_<N_.x a<b)))) (_<N_.proof a<b))) subtractionConverse (succ a) (succ b) a<b | (zero :: y) with≡ pr | (one :: z) with≡ pr2 | thing=no with subLemma3 (NToBinNat a) (incr (NToBinNat b)) thing=no subtractionConverse (succ a) (succ b) a<b | (zero :: y) with≡ pr | (one :: z) with≡ pr2 | thing=no | inl x = x subtractionConverse (succ a) (succ b) a<b | (zero :: y) with≡ pr | (one :: z) with≡ pr2 | thing=no | inr x rewrite pr | pr2 | mapMaybePreservesNo thing=no = exFalso (noNotYes x) subtractionConverse (succ a) (succ b) a<b | (one :: y) with≡ pr with goIncrIncr (NToBinNat a) (NToBinNat b) ... | f rewrite subtractionConverse a b (canRemoveSuccFrom<N a<b) = mapMaybePreservesNo f bad : (b : ℕ) {t : BinNat} → incr (NToBinNat b) ≡ zero :: t → canonical t ≡ [] → False bad b {c} t pr with applyEquality canonical t ... | bl with canonical c bad b {c} t pr | bl | [] = exFalso (incrNonzero (NToBinNat b) bl) lemma6 : (a : BinNat) (b : ℕ) → canonical a ≡ [] → NToBinNat b ≡ one :: a → a ≡ [] lemma6 [] b pr1 pr2 = refl lemma6 (a :: as) b pr1 pr2 with applyEquality canonical pr2 lemma6 (a :: as) b pr1 pr2 | th rewrite pr1 | equalityCommutative (NToBinNatIsCanonical b) | pr2 = exFalso (bad' th) where bad' : one :: a :: as ≡ one :: [] → False bad' () doublingLemma : (y : BinNat) → NToBinNat (2 *N binNatToN y) ≡ canonical (zero :: y) doublingLemma y with inspect (canonical y) doublingLemma y | [] with≡ pr rewrite binNatToNZero' y pr | pr = refl doublingLemma y | (a :: as) with≡ pr with inspect (binNatToN y) doublingLemma y | (a :: as) with≡ pr | zero with≡ pr2 rewrite binNatToNZero y pr2 = exFalso (nonEmptyNotEmpty (equalityCommutative pr)) doublingLemma y | (a :: as) with≡ pr | succ bl with≡ pr2 rewrite pr | pr2 | doubleIsBitShift' bl | equalityCommutative pr = applyEquality (zero ::_) (equalityCommutative (transitivity (equalityCommutative (binToBin y)) (applyEquality NToBinNat pr2))) private doubling : (a : ℕ) {y : BinNat} → (NToBinNat a ≡ zero :: y) → binNatToN y +N (binNatToN y +N 0) ≡ a doubling a {y} pr = NToBinNatInj (binNatToN y +N (binNatToN y +N zero)) a (transitivity (transitivity (equalityCommutative (NToBinNatIsCanonical (binNatToN y +N (binNatToN y +N zero)))) (doublingLemma y)) (applyEquality canonical (equalityCommutative pr))) subtraction2 : (a b : ℕ) {t : BinNat} → (NToBinNat a) -B (NToBinNat b) ≡ yes t → (binNatToN t) +N b ≡ a subtraction2 zero zero {t} pr rewrite yesInjective (equalityCommutative pr) = refl subtraction2 zero (succ b) pr with goZeroEmpty (NToBinNat (succ b)) pr ... | t = exFalso (incrNonzero (NToBinNat b) t) subtraction2 (succ a) b {t} pr with inspect (NToBinNat a) subtraction2 (succ a) b {t} pr | [] with≡ pr2 with inspect (NToBinNat b) subtraction2 (succ a) b {t} pr | [] with≡ pr2 | [] with≡ pr3 rewrite pr2 | pr3 | equalityCommutative (yesInjective pr) | NToBinNatZero a pr2 | NToBinNatZero b pr3 = refl subtraction2 (succ a) b {t} pr | [] with≡ pr2 | (zero :: bl) with≡ pr3 with inspect (go zero [] bl) subtraction2 (succ a) b {t} pr | [] with≡ pr2 | (zero :: bl) with≡ pr3 | no with≡ pr4 rewrite pr2 | pr3 | pr4 = exFalso (noNotYes pr) subtraction2 (succ a) b {t} pr | [] with≡ pr2 | (zero :: bl) with≡ pr3 | yes x with≡ pr4 with goZeroEmpty bl pr4 subtraction2 (succ a) (succ b) {t} pr | [] with≡ pr2 | (zero :: bl) with≡ pr3 | yes x with≡ pr4 | r with goZeroEmpty' bl pr4 ... | s rewrite pr2 | pr3 | pr4 | r | equalityCommutative (yesInjective pr) | NToBinNatZero a pr2 = exFalso (bad b pr3 r) subtraction2 (succ a) b {t} pr | [] with≡ pr2 | (one :: bl) with≡ pr3 with inspect (go zero [] bl) subtraction2 (succ a) b {t} pr | [] with≡ pr2 | (one :: bl) with≡ pr3 | no with≡ pr4 rewrite pr2 | pr3 | pr4 = exFalso (noNotYes pr) subtraction2 (succ a) b {t} pr | [] with≡ pr2 | (one :: bl) with≡ pr3 | yes x with≡ pr4 with goZeroEmpty bl pr4 ... | u with goZeroEmpty' bl pr4 ... | v rewrite pr2 | pr3 | pr4 | u | NToBinNatZero a pr2 | lemma6 bl b u pr3 | equalityCommutative (yesInjective pr4) | equalityCommutative (yesInjective pr) = ans pr3 where z : bl ≡ [] z = lemma6 bl b u pr3 ans : (NToBinNat b ≡ one :: bl) → b ≡ 1 ans pr with applyEquality binNatToN pr ... | th rewrite z = transitivity (equalityCommutative (nToN b)) th subtraction2 (succ a) b pr | (x :: y) with≡ pr2 with inspect (NToBinNat b) subtraction2 (succ a) b pr | (zero :: y) with≡ pr2 | [] with≡ pr3 rewrite NToBinNatZero b pr3 | pr2 | pr3 | equalityCommutative (yesInjective pr) = applyEquality succ (transitivity (Semiring.sumZeroRight ℕSemiring _) (doubling a pr2)) subtraction2 (succ a) b pr | (one :: y) with≡ pr2 | [] with≡ pr3 rewrite NToBinNatZero b pr3 | pr2 | pr3 | equalityCommutative (yesInjective pr) = transitivity (Semiring.sumZeroRight ℕSemiring (binNatToN (incr y) +N (binNatToN (incr y) +N zero))) (equalityCommutative (transitivity (equalityCommutative (nToN (succ a))) (applyEquality binNatToN (transitivity (equalityCommutative (NToBinNatSucc a)) (applyEquality incr pr2))))) subtraction2 (succ a) (succ b) {t} pr | (y :: ys) with≡ pr2 | (z :: zs) with≡ pr3 = transitivity (transitivity (Semiring.commutative ℕSemiring (binNatToN t) (succ b)) (applyEquality succ (transitivity (Semiring.commutative ℕSemiring b (binNatToN t)) (applyEquality (_+N b) (equalityCommutative (binNatToNIsCanonical t)))))) (applyEquality succ inter) where inter : binNatToN (canonical t) +N b ≡ a inter with inspect (go zero (NToBinNat a) (NToBinNat b)) inter | no with≡ pr4 with goIncrIncr (NToBinNat a) (NToBinNat b) ... | f rewrite pr | pr4 = exFalso (noNotYes (equalityCommutative f)) inter | yes x with≡ pr4 with goIncrIncr (NToBinNat a) (NToBinNat b) ... | f with subtraction2 a b {x} pr4 ... | g = transitivity (applyEquality (_+N b) (transitivity (applyEquality binNatToN h) (binNatToNIsCanonical x))) g where h : (canonical t) ≡ (canonical x) h rewrite pr | pr4 = yesInjective f subtraction2' : (a b : ℕ) {t : BinNat} → (NToBinNat a) -B (NToBinNat b) ≡ yes t → b ≤N a subtraction2' a b {t} pr with subtraction2 a b pr ... | f with binNatToN t subtraction2' a b {t} pr | f | zero = inr f subtraction2' a b {t} pr | f | succ g = inl (le g f) subtraction2'' : (a b : ℕ) → (pr : b ≤N a) → mapMaybe binNatToN ((NToBinNat a) -B (NToBinNat b)) ≡ yes (subtractionNResult.result (-N pr)) subtraction2'' a b pr with -N pr subtraction2'' a b pr | record { result = result ; pr = subPr } with inspect (go zero (NToBinNat a) (NToBinNat b)) subtraction2'' a b (inl pr) | record { result = result ; pr = subPr } | no with≡ pr2 with subtraction (NToBinNat a) (NToBinNat b) pr2 ... | bl rewrite nToN a | nToN b = exFalso (TotalOrder.irreflexive ℕTotalOrder (TotalOrder.<Transitive ℕTotalOrder pr bl)) subtraction2'' a b (inr pr) | record { result = result ; pr = subPr } | no with≡ pr2 with subtraction (NToBinNat a) (NToBinNat b) pr2 ... | bl rewrite nToN a | nToN b | pr = exFalso (TotalOrder.irreflexive ℕTotalOrder bl) subtraction2'' a b pr | record { result = result ; pr = subPr } | yes x with≡ pr2 with subtraction2 a b pr2 ... | f rewrite pr2 | Semiring.commutative ℕSemiring (binNatToN x) b = applyEquality yes (canSubtractFromEqualityLeft {b} {binNatToN x} (transitivity f (equalityCommutative subPr)))
{ "alphanum_fraction": 0.6536237016, "avg_line_length": 72.5653104925, "ext": "agda", "hexsha": "672b9f9e1fdac55773d15dc84ed7d784482ec4c7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Numbers/BinaryNaturals/Subtraction.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Numbers/BinaryNaturals/Subtraction.agda", "max_line_length": 427, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Numbers/BinaryNaturals/Subtraction.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 12261, "size": 33888 }
import Lvl open import Structure.Category module Structure.Category.Functor.Equiv {ℓₗₒ ℓᵣₒ ℓₗₘ ℓᵣₘ ℓₗₑ ℓᵣₑ : Lvl.Level} {catₗ : CategoryObject{ℓₗₒ}{ℓₗₘ}{ℓₗₑ}} {catᵣ : CategoryObject{ℓᵣₒ}{ℓᵣₘ}{ℓᵣₑ}} where open import Functional.Dependent as Fn using (_$_) import Function.Equals open Function.Equals.Dependent open import Logic open import Logic.Propositional open import Logic.Predicate open import Relator.Equals using ([≡]-intro) renaming (_≡_ to _≡ₑ_) open import Relator.Equals.Proofs open import Relator.Equals.Proofs.Equiv open import Structure.Category.Functor open import Structure.Category.Functor.Functors as Functors open import Structure.Category.Morphism.IdTransport import Structure.Categorical.Names as Names open import Structure.Category.NaturalTransformation open import Structure.Category.Proofs open import Structure.Categorical.Properties open import Structure.Function open import Structure.Operator open import Structure.Relator.Equivalence open import Structure.Relator.Properties open import Structure.Setoid open import Syntax.Transitivity open import Type open Structure.Category open Category ⦃ … ⦄ open CategoryObject open Functor ⦃ … ⦄ private instance _ = category catₗ private instance _ = category catᵣ private open module MorphismEquivₗ {x}{y} = Equiv(morphism-equiv(catₗ){x}{y}) using () renaming (_≡_ to _≡ₗₘ_) private open module MorphismEquivᵣ {x}{y} = Equiv(morphism-equiv(catᵣ){x}{y}) using () renaming (_≡_ to _≡ᵣₘ_) module _ (f₁@([∃]-intro F₁) f₂@([∃]-intro F₂) : (catₗ →ᶠᵘⁿᶜᵗᵒʳ catᵣ)) where record _≡ᶠᵘⁿᶜᵗᵒʳ_ : Type{Lvl.of(Type.of(catₗ)) Lvl.⊔ Lvl.of(Type.of(catᵣ))} where constructor intro field functor-proof : (F₁ ⊜ F₂) map-proof : NaturalTransformation(f₁)(f₂) (\x → transport(catᵣ) (_⊜_.proof functor-proof {x})) instance [≡ᶠᵘⁿᶜᵗᵒʳ]-reflexivity : Reflexivity(_≡ᶠᵘⁿᶜᵗᵒʳ_) _≡ᶠᵘⁿᶜᵗᵒʳ_.functor-proof (Reflexivity.proof [≡ᶠᵘⁿᶜᵗᵒʳ]-reflexivity) = intro [≡]-intro NaturalTransformation.natural (_≡ᶠᵘⁿᶜᵗᵒʳ_.map-proof (Reflexivity.proof [≡ᶠᵘⁿᶜᵗᵒʳ]-reflexivity {functor})) {f = f} = trans-refl ∘ map(f) 🝖[ _≡ᵣₘ_ ]-[] id ∘ map(f) 🝖[ _≡ᵣₘ_ ]-[ Morphism.identityₗ(_∘_)(id) ] map(f) 🝖[ _≡ᵣₘ_ ]-[ Morphism.identityᵣ(_∘_)(id) ]-sym map(f) ∘ id 🝖[ _≡ᵣₘ_ ]-[] map(f) ∘ trans-refl 🝖-end where trans-refl = \{x} → transport(catᵣ) ([≡]-intro {x = x}) instance [≡ᶠᵘⁿᶜᵗᵒʳ]-symmetry : Symmetry(_≡ᶠᵘⁿᶜᵗᵒʳ_) _≡ᶠᵘⁿᶜᵗᵒʳ_.functor-proof (Symmetry.proof [≡ᶠᵘⁿᶜᵗᵒʳ]-symmetry xy) = symmetry(_⊜_) (_≡ᶠᵘⁿᶜᵗᵒʳ_.functor-proof xy) NaturalTransformation.natural (_≡ᶠᵘⁿᶜᵗᵒʳ_.map-proof (Symmetry.proof [≡ᶠᵘⁿᶜᵗᵒʳ]-symmetry {[∃]-intro F₁} {[∃]-intro F₂} (intro (intro fe) (intro me)))) {x}{y} {f = f} = trans-sym(y) ∘ map(f) 🝖[ _≡ᵣₘ_ ]-[ Morphism.identityᵣ(_∘_)(id) ]-sym (trans-sym(y) ∘ map(f)) ∘ id 🝖[ _≡ᵣₘ_ ]-[ congruence₂ᵣ(_∘_)(_) ([∘]-on-transport-inverseᵣ catᵣ {ab = fe}) ]-sym (trans-sym(y) ∘ map(f)) ∘ (trans(x) ∘ trans-sym(x)) 🝖[ _≡ᵣₘ_ ]-[ associate4-213-121 (category catᵣ) ]-sym (trans-sym(y) ∘ (map(f) ∘ trans(x))) ∘ trans-sym(x) 🝖[ _≡ᵣₘ_ ]-[ congruence₂ₗ(_∘_)(_) (congruence₂ᵣ(_∘_)(_) me) ]-sym (trans-sym(y) ∘ (trans(y) ∘ map(f))) ∘ trans-sym(x) 🝖[ _≡ᵣₘ_ ]-[ associate4-213-121 (category catᵣ) ] (trans-sym(y) ∘ trans(y)) ∘ (map(f) ∘ trans-sym(x)) 🝖[ _≡ᵣₘ_ ]-[ congruence₂ₗ(_∘_)(_) ([∘]-on-transport-inverseₗ catᵣ {ab = fe}) ] id ∘ (map(f) ∘ trans-sym(x)) 🝖[ _≡ᵣₘ_ ]-[ Morphism.identityₗ(_∘_)(id) ] map(f) ∘ trans-sym(x) 🝖-end where trans = \(x : Object(catₗ)) → transport catᵣ (fe{x}) trans-sym = \(x : Object(catₗ)) → transport catᵣ (symmetry(_≡ₑ_) (fe{x})) instance [≡ᶠᵘⁿᶜᵗᵒʳ]-transitivity : Transitivity(_≡ᶠᵘⁿᶜᵗᵒʳ_) _≡ᶠᵘⁿᶜᵗᵒʳ_.functor-proof (Transitivity.proof [≡ᶠᵘⁿᶜᵗᵒʳ]-transitivity (intro fe₁ _) (intro fe₂ _)) = transitivity(_⊜_) fe₁ fe₂ NaturalTransformation.natural (_≡ᶠᵘⁿᶜᵗᵒʳ_.map-proof (Transitivity.proof [≡ᶠᵘⁿᶜᵗᵒʳ]-transitivity {[∃]-intro F₁} {[∃]-intro F₂} {[∃]-intro F₃} (intro (intro fe₁) (intro me₁)) (intro (intro fe₂) (intro me₂)))) {x}{y} {f = f} = transport catᵣ (transitivity(_≡ₑ_) (fe₁{y}) (fe₂{y})) ∘ map(f) 🝖[ _≡ᵣₘ_ ]-[ congruence₂ₗ(_∘_)(_) (transport-of-transitivity catᵣ {ab = fe₁}{bc = fe₂}) ] (transport catᵣ (fe₂{y}) ∘ transport catᵣ (fe₁{y})) ∘ map(f) 🝖[ _≡ᵣₘ_ ]-[ Morphism.associativity(_∘_) ] transport catᵣ (fe₂{y}) ∘ (transport catᵣ (fe₁{y}) ∘ map(f)) 🝖[ _≡ᵣₘ_ ]-[ congruence₂ᵣ(_∘_)(_) me₁ ] transport catᵣ (fe₂{y}) ∘ (map(f) ∘ transport catᵣ (fe₁{x})) 🝖[ _≡ᵣₘ_ ]-[ Morphism.associativity(_∘_) ]-sym (transport catᵣ (fe₂{y}) ∘ map(f)) ∘ transport catᵣ (fe₁{x}) 🝖[ _≡ᵣₘ_ ]-[ congruence₂ₗ(_∘_)(_) me₂ ] (map(f) ∘ transport catᵣ (fe₂{x})) ∘ transport catᵣ (fe₁{x}) 🝖[ _≡ᵣₘ_ ]-[ Morphism.associativity(_∘_) ] map(f) ∘ (transport catᵣ (fe₂{x}) ∘ transport catᵣ (fe₁{x})) 🝖[ _≡ᵣₘ_ ]-[ congruence₂ᵣ(_∘_)(_) (transport-of-transitivity catᵣ {ab = fe₁}{bc = fe₂}) ]-sym map(f) ∘ transport catᵣ (transitivity(_≡ₑ_) (fe₁{x}) (fe₂{x})) 🝖-end instance [≡ᶠᵘⁿᶜᵗᵒʳ]-equivalence : Equivalence(_≡ᶠᵘⁿᶜᵗᵒʳ_) [≡ᶠᵘⁿᶜᵗᵒʳ]-equivalence = intro instance [≡ᶠᵘⁿᶜᵗᵒʳ]-equiv : Equiv(catₗ →ᶠᵘⁿᶜᵗᵒʳ catᵣ) [≡ᶠᵘⁿᶜᵗᵒʳ]-equiv = intro(_≡ᶠᵘⁿᶜᵗᵒʳ_) ⦃ [≡ᶠᵘⁿᶜᵗᵒʳ]-equivalence ⦄
{ "alphanum_fraction": 0.6441181936, "avg_line_length": 52.7549019608, "ext": "agda", "hexsha": "d0e8a986189ef20a91c1f3f72ecf748e56cda47e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Category/Functor/Equiv.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Category/Functor/Equiv.agda", "max_line_length": 225, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Category/Functor/Equiv.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 2688, "size": 5381 }
open import Agda.Builtin.Nat open import Agda.Builtin.Unit data ⊥ : Set where data _⊎_ (A B : Set) : Set where inj₁ : A → A ⊎ B inj₂ : B → A ⊎ B Fin : Nat → Set Fin zero = ⊥ Fin (suc n) = ⊤ ⊎ Fin n n = 49 postulate P : Nat → Set Q : Set → Set f : (n : Nat) → Q (Fin n) → P n q : Q (Fin n) p : P n p = f _ q
{ "alphanum_fraction": 0.5227963526, "avg_line_length": 13.16, "ext": "agda", "hexsha": "64fbcc7741221dbf9e07352e04c00ddf8de2f592", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2945.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2945.agda", "max_line_length": 33, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2945.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 149, "size": 329 }
-- Andreas, 2018-10-17 -- -- Cannot branch on erased argument. open import Agda.Builtin.Bool T : @0 Bool → Set T true = Bool T false = Bool → Bool -- Should fail with error like: -- -- Cannot branch on erased argument of datatype Bool -- when checking the definition of T
{ "alphanum_fraction": 0.6992753623, "avg_line_length": 18.4, "ext": "agda", "hexsha": "272e5913afe40f5c93ecb2b997b8bb3b7277b402", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Erasure-Branch-On-Erased.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Erasure-Branch-On-Erased.agda", "max_line_length": 52, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Erasure-Branch-On-Erased.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 74, "size": 276 }
module MLib where import MLib.Prelude import MLib.Fin.Parts import MLib.Fin.Parts.Simple import MLib.Finite import MLib.Finite.Properties import MLib.Algebra.PropertyCode import MLib.Matrix
{ "alphanum_fraction": 0.8256410256, "avg_line_length": 13.9285714286, "ext": "agda", "hexsha": "bf49784e7295da1d0037daf99c52c477b048f3eb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bch29/agda-matrices", "max_forks_repo_path": "src/MLib.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bch29/agda-matrices", "max_issues_repo_path": "src/MLib.agda", "max_line_length": 32, "max_stars_count": null, "max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bch29/agda-matrices", "max_stars_repo_path": "src/MLib.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 54, "size": 195 }
{-# OPTIONS --without-K #-} module sets.nat where open import sets.nat.core public open import sets.nat.properties public open import sets.nat.ordering public open import sets.nat.solver public open import sets.nat.struct public
{ "alphanum_fraction": 0.7844827586, "avg_line_length": 23.2, "ext": "agda", "hexsha": "48b3be8f7707bd94041c03e8536750e63a7827c8", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/sets/nat.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/sets/nat.agda", "max_line_length": 38, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/sets/nat.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 55, "size": 232 }
module _<?_ where open import Data.Nat using (ℕ; zero; suc) open import Relation.Nullary using (¬_) open import decidable using (Dec; yes; no) -- 厳密な不等式 (strict inequality) infix 4 _<_ data _<_ : ℕ → ℕ → Set where z<s : ∀ {n : ℕ} ------------ → zero < suc n s<s : ∀ {m n : ℕ} → m < n ------------- → suc m < suc n -- 0未満の自然数は存在しない ¬m<z : ∀ {m : ℕ} → ¬ (m < zero) ¬m<z () -- m < n が成り立たなければ (m + 1) < (n + 1) も成り立たない ¬s<s : ∀ {m n : ℕ} → ¬ (m < n) → ¬ (suc m < suc n) ¬s<s ¬m<n (s<s m<n) = ¬m<n m<n -- decidableを使った厳密な不等式 _<?_ : ∀ (m n : ℕ) → Dec (m < n) m <? zero = no ¬m<z zero <? suc n = yes z<s suc m <? suc n with m <? n ... | yes m<n = yes (s<s m<n) ... | no ¬m<n = no (¬s<s ¬m<n)
{ "alphanum_fraction": 0.4323979592, "avg_line_length": 23.0588235294, "ext": "agda", "hexsha": "a5cad5be969d29d74bad18bc80baa322baf02350", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "akiomik/plfa-solutions", "max_forks_repo_path": "part1/decidable/_<?_.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "akiomik/plfa-solutions", "max_issues_repo_path": "part1/decidable/_<?_.agda", "max_line_length": 50, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "akiomik/plfa-solutions", "max_stars_repo_path": "part1/decidable/_<?_.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z", "num_tokens": 341, "size": 784 }
-- Andrea & Andreas, 2014-11-12 -- Pruning projected vars during solving open import Common.Product open import Common.Equality postulate A : Set works1 : {q1 : Set} {q2 : Set → Set} -> let M : Set -> Set; M = _ in {z : Set} -> q1 ≡ M (q2 z) works1 = refl works2 : {q1 : Set} {q2 : Set → Set} -> let M : Set -> Set; M = _ in q1 ≡ M (q2 A) works2 = refl works3 : {q : Set × Set} -> let M : Set -> Set; M = _ in proj₁ q ≡ M (proj₂ q) works3 = refl test1 : {q : Set × (Set → Set)} -> let M : Set -> Set; M = _ in {z : Set} -> proj₁ q ≡ M (proj₂ q z) test1 = refl test2 : {q : Set × (Set → Set)} -> let M : Set -> Set; M = _ in proj₁ q ≡ M (proj₂ q A) test2 = refl -- these tests should succeed, as expanding q into a pair gets us back to -- works1 and works2
{ "alphanum_fraction": 0.5555555556, "avg_line_length": 25.03125, "ext": "agda", "hexsha": "14cdc1a49430ca17607904706e12f63a0e903375", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1357.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1357.agda", "max_line_length": 73, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1357.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 291, "size": 801 }
module Syntax where open import Data.Fin open import Data.List hiding (reverse) open import Data.List.All open import Data.Nat open import Data.Product open import Typing hiding (send ; recv) -- expressions data Expr Φ : Type → Set where var : ∀ {t} → (x : t ∈ Φ) → Expr Φ t nat : (unr-Φ : All Unr Φ) → (i : ℕ) → Expr Φ TInt unit : (unr-Φ : All Unr Φ) → Expr Φ TUnit letbind : ∀ {Φ₁ Φ₂ t₁ t₂} → (sp : Split Φ Φ₁ Φ₂) → (e₁ : Expr Φ₁ t₁) → (e₂ : Expr (t₁ ∷ Φ₂) t₂) → Expr Φ t₂ pair : ∀ {Φ₁ Φ₂ t₁ t₂} → (sp : Split Φ Φ₁ Φ₂) → (x₁ : t₁ ∈ Φ₁) → (x₂ : t₂ ∈ Φ₂) → Expr Φ (TPair t₁ t₂) letpair : ∀ {Φ₁ Φ₂ t₁ t₂ t} → (sp : Split Φ Φ₁ Φ₂) → (p : TPair t₁ t₂ ∈ Φ₁) → (e : Expr (t₁ ∷ t₂ ∷ Φ₂) t) → Expr Φ t fork : (e : Expr Φ TUnit) → Expr Φ TUnit new : (unr-Φ : All Unr Φ) → (s : SType) → Expr Φ (TPair (TChan (SType.force s)) (TChan (SType.force (dual s)))) send : ∀ {Φ₁ Φ₂ s t} → (sp : Split Φ Φ₁ Φ₂) → (ch : (TChan (transmit SND t s)) ∈ Φ₁) → (vv : t ∈ Φ₂) → Expr Φ (TChan (SType.force s)) recv : ∀ {s t} → (ch : (TChan (transmit RCV t s)) ∈ Φ) → Expr Φ (TPair (TChan (SType.force s)) t) close : (ch : TChan send! ∈ Φ) → Expr Φ TUnit wait : (ch : TChan send? ∈ Φ) → Expr Φ TUnit select : ∀ {s₁ s₂} → (lab : Selector) → (ch : TChan (sintern s₁ s₂) ∈ Φ) → Expr Φ (TChan (selection lab (SType.force s₁) (SType.force s₂))) branch : ∀ {s₁ s₂ Φ₁ Φ₂ t} → (sp : Split Φ Φ₁ Φ₂) → (ch : TChan (sextern s₁ s₂) ∈ Φ₁) → (eleft : Expr (TChan (SType.force s₁) ∷ Φ₂) t) → (erght : Expr (TChan (SType.force s₂) ∷ Φ₂) t) → Expr Φ t nselect : ∀ {m alt} → (lab : Fin m) → (ch : TChan (sintN m alt) ∈ Φ) → Expr Φ (TChan (SType.force (alt lab))) nbranch : ∀ {m alt Φ₁ Φ₂ t} → (sp : Split Φ Φ₁ Φ₂) → (ch : TChan (sextN m alt) ∈ Φ₁) → (ealts : (i : Fin m) → Expr (TChan (SType.force (alt i)) ∷ Φ₂) t) → Expr Φ t ulambda : ∀ {Φ₁ Φ₂ t₁ t₂} → (sp : Split Φ Φ₁ Φ₂) → (unr-Φ₁ : All Unr Φ₁) → (unr-Φ₂ : All Unr Φ₂) → (ebody : Expr (t₁ ∷ Φ₁) t₂) → Expr Φ (TFun UU t₁ t₂) llambda : ∀ {Φ₁ Φ₂ t₁ t₂} → (sp : Split Φ Φ₁ Φ₂) → (unr-Φ₂ : All Unr Φ₂) → (ebody : Expr (t₁ ∷ Φ₁) t₂) → Expr Φ (TFun LL t₁ t₂) app : ∀ {Φ₁ Φ₂ lu t₁ t₂} → (sp : Split Φ Φ₁ Φ₂) → (xfun : TFun lu t₁ t₂ ∈ Φ₁) → (xarg : t₁ ∈ Φ₂) → Expr Φ t₂ rec : ∀ {t₁ t₂} → (unr-Φ : All Unr Φ) → let t = TFun UU t₁ t₂ in (ebody : Expr (t ∷ t₁ ∷ Φ) t₂) → Expr Φ t subsume : ∀ {t₁ t₂} → (e : Expr Φ t₁) → (t≤t' : SubT t₁ t₂) → Expr Φ t₂ unr-weaken : ∀ {Φ Φ₁ Φ₂ t} → Split Φ Φ₁ Φ₂ → All Unr Φ₂ → Expr Φ₁ t → Expr Φ t unr-weaken sp un-Φ₂ (var x) = var (unr-weaken-var sp un-Φ₂ x) unr-weaken sp un-Φ₂ (nat unr-Φ i) = letbind sp (nat unr-Φ i) (var (here un-Φ₂)) unr-weaken sp un-Φ₂ (unit unr-Φ) = letbind sp (unit unr-Φ) (var (here un-Φ₂)) unr-weaken sp un-Φ₂ (letbind sp₁ e e₁) = letbind sp (letbind sp₁ e e₁) (var (here un-Φ₂)) unr-weaken sp un-Φ₂ (pair sp₁ x₁ x₂) = letbind sp (pair sp₁ x₁ x₂) (var (here un-Φ₂)) unr-weaken sp un-Φ₂ (letpair sp₁ p e) = letbind sp (letpair sp₁ p e) (var (here un-Φ₂)) unr-weaken sp un-Φ₂ (fork e) = unr-weaken sp un-Φ₂ e unr-weaken sp un-Φ₂ (new unr-Φ s) = letbind sp (new unr-Φ s) (var (here un-Φ₂)) unr-weaken sp un-Φ₂ (send sp₁ ch vv) = letbind sp (send sp₁ ch vv) (var (here un-Φ₂)) unr-weaken sp un-Φ₂ (recv ch) = letbind sp (recv ch) (var (here un-Φ₂)) unr-weaken sp un-Φ₂ (close ch) = letbind sp (close ch) (var (here un-Φ₂)) unr-weaken sp un-Φ₂ (wait ch) = letbind sp (wait ch) (var (here un-Φ₂)) unr-weaken sp un-Φ₂ (nselect lab ch) = letbind sp (nselect lab ch) (var (here un-Φ₂)) unr-weaken sp un-Φ₂ (nbranch sp₁ ch ealts) = letbind sp (nbranch sp₁ ch ealts) (var (here un-Φ₂)) unr-weaken sp un-Φ₂ (select lab ch) = letbind sp (select lab ch) (var (here un-Φ₂)) unr-weaken sp un-Φ₂ (branch sp₁ ch e e₁) with split-rotate sp sp₁ ... | Φ' , sp-ΦΦ₃Φ' , sp-Φ'Φ₄Φ₂ = branch sp-ΦΦ₃Φ' ch (unr-weaken (left sp-Φ'Φ₄Φ₂) un-Φ₂ e) (unr-weaken (left sp-Φ'Φ₄Φ₂) un-Φ₂ e₁) unr-weaken sp un-Φ₂ (ulambda sp₁ unr-Φ₁ unr-Φ₂ e) = ulambda sp (split-unr sp₁ unr-Φ₁ unr-Φ₂) un-Φ₂ (unr-weaken (left sp₁) unr-Φ₂ e) unr-weaken sp un-Φ₂ (llambda sp₁ unr-Φ₂ e) = llambda sp un-Φ₂ (unr-weaken (left sp₁) unr-Φ₂ e) unr-weaken sp un-Φ₂ (app sp₁ xfun xarg) = letbind sp (app sp₁ xfun xarg) (var (here un-Φ₂)) unr-weaken sp un-Φ₂ (rec unr-Φ e) = rec (split-unr sp unr-Φ un-Φ₂) (unr-weaken (left (left sp)) un-Φ₂ e) unr-weaken sp un-Φ₂ (subsume e t≤t') = subsume (unr-weaken sp un-Φ₂ e) t≤t' lift-expr : ∀ {Φ t tᵤ} → Unr tᵤ → Expr Φ t → Expr (tᵤ ∷ Φ) t lift-expr unrtu (var x) = var (there unrtu x) lift-expr unrtu (nat unr-Φ i) = nat (unrtu ∷ unr-Φ) i lift-expr unrtu (unit unr-Φ) = unit (unrtu ∷ unr-Φ) lift-expr unrtu (letbind sp e e₁) = letbind (left sp) (lift-expr unrtu e) e₁ lift-expr unrtu (pair sp x₁ x₂) = pair (rght sp) x₁ (there unrtu x₂) lift-expr unrtu (letpair sp p e) = letpair (left sp) (there unrtu p) e lift-expr unrtu (fork e) = lift-expr unrtu e lift-expr unrtu (new unr-Φ s) = new (unrtu ∷ unr-Φ) s lift-expr unrtu (close ch) = close (there unrtu ch) lift-expr unrtu (wait ch) = wait (there unrtu ch) lift-expr unrtu (send sp ch vv) = send (rght sp) ch (there unrtu vv) lift-expr unrtu (recv ch) = recv (there unrtu ch) lift-expr unrtu (nselect lab ch) = nselect lab (there unrtu ch) lift-expr unrtu (nbranch sp ch ealts) = nbranch (left sp) (there unrtu ch) ealts lift-expr unrtu (select lab ch) = select lab (there unrtu ch) lift-expr unrtu (branch sp ch x₁ x₂) = branch (left sp) (there unrtu ch) x₁ x₂ lift-expr unrtu (ulambda sp unr-Φ unr-Φ₂ ebody) = ulambda (rght sp) unr-Φ (unrtu ∷ unr-Φ₂) ebody lift-expr unrtu (llambda sp unr-Φ₂ ebody) = llambda (rght sp) (unrtu ∷ unr-Φ₂) ebody lift-expr unrtu (app sp xfun xarg) = app (rght sp) xfun (there unrtu xarg) lift-expr{Φ} unrtu (rec unr-Φ ebody) = letbind (left (split-all-right Φ)) (var (here [])) (rec (unrtu ∷ unr-Φ) (unr-weaken (left (left (rght (split-all-left Φ)))) (unrtu ∷ []) ebody)) lift-expr unrtu (subsume e t≤t') = subsume (lift-expr unrtu e) t≤t' unr-subst : ∀ {Φ Φ₁ Φ₂ tᵤ t} → Unr tᵤ → Split Φ Φ₁ Φ₂ → All Unr Φ₁ → Expr Φ₁ tᵤ → Expr (tᵤ ∷ Φ₂) t → Expr Φ t unr-subst unrtu sp unr-Φ₁ etu (var (here x)) = unr-weaken sp x etu unr-subst unrtu sp unr-Φ₁ etu (var (there x x₁)) = var (unr-weaken-var (split-sym sp) unr-Φ₁ x₁) unr-subst unrtu sp unr-Φ₁ etu (nat (unr-tu ∷ unr-Φ) i) = nat (split-unr sp unr-Φ₁ unr-Φ) i unr-subst unrtu sp unr-Φ₁ etu (unit (_ ∷ unr-Φ)) = unit (split-unr sp unr-Φ₁ unr-Φ) unr-subst unrtu sp unr-Φ₁ etu (letbind sp₁ e e₁) = letbind sp etu (letbind sp₁ e e₁) unr-subst unrtu sp unr-Φ₁ etu (pair sp₁ x₁ x₂) = letbind sp etu (pair sp₁ x₁ x₂) unr-subst unrtu sp unr-Φ₁ etu (letpair sp₁ p e) = letbind sp etu (letpair sp₁ p e) unr-subst unrtu sp unr-Φ₁ etu (fork e) = unr-subst unrtu sp unr-Φ₁ etu e unr-subst unrtu sp unr-Φ₁ etu (new unr-Φ s) = letbind sp etu (new unr-Φ s) unr-subst unrtu sp unr-Φ₁ etu (send sp₁ ch vv) = letbind sp etu (send sp₁ ch vv) unr-subst unrtu sp unr-Φ₁ etu (recv ch) = letbind sp etu (recv ch) unr-subst unrtu sp unr-Φ₁ etu (close ch) = letbind sp etu (close ch) unr-subst unrtu sp unr-Φ₁ etu (wait ch) = letbind sp etu (wait ch) unr-subst unrtu sp unr-Φ₁ etu (nselect lab ch) = letbind sp etu (nselect lab ch) unr-subst unrtu sp unr-Φ₁ etu (nbranch sp₁ ch ealts) = letbind sp etu (nbranch sp₁ ch ealts) unr-subst unrtu sp unr-Φ₁ etu (select lab ch) = letbind sp etu (select lab ch) unr-subst unrtu sp unr-Φ₁ etu (branch sp₁ ch e e₁) = letbind sp etu (branch sp₁ ch e e₁) unr-subst unrtu sp unr-Φ₁ etu (ulambda sp₁ unr-Φ₂ unr-Φ₃ e) = letbind sp etu (ulambda sp₁ unr-Φ₂ unr-Φ₃ e) unr-subst unrtu sp unr-Φ₁ etu (llambda sp₁ unr-Φ₂ e) = letbind sp etu (llambda sp₁ unr-Φ₂ e) unr-subst unrtu sp unr-Φ₁ etu (app sp₁ xfun xarg) = letbind sp etu (app sp₁ xfun xarg) unr-subst unrtu sp unr-Φ₁ etu (rec unr-Φ e) = letbind sp etu (rec unr-Φ e) unr-subst unrtu sp unr-Φ₁ etu (subsume e t≤t') = subsume (unr-subst unrtu sp unr-Φ₁ etu e) t≤t' expr-coerce : ∀ {Φ t₁ t₂ t₁' t₂'} → Expr (t₁ ∷ Φ) t₂ → SubT t₂ t₂' → SubT t₁' t₁ → Expr (t₁' ∷ Φ) t₂' expr-coerce e t2≤t2' t1'≤t1 = letbind (left (split-all-right _)) (subsume (var (here [])) t1'≤t1) (subsume e t2≤t2')
{ "alphanum_fraction": 0.6105113299, "avg_line_length": 44.1308900524, "ext": "agda", "hexsha": "4820505e4db3dcde4390a52e2e6f462a9d2d5a98", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "peterthiemann/definitional-session", "max_forks_repo_path": "src/Syntax.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "peterthiemann/definitional-session", "max_issues_repo_path": "src/Syntax.agda", "max_line_length": 183, "max_stars_count": 9, "max_stars_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "peterthiemann/definitional-session", "max_stars_repo_path": "src/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-18T08:10:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-19T16:33:27.000Z", "num_tokens": 3970, "size": 8429 }
{-# OPTIONS --without-K --safe --no-universe-polymorphism --sized-types --no-guardedness --no-subtyping #-} module Agda.Builtin.Size where {-# BUILTIN SIZEUNIV SizeUniv #-} {-# BUILTIN SIZE Size #-} {-# BUILTIN SIZELT Size<_ #-} {-# BUILTIN SIZESUC ↑_ #-} {-# BUILTIN SIZEINF ∞ #-} {-# BUILTIN SIZEMAX _⊔ˢ_ #-} {-# FOREIGN GHC type SizeLT i = () #-} {-# COMPILE GHC Size = type () #-} {-# COMPILE GHC Size<_ = type SizeLT #-} {-# COMPILE GHC ↑_ = \_ -> () #-} {-# COMPILE GHC ∞ = () #-} {-# COMPILE GHC _⊔ˢ_ = \_ _ -> () #-}
{ "alphanum_fraction": 0.5008237232, "avg_line_length": 27.5909090909, "ext": "agda", "hexsha": "54ea1ace2ca7738e894e950f502b08f28ca62f1b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/Size.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/Size.agda", "max_line_length": 71, "max_stars_count": null, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/Size.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 186, "size": 607 }