Search is not available for this dataset
text
string | meta
dict |
---|---|
-- Andreas, 2019-05-03, issue #3742, reported by nad
--
-- Regression introduced in 2.5.2:
--
-- getConstInfo applied to abstract constructor D.c
-- in metaOccurs check throws funny "not in scope" error for D.c
record Σ (A : Set) (B : A → Set₁) : Set₁ where
mutual
abstract
data D (A : Set) : Set where
c : D A
F : Set → Set₁
F A = Σ _ λ (_ : D A) → Set
-- Should succeed.
|
{
"alphanum_fraction": 0.617721519,
"avg_line_length": 18.8095238095,
"ext": "agda",
"hexsha": "0df0fc06a48c0c6f85f8ba561a3d519a3ac927d3",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue3742.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue3742.agda",
"max_line_length": 64,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue3742.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 134,
"size": 395
}
|
------------------------------------------------------------------------
-- Some derivable properties
------------------------------------------------------------------------
open import Algebra
module Algebra.Props.AbelianGroup (g : AbelianGroup) where
open AbelianGroup g
import Relation.Binary.EqReasoning as EqR; open EqR setoid
open import Data.Function
open import Data.Product
private
lemma : ∀ x y → x ∙ y ∙ x ⁻¹ ≈ y
lemma x y = begin
x ∙ y ∙ x ⁻¹ ≈⟨ comm _ _ ⟨ ∙-pres-≈ ⟩ refl ⟩
y ∙ x ∙ x ⁻¹ ≈⟨ assoc _ _ _ ⟩
y ∙ (x ∙ x ⁻¹) ≈⟨ refl ⟨ ∙-pres-≈ ⟩ proj₂ inverse _ ⟩
y ∙ ε ≈⟨ proj₂ identity _ ⟩
y ∎
-‿∙-comm : ∀ x y → x ⁻¹ ∙ y ⁻¹ ≈ (x ∙ y) ⁻¹
-‿∙-comm x y = begin
x ⁻¹ ∙ y ⁻¹ ≈⟨ comm _ _ ⟩
y ⁻¹ ∙ x ⁻¹ ≈⟨ sym $ lem ⟨ ∙-pres-≈ ⟩ refl ⟩
x ∙ (y ∙ (x ∙ y) ⁻¹ ∙ y ⁻¹) ∙ x ⁻¹ ≈⟨ lemma _ _ ⟩
y ∙ (x ∙ y) ⁻¹ ∙ y ⁻¹ ≈⟨ lemma _ _ ⟩
(x ∙ y) ⁻¹ ∎
where
lem = begin
x ∙ (y ∙ (x ∙ y) ⁻¹ ∙ y ⁻¹) ≈⟨ sym $ assoc _ _ _ ⟩
x ∙ (y ∙ (x ∙ y) ⁻¹) ∙ y ⁻¹ ≈⟨ sym $ assoc _ _ _ ⟨ ∙-pres-≈ ⟩ refl ⟩
x ∙ y ∙ (x ∙ y) ⁻¹ ∙ y ⁻¹ ≈⟨ proj₂ inverse _ ⟨ ∙-pres-≈ ⟩ refl ⟩
ε ∙ y ⁻¹ ≈⟨ proj₁ identity _ ⟩
y ⁻¹ ∎
|
{
"alphanum_fraction": 0.3719512195,
"avg_line_length": 35.4594594595,
"ext": "agda",
"hexsha": "88f4fba8078cdad9aef3f480d7edea82b1e0f9b2",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Algebra/Props/AbelianGroup.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Algebra/Props/AbelianGroup.agda",
"max_line_length": 73,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Algebra/Props/AbelianGroup.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 564,
"size": 1312
}
|
-- Andreas, 2016-11-03, issue #2211
-- The occurs check did not take variables labeled as `UnusedArg`
-- on the left hand side into consideration.
-- {-# OPTIONS -v tc.check.term:40 #-}
-- {-# OPTIONS -v tc.meta:45 #-}
-- {-# OPTIONS -v tc.polarity:20 #-}
open import Agda.Builtin.Equality
open import Common.Nat
cong : ∀{A B : Set}(f : A → B) (x y : A) → x ≡ y → f x ≡ f y
cong _ _ _ refl = refl
data ⊥ : Set where
⊥-elim : ∀{A : Set} → ⊥ {- unused arg -} → A
⊥-elim ()
data Fin : Nat → Set where
zero : {n : Nat} → Fin (suc n)
suc : {n : Nat} (i : Fin n) → Fin (suc n)
toNat : ∀ {n} → Fin n → Nat
toNat zero = 0
toNat (suc i) = suc (toNat i)
tighten : ∀ n (x : Fin (suc n)) (neq : (toNat x ≡ n → ⊥) {- unused arg x-}) → Fin n
tighten zero zero neq = ⊥-elim (neq refl)
tighten (suc n) zero neq = zero
tighten zero (suc ())
tighten (suc n) (suc x) neq = suc (tighten n x (λ p → neq (cong suc _ _ p)))
tighten-correct : ∀ n (x : Fin (suc n)) (neq : toNat x ≡ n → ⊥) →
toNat (tighten n x neq) ≡ toNat x
tighten-correct zero zero neq = ⊥-elim (neq refl)
tighten-correct (suc n) zero neq = refl
tighten-correct zero (suc ())
tighten-correct (suc n) (suc x) neq =
cong suc _ _ (tighten-correct n x (λ p → neq (cong Nat.suc _ _ p)))
-- ERROR WAS:
-- Cannot instantiate ... because it contains the variable neg ...
-- Should succeed.
{-
term _62 n x neq
(toNat (tighten n x (λ p → neq (cong suc p)))) := suc
(toNat
(tighten n x (λ p → neq (cong suc p))))
term _62 n x neq (toNat x) := toNat (suc x)
after kill analysis
metavar = _62
kills = [False,False,True,False]
kills' = [ru(False),ru(False),ru(True),ru(False)]
oldType = (n₁ : Nat) (x₁ : Fin (suc n₁))
(neq₁ : toNat (suc x₁) ≡ suc n₁ → ⊥) →
Nat → Nat
newType = (n₁ : Nat) → Fin (suc n₁) → Nat → Nat
actual killing
new meta: _69
kills : [ru(False),ru(False),ru(True),ru(False)]
inst : _62 := _69 @3 n neq
term _69 n x (toNat (tighten n x (λ p → neq (cong suc p)))) := suc
(toNat
(tighten n x
(λ p → neq (cong suc p))))
Here, the variable neq on the lhs was not considered eligible for occurrence on the rhs
since it is contained in an unused arg only.
-}
|
{
"alphanum_fraction": 0.5179282869,
"avg_line_length": 33.4666666667,
"ext": "agda",
"hexsha": "4a3ea03d92ba84874d98a5ac2169f34552095cd8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2211.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2211.agda",
"max_line_length": 95,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2211.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 838,
"size": 2510
}
|
-- Minimal implicational modal logic, PHOAS approach, initial encoding
module Pi.BoxMp where
open import Lib using (Nat; suc)
-- Types
infixr 0 _=>_
data Ty : Set where
UNIT : Ty
_=>_ : Ty -> Ty -> Ty
BOX : Ty -> Ty
-- Context and truth judgement with modal depth
Cx : Set1
Cx = Ty -> Nat -> Set
isTrue : Ty -> Nat -> Cx -> Set
isTrue a d tc = tc a d
-- Terms
module BoxMp where
infixl 1 _$_
data Tm (d : Nat) (tc : Cx) : Ty -> Set where
var : forall {a} -> isTrue a d tc -> Tm d tc a
lam' : forall {a b} -> (isTrue a d tc -> Tm d tc b) -> Tm d tc (a => b)
_$_ : forall {a b} -> Tm d tc (a => b) -> Tm d tc a -> Tm d tc b
box : forall {a} -> Tm (suc d) tc a -> Tm d tc (BOX a)
unbox' : forall {>d a b} -> Tm d tc (BOX a) -> (isTrue a >d tc -> Tm d tc b) -> Tm d tc b
lam'' : forall {d tc a b} -> (Tm d tc a -> Tm d tc b) -> Tm d tc (a => b)
lam'' f = lam' \x -> f (var x)
unbox'' : forall {d >d tc a b} -> Tm d tc (BOX a) -> (Tm >d tc a -> Tm d tc b) -> Tm d tc b
unbox'' x f = unbox' x \y -> f (var y)
syntax lam'' (\a -> b) = lam a => b
syntax unbox'' x' (\x -> y) = unbox x' as x => y
Thm : Ty -> Set1
Thm a = forall {d tc} -> Tm d tc a
open BoxMp public
-- Example theorems
rNec : forall {a} -> Thm a -> Thm (BOX a)
rNec x =
box x
aK : forall {a b} -> Thm (BOX (a => b) => BOX a => BOX b)
aK =
lam f' =>
lam x' =>
unbox f' as f =>
unbox x' as x =>
box (f $ x)
aT : forall {a} -> Thm (BOX a => a)
aT =
lam x' =>
unbox x' as x => x
a4 : forall {a} -> Thm (BOX a => BOX (BOX a))
a4 =
lam x' =>
unbox x' as x => box (box x)
t1 : forall {a} -> Thm (a => BOX (a => a))
t1 =
lam _ => box (lam y => y)
|
{
"alphanum_fraction": 0.4766146993,
"avg_line_length": 23.0256410256,
"ext": "agda",
"hexsha": "d90755fbc3eac74420341856d6f68f94083eddbf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/formal-logic",
"max_forks_repo_path": "src/Pi/BoxMp.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/formal-logic",
"max_issues_repo_path": "src/Pi/BoxMp.agda",
"max_line_length": 94,
"max_stars_count": 26,
"max_stars_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/formal-logic",
"max_stars_repo_path": "src/Pi/BoxMp.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-13T12:37:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-31T09:49:52.000Z",
"num_tokens": 706,
"size": 1796
}
|
module Numeric.Nat.Properties where
open import Prelude hiding (less-antisym; less-antirefl; leq-antisym)
open import Prelude.Nat.Properties public
open import Tactic.Nat
--- Subtraction ---
sub-less : {a b : Nat} → a ≤ b → b - a + a ≡ b
sub-less {zero} _ = auto
sub-less {suc a} (diff! k) = auto
sub-underflow : (a b : Nat) → a ≤ b → a - b ≡ 0
sub-underflow a ._ (diff! k) = auto
sub-leq : (a b : Nat) → a - b ≤ a
sub-leq a b with compare a b
sub-leq a ._ | less (diff! k) = diff a auto
sub-leq a .a | equal refl = diff a auto
sub-leq ._ b | greater (diff! k) = diff b auto
--- LessNat ---
fast-diff : {a b : Nat} → a < b → a < b
fast-diff {a} {b} a<b = diff (b - suc a) (eraseEquality $ by (sub-less {suc a} {b} (by a<b)))
{-# INLINE fast-diff #-}
infixr 0 _⟨<⟩_ _⟨≤⟩_
_⟨<⟩_ : ∀ {x y z} → LessNat x y → LessNat y z → LessNat x z
diff! a ⟨<⟩ diff! b = diff (suc (b + a)) auto
less-antirefl : ∀ {a b : Nat} → a < b → ¬ (a ≡ b)
less-antirefl (diff! k) eq = refute eq
less-not-geq : ∀ {a b : Nat} → a < b → b ≤ a → ⊥
less-not-geq (diff d eq) (diff! d₁) = refute eq
less-raa : {a b : Nat} → ¬ (suc a > b) → a < b
less-raa {a} {b} a≱b with compare a b
less-raa a≱b | less a<b = a<b
less-raa a≱b | equal refl = ⊥-elim (a≱b auto)
less-raa a≱b | greater a>b = ⊥-elim (a≱b (by a>b))
_⟨≤⟩_ : {a b c : Nat} → a ≤ b → b ≤ c → a ≤ c
diff! k ⟨≤⟩ diff! k₁ = auto
private
leq-mul-r′ : ∀ a b → NonZero b → a ≤ a * b
leq-mul-r′ _ zero ()
leq-mul-r′ a (suc b) _ = auto
leq-mul-r : ∀ a b {{_ : NonZero b}} → a ≤ a * b
leq-mul-r a b = fast-diff (leq-mul-r′ _ b it)
-- Used for the well-founded induction over factorisation.
less-mul-l : {a b : Nat} → a > 1 → b > 1 → a < a * b
less-mul-l (diff! k) (diff! j) = auto
less-mul-r : {a b : Nat} → a > 1 → b > 1 → b < a * b
less-mul-r (diff! k) (diff! j) = auto
add-nonzero-l : ∀ a b {{_ : NonZero a}} → NonZero (a + b)
add-nonzero-l zero b {{}}
add-nonzero-l (suc a) b = _
add-nonzero-r : ∀ a b {{_ : NonZero b}} → NonZero (a + b)
add-nonzero-r zero zero {{}}
add-nonzero-r zero (suc b) = _
add-nonzero-r (suc a) b = _
mul-nonzero : ∀ a b {{nza : NonZero a}} {{nzb : NonZero b}} → NonZero (a * b)
mul-nonzero zero b {{nza = ()}}
mul-nonzero (suc a) zero {{nzb = ()}}
mul-nonzero (suc a) (suc b) = _
mul-nonzero-l : ∀ a b {{_ : NonZero (a * b)}} → NonZero a
mul-nonzero-l 0 _ {{}}
mul-nonzero-l (suc _) _ = _
mul-nonzero-r : ∀ a b {{_ : NonZero (a * b)}} → NonZero b
mul-nonzero-r a b {{nz}} = mul-nonzero-l b a {{transport NonZero auto nz}}
mul-unit-l : ∀ a b {{_ : NonZero b}} → a * b ≡ b → a ≡ 1
mul-unit-l 1 _ _ = refl
mul-unit-l 0 .0 {{}} refl
mul-unit-l (suc (suc a)) zero {{}} _
mul-unit-l (suc (suc a)) (suc b) ab=b = refute ab=b
mul-unit-r : ∀ a b {{_ : NonZero a}} → a * b ≡ a → b ≡ 1
mul-unit-r a b ab=a = mul-unit-l b a (mul-commute b a ⟨≡⟩ ab=a)
|
{
"alphanum_fraction": 0.5484210526,
"avg_line_length": 30.6451612903,
"ext": "agda",
"hexsha": "154a7855ba2cdee8ca58f969940ea98fb569527e",
"lang": "Agda",
"max_forks_count": 24,
"max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z",
"max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "L-TChen/agda-prelude",
"max_forks_repo_path": "src/Numeric/Nat/Properties.agda",
"max_issues_count": 59,
"max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "L-TChen/agda-prelude",
"max_issues_repo_path": "src/Numeric/Nat/Properties.agda",
"max_line_length": 93,
"max_stars_count": 111,
"max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "L-TChen/agda-prelude",
"max_stars_repo_path": "src/Numeric/Nat/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z",
"num_tokens": 1187,
"size": 2850
}
|
{-# OPTIONS --universe-polymorphism #-}
open import Categories.Category
module Categories.Morphisms {o ℓ e} (C : Category o ℓ e) where
open import Level
open import Relation.Binary using (IsEquivalence; Setoid)
open Category C
Mono : ∀ {A B} → (f : A ⇒ B) → Set _
Mono {A} f = ∀ {C} → (g₁ g₂ : C ⇒ A) → f ∘ g₁ ≡ f ∘ g₂ → g₁ ≡ g₂
Epi : ∀ {B A} → (f : A ⇒ B) → Set _
Epi {B} f = ∀ {C} → (g₁ g₂ : B ⇒ C) → g₁ ∘ f ≡ g₂ ∘ f → g₁ ≡ g₂
record Iso {A B} (f : A ⇒ B) (g : B ⇒ A) : Set (o ⊔ ℓ ⊔ e) where
field
.isoˡ : g ∘ f ≡ id
.isoʳ : f ∘ g ≡ id
infix 4 _≅_
record _≅_ (A B : Obj) : Set (o ⊔ ℓ ⊔ e) where
field
f : A ⇒ B
g : B ⇒ A
.iso : Iso f g
.isoˡ : _
isoˡ = Iso.isoˡ iso
.isoʳ : _
isoʳ = Iso.isoʳ iso
infix 4 _ⓘ_
_ⓘ_ : ∀ {X Y Z} → Y ≅ Z → X ≅ Y → X ≅ Z
G ⓘ F = record
{ f = G.f ∘ F.f
; g = F.g ∘ G.g
; iso = record
{ isoˡ =
begin
(F.g ∘ G.g) ∘ (G.f ∘ F.f)
↓⟨ assoc ⟩
F.g ∘ (G.g ∘ (G.f ∘ F.f))
↑⟨ refl ⟩∘⟨ assoc ⟩
F.g ∘ (G.g ∘ G.f) ∘ F.f
↓⟨ refl ⟩∘⟨ G.isoˡ ⟩∘⟨ refl ⟩
F.g ∘ (id ∘ F.f)
↓⟨ refl ⟩∘⟨ identityˡ ⟩
F.g ∘ F.f
↓⟨ F.isoˡ ⟩
id
∎
; isoʳ =
begin
(G.f ∘ F.f) ∘ (F.g ∘ G.g)
↓⟨ assoc ⟩
G.f ∘ (F.f ∘ (F.g ∘ G.g))
↑⟨ refl ⟩∘⟨ assoc ⟩
G.f ∘ (F.f ∘ F.g) ∘ G.g
↓⟨ refl ⟩∘⟨ F.isoʳ ⟩∘⟨ refl ⟩
G.f ∘ (id ∘ G.g)
↓⟨ refl ⟩∘⟨ identityˡ ⟩
G.f ∘ G.g
↓⟨ G.isoʳ ⟩
id
∎
}
}
where
module F = _≅_ F
module G = _≅_ G
open Iso
open Equiv
open HomReasoning
idⁱ : ∀ {A} → A ≅ A
idⁱ {A} = record
{ f = id
; g = id
; iso = record
{ isoˡ = identityˡ
; isoʳ = identityˡ
}
}
reverseⁱ : ∀ {A B} → A ≅ B → B ≅ A
reverseⁱ A≅B = record
{ f = A≅B.g
; g = A≅B.f
; iso = record
{ isoˡ = A≅B.isoʳ
; isoʳ = A≅B.isoˡ
}
}
where
module A≅B = _≅_ A≅B
≅-is-equivalence : IsEquivalence _≅_
≅-is-equivalence = record
{ refl = idⁱ
; sym = reverseⁱ
; trans = λ x y → y ⓘ x
}
≅-setoid : Setoid o (o ⊔ ℓ ⊔ e)
≅-setoid = record
{ Carrier = Obj
; _≈_ = _≅_
; isEquivalence = ≅-is-equivalence
}
-- equality of isos induced from arrow equality
-- could just use a pair, but this way is probably clearer
record _≡ⁱ_ {A B : Obj} (i j : A ≅ B) : Set (o ⊔ ℓ ⊔ e) where
open _≅_
field
f-≡ : f i ≡ f j
g-≡ : g i ≡ g j
.≡ⁱ-is-equivalence : ∀ {A B} → IsEquivalence (_≡ⁱ_ {A} {B})
≡ⁱ-is-equivalence = record
{ refl = record { f-≡ = refl; g-≡ = refl }
; sym = λ x → record { f-≡ = sym (f-≡ x); g-≡ = sym (g-≡ x) }
; trans = λ x y → record { f-≡ = trans (f-≡ x) (f-≡ y); g-≡ = trans (g-≡ x) (g-≡ y) }
}
where
open Equiv
open _≡ⁱ_
{-
≡ⁱ-setoid : ∀ {A B} → Setoid (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e)
≡ⁱ-setoid {A} {B} = record
{ Carrier = A ≅ B; _≈_ = _≡ⁱ_; isEquivalence = ≡ⁱ-is-equivalence }
-}
-- groupoid with only isos
Isos : Category o (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e)
Isos = record
{ Obj = Obj
; _⇒_ = _≅_
; _≡_ = _≡ⁱ_
; id = idⁱ
; _∘_ = _ⓘ_
; assoc = λ {A B C D f g h} → record { f-≡ = assoc; g-≡ = sym assoc }
; identityˡ = λ {A B f} → record { f-≡ = identityˡ; g-≡ = identityʳ }
; identityʳ = λ {A B f} → record { f-≡ = identityʳ; g-≡ = identityˡ }
; equiv = ≡ⁱ-is-equivalence
; ∘-resp-≡ = λ {A B C f h g i} f≡ⁱh g≡ⁱi → record
{ f-≡ = ∘-resp-≡ (f-≡ f≡ⁱh) (f-≡ g≡ⁱi)
; g-≡ = ∘-resp-≡ (g-≡ g≡ⁱi) (g-≡ f≡ⁱh)
}
}
where
open Equiv
open _≡ⁱ_
-- heterogeneous equality of isos
open Heterogeneous Isos public using () renaming (_∼_ to _∼ⁱ_; ≡⇒∼ to ≡⇒∼ⁱ; ∼⇒≡ to ∼⇒≡ⁱ; refl to ∼ⁱ-refl; sym to ∼ⁱ-sym; trans to ~ⁱ-trans; ∘-resp-∼ to ∘-resp-∼ⁱ; ∘-resp-∼ˡ to ∘-resp-∼ⁱˡ; ∘-resp-∼ʳ to ∘-resp-∼ⁱʳ; domain-≣ to domain-≣ⁱ; codomain-≣ to codomain-≣ⁱ)
private
f-∼′ : ∀ {A B} {i : A ≅ B} {A′ B′} {j : A′ ≅ B′} (eq : i ∼ⁱ j) → Heterogeneous._∼_ C (_≅_.f i) (_≅_.f j)
f-∼′ (≡⇒∼ⁱ eq) = ≡⇒∼ (f-≡ eq)
where
open Heterogeneous C
open _≡ⁱ_
g-∼′ : ∀ {A B} {i : A ≅ B} {A′ B′} {j : A′ ≅ B′} (eq : i ∼ⁱ j) → Heterogeneous._∼_ C (_≅_.g i) (_≅_.g j)
g-∼′ (≡⇒∼ⁱ eq) = ≡⇒∼ (g-≡ eq)
where
open Heterogeneous C
open _≡ⁱ_
heqⁱ : ∀ {A B} (i : A ≅ B) {A′ B′} (j : A′ ≅ B′) → let open _≅_ in let open Heterogeneous C in f i ∼ f j → g i ∼ g j → i ∼ⁱ j
heqⁱ i j (Heterogeneous.≡⇒∼ eq-f) (Heterogeneous.≡⇒∼ eq-g)
= ≡⇒∼ⁱ {f = i} {g = j} (record { f-≡ = eq-f; g-≡ = eq-g })
|
{
"alphanum_fraction": 0.4674731796,
"avg_line_length": 24.7514124294,
"ext": "agda",
"hexsha": "aa68414734407c850ab49c5e971a8361cc33764b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Morphisms.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Morphisms.agda",
"max_line_length": 262,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "p-pavel/categories",
"max_stars_repo_path": "Categories/Morphisms.agda",
"max_stars_repo_stars_event_max_datetime": "2018-12-29T21:51:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-12-29T21:51:57.000Z",
"num_tokens": 2309,
"size": 4381
}
|
{-# OPTIONS --safe --cubical #-}
module Data.Pi.Base where
open import Level
Π : (A : Type a) (B : A → Type b) → Type _
Π A B = (x : A) → B x
∀′ : {A : Type a} (B : A → Type b) → Type _
∀′ {A = A} B = Π A B
infixr 4.5 ∀-syntax
∀-syntax : ∀ {a b} {A : Type a} (B : A → Type b) → Type (a ℓ⊔ b)
∀-syntax = ∀′
syntax ∀-syntax (λ x → e) = ∀[ x ] e
infixr 4.5 Π⦂-syntax
Π⦂-syntax : (A : Type a) (B : A → Type b) → Type (a ℓ⊔ b)
Π⦂-syntax = Π
syntax Π⦂-syntax t (λ x → e) = Π[ x ⦂ t ] e
|
{
"alphanum_fraction": 0.4918032787,
"avg_line_length": 20.3333333333,
"ext": "agda",
"hexsha": "7f2ff93c8e6d4361ac34e7537b2b73e8502b09b7",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Data/Pi/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Data/Pi/Base.agda",
"max_line_length": 64,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Data/Pi/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z",
"num_tokens": 242,
"size": 488
}
|
module Thesis.IntChanges where
open import Data.Integer.Base
open import Relation.Binary.PropositionalEquality
open import Thesis.Changes
open import Theorem.Groups-Nehemiah
private
intCh = ℤ
instance
intCS : ChangeStructure ℤ
intCS = record
{ Ch = ℤ
; ch_from_to_ = λ dv v1 v2 → v1 + dv ≡ v2
; isCompChangeStructure = record
{ isChangeStructure = record
{ _⊕_ = _+_
; fromto→⊕ = λ dv v1 v2 v2≡v1+dv → v2≡v1+dv
; _⊝_ = _-_
; ⊝-fromto = λ a b → n+[m-n]=m {a} {b}
}
; _⊚_ = λ da1 da2 → da1 + da2
; ⊚-fromto = i⊚-fromto
}
}
where
i⊚-fromto : (a1 a2 a3 : ℤ) (da1 da2 : intCh) →
a1 + da1 ≡ a2 → a2 + da2 ≡ a3 → a1 + (da1 + da2) ≡ a3
i⊚-fromto a1 a2 a3 da1 da2 a1+da1≡a2 a2+da2≡a3
rewrite sym (associative-int a1 da1 da2) | a1+da1≡a2 = a2+da2≡a3
|
{
"alphanum_fraction": 0.5953827461,
"avg_line_length": 25.71875,
"ext": "agda",
"hexsha": "989b59e731c3c1cb3b1c5220314c2c5b27f7151b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Thesis/IntChanges.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Thesis/IntChanges.agda",
"max_line_length": 70,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Thesis/IntChanges.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 371,
"size": 823
}
|
-- {-# OPTIONS -v tc.lhs.unify:50 #-}
module Issue81 where
data ⊥ : Set where
data D : Set where
d : D
c : D
data E : Set where
e : E
⌜_⌝ : E -> D
⌜ e ⌝ = c
data R : D -> E -> Set where
Val : (v : E) -> R ⌜ v ⌝ v
foo : R d e -> ⊥
foo ()
|
{
"alphanum_fraction": 0.4722222222,
"avg_line_length": 11.4545454545,
"ext": "agda",
"hexsha": "11f557662f7ec9b9b1be6780610e2929157cd5b1",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue81.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue81.agda",
"max_line_length": 37,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue81.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 115,
"size": 252
}
|
open import Agda.Primitive
open import Agda.Builtin.Sigma
variable
ℓ₁ ℓ₂ : Level
is-universal-element : {X : Set ℓ₁} {A : X → Set ℓ₂} → Σ X A → Set (ℓ₁ ⊔ ℓ₂)
is-universal-element {ℓ₁} {ℓ₂} {X} {A} (x , a) = ∀ y → A y
fails : {X : Set ℓ₁} {A : X → Set ℓ₂} (x : X) (a : A x)
→ is-universal-element {A = _} (x , a) → (y : X) → A y -- a is yellow
fails {ℓ₁} {ℓ₂} {X = X} {A} x a u y = u y
works : ∀ {ℓ₁} {ℓ₂} {X : Set ℓ₁} {A : X → Set ℓ₂} (x : X) (a : A x)
→ is-universal-element {A = _} (x , a) → (y : X) → A y
works x a u y = u y
|
{
"alphanum_fraction": 0.5045703839,
"avg_line_length": 30.3888888889,
"ext": "agda",
"hexsha": "42558235e1ebad232addad99555e1bf5972dd8c1",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue3519.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue3519.agda",
"max_line_length": 76,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue3519.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 266,
"size": 547
}
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import homotopy.HSpace renaming (HSpaceStructure to HSS)
open import homotopy.Freudenthal
open import homotopy.IterSuspensionStable
import homotopy.Pi2HSusp as Pi2HSusp
open import homotopy.EM1HSpace
open import homotopy.EilenbergMacLane1
module homotopy.EilenbergMacLane where
-- EM(G,n) when G is π₁(A,a₀)
module EMImplicit {i} {X : Ptd i} {{_ : is-connected 0 (de⊙ X)}}
{{_ : has-level 1 (de⊙ X)}} (H-X : HSS X) where
private
A = de⊙ X
a₀ = pt X
⊙EM : (n : ℕ) → Ptd i
⊙EM O = ⊙Ω X
⊙EM (S n) = ⊙Trunc ⟨ S n ⟩ (⊙Susp^ n X)
module _ (n : ℕ) where
EM = de⊙ (⊙EM n)
EM-level : (n : ℕ) → has-level ⟨ n ⟩ (EM n)
EM-level O = ⟨⟩
EM-level (S n) = ⟨⟩
instance
EM-conn : (n : ℕ) → is-connected ⟨ n ⟩ (EM (S n))
EM-conn n = Trunc-preserves-conn (⊙Susp^-conn' n)
{-
π (S k) (EM (S n)) (embase (S n)) == π k (EM n) (embase n)
where k > 0 and n = S (S n')
-}
module Stable (k n : ℕ) (indexing : S k ≤ S (S n))
where
private
SSn : ℕ
SSn = S (S n)
lte : ⟨ S k ⟩ ≤T ⟨ SSn ⟩
lte = ⟨⟩-monotone-≤ $ indexing
Skle : S k ≤ (S n) *2
Skle = ≤-trans indexing (lemma n)
where lemma : (n' : ℕ) → S (S n') ≤ (S n') *2
lemma O = inl idp
lemma (S n') = ≤-trans (≤-ap-S (lemma n')) (inr ltS)
private
module SS = Susp^StableSucc k (S n) Skle (⊙Susp^ (S n) X) {{⊙Susp^-conn' (S n)}}
abstract
stable : πS (S k) (⊙EM (S SSn)) ≃ᴳ πS k (⊙EM SSn)
stable =
πS (S k) (⊙EM (S SSn))
≃ᴳ⟨ πS-Trunc-fuse-≤-iso _ _ _ (≤T-ap-S lte) ⟩
πS (S k) (⊙Susp^ SSn X)
≃ᴳ⟨ SS.stable ⟩
πS k (⊙Susp^ (S n) X)
≃ᴳ⟨ πS-Trunc-fuse-≤-iso _ _ _ lte ⁻¹ᴳ ⟩
πS k (⊙EM SSn)
≃ᴳ∎
module BelowDiagonal where
π₁ : (n : ℕ) → πS 0 (⊙EM (S (S n))) ≃ᴳ 0ᴳ
π₁ n =
contr-iso-0ᴳ (πS 0 (⊙EM (S (S n))))
(connected-at-level-is-contr
{{raise-level-≤T (≤T-ap-S (≤T-ap-S (-2≤T ⟨ n ⟩₋₂)))
(Trunc-level {n = 0})}})
-- some clutter here arises from the definition of <;
-- any simple way to avoid this?
πS-below : (k n : ℕ) → (S k < n)
→ πS k (⊙EM n) ≃ᴳ 0ᴳ
πS-below 0 .2 ltS = π₁ 0
πS-below 0 .3 (ltSR ltS) = π₁ 1
πS-below 0 (S (S n)) (ltSR (ltSR _)) = π₁ n
πS-below (S k) ._ ltS =
πS-below k _ ltS
∘eᴳ Stable.stable k k (inr ltS)
πS-below (S k) ._ (ltSR ltS) =
πS-below k _ (ltSR ltS)
∘eᴳ Stable.stable k (S k) (inr (ltSR ltS))
πS-below (S k) ._ (ltSR (ltSR ltS)) =
πS-below k _ (ltSR (ltSR ltS))
∘eᴳ Stable.stable k (S (S k)) (inr (ltSR (ltSR ltS)))
πS-below (S k) (S (S (S n))) (ltSR (ltSR (ltSR lt))) =
πS-below k _ (<-cancel-S (ltSR (ltSR (ltSR lt))))
∘eᴳ Stable.stable k n (inr (<-cancel-S (ltSR (ltSR (ltSR lt)))))
module OnDiagonal where
π₁ : πS 0 (⊙EM 1) ≃ᴳ πS 0 X
π₁ = πS-Trunc-fuse-≤-iso 0 1 X ≤T-refl
private
module Π₂ = Pi2HSusp H-X
π₂ : πS 1 (⊙EM 2) ≃ᴳ πS 0 X
π₂ = Π₂.π₂-Susp
∘eᴳ πS-Trunc-fuse-≤-iso 1 2 (⊙Susp X) ≤T-refl
πS-diag : (n : ℕ) → πS n (⊙EM (S n)) ≃ᴳ πS 0 X
πS-diag 0 = π₁
πS-diag 1 = π₂
πS-diag (S (S n)) = πS-diag (S n)
∘eᴳ Stable.stable (S n) n ≤-refl
module AboveDiagonal where
πS-above : ∀ (k n : ℕ) → (n < S k)
→ πS k (⊙EM n) ≃ᴳ 0ᴳ
πS-above k n lt =
contr-iso-0ᴳ (πS k (⊙EM n))
(inhab-prop-is-contr
[ idp^ (S k) ]
{{Trunc-preserves-level 0 (Ω^-level -1 (S k) _
(raise-level-≤T (lemma lt) (EM-level n)))}})
where lemma : {k n : ℕ} → n < k → ⟨ n ⟩ ≤T (⟨ k ⟩₋₂ +2+ -1)
lemma ltS = inl (! (+2+-comm _ -1))
lemma (ltSR lt) = ≤T-trans (lemma lt) (inr ltS)
module Spectrum where
private
module Π₂ = Pi2HSusp H-X
spectrum0 : ⊙Ω (⊙EM 1) ⊙≃ ⊙EM 0
spectrum0 =
⊙Ω (⊙EM 1)
⊙≃⟨ ≃-to-⊙≃ (Trunc=-equiv _ _) idp ⟩
⊙Trunc 0 (⊙Ω X)
⊙≃⟨ ≃-to-⊙≃ (unTrunc-equiv _) idp ⟩
⊙Ω X ⊙≃∎
spectrum1 : ⊙Ω (⊙EM 2) ⊙≃ ⊙EM 1
spectrum1 =
⊙Ω (⊙EM 2)
⊙≃⟨ ≃-to-⊙≃ (Trunc=-equiv _ _) idp ⟩
⊙Trunc 1 (⊙Ω (⊙Susp X))
⊙≃⟨ Π₂.⊙eq ⟩
⊙EM 1 ⊙≃∎
private
instance
sconn : (n : ℕ) → is-connected ⟨ S n ⟩ (de⊙ (⊙Susp^ (S n) X))
sconn n = ⊙Susp^-conn' (S n)
kle : (n : ℕ) → ⟨ S (S n) ⟩ ≤T ⟨ n ⟩ +2+ ⟨ n ⟩
kle O = inl idp
kle (S n) = ≤T-trans (≤T-ap-S (kle n))
(≤T-trans (inl (! (+2+-βr ⟨ n ⟩ ⟨ n ⟩)))
(inr ltS))
module FS (n : ℕ) =
FreudenthalEquiv ⟨ n ⟩₋₁ ⟨ S (S n) ⟩ (kle n)
(⊙Susp^ (S n) X)
spectrumSS : (n : ℕ)
→ ⊙Ω (⊙EM (S (S (S n)))) ⊙≃ ⊙EM (S (S n))
spectrumSS n =
⊙Ω (⊙EM (S (S (S n))))
⊙≃⟨ ≃-to-⊙≃ (Trunc=-equiv _ _) idp ⟩
⊙Trunc ⟨ S (S n) ⟩ (⊙Ω (⊙Susp^ (S (S n)) X))
⊙≃⟨ FS.⊙eq n ⊙⁻¹ ⟩
⊙EM (S (S n)) ⊙≃∎
abstract
spectrum : (n : ℕ) → ⊙Ω (⊙EM (S n)) ⊙≃ ⊙EM n
spectrum 0 = spectrum0
spectrum 1 = spectrum1
spectrum (S (S n)) = spectrumSS n
module EMExplicit {i} (G : AbGroup i) where
module HSpace = EM₁HSpace G
open EMImplicit HSpace.H-⊙EM₁ public
open BelowDiagonal public using (πS-below)
πS-diag : (n : ℕ) → πS n (⊙EM (S n)) ≃ᴳ AbGroup.grp G
πS-diag n = π₁-EM₁ (AbGroup.grp G) ∘eᴳ OnDiagonal.πS-diag n
open AboveDiagonal public using (πS-above)
open Spectrum public using (spectrum)
|
{
"alphanum_fraction": 0.4824656544,
"avg_line_length": 28.3692307692,
"ext": "agda",
"hexsha": "92b23093834931255ecd8dbc90a05acc79057090",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/EilenbergMacLane.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/EilenbergMacLane.agda",
"max_line_length": 86,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/EilenbergMacLane.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2594,
"size": 5532
}
|
------------------------------------------------------------------------------
-- Definition of the gcd of two natural numbers using the Euclid's algorithm
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.GCD.Total.GCD where
open import FOTC.Base
open import FOTC.Data.Nat
open import FOTC.Data.Nat.Inequalities
------------------------------------------------------------------------------
-- In GHC ≥ 7.2.1 the gcd is a total function, i.e. gcd 0 0 = 0.
postulate
gcd : D → D → D
gcd-eq : ∀ m n → gcd m n ≡
(if (iszero₁ n)
then m
else (if (iszero₁ m)
then n
else (if (gt m n)
then gcd (m ∸ n) n
else gcd m (n ∸ m))))
{-# ATP axiom gcd-eq #-}
|
{
"alphanum_fraction": 0.3807654563,
"avg_line_length": 33.9666666667,
"ext": "agda",
"hexsha": "0850c7b1655f2471132e2a59c5ca5ef8289e33b4",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/GCD/Total/GCD.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/GCD/Total/GCD.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/GCD/Total/GCD.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 215,
"size": 1019
}
|
{-# OPTIONS --warning=error --safe --without-K #-}
open import LogicalFormulae
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Functions.Definition
open import Setoids.Setoids
open import Setoids.DirectSum
open import Setoids.Subset
open import Graphs.Definition
open import Sets.FinSet.Definition
open import Sets.FinSet.Lemmas
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Sets.EquivalenceRelations
open import Graphs.PathGraph
module Graphs.UnionGraph where
unionGraph : {a b c d e f : _} {V' : Set a} {V : Setoid {a} {b} V'} (G : Graph c V) {W' : Set d} {W : Setoid {d} {e} W'} (H : Graph f W) → Graph (c ⊔ f) (directSumSetoid V W)
Graph._<->_ (unionGraph {c = c} {f = f} G H) (inl v) (inl v2) = embedLevel {c} {f} (Graph._<->_ G v v2)
Graph._<->_ (unionGraph G H) (inl v) (inr w) = False'
Graph._<->_ (unionGraph G H) (inr w) (inl v) = False'
Graph._<->_ (unionGraph {c = c} {f = f} G H) (inr w) (inr w2) = embedLevel {f} {c} (Graph._<->_ H w w2)
Graph.noSelfRelation (unionGraph G H) (inl v) (v=v ,, _) = Graph.noSelfRelation G v v=v
Graph.noSelfRelation (unionGraph G H) (inr w) (w=w ,, _) = Graph.noSelfRelation H w w=w
Graph.symmetric (unionGraph G H) {inl x} {inl y} (x=y ,, _) = Graph.symmetric G x=y ,, record {}
Graph.symmetric (unionGraph G H) {inr x} {inr y} (x=y ,, _) = Graph.symmetric H x=y ,, record {}
Graph.wellDefined (unionGraph G H) {inl x} {inl y} {inl z} {inl w} (x=y ,, _) (y=z ,, _) (z=w ,, _) = Graph.wellDefined G x=y y=z z=w ,, record {}
Graph.wellDefined (unionGraph G H) {inr x} {inr y} {inr z} {inr w} (x=y ,, _) (y=z ,, _) (z=w ,, _) = Graph.wellDefined H x=y y=z z=w ,, record {}
|
{
"alphanum_fraction": 0.6543723974,
"avg_line_length": 56.0333333333,
"ext": "agda",
"hexsha": "135230a1056a1bfe05451aa7e21d23817914c392",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Graphs/UnionGraph.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Graphs/UnionGraph.agda",
"max_line_length": 174,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Graphs/UnionGraph.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 606,
"size": 1681
}
|
{-# OPTIONS --show-implicit #-}
-- {-# OPTIONS -v tc:10 #-}
-- {-# OPTIONS -v tc.with:40 #-}
-- Andreas, 2014-11-26
-- Reported by twanvl
data Unit : Set where
unit : Unit
module Mod₁ (t : Unit) where
postulate Thing : Set
module Mod₂ (u : Unit) where
open Mod₁ unit
record Foo : Set where
field
foo : Thing → Thing
bar : Thing → Thing
bar a with foo a
... | x = x
-- checkInternal stumbles over
-- (λ u₁ → Thing) {u} : Setω
-- which is an internal representation of Thing, to be precise
-- Mod₂._.Thing u which expands to Mod₁.Thing unit
-- More complete transcript:
-- checking internal Thing : Setω
-- reduction on defined ident. in anonymous module
-- x = Issue1332.Mod₂._.Thing
-- v = Def Issue1332.Mod₁.Thing [Apply []r(Con Issue1332.Unit.unit(inductive)[] [])]
-- elimView of Thing
-- v = Def Issue1332.Mod₂._.Thing [Apply []r{Var 1 []}]
-- reduction on defined ident. in anonymous module
-- x = Issue1332.Mod₂._.Thing
-- v = Def Issue1332.Mod₁.Thing [Apply []r(Con Issue1332.Unit.unit(inductive)[] [])]
-- elimView (projections reduced) of Thing
-- reduction on defined ident. in anonymous module
-- x = Issue1332.Mod₂._.Thing
-- v = Lam (ArgInfo {argInfoHiding = NotHidden, argInfoRelevance = Relevant, argInfoColors = []}) (Abs "u" Def Issue1332.Mod₁.Thing [Apply []r(Con Issue1332.Unit.unit(inductive)[] [])])
-- checking spine
-- (
-- λ u₁ → Thing
-- :
-- (u₁ : Thing) → Set
-- )
-- [$ {u}]
-- :
-- Setω
-- /home/abel/agda/test/bugs/Issue1332.agda:23,5-24,16
-- Expected a visible argument, but found a hidden argument
-- when checking that the type (a : Thing) → Thing → Thing of the
-- generated with function is well-formed
|
{
"alphanum_fraction": 0.6548672566,
"avg_line_length": 27.3387096774,
"ext": "agda",
"hexsha": "0ae9a4e74375d0d4b98ca23ca0ccb7886a29b6c4",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1332.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1332.agda",
"max_line_length": 185,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1332.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 524,
"size": 1695
}
|
------------------------------------------------------------------------------
-- Totality of natural numbers addition
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.Data.Nat.AddTotality where
open import FOTC.Base
open import FOTC.Data.Nat
------------------------------------------------------------------------------
module InductionPrinciple where
-- Interactive proof using the induction principle for natural numbers.
+-N : ∀ {m n} → N m → N n → N (m + n)
+-N {m} {n} Nm Nn = N-ind A A0 is Nm
where
A : D → Set
A i = N (i + n)
A0 : A zero
A0 = subst N (sym (+-0x n)) Nn
is : ∀ {i} → A i → A (succ₁ i)
is {i} Ai = subst N (sym (+-Sx i n)) (nsucc Ai)
-- Combined proof using the induction principle.
--
-- The translation is
-- ∀ p. app₁(p,zero) →
-- (∀ x. app₁(n,x) → app₁(p,x) → app₁(p,appFn(succ,x))) → -- N-ind
-- (∀ x. app₁(n,x) → app₁(p,x))
----------------------------------------------------------------
-- ∀ x y. app₁(n,x) → app₁(n,y) → app₁(n,appFn(appFn(+,x),y)) -- +-N
-- Because the ATPs don't handle induction, them cannot prove this
-- postulate.
postulate +-N' : ∀ {m n} → N m → N n → N (m + n)
-- {-# ATP prove +-N' N-ind #-}
module Instance where
-- Interactive proof using an instance of the induction principle.
+-N-ind : ∀ {n} →
N (zero + n) →
(∀ {m} → N (m + n) → N (succ₁ m + n)) →
∀ {m} → N m → N (m + n)
+-N-ind {n} = N-ind (λ i → N (i + n))
+-N : ∀ {m n} → N m → N n → N (m + n)
+-N {n = n} Nm Nn = +-N-ind A0 is Nm
where
A0 : N (zero + n)
A0 = subst N (sym (+-0x n)) Nn
is : ∀ {m} → N (m + n) → N (succ₁ m + n)
is {m} Ai = subst N (sym (+-Sx m n)) (nsucc Ai)
-- Combined proof using an instance of the induction principle.
postulate +-N' : ∀ {m n} → N m → N n → N (m + n)
{-# ATP prove +-N' +-N-ind #-}
|
{
"alphanum_fraction": 0.4294507576,
"avg_line_length": 32.4923076923,
"ext": "agda",
"hexsha": "d71e6a9ab42479cf2456e8b882bdbd094da09aca",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/Data/Nat/AddTotality.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/Data/Nat/AddTotality.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/Data/Nat/AddTotality.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 669,
"size": 2112
}
|
{-# OPTIONS --without-K --rewriting #-}
open import lib.Base
open import lib.Function
open import lib.NType
open import lib.PathGroupoid
open import lib.Relation
open import lib.types.Coproduct
open import lib.types.Empty
module lib.types.Nat where
infixl 80 _+_
_+_ : ℕ → ℕ → ℕ
0 + n = n
(S m) + n = S (m + n)
{-# BUILTIN NATPLUS _+_ #-}
abstract
+-unit-r : (m : ℕ) → m + 0 == m
+-unit-r 0 = idp
+-unit-r (S m) = ap S (+-unit-r m)
+-βr : (m n : ℕ) → m + (S n) == S (m + n)
+-βr 0 n = idp
+-βr (S m) n = ap S (+-βr m n)
+-comm : (m n : ℕ) → m + n == n + m
+-comm m 0 = +-unit-r m
+-comm m (S n) = +-βr m n ∙ ap S (+-comm m n)
+-assoc : (k m n : ℕ) → (k + m) + n == k + (m + n)
+-assoc 0 m n = idp
+-assoc (S k) m n = ap S (+-assoc k m n)
-- the [+] is like [ℕ-S^]
ℕ-S^' : ℕ → ℕ → ℕ
ℕ-S^' O n = n
ℕ-S^' (S m) n = ℕ-S^' m (S n)
ℕ-pred : ℕ → ℕ
ℕ-pred 0 = 0
ℕ-pred (S n) = n
abstract
ℕ-S-is-inj : is-inj (S :> (ℕ → ℕ))
ℕ-S-is-inj n m p = ap ℕ-pred p
ℕ-S-≠ : ∀ {n m : ℕ} (p : n ≠ m) → S n ≠ S m :> ℕ
ℕ-S-≠ {n} {m} p = p ∘ ℕ-S-is-inj n m
private
ℕ-S≠O-type : ℕ → Type₀
ℕ-S≠O-type O = Empty
ℕ-S≠O-type (S n) = Unit
ℕ-S≠O : (n : ℕ) → S n ≠ O
ℕ-S≠O n p = transport ℕ-S≠O-type p unit
ℕ-O≠S : (n : ℕ) → (O ≠ S n)
ℕ-O≠S n p = ℕ-S≠O n (! p)
ℕ-has-dec-eq : has-dec-eq ℕ
ℕ-has-dec-eq O O = inl idp
ℕ-has-dec-eq O (S n) = inr (ℕ-O≠S n)
ℕ-has-dec-eq (S n) O = inr (ℕ-S≠O n)
ℕ-has-dec-eq (S n) (S m) with ℕ-has-dec-eq n m
ℕ-has-dec-eq (S n) (S m) | inl p = inl (ap S p)
ℕ-has-dec-eq (S n) (S m) | inr ¬p = inr (ℕ-S-≠ ¬p)
ℕ-is-set : is-set ℕ
ℕ-is-set = dec-eq-is-set ℕ-has-dec-eq
instance
ℕ-level : {n : ℕ₋₂} → has-level (S (S n)) ℕ
ℕ-level {⟨-2⟩} = ℕ-is-set
ℕ-level {n = S n} = raise-level (S (S n)) ℕ-level
{- Inequalities -}
infix 40 _<_ _≤_
data _<_ : ℕ → ℕ → Type₀ where
ltS : {m : ℕ} → m < (S m)
ltSR : {m n : ℕ} → m < n → m < (S n)
_≤_ : ℕ → ℕ → Type₀
m ≤ n = Coprod (m == n) (m < n)
-- experimental: [lteE] [lteS] [lteSR]
lteE : {m : ℕ} → m ≤ m
lteE = inl idp
lteS : {m : ℕ} → m ≤ S m
lteS = inr ltS
lteSR : {m n : ℕ} → m ≤ n → m ≤ (S n)
lteSR (inl idp) = lteS
lteSR (inr lt) = inr (ltSR lt)
-- properties of [<]
O<S : (m : ℕ) → O < S m
O<S O = ltS
O<S (S m) = ltSR (O<S m)
O≤ : (m : ℕ) → O ≤ m
O≤ O = inl idp
O≤ (S m) = inr (O<S m)
≮O : ∀ n → ¬ (n < O)
≮O _ ()
S≰O : ∀ n → ¬ (S n ≤ O)
S≰O _ (inl ())
S≰O _ (inr ())
<-trans : {m n k : ℕ} → m < n → n < k → m < k
<-trans lt₁ ltS = ltSR lt₁
<-trans lt₁ (ltSR lt₂) = ltSR (<-trans lt₁ lt₂)
≤-refl : {m : ℕ} → m ≤ m
≤-refl = lteE
≤-trans : {m n k : ℕ} → m ≤ n → n ≤ k → m ≤ k
≤-trans (inl idp) lte₂ = lte₂
≤-trans lte₁ (inl idp) = lte₁
≤-trans (inr lt₁) (inr lt₂) = inr (<-trans lt₁ lt₂)
private
test₀ : {m n : ℕ} (m≤n : m ≤ n) → lteSR m≤n == ≤-trans m≤n lteS
test₀ (inl idp) = idp
test₀ (inr lt) = idp
<-ap-S : {m n : ℕ} → m < n → S m < S n
<-ap-S ltS = ltS
<-ap-S (ltSR lt) = ltSR (<-ap-S lt)
≤-ap-S : {m n : ℕ} → m ≤ n → S m ≤ S n
≤-ap-S (inl p) = inl (ap S p)
≤-ap-S (inr lt) = inr (<-ap-S lt)
<-cancel-S : {m n : ℕ} → S m < S n → m < n
<-cancel-S ltS = ltS
<-cancel-S (ltSR lt) = <-trans ltS lt
≤-cancel-S : {m n : ℕ} → S m ≤ S n → m ≤ n
≤-cancel-S (inl p) = inl (ap ℕ-pred p)
≤-cancel-S (inr lt) = inr (<-cancel-S lt)
<-dec : Decidable _<_
<-dec _ O = inr (≮O _)
<-dec O (S m) = inl (O<S m)
<-dec (S n) (S m) with <-dec n m
<-dec (S n) (S m) | inl p = inl (<-ap-S p)
<-dec (S n) (S m) | inr ¬p = inr (¬p ∘ <-cancel-S)
≤-dec : Decidable _≤_
≤-dec O m = inl (O≤ m) -- important for the current cohomology development
≤-dec (S n) O = inr (S≰O n)
≤-dec (S n) (S m) with ≤-dec n m
≤-dec (S n) (S m) | inl p = inl (≤-ap-S p)
≤-dec (S n) (S m) | inr ¬p = inr (¬p ∘ ≤-cancel-S)
abstract
<-to-≠ : {m n : ℕ} → m < n → m ≠ n
<-to-≠ {m = O} ltS = ℕ-O≠S _
<-to-≠ {m = O} (ltSR lt) = ℕ-O≠S _
<-to-≠ {m = S m} {n = O} ()
<-to-≠ {m = S m} {n = S n} lt = ℕ-S-≠ (<-to-≠ (<-cancel-S lt))
<-to-≱ : {m n : ℕ} → m < n → ¬ (n ≤ m)
<-to-≱ m<n (inl idp) = <-to-≠ m<n idp
<-to-≱ m<n (inr n<m) = <-to-≠ (<-trans m<n n<m) idp
<-has-all-paths : {m n : ℕ} → has-all-paths (m < n)
<-has-all-paths = <-has-all-paths' idp where
<-has-all-paths' : {m n₁ n₂ : ℕ} (eqn : n₁ == n₂) (lt₁ : m < n₁) (lt₂ : m < n₂)
→ PathOver (λ n → m < n) eqn lt₁ lt₂
<-has-all-paths' eqn ltS ltS = transport (λ eqn₁ → PathOver (_<_ _) eqn₁ ltS ltS)
(prop-has-all-paths idp eqn) idp
<-has-all-paths' idp ltS (ltSR lt₂) = ⊥-rec (<-to-≠ lt₂ idp)
<-has-all-paths' idp (ltSR lt₁) ltS = ⊥-rec (<-to-≠ lt₁ idp)
<-has-all-paths' idp (ltSR lt₁) (ltSR lt₂) = ap ltSR (<-has-all-paths' idp lt₁ lt₂)
instance
<-is-prop : {m n : ℕ} → is-prop (m < n)
<-is-prop = all-paths-is-prop <-has-all-paths
≤-has-all-paths : {m n : ℕ} → has-all-paths (m ≤ n)
≤-has-all-paths = λ{
(inl eq₁) (inl eq₂) → ap inl (prop-has-all-paths eq₁ eq₂);
(inl eq) (inr lt) → ⊥-rec (<-to-≠ lt eq);
(inr lt) (inl eq) → ⊥-rec (<-to-≠ lt eq);
(inr lt₁) (inr lt₂) → ap inr (<-has-all-paths lt₁ lt₂)}
instance
≤-is-prop : {m n : ℕ} → is-prop (m ≤ n)
≤-is-prop = all-paths-is-prop ≤-has-all-paths
<-+-l : {m n : ℕ} (k : ℕ) → m < n → (k + m) < (k + n)
<-+-l O lt = lt
<-+-l (S k) lt = <-ap-S (<-+-l k lt)
≤-+-l : {m n : ℕ} (k : ℕ) → m ≤ n → (k + m) ≤ (k + n)
≤-+-l k (inl p) = inl (ap (λ t → k + t) p)
≤-+-l k (inr lt) = inr (<-+-l k lt)
<-+-r : {m n : ℕ} (k : ℕ) → m < n → (m + k) < (n + k)
<-+-r k ltS = ltS
<-+-r k (ltSR lt) = ltSR (<-+-r k lt)
≤-+-r : {m n : ℕ} (k : ℕ) → m ≤ n → (m + k) ≤ (n + k)
≤-+-r k (inl p) = inl (ap (λ t → t + k) p)
≤-+-r k (inr lt) = inr (<-+-r k lt)
<-witness : {m n : ℕ} → (m < n) → Σ ℕ (λ k → S k + m == n)
<-witness ltS = (O , idp)
<-witness (ltSR lt) = let w' = <-witness lt in (S (fst w') , ap S (snd w'))
≤-witness : {m n : ℕ} → (m ≤ n) → Σ ℕ (λ k → k + m == n)
≤-witness (inl p) = (O , p)
≤-witness (inr lt) = let w' = <-witness lt in (S (fst w') , snd w')
-- Double
infix 120 _*2
_*2 : ℕ → ℕ
O *2 = O
(S n) *2 = S (S (n *2))
*2-increasing : (m : ℕ) → (m ≤ m *2)
*2-increasing O = inl idp
*2-increasing (S m) = ≤-trans (≤-ap-S (*2-increasing m)) (inr ltS)
*2-monotone-< : {m n : ℕ} → m < n → m *2 < n *2
*2-monotone-< ltS = ltSR ltS
*2-monotone-< (ltSR lt) = ltSR (ltSR (*2-monotone-< lt))
*2-monotone-≤ : {m n : ℕ} → m ≤ n → m *2 ≤ n *2
*2-monotone-≤ (inl p) = inl (ap _*2 p)
*2-monotone-≤ (inr lt) = inr (*2-monotone-< lt)
-- Trichotomy
ℕ-trichotomy : (m n : ℕ) → (m == n) ⊔ ((m < n) ⊔ (n < m))
ℕ-trichotomy O O = inl idp
ℕ-trichotomy O (S n) = inr (inl (O<S n))
ℕ-trichotomy (S m) O = inr (inr (O<S m))
ℕ-trichotomy (S m) (S n) with ℕ-trichotomy m n
ℕ-trichotomy (S m) (S n) | inl m=n = inl (ap S m=n)
ℕ-trichotomy (S m) (S n) | inr (inl m<n) = inr (inl (<-ap-S m<n))
ℕ-trichotomy (S m) (S n) | inr (inr m>n) = inr (inr (<-ap-S m>n))
|
{
"alphanum_fraction": 0.4735692442,
"avg_line_length": 27.0354330709,
"ext": "agda",
"hexsha": "ea28161e2d811dc933f10d989e15971d9173839c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/Nat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/Nat.agda",
"max_line_length": 87,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/Nat.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3442,
"size": 6867
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Basic definitions for morphisms between algebraic structures
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary.Core
module Relation.Binary.Morphism.Definitions
{a} (A : Set a) -- The domain of the morphism
{b} (B : Set b) -- The codomain of the morphism
where
open import Algebra.Core
open import Function.Base
open import Level using (Level)
private
variable
ℓ₁ ℓ₂ : Level
------------------------------------------------------------------------
-- Basic definitions
Homomorphic₂ : Rel A ℓ₁ → Rel B ℓ₂ → (A → B) → Set _
Homomorphic₂ _∼₁_ _∼₂_ ⟦_⟧ = ∀ {x y} → x ∼₁ y → ⟦ x ⟧ ∼₂ ⟦ y ⟧
------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 1.3
Morphism : Set _
Morphism = A → B
{-# WARNING_ON_USAGE Morphism
"Warning: Morphism was deprecated in v1.3.
Please use the standard function notation (e.g. A → B) instead."
#-}
|
{
"alphanum_fraction": 0.4829229547,
"avg_line_length": 26.2291666667,
"ext": "agda",
"hexsha": "9b7793982ae5ee6a7fbf5720f6dc34f737f7ee05",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Morphism/Definitions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Morphism/Definitions.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Morphism/Definitions.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 281,
"size": 1259
}
|
open import Common.Equality
open import Common.Prelude renaming (Nat to ℕ)
infixr 4 _,_
infix 4 ,_
record Σ (A : Set) (B : A → Set) : Set where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
open Σ
,_ : {A : Set} {B : A → Set} {x : A} → B x → Σ A B
, y = _ , y
should-be-accepted : Σ ℕ λ i → Σ ℕ λ j → Σ (i ≡ j) λ _ → Σ ℕ λ k → j ≡ k
should-be-accepted = 5 , , refl , , refl
_⊕_ : ℕ → ℕ → ℕ
_⊕_ = _+_
_↓ : ℕ → ℕ
_↓ = pred
infixl 6 _⊕_
infix 6 _↓
should-also-be-accepted : ℕ
should-also-be-accepted = 1 ⊕ 0 ↓ ⊕ 1 ↓ ⊕ 1 ⊕ 1 ↓
parses-correctly : should-also-be-accepted ≡ 1
parses-correctly = refl
|
{
"alphanum_fraction": 0.5725806452,
"avg_line_length": 17.7142857143,
"ext": "agda",
"hexsha": "e1382697eb692a7d0db16e1e47e3cc8bd3f79425",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Prefix-Right-Postfix-Left.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Prefix-Right-Postfix-Left.agda",
"max_line_length": 72,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Prefix-Right-Postfix-Left.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 277,
"size": 620
}
|
module Prelude.Level where
postulate
Level : Set
zero : Level
suc : Level → Level
max : Level → Level → Level
{-# BUILTIN LEVEL Level #-}
{-# BUILTIN LEVELZERO zero #-}
{-# BUILTIN LEVELSUC suc #-}
{-# BUILTIN LEVELMAX max #-}
|
{
"alphanum_fraction": 0.604743083,
"avg_line_length": 19.4615384615,
"ext": "agda",
"hexsha": "7ad740be5b55d10b3d18262aab86eb910d0141e8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/epic/Prelude/Level.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/epic/Prelude/Level.agda",
"max_line_length": 31,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/epic/Prelude/Level.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 71,
"size": 253
}
|
module Issue705 where
module A where
data A : Set where
open A
open A
|
{
"alphanum_fraction": 0.7297297297,
"avg_line_length": 9.25,
"ext": "agda",
"hexsha": "c33eff7b08d9908837fb08f4c97824b3a81914ec",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/Issue705.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/Issue705.agda",
"max_line_length": 21,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "np/agda-git-experiment",
"max_stars_repo_path": "test/fail/Issue705.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 21,
"size": 74
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Instance.FinSetoids where
-- Category of Finite Setoids, as a sub-category of Setoids
open import Level
open import Data.Fin.Base using (Fin)
open import Data.Nat.Base using (ℕ)
open import Data.Product using (Σ)
open import Function.Bundles using (Inverse)
open import Relation.Unary using (Pred)
open import Relation.Binary.Bundles using (Setoid; module Setoid)
import Relation.Binary.PropositionalEquality as ≡
open import Categories.Category.Core using (Category)
open import Categories.Category.Construction.ObjectRestriction
open import Categories.Category.Instance.Setoids
-- The predicate that will be used
IsFiniteSetoid : {c ℓ : Level} → Pred (Setoid c ℓ) (c ⊔ ℓ)
IsFiniteSetoid X = Σ ℕ (λ n → Inverse X (≡.setoid (Fin n)))
-- The actual Category
FinSetoids : (c ℓ : Level) → Category (suc (c ⊔ ℓ)) (c ⊔ ℓ) (c ⊔ ℓ)
FinSetoids c ℓ = ObjectRestriction (Setoids c ℓ) IsFiniteSetoid
|
{
"alphanum_fraction": 0.7544409613,
"avg_line_length": 35.4444444444,
"ext": "agda",
"hexsha": "8c8099bb401b09ceb3d9029855698ba52aab91ec",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Instance/FinSetoids.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Instance/FinSetoids.agda",
"max_line_length": 67,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Instance/FinSetoids.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 264,
"size": 957
}
|
module HeapPropertiesDefs where
open import Silica
import Relation.Binary.PropositionalEquality as Eq
import Context
open import Data.List.Relation.Unary.All
import Relation.Unary
import Data.List.Properties
import Data.List
open import Data.Sum
open import Data.Maybe
open import Data.List.Membership.DecSetoid ≡-decSetoid
open import Data.List.Relation.Unary.Any
open import Data.Empty
open TypeEnvContext
--============= Consistency ==============
-- Relates typing environments and object references to lists of all types of possible references.
-- For now, this is ordered; perhaps that is too strong and I should use <Set> instead.
data _⟷_ : Type → Type → Set where
symCompat : ∀ {T₁ T₂ : Type}
→ T₁ ⟷ T₂
---------
→ T₂ ⟷ T₁
unownedCompat : ∀ {C C' : Id}
→ ∀ {perm perm' : Perm}
→ perm ≡ Unowned
→ C ≡ C'
--------------------------------------------------------------
→ contractType (tc C perm) ⟷ contractType (tc C' perm')
sharedCompat : ∀ {t t' : Tc}
→ Tc.perm t ≡ Shared
→ Tc.perm t' ≡ Shared
→ Tc.contractName t ≡ Tc.contractName t'
----------------
→ contractType t ⟷ contractType t'
voidCompat : ----------------------
base Void ⟷ base Void
booleanCompat : ----------------------
base Boolean ⟷ base Boolean
-- ============= DEFINITIONS OF HEAP CONSISTENCY ===============
ctxTypes : TypeEnv → ObjectRef → List Type
ctxTypes ∅ _ = []
ctxTypes (Δ , o' ⦂ T) o with o ≟ o'
... | yes eq = [ T ]
... | no nEq = ctxTypes Δ o
envTypesHelper : IndirectRefEnv → TypeEnv → ObjectRef → List Type
envTypesHelper IndirectRefContext.∅ Δ o = []
envTypesHelper (IndirectRefContext._,_⦂_ ρ l (objVal o')) Δ o with (o' ≟ o) | (TypeEnvContext.lookup Δ l)
... | yes _ | just T = (T ∷ (envTypesHelper ρ Δ o))
... | _ | _ = envTypesHelper ρ Δ o
envTypesHelper (IndirectRefContext._,_⦂_ ρ l v) Δ o = envTypesHelper ρ Δ o
makeEnvTypesList : RuntimeEnv → StaticEnv → ObjectRef → List Type
makeEnvTypesList Σ Δ o = envTypesHelper (RuntimeEnv.ρ Σ) (StaticEnv.locEnv Δ) o
-- The List IndirectRef is a list of locations that have already been used in previous calls (and are forbidden to be used again).
data EnvTypes : RuntimeEnv → StaticEnv → ObjectRef → List IndirectRef → List Type → Set where
envTypesConcatMatchFound : ∀ {R l T μ ρ φ ψ forbiddenRefs}
→ (Δ : StaticEnv)
→ (o : ObjectRef)
→ EnvTypes (re μ ρ φ ψ) Δ o (l ∷ forbiddenRefs) R
→ (StaticEnv.locEnv Δ) ∋ l ⦂ T
→ l ∉ forbiddenRefs
→ EnvTypes (re μ (ρ IndirectRefContext., l ⦂ (objVal o)) φ ψ) Δ o forbiddenRefs (T ∷ R)
envTypesConcatMatchNotFound : ∀ {R l μ ρ φ ψ forbiddenRefs}
→ (Δ : StaticEnv)
→ (o : ObjectRef)
→ EnvTypes (re μ ρ φ ψ) Δ o forbiddenRefs R
→ l ∉dom (StaticEnv.locEnv Δ)
→ EnvTypes (re μ (ρ IndirectRefContext., l ⦂ (objVal o)) φ ψ) Δ o forbiddenRefs R
envTypesConcatMismatch : ∀ {R l μ ρ φ ψ forbiddenRefs}
→ (Δ : StaticEnv)
→ (o o' : ObjectRef)
→ o ≢ o'
→ EnvTypes (re μ ρ φ ψ) Δ o forbiddenRefs R -- Mismatch in ρ, so keep looking in the rest of ρ
→ EnvTypes (re μ (ρ IndirectRefContext., l ⦂ (objVal o')) φ ψ) Δ o forbiddenRefs R
envTypesEmpty : ∀ {μ φ ψ Δ o forbiddenRefs}
→ EnvTypes (re μ Context.∅ φ ψ) Δ o forbiddenRefs []
record RefTypes (Σ : RuntimeEnv) (Δ : StaticEnv) (o : ObjectRef) : Set where
field
oTypesList : List Type -- Corresponds to types from the o's in Δ.
oTypes : ctxTypes (StaticEnv.objEnv Δ) o ≡ oTypesList
envTypesList : List Type
envTypes : EnvTypes Σ Δ o [] envTypesList
fieldTypesList : List Type -- Corresponds to types from fields inside μ
data IsConnectedTypeList : List Type → Set where
emptyTypeList : ∀ {D}
→ D ≡ []
----------
→ IsConnectedTypeList D
consTypeList : ∀ {T D}
→ All (λ T' → (T ⟷ T')) D
→ IsConnectedTypeList D
------------------------
→ IsConnectedTypeList (T ∷ D)
data IsConnectedEnvAndField (Σ : RuntimeEnv) (Δ : StaticEnv) (o : ObjectRef) : RefTypes Σ Δ o → Set where
envTypesConnected : (R : RefTypes Σ Δ o)
→ IsConnectedTypeList (RefTypes.envTypesList R)
→ IsConnectedTypeList (RefTypes.fieldTypesList R)
→ All (λ T → All (λ T' → T ⟷ T') (RefTypes.fieldTypesList R)) (RefTypes.envTypesList R) -- all of the l types are connected to all of the field types
----------------------------------------------
→ IsConnectedEnvAndField Σ Δ o R
envFieldInversion1 : ∀ {Σ Δ o R}
→ IsConnectedEnvAndField Σ Δ o R
→ IsConnectedTypeList (RefTypes.envTypesList R)
envFieldInversion1 (envTypesConnected R env f envField) = env
envFieldInversion2 : ∀ {Σ Δ o R}
→ IsConnectedEnvAndField Σ Δ o R
→ IsConnectedTypeList (RefTypes.fieldTypesList R)
envFieldInversion2 (envTypesConnected R env f envField) = f
envFieldInversion3 : ∀ {Σ Δ o R}
→ IsConnectedEnvAndField Σ Δ o R
→ All (λ T → All (λ T' → T ⟷ T') (RefTypes.fieldTypesList R)) (RefTypes.envTypesList R)
envFieldInversion3 (envTypesConnected R env f envField) = envField
data IsConnected (Σ : RuntimeEnv) (Δ : StaticEnv) (o : ObjectRef) : RefTypes Σ Δ o → Set where
isConnected : (R : RefTypes Σ Δ o)
→ IsConnectedTypeList (RefTypes.oTypesList R)
→ All (λ T → All (λ T' → T ⟷ T') (RefTypes.fieldTypesList R)) (RefTypes.oTypesList R) -- all of the o types are connected to all of the field types
→ All (λ T → All (λ T' → T ⟷ T') (RefTypes.envTypesList R)) (RefTypes.oTypesList R) -- all of the o types are connected to all of the l types
→ IsConnectedEnvAndField Σ Δ o R
----------------------------------------------
→ IsConnected Σ Δ o R
refFieldTypesHelper : ObjectRefEnv → StaticEnv → ObjectRef → List Type
refFieldTypesHelper ObjectRefContext.∅ Δ o = []
refFieldTypesHelper (ObjectRefContext._,_⦂_ μ o' obj) Δ o = refFieldTypesHelper μ Δ o -- TODO; this is bogus!
refFieldTypes : RuntimeEnv → StaticEnv → ObjectRef → List Type
refFieldTypes Σ Δ o = refFieldTypesHelper (RuntimeEnv.μ Σ) Δ o
-- ================================ OVERALL HEAP CONSISTENCY ===========================
data ReferenceConsistency : RuntimeEnv → StaticEnv → ObjectRef → Set where
referencesConsistent : ∀ {Σ : RuntimeEnv}
→ ∀ {Δ : StaticEnv}
→ ∀ {o : ObjectRef}
→ ∃[ RT ] (IsConnected Σ Δ o RT)
-- TODO: add subtype constraint: C <: (refTypes Σ Δ o)
---------------------------
→ ReferenceConsistency Σ Δ o
-- Inversion for reference consistency: connectivity
referencesConsistentImpliesConnectivity : ∀ {Σ Δ o}
→ ReferenceConsistency Σ Δ o
→ ∃[ RT ] (IsConnected Σ Δ o RT)
referencesConsistentImpliesConnectivity (referencesConsistent ic) = ic
------------ Global Consistency -----------
-- I'm going to need the fact that if an expression typechecks, and I find a location in it, then the location can be looked
-- up in the runtime environment. But every location in the expression has to also be in the typing context, so I can state this
-- without talking about expressions at all.
data _&_ok : RuntimeEnv → StaticEnv → Set where
ok : ∀ {Σ : RuntimeEnv}
→ ∀ (Δ : StaticEnv)
→ (∀ (l : IndirectRef) → ((StaticEnv.locEnv Δ) ∋ l ⦂ base Void → (RuntimeEnv.ρ Σ IndirectRefContext.∋ l ⦂ voidVal)))
→ (∀ (l : IndirectRef) → ((StaticEnv.locEnv Δ) ∋ l ⦂ base Boolean → ∃[ b ] (RuntimeEnv.ρ Σ IndirectRefContext.∋ l ⦂ boolVal b)))
→ (∀ (l : IndirectRef)
→ ∀ (T : Tc)
→ (StaticEnv.locEnv Δ) ∋ l ⦂ (contractType T) -- If a location is in Δ and has contract reference type...
→ ∃[ o ] (RuntimeEnv.ρ Σ IndirectRefContext.∋ l ⦂ objVal o × (o ObjectRefContext.∈dom (RuntimeEnv.μ Σ))) -- then location can be looked up in Σ...
)
→ (∀ o → o ObjectRefContext.∈dom (RuntimeEnv.μ Σ) → ReferenceConsistency Σ Δ o)
-- TODO: add remaining antecedents
---------------------------
→ Σ & Δ ok
-- Inversion for global consistency: reference consistency
refConsistency : ∀ {Σ : RuntimeEnv}
→ ∀ {Δ : StaticEnv}
→ ∀ {o : ObjectRef}
→ ∀ {l : IndirectRef}
→ Σ & Δ ok
→ (∀ o → o ObjectRefContext.∈dom RuntimeEnv.μ Σ → ReferenceConsistency Σ Δ o)
refConsistency (ok Δ _ _ _ rc) = rc
-- Inversion for global consistency : location lookup for a particular location
-- If l is in Δ and Σ & Δ ok, then l can be found in Σ.ρ.
locLookup : ∀ {Σ : RuntimeEnv}
→ ∀ {Δ : StaticEnv}
→ ∀ {l : IndirectRef}
→ ∀ {T : Tc}
→ Σ & Δ ok
→ (StaticEnv.locEnv Δ) ∋ l ⦂ (contractType T)
→ ∃[ o ] (RuntimeEnv.ρ Σ IndirectRefContext.∋ l ⦂ objVal o × (o ObjectRefContext.∈dom (RuntimeEnv.μ Σ)))
locLookup (ok Δ _ _ lContainment rc) lInDelta@(Z {Δ'} {x} {contractType a}) = lContainment x a lInDelta
locLookup (ok Δ _ _ lContainment rc) lInDelta@(S {Δ'} {x} {y} {contractType a} {b} nEq xInRestOfDelta) = lContainment x a lInDelta
voidLookup : ∀ {Σ : RuntimeEnv}
→ ∀ {Δ : StaticEnv}
→ ∀ {l : IndirectRef}
→ Σ & Δ ok
→ (StaticEnv.locEnv Δ) ∋ l ⦂ base Void
→ (RuntimeEnv.ρ Σ IndirectRefContext.∋ l ⦂ voidVal)
voidLookup (ok Δ voidContainment _ _ _) voidType@(Z {Δ'} {l} {a}) = voidContainment l voidType
voidLookup (ok Δ voidContainment _ _ _) voidType@(S {Δ'} {l} {y} {a} {b} nEq lInRestOfDelta) = voidContainment l voidType
boolLookup : ∀ {Σ : RuntimeEnv}
→ ∀ {Δ : StaticEnv}
→ ∀ {l : IndirectRef}
→ Σ & Δ ok
→ (StaticEnv.locEnv Δ) ∋ l ⦂ base Boolean
→ ∃[ b ] (RuntimeEnv.ρ Σ IndirectRefContext.∋ l ⦂ boolVal b)
boolLookup (ok Δ _ boolContainment _ _) boolType@(Z {Δ'} {l} {a}) = boolContainment l boolType
boolLookup (ok Δ _ boolContainment _ _) boolType@(S {Δ'} {l} {y} {a} {b} nEq lInRestOfDelta) = boolContainment l boolType
|
{
"alphanum_fraction": 0.5270153634,
"avg_line_length": 47.4836065574,
"ext": "agda",
"hexsha": "cabd5b92d8c1396ad756f9dcd89aa7375bf57da2",
"lang": "Agda",
"max_forks_count": 11,
"max_forks_repo_forks_event_max_datetime": "2021-06-09T18:40:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-05-24T08:20:52.000Z",
"max_forks_repo_head_hexsha": "bda0fac3aadfbce2eacdb89095d100125fa4fdd6",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "ivoysey/Obsidian",
"max_forks_repo_path": "formalization/heapPropertiesDefs.agda",
"max_issues_count": 259,
"max_issues_repo_head_hexsha": "bda0fac3aadfbce2eacdb89095d100125fa4fdd6",
"max_issues_repo_issues_event_max_datetime": "2022-03-29T18:20:05.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-08-18T19:50:41.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "ivoysey/Obsidian",
"max_issues_repo_path": "formalization/heapPropertiesDefs.agda",
"max_line_length": 173,
"max_stars_count": 79,
"max_stars_repo_head_hexsha": "bda0fac3aadfbce2eacdb89095d100125fa4fdd6",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "ivoysey/Obsidian",
"max_stars_repo_path": "formalization/heapPropertiesDefs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-27T10:34:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-08-19T16:24:10.000Z",
"num_tokens": 3137,
"size": 11586
}
|
open import Issue983-Bad
|
{
"alphanum_fraction": 0.84,
"avg_line_length": 12.5,
"ext": "agda",
"hexsha": "740bf5594a55cc48cb05f4ae2d6cd72d73dab0a4",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue983.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue983.agda",
"max_line_length": 24,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue983.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 7,
"size": 25
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.ZCohomology.Groups.Sn where
open import Cubical.ZCohomology.Base
open import Cubical.ZCohomology.Properties
open import Cubical.ZCohomology.Groups.Unit
open import Cubical.ZCohomology.Groups.Connected
open import Cubical.ZCohomology.GroupStructure
open import Cubical.ZCohomology.Groups.Prelims
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.GroupoidLaws
open import Cubical.HITs.Pushout
open import Cubical.HITs.Sn
open import Cubical.HITs.S1
open import Cubical.HITs.Susp
open import Cubical.HITs.SetTruncation renaming (rec to sRec ; elim to sElim ; elim2 to sElim2 ; map to sMap)
open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec ; elim to pElim ; elim2 to pElim2 ; ∥_∥ to ∥_∥₁ ; ∣_∣ to ∣_∣₁)
hiding (map)
open import Cubical.Relation.Nullary
open import Cubical.Data.Sum hiding (map)
open import Cubical.Data.Empty renaming (rec to ⊥-rec)
open import Cubical.Data.Bool
open import Cubical.Data.Sigma
open import Cubical.Data.Int renaming (_+_ to _+ℤ_; +-comm to +ℤ-comm ; +-assoc to +ℤ-assoc)
open import Cubical.Data.Nat
open import Cubical.HITs.Truncation renaming (elim to trElim ; map to trMap ; rec to trRec)
open import Cubical.Data.Unit
open import Cubical.Homotopy.Connected
open import Cubical.Algebra.Group
infixr 31 _□_
_□_ : _
_□_ = compGroupIso
open GroupEquiv
open vSES
open GroupIso
open GroupHom
open BijectionIso
Sn-connected : (n : ℕ) (x : typ (S₊∙ (suc n))) → ∥ pt (S₊∙ (suc n)) ≡ x ∥₁
Sn-connected zero = toPropElim (λ _ → propTruncIsProp) ∣ refl ∣₁
Sn-connected (suc zero) = suspToPropElim base (λ _ → propTruncIsProp) ∣ refl ∣₁
Sn-connected (suc (suc n)) = suspToPropElim north (λ _ → propTruncIsProp) ∣ refl ∣₁
suspensionAx-Sn : (n m : ℕ) → GroupIso (coHomGr (2 + n) (S₊ (2 + m)))
(coHomGr (suc n) (S₊ (suc m)))
suspensionAx-Sn n m =
Iso+Hom→GrIso
(compIso (setTruncIso (invIso funSpaceSuspIso)) helperIso)
funIsHom
where
helperIso : Iso ∥ (Σ[ x ∈ coHomK (2 + n) ]
Σ[ y ∈ coHomK (2 + n) ]
(S₊ (suc m) → x ≡ y)) ∥₂
(coHom (suc n) (S₊ (suc m)))
Iso.fun helperIso =
sRec setTruncIsSet
(uncurry
(coHomK-elim _
(λ _ → isOfHLevelΠ (2 + n)
λ _ → isOfHLevelPlus' {n = n} 2 setTruncIsSet)
(uncurry
(coHomK-elim _
(λ _ → isOfHLevelΠ (2 + n)
λ _ → isOfHLevelPlus' {n = n} 2 setTruncIsSet)
λ f → ∣ (λ x → ΩKn+1→Kn (suc n) (f x)) ∣₂))))
Iso.inv helperIso =
sMap λ f → (0ₖ _) , (0ₖ _ , λ x → Kn→ΩKn+1 (suc n) (f x))
Iso.rightInv helperIso =
coHomPointedElim _ (ptSn (suc m)) (λ _ → setTruncIsSet _ _)
λ f fId → cong ∣_∣₂ (funExt (λ x → Iso.leftInv (Iso-Kn-ΩKn+1 _) (f x)))
Iso.leftInv helperIso =
sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
(uncurry
(coHomK-elim _
(λ _ → isProp→isOfHLevelSuc (suc n) (isPropΠ λ _ → setTruncIsSet _ _))
(uncurry
(coHomK-elim _
(λ _ → isProp→isOfHLevelSuc (suc n) (isPropΠ λ _ → setTruncIsSet _ _))
λ f → cong ∣_∣₂
(ΣPathP (refl ,
ΣPathP (refl ,
(λ i x → Iso.rightInv (Iso-Kn-ΩKn+1 (suc n)) (f x) i))))))))
theFun : coHom (2 + n) (S₊ (2 + m)) → coHom (suc n) (S₊ (suc m))
theFun = Iso.fun (compIso (setTruncIso (invIso funSpaceSuspIso))
helperIso)
funIsHom : (x y : coHom (2 + n) (S₊ (2 + m)))
→ theFun (x +ₕ y) ≡ theFun x +ₕ theFun y
funIsHom =
coHomPointedElimSⁿ _ _ (λ _ → isPropΠ λ _ → setTruncIsSet _ _)
λ f → coHomPointedElimSⁿ _ _ (λ _ → setTruncIsSet _ _)
λ g → cong ∣_∣₂ (funExt λ x → cong (ΩKn+1→Kn (suc n)) (sym (∙≡+₂ n (f x) (g x)))
∙ ΩKn+1→Kn-hom (suc n) (f x) (g x))
H⁰-Sⁿ≅ℤ : (n : ℕ) → GroupIso (coHomGr 0 (S₊ (suc n))) intGroup
H⁰-Sⁿ≅ℤ zero = H⁰-connected base (Sn-connected 0)
H⁰-Sⁿ≅ℤ (suc n) = H⁰-connected north (Sn-connected (suc n))
-- -- ----------------------------------------------------------------------
--- We will need to switch between Sⁿ defined using suspensions and using pushouts
--- in order to apply Mayer Vietoris.
S1Iso : Iso S¹ (Pushout {A = Bool} (λ _ → tt) λ _ → tt)
S1Iso = S¹IsoSuspBool ⋄ invIso PushoutSuspIsoSusp
coHomPushout≅coHomSn : (n m : ℕ) → GroupIso (coHomGr m (S₊ (suc n)))
(coHomGr m (Pushout {A = S₊ n} (λ _ → tt) λ _ → tt))
coHomPushout≅coHomSn zero m =
Iso+Hom→GrIso (setTruncIso (domIso S1Iso))
(sElim2 (λ _ _ → isSet→isGroupoid setTruncIsSet _ _) (λ _ _ → refl))
coHomPushout≅coHomSn (suc n) m =
Iso+Hom→GrIso (setTruncIso (domIso (invIso PushoutSuspIsoSusp)))
(sElim2 (λ _ _ → isSet→isGroupoid setTruncIsSet _ _) (λ _ _ → refl))
-------------------------- H⁰(S⁰) -----------------------------
S0→Int : (a : Int × Int) → S₊ 0 → Int
S0→Int a true = fst a
S0→Int a false = snd a
H⁰-S⁰≅ℤ×ℤ : GroupIso (coHomGr 0 (S₊ 0)) (dirProd intGroup intGroup)
fun (map H⁰-S⁰≅ℤ×ℤ) = sRec (isSet× isSetInt isSetInt) λ f → (f true) , (f false)
isHom (map H⁰-S⁰≅ℤ×ℤ) = sElim2 (λ _ _ → isSet→isGroupoid (isSet× isSetInt isSetInt) _ _)
λ a b → refl
inv H⁰-S⁰≅ℤ×ℤ a = ∣ S0→Int a ∣₂
rightInv H⁰-S⁰≅ℤ×ℤ _ = refl
leftInv H⁰-S⁰≅ℤ×ℤ = sElim (λ _ → isSet→isGroupoid setTruncIsSet _ _)
λ f → cong ∣_∣₂ (funExt (λ {true → refl ; false → refl}))
------------------------- H¹(S⁰) ≅ 0 -------------------------------
private
Hⁿ-S0≃Kₙ×Kₙ : (n : ℕ) → Iso (S₊ 0 → coHomK (suc n)) (coHomK (suc n) × coHomK (suc n))
Iso.fun (Hⁿ-S0≃Kₙ×Kₙ n) f = (f true) , (f false)
Iso.inv (Hⁿ-S0≃Kₙ×Kₙ n) (a , b) true = a
Iso.inv (Hⁿ-S0≃Kₙ×Kₙ n) (a , b) false = b
Iso.rightInv (Hⁿ-S0≃Kₙ×Kₙ n) a = refl
Iso.leftInv (Hⁿ-S0≃Kₙ×Kₙ n) b = funExt λ {true → refl ; false → refl}
isContrHⁿ-S0 : (n : ℕ) → isContr (coHom (suc n) (S₊ 0))
isContrHⁿ-S0 n = isContrRetract (Iso.fun (setTruncIso (Hⁿ-S0≃Kₙ×Kₙ n)))
(Iso.inv (setTruncIso (Hⁿ-S0≃Kₙ×Kₙ n)))
(Iso.leftInv (setTruncIso (Hⁿ-S0≃Kₙ×Kₙ n)))
(isContrHelper n)
where
isContrHelper : (n : ℕ) → isContr (∥ (coHomK (suc n) × coHomK (suc n)) ∥₂)
fst (isContrHelper zero) = ∣ (0₁ , 0₁) ∣₂
snd (isContrHelper zero) = sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ y → elim2 {B = λ x y → ∣ (0₁ , 0₁) ∣₂ ≡ ∣(x , y) ∣₂ }
(λ _ _ → isOfHLevelPlus {n = 2} 2 setTruncIsSet _ _)
(toPropElim2 (λ _ _ → setTruncIsSet _ _) refl) (fst y) (snd y)
isContrHelper (suc zero) = ∣ (0₂ , 0₂) ∣₂
, sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ y → elim2 {B = λ x y → ∣ (0₂ , 0₂) ∣₂ ≡ ∣(x , y) ∣₂ }
(λ _ _ → isOfHLevelPlus {n = 2} 3 setTruncIsSet _ _)
(suspToPropElim2 base (λ _ _ → setTruncIsSet _ _) refl) (fst y) (snd y)
isContrHelper (suc (suc n)) = ∣ (0ₖ (3 + n) , 0ₖ (3 + n)) ∣₂
, sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ y → elim2 {B = λ x y → ∣ (0ₖ (3 + n) , 0ₖ (3 + n)) ∣₂ ≡ ∣(x , y) ∣₂ }
(λ _ _ → isProp→isOfHLevelSuc (4 + n) (setTruncIsSet _ _))
(suspToPropElim2 north (λ _ _ → setTruncIsSet _ _) refl) (fst y) (snd y)
H¹-S⁰≅0 : (n : ℕ) → GroupIso (coHomGr (suc n) (S₊ 0)) trivialGroup
H¹-S⁰≅0 n = IsoContrGroupTrivialGroup (isContrHⁿ-S0 n)
------------------------- H²(S¹) ≅ 0 -------------------------------
Hⁿ-S¹≅0 : (n : ℕ) → GroupIso (coHomGr (2 + n) (S₊ 1)) trivialGroup
Hⁿ-S¹≅0 n = IsoContrGroupTrivialGroup
(isOfHLevelRetractFromIso 0 helper
(_ , helper2))
where
helper : Iso ⟨ coHomGr (2 + n) (S₊ 1)⟩ ∥ Σ (hLevelTrunc (4 + n) (S₊ (2 + n))) (λ x → ∥ x ≡ x ∥₂) ∥₂
helper = compIso (setTruncIso IsoFunSpaceS¹) IsoSetTruncateSndΣ
helper2 : (x : ∥ Σ (hLevelTrunc (4 + n) (S₊ (2 + n))) (λ x → ∥ x ≡ x ∥₂) ∥₂) → ∣ ∣ north ∣ , ∣ refl ∣₂ ∣₂ ≡ x
helper2 =
sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
(uncurry
(trElim (λ _ → isOfHLevelΠ (4 + n) λ _ → isProp→isOfHLevelSuc (3 + n) (setTruncIsSet _ _))
(suspToPropElim (ptSn (suc n)) (λ _ → isPropΠ λ _ → setTruncIsSet _ _)
(sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ p
→ cong ∣_∣₂ (ΣPathP (refl , isContr→isProp helper3 _ _))))))
where
helper4 : isConnected (n + 3) (hLevelTrunc (4 + n) (S₊ (2 + n)))
helper4 = subst (λ m → isConnected m (hLevelTrunc (4 + n) (S₊ (2 + n)))) (+-comm 3 n)
(isOfHLevelRetractFromIso 0 (invIso (truncOfTruncIso (3 + n) 1)) (sphereConnected (2 + n)))
helper3 : isContr ∥ ∣ north ∣ ≡ ∣ north ∣ ∥₂
helper3 = isOfHLevelRetractFromIso 0 setTruncTrunc2Iso
(isConnectedPath 2 (isConnectedSubtr 3 n helper4) _ _)
-- --------------- H¹(Sⁿ), n ≥ 1 --------------------------------------------
H¹-Sⁿ≅0 : (n : ℕ) → GroupIso (coHomGr 1 (S₊ (2 + n))) trivialGroup
H¹-Sⁿ≅0 zero = IsoContrGroupTrivialGroup isContrH¹S²
where
isContrH¹S² : isContr ⟨ coHomGr 1 (S₊ 2) ⟩
isContrH¹S² = ∣ (λ _ → ∣ base ∣) ∣₂
, coHomPointedElim 0 north (λ _ → setTruncIsSet _ _)
λ f p → cong ∣_∣₂ (funExt λ x → sym p ∙∙ sym (spoke f north) ∙∙ spoke f x)
H¹-Sⁿ≅0 (suc n) = IsoContrGroupTrivialGroup isContrH¹S³⁺ⁿ
where
anIso : Iso ⟨ coHomGr 1 (S₊ (3 + n)) ⟩ ∥ (S₊ (3 + n) → hLevelTrunc (4 + n) (coHomK 1)) ∥₂
anIso =
setTruncIso
(codomainIso
(invIso (truncIdempotentIso (4 + n) (isOfHLevelPlus' {n = 1 + n} 3 (isOfHLevelTrunc 3)))))
isContrH¹S³⁺ⁿ-ish : (f : (S₊ (3 + n) → hLevelTrunc (4 + n) (coHomK 1)))
→ ∣ (λ _ → ∣ ∣ base ∣ ∣) ∣₂ ≡ ∣ f ∣₂
isContrH¹S³⁺ⁿ-ish f = ind (f north) refl
where
ind : (x : hLevelTrunc (4 + n) (coHomK 1))
→ x ≡ f north
→ ∣ (λ _ → ∣ ∣ base ∣ ∣) ∣₂ ≡ ∣ f ∣₂
ind = trElim (λ _ → isOfHLevelΠ (4 + n) λ _ → isOfHLevelPlus' {n = (3 + n)} 1 (setTruncIsSet _ _))
(trElim (λ _ → isOfHLevelΠ 3 λ _ → isOfHLevelPlus {n = 1} 2 (setTruncIsSet _ _))
(toPropElim (λ _ → isPropΠ λ _ → setTruncIsSet _ _)
λ p → cong ∣_∣₂ (funExt λ x → p ∙∙ sym (spoke f north) ∙∙ spoke f x)))
isContrH¹S³⁺ⁿ : isContr ⟨ coHomGr 1 (S₊ (3 + n)) ⟩
isContrH¹S³⁺ⁿ =
isOfHLevelRetractFromIso 0
anIso
(∣ (λ _ → ∣ ∣ base ∣ ∣) ∣₂
, sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) isContrH¹S³⁺ⁿ-ish)
--------- H¹(S¹) ≅ ℤ -------
{-
Idea :
H¹(S¹) := ∥ S¹ → K₁ ∥₂
≃ ∥ S¹ → S¹ ∥₂
≃ ∥ S¹ × ℤ ∥₂
≃ ∥ S¹ ∥₂ × ∥ ℤ ∥₂
≃ ℤ
-}
coHom1S1≃ℤ : GroupIso (coHomGr 1 (S₊ 1)) intGroup
coHom1S1≃ℤ = theIso
where
F = Iso.fun S¹→S¹≡S¹×Int
F⁻ = Iso.inv S¹→S¹≡S¹×Int
theIso : GroupIso (coHomGr 1 (S₊ 1)) intGroup
fun (map theIso) = sRec isSetInt (λ f → snd (F f))
isHom (map theIso) =
coHomPointedElimS¹2 _ (λ _ _ → isSetInt _ _)
λ p q → (λ i → winding (guy ∣ base ∣ (cong S¹map (help p q i))))
∙∙ (λ i → winding (guy ∣ base ∣ (congFunct S¹map p q i)))
∙∙ winding-hom (guy ∣ base ∣ (cong S¹map p))
(guy ∣ base ∣ (cong S¹map q))
where
guy = basechange2⁻ ∘ S¹map
help : (p q : Path (coHomK 1) ∣ base ∣ ∣ base ∣) → cong₂ _+ₖ_ p q ≡ p ∙ q
help p q = cong₂Funct _+ₖ_ p q ∙ (λ i → cong (λ x → rUnitₖ 1 x i) p ∙ cong (λ x → lUnitₖ 1 x i) q)
inv theIso a = ∣ (F⁻ (base , a)) ∣₂
rightInv theIso a = cong snd (Iso.rightInv S¹→S¹≡S¹×Int (base , a))
leftInv theIso = sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ f → cong ((sRec setTruncIsSet ∣_∣₂)
∘ sRec setTruncIsSet λ x → ∣ F⁻ (x , (snd (F f))) ∣₂)
(Iso.inv PathIdTrunc₀Iso (isConnectedS¹ (fst (F f))))
∙ cong ∣_∣₂ (Iso.leftInv S¹→S¹≡S¹×Int f)
---------------------------- Hⁿ(Sⁿ) ≅ ℤ , n ≥ 1 -------------------
Hⁿ-Sⁿ≅ℤ : (n : ℕ) → GroupIso (coHomGr (suc n) (S₊ (suc n))) intGroup
Hⁿ-Sⁿ≅ℤ zero = coHom1S1≃ℤ
Hⁿ-Sⁿ≅ℤ (suc n) = suspensionAx-Sn n n □ Hⁿ-Sⁿ≅ℤ n
-------------- Hⁿ(Sᵐ) ≅ ℤ for n , m ≥ 1 with n ≠ m ----------------
Hⁿ-Sᵐ≅0 : (n m : ℕ) → ¬ (n ≡ m) → GroupIso (coHomGr (suc n) (S₊ (suc m))) trivialGroup
Hⁿ-Sᵐ≅0 zero zero pf = ⊥-rec (pf refl)
Hⁿ-Sᵐ≅0 zero (suc m) pf = H¹-Sⁿ≅0 m
Hⁿ-Sᵐ≅0 (suc n) zero pf = Hⁿ-S¹≅0 n
Hⁿ-Sᵐ≅0 (suc n) (suc m) pf = suspensionAx-Sn n m
□ Hⁿ-Sᵐ≅0 n m λ p → pf (cong suc p)
|
{
"alphanum_fraction": 0.5372670807,
"avg_line_length": 44.6013513514,
"ext": "agda",
"hexsha": "c1a6624c00acc26dc70bfdfad58a6c12c66af29b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/ZCohomology/Groups/Sn.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/ZCohomology/Groups/Sn.agda",
"max_line_length": 133,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/ZCohomology/Groups/Sn.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5381,
"size": 13202
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- The basic code for equational reasoning with two relations:
-- equality and some other ordering.
------------------------------------------------------------------------
--
-- See `Data.Nat.Properties` or `Relation.Binary.Reasoning.PartialOrder`
-- for examples of how to instantiate this module.
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Relation.Binary.Reasoning.Base.Double {a ℓ₁ ℓ₂} {A : Set a}
{_≈_ : Rel A ℓ₁} {_∼_ : Rel A ℓ₂} (isPreorder : IsPreorder _≈_ _∼_)
where
open import Data.Product using (proj₁; proj₂)
open import Level using (Level; _⊔_; Lift; lift)
open import Function.Base using (case_of_; id)
open import Relation.Binary.PropositionalEquality.Core
using (_≡_; refl; sym)
open import Relation.Nullary using (Dec; yes; no)
open import Relation.Nullary.Decidable using (True; toWitness)
open IsPreorder isPreorder
------------------------------------------------------------------------
-- A datatype to hide the current relation type
infix 4 _IsRelatedTo_
data _IsRelatedTo_ (x y : A) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
nonstrict : (x∼y : x ∼ y) → x IsRelatedTo y
equals : (x≈y : x ≈ y) → x IsRelatedTo y
------------------------------------------------------------------------
-- A record that is used to ensure that the final relation proved by the
-- chain of reasoning can be converted into the required relation.
data IsEquality {x y} : x IsRelatedTo y → Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
isEquality : ∀ x≈y → IsEquality (equals x≈y)
IsEquality? : ∀ {x y} (x≲y : x IsRelatedTo y) → Dec (IsEquality x≲y)
IsEquality? (nonstrict _) = no λ()
IsEquality? (equals x≈y) = yes (isEquality x≈y)
extractEquality : ∀ {x y} {x≲y : x IsRelatedTo y} → IsEquality x≲y → x ≈ y
extractEquality (isEquality x≈y) = x≈y
------------------------------------------------------------------------
-- Reasoning combinators
-- See `Relation.Binary.Reasoning.Base.Partial` for the design decisions
-- behind these combinators.
infix 1 begin_ begin-equality_
infixr 2 step-∼ step-≈ step-≈˘ step-≡ step-≡˘ _≡⟨⟩_
infix 3 _∎
-- Beginnings of various types of proofs
begin_ : ∀ {x y} (r : x IsRelatedTo y) → x ∼ y
begin (nonstrict x∼y) = x∼y
begin (equals x≈y) = reflexive x≈y
begin-equality_ : ∀ {x y} (r : x IsRelatedTo y) → {s : True (IsEquality? r)} → x ≈ y
begin-equality_ r {s} = extractEquality (toWitness s)
-- Step with the main relation
step-∼ : ∀ (x : A) {y z} → y IsRelatedTo z → x ∼ y → x IsRelatedTo z
step-∼ x (nonstrict y∼z) x∼y = nonstrict (trans x∼y y∼z)
step-∼ x (equals y≈z) x∼y = nonstrict (∼-respʳ-≈ y≈z x∼y)
-- Step with the setoid equality
step-≈ : ∀ (x : A) {y z} → y IsRelatedTo z → x ≈ y → x IsRelatedTo z
step-≈ x (nonstrict y∼z) x≈y = nonstrict (∼-respˡ-≈ (Eq.sym x≈y) y∼z)
step-≈ x (equals y≈z) x≈y = equals (Eq.trans x≈y y≈z)
-- Flipped step with the setoid equality
step-≈˘ : ∀ x {y z} → y IsRelatedTo z → y ≈ x → x IsRelatedTo z
step-≈˘ x y∼z x≈y = step-≈ x y∼z (Eq.sym x≈y)
-- Step with non-trivial propositional equality
step-≡ : ∀ (x : A) {y z} → y IsRelatedTo z → x ≡ y → x IsRelatedTo z
step-≡ x (nonstrict y∼z) x≡y = nonstrict (case x≡y of λ where refl → y∼z)
step-≡ x (equals y≈z) x≡y = equals (case x≡y of λ where refl → y≈z)
-- Flipped step with non-trivial propositional equality
step-≡˘ : ∀ x {y z} → y IsRelatedTo z → y ≡ x → x IsRelatedTo z
step-≡˘ x y∼z x≡y = step-≡ x y∼z (sym x≡y)
-- Step with trivial propositional equality
_≡⟨⟩_ : ∀ (x : A) {y} → x IsRelatedTo y → x IsRelatedTo y
x ≡⟨⟩ x≲y = x≲y
-- Termination step
_∎ : ∀ x → x IsRelatedTo x
x ∎ = equals Eq.refl
-- Syntax declarations
syntax step-∼ x y∼z x∼y = x ∼⟨ x∼y ⟩ y∼z
syntax step-≈ x y∼z x≈y = x ≈⟨ x≈y ⟩ y∼z
syntax step-≈˘ x y∼z y≈x = x ≈˘⟨ y≈x ⟩ y∼z
syntax step-≡ x y∼z x≡y = x ≡⟨ x≡y ⟩ y∼z
syntax step-≡˘ x y∼z y≡x = x ≡˘⟨ y≡x ⟩ y∼z
|
{
"alphanum_fraction": 0.5869344179,
"avg_line_length": 33.9137931034,
"ext": "agda",
"hexsha": "f30636ba6436a378e3fd77354816d21423813e52",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Reasoning/Base/Double.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Reasoning/Base/Double.agda",
"max_line_length": 84,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Reasoning/Base/Double.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1463,
"size": 3934
}
|
{-# OPTIONS --allow-unsolved-metas #-}
module Issue501 where
record ⊤ : Set where
constructor tt
data _⊎_ (A : Set) (B : Set) : Set where
inj₁ : (x : A) → A ⊎ B
inj₂ : (y : B) → A ⊎ B
[_,_] : ∀ {A : Set} {B : Set} {C : A ⊎ B → Set} →
((x : A) → C (inj₁ x)) → ((x : B) → C (inj₂ x)) →
((x : A ⊎ B) → C x)
[ f , g ] (inj₁ x) = f x
[ f , g ] (inj₂ y) = g y
------------------------------------------------------------------------
Pow : Set → Set₁
Pow X = X → Set
-- Replacing /Pow I/ with /X → Set/ below makes the file load.
-- data _:=_ {I : Set}(A : Set)(i : I) : I → Set where
data _:=_ {I : Set}(A : Set)(i : I) : Pow I where
⟨_⟩ : (x : A) → (A := i) i
postulate
S : Set
s : S
D : Pow S → Pow S
P : Pow S
m : D P s
_>>=_ : ∀ {A B s} → D A s → (∀ {s} → A s → D B s) → D B s
p : D P s
p = m >>= λ k → [ (λ { ⟨ x ⟩ → {!!} }) , {!!} ] {!!}
|
{
"alphanum_fraction": 0.3765227021,
"avg_line_length": 23.7631578947,
"ext": "agda",
"hexsha": "984c6f49de66ad190ab24156dbe82cd74f837ad6",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue501.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue501.agda",
"max_line_length": 72,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue501.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 380,
"size": 903
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties satisfied by meet semilattices
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary.Lattice
module Relation.Binary.Properties.MeetSemilattice
{c ℓ₁ ℓ₂} (M : MeetSemilattice c ℓ₁ ℓ₂) where
open MeetSemilattice M
import Algebra.FunctionProperties as P; open P _≈_
open import Data.Product
open import Function using (flip)
open import Relation.Binary
open import Relation.Binary.Properties.Poset poset
import Relation.Binary.Properties.JoinSemilattice as J
-- The dual construction is a join semilattice.
dualIsJoinSemilattice : IsJoinSemilattice _≈_ (flip _≤_) _∧_
dualIsJoinSemilattice = record
{ isPartialOrder = invIsPartialOrder
; supremum = infimum
}
dualJoinSemilattice : JoinSemilattice c ℓ₁ ℓ₂
dualJoinSemilattice = record
{ _∨_ = _∧_
; isJoinSemilattice = dualIsJoinSemilattice
}
open J dualJoinSemilattice public
using (isAlgSemilattice; algSemilattice)
renaming
( ∨-monotonic to ∧-monotonic
; ∨-cong to ∧-cong
; ∨-comm to ∧-comm
; ∨-assoc to ∧-assoc
; ∨-idempotent to ∧-idempotent
; x≤y⇒x∨y≈y to y≤x⇒x∧y≈y
)
|
{
"alphanum_fraction": 0.6329787234,
"avg_line_length": 28,
"ext": "agda",
"hexsha": "2509e1d93ec2bad2c914129a7e98a7e0a3ba6284",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/MeetSemilattice.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/MeetSemilattice.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/MeetSemilattice.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 389,
"size": 1316
}
|
{-# OPTIONS --safe #-}
module Cubical.Data.Int.Properties where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Transport
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Data.Empty
open import Cubical.Data.Nat
hiding (+-assoc ; +-comm ; ·-comm)
renaming (_·_ to _·ℕ_; _+_ to _+ℕ_ ; ·-assoc to ·ℕ-assoc)
open import Cubical.Data.Bool
open import Cubical.Data.Sum
open import Cubical.Data.Int.Base
open import Cubical.Relation.Nullary
open import Cubical.Relation.Nullary.DecidableEq
sucPred : ∀ i → sucℤ (predℤ i) ≡ i
sucPred (pos zero) = refl
sucPred (pos (suc n)) = refl
sucPred (negsuc n) = refl
predSuc : ∀ i → predℤ (sucℤ i) ≡ i
predSuc (pos n) = refl
predSuc (negsuc zero) = refl
predSuc (negsuc (suc n)) = refl
injPos : ∀ {a b : ℕ} → pos a ≡ pos b → a ≡ b
injPos {a} h = subst T h refl
where
T : ℤ → Type₀
T (pos x) = a ≡ x
T (negsuc _) = ⊥
injNegsuc : ∀ {a b : ℕ} → negsuc a ≡ negsuc b → a ≡ b
injNegsuc {a} h = subst T h refl
where
T : ℤ → Type₀
T (pos _) = ⊥
T (negsuc x) = a ≡ x
posNotnegsuc : ∀ (a b : ℕ) → ¬ (pos a ≡ negsuc b)
posNotnegsuc a b h = subst T h 0
where
T : ℤ → Type₀
T (pos _) = ℕ
T (negsuc _) = ⊥
negsucNotpos : ∀ (a b : ℕ) → ¬ (negsuc a ≡ pos b)
negsucNotpos a b h = subst T h 0
where
T : ℤ → Type₀
T (pos _) = ⊥
T (negsuc _) = ℕ
discreteℤ : Discrete ℤ
discreteℤ (pos n) (pos m) with discreteℕ n m
... | yes p = yes (cong pos p)
... | no p = no (λ x → p (injPos x))
discreteℤ (pos n) (negsuc m) = no (posNotnegsuc n m)
discreteℤ (negsuc n) (pos m) = no (negsucNotpos n m)
discreteℤ (negsuc n) (negsuc m) with discreteℕ n m
... | yes p = yes (cong negsuc p)
... | no p = no (λ x → p (injNegsuc x))
isSetℤ : isSet ℤ
isSetℤ = Discrete→isSet discreteℤ
-pos : ∀ n → - (pos n) ≡ neg n
-pos zero = refl
-pos (suc n) = refl
-neg : ∀ n → - (neg n) ≡ pos n
-neg zero = refl
-neg (suc n) = refl
-Involutive : ∀ z → - (- z) ≡ z
-Involutive (pos n) = cong -_ (-pos n) ∙ -neg n
-Involutive (negsuc n) = refl
sucℤ+pos : ∀ n m → sucℤ (m +pos n) ≡ (sucℤ m) +pos n
sucℤ+pos zero m = refl
sucℤ+pos (suc n) m = cong sucℤ (sucℤ+pos n m)
predℤ+negsuc : ∀ n m → predℤ (m +negsuc n) ≡ (predℤ m) +negsuc n
predℤ+negsuc zero m = refl
predℤ+negsuc (suc n) m = cong predℤ (predℤ+negsuc n m)
sucℤ+negsuc : ∀ n m → sucℤ (m +negsuc n) ≡ (sucℤ m) +negsuc n
sucℤ+negsuc zero m = (sucPred _) ∙ (sym (predSuc _))
sucℤ+negsuc (suc n) m = _ ≡⟨ sucPred _ ⟩
m +negsuc n ≡[ i ]⟨ predSuc m (~ i) +negsuc n ⟩
(predℤ (sucℤ m)) +negsuc n ≡⟨ sym (predℤ+negsuc n (sucℤ m)) ⟩
predℤ (sucℤ m +negsuc n) ∎
predℤ+pos : ∀ n m → predℤ (m +pos n) ≡ (predℤ m) +pos n
predℤ+pos zero m = refl
predℤ+pos (suc n) m = _ ≡⟨ predSuc _ ⟩
m +pos n ≡[ i ]⟨ sucPred m (~ i) + pos n ⟩
(sucℤ (predℤ m)) +pos n ≡⟨ sym (sucℤ+pos n (predℤ m))⟩
(predℤ m) +pos (suc n) ∎
predℤ-pos : ∀ n → predℤ(- (pos n)) ≡ negsuc n
predℤ-pos zero = refl
predℤ-pos (suc n) = refl
predℤ+ : ∀ m n → predℤ (m + n) ≡ (predℤ m) + n
predℤ+ m (pos n) = predℤ+pos n m
predℤ+ m (negsuc n) = predℤ+negsuc n m
+predℤ : ∀ m n → predℤ (m + n) ≡ m + (predℤ n)
+predℤ m (pos zero) = refl
+predℤ m (pos (suc n)) = (predSuc (m + pos n)) ∙ (cong (_+_ m) (sym (predSuc (pos n))))
+predℤ m (negsuc n) = refl
sucℤ+ : ∀ m n → sucℤ (m + n) ≡ (sucℤ m) + n
sucℤ+ m (pos n) = sucℤ+pos n m
sucℤ+ m (negsuc n) = sucℤ+negsuc n m
+sucℤ : ∀ m n → sucℤ (m + n) ≡ m + (sucℤ n)
+sucℤ m (pos n) = refl
+sucℤ m (negsuc zero) = sucPred _
+sucℤ m (negsuc (suc n)) = (sucPred (m +negsuc n)) ∙ (cong (_+_ m) (sym (sucPred (negsuc n))))
pos0+ : ∀ z → z ≡ pos 0 + z
pos0+ (pos zero) = refl
pos0+ (pos (suc n)) = cong sucℤ (pos0+ (pos n))
pos0+ (negsuc zero) = refl
pos0+ (negsuc (suc n)) = cong predℤ (pos0+ (negsuc n))
negsuc0+ : ∀ z → predℤ z ≡ negsuc 0 + z
negsuc0+ (pos zero) = refl
negsuc0+ (pos (suc n)) = (sym (sucPred (pos n))) ∙ (cong sucℤ (negsuc0+ _))
negsuc0+ (negsuc zero) = refl
negsuc0+ (negsuc (suc n)) = cong predℤ (negsuc0+ (negsuc n))
ind-comm : {A : Type₀} (_∙_ : A → A → A) (f : ℕ → A) (g : A → A)
(p : ∀ {n} → f (suc n) ≡ g (f n))
(g∙ : ∀ a b → g (a ∙ b) ≡ g a ∙ b)
(∙g : ∀ a b → g (a ∙ b) ≡ a ∙ g b)
(base : ∀ z → z ∙ f 0 ≡ f 0 ∙ z)
→ ∀ z n → z ∙ f n ≡ f n ∙ z
ind-comm _∙_ f g p g∙ ∙g base z 0 = base z
ind-comm _∙_ f g p g∙ ∙g base z (suc n) =
z ∙ f (suc n) ≡[ i ]⟨ z ∙ p {n} i ⟩
z ∙ g (f n) ≡⟨ sym ( ∙g z (f n)) ⟩
g (z ∙ f n) ≡⟨ cong g IH ⟩
g (f n ∙ z) ≡⟨ g∙ (f n) z ⟩
g (f n) ∙ z ≡[ i ]⟨ p {n} (~ i) ∙ z ⟩
f (suc n) ∙ z ∎
where
IH = ind-comm _∙_ f g p g∙ ∙g base z n
ind-assoc : {A : Type₀} (_·_ : A → A → A) (f : ℕ → A)
(g : A → A) (p : ∀ a b → g (a · b) ≡ a · (g b))
(q : ∀ {c} → f (suc c) ≡ g (f c))
(base : ∀ m n → (m · n) · (f 0) ≡ m · (n · (f 0)))
(m n : A) (o : ℕ)
→ m · (n · (f o)) ≡ (m · n) · (f o)
ind-assoc _·_ f g p q base m n 0 = sym (base m n)
ind-assoc _·_ f g p q base m n (suc o) =
m · (n · (f (suc o))) ≡[ i ]⟨ m · (n · q {o} i) ⟩
m · (n · (g (f o))) ≡[ i ]⟨ m · (p n (f o) (~ i)) ⟩
m · (g (n · (f o))) ≡⟨ sym (p m (n · (f o)))⟩
g (m · (n · (f o))) ≡⟨ cong g IH ⟩
g ((m · n) · (f o)) ≡⟨ p (m · n) (f o) ⟩
(m · n) · (g (f o)) ≡[ i ]⟨ (m · n) · q {o} (~ i) ⟩
(m · n) · (f (suc o)) ∎
where
IH = ind-assoc _·_ f g p q base m n o
+Comm : ∀ m n → m + n ≡ n + m
+Comm m (pos n) = ind-comm _+_ pos sucℤ refl sucℤ+ +sucℤ pos0+ m n
+Comm m (negsuc n) = ind-comm _+_ negsuc predℤ refl predℤ+ +predℤ negsuc0+ m n
+Assoc : ∀ m n o → m + (n + o) ≡ (m + n) + o
+Assoc m n (pos o) = ind-assoc _+_ pos sucℤ +sucℤ refl (λ _ _ → refl) m n o
+Assoc m n (negsuc o) = ind-assoc _+_ negsuc predℤ +predℤ refl +predℤ m n o
-- Compose sucPathℤ with itself n times. Transporting along this
-- will be addition, transporting with it backwards will be subtraction.
-- Use this to define _+'_ for which is easier to prove
-- isEquiv (λ n → n +' m) since _+'_ is defined by transport
sucPathℤ : ℤ ≡ ℤ
sucPathℤ = ua (sucℤ , isoToIsEquiv (iso sucℤ predℤ sucPred predSuc))
addEq : ℕ → ℤ ≡ ℤ
addEq zero = refl
addEq (suc n) = (addEq n) ∙ sucPathℤ
predPathℤ : ℤ ≡ ℤ
predPathℤ = ua (predℤ , isoToIsEquiv (iso predℤ sucℤ predSuc sucPred))
subEq : ℕ → ℤ ≡ ℤ
subEq zero = refl
subEq (suc n) = (subEq n) ∙ predPathℤ
_+'_ : ℤ → ℤ → ℤ
m +' pos n = transport (addEq n) m
m +' negsuc n = transport (subEq (suc n)) m
+'≡+ : _+'_ ≡ _+_
+'≡+ i m (pos zero) = m
+'≡+ i m (pos (suc n)) = sucℤ (+'≡+ i m (pos n))
+'≡+ i m (negsuc zero) = predℤ m
+'≡+ i m (negsuc (suc n)) = predℤ (+'≡+ i m (negsuc n)) --
-- compPath (λ i → (+'≡+ i (predℤ m) (negsuc n))) (sym (predℤ+negsuc n m)) i
isEquivAddℤ' : (m : ℤ) → isEquiv (λ n → n +' m)
isEquivAddℤ' (pos n) = isEquivTransport (addEq n)
isEquivAddℤ' (negsuc n) = isEquivTransport (subEq (suc n))
isEquivAddℤ : (m : ℤ) → isEquiv (λ n → n + m)
isEquivAddℤ = subst (λ add → (m : ℤ) → isEquiv (λ n → add n m)) +'≡+ isEquivAddℤ'
-- below is an alternate proof of isEquivAddℤ for comparison
-- We also have two useful lemma here.
minusPlus : ∀ m n → (n - m) + m ≡ n
minusPlus (pos zero) n = refl
minusPlus (pos 1) = sucPred
minusPlus (pos (suc (suc m))) n =
sucℤ ((n +negsuc (suc m)) +pos (suc m)) ≡⟨ sucℤ+pos (suc m) _ ⟩
sucℤ (n +negsuc (suc m)) +pos (suc m) ≡[ i ]⟨ sucPred (n +negsuc m) i +pos (suc m) ⟩
(n - pos (suc m)) +pos (suc m) ≡⟨ minusPlus (pos (suc m)) n ⟩
n ∎
minusPlus (negsuc zero) = predSuc
minusPlus (negsuc (suc m)) n =
predℤ (sucℤ (sucℤ (n +pos m)) +negsuc m) ≡⟨ predℤ+negsuc m _ ⟩
predℤ (sucℤ (sucℤ (n +pos m))) +negsuc m ≡[ i ]⟨ predSuc (sucℤ (n +pos m)) i +negsuc m ⟩
sucℤ (n +pos m) +negsuc m ≡⟨ minusPlus (negsuc m) n ⟩
n ∎
plusMinus : ∀ m n → (n + m) - m ≡ n
plusMinus (pos zero) n = refl
plusMinus (pos (suc m)) = minusPlus (negsuc m)
plusMinus (negsuc m) = minusPlus (pos (suc m))
private
alternateProof : (m : ℤ) → isEquiv (λ n → n + m)
alternateProof m = isoToIsEquiv (iso (λ n → n + m)
(λ n → n - m)
(minusPlus m)
(plusMinus m))
-Cancel : ∀ z → z - z ≡ 0
-Cancel z = cong (_- z) (pos0+ z) ∙ plusMinus z (pos zero)
pos+ : ∀ m n → pos (m +ℕ n) ≡ pos m + pos n
pos+ zero zero = refl
pos+ zero (suc n) =
pos (zero +ℕ suc n) ≡⟨ +Comm (pos (suc n)) (pos zero) ⟩
pos zero + pos (suc n) ∎
pos+ (suc m) zero =
pos (suc (m +ℕ zero)) ≡⟨ cong pos (cong suc (+-zero m)) ⟩
pos (suc m) + pos zero ∎
pos+ (suc m) (suc n) =
pos (suc m +ℕ suc n) ≡⟨ cong pos (cong suc (+-suc m n)) ⟩
sucℤ (pos (suc (m +ℕ n))) ≡⟨ cong sucℤ (cong sucℤ (pos+ m n)) ⟩
sucℤ (sucℤ (pos m + pos n)) ≡⟨ sucℤ+ (pos m) (sucℤ (pos n)) ⟩
pos (suc m) + pos (suc n) ∎
negsuc+ : ∀ m n → negsuc (m +ℕ n) ≡ negsuc m - pos n
negsuc+ zero zero = refl
negsuc+ zero (suc n) =
negsuc (zero +ℕ suc n) ≡⟨ negsuc0+ (negsuc n) ⟩
negsuc zero + negsuc n ≡⟨ cong (negsuc zero +_) (-pos (suc n)) ⟩
negsuc zero - pos (suc n) ∎
negsuc+ (suc m) zero =
negsuc (suc m +ℕ zero) ≡⟨ cong negsuc (cong suc (+-zero m)) ⟩
negsuc (suc m) - pos zero ∎
negsuc+ (suc m) (suc n) =
negsuc (suc m +ℕ suc n) ≡⟨ cong negsuc (sym (+-suc m (suc n))) ⟩
negsuc (m +ℕ suc (suc n)) ≡⟨ negsuc+ m (suc (suc n)) ⟩
negsuc m - pos (suc (suc n)) ≡⟨ sym (+predℤ (negsuc m) (negsuc n)) ⟩
predℤ (negsuc m + negsuc n ) ≡⟨ predℤ+ (negsuc m) (negsuc n) ⟩
negsuc (suc m) - pos (suc n) ∎
neg+ : ∀ m n → neg (m +ℕ n) ≡ neg m + neg n
neg+ zero zero = refl
neg+ zero (suc n) = neg (zero +ℕ suc n) ≡⟨ +Comm (neg (suc n)) (pos zero) ⟩
neg zero + neg (suc n) ∎
neg+ (suc m) zero = neg (suc (m +ℕ zero)) ≡⟨ cong neg (cong suc (+-zero m)) ⟩
neg (suc m) + neg zero ∎
neg+ (suc m) (suc n) = neg (suc m +ℕ suc n) ≡⟨ negsuc+ m (suc n) ⟩
neg (suc m) + neg (suc n) ∎
ℕ-AntiComm : ∀ m n → m ℕ- n ≡ - (n ℕ- m)
ℕ-AntiComm zero zero = refl
ℕ-AntiComm zero (suc n) = refl
ℕ-AntiComm (suc m) zero = refl
ℕ-AntiComm (suc m) (suc n) = suc m ℕ- suc n ≡⟨ ℕ-AntiComm m n ⟩
- (suc n ℕ- suc m) ∎
pos- : ∀ m n → m ℕ- n ≡ pos m - pos n
pos- zero zero = refl
pos- zero (suc n) = zero ℕ- suc n ≡⟨ +Comm (negsuc n) (pos zero) ⟩
pos zero - pos (suc n) ∎
pos- (suc m) zero = refl
pos- (suc m) (suc n) =
suc m ℕ- suc n ≡⟨ pos- m n ⟩
pos m - pos n ≡⟨ sym (sucPred (pos m - pos n)) ⟩
sucℤ (predℤ (pos m - pos n)) ≡⟨ cong sucℤ (+predℤ (pos m) (- pos n)) ⟩
sucℤ (pos m + predℤ (- (pos n))) ≡⟨ cong sucℤ (cong (pos m +_) (predℤ-pos n)) ⟩
sucℤ (pos m + negsuc n) ≡⟨ sucℤ+negsuc n (pos m) ⟩
pos (suc m) - pos (suc n) ∎
-AntiComm : ∀ m n → m - n ≡ - (n - m)
-AntiComm (pos n) (pos m) = pos n - pos m ≡⟨ sym (pos- n m) ⟩
n ℕ- m ≡⟨ ℕ-AntiComm n m ⟩
- (m ℕ- n) ≡⟨ cong -_ (pos- m n) ⟩
- (pos m - pos n) ∎
-AntiComm (pos n) (negsuc m) =
pos n - negsuc m ≡⟨ +Comm (pos n) (pos (suc m)) ⟩
pos (suc m) + pos n ≡⟨ sym (pos+ (suc m) n) ⟩
pos (suc m +ℕ n) ≡⟨ sym (-neg (suc m +ℕ n)) ⟩
- neg (suc m +ℕ n) ≡⟨ cong -_ (neg+ (suc m) n) ⟩
- (neg (suc m) + neg n) ≡⟨ cong -_ (cong (negsuc m +_) (sym (-pos n))) ⟩
- (negsuc m - pos n) ∎
-AntiComm (negsuc n) (pos m) =
negsuc n - pos m ≡⟨ sym (negsuc+ n m) ⟩
negsuc (n +ℕ m) ≡⟨ cong -_ (pos+ (suc n) m) ⟩
- (pos (suc n) + pos m) ≡⟨ cong -_ (+Comm (pos (suc n)) (pos m)) ⟩
- (pos m - negsuc n) ∎
-AntiComm (negsuc n) (negsuc m) =
negsuc n - negsuc m ≡⟨ +Comm (negsuc n) (pos (suc m)) ⟩
pos (suc m) + negsuc n ≡⟨ sym (pos- (suc m) (suc n)) ⟩
suc m ℕ- suc n ≡⟨ ℕ-AntiComm (suc m) (suc n) ⟩
- (suc n ℕ- suc m) ≡⟨ cong -_ (pos- (suc n) (suc m)) ⟩
- (pos (suc n) - pos (suc m)) ≡⟨ cong -_ (+Comm (pos (suc n)) (negsuc m)) ⟩
- (negsuc m - negsuc n) ∎
-Dist+ : ∀ m n → - (m + n) ≡ (- m) + (- n)
-Dist+ (pos n) (pos m) =
- (pos n + pos m) ≡⟨ cong -_ (sym (pos+ n m)) ⟩
- pos (n +ℕ m) ≡⟨ -pos (n +ℕ m) ⟩
neg (n +ℕ m) ≡⟨ neg+ n m ⟩
neg n + neg m ≡⟨ cong (neg n +_) (sym (-pos m)) ⟩
neg n + (- pos m) ≡⟨ cong (_+ (- pos m)) (sym (-pos n)) ⟩
(- pos n) + (- pos m) ∎
-Dist+ (pos n) (negsuc m) =
- (pos n + negsuc m) ≡⟨ sym (-AntiComm (pos (suc m)) (pos n)) ⟩
pos (suc m) - pos n ≡⟨ +Comm (pos (suc m)) (- pos n) ⟩
(- pos n) + (- negsuc m) ∎
-Dist+ (negsuc n) (pos m) =
- (negsuc n + pos m) ≡⟨ cong -_ (+Comm (negsuc n) (pos m)) ⟩
- (pos m + negsuc n) ≡⟨ sym (-AntiComm (- negsuc n) (pos m)) ⟩
(- negsuc n) + (- pos m) ∎
-Dist+ (negsuc n) (negsuc m) =
- (negsuc n + negsuc m) ≡⟨ cong -_ (sym (neg+ (suc n) (suc m))) ⟩
- neg (suc n +ℕ suc m) ≡⟨ pos+ (suc n) (suc m) ⟩
(- negsuc n) + (- negsuc m) ∎
-- multiplication
pos·negsuc : (n m : ℕ) → pos n · negsuc m ≡ - (pos n · pos (suc m))
pos·negsuc zero m = refl
pos·negsuc (suc n) m =
(λ i → negsuc m + (pos·negsuc n m i))
∙ sym (-Dist+ (pos (suc m)) (pos n · pos (suc m)))
negsuc·pos : (n m : ℕ) → negsuc n · pos m ≡ - (pos (suc n) · pos m)
negsuc·pos zero m = refl
negsuc·pos (suc n) m =
cong ((- pos m) +_) (negsuc·pos n m)
∙ sym (-Dist+ (pos m) (pos m + (pos n · pos m)))
negsuc·negsuc : (n m : ℕ) → negsuc n · negsuc m ≡ pos (suc n) · pos (suc m)
negsuc·negsuc zero m = refl
negsuc·negsuc (suc n) m = cong (pos (suc m) +_) (negsuc·negsuc n m)
·Comm : (x y : ℤ) → x · y ≡ y · x
·Comm (pos n) (pos m) = lem n m
where
lem : (n m : ℕ) → (pos n · pos m) ≡ (pos m · pos n)
lem zero zero = refl
lem zero (suc m) i = +Comm (lem zero m i) (pos zero) i
lem (suc n) zero i = +Comm (pos zero) (lem n zero i) i
lem (suc n) (suc m) =
(λ i → pos (suc m) + (lem n (suc m) i))
∙∙ +Assoc (pos (suc m)) (pos n) (pos m · pos n)
∙∙ (λ i → sucℤ+ (pos m) (pos n) (~ i) + (pos m · pos n))
∙∙ (λ i → +Comm (pos m) (pos (suc n)) i + (pos m · pos n))
∙∙ sym (+Assoc (pos (suc n)) (pos m) (pos m · pos n))
∙∙ (λ i → pos (suc n) + (pos m + (lem n m (~ i))))
∙∙ λ i → pos (suc n) + (lem (suc n) m i)
·Comm (pos n) (negsuc m) =
pos·negsuc n m
∙∙ cong -_ (·Comm (pos n) (pos (suc m)))
∙∙ sym (negsuc·pos m n)
·Comm (negsuc n) (pos m) =
sym (pos·negsuc m n
∙∙ cong -_ (·Comm (pos m) (pos (suc n)))
∙∙ sym (negsuc·pos n m))
·Comm (negsuc n) (negsuc m) =
negsuc·negsuc n m ∙∙ ·Comm (pos (suc n)) (pos (suc m)) ∙∙ sym (negsuc·negsuc m n)
·Rid : (x : ℤ) → x · 1 ≡ x
·Rid x = ·Comm x 1
private
distrHelper : (x y z w : ℤ) → (x + y) + (z + w) ≡ ((x + z) + (y + w))
distrHelper x y z w =
+Assoc (x + y) z w
∙∙ cong (_+ w) (sym (+Assoc x y z) ∙∙ cong (x +_) (+Comm y z) ∙∙ +Assoc x z y)
∙∙ sym (+Assoc (x + z) y w)
·DistR+ : (x y z : ℤ) → x · (y + z) ≡ x · y + x · z
·DistR+ (pos zero) y z = refl
·DistR+ (pos (suc n)) y z =
cong ((y + z) +_) (·DistR+ (pos n) y z)
∙ distrHelper y z (pos n · y) (pos n · z)
·DistR+ (negsuc zero) y z = -Dist+ y z
·DistR+ (negsuc (suc n)) y z =
cong₂ _+_ (-Dist+ y z) (·DistR+ (negsuc n) y z)
∙ distrHelper (- y) (- z) (negsuc n · y) (negsuc n · z)
·DistL+ : (x y z : ℤ) → (x + y) · z ≡ x · z + y · z
·DistL+ x y z = ·Comm (x + y) z ∙∙ ·DistR+ z x y ∙∙ cong₂ _+_ (·Comm z x) (·Comm z y)
-DistL· : (b c : ℤ) → - (b · c) ≡ - b · c
-DistL· (pos zero) c = refl
-DistL· (pos (suc n)) (pos m) = sym (negsuc·pos n m)
-DistL· (pos (suc zero)) (negsuc m) =
-Dist+ (negsuc m) (pos zero · negsuc m)
∙ cong (pos (suc m) +_) (-DistL· (pos zero) (negsuc m))
-DistL· (pos (suc (suc n))) (negsuc m) =
-Dist+ (negsuc m) (pos (suc n) · negsuc m)
∙ cong (pos (suc m) +_) (-DistL· (pos (suc n)) (negsuc m))
-DistL· (negsuc zero) c = -Involutive c
-DistL· (negsuc (suc n)) c =
-Dist+ (- c) (negsuc n · c)
∙∙ cong (_+ (- (negsuc n · c))) (-Involutive c)
∙∙ cong (c +_) (-DistL· (negsuc n) c)
-DistR· : (b c : ℤ) → - (b · c) ≡ b · - c
-DistR· b c = cong (-_) (·Comm b c) ∙∙ -DistL· c b ∙∙ ·Comm (- c) b
·Assoc : (a b c : ℤ) → (a · (b · c)) ≡ ((a · b) · c)
·Assoc (pos zero) b c = refl
·Assoc (pos (suc n)) b c =
cong ((b · c) +_) (·Assoc (pos n) b c)
∙∙ cong₂ _+_ (·Comm b c) (·Comm (pos n · b) c)
∙∙ sym (·DistR+ c b (pos n · b))
∙ sym (·Comm _ c)
·Assoc (negsuc zero) = -DistL·
·Assoc (negsuc (suc n)) b c =
cong ((- (b · c)) +_) (·Assoc (negsuc n) b c)
∙∙ cong (_+ ((negsuc n · b) · c)) (-DistL· b c)
∙∙ sym (·DistL+ (- b) (negsuc n · b) c)
minus≡0- : (x : ℤ) → - x ≡ (0 - x)
minus≡0- x = +Comm (- x) 0
-- Absolute values
abs→⊎ : (x : ℤ) (n : ℕ) → abs x ≡ n → (x ≡ pos n) ⊎ (x ≡ - pos n)
abs→⊎ x n = J (λ n _ → (x ≡ pos n) ⊎ (x ≡ - pos n)) (help x)
where
help : (x : ℤ) → (x ≡ pos (abs x)) ⊎ (x ≡ - pos (abs x))
help (pos n) = inl refl
help (negsuc n) = inr refl
⊎→abs : (x : ℤ) (n : ℕ) → (x ≡ pos n) ⊎ (x ≡ - pos n) → abs x ≡ n
⊎→abs (pos n₁) n (inl x₁) = cong abs x₁
⊎→abs (negsuc n₁) n (inl x₁) = cong abs x₁
⊎→abs x zero (inr x₁) = cong abs x₁
⊎→abs x (suc n) (inr x₁) = cong abs x₁
|
{
"alphanum_fraction": 0.4987755567,
"avg_line_length": 36.8886554622,
"ext": "agda",
"hexsha": "9c8f316c89f5b472d9cd2fd52dc8af46aae10d8f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b1d105aeeab1ba9888394c6a919b99a476390b7b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ecavallo/cubical",
"max_forks_repo_path": "Cubical/Data/Int/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b1d105aeeab1ba9888394c6a919b99a476390b7b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ecavallo/cubical",
"max_issues_repo_path": "Cubical/Data/Int/Properties.agda",
"max_line_length": 94,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b1d105aeeab1ba9888394c6a919b99a476390b7b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ecavallo/cubical",
"max_stars_repo_path": "Cubical/Data/Int/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 8454,
"size": 17559
}
|
{- Constructor-headedness and projection-likeness don't play well
together. Unless they are kept apart or their differences can
be reconciled this example will leave unsolved metas. The problem
is that invoking constructor-headedness on a projection-like
the dropped arguments won't be checked (or rather, the type of
the eliminatee, which is where the dropped arguments live, isn't
checked).
-}
module ProjectionLikeAndConstructorHeaded where
data ℕ : Set where
zero : ℕ
suc : (n : ℕ) → ℕ
data Fin : ℕ → Set where
zero : {n : ℕ} → Fin (suc n)
suc : {n : ℕ} (i : Fin n) → Fin (suc n)
data ⊥ : Set where
record ⊤ : Set where
data Dec (P : Set) : Set where
yes : ( p : P) → Dec P
no : (¬p : P → ⊥) → Dec P
data Bool : Set where
false true : Bool
T : Bool → Set
T true = ⊤
T false = ⊥
⌊_⌋ : ∀ {P : Set} → Dec P → Bool
⌊ yes _ ⌋ = true
⌊ no _ ⌋ = false
True : ∀ {P : Set} → Dec P → Set
True Q = T ⌊ Q ⌋
toWitness : ∀ {P : Set} {Q : Dec P} → True Q → P
toWitness {Q = yes p} _ = p
toWitness {Q = no _} ()
postulate
_≤_ : ℕ → ℕ → Set
fromℕ≤ : ∀ {m n} → m ≤ n → Fin n
_≤?_ : ∀ n m → Dec (n ≤ m)
#_ : ∀ m {n} {m<n : True (m ≤? n)} → Fin n
#_ m {n} {m<n = m<n} = fromℕ≤ {_} {n} (toWitness {_ ≤ n} {_} m<n)
|
{
"alphanum_fraction": 0.5802861685,
"avg_line_length": 24.6666666667,
"ext": "agda",
"hexsha": "51677b14eb09e921efcb810eb6b8e9d56e3b9fc0",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/ProjectionLikeAndConstructorHeaded.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/ProjectionLikeAndConstructorHeaded.agda",
"max_line_length": 68,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/ProjectionLikeAndConstructorHeaded.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 480,
"size": 1258
}
|
-- Andreas, 2016-07-29, issue #1720 reported by Mietek Bak
{-# OPTIONS --double-check #-}
postulate
A : Set
B : A → Set
a0 : A
b0 : B a0
record R (a1 : A) (b1 : B a1) : Set where
field fa : A
a : A
a = {!a1!}
field fb : B fa
b : B {!!}
b = {!b1!}
field f : A
-- Problem:
-- Interaction points are doubled.
|
{
"alphanum_fraction": 0.5280235988,
"avg_line_length": 12.5555555556,
"ext": "agda",
"hexsha": "92420bde059f02cb99e2935f48da9bd31c607e9a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/interaction/Issue1720-2.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/interaction/Issue1720-2.agda",
"max_line_length": 58,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/interaction/Issue1720-2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 134,
"size": 339
}
|
------------------------------------------------------------------------------
-- A stronger (maybe invalid) principle for ≈-coind
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.Relation.Binary.Bisimilarity.Type where
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Relation.Binary.Bisimilarity.Type
------------------------------------------------------------------------------
-- A stronger (maybe invalid) principle for ≈-coind.
postulate
≈-stronger-coind :
∀ (B : D → D → Set) {xs ys} →
(B xs ys → ∃[ x' ] ∃[ xs' ] ∃[ ys' ]
xs ≡ x' ∷ xs' ∧ ys ≡ x' ∷ ys' ∧ B xs' ys') →
B xs ys → xs ≈ ys
|
{
"alphanum_fraction": 0.4150058617,
"avg_line_length": 35.5416666667,
"ext": "agda",
"hexsha": "9a002968f50a0fb6b8bd8f9967ad28646545d03e",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/Relation/Binary/Bisimilarity/Type.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/Relation/Binary/Bisimilarity/Type.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/Relation/Binary/Bisimilarity/Type.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 204,
"size": 853
}
|
open import Data.Product using ( _×_ ; _,_ )
open import FRP.LTL.ISet.Core using ( ISet ; MSet ; [_] ; _⇛_ ; _,_ )
open import FRP.LTL.Time using ( _+_ ; +-resp-≤ ; +-resp-< )
open import FRP.LTL.Time.Bound using
( Time∞ ; +∞ ; fin ; _≼_ ; _≺_ ; +∞-top ; ≤-impl-≼ ; t≺+∞ ; ≺-impl-⋡ ; ≺-impl-< ; <-impl-≺ )
open import FRP.LTL.Time.Interval using ( Interval ; [_⟩ ; _⊑_ ; _~_ ; _⌢_∵_ ; _,_ )
open import FRP.LTL.Util using ( ⊥-elim )
open import Relation.Binary.PropositionalEquality using ( refl )
module FRP.LTL.ISet.Next where
-- ○ A is "A holds at the next point in time"
next : Time∞ → Time∞
next +∞ = +∞
next (fin t) = fin (t + 1)
next-resp-≼ : ∀ {t u} → (t ≼ u) → (next t ≼ next u)
next-resp-≼ +∞-top = +∞-top
next-resp-≼ (≤-impl-≼ t≤u) = ≤-impl-≼ (+-resp-≤ t≤u 1)
next-resp-≺ : ∀ {t u} → (t ≺ u) → (next t ≺ next u)
next-resp-≺ {+∞} t≺u = ⊥-elim (≺-impl-⋡ t≺u +∞-top)
next-resp-≺ {fin t} {+∞} t≺u = t≺+∞
next-resp-≺ {fin t} {fin u} t≺u = <-impl-≺ (+-resp-< (≺-impl-< t≺u) 1)
Next : MSet → MSet
Next (A , split , subsum) = (○A , ○split , ○subsum) where
○A : Interval → Set
○A [ s≺t ⟩ = A [ next-resp-≺ s≺t ⟩
○split : ∀ i j i~j → ○A (i ⌢ j ∵ i~j) → (○A i × ○A j)
○split [ s≺t ⟩ [ t≺u ⟩ refl =
split [ next-resp-≺ s≺t ⟩ [ next-resp-≺ t≺u ⟩ refl
○subsum : ∀ i j → (i ⊑ j) → ○A j → ○A i
○subsum [ s≺t ⟩ [ r≺u ⟩ (r≼s , t≼u) =
subsum [ next-resp-≺ s≺t ⟩ [ next-resp-≺ r≺u ⟩ (next-resp-≼ r≼s , next-resp-≼ t≼u)
○ : ISet → ISet
○ ([ A ]) = [ Next A ]
○ (A ⇛ B) = Next A ⇛ ○ B
|
{
"alphanum_fraction": 0.4983734548,
"avg_line_length": 34.9318181818,
"ext": "agda",
"hexsha": "eeabcebf589e6e22d457fbd884cd864e07c3073c",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:04.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-01T07:33:00.000Z",
"max_forks_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-frp-ltl",
"max_forks_repo_path": "src/FRP/LTL/ISet/Next.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_issues_repo_issues_event_max_datetime": "2015-03-02T15:23:53.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-01T07:01:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-frp-ltl",
"max_issues_repo_path": "src/FRP/LTL/ISet/Next.agda",
"max_line_length": 95,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-frp-ltl",
"max_stars_repo_path": "src/FRP/LTL/ISet/Next.agda",
"max_stars_repo_stars_event_max_datetime": "2020-06-15T02:51:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-02T20:25:05.000Z",
"num_tokens": 796,
"size": 1537
}
|
-- Intuitionistic logic, PHOAS approach, initial encoding
module Pi.I (Indiv : Set) where
-- Types
data Ty : Set
Pred : Set
Pred = Indiv -> Ty
infixl 2 _&&_
infixl 1 _||_
infixr 0 _=>_
data Ty where
UNIT : Ty
_=>_ : Ty -> Ty -> Ty
_&&_ : Ty -> Ty -> Ty
_||_ : Ty -> Ty -> Ty
FALSE : Ty
FORALL : Pred -> Ty
EXISTS : Pred -> Ty
infixr 0 _<=>_
_<=>_ : Ty -> Ty -> Ty
a <=> b = (a => b) && (b => a)
NOT : Ty -> Ty
NOT a = a => FALSE
TRUE : Ty
TRUE = FALSE => FALSE
-- Context and truth/individual judgement
data El : Set where
mkTrue : Ty -> El
mkIndiv : Indiv -> El
Cx : Set1
Cx = El -> Set
isTrue : Ty -> Cx -> Set
isTrue a tc = tc (mkTrue a)
isIndiv : Indiv -> Cx -> Set
isIndiv x tc = tc (mkIndiv x)
-- Terms
module I where
infixl 2 _$$_
infixl 1 _$_
data Tm (tc : Cx) : Ty -> Set where
var : forall {a} -> isTrue a tc -> Tm tc a
lam' : forall {a b} -> (isTrue a tc -> Tm tc b) -> Tm tc (a => b)
_$_ : forall {a b} -> Tm tc (a => b) -> Tm tc a -> Tm tc b
pair' : forall {a b} -> Tm tc a -> Tm tc b -> Tm tc (a && b)
fst : forall {a b} -> Tm tc (a && b) -> Tm tc a
snd : forall {a b} -> Tm tc (a && b) -> Tm tc b
left : forall {a b} -> Tm tc a -> Tm tc (a || b)
right : forall {a b} -> Tm tc b -> Tm tc (a || b)
case' : forall {a b c} -> Tm tc (a || b) -> (isTrue a tc -> Tm tc c) -> (isTrue b tc -> Tm tc c) -> Tm tc c
pi' : forall {p} -> (forall {x} -> isIndiv x tc -> Tm tc (p x)) -> Tm tc (FORALL p)
_$$_ : forall {p x} -> Tm tc (FORALL p) -> isIndiv x tc -> Tm tc (p x)
sig' : forall {p x} -> isIndiv x tc -> Tm tc (p x) -> Tm tc (EXISTS p)
split' : forall {p x a} -> Tm tc (EXISTS p) -> (isTrue (p x) tc -> Tm tc a) -> Tm tc a
abort : forall {a} -> Tm tc FALSE -> Tm tc a
lam'' : forall {tc a b} -> (Tm tc a -> Tm tc b) -> Tm tc (a => b)
lam'' f = lam' \x -> f (var x)
case'' : forall {tc a b c} -> Tm tc (a || b) -> (Tm tc a -> Tm tc c) -> (Tm tc b -> Tm tc c) -> Tm tc c
case'' xy f g = case' xy (\x -> f (var x)) (\y -> g (var y))
split'' : forall {tc p x a} -> Tm tc (EXISTS p) -> (Tm tc (p x) -> Tm tc a) -> Tm tc a
split'' x f = split' x \y -> f (var y)
syntax lam'' (\a -> b) = lam a => b
syntax pair' x y = [ x , y ]
syntax case'' xy (\x -> z1) (\y -> z2) = case xy of x => z1 or y => z2
syntax pi' (\x -> px) = pi x => px
syntax sig' x px = [ x ,, px ]
syntax split'' x (\y -> z) = split x as y => z
Thm : Ty -> Set1
Thm a = forall {tc} -> Tm tc a
open I public
-- Example theorems
t214 : forall {p q : Pred} -> Thm (
FORALL (\x -> p x || NOT (p x)) && FORALL (\x -> p x => EXISTS (\y -> q y)) =>
FORALL (\x -> EXISTS (\y -> p x => q y)))
t214 =
lam fg =>
pi x =>
case fst fg $$ x
of px =>
split snd fg $$ x $ px
as qy =>
[ x ,, lam _ => qy ]
or npx =>
[ x ,, lam px => abort (npx $ px) ]
l5 : forall {a} -> Thm (a && FALSE <=> FALSE)
l5 =
[ lam xnt => snd xnt
, lam nt => abort nt
]
l10 : forall {a} -> Thm (a || FALSE <=> a)
l10 =
[ lam xnt =>
case xnt
of x => x
or nt => abort nt
, lam x => left x
]
l20 : forall {a} -> Thm ((FALSE => a) <=> TRUE)
l20 =
[ lam _ => lam nt => nt
, lam _ => lam nt => abort nt
]
|
{
"alphanum_fraction": 0.4349525405,
"avg_line_length": 27.5538461538,
"ext": "agda",
"hexsha": "4a4423f17d49d7de62a12b074cb1ecb7fd1dd595",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/formal-logic",
"max_forks_repo_path": "src/Pi/I.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/formal-logic",
"max_issues_repo_path": "src/Pi/I.agda",
"max_line_length": 114,
"max_stars_count": 26,
"max_stars_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/formal-logic",
"max_stars_repo_path": "src/Pi/I.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-13T12:37:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-31T09:49:52.000Z",
"num_tokens": 1361,
"size": 3582
}
|
{-# OPTIONS --cubical --allow-unsolved-metas --postfix-projections #-}
module Data.Row where
open import Prelude
open import Data.Nat.Properties using (snotz)
open import Data.Bool.Properties using (isPropT)
infixr 5 _∷_
data Row (A : Type a) : Type a where
[] : Row A
_∷_ : A → Row A → Row A
swap : ∀ x y xs → x ∷ y ∷ xs ≡ y ∷ x ∷ xs
record Alg {a p} (A : Type a) (P : Row A → Type p) : Type (a ℓ⊔ p) where
constructor algebra
field
[_]_∷_⟨_⟩ : (x : A) → (xs : Row A) → (P⟨xs⟩ : P xs) → P (x ∷ xs)
[_][] : P []
private _∷_⟨_⟩ = [_]_∷_⟨_⟩
Swap-Coh : Type _
Swap-Coh =
∀ x y xs (P⟨xs⟩ : P xs) →
PathP (λ i → P (swap x y xs i)) (x ∷ (y ∷ xs) ⟨ y ∷ xs ⟨ P⟨xs⟩ ⟩ ⟩) (y ∷ (x ∷ xs) ⟨ x ∷ xs ⟨ P⟨xs⟩ ⟩ ⟩)
open Alg
infixr 2 ψ
record ψ {a p} (A : Type a) (P : Row A → Type p) : Type (a ℓ⊔ p) where
constructor elim
field
alg : Alg A P
field
swap-coh : Swap-Coh alg
[_] : ∀ xs → P xs
[ [] ] = [ alg ][]
[ x ∷ xs ] = [ alg ] x ∷ xs ⟨ [ xs ] ⟩
[ swap x y xs i ] = swap-coh x y xs [ xs ] i
syntax ψ ty (λ v → e) = ψ[ v ⦂ ty ] e
open ψ
record ψ-prop {a p} (A : Type a) (P : Row A → Type p) : Type (a ℓ⊔ p) where
constructor elim-prop
field
p-alg : Alg A P
is-prop : ∀ xs → isProp (P xs)
prop-swap-coh : Swap-Coh p-alg
prop-swap-coh x y xs P⟨xs⟩ = toPathP (is-prop _ (transp (λ i → P (swap x y xs i)) i0 _) _)
to-elim : ψ A P
to-elim = elim p-alg prop-swap-coh
∥_∥⇓ : ∀ xs → P xs
∥_∥⇓ = [ to-elim ]
syntax ψ-prop ty (λ v → e) = ψ[ v ⦂ ty ]∥ e ∥
open ψ-prop
foldr : (f : A → B → B) (n : B)
(p : ∀ x y xs → f x (f y xs) ≡ f y (f x xs)) →
Row A → B
foldr f n p = [ elim (algebra (λ x _ xs → f x xs) n) (λ x y _ → p x y) ]
length : Row A → ℕ
length = foldr (const suc) zero λ _ _ _ → refl
infixr 5 _∈_ _∉_
_∈_ : A → Row A → Type _
x ∈ xs = ∃ ys × (x ∷ ys ≡ xs)
_∉_ : A → Row A → Type _
x ∉ xs = ¬ (x ∈ xs)
union-alg : (ys : Row A) → ψ[ xs ⦂ A ] Row A
[ union-alg ys .alg ] x ∷ xs ⟨ P⟨xs⟩ ⟩ = x ∷ P⟨xs⟩
[ union-alg ys .alg ][] = ys
union-alg ys .swap-coh x y xs pxs = swap x y pxs
_∪_ : Row A → Row A → Row A
xs ∪ ys = [ union-alg ys ] xs
open import Data.List using (List; _∷_; [])
import Data.List as List
unorder : List A → Row A
unorder = List.foldr _∷_ []
infix 4 _↭_
_↭_ : List A → List A → Type _
xs ↭ ys = unorder xs ≡ unorder ys
↭-refl : {xs : List A} → xs ↭ xs
↭-refl = refl
↭-sym : {xs ys : List A} → xs ↭ ys → ys ↭ xs
↭-sym = sym
↭-trans : {xs ys zs : List A} → xs ↭ ys → ys ↭ zs → xs ↭ zs
↭-trans = _;_
↭-swap : ∀ {x y : A} {xs} → x ∷ y ∷ xs ↭ y ∷ x ∷ xs
↭-swap = swap _ _ _
open import Relation.Nullary.Decidable.Logic
module _ (_≟_ : Discrete A) where
_⁻ : A → ψ[ xs ⦂ A ] Row A
[ (x ⁻) .alg ] y ∷ xs ⟨ P⟨xs⟩ ⟩ = if does (x ≟ y) then xs else y ∷ P⟨xs⟩
[ (x ⁻) .alg ][] = []
(x ⁻) .swap-coh y z xs pxs with x ≟ y | x ≟ z
(x ⁻) .swap-coh y z xs pxs | no _ | no _ = swap y z pxs
(x ⁻) .swap-coh y z xs pxs | no _ | yes _ = refl
(x ⁻) .swap-coh y z xs pxs | yes _ | no _ = refl
(x ⁻) .swap-coh y z xs pxs | yes x≡y | yes x≡z = cong (Row._∷ xs) (sym x≡z ; x≡y)
rem-cons : ∀ x xs → [ x ⁻ ] (x ∷ xs) ≡ xs
rem-cons x xs with x ≟ x
... | yes _ = refl
... | no ¬p = ⊥-elim (¬p refl)
rem-swap : ∀ x y xs → x ≢ y → x ∷ [ y ⁻ ] xs ≡ [ y ⁻ ] (x ∷ xs)
rem-swap x y xs x≢y with y ≟ x
rem-swap x y xs x≢y | yes x≡y = ⊥-elim (x≢y (sym x≡y))
rem-swap x y xs x≢y | no _ = refl
∷-inj : ∀ x xs ys → x ∷ xs ≡ x ∷ ys → xs ≡ ys
∷-inj x xs ys p with x ≟ x | cong [ x ⁻ ] p
∷-inj x xs ys p | yes _ | q = q
∷-inj x xs ys p | no ¬p | q = ⊥-elim (¬p refl)
elem-push : ∀ x y (xs : Row A) → x ≢ y → x ∉ xs → x ∉ y ∷ xs
elem-push x y xs x≢y x∉xs (ys , x∷ys≡y∷xs) =
let q = rem-swap x y ys x≢y ; cong [ y ⁻ ] x∷ys≡y∷xs ; rem-cons y xs
in x∉xs ([ y ⁻ ] ys , q)
elem-alg : ∀ x → Alg A (λ xs → Dec (x ∈ xs))
[ elem-alg x ] y ∷ xs ⟨ P⟨xs⟩ ⟩ = disj (λ x≡y → (xs , cong (_∷ xs) x≡y)) (λ { (ys , x∷ys≡xs) → y ∷ ys , swap x y ys ; cong (y ∷_) x∷ys≡xs }) (elem-push x y xs) (x ≟ y) P⟨xs⟩
[ elem-alg x ][] = no (snotz ∘ cong length ∘ snd)
|
{
"alphanum_fraction": 0.4951124145,
"avg_line_length": 28.8169014085,
"ext": "agda",
"hexsha": "528face292b3ad9b69329ad41ea632f03ae6604c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Row.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Row.agda",
"max_line_length": 175,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Row.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 1963,
"size": 4092
}
|
-- Andreas, 2012-09-24 Ensure that size successor is monotone
-- Andreas, 2015-03-16 SizeUniv is still imperfect, so we need type-in-type
-- here to work around the conflation of sLub and the PTS rule.
{-# OPTIONS --type-in-type #-}
module SizeSucMonotone where
open import Common.Size
data Bool : Set where
true false : Bool
-- T should be monotone in its second arg
T : Bool → Size → Set
T true i = (Size< i → Bool) → Bool
T false i = (Size< (↑ i) → Bool) → Bool
test : {x : Bool}{i : Size}{j : Size< i} → T x j → T x i
test h = h
|
{
"alphanum_fraction": 0.6563071298,
"avg_line_length": 24.8636363636,
"ext": "agda",
"hexsha": "99b4c71603bec37160e423e636b9fadf3574592d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/SizeSucMonotone.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/SizeSucMonotone.agda",
"max_line_length": 75,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/SizeSucMonotone.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 174,
"size": 547
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Dependent product combinators for setoid equality preserving
-- functions
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Product.Function.Dependent.Setoid where
open import Data.Product
open import Data.Product.Relation.Binary.Pointwise.Dependent
open import Relation.Binary
open import Function
open import Function.Equality as F using (_⟶_; _⟨$⟩_)
open import Function.Equivalence as Eq
using (Equivalence; _⇔_; module Equivalence)
open import Function.Injection as Inj
using (Injection; Injective; _↣_; module Injection)
open import Function.Inverse as Inv
using (Inverse; _↔_; module Inverse)
open import Function.LeftInverse as LeftInv
using (LeftInverse; _↞_; _LeftInverseOf_; _RightInverseOf_; module LeftInverse)
open import Function.Surjection as Surj
using (Surjection; _↠_; module Surjection)
open import Relation.Binary as B
open import Relation.Binary.Indexed.Heterogeneous
using (IndexedSetoid)
open import Relation.Binary.Indexed.Heterogeneous.Construct.At
using (_atₛ_)
open import Relation.Binary.PropositionalEquality as P using (_≡_)
------------------------------------------------------------------------
-- Properties related to "relatedness"
------------------------------------------------------------------------
private
subst-cong : ∀ {i a p} {I : Set i} {A : I → Set a}
(P : ∀ {i} → A i → A i → Set p) {i i′} {x y : A i}
(i≡i′ : i ≡ i′) →
P x y → P (P.subst A i≡i′ x) (P.subst A i≡i′ y)
subst-cong P P.refl p = p
⟶ : ∀ {a₁ a₂ b₁ b₁′ b₂ b₂′}
{A₁ : Set a₁} {A₂ : Set a₂}
{B₁ : IndexedSetoid A₁ b₁ b₁′} (B₂ : IndexedSetoid A₂ b₂ b₂′)
(f : A₁ → A₂) → (∀ {x} → (B₁ atₛ x) ⟶ (B₂ atₛ (f x))) →
setoid (P.setoid A₁) B₁ ⟶ setoid (P.setoid A₂) B₂
⟶ {A₁ = A₁} {A₂} {B₁} B₂ f g = record
{ _⟨$⟩_ = fg
; cong = fg-cong
}
where
open B.Setoid (setoid (P.setoid A₁) B₁)
using () renaming (_≈_ to _≈₁_)
open B.Setoid (setoid (P.setoid A₂) B₂)
using () renaming (_≈_ to _≈₂_)
open B using (_=[_]⇒_)
fg = map f (_⟨$⟩_ g)
fg-cong : _≈₁_ =[ fg ]⇒ _≈₂_
fg-cong (P.refl , ∼) = (P.refl , F.cong g ∼)
module _ {a₁ a₂ b₁ b₁′ b₂ b₂′} {A₁ : Set a₁} {A₂ : Set a₂} where
equivalence : {B₁ : IndexedSetoid A₁ b₁ b₁′} {B₂ : IndexedSetoid A₂ b₂ b₂′}
(A₁⇔A₂ : A₁ ⇔ A₂) →
(∀ {x} → _⟶_ (B₁ atₛ x) (B₂ atₛ (Equivalence.to A₁⇔A₂ ⟨$⟩ x))) →
(∀ {y} → _⟶_ (B₂ atₛ y) (B₁ atₛ (Equivalence.from A₁⇔A₂ ⟨$⟩ y))) →
Equivalence (setoid (P.setoid A₁) B₁) (setoid (P.setoid A₂) B₂)
equivalence {B₁} {B₂} A₁⇔A₂ B-to B-from = record
{ to = ⟶ B₂ (_⟨$⟩_ (to A₁⇔A₂)) B-to
; from = ⟶ B₁ (_⟨$⟩_ (from A₁⇔A₂)) B-from
} where open Equivalence
equivalence-↞ : (B₁ : IndexedSetoid A₁ b₁ b₁′) {B₂ : IndexedSetoid A₂ b₂ b₂′}
(A₁↞A₂ : A₁ ↞ A₂) →
(∀ {x} → Equivalence (B₁ atₛ (LeftInverse.from A₁↞A₂ ⟨$⟩ x))
(B₂ atₛ x)) →
Equivalence (setoid (P.setoid A₁) B₁) (setoid (P.setoid A₂) B₂)
equivalence-↞ B₁ {B₂} A₁↞A₂ B₁⇔B₂ =
equivalence (LeftInverse.equivalence A₁↞A₂) B-to B-from
where
B-to : ∀ {x} → _⟶_ (B₁ atₛ x) (B₂ atₛ (LeftInverse.to A₁↞A₂ ⟨$⟩ x))
B-to = record
{ _⟨$⟩_ = λ x → Equivalence.to B₁⇔B₂ ⟨$⟩
P.subst (IndexedSetoid.Carrier B₁)
(P.sym $ LeftInverse.left-inverse-of A₁↞A₂ _)
x
; cong = F.cong (Equivalence.to B₁⇔B₂) ∘
subst-cong (λ {x} → IndexedSetoid._≈_ B₁ {x} {x})
(P.sym (LeftInverse.left-inverse-of A₁↞A₂ _))
}
B-from : ∀ {y} → _⟶_ (B₂ atₛ y) (B₁ atₛ (LeftInverse.from A₁↞A₂ ⟨$⟩ y))
B-from = Equivalence.from B₁⇔B₂
equivalence-↠ : {B₁ : IndexedSetoid A₁ b₁ b₁′} (B₂ : IndexedSetoid A₂ b₂ b₂′)
(A₁↠A₂ : A₁ ↠ A₂) →
(∀ {x} → Equivalence (B₁ atₛ x) (B₂ atₛ (Surjection.to A₁↠A₂ ⟨$⟩ x))) →
Equivalence (setoid (P.setoid A₁) B₁) (setoid (P.setoid A₂) B₂)
equivalence-↠ {B₁ = B₁} B₂ A₁↠A₂ B₁⇔B₂ =
equivalence (Surjection.equivalence A₁↠A₂) B-to B-from
where
B-to : ∀ {x} → _⟶_ (B₁ atₛ x) (B₂ atₛ (Surjection.to A₁↠A₂ ⟨$⟩ x))
B-to = Equivalence.to B₁⇔B₂
B-from : ∀ {y} → _⟶_ (B₂ atₛ y) (B₁ atₛ (Surjection.from A₁↠A₂ ⟨$⟩ y))
B-from = record
{ _⟨$⟩_ = λ x → Equivalence.from B₁⇔B₂ ⟨$⟩
P.subst (IndexedSetoid.Carrier B₂)
(P.sym $ Surjection.right-inverse-of A₁↠A₂ _)
x
; cong = F.cong (Equivalence.from B₁⇔B₂) ∘
subst-cong (λ {x} → IndexedSetoid._≈_ B₂ {x} {x})
(P.sym (Surjection.right-inverse-of A₁↠A₂ _))
}
injection : {B₁ : IndexedSetoid A₁ b₁ b₁′} (B₂ : IndexedSetoid A₂ b₂ b₂′) →
(A₁↣A₂ : A₁ ↣ A₂) →
(∀ {x} → Injection (B₁ atₛ x) (B₂ atₛ (Injection.to A₁↣A₂ ⟨$⟩ x))) →
Injection (setoid (P.setoid A₁) B₁) (setoid (P.setoid A₂) B₂)
injection {B₁ = B₁} B₂ A₁↣A₂ B₁↣B₂ = record
{ to = to
; injective = inj
}
where
to = ⟶ B₂ (Injection.to A₁↣A₂ ⟨$⟩_) (Injection.to B₁↣B₂)
inj : Injective to
inj (x , y) =
Injection.injective A₁↣A₂ x ,
lemma (Injection.injective A₁↣A₂ x) y
where
lemma :
∀ {x x′}
{y : IndexedSetoid.Carrier B₁ x} {y′ : IndexedSetoid.Carrier B₁ x′} →
x ≡ x′ →
(eq : IndexedSetoid._≈_ B₂ (Injection.to B₁↣B₂ ⟨$⟩ y)
(Injection.to B₁↣B₂ ⟨$⟩ y′)) →
IndexedSetoid._≈_ B₁ y y′
lemma P.refl = Injection.injective B₁↣B₂
left-inverse : (B₁ : IndexedSetoid A₁ b₁ b₁′) {B₂ : IndexedSetoid A₂ b₂ b₂′} →
(A₁↞A₂ : A₁ ↞ A₂) →
(∀ {x} → LeftInverse (B₁ atₛ (LeftInverse.from A₁↞A₂ ⟨$⟩ x))
(B₂ atₛ x)) →
LeftInverse (setoid (P.setoid A₁) B₁) (setoid (P.setoid A₂) B₂)
left-inverse B₁ {B₂} A₁↞A₂ B₁↞B₂ = record
{ to = Equivalence.to eq
; from = Equivalence.from eq
; left-inverse-of = left
}
where
eq = equivalence-↞ B₁ A₁↞A₂ (LeftInverse.equivalence B₁↞B₂)
left : Equivalence.from eq LeftInverseOf Equivalence.to eq
left (x , y) =
LeftInverse.left-inverse-of A₁↞A₂ x ,
IndexedSetoid.trans B₁
(LeftInverse.left-inverse-of B₁↞B₂ _)
(lemma (P.sym (LeftInverse.left-inverse-of A₁↞A₂ x)))
where
lemma :
∀ {x x′ y} (eq : x ≡ x′) →
IndexedSetoid._≈_ B₁ (P.subst (IndexedSetoid.Carrier B₁) eq y) y
lemma P.refl = IndexedSetoid.refl B₁
surjection : {B₁ : IndexedSetoid A₁ b₁ b₁′} (B₂ : IndexedSetoid A₂ b₂ b₂′) →
(A₁↠A₂ : A₁ ↠ A₂) →
(∀ {x} → Surjection (B₁ atₛ x) (B₂ atₛ (Surjection.to A₁↠A₂ ⟨$⟩ x))) →
Surjection (setoid (P.setoid A₁) B₁) (setoid (P.setoid A₂) B₂)
surjection B₂ A₁↠A₂ B₁↠B₂ = record
{ to = Equivalence.to eq
; surjective = record
{ from = Equivalence.from eq
; right-inverse-of = right
}
}
where
eq = equivalence-↠ B₂ A₁↠A₂ (Surjection.equivalence B₁↠B₂)
right : Equivalence.from eq RightInverseOf Equivalence.to eq
right (x , y) =
Surjection.right-inverse-of A₁↠A₂ x ,
IndexedSetoid.trans B₂
(Surjection.right-inverse-of B₁↠B₂ _)
(lemma (P.sym $ Surjection.right-inverse-of A₁↠A₂ x))
where
lemma : ∀ {x x′ y} (eq : x ≡ x′) →
IndexedSetoid._≈_ B₂ (P.subst (IndexedSetoid.Carrier B₂) eq y) y
lemma P.refl = IndexedSetoid.refl B₂
-- See also Data.Product.Function.Dependent.Setoid.WithK.inverse.
|
{
"alphanum_fraction": 0.5533333333,
"avg_line_length": 38.4422110553,
"ext": "agda",
"hexsha": "54f5eaf5d8f9ad4366a1d6ad8f8ac63a10f9f408",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Function/Dependent/Setoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Function/Dependent/Setoid.agda",
"max_line_length": 81,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Function/Dependent/Setoid.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2914,
"size": 7650
}
|
module Error-in-imported-module.M where
Foo : Set
Foo = Set
|
{
"alphanum_fraction": 0.737704918,
"avg_line_length": 12.2,
"ext": "agda",
"hexsha": "25e36f832b83ee5a5aa0217a7164bf49fa8b306d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Error-in-imported-module/M.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Error-in-imported-module/M.agda",
"max_line_length": 39,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Error-in-imported-module/M.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 17,
"size": 61
}
|
{-# OPTIONS --without-K --safe #-}
module Bundles where
open import Algebra.Core
open import Relation.Binary
open import Level
open import Algebra.Bundles
open import Algebra.Structures
open import Structures
------------------------------------------------------------------------
-- Bundles with 1 binary operation
------------------------------------------------------------------------
record IdempotentMagma c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
isIdempotentMagma : IsIdempotentMagma _≈_ _∙_
open IsIdempotentMagma isIdempotentMagma public
magma : Magma c ℓ
magma = record { isMagma = isMagma }
open Magma magma public
using (rawMagma)
record AlternateMagma c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
isAlternateMagma : IsAlternateMagma _≈_ _∙_
open IsAlternateMagma isAlternateMagma public
magma : Magma c ℓ
magma = record { isMagma = isMagma }
open Magma magma public
using (rawMagma)
record FlexibleMagma c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
isFlexibleMagma : IsFlexibleMagma _≈_ _∙_
open IsFlexibleMagma isFlexibleMagma public
magma : Magma c ℓ
magma = record { isMagma = isMagma }
open Magma magma public
using (rawMagma)
record MedialMagma c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
isMedialMagma : IsMedialMagma _≈_ _∙_
open IsMedialMagma isMedialMagma public
magma : Magma c ℓ
magma = record { isMagma = isMagma }
open Magma magma public
using (rawMagma)
record SemimedialMagma c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
isSemimedialMagma : IsSemimedialMagma _≈_ _∙_
open IsSemimedialMagma isSemimedialMagma public
magma : Magma c ℓ
magma = record { isMagma = isMagma }
open Magma magma public
using (rawMagma)
record LatinQuasigroup c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
isLatinQuasigroup : IsLatinQuasigroup _≈_ _∙_
open IsLatinQuasigroup isLatinQuasigroup public
magma : Magma c ℓ
magma = record { isMagma = isMagma }
open Magma magma public
using (_≉_; rawMagma)
record InverseSemigroup c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
isInverseSemigroup : IsInverseSemigroup _≈_ _∙_
open IsInverseSemigroup isInverseSemigroup public
magma : Magma c ℓ
magma = record { isMagma = isMagma }
open Magma magma public
using (_≉_; rawMagma)
------------------------------------------------------------------------
-- Bundles with 1 binary operation and 1 element
------------------------------------------------------------------------
record LeftUnitalMagma c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
ε : Carrier
isLeftUnitalMagma : IsLeftUnitalMagma _≈_ _∙_ ε
open IsLeftUnitalMagma isLeftUnitalMagma public
magma : Magma c ℓ
magma = record { isMagma = isMagma }
open Magma magma public
using (rawMagma)
record RightUnitalMagma c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
ε : Carrier
isRightUnitalMagma : IsRightUnitalMagma _≈_ _∙_ ε
open IsRightUnitalMagma isRightUnitalMagma public
magma : Magma c ℓ
magma = record { isMagma = isMagma }
open Magma magma public
using (rawMagma)
------------------------------------------------------------------------
-- Bundles with 2 binary operations, 1 unary operation & 1 element
------------------------------------------------------------------------
record NonAssociativeRing c ℓ : Set (suc (c ⊔ ℓ)) where
infix 8 -_
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
-_ : Op₁ Carrier
0# : Carrier
1# : Carrier
isNonAssociativeRing : IsNonAssociativeRing _≈_ _+_ _*_ -_ 0# 1#
open IsNonAssociativeRing isNonAssociativeRing public
+-abelianGroup : AbelianGroup _ _
+-abelianGroup = record { isAbelianGroup = +-isAbelianGroup }
open AbelianGroup +-abelianGroup public
using () renaming (group to +-group; invertibleMagma to +-invertibleMagma; invertibleUnitalMagma to +-invertibleUnitalMagma)
------------------------------------------------------------------------
-- Bundles with 3 binary operation and 1 element
------------------------------------------------------------------------
record Pique c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infixl 7 _\\_
infixl 7 _//_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
_\\_ : Op₂ Carrier
_//_ : Op₂ Carrier
ε : Carrier
isPique : IsPique _≈_ _∙_ _\\_ _//_ ε
open IsPique isPique public
record LeftBolLoop c ℓ : Set (suc (c ⊔ ℓ)) where
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
_\\_ : Op₂ Carrier
_//_ : Op₂ Carrier
ε : Carrier
isLeftBolLoop : IsLeftBolLoop _≈_ _∙_ _\\_ _//_ ε
open IsLeftBolLoop isLeftBolLoop public
loop : Loop _ _
loop = record { isLoop = isLoop }
open Loop loop public
using (quasigroup)
record RightBolLoop c ℓ : Set (suc (c ⊔ ℓ)) where
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
_\\_ : Op₂ Carrier
_//_ : Op₂ Carrier
ε : Carrier
isRightBolLoop : IsRightBolLoop _≈_ _∙_ _\\_ _//_ ε
open IsRightBolLoop isRightBolLoop public
loop : Loop _ _
loop = record { isLoop = isLoop }
open Loop loop public
using (quasigroup)
record MoufangLoop c ℓ : Set (suc (c ⊔ ℓ)) where
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
_\\_ : Op₂ Carrier
_//_ : Op₂ Carrier
ε : Carrier
isMoufangLoop : IsMoufangLoop _≈_ _∙_ _\\_ _//_ ε
open IsMoufangLoop isMoufangLoop public
loop : Loop _ _
loop = record { isLoop = isLoop }
open Loop loop public
using (quasigroup)
|
{
"alphanum_fraction": 0.5728554642,
"avg_line_length": 24.7563636364,
"ext": "agda",
"hexsha": "d930f984ebf2c94418db112bfcb8fcf1169707a9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "72030f78934877ad67bf4e36e74e43845cabbf55",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Akshobhya1234/Agda-Algebra",
"max_forks_repo_path": "src/Bundles.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "72030f78934877ad67bf4e36e74e43845cabbf55",
"max_issues_repo_issues_event_max_datetime": "2022-01-31T18:19:52.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-02T20:50:34.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Akshobhya1234/Agda-Algebra",
"max_issues_repo_path": "src/Bundles.agda",
"max_line_length": 128,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "72030f78934877ad67bf4e36e74e43845cabbf55",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Akshobhya1234/Agda-Algebra",
"max_stars_repo_path": "src/Bundles.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2271,
"size": 6808
}
|
module Issue4267.M where
record R : Set₂ where
field
f : Set₁
|
{
"alphanum_fraction": 0.6811594203,
"avg_line_length": 11.5,
"ext": "agda",
"hexsha": "01104ee89f0bea38abf4a48d085397dee5b6408c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue4267/M.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue4267/M.agda",
"max_line_length": 24,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue4267/M.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 23,
"size": 69
}
|
open import Nat
open import Prelude
open import core
open import contexts
open import lemmas-consistency
open import lemmas-ground
open import progress-checks
open import canonical-boxed-forms
open import canonical-value-forms
open import canonical-indeterminate-forms
open import ground-decidable
open import htype-decidable
module progress where
-- this is a little bit of syntactic sugar to avoid many layer nested Inl
-- and Inrs that you would get from the more literal transcription of the
-- consequent of progress
data ok : (d : ihexp) (Δ : hctx) → Set where
S : ∀{d Δ} → Σ[ d' ∈ ihexp ] (d ↦ d') → ok d Δ
I : ∀{d Δ} → d indet → ok d Δ
BV : ∀{d Δ} → d boxedval → ok d Δ
progress : {Δ : hctx} {d : ihexp} {τ : htyp} →
Δ , ∅ ⊢ d :: τ →
ok d Δ
-- constants
progress TAConst = BV (BVVal VConst)
-- variables
progress (TAVar x₁) = abort (somenotnone (! x₁))
-- lambdas
progress (TALam _ wt) = BV (BVVal VLam)
-- applications
progress (TAAp wt1 wt2)
with progress wt1 | progress wt2
-- if the left steps, the whole thing steps
progress (TAAp wt1 wt2) | S (_ , Step x y z) | _ = S (_ , Step (FHAp1 x) y (FHAp1 z))
-- if the left is indeterminate, step the right
progress (TAAp wt1 wt2) | I i | S (_ , Step x y z) = S (_ , Step (FHAp2 x) y (FHAp2 z))
-- if they're both indeterminate, step when the cast steps and indet otherwise
progress (TAAp wt1 wt2) | I x | I x₁
with canonical-indeterminate-forms-arr wt1 x
progress (TAAp wt1 wt2) | I x | I y | CIFACast (_ , _ , _ , _ , _ , refl , _ , _ ) = S (_ , Step FHOuter ITApCast FHOuter)
progress (TAAp wt1 wt2) | I x | I y | CIFAEHole (_ , _ , _ , refl , _) = I (IAp (λ _ _ _ _ _ ()) x (FIndet y))
progress (TAAp wt1 wt2) | I x | I y | CIFANEHole (_ , _ , _ , _ , _ , refl , _) = I (IAp (λ _ _ _ _ _ ()) x (FIndet y))
progress (TAAp wt1 wt2) | I x | I y | CIFAAp (_ , _ , _ , _ , _ , refl , _) = I (IAp (λ _ _ _ _ _ ()) x (FIndet y))
progress (TAAp wt1 wt2) | I x | I y | CIFACastHole (_ , refl , refl , refl , _ ) = I (IAp (λ _ _ _ _ _ ()) x (FIndet y))
progress (TAAp wt1 wt2) | I x | I y | CIFAFailedCast (_ , _ , refl , _ ) = I (IAp (λ _ _ _ _ _ ()) x (FIndet y))
-- similar if the left is indetermiante but the right is a boxed val
progress (TAAp wt1 wt2) | I x | BV x₁
with canonical-indeterminate-forms-arr wt1 x
progress (TAAp wt1 wt2) | I x | BV y | CIFACast (_ , _ , _ , _ , _ , refl , _ , _ ) = S (_ , Step FHOuter ITApCast FHOuter)
progress (TAAp wt1 wt2) | I x | BV y | CIFAEHole (_ , _ , _ , refl , _) = I (IAp (λ _ _ _ _ _ ()) x (FBoxedVal y))
progress (TAAp wt1 wt2) | I x | BV y | CIFANEHole (_ , _ , _ , _ , _ , refl , _) = I (IAp (λ _ _ _ _ _ ()) x (FBoxedVal y))
progress (TAAp wt1 wt2) | I x | BV y | CIFAAp (_ , _ , _ , _ , _ , refl , _) = I (IAp (λ _ _ _ _ _ ()) x (FBoxedVal y))
progress (TAAp wt1 wt2) | I x | BV y | CIFACastHole (_ , refl , refl , refl , _ ) = I (IAp (λ _ _ _ _ _ ()) x (FBoxedVal y))
progress (TAAp wt1 wt2) | I x | BV y | CIFAFailedCast (_ , _ , refl , _ ) = I (IAp (λ _ _ _ _ _ ()) x (FBoxedVal y))
-- if the left is a boxed value, inspect the right
progress (TAAp wt1 wt2) | BV v | S (_ , Step x y z) = S (_ , Step (FHAp2 x) y (FHAp2 z))
progress (TAAp wt1 wt2) | BV v | I i
with canonical-boxed-forms-arr wt1 v
... | CBFLam (_ , _ , refl , _) = S (_ , Step FHOuter ITLam FHOuter)
... | CBFCastArr (_ , _ , _ , refl , _ , _) = S (_ , Step FHOuter ITApCast FHOuter)
progress (TAAp wt1 wt2) | BV v | BV v₂
with canonical-boxed-forms-arr wt1 v
... | CBFLam (_ , _ , refl , _) = S (_ , Step FHOuter ITLam FHOuter)
... | CBFCastArr (_ , _ , _ , refl , _ , _) = S (_ , Step FHOuter ITApCast FHOuter)
-- empty holes are indeterminate
progress (TAEHole _ _ ) = I IEHole
-- nonempty holes step if the innards step, indet otherwise
progress (TANEHole xin wt x₁)
with progress wt
... | S (_ , Step x y z) = S (_ , Step (FHNEHole x) y (FHNEHole z))
... | I x = I (INEHole (FIndet x))
... | BV x = I (INEHole (FBoxedVal x))
-- casts
progress (TACast wt con)
with progress wt
-- step if the innards step
progress (TACast wt con) | S (_ , Step x y z) = S (_ , Step (FHCast x) y (FHCast z))
-- if indet, inspect how the types in the cast are realted by consistency:
-- if they're the same, step by ID
progress (TACast wt TCRefl) | I x = S (_ , Step FHOuter ITCastID FHOuter)
-- if first type is hole
progress (TACast {τ1 = τ1} wt TCHole1) | I x
with τ1
progress (TACast wt TCHole1) | I x | b = I (ICastGroundHole GBase x)
progress (TACast wt TCHole1) | I x | ⦇-⦈ = S (_ , Step FHOuter ITCastID FHOuter)
progress (TACast wt TCHole1) | I x | τ11 ==> τ12
with ground-decidable (τ11 ==> τ12)
progress (TACast wt TCHole1) | I x₁ | .⦇-⦈ ==> .⦇-⦈ | Inl GHole = I (ICastGroundHole GHole x₁)
progress (TACast wt TCHole1) | I x₁ | τ11 ==> τ12 | Inr x = S (_ , Step FHOuter (ITGround (MGArr (ground-arr-not-hole x))) FHOuter)
-- if second type is hole
progress (TACast wt (TCHole2 {b})) | I x
with canonical-indeterminate-forms-hole wt x
progress (TACast wt (TCHole2 {b})) | I x | CIFHEHole (_ , _ , _ , refl , f) = I (ICastHoleGround (λ _ _ ()) x GBase)
progress (TACast wt (TCHole2 {b})) | I x | CIFHNEHole (_ , _ , _ , _ , _ , refl , _ ) = I (ICastHoleGround (λ _ _ ()) x GBase)
progress (TACast wt (TCHole2 {b})) | I x | CIFHAp (_ , _ , _ , refl , _ ) = I (ICastHoleGround (λ _ _ ()) x GBase)
progress (TACast wt (TCHole2 {b})) | I x | CIFHCast (_ , τ , refl , _)
with htype-dec τ b
progress (TACast wt (TCHole2 {b})) | I x₁ | CIFHCast (_ , .b , refl , _ , grn , _) | Inl refl = S (_ , Step FHOuter (ITCastSucceed grn ) FHOuter)
progress (TACast wt (TCHole2 {b})) | I x₁ | CIFHCast (_ , _ , refl , π2 , grn , _) | Inr x = S (_ , Step FHOuter (ITCastFail grn GBase x) FHOuter)
progress (TACast wt (TCHole2 {⦇-⦈}))| I x = S (_ , Step FHOuter ITCastID FHOuter)
progress (TACast wt (TCHole2 {τ11 ==> τ12})) | I x
with ground-decidable (τ11 ==> τ12)
progress (TACast wt (TCHole2 {.⦇-⦈ ==> .⦇-⦈})) | I x₁ | Inl GHole
with canonical-indeterminate-forms-hole wt x₁
progress (TACast wt (TCHole2 {.⦇-⦈ ==> .⦇-⦈})) | I x | Inl GHole | CIFHEHole (_ , _ , _ , refl , _) = I (ICastHoleGround (λ _ _ ()) x GHole)
progress (TACast wt (TCHole2 {.⦇-⦈ ==> .⦇-⦈})) | I x | Inl GHole | CIFHNEHole (_ , _ , _ , _ , _ , refl , _) = I (ICastHoleGround (λ _ _ ()) x GHole)
progress (TACast wt (TCHole2 {.⦇-⦈ ==> .⦇-⦈})) | I x | Inl GHole | CIFHAp (_ , _ , _ , refl , _ ) = I (ICastHoleGround (λ _ _ ()) x GHole)
progress (TACast wt (TCHole2 {.⦇-⦈ ==> .⦇-⦈})) | I x | Inl GHole | CIFHCast (_ , ._ , refl , _ , GBase , _) = S (_ , Step FHOuter (ITCastFail GBase GHole (λ ())) FHOuter )
progress (TACast wt (TCHole2 {.⦇-⦈ ==> .⦇-⦈})) | I x | Inl GHole | CIFHCast (_ , ._ , refl , _ , GHole , _) = S (_ , Step FHOuter (ITCastSucceed GHole) FHOuter)
progress (TACast wt (TCHole2 {τ11 ==> τ12})) | I x₁ | Inr x = S (_ , Step FHOuter (ITExpand (MGArr (ground-arr-not-hole x))) FHOuter)
-- if both are arrows
progress (TACast wt (TCArr {τ1} {τ2} {τ1'} {τ2'} c1 c2)) | I x
with htype-dec (τ1 ==> τ2) (τ1' ==> τ2')
progress (TACast wt (TCArr c1 c2)) | I x₁ | Inl refl = S (_ , Step FHOuter ITCastID FHOuter)
progress (TACast wt (TCArr c1 c2)) | I x₁ | Inr x = I (ICastArr x x₁)
-- boxed value cases, inspect how the casts are realted by consistency
-- step by ID if the casts are the same
progress (TACast wt TCRefl) | BV x = S (_ , Step FHOuter ITCastID FHOuter)
-- if left is hole
progress (TACast wt (TCHole1 {τ = τ})) | BV x
with ground-decidable τ
progress (TACast wt TCHole1) | BV x₁ | Inl g = BV (BVHoleCast g x₁)
progress (TACast wt (TCHole1 {b})) | BV x₁ | Inr x = abort (x GBase)
progress (TACast wt (TCHole1 {⦇-⦈})) | BV x₁ | Inr x = S (_ , Step FHOuter ITCastID FHOuter)
progress (TACast wt (TCHole1 {τ1 ==> τ2})) | BV x₁ | Inr x
with (htype-dec (τ1 ==> τ2) (⦇-⦈ ==> ⦇-⦈))
progress (TACast wt (TCHole1 {.⦇-⦈ ==> .⦇-⦈})) | BV x₂ | Inr x₁ | Inl refl = BV (BVHoleCast GHole x₂)
progress (TACast wt (TCHole1 {τ1 ==> τ2})) | BV x₂ | Inr x₁ | Inr x = S (_ , Step FHOuter (ITGround (MGArr x)) FHOuter)
-- if right is hole
progress {τ = τ} (TACast wt TCHole2) | BV x
with canonical-boxed-forms-hole wt x
progress {τ = τ} (TACast wt TCHole2) | BV x | d' , τ' , refl , gnd , wt'
with htype-dec τ τ'
progress (TACast wt TCHole2) | BV x₁ | d' , τ , refl , gnd , wt' | Inl refl = S (_ , Step FHOuter (ITCastSucceed gnd) FHOuter)
progress {τ = τ} (TACast wt TCHole2) | BV x₁ | _ , _ , refl , _ , _ | Inr _
with ground-decidable τ
progress (TACast wt TCHole2) | BV x₂ | _ , _ , refl , gnd , _ | Inr x₁ | Inl x = S(_ , Step FHOuter (ITCastFail gnd x (flip x₁)) FHOuter)
progress (TACast wt TCHole2) | BV x₂ | _ , _ , refl , _ , _ | Inr x₁ | Inr x
with notground x
progress (TACast wt TCHole2) | BV x₃ | _ , _ , refl , _ , _ | Inr _ | Inr _ | Inl refl = S (_ , Step FHOuter ITCastID FHOuter)
progress (TACast wt TCHole2) | BV x₃ | _ , _ , refl , _ , _ | Inr _ | Inr x | Inr (_ , _ , refl) = S(_ , Step FHOuter (ITExpand (MGArr (ground-arr-not-hole x))) FHOuter )
-- if both arrows
progress (TACast wt (TCArr {τ1} {τ2} {τ1'} {τ2'} c1 c2)) | BV x
with htype-dec (τ1 ==> τ2) (τ1' ==> τ2')
progress (TACast wt (TCArr c1 c2)) | BV x₁ | Inl refl = S (_ , Step FHOuter ITCastID FHOuter)
progress (TACast wt (TCArr c1 c2)) | BV x₁ | Inr x = BV (BVArrCast x x₁)
-- failed casts
progress (TAFailedCast wt y z w)
with progress wt
progress (TAFailedCast wt y z w) | S (d' , Step x a q) = S (_ , Step (FHFailedCast x) a (FHFailedCast q))
progress (TAFailedCast wt y z w) | I x = I (IFailedCast (FIndet x) y z w)
progress (TAFailedCast wt y z w) | BV x = I (IFailedCast (FBoxedVal x) y z w)
|
{
"alphanum_fraction": 0.5876861966,
"avg_line_length": 61.0303030303,
"ext": "agda",
"hexsha": "aed144b98a9cd7754a6c7d22803e1601d31212cf",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_forks_repo_path": "progress.agda",
"max_issues_count": 54,
"max_issues_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_issues_repo_issues_event_max_datetime": "2018-11-29T16:32:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-29T20:53:34.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_issues_repo_path": "progress.agda",
"max_line_length": 174,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_stars_repo_path": "progress.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-19T02:50:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-03-12T14:32:03.000Z",
"num_tokens": 3957,
"size": 10070
}
|
module Main where
import Data.Any
import Data.Boolean
import Data.Either
-- import Data.List
-- import Data.ListNonEmpty
-- import Data.ListSized
import Data.Option
-- import Data.Proofs
import Data.Tuple
import Lang.Instance
import Lang.Irrelevance
import Lang.Size
import Logic
-- import Logic.Classical
-- import Logic.Computability
-- import Logic.Names
-- import Logic.Predicate
-- import Logic.Predicate.Theorems
-- import Logic.Propositional
-- import Logic.Propositional.Theorems
import Lvl
import Numeral.Integer
-- import Numeral.Integer.Proofs
import Numeral.Natural
import Relator.Equals
-- import Relator.Equals.Proofs
import Syntax.Function
-- import Syntax.Number
import Type
import Type.Cubical
import Type.Cubical.Path
import Type.Cubical.Path.Proofs
import Type.Dependent
import Type.Properties.Empty
-- import Type.Properties.Empty.Proofs
import Type.Quotient
-- import Type.Singleton
-- import Type.Singleton.Proofs
-- import Type.Size
-- import Type.Size.Proofs
import Type.Properties.Singleton
-- import Type.Properties.Singleton.Proofs
|
{
"alphanum_fraction": 0.8094339623,
"avg_line_length": 23.5555555556,
"ext": "agda",
"hexsha": "8768e2c5558fe22ef3335593d3d3034c55908d3d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "old/Mathematical/Main.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "old/Mathematical/Main.agda",
"max_line_length": 42,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "old/Mathematical/Main.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 249,
"size": 1060
}
|
{-# OPTIONS --without-K --safe #-}
module Util.HoTT.Homotopy where
open import Relation.Binary using (IsEquivalence)
open import Util.Prelude
open import Util.Relation.Binary.PropositionalEquality using (cong-app)
module _ {α β} {A : Set α} {B : A → Set β} where
_~_ : (f g : ∀ a → B a) → Set (α ⊔ℓ β)
f ~ g = ∀ a → f a ≡ g a
~-refl : ∀ {f} → f ~ f
~-refl a = refl
~-sym : ∀ {f g} → f ~ g → g ~ f
~-sym f~g a = sym (f~g a)
~-trans : ∀ {f g h} → f ~ g → g ~ h → f ~ h
~-trans f~g g~h a = trans (f~g a) (g~h a)
~-IsEquivalence : IsEquivalence _~_
~-IsEquivalence = record { refl = ~-refl ; sym = ~-sym ; trans = ~-trans }
≡→~ : ∀ {f g} → f ≡ g → f ~ g
≡→~ = cong-app
|
{
"alphanum_fraction": 0.5269886364,
"avg_line_length": 20.7058823529,
"ext": "agda",
"hexsha": "5a3f33c4ced297a93c161d8d7b1a05bfc22ea645",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JLimperg/msc-thesis-code",
"max_forks_repo_path": "src/Util/HoTT/Homotopy.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JLimperg/msc-thesis-code",
"max_issues_repo_path": "src/Util/HoTT/Homotopy.agda",
"max_line_length": 76,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JLimperg/msc-thesis-code",
"max_stars_repo_path": "src/Util/HoTT/Homotopy.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z",
"num_tokens": 292,
"size": 704
}
|
{-# OPTIONS --cubical --no-import-sorts #-}
open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
open import Cubical.Relation.Nullary.Base renaming (¬_ to ¬ᵗ_)-- ¬ᵗ_
open import Cubical.Relation.Binary.Base
open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_)
open import Cubical.Data.Sigma renaming (_×_ to infixr 4 _×_)
open import Cubical.Data.Empty renaming (elim to ⊥-elim; ⊥ to ⊥⊥) -- `⊥` and `elim`
open import Function.Base using (_∋_; _$_; it; typeOf)
open import Cubical.Foundations.Logic renaming
( inl to inlᵖ
; inr to inrᵖ
; _⇒_ to infixr 0 _⇒_ -- shifting by -6
; _⇔_ to infixr -2 _⇔_ --
; ∃[]-syntax to infix -4 ∃[]-syntax --
; ∃[∶]-syntax to infix -4 ∃[∶]-syntax --
; ∀[∶]-syntax to infix -4 ∀[∶]-syntax --
; ∀[]-syntax to infix -4 ∀[]-syntax --
)
-- open import Cubical.Data.Unit.Base using (Unit)
open import Cubical.HITs.PropositionalTruncation.Base -- ∣_∣
open import Utils
open import MoreLogic.Reasoning
open import MoreLogic.Definitions renaming
( _ᵗ⇒_ to infixr 0 _ᵗ⇒_
; ∀ᵖ[∶]-syntax to infix -4 ∀ᵖ[∶]-syntax
; ∀ᵖ〚∶〛-syntax to infix -4 ∀ᵖ〚∶〛-syntax
; ∀ᵖ!〚∶〛-syntax to infix -4 ∀ᵖ!〚∶〛-syntax
; ∀〚∶〛-syntax to infix -4 ∀〚∶〛-syntax
; Σᵖ[]-syntax to infix -4 Σᵖ[]-syntax
; Σᵖ[∶]-syntax to infix -4 Σᵖ[∶]-syntax
) hiding (≡ˢ-syntax)
open import MoreLogic.Properties
open import MorePropAlgebra.Definitions hiding (_≤''_)
open import MorePropAlgebra.Consequences
open import MorePropAlgebra.Structures
open import MorePropAlgebra.Bundles
module MorePropAlgebra.Properties.PartiallyOrderedField {ℓ ℓ'} (assumptions : PartiallyOrderedField {ℓ} {ℓ'})
(let _≡ˢ_ = λ(x y : PartiallyOrderedField.Carrier assumptions) → MoreLogic.Definitions.≡ˢ-syntax x y {PartiallyOrderedField.is-set assumptions}
infixl 4 _≡ˢ_
) where
import MorePropAlgebra.Properties.AlmostPartiallyOrderedField
module AlmostPartiallyOrderedField'Properties = MorePropAlgebra.Properties.AlmostPartiallyOrderedField record { PartiallyOrderedField assumptions }
module AlmostPartiallyOrderedField' = AlmostPartiallyOrderedField record { PartiallyOrderedField assumptions }
-- ( AlmostPartiallyOrderedField') = AlmostPartiallyOrderedField ∋ record { PartiallyOrderedField assumptions }
-- open PartiallyOrderedField assumptions renaming (Carrier to F; _-_ to _-_)
import MorePropAlgebra.Booij2020
open MorePropAlgebra.Booij2020.Chapter4 (record { PartiallyOrderedField assumptions })
open +-<-ext+·-preserves-<⇒ (PartiallyOrderedField.+-<-ext assumptions) (PartiallyOrderedField.·-preserves-< assumptions)
-- open AlmostPartiallyOrderedField'
open MorePropAlgebra.Properties.AlmostPartiallyOrderedField (record { PartiallyOrderedField assumptions })
open AlmostPartiallyOrderedField' using (_#_; _≤_)
open PartiallyOrderedField assumptions renaming (Carrier to F; _-_ to _-_) hiding (_#_; _≤_)
abstract
#-tight : ∀ a b → [ ¬(a # b) ] → a ≡ b; _ : [ isTightˢ''' _#_ is-set ]; _ = #-tight
#-tight = isTightˢ'''⇔isAntisymˢ _<_ is-set <-asym .snd ≤-antisym
+-#-ext : ∀ w x y z → [ (w + x) # (y + z) ] → [ (w # y) ⊔ (x # z) ]; _ : [ is-+-#-Extensional _+_ _#_ ]; _ = +-#-ext
-- Consider the case w + x < y + z, so that we can use (†) to obtain w < y ∨ x < z,
-- which gives w # y ∨ x # z in either case.
+-#-ext w x y z (inl w+x<y+z) = case +-<-ext _ _ _ _ w+x<y+z as (w < y) ⊔ (x < z) ⇒ ((w # y) ⊔ (x # z)) of λ
{ (inl w<y) → inlᵖ (inl w<y)
; (inr x<z) → inrᵖ (inl x<z) }
-- The case w + x > y + z is similar.
+-#-ext w x y z (inr y+z<w+x) = case +-<-ext _ _ _ _ y+z<w+x as (y < w) ⊔ (z < x) ⇒ ((w # y) ⊔ (x # z)) of λ
{ (inl y<w) → inlᵖ (inr y<w)
; (inr z<x) → inrᵖ (inr z<x) }
¬≤⇒≢ : ∀ x y → [ ¬(x ≤ y) ] → [ ¬(x ≡ˢ y) ]
¬≤⇒≢ x y ¬x≤y x≡y = ¬x≤y (subst (λ p → [ x ≤ p ]) x≡y (≤-refl x))
≢⇒¬¬# : ∀ x y → [ ¬(x ≡ˢ y) ] → [ ¬ ¬(x # y) ]
≢⇒¬¬# x y x≢y = contraposition (¬ (x # y)) (x ≡ˢ y) (#-tight x y) x≢y
-- x ≤ y → x # y → x < y
-- x ≤ y ≡ ¬(y ≤ x)
-- ¬(x # y) → x ≡ y
¬≤⇒¬¬# : ∀ x y → [ (¬(x ≤ y)) ⇒ ¬ ¬ (x # y) ]
¬≤⇒¬¬# x y ¬x≤y = ≢⇒¬¬# x y $ ¬≤⇒≢ x y ¬x≤y
¬≤≡¬¬< : ∀ x y → ¬(x ≤ y) ≡ ¬ ¬ (y < x)
¬≤≡¬¬< x y = refl
min-≤' : ∀ x y → [ (min x y ≤ x) ⊓ (min x y ≤ y) ]
min-≤' x y = is-min x y (min x y) .fst (≤-refl (min x y))
¬¬<-trans : ∀ x y z → [ ¬ ¬ (x < y) ] → [ ¬ ¬ (y < z) ] → [ ¬ ¬ (x < z) ]
¬¬<-trans x y z ¬¬x<y ¬¬y<z = ( contraposition (¬ (x < z)) (¬ ((x < y) ⊓ (y < z)))
$ contraposition ((x < y) ⊓ (y < z)) (x < z)
$ uncurryₚ (x < y) (y < z) (x < z) (<-trans x y z)
) (⊓¬¬⇒¬¬⊓ (x < y) (y < z) ¬¬x<y ¬¬y<z)
¬¬<-irrefl : ∀ x → [ ¬ ¬ ¬(x < x) ]
¬¬<-irrefl x = ¬¬-intro (¬(x < x)) (<-irrefl x)
-- lem : ∀ (x y z : F) → {! !}
-- lem x y z = let f : [ x < y ] → [ (x < z) ⊔ (z < y) ]
-- f p = <-cotrans x y p z -- contraposition ((z ≤ x) ⊓ (y ≤ z)) (y ≤ x) $
-- _ = {! !}
-- in {! contraposition (x < y) ((x < z) ⊔ (z < y)) f ∘ deMorgan₂-back (x < z) (z < y) !}
-- foo : ∀(x y z w : F) → [ w < min (x · z) (y · z) ] → [ w < min x y · z ]
-- foo x y z w = {! <-cotrans w (min x y) ? x !}
-- foo : ∀(x y z w : F) → [ w < min (x · z) (y · z) ] → [ w < min x y · z ]
min-<-⊔ : ∀ x y z → [ min x y < z ] → [ (x < z) ⊔ (y < z) ]
min-<-⊔ x y z mxy<z = case <-cotrans (min x y) z mxy<z x as (min x y < x) ⊔ (x < z) ⇒ (x < z) ⊔ (y < z) of λ
{ (inl p) → case <-cotrans (min x y) z mxy<z y as (min x y < y) ⊔ (y < z) ⇒ (x < z) ⊔ (y < z) of λ
{ (inl q) → -- We know that
-- x ≤ min(x, y) ⇔ x ≤ x ∧ x ≤ y,
-- y ≤ min(x, y) ⇔ y ≤ x ∧ y ≤ y.
-- By the fact that min(x, y) < x and min(x, y) < y, the left hand sides of these claims are false,
-- and hence we have ¬(x ≤ y) and ¬(y ≤ x), which together contradict that < is transitive and
-- irreflexive.
let (mxy≤x , mxy≤y) = is-min x y (min x y) .fst (<-irrefl (min x y))
r = contraposition ((x ≤ x) ⊓ (x ≤ y)) (¬ (min x y < x)) (is-min x y x .snd) (¬¬-intro (min x y < x) p)
¬x≤y = implication (x ≤ x) (x ≤ y) r (≤-refl x)
s = contraposition ((y ≤ x) ⊓ (y ≤ y)) (¬ (min x y < y)) (is-min x y y .snd) (¬¬-intro (min x y < y) q)
¬y≤x = ¬-⊓-distrib (y ≤ x) (y ≤ y) s .snd (≤-refl y)
in ⊥-elim {A = λ _ → [ (x < z) ⊔ (y < z) ]} $ ¬¬<-irrefl x (¬¬<-trans x y x ¬y≤x ¬x≤y)
; (inr q) → inrᵖ q
}
; (inr p) → inlᵖ p
}
-- is this provable?
-- min-≤-⊔ : ∀ x y z → [ min x y ≤ z ] → [ (x ≤ z) ⊔ (y ≤ z) ]
-- min-≤-⊔ x y z mxy≤z = {! !}
-- lem : ∀ w x y z → [ w ≤ (x + z) ] → [ w ≤ (y + z) ] → [ w ≤ (min x y + z) ]
-- lem w x y z w≤x+z w≤y+z mxy+z<w = {! +-<-ext (min x y) z 0f w !}
-- Properties.PartiallyOrderedField assumptions
-- opens PartiallyOrderedField assumptions
-- opens IsPartiallyOrderedField is-PartiallyOrderedField public
-- opens IsAlmostPartiallyOrderedField is-AlmostPartiallyOrderedField public
-- contains definition of _#_
-- becomes `_#_`
-- opens MorePropAlgebra.Properties.AlmostPartiallyOrderedField assumptions
-- opens AlmostPartiallyOrderedField assumptions
-- opens IsAlmostPartiallyOrderedField is-AlmostPartiallyOrderedField public
-- contains definition of _#_
-- becomes `AlmostPartiallyOrderedField'._#_`
-- all these become `_#_`
-- _#_
-- PartiallyOrderedField._#_ assumptions
-- IsPartiallyOrderedField._#_ (PartiallyOrderedField.is-PartiallyOrderedField assumptions)
-- IsAlmostPartiallyOrderedField._#_ (IsPartiallyOrderedField.is-AlmostPartiallyOrderedField (PartiallyOrderedField.is-PartiallyOrderedField assumptions))
-- but
-- PartiallyOrderedField._#_ (record { PartiallyOrderedField assumptions })
-- becomes
-- PartiallyOrderedField._#_ record { Carrier = F ; 0f = 0f ; 1f = 1f ; _+_ = _+_ ; -_ = -_ ; _·_ = _·_ ; min = min ; max = max ; _<_ = _<_ ; is-PartiallyOrderedField = is-PartiallyOrderedField }
-- when we define
-- foo = PartiallyOrderedField ∋ (record { PartiallyOrderedField assumptions })
-- then
-- PartiallyOrderedField._#_ foo
-- becomes
-- (foo PartiallyOrderedField.# x)
-- foo = PartiallyOrderedField ∋ (record { PartiallyOrderedField assumptions })
--
-- test : ∀ x y → [ (PartiallyOrderedField._#_ foo) x y ]
-- test = {! ·-inv'' !}
|
{
"alphanum_fraction": 0.5452755906,
"avg_line_length": 49.3485714286,
"ext": "agda",
"hexsha": "cfecf023cd75274da24d406962ff6e5076905d99",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "agda/MorePropAlgebra/Properties/PartiallyOrderedField.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "agda/MorePropAlgebra/Properties/PartiallyOrderedField.agda",
"max_line_length": 197,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "agda/MorePropAlgebra/Properties/PartiallyOrderedField.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 3358,
"size": 8636
}
|
{-# OPTIONS --without-K --safe #-}
module Math.NumberTheory.Summation.Nat.Properties where
-- agda-stdlib
open import Algebra
import Algebra.Operations.CommutativeMonoid as CommutativeMonoidOperations
open import Data.Nat
open import Data.Nat.Properties
open import Data.Nat.Solver
open import Relation.Binary.PropositionalEquality
open import Function.Base
-- agda-misc
open import Math.NumberTheory.Summation.Generic
open import Math.NumberTheory.Summation.Generic.Properties
import Math.NumberTheory.Summation.Nat.Properties.Lemma as Lemma
-- DO NOT change this line
open MonoidSummation (Semiring.+-monoid *-+-semiring)
open CommutativeMonoidOperations (Semiring.+-commutativeMonoid *-+-semiring)
-- TODO? rename _≈_ to _≡_ this is tedious
open SemiringSummationProperties *-+-semiring public
renaming
( Σ<-const to Σ<-const-×
; Σ≤-const to Σ≤-const-×
; Σ<range-const to Σ<range-const-×
; Σ≤range-const to Σ≤range-const-×
)
-- TODO move somewhere
private
m×n≡m*n : ∀ m n → m × n ≡ m * n
m×n≡m*n zero n = refl
m×n≡m*n (suc m) n = cong (n +_) $ m×n≡m*n m n
Σ<-const : ∀ m n → Σ< m (λ _ → n) ≡ m * n
Σ<-const m n = begin-equality
Σ< m (λ _ → n) ≡⟨ Σ<-const-× m n ⟩
m × n ≡⟨ m×n≡m*n m n ⟩
m * n ∎
where open ≤-Reasoning
Σ≤-const : ∀ m n → Σ≤ m (λ _ → n) ≡ suc m * n
Σ≤-const m n = Σ<-const (suc m) n
Σ<range-const : ∀ m n x → Σ<range m n (const x) ≡ (n ∸ m) * x
Σ<range-const m n x = trans (Σ<range-const-× m n x) (m×n≡m*n (n ∸ m) x)
Σ≤range-const : ∀ m n x → Σ≤range m n (const x) ≡ (suc n ∸ m) * x
Σ≤range-const m n x = Σ<range-const m (suc n) x
2*Σ≤[n,id]≡n*[1+n] : ∀ n → 2 * Σ≤ n id ≡ n * (suc n)
2*Σ≤[n,id]≡n*[1+n] zero = refl
2*Σ≤[n,id]≡n*[1+n] (suc n) = begin-equality
2 * Σ≤ (suc n) id ≡⟨⟩
2 * (Σ≤ n id + suc n) ≡⟨ *-distribˡ-+ 2 (Σ≤ n id) (suc n) ⟩
2 * Σ≤ n id + 2 * suc n ≡⟨ cong (_+ 2 * suc n) $ 2*Σ≤[n,id]≡n*[1+n] n ⟩
n * suc n + 2 * suc n ≡⟨ sym $ *-distribʳ-+ (suc n) n 2 ⟩
(n + 2) * suc n ≡⟨ *-comm (n + 2) (suc n) ⟩
suc n * (n + 2) ≡⟨ cong (suc n *_) $ +-comm n 2 ⟩
suc n * suc (suc n) ∎
where open ≤-Reasoning
6*Σ≤[n,^2]≡n*[1+n]*[1+2*n] : ∀ n → 6 * Σ≤ n (_^ 2) ≡ n * (1 + n) * (1 + 2 * n)
6*Σ≤[n,^2]≡n*[1+n]*[1+2*n] 0 = refl
6*Σ≤[n,^2]≡n*[1+n]*[1+2*n] (suc n) = begin-equality
6 * Σ≤ (suc n) (_^ 2) ≡⟨⟩
6 * (Σ≤ n (_^ 2) + suc n ^ 2) ≡⟨ *-distribˡ-+ 6 (Σ≤ n (_^ 2)) (suc n ^ 2) ⟩
6 * Σ≤ n (_^ 2) + 6 * (suc n ^ 2) ≡⟨ cong (_+ 6 * (suc n ^ 2)) $ 6*Σ≤[n,^2]≡n*[1+n]*[1+2*n] n ⟩
n * (1 + n) * (1 + 2 * n) + 6 * ((1 + n) ^ 2) ≡⟨ Lemma.lemma₁ n ⟩
(1 + n) * (2 + n) * (1 + 2 * (1 + n)) ∎
where open ≤-Reasoning
-- Arithmetic sequence
{-
2*Σ<[n,i→d+a*i]≡??? : ∀ n d a → 2 * Σ< n (λ i → d + a * i) ≡ n * (2 * d + a * suc n)
2*Σ<[n,i→d+a*i]≡??? n d a = begin-equality
2 * Σ< n (λ i → d + a * i)
≡⟨ {! !} ⟩
2 * (Σ< n (λ _ → d) + Σ< n (λ i → a * i))
2 * (n * d + a * Σ< n id)
2 * (n * d) + 2 * (a * Σ< n id)
2 * n * d + a * (2 * Σ< n id)
2 * n * d + a * (n * suc n)
n * (2 * d + a * suc n)
∎
where oepn ≤-Reasoning
-}
|
{
"alphanum_fraction": 0.5095480586,
"avg_line_length": 34.152173913,
"ext": "agda",
"hexsha": "0512f7f3f1bd49f4925b74776f9205cedd0eb395",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "Math/NumberTheory/Summation/Nat/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "Math/NumberTheory/Summation/Nat/Properties.agda",
"max_line_length": 110,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "Math/NumberTheory/Summation/Nat/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 1572,
"size": 3142
}
|
-- Andreas, 2013-02-21, example by Andres Sicard Ramirez
module Issue782 where
open import Common.Prelude renaming (zero toz; suc tos; Nat toℕ)
f : ℕ → ℕ
f z = z
f (s n) = z
|
{
"alphanum_fraction": 0.6777777778,
"avg_line_length": 20,
"ext": "agda",
"hexsha": "0ec46e1680495b8a1afdb8f787da152b76630398",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue782.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue782.agda",
"max_line_length": 64,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue782.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 63,
"size": 180
}
|
------------------------------------------------------------------------------
-- Proving properties without using pattern matching on refl
------------------------------------------------------------------------------
{-# OPTIONS --no-pattern-matching #-}
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
module FOT.PA.Axiomatic.Standard.NoPatternMatchingOnRefl where
open import PA.Axiomatic.Standard.Base
------------------------------------------------------------------------------
-- From PA.Axiomatic.Standard.PropertiesI
-- Congruence properties
succCong : ∀ {m n} → m ≡ n → succ m ≡ succ n
succCong {m} h = subst (λ t → succ m ≡ succ t) h refl
+-leftCong : ∀ {m n o} → m ≡ n → m + o ≡ n + o
+-leftCong {m} {o = o} h = subst (λ t → m + o ≡ t + o) h refl
+-rightCong : ∀ {m n o} → n ≡ o → m + n ≡ m + o
+-rightCong {m} {n} h = subst (λ t → m + n ≡ m + t) h refl
|
{
"alphanum_fraction": 0.4438669439,
"avg_line_length": 35.6296296296,
"ext": "agda",
"hexsha": "674a0d0793543fb6add1369ef1198318ee24a9c2",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/PA/Axiomatic/Standard/NoPatternMatchingOnRefl.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/PA/Axiomatic/Standard/NoPatternMatchingOnRefl.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/PA/Axiomatic/Standard/NoPatternMatchingOnRefl.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 244,
"size": 962
}
|
{-# OPTIONS --without-K --exact-split --safe #-}
open import Fragment.Algebra.Signature
module Fragment.Algebra.Properties where
open import Fragment.Algebra.Algebra
open import Fragment.Algebra.Free
open import Level using (Level)
open import Data.Nat using (ℕ)
open import Data.Vec using (Vec; []; _∷_)
private
variable
a ℓ : Level
mutual
map-extend : ∀ {Σ O a n} → {A : Set a}
→ Vec (Term Σ A) n
→ Vec (Term (Σ ⦅ O ⦆) A) n
map-extend [] = []
map-extend (x ∷ xs) = extend x ∷ map-extend xs
extend : ∀ {Σ O} → {A : Set a}
→ Term Σ A → Term (Σ ⦅ O ⦆) A
extend (atom x) = atom x
extend (term f xs) = term (oldₒ f) (map-extend xs)
forgetₒ : ∀ {Σ O} → Algebra (Σ ⦅ O ⦆) {a} {ℓ} → Algebra Σ {a} {ℓ}
forgetₒ {Σ = Σ} A = record { ∥_∥/≈ = ∥ A ∥/≈
; ∥_∥/≈-isAlgebra = forget-isAlgebra
}
where forget-⟦_⟧ : Interpretation Σ ∥ A ∥/≈
forget-⟦ f ⟧ x = A ⟦ oldₒ f ⟧ x
forget-⟦⟧-cong : Congruence Σ ∥ A ∥/≈ forget-⟦_⟧
forget-⟦⟧-cong f x = (A ⟦ oldₒ f ⟧-cong) x
forget-isAlgebra : IsAlgebra Σ ∥ A ∥/≈
forget-isAlgebra = record { ⟦_⟧ = forget-⟦_⟧
; ⟦⟧-cong = forget-⟦⟧-cong
}
|
{
"alphanum_fraction": 0.4958238421,
"avg_line_length": 29.2666666667,
"ext": "agda",
"hexsha": "31faa976d2240ccdf63a98d55978859ed534faaa",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z",
"max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "yallop/agda-fragment",
"max_forks_repo_path": "src/Fragment/Algebra/Properties.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "yallop/agda-fragment",
"max_issues_repo_path": "src/Fragment/Algebra/Properties.agda",
"max_line_length": 65,
"max_stars_count": 18,
"max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yallop/agda-fragment",
"max_stars_repo_path": "src/Fragment/Algebra/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z",
"num_tokens": 502,
"size": 1317
}
|
{-# OPTIONS --type-in-type #-}
{-# OPTIONS --no-termination-check #-}
-- In this post we'll consider how to define and generalize fixed-point combinators for families of
-- mutually recursive functions. Both in the lazy and strict settings.
module FixN where
open import Function
open import Relation.Binary.PropositionalEquality
open import Data.Nat.Base
open import Data.Bool.Base
-- This module is parameterized by `even` and `odd` functions and defines the `Test` type
-- which is used below for testing particular `even` and `odd`.
module Test (even : ℕ -> Bool) (odd : ℕ -> Bool) where
open import Data.List.Base
open import Data.Product using (_,′_)
Test : Set
Test =
( map even (0 ∷ 1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ [])
,′ map odd (0 ∷ 1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ [])
)
≡ ( true ∷ false ∷ true ∷ false ∷ true ∷ false ∷ []
,′ false ∷ true ∷ false ∷ true ∷ false ∷ true ∷ []
)
-- Brings `Test : (ℕ -> Bool) -> (ℕ -> Bool) -> Set` in scope.
open Test
module Classic where
open import Data.Product
-- We can use the most straightforward fixed-point operator in order to get mutual recursion.
{-# TERMINATING #-}
fix : ∀ {A} -> (A -> A) -> A
fix f = f (fix f)
-- We instantiate `fix` to be defined over a pair of functions. I.e. a generic fixed-point
-- combinator for a family of two mutually recursive functions has this type signature:
-- `∀ {A B} -> (A × B -> A × B) -> A × B` which is an instance of `∀ {A} -> (A -> A) -> A`.
-- Here is the even-and-odd example.
-- `even` is denoted as the first element of the resulting tuple, `odd` is the second.
evenAndOdd : (ℕ -> Bool) × (ℕ -> Bool)
evenAndOdd = fix $ λ p ->
-- `even` returns `true` on `0` and calls `odd` on `suc`
(λ { 0 -> true ; (suc n) -> proj₂ p n })
-- `odd` returns `false` on `0` and calls `even` on `suc`
, (λ { 0 -> false ; (suc n) -> proj₁ p n })
even : ℕ -> Bool
even = proj₁ evenAndOdd
odd : ℕ -> Bool
odd = proj₂ evenAndOdd
test : Test even odd
test = refl
-- And that's all.
-- This Approach
-- 1. relies on laziness
-- 2. relies on tuples
-- 3. allows to encode a family of arbitrary number of mutually recursive functions
-- of possibly distinct types
-- There is one pitfall, though, if we write this in Haskell:
-- evenAndOdd :: ((Int -> Bool), (Int -> Bool))
-- evenAndOdd = fix $ \(even, odd) ->
-- ( (\n -> n == 0 || odd (n - 1))
-- , (\n -> n /= 0 && even (n - 1))
-- )
-- we'll get an infinite loop, because matching over tuples is strict in Haskell (in Agda it's lazy)
-- which means that in order to return a tuple, you must first compute it to whnf, which is a loop.
-- This is what the author of [1] stumpled upon. The fix is simple, though: just use lazy matching
-- (aka irrefutable pattern) like this:
-- evenAndOdd = fix $ \(~(even, odd)) -> ...
-- In general, that's a good approach for a lazy language, but Plutus Core is a strict one (so far),
-- so we need something else. Besides, we can do some pretty cool generalizations, so let's do them.
module PartlyUncurried2 where
open import Data.Product
-- It is clear that we can transform
-- ∀ {A B} -> (A × B -> A × B) -> A × B
-- into
-- ∀ {A B R} -> (A × B -> A × B) -> (A -> B -> R) -> R
-- by Church-encoding `A × B` into `∀ {R} -> (A -> B -> R) -> R`.
-- However in our case we can also transform
-- A × B -> A × B
-- into
-- ∀ {Q} -> (A -> B -> Q) -> A -> B -> Q
-- Ignoring the former transformation right now, but performing the latter we get the following:
fix2 : ∀ {A B} -> (∀ {Q} -> (A -> B -> Q) -> A -> B -> Q) -> A × B
fix2 f = f (λ x y -> x) (proj₁ (fix2 f)) (proj₂ (fix2 f))
, f (λ x y -> y) (proj₁ (fix2 f)) (proj₂ (fix2 f))
-- `f` is what was of the `A × B -> A × B` type previously, but now instead of receiving a tuple
-- and defining a tuple, `f` receives a selector and two values of types `A` and `B`. The values
-- represent the functions being defined, while the selector is needed in order to select one of
-- these functions.
-- Consider the example:
evenAndOdd : (ℕ -> Bool) × (ℕ -> Bool)
evenAndOdd = fix2 $ λ select even odd -> select
(λ { 0 -> true ; (suc n) -> odd n })
(λ { 0 -> false ; (suc n) -> even n })
-- `select` is only instantiated to either `λ x y -> x` or `λ x y -> y` which allow us
-- to select the branch we want to go in. When defining the `even` function, we want to go in
-- the first branch and thus instantiate `select` with `λ x y -> x`. When defining `odd`,
-- we want the second branch and thus instantiate `select` with `λ x y -> y`.
-- All these instantiations happen in the `fix2` function itself.
-- It is instructive to inline `fix2` and `select` along with the particular selectors. We get:
evenAndOdd-inlined : (ℕ -> Bool) × (ℕ -> Bool)
evenAndOdd-inlined = defineEven (proj₁ evenAndOdd-inlined) (proj₂ evenAndOdd-inlined)
, defineOdd (proj₁ evenAndOdd-inlined) (proj₂ evenAndOdd-inlined)
where
defineEven : (ℕ -> Bool) -> (ℕ -> Bool) -> ℕ -> Bool
defineEven even odd = λ { 0 -> true ; (suc n) -> odd n }
defineOdd : (ℕ -> Bool) -> (ℕ -> Bool) -> ℕ -> Bool
defineOdd even odd = λ { 0 -> false ; (suc n) -> even n }
-- I.e. each definition is parameterized by both functions and this is just the same fixed point
-- of a tuple of functions that we've seen before.
test : Test (proj₁ evenAndOdd) (proj₂ evenAndOdd)
test = refl
test-inlined : Test (proj₁ evenAndOdd-inlined) (proj₂ evenAndOdd-inlined)
test-inlined = refl
module Uncurried where
-- We can now do another twist and turn `A × B` into `∀ {R} -> (A -> B -> R) -> R` which finally
-- allows us to get rid of tuples:
fix2 : ∀ {A B R} -> (∀ {Q} -> (A -> B -> Q) -> A -> B -> Q) -> (A -> B -> R) -> R
fix2 f k = k (fix2 f (f λ x y -> x)) (fix2 f (f λ x y -> y))
-- `k` is the continuation that represents a Church-encoded tuple returned as the result.
-- But... if `k` is just another way to construct a tuple, how are we not keeping `f` outside of
-- recursion? Previously it was `fix f = f (fix f)` or
-- fix2 f = f (λ x y -> x) (proj₁ (fix2 f)) (proj₂ (fix2 f))
-- , f (λ x y -> y) (proj₁ (fix2 f)) (proj₂ (fix2 f))
-- i.e. `f` is always an outermost call and recursive calls are somewhere inside. But in the
-- definition above `f` is inside the recursive call. How is that? Watch the hands:
-- fix2 f k [1]
-- = k (fix2 f (f λ x y -> x)) (fix2 f (f λ x y -> y)) [2]
-- ~ k (fix2 f (f (λ x y -> x))) (fix2 f (f (λ x y -> y))) [3]
-- ~ k (f (λ x y -> x) (fix2 f (f λ x y -> x)) (fix2 f (f λ x y -> y)))
-- (f (λ x y -> y) (fix2 f (f λ x y -> y)) (fix2 f (f λ x y -> y)))
-- [1] unfold the definition of `fix2`
-- [2] add parens around selectors for clarity
-- [3] unfold the definition of `fix` in both the arguments of `k`
-- The result is very similar to the one from the previous section
-- (quoted in the snippet several lines above).
-- And the test:
evenAndOdd : ∀ {R} -> ((ℕ -> Bool) -> (ℕ -> Bool) -> R) -> R
evenAndOdd = fix2 $ λ select even odd -> select
(λ { 0 -> true ; (suc n) -> odd n })
(λ { 0 -> false ; (suc n) -> even n })
test : Test (evenAndOdd λ x y -> x) (evenAndOdd λ x y -> y)
test = refl
-- It is straighforward to define a fixed-point combinator for a family of three mutually
-- recursive functions:
fix3 : ∀ {A B C R} -> (∀ {Q} -> (A -> B -> C -> Q) -> A -> B -> C -> Q) -> (A -> B -> C -> R) -> R
fix3 f k = k (fix3 f (f λ x y z -> x)) (fix3 f (f λ x y z -> y)) (fix3 f (f λ x y z -> z))
-- The pattern is clear and we can abstract it.
module UncurriedGeneral where
-- The type signatures of the fixed point combinators from the above
-- ∀ {A B} -> (∀ {Q} -> (A -> B -> Q) -> A -> B -> Q) -> ∀ {R} -> (A -> B -> R) -> R
-- ∀ {A B C} -> (∀ {Q} -> (A -> B -> C -> Q) -> A -> B -> C -> Q) -> ∀ {R} -> (A -> B -> C -> R) -> R
-- (`∀ {R}` is moved slightly righter than what it was previously, because it helps readability below)
-- can be generalized to
-- ∀ {F} -> (∀ {Q} -> F Q -> F Q) -> ∀ {R} -> F R -> R
-- with `F` being `λ X -> A -> B -> X` in the first case and `λ X -> A -> B -> C -> X` in the second.
-- That's fact (1).
-- Now let's look at the definitions. There we see
-- fix2 f k = k (fix2 f (f λ x y -> x)) (fix2 f (f λ x y -> y))
-- fix3 f k = k (fix3 f (f λ x y z -> x)) (fix3 f (f λ x y z -> y)) (fix3 f (f λ x y z -> z))
-- i.e. each recursive call is parameterized by the `f` that never changes, but also by
-- the `f` applied to a selector and selectors do change. Thus the
-- λ selector -> fix2 f (f selector)
-- λ selector -> fix3 f (f selector)
-- parts can be abstracted into something like
-- λ selector -> fixSome f (f selector)
-- where `fixSome` can be both `fix2` and `fix3` depending on what you instantiate it with.
-- Then we only need combinators that duplicate the recursive case an appropriate number of times
-- (2 for `fix2` and 3 for `fix3`) and supply a selector to each of the duplicates. That's fact (2).
-- And those combinators have to be of the same type, so we can pass them to the generic
-- fixed-point combinator we're deriving.
-- To infer the type of those combinators we start by looking at the types of
-- λ selector -> fix2 f (f selector)
-- λ selector -> fix3 f (f selector)
-- which are
-- ∀ {Q} -> (A -> B -> Q) -> Q
-- ∀ {Q} -> (A -> B -> C -> Q) -> Q
-- correspondingly. I.e. the unifying type of
-- λ selector -> fixSome f (f selector)
-- is `∀ {Q} -> F Q -> Q`.
-- Therefore, the combinators receive something of type `∀ {Q} -> F Q -> Q` and return something of
-- type `∀ {R} -> F R -> R` (the same type, just alpha-converted for convenience), because that's
-- what `fix2` and `fix3` and thus the generic fixed-point combinator return.
-- I.e. the whole unifying type of those combinators is
-- (∀ {R} -> (∀ {Q} -> F Q -> Q) -> F R -> R)
-- That's fact (3).
-- Assembling everything together, we arrive at
fixBy : ∀ {F : Set -> Set}
-> ((∀ {Q} -> F Q -> Q) -> ∀ {R} -> F R -> R) -- by fact (3)
-> (∀ {Q} -> F Q -> F Q) -> ∀ {R} -> F R -> R -- by fact (1)
fixBy by f = by (fixBy by f ∘ f) -- by fact (2)
-- Let's now implement particular `by`s:
by2 : ∀ {A B} -> (∀ {Q} -> (A -> B -> Q) -> Q) -> ∀ {R} -> (A -> B -> R) -> R
by2 r k = k (r λ x y -> x) (r λ x y -> y)
by3 : ∀ {A B C} -> (∀ {Q} -> (A -> B -> C -> Q) -> Q) -> ∀ {R} -> (A -> B -> C -> R) -> R
by3 r k = k (r λ x y z -> x) (r λ x y z -> y) (r λ x y z -> z)
-- and fixed-points combinators from the previous section in terms of what we derived in this one:
fix2 : ∀ {A B} -> (∀ {Q} -> (A -> B -> Q) -> A -> B -> Q) -> ∀ {R} -> (A -> B -> R) -> R
fix2 = fixBy by2
fix3 : ∀ {A B C} -> (∀ {Q} -> (A -> B -> C -> Q) -> A -> B -> C -> Q) -> ∀ {R} -> (A -> B -> C -> R) -> R
fix3 = fixBy by3
-- That's it. One `fixBy` to rule them all. The final test:
evenAndOdd : ∀ {R} -> ((ℕ -> Bool) -> (ℕ -> Bool) -> R) -> R
evenAndOdd = fix2 $ λ select even odd -> select
(λ { 0 -> true ; (suc n) -> odd n })
(λ { 0 -> false ; (suc n) -> even n })
test : Test (evenAndOdd λ x y -> x) (evenAndOdd λ x y -> y)
test = refl
module LazinessStrictness where
open UncurriedGeneral using (fixBy)
-- So what about strictness? `fixBy` is generic enough to allow both lazy and strict derivatives.
-- The version of strict `fix2` looks like this in Haskell:
-- apply :: (a -> b) -> a -> b
-- apply = ($!)
-- fix2
-- :: ((a1 -> b1) -> (a2 -> b2) -> a1 -> b1)
-- -> ((a1 -> b1) -> (a2 -> b2) -> a2 -> b2)
-- -> ((a1 -> b1) -> (a2 -> b2) -> r) -> r
-- fix2 f g k = k
-- (\x1 -> f `apply` fix2 f g (\x y -> x) `apply` fix2 f g (\x y -> y) `apply` x1)
-- (\x2 -> g `apply` fix2 f g (\x y -> x) `apply` fix2 f g (\x y -> y) `apply` x2)
-- This is just like the Z combinator is of type `((a -> b) -> a -> b) -> a -> b`, so that it can
-- be used to get fixed points of functions in a strict language where the Y combinator loops forever.
-- The version of `fix2` that works in a strict language can be defined as follows:
by2' : ∀ {A₁ B₁ A₂ B₂}
-> (∀ {Q} -> ((A₁ -> B₁) -> (A₂ -> B₂) -> Q) -> Q)
-> ∀ {R} -> ((A₁ -> B₁) -> (A₂ -> B₂) -> R) -> R
by2' r k = k (λ x₁ -> r λ f₁ f₂ -> f₁ x₁) (λ x₂ -> r λ f₁ f₂ -> f₂ x₂)
fix2' : ∀ {A₁ B₁ A₂ B₂}
-> (∀ {Q} -> ((A₁ -> B₁) -> (A₂ -> B₂) -> Q) -> (A₁ -> B₁) -> (A₂ -> B₂) -> Q)
-> ∀ {R} -> ((A₁ -> B₁) -> (A₂ -> B₂) -> R) -> R
fix2' = fixBy by2'
-- The difference is that in
by2 : ∀ {A B} -> (∀ {Q} -> (A -> B -> Q) -> Q) -> ∀ {R} -> (A -> B -> R) -> R
by2 r k = k (r λ x y -> x) (r λ x y -> y)
-- both calls to `r` are forced before `k` returns, while in `by2'` additional lambdas that bind
-- `x₁` and `x₂` block the recursive calls from being forced, so `k` at some point can decide not to
-- recurse anymore (i.e. not to force recursive calls) and return a result instead.
module ComputeUncurriedGeneral where
-- You might wonder whether we can define a single `fixN` which receives a natural number and
-- computes the appropriate fixed-point combinator of mutually recursive functions. E.g.
-- fixN 2 ~> fix2
-- fixN 3 ~> fix3
-- So that we do not even need to specify `by2` and `by3` by ourselves. Yes we can do that, see [2]
-- (the naming is slightly different there).
-- Moreover, we can assign a type to `fixN` in pure System Fω, see [3].
module References where
-- [1] "Mutual Recursion in Final Encoding", Andreas Herrmann
-- https://aherrmann.github.io/programming/2016/05/28/mutual-recursion-in-final-encoding/
-- [2] https://gist.github.com/effectfully/b3185437da14322c775f4a7691b6fe1f#file-mutualfixgenericcompute-agda
-- [3] https://gist.github.com/effectfully/b3185437da14322c775f4a7691b6fe1f#file-mutualfixgenericcomputenondep-agda
|
{
"alphanum_fraction": 0.5584079463,
"avg_line_length": 40.2704225352,
"ext": "agda",
"hexsha": "5a62e25677a7123579e2fd7955a1ea580f73716c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9177aee383e368154b4c7bc1863fb9746f7cfe42",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jbgi/plutus",
"max_forks_repo_path": "docs/fomega/mutual-term-level-recursion/FixN.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9177aee383e368154b4c7bc1863fb9746f7cfe42",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jbgi/plutus",
"max_issues_repo_path": "docs/fomega/mutual-term-level-recursion/FixN.agda",
"max_line_length": 117,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "9177aee383e368154b4c7bc1863fb9746f7cfe42",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jbgi/plutus",
"max_stars_repo_path": "docs/fomega/mutual-term-level-recursion/FixN.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4815,
"size": 14296
}
|
module Basic.Compiler.CorrectTo where
open import Data.List
open import Relation.Binary.PropositionalEquality
open import Basic.Compiler.Code
open import Basic.AST
open import Basic.BigStep
open import Utils.Decidable
{-
Lemma 3.21
One half of the correctness proof for the compiler.
The proof here is a bit neater than the one in the book. The book uses exercises 3.19 and 3.4
to concatenate instruction lists, while I use my _▷*<>_, which does the same in one step.
Otherwise the proofs are the same, and there's not much space for variations.
-}
𝓒-correct-to :
∀ {n}{S : St n}{s s'}
→ ⟨ S , s ⟩⟱ s' → ⟨ 𝓒⟦ S ⟧ˢ , [] , s ⟩▷*⟨ [] , [] , s' ⟩
𝓒-correct-to (ass {_}{x}{a}) = 𝓒-Exp-nat a ▷*<> STORE x ∷ done
𝓒-correct-to skip = NOOP ∷ done
𝓒-correct-to (a , b) = 𝓒-correct-to a ▷*<> 𝓒-correct-to b
𝓒-correct-to (if-true {s = s}{b = b} x p) with 𝓒-Exp-bool {e = []}{s = s} b
... | condition rewrite T→≡true x =
condition ▷*<> BRANCH-[] ∷ 𝓒-correct-to p
𝓒-correct-to (if-false {s = s}{b = b} x p) with 𝓒-Exp-bool {e = []}{s = s} b
... | condition rewrite F→≡false x =
condition ▷*<> BRANCH-[] ∷ 𝓒-correct-to p
𝓒-correct-to (while-true {s}{b = b} x p k) with 𝓒-Exp-bool {e = []}{s = s} b
... | condition rewrite T→≡true x =
LOOP ∷ condition ▷*<> BRANCH-[] ∷ 𝓒-correct-to p ▷*<> 𝓒-correct-to k
𝓒-correct-to (while-false {s}{S}{b} x) with 𝓒-Exp-bool {e = []}{s = s} b
... | condition rewrite F→≡false x =
LOOP ∷ condition ▷*<> BRANCH-[] ∷ NOOP ∷ done
|
{
"alphanum_fraction": 0.6237288136,
"avg_line_length": 32.0652173913,
"ext": "agda",
"hexsha": "631fe72bfcbdcd7b93c91780b242a4628f89dfd7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AndrasKovacs/SemanticsWithApplications",
"max_forks_repo_path": "Basic/Compiler/CorrectTo.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AndrasKovacs/SemanticsWithApplications",
"max_issues_repo_path": "Basic/Compiler/CorrectTo.agda",
"max_line_length": 93,
"max_stars_count": 8,
"max_stars_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AndrasKovacs/SemanticsWithApplications",
"max_stars_repo_path": "Basic/Compiler/CorrectTo.agda",
"max_stars_repo_stars_event_max_datetime": "2020-02-02T10:01:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-09-12T04:25:39.000Z",
"num_tokens": 582,
"size": 1475
}
|
-- Paths in a graph
{-# OPTIONS --safe #-}
module Cubical.Data.Graph.Path where
open import Cubical.Data.Graph.Base
open import Cubical.Data.List.Base hiding (_++_)
open import Cubical.Data.Nat.Base
open import Cubical.Data.Nat.Properties
open import Cubical.Data.Sigma.Base hiding (Path)
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Prelude hiding (Path)
module _ {ℓv ℓe : Level} where
module _ (G : Graph ℓv ℓe) where
data Path : (v w : Node G) → Type (ℓ-max ℓv ℓe) where
pnil : ∀ {v} → Path v v
pcons : ∀ {v w x} → Path v w → Edge G w x → Path v x
-- Path concatenation
ccat : ∀ {v w x} → Path v w → Path w x → Path v x
ccat P pnil = P
ccat P (pcons Q e) = pcons (ccat P Q) e
private
_++_ = ccat
infixr 20 _++_
-- Some properties
pnil++ : ∀ {v w} (P : Path v w) → pnil ++ P ≡ P
pnil++ pnil = refl
pnil++ (pcons P e) = cong (λ P → pcons P e) (pnil++ _)
++assoc : ∀ {v w x y}
(P : Path v w) (Q : Path w x) (R : Path x y)
→ (P ++ Q) ++ R ≡ P ++ (Q ++ R)
++assoc P Q pnil = refl
++assoc P Q (pcons R e) = cong (λ P → pcons P e) (++assoc P Q R)
-- Paths as lists
pathToList : ∀ {v w} → Path v w
→ List (Σ[ x ∈ Node G ] Σ[ y ∈ Node G ] Edge G x y)
pathToList pnil = []
pathToList (pcons P e) = (_ , _ , e) ∷ (pathToList P)
-- Path v w is a set
-- Lemma 4.2 of https://arxiv.org/abs/2112.06609
module _ (isSetNode : isSet (Node G))
(isSetEdge : ∀ v w → isSet (Edge G v w)) where
-- This is called ̂W (W-hat) in the paper
PathWithLen : ℕ → Node G → Node G → Type (ℓ-max ℓv ℓe)
PathWithLen 0 v w = Lift {j = ℓe} (v ≡ w)
PathWithLen (suc n) v w = Σ[ k ∈ Node G ] (PathWithLen n v k × Edge G k w)
isSetPathWithLen : ∀ n v w → isSet (PathWithLen n v w)
isSetPathWithLen 0 _ _ = isOfHLevelLift 2 (isProp→isSet (isSetNode _ _))
isSetPathWithLen (suc n) _ _ = isSetΣ isSetNode λ _ →
isSet× (isSetPathWithLen _ _ _) (isSetEdge _ _)
isSet-ΣnPathWithLen : ∀ {v w} → isSet (Σ[ n ∈ ℕ ] PathWithLen n v w)
isSet-ΣnPathWithLen = isSetΣ isSetℕ (λ _ → isSetPathWithLen _ _ _)
Path→PathWithLen : ∀ {v w} → Path v w → Σ[ n ∈ ℕ ] PathWithLen n v w
Path→PathWithLen pnil = 0 , lift refl
Path→PathWithLen (pcons P e) = suc (Path→PathWithLen P .fst) ,
_ , Path→PathWithLen P .snd , e
PathWithLen→Path : ∀ {v w} → Σ[ n ∈ ℕ ] PathWithLen n v w → Path v w
PathWithLen→Path (0 , q) = subst (Path _) (q .lower) pnil
PathWithLen→Path (suc n , _ , pwl , e) = pcons (PathWithLen→Path (n , pwl)) e
Path→PWL→Path : ∀ {v w} P → PathWithLen→Path {v} {w} (Path→PathWithLen P) ≡ P
Path→PWL→Path {v} pnil = substRefl {B = Path v} pnil
Path→PWL→Path (pcons P x) = cong₂ pcons (Path→PWL→Path _) refl
isSetPath : ∀ v w → isSet (Path v w)
isSetPath v w = isSetRetract Path→PathWithLen PathWithLen→Path
Path→PWL→Path isSet-ΣnPathWithLen
|
{
"alphanum_fraction": 0.5695750892,
"avg_line_length": 37.5975609756,
"ext": "agda",
"hexsha": "d8122924c2b111360a637fe8e9a0411f6b9f3218",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Data/Graph/Path.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Data/Graph/Path.agda",
"max_line_length": 83,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Data/Graph/Path.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 1144,
"size": 3083
}
|
{-# OPTIONS --without-K --rewriting #-}
open import lib.Base
open import lib.PathGroupoid
open import lib.PathFunctor
open import lib.path-seq.Concat
open import lib.path-seq.Reasoning
module lib.path-seq.Inversion {i} {A : Type i} where
seq-! : {a a' : A} → a =-= a' → a' =-= a
seq-! [] = []
seq-! (p ◃∙ s) = seq-! s ∙▹ ! p
seq-!-∙▹ : {a a' a'' : A} (s : a =-= a') (q : a' == a'')
→ seq-! (s ∙▹ q) == ! q ◃∙ seq-! s
seq-!-∙▹ [] q = idp
seq-!-∙▹ (p ◃∙ s) q = ap (_∙▹ ! p) (seq-!-∙▹ s q)
seq-!-seq-! : {a a' : A} (s : a =-= a')
→ seq-! (seq-! s) == s
seq-!-seq-! [] = idp
seq-!-seq-! (p ◃∙ s) =
seq-! (seq-! s ∙▹ ! p)
=⟨ seq-!-∙▹ (seq-! s) (! p) ⟩
! (! p) ◃∙ seq-! (seq-! s)
=⟨ ap2 _◃∙_ (!-! p) (seq-!-seq-! s) ⟩
p ◃∙ s =∎
!-∙-seq : {a a' : A} (s : a =-= a')
→ ! (↯ s) ◃∎ =ₛ seq-! s
!-∙-seq [] = =ₛ-in idp
!-∙-seq (p ◃∙ s) =
! (↯ (p ◃∙ s)) ◃∎
=ₛ₁⟨ ap ! (↯-∙∙ (p ◃∎) s) ⟩
! (p ∙ ↯ s) ◃∎
=ₛ⟨ =ₛ-in {t = ! (↯ s) ◃∙ ! p ◃∎} (!-∙ p (↯ s)) ⟩
! (↯ s) ◃∙ ! p ◃∎
=ₛ⟨ 0 & 1 & !-∙-seq s ⟩
seq-! s ∙▹ ! p ∎ₛ
∙-!-seq : {a a' : A} (s : a =-= a')
→ seq-! s =ₛ ! (↯ s) ◃∎
∙-!-seq s = !ₛ (!-∙-seq s)
!-=ₛ : {a a' : A} {s t : a =-= a'} (e : s =ₛ t)
→ seq-! s =ₛ seq-! t
!-=ₛ {s = s} {t = t} e =
seq-! s
=ₛ⟨ ∙-!-seq s ⟩
! (↯ s) ◃∎
=ₛ₁⟨ ap ! (=ₛ-out e) ⟩
! (↯ t) ◃∎
=ₛ⟨ !-∙-seq t ⟩
seq-! t ∎ₛ
seq-!-inv-l : {a a' : A} (s : a =-= a')
→ seq-! s ∙∙ s =ₛ []
seq-!-inv-l s = =ₛ-in $
↯ (seq-! s ∙∙ s)
=⟨ ↯-∙∙ (seq-! s) s ⟩
↯ (seq-! s) ∙ ↯ s
=⟨ ap (_∙ ↯ s) (=ₛ-out (∙-!-seq s)) ⟩
! (↯ s) ∙ ↯ s
=⟨ !-inv-l (↯ s) ⟩
idp =∎
seq-!-inv-r : {a a' : A} (s : a =-= a')
→ s ∙∙ seq-! s =ₛ []
seq-!-inv-r s = =ₛ-in $
↯ (s ∙∙ seq-! s)
=⟨ ↯-∙∙ s (seq-! s) ⟩
↯ s ∙ ↯ (seq-! s)
=⟨ ap (↯ s ∙_) (=ₛ-out (∙-!-seq s)) ⟩
↯ s ∙ ! (↯ s)
=⟨ !-inv-r (↯ s) ⟩
idp =∎
|
{
"alphanum_fraction": 0.3300546448,
"avg_line_length": 23.4615384615,
"ext": "agda",
"hexsha": "f7518e02072e87ac637dca74c6c5fb048d8bc4ac",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AntoineAllioux/HoTT-Agda",
"max_forks_repo_path": "core/lib/path-seq/Inversion.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AntoineAllioux/HoTT-Agda",
"max_issues_repo_path": "core/lib/path-seq/Inversion.agda",
"max_line_length": 56,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AntoineAllioux/HoTT-Agda",
"max_stars_repo_path": "core/lib/path-seq/Inversion.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 1162,
"size": 1830
}
|
module Avionics.List where
open import Data.Bool using (Bool; true; false; T)
open import Data.List as List using (List; []; _∷_; any)
open import Data.List.Relation.Unary.Any using (Any; here; there)
open import Function using (_∘_)
open import Relation.Binary.PropositionalEquality using (_≡_; inspect; [_]; refl)
open import Avionics.Bool using (≡→T)
≡→any : ∀ {a} {A : Set a} (f) (ns : List A)
→ any f ns ≡ true
→ Any (T ∘ f) ns
--→ Any (λ x → T (f x)) ns
≡→any f [] ()
≡→any f (n ∷ ns) any-f-⟨n∷ns⟩≡true with f n | inspect f n
... | true | [ fn≡t ] = here (≡→T fn≡t)
... | false | _ = there (≡→any f ns any-f-⟨n∷ns⟩≡true)
any→≡ : ∀ {a} {A : Set a} (f) (ns : List A)
→ Any (T ∘ f) ns
→ any f ns ≡ true
any→≡ f (n ∷ _) (here _) with f n
... | true = refl -- or: T→≡ [*proof*from*here*]
any→≡ f (n ∷ ns) (there Any[T∘f]ns) with f n
... | true = refl
... | false = any→≡ f ns Any[T∘f]ns
any-map : ∀ {A B : Set} {p : B → Set} {ls : List A}
(f : A → B)
→ Any p (List.map f ls)
→ Any (p ∘ f) ls
--any-map {ls = []} _ ()
any-map {ls = l ∷ ls} f (here pb) = here pb
any-map {ls = l ∷ ls} f (there pb) = there (any-map f pb)
any-map-rev : ∀ {A B : Set} {p : B → Set} {ls : List A}
(f : A → B)
→ Any (p ∘ f) ls
→ Any p (List.map f ls)
any-map-rev {ls = l ∷ ls} f (here pb) = here pb
any-map-rev {ls = l ∷ ls} f (there pb) = there (any-map-rev f pb)
|
{
"alphanum_fraction": 0.5137931034,
"avg_line_length": 32.9545454545,
"ext": "agda",
"hexsha": "2e1c4a16b3287b59508d7cf449f195e67c1fe747",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-09-20T00:36:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-09-20T00:36:09.000Z",
"max_forks_repo_head_hexsha": "896e67a2ad21041a1c9ef5f3ad6318c67d730341",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "RPI-WCL/safety-envelopes-sentinels",
"max_forks_repo_path": "agda/Avionics/List.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "896e67a2ad21041a1c9ef5f3ad6318c67d730341",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "RPI-WCL/safety-envelopes-sentinels",
"max_issues_repo_path": "agda/Avionics/List.agda",
"max_line_length": 81,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "896e67a2ad21041a1c9ef5f3ad6318c67d730341",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "RPI-WCL/safety-envelopes-sentinels",
"max_stars_repo_path": "agda/Avionics/List.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 581,
"size": 1450
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- The Either type which calls out to Haskell via the FFI
------------------------------------------------------------------------
{-# OPTIONS --without-K #-}
module Foreign.Haskell.Either where
open import Level
open import Data.Sum.Base using (_⊎_; inj₁; inj₂)
private
variable
a b : Level
A : Set a
B : Set b
------------------------------------------------------------------------
-- Definition
data Either (A : Set a) (B : Set b) : Set (a ⊔ b) where
left : A → Either A B
right : B → Either A B
{-# FOREIGN GHC type AgdaEither l1 l2 a b = Either a b #-}
{-# COMPILE GHC Either = data MAlonzo.Code.Foreign.Haskell.Either.AgdaEither (Left | Right) #-}
------------------------------------------------------------------------
-- Conversion
toForeign : A ⊎ B → Either A B
toForeign (inj₁ a) = left a
toForeign (inj₂ b) = right b
fromForeign : Either A B → A ⊎ B
fromForeign (left a) = inj₁ a
fromForeign (right b) = inj₂ b
|
{
"alphanum_fraction": 0.4740321058,
"avg_line_length": 26.475,
"ext": "agda",
"hexsha": "5b28c6eeb7fe67a80ddf76d33fcb9850cb5f7056",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Foreign/Haskell/Either.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Foreign/Haskell/Either.agda",
"max_line_length": 95,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Foreign/Haskell/Either.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 253,
"size": 1059
}
|
{-# OPTIONS --without-K --safe #-}
-- Definition of Monoidal Category
-- Big design decision that differs from the previous version:
-- Do not go through "Functor.Power" to encode variables and work
-- at the level of NaturalIsomorphisms, instead work at the object/morphism
-- level, via the more direct _⊗₀_ _⊗₁_ _⊗- -⊗_.
-- The original design needed quite a few contortions to get things working,
-- but these are simply not needed when working directly with the morphisms.
--
-- Smaller design decision: export some items with long names
-- (unitorˡ, unitorʳ and associator), but internally work with the more classical
-- short greek names (λ, ρ and α respectively).
module Categories.Category.Monoidal where
open import Categories.Category.Monoidal.Core public
|
{
"alphanum_fraction": 0.7616580311,
"avg_line_length": 40.6315789474,
"ext": "agda",
"hexsha": "5831f84d13d42c93dd26d269a1b30eb5f13e8d3b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Monoidal.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Monoidal.agda",
"max_line_length": 81,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Monoidal.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 189,
"size": 772
}
|
module TicketServer where
open import IO using (run; putStrLn; mapM′; _>>_)
open import Coinduction using (♯_)
open import Data.Nat as ℕ using (ℕ; suc; zero)
open import Data.Pos as ℕ⁺ using (ℕ⁺; suc; NumberPos)
open import Data.String using (String)
open import Data.List using (List; []; _∷_; map)
open import Data.Colist using (fromList)
open import Function using (_$_; _∘_)
open import Data.Environment
open import nodcap.Base
open import nodcap.Typing
open import nodcap.Norm
open import nodcap.Show renaming (showTerm to show)
open import nodcap.NF.Show renaming (showTerm to showNF)
Ticket UserId Sale Receipt : Type
Ticket = ⊥ ⊕ ⊥
UserId = 𝟏 ⊕ 𝟏
Sale = UserId ⊸ Ticket
Receipt = UserId ⊗ Ticket
ticket₁ ticket₂ : {Γ : Environment} → ⊢ Γ → ⊢ Ticket ∷ Γ
ticket₁ x = sel₁ (wait x)
ticket₂ x = sel₂ (wait x)
sale₁ sale₂ : {Γ : Environment} → ⊢ Γ → ⊢ Sale ∷ Receipt ∷ Γ
sale₁ x
= recv
$ exch (bbl [])
$ ticket₁
$ exch (bbl [])
$ send ax (ticket₁ x)
sale₂ x
= recv
$ exch (bbl [])
$ ticket₂
$ exch (bbl [])
$ send ax (ticket₂ x)
client₁ client₂ : ⊢ Sale ^ ∷ []
client₁ = send (sel₁ halt) (case halt halt)
client₂ = send (sel₂ halt) (case halt halt)
server : ⊢ ?[ suc (suc zero) ] Sale ∷ Receipt ∷ Receipt ∷ 𝟏 ∷ []
server
= cont
$ mk?₁
$ exch (bwd (_ ∷ []) (_ ∷ []))
$ sale₁
$ mk?₁
$ sale₂
$ halt
clients : ⊢ ![ 2 ] (Sale ^) ∷ []
clients
= pool (mk!₁ client₁) (mk!₁ client₂)
main = run (mapM′ putStrLn (fromList strs))
where
proc = cut server clients
strs = "Process:"
∷ show proc
∷ "Result:"
∷ map showNF (nfND proc)
-- -}
-- -}
-- -}
-- -}
-- -}
|
{
"alphanum_fraction": 0.6205003051,
"avg_line_length": 21.8533333333,
"ext": "agda",
"hexsha": "6b92918472db353438edcbefdb9c5f076fa7bcf4",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-09-05T08:58:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-05T08:58:13.000Z",
"max_forks_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "pepijnkokke/nodcap",
"max_forks_repo_path": "src/cpnd1/TicketServer.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "pepijnkokke/nodcap",
"max_issues_repo_path": "src/cpnd1/TicketServer.agda",
"max_line_length": 64,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "wenkokke/nodcap",
"max_stars_repo_path": "src/cpnd1/TicketServer.agda",
"max_stars_repo_stars_event_max_datetime": "2019-09-24T20:16:35.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-09-05T08:58:11.000Z",
"num_tokens": 574,
"size": 1639
}
|
postulate
A : Set
F : (A : Set₁) → (A → A → Set) → Set
syntax F A (λ x y → B) = y , y ⟨ A ∼ B ⟩ x
|
{
"alphanum_fraction": 0.427184466,
"avg_line_length": 17.1666666667,
"ext": "agda",
"hexsha": "d5aab7a483cd3232e08b43544ca1d4c7c2a8d581",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Fail/Issue394-2.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Fail/Issue394-2.agda",
"max_line_length": 42,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Fail/Issue394-2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 51,
"size": 103
}
|
module Cats.Category.Slice where
open import Data.Product using (_,_ ; proj₁ ; proj₂)
open import Level
open import Relation.Binary using (IsEquivalence ; _Preserves₂_⟶_⟶_)
open import Cats.Category
module _ {lo la l≈} (C : Category lo la l≈) (X : Category.Obj C) where
infixr 9 _∘_
infixr 4 _≈_
private
module C = Category C
module ≈ = C.≈
record Obj : Set (lo ⊔ la) where
constructor mkObj
field
{Dom} : C.Obj
arr : Dom C.⇒ X
open Obj
record _⇒_ (f g : Obj) : Set (la ⊔ l≈) where
field
dom : Dom f C.⇒ Dom g
commute : arr f C.≈ arr g C.∘ dom
open _⇒_
record _≈_ {A B} (F G : A ⇒ B) : Set l≈ where -- [1]
constructor ≈-i
field
dom : dom F C.≈ dom G
-- [1] This could also be defined as
--
-- F ≈ G = dom F C.≈ dom G
--
-- but Agda was then giving me very strange unsolved metas in _/_ below.
id : ∀ {A} → A ⇒ A
id = record { dom = C.id ; commute = ≈.sym C.id-r }
_∘_ : ∀ {A B C} → (B ⇒ C) → (A ⇒ B) → (A ⇒ C)
_∘_ {F} {G} {H}
record { dom = F-dom ; commute = F-commute}
record { dom = G-dom ; commute = G-commute}
= record
{ dom = F-dom C.∘ G-dom
; commute
= begin
arr F
≈⟨ G-commute ⟩
arr G C.∘ G-dom
≈⟨ C.∘-resp-l F-commute ⟩
(arr H C.∘ F-dom) C.∘ G-dom
≈⟨ C.assoc ⟩
arr H C.∘ F-dom C.∘ G-dom
∎
}
where
open C.≈-Reasoning
≈-equiv : ∀ {A B} → IsEquivalence (_≈_ {A} {B})
≈-equiv = record
{ refl = ≈-i ≈.refl
; sym = λ { (≈-i eq) → ≈-i (≈.sym eq) }
; trans = λ { (≈-i eq₁) (≈-i eq₂) → ≈-i (≈.trans eq₁ eq₂) }
}
∘-preserves-≈ : ∀ {A B C} → _∘_ {A} {B} {C} Preserves₂ _≈_ ⟶ _≈_ ⟶ _≈_
∘-preserves-≈ (≈-i eq₁) (≈-i eq₂) = ≈-i (C.∘-resp eq₁ eq₂)
id-identity-r : ∀ {A B} {F : A ⇒ B} → F ∘ id ≈ F
id-identity-r = ≈-i C.id-r
id-identity-l : ∀ {A B} {F : A ⇒ B} → id ∘ F ≈ F
id-identity-l = ≈-i C.id-l
∘-assoc : ∀ {A B C D} {F : C ⇒ D} {G : B ⇒ C} {H : A ⇒ B}
→ (F ∘ G) ∘ H ≈ F ∘ (G ∘ H)
∘-assoc = ≈-i C.assoc
instance _/_ : Category (la ⊔ lo) (l≈ ⊔ la) l≈
_/_ = record
{ Obj = Obj
; _⇒_ = _⇒_
; _≈_ = _≈_
; id = id
; _∘_ = _∘_
; equiv = ≈-equiv
; ∘-resp = ∘-preserves-≈
; id-r = id-identity-r
; id-l = id-identity-l
; assoc = ∘-assoc
}
open Category _/_ using (IsTerminal ; IsUnique ; ∃!-intro)
One : Obj
One = mkObj C.id
One-Terminal : IsTerminal One
One-Terminal Y@(mkObj f)
= ∃!-intro F _ F-Unique
where
F : Y ⇒ One
F = record { dom = f ; commute = C.≈.sym C.id-l }
F-Unique : IsUnique F
F-Unique {record { dom = g ; commute = commute }} _
= ≈-i (≈.trans commute C.id-l)
|
{
"alphanum_fraction": 0.4725663717,
"avg_line_length": 21.7307692308,
"ext": "agda",
"hexsha": "c224a7491be6881531e9d9c74a4ede05b3cab0f6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alessio-b-zak/cats",
"max_forks_repo_path": "Cats/Category/Slice.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alessio-b-zak/cats",
"max_issues_repo_path": "Cats/Category/Slice.agda",
"max_line_length": 74,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alessio-b-zak/cats",
"max_stars_repo_path": "Cats/Category/Slice.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1194,
"size": 2825
}
|
-- An Agda implementation of the n queens program from the nofib
-- benchmark. Very inefficient, uses unary natural numbers instead of
-- machine integers.
module N-queens where
open import Category.Monad
open import Coinduction
open import Data.Bool hiding (_≟_)
open import Data.Char hiding (_≟_)
open import Data.Fin using (#_)
open import Data.Digit
open import Data.Integer as Z using (+_; _⊖_)
open import Data.List as List
open import Data.Maybe as Maybe
open import Data.Nat
open import Data.Nat.Show
open import Data.String as String using (String)
open import Data.Unit hiding (_≟_)
open import Function
open import IO using (IO)
import IO.Primitive as Primitive
open import Relation.Nullary.Decidable
------------------------------------------------------------------------
-- Things missing from the standard library
take_[_…] : ℕ → ℕ → List ℕ
take zero [ n …] = []
take suc k [ n …] = n ∷ take k [ suc n …]
[_…_] : ℕ → ℕ → List ℕ
[ m … n ] with compare m n
[ .(suc (n + k)) … n ] | greater .n k = []
[ m … .m ] | equal .m = [ m ]
[ m … .(suc (m + k)) ] | less .m k = take (2 + k) [ m …]
guard : Bool → List ⊤
guard true = [ _ ]
guard false = []
postulate
getArgs′ : Primitive.IO (List String)
{-# IMPORT System.Environment #-}
{-# COMPILED getArgs′ System.Environment.getArgs #-}
getArgs : IO (List String)
getArgs = lift getArgs′
where open IO
read : List Char → Maybe ℕ
read [] = nothing
read ds = fromDigits ∘ reverse <$> mapM Maybe.monad charToDigit ds
where
open RawMonad Maybe.monad
charToDigit : Char → Maybe (Digit 10)
charToDigit '0' = just (# 0)
charToDigit '1' = just (# 1)
charToDigit '2' = just (# 2)
charToDigit '3' = just (# 3)
charToDigit '4' = just (# 4)
charToDigit '5' = just (# 5)
charToDigit '6' = just (# 6)
charToDigit '7' = just (# 7)
charToDigit '8' = just (# 8)
charToDigit '9' = just (# 9)
charToDigit _ = nothing
------------------------------------------------------------------------
-- The main program
nsoln : ℕ → ℕ
nsoln nq = length (gen nq)
where
open RawMonad List.monad
safe : ℕ → ℕ → List ℕ → Bool
safe x d [] = true
safe x d (q ∷ l) = not ⌊ x ≟ q ⌋ ∧
not ⌊ x ≟ q + d ⌋ ∧
not ⌊ + x Z.≟ q ⊖ d ⌋ ∧
-- Equivalent to previous line, because x ≥ 1:
-- not ⌊ x ≟ q ∸ d ⌋ ∧
safe x (1 + d) l
gen : ℕ → List (List ℕ)
gen zero = [ [] ]
gen (suc n) =
gen n >>= λ b →
[ 1 … nq ] >>= λ q →
guard (safe q 1 b) >>
return (q ∷ b)
main = run (♯ getArgs >>= λ arg → ♯ main′ arg)
where
open IO
main′ : List String → IO ⊤
main′ (arg ∷ []) with read (String.toList arg)
... | just n = putStrLn (show (nsoln n))
... | nothing = return _
main′ _ = return _
|
{
"alphanum_fraction": 0.5374008962,
"avg_line_length": 27.6285714286,
"ext": "agda",
"hexsha": "4c040deb586a667391a1dba4fc891a0e368fa44d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "benchmark/nofib/N-queens.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "benchmark/nofib/N-queens.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "benchmark/nofib/N-queens.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 885,
"size": 2901
}
|
------------------------------------------------------------------------
-- Logical equivalences
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Logical-equivalence where
open import Prelude as P hiding (id) renaming (_∘_ to _⊚_)
private
variable
a b p : Level
@0 A B C D : Type a
@0 P Q : A → Type p
------------------------------------------------------------------------
-- Logical equivalence
-- A ⇔ B means that A and B are logically equivalent.
infix 0 _⇔_
record _⇔_ {f t} (From : Type f) (To : Type t) : Type (f ⊔ t) where
field
to : From → To
from : To → From
------------------------------------------------------------------------
-- Equivalence relation
-- _⇔_ is an equivalence relation.
id : A ⇔ A
id = record
{ to = P.id
; from = P.id
}
inverse : A ⇔ B → B ⇔ A
inverse A⇔B ._⇔_.to = let record { from = from } = A⇔B in from
inverse A⇔B ._⇔_.from = let record { to = to } = A⇔B in to
infixr 9 _∘_
_∘_ : B ⇔ C → A ⇔ B → A ⇔ C
(f ∘ g) ._⇔_.to =
let record { to = f-to } = f
record { to = g-to } = g
in f-to ⊚ g-to
(f ∘ g) ._⇔_.from =
let record { from = f-from } = f
record { from = g-from } = g
in g-from ⊚ f-from
-- "Equational" reasoning combinators.
infix -1 finally-⇔
infixr -2 step-⇔
-- For an explanation of why step-⇔ is defined in this way, see
-- Equality.step-≡.
step-⇔ : (@0 A : Type a) → B ⇔ C → A ⇔ B → A ⇔ C
step-⇔ _ = _∘_
syntax step-⇔ A B⇔C A⇔B = A ⇔⟨ A⇔B ⟩ B⇔C
finally-⇔ : (@0 A : Type a) (@0 B : Type b) → A ⇔ B → A ⇔ B
finally-⇔ _ _ A⇔B = A⇔B
syntax finally-⇔ A B A⇔B = A ⇔⟨ A⇔B ⟩□ B □
------------------------------------------------------------------------
-- Preservation lemmas
-- Note that all of the type arguments of these lemmas are erased.
-- _⊎_ preserves logical equivalences.
infixr 2 _×-cong_
_×-cong_ : A ⇔ C → B ⇔ D → A × B ⇔ C × D
A⇔C ×-cong B⇔D =
let record { to = to₁; from = from₁ } = A⇔C
record { to = to₂; from = from₂ } = B⇔D
in
record
{ to = Σ-map to₁ to₂
; from = Σ-map from₁ from₂
}
-- ∃ preserves logical equivalences.
∃-cong : (∀ x → P x ⇔ Q x) → ∃ P ⇔ ∃ Q
∃-cong P⇔Q = record
{ to = λ (x , y) → x , let record { to = to } = P⇔Q x in to y
; from = λ (x , y) → x , let record { from = from } = P⇔Q x in from y
}
-- _⊎_ preserves logical equivalences.
infixr 1 _⊎-cong_
_⊎-cong_ : A ⇔ C → B ⇔ D → A ⊎ B ⇔ C ⊎ D
A⇔C ⊎-cong B⇔D =
let record { to = to₁; from = from₁ } = A⇔C
record { to = to₂; from = from₂ } = B⇔D
in
record
{ to = ⊎-map to₁ to₂
; from = ⊎-map from₁ from₂
}
-- The non-dependent function space preserves logical equivalences.
→-cong : A ⇔ C → B ⇔ D → (A → B) ⇔ (C → D)
→-cong A⇔C B⇔D =
let record { to = to₁; from = from₁ } = A⇔C
record { to = to₂; from = from₂ } = B⇔D
in
record
{ to = (to₂ ⊚_) ⊚ (_⊚ from₁)
; from = (from₂ ⊚_) ⊚ (_⊚ to₁)
}
-- Π preserves logical equivalences in its second argument.
∀-cong :
((x : A) → P x ⇔ Q x) →
((x : A) → P x) ⇔ ((x : A) → Q x)
∀-cong P⇔Q = record
{ to = λ f x → let record { to = to } = P⇔Q x in to (f x)
; from = λ f x → let record { from = from } = P⇔Q x in from (f x)
}
-- The implicit variant of Π preserves logical equivalences in its
-- second argument.
implicit-∀-cong :
({x : A} → P x ⇔ Q x) →
({x : A} → P x) ⇔ ({x : A} → Q x)
implicit-∀-cong P⇔Q = record
{ to = λ f → let record { to = to } = P⇔Q in to f
; from = λ f → let record { from = from } = P⇔Q in from f
}
-- ↑ preserves logical equivalences.
↑-cong : B ⇔ C → ↑ a B ⇔ ↑ a C
↑-cong B⇔C =
let record { to = to; from = from } = B⇔C in
record
{ to = λ (lift x) → lift (to x)
; from = λ (lift x) → lift (from x)
}
-- _⇔_ preserves logical equivalences.
⇔-cong : A ⇔ B → C ⇔ D → (A ⇔ C) ⇔ (B ⇔ D)
⇔-cong {A = A} {B = B} {C = C} {D = D} A⇔B C⇔D = record
{ to = λ A⇔C →
B ⇔⟨ inverse A⇔B ⟩
A ⇔⟨ A⇔C ⟩
C ⇔⟨ C⇔D ⟩□
D □
; from = λ B⇔D →
A ⇔⟨ A⇔B ⟩
B ⇔⟨ B⇔D ⟩
D ⇔⟨ inverse C⇔D ⟩□
C □
}
|
{
"alphanum_fraction": 0.4563822201,
"avg_line_length": 24.3179190751,
"ext": "agda",
"hexsha": "f8b6fe6e21c27ff0b65ee8a63f79d6a335d938ed",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Logical-equivalence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Logical-equivalence.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Logical-equivalence.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 1749,
"size": 4207
}
|
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.NType2
open import lib.types.TLevel
open import lib.types.Sigma
open import lib.types.Pi
module lib.types.Groupoid where
record GroupoidStructure {i j} {El : Type i} (Arr : El → El → Type j)
(_ : ∀ x y → has-level 0 (Arr x y)) : Type (lmax i j) where
field
ident : ∀ {x} → Arr x x
inv : ∀ {x y} → Arr x y → Arr y x
comp : ∀ {x y z} → Arr x y → Arr y z → Arr x z
unit-l : ∀ {x y} (a : Arr x y) → comp ident a == a
assoc : ∀ {x y z w} (a : Arr x y) (b : Arr y z) (c : Arr z w)
→ comp (comp a b) c == comp a (comp b c)
inv-l : ∀ {x y } (a : Arr x y) → (comp (inv a) a) == ident
private
infix 80 _⊙_
_⊙_ = comp
abstract
inv-r : ∀ {x y} (a : Arr x y) → a ⊙ inv a == ident
inv-r a =
a ⊙ inv a =⟨ ! $ unit-l (a ⊙ inv a) ⟩
ident ⊙ (a ⊙ inv a) =⟨ ! $ inv-l (inv a) |in-ctx _⊙ (a ⊙ inv a) ⟩
(inv (inv a) ⊙ inv a) ⊙ (a ⊙ inv a) =⟨ assoc (inv (inv a)) (inv a) (a ⊙ inv a) ⟩
inv (inv a) ⊙ (inv a ⊙ (a ⊙ inv a)) =⟨ ! $ assoc (inv a) a (inv a) |in-ctx inv (inv a) ⊙_ ⟩
inv (inv a) ⊙ ((inv a ⊙ a) ⊙ inv a) =⟨ inv-l a |in-ctx (λ h → inv (inv a) ⊙ (h ⊙ inv a)) ⟩
inv (inv a) ⊙ (ident ⊙ inv a) =⟨ unit-l (inv a) |in-ctx inv (inv a) ⊙_ ⟩
inv (inv a) ⊙ inv a =⟨ inv-l (inv a) ⟩
ident =∎
unit-r : ∀ {x y} (a : Arr x y) → a ⊙ ident == a
unit-r a =
a ⊙ ident =⟨ ! (inv-l a) |in-ctx a ⊙_ ⟩
a ⊙ (inv a ⊙ a) =⟨ ! $ assoc a (inv a) a ⟩
(a ⊙ inv a) ⊙ a =⟨ inv-r a |in-ctx _⊙ a ⟩
ident ⊙ a =⟨ unit-l a ⟩
a =∎
record PreGroupoid i j : Type (lsucc (lmax i j)) where
constructor groupoid
field
El : Type i
Arr : El → El → Type j
Arr-level : ∀ x y → has-level 0 (Arr x y)
groupoid-struct : GroupoidStructure Arr Arr-level
|
{
"alphanum_fraction": 0.4585439838,
"avg_line_length": 37.320754717,
"ext": "agda",
"hexsha": "db5b782861b558abb0cf173ac1c5a90a23fb5eb1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/Groupoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/Groupoid.agda",
"max_line_length": 97,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/Groupoid.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 796,
"size": 1978
}
|
-- Andreas, 2017-01-05, issue #2376 reporte by gallais
-- Termination checker should eta-expand clauses to see more.
-- This may have a slight performance penalty when computing call matrices,
-- but not too big, as they are sparse.
open import Agda.Builtin.Nat
-- Arity ~ 300, still does not kill termination checker.
T =
Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat →
Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat →
Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat →
Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat →
Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat →
Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat →
Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat →
Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat →
Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat →
Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat →
Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat →
Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat →
Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat →
Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat →
Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat →
Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat →
Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat →
Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat →
Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat →
Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat →
Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat →
Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat →
Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat →
Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat →
Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat →
Nat → Nat → Nat → Nat → Nat → Nat → Nat → Nat
postulate t : T
f : Nat → T
g : Nat → Nat → T
f = g 0 -- eta-expanded to f x ... = g 0 x ...
g m zero = t
g m (suc n) = f n
|
{
"alphanum_fraction": 0.5205417607,
"avg_line_length": 48.152173913,
"ext": "agda",
"hexsha": "ef6410220b121a45caa1aee8cc9c8b5a2a731bed",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2376.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2376.agda",
"max_line_length": 75,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2376.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 756,
"size": 2215
}
|
{-# OPTIONS --without-K --rewriting #-}
module Generalize where
data _≡_ {ℓ}{A : Set ℓ} (x : A) : A → Set ℓ where
refl : x ≡ x
infix 4 _≡_
{-# BUILTIN REWRITE _≡_ #-}
------------------------------------------------------------------
postulate Con : Set
postulate Ty : (Γ : Con) → Set
postulate Tms : (Γ Δ : Con) → Set
postulate Tm : (Γ : Con)(A : Ty Γ) → Set
------------------------------------------------------------------
variable {Γ Δ Θ} : Con
postulate • : Con -- • is \bub
postulate _▹_ : ∀ Γ → Ty Γ → Con -- ▹ is \tw2
infixl 5 _▹_
variable {A B C} : Ty _
postulate _∘ᵀ_ : Ty Δ → Tms Γ Δ → Ty Γ
infixl 6 _∘ᵀ_
variable {σ δ ν} : Tms _ _
postulate _∘_ : Tms Θ Δ → Tms Γ Θ → Tms Γ Δ
infixr 7 _∘_
postulate id : Tms Γ Γ
postulate ε : Tms Γ •
postulate _,_ : (σ : Tms Γ Δ) → Tm Γ (A ∘ᵀ σ) → Tms Γ (Δ ▹ A)
infixl 5 _,_
postulate π₁ : Tms Γ (Δ ▹ A) → Tms Γ Δ
variable {t u v} : Tm _ _
postulate π₂ : (σ : Tms Γ (Δ ▹ A)) → Tm Γ (A ∘ᵀ π₁ σ)
postulate _∘ᵗ_ : Tm Δ A → (σ : Tms Γ Δ) → Tm Γ (A ∘ᵀ σ)
infixl 6 _∘ᵗ_
postulate ass : (σ ∘ δ) ∘ ν ≡ σ ∘ δ ∘ ν
{-# REWRITE ass #-}
postulate idl : id ∘ δ ≡ δ
{-# REWRITE idl #-}
postulate idr : δ ∘ id ≡ δ
{-# REWRITE idr #-}
postulate εη : δ ≡ ε -- can't rewrite, so we specialize this in the next two cases
postulate εηid : id ≡ ε
{-# REWRITE εηid #-}
postulate εη∘ : ε ∘ δ ≡ ε
{-# REWRITE εη∘ #-}
postulate ,β₁ : π₁ (δ , t) ≡ δ
{-# REWRITE ,β₁ #-}
postulate ,β₂ : π₂ (δ , t) ≡ t
{-# REWRITE ,β₂ #-}
postulate ,η : (π₁ δ , π₂ δ) ≡ δ
{-# REWRITE ,η #-}
postulate [id]ᵀ : A ∘ᵀ id ≡ A
{-# REWRITE [id]ᵀ #-}
postulate [∘]ᵀ : A ∘ᵀ δ ∘ᵀ σ ≡ A ∘ᵀ δ ∘ σ
{-# REWRITE [∘]ᵀ #-}
postulate ,∘ : (δ , t) ∘ σ ≡ δ ∘ σ , t ∘ᵗ σ
{-# REWRITE ,∘ #-}
postulate [∘]ᵗ : t ∘ᵗ σ ∘ᵗ δ ≡ t ∘ᵗ σ ∘ δ
{-# REWRITE [∘]ᵗ #-}
postulate π₁∘ : π₁ δ ∘ σ ≡ π₁ (δ ∘ σ)
{-# REWRITE π₁∘ #-}
postulate π₂∘ : π₂ δ ∘ᵗ σ ≡ π₂ (δ ∘ σ)
{-# REWRITE π₂∘ #-}
postulate ∘id : t ∘ᵗ id ≡ t
{-# REWRITE ∘id #-}
_↑_ : ∀ σ A → Tms (Γ ▹ A ∘ᵀ σ) (Δ ▹ A)
σ ↑ A = σ ∘ π₁ id , π₂ id
⟨_⟩ : Tm Γ A → Tms Γ (Γ ▹ A)
⟨ t ⟩ = id , t
------------------------------------------------------------------
postulate U : Ty Γ
variable {a b c} : Tm _ U
postulate El : Tm Γ U → Ty Γ
postulate U[] : U ∘ᵀ σ ≡ U
{-# REWRITE U[] #-}
postulate El[] : El a ∘ᵀ σ ≡ El (a ∘ᵗ σ)
{-# REWRITE El[] #-}
------------------------------------------------------------------
postulate Π : (a : Tm Γ U) → Ty (Γ ▹ El a) → Ty Γ
postulate Π[] : Π a B ∘ᵀ σ ≡ Π (a ∘ᵗ σ) (B ∘ᵀ σ ↑ El a)
{-# REWRITE Π[] #-}
postulate app : Tm Γ (Π a B) → Tm (Γ ▹ El a) B
postulate app[] : app t ∘ᵗ (σ ↑ El a) ≡ app (t ∘ᵗ σ)
{-# REWRITE app[] #-}
|
{
"alphanum_fraction": 0.3801004394,
"avg_line_length": 31.5445544554,
"ext": "agda",
"hexsha": "0b8d97bd7f99575ce628e48dcff6d47fc4d0b984",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-18T13:34:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-18T13:34:07.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Generalize.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Generalize.agda",
"max_line_length": 102,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Generalize.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 1309,
"size": 3186
}
|
-- Andreas, 2020-05-18, issue #3933
--
-- Duplicate imports of the same modules should be cumulative,
-- rather than overwriting the previous scope.
{-# OPTIONS -v scope.import:10 #-}
{-# OPTIONS -v scope:clash:20 #-}
open import Agda.Builtin.Nat using ()
Nat = Agda.Builtin.Nat.Nat
zero = Agda.Builtin.Nat.zero
import Agda.Builtin.Nat using ()
works : Nat
works = zero
test : Agda.Builtin.Nat.Nat
test = Agda.Builtin.Nat.zero
-- Used to fail since the second import emptied
-- the contents of module Agda.Builtin.Nat.
|
{
"alphanum_fraction": 0.7172675522,
"avg_line_length": 21.9583333333,
"ext": "agda",
"hexsha": "9670af672367d0bbb714beca115db1d04504ab1a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Succeed/Issue3933.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue3933.agda",
"max_line_length": 62,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue3933.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 149,
"size": 527
}
|
{-# OPTIONS --without-K --safe #-}
module Cats.Category.Setoids.Facts where
open import Cats.Category.Setoids.Facts.Exponential public using
(hasExponentials)
open import Cats.Category.Setoids.Facts.Initial public using
(hasInitial)
open import Cats.Category.Setoids.Facts.Limit public using
(complete)
open import Cats.Category.Setoids.Facts.Product public using
(hasProducts ; hasBinaryProducts ; hasFiniteProducts)
open import Cats.Category.Setoids.Facts.Terminal public using
(hasTerminal)
open import Cats.Category
open import Cats.Category.Setoids using (Setoids)
instance
isCCC : ∀ {l} → IsCCC (Setoids l l)
isCCC = record {}
|
{
"alphanum_fraction": 0.7779479326,
"avg_line_length": 27.2083333333,
"ext": "agda",
"hexsha": "ad3aa0042f83bc6938c3f8c07befbb203352e977",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-18T15:35:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-18T15:35:07.000Z",
"max_forks_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JLimperg/cats",
"max_forks_repo_path": "Cats/Category/Setoids/Facts.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JLimperg/cats",
"max_issues_repo_path": "Cats/Category/Setoids/Facts.agda",
"max_line_length": 64,
"max_stars_count": 24,
"max_stars_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JLimperg/cats",
"max_stars_repo_path": "Cats/Category/Setoids/Facts.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-06T05:00:46.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-03T15:18:57.000Z",
"num_tokens": 155,
"size": 653
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use Data.List.Relation.Unary.Any
-- directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Any where
open import Data.List.Relation.Unary.Any public
{-# WARNING_ON_IMPORT
"Data.List.Any was deprecated in v1.0.
Use Data.List.Relation.Unary.Any instead."
#-}
|
{
"alphanum_fraction": 0.5093167702,
"avg_line_length": 26.8333333333,
"ext": "agda",
"hexsha": "827fa9d959f4f9cc4f57b9356a204ed7d93d0073",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/List/Any.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/List/Any.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/List/Any.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 87,
"size": 483
}
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import Optics.All
open import LibraBFT.Prelude
open import LibraBFT.Lemmas
open import LibraBFT.Hash
open import LibraBFT.Base.Types
open import LibraBFT.Base.Encode
open import LibraBFT.Base.ByteString
open import LibraBFT.Base.PKCS
open import LibraBFT.Impl.Base.Types
open import LibraBFT.Impl.Consensus.Types.EpochIndep
open import LibraBFT.Impl.Util.Crypto
-- This module defines the types of messages that the implementation
-- can send, along with properties defining ways in which votes can be
-- represented in them, some useful functions, and definitions of how
-- NetworkMsgs are signed.
module LibraBFT.Impl.NetworkMsg where
data NetworkMsg : Set where
P : ProposalMsg → NetworkMsg
V : VoteMsg → NetworkMsg
C : CommitMsg → NetworkMsg
P≢V : ∀ {p v} → P p ≢ V v
P≢V ()
C≢V : ∀ {c v} → C c ≢ V v
C≢V ()
V-inj : ∀ {vm1 vm2} → V vm1 ≡ V vm2 → vm1 ≡ vm2
V-inj refl = refl
data _QC∈SyncInfo_ (qc : QuorumCert) (si : SyncInfo) : Set where
withVoteSIHighQC : si ^∙ siHighestQuorumCert ≡ qc → qc QC∈SyncInfo si
-- Note that we do not use the Lens here, because the Lens returns the siHighestQuorumcert in
-- case siHighestCommitcert is nothing, and it was easier to directly handle the just case. We
-- could use the Lens, and fix the proofs, but it seems simpler this way.
withVoteSIHighCC : ₋siHighestCommitCert si ≡ just qc → qc QC∈SyncInfo si
data _QC∈ProposalMsg_ (qc : QuorumCert) (pm : ProposalMsg) : Set where
inProposal : pm ^∙ pmProposal ∙ bBlockData ∙ bdQuorumCert ≡ qc → qc QC∈ProposalMsg pm
inPMSyncInfo : qc QC∈SyncInfo (pm ^∙ pmSyncInfo) → qc QC∈ProposalMsg pm
data _QC∈CommitMsg_ (qc : QuorumCert) (cm : CommitMsg) : Set where
withCommitMsg : cm ^∙ cmCert ≡ qc → qc QC∈CommitMsg cm
data _QC∈NM_ (qc : QuorumCert) : NetworkMsg → Set where
inP : ∀ {pm} → qc QC∈ProposalMsg pm → qc QC∈NM (P pm)
inV : ∀ {vm} → qc QC∈SyncInfo (vm ^∙ vmSyncInfo) → qc QC∈NM (V vm)
inC : ∀ {cm} → qc QC∈CommitMsg cm → qc QC∈NM (C cm)
data _⊂Msg_ (v : Vote) : NetworkMsg → Set where
vote∈vm : ∀ {si}
→ v ⊂Msg (V (VoteMsg∙new v si))
vote∈qc : ∀ {vs} {qc : QuorumCert} {nm}
→ vs ∈ qcVotes qc
→ rebuildVote qc vs ≈Vote v
→ qc QC∈NM nm
→ v ⊂Msg nm
getEpoch : NetworkMsg → Epoch
getEpoch (P p) = p ^∙ pmProposal ∙ bBlockData ∙ bdEpoch
getEpoch (V (VoteMsg∙new v _)) = v ^∙ vEpoch
getEpoch (C c) = c ^∙ cmEpoch
-- Get the message's author, if it has one. Note that ProposalMsgs don't necessarily have
-- authors; we care about the (honesty of) the author only for Proposals, not NilBlocks and
-- Genesis.
getAuthor : NetworkMsg → Maybe NodeId
getAuthor (P p)
with p ^∙ pmProposal ∙ bBlockData ∙ bdBlockType
...| Proposal _ auth = just auth
...| NilBlock = nothing
...| Genesis = nothing
getAuthor (V v) = just (v ^∙ vmVote ∙ vAuthor)
getAuthor (C c) = just (c ^∙ cmAuthor)
-----------------------------------------------------------------------
-- Proof that network records are signable and may carry a signature --
-----------------------------------------------------------------------
Signed-pi-CommitMsg : (cm : CommitMsg)
→ (is1 is2 : (Is-just ∘ ₋cmSigMB) cm)
→ is1 ≡ is2
Signed-pi-CommitMsg (CommitMsg∙new _ _ _ _ .(just _)) (just _) (just _) = cong just refl
instance
-- A proposal message might carry a signature inside the block it
-- is proposing.
sig-ProposalMsg : WithSig ProposalMsg
sig-ProposalMsg = record
{ Signed = Signed ∘ ₋pmProposal
; Signed-pi = Signed-pi-Blk ∘ ₋pmProposal
; isSigned? = isSigned? ∘ ₋pmProposal
; signature = signature ∘ ₋pmProposal
; signableFields = signableFields ∘ ₋pmProposal
}
sig-VoteMsg : WithSig VoteMsg
sig-VoteMsg = record
{ Signed = Signed ∘ ₋vmVote
; Signed-pi = λ _ _ _ → Unit-pi
; isSigned? = isSigned? ∘ ₋vmVote
; signature = signature ∘ ₋vmVote
; signableFields = signableFields ∘ ₋vmVote
}
sig-CommitMsg : WithSig CommitMsg
sig-CommitMsg = record
{ Signed = Is-just ∘ ₋cmSigMB
; Signed-pi = Signed-pi-CommitMsg
; isSigned? = λ cm → Maybe-Any-dec (λ _ → yes tt) (cm ^∙ cmSigMB)
; signature = λ { _ prf → to-witness prf }
; signableFields = λ cm → concat ( encode (cm ^∙ cmEpoch)
∷ encode (cm ^∙ cmAuthor)
∷ encode (cm ^∙ cmRound)
∷ encode (cm ^∙ cmCert)
∷ [])
}
---------------------------------------------------------
-- Network Records whose signatures have been verified --
---------------------------------------------------------
-- First we have to have some boilerplate to pattern match
-- on the type of message to access the 'WithSig' instance
-- on the fields... a bit ugly, but there's no other way, really.
-- At least we quarantine them in a private block.
private
SignedNM : NetworkMsg → Set
SignedNM (P x) = Signed x
SignedNM (V x) = Signed x
SignedNM (C x) = Signed x
SignedNM-pi : ∀ (nm : NetworkMsg) → (is1 : SignedNM nm) → (is2 : SignedNM nm) → is1 ≡ is2
SignedNM-pi (P x) = Signed-pi x
SignedNM-pi (V x) = Signed-pi x
SignedNM-pi (C x) = Signed-pi x
isSignedNM? : (nm : NetworkMsg) → Dec (SignedNM nm)
isSignedNM? (P x) = isSigned? x
isSignedNM? (V x) = isSigned? x
isSignedNM? (C x) = isSigned? x
signatureNM : (nm : NetworkMsg) → SignedNM nm → Signature
signatureNM (P x) prf = signature x prf
signatureNM (V x) prf = signature x prf
signatureNM (C x) prf = signature x prf
signableFieldsNM : NetworkMsg → ByteString
signableFieldsNM (P x) = signableFields x
signableFieldsNM (V x) = signableFields x
signableFieldsNM (C x) = signableFields x
instance
sig-NetworkMsg : WithSig NetworkMsg
sig-NetworkMsg = record
{ Signed = SignedNM
; Signed-pi = SignedNM-pi
; isSigned? = isSignedNM?
; signature = signatureNM
; signableFields = signableFieldsNM
}
|
{
"alphanum_fraction": 0.5840892193,
"avg_line_length": 39.7928994083,
"ext": "agda",
"hexsha": "c96bef920aa8243d578bb3cfa3bdbfede5484ff1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "cwjnkins/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Impl/NetworkMsg.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "cwjnkins/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Impl/NetworkMsg.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "cwjnkins/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Impl/NetworkMsg.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2057,
"size": 6725
}
|
module Oscar.Data.Fin where
open import Data.Fin public using (Fin; zero; suc)
-- open import Oscar.Data.Fin.Core public
-- --open import Data.Fin hiding (thin; thick; check) public
-- --open import Data.Fin.Properties hiding (thin-injective; thick-thin; thin-check-id) public
-- -- module _ where
-- -- open import Data.Product
-- -- open import Oscar.Data.Vec
-- -- open import Data.Nat
-- -- open import Function
-- -- enumFin⋆ : ∀ n → ∃ λ (F : Vec (Fin n) n) → ∀ f → f ∈ F
-- -- enumFin⋆ n = tabulate⋆ id
-- -- open import Agda.Builtin.Equality
-- -- open import Agda.Builtin.Nat
-- -- open import Relation.Binary.PropositionalEquality
-- -- open import Relation.Nullary
-- -- open import Data.Product
-- -- open import Data.Empty
-- -- open import Function
-- -- previous : ∀ {n} -> Fin (suc (suc n)) -> Fin (suc n)
-- -- previous (suc x) = x
-- -- previous zero = zero
-- -- module Thin where
-- -- fact1 : ∀ {n} x y z -> thin {n} x y ≡ thin x z -> y ≡ z
-- -- fact1 zero y .y refl = refl
-- -- fact1 (suc x) zero zero r = refl
-- -- fact1 (suc x) zero (suc z) ()
-- -- fact1 (suc x) (suc y) zero ()
-- -- fact1 (suc x) (suc y) (suc z) r = cong suc (fact1 x y z (cong previous r))
-- -- fact2 : ∀ {n} x y -> ¬ thin {n} x y ≡ x
-- -- fact2 zero y ()
-- -- fact2 (suc x) zero ()
-- -- fact2 (suc x) (suc y) r = fact2 x y (cong previous r)
-- -- fact3 : ∀{n} x y -> ¬ x ≡ y -> ∃ λ y' -> thin {n} x y' ≡ y
-- -- fact3 zero zero ne = ⊥-elim (ne refl)
-- -- fact3 zero (suc y) _ = y , refl
-- -- fact3 {zero} (suc ()) _ _
-- -- fact3 {suc n} (suc x) zero ne = zero , refl
-- -- fact3 {suc n} (suc x) (suc y) ne with y | fact3 x y (ne ∘ cong suc)
-- -- ... | .(thin x y') | y' , refl = suc y' , refl
-- -- open import Data.Maybe
-- -- open import Category.Functor
-- -- open import Category.Monad
-- -- import Level
-- -- open RawMonad (Data.Maybe.monad {Level.zero})
-- -- open import Data.Sum
-- -- _≡Fin_ : ∀ {n} -> (x y : Fin n) -> Dec (x ≡ y)
-- -- zero ≡Fin zero = yes refl
-- -- zero ≡Fin suc y = no λ ()
-- -- suc x ≡Fin zero = no λ ()
-- -- suc {suc _} x ≡Fin suc y with x ≡Fin y
-- -- ... | yes r = yes (cong suc r)
-- -- ... | no r = no λ e -> r (cong previous e)
-- -- suc {zero} () ≡Fin _
-- -- module Thick where
-- -- half1 : ∀ {n} (x : Fin (suc n)) -> check x x ≡ nothing
-- -- half1 zero = refl
-- -- half1 {suc _} (suc x) = cong ((_<$>_ suc)) (half1 x)
-- -- half1 {zero} (suc ())
-- -- half2 : ∀ {n} (x : Fin (suc n)) y -> ∀ y' -> thin x y' ≡ y -> check x y ≡ just y'
-- -- half2 zero zero y' ()
-- -- half2 zero (suc y) .y refl = refl
-- -- half2 {suc n} (suc x) zero zero refl = refl
-- -- half2 {suc _} (suc _) zero (suc _) ()
-- -- half2 {suc n} (suc x) (suc y) zero ()
-- -- half2 {suc n} (suc x) (suc .(thin x y')) (suc y') refl with check x (thin x y') | half2 x (thin x y') y' refl
-- -- ... | .(just y') | refl = refl
-- -- half2 {zero} (suc ()) _ _ _
-- -- fact1 : ∀ {n} (x : Fin (suc n)) y r
-- -- -> check x y ≡ r
-- -- -> x ≡ y × r ≡ nothing ⊎ ∃ λ y' -> thin x y' ≡ y × r ≡ just y'
-- -- fact1 x y .(check x y) refl with x ≡Fin y
-- -- fact1 x .x ._ refl | yes refl = inj₁ (refl , half1 x)
-- -- ... | no el with Thin.fact3 x y el
-- -- ... | y' , thinxy'=y = inj₂ (y' , ( thinxy'=y , half2 x y y' thinxy'=y ))
|
{
"alphanum_fraction": 0.5011594203,
"avg_line_length": 36.7021276596,
"ext": "agda",
"hexsha": "0e4f27a30cdc743123c9c17d65b0b68bcca11c72",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/Data/Fin.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/Data/Fin.agda",
"max_line_length": 117,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/Data/Fin.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1278,
"size": 3450
}
|
{-# OPTIONS --without-K --rewriting #-}
open import lib.Base
open import lib.PathGroupoid
{-
This file contains various basic definitions and lemmas about functions
(non-dependent [Pi] types) that do not belong anywhere else.
-}
module lib.Function where
{- Basic lemmas about pointed maps -}
-- concatenation
⊙∘-pt : ∀ {i j} {A : Type i} {B : Type j}
{a₁ a₂ : A} (f : A → B) {b : B}
→ a₁ == a₂ → f a₂ == b → f a₁ == b
⊙∘-pt f p q = ap f p ∙ q
infixr 80 _⊙∘_
_⊙∘_ : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
(g : Y ⊙→ Z) (f : X ⊙→ Y) → X ⊙→ Z
(g , gpt) ⊙∘ (f , fpt) = (g ∘ f) , ⊙∘-pt g fpt gpt
⊙∘-unit-l : ∀ {i j} {X : Ptd i} {Y : Ptd j} (f : X ⊙→ Y)
→ ⊙idf Y ⊙∘ f == f
⊙∘-unit-l (f , idp) = idp
⊙∘-unit-r : ∀ {i j} {X : Ptd i} {Y : Ptd j} (f : X ⊙→ Y)
→ f ⊙∘ ⊙idf X == f
⊙∘-unit-r f = idp
{- Homotopy fibers -}
module _ {i j} {A : Type i} {B : Type j} (f : A → B) where
hfiber : (y : B) → Type (lmax i j)
hfiber y = Σ A (λ x → f x == y)
{- Note that [is-inj] is not a mere proposition. -}
is-inj : Type (lmax i j)
is-inj = (a₁ a₂ : A) → f a₁ == f a₂ → a₁ == a₂
preserves-≠ : Type (lmax i j)
preserves-≠ = {a₁ a₂ : A} → a₁ ≠ a₂ → f a₁ ≠ f a₂
module _ {i j} {A : Type i} {B : Type j} {f : A → B} where
abstract
inj-preserves-≠ : is-inj f → preserves-≠ f
inj-preserves-≠ inj ¬p q = ¬p (inj _ _ q)
module _ {i j k} {A : Type i} {B : Type j} {C : Type k}
{f : A → B} {g : B → C} where
∘-is-inj : is-inj g → is-inj f → is-inj (g ∘ f)
∘-is-inj g-is-inj f-is-inj a₁ a₂ = f-is-inj a₁ a₂ ∘ g-is-inj (f a₁) (f a₂)
{- Maps between two functions -}
record CommSquare {i₀ i₁ j₀ j₁}
{A₀ : Type i₀} {A₁ : Type i₁} {B₀ : Type j₀} {B₁ : Type j₁}
(f₀ : A₀ → B₀) (f₁ : A₁ → B₁) (hA : A₀ → A₁) (hB : B₀ → B₁)
: Type (lmax (lmax i₀ i₁) (lmax j₀ j₁)) where
constructor comm-sqr
field
commutes : ∀ a₀ → (hB ∘ f₀) a₀ == (f₁ ∘ hA) a₀
open CommSquare public
|
{
"alphanum_fraction": 0.520167627,
"avg_line_length": 27.2714285714,
"ext": "agda",
"hexsha": "ede23164208b5d3fda7007541d0fc614f1c89913",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "core/lib/Function.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "core/lib/Function.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "core/lib/Function.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 906,
"size": 1909
}
|
{-# OPTIONS --without-K --exact-split --rewriting #-}
open import lib.Basics
open import lib.types.Bool
module Graphs.Definition where
{- A graph consists of types of Edges and Vertices together with two endpoint maps. We
often just talk about the types and the endpoint maps are clear from the context
(i.e. derived by instance resolution). -}
record Graph {i j : ULevel} (E : Type i) (V : Type j) : Type (lmax i j) where
constructor graph
field
π₀ : E → V
π₁ : E → V
open Graph ⦃...⦄ public -- see agda documentation on instance arguments
|
{
"alphanum_fraction": 0.6998223801,
"avg_line_length": 31.2777777778,
"ext": "agda",
"hexsha": "e4b24ceb72bd169f524568b97308a13ec0402b12",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "awswan/nielsenschreier-hott",
"max_forks_repo_path": "main/Graphs/Definition.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "awswan/nielsenschreier-hott",
"max_issues_repo_path": "main/Graphs/Definition.agda",
"max_line_length": 86,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "awswan/nielsenschreier-hott",
"max_stars_repo_path": "main/Graphs/Definition.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 153,
"size": 563
}
|
{-# OPTIONS --cubical --safe #-}
module Algebra.Construct.Free.Semilattice.Relation.Unary.All.Def where
open import Prelude hiding (⊥; ⊤)
open import Algebra.Construct.Free.Semilattice.Eliminators
open import Algebra.Construct.Free.Semilattice.Definition
open import Cubical.Foundations.HLevels
open import Data.Empty.UniversePolymorphic
open import HITs.PropositionalTruncation.Sugar
open import HITs.PropositionalTruncation.Properties
open import HITs.PropositionalTruncation
open import Data.Unit.UniversePolymorphic
private
variable p : Level
dup-◻ : (P : A → Type p) → (x : A) (xs : Type p) → (∥ P x ∥ × ∥ P x ∥ × xs) ⇔ (∥ P x ∥ × xs)
dup-◻ P _ _ .fun = snd
dup-◻ P _ _ .inv (x , xs) = x , x , xs
dup-◻ P _ _ .rightInv (x , xs) = refl
dup-◻ P _ _ .leftInv (x₁ , x₂ , xs) i .fst = squash x₂ x₁ i
dup-◻ P _ _ .leftInv (x₁ , x₂ , xs) i .snd = (x₂ , xs)
com-◻ : (P : A → Type p) → (x y : A) (xs : Type p) → (∥ P x ∥ × ∥ P y ∥ × xs) ⇔ (∥ P y ∥ × ∥ P x ∥ × xs)
com-◻ P _ _ _ .fun (x , y , xs) = y , x , xs
com-◻ P _ _ _ .inv (y , x , xs) = x , y , xs
com-◻ P _ _ _ .leftInv (x , y , xs) = refl
com-◻ P _ _ _ .rightInv (x , y , xs) = refl
◻′ : (P : A → Type p) → A ↘ hProp p
[ ◻′ P ]-set = isSetHProp
([ ◻′ P ] x ∷ (xs , hxs)) .fst = ∥ P x ∥ × xs
([ ◻′ P ] x ∷ (xs , hxs)) .snd y z = ΣProp≡ (λ _ → hxs) (squash (fst y) (fst z))
[ ◻′ P ][] = ⊤ , λ x y _ → x
[ ◻′ P ]-dup x xs = ΣProp≡ (λ _ → isPropIsProp) (isoToPath (dup-◻ P x (xs .fst)))
[ ◻′ P ]-com x y xs = ΣProp≡ (λ _ → isPropIsProp) (isoToPath (com-◻ P x y (xs .fst)))
◻ : (P : A → Type p) → 𝒦 A → Type p
◻ P xs = [ ◻′ P ]↓ xs .fst
isProp-◻ : ∀ {P : A → Type p} {xs} → isProp (◻ P xs)
isProp-◻ {P = P} {xs = xs} = [ ◻′ P ]↓ xs .snd
|
{
"alphanum_fraction": 0.5617647059,
"avg_line_length": 38.6363636364,
"ext": "agda",
"hexsha": "f6934fe2b30971240355266172f5d9050538cc9b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Algebra/Construct/Free/Semilattice/Relation/Unary/All/Def.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Algebra/Construct/Free/Semilattice/Relation/Unary/All/Def.agda",
"max_line_length": 104,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Algebra/Construct/Free/Semilattice/Relation/Unary/All/Def.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 754,
"size": 1700
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.Category.Duality {o ℓ e} (C : Category o ℓ e) where
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Categories.Category.Cartesian
open import Categories.Category.Cocartesian
open import Categories.Category.Complete
open import Categories.Category.Complete.Finitely
open import Categories.Category.Cocomplete
open import Categories.Category.Cocomplete.Finitely
open import Categories.Object.Duality
open import Categories.Diagram.Duality
open import Categories.Functor
private
module C = Category C
open C
coCartesian⇒Cocartesian : Cartesian C.op → Cocartesian C
coCartesian⇒Cocartesian Car = record
{ initial = op⊤⇒⊥ C terminal
; coproducts = record
{ coproduct = coProduct⇒Coproduct C product
}
}
where open Cartesian Car
Cocartesian⇒coCartesian : Cocartesian C → Cartesian C.op
Cocartesian⇒coCartesian Co = record
{ terminal = ⊥⇒op⊤ C initial
; products = record
{ product = Coproduct⇒coProduct C coproduct
}
}
where open Cocartesian Co
coComplete⇒Cocomplete : ∀ {o′ ℓ′ e′} → Complete o′ ℓ′ e′ C.op → Cocomplete o′ ℓ′ e′ C
coComplete⇒Cocomplete Com F = coLimit⇒Colimit C (Com F.op)
where module F = Functor F
Cocomplete⇒coComplete : ∀ {o′ ℓ′ e′} → Cocomplete o′ ℓ′ e′ C → Complete o′ ℓ′ e′ C.op
Cocomplete⇒coComplete Coc F = Colimit⇒coLimit C (Coc F.op)
where module F = Functor F
coFinitelyComplete⇒FinitelyCocomplete : FinitelyComplete C.op → FinitelyCocomplete C
coFinitelyComplete⇒FinitelyCocomplete FC = record
{ cocartesian = coCartesian⇒Cocartesian cartesian
; coequalizer = λ f g → coEqualizer⇒Coequalizer C (equalizer f g)
}
where open FinitelyComplete FC
FinitelyCocomplete⇒coFinitelyComplete : FinitelyCocomplete C → FinitelyComplete C.op
FinitelyCocomplete⇒coFinitelyComplete FC = record
{ cartesian = Cocartesian⇒coCartesian cocartesian
; equalizer = λ f g → Coequalizer⇒coEqualizer C (coequalizer f g)
}
where open FinitelyCocomplete FC
module DualityConversionProperties where
private
op-involutive : Category.op C.op ≡ C
op-involutive = refl
coCartesian⇔Cocartesian : ∀(coCartesian : Cartesian C.op)
→ Cocartesian⇒coCartesian (coCartesian⇒Cocartesian coCartesian)
≡ coCartesian
coCartesian⇔Cocartesian _ = refl
coFinitelyComplete⇔FinitelyCocomplete : ∀(coFinComplete : FinitelyComplete C.op) →
FinitelyCocomplete⇒coFinitelyComplete
(coFinitelyComplete⇒FinitelyCocomplete coFinComplete) ≡ coFinComplete
coFinitelyComplete⇔FinitelyCocomplete _ = refl
|
{
"alphanum_fraction": 0.7450244086,
"avg_line_length": 32.8765432099,
"ext": "agda",
"hexsha": "2134f5bed58b293df9bb00ed5683bca7b6137381",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Duality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Duality.agda",
"max_line_length": 91,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bblfish/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Duality.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 820,
"size": 2663
}
|
{-# OPTIONS --cubical --allow-unsolved-metas #-}
open import Agda.Builtin.Cubical.Path
open import Agda.Builtin.Nat
pred : Nat → Nat
pred (suc n) = n
pred zero = zero
data [0-1] : Set where
𝟎 𝟏 : [0-1]
int : 𝟎 ≡ 𝟏
-- The following holes can be filled, so they should not cause a
-- typechecking failure.
0=x : ∀ i → 𝟎 ≡ int i
0=x i = \ j → int {!!}
si : {n m : Nat} → suc n ≡ suc m → n ≡ m
si p i = pred (p {!!})
|
{
"alphanum_fraction": 0.5933806147,
"avg_line_length": 19.2272727273,
"ext": "agda",
"hexsha": "7a5e6e020b32194156c1c90cc3c48fce3667b104",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue3511.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue3511.agda",
"max_line_length": 64,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue3511.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 168,
"size": 423
}
|
-- This test case seems to be due to Andreas Abel, Andrea Vezzosi and
-- NAD. The code below should be rejected.
open import Agda.Builtin.Size
data SizeLt (i : Size) : Set where
size : (j : Size< i) → SizeLt i
-- Legal again in 2.5.1
getSize : ∀{i} → SizeLt i → Size
getSize (size j) = j
-- Structurally inductive (c), coinductive via sizes.
data U (i : Size) : Set where
c : ((s : SizeLt i) → U (getSize s)) → U i
data ⊥ : Set where
empty : U ∞ → ⊥
empty (c f) = empty (f (size ∞)) -- f x <= f < c f
-- If U is a data type this should not be possible:
inh : ∀ i → U i
inh i = c λ{ (size j) → inh j }
absurd : ⊥
absurd = empty (inh ∞)
|
{
"alphanum_fraction": 0.6064814815,
"avg_line_length": 23.1428571429,
"ext": "agda",
"hexsha": "a9a5a214bbf22c22e371a90066fa63ab0d74ca17",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1946-1.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1946-1.agda",
"max_line_length": 69,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1946-1.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 232,
"size": 648
}
|
module hello-world where
open import Agda.Builtin.IO using (IO)
open import Agda.Builtin.Unit using (⊤)
open import Agda.Builtin.String using (String)
postulate putStrLn : String → IO ⊤
{-# FOREIGN GHC import qualified Data.Text as T #-}
{-# COMPILE GHC putStrLn = putStrLn . T.unpack #-}
main : IO ⊤
main = putStrLn "Hello world!"
|
{
"alphanum_fraction": 0.7194029851,
"avg_line_length": 25.7692307692,
"ext": "agda",
"hexsha": "e8a017db376688316738937688e01b3c5a121b42",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5b3afde25381d7aff75a6a231b90cf60dca5b826",
"max_forks_repo_licenses": [
"CC-BY-3.0"
],
"max_forks_repo_name": "tlringer/tlringer.github.io",
"max_forks_repo_path": "classes/artifacts/1/hello-world.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5b3afde25381d7aff75a6a231b90cf60dca5b826",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC-BY-3.0"
],
"max_issues_repo_name": "tlringer/tlringer.github.io",
"max_issues_repo_path": "classes/artifacts/1/hello-world.agda",
"max_line_length": 51,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "5b3afde25381d7aff75a6a231b90cf60dca5b826",
"max_stars_repo_licenses": [
"CC-BY-3.0"
],
"max_stars_repo_name": "tlringer/tlringer.github.io",
"max_stars_repo_path": "classes/artifacts/1/hello-world.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 84,
"size": 335
}
|
module Bush where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
{-# BUILTIN NATURAL Nat #-}
_+_ : Nat -> Nat -> Nat
zero + m = m
suc n + m = suc (n + m)
_^_ : (Set -> Set) -> Nat -> Set -> Set
(F ^ zero) A = A
(F ^ suc n) A = F ((F ^ n) A)
data Bush (A : Set) : Set where
leaf : Bush A
node : A -> (Bush ^ 3) A -> Bush A
elim :
(P : (A : Set) -> Bush A -> Set) ->
((A : Set) -> P A leaf) ->
((A : Set)(x : A)(b : (Bush ^ 3) A) ->
P ((Bush ^ 2) A) b -> P A (node x b)) ->
(A : Set)(b : Bush A) -> P A b
elim P l n A leaf = l A
elim P l n A (node x b) = n A x b (elim P l n ((Bush ^ 2) A) b)
iter :
(P : (A : Set) -> Set) ->
((A : Set) -> P A) ->
((A : Set) -> A -> P ((Bush ^ 2) A) -> P A) ->
(A : Set) -> Bush A -> P A
iter P l n A leaf = l A
iter P l n A (node x b) = n A x (iter P l n ((Bush ^ 2) A) b)
data List (A : Set) : Set where
[] : List A
_::_ : A -> List A -> List A
_++_ : {A : Set} -> List A -> List A -> List A
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)
flatten : {A : Set}(n : Nat) -> (Bush ^ n) A -> List A
flatten zero x = x :: []
flatten (suc n) leaf = []
flatten (suc n) (node x b) = flatten n x ++ flatten (3 + n) b
-- Andreas, 2017-01-01, issue #1899.
-- Normalize field types for positivity checking.
record B (A : Set) : Set where
coinductive
field f : (B ^ 3) A
|
{
"alphanum_fraction": 0.4633260712,
"avg_line_length": 24.1578947368,
"ext": "agda",
"hexsha": "9780991d64f40e9c81a81d7f561b05d3006d095d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Bush.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Bush.agda",
"max_line_length": 63,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Bush.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 547,
"size": 1377
}
|
module nodcap.NF.Contract where
open import Function using (_$_)
open import Data.Nat as ℕ using (ℕ; suc; zero)
open import Data.Pos as ℕ⁺
open import Data.List as L using (List; []; _∷_; _++_)
open import Data.Environment
open import nodcap.Base
open import nodcap.NF.Typing
-- Lemma:
-- We can contract n repetitions of A to an instance of ?[ n ] A,
-- by induction on n.
contract : {Γ : Environment} {A : Type} {n : ℕ⁺} →
⊢ⁿᶠ replicate⁺ n A ++ Γ →
----------------------
⊢ⁿᶠ ?[ n ] A ∷ Γ
contract {n = suc zero} x
= mk?₁ x
contract {n = suc (suc n)} x
= cont {m = suc zero}
$ exch (fwd [] (_ ∷ []))
$ contract
$ exch (bwd [] (replicate⁺ (suc n) _))
$ mk?₁ x
|
{
"alphanum_fraction": 0.5904486252,
"avg_line_length": 23.8275862069,
"ext": "agda",
"hexsha": "938f33b45d1a0674863822f64d43141bdb1caab2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-09-05T08:58:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-05T08:58:13.000Z",
"max_forks_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "pepijnkokke/nodcap",
"max_forks_repo_path": "src/cpnd1/nodcap/NF/Contract.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "pepijnkokke/nodcap",
"max_issues_repo_path": "src/cpnd1/nodcap/NF/Contract.agda",
"max_line_length": 67,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "wenkokke/nodcap",
"max_stars_repo_path": "src/cpnd1/nodcap/NF/Contract.agda",
"max_stars_repo_stars_event_max_datetime": "2019-09-24T20:16:35.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-09-05T08:58:11.000Z",
"num_tokens": 248,
"size": 691
}
|
module SizedIO.Base where
open import Data.Maybe.Base
open import Data.Sum renaming (inj₁ to left; inj₂ to right; [_,_]′ to either)
open import Function
--open import Level using (_⊔_) renaming (suc to lsuc)
open import Size
open import Data.List
open import SizedIO.Object
open import NativeIO
open import Data.Product
record IOInterface : Set₁ where
field
Command : Set
Response : (m : Command) → Set
open IOInterface public
module _ (I : IOInterface ) (let C = Command I) (let R = Response I) where
mutual
record IO (i : Size) (A : Set) : Set where
coinductive
constructor delay
field
force : {j : Size< i} → IO' j A
data IO' (i : Size) (A : Set) : Set where
do' : (c : C) (f : R c → IO i A) → IO' i A
return' : (a : A) → IO' i A
data IO+ (i : Size) (A : Set) : Set where
do' : (c : C) (f : R c → IO i A) → IO+ i A
open IO public
objectInterfToIOInterf : Interface → IOInterface
objectInterfToIOInterf I .Command = I .Method
objectInterfToIOInterf I .Response = I .Result
ioInterfToObjectInterf : IOInterface → Interface
ioInterfToObjectInterf I .Method = I .Command
ioInterfToObjectInterf I .Result = I .Response
module _ {I : IOInterface } (let C = Command I) (let R = Response I) where
return : ∀{i}{A : Set} (a : A) → IO I i A
return a .force = return' a
do : ∀{i}{A : Set} (c : C) (f : R c → IO I i A) → IO I i A
do c f .force = do' c f
do1 : ∀{i} (c : C) → IO I i (R c)
do1 c = do c return
infixl 2 _>>=_ _>>='_ _>>_
mutual
_>>='_ : ∀{i}{A B : Set}(m : IO' I i A) (k : A → IO I (↑ i) B) → IO' I i B
do' c f >>=' k = do' c λ x → f x >>= k
return' a >>=' k = (k a) .force
_>>=_ : ∀{i}{A B : Set}(m : IO I i A) (k : A → IO I i B) → IO I i B
(m >>= k) .force = m .force >>=' k
_>>_ : ∀{i}{B : Set} (m : IO I i Unit) (k : IO I i B) → IO I i B
m >> k = m >>= λ _ → k
{-# NON_TERMINATING #-}
translateIO : ∀{A : Set}
→ (translateLocal : (c : C) → NativeIO (R c))
→ IO I ∞ A
→ NativeIO A
translateIO translateLocal m = case (m .force {_}) of
λ{ (do' c f) → (translateLocal c) native>>= λ r →
translateIO translateLocal (f r)
; (return' a) → nativeReturn a
}
-- Recursion
-- trampoline provides a generic form of loop (generalizing while/repeat).
-- Starting at state s : S, step function f is iterated until it returns
-- a result in A.
fromIO+' : ∀{i}{A : Set} → IO+ I i A → IO' I i A
fromIO+' (do' c f) = do' c f
fromIO+ : ∀{i}{A : Set} → IO+ I i A → IO I i A
fromIO+ (do' c f) .force = do' c f
_>>=+'_ : ∀{i}{A B : Set}(m : IO+ I i A) (k : A → IO I i B) → IO' I i B
do' c f >>=+' k = do' c λ x → f x >>= k
_>>=+_ : ∀{i}{A B : Set}(m : IO+ I i A) (k : A → IO I i B) → IO I i B
(m >>=+ k) .force = m >>=+' k
mutual
_>>+_ : ∀{i}{A B : Set}(m : IO I i (A ⊎ B)) (k : A → IO I i B) → IO I i B
(m >>+ k) .force = m .force >>+' k
_>>+'_ : ∀{j}{A B : Set} (m : IO' I j (A ⊎ B)) (k : A → IO I (↑ j) B) → IO' I j B
do' c f >>+' k = do' c λ x → f x >>+ k
return' (left a) >>+' k = k a .force
return' (right b) >>+' k = return' b
-- loop
trampoline : ∀{i}{A S : Set} (f : S → IO+ I i (S ⊎ A)) (s : S) → IO I i A
trampoline f s .force = case (f s) of
\{ (do' c k) → do' c λ r → k r >>+ trampoline f }
-- simple infinite loop
forever : ∀{i}{A B : Set} → IO+ I i A → IO I i B
forever (do' c f) .force = do' c λ r → f r >>= λ _ → forever (do' c f)
whenJust : ∀{i}{A : Set} → Maybe A → (A → IO I i (Unit )) → IO I i Unit
whenJust nothing k = return _
whenJust (just a) k = k a
mutual
mapIO : ∀ {i} → {I : IOInterface} → {A B : Set} → (A → B) → IO I i A → IO I i B
mapIO f p .force = mapIO' f (p .force)
mapIO' : ∀ {i} → {I : IOInterface} → {A B : Set} → (A → B) → IO' I i A → IO' I i B
mapIO' f (do' c g) = do' c (λ r → mapIO f (g r))
mapIO' f (return' a) = return' (f a)
sequenceIO : {i : IOInterface} → List (IO i ∞ Unit) → IO i ∞ Unit
sequenceIO [] .force = return' unit
sequenceIO (p ∷ l) = p >>= (λ _ → sequenceIO l)
Return : {i : Size} → {int : IOInterface} → {A : Set} → A → IO int i A
Return a .force = return' a
Do : {i : Size} → {int : IOInterface} → (c : int .Command)
→ IO int i (int .Response c)
Do c .force = do' c Return
module _ {I : IOInterface }
(let C = Command I)
(let R = Response I)
where
mutual
fmap : (i : Size) → {A B : Set} → (f : A → B)
→ IO I i A
→ IO I i B
fmap i {A} {B} f p .force {j} = fmap' j {A} {B} f (p .force {j})
fmap' : (i : Size) → {A B : Set} → (f : A → B )
→ IO' I i A
→ IO' I i B
fmap' i {A} {B} f (do' c f₁) = do' c (λ r → fmap i {A} {B} f (f₁ r))
fmap' i {A} {B} f (return' a) = return' (f a)
module _ (I : IOInterface )
(let C = I .Command)
(let R = I .Response)
where
data IOind (A : Set) : Set where
do'' : (c : C) (f : (r : R c) → IOind A) → IOind A
return'' : (a : A) → IOind A
_>>''_ : {I : IOInterface}(let C = I .Command)(let R = I .Response)
{A B : Set} (p : IOind I A) (q : A → IOind I B) → IOind I B
do'' c f >>'' q = do'' c (λ r → f r >>'' q)
return'' a >>'' q = q a
module _ {I : Interface }
(let M = I .Method)
(let R = I .Result)
where
translate : ∀{A : Set}
→ Object I
→ IOind (objectInterfToIOInterf I) A
→ A × Object I
translate {A} obj (do'' c p) = obj .objectMethod c ▹ λ {(x , o')
→ translate {A} o' (p x) }
translate {A} obj (return'' a) = a , obj
|
{
"alphanum_fraction": 0.4936289056,
"avg_line_length": 28.9343434343,
"ext": "agda",
"hexsha": "1578a3592d9abbe56747d8fa0329a8a43d23f135",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "stephanadls/state-dependent-gui",
"max_forks_repo_path": "src/SizedIO/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "stephanadls/state-dependent-gui",
"max_issues_repo_path": "src/SizedIO/Base.agda",
"max_line_length": 86,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "stephanadls/state-dependent-gui",
"max_stars_repo_path": "src/SizedIO/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-31T17:20:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T15:37:39.000Z",
"num_tokens": 2214,
"size": 5729
}
|
------------------------------------------------------------------------
-- Results relating different instances of certain axioms related to
-- equality
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Equality.Instances-related where
import Bijection
open import Equality
import Equivalence
import Function-universe
import H-level
import H-level.Closure
open import Logical-equivalence using (_⇔_)
open import Prelude
import Surjection
private
module E (e⁺ : ∀ e → Equivalence-relation⁺ e) where
open Reflexive-relation′
(λ e → Equivalence-relation⁺.reflexive-relation (e⁺ e))
public
-- All families of equality types that satisfy certain axioms are
-- pointwise isomorphic. One of the families are used to define what
-- "isomorphic" means.
--
-- The isomorphisms map reflexivity to reflexivity in both directions.
--
-- Hofmann and Streicher prove something similar in "The groupoid
-- interpretation of type theory".
all-equality-types-isomorphic :
∀ {e₁ e₂}
(eq₁ : ∀ {a p} → Equality-with-J a p e₁)
(eq₂ : ∀ {a p} → Equality-with-J a p e₂) →
let open Bijection eq₁ in
∀ {a} {A : Type a} →
∃ λ (iso : {x y : A} → E._≡_ e₁ x y ↔ E._≡_ e₂ x y) →
(∀ {x} → E._≡_ e₂ (_↔_.to iso (E.refl e₁ x)) (E.refl e₂ x)) ×
(∀ {x} → E._≡_ e₁ (_↔_.from iso (E.refl e₂ x)) (E.refl e₁ x))
all-equality-types-isomorphic {c₁} {c₂} eq₁ eq₂ =
record
{ surjection = record
{ logical-equivalence = record
{ to = to c₂ eq₁
; from = to c₁ eq₂
}
; right-inverse-of = to c₁ eq₂ ∘ to∘to _ _ eq₂ eq₁
}
; left-inverse-of = to∘to _ _ eq₁ eq₂
}
, to-refl c₂ eq₁
, to-refl c₁ eq₂
where
open E
open module Eq {c} (eq : ∀ {a p} → Equality-with-J a p c) =
Equality-with-J′ eq hiding (_≡_; refl)
to : ∀ {c₁} c₂ (eq₁ : ∀ {a p} → Equality-with-J a p c₁)
{a} {A : Type a} {x y : A} →
_≡_ c₁ x y → _≡_ c₂ x y
to c₂ eq₁ {x = x} x≡y = subst eq₁ (_≡_ c₂ x) x≡y (refl c₂ x)
to-refl :
∀ {c₁} c₂ (eq₁ : ∀ {a p} → Equality-with-J a p c₁)
{a} {A : Type a} {x : A} →
_≡_ c₂ (to c₂ eq₁ (refl c₁ x)) (refl c₂ x)
to-refl c₂ eq₁ = to c₂ eq₁ $ subst-refl eq₁ (_≡_ c₂ _) _
to∘to : ∀ c₁ c₂
(eq₁ : ∀ {a p} → Equality-with-J a p c₁)
(eq₂ : ∀ {a p} → Equality-with-J a p c₂) →
∀ {a} {A : Type a} {x y : A} (x≡y : _≡_ c₁ x y) →
_≡_ c₁ (to c₁ eq₂ (to c₂ eq₁ x≡y)) x≡y
to∘to c₁ c₂ eq₁ eq₂ = elim eq₁
(λ {x y} x≡y → _≡_ c₁ (to c₁ eq₂ (to c₂ eq₁ x≡y)) x≡y)
(λ x → to c₁ eq₂ (to c₂ eq₁ (refl c₁ x)) ≡⟨ cong eq₁ (to c₁ eq₂) (subst-refl eq₁ (_≡_ c₂ x) (refl c₂ x)) ⟩
to c₁ eq₂ (refl c₂ x) ≡⟨ to c₁ eq₂ $ subst-refl eq₂ (_≡_ c₁ x) (refl c₁ x) ⟩∎
refl c₁ x ∎)
where
open Derived-definitions-and-properties eq₁
using (step-≡; finally)
module _ {congruence⁺}
(eq : ∀ {a p} → Equality-with-J a p congruence⁺)
where
open Derived-definitions-and-properties eq
open Function-universe eq hiding (_∘_) renaming (id to ⟨id⟩)
open H-level.Closure eq
open Surjection eq using (_↠_)
private
open module Eq = Equivalence eq using (_≃_)
abstract
-- The type Equality-with-J₀ a p reflexive-relation is
-- contractible (given the assumptions in the telescope above, and
-- assuming extensionality). A slight variant of this observation
-- came up in a discussion between Thierry Coquand, Simon Huber
-- and Nicolai Kraus. The proof is based on one due to Nicolai
-- Kraus.
Equality-with-J-contractible :
∀ {a p} →
Extensionality (lsuc (a ⊔ p)) (a ⊔ lsuc p) →
Contractible (Equality-with-J₀ a p (λ _ → reflexive-relation))
Equality-with-J-contractible {a} {p} ext = $⟨ contr ⟩
Contractible ((A : Type a) (P : I A → Type p)
(d : ∀ x → P (to x)) → Singleton d) ↝⟨ H-level.respects-surjection eq surj 0 ⟩
Contractible (Equality-with-J₀ a p (λ _ → reflexive-relation)) □
where
I : Type a → Type a
I A = ∃ λ (x : A) → ∃ λ (y : A) → x ≡ y
to : ∀ {A} → A → I A
to x = x , x , refl x
≃I : ∀ {A} → A ≃ I A
≃I = Eq.↔⇒≃ (record
{ surjection = record
{ logical-equivalence = record
{ to = to
; from = proj₁
}
; right-inverse-of = λ q →
let x , y , x≡y = q in
cong (x ,_) $
Σ-≡,≡→≡ x≡y
(subst (x ≡_) x≡y (refl x) ≡⟨ sym trans-subst ⟩
trans (refl x) x≡y ≡⟨ trans-reflˡ x≡y ⟩∎
x≡y ∎)
}
; left-inverse-of = refl
})
contr :
Contractible ((A : Type a) (P : I A → Type p)
(d : ∀ x → P (to x)) → Singleton d)
contr =
Π-closure (lower-extensionality (lsuc p) lzero ext) 0 λ _ →
Π-closure (lower-extensionality (lsuc a) (lsuc p) ext) 0 λ _ →
Π-closure (lower-extensionality _ (lsuc p) ext) 0 λ _ →
singleton-contractible _
surj :
((A : Type a) (P : I A → Type p)
(d : ∀ x → P (to x)) → Singleton d) ↠
Equality-with-J₀ a p (λ _ → reflexive-relation)
surj =
((A : Type a) (P : I A → Type p)
(d : ∀ x → P (to x)) → Singleton d) ↔⟨⟩
((A : Type a) (P : I A → Type p)
(d : ∀ x → P (to x)) →
∃ λ (j : (x : A) → P (to x)) → j ≡ d) ↔⟨ (∀-cong (lower-extensionality (lsuc p) lzero ext) λ _ →
∀-cong (lower-extensionality (lsuc a) (lsuc p) ext) λ _ →
∀-cong (lower-extensionality _ (lsuc p) ext) λ _ →
∃-cong λ _ → inverse $
Eq.extensionality-isomorphism (lower-extensionality _ _ ext)) ⟩
((A : Type a) (P : I A → Type p)
(d : ∀ x → P (to x)) →
∃ λ (j : (x : A) → P (to x)) → (x : A) → j x ≡ d x) ↔⟨ (∀-cong (lower-extensionality (lsuc p) lzero ext) λ _ →
∀-cong (lower-extensionality (lsuc a) (lsuc p) ext) λ _ →
∀-cong (lower-extensionality _ (lsuc p) ext) λ _ → inverse $
Σ-cong (inverse $ Π-cong (lower-extensionality _ _ ext)
≃I λ _ → ⟨id⟩ {k = equivalence}) λ _ →
⟨id⟩ {k = equivalence}) ⟩
((A : Type a) (P : I A → Type p)
(d : ∀ x → P (to x)) →
∃ λ (j : (q : I A) → P q) → (x : A) → j (to x) ≡ d x) ↔⟨ (∀-cong (lower-extensionality (lsuc p) lzero ext) λ _ →
∀-cong (lower-extensionality (lsuc a) (lsuc p) ext) λ _ →
ΠΣ-comm) ⟩
((A : Type a) (P : I A → Type p) →
∃ λ (j : (d : ∀ x → P (to x)) →
(q : I A) → P q) →
(d : ∀ x → P (to x))
(x : A) → j d (to x) ≡ d x) ↔⟨ (∀-cong (lower-extensionality (lsuc p) lzero ext) λ _ →
ΠΣ-comm) ⟩
((A : Type a) →
∃ λ (j : (P : I A → Type p) (d : ∀ x → P (to x)) →
(q : I A) → P q) →
(P : I A → Type p) (d : ∀ x → P (to x))
(x : A) → j P d (to x) ≡ d x) ↔⟨ ΠΣ-comm ⟩
(∃ λ (J : (A : Type a) (P : I A → Type p)
(d : ∀ x → P (to x)) →
(q : I A) → P q) →
(A : Type a) (P : I A → Type p)
(d : ∀ x → P (to x))
(x : A) → J A P d (to x) ≡ d x) ↝⟨ record
{ logical-equivalence = record
{ to = uncurry λ J Jβ → record
{ elim = λ P r x≡y →
J _ (P ∘ proj₂ ∘ proj₂) r (_ , _ , x≡y)
; elim-refl = λ P r → Jβ _ (P ∘ proj₂ ∘ proj₂) r _
}
; from = λ eq →
(λ A P d q → Equality-with-J₀.elim eq
(λ x≡y → P (_ , _ , x≡y)) d (proj₂ (proj₂ q)))
, (λ A P d x → Equality-with-J₀.elim-refl eq
(λ x≡y → P (_ , _ , x≡y)) d)
}
; right-inverse-of = refl
} ⟩□
Equality-with-J₀ a p (λ _ → reflexive-relation) □
private
-- A related example. It had been suggested that the two proofs
-- proof₁ and proof₂ below might not be provably equal, but Simon
-- Huber managed to prove that they are (using a slightly
-- different type for elim-refl).
module _ {a p} {A : Type a}
(P : A → Type p)
{x : A} (y : P x) where
subst′ : {x y : A} (P : A → Type p) → x ≡ y → P x → P y
subst′ P = elim (λ {u v} _ → P u → P v) (λ _ p → p)
subst′-refl≡id : {x : A} (P : A → Type p) → subst′ P (refl x) ≡ id
subst′-refl≡id P = elim-refl (λ {u v} _ → P u → P v) (λ _ p → p)
proof₁ proof₂ :
subst′ P (refl x) (subst′ P (refl x) y) ≡ subst′ P (refl x) y
proof₁ = cong (_$ subst′ P (refl x) y) (subst′-refl≡id P)
proof₂ = cong (subst′ P (refl x)) (cong (_$ y) (subst′-refl≡id P))
proof₁≡proof₂ : proof₁ ≡ proof₂
proof₁≡proof₂ =
subst (λ (s : Singleton id) →
∀ y → cong (_$ proj₁ s y) (proj₂ s) ≡
cong (proj₁ s) (cong (_$ y) (proj₂ s)))
(id , refl id ≡⟨ proj₂ (singleton-contractible _) _ ⟩∎
subst′ P (refl x) , subst′-refl≡id P ∎)
(λ y →
cong (_$ y) (refl id) ≡⟨ cong-id _ ⟩∎
cong id (cong (_$ y) (refl id)) ∎)
y
|
{
"alphanum_fraction": 0.3928382431,
"avg_line_length": 45.171314741,
"ext": "agda",
"hexsha": "845f96a1611678096fb92f33dd74f2badee5abe8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Equality/Instances-related.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Equality/Instances-related.agda",
"max_line_length": 141,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Equality/Instances-related.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 3418,
"size": 11338
}
|
module index where
-- natural numbers
--- additions
import Nats.Add.Assoc
using (nat-add-assoc) -- associative law
import Nats.Add.Comm
using (nat-add-comm) -- commutative law
import Nats.Add.Invert
using (nat-add-invert) -- a + a == b + b implies a == b
using (nat-add-invert-1) -- a + 1 == b + 1 implies a == b
--- multiplications
import Nats.Multiply.Comm
using (nat-multiply-comm) -- commutative law
import Nats.Multiply.Distrib
using (nat-multiply-distrib) -- distributive law
import Nats.Multiply.Assoc
using (nat-multiply-assoc) -- associative law
-- integers
--- some properties
import Ints.Properties
using (eq-int-to-nat) -- for natrual number a, + a == + a implis a == a
using (eq-neg-int-to-nat) -- for natrual number a, - a == - a implis a == a
using (eq-nat-to-int) -- for natrual number a, a == a implis + a == + a
using (eq-neg-nat-to-int) -- for natrual number a, a == a implis - a == - a
--- additions
import Ints.Add.Comm
using (int-add-comm) -- commutative law
import Ints.Add.Assoc
using (int-add-assoc) -- associative law
import Ints.Add.Invert
using (int-add-invert) -- a + a == b + b implis a == b
-- non-negative rationals
--- some properties
import Rationals.Properties
-- if b is not zero, n times b div b is the original number
using (times-div-id)
-- additions
import Rationals.Add.Comm
using (rational-add-comm) -- commutative law
import Rationals.Add.Assoc
using (rational-add-assoc) -- associative law
-- multiplications
import Rationals.Multiply.Comm
using (rational-multiply-comm) -- commutative law
-- logics
--- the "and" relations
import Logics.And
using (and-comm) -- commutative law
using (and-assoc) -- associative law
--- the "or" relations
import Logics.Or
using (or-comm) -- commutative law
using (or-assoc) -- associative law
using (or-elim) -- elimination rule
--- negations
import Logics.Not
-- law that negative twice will make a positive
using (not-not)
using (contrapositive) -- contrapositive
-- vectors
--- reverse twice gives the original vector
import Vecs.Reverse
using (vec-rev-rev-id)
-- lists
--- reverse twice gives the original vector
import Lists.Reverse
using (list-rev-rev-id)
-- isomorphisms
--- natrual numbers and others
import Isos.NatLike
using (iso-nat-vec) -- with vector
using (iso-nat-list) -- with list
--- trees
import Isos.TreeLike
using (iso-seven-tree-in-one) -- seven trees in one
-- groups
--- s3 group, xxx=e, yy=e, yx=xxy
import Groups.Symm.S3
using (s3-property-1) -- given s3, prove xyx≡y
|
{
"alphanum_fraction": 0.6947492163,
"avg_line_length": 26.8631578947,
"ext": "agda",
"hexsha": "2060ef76fba93a2703a258e394967a8f4db09f6d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "ice1k/Theorems",
"max_forks_repo_path": "src/index.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "ice1k/Theorems",
"max_issues_repo_path": "src/index.agda",
"max_line_length": 77,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "ice1k/Theorems",
"max_stars_repo_path": "src/index.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z",
"num_tokens": 772,
"size": 2552
}
|
module sk where
open import nat
data comb : Set where
S : comb
K : comb
app : comb → comb → comb
data _↝_ : comb → comb → Set where
↝K : (a b : comb) → (app (app K a) b) ↝ a
↝S : (a b c : comb) → (app (app (app S a) b) c) ↝ (app (app a c) (app b c))
↝Cong1 : {a a' : comb} (b : comb) → a ↝ a' → (app a b) ↝ (app a' b)
↝Cong2 : (a : comb) {b b' : comb} → b ↝ b' → (app a b) ↝ (app a b')
size : comb → ℕ
size S = 1
size K = 1
size (app a b) = suc (size a + size b)
|
{
"alphanum_fraction": 0.4968814969,
"avg_line_length": 24.05,
"ext": "agda",
"hexsha": "28693917dd216a4b5f09fb2eb004ea486b20f309",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2ad96390a9be5c238e73709a21533c7354cedd0c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "logicshan/IAL",
"max_forks_repo_path": "sk.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2ad96390a9be5c238e73709a21533c7354cedd0c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "logicshan/IAL",
"max_issues_repo_path": "sk.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2ad96390a9be5c238e73709a21533c7354cedd0c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "logicshan/IAL",
"max_stars_repo_path": "sk.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 219,
"size": 481
}
|
{-# OPTIONS --exact-split #-}
module ExactSplitBerry where
data Bool : Set where
true false : Bool
maj : Bool → Bool → Bool → Bool
maj true true true = true
maj x true false = x
maj false y true = y
maj true false z = z
maj false false false = false
|
{
"alphanum_fraction": 0.6433823529,
"avg_line_length": 20.9230769231,
"ext": "agda",
"hexsha": "90365403132d02fc0b4b8972e44caeee343a622e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Fail/ExactSplitBerry.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Fail/ExactSplitBerry.agda",
"max_line_length": 31,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Fail/ExactSplitBerry.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 78,
"size": 272
}
|
-- WARNING: This file was generated automatically by Vehicle
-- and should not be modified manually!
-- Metadata
-- - Agda version: 2.6.2
-- - AISEC version: 0.1.0.1
-- - Time generated: ???
{-# OPTIONS --allow-exec #-}
open import Vehicle
open import Vehicle.Data.Tensor
open import Data.Product
open import Data.Integer as ℤ using (ℤ)
open import Data.Rational as ℚ using (ℚ)
open import Data.Fin as Fin using (Fin; #_)
open import Data.List
module andGate-temp-output where
postulate andGate : Tensor ℚ (2 ∷ []) → Tensor ℚ (1 ∷ [])
Truthy : ℚ → Set
Truthy x = x ℚ.≥ ℤ.+ 1 ℚ./ 2
Falsey : ℚ → Set
Falsey x = x ℚ.≤ ℤ.+ 1 ℚ./ 2
ValidInput : ℚ → Set
ValidInput x = ℤ.+ 0 ℚ./ 1 ℚ.≤ x × x ℚ.≤ ℤ.+ 1 ℚ./ 1
CorrectOutput : ℚ → (ℚ → Set)
CorrectOutput x1 x2 = let y = andGate (x1 ∷ (x2 ∷ [])) (# 0) in (Truthy x1 × Truthy x2 → Truthy y) × ((Truthy x1 × Falsey x2 → Falsey y) × ((Falsey x1 × Truthy x2 → Falsey y) × (Falsey x1 × Falsey x2 → Falsey y)))
abstract
andGateCorrect : ∀ (x1 : ℚ) → ∀ (x2 : ℚ) → ValidInput x1 × ValidInput x2 → CorrectOutput x1 x2
andGateCorrect = checkSpecification record
{ proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp"
}
|
{
"alphanum_fraction": 0.647257384,
"avg_line_length": 31.1842105263,
"ext": "agda",
"hexsha": "a8732e4dc2e06ef99949855ccf181108bf1b5e95",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "vehicle-lang/vehicle",
"max_forks_repo_path": "test/Test/Compile/Golden/andGate/andGate-output.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T20:49:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-07T14:09:13.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "vehicle-lang/vehicle",
"max_issues_repo_path": "test/Test/Compile/Golden/andGate/andGate-output.agda",
"max_line_length": 213,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "vehicle-lang/vehicle",
"max_stars_repo_path": "test/Test/Compile/Golden/andGate/andGate-output.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-17T18:51:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-10T12:56:42.000Z",
"num_tokens": 435,
"size": 1185
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties related to propositional list membership
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Membership.Propositional.Properties where
open import Algebra.FunctionProperties using (Op₂; Selective)
open import Category.Monad using (RawMonad)
open import Data.Bool.Base using (Bool; false; true; T)
open import Data.Fin using (Fin)
open import Data.List as List
open import Data.List.Relation.Unary.Any as Any using (Any; here; there)
open import Data.List.Relation.Unary.Any.Properties
open import Data.List.Membership.Propositional
import Data.List.Membership.Setoid.Properties as Membershipₛ
open import Data.List.Relation.Binary.Equality.Propositional
using (_≋_; ≡⇒≋; ≋⇒≡)
open import Data.List.Categorical using (monad)
open import Data.Nat using (ℕ; zero; suc; pred; s≤s; _≤_; _<_; _≤?_)
open import Data.Nat.Properties
open import Data.Product hiding (map)
open import Data.Product.Function.NonDependent.Propositional using (_×-cong_)
import Data.Product.Function.Dependent.Propositional as Σ
open import Data.Sum as Sum using (_⊎_; inj₁; inj₂)
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence using (module Equivalence)
open import Function.Injection using (Injection; Injective; _↣_)
open import Function.Inverse as Inv using (_↔_; module Inverse)
import Function.Related as Related
open import Function.Related.TypeIsomorphisms
open import Relation.Binary hiding (Decidable)
open import Relation.Binary.PropositionalEquality as P
using (_≡_; _≢_; refl; sym; trans; cong; subst; →-to-⟶; _≗_)
import Relation.Binary.Properties.DecTotalOrder as DTOProperties
open import Relation.Unary using (_⟨×⟩_; Decidable)
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Relation.Nullary.Negation
private
open module ListMonad {ℓ} = RawMonad (monad {ℓ = ℓ})
------------------------------------------------------------------------
-- Publicly re-export properties from Core
open import Data.List.Membership.Propositional.Properties.Core public
------------------------------------------------------------------------
-- Equality
module _ {a} {A : Set a} where
∈-resp-≋ : ∀ {x} → (x ∈_) Respects _≋_
∈-resp-≋ = Membershipₛ.∈-resp-≋ (P.setoid A)
∉-resp-≋ : ∀ {x} → (x ∉_) Respects _≋_
∉-resp-≋ = Membershipₛ.∉-resp-≋ (P.setoid A)
------------------------------------------------------------------------
-- mapWith∈
module _ {a b} {A : Set a} {B : Set b} where
mapWith∈-cong : ∀ (xs : List A) → (f g : ∀ {x} → x ∈ xs → B) →
(∀ {x} → (x∈xs : x ∈ xs) → f x∈xs ≡ g x∈xs) →
mapWith∈ xs f ≡ mapWith∈ xs g
mapWith∈-cong [] f g cong = refl
mapWith∈-cong (x ∷ xs) f g cong = P.cong₂ _∷_ (cong (here refl))
(mapWith∈-cong xs (f ∘ there) (g ∘ there) (cong ∘ there))
mapWith∈≗map : ∀ f xs → mapWith∈ xs (λ {x} _ → f x) ≡ map f xs
mapWith∈≗map f xs =
≋⇒≡ (Membershipₛ.mapWith∈≗map (P.setoid A) (P.setoid B) f xs)
------------------------------------------------------------------------
-- map
module _ {a b} {A : Set a} {B : Set b} (f : A → B) where
∈-map⁺ : ∀ {x xs} → x ∈ xs → f x ∈ map f xs
∈-map⁺ = Membershipₛ.∈-map⁺ (P.setoid A) (P.setoid B) (P.cong f)
∈-map⁻ : ∀ {y xs} → y ∈ map f xs → ∃ λ x → x ∈ xs × y ≡ f x
∈-map⁻ = Membershipₛ.∈-map⁻ (P.setoid A) (P.setoid B)
map-∈↔ : ∀ {y xs} → (∃ λ x → x ∈ xs × y ≡ f x) ↔ y ∈ map f xs
map-∈↔ {y} {xs} =
(∃ λ x → x ∈ xs × y ≡ f x) ↔⟨ Any↔ ⟩
Any (λ x → y ≡ f x) xs ↔⟨ map↔ ⟩
y ∈ List.map f xs ∎
where open Related.EquationalReasoning
------------------------------------------------------------------------
-- _++_
module _ {a} {A : Set a} {v : A} where
∈-++⁺ˡ : ∀ {xs ys} → v ∈ xs → v ∈ xs ++ ys
∈-++⁺ˡ = Membershipₛ.∈-++⁺ˡ (P.setoid A)
∈-++⁺ʳ : ∀ xs {ys} → v ∈ ys → v ∈ xs ++ ys
∈-++⁺ʳ = Membershipₛ.∈-++⁺ʳ (P.setoid A)
∈-++⁻ : ∀ xs {ys} → v ∈ xs ++ ys → (v ∈ xs) ⊎ (v ∈ ys)
∈-++⁻ = Membershipₛ.∈-++⁻ (P.setoid A)
∈-insert : ∀ xs {ys} → v ∈ xs ++ [ v ] ++ ys
∈-insert xs = Membershipₛ.∈-insert (P.setoid A) xs refl
∈-∃++ : ∀ {xs} → v ∈ xs → ∃₂ λ ys zs → xs ≡ ys ++ [ v ] ++ zs
∈-∃++ v∈xs with Membershipₛ.∈-∃++ (P.setoid A) v∈xs
... | ys , zs , _ , refl , eq = ys , zs , ≋⇒≡ eq
------------------------------------------------------------------------
-- concat
module _ {a} {A : Set a} {v : A} where
∈-concat⁺ : ∀ {xss} → Any (v ∈_) xss → v ∈ concat xss
∈-concat⁺ = Membershipₛ.∈-concat⁺ (P.setoid A)
∈-concat⁻ : ∀ xss → v ∈ concat xss → Any (v ∈_) xss
∈-concat⁻ = Membershipₛ.∈-concat⁻ (P.setoid A)
∈-concat⁺′ : ∀ {vs xss} → v ∈ vs → vs ∈ xss → v ∈ concat xss
∈-concat⁺′ v∈vs vs∈xss =
Membershipₛ.∈-concat⁺′ (P.setoid A) v∈vs (Any.map ≡⇒≋ vs∈xss)
∈-concat⁻′ : ∀ xss → v ∈ concat xss → ∃ λ xs → v ∈ xs × xs ∈ xss
∈-concat⁻′ xss v∈c with Membershipₛ.∈-concat⁻′ (P.setoid A) xss v∈c
... | xs , v∈xs , xs∈xss = xs , v∈xs , Any.map ≋⇒≡ xs∈xss
concat-∈↔ : ∀ {xss : List (List A)} →
(∃ λ xs → v ∈ xs × xs ∈ xss) ↔ v ∈ concat xss
concat-∈↔ {xss} =
(∃ λ xs → v ∈ xs × xs ∈ xss) ↔⟨ Σ.cong Inv.id $ ×-comm _ _ ⟩
(∃ λ xs → xs ∈ xss × v ∈ xs) ↔⟨ Any↔ ⟩
Any (Any (v ≡_)) xss ↔⟨ concat↔ ⟩
v ∈ concat xss ∎
where open Related.EquationalReasoning
------------------------------------------------------------------------
-- applyUpTo
module _ {a} {A : Set a} where
∈-applyUpTo⁺ : ∀ (f : ℕ → A) {i n} → i < n → f i ∈ applyUpTo f n
∈-applyUpTo⁺ = Membershipₛ.∈-applyUpTo⁺ (P.setoid A)
∈-applyUpTo⁻ : ∀ {v} f {n} → v ∈ applyUpTo f n →
∃ λ i → i < n × v ≡ f i
∈-applyUpTo⁻ = Membershipₛ.∈-applyUpTo⁻ (P.setoid A)
------------------------------------------------------------------------
-- tabulate
module _ {a} {A : Set a} where
∈-tabulate⁺ : ∀ {n} {f : Fin n → A} i → f i ∈ tabulate f
∈-tabulate⁺ = Membershipₛ.∈-tabulate⁺ (P.setoid A)
∈-tabulate⁻ : ∀ {n} {f : Fin n → A} {v} →
v ∈ tabulate f → ∃ λ i → v ≡ f i
∈-tabulate⁻ = Membershipₛ.∈-tabulate⁻ (P.setoid A)
------------------------------------------------------------------------
-- filter
module _ {a p} {A : Set a} {P : A → Set p} (P? : Decidable P) where
∈-filter⁺ : ∀ {x xs} → x ∈ xs → P x → x ∈ filter P? xs
∈-filter⁺ = Membershipₛ.∈-filter⁺ (P.setoid A) P? (P.subst P)
∈-filter⁻ : ∀ {v xs} → v ∈ filter P? xs → v ∈ xs × P v
∈-filter⁻ = Membershipₛ.∈-filter⁻ (P.setoid A) P? (P.subst P)
------------------------------------------------------------------------
-- _>>=_
module _ {ℓ} {A B : Set ℓ} where
>>=-∈↔ : ∀ {xs} {f : A → List B} {y} →
(∃ λ x → x ∈ xs × y ∈ f x) ↔ y ∈ (xs >>= f)
>>=-∈↔ {xs = xs} {f} {y} =
(∃ λ x → x ∈ xs × y ∈ f x) ↔⟨ Any↔ ⟩
Any (Any (y ≡_) ∘ f) xs ↔⟨ >>=↔ ⟩
y ∈ (xs >>= f) ∎
where open Related.EquationalReasoning
------------------------------------------------------------------------
-- _⊛_
module _ {ℓ} {A B : Set ℓ} where
⊛-∈↔ : ∀ (fs : List (A → B)) {xs y} →
(∃₂ λ f x → f ∈ fs × x ∈ xs × y ≡ f x) ↔ y ∈ (fs ⊛ xs)
⊛-∈↔ fs {xs} {y} =
(∃₂ λ f x → f ∈ fs × x ∈ xs × y ≡ f x) ↔⟨ Σ.cong Inv.id (∃∃↔∃∃ _) ⟩
(∃ λ f → f ∈ fs × ∃ λ x → x ∈ xs × y ≡ f x) ↔⟨ Σ.cong Inv.id ((_ ∎) ⟨ _×-cong_ ⟩ Any↔) ⟩
(∃ λ f → f ∈ fs × Any (_≡_ y ∘ f) xs) ↔⟨ Any↔ ⟩
Any (λ f → Any (_≡_ y ∘ f) xs) fs ↔⟨ ⊛↔ ⟩
y ∈ (fs ⊛ xs) ∎
where open Related.EquationalReasoning
------------------------------------------------------------------------
-- _⊗_
module _ {ℓ} {A B : Set ℓ} where
⊗-∈↔ : ∀ {xs ys} {x : A} {y : B} →
(x ∈ xs × y ∈ ys) ↔ (x , y) ∈ (xs ⊗ ys)
⊗-∈↔ {xs} {ys} {x} {y} =
(x ∈ xs × y ∈ ys) ↔⟨ ⊗↔′ ⟩
Any (x ≡_ ⟨×⟩ y ≡_) (xs ⊗ ys) ↔⟨ Any-cong ×-≡×≡↔≡,≡ (_ ∎) ⟩
(x , y) ∈ (xs ⊗ ys) ∎
where
open Related.EquationalReasoning
------------------------------------------------------------------------
-- length
module _ {a} {A : Set a} where
∈-length : ∀ {x xs} → x ∈ xs → 1 ≤ length xs
∈-length = Membershipₛ.∈-length (P.setoid A)
------------------------------------------------------------------------
-- lookup
module _ {a} {A : Set a} where
∈-lookup : ∀ xs i → lookup xs i ∈ xs
∈-lookup = Membershipₛ.∈-lookup (P.setoid A)
------------------------------------------------------------------------
-- foldr
module _ {a} {A : Set a} {_•_ : Op₂ A} where
foldr-selective : Selective _≡_ _•_ → ∀ e xs →
(foldr _•_ e xs ≡ e) ⊎ (foldr _•_ e xs ∈ xs)
foldr-selective = Membershipₛ.foldr-selective (P.setoid A)
------------------------------------------------------------------------
-- allFin
∈-allFin : ∀ {n} (k : Fin n) → k ∈ allFin n
∈-allFin = ∈-tabulate⁺
------------------------------------------------------------------------
-- inits
[]∈inits : ∀ {a} {A : Set a} (as : List A) → [] ∈ inits as
[]∈inits [] = here refl
[]∈inits (a ∷ as) = here refl
------------------------------------------------------------------------
-- Other properties
-- Only a finite number of distinct elements can be members of a
-- given list.
module _ {a} {A : Set a} where
finite : (f : ℕ ↣ A) → ∀ xs → ¬ (∀ i → Injection.to f ⟨$⟩ i ∈ xs)
finite inj [] fᵢ∈[] = ¬Any[] (fᵢ∈[] 0)
finite inj (x ∷ xs) fᵢ∈x∷xs = excluded-middle helper
where
open Injection inj renaming (injective to f-inj)
f : ℕ → A
f = to ⟨$⟩_
not-x : ∀ {i} → f i ≢ x → f i ∈ xs
not-x {i} fᵢ≢x with fᵢ∈x∷xs i
... | here fᵢ≡x = contradiction fᵢ≡x fᵢ≢x
... | there fᵢ∈xs = fᵢ∈xs
helper : ¬ Dec (∃ λ i → f i ≡ x)
helper (no fᵢ≢x) = finite inj xs (λ i → not-x (fᵢ≢x ∘ _,_ i))
helper (yes (i , fᵢ≡x)) = finite f′-inj xs f′ⱼ∈xs
where
f′ : ℕ → A
f′ j with i ≤? j
... | yes i≤j = f (suc j)
... | no i≰j = f j
∈-if-not-i : ∀ {j} → i ≢ j → f j ∈ xs
∈-if-not-i i≢j = not-x (i≢j ∘ f-inj ∘ trans fᵢ≡x ∘ sym)
lemma : ∀ {k j} → i ≤ j → ¬ (i ≤ k) → suc j ≢ k
lemma i≤j i≰1+j refl = i≰1+j (≤-step i≤j)
f′ⱼ∈xs : ∀ j → f′ j ∈ xs
f′ⱼ∈xs j with i ≤? j
... | yes i≤j = ∈-if-not-i (<⇒≢ (s≤s i≤j))
... | no i≰j = ∈-if-not-i (<⇒≢ (≰⇒> i≰j) ∘ sym)
f′-injective′ : Injective {B = P.setoid A} (→-to-⟶ f′)
f′-injective′ {j} {k} eq with i ≤? j | i ≤? k
... | yes _ | yes _ = P.cong pred (f-inj eq)
... | yes i≤j | no i≰k = contradiction (f-inj eq) (lemma i≤j i≰k)
... | no i≰j | yes i≤k = contradiction (f-inj eq) (lemma i≤k i≰j ∘ sym)
... | no _ | no _ = f-inj eq
f′-inj = record
{ to = →-to-⟶ f′
; injective = f′-injective′
}
------------------------------------------------------------------------
-- DEPRECATED
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 0.15
boolFilter-∈ : ∀ {a} {A : Set a} (p : A → Bool) (xs : List A) {x} →
x ∈ xs → p x ≡ true → x ∈ boolFilter p xs
boolFilter-∈ p [] () _
boolFilter-∈ p (x ∷ xs) (here refl) px≡true rewrite px≡true = here refl
boolFilter-∈ p (y ∷ xs) (there pxs) px≡true with p y
... | true = there (boolFilter-∈ p xs pxs px≡true)
... | false = boolFilter-∈ p xs pxs px≡true
{-# WARNING_ON_USAGE boolFilter-∈
"Warning: boolFilter was deprecated in v0.15.
Please use filter instead."
#-}
-- Version 0.16
filter-∈ = ∈-filter⁺
{-# WARNING_ON_USAGE filter-∈
"Warning: filter-∈ was deprecated in v0.16.
Please use ∈-filter⁺ instead."
#-}
|
{
"alphanum_fraction": 0.4554145516,
"avg_line_length": 34.5614035088,
"ext": "agda",
"hexsha": "9e91346e1a0e745ed0e7c45783840fe427edf0c0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Membership/Propositional/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Membership/Propositional/Properties.agda",
"max_line_length": 93,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Membership/Propositional/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4420,
"size": 11820
}
|
------------------------------------------------------------------------
-- The derivative operator does not introduce any unneeded ambiguity
------------------------------------------------------------------------
module TotalParserCombinators.Derivative.LeftInverse where
open import Codata.Musical.Notation
open import Data.Maybe hiding (_>>=_)
open import Data.Product
open import Relation.Binary.PropositionalEquality
open import Relation.Binary.HeterogeneousEquality using (refl)
open import TotalParserCombinators.Derivative.Definition
open import TotalParserCombinators.Derivative.SoundComplete
import TotalParserCombinators.InitialBag as I
open import TotalParserCombinators.Lib
open import TotalParserCombinators.Parser
open import TotalParserCombinators.Semantics
complete∘sound : ∀ {Tok R xs x s t}
(p : Parser Tok R xs) (x∈ : x ∈ D t p · s) →
complete (sound p x∈) ≡ x∈
complete∘sound token return = refl
complete∘sound (p₁ ∣ p₂) (∣-left x∈p₁) rewrite complete∘sound p₁ x∈p₁ = refl
complete∘sound (p₁ ∣ p₂) (∣-right ._ x∈p₂) rewrite complete∘sound p₂ x∈p₂ = refl
complete∘sound (f <$> p) (<$> x∈p) rewrite complete∘sound p x∈p = refl
complete∘sound (_⊛_ {fs = nothing} {xs = just _} p₁ p₂) (f∈p₁′ ⊛ x∈p₂) rewrite complete∘sound p₁ f∈p₁′ = refl
complete∘sound (_⊛_ {fs = just _} {xs = just _} p₁ p₂) (∣-left (f∈p₁′ ⊛ x∈p₂)) rewrite complete∘sound p₁ f∈p₁′ = refl
complete∘sound (_⊛_ {fs = just fs} {xs = just xs} p₁ p₂) (∣-right ._ (f∈ret⋆ ⊛ x∈p₂′))
with (refl , f∈fs) ← Return⋆.sound fs f∈ret⋆
| refl ← Return⋆.complete∘sound fs f∈ret⋆
rewrite I.complete∘sound p₁ f∈fs | complete∘sound p₂ x∈p₂′ = refl
complete∘sound (_⊛_ {fs = nothing} {xs = nothing} p₁ p₂) (f∈p₁′ ⊛ x∈p₂) rewrite complete∘sound (♭ p₁) f∈p₁′ = refl
complete∘sound (_⊛_ {fs = just fs} {xs = nothing} p₁ p₂) (∣-left (f∈p₁′ ⊛ x∈p₂)) rewrite complete∘sound (♭ p₁) f∈p₁′ = refl
complete∘sound (_⊛_ {fs = just fs} {xs = nothing} p₁ p₂) (∣-right ._ (f∈ret⋆ ⊛ x∈p₂′))
with (refl , f∈fs) ← Return⋆.sound fs f∈ret⋆
| refl ← Return⋆.complete∘sound fs f∈ret⋆
rewrite I.complete∘sound (♭ p₁) f∈fs | complete∘sound p₂ x∈p₂′ = refl
complete∘sound (_>>=_ {xs = nothing} {f = just _} p₁ p₂) (x∈p₁′ >>= y∈p₂x) rewrite complete∘sound p₁ x∈p₁′ = refl
complete∘sound (_>>=_ {xs = just _} {f = just _} p₁ p₂) (∣-left (x∈p₁′ >>= y∈p₂x)) rewrite complete∘sound p₁ x∈p₁′ = refl
complete∘sound (_>>=_ {xs = just xs} {f = just _} p₁ p₂) (∣-right ._ (y∈ret⋆ >>= z∈p₂′y))
with (refl , y∈xs) ← Return⋆.sound xs y∈ret⋆
| refl ← Return⋆.complete∘sound xs y∈ret⋆
rewrite I.complete∘sound p₁ y∈xs | complete∘sound (p₂ _) z∈p₂′y = refl
complete∘sound (_>>=_ {xs = nothing} {f = nothing} p₁ p₂) (x∈p₁′ >>= y∈p₂x) rewrite complete∘sound (♭ p₁) x∈p₁′ = refl
complete∘sound (_>>=_ {xs = just _} {f = nothing} p₁ p₂) (∣-left (x∈p₁′ >>= y∈p₂x)) rewrite complete∘sound (♭ p₁) x∈p₁′ = refl
complete∘sound (_>>=_ {xs = just xs} {f = nothing} p₁ p₂) (∣-right ._ (y∈ret⋆ >>= z∈p₂′y))
with (refl , y∈xs) ← Return⋆.sound xs y∈ret⋆
| refl ← Return⋆.complete∘sound xs y∈ret⋆
rewrite I.complete∘sound (♭ p₁) y∈xs | complete∘sound (p₂ _) z∈p₂′y = refl
complete∘sound (nonempty p) x∈p = complete∘sound p x∈p
complete∘sound (cast _ p) x∈p = complete∘sound p x∈p
complete∘sound (return _) ()
complete∘sound fail ()
|
{
"alphanum_fraction": 0.5973211741,
"avg_line_length": 59.4745762712,
"ext": "agda",
"hexsha": "53f1f783204038b5a87e5815b344ea0cc23b555c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "TotalParserCombinators/Derivative/LeftInverse.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "TotalParserCombinators/Derivative/LeftInverse.agda",
"max_line_length": 132,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/parser-combinators",
"max_stars_repo_path": "TotalParserCombinators/Derivative/LeftInverse.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z",
"num_tokens": 1395,
"size": 3509
}
|
-- 'Set' is no longer a keyword but a primitive defined in
-- 'Agda.Primitive'. It is imported by default but this can be
-- disabled with a flag:
{-# OPTIONS --no-import-sorts #-}
-- By importing Agda.Primitive explicitly we can rename 'Set' to
-- something else:
open import Agda.Primitive renaming (Set to Type)
-- Now 'Set' is no longer in scope:
-- test₁ = Set
-- Error message: Not in scope: Set
-- Instead it is now called 'Type'. Note that suffixed versions
-- 'Type₁', 'Type₂', ... work as expected, as does 'Type ℓ' for a
-- level 'ℓ'!
Foo : Type₁
Foo = Type
Bar : ∀ ℓ → Type (lsuc ℓ)
Bar ℓ = Type ℓ
-- We can now redefine Set however we want:
open import Agda.Builtin.Equality
open import Agda.Builtin.Sigma
IsSet : ∀ {ℓ} → Type ℓ → Type ℓ
IsSet X = {x y : X} (p q : x ≡ y) → p ≡ q
Set : ∀ ℓ → Type (lsuc ℓ)
Set ℓ = Σ (Type ℓ) IsSet
|
{
"alphanum_fraction": 0.6584507042,
"avg_line_length": 25.8181818182,
"ext": "agda",
"hexsha": "19cf0d6eaf6fff40634c3b1235f8e7b7a187d0d7",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/ByeByeSet.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/ByeByeSet.agda",
"max_line_length": 65,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/ByeByeSet.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 278,
"size": 852
}
|
-- {-# OPTIONS -v tc.conv:30 -v tc.conv.level:60 -v tc.meta.assign:15 #-}
module UniversePolymorphism where
open import Common.Level renaming (_⊔_ to max)
data Nat : Set where
zero : Nat
suc : Nat → Nat
infixr 40 _∷_
data Vec {i}(A : Set i) : Nat → Set i where
[] : Vec {i} A zero
_∷_ : ∀ {n} → A → Vec {i} A n → Vec {i} A (suc n)
map : ∀ {n a b}{A : Set a}{B : Set b} → (A → B) → Vec A n → Vec B n
map f [] = []
map f (x ∷ xs) = f x ∷ map f xs
vec : ∀ {n a}{A : Set a} → A → Vec A n
vec {zero} _ = []
vec {suc n} x = x ∷ vec x
_<*>_ : ∀ {n a b}{A : Set a}{B : Set b} → Vec (A → B) n → Vec A n → Vec B n
[] <*> [] = []
(f ∷ fs) <*> (x ∷ xs) = f x ∷ (fs <*> xs)
flip : ∀ {a b c}{A : Set a}{B : Set b}{C : Set c} →
(A → B → C) → B → A → C
flip f x y = f y x
module Zip where
Fun : ∀ {n a} → Vec (Set a) n → Set a → Set a
Fun [] B = B
Fun (A ∷ As) B = A → Fun As B
app : ∀ {n m a}(As : Vec (Set a) n)(B : Set a) →
Vec (Fun As B) m → Fun (map (flip Vec m) As) (Vec B m)
app [] B bs = bs
app (A ∷ As) B fs = λ as → app As B (fs <*> as)
zipWith : ∀ {n m a}(As : Vec (Set a) n)(B : Set a) →
Fun As B → Fun (map (flip Vec m) As) (Vec B m)
zipWith As B f = app As B (vec f)
zipWith₃ : ∀ {n a}{A B C D : Set a} → (A → B → C → D) → Vec A n → Vec B n → Vec C n → Vec D n
zipWith₃ = zipWith (_ ∷ _ ∷ _ ∷ []) _
data Σ {a b}(A : Set a)(B : A → Set b) : Set (max a b) where
_,_ : (x : A)(y : B x) → Σ A B
fst : ∀ {a b}{A : Set a}{B : A → Set b} → Σ A B → A
fst (x , y) = x
snd : ∀ {a b}{A : Set a}{B : A → Set b}(p : Σ A B) → B (fst p)
snd (x , y) = y
-- Normal Σ
List : ∀ {a} → Set a → Set a
List A = Σ _ (Vec A)
nil : ∀ {a}{A : Set a} → List A
nil = _ , []
cons : ∀ {a}{A : Set a} → A → List A → List A
cons x (_ , xs) = _ , x ∷ xs
AnyList : ∀ {i} → Set (lsuc i)
AnyList {i} = Σ (Set i) (List {i})
|
{
"alphanum_fraction": 0.4511873351,
"avg_line_length": 26.3194444444,
"ext": "agda",
"hexsha": "cb3b80d4ad61c060046c8bc301109651d467d5b3",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/UniversePolymorphism.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/UniversePolymorphism.agda",
"max_line_length": 95,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/succeed/UniversePolymorphism.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 836,
"size": 1895
}
|
open import Agda.Builtin.Nat
data Fin : Nat → Set where
zero : {n : Nat} → Fin (suc n)
suc : {n : Nat} → Fin n → Fin (suc n)
f : Fin 1 → Nat
f zero = 0
|
{
"alphanum_fraction": 0.5297619048,
"avg_line_length": 16.8,
"ext": "agda",
"hexsha": "c432408f81ad003d5d7f2ec6098b48d9c6498745",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/NoAbsurdClause.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/NoAbsurdClause.agda",
"max_line_length": 40,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/NoAbsurdClause.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 67,
"size": 168
}
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.Naturals.Semiring
open import Numbers.Integers.Integers
open import Groups.Definition
module Groups.Cyclic.Definition {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_·_ : A → A → A} (G : Group S _·_) where
open Setoid S
open Group G
open Equivalence eq
open import Groups.Lemmas G
positiveEltPower : (x : A) (i : ℕ) → A
positiveEltPower x 0 = Group.0G G
positiveEltPower x (succ i) = x · (positiveEltPower x i)
positiveEltPowerWellDefinedG : (x y : A) → (x ∼ y) → (i : ℕ) → (positiveEltPower x i) ∼ (positiveEltPower y i)
positiveEltPowerWellDefinedG x y x=y 0 = reflexive
positiveEltPowerWellDefinedG x y x=y (succ i) = +WellDefined x=y (positiveEltPowerWellDefinedG x y x=y i)
positiveEltPowerCollapse : (x : A) (i j : ℕ) → Setoid._∼_ S ((positiveEltPower x i) · (positiveEltPower x j)) (positiveEltPower x (i +N j))
positiveEltPowerCollapse x zero j = Group.identLeft G
positiveEltPowerCollapse x (succ i) j = transitive (symmetric +Associative) (+WellDefined reflexive (positiveEltPowerCollapse x i j))
elementPower : (x : A) (i : ℤ) → A
elementPower x (nonneg i) = positiveEltPower x i
elementPower x (negSucc i) = Group.inverse G (positiveEltPower x (succ i))
-- TODO: move this to lemmas
elementPowerWellDefinedZ : (i j : ℤ) → (i ≡ j) → {g : A} → elementPower g i ≡ elementPower g j
elementPowerWellDefinedZ i j i=j {g} = applyEquality (elementPower g) i=j
elementPowerWellDefinedZ' : (i j : ℤ) → (i ≡ j) → {g : A} → (elementPower g i) ∼ (elementPower g j)
elementPowerWellDefinedZ' i j i=j {g} = identityOfIndiscernablesRight _∼_ reflexive (elementPowerWellDefinedZ i j i=j)
elementPowerWellDefinedG : (g h : A) → (g ∼ h) → {n : ℤ} → (elementPower g n) ∼ (elementPower h n)
elementPowerWellDefinedG g h g=h {nonneg n} = positiveEltPowerWellDefinedG g h g=h n
elementPowerWellDefinedG g h g=h {negSucc x} = inverseWellDefined (+WellDefined g=h (positiveEltPowerWellDefinedG g h g=h x))
record CyclicGroup : Set (m ⊔ n) where
field
generator : A
cyclic : {a : A} → (Sg ℤ (λ i → Setoid._∼_ S (elementPower generator i) a))
|
{
"alphanum_fraction": 0.7144742631,
"avg_line_length": 45.46,
"ext": "agda",
"hexsha": "acae944ef1d437f3e3f7549753d91285f3398729",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Groups/Cyclic/Definition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Groups/Cyclic/Definition.agda",
"max_line_length": 139,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Groups/Cyclic/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 773,
"size": 2273
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.Prod.Properties where
open import Cubical.Core.Everything
open import Cubical.Data.Prod.Base
open import Cubical.Data.Sigma renaming (_×_ to _×Σ_) hiding (prodIso ; toProdIso ; curryIso)
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
private
variable
ℓ ℓ' : Level
A : Type ℓ
B : Type ℓ'
-- Swapping is an equivalence
×≡ : {a b : A × B} → proj₁ a ≡ proj₁ b → proj₂ a ≡ proj₂ b → a ≡ b
×≡ {a = (a1 , b1)} {b = (a2 , b2)} id1 id2 i = (id1 i) , (id2 i)
swap : A × B → B × A
swap (x , y) = (y , x)
swap-invol : (xy : A × B) → swap (swap xy) ≡ xy
swap-invol (_ , _) = refl
isEquivSwap : (A : Type ℓ) (B : Type ℓ') → isEquiv (λ (xy : A × B) → swap xy)
isEquivSwap A B = isoToIsEquiv (iso swap swap swap-invol swap-invol)
swapEquiv : (A : Type ℓ) (B : Type ℓ') → A × B ≃ B × A
swapEquiv A B = (swap , isEquivSwap A B)
swapEq : (A : Type ℓ) (B : Type ℓ') → A × B ≡ B × A
swapEq A B = ua (swapEquiv A B)
private
open import Cubical.Data.Nat
-- As × is defined as a datatype this computes as expected
-- (i.e. "C-c C-n test1" reduces to (2 , 1)). If × is implemented
-- using Sigma this would be "transp (λ i → swapEq ℕ ℕ i) i0 (1 , 2)"
test : ℕ × ℕ
test = transp (λ i → swapEq ℕ ℕ i) i0 (1 , 2)
testrefl : test ≡ (2 , 1)
testrefl = refl
-- equivalence between the sigma-based definition and the inductive one
A×B≃A×ΣB : A × B ≃ A ×Σ B
A×B≃A×ΣB = isoToEquiv (iso (λ { (a , b) → (a , b)})
(λ { (a , b) → (a , b)})
(λ _ → refl)
(λ { (a , b) → refl }))
A×B≡A×ΣB : A × B ≡ A ×Σ B
A×B≡A×ΣB = ua A×B≃A×ΣB
-- truncation for products
isOfHLevelProd : (n : HLevel) → isOfHLevel n A → isOfHLevel n B → isOfHLevel n (A × B)
isOfHLevelProd {A = A} {B = B} n h1 h2 =
let h : isOfHLevel n (A ×Σ B)
h = isOfHLevelΣ n h1 (λ _ → h2)
in transport (λ i → isOfHLevel n (A×B≡A×ΣB {A = A} {B = B} (~ i))) h
×-≃ : ∀ {ℓ₁ ℓ₂ ℓ₃ ℓ₄} {A : Type ℓ₁} {B : Type ℓ₂} {C : Type ℓ₃} {D : Type ℓ₄}
→ A ≃ C → B ≃ D → A × B ≃ C × D
×-≃ {A = A} {B = B} {C = C} {D = D} f g = isoToEquiv (iso φ ψ η ε)
where
φ : A × B → C × D
φ (a , b) = equivFun f a , equivFun g b
ψ : C × D → A × B
ψ (c , d) = equivFun (invEquiv f) c , equivFun (invEquiv g) d
η : section φ ψ
η (c , d) i = retEq f c i , retEq g d i
ε : retract φ ψ
ε (a , b) i = secEq f a i , secEq g b i
{- Some simple ismorphisms -}
prodIso : ∀ {ℓ ℓ' ℓ'' ℓ'''} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} {D : Type ℓ'''}
→ Iso A C
→ Iso B D
→ Iso (A × B) (C × D)
Iso.fun (prodIso iAC iBD) (a , b) = (Iso.fun iAC a) , Iso.fun iBD b
Iso.inv (prodIso iAC iBD) (c , d) = (Iso.inv iAC c) , Iso.inv iBD d
Iso.rightInv (prodIso iAC iBD) (c , d) = ×≡ (Iso.rightInv iAC c) (Iso.rightInv iBD d)
Iso.leftInv (prodIso iAC iBD) (a , b) = ×≡ (Iso.leftInv iAC a) (Iso.leftInv iBD b)
toProdIso : ∀ {ℓ ℓ' ℓ''} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''}
→ Iso (A → B × C) ((A → B) × (A → C))
Iso.fun toProdIso = λ f → (λ a → proj₁ (f a)) , (λ a → proj₂ (f a))
Iso.inv toProdIso (f , g) = λ a → (f a) , (g a)
Iso.rightInv toProdIso (f , g) = refl
Iso.leftInv toProdIso b = funExt λ a → sym (×-η _)
curryIso : ∀ {ℓ ℓ' ℓ''} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''}
→ Iso (A × B → C) (A → B → C)
Iso.fun curryIso f a b = f (a , b)
Iso.inv curryIso f (a , b) = f a b
Iso.rightInv curryIso a = refl
Iso.leftInv curryIso f = funExt λ {(a , b) → refl}
|
{
"alphanum_fraction": 0.5480978261,
"avg_line_length": 32.8571428571,
"ext": "agda",
"hexsha": "ce5d3a9fd34857113540e986b2cdd9dcdd29ab52",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Data/Prod/Properties.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Data/Prod/Properties.agda",
"max_line_length": 93,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Data/Prod/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1558,
"size": 3680
}
|
------------------------------------------------------------------------
-- Linearisation of mixfix operators
------------------------------------------------------------------------
open import Mixfix.Expr
open import Mixfix.Acyclic.PrecedenceGraph
using (acyclic; precedence)
module Mixfix.Acyclic.Show
(g : PrecedenceGraphInterface.PrecedenceGraph acyclic)
where
open import Data.Nat using (ℕ; zero; suc; _+_)
open import Data.List using (List)
open import Data.List.Membership.Propositional using (_∈_)
open import Data.List.Relation.Unary.Any using (here; there)
open import Data.Vec using (Vec; []; _∷_)
import Data.DifferenceList as DiffList
open DiffList using (DiffList; _++_)
renaming (_∷_ to cons; [_] to singleton)
open import Data.Product using (∃; _,_; -,_)
open import Function using (_∘_; flip)
open import Data.Maybe using (Maybe; nothing; just)
import Data.String as String
open import Relation.Binary.PropositionalEquality
using (_≡_; refl)
open PrecedenceCorrect acyclic g
open import StructurallyRecursiveDescentParsing.Simplified
open import StructurallyRecursiveDescentParsing.Simplified.Semantics
as Semantics
open import Mixfix.Fixity
open import Mixfix.Operator
open import Mixfix.Acyclic.Lib as Lib
open Lib.Semantics-⊕
import Mixfix.Acyclic.Grammar
import Mixfix.Acyclic.Lemma
private
module Grammar = Mixfix.Acyclic.Grammar g
module Lemma = Mixfix.Acyclic.Lemma g
------------------------------------------------------------------------
-- Linearisation
-- Note: The code assumes that the grammar is unambiguous.
module Show where
mutual
expr : ∀ {ps} → Expr ps → DiffList NamePart
expr (_ ∙ e) = exprIn e
exprIn : ∀ {p assoc} → ExprIn p assoc → DiffList NamePart
exprIn ⟪ op ⟫ = inner op
exprIn (l ⟨ op ⟫ ) = outer l ++ inner op
exprIn ( ⟪ op ⟩ r) = inner op ++ outer r
exprIn (l ⟨ op ⟩ r) = expr l ++ inner op ++ expr r
exprIn (l ⟨ op ⟩ˡ r) = outer l ++ inner op ++ expr r
exprIn (l ⟨ op ⟩ʳ r) = expr l ++ inner op ++ outer r
outer : ∀ {p assoc} → Outer p assoc → DiffList NamePart
outer (similar e) = exprIn e
outer (tighter e) = expr e
inner : ∀ {fix} {ops : List (∃ (Operator fix))} →
Inner ops → DiffList NamePart
inner (_∙_ {op = op} _ args) = inner′ (nameParts op) args
inner′ : ∀ {arity} → Vec NamePart (1 + arity) → Vec (Expr g) arity →
DiffList NamePart
inner′ (n ∷ []) [] = singleton n
inner′ (n ∷ ns) (arg ∷ args) = cons n (expr arg ++ inner′ ns args)
show : ∀ {ps} → Expr ps → List NamePart
show = DiffList.toList ∘ Show.expr
------------------------------------------------------------------------
-- Correctness
module Correctness where
mutual
expr : ∀ {ps s} (e : Expr ps) →
e ⊕ s ∈⟦ Grammar.precs ps ⟧· Show.expr e s
expr (here refl ∙ e) = ∣ˡ (<$> exprIn e)
expr (there x∈xs ∙ e) = ∣ʳ (<$> expr (x∈xs ∙ e))
exprIn : ∀ {p assoc s} (e : ExprIn p assoc) →
(-, e) ⊕ s ∈⟦ Grammar.prec p ⟧· Show.exprIn e s
exprIn {precedence ops sucs} e = exprIn′ _ e
where
p = precedence ops sucs
module N = Grammar.Prec ops sucs
lemmaʳ : ∀ {f : Outer p right → ExprIn p right} {s e} {g : DiffList NamePart} →
(∀ {s} → f ⊕ s ∈⟦ N.preRight ⟧· g s) →
e ⊕ s ∈⟦ N.appʳ <$> N.preRight + ⊛ N.p↑ ⟧· Show.exprIn e s →
f (similar e) ⊕ s ∈⟦ N.appʳ <$> N.preRight + ⊛ N.p↑ ⟧· g (Show.exprIn e s)
lemmaʳ f∈ (<$> fs∈ ⊛ e∈) = <$> +-∷ f∈ fs∈ ⊛ e∈
preRight : ∀ {s} (e : ExprIn p right) →
e ⊕ s ∈⟦ N.appʳ <$> N.preRight + ⊛ N.p↑ ⟧· Show.exprIn e s
preRight ( ⟪ op ⟩ tighter e) = <$> +-[] (∣ˡ (<$> inner op)) ⊛ expr e
preRight ( ⟪ op ⟩ similar e) = lemmaʳ (∣ˡ (<$> inner op)) (preRight e)
preRight (l ⟨ op ⟩ʳ tighter e) = <$> +-[] (∣ʳ (<$> expr l ⊛ inner op)) ⊛ expr e
preRight (l ⟨ op ⟩ʳ similar e) = lemmaʳ (∣ʳ (<$> expr l ⊛ inner op)) (preRight e)
lemmaˡ : ∀ {f : Outer p left → ExprIn p left} {s e} {g : DiffList NamePart} →
(∀ {s} → f ⊕ s ∈⟦ N.postLeft ⟧· g s) →
e ⊕ g s ∈⟦ N.appˡ <$> N.p↑ ⊛ N.postLeft + ⟧· Show.exprIn e (g s) →
f (similar e) ⊕ s ∈⟦ N.appˡ <$> N.p↑ ⊛ N.postLeft + ⟧· Show.exprIn e (g s)
lemmaˡ {f} f∈ (_⊛_ {x = fs} (<$>_ {x = e} e∈) fs∈) =
Lib.Semantics-⊕.cast∈ (Lemma.appˡ-∷ʳ (tighter e) fs f) (<$> e∈ ⊛ +-∷ʳ fs∈ f∈)
postLeft : ∀ {s} (e : ExprIn p left) →
e ⊕ s ∈⟦ N.appˡ <$> N.p↑ ⊛ N.postLeft + ⟧· Show.exprIn e s
postLeft (tighter e ⟨ op ⟫ ) = <$> expr e ⊛ +-[] (∣ˡ (<$> inner op))
postLeft (similar e ⟨ op ⟫ ) = lemmaˡ (∣ˡ (<$> inner op)) (postLeft e)
postLeft (tighter e ⟨ op ⟩ˡ r) = <$> expr e ⊛
+-[] (∣ʳ (<$> inner op ⊛ expr r))
postLeft (similar e ⟨ op ⟩ˡ r) = lemmaˡ (∣ʳ (<$> inner op ⊛ expr r)) (postLeft e)
exprIn′ : ∀ assoc {s} (e : ExprIn p assoc) →
(-, e) ⊕ s ∈⟦ Grammar.prec p ⟧· Show.exprIn e s
exprIn′ non ⟪ op ⟫ = ∥ˡ (<$> inner op)
exprIn′ non (l ⟨ op ⟩ r) = ∥ʳ (∥ˡ (<$> expr l ⊛ inner op ⊛ expr r))
exprIn′ right e = ∥ʳ (∥ʳ (∥ˡ (preRight e)))
exprIn′ left e = ∥ʳ (∥ʳ (∥ʳ (∥ˡ (postLeft e))))
inner : ∀ {fix s ops} (i : Inner {fix} ops) →
i ⊕ s ∈⟦ Grammar.inner ops ⟧· Show.inner i s
inner {fix} {s} (_∙_ {arity} {op} op∈ops args) =
helper op∈ops args
where
helper : {ops : List (∃ (Operator fix))}
(op∈ : (arity , op) ∈ ops) (args : Vec (Expr g) arity) →
let i = op∈ ∙ args in
i ⊕ s ∈⟦ Grammar.inner ops ⟧· Show.inner i s
helper (here refl) args = ∣ˡ (<$> inner′ (nameParts op) args)
helper (there {x = _ , _} op∈) args =
∣ʳ (<$> helper op∈ args)
inner′ : ∀ {arity s} (ns : Vec NamePart (1 + arity)) args →
args ⊕ s ∈⟦ Grammar.expr between ns ⟧· Show.inner′ ns args s
inner′ (n ∷ []) [] = between-[]
inner′ (n ∷ n′ ∷ ns) (arg ∷ args) =
between-∷ (expr arg) (inner′ (n′ ∷ ns) args)
-- All generated strings are syntactically correct (but possibly
-- ambiguous). Note that this result implies that all
-- precedence-correct expressions are generated by the grammar.
correct : (e : Expr g) → e ∈ Grammar.expression · show e
correct e =
Semantics.⊕-sound (Lib.Semantics-⊕.sound (Correctness.expr e))
|
{
"alphanum_fraction": 0.5210646388,
"avg_line_length": 41.6139240506,
"ext": "agda",
"hexsha": "663ad84305988650f63dd896d24c31f841c8af15",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "Mixfix/Acyclic/Show.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "Mixfix/Acyclic/Show.agda",
"max_line_length": 93,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/parser-combinators",
"max_stars_repo_path": "Mixfix/Acyclic/Show.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z",
"num_tokens": 2226,
"size": 6575
}
|
{-# OPTIONS --no-termination-check
#-}
------------------------------------------------------------------------
-- A library of parser combinators
------------------------------------------------------------------------
module Parallel.Lib where
open import Utilities
open import Parallel
open import Parallel.Index
open import Data.Bool hiding (_≟_)
open import Data.Nat hiding (_≟_)
open import Data.Product.Record using (_,_)
open import Data.Product renaming (_,_ to pair)
open import Data.List
open import Data.Function
open import Data.Maybe
import Data.Char as C
open import Relation.Nullary
open import Relation.Binary
------------------------------------------------------------------------
-- Applicative functor parsers
-- We could get these for free with better library support.
infixl 4 _⊛_ _<⊛_ _⊛>_ _<$>_ _<$_
-- Parser together with return and _⊛_ form a (generalised)
-- applicative functor. (Warning: I have not checked that the laws are
-- actually satisfied.)
-- Note that all the resulting indices can be inferred.
_⊛_ : forall {tok r₁ r₂ i₁ i₂} ->
Parser tok i₁ (r₁ -> r₂) -> Parser tok i₂ r₁ ->
Parser tok _ r₂ -- (i₁ ·I (i₂ ·I 1I))
f ⊛ x = f >>= \f' -> x >>= \x' -> return (f' x')
_<$>_ : forall {tok r₁ r₂ i} ->
(r₁ -> r₂) -> Parser tok i r₁ -> Parser tok _ r₂ -- (i ·I 1I)
f <$> x = return f ⊛ x
_<⊛_ : forall {tok i₁ i₂ r₁ r₂} ->
Parser tok i₁ r₁ -> Parser tok i₂ r₂ -> Parser tok _ r₁
x <⊛ y = const <$> x ⊛ y
_⊛>_ : forall {tok i₁ i₂ r₁ r₂} ->
Parser tok i₁ r₁ -> Parser tok i₂ r₂ -> Parser tok _ r₂
x ⊛> y = flip const <$> x ⊛ y
_<$_ : forall {tok r₁ r₂ i} ->
r₁ -> Parser tok i r₂ -> Parser tok _ r₁
x <$ y = const x <$> y
------------------------------------------------------------------------
-- Parsers for sequences
mutual
_⋆ : forall {tok r d} ->
Parser tok (false , d) r ->
Parser tok _ (List r)
p ⋆ ~ return [] ∣ p +
_+ : forall {tok r d} ->
Parser tok (false , d) r ->
Parser tok (false , d) (List r)
p + ~ _∷_ <$> p ⊛ p ⋆
-- Are these definitions productive? _∣_ and _⊛_ are not
-- constructors... Unfolding (and ignoring some casts) we get
-- (unless I've made some mistake)
--
-- p ⋆ ~ parser \k -> Base._∣_ (k []) (unP (p +) k)
--
-- and
--
-- p + ~ parser (\k -> unP p (\x ->
-- unP (p ⋆) (\xs -> k (x ∷ xs))))
-- ~ parser (\k -> unP p (\x -> Base._∣_ (k (x ∷ []))
-- (unP (p +) (\xs -> k (x ∷ xs))))).
--
-- Assume that p + is applied to the continuation k =
-- const Base.fail. We get
--
-- unP (p +) k ~ unP p (\x -> unP (p +) (\xs -> k (x ∷ xs))).
--
-- This implies that the definitions above are not /obviously/
-- productive. Note now that when p is defined the function unP p
-- has type
--
-- forall {i' r'} ->
-- (r -> Base.Parser tok r' i') ->
-- Base.Parser tok r' (i ·I i')
--
-- for arbitrary i' and r', and with i = (false , d) as above this
-- specialises to
--
-- forall {i' r'} ->
-- (r -> Base.Parser tok r' i') ->
-- Base.Parser tok r' (false , d).
--
-- Note that in some cases it is actually possible for p to
-- immediately return its input (by first checking that i' =
-- (false, d)). Furthermore, if p can pattern match on the result of
-- the continuation (like in Parallel.problematic), then unP (p +)
-- is not productive. In this case the module system prevents p from
-- performing such pattern matching /directly/, but ensuring that
-- this is not possible /indirectly/ seems overly difficult,
-- considering that there are definitions (other than
-- Parallel.problematic) which pattern match on Base.Parser.
--
-- As an example the type checking of the following definition does
-- not terminate:
--
-- loops : parse-complete (problematic false + >>= \_ -> fail) ('a' ∷ [])
-- ≡ []
-- loops = ≡-refl
--
-- Furthermore the definition of number below, which uses _+, is
-- rather fragile, and the type checking of some definitions in
-- Parallel.Examples which use number fail to terminate (at least
-- with the version of Agda which is current at the time of
-- writing).
-- p sepBy sep parses one or more ps separated by seps.
_sepBy_ : forall {tok r r' i d} ->
Parser tok i r -> Parser tok (false , d) r' ->
Parser tok _ (List r)
p sepBy sep = _∷_ <$> p ⊛ (sep ⊛> p) ⋆
chain₁ : forall {tok d₁ i₂ r}
-> Assoc
-> Parser tok (false , d₁) r
-> Parser tok i₂ (r -> r -> r)
-> Parser tok _ r
chain₁ a p op = chain₁-combine a <$> (pair <$> p ⊛ op) ⋆ ⊛ p
chain : forall {tok d₁ i₂ r}
-> Assoc
-> Parser tok (false , d₁) r
-> Parser tok i₂ (r -> r -> r)
-> r
-> Parser tok _ r
chain a p op x = return x ∣ chain₁ a p op
------------------------------------------------------------------------
-- Parsing a given token (symbol)
module Sym (a : DecSetoid) where
open DecSetoid a using (_≟_) renaming (carrier to tok)
sym : tok -> Parser tok _ tok
sym x = sat p
where
p : tok -> Maybe tok
p y with x ≟ y
... | yes _ = just y
... | no _ = nothing
------------------------------------------------------------------------
-- Character parsers
digit : Parser C.Char _ ℕ
digit = 0 <$ sym '0'
∣ 1 <$ sym '1'
∣ 2 <$ sym '2'
∣ 3 <$ sym '3'
∣ 4 <$ sym '4'
∣ 5 <$ sym '5'
∣ 6 <$ sym '6'
∣ 7 <$ sym '7'
∣ 8 <$ sym '8'
∣ 9 <$ sym '9'
where open Sym C.decSetoid
number : Parser C.Char _ ℕ
number = toNum <$> ds
where
-- Inlining ds makes the type checker loop.
ds = digit +
toNum = foldr (\n x -> 10 * x + n) 0 ∘ reverse
|
{
"alphanum_fraction": 0.5237270523,
"avg_line_length": 30.3894736842,
"ext": "agda",
"hexsha": "62a7ba054fe1a72bba0ccd9f1b32f828c3bacc38",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "misc/Parallel/Lib.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "misc/Parallel/Lib.agda",
"max_line_length": 77,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yurrriq/parser-combinators",
"max_stars_repo_path": "misc/Parallel/Lib.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z",
"num_tokens": 1745,
"size": 5774
}
|
-- Andreas, 2014-01-07 Issue reported by Dmitriy Traytel
{-# OPTIONS --copatterns #-}
module _ where
open import Common.Size
open import Common.Prelude hiding (map)
record Stream (A : Set) : Set where
coinductive
field
head : A
tail : Stream A
open Stream
-- This type should be empty.
data D : (i : Size) → Set where
cons : ∀ i → Stream (D i) → D (↑ i)
-- BAD: But we can construct an inhabitant.
inh : Stream (D ∞)
head inh = cons ∞ inh -- Should be rejected by termination checker.
tail inh = inh
map : ∀{A B} → (A → B) → Stream A → Stream B
head (map f s) = f (head s)
tail (map f s) = map f (tail s)
loop : ∀ i → D i → ⊥
loop .(↑ i) (cons i s) = head (map (loop i) s)
absurd : ⊥
absurd = loop ∞ (cons ∞ inh)
|
{
"alphanum_fraction": 0.6156968877,
"avg_line_length": 20.5277777778,
"ext": "agda",
"hexsha": "fc66e57048c33669a4731f431f701efb5cbaa907",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Fail/Issue1209.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Fail/Issue1209.agda",
"max_line_length": 68,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Fail/Issue1209.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 249,
"size": 739
}
|
{-# OPTIONS --instance-search-depth=5 --show-implicit #-}
open import Oscar.Prelude
open import Oscar.Class.Smap
open import Oscar.Class.Surjextensionality
open import Oscar.Class.Symmetry
open import Oscar.Class.Transitivity
open import Oscar.Data.Proposequality
open import Oscar.Data.Surjcollation
import Oscar.Class.Surjection.⋆
module Oscar.Data.Surjextenscollation where
module _ {𝔵 𝔞 𝔞̇ 𝔟 𝔟̇} {𝔛 : Ø 𝔵}
(𝔄 : 𝔛 → 𝔛 → Ø 𝔞)
(𝔅 : 𝔛 → Ø 𝔟)
⦃ _ : Smaphomarrow!.class 𝔄 𝔅 ⦄
(𝔄̇ : ∀ {x y} → 𝔄 x y → 𝔄 x y → Ø 𝔞̇)
(let ℭ : 𝔛 → Ø 𝔵 ∙̂ 𝔞 ∙̂ 𝔞̇ ∙̂ ↑̂ 𝔟̇
ℭ = LeftExtensionṖroperty 𝔟̇ 𝔄 𝔄̇)
(𝔅̇ : ∀ {y} → 𝔅 y → 𝔅 y → Ø 𝔟̇)
⦃ _ : ∀ {y} → Symmetry.class (𝔅̇ {y}) ⦄
⦃ _ : ∀ {y} → Transitivity.class (𝔅̇ {y}) ⦄
⦃ _ : Surjextensionality!.class 𝔄 𝔄̇ (Extension 𝔅) (Pointwise 𝔅̇) ⦄
where
surjextenscollation[_/_]⟦_/_⟧ : ∀ {m} → 𝔅 m → 𝔅 m → ℭ m
surjextenscollation[_/_]⟦_/_⟧ s t =
surjcollation⟦ 𝔄 / 𝔅̇ ⟧ s t , λ f≐g f◃s=f◃t →
-- FIXME this (`surjextensionality[ Pointwise 𝔅̇ ] ⦃ ! ⦄ f≐g t ∙ f◃s=f◃t ∙ symmetry (surjextensionality[ Pointwise 𝔅̇ ] ⦃ ! ⦄ f≐g s)`) used to be a workaround for "instance search depth exhausted", but now does not seem to help. See the FIXME note in Oscar.Class.Surjextensionality.
⟪ f≐g ⟫[ Pointwise 𝔅̇ ] t ∙ f◃s=f◃t ∙ symmetry (⟪ f≐g ⟫[ Pointwise 𝔅̇ ] s)
module _ {𝔵 𝔞 𝔞̇} {𝔛 : Ø 𝔵} {𝔄 : 𝔛 → 𝔛 → Ø 𝔞}
(𝔄̇ : ∀ {x y} → 𝔄 x y → 𝔄 x y → Ø 𝔞̇)
{𝔟} {𝔅 : 𝔛 → Ø 𝔟}
{𝔟̇} {𝔅̇ : ∀ {y} → 𝔅 y → 𝔅 y → Ø 𝔟̇}
⦃ _ : Smaphomarrow!.class 𝔄 𝔅 ⦄
⦃ _ : ∀ {y} → Symmetry.class (𝔅̇ {y}) ⦄
⦃ _ : ∀ {y} → Transitivity.class (𝔅̇ {y}) ⦄
⦃ _ : Surjextensionality!.class 𝔄 𝔄̇ (Extension 𝔅) (Pointwise 𝔅̇) ⦄
where
surjextenscollation⟦_⟧ = surjextenscollation[ 𝔄 / 𝔅 ]⟦ 𝔄̇ / 𝔅̇ ⟧
module _ {𝔵 𝔞 𝔞̇ 𝔟 𝔟̇} {𝔛 : Ø 𝔵} {𝔄 : 𝔛 → 𝔛 → Ø 𝔞} {𝔅 : 𝔛 → Ø 𝔟}
(𝔄̇ : ∀ {x y} → 𝔄 x y → 𝔄 x y → Ø 𝔞̇)
(𝔅̇ : ∀ {y} → 𝔅 y → 𝔅 y → Ø 𝔟̇)
⦃ _ : Smaphomarrow!.class 𝔄 𝔅 ⦄
⦃ _ : ∀ {y} → Symmetry.class (𝔅̇ {y}) ⦄
⦃ _ : ∀ {y} → Transitivity.class (𝔅̇ {y}) ⦄
⦃ _ : Surjextensionality!.class 𝔄 𝔄̇ (Extension 𝔅) (Pointwise 𝔅̇) ⦄
where
surjextenscollation⟦_/_⟧ = surjextenscollation[ 𝔄 / 𝔅 ]⟦ 𝔄̇ / 𝔅̇ ⟧
module Surjextenscollation
{𝔵 𝔞 𝔞̇} {𝔛 : Ø 𝔵}
(𝔄 : 𝔛 → 𝔛 → Ø 𝔞)
(𝔄̇ : ∀ {x y} → 𝔄 x y → 𝔄 x y → Ø 𝔞̇)
{𝔟} {𝔅 : 𝔛 → Ø 𝔟}
{𝔟̇} {𝔅̇ : ∀ {y} → 𝔅 y → 𝔅 y → Ø 𝔟̇}
⦃ _ : Smaphomarrow!.class 𝔄 𝔅 ⦄
⦃ _ : ∀ {y} → Symmetry.class (𝔅̇ {y}) ⦄
⦃ _ : ∀ {y} → Transitivity.class (𝔅̇ {y}) ⦄
⦃ _ : Surjextensionality!.class 𝔄 𝔄̇ (Extension 𝔅) (Pointwise 𝔅̇) ⦄
where
method = surjextenscollation[ 𝔄 / 𝔅 ]⟦ 𝔄̇ / 𝔅̇ ⟧
infix 18 _⟹_
_⟹_ = method
module _
{𝔵} {𝔛 : Ø 𝔵}
{𝔞₁} {𝔄₁ : 𝔛 → Ø 𝔞₁}
{𝔞₂} {𝔄₂ : 𝔛 → Ø 𝔞₂}
(𝔄 : 𝔛 → 𝔛 → Ø 𝔞₁ ∙̂ 𝔞₂)
⦃ _ : 𝔄 ≡ Arrow 𝔄₁ 𝔄₂ ⦄
(let 𝔄 = Arrow 𝔄₁ 𝔄₂)
where
open Surjextenscollation 𝔄 _≡̇_ public using () renaming (method to ≡-surjextenscollation⟦_⟧) public
|
{
"alphanum_fraction": 0.5423728814,
"avg_line_length": 36.5949367089,
"ext": "agda",
"hexsha": "53c9fd00d073dd05f3e54ffcb5df7efa65deaa9c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Data/Surjextenscollation.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Data/Surjextenscollation.agda",
"max_line_length": 288,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Data/Surjextenscollation.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1678,
"size": 2891
}
|
module Ex3 where -- Conor: 5.5/15 (marked in sem 1 for 3.1-3.4)
-- really 5.5/7 then another 3/8 in sem 2, giving 8.5/15
----------------------------------------------------------------------------
-- EXERCISE 3 -- MONADS FOR HUTTON'S RAZOR
--
-- VALUE: 15%
-- DEADLINE: 5pm, Friday 20 November (week 9)
--
-- DON'T SUBMIT, COMMIT!
--
-- The purpose of this exercise is to introduce you to some useful
-- mathematical structures and build good tools for working with
-- vectors
----------------------------------------------------------------------------
open import CS410-Prelude
open import CS410-Monoid
open import CS410-Nat
open import CS410-Vec
open import CS410-Functor
-- HINT: your tasks are heralded with the eminently searchable tag, "???"
----------------------------------------------------------------------------
-- HUTTON'S RAZOR
----------------------------------------------------------------------------
HVal : Set -- the set of *values* for Hutton's Razor
HVal = Two + Nat -- Booleans or natural numbers
data HExp (X : Set) : Set where
var : X -> HExp X -- variables
val : HVal -> HExp X -- values
_+H_ _>=H_ : (e1 e2 : HExp X) -> HExp X -- addition, comparison
ifH_then_else_ : (e1 e2 e3 : HExp X) -> HExp X -- conditional
_>=2_ : Nat -> Nat -> Two
x >=2 zero = tt
zero >=2 suc _ = ff
suc m >=2 suc n = m >=2 n
----------------------------------------------------------------------------
-- ??? 3.1 the HExp syntax-with-substitution monad (score: 2 / 2)
----------------------------------------------------------------------------
-- Show that HExp is a monad, where the "bind" operation performs
-- simultaneous substitution (transforming all the variables in a term).
hExpMonad : Monad HExp
hExpMonad = record { return = λ x → var x
; _>>=_ = λ x f → hExpMonad>>= x f
; law1 = λ x f → refl
; law2 = λ t → hExpMonadLaw2 t
; law3 = λ f g t → hExpMonadLaw3 t g f
} where
hExpMonad>>= : {X Y : Set} → HExp X → (X → HExp Y) → HExp Y
hExpMonad>>= (var x) f = f x
hExpMonad>>= (val x) f = val x
hExpMonad>>= (x +H y) f = hExpMonad>>= x f +H hExpMonad>>= y f
hExpMonad>>= (x >=H y) f = hExpMonad>>= x f >=H hExpMonad>>= y f
hExpMonad>>= (ifH x then y else z) f = ifH hExpMonad>>= x f then
hExpMonad>>= y f else hExpMonad>>= z f
hExpMonadLaw2 : {X : Set} → (t : HExp X) → hExpMonad>>= t (λ x → var x) == t
hExpMonadLaw2 (var x) = refl
hExpMonadLaw2 (val x) = refl
hExpMonadLaw2 (x +H y) rewrite hExpMonadLaw2 x | hExpMonadLaw2 y = refl
hExpMonadLaw2 (x >=H y) rewrite hExpMonadLaw2 x | hExpMonadLaw2 y = refl
hExpMonadLaw2 (ifH x then y else z) rewrite hExpMonadLaw2 x | hExpMonadLaw2 y | hExpMonadLaw2 z = refl
hExpMonadLaw3 : {X Y Z : Set} → (t : HExp X) → (g : Y → HExp Z) → (f : X → HExp Y) → hExpMonad>>= (hExpMonad>>= t f) g == hExpMonad>>= t (λ x → hExpMonad>>= (f x) g)
hExpMonadLaw3 (var x) g t = refl
hExpMonadLaw3 (val x) g t = refl
hExpMonadLaw3 (f +H f₁) g t rewrite hExpMonadLaw3 f g t | hExpMonadLaw3 f₁ g t = refl
hExpMonadLaw3 (f >=H f₁) g t rewrite hExpMonadLaw3 f g t | hExpMonadLaw3 f₁ g t = refl
hExpMonadLaw3 (ifH f then f₁ else f₂) g t rewrite hExpMonadLaw3 f g t | hExpMonadLaw3 f₁ g t | hExpMonadLaw3 f₂ g t = refl
----------------------------------------------------------------------------
-- ??? 3.2 the error management monad (score: 1 / 1)
----------------------------------------------------------------------------
-- show that "+ E" is monadic, generalising the "Maybe" monad by allowing
-- some sort of error report
errorMonad : (E : Set) -> Monad \ V -> V + E -- "value or error"
errorMonad E = record { return = λ x → tt , x
; _>>=_ = errorMonad>>=
; law1 = λ x f → refl
; law2 = errorMonadLaw2
; law3 = errorMonadLaw3
} where
errorMonad>>= : {X Y : Set} → X + E → (X → Y + E) → Y + E
errorMonad>>= (tt , snd) y = y snd
errorMonad>>= (ff , snd) y = ff , snd
errorMonadLaw2 : {X : Set} (t : X + E) → errorMonad>>= t (λ x → tt , x) == t
errorMonadLaw2 (tt , snd) = refl
errorMonadLaw2 (ff , snd) = refl
errorMonadLaw3 : {X Y Z : Set} (f : X → Y + E) (g : Y → Z + E) (t : X + E) →
errorMonad>>= (errorMonad>>= t f) g == errorMonad>>= t
(λ x → errorMonad>>= (f x) g)
errorMonadLaw3 f g (tt , snd) = refl
errorMonadLaw3 f g (ff , snd) = refl
----------------------------------------------------------------------------
-- ??? 3.3 the environment monad transformer (score: 1 / 1)
----------------------------------------------------------------------------
-- show that any monad can be adapted to thread some environment information
-- as well as whatever else it already managed
envMonad : (G : Set){M : Set -> Set} -> Monad M ->
Monad \ V -> G -> M V -- "computation in an environment"
envMonad G {M} MM = record { return = λ {X} z _ → Monad.return MM z
; _>>=_ = λ {X} {Y} z z₁ z₂ → (MM Monad.>>= z z₂)
(λ z₃ → z₁ z₃ z₂)
; law1 = λ {X Y} x f → envMonadLaw1 f x
; law2 = envMonadLaw2
; law3 = envMonadLaw3
} where
open Monad MM
envMonadLaw1 : {X Y : Set} (f : X → G → M Y) -> (x : X) ->
(λ z₂ → return x >>= (λ z₃ → f z₃ z₂)) == f x
envMonadLaw1 f x = ext (λ g → Monad.law1 MM x (λ z → f z g))
envMonadLaw2 : {X : Set} (t : G → M X) →
(λ z₂ → t z₂ >>= (λ z₃ → return z₃)) == t
envMonadLaw2 x = ext (λ a → Monad.law2 MM (x a))
envMonadLaw3 : {X Y Z : Set} (f : X → G → M Y) (g : Y → G → M Z) (t : G → M X) →(λ z₂ → (t z₂ >>= (λ z₃ → f z₃ z₂)) >>= (λ z₃ → g z₃ z₂)) == (λ z₂ → t z₂ >>= (λ z₃ → f z₃ z₂ >>= (λ z₄ → g z₄ z₂)))
envMonadLaw3 f g t = ext (λ a → Monad.law3 MM (λ z → f z a) (λ z → g z a) (t a))
----------------------------------------------------------------------------
-- ??? 3.4 interpreting Hutton's Razor (score: 1.5 / 3)
----------------------------------------------------------------------------
-- Implement an interpreter for Hutton's Razor.
-- You will need to construct a type to represent possible run-time errors.
-- Ensure that addition and comparison act on numbers, not Booleans.
-- Ensure that the condition in an "if" is a Boolean, not a number.
data InterpretError : Set where
NotTwo : InterpretError
NotNat : InterpretError
-- helpful things to build
Env : Set -> Set -- an environment for a given set of variables
Env X = X -> HVal
Compute : Set{- variables -} -> Set{- values -} -> Set
Compute X V = Env X -> V + InterpretError -- how to compute a V
computeMonad : {Z : Set} -> Monad (Compute Z)
computeMonad {Z} = envMonad (Env Z) (errorMonad InterpretError)
-- build this from the above parts
-- This operation should explain how to get the value of a variable
-- from the environment.
varVal : {X : Set} -> X -> Compute X HVal
varVal x y = tt , (y x)
-- tt , (y x)
-- These operations should ensure that you get the sort of value
-- that you want, in order to ensure that you don't do bogus
-- computation.
mustBeNat : {X : Set} -> HVal -> Compute X Nat
mustBeNat (tt , tt) x = ff , NotNat -- Conor: more case analysis than needed
mustBeNat (tt , ff) x = ff , NotNat
mustBeNat (ff , zero) x = tt , zero -- Conor: more case analysis than needed
mustBeNat (ff , suc snd) x = tt , suc snd
mustBeTwo : {X : Set} -> HVal -> Compute X Two
mustBeTwo (tt , tt) x = tt , tt -- Conor: more case analysis than needed
mustBeTwo (tt , ff) x = tt , ff
mustBeTwo (ff , zero) x = ff , NotTwo -- Conor: more case analysis than needed
mustBeTwo (ff , suc snd) x = ff , NotTwo
-- Now, you're ready to go. Don't introduce the environment explicitly.
-- Use the monad to thread it.
interpret : {X : Set} -> HExp X -> Compute X HVal
interpret {X} = go where
open Monad (computeMonad {X})
go : HExp X -> Compute X HVal
-- Conor: you already have the right kit, so it's counterproductive to go down to this detail
go (var x) E = tt , (E x)
-- Conor: go (var x) = varVal x
go (val x) E = tt , x
go (t +H t₁) E = {!!}
-- Conor: go (l +H r) =
-- go l >>= \ lv -> -- lv : HVal
-- mustBeNat lv >>= \ ln -> -- ln : Nat
-- go r >>= \ rv -> -- rv : HVal
-- mustBeNat rv >>= \ rn -> -- rn : Nat
-- return (ln +N rn)
go (t >=H t₁) E = {!!}
go (ifH t then t₁ else t₂) E = {!!}
----------------------------------------------------------------------------
-- ??? 3.5 Typed Hutton's Razor (score: 0.5 / 1)
----------------------------------------------------------------------------
-- Labelling the expressions with their types gives strong guarantees
-- sooner (we can make it grammatically incorrect to add a bool to a
-- nat) and makes some things easier as (if we're adding them then we
-- know they are nats).
-- some names for the types we will use in our typed syntax.
data HType : Set where hTwo hNat : HType
-- mapping names for types to real types.
THVal : HType -> Set
THVal hTwo = Two
THVal hNat = Nat
-- A syntax for types expressions, indexed by typed variables. Compare
-- with the untyped HExp and fill in the missing expression formers,
-- we have shown you the way with _+H_. think: what can be guaranteed?
data THExp (X : HType -> Set) : HType -> Set where
var : forall {T} -> X T -> THExp X T
val : forall {T} -> THVal T -> THExp X T
_+H_ : THExp X hNat -> THExp X hNat -> THExp X hNat
_>=H_ : THExp X hNat -> THExp X hTwo {- Conor: hNat here! -} -> THExp X hTwo
ifH_then_else_ : forall {T} -> THExp X hTwo -> THExp X T -> THExp X T -> THExp X T
-- ??? fill in the other two constructs, typed appropriately
-- (remember that "if then else" can compute values at any type)
----------------------------------------------------------------------------
-- ??? 3.6 Well Typed Programs Don't Go Wrong (score: 0 / 1)
----------------------------------------------------------------------------
-- notation for functions betweeen indexed sets (e.g. indexed by types)
_-:>_ : {I : Set}(S T : I -> Set) -> I -> Set
(S -:> T) i = S i -> T i
infixr 3 _-:>_
-- notation for indexed sets
[_] : {I : Set}(X : I -> Set) -> Set
[ X ] = forall {i} -> X i
-- We can put the two together to make types like
-- [ S -:> T ]
-- = forall {i} -> S i -> T i
-- which is the type of functions which work at any index
-- and respect that index. That'll be very useful in just a moment.
-- An evaluator for typed terms, it takes an environment for
-- variables (a function mapping variables to values) and a expression
-- and returns a value). Written as below it looks like it lifts a
-- function from variables to values to a function from terms to
-- values.
eval : {X : HType -> Set} -> [ X -:> THVal ] -> [ THExp X -:> THVal ]
eval g (var x) = g x
eval g (val x) = x
eval g (t +H t1) = eval g t +N eval g t
eval g (t >=H t1) = eval g t >=2 eval g t
eval g (ifH t then t1 else t2) = if eval g t then eval g t1 else eval g t1
-- Conor: all three step cases get the wrong answers
-- Note that the environment is an *index-respecting* function from
-- variables to values. The index is the type of the variable: you're
-- making sure that when you look up a variable of a given type, you
-- get a value of that type. As a result, you can deliver a *type-safe*
-- evaluator: when an expression has a given type, its value must have
-- that type.
----------------------------------------------------------------------------
-- ??? 3.7 Variable Contexts (score: 1 / 1)
----------------------------------------------------------------------------
-- backwards lists.
data Bwd (X : Set) : Set where
[] : Bwd X
_/_ : Bwd X -> X -> Bwd X
-- Our datatype for type indexed expressions is very liberal about
-- variables, they can be any set indexed by types. Here we build
-- something more structured, that nevertheless satisfies the specification
-- We will not use names for variables only numbers.
-- Hence, a context is just a list of types.
Context : Set
Context = Bwd HType
-- Well scoped and well typed variables, top = 0, pop = suc.
-- top is the variable on the right hand end of a non-empty context.
-- pop takes a variable and extends puts it into a longer context.
data Var : (G : Context)(T : HType) -> Set where
top : {G : Context}{T : HType} -> Var (G / T) T
pop : {G : Context}{T S : HType} -> Var G T -> Var (G / S) T
-- We can also represent environments as stacks, as opposed to functions.
-- You can read a variable as the sequence of instructions for extracting
-- a value from a stack: you keep popping stuff off until the value you
-- want is the the one at the top.
Stack : Context -> Set
Stack [] = One
Stack (G / S) = Stack G * THVal S
-- Looking up a value for a variable in an an environment or fetching
-- something from a stack given a sequence of pop and top
-- instructions. It's all the same to us!
fetch : {G : Context} -> Stack G -> [ Var G -:> THVal ]
fetch g top = snd g
fetch g (pop v) = fetch (fst g) v
-- An evaluator for expression with more structured variables. We
-- already know how to evaluate, we just have to explain how to deal
-- with manage the different style of environment.
evalStack : {G : Context}{T : HType} ->
Stack G -> [ THExp (Var G) -:> THVal ]
evalStack g = eval (fetch g)
----------------------------------------------------------------------------
-- ??? 3.8 Terms-With-One-Hole (score: 1 / 1)
----------------------------------------------------------------------------
-- Next, we build some kit that we'll use to present type errors.
-- Here we represent an expression with a bit missing. Addition can have
-- have a bit missing (a hole) on the right or on the left. What about
-- the other expression formers?
data HExp' (X : Set) : Set where
[]+H_ _+H[] : HExp X -> HExp' X
[]>=H_ _>=H[] : HExp X -> HExp' X
ifH[]then_else_ ifH_then[]else_ ifH_then_else[] : HExp X -> HExp X -> HExp' X
-- ??? more constructors here
-- specifically, you will need a constructor for each way that a
-- subexpression can fit inside an expression;
-- we use the naming convention of showing where the "hole" is
-- by putting [] in the corresponding place in the name.
-- take a expression with a hole, and a expression to plug in and plug
-- it in!
_[]<-_ : forall {X} -> HExp' X -> HExp X -> HExp X
([]+H r) []<- t = t +H r
(l +H[]) []<- t = l +H t
([]>=H r) []<- t = t >=H r
(l >=H[]) []<- t = l >=H t
(ifH[]then l else r) []<- t = ifH t then l else r
(ifH e then[]else r) []<- t = ifH e then t else r
(ifH e then l else[]) []<- t = ifH e then l else t
-- ??? more cases here
{-
data List (X : Set) : Set where -- X scopes over the whole declaration...
[] : List X -- ...so you can use it here...
_::_ : X -> List X -> List X -- ...and here.
infixr 3 _::_
-}
-- As we descend down into a term we can keep the pieces we pass along
-- the way in a list, this is a zipper. For example, given the
-- expression 3 + (4 + 5) we could go down by going right and right
-- again to reach 5. In our list we would have [ 4 + [] , 3 + [] ].
-- we need an operation that takes us back up to the root of the tree,
-- restoring the expression to its former state (e.g. 3 + (4 + 5)).
rootToHole : forall {X} -> List (HExp' X) -> HExp X -> HExp X
rootToHole [] t = t
rootToHole (t' :: t's) t = t' []<- rootToHole t's t
-- The idea is that the pair of a List (HExp' X) and a single
-- HExp X together represent a term with a designated subterm "in focus".
-- The list of one-hole terms represents the *path* to the designated
-- subterm, together with the *other stuff* hanging off to either side
-- of that path.
----------------------------------------------------------------------------
-- ??? 3.9 Forgetting Types (score: 0.5 / 1)
----------------------------------------------------------------------------
-- SUSPICION: why would we want to?
-- Given a typed term (THEXP X T) we can forget the types to obtain an
-- untyped term (HExp Y) if we know how to forget types from variables
-- (varFog).
termFog : {X : HType -> Set}{Y : Set}(varFog : {T : HType} -> X T -> Y) ->
{T : HType} -> THExp X T -> HExp Y
termFog vF (var x) = var (vF x)
termFog vF (val x) = {!x!} -- Conor: need to find the type
termFog vF (t +H t1) = (termFog vF t) +H (termFog vF t1)
termFog vF (t >=H t1) = (termFog vF t) >=H (termFog vF t1)
termFog vF (ifH t then t1 else t2) = ifH (termFog vF t) then (termFog vF t1) else (termFog vF t2)
-- Note that it's a local naming convention to call functions which
-- forget information "fog". When it is foggy, you can see less.
-- Our purpose in writing a function to throw away information is to
-- *specify* what it means to *obtain* information.
----------------------------------------------------------------------------
-- ??? 3.10 A Typechecking View (score: 0 / 3)
----------------------------------------------------------------------------
-- We finish by building a typechecker which will allow us to detect
-- when an untyped Hutton's Razor term can be converted into a typed
-- term (and evaluated safely without rechecking). We make use of
-- your solution to part 3.9 to express the idea that
-- an untyped term is the forgetful image of a typed term we know
-- and your solution to part 3.8 to express the idea that
-- an untyped term can be focused at a place where there is a type error
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- But first, we need to build you a wee bit more kit. Typechecking relies
-- on checking that the type you want is the type you've got, which sometimes
-- means testing *equality* of types. It's not enough to have a function
-- htypeEq : HType -> HType -> Two
-- because we need to convince *Agda* of the equality, not just write a function
-- that happens to say yes to equal things.
-- a set with one element removed, i.e. X -[ x ] is the pair of some y in X and
-- a proof that y isn't x
_-[_] : (X : Set) -> X -> Set
X -[ x ] = Sg X \ y -> x == y -> Zero
-- a view for comparing types for equality
data HTypeComparable (T : HType) : HType -> Set where
same : HTypeComparable T T
diff : (SnT : HType -[ T ]) -> HTypeComparable T (fst SnT)
-- the above view type presents is two options, and in both of them, we
-- have to come through with enough evidence to convince Agda
-- implementing the view
hTypeCompare : (S T : HType) -> HTypeComparable S T
hTypeCompare hTwo hTwo = same
hTypeCompare hTwo hNat = diff (hNat , \ ())
hTypeCompare hNat hTwo = diff (hTwo , \ ())
hTypeCompare hNat hNat = same
-- we write the obvious four cases; in the "same" cases, the types really
-- do match; in the "diff" cases, Agda can rule out the equation hTwo == hNat
-- (or vice versa) because it knows the constructors of datatypes differ
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- But back to our typechecker. To make things easier, we'll assume
-- that our supplier has already been kind enough to do *scope* checking,
-- so that all the variables written by the programmer have been looked
-- up and turned into typed references.
-- a reference: a pair of a type and a variable of that type.
Ref : Context -> Set
Ref G = Sg HType (Var G)
-- making a reference
ref : forall {G S} -> Var G S -> Ref G
ref {G}{S} v = S , v
-- ??? At last, your bit! Show that the following view type covers all
-- untyped terms:
-- either things go well and get the 'ok' and a well typed term
-- or something went wrong down in the expression tree somewhere,
-- so we can explain where that is.
data Checkable (G : Context) -- the context of typed variables in scope
(T : HType) -- the type we expect
:
HExp (Ref G) -- the untyped term we hope has type T
-> Set where -- one of two situations applies
-- either
ok : (t : THExp (Var G) T) -- we have a term of type T
-> Checkable G T (termFog ref t) -- and it's what we're checking
-- or
err : (t's : List (HExp' (Ref G))) -- there's some surroundings
(s : HExp (Ref G)) -- and a subterm of interest
-> Checkable G T (rootToHole t's s) -- in what we're checking
check : (G : Context)(T : HType)(h : HExp (Ref G)) -> Checkable G T h
check G T h = {!!}
-- Now, this isn't quite the whole story, but it's pretty good. We've
-- guaranteed that
-- * if we say yes, it's because we've found the typed version
-- of the untyped input
-- * if we say no, we can point to a place where (we say that) there's a
-- problem
-- So we're *sound* (we never say yes to bad things), but not necessarily
-- *complete* (we can say no to good things). Nothing stops us reporting a
-- bogus type error at the subterm of our choosing! We could work harder
-- and define, in the same way as the typed terms, the "terrors", being
-- the terms containing at least one type error. The canny way to do that
-- is to try writing the typechecker, then grow the datatype that describes
-- all the failure cases.
------------------------------------------------------------------------------
--
-- If you want to read around this topic, you may be interested in
--
-- The Zipper
-- Gerard Huet
-- Journal of Functional Programming, 1997.
--
-- Monadic presentations of lambda terms using generalized inductive types
-- Thorsten Altenkirch and Bernhard Reus
-- Computer Science Logic, 1999.
--
-- An exercise in dependent types: A well-typed interpreter
-- Lennart Augustsson and Magnus Carlsson
-- Workshop on Dependent Types in Programming, Gothenburg, 1999.
--
-- The view from the left
-- Conor McBride and James McKinna
-- Journal of Functional Programming, 2004.
|
{
"alphanum_fraction": 0.5561792747,
"avg_line_length": 41.3370165746,
"ext": "agda",
"hexsha": "3606fd92fe49378abd16c062c2d35651572e58bc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "clarkdm/CS410",
"max_forks_repo_path": "Ex3.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "clarkdm/CS410",
"max_issues_repo_path": "Ex3.agda",
"max_line_length": 198,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "clarkdm/CS410",
"max_stars_repo_path": "Ex3.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6453,
"size": 22446
}
|
module bool-test where
open import bool
open import eq
open import level
~~tt : ~ ~ tt ≡ tt
~~tt = refl
~~ff : ~ ~ ff ≡ ff
~~ff = refl
~~-elim2 : ∀ (b : 𝔹) → ~ ~ b ≡ b
~~-elim2 tt = ~~tt
~~-elim2 ff = ~~ff
~~tt' : ~ ~ tt ≡ tt
~~tt' = refl{lzero}{𝔹}{tt}
~~ff' : ~ ~ ff ≡ ff
~~ff' = refl{lzero}{𝔹}{ff}
test1 : 𝔹
test1 = tt && ff
test2 : 𝔹
test2 = tt && tt
test1-ff : test1 ≡ ff
test1-ff = refl
test2-tt : test2 ≡ tt
test2-tt = refl
|
{
"alphanum_fraction": 0.525,
"avg_line_length": 12.9411764706,
"ext": "agda",
"hexsha": "cccb315ebad54a56a9a7f841b23e92d477522578",
"lang": "Agda",
"max_forks_count": 17,
"max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z",
"max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rfindler/ial",
"max_forks_repo_path": "bool-test.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rfindler/ial",
"max_issues_repo_path": "bool-test.agda",
"max_line_length": 32,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rfindler/ial",
"max_stars_repo_path": "bool-test.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z",
"num_tokens": 200,
"size": 440
}
|
import Level as L
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Data.Product
open import Data.Empty
open import Data.Nat
open import Data.Nat.Properties
open import RevMachine
module PartialRevNoRepeat {ℓ} (M : PartialRevMachine {ℓ}) where
infix 99 _ᵣₑᵥ
infixr 10 _∷_
infixr 10 _++↦_
open RevMachine.PartialRevMachine M
is-stuck : State → Set _
is-stuck st = ∄[ st' ] (st ↦ st')
is-initial : State → Set _
is-initial st = ∄[ st' ] (st' ↦ st)
data _↦ᵣₑᵥ_ : State → State → Set (L.suc ℓ) where
_ᵣₑᵥ : ∀ {st₁ st₂} → st₁ ↦ st₂ → st₂ ↦ᵣₑᵥ st₁
data _↦*_ : State → State → Set (L.suc ℓ) where
◾ : {st : State} → st ↦* st
_∷_ : {st₁ st₂ st₃ : State} → st₁ ↦ st₂ → st₂ ↦* st₃ → st₁ ↦* st₃
_++↦_ : {st₁ st₂ st₃ : State} → st₁ ↦* st₂ → st₂ ↦* st₃ → st₁ ↦* st₃
◾ ++↦ st₁↦*st₂ = st₁↦*st₂
(st₁↦st₁' ∷ st₁'↦*st₂) ++↦ st₂'↦*st₃ = st₁↦st₁' ∷ (st₁'↦*st₂ ++↦ st₂'↦*st₃)
len↦ : ∀ {st st'} → st ↦* st' → ℕ
len↦ ◾ = 0
len↦ (_ ∷ r) = 1 + len↦ r
data _↦ᵣₑᵥ*_ : State → State → Set (L.suc ℓ) where
◾ : ∀ {st} → st ↦ᵣₑᵥ* st
_∷_ : ∀ {st₁ st₂ st₃} → st₁ ↦ᵣₑᵥ st₂ → st₂ ↦ᵣₑᵥ* st₃ → st₁ ↦ᵣₑᵥ* st₃
_++↦ᵣₑᵥ_ : ∀ {st₁ st₂ st₃} → st₁ ↦ᵣₑᵥ* st₂ → st₂ ↦ᵣₑᵥ* st₃ → st₁ ↦ᵣₑᵥ* st₃
◾ ++↦ᵣₑᵥ st₁↦ᵣₑᵥ*st₂ = st₁↦ᵣₑᵥ*st₂
(st₁↦ᵣₑᵥst₁' ∷ st₁'↦ᵣₑᵥ*st₂) ++↦ᵣₑᵥ st₂'↦ᵣₑᵥ*st₃ = st₁↦ᵣₑᵥst₁' ∷ (st₁'↦ᵣₑᵥ*st₂ ++↦ᵣₑᵥ st₂'↦ᵣₑᵥ*st₃)
Rev↦ : ∀ {st₁ st₂} → st₁ ↦* st₂ → st₂ ↦ᵣₑᵥ* st₁
Rev↦ ◾ = ◾
Rev↦ (r ∷ rs) = Rev↦ rs ++↦ᵣₑᵥ ((r ᵣₑᵥ) ∷ ◾)
Rev↦ᵣₑᵥ : ∀ {st₁ st₂} → st₁ ↦ᵣₑᵥ* st₂ → st₂ ↦* st₁
Rev↦ᵣₑᵥ ◾ = ◾
Rev↦ᵣₑᵥ ((r ᵣₑᵥ) ∷ rs) = Rev↦ᵣₑᵥ rs ++↦ (r ∷ ◾)
deterministic* : ∀ {st st₁ st₂} → st ↦* st₁ → st ↦* st₂
→ is-stuck st₁ → is-stuck st₂
→ st₁ ≡ st₂
deterministic* ◾ ◾ stuck₁ stuck₂ = refl
deterministic* ◾ (r ∷ ↦*₂) stuck₁ stuck₂ = ⊥-elim (stuck₁ (_ , r))
deterministic* (r ∷ ↦*₁) ◾ stuck₁ stuck₂ = ⊥-elim (stuck₂ (_ , r))
deterministic* (r₁ ∷ ↦*₁) (r₂ ∷ ↦*₂) stuck₁ stuck₂ with deterministic r₁ r₂
... | refl = deterministic* ↦*₁ ↦*₂ stuck₁ stuck₂
deterministic*' : ∀ {st st₁ st'} → (rs₁ : st ↦* st₁) → (rs : st ↦* st')
→ is-stuck st'
→ Σ[ rs' ∈ st₁ ↦* st' ] (len↦ rs ≡ len↦ rs₁ + len↦ rs')
deterministic*' ◾ rs stuck = rs , refl
deterministic*' (r ∷ rs₁) ◾ stuck = ⊥-elim (stuck (_ , r))
deterministic*' (r ∷ rs₁) (r' ∷ rs) stuck with deterministic r r'
... | refl with deterministic*' rs₁ rs stuck
... | (rs' , eq) = rs' , cong suc eq
deterministicᵣₑᵥ* : ∀ {st st₁ st₂} → st ↦ᵣₑᵥ* st₁ → st ↦ᵣₑᵥ* st₂ → ¬ (is-fail st)
→ is-initial st₁ → is-initial st₂
→ st₁ ≡ st₂
deterministicᵣₑᵥ* ◾ ◾ _ initial₁ initial₂ = refl
deterministicᵣₑᵥ* ◾ (r ᵣₑᵥ ∷ ↦ᵣₑᵥ*₂) _ initial₁ initial₂ = ⊥-elim (initial₁ (_ , r))
deterministicᵣₑᵥ* (r ᵣₑᵥ ∷ ↦ᵣₑᵥ*₁) ◾ _ initial₁ initial₂ = ⊥-elim (initial₂ (_ , r))
deterministicᵣₑᵥ* (_∷_ {_} {st'} {_} (r₁ ᵣₑᵥ) ↦ᵣₑᵥ*₁) (r₂ ᵣₑᵥ ∷ ↦ᵣₑᵥ*₂) nf initial₁ initial₂ with is-fail? st'
... | yes st'-f = ⊥-elim (fail-is-stuck st'-f (_ , r₁))
... | no st'-nf with deterministicᵣₑᵥ r₁ r₂ nf
... | refl = deterministicᵣₑᵥ* ↦ᵣₑᵥ*₁ ↦ᵣₑᵥ*₂ st'-nf initial₁ initial₂
data _↦[_]_ : State → ℕ → State → Set (L.suc ℓ) where
◾ : ∀ {st} → st ↦[ 0 ] st
_∷_ : ∀ {st₁ st₂ st₃ n} → st₁ ↦ st₂ → st₂ ↦[ n ] st₃ → st₁ ↦[ suc n ] st₃
_++↦ⁿ_ : ∀ {st₁ st₂ st₃ n m} → st₁ ↦[ n ] st₂ → st₂ ↦[ m ] st₃ → st₁ ↦[ n + m ] st₃
◾ ++↦ⁿ st₁↦*st₂ = st₁↦*st₂
(st₁↦st₁' ∷ st₁'↦*st₂) ++↦ⁿ st₂'↦*st₃ = st₁↦st₁' ∷ (st₁'↦*st₂ ++↦ⁿ st₂'↦*st₃)
data _↦ᵣₑᵥ[_]_ : State → ℕ → State → Set (L.suc ℓ) where
◾ : ∀ {st} → st ↦ᵣₑᵥ[ 0 ] st
_∷_ : ∀ {st₁ st₂ st₃ n} → st₁ ↦ᵣₑᵥ st₂ → st₂ ↦ᵣₑᵥ[ n ] st₃ → st₁ ↦ᵣₑᵥ[ suc n ] st₃
_++↦ᵣₑᵥⁿ_ : ∀ {st₁ st₂ st₃ n m} → st₁ ↦ᵣₑᵥ[ n ] st₂ → st₂ ↦ᵣₑᵥ[ m ] st₃ → st₁ ↦ᵣₑᵥ[ n + m ] st₃
◾ ++↦ᵣₑᵥⁿ st₁↦*st₂ = st₁↦*st₂
(st₁↦st₁' ∷ st₁'↦*st₂) ++↦ᵣₑᵥⁿ st₂'↦*st₃ = st₁↦st₁' ∷ (st₁'↦*st₂ ++↦ᵣₑᵥⁿ st₂'↦*st₃)
deterministicⁿ : ∀ {st st₁ st₂ n} → st ↦[ n ] st₁ → st ↦[ n ] st₂
→ st₁ ≡ st₂
deterministicⁿ ◾ ◾ = refl
deterministicⁿ (r₁ ∷ rs₁) (r₂ ∷ rs₂) with deterministic r₁ r₂
... | refl = deterministicⁿ rs₁ rs₂
deterministicᵣₑᵥⁿ : ∀ {st st₁ st₂ n} → st ↦ᵣₑᵥ[ n ] st₁ → st ↦ᵣₑᵥ[ n ] st₂ → ¬ (is-fail st)
→ st₁ ≡ st₂
deterministicᵣₑᵥⁿ ◾ ◾ _ = refl
deterministicᵣₑᵥⁿ (_∷_ {_} {st'} {_} (r₁ ᵣₑᵥ) rs₁) (r₂ ᵣₑᵥ ∷ rs₂) nf with is-fail? st'
... | yes st'-f = ⊥-elim (fail-is-stuck st'-f (_ , r₁))
... | no st'-nf with deterministicᵣₑᵥ r₁ r₂ nf
... | refl = deterministicᵣₑᵥⁿ rs₁ rs₂ st'-nf
private
split↦ⁿ : ∀ {st st'' n m} → st ↦[ n + m ] st''
→ ∃[ st' ] (st ↦[ n ] st' × st' ↦[ m ] st'')
split↦ⁿ {n = 0} {m} rs = _ , ◾ , rs
split↦ⁿ {n = suc n} {m} (r ∷ rs) with split↦ⁿ {n = n} {m} rs
... | st' , st↦ⁿst' , st'↦ᵐst'' = st' , (r ∷ st↦ⁿst') , st'↦ᵐst''
split↦ᵣₑᵥⁿ : ∀ {st st'' n m} → st ↦ᵣₑᵥ[ n + m ] st''
→ ∃[ st' ] (st ↦ᵣₑᵥ[ n ] st' × st' ↦ᵣₑᵥ[ m ] st'')
split↦ᵣₑᵥⁿ {n = 0} {m} rs = _ , ◾ , rs
split↦ᵣₑᵥⁿ {n = suc n} {m} (r ∷ rs) with split↦ᵣₑᵥⁿ {n = n} {m} rs
... | st' , st↦ⁿst' , st'↦ᵐst'' = st' , (r ∷ st↦ⁿst') , st'↦ᵐst''
diff : ∀ {n m} → n < m → ∃[ k ] (0 < k × n + k ≡ m)
diff {0} {(suc m)} (s≤s z≤n) = suc m , s≤s z≤n , refl
diff {(suc n)} {(suc (suc m))} (s≤s (s≤s n≤m)) with diff {n} {suc m} (s≤s n≤m)
... | k , 0<k , eq = k , 0<k , cong suc eq
Revⁿ : ∀ {st st' n} → st ↦[ n ] st' → st' ↦ᵣₑᵥ[ n ] st
Revⁿ {n = 0} ◾ = ◾
Revⁿ {n = suc n} (r ∷ rs) rewrite +-comm 1 n = Revⁿ rs ++↦ᵣₑᵥⁿ (r ᵣₑᵥ ∷ ◾)
NoRepeat : ∀ {st₀ stₙ stₘ n m}
→ is-initial st₀
→ n < m
→ st₀ ↦[ n ] stₙ
→ st₀ ↦[ m ] stₘ
→ stₙ ≢ stₘ
NoRepeat {stₙ = st} {_} {m} st₀-is-init n<m st₀↦ᵐst st₀↦ᵐ⁺ᵏ⁺¹st refl with diff n<m
... | suc k , 0<k , refl with is-fail? st
... | yes st-is-f with split↦ⁿ {n = m} {1 + k} st₀↦ᵐ⁺ᵏ⁺¹st
... | st′ , st₀↦ᵐst′ , (r ∷ rs) with deterministicⁿ st₀↦ᵐst st₀↦ᵐst′
... | refl = ⊥-elim (fail-is-stuck st-is-f (_ , r))
NoRepeat {stₙ = st} {_} {m} st₀-is-init n<m st₀↦ᵐst st₀↦ᵐ⁺ᵏ⁺¹st refl | suc k , 0<k , refl | no st-is-nf with (Revⁿ st₀↦ᵐst , Revⁿ st₀↦ᵐ⁺ᵏ⁺¹st)
... | st'↦ᵐst₀' , st'↦ᵐ⁺ᵏ⁺¹st₀' with split↦ᵣₑᵥⁿ st'↦ᵐ⁺ᵏ⁺¹st₀'
... | st′ , st'↦ᵐst′ , st′↦ᵏ⁺¹st₀' with deterministicᵣₑᵥⁿ st'↦ᵐst₀' st'↦ᵐst′ st-is-nf
... | refl with st′↦ᵏ⁺¹st₀'
... | r ᵣₑᵥ ∷ rs = ⊥-elim (st₀-is-init (_ , r))
|
{
"alphanum_fraction": 0.5135928329,
"avg_line_length": 42.3137254902,
"ext": "agda",
"hexsha": "709301eaa1b5d8352d9b7a6b998b8c9e467ecd4a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "PartialRevNoRepeat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "PartialRevNoRepeat.agda",
"max_line_length": 144,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "PartialRevNoRepeat.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 3850,
"size": 6474
}
|
module lob--2015-06-14--III where
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
record Σ {X : Set} (F : X → Set) : Set where
constructor _,_
field fst : X
snd : F fst
data ⊤ : Set where
unit : ⊤
data Tree (X : Set) : Set where
br : Tree X → Tree X → Tree X
leaf : X → Tree X
indtree : {X : Set} → (P : Tree X → Set)
→ ((s t : Tree X) → P s → P t → P (br s t))
→ ((x : X) → P (leaf x))
→ (t : Tree X) → P t
indtree P b l (br s t) = b s t (indtree P b l s) (indtree P b l t)
indtree P b l (leaf x) = l x
data Preterm : Set where
type : ℕ → Preterm
pi : Preterm → Preterm → Preterm
sig : Preterm → Preterm → Preterm
bot : Preterm
top : Preterm
unit : Preterm
var : ℕ → Preterm
lam : Preterm → Preterm → Preterm
app : Preterm → Preterm → Preterm
tree : Preterm → Preterm
br : Preterm → Preterm → Preterm → Preterm
leaf : Preterm → Preterm → Preterm
ind : Preterm → Preterm → Preterm → Preterm → Preterm → Preterm
‘λ→’ = lam
data _::_ : Preterm → Preterm → Set where
::type : (ℓ : ℕ) → type ℓ :: type (suc ℓ)
-- ...
□ : Preterm → Set
□ T = Σ \(t : Preterm) → t :: T
num : ℕ → Preterm
num 0 = leaf top unit
num (suc n) = br top unit (num n)
data List (X : Set) : Set where
nil : List X
_,_ : X → List X → List X
infixr 1 _,_
list : List Preterm → Preterm
list nil = leaf top unit
list (x , xs) = br top x (list xs)
cons : ℕ → List Preterm → Preterm
cons n xs = br top (num n) (list xs)
‘type’ : Preterm → Preterm
‘type’ n = cons 0 (n , nil)
‘pi’ : Preterm → Preterm → Preterm
‘pi’ x f = cons 1 (x , f , nil)
‘sig’ : Preterm → Preterm → Preterm
‘sig’ x f = cons 2 (x , f , nil)
‘bot’ : Preterm
‘bot’ = cons 3 nil
‘top’ : Preterm
‘top’ = cons 4 nil
‘unit’ : Preterm
‘unit’ = cons 5 nil
‘var’ : Preterm → Preterm
‘var’ n = cons 6 (n , nil)
‘lam’ : Preterm → Preterm → Preterm
‘lam’ t b = cons 7 (t , b , nil)
‘app’ : Preterm → Preterm → Preterm
‘app’ f x = cons 8 (f , x , nil)
‘tree’ : Preterm → Preterm
‘tree’ x = cons 9 (x , nil)
‘br’ : Preterm → Preterm → Preterm → Preterm
‘br’ x l r = cons 10 (x , l , r , nil)
‘leaf’ : Preterm → Preterm → Preterm
‘leaf’ x y = cons 11 (x , y , nil)
‘ind’ : Preterm → Preterm → Preterm → Preterm → Preterm → Preterm
‘ind’ x p b l t = cons 12 (x , p , b , l , t , nil)
‘Preterm’ : Preterm
‘Preterm’ = tree top
‘Preterm’::type₀ : ‘Preterm’ :: type 0
‘Preterm’::type₀ = {!!}
‘□’ : Preterm
‘□’ = {!!}
_‘→’_ : Preterm → Preterm → Preterm
A ‘→’ B = pi A {!!}
quot : Preterm → Preterm
quot (type n) = ‘type’ (num n)
quot (pi x f) = ‘pi’ (quot x) (quot f)
quot (sig x f) = ‘sig’ (quot x) (quot f)
quot bot = ‘bot’
quot top = ‘top’
quot unit = ‘unit’
quot (var n) = ‘var’ (num n)
quot (lam x b) = ‘lam’ (quot x) (quot b)
quot (app f x) = ‘app’ (quot f) (quot x)
quot (tree x) = ‘tree’ (quot x)
quot (br x l r) = ‘br’ (quot x) (quot l) (quot r)
quot (leaf x y) = ‘leaf’ (quot x) (quot y)
quot (ind x p b l t) = ‘ind’ (quot x) (quot p) (quot b) (quot l) (quot t)
‘quot’ : Preterm
‘quot’ = {!!}
‘‘→’’ : Preterm
‘‘→’’ = {!!}
⌜_⌝ = quot
_‘’_ = app
infixl 1 _‘’_
postulate
X : Set
‘X’ : Preterm
‘X’::type₀ : ‘X’ :: type 0
App : {‘A’ ‘B’ : Preterm}
→ □ (‘A’ ‘→’ ‘B’)
→ □ ‘A’
→ □ ‘B’
App □‘A→B’ □‘A’ = {!!}
‘App’ : Preterm
‘App’ = {!!}
Quot : {‘T’ : Preterm}
→ □ ‘T’
→ □ (‘□’ ‘’ ⌜ ‘T’ ⌝)
Quot □T = {!!}
‘Quot’ : Preterm
‘Quot’ = {!!}
‘L₀’ : Preterm
‘L₀’ = (‘λ→’ ‘Preterm’ ((‘app’ ⌜ ‘□’ ⌝ (‘app’ (var 0) (‘quot’ ‘’ (var 0)))) ‘’ ‘‘→’’ ‘’ ⌜ ‘X’ ⌝ ))
L : Preterm
L = (λ (h : Preterm) → (app ‘□’ (app h (⌜ h ⌝))) ‘→’ ‘X’) ‘L₀’
‘L’ = app ‘L₀’ ⌜ ‘L₀’ ⌝
Conv : □ (‘□’ ‘’ ⌜ L ⌝) → □ (‘□’ ‘’ ‘L’)
Conv = {!!}
‘Conv’ : Preterm
‘Conv’ = {!!}
postulate
f : □ ‘X’ → X
‘f’ : Preterm
d‘f’ : ‘f’ :: (app ‘□’ (quot ‘X’) ‘→’ ‘X’)
y : X
y = (λ (ℓ : □ L) → f (App ℓ (Conv (Quot ℓ))))
( ‘λ→’ (‘□’ ‘’ ‘L’) (‘f’ ‘’ (‘App’ ‘’ (var 0) ‘’ (‘Conv’ ‘’ (‘Quot’ ‘’ var 0))))
, {!!})
|
{
"alphanum_fraction": 0.5013739695,
"avg_line_length": 19.8168316832,
"ext": "agda",
"hexsha": "10691735209a294f0ff0ea081f6a8f2d2029a562",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-07-17T18:53:37.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-17T18:53:37.000Z",
"max_forks_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JasonGross/lob",
"max_forks_repo_path": "internal/lob--2015-06-14--III.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3",
"max_issues_repo_issues_event_max_datetime": "2015-07-17T20:20:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-17T20:20:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JasonGross/lob",
"max_issues_repo_path": "internal/lob--2015-06-14--III.agda",
"max_line_length": 98,
"max_stars_count": 19,
"max_stars_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JasonGross/lob",
"max_stars_repo_path": "internal/lob--2015-06-14--III.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-17T14:04:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-17T17:53:30.000Z",
"num_tokens": 1756,
"size": 4003
}
|
-- A solution for
-- https://github.com/josevalim/nested-data-structure-traversal
-- in Agda using fold. Basically it is identical to its Haskell sibling except
-- fancy unicode symbols. The `refl` proof at the end is pretty nice though.
--
-- Coded against agda-2.6.1.3 and agda-stdlib-1.5
module Fold where
open import Data.Nat using (ℕ; _+_)
open import Data.Bool using (Bool; true; false; if_then_else_)
open import Data.String using (String)
open import Data.List using (List; []; _∷_; map; foldl; reverse; length; zipWith; upTo)
open import Data.Product using (_×_; _,_; proj₂)
open import Function using (_∘_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
record Lesson : Set where
constructor lesson
field
name : String
record Chapter : Set where
constructor chapter
field
title : String
reset : Bool
lessons : List Lesson
record PosLesson : Set where
constructor pos_lesson
field
name : String
pos : ℕ
record PosChapter : Set where
constructor pos_chapter
field
title : String
reset : Bool
pos : ℕ
lessons : List PosLesson
input : List Chapter
input = chapter "Getting started" false
(lesson "Welcome" ∷ lesson "Installation" ∷ [])
∷ chapter "Basic operator" false
(lesson "Addition / Subtraction" ∷ lesson "Multiplication / Division" ∷ [])
∷ chapter "Advanced topics" true
(lesson "Mutability" ∷ lesson "Immutability" ∷ [])
∷ []
expected : List PosChapter
expected = pos_chapter "Getting started" false 1
(pos_lesson "Welcome" 1 ∷ pos_lesson "Installation" 2 ∷ [])
∷ pos_chapter "Basic operator" false 2
(pos_lesson "Addition / Subtraction" 3 ∷ pos_lesson "Multiplication / Division" 4 ∷ [])
∷ pos_chapter "Advanced topics" true 3
(pos_lesson "Mutability" 1 ∷ pos_lesson "Immutability" 2 ∷ [])
∷ []
solve : List Chapter → List PosChapter
solve i = (reverse ∘ proj₂ ∘ proj₂) (foldl go (1 , 1 , []) i)
where
go : ℕ × ℕ × List PosChapter → Chapter → ℕ × ℕ × List PosChapter
go (nc , nl , acc) (chapter title reset lessons) =
let n = length lessons
nl' = if reset then 1 else nl
ps = map (_+ nl') (upTo n)
plessons = zipWith (λ {(lesson name) p → pos_lesson name p}) lessons ps
in (nc + 1 , nl' + n , pos_chapter title reset nc plessons ∷ acc)
_ : solve input ≡ expected
_ = refl
|
{
"alphanum_fraction": 0.6336241079,
"avg_line_length": 32.7532467532,
"ext": "agda",
"hexsha": "aef1f9d083a31eaff1820f96f4288b2499402035",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1fe511f7ef550aed998b75c18a432abf6ab41c5f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "eengineergz/Lambda",
"max_forks_repo_path": "2-resources/__DATA-Structures/ds-traversal-multi-lang/agda/Fold.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1fe511f7ef550aed998b75c18a432abf6ab41c5f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "eengineergz/Lambda",
"max_issues_repo_path": "2-resources/__DATA-Structures/ds-traversal-multi-lang/agda/Fold.agda",
"max_line_length": 99,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1fe511f7ef550aed998b75c18a432abf6ab41c5f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "eengineergz/Lambda",
"max_stars_repo_path": "2-resources/__DATA-Structures/ds-traversal-multi-lang/agda/Fold.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 692,
"size": 2522
}
|
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Irrelevance {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.LogicalRelation
open import Definition.LogicalRelation.ShapeView
open import Tools.Embedding
open import Tools.Product
import Tools.PropositionalEquality as PE
-- Irrelevance for propositionally equal types
irrelevance′ : ∀ {A A′ Γ l}
→ A PE.≡ A′
→ Γ ⊩⟨ l ⟩ A
→ Γ ⊩⟨ l ⟩ A′
irrelevance′ PE.refl [A] = [A]
-- Irrelevance for propositionally equal types and contexts
irrelevanceΓ′ : ∀ {l A A′ Γ Γ′}
→ Γ PE.≡ Γ′
→ A PE.≡ A′
→ Γ ⊩⟨ l ⟩ A
→ Γ′ ⊩⟨ l ⟩ A′
irrelevanceΓ′ PE.refl PE.refl [A] = [A]
mutual
-- Irrelevance for type equality
irrelevanceEq : ∀ {Γ A B l l′} (p : Γ ⊩⟨ l ⟩ A) (q : Γ ⊩⟨ l′ ⟩ A)
→ Γ ⊩⟨ l ⟩ A ≡ B / p → Γ ⊩⟨ l′ ⟩ A ≡ B / q
irrelevanceEq p q A≡B = irrelevanceEqT (goodCasesRefl p q) A≡B
-- Irrelevance for type equality with propositionally equal first types
irrelevanceEq′ : ∀ {Γ A A′ B l l′} (eq : A PE.≡ A′)
(p : Γ ⊩⟨ l ⟩ A) (q : Γ ⊩⟨ l′ ⟩ A′)
→ Γ ⊩⟨ l ⟩ A ≡ B / p → Γ ⊩⟨ l′ ⟩ A′ ≡ B / q
irrelevanceEq′ PE.refl p q A≡B = irrelevanceEq p q A≡B
-- Irrelevance for type equality with propositionally equal types
irrelevanceEq″ : ∀ {Γ A A′ B B′ l l′} (eqA : A PE.≡ A′) (eqB : B PE.≡ B′)
(p : Γ ⊩⟨ l ⟩ A) (q : Γ ⊩⟨ l′ ⟩ A′)
→ Γ ⊩⟨ l ⟩ A ≡ B / p → Γ ⊩⟨ l′ ⟩ A′ ≡ B′ / q
irrelevanceEq″ PE.refl PE.refl p q A≡B = irrelevanceEq p q A≡B
-- Irrelevance for type equality with propositionally equal second types
irrelevanceEqR′ : ∀ {Γ A B B′ l} (eqB : B PE.≡ B′) (p : Γ ⊩⟨ l ⟩ A)
→ Γ ⊩⟨ l ⟩ A ≡ B / p → Γ ⊩⟨ l ⟩ A ≡ B′ / p
irrelevanceEqR′ PE.refl p A≡B = A≡B
-- Irrelevance for type equality with propositionally equal types and
-- a lifting of propositionally equal types
irrelevanceEqLift″ : ∀ {Γ A A′ B B′ C C′ l l′}
(eqA : A PE.≡ A′) (eqB : B PE.≡ B′) (eqC : C PE.≡ C′)
(p : Γ ∙ C ⊩⟨ l ⟩ A) (q : Γ ∙ C′ ⊩⟨ l′ ⟩ A′)
→ Γ ∙ C ⊩⟨ l ⟩ A ≡ B / p → Γ ∙ C′ ⊩⟨ l′ ⟩ A′ ≡ B′ / q
irrelevanceEqLift″ PE.refl PE.refl PE.refl p q A≡B = irrelevanceEq p q A≡B
-- Helper for irrelevance of type equality using shape view
irrelevanceEqT : ∀ {Γ A B l l′} {p : Γ ⊩⟨ l ⟩ A} {q : Γ ⊩⟨ l′ ⟩ A}
→ ShapeView Γ l l′ A A p q
→ Γ ⊩⟨ l ⟩ A ≡ B / p → Γ ⊩⟨ l′ ⟩ A ≡ B / q
irrelevanceEqT (ℕᵥ ℕA ℕB) (ιx (ℕ₌ x)) = ιx (ℕ₌ x)
irrelevanceEqT (ne (ne K D neK _) (ne K₁ D₁ neK₁ K≡K₁)) (ιx (ne₌ M D′ neM K≡M))
rewrite whrDet* (red D , ne neK) (red D₁ , ne neK₁) =
ιx (ne₌ M D′ neM K≡M)
irrelevanceEqT {Γ} (Πᵥ (Πᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁))
(Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
let ΠFG≡ΠF₁G₁ = whrDet* (red D , Πₙ) (red D₁ , Πₙ)
F≡F₁ , G≡G₁ = Π-PE-injectivity ΠFG≡ΠF₁G₁
in Π₌ F′ G′ D′ (PE.subst (λ x → Γ ⊢ x ≅ Π F′ ▹ G′) ΠFG≡ΠF₁G₁ A≡B)
(λ {ρ} [ρ] ⊢Δ → irrelevanceEq′ (PE.cong (wk ρ) F≡F₁) ([F] [ρ] ⊢Δ)
([F]₁ [ρ] ⊢Δ) ([F≡F′] [ρ] ⊢Δ))
(λ {ρ} [ρ] ⊢Δ [a]₁ →
let [a] = irrelevanceTerm′ (PE.cong (wk ρ) (PE.sym F≡F₁))
([F]₁ [ρ] ⊢Δ) ([F] [ρ] ⊢Δ) [a]₁
in irrelevanceEq′ (PE.cong (λ y → wk (lift ρ) y [ _ ]) G≡G₁)
([G] [ρ] ⊢Δ [a]) ([G]₁ [ρ] ⊢Δ [a]₁) ([G≡G′] [ρ] ⊢Δ [a]))
irrelevanceEqT (Uᵥ _ _ _ _ _ _) (U₌ B≡U) = U₌ B≡U
irrelevanceEqT (emb⁰¹ PE.refl x) (ιx A≡B) = irrelevanceEqT x A≡B
irrelevanceEqT {Γ} {A} {B} {l} {.¹} (emb¹⁰ PE.refl x) A≡B = ιx (irrelevanceEqT x A≡B)
-- --------------------------------------------------------------------------------
-- Irrelevance for terms
irrelevanceTerm : ∀ {Γ A t l l′} (p : Γ ⊩⟨ l ⟩ A) (q : Γ ⊩⟨ l′ ⟩ A)
→ Γ ⊩⟨ l ⟩ t ∷ A / p → Γ ⊩⟨ l′ ⟩ t ∷ A / q
irrelevanceTerm p q t = irrelevanceTermT (goodCasesRefl p q) t
-- Irrelevance for terms with propositionally equal types
irrelevanceTerm′ : ∀ {Γ A A′ t l l′} (eq : A PE.≡ A′)
(p : Γ ⊩⟨ l ⟩ A) (q : Γ ⊩⟨ l′ ⟩ A′)
→ Γ ⊩⟨ l ⟩ t ∷ A / p → Γ ⊩⟨ l′ ⟩ t ∷ A′ / q
irrelevanceTerm′ PE.refl p q t = irrelevanceTerm p q t
-- Irrelevance for terms with propositionally equal types and terms
irrelevanceTerm″ : ∀ {Γ A A′ t t′ l l′}
(eqA : A PE.≡ A′) (eqt : t PE.≡ t′)
(p : Γ ⊩⟨ l ⟩ A) (q : Γ ⊩⟨ l′ ⟩ A′)
→ Γ ⊩⟨ l ⟩ t ∷ A / p → Γ ⊩⟨ l′ ⟩ t′ ∷ A′ / q
irrelevanceTerm″ PE.refl PE.refl p q t = irrelevanceTerm p q t
-- Irrelevance for terms with propositionally equal types, terms and contexts
irrelevanceTermΓ″ : ∀ {l l′ A A′ t t′ Γ Γ′}
→ Γ PE.≡ Γ′
→ A PE.≡ A′
→ t PE.≡ t′
→ ([A] : Γ ⊩⟨ l ⟩ A)
([A′] : Γ′ ⊩⟨ l′ ⟩ A′)
→ Γ ⊩⟨ l ⟩ t ∷ A / [A]
→ Γ′ ⊩⟨ l′ ⟩ t′ ∷ A′ / [A′]
irrelevanceTermΓ″ PE.refl PE.refl PE.refl [A] [A′] [t] = irrelevanceTerm [A] [A′] [t]
-- Helper for irrelevance of terms using shape view
irrelevanceTermT : ∀ {Γ A t l l′} {p : Γ ⊩⟨ l ⟩ A} {q : Γ ⊩⟨ l′ ⟩ A}
→ ShapeView Γ l l′ A A p q
→ Γ ⊩⟨ l ⟩ t ∷ A / p → Γ ⊩⟨ l′ ⟩ t ∷ A / q
irrelevanceTermT (ℕᵥ D D′) (ιx (ℕₜ n d n≡n prop)) = ιx (ℕₜ n d n≡n prop)
irrelevanceTermT (ne (ne K D neK K≡K) (ne K₁ D₁ neK₁ K≡K₁)) (ιx (neₜ k d nf))
with whrDet* (red D₁ , ne neK₁) (red D , ne neK)
irrelevanceTermT (ne (ne K D neK K≡K) (ne .K D₁ neK₁ K≡K₁)) (ιx (neₜ k d nf))
| PE.refl = ιx (neₜ k d nf)
irrelevanceTermT {Γ} {t = t} (Πᵥ (Πᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁))
(Πₜ f d funcF f≡f [f] [f]₁) =
let ΠFG≡ΠF₁G₁ = whrDet* (red D , Πₙ) (red D₁ , Πₙ)
F≡F₁ , G≡G₁ = Π-PE-injectivity ΠFG≡ΠF₁G₁
in Πₜ f (PE.subst (λ x → Γ ⊢ t :⇒*: f ∷ x) ΠFG≡ΠF₁G₁ d) funcF
(PE.subst (λ x → Γ ⊢ f ≅ f ∷ x) ΠFG≡ΠF₁G₁ f≡f)
(λ {ρ} [ρ] ⊢Δ [a]₁ [b]₁ [a≡b]₁ →
let [a] = irrelevanceTerm′ (PE.cong (wk ρ) (PE.sym F≡F₁))
([F]₁ [ρ] ⊢Δ) ([F] [ρ] ⊢Δ) [a]₁
[b] = irrelevanceTerm′ (PE.cong (wk ρ) (PE.sym F≡F₁))
([F]₁ [ρ] ⊢Δ) ([F] [ρ] ⊢Δ) [b]₁
[a≡b] = irrelevanceEqTerm′ (PE.cong (wk ρ) (PE.sym F≡F₁))
([F]₁ [ρ] ⊢Δ) ([F] [ρ] ⊢Δ) [a≡b]₁
in irrelevanceEqTerm′ (PE.cong (λ G → wk (lift ρ) G [ _ ]) G≡G₁)
([G] [ρ] ⊢Δ [a]) ([G]₁ [ρ] ⊢Δ [a]₁)
([f] [ρ] ⊢Δ [a] [b] [a≡b]))
(λ {ρ} [ρ] ⊢Δ [a]₁ →
let [a] = irrelevanceTerm′ (PE.cong (wk ρ) (PE.sym F≡F₁))
([F]₁ [ρ] ⊢Δ) ([F] [ρ] ⊢Δ) [a]₁
in irrelevanceTerm′ (PE.cong (λ G → wk (lift ρ) G [ _ ]) G≡G₁)
([G] [ρ] ⊢Δ [a]) ([G]₁ [ρ] ⊢Δ [a]₁) ([f]₁ [ρ] ⊢Δ [a]))
irrelevanceTermT (Uᵥ .⁰ 0<1 ⊢Γ .⁰ 0<1 _) t = t
irrelevanceTermT (emb⁰¹ PE.refl x) (ιx t) = irrelevanceTermT x t
irrelevanceTermT (emb¹⁰ PE.refl x) t = ιx (irrelevanceTermT x t)
-- --------------------------------------------------------------------------------
-- Irrelevance for term equality
irrelevanceEqTerm : ∀ {Γ A t u l l′} (p : Γ ⊩⟨ l ⟩ A) (q : Γ ⊩⟨ l′ ⟩ A)
→ Γ ⊩⟨ l ⟩ t ≡ u ∷ A / p → Γ ⊩⟨ l′ ⟩ t ≡ u ∷ A / q
irrelevanceEqTerm p q t≡u = irrelevanceEqTermT (goodCasesRefl p q) t≡u
-- Irrelevance for term equality with propositionally equal types
irrelevanceEqTerm′ : ∀ {Γ A A′ t u l l′} (eq : A PE.≡ A′)
(p : Γ ⊩⟨ l ⟩ A) (q : Γ ⊩⟨ l′ ⟩ A′)
→ Γ ⊩⟨ l ⟩ t ≡ u ∷ A / p → Γ ⊩⟨ l′ ⟩ t ≡ u ∷ A′ / q
irrelevanceEqTerm′ PE.refl p q t≡u = irrelevanceEqTerm p q t≡u
-- Irrelevance for term equality with propositionally equal types and terms
irrelevanceEqTerm″ : ∀ {Γ A A′ t t′ u u′ l l′}
(eqt : t PE.≡ t′) (equ : u PE.≡ u′) (eqA : A PE.≡ A′)
(p : Γ ⊩⟨ l ⟩ A) (q : Γ ⊩⟨ l′ ⟩ A′)
→ Γ ⊩⟨ l ⟩ t ≡ u ∷ A / p → Γ ⊩⟨ l′ ⟩ t′ ≡ u′ ∷ A′ / q
irrelevanceEqTerm″ PE.refl PE.refl PE.refl p q t≡u = irrelevanceEqTerm p q t≡u
-- Helper for irrelevance of term equality using shape view
irrelevanceEqTermT : ∀ {Γ A t u} {l l′} {p : Γ ⊩⟨ l ⟩ A} {q : Γ ⊩⟨ l′ ⟩ A}
→ ShapeView Γ l l′ A A p q
→ Γ ⊩⟨ l ⟩ t ≡ u ∷ A / p → Γ ⊩⟨ l′ ⟩ t ≡ u ∷ A / q
irrelevanceEqTermT (ℕᵥ D D′) (ιx (ℕₜ₌ k k′ d d′ k≡k′ prop)) = ιx (ℕₜ₌ k k′ d d′ k≡k′ prop)
irrelevanceEqTermT (ne (ne K D neK K≡K) (ne K₁ D₁ neK₁ K≡K₁)) (ιx (neₜ₌ k m d d′ nf))
with whrDet* (red D₁ , ne neK₁) (red D , ne neK)
irrelevanceEqTermT (ne (ne K D neK K≡K) (ne .K D₁ neK₁ K≡K₁)) (ιx (neₜ₌ k m d d′ nf))
| PE.refl = ιx (neₜ₌ k m d d′ nf)
irrelevanceEqTermT {Γ} {t = t} {u = u}
(Πᵥ (Πᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁))
(Πₜ₌ f g d d′ funcF funcG f≡g [f] [g] [f≡g]) =
let ΠFG≡ΠF₁G₁ = whrDet* (red D , Πₙ) (red D₁ , Πₙ)
F≡F₁ , G≡G₁ = Π-PE-injectivity ΠFG≡ΠF₁G₁
[A] = Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext
[A]₁ = Πᵣ′ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁
in Πₜ₌ f g (PE.subst (λ x → Γ ⊢ t :⇒*: f ∷ x) ΠFG≡ΠF₁G₁ d)
(PE.subst (λ x → Γ ⊢ u :⇒*: g ∷ x) ΠFG≡ΠF₁G₁ d′) funcF funcG
(PE.subst (λ x → Γ ⊢ f ≅ g ∷ x) ΠFG≡ΠF₁G₁ f≡g)
(irrelevanceTerm [A] [A]₁ [f]) (irrelevanceTerm [A] [A]₁ [g])
(λ {ρ} [ρ] ⊢Δ [a]₁ →
let [a] = irrelevanceTerm′ (PE.cong (wk ρ) (PE.sym F≡F₁))
([F]₁ [ρ] ⊢Δ) ([F] [ρ] ⊢Δ) [a]₁
in irrelevanceEqTerm′ (PE.cong (λ G → wk (lift ρ) G [ _ ]) G≡G₁)
([G] [ρ] ⊢Δ [a]) ([G]₁ [ρ] ⊢Δ [a]₁) ([f≡g] [ρ] ⊢Δ [a]))
irrelevanceEqTermT (Uᵥ .⁰ 0<1 ⊢Γ .⁰ 0<1 ⊢Γ₁) t≡u = t≡u
irrelevanceEqTermT (emb⁰¹ PE.refl x) (ιx t≡u) = irrelevanceEqTermT x t≡u
irrelevanceEqTermT (emb¹⁰ PE.refl x) t≡u = ιx (irrelevanceEqTermT x t≡u)
|
{
"alphanum_fraction": 0.4441239416,
"avg_line_length": 52.4243902439,
"ext": "agda",
"hexsha": "8c1ba36d3a1458f855b80d6c7f86ab0ce250a8c9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "loic-p/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Irrelevance.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "loic-p/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Irrelevance.agda",
"max_line_length": 92,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "loic-p/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Irrelevance.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4887,
"size": 10747
}
|
{-# OPTIONS --copatterns #-}
{-# OPTIONS --allow-unsolved-metas #-}
-- {-# OPTIONS --show-implicit #-}
-- One-place functors (decorations) on Set
module Control.Decoration where
open import Data.Product using (_×_; _,_; proj₁; proj₂; uncurry)
open import Function using (id; _∘_; const)
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
open import Axiom.FunctionExtensionality
open import Control.Functor hiding (Id; Const) renaming (idIsFunctor to Id; compIsFunctor to _·_; constIsFunctor to Const)
open import Control.Functor.NaturalTransformation using (IsNatTrans; KKNat)
open import Control.Comonad
open IsFunctor
record IsDecoration (D : Set → Set) : Set₁ where
field
traverse : ∀ {F} (F! : IsFunctor F) {A B} →
(A → F B) → D A → F (D B)
-- The free theorem for traverse:
-- A natural transformation after a traversal can be combined with the traversal.
traverse-free : ∀ {F} (F! : IsFunctor F) {G} (G! : IsFunctor G) →
∀ (η : ∀ {A} → F A → G A) (η! : IsNatTrans (functor F F!) (functor G G!) η) →
∀ {A B} (f : A → F B) →
η ∘ traverse F! f ≡ traverse G! (η ∘ f)
-- Identity traversal.
traverse-id : ∀ {A} →
traverse Id {A = A} id ≡ id
-- Distributing a traversal.
traverse-∘ :
∀ {F G} (F! : IsFunctor F) (G! : IsFunctor G) →
∀ {A B C} {f : A → F B} {g : B → G C} →
traverse (F! · G!) ((map F! g) ∘ f) ≡ map F! (traverse G! g) ∘ traverse F! f
isFunctor : IsFunctor D
isFunctor = record
{ ops = record { map = traverse Id }
; laws = record { map-id = traverse-id
; map-∘ = traverse-∘ Id Id
}
}
open IsFunctor isFunctor using () renaming (map to dmap; map-∘ to dmap-∘)
-- Lens operations.
private
gets : ∀ {A B} → (A → B) → D A → B
gets {B = B} = traverse (Const B) {B = B}
get : ∀ {A} → D A → A
get = gets id
modify : ∀ {A B} → (A → B) → D A → D B
modify = dmap
set : ∀ {A B} → B → D A → D B
set b = dmap (const b)
-- Comonad structure.
isComonad : IsComonad D
isComonad = record
{ extract = extract
; extend = extend
; extend-β = extend-β _
; extend-η = extend-η
; extend-∘ = {!!}
}
where
extract : ∀ {A} → D A → A
extract {A = A} = get
extend : ∀ {A B} → (D A → B) → (D A → D B)
extend {A = A}{B = B} f x = set (f x) x
-- extend {A = A}{B = B} f = uncurry set ∘ (λ x → f x , x)
-- The get-set law.
extend-β : ∀ {A B} (f : D A → B) → extract ∘ extend f ≡ f
extend-β {A = A}{B = B} f = begin
extract ∘ extend f ≡⟨⟩
get ∘ (λ x → set (f x) x) ≡⟨⟩
traverse (Const B) id ∘ (λ x → dmap (const (f x)) x) ≡⟨⟩
(λ x → traverse (Const B) id (dmap (const (f x)) x)) ≡⟨⟩
(λ x → (traverse (Const B) id ∘ traverse Id (const (f x))) x) ≡⟨ {! traverse-∘!} ⟩
(λ x → traverse (Const B) (const (f x)) x) ≡⟨ {!gets=∘get!} ⟩
(λ x → (const (f x) ∘ traverse (Const A) id) x) ≡⟨⟩
(λ x → f x) ≡⟨⟩
f ∎
-- The set-get law.
extend-η : ∀ {A} → extend {A = A} extract ≡ id
extend-η = begin
extend extract ≡⟨⟩
(λ x → set (get x) x) ≡⟨ {!!} ⟩
id ∎
-- The set-set law.
-- Lens structure.
-- Law: gets in terms of get.
gets=∘get : ∀ {A B} (f : A → B) →
gets f ≡ f ∘ get
gets=∘get {A = A}{B = B} f =
begin
gets f
≡⟨⟩
traverse (Const B) {B = B} f
≡⟨ traverse-∘ (Const B) Id {g = f} ⟩
traverse (Const B) {B = A} f
≡⟨ sym (traverse-free (Const A) (Const B) f (KKNat f) id) ⟩
f ∘ traverse (Const A) {B = A} id
≡⟨⟩
f ∘ get
∎
-- Constant traversal.
traverse-c : ∀ {A B} (b : B) (l : D A) → B
traverse-c {B = B} b = traverse (Const B) {B = B} (const b)
-- Holds by parametricity (since type B is arbitrary and there is just one b : B given).
traverse-const : ∀ {A B} {b : B} (l : D A) →
traverse (Const B) (const b) l ≡ b
traverse-const {A = A} {B = B} {b = b} l =
begin
traverse (Const B) (const b) l ≡⟨ cong (λ z → z l) (gets=∘get (const b)) ⟩
(const b ∘ traverse (Const A) {B = B} id) l ≡⟨⟩
b
∎
-- Lens laws.
-- 1. Get what you set.
get-set : ∀ {A} {a : A} →
get ∘ set {A = A} a ≡ const a
get-set {A = A} {a = a} =
begin
get ∘ set a ≡⟨⟩
get ∘ dmap (const a) ≡⟨⟩
traverse (Const A) id ∘ traverse Id (const a) ≡⟨⟩
map Id (traverse (Const A) id) ∘ traverse Id (const a) ≡⟨ sym (traverse-∘ Id (Const A)) ⟩
traverse (Id · Const A) (map Id id ∘ const a) ≡⟨⟩
traverse (Const A) (const a) ≡⟨⟩
gets (const a) ≡⟨ gets=∘get (const a) ⟩
const a ∘ get ≡⟨⟩
const a
∎
-- 2. Set what you got.
set-get : ∀ {A} (l : D A) →
set (get l) l ≡ l
set-get {A = A} l =
begin
set (get l) l ≡⟨⟩
dmap (λ _ → get l) l ≡⟨⟩
traverse Id (λ _ → get l) l ≡⟨ {!!} ⟩
l
∎
-- 3. Set twice is set once.
set-set : ∀ {A} (a b : A) →
set a ∘ set {A = A} b ≡ set a
set-set a b =
begin
set a ∘ set b ≡⟨⟩
dmap (const a) ∘ dmap (const b) ≡⟨ sym dmap-∘ ⟩
dmap (const a ∘ const b) ≡⟨⟩
dmap (const a) ≡⟨⟩
set a
∎
open IsDecoration
-- Identity decoration.
idIsDecoration : IsDecoration (λ A → A)
traverse idIsDecoration F! f = f
traverse-free idIsDecoration F! G! η η! f = refl
traverse-id idIsDecoration = refl
traverse-∘ idIsDecoration F! G! = refl
-- Decoration composition.
_•_ : ∀ {D E} → IsDecoration D → IsDecoration E → IsDecoration (λ A → D (E A))
traverse (d • e) F f = traverse d F (traverse e F f)
traverse-free (d • e) F G η η! f =
begin
η ∘ traverse (d • e) F f ≡⟨⟩
η ∘ traverse d F (traverse e F f) ≡⟨ traverse-free d F G η η! _ ⟩
traverse d G (η ∘ traverse e F f) ≡⟨ cong (traverse d G) (traverse-free e F G η η! f) ⟩
traverse d G (traverse e G (η ∘ f)) ≡⟨⟩
traverse (d • e) G (η ∘ f)
∎
traverse-id (d • e) =
begin
traverse d Id (traverse e Id id) ≡⟨ cong (traverse d Id) (traverse-id e) ⟩
traverse d Id id ≡⟨ traverse-id d ⟩
id
∎
traverse-∘ (d • e) F G {f = f} {g = g} =
begin
traverse (d • e) FG (map F g ∘ f) ≡⟨⟩
traverse d FG (traverse e FG (map F g ∘ f)) ≡⟨ cong (traverse d FG) (traverse-∘ e F G) ⟩
traverse d FG (map F (traverse e G g) ∘ traverse e F f) ≡⟨ traverse-∘ d F G ⟩
map F (traverse d G (traverse e G g)) ∘ traverse d F (traverse e F f) ≡⟨⟩
map F (traverse (d • e) G g) ∘ traverse (d • e) F f
∎
where FG = F · G
-- The instance.
decoration : ∀ {A} → IsDecoration (_×_ A)
-- traverse decoration F f (a , x) = map F (_,_ a) (f x) -- FAILS BUG WITH record pattern trans!!
traverse decoration F f ax = map F (_,_ (proj₁ ax)) (f (proj₂ ax)) -- WORKS
traverse-free decoration F G η η! f = fun-ext λ ax → let (a , x) = ax in
begin
(η ∘ traverse decoration F f) (a , x) ≡⟨⟩
(η ∘ map F (_,_ a)) (f x) ≡⟨ cong (λ z → z (f x)) (η! (_,_ a)) ⟩
(map G (_,_ a) ∘ η) (f x) ≡⟨⟩
map G (_,_ a) (η (f x)) ≡⟨⟩
traverse decoration G (η ∘ f) (a , x)
∎
traverse-id decoration = refl
traverse-∘ decoration F G {f = f} {g = g} = fun-ext λ ax → let (a , x) = ax in
begin
traverse decoration FG (map F g ∘ f) (a , x) ≡⟨⟩
map FG (_,_ a) (map F g (f x)) ≡⟨⟩
map F (map G (_,_ a)) (map F g (f x)) ≡⟨ cong (λ z → z _) (sym (map-∘ F)) ⟩
map F (map G (_,_ a) ∘ g) (f x) ≡⟨⟩
map F (λ y → map G (_,_ a) (g y)) (f x) ≡⟨⟩
map F (λ y → traverse decoration G g (a , y)) (f x) ≡⟨⟩
map F (traverse decoration G g ∘ (_,_ a)) (f x) ≡⟨ cong (λ z → z _) (map-∘ F) ⟩
map F (traverse decoration G g) (map F (_,_ a) (f x)) ≡⟨⟩
map F (traverse decoration G g) (traverse decoration F f (a , x)) ≡⟨⟩
(map F (traverse decoration G g) ∘ traverse decoration F f) (a , x)
∎
where FG = F · G
|
{
"alphanum_fraction": 0.4560612889,
"avg_line_length": 31.2535211268,
"ext": "agda",
"hexsha": "6df23be72ccee70235e97e347a7d37d4cf3df1c3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andreasabel/cubical",
"max_forks_repo_path": "src/Control/Decoration.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andreasabel/cubical",
"max_issues_repo_path": "src/Control/Decoration.agda",
"max_line_length": 122,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andreasabel/cubical",
"max_stars_repo_path": "src/Control/Decoration.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3234,
"size": 8876
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.