Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.two-semi-categories.Functor open import lib.two-semi-categories.FundamentalCategory open import lib.two-semi-categories.FunctorInverse open import lib.types.Pi using () module lib.two-semi-categories.FunextFunctors where module FunextFunctors {i j} (A : Type i) (B : Type j) {{B-level : has-level 2 B}} where open import lib.two-semi-categories.FunCategory private app=-pres-comp : ∀ {f g h : A → B} (α : f == g) (β : g == h) → app= (α ∙ β) == (λ a → app= α a ∙ app= β a) app=-pres-comp α β = λ= (λ a → ap-∙ (λ f → f a) α β) abstract app=-pres-comp-coh : ∀ {f g h i : A → B} (α : f == g) (β : g == h) (γ : h == i) → app=-pres-comp (α ∙ β) γ ◃∙ ap (λ s a → s a ∙ app= γ a) (app=-pres-comp α β) ◃∙ λ= (λ a → ∙-assoc (app= α a) (app= β a) (app= γ a)) ◃∎ =ₛ ap app= (∙-assoc α β γ) ◃∙ app=-pres-comp α (β ∙ γ) ◃∙ ap (λ s a → app= α a ∙ s a) (app=-pres-comp β γ) ◃∎ app=-pres-comp-coh {f} idp idp γ = app=-pres-comp idp γ ◃∙ ap (λ s a → s a ∙ app= γ a) (app=-pres-comp idp idp) ◃∙ λ= (λ a → idp) ◃∎ =ₛ⟨ 2 & 1 & =ₛ-in {t = []} (! (λ=-η idp)) ⟩ app=-pres-comp idp γ ◃∙ ap (λ s a → s a ∙ app= γ a) (λ= (λ a → idp {a = idp {a = f a}})) ◃∎ =ₛ₁⟨ 1 & 1 & ap (ap (λ s a → s a ∙ app= γ a)) (! (λ=-η idp)) ⟩ app=-pres-comp idp γ ◃∙ idp ◃∎ =ₛ₁⟨ 1 & 1 & ap (ap (λ s → s)) (λ=-η idp) ⟩ app=-pres-comp idp γ ◃∙ ap (λ s → s) (λ= (λ a → idp {a = app= γ a})) ◃∎ =ₛ⟨ 0 & 0 & contract ⟩ idp ◃∙ app=-pres-comp idp γ ◃∙ ap (λ s → s) (λ= (λ a → idp {a = app= γ a})) ◃∎ ∎ₛ app=-functor : TwoSemiFunctor (2-type-fundamental-cat (A → B)) (fun-cat A (2-type-fundamental-cat B)) app=-functor = record { F₀ = idf (A → B) ; F₁ = app= ; pres-comp = app=-pres-comp ; pres-comp-coh = app=-pres-comp-coh } private module app=-functor = TwoSemiFunctor app=-functor module app=-inverse = FunctorInverse app=-functor (idf-is-equiv _) (λ f g → snd app=-equiv) λ=-functor : TwoSemiFunctor (fun-cat A (2-type-fundamental-cat B)) (2-type-fundamental-cat (A → B)) λ=-functor = app=-inverse.functor module λ=-functor = TwoSemiFunctor λ=-functor abstract λ=-functor-pres-comp=λ=-∙ : ∀ {f g h : A → B} (α : f ∼ g) (β : g ∼ h) → λ=-functor.pres-comp α β == =ₛ-out (λ=-∙ α β) λ=-functor-pres-comp=λ=-∙ α β = =ₛ-out {t = =ₛ-out (λ=-∙ α β) ◃∎} $ λ=-functor.pres-comp α β ◃∎ =ₛ⟨ app=-inverse.pres-comp-β α β ⟩ idp ◃∙ ap2 (λ s t → λ= (λ a → s a ∙ t a)) (! (λ= (app=-β α))) (! (λ= (app=-β β))) ◃∙ ap λ= (! (λ= (λ a → ap-∙ (λ f → f a) (λ= α) (λ= β)))) ◃∙ ! (λ=-η (λ= α ∙ λ= β)) ◃∎ =ₛ⟨ 0 & 1 & expand [] ⟩ ap2 (λ s t → λ= (λ a → s a ∙ t a)) (! (λ= (app=-β α))) (! (λ= (app=-β β))) ◃∙ ap λ= (! (λ= (λ a → ap-∙ (λ f → f a) (λ= α) (λ= β)))) ◃∙ ! (λ=-η (λ= α ∙ λ= β)) ◃∎ =ₛ₁⟨ 0 & 1 & step₈ ⟩ ap λ= (! (λ= (λ a' → ap2 _∙_ (app=-β α a') (app=-β β a')))) ◃∙ ap λ= (! (λ= (λ a' → ap-∙ (λ γ → γ a') (λ= α) (λ= β)))) ◃∙ ! (λ=-η (λ= α ∙ λ= β)) ◃∎ =ₛ⟨ 0 & 2 & ap-seq-=ₛ λ= $ ∙-!-seq $ λ= (λ a' → ap-∙ (λ γ → γ a') (λ= α) (λ= β)) ◃∙ λ= (λ a' → ap2 _∙_ (app=-β α a') (app=-β β a')) ◃∎ ⟩ ap λ= (! (λ= (λ a' → ap-∙ (λ γ → γ a') (λ= α) (λ= β)) ∙ λ= (λ a' → ap2 _∙_ (app=-β α a') (app=-β β a')))) ◃∙ ! (λ=-η (λ= α ∙ λ= β)) ◃∎ =ₛ₁⟨ 0 & 1 & ap-! λ= (λ= (λ a' → ap-∙ (λ γ → γ a') (λ= α) (λ= β)) ∙ λ= (λ a' → ap2 _∙_ (app=-β α a') (app=-β β a'))) ⟩ ! (ap λ= (λ= (λ a' → ap-∙ (λ γ → γ a') (λ= α) (λ= β)) ∙ λ= (λ a' → ap2 _∙_ (app=-β α a') (app=-β β a')))) ◃∙ ! (λ=-η (λ= α ∙ λ= β)) ◃∎ =ₛ₁⟨ 0 & 1 & ap (! ∘ ap λ=) $ =ₛ-out $ ∙-λ= (λ a' → ap-∙ (λ γ → γ a') (λ= α) (λ= β)) (λ a' → ap2 _∙_ (app=-β α a') (app=-β β a')) ⟩ ! (ap λ= (λ= (λ a' → ap-∙ (λ γ → γ a') (λ= α) (λ= β) ∙ ap2 _∙_ (app=-β α a') (app=-β β a')))) ◃∙ ! (λ=-η (λ= α ∙ λ= β)) ◃∎ =ₛ⟨ =ₛ-in $ ∙-! (ap λ= (λ= (λ a' → ap-∙ (λ γ → γ a') (λ= α) (λ= β) ∙ ap2 _∙_ (app=-β α a') (app=-β β a')))) (λ=-η (λ= α ∙ λ= β)) ⟩ ! (λ=-η (λ= α ∙ λ= β) ∙ ap λ= (λ= (λ a' → ap-∙ (λ γ → γ a') (λ= α) (λ= β) ∙ ap2 _∙_ (app=-β α a') (app=-β β a')))) ◃∎ ∎ₛ where step₈' : ap2 (λ s t a → s a ∙ t a) (λ= (app=-β α)) (λ= (app=-β β)) == λ= (λ a' → ap2 _∙_ (app=-β α a') (app=-β β a')) step₈' = –>-is-inj app=-equiv _ _ $ λ= $ λ a → app= (ap2 (λ s t a' → s a' ∙ t a') (λ= (app=-β α)) (λ= (app=-β β))) a =⟨ ap-ap2 (λ f → f a) (λ s t a' → s a' ∙ t a') (λ= (app=-β α)) (λ= (app=-β β)) ⟩ ap2 (λ s t → s a ∙ t a) (λ= (app=-β α)) (λ= (app=-β β)) =⟨ ! (ap2-ap-lr _∙_ (λ f → f a) (λ f → f a) (λ= (app=-β α)) (λ= (app=-β β))) ⟩ ap2 _∙_ (app= (λ= (app=-β α)) a) (app= (λ= (app=-β β)) a) =⟨ ap2 (ap2 _∙_) (app=-β (app=-β α) a) (app=-β (app=-β β) a) ⟩ ap2 _∙_ (app=-β α a) (app=-β β a) =⟨ ! (app=-β (λ a' → ap2 _∙_ (app=-β α a') (app=-β β a')) a) ⟩ app= (λ= (λ a' → ap2 _∙_ (app=-β α a') (app=-β β a'))) a =∎ step₈ : ap2 (λ s t → λ= (λ a → s a ∙ t a)) (! (λ= (app=-β α))) (! (λ= (app=-β β))) == ap λ= (! (λ= (λ a' → ap2 _∙_ (app=-β α a') (app=-β β a')))) step₈ = ap2 (λ s t → λ= (λ a → s a ∙ t a)) (! (λ= (app=-β α))) (! (λ= (app=-β β))) =⟨ ! (ap-ap2 λ= (λ s t a → s a ∙ t a) (! (λ= (app=-β α))) (! (λ= (app=-β β)))) ⟩ ap λ= (ap2 (λ s t a → s a ∙ t a) (! (λ= (app=-β α))) (! (λ= (app=-β β)))) =⟨ ap (ap λ=) (ap2-! (λ s t a → s a ∙ t a) (λ= (app=-β α)) (λ= (app=-β β))) ⟩ ap λ= (! (ap2 (λ s t a → s a ∙ t a) (λ= (app=-β α)) (λ= (app=-β β)))) =⟨ ap (ap λ= ∘ !) step₈' ⟩ ap λ= (! (λ= (λ a' → ap2 _∙_ (app=-β α a') (app=-β β a')))) =∎
{ "alphanum_fraction": 0.3751390876, "avg_line_length": 44.9357142857, "ext": "agda", "hexsha": "fae3251e530f2c5dd7d0a2acbe3d3c997713f2fa", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "core/lib/two-semi-categories/FunextFunctors.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "core/lib/two-semi-categories/FunextFunctors.agda", "max_line_length": 110, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "core/lib/two-semi-categories/FunextFunctors.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 2983, "size": 6291 }
------------------------------------------------------------------------------ -- An inductive predicate for representing functions ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Data.Fun where open import FOTC.Base ------------------------------------------------------------------------------ -- 2012-03-13. I don't see how we can distinguish between data -- elements and functions in FOTC. The following inductive predicate -- is true for any element d : D. data Fun : D → Set where fun : (f : D) → Fun f -- But using a λ-abstraction we could make a distinguish: postulate lam : (D → D) → D -- LTC-PCF λ-abstraction. data Fun₁ : D → Set where fun₁ : (f : D → D) → Fun₁ (lam f)
{ "alphanum_fraction": 0.4654226125, "avg_line_length": 35.0384615385, "ext": "agda", "hexsha": "5e069bc891730d505c3e215c2be5256afa192a40", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Data/Fun.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Data/Fun.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Data/Fun.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 191, "size": 911 }
-- Andreas, 2020-03-20, issue #4482, reported by gallai -- Precise range for unexpected implicit argument. _ : Set → {A : Set} → {B : Set} → {C : Set} → Set _ = λ { _ {B = B} {A = A} → {!!} } -- Unexpected implicit argument -- when checking the clause left hand side -- .extendedlambda0 _ {B = B} {A = A} -- ^ highlight this
{ "alphanum_fraction": 0.5543175487, "avg_line_length": 32.6363636364, "ext": "agda", "hexsha": "d106c9461b698f8012c7212b354d18612b3d7150", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Fail/Issue4482.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue4482.agda", "max_line_length": 55, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue4482.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 109, "size": 359 }
{-# OPTIONS --prop --rewriting #-} module Examples.Queue where open import Calf.CostMonoid open import Calf.CostMonoids using (ℕ-CostMonoid) costMonoid = ℕ-CostMonoid open CostMonoid costMonoid using (ℂ) open import Calf costMonoid open import Calf.Types.Nat open import Calf.Types.Unit open import Calf.Types.Sum open import Calf.Types.Bounded costMonoid open import Function open import Data.Nat open import Data.Nat.Properties import Data.Integer as Int import Data.Integer.Properties as IntP open import Data.List renaming (sum to lsum) open import Data.Product open import Relation.Binary.PropositionalEquality as P record Queue (A : tp pos) : Set where field Q : tp pos emp : val Q enq : cmp (Π Q λ _ → Π A λ _ → F Q) deq : cmp (Π Q λ _ → F (sum unit (Σ++ Q λ _ → A))) module CostList (A : tp pos) (n : ℕ) where -- Suppose we want to implement the Queue signature above using lists. -- One cost model is to count the number of times a cons node is inspected. -- This is implemented by the following annotated list type: -- destructing a cons node of type list n A consumes n steps. postulate list : tp pos nil : val list cons : val A → val list → val list list/ind : (l : val list) → (X : val list → tp neg) → cmp (X nil) → ((a : val A) → (l : val list) → (r : val (U (X l))) → cmp (X (cons a l))) → cmp (X l) list/ind/nil : ∀ {X} → (e0 : cmp (X nil)) → (e1 : (a : val A) → (l : val list) → (r : val (U (X l))) → cmp (X (cons a l))) → list/ind nil X e0 e1 ≡ e0 {-# REWRITE list/ind/nil #-} list/ind/cons : ∀ {X} → (a : val A) → (l : val list) → (e0 : cmp (X nil)) → (e1 : (a : val A) → (l : val list) → (r : val (U (X l))) → cmp (X (cons a l))) → list/ind (cons a l) X e0 e1 ≡ step (X (cons a l)) n (e1 a l (list/ind l X e0 e1)) {-# REWRITE list/ind/cons #-} list/match : (l : val list) → (X : val list → tp neg) → cmp (X nil) → ((a : val A) → (l : val list) → cmp (X (cons a l))) → cmp (X l) list/match l X e0 e1 = list/ind l X e0 (λ a l _ → e1 a l) bound/list/match : ∀ (l : val list) (X : val list → tp pos) {e0 : val (U (F (X nil)))} {e1 : (a : val A) → (l : val list) → val (U (F (X (cons a l))))} {p0 : val (U cost)} {p1 : (a : val A) → (l : val list) → val (U cost)} → IsBounded (X nil) e0 p0 → ((a : val A) → (l : val list) → IsBounded (X (cons a l)) (e1 a l) (p1 a l)) → IsBounded (X l) (list/match l (F ∘ X) e0 e1) (list/match l (λ _ → cost) p0 (λ a l → n + p1 a l)) bound/list/match l X {e0} {e1} {p0} {p1} ub0 ub1 = list/match l (λ l → meta (IsBounded (X l) (list/match l (F ∘ X) e0 e1) (list/match l (λ _ → cost) p0 (λ a l → n + p1 a l)))) ub0 λ a l → bound/circ n (bound/step n (p1 a l) (ub1 a l)) len : val list → ℕ len l = list/ind l (λ _ → meta ℕ) 0 λ a l r → 1 + r module Ex/CostList where open CostList nat 0 ex : val list ex = cons 0 (cons 1 nil) module Rev (A : tp pos) where open CostList A 1 revAppend : cmp (Π list λ _ → Π list λ _ → F list) revAppend l = list/ind l (λ _ → Π list λ _ → F list) (λ l' → ret l') λ x _ r → λ l' → r (cons x l') revAppend/lemma/cons : ∀ x xs l' → ◯ (∃ λ y → ∃ λ ys → (len ys ≡ len xs + len l') × revAppend (cons x xs) l' ≡ ret (cons y ys)) revAppend/lemma/cons x xs = list/ind xs (λ xs → meta (∀ x l' → ◯ (∃ λ y → ∃ λ ys → (len ys ≡ len xs + len l') × revAppend (cons x xs) l' ≡ ret (cons y ys)))) (λ x l' u → (x , l' , refl , step/ext (F list) (ret (cons x l')) 1 u)) (λ x' xs' ih x l' u → let (y , ys , h , ≡) = ih x' (cons x l') u in let open ≡-Reasoning in y , ys , ( begin len ys ≡⟨ h ⟩ len xs' + len (cons x l') ≡⟨⟩ len xs' + step (meta ℕ) 1 (suc (len l')) ≡⟨ cong (len xs' +_) (step/ext (meta ℕ) (suc (len l')) 1 u) ⟩ len xs' + suc (len l') ≡⟨ +-suc (len xs') (len l') ⟩ suc (len xs' + len l') ≡⟨⟩ suc (len xs') + len l' ≡˘⟨ cong (_+ len l') (step/ext (meta ℕ) (suc (len xs')) 1 u) ⟩ step (meta ℕ) 1 (suc (len xs')) + len l' ≡⟨⟩ len (cons x' xs') + len l' ∎ ) , ( begin revAppend (cons x (cons x' xs')) l' ≡⟨⟩ step (F list) 1 (revAppend (cons x' xs') (cons x l')) ≡⟨ step/ext (F list) _ 1 u ⟩ revAppend (cons x' xs') (cons x l') ≡⟨ (≡) ⟩ ret (cons y ys) ∎ )) x revAppend/cost : cmp (Π list λ _ → Π list λ _ → cost) revAppend/cost l l' = len l revAppend≤revAppend/cost : ∀ l l' → IsBounded list (revAppend l l') (revAppend/cost l l') revAppend≤revAppend/cost l = list/ind l (λ l → meta (∀ l' → IsBounded list (revAppend l l') (revAppend/cost l l'))) (λ l' → bound/ret) (λ a l r → λ l' → bound/circ 1 (bound/step 1 (len l) (r (cons a l')))) rev : cmp (Π list λ _ → F list) rev l = revAppend l nil rev/lemma/cons : ∀ x xs → ◯ (∃ λ y → ∃ λ ys → len ys ≡ len xs × rev (cons x xs) ≡ ret (cons y ys)) rev/lemma/cons x xs = subst (λ n → ◯ (∃ λ y → ∃ λ ys → len ys ≡ n × rev (cons x xs) ≡ ret (cons y ys))) (+-identityʳ _) (revAppend/lemma/cons x xs nil) rev/cost : cmp (Π list λ _ → cost) rev/cost l = len l rev≤rev/cost : ∀ l → IsBounded list (rev l) (rev/cost l) rev≤rev/cost l = revAppend≤revAppend/cost l nil -- Implement Queue with a pair of lists; (f , b) represents the queue f :: rev b. module FrontBack (A : tp pos) where -- For simplicity, we charge 1 step for each cons node destruction. open CostList A 1 open Rev A Q : tp pos Q = Σ++ list λ _ → list emp : val Q emp = (nil , nil) enq : cmp (Π Q λ _ → Π A λ _ → F Q) enq (f , b) x = ret (f , cons x b) enq/cost : cmp (Π Q λ _ → Π A λ _ → cost) enq/cost (f , b) x = 0 enq≤enq/cost : ∀ q x → IsBounded Q (enq q x) (enq/cost q x) enq≤enq/cost q x = bound/ret deq-tp = sum unit (Σ++ Q λ _ → A) deq/emp : cmp (Π list λ _ → F deq-tp) deq/emp l = list/match l (λ _ → F deq-tp) (ret (inj₁ triv)) λ a l' → ret (inj₂ ((l' , nil) , a)) deq/emp/cost : cmp (Π list λ _ → cost) deq/emp/cost l = list/match l (λ _ → cost) 0 λ a l' → 1 + 0 deq/emp≤deq/emp/cost : ∀ l → IsBounded deq-tp (deq/emp l) (deq/emp/cost l) deq/emp≤deq/emp/cost l = bound/list/match l (λ _ → deq-tp) bound/ret λ a l' → bound/ret deq : cmp (Π Q λ _ → F deq-tp) deq (f , b) = list/match f (λ _ → F deq-tp) (bind (F deq-tp) (rev b) (λ b' → deq/emp b')) λ a l → ret (inj₂ ((l , b) , a)) deq/cost : cmp (Π Q λ _ → cost) deq/cost (f , b) = list/match f (λ _ → cost) (bind cost (rev b) (λ b' → rev/cost b + deq/emp/cost b')) λ a l → 1 + 0 deq/cost/closed : cmp (Π Q λ _ → cost) deq/cost/closed (f , b) = list/match f (λ _ → cost) (list/match b (λ _ → cost) 0 (λ _ b' → 1 + len b)) λ _ _ → 1 deq/cost≤deq/cost/closed : ∀ q → ◯ (deq/cost q ≤ deq/cost/closed q) deq/cost≤deq/cost/closed (f , b) u = list/match f (λ f → meta (deq/cost (f , b) ≤ deq/cost/closed (f , b))) (list/match b (λ b → meta (deq/cost (nil , b) ≤ deq/cost/closed (nil , b))) ≤-refl λ x xs → let open ≤-Reasoning in let (y , ys , _ , ≡) = rev/lemma/cons x xs u in begin deq/cost (nil , cons x xs) ≡⟨⟩ bind cost (rev (cons x xs)) (λ b' → rev/cost (cons x xs) + deq/emp/cost b') ≡⟨⟩ bind cost (rev (cons x xs)) (λ b' → rev/cost (cons x xs) + deq/emp/cost b') ≡⟨ cong (λ e → bind cost e (λ b' → rev/cost (cons x xs) + deq/emp/cost b')) (≡) ⟩ rev/cost (cons x xs) + deq/emp/cost (cons y ys) ≡⟨⟩ step cost 1 (suc (len xs)) + step cost 1 1 ≡⟨ cong₂ _+_ (step/ext cost (suc (len xs)) 1 u) (step/ext cost 1 1 u) ⟩ suc (len xs) + 1 ≡⟨ +-comm (suc (len xs)) 1 ⟩ suc (suc (len xs)) ≡˘⟨ cong suc (step/ext cost _ 1 u) ⟩ suc (step cost 1 (suc (len xs))) ≡⟨⟩ suc (len (cons x xs)) ≡˘⟨ step/ext cost _ 1 u ⟩ step cost 1 (suc (len (cons x xs))) ≡⟨⟩ list/match (cons x xs) (λ _ → cost) 0 (λ _ b' → 1 + len (cons x xs)) ≡⟨⟩ deq/cost/closed (nil , cons x xs) ∎ ) λ _ _ → ≤-refl deq≤deq/cost : ∀ q → IsBounded deq-tp (deq q) (deq/cost q) deq≤deq/cost (f , b) = bound/list/match f (λ _ → deq-tp) (bound/bind (rev/cost b) _ (rev≤rev/cost b) λ b' → deq/emp≤deq/emp/cost b') λ a l → bound/ret deq≤deq/cost/closed : ∀ q → IsBounded deq-tp (deq q) (deq/cost/closed q) deq≤deq/cost/closed q = bound/relax (deq/cost≤deq/cost/closed q) (deq≤deq/cost q) -- Amortized analysis for front-back queue. -- The goal is to bound the cost of a single-thread sequence of queue operations staring with an initial queue q0, -- where an operation is either an enqueue or a dequeue. data op : Set where op/enq : (x : val A) → op op/deq : op -- Potential function ϕ : val Q → ℕ ϕ (f , b) = len f + 2 * len b -- o operate q is the computation induced by operation o on queue q. -- Needed because deq doesn't always return a queue (e.g., deq emp). -- In these cases we just return the empty queue. _operate_ : op → val Q → cmp (F Q) (op/enq x) operate q = enq q x (op/deq) operate q = bind (F Q) (deq q) λ s → (sum/case unit (Σ++ Q λ _ → A) (λ _ → F Q) s (λ _ → ret (nil , nil)) (λ (q , x) → ret q)) -- o operateϕ q is morally ϕ (o operate q), which doesn't type-check since o operate q is a computation. -- Easier to work with than bind cost (o operate q) ϕ (but they are equivalent, as shown below). _operateϕ_ : op → val Q → ℂ (op/enq x) operateϕ (f , b) = len f + 2 * (1 + len b) (op/deq) operateϕ (f , b) = list/match f (λ _ → cost) (list/match b (λ _ → cost) 0 (λ _ b' → len b')) (λ _ f' → len f' + 2 * len b) operateϕ≡ϕ∘operate : ∀ o q → ◯ (o operateϕ q ≡ bind cost (o operate q) ϕ) operateϕ≡ϕ∘operate (op/enq x) (f , b) u = begin len f + 2 * (1 + len b) ≡˘⟨ cong (λ n → len f + 2 * n) (step/ext cost (1 + len b) 1 u) ⟩ len f + 2 * step cost 1 (1 + len b) ≡⟨⟩ bind cost (enq (f , b) x) ϕ ∎ where open ≡-Reasoning operateϕ≡ϕ∘operate op/deq (f , b) u = list/match f (λ f → meta ((op/deq operateϕ (f , b)) ≡ bind cost (op/deq operate (f , b)) ϕ)) (list/ind b (λ b → meta ((op/deq operateϕ (nil , b)) ≡ bind cost (op/deq operate (nil , b)) ϕ)) refl λ a l ih → emp/cons a l) λ a l → refl where emp/cons : ∀ a l → op/deq operateϕ (nil , cons a l) ≡ bind cost (op/deq operate (nil , cons a l)) ϕ emp/cons a l with rev/lemma/cons a l u ... | (x' , l' , eqn1 , eqn2) = begin op/deq operateϕ (nil , cons a l) ≡⟨⟩ step cost 1 (len l) ≡⟨ step/ext cost (len l) 1 u ⟩ len l ≡⟨ P.sym eqn1 ⟩ len l' ≡⟨ P.sym (+-identityʳ (len l')) ⟩ len l' + 0 ≡⟨⟩ len l' + 2 * len nil ≡⟨⟩ ϕ (l' , nil) ≡˘⟨ step/ext cost (ϕ (l' , nil)) 1 u ⟩ step cost 1 (ϕ (l' , nil)) ≡⟨⟩ bind cost (step (F Q) 1 (ret (l' , nil))) ϕ ≡⟨⟩ bind cost (bind (F Q) (step (F deq-tp) 1 (ret (inj₂ ((l' , nil) , x')))) λ s → (sum/case unit (Σ++ Q λ _ → A) (λ _ → F Q) s (λ _ → ret (nil , nil)) (λ (q , x) → ret q))) ϕ ≡⟨⟩ bind cost (bind (F Q) (deq/emp (cons x' l')) λ s → (sum/case unit (Σ++ Q λ _ → A) (λ _ → F Q) s (λ _ → ret (nil , nil)) (λ (q , x) → ret q))) ϕ ≡˘⟨ cong (λ e → bind cost (bind (F Q) e λ l' → bind (F Q) (deq/emp l') λ s → (sum/case unit (Σ++ Q λ _ → A) (λ _ → F Q) s (λ _ → ret (nil , nil)) (λ (q , x) → ret q))) ϕ ) eqn2 ⟩ bind cost (bind (F Q) (rev (cons a l)) λ l' → bind (F Q) (deq/emp l') λ s → (sum/case unit (Σ++ Q λ _ → A) (λ _ → F Q) s (λ _ → ret (nil , nil)) (λ (q , x) → ret q))) ϕ ≡⟨⟩ bind cost (bind (F Q) (deq (nil , cons a l)) λ s → (sum/case unit (Σ++ Q λ _ → A) (λ _ → F Q) s (λ _ → ret (nil , nil)) (λ (q , x) → ret q))) ϕ ≡⟨⟩ bind cost (op/deq operate (nil , cons a l)) ϕ ∎ where open ≡-Reasoning -- op/cost o q is the cost of o operate q. op/cost : op → val Q → ℕ op/cost (op/enq x) q = 0 op/cost (op/deq) (f , b) = list/match f (λ _ → cost) (list/match b (λ _ → cost) 0 (λ _ b' → 2 + len b')) (λ _ _ → 1) deq/cost≡cost/deq : ∀ q → ◯ (deq/cost/closed q ≡ op/cost op/deq q) deq/cost≡cost/deq (f , b) u = P.cong (λ x → list/match f (λ _ → cost) x (λ _ _ → 1)) ( list/match b (λ b → meta (list/match b (λ _ → cost) 0 (λ _ b' → 1 + len b) ≡ list/match b (λ _ → cost) 0 (λ _ b' → 2 + len b'))) refl (λ a l → let open ≡-Reasoning in begin list/match (cons a l) (λ _ → cost) 0 (λ _ b' → 1 + len (cons a l)) ≡⟨⟩ step cost 1 (1 + len (cons a l)) ≡⟨ step/ext cost (1 + len (cons a l)) 1 u ⟩ 1 + len (cons a l) ≡⟨⟩ 1 + step cost 1 (suc (len l)) ≡⟨ cong (1 +_) (step/ext cost (suc (len l)) 1 u) ⟩ 2 + len l ≡˘⟨ step/ext cost (2 + len l) 1 u ⟩ step cost 1 (2 + len l) ≡⟨⟩ list/match (cons a l) (λ _ → cost) 0 (λ _ b' → 2 + len b') ∎ ) ) -- cost o q upperbounds the cost of o operate q. op≤op/cost : ∀ o q → IsBounded Q (o operate q) (op/cost o q) op≤op/cost (op/enq x) q = enq≤enq/cost q x op≤op/cost op/deq q rewrite P.sym (+-identityʳ (op/cost (op/deq) q)) = bound/bind/const {A = deq-tp} {e = deq q} {f = λ s → (sum/case unit (Σ++ Q λ _ → A) (λ _ → F Q) s (λ _ → ret (nil , nil)) (λ (q , x) → ret q))} (op/cost op/deq q) 0 (bound/relax (λ u → ≤-reflexive (deq/cost≡cost/deq q u)) (deq≤deq/cost/closed q)) λ a → bound/sum/case/const/const unit ((Σ++ Q λ _ → A)) (λ _ → Q) a ((λ _ → ret (nil , nil))) (λ (q , x) → ret q) 0 (λ _ → bound/ret) (λ _ → bound/ret) -- is/acost o k when for any state q, k suffices for the cost of o on q and the difference in the potential. is/acost : op → ℕ → Set is/acost o k = ∀ q → (Int.+ (op/cost o q)) Int.+ ((o operateϕ q) Int.⊖ (ϕ q)) Int.≤ Int.+ k acost/weaken : ∀ {m n o} → m ≤ n → is/acost o m → is/acost o n acost/weaken h1 h2 = λ q → IntP.≤-trans (h2 q) (Int.+≤+ h1) -- A sequence of operations induces a single computation by threading through the initial state q0. _op/seq_ : List op → val Q → cmp (F Q) [] op/seq q0 = ret q0 (o ∷ os) op/seq q = bind (F Q) (o operate q) λ q' → os op/seq q' op/seq/cost : ∀ (l : List op) → val Q → ℂ op/seq/cost [] q0 = 0 op/seq/cost (o ∷ os) q = bind cost (o operate q) λ q' → op/cost o q + op/seq/cost os q' -- Cost of a sequence computation is bounded by the sum of cost of the constituents. op/seq≤op/seq/cost : ∀ l q → IsBounded Q (l op/seq q) (op/seq/cost l q) op/seq≤op/seq/cost [] q0 = bound/ret op/seq≤op/seq/cost (o ∷ os) q = bound/bind {A = Q} {e = o operate q} {f = λ q → os op/seq q} (op/cost o q) (op/seq/cost os) (op≤op/cost o q) λ q → op/seq≤op/seq/cost os q -- Telescoping the potential. op/seq/cost/tele : ∀ (l : List op) → val Q → Int.ℤ op/seq/cost/tele [] q0 = Int.0ℤ op/seq/cost/tele (o ∷ os) q = bind (meta Int.ℤ) (o operate q) λ q' → (Int.+ (op/cost o q)) Int.+ (o operateϕ q Int.⊖ ϕ q) Int.+ (op/seq/cost/tele os q') ϕn : ℕ → List op → val Q → ℕ ϕn zero l q0 = ϕ q0 ϕn (suc n) (o ∷ os) q = bind cost (o operate q) λ q' → ϕn n os q' ϕn (suc n) [] q = 0 -- Potential of the initial state ϕ/0 : List op → val Q → ℕ ϕ/0 l = ϕn 0 l -- Potential of the final state ϕ/-1 : List op → val Q → ℕ ϕ/-1 l = ϕn (length l) l bind/dup : ∀ A 𝕊 𝕋 e f (g : val A → 𝕊 → 𝕋) → bind {A} (meta 𝕋) e (λ a → g a (bind {A} (meta 𝕊) e f)) ≡ bind {A} (meta 𝕋) e (λ a → g a (f a)) bind/dup A 𝕊 𝕋 e f g = begin bind (meta 𝕋) e (λ a → g a (bind (meta 𝕊) e f)) ≡⟨ P.cong (λ h → bind (meta 𝕋) e h) (funext (λ a → bind/meta A 𝕊 𝕋 e f (λ s → g a s))) ⟩ bind (meta 𝕋) e (λ a → bind (meta 𝕋) e (λ a' → g a (f a'))) ≡⟨ bind/idem A 𝕋 e (λ a a' → g a (f a')) ⟩ bind (meta 𝕋) e (λ a → g a (f a)) ≡⟨ refl ⟩ bind (meta 𝕋) e (λ a → g a (f a)) ∎ where open ≡-Reasoning -- Telescoping sum: -- Σᵢⁿ op/cost oᵢ + ϕ qᵢ - ϕ qᵢ­₋₁ = ϕ q_{n-1} - ϕ q_0 + Σᵢ costᵢ cost≡cost/tele : ∀ l q → ◯ (op/seq/cost/tele l q ≡ (ϕ/-1 l q Int.⊖ ϕ/0 l q) Int.+ (Int.+ (op/seq/cost l q))) cost≡cost/tele [] q u = P.sym ( begin (ϕ q Int.⊖ ϕ q) Int.+ (Int.+ 0) ≡⟨ IntP.+-identityʳ (ϕ q Int.⊖ ϕ q) ⟩ ϕ q Int.⊖ ϕ q ≡⟨ IntP.n⊖n≡0 (ϕ q) ⟩ Int.+ 0 ≡⟨ refl ⟩ Int.+ 0 ∎ ) where open ≡-Reasoning cost≡cost/tele (o ∷ os) q u rewrite operateϕ≡ϕ∘operate o q u | bind/meta Q ℕ Int.ℤ (o operate q) (λ q' → op/cost o q + op/seq/cost os q') (λ x → (ϕ/-1 (o ∷ os) q Int.⊖ ϕ/0 (o ∷ os) q) Int.+ (Int.+ x)) | bind/dup Q ℕ Int.ℤ (o operate q) (ϕ/-1 os) (λ q' x → (x Int.⊖ ϕ q) Int.+ (Int.+ (op/cost o q + op/seq/cost os q'))) | bind/dup Q ℕ Int.ℤ (o operate q) ϕ (λ q' x → Int.+ (op/cost o q) Int.+ (x Int.⊖ ϕ q) Int.+ (op/seq/cost/tele os q')) = P.cong (λ f → bind (meta Int.ℤ) (o operate q) f) (funext (λ q' → ( begin (Int.+ (op/cost o q)) Int.+ (ϕ q' Int.⊖ ϕ q) Int.+ (op/seq/cost/tele os q') ≡⟨ P.cong (λ x → (Int.+ (op/cost o q)) Int.+ (ϕ q' Int.⊖ ϕ q) Int.+ x) (cost≡cost/tele os q' u) ⟩ Int.+ op/cost o q Int.+ (ϕ q' Int.⊖ ϕ q) Int.+ (ϕ/-1 os q' Int.⊖ ϕ/0 os q' Int.+ Int.+ op/seq/cost os q') ≡⟨ P.cong (λ x → x Int.+ (ϕ/-1 os q' Int.⊖ ϕ/0 os q' Int.+ Int.+ op/seq/cost os q')) (IntP.+-comm (Int.+ op/cost o q) (ϕ q' Int.⊖ ϕ q)) ⟩ ϕ q' Int.⊖ ϕ q Int.+ Int.+ op/cost o q Int.+ (ϕ/-1 os q' Int.⊖ ϕ/0 os q' Int.+ Int.+ op/seq/cost os q') ≡⟨ IntP.+-assoc (ϕ q' Int.⊖ ϕ q) (Int.+ op/cost o q) (ϕ/-1 os q' Int.⊖ ϕ/0 os q' Int.+ Int.+ op/seq/cost os q') ⟩ ϕ q' Int.⊖ ϕ q Int.+ (Int.+ op/cost o q Int.+ (ϕ/-1 os q' Int.⊖ ϕ/0 os q' Int.+ Int.+ op/seq/cost os q')) ≡⟨ P.cong (λ x → ϕ q' Int.⊖ ϕ q Int.+ x) (P.sym (IntP.+-assoc (Int.+ op/cost o q) (ϕ/-1 os q' Int.⊖ ϕ/0 os q') (Int.+ op/seq/cost os q'))) ⟩ ϕ q' Int.⊖ ϕ q Int.+ (Int.+ op/cost o q Int.+ (ϕ/-1 os q' Int.⊖ ϕ/0 os q') Int.+ Int.+ op/seq/cost os q') ≡⟨ P.cong (λ x → ϕ q' Int.⊖ ϕ q Int.+ (x Int.+ Int.+ op/seq/cost os q')) (IntP.+-comm (Int.+ op/cost o q) (ϕ/-1 os q' Int.⊖ ϕ/0 os q')) ⟩ ϕ q' Int.⊖ ϕ q Int.+ (ϕ/-1 os q' Int.⊖ ϕ/0 os q' Int.+ Int.+ op/cost o q Int.+ Int.+ op/seq/cost os q') ≡⟨ P.cong (λ x → ϕ q' Int.⊖ ϕ q Int.+ x) (IntP.+-assoc (ϕ/-1 os q' Int.⊖ ϕ/0 os q') (Int.+ op/cost o q) (Int.+ op/seq/cost os q')) ⟩ ϕ q' Int.⊖ ϕ q Int.+ (ϕ/-1 os q' Int.⊖ ϕ/0 os q' Int.+ (Int.+ op/cost o q Int.+ Int.+ op/seq/cost os q')) ≡⟨ P.sym (IntP.+-assoc (ϕ q' Int.⊖ ϕ q) (ϕ/-1 os q' Int.⊖ ϕ/0 os q') (Int.+ op/cost o q Int.+ Int.+ op/seq/cost os q')) ⟩ ϕ q' Int.⊖ ϕ q Int.+ (ϕ/-1 os q' Int.⊖ ϕ/0 os q') Int.+ (Int.+ op/cost o q Int.+ Int.+ op/seq/cost os q') ≡⟨ P.cong (λ x → x Int.+ (ϕ/-1 os q' Int.⊖ ϕ/0 os q') Int.+ (Int.+ op/cost o q Int.+ Int.+ op/seq/cost os q')) (P.sym (IntP.m-n≡m⊖n (ϕ q') (ϕ q))) ⟩ Int.+ ϕ q' Int.- (Int.+ ϕ q) Int.+ (ϕ/-1 os q' Int.⊖ ϕ/0 os q') Int.+ (Int.+ op/cost o q Int.+ Int.+ op/seq/cost os q') ≡⟨ P.cong (λ x → Int.+ ϕ q' Int.- (Int.+ ϕ q) Int.+ x Int.+ (Int.+ op/cost o q Int.+ Int.+ op/seq/cost os q')) (P.sym (IntP.m-n≡m⊖n (ϕ/-1 os q') (ϕ/0 os q'))) ⟩ Int.+ ϕ q' Int.- Int.+ ϕ q Int.+ (Int.+ ϕ/-1 os q' Int.- (Int.+ ϕ/0 os q')) Int.+ (Int.+ op/cost o q Int.+ Int.+ op/seq/cost os q') ≡⟨ P.cong (λ x → x Int.+ (Int.+ op/cost o q Int.+ Int.+ op/seq/cost os q')) (IntP.+-comm (Int.+ ϕ q' Int.- Int.+ ϕ q) (Int.+ ϕ/-1 os q' Int.- (Int.+ ϕ/0 os q'))) ⟩ Int.+ ϕ/-1 os q' Int.- Int.+ ϕ/0 os q' Int.+ (Int.+ ϕ q' Int.- Int.+ ϕ q) Int.+ (Int.+ op/cost o q Int.+ Int.+ op/seq/cost os q') ≡⟨ P.cong (λ x → x Int.+ (Int.+ op/cost o q Int.+ Int.+ op/seq/cost os q')) (IntP.+-minus-telescope (Int.+ ϕ/-1 os q') (Int.+ ϕ q') (Int.+ ϕ q)) ⟩ Int.+ ϕ/-1 os q' Int.- Int.+ ϕ q Int.+ (Int.+ op/cost o q Int.+ Int.+ op/seq/cost os q') ≡⟨ P.cong (λ x → x Int.+ (Int.+ op/cost o q Int.+ Int.+ op/seq/cost os q')) (IntP.m-n≡m⊖n (ϕ/-1 os q') (ϕ q )) ⟩ ϕ/-1 os q' Int.⊖ ϕ q Int.+ (Int.+ op/cost o q Int.+ Int.+ op/seq/cost os q') ≡⟨ refl ⟩ ϕ/-1 os q' Int.⊖ ϕ q Int.+ (Int.+ op/cost o q Int.+ Int.+ op/seq/cost os q') ∎ ) )) where open ≡-Reasoning data Amortized : List op → List ℕ → Set where a/emp : Amortized [] [] a/cons : ∀ o k l l' → is/acost o k → Amortized l l' → Amortized (o ∷ l) (k ∷ l') amortized≥cost/tele : ∀ q0 l l' → Amortized l l' → Int.+ (lsum l') Int.≥ op/seq/cost/tele l q0 amortized≥cost/tele q .[] .[] a/emp = IntP.≤-refl amortized≥cost/tele q .(o ∷ os) .(k ∷ l') (a/cons o k os l' x h) rewrite tbind/meta Q Int.ℤ (o operate q) (λ q' → (Int.+ (op/cost o q)) Int.+ (o operateϕ q Int.⊖ ϕ q) Int.+ (op/seq/cost/tele os q')) (λ z → z Int.≤ Int.+ lsum (k ∷ l')) = dbind (λ q' → meta ((Int.+ (op/cost o q)) Int.+ (o operateϕ q Int.⊖ ϕ q) Int.+ (op/seq/cost/tele os q') Int.≤ Int.+ lsum (k ∷ l'))) (o operate q) λ q' → begin Int.+ op/cost o q Int.+ ((o operateϕ q) Int.⊖ ϕ q) Int.+ op/seq/cost/tele os q' ≤⟨ IntP.+-monoˡ-≤ (op/seq/cost/tele os q') (x q) ⟩ Int.+ k Int.+ op/seq/cost/tele os q' ≤⟨ IntP.+-monoʳ-≤ (Int.+ k) (amortized≥cost/tele q' os l' h) ⟩ Int.+ k Int.+ Int.+ lsum l' ≤⟨ IntP.≤-refl ⟩ Int.+ k Int.+ Int.+ lsum l' ∎ where open IntP.≤-Reasoning -- Sum of a sequence of amortized costs (plus the initial potential) bounds the sum of the sequence of actual costs amortized≥cost : ∀ q l l' → Amortized l l' → ◯ (Int.+ (ϕ q + lsum l') Int.≥ Int.+ (op/seq/cost l q)) amortized≥cost q l l' h u = begin Int.+ (op/seq/cost l q) ≤⟨ IntP.n≤m+n (0 + ϕ/-1 l q) ⟩ Int.0ℤ Int.+ (Int.+ ϕ/-1 l q) Int.+ Int.+ op/seq/cost l q ≡⟨ P.cong (λ x → x Int.+ (Int.+ ϕ/-1 l q) Int.+ Int.+ op/seq/cost l q) (P.sym (IntP.n⊖n≡0 (ϕ q))) ⟩ ϕ q Int.⊖ ϕ q Int.+ Int.+ ϕ/-1 l q Int.+ Int.+ op/seq/cost l q ≡⟨ P.cong (λ x → x Int.+ (Int.+ ϕ/-1 l q) Int.+ Int.+ op/seq/cost l q) (P.sym (IntP.m-n≡m⊖n (ϕ q) (ϕ q))) ⟩ Int.+ ϕ q Int.+ Int.- (Int.+ ϕ q) Int.+ Int.+ ϕ/-1 l q Int.+ Int.+ op/seq/cost l q ≡⟨ P.cong (λ x → x Int.+ Int.+ op/seq/cost l q) (IntP.+-assoc (Int.+ ϕ q) (Int.- (Int.+ ϕ q)) (Int.+ ϕ/-1 l q)) ⟩ Int.+ ϕ q Int.+ (Int.- (Int.+ ϕ q) Int.+ Int.+ ϕ/-1 l q) Int.+ Int.+ op/seq/cost l q ≡⟨ P.cong (λ x → Int.+ ϕ q Int.+ x Int.+ Int.+ op/seq/cost l q) (IntP.+-comm (Int.- (Int.+ ϕ q)) (Int.+ ϕ/-1 l q)) ⟩ Int.+ ϕ q Int.+ (Int.+ ϕ/-1 l q Int.- (Int.+ ϕ q)) Int.+ Int.+ op/seq/cost l q ≡⟨ IntP.+-assoc (Int.+ ϕ q) (Int.+ ϕ/-1 l q Int.- (Int.+ ϕ q)) (Int.+ op/seq/cost l q) ⟩ Int.+ ϕ q Int.+ (Int.+ ϕ/-1 l q Int.- Int.+ ϕ q Int.+ Int.+ op/seq/cost l q) ≡⟨ P.cong (λ x → Int.+ ϕ q Int.+ (x Int.+ Int.+ op/seq/cost l q)) (IntP.m-n≡m⊖n (ϕ/-1 l q) (ϕ q)) ⟩ Int.+ ϕ q Int.+ (ϕ/-1 l q Int.⊖ ϕ q Int.+ Int.+ op/seq/cost l q) ≡⟨ P.cong (λ x → Int.+ ϕ q Int.+ x) (P.sym (cost≡cost/tele l q u)) ⟩ Int.+ ϕ q Int.+ op/seq/cost/tele l q ≤⟨ IntP.+-monoʳ-≤ (Int.+ ϕ q) (amortized≥cost/tele q l l' h) ⟩ Int.+ ϕ q Int.+ Int.+ lsum l' ≤⟨ IntP.≤-refl ⟩ Int.+ ϕ q Int.+ Int.+ lsum l' ∎ where open IntP.≤-Reasoning -- Amortized cost for enq and deq on a front-back queue enq/acost : ∀ x → ◯ (is/acost (op/enq x) 2) enq/acost x u (f , b) = begin (Int.+ (op/cost (op/enq x) (f , b))) Int.+ (((op/enq x) operateϕ (f , b)) Int.⊖ (ϕ (f , b))) ≡⟨⟩ Int.0ℤ Int.+ ((len f + 2 * (1 + len b)) Int.⊖ (ϕ (f , b))) ≡⟨ IntP.+-identityˡ ((len f + 2 * (1 + len b)) Int.⊖ (ϕ (f , b))) ⟩ len f + 2 * (1 + len b) Int.⊖ ϕ (f , b) ≡⟨ P.cong (λ x → (len f + x) Int.⊖ (ϕ (f , b))) (*-distribˡ-+ 2 1 (len b)) ⟩ len f + (2 * 1 + 2 * len b) Int.⊖ ϕ (f , b) ≡⟨ P.cong (λ x → (len f + x) Int.⊖ (ϕ (f , b)) ) (+-comm 2 (2 * len b)) ⟩ len f + (2 * len b + 2) Int.⊖ ϕ (f , b) ≡⟨ P.cong (λ x → x Int.⊖ (ϕ (f , b))) (P.sym (+-assoc (len f) (2 * len b) 2)) ⟩ len f + 2 * len b + 2 Int.⊖ ϕ (f , b) ≡⟨ P.cong (λ x → (len f + 2 * len b + 2) Int.⊖ x) (P.sym (+-identityʳ (ϕ (f , b)))) ⟩ len f + 2 * len b + 2 Int.⊖ (ϕ (f , b) + 0) ≡⟨ IntP.+-cancelˡ-⊖ (len f + 2 * len b) 2 0 ⟩ Int.+ 2 ∎ where open IntP.≤-Reasoning n+n≡2*n : ∀ n → n + n ≡ 2 * n n+n≡2*n n = begin n + n ≡⟨ P.cong (λ x → n + x) (P.sym (+-identityʳ n)) ⟩ 2 * n ∎ where open ≡-Reasoning deq/acost : ◯ (is/acost op/deq 0) deq/acost u (f , b) = list/match f (λ f → meta ((Int.+ (op/cost op/deq (f , b))) Int.+ ((op/deq operateϕ (f , b)) Int.⊖ (ϕ (f , b))) Int.≤ Int.0ℤ)) ( list/match b (λ b → meta ((Int.+ (op/cost op/deq (nil , b))) Int.+ ((op/deq operateϕ (nil , b)) Int.⊖ (ϕ (nil , b))) Int.≤ Int.0ℤ)) IntP.≤-refl λ a b' → begin (Int.+ (op/cost op/deq (nil , cons a b'))) Int.+ ((op/deq operateϕ (nil , cons a b')) Int.⊖ (ϕ (nil , cons a b'))) ≡⟨⟩ Int.+ (step cost 1 (2 + len b')) Int.+ (step cost 1 (len b') Int.⊖ (2 * (step cost 1 (1 + len b')))) ≡⟨ cong₂ Int._+_ (cong Int.+_ (step/ext cost (2 + len b') 1 u)) (cong₂ Int._⊖_ (step/ext cost (len b') 1 u) (cong (2 *_) (step/ext cost (1 + len b') 1 u)) ) ⟩ Int.+ (2 + len b') Int.+ (len b' Int.⊖ (2 * (1 + len b'))) ≡⟨ IntP.distribʳ-⊖-+-pos (2 + len b') (len b') (2 * (1 + len b')) ⟩ 2 + len b' + len b' Int.⊖ 2 * (1 + len b') ≡⟨ P.cong (λ x → x Int.⊖ 2 * (1 + len b')) (+-assoc 2 (len b') (len b')) ⟩ 2 + (len b' + len b') Int.⊖ 2 * (1 + len b') ≡⟨ P.cong (λ x → 2 + (len b' + len b') Int.⊖ x) (*-distribˡ-+ 2 1 (len b')) ⟩ 2 + (len b' + len b') Int.⊖ (2 * 1 + 2 * len b') ≡⟨ P.cong (λ x → 2 + x Int.⊖ (2 + 2 * len b')) (n+n≡2*n (len b')) ⟩ 2 + 2 * len b' Int.⊖ (2 + 2 * len b') ≡⟨ IntP.n⊖n≡0 (2 + 2 * len b') ⟩ Int.0ℤ ∎ ) λ a f' → begin (Int.+ (op/cost op/deq (cons a f' , b))) Int.+ ((op/deq operateϕ (cons a f' , b)) Int.⊖ (ϕ (cons a f' , b))) ≡⟨⟩ Int.+ (step cost 1 1) Int.+ (step cost 1 (len f' + 2 * len b) Int.⊖ (step cost 1 (1 + len f') + 2 * len b)) ≡⟨ cong₂ Int._+_ (cong Int.+_ (step/ext cost 1 1 u)) (cong₂ Int._⊖_ (step/ext cost (len f' + 2 * len b) 1 u) (cong (_+ 2 * len b) (step/ext cost (1 + len f') 1 u)) ) ⟩ Int.+ 1 Int.+ ((len f' + 2 * len b) Int.⊖ (1 + len f' + 2 * len b)) ≡⟨ IntP.distribʳ-⊖-+-pos 1 (len f' + 2 * len b) (1 + len f' + 2 * len b) ⟩ 1 + (len f' + 2 * len b) Int.⊖ (1 + len f' + 2 * len b) ≡⟨ P.cong (λ x → x Int.⊖ (1 + len f' + 2 * len b)) (P.sym (+-assoc 1 (len f') (2 * len b))) ⟩ 1 + len f' + 2 * len b Int.⊖ (1 + len f' + 2 * len b) ≡⟨ IntP.n⊖n≡0 (1 + len f' + 2 * len b) ⟩ Int.0ℤ ∎ where open IntP.≤-Reasoning all2s : ℕ → List ℕ all2s n = tabulate {n = n} (λ _ → 2) sum2s : ∀ n → lsum (all2s n) ≡ 2 * n sum2s zero = refl sum2s (suc n) = begin 2 + lsum (all2s n) ≡⟨ P.cong (λ x → 2 + x) (sum2s n) ⟩ 2 + 2 * n ≡⟨ P.cong (λ x → x + 2 * n) (*-identityʳ 2) ⟩ 2 * 1 + 2 * n ≡⟨ P.sym (*-distribˡ-+ 2 1 n) ⟩ 2 * (1 + n) ∎ where open ≡-Reasoning all2s/is/acost : ∀ l → ◯ (Amortized l (all2s (length l))) all2s/is/acost [] u = a/emp all2s/is/acost ((op/enq x) ∷ os) u = a/cons (op/enq x) 2 os (all2s (length os)) (enq/acost x u) (all2s/is/acost os u) all2s/is/acost (op/deq ∷ os) u = a/cons op/deq 2 os (all2s (length os)) (acost/weaken z≤n (deq/acost u)) (all2s/is/acost os u) op/seq/cost≤ϕ₀+2*|l| : ∀ q l → ◯ (Int.+ (op/seq/cost l q) Int.≤ Int.+ (ϕ q + 2 * length l)) op/seq/cost≤ϕ₀+2*|l| q l u = begin Int.+ (op/seq/cost l q) ≤⟨ amortized≥cost q l (all2s (length l)) (all2s/is/acost l u) u ⟩ Int.+ (ϕ q + lsum (all2s (length l))) ≡⟨ P.cong (λ x → Int.+ (ϕ q + x)) (sum2s (length l)) ⟩ Int.+ (ϕ q + 2 * length l) ≤⟨ IntP.≤-refl ⟩ Int.+ (ϕ q + 2 * length l) ∎ where open IntP.≤-Reasoning -- Starting with an empty queue, a sequence of n operations costs at most 2 * n op/seq≤2*|l| : ∀ l → IsBounded Q (l op/seq emp) (2 * length l) op/seq≤2*|l| l = bound/relax (λ u → IntP.drop‿+≤+ (op/seq/cost≤ϕ₀+2*|l| emp l u)) (op/seq≤op/seq/cost l emp)
{ "alphanum_fraction": 0.4858965176, "avg_line_length": 44.2885196375, "ext": "agda", "hexsha": "3de95ab9863444b03c0bb40b73039e1ec578ba12", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/Examples/Queue.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/Examples/Queue.agda", "max_line_length": 301, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/Examples/Queue.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 12966, "size": 29319 }
module Data.Either where import Lvl open import Data.Boolean using (Bool ; 𝑇 ; 𝐹) open import Functional using (id ; _∘_) open import Type infixr 100 _‖_ private variable ℓ ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Lvl.Level private variable A B C A₁ A₂ B₁ B₂ : Type{ℓ} data _‖_ (A : Type{ℓ₁}) (B : Type{ℓ₂}) : Type{ℓ₁ Lvl.⊔ ℓ₂} where Left : A → (A ‖ B) Right : B → (A ‖ B) {-# FOREIGN GHC type AgdaEither ℓ₁ ℓ₂ = Either #-} {-# COMPILE GHC _‖_ = data AgdaEither (Left | Right) #-} elim : ∀{P : (A ‖ B) → Type{ℓ}} → ((a : A) → P(Left a)) → ((b : B) → P(Right b)) → ((e : (A ‖ B)) → P(e)) elim fa _ (Left a) = fa(a) elim _ fb (Right b) = fb(b) map1 : let _ = A ; _ = B ; _ = C in (A → C) → (B → C) → (A ‖ B) → C map1 = elim swap : (A ‖ B) → (B ‖ A) swap (Left t) = Right t swap (Right t) = Left t extract : (A ‖ A) → A extract = map1 id id map : (A₁ → A₂) → (B₁ → B₂) → (A₁ ‖ B₁) → (A₂ ‖ B₂) map fa fb = map1 (Left ∘ fa) (Right ∘ fb) mapLeft : let _ = A₁ ; _ = A₂ ; _ = B in (A₁ → A₂) → (A₁ ‖ B) → (A₂ ‖ B) mapLeft f = map f id mapRight : let _ = A ; _ = B₁ ; _ = B₂ in (B₁ → B₂) → (A ‖ B₁) → (A ‖ B₂) mapRight f = map id f isLeft : (A ‖ B) → Bool isLeft(Left _) = 𝑇 isLeft(Right _) = 𝐹 isRight : (A ‖ B) → Bool isRight(Left _) = 𝐹 isRight(Right _) = 𝑇
{ "alphanum_fraction": 0.5336, "avg_line_length": 25.5102040816, "ext": "agda", "hexsha": "8a72bbe2f9ecb8313cf0e145dcce54d68b633642", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/Either.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/Either.agda", "max_line_length": 105, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/Either.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 581, "size": 1250 }
{- A possible implementation of the following HIT arr. Note that this type is mutually defined with App, that is to say, they are defined by induction-recursion! Inductive arr (A,B:Set) : Set := | base : B -> arr A B | step : (A -> arr A B) -> arr A B. | path : (forall x : A, App f x = App g x) -> f = g. where App is defined by Fixpoint App (f : arr A B)(a : A) := match f with | base b => b | step g => App (g a) a end. Due to the fact that arr and App are defined by induction-recuriosn, the recursion principle for arr needs to make extra assumptions, see the parameters of the arr-Rec module. Effectively, we see the function space A → B as algebra for the functor (-) × A and App is an algebra homomorphism from arr A B to A → B. This is reflected in the extra assumption in the recursion principle. -} {-# OPTIONS --without-K #-} open import lib.Basics open import lib.PathGroupoid open import lib.types.Paths open import lib.Funext module _ where private data #arr-aux (A B : Set) : Set where #base : B → #arr-aux A B #step : (A → #arr-aux A B) → #arr-aux A B #App : ∀{A B} → #arr-aux A B → A → B #App (#base b) a = b #App (#step g) a = #App (g a) a _~>_ : Set → Set → Set _~>_ = #arr-aux base : ∀{A B} → B → A ~> B base = #base step : ∀{A B} → (A → A ~> B) → A ~> B step = #step App : ∀{A B} → A ~> B → A → B App = #App Abstr : ∀{A B} → (A → B) → A ~> B Abstr f = step (λ x → base (f x)) postulate path : ∀{A B} (f g : A ~> B) (a : A) → App f a == App g a → f == g module arr-Rec {A B X : Set} (base* : B → X) (step* : (A → X) → X) (App* : X → A → B) -- Here we need to make the assumption that App* is an algebra homomorphism -- from X into the function space. (App*-β₂ : (a : A) (f : A → X) → App* (step* f) a == App* (f a) a) (path* : (x y : X) (a : A) → App* x a == App* y a → x == y) where rec : A ~> B → X rec = rec-aux phantom where rec-aux : Phantom path* → A ~> B → X rec-aux ph (#base b) = base* b rec-aux ph (#step f) = step* (λ a → rec-aux ph (f a)) lem : (f g : A ~> B) (a : A) → App f a == App g a → App* (rec f) a == App* (rec g) a lem (#base b) (#base .b) a idp = idp lem (#base b) (#step g) a p = let β-red* = App*-β₂ a (rec ∘ g) IH = lem (#base b) (g a) a p in IH ∙ ! β-red* lem (#step f) (#base b) a p = let β-red* = App*-β₂ a (rec ∘ f) IH = lem (f a) (#base b) a p in β-red* ∙ IH lem (#step f) (#step g) a p = let IH = lem (f a) (g a) a p β-red-f = App*-β₂ a (rec ∘ f) β-red-g = App*-β₂ a (rec ∘ g) in β-red-f ∙ IH ∙ ! β-red-g postulate path-β : (f g : A ~> B) (a : A) (p : App f a == App g a) → ap rec (path f g a p) == path* (rec f) (rec g) a (lem f g a p)
{ "alphanum_fraction": 0.5155106309, "avg_line_length": 28.4059405941, "ext": "agda", "hexsha": "7c1eedfcce12f476181a7cda32455f92904568c9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "TypeTheory/HoTT/Functions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "TypeTheory/HoTT/Functions.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "TypeTheory/HoTT/Functions.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1063, "size": 2869 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some derivable properties ------------------------------------------------------------------------ open import Algebra module Algebra.Properties.BooleanAlgebra {b₁ b₂} (B : BooleanAlgebra b₁ b₂) where open BooleanAlgebra B import Algebra.Properties.DistributiveLattice private open module DL = Algebra.Properties.DistributiveLattice distributiveLattice public hiding (replace-equality) open import Algebra.Structures import Algebra.FunctionProperties as P; open P _≈_ import Relation.Binary.EqReasoning as EqR; open EqR setoid open import Relation.Binary open import Function open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using (_⇔_; module Equivalence) open import Data.Product ------------------------------------------------------------------------ -- Some simple generalisations ∨-complement : Inverse ⊤ ¬_ _∨_ ∨-complement = ∨-complementˡ , ∨-complementʳ where ∨-complementˡ : LeftInverse ⊤ ¬_ _∨_ ∨-complementˡ x = begin ¬ x ∨ x ≈⟨ ∨-comm _ _ ⟩ x ∨ ¬ x ≈⟨ ∨-complementʳ _ ⟩ ⊤ ∎ ∧-complement : Inverse ⊥ ¬_ _∧_ ∧-complement = ∧-complementˡ , ∧-complementʳ where ∧-complementˡ : LeftInverse ⊥ ¬_ _∧_ ∧-complementˡ x = begin ¬ x ∧ x ≈⟨ ∧-comm _ _ ⟩ x ∧ ¬ x ≈⟨ ∧-complementʳ _ ⟩ ⊥ ∎ ------------------------------------------------------------------------ -- The dual construction is also a boolean algebra ∧-∨-isBooleanAlgebra : IsBooleanAlgebra _≈_ _∧_ _∨_ ¬_ ⊥ ⊤ ∧-∨-isBooleanAlgebra = record { isDistributiveLattice = ∧-∨-isDistributiveLattice ; ∨-complementʳ = proj₂ ∧-complement ; ∧-complementʳ = proj₂ ∨-complement ; ¬-cong = ¬-cong } ∧-∨-booleanAlgebra : BooleanAlgebra _ _ ∧-∨-booleanAlgebra = record { _∧_ = _∨_ ; _∨_ = _∧_ ; ⊤ = ⊥ ; ⊥ = ⊤ ; isBooleanAlgebra = ∧-∨-isBooleanAlgebra } ------------------------------------------------------------------------ -- (∨, ∧, ⊥, ⊤) is a commutative semiring private ∧-identity : Identity ⊤ _∧_ ∧-identity = (λ _ → ∧-comm _ _ ⟨ trans ⟩ x∧⊤=x _) , x∧⊤=x where x∧⊤=x : ∀ x → x ∧ ⊤ ≈ x x∧⊤=x x = begin x ∧ ⊤ ≈⟨ refl ⟨ ∧-cong ⟩ sym (proj₂ ∨-complement _) ⟩ x ∧ (x ∨ ¬ x) ≈⟨ proj₂ absorptive _ _ ⟩ x ∎ ∨-identity : Identity ⊥ _∨_ ∨-identity = (λ _ → ∨-comm _ _ ⟨ trans ⟩ x∨⊥=x _) , x∨⊥=x where x∨⊥=x : ∀ x → x ∨ ⊥ ≈ x x∨⊥=x x = begin x ∨ ⊥ ≈⟨ refl ⟨ ∨-cong ⟩ sym (proj₂ ∧-complement _) ⟩ x ∨ x ∧ ¬ x ≈⟨ proj₁ absorptive _ _ ⟩ x ∎ ∧-zero : Zero ⊥ _∧_ ∧-zero = (λ _ → ∧-comm _ _ ⟨ trans ⟩ x∧⊥=⊥ _) , x∧⊥=⊥ where x∧⊥=⊥ : ∀ x → x ∧ ⊥ ≈ ⊥ x∧⊥=⊥ x = begin x ∧ ⊥ ≈⟨ refl ⟨ ∧-cong ⟩ sym (proj₂ ∧-complement _) ⟩ x ∧ x ∧ ¬ x ≈⟨ sym $ ∧-assoc _ _ _ ⟩ (x ∧ x) ∧ ¬ x ≈⟨ ∧-idempotent _ ⟨ ∧-cong ⟩ refl ⟩ x ∧ ¬ x ≈⟨ proj₂ ∧-complement _ ⟩ ⊥ ∎ ∨-∧-isCommutativeSemiring : IsCommutativeSemiring _≈_ _∨_ _∧_ ⊥ ⊤ ∨-∧-isCommutativeSemiring = record { +-isCommutativeMonoid = record { isSemigroup = record { isEquivalence = isEquivalence ; assoc = ∨-assoc ; ∙-cong = ∨-cong } ; identityˡ = proj₁ ∨-identity ; comm = ∨-comm } ; *-isCommutativeMonoid = record { isSemigroup = record { isEquivalence = isEquivalence ; assoc = ∧-assoc ; ∙-cong = ∧-cong } ; identityˡ = proj₁ ∧-identity ; comm = ∧-comm } ; distribʳ = proj₂ ∧-∨-distrib ; zeroˡ = proj₁ ∧-zero } ∨-∧-commutativeSemiring : CommutativeSemiring _ _ ∨-∧-commutativeSemiring = record { _+_ = _∨_ ; _*_ = _∧_ ; 0# = ⊥ ; 1# = ⊤ ; isCommutativeSemiring = ∨-∧-isCommutativeSemiring } ------------------------------------------------------------------------ -- (∧, ∨, ⊤, ⊥) is a commutative semiring private ∨-zero : Zero ⊤ _∨_ ∨-zero = (λ _ → ∨-comm _ _ ⟨ trans ⟩ x∨⊤=⊤ _) , x∨⊤=⊤ where x∨⊤=⊤ : ∀ x → x ∨ ⊤ ≈ ⊤ x∨⊤=⊤ x = begin x ∨ ⊤ ≈⟨ refl ⟨ ∨-cong ⟩ sym (proj₂ ∨-complement _) ⟩ x ∨ x ∨ ¬ x ≈⟨ sym $ ∨-assoc _ _ _ ⟩ (x ∨ x) ∨ ¬ x ≈⟨ ∨-idempotent _ ⟨ ∨-cong ⟩ refl ⟩ x ∨ ¬ x ≈⟨ proj₂ ∨-complement _ ⟩ ⊤ ∎ ∧-∨-isCommutativeSemiring : IsCommutativeSemiring _≈_ _∧_ _∨_ ⊤ ⊥ ∧-∨-isCommutativeSemiring = record { +-isCommutativeMonoid = record { isSemigroup = record { isEquivalence = isEquivalence ; assoc = ∧-assoc ; ∙-cong = ∧-cong } ; identityˡ = proj₁ ∧-identity ; comm = ∧-comm } ; *-isCommutativeMonoid = record { isSemigroup = record { isEquivalence = isEquivalence ; assoc = ∨-assoc ; ∙-cong = ∨-cong } ; identityˡ = proj₁ ∨-identity ; comm = ∨-comm } ; distribʳ = proj₂ ∨-∧-distrib ; zeroˡ = proj₁ ∨-zero } ∧-∨-commutativeSemiring : CommutativeSemiring _ _ ∧-∨-commutativeSemiring = record { isCommutativeSemiring = ∧-∨-isCommutativeSemiring } ------------------------------------------------------------------------ -- Some other properties -- I took the statement of this lemma (called Uniqueness of -- Complements) from some course notes, "Boolean Algebra", written -- by Gert Smolka. private lemma : ∀ x y → x ∧ y ≈ ⊥ → x ∨ y ≈ ⊤ → ¬ x ≈ y lemma x y x∧y=⊥ x∨y=⊤ = begin ¬ x ≈⟨ sym $ proj₂ ∧-identity _ ⟩ ¬ x ∧ ⊤ ≈⟨ refl ⟨ ∧-cong ⟩ sym x∨y=⊤ ⟩ ¬ x ∧ (x ∨ y) ≈⟨ proj₁ ∧-∨-distrib _ _ _ ⟩ ¬ x ∧ x ∨ ¬ x ∧ y ≈⟨ proj₁ ∧-complement _ ⟨ ∨-cong ⟩ refl ⟩ ⊥ ∨ ¬ x ∧ y ≈⟨ sym x∧y=⊥ ⟨ ∨-cong ⟩ refl ⟩ x ∧ y ∨ ¬ x ∧ y ≈⟨ sym $ proj₂ ∧-∨-distrib _ _ _ ⟩ (x ∨ ¬ x) ∧ y ≈⟨ proj₂ ∨-complement _ ⟨ ∧-cong ⟩ refl ⟩ ⊤ ∧ y ≈⟨ proj₁ ∧-identity _ ⟩ y ∎ ¬⊥=⊤ : ¬ ⊥ ≈ ⊤ ¬⊥=⊤ = lemma ⊥ ⊤ (proj₂ ∧-identity _) (proj₂ ∨-zero _) ¬⊤=⊥ : ¬ ⊤ ≈ ⊥ ¬⊤=⊥ = lemma ⊤ ⊥ (proj₂ ∧-zero _) (proj₂ ∨-identity _) ¬-involutive : Involutive ¬_ ¬-involutive x = lemma (¬ x) x (proj₁ ∧-complement _) (proj₁ ∨-complement _) deMorgan₁ : ∀ x y → ¬ (x ∧ y) ≈ ¬ x ∨ ¬ y deMorgan₁ x y = lemma (x ∧ y) (¬ x ∨ ¬ y) lem₁ lem₂ where lem₁ = begin (x ∧ y) ∧ (¬ x ∨ ¬ y) ≈⟨ proj₁ ∧-∨-distrib _ _ _ ⟩ (x ∧ y) ∧ ¬ x ∨ (x ∧ y) ∧ ¬ y ≈⟨ (∧-comm _ _ ⟨ ∧-cong ⟩ refl) ⟨ ∨-cong ⟩ refl ⟩ (y ∧ x) ∧ ¬ x ∨ (x ∧ y) ∧ ¬ y ≈⟨ ∧-assoc _ _ _ ⟨ ∨-cong ⟩ ∧-assoc _ _ _ ⟩ y ∧ (x ∧ ¬ x) ∨ x ∧ (y ∧ ¬ y) ≈⟨ (refl ⟨ ∧-cong ⟩ proj₂ ∧-complement _) ⟨ ∨-cong ⟩ (refl ⟨ ∧-cong ⟩ proj₂ ∧-complement _) ⟩ (y ∧ ⊥) ∨ (x ∧ ⊥) ≈⟨ proj₂ ∧-zero _ ⟨ ∨-cong ⟩ proj₂ ∧-zero _ ⟩ ⊥ ∨ ⊥ ≈⟨ proj₂ ∨-identity _ ⟩ ⊥ ∎ lem₃ = begin (x ∧ y) ∨ ¬ x ≈⟨ proj₂ ∨-∧-distrib _ _ _ ⟩ (x ∨ ¬ x) ∧ (y ∨ ¬ x) ≈⟨ proj₂ ∨-complement _ ⟨ ∧-cong ⟩ refl ⟩ ⊤ ∧ (y ∨ ¬ x) ≈⟨ proj₁ ∧-identity _ ⟩ y ∨ ¬ x ≈⟨ ∨-comm _ _ ⟩ ¬ x ∨ y ∎ lem₂ = begin (x ∧ y) ∨ (¬ x ∨ ¬ y) ≈⟨ sym $ ∨-assoc _ _ _ ⟩ ((x ∧ y) ∨ ¬ x) ∨ ¬ y ≈⟨ lem₃ ⟨ ∨-cong ⟩ refl ⟩ (¬ x ∨ y) ∨ ¬ y ≈⟨ ∨-assoc _ _ _ ⟩ ¬ x ∨ (y ∨ ¬ y) ≈⟨ refl ⟨ ∨-cong ⟩ proj₂ ∨-complement _ ⟩ ¬ x ∨ ⊤ ≈⟨ proj₂ ∨-zero _ ⟩ ⊤ ∎ deMorgan₂ : ∀ x y → ¬ (x ∨ y) ≈ ¬ x ∧ ¬ y deMorgan₂ x y = begin ¬ (x ∨ y) ≈⟨ ¬-cong $ sym (¬-involutive _) ⟨ ∨-cong ⟩ sym (¬-involutive _) ⟩ ¬ (¬ ¬ x ∨ ¬ ¬ y) ≈⟨ ¬-cong $ sym $ deMorgan₁ _ _ ⟩ ¬ ¬ (¬ x ∧ ¬ y) ≈⟨ ¬-involutive _ ⟩ ¬ x ∧ ¬ y ∎ -- One can replace the underlying equality with an equivalent one. replace-equality : {_≈′_ : Rel Carrier b₂} → (∀ {x y} → x ≈ y ⇔ x ≈′ y) → BooleanAlgebra _ _ replace-equality {_≈′_} ≈⇔≈′ = record { _≈_ = _≈′_ ; _∨_ = _∨_ ; _∧_ = _∧_ ; ¬_ = ¬_ ; ⊤ = ⊤ ; ⊥ = ⊥ ; isBooleanAlgebra = record { isDistributiveLattice = DistributiveLattice.isDistributiveLattice (DL.replace-equality ≈⇔≈′) ; ∨-complementʳ = λ x → to ⟨$⟩ ∨-complementʳ x ; ∧-complementʳ = λ x → to ⟨$⟩ ∧-complementʳ x ; ¬-cong = λ i≈j → to ⟨$⟩ ¬-cong (from ⟨$⟩ i≈j) } } where open module E {x y} = Equivalence (≈⇔≈′ {x} {y}) ------------------------------------------------------------------------ -- (⊕, ∧, id, ⊥, ⊤) is a commutative ring -- This construction is parameterised over the definition of xor. module XorRing (xor : Op₂ Carrier) (⊕-def : ∀ x y → xor x y ≈ (x ∨ y) ∧ ¬ (x ∧ y)) where private infixl 6 _⊕_ _⊕_ : Op₂ Carrier _⊕_ = xor private helper : ∀ {x y u v} → x ≈ y → u ≈ v → x ∧ ¬ u ≈ y ∧ ¬ v helper x≈y u≈v = x≈y ⟨ ∧-cong ⟩ ¬-cong u≈v ⊕-¬-distribˡ : ∀ x y → ¬ (x ⊕ y) ≈ ¬ x ⊕ y ⊕-¬-distribˡ x y = begin ¬ (x ⊕ y) ≈⟨ ¬-cong $ ⊕-def _ _ ⟩ ¬ ((x ∨ y) ∧ (¬ (x ∧ y))) ≈⟨ ¬-cong (proj₂ ∧-∨-distrib _ _ _) ⟩ ¬ ((x ∧ ¬ (x ∧ y)) ∨ (y ∧ ¬ (x ∧ y))) ≈⟨ ¬-cong $ refl ⟨ ∨-cong ⟩ (refl ⟨ ∧-cong ⟩ ¬-cong (∧-comm _ _)) ⟩ ¬ ((x ∧ ¬ (x ∧ y)) ∨ (y ∧ ¬ (y ∧ x))) ≈⟨ ¬-cong $ lem _ _ ⟨ ∨-cong ⟩ lem _ _ ⟩ ¬ ((x ∧ ¬ y) ∨ (y ∧ ¬ x)) ≈⟨ deMorgan₂ _ _ ⟩ ¬ (x ∧ ¬ y) ∧ ¬ (y ∧ ¬ x) ≈⟨ deMorgan₁ _ _ ⟨ ∧-cong ⟩ refl ⟩ (¬ x ∨ (¬ ¬ y)) ∧ ¬ (y ∧ ¬ x) ≈⟨ helper (refl ⟨ ∨-cong ⟩ ¬-involutive _) (∧-comm _ _) ⟩ (¬ x ∨ y) ∧ ¬ (¬ x ∧ y) ≈⟨ sym $ ⊕-def _ _ ⟩ ¬ x ⊕ y ∎ where lem : ∀ x y → x ∧ ¬ (x ∧ y) ≈ x ∧ ¬ y lem x y = begin x ∧ ¬ (x ∧ y) ≈⟨ refl ⟨ ∧-cong ⟩ deMorgan₁ _ _ ⟩ x ∧ (¬ x ∨ ¬ y) ≈⟨ proj₁ ∧-∨-distrib _ _ _ ⟩ (x ∧ ¬ x) ∨ (x ∧ ¬ y) ≈⟨ proj₂ ∧-complement _ ⟨ ∨-cong ⟩ refl ⟩ ⊥ ∨ (x ∧ ¬ y) ≈⟨ proj₁ ∨-identity _ ⟩ x ∧ ¬ y ∎ private ⊕-comm : Commutative _⊕_ ⊕-comm x y = begin x ⊕ y ≈⟨ ⊕-def _ _ ⟩ (x ∨ y) ∧ ¬ (x ∧ y) ≈⟨ helper (∨-comm _ _) (∧-comm _ _) ⟩ (y ∨ x) ∧ ¬ (y ∧ x) ≈⟨ sym $ ⊕-def _ _ ⟩ y ⊕ x ∎ ⊕-¬-distribʳ : ∀ x y → ¬ (x ⊕ y) ≈ x ⊕ ¬ y ⊕-¬-distribʳ x y = begin ¬ (x ⊕ y) ≈⟨ ¬-cong $ ⊕-comm _ _ ⟩ ¬ (y ⊕ x) ≈⟨ ⊕-¬-distribˡ _ _ ⟩ ¬ y ⊕ x ≈⟨ ⊕-comm _ _ ⟩ x ⊕ ¬ y ∎ ⊕-annihilates-¬ : ∀ x y → x ⊕ y ≈ ¬ x ⊕ ¬ y ⊕-annihilates-¬ x y = begin x ⊕ y ≈⟨ sym $ ¬-involutive _ ⟩ ¬ ¬ (x ⊕ y) ≈⟨ ¬-cong $ ⊕-¬-distribˡ _ _ ⟩ ¬ (¬ x ⊕ y) ≈⟨ ⊕-¬-distribʳ _ _ ⟩ ¬ x ⊕ ¬ y ∎ private ⊕-cong : _⊕_ Preserves₂ _≈_ ⟶ _≈_ ⟶ _≈_ ⊕-cong {x} {y} {u} {v} x≈y u≈v = begin x ⊕ u ≈⟨ ⊕-def _ _ ⟩ (x ∨ u) ∧ ¬ (x ∧ u) ≈⟨ helper (x≈y ⟨ ∨-cong ⟩ u≈v) (x≈y ⟨ ∧-cong ⟩ u≈v) ⟩ (y ∨ v) ∧ ¬ (y ∧ v) ≈⟨ sym $ ⊕-def _ _ ⟩ y ⊕ v ∎ ⊕-identity : Identity ⊥ _⊕_ ⊕-identity = ⊥⊕x=x , (λ _ → ⊕-comm _ _ ⟨ trans ⟩ ⊥⊕x=x _) where ⊥⊕x=x : ∀ x → ⊥ ⊕ x ≈ x ⊥⊕x=x x = begin ⊥ ⊕ x ≈⟨ ⊕-def _ _ ⟩ (⊥ ∨ x) ∧ ¬ (⊥ ∧ x) ≈⟨ helper (proj₁ ∨-identity _) (proj₁ ∧-zero _) ⟩ x ∧ ¬ ⊥ ≈⟨ refl ⟨ ∧-cong ⟩ ¬⊥=⊤ ⟩ x ∧ ⊤ ≈⟨ proj₂ ∧-identity _ ⟩ x ∎ ⊕-inverse : Inverse ⊥ id _⊕_ ⊕-inverse = x⊕x=⊥ , (λ _ → ⊕-comm _ _ ⟨ trans ⟩ x⊕x=⊥ _) where x⊕x=⊥ : ∀ x → x ⊕ x ≈ ⊥ x⊕x=⊥ x = begin x ⊕ x ≈⟨ ⊕-def _ _ ⟩ (x ∨ x) ∧ ¬ (x ∧ x) ≈⟨ helper (∨-idempotent _) (∧-idempotent _) ⟩ x ∧ ¬ x ≈⟨ proj₂ ∧-complement _ ⟩ ⊥ ∎ distrib-∧-⊕ : _∧_ DistributesOver _⊕_ distrib-∧-⊕ = distˡ , distʳ where distˡ : _∧_ DistributesOverˡ _⊕_ distˡ x y z = begin x ∧ (y ⊕ z) ≈⟨ refl ⟨ ∧-cong ⟩ ⊕-def _ _ ⟩ x ∧ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ sym $ ∧-assoc _ _ _ ⟩ (x ∧ (y ∨ z)) ∧ ¬ (y ∧ z) ≈⟨ refl ⟨ ∧-cong ⟩ deMorgan₁ _ _ ⟩ (x ∧ (y ∨ z)) ∧ (¬ y ∨ ¬ z) ≈⟨ sym $ proj₁ ∨-identity _ ⟩ ⊥ ∨ ((x ∧ (y ∨ z)) ∧ (¬ y ∨ ¬ z)) ≈⟨ lem₃ ⟨ ∨-cong ⟩ refl ⟩ ((x ∧ (y ∨ z)) ∧ ¬ x) ∨ ((x ∧ (y ∨ z)) ∧ (¬ y ∨ ¬ z)) ≈⟨ sym $ proj₁ ∧-∨-distrib _ _ _ ⟩ (x ∧ (y ∨ z)) ∧ (¬ x ∨ (¬ y ∨ ¬ z)) ≈⟨ refl ⟨ ∧-cong ⟩ (refl ⟨ ∨-cong ⟩ sym (deMorgan₁ _ _)) ⟩ (x ∧ (y ∨ z)) ∧ (¬ x ∨ ¬ (y ∧ z)) ≈⟨ refl ⟨ ∧-cong ⟩ sym (deMorgan₁ _ _) ⟩ (x ∧ (y ∨ z)) ∧ ¬ (x ∧ (y ∧ z)) ≈⟨ helper refl lem₁ ⟩ (x ∧ (y ∨ z)) ∧ ¬ ((x ∧ y) ∧ (x ∧ z)) ≈⟨ proj₁ ∧-∨-distrib _ _ _ ⟨ ∧-cong ⟩ refl ⟩ ((x ∧ y) ∨ (x ∧ z)) ∧ ¬ ((x ∧ y) ∧ (x ∧ z)) ≈⟨ sym $ ⊕-def _ _ ⟩ (x ∧ y) ⊕ (x ∧ z) ∎ where lem₂ = begin x ∧ (y ∧ z) ≈⟨ sym $ ∧-assoc _ _ _ ⟩ (x ∧ y) ∧ z ≈⟨ ∧-comm _ _ ⟨ ∧-cong ⟩ refl ⟩ (y ∧ x) ∧ z ≈⟨ ∧-assoc _ _ _ ⟩ y ∧ (x ∧ z) ∎ lem₁ = begin x ∧ (y ∧ z) ≈⟨ sym (∧-idempotent _) ⟨ ∧-cong ⟩ refl ⟩ (x ∧ x) ∧ (y ∧ z) ≈⟨ ∧-assoc _ _ _ ⟩ x ∧ (x ∧ (y ∧ z)) ≈⟨ refl ⟨ ∧-cong ⟩ lem₂ ⟩ x ∧ (y ∧ (x ∧ z)) ≈⟨ sym $ ∧-assoc _ _ _ ⟩ (x ∧ y) ∧ (x ∧ z) ∎ lem₃ = begin ⊥ ≈⟨ sym $ proj₂ ∧-zero _ ⟩ (y ∨ z) ∧ ⊥ ≈⟨ refl ⟨ ∧-cong ⟩ sym (proj₂ ∧-complement _) ⟩ (y ∨ z) ∧ (x ∧ ¬ x) ≈⟨ sym $ ∧-assoc _ _ _ ⟩ ((y ∨ z) ∧ x) ∧ ¬ x ≈⟨ ∧-comm _ _ ⟨ ∧-cong ⟩ refl ⟩ (x ∧ (y ∨ z)) ∧ ¬ x ∎ distʳ : _∧_ DistributesOverʳ _⊕_ distʳ x y z = begin (y ⊕ z) ∧ x ≈⟨ ∧-comm _ _ ⟩ x ∧ (y ⊕ z) ≈⟨ distˡ _ _ _ ⟩ (x ∧ y) ⊕ (x ∧ z) ≈⟨ ∧-comm _ _ ⟨ ⊕-cong ⟩ ∧-comm _ _ ⟩ (y ∧ x) ⊕ (z ∧ x) ∎ lemma₂ : ∀ x y u v → (x ∧ y) ∨ (u ∧ v) ≈ ((x ∨ u) ∧ (y ∨ u)) ∧ ((x ∨ v) ∧ (y ∨ v)) lemma₂ x y u v = begin (x ∧ y) ∨ (u ∧ v) ≈⟨ proj₁ ∨-∧-distrib _ _ _ ⟩ ((x ∧ y) ∨ u) ∧ ((x ∧ y) ∨ v) ≈⟨ proj₂ ∨-∧-distrib _ _ _ ⟨ ∧-cong ⟩ proj₂ ∨-∧-distrib _ _ _ ⟩ ((x ∨ u) ∧ (y ∨ u)) ∧ ((x ∨ v) ∧ (y ∨ v)) ∎ ⊕-assoc : Associative _⊕_ ⊕-assoc x y z = sym $ begin x ⊕ (y ⊕ z) ≈⟨ refl ⟨ ⊕-cong ⟩ ⊕-def _ _ ⟩ x ⊕ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ ⊕-def _ _ ⟩ (x ∨ ((y ∨ z) ∧ ¬ (y ∧ z))) ∧ ¬ (x ∧ ((y ∨ z) ∧ ¬ (y ∧ z))) ≈⟨ lem₃ ⟨ ∧-cong ⟩ lem₄ ⟩ (((x ∨ y) ∨ z) ∧ ((x ∨ ¬ y) ∨ ¬ z)) ∧ (((¬ x ∨ ¬ y) ∨ z) ∧ ((¬ x ∨ y) ∨ ¬ z)) ≈⟨ ∧-assoc _ _ _ ⟩ ((x ∨ y) ∨ z) ∧ (((x ∨ ¬ y) ∨ ¬ z) ∧ (((¬ x ∨ ¬ y) ∨ z) ∧ ((¬ x ∨ y) ∨ ¬ z))) ≈⟨ refl ⟨ ∧-cong ⟩ lem₅ ⟩ ((x ∨ y) ∨ z) ∧ (((¬ x ∨ ¬ y) ∨ z) ∧ (((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ y) ∨ ¬ z))) ≈⟨ sym $ ∧-assoc _ _ _ ⟩ (((x ∨ y) ∨ z) ∧ ((¬ x ∨ ¬ y) ∨ z)) ∧ (((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ y) ∨ ¬ z)) ≈⟨ lem₁ ⟨ ∧-cong ⟩ lem₂ ⟩ (((x ∨ y) ∧ ¬ (x ∧ y)) ∨ z) ∧ ¬ (((x ∨ y) ∧ ¬ (x ∧ y)) ∧ z) ≈⟨ sym $ ⊕-def _ _ ⟩ ((x ∨ y) ∧ ¬ (x ∧ y)) ⊕ z ≈⟨ sym $ ⊕-def _ _ ⟨ ⊕-cong ⟩ refl ⟩ (x ⊕ y) ⊕ z ∎ where lem₁ = begin ((x ∨ y) ∨ z) ∧ ((¬ x ∨ ¬ y) ∨ z) ≈⟨ sym $ proj₂ ∨-∧-distrib _ _ _ ⟩ ((x ∨ y) ∧ (¬ x ∨ ¬ y)) ∨ z ≈⟨ (refl ⟨ ∧-cong ⟩ sym (deMorgan₁ _ _)) ⟨ ∨-cong ⟩ refl ⟩ ((x ∨ y) ∧ ¬ (x ∧ y)) ∨ z ∎ lem₂' = begin (x ∨ ¬ y) ∧ (¬ x ∨ y) ≈⟨ sym $ proj₁ ∧-identity _ ⟨ ∧-cong ⟩ proj₂ ∧-identity _ ⟩ (⊤ ∧ (x ∨ ¬ y)) ∧ ((¬ x ∨ y) ∧ ⊤) ≈⟨ sym $ (proj₁ ∨-complement _ ⟨ ∧-cong ⟩ ∨-comm _ _) ⟨ ∧-cong ⟩ (refl ⟨ ∧-cong ⟩ proj₁ ∨-complement _) ⟩ ((¬ x ∨ x) ∧ (¬ y ∨ x)) ∧ ((¬ x ∨ y) ∧ (¬ y ∨ y)) ≈⟨ sym $ lemma₂ _ _ _ _ ⟩ (¬ x ∧ ¬ y) ∨ (x ∧ y) ≈⟨ sym $ deMorgan₂ _ _ ⟨ ∨-cong ⟩ ¬-involutive _ ⟩ ¬ (x ∨ y) ∨ ¬ ¬ (x ∧ y) ≈⟨ sym (deMorgan₁ _ _) ⟩ ¬ ((x ∨ y) ∧ ¬ (x ∧ y)) ∎ lem₂ = begin ((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ y) ∨ ¬ z) ≈⟨ sym $ proj₂ ∨-∧-distrib _ _ _ ⟩ ((x ∨ ¬ y) ∧ (¬ x ∨ y)) ∨ ¬ z ≈⟨ lem₂' ⟨ ∨-cong ⟩ refl ⟩ ¬ ((x ∨ y) ∧ ¬ (x ∧ y)) ∨ ¬ z ≈⟨ sym $ deMorgan₁ _ _ ⟩ ¬ (((x ∨ y) ∧ ¬ (x ∧ y)) ∧ z) ∎ lem₃ = begin x ∨ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ refl ⟨ ∨-cong ⟩ (refl ⟨ ∧-cong ⟩ deMorgan₁ _ _) ⟩ x ∨ ((y ∨ z) ∧ (¬ y ∨ ¬ z)) ≈⟨ proj₁ ∨-∧-distrib _ _ _ ⟩ (x ∨ (y ∨ z)) ∧ (x ∨ (¬ y ∨ ¬ z)) ≈⟨ sym (∨-assoc _ _ _) ⟨ ∧-cong ⟩ sym (∨-assoc _ _ _) ⟩ ((x ∨ y) ∨ z) ∧ ((x ∨ ¬ y) ∨ ¬ z) ∎ lem₄' = begin ¬ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ deMorgan₁ _ _ ⟩ ¬ (y ∨ z) ∨ ¬ ¬ (y ∧ z) ≈⟨ deMorgan₂ _ _ ⟨ ∨-cong ⟩ ¬-involutive _ ⟩ (¬ y ∧ ¬ z) ∨ (y ∧ z) ≈⟨ lemma₂ _ _ _ _ ⟩ ((¬ y ∨ y) ∧ (¬ z ∨ y)) ∧ ((¬ y ∨ z) ∧ (¬ z ∨ z)) ≈⟨ (proj₁ ∨-complement _ ⟨ ∧-cong ⟩ ∨-comm _ _) ⟨ ∧-cong ⟩ (refl ⟨ ∧-cong ⟩ proj₁ ∨-complement _) ⟩ (⊤ ∧ (y ∨ ¬ z)) ∧ ((¬ y ∨ z) ∧ ⊤) ≈⟨ proj₁ ∧-identity _ ⟨ ∧-cong ⟩ proj₂ ∧-identity _ ⟩ (y ∨ ¬ z) ∧ (¬ y ∨ z) ∎ lem₄ = begin ¬ (x ∧ ((y ∨ z) ∧ ¬ (y ∧ z))) ≈⟨ deMorgan₁ _ _ ⟩ ¬ x ∨ ¬ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ refl ⟨ ∨-cong ⟩ lem₄' ⟩ ¬ x ∨ ((y ∨ ¬ z) ∧ (¬ y ∨ z)) ≈⟨ proj₁ ∨-∧-distrib _ _ _ ⟩ (¬ x ∨ (y ∨ ¬ z)) ∧ (¬ x ∨ (¬ y ∨ z)) ≈⟨ sym (∨-assoc _ _ _) ⟨ ∧-cong ⟩ sym (∨-assoc _ _ _) ⟩ ((¬ x ∨ y) ∨ ¬ z) ∧ ((¬ x ∨ ¬ y) ∨ z) ≈⟨ ∧-comm _ _ ⟩ ((¬ x ∨ ¬ y) ∨ z) ∧ ((¬ x ∨ y) ∨ ¬ z) ∎ lem₅ = begin ((x ∨ ¬ y) ∨ ¬ z) ∧ (((¬ x ∨ ¬ y) ∨ z) ∧ ((¬ x ∨ y) ∨ ¬ z)) ≈⟨ sym $ ∧-assoc _ _ _ ⟩ (((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ ¬ y) ∨ z)) ∧ ((¬ x ∨ y) ∨ ¬ z) ≈⟨ ∧-comm _ _ ⟨ ∧-cong ⟩ refl ⟩ (((¬ x ∨ ¬ y) ∨ z) ∧ ((x ∨ ¬ y) ∨ ¬ z)) ∧ ((¬ x ∨ y) ∨ ¬ z) ≈⟨ ∧-assoc _ _ _ ⟩ ((¬ x ∨ ¬ y) ∨ z) ∧ (((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ y) ∨ ¬ z)) ∎ isCommutativeRing : IsCommutativeRing _≈_ _⊕_ _∧_ id ⊥ ⊤ isCommutativeRing = record { isRing = record { +-isAbelianGroup = record { isGroup = record { isMonoid = record { isSemigroup = record { isEquivalence = isEquivalence ; assoc = ⊕-assoc ; ∙-cong = ⊕-cong } ; identity = ⊕-identity } ; inverse = ⊕-inverse ; ⁻¹-cong = id } ; comm = ⊕-comm } ; *-isMonoid = record { isSemigroup = record { isEquivalence = isEquivalence ; assoc = ∧-assoc ; ∙-cong = ∧-cong } ; identity = ∧-identity } ; distrib = distrib-∧-⊕ } ; *-comm = ∧-comm } commutativeRing : CommutativeRing _ _ commutativeRing = record { _+_ = _⊕_ ; _*_ = _∧_ ; -_ = id ; 0# = ⊥ ; 1# = ⊤ ; isCommutativeRing = isCommutativeRing } infixl 6 _⊕_ _⊕_ : Op₂ Carrier x ⊕ y = (x ∨ y) ∧ ¬ (x ∧ y) module DefaultXorRing = XorRing _⊕_ (λ _ _ → refl)
{ "alphanum_fraction": 0.3431307165, "avg_line_length": 36.7635726795, "ext": "agda", "hexsha": "148eb72843f8508bd1411626f2449167585260b5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Algebra/Properties/BooleanAlgebra.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Algebra/Properties/BooleanAlgebra.agda", "max_line_length": 93, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Algebra/Properties/BooleanAlgebra.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 9049, "size": 20992 }
{-# OPTIONS --universe-polymorphism #-} -- Should fail with S i != i module Issue216 where postulate Level : Set O : Level S : Level → Level {-# BUILTIN LEVEL Level #-} {-# BUILTIN LEVELZERO O #-} {-# BUILTIN LEVELSUC S #-} Foo : {i : Level} → Set i Foo {i} = (R : Set i) → R
{ "alphanum_fraction": 0.5841924399, "avg_line_length": 17.1176470588, "ext": "agda", "hexsha": "7a4f88a77bda637a85b7ac06f37eefc36a000dee", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/fail/Issue216.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/fail/Issue216.agda", "max_line_length": 39, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/Issue216.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 91, "size": 291 }
import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl) open import Data.Nat using (ℕ; zero; suc) open import Relation.Nullary using (¬_; Dec; yes; no) data _≤_ : ℕ → ℕ → Set where z≤n : ∀ {n : ℕ} → zero ≤ n s≤s : ∀ {m n : ℕ} → m ≤ n → suc m ≤ suc n ¬s≤z : ∀ {m : ℕ} → ¬ (suc m ≤ zero) ¬s≤z () ¬s≤s : ∀ {m n : ℕ} → ¬ (m ≤ n) → ¬ (suc m ≤ suc n) ¬s≤s ¬m≤n (s≤s m≤n) = ¬m≤n m≤n _≤?_ : ∀ (m n : ℕ) → Dec (m ≤ n) zero ≤? n = yes z≤n suc m ≤? zero = no ¬s≤z suc m ≤? suc n with m ≤? n ... | yes m≤n = yes (s≤s m≤n) ... | no ¬m≤n = no (¬s≤s ¬m≤n) _ : 2 ≤? 4 ≡ yes (s≤s (s≤s z≤n)) _ = refl _ : 4 ≤? 2 ≡ no (¬s≤s (¬s≤s ¬s≤z)) _ = refl
{ "alphanum_fraction": 0.4749620637, "avg_line_length": 22.724137931, "ext": "agda", "hexsha": "2386f724726d26053dad8dcedd8326775b6f25d4", "lang": "Agda", "max_forks_count": 304, "max_forks_repo_forks_event_max_datetime": "2022-03-28T11:35:02.000Z", "max_forks_repo_forks_event_min_datetime": "2018-07-16T18:24:59.000Z", "max_forks_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "manikdv/plfa.github.io", "max_forks_repo_path": "extra/extra/DecidableFixed.agda", "max_issues_count": 323, "max_issues_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_issues_repo_issues_event_max_datetime": "2022-03-30T07:42:57.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-05T22:34:34.000Z", "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "manikdv/plfa.github.io", "max_issues_repo_path": "extra/extra/DecidableFixed.agda", "max_line_length": 53, "max_stars_count": 1003, "max_stars_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "manikdv/plfa.github.io", "max_stars_repo_path": "extra/extra/DecidableFixed.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-27T07:03:28.000Z", "max_stars_repo_stars_event_min_datetime": "2018-07-05T18:15:14.000Z", "num_tokens": 352, "size": 659 }
{-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module Examples where data _∨_ (A B : Set) : Set where inl : A → A ∨ B inr : B → A ∨ B postulate commOr : {A B : Set} → A ∨ B → B ∨ A {-# ATP prove commOr #-}
{ "alphanum_fraction": 0.4970414201, "avg_line_length": 24.1428571429, "ext": "agda", "hexsha": "74e8a569de0c9f1b38863fd18162b7c01b787c51", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/papers/fossacs-2012/Examples.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/papers/fossacs-2012/Examples.agda", "max_line_length": 46, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/papers/fossacs-2012/Examples.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 101, "size": 338 }
_ : Set₁ _ = Set _ : Set₁ _ = Set module _ where _ : Set₁ _ = Set
{ "alphanum_fraction": 0.527027027, "avg_line_length": 6.1666666667, "ext": "agda", "hexsha": "8a7f5e9b0b90cf101364bdc0f5d6d1e97b941462", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3302.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3302.agda", "max_line_length": 14, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3302.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 33, "size": 74 }
------------------------------------------------------------------------ -- Coinductive "natural" numbers ------------------------------------------------------------------------ module Data.Conat where open import Coinduction open import Data.Nat using (ℕ; zero; suc) ------------------------------------------------------------------------ -- The type data Coℕ : Set where zero : Coℕ suc : (n : ∞ Coℕ) → Coℕ ------------------------------------------------------------------------ -- Some operations fromℕ : ℕ → Coℕ fromℕ zero = zero fromℕ (suc n) = suc (♯ fromℕ n) ∞ℕ : Coℕ ∞ℕ = suc (♯ ∞ℕ) infixl 6 _+_ _+_ : Coℕ → Coℕ → Coℕ zero + n = n suc m + n = suc (♯ (♭ m + n))
{ "alphanum_fraction": 0.3396226415, "avg_line_length": 21.53125, "ext": "agda", "hexsha": "b54640741ce8877f2642f0f0c29988df310e8c1e", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Data/Conat.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Data/Conat.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Data/Conat.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 190, "size": 689 }
{-# OPTIONS --safe #-} module Definition.Typed.Consequences.Equality where open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.EqRelInstance open import Definition.LogicalRelation open import Definition.LogicalRelation.Properties.Escape open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Fundamental.Reducibility open import Definition.Typed.Consequences.Injectivity open import Tools.Product import Tools.PropositionalEquality as PE {- -- conversion is cumulative typeCumul′ : ∀ {A rA lA lA' Γ} → lA ≤∞ lA' → Γ ⊩⟨ ∞ ⟩ A ^ [ rA , lA ] → Γ ⊩⟨ ∞ ⟩ A ^ [ rA , lA' ] typeCumul′ (≡is≤∞ PE.refl) [A] = [A] typeCumul′ (<∞is≤∞ emb<) (Uᵣ (Uᵣ r l′ l<₁ eq d)) = emb ∞< (Uᵣ (Uᵣ r ⁰ emb< PE.refl {!!})) typeCumul′ (<∞is≤∞ ∞<) (Uᵣ (Uᵣ r l′ l<₁ eq d)) = Uᵣ (Uᵣ r ¹ ∞< PE.refl {!!}) typeCumul′ (<∞is≤∞ emb<) (ℕᵣ [[ ⊢A , ⊢B , D ]]) = emb ∞< (emb emb< {!ℕᵣ ?!}) typeCumul′ (<∞is≤∞ l<) (Emptyᵣ x) = {!!} typeCumul′ (<∞is≤∞ l<) (ne x) = {!!} typeCumul′ (<∞is≤∞ l<) (Πᵣ x) = {!!} typeCumul′ (<∞is≤∞ l<) (∃ᵣ x) = {!!} typeCumul′ (<∞is≤∞ l<) (emb l<₁ [A]) = {!!} convCumul′ : ∀ {A B rA lA lA' Γ} → (l< : lA ≤∞ lA') → ([A] : Γ ⊩⟨ ∞ ⟩ A ^ [ rA , lA ]) → Γ ⊩⟨ ∞ ⟩ A ≡ B ^ [ rA , lA ] / [A] → Γ ⊩⟨ ∞ ⟩ A ≡ B ^ [ rA , lA' ] / typeCumul′ l< [A] convCumul′ (<∞is≤∞ l<) [A] [A≡B] = {!!} convCumul′ (≡is≤∞ PE.refl) [A] [A≡B] = [A≡B] convCumul : ∀ {A B rA lA lA' Γ} → lA ≤∞ lA' → Γ ⊢ A ≡ B ^ [ rA , lA ] → Γ ⊢ A ≡ B ^ [ rA , lA' ] convCumul {A} {B} {rA} {lA} {lA'} {Γ} (<∞is≤∞ l<) A≡B = let X = reducibleEq A≡B [A] = proj₁ X [B] = proj₁ (proj₂ X) [A≡B] = proj₂ (proj₂ X) [A]' : Γ ⊩⟨ ∞ ⟩ A ^ [ rA , lA' ] [A]' = emb l< {!!} -- [A] in {!escapeEq [A]' [A≡B]!} -- convCumul (<∞is≤∞ ∞<) A≡B = -- let X = reducibleEq A≡B -- [A] = proj₁ X -- [B] = proj₁ (proj₂ X) -- [A≡B] = proj₂ (proj₂ X) -- in {!!} convCumul (≡is≤∞ PE.refl) A≡B = A≡B -} U≡A′ : ∀ {A rU Γ l lU nlU } ([U] : Γ ⊩⟨ l ⟩U Univ rU lU ^ nlU) → Γ ⊩⟨ l ⟩ Univ rU lU ≡ A ^ [ ! , nlU ] / (U-intr [U]) → Γ ⊢ A ⇒* Univ rU lU ^ [ ! , nlU ] U≡A′ (noemb (Uᵣ r l′ l< eq d)) [U≡A] = let r≡r , l≡l = Uinjectivity (subset* (red d)) in PE.subst (λ r → _ ⊢ _ ⇒* Univ r _ ^ [ ! , _ ]) (PE.sym r≡r) (PE.subst (λ l → _ ⊢ _ ⇒* Univ _ l ^ [ ! , _ ]) (PE.sym l≡l) [U≡A]) U≡A′ (emb emb< [U]) [U≡A] = U≡A′ [U] [U≡A] U≡A′ (emb ∞< [U]) [U≡A] = U≡A′ [U] [U≡A] -- If A is judgmentally equal to U, then A reduces to U. U≡A : ∀ {A rU Γ lU nlU } → Γ ⊢ Univ rU lU ≡ A ^ [ ! , nlU ] → Γ ⊢ A ⇒* Univ rU lU ^ [ ! , nlU ] U≡A {A} U≡A = let X = reducibleEq U≡A [U] = proj₁ X [A] = proj₁ (proj₂ X) [U≡A] = proj₂ (proj₂ X) in U≡A′ (U-elim [U]) (irrelevanceEq [U] (U-intr (U-elim [U])) [U≡A]) -- If A is judgmentally equal to U, then A reduces to U. U≡A-whnf : ∀ {A rU Γ lU nlU } → Γ ⊢ Univ rU lU ≡ A ^ [ ! , nlU ] → Whnf A → A PE.≡ Univ rU lU U≡A-whnf {A} X whnfA = whnfRed* (U≡A X) whnfA ℕ≡A′ : ∀ {A Γ l} ([ℕ] : Γ ⊩⟨ l ⟩ℕ ℕ) → Γ ⊩⟨ l ⟩ ℕ ≡ A ^ [ ! , ι ⁰ ] / (ℕ-intr [ℕ]) → Whnf A → A PE.≡ ℕ ℕ≡A′ (noemb x) [ℕ≡A] whnfA = whnfRed* [ℕ≡A] whnfA ℕ≡A′ (emb emb< [ℕ]) [ℕ≡A] whnfA = ℕ≡A′ [ℕ] [ℕ≡A] whnfA ℕ≡A′ (emb ∞< [ℕ]) [ℕ≡A] whnfA = ℕ≡A′ [ℕ] [ℕ≡A] whnfA -- If A in WHNF is judgmentally equal to ℕ, then A is propsitionally equal to ℕ. ℕ≡A : ∀ {A Γ} → Γ ⊢ ℕ ≡ A ^ [ ! , ι ⁰ ] → Whnf A → A PE.≡ ℕ ℕ≡A {A} ℕ≡A whnfA = let X = reducibleEq ℕ≡A [ℕ] = proj₁ X [A] = proj₁ (proj₂ X) [ℕ≡A] = proj₂ (proj₂ X) in ℕ≡A′ (ℕ-elim [ℕ]) (irrelevanceEq [ℕ] (ℕ-intr (ℕ-elim [ℕ])) [ℕ≡A]) whnfA -- If A in WHNF is judgmentally equal to Empty, then A is propositionally equal to Empty. Empty≡A′ : ∀ {A Γ l ll} ([Empty] : Γ ⊩⟨ l ⟩Empty Empty ll ^ ll) → Γ ⊩⟨ l ⟩ Empty ll ≡ A ^ [ % , ι ll ] / (Empty-intr [Empty]) → Whnf A → A PE.≡ Empty ll Empty≡A′ (noemb x) [Empty≡A] whnfA = whnfRed* [Empty≡A] whnfA Empty≡A′ (emb emb< [Empty]) [Empty≡A] whnfA = Empty≡A′ [Empty] [Empty≡A] whnfA Empty≡A′ (emb ∞< [Empty]) [Empty≡A] whnfA = Empty≡A′ [Empty] [Empty≡A] whnfA Empty≡A : ∀ {A Γ l} → Γ ⊢ Empty l ≡ A ^ [ % , ι l ] → Whnf A → A PE.≡ Empty l Empty≡A {A} Empty≡A whnfA = let X = reducibleEq Empty≡A [Empty] = proj₁ X [A] = proj₁ (proj₂ X) [Empty≡A] = proj₂ (proj₂ X) in Empty≡A′ (Empty-elim [Empty]) (irrelevanceEq [Empty] (Empty-intr (Empty-elim [Empty])) [Empty≡A]) whnfA ne≡A′ : ∀ {A K r Γ l ll } → ([K] : Γ ⊩⟨ l ⟩ne K ^[ r , ll ] ) → Γ ⊩⟨ l ⟩ K ≡ A ^ [ r , ι ll ] / (ne-intr [K]) → Whnf A → ∃ λ M → Neutral M × A PE.≡ M ne≡A′ (noemb [K]) (ne₌ M D′ neM K≡M) whnfA = M , neM , (whnfRed* (red D′) whnfA) ne≡A′ (emb emb< [K]) [K≡A] whnfA = ne≡A′ [K] [K≡A] whnfA ne≡A′ (emb ∞< [K]) [K≡A] whnfA = ne≡A′ [K] [K≡A] whnfA -- If A in WHNF is judgmentally equal to K, then there exists a M such that -- A is propsitionally equal to M. ne≡A : ∀ {A K r l Γ} → Neutral K → Γ ⊢ K ≡ A ^ [ r , ι l ] → Whnf A → ∃ λ M → Neutral M × A PE.≡ M ne≡A {A} neK ne≡A whnfA = let X = reducibleEq ne≡A [ne] = proj₁ X [A] = proj₁ (proj₂ X) [ne≡A] = proj₂ (proj₂ X) in ne≡A′ (ne-elim neK [ne]) (irrelevanceEq [ne] (ne-intr (ne-elim neK [ne])) [ne≡A]) whnfA Π≡A′ : ∀ {A F G rF lF lG rΠ lΠ Γ l} ([Π] : Γ ⊩⟨ l ⟩Π Π F ^ rF ° lF ▹ G ° lG ° lΠ ^[ rΠ , lΠ ] ) → Γ ⊩⟨ l ⟩ Π F ^ rF ° lF ▹ G ° lG ° lΠ ≡ A ^ [ rΠ , ι lΠ ] / (Π-intr [Π]) → Whnf A → ∃₂ λ H E → A PE.≡ Π H ^ rF ° lF ▹ E ° lG ° lΠ Π≡A′ (noemb (Πᵣ rF′ lF′ lG′ lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) whnfA = let _ , rF≡rF′ , lF≡lF′ , _ , lG≡lG′ , _ = Π-PE-injectivity (whnfRed* (red D) Πₙ) X = whnfRed* D′ whnfA in F′ , G′ , PE.subst (λ r → _ PE.≡ Π _ ^ r ° _ ▹ _ ° _ ° _) (PE.sym rF≡rF′) (PE.subst (λ l → _ PE.≡ Π _ ^ _ ° l ▹ _ ° _ ° _) (PE.sym lF≡lF′) (PE.subst (λ l → _ PE.≡ Π _ ^ _ ° _ ▹ _ ° l ° _) (PE.sym lG≡lG′) X)) Π≡A′ (emb emb< [Π]) [Π≡A] whnfA = Π≡A′ [Π] [Π≡A] whnfA Π≡A′ (emb ∞< [Π]) [Π≡A] whnfA = Π≡A′ [Π] [Π≡A] whnfA -- If A is judgmentally equal to Π F ▹ G, then there exists H and E such that -- A is propositionally equal to Π H ▹ E. Π≡A : ∀ {A F G rF lF lG rΠ lΠ Γ} → Γ ⊢ Π F ^ rF ° lF ▹ G ° lG ° lΠ ≡ A ^ [ rΠ , ι lΠ ] → Whnf A → ∃₂ λ H E → A PE.≡ Π H ^ rF ° lF ▹ E ° lG ° lΠ Π≡A {A} Π≡A whnfA = let X = reducibleEq Π≡A [Π] = proj₁ X [A] = proj₁ (proj₂ X) [Π≡A] = proj₂ (proj₂ X) in Π≡A′ (Π-elim [Π]) (irrelevanceEq [Π] (Π-intr (Π-elim [Π])) [Π≡A]) whnfA
{ "alphanum_fraction": 0.489196841, "avg_line_length": 36.8736263736, "ext": "agda", "hexsha": "7d686fe1b7c6ae27fe20d7f8507f8dccd2a320b0", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Definition/Typed/Consequences/Equality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Definition/Typed/Consequences/Equality.agda", "max_line_length": 108, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Definition/Typed/Consequences/Equality.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 3526, "size": 6711 }
{-# OPTIONS --without-K #-} module function.isomorphism.utils where open import sum open import equality.core open import equality.calculus open import function.core open import function.overloading open import function.isomorphism.core open import function.isomorphism.coherent open import function.extensionality.proof open import sets.unit open import sets.empty open import sets.fin.core open import hott.level.core Σ-split-iso : ∀ {i j}{X : Set i}{Y : X → Set j} → {a a' : X}{b : Y a}{b' : Y a'} → (Σ (a ≡ a') λ q → subst Y q b ≡ b') ≅ ((a , b) ≡ (a' , b')) Σ-split-iso {Y = Y}{a}{a'}{b}{b'} = iso unapΣ apΣ H K where H : ∀ {a a'}{b : Y a}{b' : Y a'} → (p : Σ (a ≡ a') λ q → subst Y q b ≡ b') → apΣ (unapΣ {a = a}{a' = a'}{b = b}{b' = b'} p) ≡ p H (refl , refl) = refl K : (p : (a , b) ≡ (a' , b')) → unapΣ (apΣ p) ≡ p K = J (λ u v p → unapΣ (apΣ p) ≡ p) (λ {(a , b) → refl }) (a , b) (a' , b') ×-split-iso : ∀ {i j}{X : Set i}{Y : Set j} → {a a' : X}{b b' : Y} → ((a ≡ a') × (b ≡ b')) ≅ ((a , b) ≡ (a' , b')) ×-split-iso {X = X}{Y} = record { to = λ { (p , q) → ap₂ _,_ p q } ; from = λ { p → (ap proj₁ p , ap proj₂ p) } ; iso₁ = λ { (p , q) → H p q } ; iso₂ = K } where H : {a a' : X}{b b' : Y}(p : a ≡ a')(q : b ≡ b') → (ap proj₁ (ap₂ _,_ p q), ap proj₂ (ap₂ _,_ p q)) ≡ (p , q) H refl refl = refl K : {a a' : X}{b b' : Y}(p : (a , b) ≡ (a' , b')) → ap₂ _,_ (ap proj₁ p) (ap proj₂ p) ≡ p K refl = refl ×-ap-iso : ∀ {i i' j j'}{X : Set i}{X' : Set i'} {Y : Set j}{Y' : Set j'} → (isom : X ≅ X') → (isom' : Y ≅ Y') → (X × Y) ≅ (X' × Y') ×-ap-iso isom isom' = record { to = λ { (x , y) → (apply isom x , apply isom' y) } ; from = λ { (x' , y') → (invert isom x' , invert isom' y') } ; iso₁ = λ { (x , y) → pair≡ (_≅_.iso₁ isom x) (_≅_.iso₁ isom' y) } ; iso₂ = λ { (x' , y') → pair≡ (_≅_.iso₂ isom x') (_≅_.iso₂ isom' y') } } Σ-ap-iso₂ : ∀ {i j j'}{X : Set i} → {Y : X → Set j}{Y' : X → Set j'} → ((x : X) → Y x ≅ Y' x) → Σ X Y ≅ Σ X Y' Σ-ap-iso₂ {X = X}{Y}{Y'} isom = record { to = λ { (x , y) → (x , apply (isom x) y) } ; from = λ { (x , y') → (x , invert (isom x) y') } ; iso₁ = λ { (x , y) → unapΣ (refl , _≅_.iso₁ (isom x) y) } ; iso₂ = λ { (x , y') → unapΣ (refl , _≅_.iso₂ (isom x) y') } } Σ-ap-iso₁ : ∀ {i i' j}{X : Set i}{X' : Set i'}{Y : X' → Set j} → (isom : X ≅ X') → Σ X (Y ∘ apply isom) ≅ Σ X' Y Σ-ap-iso₁ {X = X}{X'}{Y} isom = record { to = λ { (x , y) → (f x , y) } ; from = λ { (x , y) → (g x , subst Y (sym (K x)) y) } ; iso₁ = λ { (x , y) → unapΣ (H x , subst-naturality Y f (H x) _ · (subst-hom Y (sym (K (f x))) (ap f (H x)) y · ap (λ p → subst Y p y) (lem x) ) ) } ; iso₂ = λ { (x , y) → unapΣ (K x , subst-hom Y (sym (K x)) (K x) y · ap (λ p → subst Y p y) (right-inverse (K x)) ) } } where isom-c = ≅⇒≅' isom γ = proj₂ isom-c open _≅_ (proj₁ isom-c) renaming ( to to f ; from to g ; iso₁ to H; iso₂ to K ) lem : (x : X) → sym (K (f x)) · ap f (H x) ≡ refl lem x = ap (λ z → sym (K (f x)) · z) (γ x) · right-inverse (K (f x)) Σ-ap-iso : ∀ {i i' j j'}{X : Set i}{X' : Set i'} {Y : X → Set j}{Y' : X' → Set j'} → (isom : X ≅ X') → ((x : X) → Y x ≅ Y' (apply isom x)) → Σ X Y ≅ Σ X' Y' Σ-ap-iso {X = X}{X'}{Y}{Y'} isom isom' = trans≅ (Σ-ap-iso₂ isom') (Σ-ap-iso₁ isom) Σ-ap-iso' : ∀ {i i' j j'}{X : Set i}{X' : Set i'} {Y : X → Set j}{Y' : X' → Set j'} → (isom : X ≅ X') → ((x : X') → Y (invert isom x) ≅ Y' x) → Σ X Y ≅ Σ X' Y' Σ-ap-iso' {X = X}{X'}{Y}{Y'} isom isom' = sym≅ (Σ-ap-iso (sym≅ isom) (λ x → sym≅ (isom' x))) Π-ap-iso : ∀ {i i' j j'}{X : Set i}{X' : Set i'} {Y : X → Set j}{Y' : X' → Set j'} → (isom : X ≅ X') → ((x' : X') → Y (invert isom x') ≅ Y' x') → ((x : X) → Y x) ≅ ((x' : X') → Y' x') Π-ap-iso {X = X}{X'}{Y}{Y'} isom isom' = trans≅ (Π-iso (≅⇒≅' isom)) (Π-iso' isom') where Π-iso : (isom : X ≅' X') → ((x : X) → Y x) ≅ ((x' : X') → Y (invert (proj₁ isom) x')) Π-iso (iso f g H K , γ) = record { to = λ h x' → h (g x') ; from = λ h' x → subst Y (H x) (h' (f x)) ; iso₁ = λ h → funext λ x → ap' h (H x) ; iso₂ = λ h' → funext λ x' → ap (λ p → subst Y p _) (sym (γ' x')) · sym (subst-naturality Y g (K x') _) · ap' h' (K x') } where γ' = co-coherence (iso f g H K) γ Π-iso' : ∀ {i j j'}{X : Set i} {Y : X → Set j}{Y' : X → Set j'} → ((x : X) → Y x ≅ Y' x) → ((x : X) → Y x) ≅ ((x : X) → Y' x) Π-iso' isom = record { to = λ h x → apply (isom x) (h x) ; from = λ h' x → invert (isom x) (h' x) ; iso₁ = λ h → funext λ x → _≅_.iso₁ (isom x) _ ; iso₂ = λ h' → funext λ x → _≅_.iso₂ (isom x) _ } ΠΣ-swap-iso : ∀ {i j k}{X : Set i}{Y : X → Set j} → {Z : (x : X) → Y x → Set k} → ((x : X) → Σ (Y x) λ y → Z x y) ≅ (Σ ((x : X) → Y x) λ f → ((x : X) → Z x (f x))) ΠΣ-swap-iso = record { to = λ f → (proj₁ ∘' f , proj₂ ∘' f) ; from = λ { (f , g) x → (f x , g x) } ; iso₁ = λ _ → refl ; iso₂ = λ _ → refl } curry-iso : ∀ {i j k}{X : Set i}{Y : X → Set j} (Z : (x : X) → Y x → Set k) → ((xy : Σ X Y) → Z (proj₁ xy) (proj₂ xy)) ≅ ((x : X) → (y : Y x) → Z x y) curry-iso _ = record { to = λ f x y → f (x , y) ; from = λ { f (x , y) → f x y } ; iso₁ = λ _ → refl ; iso₂ = λ _ → refl } Π-comm-iso : ∀ {i j k}{X : Set i}{Y : Set j}{Z : X → Y → Set k} → ((x : X)(y : Y) → Z x y) ≅ ((y : Y)(x : X) → Z x y) Π-comm-iso = record { to = λ f y x → f x y ; from = λ f x y → f y x ; iso₁ = λ _ → refl ; iso₂ = λ _ → refl } Σ-comm-iso : ∀ {i j k}{X : Set i}{Y : Set j}{Z : X → Y → Set k} → (Σ X λ x → Σ Y λ y → Z x y) ≅ (Σ Y λ y → Σ X λ x → Z x y) Σ-comm-iso = record { to = λ { (x , y , z) → (y , x , z) } ; from = λ { (y , x , z) → (x , y , z) } ; iso₁ = λ _ → refl ; iso₂ = λ _ → refl } impl-iso : ∀ {i j}{X : Set i}{Y : X → Set j} → ((x : X) → Y x) ≅ ({x : X} → Y x) impl-iso = record { to = λ f → f _ ; from = λ f _ → f ; iso₁ = λ _ → refl ; iso₂ = λ _ → refl } Σ-assoc-iso : ∀ {i j k} {X : Set i}{Y : X → Set j} {Z : (x : X) → Y x → Set k} → Σ (Σ X Y) (λ {(x , y) → Z x y}) ≅ Σ X λ x → Σ (Y x) (Z x) Σ-assoc-iso = record { to = λ {((x , y) , z) → (x , y , z) } ; from = λ {(x , y , z) → ((x , y) , z) } ; iso₁ = λ _ → refl ; iso₂ = λ _ → refl } ⊎-Σ-iso : ∀ {i}(X : Fin 2 → Set i) → (X zero ⊎ X (suc zero)) ≅ Σ (Fin 2) X ⊎-Σ-iso X = record { to = λ { (inj₁ x) → zero , x ; (inj₂ x) → suc zero , x } ; from = λ { (zero , x) → inj₁ x ; (suc zero , x) → inj₂ x ; (suc (suc ()) , _) } ; iso₁ = λ { (inj₁ x) → refl ; (inj₂ x) → refl } ; iso₂ = λ { (zero , x) → refl ; (suc zero , x) → refl ; (suc (suc ()) , _) } } ⊎-ap-iso : ∀ {i j i' j'} → {X : Set i}{X' : Set i'} → {Y : Set j}{Y' : Set j'} → X ≅ X' → Y ≅ Y' → (X ⊎ Y) ≅ (X' ⊎ Y') ⊎-ap-iso (iso f g α β) (iso f' g' α' β') = record { to = λ { (inj₁ x) → inj₁ (f x) ; (inj₂ y) → inj₂ (f' y) } ; from = λ { (inj₁ x) → inj₁ (g x) ; (inj₂ y) → inj₂ (g' y) } ; iso₁ = λ { (inj₁ x) → ap inj₁ (α x) ; (inj₂ y) → ap inj₂ (α' y) } ; iso₂ = λ { (inj₁ x) → ap inj₁ (β x) ; (inj₂ y) → ap inj₂ (β' y) } } ⊎-assoc-iso : ∀ {i j k} → {X : Set i}{Y : Set j}{Z : Set k} → ((X ⊎ Y) ⊎ Z) ≅ (X ⊎ (Y ⊎ Z)) ⊎-assoc-iso = record { to = λ { (inj₁ (inj₁ x)) → inj₁ x ; (inj₁ (inj₂ y)) → inj₂ (inj₁ y) ; (inj₂ z) → inj₂ (inj₂ z) } ; from = λ { (inj₁ x) → inj₁ (inj₁ x) ; (inj₂ (inj₁ y)) → inj₁ (inj₂ y) ; (inj₂ (inj₂ z)) → inj₂ z } ; iso₁ = λ { (inj₁ (inj₁ x)) → refl ; (inj₁ (inj₂ y)) → refl ; (inj₂ z) → refl } ; iso₂ = λ { (inj₁ x) → refl ; (inj₂ (inj₁ y)) → refl ; (inj₂ (inj₂ z)) → refl } } ⊎×-distr-iso : ∀ {i j k} → {X : Set i}{Y : Set j}{Z : Set k} → ((X ⊎ Y) × Z) ≅ ((X × Z) ⊎ (Y × Z)) ⊎×-distr-iso = record { to = λ { (inj₁ x , z) → inj₁ (x , z) ; (inj₂ y , z) → inj₂ (y , z) } ; from = λ { (inj₁ (x , z)) → inj₁ x , z ; (inj₂ (y , z)) → inj₂ y , z } ; iso₁ = λ { (inj₁ x , z) → refl ; (inj₂ y , z) → refl } ; iso₂ = λ { (inj₁ (x , z)) → refl ; (inj₂ (y , z)) → refl } } ⊎-universal : ∀ {i j k}{X : Set i}{Y : Set j} → {Z : X ⊎ Y → Set k} → ((u : X ⊎ Y) → Z u) ≅ (((x : X) → Z (inj₁ x)) × ((y : Y) → Z (inj₂ y))) ⊎-universal = record { to = λ f → (f ∘' inj₁ , f ∘' inj₂) ; from = λ { (g₁ , g₂) (inj₁ x) → g₁ x ; (g₁ , g₂) (inj₂ y) → g₂ y } ; iso₁ = λ f → funext λ { (inj₁ x) → refl ; (inj₂ x) → refl } ; iso₂ = λ { (g₁ , g₂) → refl } } ×-left-unit : ∀ {i}{X : Set i} → (⊤ × X) ≅ X ×-left-unit = record { to = λ {(tt , x) → x } ; from = λ x → tt , x ; iso₁ = λ _ → refl ; iso₂ = λ _ → refl } ×-right-unit : ∀ {i}{X : Set i} → (X × ⊤) ≅ X ×-right-unit = record { to = λ {(x , tt) → x } ; from = λ x → x , tt ; iso₁ = λ _ → refl ; iso₂ = λ _ → refl } contr-⊤-iso : ∀ {i}{X : Set i} → contr X → X ≅ ⊤ contr-⊤-iso hX = record { to = λ x → tt ; from = λ { tt → proj₁ hX } ; iso₁ = λ x → proj₂ hX x ; iso₂ = λ { tt → refl } } empty-⊥-iso : ∀ {i}{X : Set i} → (X → ⊥) → X ≅ ⊥ empty-⊥-iso u = record { to = u ; from = ⊥-elim ; iso₁ = λ x → ⊥-elim (u x) ; iso₂ = λ () } ×-comm : ∀ {i j}{X : Set i}{Y : Set j} → (X × Y) ≅ (Y × X) ×-comm = record { to = λ {(x , y) → (y , x)} ; from = λ {(y , x) → (x , y)} ; iso₁ = λ _ → refl ; iso₂ = λ _ → refl } Π-left-unit : ∀ {i}{X : Set i} → (⊤ → X) ≅ X Π-left-unit = record { to = λ f → f tt ; from = λ x _ → x ; iso₁ = λ _ → refl ; iso₂ = λ f → refl } -- rewriting lemmas for equations on equalities sym≡-iso : ∀ {i}{X : Set i}(x y : X) → (x ≡ y) ≅ (y ≡ x) sym≡-iso _ _ = iso sym sym double-inverse double-inverse trans≡-iso : ∀ {i}{X : Set i}{x y z : X} → (x ≡ y) → (y ≡ z) ≅ (x ≡ z) trans≡-iso p = record { to = λ q → p · q ; from = λ q → sym p · q ; iso₁ = λ q → sym (associativity (sym p) p q) · ap (λ z → z · q) (right-inverse p) ; iso₂ = λ q → sym (associativity p (sym p) q) · ap (λ z → z · q) (left-inverse p) } trans≡-iso' : ∀ {i}{X : Set i}{x y z : X} → (y ≡ z) → (x ≡ y) ≅ (x ≡ z) trans≡-iso' q = record { to = λ p → p · q ; from = λ p → p · sym q ; iso₁ = λ p → associativity p q (sym q) · ap (_·_ p) (left-inverse q) · left-unit p ; iso₂ = λ p → associativity p (sym q) q · (ap (_·_ p) (right-inverse q) · left-unit p) } move-≡-iso : ∀ {i}{X : Set i}{x y z : X} → (p : x ≡ y)(q : y ≡ z)(r : x ≡ z) → (p · q ≡ r) ≅ (sym p · r ≡ q) move-≡-iso refl = sym≡-iso J-iso : ∀ {i j}{X : Set i}{x : X} → {P : (y : X) → x ≡ y → Set j} → P x refl ≅ ((y : X)(p : x ≡ y) → P y p) J-iso {X = X}{x}{P} = record { to = J' P ; from = λ u → u x refl ; iso₁ = λ _ → refl ; iso₂ = λ u → funext λ y → funext λ p → β u y p } where β : (u : (y : X)(p : x ≡ y) → P y p) → (y : X)(p : x ≡ y) → J' P (u x refl) y p ≡ u y p β u .x refl = refl
{ "alphanum_fraction": 0.3806381557, "avg_line_length": 32.269541779, "ext": "agda", "hexsha": "a17c36720307f71f9fae3718cdb5cfff7fca6137", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "function/isomorphism/utils.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "HoTT/M-types", "max_issues_repo_path": "function/isomorphism/utils.agda", "max_line_length": 75, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "function/isomorphism/utils.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 5379, "size": 11972 }
-- Basic intuitionistic modal logic S4, without ∨, ⊥, or ◇. -- Basic Kripke-style semantics with abstract worlds, for soundness only. -- Ono-style conditions. module BasicIS4.Semantics.BasicKripkeOno where open import BasicIS4.Syntax.Common public -- Intuitionistic modal Kripke models, with frame conditions given by Ono. record Model : Set₁ where infix 3 _⊩ᵅ_ field World : Set -- Intuitionistic accessibility; preorder. _≤_ : World → World → Set refl≤ : ∀ {w} → w ≤ w trans≤ : ∀ {w w′ w″} → w ≤ w′ → w′ ≤ w″ → w ≤ w″ -- Modal accessibility; preorder. _R_ : World → World → Set reflR : ∀ {w} → w R w transR : ∀ {w w′ w″} → w R w′ → w′ R w″ → w R w″ -- Forcing for atomic propositions; monotonic. _⊩ᵅ_ : World → Atom → Set mono⊩ᵅ : ∀ {P w w′} → w ≤ w′ → w ⊩ᵅ P → w′ ⊩ᵅ P -- Composition of accessibility. _≤⨾R_ : World → World → Set _≤⨾R_ = _≤_ ⨾ _R_ _R⨾≤_ : World → World → Set _R⨾≤_ = _R_ ⨾ _≤_ -- Persistence condition. -- -- w′ v′ → v′ -- ◌───R───● → ● -- │ → ╱ -- ≤ ξ,ζ → R -- │ → ╱ -- ● → ● -- w → w field ≤⨾R→R : ∀ {v′ w} → w ≤⨾R v′ → w R v′ -- Minor persistence condition. -- -- w′ v′ → v′ -- ◌───R───● → ● -- │ → │ -- ≤ ξ,ζ → ≤ -- │ → │ -- ● → ●───R───◌ -- w → w v -- -- w″ → w″ -- ● → ● -- │ → │ -- ξ′,ζ′ ≤ → │ -- │ → │ -- ●───R───◌ → ≤ -- │ v′ → │ -- ξ,ζ ≤ → │ -- │ → │ -- ●───R───◌ → ●───────R───────◌ -- w v → w v″ ≤⨾R→R⨾≤ : ∀ {v′ w} → w ≤⨾R v′ → w R⨾≤ v′ ≤⨾R→R⨾≤ {v′} ξ,ζ = v′ , (≤⨾R→R ξ,ζ , refl≤) reflR⨾≤ : ∀ {w} → w R⨾≤ w reflR⨾≤ {w} = w , (reflR , refl≤) transR⨾≤ : ∀ {w′ w w″} → w R⨾≤ w′ → w′ R⨾≤ w″ → w R⨾≤ w″ transR⨾≤ {w′} (v , (ζ , ξ)) (v′ , (ζ′ , ξ′)) = let v″ , (ζ″ , ξ″) = ≤⨾R→R⨾≤ (w′ , (ξ , ζ′)) in v″ , (transR ζ ζ″ , trans≤ ξ″ ξ′) ≤→R : ∀ {v′ w} → w ≤ v′ → w R v′ ≤→R {v′} ξ = ≤⨾R→R (v′ , (ξ , reflR)) open Model {{…}} public -- Forcing in a particular world of a particular model. module _ {{_ : Model}} where infix 3 _⊩_ _⊩_ : World → Ty → Set w ⊩ α P = w ⊩ᵅ P w ⊩ A ▻ B = ∀ {w′} → w ≤ w′ → w′ ⊩ A → w′ ⊩ B w ⊩ □ A = ∀ {v′} → w R v′ → v′ ⊩ A w ⊩ A ∧ B = w ⊩ A × w ⊩ B w ⊩ ⊤ = 𝟙 infix 3 _⊩⋆_ _⊩⋆_ : World → Cx Ty → Set w ⊩⋆ ∅ = 𝟙 w ⊩⋆ Ξ , A = w ⊩⋆ Ξ × w ⊩ A -- Monotonicity with respect to intuitionistic accessibility. module _ {{_ : Model}} where mono⊩ : ∀ {A w w′} → w ≤ w′ → w ⊩ A → w′ ⊩ A mono⊩ {α P} ξ s = mono⊩ᵅ ξ s mono⊩ {A ▻ B} ξ s = λ ξ′ a → s (trans≤ ξ ξ′) a mono⊩ {□ A} ξ s = λ ζ → s (transR (≤→R ξ) ζ) mono⊩ {A ∧ B} ξ s = mono⊩ {A} ξ (π₁ s) , mono⊩ {B} ξ (π₂ s) mono⊩ {⊤} ξ s = ∙ mono⊩⋆ : ∀ {Γ w w′} → w ≤ w′ → w ⊩⋆ Γ → w′ ⊩⋆ Γ mono⊩⋆ {∅} ξ ∙ = ∙ mono⊩⋆ {Γ , A} ξ (γ , a) = mono⊩⋆ {Γ} ξ γ , mono⊩ {A} ξ a -- Additional useful equipment. module _ {{_ : Model}} where _⟪$⟫_ : ∀ {A B w} → w ⊩ A ▻ B → w ⊩ A → w ⊩ B s ⟪$⟫ a = s refl≤ a ⟪K⟫ : ∀ {A B w} → w ⊩ A → w ⊩ B ▻ A ⟪K⟫ {A} a ξ = K (mono⊩ {A} ξ a) ⟪S⟫ : ∀ {A B C w} → w ⊩ A ▻ B ▻ C → w ⊩ A ▻ B → w ⊩ A → w ⊩ C ⟪S⟫ {A} {B} {C} s₁ s₂ a = _⟪$⟫_ {B} {C} (_⟪$⟫_ {A} {B ▻ C} s₁ a) (_⟪$⟫_ {A} {B} s₂ a) ⟪S⟫′ : ∀ {A B C w} → w ⊩ A ▻ B ▻ C → w ⊩ (A ▻ B) ▻ A ▻ C ⟪S⟫′ {A} {B} {C} s₁ ξ s₂ ξ′ a = let s₁′ = mono⊩ {A ▻ B ▻ C} (trans≤ ξ ξ′) s₁ s₂′ = mono⊩ {A ▻ B} ξ′ s₂ in ⟪S⟫ {A} {B} {C} s₁′ s₂′ a _⟪D⟫_ : ∀ {A B w} → w ⊩ □ (A ▻ B) → w ⊩ □ A → w ⊩ □ B _⟪D⟫_ {A} {B} s₁ s₂ ζ = let s₁′ = s₁ ζ s₂′ = s₂ ζ in _⟪$⟫_ {A} {B} s₁′ s₂′ _⟪D⟫′_ : ∀ {A B w} → w ⊩ □ (A ▻ B) → w ⊩ □ A ▻ □ B _⟪D⟫′_ {A} {B} s₁ ξ = _⟪D⟫_ {A} {B} (mono⊩ {□ (A ▻ B)} ξ s₁) ⟪↑⟫ : ∀ {A w} → w ⊩ □ A → w ⊩ □ □ A ⟪↑⟫ s ζ ζ′ = s (transR ζ ζ′) ⟪↓⟫ : ∀ {A w} → w ⊩ □ A → w ⊩ A ⟪↓⟫ s = s reflR _⟪,⟫′_ : ∀ {A B w} → w ⊩ A → w ⊩ B ▻ A ∧ B _⟪,⟫′_ {A} {B} a ξ = _,_ (mono⊩ {A} ξ a) -- Forcing in a particular world of a particular model, for sequents. module _ {{_ : Model}} where infix 3 _⊩_⇒_ _⊩_⇒_ : World → Cx Ty → Ty → Set w ⊩ Γ ⇒ A = w ⊩⋆ Γ → w ⊩ A infix 3 _⊩_⇒⋆_ _⊩_⇒⋆_ : World → Cx Ty → Cx Ty → Set w ⊩ Γ ⇒⋆ Ξ = w ⊩⋆ Γ → w ⊩⋆ Ξ -- Entailment, or forcing in all worlds of all models, for sequents. infix 3 _⊨_ _⊨_ : Cx Ty → Ty → Set₁ Γ ⊨ A = ∀ {{_ : Model}} {w : World} → w ⊩ Γ ⇒ A infix 3 _⊨⋆_ _⊨⋆_ : Cx Ty → Cx Ty → Set₁ Γ ⊨⋆ Ξ = ∀ {{_ : Model}} {w : World} → w ⊩ Γ ⇒⋆ Ξ infix 3 _⁏_⊨_ _⁏_⊨_ : Cx Ty → Cx Ty → Ty → Set₁ Γ ⁏ Δ ⊨ A = ∀ {{_ : Model}} {w : World} → w ⊩⋆ Γ → (∀ {v′} → w R v′ → v′ ⊩⋆ Δ) → w ⊩ A -- Additional useful equipment, for sequents. module _ {{_ : Model}} where lookup : ∀ {A Γ w} → A ∈ Γ → w ⊩ Γ ⇒ A lookup top (γ , a) = a lookup (pop i) (γ , b) = lookup i γ
{ "alphanum_fraction": 0.3525206233, "avg_line_length": 28.118556701, "ext": "agda", "hexsha": "fbba3d868d5d916bc1c56415d41b484f8e9635f4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "BasicIS4/Semantics/BasicKripkeOno.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "BasicIS4/Semantics/BasicKripkeOno.agda", "max_line_length": 93, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "BasicIS4/Semantics/BasicKripkeOno.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 2798, "size": 5455 }
------------------------------------------------------------------------------ -- Agda-Prop Library. ------------------------------------------------------------------------------ open import Data.Nat using ( ℕ ) module Data.PropFormula.Dec ( n : ℕ ) where ------------------------------------------------------------------------------ open import Data.PropFormula.Syntax n open import Data.Bool.Base using ( Bool; false; true; not; T ) open import Data.Fin using ( Fin; suc; zero ) open import Data.Empty hiding (⊥) open import Function using ( _$_; _∘_ ) open import Relation.Binary.PropositionalEquality using ( _≡_; refl; cong ) ------------------------------------------------------------------------------ data ⊥₂ : Set where ⊥₂-elim : ∀ {Whatever : Set} → ⊥₂ → Whatever ⊥₂-elim () infix 3 ¬₂_ ¬₂_ : Set → Set ¬₂ P = P → ⊥₂ -- Decidable relations. data Dec (P : Set) : Set where yes : ( p : P) → Dec P no : (¬p : ¬₂ P) → Dec P ⌊_⌋ : {P : Set} → Dec P → Bool ⌊ yes _ ⌋ = true ⌊ no _ ⌋ = false REL : Set → Set → Set₁ REL A B = A → B → Set Decidable : {A : Set} {B : Set} → REL A B → Set Decidable _∼_ = ∀ x y → Dec (x ∼ y)
{ "alphanum_fraction": 0.4286934244, "avg_line_length": 24.914893617, "ext": "agda", "hexsha": "9133c2629dadaad37b2a512ce2027e4f0044ecd5", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2017-12-01T17:01:25.000Z", "max_forks_repo_forks_event_min_datetime": "2017-03-30T16:41:56.000Z", "max_forks_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jonaprieto/agda-prop", "max_forks_repo_path": "src/Data/PropFormula/Dec.agda", "max_issues_count": 18, "max_issues_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae", "max_issues_repo_issues_event_max_datetime": "2017-12-18T16:34:21.000Z", "max_issues_repo_issues_event_min_datetime": "2017-03-08T14:33:10.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jonaprieto/agda-prop", "max_issues_repo_path": "src/Data/PropFormula/Dec.agda", "max_line_length": 78, "max_stars_count": 13, "max_stars_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jonaprieto/agda-prop", "max_stars_repo_path": "src/Data/PropFormula/Dec.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T03:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2017-05-01T16:45:41.000Z", "num_tokens": 325, "size": 1171 }
postulate A : Set variable {xx} : A record R : Set₁ where field P : A → Set a : P xx b : P xx c : P xx d : P xx e : P xx f : P xx g : P xx h : P xx i : P xx j : P xx k : P xx l : P xx m : P xx n : P xx o : P xx p : P xx q : P xx r : P xx s : P xx t : P xx u : P xx v : P xx w : P xx x : P xx y : P xx z : P xx
{ "alphanum_fraction": 0.3606557377, "avg_line_length": 11.5405405405, "ext": "agda", "hexsha": "49284fbb356db5e89bb6377b0eafc794cdf12cd2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3306.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3306.agda", "max_line_length": 21, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3306.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 191, "size": 427 }
module BBSTree {A : Set}(_≤_ : A → A → Set) where open import Bound.Total A open import Bound.Total.Order _≤_ open import Data.List open import List.Order.Simple _≤_ data BBSTree : Bound → Bound → Set where bslf : {b t : Bound} → LeB b t → BBSTree b t bsnd : {x : A}{b t : Bound} → LeB b (val x) → LeB (val x) t → BBSTree b (val x) → BBSTree (val x) t → BBSTree b t flatten : {b t : Bound} → BBSTree b t → List A flatten (bslf _) = [] flatten (bsnd {x = x} b≤x x≤t l r) = flatten l ++ (x ∷ flatten r)
{ "alphanum_fraction": 0.4830769231, "avg_line_length": 29.5454545455, "ext": "agda", "hexsha": "b7b70eda6385471ab9ed3bbfde55c4dd39ddae8e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/BBSTree.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/BBSTree.agda", "max_line_length": 65, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/BBSTree.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 213, "size": 650 }
open import Prelude open import core open import contexts open import weakening module typed-expansion where mutual typed-expansion-synth : ∀{Φ Γ p e τ} → Φ , Γ ⊢ p ~~> e ⇒ τ → Γ ⊢ e => τ typed-expansion-synth SPEConst = SConst typed-expansion-synth (SPEAsc x) = SAsc (typed-expansion-ana x) typed-expansion-synth (SPEVar x₁) = SVar x₁ typed-expansion-synth (SPELam x₁ D) = SLam x₁ (typed-expansion-synth D) typed-expansion-synth (SPEAp D1 x D2 x₂) = SAp x₂ (typed-expansion-synth D1) x (typed-expansion-ana D2) typed-expansion-synth SPEHole = SEHole typed-expansion-synth (SPNEHole x D) = SNEHole x (typed-expansion-synth D) typed-expansion-synth (SPEApLivelit hd fr x x₁ x₂ x₃ x₄ x₅) = SAp (HDAsc hd) (SAsc (weaken-ana-closed fr x₅)) MAArr (typed-expansion-ana x₄) typed-expansion-synth (SPEFst h x) = SFst (typed-expansion-synth h) x typed-expansion-synth (SPESnd h x) = SSnd (typed-expansion-synth h) x typed-expansion-synth (SPEPair h h₁ x) = SPair x (typed-expansion-synth h) (typed-expansion-synth h₁) typed-expansion-ana : ∀{Φ Γ p e τ} → Φ , Γ ⊢ p ~~> e ⇐ τ → Γ ⊢ e <= τ typed-expansion-ana (APELam x₁ x₂ D) = ALam x₁ x₂ (typed-expansion-ana D) typed-expansion-ana (APESubsume h ch) = ASubsume (typed-expansion-synth h) ch
{ "alphanum_fraction": 0.6205698402, "avg_line_length": 51.3928571429, "ext": "agda", "hexsha": "a804cffa9826384c9279363bd65fc9ba614c53f7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-livelits-agda", "max_forks_repo_path": "typed-expansion.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_issues_repo_issues_event_max_datetime": "2020-10-20T20:44:13.000Z", "max_issues_repo_issues_event_min_datetime": "2020-09-30T20:27:56.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazel-palette-agda", "max_issues_repo_path": "typed-expansion.agda", "max_line_length": 144, "max_stars_count": 4, "max_stars_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazel-palette-agda", "max_stars_repo_path": "typed-expansion.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-19T15:38:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-04T06:45:06.000Z", "num_tokens": 488, "size": 1439 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category using (Category; module Commutation) -- Defines the induced Monoidal structure of a Cartesian Category module Categories.Category.Cartesian.Monoidal {o ℓ e} {𝒞 : Category o ℓ e} where open Category 𝒞 open HomReasoning open import Categories.Category.BinaryProducts 𝒞 using (BinaryProducts; module BinaryProducts) open import Categories.Category.Cartesian using (Cartesian) open import Categories.Object.Terminal 𝒞 using (Terminal) open import Categories.Object.Product.Core 𝒞 using (module Product) open import Categories.Morphism 𝒞 using (_≅_; module ≅) open import Categories.Morphism.Reasoning 𝒞 using (cancelˡ; pullʳ; pullˡ) open import Categories.Category.Monoidal using (Monoidal) open import Categories.Functor using (Functor) renaming (id to idF) open import Categories.NaturalTransformation using (ntHelper) open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism) private variable A B C D W X Y Z : Obj f f′ g g′ h i : A ⇒ B -- The cartesian structure induces a monoidal one: 𝒞 is cartesian monoidal. module CartesianMonoidal (cartesian : Cartesian 𝒞) where open Commutation 𝒞 open Terminal (Cartesian.terminal cartesian) using (⊤; !; !-unique; !-unique₂) open BinaryProducts (Cartesian.products cartesian) using (π₁; π₂; ⟨_,_⟩; _×_; _⁂_; _×-; -×_; ⟨⟩∘; ⟨⟩-cong₂; -×-; ×-assoc; assocˡ∘⁂; assocʳ∘⁂; ⁂∘⟨⟩; first∘⟨⟩; second∘⟨⟩; ⟨⟩-congˡ; ⟨⟩-congʳ; π₁∘⁂; π₂∘⁂; assocˡ∘⟨⟩; assocˡ; assocʳ; η; unique; project₁; project₂) ⊤×A≅A : ⊤ × A ≅ A ⊤×A≅A = record { from = π₂ ; to = ⟨ ! , id ⟩ ; iso = record { isoˡ = begin ⟨ ! , id ⟩ ∘ π₂ ≈˘⟨ unique !-unique₂ (cancelˡ project₂) ⟩ ⟨ π₁ , π₂ ⟩ ≈⟨ η ⟩ id ∎ ; isoʳ = project₂ } } A×⊤≅A : A × ⊤ ≅ A A×⊤≅A = record { from = π₁ ; to = ⟨ id , ! ⟩ ; iso = record { isoˡ = begin ⟨ id , ! ⟩ ∘ π₁ ≈˘⟨ unique (cancelˡ project₁) !-unique₂ ⟩ ⟨ π₁ , π₂ ⟩ ≈⟨ η ⟩ id ∎ ; isoʳ = project₁ } } ⊤×--id : NaturalIsomorphism (⊤ ×-) idF ⊤×--id = record { F⇒G = ntHelper record { η = λ _ → π₂ ; commute = λ _ → project₂ } ; F⇐G = ntHelper record { η = λ _ → ⟨ ! , id ⟩ ; commute = λ f → begin ⟨ ! , id ⟩ ∘ f ≈⟨ ⟨⟩∘ ⟩ ⟨ ! ∘ f , id ∘ f ⟩ ≈⟨ ⟨⟩-cong₂ (⟺ (!-unique _)) identityˡ ⟩ ⟨ ! , f ⟩ ≈˘⟨ ⟨⟩-cong₂ identityˡ identityʳ ⟩ ⟨ id ∘ ! , f ∘ id ⟩ ≈˘⟨ ⟨⟩-cong₂ (pullʳ project₁) (pullʳ project₂) ⟩ ⟨ (id ∘ π₁) ∘ ⟨ ! , id ⟩ , (f ∘ π₂) ∘ ⟨ ! , id ⟩ ⟩ ≈˘⟨ ⟨⟩∘ ⟩ ⟨ id ∘ π₁ , f ∘ π₂ ⟩ ∘ ⟨ ! , id ⟩ ∎ } ; iso = λ _ → _≅_.iso ⊤×A≅A } -×⊤-id : NaturalIsomorphism (-× ⊤) idF -×⊤-id = record { F⇒G = ntHelper record { η = λ _ → π₁ ; commute = λ _ → project₁ } ; F⇐G = ntHelper record { η = λ _ → ⟨ id , ! ⟩ ; commute = λ f → begin ⟨ id , ! ⟩ ∘ f ≈⟨ ⟨⟩∘ ⟩ ⟨ id ∘ f , ! ∘ f ⟩ ≈⟨ ⟨⟩-cong₂ identityˡ (⟺ (!-unique _)) ⟩ ⟨ f , ! ⟩ ≈˘⟨ ⟨⟩-cong₂ identityʳ identityˡ ⟩ ⟨ f ∘ id , id ∘ ! ⟩ ≈˘⟨ ⟨⟩-cong₂ (pullʳ project₁) (pullʳ project₂) ⟩ ⟨ (f ∘ π₁) ∘ ⟨ id , ! ⟩ , (id ∘ π₂) ∘ ⟨ id , ! ⟩ ⟩ ≈˘⟨ ⟨⟩∘ ⟩ ⟨ f ∘ π₁ , id ∘ π₂ ⟩ ∘ ⟨ id , ! ⟩ ∎ } ; iso = λ _ → _≅_.iso A×⊤≅A } private infixr 7 _⊗₀_ infixr 8 _⊗₁_ _⊗₀_ = _×_ _⊗₁_ = _⁂_ α⇒ = assocˡ private pentagon : [ ((X ⊗₀ Y) ⊗₀ Z) ⊗₀ W ⇒ X ⊗₀ Y ⊗₀ Z ⊗₀ W ]⟨ α⇒ ⊗₁ id ⇒⟨ (X ⊗₀ Y ⊗₀ Z) ⊗₀ W ⟩ α⇒ ⇒⟨ X ⊗₀ (Y ⊗₀ Z) ⊗₀ W ⟩ id ⊗₁ α⇒ ≈ α⇒ ⇒⟨ (X ⊗₀ Y) ⊗₀ Z ⊗₀ W ⟩ α⇒ ⟩ pentagon = begin (id ⁂ α⇒) ∘ α⇒ ∘ (α⇒ ⁂ id) ≈⟨ pullˡ second∘⟨⟩ ⟩ ⟨ π₁ ∘ π₁ , α⇒ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ∘ (α⇒ ⁂ id) ≈⟨ ⟨⟩∘ ⟩ ⟨ (π₁ ∘ π₁) ∘ (α⇒ ⁂ id) , (α⇒ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩) ∘ (α⇒ ⁂ id) ⟩ ≈⟨ ⟨⟩-cong₂ (pullʳ π₁∘⁂) (pullʳ ⟨⟩∘) ⟩ ⟨ π₁ ∘ α⇒ ∘ π₁ , α⇒ ∘ ⟨ (π₂ ∘ π₁) ∘ (α⇒ ⁂ id) , π₂ ∘ (α⇒ ⁂ id) ⟩ ⟩ ≈⟨ ⟨⟩-cong₂ (pullˡ project₁) ( refl⟩∘⟨ ⟨⟩-cong₂ (pullʳ π₁∘⁂) π₂∘⁂) ⟩ ⟨ (π₁ ∘ π₁) ∘ π₁ , α⇒ ∘ ⟨ π₂ ∘ α⇒ ∘ π₁ , id ∘ π₂ ⟩ ⟩ ≈⟨ ⟨⟩-cong₂ assoc (refl⟩∘⟨ ⟨⟩-cong₂ (pullˡ project₂) identityˡ) ⟩ ⟨ π₁₁₁ , α⇒ ∘ ⟨ ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ ⟨⟩-congˡ (refl⟩∘⟨ ⟨⟩-congʳ ⟨⟩∘) ⟩ ⟨ π₁₁₁ , α⇒ ∘ ⟨ ⟨ (π₂ ∘ π₁) ∘ π₁ , π₂ ∘ π₁ ⟩ , π₂ ⟩ ⟩ ≈⟨ ⟨⟩-congˡ assocˡ∘⟨⟩ ⟩ ⟨ π₁₁₁ , ⟨ (π₂ ∘ π₁) ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ⟩ ≈˘⟨ ⟨⟩-congˡ (⟨⟩-cong₂ (Equiv.trans (pullʳ project₁) sym-assoc) project₂) ⟩ ⟨ π₁₁₁ , ⟨ (π₂ ∘ π₁) ∘ α⇒ , π₂ ∘ α⇒ ⟩ ⟩ ≈˘⟨ ⟨⟩-cong₂ (pullʳ project₁) ⟨⟩∘ ⟩ ⟨ (π₁ ∘ π₁) ∘ α⇒ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ α⇒ ⟩ ≈˘⟨ ⟨⟩∘ ⟩ α⇒ ∘ α⇒ ∎ where π₁₁₁ = π₁ ∘ π₁ ∘ π₁ monoidal : Monoidal 𝒞 monoidal = record { ⊗ = -×- ; unit = ⊤ ; unitorˡ = ⊤×A≅A ; unitorʳ = A×⊤≅A ; associator = ≅.sym ×-assoc ; unitorˡ-commute-from = project₂ ; unitorˡ-commute-to = let open NaturalIsomorphism ⊤×--id in ⇐.commute _ ; unitorʳ-commute-from = project₁ ; unitorʳ-commute-to = let open NaturalIsomorphism -×⊤-id in ⇐.commute _ ; assoc-commute-from = assocˡ∘⁂ ; assoc-commute-to = assocʳ∘⁂ ; triangle = begin (id ⁂ π₂) ∘ assocˡ ≈⟨ ⁂∘⟨⟩ ⟩ ⟨ id ∘ π₁ ∘ π₁ , π₂ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ ⟨⟩-cong₂ (pullˡ identityˡ) (project₂ ○ (⟺ identityˡ)) ⟩ π₁ ⁂ id ∎ ; pentagon = pentagon }
{ "alphanum_fraction": 0.4230583695, "avg_line_length": 40.6470588235, "ext": "agda", "hexsha": "296616c5a5165f3a1ce24c2f4182f096c80fa623", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Cartesian/Monoidal.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Cartesian/Monoidal.agda", "max_line_length": 151, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Cartesian/Monoidal.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 2698, "size": 6219 }
{-# OPTIONS --no-qualified-instances #-} module NoQualifiedInstances-InAnonymousModule where postulate A : Set f : {{A}} → A module _ where postulate instance a : A test : A test = f
{ "alphanum_fraction": 0.6910994764, "avg_line_length": 14.6923076923, "ext": "agda", "hexsha": "9550dad3c0b11ac5f23ba352ff531732c6cba638", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/NoQualifiedInstances-InAnonymousModule.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/NoQualifiedInstances-InAnonymousModule.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/NoQualifiedInstances-InAnonymousModule.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 53, "size": 191 }
open import Relation.Binary.Core module PLRTree.Everything {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) (trans≤ : Transitive _≤_) where open import PLRTree.Complete.Correctness.Base {A} open import PLRTree.Drop.Complete _≤_ tot≤ open import PLRTree.Drop.Heap _≤_ tot≤ trans≤ open import PLRTree.Drop.Permutation _≤_ tot≤ open import PLRTree.Heap.Correctness _≤_ open import PLRTree.Insert.Complete _≤_ tot≤ open import PLRTree.Insert.Heap _≤_ tot≤ trans≤ open import PLRTree.Insert.Permutation _≤_ tot≤
{ "alphanum_fraction": 0.6873889876, "avg_line_length": 35.1875, "ext": "agda", "hexsha": "161a2dbfc04d3d0c710e5ff05448bdaa71e961e7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/PLRTree/Everything.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/PLRTree/Everything.agda", "max_line_length": 49, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/PLRTree/Everything.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 184, "size": 563 }
module Control.Exception.Primitive where open import IO.Primitive postulate bracket : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → IO A → (A → IO B) → (A → IO C) → IO C {-# IMPORT Control.Exception #-} {-# COMPILED bracket (\_ _ _ _ _ _ -> Control.Exception.bracket) #-}
{ "alphanum_fraction": 0.6129032258, "avg_line_length": 27.9, "ext": "agda", "hexsha": "72403a9950d6a3f18507d71294d8e9494dad1b94", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c710fde0b0904cb3c02c54142a938d12a4463b0a", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "ilya-fiveisky/agda-exceptions", "max_forks_repo_path": "src/Control/Exception/Primitive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c710fde0b0904cb3c02c54142a938d12a4463b0a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "ilya-fiveisky/agda-exceptions", "max_issues_repo_path": "src/Control/Exception/Primitive.agda", "max_line_length": 97, "max_stars_count": null, "max_stars_repo_head_hexsha": "c710fde0b0904cb3c02c54142a938d12a4463b0a", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "ilya-fiveisky/agda-exceptions", "max_stars_repo_path": "src/Control/Exception/Primitive.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 88, "size": 279 }
open import Data.Nat using (ℕ; suc ; zero; _+_; _≤′_; _<′_; _<_; _≤_; z≤n; s≤s; ≤′-refl; ≤′-step; _≟_) renaming (_⊔_ to max) open import Data.Nat.Properties using (n≤0⇒n≡0; ≤-refl; ≤-trans; m≤m⊔n; n≤m⊔n; ≤-step; ⊔-mono-≤; +-mono-≤; +-mono-≤-<; +-mono-<-≤; +-comm; +-assoc; n≤1+n; ≤-pred; m≤m+n; n≤m+n; ≤-reflexive; ≤′⇒≤; ≤⇒≤′; +-suc) open Data.Nat.Properties.≤-Reasoning using (begin_; _≤⟨_⟩_; _∎) open import Data.Bool using (Bool) renaming (_≟_ to _=?_) open import Data.Product using (_×_; Σ; Σ-syntax; ∃; ∃-syntax; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Empty using (⊥-elim) renaming (⊥ to Bot) open import Data.Unit using (⊤; tt) open import Data.Maybe open import Data.List using (List ; _∷_ ; []; _++_) open import Relation.Nullary using (¬_) open import Relation.Nullary using (Dec; yes; no) open import Relation.Nullary.Negation using (contradiction) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; cong) open Relation.Binary.PropositionalEquality.≡-Reasoning renaming (begin_ to start_; _∎ to _□) module extra.Value where data Base : Set where Nat : Base 𝔹 : Base data Prim : Set where base : Base → Prim _⇒_ : Base → Prim → Prim base-rep : Base → Set base-rep Nat = ℕ base-rep 𝔹 = Bool rep : Prim → Set rep (base b) = base-rep b rep (b ⇒ p) = base-rep b → rep p base-eq? : (B : Base) → (B' : Base) → Dec (B ≡ B') base-eq? Nat Nat = yes refl base-eq? Nat 𝔹 = no (λ ()) base-eq? 𝔹 Nat = no (λ ()) base-eq? 𝔹 𝔹 = yes refl base-rep-eq? : ∀{B} → (k : base-rep B) (k′ : base-rep B) → Dec (k ≡ k′) base-rep-eq? {Nat} k k′ = k ≟ k′ base-rep-eq? {𝔹} k k′ = k =? k′ infixr 7 _↦_ infixl 6 _⊔_ data Value : Set data Value where ⊥ : Value const : {b : Base} → base-rep b → Value _↦_ : Value → Value → Value _⊔_ : (u : Value) → (v : Value) → Value infix 5 _∈_ _∈_ : Value → Value → Set u ∈ ⊥ = u ≡ ⊥ u ∈ const {B} k = u ≡ const {B} k u ∈ v ↦ w = u ≡ v ↦ w u ∈ (v ⊔ w) = u ∈ v ⊎ u ∈ w infix 5 _⊆_ _⊆_ : Value → Value → Set v ⊆ w = ∀{u} → u ∈ v → u ∈ w AllFun : (u : Value) → Set AllFun ⊥ = Bot AllFun (const x) = Bot AllFun (v ↦ w) = ⊤ AllFun (u ⊔ v) = AllFun u × AllFun v dom : (u : Value) → Value dom ⊥ = ⊥ dom (const k) = ⊥ dom (v ↦ w) = v dom (u ⊔ v) = dom u ⊔ dom v cod : (u : Value) → Value cod ⊥ = ⊥ cod (const k) = ⊥ cod (v ↦ w) = w cod (u ⊔ v) = cod u ⊔ cod v infix 4 _⊑_ data _⊑_ : Value → Value → Set where ⊑-⊥ : ∀ {v} → ⊥ ⊑ v ⊑-const : ∀ {B}{k} → const {B} k ⊑ const {B} k ⊑-conj-L : ∀ {u v w} → v ⊑ u → w ⊑ u ----------- → v ⊔ w ⊑ u ⊑-conj-R1 : ∀ {u v w} → u ⊑ v ------------------ → u ⊑ v ⊔ w ⊑-conj-R2 : ∀ {u v w} → u ⊑ w ----------- → u ⊑ v ⊔ w ⊑-fun : ∀ {u u′ v w} → u′ ⊆ u → AllFun u′ → dom u′ ⊑ v → w ⊑ cod u′ ------------------- → v ↦ w ⊑ u ⊑-refl : ∀{v} → v ⊑ v ⊑-refl {⊥} = ⊑-⊥ ⊑-refl {const k} = ⊑-const ⊑-refl {v ↦ w} = ⊑-fun{v ↦ w}{v ↦ w} (λ {u} z → z) tt (⊑-refl{v}) ⊑-refl ⊑-refl {v₁ ⊔ v₂} = ⊑-conj-L (⊑-conj-R1 ⊑-refl) (⊑-conj-R2 ⊑-refl) factor : (u : Value) → (u′ : Value) → (v : Value) → (w : Value) → Set factor u u′ v w = AllFun u′ × u′ ⊆ u × dom u′ ⊑ v × w ⊑ cod u′ ⊑-fun-inv : ∀{u₁ u₂ v w} → u₁ ⊑ u₂ → v ↦ w ∈ u₁ → Σ[ u₃ ∈ Value ] factor u₂ u₃ v w ⊑-fun-inv {.⊥} {u₂} {v} {w} ⊑-⊥ () ⊑-fun-inv {.(const _)} {.(const _)} {v} {w} ⊑-const () ⊑-fun-inv {u11 ⊔ u12} {u₂} {v} {w} (⊑-conj-L u₁⊑u₂ u₁⊑u₃) (inj₁ x) = ⊑-fun-inv u₁⊑u₂ x ⊑-fun-inv {u11 ⊔ u12} {u₂} {v} {w} (⊑-conj-L u₁⊑u₂ u₁⊑u₃) (inj₂ y) = ⊑-fun-inv u₁⊑u₃ y ⊑-fun-inv {u₁} {u21 ⊔ u22} {v} {w} (⊑-conj-R1 u₁⊑u₂) v↦w∈u₁ with ⊑-fun-inv {u₁} {u21} {v} {w} u₁⊑u₂ v↦w∈u₁ ... | ⟨ u₃ , ⟨ afu₃ , ⟨ u3⊆u₁ , ⟨ du₃⊑v , w⊑codu₃ ⟩ ⟩ ⟩ ⟩ = ⟨ u₃ , ⟨ afu₃ , ⟨ (λ {x} x₁ → inj₁ (u3⊆u₁ x₁)) , ⟨ du₃⊑v , w⊑codu₃ ⟩ ⟩ ⟩ ⟩ ⊑-fun-inv {u₁} {u21 ⊔ u22} {v} {w} (⊑-conj-R2 u₁⊑u₂) v↦w∈u₁ with ⊑-fun-inv {u₁} {u22} {v} {w} u₁⊑u₂ v↦w∈u₁ ... | ⟨ u₃ , ⟨ afu₃ , ⟨ u3⊆u₁ , ⟨ du₃⊑v , w⊑codu₃ ⟩ ⟩ ⟩ ⟩ = ⟨ u₃ , ⟨ afu₃ , ⟨ (λ {x} x₁ → inj₂ (u3⊆u₁ x₁)) , ⟨ du₃⊑v , w⊑codu₃ ⟩ ⟩ ⟩ ⟩ ⊑-fun-inv {u11 ↦ u21} {u₂} {v} {w} (⊑-fun{u′ = u′} u′⊆u₂ afu′ du′⊑u11 u21⊑cu′) refl = ⟨ u′ , ⟨ afu′ , ⟨ u′⊆u₂ , ⟨ du′⊑u11 , u21⊑cu′ ⟩ ⟩ ⟩ ⟩ sub-inv-trans : ∀{u′ u₂ u : Value} → AllFun u′ → u′ ⊆ u → (∀{v′ w′} → v′ ↦ w′ ∈ u′ → Σ[ u₃ ∈ Value ] factor u₂ u₃ v′ w′) --------------------------------------------------------------- → Σ[ u₃ ∈ Value ] factor u₂ u₃ (dom u′) (cod u′) sub-inv-trans {⊥} {u₂} {u} () u′⊆u IH sub-inv-trans {const k} {u₂} {u} () u′⊆u IH sub-inv-trans {u₁′ ↦ u₂′} {u₂} {u} fu′ u′⊆u IH = IH refl sub-inv-trans {u₁′ ⊔ u₂′} {u₂} {u} ⟨ afu₁′ , afu₂′ ⟩ u′⊆u IH with sub-inv-trans {u₁′} {u₂} {u} afu₁′ (λ {u₁} z → u′⊆u (inj₁ z)) (λ {v′} {w′} z → IH (inj₁ z)) | sub-inv-trans {u₂′} {u₂} {u} afu₂′ (λ {u₁} z → u′⊆u (inj₂ z)) (λ {v′} {w′} z → IH (inj₂ z)) ... | ⟨ u₃ , ⟨ afu₃ , ⟨ u₃⊆ , ⟨ du₃⊑ , ⊑cu₃ ⟩ ⟩ ⟩ ⟩ | ⟨ u₄ , ⟨ afu₄ , ⟨ u₄⊆ , ⟨ du₄⊑ , ⊑cu₄ ⟩ ⟩ ⟩ ⟩ = ⟨ (u₃ ⊔ u₄) , ⟨ ⟨ afu₃ , afu₄ ⟩ , ⟨ G , ⟨ H , I ⟩ ⟩ ⟩ ⟩ where G : ∀ {u₁} → u₁ ∈ u₃ ⊎ u₁ ∈ u₄ → u₁ ∈ u₂ G {u₁} (inj₁ x) = u₃⊆ x G {u₁} (inj₂ y) = u₄⊆ y H : dom u₃ ⊔ dom u₄ ⊑ dom u₁′ ⊔ dom u₂′ H = ⊑-conj-L (⊑-conj-R1 du₃⊑) (⊑-conj-R2 du₄⊑) I : cod u₁′ ⊔ cod u₂′ ⊑ cod u₃ ⊔ cod u₄ I = ⊑-conj-L (⊑-conj-R1 ⊑cu₃) (⊑-conj-R2 ⊑cu₄) ⊔⊑R : ∀{B C A} → B ⊔ C ⊑ A → B ⊑ A ⊔⊑R (⊑-conj-L B⊔C⊑A B⊔C⊑A₁) = B⊔C⊑A ⊔⊑R (⊑-conj-R1 B⊔C⊑A) = ⊑-conj-R1 (⊔⊑R B⊔C⊑A) ⊔⊑R (⊑-conj-R2 B⊔C⊑A) = ⊑-conj-R2 (⊔⊑R B⊔C⊑A) ⊔⊑L : ∀{B C A} → B ⊔ C ⊑ A → C ⊑ A ⊔⊑L (⊑-conj-L B⊔C⊑A B⊔C⊑A₁) = B⊔C⊑A₁ ⊔⊑L (⊑-conj-R1 B⊔C⊑A) = ⊑-conj-R1 (⊔⊑L B⊔C⊑A) ⊔⊑L (⊑-conj-R2 B⊔C⊑A) = ⊑-conj-R2 (⊔⊑L B⊔C⊑A) u∈v⊑w→u⊑w : ∀{B A C} → C ∈ B → B ⊑ A → C ⊑ A u∈v⊑w→u⊑w {⊥} C∈B B⊑A rewrite C∈B = B⊑A u∈v⊑w→u⊑w {const k} C∈B B⊑A rewrite C∈B = B⊑A u∈v⊑w→u⊑w {B₁ ↦ B₂} C∈B B⊑A rewrite C∈B = B⊑A u∈v⊑w→u⊑w {B₁ ⊔ B₂}{A}{C} (inj₁ C∈B₁) B⊑A = u∈v⊑w→u⊑w {B₁}{A}{C} C∈B₁ (⊔⊑R B⊑A) u∈v⊑w→u⊑w {B₁ ⊔ B₂}{A}{C} (inj₂ C∈B₂) B⊑A = u∈v⊑w→u⊑w {B₂}{A}{C} C∈B₂ (⊔⊑L B⊑A) u⊆v⊑w→u⊑w : ∀{u v w} → u ⊆ v → v ⊑ w → u ⊑ w u⊆v⊑w→u⊑w {⊥} {v} {w} u⊆v v⊑w = ⊑-⊥ u⊆v⊑w→u⊑w {const k} {v} {w} u⊆v v⊑w with u⊆v refl ... | k∈v = u∈v⊑w→u⊑w k∈v v⊑w u⊆v⊑w→u⊑w {u₁ ↦ u₂} {v} {w} u⊆v v⊑w with u⊆v refl ... | u₁↦u₂∈v = u∈v⊑w→u⊑w u₁↦u₂∈v v⊑w u⊆v⊑w→u⊑w {u₁ ⊔ u₂} {v} {w} u⊆v v⊑w = ⊑-conj-L (u⊆v⊑w→u⊑w u₁⊆v v⊑w) (u⊆v⊑w→u⊑w u₂⊆v v⊑w) where u₁⊆v : u₁ ⊆ v u₁⊆v {u′} u′∈u₁ = u⊆v (inj₁ u′∈u₁) u₂⊆v : u₂ ⊆ v u₂⊆v {u′} u′∈u₂ = u⊆v (inj₂ u′∈u₂) depth : (v : Value) → ℕ depth ⊥ = zero depth (const k) = zero depth (v ↦ w) = suc (max (depth v) (depth w)) depth (v₁ ⊔ v₂) = max (depth v₁) (depth v₂) size : (v : Value) → ℕ size ⊥ = zero size (const k) = zero size (v ↦ w) = suc (size v + size w) size (v₁ ⊔ v₂) = suc (size v₁ + size v₂) ∈→depth≤ : ∀{v u : Value} → u ∈ v → depth u ≤ depth v ∈→depth≤ {⊥} {u} u∈v rewrite u∈v = _≤_.z≤n ∈→depth≤ {const x} {u} u∈v rewrite u∈v = _≤_.z≤n ∈→depth≤ {v ↦ w} {u} u∈v rewrite u∈v = ≤-refl ∈→depth≤ {v₁ ⊔ v₂} {u} (inj₁ x) = ≤-trans (∈→depth≤ {v₁} {u} x) (m≤m⊔n (depth v₁) (depth v₂)) ∈→depth≤ {v₁ ⊔ v₂} {u} (inj₂ y) = ≤-trans (∈→depth≤ {v₂} {u} y) (n≤m⊔n (depth v₁) (depth v₂)) max-lub : ∀{x y z : ℕ} → x ≤ z → y ≤ z → max x y ≤ z max-lub {.0} {y} {z} _≤_.z≤n y≤z = y≤z max-lub {suc x} {.0} {suc z} (_≤_.s≤s x≤z) _≤_.z≤n = _≤_.s≤s x≤z max-lub {suc x} {suc y} {suc z} (_≤_.s≤s x≤z) (_≤_.s≤s y≤z) = let max-xy≤z = max-lub {x}{y}{z} x≤z y≤z in _≤_.s≤s max-xy≤z ⊔⊆-inv : ∀{u v w : Value} → (u ⊔ v) ⊆ w --------------- → u ⊆ w × v ⊆ w ⊔⊆-inv uvw = ⟨ (λ x → uvw (inj₁ x)) , (λ x → uvw (inj₂ x)) ⟩ ⊆→depth≤ : ∀{u v : Value} → u ⊆ v → depth u ≤ depth v ⊆→depth≤ {⊥} {v} u⊆v = _≤_.z≤n ⊆→depth≤ {const x} {v} u⊆v = _≤_.z≤n ⊆→depth≤ {u₁ ↦ u₂} {v} u⊆v = ∈→depth≤ (u⊆v refl) ⊆→depth≤ {u₁ ⊔ u₂} {v} u⊆v with ⊔⊆-inv u⊆v ... | ⟨ u₁⊆v , u₂⊆v ⟩ = let u₁≤v = ⊆→depth≤ u₁⊆v in let u₂≤v = ⊆→depth≤ u₂⊆v in max-lub u₁≤v u₂≤v dom-depth-≤ : ∀{u : Value} → depth (dom u) ≤ depth u dom-depth-≤ {⊥} = _≤_.z≤n dom-depth-≤ {const k} = _≤_.z≤n dom-depth-≤ {v ↦ w} = ≤-step (m≤m⊔n (depth v) (depth w)) dom-depth-≤ {u ⊔ v} = let ih1 = dom-depth-≤ {u} in let ih2 = dom-depth-≤ {v} in ⊔-mono-≤ ih1 ih2 cod-depth-≤ : ∀{u : Value} → depth (cod u) ≤ depth u cod-depth-≤ {⊥} = _≤_.z≤n cod-depth-≤ {const k} = _≤_.z≤n cod-depth-≤ {v ↦ w} = ≤-step (n≤m⊔n (depth v) (depth w)) cod-depth-≤ {u ⊔ v} = let ih1 = cod-depth-≤ {u} in let ih2 = cod-depth-≤ {v} in ⊔-mono-≤ ih1 ih2 ≤′-trans : ∀{x y z} → x ≤′ y → y ≤′ z → x ≤′ z ≤′-trans x≤′y y≤′z = ≤⇒≤′ (≤-trans (≤′⇒≤ x≤′y) (≤′⇒≤ y≤′z)) data _<<_ : ℕ × ℕ → ℕ × ℕ → Set where fst : ∀{x x' y y'} → x <′ x' → ⟨ x , y ⟩ << ⟨ x' , y' ⟩ snd : ∀{x x' y y'} → x ≤′ x' → y <′ y' → ⟨ x , y ⟩ << ⟨ x' , y' ⟩ <<-nat-wf : (P : ℕ → ℕ → Set) → (∀ x y → (∀ {x' y'} → ⟨ x' , y' ⟩ << ⟨ x , y ⟩ → P x' y') → P x y) → ∀ x y → P x y <<-nat-wf P ih x y = ih x y (help x y) where help : (x y : ℕ) → ∀{ x' y'} → ⟨ x' , y' ⟩ << ⟨ x , y ⟩ → P x' y' help .(suc x') y {x'}{y'} (fst ≤′-refl) = ih x' y' (help x' y') help .(suc x) y {x'}{y'} (fst (≤′-step {x} q)) = help x y {x'}{y'} (fst q) help x .(suc y) {x'}{y} (snd x'≤x ≤′-refl) = let h : ∀ {x₁} {x₂} → (⟨ x₁ , x₂ ⟩ << ⟨ x , y ⟩) → P x₁ x₂ h = help x y in ih x' y G where G : ∀ {x'' y'} → ⟨ x'' , y' ⟩ << ⟨ x' , y ⟩ → P x'' y' G {x''} {y'} (fst x''<x') = help x y (fst {y = y'}{y' = y} (≤′-trans x''<x' x'≤x)) G {x''} {y'} (snd x''≤x' y'<y) = help x y {x''}{y'} (snd (≤′-trans x''≤x' x'≤x) y'<y) help x .(suc y) {x'}{y'} (snd x′≤x (≤′-step {y} q)) = help x y {x'}{y'} (snd x′≤x q) ⊑-trans-P : ℕ → ℕ → Set ⊑-trans-P d s = ∀{u v w} → d ≡ depth u + depth w → s ≡ size u + size v → u ⊑ v → v ⊑ w → u ⊑ w ⊑-trans-rec : ∀ d s → ⊑-trans-P d s ⊑-trans-rec = <<-nat-wf ⊑-trans-P helper where helper : ∀ x y → (∀ {x' y'} → ⟨ x' , y' ⟩ << ⟨ x , y ⟩ → ⊑-trans-P x' y') → ⊑-trans-P x y helper d s IH {.⊥} {v} {w} d≡ s≡ ⊑-⊥ v⊑w = ⊑-⊥ helper d s IH {.(const _)} {.(const _)} {w} d≡ s≡ ⊑-const v⊑w = v⊑w helper d s IH {u₁ ⊔ u₂} {v} {w} d≡ s≡ (⊑-conj-L u₁⊑v u₂⊑v) v⊑w rewrite d≡ | s≡ = let u₁⊑w = IH M1 {u₁}{v}{w} refl refl u₁⊑v v⊑w in let u₂⊑w = IH M2 {u₂}{v}{w} refl refl u₂⊑v v⊑w in ⊑-conj-L u₁⊑w u₂⊑w where M1a = begin depth u₁ + depth w ≤⟨ +-mono-≤ (m≤m⊔n (depth u₁) (depth u₂)) ≤-refl ⟩ max (depth u₁) (depth u₂) + depth w ∎ M1b = begin suc (size u₁ + size v) ≤⟨ s≤s (+-mono-≤ ≤-refl (n≤m+n (size u₂) (size v))) ⟩ suc (size u₁ + (size u₂ + size v)) ≤⟨ s≤s (≤-reflexive (sym (+-assoc (size u₁) (size u₂) (size v)))) ⟩ suc (size u₁ + size u₂ + size v) ∎ M1 : ⟨ depth u₁ + depth w , size u₁ + size v ⟩ << ⟨ max (depth u₁) (depth u₂) + depth w , suc (size u₁ + size u₂ + size v) ⟩ M1 = snd (≤⇒≤′ M1a) (≤⇒≤′ M1b) M2a = begin depth u₂ + depth w ≤⟨ +-mono-≤ (n≤m⊔n (depth u₁) (depth u₂)) ≤-refl ⟩ max (depth u₁) (depth u₂) + depth w ∎ M2b = begin suc (size u₂ + size v) ≤⟨ s≤s (+-mono-≤ (n≤m+n (size u₁) (size u₂)) ≤-refl) ⟩ suc ((size u₁ + size u₂) + size v) ∎ M2 : ⟨ depth u₂ + depth w , size u₂ + size v ⟩ << ⟨ max (depth u₁) (depth u₂) + depth w , suc (size u₁ + size u₂ + size v) ⟩ M2 = snd (≤⇒≤′ M2a) (≤⇒≤′ M2b) helper d s IH {u} {v₁ ⊔ v₂} {w} d≡ s≡ (⊑-conj-R1 u⊑v₁) v₁⊔v₂⊑w rewrite d≡ | s≡ = let v₁⊑w = ⊔⊑R v₁⊔v₂⊑w in IH M {u}{v₁}{w} refl refl u⊑v₁ v₁⊑w where Ma = begin suc (size u + size v₁) ≤⟨ ≤-reflexive (sym (+-suc (size u) (size v₁))) ⟩ size u + suc (size v₁) ≤⟨ +-mono-≤ ≤-refl (s≤s (m≤m+n (size v₁) (size v₂))) ⟩ size u + suc (size v₁ + size v₂) ∎ M : ⟨ depth u + depth w , size u + size v₁ ⟩ << ⟨ depth u + depth w , size u + suc (size v₁ + size v₂) ⟩ M = snd (≤⇒≤′ ≤-refl) (≤⇒≤′ Ma) helper d s IH {u} {v₁ ⊔ v₂} {w} d≡ s≡ (⊑-conj-R2 u⊑v₂) v₁⊔v₂⊑w rewrite d≡ | s≡ = let v₂⊑w = ⊔⊑L v₁⊔v₂⊑w in IH M {u}{v₂}{w} refl refl u⊑v₂ v₂⊑w where Ma = begin suc (size u + size v₂) ≤⟨ ≤-reflexive (sym (+-suc (size u) (size v₂))) ⟩ size u + suc (size v₂) ≤⟨ +-mono-≤ ≤-refl (s≤s (n≤m+n (size v₁) (size v₂))) ⟩ size u + suc (size v₁ + size v₂) ∎ M : ⟨ depth u + depth w , size u + size v₂ ⟩ << ⟨ depth u + depth w , size u + suc (size v₁ + size v₂) ⟩ M = snd (≤⇒≤′ ≤-refl) (≤⇒≤′ Ma) helper d s IH {u₁ ↦ u₂}{v}{w}d≡ s≡ (⊑-fun{u′ = v′}v′⊆v afv′ dv′⊑u₁ u₂⊑cv′) v⊑w rewrite d≡ | s≡ with sub-inv-trans afv′ v′⊆v (λ {v₁}{v₂} v₁↦v₂∈v′ → ⊑-fun-inv {v′} {w} (u⊆v⊑w→u⊑w v′⊆v v⊑w) v₁↦v₂∈v′) ... | ⟨ w′ , ⟨ afw′ , ⟨ w′⊆w , ⟨ dw′⊑dv′ , cv′⊑cw′ ⟩ ⟩ ⟩ ⟩ = let dw′⊑u₁ = IH M1 {dom w′}{dom v′}{u₁} refl refl dw′⊑dv′ dv′⊑u₁ in let u₂⊑cw′ = IH M2 {u₂}{cod v′}{cod w′} refl refl u₂⊑cv′ cv′⊑cw′ in ⊑-fun{u′ = w′} w′⊆w afw′ dw′⊑u₁ u₂⊑cw′ where dw′≤w : depth (dom w′) ≤ depth w dw′≤w = ≤-trans (dom-depth-≤{w′}) (⊆→depth≤ w′⊆w) cw′≤w : depth (cod w′) ≤ depth w cw′≤w = ≤-trans (cod-depth-≤{w′}) (⊆→depth≤ w′⊆w) M1a = begin suc (depth (dom w′) + depth u₁) ≤⟨ s≤s (≤-reflexive (+-comm (depth (dom w′)) (depth u₁))) ⟩ suc (depth u₁ + depth (dom w′)) ≤⟨ s≤s (+-mono-≤ (m≤m⊔n (depth u₁) (depth u₂)) dw′≤w) ⟩ suc (max (depth u₁) (depth u₂) + depth w) ∎ M1 : ⟨ depth (dom w′) + depth u₁ , size (dom w′) + size (dom v′) ⟩ << ⟨ suc (max (depth u₁) (depth u₂) + depth w) , suc (size u₁ + size u₂ + size v) ⟩ M1 = fst (≤⇒≤′ M1a) M2a = begin suc (depth u₂ + depth (cod w′)) ≤⟨ s≤s (+-mono-≤ (n≤m⊔n (depth u₁) (depth u₂)) cw′≤w) ⟩ suc (max (depth u₁) (depth u₂) + depth w) ∎ M2 : ⟨ depth u₂ + depth (cod w′) , size u₂ + size (cod v′) ⟩ << ⟨ suc (max (depth u₁) (depth u₂) + depth w) , suc (size u₁ + size u₂ + size v) ⟩ M2 = fst (≤⇒≤′ M2a) ⊑-trans : ∀{u v w} → u ⊑ v → v ⊑ w → u ⊑ w ⊑-trans {u} {v} {w} u⊑v v⊑w = ⊑-trans-rec (depth u + depth w) (size u + size v) refl refl u⊑v v⊑w
{ "alphanum_fraction": 0.4287053781, "avg_line_length": 34.0113895216, "ext": "agda", "hexsha": "1c63aa1489bf037972fb4ad77ef350639fce94f1", "lang": "Agda", "max_forks_count": 304, "max_forks_repo_forks_event_max_datetime": "2022-03-28T11:35:02.000Z", "max_forks_repo_forks_event_min_datetime": "2018-07-16T18:24:59.000Z", "max_forks_repo_head_hexsha": "5468837f55cbea38d5c5a163e1ea5d48edb92bcc", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "andorp/plfa.github.io", "max_forks_repo_path": "extra/extra/Value.agda", "max_issues_count": 323, "max_issues_repo_head_hexsha": "5468837f55cbea38d5c5a163e1ea5d48edb92bcc", "max_issues_repo_issues_event_max_datetime": "2022-03-30T07:42:57.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-05T22:34:34.000Z", "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "andorp/plfa.github.io", "max_issues_repo_path": "extra/extra/Value.agda", "max_line_length": 92, "max_stars_count": 1003, "max_stars_repo_head_hexsha": "5468837f55cbea38d5c5a163e1ea5d48edb92bcc", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "andorp/plfa.github.io", "max_stars_repo_path": "extra/extra/Value.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-27T07:03:28.000Z", "max_stars_repo_stars_event_min_datetime": "2018-07-05T18:15:14.000Z", "num_tokens": 8319, "size": 14931 }
-- Andreas, 2012-09-07 -- {-# OPTIONS -v tc.polarity:10 -v tc.conv.irr:20 -v tc.conv.elim:25 -v tc.conv.term:10 #-} module Issue691 where open import Common.Equality data Bool : Set where true false : Bool assert : (A : Set) → A → Bool → Bool assert _ _ true = true assert _ _ false = false g : Bool -> Bool -> Bool g x true = true g x false = true unsolved : Bool -> Bool unsolved y = let X : Bool X = _ in assert (g X y ≡ g true y) refl X -- X should be left unsolved istrue : (unsolved false) ≡ true istrue = refl
{ "alphanum_fraction": 0.6351851852, "avg_line_length": 18.6206896552, "ext": "agda", "hexsha": "57c8357726617997acf2be34407a927e1525e58d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue691.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue691.agda", "max_line_length": 92, "max_stars_count": 1, "max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "np/agda-git-experiment", "max_stars_repo_path": "test/fail/Issue691.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 182, "size": 540 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Container combinators ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Container.Combinator where open import Level using (Level; _⊔_; Lift) open import Data.Empty using (⊥) open import Data.Product as P using (_,_; proj₁; proj₂; ∃) open import Data.Sum.Base as S using ([_,_]′) open import Data.Unit.Base using (⊤) import Function as F open import Data.Container.Core open import Data.Container.Relation.Unary.Any ------------------------------------------------------------------------ -- Combinators module _ {s p : Level} where -- Identity. id : Container s p id .Shape = Lift s ⊤ id .Position = F.const (Lift p ⊤) -- Constant. const : Set s → Container s p const X .Shape = X const X .Position = F.const (Lift p ⊥) -- Composition. infixr 9 _∘_ _∘_ : ∀ {s₁ s₂ p₁ p₂} → Container s₁ p₁ → Container s₂ p₂ → Container (s₁ ⊔ s₂ ⊔ p₁) (p₁ ⊔ p₂) (C₁ ∘ C₂) .Shape = ⟦ C₁ ⟧ (Shape C₂) (C₁ ∘ C₂) .Position = ◇ C₁ (Position C₂) -- Product. (Note that, up to isomorphism, this is a special case of -- indexed product.) infixr 2 _×_ _×_ : ∀ {s₁ s₂ p₁ p₂} → Container s₁ p₁ → Container s₂ p₂ → Container (s₁ ⊔ s₂) (p₁ ⊔ p₂) (C₁ × C₂) .Shape = Shape C₁ P.× Shape C₂ (C₁ × C₂) .Position = P.uncurry λ s₁ s₂ → (Position C₁ s₁) S.⊎ (Position C₂ s₂) -- Indexed product. Π : ∀ {i s p} (I : Set i) → (I → Container s p) → Container (i ⊔ s) (i ⊔ p) Π I C .Shape = ∀ i → Shape (C i) Π I C .Position = λ s → ∃ λ i → Position (C i) (s i) -- Constant exponentiation. (Note that this is a special case of -- indexed product.) infix 0 const[_]⟶_ const[_]⟶_ : ∀ {i s p} → Set i → Container s p → Container (i ⊔ s) (i ⊔ p) const[ X ]⟶ C = Π X (F.const C) -- Sum. (Note that, up to isomorphism, this is a special case of -- indexed sum.) infixr 1 _⊎_ _⊎_ : ∀ {s₁ s₂ p} → Container s₁ p → Container s₂ p → Container (s₁ ⊔ s₂) p (C₁ ⊎ C₂) .Shape = (Shape C₁ S.⊎ Shape C₂) (C₁ ⊎ C₂) .Position = [ Position C₁ , Position C₂ ]′ -- Indexed sum. Σ : ∀ {i s p} (I : Set i) → (I → Container s p) → Container (i ⊔ s) p Σ I C .Shape = ∃ λ i → Shape (C i) Σ I C .Position = λ s → Position (C (proj₁ s)) (proj₂ s)
{ "alphanum_fraction": 0.5505376344, "avg_line_length": 27.3529411765, "ext": "agda", "hexsha": "2d8f8d4034f314af9d3f2e70096e88af96e6f726", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Combinator.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Combinator.agda", "max_line_length": 79, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Combinator.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 805, "size": 2325 }
{-# OPTIONS --safe --experimental-lossy-unification #-} {- This file contains: 1. The iso π₃S²≅ℤ 2. A proof that π₃S² is generated by the Hopf map -} module Cubical.Homotopy.Group.Pi3S2 where open import Cubical.Homotopy.Loopspace open import Cubical.Homotopy.Group.LES open import Cubical.Homotopy.Group.PinSn open import Cubical.Homotopy.Group.Base open import Cubical.Homotopy.HopfInvariant.HopfMap open import Cubical.Homotopy.HopfInvariant.Base open import Cubical.Homotopy.HopfInvariant.Homomorphism open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.HLevels open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Isomorphism open Iso open import Cubical.Foundations.Equiv open import Cubical.HITs.SetTruncation renaming (elim to sElim) open import Cubical.HITs.Sn open import Cubical.HITs.Susp open import Cubical.HITs.S1 open import Cubical.Data.Sigma open import Cubical.Data.Nat open import Cubical.Data.Int open import Cubical.Algebra.Group open import Cubical.Algebra.Group.ZAction open import Cubical.Algebra.Group.Exact open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Group.Instances.Unit open import Cubical.Algebra.Group.Instances.Int TotalHopf→∙S² : (Σ (S₊ 2) S¹Hopf , north , base) →∙ S₊∙ 2 fst TotalHopf→∙S² = fst snd TotalHopf→∙S² = refl IsoTotalSpaceJoin' : Iso (Σ (S₊ 2) S¹Hopf) (S₊ 3) IsoTotalSpaceJoin' = compIso hopfS¹.IsoTotalSpaceJoin (IsoSphereJoin 1 1) IsoFiberTotalHopfS¹ : Iso (fiber (fst TotalHopf→∙S²) north) S¹ fun IsoFiberTotalHopfS¹ ((x , y) , z) = subst S¹Hopf z y inv IsoFiberTotalHopfS¹ x = (north , x) , refl rightInv IsoFiberTotalHopfS¹ x = refl leftInv IsoFiberTotalHopfS¹ ((x , y) , z) = ΣPathP ((ΣPathP (sym z , (λ i → transp (λ j → S¹Hopf (z (~ i ∧ j))) i y))) , (λ j i → z (i ∨ ~ j))) IsoFiberTotalHopfS¹∙≡ : (fiber (fst TotalHopf→∙S²) north , (north , base) , refl) ≡ S₊∙ 1 IsoFiberTotalHopfS¹∙≡ = ua∙ (isoToEquiv IsoFiberTotalHopfS¹) refl private transportGroupEquiv : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} (n : ℕ) (f : A →∙ B) → isEquiv (fst (πLES.A→B f n)) → isEquiv (fst (π'∘∙Hom n f)) transportGroupEquiv n f iseq = transport (λ i → isEquiv (fst (π∘∙A→B-PathP n f i))) iseq π₃S²≅π₃TotalHopf : GroupEquiv (πGr 2 (Σ (S₊ 2) S¹Hopf , north , base)) (πGr 2 (S₊∙ 2)) fst (fst π₃S²≅π₃TotalHopf) = fst (πLES.A→B TotalHopf→∙S² 2) snd (fst π₃S²≅π₃TotalHopf) = SES→isEquiv (isContr→≡UnitGroup (subst isContr (cong (π 3) (sym IsoFiberTotalHopfS¹∙≡)) (∣ refl ∣₂ , (sElim (λ _ → isSetPathImplicit) (λ p → cong ∣_∣₂ (isOfHLevelSuc 3 isGroupoidS¹ _ _ _ _ _ _ refl p)))))) (isContr→≡UnitGroup (subst isContr (cong (π 2) (sym IsoFiberTotalHopfS¹∙≡)) (∣ refl ∣₂ , (sElim (λ _ → isSetPathImplicit) (λ p → cong ∣_∣₂ (isGroupoidS¹ _ _ _ _ refl p)))))) (πLES.fib→A TotalHopf→∙S² 2) (πLES.A→B TotalHopf→∙S² 2) (πLES.B→fib TotalHopf→∙S² 1) (πLES.Ker-A→B⊂Im-fib→A TotalHopf→∙S² 2) (πLES.Ker-B→fib⊂Im-A→B TotalHopf→∙S² 1) snd π₃S²≅π₃TotalHopf = snd (πLES.A→B TotalHopf→∙S² 2) π'₃S²≅π'₃TotalHopf : GroupEquiv (π'Gr 2 (Σ (S₊ 2) S¹Hopf , north , base)) (π'Gr 2 (S₊∙ 2)) fst (fst π'₃S²≅π'₃TotalHopf) = fst (π'∘∙Hom 2 TotalHopf→∙S²) snd (fst π'₃S²≅π'₃TotalHopf) = transportGroupEquiv 2 TotalHopf→∙S² (π₃S²≅π₃TotalHopf .fst .snd) snd π'₃S²≅π'₃TotalHopf = snd (π'∘∙Hom 2 TotalHopf→∙S²) πS³≅πTotalHopf : (n : ℕ) → GroupEquiv (π'Gr n (S₊∙ 3)) (π'Gr n (Σ (S₊ 2) S¹Hopf , north , base)) πS³≅πTotalHopf n = π'Iso n ((isoToEquiv (invIso (compIso (hopfS¹.IsoTotalSpaceJoin) (IsoSphereJoin 1 1)))) , refl) π₃S²≅ℤ : GroupEquiv (π'Gr 2 (S₊∙ 2)) ℤGroup π₃S²≅ℤ = compGroupEquiv (invGroupEquiv (compGroupEquiv (πS³≅πTotalHopf 2) π'₃S²≅π'₃TotalHopf)) (GroupIso→GroupEquiv (πₙ'Sⁿ≅ℤ 2)) -- We prove that the generator is the Hopf map π₃TotalHopf-gen' : π' 3 (Σ (Susp S¹) S¹Hopf , north , base) π₃TotalHopf-gen' = ∣ inv (compIso (hopfS¹.IsoTotalSpaceJoin) (IsoSphereJoin 1 1)) , refl ∣₂ πS³≅πTotalHopf-gen : fst (fst (πS³≅πTotalHopf 2)) ∣ idfun∙ _ ∣₂ ≡ π₃TotalHopf-gen' πS³≅πTotalHopf-gen = cong ∣_∣₂ (∘∙-idʳ (inv (compIso (hopfS¹.IsoTotalSpaceJoin) (IsoSphereJoin 1 1)) , refl)) πTotalHopf-gen : gen₁-by (π'Gr 2 (Σ (S₊ 2) S¹Hopf , north , base)) ∣ inv (compIso (hopfS¹.IsoTotalSpaceJoin) (IsoSphereJoin 1 1)) , refl ∣₂ πTotalHopf-gen = subst (gen₁-by (π'Gr 2 (Σ (S₊ 2) S¹Hopf , north , base))) πS³≅πTotalHopf-gen (Iso-pres-gen₁ (π'Gr 2 (S₊∙ 3)) (π'Gr 2 (Σ (S₊ 2) S¹Hopf , north , base)) ∣ idfun∙ _ ∣₂ (πₙ'Sⁿ-gen-by-idfun 2) (GroupEquiv→GroupIso (πS³≅πTotalHopf 2))) πTotalHopf≅πS²-gen : fst (fst π'₃S²≅π'₃TotalHopf) π₃TotalHopf-gen' ≡ ∣ HopfMap' , refl ∣₂ πTotalHopf≅πS²-gen = cong ∣_∣₂ (ΣPathP (refl , (sym (rUnit refl)))) π₂S³-gen-by-HopfMap' : gen₁-by (π'Gr 2 (S₊∙ 2)) ∣ HopfMap' , refl ∣₂ π₂S³-gen-by-HopfMap' = subst (gen₁-by (π'Gr 2 (S₊∙ 2))) πTotalHopf≅πS²-gen (Iso-pres-gen₁ (π'Gr 2 (Σ (S₊ 2) S¹Hopf , north , base)) (π'Gr 2 (S₊∙ 2)) ∣ inv (compIso (hopfS¹.IsoTotalSpaceJoin) (IsoSphereJoin 1 1)) , refl ∣₂ πTotalHopf-gen (GroupEquiv→GroupIso π'₃S²≅π'₃TotalHopf)) π₂S³-gen-by-HopfMap : gen₁-by (π'Gr 2 (S₊∙ 2)) ∣ HopfMap ∣₂ π₂S³-gen-by-HopfMap = subst (gen₁-by (π'Gr 2 (S₊∙ 2))) (cong ∣_∣₂ (sym hopfMap≡HopfMap')) π₂S³-gen-by-HopfMap' -- As a consequence, we also get that the Hopf invariant determines -- an iso π₃S²≅ℤ hopfInvariantEquiv : GroupEquiv (π'Gr 2 (S₊∙ 2)) ℤGroup fst (fst hopfInvariantEquiv) = HopfInvariant-π' 0 snd (fst hopfInvariantEquiv) = GroupEquivℤ-isEquiv (invGroupEquiv π₃S²≅ℤ) ∣ HopfMap ∣₂ π₂S³-gen-by-HopfMap (GroupHom-HopfInvariant-π' 0) (abs→⊎ _ _ HopfInvariant-HopfMap) snd hopfInvariantEquiv = snd (GroupHom-HopfInvariant-π' 0)
{ "alphanum_fraction": 0.6522657138, "avg_line_length": 35.7965116279, "ext": "agda", "hexsha": "57f3cef1a7ecdf58f2bc9b2e746589b8bf8f5f06", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Homotopy/Group/Pi3S2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Homotopy/Group/Pi3S2.agda", "max_line_length": 78, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Homotopy/Group/Pi3S2.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 2683, "size": 6157 }
-- Andreas, 2014-01-24, Issue 1411 -- First split might not succeed in the unifier, -- so try later splits also. -- {-# OPTIONS -v tc.lhs:10 #-} open import Common.Prelude open import Common.Equality data Fin : Nat → Set where fzero : (n : Nat) → Fin (suc n) fsuc : (n : Nat) → (i : Fin n) → Fin (suc n) data _≅_ {A : Set} (a : A) : {B : Set} (b : B) → Set where refl : a ≅ a works : ∀ n m (i : Fin n) (j : Fin m) → n ≡ m → fsuc n i ≅ fsuc m j → i ≅ j works n .n i .i refl refl = refl fails : ∀ n m (i : Fin n) (j : Fin m) → fsuc n i ≅ fsuc m j → n ≡ m → i ≅ j fails n .n i .i refl refl = refl -- Refuse to solve heterogeneous constraint i : Fin n =?= j : Fin m -- when checking that the pattern refl has type fsuc n i ≅ fsuc m j -- Should work now.
{ "alphanum_fraction": 0.5816993464, "avg_line_length": 28.3333333333, "ext": "agda", "hexsha": "d09d3232bc18b670ae836d934afdd717a2a86644", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1411-2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1411-2.agda", "max_line_length": 75, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1411-2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 289, "size": 765 }
{-# OPTIONS --without-K #-} module EnumEquiv where open import Data.Empty using (⊥; ⊥-elim) open import Data.Nat using (ℕ; _+_) open import Data.Fin using (Fin; inject+; raise) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (_,_; proj₁; proj₂) open import Function using (_∘_) open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; module ≡-Reasoning) open import Equiv using (_≃_; trans≃; _⊎≃_; iseq; module isequiv) open import FinEquiv using (Fin0-⊥; module Plus) open Plus using (+≃⊎; ⊎≃+) ------------------------------------------------------------------------------ -- An equivalence between a set 'A' and a finite set 'Fin n' is an -- enumeration of A. Enum : ∀ {ℓ} → (A : Set ℓ) → (n : ℕ) → Set ℓ Enum A n = A ≃ Fin n -- We only need some additive equivalences... 0E : Enum ⊥ 0 0E = ⊥-elim , iseq Fin0-⊥ (λ { () }) Fin0-⊥ (λ { () }) _⊕e_ : {A : Set} {B : Set} {n m : ℕ} → Enum A n → Enum B m → Enum (A ⊎ B) (n + m) eA ⊕e eB = trans≃ (eA ⊎≃ eB) ⊎≃+ -- shorthand to select the element indexed by i in the enumeration select : {A B : Set} (eq : A ≃ B) → (B → A) select (_ , iseq g _ _ _) = g -- The enumeration of (A ⊎ B) is an enumeration of A followed by an -- enumeration of B; in other words if we have an equivalence between -- (A ⊎ B) and Fin (m + n) and we are given an index i < m then this -- index selects an element of A. -- evaluating an ⊕e on the left component eval-left : {A B : Set} {m n : ℕ} {eA : Enum A m} {eB : Enum B n} (i : Fin m) → select (eA ⊕e eB) (inject+ n i) ≡ inj₁ (select eA i) eval-left {m = m} {n} {eA} {eB} i = let (fwd , iseq bwd _ _ bwd∘fwd~id) = ⊎≃+ {m} {n} in begin ( select (eA ⊕e eB) (inject+ n i) ≡⟨ refl ⟩ -- β reduce ⊕e, reverse-β Plus.fwd select (trans≃ (eA ⊎≃ eB) ⊎≃+) (fwd (inj₁ i)) ≡⟨ refl ⟩ -- expand qinv.g and trans≃ select (eA ⊎≃ eB) (select ⊎≃+ (fwd (inj₁ i))) ≡⟨ refl ⟩ -- expand rhs select (eA ⊎≃ eB) ((bwd ∘ fwd) (inj₁ i)) ≡⟨ cong (select (eA ⊎≃ eB)) (bwd∘fwd~id (inj₁ i)) ⟩ select (eA ⊎≃ eB) (inj₁ i) ≡⟨ refl ⟩ -- by definition of path⊎ inj₁ (select eA i) ∎) where open ≡-Reasoning eval-right : {A B : Set} {m n : ℕ} {eA : Enum A m} {eB : Enum B n} → (i : Fin n) → select (eA ⊕e eB) (raise m i) ≡ inj₂ (select eB i) eval-right {eA = eA} {eB} i = cong (select (eA ⊎≃ eB)) (isequiv.β (proj₂ ⊎≃+) (inj₂ i)) ------------------------------------------------------------------------------ -- We can also do the same for multiplication but it's not needed -- _⊛e_ : {A B : Set} {n m : ℕ} → Enum A n → Enum B m → Enum (A × B) (n * m) -- eA ⊛e eB = trans≃ (path× eA eB) Times.fwd-iso -- -- etc. ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.52629683, "avg_line_length": 34.7, "ext": "agda", "hexsha": "8323d65618d1d2702fc86e5b370955d3fd4ee1df", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/EnumEquiv.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/EnumEquiv.agda", "max_line_length": 79, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/EnumEquiv.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 1067, "size": 2776 }
------------------------------------------------------------------------ -- Progress of CBV reductions in Fω with interval kinds ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} -- This module contains a variant of the "progress" theorem for Fω -- with interval kinds. Progress says roughly that well-typed terms -- do not get stuck. I.e. a well-typed term is either a value or it -- can take a call-by-value (CBV) reduction step. Together with the -- subject reduction (aka "preservation") theorem from -- FOmegaInt.Typing.Preservation, progress ensures type safety. For -- details, see e.g. -- -- * B. C. Pierce, TAPL (2002), pp. 95. -- -- * A. Wright and M. Felleisen, "A Syntactic Approach to Type -- Soundness" (1994). module FOmegaInt.Typing.Progress where open import Data.Product using (_,_; ∃) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Relation.Nullary.Negation using (contradiction) open import FOmegaInt.Syntax open import FOmegaInt.Typing open import FOmegaInt.Typing.Inversion open import FOmegaInt.Reduction.Cbv open Syntax open TermCtx open Substitution using (_[_]) open Typing -- A canonical forms lemma for universal types: closed values of -- universal type are type abstractions. Π-can : ∀ {f k a} → Val f → [] ⊢Tm f ∈ Π k a → ∃ λ k′ → ∃ λ a′ → f ≡ Λ k′ a′ Π-can (Λ k a) (∈-∀-i k-kd a∈b) = k , a , refl Π-can (Λ k a) (∈-⇑ Λka∈b b<:Πkc) = k , a , refl Π-can (ƛ a b) (∈-⇑ ƛab∈c c<:Πkd) with Tm∈-gen ƛab∈c Π-can (ƛ a b) (∈-⇑ ƛab∈c c<:Πkd) | ∈-→-i a∈* b∈e a⇒e<:c = contradiction (<:-trans a⇒e<:c c<:Πkd) ⇒-≮:-Π -- A canonical forms lemma for arrow types: closed values of arrow -- type are term abstractions. ⇒-can : ∀ {f a b} → Val f → [] ⊢Tm f ∈ a ⇒ b → ∃ λ a′ → ∃ λ b′ → f ≡ ƛ a′ b′ ⇒-can (Λ k a) (∈-⇑ Λka∈b b<:c⇒d) with Tm∈-gen Λka∈b ⇒-can (Λ k a) (∈-⇑ Λka∈b b<:c⇒d) | ∈-∀-i k-kd a∈e Πke<:b = contradiction (<:-trans Πke<:b b<:c⇒d) Π-≮:-⇒ ⇒-can (ƛ a b) (∈-→-i a∈* b∈c c∈*) = a , b , refl ⇒-can (ƛ a b) (∈-⇑ ƛab∈c c<:d⇒e) = a , b , refl -- Progress: well-typed terms do not get stuck (under CBV reduction). prog : ∀ {a b} → [] ⊢Tm a ∈ b → Val a ⊎ (∃ λ a′ → a →v a′) prog (∈-var () _ _) prog (∈-∀-i k-kd b∈c) = inj₁ (Λ _ _) prog (∈-→-i a∈* b∈c c∈*) = inj₁ (ƛ _ _) prog (∈-∀-e a∈Πkc b∈k) with prog a∈Πkc prog (∈-∀-e a∈Πkc b∈k) | inj₁ u with Π-can u a∈Πkc ...| k′ , a′ , refl = inj₂ (_ , cont-⊡ k′ a′ _) prog (∈-∀-e a∈Πkc b∈k) | inj₂ (a′ , a→a′) = inj₂ (_ , a→a′ ⊡ _) prog (∈-→-e a∈c⇒d b∈c) with prog a∈c⇒d prog (∈-→-e a∈c⇒d b∈c) | inj₁ u with prog b∈c prog (∈-→-e a∈c⇒d b∈c) | inj₁ u | inj₁ v with ⇒-can u a∈c⇒d ...| c′ , a′ , refl = inj₂ (_ , cont-· c′ a′ v) prog (∈-→-e a∈c⇒d b∈c) | inj₁ u | inj₂ (b′ , b→b′) = inj₂ (_ , u ·₂ b→b′) prog (∈-→-e a∈c⇒d b∈c) | inj₂ (a′ , a→a′) = inj₂ (_ , a→a′ ·₁ _) prog (∈-⇑ a∈b b<:c) = prog a∈b
{ "alphanum_fraction": 0.556352459, "avg_line_length": 40.6666666667, "ext": "agda", "hexsha": "16e2b6e6b4d6b8c35c6faae25dbc3e1f20b2d2ce", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-05-14T10:25:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-05-13T22:29:48.000Z", "max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Blaisorblade/f-omega-int-agda", "max_forks_repo_path": "src/FOmegaInt/Typing/Progress.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_issues_repo_issues_event_max_datetime": "2021-05-14T08:54:39.000Z", "max_issues_repo_issues_event_min_datetime": "2021-05-14T08:09:40.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Blaisorblade/f-omega-int-agda", "max_issues_repo_path": "src/FOmegaInt/Typing/Progress.agda", "max_line_length": 76, "max_stars_count": 12, "max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Blaisorblade/f-omega-int-agda", "max_stars_repo_path": "src/FOmegaInt/Typing/Progress.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-27T05:53:06.000Z", "max_stars_repo_stars_event_min_datetime": "2017-06-13T16:05:35.000Z", "num_tokens": 1338, "size": 2928 }
-- Andreas & James, 2016-04-18 pre-AIM XXIII -- order of clauses should not matter here! {-# OPTIONS --exact-split #-} open import Common.Prelude record R A : Set where field out : A T : (x y : Bool) → Set T true y = R Bool T false true = R Nat T false false = R String test : (x y : Bool) → T x y R.out (test true y) = y R.out (test false true ) = 0 R.out (test false false) = "hallo"
{ "alphanum_fraction": 0.6218905473, "avg_line_length": 20.1, "ext": "agda", "hexsha": "cb153e26b65c2e7fd3547e11ed9c32d3a2d32744", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pthariensflame/agda", "max_forks_repo_path": "test/Succeed/Issue1834c.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pthariensflame/agda", "max_issues_repo_path": "test/Succeed/Issue1834c.agda", "max_line_length": 44, "max_stars_count": 3, "max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pthariensflame/agda", "max_stars_repo_path": "test/Succeed/Issue1834c.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 133, "size": 402 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} module Haskell.Modules.RWS.RustAnyHow where open import Haskell.Modules.RWS open import Haskell.Prelude private variable Ev Wr St : Set A B C : Set ok : A → RWS Ev Wr St (Either B A) ok = pure ∘ Right bail : B → RWS Ev Wr St (Either B A) bail = pure ∘ Left infixl 4 _∙?∙_ _∙?∙_ : RWS Ev Wr St (Either C A) → (A → RWS Ev Wr St (Either C B)) → RWS Ev Wr St (Either C B) _∙?∙_ = RWS-ebind infixl 4 _∙^∙_ _∙^∙_ : RWS Ev Wr St (Either B A) → (B → B) → RWS Ev Wr St (Either B A) m ∙^∙ f = do x ← m either (bail ∘ f) ok x
{ "alphanum_fraction": 0.6467598475, "avg_line_length": 23.1470588235, "ext": "agda", "hexsha": "94320bf020f9a4cdb77c9f71a279880a7eac2b19", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/Haskell/Modules/RWS/RustAnyHow.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/Haskell/Modules/RWS/RustAnyHow.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/Haskell/Modules/RWS/RustAnyHow.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 295, "size": 787 }
module STLC.Type where open import Data.Fin using (Fin) open import Data.Fin.Substitution open import Data.Fin.Substitution.Lemmas using (TermLemmas) open import Data.Nat using (ℕ; _+_) open import Relation.Binary.Construct.Closure.ReflexiveTransitive using (Star; ε; _◅_) open import Data.Vec using (Vec; []; _∷_; lookup) open import Relation.Binary.PropositionalEquality as Eq using (refl; _≡_; sym; cong₂) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; step-≡; _∎) -- -------------------------------------------------------------------- -- Types -- -------------------------------------------------------------------- -- Recall that STLC types are defined as: -- τ ::= α | τ -> τ -- where α denotes a type variable. infix 9 `_ infixr 7 _⇒_ data Type (n : ℕ) : Set where `_ : Fin n -> Type n _⇒_ : Type n -> Type n -> Type n -- -------------------------------------------------------------------- module Substitution where -- This sub module defines application of the subtitution module Application₀ { T : ℕ -> Set } ( l : Lift T Type ) where open Lift l hiding (var) -- Application of substitution to type infixl 8 _/_ _/_ : ∀ { m n : ℕ } -> Type m -> Sub T m n -> Type n ` x / ρ = lift (lookup ρ x) (τ₁ ⇒ τ₂) / ρ = (τ₁ / ρ) ⇒ (τ₂ / ρ) open Application (record { _/_ = _/_ }) using (_/✶_) -- The application of sequences of substitutions is defined -- by (_/✶_). We use this to prove some generic lemmas on -- the lifting of sets ⇒-/✶-lift : ∀ k { m n τ₁ τ₂ } (ρs : Subs T m n) -> (τ₁ ⇒ τ₂) /✶ ρs ↑✶ k ≡ (τ₁ /✶ ρs ↑✶ k) ⇒ (τ₂ /✶ ρs ↑✶ k) ⇒-/✶-lift k ε = refl ⇒-/✶-lift k (ρ ◅ ρs) = cong₂ _/_ (⇒-/✶-lift k ρs) refl t = record {var = `_ ; app = Application₀._/_ } open TermSubst t public hiding (var) infix 8 _[/_] -- Shorthand for single-variable type substitutions _[/_] : ∀ { n } → Type (1 + n) → Type n → Type n τ₁ [/ τ₂ ] = τ₁ / sub τ₂ module Lemmas where module Lemmas₀ { T₁ T₂ } { l₁ : Lift T₁ Type} { l₂ : Lift T₂ Type } where open Substitution open Lifted l₁ using () renaming (_↑✶_ to _↑✶₁_; _/✶_ to _/✶₁_) open Lifted l₂ using () renaming (_↑✶_ to _↑✶₂_; _/✶_ to _/✶₂_) /✶-↑✶ : ∀ {m n} (ρs₁ : Subs T₁ m n) (ρs₂ : Subs T₂ m n) -> (∀ k x -> ` x /✶₁ ρs₁ ↑✶₁ k ≡ ` x /✶₂ ρs₂ ↑✶₂ k) -> ∀ k τ -> τ /✶₁ ρs₁ ↑✶₁ k ≡ τ /✶₂ ρs₂ ↑✶₂ k /✶-↑✶ ρs₁ ρs₂ hyp k (` x) = hyp k x /✶-↑✶ ρs₁ ρs₂ hyp k (τ₁ ⇒ τ₂) = begin (τ₁ ⇒ τ₂) /✶₁ ρs₁ ↑✶₁ k ≡⟨ Application₀.⇒-/✶-lift _ k ρs₁ ⟩ (τ₁ /✶₁ ρs₁ ↑✶₁ k) ⇒ (τ₂ /✶₁ ρs₁ ↑✶₁ k) ≡⟨ cong₂ (_⇒_) (/✶-↑✶ ρs₁ ρs₂ hyp k τ₁) (/✶-↑✶ ρs₁ ρs₂ hyp k τ₂) ⟩ (τ₁ /✶₂ ρs₂ ↑✶₂ k) ⇒ (τ₂ /✶₂ ρs₂ ↑✶₂ k) ≡⟨ sym (Application₀.⇒-/✶-lift _ k ρs₂) ⟩ (τ₁ ⇒ τ₂) /✶₂ ρs₂ ↑✶₂ k ∎ t : TermLemmas Type t = record { termSubst = Substitution.t ; app-var = refl ; /✶-↑✶ = Lemmas₀./✶-↑✶ } open TermLemmas t public hiding (var) module Operators where infixr 7 _⇒ⁿ_ -- n-ary function type _⇒ⁿ_ : ∀ { n k } -> Vec (Type n) k -> Type n -> Type n [] ⇒ⁿ τ = τ (τ ∷ τs) ⇒ⁿ σ = τ ⇒ (τs ⇒ⁿ σ)
{ "alphanum_fraction": 0.5011037528, "avg_line_length": 25.9918032787, "ext": "agda", "hexsha": "c46d06890f3961e43281f074dd12e43781b8a4eb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "aeb2be63381d891fabe5317e3c27553deb6bca6d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "johnyob/agda-types", "max_forks_repo_path": "src/STLC/Type.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aeb2be63381d891fabe5317e3c27553deb6bca6d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "johnyob/agda-types", "max_issues_repo_path": "src/STLC/Type.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "aeb2be63381d891fabe5317e3c27553deb6bca6d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "johnyob/agda-types", "max_stars_repo_path": "src/STLC/Type.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1305, "size": 3171 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category using (Category; _[_≈_]) -- Karoubi Envelopes. These are the free completions of categories under split idempotents module Categories.Category.Construction.KaroubiEnvelope {o ℓ e} (𝒞 : Category o ℓ e) where open import Level open import Categories.Morphism.Idempotent.Bundles 𝒞 open import Categories.Morphism.Reasoning 𝒞 private module 𝒞 = Category 𝒞 open 𝒞.HomReasoning open 𝒞.Equiv open Idempotent open Idempotent⇒ KaroubiEnvelope : Category (o ⊔ ℓ ⊔ e) (ℓ ⊔ e) e KaroubiEnvelope = record { Obj = Idempotent ; _⇒_ = Idempotent⇒ ; _≈_ = λ f g → 𝒞 [ Idempotent⇒.hom f ≈ Idempotent⇒.hom g ] ; id = id ; _∘_ = _∘_ ; assoc = 𝒞.assoc ; sym-assoc = 𝒞.sym-assoc ; identityˡ = λ {I} {J} {f} → absorbˡ f ; identityʳ = λ {I} {J} {f} → absorbʳ f ; identity² = λ {I} → idempotent I ; equiv = record { refl = refl ; sym = sym ; trans = trans } ; ∘-resp-≈ = 𝒞.∘-resp-≈ }
{ "alphanum_fraction": 0.6474164134, "avg_line_length": 24.675, "ext": "agda", "hexsha": "ca10eeaab69a1c343b8c5fa2383e903cafa434de", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Construction/KaroubiEnvelope.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Construction/KaroubiEnvelope.agda", "max_line_length": 90, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Construction/KaroubiEnvelope.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 390, "size": 987 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Results concerning function extensionality for propositional equality ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Axiom.Extensionality.Propositional where open import Function open import Level using (Level; _⊔_; suc; lift) open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality.Core ------------------------------------------------------------------------ -- Function extensionality states that if two functions are -- propositionally equal for every input, then the functions themselves -- must be propositionally equal. Extensionality : (a b : Level) → Set _ Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g ------------------------------------------------------------------------ -- Properties -- If extensionality holds for a given universe level, then it also -- holds for lower ones. lower-extensionality : ∀ {a₁ b₁} a₂ b₂ → Extensionality (a₁ ⊔ a₂) (b₁ ⊔ b₂) → Extensionality a₁ b₁ lower-extensionality a₂ b₂ ext f≡g = cong (λ h → Level.lower ∘ h ∘ lift) $ ext (cong (lift {ℓ = b₂}) ∘ f≡g ∘ Level.lower {ℓ = a₂}) -- Functional extensionality implies a form of extensionality for -- Π-types. ∀-extensionality : ∀ {a b} → Extensionality a (suc b) → {A : Set a} (B₁ B₂ : A → Set b) → (∀ x → B₁ x ≡ B₂ x) → (∀ x → B₁ x) ≡ (∀ x → B₂ x) ∀-extensionality ext B₁ B₂ B₁≡B₂ with ext B₁≡B₂ ∀-extensionality ext B .B B₁≡B₂ | refl = refl
{ "alphanum_fraction": 0.5210280374, "avg_line_length": 36.4255319149, "ext": "agda", "hexsha": "196b6a1ae1e2f5626639ee16cfc3457b087d7ad9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Axiom/Extensionality/Propositional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Axiom/Extensionality/Propositional.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Axiom/Extensionality/Propositional.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 447, "size": 1712 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.EilenbergMacLane open import homotopy.EilenbergMacLane1 open import homotopy.EilenbergMacLaneFunctor module cohomology.CupProduct.OnEM.CommutativityInLowDegrees where module _ {i} {j} (G : AbGroup i) (H : AbGroup j) where private module G = AbGroup G module H = AbGroup H module G⊗H = TensorProduct G H module H⊗G = TensorProduct H G import cohomology.CupProduct.OnEM.InLowDegrees G H as GH import cohomology.CupProduct.OnEM.InLowDegrees H G as HG open EMExplicit ×-cp₀₀-comm : EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap 0 ∘ GH.×-cp₀₀ ∼ HG.×-cp₀₀ ∘ ×-swap ×-cp₀₀-comm (g' , h') = (EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap 0 $ emloop $ (<– (emloop-equiv G.grp) g') G⊗H.⊗ (<– (emloop-equiv H.grp) h')) =⟨ EM₁-fmap-emloop-β G⊗H.swap $ (<– (emloop-equiv G.grp) g') G⊗H.⊗ (<– (emloop-equiv H.grp) h') ⟩ (emloop $ GroupHom.f G⊗H.swap $ (<– (emloop-equiv G.grp) g') G⊗H.⊗ (<– (emloop-equiv H.grp) h')) =⟨ ap emloop $ G⊗H.swap-β (<– (emloop-equiv G.grp) g') (<– (emloop-equiv H.grp) h') ⟩ (emloop $ (<– (emloop-equiv H.grp) h') H⊗G.⊗ (<– (emloop-equiv G.grp) g')) =∎ ⊙×-cp₀₀-comm : ⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap 0 ◃⊙∘ GH.⊙×-cp₀₀ ◃⊙idf =⊙∘ HG.⊙×-cp₀₀ ◃⊙∘ ⊙×-swap ◃⊙idf ⊙×-cp₀₀-comm = ⊙seq-λ= ×-cp₀₀-comm $ contr-center $ =ₛ-level {n = -2} $ EM-level H⊗G.abgroup 0 module CP₀₁-comm {i} {j} (G : AbGroup i) (H : AbGroup j) where private module G = AbGroup G module H = AbGroup H module G⊗H = TensorProduct G H module H⊗G = TensorProduct H G import cohomology.CupProduct.OnEM.InLowDegrees G H as GH import cohomology.CupProduct.OnEM.InLowDegrees H G as HG private swap : H⊗G.grp →ᴳ G⊗H.grp swap = H⊗G.swap module swap = GroupHom swap cp₀₁-comm : ∀ g h → ap (GH.cp₀₁ g) (emloop h) == ap (EM₁-fmap swap ∘ HG.cp₀₁ h) (emloop g) cp₀₁-comm g h = ap (GH.cp₀₁ g) (emloop h) =⟨ GH.cp₀₁-emloop-β g h ⟩ emloop (g G⊗H.⊗ h) =⟨ ap emloop (! (H⊗G.swap-β h g)) ⟩ emloop (swap.f (h H⊗G.⊗ g)) =⟨ ! (EM₁-fmap-emloop-β swap (h H⊗G.⊗ g)) ⟩ ap (EM₁-fmap swap) (emloop (h H⊗G.⊗ g)) =⟨ ap (ap (EM₁-fmap swap)) (! (HG.cp₀₁-emloop-β h g)) ⟩ ap (EM₁-fmap swap) (ap (HG.cp₀₁ h) (emloop g)) =⟨ ∘-ap (EM₁-fmap swap) (HG.cp₀₁ h) (emloop g) ⟩ ap (EM₁-fmap swap ∘ HG.cp₀₁ h) (emloop g) =∎ module CP₁₁-comm {i} {j} (G : AbGroup i) (H : AbGroup j) where private module G = AbGroup G module H = AbGroup H module G⊗H = TensorProduct G H module H⊗G = TensorProduct H G module swap = GroupHom H⊗G.swap import cohomology.CupProduct.OnEM.InLowDegrees G H as GH import cohomology.CupProduct.OnEM.InLowDegrees H G as HG infix 80 _G∪H_ _G∪H_ : EM₁ G.grp → EM₁ H.grp → EMExplicit.EM G⊗H.abgroup 2 _G∪H_ = GH.cp₁₁ infix 80 _H∪G_ _H∪G_ : EM₁ H.grp → EM₁ G.grp → EMExplicit.EM H⊗G.abgroup 2 _H∪G_ = HG.cp₁₁ ⊙−₁ : ⊙EM₁ H⊗G.grp ⊙→ ⊙EM₁ G⊗H.grp ⊙−₁ = ⊙EM₁-fmap (inv-hom G⊗H.abgroup) ⊙∘ ⊙EM₁-fmap H⊗G.swap −₁ : EM₁ H⊗G.grp → EM₁ G⊗H.grp −₁ = fst ⊙−₁ − : EMExplicit.EM H⊗G.abgroup 2 → EMExplicit.EM G⊗H.abgroup 2 − = Trunc-fmap (Susp-fmap −₁) ⊙− : EMExplicit.⊙EM H⊗G.abgroup 2 ⊙→ EMExplicit.⊙EM G⊗H.abgroup 2 ⊙− = ⊙Trunc-fmap (⊙Susp-fmap −₁) comm-embase-emloop-seq : ∀ h → ap (λ y → embase G∪H y) (emloop h) =-= ap (λ y → − (y H∪G embase)) (emloop h) comm-embase-emloop-seq h = ap (λ y → embase G∪H y) (emloop h) =⟪idp⟫ ap (cst [ north ]₂) (emloop h) =⟪ ap-cst [ north ]₂ (emloop h) ⟫ idp =⟪idp⟫ ap − (idp {a = [ north ]}) =⟪ ! (ap (ap −) (HG.ap-cp₁₁-embase h)) ⟫ ap − (ap (_H∪G embase) (emloop h)) =⟪ ∘-ap − (_H∪G embase) (emloop h) ⟫ ap (λ y → − (y H∪G embase)) (emloop h) ∎∎ comm-emloop-embase-seq : ∀ g → ap (_G∪H embase) (emloop g) =-= ap (λ x → − (embase H∪G x)) (emloop g) comm-emloop-embase-seq g = ap (_G∪H embase) (emloop g) =⟪ GH.ap-cp₁₁-embase g ⟫ idp =⟪ ! (ap-cst [ north ]₂ (emloop g)) ⟫ ap (cst [ north ]₂) (emloop g) =⟪idp⟫ ap (λ x → − (embase H∪G x)) (emloop g) ∎∎ comm-embase-emloop' : ∀ h → ap (embase G∪H_) (emloop h) == ap (λ y → − (y H∪G embase)) (emloop h) comm-embase-emloop' h = ↯ (comm-embase-emloop-seq h) comm-emloop-embase' : ∀ g → ap (λ x → GH.cp₁₁ x embase) (emloop g) == ap (λ x → − (embase H∪G x)) (emloop g) comm-emloop-embase' g = ↯ (comm-emloop-embase-seq g) abstract comm-embase-emloop-comp' : ∀ h₁ h₂ → comm-embase-emloop' (H.comp h₁ h₂) ◃∙ ap (ap (λ y → − (y H∪G embase))) (emloop-comp h₁ h₂) ◃∎ =ₛ ap (ap (embase G∪H_)) (emloop-comp h₁ h₂) ◃∙ ap-∙ (embase G∪H_) (emloop h₁) (emloop h₂) ◃∙ ap2 _∙_ (comm-embase-emloop' h₁) (comm-embase-emloop' h₂) ◃∙ ∙-ap (λ y → − (y H∪G embase)) (emloop h₁) (emloop h₂) ◃∎ comm-embase-emloop-comp' h₁ h₂ = comm-embase-emloop' (H.comp h₁ h₂) ◃∙ ap (ap (λ y → − (y H∪G embase))) (emloop-comp h₁ h₂) ◃∎ =ₛ⟨ 0 & 1 & expand (comm-embase-emloop-seq (H.comp h₁ h₂)) ⟩ ap-cst [ north ] (emloop (H.comp h₁ h₂)) ◃∙ ! (ap (ap −) (HG.ap-cp₁₁-embase (H.comp h₁ h₂))) ◃∙ ∘-ap − (_H∪G embase) (emloop (H.comp h₁ h₂)) ◃∙ ap (ap (λ y → − (y H∪G embase))) (emloop-comp h₁ h₂) ◃∎ =ₛ⟨ 2 & 2 & !ₛ $ homotopy-naturality (ap − ∘ ap (_H∪G embase)) (ap (λ y → − (y H∪G embase))) (∘-ap − (_H∪G embase)) (emloop-comp h₁ h₂) ⟩ ap-cst [ north ] (emloop (H.comp h₁ h₂)) ◃∙ ! (ap (ap −) (HG.ap-cp₁₁-embase (H.comp h₁ h₂))) ◃∙ ap (ap − ∘ ap (_H∪G embase)) (emloop-comp h₁ h₂) ◃∙ ∘-ap − (_H∪G embase) (emloop h₁ ∙ emloop h₂) ◃∎ =ₛ₁⟨ 1 & 1 & !-ap (ap −) (HG.ap-cp₁₁-embase (H.comp h₁ h₂)) ⟩ ap-cst [ north ] (emloop (H.comp h₁ h₂)) ◃∙ ap (ap −) (! (HG.ap-cp₁₁-embase (H.comp h₁ h₂))) ◃∙ ap (ap − ∘ ap (_H∪G embase)) (emloop-comp h₁ h₂) ◃∙ ∘-ap − (_H∪G embase) (emloop h₁ ∙ emloop h₂) ◃∎ =ₛ₁⟨ 2 & 1 & ap-∘ (ap −) (ap (_H∪G embase)) (emloop-comp h₁ h₂) ⟩ ap-cst [ north ] (emloop (H.comp h₁ h₂)) ◃∙ ap (ap −) (! (HG.ap-cp₁₁-embase (H.comp h₁ h₂))) ◃∙ ap (ap −) (ap (ap (_H∪G embase)) (emloop-comp h₁ h₂)) ◃∙ ∘-ap − (_H∪G embase) (emloop h₁ ∙ emloop h₂) ◃∎ =ₛ⟨ 1 & 2 & ap-seq-=ₛ (ap −) $ post-rotate-seq-in {p = _ ◃∙ _ ◃∎} $ pre-rotate'-in $ !ₛ $ HG.ap-cp₁₁-embase-coh h₁ h₂ ⟩ ap-cst [ north ] (emloop (H.comp h₁ h₂)) ◃∙ ap (ap −) (! (ap2 _∙_ (HG.ap-cp₁₁-embase h₁) (HG.ap-cp₁₁-embase h₂))) ◃∙ ap (ap −) (! (ap-∙ (_H∪G embase) (emloop h₁) (emloop h₂))) ◃∙ ∘-ap − (_H∪G embase) (emloop h₁ ∙ emloop h₂) ◃∎ =ₛ₁⟨ 2 & 1 & ap-! (ap −) (ap-∙ (_H∪G embase) (emloop h₁) (emloop h₂))⟩ ap-cst [ north ] (emloop (H.comp h₁ h₂)) ◃∙ ap (ap −) (! (ap2 _∙_ (HG.ap-cp₁₁-embase h₁) (HG.ap-cp₁₁-embase h₂))) ◃∙ ! (ap (ap −) (ap-∙ (_H∪G embase) (emloop h₁) (emloop h₂))) ◃∙ ∘-ap − (_H∪G embase) (emloop h₁ ∙ emloop h₂) ◃∎ =ₛ₁⟨ 3 & 1 & ! (!ap-∘=∘-ap − (_H∪G embase) (emloop h₁ ∙ emloop h₂)) ⟩ ap-cst [ north ] (emloop (H.comp h₁ h₂)) ◃∙ ap (ap −) (! (ap2 _∙_ (HG.ap-cp₁₁-embase h₁) (HG.ap-cp₁₁-embase h₂))) ◃∙ ! (ap (ap −) (ap-∙ (_H∪G embase) (emloop h₁) (emloop h₂))) ◃∙ ! (ap-∘ − (_H∪G embase) (emloop h₁ ∙ emloop h₂)) ◃∎ =ₛ⟨ 2 & 2 & post-rotate-seq-in {p = _ ◃∙ _ ◃∎} $ pre-rotate'-seq-in {p = _ ◃∙ _ ◃∎} $ ap-∘-∙-coh − (_H∪G embase) (emloop h₁) (emloop h₂) ⟩ ap-cst [ north ] (emloop (H.comp h₁ h₂)) ◃∙ ap (ap −) (! (ap2 _∙_ (HG.ap-cp₁₁-embase h₁) (HG.ap-cp₁₁-embase h₂))) ◃∙ ap-∙ − (ap (_H∪G embase) (emloop h₁)) (ap (_H∪G embase) (emloop h₂)) ◃∙ ! (ap2 _∙_ (ap-∘ − (_H∪G embase) (emloop h₁)) (ap-∘ − (_H∪G embase) (emloop h₂))) ◃∙ ! (ap-∙ (λ y → − (y H∪G embase)) (emloop h₁) (emloop h₂)) ◃∎ =ₛ₁⟨ 1 & 1 & ap (ap (ap −)) (!-ap2 _∙_ (HG.ap-cp₁₁-embase h₁) (HG.ap-cp₁₁-embase h₂)) ∙ ap-ap2 (ap −) _∙_ (! (HG.ap-cp₁₁-embase h₁)) (! (HG.ap-cp₁₁-embase h₂)) ⟩ ap-cst [ north ] (emloop (H.comp h₁ h₂)) ◃∙ ap2 (λ p q → ap − (p ∙ q)) (! (HG.ap-cp₁₁-embase h₁)) (! (HG.ap-cp₁₁-embase h₂)) ◃∙ ap-∙ − (ap (_H∪G embase) (emloop h₁)) (ap (_H∪G embase) (emloop h₂)) ◃∙ ! (ap2 _∙_ (ap-∘ − (_H∪G embase) (emloop h₁)) (ap-∘ − (_H∪G embase) (emloop h₂))) ◃∙ ! (ap-∙ (λ y → − (y H∪G embase)) (emloop h₁) (emloop h₂)) ◃∎ =ₛ⟨ 1 & 2 & homotopy-naturality2 (λ p q → ap − (p ∙ q)) (λ p q → ap − p ∙ ap − q) (λ p q → ap-∙ − p q) (! (HG.ap-cp₁₁-embase h₁)) (! (HG.ap-cp₁₁-embase h₂)) ⟩ ap-cst [ north ] (emloop (H.comp h₁ h₂)) ◃∙ idp ◃∙ ap2 (λ p q → ap − p ∙ ap − q) (! (HG.ap-cp₁₁-embase h₁)) (! (HG.ap-cp₁₁-embase h₂)) ◃∙ ! (ap2 _∙_ (ap-∘ − (_H∪G embase) (emloop h₁)) (ap-∘ − (_H∪G embase) (emloop h₂))) ◃∙ ! (ap-∙ (λ y → − (y H∪G embase)) (emloop h₁) (emloop h₂)) ◃∎ =ₛ⟨ 1 & 1 & expand [] ⟩ ap-cst [ north ] (emloop (H.comp h₁ h₂)) ◃∙ ap2 (λ p q → ap − p ∙ ap − q) (! (HG.ap-cp₁₁-embase h₁)) (! (HG.ap-cp₁₁-embase h₂)) ◃∙ ! (ap2 _∙_ (ap-∘ − (_H∪G embase) (emloop h₁)) (ap-∘ − (_H∪G embase) (emloop h₂))) ◃∙ ! (ap-∙ (λ y → − (y H∪G embase)) (emloop h₁) (emloop h₂)) ◃∎ =ₛ₁⟨ 1 & 1 & ! (ap2-ap-lr _∙_ (ap −) (ap −) (! (HG.ap-cp₁₁-embase h₁)) (! (HG.ap-cp₁₁-embase h₂))) ∙ ap2 (ap2 _∙_) (ap-! (ap −) (HG.ap-cp₁₁-embase h₁)) (ap-! (ap −) (HG.ap-cp₁₁-embase h₂)) ⟩ ap-cst [ north ] (emloop (H.comp h₁ h₂)) ◃∙ ap2 _∙_ (! (ap (ap −) (HG.ap-cp₁₁-embase h₁))) (! (ap (ap −) (HG.ap-cp₁₁-embase h₂))) ◃∙ ! (ap2 _∙_ (ap-∘ − (_H∪G embase) (emloop h₁)) (ap-∘ − (_H∪G embase) (emloop h₂))) ◃∙ ! (ap-∙ (λ y → − (y H∪G embase)) (emloop h₁) (emloop h₂)) ◃∎ =ₛ₁⟨ 2 & 1 & !-ap2 _∙_ (ap-∘ − (_H∪G embase) (emloop h₁)) (ap-∘ − (_H∪G embase) (emloop h₂)) ∙ ap2 (ap2 _∙_) (!ap-∘=∘-ap − (_H∪G embase) (emloop h₁)) (!ap-∘=∘-ap − (_H∪G embase) (emloop h₂)) ⟩ ap-cst [ north ] (emloop (H.comp h₁ h₂)) ◃∙ ap2 _∙_ (! (ap (ap −) (HG.ap-cp₁₁-embase h₁))) (! (ap (ap −) (HG.ap-cp₁₁-embase h₂))) ◃∙ ap2 _∙_ (∘-ap − (_H∪G embase) (emloop h₁)) (∘-ap − (_H∪G embase) (emloop h₂)) ◃∙ ! (ap-∙ (λ y → − (y H∪G embase)) (emloop h₁) (emloop h₂)) ◃∎ =ₛ₁⟨ 3 & 1 & !ap-∙=∙-ap (λ y → − (y H∪G embase)) (emloop h₁) (emloop h₂) ⟩ ap-cst [ north ] (emloop (H.comp h₁ h₂)) ◃∙ ap2 _∙_ (! (ap (ap −) (HG.ap-cp₁₁-embase h₁))) (! (ap (ap −) (HG.ap-cp₁₁-embase h₂))) ◃∙ ap2 _∙_ (∘-ap − (_H∪G embase) (emloop h₁)) (∘-ap − (_H∪G embase) (emloop h₂)) ◃∙ ∙-ap (λ y → − (y H∪G embase)) (emloop h₁) (emloop h₂) ◃∎ =ₛ⟨ 0 & 1 & ap-cst [ north ] (emloop (H.comp h₁ h₂)) ◃∎ =ₛ⟨ 1 & 0 & contract ⟩ ap-cst [ north ] (emloop (H.comp h₁ h₂)) ◃∙ idp ◃∎ =ₛ₁⟨ 1 & 1 & ! (ap-cst idp (emloop-comp h₁ h₂)) ⟩ ap-cst [ north ] (emloop (H.comp h₁ h₂)) ◃∙ ap (λ _ → idp) (emloop-comp h₁ h₂) ◃∎ =ₛ⟨ !ₛ $ homotopy-naturality (ap (embase G∪H_)) (λ _ → idp) (ap-cst [ north ]) (emloop-comp h₁ h₂) ⟩ ap (ap (embase G∪H_)) (emloop-comp h₁ h₂) ◃∙ ap-cst [ north ] (emloop h₁ ∙ emloop h₂) ◃∎ =ₛ⟨ 1 & 1 & ap-cst-coh [ north ] (emloop h₁) (emloop h₂) ⟩ ap (ap (embase G∪H_)) (emloop-comp h₁ h₂) ◃∙ ap-∙ (cst [ north ]) (emloop h₁) (emloop h₂) ◃∙ ap2 _∙_ (ap-cst [ north ] (emloop h₁)) (ap-cst [ north ] (emloop h₂)) ◃∎ ∎ₛ ⟩ ap (ap (embase G∪H_)) (emloop-comp h₁ h₂) ◃∙ ap-∙ (cst [ north ]) (emloop h₁) (emloop h₂) ◃∙ ap2 _∙_ (ap-cst [ north ] (emloop h₁)) (ap-cst [ north ] (emloop h₂)) ◃∙ ap2 _∙_ (! (ap (ap −) (HG.ap-cp₁₁-embase h₁))) (! (ap (ap −) (HG.ap-cp₁₁-embase h₂))) ◃∙ ap2 _∙_ (∘-ap − (_H∪G embase) (emloop h₁)) (∘-ap − (_H∪G embase) (emloop h₂)) ◃∙ ∙-ap (λ y → − (y H∪G embase)) (emloop h₁) (emloop h₂) ◃∎ =ₛ⟨ 2 & 3 & ∙-ap2-seq _∙_ (comm-embase-emloop-seq h₁) (comm-embase-emloop-seq h₂) ⟩ ap (ap (embase G∪H_)) (emloop-comp h₁ h₂) ◃∙ ap-∙ (embase G∪H_) (emloop h₁) (emloop h₂) ◃∙ ap2 _∙_ (comm-embase-emloop' h₁) (comm-embase-emloop' h₂) ◃∙ ∙-ap (λ y → − (y H∪G embase)) (emloop h₁) (emloop h₂) ◃∎ ∎ₛ comm-emloop-comp-embase' : ∀ g₁ g₂ → comm-emloop-embase' (G.comp g₁ g₂) ◃∙ ap (ap (λ x → − (embase H∪G x))) (emloop-comp g₁ g₂) ◃∎ =ₛ ap (ap (_G∪H embase)) (emloop-comp g₁ g₂) ◃∙ ap-∙ (_G∪H embase) (emloop g₁) (emloop g₂) ◃∙ ap2 _∙_ (comm-emloop-embase' g₁) (comm-emloop-embase' g₂) ◃∙ ∙-ap (λ x → − (embase H∪G x)) (emloop g₁) (emloop g₂) ◃∎ comm-emloop-comp-embase' g₁ g₂ = comm-emloop-embase' (G.comp g₁ g₂) ◃∙ ap (ap (λ x → − (embase H∪G x))) (emloop-comp g₁ g₂) ◃∎ =ₛ⟨ 0 & 1 & expand (comm-emloop-embase-seq (G.comp g₁ g₂)) ⟩ GH.ap-cp₁₁-embase (G.comp g₁ g₂) ◃∙ ! (ap-cst [ north ] (emloop (G.comp g₁ g₂))) ◃∙ ap (ap (λ x → − (embase H∪G x))) (emloop-comp g₁ g₂) ◃∎ =ₛ⟨ 1 & 2 & !ₛ $ homotopy-naturality (λ _ → idp) (ap (cst [ north ])) (λ p → ! (ap-cst [ north ] p)) (emloop-comp g₁ g₂) ⟩ GH.ap-cp₁₁-embase (G.comp g₁ g₂) ◃∙ ap (λ _ → idp) (emloop-comp g₁ g₂) ◃∙ ! (ap-cst [ north ] (emloop g₁ ∙ emloop g₂)) ◃∎ =ₛ⟨ 1 & 1 & =ₛ-in {t = []} (ap-cst idp (emloop-comp g₁ g₂)) ⟩ GH.ap-cp₁₁-embase (G.comp g₁ g₂) ◃∙ ! (ap-cst [ north ] (emloop g₁ ∙ emloop g₂)) ◃∎ =ₛ⟨ 0 & 1 & GH.ap-cp₁₁-embase-coh g₁ g₂ ⟩ ap (ap (_G∪H embase)) (emloop-comp g₁ g₂) ◃∙ ap-∙ (_G∪H embase) (emloop g₁) (emloop g₂) ◃∙ ap2 _∙_ (GH.ap-cp₁₁-embase g₁) (GH.ap-cp₁₁-embase g₂) ◃∙ ! (ap-cst [ north ] (emloop g₁ ∙ emloop g₂)) ◃∎ =ₛ⟨ 3 & 1 & !-=ₛ $ ap-cst-coh [ north ] (emloop g₁) (emloop g₂) ⟩ ap (ap (_G∪H embase)) (emloop-comp g₁ g₂) ◃∙ ap-∙ (_G∪H embase) (emloop g₁) (emloop g₂) ◃∙ ap2 _∙_ (GH.ap-cp₁₁-embase g₁) (GH.ap-cp₁₁-embase g₂) ◃∙ ! (ap2 _∙_ (ap-cst [ north ] (emloop g₁)) (ap-cst [ north ] (emloop g₂))) ◃∙ ! (ap-∙ (cst [ north ]) (emloop g₁) (emloop g₂)) ◃∎ =ₛ₁⟨ 3 & 1 & ! (ap2-! _∙_ (ap-cst [ north ] (emloop g₁)) (ap-cst [ north ] (emloop g₂))) ⟩ ap (ap (_G∪H embase)) (emloop-comp g₁ g₂) ◃∙ ap-∙ (_G∪H embase) (emloop g₁) (emloop g₂) ◃∙ ap2 _∙_ (GH.ap-cp₁₁-embase g₁) (GH.ap-cp₁₁-embase g₂) ◃∙ ap2 _∙_ (! (ap-cst [ north ] (emloop g₁))) (! (ap-cst [ north ] (emloop g₂))) ◃∙ ! (ap-∙ (cst [ north ]) (emloop g₁) (emloop g₂)) ◃∎ =ₛ⟨ 2 & 2 & ∙-ap2-seq _∙_ (comm-emloop-embase-seq g₁) (comm-emloop-embase-seq g₂) ⟩ ap (ap (_G∪H embase)) (emloop-comp g₁ g₂) ◃∙ ap-∙ (_G∪H embase) (emloop g₁) (emloop g₂) ◃∙ ap2 _∙_ (comm-emloop-embase' g₁) (comm-emloop-embase' g₂) ◃∙ ! (ap-∙ (cst [ north ]) (emloop g₁) (emloop g₂)) ◃∎ =ₛ₁⟨ 3 & 1 & !ap-∙=∙-ap (cst [ north ]) (emloop g₁) (emloop g₂) ⟩ ap (ap (_G∪H embase)) (emloop-comp g₁ g₂) ◃∙ ap-∙ (_G∪H embase) (emloop g₁) (emloop g₂) ◃∙ ap2 _∙_ (comm-emloop-embase' g₁) (comm-emloop-embase' g₂) ◃∙ ∙-ap (cst [ north ]) (emloop g₁) (emloop g₂) ◃∎ ∎ₛ comm-emloop-emloop' : ∀ g h → ap-comm _G∪H_ (emloop g) (emloop h) ◃∙ ap2 _∙_ (comm-embase-emloop' h) (comm-emloop-embase' g) ◃∎ =ₛ ap2 _∙_ (comm-emloop-embase' g) (comm-embase-emloop' h) ◃∙ ap-comm (λ x y → − (y H∪G x)) (emloop g) (emloop h) ◃∎ comm-emloop-emloop' g h = ap-comm _G∪H_ (emloop g) (emloop h) ◃∙ ap2 _∙_ (comm-embase-emloop' h) (comm-emloop-embase' g) ◃∎ =ₛ⟨ 1 & 1 & ap2-out _∙_ (comm-embase-emloop' h) (comm-emloop-embase' g) ⟩ ap-comm _G∪H_ (emloop g) (emloop h) ◃∙ ap (_∙ ap (_G∪H embase) (emloop g)) (comm-embase-emloop' h) ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (comm-emloop-embase' g) ◃∎ =ₛ⟨ 1 & 1 & ap-seq-=ₛ (_∙ ap (_G∪H embase) (emloop g)) (take-drop-split 1 (comm-embase-emloop-seq h)) ⟩ ap-comm _G∪H_ (emloop g) (emloop h) ◃∙ ap (_∙ ap (_G∪H embase) (emloop g)) (ap-cst [ north ] (emloop h)) ◃∙ ap (_∙ ap (_G∪H embase) (emloop g)) (↯ (tail (comm-embase-emloop-seq h))) ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (comm-emloop-embase' g) ◃∎ =ₛ⟨ 3 & 1 & ap-seq-∙ (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (comm-emloop-embase-seq g) ⟩ ap-comm _G∪H_ (emloop g) (emloop h) ◃∙ ap (_∙ ap (_G∪H embase) (emloop g)) (ap-cst [ north ] (emloop h)) ◃∙ ap (_∙ ap (_G∪H embase) (emloop g)) (↯ (tail (comm-embase-emloop-seq h))) ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (GH.ap-cp₁₁-embase g) ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (! (ap-cst [ north ] (emloop g))) ◃∎ =ₛ⟨ 4 & 1 & ap-seq-=ₛ (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) step₄' ⟩ ap-comm _G∪H_ (emloop g) (emloop h) ◃∙ ap (_∙ ap (_G∪H embase) (emloop g)) (ap-cst [ north ] (emloop h)) ◃∙ ap (_∙ ap (_G∪H embase) (emloop g)) (↯ (tail (comm-embase-emloop-seq h))) ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (GH.ap-cp₁₁-embase g) ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (↯ h₁'-seq) ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (! (!-inv-r (h₁' embase))) ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (! (ap-null-homotopic (λ x → [ north ]₂) h₁' (emloop g))) ◃∎ =ₛ⟨ 2 & 2 & ap-comm-=ₛ _∙_ (↯ (tail (comm-embase-emloop-seq h))) (GH.ap-cp₁₁-embase g) ⟩ ap-comm _G∪H_ (emloop g) (emloop h) ◃∙ ap (_∙ ap (_G∪H embase) (emloop g)) (ap-cst [ north ] (emloop h)) ◃∙ ap (idp ∙_) (GH.ap-cp₁₁-embase g) ◃∙ ap (_∙ idp) (↯ (tail (comm-embase-emloop-seq h))) ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (↯ h₁'-seq) ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (! (!-inv-r (h₁' embase))) ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (! (ap-null-homotopic (λ x → [ north ]₂) h₁' (emloop g))) ◃∎ =ₛ⟨ 3 & 2 & ap-comm-=ₛ _∙_ (↯ (tail (comm-embase-emloop-seq h))) (↯ h₁'-seq) ⟩ ap-comm _G∪H_ (emloop g) (emloop h) ◃∙ ap (_∙ ap (_G∪H embase) (emloop g)) (ap-cst [ north ] (emloop h)) ◃∙ ap (idp ∙_) (GH.ap-cp₁₁-embase g) ◃∙ ap (idp ∙_) (↯ h₁'-seq) ◃∙ ap (λ a → a ∙ idp) (↯ (tail (comm-embase-emloop-seq h))) ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (! (!-inv-r (h₁' embase))) ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (! (ap-null-homotopic (λ x → [ north ]₂) h₁' (emloop g))) ◃∎ =ₛ₁⟨ 3 & 1 & ap (ap (idp ∙_)) (! (=ₛ-out heart))⟩ ap-comm _G∪H_ (emloop g) (emloop h) ◃∙ ap (_∙ ap (_G∪H embase) (emloop g)) (ap-cst [ north ] (emloop h)) ◃∙ ap (idp ∙_) (GH.ap-cp₁₁-embase g) ◃∙ ap (idp ∙_) (↯ h₁-seq) ◃∙ ap (λ a → a ∙ idp) (↯ (tail (comm-embase-emloop-seq h))) ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (! (!-inv-r (h₁' embase))) ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (! (ap-null-homotopic (λ x → [ north ]₂) h₁' (emloop g))) ◃∎ =ₛ⟨ 0 & 3 & top-part ⟩ ap (ap (_G∪H embase) (emloop g) ∙_) (ap-null-homotopic (λ y → [ north ]₂) h₁ (emloop h)) ◃∙ ap (ap (_G∪H embase) (emloop g) ∙_) (!-inv-r (h₁ embase)) ◃∙ ap (_∙ idp) (GH.ap-cp₁₁-embase g) ◃∙ ap (idp ∙_) (↯ h₁-seq) ◃∙ ap (λ a → a ∙ idp) (↯ (tail (comm-embase-emloop-seq h))) ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (! (!-inv-r (h₁' embase))) ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (! (ap-null-homotopic (λ x → [ north ]₂) h₁' (emloop g))) ◃∎ =ₛ⟨ 4 & 3 & bottom-part ⟩ ap (ap (_G∪H embase) (emloop g) ∙_) (ap-null-homotopic (λ y → [ north ]₂) h₁ (emloop h)) ◃∙ ap (ap (_G∪H embase) (emloop g) ∙_) (!-inv-r (h₁ embase)) ◃∙ ap (_∙ idp) (GH.ap-cp₁₁-embase g) ◃∙ ap (idp ∙_) (↯ h₁-seq) ◃∙ ap (idp ∙_) (↯ (tail (comm-embase-emloop-seq h))) ◃∙ ap (_∙ ap (λ y → − (y H∪G embase)) (emloop h)) (! (ap-cst [ north ]₂ (emloop g))) ◃∙ ap-comm (λ x y → − (y H∪G x)) (emloop g) (emloop h) ◃∎ =ₛ⟨ 2 & 2 & ap-comm-=ₛ _∙_ (GH.ap-cp₁₁-embase g) (↯ h₁-seq) ⟩ ap (ap (_G∪H embase) (emloop g) ∙_) (ap-null-homotopic (λ y → [ north ]₂) h₁ (emloop h)) ◃∙ ap (ap (_G∪H embase) (emloop g) ∙_) (!-inv-r (h₁ embase)) ◃∙ ap (ap (_G∪H embase) (emloop g) ∙_) (↯ h₁-seq) ◃∙ ap (_∙ idp) (GH.ap-cp₁₁-embase g) ◃∙ ap (idp ∙_) (↯ (tail (comm-embase-emloop-seq h))) ◃∙ ap (_∙ ap (λ y → − (y H∪G embase)) (emloop h)) (! (ap-cst [ north ]₂ (emloop g))) ◃∙ ap-comm (λ x y → − (y H∪G x)) (emloop g) (emloop h) ◃∎ =ₛ⟨ 3 & 2 & ap-comm-=ₛ _∙_ (GH.ap-cp₁₁-embase g) (↯ (tail (comm-embase-emloop-seq h))) ⟩ ap (ap (_G∪H embase) (emloop g) ∙_) (ap-null-homotopic (λ y → [ north ]₂) h₁ (emloop h)) ◃∙ ap (ap (_G∪H embase) (emloop g) ∙_) (!-inv-r (h₁ embase)) ◃∙ ap (ap (_G∪H embase) (emloop g) ∙_) (↯ h₁-seq) ◃∙ ap (ap (_G∪H embase) (emloop g) ∙_) (↯ (tail (comm-embase-emloop-seq h))) ◃∙ ap (_∙ ap (λ y → − (y H∪G embase)) (emloop h)) (GH.ap-cp₁₁-embase g) ◃∙ ap (_∙ ap (λ y → − (y H∪G embase)) (emloop h)) (! (ap-cst [ north ]₂ (emloop g))) ◃∙ ap-comm (λ x y → − (y H∪G x)) (emloop g) (emloop h) ◃∎ =ₛ⟨ 4 & 2 & ∙-ap-seq (_∙ ap (λ y → − (y H∪G embase)) (emloop h)) (comm-emloop-embase-seq g) ⟩ ap (ap (_G∪H embase) (emloop g) ∙_) (ap-null-homotopic (λ y → [ north ]₂) h₁ (emloop h)) ◃∙ ap (ap (_G∪H embase) (emloop g) ∙_) (!-inv-r (h₁ embase)) ◃∙ ap (ap (_G∪H embase) (emloop g) ∙_) (↯ h₁-seq) ◃∙ ap (ap (_G∪H embase) (emloop g) ∙_) (↯ (tail (comm-embase-emloop-seq h))) ◃∙ ap (_∙ ap (λ y → − (y H∪G embase)) (emloop h)) (comm-emloop-embase' g) ◃∙ ap-comm (λ x y → − (y H∪G x)) (emloop g) (emloop h) ◃∎ =ₛ⟨ 0 & 3 & ap-seq-=ₛ (ap (_G∪H embase) (emloop g) ∙_) step₁₃' ⟩ ap (ap (_G∪H embase) (emloop g) ∙_) (ap-cst [ north ]₂ (emloop h)) ◃∙ ap (ap (_G∪H embase) (emloop g) ∙_) (↯ (tail (comm-embase-emloop-seq h))) ◃∙ ap (_∙ ap (λ y → − (y H∪G embase)) (emloop h)) (comm-emloop-embase' g) ◃∙ ap-comm (λ x y → − (y H∪G x)) (emloop g) (emloop h) ◃∎ =ₛ⟨ 0 & 2 & !ₛ $ ap-seq-=ₛ (ap (_G∪H embase) (emloop g) ∙_) $ take-drop-split 1 (comm-embase-emloop-seq h) ⟩ ap (ap (_G∪H embase) (emloop g) ∙_) (comm-embase-emloop' h) ◃∙ ap (_∙ ap (λ y → − (y H∪G embase)) (emloop h)) (comm-emloop-embase' g) ◃∙ ap-comm (λ x y → − (y H∪G x)) (emloop g) (emloop h) ◃∎ =ₛ⟨ 0 & 2 & !ₛ (ap2-out' _∙_ (comm-emloop-embase' g) (comm-embase-emloop' h)) ⟩ ap2 _∙_ (comm-emloop-embase' g) (comm-embase-emloop' h) ◃∙ ap-comm (λ x y → − (y H∪G x)) (emloop g) (emloop h) ◃∎ ∎ₛ where h₀ : ∀ y → embase G∪H y == [ north ]₂ h₀ y = idp h₁ : ∀ y → embase G∪H y == [ north ]₂ h₁ = transport (λ x → ∀ y → x G∪H y == [ north ]₂) (emloop g) h₀ h₀' : ∀ x → − (embase H∪G x) == [ north ]₂ h₀' x = idp h₁' : ∀ x → − (embase H∪G x) == [ north ]₂ h₁' = transport (λ y → ∀ x → − (y H∪G x) == [ north ]₂) (emloop h) h₀' h₁-path : ∀ y → h₁ y == ! (ap [_]₂ (GH.η (GH.cp₀₁ g y))) h₁-path y = transport (λ x → ∀ y → x G∪H y == [ north ]₂) (emloop g) h₀ y =⟨ app= (transp-naturality {B = λ x → ∀ y → x G∪H y == [ north ]₂} {C = λ x → x G∪H y == [ north ]₂} (λ k → k y) (emloop g)) h₀ ⟩ transport (λ x → x G∪H y == [ north ]₂) (emloop g) (h₀ y) =⟨ to-transp {B = λ x → x G∪H y == [ north ]₂} {p = emloop g} $ ↓-app=cst-in {f = _G∪H y} {p = emloop g} {u = idp} {v = ! (ap (_G∪H y) (emloop g))} $ ! (!-inv-r (ap (_G∪H y) (emloop g))) ⟩ ! (ap (_G∪H y) (emloop g)) =⟨ ap ! (GH.ap-cp₁₁ g y) ⟩ ! (ap [_] (GH.η (GH.cp₀₁ g y))) =∎ h₁'-path : ∀ x → h₁' x == ! (ap [_]₂ (GH.η (−₁ (HG.cp₀₁ h x)))) h₁'-path x = transport (λ y → ∀ x → − (y H∪G x) == [ north ]₂) (emloop h) h₀' x =⟨ app= (transp-naturality {B = λ y → ∀ x → − (y H∪G x) == [ north ]₂} {C = λ y → − (y H∪G x) == [ north ]₂} (λ k → k x) (emloop h)) h₀' ⟩ transport (λ y → − (y H∪G x) == [ north ]₂) (emloop h) (h₀' x) =⟨ to-transp {B = λ y → − (y H∪G x) == [ north ]₂} {p = emloop h} $ ↓-app=cst-in {f = λ y → − (y H∪G x)} {p = emloop h} {u = idp} {v = ! (ap (λ y → − (y H∪G x)) (emloop h))} $ ! (!-inv-r (ap (λ y → − (y H∪G x)) (emloop h))) ⟩ ! (ap (λ y → − (y H∪G x)) (emloop h)) =⟨ ap ! (ap-∘ − (_H∪G x) (emloop h)) ⟩ ! (ap − (ap (_H∪G x) (emloop h))) =⟨ ap (! ∘ ap −) (HG.ap-cp₁₁ h x) ⟩ ! (ap − (ap [_]₂ (HG.η (HG.cp₀₁ h x)))) =⟨ ap ! (∘-ap − [_]₂ (HG.η (HG.cp₀₁ h x))) ⟩ ! (ap (λ p → [ Susp-fmap −₁ p ]₂) (HG.η (HG.cp₀₁ h x))) =⟨ ap ! (ap-∘ [_]₂ (Susp-fmap −₁) (HG.η (HG.cp₀₁ h x))) ⟩ ! (ap [_]₂ (ap (Susp-fmap −₁) (HG.η (HG.cp₀₁ h x)))) =⟨ ! (ap (! ∘ ap [_]₂) (app= (ap fst (η-natural ⊙−₁)) (HG.cp₀₁ h x))) ⟩ ! (ap [_]₂ (GH.η (−₁ (HG.cp₀₁ h x)))) =∎ where open import homotopy.SuspAdjointLoop using (η-natural) h₁-seq : idp {a = [ north ]₂} =-= idp h₁-seq = ! (!-inv-r (h₁ embase)) ◃∙ ap (λ v → h₁ v ∙ ! (h₁ embase)) (emloop h) ◃∙ !-inv-r (h₁ embase) ◃∎ h₁'-seq : idp {a = [ north ]₂} =-= idp h₁'-seq = ! (!-inv-r (h₁' embase)) ◃∙ ! (ap (λ v → h₁' v ∙ ! (h₁' embase)) (emloop g)) ◃∙ !-inv-r (h₁' embase) ◃∎ {- the crucial step in the commutative diagram -} heart : h₁-seq =ₛ h₁'-seq heart = ! (!-inv-r (h₁ embase)) ◃∙ ap (λ v → h₁ v ∙ ! (h₁ embase)) (emloop h) ◃∙ !-inv-r (h₁ embase) ◃∎ =ₛ⟨ =ₛ-in {t = ! (!-inv-r (! (ap [_]₂ (GH.η embase)))) ◃∙ ap (λ v → ! (ap [_]₂ (GH.η (GH.cp₀₁ g v))) ∙ ! (! (ap [_] (GH.η embase)))) (emloop h) ◃∙ !-inv-r (! (ap [_]₂ (GH.η embase))) ◃∎} $ ap (λ f → ! (!-inv-r (f embase)) ∙ ap (λ v → f v ∙ ! (f embase)) (emloop h) ∙ !-inv-r (f embase)) (λ= h₁-path) ⟩ ! (!-inv-r (! (ap [_]₂ (GH.η embase)))) ◃∙ ap (λ v → ! (ap [_]₂ (GH.η (GH.cp₀₁ g v))) ∙ ! (! (ap [_]₂ (GH.η embase)))) (emloop h) ◃∙ !-inv-r (! (ap [_]₂ (GH.η embase))) ◃∎ =ₛ₁⟨ 1 & 1 & ap (λ v → ! (ap [_]₂ (GH.η (GH.cp₀₁ g v))) ∙ ! (! (ap [_]₂ (GH.η embase)))) (emloop h) =⟨ ap-∘ (λ w → ! (ap [_]₂ (GH.η w)) ∙ ! (! (ap [_]₂ (GH.η embase)))) (GH.cp₀₁ g) (emloop h) ⟩ ap (λ w → ! (ap [_]₂ (GH.η w)) ∙ ! (! (ap [_]₂ (GH.η embase)))) (ap (GH.cp₀₁ g) (emloop h)) =⟨ ap (ap (λ w → ! (ap [_]₂ (GH.η w)) ∙ ! (! (ap [_]₂ (GH.η embase))))) $ ap (GH.cp₀₁ g) (emloop h) =⟨ CP₀₁-comm.cp₀₁-comm G H g h ⟩ ap (EM₁-fmap H⊗G.swap ∘ HG.cp₀₁ h) (emloop g) =⟨ ! (!-! _) ⟩ ! (! (ap (EM₁-fmap H⊗G.swap ∘ HG.cp₀₁ h) (emloop g))) =⟨ ap ! (! (EM₁-neg-! G⊗H.abgroup _)) ⟩ ! (ap (EM₁-neg G⊗H.abgroup) (ap (EM₁-fmap H⊗G.swap ∘ HG.cp₀₁ h) (emloop g))) =⟨ ap ! (∘-ap (EM₁-neg G⊗H.abgroup) (EM₁-fmap H⊗G.swap ∘ HG.cp₀₁ h) (emloop g)) ⟩ ! (ap (−₁ ∘ HG.cp₀₁ h) (emloop g)) =∎ -- Yo dawg, I herd you like continued equalities, -- so we put continued equalities into your continued equalities, -- so u can reason equationally while u reason equationally. ⟩ ap (λ w → ! (ap [_]₂ (GH.η w)) ∙ ! (! (ap [_]₂ (GH.η embase)))) (! (ap (−₁ ∘ HG.cp₀₁ h) (emloop g))) =⟨ ap-! (λ w → ! (ap [_]₂ (GH.η w)) ∙ ! (! (ap [_]₂ (GH.η embase)))) (ap (−₁ ∘ HG.cp₀₁ h) (emloop g)) ⟩ ! (ap (λ w → ! (ap [_]₂ (GH.η w)) ∙ ! (! (ap [_]₂ (GH.η embase)))) (ap (−₁ ∘ HG.cp₀₁ h) (emloop g))) =⟨ ap ! (∘-ap (λ w → ! (ap [_]₂ (GH.η w)) ∙ ! (! (ap [_]₂ (GH.η embase)))) (−₁ ∘ HG.cp₀₁ h) (emloop g)) ⟩ ! (ap (λ v → ! (ap [_]₂ (GH.η (−₁ (HG.cp₀₁ h v)))) ∙ ! (! (ap [_]₂ (GH.η embase)))) (emloop g)) =∎ ⟩ ! (!-inv-r (! (ap [_]₂ (GH.η embase)))) ◃∙ ! (ap (λ v → ! (ap [_]₂ (GH.η (−₁ (HG.cp₀₁ h v)))) ∙ ! (! (ap [_]₂ (GH.η embase)))) (emloop g)) ◃∙ !-inv-r (! (ap [_]₂ (GH.η embase))) ◃∎ =ₛ⟨ =ₛ-in {t = ! (!-inv-r (h₁' embase)) ◃∙ ! (ap (λ v → h₁' v ∙ ! (h₁' embase)) (emloop g)) ◃∙ !-inv-r (h₁' embase) ◃∎} $ ap (λ f → ! (!-inv-r (f embase)) ∙ ! (ap (λ v → f v ∙ ! (f embase)) (emloop g)) ∙ !-inv-r (f embase)) (! (λ= h₁'-path)) ⟩ ! (!-inv-r (h₁' embase)) ◃∙ ! (ap (λ v → h₁' v ∙ ! (h₁' embase)) (emloop g)) ◃∙ !-inv-r (h₁' embase) ◃∎ ∎ₛ transp-nat-idp : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} (f : A → B → C) {a₀ a₁ : A} (p : a₀ == a₁) (b : B) (c : C) (h₀ : ∀ b' → f a₀ b' == c) → app= (transp-naturality {B = λ a → ∀ b → f a b == c} (λ h → h b ∙ ! (h b)) p) h₀ ◃∎ =ₛ !-inv-r (transport (λ a → ∀ b → f a b == c) p h₀ b) ◃∙ ! (transp-idp (λ a → f a b) p) ◃∙ ap (transport (λ a → f a b == f a b) p) (! (!-inv-r (h₀ b))) ◃∎ transp-nat-idp f p@idp b c h₀ = !ₛ $ !-inv-r (h₀ b) ◃∙ idp ◃∙ ap (λ r → r) (! (!-inv-r (h₀ b))) ◃∎ =ₛ⟨ 1 & 1 & expand [] ⟩ !-inv-r (h₀ b) ◃∙ ap (λ r → r) (! (!-inv-r (h₀ b))) ◃∎ =ₛ₁⟨ 1 & 1 & ap-idf (! (!-inv-r (h₀ b))) ⟩ !-inv-r (h₀ b) ◃∙ ! (!-inv-r (h₀ b)) ◃∎ =ₛ₁⟨ !-inv-r (!-inv-r (h₀ b)) ⟩ idp ◃∎ ∎ₛ top-part : ap-comm _G∪H_ (emloop g) (emloop h) ◃∙ ap (_∙ ap (_G∪H embase) (emloop g)) (ap-cst [ north ] (emloop h)) ◃∙ ap (idp ∙_) (GH.ap-cp₁₁-embase g) ◃∎ =ₛ ap (ap (_G∪H embase) (emloop g) ∙_) (ap-null-homotopic (λ y → [ north ]₂) h₁ (emloop h)) ◃∙ ap (ap (_G∪H embase) (emloop g) ∙_) (!-inv-r (h₁ embase)) ◃∙ ap (_∙ idp) (GH.ap-cp₁₁-embase g) ◃∎ top-part = ap-comm _G∪H_ (emloop g) (emloop h) ◃∙ ap (_∙ ap (_G∪H embase) (emloop g)) (ap-null-homotopic (λ y → [ north ]₂) (λ y → idp) (emloop' H.grp h)) ◃∙ ap (idp ∙_) (GH.ap-cp₁₁-embase g) ◃∎ =ₛ⟨ 0 & 2 & post-rotate-out {r = _ ◃∙ _ ◃∙ _ ◃∎} $ ap-comm-cst-coh _G∪H_ (emloop g) (emloop h) [ north ]₂ (λ y → idp) ⟩ ap (ap (_G∪H embase) (emloop g) ∙_) (ap-null-homotopic (λ y → [ north ]₂) h₁ (emloop h)) ◃∙ ap (ap (_G∪H embase) (emloop g) ∙_) (app= (transp-naturality {B = λ x → ∀ y → x G∪H y == [ north ]₂} {C = λ x → x G∪H embase == x G∪H embase} (λ h → h embase ∙ ! (h embase)) (emloop g)) (λ y → idp)) ◃∙ ! (ap-transp (_G∪H embase) (_G∪H embase) (emloop g) idp) ◃∙ ap (idp ∙_) (GH.ap-cp₁₁-embase g) ◃∎ =ₛ⟨ 1 & 1 & ap-seq-=ₛ (ap (_G∪H embase) (emloop g) ∙_) (transp-nat-idp _G∪H_ (emloop g) embase [ north ]₂ (λ y → idp)) ⟩ ap (ap (_G∪H embase) (emloop g) ∙_) (ap-null-homotopic (λ y → [ north ]₂) h₁ (emloop h)) ◃∙ ap (ap (_G∪H embase) (emloop g) ∙_) (!-inv-r (h₁ embase)) ◃∙ ap (ap (_G∪H embase) (emloop g) ∙_) (! (transp-idp (_G∪H embase) (emloop g))) ◃∙ idp ◃∙ ! (ap-transp (_G∪H embase) (_G∪H embase) (emloop g) idp) ◃∙ ap (idp ∙_) (GH.ap-cp₁₁-embase g) ◃∎ =ₛ⟨ 3 & 1 & expand [] ⟩ ap (ap (_G∪H embase) (emloop g) ∙_) (ap-null-homotopic (λ y → [ north ]₂) h₁ (emloop h)) ◃∙ ap (ap (_G∪H embase) (emloop g) ∙_) (!-inv-r (h₁ embase)) ◃∙ ap (ap (_G∪H embase) (emloop g) ∙_) (! (transp-idp (_G∪H embase) (emloop g))) ◃∙ ! (ap-transp (_G∪H embase) (_G∪H embase) (emloop g) idp) ◃∙ ap (idp ∙_) (GH.ap-cp₁₁-embase g) ◃∎ =ₛ₁⟨ 2 & 1 & ap-! (ap (_G∪H embase) (emloop g) ∙_) (transp-idp (_G∪H embase) (emloop g)) ⟩ ap (ap (_G∪H embase) (emloop g) ∙_) (ap-null-homotopic (λ y → [ north ]₂) h₁ (emloop h)) ◃∙ ap (ap (_G∪H embase) (emloop g) ∙_) (!-inv-r (h₁ embase)) ◃∙ ! (ap (ap (_G∪H embase) (emloop g) ∙_) (transp-idp (_G∪H embase) (emloop g))) ◃∙ ! (ap-transp (_G∪H embase) (_G∪H embase) (emloop g) idp) ◃∙ ap (idp ∙_) (GH.ap-cp₁₁-embase g) ◃∎ =ₛ⟨ 2 & 2 & pre-rotate'-seq-in {p = _ ◃∙ _ ◃∎} {r = []} $ !ₛ $ ap-transp-idp (_G∪H embase) (emloop g) ⟩ ap (ap (_G∪H embase) (emloop g) ∙_) (ap-null-homotopic (λ y → [ north ]₂) h₁ (emloop h)) ◃∙ ap (ap (_G∪H embase) (emloop g) ∙_) (!-inv-r (h₁ embase)) ◃∙ ∙-unit-r (ap (_G∪H embase) (emloop g)) ◃∙ ap (idp ∙_) (GH.ap-cp₁₁-embase g) ◃∎ =ₛ⟨ 2 & 2 & !ₛ $ homotopy-naturality (_∙ idp) (idp ∙_) ∙-unit-r (GH.ap-cp₁₁-embase g) ⟩ ap (ap (_G∪H embase) (emloop g) ∙_) (ap-null-homotopic (λ y → [ north ]₂) h₁ (emloop h)) ◃∙ ap (ap (_G∪H embase) (emloop g) ∙_) (!-inv-r (h₁ embase)) ◃∙ ap (_∙ idp) (GH.ap-cp₁₁-embase g) ◃∙ idp ◃∎ =ₛ⟨ 3 & 1 & expand [] ⟩ ap (ap (_G∪H embase) (emloop g) ∙_) (ap-null-homotopic (λ y → [ north ]₂) h₁ (emloop h)) ◃∙ ap (ap (_G∪H embase) (emloop g) ∙_) (!-inv-r (h₁ embase)) ◃∙ ap (_∙ idp) (GH.ap-cp₁₁-embase g) ◃∎ ∎ₛ bottom-part : ap (_∙ idp) (↯ (tail (comm-embase-emloop-seq h))) ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (! (!-inv-r (h₁' embase))) ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (! (ap-null-homotopic (λ x → [ north ]₂) h₁' (emloop g))) ◃∎ =ₛ ap (idp ∙_) (↯ (tail (comm-embase-emloop-seq h))) ◃∙ ap (_∙ ap (λ y → − (y H∪G embase)) (emloop h)) (! (ap-cst [ north ]₂ (emloop g))) ◃∙ ap-comm (λ x y → − (y H∪G x)) (emloop g) (emloop h) ◃∎ bottom-part = ap (_∙ idp) (↯ (tail (comm-embase-emloop-seq h))) ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (! (!-inv-r (h₁' embase))) ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (! (ap-null-homotopic (λ x → [ north ]₂) h₁' (emloop g))) ◃∎ =ₛ⟨ 0 & 0 & contract ⟩ idp ◃∙ ap (_∙ idp) (↯ (tail (comm-embase-emloop-seq h))) ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (! (!-inv-r (h₁' embase))) ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (! (ap-null-homotopic (λ x → [ north ]₂) h₁' (emloop g))) ◃∎ =ₛ⟨ 0 & 2 & !ₛ (homotopy-naturality (idp ∙_) (_∙ idp) (! ∘ ∙-unit-r) (↯ (tail (comm-embase-emloop-seq h)))) ⟩ ap (idp ∙_) (↯ (tail (comm-embase-emloop-seq h))) ◃∙ ! (∙-unit-r (ap (λ y → − (y H∪G embase)) (emloop h))) ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (! (!-inv-r (h₁' embase))) ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (! (ap-null-homotopic (λ x → [ north ]₂) h₁' (emloop g))) ◃∎ =ₛ⟨ 1 & 1 & !ₛ $ post-rotate-in {p = _ ◃∙ _ ◃∎} $ ap-transp-idp (λ y → − (y H∪G embase)) (emloop h) ⟩ ap (idp ∙_) (↯ (tail (comm-embase-emloop-seq h))) ◃∙ ap-transp (λ y → − (y H∪G embase)) (λ y → − (y H∪G embase)) (emloop h) idp ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (transp-idp (λ y → − (y H∪G embase)) (emloop h)) ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (! (!-inv-r (h₁' embase))) ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (! (ap-null-homotopic (λ x → [ north ]₂) h₁' (emloop g))) ◃∎ =ₛ⟨ 2 & 2 & ap-seq-=ₛ (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) $ transp-idp (λ y → − (y H∪G embase)) (emloop h) ◃∙ ! (!-inv-r (h₁' embase)) ◃∎ =ₛ⟨ pre-rotate-out $ pre-rotate'-in $ post-rotate-in {p = []} $ transp-nat-idp (λ y x → − (y H∪G x)) (emloop h) embase [ north ]₂ (λ x → idp) ⟩ idp ◃∙ ! (app= (transp-naturality {B = λ y → ∀ x → − (y H∪G x) == [ north ]₂} (λ h → h embase ∙ ! (h embase)) (emloop h)) (λ x → idp)) ◃∎ =ₛ⟨ 0 & 1 & expand [] ⟩ ! (app= (transp-naturality {B = λ y → ∀ x → − (y H∪G x) == [ north ]₂} (λ h → h embase ∙ ! (h embase)) (emloop h)) (λ x → idp)) ◃∎ ∎ₛ ⟩ ap (idp ∙_) (↯ (tail (comm-embase-emloop-seq h))) ◃∙ ap-transp (λ y → − (y H∪G embase)) (λ y → − (y H∪G embase)) (emloop h) idp ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (! (app= (transp-naturality {B = λ y → ∀ x → − (y H∪G x) == [ north ]₂} (λ h → h embase ∙ ! (h embase)) (emloop h)) (λ x → idp))) ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (! (ap-null-homotopic (λ x → [ north ]₂) h₁' (emloop g))) ◃∎ =ₛ₁⟨ 2 & 1 & ap-! (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (app= (transp-naturality {B = λ y → ∀ x → − (y H∪G x) == [ north ]₂} (λ h → h embase ∙ ! (h embase)) (emloop h)) (λ x → idp)) ⟩ ap (idp ∙_) (↯ (tail (comm-embase-emloop-seq h))) ◃∙ ap-transp (λ y → − (y H∪G embase)) (λ y → − (y H∪G embase)) (emloop h) idp ◃∙ ! (ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (app= (transp-naturality {B = λ y → ∀ x → − (y H∪G x) == [ north ]₂} (λ h → h embase ∙ ! (h embase)) (emloop h)) (λ x → idp))) ◃∙ ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (! (ap-null-homotopic (λ x → [ north ]₂) h₁' (emloop g))) ◃∎ =ₛ₁⟨ 3 & 1 & ap-! (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (ap-null-homotopic (λ x → [ north ]₂) h₁' (emloop g)) ⟩ ap (idp ∙_) (↯ (tail (comm-embase-emloop-seq h))) ◃∙ ap-transp (λ y → − (y H∪G embase)) (λ y → − (y H∪G embase)) (emloop h) idp ◃∙ ! (ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (app= (transp-naturality {B = λ y → ∀ x → − (y H∪G x) == [ north ]₂} (λ h → h embase ∙ ! (h embase)) (emloop h)) (λ x → idp))) ◃∙ ! (ap (ap (λ y → − (y H∪G embase)) (emloop h) ∙_) (ap-null-homotopic (λ x → [ north ]₂) h₁' (emloop g))) ◃∎ =ₛ⟨ 1 & 3 & pre-rotate-out $ pre-rotate'-seq-in {p = _ ◃∙ _ ◃∎} $ post-rotate-in {p = []} $ ap-comm-cst-coh (λ y x → − (y H∪G x)) (emloop h) (emloop g) [ north ]₂ (λ x → idp) ⟩ ap (idp ∙_) (↯ (tail (comm-embase-emloop-seq h))) ◃∙ ! (ap (_∙ ap (λ y → − (y H∪G embase)) (emloop h)) (ap-null-homotopic (λ x → − (embase H∪G x)) (λ x → idp) (emloop g))) ◃∙ ! (ap-comm (λ y x → − (y H∪G x)) (emloop h) (emloop g)) ◃∎ =ₛ₁⟨ 2 & 1 & ! (ap-comm-comm (λ x y → − (y H∪G x)) (emloop g) (emloop h)) ⟩ ap (idp ∙_) (↯ (tail (comm-embase-emloop-seq h))) ◃∙ ! (ap (_∙ ap (λ y → − (y H∪G embase)) (emloop h)) (ap-null-homotopic (λ x → − (embase H∪G x)) (λ x → idp) (emloop g))) ◃∙ ap-comm (λ x y → − (y H∪G x)) (emloop g) (emloop h) ◃∎ =ₛ₁⟨ 1 & 1 & !-ap (_∙ ap (λ y → − (y H∪G embase)) (emloop h)) (ap-null-homotopic (λ x → − (embase H∪G x)) (λ x → idp) (emloop g)) ⟩ ap (idp ∙_) (↯ (tail (comm-embase-emloop-seq h))) ◃∙ ap (_∙ ap (λ y → − (y H∪G embase)) (emloop h)) (! (ap-cst [ north ]₂ (emloop g))) ◃∙ ap-comm (λ x y → − (y H∪G x)) (emloop g) (emloop h) ◃∎ ∎ₛ step₄' : ! (ap-cst [ north ] (emloop g)) ◃∎ =ₛ ↯ h₁'-seq ◃∙ ! (!-inv-r (h₁' embase)) ◃∙ ! (ap-null-homotopic (λ x → [ north ]₂) h₁' (emloop g)) ◃∎ step₄' = pre-rotate'-in $ post-rotate-seq-in {p = []} $ !ₛ $ ap-cst [ north ]₂ (emloop g) ◃∙ ↯ h₁'-seq ◃∎ =ₛ⟨ 1 & 1 & expand h₁'-seq ⟩ ap-cst [ north ] (emloop g) ◃∙ ! (!-inv-r (h₁' embase)) ◃∙ ! (ap (λ v → h₁' v ∙ ! (h₁' embase)) (emloop g)) ◃∙ !-inv-r (h₁' embase) ◃∎ =ₛ⟨ 0 & 2 & !ₛ $ post-rotate-in {p = _ ◃∙ _ ◃∎} $ ap-null-homotopic-cst [ north ]₂ [ north ]₂ h₁' (emloop g) ⟩ ap-null-homotopic (cst [ north ]₂) h₁' (emloop g) ◃∙ ap (λ v → h₁' v ∙ ! (h₁' embase)) (emloop g) ◃∙ ! (ap (λ v → h₁' v ∙ ! (h₁' embase)) (emloop g)) ◃∙ !-inv-r (h₁' embase) ◃∎ =ₛ⟨ 1 & 2 & seq-!-inv-r (ap (λ v → h₁' v ∙ ! (h₁' embase)) (emloop g) ◃∎) ⟩ ap-null-homotopic (cst [ north ]₂) h₁' (emloop g) ◃∙ !-inv-r (h₁' embase) ◃∎ ∎ₛ step₁₃' : ap-null-homotopic (λ y → [ north ]₂) h₁ (emloop h) ◃∙ !-inv-r (h₁ embase) ◃∙ ↯ h₁-seq ◃∎ =ₛ ap-cst [ north ]₂ (emloop h) ◃∎ step₁₃' = ap-null-homotopic (λ y → [ north ]₂) h₁ (emloop h) ◃∙ !-inv-r (h₁ embase) ◃∙ ↯ h₁-seq ◃∎ =ₛ⟨ 2 & 1 & expand h₁-seq ⟩ ap-null-homotopic (λ y → [ north ]₂) h₁ (emloop h) ◃∙ !-inv-r (h₁ embase) ◃∙ ! (!-inv-r (h₁ embase)) ◃∙ ap (λ v → h₁ v ∙ ! (h₁ embase)) (emloop h) ◃∙ !-inv-r (h₁ embase) ◃∎ =ₛ⟨ 1 & 2 & seq-!-inv-r (!-inv-r (h₁ embase) ◃∎) ⟩ ap-null-homotopic (λ y → [ north ]₂) h₁ (emloop h) ◃∙ ap (λ v → h₁ v ∙ ! (h₁ embase)) (emloop h) ◃∙ !-inv-r (h₁ embase) ◃∎ =ₛ⟨ ap-null-homotopic-cst [ north ]₂ [ north ]₂ h₁ (emloop h) ⟩ ap-cst [ north ]₂ (emloop h) ◃∎ ∎ₛ comm-embase-emloop : ∀ h → Square idp (ap (embase G∪H_) (emloop h)) (ap (λ y → − (y H∪G embase)) (emloop h)) idp comm-embase-emloop h = vert-degen-square (comm-embase-emloop' h) comm-emloop-embase : ∀ g → Square idp (ap (_G∪H embase) (emloop g)) (ap (λ x → − (embase H∪G x)) (emloop g)) idp comm-emloop-embase g = vert-degen-square (comm-emloop-embase' g) abstract square-helper : ∀ {i} {A : Type i} {a a' a'' : A} {p₀ : a == a'} {q₀ : a' == a''} {r₀ : a == a''} {p₁ : a == a'} {q₁ : a' == a''} {r₁ : a == a''} (s : r₀ == p₀ ∙ q₀) (p : p₀ == p₁) (q : q₀ == q₁) (t : p₁ ∙ q₁ == r₁) → s ∙v⊡ (vert-degen-square p ⊡h vert-degen-square q) ⊡v∙ t == vert-degen-square (s ∙ ap2 _∙_ p q ∙ t) square-helper s p q t = s ∙v⊡ (vert-degen-square p ⊡h vert-degen-square q) ⊡v∙ t =⟨ ap (λ u → s ∙v⊡ u ⊡v∙ t) (vert-degen-square-⊡h p q) ⟩ s ∙v⊡ vert-degen-square (ap2 _∙_ p q) ⊡v∙ t =⟨ ap (s ∙v⊡_) (vert-degen-square-⊡v∙ (ap2 _∙_ p q) t) ⟩ s ∙v⊡ vert-degen-square (ap2 _∙_ p q ∙ t) =⟨ vert-degen-square-∙v⊡ s (ap2 _∙_ p q ∙ t) ⟩ vert-degen-square (s ∙ ap2 _∙_ p q ∙ t) =∎ comm-embase-emloop-comp : ∀ h₁ h₂ → comm-embase-emloop (H.comp h₁ h₂) ⊡v∙ ap (ap (λ y → − (y H∪G embase))) (emloop-comp h₁ h₂) == ap (ap (embase G∪H_)) (emloop-comp h₁ h₂) ∙v⊡ ↓-='-square-comp (comm-embase-emloop h₁) (comm-embase-emloop h₂) comm-embase-emloop-comp h₁ h₂ = comm-embase-emloop (H.comp h₁ h₂) ⊡v∙ ap (ap (λ y → − (y H∪G embase))) (emloop-comp h₁ h₂) =⟨ vert-degen-square-⊡v∙ (comm-embase-emloop' (H.comp h₁ h₂)) (ap (ap (λ y → − (y H∪G embase))) (emloop-comp h₁ h₂)) ⟩ vert-degen-square (comm-embase-emloop' (H.comp h₁ h₂) ∙ ap (ap (λ y → − (y H∪G embase))) (emloop-comp h₁ h₂)) =⟨ ap vert-degen-square (=ₛ-out (comm-embase-emloop-comp' h₁ h₂)) ⟩ vert-degen-square (ap (ap (embase G∪H_)) (emloop-comp h₁ h₂) ∙ ap-∙ (embase G∪H_) (emloop h₁) (emloop h₂) ∙ ap2 _∙_ (comm-embase-emloop' h₁) (comm-embase-emloop' h₂) ∙ ∙-ap (λ y → − (y H∪G embase)) (emloop h₁) (emloop h₂)) =⟨ ! $ vert-degen-square-∙v⊡ (ap (ap (embase G∪H_)) (emloop-comp h₁ h₂)) _ ⟩ ap (ap (embase G∪H_)) (emloop-comp h₁ h₂) ∙v⊡ vert-degen-square (ap-∙ (embase G∪H_) (emloop h₁) (emloop h₂) ∙ ap2 _∙_ (comm-embase-emloop' h₁) (comm-embase-emloop' h₂) ∙ ∙-ap (λ y → − (y H∪G embase)) (emloop h₁) (emloop h₂)) =⟨ ap (ap (ap (embase G∪H_)) (emloop-comp h₁ h₂) ∙v⊡_) $ ! $ square-helper (ap-∙ (embase G∪H_) (emloop h₁) (emloop h₂)) (comm-embase-emloop' h₁) (comm-embase-emloop' h₂) (∙-ap (λ y → − (y H∪G embase)) (emloop h₁) (emloop h₂)) ⟩ ap (ap (embase G∪H_)) (emloop-comp h₁ h₂) ∙v⊡ ↓-='-square-comp' (comm-embase-emloop h₁) (comm-embase-emloop h₂) =⟨ ap (ap (ap (embase G∪H_)) (emloop-comp h₁ h₂) ∙v⊡_) $ ↓-='-square-comp'=↓-='-square-comp (comm-embase-emloop h₁) (comm-embase-emloop h₂) ⟩ ap (ap (embase G∪H_)) (emloop-comp h₁ h₂) ∙v⊡ ↓-='-square-comp (comm-embase-emloop h₁) (comm-embase-emloop h₂) =∎ comm-emloop-comp-embase : ∀ g₁ g₂ → comm-emloop-embase (G.comp g₁ g₂) ⊡v∙ ap (ap (λ x → − (embase H∪G x))) (emloop-comp g₁ g₂) == ap (ap (_G∪H embase)) (emloop-comp g₁ g₂) ∙v⊡ ↓-='-square-comp (comm-emloop-embase g₁) (comm-emloop-embase g₂) comm-emloop-comp-embase g₁ g₂ = comm-emloop-embase (G.comp g₁ g₂) ⊡v∙ ap (ap (λ x → − (embase H∪G x))) (emloop-comp g₁ g₂) =⟨ vert-degen-square-⊡v∙ (comm-emloop-embase' (G.comp g₁ g₂)) (ap (ap (λ x → − (embase H∪G x))) (emloop-comp g₁ g₂)) ⟩ vert-degen-square (comm-emloop-embase' (G.comp g₁ g₂) ∙ ap (ap (λ x → − (embase H∪G x))) (emloop-comp g₁ g₂)) =⟨ ap vert-degen-square (=ₛ-out (comm-emloop-comp-embase' g₁ g₂)) ⟩ vert-degen-square (ap (ap (_G∪H embase)) (emloop-comp g₁ g₂) ∙ ap-∙ (_G∪H embase) (emloop g₁) (emloop g₂) ∙ ap2 _∙_ (comm-emloop-embase' g₁) (comm-emloop-embase' g₂) ∙ ∙-ap (λ x → − (embase H∪G x)) (emloop g₁) (emloop g₂)) =⟨ ! $ vert-degen-square-∙v⊡ (ap (ap (_G∪H embase)) (emloop-comp g₁ g₂)) _ ⟩ ap (ap (_G∪H embase)) (emloop-comp g₁ g₂) ∙v⊡ vert-degen-square (ap-∙ (_G∪H embase) (emloop g₁) (emloop g₂) ∙ ap2 _∙_ (comm-emloop-embase' g₁) (comm-emloop-embase' g₂) ∙ ∙-ap (λ x → − (embase H∪G x)) (emloop g₁) (emloop g₂)) =⟨ ap (ap (ap (_G∪H embase)) (emloop-comp g₁ g₂) ∙v⊡_) $ ! $ square-helper (ap-∙ (_G∪H embase) (emloop g₁) (emloop g₂)) (comm-emloop-embase' g₁) (comm-emloop-embase' g₂) (∙-ap (λ x → − (embase H∪G x)) (emloop g₁) (emloop g₂)) ⟩ ap (ap (_G∪H embase)) (emloop-comp g₁ g₂) ∙v⊡ ↓-='-square-comp' (comm-emloop-embase g₁) (comm-emloop-embase g₂) =⟨ ap (ap (ap (_G∪H embase)) (emloop-comp g₁ g₂) ∙v⊡_) $ ↓-='-square-comp'=↓-='-square-comp (comm-emloop-embase g₁) (comm-emloop-embase g₂) ⟩ ap (ap (_G∪H embase)) (emloop-comp g₁ g₂) ∙v⊡ ↓-='-square-comp (comm-emloop-embase g₁) (comm-emloop-embase g₂) =∎ comm-emloop-emloop : ∀ g h → ap-comm _G∪H_ (emloop g) (emloop h) ∙v⊡ comm-embase-emloop h ⊡h comm-emloop-embase g == (comm-emloop-embase g ⊡h comm-embase-emloop h) ⊡v∙ ap-comm (λ x y → − (y H∪G x)) (emloop g) (emloop h) comm-emloop-emloop g h = ap-comm _G∪H_ (emloop g) (emloop h) ∙v⊡ comm-embase-emloop h ⊡h comm-emloop-embase g =⟨ ap (ap-comm _G∪H_ (emloop g) (emloop h) ∙v⊡_) $ vert-degen-square-⊡h (comm-embase-emloop' h) (comm-emloop-embase' g) ⟩ ap-comm _G∪H_ (emloop g) (emloop h) ∙v⊡ vert-degen-square (ap2 _∙_ (comm-embase-emloop' h) (comm-emloop-embase' g)) =⟨ vert-degen-square-∙v⊡ (ap-comm _G∪H_ (emloop g) (emloop h)) _ ⟩ vert-degen-square (ap-comm _G∪H_ (emloop g) (emloop h) ∙ ap2 _∙_ (comm-embase-emloop' h) (comm-emloop-embase' g)) =⟨ ap vert-degen-square (=ₛ-out (comm-emloop-emloop' g h)) ⟩ vert-degen-square (ap2 _∙_ (comm-emloop-embase' g) (comm-embase-emloop' h) ∙ ap-comm (λ x y → − (y H∪G x)) (emloop g) (emloop h)) =⟨ ! $ vert-degen-square-⊡v∙ _ (ap-comm (λ x y → − (y H∪G x)) (emloop g) (emloop h)) ⟩ vert-degen-square (ap2 _∙_ (comm-emloop-embase' g) (comm-embase-emloop' h)) ⊡v∙ ap-comm (λ x y → − (y H∪G x)) (emloop g) (emloop h) =⟨ ap (_⊡v∙ ap-comm (λ x y → − (y H∪G x)) (emloop g) (emloop h)) $ ! $ vert-degen-square-⊡h (comm-emloop-embase' g) (comm-embase-emloop' h) ⟩ (comm-emloop-embase g ⊡h comm-embase-emloop h) ⊡v∙ ap-comm (λ x y → − (y H∪G x)) (emloop g) (emloop h) =∎ module CP₁₁Comm = EM₁Level₂DoublePathElim G.grp H.grp {C = EMExplicit.EM G⊗H.abgroup 2} {{Trunc-level}} _G∪H_ (λ x y → − (y H∪G x)) idp comm-embase-emloop comm-emloop-embase comm-embase-emloop-comp comm-emloop-comp-embase comm-emloop-emloop abstract cp₁₁-comm : ∀ x y → x G∪H y == − (y H∪G x) cp₁₁-comm = CP₁₁Comm.f
{ "alphanum_fraction": 0.4541751127, "avg_line_length": 52.3305870237, "ext": "agda", "hexsha": "057438c70b95713f6d3e69e7790e650cf10ced25", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "theorems/cohomology/CupProduct/OnEM/CommutativityInLowDegrees.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "theorems/cohomology/CupProduct/OnEM/CommutativityInLowDegrees.agda", "max_line_length": 123, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "theorems/cohomology/CupProduct/OnEM/CommutativityInLowDegrees.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 23601, "size": 50813 }
module EqBase where import PolyDepPrelude open PolyDepPrelude using ( Bool; true; false; _&&_ ; Unit; unit ; Pair; pair ; Either; left; right ; Absurd ; Datoid; datoid; pElem ; True ) -- import And And = Pair -- import Sigma data Sigma (A : Set)(B : A -> Set) : Set where si : (a : A) -> (b : B a) -> Sigma A B Eq : Set -> Set -> Set Eq a b = a -> b -> Bool eqEmpty : Eq Absurd Absurd eqEmpty () -- empty eqUnit : Eq Unit Unit eqUnit unit unit = true eqPair : {A1 A2 B1 B2 : Set} -> (Eq A1 A2) -> (Eq B1 B2) -> Eq (And A1 B1) (And A2 B2) eqPair ea eb (pair a b) (pair a' b') = ea a a' && eb b b' caseOn : (D : Datoid) {B1 B2 : pElem D -> Set} (ifTrue : (b : pElem D) -> B1 b -> B2 b -> Bool) (a b : pElem D) (pa : B1 a) (pb : B2 b) (e : Bool) (cast : True e -> B1 a -> B1 b) -> Bool caseOn D ifTrue a b pa pb (false) cast = false caseOn D ifTrue a b pa pb (true) cast = ifTrue b (cast unit pa) pb eqEither : {A1 A2 B1 B2 : Set} (eq1 : A1 -> B1 -> Bool) (eq2 : A2 -> B2 -> Bool) -> Either A1 A2 -> Either B1 B2 -> Bool eqEither eq1 eq2 (left a1) (left b1) = eq1 a1 b1 eqEither eq1 eq2 (right a2) (right b2) = eq2 a2 b2 eqEither eq1 eq2 _ _ = false {- case x of { (inl x') -> case y of { (inl x0) -> eq1 x' x0; (inr y') -> false@_;}; (inr y') -> case y of { (inl x') -> false@_; (inr y0) -> eq2 y' y0;};} -} {- eqSigma2 (D : Datoid) (|B1 |B2 : pElem D -> Set) (ifTrue : (b : pElem D) -> Eq (B1 b) (B2 b)) (x : Sigma pElem D B1) (y : Sigma pElem D B2) : Bool = case x of { (si a pa) -> case y of { (si b pb) -> caseOn D ifTrue a b pa pb (D.eq a b) (D.subst B1);};} eqSigma (D : Datoid)(|B1 : (a : pElem D) -> Set)(|B2 : (a : pElem D) -> Set) : ((a : pElem D) -> Eq (B1 a) (B2 a)) -> Eq (Sigma pElem D B1) (Sigma pElem D B2) = eqSigma2 D -- More readable but less useful definition of eqSigma : eqSigmaLocalLet (D : Datoid) (|B1 |B2 : pElem D -> Set) (ifTrue : (b : pElem D) -> Eq (B1 b) (B2 b)) (x : Sigma pElem D B1) (y : Sigma pElem D B2) : Bool = case x of { (si a pa) -> case y of { (si b pb) -> let caseOn (e : Bool)(cast : True e -> B1 a -> B1 b) : Bool = case e of { (false) -> false@_; (true) -> ifTrue b (cast tt@_ pa) pb;} in caseOn (D.eq a b) (D.subst B1);};} eqSum' (D : Datoid) (|B1 |B2 : (a : pElem D) -> Set) : ((a : pElem D) -> Eq (B1 a) (B2 a)) -> Eq (Sum pElem D B1) (Sum pElem D B2) = \(e : (a : pElem D) -> Eq (B1 a) (B2 a)) -> \(p1 : Sum pElem D B1) -> \(p2 : Sum pElem D B2) -> caseOn D e p1.fst p2.fst p1.snd p2.snd (D.eq p1.fst p2.fst) (D.subst B1) eqSum : (D : Datoid) {B1 B2 : (a : pElem D) -> Set} -> ((a : pElem D) -> Eq (B1 a) (B2 a)) -> Eq (Sum pElem D B1) (Sum pElem D B2) eqSum e p1 p2 = caseOn D e p1.fst p2.fst p1.snd p2.snd (D.eq p1.fst p2.fst) (D.subst B1) -}
{ "alphanum_fraction": 0.4492882562, "avg_line_length": 27.6393442623, "ext": "agda", "hexsha": "42b3a0ad353652ce5968a53664713b71ac2e4331", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/AIM5/PolyDep/EqBase.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/AIM5/PolyDep/EqBase.agda", "max_line_length": 76, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/AIM5/PolyDep/EqBase.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 1260, "size": 3372 }
open import Data.Nat hiding (_^_) open import Data.List as List hiding (null) open import Data.List.Membership.Propositional open import Data.List.Relation.Unary.Any open import Data.List.Relation.Unary.All open import Data.List.Prefix open import Data.Product hiding (map) open import Data.Unit open import Relation.Binary.PropositionalEquality hiding ([_]) open ≡-Reasoning -- This file contains the definition of monads used for computation in -- the definitional interpreter for MJ using scopes and frames, -- described in Section 5 of the paper. module MJSF.Monad (k : ℕ) where open import MJSF.Syntax k open import MJSF.Values k open import ScopesFrames.ScopesFrames k Ty module MonadG (g : Graph) where open SyntaxG g open ValuesG g open UsesVal Valᵗ valᵗ-weaken renaming (getFrame to getFrame') open import Common.Weakening -- Computations may either time out, raise a null-pointer exception, -- or successfully terminate to produce a result: data Res (a : Set) : Set where timeout : Res a nullpointer : Res a ok : (x : a) → Res a -- The monad is similar to the monad used for STLCSF, except it uses -- `Res` instead of `Maybe`: M : (s : Scope) → (List Scope → Set) → List Scope → Set M s p Σ = Frame s Σ → Heap Σ → Res (∃ λ Σ' → (Heap Σ' × p Σ' × Σ ⊑ Σ')) -- We define some usual monad operations: return : ∀ {s Σ}{p : List Scope → Set} → p Σ → M s p Σ return v f h = ok (_ , h , v , ⊑-refl) fmap : ∀ {A B : List Scope → Set}{Γ Σ} → (∀ {Σ} → A Σ → B Σ) → M Γ A Σ → M Γ B Σ fmap g m f h with (m f h) ... | timeout = timeout ... | nullpointer = nullpointer ... | ok (Σ' , h' , v' , ext') = ok (Σ' , h' , g v' , ext') join : ∀ {A : List Scope → Set}{Γ Σ} → M Γ (M Γ A) Σ → M Γ A Σ join m f h with (m f h) ... | timeout = timeout ... | nullpointer = nullpointer ... | ok (Σ' , h' , m' , ext') with (m' (wk ext' f) h') ... | timeout = timeout ... | nullpointer = nullpointer ... | ok (Σ'' , h'' , v'' , ext'') = ok ((Σ'' , h'' , v'' , ext' ⊚ ext'')) _>>=_ : ∀ {s Σ}{p q : List Scope → Set} → M s p Σ → (∀ {Σ'} → p Σ' → M s q Σ') → M s q Σ (a >>= b) = join (fmap b a) -- To program in dependent-passing style, we use the variant of -- monadic strength also used for STLCSF. _^_ : ∀ {Σ Γ}{p q : List Scope → Set} ⦃ w : Weakenable q ⦄ → M Γ p Σ → q Σ → M Γ (p ⊗ q) Σ (a ^ x) f h with (a f h) ... | timeout = timeout ... | nullpointer = nullpointer ... | ok (Σ , h' , v , ext) = ok (Σ , h' , (v , wk ext x) , ext) -- The remaining definitions in this file are straightforward -- monadic liftings of the coercion function from `MJSF.Values` and -- of the frame operations. getFrame : ∀ {s Σ} → M s (Frame s) Σ getFrame f = return f f usingFrame : ∀ {s s' Σ}{p : List Scope → Set} → Frame s Σ → M s p Σ → M s' p Σ usingFrame f a _ = a f timeoutᴹ : ∀ {s Σ}{p : List Scope → Set} → M s p Σ timeoutᴹ _ _ = timeout raise : ∀ {s Σ}{p : List Scope → Set} → M s p Σ raise _ _ = nullpointer init : ∀ {Σ s' ds es} → (s : Scope) → ⦃ shape : g s ≡ (ds , es) ⦄ → Slots ds Σ → Links es Σ → M s' (Frame s) Σ init {Σ} s slots links _ h with (initFrame s slots links h) ... | (f' , h') = ok (_ , h' , f' , ∷ʳ-⊒ s Σ) initι : ∀ {Σ s' ds es} → (s : Scope) → ⦃ shape : g s ≡ (ds , es) ⦄ → (Frame s (Σ ∷ʳ s) → Slots ds (Σ ∷ʳ s)) → Links es Σ → M s' (Frame s) Σ initι {Σ} s slots links _ h with (initFrameι s slots links h) ... | (f' , h') = ok (_ , h' , f' , ∷ʳ-⊒ s Σ) getv : ∀ {s t Σ} → (s ↦ t) → M s (Valᵗ t) Σ getv p f h = return (getVal p f h) f h getf : ∀ {s s' Σ} → (s ⟶ s') → M s (Frame s') Σ getf p f h = return (getFrame' p f h) f h getd : ∀ {s t Σ} → t ∈ declsOf s → M s (Valᵗ t) Σ getd d f h = return (getSlot d f h) f h getl : ∀ {s s' Σ} → s' ∈ edgesOf s → M s (Frame s') Σ getl e f h = return (getLink e f h) f h setd : ∀ {s t Σ} → t ∈ declsOf s → Valᵗ t Σ → M s (λ _ → ⊤) Σ setd d v f h with (setSlot d v f h) ... | h' = return tt f h' setv : ∀ {s t Σ} → (s ↦ t) → Valᵗ t Σ → M s (λ _ → ⊤) Σ setv p v f h with (setVal p v f h) ... | h' = return tt f h'
{ "alphanum_fraction": 0.5460926533, "avg_line_length": 33.390625, "ext": "agda", "hexsha": "d2c89a2e632b649cc310182622bf5720c6464005", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/MJSF/Monad.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/MJSF/Monad.agda", "max_line_length": 85, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/MJSF/Monad.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 1686, "size": 4274 }
module Haskell.RangedSetsProp.RangedSetProperties where open import Haskell.RangedSetsProp.library open import Haskell.RangedSetsProp.RangesProperties open import Agda.Builtin.Equality open import Agda.Builtin.Bool open import Haskell.Prim open import Haskell.Prim.Ord open import Haskell.Prim.Bool open import Haskell.Prim.Maybe open import Haskell.Prim.Enum open import Haskell.Prim.Eq open import Haskell.Prim.List open import Haskell.Prim.Integer open import Haskell.Prim.Double open import Haskell.Prim.Foldable open import Haskell.RangedSets.Boundaries open import Haskell.RangedSets.Ranges open import Haskell.RangedSets.RangedSet prop_empty : ⦃ o : Ord a ⦄ → ⦃ d : DiscreteOrdered a ⦄ → (v : a) → (not (rSetHas rSetEmpty {empty ⦃ o ⦄ ⦃ d ⦄} v)) ≡ true prop_empty v = refl prop_full : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (v : a) → (rSetHas rSetFull {full0 ⦃ o ⦄ ⦃ dio ⦄} v) ≡ true prop_full v = refl prop_validNormalised : ⦃ o : Ord a ⦄ → ⦃ d : DiscreteOrdered a ⦄ → (ls : List (Range a)) → (validRangeList (normaliseRangeList ls)) ≡ true prop_validNormalised ⦃ o ⦄ ⦃ dio ⦄ [] = refl prop_validNormalised ⦃ o ⦄ ⦃ dio ⦄ ls@(r1 ∷ rs) = begin (validRangeList (normaliseRangeList ls)) =⟨⟩ (validRangeList (normalise (sort (filter (λ r → (rangeIsEmpty r) == false) ls)) ⦃ sortedList ls ⦄ ⦃ validRangesList ls ⦄)) =⟨ propIsTrue (validRangeList (normalise (sort (filter (λ r → (rangeIsEmpty r) == false) ls)) ⦃ sortedList ls ⦄ ⦃ validRangesList ls ⦄)) (normalisedSortedList (sort (filter (λ r → (rangeIsEmpty r) == false) ls)) (sortedList ls) (validRangesList ls)) ⟩ true end postulate rangeSetCreation : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs : RSet a) → {prf : IsTrue (validRangeList (rSetRanges rs))} → (RS ⦃ o ⦄ ⦃ dio ⦄ (rSetRanges rs) {prf}) ≡ rs rangesEqiv : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → {rs1 rs2 : RSet a} → rSetRanges rs1 ≡ rSetRanges rs2 → rs1 ≡ rs2 rangesEqiv2 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → {rs1 rs2 : List (Range a)} → (prf1 : IsTrue (sortedRangeList rs1)) → (prf2 : IsTrue (validRanges rs1)) → (prf3 : IsTrue (sortedRangeList rs2)) → (prf4 : IsTrue (validRanges rs2)) → rs1 ≡ rs2 → normalise rs1 ⦃ prf1 ⦄ ⦃ prf2 ⦄ ≡ normalise rs2 ⦃ prf3 ⦄ ⦃ prf4 ⦄ singletonRangeSetHas : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (r : Range a) → (v : a) → {prf : IsTrue (validRangeList (r ∷ []))} → (rSetHas (RS (r ∷ []) {prf}) {prf} v) ≡ rangeHas r v singletonRangeSetHas r v {prf} = begin (rSetHas (RS (r ∷ []) {prf}) {prf} v) =⟨⟩ rangeHas r v end rSetHasHelper : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → a → (rs : List (Range a)) → {prf : IsTrue (validRangeList rs)} → Bool rSetHasHelper ⦃ o ⦄ ⦃ dio ⦄ value rs {prf} = rSetHas ⦃ o ⦄ ⦃ dio ⦄ (RS rs {prf}) {prf} value -- rangeHasSym : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (r : Range a) → (rs : RSet a) → (v : a) -- → {prf1 : IsTrue (validRangeList (r ∷ (rSetRanges rs)))} -- → (rSetHas (RS (r ∷ (rSetRanges rs)) {prf1}) {prf1} v) ≡ -- ((rangeHas r v) || (rSetHas rs {headandtail (RS (r ∷ (rSetRanges rs)) {prf1}) prf1} v)) -- rangeHasSym ⦃ o ⦄ ⦃ dio ⦄ r rs@(RS []) v {prf1} = -- begin -- (rSetHas (RS (r ∷ []) {prf1}) {prf1} v) -- =⟨⟩ -- (rangeHas r v) -- =⟨ sym (prop_or_false2 (rangeHas r v)) ⟩ -- ((rangeHas r v) || false) -- =⟨⟩ -- ((rangeHas r v) || (rSetHas (RS [] {empty ⦃ o ⦄ ⦃ dio ⦄}) {empty ⦃ o ⦄ ⦃ dio ⦄} v)) -- end -- rangeHasSym ⦃ o ⦄ ⦃ d ⦄ r rs@(RS ranges@(r1 ∷ r2) {prf}) v {prf1} = -- begin -- ((RS (r ∷ (rSetRanges rs)) {prf1}) -?- v) -- =⟨⟩ -- ((rangeHas r v) || (rSetHas (RS (rSetRanges rs) {headandtail (RS (r ∷ (rSetRanges rs)) {prf1}) prf1}) v)) -- =⟨ cong ((rangeHas r v) ||_) (cong (rSetHasHelper v) (rangesEqiv refl)) ⟩ -- ((rangeHas r v) || (rSetHas rs v)) -- end postulate -- the following postulates hold when the boundaries are ordered emptyIntersection : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (b1 b2 b3 : Boundary a) → IsFalse (rangeIsEmpty (rangeIntersection (Rg b2 b3) (Rg b1 b2)) == false) emptyIntersection2 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (b1 b2 b3 : Boundary a) → IsFalse (rangeIsEmpty (rangeIntersection (Rg b1 b2) (Rg b2 b3)) == false) orderedBoundaries2 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (b1 b2 : Boundary a) → IsFalse (b2 < b1) -- used for easing the proofs, the true value should be IsTrue (b1 <= b2) orderedBoundaries3 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (b1 b2 : Boundary a) → IsTrue (b1 < b2) {-# TERMINATING #-} lemma0 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs : RSet a) → {prf : IsTrue (validRangeList (rSetRanges rs))} → (ranges1 (bounds1 (rSetRanges rs))) ≡ (rSetRanges rs) lemma0 ⦃ o ⦄ ⦃ dio ⦄ rs@(RS []) {_} = begin (ranges1 ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ (rSetRanges rs))) =⟨⟩ (ranges1 ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ [])) =⟨⟩ (ranges1 ⦃ o ⦄ ⦃ dio ⦄ []) =⟨⟩ [] =⟨⟩ rSetRanges rs end lemma0 ⦃ o ⦄ ⦃ dio ⦄ rs@(RS (r@(Rg l u) ∷ rgs)) {prf} = begin (ranges1 ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ (rSetRanges rs))) =⟨⟩ (ranges1 ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ (r ∷ rgs))) =⟨⟩ (ranges1 ⦃ o ⦄ ⦃ dio ⦄ ((rangeLower ⦃ o ⦄ ⦃ dio ⦄ r) ∷ ((rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r) ∷ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ rgs)))) =⟨⟩ ((Rg l u) ∷ ranges1 ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ rgs)) =⟨⟩ (r ∷ ranges1 ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ rgs)) =⟨ cong (r ∷_) (lemma0 ⦃ o ⦄ ⦃ dio ⦄ (RS rgs {headandtail rs prf}) {headandtail rs prf}) ⟩ (r ∷ rgs) =⟨⟩ rSetRanges rs end rangeEmpty : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (x : Boundary a) → rangeIsEmpty (Rg x x) ≡ true rangeEmpty ⦃ o ⦄ ⦃ dio ⦄ BoundaryBelowAll = refl rangeEmpty ⦃ o ⦄ ⦃ dio ⦄ BoundaryAboveAll = refl rangeEmpty ⦃ o ⦄ ⦃ dio ⦄ b@(BoundaryBelow m) = begin rangeIsEmpty (Rg b b) =⟨⟩ ((BoundaryBelow m) <= (BoundaryBelow m)) =⟨⟩ ((compare b b == LT) || (compare b b == EQ)) =⟨⟩ ((compare m m == LT) || (compare m m == EQ)) =⟨ cong ((compare m m == LT) ||_) (eq4 ⦃ o ⦄ refl) ⟩ ((compare m m == LT) || true) =⟨⟩ ((compare m m == LT) || true) =⟨ prop_or_false3 (compare m m == LT) ⟩ true end rangeEmpty ⦃ o ⦄ ⦃ dio ⦄ b@(BoundaryAbove m) = begin rangeIsEmpty (Rg b b) =⟨⟩ ((BoundaryBelow m) <= (BoundaryBelow m)) =⟨⟩ ((compare b b == LT) || (compare b b == EQ)) =⟨⟩ ((compare m m == LT) || (compare m m == EQ)) =⟨ cong ((compare m m == LT) ||_) (eq4 ⦃ o ⦄ refl) ⟩ ((compare m m == LT) || true) =⟨⟩ ((compare m m == LT) || true) =⟨ prop_or_false3 (compare m m == LT) ⟩ true end merge2Empty : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (bs : List (Boundary a)) → ⦃ ne : NonEmpty bs ⦄ → filter (λ x → rangeIsEmpty x == false) (merge2 (ranges1 (tail bs ⦃ ne ⦄)) (ranges1 bs)) ≡ [] merge2Empty2 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (bs : List (Boundary a)) → ⦃ ne : NonEmpty bs ⦄ → filter (λ x → rangeIsEmpty x == false) (merge2 (ranges1 bs) (ranges1 (tail bs ⦃ ne ⦄))) ≡ [] merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ bounds@(b@(BoundaryAboveAll) ∷ []) ⦃ ne ⦄ = begin filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bounds) (ranges1 (tail bounds ⦃ ne ⦄))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b ∷ [])) (ranges1 [])) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 [] []) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [] =⟨⟩ [] end merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ bounds@(b@(BoundaryAbove x) ∷ []) ⦃ ne ⦄ = begin filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bounds) (ranges1 (tail bounds ⦃ ne ⦄))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b ∷ [])) (ranges1 [])) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b BoundaryAboveAll) ∷ []) []) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [] =⟨⟩ [] end merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ bounds@(b@(BoundaryBelow x) ∷ []) ⦃ ne ⦄ = begin filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bounds) (ranges1 (tail bounds ⦃ ne ⦄))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b ∷ [])) (ranges1 [])) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b BoundaryAboveAll) ∷ []) []) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [] =⟨⟩ [] end merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ bounds@(b@(BoundaryBelowAll) ∷ []) ⦃ ne ⦄ = begin filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bounds) (ranges1 (tail bounds ⦃ ne ⦄))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b ∷ [])) (ranges1 [])) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b BoundaryAboveAll) ∷ []) []) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [] =⟨⟩ [] end merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryAboveAll) ∷ []) ⦃ ne ⦄ = begin filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bounds) (ranges1 (tail bounds ⦃ ne ⦄))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b1 ∷ b2 ∷ [])) (ranges1 (b2 ∷ []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b1 b2) ∷ (ranges1 [])) []) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [] =⟨⟩ [] end merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryAboveAll) ∷ bs@(b3 ∷ bss)) ⦃ ne ⦄ = begin filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bounds) (ranges1 (tail bounds ⦃ ne ⦄))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b1 ∷ b2 ∷ bs)) (ranges1 (b2 ∷ bs))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b1 b2) ∷ (ranges1 bs)) ((Rg b2 b3) ∷ (ranges1 bss))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 b3)) ∷ (if_then_else_ (b2 < b3) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs))) (merge2 (ranges1 bounds) (ranges1 bss)))) =⟨ cong (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (cong ((rangeIntersection (Rg b1 b2) (Rg b2 b3)) ∷_) (propIf2 (b2 < b3) (orderedBoundaries3 ⦃ o ⦄ ⦃ dio ⦄ b2 b3))) ⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 b3)) ∷ (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs)))) =⟨⟩ if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b1 b2) (Rg b2 b3)) == false) ((rangeIntersection (Rg b1 b2) (Rg b2 b3)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs))))) (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs)))) =⟨ propIf3' ⦃ o ⦄ {((rangeIntersection (Rg b1 b2) (Rg b2 b3)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs)))))} {(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs))))} (rangeIsEmpty (rangeIntersection (Rg b1 b2) (Rg b2 b3)) == false) (emptyIntersection2 ⦃ o ⦄ ⦃ dio ⦄ b1 b2 b3) ⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs)))) =⟨ merge2Empty ⦃ o ⦄ ⦃ dio ⦄ (b2 ∷ bs) ⟩ -- induction here!!!! merge2Empty .. [] end merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryBelowAll) ∷ []) ⦃ ne ⦄ = begin filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bounds) (ranges1 (tail bounds ⦃ ne ⦄))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b1 ∷ b2 ∷ [])) (ranges1 (b2 ∷ []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b1 b2) ∷ (ranges1 [])) ((Rg b2 BoundaryAboveAll) ∷ [])) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b1 b2) ∷ []) ((Rg b2 BoundaryAboveAll) ∷ [])) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll)) ∷ (if_then_else_ (b2 < BoundaryAboveAll) (merge2 [] ((Rg b2 BoundaryAboveAll) ∷ [])) (merge2 ((Rg b1 b2) ∷ []) []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll)) ∷ (if_then_else_ false (merge2 [] ((Rg b2 BoundaryAboveAll) ∷ [])) (merge2 ((Rg b1 b2) ∷ []) []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll)) ∷ (merge2 ((Rg b1 b2) ∷ []) [])) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll)) ∷ []) =⟨⟩ if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll)) == false) ((rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])) (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []) =⟨ propIf3 ((rangeIsEmpty (rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll)) == false)) (emptyIntersection2 ⦃ o ⦄ ⦃ dio ⦄ b1 b2 BoundaryAboveAll) ⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []) =⟨⟩ [] end merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryBelowAll) ∷ bs@(b3 ∷ bss)) ⦃ ne ⦄ = begin filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bounds) (ranges1 (tail bounds ⦃ ne ⦄))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b1 ∷ b2 ∷ bs)) (ranges1 (b2 ∷ bs))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b1 b2) ∷ (ranges1 bs)) ((Rg b2 b3) ∷ (ranges1 bss))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 b3)) ∷ (if_then_else_ (b2 < b3) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs))) (merge2 ((Rg b1 b2) ∷ (ranges1 bs)) (ranges1 bss) ))) =⟨ cong (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (cong ((rangeIntersection (Rg b1 b2) (Rg b2 b3)) ∷_) (propIf2 (b2 < b3) (orderedBoundaries3 ⦃ o ⦄ ⦃ dio ⦄ b2 b3))) ⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 b3)) ∷ (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs)))) =⟨⟩ if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b1 b2) (Rg b2 b3)) == false) ((rangeIntersection (Rg b1 b2) (Rg b2 b3)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs))))) (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs)))) =⟨ propIf3 (rangeIsEmpty (rangeIntersection (Rg b1 b2) (Rg b2 b3)) == false) (emptyIntersection2 ⦃ o ⦄ ⦃ dio ⦄ b1 b2 b3) ⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs)))) =⟨ merge2Empty ⦃ o ⦄ ⦃ dio ⦄ (b2 ∷ bs) ⟩ -- induction here!!!! merge2Empty .. [] end merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryAbove x) ∷ []) ⦃ ne ⦄ = begin filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bounds) (ranges1 (tail bounds ⦃ ne ⦄))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b1 ∷ b2 ∷ [])) (ranges1 (b2 ∷ []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b1 b2) ∷ (ranges1 [])) ((Rg b2 BoundaryAboveAll) ∷ [])) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b1 b2) ∷ []) ((Rg b2 BoundaryAboveAll) ∷ [])) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll)) ∷ (if_then_else_ (b2 < BoundaryAboveAll) (merge2 [] ((Rg b2 BoundaryAboveAll) ∷ [])) (merge2 ((Rg b1 b2) ∷ []) []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll)) ∷ (if_then_else_ true (merge2 [] ((Rg b2 BoundaryAboveAll) ∷ [])) (merge2 ((Rg b1 b2) ∷ []) []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll)) ∷ (merge2 [] ((Rg b2 BoundaryAboveAll) ∷ []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll)) ∷ []) =⟨⟩ if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll)) == false) ((rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])) (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []) =⟨ propIf3 ((rangeIsEmpty (rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll)) == false)) (emptyIntersection2 ⦃ o ⦄ ⦃ dio ⦄ b1 b2 BoundaryAboveAll) ⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []) =⟨⟩ [] end merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryAbove x) ∷ bs@(b3 ∷ bss)) ⦃ ne ⦄ = begin filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bounds) (ranges1 (tail bounds ⦃ ne ⦄))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b1 ∷ b2 ∷ bs)) (ranges1 (b2 ∷ bs))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b1 b2) ∷ (ranges1 bs)) ((Rg b2 b3) ∷ (ranges1 bss))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 b3)) ∷ (if_then_else_ (b2 < b3) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs))) (merge2 ((Rg b1 b2) ∷ (ranges1 bs)) (ranges1 bss)))) =⟨ cong (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (cong ((rangeIntersection (Rg b1 b2) (Rg b2 b3)) ∷_) (propIf2 (b2 < b3) (orderedBoundaries3 ⦃ o ⦄ ⦃ dio ⦄ b2 b3))) ⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 b3)) ∷ (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs)))) =⟨⟩ if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b1 b2) (Rg b2 b3)) == false) ((rangeIntersection (Rg b1 b2) (Rg b2 b3)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs))))) (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs)))) =⟨ propIf3 (rangeIsEmpty (rangeIntersection (Rg b1 b2) (Rg b2 b3)) == false) (emptyIntersection2 ⦃ o ⦄ ⦃ dio ⦄ b1 b2 b3) ⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs)))) =⟨ merge2Empty ⦃ o ⦄ ⦃ dio ⦄ (b2 ∷ bs) ⟩ -- induction here!!!! merge2Empty .. [] end merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryBelow x) ∷ []) ⦃ ne ⦄ = begin filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bounds) (ranges1 (tail bounds ⦃ ne ⦄))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b1 ∷ b2 ∷ [])) (ranges1 (b2 ∷ []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b1 b2) ∷ (ranges1 [])) ((Rg b2 BoundaryAboveAll) ∷ [])) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b1 b2) ∷ []) ((Rg b2 BoundaryAboveAll) ∷ [])) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll)) ∷ (if_then_else_ (b2 < BoundaryAboveAll) (merge2 [] ((Rg b2 BoundaryAboveAll) ∷ [])) (merge2 ((Rg b1 b2) ∷ []) []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll)) ∷ (if_then_else_ true (merge2 [] ((Rg b2 BoundaryAboveAll) ∷ [])) (merge2 ((Rg b1 b2) ∷ []) []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll)) ∷ (merge2 [] ((Rg b2 BoundaryAboveAll) ∷ []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll)) ∷ []) =⟨⟩ if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll)) == false) ((rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])) (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []) =⟨ propIf3 ((rangeIsEmpty (rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll)) == false)) (emptyIntersection2 ⦃ o ⦄ ⦃ dio ⦄ b1 b2 BoundaryAboveAll) ⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []) =⟨⟩ [] end merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryBelow x) ∷ bs@(b3 ∷ bss)) ⦃ ne ⦄ = begin filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bounds) (ranges1 (tail bounds ⦃ ne ⦄))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b1 ∷ b2 ∷ bs)) (ranges1 (b2 ∷ bs))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b1 b2) ∷ (ranges1 bs)) ((Rg b2 b3) ∷ (ranges1 bss))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 b3)) ∷ (if_then_else_ (b2 < b3) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs))) (merge2 ((Rg b1 b2) ∷ (ranges1 bs)) (ranges1 bss)))) =⟨ cong (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (cong ((rangeIntersection (Rg b1 b2) (Rg b2 b3)) ∷_) (propIf2 (b2 < b3) (orderedBoundaries3 ⦃ o ⦄ ⦃ dio ⦄ b2 b3))) ⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 b3)) ∷ (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs)))) =⟨⟩ if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b1 b2) (Rg b2 b3)) == false) ((rangeIntersection (Rg b1 b2) (Rg b2 b3)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs))))) (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs)))) =⟨ propIf3 (rangeIsEmpty (rangeIntersection (Rg b1 b2) (Rg b2 b3)) == false) (emptyIntersection2 ⦃ o ⦄ ⦃ dio ⦄ b1 b2 b3) ⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs)))) =⟨ merge2Empty ⦃ o ⦄ ⦃ dio ⦄ (b2 ∷ bs) ⟩ -- induction here!!!! merge2Empty .. [] end merge2Empty ⦃ o ⦄ ⦃ dio ⦄ bounds@(b@(BoundaryBelowAll) ∷ []) ⦃ ne ⦄ = begin filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (tail bounds ⦃ ne ⦄)) (ranges1 bounds)) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 []) (ranges1 (b ∷ []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 [] (ranges1 (b ∷ []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [] =⟨⟩ [] end merge2Empty ⦃ o ⦄ ⦃ dio ⦄ bounds@(b@(BoundaryBelow x) ∷ []) ⦃ ne ⦄ = begin filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (tail bounds ⦃ ne ⦄)) (ranges1 bounds)) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 []) (ranges1 (b ∷ []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 [] (ranges1 (b ∷ []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [] =⟨⟩ [] end merge2Empty ⦃ o ⦄ ⦃ dio ⦄ bounds@(b@(BoundaryAbove x) ∷ []) ⦃ ne ⦄ = begin filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (tail bounds ⦃ ne ⦄)) (ranges1 bounds)) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 []) (ranges1 (b ∷ []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 [] (ranges1 (b ∷ []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [] =⟨⟩ [] end merge2Empty ⦃ o ⦄ ⦃ dio ⦄ bounds@(b@(BoundaryAboveAll) ∷ []) ⦃ ne ⦄ = begin filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (tail bounds ⦃ ne ⦄)) (ranges1 bounds)) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 []) (ranges1 (b ∷ []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 [] (ranges1 (b ∷ []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [] =⟨⟩ [] end merge2Empty ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryAboveAll) ∷ []) ⦃ ne ⦄ = begin filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (tail bounds ⦃ ne ⦄)) (ranges1 bounds)) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ [])) (ranges1 (b1 ∷ b2 ∷ []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 [] ((Rg b1 b2) ∷ (ranges1 []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [] =⟨⟩ [] end merge2Empty ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryAboveAll) ∷ bs@(b3 ∷ bss)) ⦃ ne ⦄ = begin filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (tail bounds ⦃ ne ⦄)) (ranges1 bounds)) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 (b1 ∷ b2 ∷ bs))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b2 b3) ∷ (ranges1 bss)) ((Rg b1 b2) ∷ (ranges1 bs))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 b3) (Rg b1 b2)) ∷ (if_then_else_ (b3 < b2) (merge2 (ranges1 bss) ((Rg b1 b2) ∷ (ranges1 bs))) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs)))) =⟨ cong (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (cong ((rangeIntersection (Rg b2 b3) (Rg b1 b2)) ∷_) (propIf3 (b3 < b2) (orderedBoundaries2 ⦃ o ⦄ ⦃ dio ⦄ b2 b3))) ⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 b3) (Rg b1 b2)) ∷ (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs))) =⟨⟩ if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b2 b3) (Rg b1 b2)) == false) ((rangeIntersection (Rg b2 b3) (Rg b1 b2)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs)))) (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs))) =⟨ propIf3' ⦃ o ⦄ {((rangeIntersection (Rg b2 b3) (Rg b1 b2)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs))))} {(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs)))} (rangeIsEmpty (rangeIntersection (Rg b2 b3) (Rg b1 b2)) == false) (emptyIntersection ⦃ o ⦄ ⦃ dio ⦄ b1 b2 b3) ⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs))) =⟨ merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ (b2 ∷ bs) ⟩ -- induction here!!!! merge2Empty .. [] end merge2Empty ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryBelowAll) ∷ []) ⦃ ne ⦄ = begin filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (tail bounds ⦃ ne ⦄)) (ranges1 bounds)) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ [])) (ranges1 (b1 ∷ b2 ∷ []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b2 BoundaryAboveAll) ∷ []) ((Rg b1 b2) ∷ (ranges1 []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b2 BoundaryAboveAll) ∷ []) ((Rg b1 b2) ∷ [])) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2)) ∷ (if_then_else_ (BoundaryAboveAll < b2) (merge2 [] ((Rg b1 b2) ∷ [])) (merge2 ((Rg b2 BoundaryAboveAll) ∷ []) []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2)) ∷ (if_then_else_ false (merge2 [] ((Rg b1 b2) ∷ [])) (merge2 ((Rg b2 BoundaryAboveAll) ∷ []) []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2)) ∷ (merge2 ((Rg b2 BoundaryAboveAll) ∷ []) [])) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2)) ∷ []) =⟨⟩ if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2)) == false) ((rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])) (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []) =⟨ propIf3 ((rangeIsEmpty (rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2)) == false)) (emptyIntersection ⦃ o ⦄ ⦃ dio ⦄ b1 b2 BoundaryAboveAll) ⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []) =⟨⟩ [] end merge2Empty ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryBelowAll) ∷ bs@(b3 ∷ bss)) ⦃ ne ⦄ = begin filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (tail bounds ⦃ ne ⦄)) (ranges1 bounds)) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 (b1 ∷ b2 ∷ bs))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b2 b3) ∷ (ranges1 bss)) ((Rg b1 b2) ∷ (ranges1 bs))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 b3) (Rg b1 b2)) ∷ (if_then_else_ (b3 < b2) (merge2 (ranges1 bss) ((Rg b1 b2) ∷ (ranges1 bs))) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs)))) =⟨ cong (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (cong ((rangeIntersection (Rg b2 b3) (Rg b1 b2)) ∷_) (propIf3 (b3 < b2) (orderedBoundaries2 ⦃ o ⦄ ⦃ dio ⦄ b2 b3))) ⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 b3) (Rg b1 b2)) ∷ (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs))) =⟨⟩ if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b2 b3) (Rg b1 b2)) == false) ((rangeIntersection (Rg b2 b3) (Rg b1 b2)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs)))) (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs))) =⟨ propIf3 (rangeIsEmpty (rangeIntersection (Rg b2 b3) (Rg b1 b2)) == false)(emptyIntersection ⦃ o ⦄ ⦃ dio ⦄ b1 b2 b3) ⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs))) =⟨ merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ (b2 ∷ bs) ⟩ -- induction here!!!! merge2Empty .. [] end merge2Empty ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryAbove x) ∷ []) ⦃ ne ⦄ = begin filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (tail bounds ⦃ ne ⦄)) (ranges1 bounds)) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ [])) (ranges1 (b1 ∷ b2 ∷ []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b2 BoundaryAboveAll) ∷ []) ((Rg b1 b2) ∷ (ranges1 []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b2 BoundaryAboveAll) ∷ []) ((Rg b1 b2) ∷ [])) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2)) ∷ (if_then_else_ (BoundaryAboveAll < b2) (merge2 [] ((Rg b1 b2) ∷ [])) (merge2 ((Rg b2 BoundaryAboveAll) ∷ []) []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2)) ∷ (if_then_else_ false (merge2 [] ((Rg b1 b2) ∷ [])) (merge2 ((Rg b2 BoundaryAboveAll) ∷ []) []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2)) ∷ (merge2 ((Rg b2 BoundaryAboveAll) ∷ []) [])) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2)) ∷ []) =⟨⟩ if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2)) == false) ((rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])) (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []) =⟨ propIf3 ((rangeIsEmpty (rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2)) == false)) (emptyIntersection ⦃ o ⦄ ⦃ dio ⦄ b1 b2 BoundaryAboveAll) ⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []) =⟨⟩ [] end merge2Empty ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryAbove x) ∷ bs@(b3 ∷ bss)) ⦃ ne ⦄ = begin filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (tail bounds ⦃ ne ⦄)) (ranges1 bounds)) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 (b1 ∷ b2 ∷ bs))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b2 b3) ∷ (ranges1 bss)) ((Rg b1 b2) ∷ (ranges1 bs))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 b3) (Rg b1 b2)) ∷ (if_then_else_ (b3 < b2) (merge2 (ranges1 bss) ((Rg b1 b2) ∷ (ranges1 bs))) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs)))) =⟨ cong (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (cong ((rangeIntersection (Rg b2 b3) (Rg b1 b2)) ∷_) (propIf3 (b3 < b2) (orderedBoundaries2 ⦃ o ⦄ ⦃ dio ⦄ b2 b3))) ⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 b3) (Rg b1 b2)) ∷ (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs))) =⟨⟩ if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b2 b3) (Rg b1 b2)) == false) ((rangeIntersection (Rg b2 b3) (Rg b1 b2)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs)))) (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs))) =⟨ propIf3 (rangeIsEmpty (rangeIntersection (Rg b2 b3) (Rg b1 b2)) == false)(emptyIntersection ⦃ o ⦄ ⦃ dio ⦄ b1 b2 b3) ⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs))) =⟨ merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ (b2 ∷ bs) ⟩ -- induction here!!!! merge2Empty .. [] end merge2Empty ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryBelow x) ∷ []) ⦃ ne ⦄ = begin filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (tail bounds ⦃ ne ⦄)) (ranges1 bounds)) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ [])) (ranges1 (b1 ∷ b2 ∷ []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b2 BoundaryAboveAll) ∷ []) ((Rg b1 b2) ∷ (ranges1 []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b2 BoundaryAboveAll) ∷ []) ((Rg b1 b2) ∷ [])) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2)) ∷ (if_then_else_ (BoundaryAboveAll < b2) (merge2 [] ((Rg b1 b2) ∷ [])) (merge2 ((Rg b2 BoundaryAboveAll) ∷ []) []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2)) ∷ (if_then_else_ false (merge2 [] ((Rg b1 b2) ∷ [])) (merge2 ((Rg b2 BoundaryAboveAll) ∷ []) []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2)) ∷ (merge2 ((Rg b2 BoundaryAboveAll) ∷ []) [])) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2)) ∷ []) =⟨⟩ if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2)) == false) ((rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])) (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []) =⟨ propIf3 ((rangeIsEmpty (rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2)) == false)) (emptyIntersection ⦃ o ⦄ ⦃ dio ⦄ b1 b2 BoundaryAboveAll) ⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []) =⟨⟩ [] end merge2Empty ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryBelow x) ∷ bs@(b3 ∷ bss)) ⦃ ne ⦄ = begin filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (tail bounds ⦃ ne ⦄)) (ranges1 bounds)) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 (b1 ∷ b2 ∷ bs))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b2 b3) ∷ (ranges1 bss)) ((Rg b1 b2) ∷ (ranges1 bs))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 b3) (Rg b1 b2)) ∷ (if_then_else_ (b3 < b2) (merge2 (ranges1 bss) ((Rg b1 b2) ∷ (ranges1 bs))) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs)))) =⟨ cong (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (cong ((rangeIntersection (Rg b2 b3) (Rg b1 b2)) ∷_) (propIf3 (b3 < b2) (orderedBoundaries2 ⦃ o ⦄ ⦃ dio ⦄ b2 b3))) ⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 b3) (Rg b1 b2)) ∷ (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs))) =⟨⟩ if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b2 b3) (Rg b1 b2)) == false) ((rangeIntersection (Rg b2 b3) (Rg b1 b2)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs)))) (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs))) =⟨ propIf3 (rangeIsEmpty (rangeIntersection (Rg b2 b3) (Rg b1 b2)) == false)(emptyIntersection ⦃ o ⦄ ⦃ dio ⦄ b1 b2 b3) ⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs))) =⟨ merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ (b2 ∷ bs) ⟩ -- induction here!!!! merge2Empty .. [] end lemma2 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (bs : List (Boundary a)) → (filter (λ x → rangeIsEmpty x == false) (merge2 (ranges1 bs) (ranges1 (setBounds1 bs)))) ≡ [] lemma2 ⦃ o ⦄ ⦃ dio ⦄ [] = begin (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 []) (ranges1 (setBounds1 [])))) =⟨⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 [] (ranges1 (BoundaryBelowAll ∷ [])))) =⟨⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 [] ((Rg BoundaryBelowAll BoundaryAboveAll) ∷ []))) =⟨⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []) =⟨⟩ [] end lemma2 ⦃ o ⦄ ⦃ dio ⦄ bs@(BoundaryBelowAll ∷ []) = begin (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (setBounds1 bs)))) =⟨⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg BoundaryBelowAll BoundaryAboveAll) ∷ []) (ranges1 (setBounds1 (BoundaryBelowAll ∷ []))))) =⟨⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg BoundaryBelowAll BoundaryAboveAll) ∷ []) (ranges1 []))) =⟨⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg BoundaryBelowAll BoundaryAboveAll) ∷ []) [])) =⟨⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []) =⟨⟩ [] end lemma2 ⦃ o ⦄ ⦃ dio ⦄ bs@(BoundaryAboveAll ∷ []) = begin (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)(merge2 (ranges1 bs) (ranges1 (setBounds1 bs)))) =⟨⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 [] (ranges1 (setBounds1 (BoundaryAboveAll ∷ []))))) =⟨⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []) =⟨⟩ [] end lemma2 ⦃ o ⦄ ⦃ dio ⦄ bs@(b@(BoundaryBelow x) ∷ []) = begin (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (setBounds1 bs)))) =⟨⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b BoundaryAboveAll) ∷ []) (ranges1 (setBounds1 ((BoundaryBelow x) ∷ []))))) =⟨⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b BoundaryAboveAll) ∷ []) (ranges1 (BoundaryBelowAll ∷ (b ∷ []))))) =⟨⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b BoundaryAboveAll) ∷ []) ((Rg BoundaryBelowAll b) ∷ []))) =⟨⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b BoundaryAboveAll) (Rg BoundaryBelowAll b)) ∷ (if_then_else_ (BoundaryAboveAll < b) (merge2 [] ((Rg BoundaryBelowAll b) ∷ [])) (merge2 ((Rg b BoundaryAboveAll) ∷ []) [])))) =⟨⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b BoundaryAboveAll) (Rg BoundaryBelowAll b)) ∷ (if_then_else_ false (merge2 [] ((Rg BoundaryBelowAll b) ∷ [])) (merge2 ((Rg b BoundaryAboveAll) ∷ []) [])))) =⟨⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b BoundaryAboveAll) (Rg BoundaryBelowAll b)) ∷ (merge2 ((Rg b BoundaryAboveAll) ∷ []) []))) =⟨⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b BoundaryAboveAll) (Rg BoundaryBelowAll b)) ∷ [])) =⟨⟩ if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b BoundaryAboveAll) (Rg BoundaryBelowAll b)) == false) ((rangeIntersection (Rg b BoundaryAboveAll) (Rg BoundaryBelowAll b)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])) (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []) =⟨ propIf3 (rangeIsEmpty (rangeIntersection (Rg b BoundaryAboveAll) (Rg BoundaryBelowAll b)) == false) (emptyIntersection ⦃ o ⦄ ⦃ dio ⦄ BoundaryBelowAll b BoundaryAboveAll) ⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []) =⟨⟩ [] end lemma2 ⦃ o ⦄ ⦃ dio ⦄ bs@(b@(BoundaryAbove x) ∷ []) = begin (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (setBounds1 bs)))) =⟨⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b BoundaryAboveAll) ∷ []) (ranges1 (setBounds1 (b ∷ []))))) =⟨⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b BoundaryAboveAll) ∷ []) (ranges1 (BoundaryBelowAll ∷ (b ∷ []))))) =⟨⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b BoundaryAboveAll) ∷ []) ((Rg BoundaryBelowAll b) ∷ []))) =⟨⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b BoundaryAboveAll) (Rg BoundaryBelowAll b)) ∷ (if_then_else_ (BoundaryAboveAll < b) (merge2 [] ((Rg BoundaryBelowAll b) ∷ [])) (merge2 ((Rg b BoundaryAboveAll) ∷ []) [])))) =⟨⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b BoundaryAboveAll) (Rg BoundaryBelowAll b)) ∷ (if_then_else_ false (merge2 [] ((Rg BoundaryBelowAll b) ∷ [])) (merge2 ((Rg b BoundaryAboveAll) ∷ []) [])))) =⟨⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b BoundaryAboveAll) (Rg BoundaryBelowAll b)) ∷ (merge2 ((Rg b BoundaryAboveAll) ∷ []) []))) =⟨⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b BoundaryAboveAll) (Rg BoundaryBelowAll b)) ∷ [])) =⟨⟩ if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b BoundaryAboveAll) (Rg BoundaryBelowAll b)) == false) ((rangeIntersection (Rg b BoundaryAboveAll) (Rg BoundaryBelowAll b)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])) (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []) =⟨ propIf3 (rangeIsEmpty (rangeIntersection (Rg b BoundaryAboveAll) (Rg BoundaryBelowAll b)) == false) (emptyIntersection ⦃ o ⦄ ⦃ dio ⦄ BoundaryBelowAll b BoundaryAboveAll) ⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []) =⟨⟩ [] end lemma2 ⦃ o ⦄ ⦃ dio ⦄ bs@(a@(BoundaryAboveAll) ∷ (b ∷ bss)) = (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (setBounds1 bs)))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ (ranges1 bss)) (ranges1 (setBounds1 (a ∷ (b ∷ bss))))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ (ranges1 bss)) (ranges1 (BoundaryBelowAll ∷ (a ∷ (b ∷ bss))))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ (ranges1 bss)) ((Rg BoundaryBelowAll a) ∷ ranges1 (b ∷ bss))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg BoundaryBelowAll a)) ∷ (if_then_else_ (b < a) (merge2 (ranges1 bss) (ranges1 (setBounds1 bs))) (merge2 (ranges1 bs) (ranges1 (b ∷ bss))))) =⟨ cong (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (cong ((rangeIntersection (Rg a b) (Rg BoundaryBelowAll a)) ∷_) (propIf3 (b < a) (orderedBoundaries2 ⦃ o ⦄ ⦃ dio ⦄ a b))) ⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg BoundaryBelowAll a)) ∷ (merge2 (ranges1 bs) (ranges1 (b ∷ bss)))) =⟨⟩ if_then_else_ (rangeIsEmpty (rangeIntersection (Rg a b) (Rg BoundaryBelowAll a)) == false) ((rangeIntersection (Rg a b) (Rg BoundaryBelowAll a)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b ∷ bss))))) (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b ∷ bss)))) =⟨ propIf3' ⦃ o ⦄ {((rangeIntersection (Rg a b) (Rg BoundaryBelowAll a)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b ∷ bss)))))} {(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b ∷ bss))))} (rangeIsEmpty (rangeIntersection (Rg a b) (Rg BoundaryBelowAll a)) == false) (emptyIntersection ⦃ o ⦄ ⦃ dio ⦄ BoundaryBelowAll a b) ⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b ∷ bss)))) =⟨ merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ bs ⟩ [] end lemma2 ⦃ o ⦄ ⦃ dio ⦄ bs@(a@(BoundaryBelow x) ∷ (b ∷ bss)) = (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (setBounds1 bs)))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ (ranges1 bss)) (ranges1 (setBounds1 (a ∷ (b ∷ bss))))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ (ranges1 bss)) (ranges1 (BoundaryBelowAll ∷ (a ∷ (b ∷ bss))))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ (ranges1 bss)) ((Rg BoundaryBelowAll a) ∷ ranges1 (b ∷ bss))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg BoundaryBelowAll a)) ∷ (if_then_else_ (b < a) (merge2 (ranges1 bss) (ranges1 (setBounds1 bs))) (merge2 (ranges1 bs) (ranges1 (b ∷ bss))))) =⟨ cong (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (cong ((rangeIntersection (Rg a b) (Rg BoundaryBelowAll a)) ∷_) (propIf3 (b < a) (orderedBoundaries2 ⦃ o ⦄ ⦃ dio ⦄ a b))) ⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg BoundaryBelowAll a)) ∷ (merge2 (ranges1 bs) (ranges1 (b ∷ bss)))) =⟨⟩ if_then_else_ (rangeIsEmpty (rangeIntersection (Rg a b) (Rg BoundaryBelowAll a)) == false) ((rangeIntersection (Rg a b) (Rg BoundaryBelowAll a)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b ∷ bss))))) (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b ∷ bss)))) =⟨ propIf3 (rangeIsEmpty (rangeIntersection (Rg a b) (Rg BoundaryBelowAll a)) == false) (emptyIntersection ⦃ o ⦄ ⦃ dio ⦄ BoundaryBelowAll a b) ⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b ∷ bss)))) =⟨ merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ bs ⟩ [] end lemma2 ⦃ o ⦄ ⦃ dio ⦄ bs@(a@(BoundaryAbove x) ∷ (b ∷ bss)) = (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (setBounds1 bs)))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ (ranges1 bss)) (ranges1 (setBounds1 (a ∷ (b ∷ bss))))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ (ranges1 bss)) (ranges1 (BoundaryBelowAll ∷ (a ∷ (b ∷ bss))))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ (ranges1 bss)) ((Rg BoundaryBelowAll a) ∷ ranges1 (b ∷ bss))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg BoundaryBelowAll a)) ∷ (if_then_else_ (b < a) (merge2 (ranges1 bss) (ranges1 (setBounds1 bs))) (merge2 (ranges1 bs) (ranges1 (b ∷ bss))))) =⟨ cong (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (cong ((rangeIntersection (Rg a b) (Rg BoundaryBelowAll a)) ∷_) (propIf3 (b < a) (orderedBoundaries2 ⦃ o ⦄ ⦃ dio ⦄ a b))) ⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg BoundaryBelowAll a)) ∷ (merge2 (ranges1 bs) (ranges1 (b ∷ bss)))) =⟨⟩ if_then_else_ (rangeIsEmpty (rangeIntersection (Rg a b) (Rg BoundaryBelowAll a)) == false) ((rangeIntersection (Rg a b) (Rg BoundaryBelowAll a)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b ∷ bss))))) (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b ∷ bss)))) =⟨ propIf3 (rangeIsEmpty (rangeIntersection (Rg a b) (Rg BoundaryBelowAll a)) == false) (emptyIntersection ⦃ o ⦄ ⦃ dio ⦄ BoundaryBelowAll a b) ⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b ∷ bss)))) =⟨ merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ bs ⟩ [] end lemma2 ⦃ o ⦄ ⦃ dio ⦄ bs@(a@(BoundaryBelowAll) ∷ b ∷ bs2@(c ∷ bss)) = (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (setBounds1 bs)))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ (ranges1 bs2)) (ranges1 (b ∷ bs2))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ (ranges1 bs2)) ((Rg b c) ∷ (ranges1 bss))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg b c)) ∷ (if_then_else_ (b < c) (merge2 (ranges1 bs2) (ranges1 (b ∷ bs2))) (merge2 (ranges1 bs) (ranges1 bss)))) =⟨ cong (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (cong ((rangeIntersection (Rg a b) (Rg b c)) ∷_) (propIf2 (b < c) (orderedBoundaries3 ⦃ o ⦄ ⦃ dio ⦄ b c))) ⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg b c)) ∷ (merge2 (ranges1 bs2) (ranges1 (b ∷ bs2)))) =⟨⟩ if_then_else_ (rangeIsEmpty (rangeIntersection (Rg a b) (Rg b c)) == false) ((rangeIntersection (Rg a b) (Rg b c)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs2) (ranges1 (b ∷ bs2))))) (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs2) (ranges1 (b ∷ bs2)))) =⟨ propIf3 (rangeIsEmpty (rangeIntersection (Rg a b) (Rg b c)) == false) (emptyIntersection2 ⦃ o ⦄ ⦃ dio ⦄ a b c) ⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs2) (ranges1 (b ∷ bs2)))) =⟨ merge2Empty ⦃ o ⦄ ⦃ dio ⦄ (b ∷ bs2) ⟩ [] end lemma2 ⦃ o ⦄ ⦃ dio ⦄ bs@(a@(BoundaryBelowAll) ∷ b@(BoundaryAboveAll) ∷ []) = (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (setBounds1 bs)))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ (ranges1 [])) (ranges1 (setBounds1 (a ∷ b ∷ [])))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)(merge2 ((Rg a b) ∷ []) (ranges1 (b ∷ []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ []) []) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [] =⟨⟩ [] end lemma2 ⦃ o ⦄ ⦃ dio ⦄ bs@(a@(BoundaryBelowAll) ∷ b@(BoundaryBelowAll) ∷ []) = (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (setBounds1 bs)))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ (ranges1 [])) (ranges1 (setBounds1 (a ∷ b ∷ [])))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ []) (ranges1 (b ∷ []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ []) ((Rg b BoundaryAboveAll) ∷ [])) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) ∷ (if_then_else_ (b < BoundaryAboveAll) (merge2 [] (ranges1 (setBounds1 bs))) (merge2 (ranges1 bs) []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) ∷ (if_then_else_ true (merge2 [] (ranges1 (setBounds1 bs))) (merge2 (ranges1 bs) []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) ∷ (merge2 [] (ranges1 (setBounds1 bs)))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) ∷ []) =⟨⟩ if_then_else_ (rangeIsEmpty (rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) == false) ((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])) (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []) =⟨ propIf3' ⦃ o ⦄ {((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []))} {(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []) } (rangeIsEmpty (rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) == false) (emptyIntersection2 ⦃ o ⦄ ⦃ dio ⦄ a b BoundaryAboveAll) ⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []) =⟨⟩ [] end lemma2 ⦃ o ⦄ ⦃ dio ⦄ bs@(a@(BoundaryBelowAll) ∷ b@(BoundaryAbove x) ∷ []) = (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (setBounds1 bs)))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ (ranges1 [])) (ranges1 (setBounds1 (a ∷ b ∷ [])))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ []) (ranges1 (b ∷ []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ []) ((Rg b BoundaryAboveAll) ∷ [])) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) ∷ (if_then_else_ (b < BoundaryAboveAll) (merge2 [] (ranges1 (setBounds1 bs))) (merge2 (ranges1 bs) []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) ∷ (if_then_else_ true (merge2 [] (ranges1 (setBounds1 bs))) (merge2 (ranges1 bs) []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) ∷ (merge2 [] (ranges1 (setBounds1 bs)))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) ∷ []) =⟨⟩ if_then_else_ (rangeIsEmpty (rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) == false) ((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])) (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []) =⟨ propIf3 (rangeIsEmpty (rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) == false) (emptyIntersection2 ⦃ o ⦄ ⦃ dio ⦄ a b BoundaryAboveAll) ⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []) =⟨⟩ [] end lemma2 ⦃ o ⦄ ⦃ dio ⦄ bs@(a@(BoundaryBelowAll) ∷ b@(BoundaryBelow x) ∷ []) = (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (setBounds1 bs)))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ (ranges1 [])) (ranges1 (setBounds1 (a ∷ b ∷ [])))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ []) (ranges1 (b ∷ []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ []) ((Rg b BoundaryAboveAll) ∷ [])) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) ∷ (if_then_else_ (b < BoundaryAboveAll) (merge2 [] (ranges1 (setBounds1 bs))) (merge2 (ranges1 bs) []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) ∷ (if_then_else_ true (merge2 [] (ranges1 (setBounds1 bs))) (merge2 (ranges1 bs) []))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) ∷ (merge2 [] (ranges1 (setBounds1 bs)))) =⟨⟩ filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) ∷ []) =⟨⟩ if_then_else_ (rangeIsEmpty (rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) == false) ((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])) (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []) =⟨ propIf3 (rangeIsEmpty (rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) == false) (emptyIntersection2 ⦃ o ⦄ ⦃ dio ⦄ a b BoundaryAboveAll) ⟩ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []) =⟨⟩ [] end merge2' : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → List (Range a) → List (Range a) → List (Range a) merge2' ms1 ms2 = merge2 ms2 ms1 prop_empty_intersection : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs : RSet a) → {prf : IsTrue (validRangeList (rSetRanges rs))} → rSetIsEmpty (rSetIntersection rs {prf} (rSetNegation rs {prf}) {negation2 rs (negation rs prf)}) ≡ true prop_empty_intersection ⦃ o ⦄ ⦃ dio ⦄ rs@(RS ranges) {prf} = begin rSetIsEmpty (rSetIntersection rs {prf} (rSetNegation rs {prf}) {negation2 rs {prf} (negation rs prf)}) =⟨⟩ rSetIsEmpty (rSetIntersection rs {prf} (RS (ranges1 ⦃ o ⦄ ⦃ dio ⦄ (setBounds1 ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ ranges))) {negation rs prf}) {negation2 rs {prf} (negation rs prf)} ) =⟨⟩ rSetIsEmpty (RS (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ranges (ranges1 ⦃ o ⦄ ⦃ dio ⦄ (setBounds1 ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ ranges))))) {intersection0 rs (RS (ranges1 (setBounds1 (bounds1 ranges))) {negation rs prf}) prf (negation rs prf)}) =⟨⟩ rangesAreEmpty (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ranges (ranges1 ⦃ o ⦄ ⦃ dio ⦄ (setBounds1 ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ ranges))))) =⟨ cong rangesAreEmpty (cong (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (cong (merge2' (ranges1 ⦃ o ⦄ ⦃ dio ⦄ (setBounds1 ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ ranges)))) (sym (lemma0 rs {prf})))) ⟩ rangesAreEmpty (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ ranges)) (ranges1 ⦃ o ⦄ ⦃ dio ⦄ (setBounds1 ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ ranges))))) =⟨ cong rangesAreEmpty (lemma2 ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ ranges)) ⟩ rangesAreEmpty ⦃ o ⦄ ⦃ dio ⦄ [] =⟨⟩ true end prop_subset : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs : RSet a) → {prf : IsTrue (validRangeList (rSetRanges rs))} → rSetIsSubset rs {prf} rs {prf} ≡ true prop_subset ⦃ o ⦄ ⦃ dio ⦄ rs {prf} = begin rSetIsSubset rs {prf} rs {prf} =⟨⟩ rSetIsEmpty (rSetDifference rs {prf} rs {prf}) =⟨⟩ rSetIsEmpty (rSetIntersection rs {prf} (rSetNegation rs {prf}) {negation2 rs (negation rs prf)}) =⟨ prop_empty_intersection ⦃ o ⦄ ⦃ dio ⦄ rs {prf} ⟩ true end prop_strictSubset : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs : RSet a) → {prf : IsTrue (validRangeList (rSetRanges rs))} → rSetIsSubsetStrict rs {prf} rs {prf} ≡ false prop_strictSubset ⦃ o ⦄ ⦃ dio ⦄ rs {prf} = begin rSetIsSubsetStrict rs {prf} rs {prf} =⟨⟩ rSetIsEmpty (rSetDifference rs {prf} rs {prf}) && (not (rSetIsEmpty (rSetDifference rs {prf} rs {prf}))) =⟨⟩ rSetIsEmpty (rSetIntersection rs {prf} (rSetNegation rs {prf}) {negation2 rs (negation rs prf)}) && (not (rSetIsEmpty (rSetDifference rs {prf} rs {prf}))) =⟨ cong (_&& (not (rSetIsEmpty (rSetDifference rs {prf} rs {prf})))) (prop_empty_intersection ⦃ o ⦄ ⦃ dio ⦄ rs {prf}) ⟩ true && (not (rSetIsEmpty (rSetIntersection rs {prf} (rSetNegation rs {prf}) {negation2 rs (negation rs prf)}))) =⟨⟩ (not (rSetIsEmpty (rSetIntersection rs {prf} (rSetNegation rs {prf}) {negation2 rs (negation rs prf)}))) =⟨ cong not (prop_empty_intersection ⦃ o ⦄ ⦃ dio ⦄ rs {prf}) ⟩ not true =⟨⟩ false end -- prop_union : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : RSet a) → (rs2 : RSet a) -- → {prf1 : IsTrue (validRangeList (rSetRanges rs1))} → {prf2 : IsTrue (validRangeList (rSetRanges rs2))} -- → (v : a) → (rSetHas rs1 {prf1} v || rSetHas rs2 {prf2} v) ≡ -- (rSetHas (rSetUnion rs1 {prf1} rs2 {prf2}) {union2 rs1 rs2 prf1 prf2 (unionn rs1 rs2 prf1 prf2)} v) -- prop_union ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS []) rs2@(RS []) {prf1} {prf2} v = -- begin -- (rSetHas rs1 {prf1} v || rSetHas rs2 {prf2} v) -- =⟨⟩ -- (false || false) -- =⟨⟩ -- false -- =⟨⟩ -- (rSetHas (RS [] {empty ⦃ o ⦄ ⦃ dio ⦄}) {empty ⦃ o ⦄ ⦃ dio ⦄} v) -- =⟨⟩ -- (rSetHas (rSetUnion rs1 {prf1} rs2 {prf2}) {unionn rs1 rs2 prf1 prf2} v) -- end -- prop_union ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS []) rs2@(RS rg1@(r1 ∷ rss1)) {prf1} {prf2} v = -- begin -- (rSetHas rs1 {prf1} v || rSetHas rs2 {prf2} v) -- =⟨⟩ -- (false || rSetHas rs2 {prf2} v) -- =⟨⟩ -- rSetHas rs2 {prf2} v -- =⟨⟩ -- (rSetHas (rSetUnion rs1 {prf1} rs2 {prf2}) {unionn rs1 rs2 prf1 prf2} v) -- end -- prop_union ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS rg@(r1 ∷ rss1)) rs2@(RS []) {prf1} {prf2} v = -- begin -- (rSetHas rs1 {prf1} v || rSetHas rs2 {prf2} v) -- =⟨⟩ -- (rSetHas rs1 {prf1} v || false) -- =⟨ prop_or_false2 (rSetHas rs1 {prf1} v) ⟩ -- (rSetHas rs1 {prf1} v) -- =⟨⟩ -- (rSetHas (rSetUnion rs1 {prf1} rs2 {prf2}) {unionn rs1 rs2 prf1 prf2} v) -- end -- prop_union ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS rg1@(r1 ∷ rss1)) rs2@(RS rg2@(r2 ∷ rss2)) {prf1} {prf2} v = -- begin -- (rSetHas rs1 {prf1} v || rSetHas rs2 {prf2} v) -- =⟨ cong (_|| (rSetHas rs2 {prf2} v)) (rangeHasSym r1 (RS rss1 {headandtail rs1 prf1}) v {prf1}) ⟩ -- (((rangeHas r1 v) || (rSetHas (RS rss1 {headandtail rs1 prf1}) {headandtail rs1 prf1} v)) || (rSetHas rs2 {prf2} v)) -- =⟨ prop_or_assoc (rangeHas r1 v) (rSetHas (RS rss1 {headandtail rs1 prf1}) {headandtail rs1 prf1} v) (rSetHas rs2 {prf2} v) ⟩ -- ((rangeHas r1 v) || (rSetHas (RS rss1 {headandtail rs1 prf1}) {headandtail rs1 prf1} v) || (rSetHas rs2 {prf2} v)) -- =⟨ cong ((rangeHas r1 v) ||_) (prop_union (RS rss1) rs2 {headandtail rs1 prf1} {prf2} v) ⟩ -- ((rangeHas r1 v) || -- (rSetHas (rSetUnion (RS rss1) {headandtail rs1 prf1} rs2 {prf2}) -- {(union2 (RS rss1) rs2 (headandtail rs1 prf1) prf2 (unionn (RS rss1) rs2 (headandtail rs1 prf1) prf2))} v)) -- =⟨ sym (rangeHasSym r1 (rSetUnion (RS rss1) {headandtail rs1 prf1} rs2 {prf2}) v -- {union2 (RS rss1) rs2 (headandtail rs1 prf1) prf2 (unionn (RS rss1) rs2 (headandtail rs1 prf1) prf2)}) ⟩ -- RS (r1 ∷ (rSetRanges ((RS rss1) -\/- rs2))) -?- v -- =⟨ cong (_-?- v) (cong RS (union0 r1 (RS rss1) rs2)) ⟩ -- RS (rSetRanges ((RS (r1 ∷ rss1)) -\/- rs2)) -?- v -- =⟨ cong (_-?- v) (sym (rangeSetCreation ((RS (r1 ∷ rss1)) -\/- rs2))) ⟩ -- (rSetHas (rSetUnion rs1 {prf1} rs2 {prf2}) {union2 rs1 rs2 prf1 prf2 (unionn rs1 rs2 prf1 prf2)} v) -- end -- prop_union_has_sym : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ -- → (rs1 : RSet a) → (rs2 : RSet a) → (v : a) -- → ((rs1 -\/- rs2) -?- v) ≡ ((rs2 -\/- rs1) -?- v) -- prop_union_has_sym ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS ranges1) rs2@(RS ranges2) v = -- begin -- ((rs1 -\/- rs2) -?- v) -- =⟨ sym (prop_union rs1 rs2 v) ⟩ -- ((rs1 -?- v) || (rs2 -?- v)) -- =⟨ prop_or_sym (rs1 -?- v) (rs2 -?- v) ⟩ -- ((rs2 -?- v) || (rs1 -?- v)) -- =⟨ prop_union rs2 rs1 v ⟩ -- ((rs2 -\/- rs1) -?- v) -- end -- prop_union_same_set : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : RSet a) → (v : a) → ((rs1 -\/- rs1) -?- v) ≡ (rs1 -?- v) -- prop_union_same_set ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS ranges1) v = -- begin -- ((rs1 -\/- rs1) -?- v) -- =⟨ sym (prop_union rs1 rs1 v) ⟩ -- ((rs1 -?- v) || (rs1 -?- v)) -- =⟨ prop_or_same_value (rs1 -?- v) ⟩ -- (rs1 -?- v) -- end prop_validNormalisedEmpty : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → validRangeList ⦃ o ⦄ ⦃ dio ⦄ (normaliseRangeList ⦃ o ⦄ ⦃ dio ⦄ []) ≡ true prop_validNormalisedEmpty ⦃ o ⦄ ⦃ dio ⦄ = begin validRangeList ⦃ o ⦄ ⦃ dio ⦄ (normaliseRangeList ⦃ o ⦄ ⦃ dio ⦄ []) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ [] =⟨⟩ true end postulate -- these postulates hold when r1 == r2 does not hold, used for easing the proofs for union/intersection commutes equalityRanges : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (r1 : Range a) → (r2 : Range a) → (r1 < r2) ≡ (not (r2 < r1)) equalityRanges2 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (r1 : Range a) → (r2 : Range a) → (rangeUpper r1 < rangeUpper r2) ≡ (not (rangeUpper r2 < rangeUpper r1)) prop_sym_merge1' : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : List (Range a)) → (rs2 : List (Range a)) → ⦃ ne1 : NonEmpty rs1 ⦄ → ⦃ ne2 : NonEmpty rs2 ⦄ → (b : Bool) → if_then_else_ b ((head rs1 ⦃ ne1 ⦄) ∷ (merge1 (tail rs1 ⦃ ne1 ⦄) rs2)) ((head rs2 ⦃ ne2 ⦄) ∷ (merge1 rs1 (tail rs2 ⦃ ne2 ⦄))) ≡ if_then_else_ (not b) ((head rs2 ⦃ ne2 ⦄) ∷ (merge1 (tail rs2 ⦃ ne2 ⦄) rs1)) ((head rs1 ⦃ ne1 ⦄) ∷ (merge1 rs2 (tail rs1 ⦃ ne1 ⦄))) prop_sym_merge1 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : List (Range a)) → (rs2 : List (Range a)) → merge1 rs1 rs2 ≡ merge1 rs2 rs1 prop_sym_merge1 ⦃ o ⦄ ⦃ dio ⦄ [] [] = refl prop_sym_merge1 ⦃ o ⦄ ⦃ dio ⦄ ms1@(h1 ∷ t1) [] = refl prop_sym_merge1 ⦃ o ⦄ ⦃ dio ⦄ [] ms2@(h2 ∷ t2) = refl prop_sym_merge1 ⦃ o ⦄ ⦃ dio ⦄ ms1@(h1 ∷ t1) ms2@(h2 ∷ t2) = begin merge1 ms1 ms2 =⟨⟩ if_then_else_ (h1 < h2) (h1 ∷ (merge1 t1 ms2)) (h2 ∷ (merge1 ms1 t2)) =⟨ prop_sym_merge1' ⦃ o ⦄ ⦃ dio ⦄ ms1 ms2 (h1 < h2) ⟩ if_then_else_ (not (h1 < h2)) (h2 ∷ (merge1 t2 ms1)) (h1 ∷ (merge1 ms2 t1)) =⟨ cong (ifThenElseHelper (h2 ∷ (merge1 t2 ms1)) (h1 ∷ (merge1 ms2 t1))) (sym (equalityRanges h2 h1)) ⟩ if_then_else_ (h2 < h1) (h2 ∷ (merge1 t2 ms1)) (h1 ∷ (merge1 ms2 t1)) =⟨⟩ merge1 ms2 ms1 end prop_sym_merge1' ⦃ o ⦄ ⦃ dio ⦄ ms1@(h1 ∷ t1) ms2@(h2 ∷ t2) true = begin if_then_else_ true (h1 ∷ (merge1 t1 ms2)) (h2 ∷ (merge1 ms1 t2)) =⟨⟩ (h1 ∷ (merge1 t1 ms2)) =⟨ cong (h1 ∷_) (prop_sym_merge1 ⦃ o ⦄ ⦃ dio ⦄ t1 ms2) ⟩ (h1 ∷ (merge1 ms2 t1)) =⟨⟩ if_then_else_ false (h2 ∷ (merge1 t2 ms1)) (h1 ∷ (merge1 ms2 t1)) end prop_sym_merge1' ⦃ o ⦄ ⦃ dio ⦄ ms1@(h1 ∷ t1) ms2@(h2 ∷ t2) false = begin if_then_else_ false (h1 ∷ (merge1 t1 ms2)) (h2 ∷ (merge1 ms1 t2)) =⟨⟩ (h2 ∷ (merge1 ms1 t2)) =⟨ cong (h2 ∷_) (prop_sym_merge1 ⦃ o ⦄ ⦃ dio ⦄ ms1 t2) ⟩ (h2 ∷ (merge1 t2 ms1)) =⟨⟩ if_then_else_ true (h2 ∷ (merge1 t2 ms1)) (h1 ∷ (merge1 ms2 t1)) end prop_sym_sortedRangeList : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (ls1 ls2 : List (Range a)) → (sortedRangeList (merge1 ls1 ls2)) ≡ (sortedRangeList (merge1 ls2 ls1)) prop_sym_sortedRangeList ⦃ o ⦄ ⦃ dio ⦄ ls1 ls2 = (cong sortedRangeList (prop_sym_merge1 ls1 ls2)) prop_sym_validRanges : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (ls1 ls2 : List (Range a)) → (validRanges (merge1 ls1 ls2)) ≡ (validRanges (merge1 ls2 ls1)) prop_sym_validRanges ⦃ o ⦄ ⦃ dio ⦄ ls1 ls2 = (cong validRanges (prop_sym_merge1 ls1 ls2)) prop_union_commutes : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : RSet a) → (rs2 : RSet a) → {prf1 : IsTrue (validRangeList (rSetRanges rs1))} → {prf2 : IsTrue (validRangeList (rSetRanges rs2))} → (rSetUnion rs1 {prf1} rs2 {prf2}) ≡ (rSetUnion rs2 {prf2} rs1 {prf1}) prop_union_commutes (RS []) (RS []) = refl prop_union_commutes (RS ranges@(r ∷ rs)) (RS []) = refl prop_union_commutes (RS []) (RS ranges@(r ∷ rs)) = refl prop_union_commutes ⦃ o ⦄ ⦃ dio ⦄ RS1@(RS ls1@(r1 ∷ rs1)) RS2@(RS ls2@(r2 ∷ rs2)) {prf1} {prf2} = begin (rSetUnion RS1 {prf1} RS2 {prf2}) =⟨⟩ RS ⦃ o ⦄ ⦃ dio ⦄ (normalise ⦃ o ⦄ ⦃ dio ⦄ (merge1 ⦃ o ⦄ ⦃ dio ⦄ ls1 ls2) ⦃ merge1Sorted RS1 RS2 prf1 prf2 ⦄ ⦃ merge1HasValidRanges RS1 RS2 prf1 prf2 ⦄) {unionHolds RS1 RS2 prf1 prf2} =⟨ rangesEqiv (rangesEqiv2 (merge1Sorted RS1 RS2 prf1 prf2) (merge1HasValidRanges RS1 RS2 prf1 prf2) (merge1Sorted RS2 RS1 prf2 prf1) (merge1HasValidRanges RS2 RS1 prf2 prf1) (prop_sym_merge1 ls1 ls2)) ⟩ RS ⦃ o ⦄ ⦃ dio ⦄ (normalise ⦃ o ⦄ ⦃ dio ⦄ (merge1 ⦃ o ⦄ ⦃ dio ⦄ ls2 ls1) ⦃ merge1Sorted RS2 RS1 prf2 prf1 ⦄ ⦃ merge1HasValidRanges RS2 RS1 prf2 prf1 ⦄) {unionHolds RS2 RS1 prf2 prf1} =⟨⟩ (rSetUnion RS2 {prf2} RS1 {prf1}) end prop_sym_merge2 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : List (Range a)) → (rs2 : List (Range a)) → merge2 rs1 rs2 ≡ merge2 rs2 rs1 prop_sym_merge2' : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : List (Range a)) → (rs2 : List (Range a)) → ⦃ ne1 : NonEmpty rs1 ⦄ → ⦃ ne2 : NonEmpty rs2 ⦄ → (b : Bool) → (if_then_else_ b (merge2 (tail rs1 ⦃ ne1 ⦄) rs2) (merge2 rs1 (tail rs2 ⦃ ne2 ⦄))) ≡ (if_then_else_ (not b) (merge2 (tail rs2 ⦃ ne2 ⦄) rs1) (merge2 rs2 (tail rs1 ⦃ ne1 ⦄))) prop_sym_merge2' ⦃ o ⦄ ⦃ dio ⦄ ms1@(h1 ∷ t1) ms2@(h2 ∷ t2) true = begin (if_then_else_ true (merge2 t1 ms2) (merge2 ms1 t2)) =⟨⟩ (merge2 t1 ms2) =⟨ prop_sym_merge2 t1 ms2 ⟩ (merge2 ms2 t1) =⟨⟩ if_then_else_ false (merge2 t2 ms1) (merge2 ms2 t1) end prop_sym_merge2' ⦃ o ⦄ ⦃ dio ⦄ ms1@(h1 ∷ t1) ms2@(h2 ∷ t2) false = begin (if_then_else_ false (merge2 t1 ms2) (merge2 ms1 t2)) =⟨⟩ (merge2 ms1 t2) =⟨ prop_sym_merge2 ms1 t2 ⟩ (merge2 t2 ms1) =⟨⟩ if_then_else_ true (merge2 t2 ms1) (merge2 ms2 t1) end prop_sym_merge2 ⦃ o ⦄ ⦃ dio ⦄ [] [] = refl prop_sym_merge2 ⦃ o ⦄ ⦃ dio ⦄ ms1@(h1 ∷ t1) [] = refl prop_sym_merge2 ⦃ o ⦄ ⦃ dio ⦄ [] ms2@(h2 ∷ t2) = refl prop_sym_merge2 ⦃ o ⦄ ⦃ dio ⦄ ms1@(h1 ∷ t1) ms2@(h2 ∷ t2) = begin merge2 ms1 ms2 =⟨⟩ (rangeIntersection h1 h2) ∷ (if_then_else_ (rangeUpper h1 < rangeUpper h2) (merge2 t1 ms2) (merge2 ms1 t2)) =⟨ cong ((rangeIntersection h1 h2) ∷_) (prop_sym_merge2' ⦃ o ⦄ ⦃ dio ⦄ ms1 ms2 (rangeUpper h1 < rangeUpper h2)) ⟩ (rangeIntersection h1 h2) ∷ (if_then_else_ (not (rangeUpper h1 < rangeUpper h2)) (merge2 t2 ms1) (merge2 ms2 t1)) =⟨ cong ((rangeIntersection h1 h2) ∷_) (cong (ifThenElseHelper (merge2 t2 ms1) (merge2 ms2 t1)) (sym (equalityRanges2 h2 h1))) ⟩ ((rangeIntersection h1 h2) ∷ (if_then_else_ (rangeUpper h2 < rangeUpper h1) (merge2 t2 ms1) (merge2 ms2 t1))) =⟨ cong (_∷ (if_then_else_ (rangeUpper h2 < rangeUpper h1) (merge2 t2 ms1) (merge2 ms2 t1))) (prop_intersection_sym h1 h2) ⟩ ((rangeIntersection h2 h1) ∷ (if_then_else_ (rangeUpper h2 < rangeUpper h1) (merge2 t2 ms1) (merge2 ms2 t1))) =⟨⟩ merge2 ms2 ms1 end prop_intersection_commutes : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : RSet a) → (rs2 : RSet a) → {prf1 : IsTrue (validRangeList (rSetRanges rs1))} → {prf2 : IsTrue (validRangeList (rSetRanges rs2))} → (rSetIntersection rs1 {prf1} rs2 {prf2}) ≡ (rSetIntersection rs2 {prf2} rs1 {prf1}) prop_intersection_commutes (RS []) (RS []) = refl prop_intersection_commutes (RS ranges@(r ∷ rs)) (RS []) = refl prop_intersection_commutes (RS []) (RS ranges@(r ∷ rs)) = refl prop_intersection_commutes ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS ls1@(r1 ∷ rss1)) rs2@(RS ls2@(r2 ∷ rss2)) {prf1} {prf2} = begin (rSetIntersection rs1 {prf1} rs2 {prf2}) =⟨⟩ RS ⦃ o ⦄ ⦃ dio ⦄ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ⦃ o ⦄ ⦃ dio ⦄ ls1 ls2)) {intersection0 rs1 rs2 prf1 prf2} =⟨ rangesEqiv (cong (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (prop_sym_merge2 ls1 ls2)) ⟩ RS ⦃ o ⦄ ⦃ dio ⦄ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ⦃ o ⦄ ⦃ dio ⦄ ls2 ls1)) {intersection0 rs2 rs1 prf2 prf1} =⟨⟩ (rSetIntersection rs2 {prf2} rs1 {prf1}) end -- if x is strict subset of y, y is not strict subset of x -- prop_subset_not1 asserts that rSetIsSubstrict x y is true -- this means that rSetIsEmpty (rSetDifference x y) is true -- and rSetEmpty (rSetDifference x y) is false prop_subset_not1 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 rs2 : RSet a) → {prf1 : IsTrue (validRangeList (rSetRanges rs1))} → {prf2 : IsTrue (validRangeList (rSetRanges rs2))} -> (a1 : IsTrue (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}))) -> (a2 : IsTrue (not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1})))) → (rSetIsSubsetStrict rs1 {prf1} rs2 {prf2}) ≡ (not (rSetIsSubsetStrict rs2 {prf2} rs1 {prf1})) prop_subset_not1 {{ o }} {{ dio }} rs1 rs2 {prf1} {prf2} a1 a2 = begin rSetIsSubsetStrict rs1 {prf1} rs2 {prf2} =⟨⟩ (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}) && not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}))) =⟨ not-not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}) && not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}))) ⟩ not (not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}) && not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1})))) =⟨ cong not (prop_demorgan (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2})) (not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1})))) ⟩ not ((not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}))) || (not (not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}))))) =⟨ cong not (cong ((not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}))) ||_) (sym (not-not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}))))) ⟩ not ((not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}))) || (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}))) =⟨ cong not (prop_or_sym (not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}))) (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}))) ⟩ not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}) || not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}))) =⟨ cong not (prop_or_and_eqiv_false (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1})) (not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}))) (isTrueAndIsFalse2 a2) (isTrueAndIsFalse1 a1)) ⟩ not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}) && not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}))) =⟨⟩ not (rSetIsSubsetStrict rs2 {prf2} rs1 {prf1}) end -- if x is strict subset of y, y is not strict subset of x -- prop_subset_not2 asserts that rSetIsSubstrict x y is false -- this means that rSetIsEmpty (rSetDifference x y) is false -- and rSetEmpty (rSetDifference x y) is true prop_subset_not2 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 rs2 : RSet a) → {prf1 : IsTrue (validRangeList (rSetRanges rs1))} → {prf2 : IsTrue (validRangeList (rSetRanges rs2))} -> (a1 : IsFalse (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}))) -> (a2 : IsFalse (not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1})))) → (rSetIsSubsetStrict rs1 {prf1} rs2 {prf2}) ≡ (not (rSetIsSubsetStrict rs2 {prf2} rs1 {prf1})) prop_subset_not2 {{ o }} {{ dio }} rs1 rs2 {prf1} {prf2} a1 a2 = begin rSetIsSubsetStrict rs1 {prf1} rs2 {prf2} =⟨⟩ (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}) && not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}))) =⟨ not-not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}) && not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}))) ⟩ not (not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}) && not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1})))) =⟨ cong not (prop_demorgan (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2})) (not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1})))) ⟩ not ((not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}))) || (not (not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}))))) =⟨ cong not (cong ((not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}))) ||_) (sym (not-not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}))))) ⟩ not ((not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}))) || (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}))) =⟨ cong not (prop_or_sym (not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}))) (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}))) ⟩ not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}) || not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}))) =⟨ cong not (prop_or_and_eqiv_true (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1})) (not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}))) (isTrueAndIsFalse3 a2) (isTrueAndIsFalse4 a1)) ⟩ not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}) && not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}))) =⟨⟩ not (rSetIsSubsetStrict rs2 {prf2} rs1 {prf1}) end prop_strictSubset_means_subset : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 rs2 : RSet a) → {prf1 : IsTrue (validRangeList (rSetRanges rs1))} → {prf2 : IsTrue (validRangeList (rSetRanges rs2))} → IsTrue (rSetIsSubsetStrict rs1 {prf1} rs2 {prf2}) -> IsTrue (rSetIsSubset rs1 {prf1} rs2 {prf2}) prop_strictSubset_means_subset {{ o }} {{ dio }} rs1 rs2 {prf1} {prf2} prf = isTrue&&₁ {(rSetIsSubset rs1 {prf1} rs2 {prf2})} prf
{ "alphanum_fraction": 0.5479842407, "avg_line_length": 57.0014124294, "ext": "agda", "hexsha": "fdc64be9acc5d83cca96acca233d29ebd776c972", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ioanasv/agda2hs", "max_forks_repo_path": "lib/Haskell/RangedSetsProp/RangedSetProperties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ioanasv/agda2hs", "max_issues_repo_path": "lib/Haskell/RangedSetsProp/RangedSetProperties.agda", "max_line_length": 257, "max_stars_count": 1, "max_stars_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ioanasv/agda2hs", "max_stars_repo_path": "lib/Haskell/RangedSetsProp/RangedSetProperties.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-25T09:41:34.000Z", "max_stars_repo_stars_event_min_datetime": "2021-05-25T09:41:34.000Z", "num_tokens": 34758, "size": 80714 }
module _ where module A where data D₁ : Set where a : D₁ c : D₁ → D₁ module B where data D₂ : Set where b : D₂ c : D₂ → D₂ syntax c x = ⟦ x ⟧ open A open B test : D₁ test = ⟦ a ⟧ -- The syntax declaration applies to B.c, not A.c.
{ "alphanum_fraction": 0.5615384615, "avg_line_length": 11.8181818182, "ext": "agda", "hexsha": "b65ba7430a8ad073cd06b024ba5b16afe2fe6c01", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1194j.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1194j.agda", "max_line_length": 64, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1194j.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 101, "size": 260 }
module Logic.DiagonalProof {ℓ₁} {ℓ₂} where import Lvl open import Logic.Propositional{ℓ₁ Lvl.⊔ ℓ₂} open import Logic.Predicate{ℓ₁}{ℓ₂} open import Functional open import Relator.Equals{ℓ₁}{ℓ₂} open import Relator.Equals.Proofs{ℓ₁}{ℓ₂} open import Type{ℓ₂} diagonal-proof : ∀{T₁ T₂ : Type}(diff-oper : T₂ → T₂) → (∀{x} → (x ≢ diff-oper(x))) → (ff : T₁ → T₁ → T₂) → ∃{T₁ → T₂}(f ↦ (∀{a : T₁} → ¬(ff(a)(a) ≡ f(a)))) diagonal-proof(diff-oper)(diff-proof)(ff) = [∃]-intro (a ↦ diff-oper(ff(a)(a))) ⦃ \{a} → diff-proof{ff(a)(a)} ⦄
{ "alphanum_fraction": 0.6221804511, "avg_line_length": 40.9230769231, "ext": "agda", "hexsha": "172b0f8c6e4408996b3a782e4f153b710412a086", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Logic/DiagonalProof.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Logic/DiagonalProof.agda", "max_line_length": 156, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Logic/DiagonalProof.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 229, "size": 532 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Monoidal.Instance.One where open import Level open import Data.Unit using (⊤; tt) open import Categories.Category open import Categories.Category.Instance.One open import Categories.Category.Monoidal open import Categories.Functor.Bifunctor open import Categories.Morphism using (_≅_) -- That One is monoidal is so easy to prove that Agda can do it all on its own! One-Monoidal : {o ℓ e : Level} → Monoidal (One {o} {ℓ} {e}) One-Monoidal = _
{ "alphanum_fraction": 0.7559055118, "avg_line_length": 29.8823529412, "ext": "agda", "hexsha": "79d52e636ecd294ac28776a22f174ff819ffdd84", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Monoidal/Instance/One.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Monoidal/Instance/One.agda", "max_line_length": 79, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Monoidal/Instance/One.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 130, "size": 508 }
module CoinductiveBuiltinNatural where open import Common.Coinduction data ℕ : Set where zero : ℕ suc : (n : ∞ ℕ) → ℕ {-# BUILTIN NATURAL ℕ #-}
{ "alphanum_fraction": 0.6580645161, "avg_line_length": 15.5, "ext": "agda", "hexsha": "ad7ee2c8d4911597360fde81f08e2aabbc4e0769", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/CoinductiveBuiltinNatural.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/CoinductiveBuiltinNatural.agda", "max_line_length": 38, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/CoinductiveBuiltinNatural.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 49, "size": 155 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Functions.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import LogicalFormulae open import Setoids.Subset open import Setoids.Setoids open import Setoids.Orders.Partial.Definition open import Fields.Fields open import Rings.Orders.Total.Definition open import Rings.Orders.Total.Lemmas open import Rings.Orders.Partial.Definition open import Rings.Definition module Fields.Orders.LeastUpperBounds.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {c : _} {_<_ : Rel {_} {c} A} (pOrder : SetoidPartialOrder S _<_) where UpperBound : {d : _} {pred : A → Set d} (sub : subset S pred) (x : A) → Set _ UpperBound {pred = pred} sub x = (y : A) → pred y → (y < x) || (Setoid._∼_ S y x) record LeastUpperBound {d : _} {pred : A → Set d} (sub : subset S pred) (x : A) : Set (a ⊔ b ⊔ c ⊔ d) where field upperBound : UpperBound sub x leastUpperBound : (y : A) → UpperBound sub y → (x < y) || (Setoid._∼_ S x y)
{ "alphanum_fraction": 0.6808300395, "avg_line_length": 42.1666666667, "ext": "agda", "hexsha": "3eb62dc681e6af431bbef6c4925b25412057b20c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Fields/Orders/LeastUpperBounds/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Fields/Orders/LeastUpperBounds/Definition.agda", "max_line_length": 165, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Fields/Orders/LeastUpperBounds/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 327, "size": 1012 }
{-# OPTIONS --safe #-} module Cubical.Algebra.NatSolver.EvalHom where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat open import Cubical.Data.FinData open import Cubical.Data.Vec open import Cubical.Algebra.NatSolver.HornerForms private variable ℓ : Level module HomomorphismProperties where open IteratedHornerOperations evalHom+0 : {n : ℕ} (P : IteratedHornerForms n) (xs : Vec ℕ n) → eval (0ₕ +ₕ P) xs ≡ eval P xs evalHom+0 (const x) [] = refl evalHom+0 _ (x ∷ xs) = refl eval0H : {n : ℕ} (xs : Vec ℕ n) → eval 0ₕ xs ≡ 0 eval0H [] = refl eval0H (x ∷ xs) = refl eval1ₕ : {n : ℕ} (xs : Vec ℕ n) → eval 1ₕ xs ≡ 1 eval1ₕ [] = refl eval1ₕ (x ∷ xs) = eval 1ₕ (x ∷ xs) ≡⟨ refl ⟩ eval (0H ·X+ 1ₕ) (x ∷ xs) ≡⟨ refl ⟩ eval 0H (x ∷ xs) · x + eval 1ₕ xs ≡⟨ cong (λ u → u · x + eval 1ₕ xs) (eval0H (x ∷ xs)) ⟩ 0 · x + eval 1ₕ xs ≡⟨ cong (λ u → 0 · x + u) (eval1ₕ xs) ⟩ 1 ∎ +ShufflePairs : (a b c d : ℕ) → (a + b) + (c + d) ≡ (a + c) + (b + d) +ShufflePairs a b c d = (a + b) + (c + d) ≡⟨ +-assoc (a + b) c d ⟩ ((a + b) + c) + d ≡⟨ cong (λ u → u + d) (sym (+-assoc a b c)) ⟩ (a + (b + c)) + d ≡⟨ cong (λ u → (a + u) + d) (+-comm b c) ⟩ (a + (c + b)) + d ≡⟨ cong (λ u → u + d) (+-assoc a c b) ⟩ ((a + c) + b) + d ≡⟨ sym (+-assoc (a + c) b d) ⟩ (a + c) + (b + d) ∎ +Homeval : {n : ℕ} (P Q : IteratedHornerForms n) (xs : Vec ℕ n) → eval (P +ₕ Q) xs ≡ (eval P xs) + (eval Q xs) +Homeval (const x) (const y) [] = refl +Homeval 0H Q xs = eval (0H +ₕ Q) xs ≡⟨ refl ⟩ 0 + eval Q xs ≡⟨ cong (λ u → u + eval Q xs) (sym (eval0H xs)) ⟩ eval 0H xs + eval Q xs ∎ +Homeval (P ·X+ Q) 0H xs = eval ((P ·X+ Q) +ₕ 0H) xs ≡⟨ refl ⟩ eval (P ·X+ Q) xs ≡⟨ sym (+-zero _) ⟩ eval (P ·X+ Q) xs + 0 ≡⟨ cong (λ u → eval (P ·X+ Q) xs + u) (sym (eval0H xs)) ⟩ eval (P ·X+ Q) xs + eval 0H xs ∎ +Homeval (P ·X+ Q) (S ·X+ T) (x ∷ xs) = eval ((P ·X+ Q) +ₕ (S ·X+ T)) (x ∷ xs) ≡⟨ refl ⟩ eval ((P +ₕ S) ·X+ (Q +ₕ T)) (x ∷ xs) ≡⟨ refl ⟩ (eval (P +ₕ S) (x ∷ xs)) · x + eval (Q +ₕ T) xs ≡⟨ cong (λ u → (eval (P +ₕ S) (x ∷ xs)) · x + u) (+Homeval Q T xs) ⟩ (eval (P +ₕ S) (x ∷ xs)) · x + (eval Q xs + eval T xs) ≡⟨ cong (λ u → u · x + (eval Q xs + eval T xs)) (+Homeval P S (x ∷ xs)) ⟩ (eval P (x ∷ xs) + eval S (x ∷ xs)) · x + (eval Q xs + eval T xs) ≡⟨ cong (λ u → u + (eval Q xs + eval T xs)) (sym (·-distribʳ (eval P (x ∷ xs)) (eval S (x ∷ xs)) x)) ⟩ (eval P (x ∷ xs)) · x + (eval S (x ∷ xs)) · x + (eval Q xs + eval T xs) ≡⟨ +ShufflePairs ((eval P (x ∷ xs)) · x) ((eval S (x ∷ xs)) · x) (eval Q xs) (eval T xs) ⟩ ((eval P (x ∷ xs)) · x + eval Q xs) + ((eval S (x ∷ xs)) · x + eval T xs) ∎ ⋆Homeval : {n : ℕ} (r : IteratedHornerForms n) (P : IteratedHornerForms (ℕ.suc n)) (x : ℕ) (xs : Vec ℕ n) → eval (r ⋆ P) (x ∷ xs) ≡ eval r xs · eval P (x ∷ xs) ⋆0LeftAnnihilates : {n : ℕ} (P : IteratedHornerForms (ℕ.suc n)) (xs : Vec ℕ (ℕ.suc n)) → eval (0ₕ ⋆ P) xs ≡ 0 ·Homeval : {n : ℕ} (P Q : IteratedHornerForms n) (xs : Vec ℕ n) → eval (P ·ₕ Q) xs ≡ (eval P xs) · (eval Q xs) ⋆0LeftAnnihilates 0H xs = eval0H xs ⋆0LeftAnnihilates (P ·X+ Q) (x ∷ xs) = eval (0ₕ ⋆ (P ·X+ Q)) (x ∷ xs) ≡⟨ refl ⟩ eval ((0ₕ ⋆ P) ·X+ (0ₕ ·ₕ Q)) (x ∷ xs) ≡⟨ refl ⟩ (eval (0ₕ ⋆ P) (x ∷ xs)) · x + eval (0ₕ ·ₕ Q) xs ≡⟨ cong (λ u → (u · x) + eval (0ₕ ·ₕ Q) _) (⋆0LeftAnnihilates P (x ∷ xs)) ⟩ 0 · x + eval (0ₕ ·ₕ Q) xs ≡⟨ ·Homeval 0ₕ Q _ ⟩ eval 0ₕ xs · eval Q xs ≡⟨ cong (λ u → u · eval Q xs) (eval0H xs) ⟩ 0 · eval Q xs ∎ ⋆Homeval r 0H x xs = eval (r ⋆ 0H) (x ∷ xs) ≡⟨ refl ⟩ 0 ≡⟨ 0≡m·0 (eval r xs) ⟩ eval r xs · 0 ≡⟨ refl ⟩ eval r xs · eval 0H (x ∷ xs) ∎ ⋆Homeval r (P ·X+ Q) x xs = eval (r ⋆ (P ·X+ Q)) (x ∷ xs) ≡⟨ refl ⟩ eval ((r ⋆ P) ·X+ (r ·ₕ Q)) (x ∷ xs) ≡⟨ refl ⟩ (eval (r ⋆ P) (x ∷ xs)) · x + eval (r ·ₕ Q) xs ≡⟨ cong (λ u → u · x + eval (r ·ₕ Q) xs) (⋆Homeval r P x xs) ⟩ (eval r xs · eval P (x ∷ xs)) · x + eval (r ·ₕ Q) xs ≡⟨ cong (λ u → (eval r xs · eval P (x ∷ xs)) · x + u) (·Homeval r Q xs) ⟩ (eval r xs · eval P (x ∷ xs)) · x + eval r xs · eval Q xs ≡⟨ cong (λ u → u + eval r xs · eval Q xs) (sym (·-assoc (eval r xs) (eval P (x ∷ xs)) x)) ⟩ eval r xs · (eval P (x ∷ xs) · x) + eval r xs · eval Q xs ≡⟨ ·-distribˡ (eval r xs) ((eval P (x ∷ xs) · x)) (eval Q xs) ⟩ eval r xs · ((eval P (x ∷ xs) · x) + eval Q xs) ≡⟨ refl ⟩ eval r xs · eval (P ·X+ Q) (x ∷ xs) ∎ combineCases : {n : ℕ} (Q : IteratedHornerForms n) (P S : IteratedHornerForms (ℕ.suc n)) (xs : Vec ℕ (ℕ.suc n)) → eval ((P ·X+ Q) ·ₕ S) xs ≡ eval (((P ·ₕ S) ·X+ 0ₕ) +ₕ (Q ⋆ S)) xs combineCases Q P S (x ∷ xs) with (P ·ₕ S) ... | 0H = eval (Q ⋆ S) (x ∷ xs) ≡⟨ refl ⟩ 0 + eval (Q ⋆ S) (x ∷ xs) ≡⟨ cong (λ u → u + eval (Q ⋆ S) (x ∷ xs)) lemma ⟩ eval (0H ·X+ 0ₕ) (x ∷ xs) + eval (Q ⋆ S) (x ∷ xs) ≡⟨ sym (+Homeval (0H ·X+ 0ₕ) (Q ⋆ S) (x ∷ xs)) ⟩ eval ((0H ·X+ 0ₕ) +ₕ (Q ⋆ S)) (x ∷ xs) ∎ where lemma : 0 ≡ eval (0H ·X+ 0ₕ) (x ∷ xs) lemma = 0 ≡⟨ refl ⟩ 0 + 0 ≡⟨ cong (λ u → u + 0) refl ⟩ 0 · x + 0 ≡⟨ cong (λ u → 0 · x + u) (sym (eval0H xs)) ⟩ 0 · x + eval 0ₕ xs ≡⟨ cong (λ u → u · x + eval 0ₕ xs) (sym (eval0H (x ∷ xs))) ⟩ eval 0H (x ∷ xs) · x + eval 0ₕ xs ≡⟨ refl ⟩ eval (0H ·X+ 0ₕ) (x ∷ xs) ∎ ... | (_ ·X+ _) = refl ·Homeval (const x) (const y) [] = refl ·Homeval 0H Q xs = eval (0H ·ₕ Q) xs ≡⟨ eval0H xs ⟩ 0 ≡⟨ refl ⟩ 0 · eval Q xs ≡⟨ cong (λ u → u · eval Q xs) (sym (eval0H xs)) ⟩ eval 0H xs · eval Q xs ∎ ·Homeval (P ·X+ Q) S (x ∷ xs) = eval ((P ·X+ Q) ·ₕ S) (x ∷ xs) ≡⟨ combineCases Q P S (x ∷ xs) ⟩ eval (((P ·ₕ S) ·X+ 0ₕ) +ₕ (Q ⋆ S)) (x ∷ xs) ≡⟨ +Homeval ((P ·ₕ S) ·X+ 0ₕ) (Q ⋆ S) (x ∷ xs) ⟩ eval ((P ·ₕ S) ·X+ 0ₕ) (x ∷ xs) + eval (Q ⋆ S) (x ∷ xs) ≡⟨ refl ⟩ (eval (P ·ₕ S) (x ∷ xs) · x + eval 0ₕ xs) + eval (Q ⋆ S) (x ∷ xs) ≡⟨ cong (λ u → u + eval (Q ⋆ S) (x ∷ xs)) ((eval (P ·ₕ S) (x ∷ xs) · x + eval 0ₕ xs) ≡⟨ cong (λ u → eval (P ·ₕ S) (x ∷ xs) · x + u) (eval0H xs) ⟩ (eval (P ·ₕ S) (x ∷ xs) · x + 0) ≡⟨ +-zero _ ⟩ (eval (P ·ₕ S) (x ∷ xs) · x) ≡⟨ cong (λ u → u · x) (·Homeval P S (x ∷ xs)) ⟩ ((eval P (x ∷ xs) · eval S (x ∷ xs)) · x) ≡⟨ sym (·-assoc (eval P (x ∷ xs)) (eval S (x ∷ xs)) x) ⟩ (eval P (x ∷ xs) · (eval S (x ∷ xs) · x)) ≡⟨ cong (λ u → eval P (x ∷ xs) · u) (·-comm _ x) ⟩ (eval P (x ∷ xs) · (x · eval S (x ∷ xs))) ≡⟨ ·-assoc (eval P (x ∷ xs)) x (eval S (x ∷ xs)) ⟩ (eval P (x ∷ xs) · x) · eval S (x ∷ xs) ∎) ⟩ (eval P (x ∷ xs) · x) · eval S (x ∷ xs) + eval (Q ⋆ S) (x ∷ xs) ≡⟨ cong (λ u → (eval P (x ∷ xs) · x) · eval S (x ∷ xs) + u) (⋆Homeval Q S x xs) ⟩ (eval P (x ∷ xs) · x) · eval S (x ∷ xs) + eval Q xs · eval S (x ∷ xs) ≡⟨ ·-distribʳ (eval P (x ∷ xs) · x) (eval Q xs) (eval S (x ∷ xs)) ⟩ ((eval P (x ∷ xs) · x) + eval Q xs) · eval S (x ∷ xs) ≡⟨ refl ⟩ eval (P ·X+ Q) (x ∷ xs) · eval S (x ∷ xs) ∎
{ "alphanum_fraction": 0.3945858283, "avg_line_length": 40.6903553299, "ext": "agda", "hexsha": "40a7184e492fd53d2e0ff9c35c0add130455f00c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/Algebra/NatSolver/EvalHom.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/Algebra/NatSolver/EvalHom.agda", "max_line_length": 96, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Algebra/NatSolver/EvalHom.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:30:17.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:30:17.000Z", "num_tokens": 3754, "size": 8016 }
------------------------------------------------------------------------------ -- Testing Agsy arithmetic properties used by the McCarthy 91 function ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- Tested with the development version of the Agda standard library on -- 02 February 2012. module Agsy.McCarthy91.Arithmetic where open import Data.Nat open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------------ 91≡[100+11∸10]∸10 : (100 + 11 ∸ 10) ∸ 10 ≡ 91 91≡[100+11∸10]∸10 = refl 20>19 : 20 > 19 -- via Agsy 20>19 = s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s z≤n))))))))))))))))))) 50>49 : 50 > 49 -- via Agsy {-t 30} 50>49 = s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s z≤n))))))))))))))))))))))))))))))))))))))))))))))))) 75>74 : 75 > 74 -- via Agsy {-t 180} 75>74 = s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s z≤n)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) 101>100 : 101 > 100 -- via Agsy {-t 600} 101>100 = s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s z≤n))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
{ "alphanum_fraction": 0.0673235992, "avg_line_length": 51.3025830258, "ext": "agda", "hexsha": "20038931de22af6fa5969c81c558b28ec514bd53", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/Agsy/McCarthy91/Arithmetic.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/Agsy/McCarthy91/Arithmetic.agda", "max_line_length": 213, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/Agsy/McCarthy91/Arithmetic.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 2042, "size": 13903 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Integer Literals ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Integer.Literals where open import Agda.Builtin.FromNat open import Agda.Builtin.FromNeg open import Data.Unit open import Data.Integer number : Number ℤ number = record { Constraint = λ _ → ⊤ ; fromNat = λ n → + n } negative : Negative ℤ negative = record { Constraint = λ _ → ⊤ ; fromNeg = λ n → - (+ n) }
{ "alphanum_fraction": 0.4878472222, "avg_line_length": 21.3333333333, "ext": "agda", "hexsha": "1de609373ec8e653c3a77ffbf75e55d319b1519d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Integer/Literals.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Integer/Literals.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Integer/Literals.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 129, "size": 576 }
module TelescopingLet where module Star where ★ : Set₁ ★ = Set ★₁ : Set₂ ★₁ = Set₁ module MEndo (open Star) (A : ★) where Endo : ★ Endo = A → A module Batch1 where f : (let ★ = Set) (A : ★) → A → A f A x = x g : (let ★ = Set Endo = λ A → A → A) (A : ★) → Endo A g = f h : (open Star) (A : ★) → A → A h = g module N (open Star) (A : ★) (open MEndo A) (f : Endo) where B : ★ B = A f' : Endo f' = f -- module N can be desugared as follows: module _ where open Star module _ (A : ★) where open MEndo A module N' (f : Endo) where B : ★ B = A f' : Endo f' = f -- Here are instantiations of N and its desugaring: f'1 = f' where postulate A : Set f : A → A open N A f f'2 = f' where postulate A : Set f : A → A open N' A f data ⊥ : Set where module Batch2 where f = λ (let ★ = Set) (A : ★) (x : A) → x g = λ (open Star) (A : ★) (x : A) → x h0 = let open Star in λ (A : ★) → let module MA = MEndo A in let open MA in λ (f : Endo) → f h1 = let open Star in λ (A : ★) → let open MEndo A in λ (f : Endo) → f h = λ (open Star) (A : ★) (open MEndo A) (f : Endo) → f module Batch3 where e1 : (let ★ = Set) → ★ e1 = ⊥ e2 = λ (let ★ = Set) → ★ e3 = λ (open Star) → ★ -- "λ (open M es) → e" is an edge case which behaves like "let open M es in e"
{ "alphanum_fraction": 0.4654346338, "avg_line_length": 16.6022727273, "ext": "agda", "hexsha": "203a6d2bb61fc92a9aabf8b2979038f2351bfff7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/TelescopingLet.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/TelescopingLet.agda", "max_line_length": 80, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/TelescopingLet.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 596, "size": 1461 }
-- The purpose of this universe construction is to get some definitional -- equalities in the model. Specifically, if we define ⟦σ⟧ : ⟦Δ⟧ → ⟦Ω⟧ -- (a functor) for the "canonical" notion of subsitution, then we have -- ⟦Wk⟧ (δ , m) ≡ δ propositionally, but *not* definitionally. This then -- complicates proofs involving ⟦Wk⟧, and similar for the other substitutions. {-# OPTIONS --without-K --safe #-} module Source.Size.Substitution.Universe where open import Relation.Binary using (IsEquivalence ; Setoid) open import Source.Size open import Source.Size.Substitution.Canonical as Can using (Sub⊢) open import Util.Prelude import Relation.Binary.Reasoning.Setoid as SetoidReasoning infix 4 _≈_ infixl 5 _>>_ data Sub : (Δ Ω : Ctx) → Set where Id : Sub Δ Δ _>>_ : (σ : Sub Δ Δ′) (τ : Sub Δ′ Ω) → Sub Δ Ω Wk : Sub (Δ ∙ n) Δ Lift : (σ : Sub Δ Ω) → Sub (Δ ∙ m) (Ω ∙ n) Sing : (n : Size Δ) → Sub Δ (Δ ∙ m) Skip : Sub (Δ ∙ n ∙ v0) (Δ ∙ n) ⟨_⟩ : Sub Δ Ω → Can.Sub Δ Ω ⟨ Id ⟩ = Can.Id ⟨ σ >> τ ⟩ = ⟨ σ ⟩ Can.>> ⟨ τ ⟩ ⟨ Wk ⟩ = Can.Wk ⟨ Lift σ ⟩ = Can.Lift ⟨ σ ⟩ ⟨ Sing n ⟩ = Can.Sing n ⟨ Skip ⟩ = Can.Skip subV : (σ : Sub Δ Ω) (x : Var Ω) → Size Δ subV σ = Can.subV ⟨ σ ⟩ sub : (σ : Sub Δ Ω) (n : Size Ω) → Size Δ sub σ = Can.sub ⟨ σ ⟩ pattern Lift′ σ ⊢n = Lift σ ⊢n refl variable σ τ ι : Sub Δ Ω data Sub⊢ᵤ : ∀ Δ Ω → Sub Δ Ω → Set where Id : Sub⊢ᵤ Δ Δ Id comp : (⊢σ : Sub⊢ᵤ Δ Δ′ σ) (⊢τ : Sub⊢ᵤ Δ′ Δ″ τ) → Sub⊢ᵤ Δ Δ″ (σ >> τ) Wk : Sub⊢ᵤ (Δ ∙ n) Δ Wk Lift : (⊢σ : Sub⊢ᵤ Δ Ω σ) (m≡n[σ] : m ≡ sub σ n) → Sub⊢ᵤ (Δ ∙ m) (Ω ∙ n) (Lift σ) Sing : (n<m : n < m) → Sub⊢ᵤ Δ (Δ ∙ m) (Sing n) Skip : Sub⊢ᵤ (Δ ∙ n ∙ v0) (Δ ∙ n) Skip syntax Sub⊢ᵤ Δ Ω σ = σ ∶ Δ ⇒ᵤ Ω ⟨⟩-resp-⊢ : σ ∶ Δ ⇒ᵤ Ω → ⟨ σ ⟩ ∶ Δ ⇒ Ω ⟨⟩-resp-⊢ Id = Can.Id⊢ ⟨⟩-resp-⊢ (comp ⊢σ ⊢τ) = Can.>>⊢ (⟨⟩-resp-⊢ ⊢σ) (⟨⟩-resp-⊢ ⊢τ) ⟨⟩-resp-⊢ Wk = Can.Wk⊢ ⟨⟩-resp-⊢ (Lift ⊢σ m≡n[σ]) = Can.Lift⊢ (⟨⟩-resp-⊢ ⊢σ) m≡n[σ] ⟨⟩-resp-⊢ (Sing n<m) = Can.Sing⊢ n<m ⟨⟩-resp-⊢ Skip = Can.Skip⊢ record _≈_ (σ τ : Sub Δ Ω) : Set where constructor ≈⁺ field ≈⁻ : ⟨ σ ⟩ ≡ ⟨ τ ⟩ open _≈_ public ≈-refl : σ ≈ σ ≈-refl = ≈⁺ refl ≈-sym : σ ≈ τ → τ ≈ σ ≈-sym (≈⁺ p) = ≈⁺ (sym p) ≈-trans : σ ≈ τ → τ ≈ ι → σ ≈ ι ≈-trans (≈⁺ p) (≈⁺ q) = ≈⁺ (trans p q) ≈-isEquivalence : IsEquivalence (_≈_ {Δ} {Ω}) ≈-isEquivalence = record { refl = ≈-refl ; sym = ≈-sym ; trans = ≈-trans } Sub-setoid : (Δ Ω : Ctx) → Setoid 0ℓ 0ℓ Sub-setoid Δ Ω = record { Carrier = Sub Δ Ω ; _≈_ = _≈_ ; isEquivalence = ≈-isEquivalence } module ≈-Reasoning {Δ} {Ω} = SetoidReasoning (Sub-setoid Δ Ω) abstract >>-resp-≈ : {σ σ′ : Sub Δ Δ′} {τ τ′ : Sub Δ′ Δ″} → σ ≈ σ′ → τ ≈ τ′ → σ >> τ ≈ σ′ >> τ′ >>-resp-≈ (≈⁺ p) (≈⁺ q) = ≈⁺ (cong₂ Can._>>_ p q) Lift-resp-≈ : σ ≈ τ → Lift {m = m} {n} σ ≈ Lift τ Lift-resp-≈ (≈⁺ p) = ≈⁺ (cong Can.Lift p) sub-resp-< : σ ∶ Δ ⇒ᵤ Ω → n < m → sub σ n < sub σ m sub-resp-< ⊢σ = Can.sub-resp-< (⟨⟩-resp-⊢ ⊢σ) mutual subV′ : Sub Δ Ω → Var Ω → Size Δ subV′ Id x = var x subV′ (σ >> τ) x = sub′ σ (subV′ τ x) subV′ Wk x = var (suc x) subV′ (Lift σ) zero = var zero subV′ (Lift σ) (suc x) = wk (subV′ σ x) subV′ (Sing n) zero = n subV′ (Sing n) (suc x) = var x subV′ Skip zero = var zero subV′ Skip (suc x) = var (suc (suc x)) sub′ : Sub Δ Ω → Size Ω → Size Δ sub′ σ (var x) = subV′ σ x sub′ σ ∞ = ∞ sub′ σ zero = zero sub′ σ (suc n) = suc (sub′ σ n) abstract subV′≡subV : ∀ (σ : Sub Δ Ω) x → subV′ σ x ≡ subV σ x subV′≡subV Id x = sym (Can.subV-Id x) subV′≡subV (σ >> τ) x = trans (sub′≡sub σ (subV′ τ x)) (trans (cong (sub σ) (subV′≡subV τ x)) (sym (Can.subV->> ⟨ σ ⟩ ⟨ τ ⟩ x))) subV′≡subV Wk x = sym (Can.sub-Wk (var x)) subV′≡subV (Lift σ) zero = refl subV′≡subV (Lift σ) (suc x) = trans (cong wk (subV′≡subV σ x)) (sym (Can.subV-Weaken ⟨ σ ⟩ x)) subV′≡subV (Sing n) zero = refl subV′≡subV (Sing n) (suc x) = sym (Can.subV-Id x) subV′≡subV Skip zero = refl subV′≡subV Skip (suc x) = sym (trans (Can.subV-Weaken (Can.Weaken Can.Id) x) (cong wk (Can.sub-Wk (var x)))) sub′≡sub : ∀ (σ : Sub Δ Ω) n → sub′ σ n ≡ sub σ n sub′≡sub σ (var x) = subV′≡subV σ x sub′≡sub σ ∞ = refl sub′≡sub σ zero = refl sub′≡sub σ (suc n) = cong suc (sub′≡sub σ n)
{ "alphanum_fraction": 0.5240317312, "avg_line_length": 25.5119047619, "ext": "agda", "hexsha": "5d38e48cd8bd09216274e5bd85c27f66bb093207", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/msc-thesis-code", "max_forks_repo_path": "src/Source/Size/Substitution/Universe.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/msc-thesis-code", "max_issues_repo_path": "src/Source/Size/Substitution/Universe.agda", "max_line_length": 84, "max_stars_count": 5, "max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/msc-thesis-code", "max_stars_repo_path": "src/Source/Size/Substitution/Universe.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z", "num_tokens": 2156, "size": 4286 }
{-# OPTIONS --safe #-} module Cubical.Algebra.DirectSum.DirectSumHIT.Properties where open import Cubical.Foundations.Prelude open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Sigma open import Cubical.Relation.Nullary open import Cubical.Algebra.Group open import Cubical.Algebra.AbGroup open import Cubical.Algebra.DirectSum.DirectSumHIT.Base private variable ℓ ℓ' : Level module AbGroupProperties (Idx : Type ℓ) (P : Idx → Type ℓ') (AGP : (r : Idx) → AbGroupStr (P r)) where inv : ⊕HIT Idx P AGP → ⊕HIT Idx P AGP inv = DS-Rec-Set.f Idx P AGP (⊕HIT Idx P AGP) trunc -- elements neutral (λ r a → base r (AbGroupStr.-_ (AGP r) a)) (λ xs ys → xs add ys) -- eq group (λ xs ys zs → addAssoc xs ys zs) (λ xs → addRid xs) (λ xs ys → addComm xs ys) -- eq base (λ r → let open AbGroupStr (AGP r) in let open GroupTheory (P r , AbGroupStr→GroupStr (AGP r)) in (cong (base r) inv1g) ∙ (base-neutral r)) (λ r a b → let open AbGroupStr (AGP r) in let open GroupTheory (P r , AbGroupStr→GroupStr (AGP r)) in ((base r (- a) add base r (- b)) ≡⟨ (base-add r (- a) (- b)) ⟩ base r ((- a) + (- b)) ≡⟨ (cong (base r) (sym (invDistr b a))) ⟩ base r (- (b + a)) ≡⟨ cong (base r) (cong (-_) (+Comm b a)) ⟩ base r (- (a + b)) ∎)) rinv : (z : ⊕HIT Idx P AGP) → z add (inv z) ≡ neutral rinv = DS-Ind-Prop.f Idx P AGP (λ z → z add (inv z) ≡ neutral) (λ _ → trunc _ _) -- elements (addRid neutral) (λ r a → let open AbGroupStr (AGP r) in ((base r a add base r (- a)) ≡⟨ base-add r a (- a) ⟩ base r (a + - a) ≡⟨ cong (base r) (+InvR a) ⟩ base r 0g ≡⟨ base-neutral r ⟩ neutral ∎)) (λ {x} {y} p q → (((x add y) add ((inv x) add (inv y))) ≡⟨ cong (λ X → X add ((inv x) add (inv y))) (addComm x y) ⟩ ((y add x) add (inv x add inv y)) ≡⟨ sym (addAssoc y x (inv x add inv y)) ⟩ (y add (x add (inv x add inv y))) ≡⟨ cong (λ X → y add X) (addAssoc x (inv x) (inv y)) ⟩ (y add ((x add inv x) add inv y)) ≡⟨ cong (λ X → y add (X add (inv y))) (p) ⟩ (y add (neutral add inv y)) ≡⟨ cong (λ X → y add X) (addComm neutral (inv y)) ⟩ (y add (inv y add neutral)) ≡⟨ cong (λ X → y add X) (addRid (inv y)) ⟩ (y add inv y) ≡⟨ q ⟩ neutral ∎)) module SubstLemma (Idx : Type ℓ) (G : Idx → Type ℓ') (Gstr : (r : Idx) → AbGroupStr (G r)) where open AbGroupStr subst0g : {l k : Idx} → (p : l ≡ k) → subst G p (0g (Gstr l)) ≡ 0g (Gstr k) subst0g {l} {k} p = J (λ k p → subst G p (0g (Gstr l)) ≡ 0g (Gstr k)) (transportRefl _) p subst+ : {l : Idx} → (a b : G l) → {k : Idx} → (p : l ≡ k) → Gstr k ._+_ (subst G p a) (subst G p b) ≡ subst G p (Gstr l ._+_ a b) subst+ {l} a b {k} p = J (λ k p → Gstr k ._+_ (subst G p a) (subst G p b) ≡ subst G p (Gstr l ._+_ a b)) (cong₂ (Gstr l ._+_) (transportRefl _) (transportRefl _) ∙ sym (transportRefl _)) p module DecIndec-BaseProperties (Idx : Type ℓ) (decIdx : Discrete Idx) (G : Idx → Type ℓ') (Gstr : (r : Idx) → AbGroupStr (G r)) where open AbGroupStr open SubstLemma Idx G Gstr πₖ : (k : Idx) → ⊕HIT Idx G Gstr → G k πₖ k = DS-Rec-Set.f _ _ _ _ (is-set (Gstr k)) (0g (Gstr k)) base-trad (_+_ (Gstr k)) (+Assoc (Gstr k)) (+IdR (Gstr k)) (+Comm (Gstr k)) base-neutral-eq base-add-eq where base-trad : (l : Idx) → (a : G l) → G k base-trad l a with decIdx l k ... | yes p = subst G p a ... | no ¬p = 0g (Gstr k) base-neutral-eq : _ base-neutral-eq l with decIdx l k ... | yes p = subst0g p ... | no ¬p = refl base-add-eq : _ base-add-eq l a b with decIdx l k ... | yes p = subst+ a b p ... | no ¬p = +IdR (Gstr k) _ πₖ-id : {k : Idx} → (a : G k) → πₖ k (base k a) ≡ a πₖ-id {k} a with decIdx k k ... | yes p = cong (λ X → subst G X a) (Discrete→isSet decIdx _ _ _ _) ∙ transportRefl _ ... | no ¬p = rec (¬p refl) πₖ-0g : {k l : Idx} → (a : G l) → (p : k ≡ l → ⊥) → πₖ k (base l a) ≡ 0g (Gstr k) πₖ-0g {k} {l} a ¬q with decIdx l k ... | yes p = rec (¬q (sym p)) ... | no ¬p = refl base-inj : {k : Idx} → {a b : G k} → base {AGP = Gstr} k a ≡ base k b → a ≡ b base-inj {k} {a} {b} p = sym (πₖ-id a) ∙ cong (πₖ k) p ∙ πₖ-id b base-≢ : {k : Idx} → {a : G k} → {l : Idx} → {b : G l} → (p : k ≡ l → ⊥) → base {AGP = Gstr} k a ≡ base {AGP = Gstr} l b → (a ≡ 0g (Gstr k)) × (b ≡ 0g (Gstr l)) base-≢ {k} {a} {l} {b} ¬p q = helper1 , helper2 where helper1 : a ≡ 0g (Gstr k) helper1 = sym (πₖ-id a) ∙ cong (πₖ k) q ∙ πₖ-0g b ¬p helper2 : b ≡ 0g (Gstr l) helper2 = sym (πₖ-id b) ∙ cong (πₖ l) (sym q) ∙ πₖ-0g a (λ x → ¬p (sym x))
{ "alphanum_fraction": 0.4574606117, "avg_line_length": 38.2624113475, "ext": "agda", "hexsha": "38f6a06370610af26b0777e5ed5f4221debf43f8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/DirectSum/DirectSumHIT/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/DirectSum/DirectSumHIT/Properties.agda", "max_line_length": 124, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/DirectSum/DirectSumHIT/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2065, "size": 5395 }
-- Check that unquoted functions are termination checked. module _ where open import Common.Prelude hiding (_>>=_) open import Common.Reflection `⊥ : Type `⊥ = def (quote ⊥) [] {- Generate aux : ⊥ aux = aux loop : ⊥ loop = aux -} makeLoop : QName → TC ⊤ makeLoop loop = freshName "aux" >>= λ aux → declareDef (vArg aux) `⊥ >>= λ _ → defineFun aux (clause [] (def aux []) ∷ []) >>= λ _ → declareDef (vArg loop) `⊥ >>= λ _ → defineFun loop (clause [] (def aux []) ∷ []) unquoteDecl loop = makeLoop loop
{ "alphanum_fraction": 0.6030534351, "avg_line_length": 19.4074074074, "ext": "agda", "hexsha": "72b2382f7bb7a41f02d8d7408a6158ca80113e0c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/TerminationCheckUnquoteDecl.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Fail/TerminationCheckUnquoteDecl.agda", "max_line_length": 57, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Fail/TerminationCheckUnquoteDecl.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 176, "size": 524 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Definitions for types of functions that only require an equality -- relation over the domain. ------------------------------------------------------------------------ -- The contents of this file should usually be accessed from `Function`. {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Function.Definitions.Core1 {a ℓ₁} {A : Set a} (_≈₁_ : Rel A ℓ₁) where open import Level using (_⊔_) ------------------------------------------------------------------------ -- Definitions -- (Note the name `RightInverse` is used for the bundle) Inverseʳ : ∀ {b} {B : Set b} → (A → B) → (B → A) → Set (a ⊔ ℓ₁) Inverseʳ f g = ∀ x → g (f x) ≈₁ x
{ "alphanum_fraction": 0.4702072539, "avg_line_length": 29.6923076923, "ext": "agda", "hexsha": "a84dc37db4a11c8249f03d5fc93ba6287e87a919", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Function/Definitions/Core1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Function/Definitions/Core1.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Function/Definitions/Core1.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 178, "size": 772 }
------------------------------------------------------------------------ -- Parsers containing non-terminals, and grammars using such parsers ------------------------------------------------------------------------ module StructurallyRecursiveDescentParsing.Grammar where open import Data.Bool open import Data.Empty open import Data.Product open import Relation.Binary.PropositionalEquality open import Codata.Musical.Notation open import Level open import StructurallyRecursiveDescentParsing.Index import StructurallyRecursiveDescentParsing.Simplified as Simplified open Simplified hiding (Parser; module Parser; ⟦_⟧) infixl 10 _!>>=_ _?>>=_ infixl 5 _∣_ -- The parsers are parameterised on a type of nonterminals. data Parser (NT : NonTerminalType) (Tok : Set) : NonTerminalType where return : ∀ {R} (x : R) → Parser NT Tok (true ◇ ε) R fail : ∀ {R} → Parser NT Tok (false ◇ ε) R token : Parser NT Tok (false ◇ ε) Tok _∣_ : ∀ {e₁ e₂ c₁ c₂ R} (p₁ : Parser NT Tok (e₁ ◇ c₁ ) R) (p₂ : Parser NT Tok ( e₂ ◇ c₂) R) → Parser NT Tok (e₁ ∨ e₂ ◇ c₁ ∪ c₂) R _?>>=_ : ∀ {e₂ c₁ c₂ R₁ R₂} (p₁ : Parser NT Tok (true ◇ c₁ ) R₁) (p₂ : R₁ → Parser NT Tok (e₂ ◇ c₂) R₂) → Parser NT Tok (e₂ ◇ c₁ ∪ c₂) R₂ _!>>=_ : ∀ {c₁ R₁ R₂} {i₂ : R₁ → Index} (p₁ : Parser NT Tok (false ◇ c₁) R₁) (p₂ : (x : R₁) → ∞ (Parser NT Tok (i₂ x) R₂)) → Parser NT Tok (false ◇ c₁) R₂ ! : ∀ {e c R} (nt : NT (e ◇ c) R) → Parser NT Tok (e ◇ c ∪ ε) R -- Grammars. Grammar : NonTerminalType → Set → Set1 Grammar NT Tok = ∀ {i R} → NT i R → Parser NT Tok i R -- An empty non-terminal type. EmptyNT : NonTerminalType EmptyNT _ _ = Lift _ ⊥ -- An empty grammar. emptyGrammar : ∀ {Tok} → Grammar EmptyNT Tok emptyGrammar (lift ()) -- The semantics of grammar-based parsers is defined in terms of their -- translation into "plain" parsers. The translation instantiates all -- non-terminals corecursively. ⟦_⟧ : ∀ {Tok NT e c R} → Parser NT Tok (e ◇ c) R → Grammar NT Tok → Simplified.Parser Tok e R ⟦ return x ⟧ g = return x ⟦ fail ⟧ g = fail ⟦ token ⟧ g = token ⟦ p₁ ∣ p₂ ⟧ g = ⟦ p₁ ⟧ g ∣ ⟦ p₂ ⟧ g ⟦ p₁ ?>>= p₂ ⟧ g = ⟦ p₁ ⟧ g ?>>= λ x → ⟦ p₂ x ⟧ g ⟦ p₁ !>>= p₂ ⟧ g = ⟦ p₁ ⟧ g !>>= λ x → ♯ ⟦ ♭ (p₂ x) ⟧ g ⟦ ! nt ⟧ g = ⟦ g nt ⟧ g -- Note that some "plain" parsers cannot be directly rewritten using -- the parser type in this module (although there may be /equivalent/ -- parsers): private only-plain : Simplified.Parser Bool false Bool only-plain = return true ?>>= λ x → if x then token else token ∣ token -- The following code does not type-check. -- doesnt-work : Parser EmptyNT Bool (false ◇ _) Bool -- doesnt-work = return true ?>>= λ x → -- if x then token else token ∣ token -- A map function which can be useful when combining grammars. mapNT : ∀ {NT₁ NT₂ Tok i R} → (∀ {i R} → NT₁ i R → NT₂ i R) → Parser NT₁ Tok i R → Parser NT₂ Tok i R mapNT f (return x) = return x mapNT f fail = fail mapNT f token = token mapNT f (p₁ ∣ p₂) = mapNT f p₁ ∣ mapNT f p₂ mapNT f (p₁ ?>>= p₂) = mapNT f p₁ ?>>= λ x → mapNT f (p₂ x) mapNT f (p₁ !>>= p₂) = mapNT f p₁ !>>= λ x → ♯ mapNT f (♭ (p₂ x)) mapNT f (! nt) = ! (f nt)
{ "alphanum_fraction": 0.5481244548, "avg_line_length": 32.7523809524, "ext": "agda", "hexsha": "cbceeedbfd9d2a6315f30d3f9cbfe42bd0c3e187", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "StructurallyRecursiveDescentParsing/Grammar.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "StructurallyRecursiveDescentParsing/Grammar.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "StructurallyRecursiveDescentParsing/Grammar.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 1152, "size": 3439 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Square where open import Level open import Function renaming (id to idᶠ; _∘_ to _©_) open import Categories.Support.PropositionalEquality open import Categories.Category import Categories.Morphisms as Mor open import Relation.Binary hiding (_⇒_) module GlueSquares {o ℓ e} (C : Category o ℓ e) where private module C = Category C open C open Mor C module Pulls {X Y Z} {a : Y ⇒ Z} {b : X ⇒ Y} {c : X ⇒ Z} (ab≡c : a ∘ b ≡ c) where .pullʳ : ∀ {W} {f : Z ⇒ W} → (f ∘ a) ∘ b ≡ f ∘ c pullʳ {f = f} = begin (f ∘ a) ∘ b ↓⟨ assoc ⟩ f ∘ (a ∘ b) ↓⟨ ∘-resp-≡ʳ ab≡c ⟩ f ∘ c ∎ where open HomReasoning .pullˡ : ∀ {W} {f : W ⇒ X} → a ∘ (b ∘ f) ≡ c ∘ f pullˡ {f = f} = begin a ∘ (b ∘ f) ↑⟨ assoc ⟩ (a ∘ b) ∘ f ↓⟨ ∘-resp-≡ˡ ab≡c ⟩ c ∘ f ∎ where open HomReasoning open Pulls public module Pushes {X Y Z} {a : Y ⇒ Z} {b : X ⇒ Y} {c : X ⇒ Z} (c≡ab : c ≡ a ∘ b) where .pushʳ : ∀ {W} {f : Z ⇒ W} → f ∘ c ≡ (f ∘ a) ∘ b pushʳ {f = f} = begin f ∘ c ↓⟨ ∘-resp-≡ʳ c≡ab ⟩ f ∘ (a ∘ b) ↑⟨ assoc ⟩ (f ∘ a) ∘ b ∎ where open HomReasoning .pushˡ : ∀ {W} {f : W ⇒ X} → c ∘ f ≡ a ∘ (b ∘ f) pushˡ {f = f} = begin c ∘ f ↓⟨ ∘-resp-≡ˡ c≡ab ⟩ (a ∘ b) ∘ f ↓⟨ assoc ⟩ a ∘ (b ∘ f) ∎ where open HomReasoning open Pushes public module IntroElim {X} {a : X ⇒ X} (a≡id : a ≡ id) where .elimʳ : ∀ {W} {f : X ⇒ W} → (f ∘ a) ≡ f elimʳ {f = f} = begin f ∘ a ↓⟨ ∘-resp-≡ʳ a≡id ⟩ f ∘ id ↓⟨ identityʳ ⟩ f ∎ where open HomReasoning .introʳ : ∀ {W} {f : X ⇒ W} → f ≡ f ∘ a introʳ = Equiv.sym elimʳ .elimˡ : ∀ {W} {f : W ⇒ X} → (a ∘ f) ≡ f elimˡ {f = f} = begin a ∘ f ↓⟨ ∘-resp-≡ˡ a≡id ⟩ id ∘ f ↓⟨ identityˡ ⟩ f ∎ where open HomReasoning .introˡ : ∀ {W} {f : W ⇒ X} → f ≡ a ∘ f introˡ = Equiv.sym elimˡ open IntroElim public module Extends {X Y Z W} {f : X ⇒ Y} {g : X ⇒ Z} {h : Y ⇒ W} {i : Z ⇒ W} (s : CommutativeSquare f g h i) where .extendˡ : ∀ {A} {a : W ⇒ A} → CommutativeSquare f g (a ∘ h) (a ∘ i) extendˡ {a = a} = begin (a ∘ h) ∘ f ↓⟨ pullʳ s ⟩ a ∘ i ∘ g ↑⟨ assoc ⟩ (a ∘ i) ∘ g ∎ where open HomReasoning .extendʳ : ∀ {A} {a : A ⇒ X} → CommutativeSquare (f ∘ a) (g ∘ a) h i extendʳ {a = a} = begin h ∘ (f ∘ a) ↓⟨ pullˡ s ⟩ (i ∘ g) ∘ a ↓⟨ assoc ⟩ i ∘ (g ∘ a) ∎ where open HomReasoning .extend² : ∀ {A B} {a : W ⇒ A} {b : B ⇒ X} → CommutativeSquare (f ∘ b) (g ∘ b) (a ∘ h) (a ∘ i) extend² {a = a} {b} = begin (a ∘ h) ∘ (f ∘ b) ↓⟨ pullʳ extendʳ ⟩ a ∘ (i ∘ (g ∘ b)) ↑⟨ assoc ⟩ (a ∘ i) ∘ (g ∘ b) ∎ where open HomReasoning open Extends public -- essentially composition in the arrow category .glue : {X Y Y′ Z Z′ W : Obj} {a : Z ⇒ W} {a′ : Y′ ⇒ Z′} {b : Y ⇒ Z} {b′ : X ⇒ Y′} {c : X ⇒ Y} {c′ : Y′ ⇒ Z} {c″ : Z′ ⇒ W} → CommutativeSquare c′ a′ a c″ → CommutativeSquare c b′ b c′ → CommutativeSquare c (a′ ∘ b′) (a ∘ b) c″ glue {a = a} {a′} {b} {b′} {c} {c′} {c″} sq-a sq-b = begin (a ∘ b) ∘ c ↓⟨ pullʳ sq-b ⟩ a ∘ (c′ ∘ b′) ↓⟨ pullˡ sq-a ⟩ (c″ ∘ a′) ∘ b′ ↓⟨ assoc ⟩ c″ ∘ (a′ ∘ b′) ∎ where open HomReasoning .glue◃◽ : {X Y Y′ Z W : Obj} {a : Z ⇒ W} {b : Y ⇒ Z} {b′ : X ⇒ Y′} {c : X ⇒ Y} {c′ : Y′ ⇒ Z} {c″ : Y′ ⇒ W} → a ∘ c′ ≡ c″ → CommutativeSquare c b′ b c′ → CommutativeSquare c b′ (a ∘ b) c″ glue◃◽ {a = a} {b} {b′} {c} {c′} {c″} tri-a sq-b = begin (a ∘ b) ∘ c ↓⟨ pullʳ sq-b ⟩ a ∘ (c′ ∘ b′) ↓⟨ pullˡ tri-a ⟩ c″ ∘ b′ ∎ where open HomReasoning -- essentially composition in the over category .glueTrianglesʳ : ∀ {X X′ X″ Y} {a : X ⇒ Y} {b : X′ ⇒ X} {a′ : X′ ⇒ Y} {b′ : X″ ⇒ X′} {a″ : X″ ⇒ Y} → a ∘ b ≡ a′ → a′ ∘ b′ ≡ a″ → a ∘ (b ∘ b′) ≡ a″ glueTrianglesʳ {a = a} {b} {a′} {b′} {a″} a∘b≡a′ a′∘b′≡a″ = begin a ∘ (b ∘ b′) ↓⟨ pullˡ a∘b≡a′ ⟩ a′ ∘ b′ ↓⟨ a′∘b′≡a″ ⟩ a″ ∎ where open HomReasoning -- essentially composition in the under category .glueTrianglesˡ : ∀ {X Y Y′ Y″} {b : X ⇒ Y} {a : Y ⇒ Y′} {b′ : X ⇒ Y′} {a′ : Y′ ⇒ Y″} {b″ : X ⇒ Y″} → a′ ∘ b′ ≡ b″ → a ∘ b ≡ b′ → (a′ ∘ a) ∘ b ≡ b″ glueTrianglesˡ {b = b} {a} {b′} {a′} {b″} a′∘b′≡b″ a∘b≡b′ = begin (a′ ∘ a) ∘ b ↓⟨ pullʳ a∘b≡b′ ⟩ a′ ∘ b′ ↓⟨ a′∘b′≡b″ ⟩ b″ ∎ where open HomReasoning module Cancellers {Y Y′ : Obj} {h : Y′ ⇒ Y} {i : Y ⇒ Y′} (inv : h ∘ i ≡ id) where .cancelRight : ∀ {Z} {f : Y ⇒ Z} → (f ∘ h) ∘ i ≡ f cancelRight {f = f} = begin (f ∘ h) ∘ i ↓⟨ pullʳ inv ⟩ f ∘ id ↓⟨ identityʳ ⟩ f ∎ where open HomReasoning .cancelLeft : ∀ {X} {f : X ⇒ Y} → h ∘ (i ∘ f) ≡ f cancelLeft {f = f} = begin h ∘ (i ∘ f) ↓⟨ pullˡ inv ⟩ id ∘ f ↓⟨ identityˡ ⟩ f ∎ where open HomReasoning .cancelInner : ∀ {X Z} {f : Y ⇒ Z} {g : X ⇒ Y} → (f ∘ h) ∘ (i ∘ g) ≡ f ∘ g cancelInner {f = f} {g} = begin (f ∘ h) ∘ (i ∘ g) ↓⟨ pullˡ cancelRight ⟩ f ∘ g ∎ where open HomReasoning open Cancellers public module Switch {X Y} (i : X ≅ Y) where open _≅_ i .switch-fgˡ : ∀ {W} {h : W ⇒ X} {k : W ⇒ Y} → (f ∘ h ≡ k) → (h ≡ g ∘ k) switch-fgˡ {h = h} {k} pf = begin h ↑⟨ cancelLeft isoˡ ⟩ g ∘ (f ∘ h) ↓⟨ ∘-resp-≡ʳ pf ⟩ g ∘ k ∎ where open HomReasoning .switch-gfˡ : ∀ {W} {h : W ⇒ Y} {k : W ⇒ X} → (g ∘ h ≡ k) → (h ≡ f ∘ k) switch-gfˡ {h = h} {k} pf = begin h ↑⟨ cancelLeft isoʳ ⟩ f ∘ (g ∘ h) ↓⟨ ∘-resp-≡ʳ pf ⟩ f ∘ k ∎ where open HomReasoning .switch-fgʳ : ∀ {W} {h : Y ⇒ W} {k : X ⇒ W} → (h ∘ f ≡ k) → (h ≡ k ∘ g) switch-fgʳ {h = h} {k} pf = begin h ↑⟨ cancelRight isoʳ ⟩ (h ∘ f) ∘ g ↓⟨ ∘-resp-≡ˡ pf ⟩ k ∘ g ∎ where open HomReasoning .switch-gfʳ : ∀ {W} {h : X ⇒ W} {k : Y ⇒ W} → (h ∘ g ≡ k) → (h ≡ k ∘ f) switch-gfʳ {h = h} {k} pf = begin h ↑⟨ cancelRight isoˡ ⟩ (h ∘ g) ∘ f ↓⟨ ∘-resp-≡ˡ pf ⟩ k ∘ f ∎ where open HomReasoning open Switch public module Yon-Eda {o ℓ e} (C : Category o ℓ e) where private module C = Category C open C open Equiv record Yon (X Y : Obj) : Set (o ⊔ ℓ ⊔ e) where field arr : X ⇒ Y fun : ∀ {W} (f : W ⇒ X) → (W ⇒ Y) .ok : ∀ {W} (f : W ⇒ X) → fun f ≡ arr ∘ f norm : X ⇒ Y norm = fun id .norm≡arr : norm ≡ arr norm≡arr = trans (ok id) identityʳ record _≡′_ {X Y : Obj} (f g : Yon X Y) : Set (o ⊔ ℓ ⊔ e) where constructor yeq field arr-≡ : Yon.arr f ≡ Yon.arr g open _≡′_ public using (arr-≡) module _ {X Y} where .Yon-refl : Reflexive (_≡′_ {X} {Y}) Yon-refl = yeq refl .Yon-sym : Symmetric (_≡′_ {X} {Y}) Yon-sym = yeq © sym © arr-≡ .Yon-trans : Transitive (_≡′_ {X} {Y}) Yon-trans eq eq′ = yeq (trans (arr-≡ eq) (arr-≡ eq′)) Yon-id : ∀ {X} → Yon X X Yon-id = record { arr = id ; fun = idᶠ ; ok = λ _ → sym identityˡ } Yon-inject : ∀ {X Y} → (X ⇒ Y) → Yon X Y Yon-inject f = record { arr = f; fun = _∘_ f; ok = λ _ → refl } Yon-compose : ∀ {X Y Z} → (Yon Y Z) → (Yon X Y) → (Yon X Z) Yon-compose g f = record { arr = g.fun f.arr ; fun = g.fun © f.fun ; ok = λ h → trans (g.ok (f.fun h)) (trans (∘-resp-≡ʳ (f.ok h)) (trans (sym assoc) (sym (∘-resp-≡ˡ (g.ok f.arr))))) } where module g = Yon g module f = Yon f .Yon-assoc : ∀ {X Y Z W} (f : Yon Z W) (g : Yon Y Z) (h : Yon X Y) → Yon-compose f (Yon-compose g h) ≣ Yon-compose (Yon-compose f g) h Yon-assoc f g h = ≣-refl .Yon-identityˡ : ∀ {X Y} (f : Yon X Y) → Yon-compose Yon-id f ≣ f Yon-identityˡ f = ≣-refl .Yon-identityʳ : ∀ {X Y} (f : Yon X Y) → Yon-compose f Yon-id ≡′ f Yon-identityʳ f = yeq (Yon.norm≡arr f) .Yon-compose-resp-≡′ : ∀ {X Y Z} {f f′ : Yon Y Z} {g g′ : Yon X Y} → f ≡′ f′ → g ≡′ g′ → Yon-compose f g ≡′ Yon-compose f′ g′ Yon-compose-resp-≡′ {f = f} {f′} {g} {g′} f≡′f′ g≡′g′ = yeq (trans (Yon.ok f (Yon.arr g)) (trans (∘-resp-≡ (arr-≡ f≡′f′) (arr-≡ g≡′g′)) (sym (Yon.ok f′ (Yon.arr g′))))) record Eda (X Y : Obj) : Set (o ⊔ ℓ ⊔ e) where field yon : Yon X Y fun : ∀ {Z} (f : Yon Y Z) → Yon X Z .ok : ∀ {Z} (f : Yon Y Z) → fun f ≡′ Yon-compose f yon norm : Yon X Y norm = fun Yon-id open Yon yon public using (arr) Eda-id : ∀ {X} → Eda X X Eda-id = record { yon = Yon-id ; fun = idᶠ ; ok = yeq © sym © arr-≡ © Yon-identityʳ } Eda-inject : ∀ {X Y} → Yon X Y → Eda X Y Eda-inject f = record { yon = f; fun = flip Yon-compose f; ok = λ _ → yeq refl } Eda-compose : ∀ {X Y Z} → (Eda Y Z) → (Eda X Y) → (Eda X Z) Eda-compose {X} {Y} {Z} g f = record { yon = f.fun g.yon ; fun = f.fun © g.fun ; ok = λ {W} h → Yon-trans {X} {W} {f.fun (g.fun h)} (f.ok (g.fun h)) (Yon-trans (Yon-compose-resp-≡′ (g.ok h) (Yon-refl {x = f.yon})) (Yon-sym (Yon-compose-resp-≡′ (Yon-refl {x = h}) (f.ok g.yon)))) } where module g = Eda g module f = Eda f .Eda-assoc : ∀ {X Y Z W} (f : Eda Z W) (g : Eda Y Z) (h : Eda X Y) → Eda-compose f (Eda-compose g h) ≣ Eda-compose (Eda-compose f g) h Eda-assoc f g h = ≣-refl -- .Eda-identityˡ : ∀ {X Y} (f : Eda X Y) → Eda-compose Eda-id f ≣ f -- Eda-identityˡ f = {!!} .Eda-identityʳ : ∀ {X Y} (f : Eda X Y) → Eda-compose f Eda-id ≣ f Eda-identityʳ f = ≣-refl record NormReasoning {o ℓ e} (C : Category o ℓ e) (o′ ℓ′ : _) : Set (suc o′ ⊔ o ⊔ ℓ ⊔ e ⊔ suc ℓ′) where private module C = Category C field U : Set o′ T : U -> C.Obj _#⇒_ : U -> U -> Set ℓ′ eval : ∀ {A B} -> A #⇒ B -> T A C.⇒ T B norm : ∀ {A B} -> A #⇒ B -> T A C.⇒ T B .norm≡eval : ∀ {A B} (f : A #⇒ B) -> norm f C.≡ eval f open C.Equiv open C infix 4 _IsRelatedTo_ infix 1 begin_ infixr 2 _≈⟨_⟩_ _↓⟨_⟩_ _↑⟨_⟩_ _↓≡⟨_⟩_ _↑≡⟨_⟩_ _↕_ infix 3 _∎ data _IsRelatedTo_ {X Y} (f g : _#⇒_ X Y) : Set e where relTo : (f∼g : norm f ≡ norm g) → f IsRelatedTo g .begin_ : ∀ {X Y} {f g : _#⇒_ X Y} → f IsRelatedTo g → eval f ≡ eval g begin_ {f = f} {g} (relTo f∼g) = trans (sym (norm≡eval f)) (trans f∼g (norm≡eval g)) ._↓⟨_⟩_ : ∀ {X Y} (f : _#⇒_ X Y) {g h} → (norm f ≡ norm g) → g IsRelatedTo h → f IsRelatedTo h _ ↓⟨ f∼g ⟩ relTo g∼h = relTo (trans f∼g g∼h) ._↑⟨_⟩_ : ∀ {X Y} (f : _#⇒_ X Y) {g h} → (norm g ≡ norm f) → g IsRelatedTo h → f IsRelatedTo h _ ↑⟨ g∼f ⟩ relTo g∼h = relTo (trans (sym g∼f) g∼h) -- the syntax of the ancients, for compatibility ._≈⟨_⟩_ : ∀ {X Y} (f : _#⇒_ X Y) {g h} → (norm f ≡ norm g) → g IsRelatedTo h → f IsRelatedTo h _ ≈⟨ f∼g ⟩ relTo g∼h = relTo (trans f∼g g∼h) ._↓≡⟨_⟩_ : ∀ {X Y} (f : _#⇒_ X Y) {g h} → eval f ≡ eval g → g IsRelatedTo h → f IsRelatedTo h _↓≡⟨_⟩_ f {g} f∼g (relTo g∼h) = relTo (trans (norm≡eval f) (trans f∼g (trans (sym (norm≡eval g)) g∼h))) ._↑≡⟨_⟩_ : ∀ {X Y} (f : _#⇒_ X Y) {g h} → eval g ≡ eval f → g IsRelatedTo h → f IsRelatedTo h _↑≡⟨_⟩_ f {g} g∼f (relTo g∼h) = relTo (trans (norm≡eval f) (trans (sym g∼f) (trans (sym (norm≡eval g)) g∼h))) ._↕_ : ∀ {X Y} (f : _#⇒_ X Y) {h} → f IsRelatedTo h → f IsRelatedTo h _ ↕ f∼h = f∼h ._∎ : ∀ {X Y} (f : _#⇒_ X Y) → f IsRelatedTo f _∎ _ = relTo refl .by_ : ∀ {X Y} {f g h : X ⇒ Y} -> ((h ≡ h) -> f ≡ g) -> f ≡ g by eq = eq refl .computation : ∀ {X Y} (f g : X #⇒ Y) -> norm f ≡ norm g → eval f ≡ eval g computation f g eq = begin f ↓⟨ eq ⟩ g ∎ module AUReasoning {o ℓ e} (C : Category o ℓ e) where private module C = Category C open C open Equiv {- infix 4 _IsRelatedTo_ infix 2 _∎ infixr 2 _≈⟨_⟩_ infixr 2 _↓⟨_⟩_ infixr 2 _↑⟨_⟩_ infixr 2 _↓≡⟨_⟩_ infixr 2 _↑≡⟨_⟩_ infixr 2 _↕_ infix 1 begin_ -} infixr 8 _∙_ open Yon-Eda C public data Climb : Rel Obj (o ⊔ ℓ) where ID : ∀ {X} → Climb X X leaf : ∀ {X Y} → (X ⇒ Y) → Climb X Y _branch_ : ∀ {X Y Z} (l : Climb Y Z) (r : Climb X Y) → Climb X Z interp : ∀ {p} (P : Rel Obj p) (f-id : ∀ {X} → P X X) (f-leaf : ∀ {X Y} → X ⇒ Y → P X Y) (f-branch : ∀ {X Y Z} → P Y Z → P X Y → P X Z) → ∀ {X Y} → Climb X Y → P X Y interp P f-id f-leaf f-branch ID = f-id interp P f-id f-leaf f-branch (leaf y) = f-leaf y interp P f-id f-leaf f-branch (l branch r) = f-branch (interp P f-id f-leaf f-branch l) (interp P f-id f-leaf f-branch r) eval : ∀ {X Y} → Climb X Y → X ⇒ Y eval = interp _⇒_ id idᶠ _∘_ yeval : ∀ {X Y} → Climb X Y → Yon X Y yeval = interp Yon Yon-id Yon-inject Yon-compose .yarr : ∀ {X Y} → (t : Climb X Y) → Yon.arr (yeval t) ≡ eval t yarr ID = refl yarr (leaf y) = refl yarr (t branch t1) = trans (Yon.ok (yeval t) (Yon.arr (yeval t1))) (∘-resp-≡ (yarr t) (yarr t1)) eeval : ∀ {X Y} → Climb X Y → Eda X Y eeval = interp Eda Eda-id (Eda-inject © Yon-inject) Eda-compose .eyon : ∀ {X Y} → (t : Climb X Y) → Eda.yon (eeval t) ≡′ yeval t eyon ID = Yon-refl eyon (leaf y) = Yon-refl eyon (t branch t1) = Yon-trans (Eda.ok (eeval t1) (Eda.yon (eeval t))) (Yon-compose-resp-≡′ (eyon t) (eyon t1)) .earr : ∀ {X Y} → (t : Climb X Y) → Eda.arr (eeval t) ≡ eval t earr t = trans (arr-≡ (eyon t)) (yarr t) yyeval : ∀ {X Y} → (t : Climb X Y) → (X ⇒ Y) yyeval = Eda.arr © eeval record ClimbBuilder (X Y : Obj) {t} (T : Set t) : Set (o ⊔ ℓ ⊔ t) where field build : T → Climb X Y instance leafBuilder : ∀ {X Y} → ClimbBuilder X Y (X ⇒ Y) leafBuilder = record { build = leaf } idBuilder : ∀ {X Y} → ClimbBuilder X Y (Climb X Y) idBuilder = record { build = idᶠ } _∙_ : ∀ {X Y Z} {s} {S : Set s} {{Sb : ClimbBuilder Y Z S}} (f : S) {t} {T : Set t} {{Tb : ClimbBuilder X Y T}} (g : T) → Climb X Z _∙_ {{Sb}} f {{Tb}} g = ClimbBuilder.build Sb f branch ClimbBuilder.build Tb g aureasoning : NormReasoning C o (ℓ ⊔ o) aureasoning = record { U = Obj ; T = λ A → A ; _#⇒_ = Climb ; eval = eval ; norm = yyeval ; norm≡eval = earr } open NormReasoning aureasoning public hiding (eval) {- data _IsRelatedTo_ {X Y} (f g : Climb X Y) : Set e where relTo : (f∼g : yyeval f ≡ yyeval g) → f IsRelatedTo g .begin_ : ∀ {X Y} {f g : Climb X Y} → f IsRelatedTo g → eval f ≡ eval g begin_ {f = f} {g} (relTo f∼g) = trans (sym (earr f)) (trans f∼g (earr g)) ._↓⟨_⟩_ : ∀ {X Y} (f : Climb X Y) {g h} → (yyeval f ≡ yyeval g) → g IsRelatedTo h → f IsRelatedTo h _ ↓⟨ f∼g ⟩ relTo g∼h = relTo (trans f∼g g∼h) ._↑⟨_⟩_ : ∀ {X Y} (f : Climb X Y) {g h} → (yyeval g ≡ yyeval f) → g IsRelatedTo h → f IsRelatedTo h _ ↑⟨ g∼f ⟩ relTo g∼h = relTo (trans (sym g∼f) g∼h) -- the syntax of the ancients, for compatibility ._≈⟨_⟩_ : ∀ {X Y} (f : Climb X Y) {g h} → (yyeval f ≡ yyeval g) → g IsRelatedTo h → f IsRelatedTo h _ ≈⟨ f∼g ⟩ relTo g∼h = relTo (trans f∼g g∼h) ._↓≡⟨_⟩_ : ∀ {X Y} (f : Climb X Y) {g h} → eval f ≡ eval g → g IsRelatedTo h → f IsRelatedTo h _↓≡⟨_⟩_ f {g} f∼g (relTo g∼h) = relTo (trans (earr f) (trans f∼g (trans (sym (earr g)) g∼h))) ._↑≡⟨_⟩_ : ∀ {X Y} (f : Climb X Y) {g h} → eval g ≡ eval f → g IsRelatedTo h → f IsRelatedTo h _↑≡⟨_⟩_ f {g} g∼f (relTo g∼h) = relTo (trans (earr f) (trans (sym g∼f) (trans (sym (earr g)) g∼h))) {- -- XXX i want this to work whenever the Edas are equal -- but that probably -- requires Climb to be indexed by yyeval! oh, for cheap ornamentation. ._↕_ : ∀ {X Y} (f : Climb X Y) {h} → f IsRelatedTo h → f IsRelatedTo h _ ↕ f∼h = f∼h -} ._∎ : ∀ {X Y} (f : Climb X Y) → f IsRelatedTo f _∎ _ = relTo refl -}
{ "alphanum_fraction": 0.4637299351, "avg_line_length": 29.3561151079, "ext": "agda", "hexsha": "39937c3f6f68622cac23bd72579f0dce65493869", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Square.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Square.agda", "max_line_length": 228, "max_stars_count": 1, "max_stars_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "p-pavel/categories", "max_stars_repo_path": "Categories/Square.agda", "max_stars_repo_stars_event_max_datetime": "2018-12-29T21:51:57.000Z", "max_stars_repo_stars_event_min_datetime": "2018-12-29T21:51:57.000Z", "num_tokens": 7701, "size": 16322 }
-- Andreas, 2016-06-09 issue during refactoring for #1963 -- Shrunk this issue with projection-like functions from std-lib -- {-# OPTIONS --show-implicit #-} -- {-# OPTIONS -v tc.proj.like:10 #-} open import Common.Level open import Common.Nat renaming ( Nat to ℕ ) data ⊥ : Set where record ⊤ : Set where constructor tt postulate anything : ∀{A : Set} → A data _≤_ : (m n : ℕ) → Set where z≤n : ∀ {n} → zero ≤ n s≤s : ∀ {m n} (m≤n : m ≤ n) → suc m ≤ suc n ≤-refl : ∀{n} → n ≤ n ≤-refl {zero} = z≤n ≤-refl {suc n} = s≤s ≤-refl ≤-trans : ∀{k l m} → k ≤ l → l ≤ m → k ≤ m ≤-trans z≤n q = z≤n ≤-trans (s≤s p) (s≤s q) = s≤s (≤-trans p q) n≤m+n : ∀ m n → n ≤ (m + n) n≤m+n zero zero = z≤n n≤m+n zero (suc n) = s≤s (n≤m+n zero n) n≤m+n (suc m) zero = z≤n n≤m+n (suc m) (suc n) = s≤s anything record Preord c ℓ₁ : Set (lsuc (c ⊔ ℓ₁)) where infix 4 _∼_ field Carrier : Set c _∼_ : (x y : Carrier) → Set ℓ₁ -- The relation. refl : ∀{x} → x ∼ x trans : ∀{x y z} → x ∼ y → y ∼ z → x ∼ z Npreord : Preord _ _ Npreord = record { Carrier = ℕ ; _∼_ = _≤_ ; refl = ≤-refl; trans = ≤-trans } module Pre {p₁ p₂} (P : Preord p₁ p₂) where open Preord P infix 4 _IsRelatedTo_ infix 3 _∎ infixr 2 _≤⟨_⟩_ infix 1 begin_ data _IsRelatedTo_ (x y : Carrier) : Set p₂ where relTo : (x≤y : x ∼ y) → x IsRelatedTo y begin_ : ∀ {x y} → x IsRelatedTo y → x ∼ y begin relTo x≤y = x≤y _≤⟨_⟩_ : ∀ x {y z} → x ∼ y → y IsRelatedTo z → x IsRelatedTo z _ ≤⟨ x≤y ⟩ relTo y≤z = relTo (trans x≤y y≤z) _∎ : ∀ x → x IsRelatedTo x _∎ _ = relTo refl -- begin_ : {p₁ p₂ : Level} (P : Preord p₁ p₂) -- {x y : Preord.Carrier P} → -- x IsRelatedTo y → (P Preord.∼ x) y -- is projection like in argument 5 for type ProjectionLike1963.Pre._IsRelatedTo_ -- _∎ : {p₁ p₂ : Level} (P : Preord p₁ p₂) (x : Preord.Carrier P) → -- x IsRelatedTo x -- is projection like in argument 2 for type ProjectionLike1963.Preord open Pre Npreord _+-mono_ : ∀{m₁ m₂ n₁ n₂} → m₁ ≤ m₂ → n₁ ≤ n₂ → (m₁ + n₁) ≤ (m₂ + n₂) _+-mono_ {zero} {m₂} {n₁} {n₂} z≤n n₁≤n₂ = begin n₁ ≤⟨ n₁≤n₂ ⟩ n₂ ≤⟨ n≤m+n m₂ n₂ ⟩ m₂ + n₂ ∎ s≤s m₁≤m₂ +-mono n₁≤n₂ = s≤s (m₁≤m₂ +-mono n₁≤n₂) ISS : ∀ {n m} (p : n ≤ m) → Set ISS z≤n = ⊥ ISS (s≤s p) = ⊤ test : ISS ((z≤n {0}) +-mono (s≤s (z≤n {0}))) test = tt -- Goal display: -- C-u C-c C-, ISS (z≤n +-mono s≤s z≤n) -- C-c C-, ISS (begin 1 ≤⟨ s≤s z≤n ⟩ 1 ≤⟨ s≤s z≤n ⟩ 1 ∎) -- C-u C-u C-c C-, ISS (λ {y} → Pre.begin _)
{ "alphanum_fraction": 0.5262128326, "avg_line_length": 26.625, "ext": "agda", "hexsha": "604b01ddce6698987183f8d03c8d67383bb258f3", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/ProjectionLike1963.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/ProjectionLike1963.agda", "max_line_length": 82, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/ProjectionLike1963.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 1219, "size": 2556 }
open import Level using (_⊔_; suc; Lift; lift) open import Function using (_$_; _∘_; _⤖_) open import Relation.Nullary using (¬_) open import Relation.Nullary.Decidable using (False) open import Relation.Binary using (Rel; Decidable; Setoid; DecSetoid; IsEquivalence; IsDecEquivalence) open import Data.Empty using (⊥) open import Data.Product using (∃-syntax; _,_) open import Data.Sum using (_⊎_) module AKS.Algebra.Structures {c ℓ} (C : Set c) (_≈_ : Rel C ℓ) where open import Data.Unit using (⊤; tt) open import Agda.Builtin.FromNat using (Number) open import AKS.Nat using (ℕ; _<_; _≟_) open import AKS.Fin using (Fin) open import Algebra.Core using (Op₂; Op₁) open import Algebra.Structures _≈_ using (IsCommutativeRing; IsAbelianGroup) infix 4 _≉_ _≉_ : Rel C ℓ x ≉ y = x ≈ y → ⊥ record IsNonZeroCommutativeRing (_+_ _*_ : Op₂ C) (-_ : Op₁ C) (0# 1# : C) : Set (c ⊔ ℓ) where field isCommutativeRing : IsCommutativeRing _+_ _*_ -_ 0# 1# 0#≉1# : 0# ≉ 1# open IsCommutativeRing isCommutativeRing public open import Relation.Binary.Reasoning.Setoid setoid open import Algebra.Properties.Ring (record { isRing = isRing }) using (-‿distribˡ-*; -‿involutive) 1#≉0# : 1# ≉ 0# 1#≉0# = 0#≉1# ∘ sym 0#≉-1# : 0# ≉ - 1# 0#≉-1# 0#≈-1# = 0#≉1# $ begin 0# ≈⟨ sym (zeroʳ 0#) ⟩ 0# * 0# ≈⟨ *-cong 0#≈-1# 0#≈-1# ⟩ (- 1#) * (- 1#) ≈⟨ sym (-‿distribˡ-* 1# (- 1#)) ⟩ - (1# * (- 1#)) ≈⟨ -‿cong (*-identityˡ (- 1#)) ⟩ - (- 1#) ≈⟨ -‿involutive 1# ⟩ 1# ∎ -1#≉0# : - 1# ≉ 0# -1#≉0# = 0#≉-1# ∘ sym C/0 : Set (c ⊔ ℓ) C/0 = ∃[ x ] (x ≉ 0#) 1#-nonzero : C/0 1#-nonzero = 1# , 1#≉0# -1#-nonzero : C/0 -1#-nonzero = - 1# , -1#≉0# fromNat : ℕ → C fromNat ℕ.zero = 0# fromNat (ℕ.suc ℕ.zero) = 1# fromNat (ℕ.suc (ℕ.suc n)) = 1# + fromNat (ℕ.suc n) instance C-number : Number C C-number = record { Constraint = λ _ → Lift c ⊤ ; fromNat = λ n → fromNat n } record IsIntegralDomain (_+_ _*_ : Op₂ C) (-_ : Op₁ C) (0# 1# : C) : Set (c ⊔ ℓ) where field isNonZeroCommutativeRing : IsNonZeroCommutativeRing _+_ _*_ -_ 0# 1# *-cancelˡ : ∀ x {y z} → x ≉ 0# → (x * y) ≈ (x * z) → y ≈ z open IsNonZeroCommutativeRing isNonZeroCommutativeRing public open import Relation.Binary.Reasoning.Setoid setoid *-cancelʳ : ∀ x {y z} → x ≉ 0# → (y * x) ≈ (z * x) → y ≈ z *-cancelʳ x {y} {z} x≉0 y*x≈z*x = *-cancelˡ x x≉0 $ begin (x * y) ≈⟨ *-comm x y ⟩ (y * x) ≈⟨ y*x≈z*x ⟩ (z * x) ≈⟨ *-comm z x ⟩ (x * z) ∎ *≉0 : ∀ {c₁ c₂} → c₁ ≉ 0# → c₂ ≉ 0# → c₁ * c₂ ≉ 0# *≉0 {c₁} {c₂} c₁≉0 c₂≉0 c₁*c₂≈0 = c₂≉0 $ *-cancelˡ c₁ c₁≉0 $ begin (c₁ * c₂) ≈⟨ c₁*c₂≈0 ⟩ (0#) ≈⟨ sym (zeroʳ c₁) ⟩ (c₁ * 0#) ∎ infixl 7 _*-nonzero_ _*-nonzero_ : C/0 → C/0 → C/0 (c₁ , c₁≉0) *-nonzero (c₂ , c₂≉0) = c₁ * c₂ , *≉0 c₁≉0 c₂≉0 module Divisibility (_*_ : Op₂ C) where infix 4 _∣_ record _∣_ (d : C) (a : C) : Set (c ⊔ ℓ) where constructor divides field quotient : C equality : a ≈ (quotient * d) infix 4 _∤_ _∤_ : C → C → Set (c ⊔ ℓ) d ∤ a = ¬ (d ∣ a) record IsGCD (gcd : Op₂ C) : Set (c ⊔ ℓ) where field gcd[a,b]∣a : ∀ a b → gcd a b ∣ a gcd[a,b]∣b : ∀ a b → gcd a b ∣ b gcd-greatest : ∀ {c a b} → c ∣ a → c ∣ b → c ∣ gcd a b record IsGCDDomain (_+_ _*_ : Op₂ C) (-_ : Op₁ C) (0# 1# : C) (gcd : Op₂ C) : Set (c ⊔ ℓ) where open Divisibility _*_ public field isIntegralDomain : IsIntegralDomain _+_ _*_ -_ 0# 1# gcd-isGCD : IsGCD gcd open IsIntegralDomain isIntegralDomain public record IsUniqueFactorizationDomain (_+_ _*_ : Op₂ C) (-_ : Op₁ C) (0# 1# : C) (gcd : Op₂ C) : Set (c ⊔ ℓ) where field isGCDDomain : IsGCDDomain _+_ _*_ -_ 0# 1# gcd -- TODO define factorization open IsGCDDomain isGCDDomain public module Modulus (0# : C) (∣_∣ : ∀ n {n≉0 : n ≉ 0#} → ℕ) (_mod_ : ∀ (n m : C) {m≉0 : m ≉ 0#} → C) where data Remainder (n : C) (m : C) {m≉0 : m ≉ 0#} : Set (c ⊔ ℓ) where 0≈ : (r≈0 : (n mod m) {m≉0} ≈ 0#) → Remainder n m 0≉ : (r≉0 : (n mod m) {m≉0} ≉ 0#) → ∣ n mod m ∣ {r≉0} < ∣ m ∣ {m≉0} → Remainder n m module _ (_+_ _*_ : Op₂ C) (-_ : Op₁ C) (0# 1# : C) (∣_∣ : ∀ n {n≉0 : n ≉ 0#} → ℕ) (_div_ : ∀ (n m : C) {m≉0 : m ≉ 0#} → C) (_mod_ : ∀ (n m : C) {m≉0 : m ≉ 0#} → C) (gcd : Op₂ C) where record IsEuclideanDomain : Set (c ⊔ ℓ) where open Modulus 0# ∣_∣ _mod_ public field isUniqueFactorizationDomain : IsUniqueFactorizationDomain _+_ _*_ -_ 0# 1# gcd division : ∀ n m {m≉0 : m ≉ 0#} → n ≈ ((m * (n div m) {m≉0}) + (n mod m) {m≉0}) modulus : ∀ n m {m≉0 : m ≉ 0#} → Remainder n m {m≉0} div-cong : ∀ {x₁ x₂} {y₁ y₂} → x₁ ≈ x₂ → y₁ ≈ y₂ → ∀ {y₁≉0 y₂≉0} → (x₁ div y₁) {y₁≉0} ≈ (x₂ div y₂) {y₂≉0} mod-cong : ∀ {x₁ x₂} {y₁ y₂} → x₁ ≈ x₂ → y₁ ≈ y₂ → ∀ {y₁≉0 y₂≉0} → (x₁ mod y₁) {y₁≉0} ≈ (x₂ mod y₂) {y₂≉0} open IsUniqueFactorizationDomain isUniqueFactorizationDomain public record IsField (_+_ _*_ : Op₂ C) (-_ : Op₁ C) (0# 1# : C) (_/_ : ∀ (n m : C) {m≉0 : m ≉ 0#} → C) (gcd : Op₂ C) : Set (c ⊔ ℓ) where field isEuclideanDomain : IsEuclideanDomain _+_ _*_ -_ 0# 1# (λ _ → 0) _/_ (λ _ _ → 0#) gcd open IsEuclideanDomain isEuclideanDomain public renaming (div-cong to /-cong) open import Relation.Binary.Reasoning.Setoid setoid m*[n/m]≈n : ∀ n m {m≉0 : m ≉ 0#} → (m * (n / m) {m≉0}) ≈ n m*[n/m]≈n n m {m≉0} = begin (m * (n / m) {m≉0}) ≈⟨ sym (+-identityʳ (m * (n / m) {m≉0})) ⟩ ((m * (n / m) {m≉0}) + 0#) ≈⟨ sym (division n m) ⟩ n ∎ [n/m]*m≈n : ∀ n m {m≉0 : m ≉ 0#} → ((n / m) {m≉0} * m) ≈ n [n/m]*m≈n n m {m≉0} = begin ((n / m) * m) ≈⟨ *-comm (n / m) m ⟩ (m * (n / m)) ≈⟨ m*[n/m]≈n n m ⟩ n ∎ /≉0 : ∀ {c₁ c₂} → c₁ ≉ 0# → (c₂≉0 : c₂ ≉ 0#) → (c₁ / c₂) {c₂≉0} ≉ 0# /≉0 {c₁} {c₂} c₁≉0 c₂≉0 c₁/c₂≈0 = 0#≉1# $ *-cancelˡ c₂ c₂≉0 $ begin c₂ * 0# ≈⟨ *-congˡ (sym (zeroˡ ((c₂ / c₁) {c₁≉0}))) ⟩ c₂ * (0# * (c₂ / c₁)) ≈⟨ *-congˡ (*-congʳ (sym (c₁/c₂≈0))) ⟩ c₂ * ((c₁ / c₂) * (c₂ / c₁)) ≈⟨ sym (*-assoc c₂ (c₁ / c₂) (c₂ / c₁)) ⟩ (c₂ * (c₁ / c₂)) * (c₂ / c₁) ≈⟨ *-congʳ (m*[n/m]≈n c₁ c₂) ⟩ c₁ * (c₂ / c₁) ≈⟨ m*[n/m]≈n c₂ c₁ ⟩ c₂ ≈⟨ sym (*-identityʳ c₂) ⟩ c₂ * 1# ∎ infixl 7 _/-nonzero_ _/-nonzero_ : C/0 → C/0 → C/0 (c₁ , c₁≉0) /-nonzero (c₂ , c₂≉0) = (c₁ / c₂) {c₂≉0} , /≉0 c₁≉0 c₂≉0 infix 8 _⁻¹ _⁻¹ : ∀ x {x≉0 : x ≉ 0#} → C _⁻¹ x {x≉0} = (1# / x) {x≉0} ⁻¹-inverseʳ : ∀ x {x≉0 : x ≉ 0#} → (x * (x ⁻¹) {x≉0}) ≈ 1# ⁻¹-inverseʳ = m*[n/m]≈n 1# ⁻¹-inverseˡ : ∀ x {x≉0 : x ≉ 0#} → ((x ⁻¹) {x≉0} * x) ≈ 1# ⁻¹-inverseˡ = [n/m]*m≈n 1# x⁻¹≉0 : ∀ x {x≉0 : x ≉ 0#} → (x ⁻¹) {x≉0} ≉ 0# x⁻¹≉0 x {x≉0} = /≉0 1#≉0# x≉0 -- 0#≉1# $ begin -- 0# ≈⟨ sym (zeroʳ x) ⟩ -- x * 0# ≈⟨ *-congˡ (sym x⁻¹≈0) ⟩ -- x * (x ⁻¹) {x≉0} ≈⟨ ⁻¹-inverseʳ x ⟩ -- 1# ∎ ⁻¹-cong : ∀ {x y} {x≉0 : x ≉ 0#} {y≉0 : y ≉ 0#} → x ≈ y → (x ⁻¹) {x≉0} ≈ (y ⁻¹) {y≉0} ⁻¹-cong {x} {y} {x≉0} {y≉0} x≈y = *-cancelˡ x x≉0 $ begin (x * (x ⁻¹)) ≈⟨ ⁻¹-inverseʳ x ⟩ 1# ≈⟨ sym (⁻¹-inverseʳ y {y≉0}) ⟩ (y * (y ⁻¹)) ≈⟨ *-congʳ (sym x≈y) ⟩ (x * (y ⁻¹)) ∎ record IsDecField (_≈?_ : Decidable _≈_) (_+_ _*_ : Op₂ C) (-_ : Op₁ C) (0# 1# : C) (_/_ : ∀ (n m : C) {m≉0 : m ≉ 0#} → C) (gcd : Op₂ C) : Set (c ⊔ ℓ) where field isField : IsField _+_ _*_ -_ 0# 1# _/_ gcd open IsField isField public isDecEquivalence : IsDecEquivalence _≈_ isDecEquivalence = record { isEquivalence = isEquivalence ; _≟_ = _≈?_ } record IsFiniteField (_≈?_ : Decidable _≈_) (_+_ _*_ : Op₂ C) (-_ : Op₁ C) (0# 1# : C) (_/_ : ∀ (n m : C) {m≉0 : m ≉ 0#} → C) (gcd : Op₂ C) (cardinality : ℕ) : Set (suc c ⊔ ℓ) where field isDecField : IsDecField _≈?_ _+_ _*_ -_ 0# 1# _/_ gcd C↦Fin[cardinality] : C ⤖ Fin cardinality open IsDecField isDecField public
{ "alphanum_fraction": 0.4936373945, "avg_line_length": 34.0643776824, "ext": "agda", "hexsha": "540820cf21cf6a86b6b2baa400b95275bfc95e7b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mckeankylej/thesis", "max_forks_repo_path": "proofs/AKS/Algebra/Structures.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mckeankylej/thesis", "max_issues_repo_path": "proofs/AKS/Algebra/Structures.agda", "max_line_length": 130, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mckeankylej/thesis", "max_stars_repo_path": "proofs/AKS/Algebra/Structures.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z", "num_tokens": 4168, "size": 7937 }
open import Agda.Builtin.Nat open import Agda.Builtin.Equality record Eq (A : Set) : Set₁ where field _≈_ : A → A → Set open Eq {{...}} public record Setoid : Set₁ where field ∣_∣ : Set {{eq}} : Eq ∣_∣ open Setoid public -- instance -- EqNat : Eq Nat -- _≈_ {{EqNat}} = _≡_ NatSetoid : Setoid ∣ NatSetoid ∣ = Nat -- Should give: No instance of type Eq Nat
{ "alphanum_fraction": 0.6062176166, "avg_line_length": 15.44, "ext": "agda", "hexsha": "80ee8855487acece6d9629f0356b3be9f95054ae", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2288.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2288.agda", "max_line_length": 42, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2288.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 145, "size": 386 }
open import Data.Bool module GUIgeneric.GUIExample where open import GUIgeneric.Prelude renaming (inj₁ to secondBtn; inj₂ to firstBtn; WxColor to Color) hiding (addButton; _>>_) open import GUIgeneric.GUIDefinitions renaming (add to add'; add' to add) open import GUIgeneric.GUI open import GUIgeneric.GUIExampleLib renaming (addButton to addButton') open import Data.Product addButton : String → Frame → Frame addButton str fr = addButton' str fr optimized addTxtBox : String → Frame → Frame addTxtBox str fr = addTxtBox' str fr optimized oneBtnGUI : Frame oneBtnGUI = addButton "OK" create-frame twoBtnGUI : Frame twoBtnGUI = addButton "Cancel" oneBtnGUI -- Attributes -- Cols = ℕ Margin = ℕ HSpace = ℕ VSpace = ℕ oneColumnLayout : Cols × Margin × HSpace × VSpace oneColumnLayout = (1 , 10 , 2 , 2) black : Color black = rgb 0 0 0 propOneBtn : properties oneBtnGUI propOneBtn = black , oneColumnLayout propTwoBtn : properties twoBtnGUI propTwoBtn = black , black , oneColumnLayout putStr' : {A : Set} → String → (f : IO GuiLev1Interface ∞ A) → IO GuiLev1Interface ∞ A putStr' s f = do (putStrLn s) (λ _ → f) syntax putStr' s f = putStrLn s >> f keepGUI : {j : Size} → HandlerObject j twoBtnGUI → IO GuiLev1Interface ∞ (Σ-syntax (returnType twoBtnGUI) (λ r → IOObjectˢ GuiLev1Interface handlerInterface j (nextStateFrame twoBtnGUI r))) keepGUI = λ obj → return (noChange , obj) changeGUI : ∀ {j} (g : CompEls frame) {g'} (prop : properties g) obj → IO GuiLev1Interface ∞ (Σ (returnType g') (\r -> IOObjectˢ GuiLev1Interface handlerInterface j (nextStateFrame g' r))) changeGUI = λ g prop obj → return (changedGUI g prop , obj) mutual objTwoBtnGUI' : ∀ i → HandlerObject i twoBtnGUI objTwoBtnGUI' i .method {j} (secondBtn bt) = putStrLn "Cancel Fired! NO GUI Change." >> keepGUI (objTwoBtnGUI' j) objTwoBtnGUI' i .method {j} (firstBtn bt) = putStrLn "OK Fired! Redefining GUI." >> changeGUI oneBtnGUI propOneBtn (objOneBtnGUI' j) objOneBtnGUI' : ∀ i → HandlerObject i oneBtnGUI objOneBtnGUI' i .method {j} bt = putStrLn "OK Fired! Redefining GUI." >> changeGUI twoBtnGUI propTwoBtn (objTwoBtnGUI' j) obj2Btn : ∀ {i} → HandlerObject i twoBtnGUI obj2Btn .method (firstBtn bt) = putStrLn "OK fired! Redefining GUI." >> changeGUI oneBtnGUI propOneBtn obj1Btn obj2Btn .method (secondBtn bt) = putStrLn "Cancel fired! No GUI change." >> keepGUI obj2Btn obj1Btn : ∀ {i} → HandlerObject i oneBtnGUI obj1Btn .method bt = putStrLn "OK fired! Redefining GUI." >> changeGUI twoBtnGUI propTwoBtn obj2Btn main : NativeIO Unit main = compileProgram twoBtnGUI propTwoBtn (obj2Btn {∞})
{ "alphanum_fraction": 0.6935074356, "avg_line_length": 25.5277777778, "ext": "agda", "hexsha": "98b6f366f0e14e9afd46cfbb601e1fb11e582f5e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "stephanadls/state-dependent-gui", "max_forks_repo_path": "examples/GUIgeneric/GUIExample.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "stephanadls/state-dependent-gui", "max_issues_repo_path": "examples/GUIgeneric/GUIExample.agda", "max_line_length": 131, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "stephanadls/state-dependent-gui", "max_stars_repo_path": "examples/GUIgeneric/GUIExample.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-31T17:20:59.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T15:37:39.000Z", "num_tokens": 842, "size": 2757 }
-- {-# OPTIONS -v tc.conv.level:60 #-} -- {-# OPTIONS -v tc.conv:30 #-} {- Agda development version: Wed Oct 30 16:30:06 GMT 2013 The last line of code triggers the following error, but replacing '_' with 'a' typechecks just fine. Bug.agda:32,8-11 tt != a of type ⊤ when checking that the expression s _ has type P tt → P a Changing 'Set (q a)' to 'Set' in line 26 suppresses the error. -} -- Andreas, 2013-10-31 Fixed by retrying sort comparison after -- successful type comparison (which might have solve the missing level metas). module Issue930 where open import Common.Level data ⊤ : Set where tt : ⊤ postulate q : ⊤ → Level P : (a : ⊤) → Set (q a) s : (a : ⊤) → P tt → P a a : ⊤ g : (P tt → P a) → ⊤ v : ⊤ v = g (s _) {- coerce term v = s ?1 from type t1 = P tt → P ?1 to type t2 = P tt → P a equalSort Set (q tt ⊔ q ?1) == Set (q a ⊔ q tt) compareAtom q tt == q a : Level compareTerm tt == a : ⊤ sort comparison failed -- THIS ERROR IS CAUGHT, BUT RETHROWN AT THE END compareTerm P tt → P ?1 =< P tt → P a : Set (q tt ⊔ q ?1) compare function types t1 = P tt → P ?1 t2 = P tt → P a equalSort Set (q ?1) == Set (q a) compareTerm ?1 == a : ⊤ attempting shortcut ?1 := a solving _13 := a -}
{ "alphanum_fraction": 0.5957446809, "avg_line_length": 22.6607142857, "ext": "agda", "hexsha": "f1ff8f5b2fda1c842a2af126b2ece0d275044909", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue930.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue930.agda", "max_line_length": 79, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue930.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 453, "size": 1269 }
module x01-842Naturals where -- This is a comment. {- This is a multi-line comment -} -- Definition of datatype representing natural numbers. ♭ data ℕ : Set where zero : ℕ suc : ℕ → ℕ -- A couple of definitions using this datatype. one : ℕ one = suc zero two : ℕ two = suc (suc zero) -- I could have also said two = suc one. -- PLFA exercise: write out seven. -- Pragma to use decimal notation as shorthand. {-# BUILTIN NATURAL ℕ #-} -- Some useful imports from the standard library: import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎) -- Addition on naturals. _+_ : ℕ → ℕ → ℕ zero + n = n suc m + n = suc {!m + n!} -- Agda normalization; proof of equality. _ : 2 + 3 ≡ 5 _ = refl -- Equational reasoning. _ : 2 + 3 ≡ 5 _ = begin 2 + 3 ≡⟨⟩ -- is shorthand for (suc (suc zero)) + (suc (suc (suc zero))) ≡⟨⟩ -- many steps condensed 5 ∎ -- PLFA shows longhand and shorthand are interchangeable. -- PLFA exercise: write out the reduction for 3+4 equationally. -- Multiplication. _*_ : ℕ → ℕ → ℕ m * n = {!!} _ = begin 2 * 3 ≡⟨⟩ -- many steps condensed 6 ∎ -- PLFA exercise: write out 3*4. -- 842 exercise: Exponentiation (1 point) -- Define exponentiation (m raised to the power n). _^_ : ℕ → ℕ → ℕ m ^ n = {!!} -- One test for exponentiation (you should write others). _ : 2 ^ 3 ≡ 8 _ = refl -- Monus (subtraction for naturals, bottoms out at zero). _∸_ : ℕ → ℕ → ℕ m ∸ n = {!!} _ = begin 3 ∸ 2 ≡⟨⟩ -- many steps condensed 1 ∎ _ = begin 2 ∸ 3 ≡⟨⟩ -- many steps condensed 0 ∎ -- PLFA exercise: write out 5 ∸ 3 and 3 ∸ 5. infixl 6 _+_ _∸_ infixl 7 _*_ -- These pragmas will register our operations, if we want, -- so that they work with decimal notation. -- {-# BUILTIN NATPLUS _+_ #-} -- {-# BUILTIN NATTIMES _*_ #-} -- {-# BUILTIN NATMINUS _∸_ #-} -- Binary representation. -- Modified from PLFA exercise (thanks to David Darais). data Bin-ℕ : Set where bits : Bin-ℕ _x0 : Bin-ℕ → Bin-ℕ _x1 : Bin-ℕ → Bin-ℕ -- Our representation of zero is different from PLFA. -- We use the empty sequence of bits (more consistent). bin-zero : Bin-ℕ bin-zero = bits bin-one : Bin-ℕ bin-one = bits x1 -- 1 in binary bin-two : Bin-ℕ bin-two = bits x1 x0 -- 10 in binary -- 842 exercise: Increment (1 point) -- Define increment (add one). inc : Bin-ℕ → Bin-ℕ inc m = {!!} -- An example/test of increment (you should create others). _ : inc (bits x1 x0 x1 x1) ≡ bits x1 x1 x0 x0 _ = refl -- 842 exercise: To/From (2 points) -- Define 'tob' and 'fromb' operations -- to convert between unary (ℕ) and binary (Bin-ℕ) notation. -- Hint: avoid addition and multiplication, -- and instead use the provided dbl (double) function. -- This will make later proofs easier. -- I've put 'b' on the end of the operations to -- avoid a name clash in a later file. -- It also makes the direction clear when using them. dbl : ℕ → ℕ dbl zero = zero dbl (suc m) = suc (suc (dbl m)) tob : ℕ → Bin-ℕ tob m = {!!} fromb : Bin-ℕ → ℕ fromb n = {!!} -- A couple of examples/tests (you should create others). _ : tob 6 ≡ bits x1 x1 x0 _ = refl _ : fromb (bits x1 x1 x0) ≡ 6 _ = refl -- 842 exercise: BinAdd (2 points) -- Write the addition function for binary notation. -- Do NOT use 'to' and 'from'. Work with Bin-ℕ as if ℕ did not exist. -- Hint: use recursion on both m and n. _bin-+_ : Bin-ℕ → Bin-ℕ → Bin-ℕ m bin-+ n = {!!} -- Tests can use to/from, or write out binary constants as below. -- Again: write more tests! _ : (bits x1 x0) bin-+ (bits x1 x1) ≡ (bits x1 x0 x1) _ = refl -- That's it for now, but we will return to binary notation later. -- Many definitions from above are also in the standard library. -- open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _^_; _∸_) -- Unicode used in this chapter: {- ℕ U+2115 DOUBLE-STRUCK CAPITAL N (\bN) → U+2192 RIGHTWARDS ARROW (\to, \r, \->) ∸ U+2238 DOT MINUS (\.-) ≡ U+2261 IDENTICAL TO (\==) ⟨ U+27E8 MATHEMATICAL LEFT ANGLE BRACKET (\<) ⟩ U+27E9 MATHEMATICAL RIGHT ANGLE BRACKET (\>) ∎ U+220E END OF PROOF (\qed) -}
{ "alphanum_fraction": 0.6249405045, "avg_line_length": 19.9146919431, "ext": "agda", "hexsha": "56e2faf5012a0310a8a214a0b3932203ce1abe85", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x01-842Naturals.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x01-842Naturals.agda", "max_line_length": 69, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x01-842Naturals.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 1442, "size": 4202 }
-- Andreas, 2018-05-28, issue #3095, fail on attempt to make hidden parent variable visible data Nat : Set where suc : {n : Nat} → Nat data IsSuc : Nat → Set where isSuc : ∀{n} → IsSuc (suc {n}) test : ∀{m} → IsSuc m → Set test p = aux p where aux : ∀{n} → IsSuc n → Set aux isSuc = {!.m!} -- Split on .m here -- Context: -- p : IsSuc .m -- .m : Nat -- .n : Nat -- Expected error: -- Cannot split on module parameter .m -- when checking that the expression ? has type Set
{ "alphanum_fraction": 0.6032719836, "avg_line_length": 21.2608695652, "ext": "agda", "hexsha": "dce10ae403b7b2e782498e896631ca4a4111ae49", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/interaction/Issue3095-fail.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/interaction/Issue3095-fail.agda", "max_line_length": 91, "max_stars_count": 1, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/interaction/Issue3095-fail.agda", "max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z", "max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z", "num_tokens": 171, "size": 489 }
{-# OPTIONS --without-K --safe #-} module Categories.Minus2-Category.Properties where -- All -2-Categories are equivalent to One open import Level open import Data.Product using (Σ; _,_; proj₁; proj₂) open import Data.Unit using (⊤; tt) open import Categories.Minus2-Category open import Categories.Category import Categories.Morphism as M open import Categories.Category.Monoidal open import Categories.Category.Instance.One open import Categories.Category.Equivalence hiding (refl) open import Categories.NaturalTransformation using (ntHelper) private variable o ℓ e : Level shrink-them-all : (X : -2-Category {o} {ℓ} {e}) → StrongEquivalence (-2-Category.cat X) (One {o} {ℓ} {e}) shrink-them-all X = record { F = record { F₀ = λ _ → lift tt ; F₁ = λ _ → lift tt } ; G = record { F₀ = λ _ → proj₁ Obj-Contr ; F₁ = λ _ → M._≅_.from (proj₂ Obj-Contr (proj₁ Obj-Contr)) ; identity = Hom-Conn ; homomorphism = Hom-Conn ; F-resp-≈ = λ _ → Hom-Conn } ; weak-inverse = record { F∘G≈id = _ ; G∘F≈id = record { F⇒G = ntHelper (record { η = λ y → M._≅_.from (proj₂ Obj-Contr y) ; commute = λ _ → Hom-Conn }) ; F⇐G = ntHelper (record { η = λ y → M._≅_.to (proj₂ Obj-Contr y) ; commute = λ _ → Hom-Conn }) ; iso = λ Z → record { isoˡ = M._≅_.isoˡ (proj₂ Obj-Contr Z) ; isoʳ = M._≅_.isoʳ (proj₂ Obj-Contr Z) } } } } where open -2-Category X open Category cat
{ "alphanum_fraction": 0.6044678055, "avg_line_length": 26.701754386, "ext": "agda", "hexsha": "23def69502ccde6368272f5648a846a698a23454", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Minus2-Category/Properties.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Minus2-Category/Properties.agda", "max_line_length": 105, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Minus2-Category/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 504, "size": 1522 }
module gc where open import lib -- we will model addresses in memory as just natural numbers Address : Set Address = ℕ -- a value of type (Bounded n) is an address a together with a proof that a is less than n Bounded : Address → Set Bounded n = Σ Address (λ a → a < n ≡ tt) -- a (Cell a) models an addressable cell of memory data Cell(bound : Address) : Set where Scalar : ℕ → Cell bound -- this represents a cell with no outgoing pointers, just a natural number value Pointers : ∀ (p1 p2 : Bounded bound) → Cell bound -- this cell has exactly two outgoing pointers {- a (well-formed) memory is a vector of m cells, where all pointers in those cells are bounded by n. This is just a way of expressing that the memory does not have any pointers heading off to some illegal locations (outside the allocated memory). -} Memory : Address → Set Memory m = 𝕍 (Cell m) m -- return a list of natural numbers from n-1 down to 0. [5 points] nats : ∀(n : ℕ) → 𝕍 ℕ n nats zero = [] nats (suc n) = n :: (nats n) -- when the definition of nats is correct, the highlighting will disappear from refl below: test-nats : nats 3 ≡ 2 :: 1 :: 0 :: [] test-nats = refl {- (outgoingPointers m mem b) returns the list of outgoing pointers at the location given by b in the Memory m. This is either empty (for Scalar) or a list of length two (for Pointers). Hint: there is already a function in vector.agda in the IAL that can find the Cell for you from mem and b. [10 points] -} outgoingPointers : ∀ (m : Address) → Memory m → Bounded m → 𝕃 (Bounded m) outgoingPointers n mem (j , k) with (nth𝕍 j k mem) ... | Scalar c = [] ... | Pointers x y = x :: y :: [] {- (doMark u unmarked m b) is supposed to return (just v) if the address given by b is a member of unmarked, and v is the result of removing that address from unmarked. If the address given by b is not in unmarked, then return none. This function simulates marking a cell by removing it (if it is there) from the vector of unmarked cells. Because the length of the vector decreases, we can recurse in markh on the result if we need to. [17 points] -} doMark : ∀(u : ℕ)(unmarked : 𝕍 Address (suc u)) → (m : Address) → Bounded m → maybe (𝕍 Address u) doMark u ( x :: unmarked ) m ( a , b ) with ( a =ℕ x ) ... | tt = just unmarked doMark 0 ( x :: [] ) m ( a , b ) | ff = nothing doMark ( suc u ) ( x :: x1 :: unmarked ) m ( a , b ) | ff with ( doMark u ( x1 :: unmarked ) m ( a , b ) ) ... | nothing = nothing ... | just unmarked1 = just ( x :: unmarked1 ) {- given a list of unmarked addresses and a Memory m, and a worklist of addresses, return the list of all unmarked addresses that are not reachable in the memory from an address in the worklist. So this is basically implementing mark and sweep gc, where addresses are considered marked if they do not appear in unmarked, and you use outgoingPointers to update the worklist when it is time to recurse. [18 points] -} markh : ∀(u : ℕ)(unmarked : 𝕍 Address u) → (m : Address) → Memory m → (worklist : 𝕃 (Bounded m)) → 𝕃 Address markh u [] m x worklist = [] markh u unmarked m x [] = 𝕍-to-𝕃 unmarked markh ( suc u ) unmarked m x ( x1 :: worklist ) with ( doMark u unmarked m x1 ) ... | nothing = markh ( suc u ) unmarked m x worklist ... | just something = markh u something m x ( worklist ++ ( outgoingPointers m x x1 ) ) {- the final mark-and-sweep function, which just takes in a memory and list of roots, and returns the addresses not reachable in that memory from one of the roots. -} mark : ∀(m : Address) → Memory m → (roots : 𝕃 (Bounded m)) → 𝕃 Address mark m memory roots = markh m (nats m) m memory roots ---------------------------------------------------------------------- -- a test case: test-memory : Memory 3 test-memory = Pointers (0 , refl) (2 , refl) :: Pointers (0 , refl) (2 , refl) :: Pointers (0 , refl) (0 , refl) :: [] test-roots : 𝕃 (Bounded 3) test-roots = [ (0 , refl) ] -- the addresses not reachable from address 0 by following pointers in test-memory test-garbage : 𝕃 Address test-garbage = mark 3 test-memory test-roots -- if the implementation above is correct, highlighting on refl below will disappear test-check : test-garbage ≡ 1 :: [] test-check = refl
{ "alphanum_fraction": 0.6487414188, "avg_line_length": 43.7, "ext": "agda", "hexsha": "84629b4eed5c63a441fbf9526a4303a37aebaa15", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c2da60d7becdbb809aae20e7a6df6ea509b991c5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DTMcNamara/CS3820-ProgrammingLanguageConcepts-Workout8", "max_forks_repo_path": "gc.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c2da60d7becdbb809aae20e7a6df6ea509b991c5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DTMcNamara/CS3820-ProgrammingLanguageConcepts-Workout8", "max_issues_repo_path": "gc.agda", "max_line_length": 119, "max_stars_count": null, "max_stars_repo_head_hexsha": "c2da60d7becdbb809aae20e7a6df6ea509b991c5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DTMcNamara/CS3820-ProgrammingLanguageConcepts-Workout8", "max_stars_repo_path": "gc.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1255, "size": 4370 }
{- In this file we apply the cubical machinery to Martin Hötzel-Escardó's structure identity principle: https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#sns -} {-# OPTIONS --cubical --safe #-} module Cubical.Foundations.SIP where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Univalence renaming (ua-pathToEquiv to ua-pathToEquiv') open import Cubical.Foundations.Transport open import Cubical.Foundations.Path open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.Properties renaming (cong≃ to _⋆_) open import Cubical.Foundations.HAEquiv open import Cubical.Data.Prod.Base hiding (_×_) renaming (_×Σ_ to _×_) open import Cubical.Foundations.Structure public private variable ℓ₁ ℓ₂ ℓ₃ ℓ₄ ℓ₅ : Level S : Type ℓ₁ → Type ℓ₂ -- For technical reasons we reprove ua-pathToEquiv using the -- particular proof constructed by iso→HAEquiv. The reason is that we -- want to later be able to extract -- -- eq : ua-au (ua e) ≡ cong ua (au-ua e) -- uaHAEquiv : (A B : Type ℓ₁) → HAEquiv (A ≃ B) (A ≡ B) uaHAEquiv A B = iso→HAEquiv (iso ua pathToEquiv ua-pathToEquiv' pathToEquiv-ua) open isHAEquiv -- We now extract the particular proof constructed from iso→HAEquiv -- for reasons explained above. ua-pathToEquiv : {A B : Type ℓ₁} (e : A ≡ B) → ua (pathToEquiv e) ≡ e ua-pathToEquiv e = uaHAEquiv _ _ .snd .ret e -- Note that for any equivalence (f , e) : X ≃ Y the type ι (X , s) (Y , t) (f , e) need not to be -- a proposition. Indeed this type should correspond to the ways s and t can be identified -- as S-structures. This we call a standard notion of structure or SNS. -- We will use a different definition, but the two definitions are interchangeable. SNS-≡ : (S : Type ℓ₁ → Type ℓ₂) (ι : StrIso S ℓ₃) → Type (ℓ-max (ℓ-max (ℓ-suc ℓ₁) ℓ₂) ℓ₃) SNS-≡ {ℓ₁} S ι = ∀ {X : Type ℓ₁} (s t : S X) → ι (X , s) (X , t) (idEquiv X) ≃ (s ≡ t) -- We introduce the notation for structure preserving equivalences a -- bit differently, but this definition doesn't actually change from -- Escardó's notes. _≃[_]_ : (A : TypeWithStr ℓ₁ S) (ι : StrIso S ℓ₂) (B : TypeWithStr ℓ₁ S) → Type (ℓ-max ℓ₁ ℓ₂) A ≃[ ι ] B = Σ[ e ∈ typ A ≃ typ B ] (ι A B e) -- The following PathP version of SNS-≡ is a bit easier to work with -- for the proof of the SIP SNS-PathP : (S : Type ℓ₁ → Type ℓ₂) (ι : StrIso S ℓ₃) → Type (ℓ-max (ℓ-max (ℓ-suc ℓ₁) ℓ₂) ℓ₃) SNS-PathP {ℓ₁} S ι = {A B : TypeWithStr ℓ₁ S} (e : typ A ≃ typ B) → ι A B e ≃ PathP (λ i → S (ua e i)) (str A) (str B) -- A quick sanity-check that our definition is interchangeable with -- Escardó's. The direction SNS-≡→SNS-PathP corresponds more or less -- to a dependent EquivJ formulation of Escardó's homomorphism-lemma. SNS-PathP→SNS-≡ : (S : Type ℓ₁ → Type ℓ₂) (ι : StrIso S ℓ₃) → SNS-PathP S ι → SNS-≡ S ι SNS-PathP→SNS-≡ S ι θ {X = X} s t = ι (X , s) (X , t) (idEquiv X) ≃⟨ θ (idEquiv X) ⟩ PathP (λ i → S (ua (idEquiv X) i)) s t ≃⟨ φ ⟩ s ≡ t ■ where φ = transportEquiv (λ j → PathP (λ i → S (uaIdEquiv {A = X} j i)) s t) SNS-≡→SNS-PathP : (ι : StrIso S ℓ₃) → SNS-≡ S ι → SNS-PathP S ι SNS-≡→SNS-PathP {S = S} ι θ {A = A} {B = B} e = EquivJ P C e (str A) (str B) where Y = typ B P : (X : Type _) → X ≃ Y → Type _ P X e' = (s : S X) (t : S Y) → ι (X , s) (Y , t) e' ≃ PathP (λ i → S (ua e' i)) s t C : (s t : S Y) → ι (Y , s) (Y , t) (idEquiv Y) ≃ PathP (λ i → S (ua (idEquiv Y) i)) s t C s t = ι (Y , s) (Y , t) (idEquiv Y) ≃⟨ θ s t ⟩ s ≡ t ≃⟨ ψ ⟩ PathP (λ i → S (ua (idEquiv Y) i)) s t ■ where ψ = transportEquiv λ j → PathP (λ i → S (uaIdEquiv {A = Y} (~ j) i)) s t -- We can now directly define an invertible function -- -- sip : A ≃[ ι ] B → A ≡ B -- sip : (S : Type ℓ₁ → Type ℓ₂) (ι : StrIso S ℓ₃) (θ : SNS-PathP S ι) (A B : TypeWithStr ℓ₁ S) → A ≃[ ι ] B → A ≡ B sip S ι θ A B (e , p) i = ua e i , θ e .fst p i -- The inverse to sip uses the following little lemma private lem : (S : Type ℓ₁ → Type ℓ₂) (A B : TypeWithStr ℓ₁ S) (e : typ A ≡ typ B) → PathP (λ i → S (ua (pathToEquiv e) i)) (A .snd) (B .snd) ≡ PathP (λ i → S (e i)) (A .snd) (B .snd) lem S A B e i = PathP (λ j → S (ua-pathToEquiv e i j)) (A .snd) (B .snd) -- The inverse sip⁻ : (S : Type ℓ₁ → Type ℓ₂) (ι : StrIso S ℓ₃) (θ : SNS-PathP S ι) (A B : TypeWithStr ℓ₁ S) → A ≡ B → A ≃[ ι ] B sip⁻ S ι θ A B r = pathToEquiv p , invEq (θ (pathToEquiv p)) q where p : typ A ≡ typ B p = cong fst r q : PathP (λ i → S (ua (pathToEquiv p) i)) (A .snd) (B .snd) q = transport⁻ (lem S A B p) (cong snd r) -- We can rather directly show that sip and sip⁻ are mutually inverse: sip-sip⁻ : (S : Type ℓ₁ → Type ℓ₂) (ι : StrIso S ℓ₃) (θ : SNS-PathP S ι) (A B : TypeWithStr ℓ₁ S) (r : A ≡ B) → sip S ι θ A B (sip⁻ S ι θ A B r) ≡ r sip-sip⁻ S ι θ A B r = let p : typ A ≡ typ B p = cong fst r q : PathP (λ i → S (p i)) (str A) (str B) q = cong snd r in sip S ι θ A B (sip⁻ S ι θ A B r) ≡⟨ refl ⟩ (λ i → ( ua (pathToEquiv p) i) , θ (pathToEquiv p) .fst (invEq (θ (pathToEquiv p)) (transport⁻ (lem S A B p) q)) i) ≡⟨ (λ i j → ( ua (pathToEquiv p) j , retEq (θ (pathToEquiv p)) (transport⁻ (lem S A B p) q) i j)) ⟩ (λ i → ( ua (pathToEquiv p) i , transport⁻ (lem S A B p) q i)) ≡⟨ (λ i j → ( ua-pathToEquiv p i j , transp (λ k → PathP (λ j → S (ua-pathToEquiv p (i ∧ k) j)) (str A) (str B)) (~ i) (transport⁻ (lem S A B p) q) j)) ⟩ (λ i → ( p i , transport (λ i → lem S A B p i) (transport⁻ (lem S A B p) q) i)) ≡⟨ (λ i j → ( p j , transportTransport⁻ (lem S A B p) q i j)) ⟩ r ∎ -- The trickier direction: sip⁻-sip : (S : Type ℓ₁ → Type ℓ₂) (ι : StrIso S ℓ₃) (θ : SNS-PathP S ι) (A B : TypeWithStr ℓ₁ S) (r : A ≃[ ι ] B) → sip⁻ S ι θ A B (sip S ι θ A B r) ≡ r sip⁻-sip S ι θ A B (e , p) = sip⁻ S ι θ A B (sip S ι θ A B (e , p)) ≡⟨ refl ⟩ pathToEquiv (ua e) , invEq (θ (pathToEquiv (ua e))) (f⁺ p') ≡⟨ (λ i → pathToEquiv-ua e i , invEq (θ (pathToEquiv-ua e i)) (pth' i)) ⟩ e , invEq (θ e) (f⁻ (f⁺ p')) ≡⟨ (λ i → e , invEq (θ e) (transportTransport⁻ (lem S A B (ua e)) p' i)) ⟩ e , invEq (θ e) (θ e .fst p) ≡⟨ (λ i → e , (secEq (θ e) p i)) ⟩ e , p ∎ where p' : PathP (λ i → S (ua e i)) (str A) (str B) p' = θ e .fst p f⁺ : PathP (λ i → S (ua e i)) (str A) (str B) → PathP (λ i → S (ua (pathToEquiv (ua e)) i)) (str A) (str B) f⁺ = transport (λ i → PathP (λ j → S (ua-pathToEquiv (ua e) (~ i) j)) (str A) (str B)) f⁻ : PathP (λ i → S (ua (pathToEquiv (ua e)) i)) (str A) (str B) → PathP (λ i → S (ua e i)) (str A) (str B) f⁻ = transport (λ i → PathP (λ j → S (ua-pathToEquiv (ua e) i j)) (str A) (str B)) -- We can prove the following as in sip∘pis-id, but the type is not -- what we want as it should be "cong ua (pathToEquiv-ua e)" pth : PathP (λ j → PathP (λ k → S (ua-pathToEquiv (ua e) j k)) (str A) (str B)) (f⁺ p') (f⁻ (f⁺ p')) pth i = transp (λ k → PathP (λ j → S (ua-pathToEquiv (ua e) (i ∧ k) j)) (str A) (str B)) (~ i) (f⁺ p') -- So we build an equality that we want to cast the types with casteq : PathP (λ j → PathP (λ k → S (ua-pathToEquiv (ua e) j k)) (str A) (str B)) (f⁺ p') (f⁻ (f⁺ p')) ≡ PathP (λ j → PathP (λ k → S (cong ua (pathToEquiv-ua e) j k)) (str A) (str B)) (f⁺ p') (f⁻ (f⁺ p')) casteq i = PathP (λ j → PathP (λ k → S (eq i j k)) (str A) (str B)) (f⁺ p') (f⁻ (f⁺ p')) where -- This is where we need the half-adjoint equivalence property eq : ua-pathToEquiv (ua e) ≡ cong ua (pathToEquiv-ua e) eq = sym (uaHAEquiv (typ A) (typ B) .snd .com e) -- We then get a term of the type we need pth' : PathP (λ j → PathP (λ k → S (cong ua (pathToEquiv-ua e) j k)) (str A) (str B)) (f⁺ p') (f⁻ (f⁺ p')) pth' = transport (λ i → casteq i) pth -- Finally package everything up to get the cubical SIP SIP : (S : Type ℓ₁ → Type ℓ₂) (ι : StrIso S ℓ₃) (θ : SNS-PathP S ι) (A B : TypeWithStr ℓ₁ S) → A ≃[ ι ] B ≃ (A ≡ B) SIP S ι θ A B = isoToEquiv (iso (sip S ι θ A B) (sip⁻ S ι θ A B) (sip-sip⁻ S ι θ A B) (sip⁻-sip S ι θ A B)) -- Now, we want to add axioms (i.e. propositions) to our Structure S that don't affect the ι. -- We use a lemma due to Zesen Qian, which can now be found in Foundations.Prelude: -- https://github.com/riaqn/cubical/blob/hgroup/Cubical/Data/Group/Properties.agda#L83 add-to-structure : (S : Type ℓ₁ → Type ℓ₂) (axioms : (X : Type ℓ₁) → S X → Type ℓ₄) → Type ℓ₁ → Type (ℓ-max ℓ₂ ℓ₄) add-to-structure S axioms X = Σ[ s ∈ S X ] (axioms X s) add-to-iso : (S : Type ℓ₁ → Type ℓ₂) (ι : StrIso S ℓ₃) (axioms : (X : Type ℓ₁) → S X → Type ℓ₄) → StrIso (add-to-structure S axioms) ℓ₃ add-to-iso S ι axioms (X , (s , a)) (Y , (t , b)) f = ι (X , s) (Y , t) f add-ax-lemma : (S : Type ℓ₁ → Type ℓ₂) (axioms : (X : Type ℓ₁) → S X → Type ℓ₄) (axioms-are-Props : (X : Type ℓ₁) (s : S X) → isProp (axioms X s)) {X Y : Type ℓ₁} {s : S X} {t : S Y} {a : axioms X s} {b : axioms Y t} (f : X ≃ Y) → PathP (λ i → S (ua f i)) s t ≃ PathP (λ i → add-to-structure S axioms (ua f i)) (s , a) (t , b) add-ax-lemma S axioms axioms-are-Props {s = s} {t = t} {a = a} {b = b} f = isoToEquiv (iso φ ψ η ε) where φ : PathP (λ i → S (ua f i)) s t → PathP (λ i → add-to-structure S axioms (ua f i)) (s , a) (t , b) φ p i = p i , isProp→PathP (λ i → axioms-are-Props (ua f i) (p i)) a b i ψ : PathP (λ i → add-to-structure S axioms (ua f i)) (s , a) (t , b) → PathP (λ i → S (ua f i)) s t ψ r i = r i .fst η : section φ ψ η r i j = r j .fst , isProp→isSet-PathP (λ k → axioms-are-Props (ua f k) (r k .fst)) _ _ (isProp→PathP (λ k → axioms-are-Props (ua f k) (r k .fst)) a b) (λ k → r k .snd) i j ε : retract φ ψ ε p = refl add-axioms-SNS : (S : Type ℓ₁ → Type ℓ₂) (ι : (A B : Σ[ X ∈ (Type ℓ₁) ] (S X)) → A .fst ≃ B .fst → Type ℓ₃) (axioms : (X : Type ℓ₁) → S X → Type ℓ₄) (axioms-are-Props : (X : Type ℓ₁) (s : S X) → isProp (axioms X s)) (θ : SNS-PathP S ι) → SNS-PathP (add-to-structure S axioms) (add-to-iso S ι axioms) add-axioms-SNS S ι axioms axioms-are-Props θ {X , s , a} {Y , t , b} f = add-to-iso S ι axioms (X , s , a) (Y , t , b) f ≃⟨ θ f ⟩ PathP (λ i → S (ua f i)) s t ≃⟨ add-ax-lemma S axioms axioms-are-Props f ⟩ PathP (λ i → (add-to-structure S axioms) (ua f i)) (s , a) (t , b) ■ -- Now, we want to join two structures. Together with the adding of -- axioms this will allow us to prove that a lot of mathematical -- structures are a standard notion of structure join-structure : (S₁ : Type ℓ₁ → Type ℓ₂) (S₂ : Type ℓ₁ → Type ℓ₄) → Type ℓ₁ → Type (ℓ-max ℓ₂ ℓ₄) join-structure S₁ S₂ X = S₁ X × S₂ X join-iso : {S₁ : Type ℓ₁ → Type ℓ₂} (ι₁ : StrIso S₁ ℓ₃) {S₂ : Type ℓ₁ → Type ℓ₄} (ι₂ : StrIso S₂ ℓ₅) → StrIso (join-structure S₁ S₂) (ℓ-max ℓ₃ ℓ₅) join-iso ι₁ ι₂ (X , s₁ , s₂) (Y , t₁ , t₂) f = (ι₁ (X , s₁) (Y , t₁) f) × (ι₂ (X , s₂) (Y , t₂) f) join-SNS : (S₁ : Type ℓ₁ → Type ℓ₂) (ι₁ : StrIso S₁ ℓ₃) (θ₁ : SNS-PathP S₁ ι₁) (S₂ : Type ℓ₁ → Type ℓ₄) (ι₂ : StrIso S₂ ℓ₅) (θ₂ : SNS-PathP S₂ ι₂) → SNS-PathP (join-structure S₁ S₂) (join-iso ι₁ ι₂) join-SNS S₁ ι₁ θ₁ S₂ ι₂ θ₂ {X , s₁ , s₂} {Y , t₁ , t₂} e = isoToEquiv (iso φ ψ η ε) where φ : join-iso ι₁ ι₂ (X , s₁ , s₂) (Y , t₁ , t₂) e → PathP (λ i → join-structure S₁ S₂ (ua e i)) (s₁ , s₂) (t₁ , t₂) φ (p , q) i = (θ₁ e .fst p i) , (θ₂ e .fst q i) ψ : PathP (λ i → join-structure S₁ S₂ (ua e i)) (s₁ , s₂) (t₁ , t₂) → join-iso ι₁ ι₂ (X , s₁ , s₂) (Y , t₁ , t₂) e ψ p = invEq (θ₁ e) (λ i → p i .fst) , invEq (θ₂ e) (λ i → p i .snd) η : section φ ψ η p i j = retEq (θ₁ e) (λ k → p k .fst) i j , retEq (θ₂ e) (λ k → p k .snd) i j ε : retract φ ψ ε (p , q) i = secEq (θ₁ e) p i , secEq (θ₂ e) q i
{ "alphanum_fraction": 0.5245040383, "avg_line_length": 43.5255972696, "ext": "agda", "hexsha": "c050225019f62a2f8c3aa3d32df21357171b5d12", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "borsiemir/cubical", "max_forks_repo_path": "Cubical/Foundations/SIP.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "borsiemir/cubical", "max_issues_repo_path": "Cubical/Foundations/SIP.agda", "max_line_length": 115, "max_stars_count": null, "max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "borsiemir/cubical", "max_stars_repo_path": "Cubical/Foundations/SIP.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5403, "size": 12753 }
------------------------------------------------------------------------ -- Validity of canonical kinding in Fω with interval kinds ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} module FOmegaInt.Kinding.Canonical.Validity where open import Data.Product using (∃; _,_; _×_; proj₁; proj₂) open import Relation.Binary.PropositionalEquality open import FOmegaInt.Syntax open import FOmegaInt.Syntax.HereditarySubstitution open import FOmegaInt.Syntax.Normalization open import FOmegaInt.Kinding.Canonical open import FOmegaInt.Kinding.Canonical.HereditarySubstitution open Syntax open ElimCtx open Substitution hiding (subst) open Kinding open WfCtxOps open ContextNarrowing private module TK = TrackSimpleKindsSubst ------------------------------------------------------------------------ -- Validity of canonical kinding, subkinding and subtyping. -- Validity of spine kinding: the kind of an elimination is -- well-formed, provided that the spine is well-kinded and the kind of -- the head is well-formed. Sp⇉-valid : ∀ {n} {Γ : Ctx n} {as j k} → Γ ⊢ j kd → Γ ⊢ j ⇉∙ as ⇉ k → Γ ⊢ k kd Sp⇉-valid j-kd ⇉-[] = j-kd Sp⇉-valid (kd-Π j-kd k-kd) (⇉-∷ a⇇j _ k[a]⇉as⇉l) = Sp⇉-valid (TK.kd-/⟨⟩ k-kd (⇇-hsub a⇇j j-kd (⌊⌋-⌊⌋≡ _))) k[a]⇉as⇉l -- Validity of kinding for neutral types: the kinds of neutral types -- are well-formed. Ne∈-valid : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Ne a ∈ k → Γ ⊢ k kd Ne∈-valid (∈-∙ x∈j j⇉as⇉k) = Sp⇉-valid (Var∈-valid x∈j) j⇉as⇉k -- Validity of spine equality. Sp≃-valid : ∀ {n} {Γ : Ctx n} {as bs j₁ j₂ k₂} → Γ ⊢ j₁ <∷ j₂ → Γ ⊢ j₂ ⇉∙ as ≃ bs ⇉ k₂ → ∃ λ k₁ → Γ ⊢ j₂ ⇉∙ as ⇉ k₂ × Γ ⊢ j₁ ⇉∙ bs ⇉ k₁ × Γ ⊢ k₁ <∷ k₂ Sp≃-valid k₁<∷k₂ ≃-[] = _ , ⇉-[] , ⇉-[] , k₁<∷k₂ Sp≃-valid (<∷-Π j₂<∷j₁ k₁<∷k₂ (kd-Π j₁-kd k₁-kd)) (≃-∷ a≃b⇇j₂ k₂[a]⇉as≃bs⇉l₂) = let j₂-kd = ≃-valid-kd a≃b⇇j₂ a⇇j₂ , b⇇j₂ = ≃-valid a≃b⇇j₂ b⇇j₁ = Nf⇇-⇑ b⇇j₂ j₂<∷j₁ k₁[b]<∷k₂[a] = TK.<∷-/⟨⟩≃ k₁<∷k₂ (≃-hsub (≃-sym a≃b⇇j₂) (⌊⌋-⌊⌋≡ _)) l₁ , k₂[a]⇉as⇉l₂ , k₁[b]⇉bs⇉l₁ , l₁<∷l₂ = Sp≃-valid k₁[b]<∷k₂[a] k₂[a]⇉as≃bs⇉l₂ in l₁ , ⇉-∷ a⇇j₂ j₂-kd k₂[a]⇉as⇉l₂ , ⇉-∷ b⇇j₁ j₁-kd (subst (λ k → _ ⊢ _ Kind[ _ ∈ k ] ⇉∙ _ ⇉ l₁) (<∷-⌊⌋ j₂<∷j₁) k₁[b]⇉bs⇉l₁) , l₁<∷l₂ -- Validity of subkinding and subtyping: well-formed subkinds -- resp. well-kinded subtypes are also well-formed resp. well-kinded. mutual <∷-valid : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j <∷ k → Γ ⊢ j kd × Γ ⊢ k kd <∷-valid (<∷-⋯ a₂<:a₁ b₁<:b₂) = let a₂⇉a₂⋯a₂ , a₁⇉a₁⋯a₁ = <:-valid a₂<:a₁ b₁⇉b₁⋯b₁ , b₂⇉b₂⋯b₂ = <:-valid b₁<:b₂ in kd-⋯ a₁⇉a₁⋯a₁ b₁⇉b₁⋯b₁ , kd-⋯ a₂⇉a₂⋯a₂ b₂⇉b₂⋯b₂ <∷-valid (<∷-Π j₂<∷j₁ k₁<∷k₂ Πj₁k₁-kd) = let j₂-kd , j₁-kd = <∷-valid j₂<∷j₁ k₁-kd , k₂-kd = <∷-valid k₁<∷k₂ in Πj₁k₁-kd , kd-Π j₂-kd k₂-kd <:-valid : ∀ {n} {Γ : Ctx n} {a b} → Γ ⊢ a <: b → Γ ⊢Nf a ⇉ a ⋯ a × Γ ⊢Nf b ⇉ b ⋯ b <:-valid (<:-trans a<:b b<:c) = proj₁ (<:-valid a<:b) , proj₂ (<:-valid b<:c) <:-valid (<:-⊥ a⇉a⋯a) = ⇉-⊥-f (Nf⇉-ctx a⇉a⋯a) , a⇉a⋯a <:-valid (<:-⊤ a⇉a⋯a) = a⇉a⋯a , ⇉-⊤-f (Nf⇉-ctx a⇉a⋯a) <:-valid (<:-∀ k₂<∷k₁ a₁<:a₂ Πk₁a₁⇉Πk₁a₁⋯Πk₁a₁) = let k₂-kd , k₁-kd = <∷-valid k₂<∷k₁ a₁⇉a₁⋯a₁ , a₂⇉a₂⋯a₂ = <:-valid a₁<:a₂ in Πk₁a₁⇉Πk₁a₁⋯Πk₁a₁ , ⇉-∀-f k₂-kd a₂⇉a₂⋯a₂ <:-valid (<:-→ a₂<:a₁ b₁<:b₂) = let a₂⇉a₂⋯a₂ , a₁⇉a₁⋯a₁ = <:-valid a₂<:a₁ b₁⇉b₁⋯b₁ , b₂⇉b₂⋯b₂ = <:-valid b₁<:b₂ in ⇉-→-f a₁⇉a₁⋯a₁ b₁⇉b₁⋯b₁ , ⇉-→-f a₂⇉a₂⋯a₂ b₂⇉b₂⋯b₂ <:-valid (<:-∙ x∈j j⇉as≃bs⇉c⋯d) with Sp≃-valid (<∷-refl (Var∈-valid x∈j)) j⇉as≃bs⇉c⋯d <:-valid (<:-∙ x∈j j⇉as≃bs⇉c₂⋯d₂) | _ , j⇉as⇉c₂⋯d₂ , j⇉bs⇉c₁⋯d₁ , <∷-⋯ c₂<:c₁ d₁<:d₂ = ⇉-s-i (∈-∙ x∈j j⇉as⇉c₂⋯d₂) , ⇉-s-i (∈-∙ x∈j j⇉bs⇉c₁⋯d₁) <:-valid (<:-⟨| a∈b⋯c) with Ne∈-valid a∈b⋯c <:-valid (<:-⟨| a∈b⋯c) | kd-⋯ b⇉b⋯b _ = b⇉b⋯b , ⇉-s-i a∈b⋯c <:-valid (<:-|⟩ a∈b⋯c) with Ne∈-valid a∈b⋯c <:-valid (<:-|⟩ a∈b⋯c) | kd-⋯ _ c⇉c⋯c = ⇉-s-i a∈b⋯c , c⇉c⋯c -- Validity of kind checking: if a normal type checks against a kind, -- then that kind is well-formed. Nf⇇-valid : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Nf a ⇇ k → Γ ⊢ k kd Nf⇇-valid (⇇-⇑ a⇉j j<∷k) = proj₂ (<∷-valid j<∷k) -- Some corollaries. -- The checked kinds of subtypes are well-formed. <:⇇-valid-kd : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢ a <: b ⇇ k → Γ ⊢ k kd <:⇇-valid-kd a<:b⇇k = Nf⇇-valid (proj₁ (<:⇇-valid a<:b⇇k)) -- Canonical kinding of applications is admissible. Nf⇇-Π-e : ∀ {n} {Γ : Ctx n} {a b j k} → Γ ⊢Nf a ⇇ Π j k → Γ ⊢Nf b ⇇ j → Γ ⊢Nf a ⌜·⌝⟨ ⌊ Π j k ⌋ ⟩ b ⇇ k Kind[ b ∈ ⌊ j ⌋ ] Nf⇇-Π-e a⇇Πjk b⇇j = TK.Nf⇇-Π-e a⇇Πjk b⇇j (Nf⇇-valid b⇇j) (⌊⌋-⌊⌋≡ _) -- Canonical subtyping of applications is admissible. <:-⌜·⌝ : ∀ {n} {Γ : Ctx n} {a₁ a₂ b₁ b₂ j k} → Γ ⊢ a₁ <: a₂ ⇇ Π j k → Γ ⊢ b₁ ≃ b₂ ⇇ j → Γ ⊢ a₁ ⌜·⌝⟨ ⌊ Π j k ⌋ ⟩ b₁ <: a₂ ⌜·⌝⟨ ⌊ Π j k ⌋ ⟩ b₂ ⇇ k Kind[ b₁ ∈ ⌊ j ⌋ ] <:-⌜·⌝ a₁<:a₂⇇Πjk b₁≃b₂⇇j with <:⇇-valid-kd a₁<:a₂⇇Πjk <:-⌜·⌝ (<:-λ a₁<:a₂⇇k Λj₁a₁⇇Πjk Λj₂a₂⇇Πjk) b₁≃b₂⇇j | (kd-Π _ k-kd) = TK.<:⇇-/⟨⟩≃ a₁<:a₂⇇k k-kd (≃-hsub b₁≃b₂⇇j (⌊⌋-⌊⌋≡ _)) -- Subtyping of proper types checks against the kind of proper types. <:-⋯-* : ∀ {n} {Γ : Ctx n} {a b} → Γ ⊢ a <: b → Γ ⊢ a <: b ⇇ ⌜*⌝ <:-⋯-* a<:b with <:-valid a<:b <:-⋯-* a<:b | a⇉a⋯a , b⇉b⋯b = <:-⇇ (Nf⇉-⋯-* a⇉a⋯a) (Nf⇉-⋯-* b⇉b⋯b) a<:b -- Some commonly used (hereditary) substitution lemmas. kd-[] : ∀ {n} {Γ : Ctx n} {a j k} → kd k ∷ Γ ⊢ j kd → Γ ⊢Nf a ⇇ k → Γ ⊢ j Kind[ a ∈ ⌊ k ⌋ ] kd kd-[] j-kd a⇇k = TK.kd-/⟨⟩ j-kd (⇇-hsub a⇇k (Nf⇇-valid a⇇k) (⌊⌋-⌊⌋≡ _)) Nf⇇-[] : ∀ {n} {Γ : Ctx n} {a b j k} → kd j ∷ Γ ⊢Nf a ⇇ k → Γ ⊢Nf b ⇇ j → Γ ⊢Nf a [ b ∈ ⌊ j ⌋ ] ⇇ k Kind[ b ∈ ⌊ j ⌋ ] Nf⇇-[] a⇇k b⇇j = TK.Nf⇇-/⟨⟩ a⇇k (⇇-hsub b⇇j (Nf⇇-valid b⇇j) (⌊⌋-⌊⌋≡ _)) <∷-[≃] : ∀ {n} {Γ : Ctx n} {j k₁ k₂ a₁ a₂} → kd j ∷ Γ ⊢ k₁ <∷ k₂ → Γ ⊢ a₁ ≃ a₂ ⇇ j → Γ ⊢ k₁ Kind[ a₁ ∈ ⌊ j ⌋ ] <∷ k₂ Kind[ a₂ ∈ ⌊ j ⌋ ] <∷-[≃] k₁<∷k₂ a₁≃a₂⇇j = TK.<∷-/⟨⟩≃ k₁<∷k₂ (≃-hsub a₁≃a₂⇇j (⌊⌋-⌊⌋≡ _)) <:-[≃] : ∀ {n} {Γ : Ctx n} {a₁ a₂ b₁ b₂ j k} → kd j ∷ Γ ⊢ a₁ <: a₂ ⇇ k → Γ ⊢ b₁ ≃ b₂ ⇇ j → Γ ⊢ a₁ [ b₁ ∈ ⌊ j ⌋ ] <: a₂ [ b₂ ∈ ⌊ j ⌋ ] ⇇ k Kind[ b₁ ∈ ⌊ j ⌋ ] <:-[≃] a₁<:a₂⇇k b₁≃b₂⇇j = TK.<:⇇-/⟨⟩≃ a₁<:a₂⇇k (<:⇇-valid-kd a₁<:a₂⇇k) (≃-hsub b₁≃b₂⇇j (⌊⌋-⌊⌋≡ _)) -- Another admissible kinding rule for applications. Nf⇇-Π-e′ : ∀ {n} {Γ : Ctx n} {a b j k} → Γ ⊢Nf a ⇇ Π j k → Γ ⊢Nf b ⇇ j → Γ ⊢Nf a ↓⌜·⌝ b ⇇ k Kind[ b ∈ ⌊ j ⌋ ] Nf⇇-Π-e′ {b = b} (⇇-⇑ (⇉-Π-i {_} {a₁} j₁-kd a⇉k₁) (<∷-Π j₂<∷j₁ k₁<∷k₂ Πj₁k₁-kd)) b⇇j₂ = subst (_ ⊢Nf_⇇ _) (cong (a₁ [ b ∈_]) (<∷-⌊⌋ j₂<∷j₁)) (Nf⇇-[] (⇇-⇑ (⇓-Nf⇉ (Nf⇇-valid b⇇j₂) j₂<∷j₁ a⇉k₁) k₁<∷k₂) b⇇j₂) -- Another admissible subtyping rule for applications. <:-↓⌜·⌝ : ∀ {n} {Γ : Ctx n} {a₁ a₂ b₁ b₂ j k} → Γ ⊢ a₁ <: a₂ ⇇ Π j k → Γ ⊢ b₁ ≃ b₂ ⇇ j → Γ ⊢ a₁ ↓⌜·⌝ b₁ <: a₂ ↓⌜·⌝ b₂ ⇇ k Kind[ b₁ ∈ ⌊ j ⌋ ] <:-↓⌜·⌝ {b₁ = b₁} {b₂} (<:-λ a₁<:a₂⇇k (⇇-⇑ (⇉-Π-i {_} {a₁} _ _) (<∷-Π j₁<∷j _ _)) (⇇-⇑ (⇉-Π-i {_} {a₂} _ _) (<∷-Π j₂<∷j _ _))) b₁≃b₂⇇j = subst₂ (_ ⊢_<:_⇇ _) (cong (a₁ [ b₁ ∈_]) (<∷-⌊⌋ j₁<∷j)) (cong (a₂ [ b₂ ∈_]) (<∷-⌊⌋ j₂<∷j)) (<:-[≃] a₁<:a₂⇇k b₁≃b₂⇇j)
{ "alphanum_fraction": 0.4544581619, "avg_line_length": 41.4204545455, "ext": "agda", "hexsha": "a99b864c82492163697b9c5964ef29ca8fc90cd0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Blaisorblade/f-omega-int-agda", "max_forks_repo_path": "src/FOmegaInt/Kinding/Canonical/Validity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Blaisorblade/f-omega-int-agda", "max_issues_repo_path": "src/FOmegaInt/Kinding/Canonical/Validity.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Blaisorblade/f-omega-int-agda", "max_stars_repo_path": "src/FOmegaInt/Kinding/Canonical/Validity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4595, "size": 7290 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of the extensional sublist relation over setoid equality. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary hiding (Decidable) module Data.List.Relation.Binary.Subset.Setoid.Properties where open import Data.Bool using (Bool; true; false) open import Data.List open import Data.List.Relation.Unary.Any using (here; there) import Data.List.Membership.Setoid as Membership open import Data.List.Membership.Setoid.Properties import Data.List.Relation.Binary.Subset.Setoid as Sublist import Data.List.Relation.Binary.Equality.Setoid as Equality open import Relation.Nullary using (¬_; yes; no) open import Relation.Unary using (Pred; Decidable) import Relation.Binary.Reasoning.Preorder as PreorderReasoning open Setoid using (Carrier) ------------------------------------------------------------------------ -- Relational properties module _ {a ℓ} (S : Setoid a ℓ) where open Equality S open Sublist S open Membership S ⊆-reflexive : _≋_ ⇒ _⊆_ ⊆-reflexive xs≋ys = ∈-resp-≋ S xs≋ys ⊆-refl : Reflexive _⊆_ ⊆-refl x∈xs = x∈xs ⊆-trans : Transitive _⊆_ ⊆-trans xs⊆ys ys⊆zs x∈xs = ys⊆zs (xs⊆ys x∈xs) ⊆-isPreorder : IsPreorder _≋_ _⊆_ ⊆-isPreorder = record { isEquivalence = ≋-isEquivalence ; reflexive = ⊆-reflexive ; trans = ⊆-trans } ⊆-preorder : Preorder _ _ _ ⊆-preorder = record { isPreorder = ⊆-isPreorder } -- Reasoning over subsets module ⊆-Reasoning where open PreorderReasoning ⊆-preorder public renaming ( _∼⟨_⟩_ to _⊆⟨_⟩_ ; _≈⟨_⟩_ to _≋⟨_⟩_ ; _≈˘⟨_⟩_ to _≋˘⟨_⟩_ ; _≈⟨⟩_ to _≋⟨⟩_ ) infix 1 _∈⟨_⟩_ _∈⟨_⟩_ : ∀ x {xs ys} → x ∈ xs → xs IsRelatedTo ys → x ∈ ys x ∈⟨ x∈xs ⟩ xs⊆ys = (begin xs⊆ys) x∈xs ------------------------------------------------------------------------ -- filter module _ {a p ℓ} (S : Setoid a ℓ) {P : Pred (Carrier S) p} (P? : Decidable P) where open Setoid S renaming (Carrier to A) open Sublist S filter⁺ : ∀ xs → filter P? xs ⊆ xs filter⁺ [] () filter⁺ (x ∷ xs) y∈f[x∷xs] with P? x ... | no _ = there (filter⁺ xs y∈f[x∷xs]) ... | yes _ with y∈f[x∷xs] ... | here y≈x = here y≈x ... | there y∈f[xs] = there (filter⁺ xs y∈f[xs])
{ "alphanum_fraction": 0.5566502463, "avg_line_length": 28.3255813953, "ext": "agda", "hexsha": "b24c92f8c15cf8aef9312167e7e3baae4a65eafb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Subset/Setoid/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Subset/Setoid/Properties.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Subset/Setoid/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 823, "size": 2436 }
-- Andreas, 2013-10-26 -- What if user tried to eliminate function type by copattern? {-# OPTIONS --copatterns #-} -- {-# OPTIONS -v tc.lhs.split:30 #-} module CopatternsSplitErrorWithUnboundDBIndex where import Common.Level record _×_ (A B : Set) : Set where constructor _,_ field fst : A snd : B open _×_ -- pair defined by copatterns test : {A B : Set} → A → A → A × A fst test a = a snd test a = a -- Bad error WAS: -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/TypeChecking/Rules/LHS.hs:250 -- Correct error: -- Cannot eliminate type A → A → A × A with projection pattern fst -- when checking that the clause fst test a = a has type -- {A : Set} → {Set} → A → A → A × A -- -- pair defined by copatterns pair : {A B : Set} → A → B → A × B fst pair a b = a snd pair a b = b -- Bad error WAS: Unbound index in error message: -- -- Cannot eliminate type @3 × A with pattern b (did you supply too many arguments?) -- when checking that the clause fst pair a b = a has type -- {A B : Set} → A → B → A × B
{ "alphanum_fraction": 0.6485239852, "avg_line_length": 24.6363636364, "ext": "agda", "hexsha": "606dbc8cd7a68d24f1abcb771090c549adbddc23", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/CopatternsSplitErrorWithUnboundDBIndex.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/CopatternsSplitErrorWithUnboundDBIndex.agda", "max_line_length": 83, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/CopatternsSplitErrorWithUnboundDBIndex.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 330, "size": 1084 }
-- This file is imported by other tests, can't just remove (Andreas, 2015-07-15). module Nat where data Nat : Set where zero : Nat suc : Nat -> Nat
{ "alphanum_fraction": 0.6709677419, "avg_line_length": 19.375, "ext": "agda", "hexsha": "740439e99187f9ae3f0a6e337d221802e2ca5e5d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Nat.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Nat.agda", "max_line_length": 81, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Nat.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 48, "size": 155 }
module Function.Domains.Id where import Lvl open import Functional using (_∘_) open import Type open import Type.Dependent private variable ℓₒ₁ ℓₒ₂ ℓₑ₁ ℓₑ₂ : Lvl.Level module _ {X : Type{ℓₒ₁}} {Y : Type{ℓₒ₂}} where data Image (f : X → Y) : Y → Type{ℓₒ₁ Lvl.⊔ ℓₒ₂} where intro : (x : X) → Image f (f(x)) -- The image/range of a function. -- Represents the "set" of values of a function. -- Note: An element of Y and a proof that this element is the value of the function f is included so that (⊶ f) does not become injective when f is not. -- Note: A construction of this implies that X is non-empty. ⊶ : (X → Y) → Type{ℓₒ₁ Lvl.⊔ ℓₒ₂} ⊶ = Σ(Y) ∘ Image -- Represents the "set" of objects pointing to the value y of the function f. -- ∃(Fiber f(y)) is also called "the fiber of the element y under the map f". -- Fiber(f) is similar to the inverse image or the preimage of f when their argument is a singleton set. data Fiber (f : X → Y) : Y → X → Type{ℓₒ₁ Lvl.⊔ ℓₒ₂} where intro : (x : X) → Fiber f (f(x)) x
{ "alphanum_fraction": 0.6567877629, "avg_line_length": 40.2307692308, "ext": "agda", "hexsha": "0ab6656c7984b6699d37421d34dc89fc10eb50aa", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Function/Domains/Id.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Function/Domains/Id.agda", "max_line_length": 154, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Function/Domains/Id.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 374, "size": 1046 }
{- Example by Andrew Pitts, 2016-05-23 -} {-# OPTIONS --rewriting --cubical-compatible #-} open import Agda.Builtin.Equality public infix 6 I─_ postulate 𝕀 : Set O : 𝕀 I : 𝕀 I─_ : 𝕀 → 𝕀 {-# BUILTIN REWRITE _≡_ #-} postulate I─O≡I : I─ O ≡ I {-# REWRITE I─O≡I #-} data Pth (A : Set) : A → A → Set where path : (f : 𝕀 → A) → Pth A (f O) (f I) infix 6 _at_ _at_ : {A : Set}{x y : A} → Pth A x y → 𝕀 → A path f at i = f i record Path (A : Set)(x y : A) : Set where field pth : Pth A x y feq : pth at O ≡ x seq : pth at I ≡ y open Path public {-# REWRITE feq #-} {-# REWRITE seq #-} infix 6 _′_ _′_ : {A : Set}{x y : A} → Path A x y → 𝕀 → A p ′ i = pth p at i fun2path : {A : Set}(f : 𝕀 → A) → Path A (f O) (f I) pth (fun2path f) = path f feq (fun2path f) = refl seq (fun2path f) = refl inv : {A : Set}{x y : A} → Path A x y → Path A y x inv p = fun2path (λ i → p ′ (I─ i))
{ "alphanum_fraction": 0.5132837407, "avg_line_length": 18.82, "ext": "agda", "hexsha": "84fdfd676197b8c65f8cb94a116143ea845f6a55", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Fail/Issue1994.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Fail/Issue1994.agda", "max_line_length": 52, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Fail/Issue1994.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 420, "size": 941 }
-- The Agda primitives (preloaded). {-# OPTIONS --without-K --no-subtyping --no-import-sorts #-} module Agda.Primitive where ------------------------------------------------------------------------ -- Universe levels ------------------------------------------------------------------------ infixl 6 _⊔_ {-# BUILTIN TYPE Set #-} {-# BUILTIN PROP Prop #-} {-# BUILTIN SETOMEGA Setω #-} -- Level is the first thing we need to define. -- The other postulates can only be checked if built-in Level is known. postulate Level : Set -- MAlonzo compiles Level to (). This should be safe, because it is -- not possible to pattern match on levels. {-# BUILTIN LEVEL Level #-} postulate lzero : Level lsuc : (ℓ : Level) → Level _⊔_ : (ℓ₁ ℓ₂ : Level) → Level {-# BUILTIN LEVELZERO lzero #-} {-# BUILTIN LEVELSUC lsuc #-} {-# BUILTIN LEVELMAX _⊔_ #-}
{ "alphanum_fraction": 0.5462962963, "avg_line_length": 24, "ext": "agda", "hexsha": "2c0f1a6334015faedfd3419ca9de81e2f0db0056", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fb548356b275c7a1e79b768b64511ae937c738b", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "mdimjasevic/agda", "max_forks_repo_path": "src/data/lib/prim/Agda/Primitive.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8fb548356b275c7a1e79b768b64511ae937c738b", "max_issues_repo_issues_event_max_datetime": "2020-05-29T19:45:38.000Z", "max_issues_repo_issues_event_min_datetime": "2020-05-29T19:45:38.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "mdimjasevic/agda", "max_issues_repo_path": "src/data/lib/prim/Agda/Primitive.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fb548356b275c7a1e79b768b64511ae937c738b", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "mdimjasevic/agda", "max_stars_repo_path": "src/data/lib/prim/Agda/Primitive.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 215, "size": 864 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Indexed unary relations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Unary.Indexed where open import Data.Product using (∃; _×_) open import Level open import Relation.Nullary using (¬_) IPred : ∀ {i a} {I : Set i} → (I → Set a) → (ℓ : Level) → Set _ IPred A ℓ = ∀ {i} → A i → Set ℓ module _ {i a} {I : Set i} {A : I → Set a} where _∈_ : ∀ {ℓ} → (∀ i → A i) → IPred A ℓ → Set _ x ∈ P = ∀ i → P (x i) _∉_ : ∀ {ℓ} → (∀ i → A i) → IPred A ℓ → Set _ t ∉ P = ¬ (t ∈ P)
{ "alphanum_fraction": 0.4152923538, "avg_line_length": 26.68, "ext": "agda", "hexsha": "8ce3622ce364fc09c886d3820890d841e0c66596", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Unary/Indexed.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Unary/Indexed.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Unary/Indexed.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 211, "size": 667 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.NType2 open import lib.types.Group open import lib.types.Sigma open import lib.types.Truncation open import lib.groups.Homomorphisms module lib.groups.PropSubgroup where module _ {i} (G : Group i) where private module G = Group G module PropSubgroup {j} (P : G.El → Type j) (P-level : ∀ g → has-level -1 (P g)) (P-ident : P G.ident) (P-inv : ∀ {g} → P g → P (G.inv g)) (P-comp : ∀ {g₁ g₂} → P g₁ → P g₂ → P (G.comp g₁ g₂)) where struct : GroupStructure (Σ G.El P) struct = record { ident = (G.ident , P-ident); inv = λ {(g , p) → (G.inv g , P-inv p)}; comp = λ {(g₁ , p₁) (g₂ , p₂) → (G.comp g₁ g₂ , P-comp p₁ p₂)}; unitl = λ {(g , _) → pair= (G.unitl g) (prop-has-all-paths-↓ (P-level _))}; unitr = λ {(g , _) → pair= (G.unitr g) (prop-has-all-paths-↓ (P-level _))}; assoc = λ {(g₁ , _) (g₂ , _) (g₃ , _) → pair= (G.assoc g₁ g₂ g₃) (prop-has-all-paths-↓ (P-level _))}; invl = λ {(g , _) → pair= (G.invl g) (prop-has-all-paths-↓ (P-level _))}; invr = λ {(g , _) → pair= (G.invr g) (prop-has-all-paths-↓ (P-level _))}} Subgroup : Group (lmax i j) Subgroup = group _ (Σ-level G.El-level (raise-level _ ∘ P-level)) struct inj : Subgroup →ᴳ G inj = record { f = λ {(g , _) → g}; pres-comp = λ _ _ → idp} module _ {j} {H : Group j} (φ : H →ᴳ G) where private module H = Group H module φ = GroupHom φ prop-hom : Π H.El (P ∘ φ.f) → (H →ᴳ Subgroup) prop-hom p = record { f = λ g → (φ.f g , p g); pres-comp = λ g₁ g₂ → pair= (φ.pres-comp g₁ g₂) (prop-has-all-paths-↓ (P-level _))} module _ {i} {j} {G : Group i} {H : Group j} (φ : G →ᴳ H) where private module G = Group G module H = Group H module φ = GroupHom φ module Ker = PropSubgroup G (λ g → φ.f g == H.ident) (λ g → H.El-level _ _) φ.pres-ident (λ p → φ.pres-inv _ ∙ ap H.inv p ∙ group-inv-ident H) (λ p₁ p₂ → φ.pres-comp _ _ ∙ ap2 H.comp p₁ p₂ ∙ H.unitl _) module Im = PropSubgroup H (λ h → Trunc -1 (Σ G.El (λ g → φ.f g == h))) (λ h → Trunc-level) ([ G.ident , φ.pres-ident ]) (Trunc-fmap (λ {(g , p) → (G.inv g , φ.pres-inv g ∙ ap H.inv p)})) (Trunc-fmap2 (λ {(g₁ , p₁) (g₂ , p₂) → (G.comp g₁ g₂ , φ.pres-comp g₁ g₂ ∙ ap2 H.comp p₁ p₂)})) open Ker public renaming (struct to ker-struct; Subgroup to Ker; inj to ker-inj; prop-hom to ker-hom) open Im public renaming (struct to im-struct; Subgroup to Im; inj to im-inj; prop-hom to im-out-hom) im-in-hom : G →ᴳ Im im-in-hom = record { f = λ g → (φ.f g , [ g , idp ]); pres-comp = λ g₁ g₂ → pair= (φ.pres-comp g₁ g₂) (prop-has-all-paths-↓ Trunc-level)} im-in-surj : (h : Group.El Im) → Trunc -1 (Σ G.El (λ g → GroupHom.f im-in-hom g == h)) im-in-surj (_ , s) = Trunc-fmap (λ {(g , p) → (g , pair= p (prop-has-all-paths-↓ Trunc-level))}) s
{ "alphanum_fraction": 0.5281229562, "avg_line_length": 31.8541666667, "ext": "agda", "hexsha": "f61360ad081b4a59d2a0ed5c871a167ab09698c1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "core/lib/groups/PropSubgroup.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "core/lib/groups/PropSubgroup.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "core/lib/groups/PropSubgroup.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1147, "size": 3058 }
{- This second-order equational theory was created from the following second-order syntax description: syntax Naturals | Nat type N : 0-ary term ze : N su : N -> N nrec : N α (α,N).α -> α theory (zeβ) z : α s : (α,N).α |> nrec (ze, z, r m. s[r,m]) = z (suβ) z : α s : (α,N).α n : N |> nrec (su (n), z, r m. s[r,m]) = s[nrec (n, z, r m. s[r,m]), n] -} module Naturals.Equality where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Families.Build open import SOAS.ContextMaps.Inductive open import Naturals.Signature open import Naturals.Syntax open import SOAS.Metatheory.SecondOrder.Metasubstitution Nat:Syn open import SOAS.Metatheory.SecondOrder.Equality Nat:Syn private variable α β γ τ : NatT Γ Δ Π : Ctx infix 1 _▹_⊢_≋ₐ_ -- Axioms of equality data _▹_⊢_≋ₐ_ : ∀ 𝔐 Γ {α} → (𝔐 ▷ Nat) α Γ → (𝔐 ▷ Nat) α Γ → Set where zeβ : ⁅ α ⁆ ⁅ α · N ⊩ α ⁆̣ ▹ ∅ ⊢ nrec ze 𝔞 (𝔟⟨ x₀ ◂ x₁ ⟩) ≋ₐ 𝔞 suβ : ⁅ α ⁆ ⁅ α · N ⊩ α ⁆ ⁅ N ⁆̣ ▹ ∅ ⊢ nrec (su 𝔠) 𝔞 (𝔟⟨ x₀ ◂ x₁ ⟩) ≋ₐ 𝔟⟨ (nrec 𝔠 𝔞 (𝔟⟨ x₀ ◂ x₁ ⟩)) ◂ 𝔠 ⟩ open EqLogic _▹_⊢_≋ₐ_ open ≋-Reasoning
{ "alphanum_fraction": 0.5981308411, "avg_line_length": 24.5208333333, "ext": "agda", "hexsha": "285aa4132da76121ad42dc2ba15173c052b52c8d", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/Naturals/Equality.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/Naturals/Equality.agda", "max_line_length": 107, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/Naturals/Equality.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 539, "size": 1177 }
module DuplicateBuiltinBinding where postulate Int : Set {-# BUILTIN INTEGER Int #-} {-# BUILTIN INTEGER Int #-}
{ "alphanum_fraction": 0.7155172414, "avg_line_length": 14.5, "ext": "agda", "hexsha": "b5262f0d5154f5c2096b0085dd159683e2bce4bb", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/DuplicateBuiltinBinding.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/DuplicateBuiltinBinding.agda", "max_line_length": 36, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/DuplicateBuiltinBinding.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 25, "size": 116 }
module HiddenLambda where postulate A : Set T : A -> Set H : Set H = {x : A} -> T x -> T x -- H doesn't reduce when checking the body of h h : H h = \tx -> tx
{ "alphanum_fraction": 0.5595238095, "avg_line_length": 11.2, "ext": "agda", "hexsha": "10c8352ebfa0bf59d7abfd7b8e7e38851d0f6207", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/bugs/fixed/HiddenLambda.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/bugs/fixed/HiddenLambda.agda", "max_line_length": 47, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/bugs/fixed/HiddenLambda.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 62, "size": 168 }
import Lvl -- TODO: Just testing how it goes with creating an axiomatic system module Geometry.Test3 (Point : Set(Lvl.𝟎)) where open import Functional open import Logic.Propositional{Lvl.𝟎} open import Logic.Predicate{Lvl.𝟎}{Lvl.𝟎} open import Relator.Equals{Lvl.𝟎}{Lvl.𝟎} renaming (_≡_ to _≡ₚ_ ; _≢_ to _≢ₚ_) open import Sets.PredicateSet open import Sets.PredicateSet.Proofs open import Structure.Relator.Equivalence{Lvl.𝟎}{Lvl.𝟎} open import Structure.Relator.Ordering{Lvl.𝟎}{Lvl.𝟎} -- A line of infinite length record Line : Set(Lvl.𝟎) where constructor line field a : Point b : Point field different : (a ≢ₚ b) -- A circle record Circle : Set(Lvl.𝟎) where constructor circle field middle : Point outer : Point record Theory : Set(Lvl.𝐒(Lvl.𝐒(Lvl.𝟎))) where -- Symbols field -- CirclesIntersectionPoint : Circle → Circle → Point → Set(Lvl.𝟎) _∈ᶜ_ : Point → Circle → Stmt _∈ˡ_ : Point → Line → Stmt -- circleIntersectionPoint : (a : Circle) → (b : Circle) → ⦃ _ : CircleIntersect a b ⦄ → Point CircleBoundary : Circle → Point → Stmt CircleBoundary c p = (p ∈ᶜ c) ∧ (∀{outer a : Point} → (a ∈ᶜ circle p outer) → ⊥) LineIntersection : Line → Line → Point → Stmt LineIntersection a b p = (p ∈ˡ a) ∧ (p ∈ˡ b) -- Axioms -- field -- circle-boundary-eq : ∀{a b} → ((_∈ᶜ a) ≡ (_∈ᶜ b)) ↔ (CircleBoundaryPoint a ≡ᵖ CircleBoundaryPoint b) -- circle-either : ∀{middle outer₁ outer₂} → ((_∈ᶜ circle middle outer₁) ⊆ (_∈ᶜ circle middle outer₂)) ∨ ((_∈ᶜ circle middle outer₂) ⊆ (_∈ᶜ circle middle outer₁)) -- circleOuterIs Circle.outer module Theorems ⦃ _ : Theory ⦄ where open Theory ⦃ ... ⦄ -- perpendicularLine : CirclesIntersectionPoint -- middlepoint : Line → Point -- middlepoint(line(a)(b)) =
{ "alphanum_fraction": 0.6653587444, "avg_line_length": 29.7333333333, "ext": "agda", "hexsha": "914e6aab4c53fbff5a58f161a5e52814268f204c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Geometry/Test3.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Geometry/Test3.agda", "max_line_length": 166, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Geometry/Test3.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 649, "size": 1784 }
------------------------------------------------------------------------ -- The Agda standard library -- -- An either-or-both data type, basic type and operations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.These.Base where open import Level open import Data.Sum.Base using (_⊎_; [_,_]′) open import Function.Base private variable a b c d e f : Level A : Set a B : Set b C : Set c D : Set d E : Set e F : Set f data These {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where this : A → These A B that : B → These A B these : A → B → These A B ------------------------------------------------------------------------ -- Operations -- injection fromSum : A ⊎ B → These A B fromSum = [ this , that ]′ -- map map : (f : A → B) (g : C → D) → These A C → These B D map f g (this a) = this (f a) map f g (that b) = that (g b) map f g (these a b) = these (f a) (g b) map₁ : (f : A → B) → These A C → These B C map₁ f = map f id map₂ : (g : B → C) → These A B → These A C map₂ = map id -- fold fold : (A → C) → (B → C) → (A → B → C) → These A B → C fold l r lr (this a) = l a fold l r lr (that b) = r b fold l r lr (these a b) = lr a b foldWithDefaults : A → B → (A → B → C) → These A B → C foldWithDefaults a b lr = fold (flip lr b) (lr a) lr -- swap swap : These A B → These B A swap = fold that this (flip these) -- align alignWith : (These A C → E) → (These B D → F) → These A B → These C D → These E F alignWith f g (this a) (this c) = this (f (these a c)) alignWith f g (this a) (that d) = these (f (this a)) (g (that d)) alignWith f g (this a) (these c d) = these (f (these a c)) (g (that d)) alignWith f g (that b) (this c) = these (f (that c)) (g (this b)) alignWith f g (that b) (that d) = that (g (these b d)) alignWith f g (that b) (these c d) = these (f (that c)) (g (these b d)) alignWith f g (these a b) (this c) = these (f (these a c)) (g (this b)) alignWith f g (these a b) (that d) = these (f (this a)) (g (these b d)) alignWith f g (these a b) (these c d) = these (f (these a c)) (g (these b d)) align : These A B → These C D → These (These A C) (These B D) align = alignWith id id
{ "alphanum_fraction": 0.4997806055, "avg_line_length": 28.1358024691, "ext": "agda", "hexsha": "863523c6d1cabf226846e4dd36e06ddf586e38da", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/These/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/These/Base.agda", "max_line_length": 81, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/These/Base.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 778, "size": 2279 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Optics.All open import LibraBFT.Prelude open import LibraBFT.Lemmas open import LibraBFT.Base.KVMap open import LibraBFT.Base.PKCS open import LibraBFT.Hash open import LibraBFT.Impl.Base.Types open import LibraBFT.Impl.Consensus.Types open import LibraBFT.Impl.Util.Crypto open import LibraBFT.Impl.Handle open import LibraBFT.Concrete.System.Parameters open EpochConfig open import LibraBFT.Concrete.System open import LibraBFT.Yasm.Yasm ℓ-RoundManager ℓ-VSFP ConcSysParms PeerCanSignForPK (λ {st} {part} {pk} → PeerCanSignForPK-stable {st} {part} {pk}) -- This module contains placeholders for the future analog of the -- corresponding VotesOnce property. Defining the implementation -- obligation and proving that it is an invariant of an implementation -- is a substantial undertaking. We are working first on proving the -- simpler VotesOnce property to settle down the structural aspects -- before tackling the harder semantic issues. module LibraBFT.Concrete.Properties.PreferredRound where -- TODO-3: define the implementation obligation ImplObligation₁ : Set ImplObligation₁ = Unit -- Next, we prove that given the necessary obligations, module Proof (sps-corr : StepPeerState-AllValidParts) (Impl-PR1 : ImplObligation₁) where -- Any reachable state satisfies the PR rule for any epoch in the system. module _ (st : SystemState)(r : ReachableSystemState st)(𝓔 : EpochConfig) where -- Bring in 'unwind', 'ext-unforgeability' and friends open Structural sps-corr -- Bring in IntSystemState open WithSPS sps-corr open PerState st r open PerEpoch 𝓔 open import LibraBFT.Concrete.Obligations.PreferredRound 𝓔 (ConcreteVoteEvidence 𝓔) as PR postulate -- TODO-3: prove it prr : PR.Type IntSystemState
{ "alphanum_fraction": 0.773797841, "avg_line_length": 41.5918367347, "ext": "agda", "hexsha": "2c8525c2f08856f1812092b788f9af047d026dda", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "cwjnkins/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Concrete/Properties/PreferredRound.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "cwjnkins/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Concrete/Properties/PreferredRound.agda", "max_line_length": 146, "max_stars_count": null, "max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "cwjnkins/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Concrete/Properties/PreferredRound.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 558, "size": 2038 }
{-# OPTIONS --rewriting --confluence-check #-} open import Agda.Builtin.Bool open import Agda.Builtin.Nat open import Agda.Builtin.Equality {-# BUILTIN REWRITE _≡_ #-} record R : Set₁ where constructor c field unD : Set open R id : unD (c (Nat → Nat)) id x = x postulate rew : c (Nat → Nat) ≡ c (Nat → Bool) {-# REWRITE rew #-}
{ "alphanum_fraction": 0.6568047337, "avg_line_length": 16.9, "ext": "agda", "hexsha": "15bd500cf81d05b178ef22c855b06151f10b8133", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue3538-2-record.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue3538-2-record.agda", "max_line_length": 46, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue3538-2-record.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 106, "size": 338 }
open import Data.Nat using ( ℕ ; zero ; suc ) open import Data.Product using ( ∃ ; _×_ ; _,_ ) open import Data.Sum using ( _⊎_ ; inj₁ ; inj₂ ) open import Relation.Binary.PropositionalEquality using ( _≡_ ; _≢_ ; refl ; cong ) open import Relation.Nullary using ( ¬_ ) open import FRP.LTL.Time using ( Time ; _<_ ; _≤_ ; _≥_ ; ≤-refl ; _≤-trans_ ; _≤-asym_ ; _≤-total_ ; ≤-proof-irrel ; ≡-impl-≥ ; _∸_ ; _+_ ; t≤u+t∸u ; +-unit ; +-assoc ; +-resp-≤ ; <-impl-+1≤ ; t<t+1 ; _≤-case_ ; lt ; eq ; gt ) open import FRP.LTL.Util using ( ⊥-elim ) module FRP.LTL.Time.Bound where infixr 2 _≼_ _≺_ _⋠_ infixr 4 _,_ infixr 5 _≼-trans_ _≼-asym_ _≼-total_ _≺-transˡ_ _≺-transʳ_ _≺-trans_ -- Time bounds, which extend Time with least and greatest elements data Time∞ : Set where +∞ : Time∞ fin : Time → Time∞ -- Order on time, generated by s ≺ t ≺ +∞ when s < t data _≼_ : Time∞ → Time∞ → Set where +∞-top : ∀ {t} → (t ≼ +∞) ≤-impl-≼ : ∀ {t u} → (t ≤ u) → (fin t ≼ fin u) _⋠_ : Time∞ → Time∞ → Set s ⋠ t = ¬(s ≼ t) _≺_ : Time∞ → Time∞ → Set s ≺ t = (s ≼ t) × (t ⋠ s) ≼-impl-≤ : ∀ {t u} → (fin t ≼ fin u) → (t ≤ u) ≼-impl-≤ (≤-impl-≼ t≤u) = t≤u -- Axioms for ≺ t≺+∞ : ∀ {t} → fin t ≺ +∞ t≺+∞ = (+∞-top , λ ()) <-impl-≺ : ∀ {t u} → (t < u) → (fin t ≺ fin u) <-impl-≺ (t≤u , u≰t) = (≤-impl-≼ t≤u , λ u≼t → u≰t (≼-impl-≤ u≼t)) ≺-impl-< : ∀ {t u} → (fin t ≺ fin u) → (t < u) ≺-impl-< (t≼u , u⋠t) = (≼-impl-≤ t≼u , λ u≤t → u⋠t (≤-impl-≼ u≤t)) t≺t+1 : ∀ {t} → (fin t ≺ fin (t + 1)) t≺t+1 = <-impl-≺ t<t+1 -- ≼ is a decidable total order ≼-refl : ∀ {t} → (t ≼ t) ≼-refl {+∞} = +∞-top ≼-refl {fin t} = ≤-impl-≼ ≤-refl _≼-trans_ : ∀ {s t u} → (s ≼ t) → (t ≼ u) → (s ≼ u) s≼t ≼-trans +∞-top = +∞-top ≤-impl-≼ s≤t ≼-trans ≤-impl-≼ t≤u = ≤-impl-≼ (s≤t ≤-trans t≤u) _≼-asym_ : ∀ {s t} → (s ≼ t) → (t ≼ s) → (s ≡ t) +∞-top ≼-asym +∞-top = refl ≤-impl-≼ s≤t ≼-asym ≤-impl-≼ t≤s = cong fin (s≤t ≤-asym t≤s) _≼-total_ : ∀ s t → (s ≼ t) ⊎ (t ≺ s) +∞ ≼-total +∞ = inj₁ +∞-top +∞ ≼-total fin t = inj₂ t≺+∞ fin s ≼-total +∞ = inj₁ +∞-top fin s ≼-total fin t with s ≤-total t ... | inj₁ s≤t = inj₁ (≤-impl-≼ s≤t) ... | inj₂ t<s = inj₂ (<-impl-≺ t<s) data _≼-Case_ (t u : Time∞) : Set where lt : .(t ≺ u) → (t ≼-Case u) eq : .(t ≡ u) → (t ≼-Case u) gt : .(u ≺ t) → (t ≼-Case u) _≼-case_ : ∀ t u → (t ≼-Case u) +∞ ≼-case +∞ = eq refl +∞ ≼-case fin u = gt t≺+∞ fin t ≼-case +∞ = lt t≺+∞ fin t ≼-case fin u with t ≤-case u fin t ≼-case fin u | lt t<u = lt (<-impl-≺ t<u) fin t ≼-case fin u | eq t≡u = eq (cong fin t≡u) fin t ≼-case fin u | gt t>u = gt (<-impl-≺ t>u) ≡-impl-≼ : ∀ {s t} → (s ≡ t) → (s ≼ t) ≡-impl-≼ refl = ≼-refl ≡-impl-≽ : ∀ {s t} → (s ≡ t) → (t ≼ s) ≡-impl-≽ refl = ≼-refl ≼-proof-irrel : ∀ {t u} → (p q : t ≼ u) → (p ≡ q) ≼-proof-irrel +∞-top +∞-top = refl ≼-proof-irrel (≤-impl-≼ t≤₁u) (≤-impl-≼ t≤₂u) = cong ≤-impl-≼ (≤-proof-irrel t≤₁u t≤₂u) ≺-impl-≼ : ∀ {t u} → (t ≺ u) → (t ≼ u) ≺-impl-≼ (t≼u , u⋠t) = t≼u ≺-impl-⋡ : ∀ {t u} → (t ≺ u) → (u ⋠ t) ≺-impl-⋡ (t≼u , u⋠t) = u⋠t ≺-impl-≢ : ∀ {t u} → (t ≺ u) → (t ≢ u) ≺-impl-≢ (t≼u , u⋠t) refl = u⋠t ≼-refl _≺-transˡ_ : ∀ {t u v} → (t ≺ u) → (u ≼ v) → (t ≺ v) (t≼u , u⋠t) ≺-transˡ u≼v = (t≼u ≼-trans u≼v , λ v≼t → u⋠t (u≼v ≼-trans v≼t)) _≺-transʳ_ : ∀ {t u v} → (t ≼ u) → (u ≺ v) → (t ≺ v) t≼u ≺-transʳ (u≼v , v⋠u) = (t≼u ≼-trans u≼v , λ v≼t → v⋠u (v≼t ≼-trans t≼u)) _≺-trans_ : ∀ {t u v} → (t ≺ u) → (u ≺ v) → (t ≺ v) (t≼u , u⋠t) ≺-trans (u≼v , v⋠u) = (t≼u ≼-trans u≼v , λ v≼t → v⋠u (v≼t ≼-trans t≼u)) ∞≼-impl-≡∞ : ∀ {t} → (+∞ ≼ t) → (t ≡ +∞) ∞≼-impl-≡∞ +∞-top = refl src : ∀ {s t} → .(s ≼ t) → Time∞ src {s} {t} s≼t = s tgt : ∀ {s t} → .(s ≼ t) → Time∞ tgt {s} {t} s≼t = t -- An induction scheme for time bounds _+_≻_ : Time∞ → ℕ → Time∞ → Set s + zero ≻ u = u ≺ s s + suc n ≻ u = ∀ {t} → (s ≺ t) → (t + n ≻ u) data ≺-Indn (s u : Time∞) : Set where _,_ : ∀ n → .(s + n ≻ u) → ≺-Indn s u ≺-indn : ∀ {s u} → .(u ≺ +∞) → ≺-Indn s u ≺-indn {s} {+∞} u≺∞ = ⊥-elim (≺-impl-≢ u≺∞ refl) ≺-indn {+∞} {fin u} u≺∞ = (zero , t≺+∞) ≺-indn {fin s} {fin u} u≺∞ = (suc (u ∸ s) , lemma s u (u ∸ s) t≤u+t∸u) where lemma : ∀ s u n → (s + n ≥ u) → (fin s + suc n ≻ fin u) lemma s u zero s+0≥u s≺t = (≤-impl-≼ s+0≥u ≼-trans ≡-impl-≼ (cong fin (+-unit s))) ≺-transʳ s≺t lemma s u (suc n) s+1+n≥u {fin t} s≺t = lemma t u n (s+1+n≥u ≤-trans ≡-impl-≥ (+-assoc s 1 n) ≤-trans +-resp-≤ (<-impl-+1≤ (≺-impl-< s≺t)) n) lemma s u (suc n) s+1+n≥u {+∞} s≺t = λ ∞≺v → ⊥-elim (≺-impl-⋡ ∞≺v +∞-top)
{ "alphanum_fraction": 0.4396514161, "avg_line_length": 31.2244897959, "ext": "agda", "hexsha": "1d3254a1b1c7631e1c1d0de4294470d51e6f507d", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:04.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-01T07:33:00.000Z", "max_forks_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-frp-ltl", "max_forks_repo_path": "src/FRP/LTL/Time/Bound.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5", "max_issues_repo_issues_event_max_datetime": "2015-03-02T15:23:53.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-01T07:01:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-frp-ltl", "max_issues_repo_path": "src/FRP/LTL/Time/Bound.agda", "max_line_length": 97, "max_stars_count": 21, "max_stars_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-frp-ltl", "max_stars_repo_path": "src/FRP/LTL/Time/Bound.agda", "max_stars_repo_stars_event_max_datetime": "2020-06-15T02:51:13.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-02T20:25:05.000Z", "num_tokens": 2737, "size": 4590 }
-- Andreas, 2019-03-28, issue #3600 -- -- Problem WAS: The size conversion checker produced invalid -- constraints when getting stuck during checking, e.g., a <= max b a'. -- The failing attempt of a <= b would produce constraints, which is unsound. -- Now, we fail hard if a <= b gets stuck; this gives us a chance to succeed -- on a <= a' instead. {-# OPTIONS --sized-types #-} {-# OPTIONS --show-implicit #-} -- {-# OPTIONS -v tc.conv.size:60 -v tc.conv:10 #-} -- {-# OPTIONS -v tc.meta.assign:10 #-} open import Agda.Builtin.Size data Type : (i : Size) → Set where _⇒_ : ∀ {i j} → Type i → Type j → Type (↑ (i ⊔ˢ j)) Unit : ∀ {i} → Type (↑ i) data Ty : ∀ {i} → Type i → Set where _⇒_ : ∀ {i j} {A : Type i} {B : Type j} → Ty A → Ty B → Ty {↑ (i ⊔ˢ j)} (A ⇒ B) Arr : ∀ {i j} {A : Type i} {B : Type j} → Ty A → Ty B → Ty (A ⇒ B) -- Should succeed.
{ "alphanum_fraction": 0.5321199143, "avg_line_length": 23.9487179487, "ext": "agda", "hexsha": "63d2287dd1943fb280311a5eac7df907ad10e2ba", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3600.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3600.agda", "max_line_length": 77, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3600.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 314, "size": 934 }
{-# OPTIONS --cubical --safe #-} module Data.Empty.Base where open import Cubical.Data.Empty using (⊥; isProp⊥) public open import Level infix 4.5 ¬_ ¬_ : Type a → Type a ¬ A = A → ⊥ ⊥-elim : ⊥ → A ⊥-elim ()
{ "alphanum_fraction": 0.6018518519, "avg_line_length": 13.5, "ext": "agda", "hexsha": "0293fdccd55c08593bd2b84ce3901ef07ae43861", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "9c5e8b6f546bee952e92db0b73bfc12592bf3152", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/masters-thesis", "max_forks_repo_path": "agda/Data/Empty/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9c5e8b6f546bee952e92db0b73bfc12592bf3152", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/masters-thesis", "max_issues_repo_path": "agda/Data/Empty/Base.agda", "max_line_length": 32, "max_stars_count": 4, "max_stars_repo_head_hexsha": "9c5e8b6f546bee952e92db0b73bfc12592bf3152", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/masters-thesis", "max_stars_repo_path": "agda/Data/Empty/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z", "num_tokens": 84, "size": 216 }
open import Oscar.Prelude open import Oscar.Class open import Oscar.Class.Reflexivity open import Oscar.Class.Symmetry open import Oscar.Class.Transitivity open import Oscar.Class.IsEquivalence open import Oscar.Class.Setoid open import Oscar.Data.Proposequality module Oscar.Property.Setoid.Proposequality where module _ {𝔬} {𝔒 : Ø 𝔬} where instance 𝓡eflexivityProposequality : Reflexivity.class Proposequality⟦ 𝔒 ⟧ 𝓡eflexivityProposequality .⋆ = ! 𝓢ymmetryProposequality : Symmetry.class Proposequality⟦ 𝔒 ⟧ 𝓢ymmetryProposequality .⋆ ∅ = ! 𝓣ransitivityProposequality : Transitivity.class Proposequality⟦ 𝔒 ⟧ 𝓣ransitivityProposequality .⋆ ∅ y∼z = y∼z IsEquivalenceProposequality : IsEquivalence Proposequality⟦ 𝔒 ⟧ IsEquivalenceProposequality = ∁ module _ {𝔬} (𝔒 : Ø 𝔬) where SetoidProposequality : Setoid _ _ SetoidProposequality = ∁ Proposequality⟦ 𝔒 ⟧
{ "alphanum_fraction": 0.7688053097, "avg_line_length": 27.3939393939, "ext": "agda", "hexsha": "c4ee9314c5f021d633f07b99b69f766be3c27d0c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Property/Setoid/Proposequality.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Property/Setoid/Proposequality.agda", "max_line_length": 71, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Property/Setoid/Proposequality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 304, "size": 904 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} {-# OPTIONS --allow-unsolved-metas #-} open import LibraBFT.Base.Types open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types.EpochIndep open import LibraBFT.ImplShared.NetworkMsg open import LibraBFT.ImplShared.Util.Crypto open import Optics.All open import Util.Hash open import Util.KVMap open import Util.Lemmas open import Util.PKCS open import Util.Prelude open import LibraBFT.Abstract.Types.EpochConfig UID NodeId open WithAbsVote -- Here we have the abstraction functions that connect -- the datatypes defined in LibraBFT.ImplFake.Consensus.Types -- to the abstract records from LibraBFT.Abstract.Records -- for a given EpochConfig. -- module LibraBFT.Concrete.Records where ------------ properties relating the ids of (Executed)Blocks to hashes of their BlockData BlockHash≡ : Block → HashValue → Set BlockHash≡ b hv = hashBlock b ≡ hv BlockId-correct : Block → Set BlockId-correct b = BlockHash≡ b (b ^∙ bId) BlockId-correct? : (b : Block) → Dec (BlockId-correct b) BlockId-correct? b = hashBlock b ≟Hash (b ^∙ bId) ExecutedBlockId-correct : ExecutedBlock → Set ExecutedBlockId-correct = BlockId-correct ∘ (_^∙ ebBlock) module WithEC (𝓔 : EpochConfig) where open import LibraBFT.ImplShared.Consensus.Types.EpochDep open WithEC 𝓔 open import LibraBFT.Abstract.Abstract UID _≟UID_ NodeId 𝓔 ConcreteVoteEvidence as Abs hiding (bId; qcVotes; Block) open EpochConfig 𝓔 -------------------------------- -- Abstracting Blocks and QCs -- -------------------------------- α-Block : Block → Abs.Block α-Block b with _bdBlockType (_bBlockData b) ...| NilBlock = record { bId = _bId b ; bPrevQC = just (b ^∙ bBlockData ∙ bdQuorumCert ∙ qcVoteData ∙ vdParent ∙ biId) ; bRound = b ^∙ bBlockData ∙ bdRound } ...| Genesis = record { bId = b ^∙ bId ; bPrevQC = nothing ; bRound = b ^∙ bBlockData ∙ bdRound } ...| Proposal cmd α = record { bId = b ^∙ bId ; bPrevQC = just (b ^∙ bBlockData ∙ bdQuorumCert ∙ qcVoteData ∙ vdParent ∙ biId) ; bRound = b ^∙ bBlockData ∙ bdRound } α-Block-bid≡ : (b : Block) → b ^∙ bId ≡ Abs.bId (α-Block b) α-Block-bid≡ b with _bdBlockType (_bBlockData b) ... | Proposal _ _ = refl ... | NilBlock = refl ... | Genesis = refl α-Block-rnd≡ : (b : Block) → b ^∙ bBlockData ∙ bdRound ≡ Abs.bRound (α-Block b) α-Block-rnd≡ b with _bdBlockType (_bBlockData b) ... | Proposal _ _ = refl ... | NilBlock = refl ... | Genesis = refl α-Block-prevqc≡-Prop : ∀ {b tx auth} → b ^∙ bBlockData ∙ bdBlockType ≡ Proposal tx auth → Abs.bPrevQC (α-Block b) ≡ just (b ^∙ bBlockData ∙ bdQuorumCert ∙ qcVoteData ∙ vdParent ∙ biId) α-Block-prevqc≡-Prop {b} refl = refl α-Block-prevqc≡-Gen : ∀ {b} → b ^∙ bBlockData ∙ bdBlockType ≡ Genesis → Abs.bPrevQC (α-Block b) ≡ nothing α-Block-prevqc≡-Gen refl = refl α-Block-prevqc≡-Nil : ∀ {b} → b ^∙ bBlockData ∙ bdBlockType ≡ NilBlock → Abs.bPrevQC (α-Block b) ≡ just (b ^∙ bBlockData ∙ bdQuorumCert ∙ qcVoteData ∙ vdParent ∙ biId) α-Block-prevqc≡-Nil {b} refl = refl α-VoteData-Block : VoteData → Abs.Block α-VoteData-Block vd = record { bId = vd ^∙ vdProposed ∙ biId ; bPrevQC = just (vd ^∙ vdParent ∙ biId) ; bRound = vd ^∙ vdProposed ∙ biRound } α-Vote : (qc : QuorumCert)(valid : MetaIsValidQC qc) → ∀ {as} → as ∈ qcVotes qc → Abs.Vote α-Vote qc v {as} as∈QC = α-ValidVote (rebuildVote qc as) (_ivvMember (All-lookup (_ivqcMetaVotesValid v) as∈QC)) -- Abstraction of votes produce votes that carry evidence -- they have been cast. α-Vote-evidence : (qc : QuorumCert)(valid : MetaIsValidQC qc) → ∀{vs} (prf : vs ∈ qcVotes qc) → ConcreteVoteEvidence (α-Vote qc valid prf) α-Vote-evidence qc valid {as} v∈qc = record { _cveVote = rebuildVote qc as ; _cveIsValidVote = All-lookup (_ivqcMetaVotesValid valid) v∈qc ; _cveIsAbs = refl } α-QC : Σ QuorumCert MetaIsValidQC → Abs.QC α-QC (qc , valid) = record { qCertBlockId = qc ^∙ qcVoteData ∙ vdProposed ∙ biId ; qRound = qc ^∙ qcVoteData ∙ vdProposed ∙ biRound ; qVotes = All-reduce (α-Vote qc valid) All-self ; qVotes-C1 = subst IsQuorum {! !} (MetaIsValidQC._ivqcMetaIsQuorum valid) ; qVotes-C2 = All-reduce⁺ (α-Vote qc valid) (λ _ → refl) All-self ; qVotes-C3 = All-reduce⁺ (α-Vote qc valid) (λ _ → refl) All-self ; qVotes-C4 = All-reduce⁺ (α-Vote qc valid) (α-Vote-evidence qc valid) All-self } -- What does it mean for an (abstract) Block or QC to be represented in a NetworkMsg? data _α-∈NM_ : Abs.Record → NetworkMsg → Set where qc∈NM : ∀ {cqc nm} → (valid : MetaIsValidQC cqc) → cqc QC∈NM nm → Abs.Q (α-QC (cqc , valid)) α-∈NM nm b∈NM : ∀ {cb pm nm} → nm ≡ P pm → pm ^∙ pmProposal ≡ cb → BlockId-correct cb -- We should not consider just any message to be "InSys": an honest peer will reject a Block whose hash is incorrect. → Abs.B (α-Block cb) α-∈NM nm -- Our system model contains a message pool, which is a list of NodeId-NetworkMsg pairs. The -- following relation expresses that an abstract record r is represented in a given message pool -- sm. data _α-Sent_ (r : Abs.Record) (sm : List (NodeId × NetworkMsg)) : Set where ws : ∀ {p nm} → getEpoch nm ≡ epoch → (p , nm) ∈ sm → r α-∈NM nm → r α-Sent sm
{ "alphanum_fraction": 0.6153589872, "avg_line_length": 40.5608108108, "ext": "agda", "hexsha": "5408b50a306f8c9d30452621244522346318afdd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Concrete/Records.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Concrete/Records.agda", "max_line_length": 153, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Concrete/Records.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1955, "size": 6003 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cw.CW open import cw.DegreeByProjection open import cohomology.ChainComplex module cw.cohomology.cellular.ChainComplex {i : ULevel} where chain-template : ∀ {n} (skel : Skeleton {i} n) {m} → Dec (m ≤ n) → AbGroup i chain-template skel (inl m≤n) = FreeAbGroup (cells-nth m≤n skel) chain-template skel (inr _) = Lift-abgroup {j = i} Unit-abgroup abstract boundary-nth-template : ∀ {n} (skel : Skeleton {i} n) dec → has-degrees-with-finite-support skel dec → {m : ℕ} (m≤n : m ≤ n) (Sm≤n : S m ≤ n) → cw-init (cw-take Sm≤n skel) == cw-take (≤-trans lteS Sm≤n) skel → cw-take (≤-trans lteS Sm≤n) skel == cw-take m≤n skel → FreeAbGroup.grp (cells-nth Sm≤n skel) →ᴳ FreeAbGroup.grp (cells-nth m≤n skel) boundary-nth-template skel dec fin-sup m≤n Sm≤n path₀ path₁ = transportᴳ (λ lower-skel → FreeAbGroup.grp (cells-last lower-skel)) (path₀ ∙ path₁) ∘ᴳ boundary-nth Sm≤n skel dec fin-sup boundary-template : ∀ {n} (skel : Skeleton {i} n) dec → has-degrees-with-finite-support skel dec → {m : ℕ} (m≤n? : Dec (m ≤ n)) (Sm≤n? : Dec (S m ≤ n)) → AbGroup.grp (chain-template skel Sm≤n?) →ᴳ AbGroup.grp (chain-template skel m≤n?) boundary-template skel dec fin-sup _ (inr _) = cst-hom boundary-template skel dec fin-sup (inr m≰n) (inl Sm≤n) = ⊥-rec $ m≰n (≤-trans lteS Sm≤n) boundary-template skel dec fin-sup (inl m≤n) (inl Sm≤n) = boundary-nth-template skel dec fin-sup m≤n Sm≤n (cw-init-take Sm≤n skel) (ap (λ m≤n → cw-take m≤n skel) (≤-has-all-paths (≤-trans lteS Sm≤n) m≤n)) chain-complex : ∀ {n} (skel : Skeleton {i} n) dec → has-degrees-with-finite-support skel dec → ChainComplex i chain-complex {n} skel dec fin-sup = record {M} where module M where head : AbGroup i head = Lift-abgroup {j = i} ℤ-abgroup chain : ℕ → AbGroup i chain m = chain-template skel (≤-dec m n) augment : AbGroup.grp (chain 0) →ᴳ AbGroup.grp head augment = FreeAbGroup-extend head λ _ → lift 1 boundary : ∀ m → (AbGroup.grp (chain (S m)) →ᴳ AbGroup.grp (chain m)) boundary m = boundary-template skel dec fin-sup (≤-dec m n) (≤-dec (S m) n) cochain-complex : ∀ {j} {n} (skel : Skeleton {i} n) dec → has-degrees-with-finite-support skel dec → AbGroup j → CochainComplex (lmax i j) cochain-complex skel dec fin-sup G = complex-dualize (chain-complex skel dec fin-sup) G {- properties of coboundaries -} abstract private path-lemma₀ : ∀ {n} (skel : Skeleton {i} (S n)) {m} (m<n : m < n) (Sm<n : S m < n) → ap (λ m≤Sn → cw-take m≤Sn skel) (≤-has-all-paths (≤-trans lteS (lteSR (inr Sm<n))) (lteSR (inr m<n))) == ap (λ m≤n → cw-take m≤n (cw-init skel)) (≤-has-all-paths (≤-trans lteS (inr Sm<n)) (inr m<n)) path-lemma₀ skel m<n Sm<n = ap (λ m≤Sn → cw-take m≤Sn skel) (≤-has-all-paths (≤-trans lteS (lteSR (inr Sm<n))) (lteSR (inr m<n))) =⟨ ap (ap (λ m≤Sn → cw-take m≤Sn skel)) (contr-has-all-paths _ _) ⟩ ap (λ m≤Sn → cw-take m≤Sn skel) (ap (lteSR ∘ inr) (<-has-all-paths (<-trans ltS Sm<n) m<n)) =⟨ ∘-ap (λ m≤Sn → cw-take m≤Sn skel) (lteSR ∘ inr) _ ⟩ ap (λ Sm<n → cw-take (lteSR (inr Sm<n)) skel) (<-has-all-paths (<-trans ltS Sm<n) m<n) =⟨ ap-∘ (λ m≤n → cw-take m≤n (cw-init skel)) inr _ ⟩ ap (λ m≤n → cw-take m≤n (cw-init skel)) (ap inr (<-has-all-paths (<-trans ltS Sm<n) m<n)) =⟨ ap (ap (λ m≤n → cw-take m≤n (cw-init skel))) (contr-has-all-paths _ _) ⟩ ap (λ m≤n → cw-take m≤n (cw-init skel)) (≤-has-all-paths (≤-trans lteS (inr Sm<n)) (inr m<n)) =∎ path-lemma₁ : ∀ {n} (skel : Skeleton {i} (S (S n))) → ap (λ n≤SSn → cw-take n≤SSn skel) (≤-has-all-paths (lteSR lteS) (lteSR lteS)) == ap (λ n≤Sn → cw-take n≤Sn (cw-init skel)) (≤-has-all-paths lteS lteS) path-lemma₁ skel = ap (λ n≤SSn → cw-take n≤SSn skel) (≤-has-all-paths (lteSR lteS) (lteSR lteS)) =⟨ ap (ap (λ n≤SSn → cw-take n≤SSn skel)) (contr-has-all-paths _ _) ⟩ idp =⟨ ap (ap (λ n≤Sn → cw-take n≤Sn (cw-init skel))) (contr-has-all-paths _ _) ⟩ ap (λ n≤Sn → cw-take n≤Sn (cw-init skel)) (≤-has-all-paths lteS lteS) =∎ path-lemma₂ : ∀ {n} (skel : Skeleton {i} (S n)) → ap (λ n≤Sn → cw-take n≤Sn skel) (≤-has-all-paths lteS lteS) == idp path-lemma₂ skel = ap (λ n≤Sn → cw-take n≤Sn skel) (≤-has-all-paths lteS lteS) =⟨ ap (ap (λ n≤Sn → cw-take n≤Sn skel)) (contr-has-all-paths _ _) ⟩ idp =∎ abstract boundary-template-descend-from-far : ∀ {n} (skel : Skeleton {i} (S n)) dec fin-sup {m} m<n Sm<n → boundary-template {n = S n} skel dec fin-sup {m} (inl (lteSR (inr m<n))) (inl (lteSR (inr Sm<n))) == boundary-template {n = n} (cw-init skel) (init-has-cells-with-dec-eq skel dec) (init-has-degrees-with-finite-support skel dec fin-sup) (inl (inr m<n)) (inl (inr Sm<n)) boundary-template-descend-from-far skel dec fin-sup m<n Sm<n = ap (boundary-nth-template skel dec fin-sup (lteSR (inr m<n)) (lteSR (inr Sm<n)) (cw-init-take (lteSR (inr Sm<n)) skel)) (path-lemma₀ skel m<n Sm<n) boundary-template-descend-from-two-above : ∀ {n} (skel : Skeleton {i} (S (S n))) dec fin-sup → boundary-template {n = S (S n)} skel dec fin-sup (inl (lteSR lteS)) (inl lteS) == boundary-template {n = (S n)} (cw-init skel) (init-has-cells-with-dec-eq skel dec) (init-has-degrees-with-finite-support skel dec fin-sup) (inl lteS) (inl lteE) boundary-template-descend-from-two-above skel dec fin-sup = ap (boundary-nth-template skel dec fin-sup (lteSR lteS) lteS idp) (path-lemma₁ skel) boundary-template-β : ∀ {n} (skel : Skeleton {i} (S n)) dec fin-sup → boundary-template {n = S n} skel dec fin-sup (inl lteS) (inl lteE) == FreeAbGroup-extend (FreeAbGroup (cells-last (cw-init skel))) (boundary'-last skel dec fin-sup) boundary-template-β skel dec fin-sup = group-hom= $ ap (GroupHom.f ∘ boundary-nth-template skel dec fin-sup lteS lteE idp) (path-lemma₂ skel)
{ "alphanum_fraction": 0.5838509317, "avg_line_length": 49.8333333333, "ext": "agda", "hexsha": "5060e93c2fc3eba349b83f5433ef299093820dca", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/cw/cohomology/cellular/ChainComplex.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/cw/cohomology/cellular/ChainComplex.agda", "max_line_length": 125, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/cw/cohomology/cellular/ChainComplex.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2462, "size": 6279 }
module Data.Maybe.Properties where open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Data.Maybe just-not-nothing : ∀ {ℓ}{A : Set ℓ}{x : Maybe A}{y : A} → x ≡ just y → ¬ (x ≡ nothing) just-not-nothing refl = λ ()
{ "alphanum_fraction": 0.7098039216, "avg_line_length": 28.3333333333, "ext": "agda", "hexsha": "02850af78de92f618ab3044fe4a49314464cd2e0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/Data/Maybe/Properties.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/Data/Maybe/Properties.agda", "max_line_length": 86, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/Data/Maybe/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 73, "size": 255 }
{-# OPTIONS --no-termination-check #-} module Data.Real.CReal where import Prelude import Data.Bool import Data.String import Data.Real.Complete import Data.Real.Base import Data.Nat import Data.Integer import Data.Rational as Rational import Data.Interval import Data.Real.Gauge import Data.Show import Data.List import Data.Tuple open Prelude open Data.Real.Base open Data.Real.Complete open Data.Integer using (Int; pos) renaming (_-_ to _-i_; _<_ to _<i_) open Rational hiding (fromInt) open Data.Bool open Data.String open Data.Interval open Data.Real.Gauge open Data.Nat using (Nat) open Data.Tuple data CReal : Set where cReal : Complete Base -> CReal approx : CReal -> Complete Base approx (cReal f) ε = f ε inject : Base -> CReal inject x = cReal (unit x) data BoundedCReal : Set where _∈_ : CReal -> Interval Base -> BoundedCReal around : CReal -> Int around (cReal f) = round (f (pos 1 % pos 2)) integerInterval : CReal -> Interval Base integerInterval f = [ i - fromNat 1 ▻ i + fromNat 1 ] where i = Rational.fromInt (around f) compact : CReal -> BoundedCReal compact x = x ∈ integerInterval x choke : BoundedCReal -> CReal choke (cReal x ∈ [ lb ▻ ub ]) = cReal f where f : Complete Base f ε = ! y < lb => lb ! ub < y => ub ! otherwise y where y = x ε compress : Complete Base -> Complete Base compress x ε = approxBase (x ε2) ε2 where ε2 = ε / fromNat 2 mapCR : (Base ==> Base) -> CReal -> CReal mapCR f (cReal x) = cReal $ mapC f (compress x) mapCR2 : (Base ==> Base ==> Base) -> CReal -> CReal -> CReal mapCR2 f (cReal x) (cReal y) = cReal $ mapC2 f (compress x) (compress y) bindR : (Base ==> Complete Base) -> CReal -> CReal bindR f (cReal x) = cReal $ bind f (compress x) approxRange : CReal -> Gauge -> Interval Base approxRange x ε = [ r - ε ▻ r + ε ] where r = approx x ε -- non-terminates for 0 proveNonZeroFrom : Gauge -> CReal -> Base proveNonZeroFrom g r = ! high < fromNat 0 => high ! fromNat 0 < low => low ! otherwise proveNonZeroFrom (g / fromNat 2) r where i = approxRange r g low = lowerBound i high = upperBound i proveNonZero : CReal -> Base proveNonZero = proveNonZeroFrom (fromNat 1) -- Negation negateCts : Base ==> Base negateCts = uniformCts id -_ realNegate : CReal -> CReal realNegate = mapCR negateCts -- Addition plusBaseCts : Base -> Base ==> Base plusBaseCts a = uniformCts id (_+_ a) plusCts : Base ==> Base ==> Base plusCts = uniformCts id plusBaseCts realPlus : CReal -> CReal -> CReal realPlus = mapCR2 plusCts realTranslate : Base -> CReal -> CReal realTranslate a = mapCR (plusBaseCts a) -- Multiplication multBaseCts : Base -> Base ==> Base multBaseCts (pos 0 %' _) = constCts (fromNat 0) multBaseCts a = uniformCts μ (_*_ a) where μ = \ε -> ε / ! a ! -- First argument must be ≠ 0 multCts : Base -> Base ==> Base ==> Base multCts maxy = uniformCts μ multBaseCts where μ = \ε -> ε / maxy realScale : Base -> CReal -> CReal realScale a = mapCR (multBaseCts a) bound : Interval Base -> Base bound [ lb ▻ ub ] = max ub (- lb) realMultBound : BoundedCReal -> CReal -> CReal realMultBound (x ∈ i) y = mapCR2 (multCts b) y (choke (x ∈ i)) where b = bound i realMult : CReal -> CReal -> CReal realMult x y = realMultBound (compact x) y -- Absolute value absCts : Base ==> Base absCts = uniformCts id !_! realAbs : CReal -> CReal realAbs = mapCR absCts fromInt : Int -> CReal fromInt x = inject (Rational.fromInt x) fromRational : Rational -> CReal fromRational = inject -- Reciprocal recipCts : Base -> Base ==> Base recipCts nz = uniformCts μ f where f : Base -> Base f a = ! fromNat 0 ≤ nz => recip (max nz a) ! otherwise recip (min a nz) μ = \ε -> ε * nz ^ pos 2 realRecipWitness : Base -> CReal -> CReal realRecipWitness nz = mapCR (recipCts nz) realRecip : CReal -> CReal realRecip x = realRecipWitness (proveNonZero x) x -- Exponentiation intPowerCts : Gauge -> Int -> Base ==> Base intPowerCts _ (pos 0) = constCts (fromNat 1) intPowerCts maxx n = uniformCts μ (flip _^_ n) where μ = \ε -> ε / (Rational.fromInt n * maxx ^ (n -i pos 1)) realPowerIntBound : BoundedCReal -> Int -> CReal realPowerIntBound (x ∈ i) n = mapCR (intPowerCts b n) (choke (x ∈ i)) where b = bound i realPowerInt : CReal -> Int -> CReal realPowerInt = realPowerIntBound ∘ compact showReal : Nat -> CReal -> String showReal n x = ! len ≤' n => sign ++ "0." ++ fromList (replicate (n -' len) '0') ++ s ! otherwise sign ++ i ++ "." ++ f where open Data.Nat using () renaming ( _^_ to _^'_ ; div to div'; mod to mod' ; _==_ to _=='_; _≤_ to _≤'_ ; _-_ to _-'_ ) open Data.Show open Data.List hiding (_++_) open Data.Integer using () renaming (-_ to -i_) k = 10 ^' n m = around $ realScale (fromNat k) x m' = if m <i pos 0 then -i m else m s = showInt m' sign = if m <i pos 0 then "-" else "" len = length (toList s) p = splitAt (len -' n) $ toList s i = fromList $ fst p f = fromList $ snd p
{ "alphanum_fraction": 0.6314567615, "avg_line_length": 23.3891402715, "ext": "agda", "hexsha": "05d0a6baa55f80930e8698ab60ab76673613b9c0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/lib/Data/Real/CReal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/lib/Data/Real/CReal.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/lib/Data/Real/CReal.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 1694, "size": 5169 }
module agda where open import IO main = run (putStrLn "Hello, World!")
{ "alphanum_fraction": 0.7222222222, "avg_line_length": 14.4, "ext": "agda", "hexsha": "b568181c247121a8960984fd7d37e5a1ab921e3f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-09T20:47:54.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-09T20:47:54.000Z", "max_forks_repo_head_hexsha": "2ddfc606b8bee23bcfb7ea4226fb034b67ef15a9", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thevkrant/hello-world", "max_forks_repo_path": "a/Agda.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2ddfc606b8bee23bcfb7ea4226fb034b67ef15a9", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thevkrant/hello-world", "max_issues_repo_path": "a/Agda.agda", "max_line_length": 37, "max_stars_count": null, "max_stars_repo_head_hexsha": "2ddfc606b8bee23bcfb7ea4226fb034b67ef15a9", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thevkrant/hello-world", "max_stars_repo_path": "a/Agda.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 20, "size": 72 }
module Spire.Operational where ---------------------------------------------------------------------- data Level : Set where zero : Level suc : Level → Level ---------------------------------------------------------------------- data Context : Set data Type (Γ : Context) : Set data Value (Γ : Context) : Type Γ → Set data Neutral (Γ : Context) : Type Γ → Set ---------------------------------------------------------------------- data Context where ∅ : Context _,_ : (Γ : Context) → Type Γ → Context data Type Γ where `⊥ `⊤ `Bool : Type Γ `Desc `Type : (ℓ : Level) → Type Γ `Π `Σ : (A : Type Γ) (B : Type (Γ , A)) → Type Γ `μ : ∀{ℓ} → Value Γ (`Desc ℓ) → Type Γ `⟦_⟧ : ∀{ℓ} → Neutral Γ (`Type ℓ) → Type Γ `⟦_⟧ᵈ : ∀{ℓ} → Neutral Γ (`Desc ℓ) → Type Γ → Type Γ ---------------------------------------------------------------------- ⟦_⟧ : ∀{Γ ℓ} → Value Γ (`Type ℓ) → Type Γ ⟦_⟧ᵈ : ∀{Γ ℓ} → Value Γ (`Desc ℓ) → Type Γ → Type Γ postulate wknT : ∀{Γ A} → Type Γ → Type (Γ , A) subT : ∀{Γ A} → Type (Γ , A) → Value Γ A → Type Γ subV : ∀{Γ A B} → Value (Γ , A) B → (x : Value Γ A) → Value Γ (subT B x) data Var : (Γ : Context) (A : Type Γ) → Set where here : ∀{Γ A} → Var (Γ , A) (wknT A) there : ∀{Γ A B} → Var Γ A → Var (Γ , B) (wknT A) ---------------------------------------------------------------------- data Value Γ where {- Type introduction -} `⊥ `⊤ `Bool `Desc `Type : ∀{ℓ} → Value Γ (`Type ℓ) `Π `Σ : ∀{ℓ} (A : Value Γ (`Type ℓ)) (B : Value (Γ , ⟦ A ⟧) (`Type ℓ)) → Value Γ (`Type ℓ) `μ : ∀{ℓ} → Value Γ (`Desc ℓ) → Value Γ (`Type ℓ) `⟦_⟧ : ∀{ℓ} → Value Γ (`Type ℓ) → Value Γ (`Type (suc ℓ)) `⟦_⟧ᵈ : ∀{ℓ} → Value Γ (`Desc ℓ) → Value Γ (`Type ℓ) → Value Γ (`Type ℓ) {- Desc introduction -} `⊤ᵈ `Xᵈ : ∀{ℓ} → Value Γ (`Desc ℓ) `Πᵈ `Σᵈ : ∀{ℓ} (A : Value Γ (`Type ℓ)) (B : Value (Γ , ⟦ A ⟧) (`Desc (suc ℓ))) → Value Γ (`Desc (suc ℓ)) {- Value introduction -} `tt : Value Γ `⊤ `true `false : Value Γ `Bool _`,_ : ∀{A B} (a : Value Γ A) (b : Value Γ (subT B a)) → Value Γ (`Σ A B) `λ : ∀{A B} → Value (Γ , A) B → Value Γ (`Π A B) `con : ∀{ℓ} {D : Value Γ (`Desc ℓ)} → Value Γ (⟦ D ⟧ᵈ (`μ D)) → Value Γ (`μ D) `neut : ∀{A} → Neutral Γ A → Value Γ A ---------------------------------------------------------------------- data Neutral Γ where {- Value elimination -} `var : ∀{A} → Var Γ A → Neutral Γ A `if_`then_`else_ : ∀{C} (b : Neutral Γ `Bool) (c₁ c₂ : Value Γ C) → Neutral Γ C `elim⊥ : ∀{A} → Neutral Γ `⊥ → Neutral Γ A `elimBool : ∀{ℓ} (P : Value (Γ , `Bool) (`Type ℓ)) (pt : Value Γ (subT ⟦ P ⟧ `true)) (pf : Value Γ (subT ⟦ P ⟧ `false)) (b : Neutral Γ `Bool) → Neutral Γ (subT ⟦ P ⟧ (`neut b)) `proj₁ : ∀{A B} → Neutral Γ (`Σ A B) → Neutral Γ A `proj₂ : ∀{A B} (ab : Neutral Γ (`Σ A B)) → Neutral Γ (subT B (`neut (`proj₁ ab))) _`$_ : ∀{A B} (f : Neutral Γ (`Π A B)) (a : Value Γ A) → Neutral Γ (subT B a) `des : ∀{ℓ} {D : Value Γ (`Desc ℓ)} → Neutral Γ (`μ D) → Neutral Γ (⟦ D ⟧ᵈ (`μ D)) ---------------------------------------------------------------------- ⟦ `Π A B ⟧ = `Π ⟦ A ⟧ ⟦ B ⟧ ⟦ `Σ A B ⟧ = `Σ ⟦ A ⟧ ⟦ B ⟧ ⟦ `⊥ ⟧ = `⊥ ⟦ `⊤ ⟧ = `⊤ ⟦ `Bool ⟧ = `Bool ⟦ `μ D ⟧ = `μ D ⟦ `Type {zero} ⟧ = `⊥ ⟦ `Type {suc ℓ} ⟧ = `Type ℓ ⟦ `⟦ A ⟧ ⟧ = ⟦ A ⟧ ⟦ `Desc {ℓ} ⟧ = `Desc ℓ ⟦ `⟦ D ⟧ᵈ X ⟧ = ⟦ D ⟧ᵈ ⟦ X ⟧ ⟦ `neut A ⟧ = `⟦ A ⟧ ---------------------------------------------------------------------- ⟦ `⊤ᵈ ⟧ᵈ X = `⊤ ⟦ `Xᵈ ⟧ᵈ X = X ⟦ `Πᵈ A D ⟧ᵈ X = `Π ⟦ A ⟧ (⟦ D ⟧ᵈ (wknT X)) ⟦ `Σᵈ A D ⟧ᵈ X = `Σ ⟦ A ⟧ (⟦ D ⟧ᵈ (wknT X)) ⟦ `neut D ⟧ᵈ X = `⟦ D ⟧ᵈ X ---------------------------------------------------------------------- elim⊥ : ∀{Γ A} → Value Γ `⊥ → Value Γ A elim⊥ (`neut bot) = `neut (`elim⊥ bot) ---------------------------------------------------------------------- if_then_else_ : ∀{Γ C} (b : Value Γ `Bool) (c₁ c₂ : Value Γ C) → Value Γ C if `true then c₁ else c₂ = c₁ if `false then c₁ else c₂ = c₂ if `neut b then c₁ else c₂ = `neut (`if b `then c₁ `else c₂) elimBool : ∀{Γ ℓ} (P : Value (Γ , `Bool) (`Type ℓ)) (pt : Value Γ (subT ⟦ P ⟧ `true)) (pf : Value Γ (subT ⟦ P ⟧ `false)) (b : Value Γ `Bool) → Value Γ (subT ⟦ P ⟧ b) elimBool P pt pf `true = pt elimBool P pt pf `false = pf elimBool P pt pf (`neut b) = `neut (`elimBool P pt pf b) ---------------------------------------------------------------------- proj₁ : ∀{Γ A B} → Value Γ (`Σ A B) → Value Γ A proj₁ (a `, b) = a proj₁ (`neut ab) = `neut (`proj₁ ab) proj₂ : ∀{Γ A B} (ab : Value Γ (`Σ A B)) → Value Γ (subT B (proj₁ ab)) proj₂ (a `, b) = b proj₂ (`neut ab) = `neut (`proj₂ ab) ---------------------------------------------------------------------- des : ∀{Γ ℓ} {D : Value Γ (`Desc ℓ)} → Value Γ (`μ D) → Value Γ (⟦ D ⟧ᵈ (`μ D)) des (`con x) = x des (`neut x) = `neut (`des x) ---------------------------------------------------------------------- _$_ : ∀{Γ A B} → Value Γ (`Π A B) → (a : Value Γ A) → Value Γ (subT B a) `λ b $ a = subV b a `neut f $ a = `neut (f `$ a) ---------------------------------------------------------------------- data Term (Γ : Context) : Type Γ → Set eval : ∀{Γ A} → Term Γ A → Value Γ A data Term Γ where {- Type introduction -} `⊥ `⊤ `Bool `Type : ∀{ℓ} → Term Γ (`Type ℓ) `Π `Σ : ∀{ℓ} (A : Term Γ (`Type ℓ)) (B : Term (Γ , ⟦ eval A ⟧) (`Type ℓ)) → Term Γ (`Type ℓ) `μ : ∀{ℓ} → Term Γ (`Desc ℓ) → Term Γ (`Type ℓ) `⟦_⟧ : ∀{ℓ} → Term Γ (`Type ℓ) → Term Γ (`Type (suc ℓ)) `⟦_⟧ᵈ : ∀{ℓ} → Term Γ (`Desc ℓ) → Term Γ (`Type ℓ) → Term Γ (`Type ℓ) {- Desc introduction -} `⊤ᵈ `Xᵈ : ∀{ℓ} → Term Γ (`Desc ℓ) `Πᵈ `Σᵈ : ∀{ℓ} (A : Term Γ (`Type ℓ)) (D : Term (Γ , ⟦ eval A ⟧) (`Desc (suc ℓ))) → Term Γ (`Desc (suc ℓ)) {- Value introduction -} `tt : Term Γ `⊤ `true `false : Term Γ `Bool _`,_ : ∀{A B} (a : Term Γ A) (b : Term Γ (subT B (eval a))) → Term Γ (`Σ A B) `λ : ∀{A B} (b : Term (Γ , A) B) → Term Γ (`Π A B) `con : ∀{ℓ} {D : Value Γ (`Desc ℓ)} → Term Γ (⟦ D ⟧ᵈ (`μ D)) → Term Γ (`μ D) {- Value elimination -} `var : ∀{A} → Var Γ A → Term Γ A `if_`then_`else_ : ∀{C} (b : Term Γ `Bool) (c₁ c₂ : Term Γ C) → Term Γ C _`$_ : ∀{A B} (f : Term Γ (`Π A B)) (a : Term Γ A) → Term Γ (subT B (eval a)) `proj₁ : ∀{A B} → Term Γ (`Σ A B) → Term Γ A `proj₂ : ∀{A B} (ab : Term Γ (`Σ A B)) → Term Γ (subT B (proj₁ (eval ab))) `elim⊥ : ∀{A} → Term Γ `⊥ → Term Γ A `elimBool : ∀{ℓ} (P : Term (Γ , `Bool) (`Type ℓ)) (pt : Term Γ (subT ⟦ eval P ⟧ `true)) (pf : Term Γ (subT ⟦ eval P ⟧ `false)) (b : Term Γ `Bool) → Term Γ (subT ⟦ eval P ⟧ (eval b)) `des : ∀{ℓ} {D : Value Γ (`Desc ℓ)} → Term Γ (`μ D) → Term Γ (⟦ D ⟧ᵈ (`μ D)) ---------------------------------------------------------------------- {- Type introduction -} eval `⊥ = `⊥ eval `⊤ = `⊤ eval `Bool = `Bool eval `Type = `Type eval (`Π A B) = `Π (eval A) (eval B) eval (`Σ A B) = `Σ (eval A) (eval B) eval (`μ D) = `μ (eval D) eval `⟦ A ⟧ = `⟦ eval A ⟧ eval (`⟦ D ⟧ᵈ X) = `⟦ eval D ⟧ᵈ (eval X) {- Desc introduction -} eval `⊤ᵈ = `⊤ᵈ eval `Xᵈ = `Xᵈ eval (`Πᵈ A D) = `Πᵈ (eval A) (eval D) eval (`Σᵈ A D) = `Σᵈ (eval A) (eval D) {- Value introduction -} eval `tt = `tt eval `true = `true eval `false = `false eval (a `, b) = eval a `, eval b eval (`λ b) = `λ (eval b) eval (`con x) = `con (eval x) {- Value elimination -} eval (`var i) = `neut (`var i) eval (`if b `then c₁ `else c₂) = if eval b then eval c₁ else eval c₂ eval (f `$ a) = eval f $ eval a eval (`proj₁ ab) = proj₁ (eval ab) eval (`proj₂ ab) = proj₂ (eval ab) eval (`elim⊥ bot) = elim⊥ (eval bot) eval (`elimBool P pt pf b) = elimBool (eval P) (eval pt) (eval pf) (eval b) eval (`des x) = des (eval x) ----------------------------------------------------------------------
{ "alphanum_fraction": 0.4144983819, "avg_line_length": 32.4579831933, "ext": "agda", "hexsha": "33ff6bf36b8c707691d5af2ddd887af57a8f94f3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-08-17T21:00:07.000Z", "max_forks_repo_forks_event_min_datetime": "2015-08-17T21:00:07.000Z", "max_forks_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "spire/spire", "max_forks_repo_path": "formalization/agda/Spire/Operational.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "spire/spire", "max_issues_repo_path": "formalization/agda/Spire/Operational.agda", "max_line_length": 94, "max_stars_count": 43, "max_stars_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "spire/spire", "max_stars_repo_path": "formalization/agda/Spire/Operational.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T17:10:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-28T23:25:33.000Z", "num_tokens": 3270, "size": 7725 }
open import Type module Relator.Equals.Proofs.Equiv {ℓ} {T : Type{ℓ}} where import Relator.Equals.Proofs.Equivalence open Relator.Equals.Proofs.Equivalence.One {T = T} public open Relator.Equals.Proofs.Equivalence.Two {A = T} public open Relator.Equals.Proofs.Equivalence.Three {A = T} public open Relator.Equals.Proofs.Equivalence.Four {A = T} public instance [≡]-unary-relator-instance = [≡]-unary-relator instance [≡]-binary-relator-instance = [≡]-binary-relator instance [≡]-binary-operator-instance = [≡]-binary-operator instance [≡]-trinary-operator-instance = [≡]-trinary-operator instance [≡]-to-function-instance = [≡]-to-function instance [≡]-equiv-instance = [≡]-equiv
{ "alphanum_fraction": 0.7158931083, "avg_line_length": 39.5, "ext": "agda", "hexsha": "993f61cd196e2d1371bd71a284d35ef096cee4ce", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Relator/Equals/Proofs/Equiv.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Relator/Equals/Proofs/Equiv.agda", "max_line_length": 61, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Relator/Equals/Proofs/Equiv.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 217, "size": 711 }
{-# OPTIONS --rewriting --confluence-check #-} open import Agda.Builtin.Bool open import Agda.Builtin.Equality open import Agda.Builtin.Equality.Rewrite data Unit : Set where unit : Unit Foo : Unit → Set Foo unit = Unit Bar : Unit → Unit → Set Bar unit = Foo bar : ∀ x y → Bar x y ≡ Unit bar unit unit = refl {-# REWRITE bar #-} test : ∀ x y → Bar x y test _ _ = unit works : ∀ x → Foo x works x = test unit x
{ "alphanum_fraction": 0.6547619048, "avg_line_length": 16.1538461538, "ext": "agda", "hexsha": "52399363274a264466d29c9337e9b631a5c71160", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue1445-3.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue1445-3.agda", "max_line_length": 46, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue1445-3.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 129, "size": 420 }
module Imports.Issue5357-C where import Imports.Issue5357-D
{ "alphanum_fraction": 0.85, "avg_line_length": 20, "ext": "agda", "hexsha": "d6a087a7432e9a70ee4b5cce9a2fcd5dae0024f5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/interaction/Imports/Issue5357-C.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/interaction/Imports/Issue5357-C.agda", "max_line_length": 32, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/interaction/Imports/Issue5357-C.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 17, "size": 60 }
module Selective.Examples.Chat where open import Selective.ActorMonad open import Selective.Libraries.Call open import Prelude hiding (Maybe) open import Data.Maybe as Maybe hiding (map) open import Data.Maybe.Categorical as CMaybe open import Data.List.Properties open import Category.Monad open import Debug open import Data.Nat.Show using (show) RoomName = ℕ ClientName = ℕ ClientInterface : InboxShape Client-to-Room : InboxShape Room-to-Client : InboxShape -- ============= -- JOIN ROOM -- ============= data JoinRoomSuccess : Set where JR-SUCCESS : RoomName → JoinRoomSuccess data JoinRoomFail : Set where JR-FAIL : RoomName → JoinRoomFail data JoinRoomStatus : Set where JRS-SUCCESS JRS-FAIL : RoomName → JoinRoomStatus JoinRoomSuccessReply : MessageType JoinRoomSuccessReply = ValueType UniqueTag ∷ ValueType JoinRoomSuccess ∷ [ ReferenceType Client-to-Room ]ˡ JoinRoomFailReply : MessageType JoinRoomFailReply = ValueType UniqueTag ∷ [ ValueType JoinRoomFail ]ˡ JoinRoomReplyInterface : InboxShape JoinRoomReplyInterface = JoinRoomSuccessReply ∷ JoinRoomFailReply ∷ Room-to-Client JoinRoom : MessageType JoinRoom = ValueType UniqueTag ∷ ReferenceType JoinRoomReplyInterface ∷ ValueType RoomName ∷ [ ValueType ClientName ]ˡ -- ============= -- CREATE ROOM -- ============= data CreateRoomResult : Set where CR-SUCCESS CR-EXISTS : RoomName → CreateRoomResult CreateRoomReply : MessageType CreateRoomReply = ValueType UniqueTag ∷ [ ValueType CreateRoomResult ]ˡ CreateRoom : MessageType CreateRoom = ValueType UniqueTag ∷ ReferenceType [ CreateRoomReply ]ˡ ∷ [ ValueType RoomName ]ˡ -- ============ -- LIST ROOMS -- ============ RoomList : Set RoomList = List RoomName ListRoomsReply : MessageType ListRoomsReply = ValueType UniqueTag ∷ [ ValueType RoomList ]ˡ ListRooms : MessageType ListRooms = ValueType UniqueTag ∷ [ ReferenceType [ ListRoomsReply ]ˡ ]ˡ -- === -- -- === Client-to-RoomManager : InboxShape Client-to-RoomManager = JoinRoom ∷ CreateRoom ∷ [ ListRooms ]ˡ RoomManagerInterface : InboxShape RoomManagerInterface = Client-to-RoomManager GetRoomManagerReply : MessageType GetRoomManagerReply = ValueType UniqueTag ∷ [ ReferenceType RoomManagerInterface ]ˡ GetRoomManager : MessageType GetRoomManager = ValueType UniqueTag ∷ [ ReferenceType [ GetRoomManagerReply ]ˡ ]ˡ RoomSupervisorInterface : InboxShape RoomSupervisorInterface = [ GetRoomManager ]ˡ ClientSupervisorInterface : InboxShape ClientSupervisorInterface = [ ReferenceType RoomSupervisorInterface ]ˡ ∷ [ GetRoomManagerReply ]ˡ -- -- -- record ChatMessageContent : Set where constructor chat-from_message:_ field sender : ClientName message : String ChatMessage : MessageType ChatMessage = [ ValueType ChatMessageContent ]ˡ LeaveRoom : MessageType LeaveRoom = [ ValueType ClientName ]ˡ Client-to-Room = ChatMessage ∷ [ LeaveRoom ]ˡ Room-to-Client = [ ChatMessage ]ˡ AddToRoom : MessageType AddToRoom = ValueType ClientName ∷ [ ReferenceType Room-to-Client ]ˡ RoomManager-to-Room : InboxShape RoomManager-to-Room = [ AddToRoom ]ˡ RoomInstanceInterface : InboxShape RoomInstanceInterface = Client-to-Room ++ RoomManager-to-Room ClientInterface = [ ReferenceType RoomManagerInterface ]ˡ ∷ CreateRoomReply ∷ ListRoomsReply ∷ JoinRoomReplyInterface -- ====== -- ROOM -- ====== ClientList : Set ClientList = List ClientName record RoomState : Set₁ where field clients : ClientList cl-to-context : ClientList → TypingContext cl-to-context = map λ _ → Room-to-Client rs-to-context : RoomState → TypingContext rs-to-context rs = let open RoomState in cl-to-context (rs .clients) record RoomLeave (rs : ClientList) (name : ClientName) : Set₁ where field filtered : ClientList subs : (cl-to-context filtered) ⊆ (cl-to-context rs) ++-temp-fix : (l r : ClientList) → (x : ClientName) → (l ++ (x ∷ r)) ≡ ((l ∷ʳ x) ++ r) ++-temp-fix [] r x = refl ++-temp-fix (x₁ ∷ l) r x = cong (_∷_ x₁) (++-temp-fix l r x) room-instance : ∀ {i} → ActorM i RoomInstanceInterface RoomState [] rs-to-context room-instance = begin (loop (record { clients = [] })) where -- only removes first occurance... leave-room : (cl : ClientList) → (name : ClientName) → RoomLeave cl name leave-room [] name = record { filtered = [] ; subs = [] } leave-room (x ∷ cl) name with (x ≟ name) ... | (yes _) = record { filtered = cl ; subs = ⊆-suc ⊆-refl } ... | (no _) = let rl = leave-room cl name open RoomLeave in record { filtered = x ∷ rl .filtered ; subs = Z ∷ ⊆-suc (rl .subs) } send-to-others : ∀ {i} → (cl : ClientList) → ClientName → String → ∞ActorM i RoomInstanceInterface ⊤₁ (cl-to-context cl) (λ _ → cl-to-context cl) send-to-others [] _ _ = return _ send-to-others cl@(_ ∷ _) name message = send-loop [] cl where build-pointer : (l r : ClientList) → cl-to-context r ⊢ Room-to-Client → (cl-to-context (l ++ r)) ⊢ Room-to-Client build-pointer [] r p = p build-pointer (x ∷ l) r p = S (build-pointer l r p) recurse : ∀ {i} → (l r : ClientList) → (x : ClientName) → ∞ActorM i RoomInstanceInterface ⊤₁ (cl-to-context (l ++ (x ∷ r))) (λ _ → (cl-to-context (l ++ (x ∷ r)))) send-loop : ∀ {i} → (l r : ClientList) → ∞ActorM i RoomInstanceInterface ⊤₁ (cl-to-context (l ++ r)) (λ _ → cl-to-context (l ++ r)) send-loop l [] = return _ send-loop l (x ∷ r) with (x ≟ name) ... | (yes _) = recurse l r x ... | (no _) = let p = build-pointer l (x ∷ r) Z in debug ("Sending to " || show x || ": " || message) (p ![t: Z ] [ lift (chat-from name message: message) ]ᵃ ) >> recurse l r x recurse l r x rewrite ++-temp-fix l r x = send-loop (l ∷ʳ x) r handle-message : ∀ {i} → (rs : RoomState) → (m : Message RoomInstanceInterface) → ∞ActorM i RoomInstanceInterface RoomState (add-references (rs-to-context rs) m) rs-to-context -- chat message handle-message rs (Msg Z (chat-from client-name message: message ∷ [])) = do let open RoomState debug ("room sending " || show (pred (length (rs .clients))) || " messages from " || show client-name || ": " || message) (send-to-others (rs .clients) client-name message) (return₁ rs) -- leave room handle-message rs (Msg (S Z) (client-name ∷ [])) = do let open RoomState open RoomLeave rl = leave-room (rs .clients) client-name debug ("client#" || show client-name || " left the room") (strengthen (rl .subs)) (return₁ (record { clients = rl .filtered })) -- add to room handle-message rs (Msg (S (S Z)) (client-name ∷ _ ∷ [])) = do let open RoomState return₁ (record { clients = client-name ∷ rs .clients }) handle-message rs (Msg (S (S (S ()))) _) loop : ∀ {i} → (rs : RoomState) → ∞ActorM i RoomInstanceInterface RoomState (rs-to-context rs) rs-to-context loop state .force = begin do m ← debug ("ROOM LOOP") receive state' ← (handle-message state m) loop state' -- ============== -- ROOM MANAGER -- ============== record RoomManagerState : Set₁ where field rooms : RoomList rms-to-context : RoomManagerState → TypingContext rms-to-context rms = rl-to-context (rms .rooms) where open RoomManagerState rl-to-context : RoomList → TypingContext rl-to-context = map λ _ → RoomInstanceInterface lookup-room : ∀ {i} → {Γ : TypingContext} → (rms : RoomManagerState) → RoomName → ∞ActorM i RoomManagerInterface (Maybe ((Γ ++ (rms-to-context rms)) ⊢ RoomInstanceInterface)) (Γ ++ (rms-to-context rms)) (λ _ → Γ ++ (rms-to-context rms)) lookup-room rms name = let open RoomManagerState in return₁ (loop _ (rms .rooms)) where rl-to-context : RoomList → TypingContext rl-to-context = map λ _ → RoomInstanceInterface loop : (Γ : TypingContext) → (rl : RoomList) → Maybe ((Γ ++ rl-to-context rl) ⊢ RoomInstanceInterface) loop [] [] = nothing loop [] (x ∷ xs) with (x ≟ name) ... | (yes p) = just Z ... | (no _) = RawMonad._>>=_ CMaybe.monad (loop [] xs) λ p → just (S p) loop (x ∷ Γ) rl = RawMonad._>>=_ CMaybe.monad (loop Γ rl) (λ p → just (S p)) room-manager : ∀ {i} → ActorM i RoomManagerInterface RoomManagerState [] rms-to-context room-manager = begin (loop (record { rooms = [] })) where handle-room-join : ∀ {i} → {Γ : TypingContext} → UniqueTag → RoomName → ClientName → (Γ ⊢ JoinRoomReplyInterface) → (Maybe (Γ ⊢ RoomInstanceInterface)) → ∞ActorM i RoomManagerInterface ⊤₁ Γ (λ _ → Γ) handle-room-join tag room-name client-name cp (just rp) = do cp ![t: Z ] ((lift tag) ∷ (lift (JR-SUCCESS room-name)) ∷ [ [ rp ]>: (Z ∷ [ S Z ]ᵐ) ]ᵃ) rp ![t: S (S Z) ] ((lift client-name) ∷ [ [ cp ]>: [ S (S Z) ]ᵐ ]ᵃ) handle-room-join tag room-name client-name p nothing = p ![t: S Z ] (lift tag ∷ [ lift (JR-FAIL room-name) ]ᵃ) handle-create-room : ∀ {i} → (rms : RoomManagerState) → UniqueTag → RoomName → Maybe (([ CreateRoomReply ]ˡ ∷ rms-to-context rms) ⊢ RoomInstanceInterface) → ∞ActorM i RoomManagerInterface RoomManagerState ([ CreateRoomReply ]ˡ ∷ rms-to-context rms) rms-to-context handle-create-room rms tag name (just x) = do Z ![t: Z ] ((lift tag) ∷ [ lift (CR-EXISTS name) ]ᵃ) strengthen (⊆-suc ⊆-refl) return₁ rms handle-create-room rms tag name nothing = do Z ![t: Z ] ((lift tag) ∷ [ lift (CR-SUCCESS name) ]ᵃ) strengthen (⊆-suc ⊆-refl) spawn room-instance let rms' : RoomManagerState rms' = (record { rooms = name ∷ RoomManagerState.rooms rms }) (return₁ rms') handle-message : ∀ {i} → (rms : RoomManagerState) → (m : Message RoomManagerInterface) → ∞ActorM i RoomManagerInterface RoomManagerState (add-references (rms-to-context rms) m) rms-to-context -- Jooin room handle-message state (Msg Z (tag ∷ _ ∷ room-name ∷ client-name ∷ [])) = do p ← (lookup-room state room-name) handle-room-join tag room-name client-name Z p (strengthen (⊆-suc ⊆-refl)) (return₁ state) -- Create room handle-message state (Msg (S Z) (tag ∷ _ ∷ name ∷ [])) = do p ← lookup-room state name handle-create-room state tag name p -- List rooms handle-message state (Msg (S (S Z)) (tag ∷ _ ∷ [])) = do (Z ![t: Z ] ((lift tag) ∷ [(lift (RoomManagerState.rooms state) )]ᵃ)) (strengthen (⊆-suc ⊆-refl)) (return₁ state) handle-message state (Msg (S (S (S ()))) _) loop : ∀ {i} → (rms : RoomManagerState) → ∞ActorM i RoomManagerInterface RoomManagerState (rms-to-context rms) rms-to-context loop state .force = begin do m ← receive state' ← handle-message state m loop state' -- ================= -- ROOM SUPERVISOR -- ================= rs-context : TypingContext rs-context = [ RoomManagerInterface ]ˡ -- room-supervisor spawns the room-manager -- and provides an interface for getting a reference to the current room-manager -- we don't ever change that instance, but we could if we want room-supervisor : ∀ {i} → ActorM i RoomSupervisorInterface ⊤₁ [] (λ _ → rs-context) room-supervisor = begin do (spawn room-manager) provide-manager-instance where provide-manager-instance : ∀ {i} → ∞ActorM i RoomSupervisorInterface ⊤₁ rs-context (λ _ → rs-context) provide-manager-instance .force = begin do (Msg Z (tag ∷ _ ∷ [])) ← receive where (Msg (S ()) _) Z ![t: Z ] (lift tag ∷ [ [ S Z ]>: ⊆-refl ]ᵃ) (strengthen (⊆-suc ⊆-refl)) provide-manager-instance -- ================ -- CLIENT GENERAL -- ================ busy-wait : ∀ {i IS Γ} → ℕ → ∞ActorM i IS ⊤₁ Γ (λ _ → Γ) busy-wait zero = return _ busy-wait (suc n) = return tt >> busy-wait n client-get-room-manager : ∀ {i} → ∞ActorM i ClientInterface ⊤₁ [] (λ _ → [ RoomManagerInterface ]ˡ) client-get-room-manager = do record { msg = Msg Z _} ← (selective-receive (λ { (Msg Z x₁) → true ; (Msg (S _) _) → false })) where record { msg = (Msg (S _) _) ; msg-ok = ()} return _ client-create-room : ∀ {i } → {Γ : TypingContext} → Γ ⊢ RoomManagerInterface → UniqueTag → RoomName → ∞ActorM i ClientInterface (Lift (lsuc lzero) CreateRoomResult) Γ (λ _ → Γ) client-create-room p tag name = do record { msg = (Msg (S Z) (_ ∷ cr ∷ [])) } ← (call p (S Z) tag [ lift name ]ᵃ [ S Z ]ᵐ Z) where record { msg = (Msg Z (_ ∷ _)) ; msg-ok = () } record { msg = (Msg (S (S _)) _) ; msg-ok = () } return cr add-if-join-success : TypingContext → Lift (lsuc lzero) JoinRoomStatus → TypingContext add-if-join-success Γ (lift (JRS-SUCCESS x)) = Client-to-Room ∷ Γ add-if-join-success Γ (lift (JRS-FAIL x)) = Γ client-join-room : ∀ {i Γ} → Γ ⊢ RoomManagerInterface → UniqueTag → RoomName → ClientName → ∞ActorM i ClientInterface (Lift (lsuc lzero) JoinRoomStatus) Γ (add-if-join-success Γ) client-join-room p tag room-name client-name = do self S p ![t: Z ] (lift tag ∷ (([ Z ]>: ⊆-suc (⊆-suc (⊆-suc ⊆-refl))) ∷ (lift room-name) ∷ [ lift client-name ]ᵃ)) (strengthen (⊆-suc ⊆-refl)) m ← (selective-receive (select-join-reply tag)) handle-message m where select-join-reply : UniqueTag → MessageFilter ClientInterface select-join-reply tag (Msg Z _) = false select-join-reply tag (Msg (S Z) _) = false select-join-reply tag (Msg (S (S Z)) _) = false select-join-reply tag (Msg (S (S (S Z))) (tag' ∷ _)) = ⌊ tag ≟ tag' ⌋ select-join-reply tag (Msg (S (S (S (S Z)))) (tag' ∷ _)) = ⌊ tag ≟ tag' ⌋ select-join-reply tag (Msg (S (S (S (S (S Z))))) x₁) = false select-join-reply tag (Msg (S (S (S (S (S (S ())))))) _) handle-message : ∀ {tag i Γ} → (m : SelectedMessage (select-join-reply tag)) → ∞ActorM i ClientInterface (Lift (lsuc lzero) JoinRoomStatus) (add-selected-references Γ m) (add-if-join-success Γ) handle-message record { msg = (Msg Z _) ; msg-ok = () } handle-message record { msg = (Msg (S Z) _) ; msg-ok = () } handle-message record { msg = (Msg (S (S Z)) _) ; msg-ok = () } handle-message record { msg = (Msg (S (S (S Z))) (_ ∷ JR-SUCCESS room-name ∷ _ ∷ [])) } = return (JRS-SUCCESS room-name) handle-message record { msg = (Msg (S (S (S (S Z)))) (_ ∷ JR-FAIL room-name ∷ [])) } = return (JRS-FAIL room-name) handle-message record { msg = (Msg (S (S (S (S (S Z))))) _) ; msg-ok = () } handle-message record { msg = (Msg (S (S (S (S (S (S ())))))) _) } client-send-message : ∀ {i Γ} → Γ ⊢ Client-to-Room → ClientName → String → ∞ActorM i ClientInterface ⊤₁ Γ (λ _ → Γ) client-send-message p client-name message = p ![t: Z ] [ lift (chat-from client-name message: message) ]ᵃ client-receive-message : ∀ {i Γ} → ∞ActorM i ClientInterface (Lift (lsuc lzero) ChatMessageContent) Γ (λ _ → Γ) client-receive-message = do m ← (selective-receive select-message) handle-message m where select-message : MessageFilter ClientInterface select-message (Msg (S (S (S (S (S Z))))) _) = true select-message (Msg _ _) = false handle-message : ∀ {i Γ} → (m : SelectedMessage select-message) → ∞ActorM i ClientInterface (Lift (lsuc lzero) ChatMessageContent) (add-selected-references Γ m) (λ _ → Γ) handle-message record { msg = (Msg Z _) ; msg-ok = () } handle-message record { msg = (Msg (S Z) _) ; msg-ok = () } handle-message record { msg = (Msg (S (S Z)) _) ; msg-ok = () } handle-message record { msg = (Msg (S (S (S Z))) x₁) ; msg-ok = () } handle-message record { msg = (Msg (S (S (S (S Z)))) _) ; msg-ok = () } handle-message record { msg = (Msg (S (S (S (S (S Z))))) (m ∷ [])) ; msg-ok = _ } = return m handle-message record { msg = (Msg (S (S (S (S (S (S ())))))) _) } client-leave-room : ∀ {i Γ} → Γ ⊢ Client-to-Room → ClientName → ∞ActorM i ClientInterface ⊤₁ Γ (λ _ → Γ) client-leave-room p name = p ![t: S Z ] [ lift name ]ᵃ debug-chat : {a : Level} {A : Set a} → ClientName → ChatMessageContent → A → A debug-chat client-name content = let open ChatMessageContent in debug ("client#" || show client-name || " received \"" || content .message || "\" from client#" || show (content .sender)) -- ========== -- CLIENT 1 -- ========== room1-2 = 1 room2-3 = 2 room3-1 = 3 room1-2-3 = 4 name1 = 1 client1 : ∀ {i} → ActorM i ClientInterface ⊤₁ [] (λ _ → []) client1 = begin do client-get-room-manager _ ← (client-create-room Z 0 room1-2) _ ← (client-create-room Z 1 room3-1) _ ← (client-create-room Z 2 room1-2-3) lift (JRS-SUCCESS joined-room) ← (client-join-room Z 3 room3-1 name1) where (lift (JRS-FAIL failed-room)) → strengthen [] lift (JRS-SUCCESS joined-room) ← (client-join-room (S Z) 4 room1-2 name1) where (lift (JRS-FAIL failed-room)) → strengthen [] lift (JRS-SUCCESS joined-room) ← (client-join-room (S (S Z)) 5 room1-2-3 name1) where (lift (JRS-FAIL failed-room)) → strengthen [] busy-wait 100 (client-send-message (S Z) name1 "hi from 1 to 2") (client-send-message Z name1 "hi from 1 to 2-3") let open ChatMessageContent lift m1 ← client-receive-message lift m2 ← debug-chat name1 m1 client-receive-message lift m3 ← debug-chat name1 m2 client-receive-message debug-chat name1 m3 (client-send-message Z name1 "hi1 from 1 to 2-3") (client-send-message Z name1 "hi2 from 1 to 2-3") (client-send-message Z name1 "hi3 from 1 to 2-3") client-leave-room (S Z) name1 client-leave-room (Z) name1 (strengthen []) -- ========== -- CLIENT 2 -- ========== name2 = 2 client2 : ∀ {i} → ActorM i ClientInterface ⊤₁ [] (λ _ → []) client2 = begin do client-get-room-manager _ ← (client-create-room Z 0 room1-2) _ ← (client-create-room Z 1 room2-3) _ ← (client-create-room Z 2 room1-2-3) lift (JRS-SUCCESS joined-room) ← (client-join-room Z 3 room1-2 name2) where (lift (JRS-FAIL failed-room)) → strengthen [] lift (JRS-SUCCESS joined-room) ← (client-join-room (S Z) 4 room2-3 name2) where (lift (JRS-FAIL failed-room)) → strengthen [] lift (JRS-SUCCESS joined-room) ← (client-join-room (S (S Z)) 5 room1-2-3 name2) where (lift (JRS-FAIL failed-room)) → strengthen [] busy-wait 100 debug "client2 send message" (client-send-message (S Z) name2 "hi from 2 to 3") debug "client2 send message" (client-send-message Z name2 "hi from 2 to 1-3") let open ChatMessageContent lift m1 ← client-receive-message lift m2 ← debug-chat name2 m1 client-receive-message lift m3 ← debug-chat name2 m2 client-receive-message client-leave-room (S Z) name2 client-leave-room (Z) name2 debug-chat name2 m3 (strengthen []) -- ========== -- CLIENT 3 -- ========== name3 = 3 client3 : ∀ {i} → ActorM i ClientInterface ⊤₁ [] (λ _ → []) client3 = begin do client-get-room-manager _ ← (client-create-room Z 0 room2-3) _ ← (client-create-room Z 1 room3-1) _ ← (client-create-room Z 2 room1-2-3) lift (JRS-SUCCESS joined-room) ← (client-join-room Z 3 room2-3 name3) where (lift (JRS-FAIL failed-room)) → strengthen [] lift (JRS-SUCCESS joined-room) ← (client-join-room (S Z) 4 room3-1 name3) where (lift (JRS-FAIL failed-room)) → strengthen [] lift (JRS-SUCCESS joined-room) ← (client-join-room (S (S Z)) 5 room1-2-3 name3) where (lift (JRS-FAIL failed-room)) → strengthen [] busy-wait 100 debug "client3 send message" (client-send-message (S Z) name3 "hi from 3 to 1") debug "client3 send message" (client-send-message Z name3 "hi from 3 to 1-2") let open ChatMessageContent lift m1 ← client-receive-message lift m2 ← debug-chat name3 m1 client-receive-message lift m3 ← debug-chat name3 m2 client-receive-message debug-chat name3 m3 (client-leave-room Z name3) client-leave-room (S Z) name3 client-leave-room Z name3 (strengthen []) -- =================== -- CLIENT SUPERVISOR -- =================== cs-context : TypingContext cs-context = RoomManagerInterface ∷ RoomSupervisorInterface ∷ [] client-supervisor : ∀ {i} → ActorM i ClientSupervisorInterface ⊤₁ [] (λ _ → cs-context) client-supervisor = begin do wait-for-room-supervisor (get-room-manager Z 0) spawn-clients where wait-for-room-supervisor : ∀ {i Γ} → ∞ActorM i ClientSupervisorInterface ⊤₁ Γ (λ _ → RoomSupervisorInterface ∷ Γ) wait-for-room-supervisor = do record { msg = Msg Z f } ← (selective-receive (λ { (Msg Z _) → true ; (Msg (S _) _) → false })) where record { msg = (Msg (S _) _) ; msg-ok = () } return _ get-room-manager : ∀ {i Γ} → Γ ⊢ RoomSupervisorInterface → UniqueTag → ∞ActorM i ClientSupervisorInterface ⊤₁ Γ (λ _ → RoomManagerInterface ∷ Γ) get-room-manager p tag = do record { msg = Msg (S Z) (_ ∷ _ ∷ []) } ← (call p Z tag [] (⊆-suc ⊆-refl) Z) where record { msg = (Msg Z (_ ∷ _)) ; msg-ok = () } record { msg = (Msg (S (S ())) _) } return _ spawn-clients : ∀ {i} → ∞ActorM i ClientSupervisorInterface ⊤₁ cs-context (λ _ → cs-context) spawn-clients = do spawn client1 Z ![t: Z ] [ [ S Z ]>: ⊆-refl ]ᵃ (strengthen (⊆-suc ⊆-refl)) (spawn client2) Z ![t: Z ] [ [ S Z ]>: ⊆-refl ]ᵃ (strengthen (⊆-suc ⊆-refl)) (spawn client3) Z ![t: Z ] [ [ S Z ]>: ⊆-refl ]ᵃ (strengthen (⊆-suc ⊆-refl)) -- chat-supervisor is the top-most actor -- it spawns and connects the ClientRegistry to the RoomRegistry chat-supervisor : ∀ {i} → ∞ActorM i [] ⊤₁ [] (λ _ → []) chat-supervisor = do spawn room-supervisor spawn client-supervisor Z ![t: Z ] [ [ S Z ]>: ⊆-refl ]ᵃ strengthen []
{ "alphanum_fraction": 0.5835342749, "avg_line_length": 38.9011725293, "ext": "agda", "hexsha": "d2d3be2824a7153872b9230a48a6e35bcf892406", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Zalastax/singly-typed-actors", "max_forks_repo_path": "src/Selective/Examples/Chat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Zalastax/singly-typed-actors", "max_issues_repo_path": "src/Selective/Examples/Chat.agda", "max_line_length": 180, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Zalastax/singly-typed-actors", "max_stars_repo_path": "src/Selective/Examples/Chat.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-29T09:30:26.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:30:26.000Z", "num_tokens": 6891, "size": 23224 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Reflection utilities for ℕ ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Nat.Reflection where open import Data.Nat.Base as ℕ open import Data.Fin.Base as Fin open import Data.List.Base using ([]) open import Reflection.Term open import Reflection.Argument ------------------------------------------------------------------------ -- Term toTerm : ℕ → Term toTerm zero = con (quote ℕ.zero) [] toTerm (suc i) = con (quote ℕ.suc) (toTerm i ⟨∷⟩ []) toFinTerm : ℕ → Term toFinTerm zero = con (quote Fin.zero) (1 ⋯⟅∷⟆ []) toFinTerm (suc i) = con (quote Fin.suc) (1 ⋯⟅∷⟆ toFinTerm i ⟨∷⟩ [])
{ "alphanum_fraction": 0.4736842105, "avg_line_length": 28.8518518519, "ext": "agda", "hexsha": "4d069d3b10beb1f0b58008d3800cd378a715c8b3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Nat/Reflection.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Nat/Reflection.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Nat/Reflection.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 187, "size": 779 }
-- 2012-01-17 Bug found by Rob Simmons, example simplified by Nisse -- {-# OPTIONS -v tc.proj.like:50 #-} -- {-# OPTIONS -v tc.conv.atom:50 #-} module Issue553b where data E : Set where module M (A : Set) where data D : Set where d₁ d₂ : D data B : Set where b : D → B -- T must not be classified as projection-like, because of deep matching T : B → Set T (b d₁) = E T (b d₂) = E data P : B → Set where p : (b : B) → T b → P b pb : (d : D) → T (b d) → P (b d) pb d t = p (b d) t
{ "alphanum_fraction": 0.5531914894, "avg_line_length": 19.8846153846, "ext": "agda", "hexsha": "07eb28eeda950dd8e6a7443141941d39c7f41f09", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue553b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue553b.agda", "max_line_length": 74, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue553b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 194, "size": 517 }
-- This test case was reported by Andrea Vezzosi. {-# OPTIONS --no-guardedness #-} open import Agda.Builtin.Size data Σ (A : Set) (B : A → Set) : Set where _,_ : (x : A) → B x → Σ A B data ⊥ : Set where record T (i : Size) : Set where constructor con coinductive field force : Σ (Size< i) λ{ j → T j } open T public empty : ∀ i → T i → ⊥ empty i x with force x ... | j , y = empty j y inh : T ∞ inh = λ{ .force → ∞ , inh } -- using ∞ < ∞ here false : ⊥ false = empty ∞ inh
{ "alphanum_fraction": 0.5647773279, "avg_line_length": 17.0344827586, "ext": "agda", "hexsha": "3c26b288a92ab3adf3b4838c008b687a084e0982", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Fail/Issue1946-5.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1946-5.agda", "max_line_length": 49, "max_stars_count": null, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1946-5.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 184, "size": 494 }
{-# OPTIONS --without-K --safe #-} -- Some properties of 'heterogeneous' identity morphisms module Categories.Morphism.HeterogeneousIdentity.Properties where open import Level open import Data.Product using (curry) renaming (_,_ to _,,_) open import Relation.Binary.PropositionalEquality open import Categories.Category using (Category; _[_,_]; _[_≈_]) open import Categories.Category.Product open import Categories.Functor using (Functor) renaming (id to idF) open import Categories.Functor.Bifunctor open import Categories.Morphism.HeterogeneousIdentity private variable o ℓ e o′ ℓ′ e′ o″ ℓ″ e″ o‴ ℓ‴ e‴ : Level open Category using (Obj; id) -- Functor identity laws lifted to heterogeneous identities. hid-identity : (C : Category o ℓ e) (D : Category o′ ℓ′ e′) {F₀ : Obj C → Obj D} (F₁ : ∀ {A B} → C [ A , B ] → D [ F₀ A , F₀ B ]) → (∀ {A} → D [ F₁ (id C {A}) ≈ id D ]) → ∀ {A B} (p : A ≡ B) → D [ F₁ (hid C p) ≈ hid D (cong F₀ p) ] hid-identity C D F₁ hyp refl = hyp hid-identity₂ : (C₁ : Category o ℓ e) (C₂ : Category o′ ℓ′ e′) (D : Category o″ ℓ″ e″) {F₀ : Obj C₁ → Obj C₂ → Obj D} (F₁ : ∀ {A₁ A₂ B₁ B₂} → C₁ [ A₁ , B₁ ] → C₂ [ A₂ , B₂ ] → D [ F₀ A₁ A₂ , F₀ B₁ B₂ ]) → (∀ {A₁ A₂} → D [ F₁ (id C₁ {A₁}) (id C₂ {A₂}) ≈ id D ]) → ∀ {A₁ A₂ B₁ B₂} (p : A₁ ≡ B₁) (q : A₂ ≡ B₂) → D [ F₁ (hid C₁ p) (hid C₂ q) ≈ hid D (cong₂ F₀ p q) ] hid-identity₂ C₁ C₂ D F₁ hyp refl refl = hyp module _ {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F : Functor C D) where open Category D open Functor F -- functors preserve heterogeneous identities F-hid : ∀ {A B} (p : A ≡ B) → F₁ (hid C p) ≈ hid D (cong F₀ p) F-hid = hid-identity C D F₁ identity module _ {C₁ : Category o ℓ e} {C₂ : Category o′ ℓ′ e′} {D : Category o″ ℓ″ e″} (F : Bifunctor C₁ C₂ D) where open Category D open Functor F -- bifunctors preserve heterogeneous identities BF-hid : ∀ {A₁ A₂ B₁ B₂} (p : A₁ ≡ B₁) (q : A₂ ≡ B₂) → F₁ (hid C₁ p ,, hid C₂ q) ≈ hid D (cong₂ (curry F₀) p q) BF-hid = hid-identity₂ C₁ C₂ D (curry F₁) identity module _ (C : Category o ℓ e) (D : Category o′ ℓ′ e′) where open Category (Product C D) -- products preserve heterogeneous identities ×-hid : ∀ {A₁ A₂ B₁ B₂} (p : A₁ ≡ B₁) (q : A₂ ≡ B₂) → (hid C p ,, hid D q) ≈ hid (Product C D) (cong₂ _,,_ p q) ×-hid p q = BF-hid {C₁ = C} {C₂ = D} (idF ⁂ idF) p q
{ "alphanum_fraction": 0.5616438356, "avg_line_length": 35.985915493, "ext": "agda", "hexsha": "e85a06d0a135a1cd6951607af94833af1a795a31", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Morphism/HeterogeneousIdentity/Properties.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Morphism/HeterogeneousIdentity/Properties.agda", "max_line_length": 75, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Morphism/HeterogeneousIdentity/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 953, "size": 2555 }
module PrintFloat where import AlonzoPrelude import PreludeShow import PreludeList import PreludeString import PreludeNat open AlonzoPrelude open PreludeShow open PreludeList, hiding(_++_) open PreludeString open PreludeNat typeS : Char -> Set typeS 'f' = Float show : (c : Char) -> (typeS c) -> String show 'f' f = showFloat f data Unit : Set where unit : Unit data Format : Set where stringArg : Format natArg : Format intArg : Format floatArg : Format charArg : Format litChar : Char -> Format badFormat : Char -> Format data BadFormat (c:Char) : Set where format' : List Char -> List Format format' ('%' :: 's' :: fmt) = stringArg :: format' fmt format' ('%' :: 'n' :: fmt) = natArg :: format' fmt -- format' ('%' :: 'd' :: fmt) = intArg :: format' fmt format' ('%' :: 'f' :: fmt) = floatArg :: format' fmt format' ('%' :: 'c' :: fmt) = charArg :: format' fmt format' ('%' :: '%' :: fmt) = litChar '%' :: format' fmt format' ('%' :: c :: fmt) = badFormat c :: format' fmt format' (c :: fmt) = litChar c :: format' fmt format' [] = [] format : String -> List Format format s = format' (toList s) -- Printf1 : Format -> Set -- Printf1 floatArg = Float Printf' : List Format -> Set Printf' (stringArg :: fmt) = String × Printf' fmt Printf' (natArg :: fmt) = Nat × Printf' fmt Printf' (intArg :: fmt) = Int × Printf' fmt Printf' (floatArg :: fmt) = Float × Printf' fmt Printf' (charArg :: fmt) = Char × Printf' fmt Printf' (badFormat c :: fmt) = BadFormat c Printf' (litChar _ :: fmt) = Printf' fmt Printf' [] = Unit × Unit Printf : String -> Set Printf fmt = Printf' (format fmt) printf' : (fmt : List Format) -> Printf' fmt -> String printf' (stringArg :: fmt) < s | args > = s ++ printf' fmt args printf' (natArg :: fmt) < n | args > = showNat n ++ printf' fmt args printf' (intArg :: fmt) < n | args > = showInt n ++ printf' fmt args printf' (floatArg :: fmt) < x | args > = showFloat x ++ printf' fmt args printf' (charArg :: fmt) < c | args > = showChar c ++ printf' fmt args printf' (litChar c :: fmt) args = fromList (c :: []) ++ printf' fmt args printf' (badFormat _ :: fmt) () printf' [] < unit | unit > = "" printf : (fmt : String) -> Printf fmt -> String printf fmt = printf' (format fmt) -- mainS = show 'f' 3.14 -- mainS = printf' (format "%f") < 3.14 | < unit | unit > > mainS = printf "pi = %f" < 3.14159 | < unit | unit > > -- mainS = fromList ( 'p' :: [] )
{ "alphanum_fraction": 0.5865499403, "avg_line_length": 30.6463414634, "ext": "agda", "hexsha": "7ce23621f54753a491c719b9d935132bc9ed6f55", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/Alonzo/PrintFloat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/Alonzo/PrintFloat.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/Alonzo/PrintFloat.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 805, "size": 2513 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT module homotopy.CoHSpace where record CoHSpaceStructure {i} (X : Ptd i) : Type i where constructor coHSpaceStructure field ⊙coμ : X ⊙→ X ⊙∨ X coμ : de⊙ X → X ∨ X coμ = fst ⊙coμ field ⊙unit-l : ⊙projr ⊙∘ ⊙coμ ⊙∼ ⊙idf X ⊙unit-r : ⊙projl ⊙∘ ⊙coμ ⊙∼ ⊙idf X {- module _ {i j : ULevel} {X : Ptd i} (CHSS : CoHSpaceStructure X) where open CoHSpaceStructure CHSS private lemma-l : ⊙projr ⊙∘ ⊙∨-fmap (⊙lift {j = j}) (⊙lift {j = j}) ⊙∘ ⊙coμ ⊙∘ ⊙lower {j = j} == ⊙idf _ abstract lemma-l = ! (⊙λ= (⊙∘-assoc ⊙projr (⊙∨-fmap (⊙lift {j = j}) (⊙lift {j = j})) (⊙coμ ⊙∘ ⊙lower {j = j}))) ∙ ap (_⊙∘ ⊙coμ ⊙∘ ⊙lower) (⊙λ= (⊙Wedge-rec-fmap ⊙cst (⊙idf _) (⊙lift {j = j}) (⊙lift {j = j}))) ∙ ap (_⊙∘ ⊙coμ ⊙∘ ⊙lower) (! (⊙λ= (⊙Wedge-rec-post∘ (⊙lift {j = j}) ⊙cst (⊙idf _)))) ∙ ⊙λ= (⊙∘-assoc (⊙lift {j = j}) ⊙projr (⊙coμ ⊙∘ ⊙lower {j = j})) ∙ ap (λ f → ⊙lift {j = j} ⊙∘ f ⊙∘ ⊙lower {j = j}) (⊙λ= ⊙unit-l) private lemma-r : ⊙projl ⊙∘ ⊙∨-fmap (⊙lift {j = j}) (⊙lift {j = j}) ⊙∘ ⊙coμ ⊙∘ ⊙lower {j = j} == ⊙idf _ abstract lemma-r = ! (⊙λ= (⊙∘-assoc ⊙projl (⊙∨-fmap (⊙lift {j = j}) (⊙lift {j = j})) (⊙coμ ⊙∘ ⊙lower {j = j}))) ∙ ap (_⊙∘ ⊙coμ ⊙∘ ⊙lower) (⊙λ= (⊙Wedge-rec-fmap (⊙idf _) ⊙cst (⊙lift {j = j}) (⊙lift {j = j}))) ∙ ap (_⊙∘ ⊙coμ ⊙∘ ⊙lower) (! (⊙λ= (⊙Wedge-rec-post∘ (⊙lift {j = j}) (⊙idf _) ⊙cst))) ∙ ⊙λ= (⊙∘-assoc (⊙lift {j = j}) ⊙projl (⊙coμ ⊙∘ ⊙lower {j = j})) ∙ ap (λ f → ⊙lift {j = j} ⊙∘ f ⊙∘ ⊙lower {j = j}) (⊙λ= ⊙unit-r) Lift-co-h-space-structure : CoHSpaceStructure (⊙Lift {j = j} X) Lift-co-h-space-structure = record { ⊙coμ = ⊙∨-fmap ⊙lift ⊙lift ⊙∘ ⊙coμ ⊙∘ ⊙lower ; ⊙unit-l = ⊙app= lemma-l ; ⊙unit-r = ⊙app= lemma-r } -}
{ "alphanum_fraction": 0.4664117968, "avg_line_length": 34.5471698113, "ext": "agda", "hexsha": "b75c49af972d681587a7cf0b1c1caa297d6c5472", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/CoHSpace.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/CoHSpace.agda", "max_line_length": 101, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/CoHSpace.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 1018, "size": 1831 }