Search is not available for this dataset
text
string
meta
dict
import Lvl module Structure.Category.Category {ℓₒ ℓₘ ℓₑ : Lvl.Level} where open import Structure.Category open import Structure.Category.Functor.Equiv open import Structure.Category.Functor import Structure.Category.Functor.Functors as Functors open import Structure.Category.Functor.Functors.Proofs open CategoryObject open Functors.Wrapped categoryCategory : Category{Obj = CategoryObject{ℓₒ}{ℓₘ}{ℓₑ}} (_→ᶠᵘⁿᶜᵗᵒʳ_) Category._∘_ categoryCategory = _∘ᶠᵘⁿᶜᵗᵒʳ_ Category.id categoryCategory = idᶠᵘⁿᶜᵗᵒʳ Category.binaryOperator categoryCategory = [∘ᶠᵘⁿᶜᵗᵒʳ]-binaryOperator Category.associativity categoryCategory = [∘ᶠᵘⁿᶜᵗᵒʳ]-associativity Category.identity categoryCategory = [∘ᶠᵘⁿᶜᵗᵒʳ]-identity
{ "alphanum_fraction": 0.7872628726, "avg_line_length": 36.9, "ext": "agda", "hexsha": "5fb81d7a4f53a994ac6ca400ea2049e1c9824520", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Category/Category.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Category/Category.agda", "max_line_length": 74, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Category/Category.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 292, "size": 738 }
{-# OPTIONS --without-K --safe #-} -- verbatim dual of Categories.Category.Construction.Properties.Kleisli module Categories.Category.Construction.Properties.CoKleisli where open import Level import Relation.Binary.PropositionalEquality as ≡ open import Categories.Adjoint open import Categories.Adjoint.Properties open import Categories.Category open import Categories.Functor using (Functor; _∘F_) open import Categories.Functor.Equivalence open import Categories.Comonad import Categories.Morphism.Reasoning as MR open import Categories.Adjoint.Construction.CoKleisli open import Categories.Category.Construction.CoKleisli private variable o ℓ e : Level 𝒞 𝒟 : Category o ℓ e module _ {F : Functor 𝒞 𝒟} {G : Functor 𝒟 𝒞} (F⊣G : Adjoint F G) where private T : Comonad 𝒟 T = adjoint⇒comonad F⊣G 𝒟ₜ : Category _ _ _ 𝒟ₜ = CoKleisli T module 𝒞 = Category 𝒞 module 𝒟 = Category 𝒟 module 𝒟ₜ = Category 𝒟ₜ module T = Comonad T module F = Functor F module G = Functor G open Adjoint F⊣G -- Maclane's Comparison Functor ComparisonF : Functor 𝒟ₜ 𝒞 ComparisonF = record { F₀ = λ X → G.F₀ X ; F₁ = λ {A} {B} f → 𝒞 [ (G.F₁ f) ∘ unit.η (G.F₀ A) ] ; identity = λ {A} → zag ; homomorphism = λ {X} {Y} {Z} {f} {g} → begin G.F₁ (g 𝒟.∘ F.F₁ (G.F₁ f) 𝒟.∘ F.F₁ (unit.η (G.F₀ X))) 𝒞.∘ unit.η (G.F₀ X) ≈⟨ pushˡ G.homomorphism ⟩ G.F₁ g 𝒞.∘ G.F₁ ((F.F₁ (G.F₁ f)) 𝒟.∘ F.F₁ (unit.η (G.F₀ X))) 𝒞.∘ unit.η (G.F₀ X) ≈⟨ (refl⟩∘⟨ pushˡ G.homomorphism) ⟩ G.F₁ g 𝒞.∘ G.F₁ (F.F₁ (G.F₁ f)) 𝒞.∘ G.F₁ (F.F₁ (unit.η (G.F₀ X))) 𝒞.∘ unit.η (G.F₀ X) ≈⟨ (refl⟩∘⟨ (refl⟩∘⟨ sym (unit.commute (unit.η (G.F₀ X))))) ⟩ G.F₁ g 𝒞.∘ G.F₁ (F.F₁ (G.F₁ f)) 𝒞.∘ unit.η (G.F₀ (F.F₀ (G.F₀ X))) 𝒞.∘ unit.η (G.F₀ X) ≈⟨ (refl⟩∘⟨ pullˡ (sym (unit.commute (G.F₁ f)))) ⟩ G.F₁ g 𝒞.∘ (unit.η (G.F₀ Y) 𝒞.∘ G.F₁ f) 𝒞.∘ unit.η (G.F₀ X) ≈⟨ MR.assoc²'' 𝒞 ⟩ (G.F₁ g 𝒞.∘ unit.η (G.F₀ Y)) 𝒞.∘ G.F₁ f 𝒞.∘ unit.η (G.F₀ X) ∎ ; F-resp-≈ = λ eq → 𝒞.∘-resp-≈ (G.F-resp-≈ eq) (Category.Equiv.refl 𝒞) } where open 𝒞.HomReasoning open 𝒞.Equiv open MR 𝒞 private L = ComparisonF module L = Functor L module Gₜ = Functor (Forgetful T) module Fₜ = Functor (Cofree T) F∘L≡Forgetful : (F ∘F L) ≡F Forgetful T F∘L≡Forgetful = record { eq₀ = λ X → ≡.refl ; eq₁ = eq-1 } where open 𝒟.HomReasoning open MR 𝒟 eq-1 : {X Y : 𝒟.Obj} (f : F.F₀ (G.F₀ X) 𝒟.⇒ Y) → 𝒟.id 𝒟.∘ F.F₁ (G.F₁ f 𝒞.∘ unit.η (G.F₀ X)) 𝒟.≈ (F.F₁ (G.F₁ f) 𝒟.∘ F.F₁ (unit.η (G.F₀ X))) 𝒟.∘ 𝒟.id eq-1 {X} {Y} f = begin 𝒟.id 𝒟.∘ F.F₁ (G.F₁ f 𝒞.∘ unit.η (G.F₀ X)) ≈⟨ id-comm-sym ⟩ F.F₁ (G.F₁ f 𝒞.∘ unit.η (G.F₀ X)) 𝒟.∘ 𝒟.id ≈⟨ (F.homomorphism ⟩∘⟨refl) ⟩ (F.F₁ (G.F₁ f) 𝒟.∘ F.F₁ (unit.η (G.F₀ X))) 𝒟.∘ 𝒟.id ∎ L∘Cofree≡G : (L ∘F Cofree T) ≡F G L∘Cofree≡G = record { eq₀ = λ X → ≡.refl ; eq₁ = eq-1 } where open 𝒞.HomReasoning open MR 𝒞 eq-1 : {X Y : 𝒟.Obj} (f : X 𝒟.⇒ Y) → 𝒞.id 𝒞.∘ G.F₁ (f 𝒟.∘ counit.η X) 𝒞.∘ unit.η (G.F₀ X) 𝒞.≈ G.F₁ f 𝒞.∘ 𝒞.id eq-1 {X} {Y} f = begin 𝒞.id 𝒞.∘ G.F₁ (f 𝒟.∘ counit.η X) 𝒞.∘ unit.η (G.F₀ X) ≈⟨ id-comm-sym ⟩ (G.F₁ (f 𝒟.∘ counit.η X) 𝒞.∘ unit.η (G.F₀ X)) 𝒞.∘ 𝒞.id ≈⟨ (pushˡ G.homomorphism ⟩∘⟨refl) ⟩ (G.F₁ f 𝒞.∘ G.F₁ (counit.η X) 𝒞.∘ unit.η (G.F₀ X)) 𝒞.∘ 𝒞.id ≈⟨ (elimʳ zag ⟩∘⟨refl) ⟩ G.F₁ f 𝒞.∘ 𝒞.id ∎
{ "alphanum_fraction": 0.5467048711, "avg_line_length": 36.3541666667, "ext": "agda", "hexsha": "9afb00d936d70c2231c411e20cf3dbe4da378f5a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Construction/Properties/CoKleisli.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Construction/Properties/CoKleisli.agda", "max_line_length": 153, "max_stars_count": 5, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Construction/Properties/CoKleisli.agda", "max_stars_repo_stars_event_max_datetime": "2019-05-22T03:54:24.000Z", "max_stars_repo_stars_event_min_datetime": "2019-05-21T17:07:19.000Z", "num_tokens": 1769, "size": 3490 }
module PatternSynonymImports2 where open import PatternSynonyms open import PatternSynonymImports myzero' = z myzero'' = myzero list2 : List _ list2 = 1 ∷ []
{ "alphanum_fraction": 0.775, "avg_line_length": 16, "ext": "agda", "hexsha": "c792c7ef085894fcc34603160b1480b30e07a0fb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/succeed/PatternSynonymImports2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/succeed/PatternSynonymImports2.agda", "max_line_length": 35, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/PatternSynonymImports2.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 47, "size": 160 }
{-# OPTIONS --without-K #-} {- This brief section introduces an alternative definition of n-connectedness defined purely using propositional truncation, in contrast to the standard one using n-truncations (The below observation has resulted in Exercise 7.6 of the HoTT book being modified accordingly). In detail, a type A is usually called n-connected if Trunc n A is contractible. Here, we show that n-connectedness of A can also be defined recursively as follows: * A is (-2)-connected, * A is (n+1)-connected iff A is merely inhabited and for all a₀, a₁ : A, the path space a₀ == a₁ is n-connected. This module is independent from the other files in this directory, using only the truncations with definitional computation from the library. -} module Universe.Trunc.ConnectednessAlt where open import lib.Basics open import lib.NConnected open import lib.NType2 open import lib.types.Pi open import lib.types.Sigma open import lib.types.TLevel open import lib.types.Truncation open import lib.types.Unit open import Universe.Utility.General open import Universe.Utility.TruncUniverse -- Preliminary lemmata. module _ where {- The structural lemma for the below equivalence of connectedness notions: Contractibility is equivalent to propositionality and mere inhabitation. -} contr-decompose : ∀ {i} {A : Type i} → is-contr A ≃ (Trunc ⟨-1⟩ A × is-prop A) contr-decompose {i} {A} = prop-equiv h k f g where h = is-contr-is-prop k = snd ((_ , Trunc-level) ×-≤ (_ , is-prop-is-prop)) f = λ c → ([ fst c ] , contr-is-prop c) g = λ {(ta , s) → Trunc-rec h (flip inhab-prop-is-contr s) ta} -- Everything here will happen in universe Type i. module _ {i} where module _ {n : ℕ₋₂} where -- The dependent universal property over n-types. Trunc-dup : (A : Type i) (B : (ta : Trunc n A) → n -Type i) → Π (Trunc n A) (⟦_⟧ ∘ B) ≃ Π A (⟦_⟧ ∘ B ∘ [_]) Trunc-dup A B = equiv (λ f → f ∘ [_]) (Trunc-elim (snd ∘ B)) (λ _ → idp) (λ f → λ= (Trunc-elim (snd ∘ (λ a → Path-≤ (B a) _ _)) (λ a → idp))) {- The truncation functor is applicative (here only a special case). Note the more elegant alternative of using the approach from TypeConstructors.agda with unicity of truncations. -} Trunc-×-equiv : {A B : Type i} → Trunc n (A × B) ≃ (Trunc n A × Trunc n B) Trunc-×-equiv {A} {B} = equiv f g f-g g-f where f = λ t → (Trunc-fmap fst t , Trunc-fmap snd t) g = λ {(ta , tb) → Trunc-rec Trunc-level (λ a → Trunc-rec Trunc-level (λ b → [ (a , b) ]) tb) ta} f-g = λ {(ta , tb) → Trunc-elim (λ ta → snd (T (ta , tb))) (λ a → Trunc-elim (λ tb → snd (T ([ a ] , tb))) (λ b → idp) tb) ta} where T : Trunc n A × Trunc n B → n -Type i T ts = Path-≤ ((_ , Trunc-level) ×-≤ (_ , Trunc-level)) (f (g ts)) ts g-f = Trunc-elim (λ _ → snd (Path-≤ (_ , Trunc-level) _ _)) (λ a → idp) {- The connectedness predicate from the library: is-connected : ℕ₋₂ → Type i → Type i is-connected n A = is-contr (Trunc n A) -} -- Our connectedness predicate defined using only propositional truncation. is-connected' : ℕ₋₂ → Type i → Type i is-connected' ⟨-2⟩ A = Lift ⊤ is-connected' (S n) A = Trunc ⟨-1⟩ A × ((as : A × A) → is-connected' n (fst as == snd as)) -- Both notions coincide. connected-equiv : (n : ℕ₋₂) (A : Type i) → is-connected n A ≃ is-connected' n A connected-equiv ⟨-2⟩ A = lift-equiv ⁻¹ ∘e contr-equiv-Unit (inhab-prop-is-contr Trunc-level is-contr-is-prop) connected-equiv (S n) A = equiv-Σ (fuse-Trunc A _ _) (λ _ → e) ∘e contr-decompose where e = is-prop (Trunc (S n) A) ≃⟨ curry-equiv ⁻¹ ⟩ Π (Trunc (S n) A × Trunc (S n) A) (is-contr ∘ uncurry _==_) ≃⟨ equiv-Π-l _ (snd Trunc-×-equiv) ⁻¹ ⟩ Π (Trunc (S n) (A × A)) (is-contr ∘ uncurry _==_ ∘ _) ≃⟨ Trunc-dup (A × A) (λ _ → (_ , raise-level-≤T (≤T-ap-S (-2≤T n)) is-contr-is-prop)) ⟩ ((as : A × A) → is-contr ([ fst as ] == [ snd as ])) ≃⟨ equiv-Π-r (λ _ → equiv-level (Trunc=-equiv _ _)) ⟩ Π (A × A) (is-connected n ∘ uncurry _==_) ≃⟨ equiv-Π-r (λ _ → connected-equiv n _) ⟩ Π (A × A) (is-connected' n ∘ uncurry _==_) ≃∎
{ "alphanum_fraction": 0.5973278047, "avg_line_length": 43.41, "ext": "agda", "hexsha": "b040b65a2b5b3ff507b30c1c06957417a091364a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "sattlerc/HoTT-Agda", "max_forks_repo_path": "Universe/Trunc/ConnectednessAlt.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "sattlerc/HoTT-Agda", "max_issues_repo_path": "Universe/Trunc/ConnectednessAlt.agda", "max_line_length": 95, "max_stars_count": null, "max_stars_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "sattlerc/HoTT-Agda", "max_stars_repo_path": "Universe/Trunc/ConnectednessAlt.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1444, "size": 4341 }
module Nat.Binary where open import Data.Bool hiding (_≤_; _<_; _<?_) open import Data.Empty open import Data.List open import Data.List.Properties open import Data.Maybe open import Data.Product open import Data.Sum open import Function open import Nat.Class open import Nat.Unary using (ℕ₁) renaming (zero to zero₁ ; succ to succ₁ ; _+_ to _+₁_ ; rec to rec₁ ; ind to ind₁ ; rec-succ to rec₁-succ ) open import Relation.Binary.PropositionalEquality open import Relation.Nullary open ≡-Reasoning data ℕ₂ : Set where zero : ℕ₂ pos : List Bool → ℕ₂ ind : (P : ℕ₂ → Set) → P zero → P (pos []) → (∀ {b bs} → P (pos bs) → P (pos (b ∷ bs))) → ∀ n → P n ind P z u d zero = z ind P z u d (pos []) = u ind P z u d (pos (b ∷ bs)) = d (ind P z u d (pos bs)) succ⁺ : List Bool → List Bool succ⁺ [] = false ∷ [] succ⁺ (false ∷ bs) = true ∷ bs succ⁺ (true ∷ bs) = false ∷ succ⁺ bs succ : ℕ₂ → ℕ₂ succ zero = pos [] succ (pos bs) = pos (succ⁺ bs) -- TODO: try to build a rec implementation that computes the -- predecessor to do unary recursion on binary numbers! However, the -- predecessor function must return a proof showing that its result is -- less than its argument, otherwise Agda doesn't know if the -- recursion will terminate digitsFold : {B : Set} → (B → Bool → Bool → B) → B → ℕ₂ → ℕ₂ → B digitsFold f z zero zero = f z false false digitsFold f z zero (pos []) = f z false true digitsFold f z zero (pos (b₂ ∷ bs₂)) = digitsFold f (f z false b₂) zero (pos bs₂) digitsFold f z (pos []) zero = f z true false digitsFold f z (pos []) (pos []) = f z true true digitsFold f z (pos []) (pos (b₂ ∷ bs₂)) = digitsFold f (f z true b₂) zero (pos bs₂) digitsFold f z (pos (b₁ ∷ bs₁)) zero = digitsFold f (f z b₁ false) (pos bs₁) zero digitsFold f z (pos (b₁ ∷ bs₁)) (pos []) = digitsFold f (f z b₁ true) (pos bs₁) zero digitsFold f z (pos (b₁ ∷ bs₁)) (pos (b₂ ∷ bs₂)) = digitsFold f (f z b₁ b₂) (pos bs₁) (pos bs₂) adder : List Bool × Bool → Bool → Bool → List Bool × Bool adder (bs , c) a b = (c xor (a xor b)) ∷ bs , (c ∧ (a xor b)) ∨ (a ∧ b) revNormalize : List Bool → ℕ₂ → ℕ₂ revNormalize [] acc = acc revNormalize (b ∷ rxs) (pos acc) = revNormalize rxs (pos (b ∷ acc)) revNormalize (false ∷ rxs) zero = revNormalize rxs zero revNormalize (true ∷ rxs) zero = revNormalize rxs (pos []) _+_ : ℕ₂ → ℕ₂ → ℕ₂ m + n = let rs , c = digitsFold adder ([] , false) m n in revNormalize (c ∷ rs) zero _ : zero + zero ≡ zero _ = begin zero + zero ≡⟨⟩ let rs , c = digitsFold adder ([] , false) zero zero in revNormalize (c ∷ rs) zero ≡⟨⟩ let rs , c = adder ([] , false) false false in revNormalize (c ∷ rs) zero ≡⟨⟩ let rs = (false xor (false xor false)) ∷ [] c = (false ∧ (false xor false)) ∨ (false ∧ false) in revNormalize (c ∷ rs) zero ≡⟨⟩ let rs = false ∷ [] c = false in revNormalize (c ∷ rs) zero ≡⟨⟩ revNormalize (false ∷ false ∷ []) zero ≡⟨⟩ revNormalize (false ∷ []) zero ≡⟨⟩ revNormalize [] zero ≡⟨⟩ zero ∎ _ : zero + pos [] ≡ pos [] _ = begin zero + pos [] ≡⟨⟩ let rs , c = digitsFold adder ([] , false) zero (pos []) in revNormalize (c ∷ rs) zero ≡⟨⟩ let rs , c = adder ([] , false) false true in revNormalize (c ∷ rs) zero ≡⟨⟩ let rs = (false xor (false xor true)) ∷ [] c = (false ∧ (false xor true)) ∨ (false ∧ true) in revNormalize (c ∷ rs) zero ≡⟨⟩ let rs = true ∷ [] c = false in revNormalize (c ∷ rs) zero ≡⟨⟩ revNormalize (false ∷ true ∷ []) zero ≡⟨⟩ revNormalize (true ∷ []) zero ≡⟨⟩ revNormalize [] (pos []) ≡⟨⟩ pos [] ∎ _ : zero + pos (false ∷ []) ≡ pos (false ∷ []) _ = begin zero + pos (false ∷ []) ≡⟨⟩ let rs , c = digitsFold adder ([] , false) zero (pos (false ∷ [])) in revNormalize (c ∷ rs) zero ≡⟨⟩ let rs , c = digitsFold adder (adder ([] , false) false false) zero (pos []) in revNormalize (c ∷ rs) zero ≡⟨⟩ let bs′ = (false xor (false xor false)) ∷ [] c′ = (false ∧ (false xor false)) ∨ (false ∧ false) rs , c = digitsFold adder (bs′ , c′) zero (pos []) in revNormalize (c ∷ rs) zero ≡⟨⟩ let rs , c = digitsFold adder (false ∷ [] , false) zero (pos []) in revNormalize (c ∷ rs) zero ≡⟨⟩ let rs , c = adder (false ∷ [] , false) false true in revNormalize (c ∷ rs) zero ≡⟨⟩ let rs = (false xor (false xor true)) ∷ false ∷ [] c = (false ∧ (false xor true)) ∨ (false ∧ true) in revNormalize (c ∷ rs) zero ≡⟨⟩ revNormalize (false ∷ true ∷ false ∷ []) zero ≡⟨⟩ revNormalize (true ∷ false ∷ []) zero ≡⟨⟩ revNormalize (false ∷ []) (pos []) ≡⟨⟩ revNormalize [] (pos (false ∷ [])) ≡⟨⟩ pos (false ∷ []) ∎ -- TODO Expand more zero + n examples reverse-∷ : {A : Set} {x : A} {xs : List A} → reverse (x ∷ xs) ≡ reverse xs ++ (x ∷ []) reverse-∷ {A} {x} {xs} = begin reverse (x ∷ xs) ≡⟨⟩ foldl (flip _∷_) [] (x ∷ xs) ≡⟨⟩ foldl (flip _∷_) (flip _∷_ [] x) xs ≡⟨⟩ foldl (flip _∷_) (x ∷ []) xs ≡⟨ {!!} ⟩ foldl (flip _∷_) [] xs ++ (x ∷ []) ≡⟨⟩ reverse xs ++ (x ∷ []) ∎ reverse-∷-++ : {A : Set} {x : A} {xs ys : List A} → reverse (x ∷ xs) ++ ys ≡ reverse xs ++ x ∷ ys reverse-∷-++ {A} {x} {[]} {ys} = refl reverse-∷-++ {A} {x} {x′ ∷ xs′} {ys} = begin reverse (x ∷ x′ ∷ xs′) ++ ys ≡⟨ {!!} ⟩ reverse (x′ ∷ xs′) ++ x ∷ ys ∎ adder-ca-false : ∀ {b bs} → adder (bs , false) false b ≡ (b ∷ bs , false) adder-ca-false = refl digitsFold-adder-zeroˡ-carry : ∀ {bs n} → proj₂ (digitsFold adder (bs , false) zero n) ≡ false digitsFold-adder-zeroˡ-carry {n = zero} = refl digitsFold-adder-zeroˡ-carry {n = pos []} = refl digitsFold-adder-zeroˡ-carry {n = pos (b ∷ bs₂)} = digitsFold-adder-zeroˡ-carry {n = pos bs₂} digitsFold-adder-zeroˡ-sum : ∀ {rs bs} → proj₁ (digitsFold adder (rs , false) zero (pos bs)) ≡ true ∷ reverse bs ++ rs digitsFold-adder-zeroˡ-sum {rs} {[]} = refl digitsFold-adder-zeroˡ-sum {rs} {b ∷ bs} = begin proj₁ (digitsFold adder (rs , false) zero (pos (b ∷ bs))) ≡⟨⟩ proj₁ (digitsFold adder (b ∷ rs , false) zero (pos bs)) ≡⟨ digitsFold-adder-zeroˡ-sum {b ∷ rs} {bs} ⟩ true ∷ reverse bs ++ b ∷ rs ≡⟨ {!!} ⟩ true ∷ reverse (b ∷ bs) ++ rs ∎ +-identityˡ : ∀ {n} → zero + n ≡ n +-identityˡ {zero} = refl +-identityˡ {pos []} = refl +-identityˡ {pos (b ∷ bs)} = begin zero + pos (b ∷ bs) ≡⟨⟩ let rs , c = digitsFold adder ([] , false) zero (pos (b ∷ bs)) in revNormalize (c ∷ rs) zero ≡⟨⟩ let rs , c = digitsFold adder (adder ([] , false) false b) zero (pos bs) in revNormalize (c ∷ rs) zero ≡⟨ {!!} ⟩ pos (b ∷ bs) ∎ fromℕ₁ : ℕ₁ → ℕ₂ fromℕ₁ = rec₁ zero succ fromℕ₁-succ : ∀ n → fromℕ₁ (succ₁ n) ≡ succ (fromℕ₁ n) fromℕ₁-succ zero₁ = refl fromℕ₁-succ (succ₁ n) = begin fromℕ₁ (succ₁ (succ₁ n)) ≡⟨⟩ rec₁ zero succ (succ₁ (succ₁ n)) ≡⟨⟩ rec₁ (succ zero) succ (succ₁ n) ≡⟨ rec₁-succ zero succ (succ₁ n) ⟩ succ (rec₁ zero succ (succ₁ n)) ≡⟨⟩ succ (fromℕ₁ (succ₁ n)) ∎ -- TODO Prove this using algebraic laws! fromℕ₁-comm-+ : ∀ {m n} → fromℕ₁ (m +₁ n) ≡ fromℕ₁ m + fromℕ₁ n fromℕ₁-comm-+ {zero₁} {zero₁} = refl fromℕ₁-comm-+ {zero₁} {succ₁ n} = begin fromℕ₁ (zero₁ +₁ succ₁ n) ≡⟨⟩ fromℕ₁ (succ₁ n) ≡⟨ fromℕ₁-succ n ⟩ succ (fromℕ₁ n) ≡⟨ {!!} ⟩ zero + succ (fromℕ₁ n) ≡⟨ cong (zero +_) (sym (fromℕ₁-succ n)) ⟩ fromℕ₁ zero₁ + fromℕ₁ (succ₁ n) ∎ fromℕ₁-comm-+ {succ₁ m} {n} = {!!} toℕ₁⁺ : List Bool → ℕ₁ toℕ₁⁺ [] = succ₁ zero₁ toℕ₁⁺ (b ∷ bs) = (if b then succ₁ else id) (toℕ₁⁺ bs +₁ toℕ₁⁺ bs) toℕ₁ : ℕ₂ → ℕ₁ toℕ₁ zero = zero₁ toℕ₁ (pos bs) = toℕ₁⁺ bs toℕ₁⁺-succ : ∀ bs → toℕ₁⁺ (succ⁺ bs) ≡ succ₁ (toℕ₁⁺ bs) toℕ₁⁺-succ [] = refl toℕ₁⁺-succ (false ∷ bs) = refl toℕ₁⁺-succ (true ∷ bs) = begin toℕ₁⁺ (succ⁺ (true ∷ bs)) ≡⟨⟩ toℕ₁⁺ (false ∷ succ⁺ bs) ≡⟨⟩ toℕ₁⁺ (succ⁺ bs) +₁ toℕ₁⁺ (succ⁺ bs) ≡⟨ cong (λ x → x +₁ toℕ₁⁺ (succ⁺ bs)) (toℕ₁⁺-succ bs) ⟩ succ₁ (toℕ₁⁺ bs) +₁ toℕ₁⁺ (succ⁺ bs) ≡⟨ cong (λ x → succ₁ (toℕ₁⁺ bs) +₁ x) (toℕ₁⁺-succ bs) ⟩ succ₁ (toℕ₁⁺ bs) +₁ succ₁ (toℕ₁⁺ bs) ≡⟨ +-succˡ {m = toℕ₁⁺ bs} ⟩ succ₁ (toℕ₁⁺ bs +₁ succ₁ (toℕ₁⁺ bs)) ≡⟨ cong succ₁ (+-succʳ {m = toℕ₁⁺ bs}) ⟩ succ₁ (succ₁ (toℕ₁⁺ bs +₁ toℕ₁⁺ bs)) ≡⟨⟩ succ₁ (toℕ₁⁺ (true ∷ bs)) ∎ toℕ₁-succ : ∀ n → toℕ₁ (succ n) ≡ succ₁ (toℕ₁ n) toℕ₁-succ zero = refl toℕ₁-succ (pos bs) = toℕ₁⁺-succ bs fromToℕ₁ : ∀ n → toℕ₁ (fromℕ₁ n) ≡ n fromToℕ₁ zero₁ = refl fromToℕ₁ (succ₁ n) = begin toℕ₁ (fromℕ₁ (succ₁ n)) ≡⟨ cong toℕ₁ (fromℕ₁-succ n) ⟩ toℕ₁ (succ (fromℕ₁ n)) ≡⟨ toℕ₁-succ (fromℕ₁ n) ⟩ succ₁ (toℕ₁ (fromℕ₁ n)) ≡⟨ cong succ₁ (fromToℕ₁ n) ⟩ succ₁ n ∎ toFromℕ₁⁺ : ∀ bs → fromℕ₁ (toℕ₁⁺ bs) ≡ pos bs toFromℕ₁⁺ [] = refl toFromℕ₁⁺ (false ∷ bs) = begin fromℕ₁ (toℕ₁⁺ (false ∷ bs)) ≡⟨⟩ fromℕ₁ (toℕ₁⁺ bs +₁ toℕ₁⁺ bs) -- TODO Fill in these holes! ≡⟨ {!!} ⟩ fromℕ₁ (toℕ₁⁺ bs) + fromℕ₁ (toℕ₁⁺ bs) ≡⟨ cong (λ x → x + fromℕ₁ (toℕ₁⁺ bs)) (toFromℕ₁⁺ bs) ⟩ pos bs + fromℕ₁ (toℕ₁⁺ bs) ≡⟨ cong (λ x → pos bs + x) (toFromℕ₁⁺ bs) ⟩ pos bs + pos bs ≡⟨ {!!} ⟩ pos (false ∷ bs) ∎ toFromℕ₁⁺ (true ∷ bs) = {!!} toFromℕ₁ : ∀ n → fromℕ₁ (toℕ₁ n) ≡ n toFromℕ₁ zero = refl toFromℕ₁ (pos bs) = toFromℕ₁⁺ bs instance Nat-ℕ₂ : Nat ℕ₂ Nat-ℕ₂ = record { zero = zero ; succ = succ ; ind = {!!} ; _+_ = _+_ ; +-zero = +-identityˡ ; +-succ = {!!} }
{ "alphanum_fraction": 0.5487868921, "avg_line_length": 25.8021680217, "ext": "agda", "hexsha": "9b4e27df7fed63f6627fa97b05d5b7f771cd70c2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-28T12:49:47.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-28T12:49:47.000Z", "max_forks_repo_head_hexsha": "1b51e83acf193a556a61d44a4585a6467a383fa3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "iblech/agda-quotients", "max_forks_repo_path": "src/Nat/Binary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b51e83acf193a556a61d44a4585a6467a383fa3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "iblech/agda-quotients", "max_issues_repo_path": "src/Nat/Binary.agda", "max_line_length": 80, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b51e83acf193a556a61d44a4585a6467a383fa3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "iblech/agda-quotients", "max_stars_repo_path": "src/Nat/Binary.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-29T13:10:27.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-29T13:10:27.000Z", "num_tokens": 4158, "size": 9521 }
{-# OPTIONS --without-K #-} module F1b where open import Data.Unit open import Data.Sum hiding (map; [_,_]) open import Data.Product hiding (map; ,_) open import Function using (flip) open import Relation.Binary.Core using (IsEquivalence; Reflexive; Symmetric; Transitive) open import Relation.Binary open import Groupoid infixr 90 _⊗_ infixr 80 _⊕_ infixr 60 _∘_ infix 30 _⟷_ --------------------------------------------------------------------------- -- Paths -- Path relation should be an equivalence data Path {A : Set} : A → A → Set where _⇛_ : (x : A) → (y : A) → Path x y data _≣⇛_ {A : Set} {a b : A} (x : Path a b) : Path a b → Set where refl⇛ : x ≣⇛ x id⇛ : {A : Set} → (a : A) → Path a a id⇛ a = a ⇛ a ap : {A B : Set} → (f : A → B) → {a a' : A} → Path a a' → Path (f a) (f a') ap f (a ⇛ a') = (f a) ⇛ (f a') _∙⇛_ : {A : Set} {a b c : A} → Path b c → Path a b → Path a c (b ⇛ c) ∙⇛ (a ⇛ .b) = a ⇛ c _⇚ : {A : Set} {a b : A} → Path a b → Path b a (x ⇛ y) ⇚ = y ⇛ x lid⇛ : {A : Set} {x y : A} (α : Path x y) → (id⇛ y ∙⇛ α) ≣⇛ α lid⇛ (x ⇛ y) = refl⇛ rid⇛ : {A : Set} {x y : A} (α : Path x y) → (α ∙⇛ id⇛ x) ≣⇛ α rid⇛ (x ⇛ y) = refl⇛ assoc⇛ : {A : Set} {w x y z : A} (α : Path y z) (β : Path x y) (δ : Path w x) → ((α ∙⇛ β) ∙⇛ δ) ≣⇛ (α ∙⇛ (β ∙⇛ δ)) assoc⇛ (y ⇛ z) (x ⇛ .y) (w ⇛ .x) = refl⇛ l⇚ : {A : Set} {x y : A} (α : Path x y) → ((α ⇚) ∙⇛ α) ≣⇛ id⇛ x l⇚ (x ⇛ y) = refl⇛ r⇚ : {A : Set} {x y : A} (α : Path x y) → (α ∙⇛ (α ⇚)) ≣⇛ id⇛ y r⇚ (x ⇛ y) = refl⇛ sym⇛ : {A : Set} {x y : A} {α β : Path x y} → α ≣⇛ β → β ≣⇛ α sym⇛ refl⇛ = refl⇛ trans⇛ : {A : Set} {x y : A} {α β δ : Path x y} → α ≣⇛ β → β ≣⇛ δ → α ≣⇛ δ trans⇛ refl⇛ refl⇛ = refl⇛ equiv≣⇛ : {A : Set} {x y : A} → IsEquivalence {_} {_} {Path x y} (_≣⇛_) equiv≣⇛ = record { refl = refl⇛; sym = sym⇛; trans = trans⇛ } resp≣⇛ : {A : Set} {x y z : A} {f h : Path y z} {g i : Path x y} → f ≣⇛ h → g ≣⇛ i → (f ∙⇛ g) ≣⇛ (h ∙⇛ i) resp≣⇛ refl⇛ refl⇛ = refl⇛ ------------------------------------------------------------------------------ -- pi types with exactly one level of reciprocals data B0 : Set where ONE : B0 PLUS0 : B0 → B0 → B0 TIMES0 : B0 → B0 → B0 -- interpretation of B0 as discrete groupoids record 0-type : Set₁ where constructor G₀ field ∣_∣₀ : Set open 0-type public plus : 0-type → 0-type → 0-type plus t₁ t₂ = G₀ (∣ t₁ ∣₀ ⊎ ∣ t₂ ∣₀) times : 0-type → 0-type → 0-type times t₁ t₂ = G₀ (∣ t₁ ∣₀ × ∣ t₂ ∣₀) ⟦_⟧₀ : B0 → 0-type ⟦ ONE ⟧₀ = G₀ ⊤ ⟦ PLUS0 b₁ b₂ ⟧₀ = plus ⟦ b₁ ⟧₀ ⟦ b₂ ⟧₀ ⟦ TIMES0 b₁ b₂ ⟧₀ = times ⟦ b₁ ⟧₀ ⟦ b₂ ⟧₀ ı₀ : B0 → Set ı₀ b = ∣ ⟦ b ⟧₀ ∣₀ point : (b : B0) → ı₀ b point ONE = tt point (PLUS0 b _) = inj₁ (point b) point (TIMES0 b₀ b₁) = point b₀ , point b₁ -- isos data _⟷_ : B0 → B0 → Set where -- + swap₊ : { b₁ b₂ : B0 } → PLUS0 b₁ b₂ ⟷ PLUS0 b₂ b₁ assocl₊ : { b₁ b₂ b₃ : B0 } → PLUS0 b₁ (PLUS0 b₂ b₃) ⟷ PLUS0 (PLUS0 b₁ b₂) b₃ assocr₊ : { b₁ b₂ b₃ : B0 } → PLUS0 (PLUS0 b₁ b₂) b₃ ⟷ PLUS0 b₁ (PLUS0 b₂ b₃) -- * unite⋆ : { b : B0 } → TIMES0 ONE b ⟷ b uniti⋆ : { b : B0 } → b ⟷ TIMES0 ONE b swap⋆ : { b₁ b₂ : B0 } → TIMES0 b₁ b₂ ⟷ TIMES0 b₂ b₁ assocl⋆ : { b₁ b₂ b₃ : B0 } → TIMES0 b₁ (TIMES0 b₂ b₃) ⟷ TIMES0 (TIMES0 b₁ b₂) b₃ assocr⋆ : { b₁ b₂ b₃ : B0 } → TIMES0 (TIMES0 b₁ b₂) b₃ ⟷ TIMES0 b₁ (TIMES0 b₂ b₃) -- * distributes over + dist : { b₁ b₂ b₃ : B0 } → TIMES0 (PLUS0 b₁ b₂) b₃ ⟷ PLUS0 (TIMES0 b₁ b₃) (TIMES0 b₂ b₃) factor : { b₁ b₂ b₃ : B0 } → PLUS0 (TIMES0 b₁ b₃) (TIMES0 b₂ b₃) ⟷ TIMES0 (PLUS0 b₁ b₂) b₃ -- congruence id⟷ : { b : B0 } → b ⟷ b sym : { b₁ b₂ : B0 } → (b₁ ⟷ b₂) → (b₂ ⟷ b₁) _∘_ : { b₁ b₂ b₃ : B0 } → (b₁ ⟷ b₂) → (b₂ ⟷ b₃) → (b₁ ⟷ b₃) _⊕_ : { b₁ b₂ b₃ b₄ : B0 } → (b₁ ⟷ b₃) → (b₂ ⟷ b₄) → (PLUS0 b₁ b₂ ⟷ PLUS0 b₃ b₄) _⊗_ : { b₁ b₂ b₃ b₄ : B0 } → (b₁ ⟷ b₃) → (b₂ ⟷ b₄) → (TIMES0 b₁ b₂ ⟷ TIMES0 b₃ b₄) {-- --} -- interpret isos as paths eval0 : {b₁ b₂ : B0} → (c : b₁ ⟷ b₂) → (x : ı₀ b₁) → ı₀ b₂ eval0 _ = {!!} --comb0 : {b₁ b₂ : B0} → (c : b₁ ⟷ b₂) → (x : ı₀ b₁) → Path x (eval0 c x) --comb0 _ = ? ------------------------------------------------------------------------------ -- interpretation of B1 types as 1-groupoids data B1 : Set where LIFT0 : B0 → B1 PLUS1 : B1 → B1 → B1 TIMES1 : B1 → B1 → B1 RECIP1 : B0 → B1 open 1Groupoid allPaths : Set → 1Groupoid allPaths a = record { set = a ; _↝_ = Path ; _≈_ = _≣⇛_ ; id = λ {x} → id⇛ x ; _∘_ = _∙⇛_ ; _⁻¹ = _⇚ ; lneutr = lid⇛ ; rneutr = rid⇛ ; assoc = assoc⇛ ; linv = l⇚ ; rinv = r⇚ ; equiv = equiv≣⇛ ; ∘-resp-≈ = resp≣⇛} ⟦_⟧₁ : B1 → 1Groupoid ⟦ LIFT0 b0 ⟧₁ = discrete (ı₀ b0) ⟦ PLUS1 b₁ b₂ ⟧₁ = ⟦ b₁ ⟧₁ ⊎G ⟦ b₂ ⟧₁ ⟦ TIMES1 b₁ b₂ ⟧₁ = ⟦ b₁ ⟧₁ ×G ⟦ b₂ ⟧₁ ⟦ RECIP1 b0 ⟧₁ = allPaths (ı₀ b0) ı₁ : B1 → Set ı₁ b = set ⟦ b ⟧₁ test10 = ⟦ LIFT0 ONE ⟧₁ test11 = ⟦ LIFT0 (PLUS0 ONE ONE) ⟧₁ test12 = ⟦ RECIP1 (PLUS0 ONE ONE) ⟧₁ -- interpret isos as functors data _⟷₁_ : B1 → B1 → Set where -- + swap₊ : { b₁ b₂ : B1 } → PLUS1 b₁ b₂ ⟷₁ PLUS1 b₂ b₁ {-- assocl₊ : { b₁ b₂ b₃ : B1 } → PLUS b₁ (PLUS b₂ b₃) ⟷₁ PLUS (PLUS b₁ b₂) b₃ assocr₊ : { b₁ b₂ b₃ : B1 } → PLUS (PLUS b₁ b₂) b₃ ⟷₁ PLUS b₁ (PLUS b₂ b₃) -- * --} unite⋆ : { b : B1 } → TIMES1 (LIFT0 ONE) b ⟷₁ b uniti⋆ : { b : B1 } → b ⟷₁ TIMES1 (LIFT0 ONE) b {-- swap⋆ : { b₁ b₂ : B } → TIMES b₁ b₂ ⟷₁ TIMES b₂ b₁ assocl⋆ : { b₁ b₂ b₃ : B } → TIMES b₁ (TIMES b₂ b₃) ⟷₁ TIMES (TIMES b₁ b₂) b₃ assocr⋆ : { b₁ b₂ b₃ : B } → TIMES (TIMES b₁ b₂) b₃ ⟷₁ TIMES b₁ (TIMES b₂ b₃) -- * distributes over + dist : { b₁ b₂ b₃ : B } → TIMES (PLUS b₁ b₂) b₃ ⟷₁ PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) factor : { b₁ b₂ b₃ : B } → PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) ⟷₁ TIMES (PLUS b₁ b₂) b₃ -- congruence id⟷₁ : { b : B } → b ⟷₁ b sym : { b₁ b₂ : B } → (b₁ ⟷₁ b₂) → (b₂ ⟷₁ b₁) _∘_ : { b₁ b₂ b₃ : B } → (b₁ ⟷₁ b₂) → (b₂ ⟷₁ b₃) → (b₁ ⟷₁ b₃) _⊕_ : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟷₁ b₃) → (b₂ ⟷₁ b₄) → (PLUS b₁ b₂ ⟷₁ PLUS b₃ b₄) _⊗_ : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟷₁ b₃) → (b₂ ⟷₁ b₄) → (TIMES b₁ b₂ ⟷₁ TIMES b₃ b₄) η⋆ : (b : B0) → LIFT0 ONE ⟷₁ TIMES1 (LIFT0 b) (RECIP1 b) ε⋆ : (b : B0) → TIMES1 (LIFT0 b) (RECIP1 b) ⟷₁ LIFT0 ONE --} record 1-functor (A B : 1Groupoid) : Set where constructor 1F private module A = 1Groupoid A private module B = 1Groupoid B field F₀ : set A → set B F₁ : ∀ {X Y : set A} → A [ X , Y ] → B [ F₀ X , F₀ Y ] -- identity : ∀ {X} → B._≈_ (F₁ (A.id {X})) B.id -- F-resp-≈ : ∀ {X Y} {F G : A [ X , Y ]} → A._≈_ F G → B._≈_ (F₁ F) (F₁ G) open 1-functor public ipath : (b : B1) → ı₁ b → ı₁ b → Set ipath b x y = Path {ı₁ b} x y swap⊎ : {A B : Set} → A ⊎ B → B ⊎ A swap⊎ (inj₁ a) = inj₂ a swap⊎ (inj₂ b) = inj₁ b intro1⋆ : {b : B1} {x y : ı₁ b} → ipath b x y → ipath (TIMES1 (LIFT0 ONE) b) (tt , x) (tt , y) intro1⋆ (y ⇛ z) = (tt , y) ⇛ (tt , z) objη⋆ : (b : B0) → ı₁ (LIFT0 ONE) → ı₁ (TIMES1 (LIFT0 b) (RECIP1 b)) objη⋆ b tt = point b , point b objε⋆ : (b : B0) → ı₁ (TIMES1 (LIFT0 b) (RECIP1 b)) → ı₁ (LIFT0 ONE) objε⋆ b (x , y) = tt elim1∣₁ : (b : B1) → ı₁ (TIMES1 (LIFT0 ONE) b) → ı₁ b elim1∣₁ b (tt , x) = x intro1∣₁ : (b : B1) → ı₁ b → ı₁ (TIMES1 (LIFT0 ONE) b) intro1∣₁ b x = (tt , x) swapF : {b₁ b₂ : B1} → let G = ⟦ b₁ ⟧₁ ⊎G ⟦ b₂ ⟧₁ G' = ⟦ b₂ ⟧₁ ⊎G ⟦ b₁ ⟧₁ in {X Y : set G} → G [ X , Y ] → G' [ swap⊎ X , swap⊎ Y ] swapF {X = inj₁ _} {inj₁ _} f = f swapF {X = inj₁ _} {inj₂ _} () swapF {X = inj₂ _} {inj₁ _} () swapF {X = inj₂ _} {inj₂ _} f = f {- eta : (b : B0) → List (ipath (LIFT0 ONE)) → List (ipath (TIMES1 (LIFT0 b) (RECIP1 b))) -- note how the input list is not used at all! eta b _ = prod (λ a a' → _↝_ (a , tt) (a' , tt)) (elems0 b) (elems0 b) eps : (b : B0) → ipath (TIMES1 (LIFT0 b) (RECIP1 b)) → ipath (LIFT0 ONE) eps b0 (a ⇛ b) = tt ⇛ tt -} Funite⋆ : {b₁ : B1} → ∀ {X Y : set (discrete (ı₀ ONE) ×G ⟦ b₁ ⟧₁)} → DPath (proj₁ X) (proj₁ Y) × (_↝_ ⟦ b₁ ⟧₁) (proj₂ X) (proj₂ Y) → _↝_ ⟦ b₁ ⟧₁ (proj₂ X) (proj₂ Y) Funite⋆ {b₁} {tt , _} {tt , _} (reflD , y) = y Funiti⋆ : {b₁ : B1} → ∀ {X Y : set (discrete (ı₀ ONE) ×G ⟦ b₁ ⟧₁)} → _↝_ ⟦ b₁ ⟧₁ (proj₂ X) (proj₂ Y) → DPath (proj₁ X) (proj₁ Y) × (_↝_ ⟦ b₁ ⟧₁) (proj₂ X) (proj₂ Y) Funiti⋆ y = reflD , y mutual eval : {b₁ b₂ : B1} → (b₁ ⟷₁ b₂) → 1-functor ⟦ b₁ ⟧₁ ⟦ b₂ ⟧₁ eval (swap₊ {b₁} {b₂}) = 1F swap⊎ (λ {X Y} → swapF {b₁} {b₂} {X} {Y}) eval (unite⋆ {b}) = 1F (elim1∣₁ b) (Funite⋆ {b}) eval (uniti⋆ {b}) = 1F (intro1∣₁ b) (Funiti⋆ {b}) -- eval (η⋆ b) = F₁ (objη⋆ b) (eta b ) -- eval (ε⋆ b) = F₁ (objε⋆ b) (map (eps b)) evalB : {b₁ b₂ : B1} → (b₁ ⟷₁ b₂) → 1-functor ⟦ b₂ ⟧₁ ⟦ b₁ ⟧₁ evalB (swap₊ {b₁} {b₂}) = 1F swap⊎ ((λ {X Y} → swapF {b₂} {b₁} {X} {Y})) evalB (unite⋆ {b}) = 1F (intro1∣₁ b) (Funiti⋆ {b}) evalB (uniti⋆ {b}) = 1F (elim1∣₁ b) (Funite⋆ {b}) -- evalB (η⋆ b) = F₁ (objε⋆ b) (map (eps b)) -- evalB (ε⋆ b) = F₁ (objη⋆ b) (eta b) {- eval assocl₊ = ? -- : { b₁ b₂ b₃ : B } → PLUS b₁ (PLUS b₂ b₃) ⟷₁ PLUS (PLUS b₁ b₂) b₃ eval assocr₊ = ? -- : { b₁ b₂ b₃ : B } → PLUS (PLUS b₁ b₂) b₃ ⟷₁ PLUS b₁ (PLUS b₂ b₃) eval uniti⋆ = ? -- : { b : B } → b ⟷₁ TIMES ONE b eval swap⋆ = ? -- : { b₁ b₂ : B } → TIMES b₁ b₂ ⟷₁ TIMES b₂ b₁ eval assocl⋆ = ? -- : { b₁ b₂ b₃ : B } → TIMES b₁ (TIMES b₂ b₃) ⟷₁ TIMES (TIMES b₁ b₂) b₃ eval assocr⋆ = ? -- : { b₁ b₂ b₃ : B } → TIMES (TIMES b₁ b₂) b₃ ⟷₁ TIMES b₁ (TIMES b₂ b₃) eval dist = ? -- : { b₁ b₂ b₃ : B } → TIMES (PLUS b₁ b₂) b₃ ⟷₁ PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) eval factor = ? -- : { b₁ b₂ b₃ : B } → PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) ⟷₁ TIMES (PLUS b₁ b₂) b₃ eval id⟷₁ = ? -- : { b : B } → b ⟷₁ b eval (sym c) = ? -- : { b₁ b₂ : B } → (b₁ ⟷₁ b₂) → (b₂ ⟷₁ b₁) eval (c₁ ∘ c₂) = ? -- : { b₁ b₂ b₃ : B } → (b₁ ⟷₁ b₂) → (b₂ ⟷₁ b₃) → (b₁ ⟷₁ b₃) eval (c₁ ⊕ c₂) = ? -- : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟷₁ b₃) → (b₂ ⟷₁ b₄) → (PLUS b₁ b₂ ⟷₁ PLUS b₃ b₄) eval (c₁ ⊗ c₂) = ? -- : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟷₁ b₃) → (b₂ ⟷₁ b₄) → (TIMES b₁ b₂ ⟷₁ TIMES b₃ b₄) --------------------------------------------------------------------------- --}
{ "alphanum_fraction": 0.4762188462, "avg_line_length": 33.0196721311, "ext": "agda", "hexsha": "059c2bc4e7654b4e491f812490b96dce2b712ec6", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "F1b.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "F1b.agda", "max_line_length": 168, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "F1b.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 5461, "size": 10071 }
module UnicodeEllipsis where f : {A B : Set} → (A → B) → A → B f g a with g a … | x = x
{ "alphanum_fraction": 0.5222222222, "avg_line_length": 12.8571428571, "ext": "agda", "hexsha": "c1dd6cface4204044348625770ee186e1885cc3f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/UnicodeEllipsis.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/UnicodeEllipsis.agda", "max_line_length": 33, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/UnicodeEllipsis.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 39, "size": 90 }
module LineEndings.Unix where postulate ThisWorks : Set
{ "alphanum_fraction": 0.8245614035, "avg_line_length": 14.25, "ext": "agda", "hexsha": "7c3d41c54287b85768e669c14d4a122f3128fa03", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/LineEndings/Unix.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/LineEndings/Unix.agda", "max_line_length": 29, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/LineEndings/Unix.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 15, "size": 57 }
{-# OPTIONS --without-K --safe #-} open import Level open import Categories.Category.Core using (Category) open import Categories.Category open import Categories.Monad module Categories.Adjoint.Construction.Adjunctions {o ℓ e} {C : Category o ℓ e} (M : Monad C) where open Category C open import Categories.Adjoint open import Categories.Functor open import Categories.Morphism open import Categories.Functor.Properties open import Categories.NaturalTransformation.Core open import Categories.NaturalTransformation.NaturalIsomorphism -- using (_≃_; unitorʳ; unitorˡ) open import Categories.Morphism.Reasoning as MR open import Categories.Tactic.Category -- three things: -- 1. the category of adjunctions splitting a given Monad -- 2. the proof that EM(M) is the terminal object here -- 3. the proof that KL(M) is the initial object here record SplitObj : Set (suc o ⊔ suc ℓ ⊔ suc e) where field D : Category o ℓ e F : Functor C D G : Functor D C adj : F ⊣ G eqM : G ∘F F ≃ Monad.F M record Split⇒ (X Y : SplitObj) : Set (suc o ⊔ suc ℓ ⊔ suc e) where constructor Splitc⇒ private module X = SplitObj X module Y = SplitObj Y field H : Functor X.D Y.D HF≃F' : H ∘F X.F ≃ Y.F G'H≃G : Y.G ∘F H ≃ X.G Split : Monad C → Category _ _ _ Split M = record { Obj = SplitObj ; _⇒_ = Split⇒ ; _≈_ = λ U V → Split⇒.H U ≃ Split⇒.H V ; id = split-id ; _∘_ = comp ; assoc = λ { {f = f} {g = g} {h = h} → associator (Split⇒.H f) (Split⇒.H g) (Split⇒.H h) } ; sym-assoc = λ { {f = f} {g = g} {h = h} → sym-associator (Split⇒.H f) (Split⇒.H g) (Split⇒.H h) } ; identityˡ = unitorˡ ; identityʳ = unitorʳ ; identity² = unitor² ; equiv = record { refl = refl ; sym = sym ; trans = trans } ; ∘-resp-≈ = _ⓘₕ_ } where open NaturalTransformation split-id : {A : SplitObj} → Split⇒ A A split-id = record { H = Categories.Functor.id ; HF≃F' = unitorˡ ; G'H≃G = unitorʳ } comp : {A B X : SplitObj} → Split⇒ B X → Split⇒ A B → Split⇒ A X comp {A = A} {B = B} {X = X} (Splitc⇒ Hᵤ HF≃F'ᵤ G'H≃Gᵤ) (Splitc⇒ Hᵥ HF≃F'ᵥ G'H≃Gᵥ) = record { H = Hᵤ ∘F Hᵥ ; HF≃F' = HF≃F'ᵤ ⓘᵥ (Hᵤ ⓘˡ HF≃F'ᵥ) ⓘᵥ associator (SplitObj.F A) Hᵥ Hᵤ ; G'H≃G = G'H≃Gᵥ ⓘᵥ (G'H≃Gᵤ ⓘʳ Hᵥ) ⓘᵥ sym-associator Hᵥ Hᵤ (SplitObj.G X) } open import Categories.Object.Terminal (Split M) open import Categories.Object.Initial (Split M) open import Categories.Category.Construction.EilenbergMoore open import Categories.Category.Construction.Kleisli EM-object : SplitObj EM-object = record { D = {! EilenbergMoore M !} ; F = {! !} ; G = {! !} ; adj = {! !} ; eqM = {! !} } EM-terminal : IsTerminal EM-object EM-terminal = {! !}
{ "alphanum_fraction": 0.6146657081, "avg_line_length": 31.2584269663, "ext": "agda", "hexsha": "1e1537136e6cb01decf8eafdd9e180ce0a5ed8ee", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cfa6aefd3069d4db995191b458c886edcfba8294", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "tetrapharmakon/agda-categories", "max_forks_repo_path": "src/Categories/Adjoint/Construction/Adjunctions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cfa6aefd3069d4db995191b458c886edcfba8294", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "tetrapharmakon/agda-categories", "max_issues_repo_path": "src/Categories/Adjoint/Construction/Adjunctions.agda", "max_line_length": 101, "max_stars_count": null, "max_stars_repo_head_hexsha": "cfa6aefd3069d4db995191b458c886edcfba8294", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "tetrapharmakon/agda-categories", "max_stars_repo_path": "src/Categories/Adjoint/Construction/Adjunctions.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1053, "size": 2782 }
module Dave.Structures.Definitions where open import Dave.Equality public op₁ : Set → Set op₁ A = A → A op₂ : Set → Set op₂ A = A → A → A associative : {A : Set} → op₂ A → Set associative _·_ = ∀ m n p → (m · n) · p ≡ m · (n · p) commutative : {A : Set} → op₂ A → Set commutative _·_ = ∀ m n → m · n ≡ n · m left-identity : {A : Set} → op₂ A → (e : A) → Set left-identity _·_ e = ∀ m → e · m ≡ m right-identity : {A : Set} → op₂ A → (e : A) → Set right-identity _·_ e = ∀ m → m · e ≡ m
{ "alphanum_fraction": 0.4936014625, "avg_line_length": 27.35, "ext": "agda", "hexsha": "af9e804f95385034508198bd150ed74f0496bccc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DavidStahl97/formal-proofs", "max_forks_repo_path": "Dave/Structures/Definitions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DavidStahl97/formal-proofs", "max_issues_repo_path": "Dave/Structures/Definitions.agda", "max_line_length": 57, "max_stars_count": null, "max_stars_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DavidStahl97/formal-proofs", "max_stars_repo_path": "Dave/Structures/Definitions.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 217, "size": 547 }
open import MLib.Algebra.PropertyCode open import MLib.Algebra.PropertyCode.Structures using (bimonoidCode; BimonoidK; +; *; 0#; 1#) module MLib.Algebra.Operations {c ℓ} (struct : Struct bimonoidCode c ℓ) where open import MLib.Prelude open import Data.Fin.Permutation as Perm using (Permutation; Permutation′; _⟨$⟩ʳ_; _⟨$⟩ˡ_) import Data.Fin.Permutation.Components as PC open Struct struct open EqReasoning setoid -------------------------------------------------------------------------------- -- Nicer names for operations -------------------------------------------------------------------------------- infixl 5 _+′_ infixl 6 _*′_ _+′_ = ⟦ + ⟧ _*′_ = ⟦ * ⟧ 0′ = ⟦ 0# ⟧ 1′ = ⟦ 1# ⟧ -------------------------------------------------------------------------------- -- Table stuff -------------------------------------------------------------------------------- module _ {n} where open Setoid (Table.setoid setoid n) public using () renaming (_≈_ to _≋_) _≋′_ : ∀ {m n} → Table Carrier m → Table Carrier n → Set ℓ _≋′_ = Table.Pointwise′ _≈_ open Table using (head; tail; rearrange; fromList; toList; _≗_; select) -------------------------------------------------------------------------------- -- Operations -------------------------------------------------------------------------------- sumₜ : ∀ {n} → Table Carrier n → Carrier sumₜ = Table.foldr _+′_ 0′ sumₗ : List Carrier → Carrier sumₗ = List.foldr _+′_ 0′ -- An alternative mathematical-style syntax for sumₜ infixl 10 sumₜ-syntax sumₜ-syntax : ∀ n → (Fin n → Carrier) → Carrier sumₜ-syntax _ = sumₜ ∘ Table.tabulate syntax sumₜ-syntax n (λ i → x) = ∑[ i < n ] x -------------------------------------------------------------------------------- -- Properties -------------------------------------------------------------------------------- -- When summing over a function from a finite set, we can pull out any value and move it to the front. sumₜ-punchIn : ⦃ props : Has (associative on + ∷ commutative on + ∷ []) ⦄ → ∀ {n} t (i : Fin (suc n)) → sumₜ t ≈ lookup t i +′ sumₜ (Table.rearrange (Fin.punchIn i) t) sumₜ-punchIn f zero = refl sumₜ-punchIn {zero} t (suc ()) sumₜ-punchIn ⦃ props ⦄ {suc n} t (suc i) = let x = head t y = lookup t (suc i) z = sumₜ (rearrange (Fin.punchIn i) (tail t)) in begin x +′ sumₜ (tail t) ≈⟨ cong + refl (sumₜ-punchIn (tail t) i) ⟩ x +′ (y +′ z) ≈⟨ sym (from props (associative on +) _ _ _) ⟩ (x +′ y) +′ z ≈⟨ cong + (from props (commutative on +) _ _) refl ⟩ (y +′ x) +′ z ≈⟨ from props (associative on +) _ _ _ ⟩ y +′ (x +′ z) ∎ -- '_≈_' is a congruence over 'sumTable n'. sumₜ-cong : ∀ {n} {t t′ : Table Carrier n} → t ≋ t′ → sumₜ t ≈ sumₜ t′ sumₜ-cong = Table.foldr-cong setoid (cong +) -- A version of 'sumₜ-cong' with heterogeneous table sizes sumₜ-cong′ : ∀ {m n} {t : Table Carrier m} {t′ : Table Carrier n} → t ≋′ t′ → sumₜ t ≈ sumₜ t′ sumₜ-cong′ {m} (≡.refl , q) = sumₜ-cong λ i → q i i ≅.refl -- '_≡_' is a congruence over 'sum n'. sumₜ-cong≡ : ∀ {n} {t t′ : Table Carrier n} → t ≗ t′ → sumₜ t ≡ sumₜ t′ sumₜ-cong≡ = Table.foldr-cong (≡.setoid Carrier) (≡.cong₂ _+′_) -- The sum over the constantly zero function is zero. sumₜ-zero : ⦃ props : Has₁ (0# is leftIdentity for +) ⦄ → ∀ n → sumₜ (Table.replicate {n} 0′) ≈ 0′ sumₜ-zero zero = refl sumₜ-zero ⦃ props ⦄ (suc n) = begin 0′ +′ sumₜ (Table.replicate {n} 0′) ≈⟨ from props (0# is leftIdentity for +) _ ⟩ sumₜ (Table.replicate {n} 0′) ≈⟨ sumₜ-zero n ⟩ 0′ ∎ -- The '∑' operator distributes over addition. ∑-+′-hom : ⦃ props : Has (0# is leftIdentity for + ∷ associative on + ∷ commutative on + ∷ []) ⦄ → ∀ n (f g : Fin n → Carrier) → ∑[ i < n ] f i +′ ∑[ i < n ] g i ≈ ∑[ i < n ] (f i +′ g i) ∑-+′-hom ⦃ props ⦄ zero f g = from props (0# is leftIdentity for +) _ ∑-+′-hom ⦃ props ⦄ (suc n) f g = let fz = f zero gz = g zero ∑f = ∑[ i < n ] f (suc i) ∑g = ∑[ i < n ] g (suc i) ∑fg = ∑[ i < n ] (f (suc i) +′ g (suc i)) in begin (fz +′ ∑f) +′ (gz +′ ∑g) ≈⟨ from props (associative on +) _ _ _ ⟩ fz +′ (∑f +′ (gz +′ ∑g)) ≈⟨ cong + refl (sym (from props (associative on +) _ _ _)) ⟩ fz +′ ((∑f +′ gz) +′ ∑g) ≈⟨ cong + refl (cong + (from props (commutative on +) _ _) refl) ⟩ fz +′ ((gz +′ ∑f) +′ ∑g) ≈⟨ cong + refl (from props (associative on +) _ _ _) ⟩ fz +′ (gz +′ (∑f +′ ∑g)) ≈⟨ cong + refl (cong + refl (∑-+′-hom n _ _)) ⟩ fz +′ (gz +′ ∑fg) ≈⟨ sym (from props (associative on +) _ _ _) ⟩ fz +′ gz +′ ∑fg ∎ -- The '∑' operator commutes with itself. ∑-comm : ⦃ props : Has (0# is leftIdentity for + ∷ associative on + ∷ commutative on + ∷ []) ⦄ → ∀ n m (f : Fin n → Fin m → Carrier) → ∑[ i < n ] ∑[ j < m ] f i j ≈ ∑[ j < m ] ∑[ i < n ] f i j ∑-comm ⦃ props ⦄ zero m f = sym (sumₜ-zero ⦃ weaken props ⦄ m) ∑-comm (suc n) m f = begin ∑[ j < m ] f zero j +′ ∑[ i < n ] ∑[ j < m ] f (suc i) j ≈⟨ cong + refl (∑-comm n m _) ⟩ ∑[ j < m ] f zero j +′ ∑[ j < m ] ∑[ i < n ] f (suc i) j ≈⟨ ∑-+′-hom m _ _ ⟩ ∑[ j < m ] (f zero j +′ ∑[ i < n ] f (suc i) j) ∎ module _ ⦃ props : Has (associative on + ∷ commutative on + ∷ []) ⦄ where open Fin using (punchIn) -- Any permutation of a table has the same sum as the original. sumₜ-permute : ∀ {n} t (π : Permutation′ n) → sumₜ t ≈ sumₜ (rearrange (π ⟨$⟩ʳ_) t) sumₜ-permute {zero} t π = refl sumₜ-permute {suc n} t π = let f = lookup t in begin sumₜ t ≡⟨⟩ f 0i +′ sumₜ (rearrange (punchIn 0i) t) ≈⟨ cong + refl (sumₜ-permute _ (Perm.remove (π ⟨$⟩ˡ 0i) π)) ⟩ f 0i +′ sumₜ (rearrange (punchIn 0i ∘ (Perm.remove (π ⟨$⟩ˡ 0i) π ⟨$⟩ʳ_)) t) ≡⟨ ≡.cong₂ _+′_ ≡.refl (sumₜ-cong≡ (≡.cong f ∘ ≡.sym ∘ Perm.punchIn-permute′ π 0i)) ⟩ f 0i +′ sumₜ (rearrange ((π ⟨$⟩ʳ_) ∘ punchIn (π ⟨$⟩ˡ 0i)) t) ≡⟨ ≡.cong₂ _+′_ (≡.cong f (≡.sym (Perm.inverseʳ π))) ≡.refl ⟩ f _ +′ sumₜ (rearrange ((π ⟨$⟩ʳ_) ∘ punchIn (π ⟨$⟩ˡ 0i)) t) ≈⟨ sym (sumₜ-punchIn (rearrange (π ⟨$⟩ʳ_) t) (π ⟨$⟩ˡ 0i)) ⟩ sumₜ (rearrange (π ⟨$⟩ʳ_) t) ∎ where 0i = zero ππ0 = π ⟨$⟩ʳ (π ⟨$⟩ˡ 0i) -- A version of 'sumₜ-permute' allowing heterogeneous sum lengths. sumₜ-permute′ : ∀ {m n} t (π : Permutation m n) → sumₜ t ≈ sumₜ (rearrange (π ⟨$⟩ʳ_) t) sumₜ-permute′ t π with Perm.↔⇒≡ π sumₜ-permute′ t π | ≡.refl = sumₜ-permute t π ∑-permute : ∀ {n} (f : Fin n → Carrier) (π : Permutation′ n) → ∑[ i < n ] f i ≈ ∑[ i < n ] f (π ⟨$⟩ʳ i) ∑-permute = sumₜ-permute ∘ tabulate ∑-permute′ : ∀ {m n} (f : Fin n → Carrier) (π : Permutation m n) → ∑[ i < n ] f i ≈ ∑[ i < m ] f (π ⟨$⟩ʳ i) ∑-permute′ = sumₜ-permute′ ∘ tabulate private ⌊i≟i⌋ : ∀ {n} (i : Fin n) → (i Fin.≟ i) ≡ yes ≡.refl ⌊i≟i⌋ i with i Fin.≟ i ⌊i≟i⌋ i | yes ≡.refl = ≡.refl ⌊i≟i⌋ i | no ¬p = ⊥-elim (¬p ≡.refl) -- If the function takes the same value at 'i' and 'j', then swapping 'i' and -- 'j' then selecting 'j' is the same as selecting 'i'. select-transpose : ∀ {n} t (i j : Fin n) → lookup t i ≈ lookup t j → ∀ k → (lookup (select 0′ j t) ∘ PC.transpose i j) k ≈ lookup (select 0′ i t) k select-transpose _ i j e k with k Fin.≟ i select-transpose _ i j e k | yes p rewrite ≡.≡-≟-identity Fin._≟_ {j} ≡.refl = sym e select-transpose _ i j e k | no ¬p with k Fin.≟ j select-transpose _ i j e k | no ¬p | yes q rewrite proj₂ (≡.≢-≟-identity Fin._≟_ (¬p ∘ ≡.trans q ∘ ≡.sym)) = refl select-transpose _ i j e k | no ¬p | no ¬q rewrite proj₂ (≡.≢-≟-identity Fin._≟_ ¬q) = refl -- Summing over a pulse gives you the single value picked out by the pulse. select-sum : ⦃ props : Has (0# is leftIdentity for + ∷ 0# is rightIdentity for + ∷ associative on + ∷ commutative on + ∷ []) ⦄ → ∀ {n i} (t : Table Carrier n) → sumₜ (Table.select 0′ i t) ≈ lookup t i select-sum {zero} {()} t select-sum ⦃ props ⦄ {suc n} {i} t = let f = lookup t open Table using (select; rearrange; replicate) open PC using (transpose) in begin sumₜ (select 0′ i t) ≈⟨ sumₜ-permute ⦃ weaken props ⦄ (select 0′ i t) (Perm.transpose zero i) ⟩ sumₜ (rearrange (transpose zero i) (select 0′ i t)) ≡⟨ sumₜ-cong≡ (Table.select-const 0′ i t ∘ transpose zero i) ⟩ sumₜ (rearrange (transpose zero i) (select 0′ i (replicate (f i)))) ≈⟨ sumₜ-cong (select-transpose (replicate (f i)) zero i refl) ⟩ sumₜ (select 0′ zero (replicate {suc n} (f i))) ≡⟨⟩ f i +′ sumₜ (replicate {n} 0′) ≈⟨ cong + refl (sumₜ-zero ⦃ weaken props ⦄ n) ⟩ f i +′ 0′ ≈⟨ from props (0# is rightIdentity for +) _ ⟩ f i ∎ sumₜ-fromList : ∀ xs → sumₜ (Table.fromList xs) ≡ sumₗ xs sumₜ-fromList [] = ≡.refl sumₜ-fromList (x ∷ xs) = ≡.cong₂ _+′_ ≡.refl (sumₜ-fromList xs) sumₜ-toList : ∀ {n} (t : Table Carrier n) → sumₜ t ≡ sumₗ (Table.toList t) sumₜ-toList {zero} _ = ≡.refl sumₜ-toList {suc n} _ = ≡.cong₂ _+′_ ≡.refl (sumₜ-toList {n} _) sumDistribˡ : ⦃ props : Has (0# is rightZero for * ∷ * ⟨ distributesOverˡ ⟩ₚ + ∷ []) ⦄ → ∀ {n} x (t : Table Carrier n) → x *′ sumₜ t ≈ ∑[ i < n ] (x *′ lookup t i) sumDistribˡ ⦃ props ⦄ {Nat.zero} x f = from props (0# is rightZero for *) x sumDistribˡ ⦃ props ⦄ {Nat.suc n} x t = begin x *′ (head t +′ sumₜ (tail t)) ≈⟨ from props (* ⟨ distributesOverˡ ⟩ₚ +) _ _ _ ⟩ (x *′ head t) +′ (x *′ sumₜ (tail t)) ≈⟨ cong + refl (sumDistribˡ x (tail t)) ⟩ (x *′ head t) +′ sumₜ (tabulate (λ i → x *′ lookup (tail t) i)) ∎ sumDistribʳ : ⦃ props : Has (0# is leftZero for * ∷ * ⟨ distributesOverʳ ⟩ₚ + ∷ []) ⦄ → ∀ {n} x (t : Table Carrier n) → sumₜ t *′ x ≈ ∑[ i < n ] (lookup t i *′ x) sumDistribʳ ⦃ props ⦄ {Nat.zero} x t = from props (0# is leftZero for *) x sumDistribʳ ⦃ props ⦄ {Nat.suc n} x t = begin (head t +′ sumₜ (tail t)) *′ x ≈⟨ from props (* ⟨ distributesOverʳ ⟩ₚ +) _ _ _ ⟩ (head t *′ x) +′ (sumₜ (tail t) *′ x) ≈⟨ cong + refl (sumDistribʳ x (tail t)) ⟩ (head t *′ x) +′ sumₜ (tabulate (λ i → lookup (tail t) i *′ x)) ∎
{ "alphanum_fraction": 0.4880242355, "avg_line_length": 46.1266375546, "ext": "agda", "hexsha": "24aeb3816721463db8885ae59673755495802eb6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bch29/agda-matrices", "max_forks_repo_path": "src/MLib/Algebra/Operations.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bch29/agda-matrices", "max_issues_repo_path": "src/MLib/Algebra/Operations.agda", "max_line_length": 168, "max_stars_count": null, "max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bch29/agda-matrices", "max_stars_repo_path": "src/MLib/Algebra/Operations.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4264, "size": 10563 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Indexed binary relations ------------------------------------------------------------------------ -- The contents of this module should be accessed via -- `Relation.Binary.Indexed.Heterogeneous`. {-# OPTIONS --without-K --safe #-} open import Relation.Binary.Indexed.Heterogeneous.Core module Relation.Binary.Indexed.Heterogeneous.Structures {i a ℓ} {I : Set i} (A : I → Set a) (_≈_ : IRel A ℓ) where open import Function.Base open import Level using (suc; _⊔_) open import Relation.Binary using (_⇒_) open import Relation.Binary.PropositionalEquality.Core as P using (_≡_) open import Relation.Binary.Indexed.Heterogeneous.Definitions ------------------------------------------------------------------------ -- Equivalences record IsIndexedEquivalence : Set (i ⊔ a ⊔ ℓ) where field refl : Reflexive A _≈_ sym : Symmetric A _≈_ trans : Transitive A _≈_ reflexive : ∀ {i} → _≡_ ⟨ _⇒_ ⟩ _≈_ {i} reflexive P.refl = refl record IsIndexedPreorder {ℓ₂} (_∼_ : IRel A ℓ₂) : Set (i ⊔ a ⊔ ℓ ⊔ ℓ₂) where field isEquivalence : IsIndexedEquivalence reflexive : ∀ {i j} → (_≈_ {i} {j}) ⟨ _⇒_ ⟩ _∼_ trans : Transitive A _∼_ module Eq = IsIndexedEquivalence isEquivalence refl : Reflexive A _∼_ refl = reflexive Eq.refl
{ "alphanum_fraction": 0.5722543353, "avg_line_length": 29.4468085106, "ext": "agda", "hexsha": "9993514eefac9b740c1534d36af9509df0602997", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Indexed/Heterogeneous/Structures.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Indexed/Heterogeneous/Structures.agda", "max_line_length": 76, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Indexed/Heterogeneous/Structures.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 389, "size": 1384 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} -- The Category of Elements open import Cubical.Categories.Category module Cubical.Categories.Constructions.Elements {ℓ ℓ'} {C : Precategory ℓ ℓ'} where open import Cubical.Categories.Instances.Sets open import Cubical.Categories.Functor open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma import Cubical.Categories.Morphism as Morphism import Cubical.Categories.Constructions.Slice as Slice -- some issues -- * always need to specify objects during composition because can't infer isSet open Precategory open Functor getIsSet : ∀ {ℓS} {C : Precategory ℓ ℓ'} (F : Functor C (SET ℓS)) → (c : C .ob) → isSet (fst (F ⟅ c ⟆)) getIsSet F c = snd (F ⟅ c ⟆) infix 50 ∫_ ∫_ : ∀ {ℓS} → Functor C (SET ℓS) → Precategory (ℓ-max ℓ ℓS) (ℓ-max ℓ' ℓS) -- objects are (c , x) pairs where c ∈ C and x ∈ F c (∫ F) .ob = Σ[ c ∈ C .ob ] fst (F ⟅ c ⟆) -- morphisms are f : c → c' which take x to x' (∫ F) .Hom[_,_] (c , x) (c' , x') = Σ[ f ∈ C [ c , c' ] ] x' ≡ (F ⟪ f ⟫) x (∫ F) .id (c , x) = C .id c , sym (funExt⁻ (F .F-id) x ∙ refl) (∫ F) ._⋆_ {c , x} {c₁ , x₁} {c₂ , x₂} (f , p) (g , q) = (f ⋆⟨ C ⟩ g) , (x₂ ≡⟨ q ⟩ (F ⟪ g ⟫) x₁ -- basically expanding out function composition ≡⟨ cong (F ⟪ g ⟫) p ⟩ (F ⟪ g ⟫) ((F ⟪ f ⟫) x) ≡⟨ funExt⁻ (sym (F .F-seq _ _)) _ ⟩ (F ⟪ f ⋆⟨ C ⟩ g ⟫) x ∎) (∫ F) .⋆IdL o@{c , x} o1@{c' , x'} f'@(f , p) i = (cIdL i) , isOfHLevel→isOfHLevelDep 1 (λ a → isS' x' ((F ⟪ a ⟫) x)) p' p cIdL i where isS = getIsSet F c isS' = getIsSet F c' cIdL = C .⋆IdL f -- proof from composition with id p' : x' ≡ (F ⟪ C .id c ⋆⟨ C ⟩ f ⟫) x p' = snd ((∫ F) ._⋆_ ((∫ F) .id o) f') (∫ F) .⋆IdR o@{c , x} o1@{c' , x'} f'@(f , p) i = (cIdR i) , isOfHLevel→isOfHLevelDep 1 (λ a → isS' x' ((F ⟪ a ⟫) x)) p' p cIdR i where cIdR = C .⋆IdR f isS' = getIsSet F c' p' : x' ≡ (F ⟪ f ⋆⟨ C ⟩ C .id c' ⟫) x p' = snd ((∫ F) ._⋆_ f' ((∫ F) .id o1)) (∫ F) .⋆Assoc o@{c , x} o1@{c₁ , x₁} o2@{c₂ , x₂} o3@{c₃ , x₃} f'@(f , p) g'@(g , q) h'@(h , r) i = (cAssoc i) , isOfHLevel→isOfHLevelDep 1 (λ a → isS₃ x₃ ((F ⟪ a ⟫) x)) p1 p2 cAssoc i where cAssoc = C .⋆Assoc f g h isS₃ = getIsSet F c₃ p1 : x₃ ≡ (F ⟪ (f ⋆⟨ C ⟩ g) ⋆⟨ C ⟩ h ⟫) x p1 = snd ((∫ F) ._⋆_ ((∫ F) ._⋆_ {o} {o1} {o2} f' g') h') p2 : x₃ ≡ (F ⟪ f ⋆⟨ C ⟩ (g ⋆⟨ C ⟩ h) ⟫) x p2 = snd ((∫ F) ._⋆_ f' ((∫ F) ._⋆_ {o1} {o2} {o3} g' h')) -- same thing but for presheaves ∫ᴾ_ : ∀ {ℓS} → Functor (C ^op) (SET ℓS) → Precategory (ℓ-max ℓ ℓS) (ℓ-max ℓ' ℓS) -- objects are (c , x) pairs where c ∈ C and x ∈ F c (∫ᴾ F) .ob = Σ[ c ∈ C .ob ] fst (F ⟅ c ⟆) -- morphisms are f : c → c' which take x to x' (∫ᴾ F) .Hom[_,_] (c , x) (c' , x') = Σ[ f ∈ C [ c , c' ] ] x ≡ (F ⟪ f ⟫) x' (∫ᴾ F) .id (c , x) = C .id c , sym (funExt⁻ (F .F-id) x ∙ refl) (∫ᴾ F) ._⋆_ {c , x} {c₁ , x₁} {c₂ , x₂} (f , p) (g , q) = (f ⋆⟨ C ⟩ g) , (x ≡⟨ p ⟩ (F ⟪ f ⟫) x₁ -- basically expanding out function composition ≡⟨ cong (F ⟪ f ⟫) q ⟩ (F ⟪ f ⟫) ((F ⟪ g ⟫) x₂) ≡⟨ funExt⁻ (sym (F .F-seq _ _)) _ ⟩ (F ⟪ f ⋆⟨ C ⟩ g ⟫) x₂ ∎) (∫ᴾ F) .⋆IdL o@{c , x} o1@{c' , x'} f'@(f , p) i = (cIdL i) , isOfHLevel→isOfHLevelDep 1 (λ a → isS x ((F ⟪ a ⟫) x')) p' p cIdL i where isS = getIsSet F c isS' = getIsSet F c' cIdL = C .⋆IdL f -- proof from composition with id p' : x ≡ (F ⟪ C .id c ⋆⟨ C ⟩ f ⟫) x' p' = snd ((∫ᴾ F) ._⋆_ ((∫ᴾ F) .id o) f') (∫ᴾ F) .⋆IdR o@{c , x} o1@{c' , x'} f'@(f , p) i = (cIdR i) , isOfHLevel→isOfHLevelDep 1 (λ a → isS x ((F ⟪ a ⟫) x')) p' p cIdR i where cIdR = C .⋆IdR f isS = getIsSet F c p' : x ≡ (F ⟪ f ⋆⟨ C ⟩ C .id c' ⟫) x' p' = snd ((∫ᴾ F) ._⋆_ f' ((∫ᴾ F) .id o1)) (∫ᴾ F) .⋆Assoc o@{c , x} o1@{c₁ , x₁} o2@{c₂ , x₂} o3@{c₃ , x₃} f'@(f , p) g'@(g , q) h'@(h , r) i = (cAssoc i) , isOfHLevel→isOfHLevelDep 1 (λ a → isS x ((F ⟪ a ⟫) x₃)) p1 p2 cAssoc i where cAssoc = C .⋆Assoc f g h isS = getIsSet F c p1 : x ≡ (F ⟪ (f ⋆⟨ C ⟩ g) ⋆⟨ C ⟩ h ⟫) x₃ p1 = snd ((∫ᴾ F) ._⋆_ ((∫ᴾ F) ._⋆_ {o} {o1} {o2} f' g') h') p2 : x ≡ (F ⟪ f ⋆⟨ C ⟩ (g ⋆⟨ C ⟩ h) ⟫) x₃ p2 = snd ((∫ᴾ F) ._⋆_ f' ((∫ᴾ F) ._⋆_ {o1} {o2} {o3} g' h')) -- helpful results module _ {ℓS} {F : Functor (C ^op) (SET ℓS)} where -- morphisms are equal as long as the morphisms in C are equals ∫ᴾhomEq : ∀ {o1 o1' o2 o2'} (f : (∫ᴾ F) [ o1 , o2 ]) (g : (∫ᴾ F) [ o1' , o2' ]) → (p : o1 ≡ o1') (q : o2 ≡ o2') → (eqInC : PathP (λ i → C [ fst (p i) , fst (q i) ]) (fst f) (fst g)) → PathP (λ i → (∫ᴾ F) [ p i , q i ]) f g ∫ᴾhomEq (f , eqf) (g , eqg) p q eqInC = ΣPathP (eqInC , isOfHLevel→isOfHLevelDep 1 {A = Σ[ (o1 , o2) ∈ (∫ᴾ F) .ob × (∫ᴾ F) .ob ] (C [ fst o1 , fst o2 ])} {B = λ ((o1 , o2) , f) → snd o1 ≡ (F ⟪ f ⟫) (snd o2)} (λ ((o1 , o2) , f) → snd (F ⟅ (fst o1) ⟆) (snd o1) ((F ⟪ f ⟫) (snd o2))) eqf eqg λ i → ((p i , q i) , eqInC i))
{ "alphanum_fraction": 0.4335419735, "avg_line_length": 39.3623188406, "ext": "agda", "hexsha": "b9f76c21206943fe9dfae8cf8df6fe34f485d716", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/Categories/Constructions/Elements.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/Categories/Constructions/Elements.agda", "max_line_length": 114, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/Categories/Constructions/Elements.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2715, "size": 5432 }
module Data.QuadTree.FoldableProofs.FoldableFunctorProof where open import Haskell.Prelude renaming (zero to Z; suc to S) open import Data.Logic open import Data.QuadTree.Implementation.Definition open import Data.QuadTree.Implementation.ValidTypes open import Data.QuadTree.Implementation.QuadrantLenses open import Data.QuadTree.Implementation.SafeFunctions open import Data.QuadTree.Implementation.PropDepthRelation open import Data.QuadTree.Implementation.Foldable open import Data.QuadTree.Implementation.Functors open import Data.QuadTree.FoldableProofs.FoldableProof open import Data.QuadTree.FunctorProofs.Valid-QuadrantFunctor proof-foldfmap-list : {t s : Set} {{monT : Monoid t}} {{monS : Monoid s}} -> (l : List t ) -> (f : t -> s) -> foldMap f l ≡ foldMap id (fmap f l) proof-foldfmap-list [] f = refl proof-foldfmap-list (x ∷ xs) f = begin f x <> foldMap f xs =⟨ cong (_<>_ (f x)) (proof-foldfmap-list xs f) ⟩ f x <> foldMap id (fmap f xs) end fmap-replicate : {A B : Set} -> (f : A -> B) -> (v : A) -> (n : Nat) -> fmap f (replicateₙ n v) ≡ replicateₙ n (f v) fmap-replicate f v Z = refl fmap-replicate f v (S n) = cong (λ z → f v ∷ z) (fmap-replicate f v n) fmap-concat : {A B : Set} -> (f : A -> B) -> (l1 l2 : List A) -> fmap f (l1 ++ l2) ≡ fmap f l1 ++ fmap f l2 fmap-concat f [] l2 = refl fmap-concat f (x ∷ l1) l2 = cong (λ z → f x ∷ z) (fmap-concat f l1 l2) fmap-concat4 : {A B : Set} -> (f : A -> B) -> (l1 l2 l3 l4 : List A) -> fmap f (l1 ++ l2 ++ l3 ++ l4) ≡ fmap f l1 ++ fmap f l2 ++ fmap f l3 ++ fmap f l4 fmap-concat4 f l1 l2 l3 l4 = begin fmap f (l1 ++ l2 ++ l3 ++ l4) =⟨ fmap-concat f l1 (l2 ++ l3 ++ l4) ⟩ fmap f l1 ++ fmap f (l2 ++ l3 ++ l4) =⟨ cong (_++_ (map f l1)) (fmap-concat f l2 (l3 ++ l4)) ⟩ fmap f l1 ++ fmap f l2 ++ fmap f (l3 ++ l4) =⟨ cong (λ z → map f l1 ++ map f l2 ++ z) (fmap-concat f l3 l4) ⟩ fmap f l1 ++ fmap f l2 ++ fmap f l3 ++ fmap f l4 end fmap-expand : {A B : Set} {{eqA : Eq A}} {{eqB : Eq B}} -> (f : A -> B) -> (t : Tile A) -> fmap f (expand t) ≡ expand (fmap f t) fmap-expand f t@(TileC v (RegionC (x1 , y1) (x2 , y2))) = fmap-replicate f v (diff x2 x1 * diff y2 y1) fmap-concat-expand : {A B : Set} {{eqA : Eq A}} {{eqB : Eq B}} -> (f : A -> B) -> (l : List (Tile A)) -> (fmap f $ concat $ map expand l) ≡ (concat $ map expand $ fmap (fmap f) l) fmap-concat-expand f [] = refl fmap-concat-expand f (x ∷ xs) = begin fmap f (expand x ++ concat (map expand xs)) =⟨ fmap-concat f (expand x) _ ⟩ fmap f (expand x) ++ fmap f (concat (map expand xs)) =⟨ cong (_++_ (fmap f (expand x))) (fmap-concat-expand f xs) ⟩ fmap f (expand x) ++ concat (map expand $ fmap (fmap f) xs) =⟨ cong (λ q -> q ++ concat (map expand $ fmap (fmap f) xs)) (fmap-expand f x) ⟩ expand (fmap f x) ++ concat (map expand $ fmap (fmap f) xs) end replicate-concat : {t : Set} -> (a b : Nat) -> (v : t) -> replicateₙ a v ++ replicateₙ b v ≡ replicateₙ (a + b) v replicate-concat Z b v = refl replicate-concat (S a) b v = cong (λ z → v ∷ z) (replicate-concat a b v) replicate-concat4 : {t : Set} -> (a b c d : Nat) -> (v : t) -> replicateₙ a v ++ replicateₙ b v ++ replicateₙ c v ++ replicateₙ d v ≡ replicateₙ (a + b + c + d) v replicate-concat4 a b c d v = begin replicateₙ a v ++ replicateₙ b v ++ (replicateₙ c v ++ replicateₙ d v) =⟨ cong (λ z → replicateₙ a v ++ replicateₙ b v ++ z) (replicate-concat c d v) ⟩ replicateₙ a v ++ replicateₙ b v ++ replicateₙ (c + d) v =⟨ cong (_++_ (replicateₙ a v)) (replicate-concat b (c + d) v) ⟩ replicateₙ a v ++ replicateₙ (b + (c + d)) v =⟨ replicate-concat a (b + (c + d)) v ⟩ replicateₙ (a + (b + (c + d))) v =⟨ sym (cong (λ z → replicateₙ z v) (add-assoc a b (c + d))) ⟩ replicateₙ (a + b + (c + d)) v =⟨ sym (cong (λ z → replicateₙ z v) (add-assoc (a + b) c d)) ⟩ replicateₙ (a + b + c + d) v end ++-assoc : {t : Set} -> (l1 l2 l3 : List t) -> (l1 ++ l2) ++ l3 ≡ l1 ++ (l2 ++ l3) ++-assoc [] l2 l3 = refl ++-assoc (x ∷ xs) l2 l3 = cong (λ z → x ∷ z) (++-assoc xs l2 l3) concat-cme : {t : Set} -> (l1 l2 : List (Tile t)) -> concat (map expand (l1 ++ l2)) ≡ (concat $ map expand l1) ++ (concat $ map expand l2) concat-cme [] l2 = refl concat-cme l1@(x ∷ xs) l2 = begin expand x ++ concat (map expand (xs ++ l2)) =⟨ cong (_++_ (expand x)) (concat-cme xs l2) ⟩ expand x ++ ((concat $ map expand xs) ++ (concat $ map expand l2)) =⟨ sym $ ++-assoc (expand x) (concat $ map expand xs) (concat $ map expand l2) ⟩ (expand x ++ concat (map expand xs)) ++ concat (map expand l2) end concat-cme4 : {t : Set} -> (l1 l2 l3 l4 : List (Tile t)) -> concat (map expand (l1 ++ l2 ++ l3 ++ l4)) ≡ (concat (map expand l1)) ++ (concat (map expand l2)) ++ (concat (map expand l3)) ++ (concat (map expand l4)) concat-cme4 l1 l2 l3 l4 = begin concat (map expand (l1 ++ (l2 ++ (l3 ++ l4)))) =⟨ concat-cme l1 (l2 ++ (l3 ++ l4)) ⟩ concat (map expand l1) ++ concat (map expand (l2 ++ (l3 ++ l4))) =⟨ cong (_++_ (concat (map expand l1))) (concat-cme l2 (l3 ++ l4)) ⟩ concat (map expand l1) ++ concat (map expand l2) ++ concat (map expand (l3 ++ l4)) =⟨ cong (λ q -> concat (map expand l1) ++ concat (map expand l2) ++ q) (concat-cme l3 l4) ⟩ concat (map expand l1) ++ concat (map expand l2) ++ concat (map expand l3) ++ concat (map expand l4) end tilesQd-concat : {A : Set} {{eqA : Eq A}} -> (deps : Nat) -> (a b c d : VQuadrant A {deps}) -> (x1 y1 x2 y2 : Nat) -> IsTrue (x1 <= x2) -> IsTrue (y1 <= y2) -> ({a b : A} -> IsTrue (a == b) -> a ≡ b) -> (concat $ map expand $ (tilesQd deps a (RegionC (x1 , y1) (min x2 (pow 2 deps + x1) , min y2 (pow 2 deps + y1))) ++ tilesQd deps b (RegionC (min x2 (pow 2 deps + x1) , y1) (x2 , min y2 (pow 2 deps + y1))) ++ tilesQd deps c (RegionC (x1 , min y2 (pow 2 deps + y1)) (min x2 (pow 2 deps + x1) , y2) ) ++ tilesQd deps d (RegionC (min x2 (pow 2 deps + x1) , min y2 (pow 2 deps + y1)) (x2 , y2) ))) ≡ (concat $ map expand $ tilesQd (S deps) (combine a b c d) (RegionC (x1 , y1) (x2 , y2))) tilesQd-concat {A} deps a@(CVQuadrant (Leaf va)) b@(CVQuadrant (Leaf vb)) c@(CVQuadrant (Leaf vc)) d@(CVQuadrant (Leaf vd)) x1 y1 x2 y2 xp yp peq = ifc (va == vb && vb == vc && vc == vd) then (λ {{pc}} -> begin (cme $ TileC va rA ∷ TileC vb rB ∷ TileC vc rC ∷ TileC vd rD ∷ []) =⟨⟩ replicateₙ (area rA) va ++ replicateₙ (area rB) vb ++ replicateₙ (area rC) vc ++ replicateₙ (area rD) vd ++ [] =⟨ cong (λ q -> replicateₙ (area rA) va ++ replicateₙ (area rB) vb ++ replicateₙ (area rC) vc ++ q) (concat-nothing _) ⟩ replicateₙ (area rA) (va) ++ replicateₙ (area rB) (vb) ++ replicateₙ (area rC) (vc) ++ replicateₙ (area rD) vd =⟨ cong (λ v -> replicateₙ (area rA) (va) ++ replicateₙ (area rB) (vb) ++ replicateₙ (area rC) (vc) ++ replicateₙ (area rD) v) (sym $ peq $ andSnd {vb == vc} $ andSnd {va == vb} pc) ⟩ replicateₙ (area rA) (va) ++ replicateₙ (area rB) (vb) ++ replicateₙ (area rC) (vc) ++ replicateₙ (area rD) (vc) =⟨ cong (λ v -> replicateₙ (area rA) (va) ++ replicateₙ (area rB) (vb) ++ replicateₙ (area rC) (v) ++ replicateₙ (area rD) (v)) (sym $ peq $ andFst {vb == vc} $ andSnd {va == vb} pc) ⟩ replicateₙ (area rA) (va) ++ replicateₙ (area rB) (vb) ++ replicateₙ (area rC) (vb) ++ replicateₙ (area rD) (vb) =⟨ cong (λ v -> replicateₙ (area rA) (va) ++ replicateₙ (area rB) (v) ++ replicateₙ (area rC) (v) ++ replicateₙ (area rD) (v)) (sym $ peq $ andFst {va == vb} pc) ⟩ replicateₙ (area rA) (va) ++ replicateₙ (area rB) (va) ++ replicateₙ (area rC) (va) ++ replicateₙ (area rD) (va) =⟨ replicate-concat4 (area rA) (area rB) (area rC) (area rD) (va) ⟩ replicateₙ (area rA + area rB + area rC + area rD) (va) =⟨ cong (λ q -> replicateₙ q (va)) (square-split x1 y1 (min x2 (mid + x1)) (min y2 (mid + y1)) x2 y2 (min-rel-1 x1 mid x2 xp) (min-rel-2 x2 (mid + x1)) (min-rel-1 y1 mid y2 yp) (min-rel-2 y2 (mid + y1))) ⟩ replicateₙ (diff x2 x1 * diff y2 y1) (va) =⟨ sym $ concat-nothing (replicateₙ (diff x2 x1 * diff y2 y1) (va)) ⟩ replicateₙ (diff x2 x1 * diff y2 y1) va ++ [] =⟨⟩ (cme $ TileC va (RegionC (x1 , y1) (x2 , y2)) ∷ []) =⟨ cong (λ q -> cme $ tilesQd (S deps) q (RegionC (x1 , y1) (x2 , y2))) (sym $ ifcTrue (va == vb && vb == vc && vc == vd) pc) ⟩ (cme $ tilesQd (S deps) (ifc (va == vb && vb == vc && vc == vd) then CVQuadrant (Leaf va) else CVQuadrant (Node (Leaf va) (Leaf vb) (Leaf vc) (Leaf vd))) (RegionC (x1 , y1) (x2 , y2))) end) else (λ {{pc}} -> begin (concat $ map expand $ tilesQd (S deps) (CVQuadrant (Node (Leaf va) (Leaf vb) (Leaf vc) (Leaf vd)) {andCombine (zeroLteAny deps) (falseToNotTrue pc)}) (RegionC (x1 , y1) (x2 , y2))) =⟨ cong {x = CVQuadrant (Node (Leaf va) (Leaf vb) (Leaf vc) (Leaf vd)) {andCombine (zeroLteAny deps) (falseToNotTrue pc)}} (λ q -> concat $ map expand $ tilesQd (S deps) q (RegionC (x1 , y1) (x2 , y2))) (sym $ ifcFalse (va == vb && vb == vc && vc == vd) pc) ⟩ (concat $ map expand $ tilesQd (S deps) (ifc (va == vb && vb == vc && vc == vd) then CVQuadrant (Leaf va) else CVQuadrant (Node (Leaf va) (Leaf vb) (Leaf vc) (Leaf vd))) (RegionC (x1 , y1) (x2 , y2))) end) where mid = pow 2 deps rA = (RegionC (x1 , y1) (min x2 (mid + x1) , min y2 (mid + y1))) rB = (RegionC (min x2 (mid + x1) , y1) (x2 , min y2 (mid + y1))) rC = (RegionC (x1 , min y2 (mid + y1)) (min x2 (mid + x1) , y2) ) rD = (RegionC (min x2 (mid + x1) , min y2 (mid + y1)) (x2 , y2) ) cme : List (Tile A) -> List A cme v = concat $ map expand $ v area : Region -> Nat area (RegionC (x1 , y1) (x2 , y2)) = diff x2 x1 * diff y2 y1 tilesQd-concat deps (CVQuadrant (Leaf x)) (CVQuadrant (Leaf x₁)) (CVQuadrant (Leaf x₂)) (CVQuadrant (Node d d₁ d₂ d₃)) x1 y1 x2 y2 xp yp peq = refl tilesQd-concat deps (CVQuadrant (Leaf x)) (CVQuadrant (Leaf x₁)) (CVQuadrant (Node c c₁ c₂ c₃)) (CVQuadrant d) x1 y1 x2 y2 xp yp peq = refl tilesQd-concat deps (CVQuadrant (Leaf x)) (CVQuadrant (Node b b₁ b₂ b₃)) (CVQuadrant c) (CVQuadrant d) x1 y1 x2 y2 xp yp peq = refl tilesQd-concat deps (CVQuadrant (Node a a₁ a₂ a₃)) (CVQuadrant b) (CVQuadrant c) (CVQuadrant d) x1 y1 x2 y2 xp yp peq = refl fmap-tilesQd : {A B : Set} {{eqA : Eq A}} {{eqB : Eq B}} -> (f : A -> B) -> (dep : Nat) -> (vqd : VQuadrant A {dep}) -> (x1 y1 x2 y2 : Nat) -> IsTrue (x1 <= x2) -> IsTrue (y1 <= y2) -> ({a b : A} -> IsTrue (a == b) -> a ≡ b) -> ({a b : B} -> IsTrue (a == b) -> a ≡ b) -> (concat $ map expand $ fmap (fmap f) $ tilesQd dep vqd (RegionC (x1 , y1) (x2 , y2))) ≡ (concat $ map expand $ tilesQd dep (fmapₑ (quadrantFunctor dep) f vqd) (RegionC (x1 , y1) (x2 , y2))) fmap-tilesQd f dep (CVQuadrant (Leaf v) {p1}) x1 y1 x2 y2 px py peqA peqB = refl fmap-tilesQd {A} {B} f dep@(S deps) vqd@(CVQuadrant (Node a@(Leaf va) b@(Leaf vb) c@(Leaf vc) d@(Leaf vd)) {p1}) x1 y1 x2 y2 xp yp peqA peqB = ifc ((va == vb) && (vb == vc) && (vc == vd)) then (λ {{pc}} -> (begin (cme $ fmap (fmap f) $ tilesQd dep vqd reg) =⟨⟩ (cme $ TileC (f va) rA ∷ TileC (f vb) rB ∷ TileC (f vc) rC ∷ TileC (f vd) rD ∷ []) =⟨⟩ replicateₙ (area rA) (f va) ++ replicateₙ (area rB) (f vb) ++ replicateₙ (area rC) (f vc) ++ replicateₙ (area rD) (f vd) ++ [] =⟨ cong (λ q -> replicateₙ (area rA) (f va) ++ replicateₙ (area rB) (f vb) ++ replicateₙ (area rC) (f vc) ++ q) (concat-nothing _) ⟩ replicateₙ (area rA) (f va) ++ replicateₙ (area rB) (f vb) ++ replicateₙ (area rC) (f vc) ++ replicateₙ (area rD) (f vd) =⟨ cong (λ v -> replicateₙ (area rA) (f va) ++ replicateₙ (area rB) (f vb) ++ replicateₙ (area rC) (f vc) ++ replicateₙ (area rD) (f v)) (sym $ peqA $ andSnd {vb == vc} $ andSnd {va == vb} pc) ⟩ replicateₙ (area rA) (f va) ++ replicateₙ (area rB) (f vb) ++ replicateₙ (area rC) (f vc) ++ replicateₙ (area rD) (f vc) =⟨ cong (λ v -> replicateₙ (area rA) (f va) ++ replicateₙ (area rB) (f vb) ++ replicateₙ (area rC) (f v) ++ replicateₙ (area rD) (f v)) (sym $ peqA $ andFst {vb == vc} $ andSnd {va == vb} pc) ⟩ replicateₙ (area rA) (f va) ++ replicateₙ (area rB) (f vb) ++ replicateₙ (area rC) (f vb) ++ replicateₙ (area rD) (f vb) =⟨ cong (λ v -> replicateₙ (area rA) (f va) ++ replicateₙ (area rB) (f v) ++ replicateₙ (area rC) (f v) ++ replicateₙ (area rD) (f v)) (sym $ peqA $ andFst {va == vb} pc) ⟩ replicateₙ (area rA) (f va) ++ replicateₙ (area rB) (f va) ++ replicateₙ (area rC) (f va) ++ replicateₙ (area rD) (f va) =⟨ replicate-concat4 (area rA) (area rB) (area rC) (area rD) (f va) ⟩ replicateₙ (area rA + area rB + area rC + area rD) (f va) =⟨ cong (λ q -> replicateₙ q (f va)) (square-split x1 y1 (min x2 (mid + x1)) (min y2 (mid + y1)) x2 y2 (min-rel-1 x1 mid x2 xp) (min-rel-2 x2 (mid + x1)) (min-rel-1 y1 mid y2 yp) (min-rel-2 y2 (mid + y1))) ⟩ replicateₙ (diff x2 x1 * diff y2 y1) (f va) =⟨ sym $ concat-nothing (replicateₙ (diff x2 x1 * diff y2 y1) (f va)) ⟩ replicateₙ (diff x2 x1 * diff y2 y1) (f va) ++ [] =⟨ cong (λ q -> cme $ tilesQd dep q reg) (sym $ ifcTrue ((f va == f vb) && (f vb == f vc) && (f vc == f vd)) (useEq (cong3 (λ e1 e2 e3 -> e1 && e2 && e3) (eq-subst f va vb) (eq-subst f vb vc) (eq-subst f vc vd)) pc)) ⟩ (cme $ tilesQd dep (combine (fmapₑ (quadrantFunctor deps) f sA) (fmapₑ (quadrantFunctor deps) f sB) (fmapₑ (quadrantFunctor deps) f sC) (fmapₑ (quadrantFunctor deps) f sD)) reg) =⟨⟩ (cme $ tilesQd dep (fmapₑ (quadrantFunctor dep) f vqd) reg) end)) else (λ {{pc}} -> (begin (cme $ fmap (fmap f) $ tilesQd dep vqd reg) =⟨⟩ (cme $ TileC (f va) rA ∷ TileC (f vb) rB ∷ TileC (f vc) rC ∷ TileC (f vd) rD ∷ []) =⟨⟩ (cme $ tilesQd dep (CVQuadrant (Node (Leaf (f va)) (Leaf (f vb)) (Leaf (f vc)) (Leaf (f vd))) {andCombine (zeroLteAny deps) (falseToNotTrue $ useEqFalse (cong3 (λ e1 e2 e3 -> e1 && e2 && e3) (eq-subst f va vb) (eq-subst f vb vc) (eq-subst f vc vd)) pc)}) reg) =⟨ cong {x = CVQuadrant (Node (Leaf (f va)) (Leaf (f vb)) (Leaf (f vc)) (Leaf (f vd))) {andCombine (zeroLteAny deps) (falseToNotTrue $ useEqFalse (cong3 (λ e1 e2 e3 -> e1 && e2 && e3) (eq-subst f va vb) (eq-subst f vb vc) (eq-subst f vc vd)) pc)}} (λ q -> cme $ tilesQd dep q reg) (sym $ ifcFalse ((f va == f vb) && (f vb == f vc) && (f vc == f vd)) (useEqFalse (cong3 (λ e1 e2 e3 -> e1 && e2 && e3) (eq-subst f va vb) (eq-subst f vb vc) (eq-subst f vc vd)) pc)) ⟩ (cme $ tilesQd dep (combine (fmapₑ (quadrantFunctor deps) f sA) (fmapₑ (quadrantFunctor deps) f sB) (fmapₑ (quadrantFunctor deps) f sC) (fmapₑ (quadrantFunctor deps) f sD)) reg) =⟨⟩ (cme $ tilesQd dep (fmapₑ (quadrantFunctor dep) f vqd) reg) end)) where mid = pow 2 deps rA = (RegionC (x1 , y1) (min x2 (mid + x1) , min y2 (mid + y1))) rB = (RegionC (min x2 (mid + x1) , y1) (x2 , min y2 (mid + y1))) rC = (RegionC (x1 , min y2 (mid + y1)) (min x2 (mid + x1) , y2) ) rD = (RegionC (min x2 (mid + x1) , min y2 (mid + y1)) (x2 , y2) ) reg = (RegionC (x1 , y1) (x2 , y2)) sA = CVQuadrant {dep = deps} a {aSub {dep = deps} a b c d p1} sB = CVQuadrant {dep = deps} b {bSub {dep = deps} a b c d p1} sC = CVQuadrant {dep = deps} c {cSub {dep = deps} a b c d p1} sD = CVQuadrant {dep = deps} d {dSub {dep = deps} a b c d p1} cme : List (Tile B) -> List B cme v = concat $ map expand $ v area : Region -> Nat area (RegionC (x1 , y1) (x2 , y2)) = diff x2 x1 * diff y2 y1 fmap-tilesQd {A} {B} f dep@(S deps) vqd@(CVQuadrant (Node a@(Leaf _) b@(Leaf _) c@(Leaf _) d@(Node _ _ _ _)) {p1}) x1 y1 x2 y2 xp yp peqA peqB = begin (cme $ fmap (fmap f) $ tilesQd dep vqd reg) =⟨⟩ (cme $ fmap (fmap f) $ ( tilesQd deps sA rA ++ tilesQd deps sB rB ++ tilesQd deps sC rC ++ tilesQd deps sD rD )) =⟨ cong cme $ fmap-concat4 (fmap f) (tilesQd deps sA rA) (tilesQd deps sB rB) (tilesQd deps sC rC) (tilesQd deps sD rD) ⟩ (cme ( fmap (fmap f) (tilesQd deps sA rA) ++ fmap (fmap f) (tilesQd deps sB rB) ++ fmap (fmap f) (tilesQd deps sC rC) ++ fmap (fmap f) (tilesQd deps sD rD) )) =⟨ concat-cme4 (fmap (fmap f) (tilesQd deps sA rA)) (fmap (fmap f) (tilesQd deps sB rB)) (fmap (fmap f) (tilesQd deps sC rC)) (fmap (fmap f) (tilesQd deps sD rD)) ⟩ (cme $ fmap (fmap f) (tilesQd deps sA rA)) ++ (cme $ fmap (fmap f) (tilesQd deps sB rB)) ++ (cme $ fmap (fmap f) (tilesQd deps sC rC)) ++ (cme $ fmap (fmap f) (tilesQd deps sD rD)) =⟨ cong4 (λ l1 l2 l3 l4 -> l1 ++ l2 ++ l3 ++ l4) (fmap-tilesQd f deps sA x1 y1 (min x2 (mid + x1)) (min y2 (mid + y1)) (min-rel-1 x1 mid x2 xp) (min-rel-1 y1 mid y2 yp) peqA peqB) (fmap-tilesQd f deps sB (min x2 (mid + x1)) y1 x2 (min y2 (mid + y1)) (min-rel-2 x2 (mid + x1)) (min-rel-1 y1 mid y2 yp) peqA peqB) (fmap-tilesQd f deps sC x1 (min y2 (mid + y1)) (min x2 (mid + x1)) y2 (min-rel-1 x1 mid x2 xp) (min-rel-2 y2 (mid + y1)) peqA peqB) (fmap-tilesQd f deps sD (min x2 (mid + x1)) (min y2 (mid + y1)) x2 y2 (min-rel-2 x2 (mid + x1)) (min-rel-2 y2 (mid + y1)) peqA peqB) ⟩ (cme $ (tilesQd deps (fmapₑ (quadrantFunctor deps) f sA) rA)) ++ (cme $ (tilesQd deps (fmapₑ (quadrantFunctor deps) f sB) rB)) ++ (cme $ (tilesQd deps (fmapₑ (quadrantFunctor deps) f sC) rC)) ++ (cme $ (tilesQd deps (fmapₑ (quadrantFunctor deps) f sD) rD)) =⟨ sym $ concat-cme4 (tilesQd deps (fmapₑ (quadrantFunctor deps) f sA) rA) (tilesQd deps (fmapₑ (quadrantFunctor deps) f sB) rB) (tilesQd deps (fmapₑ (quadrantFunctor deps) f sC) rC) (tilesQd deps (fmapₑ (quadrantFunctor deps) f sD) rD) ⟩ (cme ( tilesQd deps (fmapₑ (quadrantFunctor deps) f sA) rA ++ tilesQd deps (fmapₑ (quadrantFunctor deps) f sB) rB ++ tilesQd deps (fmapₑ (quadrantFunctor deps) f sC) rC ++ tilesQd deps (fmapₑ (quadrantFunctor deps) f sD) rD )) =⟨ tilesQd-concat deps (fmapₑ (quadrantFunctor deps) f sA) (fmapₑ (quadrantFunctor deps) f sB) (fmapₑ (quadrantFunctor deps) f sC) (fmapₑ (quadrantFunctor deps) f sD) x1 y1 x2 y2 xp yp peqB ⟩ (cme $ tilesQd dep (combine (fmapₑ (quadrantFunctor deps) f sA) (fmapₑ (quadrantFunctor deps) f sB) (fmapₑ (quadrantFunctor deps) f sC) (fmapₑ (quadrantFunctor deps) f sD)) reg) =⟨⟩ (cme $ tilesQd dep (fmapₑ (quadrantFunctor dep) f vqd) reg) end where cme : List (Tile B) -> List B cme v = concat $ map expand $ v reg = (RegionC (x1 , y1) (x2 , y2)) mid = pow 2 deps rA = (RegionC (x1 , y1) (min x2 (mid + x1) , min y2 (mid + y1))) rB = (RegionC (min x2 (mid + x1) , y1) (x2 , min y2 (mid + y1))) rC = (RegionC (x1 , min y2 (mid + y1)) (min x2 (mid + x1) , y2) ) rD = (RegionC (min x2 (mid + x1) , min y2 (mid + y1)) (x2 , y2) ) sA = CVQuadrant {dep = deps} a {aSub {dep = deps} a b c d p1} sB = CVQuadrant {dep = deps} b {bSub {dep = deps} a b c d p1} sC = CVQuadrant {dep = deps} c {cSub {dep = deps} a b c d p1} sD = CVQuadrant {dep = deps} d {dSub {dep = deps} a b c d p1} fmap-tilesQd {A} {B} f dep@(S deps) vqd@(CVQuadrant (Node a@(Leaf _) b@(Leaf _) c@(Node _ _ _ _) d) {p1}) x1 y1 x2 y2 xp yp peqA peqB = begin (cme $ fmap (fmap f) $ tilesQd dep vqd reg) =⟨⟩ (cme $ fmap (fmap f) $ ( tilesQd deps sA rA ++ tilesQd deps sB rB ++ tilesQd deps sC rC ++ tilesQd deps sD rD )) =⟨ cong cme $ fmap-concat4 (fmap f) (tilesQd deps sA rA) (tilesQd deps sB rB) (tilesQd deps sC rC) (tilesQd deps sD rD) ⟩ (cme ( fmap (fmap f) (tilesQd deps sA rA) ++ fmap (fmap f) (tilesQd deps sB rB) ++ fmap (fmap f) (tilesQd deps sC rC) ++ fmap (fmap f) (tilesQd deps sD rD) )) =⟨ concat-cme4 (fmap (fmap f) (tilesQd deps sA rA)) (fmap (fmap f) (tilesQd deps sB rB)) (fmap (fmap f) (tilesQd deps sC rC)) _ ⟩ (cme $ fmap (fmap f) (tilesQd deps sA rA)) ++ (cme $ fmap (fmap f) (tilesQd deps sB rB)) ++ (cme $ fmap (fmap f) (tilesQd deps sC rC)) ++ (cme $ fmap (fmap f) (tilesQd deps sD rD)) =⟨ cong4 (λ l1 l2 l3 l4 -> l1 ++ l2 ++ l3 ++ l4) (fmap-tilesQd f deps sA x1 y1 (min x2 (mid + x1)) (min y2 (mid + y1)) (min-rel-1 x1 mid x2 xp) (min-rel-1 y1 mid y2 yp) peqA peqB) (fmap-tilesQd f deps sB (min x2 (mid + x1)) y1 x2 (min y2 (mid + y1)) (min-rel-2 x2 (mid + x1)) (min-rel-1 y1 mid y2 yp) peqA peqB) (fmap-tilesQd f deps sC x1 (min y2 (mid + y1)) (min x2 (mid + x1)) y2 (min-rel-1 x1 mid x2 xp) (min-rel-2 y2 (mid + y1)) peqA peqB) (fmap-tilesQd f deps sD (min x2 (mid + x1)) (min y2 (mid + y1)) x2 y2 (min-rel-2 x2 (mid + x1)) (min-rel-2 y2 (mid + y1)) peqA peqB) ⟩ (cme $ (tilesQd deps (fmapₑ (quadrantFunctor deps) f sA) rA)) ++ (cme $ (tilesQd deps (fmapₑ (quadrantFunctor deps) f sB) rB)) ++ (cme $ (tilesQd deps (fmapₑ (quadrantFunctor deps) f sC) rC)) ++ (cme $ (tilesQd deps (fmapₑ (quadrantFunctor deps) f sD) rD)) =⟨ sym $ concat-cme4 (tilesQd deps (fmapₑ (quadrantFunctor deps) f sA) rA) (tilesQd deps (fmapₑ (quadrantFunctor deps) f sB) rB) (tilesQd deps (fmapₑ (quadrantFunctor deps) f sC) rC) _ ⟩ (cme ( tilesQd deps (fmapₑ (quadrantFunctor deps) f sA) rA ++ tilesQd deps (fmapₑ (quadrantFunctor deps) f sB) rB ++ tilesQd deps (fmapₑ (quadrantFunctor deps) f sC) rC ++ tilesQd deps (fmapₑ (quadrantFunctor deps) f sD) rD )) =⟨ tilesQd-concat deps (fmapₑ (quadrantFunctor deps) f sA) (fmapₑ (quadrantFunctor deps) f sB) (fmapₑ (quadrantFunctor deps) f sC) (fmapₑ (quadrantFunctor deps) f sD) x1 y1 x2 y2 xp yp peqB ⟩ (cme $ tilesQd dep (combine (fmapₑ (quadrantFunctor deps) f sA) (fmapₑ (quadrantFunctor deps) f sB) (fmapₑ (quadrantFunctor deps) f sC) (fmapₑ (quadrantFunctor deps) f sD)) reg) =⟨⟩ (cme $ tilesQd dep (fmapₑ (quadrantFunctor dep) f vqd) reg) end where cme : List (Tile B) -> List B cme v = concat $ map expand $ v reg = (RegionC (x1 , y1) (x2 , y2)) mid = pow 2 deps rA = (RegionC (x1 , y1) (min x2 (mid + x1) , min y2 (mid + y1))) rB = (RegionC (min x2 (mid + x1) , y1) (x2 , min y2 (mid + y1))) rC = (RegionC (x1 , min y2 (mid + y1)) (min x2 (mid + x1) , y2) ) rD = (RegionC (min x2 (mid + x1) , min y2 (mid + y1)) (x2 , y2) ) sA = CVQuadrant {dep = deps} a {aSub {dep = deps} a b c d p1} sB = CVQuadrant {dep = deps} b {bSub {dep = deps} a b c d p1} sC = CVQuadrant {dep = deps} c {cSub {dep = deps} a b c d p1} sD = CVQuadrant {dep = deps} d {dSub {dep = deps} a b c d p1} fmap-tilesQd {A} {B} f dep@(S deps) vqd@(CVQuadrant (Node a@(Leaf _) b@(Node _ _ _ _) c d) {p1}) x1 y1 x2 y2 xp yp peqA peqB = begin (cme $ fmap (fmap f) $ tilesQd dep vqd reg) =⟨⟩ (cme $ fmap (fmap f) $ ( tilesQd deps sA rA ++ tilesQd deps sB rB ++ tilesQd deps sC rC ++ tilesQd deps sD rD )) =⟨ cong cme $ fmap-concat4 (fmap f) (tilesQd deps sA rA) (tilesQd deps sB rB) (tilesQd deps sC rC) (tilesQd deps sD rD) ⟩ (cme ( fmap (fmap f) (tilesQd deps sA rA) ++ fmap (fmap f) (tilesQd deps sB rB) ++ fmap (fmap f) (tilesQd deps sC rC) ++ fmap (fmap f) (tilesQd deps sD rD) )) =⟨ concat-cme4 (fmap (fmap f) (tilesQd deps sA rA)) (fmap (fmap f) (tilesQd deps sB rB)) (fmap (fmap f) (tilesQd deps sC rC)) _ ⟩ (cme $ fmap (fmap f) (tilesQd deps sA rA)) ++ (cme $ fmap (fmap f) (tilesQd deps sB rB)) ++ (cme $ fmap (fmap f) (tilesQd deps sC rC)) ++ (cme $ fmap (fmap f) (tilesQd deps sD rD)) =⟨ cong4 (λ l1 l2 l3 l4 -> l1 ++ l2 ++ l3 ++ l4) (fmap-tilesQd f deps sA x1 y1 (min x2 (mid + x1)) (min y2 (mid + y1)) (min-rel-1 x1 mid x2 xp) (min-rel-1 y1 mid y2 yp) peqA peqB) (fmap-tilesQd f deps sB (min x2 (mid + x1)) y1 x2 (min y2 (mid + y1)) (min-rel-2 x2 (mid + x1)) (min-rel-1 y1 mid y2 yp) peqA peqB) (fmap-tilesQd f deps sC x1 (min y2 (mid + y1)) (min x2 (mid + x1)) y2 (min-rel-1 x1 mid x2 xp) (min-rel-2 y2 (mid + y1)) peqA peqB) (fmap-tilesQd f deps sD (min x2 (mid + x1)) (min y2 (mid + y1)) x2 y2 (min-rel-2 x2 (mid + x1)) (min-rel-2 y2 (mid + y1)) peqA peqB) ⟩ (cme $ (tilesQd deps (fmapₑ (quadrantFunctor deps) f sA) rA)) ++ (cme $ (tilesQd deps (fmapₑ (quadrantFunctor deps) f sB) rB)) ++ (cme $ (tilesQd deps (fmapₑ (quadrantFunctor deps) f sC) rC)) ++ (cme $ (tilesQd deps (fmapₑ (quadrantFunctor deps) f sD) rD)) =⟨ sym $ concat-cme4 (tilesQd deps (fmapₑ (quadrantFunctor deps) f sA) rA) (tilesQd deps (fmapₑ (quadrantFunctor deps) f sB) rB) (tilesQd deps (fmapₑ (quadrantFunctor deps) f sC) rC) _ ⟩ (cme ( tilesQd deps (fmapₑ (quadrantFunctor deps) f sA) rA ++ tilesQd deps (fmapₑ (quadrantFunctor deps) f sB) rB ++ tilesQd deps (fmapₑ (quadrantFunctor deps) f sC) rC ++ tilesQd deps (fmapₑ (quadrantFunctor deps) f sD) rD )) =⟨ tilesQd-concat deps (fmapₑ (quadrantFunctor deps) f sA) (fmapₑ (quadrantFunctor deps) f sB) (fmapₑ (quadrantFunctor deps) f sC) (fmapₑ (quadrantFunctor deps) f sD) x1 y1 x2 y2 xp yp peqB ⟩ (cme $ tilesQd dep (combine (fmapₑ (quadrantFunctor deps) f sA) (fmapₑ (quadrantFunctor deps) f sB) (fmapₑ (quadrantFunctor deps) f sC) (fmapₑ (quadrantFunctor deps) f sD)) reg) =⟨⟩ (cme $ tilesQd dep (fmapₑ (quadrantFunctor dep) f vqd) reg) end where cme : List (Tile B) -> List B cme v = concat $ map expand $ v reg = (RegionC (x1 , y1) (x2 , y2)) mid = pow 2 deps rA = (RegionC (x1 , y1) (min x2 (mid + x1) , min y2 (mid + y1))) rB = (RegionC (min x2 (mid + x1) , y1) (x2 , min y2 (mid + y1))) rC = (RegionC (x1 , min y2 (mid + y1)) (min x2 (mid + x1) , y2) ) rD = (RegionC (min x2 (mid + x1) , min y2 (mid + y1)) (x2 , y2) ) sA = CVQuadrant {dep = deps} a {aSub {dep = deps} a b c d p1} sB = CVQuadrant {dep = deps} b {bSub {dep = deps} a b c d p1} sC = CVQuadrant {dep = deps} c {cSub {dep = deps} a b c d p1} sD = CVQuadrant {dep = deps} d {dSub {dep = deps} a b c d p1} fmap-tilesQd {A} {B} f dep@(S deps) vqd@(CVQuadrant (Node a@(Node _ _ _ _) b c d) {p1}) x1 y1 x2 y2 xp yp peqA peqB = begin (cme $ fmap (fmap f) $ tilesQd dep vqd reg) =⟨⟩ (cme $ fmap (fmap f) $ ( tilesQd deps sA rA ++ tilesQd deps sB rB ++ tilesQd deps sC rC ++ tilesQd deps sD rD )) =⟨ cong cme $ fmap-concat4 (fmap f) (tilesQd deps sA rA) (tilesQd deps sB rB) (tilesQd deps sC rC) (tilesQd deps sD rD) ⟩ (cme ( fmap (fmap f) (tilesQd deps sA rA) ++ fmap (fmap f) (tilesQd deps sB rB) ++ fmap (fmap f) (tilesQd deps sC rC) ++ fmap (fmap f) (tilesQd deps sD rD) )) =⟨ concat-cme4 (fmap (fmap f) (tilesQd deps sA rA)) (fmap (fmap f) (tilesQd deps sB rB)) (fmap (fmap f) (tilesQd deps sC rC)) _ ⟩ (cme $ fmap (fmap f) (tilesQd deps sA rA)) ++ (cme $ fmap (fmap f) (tilesQd deps sB rB)) ++ (cme $ fmap (fmap f) (tilesQd deps sC rC)) ++ (cme $ fmap (fmap f) (tilesQd deps sD rD)) =⟨ cong4 (λ l1 l2 l3 l4 -> l1 ++ l2 ++ l3 ++ l4) (fmap-tilesQd f deps sA x1 y1 (min x2 (mid + x1)) (min y2 (mid + y1)) (min-rel-1 x1 mid x2 xp) (min-rel-1 y1 mid y2 yp) peqA peqB) (fmap-tilesQd f deps sB (min x2 (mid + x1)) y1 x2 (min y2 (mid + y1)) (min-rel-2 x2 (mid + x1)) (min-rel-1 y1 mid y2 yp) peqA peqB) (fmap-tilesQd f deps sC x1 (min y2 (mid + y1)) (min x2 (mid + x1)) y2 (min-rel-1 x1 mid x2 xp) (min-rel-2 y2 (mid + y1)) peqA peqB) (fmap-tilesQd f deps sD (min x2 (mid + x1)) (min y2 (mid + y1)) x2 y2 (min-rel-2 x2 (mid + x1)) (min-rel-2 y2 (mid + y1)) peqA peqB) ⟩ (cme $ (tilesQd deps (fmapₑ (quadrantFunctor deps) f sA) rA)) ++ (cme $ (tilesQd deps (fmapₑ (quadrantFunctor deps) f sB) rB)) ++ (cme $ (tilesQd deps (fmapₑ (quadrantFunctor deps) f sC) rC)) ++ (cme $ (tilesQd deps (fmapₑ (quadrantFunctor deps) f sD) rD)) =⟨ sym $ concat-cme4 (tilesQd deps (fmapₑ (quadrantFunctor deps) f sA) rA) (tilesQd deps (fmapₑ (quadrantFunctor deps) f sB) rB) (tilesQd deps (fmapₑ (quadrantFunctor deps) f sC) rC) _ ⟩ (cme ( tilesQd deps (fmapₑ (quadrantFunctor deps) f sA) rA ++ tilesQd deps (fmapₑ (quadrantFunctor deps) f sB) rB ++ tilesQd deps (fmapₑ (quadrantFunctor deps) f sC) rC ++ tilesQd deps (fmapₑ (quadrantFunctor deps) f sD) rD )) =⟨ tilesQd-concat deps (fmapₑ (quadrantFunctor deps) f sA) (fmapₑ (quadrantFunctor deps) f sB) (fmapₑ (quadrantFunctor deps) f sC) (fmapₑ (quadrantFunctor deps) f sD) x1 y1 x2 y2 xp yp peqB ⟩ (cme $ tilesQd dep (combine (fmapₑ (quadrantFunctor deps) f sA) (fmapₑ (quadrantFunctor deps) f sB) (fmapₑ (quadrantFunctor deps) f sC) (fmapₑ (quadrantFunctor deps) f sD)) reg) =⟨⟩ (cme $ tilesQd dep (fmapₑ (quadrantFunctor dep) f vqd) reg) end where cme : List (Tile B) -> List B cme v = concat $ map expand $ v reg = (RegionC (x1 , y1) (x2 , y2)) mid = pow 2 deps rA = (RegionC (x1 , y1) (min x2 (mid + x1) , min y2 (mid + y1))) rB = (RegionC (min x2 (mid + x1) , y1) (x2 , min y2 (mid + y1))) rC = (RegionC (x1 , min y2 (mid + y1)) (min x2 (mid + x1) , y2) ) rD = (RegionC (min x2 (mid + x1) , min y2 (mid + y1)) (x2 , y2) ) sA = CVQuadrant {dep = deps} a {aSub {dep = deps} a b c d p1} sB = CVQuadrant {dep = deps} b {bSub {dep = deps} a b c d p1} sC = CVQuadrant {dep = deps} c {cSub {dep = deps} a b c d p1} sD = CVQuadrant {dep = deps} d {dSub {dep = deps} a b c d p1} qdToQt : {A : Set} {{eqA : Eq A}} -> (dep w h : Nat) -> (vqd : VQuadrant A {dep}) -> .(q : IsTrue (dep == log2up (if w < h then h else w))) -> tilesQd dep vqd (RegionC (0 , 0) (w , h)) ≡ tilesQt dep (toQt dep w h q vqd) qdToQt dep w h (CVQuadrant qd {p}) q = refl fmap-tilesQt : {A B : Set} {{eqA : Eq A}} {{eqB : Eq B}} -> (f : A -> B) -> (dep : Nat) -> (vqt : VQuadTree A {dep}) -> ({a b : A} -> IsTrue (a == b) -> a ≡ b) -> ({a b : B} -> IsTrue (a == b) -> a ≡ b) -> (concat $ map expand $ fmap (fmap f) $ tilesQt dep vqt) ≡ (concat $ map expand $ tilesQt dep $ fmapₑ (quadtreeFunctor dep) f vqt) fmap-tilesQt f dep (CVQuadTree (Wrapper (w , h) (Leaf v))) peqA peqB = refl fmap-tilesQt {A} {B} f dep@(S deps) vqt@(CVQuadTree (Wrapper (w , h) qd@(Node a b c d)) {p1} {p2}) peqA peqB = begin (concat $ map expand $ fmap (fmap f) $ tilesQt dep vqt) =⟨⟩ (concat $ map expand $ fmap (fmap f) $ tilesQd dep (CVQuadrant qd {p1}) (RegionC (0 , 0) (w , h))) =⟨ fmap-tilesQd f dep (CVQuadrant qd {p1}) 0 0 w h (zeroLteAny w) (zeroLteAny h) peqA peqB ⟩ (concat $ map expand $ tilesQd dep (fmapₑ (quadrantFunctor dep) f (CVQuadrant qd {p1})) (RegionC (0 , 0) (w , h))) =⟨ cong (λ l -> concat $ map expand l) (qdToQt dep w h (combine (fmapₑ (quadrantFunctor deps) f (CVQuadrant a)) _ _ _) p2) ⟩ (concat $ map expand $ tilesQt dep (fmapₑ (quadtreeFunctor dep) f vqt)) end proof-foldfmap-qt : {t s : Set} {{eqT : Eq t}} {{eqS : Eq s}} {{monS : Monoid s}} {{monT : Monoid t}} (dep : Nat) -> (vqt : VQuadTree t {dep}) -> (f : t -> s) -> ({a b : t} -> IsTrue (a == b) -> a ≡ b) -> ({a b : s} -> IsTrue (a == b) -> a ≡ b) -> foldMapₑ (quadtreeFoldable dep) f vqt ≡ foldMapₑ (quadtreeFoldable dep) id (fmapₑ (quadtreeFunctor dep) f vqt) proof-foldfmap-qt {t} {s} dep vqt@(CVQuadTree (Wrapper (w , h) (Leaf v)) {p} {q}) f peqA peqB = begin foldMapₑ (quadtreeFoldable dep) f vqt =⟨⟩ foldMap f (replicateₙ (w * h) v ++ []) =⟨ cong (foldMap f) (concat-nothing (replicateₙ (w * h) v)) ⟩ foldMap f (replicateₙ (w * h) v) =⟨ proof-foldfmap-list (replicateₙ (w * h) v) f ⟩ foldMap id (fmap f (replicateₙ (w * h) v)) =⟨ cong (foldMap id) (fmap-replicate f v (w * h)) ⟩ foldMap id (replicateₙ (w * h) (f v)) =⟨ cong (foldMap id) (sym $ concat-nothing (replicateₙ (w * h) (f v))) ⟩ foldMap id (replicateₙ (w * h) (f v) ++ []) =⟨⟩ foldMapₑ (quadtreeFoldable dep) id (fmapₑ (quadtreeFunctor dep) f vqt) end proof-foldfmap-qt {t} {s} dep vqt@(CVQuadTree (Wrapper (w , h) (Node qd qd₁ qd₂ qd₃)) {p} {q}) f peqA peqB = begin foldMapₑ (quadtreeFoldable dep) f vqt =⟨⟩ (foldMap f $ concat $ map expand $ tilesQt dep vqt) =⟨ proof-foldfmap-list (concat $ map expand $ tilesQt dep vqt) f ⟩ (foldMap id $ fmap f $ concat $ map expand $ tilesQt dep vqt) =⟨ cong (foldMap id) (fmap-concat-expand f (tilesQt dep vqt)) ⟩ (foldMap id $ concat $ map expand $ fmap (fmap f) $ tilesQt dep vqt) =⟨ cong (foldMap id) (fmap-tilesQt f dep vqt peqA peqB) ⟩ (foldMap id $ concat $ map expand $ tilesQt dep $ fmapₑ (quadtreeFunctor dep) f vqt) =⟨⟩ foldMapₑ (quadtreeFoldable dep) id (fmapₑ (quadtreeFunctor dep) f vqt) end
{ "alphanum_fraction": 0.5498592857, "avg_line_length": 65.1550094518, "ext": "agda", "hexsha": "027bdedf47b1d23803a3121c5c3407d405aa7509", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "JonathanBrouwer/research-project", "max_forks_repo_path": "src/Data/QuadTree/FoldableProofs/FoldableFunctorProof.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "JonathanBrouwer/research-project", "max_issues_repo_path": "src/Data/QuadTree/FoldableProofs/FoldableFunctorProof.agda", "max_line_length": 268, "max_stars_count": 1, "max_stars_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "JonathanBrouwer/research-project", "max_stars_repo_path": "src/Data/QuadTree/FoldableProofs/FoldableFunctorProof.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-25T09:10:20.000Z", "max_stars_repo_stars_event_min_datetime": "2021-05-25T09:10:20.000Z", "num_tokens": 14364, "size": 34467 }
------------------------------------------------------------------------------ -- Well-founded induction on the relation LTL ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Data.List.WF-Relation.LT-Length.Induction.Acc.WF-I where open import FOTC.Base open import FOTC.Data.List open import FOTC.Data.List.PropertiesI open import FOTC.Data.List.WF-Relation.LT-Length open import FOTC.Data.List.WF-Relation.LT-Length.PropertiesI import FOTC.Data.Nat.Induction.Acc.WF-I open FOTC.Data.Nat.Induction.Acc.WF-I.<-WF open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Type open import FOTC.Induction.WF -- Parametrized modules open module InvImg = FOTC.Induction.WF.InverseImage {List} {N} {_<_} lengthList-N ------------------------------------------------------------------------------ -- The relation LTL is well-founded (using the inverse image combinator). LTL-wf : WellFounded LTL LTL-wf Lxs = wellFounded <-wf Lxs -- Well-founded induction on the relation LTL. LTL-wfind : (A : D → Set) → (∀ {xs} → List xs → (∀ {ys} → List ys → LTL ys xs → A ys) → A xs) → ∀ {xs} → List xs → A xs LTL-wfind A = WellFoundedInduction LTL-wf ------------------------------------------------------------------------------ -- The relation LTL is well-founded (a different proof). -- Adapted from FOTC.Data.Nat.Induction.Acc.WellFoundedInduction.WF₁-LT. module WF₁-LTL where LTL-wf' : WellFounded LTL LTL-wf' Lxs = acc (helper Lxs) where helper : ∀ {xs ys} → List xs → List ys → LTL ys xs → Acc List LTL ys helper lnil Lys ys<[] = ⊥-elim (xs<[]→⊥ Lys ys<[]) helper (lcons x {xs} Lxs) lnil []<x∷xs = acc (λ Lys ys<[] → ⊥-elim (xs<[]→⊥ Lys ys<[])) helper (lcons x {xs} Lxs) (lcons y {ys} Lys) y∷ys<x∷xs = acc (λ {zs} Lzs zs<y∷ys → let ys<xs : LTL ys xs ys<xs = x∷xs<y∷ys→xs<ys Lys Lxs y∷ys<x∷xs zs<xs : LTL zs xs zs<xs = case (λ zs<ys → <-trans Lzs Lys Lxs zs<ys ys<xs) (λ h → lg-xs≡lg-ys→ys<zx→xs<zs h ys<xs) (xs<y∷ys→xs<ys∨lg-xs≡lg-ys Lzs Lys zs<y∷ys) in helper Lxs Lzs zs<xs )
{ "alphanum_fraction": 0.5315922494, "avg_line_length": 37.09375, "ext": "agda", "hexsha": "ebcfa6ab4d66615c084ee00251adc9a8a5824924", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Data/List/WF-Relation/LT-Length/Induction/Acc/WF-I.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Data/List/WF-Relation/LT-Length/Induction/Acc/WF-I.agda", "max_line_length": 79, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Data/List/WF-Relation/LT-Length/Induction/Acc/WF-I.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 724, "size": 2374 }
module UnknownImplicitInstance where ⟨⟩ : {A : Set} {{a : A}} → A ⟨⟩ {{a}} = a postulate B : Set instance b : B f : {A : Set₁} {{a : A}} → A x : Set x = f
{ "alphanum_fraction": 0.493902439, "avg_line_length": 12.6153846154, "ext": "agda", "hexsha": "cc3891dd3329870ef6bc3d534ace5a802e3cf579", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/UnknownImplicitInstance.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/UnknownImplicitInstance.agda", "max_line_length": 36, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/UnknownImplicitInstance.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 71, "size": 164 }
module Numeral.Rational where open import Data.Tuple open import Logic import Lvl open import Numeral.Natural open import Numeral.Natural.Oper open import Numeral.Integer open import Numeral.Integer.Oper open import Relator.Equals open import Type open import Type.Quotient -- Equivalence relation of quotient equality. -- Essentially (if one would already work in the rationals): -- (a₁ , a₂) quot-≡_ (b₁ , b₂) -- ⇔ a₁ ⋅ b₂ ≡ a₂ ⋅ b₁ -- ⇔ a₁ / a₂ ≡ b₁ / b₂ _quot-≡_ : (ℤ ⨯ ℕ₊) → (ℤ ⨯ ℕ₊) → Stmt{Lvl.𝟎} (a₁ , a₂) quot-≡ (b₁ , b₂) = (a₁ ⋅ b₂ ≡ a₂ ⋅ b₁) ℤ : Type{Lvl.𝟎} ℤ = (ℤ ⨯ ℕ₊) / (_quot-≡_)
{ "alphanum_fraction": 0.6578947368, "avg_line_length": 25.3333333333, "ext": "agda", "hexsha": "7d4d1e54c96f17fe5863e9ad63bbf4b9ce12e071", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Mathematical/Numeral/Rational.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Mathematical/Numeral/Rational.agda", "max_line_length": 60, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Mathematical/Numeral/Rational.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 255, "size": 608 }
module Selective.Runtime where open import Selective.Simulate open import Selective.SimulationEnvironment open import Prelude open import Data.Nat.Show using (show) open import Codata.Musical.Notation using ( ♯_ ; ♭) import IO open ∞Trace record BlockedCount : Set₂ where field return-count : ℕ receive-count : ℕ selective-count : ℕ count-blocked : (env : Env) → BlockedCount count-blocked env = loop (Env.blocked-no-progress env) where open BlockedCount loop : ∀ {store inbs bl} → All (IsBlocked store inbs) bl → BlockedCount loop [] = record { return-count = 0 ; receive-count = 0 ; selective-count = 0 } loop (BlockedReturn _ _ ∷ xs) = let rec = loop xs in record { return-count = suc (rec .return-count) ; receive-count = rec .receive-count ; selective-count = rec .selective-count } loop (BlockedReceive _ _ _ ∷ xs) = let rec = loop xs in record { return-count = rec .return-count ; receive-count = suc (rec .receive-count) ; selective-count = rec .selective-count } loop (BlockedSelective _ _ _ _ _ ∷ xs) = let rec = loop xs in record { return-count = rec .return-count ; receive-count = rec .receive-count ; selective-count = suc (rec .selective-count) } show-env : Env → String show-env env = let count = count-blocked env open BlockedCount in "There are " || show (count .return-count) || " finished actors, " || show (count .receive-count) || " receiving actors, and " || show (count .selective-count) || " selecting actors" show-final-step : ℕ → String show-final-step n = "Done after " || (show n) || " steps." -- run-env continously runs the simulation of an environment -- and transforms the steps taken into output to the console. run-env : Env → IO.IO ⊤ run-env env = loop 1 ((simulate env) .force) where loop : ℕ → Trace ∞ → IO.IO ⊤ loop n (TraceStop env _) = ♯ IO.putStrLn (show-final-step n) IO.>> ♯ IO.putStrLn (show-env env) loop n (x ∷ xs) = ♯ IO.putStrLn ("Step " || show n ) IO.>> ♯ loop (suc n) (xs .force) run-env-silent : Env → IO.IO ⊤ run-env-silent env = loop 1 ((simulate env) .force) where loop : ℕ → Trace ∞ → IO.IO ⊤ loop n (TraceStop env _) = IO.putStrLn (show-final-step n) loop n (x ∷ xs) = ♯ IO.return tt IO.>> ♯ loop (suc n) (xs .force) run-env-end : Env → IO.IO Env run-env-end env = loop ((simulate env) .force) where loop : Trace ∞ → IO.IO Env loop (TraceStop env _) = IO.return env loop (x ∷ xs) = ♯ IO.return x IO.>> ♯ loop (xs .force)
{ "alphanum_fraction": 0.6500994036, "avg_line_length": 39.296875, "ext": "agda", "hexsha": "2f7a98664ea4ac23a8a53670cdb0a494c05cf221", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Zalastax/singly-typed-actors", "max_forks_repo_path": "src/Selective/Runtime.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Zalastax/singly-typed-actors", "max_issues_repo_path": "src/Selective/Runtime.agda", "max_line_length": 187, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Zalastax/thesis", "max_stars_repo_path": "src/Selective/Runtime.agda", "max_stars_repo_stars_event_max_datetime": "2018-02-02T16:44:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-02-02T16:44:43.000Z", "num_tokens": 735, "size": 2515 }
module TAlgebra where open import Level open import Data.Product open import Relation.Binary open Setoid open import Basic open import Category import Functor import Nat import Adjoint open import Monad open Category.Category open Functor.Functor open Nat.Nat open Nat.Export open Adjoint.Export open Monad.Monad record TAlgebra {C₀ C₁ ℓ} {C : Category C₀ C₁ ℓ} (T : Monad C) : Set (C₀ ⊔ C₁ ⊔ ℓ) where field Tobj : Obj C Tmap : Hom C (fobj (MFunctor T) Tobj) Tobj field join-fmap-alg : C [ C [ Tmap ∘ component (Mjoin T) Tobj ] ≈ C [ Tmap ∘ fmap (MFunctor T) Tmap ] ] map-unit : C [ C [ Tmap ∘ component (Munit T) Tobj ] ≈ id C ] open TAlgebra record TAlgMap {C₀ C₁ ℓ} {C : Category C₀ C₁ ℓ} {T : Monad C} (a b : TAlgebra T) : Set (C₁ ⊔ ℓ) where field Thom : Hom C (Tobj a) (Tobj b) field hom-comm : C [ C [ Tmap b ∘ fmap (MFunctor T) Thom ] ≈ C [ Thom ∘ Tmap a ] ] open TAlgMap compose : ∀ {C₀ C₁ ℓ} {C : Category C₀ C₁ ℓ} {T : Monad C} {a b c : TAlgebra T} → TAlgMap b c → TAlgMap a b → TAlgMap a c compose {C = C} {T} {a} {b} {c} f g = record { Thom = C [ Thom f ∘ Thom g ] ; hom-comm = begin⟨ C ⟩ C [ Tmap c ∘ fmap (MFunctor T) (C [ Thom f ∘ Thom g ]) ] ≈⟨ ≈-composite C (refl-hom C) (preserveComp (MFunctor T)) ⟩ C [ Tmap c ∘ C [ fmap (MFunctor T) (Thom f) ∘ fmap (MFunctor T) (Thom g) ] ] ≈⟨ sym-hom C (assoc C) ⟩ C [ C [ Tmap c ∘ fmap (MFunctor T) (Thom f) ] ∘ fmap (MFunctor T) (Thom g) ] ≈⟨ ≈-composite C (hom-comm f) (refl-hom C) ⟩ C [ C [ Thom f ∘ Tmap b ] ∘ fmap (MFunctor T) (Thom g) ] ≈⟨ assoc C ⟩ C [ Thom f ∘ C [ Tmap b ∘ fmap (MFunctor T) (Thom g) ] ] ≈⟨ ≈-composite C (refl-hom C) (hom-comm g) ⟩ C [ Thom f ∘ C [ Thom g ∘ Tmap a ] ] ≈⟨ sym-hom C (assoc C) ⟩ C [ C [ Thom f ∘ Thom g ] ∘ Tmap a ] ∎ } identity : ∀ {C₀ C₁ ℓ} {C : Category C₀ C₁ ℓ} {T : Monad C} {a : TAlgebra T} → TAlgMap a a identity {C = C} {T} {a} = record { Thom = id C ; hom-comm = begin⟨ C ⟩ C [ Tmap a ∘ fmap (MFunctor T) (id C) ] ≈⟨ ≈-composite C (refl-hom C) (preserveId (MFunctor T)) ⟩ C [ Tmap a ∘ id C ] ≈⟨ rightId C ⟩ Tmap a ≈⟨ sym-hom C (leftId C) ⟩ C [ id C ∘ Tmap a ] ∎ } T-Algs : ∀ {C₀ C₁ ℓ} {C : Category C₀ C₁ ℓ} (T : Monad C) → Category _ _ _ T-Algs {C = C} T = record { Obj = TAlgebra T; Homsetoid = λ a b → record { Carrier = TAlgMap a b ; _≈_ = λ f g → C [ Thom f ≈ Thom g ] ; isEquivalence = record { refl = refl-hom C ; sym = sym-hom C ; trans = trans-hom C } }; comp = compose; id = identity; leftId = leftId C; rightId = rightId C; assoc = assoc C; ≈-composite = ≈-composite C } Free-TAlg : ∀ {C₀ C₁ ℓ} {C : Category C₀ C₁ ℓ} (T : Monad C) → Functor.Functor C (T-Algs T) Free-TAlg {C = C} T = record { fobj = λ x → record { Tobj = fobj (MFunctor T) x ; Tmap = component (Mjoin T) x ; join-fmap-alg = join_join T ; map-unit = unit_MFunctor T } ; fmapsetoid = λ {a} {b} → record { mapping = λ x → record { Thom = fmap (MFunctor T) x ; hom-comm = naturality (Mjoin T) } ; preserveEq = Functor.preserveEq (MFunctor T) } ; preserveId = preserveId (MFunctor T) ; preserveComp = preserveComp (MFunctor T) } Forgetful-TAlg : ∀ {C₀ C₁ ℓ} {C : Category C₀ C₁ ℓ} (T : Monad C) → Functor.Functor (T-Algs T) C Forgetful-TAlg {C = C} T = record { fobj = Tobj ; fmapsetoid = record { mapping = Thom ; preserveEq = λ x≈y → x≈y } ; preserveId = refl-hom C ; preserveComp = refl-hom C } Free⊣Forgetful-TAlg : ∀ {C₀ C₁ ℓ} {C : Category C₀ C₁ ℓ} (T : Monad C) → Free-TAlg T ⊣ Forgetful-TAlg T Free⊣Forgetful-TAlg {C = C} T = Adjoint.unit-triangular-holds-adjoint {C = C} {D = T-Algs T} {FT} {GT} ηT εT triL (λ {a} → triR {a}) where FT = Free-TAlg T GT = Forgetful-TAlg T ηT = record { component = component (Munit T) ; naturality = naturality (Munit T) } εT = record { component = λ X → record { Thom = Tmap X ; hom-comm = sym-hom C (join-fmap-alg X) } ; naturality = λ {a} {b} {f} → hom-comm f } triL : [ C , T-Algs T ] [ Nat.compose (Nat.compose Nat.leftIdNat→ (εT N∘F FT)) (Nat.compose (Nat.assocNat← {F = FT} {GT} {FT}) (Nat.compose (FT F∘N ηT) Nat.rightIdNat←)) ≈ id [ C , T-Algs T ] ] triL = λ {a} → begin⟨ C ⟩ C [ C [ id C ∘ Thom (component εT (fobj FT a)) ] ∘ C [ id C ∘ C [ Thom (fmap FT (component ηT a)) ∘ id C ] ] ] ≈⟨ ≈-composite C (leftId C) (trans-hom C (leftId C) (rightId C)) ⟩ C [ component (Mjoin T) a ∘ fmap (MFunctor T) (component (Munit T) a) ] ≈⟨ MFunctor_unit T ⟩ id C ∎ triR : [ T-Algs T , C ] [ Nat.compose (Nat.compose Nat.rightIdNat→ (GT F∘N εT)) (Nat.compose (Nat.assocNat→ {F = GT} {FT} {GT}) (Nat.compose (ηT N∘F GT) Nat.leftIdNat←)) ≈ id [ T-Algs T , C ] ] triR = λ {a} → begin⟨ C ⟩ C [ C [ id C ∘ fmap GT (component εT a) ] ∘ C [ id C ∘ C [ component ηT (fobj GT a) ∘ id C ] ] ] ≈⟨ ≈-composite C (leftId C) (trans-hom C (leftId C) (rightId C)) ⟩ C [ fmap GT (component εT a) ∘ component ηT (fobj GT a) ] ≈⟨ refl-hom C ⟩ C [ component (GT F∘N εT) a ∘ component (Munit T) (Tobj a) ] ≈⟨ map-unit a ⟩ id C ∎
{ "alphanum_fraction": 0.570789576, "avg_line_length": 38.9545454545, "ext": "agda", "hexsha": "87fb923e0d1d243ac04fb5fe5ac35d5943159da5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "59004994acdbc65fb4f8abf0baa1777a8dbe758e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "myuon/agda-cate", "max_forks_repo_path": "src/TAlgebra.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "59004994acdbc65fb4f8abf0baa1777a8dbe758e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "myuon/agda-cate", "max_issues_repo_path": "src/TAlgebra.agda", "max_line_length": 197, "max_stars_count": 2, "max_stars_repo_head_hexsha": "59004994acdbc65fb4f8abf0baa1777a8dbe758e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "myuon/agda-cate", "max_stars_repo_path": "src/TAlgebra.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-02T07:30:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-07-28T04:59:31.000Z", "num_tokens": 2114, "size": 5142 }
open import Nat open import Prelude open import dynamics-core open import contexts open import lemmas-disjointness open import exchange -- this module contains all the proofs of different weakening structural -- properties that we use for the hypothetical judgements module weakening where mutual weaken-subst-Δ : ∀{Δ1 Δ2 Γ σ Γ'} → Δ1 ## Δ2 → Δ1 , Γ ⊢ σ :s: Γ' → (Δ1 ∪ Δ2) , Γ ⊢ σ :s: Γ' weaken-subst-Δ disj (STAId x) = STAId x weaken-subst-Δ disj (STASubst subst x) = STASubst (weaken-subst-Δ disj subst) (weaken-ta-Δ1 disj x) weaken-ta-Δ1 : ∀{Δ1 Δ2 Γ d τ} → Δ1 ## Δ2 → Δ1 , Γ ⊢ d :: τ → (Δ1 ∪ Δ2) , Γ ⊢ d :: τ weaken-ta-Δ1 disj TANum = TANum weaken-ta-Δ1 disj (TAPlus wt wt₁) = TAPlus (weaken-ta-Δ1 disj wt) (weaken-ta-Δ1 disj wt₁) weaken-ta-Δ1 disj (TAVar x₁) = TAVar x₁ weaken-ta-Δ1 disj (TALam x₁ wt) = TALam x₁ (weaken-ta-Δ1 disj wt) weaken-ta-Δ1 disj (TAAp wt wt₁) = TAAp (weaken-ta-Δ1 disj wt) (weaken-ta-Δ1 disj wt₁) weaken-ta-Δ1 disj (TAInl wt) = TAInl (weaken-ta-Δ1 disj wt) weaken-ta-Δ1 disj (TAInr wt) = TAInr (weaken-ta-Δ1 disj wt) weaken-ta-Δ1 disj (TACase wt x wt₁ x₁ wt₂) = TACase (weaken-ta-Δ1 disj wt) x (weaken-ta-Δ1 disj wt₁) x₁ (weaken-ta-Δ1 disj wt₂) weaken-ta-Δ1 {Δ1} {Δ2} {Γ} disj (TAEHole {u = u} {Γ' = Γ'} x x₁) = TAEHole (x∈∪l Δ1 Δ2 u _ x ) (weaken-subst-Δ disj x₁) weaken-ta-Δ1 {Δ1} {Δ2} {Γ} disj (TANEHole {Γ' = Γ'} {u = u} x wt x₁) = TANEHole (x∈∪l Δ1 Δ2 u _ x) (weaken-ta-Δ1 disj wt) (weaken-subst-Δ disj x₁) weaken-ta-Δ1 disj (TACast wt x) = TACast (weaken-ta-Δ1 disj wt) x weaken-ta-Δ1 disj (TAFailedCast wt x x₁ x₂) = TAFailedCast (weaken-ta-Δ1 disj wt) x x₁ x₂ weaken-ta-Δ1 disj (TAPair wt wt₁) = TAPair (weaken-ta-Δ1 disj wt) (weaken-ta-Δ1 disj wt₁) weaken-ta-Δ1 disj (TAFst wt) = TAFst (weaken-ta-Δ1 disj wt) weaken-ta-Δ1 disj (TASnd wt) = TASnd (weaken-ta-Δ1 disj wt) -- this is a little bit of a time saver. since ∪ is commutative on -- disjoint contexts, and we need that premise anyway in both positions, -- there's no real reason to repeat the inductive argument above weaken-ta-Δ2 : ∀{Δ1 Δ2 Γ d τ} → Δ1 ## Δ2 → Δ2 , Γ ⊢ d :: τ → (Δ1 ∪ Δ2) , Γ ⊢ d :: τ weaken-ta-Δ2 {Δ1} {Δ2} {Γ} {d} {τ} disj D = tr (λ q → q , Γ ⊢ d :: τ) (∪comm Δ2 Δ1 (##-comm disj)) (weaken-ta-Δ1 (##-comm disj) D) -- note that these statements are somewhat stronger than usual. this is -- because we don't have implcit α-conversion. this reifies the -- often-silent on paper assumption that if you collide with a bound -- variable you can just α-convert it away and not worry. mutual weaken-synth : ∀{x Γ e τ τ'} → freshh x e → Γ ⊢ e => τ → (Γ ,, (x , τ')) ⊢ e => τ weaken-synth FRHNum SNum = SNum weaken-synth (FRHPlus frsh frsh₁) (SPlus x x₁) = SPlus (weaken-ana frsh x) (weaken-ana frsh₁ x₁) weaken-synth (FRHAsc frsh) (SAsc x₁) = SAsc (weaken-ana frsh x₁) weaken-synth {Γ = Γ} (FRHVar {x = x} x₁) (SVar {x = y} x₂) = SVar (x∈∪r (■ (x , _)) Γ y _ x₂ (apart-singleton (flip x₁))) weaken-synth {Γ = Γ} (FRHLam2 x₁ frsh) (SLam x₂ wt) = SLam (apart-extend1 Γ (flip x₁) x₂) (exchange-synth {Γ = Γ} (flip x₁) ((weaken-synth frsh wt))) weaken-synth FRHEHole SEHole = SEHole weaken-synth (FRHNEHole frsh) (SNEHole wt) = SNEHole (weaken-synth frsh wt) weaken-synth (FRHAp frsh frsh₁) (SAp wt x₂ x₃) = SAp (weaken-synth frsh wt) x₂ (weaken-ana frsh₁ x₃) weaken-synth (FRHPair frsh frsh₁) (SPair wt wt₁) = SPair (weaken-synth frsh wt) (weaken-synth frsh₁ wt₁) weaken-synth (FRHFst frsh) (SFst wt x) = SFst (weaken-synth frsh wt) x weaken-synth (FRHSnd frsh) (SSnd wt x) = SSnd (weaken-synth frsh wt) x weaken-ana : ∀{x Γ e τ τ'} → freshh x e → Γ ⊢ e <= τ → (Γ ,, (x , τ')) ⊢ e <= τ weaken-ana frsh (ASubsume x₁ x₂) = ASubsume (weaken-synth frsh x₁) x₂ weaken-ana {Γ = Γ} (FRHLam1 neq frsh) (ALam x₂ x₃ wt) = ALam (apart-extend1 Γ (flip neq) x₂) x₃ (exchange-ana {Γ = Γ} (flip neq) (weaken-ana frsh wt)) weaken-ana (FRHInl frsh) (AInl x x₁) = AInl x (weaken-ana frsh x₁) weaken-ana (FRHInr frsh) (AInr x x₁) = AInr x (weaken-ana frsh x₁) weaken-ana {Γ = Γ} (FRHCase frshd newx≠y frshd₁ newx≠z frshd₂) (ACase {Γ = .Γ} y#Γ z#Γ msum syn ana₁ ana₂) = ACase (apart-extend1 Γ (flip newx≠y) y#Γ) (apart-extend1 Γ (flip newx≠z) z#Γ) msum (weaken-synth {Γ = Γ} frshd syn) (exchange-ana {Γ = Γ} (flip newx≠y) (weaken-ana frshd₁ ana₁)) (exchange-ana {Γ = Γ} (flip newx≠z) (weaken-ana frshd₂ ana₂)) mutual weaken-subst-Γ : ∀{x Γ Δ σ Γ' τ} → envfresh x σ → Δ , Γ ⊢ σ :s: Γ' → Δ , (Γ ,, (x , τ)) ⊢ σ :s: Γ' weaken-subst-Γ {Γ = Γ} {τ = τ₁} (EFId {x = x₃} x₁) (STAId {Γ' = Γ'} x₂) = STAId (λ x τ x∈Γ' → x∈∪r (■ (x₃ , τ₁)) Γ x τ (x₂ x τ x∈Γ') (apart-singleton λ{refl → somenotnone ((! x∈Γ') · x₁)})) weaken-subst-Γ {x = x} {Γ = Γ} (EFSubst x₁ efrsh x₂) (STASubst {y = y} {τ = τ'} subst x₃) = STASubst (exchange-subst-Γ {Γ = Γ} (flip x₂) (weaken-subst-Γ {Γ = Γ ,, (y , τ')} efrsh subst)) (weaken-ta x₁ x₃) weaken-ta : ∀{x Γ Δ d τ τ'} → fresh x d → Δ , Γ ⊢ d :: τ → Δ , Γ ,, (x , τ') ⊢ d :: τ weaken-ta FNum TANum = TANum weaken-ta (FPlus x₁ x₂) (TAPlus x x₃) = TAPlus (weaken-ta x₁ x) (weaken-ta x₂ x₃) weaken-ta {x} {Γ} {_} {_} {τ} {τ'} (FVar x₂) (TAVar x₃) = TAVar (x∈∪r (■(x , _)) Γ _ _ x₃ (apart-singleton (flip x₂))) weaken-ta {x = x} frsh (TALam {x = y} x₂ wt) with natEQ x y weaken-ta (FLam x₁ x₂) (TALam x₃ wt) | Inl refl = abort (x₁ refl) weaken-ta {Γ = Γ} {τ' = τ'} (FLam x₁ x₃) (TALam {x = y} x₄ wt) | Inr x₂ = TALam (apart-extend1 Γ (flip x₁) x₄) (exchange-ta-Γ {Γ = Γ} (flip x₁) (weaken-ta x₃ wt)) weaken-ta (FAp frsh frsh₁) (TAAp wt wt₁) = TAAp (weaken-ta frsh wt) (weaken-ta frsh₁ wt₁) weaken-ta (FHole x₁) (TAEHole x₂ x₃) = TAEHole x₂ (weaken-subst-Γ x₁ x₃) weaken-ta (FNEHole x₁ frsh) (TANEHole x₂ wt x₃) = TANEHole x₂ (weaken-ta frsh wt) (weaken-subst-Γ x₁ x₃) weaken-ta (FCast frsh) (TACast wt x₁) = TACast (weaken-ta frsh wt) x₁ weaken-ta (FFailedCast frsh) (TAFailedCast wt x₁ x₂ x₃) = TAFailedCast (weaken-ta frsh wt) x₁ x₂ x₃ weaken-ta (FInl frsh) (TAInl wt) = TAInl (weaken-ta frsh wt) weaken-ta (FInr frsh) (TAInr wt) = TAInr (weaken-ta frsh wt) weaken-ta {Γ = Γ} (FCase frsh x frsh₁ x₁ frsh₂) (TACase wt x₂ wt₁ x₃ wt₂) = TACase (weaken-ta frsh wt) (apart-extend1 Γ (flip x) x₂) (exchange-ta-Γ {Γ = Γ} (flip x) (weaken-ta frsh₁ wt₁)) (apart-extend1 Γ (flip x₁) x₃) (exchange-ta-Γ {Γ = Γ} (flip x₁) (weaken-ta frsh₂ wt₂)) weaken-ta (FPair frsh frsh₁) (TAPair wt wt₁) = TAPair (weaken-ta frsh wt) (weaken-ta frsh₁ wt₁) weaken-ta (FFst frsh) (TAFst wt) = TAFst (weaken-ta frsh wt) weaken-ta (FSnd frsh) (TASnd wt) = TASnd (weaken-ta frsh wt)
{ "alphanum_fraction": 0.5655980603, "avg_line_length": 58, "ext": "agda", "hexsha": "c6dc62f19d3a42f8bae7992edb32c002e42b18fc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-agda", "max_forks_repo_path": "weakening.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-agda", "max_issues_repo_path": "weakening.agda", "max_line_length": 193, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-agda", "max_stars_repo_path": "weakening.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3226, "size": 7424 }
{-# OPTIONS --without-K #-} module FiniteFunctions where open import Data.Vec using (tabulate; _∷_) open import Data.Fin using (Fin; zero; suc) open import Data.Nat using (ℕ; suc) open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; module ≡-Reasoning) open import Function using (_∘_) ------------------------------------------------------------------------------ -- Important: Extensionality for finite functions finext : {n : ℕ} {A : Set} → {f g : Fin n → A} → ((i : Fin n) → f i ≡ g i) → (tabulate f ≡ tabulate g) finext {0} _ = refl finext {suc n} {_} {f} {g} fi≡gi = begin (tabulate {suc n} f ≡⟨ refl ⟩ f zero ∷ tabulate {n} (f ∘ suc) ≡⟨ cong (λ x → x ∷ tabulate {n} (f ∘ suc)) (fi≡gi zero) ⟩ g zero ∷ tabulate {n} (f ∘ suc) ≡⟨ cong (_∷_ (g zero)) (finext {f = f ∘ suc} {g ∘ suc} (fi≡gi ∘ suc)) ⟩ g zero ∷ tabulate {n} (g ∘ suc) ≡⟨ refl ⟩ tabulate g ∎) where open ≡-Reasoning ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.4533450704, "avg_line_length": 35.5, "ext": "agda", "hexsha": "d6822652953fa17cd2c4b9a7539dc667053110c5", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/FiniteFunctions.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/FiniteFunctions.agda", "max_line_length": 79, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/FiniteFunctions.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 354, "size": 1136 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use `Data.Universe` instead. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Universe where {-# WARNING_ON_IMPORT "Universe was deprecated in v1.1. Use Data.Universe instead." #-} open import Data.Universe public open import Data.Universe.Indexed public renaming (IndexedUniverse to Indexed-universe)
{ "alphanum_fraction": 0.5387596899, "avg_line_length": 27.1578947368, "ext": "agda", "hexsha": "97f2f41afd2df74be1e20ae04de15094cc40cd56", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Universe.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Universe.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Universe.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 92, "size": 516 }
-- A cut-down example: module Issue295 where data ⊥ : Set where data Arr : Set where _⟶_ : ⊥ → ⊥ → Arr _﹔_ : Arr → Arr → Arr (a ⟶ b)﹔(c ⟶ d) with b ... | () data Fun : Arr → Set where ∙ : ∀ a b c d → Fun (a ⟶ b) → Fun (c ⟶ d) → Fun ((a ⟶ b)﹔(c ⟶ d)) f : ∀ a b c d e f → Fun (a ⟶ b) → Fun (c ⟶ d) → Fun (e ⟶ f) f a b c d e f F G = ∙ a b c d F G -- The problem does not appear to be restricted to the pretty-printer. -- With -v10 I get the following output: -- -- compareTerm (a ⟶ b) ﹔ (b ⟶ c) == a ⟶ c : Arr -- { compareAtom -- compareAtom (b ⟶ a) ﹔ (c ⟶ b) | b == a ⟶ c : Arr -- /tmp/Bug.agda:16,15-28 -- (b ⟶ a) ﹔ (c ⟶ b) | b != a ⟶ c of type Arr -- when checking that the expression ∙ a b b c F G has type -- Fun (a ⟶ c)
{ "alphanum_fraction": 0.514324693, "avg_line_length": 25.275862069, "ext": "agda", "hexsha": "a59db9185ba9e799bf9ce9b2b84341361511e5cd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dagit/agda", "max_forks_repo_path": "test/fail/Issue295.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dagit/agda", "max_issues_repo_path": "test/fail/Issue295.agda", "max_line_length": 70, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/Issue295.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T07:26:06.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T07:26:06.000Z", "num_tokens": 324, "size": 733 }
{-# OPTIONS --without-K --rewriting #-} module lib.modalities.Modalities where open import lib.modalities.Truncation public
{ "alphanum_fraction": 0.7698412698, "avg_line_length": 21, "ext": "agda", "hexsha": "ec86f0e68eb52cc7146273b1d8119a597542fa14", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "core/lib/modalities/Modalities.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "core/lib/modalities/Modalities.agda", "max_line_length": 44, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "core/lib/modalities/Modalities.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 28, "size": 126 }
module Cats.Category.Cat.Facts.Product where open import Data.Bool using (true ; false) open import Data.Product using (_,_) open import Level using (_⊔_) open import Cats.Category open import Cats.Category.Cat as Cat using (Cat ; Functor ; _⇒_ ; _∘_ ; id ; _≈_) open import Cats.Category.Product.Binary using (_×_) open import Cats.Category.Product.Binary.Facts using (iso-intro) open import Cats.Trans.Iso using (NatIso) open import Cats.Util.Logic.Constructive using (_∧_ ; ∧-eliml ; ∧-elimr) open Functor module _ {lo la l≈ lo′ la′ l≈′} {C : Category lo la l≈} {D : Category lo′ la′ l≈′} where private module C = Category C module D = Category D proj₁ : (C × D) ⇒ C proj₁ = record { fobj = ∧-eliml ; fmap = ∧-eliml ; fmap-resp = ∧-eliml ; fmap-id = C.≈.refl ; fmap-∘ = C.≈.refl } proj₂ : (C × D) ⇒ D proj₂ = record { fobj = ∧-elimr ; fmap = ∧-elimr ; fmap-resp = ∧-elimr ; fmap-id = D.≈.refl ; fmap-∘ = D.≈.refl } module _ {lo″ la″ l≈″} {X : Category lo″ la″ l≈″} where ⟨_,_⟩ : X ⇒ C → X ⇒ D → X ⇒ (C × D) ⟨ F , G ⟩ = record { fobj = λ x → fobj F x , fobj G x ; fmap = λ f → fmap F f , fmap G f ; fmap-resp = λ eq → fmap-resp F eq , fmap-resp G eq ; fmap-id = fmap-id F , fmap-id G ; fmap-∘ = fmap-∘ F , fmap-∘ G } module _ {F : X ⇒ C} {G : X ⇒ D} where ⟨,⟩-proj₁ : proj₁ ∘ ⟨ F , G ⟩ ≈ F ⟨,⟩-proj₁ = record { iso = C.≅.refl ; forth-natural = C.≈.trans C.id-l (C.≈.sym C.id-r) } ⟨,⟩-proj₂ : proj₂ ∘ ⟨ F , G ⟩ ≈ G ⟨,⟩-proj₂ = record { iso = D.≅.refl ; forth-natural = D.≈.trans D.id-l (D.≈.sym D.id-r) } ⟨,⟩-unique : ∀ {H} → proj₁ ∘ H ≈ F → proj₂ ∘ H ≈ G → H ≈ ⟨ F , G ⟩ ⟨,⟩-unique {H} eq₁ eq₂ = record { iso = iso-intro (iso eq₁) (iso eq₂) ; forth-natural = forth-natural eq₁ , forth-natural eq₂ } where open NatIso instance hasBinaryProducts : ∀ lo la l≈ → HasBinaryProducts (Cat lo la l≈) hasBinaryProducts lo la l≈ .HasBinaryProducts._×′_ C D = mkBinaryProduct proj₁ proj₂ isBinaryProduct where open module Catt = Category (Cat lo la l≈) using (IsBinaryProduct ; mkBinaryProduct ; ∃!-intro) module ≈ = Catt.≈ isBinaryProduct : ∀ {C D : Category lo la l≈} → IsBinaryProduct (C × D) proj₁ proj₂ isBinaryProduct {C} {D} {X} F G = ∃!-intro ⟨ F , G ⟩ (≈.sym (⟨,⟩-proj₁ {G = G}) , ≈.sym (⟨,⟩-proj₂ {F = F})) λ { (eq₁ , eq₂) → ≈.sym (⟨,⟩-unique (≈.sym eq₁) (≈.sym eq₂)) } -- We get the following functors 'for free' from the above definition of -- products in Cat, but those must have their domain and codomain category at -- the same levels. The definitions below lift this restriction. ⟨_×_⟩ : ∀ {lo₁ la₁ l≈₁ lo₂ la₂ l≈₂ lo₃ la₃ l≈₃ lo₄ la₄ l≈₄} → {C : Category lo₁ la₁ l≈₁} {C′ : Category lo₂ la₂ l≈₂} → {D : Category lo₃ la₃ l≈₃} {D′ : Category lo₄ la₄ l≈₄} → C ⇒ C′ → D ⇒ D′ → (C × D) ⇒ (C′ × D′) ⟨ F × G ⟩ = ⟨ F ∘ proj₁ , G ∘ proj₂ ⟩ First : ∀ {lo₁ la₁ l≈₁ lo₂ la₂ l≈₂ lo₃ la₃ l≈₃} → {C : Category lo₁ la₁ l≈₁} {C′ : Category lo₂ la₂ l≈₂} → {D : Category lo₃ la₃ l≈₃} → C ⇒ C′ → (C × D) ⇒ (C′ × D) First F = ⟨ F × id ⟩ Second : ∀ {lo₁ la₁ l≈₁ lo₂ la₂ l≈₂ lo₃ la₃ l≈₃} → {C : Category lo₁ la₁ l≈₁} {D : Category lo₂ la₂ l≈₂} → {D′ : Category lo₃ la₃ l≈₃} → D ⇒ D′ → (C × D) ⇒ (C × D′) Second F = ⟨ id × F ⟩ Swap : ∀ {lo₁ la₁ l≈₁ lo₂ la₂ l≈₂} → {C : Category lo₁ la₁ l≈₁} {D : Category lo₂ la₂ l≈₂} → (C × D) ⇒ (D × C) Swap = ⟨ proj₂ , proj₁ ⟩
{ "alphanum_fraction": 0.5268583831, "avg_line_length": 28.3538461538, "ext": "agda", "hexsha": "94b8e84f16735ae094e2122eb4ad88fde2265df7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Category/Cat/Facts/Product.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Category/Cat/Facts/Product.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Category/Cat/Facts/Product.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1502, "size": 3686 }
module datatype-functions where open import lib open import ctxt open import syntax-util open import general-util open import cedille-types open import subst open import rename open import is-free data indx : Set where Index : var → tk → indx indices = 𝕃 indx data datatype : Set where Data : var → params → indices → ctrs → datatype {-# TERMINATING #-} decompose-arrows : ctxt → type → params × type decompose-arrows Γ (Abs pi me pi' x atk T) = let x' = fresh-var-new Γ x in case decompose-arrows (ctxt-var-decl x' Γ) (rename-var Γ x x' T) of λ where (ps , T') → Decl posinfo-gen posinfo-gen me x' atk posinfo-gen :: ps , T' decompose-arrows Γ (TpArrow T me T') = let x = fresh-var-new Γ "x" in case decompose-arrows (ctxt-var-decl x Γ) T' of λ where (ps , T'') → Decl posinfo-gen posinfo-gen me x (Tkt T) posinfo-gen :: ps , T'' decompose-arrows Γ (TpParens pi T pi') = decompose-arrows Γ T decompose-arrows Γ T = [] , T decompose-ctr-type : ctxt → type → type × params × 𝕃 tty decompose-ctr-type Γ T with decompose-arrows Γ T ...| ps , Tᵣ with decompose-tpapps Tᵣ ...| Tₕ , as = Tₕ , ps , as {-# TERMINATING #-} kind-to-indices : ctxt → kind → indices kind-to-indices Γ (KndArrow k k') = let x' = fresh-var-new Γ "x" in Index x' (Tkk k) :: kind-to-indices (ctxt-var-decl x' Γ) k' kind-to-indices Γ (KndParens pi k pi') = kind-to-indices Γ k kind-to-indices Γ (KndPi pi pi' x atk k) = let x' = fresh-var-new Γ x in Index x' atk :: kind-to-indices (ctxt-var-decl x' Γ) (rename-var Γ x x' k) kind-to-indices Γ (KndTpArrow T k) = let x' = fresh-var-new Γ "x" in Index x' (Tkt T) :: kind-to-indices (ctxt-var-decl x' Γ) k kind-to-indices Γ (KndVar pi x as) with ctxt-lookup-kind-var-def Γ x ...| nothing = [] ...| just (ps , k) = kind-to-indices Γ $ fst $ subst-params-args Γ ps as k kind-to-indices Γ (Star pi) = [] tk-erased : tk → maybeErased → maybeErased tk-erased (Tkk _) me = Erased tk-erased (Tkt _) me = me params-set-erased : maybeErased → params → params params-set-erased me = map λ where (Decl pi pi' me' x atk pi'') → Decl pi pi' me x atk pi'' args-set-erased : maybeErased → args → args args-set-erased = map ∘ arg-set-erased indices-to-kind : indices → kind → kind indices-to-kind = flip $ foldr λ {(Index x atk) → KndPi posinfo-gen posinfo-gen x atk} params-to-kind : params → kind → kind params-to-kind = flip $ foldr λ {(Decl pi pi' me x atk pi'') → KndPi pi pi' x atk} indices-to-tplams : indices → (body : type) → type indices-to-tplams = flip $ foldr λ where (Index x atk) → TpLambda posinfo-gen posinfo-gen x atk params-to-tplams : params → (body : type) → type params-to-tplams = flip $ foldr λ where (Decl pi pi' me x atk pi'') → TpLambda pi pi' x atk indices-to-alls : indices → (body : type) → type indices-to-alls = flip $ foldr λ where (Index x atk) → Abs posinfo-gen Erased posinfo-gen x atk params-to-alls : params → (body : type) → type params-to-alls = flip $ foldr λ where (Decl pi pi' me x atk pi'') → Abs pi (tk-erased atk me) pi' x atk indices-to-lams : indices → (body : term) → term indices-to-lams = flip $ foldr λ where (Index x atk) → Lam posinfo-gen Erased posinfo-gen x (SomeClass atk) indices-to-lams' : indices → (body : term) → term indices-to-lams' = flip $ foldr λ where (Index x atk) → Lam posinfo-gen Erased posinfo-gen x NoClass params-to-lams : params → (body : term) → term params-to-lams = flip $ foldr λ where (Decl pi pi' me x atk pi'') → Lam pi (tk-erased atk me) pi' x (SomeClass atk) params-to-lams' : params → (body : term) → term params-to-lams' = flip $ foldr λ where (Decl pi pi' me x atk pi'') → Lam pi (tk-erased atk me) pi' x NoClass indices-to-apps : indices → (body : term) → term indices-to-apps = flip $ foldl λ where (Index x (Tkt T)) t → App t Erased (mvar x) (Index x (Tkk k)) t → AppTp t (mtpvar x) params-to-apps : params → (body : term) → term params-to-apps = flip $ foldl λ where (Decl pi pi' me x (Tkt T) pi'') t → App t me (mvar x) (Decl pi pi' me x (Tkk k) pi'') t → AppTp t (mtpvar x) indices-to-tpapps : indices → (body : type) → type indices-to-tpapps = flip $ foldl λ where (Index x (Tkt T)) T' → TpAppt T' (mvar x) (Index x (Tkk k)) T → TpApp T (mtpvar x) params-to-tpapps : params → (body : type) → type params-to-tpapps = flip $ foldl λ where (Decl pi pi' me x (Tkt T) pi'') T' → TpAppt T' (mvar x) (Decl pi pi' me x (Tkk k) pi'') T → TpApp T (mtpvar x) ctrs-to-lams' : ctrs → (body : term) → term ctrs-to-lams' = flip $ foldr λ where (Ctr _ x T) → Lam posinfo-gen NotErased posinfo-gen x NoClass ctrs-to-lams : ctxt → var → params → ctrs → (body : term) → term ctrs-to-lams Γ x ps cs t = foldr (λ {(Ctr _ y T) f Γ → Lam posinfo-gen NotErased posinfo-gen y (SomeClass $ Tkt $ subst Γ (params-to-tpapps ps $ mtpvar y) y T) $ f $ ctxt-var-decl y Γ}) (λ Γ → t) cs Γ add-indices-to-ctxt : indices → ctxt → ctxt add-indices-to-ctxt = flip $ foldr λ {(Index x atk) → ctxt-var-decl x} add-params-to-ctxt : params → ctxt → ctxt add-params-to-ctxt = flip $ foldr λ {(Decl _ _ _ x'' _ _) → ctxt-var-decl x''} add-caseArgs-to-ctxt : caseArgs → ctxt → ctxt add-caseArgs-to-ctxt = flip $ foldr λ {(CaseTermArg _ _ x) → ctxt-var-decl x; (CaseTypeArg _ x) → ctxt-var-decl x} add-ctrs-to-ctxt : ctrs → ctxt → ctxt add-ctrs-to-ctxt = flip $ foldr λ {(Ctr _ x T) → ctxt-var-decl x} positivity : Set positivity = 𝔹 × 𝔹 -- occurs positively × occurs negatively pattern occurs-nil = ff , ff pattern occurs-pos = tt , ff pattern occurs-neg = ff , tt pattern occurs-all = tt , tt --positivity-inc : positivity → positivity --positivity-dec : positivity → positivity positivity-neg : positivity → positivity positivity-add : positivity → positivity → positivity --positivity-inc = map-fst λ _ → tt --positivity-dec = map-snd λ _ → tt positivity-neg = uncurry $ flip _,_ positivity-add (+ₘ , -ₘ) (+ₙ , -ₙ) = (+ₘ || +ₙ) , (-ₘ || -ₙ) -- just tt = negative occurrence; just ff = not in the return type; nothing = okay {-# TERMINATING #-} ctr-positive : ctxt → var → type → maybe 𝔹 ctr-positive Γ x = arrs+ Γ ∘ hnf' Γ where open import conversion not-free : ∀ {ed} → ⟦ ed ⟧ → maybe 𝔹 not-free = maybe-map (λ _ → tt) ∘' maybe-if ∘' is-free-in check-erased x if-free : ∀ {ed} → ⟦ ed ⟧ → positivity if-free t with is-free-in check-erased x t ...| f = f , f hnf' : ctxt → type → type hnf' Γ T = hnf Γ unfold-all T tt mtt = maybe-else tt id mff = maybe-else ff id posₒ = fst negₒ = snd occurs : positivity → maybe 𝔹 occurs p = maybe-if (negₒ p) ≫maybe just tt arrs+ : ctxt → type → maybe 𝔹 type+ : ctxt → type → positivity kind+ : ctxt → kind → positivity tk+ : ctxt → tk → positivity arrs+ Γ (Abs _ _ _ x' atk T) = let Γ' = ctxt-var-decl x' Γ in occurs (tk+ Γ atk) maybe-or arrs+ Γ' (hnf' Γ' T) arrs+ Γ (TpApp T T') = arrs+ Γ T maybe-or not-free T' arrs+ Γ (TpAppt T t) = arrs+ Γ T maybe-or not-free t arrs+ Γ (TpArrow T _ T') = occurs (type+ Γ (hnf' Γ T)) maybe-or arrs+ Γ (hnf' Γ T') arrs+ Γ (TpLambda _ _ x' atk T) = let Γ' = ctxt-var-decl x' Γ in occurs (tk+ Γ atk) maybe-or arrs+ Γ' (hnf' Γ' T) arrs+ Γ (TpVar _ x') = maybe-not (maybe-if (x =string x')) ≫maybe just ff arrs+ Γ T = just ff type+ Γ (Abs _ _ _ x' atk T) = let Γ' = ctxt-var-decl x' Γ; atk+? = tk+ Γ atk in positivity-add (positivity-neg $ tk+ Γ atk) (type+ Γ' $ hnf' Γ' T) type+ Γ (Iota _ _ x' T T') = let Γ' = ctxt-var-decl x' Γ; T? = type+ Γ T in positivity-add (type+ Γ T) (type+ Γ' T') type+ Γ (Lft _ _ x' t lT) = occurs-all type+ Γ (NoSpans T _) = type+ Γ T type+ Γ (TpLet _ (DefTerm _ x' T? t) T) = type+ Γ (hnf' Γ (subst Γ t x' T)) type+ Γ (TpLet _ (DefType _ x' k T) T') = type+ Γ (hnf' Γ (subst Γ T x' T')) type+ Γ (TpApp T T') = positivity-add (type+ Γ T) (if-free T') type+ Γ (TpAppt T t) = positivity-add (type+ Γ T) (if-free t) type+ Γ (TpArrow T _ T') = positivity-add (positivity-neg $ type+ Γ T) (type+ Γ $ hnf' Γ T') type+ Γ (TpEq _ tₗ tᵣ _) = occurs-nil type+ Γ (TpHole _) = occurs-nil type+ Γ (TpLambda _ _ x' atk T)= let Γ' = ctxt-var-decl x' Γ in positivity-add (positivity-neg $ tk+ Γ atk) (type+ Γ' (hnf' Γ' T)) type+ Γ (TpParens _ T _) = type+ Γ T type+ Γ (TpVar _ x') = x =string x' , ff kind+ Γ (KndArrow k k') = positivity-add (positivity-neg $ kind+ Γ k) (kind+ Γ k') kind+ Γ (KndParens _ k _) = kind+ Γ k kind+ Γ (KndPi _ _ x' atk k) = let Γ' = ctxt-var-decl x' Γ in positivity-add (positivity-neg $ tk+ Γ atk) (kind+ Γ' k) kind+ Γ (KndTpArrow T k) = positivity-add (positivity-neg $ type+ Γ T) (kind+ Γ k) kind+ Γ (KndVar _ κ as) = maybe-else' (ctxt-lookup-kind-var-def Γ κ) occurs-nil $ uncurry λ ps k → kind+ Γ (fst (subst-params-args Γ ps as k)) kind+ Γ (Star _) = occurs-nil tk+ Γ (Tkt T) = type+ Γ (hnf' Γ T) tk+ Γ (Tkk k) = kind+ Γ k
{ "alphanum_fraction": 0.6272942236, "avg_line_length": 36.6983471074, "ext": "agda", "hexsha": "6146140d6512f08206ffab2c3e2dee43853f9b60", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f5ce42258b7d9bc66f75cd679c785d6133b82b58", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CarlOlson/cedille", "max_forks_repo_path": "src/datatype-functions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f5ce42258b7d9bc66f75cd679c785d6133b82b58", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CarlOlson/cedille", "max_issues_repo_path": "src/datatype-functions.agda", "max_line_length": 120, "max_stars_count": null, "max_stars_repo_head_hexsha": "f5ce42258b7d9bc66f75cd679c785d6133b82b58", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CarlOlson/cedille", "max_stars_repo_path": "src/datatype-functions.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3278, "size": 8881 }
{-# OPTIONS --without-K --safe #-} module Categories.Functor.Algebra where -- Algebra for a Functor open import Level open import Function using (_$_) open import Categories.Category using (Category) open import Categories.Functor using (Functor; Endofunctor) private variable o ℓ e : Level module _ {C : Category o ℓ e} where record F-Algebra (F : Endofunctor C) : Set (o ⊔ ℓ) where open Category C field A : Obj α : Functor.F₀ F A ⇒ A open F-Algebra -- Given an F-Algebra F, one can apply F to it to obtain an new 'iterated' F-Algebra iterate : {F : Endofunctor C} → F-Algebra F → F-Algebra F iterate {F} c = record { A = Functor.F₀ F $ A c ; α = Functor.F₁ F $ α c } record F-Algebra-Morphism {F : Endofunctor C} (X Y : F-Algebra F) : Set (ℓ ⊔ e) where open Category C module X = F-Algebra X module Y = F-Algebra Y open Functor F field f : X.A ⇒ Y.A commutes : f ∘ X.α ≈ Y.α ∘ F₁ f
{ "alphanum_fraction": 0.6358921162, "avg_line_length": 25.3684210526, "ext": "agda", "hexsha": "4c45d60d5ade5b746d586710a79d05cb79fadf76", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Functor/Algebra.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Functor/Algebra.agda", "max_line_length": 87, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Functor/Algebra.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 314, "size": 964 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some derivable properties ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Algebra module Algebra.Properties.BooleanAlgebra {b₁ b₂} (B : BooleanAlgebra b₁ b₂) where open BooleanAlgebra B import Algebra.Properties.DistributiveLattice private open module DL = Algebra.Properties.DistributiveLattice distributiveLattice public hiding (replace-equality) open import Algebra.Structures _≈_ open import Algebra.FunctionProperties _≈_ open import Algebra.FunctionProperties.Consequences setoid open import Relation.Binary.Reasoning.Setoid setoid open import Relation.Binary open import Function open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using (_⇔_; module Equivalence) open import Data.Product using (_,_) ------------------------------------------------------------------------ -- Some simple generalisations ∨-complementˡ : LeftInverse ⊤ ¬_ _∨_ ∨-complementˡ = comm+invʳ⇒invˡ ∨-comm ∨-complementʳ ∨-complement : Inverse ⊤ ¬_ _∨_ ∨-complement = ∨-complementˡ , ∨-complementʳ ∧-complementˡ : LeftInverse ⊥ ¬_ _∧_ ∧-complementˡ = comm+invʳ⇒invˡ ∧-comm ∧-complementʳ ∧-complement : Inverse ⊥ ¬_ _∧_ ∧-complement = ∧-complementˡ , ∧-complementʳ ------------------------------------------------------------------------ -- The dual construction is also a boolean algebra ∧-∨-isBooleanAlgebra : IsBooleanAlgebra _∧_ _∨_ ¬_ ⊥ ⊤ ∧-∨-isBooleanAlgebra = record { isDistributiveLattice = ∧-∨-isDistributiveLattice ; ∨-complementʳ = ∧-complementʳ ; ∧-complementʳ = ∨-complementʳ ; ¬-cong = ¬-cong } ∧-∨-booleanAlgebra : BooleanAlgebra _ _ ∧-∨-booleanAlgebra = record { _∧_ = _∨_ ; _∨_ = _∧_ ; ⊤ = ⊥ ; ⊥ = ⊤ ; isBooleanAlgebra = ∧-∨-isBooleanAlgebra } ------------------------------------------------------------------------ -- (∨, ∧, ⊥, ⊤) and (∧, ∨, ⊤, ⊥) are commutative semirings ∧-identityʳ : RightIdentity ⊤ _∧_ ∧-identityʳ x = begin x ∧ ⊤ ≈⟨ ∧-congˡ (sym (∨-complementʳ _)) ⟩ x ∧ (x ∨ ¬ x) ≈⟨ ∧-absorbs-∨ _ _ ⟩ x ∎ ∧-identityˡ : LeftIdentity ⊤ _∧_ ∧-identityˡ = comm+idʳ⇒idˡ ∧-comm ∧-identityʳ ∧-identity : Identity ⊤ _∧_ ∧-identity = ∧-identityˡ , ∧-identityʳ ∨-identityʳ : RightIdentity ⊥ _∨_ ∨-identityʳ x = begin x ∨ ⊥ ≈⟨ ∨-congˡ $ sym (∧-complementʳ _) ⟩ x ∨ x ∧ ¬ x ≈⟨ ∨-absorbs-∧ _ _ ⟩ x ∎ ∨-identityˡ : LeftIdentity ⊥ _∨_ ∨-identityˡ = comm+idʳ⇒idˡ ∨-comm ∨-identityʳ ∨-identity : Identity ⊥ _∨_ ∨-identity = ∨-identityˡ , ∨-identityʳ ∧-zeroʳ : RightZero ⊥ _∧_ ∧-zeroʳ x = begin x ∧ ⊥ ≈⟨ ∧-congˡ $ sym (∧-complementʳ _) ⟩ x ∧ x ∧ ¬ x ≈˘⟨ ∧-assoc _ _ _ ⟩ (x ∧ x) ∧ ¬ x ≈⟨ ∧-congʳ $ ∧-idempotent _ ⟩ x ∧ ¬ x ≈⟨ ∧-complementʳ _ ⟩ ⊥ ∎ ∧-zeroˡ : LeftZero ⊥ _∧_ ∧-zeroˡ = comm+zeʳ⇒zeˡ ∧-comm ∧-zeroʳ ∧-zero : Zero ⊥ _∧_ ∧-zero = ∧-zeroˡ , ∧-zeroʳ ∨-zeroʳ : ∀ x → x ∨ ⊤ ≈ ⊤ ∨-zeroʳ x = begin x ∨ ⊤ ≈⟨ ∨-congˡ $ sym (∨-complementʳ _) ⟩ x ∨ x ∨ ¬ x ≈˘⟨ ∨-assoc _ _ _ ⟩ (x ∨ x) ∨ ¬ x ≈⟨ ∨-congʳ $ ∨-idempotent _ ⟩ x ∨ ¬ x ≈⟨ ∨-complementʳ _ ⟩ ⊤ ∎ ∨-zeroˡ : LeftZero ⊤ _∨_ ∨-zeroˡ _ = ∨-comm _ _ ⟨ trans ⟩ ∨-zeroʳ _ ∨-zero : Zero ⊤ _∨_ ∨-zero = ∨-zeroˡ , ∨-zeroʳ ∨-isMagma : IsMagma _∨_ ∨-isMagma = record { isEquivalence = isEquivalence ; ∙-cong = ∨-cong } ∧-isMagma : IsMagma _∧_ ∧-isMagma = record { isEquivalence = isEquivalence ; ∙-cong = ∧-cong } ∨-isSemigroup : IsSemigroup _∨_ ∨-isSemigroup = record { isMagma = ∨-isMagma ; assoc = ∨-assoc } ∧-isSemigroup : IsSemigroup _∧_ ∧-isSemigroup = record { isMagma = ∧-isMagma ; assoc = ∧-assoc } ∨-⊥-isMonoid : IsMonoid _∨_ ⊥ ∨-⊥-isMonoid = record { isSemigroup = ∨-isSemigroup ; identity = ∨-identity } ∧-⊤-isMonoid : IsMonoid _∧_ ⊤ ∧-⊤-isMonoid = record { isSemigroup = ∧-isSemigroup ; identity = ∧-identity } ∨-⊥-isCommutativeMonoid : IsCommutativeMonoid _∨_ ⊥ ∨-⊥-isCommutativeMonoid = record { isSemigroup = ∨-isSemigroup ; identityˡ = ∨-identityˡ ; comm = ∨-comm } ∧-⊤-isCommutativeMonoid : IsCommutativeMonoid _∧_ ⊤ ∧-⊤-isCommutativeMonoid = record { isSemigroup = ∧-isSemigroup ; identityˡ = ∧-identityˡ ; comm = ∧-comm } ∨-∧-isCommutativeSemiring : IsCommutativeSemiring _∨_ _∧_ ⊥ ⊤ ∨-∧-isCommutativeSemiring = record { +-isCommutativeMonoid = ∨-⊥-isCommutativeMonoid ; *-isCommutativeMonoid = ∧-⊤-isCommutativeMonoid ; distribʳ = ∧-∨-distribʳ ; zeroˡ = ∧-zeroˡ } ∨-∧-commutativeSemiring : CommutativeSemiring _ _ ∨-∧-commutativeSemiring = record { _+_ = _∨_ ; _*_ = _∧_ ; 0# = ⊥ ; 1# = ⊤ ; isCommutativeSemiring = ∨-∧-isCommutativeSemiring } ∧-∨-isCommutativeSemiring : IsCommutativeSemiring _∧_ _∨_ ⊤ ⊥ ∧-∨-isCommutativeSemiring = record { +-isCommutativeMonoid = ∧-⊤-isCommutativeMonoid ; *-isCommutativeMonoid = ∨-⊥-isCommutativeMonoid ; distribʳ = ∨-∧-distribʳ ; zeroˡ = ∨-zeroˡ } ∧-∨-commutativeSemiring : CommutativeSemiring _ _ ∧-∨-commutativeSemiring = record { _+_ = _∧_ ; _*_ = _∨_ ; 0# = ⊤ ; 1# = ⊥ ; isCommutativeSemiring = ∧-∨-isCommutativeSemiring } ------------------------------------------------------------------------ -- Some other properties -- I took the statement of this lemma (called Uniqueness of -- Complements) from some course notes, "Boolean Algebra", written -- by Gert Smolka. private lemma : ∀ x y → x ∧ y ≈ ⊥ → x ∨ y ≈ ⊤ → ¬ x ≈ y lemma x y x∧y=⊥ x∨y=⊤ = begin ¬ x ≈˘⟨ ∧-identityʳ _ ⟩ ¬ x ∧ ⊤ ≈˘⟨ ∧-congˡ x∨y=⊤ ⟩ ¬ x ∧ (x ∨ y) ≈⟨ ∧-∨-distribˡ _ _ _ ⟩ ¬ x ∧ x ∨ ¬ x ∧ y ≈⟨ ∨-congʳ $ ∧-complementˡ _ ⟩ ⊥ ∨ ¬ x ∧ y ≈˘⟨ ∨-congʳ x∧y=⊥ ⟩ x ∧ y ∨ ¬ x ∧ y ≈˘⟨ ∧-∨-distribʳ _ _ _ ⟩ (x ∨ ¬ x) ∧ y ≈⟨ ∧-congʳ $ ∨-complementʳ _ ⟩ ⊤ ∧ y ≈⟨ ∧-identityˡ _ ⟩ y ∎ ¬⊥=⊤ : ¬ ⊥ ≈ ⊤ ¬⊥=⊤ = lemma ⊥ ⊤ (∧-identityʳ _) (∨-zeroʳ _) ¬⊤=⊥ : ¬ ⊤ ≈ ⊥ ¬⊤=⊥ = lemma ⊤ ⊥ (∧-zeroʳ _) (∨-identityʳ _) ¬-involutive : Involutive ¬_ ¬-involutive x = lemma (¬ x) x (∧-complementˡ _) (∨-complementˡ _) deMorgan₁ : ∀ x y → ¬ (x ∧ y) ≈ ¬ x ∨ ¬ y deMorgan₁ x y = lemma (x ∧ y) (¬ x ∨ ¬ y) lem₁ lem₂ where lem₁ = begin (x ∧ y) ∧ (¬ x ∨ ¬ y) ≈⟨ ∧-∨-distribˡ _ _ _ ⟩ (x ∧ y) ∧ ¬ x ∨ (x ∧ y) ∧ ¬ y ≈⟨ ∨-congʳ $ ∧-congʳ $ ∧-comm _ _ ⟩ (y ∧ x) ∧ ¬ x ∨ (x ∧ y) ∧ ¬ y ≈⟨ ∧-assoc _ _ _ ⟨ ∨-cong ⟩ ∧-assoc _ _ _ ⟩ y ∧ (x ∧ ¬ x) ∨ x ∧ (y ∧ ¬ y) ≈⟨ (∧-congˡ $ ∧-complementʳ _) ⟨ ∨-cong ⟩ (∧-congˡ $ ∧-complementʳ _) ⟩ (y ∧ ⊥) ∨ (x ∧ ⊥) ≈⟨ ∧-zeroʳ _ ⟨ ∨-cong ⟩ ∧-zeroʳ _ ⟩ ⊥ ∨ ⊥ ≈⟨ ∨-identityʳ _ ⟩ ⊥ ∎ lem₃ = begin (x ∧ y) ∨ ¬ x ≈⟨ ∨-∧-distribʳ _ _ _ ⟩ (x ∨ ¬ x) ∧ (y ∨ ¬ x) ≈⟨ ∧-congʳ $ ∨-complementʳ _ ⟩ ⊤ ∧ (y ∨ ¬ x) ≈⟨ ∧-identityˡ _ ⟩ y ∨ ¬ x ≈⟨ ∨-comm _ _ ⟩ ¬ x ∨ y ∎ lem₂ = begin (x ∧ y) ∨ (¬ x ∨ ¬ y) ≈˘⟨ ∨-assoc _ _ _ ⟩ ((x ∧ y) ∨ ¬ x) ∨ ¬ y ≈⟨ ∨-congʳ lem₃ ⟩ (¬ x ∨ y) ∨ ¬ y ≈⟨ ∨-assoc _ _ _ ⟩ ¬ x ∨ (y ∨ ¬ y) ≈⟨ ∨-congˡ $ ∨-complementʳ _ ⟩ ¬ x ∨ ⊤ ≈⟨ ∨-zeroʳ _ ⟩ ⊤ ∎ deMorgan₂ : ∀ x y → ¬ (x ∨ y) ≈ ¬ x ∧ ¬ y deMorgan₂ x y = begin ¬ (x ∨ y) ≈˘⟨ ¬-cong $ ((¬-involutive _) ⟨ ∨-cong ⟩ (¬-involutive _)) ⟩ ¬ (¬ ¬ x ∨ ¬ ¬ y) ≈˘⟨ ¬-cong $ deMorgan₁ _ _ ⟩ ¬ ¬ (¬ x ∧ ¬ y) ≈⟨ ¬-involutive _ ⟩ ¬ x ∧ ¬ y ∎ -- One can replace the underlying equality with an equivalent one. replace-equality : {_≈′_ : Rel Carrier b₂} → (∀ {x y} → x ≈ y ⇔ (x ≈′ y)) → BooleanAlgebra _ _ replace-equality {_≈′_} ≈⇔≈′ = record { _≈_ = _≈′_ ; _∨_ = _∨_ ; _∧_ = _∧_ ; ¬_ = ¬_ ; ⊤ = ⊤ ; ⊥ = ⊥ ; isBooleanAlgebra = record { isDistributiveLattice = DistributiveLattice.isDistributiveLattice (DL.replace-equality ≈⇔≈′) ; ∨-complementʳ = λ x → to ⟨$⟩ ∨-complementʳ x ; ∧-complementʳ = λ x → to ⟨$⟩ ∧-complementʳ x ; ¬-cong = λ i≈j → to ⟨$⟩ ¬-cong (from ⟨$⟩ i≈j) } } where open module E {x y} = Equivalence (≈⇔≈′ {x} {y}) ------------------------------------------------------------------------ -- (⊕, ∧, id, ⊥, ⊤) is a commutative ring -- This construction is parameterised over the definition of xor. module XorRing (xor : Op₂ Carrier) (⊕-def : ∀ x y → xor x y ≈ (x ∨ y) ∧ ¬ (x ∧ y)) where private infixl 6 _⊕_ _⊕_ : Op₂ Carrier _⊕_ = xor helper : ∀ {x y u v} → x ≈ y → u ≈ v → x ∧ ¬ u ≈ y ∧ ¬ v helper x≈y u≈v = x≈y ⟨ ∧-cong ⟩ ¬-cong u≈v ⊕-cong : Congruent₂ _⊕_ ⊕-cong {x} {y} {u} {v} x≈y u≈v = begin x ⊕ u ≈⟨ ⊕-def _ _ ⟩ (x ∨ u) ∧ ¬ (x ∧ u) ≈⟨ helper (x≈y ⟨ ∨-cong ⟩ u≈v) (x≈y ⟨ ∧-cong ⟩ u≈v) ⟩ (y ∨ v) ∧ ¬ (y ∧ v) ≈˘⟨ ⊕-def _ _ ⟩ y ⊕ v ∎ ⊕-comm : Commutative _⊕_ ⊕-comm x y = begin x ⊕ y ≈⟨ ⊕-def _ _ ⟩ (x ∨ y) ∧ ¬ (x ∧ y) ≈⟨ helper (∨-comm _ _) (∧-comm _ _) ⟩ (y ∨ x) ∧ ¬ (y ∧ x) ≈˘⟨ ⊕-def _ _ ⟩ y ⊕ x ∎ ⊕-¬-distribˡ : ∀ x y → ¬ (x ⊕ y) ≈ ¬ x ⊕ y ⊕-¬-distribˡ x y = begin ¬ (x ⊕ y) ≈⟨ ¬-cong $ ⊕-def _ _ ⟩ ¬ ((x ∨ y) ∧ (¬ (x ∧ y))) ≈⟨ ¬-cong (∧-∨-distribʳ _ _ _) ⟩ ¬ ((x ∧ ¬ (x ∧ y)) ∨ (y ∧ ¬ (x ∧ y))) ≈⟨ ¬-cong $ ∨-congˡ $ ∧-congˡ $ ¬-cong (∧-comm _ _) ⟩ ¬ ((x ∧ ¬ (x ∧ y)) ∨ (y ∧ ¬ (y ∧ x))) ≈⟨ ¬-cong $ lem _ _ ⟨ ∨-cong ⟩ lem _ _ ⟩ ¬ ((x ∧ ¬ y) ∨ (y ∧ ¬ x)) ≈⟨ deMorgan₂ _ _ ⟩ ¬ (x ∧ ¬ y) ∧ ¬ (y ∧ ¬ x) ≈⟨ ∧-congʳ $ deMorgan₁ _ _ ⟩ (¬ x ∨ (¬ ¬ y)) ∧ ¬ (y ∧ ¬ x) ≈⟨ helper (∨-congˡ $ ¬-involutive _) (∧-comm _ _) ⟩ (¬ x ∨ y) ∧ ¬ (¬ x ∧ y) ≈˘⟨ ⊕-def _ _ ⟩ ¬ x ⊕ y ∎ where lem : ∀ x y → x ∧ ¬ (x ∧ y) ≈ x ∧ ¬ y lem x y = begin x ∧ ¬ (x ∧ y) ≈⟨ ∧-congˡ $ deMorgan₁ _ _ ⟩ x ∧ (¬ x ∨ ¬ y) ≈⟨ ∧-∨-distribˡ _ _ _ ⟩ (x ∧ ¬ x) ∨ (x ∧ ¬ y) ≈⟨ ∨-congʳ $ ∧-complementʳ _ ⟩ ⊥ ∨ (x ∧ ¬ y) ≈⟨ ∨-identityˡ _ ⟩ x ∧ ¬ y ∎ ⊕-¬-distribʳ : ∀ x y → ¬ (x ⊕ y) ≈ x ⊕ ¬ y ⊕-¬-distribʳ x y = begin ¬ (x ⊕ y) ≈⟨ ¬-cong $ ⊕-comm _ _ ⟩ ¬ (y ⊕ x) ≈⟨ ⊕-¬-distribˡ _ _ ⟩ ¬ y ⊕ x ≈⟨ ⊕-comm _ _ ⟩ x ⊕ ¬ y ∎ ⊕-annihilates-¬ : ∀ x y → x ⊕ y ≈ ¬ x ⊕ ¬ y ⊕-annihilates-¬ x y = begin x ⊕ y ≈˘⟨ ¬-involutive _ ⟩ ¬ ¬ (x ⊕ y) ≈⟨ ¬-cong $ ⊕-¬-distribˡ _ _ ⟩ ¬ (¬ x ⊕ y) ≈⟨ ⊕-¬-distribʳ _ _ ⟩ ¬ x ⊕ ¬ y ∎ ⊕-identityˡ : LeftIdentity ⊥ _⊕_ ⊕-identityˡ x = begin ⊥ ⊕ x ≈⟨ ⊕-def _ _ ⟩ (⊥ ∨ x) ∧ ¬ (⊥ ∧ x) ≈⟨ helper (∨-identityˡ _) (∧-zeroˡ _) ⟩ x ∧ ¬ ⊥ ≈⟨ ∧-congˡ ¬⊥=⊤ ⟩ x ∧ ⊤ ≈⟨ ∧-identityʳ _ ⟩ x ∎ ⊕-identityʳ : RightIdentity ⊥ _⊕_ ⊕-identityʳ _ = ⊕-comm _ _ ⟨ trans ⟩ ⊕-identityˡ _ ⊕-identity : Identity ⊥ _⊕_ ⊕-identity = ⊕-identityˡ , ⊕-identityʳ ⊕-inverseˡ : LeftInverse ⊥ id _⊕_ ⊕-inverseˡ x = begin x ⊕ x ≈⟨ ⊕-def _ _ ⟩ (x ∨ x) ∧ ¬ (x ∧ x) ≈⟨ helper (∨-idempotent _) (∧-idempotent _) ⟩ x ∧ ¬ x ≈⟨ ∧-complementʳ _ ⟩ ⊥ ∎ ⊕-inverseʳ : RightInverse ⊥ id _⊕_ ⊕-inverseʳ _ = ⊕-comm _ _ ⟨ trans ⟩ ⊕-inverseˡ _ ⊕-inverse : Inverse ⊥ id _⊕_ ⊕-inverse = ⊕-inverseˡ , ⊕-inverseʳ ∧-distribˡ-⊕ : _∧_ DistributesOverˡ _⊕_ ∧-distribˡ-⊕ x y z = begin x ∧ (y ⊕ z) ≈⟨ ∧-congˡ $ ⊕-def _ _ ⟩ x ∧ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈˘⟨ ∧-assoc _ _ _ ⟩ (x ∧ (y ∨ z)) ∧ ¬ (y ∧ z) ≈⟨ ∧-congˡ $ deMorgan₁ _ _ ⟩ (x ∧ (y ∨ z)) ∧ (¬ y ∨ ¬ z) ≈˘⟨ ∨-identityˡ _ ⟩ ⊥ ∨ ((x ∧ (y ∨ z)) ∧ (¬ y ∨ ¬ z)) ≈⟨ ∨-congʳ lem₃ ⟩ ((x ∧ (y ∨ z)) ∧ ¬ x) ∨ ((x ∧ (y ∨ z)) ∧ (¬ y ∨ ¬ z)) ≈˘⟨ ∧-∨-distribˡ _ _ _ ⟩ (x ∧ (y ∨ z)) ∧ (¬ x ∨ (¬ y ∨ ¬ z)) ≈˘⟨ ∧-congˡ $ ∨-congˡ (deMorgan₁ _ _) ⟩ (x ∧ (y ∨ z)) ∧ (¬ x ∨ ¬ (y ∧ z)) ≈˘⟨ ∧-congˡ (deMorgan₁ _ _) ⟩ (x ∧ (y ∨ z)) ∧ ¬ (x ∧ (y ∧ z)) ≈⟨ helper refl lem₁ ⟩ (x ∧ (y ∨ z)) ∧ ¬ ((x ∧ y) ∧ (x ∧ z)) ≈⟨ ∧-congʳ $ ∧-∨-distribˡ _ _ _ ⟩ ((x ∧ y) ∨ (x ∧ z)) ∧ ¬ ((x ∧ y) ∧ (x ∧ z)) ≈˘⟨ ⊕-def _ _ ⟩ (x ∧ y) ⊕ (x ∧ z) ∎ where lem₂ = begin x ∧ (y ∧ z) ≈˘⟨ ∧-assoc _ _ _ ⟩ (x ∧ y) ∧ z ≈⟨ ∧-congʳ $ ∧-comm _ _ ⟩ (y ∧ x) ∧ z ≈⟨ ∧-assoc _ _ _ ⟩ y ∧ (x ∧ z) ∎ lem₁ = begin x ∧ (y ∧ z) ≈˘⟨ ∧-congʳ (∧-idempotent _) ⟩ (x ∧ x) ∧ (y ∧ z) ≈⟨ ∧-assoc _ _ _ ⟩ x ∧ (x ∧ (y ∧ z)) ≈⟨ ∧-congˡ lem₂ ⟩ x ∧ (y ∧ (x ∧ z)) ≈˘⟨ ∧-assoc _ _ _ ⟩ (x ∧ y) ∧ (x ∧ z) ∎ lem₃ = begin ⊥ ≈˘⟨ ∧-zeroʳ _ ⟩ (y ∨ z) ∧ ⊥ ≈˘⟨ ∧-congˡ (∧-complementʳ _) ⟩ (y ∨ z) ∧ (x ∧ ¬ x) ≈˘⟨ ∧-assoc _ _ _ ⟩ ((y ∨ z) ∧ x) ∧ ¬ x ≈⟨ ∧-comm _ _ ⟨ ∧-cong ⟩ refl ⟩ (x ∧ (y ∨ z)) ∧ ¬ x ∎ ∧-distribʳ-⊕ : _∧_ DistributesOverʳ _⊕_ ∧-distribʳ-⊕ = comm+distrˡ⇒distrʳ ⊕-cong ∧-comm ∧-distribˡ-⊕ ∧-distrib-⊕ : _∧_ DistributesOver _⊕_ ∧-distrib-⊕ = ∧-distribˡ-⊕ , ∧-distribʳ-⊕ private lemma₂ : ∀ x y u v → (x ∧ y) ∨ (u ∧ v) ≈ ((x ∨ u) ∧ (y ∨ u)) ∧ ((x ∨ v) ∧ (y ∨ v)) lemma₂ x y u v = begin (x ∧ y) ∨ (u ∧ v) ≈⟨ ∨-∧-distribˡ _ _ _ ⟩ ((x ∧ y) ∨ u) ∧ ((x ∧ y) ∨ v) ≈⟨ ∨-∧-distribʳ _ _ _ ⟨ ∧-cong ⟩ ∨-∧-distribʳ _ _ _ ⟩ ((x ∨ u) ∧ (y ∨ u)) ∧ ((x ∨ v) ∧ (y ∨ v)) ∎ ⊕-assoc : Associative _⊕_ ⊕-assoc x y z = sym $ begin x ⊕ (y ⊕ z) ≈⟨ refl ⟨ ⊕-cong ⟩ ⊕-def _ _ ⟩ x ⊕ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ ⊕-def _ _ ⟩ (x ∨ ((y ∨ z) ∧ ¬ (y ∧ z))) ∧ ¬ (x ∧ ((y ∨ z) ∧ ¬ (y ∧ z))) ≈⟨ lem₃ ⟨ ∧-cong ⟩ lem₄ ⟩ (((x ∨ y) ∨ z) ∧ ((x ∨ ¬ y) ∨ ¬ z)) ∧ (((¬ x ∨ ¬ y) ∨ z) ∧ ((¬ x ∨ y) ∨ ¬ z)) ≈⟨ ∧-assoc _ _ _ ⟩ ((x ∨ y) ∨ z) ∧ (((x ∨ ¬ y) ∨ ¬ z) ∧ (((¬ x ∨ ¬ y) ∨ z) ∧ ((¬ x ∨ y) ∨ ¬ z))) ≈⟨ ∧-congˡ lem₅ ⟩ ((x ∨ y) ∨ z) ∧ (((¬ x ∨ ¬ y) ∨ z) ∧ (((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ y) ∨ ¬ z))) ≈˘⟨ ∧-assoc _ _ _ ⟩ (((x ∨ y) ∨ z) ∧ ((¬ x ∨ ¬ y) ∨ z)) ∧ (((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ y) ∨ ¬ z)) ≈⟨ lem₁ ⟨ ∧-cong ⟩ lem₂ ⟩ (((x ∨ y) ∧ ¬ (x ∧ y)) ∨ z) ∧ ¬ (((x ∨ y) ∧ ¬ (x ∧ y)) ∧ z) ≈˘⟨ ⊕-def _ _ ⟩ ((x ∨ y) ∧ ¬ (x ∧ y)) ⊕ z ≈˘⟨ ⊕-def _ _ ⟨ ⊕-cong ⟩ refl ⟩ (x ⊕ y) ⊕ z ∎ where lem₁ = begin ((x ∨ y) ∨ z) ∧ ((¬ x ∨ ¬ y) ∨ z) ≈˘⟨ ∨-∧-distribʳ _ _ _ ⟩ ((x ∨ y) ∧ (¬ x ∨ ¬ y)) ∨ z ≈˘⟨ ∨-congʳ $ ∧-congˡ (deMorgan₁ _ _) ⟩ ((x ∨ y) ∧ ¬ (x ∧ y)) ∨ z ∎ lem₂' = begin (x ∨ ¬ y) ∧ (¬ x ∨ y) ≈˘⟨ ∧-identityˡ _ ⟨ ∧-cong ⟩ ∧-identityʳ _ ⟩ (⊤ ∧ (x ∨ ¬ y)) ∧ ((¬ x ∨ y) ∧ ⊤) ≈˘⟨ (∨-complementˡ _ ⟨ ∧-cong ⟩ ∨-comm _ _) ⟨ ∧-cong ⟩ (∧-congˡ $ ∨-complementˡ _) ⟩ ((¬ x ∨ x) ∧ (¬ y ∨ x)) ∧ ((¬ x ∨ y) ∧ (¬ y ∨ y)) ≈˘⟨ lemma₂ _ _ _ _ ⟩ (¬ x ∧ ¬ y) ∨ (x ∧ y) ≈˘⟨ deMorgan₂ _ _ ⟨ ∨-cong ⟩ ¬-involutive _ ⟩ ¬ (x ∨ y) ∨ ¬ ¬ (x ∧ y) ≈˘⟨ deMorgan₁ _ _ ⟩ ¬ ((x ∨ y) ∧ ¬ (x ∧ y)) ∎ lem₂ = begin ((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ y) ∨ ¬ z) ≈˘⟨ ∨-∧-distribʳ _ _ _ ⟩ ((x ∨ ¬ y) ∧ (¬ x ∨ y)) ∨ ¬ z ≈⟨ ∨-congʳ lem₂' ⟩ ¬ ((x ∨ y) ∧ ¬ (x ∧ y)) ∨ ¬ z ≈˘⟨ deMorgan₁ _ _ ⟩ ¬ (((x ∨ y) ∧ ¬ (x ∧ y)) ∧ z) ∎ lem₃ = begin x ∨ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ ∨-congˡ $ ∧-congˡ $ deMorgan₁ _ _ ⟩ x ∨ ((y ∨ z) ∧ (¬ y ∨ ¬ z)) ≈⟨ ∨-∧-distribˡ _ _ _ ⟩ (x ∨ (y ∨ z)) ∧ (x ∨ (¬ y ∨ ¬ z)) ≈˘⟨ ∨-assoc _ _ _ ⟨ ∧-cong ⟩ ∨-assoc _ _ _ ⟩ ((x ∨ y) ∨ z) ∧ ((x ∨ ¬ y) ∨ ¬ z) ∎ lem₄' = begin ¬ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ deMorgan₁ _ _ ⟩ ¬ (y ∨ z) ∨ ¬ ¬ (y ∧ z) ≈⟨ deMorgan₂ _ _ ⟨ ∨-cong ⟩ ¬-involutive _ ⟩ (¬ y ∧ ¬ z) ∨ (y ∧ z) ≈⟨ lemma₂ _ _ _ _ ⟩ ((¬ y ∨ y) ∧ (¬ z ∨ y)) ∧ ((¬ y ∨ z) ∧ (¬ z ∨ z)) ≈⟨ (∨-complementˡ _ ⟨ ∧-cong ⟩ ∨-comm _ _) ⟨ ∧-cong ⟩ (∧-congˡ $ ∨-complementˡ _) ⟩ (⊤ ∧ (y ∨ ¬ z)) ∧ ((¬ y ∨ z) ∧ ⊤) ≈⟨ ∧-identityˡ _ ⟨ ∧-cong ⟩ ∧-identityʳ _ ⟩ (y ∨ ¬ z) ∧ (¬ y ∨ z) ∎ lem₄ = begin ¬ (x ∧ ((y ∨ z) ∧ ¬ (y ∧ z))) ≈⟨ deMorgan₁ _ _ ⟩ ¬ x ∨ ¬ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ ∨-congˡ lem₄' ⟩ ¬ x ∨ ((y ∨ ¬ z) ∧ (¬ y ∨ z)) ≈⟨ ∨-∧-distribˡ _ _ _ ⟩ (¬ x ∨ (y ∨ ¬ z)) ∧ (¬ x ∨ (¬ y ∨ z)) ≈˘⟨ ∨-assoc _ _ _ ⟨ ∧-cong ⟩ ∨-assoc _ _ _ ⟩ ((¬ x ∨ y) ∨ ¬ z) ∧ ((¬ x ∨ ¬ y) ∨ z) ≈⟨ ∧-comm _ _ ⟩ ((¬ x ∨ ¬ y) ∨ z) ∧ ((¬ x ∨ y) ∨ ¬ z) ∎ lem₅ = begin ((x ∨ ¬ y) ∨ ¬ z) ∧ (((¬ x ∨ ¬ y) ∨ z) ∧ ((¬ x ∨ y) ∨ ¬ z)) ≈˘⟨ ∧-assoc _ _ _ ⟩ (((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ ¬ y) ∨ z)) ∧ ((¬ x ∨ y) ∨ ¬ z) ≈⟨ ∧-congʳ $ ∧-comm _ _ ⟩ (((¬ x ∨ ¬ y) ∨ z) ∧ ((x ∨ ¬ y) ∨ ¬ z)) ∧ ((¬ x ∨ y) ∨ ¬ z) ≈⟨ ∧-assoc _ _ _ ⟩ ((¬ x ∨ ¬ y) ∨ z) ∧ (((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ y) ∨ ¬ z)) ∎ ⊕-isMagma : IsMagma _⊕_ ⊕-isMagma = record { isEquivalence = isEquivalence ; ∙-cong = ⊕-cong } ⊕-isSemigroup : IsSemigroup _⊕_ ⊕-isSemigroup = record { isMagma = ⊕-isMagma ; assoc = ⊕-assoc } ⊕-⊥-isMonoid : IsMonoid _⊕_ ⊥ ⊕-⊥-isMonoid = record { isSemigroup = ⊕-isSemigroup ; identity = ⊕-identity } ⊕-⊥-isGroup : IsGroup _⊕_ ⊥ id ⊕-⊥-isGroup = record { isMonoid = ⊕-⊥-isMonoid ; inverse = ⊕-inverse ; ⁻¹-cong = id } ⊕-⊥-isAbelianGroup : IsAbelianGroup _⊕_ ⊥ id ⊕-⊥-isAbelianGroup = record { isGroup = ⊕-⊥-isGroup ; comm = ⊕-comm } ⊕-∧-isRing : IsRing _⊕_ _∧_ id ⊥ ⊤ ⊕-∧-isRing = record { +-isAbelianGroup = ⊕-⊥-isAbelianGroup ; *-isMonoid = ∧-⊤-isMonoid ; distrib = ∧-distrib-⊕ } isCommutativeRing : IsCommutativeRing _⊕_ _∧_ id ⊥ ⊤ isCommutativeRing = record { isRing = ⊕-∧-isRing ; *-comm = ∧-comm } commutativeRing : CommutativeRing _ _ commutativeRing = record { _+_ = _⊕_ ; _*_ = _∧_ ; -_ = id ; 0# = ⊥ ; 1# = ⊤ ; isCommutativeRing = isCommutativeRing } infixl 6 _⊕_ _⊕_ : Op₂ Carrier x ⊕ y = (x ∨ y) ∧ ¬ (x ∧ y) module DefaultXorRing = XorRing _⊕_ (λ _ _ → refl)
{ "alphanum_fraction": 0.3878276093, "avg_line_length": 32.8057432432, "ext": "agda", "hexsha": "d7ee92fbcebaac60dba1cf6a6a7fb194036874d0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Properties/BooleanAlgebra.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Properties/BooleanAlgebra.agda", "max_line_length": 96, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Properties/BooleanAlgebra.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 9368, "size": 19421 }
-- Andreas, 2017-08-13, issue #2684 -- Better error for abstract constructor. abstract data D : Set where c : D data E : Set where c : E test : D test = c -- Expected: -- Constructor c is abstract, thus, not in scope here -- when checking that the expression c has type D
{ "alphanum_fraction": 0.6631944444, "avg_line_length": 16.9411764706, "ext": "agda", "hexsha": "4e972b4f0f2f4f4805fba32e53eeb9f3a05562cb", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2684.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2684.agda", "max_line_length": 53, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2684.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 84, "size": 288 }
-- Check that unquoted functions are termination checked. module _ where open import Common.Prelude hiding (_>>=_) open import Common.Reflection open import Common.Equality `⊥ : Type `⊥ = def (quote ⊥) [] ⊥-elim : ∀ {a} {A : Set a} → ⊥ → A ⊥-elim () {- Generate cheat : ⊥ cheat = cheat -} makeLoop : TC Term makeLoop = freshName "cheat" >>= λ cheat → declareDef (vArg cheat) `⊥ >>= λ _ → defineFun cheat (clause [] (def cheat []) ∷ []) >>= λ _ → returnTC (def cheat []) macro magic : Tactic magic hole = makeLoop >>= λ loop → unify hole (def (quote ⊥-elim) (vArg loop ∷ [])) postulate ComplexityClass : Set P NP : ComplexityClass thm : P ≡ NP → ⊥ thm = magic
{ "alphanum_fraction": 0.6123919308, "avg_line_length": 18.2631578947, "ext": "agda", "hexsha": "d4bfd3285ca71012564a5e2aac50a45a1d55d962", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/TerminationCheckUnquote.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Fail/TerminationCheckUnquote.agda", "max_line_length": 59, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Fail/TerminationCheckUnquote.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 235, "size": 694 }
module Issue1290b where open import Issue1290 data Eq (x : R) : R → Set where refl : Eq x x test : Eq x (exp x) test = refl
{ "alphanum_fraction": 0.6511627907, "avg_line_length": 12.9, "ext": "agda", "hexsha": "4d90a7a692963506af22fa06103b2736945af6b5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1290b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1290b.agda", "max_line_length": 31, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1290b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 45, "size": 129 }
------------------------------------------------------------------------ -- Simple combinators working solely on and with functions ------------------------------------------------------------------------ module Data.Function where infixr 9 _∘_ _∘′_ _∘₀_ _∘₁_ infixl 1 _on_ _on₁_ infixl 1 _⟨_⟩_ _⟨_⟩₁_ infixr 0 _-[_]₁-_ _-[_]-_ _$_ infix 0 _∶_ _∶₁_ ------------------------------------------------------------------------ -- Types -- Unary functions on a given set. Fun₁ : Set → Set Fun₁ a = a → a -- Binary functions on a given set. Fun₂ : Set → Set Fun₂ a = a → a → a ------------------------------------------------------------------------ -- Functions _∘_ : {A : Set} {B : A → Set} {C : {x : A} → B x → Set} → (∀ {x} (y : B x) → C y) → (g : (x : A) → B x) → ((x : A) → C (g x)) f ∘ g = λ x → f (g x) _∘′_ : {A B C : Set} → (B → C) → (A → B) → (A → C) f ∘′ g = _∘_ f g _∘₀_ : {A : Set} {B : A → Set} {C : {x : A} → B x → Set₁} → (∀ {x} (y : B x) → C y) → (g : (x : A) → B x) → ((x : A) → C (g x)) f ∘₀ g = λ x → f (g x) _∘₁_ : {A : Set₁} {B : A → Set₁} {C : {x : A} → B x → Set₁} → (∀ {x} (y : B x) → C y) → (g : (x : A) → B x) → ((x : A) → C (g x)) f ∘₁ g = λ x → f (g x) id : {a : Set} → a → a id x = x id₁ : {a : Set₁} → a → a id₁ x = x const : {a b : Set} → a → b → a const x = λ _ → x const₁ : {a : Set₁} {b : Set} → a → b → a const₁ x = λ _ → x flip : {A B : Set} {C : A → B → Set} → ((x : A) (y : B) → C x y) → ((y : B) (x : A) → C x y) flip f = λ x y → f y x flip₁ : {A B : Set} {C : A → B → Set₁} → ((x : A) (y : B) → C x y) → ((y : B) (x : A) → C x y) flip₁ f = λ x y → f y x -- Note that _$_ is right associative, like in Haskell. If you want a -- left associative infix application operator, use -- Category.Functor._<$>_, available from -- Category.Monad.Identity.IdentityMonad. _$_ : {a : Set} {b : a → Set} → ((x : a) → b x) → ((x : a) → b x) f $ x = f x _⟨_⟩_ : {a b c : Set} → a → (a → b → c) → b → c x ⟨ f ⟩ y = f x y _⟨_⟩₁_ : {a b : Set} → a → (a → b → Set) → b → Set x ⟨ f ⟩₁ y = f x y _on_ : {a b c : Set} → (b → b → c) → (a → b) → (a → a → c) _*_ on f = λ x y → f x * f y _on₁_ : {a b : Set} {c : Set₁} → (b → b → c) → (a → b) → (a → a → c) _*_ on₁ f = λ x y → f x * f y _-[_]-_ : {a b c d e : Set} → (a → b → c) → (c → d → e) → (a → b → d) → (a → b → e) f -[ _*_ ]- g = λ x y → f x y * g x y _-[_]₁-_ : {a b : Set} → (a → b → Set) → (Set → Set → Set) → (a → b → Set) → (a → b → Set) f -[ _*_ ]₁- g = λ x y → f x y * g x y -- In Agda you cannot annotate every subexpression with a type -- signature. This function can be used instead. -- -- You should think of the colon as being mirrored around its vertical -- axis; the type comes first. _∶_ : (A : Set) → A → A _ ∶ x = x _∶₁_ : (A : Set₁) → A → A _ ∶₁ x = x
{ "alphanum_fraction": 0.3939712583, "avg_line_length": 26.6635514019, "ext": "agda", "hexsha": "9534cde627c98121393406434fba850d1b211d59", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Data/Function.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Data/Function.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Data/Function.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 1203, "size": 2853 }
{-# OPTIONS --safe #-} module Definition.Typed.Consequences.Injectivity where open import Definition.Untyped hiding (wk) import Definition.Untyped as U open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Weakening open import Definition.Typed.Properties open import Definition.Typed.EqRelInstance open import Definition.LogicalRelation open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Fundamental.Reducibility open import Tools.Product import Tools.PropositionalEquality as PE -- Helper function of injectivity for specific reducible Π-types injectivity′ : ∀ {F G H E rF lF rH lH rΠ lG lE Γ lΠ l} ([ΠFG] : Γ ⊩⟨ l ⟩Π Π F ^ rF ° lF ▹ G ° lG ° lΠ ^[ rΠ , lΠ ] ) → Γ ⊩⟨ l ⟩ Π F ^ rF ° lF ▹ G ° lG ° lΠ ≡ Π H ^ rH ° lH ▹ E ° lE ° lΠ ^ [ rΠ , ι lΠ ] / Π-intr [ΠFG] → Γ ⊢ F ≡ H ^ [ rF , ι lF ] × rF PE.≡ rH × lF PE.≡ lH × lG PE.≡ lE × Γ ∙ F ^ [ rF , ι lF ] ⊢ G ≡ E ^ [ rΠ , ι lG ] injectivity′ {F₁} {G₁} {H} {E} {lF = lF₁} {rΠ = rΠ} {Γ = Γ} (noemb (Πᵣ ! lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) = let F≡F₁ , rF≡rF₁ , lF≡lF₁ , G≡G₁ , lG≡lG₁ , _ = Π-PE-injectivity (whnfRed* (red D) Πₙ) H≡F′ , rH≡rF′ , lH≡lF′ , E≡G′ , lE≡lG′ , _ = Π-PE-injectivity (whnfRed* D′ Πₙ) ⊢Γ = wf ⊢F [F]₁ = [F] id ⊢Γ [F]′ = irrelevance′ (PE.trans (wk-id _) (PE.sym F≡F₁)) [F]₁ [x∷F] = neuTerm ([F] (step id) (⊢Γ ∙ ⊢F)) (var 0) (var (⊢Γ ∙ ⊢F) here) (refl (var (⊢Γ ∙ ⊢F) here)) [G]₁ = [G] (step id) (⊢Γ ∙ ⊢F) [x∷F] [G]′ = PE.subst₂ (λ x y → _ ∙ y ^ _ ⊩⟨ _ ⟩ x ^ _) (PE.trans (wkSingleSubstId _) (PE.sym G≡G₁)) (PE.sym F≡F₁) [G]₁ [F≡H]₁ = [F≡F′] id ⊢Γ [F≡H]′ = irrelevanceEq″ (PE.trans (wk-id _) (PE.sym F≡F₁)) (PE.trans (wk-id _) (PE.sym H≡F′)) PE.refl PE.refl [F]₁ [F]′ [F≡H]₁ [G≡E]₁ = [G≡G′] (step id) (⊢Γ ∙ ⊢F) [x∷F] [G≡E]′ = irrelevanceEqLift″ (PE.trans (wkSingleSubstId _) (PE.sym G≡G₁)) (PE.trans (wkSingleSubstId _) (PE.sym E≡G′)) (PE.sym F≡F₁) [G]₁ [G]′ [G≡E]₁ in PE.subst (λ r → Γ ⊢ _ ≡ _ ^ [ r , ι lF₁ ] ) (PE.sym rF≡rF₁) (PE.subst (λ l → Γ ⊢ F₁ ≡ H ^ [ ! , l ] ) (PE.cong ι (PE.sym lF≡lF₁)) (escapeEq [F]′ [F≡H]′)) , ( PE.trans rF≡rF₁ (PE.sym rH≡rF′) , ( PE.trans lF≡lF₁ (PE.sym lH≡lF′) , ( PE.trans lG≡lG₁ (PE.sym lE≡lG′) , PE.subst (λ r → (_ ∙ _ ^ [ r , _ ] ) ⊢ _ ≡ _ ^ _) (PE.sym rF≡rF₁) (PE.subst (λ l → (Γ ∙ F₁ ^ [ ! , ι lF₁ ] ) ⊢ G₁ ≡ E ^ [ rΠ , l ]) (PE.cong ι (PE.sym lG≡lG₁)) (PE.subst (λ l → (Γ ∙ F₁ ^ [ ! , l ] ) ⊢ G₁ ≡ E ^ [ rΠ , ι lG ]) (PE.cong ι (PE.sym lF≡lF₁)) (escapeEq [G]′ [G≡E]′)))))) injectivity′ {F₁} {G₁} {H} {E} {lF = lF₁} {rΠ = rΠ} {Γ = Γ} (noemb (Πᵣ % lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) = let F≡F₁ , rF≡rF₁ , lF≡lF₁ , G≡G₁ , lG≡lG₁ , _ = Π-PE-injectivity (whnfRed* (red D) Πₙ) H≡F′ , rH≡rF′ , lH≡lF′ , E≡G′ , lE≡lG′ , _ = Π-PE-injectivity (whnfRed* D′ Πₙ) ⊢Γ = wf ⊢F [F]₁ = [F] id ⊢Γ [F]′ = irrelevance′ (PE.trans (wk-id _) (PE.sym F≡F₁)) [F]₁ [x∷F] = neuTerm ([F] (step id) (⊢Γ ∙ ⊢F)) (var 0) (var (⊢Γ ∙ ⊢F) here) (proof-irrelevance (var (⊢Γ ∙ ⊢F) here) (var (⊢Γ ∙ ⊢F) here)) [G]₁ = [G] (step id) (⊢Γ ∙ ⊢F) [x∷F] [G]′ = PE.subst₂ (λ x y → _ ∙ y ^ _ ⊩⟨ _ ⟩ x ^ _) (PE.trans (wkSingleSubstId _) (PE.sym G≡G₁)) (PE.sym F≡F₁) [G]₁ [F≡H]₁ = [F≡F′] id ⊢Γ [F≡H]₁ = [F≡F′] id ⊢Γ [F≡H]′ = irrelevanceEq″ (PE.trans (wk-id _) (PE.sym F≡F₁)) (PE.trans (wk-id _) (PE.sym H≡F′)) PE.refl PE.refl [F]₁ [F]′ [F≡H]₁ [G≡E]₁ = [G≡G′] (step id) (⊢Γ ∙ ⊢F) [x∷F] [G≡E]′ = irrelevanceEqLift″ (PE.trans (wkSingleSubstId _) (PE.sym G≡G₁)) (PE.trans (wkSingleSubstId _) (PE.sym E≡G′)) (PE.sym F≡F₁) [G]₁ [G]′ [G≡E]₁ in PE.subst (λ r → Γ ⊢ _ ≡ _ ^ [ r , ι lF₁ ] ) (PE.sym rF≡rF₁) (PE.subst (λ l → Γ ⊢ F₁ ≡ H ^ [ % , l ] ) (PE.cong ι (PE.sym lF≡lF₁)) (escapeEq [F]′ [F≡H]′)) , ( PE.trans rF≡rF₁ (PE.sym rH≡rF′) , ( PE.trans lF≡lF₁ (PE.sym lH≡lF′) , ( PE.trans lG≡lG₁ (PE.sym lE≡lG′) , PE.subst (λ r → (_ ∙ _ ^ [ r , _ ] ) ⊢ _ ≡ _ ^ _) (PE.sym rF≡rF₁) (PE.subst (λ l → (Γ ∙ F₁ ^ [ % , ι lF₁ ] ) ⊢ G₁ ≡ E ^ [ rΠ , l ]) (PE.cong ι (PE.sym lG≡lG₁)) (PE.subst (λ l → (Γ ∙ F₁ ^ [ % , l ] ) ⊢ G₁ ≡ E ^ [ rΠ , ι lG ]) (PE.cong ι (PE.sym lF≡lF₁)) (escapeEq [G]′ [G≡E]′)))))) injectivity′ (emb emb< x) [ΠFG≡ΠHE] = injectivity′ x [ΠFG≡ΠHE] injectivity′ (emb ∞< x) [ΠFG≡ΠHE] = injectivity′ x [ΠFG≡ΠHE] -- Injectivity of Π injectivity : ∀ {Γ F G H E rF lF lH lG lE rH rΠ lΠ} → Γ ⊢ Π F ^ rF ° lF ▹ G ° lG ° lΠ ≡ Π H ^ rH ° lH ▹ E ° lE ° lΠ ^ [ rΠ , ι lΠ ] → Γ ⊢ F ≡ H ^ [ rF , ι lF ] × rF PE.≡ rH × lF PE.≡ lH × lG PE.≡ lE × Γ ∙ F ^ [ rF , ι lF ] ⊢ G ≡ E ^ [ rΠ , ι lG ] injectivity ⊢ΠFG≡ΠHE = let [ΠFG] , _ , [ΠFG≡ΠHE] = reducibleEq ⊢ΠFG≡ΠHE in injectivity′ (Π-elim [ΠFG]) (irrelevanceEq [ΠFG] (Π-intr (Π-elim [ΠFG])) [ΠFG≡ΠHE]) Uinjectivity′ : ∀ {Γ r₁ r₂ l₁ l₂ lU l} ([U] : Γ ⊩⟨ l ⟩U Univ r₁ l₁ ^ lU) → Γ ⊩⟨ l ⟩ Univ r₁ l₁ ≡ Univ r₂ l₂ ^ [ ! , lU ] / U-intr [U] → r₁ PE.≡ r₂ × l₁ PE.≡ l₂ Uinjectivity′ (noemb (Uᵣ r l′ l< eq d)) D = let A , B = Univ-PE-injectivity (whnfRed* D Uₙ) A' , B' = Univ-PE-injectivity (whnfRed* (red d) Uₙ) in (PE.trans A' (PE.sym A)) , (PE.trans B' (PE.sym B)) Uinjectivity′ (emb emb< a) b = Uinjectivity′ a b Uinjectivity′ (emb ∞< a) b = Uinjectivity′ a b Uinjectivity : ∀ {Γ r₁ r₂ l₁ l₂ lU} → Γ ⊢ Univ r₁ l₁ ≡ Univ r₂ l₂ ^ [ ! , lU ] → r₁ PE.≡ r₂ × l₁ PE.≡ l₂ Uinjectivity ⊢U≡U = let [U] , _ , [U≡U] = reducibleEq ⊢U≡U in Uinjectivity′ (U-elim [U]) (irrelevanceEq [U] (U-intr (U-elim [U])) [U≡U]) -- injectivity of ∃ ∃injectivity′ : ∀ {F G H E Γ l∃ l} ([∃FG] : Γ ⊩⟨ l ⟩∃ ∃ F ▹ G ^ l∃ ) → Γ ⊩⟨ l ⟩ ∃ F ▹ G ≡ ∃ H ▹ E ^ [ % , ι l∃ ] / ∃-intr [∃FG] → Γ ⊢ F ≡ H ^ [ % , ι l∃ ] × Γ ∙ F ^ [ % , ι l∃ ] ⊢ G ≡ E ^ [ % , ι l∃ ] ∃injectivity′ {F₁} {G₁} {H} {E} {Γ = Γ} (noemb (∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) = let F≡F₁ , G≡G₁ = ∃-PE-injectivity (whnfRed* (red D) ∃ₙ) H≡F′ , E≡G′ = ∃-PE-injectivity (whnfRed* D′ ∃ₙ) ⊢Γ = wf ⊢F [F]₁ = [F] id ⊢Γ [F]′ = irrelevance′ (PE.trans (wk-id _) (PE.sym F≡F₁)) [F]₁ [x∷F] = neuTerm ([F] (step id) (⊢Γ ∙ ⊢F)) (var 0) (var (⊢Γ ∙ ⊢F) here) (proof-irrelevance (var (⊢Γ ∙ ⊢F) here) (var (⊢Γ ∙ ⊢F) here)) [G]₁ = [G] (step id) (⊢Γ ∙ ⊢F) [x∷F] [G]′ = PE.subst₂ (λ x y → _ ∙ y ^ _ ⊩⟨ _ ⟩ x ^ _) (PE.trans (wkSingleSubstId _) (PE.sym G≡G₁)) (PE.sym F≡F₁) [G]₁ [F≡H]₁ = [F≡F′] id ⊢Γ [F≡H]′ = irrelevanceEq″ (PE.trans (wk-id _) (PE.sym F≡F₁)) (PE.trans (wk-id _) (PE.sym H≡F′)) PE.refl PE.refl [F]₁ [F]′ [F≡H]₁ [G≡E]₁ = [G≡G′] (step id) (⊢Γ ∙ ⊢F) [x∷F] [G≡E]′ = irrelevanceEqLift″ (PE.trans (wkSingleSubstId _) (PE.sym G≡G₁)) (PE.trans (wkSingleSubstId _) (PE.sym E≡G′)) (PE.sym F≡F₁) [G]₁ [G]′ [G≡E]₁ in escapeEq [F]′ [F≡H]′ , escapeEq [G]′ [G≡E]′ ∃injectivity′ (emb emb< x) [∃FG≡∃HE] = ∃injectivity′ x [∃FG≡∃HE] ∃injectivity′ (emb ∞< x) [∃FG≡∃HE] = ∃injectivity′ x [∃FG≡∃HE] -- Injectivity of ∃ ∃injectivity : ∀ {Γ F G H E l∃} → Γ ⊢ ∃ F ▹ G ≡ ∃ H ▹ E ^ [ % , ι l∃ ] → Γ ⊢ F ≡ H ^ [ % , ι l∃ ] × Γ ∙ F ^ [ % , ι l∃ ] ⊢ G ≡ E ^ [ % , ι l∃ ] ∃injectivity ⊢∃FG≡∃HE = let [∃FG] , _ , [∃FG≡∃HE] = reducibleEq ⊢∃FG≡∃HE in ∃injectivity′ (∃-elim [∃FG]) (irrelevanceEq [∃FG] (∃-intr (∃-elim [∃FG])) [∃FG≡∃HE])
{ "alphanum_fraction": 0.4373840445, "avg_line_length": 47.3846153846, "ext": "agda", "hexsha": "4b92e09ab3002be8c0dbddfc84e45374cf49fefc", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Definition/Typed/Consequences/Injectivity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Definition/Typed/Consequences/Injectivity.agda", "max_line_length": 140, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Definition/Typed/Consequences/Injectivity.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 4242, "size": 8624 }
module _ where import Issue4373.A as A hiding (t) postulate search : ⦃ x : A.T ⦄ → Set fail : Set fail = search
{ "alphanum_fraction": 0.6440677966, "avg_line_length": 10.7272727273, "ext": "agda", "hexsha": "77a7be2437289d1eadef3a4b16c7e502df93943b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue4373.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue4373.agda", "max_line_length": 34, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue4373.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 43, "size": 118 }
module Function.Domains.Proofs where
{ "alphanum_fraction": 0.8648648649, "avg_line_length": 18.5, "ext": "agda", "hexsha": "6d87e9c19fc7dcc90ee0a9a4817075b5663144b8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Function/Domains/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Function/Domains/Proofs.agda", "max_line_length": 36, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Function/Domains/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 8, "size": 37 }
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-} module Light.Implementation.Standard.Relation.Decidable where open import Light.Variable.Sets import Light.Implementation.Standard.Data.Empty import Light.Implementation.Standard.Data.Unit open import Light.Library.Data.Empty as Empty using (Empty) open import Light.Library.Data.Unit as Unit using (Unit ; unit) open import Light.Library.Relation.Decidable using (Library ; Dependencies) instance dependencies : Dependencies dependencies = record {} instance library : Library dependencies library = record { Implementation ; to‐witness = λ ⦃ a ⦄ → Implementation.to‐witness a ; to‐false‐witness = λ ⦃ a ⦄ → Implementation.to‐false‐witness a ; from‐witness = λ ⦃ a ⦄ → Implementation.from‐witness a ; from‐false‐witness = λ ⦃ a ⦄ → Implementation.from‐false‐witness a } where module Implementation where open import Relation.Nullary using (yes ; no) renaming (Dec to Decidable) public open Relation.Nullary using (does) open import Function using (_∘_) import Data.Bool as Boolean open import Function using (id) open import Relation.Nullary.Decidable renaming ( toWitness to to‐witness ; fromWitness to from‐witness ; toWitnessFalse to to‐false‐witness ; fromWitnessFalse to from‐false‐witness ) public open import Light.Implementation.Standard.Relation.Sets using (base) public ℓf = id if′_then_else_ : Decidable 𝕒 → 𝕓 → 𝕓 → 𝕓 if′_then_else_ = Boolean.if_then_else_ ∘ does if_then_else_ : ∀ (a : Decidable 𝕒) → (∀ ⦃ witness : 𝕒 ⦄ → 𝕓) → (∀ ⦃ witness : 𝕒 → Empty ⦄ → 𝕓) → 𝕓 if yes w then a else _ = a ⦃ witness = w ⦄ if no w then _ else a = a ⦃ witness = w ⦄ module Style where open import Relation.Nullary.Decidable using (True ; False) public open import Relation.Nullary.Negation using () renaming (¬? to ¬_) public open import Relation.Nullary.Product using () renaming (_×-dec_ to _∧_) public open import Relation.Nullary.Sum using () renaming (_⊎-dec_ to _∨_) public open import Relation.Nullary.Implication using () renaming (_→-dec_ to _⇢_) public true : Decidable Unit true = yes unit false : Decidable Empty false = no λ () style = record { Style }
{ "alphanum_fraction": 0.5576657459, "avg_line_length": 42.5882352941, "ext": "agda", "hexsha": "300b2523404c7481b8725c0b1be6c28a85692bd8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "Zambonifofex/lightlib", "max_forks_repo_path": "bindings/stdlib/Light/Implementation/Standard/Relation/Decidable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "Zambonifofex/lightlib", "max_issues_repo_path": "bindings/stdlib/Light/Implementation/Standard/Relation/Decidable.agda", "max_line_length": 100, "max_stars_count": 1, "max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "zamfofex/lightlib", "max_stars_repo_path": "bindings/stdlib/Light/Implementation/Standard/Relation/Decidable.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z", "num_tokens": 655, "size": 2896 }
module _ where open import Agda.Primitive open import Agda.Builtin.Equality data Wrap {a} (A : Set a) : Set a where wrap : A → Wrap A data Unit (A : Set) : Set where unit : Unit A cast : ∀ {A B} → Unit A → Unit B cast unit = unit data Functor {a b} (F : Set a → Set b) : Set (lsuc (a ⊔ b)) where mkFunctor : (∀ {A B} → (A → B) → F A → F B) → Functor F fmap : ∀ {a b} {A B : Set a} {F : Set a → Set b} → Functor F → (A → B) → F A → F B fmap (mkFunctor m) = m FunUnit : Functor Unit FunUnit = mkFunctor λ _ → cast postulate P : ∀ {a} {A : Set a} → A → Set a A : Set fmapType : ∀ {b} {B : Set} {F : Set → Set b} {x : F A} → Functor F → (A → B) → P x → Set _ fmapType {x = x} Fun f _ = P (fmap Fun f x) postulate wrapP : ∀ {a} {A : Set a} (x : A) → P (wrap x) mutual-block : Set₁ a : Level a = _ X : Set → Set a X = _ FunX : Functor X FunX = mkFunctor _ -- Adds constraint: -- fmapType FunX wrap (wrapP x) == P (wrap (wrap x)) -- P (fmap FunX wrap (wrap x) == P (wrap (wrap x)) -- fmap FunX wrap (wrap x) == wrap (wrap x) -- ?0 wrap (wrap x) == wrap (wrap x) constr₁ : (x : _) → fmapType {x = _} FunX wrap (wrapP x) → P (wrap (wrap x)) constr₁ x p = p constr₂ : P FunX → P FunUnit constr₂ p = p mutual-block = Set
{ "alphanum_fraction": 0.5394736842, "avg_line_length": 21.5333333333, "ext": "agda", "hexsha": "f162229328829a83a3e1fa9dfb493813aad201bf", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-06-14T11:07:38.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-14T11:07:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Bugs/Issue3870.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Bugs/Issue3870.agda", "max_line_length": 76, "max_stars_count": 2, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Bugs/Issue3870.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 507, "size": 1292 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.Bouquet open import homotopy.FinWedge open import homotopy.SphereEndomorphism open import groups.SphereEndomorphism open import cw.CW open import cw.FinCW open import cw.WedgeOfCells open import cw.DegreeByProjection {lzero} open import cohomology.Theory {- This file should be part of RephraseHigherFinCoboundary, but putting these in a separate file seems more effective in speeding up type-checking. Could be an Agda bug. -} module cw.cohomology.cochainequiv.HigherCoboundaryAbstractDefs (OT : OrdinaryTheory lzero) {n} (⊙fin-skel : ⊙FinSkeleton (S (S n))) where open OrdinaryTheory OT open import cohomology.Bouquet OT private ⊙skel = ⊙FinSkeleton-realize ⊙fin-skel fin-skel = ⊙FinSkeleton.skel ⊙fin-skel I = AttachedFinSkeleton.numCells fin-skel skel = ⊙Skeleton.skel ⊙skel dec = ⊙FinSkeleton-has-cells-with-dec-eq ⊙fin-skel ⊙fin-skel₋₁ = ⊙fcw-init ⊙fin-skel ⊙skel₋₁ = ⊙FinSkeleton-realize ⊙fin-skel₋₁ fin-skel₋₁ = ⊙FinSkeleton.skel ⊙fin-skel₋₁ I₋₁ = AttachedFinSkeleton.numCells fin-skel₋₁ skel₋₁ = ⊙Skeleton.skel ⊙skel₋₁ dec₋₁ = ⊙FinSkeleton-has-cells-with-dec-eq ⊙fin-skel₋₁ open import cw.cohomology.WedgeOfCells OT open import cw.cohomology.reconstructed.HigherCoboundary OT ⊙skel ⊙function₀ : ⊙FinBouquet I (S (S n)) ⊙→ ⊙Susp (⊙FinBouquet I₋₁ (S n)) ⊙function₀ = ⊙Susp-fmap (⊙<– (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ skel₋₁)) ⊙∘ ⊙cw-∂-before-Susp ⊙∘ ⊙–> (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ skel) function₁ : Fin I → Fin I₋₁ → Sphere-endo (S n) function₁ <I <I₋₁ = bwproj Fin-has-dec-eq <I₋₁ ∘ <– (Bouquet-equiv-Xₙ/Xₙ₋₁ skel₋₁) ∘ cfcod ∘ attaching-last skel <I abstract ⊙function₀' : ⊙FinBouquet I (S (S n)) ⊙→ ⊙Susp (⊙FinBouquet I₋₁ (S n)) ⊙function₀' = ⊙function₀ ⊙function₀'-β : ⊙function₀' == ⊙function₀ ⊙function₀'-β = idp function₁' : Fin I → Fin I₋₁ → Sphere-endo (S n) function₁' = function₁ function₁'-β : ∀ <I <I₋₁ → function₁' <I <I₋₁ == function₁ <I <I₋₁ function₁'-β _ _ = idp mega-reduction : ∀ <I <I₋₁ → Susp-fmap (fwproj <I₋₁) ∘ fst ⊙function₀' ∘ fwin <I ∼ Susp-fmap (function₁' <I <I₋₁) mega-reduction <I <I₋₁ = Susp-elim idp idp λ x → ↓-='-in' $ ! $ ap (Susp-fmap (fwproj <I₋₁) ∘ fst ⊙function₀ ∘ fwin <I) (merid x) =⟨ ap-∘ ( Susp-fmap (fwproj <I₋₁) ∘ Susp-fmap (<– (Bouquet-equiv-Xₙ/Xₙ₋₁ skel₋₁)) ∘ cw-∂-before-Susp) (Bouquet-to-Xₙ/Xₙ₋₁ skel ∘ fwin <I) (merid x) ⟩ ap ( Susp-fmap (fwproj <I₋₁) ∘ Susp-fmap (<– (Bouquet-equiv-Xₙ/Xₙ₋₁ skel₋₁)) ∘ cw-∂-before-Susp) (ap (Bouquet-to-Xₙ/Xₙ₋₁ skel ∘ fwin <I) (merid x)) =⟨ ap (ap ( Susp-fmap (fwproj <I₋₁) ∘ Susp-fmap (<– (Bouquet-equiv-Xₙ/Xₙ₋₁ skel₋₁)) ∘ cw-∂-before-Susp)) (Bouquet-to-Xₙ/Xₙ₋₁-in-merid-β skel <I x) ⟩ ap ( Susp-fmap (fwproj <I₋₁) ∘ Susp-fmap (<– (Bouquet-equiv-Xₙ/Xₙ₋₁ skel₋₁)) ∘ cw-∂-before-Susp) (cfglue (attaching-last skel <I x) ∙' ap cfcod (spoke <I x)) =⟨ ap-∘ ( Susp-fmap (fwproj <I₋₁) ∘ Susp-fmap (<– (Bouquet-equiv-Xₙ/Xₙ₋₁ skel₋₁))) cw-∂-before-Susp (cfglue (attaching-last skel <I x) ∙' ap cfcod (spoke <I x)) ⟩ ap ( Susp-fmap (fwproj <I₋₁) ∘ Susp-fmap (<– (Bouquet-equiv-Xₙ/Xₙ₋₁ skel₋₁))) (ap cw-∂-before-Susp (cfglue (attaching-last skel <I x) ∙' ap cfcod (spoke <I x))) =⟨ ap (ap ( Susp-fmap (fwproj <I₋₁) ∘ Susp-fmap (<– (Bouquet-equiv-Xₙ/Xₙ₋₁ skel₋₁)))) ( ap-∙' cw-∂-before-Susp (cfglue (attaching-last skel <I x)) (ap cfcod (spoke <I x)) ∙ ap2 _∙'_ (cw-∂-before-Susp-glue-β (attaching-last skel <I x)) ( ∘-ap cw-∂-before-Susp cfcod (spoke <I x) ∙ ap-cst south (spoke <I x))) ⟩ ap ( Susp-fmap (fwproj <I₋₁) ∘ Susp-fmap (<– (Bouquet-equiv-Xₙ/Xₙ₋₁ skel₋₁))) (merid (cfcod (attaching-last skel <I x))) =⟨ ap-∘ (Susp-fmap (fwproj <I₋₁)) (Susp-fmap (<– (Bouquet-equiv-Xₙ/Xₙ₋₁ skel₋₁))) (merid (cfcod (attaching-last skel <I x))) ⟩ ap (Susp-fmap (fwproj <I₋₁)) (ap (Susp-fmap (<– (Bouquet-equiv-Xₙ/Xₙ₋₁ skel₋₁))) (merid (cfcod (attaching-last skel <I x)))) =⟨ ap (ap (Susp-fmap (fwproj <I₋₁))) (SuspFmap.merid-β (<– (Bouquet-equiv-Xₙ/Xₙ₋₁ skel₋₁)) (cfcod (attaching-last skel <I x))) ⟩ ap (Susp-fmap (fwproj <I₋₁)) (merid (<– (Bouquet-equiv-Xₙ/Xₙ₋₁ skel₋₁) (cfcod (attaching-last skel <I x)))) =⟨ SuspFmap.merid-β (fwproj <I₋₁) (<– (Bouquet-equiv-Xₙ/Xₙ₋₁ skel₋₁) (cfcod (attaching-last skel <I x))) ⟩ merid (function₁ <I <I₋₁ x) =⟨ ! $ SuspFmap.merid-β (function₁ <I <I₋₁) x ⟩ ap (Susp-fmap (function₁ <I <I₋₁)) (merid x) =∎
{ "alphanum_fraction": 0.5790008123, "avg_line_length": 38.7716535433, "ext": "agda", "hexsha": "c6c02d372b07c2335c14264c46611f96aab231ad", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/cw/cohomology/cochainequiv/HigherCoboundaryAbstractDefs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/cw/cohomology/cochainequiv/HigherCoboundaryAbstractDefs.agda", "max_line_length": 96, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/cw/cohomology/cochainequiv/HigherCoboundaryAbstractDefs.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2104, "size": 4924 }
module Bin-embedding where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; sym; cong) open Eq.≡-Reasoning open import Data.Nat using (ℕ; zero; suc; _+_; _*_) open import Data.Nat.Properties using (+-identityʳ; +-suc; +-comm; +-assoc) open import Isomorphism using (_≲_) -- 2進数の表現 data Bin : Set where ⟨⟩ : Bin _O : Bin → Bin _I : Bin → Bin -- 2進数のインクリメント inc : Bin → Bin inc ⟨⟩ = ⟨⟩ I inc (b O) = b I inc (b I) = inc b O -- 自然数から2進数への変換 to : ℕ → Bin to zero = ⟨⟩ O to (suc n) = inc (to n) -- 2進数から自然数への変換 from : Bin → ℕ from ⟨⟩ = zero from (b O) = 2 * (from b) from (b I) = 2 * (from b) + 1 2*n≡n+n : ∀ (n : ℕ) → 2 * n ≡ n + n 2*n≡n+n n rewrite +-identityʳ n = refl +-suc-suc : ∀ (m n : ℕ) → (suc m) + (suc n) ≡ suc (suc (m + n)) +-suc-suc m n rewrite +-suc (suc m) n | +-assoc 1 m n = refl from∘inc≡suc∘from : ∀ (b : Bin) → from (inc b) ≡ suc (from b) from∘inc≡suc∘from ⟨⟩ = refl from∘inc≡suc∘from (b O) rewrite +-suc (from (b O)) zero = cong suc (+-identityʳ (from (b O))) from∘inc≡suc∘from (b I) rewrite from∘inc≡suc∘from b | 2*n≡n+n (suc (from b)) | +-suc-suc (from b) (from b) | sym (2*n≡n+n (from b)) | +-comm 1 (2 * (from b)) = refl from∘to : ∀ (n : ℕ) → from (to n) ≡ n from∘to zero = refl from∘to (suc n) rewrite from∘inc≡suc∘from (to n) = cong suc (from∘to n) Bin-embedding : ℕ ≲ Bin Bin-embedding = record { to = to ; from = from ; from∘to = from∘to }
{ "alphanum_fraction": 0.5734072022, "avg_line_length": 25.7857142857, "ext": "agda", "hexsha": "e5195f878bbe794f7eb5c069f95b0ddc63684adf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "akiomik/plfa-solutions", "max_forks_repo_path": "part1/isomorphism/Bin-embedding.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "akiomik/plfa-solutions", "max_issues_repo_path": "part1/isomorphism/Bin-embedding.agda", "max_line_length": 164, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "akiomik/plfa-solutions", "max_stars_repo_path": "part1/isomorphism/Bin-embedding.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z", "num_tokens": 664, "size": 1444 }
{-# OPTIONS --cubical-compatible --rewriting --confluence-check #-} postulate _↦_ : ∀ {i} {A : Set i} → A → A → Set i idr : ∀ {i} {A : Set i} {a : A} → a ↦ a {-# BUILTIN REWRITE _↦_ #-} data _==_ {i} {A : Set i} (a : A) : A → Set i where idp : a == a PathOver : ∀ {i j} {A : Set i} (B : A → Set j) {x y : A} (p : x == y) (u : B x) (v : B y) → Set j PathOver B idp u v = (u == v) syntax PathOver B p u v = u == v [ B ↓ p ] postulate PathOver-rewr : ∀ {i j} {A : Set i} {B : Set j} {x y : A} (p : x == y) (u v : B) → (PathOver (λ _ → B) p u v) ↦ (u == v) {-# REWRITE PathOver-rewr #-} ap : ∀ {i j} {A : Set i} {B : A → Set j} (f : (a : A) → B a) {x y : A} → (p : x == y) → PathOver B p (f x) (f y) ap f idp = idp postulate Circle : Set base : Circle loop : base == base module _ {i} {P : Circle → Set i} (base* : P base) (loop* : base* == base* [ P ↓ loop ]) where postulate Circle-elim : (x : Circle) → P x Circle-base-β : Circle-elim base ↦ base* {-# REWRITE Circle-base-β #-} Circle-loop-β : ap Circle-elim loop ↦ loop* {-# REWRITE Circle-loop-β #-} idCircle : Circle → Circle idCircle = Circle-elim base loop
{ "alphanum_fraction": 0.5042735043, "avg_line_length": 26.5909090909, "ext": "agda", "hexsha": "127157f5a25a76e5b32f805b644a32aada01ef20", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue1663.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue1663.agda", "max_line_length": 88, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue1663.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 480, "size": 1170 }
kk : ∀ {ℓ} → Set ℓ kk = {!∀ B → B!}
{ "alphanum_fraction": 0.3055555556, "avg_line_length": 12, "ext": "agda", "hexsha": "43460983d822c3bf8c912e334980fc67cad77b60", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue3428.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue3428.agda", "max_line_length": 18, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue3428.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 22, "size": 36 }
module plfa.part1.Connectives where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl) open Eq.≡-Reasoning open import Data.Nat using (ℕ) open import Function using (_∘_) open import plfa.part1.Isomorphism using (_≃_; _≲_; extensionality) open plfa.part1.Isomorphism.≃-Reasoning data _×_ (A B : Set) : Set where ⟨_,_⟩ : A → B ----- → A × B proj₁ : ∀ {A B : Set} → A × B ----- → A proj₁ ⟨ x , y ⟩ = x proj₂ : ∀ {A B : Set} → A × B ----- → B proj₂ ⟨ x , y ⟩ = y η-× : ∀ {A B : Set} (w : A × B) → ⟨ proj₁ w , proj₂ w ⟩ ≡ w η-× ⟨ x , y ⟩ = refl infixr 2 _×_ record _×′_ (A B : Set) : Set where constructor ⟨_,_⟩′ field proj₁′ : A proj₂′ : B open _×′_ η-×′ : ∀ {A B : Set} (w : A ×′ B) → ⟨ proj₁′ w , proj₂′ w ⟩′ ≡ w η-×′ w = refl data Bool : Set where true : Bool false : Bool data Tri : Set where aa : Tri bb : Tri cc : Tri ×-comm : ∀ {A B : Set} → A × B ≃ B × A ×-comm = record { to = λ{ ⟨ x , y ⟩ → ⟨ y , x ⟩ } ; from = λ{ ⟨ y , x ⟩ → ⟨ x , y ⟩ } ; from∘to = λ{ ⟨ x , y ⟩ → refl } ; to∘from = λ{ ⟨ y , x ⟩ → refl } } ×-assoc : ∀ {A B C : Set} → (A × B) × C ≃ A × (B × C) ×-assoc = record { to = λ{ ⟨ ⟨ x , y ⟩ , z ⟩ → ⟨ x , ⟨ y , z ⟩ ⟩ } ; from = λ{ ⟨ x , ⟨ y , z ⟩ ⟩ → ⟨ ⟨ x , y ⟩ , z ⟩ } ; from∘to = λ{ ⟨ ⟨ x , y ⟩ , z ⟩ → refl } ; to∘from = λ{ ⟨ x , ⟨ y , z ⟩ ⟩ → refl } } data ⊤ : Set where tt : -- ⊤ η-⊤ : ∀ (w : ⊤) → tt ≡ w η-⊤ tt = refl record ⊤′ : Set where constructor tt′ η-⊤′ : ∀ (w : ⊤′) → tt′ ≡ w η-⊤′ w = refl truth′ : ⊤′ truth′ = _ ⊤-identityˡ : ∀ {A : Set} → ⊤ × A ≃ A ⊤-identityˡ = record { to = λ{ ⟨ tt , x ⟩ → x } ; from = λ{ x → ⟨ tt , x ⟩ } ; from∘to = λ{ ⟨ tt , x ⟩ → refl } ; to∘from = λ{ x → refl } } ⊤-identityʳ : ∀ {A : Set} → (A × ⊤) ≃ A ⊤-identityʳ {A} = ≃-begin (A × ⊤) ≃⟨ ×-comm ⟩ (⊤ × A) ≃⟨ ⊤-identityˡ ⟩ A ≃-∎ data _⊎_ (A B : Set) : Set where inj₁ : A ----- → A ⊎ B inj₂ : B ----- → A ⊎ B case-⊎ : ∀ {A B C : Set} → (A → C) → (B → C) → A ⊎ B ----------- → C case-⊎ f g (inj₁ x) = f x case-⊎ f g (inj₂ y) = g y η-⊎ : ∀ {A B : Set} (w : A ⊎ B) → case-⊎ inj₁ inj₂ w ≡ w η-⊎ (inj₁ x) = refl η-⊎ (inj₂ y) = refl uniq-⊎ : ∀ {A B C : Set} (h : A ⊎ B → C) (w : A ⊎ B) → case-⊎ (h ∘ inj₁) (h ∘ inj₂) w ≡ h w uniq-⊎ h (inj₁ x) = refl uniq-⊎ h (inj₂ y) = refl infixr 1 _⊎_ ⊎-comm : ∀ {A B : Set} → A ⊎ B ≃ B ⊎ A ⊎-comm = record { to = λ { (inj₁ x) → inj₂ x ; (inj₂ x) → inj₁ x }; from = λ { (inj₁ x) → inj₂ x ; (inj₂ x) → inj₁ x}; from∘to = λ { (inj₁ x) → refl ; (inj₂ x) → refl} ; to∘from = λ { (inj₁ x) → refl ; (inj₂ x) → refl} } ⊎-assoc : ∀ {A B C : Set} → (A ⊎ B) ⊎ C ≃ A ⊎ (B ⊎ C) ⊎-assoc = record { to = λ { (inj₁ (inj₁ x)) → inj₁ x ; (inj₁ (inj₂ x)) → inj₂ (inj₁ x) ; (inj₂ x) → inj₂ (inj₂ x)} ; from = λ { (inj₁ x) → inj₁ (inj₁ x) ; (inj₂ (inj₁ x)) → inj₁ (inj₂ x) ; (inj₂ (inj₂ x)) → inj₂ x} ; from∘to = λ { (inj₁ (inj₁ x)) → refl ; (inj₁ (inj₂ x)) → refl ; (inj₂ x) → refl} ; to∘from = λ { (inj₁ x) → refl ; (inj₂ (inj₁ x)) → refl; (inj₂ (inj₂ x)) → refl} } data ⊥ : Set where ⊥-elim : ∀ {A : Set} → ⊥ -- → A ⊥-elim () uniq-⊥ : ∀ {C : Set} (h : ⊥ → C) (w : ⊥) → ⊥-elim w ≡ h w uniq-⊥ h () ⊥-count : ⊥ → ℕ ⊥-count () →-elim : ∀ {A B : Set} → (A → B) → A ------- → B →-elim L M = L M η-→ : ∀ {A B : Set} (f : A → B) → (λ (x : A) → f x) ≡ f η-→ f = refl currying : ∀ {A B C : Set} → (A → B → C) ≃ (A × B → C) currying = record { to = λ{ f → λ{ ⟨ x , y ⟩ → f x y }} ; from = λ{ g → λ{ x → λ{ y → g ⟨ x , y ⟩ }}} ; from∘to = λ{ f → refl } ; to∘from = λ{ g → extensionality λ{ ⟨ x , y ⟩ → refl }} } →-distrib-⊎ : ∀ {A B C : Set} → (A ⊎ B → C) ≃ ((A → C) × (B → C)) →-distrib-⊎ = record { to = λ{ f → ⟨ f ∘ inj₁ , f ∘ inj₂ ⟩ } ; from = λ{ ⟨ g , h ⟩ → λ{ (inj₁ x) → g x ; (inj₂ y) → h y } } ; from∘to = λ{ f → extensionality λ{ (inj₁ x) → refl ; (inj₂ y) → refl } } ; to∘from = λ{ ⟨ g , h ⟩ → refl } } →-distrib-× : ∀ {A B C : Set} → (A → B × C) ≃ (A → B) × (A → C) →-distrib-× = record { to = λ{ f → ⟨ proj₁ ∘ f , proj₂ ∘ f ⟩ } ; from = λ{ ⟨ g , h ⟩ → λ x → ⟨ g x , h x ⟩ } ; from∘to = λ{ f → extensionality λ{ x → η-× (f x) } } ; to∘from = λ{ ⟨ g , h ⟩ → refl } } ×-distrib-⊎ : ∀ {A B C : Set} → (A ⊎ B) × C ≃ (A × C) ⊎ (B × C) ×-distrib-⊎ = record { to = λ{ ⟨ inj₁ x , z ⟩ → (inj₁ ⟨ x , z ⟩) ; ⟨ inj₂ y , z ⟩ → (inj₂ ⟨ y , z ⟩) } ; from = λ{ (inj₁ ⟨ x , z ⟩) → ⟨ inj₁ x , z ⟩ ; (inj₂ ⟨ y , z ⟩) → ⟨ inj₂ y , z ⟩ } ; from∘to = λ{ ⟨ inj₁ x , z ⟩ → refl ; ⟨ inj₂ y , z ⟩ → refl } ; to∘from = λ{ (inj₁ ⟨ x , z ⟩) → refl ; (inj₂ ⟨ y , z ⟩) → refl } } ⊎-distrib-× : ∀ {A B C : Set} → (A × B) ⊎ C ≲ (A ⊎ C) × (B ⊎ C) ⊎-distrib-× = record { to = λ{ (inj₁ ⟨ x , y ⟩) → ⟨ inj₁ x , inj₁ y ⟩ ; (inj₂ z) → ⟨ inj₂ z , inj₂ z ⟩ } ; from = λ{ ⟨ inj₁ x , inj₁ y ⟩ → (inj₁ ⟨ x , y ⟩) ; ⟨ inj₁ x , inj₂ z ⟩ → (inj₂ z) ; ⟨ inj₂ z , _ ⟩ → (inj₂ z) } ; from∘to = λ{ (inj₁ ⟨ x , y ⟩) → refl ; (inj₂ z) → refl } } ⊎-weak-× : ∀ {A B C : Set} → (A ⊎ B) × C → A ⊎ (B × C) ⊎-weak-× ⟨ inj₁ x , y ⟩ = inj₁ x ⊎-weak-× ⟨ inj₂ x , y ⟩ = inj₂ ⟨ x , y ⟩ ⊎×-implies-×⊎ : ∀ {A B C D : Set} → (A × B) ⊎ (C × D) → (A ⊎ C) × (B ⊎ D) ⊎×-implies-×⊎ (inj₁ ⟨ x , y ⟩) = ⟨ inj₁ x , inj₁ y ⟩ ⊎×-implies-×⊎ (inj₂ ⟨ x , y ⟩) = ⟨ (inj₂ x) , (inj₂ y) ⟩
{ "alphanum_fraction": 0.3557519228, "avg_line_length": 23.7782101167, "ext": "agda", "hexsha": "8f6929428e14d0edb8319c703851a14bcb95c854", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "275ecc582b3a6a1da1af387251c6b4d74d9a5203", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "sym-cereal/proofs", "max_forks_repo_path": "plfa/part1/Connectives.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "275ecc582b3a6a1da1af387251c6b4d74d9a5203", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "sym-cereal/proofs", "max_issues_repo_path": "plfa/part1/Connectives.agda", "max_line_length": 78, "max_stars_count": 6, "max_stars_repo_head_hexsha": "275ecc582b3a6a1da1af387251c6b4d74d9a5203", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UnsoundWitch/proofs", "max_stars_repo_path": "plfa/part1/Connectives.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-18T10:58:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-03T03:29:40.000Z", "num_tokens": 2869, "size": 6111 }
module _ where open import Agda.Builtin.List open import Agda.Builtin.Nat open import Agda.Builtin.Equality variable a b : Set {-# FOREIGN AGDA2HS import Prelude hiding (map, sum) #-} data Exp (v : Set) : Set where Plus : Exp v → Exp v → Exp v Int : Nat → Exp v Var : v → Exp v {-# COMPILE AGDA2HS Exp #-} eval : (a → Nat) → Exp a → Nat eval env (Plus a b) = eval env a + eval env b eval env (Int n) = n eval env (Var x) = env x {-# COMPILE AGDA2HS eval #-} sum : List Nat → Nat sum [] = 0 sum (x ∷ xs) = x + sum xs {-# COMPILE AGDA2HS sum #-} {-# FOREIGN AGDA2HS -- comment #-} append : List a → List a → List a append [] ys = ys append (x ∷ xs) ys = x ∷ append xs ys {-# COMPILE AGDA2HS append #-} map : (a → b) → List a → List b map f [] = [] map f (x ∷ xs) = f x ∷ map f xs {-# COMPILE AGDA2HS map #-} assoc : (a b c : Nat) → a + (b + c) ≡ (a + b) + c assoc zero b c = refl assoc (suc a) b c rewrite assoc a b c = refl thm : ∀ xs ys → sum (append xs ys) ≡ sum xs + sum ys thm [] ys = refl thm (x ∷ xs) ys rewrite thm xs ys | assoc x (sum xs) (sum ys) = refl
{ "alphanum_fraction": 0.5710431655, "avg_line_length": 19.5087719298, "ext": "agda", "hexsha": "57d613fced6e5a76a86bb1cdd06767a73fc30c42", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0f8b0b8a17ecad9e9be7ef5cae564187787df31d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/agda2hs", "max_forks_repo_path": "Test.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0f8b0b8a17ecad9e9be7ef5cae564187787df31d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/agda2hs", "max_issues_repo_path": "Test.agda", "max_line_length": 68, "max_stars_count": null, "max_stars_repo_head_hexsha": "0f8b0b8a17ecad9e9be7ef5cae564187787df31d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/agda2hs", "max_stars_repo_path": "Test.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 402, "size": 1112 }
module Functors.Fin where open import Library open import Categories.Sets open import Categories.Setoids open import Categories open import Categories.Initial open import Categories.CoProducts open import Functors open import Isomorphism open import Functors.FullyFaithful open Cat open Fun open Iso Nats : Cat {lzero}{lzero} Nats = record{ Obj = ℕ; Hom = λ m n → Fin m → Fin n; iden = id; comp = λ f g → f ∘ g; idl = refl; idr = refl; ass = refl} -- initial object initN : Init Nats zero initN = record { i = λ (); law = ext λ ()} -- coproducts extend : ∀ {m n} -> Fin m -> Fin (m + n) extend zero = zero extend (suc i) = suc (extend i) lift : ∀ m {n} -> Fin n -> Fin (m + n) lift zero i = i lift (suc m) i = suc (lift m i) case : ∀ (m : ℕ){n : ℕ}{X : Set} → (Fin m → X) → (Fin n → X) → Fin (m + n) → X case zero f g i = g i case (suc m) f g zero = f zero case (suc m) f g (suc i) = case m (f ∘ suc) g i lem1 : ∀ A {B C}(f : Fin A → C) (g : Fin B → C)(i : Fin A) → case A f g (extend i) ≅ f i lem1 zero f g () lem1 (suc A) f g zero = refl lem1 (suc A) f g (suc i) = lem1 A (f ∘ suc) g i lem2 : ∀ A {B C} (f : Fin A → C) (g : Fin B → C)(i : Fin B) → case A f g (lift A i) ≅ g i lem2 zero f g zero = refl lem2 zero f g (suc i) = refl lem2 (suc A) f g i = lem2 A (f ∘ suc) g i lem3 : ∀ A {B C}(f : Fin A → C) (g : Fin B → C) (h : Fin (A + B) → C) → (λ x → h (extend {A} x)) ≅ f → (λ x → h (lift A x)) ≅ g → ∀ i → h i ≅ case A f g i lem3 zero f g h p q i = fcong i q lem3 (suc A) f g h p q zero = fcong zero p lem3 (suc A) f g h p q (suc i) = lem3 A (f ∘ suc) g (h ∘ suc) (ext (λ i → fcong (suc i) p)) q i coprod : CoProd Nats coprod = record { _+_ = _+_ ; inl = extend ; inr = λ{m} → lift m ; [_,_] = λ{m} → case m ; law1 = λ{m} f g → ext (lem1 m f g) ; law2 = λ{m} f g → ext (lem2 m f g) ; law3 = λ{m} f g h p q → ext (lem3 m f g h p q) } -- FinF : Fun Nats Sets FinF = record { OMap = Fin; HMap = id; fid = refl; fcomp = refl} FinFoid : Fun Nats Setoids FinFoid = record { OMap = λ n → record { set = Fin n ; eq = λ i j → i ≅ j; ref = refl; sym' = sym; trn = trans}; HMap = λ f → record { fun = f; feq = cong f}; fid = SetoidFunEq refl (iext λ _ → iext λ _ → ext congid); fcomp = λ{_ _ _ f g} → SetoidFunEq refl (iext λ _ → iext λ _ → ext (congcomp f g))} FinFF : FullyFaithful FinF FinFF X Y = record { fun = id; inv = id; law1 = λ _ → refl; law2 = λ _ → refl} open import Data.Bool feq : forall {n} -> Fin n -> Fin n -> Bool feq zero zero = true feq zero (suc j) = false feq (suc i) zero = false feq (suc i) (suc j) = true
{ "alphanum_fraction": 0.5338455909, "avg_line_length": 22.9663865546, "ext": "agda", "hexsha": "61aa801d4ff3cf17d681598be1fec5c829dae44a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "Functors/Fin.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "Functors/Fin.agda", "max_line_length": 66, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "Functors/Fin.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 1144, "size": 2733 }
{-# OPTIONS --cubical --safe #-} module Cubical.Data.SumFin where open import Cubical.Data.SumFin.Base public
{ "alphanum_fraction": 0.7477477477, "avg_line_length": 22.2, "ext": "agda", "hexsha": "bc4dba925cd21844e4da8779c556bed1091163be", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "limemloh/cubical", "max_forks_repo_path": "Cubical/Data/SumFin.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "limemloh/cubical", "max_issues_repo_path": "Cubical/Data/SumFin.agda", "max_line_length": 43, "max_stars_count": null, "max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "limemloh/cubical", "max_stars_repo_path": "Cubical/Data/SumFin.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 27, "size": 111 }
-- Andreas, 2016-10-14, issue #2260 testcase by Nisse -- {-# OPTIONS -v tc.meta:40 #-} data D : Set → Set₁ where d : (A : Set) → D A postulate A : Set f : (A : Set) → D A → D A B : Set₁ B = Set where abstract A′ : Set A′ = A x : D A′ x = f _ (d A′) -- WAS: internal error -- should check
{ "alphanum_fraction": 0.5173501577, "avg_line_length": 12.68, "ext": "agda", "hexsha": "789b4fe2f594064737d3fecb7440809ae20f4d9e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2260.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2260.agda", "max_line_length": 53, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2260.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 129, "size": 317 }
------------------------------------------------------------------------ -- A comparison of the two definitions of bisimilarity ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} module Bisimilarity.Comparison where open import Equality.Propositional open import Logical-equivalence using (_⇔_) open import Prelude hiding (Unit) open import Bijection equality-with-J as Bijection using (_↔_) open import Equality.Decision-procedures equality-with-J open import Fin equality-with-J open import Function-universe equality-with-J hiding (_∘_; id) open import H-level equality-with-J as H-level open import H-level.Closure equality-with-J open import Nat equality-with-J as Nat open import Surjection equality-with-J using (_↠_) import Bisimilarity import Bisimilarity.Classical import Bisimilarity.Classical.Equational-reasoning-instances import Bisimilarity.Equational-reasoning-instances open import Equational-reasoning import Indexed-container as IC open import Labelled-transition-system open import Relation module _ {ℓ} {lts : LTS ℓ} where open LTS lts private module Cl = Bisimilarity.Classical lts module Co = Bisimilarity lts -- Classically bisimilar processes are coinductively bisimilar. cl⇒co : ∀ {i p q} → p Cl.∼ q → Co.[ i ] p ∼ q cl⇒co = IC.gfp⊆ν ℓ -- Coinductively bisimilar processes are classically bisimilar. co⇒cl : ∀ {p q} → p Co.∼ q → p Cl.∼ q co⇒cl = IC.ν⊆gfp ℓ -- The function cl⇒co is a left inverse of co⇒cl (up to pointwise -- bisimilarity). cl⇒co∘co⇒cl : ∀ {i p q} (p∼q : p Co.∼ q) → Co.[ i ] cl⇒co (co⇒cl p∼q) ≡ p∼q cl⇒co∘co⇒cl p∼q = IC.gfp⊆ν∘ν⊆gfp ℓ p∼q -- If there are two processes that are not equal, but bisimilar, -- then co⇒cl is not a left inverse of cl⇒co. co⇒cl∘cl⇒co : ∀ {p q} → p ≢ q → p Co.∼ q → ∃ λ (p∼p : p Cl.∼ p) → co⇒cl (cl⇒co p∼p) ≢ p∼p co⇒cl∘cl⇒co {p} {q} p≢q p∼q = reflexive , (co⇒cl (cl⇒co reflexive) ≡ reflexive ↝⟨ cong (λ R → proj₁ R (p , q)) ⟩ ↑ _ (p Co.∼ q) ≡ ↑ _ (p ≡ q) ↝⟨ (λ eq → ≡⇒↝ _ eq $ lift p∼q) ⟩ ↑ _ (p ≡ q) ↔⟨ Bijection.↑↔ ⟩ p ≡ q ↝⟨ p≢q ⟩□ ⊥ □) -- The two definitions of bisimilarity are logically equivalent. classical⇔coinductive : ∀ {p q} → p Cl.∼ q ⇔ p Co.∼ q classical⇔coinductive = IC.gfp⇔ν ℓ -- There is a split surjection from the classical definition of -- bisimilarity to the coinductive one (assuming two kinds of -- extensionality). classical↠coinductive : Extensionality ℓ ℓ → Co.Extensionality → ∀ {p q} → p Cl.∼ q ↠ p Co.∼ q classical↠coinductive ext co-ext = IC.gfp↠ν ext ℓ co-ext -- There is at least one LTS for which there is a split surjection -- from the coinductive definition of bisimilarity to the classical -- one. coinductive↠classical : ∀ {p q} → Bisimilarity._∼_ empty p q ↠ Bisimilarity.Classical._∼_ empty p q coinductive↠classical {p = ()} -- There is an LTS for which coinductive bisimilarity is pointwise -- propositional (assuming two kinds of extensionality). coinductive-bisimilarity-is-sometimes-propositional : Extensionality lzero lzero → let module Co = Bisimilarity one-loop in Co.Extensionality → Is-proposition (tt Co.∼ tt) coinductive-bisimilarity-is-sometimes-propositional ext co-ext ∼₁ ∼₂ = extensionality ext co-ext (irr ∼₁ ∼₂) where open Bisimilarity one-loop irr : ∀ {i} ∼₁ ∼₂ → [ i ] ∼₁ ≡ ∼₂ irr ∼₁ ∼₂ = Bisimilarity-of-∼.⟨ ext , ∼₁ , ∼₂ , (λ _ → refl , refl , irr′ (proj₂ ∼₁ _) (proj₂ ∼₂ _)) , (λ _ → refl , refl , irr′ (proj₂ ∼₁ _) (proj₂ ∼₂ _)) ⟩ where irr′ : ∀ {i} ∼₁ ∼₂ → [ i ] ∼₁ ≡′ ∼₂ force (irr′ ∼₁ ∼₂) = irr (force ∼₁) (force ∼₂) -- However, classical bisimilarity (of any size) is, for the same LTS, -- not pointwise propositional. classical-bisimilarity-is-not-propositional : let module Cl = Bisimilarity.Classical one-loop in ∀ {ℓ} → ¬ Is-proposition (Cl.Bisimilarity′ ℓ (tt , tt)) classical-bisimilarity-is-not-propositional {ℓ} = Is-proposition (Bisimilarity′ ℓ (tt , tt)) ↝⟨ (λ f → f tt∼tt₁ tt∼tt₂) ⟩ tt∼tt₁ ≡ tt∼tt₂ ↝⟨ cong (λ R → proj₁ R (tt , tt)) ⟩ Unit ≡ (Unit ⊎ Unit) ↝⟨ (λ eq → Fin 1 ↝⟨ inverse Unit↔Fin1 ⟩ Unit ↝⟨ ≡⇒↝ _ eq ⟩ Unit ⊎ Unit ↝⟨ Unit↔Fin1 ⊎-cong Unit↔Fin1 ⟩ Fin 1 ⊎ Fin 1 ↝⟨ Fin⊎Fin↔Fin+ 1 1 ⟩□ Fin 2 □) ⟩ Fin 1 ↔ Fin 2 ↝⟨ _⇔_.to isomorphic-same-size ⟩ 1 ≡ 2 ↝⟨ from-⊎ (1 Nat.≟ 2) ⟩□ ⊥ □ where open Bisimilarity.Classical one-loop tt∼tt₁ : Bisimilarity′ ℓ (tt , tt) tt∼tt₁ = reflexive-∼′ _ tt∼tt₂ : Bisimilarity′ ℓ (tt , tt) tt∼tt₂ = let R , R-is-a-bisimulation , ttRtt = _⇔_.to (Bisimilarity′↔ _ _) tt∼tt₁ in _⇔_.from (Bisimilarity′↔ _ _) ( (R ∪ R) , ×2-preserves-bisimulations R-is-a-bisimulation , inj₁ ttRtt ) Unit = ↑ ℓ (tt ≡ tt) Unit↔Fin1 = Unit ↔⟨ Bijection.↑↔ ⟩ tt ≡ tt ↝⟨ _⇔_.to contractible⇔↔⊤ (+⇒≡ $ mono₁ 0 ⊤-contractible) ⟩ ⊤ ↝⟨ inverse ⊎-right-identity ⟩□ Fin 1 □ -- Thus, assuming two kinds of extensionality, there is in general no -- split surjection from the coinductive definition of bisimilarity to -- the classical one (of any size). ¬coinductive↠classical : Extensionality lzero lzero → Bisimilarity.Extensionality one-loop → ∀ {ℓ} → ¬ (∀ {p q} → Bisimilarity._∼_ one-loop p q ↠ Bisimilarity.Classical.Bisimilarity′ one-loop ℓ (p , q)) ¬coinductive↠classical ext co-ext {ℓ} = (∀ {p q} → p Co.∼ q ↠ Cl.Bisimilarity′ ℓ (p , q)) ↝⟨ (λ co↠cl → co↠cl {q = _}) ⟩ tt Co.∼ tt ↠ Cl.Bisimilarity′ ℓ (tt , tt) ↝⟨ (λ co↠cl → H-level.respects-surjection co↠cl 1) ⟩ (Is-proposition (tt Co.∼ tt) → Is-proposition (Cl.Bisimilarity′ ℓ (tt , tt))) ↝⟨ (_$ coinductive-bisimilarity-is-sometimes-propositional ext co-ext) ⟩ Is-proposition (Cl.Bisimilarity′ ℓ (tt , tt)) ↝⟨ classical-bisimilarity-is-not-propositional ⟩□ ⊥ □ where module Cl = Bisimilarity.Classical one-loop module Co = Bisimilarity one-loop -- Note also that coinductive bisimilarity is not always -- propositional. coinductive-bisimilarity-is-not-propositional : let open Bisimilarity two-bisimilar-processes in ¬ (∀ {p q} → Is-proposition (p ∼ q)) coinductive-bisimilarity-is-not-propositional = (∀ {p q} → Is-proposition (p ∼ q)) ↝⟨ (λ is-prop → is-prop {p = true} {q = true}) ⟩ Is-proposition (true ∼ true) ↝⟨ (λ irr → irr _ _) ⟩ proof true true true ≡ proof false true true ↝⟨ cong (λ p → proj₁ (left-to-right {p = true} {q = true} p {p′ = true} _)) ⟩ true ≡ false ↝⟨ Bool.true≢false ⟩□ ⊥ □ where open Bisimilarity two-bisimilar-processes open import Indexed-container mutual proof : Bool → ∀ b₁ b₂ {i} → [ i ] b₁ ∼ b₂ proof b b₁ b₂ = ⟨_,_⟩ {p = b₁} {q = b₂} (λ _ → b , _ , proof′ b _ _) (λ _ → b , _ , proof′ b _ _) proof′ : Bool → ∀ b₁ b₂ {i} → [ i ] b₁ ∼′ b₂ force (proof′ b b₁ b₂) = proof b b₁ b₂ -- In fact, for every type A there is a pointwise split surjection -- from a certain instance of bisimilarity (of any size) to equality -- on A. bisimilarity↠equality : ∀ {a} {A : Type a} → let open Bisimilarity (bisimilarity⇔equality A) in ∀ {i} {p q : A} → ([ i ] p ∼ q) ↠ p ≡ q bisimilarity↠equality {A = A} {i} = record { logical-equivalence = record { to = to ; from = from } ; right-inverse-of = to∘from } where open Bisimilarity (bisimilarity⇔equality A) to : ∀ {p q} → [ i ] p ∼ q → p ≡ q to p∼q with left-to-right p∼q (refl , refl) ... | _ , (refl , _) , _ = refl from : ∀ {p q} → p ≡ q → [ i ] p ∼ q from refl = reflexive to∘from : ∀ {p q} (p≡q : p ≡ q) → to (from p≡q) ≡ p≡q to∘from refl = refl
{ "alphanum_fraction": 0.5435986159, "avg_line_length": 35.6790123457, "ext": "agda", "hexsha": "935a6eaac36f55cb6918de3b4cacfbe05b1a9703", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/up-to", "max_forks_repo_path": "src/Bisimilarity/Comparison.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/up-to", "max_issues_repo_path": "src/Bisimilarity/Comparison.agda", "max_line_length": 125, "max_stars_count": null, "max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/up-to", "max_stars_repo_path": "src/Bisimilarity/Comparison.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3042, "size": 8670 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category -- Skew closed structure on a category module SOAS.Construction.Skew.SkewClosed {o ℓ e} (C : Category o ℓ e) where private module C = Category C open C variable A B X X′ Y Y′ Z Z′ U ℐ : Obj f g : A ⇒ B open Commutation C open import Level open import Data.Product using (Σ; _,_) open import Function.Equality using (_⟶_) open import Function.Inverse using (_InverseOf_; Inverse) open import Categories.Category.Product open import Categories.Functor renaming (id to idF) open import Categories.Functor.Bifunctor open import Categories.Functor.Construction.Constant open import Categories.NaturalTransformation open import Categories.NaturalTransformation.NaturalIsomorphism open import Categories.NaturalTransformation.Dinatural record SkewClosed : Set (levelOfTerm C) where field -- internal hom [-,-] : Bifunctor C.op C C unit : Obj [_,-] : Obj → Functor C C [_,-] = appˡ [-,-] [-,_] : Obj → Functor C.op C [-,_] = appʳ [-,-] module [-,-] = Functor [-,-] [_,_]₀ : Obj → Obj → Obj [ X , Y ]₀ = [-,-].F₀ (X , Y) [_,_]₁ : A ⇒ B → X ⇒ Y → [ B , X ]₀ ⇒ [ A , Y ]₀ [ f , g ]₁ = [-,-].F₁ (f , g) field -- i identity : NaturalTransformation [ unit ,-] idF -- j diagonal : Extranaturalʳ unit [-,-] module identity = NaturalTransformation identity module diagonal = DinaturalTransformation diagonal [[X,-],[X,-]] : Obj → Bifunctor C.op C C [[X,-],[X,-]] X = [-,-] ∘F (Functor.op [ X ,-] ⁂ [ X ,-]) [[-,Y],[-,Z]] : Obj → Obj → Bifunctor C C.op C [[-,Y],[-,Z]] Y Z = [-,-] ∘F ((Functor.op [-, Y ]) ⁂ [-, Z ]) -- L needs to be natural in Y and Z. -- it is better to spell out the conditions and then prove that indeed -- the naturality conditions hold. field L : ∀ X Y Z → [ Y , Z ]₀ ⇒ [ [ X , Y ]₀ , [ X , Z ]₀ ]₀ L-commute : [ [ Y , Z ]₀ ⇒ [ [ X , Y′ ]₀ , [ X , Z′ ]₀ ]₀ ]⟨ [ f , g ]₁ ⇒⟨ [ Y′ , Z′ ]₀ ⟩ L X Y′ Z′ ≈ L X Y Z ⇒⟨ [ [ X , Y ]₀ , [ X , Z ]₀ ]₀ ⟩ [ [ C.id , f ]₁ , [ C.id , g ]₁ ]₁ ⟩ L-natural : NaturalTransformation [-,-] ([[X,-],[X,-]] X) L-natural {X} = ntHelper record { η = λ where (Y , Z) → L X Y Z ; commute = λ _ → L-commute } module L-natural {X} = NaturalTransformation (L-natural {X}) -- other required diagrams field Lj≈j : [ unit ⇒ [ [ X , Y ]₀ , [ X , Y ]₀ ]₀ ]⟨ diagonal.α Y ⇒⟨ [ Y , Y ]₀ ⟩ L X Y Y ≈ diagonal.α [ X , Y ]₀ ⟩ ijL≈id : [ [ X , Y ]₀ ⇒ [ X , Y ]₀ ]⟨ L X X Y ⇒⟨ [ [ X , X ]₀ , [ X , Y ]₀ ]₀ ⟩ [ diagonal.α X , C.id ]₁ ⇒⟨ [ unit , [ X , Y ]₀ ]₀ ⟩ identity.η [ X , Y ]₀ ≈ C.id ⟩ iL≈i : [ [ Y , Z ]₀ ⇒ [ [ unit , Y ]₀ , Z ]₀ ]⟨ L unit Y Z ⇒⟨ [ [ unit , Y ]₀ , [ unit , Z ]₀ ]₀ ⟩ [ C.id , identity.η Z ]₁ ≈ [ identity.η Y , C.id ]₁ ⟩ ij≈id : [ unit ⇒ unit ]⟨ diagonal.α unit ⇒⟨ [ unit , unit ]₀ ⟩ identity.η unit ≈ C.id ⟩ pentagon : [ [ U , ℐ ]₀ ⇒ [ [ Y , U ]₀ , [ [ X , Y ]₀ , [ X , ℐ ]₀ ]₀ ]₀ ]⟨ L X U ℐ ⇒⟨ [ [ X , U ]₀ , [ X , ℐ ]₀ ]₀ ⟩ L [ X , Y ]₀ [ X , U ]₀ [ X , ℐ ]₀ ⇒⟨ [ [ [ X , Y ]₀ , [ X , U ]₀ ]₀ , [ [ X , Y ]₀ , [ X , ℐ ]₀ ]₀ ]₀ ⟩ [ L X Y U , C.id ]₁ ≈ L Y U ℐ ⇒⟨ [ [ Y , U ]₀ , [ Y , ℐ ]₀ ]₀ ⟩ [ C.id , L X Y ℐ ]₁ ⟩
{ "alphanum_fraction": 0.4421333333, "avg_line_length": 31.7796610169, "ext": "agda", "hexsha": "2a610c163a6db9558df5fec79450987fb58fedd4", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "SOAS/Construction/Skew/SkewClosed.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "SOAS/Construction/Skew/SkewClosed.agda", "max_line_length": 121, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "SOAS/Construction/Skew/SkewClosed.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 1328, "size": 3750 }
module Categories.Setoids where open import Library open import Categories record Setoid {a b} : Set (lsuc (a ⊔ b)) where field set : Set a eq : set → set → Set b ref : {s : set} → eq s s sym' : {s s' : set} → eq s s' → eq s' s trn : {s s' s'' : set} → eq s s' → eq s' s'' → eq s s'' open Setoid record SetoidFun (S S' : Setoid) : Set where constructor setoidfun field fun : set S → set S' feq : {s s' : set S} → eq S s s' → eq S' (fun s) (fun s') open SetoidFun SetoidFunEq : {S S' : Setoid}{f g : SetoidFun S S'} → fun f ≅ fun g → (λ{s}{s'}(p : eq S s s') → feq f p) ≅ (λ{s}{s'}(p : eq S s s') → feq g p) → f ≅ g SetoidFunEq {f = setoidfun fun feq} {setoidfun .fun .feq} refl refl = refl idFun : {S : Setoid} → SetoidFun S S idFun = record {fun = id; feq = id} compFun : {S S' S'' : Setoid} → SetoidFun S' S'' → SetoidFun S S' → SetoidFun S S'' compFun f g = record {fun = fun f ∘ fun g; feq = feq f ∘ feq g} idl : {X Y : Setoid} {f : SetoidFun X Y} → compFun idFun f ≅ f idl {f = setoidfun _ _} = refl idr : {X Y : Setoid} {f : SetoidFun X Y} → compFun f idFun ≅ f idr {f = setoidfun _ _} = refl Setoids : Cat Setoids = record{ Obj = Setoid; Hom = SetoidFun; iden = idFun; comp = compFun; idl = idl; idr = idr; ass = refl} -- -}
{ "alphanum_fraction": 0.5122979621, "avg_line_length": 26.3518518519, "ext": "agda", "hexsha": "c86564888b1028b7777c0c954e328cf7c208e5cf", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "Categories/Setoids.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "Categories/Setoids.agda", "max_line_length": 74, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "Categories/Setoids.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 553, "size": 1423 }
------------------------------------------------------------------------ -- Divisibility and coprimality ------------------------------------------------------------------------ module Data.Integer.Divisibility where open import Data.Function open import Data.Integer open import Data.Integer.Properties import Data.Nat.Divisibility as ℕ import Data.Nat.Coprimality as ℕ open import Relation.Binary open import Relation.Binary.PropositionalEquality -- Divisibility. infix 4 _∣_ _∣_ : Rel ℤ _∣_ = ℕ._∣_ on₁ ∣_∣ -- Coprimality. Coprime : Rel ℤ Coprime = ℕ.Coprime on₁ ∣_∣ -- If i divides jk and is coprime to j, then it divides k. coprime-divisor : ∀ i j k → Coprime i j → i ∣ j * k → i ∣ k coprime-divisor i j k c eq = ℕ.coprime-divisor c (subst (ℕ._∣_ ∣ i ∣) (abs-*-commute j k) eq)
{ "alphanum_fraction": 0.5856423174, "avg_line_length": 24.8125, "ext": "agda", "hexsha": "b3e45755b2277a50bfdaddb57e55e116fc88a464", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Data/Integer/Divisibility.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Data/Integer/Divisibility.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Data/Integer/Divisibility.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 233, "size": 794 }
module Issue18 where postulate D : Set data ∃ (A : D → Set) : Set where _,_ : (witness : D) → A witness → ∃ A
{ "alphanum_fraction": 0.5775862069, "avg_line_length": 14.5, "ext": "agda", "hexsha": "73156c200f3ac8096d127870954d8d132fe0793d", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Succeed/NonConjectures/Issue18.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Succeed/NonConjectures/Issue18.agda", "max_line_length": 39, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Succeed/NonConjectures/Issue18.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 45, "size": 116 }
{-# OPTIONS --cubical #-} module Cubical.README where ------------------------------------------------------------------------ -- An experimental library for Cubical Agda ----------------------------------------------------------------------- -- The library comes with a .agda-lib file, for use with the library -- management system. ------------------------------------------------------------------------ -- Module hierarchy ------------------------------------------------------------------------ -- The core library for Cubical Agda. -- It contains basic primitives, equivalences, glue types. import Cubical.Core.Everything -- The foundations for Cubical Agda. -- The Prelude module is self-explanatory. import Cubical.Foundations.Prelude import Cubical.Foundations.Everything -- Data types and properties import Cubical.Data.Everything -- Properties and proofs about relations import Cubical.Relation.Everything -- Higher-inductive types import Cubical.HITs.Everything -- Coinductive data types and properties import Cubical.Codata.Everything -- Various experiments using Cubical Agda import Cubical.Experiments.Everything
{ "alphanum_fraction": 0.5905096661, "avg_line_length": 29.9473684211, "ext": "agda", "hexsha": "4f45ff381f46d65ad8b161efecddd2f107dc0a8e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "limemloh/cubical", "max_forks_repo_path": "Cubical/README.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "limemloh/cubical", "max_issues_repo_path": "Cubical/README.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "limemloh/cubical", "max_stars_repo_path": "Cubical/README.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 208, "size": 1138 }
module Lang.Function where import Lvl open import Data.Boolean open import Data.List as List using (List) open import Data.List.Functions.Positional as List open import Data.Option open import Data open import Lang.Reflection open import Syntax.Do open import Type -- A default value tactic for implicit arguments. -- This implements a "default arguments" language feature. -- It works by always unifying the hole with the specified value. -- Essentially a constant function for holes. -- Example: -- test : ∀{@(tactic default 𝑇) x : Bool} → Bool -- test{x} = x -- Now, `test = 𝑇`, `test{𝑇} = 𝑇`, `test{𝐹} = 𝐹`. default : ∀{ℓ}{T : Type{ℓ}} → T → Term → TC(Unit{Lvl.𝟎}) default x hole = quoteTC x >>= unify hole -- A no inferrance tactic for implicit arguments. -- This makes implicit arguments work like explicit arguments by throwing an error when the hole does not match perfectly while still maintaining its implicit visibility status. -- It works by always selecting the last argument in the hole, and the last argument is the one closest to the value, which is the argument one expects it to choose. -- Examples: -- idᵢwith : ∀{T : TYPE} → {@(tactic no-infer) x : T} → T -- idᵢwith {x = x} = x -- -- idᵢwithout : ∀{T : TYPE} → {x : T} → T -- idᵢwithout {x = x} = x -- -- postulate test : ({_ : Bool} → Bool) → Bool -- -- test1 : Bool -- test1 = test idᵢwith -- -- test2 : (Bool → Bool) → Bool -- test2 _ = test idᵢwith -- -- test3 : ∀{T : TYPE} → {_ : T} → T -- test3 = idᵢwith -- -- It is useful in these kinds of scenarios because idᵢwithout would require writing the implicit argument explicitly, while idᵢwith always uses the given argument in order like how explicit arguments work. no-infer : Term → TC(Unit{Lvl.𝟎}) no-infer hole@(meta _ args) with List.last(args) ... | None = typeError (List.singleton (strErr "Expected a parameter with \"hidden\" visibility when using \"no-infer\", found none.")) ... | Some (arg (arg-info hidden _) term) = unify hole term {-# CATCHALL #-} ... | Some (arg (arg-info _ _) term) = typeError (List.singleton (strErr "Wrong visibility of argument. Expected \"hidden\" when using \"no-infer\".")) {-# CATCHALL #-} no-infer _ = typeError (List.singleton (strErr "TODO: In what situations is this error occurring?")) -- TODO: Implement idᵢwith, rename it to idᵢ, and put it in Functional. Also, try to refactor Data.Boolean, Data.List and Data.Option so that they only contain the type definition and its constructors. This minimizes the amount of dependencies this module requires (which should help in case of circular dependencies when importing this module).
{ "alphanum_fraction": 0.6859903382, "avg_line_length": 48.0535714286, "ext": "agda", "hexsha": "bf2d7c477a6d59fe7bd1ee9ecc4ba09647c8a2c9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Lang/Function.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Lang/Function.agda", "max_line_length": 345, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Lang/Function.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 741, "size": 2691 }
postulate T C D : Set instance I : {{_ : C}} → D d : {{_ : D}} → T t : T t = d
{ "alphanum_fraction": 0.4022988506, "avg_line_length": 9.6666666667, "ext": "agda", "hexsha": "14d01561fa0bb443a5dba7624414bd5c6725ff31", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2044.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2044.agda", "max_line_length": 28, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2044.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 42, "size": 87 }
{-# OPTIONS --without-K --safe #-} module Categories.Diagram.Cone.Properties where open import Level open import Categories.Category open import Categories.Functor open import Categories.Functor.Properties open import Categories.NaturalTransformation import Categories.Diagram.Cone as Con import Categories.Morphism.Reasoning as MR private variable o ℓ e : Level C D J J′ : Category o ℓ e module _ {F : Functor J C} (G : Functor C D) where private module C = Category C module D = Category D module F = Functor F module G = Functor G module CF = Con F GF = G ∘F F module CGF = Con GF F-map-Coneˡ : CF.Cone → CGF.Cone F-map-Coneˡ K = record { apex = record { ψ = λ X → G.F₁ (ψ X) ; commute = λ f → [ G ]-resp-∘ (commute f) } } where open CF.Cone K F-map-Cone⇒ˡ : ∀ {K K′} (f : CF.Cone⇒ K K′) → CGF.Cone⇒ (F-map-Coneˡ K) (F-map-Coneˡ K′) F-map-Cone⇒ˡ f = record { arr = G.F₁ arr ; commute = [ G ]-resp-∘ commute } where open CF.Cone⇒ f module _ {F : Functor J C} (G : Functor J′ J) where private module C = Category C module J′ = Category J′ module F = Functor F module G = Functor G module CF = Con F FG = F ∘F G module CFG = Con FG F-map-Coneʳ : CF.Cone → CFG.Cone F-map-Coneʳ K = record { apex = record { ψ = λ j → ψ (G.F₀ j) ; commute = λ f → commute (G.F₁ f) } } where open CF.Cone K F-map-Cone⇒ʳ : ∀ {K K′} (f : CF.Cone⇒ K K′) → CFG.Cone⇒ (F-map-Coneʳ K) (F-map-Coneʳ K′) F-map-Cone⇒ʳ f = record { arr = arr ; commute = commute } where open CF.Cone⇒ f module _ {F G : Functor J C} (α : NaturalTransformation F G) where private module C = Category C module J = Category J module F = Functor F module G = Functor G module α = NaturalTransformation α module CF = Con F module CG = Con G open C open HomReasoning open MR C nat-map-Cone : CF.Cone → CG.Cone nat-map-Cone K = record { apex = record { ψ = λ j → α.η j C.∘ ψ j ; commute = λ {X Y} f → begin G.F₁ f ∘ α.η X ∘ ψ X ≈˘⟨ pushˡ (α.commute f) ⟩ (α.η Y ∘ F.F₁ f) ∘ ψ X ≈⟨ pullʳ (commute f) ⟩ α.η Y ∘ ψ Y ∎ } } where open CF.Cone K nat-map-Cone⇒ : ∀ {K K′} (f : CF.Cone⇒ K K′) → CG.Cone⇒ (nat-map-Cone K) (nat-map-Cone K′) nat-map-Cone⇒ {K} {K′} f = record { arr = arr ; commute = pullʳ commute } where open CF.Cone⇒ f
{ "alphanum_fraction": 0.5615841584, "avg_line_length": 24.7549019608, "ext": "agda", "hexsha": "34891b35099daf0f42b9fb5248b3e7e80db2498b", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Diagram/Cone/Properties.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Diagram/Cone/Properties.agda", "max_line_length": 92, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Diagram/Cone/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 955, "size": 2525 }
{-# OPTIONS --safe #-} module Definition.Conversion.HelperDecidable where open import Definition.Untyped open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Properties open import Definition.Conversion open import Definition.Conversion.Whnf open import Definition.Conversion.Soundness open import Definition.Conversion.Symmetry open import Definition.Conversion.Stability open import Definition.Conversion.Conversion open import Definition.Conversion.Lift open import Definition.Typed.Consequences.Syntactic open import Definition.Typed.Consequences.Substitution open import Definition.Typed.Consequences.Injectivity open import Definition.Typed.Consequences.Reduction open import Definition.Typed.Consequences.Equality open import Definition.Typed.Consequences.Inequality as IE open import Definition.Typed.Consequences.NeTypeEq open import Definition.Typed.Consequences.SucCong open import Tools.Nat open import Tools.Product open import Tools.Empty open import Tools.Nullary import Tools.PropositionalEquality as PE dec-relevance : ∀ (r r′ : Relevance) → Dec (r PE.≡ r′) dec-relevance ! ! = yes PE.refl dec-relevance ! % = no (λ ()) dec-relevance % ! = no (λ ()) dec-relevance % % = yes PE.refl dec-level : ∀ (l l′ : Level) → Dec (l PE.≡ l′) dec-level ⁰ ⁰ = yes PE.refl dec-level ⁰ ¹ = no (λ ()) dec-level ¹ ⁰ = no (λ ()) dec-level ¹ ¹ = yes PE.refl -- Algorithmic equality of variables infers propositional equality. strongVarEq : ∀ {m n A Γ l} → Γ ⊢ var n ~ var m ↑! A ^ l → n PE.≡ m strongVarEq (var-refl x x≡y) = x≡y -- Helper function for decidability of applications. dec~↑!-app : ∀ {k k₁ l l₁ F F₁ G G₁ rF B Γ Δ lF lG lΠ lK} → ⊢ Γ ≡ Δ → Γ ⊢ k ∷ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ ! , ι lΠ ] → Δ ⊢ k₁ ∷ Π F₁ ^ rF ° lF ▹ G₁ ° lG ° lΠ ^ [ ! , ι lΠ ] → Γ ⊢ k ~ k₁ ↓! B ^ lK → Dec (Γ ⊢ l [genconv↑] l₁ ∷ F ^ [ rF , ι lF ]) → Dec (∃ λ A → ∃ λ lA → Γ ⊢ k ∘ l ^ lΠ ~ k₁ ∘ l₁ ^ lΠ ↑! A ^ lA) dec~↑!-app Γ≡Δ k k₁ k~k₁ (yes p) = let whnfA , neK , neL = ne~↓! k~k₁ ⊢A , ⊢k , ⊢l = syntacticEqTerm (soundness~↓! k~k₁) l≡l , ΠFG₁≡A = neTypeEq neK k ⊢k H , E , A≡ΠHE = Π≡A ΠFG₁≡A whnfA F≡H , rF≡rH , lF≡lH , lG≡lE , G₁≡E = injectivity (PE.subst (λ x → _ ⊢ _ ≡ x ^ _) A≡ΠHE ΠFG₁≡A) in yes (E [ _ ] , _ , app-cong (PE.subst₂ (λ x y → _ ⊢ _ ~ _ ↓! x ^ y) A≡ΠHE (PE.sym l≡l) k~k₁) (convConvTerm%! p F≡H)) dec~↑!-app Γ≡Δ k k₁ k~k₁ (no ¬p) = no (λ { (_ , _ , app-cong k~k₁′ p) → let whnfA , neK , neL = ne~↓! k~k₁′ ⊢A , ⊢k , ⊢l = syntacticEqTerm (soundness~↓! k~k₁′) l≡l , Π≡Π = neTypeEq neK k ⊢k F≡F , rF≡rF , lF≡lF , lG≡lG , G≡G = injectivity Π≡Π in ¬p (convConvTerm%! (PE.subst₂ (λ x y → _ ⊢ _ [genconv↑] _ ∷ _ ^ [ x , ι y ]) (PE.sym rF≡rF) (PE.sym lF≡lF) p) (sym F≡F)) }) nonNeutralℕ : Neutral ℕ → ⊥ nonNeutralℕ () nonNeutralU : ∀ {r l} → Neutral (Univ r l) → ⊥ nonNeutralU () Idℕ-elim : ∀ {Γ l A B t u t' u'} → Neutral A → Γ ⊢ Id A t u ~ Id ℕ t' u' ↑! B ^ l → ⊥ Idℕ-elim neA (Id-cong x x₁ x₂) = let _ , _ , neℕ = ne~↓! x in ⊥-elim (nonNeutralℕ neℕ) Idℕ-elim neA (Id-ℕ x x₁) = ⊥-elim (nonNeutralℕ neA) Idℕ-elim neA (Id-ℕ0 x) = ⊥-elim (nonNeutralℕ neA) Idℕ-elim neA (Id-ℕS x x₁) = ⊥-elim (nonNeutralℕ neA) Idℕ-elim' : ∀ {Γ l A B t u t' u'} → Neutral A → Γ ⊢ Id ℕ t u ~ Id A t' u' ↑! B ^ l → ⊥ Idℕ-elim' neA e = let _ , _ , e' = sym~↑! (reflConEq (wfEqTerm (soundness~↑! e))) e in Idℕ-elim neA e' conv↑-inversion : ∀ {Γ l A t u} → Whnf A → Whnf t → Whnf u → Γ ⊢ t [conv↑] u ∷ A ^ l → Γ ⊢ t [conv↓] u ∷ A ^ l conv↑-inversion whnfA whnft whnfu ([↑]ₜ B t′ u′ D d d′ whnfB whnft′ whnfu′ t<>u) = let et = whnfRed*Term d whnft eu = whnfRed*Term d′ whnfu eA = whnfRed* D whnfA in PE.subst₃ (λ A X Y → _ ⊢ X [conv↓] Y ∷ A ^ _) (PE.sym eA) (PE.sym et) (PE.sym eu) t<>u Idℕ0-elim- : ∀ {Γ l t} → Neutral t → Γ ⊢ t [conv↓] zero ∷ ℕ ^ l → ⊥ Idℕ0-elim- net (ℕ-ins ()) Idℕ0-elim- net (ne-ins x x₁ x₂ ()) Idℕ0-elim- () (zero-refl x) Idℕ0-elim : ∀ {Γ l A t u u'} → Neutral t → Γ ⊢ Id ℕ t u ~ Id ℕ zero u' ↑! A ^ l → ⊥ Idℕ0-elim net (Id-cong x y x₂) = let e = conv↑-inversion ℕₙ (ne net) zeroₙ y in Idℕ0-elim- net e Idℕ0-elim net (Id-ℕ () x₁) Idℕ0-elim () (Id-ℕ0 x) Idℕ0-elim' : ∀ {Γ l A t u u'} → Neutral t → Γ ⊢ Id ℕ zero u ~ Id ℕ t u' ↑! A ^ l → ⊥ Idℕ0-elim' net e = let _ , _ , e' = sym~↑! (reflConEq (wfEqTerm (soundness~↑! e))) e in Idℕ0-elim net e' IdℕS-elim- : ∀ {Γ l t n} → Neutral t → Γ ⊢ t [conv↓] suc n ∷ ℕ ^ l → ⊥ IdℕS-elim- net (ℕ-ins ()) IdℕS-elim- net (ne-ins x x₁ x₂ ()) IdℕS-elim- () (suc-cong x) IdℕS-elim : ∀ {Γ l A t u n u'} → Neutral t → Γ ⊢ Id ℕ t u ~ Id ℕ (suc n) u' ↑! A ^ l → ⊥ IdℕS-elim net (Id-cong x y x₂) = let e = conv↑-inversion ℕₙ (ne net) sucₙ y in IdℕS-elim- net e IdℕS-elim net (Id-ℕ () x₁) IdℕS-elim () (Id-ℕS x _) IdℕS-elim' : ∀ {Γ l A t u n u'} → Neutral t → Γ ⊢ Id ℕ (suc n) u ~ Id ℕ t u' ↑! A ^ l → ⊥ IdℕS-elim' net e = let _ , _ , e' = sym~↑! (reflConEq (wfEqTerm (soundness~↑! e))) e in IdℕS-elim net e' Idℕ0S-elim- : ∀ {Γ l n} → Γ ⊢ zero [conv↓] suc n ∷ ℕ ^ l → ⊥ Idℕ0S-elim- (ℕ-ins ()) Idℕ0S-elim- (ne-ins x x₁ x₂ ()) Idℕ0S-elim : ∀ {Γ l A u u' n} → Γ ⊢ Id ℕ zero u ~ Id ℕ (suc n) u' ↑! A ^ l → ⊥ Idℕ0S-elim (Id-cong x y x₂) = let e = conv↑-inversion ℕₙ zeroₙ sucₙ y in Idℕ0S-elim- e Idℕ0S-elim (Id-ℕ () _) Idℕ0S-elim' : ∀ {Γ l A u u' n} → Γ ⊢ Id ℕ (suc n) u ~ Id ℕ zero u' ↑! A ^ l → ⊥ Idℕ0S-elim' e = let _ , _ , e' = sym~↑! (reflConEq (wfEqTerm (soundness~↑! e))) e in Idℕ0S-elim e' IdU-elim : ∀ {Γ l A B t u t' u' rU lU} → Neutral A → Γ ⊢ Id A t u ~ Id (Univ rU lU) t' u' ↑! B ^ l → ⊥ IdU-elim neA (Id-cong x x₁ x₂) = let _ , _ , neU = ne~↓! x in ⊥-elim (nonNeutralU neU) IdU-elim neA (Id-U x x₁) = ⊥-elim (nonNeutralU neA) IdU-elim neA (Id-Uℕ x) = ⊥-elim (nonNeutralU neA) IdU-elim neA (Id-UΠ x x₁) = ⊥-elim (nonNeutralU neA) IdU-elim' : ∀ {Γ l A B t u t' u' rU lU} → Neutral A → Γ ⊢ Id (Univ rU lU) t u ~ Id A t' u' ↑! B ^ l → ⊥ IdU-elim' neA e = let _ , _ , e' = sym~↑! (reflConEq (wfEqTerm (soundness~↑! e))) e in IdU-elim neA e' IdUℕ-elim : ∀ {Γ l A t u t' u' rU lU} → Γ ⊢ Id (Univ rU lU) t u ~ Id ℕ t' u' ↑! A ^ l → ⊥ IdUℕ-elim (Id-cong () x₁ x₂) IdℕU-elim : ∀ {Γ l A t u t' u' rU lU} → Γ ⊢ Id ℕ t u ~ Id (Univ rU lU) t' u' ↑! A ^ l → ⊥ IdℕU-elim (Id-cong () x₁ x₂) IdUUℕ-elim : ∀ {Γ l A t u u'} → Neutral t → Γ ⊢ Id (U ⁰) t u ~ Id (U ⁰) ℕ u' ↑! A ^ l → ⊥ IdUUℕ-elim () (Id-Uℕ x) IdUUℕ-elim' : ∀ {Γ l A t u u'} → Neutral t → Γ ⊢ Id (U ⁰) ℕ u ~ Id (U ⁰) t u' ↑! A ^ l → ⊥ IdUUℕ-elim' () (Id-Uℕ x) IdUUΠ-elim- : ∀ {Γ l A rA B X t} → Neutral t → Γ ⊢ t [conv↓] Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰ ∷ X ^ l → ⊥ IdUUΠ-elim- net (η-eq x x₁ x₂ x₃ x₄ x₅ (ne ()) x₇) IdUUΠ-elim : ∀ {Γ l A rA B X t u u'} → Neutral t → Γ ⊢ Id (U ⁰) t u ~ Id (U ⁰) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰) u' ↑! X ^ l → ⊥ IdUUΠ-elim net (Id-cong x y x₂) = let e = conv↑-inversion Uₙ (ne net) Πₙ y in IdUUΠ-elim- net e IdUUΠ-elim net (Id-U () x₁) IdUUΠ-elim () (Id-UΠ x x₁) IdUUΠ-elim' : ∀ {Γ l A rA B X t u u'} → Neutral t → Γ ⊢ Id (U ⁰) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰) u ~ Id (U ⁰) t u' ↑! X ^ l → ⊥ IdUUΠ-elim' net e = let _ , _ , e' = sym~↑! (reflConEq (wfEqTerm (soundness~↑! e))) e in IdUUΠ-elim net e' IdUUΠℕ-elim- : ∀ {Γ l A rA B X} → Γ ⊢ Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰ [conv↓] ℕ ∷ X ^ l → ⊥ IdUUΠℕ-elim- (η-eq x x₁ x₂ x₃ x₄ x₅ (ne ()) x₇) IdUUΠℕ-elim : ∀ {Γ l A rA B X u u'} → Γ ⊢ Id (U ⁰) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰) u ~ Id (U ⁰) ℕ u' ↑! X ^ l → ⊥ IdUUΠℕ-elim (Id-cong x y x₂) = let e = conv↑-inversion Uₙ Πₙ ℕₙ y in IdUUΠℕ-elim- e IdUUΠℕ-elim (Id-U () x₁) IdUUΠℕ-elim' : ∀ {Γ l A rA B X u u'} → Γ ⊢ Id (U ⁰) ℕ u ~ Id (U ⁰) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰) u' ↑! X ^ l → ⊥ IdUUΠℕ-elim' e = let _ , _ , e' = sym~↑! (reflConEq (wfEqTerm (soundness~↑! e))) e in IdUUΠℕ-elim e' castℕ-elim : ∀ {Γ l A B B' X t e t' e'} → Neutral A → Γ ⊢ cast ⁰ A B e t ~ cast ⁰ ℕ B' e' t' ↑! X ^ l → ⊥ castℕ-elim neA (cast-cong () x₁ x₂ x₃ x₄) castℕ-elim () (cast-ℕ x x₁ x₂ x₃) castℕ-elim () (cast-ℕℕ x x₁ x₂) castℕ-elim () (cast-ℕΠ x x₁ x₂ x₃) castℕ-elim' : ∀ {Γ l A B B' X t e t' e'} → Neutral A → Γ ⊢ cast ⁰ ℕ B e t ~ cast ⁰ A B' e' t' ↑! X ^ l → ⊥ castℕ-elim' neA e = let _ , _ , e' = sym~↑! (reflConEq (wfEqTerm (soundness~↑! e))) e in castℕ-elim neA e' castΠ-elim : ∀ {Γ l A B B' X t e t' e' r P Q} → Neutral A → Γ ⊢ cast ⁰ A B e t ~ cast ⁰ (Π P ^ r ° ⁰ ▹ Q ° ⁰ ° ⁰) B' e' t' ↑! X ^ l → ⊥ castΠ-elim neA (cast-cong () x₁ x₂ x₃ x₄) castΠ-elim () (cast-Π x x₁ x₂ x₃ x₄) castΠ-elim () (cast-Πℕ x x₁ x₂ x₃) castΠ-elim () (cast-ΠΠ%! x x₁ x₂ x₃ x₄) castΠ-elim () (cast-ΠΠ!% x x₁ x₂ x₃ x₄) castΠ-elim' : ∀ {Γ l A B B' X t e t' e' r P Q} → Neutral A → Γ ⊢ cast ⁰ (Π P ^ r ° ⁰ ▹ Q ° ⁰ ° ⁰) B e t ~ cast ⁰ A B' e' t' ↑! X ^ l → ⊥ castΠ-elim' neA e = let _ , _ , e' = sym~↑! (reflConEq (wfEqTerm (soundness~↑! e))) e in castΠ-elim neA e' castℕℕ-elim : ∀ {Γ l A X t e t' e'} → Neutral A → Γ ⊢ cast ⁰ ℕ A e t ~ cast ⁰ ℕ ℕ e' t' ↑! X ^ l → ⊥ castℕℕ-elim neA (cast-cong () x₁ x₂ x₃ x₄) castℕℕ-elim (var n) (cast-ℕ () x₁ x₂ x₃) castℕℕ-elim () (cast-ℕℕ x x₁ x₂) castℕℕ-elim' : ∀ {Γ l A X t e t' e'} → Neutral A → Γ ⊢ cast ⁰ ℕ ℕ e t ~ cast ⁰ ℕ A e' t' ↑! X ^ l → ⊥ castℕℕ-elim' neA e = let _ , _ , e' = sym~↑! (reflConEq (wfEqTerm (soundness~↑! e))) e in castℕℕ-elim neA e' castℕΠ-elim : ∀ {Γ l A A' X t e t' e' r P Q} → Γ ⊢ cast ⁰ ℕ A e t ~ cast ⁰ (Π P ^ r ° ⁰ ▹ Q ° ⁰ ° ⁰) A' e' t' ↑! X ^ l → ⊥ castℕΠ-elim (cast-cong () x₁ x₂ x₃ x₄) castℕΠ-elim' : ∀ {Γ l A A' X t e t' e' r P Q} → Γ ⊢ cast ⁰ (Π P ^ r ° ⁰ ▹ Q ° ⁰ ° ⁰) A e t ~ cast ⁰ ℕ A' e' t' ↑! X ^ l → ⊥ castℕΠ-elim' (cast-cong () x₁ x₂ x₃ x₄) castℕneΠ-elim : ∀ {Γ l A X t e t' e' r P Q} → Neutral A → Γ ⊢ cast ⁰ ℕ A e t ~ cast ⁰ ℕ (Π P ^ r ° ⁰ ▹ Q ° ⁰ ° ⁰) e' t' ↑! X ^ l → ⊥ castℕneΠ-elim neA (cast-cong () x₁ x₂ x₃ x₄) castℕneΠ-elim neA (cast-ℕ () x₁ x₂ x₃) castℕneΠ-elim () (cast-ℕΠ x x₁ x₂ x₃) castℕneΠ-elim' : ∀ {Γ l A X t e t' e' r P Q} → Neutral A → Γ ⊢ cast ⁰ ℕ (Π P ^ r ° ⁰ ▹ Q ° ⁰ ° ⁰) e t ~ cast ⁰ ℕ A e' t' ↑! X ^ l → ⊥ castℕneΠ-elim' neA e = let _ , _ , e' = sym~↑! (reflConEq (wfEqTerm (soundness~↑! e))) e in castℕneΠ-elim neA e' castℕℕΠ-elim : ∀ {Γ l X t e t' e' r P Q} → Γ ⊢ cast ⁰ ℕ ℕ e t ~ cast ⁰ ℕ (Π P ^ r ° ⁰ ▹ Q ° ⁰ ° ⁰) e' t' ↑! X ^ l → ⊥ castℕℕΠ-elim (cast-cong () x₁ x₂ x₃ x₄) castℕℕΠ-elim (cast-ℕ () x₁ x₂ x₃) castℕℕΠ-elim' : ∀ {Γ l X t e t' e' r P Q} → Γ ⊢ cast ⁰ ℕ (Π P ^ r ° ⁰ ▹ Q ° ⁰ ° ⁰) e t ~ cast ⁰ ℕ ℕ e' t' ↑! X ^ l → ⊥ castℕℕΠ-elim' e = let _ , _ , e' = sym~↑! (reflConEq (wfEqTerm (soundness~↑! e))) e in castℕℕΠ-elim e' castΠneℕ-elim : ∀ {Γ l A X t e t' e' r P Q r' P' Q'} → Neutral A → Γ ⊢ cast ⁰ (Π P ^ r ° ⁰ ▹ Q ° ⁰ ° ⁰) A e t ~ cast ⁰ (Π P' ^ r' ° ⁰ ▹ Q' ° ⁰ ° ⁰) ℕ e' t' ↑! X ^ l → ⊥ castΠneℕ-elim neA (cast-cong () x₁ x₂ x₃ x₄) castΠneℕ-elim neA (cast-Π x () x₂ x₃ x₄) castΠneℕ-elim () (cast-Πℕ x x₁ x₂ x₃) castΠneℕ-elim' : ∀ {Γ l A X t e t' e' r P Q r' P' Q'} → Neutral A → Γ ⊢ cast ⁰ (Π P ^ r ° ⁰ ▹ Q ° ⁰ ° ⁰) ℕ e t ~ cast ⁰ (Π P' ^ r' ° ⁰ ▹ Q' ° ⁰ ° ⁰) A e' t' ↑! X ^ l → ⊥ castΠneℕ-elim' neA e = let _ , _ , e' = sym~↑! (reflConEq (wfEqTerm (soundness~↑! e))) e in castΠneℕ-elim neA e' castΠneΠ-elim : ∀ {Γ l A X t e t' e' r P Q r' P' Q' r'' P'' Q''} → Neutral A → Γ ⊢ cast ⁰ (Π P ^ r ° ⁰ ▹ Q ° ⁰ ° ⁰) A e t ~ cast ⁰ (Π P' ^ r' ° ⁰ ▹ Q' ° ⁰ ° ⁰) (Π P'' ^ r'' ° ⁰ ▹ Q'' ° ⁰ ° ⁰) e' t' ↑! X ^ l → ⊥ castΠneΠ-elim neA (cast-cong () x₁ x₂ x₃ x₄) castΠneΠ-elim neA (cast-Π x () x₂ x₃ x₄) castΠneΠ-elim () (cast-ΠΠ%! x x₁ x₂ x₃ x₄) castΠneΠ-elim () (cast-ΠΠ!% x x₁ x₂ x₃ x₄) castΠneΠ-elim' : ∀ {Γ l A X t e t' e' r P Q r' P' Q' r'' P'' Q''} → Neutral A → Γ ⊢ cast ⁰ (Π P ^ r ° ⁰ ▹ Q ° ⁰ ° ⁰) (Π P'' ^ r'' ° ⁰ ▹ Q'' ° ⁰ ° ⁰) e t ~ cast ⁰ (Π P' ^ r' ° ⁰ ▹ Q' ° ⁰ ° ⁰) A e' t' ↑! X ^ l → ⊥ castΠneΠ-elim' neA e = let _ , _ , e' = sym~↑! (reflConEq (wfEqTerm (soundness~↑! e))) e in castΠneΠ-elim neA e' castΠΠℕ-elim : ∀ {Γ l X t e t' e' r P Q r' P' Q' r'' P'' Q''} → Γ ⊢ cast ⁰ (Π P ^ r ° ⁰ ▹ Q ° ⁰ ° ⁰) ℕ e t ~ cast ⁰ (Π P' ^ r' ° ⁰ ▹ Q' ° ⁰ ° ⁰) (Π P'' ^ r'' ° ⁰ ▹ Q'' ° ⁰ ° ⁰) e' t' ↑! X ^ l → ⊥ castΠΠℕ-elim (cast-cong () x₁ x₂ x₃ x₄) castΠΠℕ-elim (cast-Π x () x₂ x₃ x₄) castΠΠℕ-elim' : ∀ {Γ l X t e t' e' r P Q r' P' Q' r'' P'' Q''} → Γ ⊢ cast ⁰ (Π P ^ r ° ⁰ ▹ Q ° ⁰ ° ⁰) (Π P'' ^ r'' ° ⁰ ▹ Q'' ° ⁰ ° ⁰) e t ~ cast ⁰ (Π P' ^ r' ° ⁰ ▹ Q' ° ⁰ ° ⁰) ℕ e' t' ↑! X ^ l → ⊥ castΠΠℕ-elim' e = let _ , _ , e' = sym~↑! (reflConEq (wfEqTerm (soundness~↑! e))) e in castΠΠℕ-elim e' castΠΠ!%-elim : ∀ {Γ l A A' X t e t' e' P Q P' Q'} → Γ ⊢ cast ⁰ (Π P ^ ! ° ⁰ ▹ Q ° ⁰ ° ⁰) A e t ~ cast ⁰ (Π P' ^ % ° ⁰ ▹ Q' ° ⁰ ° ⁰) A' e' t' ↑! X ^ l → ⊥ castΠΠ!%-elim (cast-cong () x₁ x₂ x₃ x₄) castΠΠ%!-elim : ∀ {Γ l A A' X t e t' e' P Q P' Q'} → Γ ⊢ cast ⁰ (Π P ^ % ° ⁰ ▹ Q ° ⁰ ° ⁰) A e t ~ cast ⁰ (Π P' ^ ! ° ⁰ ▹ Q' ° ⁰ ° ⁰) A' e' t' ↑! X ^ l → ⊥ castΠΠ%!-elim (cast-cong () x₁ x₂ x₃ x₄) -- Helper functions for decidability for neutrals decConv↓Term-ℕ-ins : ∀ {t u Γ l} → Γ ⊢ t [conv↓] u ∷ ℕ ^ l → Γ ⊢ t ~ t ↓! ℕ ^ l → Γ ⊢ t ~ u ↓! ℕ ^ l decConv↓Term-ℕ-ins (ℕ-ins x) t~t = x decConv↓Term-ℕ-ins (ne-ins x x₁ () x₃) t~t decConv↓Term-ℕ-ins (zero-refl x) ([~] A D whnfB ()) decConv↓Term-ℕ-ins (suc-cong x) ([~] A D whnfB ()) decConv↓Term-U-ins : ∀ {t u Γ r lU l} → Γ ⊢ t [conv↓] u ∷ Univ r lU ^ l → Γ ⊢ t ~ t ↓! Univ r lU ^ l → Γ ⊢ t ~ u ↓! Univ r lU ^ l decConv↓Term-U-ins (ne x) t~r = x decConv↓Term-ne-ins : ∀ {t u A Γ l} → Neutral A → Γ ⊢ t [conv↓] u ∷ A ^ l → ∃ λ B → ∃ λ lB → Γ ⊢ t ~ u ↓! B ^ lB decConv↓Term-ne-ins neA (ne-ins x x₁ x₂ x₃) = _ , _ , x₃ -- Helper function for decidability for impossibility of terms not being equal -- as neutrals when they are equal as terms and the first is a neutral. decConv↓Term-ℕ : ∀ {t u Γ l} → Γ ⊢ t [conv↓] u ∷ ℕ ^ l → Γ ⊢ t ~ t ↓! ℕ ^ l → ¬ (Γ ⊢ t ~ u ↓! ℕ ^ l) → ⊥ decConv↓Term-ℕ (ℕ-ins x) t~t ¬u~u = ¬u~u x decConv↓Term-ℕ (ne-ins x x₁ () x₃) t~t ¬u~u decConv↓Term-ℕ (zero-refl x) ([~] A D whnfB ()) ¬u~u decConv↓Term-ℕ (suc-cong x) ([~] A D whnfB ()) ¬u~u decConv↓Term-U : ∀ {t u Γ r lU l} → Γ ⊢ t [conv↓] u ∷ Univ r lU ^ l → Γ ⊢ t ~ t ↓! Univ r lU ^ l → ¬ (Γ ⊢ t ~ u ↓! Univ r lU ^ l) → ⊥ decConv↓Term-U (ne x) t~t ¬u~u = ¬u~u x
{ "alphanum_fraction": 0.5228789986, "avg_line_length": 47.4587458746, "ext": "agda", "hexsha": "97c8a2c2c56df053317bdcf7f1f28f0ccaa0cbcb", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Definition/Conversion/HelperDecidable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Definition/Conversion/HelperDecidable.agda", "max_line_length": 149, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Definition/Conversion/HelperDecidable.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 7526, "size": 14380 }
record R (X : Set) : Set₁ where field P : X → Set f : ∀ {x : X} → P x → P x open R {{…}} test : ∀ {X} {{r : R X}} {x : X} → P x → P x test p = f p -- WAS: instance search fails with several candidates left -- SHOULD: succeed
{ "alphanum_fraction": 0.5168067227, "avg_line_length": 18.3076923077, "ext": "agda", "hexsha": "40f43aeb5db9b2f7f8b9b0cd4444152bd947f0c7", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2760.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2760.agda", "max_line_length": 58, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2760.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 89, "size": 238 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Heterogeneous equality ------------------------------------------------------------------------ {-# OPTIONS --with-K --safe #-} module Relation.Binary.HeterogeneousEquality where import Axiom.Extensionality.Heterogeneous as Ext open import Data.Product open import Data.Unit.NonEta open import Function open import Function.Inverse using (Inverse) open import Level open import Relation.Nullary open import Relation.Binary open import Relation.Binary.Consequences open import Relation.Binary.Indexed.Heterogeneous using (IndexedSetoid) open import Relation.Binary.Indexed.Heterogeneous.Construct.At using (_atₛ_) open import Relation.Binary.PropositionalEquality as P using (_≡_; refl) import Relation.Binary.HeterogeneousEquality.Core as Core ------------------------------------------------------------------------ -- Heterogeneous equality infix 4 _≇_ open Core public using (_≅_; refl) -- Nonequality. _≇_ : ∀ {ℓ} {A : Set ℓ} → A → {B : Set ℓ} → B → Set ℓ x ≇ y = ¬ x ≅ y ------------------------------------------------------------------------ -- Conversion open Core public using (≅-to-≡; ≡-to-≅) ≅-to-type-≡ : ∀ {a} {A B : Set a} {x : A} {y : B} → x ≅ y → A ≡ B ≅-to-type-≡ refl = refl ≅-to-subst-≡ : ∀ {a} {A B : Set a} {x : A} {y : B} → (p : x ≅ y) → P.subst (λ x → x) (≅-to-type-≡ p) x ≡ y ≅-to-subst-≡ refl = refl ------------------------------------------------------------------------ -- Some properties reflexive : ∀ {a} {A : Set a} → _⇒_ {A = A} _≡_ (λ x y → x ≅ y) reflexive refl = refl sym : ∀ {ℓ} {A B : Set ℓ} {x : A} {y : B} → x ≅ y → y ≅ x sym refl = refl trans : ∀ {ℓ} {A B C : Set ℓ} {x : A} {y : B} {z : C} → x ≅ y → y ≅ z → x ≅ z trans refl eq = eq subst : ∀ {a} {A : Set a} {p} → Substitutive {A = A} (λ x y → x ≅ y) p subst P refl p = p subst₂ : ∀ {a b p} {A : Set a} {B : Set b} (P : A → B → Set p) → ∀ {x₁ x₂ y₁ y₂} → x₁ ≅ x₂ → y₁ ≅ y₂ → P x₁ y₁ → P x₂ y₂ subst₂ P refl refl p = p subst-removable : ∀ {a p} {A : Set a} (P : A → Set p) {x y} (eq : x ≅ y) z → subst P eq z ≅ z subst-removable P refl z = refl ≡-subst-removable : ∀ {a p} {A : Set a} (P : A → Set p) {x y} (eq : x ≡ y) z → P.subst P eq z ≅ z ≡-subst-removable P refl z = refl cong : ∀ {a b} {A : Set a} {B : A → Set b} {x y} (f : (x : A) → B x) → x ≅ y → f x ≅ f y cong f refl = refl cong-app : ∀ {a b} {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → f ≅ g → (x : A) → f x ≅ g x cong-app refl x = refl cong₂ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : ∀ x → B x → Set c} {x y u v} (f : (x : A) (y : B x) → C x y) → x ≅ y → u ≅ v → f x u ≅ f y v cong₂ f refl refl = refl resp₂ : ∀ {a ℓ} {A : Set a} (∼ : Rel A ℓ) → ∼ Respects₂ (λ x y → x ≅ y) resp₂ _∼_ = subst⟶resp₂ _∼_ subst icong : ∀ {a b ℓ} {I : Set ℓ} (A : I → Set a) {B : {k : I} → A k → Set b} {i j : I} {x : A i} {y : A j} → i ≡ j → (f : {k : I} → (z : A k) → B z) → x ≅ y → f x ≅ f y icong _ refl _ refl = refl icong₂ : ∀ {a b c ℓ} {I : Set ℓ} (A : I → Set a) {B : {k : I} → A k → Set b} {C : {k : I} → (a : A k) → B a → Set c} {i j : I} {x : A i} {y : A j} {u : B x} {v : B y} → i ≡ j → (f : {k : I} → (z : A k) → (w : B z) → C z w) → x ≅ y → u ≅ v → f x u ≅ f y v icong₂ _ refl _ refl refl = refl icong-subst-removable : ∀ {a b ℓ} {I : Set ℓ} (A : I → Set a) {B : {k : I} → A k → Set b} {i j : I} (eq : i ≅ j) (f : {k : I} → (z : A k) → B z) (x : A i) → f (subst A eq x) ≅ f x icong-subst-removable _ refl _ _ = refl icong-≡-subst-removable : ∀ {a b ℓ} {I : Set ℓ} (A : I → Set a) {B : {k : I} → A k → Set b} {i j : I} (eq : i ≡ j) (f : {k : I} → (z : A k) → B z) (x : A i) → f (P.subst A eq x) ≅ f x icong-≡-subst-removable _ refl _ _ = refl ------------------------------------------------------------------------ --Proof irrelevance ≅-irrelevant : ∀ {ℓ} {A B : Set ℓ} → Irrelevant ((A → B → Set ℓ) ∋ λ a → a ≅_) ≅-irrelevant refl refl = refl module _ {ℓ} {A₁ A₂ A₃ A₄ : Set ℓ} {a₁ : A₁} {a₂ : A₂} {a₃ : A₃} {a₄ : A₄} where ≅-heterogeneous-irrelevant : (p : a₁ ≅ a₂) (q : a₃ ≅ a₄) → a₂ ≅ a₃ → p ≅ q ≅-heterogeneous-irrelevant refl refl refl = refl ≅-heterogeneous-irrelevantˡ : (p : a₁ ≅ a₂) (q : a₃ ≅ a₄) → a₁ ≅ a₃ → p ≅ q ≅-heterogeneous-irrelevantˡ refl refl refl = refl ≅-heterogeneous-irrelevantʳ : (p : a₁ ≅ a₂) (q : a₃ ≅ a₄) → a₂ ≅ a₄ → p ≅ q ≅-heterogeneous-irrelevantʳ refl refl refl = refl ------------------------------------------------------------------------ -- Structures isEquivalence : ∀ {a} {A : Set a} → IsEquivalence {A = A} (λ x y → x ≅ y) isEquivalence = record { refl = refl ; sym = sym ; trans = trans } setoid : ∀ {a} → Set a → Setoid _ _ setoid A = record { Carrier = A ; _≈_ = λ x y → x ≅ y ; isEquivalence = isEquivalence } indexedSetoid : ∀ {a b} {A : Set a} → (A → Set b) → IndexedSetoid A _ _ indexedSetoid B = record { Carrier = B ; _≈_ = λ x y → x ≅ y ; isEquivalence = record { refl = refl ; sym = sym ; trans = trans } } ≡↔≅ : ∀ {a b} {A : Set a} (B : A → Set b) {x : A} → Inverse (P.setoid (B x)) ((indexedSetoid B) atₛ x) ≡↔≅ B = record { to = record { _⟨$⟩_ = id; cong = ≡-to-≅ } ; from = record { _⟨$⟩_ = id; cong = ≅-to-≡ } ; inverse-of = record { left-inverse-of = λ _ → refl ; right-inverse-of = λ _ → refl } } decSetoid : ∀ {a} {A : Set a} → Decidable {A = A} {B = A} (λ x y → x ≅ y) → DecSetoid _ _ decSetoid dec = record { _≈_ = λ x y → x ≅ y ; isDecEquivalence = record { isEquivalence = isEquivalence ; _≟_ = dec } } isPreorder : ∀ {a} {A : Set a} → IsPreorder {A = A} (λ x y → x ≅ y) (λ x y → x ≅ y) isPreorder = record { isEquivalence = isEquivalence ; reflexive = id ; trans = trans } isPreorder-≡ : ∀ {a} {A : Set a} → IsPreorder {A = A} _≡_ (λ x y → x ≅ y) isPreorder-≡ = record { isEquivalence = P.isEquivalence ; reflexive = reflexive ; trans = trans } preorder : ∀ {a} → Set a → Preorder _ _ _ preorder A = record { Carrier = A ; _≈_ = _≡_ ; _∼_ = λ x y → x ≅ y ; isPreorder = isPreorder-≡ } ------------------------------------------------------------------------ -- Convenient syntax for equational reasoning module ≅-Reasoning where -- The code in `Relation.Binary.Reasoning.Setoid` cannot handle -- heterogeneous equalities, hence the code duplication here. infix 4 _IsRelatedTo_ infix 3 _∎ infixr 2 _≅⟨_⟩_ _≅˘⟨_⟩_ _≡⟨_⟩_ _≡˘⟨_⟩_ _≡⟨⟩_ infix 1 begin_ data _IsRelatedTo_ {ℓ} {A : Set ℓ} (x : A) {B : Set ℓ} (y : B) : Set ℓ where relTo : (x≅y : x ≅ y) → x IsRelatedTo y begin_ : ∀ {ℓ} {A : Set ℓ} {x : A} {B} {y : B} → x IsRelatedTo y → x ≅ y begin relTo x≅y = x≅y _≅⟨_⟩_ : ∀ {ℓ} {A : Set ℓ} (x : A) {B} {y : B} {C} {z : C} → x ≅ y → y IsRelatedTo z → x IsRelatedTo z _ ≅⟨ x≅y ⟩ relTo y≅z = relTo (trans x≅y y≅z) _≅˘⟨_⟩_ : ∀ {ℓ} {A : Set ℓ} (x : A) {B} {y : B} {C} {z : C} → y ≅ x → y IsRelatedTo z → x IsRelatedTo z _ ≅˘⟨ y≅x ⟩ relTo y≅z = relTo (trans (sym y≅x) y≅z) _≡⟨_⟩_ : ∀ {ℓ} {A : Set ℓ} (x : A) {y C} {z : C} → x ≡ y → y IsRelatedTo z → x IsRelatedTo z _ ≡⟨ x≡y ⟩ relTo y≅z = relTo (trans (reflexive x≡y) y≅z) _≡˘⟨_⟩_ : ∀ {ℓ} {A : Set ℓ} (x : A) {y C} {z : C} → y ≡ x → y IsRelatedTo z → x IsRelatedTo z _ ≡˘⟨ y≡x ⟩ relTo y≅z = relTo (trans (sym (reflexive y≡x)) y≅z) _≡⟨⟩_ : ∀ {ℓ} {A : Set ℓ} (x : A) {B} {y : B} → x IsRelatedTo y → x IsRelatedTo y _ ≡⟨⟩ x≅y = x≅y _∎ : ∀ {a} {A : Set a} (x : A) → x IsRelatedTo x _∎ _ = relTo refl ------------------------------------------------------------------------ -- Inspect -- Inspect can be used when you want to pattern match on the result r -- of some expression e, and you also need to "remember" that r ≡ e. record Reveal_·_is_ {a b} {A : Set a} {B : A → Set b} (f : (x : A) → B x) (x : A) (y : B x) : Set (a ⊔ b) where constructor [_] field eq : f x ≅ y inspect : ∀ {a b} {A : Set a} {B : A → Set b} (f : (x : A) → B x) (x : A) → Reveal f · x is f x inspect f x = [ refl ] -- Example usage: -- f x y with g x | inspect g x -- f x y | c z | [ eq ] = ... ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 0.15 proof-irrelevance = ≅-irrelevant {-# WARNING_ON_USAGE proof-irrelevance "Warning: proof-irrelevance was deprecated in v0.15. Please use ≅-irrelevant instead." #-} -- Version 1.0 ≅-irrelevance = ≅-irrelevant {-# WARNING_ON_USAGE ≅-irrelevance "Warning: ≅-irrelevance was deprecated in v1.0. Please use ≅-irrelevant instead." #-} ≅-heterogeneous-irrelevance = ≅-heterogeneous-irrelevant {-# WARNING_ON_USAGE ≅-heterogeneous-irrelevance "Warning: ≅-heterogeneous-irrelevance was deprecated in v1.0. Please use ≅-heterogeneous-irrelevant instead." #-} ≅-heterogeneous-irrelevanceˡ = ≅-heterogeneous-irrelevantˡ {-# WARNING_ON_USAGE ≅-heterogeneous-irrelevanceˡ "Warning: ≅-heterogeneous-irrelevanceˡ was deprecated in v1.0. Please use ≅-heterogeneous-irrelevantˡ instead." #-} ≅-heterogeneous-irrelevanceʳ = ≅-heterogeneous-irrelevantʳ {-# WARNING_ON_USAGE ≅-heterogeneous-irrelevanceʳ "Warning: ≅-heterogeneous-irrelevanceʳ was deprecated in v1.0. Please use ≅-heterogeneous-irrelevantʳ instead." #-} Extensionality = Ext.Extensionality {-# WARNING_ON_USAGE Extensionality "Warning: Extensionality was deprecated in v1.0. Please use Extensionality from `Axiom.Extensionality.Heterogeneous` instead." #-} ≡-ext-to-≅-ext = Ext.≡-ext⇒≅-ext {-# WARNING_ON_USAGE ≡-ext-to-≅-ext "Warning: ≡-ext-to-≅-ext was deprecated in v1.0. Please use ≡-ext⇒≅-ext from `Axiom.Extensionality.Heterogeneous` instead." #-}
{ "alphanum_fraction": 0.4783710237, "avg_line_length": 31.2521994135, "ext": "agda", "hexsha": "da7a6fbdcade2738840899bacf564f6e47d9d395", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/HeterogeneousEquality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/HeterogeneousEquality.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/HeterogeneousEquality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4062, "size": 10657 }
{-# OPTIONS --without-K #-} module Data.Word8.Primitive where open import Agda.Builtin.Bool using (Bool) open import Agda.Builtin.Nat using (Nat) {-# FOREIGN GHC import qualified Data.Word #-} {-# FOREIGN GHC import qualified Data.Bits #-} postulate Word8 : Set _==_ : Word8 → Word8 → Bool _/=_ : Word8 → Word8 → Bool _xor_ : Word8 → Word8 → Word8 _and_ : Word8 → Word8 → Word8 _or_ : Word8 → Word8 → Word8 {-# COMPILE GHC Word8 = type Data.Word.Word8 #-} {-# COMPILE GHC _==_ = (Prelude.==) #-} {-# COMPILE GHC _/=_ = (Prelude./=) #-} {-# COMPILE GHC _xor_ = (Data.Bits.xor) #-} {-# COMPILE GHC _and_ = (Data.Bits..&.) #-} {-# COMPILE GHC _or_ = (Data.Bits..|.) #-} postulate primWord8fromNat : Nat → Word8 primWord8toNat : Word8 → Nat {-# COMPILE GHC primWord8fromNat = (\n -> Prelude.fromIntegral n) #-} {-# COMPILE GHC primWord8toNat = (\w -> Prelude.fromIntegral w) #-}
{ "alphanum_fraction": 0.6376811594, "avg_line_length": 28.935483871, "ext": "agda", "hexsha": "6902a87b1b73f6028849eb4d6d84b64cfa86ce2b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "semenov-vladyslav/bytes-agda", "max_forks_repo_path": "src/Data/Word8/Primitive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "semenov-vladyslav/bytes-agda", "max_issues_repo_path": "src/Data/Word8/Primitive.agda", "max_line_length": 69, "max_stars_count": null, "max_stars_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "semenov-vladyslav/bytes-agda", "max_stars_repo_path": "src/Data/Word8/Primitive.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 288, "size": 897 }
------------------------------------------------------------------------------ -- Testing the --schematic-propositional-symbols option ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- Fails because requires the above option. module RequiredOption.SchematicPropositionalSymbols where postulate D : Set postulate id : (P : Set) → P → P {-# ATP prove id #-}
{ "alphanum_fraction": 0.4477876106, "avg_line_length": 31.3888888889, "ext": "agda", "hexsha": "0519d7b71971932d200a8182f016210499747783", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Fail/Errors/RequiredOption/SchematicPropositionalSymbols.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Fail/Errors/RequiredOption/SchematicPropositionalSymbols.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Fail/Errors/RequiredOption/SchematicPropositionalSymbols.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 94, "size": 565 }
module Formalization.ClassicalPropositionalLogic.NaturalDeduction.Consistency where import Lvl open import Formalization.ClassicalPropositionalLogic.NaturalDeduction open import Formalization.ClassicalPropositionalLogic.NaturalDeduction.Proofs open import Formalization.ClassicalPropositionalLogic.Syntax open import Functional open import Logic.Propositional as Logic using (_←_) open import Logic.Propositional.Theorems as Logic using () open import Relator.Equals.Proofs.Equiv open import Sets.PredicateSet using (PredSet ; _∈_ ; _∉_ ; _∪_ ; _∪•_ ; _∖_ ; _⊆_ ; _⊇_ ; ∅ ; [≡]-to-[⊆] ; [≡]-to-[⊇]) renaming (•_ to singleton ; _≡_ to _≡ₛ_) open import Type private variable ℓₚ ℓ ℓ₁ ℓ₂ : Lvl.Level private variable P : Type{ℓₚ} private variable Γ Γ₁ Γ₂ : Formulas(P){ℓ} private variable φ ψ : Formula(P) Inconsistent : Formulas(P){ℓ} → Type Inconsistent(Γ) = Γ ⊢ ⊥ Consistent : Formulas(P){ℓ} → Type Consistent(Γ) = Γ ⊬ ⊥ consistency-of-[∪]ₗ : Consistent(Γ₁ ∪ Γ₂) → Consistent(Γ₁) consistency-of-[∪]ₗ con z = con (weaken-union z) [⊢]-derivability-inconsistency : (Γ ⊢ φ) Logic.↔ Inconsistent(Γ ∪ singleton(¬ φ)) [⊢]-derivability-inconsistency = Logic.[↔]-intro [¬]-elim ([¬]-intro-converse ∘ [¬¬]-intro) [⊢]-derivability-consistencyᵣ : Consistent(Γ) → ((Γ ⊢ φ) → Consistent(Γ ∪ singleton(φ))) [⊢]-derivability-consistencyᵣ con Γφ Γφ⊥ = con([⊥]-intro Γφ ([¬]-intro Γφ⊥)) [⊢]-explosion-inconsistency : (∀{φ} → (Γ ⊢ φ)) Logic.↔ Inconsistent(Γ) [⊢]-explosion-inconsistency {Γ} = Logic.[↔]-intro (λ z → [⊥]-elim z) (λ z → z) [⊢]-compose-inconsistency : (Γ ⊢ φ) → Inconsistent(Γ ∪ singleton(φ)) → Inconsistent(Γ) [⊢]-compose-inconsistency Γφ Γφ⊥ = [⊥]-intro Γφ ([¬]-intro Γφ⊥) [⊢]-compose-consistency : (Γ ⊢ φ) → Consistent(Γ) → Consistent(Γ ∪ singleton(φ)) [⊢]-compose-consistency Γφ = Logic.contrapositiveᵣ ([⊢]-compose-inconsistency Γφ) [⊢]-subset-consistency : (Γ₁ ⊆ Γ₂) → (Consistent(Γ₂) → Consistent(Γ₁)) [⊢]-subset-consistency sub con = con ∘ weaken sub [⊢]-subset-inconsistency : (Γ₁ ⊆ Γ₂) → (Inconsistent(Γ₁) → Inconsistent(Γ₂)) [⊢]-subset-inconsistency sub = weaken sub [⊬]-negation-consistency : (Γ ⊬ (¬ φ)) → Consistent(Γ ∪ singleton(φ)) [⊬]-negation-consistency = _∘ [¬]-intro [⊢]-consistent-noncontradicting-membership : Consistent(Γ) → ((¬ φ) ∈ Γ) → (φ ∈ Γ) → Logic.⊥ [⊢]-consistent-noncontradicting-membership con Γ¬φ Γφ = con([⊥]-intro (direct Γφ) (direct Γ¬φ))
{ "alphanum_fraction": 0.686716792, "avg_line_length": 42.75, "ext": "agda", "hexsha": "9fd97605471214fc8cd6ff6cdc01cc0ddcc120ea", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Formalization/ClassicalPropositionalLogic/NaturalDeduction/Consistency.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Formalization/ClassicalPropositionalLogic/NaturalDeduction/Consistency.agda", "max_line_length": 159, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Formalization/ClassicalPropositionalLogic/NaturalDeduction/Consistency.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 945, "size": 2394 }
open import Structure.Operator.Field open import Structure.Setoid open import Type -- Operators for matrices over a field. module Numeral.Matrix.OverField {ℓ ℓₑ}{T : Type{ℓ}} ⦃ equiv : Equiv{ℓₑ}(T) ⦄ {_+ₛ_ _⋅ₛ_ : T → T → T} ⦃ field-structure : Field(_+ₛ_)(_⋅ₛ_) ⦄ where open Field(field-structure) renaming (_−_ to _−ₛ_ ; −_ to −ₛ_ ; 𝟎 to 𝟎ₛ ; 𝟏 to 𝟏ₛ) open import Data.Tuple as Tuple using (_,_) open import Logic.Predicate open import Numeral.Matrix open import Numeral.Matrix.Proofs open import Structure.Operator.Properties 𝟎 : ∀{s} → Matrix(s)(T) 𝟎 = fill(𝟎ₛ) 𝟏 : ∀{n} → Matrix(n , n)(T) 𝟏 = SquareMatrix.scalarMat(𝟎ₛ)(𝟏ₛ) _+_ : ∀{s} → Matrix(s)(T) → Matrix(s)(T) → Matrix(s)(T) _+_ = map₂(_+ₛ_) infixr 1000 _+_ _−_ : ∀{s} → Matrix(s)(T) → Matrix(s)(T) → Matrix(s)(T) _−_ = map₂(_−ₛ_) infixr 1000 _−_ −_ : ∀{s} → Matrix(s)(T) → Matrix(s)(T) −_ = map(−ₛ_) infixr 1000 −_ _⨯_ : ∀{x y z} → Matrix(y , z)(T) → Matrix(x , y)(T) → Matrix(x , z)(T) _⨯_ = multPattern(_+ₛ_)(_⋅ₛ_)(𝟎ₛ) infixr 1000 _⨯_ _⁻¹ : ∀{n} → (M : Matrix(n , n)(T)) ⦃ inver : InvertibleElement(_⨯_) ⦃ [∃]-intro 𝟏 ⦃ {!matrix-multPattern-identity!} ⦄ ⦄ (M) ⦄ → Matrix(n , n)(T) _⁻¹ _ ⦃ inver ⦄ = [∃]-witness inver
{ "alphanum_fraction": 0.6203703704, "avg_line_length": 30.4615384615, "ext": "agda", "hexsha": "099d7c88e0a725599585edbff75ab2635112622f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Matrix/OverField.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Matrix/OverField.agda", "max_line_length": 146, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Matrix/OverField.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 557, "size": 1188 }
module Five where open import Relation.Binary.PropositionalEquality open ≡-Reasoning import Data.Nat as ℕ import Data.Nat.Properties as ℕₚ import Data.List as List import Data.List.Properties as Listₚ import Data.Product as Product open List using (List; []; _∷_; _++_) open ℕ using (ℕ; zero; suc; _+_) open Product using (Σ; _,_) -- Our language consists of constants and addition data Expr : Set where const : ℕ → Expr plus : Expr → Expr → Expr -- Straightforward semantics eval-expr : Expr → ℕ eval-expr (const n) = n eval-expr (plus e1 e2) = eval-expr e1 + eval-expr e2 data Instr : Set where push : ℕ → Instr add : Instr Prog = List Instr Stack = List ℕ run : Prog → Stack → Stack run [] s = s run (push n ∷ p) s = run p (n ∷ s) run (add ∷ p) (a1 ∷ a2 ∷ s) = run p (a1 + a2 ∷ s) run (add ∷ p) s = run p s compile : Expr → Prog compile (const n) = push n ∷ [] compile (plus e1 e2) = compile e1 ++ compile e2 ++ add ∷ [] -- Task 2. Prove that you get the expected result when you compile and run the program. compile-correct-split : ∀ p q s → run (p ++ q) s ≡ run q (run p s) compile-correct-split = {!!} compile-correct-exist : ∀ e s → Σ ℕ (λ m → run (compile e) s ≡ m ∷ s) compile-correct-exist = {!!} compile-correct-gen : ∀ e s → run (compile e) s ≡ run (compile e) [] ++ s compile-correct-gen = {!!} compile-correct : ∀ e → run (compile e) [] ≡ eval-expr e ∷ [] compile-correct = {!!}
{ "alphanum_fraction": 0.645229682, "avg_line_length": 25.2678571429, "ext": "agda", "hexsha": "937d45853f6745a2d3aaf2ff82ede941a73dbf64", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d9359c5bfd0eaf69efe1113945d7f3145f6b2dff", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "UoG-Agda/Agda101", "max_forks_repo_path": "Lectures/Six.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d9359c5bfd0eaf69efe1113945d7f3145f6b2dff", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "UoG-Agda/Agda101", "max_issues_repo_path": "Lectures/Six.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "d9359c5bfd0eaf69efe1113945d7f3145f6b2dff", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UoG-Agda/Agda101", "max_stars_repo_path": "Lectures/Six.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 474, "size": 1415 }
open import Prelude renaming (lift to finlift) hiding (id; subst) module Implicits.Substitutions.Lemmas.LNMetaType where open import Implicits.Syntax.LNMetaType open import Implicits.Substitutions.LNMetaType open import Data.Fin.Substitution open import Data.Fin.Substitution.Lemmas open import Data.Vec.Properties open import Data.Star using (Star; ε; _◅_) open import Data.Nat.Properties open import Data.Nat as Nat open import Extensions.Substitution open import Relation.Binary using (module DecTotalOrder) open DecTotalOrder decTotalOrder using () renaming (refl to ≤-refl; trans to ≤-trans) open import Relation.Binary.HeterogeneousEquality as H using () module HR = H.≅-Reasoning typeLemmas : TermLemmas MetaType typeLemmas = record { termSubst = typeSubst; app-var = refl ; /✶-↑✶ = Lemma./✶-↑✶ } where module Lemma {T₁ T₂} {lift₁ : Lift T₁ MetaType} {lift₂ : Lift T₂ MetaType} where open Lifted lift₁ using () renaming (_↑✶_ to _↑✶₁_; _/✶_ to _/✶₁_) open Lifted lift₂ using () renaming (_↑✶_ to _↑✶₂_; _/✶_ to _/✶₂_) /✶-↑✶ : ∀ {m n} (σs₁ : Subs T₁ m n) (σs₂ : Subs T₂ m n) → (∀ k x → (simpl (mvar x)) /✶₁ σs₁ ↑✶₁ k ≡ (simpl (mvar x)) /✶₂ σs₂ ↑✶₂ k) → ∀ k t → t /✶₁ σs₁ ↑✶₁ k ≡ t /✶₂ σs₂ ↑✶₂ k /✶-↑✶ ρs₁ ρs₂ hyp k (simpl (mvar x)) = hyp k x /✶-↑✶ ρs₁ ρs₂ hyp k (simpl (tvar x)) = begin simpl (tvar x) /✶₁ ρs₁ ↑✶₁ k ≡⟨ MetaTypeApp.tvar-/✶-↑✶ _ k ρs₁ ⟩ simpl (tvar x) ≡⟨ sym $ MetaTypeApp.tvar-/✶-↑✶ _ k ρs₂ ⟩ simpl (tvar x) /✶₂ ρs₂ ↑✶₂ k ∎ /✶-↑✶ ρs₁ ρs₂ hyp k (simpl (tc c)) = begin (simpl (tc c)) /✶₁ ρs₁ ↑✶₁ k ≡⟨ MetaTypeApp.tc-/✶-↑✶ _ k ρs₁ ⟩ (simpl (tc c)) ≡⟨ sym $ MetaTypeApp.tc-/✶-↑✶ _ k ρs₂ ⟩ (simpl (tc c)) /✶₂ ρs₂ ↑✶₂ k ∎ /✶-↑✶ ρs₁ ρs₂ hyp k (simpl (a →' b)) = begin (simpl (a →' b)) /✶₁ ρs₁ ↑✶₁ k ≡⟨ MetaTypeApp.→'-/✶-↑✶ _ k ρs₁ ⟩ simpl ((a /✶₁ ρs₁ ↑✶₁ k) →' (b /✶₁ ρs₁ ↑✶₁ k)) ≡⟨ cong₂ (λ a b → simpl (a →' b)) (/✶-↑✶ ρs₁ ρs₂ hyp k a) (/✶-↑✶ ρs₁ ρs₂ hyp k b) ⟩ simpl ((a /✶₂ ρs₂ ↑✶₂ k) →' (b /✶₂ ρs₂ ↑✶₂ k)) ≡⟨ sym (MetaTypeApp.→'-/✶-↑✶ _ k ρs₂) ⟩ (simpl (a →' b)) /✶₂ ρs₂ ↑✶₂ k ∎ /✶-↑✶ ρs₁ ρs₂ hyp k (a ⇒ b) = begin (a ⇒ b) /✶₁ ρs₁ ↑✶₁ k ≡⟨ MetaTypeApp.⇒-/✶-↑✶ _ k ρs₁ ⟩ -- (a /✶₁ ρs₁ ↑✶₁ k) ⇒ (b /✶₁ ρs₁ ↑✶₁ k) ≡⟨ cong₂ _⇒_ (/✶-↑✶ ρs₁ ρs₂ hyp k a) (/✶-↑✶ ρs₁ ρs₂ hyp k b) ⟩ (a /✶₂ ρs₂ ↑✶₂ k) ⇒ (b /✶₂ ρs₂ ↑✶₂ k) ≡⟨ sym (MetaTypeApp.⇒-/✶-↑✶ _ k ρs₂) ⟩ (a ⇒ b) /✶₂ ρs₂ ↑✶₂ k ∎ /✶-↑✶ ρs₁ ρs₂ hyp k (∀' a) = begin (∀' a) /✶₁ ρs₁ ↑✶₁ k ≡⟨ MetaTypeApp.∀'-/✶-↑✶ _ k ρs₁ ⟩ ∀' (a /✶₁ ρs₁ ↑✶₁ k) ≡⟨ cong ∀' (/✶-↑✶ ρs₁ ρs₂ hyp k a) ⟩ ∀' (a /✶₂ ρs₂ ↑✶₂ k) ≡⟨ sym (MetaTypeApp.∀'-/✶-↑✶ _ k ρs₂) ⟩ (∀' a) /✶₂ ρs₂ ↑✶₂ k ∎ open TermLemmas typeLemmas public hiding (var; id; _/_; _↑⋆_; wk; weaken; sub) open AdditionalLemmas typeLemmas public -- The above lemma /✶-↑✶ specialized to single substitutions /-↑⋆ : ∀ {T₁ T₂} {lift₁ : Lift T₁ MetaType} {lift₂ : Lift T₂ MetaType} → let open Lifted lift₁ using () renaming (_↑⋆_ to _↑⋆₁_; _/_ to _/₁_) open Lifted lift₂ using () renaming (_↑⋆_ to _↑⋆₂_; _/_ to _/₂_) in ∀ {n k} (ρ₁ : Sub T₁ n k) (ρ₂ : Sub T₂ n k) → (∀ i x → (simpl (mvar x)) /₁ ρ₁ ↑⋆₁ i ≡ (simpl (mvar x)) /₂ ρ₂ ↑⋆₂ i) → ∀ i a → a /₁ ρ₁ ↑⋆₁ i ≡ a /₂ ρ₂ ↑⋆₂ i /-↑⋆ ρ₁ ρ₂ hyp i a = /✶-↑✶ (ρ₁ ◅ ε) (ρ₂ ◅ ε) hyp i a -- weakening a simple type gives a simple type simpl-wk : ∀ {ν} k (τ : MetaSType (k N+ ν)) → ∃ λ τ' → (simpl τ) / wk ↑⋆ k ≡ simpl τ' simpl-wk k (tc x) = , refl simpl-wk k (mvar n) = , var-/-wk-↑⋆ k n simpl-wk k (tvar n) = , refl simpl-wk k (x →' x₁) = , refl tclosed-wk : ∀ {ν m} {a : MetaType m} → TClosed ν a → TClosed (suc ν) a tclosed-wk (a ⇒ b) = tclosed-wk a ⇒ tclosed-wk b tclosed-wk (∀' x) = ∀' (tclosed-wk x) tclosed-wk (simpl x) = simpl $ tclosed-wks x where tclosed-wks : ∀ {ν m} {τ : MetaSType m} → TClosedS ν τ → TClosedS (suc ν) τ tclosed-wks (tvar p) = tvar (≤-steps 1 p) tclosed-wks mvar = mvar tclosed-wks (a →' b) = (tclosed-wk a) →' (tclosed-wk b) tclosed-wks tc = tc -- proper substitution doesn't affect the number of tvars tclosed-/ : ∀ {m m' n} (a : MetaType m) {σ : Sub MetaType m m'} → TClosed n a → (∀ i → TClosed n (lookup i σ)) → TClosed n (a / σ) tclosed-/ (a ⇒ b) (ca ⇒ cb) f = tclosed-/ a ca f ⇒ tclosed-/ b cb f tclosed-/ (∀' a) (∀' x) f = ∀' (tclosed-/ a x (λ p → tclosed-wk (f p))) tclosed-/ (simpl x) (simpl y) f = tclosed-/s x y f where tclosed-/s : ∀ {m m' n} (a : MetaSType m) {σ : Sub MetaType m m'} → TClosedS n a → (∀ i → TClosed n (lookup i σ)) → TClosed n (a simple/ σ) tclosed-/s (tvar _) (tvar p) f = simpl (tvar p) tclosed-/s (mvar i) _ f = f i tclosed-/s (a →' b) (ca →' cb) f = simpl (tclosed-/ a ca f →' tclosed-/ b cb f) tclosed-/s (tc c) _ _ = simpl tc -- opening any free tvar will reduce the number of free tvars tclosed-open : ∀ {m ν} {a : MetaType m} k → k N< (suc ν) → TClosed (suc ν) a → TClosed ν (open-meta k a) tclosed-open k k<ν (a ⇒ b) = (tclosed-open k k<ν a) ⇒ (tclosed-open k k<ν b) tclosed-open k k<ν (∀' a) = ∀' (tclosed-open (suc k) (s≤s k<ν) a) tclosed-open k k<ν (simpl (tvar {x = x} p)) with Nat.compare x k tclosed-open .(suc (k' N+ k)) (s≤s k<ν) (simpl (tvar p)) | less k' k = simpl (tvar (≤-trans (m≤m+n (suc k') k) k<ν)) tclosed-open x k<ν (simpl (tvar x₁)) | equal .x = simpl mvar tclosed-open m k<ν (simpl (tvar (s≤s p))) | greater .m k = simpl (tvar p) tclosed-open k k<ν (simpl mvar) = simpl mvar tclosed-open k k<ν (simpl (x →' x₁)) = simpl (tclosed-open k k<ν x →' tclosed-open k k<ν x₁) tclosed-open k k<ν (simpl tc) = simpl tc open-meta-◁m₁ : ∀ {m k} (a : MetaType m) → (open-meta k a) ◁m₁ ≡ a ◁m₁ open-meta-◁m₁ (a ⇒ b) = open-meta-◁m₁ b open-meta-◁m₁ (∀' a) = cong suc (open-meta-◁m₁ a) open-meta-◁m₁ (simpl x) = refl lem : ∀ {m} n k (a : MetaType m) → open-meta n (open-meta (n N+ suc k) a) H.≅ open-meta (n N+ k) (open-meta n a) lem n k (a ⇒ b) = H.cong₂ _⇒_ (lem n k a) (lem n k b) lem n k (∀' a) = H.cong ∀' (lem _ _ a) lem n k (simpl (tvar x)) with Nat.compare x (n N+ (suc k)) lem n k (simpl (tvar x)) | z = {!z!} lem n k (simpl (mvar x)) = H.refl lem n k (simpl (a →' b)) = H.cong₂ (λ u v → simpl (u →' v)) (lem n k a) (lem n k b) lem n k (simpl (tc x)) = H.refl open-meta-◁m : ∀ {m} k (a : MetaType m) → ((open-meta k a) ◁m) H.≅ open-meta k (a ◁m) open-meta-◁m k (a ⇒ b) = open-meta-◁m k b open-meta-◁m k (∀' a) = HR.begin open-meta zero ((open-meta (suc k)) a ◁m) HR.≅⟨ {!!} ⟩ open-meta zero (open-meta (suc k) (a ◁m)) HR.≅⟨ lem zero k (a ◁m) ⟩ open-meta k (open-meta zero (a ◁m)) HR.∎ open-meta-◁m k (simpl x) = H.refl open import Implicits.Syntax.Type open import Implicits.Substitutions.Type as TS using () lem₁ : ∀ {ν} k (a : Type (k N+ suc ν)) (b : Type ν) → (to-meta (a TS./ (TS.sub b) TS.↑⋆ k)) ≡ (open-meta k (to-meta a) / sub (to-meta b)) lem₁ k (simpl (tc x)) b = refl lem₁ k (simpl (tvar n)) b with Nat.compare (toℕ n) k lem₁ k (simpl (tvar n)) b | z = {!!} lem₁ k (simpl (a →' b)) c = cong₂ (λ u v → simpl (u →' v)) (lem₁ k a c) (lem₁ k b c) lem₁ k (a ⇒ b) c = cong₂ _⇒_ (lem₁ k a c) (lem₁ k b c) lem₁ k (∀' a) b = cong ∀' (lem₁ (suc k) a b)
{ "alphanum_fraction": 0.5258985201, "avg_line_length": 44.7810650888, "ext": "agda", "hexsha": "e436cd0cae78206517b89c379371384b889dc6f2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Substitutions/Lemmas/LNMetaType.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Substitutions/Lemmas/LNMetaType.agda", "max_line_length": 102, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Substitutions/Lemmas/LNMetaType.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 3498, "size": 7568 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Category.CartesianClosed.Locally {o ℓ e} (C : Category o ℓ e) where open import Level using (levelOfTerm) open import Categories.Category.CartesianClosed open import Categories.Category.Cartesian open import Categories.Category.Cartesian.Properties C open import Categories.Category.Complete.Finitely C open import Categories.Category.Slice C open import Categories.Category.Slice.Properties C open import Categories.Object.Product open import Categories.Object.Exponential open import Categories.Object.Terminal C import Categories.Diagram.Pullback as P import Categories.Diagram.Pullback.Properties C as Pₚ import Categories.Morphism.Reasoning as MR open Category C record Locally : Set (levelOfTerm C) where field sliceCCC : ∀ A → CartesianClosed (Slice A) module sliceCCC A = CartesianClosed (sliceCCC A) pullbacks : ∀ {X A B} (f : A ⇒ X) (g : B ⇒ X) → P.Pullback C f g pullbacks {X} f g = product⇒pullback product where C/X = sliceCCC X open CartesianClosed C/X using (product) -- the slice categories also have pullbacks, because slice of slice is slice. slice-pullbacks : ∀ {A} {B X Y : SliceObj A} (f : Slice⇒ X B) (g : Slice⇒ Y B) → P.Pullback (Slice A) f g slice-pullbacks {A} {B} {X} {Y} f g = record { P = sliceobj (X.arr ∘ p.p₁) ; p₁ = slicearr refl ; p₂ = slicearr comm ; commute = p.commute ; universal = λ {Z} {h i} eq → slicearr {h = p.universal eq} (pullʳ p.p₁∘universal≈h₁ ○ Slice⇒.△ h) ; unique = λ eq₁ eq₂ → p.unique eq₁ eq₂ ; p₁∘universal≈h₁ = p.p₁∘universal≈h₁ ; p₂∘universal≈h₂ = p.p₂∘universal≈h₂ } where open HomReasoning module X = SliceObj X module Y = SliceObj Y module B = SliceObj B module f = Slice⇒ f module g = Slice⇒ g module p = P.Pullback (pullbacks f.h g.h) open MR C comm : Y.arr ∘ p.p₂ ≈ X.arr ∘ p.p₁ comm = begin Y.arr ∘ p.p₂ ≈˘⟨ g.△ ⟩∘⟨refl ⟩ (B.arr ∘ g.h) ∘ p.p₂ ≈˘⟨ pushʳ p.commute ⟩ B.arr ∘ f.h ∘ p.p₁ ≈⟨ pullˡ f.△ ⟩ X.arr ∘ p.p₁ ∎ module _ (LCCC : Locally) (t : Terminal) where open Locally LCCC open Terminal t open HomReasoning cartesian : Cartesian C cartesian = record { terminal = t ; products = record { product = λ {A B} → Pₚ.pullback-⊤⇒product t (product⇒pullback product) } } where open sliceCCC ⊤ using (product) private module cartesian = Cartesian cartesian cartesianClosed : CartesianClosed C cartesianClosed = record { cartesian = cartesian ; exp = λ {A B} → let open Exponential (exp {sliceobj (! {A})} {sliceobj (! {B})}) in record { B^A = Y B^A ; product = -- this is tricky. how product is implemented requires special care. for example, the following -- code also gives a product that type checks, but it is impossible to work with. -- Pₚ.pullback-⊤⇒product t (Pₚ.pullback-resp-≈ (product⇒pullback product) !-unique₂ refl) -- -- another quirk of proof relevance. let open Product (Slice ⊤) (exp.product {sliceobj (! {A})} {sliceobj (! {B})}) in record { A×B = Y A×B ; π₁ = h π₁ ; π₂ = h π₂ ; ⟨_,_⟩ = λ f g → h ⟨ slicearr {h = f} (⟺ (!-unique _)) , slicearr {h = g} (⟺ (!-unique _)) ⟩ ; project₁ = project₁ ; project₂ = project₂ ; unique = λ eq eq′ → unique {h = slicearr (⟺ (!-unique _))} eq eq′ } ; eval = h eval ; λg = λ {X} p f → h (λg (pullback⇒product′ t (Pₚ.product⇒pullback-⊤ t p)) (lift t f)) ; β = λ p → ∘-resp-≈ʳ (exp.product.⟨⟩-cong₂ refl refl) ○ β (pullback⇒product′ t (Pₚ.product⇒pullback-⊤ t p)) ; λ-unique = λ p eq → λ-unique (pullback⇒product′ t (Pₚ.product⇒pullback-⊤ t p)) {h = slicearr (⟺ (!-unique _))} (∘-resp-≈ʳ (exp.product.⟨⟩-cong₂ refl refl) ○ eq) } } where open sliceCCC ⊤ using (exp) open SliceObj open Slice⇒ finitelyComplete : FinitelyComplete finitelyComplete = record { cartesian = cartesian ; equalizer = λ f g → prods×pullbacks⇒equalizers cartesian.products (λ {_ _ X} h i → product⇒pullback (sliceCCC.product X)) }
{ "alphanum_fraction": 0.5761343805, "avg_line_length": 37.5737704918, "ext": "agda", "hexsha": "ec1bd4f06f72c32378e0b8e1a6b167f47e3753ec", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Category/CartesianClosed/Locally.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Category/CartesianClosed/Locally.agda", "max_line_length": 121, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Category/CartesianClosed/Locally.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1451, "size": 4584 }
{-# OPTIONS --safe #-} --without-K #-} open import Relation.Binary.PropositionalEquality using (_≡_; refl; trans; sym; subst) open import Function.Reasoning import Data.Empty as Empty import Data.Maybe as Maybe import Data.Nat as Nat import Data.Bool as Bool import Data.Fin as Fin import Data.Product as Product import Data.Vec as Vec import Data.Vec.Relation.Unary.All as All import Data.Fin.Properties as Finₚ open Empty using (⊥; ⊥-elim) open Nat using (ℕ; zero; suc) open Fin using (Fin ; zero ; suc) open Vec using (Vec; []; _∷_) open All using (All; []; _∷_) open Product using (_×_; Σ-syntax; ∃-syntax; _,_; proj₁; proj₂) open import PiCalculus.Syntax open Scoped open import PiCalculus.Semantics open import PiCalculus.Semantics.Properties open import PiCalculus.LinearTypeSystem.Algebras module PiCalculus.LinearTypeSystem.SubjectReduction (Ω : Algebras) where open Algebras Ω open import PiCalculus.LinearTypeSystem Ω open import PiCalculus.LinearTypeSystem.ContextLemmas Ω open import PiCalculus.LinearTypeSystem.Framing Ω open import PiCalculus.LinearTypeSystem.Weakening Ω open import PiCalculus.LinearTypeSystem.Strengthening Ω open import PiCalculus.LinearTypeSystem.Substitution Ω open import PiCalculus.LinearTypeSystem.SubjectCongruence Ω SubjectReduction : Set SubjectReduction = {n : ℕ} {γ : PreCtx n} {idxs : Idxs n} {idx : Idx} {Γ Γ' Ξ : Ctx idxs} {c : Channel n} {P Q : Scoped n} → maybe (Γ' ≡ Γ) (λ i → Γ' ∋[ i ] ℓ# {idx} ▹ Γ) c → P =[ c ]⇒ Q → γ ; Γ' ⊢ P ▹ Ξ → γ ; Γ ⊢ Q ▹ Ξ private variable n : ℕ i j : Fin n idxs : Idxs n P Q : Scoped n extract-ℓ# : {Γ Ξ Δ Ψ Θ : Ctx idxs} {idx idx' : Idx} → Γ ∋[ i ] ℓᵢ {idx} ▹ Ξ → Ψ ∋[ i ] ℓₒ {idx'} ▹ Θ → Ξ ≔ Δ ⊗ Ψ → ∃[ z ] (All.lookup i Γ ≔ ℓ# ∙² z) extract-ℓ# (zero x) (zero y) (_ , s) = let ⁇ , Ξ≔ℓₒ∙⁇ , _ = ∙²-assoc (∙²-comm s) y _ , Γ≔[ℓᵢℓₒ]∙⁇ , [ℓᵢℓₒ]≔ℓᵢ∙ℓₒ = ∙²-assoc⁻¹ x Ξ≔ℓₒ∙⁇ ℓ#≡ℓᵢℓₒ = ∙²-unique [ℓᵢℓₒ]≔ℓᵢ∙ℓₒ (∙-idʳ , ∙-idˡ) in _ , subst (λ ● → _ ≔ ● ∙² ⁇) ℓ#≡ℓᵢℓₒ Γ≔[ℓᵢℓₒ]∙⁇ extract-ℓ# (suc i) (suc o) (s , _) = extract-ℓ# i o s -- What we have: Γ' ---ℓᵢ--> Θ ---P--> Ξ ---ℓₒ--> Ψ -- What we need: Γ' ---ℓ#--> Γ ---P--> Ψ align : ∀ {i : Fin n} {γ : PreCtx n} {idxs : Idxs n} {Γ' Γ Ξ Θ Ψ : Ctx idxs} {idx' idx'' idx'''} → Γ' ∋[ i ] ℓᵢ {idx'} ▹ Θ → Ξ ∋[ i ] ℓₒ {idx''} ▹ Ψ → Γ' ∋[ i ] ℓ# {idx'''} ▹ Γ → γ ; Θ ⊢ P ▹ Ξ → γ ; Γ ⊢ P ▹ Ψ align i o io ⊢P with ∋-≡Idx io | ∋-≡Idx i | ∋-≡Idx o align i o io ⊢P | refl | refl | refl = let Δi , Γ'≔Δi∙Θ , Δi≔ℓᵢ = ∋-⊗ i Δo , Ξ≔Δo∙Ψ , Δo≔ℓₒ = ∋-⊗ o Δio , Γ'≔Δio∙Γ , Δio≔ℓ# = ∋-⊗ io Δ⊢P , Θ≔Δ⊢P∙Ξ = ⊢-⊗ ⊢P ΨΔ⊢P , Θ≔Δo∙[ΨΔ⊢P] , ΨΔ⊢P≔Ψ∙Δ⊢P = ⊗-assoc (⊗-comm Θ≔Δ⊢P∙Ξ) Ξ≔Δo∙Ψ ΔiΔo , Γ'≔[ΔiΔo]∙[ΨΔ⊢P] , ΔiΔo≔ℓᵢℓₒ = ⊗-assoc⁻¹ Γ'≔Δi∙Θ Θ≔Δo∙[ΨΔ⊢P] Δio≔Δi∙Δo = ∙²-⊗ Δio≔ℓ# Δi≔ℓᵢ Δo≔ℓₒ (∙-idʳ , ∙-idˡ) ΔiΔo≡Δio = ⊗-unique ΔiΔo≔ℓᵢℓₒ Δio≔Δi∙Δo Γ'≔Δio∙[ΨΔ⊢P] = subst (λ ● → _ ≔ ● ⊗ _) ΔiΔo≡Δio Γ'≔[ΔiΔo]∙[ΨΔ⊢P] ΨΔ⊢P≡Γ = ⊗-uniqueˡ (⊗-comm Γ'≔Δio∙[ΨΔ⊢P]) (⊗-comm Γ'≔Δio∙Γ) Γ≔Ψ∙Δ⊢P = subst (λ ● → ● ≔ _ ⊗ _) ΨΔ⊢P≡Γ ΨΔ⊢P≔Ψ∙Δ⊢P in ⊢-frame Θ≔Δ⊢P∙Ξ (⊗-comm Γ≔Ψ∙Δ⊢P) ⊢P comm-≥ℓ# : {γ : PreCtx n} {Γ Δ : Ctx idxs} {c : Channel n} → P =[ c ]⇒ Q → γ ; Γ ⊢ P ▹ Δ → c ≡ external i → ∃[ y ] (All.lookup i Γ ≔ ℓ# ∙² y) comm-≥ℓ# {i = i} comm (((_ , x) ⦅⦆ ⊢P) ∥ ((_ , x') ⟨ _ ⟩ ⊢Q)) refl with ⊢-⊗ ⊢P comm-≥ℓ# {i = i} comm (((_ , x) ⦅⦆ ⊢P) ∥ ((_ , x') ⟨ _ ⟩ ⊢Q)) refl | (_ -, _) , (Ξ≔ , _) = extract-ℓ# x x' Ξ≔ comm-≥ℓ# (par P→P') (⊢P ∥ ⊢Q) refl = comm-≥ℓ# P→P' ⊢P refl comm-≥ℓ# (res_ {c = internal} P→Q) (ν t m μ ⊢P) () comm-≥ℓ# (res_ {c = external zero} P→Q) (ν t m μ ⊢P) () comm-≥ℓ# (res_ {c = external (suc i)} P→Q) (ν t m μ ⊢P) refl = comm-≥ℓ# P→Q ⊢P refl comm-≥ℓ# (struct P≅P' P'→Q' P'≅Q ) ⊢P refl = comm-≥ℓ# P'→Q' (subject-cong P≅P' ⊢P) refl subject-reduction : SubjectReduction subject-reduction Γ'⇒Γ comm (((_⦅⦆_ {P = P} (tx , x) ⊢P)) ∥ ((tx' , x') ⟨ y ⟩ ⊢Q)) with trans (sym (∋-≡Type tx)) (∋-≡Type tx') subject-reduction Γ'⇒Γ comm (((_⦅⦆_ {P = P} (tx , x) ⊢P)) ∥ ((tx' , x') ⟨ y ⟩ ⊢Q)) | refl = ⊢P' ∥ ⊢Q where ⊢P' = ⊢P |> align (suc x) (suc x') (suc Γ'⇒Γ) |> ⊢-subst y |> ⊢-strengthen zero (subst-unused (λ ()) P) subject-reduction Γ'⇒Γ (par P→P') (⊢P ∥ ⊢Q) = subject-reduction Γ'⇒Γ P→P' ⊢P ∥ ⊢Q subject-reduction {idx = idx} refl (res_ {c = internal} P→Q) (ν t m μ ⊢P) = ν t m μ (subject-reduction {idx = idx} refl P→Q ⊢P) subject-reduction refl (res_ {c = external zero} P→Q) (ν t m μ ⊢P) = let (lμ' , rμ') , (ls , rs) = comm-≥ℓ# P→Q ⊢P refl rs' = subst (λ ● → _ ≔ _ ∙ ●) (∙-uniqueˡ (∙-comm rs) (∙-comm ls)) rs in ν t m lμ' (subject-reduction (zero (ls , rs')) P→Q ⊢P) subject-reduction Γ'⇒Γ (res_ {c = external (suc i)} P→Q) (ν t m μ ⊢P) = ν t m μ (subject-reduction (suc Γ'⇒Γ) P→Q ⊢P) subject-reduction Γ'⇒Γ (struct P≅P' P'→Q' Q'≅Q) ⊢P = subject-cong Q'≅Q (subject-reduction Γ'⇒Γ P'→Q' (subject-cong P≅P' ⊢P))
{ "alphanum_fraction": 0.5413579011, "avg_line_length": 41.9579831933, "ext": "agda", "hexsha": "2a9eac464a745bcd955d6e9720af3201dae296b4", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-14T16:24:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-25T13:57:13.000Z", "max_forks_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "guilhermehas/typing-linear-pi", "max_forks_repo_path": "src/PiCalculus/LinearTypeSystem/SubjectReduction.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_issues_repo_issues_event_max_datetime": "2022-03-15T09:16:14.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-15T09:16:14.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "guilhermehas/typing-linear-pi", "max_issues_repo_path": "src/PiCalculus/LinearTypeSystem/SubjectReduction.agda", "max_line_length": 126, "max_stars_count": 26, "max_stars_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "guilhermehas/typing-linear-pi", "max_stars_repo_path": "src/PiCalculus/LinearTypeSystem/SubjectReduction.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-14T15:18:23.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-02T23:32:11.000Z", "num_tokens": 2740, "size": 4993 }
{-# OPTIONS --cubical --no-import-sorts --safe --postfix-projections #-} open import Cubical.Foundations.Everything renaming (uncurry to λ⟨,⟩_) open import Cubical.Data.Sigma.Properties open import Cubical.Foundations.CartesianKanOps module Cubical.Modalities.Lex (◯ : ∀ {ℓ} → Type ℓ → Type ℓ) (η : ∀ {ℓ} {A : Type ℓ} → A → ◯ A) (isModal : ∀ {ℓ} → Type ℓ → Type ℓ) (let isModalFam = λ {ℓ ℓ′ : Level} {A : Type ℓ} (B : A → Type ℓ′) → (x : A) → isModal (B x)) (idemp : ∀ {ℓ} {A : Type ℓ} → isModal (◯ A)) (≡-modal : ∀ {ℓ} {A : Type ℓ} {x y : A} (A-mod : isModal A) → isModal (x ≡ y)) (◯-ind : ∀ {ℓ ℓ′} {A : Type ℓ} {B : ◯ A → Type ℓ′} (B-mod : isModalFam B) (f : (x : A) → B (η x)) → ([x] : ◯ A) → B [x]) (◯-ind-β : ∀ {ℓ ℓ′} {A : Type ℓ} {B : ◯ A → Type ℓ′} (B-mod : isModalFam B) (f : (x : A) → B (η x)) (x : A) → ◯-ind B-mod f (η x) ≡ f x) (let Type◯ = λ (ℓ : Level) → Σ (Type ℓ) isModal) (◯-lex : ∀ {ℓ} → isModal (Type◯ ℓ)) where private variable ℓ ℓ′ : Level η-at : (A : Type ℓ) → A → ◯ A η-at _ = η module _ where private variable A : Type ℓ B : Type ℓ′ module ◯-rec (B-mod : isModal B) (f : A → B) where abstract ◯-rec : ◯ A → B ◯-rec = ◯-ind (λ _ → B-mod) f ◯-rec-β : (x : A) → ◯-rec (η x) ≡ f x ◯-rec-β = ◯-ind-β (λ _ → B-mod) f open ◯-rec module ◯-map (f : A → B) where abstract ◯-map : ◯ A → ◯ B ◯-map = ◯-rec idemp λ x → η (f x) ◯-map-β : (x : A) → ◯-map (η x) ≡ η (f x) ◯-map-β x = ◯-rec-β idemp _ x open ◯-rec open ◯-map module IsModalToUnitIsEquiv (A : Type ℓ) (A-mod : isModal A) where abstract inv : ◯ A → A inv = ◯-rec A-mod λ x → x η-retract : retract η inv η-retract = ◯-rec-β _ _ η-section : section η inv η-section = ◯-ind (λ _ → ≡-modal idemp) λ x i → η (η-retract x i) η-iso : Iso A (◯ A) Iso.fun η-iso = η Iso.inv η-iso = inv Iso.rightInv η-iso = η-section Iso.leftInv η-iso = η-retract η-is-equiv : isEquiv (η-at A) η-is-equiv = isoToIsEquiv η-iso abstract unit-is-equiv-to-is-modal : {A : Type ℓ} → isEquiv (η-at A) → isModal A unit-is-equiv-to-is-modal p = transport (cong isModal (sym (ua (η , p)))) idemp retract-is-modal : {A : Type ℓ} {B : Type ℓ′} → (A-mod : isModal A) (f : A → B) (g : B → A) (r : retract g f) → isModal B retract-is-modal {A = A} {B = B} A-mod f g r = unit-is-equiv-to-is-modal (isoToIsEquiv (iso η η-inv η-section η-retract)) where η-inv : ◯ B → B η-inv = f ∘ ◯-rec A-mod g η-retract : retract η η-inv η-retract b = cong f (◯-rec-β A-mod g b) ∙ r b η-section : section η η-inv η-section = ◯-ind (λ _ → ≡-modal idemp) (cong η ∘ η-retract) module LiftFam {A : Type ℓ} (B : A → Type ℓ′) where module M = IsModalToUnitIsEquiv (Type◯ ℓ′) ◯-lex abstract ◯-lift-fam : ◯ A → Type◯ ℓ′ ◯-lift-fam = M.inv ∘ ◯-map (λ a → ◯ (B a) , idemp) ⟨◯⟩ : ◯ A → Type ℓ′ ⟨◯⟩ [a] = ◯-lift-fam [a] .fst ⟨◯⟩-modal : isModalFam ⟨◯⟩ ⟨◯⟩-modal [a] = ◯-lift-fam [a] .snd ⟨◯⟩-compute : (x : A) → ⟨◯⟩ (η x) ≡ ◯ (B x) ⟨◯⟩-compute x = ⟨◯⟩ (η x) ≡⟨ cong (fst ∘ M.inv) (◯-map-β _ _) ⟩ M.inv (η (◯ (B x) , idemp)) .fst ≡⟨ cong fst (M.η-retract _) ⟩ ◯ (B x) ∎ open LiftFam using (⟨◯⟩; ⟨◯⟩-modal; ⟨◯⟩-compute) module LiftFamExtra {A : Type ℓ} {B : A → Type ℓ′} where ⟨◯⟩←◯ : ∀ {a} → ◯ (B a) → ⟨◯⟩ B (η a) ⟨◯⟩←◯ = transport (sym (⟨◯⟩-compute B _)) ⟨◯⟩→◯ : ∀ {a} → ⟨◯⟩ B (η a) → ◯ (B a) ⟨◯⟩→◯ = transport (⟨◯⟩-compute B _) ⟨η⟩ : ∀ {a} → B a → ⟨◯⟩ B (η a) ⟨η⟩ = ⟨◯⟩←◯ ∘ η abstract ⟨◯⟩→◯-section : ∀ {a} → section (⟨◯⟩→◯ {a}) ⟨◯⟩←◯ ⟨◯⟩→◯-section = transport⁻Transport (sym (⟨◯⟩-compute _ _)) module Combinators where private variable ℓ′′ : Level A A′ : Type ℓ B : A → Type ℓ′ C : Σ A B → Type ℓ′′ λ/coe⟨_⟩_ : (p : A ≡ A′) → ((x : A′) → B (coe1→0 (λ i → p i) x)) → ((x : A) → B x) λ/coe⟨_⟩_ {B = B} p f = coe1→0 (λ i → (x : p i) → B (coei→0 (λ j → p j) i x)) f open Combinators module _ {A : Type ℓ} {B : A → Type ℓ′} where abstract Π-modal : isModalFam B → isModal ((x : A) → B x) Π-modal B-mod = retract-is-modal idemp η-inv η retr where η-inv : ◯ ((x : A) → B x) → (x : A) → B x η-inv [f] x = ◯-rec (B-mod x) (λ f → f x) [f] retr : retract η η-inv retr f = funExt λ x → ◯-rec-β (B-mod x) _ f Σ-modal : isModal A → isModalFam B → isModal (Σ A B) Σ-modal A-mod B-mod = retract-is-modal idemp η-inv η retr where h : ◯ (Σ A B) → A h = ◯-rec A-mod fst h-β : (x : Σ A B) → h (η x) ≡ fst x h-β = ◯-rec-β A-mod fst f : (i : I) (x : Σ A B) → B (h-β x i) f i x = coe1→i (λ j → B (h-β x j)) i (snd x) η-inv : ◯ (Σ A B) → Σ A B η-inv y = h y , ◯-ind (B-mod ∘ h) (f i0) y retr : (p : Σ A B) → η-inv (η p) ≡ p retr p = η-inv (η p) ≡⟨ ΣPathP (refl , ◯-ind-β _ _ _) ⟩ h (η p) , f i0 p ≡⟨ ΣPathP (h-β _ , λ i → f i p) ⟩ p ∎ module Σ-commute {A : Type ℓ} (B : A → Type ℓ′) where open LiftFamExtra ◯Σ = ◯ (Σ A B) module Σ◯ where Σ◯ = Σ (◯ A) (⟨◯⟩ B) abstract Σ◯-modal : isModal Σ◯ Σ◯-modal = Σ-modal idemp (⟨◯⟩-modal _) open Σ◯ η-Σ◯ : Σ A B → Σ◯ η-Σ◯ (x , y) = η x , ⟨η⟩ y module Push where abstract fun : ◯Σ → Σ◯ fun = ◯-rec Σ◯-modal η-Σ◯ compute : fun ∘ η ≡ η-Σ◯ compute = funExt (◯-rec-β _ _) module Unpush where abstract fun : Σ◯ → ◯Σ fun = λ⟨,⟩ ◯-ind (λ _ → Π-modal λ _ → idemp) λ x → λ/coe⟨ ⟨◯⟩-compute B x ⟩ ◯-map (x ,_) compute : fun ∘ η-Σ◯ ≡ η compute = funExt λ p → fun (η-Σ◯ p) ≡⟨ funExt⁻ (◯-ind-β _ _ _) _ ⟩ transport refl (◯-map _ _) ≡⟨ transportRefl _ ⟩ ◯-map _ (⟨◯⟩→◯ (⟨η⟩ _)) ≡⟨ cong (◯-map _) (⟨◯⟩→◯-section _) ⟩ ◯-map _ (η _) ≡⟨ ◯-map-β _ _ ⟩ η p ∎ push-unpush-compute : Push.fun ∘ Unpush.fun ∘ η-Σ◯ ≡ η-Σ◯ push-unpush-compute = Push.fun ∘ Unpush.fun ∘ η-Σ◯ ≡⟨ cong (Push.fun ∘_) Unpush.compute ⟩ Push.fun ∘ η ≡⟨ Push.compute ⟩ η-Σ◯ ∎ unpush-push-compute : Unpush.fun ∘ Push.fun ∘ η ≡ η unpush-push-compute = Unpush.fun ∘ Push.fun ∘ η ≡⟨ cong (Unpush.fun ∘_) Push.compute ⟩ Unpush.fun ∘ η-Σ◯ ≡⟨ Unpush.compute ⟩ η ∎ is-section : section Unpush.fun Push.fun is-section = ◯-ind (λ x → ≡-modal idemp) λ x i → unpush-push-compute i x is-retract : retract Unpush.fun Push.fun is-retract = λ⟨,⟩ ◯-ind (λ _ → Π-modal λ _ → ≡-modal Σ◯-modal) λ x → λ/coe⟨ ⟨◯⟩-compute B x ⟩ ◯-ind (λ _ → ≡-modal Σ◯-modal) (λ y i → push-unpush-compute i (x , y)) push-sg-is-equiv : isEquiv Push.fun push-sg-is-equiv = isoToIsEquiv (iso Push.fun Unpush.fun is-retract is-section) isConnected : Type ℓ → Type ℓ isConnected A = isContr (◯ A) module FormalDiskBundle {A : Type ℓ} where 𝔻 : A → Type ℓ 𝔻 a = Σ[ x ∈ A ] η a ≡ η x
{ "alphanum_fraction": 0.4784319236, "avg_line_length": 26.1654411765, "ext": "agda", "hexsha": "cd61ed55d6b8f4df80c0e6407311afdcb96fc8a1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Modalities/Lex.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Modalities/Lex.agda", "max_line_length": 138, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Modalities/Lex.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3350, "size": 7117 }
------------------------------------------------------------------------ -- Higher lenses, defined using the requirement that the remainder -- function should be surjective ------------------------------------------------------------------------ {-# OPTIONS --cubical --safe #-} import Equality.Path as P module Lens.Non-dependent.Higher.Surjective-remainder {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq open import Logical-equivalence using (_⇔_) open import Prelude open import Bijection equality-with-J using (_↔_) open import Equality.Path.Isomorphisms eq hiding (univ) open import Equivalence equality-with-J as Eq using (_≃_; Is-equivalence) open import Function-universe equality-with-J as F open import H-level equality-with-J open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional eq open import Lens.Non-dependent eq import Lens.Non-dependent.Higher eq as Higher private variable a b : Level A B : Set a -- A variant of the lenses defined in Lens.Non-dependent.Higher. In -- this definition the function called inhabited is replaced by a -- requirement that the remainder function should be surjective. Lens : Set a → Set b → Set (lsuc (a ⊔ b)) Lens {a = a} {b = b} A B = ∃ λ (get : A → B) → ∃ λ (R : Set (a ⊔ b)) → ∃ λ (remainder : A → R) → Is-equivalence (λ a → remainder a , get a) × Surjective remainder instance -- The lenses defined above have getters and setters. has-getter-and-setter : Has-getter-and-setter (Lens {a = a} {b = b}) has-getter-and-setter = record { get = λ (get , _) → get ; set = λ (_ , _ , rem , equiv , _) a b → _≃_.from Eq.⟨ _ , equiv ⟩ (rem a , b) } -- Higher.Lens A B is isomorphic to Lens A B. Higher-lens↔Lens : Higher.Lens A B ↔ Lens A B Higher-lens↔Lens {A = A} {B = B} = Higher.Lens A B ↝⟨ Higher.Lens-as-Σ ⟩ (∃ λ (R : Set _) → (A ≃ (R × B)) × (R → ∥ B ∥)) ↝⟨ (∃-cong λ _ → Eq.≃-as-Σ ×-cong F.id) ⟩ (∃ λ (R : Set _) → (∃ λ (f : A → R × B) → Eq.Is-equivalence f) × (R → ∥ B ∥)) ↝⟨ (∃-cong λ _ → inverse Σ-assoc) ⟩ (∃ λ (R : Set _) → ∃ λ (f : A → R × B) → Eq.Is-equivalence f × (R → ∥ B ∥)) ↝⟨ (∃-cong λ _ → Σ-cong ΠΣ-comm λ _ → F.id) ⟩ (∃ λ (R : Set _) → ∃ λ (rg : (A → R) × (A → B)) → Eq.Is-equivalence (λ a → proj₁ rg a , proj₂ rg a) × (R → ∥ B ∥)) ↝⟨ (∃-cong λ _ → inverse Σ-assoc) ⟩ (∃ λ (R : Set _) → ∃ λ (remainder : A → R) → ∃ λ (get : A → B) → Eq.Is-equivalence (λ a → remainder a , get a) × (R → ∥ B ∥)) ↝⟨ (∃-cong λ _ → ∃-comm) ⟩ (∃ λ (R : Set _) → ∃ λ (get : A → B) → ∃ λ (remainder : A → R) → Eq.Is-equivalence (λ a → remainder a , get a) × (R → ∥ B ∥)) ↝⟨ ∃-comm ⟩ (∃ λ (get : A → B) → ∃ λ (R : Set _) → ∃ λ (remainder : A → R) → Eq.Is-equivalence (λ a → remainder a , get a) × (R → ∥ B ∥)) ↝⟨ (∃-cong λ get → ∃-cong λ R → ∃-cong λ rem → ∃-cong λ eq → ∀-cong ext λ _ → ∥∥-cong $ lemma get R rem eq _) ⟩□ (∃ λ (get : A → B) → ∃ λ (R : Set _) → ∃ λ (remainder : A → R) → Eq.Is-equivalence (λ a → remainder a , get a) × Surjective remainder) □ where lemma : ∀ _ _ _ _ _ → _ lemma = λ _ _ remainder eq r → B ↝⟨ (inverse $ drop-⊤-right λ _ → _⇔_.to contractible⇔↔⊤ $ singleton-contractible _) ⟩ B × Singleton r ↝⟨ Σ-assoc ⟩ (∃ λ { (_ , r′) → r′ ≡ r }) ↝⟨ (Σ-cong ×-comm λ _ → F.id) ⟩ (∃ λ { (r′ , _) → r′ ≡ r }) ↝⟨ (inverse $ Σ-cong Eq.⟨ _ , eq ⟩ λ _ → F.id) ⟩□ (∃ λ a → remainder a ≡ r) □ -- The isomorphism preserves getters and setters. Higher-lens↔Lens-preserves-getters-and-setters : Preserves-getters-and-setters-⇔ A B (_↔_.logical-equivalence Higher-lens↔Lens) Higher-lens↔Lens-preserves-getters-and-setters = Preserves-getters-and-setters-→-↠-⇔ (_↔_.surjection Higher-lens↔Lens) (λ _ → refl _ , refl _)
{ "alphanum_fraction": 0.4658072974, "avg_line_length": 35.7578125, "ext": "agda", "hexsha": "42c44aa88b7df37468b66762e1e9ec648b84f68f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Saizan/dependent-lenses", "max_forks_repo_path": "src/Lens/Non-dependent/Higher/Surjective-remainder.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Saizan/dependent-lenses", "max_issues_repo_path": "src/Lens/Non-dependent/Higher/Surjective-remainder.agda", "max_line_length": 118, "max_stars_count": null, "max_stars_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Saizan/dependent-lenses", "max_stars_repo_path": "src/Lens/Non-dependent/Higher/Surjective-remainder.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1495, "size": 4577 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Monoid where open import Cubical.Algebra.Base public open import Cubical.Algebra.Definitions public open import Cubical.Algebra.Structures public using (IsMonoid; ismonoid) open import Cubical.Algebra.Bundles public using (Monoid; mkmonoid; MonoidCarrier) open import Cubical.Structures.Carrier public open import Cubical.Algebra.Monoid.Properties public open import Cubical.Algebra.Monoid.Morphism public open import Cubical.Algebra.Monoid.MorphismProperties public hiding (isPropIsMonoid)
{ "alphanum_fraction": 0.8292253521, "avg_line_length": 40.5714285714, "ext": "agda", "hexsha": "69014f9858e657388791406ea90b146817d2d789", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Algebra/Monoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Algebra/Monoid.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Algebra/Monoid.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 137, "size": 568 }
open import Type open import Structure.Setoid renaming (_≡_ to _≡ₑ_) -- Finite sets represented by lists module Data.List.Relation.Membership {ℓ ℓₑ} {T : Type{ℓ}} ⦃ equiv : Equiv{ℓₑ}(T)⦄ where open import Data.List open import Data.List.Relation.Quantification using (ExistsElement ; ExistsUniqueElement) open import Functional open import Logic _∈_ : T → List(T) → Stmt _∈_ = ExistsElement ∘ (_≡ₑ_) module _∈_ where pattern use {x}{l} px = ExistsElement.•_ {x = x}{l = l} px pattern skip {x}{l} el = ExistsElement.⊰_ {l = l}{x = x} el open _∈_ public open import Relator.Sets(_∈_) public _∈!_ : T → List(T) → Stmt _∈!_ = ExistsUniqueElement ∘ (_≡ₑ_)
{ "alphanum_fraction": 0.6959152799, "avg_line_length": 28.7391304348, "ext": "agda", "hexsha": "740fb0ca0aa505c04082897a14147097b080a5e5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/List/Relation/Membership.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/List/Relation/Membership.agda", "max_line_length": 89, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/List/Relation/Membership.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 242, "size": 661 }
module CS410-Nat where open import CS410-Prelude open import CS410-Monoid data Nat : Set where zero : Nat suc : Nat -> Nat {-# BUILTIN NATURAL Nat #-} {-# COMPILED_DATA Nat HaskellSetup.Nat HaskellSetup.Zero HaskellSetup.Suc #-} _+N_ : Nat -> Nat -> Nat zero +N n = n suc m +N n = suc (m +N n) infixr 3 _+N_ +Mon : Monoid Nat +Mon = record { e = 0 ; op = _+N_ ; lunit = \ m -> refl ; runit = ruHelp ; assoc = asHelp } where ruHelp : (m : Nat) -> m +N 0 == m ruHelp zero = refl ruHelp (suc m) rewrite ruHelp m = refl asHelp : (m m' m'' : Nat) -> m +N (m' +N m'') == (m +N m') +N m'' asHelp zero m' m'' = refl asHelp (suc m) m' m'' rewrite asHelp m m' m'' = refl _*N_ : Nat -> Nat -> Nat zero *N n = zero suc m *N n = m *N n +N n infixr 4 _*N_ _N>=_ : Nat -> Nat -> Set m N>= zero = One zero N>= suc n = Zero suc m N>= suc n = m N>= n N>=Unique : (m n : Nat)(p q : m N>= n) -> p == q N>=Unique m zero p q = refl N>=Unique zero (suc n) () q N>=Unique (suc m) (suc n) p q = N>=Unique m n p q plusSucFact : (m n : Nat) -> m +N suc n == suc m +N n plusSucFact zero n = refl plusSucFact (suc m) n rewrite plusSucFact m n = refl plusCommFact : (m n : Nat) -> m +N n == n +N m plusCommFact m zero = Monoid.runit +Mon m plusCommFact m (suc n) rewrite plusSucFact m n | plusCommFact m n = refl
{ "alphanum_fraction": 0.5684830633, "avg_line_length": 25.1481481481, "ext": "agda", "hexsha": "914e92a34b433f371701578b414ce1113ff951e6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "clarkdm/CS410", "max_forks_repo_path": "CS410-Nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "clarkdm/CS410", "max_issues_repo_path": "CS410-Nat.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "clarkdm/CS410", "max_stars_repo_path": "CS410-Nat.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 545, "size": 1358 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Data.List.Any.Membership instantiated with propositional equality, -- along with some additional definitions. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Membership.Propositional {a} {A : Set a} where open import Data.List.Relation.Unary.Any using (Any) open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; setoid; subst) import Data.List.Membership.Setoid as SetoidMembership ------------------------------------------------------------------------ -- Re-export contents of setoid membership open SetoidMembership (setoid A) public hiding (lose) ------------------------------------------------------------------------ -- Different members _≢∈_ : ∀ {x y : A} {xs} → x ∈ xs → y ∈ xs → Set _ _≢∈_ x∈xs y∈xs = ∀ x≡y → subst (_∈ _) x≡y x∈xs ≢ y∈xs ------------------------------------------------------------------------ -- Other operations lose : ∀ {p} {P : A → Set p} {x xs} → x ∈ xs → P x → Any P xs lose = SetoidMembership.lose (setoid A) (subst _)
{ "alphanum_fraction": 0.4711951849, "avg_line_length": 35.2424242424, "ext": "agda", "hexsha": "8ede0ee5e11818bca37375d3bca9b8bd7ff90fd7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/List/Membership/Propositional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/List/Membership/Propositional.agda", "max_line_length": 81, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/List/Membership/Propositional.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 257, "size": 1163 }
{- This is the Agda formalization of NOTIONS OF ANONYMOUS EXISTENCE IN MARTIN-LOF TYPE THEORY by Nicolai Kraus, Martin Escardo, Thierry Coquand, Thorsten Altenkirch This file stays very close to the article. Because of this, not all proofs are given in the way that is most elegant for a formalization. In fact, often re-ordering statements would lead to a shorter presentation. The order that we have chosen in the article makes our results, as we hope, understandable and gives sufficient motivation. This file type check with Agda 2.4.2.5. -} module INDEX_NotionsOfAnonymousExistence where -- We use the following library files: open import library.Basics hiding (Type ; Σ) open import library.types.Sigma open import library.types.Pi open import library.types.Bool open import library.NType2 open import library.types.Paths -- OUR FORMALIZATION -- Section 1: Introduction -- (no formalization) -- Section 2: Preliminaries open import Sec2preliminaries -- Section 3: Hedberg's Theorem open import Sec3hedberg -- Section 4: Collapsibility implies H-Stability open import Sec4hasConstToSplit -- Section 5: Factorizing Weakly Constant Functions open import Sec5factorConst -- Section 6: Populatedness open import Sec6populatedness -- Section 7: Taboos and Counter-Models open import Sec7taboos -- Section 8: Propositional Truncation with Judgmental Computation Rule open import Sec8judgmentalBeta -- Section 9: Conclusion and Open Problems -- (no formalization)
{ "alphanum_fraction": 0.776609724, "avg_line_length": 25.7966101695, "ext": "agda", "hexsha": "6dfeaca766b9135ad6928ef22f401ee03681341c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "nicolai/anonymousExistence/INDEX_NotionsOfAnonymousExistence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "nicolai/anonymousExistence/INDEX_NotionsOfAnonymousExistence.agda", "max_line_length": 71, "max_stars_count": 1, "max_stars_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nicolaikraus/HoTT-Agda", "max_stars_repo_path": "nicolai/anonymousExistence/INDEX_NotionsOfAnonymousExistence.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 387, "size": 1522 }
{-# OPTIONS --safe --no-qualified-instances #-} module CF.Transform.Compile.Statements where open import Function using (_∘_) open import Data.Unit using (⊤; tt) open import Data.Product open import Data.List hiding (null; [_]) open import Relation.Binary.PropositionalEquality hiding ([_]) open import Relation.Unary open import Relation.Unary.PredicateTransformer using (Pt) open import Relation.Ternary.Core open import Relation.Ternary.Structures open import Relation.Ternary.Structures.Syntax open import Relation.Ternary.Monad open import CF.Syntax.DeBruijn open import CF.Transform.Compile.Expressions open import CF.Types open import CF.Transform.Compile.ToJVM open import JVM.Types open import JVM.Compiler open import JVM.Contexts open import JVM.Model StackTy open import JVM.Syntax.Values open import JVM.Syntax.Instructions mutual {- Compiling statements -} compileₛ : ∀ {ψ : StackTy} {Γ r} → Stmt r Γ → ε[ Compiler ⟦ Γ ⟧ ψ ψ Emp ] compileₛ (asgn x e) = do compileₑ e code (store ⟦ x ⟧) compileₛ (run e) = do compileₑ e code pop compileₛ (block x) = do compiler _ x compileₛ (while e body) = do -- condition lcond⁺ ∙⟨ σ ⟩ lcond⁻ ← freshLabel refl ∙⟨ σ ⟩ lcond⁻ ← attachTo lcond⁺ ⟨ ∙-idʳ ⟩ compileₑ e ⟨ Down _ # σ ⟩& lcond⁻ (↓ lend⁻) ∙⟨ σ ⟩ labels ← (✴-rotateₗ ∘ ✴-assocᵣ) ⟨$⟩ (freshLabel ⟨ Down _ # σ ⟩& lcond⁻) (↓ lcond⁻) ∙⟨ σ ⟩ lend⁺ ← ✴-id⁻ˡ ⟨$⟩ (code (if eq lend⁻) ⟨ _ ✴ _ # σ ⟩& labels) -- body compileₛ body lend⁺ ← ✴-id⁻ˡ ⟨$⟩ (code (goto lcond⁻) ⟨ Up _ # σ ⟩& lend⁺) attach lend⁺ compileₛ (ifthenelse c e₁ e₂) = do -- condition compileₑ c lthen+ ∙⟨ σ ⟩ ↓ lthen- ← freshLabel lthen+ ← ✴-id⁻ˡ ⟨$⟩ (code (if ne lthen-) ⟨ Up _ # ∙-comm σ ⟩& lthen+) -- else compileₛ e₂ ↓ lend- ∙⟨ σ ⟩ labels ← (✴-rotateₗ ∘ ✴-assocᵣ) ⟨$⟩ (freshLabel ⟨ Up _ # ∙-idˡ ⟩& lthen+) -- then lthen+ ∙⟨ σ ⟩ lend+ ← ✴-id⁻ˡ ⟨$⟩ (code (goto lend-) ⟨ _ ✴ _ # σ ⟩& labels) lend+ ← ✴-id⁻ˡ ⟨$⟩ (attach lthen+ ⟨ Up _ # σ ⟩& lend+) compileₛ e₁ -- label the end attach lend+ {- Compiling blocks -} compiler : ∀ (ψ : StackTy) {Γ r} → Block r Γ → ε[ Compiler ⟦ Γ ⟧ ψ ψ Emp ] compiler ψ (nil) = do return refl compiler ψ (s ⍮⍮ b) = do compileₛ s compiler _ b
{ "alphanum_fraction": 0.6003351487, "avg_line_length": 29.1097560976, "ext": "agda", "hexsha": "30c3e330b1f3272496af02f520e18a29f05f1144", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ajrouvoet/jvm.agda", "max_forks_repo_path": "src/CF/Transform/Compile/Statements.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ajrouvoet/jvm.agda", "max_issues_repo_path": "src/CF/Transform/Compile/Statements.agda", "max_line_length": 102, "max_stars_count": 6, "max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ajrouvoet/jvm.agda", "max_stars_repo_path": "src/CF/Transform/Compile/Statements.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z", "num_tokens": 882, "size": 2387 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Optics.All open import LibraBFT.Prelude open import LibraBFT.Hash open import LibraBFT.Base.ByteString open import LibraBFT.Base.Encode open import LibraBFT.Base.KVMap as KVMap open import LibraBFT.Base.PKCS open import LibraBFT.Base.Types open import LibraBFT.Impl.Base.Types open import Data.String using (String) -- Defines the types that /DO NOT/ depend on an epoch config. -- TODO-3: update types to reflect more recent version of LibraBFT. This is -- a substantial undertaking that should probably be led by someone who can -- access our internal implementation. module LibraBFT.Impl.Consensus.Types.EpochIndep where -- Below here is incremental progress towards something -- that will eventually mirror the types in LBFT.Consensus.Types -- that /DO NOT/ depend on the set of active authors -- or safety rules, which we call the /EpochConfig/. Author : Set Author = NodeId AccountAddress : Set AccountAddress = Author HashValue : Set HashValue = Hash TX : Set TX = ByteString Instant : Set Instant = ℕ -- TODO-2: should eventually be a time stamp ----------------- -- Information -- ----------------- record BlockInfo : Set where constructor BlockInfo∙new field ₋biEpoch : Epoch ₋biRound : Round ₋biId : HashValue -- This has more fields... open BlockInfo public unquoteDecl biEpoch biRound biId = mkLens (quote BlockInfo) (biEpoch ∷ biRound ∷ biId ∷ []) postulate instance enc-BlockInfo : Encoder BlockInfo BlockInfo-η : ∀{e1 e2 r1 r2 i1 i2} → e1 ≡ e2 → r1 ≡ r2 → i1 ≡ i2 → BlockInfo∙new e1 r1 i1 ≡ BlockInfo∙new e2 r2 i2 BlockInfo-η refl refl refl = refl record LedgerInfo : Set where constructor LedgerInfo∙new field ₋liCommitInfo : BlockInfo ₋liConsensusDataHash : HashValue open LedgerInfo public unquoteDecl liCommitInfo liConsensusDataHash = mkLens (quote LedgerInfo) (liCommitInfo ∷ liConsensusDataHash ∷ []) postulate instance enc-LedgerInfo : Encoder LedgerInfo LedgerInfo-η : ∀ {ci1 ci2 : BlockInfo} {cdh1 cdh2 : Hash} → ci1 ≡ ci2 → cdh1 ≡ cdh2 → (LedgerInfo∙new ci1 cdh1) ≡ (LedgerInfo∙new ci2 cdh2) LedgerInfo-η refl refl = refl record LedgerInfoWithSignatures : Set where constructor LedgerInfoWithSignatures∙new field ₋liwsLedgerInfo : LedgerInfo ₋liwsSignatures : KVMap Author Signature open LedgerInfoWithSignatures public unquoteDecl liwsLedgerInfo liwsSignatures = mkLens (quote LedgerInfoWithSignatures) (liwsLedgerInfo ∷ liwsSignatures ∷ []) postulate instance enc-LedgerInfoWithSignatures : Encoder LedgerInfoWithSignatures ------------------- -- Votes and QCs -- ------------------- record VoteData : Set where constructor VoteData∙new field ₋vdProposed : BlockInfo ₋vdParent : BlockInfo open VoteData public unquoteDecl vdProposed vdParent = mkLens (quote VoteData) (vdProposed ∷ vdParent ∷ []) postulate instance enc-VoteData : Encoder VoteData VoteData-η : ∀ {pr1 par1 pr2 par2 : BlockInfo} → pr1 ≡ pr2 → par1 ≡ par2 → (VoteData∙new pr1 par1) ≡ (VoteData∙new pr2 par2) VoteData-η refl refl = refl -- DESIGN NOTE: The ₋vAuthor field is included only to facilitate lookup of the public key against -- which to verify the signature. An alternative would be to use an index into the members of the -- epoch config, which would save message space and therefore bandwidth. record Vote : Set where constructor Vote∙new field ₋vVoteData : VoteData ₋vAuthor : Author ₋vLedgerInfo : LedgerInfo ₋vSignature : Signature ₋vTimeoutSignature : Maybe Signature open Vote public unquoteDecl vVoteData vAuthor vLedgerInfo vSignature vTimeoutSignature = mkLens (quote Vote) (vVoteData ∷ vAuthor ∷ vLedgerInfo ∷ vSignature ∷ vTimeoutSignature ∷ []) postulate instance enc-Vote : Encoder Vote vParent : Lens Vote BlockInfo vParent = vVoteData ∙ vdParent vProposed : Lens Vote BlockInfo vProposed = vVoteData ∙ vdProposed vParentId : Lens Vote Hash vParentId = vVoteData ∙ vdParent ∙ biId vParentRound : Lens Vote Round vParentRound = vVoteData ∙ vdParent ∙ biRound vProposedId : Lens Vote Hash vProposedId = vVoteData ∙ vdProposed ∙ biId vEpoch : Lens Vote Epoch vEpoch = vVoteData ∙ vdProposed ∙ biEpoch vdRound : Lens VoteData Round vdRound = vdProposed ∙ biRound vRound : Lens Vote Round vRound = vVoteData ∙ vdRound record QuorumCert : Set where constructor QuorumCert∙new field ₋qcVoteData : VoteData ₋qcSignedLedgerInfo : LedgerInfoWithSignatures open QuorumCert public unquoteDecl qcVoteData qcSignedLedgerInfo = mkLens (quote QuorumCert) (qcVoteData ∷ qcSignedLedgerInfo ∷ []) postulate instance enc-QuorumCert : Encoder QuorumCert -- Because QuorumCert has an injective encoding (postulated, for now), -- we can use it to determine equality of QuorumCerts. _≟QC_ : (q1 q2 : QuorumCert) → Dec (q1 ≡ q2) _≟QC_ = ≡-Encoder enc-QuorumCert _QCBoolEq_ : QuorumCert → QuorumCert → Bool _QCBoolEq_ q1 q2 = does (q1 ≟QC q2) qcCertifiedBlock : Lens QuorumCert BlockInfo qcCertifiedBlock = qcVoteData ∙ vdProposed -- Constructs a 'vote' that was gathered in a QC. rebuildVote : QuorumCert → Author × Signature → Vote rebuildVote qc (α , sig) = record { ₋vVoteData = ₋qcVoteData qc ; ₋vAuthor = α ; ₋vLedgerInfo = qc ^∙ (qcSignedLedgerInfo ∙ liwsLedgerInfo) ; ₋vSignature = sig ; ₋vTimeoutSignature = nothing -- Is this correct? The original vote may have had a -- timeout signature, but we don't know. Does it -- matter? } -- Two votes are equivalent if they are identical except they may differ on timeout signature _≈Vote_ : (v1 v2 : Vote) → Set v1 ≈Vote v2 = v2 ≡ record v1 { ₋vTimeoutSignature = ₋vTimeoutSignature v2 } qcVotesKV : QuorumCert → KVMap Author Signature qcVotesKV = ₋liwsSignatures ∘ ₋qcSignedLedgerInfo qcVotes : QuorumCert → List (Author × Signature) qcVotes qc = kvm-toList (qcVotesKV qc) qcCertifies : Lens QuorumCert Hash qcCertifies = qcVoteData ∙ vdProposed ∙ biId qcRound : Lens QuorumCert Round qcRound = qcVoteData ∙ vdProposed ∙ biRound ₋qcCertifies : QuorumCert → Hash ₋qcCertifies q = q ^∙ qcCertifies ₋qcRound : QuorumCert → Round ₋qcRound q = q ^∙ qcRound ------------ -- Blocks -- ------------ data BlockType : Set where Proposal : TX → Author → BlockType NilBlock : BlockType Genesis : BlockType postulate instance enc-BlockType : Encoder BlockType record BlockData : Set where constructor BlockData∙new field ₋bdEpoch : Epoch ₋bdRound : Round -- QUESTION: How do we represent a block that extends the -- genesis block, which doesn't come with a QC. Maybe the -- genesis block has an associated QC established for the epoch? ₋bdQuorumCert : QuorumCert ₋bdBlockType : BlockType open BlockData public unquoteDecl bdEpoch bdRound bdQuorumCert bdBlockType = mkLens (quote BlockData) (bdEpoch ∷ bdRound ∷ bdQuorumCert ∷ bdBlockType ∷ []) postulate instance enc-BlockData : Encoder BlockData bdParentId : Lens BlockData Hash bdParentId = bdQuorumCert ∙ qcVoteData ∙ vdParent ∙ biId -- This is the id of a block bdBlockId : Lens BlockData Hash bdBlockId = bdQuorumCert ∙ qcVoteData ∙ vdProposed ∙ biId -- The signature is a Maybe to allow us to use 'nothing' as the -- 'bSignature' when constructing a block to sign later. Also, -- "nil" blocks are not signed because they are produced -- independently by different validators. This is to enable -- committing after an epoch-changing command is processed: we -- cannot add more commands, but we need to add some quorum -- certificates in order to commit the epoch-changing command. record Block : Set where constructor Block∙new field ₋bId : HashValue ₋bBlockData : BlockData ₋bSignature : Maybe Signature open Block public unquoteDecl bId bBlockData bSignature = mkLens (quote Block) (bId ∷ bBlockData ∷ bSignature ∷ []) postulate instance enc : Encoder Block bQuorumCert : Lens Block QuorumCert bQuorumCert = bBlockData ∙ bdQuorumCert bRound : Lens Block Round bRound = bBlockData ∙ bdRound record SyncInfo : Set where constructor mkSyncInfo -- Bare constructor to enable pattern matching against SyncInfo; "smart" -- constructor SyncInfo∙new is below field ₋siHighestQuorumCert : QuorumCert ₋siHighestCommitCert : Maybe QuorumCert -- ₋siHighestTimeoutCert : Mabe TimeoutCert -- Not used yet. open SyncInfo public -- Note that we do not automatically derive a lens for siHighestCommitCert; -- it is defined manually below. unquoteDecl siHighestQuorumCert = mkLens (quote SyncInfo) (siHighestQuorumCert ∷ []) postulate instance enc-SyncInfo : Encoder SyncInfo SyncInfo∙new : QuorumCert → QuorumCert → SyncInfo SyncInfo∙new highestQuorumCert highestCommitCert = record { ₋siHighestQuorumCert = highestQuorumCert ; ₋siHighestCommitCert = if highestQuorumCert QCBoolEq highestCommitCert then nothing else (just highestCommitCert) } siHighestCommitCert : Lens SyncInfo QuorumCert siHighestCommitCert = mkLens' (λ x → fromMaybe (x ^∙ siHighestQuorumCert) (₋siHighestCommitCert x)) (λ x si → record x { ₋siHighestCommitCert = just si }) ---------------------- -- Network Messages -- ---------------------- record ProposalMsg : Set where constructor ProposalMsg∙new field ₋pmProposal : Block ₋pmSyncInfo : SyncInfo open ProposalMsg public unquoteDecl pmProposal pmSyncInfo = mkLens (quote ProposalMsg) (pmProposal ∷ pmSyncInfo ∷ []) postulate instance enc-ProposalMsg : Encoder ProposalMsg record VoteMsg : Set where constructor VoteMsg∙new field ₋vmVote : Vote ₋vmSyncInfo : SyncInfo open VoteMsg public unquoteDecl vmVote vmSyncInfo = mkLens (quote VoteMsg) (vmVote ∷ vmSyncInfo ∷ []) postulate instance enc-VoteMsg : Encoder VoteMsg vmProposed : Lens VoteMsg BlockInfo vmProposed = vmVote ∙ vVoteData ∙ vdProposed vmParent : Lens VoteMsg BlockInfo vmParent = vmVote ∙ vVoteData ∙ vdParent -- This is a notification of a commit. It may not be explicitly included in an implementation, -- but we need something to be able to express correctness conditions. It will -- probably have something different in it, but will serve the purpose for now. record CommitMsg : Set where constructor CommitMsg∙new field ₋cmEpoch : Epoch ₋cmAuthor : NodeId ₋cmRound : Round ₋cmCert : QuorumCert -- We assume for now that a CommitMsg contains the QuorumCert of the head of the 3-chain ₋cmSigMB : Maybe Signature open CommitMsg public unquoteDecl cmEpoch cmAuthor cmRound cmCert cmSigMB = mkLens (quote CommitMsg) (cmEpoch ∷ cmAuthor ∷ cmRound ∷ cmCert ∷ cmSigMB ∷ []) postulate instance enc-CommitMsg : Encoder CommitMsg record LastVoteInfo : Set where constructor LastVoteInfo∙new field ₋lviLiDigest : HashValue ₋lviRound : Round ₋lviIsTimeout : Bool open LastVoteInfo public record PendingVotes : Set where constructor PendingVotes∙new field ₋pvLiDigestToVotes : KVMap HashValue LedgerInfoWithSignatures -- -pvMaybePartialTC : Maybe TimeoutCertificate ₋pvAuthorToVote : KVMap Author Vote open PendingVotes public -- Note: this is a placeholder. -- We are not concerned for now with executing transactions, just ordering/committing them. -- This is outdated (see comment at top). data StateComputeResult : Set where stateComputeResult : StateComputeResult record ExecutedBlock : Set where constructor ExecutedBlock∙new field ₋ebBlock : Block ₋ebOutput : StateComputeResult open ExecutedBlock public unquoteDecl ebBlock ebOutput = mkLens (quote ExecutedBlock) (ebBlock ∷ ebOutput ∷ []) ebId : Lens ExecutedBlock HashValue ebId = ebBlock ∙ bId ebQuorumCert : Lens ExecutedBlock QuorumCert ebQuorumCert = ebBlock ∙ bQuorumCert ebParentId : Lens ExecutedBlock HashValue ebParentId = ebQuorumCert ∙ qcCertifiedBlock ∙ biId ebRound : Lens ExecutedBlock Round ebRound = ebBlock ∙ bRound -- ------------------------------------------------------------------------------ record LinkableBlock : Set where constructor LinkableBlock₋new field ₋lbExecutedBlock : ExecutedBlock -- ₋lbChildren : Set HashValue open LinkableBlock public unquoteDecl lbExecutedBlock = mkLens (quote LinkableBlock) (lbExecutedBlock ∷ []) lbId : Lens LinkableBlock HashValue lbId = lbExecutedBlock ∙ ebId -- ------------------------------------------------------------------------------ -- Note BlockTree and BlockStore are defined in EpochDep.agda as they depend on an EpochConfig record SafetyData : Set where constructor SafetyData∙new field :sdEpoch : Epoch :sdLastVotedRound : Round :sdPreferredRound : Round :sdLastVote : Maybe Vote open SafetyData public unquoteDecl sdEpoch sdLastVotedRound sdPreferredRound sdLastVote = mkLens (quote SafetyData) (sdEpoch ∷ sdLastVotedRound ∷ sdPreferredRound ∷ sdLastVote ∷ []) record PersistentSafetyStorage : Set where constructor PersistentSafetyStorage∙new field :pssSafetyData : SafetyData :pssAuthor : Author -- :pssWaypoint : Waypoint open PersistentSafetyStorage public unquoteDecl pssSafetyData pssAuthor = mkLens (quote PersistentSafetyStorage) (pssSafetyData ∷ pssAuthor ∷ []) record ValidatorSigner : Set where constructor ValidatorSigner∙new field :vsAuthor : AccountAddress -- :vsPrivateKey : SK -- Note that the SystemModel doesn't -- allow one node to examine another's -- state, so we don't model someone being -- able to impersonate someone else unless -- PK is "dishonest", which models the -- possibility that the corresponding secret -- key may have been leaked. open ValidatorSigner public record ValidatorConfig : Set where constructor ValidatorConfig∙new field :vcConsensusPublicKey : PK open ValidatorConfig public unquoteDecl vcConsensusPublicKey = mkLens (quote ValidatorConfig) (vcConsensusPublicKey ∷ []) record ValidatorInfo : Set where constructor ValidatorInfo∙new field -- :viAccountAddress : AccountAddress -- :viConsensusVotingPower : Int -- TODO-2: Each validator has one vote. Generalize later. :viConfig : ValidatorConfig open ValidatorInfo public record ValidatorConsensusInfo : Set where constructor ValidatorConsensusInfo∙new field :vciPublicKey : PK --:vciVotingPower : U64 open ValidatorConsensusInfo public record ValidatorVerifier : Set where constructor ValidatorVerifier∙new field :vvAddressToValidatorInfo : (KVMap AccountAddress ValidatorConsensusInfo) :vvQuorumVotingPower : ℕ -- TODO-2: see above; for now, this is QuorumSize -- :vvTotalVotingPower : ℕ -- TODO-2: see above; for now, this is number of peers in EpochConfig open ValidatorVerifier public unquoteDecl vvAddressToValidatorInfo vvQuorumVotingPower = mkLens (quote ValidatorVerifier) (vvAddressToValidatorInfo ∷ vvQuorumVotingPower ∷ []) record SafetyRules : Set where constructor SafetyRules∙new field :srPersistentStorage : PersistentSafetyStorage -- :srValidatorSigner : Maybe ValidatorSigner open SafetyRules public unquoteDecl srPersistentStorage = mkLens (quote SafetyRules) (srPersistentStorage ∷ []) data Output : Set where BroadcastProposal : ProposalMsg → Output LogErr : String → Output -- LogInfo : InfoLog a → Output SendVote : VoteMsg → List Author → Output open Output public SendVote-inj-v : ∀ {x1 x2 y1 y2} → SendVote x1 y1 ≡ SendVote x2 y2 → x1 ≡ x2 SendVote-inj-v refl = refl SendVote-inj-si : ∀ {x1 x2 y1 y2} → SendVote x1 y1 ≡ SendVote x2 y2 → y1 ≡ y2 SendVote-inj-si refl = refl
{ "alphanum_fraction": 0.6748387846, "avg_line_length": 35.7858627859, "ext": "agda", "hexsha": "7983b5e36a483cf62e1737cddd8e48216c0a9756", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "cwjnkins/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Impl/Consensus/Types/EpochIndep.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "cwjnkins/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Impl/Consensus/Types/EpochIndep.agda", "max_line_length": 119, "max_stars_count": null, "max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "cwjnkins/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Impl/Consensus/Types/EpochIndep.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4818, "size": 17213 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some algebraic structures (not packed up with sets, operations, -- etc.) ------------------------------------------------------------------------ -- The contents of this module should be accessed via `Algebra`, unless -- you want to parameterise it via the equality relation. {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Rel; Setoid; IsEquivalence) module Algebra.Structures {a ℓ} {A : Set a} -- The underlying set (_≈_ : Rel A ℓ) -- The underlying equality relation where -- The file is divided into sections depending on the arities of the -- components of the algebraic structure. open import Algebra.Core open import Algebra.Definitions _≈_ import Algebra.Consequences.Setoid as Consequences open import Data.Product using (_,_; proj₁; proj₂) open import Level using (_⊔_) ------------------------------------------------------------------------ -- Structures with 1 binary operation ------------------------------------------------------------------------ record IsMagma (∙ : Op₂ A) : Set (a ⊔ ℓ) where field isEquivalence : IsEquivalence _≈_ ∙-cong : Congruent₂ ∙ open IsEquivalence isEquivalence public setoid : Setoid a ℓ setoid = record { isEquivalence = isEquivalence } ∙-congˡ : LeftCongruent ∙ ∙-congˡ y≈z = ∙-cong refl y≈z ∙-congʳ : RightCongruent ∙ ∙-congʳ y≈z = ∙-cong y≈z refl record IsSemigroup (∙ : Op₂ A) : Set (a ⊔ ℓ) where field isMagma : IsMagma ∙ assoc : Associative ∙ open IsMagma isMagma public record IsBand (∙ : Op₂ A) : Set (a ⊔ ℓ) where field isSemigroup : IsSemigroup ∙ idem : Idempotent ∙ open IsSemigroup isSemigroup public record IsCommutativeSemigroup (∙ : Op₂ A) : Set (a ⊔ ℓ) where field isSemigroup : IsSemigroup ∙ comm : Commutative ∙ open IsSemigroup isSemigroup public record IsSemilattice (∧ : Op₂ A) : Set (a ⊔ ℓ) where field isBand : IsBand ∧ comm : Commutative ∧ open IsBand isBand public renaming (∙-cong to ∧-cong; ∙-congˡ to ∧-congˡ; ∙-congʳ to ∧-congʳ) record IsSelectiveMagma (∙ : Op₂ A) : Set (a ⊔ ℓ) where field isMagma : IsMagma ∙ sel : Selective ∙ open IsMagma isMagma public ------------------------------------------------------------------------ -- Structures with 1 binary operation & 1 element ------------------------------------------------------------------------ record IsMonoid (∙ : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where field isSemigroup : IsSemigroup ∙ identity : Identity ε ∙ open IsSemigroup isSemigroup public identityˡ : LeftIdentity ε ∙ identityˡ = proj₁ identity identityʳ : RightIdentity ε ∙ identityʳ = proj₂ identity record IsCommutativeMonoid (∙ : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where field isMonoid : IsMonoid ∙ ε comm : Commutative ∙ open IsMonoid isMonoid public isCommutativeSemigroup : IsCommutativeSemigroup ∙ isCommutativeSemigroup = record { isSemigroup = isSemigroup ; comm = comm } record IsIdempotentCommutativeMonoid (∙ : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where field isCommutativeMonoid : IsCommutativeMonoid ∙ ε idem : Idempotent ∙ open IsCommutativeMonoid isCommutativeMonoid public -- Idempotent commutative monoids are also known as bounded lattices. -- Note that the BoundedLattice necessarily uses the notation inherited -- from monoids rather than lattices. IsBoundedLattice = IsIdempotentCommutativeMonoid module IsBoundedLattice {∙ : Op₂ A} {ε : A} (isIdemCommMonoid : IsIdempotentCommutativeMonoid ∙ ε) = IsIdempotentCommutativeMonoid isIdemCommMonoid ------------------------------------------------------------------------ -- Structures with 1 binary operation, 1 unary operation & 1 element ------------------------------------------------------------------------ record IsGroup (_∙_ : Op₂ A) (ε : A) (_⁻¹ : Op₁ A) : Set (a ⊔ ℓ) where field isMonoid : IsMonoid _∙_ ε inverse : Inverse ε _⁻¹ _∙_ ⁻¹-cong : Congruent₁ _⁻¹ open IsMonoid isMonoid public infixl 6 _-_ _-_ : Op₂ A x - y = x ∙ (y ⁻¹) inverseˡ : LeftInverse ε _⁻¹ _∙_ inverseˡ = proj₁ inverse inverseʳ : RightInverse ε _⁻¹ _∙_ inverseʳ = proj₂ inverse uniqueˡ-⁻¹ : ∀ x y → (x ∙ y) ≈ ε → x ≈ (y ⁻¹) uniqueˡ-⁻¹ = Consequences.assoc+id+invʳ⇒invˡ-unique setoid ∙-cong assoc identity inverseʳ uniqueʳ-⁻¹ : ∀ x y → (x ∙ y) ≈ ε → y ≈ (x ⁻¹) uniqueʳ-⁻¹ = Consequences.assoc+id+invˡ⇒invʳ-unique setoid ∙-cong assoc identity inverseˡ record IsAbelianGroup (∙ : Op₂ A) (ε : A) (⁻¹ : Op₁ A) : Set (a ⊔ ℓ) where field isGroup : IsGroup ∙ ε ⁻¹ comm : Commutative ∙ open IsGroup isGroup public isCommutativeMonoid : IsCommutativeMonoid ∙ ε isCommutativeMonoid = record { isMonoid = isMonoid ; comm = comm } open IsCommutativeMonoid isCommutativeMonoid public using (isCommutativeSemigroup) ------------------------------------------------------------------------ -- Structures with 2 binary operations ------------------------------------------------------------------------ -- Note that `IsLattice` is not defined in terms of `IsSemilattice` -- because the idempotence laws of ∨ and ∧ can be derived from the -- absorption laws, which makes the corresponding "idem" fields -- redundant. The derived idempotence laws are stated and proved in -- `Algebra.Properties.Lattice` along with the fact that every lattice -- consists of two semilattices. record IsLattice (∨ ∧ : Op₂ A) : Set (a ⊔ ℓ) where field isEquivalence : IsEquivalence _≈_ ∨-comm : Commutative ∨ ∨-assoc : Associative ∨ ∨-cong : Congruent₂ ∨ ∧-comm : Commutative ∧ ∧-assoc : Associative ∧ ∧-cong : Congruent₂ ∧ absorptive : Absorptive ∨ ∧ open IsEquivalence isEquivalence public ∨-absorbs-∧ : ∨ Absorbs ∧ ∨-absorbs-∧ = proj₁ absorptive ∧-absorbs-∨ : ∧ Absorbs ∨ ∧-absorbs-∨ = proj₂ absorptive ∧-congˡ : LeftCongruent ∧ ∧-congˡ y≈z = ∧-cong refl y≈z ∧-congʳ : RightCongruent ∧ ∧-congʳ y≈z = ∧-cong y≈z refl ∨-congˡ : LeftCongruent ∨ ∨-congˡ y≈z = ∨-cong refl y≈z ∨-congʳ : RightCongruent ∨ ∨-congʳ y≈z = ∨-cong y≈z refl record IsDistributiveLattice (∨ ∧ : Op₂ A) : Set (a ⊔ ℓ) where field isLattice : IsLattice ∨ ∧ ∨-distribʳ-∧ : ∨ DistributesOverʳ ∧ open IsLattice isLattice public ∨-∧-distribʳ = ∨-distribʳ-∧ {-# WARNING_ON_USAGE ∨-∧-distribʳ "Warning: ∨-∧-distribʳ was deprecated in v1.1. Please use ∨-distribʳ-∧ instead." #-} ------------------------------------------------------------------------ -- Structures with 2 binary operations & 1 element ------------------------------------------------------------------------ record IsNearSemiring (+ * : Op₂ A) (0# : A) : Set (a ⊔ ℓ) where field +-isMonoid : IsMonoid + 0# *-isSemigroup : IsSemigroup * distribʳ : * DistributesOverʳ + zeroˡ : LeftZero 0# * open IsMonoid +-isMonoid public renaming ( assoc to +-assoc ; ∙-cong to +-cong ; ∙-congˡ to +-congˡ ; ∙-congʳ to +-congʳ ; identity to +-identity ; identityˡ to +-identityˡ ; identityʳ to +-identityʳ ; isMagma to +-isMagma ; isSemigroup to +-isSemigroup ) open IsSemigroup *-isSemigroup public using () renaming ( assoc to *-assoc ; ∙-cong to *-cong ; ∙-congˡ to *-congˡ ; ∙-congʳ to *-congʳ ; isMagma to *-isMagma ) record IsSemiringWithoutOne (+ * : Op₂ A) (0# : A) : Set (a ⊔ ℓ) where field +-isCommutativeMonoid : IsCommutativeMonoid + 0# *-isSemigroup : IsSemigroup * distrib : * DistributesOver + zero : Zero 0# * open IsCommutativeMonoid +-isCommutativeMonoid public using () renaming ( comm to +-comm ; isMonoid to +-isMonoid ; isCommutativeSemigroup to +-isCommutativeSemigroup ) zeroˡ : LeftZero 0# * zeroˡ = proj₁ zero zeroʳ : RightZero 0# * zeroʳ = proj₂ zero isNearSemiring : IsNearSemiring + * 0# isNearSemiring = record { +-isMonoid = +-isMonoid ; *-isSemigroup = *-isSemigroup ; distribʳ = proj₂ distrib ; zeroˡ = zeroˡ } open IsNearSemiring isNearSemiring public hiding (+-isMonoid; zeroˡ) record IsCommutativeSemiringWithoutOne (+ * : Op₂ A) (0# : A) : Set (a ⊔ ℓ) where field isSemiringWithoutOne : IsSemiringWithoutOne + * 0# *-comm : Commutative * open IsSemiringWithoutOne isSemiringWithoutOne public ------------------------------------------------------------------------ -- Structures with 2 binary operations & 2 elements ------------------------------------------------------------------------ record IsSemiringWithoutAnnihilatingZero (+ * : Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ) where field -- Note that these structures do have an additive unit, but this -- unit does not necessarily annihilate multiplication. +-isCommutativeMonoid : IsCommutativeMonoid + 0# *-isMonoid : IsMonoid * 1# distrib : * DistributesOver + distribˡ : * DistributesOverˡ + distribˡ = proj₁ distrib distribʳ : * DistributesOverʳ + distribʳ = proj₂ distrib open IsCommutativeMonoid +-isCommutativeMonoid public renaming ( assoc to +-assoc ; ∙-cong to +-cong ; ∙-congˡ to +-congˡ ; ∙-congʳ to +-congʳ ; identity to +-identity ; identityˡ to +-identityˡ ; identityʳ to +-identityʳ ; comm to +-comm ; isMagma to +-isMagma ; isSemigroup to +-isSemigroup ; isMonoid to +-isMonoid ; isCommutativeSemigroup to +-isCommutativeSemigroup ) open IsMonoid *-isMonoid public using () renaming ( assoc to *-assoc ; ∙-cong to *-cong ; ∙-congˡ to *-congˡ ; ∙-congʳ to *-congʳ ; identity to *-identity ; identityˡ to *-identityˡ ; identityʳ to *-identityʳ ; isMagma to *-isMagma ; isSemigroup to *-isSemigroup ) record IsSemiring (+ * : Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ) where field isSemiringWithoutAnnihilatingZero : IsSemiringWithoutAnnihilatingZero + * 0# 1# zero : Zero 0# * open IsSemiringWithoutAnnihilatingZero isSemiringWithoutAnnihilatingZero public isSemiringWithoutOne : IsSemiringWithoutOne + * 0# isSemiringWithoutOne = record { +-isCommutativeMonoid = +-isCommutativeMonoid ; *-isSemigroup = *-isSemigroup ; distrib = distrib ; zero = zero } open IsSemiringWithoutOne isSemiringWithoutOne public using ( isNearSemiring ; zeroˡ ; zeroʳ ) record IsCommutativeSemiring (+ * : Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ) where field isSemiring : IsSemiring + * 0# 1# *-comm : Commutative * open IsSemiring isSemiring public isCommutativeSemiringWithoutOne : IsCommutativeSemiringWithoutOne + * 0# isCommutativeSemiringWithoutOne = record { isSemiringWithoutOne = isSemiringWithoutOne ; *-comm = *-comm } *-isCommutativeSemigroup : IsCommutativeSemigroup * *-isCommutativeSemigroup = record { isSemigroup = *-isSemigroup ; comm = *-comm } *-isCommutativeMonoid : IsCommutativeMonoid * 1# *-isCommutativeMonoid = record { isMonoid = *-isMonoid ; comm = *-comm } ------------------------------------------------------------------------ -- Structures with 2 binary operations, 1 unary operation & 2 elements ------------------------------------------------------------------------ record IsRing (+ * : Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ) where field +-isAbelianGroup : IsAbelianGroup + 0# -_ *-isMonoid : IsMonoid * 1# distrib : * DistributesOver + zero : Zero 0# * open IsAbelianGroup +-isAbelianGroup public renaming ( assoc to +-assoc ; ∙-cong to +-cong ; ∙-congˡ to +-congˡ ; ∙-congʳ to +-congʳ ; identity to +-identity ; identityˡ to +-identityˡ ; identityʳ to +-identityʳ ; inverse to -‿inverse ; inverseˡ to -‿inverseˡ ; inverseʳ to -‿inverseʳ ; ⁻¹-cong to -‿cong ; comm to +-comm ; isMagma to +-isMagma ; isSemigroup to +-isSemigroup ; isMonoid to +-isMonoid ; isCommutativeMonoid to +-isCommutativeMonoid ; isCommutativeSemigroup to +-isCommutativeSemigroup ; isGroup to +-isGroup ) open IsMonoid *-isMonoid public using () renaming ( assoc to *-assoc ; ∙-cong to *-cong ; ∙-congˡ to *-congˡ ; ∙-congʳ to *-congʳ ; identity to *-identity ; identityˡ to *-identityˡ ; identityʳ to *-identityʳ ; isMagma to *-isMagma ; isSemigroup to *-isSemigroup ) zeroˡ : LeftZero 0# * zeroˡ = proj₁ zero zeroʳ : RightZero 0# * zeroʳ = proj₂ zero isSemiringWithoutAnnihilatingZero : IsSemiringWithoutAnnihilatingZero + * 0# 1# isSemiringWithoutAnnihilatingZero = record { +-isCommutativeMonoid = +-isCommutativeMonoid ; *-isMonoid = *-isMonoid ; distrib = distrib } isSemiring : IsSemiring + * 0# 1# isSemiring = record { isSemiringWithoutAnnihilatingZero = isSemiringWithoutAnnihilatingZero ; zero = zero } open IsSemiring isSemiring public using (distribˡ; distribʳ; isNearSemiring; isSemiringWithoutOne) record IsCommutativeRing (+ * : Op₂ A) (- : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ) where field isRing : IsRing + * - 0# 1# *-comm : Commutative * open IsRing isRing public *-isCommutativeMonoid : IsCommutativeMonoid * 1# *-isCommutativeMonoid = record { isMonoid = *-isMonoid ; comm = *-comm } isCommutativeSemiring : IsCommutativeSemiring + * 0# 1# isCommutativeSemiring = record { isSemiring = isSemiring ; *-comm = *-comm } open IsCommutativeSemiring isCommutativeSemiring public using ( isCommutativeSemiringWithoutOne ) record IsBooleanAlgebra (∨ ∧ : Op₂ A) (¬ : Op₁ A) (⊤ ⊥ : A) : Set (a ⊔ ℓ) where field isDistributiveLattice : IsDistributiveLattice ∨ ∧ ∨-complementʳ : RightInverse ⊤ ¬ ∨ ∧-complementʳ : RightInverse ⊥ ¬ ∧ ¬-cong : Congruent₁ ¬ open IsDistributiveLattice isDistributiveLattice public
{ "alphanum_fraction": 0.5615206612, "avg_line_length": 28.3771106942, "ext": "agda", "hexsha": "11341ab0bffb1cc5431e8933d5ddfc3cb330550e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Algebra/Structures.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Algebra/Structures.agda", "max_line_length": 80, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Algebra/Structures.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 4863, "size": 15125 }
------------------------------------------------------------------------ -- A variant of weak bisimilarity that can be used to relate the -- number of steps in two computations ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} open import Prelude hiding (_+_; _*_) module Delay-monad.Quantitative-weak-bisimilarity {a} {A : Type a} where open import Equality.Propositional open import Logical-equivalence using (_⇔_) open import Prelude.Size open import Conat equality-with-J as Conat using (Conat; zero; suc; force; ⌜_⌝; _+_; _*_; [_]_≤_; step-≤; step-∼≤; _∎≤; step-∼; _∎∼) open import Function-universe equality-with-J as F hiding (id; _∘_) open import Delay-monad open import Delay-monad.Bisimilarity as B using (now; later; laterˡ; laterʳ; force) ------------------------------------------------------------------------ -- The relation mutual -- Quantitative weak bisimilarity. [ ∞ ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ y -- is a variant of x B.≈ y for which the number of later -- constructors in x is bounded by nˡ plus 1 + mˡ times the number -- of later constructors in y, and the number of later constructors -- in y is bounded by nʳ plus 1 + mʳ times the number of later -- constructors in x (see ≈⇔≈×steps≤steps² below). infix 4 [_∣_∣_∣_∣_]_≈_ [_∣_∣_∣_∣_]_≈′_ data [_∣_∣_∣_∣_]_≈_ (i : Size) (mˡ mʳ : Conat ∞) : Conat ∞ → Conat ∞ → Delay A ∞ → Delay A ∞ → Type a where now : ∀ {x nˡ nʳ} → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] now x ≈ now x later : ∀ {x y nˡ nʳ} → [ i ∣ mˡ ∣ mʳ ∣ nˡ + mˡ ∣ nʳ + mʳ ] x .force ≈′ y .force → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] later x ≈ later y laterˡ : ∀ {x y nˡ nʳ} → [ i ∣ mˡ ∣ mʳ ∣ nˡ .force ∣ nʳ ] x .force ≈ y → [ i ∣ mˡ ∣ mʳ ∣ suc nˡ ∣ nʳ ] later x ≈ y laterʳ : ∀ {x y nˡ nʳ} → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ .force ] x ≈ y .force → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ suc nʳ ] x ≈ later y record [_∣_∣_∣_∣_]_≈′_ (i : Size) (mˡ mʳ nˡ nʳ : Conat ∞) (x y : Delay A ∞) : Type a where coinductive field force : {j : Size< i} → [ j ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ y open [_∣_∣_∣_∣_]_≈′_ public -- Specialised variants of [_∣_∣_∣_∣_]_≈_ and [_∣_∣_∣_∣_]_≈′_. infix 4 [_∣_∣_]_≈_ [_∣_∣_]_≈′_ [_∣_∣_]_≈_ : Size → Conat ∞ → Conat ∞ → Delay A ∞ → Delay A ∞ → Type a [ i ∣ mˡ ∣ mʳ ] x ≈ y = [ i ∣ mˡ ∣ mʳ ∣ zero ∣ zero ] x ≈ y [_∣_∣_]_≈′_ : Size → Conat ∞ → Conat ∞ → Delay A ∞ → Delay A ∞ → Type a [ i ∣ mˡ ∣ mʳ ] x ≈′ y = [ i ∣ mˡ ∣ mʳ ∣ zero ∣ zero ] x ≈′ y -- Quantitative expansion. infix 4 [_∣_∣_]_≳_ [_∣_∣_]_≳′_ [_∣_]_≳_ [_∣_]_≳′_ [_∣_∣_]_≳_ : Size → Conat ∞ → Conat ∞ → Delay A ∞ → Delay A ∞ → Type a [ i ∣ m ∣ n ] x ≳ y = [ i ∣ m ∣ zero ∣ n ∣ zero ] x ≈ y [_∣_∣_]_≳′_ : Size → Conat ∞ → Conat ∞ → Delay A ∞ → Delay A ∞ → Type a [ i ∣ m ∣ n ] x ≳′ y = [ i ∣ m ∣ zero ∣ n ∣ zero ] x ≈′ y [_∣_]_≳_ : Size → Conat ∞ → Delay A ∞ → Delay A ∞ → Type a [ i ∣ m ] x ≳ y = [ i ∣ m ∣ zero ] x ≳ y [_∣_]_≳′_ : Size → Conat ∞ → Delay A ∞ → Delay A ∞ → Type a [ i ∣ m ] x ≳′ y = [ i ∣ m ∣ zero ] x ≳′ y -- The converse of quantitative expansion. infix 4 [_∣_∣_]_≲_ [_∣_∣_]_≲′_ [_∣_]_≲_ [_∣_]_≲′_ [_∣_∣_]_≲_ : Size → Conat ∞ → Conat ∞ → Delay A ∞ → Delay A ∞ → Type a [ i ∣ m ∣ n ] x ≲ y = [ i ∣ m ∣ n ] y ≳ x [_∣_∣_]_≲′_ : Size → Conat ∞ → Conat ∞ → Delay A ∞ → Delay A ∞ → Type a [ i ∣ m ∣ n ] x ≲′ y = [ i ∣ m ∣ n ] y ≳′ x [_∣_]_≲_ : Size → Conat ∞ → Delay A ∞ → Delay A ∞ → Type a [ i ∣ m ] x ≲ y = [ i ∣ m ] y ≳ x [_∣_]_≲′_ : Size → Conat ∞ → Delay A ∞ → Delay A ∞ → Type a [ i ∣ m ] x ≲′ y = [ i ∣ m ] y ≳′ x ------------------------------------------------------------------------ -- Conversions -- Weakening. weaken : ∀ {i mˡ mˡ′ mʳ mʳ′ nˡ nˡ′ nʳ nʳ′ x y} → [ ∞ ] mˡ ≤ mˡ′ → [ ∞ ] mʳ ≤ mʳ′ → [ ∞ ] nˡ ≤ nˡ′ → [ ∞ ] nʳ ≤ nʳ′ → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ y → [ i ∣ mˡ′ ∣ mʳ′ ∣ nˡ′ ∣ nʳ′ ] x ≈ y weaken pˡ pʳ = λ where qˡ qʳ now → now (suc qˡ) qʳ (laterˡ r) → laterˡ (weaken pˡ pʳ (qˡ .force) qʳ r) qˡ (suc qʳ) (laterʳ r) → laterʳ (weaken pˡ pʳ qˡ (qʳ .force) r) qˡ qʳ (later r) → later λ { .force → weaken pˡ pʳ (qˡ Conat.+-mono pˡ) (qʳ Conat.+-mono pʳ) (r .force) } weakenˡʳ : ∀ {i mˡ mʳ nˡ nˡ′ nʳ nʳ′ x y} → [ ∞ ] nˡ ≤ nˡ′ → [ ∞ ] nʳ ≤ nʳ′ → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ y → [ i ∣ mˡ ∣ mʳ ∣ nˡ′ ∣ nʳ′ ] x ≈ y weakenˡʳ = weaken (_ ∎≤) (_ ∎≤) weakenˡ : ∀ {i mˡ mʳ nˡ nˡ′ nʳ x y} → [ ∞ ] nˡ ≤ nˡ′ → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ y → [ i ∣ mˡ ∣ mʳ ∣ nˡ′ ∣ nʳ ] x ≈ y weakenˡ p = weakenˡʳ p (_ ∎≤) weakenʳ : ∀ {i mˡ mʳ nˡ nʳ nʳ′ x y} → [ ∞ ] nʳ ≤ nʳ′ → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ y → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ′ ] x ≈ y weakenʳ p = weakenˡʳ (_ ∎≤) p -- Strong bisimilarity is contained in quantitative weak bisimilarity. ∼→≈ : ∀ {i mˡ mʳ nˡ nʳ x y} → B.[ i ] x ∼ y → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ y ∼→≈ now = now ∼→≈ (later p) = later λ { .force → ∼→≈ (p .force) } -- Quantitative expansion is contained in expansion. ≳→≳ : ∀ {i m n x y} → [ i ∣ m ∣ n ] x ≳ y → B.[ i ] x ≳ y ≳→≳ now = now ≳→≳ (later p) = later λ { .force → ≳→≳ (p .force) } ≳→≳ (laterˡ p) = laterˡ (≳→≳ p) -- Quantitative weak bisimilarity is contained in weak bisimilarity. ≈→≈ : ∀ {i mˡ mʳ nˡ nʳ x y} → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ y → B.[ i ] x ≈ y ≈→≈ now = now ≈→≈ (later p) = later λ { .force → ≈→≈ (p .force) } ≈→≈ (laterˡ p) = laterˡ (≈→≈ p) ≈→≈ (laterʳ p) = laterʳ (≈→≈ p) -- In some cases expansion is contained in quantitative expansion. ≳→≳-steps : ∀ {m x y i} → B.[ i ] x ≳ y → [ i ∣ m ∣ steps x ] x ≳ y ≳→≳-steps now = now ≳→≳-steps (laterˡ p) = laterˡ (≳→≳-steps p) ≳→≳-steps {m} (later {x = x} p) = later λ { .force → weakenˡ lemma (≳→≳-steps (p .force)) } where lemma = steps (x .force) ≤⟨ Conat.≤suc ⟩ steps (later x) ≤⟨ Conat.m≤m+n ⟩ steps (later x) + m ∎≤ -- In some cases weak bisimilarity is contained in quantitative weak -- bisimilarity. ≈→≈-steps : ∀ {mˡ mʳ x y i} → B.[ i ] x ≈ y → [ i ∣ mˡ ∣ mʳ ∣ steps x ∣ steps y ] x ≈ y ≈→≈-steps now = now ≈→≈-steps (laterˡ p) = laterˡ (≈→≈-steps p) ≈→≈-steps (laterʳ p) = laterʳ (≈→≈-steps p) ≈→≈-steps {mˡ} {mʳ} (later {x = x} {y = y} p) = later λ { .force → weakenˡʳ x-lemma y-lemma (≈→≈-steps (p .force)) } where x-lemma = steps (x .force) ≤⟨ Conat.≤suc ⟩ steps (later x) ≤⟨ Conat.m≤m+n ⟩ steps (later x) + mˡ ∎≤ y-lemma = steps (y .force) ≤⟨ Conat.≤suc ⟩ steps (later y) ≤⟨ Conat.m≤m+n ⟩ steps (later y) + mʳ ∎≤ -- In some cases quantitative weak bisimilarity is contained in strong -- bisimilarity. never≈→∼ : ∀ {i mˡ mʳ nˡ nʳ x} → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] never ≈ x → B.[ i ] never ∼ x never≈→∼ (later p) = later λ { .force → never≈→∼ (p .force) } never≈→∼ (laterˡ p) = never≈→∼ p never≈→∼ (laterʳ p) = later λ { .force → never≈→∼ p } ≈never→∼ : ∀ {i mˡ mʳ nˡ nʳ x} → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ never → B.[ i ] x ∼ never ≈never→∼ (later p) = later λ { .force → ≈never→∼ (p .force) } ≈never→∼ (laterˡ p) = later λ { .force → ≈never→∼ p } ≈never→∼ (laterʳ p) = ≈never→∼ p ≈→∼ : ∀ {i x y} → [ i ∣ zero ∣ zero ] x ≈ y → B.[ i ] x ∼ y ≈→∼ now = now ≈→∼ (later p) = later λ { .force → ≈→∼ (p .force) } ------------------------------------------------------------------------ -- Reflexivity, symmetry/antisymmetry, transitivity -- Quantitative weak bisimilarity is reflexive. reflexive-≈ : ∀ {i mˡ mʳ nˡ nʳ} x → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ x reflexive-≈ (now _) = now reflexive-≈ (later x) = later λ { .force → reflexive-≈ (x .force) } -- Quantitative weak bisimilarity is symmetric (in a certain sense). symmetric-≈ : ∀ {i mˡ mʳ nˡ nʳ x y} → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ y → [ i ∣ mʳ ∣ mˡ ∣ nʳ ∣ nˡ ] y ≈ x symmetric-≈ now = now symmetric-≈ (later p) = later λ { .force → symmetric-≈ (p .force) } symmetric-≈ (laterˡ p) = laterʳ (symmetric-≈ p) symmetric-≈ (laterʳ p) = laterˡ (symmetric-≈ p) -- Four variants of transitivity. transitive-≳∼ : ∀ {i m n x y z} → [ i ∣ m ∣ n ] x ≳ y → B.[ i ] y ∼ z → [ i ∣ m ∣ n ] x ≳ z transitive-≳∼ = λ where now now → now (laterˡ p) q → laterˡ (transitive-≳∼ p q) (later p) (later q) → later λ { .force → transitive-≳∼ (p .force) (q .force) } transitive-∼≲ : ∀ {i m n x y z} → B.[ i ] x ∼ y → [ i ∣ m ∣ n ] y ≲ z → [ i ∣ m ∣ n ] x ≲ z transitive-∼≲ p q = transitive-≳∼ q (B.symmetric p) transitive-≈∼ : ∀ {i mˡ mʳ nˡ nʳ x y z} → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ y → y B.∼ z → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ z transitive-≈∼ = λ where now now → now (later p) (later q) → later λ { .force → transitive-≈∼ (p .force) (q .force) } (laterˡ p) q → laterˡ (transitive-≈∼ p q) (laterʳ p) (later q) → laterʳ (transitive-≈∼ p (q .force)) transitive-∼≈ : ∀ {i mˡ mʳ nˡ nʳ x y z} → x B.∼ y → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] y ≈ z → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ z transitive-∼≈ = λ where now now → now (later p) (later q) → later λ { .force → transitive-∼≈ (p .force) (q .force) } (later p) (laterˡ q) → laterˡ (transitive-∼≈ (p .force) q) p (laterʳ q) → laterʳ (transitive-∼≈ p q) -- Equational reasoning combinators. infix -1 _∎ˢ infixr -2 step-∼≈ˢ step-≳∼ˢ step-≈∼ˢ _≳⟨⟩ˢ_ step-≡≈ˢ _∼⟨⟩ˢ_ _∎ˢ : ∀ {i mˡ mʳ nˡ nʳ} x → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ x _∎ˢ = reflexive-≈ step-∼≈ˢ : ∀ {i mˡ mʳ nˡ nʳ} x {y z} → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] y ≈ z → x B.∼ y → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ z step-∼≈ˢ _ y≈z x∼y = transitive-∼≈ x∼y y≈z syntax step-∼≈ˢ x y≈z x∼y = x ∼⟨ x∼y ⟩ˢ y≈z step-≳∼ˢ : ∀ {i m n} x {y z} → B.[ i ] y ∼ z → [ i ∣ m ∣ n ] x ≳ y → [ i ∣ m ∣ n ] x ≳ z step-≳∼ˢ _ y∼z x≳y = transitive-≳∼ x≳y y∼z syntax step-≳∼ˢ x y∼z x≳y = x ≳⟨ x≳y ⟩ˢ y∼z step-≈∼ˢ : ∀ {i mˡ mʳ nˡ nʳ} x {y z} → y B.∼ z → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ y → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ z step-≈∼ˢ _ y∼z x≈y = transitive-≈∼ x≈y y∼z syntax step-≈∼ˢ x y∼z x≈y = x ≈⟨ x≈y ⟩ˢ y∼z _≳⟨⟩ˢ_ : ∀ {i mˡ mʳ nˡ nʳ} x {y} → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] drop-later x ≈ y → [ i ∣ mˡ ∣ mʳ ∣ ⌜ 1 ⌝ + nˡ ∣ nʳ ] x ≈ y now _ ≳⟨⟩ˢ p = weakenˡ Conat.≤suc p later _ ≳⟨⟩ˢ p = laterˡ p step-≡≈ˢ : ∀ {i mˡ mʳ nˡ nʳ} x {y z} → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] y ≈ z → x ≡ y → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ z step-≡≈ˢ _ y≈z refl = y≈z syntax step-≡≈ˢ x y≈z x≡y = x ≡⟨ x≡y ⟩ˢ y≈z _∼⟨⟩ˢ_ : ∀ {i mˡ mʳ nˡ nʳ} x {y} → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ y → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ y _ ∼⟨⟩ˢ x≈y = x≈y ------------------------------------------------------------------------ -- Some results related to the steps function -- If y is a quantitative expansion of x, then it contains at least as -- many later constructors as x. steps-mono : ∀ {i m n x y} → [ i ∣ m ∣ n ] x ≲ y → [ i ] steps x ≤ steps y steps-mono = B.steps-mono ∘ ≳→≳ -- If [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ y holds, then the number of later -- constructors in x is bounded by nˡ plus 1 + mˡ times the number of -- later constructors in y. steps-+-*ʳ : ∀ {mˡ mʳ nˡ nʳ i x y} → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ y → [ i ] steps x ≤ nˡ + (⌜ 1 ⌝ + mˡ) * steps y steps-+-*ʳ {mˡ} {mʳ} {nˡ} {nʳ} = λ where now → zero (later {x = x} {y = y} p) → steps (later x) ∼⟨ suc (λ { .force → _ ∎∼ }) ⟩≤ suc (λ { .force → steps (x .force) }) ≤⟨ suc (λ { .force → steps-+-*ʳ (p .force) }) ⟩ suc (λ { .force → nˡ + mˡ + (⌜ 1 ⌝ + mˡ) * steps (y .force) }) ∼⟨ suc (λ { .force → Conat.symmetric-∼ (Conat.+-assoc nˡ) }) ⟩≤ ⌜ 1 ⌝ + nˡ + (mˡ + (⌜ 1 ⌝ + mˡ) * steps (y .force)) ∼⟨ Conat.suc+∼+suc ⟩≤ nˡ + ((⌜ 1 ⌝ + mˡ) + (⌜ 1 ⌝ + mˡ) * steps (y .force)) ∼⟨ (nˡ ∎∼) Conat.+-cong Conat.symmetric-∼ Conat.*suc∼+* ⟩≤ nˡ + (⌜ 1 ⌝ + mˡ) * steps (later y) ∎≤ (laterˡ {x = x} {y = y} {nˡ = nˡ} p) → steps (later x) ∼⟨ suc (λ { .force → _ ∎∼ }) ⟩≤ ⌜ 1 ⌝ + steps (x .force) ≤⟨ (_ Conat.∎≤) Conat.+-mono steps-+-*ʳ p ⟩ ⌜ 1 ⌝ + (nˡ .force + (⌜ 1 ⌝ + mˡ) * steps y) ∼⟨ suc (λ { .force → _ ∎∼ }) ⟩≤ suc nˡ + (⌜ 1 ⌝ + mˡ) * steps y ∎≤ (laterʳ {x = x} {y = y} {nʳ = nʳ} p) → steps x ≤⟨ steps-+-*ʳ p ⟩ nˡ + (⌜ 1 ⌝ + mˡ) * steps (y .force) ≤⟨ (nˡ ∎≤) Conat.+-mono Conat.m≤n+m ⟩ nˡ + ((⌜ 1 ⌝ + mˡ) + (⌜ 1 ⌝ + mˡ) * steps (y .force)) ∼⟨ (nˡ ∎∼) Conat.+-cong Conat.symmetric-∼ Conat.*suc∼+* ⟩≤ nˡ + (⌜ 1 ⌝ + mˡ) * steps (later y) ∎≤ -- If [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ y holds, then the number of later -- constructors in y is bounded by nʳ plus 1 + mʳ times the number of -- later constructors in x. steps-+-*ˡ : ∀ {mˡ mʳ nˡ nʳ i x y} → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ y → [ i ] steps y ≤ nʳ + (⌜ 1 ⌝ + mʳ) * steps x steps-+-*ˡ = steps-+-*ʳ ∘ symmetric-≈ -- [ ∞ ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ y holds iff x and y are weakly -- bisimilar and the number of later constructors in x and y are -- related in a certain way. ≈⇔≈×steps≤steps² : ∀ {mˡ mʳ nˡ nʳ x y} → [ ∞ ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ y ⇔ x B.≈ y × [ ∞ ] steps x ≤ nˡ + (⌜ 1 ⌝ + mˡ) * steps y × [ ∞ ] steps y ≤ nʳ + (⌜ 1 ⌝ + mʳ) * steps x ≈⇔≈×steps≤steps² {mˡ} {mʳ} {x = x} {y} = record { to = λ p → ≈→≈ p , steps-+-*ʳ p , steps-+-*ˡ p ; from = λ { (p , q , r) → from p q r } } where from-lemma : ∀ {m n} {x y : Delay′ A ∞} {i} {j : Size< i} → [ i ] steps (later x) ≤ n + (⌜ 1 ⌝ + m) * steps (later y) → [ j ] steps (x .force) ≤ n + m + (⌜ 1 ⌝ + m) * steps (y .force) from-lemma {m} {n} {x} {y} hyp = Conat.cancel-suc-≤ lemma .force where lemma = ⌜ 1 ⌝ + steps (x .force) ∼⟨ suc (λ { .force → _ ∎∼ }) ⟩≤ steps (later x) ≤⟨ hyp ⟩ n + (⌜ 1 ⌝ + m) * steps (later y) ∼⟨ (n ∎∼) Conat.+-cong Conat.*suc∼+* ⟩≤ n + ((⌜ 1 ⌝ + m) + (⌜ 1 ⌝ + m) * steps (y .force)) ∼⟨ Conat.symmetric-∼ Conat.suc+∼+suc ⟩≤ ⌜ 1 ⌝ + n + (m + (⌜ 1 ⌝ + m) * steps (y .force)) ∼⟨ suc (λ { .force → _ ∎∼ }) ⟩≤ ⌜ 1 ⌝ + (n + (m + (⌜ 1 ⌝ + m) * steps (y .force))) ∼⟨ suc (λ { .force → Conat.+-assoc n }) ⟩≤ ⌜ 1 ⌝ + (n + m + (⌜ 1 ⌝ + m) * steps (y .force)) ∎≤ from : ∀ {nˡ nʳ i x y} → B.[ i ] x ≈ y → [ ∞ ] steps x ≤ nˡ + (⌜ 1 ⌝ + mˡ) * steps y → [ ∞ ] steps y ≤ nʳ + (⌜ 1 ⌝ + mʳ) * steps x → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ y from now _ _ = now from (later p) q r = later λ { .force → from (p .force) (from-lemma q) (from-lemma r) } from (laterˡ {y = later _} p) q r = later λ { .force → from (B.laterʳ⁻¹ p) (from-lemma q) (from-lemma r) } from (laterʳ {x = later _} p) q r = later λ { .force → from (B.laterˡ⁻¹ p) (from-lemma q) (from-lemma r) } from {nˡ = zero} (laterˡ {y = now _} p) () from {nˡ = suc _} (laterˡ {y = now _} p) (suc q) _ = laterˡ (from p (q .force) zero) from {nʳ = zero} (laterʳ {x = now _} p) _ () from {nʳ = suc _} (laterʳ {x = now _} p) _ (suc r) = laterʳ (from p zero (r .force)) -- [ ∞ ∣ m ∣ n ] x ≳ y holds iff x is an expansion of y and the number -- of later constructors in x and y are related in a certain way. ≳⇔≳×steps≤steps : ∀ {m n x y} → [ ∞ ∣ m ∣ n ] x ≳ y ⇔ x B.≳ y × [ ∞ ] steps x ≤ n + (⌜ 1 ⌝ + m) * steps y ≳⇔≳×steps≤steps {m} {n} {x} {y} = [ ∞ ∣ m ∣ n ] x ≳ y ↝⟨ ≈⇔≈×steps≤steps² ⟩ x B.≈ y × [ ∞ ] steps x ≤ n + (⌜ 1 ⌝ + m) * steps y × [ ∞ ] steps y ≤ (⌜ 1 ⌝ + ⌜ 0 ⌝) * steps x ↝⟨ F.id ×-cong F.id ×-cong (_ ∎∼) Conat.≤-cong-∼ lemma ⟩ x B.≈ y × [ ∞ ] steps x ≤ n + (⌜ 1 ⌝ + m) * steps y × [ ∞ ] steps y ≤ steps x ↝⟨ record { to = B.symmetric; from = B.symmetric } ×-cong from-isomorphism ×-comm ⟩ y B.≈ x × [ ∞ ] steps y ≤ steps x × [ ∞ ] steps x ≤ n + (⌜ 1 ⌝ + m) * steps y ↔⟨ ×-assoc ⟩ (y B.≈ x × [ ∞ ] steps y ≤ steps x) × [ ∞ ] steps x ≤ n + (⌜ 1 ⌝ + m) * steps y ↝⟨ inverse B.≲⇔≈×steps≤steps ×-cong F.id ⟩□ x B.≳ y × [ ∞ ] steps x ≤ n + (⌜ 1 ⌝ + m) * steps y □ where lemma = (⌜ 1 ⌝ + ⌜ 0 ⌝) * steps x ∼⟨ suc (λ { .force → _ ∎∼ }) Conat.*-cong (_ ∎∼) ⟩ ⌜ 1 ⌝ * steps x ∼⟨ Conat.*-left-identity _ ⟩ steps x ∎∼ -- [ ∞ ∣ m ∣ n ] x ≳ y holds iff x is weakly bisimilar to y and the -- number of later constructors in x and y are related in a certain -- way. ≳⇔≈×steps≤steps² : ∀ {m n x y} → [ ∞ ∣ m ∣ n ] x ≳ y ⇔ x B.≈ y × [ ∞ ] steps y ≤ steps x × [ ∞ ] steps x ≤ n + (⌜ 1 ⌝ + m) * steps y ≳⇔≈×steps≤steps² {m} {n} {x} {y} = [ ∞ ∣ m ∣ n ] x ≳ y ↝⟨ ≳⇔≳×steps≤steps ⟩ x B.≳ y × [ ∞ ] steps x ≤ n + (⌜ 1 ⌝ + m) * steps y ↝⟨ B.≲⇔≈×steps≤steps ×-cong F.id ⟩ (y B.≈ x × [ ∞ ] steps y ≤ steps x) × [ ∞ ] steps x ≤ n + (⌜ 1 ⌝ + m) * steps y ↔⟨ inverse ×-assoc ⟩ y B.≈ x × [ ∞ ] steps y ≤ steps x × [ ∞ ] steps x ≤ n + (⌜ 1 ⌝ + m) * steps y ↝⟨ record { to = B.symmetric; from = B.symmetric } ×-cong F.id ⟩□ x B.≈ y × [ ∞ ] steps y ≤ steps x × [ ∞ ] steps x ≤ n + (⌜ 1 ⌝ + m) * steps y □ -- The left-to-right direction of ≳⇔≳×steps≤steps can be made -- size-preserving. ≳→≳×steps≤steps : ∀ {i m n x y} → [ i ∣ m ∣ n ] x ≳ y → B.[ i ] x ≳ y × [ i ] steps x ≤ n + (⌜ 1 ⌝ + m) * steps y ≳→≳×steps≤steps x≳y = ≳→≳ x≳y , steps-+-*ʳ x≳y -- The right-to-left direction of ≳⇔≳×steps≤steps can be made -- size-preserving iff A is uninhabited. ≳×steps≤steps→≳⇔uninhabited : (∀ {i m n x y} → B.[ i ] x ≳ y × [ i ] steps x ≤ n + (⌜ 1 ⌝ + m) * steps y → [ i ∣ m ∣ n ] x ≳ y) ⇔ ¬ A ≳×steps≤steps→≳⇔uninhabited = record { to = flip to ; from = ¬ A ↝⟨ (λ ¬A {_ _ _ _ _} → ∼→≈ (B.uninhabited→trivial ¬A _ _)) ⟩ (∀ {i m n x y} → [ i ∣ m ∣ n ] x ≳ y) ↝⟨ (λ hyp {_ _ _ _ _} _ → hyp {_}) ⟩□ (∀ {i m n x y} → B.[ i ] x ≳ y × [ i ] steps x ≤ n + (⌜ 1 ⌝ + m) * steps y → [ i ∣ m ∣ n ] x ≳ y) □ } where strengthen-≳now : ∀ {i m n x y} → [ i ∣ m ∣ n ] x ≳ now y → [ ∞ ∣ m ∣ n ] x ≳ now y strengthen-≳now now = now strengthen-≳now (laterˡ p) = laterˡ (strengthen-≳now p) to : A → ¬ (∀ {i m n x y} → B.[ i ] x ≳ y × [ i ] steps x ≤ n + (⌜ 1 ⌝ + m) * steps y → [ i ∣ m ∣ n ] x ≳ y) to x = (∀ {i m n x y} → B.[ i ] x ≳ y × [ i ] steps x ≤ n + (⌜ 1 ⌝ + m) * steps y → [ i ∣ m ∣ n ] x ≳ y) ↝⟨ (λ hyp → curry hyp) ⟩ (∀ {i m n} → B.[ i ] f m ≳ now x → [ i ] steps (f m) ≤ n + zero → [ i ∣ zero ∣ n ] f m ≳ now x) ↝⟨ (λ hyp {_ _ _} p → hyp (≳now _) (complicate p)) ⟩ (∀ {i m n} → [ i ] ⌜ m ⌝ ≤ n → [ i ∣ zero ∣ n ] f m ≳ now x) ↝⟨ strengthen-≳now ∘_ ⟩ (∀ {i m n} → [ i ] ⌜ m ⌝ ≤ n → [ ∞ ∣ zero ∣ n ] f m ≳ now x) ↝⟨ (λ hyp {_ _ _} p → steps-+-*ʳ (hyp p)) ⟩ (∀ {i m n} → [ i ] ⌜ m ⌝ ≤ n → [ ∞ ] steps (f m) ≤ n + zero) ↝⟨ (λ hyp {_ _ _} p → simplify (hyp p)) ⟩ (∀ {i m n} → [ i ] ⌜ m ⌝ ≤ n → [ ∞ ] ⌜ m ⌝ ≤ n) ↝⟨ (λ hyp → hyp) ⟩ (∀ {i} → [ i ] ⌜ 2 ⌝ ≤ ⌜ 1 ⌝ → [ ∞ ] ⌜ 2 ⌝ ≤ ⌜ 1 ⌝) ↝⟨ Conat.no-strengthening-≤-21 ⟩□ ⊥ □ where f : ∀ {i} → ℕ → Delay A i f zero = now x f (suc n) = later λ { .force → f n } ≳now : ∀ {i} n → B.[ i ] f n ≳ now x ≳now zero = now ≳now (suc n) = laterˡ (≳now n) ∼steps : ∀ {i} n → Conat.[ i ] ⌜ n ⌝ ∼ steps (f n) ∼steps zero = zero ∼steps (suc n) = suc λ { .force → ∼steps n } complicate : ∀ {m n i} → [ i ] ⌜ m ⌝ ≤ n → [ i ] steps (f m) ≤ n + zero complicate {m} {n} p = steps (f m) ∼⟨ Conat.symmetric-∼ (∼steps m) ⟩≤ ⌜ m ⌝ ≤⟨ p ⟩ n ∼⟨ Conat.symmetric-∼ (Conat.+-right-identity _) ⟩≤ n + zero ∎≤ simplify : ∀ {m n i} → [ i ] steps (f m) ≤ n + zero → [ i ] ⌜ m ⌝ ≤ n simplify {m} {n} p = ⌜ m ⌝ ∼⟨ ∼steps m ⟩≤ steps (f m) ≤⟨ p ⟩ n + zero ∼⟨ Conat.+-right-identity _ ⟩≤ n ∎≤ -- The left-to-right direction of ≈⇔≈×steps≤steps² can be made -- size-preserving. ≈→≈×steps≤steps² : ∀ {i mˡ mʳ nˡ nʳ x y} → [ ∞ ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ y → B.[ i ] x ≈ y × [ i ] steps x ≤ nˡ + (⌜ 1 ⌝ + mˡ) * steps y × [ i ] steps y ≤ nʳ + (⌜ 1 ⌝ + mʳ) * steps x ≈→≈×steps≤steps² x≈y = ≈→≈ x≈y , steps-+-*ʳ x≈y , steps-+-*ˡ x≈y -- The right-to-left direction of ≈⇔≈×steps≤steps² can be made -- size-preserving iff A is uninhabited. ≈×steps≤steps²→≈⇔uninhabited : (∀ {i mˡ mʳ nˡ nʳ x y} → B.[ i ] x ≈ y × [ i ] steps x ≤ nˡ + (⌜ 1 ⌝ + mˡ) * steps y × [ i ] steps y ≤ nʳ + (⌜ 1 ⌝ + mʳ) * steps x → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ y) ⇔ ¬ A ≈×steps≤steps²→≈⇔uninhabited = record { to = (∀ {i mˡ mʳ nˡ nʳ x y} → B.[ i ] x ≈ y × [ i ] steps x ≤ nˡ + (⌜ 1 ⌝ + mˡ) * steps y × [ i ] steps y ≤ nʳ + (⌜ 1 ⌝ + mʳ) * steps x → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ y) ↝⟨ (λ { hyp (p , q) → hyp (B.≳→ p , q , lemma (B.steps-mono p)) }) ⟩ (∀ {i m n x y} → B.[ i ] x ≳ y × [ i ] steps x ≤ n + (⌜ 1 ⌝ + m) * steps y → [ i ∣ m ∣ n ] x ≳ y) ↝⟨ _⇔_.to ≳×steps≤steps→≳⇔uninhabited ⟩□ ¬ A □ ; from = ¬ A ↝⟨ (λ ¬A {_ _ _ _ _} → ∼→≈ (B.uninhabited→trivial ¬A _ _)) ⟩ (∀ {i mˡ mʳ nˡ nʳ x y} → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ y) ↝⟨ (λ hyp {_ _ _ _ _ _ _} _ → hyp {_}) ⟩□ (∀ {i mˡ mʳ nˡ nʳ x y} → B.[ i ] x ≈ y × [ i ] steps x ≤ nˡ + (⌜ 1 ⌝ + mˡ) * steps y × [ i ] steps y ≤ nʳ + (⌜ 1 ⌝ + mʳ) * steps x → [ i ∣ mˡ ∣ mʳ ∣ nˡ ∣ nʳ ] x ≈ y) □ } where lemma : ∀ {m n i} → [ i ] m ≤ n → [ i ] m ≤ (⌜ 1 ⌝ + ⌜ 0 ⌝) * n lemma {m} {n} p = m ≤⟨ p ⟩ n ∼⟨ Conat.symmetric-∼ (Conat.*-left-identity _) ⟩≤ ⌜ 1 ⌝ * n ∼⟨ Conat.symmetric-∼ (Conat.+-right-identity _) Conat.*-cong (_ ∎∼) ⟩≤ (⌜ 1 ⌝ + ⌜ 0 ⌝) * n ∎≤
{ "alphanum_fraction": 0.4198212408, "avg_line_length": 35.0061349693, "ext": "agda", "hexsha": "bcf8ff43241d79983f8c1d4dc62013c3272e2112", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/delay-monad", "max_forks_repo_path": "src/Delay-monad/Quantitative-weak-bisimilarity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/delay-monad", "max_issues_repo_path": "src/Delay-monad/Quantitative-weak-bisimilarity.agda", "max_line_length": 138, "max_stars_count": null, "max_stars_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/delay-monad", "max_stars_repo_path": "src/Delay-monad/Quantitative-weak-bisimilarity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 11812, "size": 22824 }
module trichotomy where open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Data.Nat using (ℕ; zero; suc) open import Relations using (_<_; z<s; s<s) -- 三分法 data Trichotomy (m n : ℕ) : Set where m<n : m < n → Trichotomy m n m≡n : m ≡ n → Trichotomy m n n<m : n < m → Trichotomy m n trichotomy : ∀ (m n : ℕ) → Trichotomy m n trichotomy zero zero = m≡n refl trichotomy (suc m) zero = n<m z<s trichotomy zero (suc n) = m<n z<s trichotomy (suc m) (suc n) with trichotomy m n ... | m<n m′<n′ = m<n (s<s m′<n′) ... | m≡n refl = m≡n refl ... | n<m n′<m′ = n<m (s<s n′<m′)
{ "alphanum_fraction": 0.4837451235, "avg_line_length": 34.9545454545, "ext": "agda", "hexsha": "79edb12e37d4b025d00ecee905273c241ad7d8db", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "akiomik/plfa-solutions", "max_forks_repo_path": "part1/relations/trichotomy.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "akiomik/plfa-solutions", "max_issues_repo_path": "part1/relations/trichotomy.agda", "max_line_length": 67, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "akiomik/plfa-solutions", "max_stars_repo_path": "part1/relations/trichotomy.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z", "num_tokens": 260, "size": 769 }
{-# OPTIONS --universe-polymorphism #-} open import Categories.Category module Categories.Object.Terminal {o ℓ e} (C : Category o ℓ e) where open import Level open import Relation.Binary using (IsEquivalence; Setoid) open import Categories.Support.PropositionalEquality open Category C record Terminal : Set (o ⊔ ℓ ⊔ e) where field ⊤ : Obj ! : ∀ {A} → (A ⇒ ⊤) .!-unique : ∀ {A} → (f : A ⇒ ⊤) → ! ≡ f .!-unique₂ : ∀ {A} → (f g : A ⇒ ⊤) → f ≡ g !-unique₂ f g = begin f ↑⟨ !-unique f ⟩ ! ↓⟨ !-unique g ⟩ g ∎ where open HomReasoning .⊤-id : (f : ⊤ ⇒ ⊤) → f ≡ id ⊤-id f = !-unique₂ f id open Heterogeneous C !-unique∼ : ∀ {A A′} → (f : A′ ⇒ ⊤) → (A ≣ A′) → ! {A} ∼ f !-unique∼ f ≣-refl = Heterogeneous.≡⇒∼ (!-unique f) import Categories.Morphisms open Categories.Morphisms C open import Categories.Square open GlueSquares C open Terminal open Heterogeneous C !-is-propertylike : ∀ t₁ t₂ → ⊤ t₁ ≣ ⊤ t₂ → ∀ {A} → ! t₁ {A} ∼ ! t₂ {A} !-is-propertylike t₁ t₂ eq = helper t₁ eq (! t₂) where helper : ∀ t {T} → (⊤ t ≣ T) → ∀ {A} (f : A ⇒ T) → ! t {A} ∼ f helper t ≣-refl f = ≡⇒∼ (!-unique t f) up-to-iso : (t₁ t₂ : Terminal) → ⊤ t₁ ≅ ⊤ t₂ up-to-iso t₁ t₂ = record { f = ! t₂ ; g = ! t₁ ; iso = record { isoˡ = ⊤-id t₁ _; isoʳ = ⊤-id t₂ _ } } up-to-iso-cong₂ : {t₁ t₁′ t₂ t₂′ : Terminal} → ⊤ t₁ ≣ ⊤ t₁′ → ⊤ t₂ ≣ ⊤ t₂′ → up-to-iso t₁ t₂ ∼ⁱ up-to-iso t₁′ t₂′ up-to-iso-cong₂ {t₁} {t₁′} {t₂} {t₂′} eq₁ eq₂ = heqⁱ (up-to-iso t₁ t₂) (up-to-iso t₁′ t₂′) (helper t₂ t₂′ eq₂ eq₁) (helper t₁ t₁′ eq₁ eq₂) where helper : ∀ t t′ → (⊤ t ≣ ⊤ t′) → ∀ {A A′} → A ≣ A′ → ! t {A} ∼ ! t′ {A′} helper t t′ eq-t ≣-refl = !-is-propertylike t t′ eq-t transport-by-iso : (t : Terminal) → ∀ {X} → ⊤ t ≅ X → Terminal transport-by-iso t {X} t≅X = record { ⊤ = X ; ! = f ∘ ! t ; !-unique = λ h → let open HomReasoning in begin f ∘ ! t ↓⟨ ∘-resp-≡ʳ (!-unique t (g ∘ h)) ⟩ f ∘ (g ∘ h) ↓⟨ cancelLeft isoʳ ⟩ h ∎ } where open _≅_ t≅X transport-by-iso-cong₂ : ∀ {t t′} → (⊤ t ≣ ⊤ t′) → ∀ {X} {i : ⊤ t ≅ X} {X′} {i′ : ⊤ t′ ≅ X′} → (i ∼ⁱ i′) → ⊤ (transport-by-iso t i) ≣ ⊤ (transport-by-iso t′ i′) transport-by-iso-cong₂ eq-t eq-i = codomain-≣ⁱ eq-i .up-to-iso-unique : ∀ t t′ → (i : ⊤ t ≅ ⊤ t′) → up-to-iso t t′ ≡ⁱ i up-to-iso-unique t t′ i = record { f-≡ = !-unique t′ _; g-≡ = !-unique t _ } .up-to-iso-invˡ : ∀ {t X} {i : ⊤ t ≅ X} → up-to-iso t (transport-by-iso t i) ≡ⁱ i up-to-iso-invˡ {t} {i = i} = up-to-iso-unique t (transport-by-iso t i) i up-to-iso-invʳ : ∀ {t t′} → ⊤ (transport-by-iso t (up-to-iso t t′)) ≣ ⊤ t′ up-to-iso-invʳ {t} {t′} = ≣-refl
{ "alphanum_fraction": 0.513271028, "avg_line_length": 29.7222222222, "ext": "agda", "hexsha": "b216bcecd64a8186fe8dbb91e82c7d9f079c3307", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Object/Terminal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Object/Terminal.agda", "max_line_length": 160, "max_stars_count": 1, "max_stars_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "p-pavel/categories", "max_stars_repo_path": "Categories/Object/Terminal.agda", "max_stars_repo_stars_event_max_datetime": "2018-12-29T21:51:57.000Z", "max_stars_repo_stars_event_min_datetime": "2018-12-29T21:51:57.000Z", "num_tokens": 1272, "size": 2675 }
------------------------------------------------------------------------ -- Concrete syntax used by the mixfix operator parser ------------------------------------------------------------------------ module RecursiveDescent.Hybrid.Mixfix.Expr where open import Data.Nat hiding (_≟_) open import Data.Vec open import Data.List using (List) open import Data.Product open import Data.Maybe open import Data.String using (String) open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import RecursiveDescent.Hybrid.Mixfix.Fixity -- Name parts. NamePart : Set NamePart = String -- Operators. arity is the internal arity of the operator, i.e. the -- number of arguments taken between the first and last name parts. data Operator (fix : Fixity) (arity : ℕ) : Set where operator : (nameParts : Vec NamePart (1 + arity)) -> Operator fix arity -- Predicate filtering out operators of the given fixity and -- associativity. hasFixity : forall fix -> ∃₂ Operator -> Maybe (∃ (Operator fix)) hasFixity fix (fix' , op) with fix ≟ fix' hasFixity fix (.fix , op) | yes refl = just op hasFixity fix (fix' , op) | _ = nothing -- Precedence graphs are represented by their unfoldings as forests -- (one tree for every node in the graph). This does not take into -- account the sharing of the precedence graphs, but this program is -- not aimed at efficiency. mutual PrecedenceGraph : Set PrecedenceGraph = List PrecedenceTree data PrecedenceTree : Set where precedence : (ops : (fix : Fixity) -> List (∃ (Operator fix))) (successors : PrecedenceGraph) -> PrecedenceTree -- Concrete syntax. TODO: Ensure that expressions are precedence -- correct by parameterising the expression type on a precedence graph -- and indexing on precedences. mutual infixl 4 _⟨_⟩_ _∙_ infix 4 _⟨_⟫ ⟪_⟩_ data Expr : Set where _⟨_⟩_ : forall {assoc} (l : Expr) (op : Internal (infx assoc)) (r : Expr) -> Expr _⟨_⟫ : (l : Expr) (op : Internal postfx) -> Expr ⟪_⟩_ : (op : Internal prefx) (r : Expr) -> Expr ⟪_⟫ : (op : Internal closed) -> Expr -- Application of an operator to all its internal arguments. data Internal (fix : Fixity) : Set where _∙_ : forall {arity} (op : Operator fix arity) (args : Vec Expr arity) -> Internal fix
{ "alphanum_fraction": 0.6242299795, "avg_line_length": 32.4666666667, "ext": "agda", "hexsha": "49968d53a12221cea844cff0e1fb1d6c6cd1eb93", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "misc/RecursiveDescent/Hybrid/Mixfix/Expr.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z", "max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "misc/RecursiveDescent/Hybrid/Mixfix/Expr.agda", "max_line_length": 72, "max_stars_count": 7, "max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yurrriq/parser-combinators", "max_stars_repo_path": "misc/RecursiveDescent/Hybrid/Mixfix/Expr.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z", "num_tokens": 616, "size": 2435 }
{-# OPTIONS --type-in-type #-} open import Data.Empty open import Data.Unit open import Data.Bool open import Data.Product hiding ( curry ; uncurry ) open import Data.Nat open import Data.String open import Relation.Binary.PropositionalEquality using ( refl ; _≢_ ; _≡_ ) open import Function module ClosedTheory where noteq = _≢_ ---------------------------------------------------------------------- data Desc (I : Set) : Set₁ where End : (i : I) → Desc I Rec : (i : I) (D : Desc I) → Desc I Arg : (A : Set) (B : A → Desc I) → Desc I ISet : Set → Set₁ ISet I = I → Set El : {I : Set} (D : Desc I) → ISet I → ISet I El (End j) X i = j ≡ i El (Rec j D) X i = X j × El D X i El (Arg A B) X i = Σ A (λ a → El (B a) X i) ---------------------------------------------------------------------- UncurriedEl : {I : Set} (D : Desc I) (X : ISet I) → Set UncurriedEl D X = ∀{i} → El D X i → X i CurriedEl : {I : Set} (D : Desc I) (X : ISet I) → Set CurriedEl (End i) X = X i CurriedEl (Rec i D) X = (x : X i) → CurriedEl D X CurriedEl (Arg A B) X = (a : A) → CurriedEl (B a) X CurriedEl' : {I : Set} (D : Desc I) (X : ISet I) (i : I) → Set CurriedEl' (End j) X i = j ≡ i → X i CurriedEl' (Rec j D) X i = (x : X j) → CurriedEl' D X i CurriedEl' (Arg A B) X i = (a : A) → CurriedEl' (B a) X i curryEl : {I : Set} (D : Desc I) (X : ISet I) → UncurriedEl D X → CurriedEl D X curryEl (End i) X cn = cn refl curryEl (Rec i D) X cn = λ x → curryEl D X (λ xs → cn (x , xs)) curryEl (Arg A B) X cn = λ a → curryEl (B a) X (λ xs → cn (a , xs)) uncurryEl : {I : Set} (D : Desc I) (X : ISet I) → CurriedEl D X → UncurriedEl D X uncurryEl (End i) X cn refl = cn uncurryEl (Rec i D) X cn (x , xs) = uncurryEl D X (cn x) xs uncurryEl (Arg A B) X cn (a , xs) = uncurryEl (B a) X (cn a) xs ---------------------------------------------------------------------- data μ {I : Set} (D : Desc I) (i : I) : Set where init : El D (μ D) i → μ D i Inj : {I : Set} (D : Desc I) → Set Inj D = CurriedEl D (μ D) inj : {I : Set} (D : Desc I) → Inj D inj D = curryEl D (μ D) init ---------------------------------------------------------------------- data VecT : Set where nilT consT : VecT VecC : (A : Set) → VecT → Desc ℕ VecC A nilT = End zero VecC A consT = Arg ℕ (λ n → Arg A λ _ → Rec n (End (suc n))) VecD : (A : Set) → Desc ℕ VecD A = Arg VecT (VecC A) Vec : (A : Set) → ℕ → Set Vec A = μ (VecD A) InjConsT : Set → ℕ → Set InjConsT A m = El (VecC A consT) (Vec A) m → Vec A m InjConsT' : Set → ℕ → Set InjConsT' A m = Σ ℕ (λ n → A × Vec A n × suc n ≡ m) → Vec A m test-InjConsT : (A : Set) (n : ℕ) → InjConsT A n ≡ InjConsT' A n test-InjConsT A n = refl nil : (A : Set) → Vec A zero nil A = init (nilT , refl) cons : (A : Set) (n : ℕ) (x : A) (xs : Vec A n) → Vec A (suc n) cons A n x xs = init (consT , n , x , xs , refl) nil2 : (A : Set) → Vec A zero nil2 A = inj (VecD A) nilT cons2 : (A : Set) (n : ℕ) (x : A) (xs : Vec A n) → Vec A (suc n) cons2 A = inj (VecD A) consT bit : Vec Bool (suc zero) bit = cons Bool zero true (nil Bool) bit2 : Vec Bool (suc zero) bit2 = init (consT , zero , true , init (nilT , refl) , refl) ---------------------------------------------------------------------- data TreeT : Set where leaf₁T leaf₂T branchT : TreeT TreeC : (A B : Set) → TreeT → Desc (ℕ × ℕ) TreeC A B leaf₁T = Arg A λ _ → End (suc zero , zero) TreeC A B leaf₂T = Arg B λ _ → End (zero , suc zero) TreeC A B branchT = Arg ℕ λ m → Arg ℕ λ n → Arg ℕ λ x → Arg ℕ λ y → Rec (m , n) $ Rec (x , y) $ End (m + x , n + y) TreeD : (A B : Set) → Desc (ℕ × ℕ) TreeD A B = Arg TreeT (TreeC A B) Tree : (A B : Set) (m n : ℕ) → Set Tree A B m n = μ (TreeD A B) (m , n) leaf₁ : (A B : Set) → A → Tree A B (suc zero) zero leaf₁ A B a = init (leaf₁T , a , refl) leaf₁2 : (A B : Set) → A → Tree A B (suc zero) zero leaf₁2 A B = inj (TreeD A B) leaf₁T ----------------------------------------------------------------------
{ "alphanum_fraction": 0.4950992712, "avg_line_length": 29.4740740741, "ext": "agda", "hexsha": "cd6991fc1c56cec434310ae712871e2cd745dfe9", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:31:22.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-02T08:56:15.000Z", "max_forks_repo_head_hexsha": "832383d7adf37aa2364213fb0aeb67e9f61a248f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/generic-elim", "max_forks_repo_path": "slides/ClosedTheory.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "832383d7adf37aa2364213fb0aeb67e9f61a248f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/generic-elim", "max_issues_repo_path": "slides/ClosedTheory.agda", "max_line_length": 76, "max_stars_count": 11, "max_stars_repo_head_hexsha": "832383d7adf37aa2364213fb0aeb67e9f61a248f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/generic-elim", "max_stars_repo_path": "slides/ClosedTheory.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-09T08:46:42.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-02T14:05:20.000Z", "num_tokens": 1511, "size": 3979 }
module VaryingClauseArity where -- see also thread https://lists.chalmers.se/pipermail/agda-dev/2015-January/000041.html open import Common.IO open import Common.Unit open import Common.Nat Sum : Nat → Set Sum 0 = Nat Sum (suc n) = Nat → Sum n sum : (acc : Nat) (n : Nat) → Sum n sum acc 0 = acc sum acc (suc n) 0 = sum acc n sum acc (suc n) m = sum (m + acc) n -- expected: -- 10 -- 20 -- 33 main : IO Unit main = printNat (sum 10 0) ,, putStr "\n" ,, printNat (sum 20 1 0) ,, putStr "\n" ,, printNat (sum 30 1 3)
{ "alphanum_fraction": 0.6187845304, "avg_line_length": 18.724137931, "ext": "agda", "hexsha": "009d6b4dc46f522149063631357749d6e88e2b7e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Compiler/simple/VaryingClauseArity.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Compiler/simple/VaryingClauseArity.agda", "max_line_length": 88, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Compiler/simple/VaryingClauseArity.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 207, "size": 543 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Vectors where all elements satisfy a given property ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Vec.Relation.Unary.All where open import Data.Nat using (zero; suc) open import Data.Fin using (Fin; zero; suc) open import Data.Product as Prod using (_,_) open import Data.Vec as Vec using (Vec; []; _∷_) open import Function using (_∘_) open import Level using (_⊔_) open import Relation.Nullary import Relation.Nullary.Decidable as Dec open import Relation.Unary open import Relation.Binary.PropositionalEquality as P using (subst) ------------------------------------------------------------------------ -- All P xs means that all elements in xs satisfy P. infixr 5 _∷_ data All {a p} {A : Set a} (P : A → Set p) : ∀ {k} → Vec A k → Set (p ⊔ a) where [] : All P [] _∷_ : ∀ {k x} {xs : Vec A k} (px : P x) (pxs : All P xs) → All P (x ∷ xs) ------------------------------------------------------------------------ -- Operations on All head : ∀ {a p} {A : Set a} {P : A → Set p} {k x} {xs : Vec A k} → All P (x ∷ xs) → P x head (px ∷ pxs) = px tail : ∀ {a p} {A : Set a} {P : A → Set p} {k x} {xs : Vec A k} → All P (x ∷ xs) → All P xs tail (px ∷ pxs) = pxs lookup : ∀ {a p} {A : Set a} {P : A → Set p} {k} {xs : Vec A k} → (i : Fin k) → All P xs → P (Vec.lookup xs i) lookup () [] lookup zero (px ∷ pxs) = px lookup (suc i) (px ∷ pxs) = lookup i pxs tabulate : ∀ {a p} {A : Set a} {P : A → Set p} {k xs} → (∀ i → P (Vec.lookup xs i)) → All P {k} xs tabulate {xs = []} pxs = [] tabulate {xs = _ ∷ _} pxs = pxs zero ∷ tabulate (pxs ∘ suc) map : ∀ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} {k} → P ⊆ Q → All P {k} ⊆ All Q {k} map g [] = [] map g (px ∷ pxs) = g px ∷ map g pxs zipWith : ∀ {a b c p q r} {A : Set a} {B : Set b} {C : Set c} {_⊕_ : A → B → C} {P : A → Set p} {Q : B → Set q} {R : C → Set r} → (∀ {x y} → P x → Q y → R (x ⊕ y)) → ∀ {k xs ys} → All P {k} xs → All Q {k} ys → All R {k} (Vec.zipWith _⊕_ xs ys) zipWith _⊕_ {xs = []} {[]} [] [] = [] zipWith _⊕_ {xs = x ∷ xs} {y ∷ ys} (px ∷ pxs) (qy ∷ qys) = px ⊕ qy ∷ zipWith _⊕_ pxs qys zip : ∀ {a p q k} {A : Set a} {P : A → Set p} {Q : A → Set q} → All P ∩ All Q ⊆ All (P ∩ Q) {k} zip ([] , []) = [] zip (px ∷ pxs , qx ∷ qxs) = (px , qx) ∷ zip (pxs , qxs) unzip : ∀ {a p q k} {A : Set a} {P : A → Set p} {Q : A → Set q} → All (P ∩ Q) {k} ⊆ All P ∩ All Q unzip [] = [] , [] unzip (pqx ∷ pqxs) = Prod.zip _∷_ _∷_ pqx (unzip pqxs) ------------------------------------------------------------------------ -- Properties of predicates preserved by All module _ {a p} {A : Set a} {P : A → Set p} where all : ∀ {k} → Decidable P → Decidable (All P {k}) all P? [] = yes [] all P? (x ∷ xs) with P? x ... | yes px = Dec.map′ (px ∷_) tail (all P? xs) ... | no ¬px = no (¬px ∘ head) universal : Universal P → ∀ {k} → Universal (All P {k}) universal u [] = [] universal u (x ∷ xs) = u x ∷ universal u xs irrelevant : Irrelevant P → ∀ {k} → Irrelevant (All P {k}) irrelevant irr [] [] = P.refl irrelevant irr (px₁ ∷ pxs₁) (px₂ ∷ pxs₂) = P.cong₂ _∷_ (irr px₁ px₂) (irrelevant irr pxs₁ pxs₂) satisfiable : Satisfiable P → ∀ {k} → Satisfiable (All P {k}) satisfiable (x , p) {zero} = [] , [] satisfiable (x , p) {suc k} = Prod.map (x ∷_) (p ∷_) (satisfiable (x , p))
{ "alphanum_fraction": 0.4517891287, "avg_line_length": 36.2475247525, "ext": "agda", "hexsha": "d37d6c298e2af82b1ab43693528283047a7fb85e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Unary/All.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Unary/All.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Unary/All.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1337, "size": 3661 }
{-# OPTIONS --without-K #-} open import Type using (Type₀; Type₁; Type_) open import Type.Identities open import Function.NP using (Π; _∘_; const) open import Function.Extensionality using (FunExt) open import Data.Zero using (𝟘) open import Data.One using (𝟙; 0₁) open import Data.Two.Base using (𝟚; 0₂; 1₂) open import Data.Product.NP using (Σ; _×_; _,_; fst; snd) open import Data.Sum.NP using (_⊎_; inl; inr) open import Data.Nat.Base using (ℕ; zero; suc) open import Data.Fin using (Fin) open import Relation.Nullary.NP using (Dec) open import Relation.Binary.PropositionalEquality.NP using (_≡_; idp; ap; !_; _∙_; tr) open import HoTT using (ua; UA; module Equivalences) open Equivalences using (_≃_; ≃-!; ≃-refl; _≃-∙_) open import Explore.Core open import Explore.Properties open import Explore.Zero open import Explore.One open import Explore.Two open import Explore.Product open Explore.Product.Operators open import Explore.Sum open import Explore.Explorable open import Explore.Isomorphism open import Explore.GuessingGameFlipping import Explore.Universe.Type import Explore.Universe.FromE module Explore.Universe (X : Type₀) where open Explore.Universe.Type {X} module FromXᵉ = Explore.Universe.FromE X open Adequacy _≡_ module FromKit {Xᵉ : ∀ {ℓ} → Explore ℓ X} (Xⁱ : ∀ {ℓ p} → ExploreInd p (Xᵉ {ℓ})) (let module Xᴱ = FromExploreInd Xⁱ) (Xˢ-ok : ∀{{_ : UA}}{{_ : FunExt}} → Adequate-sum Xᴱ.sum) (Xˡ : ∀ {ℓ} → Lookup {ℓ} Xᵉ) (Xᶠ : ∀ {ℓ} → Focus {ℓ} Xᵉ) (ΣᵉX-ok : ∀{{_ : UA}}{{_ : FunExt}}{ℓ} → Adequate-Σ {ℓ} (Σᵉ Xᵉ)) (ΠᵉX-ok : ∀{{_ : UA}}{{_ : FunExt}}{ℓ} → Adequate-Π {ℓ} (Πᵉ Xᵉ)) (⟦Xᵉ⟧≡ : ∀ {ℓ₀ ℓ₁} ℓᵣ → ⟦Explore⟧ {ℓ₀} {ℓ₁} ℓᵣ _≡_ Xᵉ Xᵉ) (ΠX : (X → U) → U) (ΠX≃ : ∀{{_ : UA}}{{_ : FunExt}} v → El (ΠX v) ≃ Π X (El ∘ v)) (u : U) where private module M where open FromXᵉ Xᵉ public open FromXⁱ Xⁱ public open FromXˡ Xˡ public open FromXᶠ Xᶠ public open FromΠX ΠX public module _ {{_ : FunExt}}{{_ : UA}} where open FromΣᵉX-ok ΣᵉX-ok public open FromΠᵉX-ok ΠᵉX-ok public open From⟦Xᵉ⟧≡ ⟦Xᵉ⟧≡ public open FromΠX≃ ΠX≃ public explore : ∀ {ℓ} → Explore ℓ (El u) explore = M.explore u explore-ind : ∀ {ℓ p} → ExploreInd {ℓ} p explore explore-ind = M.explore-ind u open FromExploreInd explore-ind public hiding (⟦explore⟧) -- TODO list what is exported here lookup : ∀ {ℓ} → Lookup {ℓ} explore lookup = M.lookup u open FromLookup {explore = explore} lookup public focus : ∀ {ℓ} → Focus {ℓ} explore focus = M.focus u Πᵁ : (v : El u → U) → U Πᵁ = M.Πᵁ u _→ᵁ_ : (v : U) → U _→ᵁ_ = M._→ᵁ_ u module _ {{_ : FunExt}}{{_ : UA}} where Σᵉ-ok : ∀ {ℓ} → Adequate-Σ {ℓ} (Σᵉ explore) Σᵉ-ok = M.Σᵉ-ok u Πᵉ-ok : ∀ {ℓ} → Adequate-Π {ℓ} (Πᵉ explore) Πᵉ-ok = M.Πᵉ-ok u ⟦explore⟧≡ : ∀ {ℓ₀ ℓ₁} ℓᵣ → ⟦Explore⟧ {ℓ₀} {ℓ₁} ℓᵣ _≡_ explore explore ⟦explore⟧≡ ℓᵣ = M.⟦explore⟧≡ ℓᵣ u open From⟦Explore⟧ ⟦explore⟧≡ public using ( sum⇒Σᵉ ; product⇒Πᵉ ; ✓all-Πᵉ ; ✓any→Σᵉ ; module FromAdequate-Σᵉ ; module FromAdequate-Πᵉ ) open FromAdequate-Σᵉ Σᵉ-ok public using ( sumStableUnder ; sumStableUnder′ ; same-count→iso ; adequate-sum ; adequate-any ) open FromAdequate-Πᵉ Πᵉ-ok public using ( adequate-product ; adequate-all ; check! ) Dec-Σ : ∀ {p}{P : El u → Type p} → Π (El u) (Dec ∘ P) → Dec (Σ (El u) P) Dec-Σ = FromFocus.Dec-Σ focus Πᵁ-Π : ∀ v → El (Πᵁ v) ≡ Π (El u) (El ∘ v) Πᵁ-Π = M.Πᵁ-Π u →ᵁ-→ : ∀ v → El (_→ᵁ_ v) ≡ (El u → El v) →ᵁ-→ = M.→ᵁ-→ u Πᵁ→Π : ∀ v → El (Πᵁ v) → Π (El u) (El ∘ v) Πᵁ→Π = M.Πᵁ→Π u Π→Πᵁ : ∀ v → Π (El u) (El ∘ v) → El (Πᵁ v) Π→Πᵁ = M.Π→Πᵁ u →ᵁ→→ : ∀ v → El (_→ᵁ_ v) → (El u → El v) →ᵁ→→ = M.→ᵁ→→ u →→→ᵁ : ∀ v → (El u → El v) → El (_→ᵁ_ v) →→→ᵁ = M.→→→ᵁ u guessing-game-flipping = Explore.GuessingGameFlipping.thm (El u) sum sum-ind -- -} -- -} -- -} -- -} -- -}
{ "alphanum_fraction": 0.5693236715, "avg_line_length": 27.417218543, "ext": "agda", "hexsha": "6ed873e16fbd62cae6d42984c66c003df0b4cbb7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "crypto-agda/explore", "max_forks_repo_path": "lib/Explore/Universe.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "crypto-agda/explore", "max_issues_repo_path": "lib/Explore/Universe.agda", "max_line_length": 86, "max_stars_count": 2, "max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "crypto-agda/explore", "max_stars_repo_path": "lib/Explore/Universe.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z", "num_tokens": 1873, "size": 4140 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types open import LibraBFT.Impl.OBM.Logging.Logging import LibraBFT.Impl.Types.Ledger2WaypointConverter as Ledger2WaypointConverter open import LibraBFT.ImplShared.Consensus.Types import LibraBFT.ImplShared.Util.Crypto as Crypto open import Optics.All open import Util.Hash open import Util.Prelude module LibraBFT.Impl.Types.Waypoint where newAny : LedgerInfo → Waypoint newAny ledgerInfo = let converter = Ledger2WaypointConverter.new ledgerInfo in Waypoint∙new (ledgerInfo ^∙ liVersion) (Crypto.hashL2WC converter) newEpochBoundary : LedgerInfo → Either ErrLog Waypoint newEpochBoundary ledgerInfo = if ledgerInfo ^∙ liEndsEpoch then pure (newAny ledgerInfo) else Left fakeErr -- ["newEpochBoundary", "no validator set"] verify : Waypoint → LedgerInfo → Either ErrLog Unit verify self ledgerInfo = do lcheck (self ^∙ wVersion == ledgerInfo ^∙ liVersion) ("Waypoint" ∷ "version mismatch" ∷ []) --show (self^.wVersion), show (ledgerInfo^.liVersion)] let converter = Ledger2WaypointConverter.new ledgerInfo lcheck (self ^∙ wValue == Crypto.hashL2WC converter) ("Waypoint" ∷ "value mismatch" ∷ []) --show (self^.wValue), show (Crypto.hashL2WC converter)] pure unit epochChangeVerificationRequired : Waypoint → Epoch → Bool epochChangeVerificationRequired _self _epoch = true isLedgerInfoStale : Waypoint → LedgerInfo → Bool isLedgerInfoStale self ledgerInfo = ⌊ (ledgerInfo ^∙ liVersion) <?-Version (self ^∙ wVersion) ⌋ verifierVerify : Waypoint → LedgerInfoWithSignatures → Either ErrLog Unit verifierVerify self liws = verify self (liws ^∙ liwsLedgerInfo)
{ "alphanum_fraction": 0.7622820919, "avg_line_length": 41.152173913, "ext": "agda", "hexsha": "c76e5affcf60fed8769a67fdd93916d006348551", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Types/Waypoint.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Types/Waypoint.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Types/Waypoint.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 522, "size": 1893 }
{-# OPTIONS --universe-polymorphism #-} module Categories.DinaturalTransformation where open import Level open import Data.Product open import Categories.Category import Categories.NaturalTransformation private module NT = Categories.NaturalTransformation open import Categories.Functor using (Functor) renaming (_∘_ to _∘F_) open import Categories.Bifunctor using (Bifunctor; module Functor) open import Categories.Product open import Categories.Square record DinaturalTransformation {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F G : Bifunctor (Category.op C) C D) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where private module C = Category C module D = Category D open Functor F renaming (op to Fop) open Functor G renaming (F₀ to G₀; F₁ to G₁; op to Gop) open D hiding (op) field α : (c : C.Obj) → D [ F₀ (c , c) , G₀ (c , c) ] .commute : ∀ {c c′} (f : C [ c , c′ ]) → G₁ (f , C.id) ∘ α c′ ∘ F₁ ( C.id , f ) ≡ G₁ ( C.id , f ) ∘ α c ∘ F₁ ( f , C.id ) op : DinaturalTransformation {C = C.op} {D = D.op} Gop Fop op = record { α = α; commute = λ f → D.Equiv.trans assoc (D.Equiv.trans (D.Equiv.sym (commute f)) (D.Equiv.sym assoc)) } _<∘_ : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {F G H : Bifunctor (Category.op C) C D} → NT.NaturalTransformation G H → DinaturalTransformation {C = C} F G → DinaturalTransformation {C = C} F H _<∘_ {C = C} {D} {F} {G} {H} eta alpha = record { α = λ c → η (c , c) ∘ α c; commute = λ {c} {c′} f → begin H.F₁ (f , C.id) ∘ ((η (c′ , c′) ∘ α c′) ∘ F.F₁ (C.id , f)) ↓⟨ ∘-resp-≡ʳ assoc ⟩ H.F₁ (f , C.id) ∘ (η (c′ , c′) ∘ (α c′ ∘ F.F₁ (C.id , f))) ↑⟨ assoc ⟩ (H.F₁ (f , C.id) ∘ η (c′ , c′)) ∘ (α c′ ∘ F.F₁ (C.id , f)) ↑⟨ ∘-resp-≡ˡ (eta.commute (f , C.id)) ⟩ (η (c , c′) ∘ G.F₁ (f , C.id)) ∘ (α c′ ∘ F.F₁ (C.id , f)) ↓⟨ pullʳ (commute f) ⟩ η (c , c′) ∘ G.F₁ (C.id , f) ∘ (α c ∘ F.F₁ (f , C.id)) ↓⟨ pullˡ (eta.commute (C.id , f)) ⟩ (H.F₁ (C.id , f) ∘ η (c , c)) ∘ (α c ∘ F.F₁ (f , C.id)) ↓⟨ assoc ⟩ H.F₁ (C.id , f) ∘ (η (c , c) ∘ (α c ∘ F.F₁ (f , C.id))) ↑⟨ ∘-resp-≡ʳ assoc ⟩ H.F₁ (C.id , f) ∘ ((η (c , c) ∘ α c) ∘ F.F₁ (f , C.id)) ∎ {- This uses 'associative-unital reasoning, which is now broken. Above uses direct reasoning, which is heavier, but works. JC. begin H.F₁ (f , C.id) ∙ ((η (c′ , c′) ∙ α c′) ∙ F.F₁ (C.id , f)) ↑⟨ refl ⟩ (H.F₁ (f , C.id) ∙ η (c′ , c′)) ∙ (α c′ ∙ F.F₁ (C.id , f)) ↑≡⟨ ∘-resp-≡ˡ (eta.commute (f , C.id)) ⟩ (η (c , c′) ∙ G.F₁ (f , C.id)) ∙ (α c′ ∙ F.F₁ (C.id , f)) ↓≡⟨ pullʳ (commute f) ⟩ η (c , c′) ∙ G.F₁ (C.id , f) ∙ α c ∙ F.F₁ (f , C.id) ↓≡⟨ pullˡ (eta.commute (C.id , f)) ⟩ (H.F₁ (C.id , f) ∙ η (c , c)) ∙ α c ∙ F.F₁ (f , C.id) ↓⟨ refl ⟩ H.F₁ (C.id , f) ∙ (η (c , c) ∙ α c) ∙ F.F₁ (f , C.id) ∎ -} } where module C = Category C module D = Category D open D open D.Equiv module F = Functor F module G = Functor G module H = Functor H module eta = NT.NaturalTransformation eta open eta using (η) open DinaturalTransformation alpha -- open AUReasoning D open HomReasoning open GlueSquares D _∘>_ : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {F G H : Bifunctor (Category.op C) C D} → DinaturalTransformation {C = C} G H → NT.NaturalTransformation F G → DinaturalTransformation {C = C} F H alpha ∘> eta = DinaturalTransformation.op (eta.op <∘ alpha.op) where module eta = NT.NaturalTransformation eta module alpha = DinaturalTransformation alpha _∘ʳ_ : ∀ {o₀ ℓ₀ e₀ o₁ ℓ₁ e₁ o₂ ℓ₂ e₂} → {C : Category o₀ ℓ₀ e₀} {D : Category o₁ ℓ₁ e₁} {E : Category o₂ ℓ₂ e₂} → {F G : Bifunctor (Category.op C) C D} → (η : DinaturalTransformation {C = C} F G) → (K : Functor E C) → DinaturalTransformation {C = E} (F ∘F ((Functor.op K) ⁂ K)) (G ∘F ((Functor.op K) ⁂ K)) _∘ʳ_ {C = C} {D = D} {E} {F} {G} η K = record { α = λ c → DinaturalTransformation.α η (K.F₀ c) ; commute = λ {c} {c′} f → begin G.F₁ (K.F₁ f , K.F₁ E.id) D.∘ η.α (K.F₀ c′) D.∘ F.F₁ (K.F₁ E.id , K.F₁ f) ↓⟨ G.F-resp-≡ (C.Equiv.refl , K.identity) ⟩∘⟨ D.Equiv.refl ⟩∘⟨ F.F-resp-≡ (K.identity , C.Equiv.refl) ⟩ G.F₁ (K.F₁ f , C.id) D.∘ η.α (K.F₀ c′) D.∘ F.F₁ (C.id , K.F₁ f) ↓⟨ DinaturalTransformation.commute η (K.F₁ f) ⟩ G.F₁ (C.id , K.F₁ f) D.∘ η.α (K.F₀ c) D.∘ F.F₁ (K.F₁ f , C.id) ↑⟨ G.F-resp-≡ (K.identity , C.Equiv.refl) ⟩∘⟨ D.Equiv.refl ⟩∘⟨ F.F-resp-≡ (C.Equiv.refl , K.identity) ⟩ G.F₁ (K.F₁ E.id , K.F₁ f) D.∘ η.α (K.F₀ c) D.∘ F.F₁ (K.F₁ f , K.F₁ E.id) ∎ } where module K = Functor K module C = Category C module D = Category D module E = Category E module F = Functor F module G = Functor G module η = DinaturalTransformation η open D.HomReasoning
{ "alphanum_fraction": 0.5217131474, "avg_line_length": 42.905982906, "ext": "agda", "hexsha": "226a5971297b7c8edd60d17d396d3b990280e88d", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/DinaturalTransformation.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/DinaturalTransformation.agda", "max_line_length": 158, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/DinaturalTransformation.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 2136, "size": 5020 }
------------------------------------------------------------------------------ -- Proving that two group theory formalisations are equivalents ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- We prove that group theory axioms based on the signature (G, ·, ε,) -- (see for example [p. 39, 1]), i.e. -- ∀ a b c. abc = a(bc) -- ∀ a. εa = aε = a -- ∀ a. ∃ a'. a'a = aa' = ε -- are equivalents to the axioms based on the signature (G, ·, _⁻¹, ε,) -- (see for example [2,3]), i.e. -- ∀ a b c. abc = a(bc) -- ∀ a. εa = aε = a -- ∀ a. a⁻¹a = aa⁻¹ = ε -- [1] C. C. Chang and H. J. Keisler. Model Theory, volume 73 of Studies -- in Logic and the Foundations of Mathematics. North-Holland, 3rd -- edition, 3rd impression 1992. -- [2] Agda standard library_0.8.1 (see Algebra/Structures.agda) -- [3] Coq implementation -- (http://coq.inria.fr/pylons/contribs/files/GroupTheory/v8.3/GroupTheory.g1.html) module FOT.GroupTheory.FormalisationsSL where open import Data.Product open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------------ -- NB. We only write the proof for the left-inverse property. infixl 10 _·_ -- The symbol is '\cdot'. postulate G : Set -- The universe ε : G -- The identity element. _·_ : G → G → G -- The binary operation. -- Left-inverse property based on the signature (G, ·, ε,). leftInverse₁ : Set leftInverse₁ = ∀ a → Σ G (λ a' → a' · a ≡ ε) -- Left-inverse property based on the signature (G, ·, _⁻¹, ε,). infix 11 _⁻¹ postulate _⁻¹ : G → G -- The inverse function. leftInverse₂ : Set leftInverse₂ = ∀ a → a ⁻¹ · a ≡ ε -- From the left-inverse property based on the signature (G, ·, _⁻¹, ε,) -- to the one based on the signature (G, ·, ε,). leftInverse₂₋₁ : leftInverse₂ → leftInverse₁ leftInverse₂₋₁ h a = (a ⁻¹) , (h a) -- From the left-inverse property based on the signature (G, ·, ε,) to -- the one based on the signature (G, ·, _⁻¹, ε,). -- -- In this case we prove the existence of the inverse function. leftInverse₁₋₂ : leftInverse₁ → Σ (G → G) (λ f → ∀ a → f a · a ≡ ε) leftInverse₁₋₂ h = f , prf where f : G → G -- The inverse function. f a = proj₁ (h a) prf : ∀ a → f a · a ≡ ε prf a = proj₂ (h a)
{ "alphanum_fraction": 0.5536654516, "avg_line_length": 30.1097560976, "ext": "agda", "hexsha": "dc7766198371bc669abd46421c4534dd983e1836", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/GroupTheory/FormalisationsSL.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/GroupTheory/FormalisationsSL.agda", "max_line_length": 87, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/GroupTheory/FormalisationsSL.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 754, "size": 2469 }
-- Record constructors are not allowed in patterns. module RecordConstructorPatternMatching where record R : Set₁ where constructor con field {A} : Set f : A → A {B C} D {E} : Set g : B → C → E id : R → R id (con f D g) = con f D g
{ "alphanum_fraction": 0.5477031802, "avg_line_length": 18.8666666667, "ext": "agda", "hexsha": "7051d8ff0c2ac8eb35844f381710833a88b1e01e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/RecordConstructorPatternMatching.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/RecordConstructorPatternMatching.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/RecordConstructorPatternMatching.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 87, "size": 283 }
{-# OPTIONS --cubical-compatible #-} mutual data D : Set → Set₁ where c : (@0 A : Set) → _ → D _ _ : (@0 A : Set) → A → D A _ = c
{ "alphanum_fraction": 0.4685314685, "avg_line_length": 14.3, "ext": "agda", "hexsha": "759619742864582fb1e48a9c71b94f72eb2219d4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Fail/Issue5434-3.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Fail/Issue5434-3.agda", "max_line_length": 36, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Fail/Issue5434-3.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 55, "size": 143 }
{- Name: Bowornmet (Ben) Hudson -- new source language module. trying stuff out -} open import Preliminaries open import Preorder-withmax module Source2 where data Tp : Set where unit : Tp nat : Tp susp : Tp → Tp _->s_ : Tp → Tp → Tp _×s_ : Tp → Tp → Tp list : Tp → Tp bool : Tp Ctx = List Tp -- de Bruijn indices data _∈_ : Tp → Ctx → Set where i0 : ∀ {Γ τ} → τ ∈ τ :: Γ iS : ∀ {Γ τ τ1} → τ ∈ Γ → τ ∈ τ1 :: Γ data _|-_ : Ctx → Tp → Set where unit : ∀ {Γ} → Γ |- unit var : ∀ {Γ τ} → τ ∈ Γ → Γ |- τ z : ∀ {Γ} → Γ |- nat suc : ∀ {Γ} → (e : Γ |- nat) → Γ |- nat rec : ∀ {Γ τ} → Γ |- nat → Γ |- τ → (nat :: (susp τ :: Γ)) |- τ → Γ |- τ lam : ∀ {Γ τ ρ} → (ρ :: Γ) |- τ → Γ |- (ρ ->s τ) app : ∀ {Γ τ1 τ2} → Γ |- (τ2 ->s τ1) → Γ |- τ2 → Γ |- τ1 prod : ∀ {Γ τ1 τ2} → Γ |- τ1 → Γ |- τ2 → Γ |- (τ1 ×s τ2) delay : ∀ {Γ τ} → Γ |- τ → Γ |- susp τ force : ∀ {Γ τ} → Γ |- susp τ → Γ |- τ split : ∀ {Γ τ τ1 τ2} → Γ |- (τ1 ×s τ2) → (τ1 :: (τ2 :: Γ)) |- τ → Γ |- τ nil : ∀ {Γ τ} → Γ |- list τ _::s_ : ∀ {Γ τ} → Γ |- τ → Γ |- list τ → Γ |- list τ listrec : ∀ {Γ τ τ'} → Γ |- list τ → Γ |- τ' → (τ :: (list τ :: (susp τ' :: Γ))) |- τ' → Γ |- τ' true : ∀ {Γ} → Γ |- bool false : ∀ {Γ} → Γ |- bool module RenSubst where -- renaming = variable for variable substitution --functional view: --avoids induction, --some associativity/unit properties for free module Ren where -- read: you can rename Γ' as Γ rctx : Ctx → Ctx → Set rctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → τ ∈ Γ rename-var : ∀ {Γ Γ' τ} → rctx Γ Γ' → τ ∈ Γ' → τ ∈ Γ rename-var ρ a = ρ a idr : ∀ {Γ} → rctx Γ Γ idr x = x -- weakening with renaming p∙ : ∀ {Γ Γ' τ} → rctx Γ Γ' → rctx (τ :: Γ) Γ' p∙ ρ = λ x → iS (ρ x) p : ∀ {Γ τ} → rctx (τ :: Γ) Γ p = p∙ idr _∙rr_ : ∀ {A B C} → rctx A B → rctx B C → rctx A C ρ1 ∙rr ρ2 = ρ1 o ρ2 -- free stuff rename-var-ident : ∀ {Γ τ} → (x : τ ∈ Γ) → rename-var idr x == x rename-var-ident _ = Refl rename-var-∙ : ∀ {A B C τ} → (r1 : rctx A B) (r2 : rctx B C) (x : τ ∈ C) → rename-var r1 (rename-var r2 x) == rename-var (r1 ∙rr r2) x rename-var-∙ _ _ _ = Refl ∙rr-assoc : ∀ {A B C D} → (r1 : rctx A B) (r2 : rctx B C) (r3 : rctx C D) → _==_ {_} {rctx A D} (r1 ∙rr (r2 ∙rr r3)) ((r1 ∙rr r2) ∙rr r3) ∙rr-assoc r1 r2 r3 = Refl r-extend : ∀ {Γ Γ' τ} → rctx Γ Γ' → rctx (τ :: Γ) (τ :: Γ') r-extend ρ i0 = i0 r-extend ρ (iS x) = iS (ρ x) ren : ∀ {Γ Γ' τ} → Γ' |- τ → rctx Γ Γ' → Γ |- τ ren unit ρ = unit ren (var x) ρ = var (ρ x) ren z ρ = z ren (suc e) ρ = suc (ren e ρ) ren (rec e e₁ e₂) ρ = rec (ren e ρ) (ren e₁ ρ) (ren e₂ (r-extend (r-extend ρ))) ren (lam e) ρ = lam (ren e (r-extend ρ)) ren (app e e₁) ρ = app (ren e ρ) (ren e₁ ρ) ren (prod e1 e2) ρ = prod (ren e1 ρ) (ren e2 ρ) ren (delay e) ρ = delay (ren e ρ) ren (force e) ρ = force (ren e ρ) ren (split e e₁) ρ = split (ren e ρ) (ren e₁ (r-extend (r-extend ρ))) -- list stuff ren nil ρ = nil ren (x ::s xs) ρ = ren x ρ ::s ren xs ρ ren true ρ = true ren false ρ = false ren (listrec e e₁ e₂) ρ = listrec (ren e ρ) (ren e₁ ρ) (ren e₂ (r-extend (r-extend (r-extend ρ)))) extend-ren-comp-lemma : ∀ {Γ Γ' Γ'' τ τ'} → (x : τ ∈ τ' :: Γ'') (ρ1 : rctx Γ Γ') (ρ2 : rctx Γ' Γ'') → Id {_} {_} ((r-extend ρ1 ∙rr r-extend ρ2) x) (r-extend (ρ1 ∙rr ρ2) x) extend-ren-comp-lemma i0 ρ1 ρ2 = Refl extend-ren-comp-lemma (iS x) ρ1 ρ2 = Refl extend-ren-comp : ∀ {Γ Γ' Γ'' τ} → (ρ1 : rctx Γ Γ') → (ρ2 : rctx Γ' Γ'') → Id {_} {rctx (τ :: Γ) (τ :: Γ'')} (r-extend ρ1 ∙rr r-extend ρ2) (r-extend (ρ1 ∙rr ρ2)) extend-ren-comp ρ1 ρ2 = λ=i (λ τ → λ= (λ x → extend-ren-comp-lemma x ρ1 ρ2)) ren-comp : ∀ {Γ Γ' Γ'' τ} → (ρ1 : rctx Γ Γ') → (ρ2 : rctx Γ' Γ'') → (e : Γ'' |- τ) → (ren (ren e ρ2) ρ1) == (ren e (ρ1 ∙rr ρ2)) ren-comp ρ1 ρ2 unit = Refl ren-comp ρ1 ρ2 (var x) = ap var (rename-var-∙ ρ1 ρ2 x) ren-comp ρ1 ρ2 z = Refl ren-comp ρ1 ρ2 (suc e) = ap suc (ren-comp ρ1 ρ2 e) ren-comp ρ1 ρ2 (rec e e₁ e₂) = ap3 rec (ren-comp ρ1 ρ2 e) (ren-comp ρ1 ρ2 e₁) (ap (ren e₂) (ap r-extend (extend-ren-comp ρ1 ρ2) ∘ extend-ren-comp (r-extend ρ1) (r-extend ρ2)) ∘ ren-comp (r-extend (r-extend ρ1)) (r-extend (r-extend ρ2)) e₂) ren-comp ρ1 ρ2 (lam e) = ap lam ((ap (ren e) (extend-ren-comp ρ1 ρ2)) ∘ ren-comp (r-extend ρ1) (r-extend ρ2) e) ren-comp ρ1 ρ2 (app e e₁) = ap2 app (ren-comp ρ1 ρ2 e) (ren-comp ρ1 ρ2 e₁) ren-comp ρ1 ρ2 (prod e e₁) = ap2 prod (ren-comp ρ1 ρ2 e) (ren-comp ρ1 ρ2 e₁) ren-comp ρ1 ρ2 (delay e) = ap delay (ren-comp ρ1 ρ2 e) ren-comp ρ1 ρ2 (force e) = ap force (ren-comp ρ1 ρ2 e) ren-comp ρ1 ρ2 (split e e₁) = ap2 split (ren-comp ρ1 ρ2 e) (ap (ren e₁) (ap r-extend (extend-ren-comp ρ1 ρ2) ∘ extend-ren-comp (r-extend ρ1) (r-extend ρ2)) ∘ ren-comp (r-extend (r-extend ρ1)) (r-extend (r-extend ρ2)) e₁) ren-comp ρ1 ρ2 nil = Refl ren-comp ρ1 ρ2 (e ::s e₁) = ap2 _::s_ (ren-comp ρ1 ρ2 e) (ren-comp ρ1 ρ2 e₁) ren-comp ρ1 ρ2 (listrec e e₁ e₂) = ap3 listrec (ren-comp ρ1 ρ2 e) (ren-comp ρ1 ρ2 e₁) (ap (ren e₂) (ap r-extend (ap r-extend (extend-ren-comp ρ1 ρ2)) ∘ (ap r-extend (extend-ren-comp (r-extend ρ1) (r-extend ρ2)) ∘ extend-ren-comp (r-extend (r-extend ρ1)) (r-extend (r-extend ρ2)))) ∘ ren-comp (r-extend (r-extend (r-extend ρ1))) (r-extend (r-extend (r-extend ρ2))) e₂) ren-comp ρ1 ρ2 true = Refl ren-comp ρ1 ρ2 false = Refl -- weakening a context wkn : ∀ {Γ τ1 τ2} → Γ |- τ2 → (τ1 :: Γ) |- τ2 wkn e = ren e iS open Ren sctx : Ctx → Ctx → Set sctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → Γ |- τ --lem2 (addvar) s-extend : ∀ {Γ Γ' τ} → sctx Γ Γ' → sctx (τ :: Γ) (τ :: Γ') s-extend Θ i0 = var i0 s-extend Θ (iS x) = wkn (Θ x) ids : ∀ {Γ} → sctx Γ Γ ids x = var x -- weakening with substitution q∙ : ∀ {Γ Γ' τ} → sctx Γ Γ' → sctx (τ :: Γ) Γ' q∙ Θ = λ x → wkn (Θ x) lem3' : ∀ {Γ Γ' τ} → sctx Γ Γ' → Γ |- τ → sctx Γ (τ :: Γ') lem3' Θ e i0 = e lem3' Θ e (iS i) = Θ i --lem3 q : ∀ {Γ τ} → Γ |- τ → sctx Γ (τ :: Γ) q e = lem3' ids e -- subst-var svar : ∀ {Γ1 Γ2 τ} → sctx Γ1 Γ2 → τ ∈ Γ2 → Γ1 |- τ svar Θ i = q (Θ i) i0 lem4' : ∀ {Γ Γ' τ1 τ2} → sctx Γ Γ' → Γ |- τ1 → Γ |- τ2 → sctx Γ (τ1 :: (τ2 :: Γ')) lem4' Θ a b = lem3' (lem3' Θ b) a lem4 : ∀ {Γ τ1 τ2} → Γ |- τ1 → Γ |- τ2 → sctx Γ (τ1 :: (τ2 :: Γ)) lem4 e1 e2 = lem4' ids e1 e2 subst : ∀ {Γ Γ' τ} → Γ' |- τ → sctx Γ Γ' → Γ |- τ subst unit Θ = unit subst (var x) Θ = Θ x subst z Θ = z subst (suc e) Θ = suc (subst e Θ) subst (rec e e₁ e₂) Θ = rec (subst e Θ) (subst e₁ Θ) (subst e₂ (s-extend (s-extend Θ))) subst (lam e) Θ = lam (subst e (s-extend Θ)) subst (app e e₁) Θ = app (subst e Θ) (subst e₁ Θ) subst (prod e1 e2) Θ = prod (subst e1 Θ) (subst e2 Θ) subst (delay e) Θ = delay (subst e Θ) subst (force e) Θ = force (subst e Θ) subst (split e e₁) Θ = split (subst e Θ) (subst e₁ (s-extend (s-extend Θ))) -- list stuff subst nil Θ = nil subst (x ::s xs) Θ = subst x Θ ::s subst xs Θ subst true Θ = true subst false Θ = false subst (listrec e e₁ e₂) Θ = listrec (subst e Θ) (subst e₁ Θ) (subst e₂ (s-extend (s-extend (s-extend Θ)))) subst1 : ∀ {Γ τ τ1} → Γ |- τ1 → (τ1 :: Γ) |- τ → Γ |- τ subst1 e e' = subst e' (q e) _rs_ : ∀ {A B C} → rctx A B → sctx B C → sctx A C _rs_ ρ Θ x = ren (subst (var x) Θ) ρ _ss_ : ∀ {A B C} → sctx A B → sctx B C → sctx A C _ss_ Θ1 Θ2 x = subst (subst (var x) Θ2) Θ1 _sr_ : ∀ {A B C} → sctx A B → rctx B C → sctx A C _sr_ Θ ρ x = subst (ren (var x) ρ) Θ --free stuff svar-rs : ∀ {A B C τ} (ρ : rctx A B) (Θ : sctx B C) (x : τ ∈ C) → svar (ρ rs Θ) x == ren (svar Θ x) ρ svar-rs = λ ρ Θ x → Refl svar-ss : ∀ {A B C τ} (Θ1 : sctx A B) (Θ2 : sctx B C) (x : τ ∈ C) → svar (Θ1 ss Θ2) x == subst (svar Θ2 x) Θ1 svar-ss = λ Θ1 Θ2 x → Refl svar-sr : ∀ {A B C τ} (Θ : sctx A B) (ρ : rctx B C) (x : τ ∈ C) → svar Θ (rename-var ρ x) == svar (Θ sr ρ) x svar-sr = λ Θ ρ x → Refl svar-id : ∀ {Γ τ} → (x : τ ∈ Γ) → var x == svar ids x svar-id = λ x → Refl rsr-assoc : ∀ {A B C D} → (ρ1 : rctx A B) (Θ : sctx B C) (ρ2 : rctx C D) → Id {_} {sctx A D} ((ρ1 rs Θ) sr ρ2) (ρ1 rs (Θ sr ρ2)) rsr-assoc = λ ρ1 Θ ρ2 → Refl extend-id-once-lemma : ∀ {Γ τ τ'} → (x : τ ∈ τ' :: Γ) → _==_ {_} {τ' :: Γ |- τ} (ids {τ' :: Γ} {τ} x) (s-extend {Γ} {Γ} {τ'} (ids {Γ}) {τ} x) extend-id-once-lemma i0 = Refl extend-id-once-lemma (iS x) = Refl extend-id-once : ∀ {Γ τ} → Id {_} {sctx (τ :: Γ) (τ :: Γ)} (ids {τ :: Γ}) (s-extend ids) extend-id-once = λ=i (λ τ → λ= (λ x → extend-id-once-lemma x)) extend-id-twice : ∀ {Γ τ1 τ2} → Id {_} {sctx (τ1 :: τ2 :: Γ) (τ1 :: τ2 :: Γ)} (ids {τ1 :: τ2 :: Γ}) (s-extend (s-extend ids)) extend-id-twice = ap s-extend extend-id-once ∘ extend-id-once subst-id : ∀ {Γ τ} (e : Γ |- τ) → e == subst e ids subst-id unit = Refl subst-id (var x) = svar-id x subst-id z = Refl subst-id (suc e) = ap suc (subst-id e) subst-id (rec e e₁ e₂) = ap3 rec (subst-id e) (subst-id e₁) (ap (subst e₂) extend-id-twice ∘ subst-id e₂) subst-id (lam e) = ap lam (ap (subst e) extend-id-once ∘ subst-id e) subst-id (app e e₁) = ap2 app (subst-id e) (subst-id e₁) subst-id (prod e e₁) = ap2 prod (subst-id e) (subst-id e₁) subst-id (delay e) = ap delay (subst-id e) subst-id (force e) = ap force (subst-id e) subst-id (split e e₁) = ap2 split (subst-id e) (ap (subst e₁) extend-id-twice ∘ subst-id e₁) subst-id nil = Refl subst-id (e ::s e₁) = ap2 _::s_ (subst-id e) (subst-id e₁) subst-id true = Refl subst-id false = Refl subst-id (listrec e e₁ e₂) = ap3 listrec (subst-id e) (subst-id e₁) (ap (subst e₂) (ap s-extend (ap s-extend extend-id-once) ∘ extend-id-twice) ∘ subst-id e₂) extend-rs-once-lemma : ∀ {A B C τ τ'} → (x : τ ∈ τ' :: B) (ρ : rctx C A) (Θ : sctx A B) → _==_ {_} {τ' :: C |- τ} (_rs_ {τ' :: C} {τ' :: A} {τ' :: B} (r-extend {C} {A} {τ'} ρ) (s-extend {A} {B} {τ'} Θ) {τ} x) (s-extend {C} {B} {τ'} (_rs_ {C} {A} {B} ρ Θ) {τ} x) extend-rs-once-lemma i0 ρ Θ = Refl extend-rs-once-lemma (iS x) ρ Θ = ! (ren-comp iS ρ (Θ x)) ∘ ren-comp (r-extend ρ) iS (Θ x) extend-rs-once : ∀ {A B C τ} → (ρ : rctx C A) (Θ : sctx A B) → Id {_} {sctx (τ :: C) (τ :: B)} (r-extend ρ rs s-extend Θ) (s-extend (ρ rs Θ)) extend-rs-once ρ Θ = λ=i (λ τ → λ= (λ x → extend-rs-once-lemma x ρ Θ)) extend-rs-twice : ∀ {A B C τ τ'} → (ρ : rctx C A) (Θ : sctx A B) → Id {_} {sctx (τ :: τ' :: C) (τ :: τ' :: B)} ((r-extend (r-extend ρ)) rs (s-extend (s-extend Θ))) ((s-extend (s-extend (ρ rs Θ)))) extend-rs-twice ρ Θ = ap s-extend (extend-rs-once ρ Θ) ∘ extend-rs-once (r-extend ρ) (s-extend Θ) subst-rs : ∀ {A B C τ} → (ρ : rctx C A) (Θ : sctx A B) (e : B |- τ) → ren (subst e Θ) ρ == subst e (ρ rs Θ) subst-rs ρ Θ unit = Refl subst-rs ρ Θ (var x) = svar-rs ρ Θ x subst-rs ρ Θ z = Refl subst-rs ρ Θ (suc e) = ap suc (subst-rs ρ Θ e) subst-rs ρ Θ (rec e e₁ e₂) = ap3 rec (subst-rs ρ Θ e) (subst-rs ρ Θ e₁) (ap (subst e₂) (extend-rs-twice ρ Θ) ∘ subst-rs (r-extend (r-extend ρ)) (s-extend (s-extend Θ)) e₂) subst-rs ρ Θ (lam e) = ap lam (ap (subst e) (extend-rs-once ρ Θ) ∘ subst-rs (r-extend ρ) (s-extend Θ) e) subst-rs ρ Θ (app e e₁) = ap2 app (subst-rs ρ Θ e) (subst-rs ρ Θ e₁) subst-rs ρ Θ (prod e e₁) = ap2 prod (subst-rs ρ Θ e) (subst-rs ρ Θ e₁) subst-rs ρ Θ (delay e) = ap delay (subst-rs ρ Θ e) subst-rs ρ Θ (force e) = ap force (subst-rs ρ Θ e) subst-rs ρ Θ (split e e₁) = ap2 split (subst-rs ρ Θ e) (ap (subst e₁) (extend-rs-twice ρ Θ) ∘ subst-rs (r-extend (r-extend ρ)) (s-extend (s-extend Θ)) e₁) subst-rs ρ Θ nil = Refl subst-rs ρ Θ (e ::s e₁) = ap2 _::s_ (subst-rs ρ Θ e) (subst-rs ρ Θ e₁) subst-rs ρ Θ true = Refl subst-rs ρ Θ false = Refl subst-rs ρ Θ (listrec e e₁ e₂) = ap3 listrec (subst-rs ρ Θ e) (subst-rs ρ Θ e₁) (ap (subst e₂) (ap s-extend (ap s-extend (extend-rs-once ρ Θ)) ∘ extend-rs-twice (r-extend ρ) (s-extend Θ)) ∘ subst-rs (r-extend (r-extend (r-extend ρ))) (s-extend (s-extend (s-extend Θ))) e₂) rs-comp : ∀ {Γ Γ' Γ'' τ} → (ρ : rctx Γ Γ') → (Θ : sctx Γ' Γ'') → (e : Γ'' |- τ) → (ren (subst e Θ) ρ) == subst e (ρ rs Θ) rs-comp ρ Θ unit = Refl rs-comp ρ Θ (var x) = svar-rs ρ Θ x rs-comp ρ Θ z = Refl rs-comp ρ Θ (suc e) = ap suc (rs-comp ρ Θ e) rs-comp ρ Θ (rec e e₁ e₂) = ap3 rec (rs-comp ρ Θ e) (rs-comp ρ Θ e₁) (ap (subst e₂) (extend-rs-twice ρ Θ) ∘ rs-comp (r-extend (r-extend ρ)) (s-extend (s-extend Θ)) e₂) rs-comp ρ Θ (lam e) = ap lam (ap (subst e) (extend-rs-once ρ Θ) ∘ rs-comp (r-extend ρ) (s-extend Θ) e) rs-comp ρ Θ (app e e₁) = ap2 app (rs-comp ρ Θ e) (rs-comp ρ Θ e₁) rs-comp ρ Θ (prod e e₁) = ap2 prod (rs-comp ρ Θ e) (rs-comp ρ Θ e₁) rs-comp ρ Θ (delay e) = ap delay (rs-comp ρ Θ e) rs-comp ρ Θ (force e) = ap force (rs-comp ρ Θ e) rs-comp ρ Θ (split e e₁) = ap2 split (rs-comp ρ Θ e) (ap (subst e₁) (extend-rs-twice ρ Θ) ∘ rs-comp (r-extend (r-extend ρ)) (s-extend (s-extend Θ)) e₁) rs-comp ρ Θ nil = Refl rs-comp ρ Θ (e ::s e₁) = ap2 _::s_ (rs-comp ρ Θ e) (rs-comp ρ Θ e₁) rs-comp ρ Θ (listrec e e₁ e₂) = ap3 listrec (rs-comp ρ Θ e) (rs-comp ρ Θ e₁) (ap (subst e₂) (ap s-extend (ap s-extend (extend-rs-once ρ Θ)) ∘ extend-rs-twice (r-extend ρ) (s-extend Θ)) ∘ rs-comp (r-extend (r-extend (r-extend ρ))) (s-extend (s-extend (s-extend Θ))) e₂) rs-comp ρ Θ true = Refl rs-comp ρ Θ false = Refl extend-sr-once-lemma : ∀ {A B C τ τ'} → (Θ : sctx A B) (ρ : rctx B C) (x : τ ∈ τ' :: C) → _==_ {_} {τ' :: A |- τ} (s-extend (_sr_ Θ ρ) x) (_sr_ (s-extend Θ) (r-extend ρ) x) extend-sr-once-lemma Θ ρ i0 = Refl extend-sr-once-lemma Θ ρ (iS x) = Refl extend-sr-once : ∀ {A B C τ} → (Θ : sctx A B) (ρ : rctx B C) → Id {_} {sctx (τ :: A) (τ :: C)} (s-extend Θ sr r-extend ρ) (s-extend (Θ sr ρ)) extend-sr-once Θ ρ = λ=i (λ τ → λ= (λ x → ! (extend-sr-once-lemma Θ ρ x))) extend-sr-twice : ∀ {A B C τ τ'} → (Θ : sctx A B) (ρ : rctx B C) → Id {_} {sctx (τ' :: τ :: A) (τ' :: τ :: C)} (s-extend (s-extend Θ) sr r-extend (r-extend ρ)) (s-extend (s-extend (Θ sr ρ))) extend-sr-twice Θ ρ = ap s-extend (extend-sr-once Θ ρ) ∘ extend-sr-once (s-extend Θ) (r-extend ρ) sr-comp : ∀ {Γ Γ' Γ'' τ} → (Θ : sctx Γ Γ') → (ρ : rctx Γ' Γ'') → (e : Γ'' |- τ) → (subst (ren e ρ) Θ) == subst e (Θ sr ρ) sr-comp Θ ρ unit = Refl sr-comp Θ ρ (var x) = svar-sr Θ ρ x sr-comp Θ ρ z = Refl sr-comp Θ ρ (suc e) = ap suc (sr-comp Θ ρ e) sr-comp Θ ρ (rec e e₁ e₂) = ap3 rec (sr-comp Θ ρ e) (sr-comp Θ ρ e₁) (ap (subst e₂) (ap s-extend (extend-sr-once Θ ρ) ∘ extend-sr-once (s-extend Θ) (r-extend ρ)) ∘ sr-comp (s-extend (s-extend Θ)) (r-extend (r-extend ρ)) e₂) sr-comp Θ ρ (lam e) = ap lam (ap (subst e) (extend-sr-once Θ ρ) ∘ sr-comp (s-extend Θ) (r-extend ρ) e) sr-comp Θ ρ (app e e₁) = ap2 app (sr-comp Θ ρ e) (sr-comp Θ ρ e₁) sr-comp Θ ρ (prod e e₁) = ap2 prod (sr-comp Θ ρ e) (sr-comp Θ ρ e₁) sr-comp Θ ρ (delay e) = ap delay (sr-comp Θ ρ e) sr-comp Θ ρ (force e) = ap force (sr-comp Θ ρ e) sr-comp Θ ρ (split e e₁) = ap2 split (sr-comp Θ ρ e) (ap (subst e₁) (ap s-extend (extend-sr-once Θ ρ) ∘ extend-sr-once (s-extend Θ) (r-extend ρ)) ∘ sr-comp (s-extend (s-extend Θ)) (r-extend (r-extend ρ)) e₁) sr-comp Θ ρ nil = Refl sr-comp Θ ρ (e ::s e₁) = ap2 _::s_ (sr-comp Θ ρ e) (sr-comp Θ ρ e₁) sr-comp Θ ρ (listrec e e₁ e₂) = ap3 listrec (sr-comp Θ ρ e) (sr-comp Θ ρ e₁) (ap (subst e₂) (ap s-extend (ap s-extend (extend-sr-once Θ ρ)) ∘ extend-sr-twice (s-extend Θ) (r-extend ρ)) ∘ sr-comp (s-extend (s-extend (s-extend Θ))) (r-extend (r-extend (r-extend ρ))) e₂) sr-comp Θ ρ true = Refl sr-comp Θ ρ false = Refl extend-ss-once-lemma : ∀ {A B C τ τ'} → (Θ1 : sctx A B) (Θ2 : sctx B C) (x : τ ∈ τ' :: C) → _==_ {_} {τ' :: A |- τ} (s-extend (_ss_ Θ1 Θ2) x) (_ss_ (s-extend Θ1) (s-extend Θ2) x) extend-ss-once-lemma Θ1 Θ2 i0 = Refl extend-ss-once-lemma Θ1 Θ2 (iS x) = ! (sr-comp (s-extend Θ1) iS (Θ2 x)) ∘ rs-comp iS Θ1 (Θ2 x) extend-ss-once : ∀ {A B C τ} → (Θ1 : sctx A B) (Θ2 : sctx B C) → _==_ {_} {sctx (τ :: A) (τ :: C)} (s-extend (Θ1 ss Θ2)) ((s-extend Θ1) ss (s-extend Θ2)) extend-ss-once Θ1 Θ2 = λ=i (λ τ → λ= (λ x → extend-ss-once-lemma Θ1 Θ2 x)) subst-ss : ∀ {A B C τ} → (Θ1 : sctx A B) (Θ2 : sctx B C) (e : C |- τ) → subst e (Θ1 ss Θ2) == subst (subst e Θ2) Θ1 subst-ss Θ1 Θ2 unit = Refl subst-ss Θ1 Θ2 (var x) = svar-ss Θ1 Θ2 x subst-ss Θ1 Θ2 z = Refl subst-ss Θ1 Θ2 (suc e) = ap suc (subst-ss Θ1 Θ2 e) subst-ss Θ1 Θ2 (rec e e₁ e₂) = ap3 rec (subst-ss Θ1 Θ2 e) (subst-ss Θ1 Θ2 e₁) (subst-ss (s-extend (s-extend Θ1)) (s-extend (s-extend Θ2)) e₂ ∘ ap (subst e₂) (extend-ss-once (s-extend Θ1) (s-extend Θ2) ∘ ap s-extend (extend-ss-once Θ1 Θ2))) subst-ss Θ1 Θ2 (lam e) = ap lam (subst-ss (s-extend Θ1) (s-extend Θ2) e ∘ ap (subst e) (extend-ss-once Θ1 Θ2)) subst-ss Θ1 Θ2 (app e e₁) = ap2 app (subst-ss Θ1 Θ2 e) (subst-ss Θ1 Θ2 e₁) subst-ss Θ1 Θ2 (prod e e₁) = ap2 prod (subst-ss Θ1 Θ2 e) (subst-ss Θ1 Θ2 e₁) subst-ss Θ1 Θ2 (delay e) = ap delay (subst-ss Θ1 Θ2 e) subst-ss Θ1 Θ2 (force e) = ap force (subst-ss Θ1 Θ2 e) subst-ss Θ1 Θ2 (split e e₁) = ap2 split (subst-ss Θ1 Θ2 e) (subst-ss (s-extend (s-extend Θ1)) (s-extend (s-extend Θ2)) e₁ ∘ ap (subst e₁) (extend-ss-once (s-extend Θ1) (s-extend Θ2) ∘ ap s-extend (extend-ss-once Θ1 Θ2))) subst-ss Θ1 Θ2 nil = Refl subst-ss Θ1 Θ2 (e ::s e₁) = ap2 _::s_ (subst-ss Θ1 Θ2 e) (subst-ss Θ1 Θ2 e₁) subst-ss Θ1 Θ2 true = Refl subst-ss Θ1 Θ2 false = Refl subst-ss Θ1 Θ2 (listrec e e₁ e₂) = ap3 listrec (subst-ss Θ1 Θ2 e) (subst-ss Θ1 Θ2 e₁) (subst-ss (s-extend (s-extend (s-extend Θ1))) (s-extend (s-extend (s-extend Θ2))) e₂ ∘ ap (subst e₂) (extend-ss-once (s-extend (s-extend Θ1)) (s-extend (s-extend Θ2)) ∘ ap s-extend (extend-ss-once (s-extend Θ1) (s-extend Θ2) ∘ ap s-extend (extend-ss-once Θ1 Θ2)))) throw : ∀ {Γ Γ' τ} → sctx Γ (τ :: Γ') → sctx Γ Γ' throw Θ x = Θ (iS x) fuse1 : ∀ {Γ Γ' τ τ'} (v : Γ |- τ') (Θ : sctx Γ Γ') (x : τ ∈ Γ') → (q v ss q∙ Θ) x == Θ x fuse1 v Θ x = subst (ren (Θ x) iS) (q v) =⟨ sr-comp (q v) iS (Θ x) ⟩ subst (Θ x) (q v sr iS) =⟨ Refl ⟩ subst (Θ x) ids =⟨ ! (subst-id (Θ x)) ⟩ (Θ x ∎) subst-compose-lemma-lemma : ∀ {Γ Γ' τ τ'} (v : Γ |- τ') (Θ : sctx Γ Γ') (x : τ ∈ τ' :: Γ') → _==_ {_} {Γ |- τ} (_ss_ (q v) (s-extend Θ) x) (lem3' Θ v x) subst-compose-lemma-lemma v Θ i0 = Refl subst-compose-lemma-lemma v Θ (iS x) = subst (wkn (subst (var x) Θ)) (lem3' ids v) =⟨ subst-ss (q v) (q∙ Θ) (var x) ⟩ subst (var x) (q v ss q∙ Θ) =⟨ fuse1 v Θ x ⟩ subst (var x) Θ =⟨ Refl ⟩ Θ x ∎ fuse2 : ∀ {Γ Γ' τ τ1 τ2} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (Θ : sctx Γ Γ') (x : τ ∈ τ2 :: Γ') → (lem4 v1 v2 ss throw (s-extend (s-extend Θ))) x == (lem3' Θ v2) x fuse2 v1 v2 Θ x = subst (ren (s-extend Θ x) iS) (lem4 v1 v2) =⟨ sr-comp (lem4 v1 v2) iS (s-extend Θ x) ⟩ subst (s-extend Θ x) (lem4 v1 v2 sr iS) =⟨ Refl ⟩ subst (s-extend Θ x) (lem3' ids v2) =⟨ subst-compose-lemma-lemma v2 Θ x ⟩ (lem3' Θ v2 x ∎) subst-compose-lemma : ∀ {Γ Γ' τ} (v : Γ |- τ) (Θ : sctx Γ Γ') → _==_ {_} {sctx Γ (τ :: Γ')} ((q v) ss (s-extend Θ)) (lem3' Θ v) subst-compose-lemma v Θ = λ=i (λ τ → λ= (λ x → subst-compose-lemma-lemma v Θ x)) subst-compose : ∀ {Γ Γ' τ τ1} (Θ : sctx Γ Γ') (v : Γ |- τ) (e : (τ :: Γ' |- τ1) ) → subst (subst e (s-extend Θ)) (q v) == subst e (lem3' Θ v) subst-compose Θ v e = ap (subst e) (subst-compose-lemma v Θ) ∘ (! (subst-ss (q v) (s-extend Θ) e)) subst-compose2-lemma-lemma : ∀ {Γ Γ' τ τ1 τ2 τ'} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (e1 : τ1 :: τ2 :: Γ' |- τ) (Θ : sctx Γ Γ') (x : τ' ∈ τ1 :: τ2 :: Γ') → _==_ {_} {_} ((lem4 v1 v2 ss s-extend (s-extend Θ)) x) (lem4' Θ v1 v2 x) subst-compose2-lemma-lemma v1 v2 e1 Θ i0 = Refl subst-compose2-lemma-lemma v1 v2 e1 Θ (iS x) = subst (wkn (s-extend Θ x)) (lem4 v1 v2) =⟨ Refl ⟩ subst (var x) (lem4 v1 v2 ss throw (s-extend (s-extend Θ))) =⟨ fuse2 v1 v2 Θ x ⟩ subst (var x) (lem3' Θ v2) =⟨ Refl ⟩ (lem3' Θ v2 x ∎) subst-compose2-lemma : ∀ {Γ Γ' τ τ1 τ2} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (e1 : τ1 :: τ2 :: Γ' |- τ) (Θ : sctx Γ Γ') → _==_ {_} {sctx Γ (τ1 :: τ2 :: Γ')} (lem4 v1 v2 ss s-extend (s-extend Θ)) (lem4' Θ v1 v2) subst-compose2-lemma v1 v2 e1 Θ = λ=i (λ τ → λ= (λ x → subst-compose2-lemma-lemma v1 v2 e1 Θ x)) subst-compose2 : ∀ {Γ Γ' τ} (Θ : sctx Γ Γ') (n : Γ |- nat) (e1 : Γ' |- τ) (e2 : (nat :: (susp τ :: Γ')) |- τ) → subst (subst e2 (s-extend (s-extend Θ))) (lem4 n (delay (rec n (subst e1 Θ) (subst e2 (s-extend (s-extend Θ)))))) == subst e2 (lem4' Θ n (delay (rec n (subst e1 Θ) (subst e2 (s-extend (s-extend Θ)))))) subst-compose2 Θ n e1 e2 = ap (subst e2) (subst-compose2-lemma n (delay (rec n (subst e1 Θ) (subst e2 (s-extend (s-extend Θ))))) e2 Θ) ∘ ! (subst-ss (lem4 n (delay (rec n (subst e1 Θ) (subst e2 (s-extend (s-extend Θ)))))) (s-extend (s-extend Θ)) e2) subst-compose3 : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ |- τ1) (v2 : Γ |- τ2) → subst (subst e1 (s-extend (s-extend Θ))) (lem4 v1 v2) == subst e1 (lem4' Θ v1 v2) subst-compose3 Θ e1 v1 v2 = ap (subst e1) (subst-compose2-lemma v1 v2 e1 Θ) ∘ ! (subst-ss (lem4 v1 v2) (s-extend (s-extend Θ)) e1) subst-compose4 : ∀ {Γ Γ' τ} (Θ : sctx Γ Γ') (v' : Γ |- nat) (r : Γ |- susp τ) (e2 : (nat :: (susp τ :: Γ')) |- τ) → subst (subst e2 (s-extend (s-extend Θ))) (lem4 v' r) == subst e2 (lem4' Θ v' r) subst-compose4 Θ v' r e2 = ap (subst e2) (subst-compose2-lemma v' r e2 Θ) ∘ ! (subst-ss (lem4 v' r) (s-extend (s-extend Θ)) e2) open RenSubst --closed values of the source language data val : ∀ {τ} → [] |- τ → Set where z-isval : val z suc-isval : (e : [] |- nat) → (val e) → val (suc e) pair-isval : ∀ {τ1 τ2} (e1 : [] |- τ1) → (e2 : [] |- τ2) → val e1 → val e2 → val (prod e1 e2) lam-isval : ∀ {ρ τ} (e : (ρ :: []) |- τ) → val (lam e) unit-isval : val unit delay-isval : ∀ {τ} (e : [] |- τ) → val (delay e) nil-isval : ∀ {τ} → val (nil {_} {τ}) cons-isval : ∀ {τ} (x : [] |- τ) → (xs : [] |- list τ) → val x → val xs → val (x ::s xs) true-isval : val true false-isval : val false data Cost : Set where 0c : Cost 1c : Cost _+c_ : Cost → Cost → Cost data Equals0c : Cost → Set where Eq0-0c : Equals0c 0c Eq0-+c : ∀ {c c'} → Equals0c c → Equals0c c' → Equals0c (c +c c') mutual -- define evals (e : source exp) (v : value) (c : nat) -- analogous to "e evaluates to v in c steps" -- figure 2 from ICFP paper data evals : {τ : Tp} → [] |- τ → [] |- τ → Cost → Set where pair-evals : ∀ {n1 n2} → {τ1 τ2 : Tp} {e1 v1 : [] |- τ1} {e2 v2 : [] |- τ2} → evals e1 v1 n1 → evals e2 v2 n2 → evals (prod e1 e2) (prod v1 v2) (n1 +c n2) lam-evals : ∀ {ρ τ} {e : (ρ :: []) |- τ} → evals (lam e) (lam e) 0c app-evals : ∀ {n0 n1 n} → {τ1 τ2 : Tp} {e0 : [] |- (τ1 ->s τ2)} {e0' : (τ1 :: []) |- τ2} {e1 v1 : [] |- τ1} {v : [] |- τ2} → evals e0 (lam e0') n0 → evals e1 v1 n1 → evals (subst e0' (q v1)) v n → evals (app e0 e1) v ((n0 +c n1) +c n) z-evals : evals z z 0c s-evals : ∀ {n} → {e v : [] |- nat} → evals e v n → evals (suc e) (suc v) n unit-evals : evals unit unit 0c rec-evals : ∀ {n1 n2} → {τ : Tp} {e v : [] |- nat} {e0 v' : [] |- τ} {e1 : (nat :: (susp τ :: [])) |- τ} → evals e v n1 → evals-rec-branch e0 e1 v v' n2 → evals (rec e e0 e1) v' (n1 +c (1c +c n2)) delay-evals : {τ : Tp} {e : [] |- τ} → evals (delay e) (delay e) 0c force-evals : ∀ {n1 n2} → {τ : Tp} {e' v : [] |- τ} {e : [] |- susp τ} → evals e (delay e') n1 → evals e' v n2 → evals (force e) v (n1 +c n2) split-evals : ∀ {n1 n2} → {τ τ1 τ2 : Tp} {e0 : [] |- (τ1 ×s τ2)} {v1 : [] |- τ1} {v2 : [] |- τ2} {e1 : (τ1 :: (τ2 :: [])) |- τ} {v : [] |- τ} → evals e0 (prod v1 v2) n1 → evals (subst e1 (lem4 v1 v2)) v n2 → evals (split e0 e1) v (n1 +c n2) nil-evals : ∀ {τ : Tp} → evals (nil {_} {τ}) (nil {_} {τ}) 0c cons-evals : ∀ {n1 n2} → {τ : Tp} {x v : [] |- τ} {xs vs : [] |- list τ} → evals x v n1 → evals xs vs n2 → evals (x ::s xs) (v ::s vs) (n1 +c n2) true-evals : evals true true 0c false-evals : evals false false 0c -- means evals (rec v e0 e1) v' n -- but helpful to have a separate type for this data evals-rec-branch {τ : Tp} (e0 : [] |- τ) (e1 : (nat :: (susp τ :: [])) |- τ) : (e : [] |- nat) (v : [] |- τ) → Cost → Set where evals-rec-z : ∀ {v n} → evals e0 v n → evals-rec-branch e0 e1 z v n evals-rec-s : ∀ {v v' n} → evals (subst e1 (lem4 v (delay (rec v e0 e1)))) v' n → evals-rec-branch e0 e1 (suc v) v' n evals-val : {τ : Tp} {e : [] |- τ} {v : [] |- τ} {n : Cost} → evals e v n → val v evals-val (pair-evals D D₁) = pair-isval _ _ (evals-val D) (evals-val D₁) evals-val lam-evals = lam-isval _ evals-val (app-evals D D₁ D₂) = evals-val D₂ evals-val z-evals = z-isval evals-val (s-evals D) = suc-isval _ (evals-val D) evals-val unit-evals = unit-isval evals-val (rec-evals x (evals-rec-z D)) = evals-val D evals-val (rec-evals x (evals-rec-s D)) = evals-val D evals-val delay-evals = delay-isval _ evals-val (force-evals D D₁) = evals-val D₁ evals-val (split-evals D D₁) = evals-val D₁ evals-val nil-evals = nil-isval evals-val (cons-evals D D₁) = cons-isval _ _ (evals-val D) (evals-val D₁) evals-val true-evals = true-isval evals-val false-evals = false-isval -- lemma 2 from ICFP paper val-evals-inversion : {τ : Tp} {v v' : [] |- τ} {n : Cost} → val v → evals v v' n → (v == v') × Equals0c n val-evals-inversion z-isval z-evals = Refl , Eq0-0c val-evals-inversion (suc-isval e ve) (s-evals D) = (ap suc (fst IH)) , snd IH where IH = val-evals-inversion ve D val-evals-inversion (pair-isval e1 e2 ve1 ve2) (pair-evals D D₁) = ap2 prod (fst IH1) (fst IH2) , Eq0-+c (snd IH1) (snd IH2) where IH1 = val-evals-inversion ve1 D IH2 = val-evals-inversion ve2 D₁ val-evals-inversion (lam-isval e) lam-evals = Refl , Eq0-0c val-evals-inversion unit-isval unit-evals = Refl , Eq0-0c val-evals-inversion (delay-isval e) delay-evals = Refl , Eq0-0c val-evals-inversion nil-isval nil-evals = Refl , Eq0-0c val-evals-inversion (cons-isval x xs vx vxs) (cons-evals D D₁) = ap2 _::s_ (fst IH1) (fst IH2) , Eq0-+c (snd IH1) (snd IH2) where IH1 = val-evals-inversion vx D IH2 = val-evals-inversion vxs D₁ val-evals-inversion true-isval true-evals = Refl , Eq0-0c val-evals-inversion false-isval false-evals = Refl , Eq0-0c
{ "alphanum_fraction": 0.4639547361, "avg_line_length": 50.25, "ext": "agda", "hexsha": "f5260fc05114d1f7ac14e2ddb97b54adaff216aa", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "benhuds/Agda", "max_forks_repo_path": "complexity-drafts/Source2.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_issues_repo_issues_event_max_datetime": "2020-05-12T00:32:45.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-23T08:39:04.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "benhuds/Agda", "max_issues_repo_path": "complexity-drafts/Source2.agda", "max_line_length": 162, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "benhuds/Agda", "max_stars_repo_path": "complexity-drafts/Source2.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-08T12:27:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-04-26T20:22:22.000Z", "num_tokens": 12835, "size": 30753 }
------------------------------------------------------------------------------ -- All parameters are required in an ATP definition ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module Issue11 where postulate D : Set false true : D data Bool : D → Set where btrue : Bool true bfalse : Bool false OkBit : D → Set OkBit b = Bool b {-# ATP definition OkBit #-} postulate foo : ∀ b → OkBit b → OkBit b {-# ATP prove foo #-} WrongBit : D → Set WrongBit = Bool {-# ATP definition WrongBit #-} postulate bar : ∀ b → WrongBit b → WrongBit b {-# ATP prove bar #-} -- $ apia --check Issue11.agda -- apia: tptp4X found an error in the file /tmp/Issue11/29-bar.tptp
{ "alphanum_fraction": 0.4976247031, "avg_line_length": 24.0571428571, "ext": "agda", "hexsha": "5eb855cf4f285f5d8ac378759b683cb76d19bcb8", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "issues/Issue11.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "issues/Issue11.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "issues/Issue11.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 197, "size": 842 }
------------------------------------------------------------------------ -- Parser monad ------------------------------------------------------------------------ -- This code may have bitrotted. open import Relation.Binary open import Relation.Binary.OrderMorphism import Relation.Binary.PropositionalEquality as PropEq open PropEq using (_≡_) import Relation.Binary.Props.StrictTotalOrder as STOProps open import Data.Product module StructurallyRecursiveDescentParsing.Memoised.Monad -- Input string positions. {Position : Set} {_<P_ : Rel Position} (posOrdered : IsStrictTotalOrder _≡_ _<P_) -- Input strings. (Input : Position → Set) -- In order to be able to store results in a memo table (and avoid -- having to lift the table code to Set1) the result types have to -- come from the following universe: {Result : Set} (⟦_⟧ : Result → Set) -- Memoisation keys. These keys must uniquely identify the -- computation that they are associated with, when paired up with -- the current input string position. {Key : let PosPoset = STOProps.poset (record { carrier = _ ; _≈_ = _; _<_ = _ ; isStrictTotalOrder = posOrdered }) MonoFun = PosPoset ⇒-Poset PosPoset in MonoFun → Result → Set} {_≈_ _<_ : Rel (∃₂ Key)} (keyOrdered : IsStrictTotalOrder _≈_ _<_) -- Furthermore the underlying equality needs to be strong enough. (funsEqual : _≈_ =[ proj₁ ]⇒ _≡_) (resultsEqual : _≈_ =[ (λ rfk → proj₁ (proj₂ rfk)) ]⇒ _≡_) where open _⇒-Poset_ open STOProps (record { carrier = _ ; _≈_ = _; _<_ = _ ; isStrictTotalOrder = posOrdered }) import Data.AVL.IndexedMap as Map renaming (Map to MemoTable) open import Category.Monad open import Category.Monad.State import Data.List as List; open List using (List) open import Function using (_⟨_⟩_; _on_) open import Data.Maybe using (Maybe; nothing; just) open import Data.Unit using (⊤) open import Relation.Binary.Product.StrictLex open import Relation.Binary.Product.Pointwise import Relation.Binary.On as On ------------------------------------------------------------------------ -- Monotone functions MonoFun : Set MonoFun = poset ⇒-Poset poset ------------------------------------------------------------------------ -- Memo table keys and values -- Indices and keys used by the memo table. Index : Set Index = Position × MonoFun × Result data MemoTableKey : Index → Set where key : ∀ {f r} (key : Key f r) pos → MemoTableKey (pos , f , r) -- Input strings of a certain maximum length. record Input≤ (bnd : Position) : Set where field position : Position bounded : position ≤ bnd string : Input position open Input≤ public _isBounded∶_ : ∀ {bnd pos} → Input pos → pos ≤ bnd → Input≤ bnd xs isBounded∶ le = record { position = _; bounded = le; string = xs } -- Memo table values. Value : Index → Set Value (pos , f , r) = List (⟦ r ⟧ × Input≤ (fun f pos)) ------------------------------------------------------------------------ -- Parser monad -- The parser monad is instantiated with the memo table at the end of -- the file in order to reduce the time required to type check it. private module Dummy (MemoTable : Set) (empty : MemoTable) (insert : ∀ {i} → MemoTableKey i → Value i → MemoTable → MemoTable) (lookup : ∀ {i} → MemoTableKey i → MemoTable → Maybe (Value i)) where -- The parser monad is built upon a list monad, for backtracking, and -- two state monads. One of the state monads stores a memo table, and -- is unaffected by backtracking. The other state monad, which /is/ -- affected by backtracking, stores the remaining input string. -- The memo table state monad. module MemoState = RawMonadState (StateMonadState MemoTable) -- The list monad. module List = RawMonadPlus List.monadPlus -- The inner monad (memo table plus list). module IM where Inner : Set → Set Inner R = State MemoTable (List R) InnerMonadPlus : RawMonadPlus Inner InnerMonadPlus = record { monadZero = record { monad = record { return = λ x → return (List.return x) ; _>>=_ = λ m f → List.concat <$> (List.mapM monad f =<< m) } ; ∅ = return List.∅ } ; _∣_ = λ m₁ m₂ → List._∣_ <$> m₁ ⊛ m₂ } where open MemoState InnerMonadState : RawMonadState MemoTable Inner InnerMonadState = record { monad = RawMonadPlus.monad InnerMonadPlus ; get = List.return <$> get ; put = λ s → List.return <$> put s } where open MemoState open RawMonadPlus InnerMonadPlus public open RawMonadState InnerMonadState public using (get; put; modify) -- The complete parser monad. module PM where infixr 5 _∣_ infixl 1 _>>=_ _>>_ infixr 1 _=<<_ -- Parameters: -- • bnd: Upper bound of the length of the input. -- • f: The actual length of the output is bounded by -- f (actual length of the input). -- • A: Result type. data P (bnd : Position) (f : MonoFun) (A : Set) : Set where pm : (im : (inp : Input≤ bnd) → IM.Inner (A × Input≤ (fun f (position inp)))) → P bnd f A private unPM : ∀ {bnd f A} → P bnd f A → (inp : Input≤ bnd) → IM.Inner (A × Input≤ (fun f (position inp))) unPM (pm m) = m -- Memoises the computation, assuming that the key is sufficiently -- unique. memoise : ∀ {bnd f r} → Key f r → P bnd f ⟦ r ⟧ → P bnd f ⟦ r ⟧ memoise {bnd} {f} {r} k (pm p) = pm helper₁ where helper₁ : (inp : Input≤ bnd) → IM.Inner (⟦ r ⟧ × Input≤ (fun f (position inp))) helper₁ xs = let open IM in helper₂ =<< lookup k′ <$> get where i = (position xs , f , r) k′ : MemoTableKey i k′ = key k (position xs) helper₂ : Maybe (Value i) → State MemoTable (Value i) helper₂ (just v) = return v where open MemoState helper₂ nothing = p xs >>= λ v → modify (insert k′ v) >> return v where open MemoState -- Other monadic operations. return : ∀ {bnd A} → A → P bnd id A return a = pm λ xs → IM.return (a , string xs isBounded∶ refl) _>>=_ : ∀ {bnd A B f g} → P bnd f A → (A → P (fun f bnd) g B) → P bnd (g ∘ f) B _>>=_ {f = f} {g} (pm m₁) m₂ = pm λ xs → m₁ xs ⟨ IM._>>=_ ⟩ λ ays → let a = proj₁ ays; ys = proj₂ ays in fix (bounded ys) ⟨ IM._<$>_ ⟩ unPM (m₂ a) (string ys isBounded∶ lemma f (bounded xs) (bounded ys)) where lemma : ∀ f {i j k} → j ≤ k → i ≤ fun f j → i ≤ fun f k lemma f j≤k i≤gj = trans i≤gj (monotone f j≤k) fix : ∀ {A i j} → i ≤ j → A × Input≤ (fun g i) → A × Input≤ (fun g j) fix le (a , xs) = (a , string xs isBounded∶ lemma g le (bounded xs)) _>>_ : ∀ {bnd A B f g} → P bnd f A → P (fun f bnd) g B → P bnd (g ∘ f) B m₁ >> m₂ = m₁ >>= λ _ → m₂ _=<<_ : ∀ {bnd A B f g} → (A → P (fun f bnd) g B) → P bnd f A → P bnd (g ∘ f) B m₂ =<< m₁ = m₁ >>= m₂ ∅ : ∀ {bnd f A} → P bnd f A ∅ = pm (λ _ → IM.∅) _∣_ : ∀ {bnd f A} → P bnd f A → P bnd f A → P bnd f A pm m₁ ∣ pm m₂ = pm λ xs → IM._∣_ (m₁ xs) (m₂ xs) get : ∀ {bnd} → P bnd id (Input≤ bnd) get = pm λ xs → IM.return (xs , string xs isBounded∶ refl) put : ∀ {bnd bnd′} → Input≤ bnd′ → P bnd (const bnd′) ⊤ put xs = pm λ _ → IM.return (_ , xs) -- A generalised variant of modify. gmodify : ∀ {bnd A} f → ((inp : Input≤ bnd) → A × Input≤ (fun f (position inp))) → P bnd f A gmodify f g = pm λ xs → IM.return (g xs) modify : ∀ {bnd} f → ((inp : Input≤ bnd) → Input≤ (fun f (position inp))) → P bnd f ⊤ modify f g = gmodify f (λ xs → (_ , g xs)) adjustBound : ∀ {bnd f g A} → (∀ p → fun f p ≤ fun g p) → P bnd f A → P bnd g A adjustBound hyp (pm m) = pm λ xs → let le = λ (ys : _) → trans (bounded ys) (hyp (position xs)) in map (λ x → x) (λ ys → string ys isBounded∶ le ys) ⟨ IM._<$>_ ⟩ m xs run : ∀ {A f pos} → Input pos → P pos f A → List (A × Input≤ (fun f pos)) run xs (pm m) = proj₁ (m (xs isBounded∶ refl) empty) ------------------------------------------------------------------------ -- Memo tables -- Shuffles the elements to simplify defining equality and order -- relations for the keys. shuffle : ∃ MemoTableKey → Position × ∃₂ Key shuffle ((pos , f , r) , key k .pos) = (pos , f , r , k) -- Equality and ordering. Eq : Rel (∃ MemoTableKey) Eq = _≡_ ×-Rel _≈_ on shuffle Lt : Rel (∃ MemoTableKey) Lt = ×-Lex _≡_ _<P_ _<_ on shuffle isOrdered : IsStrictTotalOrder Eq Lt isOrdered = On.isStrictTotalOrder shuffle (posOrdered ×-isStrictTotalOrder keyOrdered) indicesEqual′ : Eq =[ proj₁ ]⇒ _≡_ indicesEqual′ {((_ , _ , _) , key _ ._)} {((_ , _ , _) , key _ ._)} (eq₁ , eq₂) = PropEq.cong₂ _,_ eq₁ (PropEq.cong₂ _,_ (funsEqual eq₂) (resultsEqual eq₂)) open Map isOrdered (λ {k₁} {k₂} → indicesEqual′ {k₁} {k₂}) Value -- Instantiation of the Dummy module above. open Dummy MemoTable empty insert lookup public
{ "alphanum_fraction": 0.5452631579, "avg_line_length": 30.7443365696, "ext": "agda", "hexsha": "1506ceea177432c8dcfccf3484c45fdf2157242a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "StructurallyRecursiveDescentParsing/Memoised/Monad.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z", "max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "StructurallyRecursiveDescentParsing/Memoised/Monad.agda", "max_line_length": 72, "max_stars_count": 7, "max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yurrriq/parser-combinators", "max_stars_repo_path": "StructurallyRecursiveDescentParsing/Memoised/Monad.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z", "num_tokens": 2900, "size": 9500 }
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Empty.Base where open import Cubical.Core.Everything data ⊥ : Type₀ where ⊥-elim : ∀ {ℓ} {A : Type ℓ} → ⊥ → A ⊥-elim ()
{ "alphanum_fraction": 0.6214689266, "avg_line_length": 16.0909090909, "ext": "agda", "hexsha": "d5823bd20fcc040544d7697e097275f22c7bf8a6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "limemloh/cubical", "max_forks_repo_path": "Cubical/Data/Empty/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "limemloh/cubical", "max_issues_repo_path": "Cubical/Data/Empty/Base.agda", "max_line_length": 36, "max_stars_count": null, "max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "limemloh/cubical", "max_stars_repo_path": "Cubical/Data/Empty/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 64, "size": 177 }
module Luau.Addr.ToString where open import Agda.Builtin.String using (String; primStringAppend) open import Luau.Addr using (Addr) open import Agda.Builtin.Int using (Int; primShowInteger; pos) addrToString : Addr → String addrToString a = primStringAppend "a" (primShowInteger (pos a))
{ "alphanum_fraction": 0.7896551724, "avg_line_length": 32.2222222222, "ext": "agda", "hexsha": "2fc383355c263ede33aaea9002d08bcab97be395", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "XanderYZZ/luau", "max_forks_repo_path": "prototyping/Luau/Addr/ToString.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "XanderYZZ/luau", "max_issues_repo_path": "prototyping/Luau/Addr/ToString.agda", "max_line_length": 64, "max_stars_count": 1, "max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "TheGreatSageEqualToHeaven/luau", "max_stars_repo_path": "prototyping/Luau/Addr/ToString.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z", "num_tokens": 73, "size": 290 }
open import Agda.Primitive module ManySortedAlgebra where -- a many sorted signature record Signature {l : Level} : Set (lsuc l) where field sort : Set l -- sorts op : Set l -- operations arg : op → Set l op-sort : op → sort -- the sort of the operation arg-sort : ∀ {f} → arg f → sort -- the sorts of arguments open Signature -- we allow general contexts in which there are arbitrarily many variables, -- which makes things easier record Context {l : Level} (Σ : Signature {l}) : Set (lsuc l) where field var : Set l var-sort : var → sort Σ open Context -- terms over a signature in a context of a given sort data Term {l : Level} {Σ : Signature {l}} (Γ : Context Σ) : sort Σ → Set l where tm-var : ∀ (x : var Γ) → Term Γ (var-sort Γ x) tm-op : ∀ (f : op Σ) → (∀ (i : arg Σ f) → Term Γ (arg-sort Σ i)) → Term Γ (op-sort Σ f) substitution : ∀ {l : Level} {Σ : Signature {l}} (Γ Δ : Context Σ) → Set l substitution Γ Δ = ∀ (x : var Γ) → Term Δ (var-sort Γ x) -- the action of a substitution on a term _·_ : ∀ {l : Level} {Σ : Signature {l}} {Γ Δ : Context Σ} → substitution Γ Δ → ∀ {A} → Term Γ A → Term Δ A σ · (tm-var x) = σ x σ · (tm-op f x) = tm-op f (λ i → σ · x i) infixr 6 _·_ -- composition of substitutions _○_ : ∀ {l : Level} {Σ : Signature {l}} {Γ Δ Θ : Context Σ} → substitution Δ Θ → substitution Γ Δ → substitution Γ Θ (σ ○ τ) x = σ · τ x infixl 7 _○_ -- an equational theory is a family of equations over a given sort record EquationalTheory {l : Level} (Σ : Signature {l}) : Set (lsuc l) where field eq : Set l eq-ctx : ∀ (ε : eq) → Context {l} Σ eq-sort : ∀ (ε : eq) → sort Σ eq-lhs : ∀ (ε : eq) → Term (eq-ctx ε) (eq-sort ε) eq-rhs : ∀ (ε : eq) → Term (eq-ctx ε) (eq-sort ε) open EquationalTheory infix 4 _≡_ -- the remaining judgement form is equality data _≡_ {l : Level} {Σ : Signature {l}} {T : EquationalTheory {l} Σ } : {Γ : Context Σ} → {S : sort Σ} → Term Γ S → Term Γ S → Set (lsuc l) where -- general rules eq-refl : ∀ {Γ} {S : sort Σ} {t : Term Γ S} → t ≡ t eq-symm : ∀ {Γ} {S : sort Σ} {s t : Term {l} {Σ} Γ S} → _≡_ {T = T} s t → t ≡ s eq-tran : ∀ {Γ} {S : sort Σ} {s t u : Term Γ S} → _≡_ {T = T} s t → _≡_ {T = T} t u → s ≡ u -- congruence rule eq-congr : ∀ {Γ} {f : op Σ} (x y : ∀ (i : arg Σ f) → Term Γ (arg-sort Σ i)) → (∀ i → _≡_ {_} {_} {T} (x i) (y i)) → tm-op f x ≡ tm-op f y -- equational axiom eq-axiom : ∀ (ε : eq T) {Δ : Context Σ} (σ : substitution (eq-ctx T ε) Δ) → σ · eq-lhs T ε ≡ σ · eq-rhs T ε -- composition is functorial subst-○ : ∀ {l : Level} {Σ : Signature {l}} {T : EquationalTheory Σ} {Γ Δ Θ : Context Σ} (σ : substitution Δ Θ) (τ : substitution Γ Δ) → ∀ {A} (t : Term Γ A) → _≡_ {T = T} (σ · τ · t) (σ ○ τ · t) subst-○ σ τ (tm-var x) = eq-refl subst-○ σ τ (tm-op f x) = eq-congr (λ i → σ · τ · x i) (λ i → σ ○ τ · x i) λ i → subst-○ σ τ (x i) -- substitution preserves equality eq-subst : ∀ {l : Level} {Σ : Signature {l}} {T : EquationalTheory Σ} {Γ Δ : Context Σ} {S : sort Σ} (σ : substitution Γ Δ) {s t : Term Γ S} → _≡_ {T = T} s t → _≡_ {T = T} (σ · s) (σ · t) eq-subst σ eq-refl = eq-refl eq-subst σ (eq-symm ξ) = eq-symm (eq-subst σ ξ) eq-subst σ (eq-tran ζ ξ) = eq-tran (eq-subst σ ζ) (eq-subst σ ξ) eq-subst σ (eq-congr x y ξ) = eq-congr (λ i → σ · x i) (λ i → σ · y i) λ i → eq-subst σ (ξ i) eq-subst {T = T} σ (eq-axiom ε τ) = eq-tran (subst-○ σ τ (eq-lhs T ε)) (eq-tran (eq-axiom ε (σ ○ τ)) (eq-symm (subst-○ σ τ (eq-rhs T ε))))
{ "alphanum_fraction": 0.5295546559, "avg_line_length": 41.6292134831, "ext": "agda", "hexsha": "bf90e76ed790ddf7d822e0f118d35cac5f8784fd", "lang": "Agda", "max_forks_count": 6, "max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z", "max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z", "max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejbauer/formaltt", "max_forks_repo_path": "src/Experimental/ManySortedAlgebra.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z", "max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejbauer/formaltt", "max_issues_repo_path": "src/Experimental/ManySortedAlgebra.agda", "max_line_length": 148, "max_stars_count": 21, "max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cilinder/formaltt", "max_stars_repo_path": "src/Experimental/ManySortedAlgebra.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z", "num_tokens": 1477, "size": 3705 }
module With where open import Reflection open import Function using (_∘_ ; _$_ ; _∋_ ; id ; const) open import Data.List open import Data.Nat hiding (_+_) open import Relation.Binary using (Setoid ; Decidable) open import Relation.Nullary open import Relation.Binary.PropositionalEquality hiding ( [_] ; subst ) open import Helper.CodeGeneration {-# TERMINATING #-} mutual s_arg : (n : ℕ) -> (ℕ -> Term -> Term) -> Arg Term -> Arg Term s_arg n f (arg i x) = arg i (s_term' n f x) s_type : (n : ℕ) -> (ℕ -> Term -> Term) -> Type -> Type s_type n f (el s t) = el s (s_term' n f t) s_term : (n : ℕ) -> (ℕ -> Term -> Term) -> Term -> Term s_term n f (var x args) = var x (map (s_arg n f) args) s_term n f (con c args) = con c (map (s_arg n f) args) s_term n f (def f₁ args) = def f₁ (map (s_arg n f) args) s_term n f (lam v (abs s x)) = lam v (abs s (s_term' n f x)) s_term n f (pat-lam cs args) = pat-lam cs (map (s n arg f) args) s_term n f (pi (arg i x) (abs s x₁)) = pi (arg i (s_type n f x)) (abs s (s_type n f x₁)) s_term n f t = t s_term' : (n : ℕ) -> (ℕ -> Term -> Term) -> Term -> Term s_term' n f t = f n (s_term n f t) inc_debruijn_indices : Term -> Term inc_debruijn_indices t = s_term' zero alg t where alg : ℕ -> Term -> Term alg n (var x args) = var (suc x) args alg n t2 = t2 subst : Term -> Term -> Term -> Term subst t ti to = s_term' zero alg t where alg : ℕ -> Term -> Term alg n ti1 with ti Reflection.≟ ti1 alg n ti1 | yes p = to alg n ti1 | no ¬p = ti1 getType : {T : Set} -> (t : T) -> Term getType {T} t = quoteTerm T with' : Term -> Term -> Term with' w l = quote-goal (abs "g" lam_body) where sub_term = def (quote subst) ( (a $ var 1 []) ∷ (a $ w) ∷ (a $ quote-term $ var 0 []) ∷ [] ) lam_type_q = unquote-term sub_term [] lam_type = pi (a $ t0 unknown) (abs "i" $ t0 $ lam_type_q) lam_body = def (quote _$_) ((a $ lam_type ∋-t l) ∷ (a $ inc_debruijn_indices $ unquote-term w []) ∷ []) postulate A : Set _+_ : A → A → A T : A → Set mkT : ∀ x → T x P : ∀ x → T x → Set -- the type A of the with argument has no free variables, so the with -- argument will come first f₁ : (x y : A) (t : T (x + y)) → T (x + y) f₁ x y t with x + y f₁ x y t | w = mkT w f₂ : (x y : A) → T (x + y) f₂ x y = unquote (with' (quoteTerm (quoteTerm (x + y))) (quoteTerm (\w -> mkT w))) -- def (quote inc_var_indices) [ a $ var 1 [] ] -- -- sub_term = def (quote subst) ( (a $ var 1 []) ∷ (a $ w) ∷ (a $ (quote-term (var 0 []))) ∷ [] ) -- lam_type = pi (a $ t0 $ (def (quote _≡_) ((a $ var 3 []) ∷ (a $ var 2 []) ∷ []))) (abs "i" $ t0 $ lam_type_q)
{ "alphanum_fraction": 0.5544848036, "avg_line_length": 33.3086419753, "ext": "agda", "hexsha": "ed4ae29761536aeb5d264f36105f77c6be88ef25", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cb95986b772b7a01195619be5e8e590f2429c759", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mathijsb/generic-in-agda", "max_forks_repo_path": "With.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cb95986b772b7a01195619be5e8e590f2429c759", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mathijsb/generic-in-agda", "max_issues_repo_path": "With.agda", "max_line_length": 116, "max_stars_count": 6, "max_stars_repo_head_hexsha": "cb95986b772b7a01195619be5e8e590f2429c759", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mathijsb/generic-in-agda", "max_stars_repo_path": "With.agda", "max_stars_repo_stars_event_max_datetime": "2016-08-04T16:05:24.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-09T09:59:27.000Z", "num_tokens": 1008, "size": 2698 }
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Graph.Examples where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Data.Empty open import Cubical.Data.Unit renaming (Unit to ⊤) open import Cubical.Data.Nat open import Cubical.Data.SumFin open import Cubical.Relation.Nullary open import Cubical.Data.Sum open import Cubical.Data.Prod open import Cubical.Data.Graph.Base -- Some small graphs of common shape ⇒⇐ : Graph ℓ-zero ℓ-zero Obj ⇒⇐ = Fin 3 Hom ⇒⇐ fzero (fsuc fzero) = ⊤ Hom ⇒⇐ (fsuc (fsuc fzero)) (fsuc fzero) = ⊤ Hom ⇒⇐ _ _ = ⊥ ⇐⇒ : Graph ℓ-zero ℓ-zero Obj ⇐⇒ = Fin 3 Hom ⇐⇒ (fsuc fzero) fzero = ⊤ Hom ⇐⇒ (fsuc fzero) (fsuc (fsuc fzero)) = ⊤ Hom ⇐⇒ _ _ = ⊥ -- paralell pair graph ⇉ : Graph ℓ-zero ℓ-zero Obj ⇉ = Fin 2 Hom ⇉ fzero (fsuc fzero) = Fin 2 Hom ⇉ _ _ = ⊥ -- The graph ω = 0 → 1 → 2 → ··· data Adj : ℕ → ℕ → Type₀ where adj : ∀ n → Adj n (suc n) areAdj : ∀ m n → Dec (Adj m n) areAdj zero zero = no λ () areAdj zero (suc zero) = yes (adj zero) areAdj zero (suc (suc n)) = no λ () areAdj (suc m) zero = no λ () areAdj (suc m) (suc n) = mapDec (λ { (adj .m) → adj (suc m) }) (λ { ¬a (adj .(suc m)) → ¬a (adj m) }) (areAdj m n) ωGr : Graph ℓ-zero ℓ-zero Obj ωGr = ℕ Hom ωGr m n with areAdj m n ... | yes _ = ⊤ -- if n ≡ (suc m) ... | no _ = ⊥ -- otherwise record ωDiag ℓ : Type (ℓ-suc ℓ) where field ωObj : ℕ → Type ℓ ωHom : ∀ n → ωObj n → ωObj (suc n) asDiag : Diag ℓ ωGr asDiag $ n = ωObj n _<$>_ asDiag {m} {n} f with areAdj m n asDiag <$> tt | yes (adj m) = ωHom m -- The finite connected subgraphs of ω: 𝟘,𝟙,𝟚,𝟛,... data AdjFin : ∀ {k} → Fin k → Fin k → Type₀ where adj : ∀ {k} (n : Fin k) → AdjFin (finj n) (fsuc n) adj-fsuc : ∀ {k} {m n : Fin k} → AdjFin (fsuc m) (fsuc n) → AdjFin m n adj-fsuc {suc k} {.(finj n)} {fsuc n} (adj .(fsuc n)) = adj n areAdjFin : ∀ {k} (m n : Fin k) → Dec (AdjFin m n) areAdjFin {suc k} fzero fzero = no λ () areAdjFin {suc (suc k)} fzero (fsuc fzero) = yes (adj fzero) areAdjFin {suc (suc k)} fzero (fsuc (fsuc n)) = no λ () areAdjFin {suc k} (fsuc m) fzero = no λ () areAdjFin {suc k} (fsuc m) (fsuc n) = mapDec (λ { (adj m) → adj (fsuc m) }) (λ { ¬a a → ¬a (adj-fsuc a) }) (areAdjFin {k} m n) [_]Gr : ℕ → Graph ℓ-zero ℓ-zero Obj [ k ]Gr = Fin k Hom [ k ]Gr m n with areAdjFin m n ... | yes _ = ⊤ -- if n ≡ (suc m) ... | no _ = ⊥ -- otherwise 𝟘Gr 𝟙Gr 𝟚Gr 𝟛Gr : Graph ℓ-zero ℓ-zero 𝟘Gr = [ 0 ]Gr; 𝟙Gr = [ 1 ]Gr; 𝟚Gr = [ 2 ]Gr; 𝟛Gr = [ 3 ]Gr record [_]Diag ℓ (k : ℕ) : Type (ℓ-suc ℓ) where field []Obj : Fin (suc k) → Type ℓ []Hom : ∀ (n : Fin k) → []Obj (finj n) → []Obj (fsuc n) asDiag : Diag ℓ [ suc k ]Gr asDiag $ n = []Obj n _<$>_ asDiag {m} {n} f with areAdjFin m n _<$>_ asDiag {.(finj n)} {fsuc n} f | yes (adj .n) = []Hom n -- Disjoint union of graphs module _ {ℓv ℓe ℓv' ℓe'} where _⊎Gr_ : ∀ (G : Graph ℓv ℓe) (G' : Graph ℓv' ℓe') → Graph (ℓ-max ℓv ℓv') (ℓ-max ℓe ℓe') Obj (G ⊎Gr G') = Obj G ⊎ Obj G' Hom (G ⊎Gr G') (inl x) (inl y) = Lift {j = ℓe'} (Hom G x y) Hom (G ⊎Gr G') (inr x) (inr y) = Lift {j = ℓe } (Hom G' x y) Hom (G ⊎Gr G') _ _ = Lift ⊥ record ⊎Diag ℓ (G : Graph ℓv ℓe) (G' : Graph ℓv' ℓe') : Type (ℓ-max (ℓ-suc ℓ) (ℓ-max (ℓ-max ℓv ℓv') (ℓ-max ℓe ℓe'))) where field ⊎Obj : Obj G ⊎ Obj G' → Type ℓ ⊎Homl : ∀ {x y} → Hom G x y → ⊎Obj (inl x) → ⊎Obj (inl y) ⊎Homr : ∀ {x y} → Hom G' x y → ⊎Obj (inr x) → ⊎Obj (inr y) asDiag : Diag ℓ (G ⊎Gr G') asDiag $ x = ⊎Obj x _<$>_ asDiag {inl x} {inl y} f = ⊎Homl (lower f) _<$>_ asDiag {inr x} {inr y} f = ⊎Homr (lower f) -- Cartesian product of graphs module _ {ℓv ℓe ℓv' ℓe'} where -- We need decidable equality in order to define the cartesian product DecGraph : ∀ ℓv ℓe → Type (ℓ-suc (ℓ-max ℓv ℓe)) DecGraph ℓv ℓe = Σ[ G ∈ Graph ℓv ℓe ] Discrete (Obj G) _×Gr_ : (G : DecGraph ℓv ℓe) (G' : DecGraph ℓv' ℓe') → Graph (ℓ-max ℓv ℓv') (ℓ-max ℓe ℓe') Obj (G ×Gr G') = Obj (fst G) × Obj (fst G') Hom (G ×Gr G') (x , x') (y , y') with snd G x y | snd G' x' y' ... | yes _ | yes _ = Hom (fst G) x y ⊎ Hom (fst G') x' y' ... | yes _ | no _ = Lift {j = ℓe } (Hom (fst G') x' y') ... | no _ | yes _ = Lift {j = ℓe'} (Hom (fst G) x y) ... | no _ | no _ = Lift ⊥ record ×Diag ℓ (G : DecGraph ℓv ℓe) (G' : DecGraph ℓv' ℓe') : Type (ℓ-max (ℓ-suc ℓ) (ℓ-max (ℓ-max ℓv ℓv') (ℓ-max ℓe ℓe'))) where field ×Obj : Obj (fst G) × Obj (fst G') → Type ℓ ×Hom₁ : ∀ {x y} (f : Hom (fst G) x y) (x' : Obj (fst G')) → ×Obj (x , x') → ×Obj (y , x') ×Hom₂ : ∀ (x : Obj (fst G)) {x' y'} (f : Hom (fst G') x' y') → ×Obj (x , x') → ×Obj (x , y') asDiag : Diag ℓ (G ×Gr G') asDiag $ x = ×Obj x _<$>_ asDiag {x , x'} {y , y'} f with snd G x y | snd G' x' y' _<$>_ asDiag {x , x'} {y , y'} (inl f) | yes _ | yes p' = subst _ p' (×Hom₁ f x') _<$>_ asDiag {x , x'} {y , y'} (inr f) | yes p | yes _ = subst _ p (×Hom₂ x f ) _<$>_ asDiag {x , x'} {y , y'} f | yes p | no _ = subst _ p (×Hom₂ x (lower f) ) _<$>_ asDiag {x , x'} {y , y'} f | no _ | yes p' = subst _ p' (×Hom₁ (lower f) x')
{ "alphanum_fraction": 0.5075688492, "avg_line_length": 33.6380368098, "ext": "agda", "hexsha": "9b36bb10d9212bd1ba14fd1dfbae39b2432cc25b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "limemloh/cubical", "max_forks_repo_path": "Cubical/Data/Graph/Examples.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "limemloh/cubical", "max_issues_repo_path": "Cubical/Data/Graph/Examples.agda", "max_line_length": 98, "max_stars_count": null, "max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "limemloh/cubical", "max_stars_repo_path": "Cubical/Data/Graph/Examples.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2434, "size": 5483 }
open import bool module list-merge-sort (A : Set) (_<A_ : A → A → 𝔹) where open import braun-tree A _<A_ open import eq open import list open import nat open import nat-thms merge : (l1 l2 : 𝕃 A) → 𝕃 A merge [] ys = ys merge xs [] = xs merge (x :: xs) (y :: ys) with x <A y merge (x :: xs) (y :: ys) | tt = x :: (merge xs (y :: ys)) merge (x :: xs) (y :: ys) | ff = y :: (merge (x :: xs) ys) merge-sort-h : ∀{n : ℕ} → braun-tree' n → 𝕃 A merge-sort-h (bt'-leaf a) = [ a ] merge-sort-h (bt'-node l r p) = merge (merge-sort-h l) (merge-sort-h r) merge-sort : 𝕃 A → 𝕃 A merge-sort [] = [] merge-sort (a :: as) with 𝕃-to-braun-tree' a as merge-sort (a :: as) | t = merge-sort-h t
{ "alphanum_fraction": 0.5712187959, "avg_line_length": 26.1923076923, "ext": "agda", "hexsha": "dd69d6fb6a9c580754e01bbd8773812be12999c4", "lang": "Agda", "max_forks_count": 17, "max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z", "max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rfindler/ial", "max_forks_repo_path": "list-merge-sort.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rfindler/ial", "max_issues_repo_path": "list-merge-sort.agda", "max_line_length": 71, "max_stars_count": 29, "max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rfindler/ial", "max_stars_repo_path": "list-merge-sort.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z", "max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z", "num_tokens": 267, "size": 681 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Indexed monads ------------------------------------------------------------------------ -- Note that currently the monad laws are not included here. module Category.Monad.Indexed where open import Category.Applicative.Indexed open import Function open import Level record RawIMonad {i f} {I : Set i} (M : IFun I f) : Set (i ⊔ suc f) where infixl 1 _>>=_ _>>_ _>=>_ infixr 1 _=<<_ _<=<_ field return : ∀ {i A} → A → M i i A _>>=_ : ∀ {i j k A B} → M i j A → (A → M j k B) → M i k B _>>_ : ∀ {i j k A B} → M i j A → M j k B → M i k B m₁ >> m₂ = m₁ >>= λ _ → m₂ _=<<_ : ∀ {i j k A B} → (A → M j k B) → M i j A → M i k B f =<< c = c >>= f _>=>_ : ∀ {i j k a} {A : Set a} {B C} → (A → M i j B) → (B → M j k C) → (A → M i k C) f >=> g = _=<<_ g ∘ f _<=<_ : ∀ {i j k B C a} {A : Set a} → (B → M j k C) → (A → M i j B) → (A → M i k C) g <=< f = f >=> g join : ∀ {i j k A} → M i j (M j k A) → M i k A join m = m >>= id rawIApplicative : RawIApplicative M rawIApplicative = record { pure = return ; _⊛_ = λ f x → f >>= λ f' → x >>= λ x' → return (f' x') } open RawIApplicative rawIApplicative public record RawIMonadZero {i f} {I : Set i} (M : IFun I f) : Set (i ⊔ suc f) where field monad : RawIMonad M ∅ : ∀ {i j A} → M i j A open RawIMonad monad public record RawIMonadPlus {i f} {I : Set i} (M : IFun I f) : Set (i ⊔ suc f) where infixr 3 _∣_ field monadZero : RawIMonadZero M _∣_ : ∀ {i j A} → M i j A → M i j A → M i j A open RawIMonadZero monadZero public
{ "alphanum_fraction": 0.4478808706, "avg_line_length": 26.8615384615, "ext": "agda", "hexsha": "1619d9c5c2d72670bcab1dfd201600f48c614644", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Category/Monad/Indexed.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Category/Monad/Indexed.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Category/Monad/Indexed.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 667, "size": 1746 }
------------------------------------------------------------------------ -- Raw monads ------------------------------------------------------------------------ -- Note that this module is not parametrised by an axiomatisation of -- equality. This module is reexported from Monad. {-# OPTIONS --without-K --safe #-} module Monad.Raw where open import Prelude -- Raw monads. record Raw-monad {d c} (M : Type d → Type c) : Type (lsuc d ⊔ c) where constructor mk infixl 6 _⟨$⟩_ _⊛_ infixl 5 _>>=_ _>>_ infixr 5 _=<<_ field return : ∀ {A} → A → M A _>>=_ : ∀ {A B} → M A → (A → M B) → M B -- Variants of _>>=_. _>>_ : ∀ {A B} → M A → M B → M B x >> y = x >>= const y _=<<_ : ∀ {A B} → (A → M B) → M A → M B _=<<_ = flip _>>=_ -- A map function. map : ∀ {A B} → (A → B) → M A → M B map f x = x >>= return ∘ f -- A synonym. _⟨$⟩_ : ∀ {A B} → (A → B) → M A → M B _⟨$⟩_ = map -- Applicative functor application. _⊛_ : ∀ {A B} → M (A → B) → M A → M B f ⊛ x = f >>= λ f → x >>= λ x → return (f x) -- The sequence function (for lists). sequence : ∀ {A} → List (M A) → M (List A) sequence [] = return [] sequence (x ∷ xs) = _∷_ ⟨$⟩ x ⊛ sequence xs open Raw-monad ⦃ … ⦄ public -- Raw monad transformers. record Raw-monad-transformer {d c₁ c₂} (F : (Type d → Type c₁) → (Type d → Type c₂)) : Type (lsuc (c₁ ⊔ d) ⊔ c₂) where constructor mk field transform : ∀ {M} ⦃ is-raw-monad : Raw-monad M ⦄ → Raw-monad (F M) liftʳ : ∀ {M A} ⦃ is-raw-monad : Raw-monad M ⦄ → M A → F M A open Raw-monad-transformer ⦃ … ⦄ public using (liftʳ)
{ "alphanum_fraction": 0.4699386503, "avg_line_length": 24.328358209, "ext": "agda", "hexsha": "626cf0815b59e72c8cd4e2165e029351a161e87a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Monad/Raw.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Monad/Raw.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Monad/Raw.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 603, "size": 1630 }