Search is not available for this dataset
text
string
meta
dict
open import Agda.Primitive using (_⊔_; lsuc; lzero) import Categories.Category as Category import Categories.Category.Cartesian as Cartesian import MultiSorted.Model as Model import MultiSorted.Interpretation as Interpretation import MultiSorted.UniversalModel as UniversalModel import MultiSorted.SyntacticCategory as SyntacticCategory import MultiSorted.UniversalModel as UniversalModel open import MultiSorted.AlgebraicTheory module MultiSorted.Completeness {ℓt} {𝓈 ℴ} {Σ : Signature {𝓈} {ℴ}} (T : Theory ℓt Σ) where open Theory T open UniversalModel T -- An equation is semantically valid when it holds in all models valid : ∀ (ε : Equation Σ) → Set (lsuc (lsuc ℓt ⊔ lsuc 𝓈 ⊔ lsuc ℴ)) valid ε = ∀ {𝒞 : Category.Category 𝓈 (lsuc ℴ) (lsuc (ℓt ⊔ 𝓈 ⊔ ℴ))} {cartesian-𝒞 : Cartesian.Cartesian 𝒞} {I : Interpretation.Interpretation Σ cartesian-𝒞} (M : Model.Model T I) → Interpretation.Interpretation.⊨_ I ε -- Completeness: semantic validity implies provability valid-⊢ : ∀ (ε : Equation Σ) → valid ε → ⊢ ε valid-⊢ ε v = universality ε (v 𝒰)
{ "alphanum_fraction": 0.6967572305, "avg_line_length": 34.5757575758, "ext": "agda", "hexsha": "bb4d18e8541bb90996345fe677ad849050afa4eb", "lang": "Agda", "max_forks_count": 6, "max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z", "max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z", "max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejbauer/formaltt", "max_forks_repo_path": "src/MultiSorted/Completeness.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z", "max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejbauer/formaltt", "max_issues_repo_path": "src/MultiSorted/Completeness.agda", "max_line_length": 74, "max_stars_count": 21, "max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cilinder/formaltt", "max_stars_repo_path": "src/MultiSorted/Completeness.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z", "num_tokens": 349, "size": 1141 }
------------------------------------------------------------------------------ -- Totality properties respect to Bool ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.SortList.Properties.Totality.BoolATP where open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.Bool.PropertiesATP open import FOTC.Data.Bool.Type open import FOTC.Data.Nat.List.Type open import FOTC.Data.Nat.Type open import FOTC.Program.SortList.SortList ------------------------------------------------------------------------------ le-ItemList-Bool : ∀ {item is} → N item → ListN is → Bool (le-ItemList item is) le-ItemList-Bool {item} Nitem lnnil = prf where postulate prf : Bool (le-ItemList item []) {-# ATP prove prf #-} le-ItemList-Bool {item} Nitem (lncons {i} {is} Ni Lis) = prf (le-ItemList-Bool Nitem Lis) where postulate prf : Bool (le-ItemList item is) → Bool (le-ItemList item (i ∷ is)) {-# ATP prove prf &&-Bool le-Bool #-} le-Lists-Bool : ∀ {is js} → ListN is → ListN js → Bool (le-Lists is js) le-Lists-Bool {js = js} lnnil LNjs = prf where postulate prf : Bool (le-Lists [] js) {-# ATP prove prf #-} le-Lists-Bool {js = js} (lncons {i} {is} Ni LNis) LNjs = prf (le-Lists-Bool LNis LNjs) where postulate prf : Bool (le-Lists is js) → Bool (le-Lists (i ∷ is) js) {-# ATP prove prf &&-Bool le-ItemList-Bool #-} ordList-Bool : ∀ {is} → ListN is → Bool (ordList is) ordList-Bool lnnil = prf where postulate prf : Bool (ordList []) {-# ATP prove prf #-} ordList-Bool (lncons {i} {is} Ni LNis) = prf (ordList-Bool LNis) where postulate prf : Bool (ordList is) → Bool (ordList (i ∷ is)) {-# ATP prove prf &&-Bool le-ItemList-Bool #-} le-ItemTree-Bool : ∀ {item t} → N item → Tree t → Bool (le-ItemTree item t) le-ItemTree-Bool {item} Nt tnil = prf where postulate prf : Bool (le-ItemTree item nil) {-# ATP prove prf #-} le-ItemTree-Bool {item} Nitem (ttip {i} Ni) = prf where postulate prf : Bool (le-ItemTree item (tip i)) {-# ATP prove prf le-Bool #-} le-ItemTree-Bool {item} Nitem (tnode {t₁} {i} {t₂} Tt₁ Ni Tt₂) = prf (le-ItemTree-Bool Nitem Tt₁) (le-ItemTree-Bool Nitem Tt₂) where postulate prf : Bool (le-ItemTree item t₁) → Bool (le-ItemTree item t₂) → Bool (le-ItemTree item (node t₁ i t₂)) {-# ATP prove prf &&-Bool #-} le-TreeItem-Bool : ∀ {t item} → Tree t → N item → Bool (le-TreeItem t item) le-TreeItem-Bool {item = item } tnil Nt = prf where postulate prf : Bool (le-TreeItem nil item) {-# ATP prove prf #-} le-TreeItem-Bool {item = item} (ttip {i} Ni) Nitem = prf where postulate prf : Bool (le-TreeItem (tip i) item) {-# ATP prove prf le-Bool #-} le-TreeItem-Bool {item = item} (tnode {t₁} {i} {t₂} Tt₁ Ni Tt₂) Nitem = prf (le-TreeItem-Bool Tt₁ Nitem) (le-TreeItem-Bool Tt₂ Nitem) where postulate prf : Bool (le-TreeItem t₁ item) → Bool (le-TreeItem t₂ item) → Bool (le-TreeItem (node t₁ i t₂) item) {-# ATP prove prf &&-Bool #-} ordTree-Bool : ∀ {t} → Tree t → Bool (ordTree t) ordTree-Bool tnil = prf where postulate prf : Bool (ordTree nil) {-# ATP prove prf #-} ordTree-Bool (ttip {i} Ni) = prf where postulate prf : Bool (ordTree (tip i)) {-# ATP prove prf #-} ordTree-Bool (tnode {t₁} {i} {t₂} Tt₁ Ni Tt₂) = prf (ordTree-Bool Tt₁) (ordTree-Bool Tt₂) where postulate prf : Bool (ordTree t₁) → Bool (ordTree t₂) → Bool (ordTree (node t₁ i t₂)) {-# ATP prove prf &&-Bool le-TreeItem-Bool le-ItemTree-Bool #-}
{ "alphanum_fraction": 0.5683453237, "avg_line_length": 41.4042553191, "ext": "agda", "hexsha": "876398af3ba56f75d2029e82de63fc0fcce0fe39", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/SortList/Properties/Totality/BoolATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/SortList/Properties/Totality/BoolATP.agda", "max_line_length": 79, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/SortList/Properties/Totality/BoolATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1242, "size": 3892 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Universes ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Universe where open import Data.Product open import Function open import Level -- Universes. record Universe u e : Set (suc (u ⊔ e)) where field -- Codes. U : Set u -- Decoding function. El : U → Set e -- Indexed universes. record Indexed-universe i u e : Set (suc (i ⊔ u ⊔ e)) where field -- Index set. I : Set i -- Codes. U : I → Set u -- Decoding function. El : ∀ {i} → U i → Set e -- An indexed universe can be turned into an unindexed one. unindexed-universe : Universe (i ⊔ u) e unindexed-universe = record { U = ∃ λ i → U i ; El = El ∘ proj₂ }
{ "alphanum_fraction": 0.4866123399, "avg_line_length": 19.0888888889, "ext": "agda", "hexsha": "641407090d5c1fabfc787b3a3e6296bdcd141255", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Universe.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Universe.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Universe.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 225, "size": 859 }
{-# OPTIONS --cubical --safe #-} module Relation.Nullary.Stable.Base where open import Data.Empty open import Level Stable : Type a → Type a Stable A = ¬ ¬ A → A
{ "alphanum_fraction": 0.6848484848, "avg_line_length": 16.5, "ext": "agda", "hexsha": "5d70eefd1c63a589bcfd21a1729e8c178b11caf4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Relation/Nullary/Stable/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Relation/Nullary/Stable/Base.agda", "max_line_length": 41, "max_stars_count": 4, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Relation/Nullary/Stable/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z", "num_tokens": 46, "size": 165 }
module Common.Reflection where open import Agda.Builtin.Reflection public renaming ( arg-info to argInfo ; function to funDef ; data-type to dataDef ; record-type to recordDef ; agda-sort to sort ; name to qname ; absurd-clause to absurdClause ; pat-lam to extLam ; proj to projP ; instance′ to inst ; Visibility to Hiding ; Name to QName) open import Common.Level open import Common.Prelude hiding (_>>=_) pattern vArg x = arg (argInfo visible relevant) x pattern hArg x = arg (argInfo hidden relevant) x pattern iArg x = arg (argInfo inst relevant) x Args = List (Arg Term) data FunDef : Set where funDef : Type → List Clause → FunDef Tactic = Term → TC ⊤ give : Term → Tactic give v = λ hole → unify hole v define : Arg QName → FunDef → TC ⊤ define (arg i f) (funDef a cs) = bindTC (declareDef (arg i f) a) λ _ → defineFun f cs newMeta : Type → TC Term newMeta a = checkType unknown a numberOfParameters : QName → TC Nat numberOfParameters d = bindTC (getDefinition d) λ { (dataDef n _) → returnTC n ; _ → typeError (strErr "Cannot get parameters of non-data type" ∷ nameErr d ∷ []) } getConstructors : QName → TC (List QName) getConstructors d = bindTC (getDefinition d) λ { (dataDef _ cs) → returnTC cs ; (recordDef c _) → returnTC (c ∷ []) ; _ → typeError (strErr "Cannot get constructors of non-data or record type" ∷ nameErr d ∷ []) } infixl 1 _>>=_ _>>=_ = bindTC
{ "alphanum_fraction": 0.6544362909, "avg_line_length": 25.406779661, "ext": "agda", "hexsha": "9777f54a9159d2a3800aa72b4586000297e6fbab", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Common/Reflection.agda", "max_issues_count": 16, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-09-08T13:47:04.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-08T00:32:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Common/Reflection.agda", "max_line_length": 96, "max_stars_count": 7, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Common/Reflection.agda", "max_stars_repo_stars_event_max_datetime": "2018-11-06T16:38:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-11-05T22:13:36.000Z", "num_tokens": 458, "size": 1499 }
module gugugu where open import Relation.Binary.PropositionalEquality open import Data.List open import Data.List.Properties open import Agda.Builtin.Sigma -- you can import other functions from the stdlib here ++-injectiveʳ : ∀ {ℓ} {A : Set ℓ} (a b c : List A) → a ++ b ≡ a ++ c → b ≡ c ++-injectiveʳ [] b c p = p ++-injectiveʳ (x ∷ a) b c p = ++-injectiveʳ a b c (snd (∷-injective p)) lemma : ∀ {ℓ} {A : Set ℓ} (x : A) (xs ys : List A) → xs ++ x ∷ ys ≡ (xs ++ x ∷ []) ++ ys lemma x [] ys = refl lemma x (x₁ ∷ xs) ys = cong (_∷_ x₁) (lemma x xs ys) col : ∀ {ℓ} {A : Set ℓ} (x : A) (xs : List A) → xs ++ x ∷ [] ≡ (xs ∷ʳ x) col x [] = refl col x (x₁ ∷ xs) = refl silly' : ∀ {ℓ} {A : Set ℓ} (x : A) (xs ys : List A) → xs ++ x ∷ [] ≡ ys ++ x ∷ [] → xs ∷ʳ x ≡ ys ∷ʳ x silly' x xs ys = λ z → z silly : ∀ {ℓ} {A : Set ℓ} (x : A) (xs ys : List A) → xs ++ x ∷ [] ≡ ys ++ x ∷ [] → xs ≡ ys silly x xs ys p rewrite col x xs | col x ys = fst (∷ʳ-injective xs ys (silly' x xs ys p)) -- inductive can do this job too. ++-injectiveˡ : ∀ {ℓ} {A : Set ℓ} (a b c : List A) → a ++ c ≡ b ++ c → a ≡ b ++-injectiveˡ a b [] p rewrite ++-identityʳ a | ++-identityʳ b = p ++-injectiveˡ a b (x ∷ c) p rewrite lemma x a c | lemma x b c = silly x a b (++-injectiveˡ (a ++ x ∷ []) (b ++ x ∷ []) c p)
{ "alphanum_fraction": 0.5293197811, "avg_line_length": 41.2580645161, "ext": "agda", "hexsha": "e3469d969cb983ea7510ed6f9d87fe870baad449", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-12-13T04:50:46.000Z", "max_forks_repo_forks_event_min_datetime": "2019-12-13T04:50:46.000Z", "max_forks_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Brethland/LEARNING-STUFF", "max_forks_repo_path": "Agda/gugugu.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Brethland/LEARNING-STUFF", "max_issues_repo_path": "Agda/gugugu.agda", "max_line_length": 123, "max_stars_count": 2, "max_stars_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Brethland/LEARNING-STUFF", "max_stars_repo_path": "Agda/gugugu.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-11T10:35:42.000Z", "max_stars_repo_stars_event_min_datetime": "2020-02-03T05:05:52.000Z", "num_tokens": 556, "size": 1279 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.NType2 open import lib.types.Bool open import lib.types.Empty open import lib.types.Paths open import lib.types.Pi open import lib.types.Sigma {- This file contains various lemmas that rely on lib.types.Paths or functional extensionality for pointed maps. -} module lib.types.Pointed where {- Pointed maps -} ⊙app= : ∀ {i j} {X : Ptd i} {Y : Ptd j} {f g : X ⊙→ Y} → f == g → f ⊙∼ g ⊙app= {X = X} {Y = Y} p = app= (fst= p) , ↓-ap-in (_== pt Y) (λ u → u (pt X)) (snd= p) -- function extensionality for pointed maps ⊙λ= : ∀ {i j} {X : Ptd i} {Y : Ptd j} {f g : X ⊙→ Y} → f ⊙∼ g → f == g ⊙λ= {g = g} (p , α) = pair= (λ= p) (↓-app=cst-in (↓-idf=cst-out α ∙ ap (_∙ snd g) (! (app=-β p _)))) ⊙λ=' : ∀ {i j} {X : Ptd i} {Y : Ptd j} {f g : X ⊙→ Y} (p : fst f ∼ fst g) (α : snd f == snd g [ (λ y → y == pt Y) ↓ p (pt X) ]) → f == g ⊙λ=' {g = g} = curry ⊙λ= -- associativity of pointed maps ⊙∘-assoc-pt : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} {a₁ a₂ : A} (f : A → B) {b : B} (g : B → C) {c : C} (p : a₁ == a₂) (q : f a₂ == b) (r : g b == c) → ⊙∘-pt (g ∘ f) p (⊙∘-pt g q r) == ⊙∘-pt g (⊙∘-pt f p q) r ⊙∘-assoc-pt _ _ idp _ _ = idp ⊙∘-assoc : ∀ {i j k l} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l} (h : Z ⊙→ W) (g : Y ⊙→ Z) (f : X ⊙→ Y) → ((h ⊙∘ g) ⊙∘ f) ⊙∼ (h ⊙∘ (g ⊙∘ f)) ⊙∘-assoc (h , hpt) (g , gpt) (f , fpt) = (λ _ → idp) , ⊙∘-assoc-pt g h fpt gpt hpt ⊙∘-cst-l : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} → (f : X ⊙→ Y) → (⊙cst :> (Y ⊙→ Z)) ⊙∘ f ⊙∼ ⊙cst ⊙∘-cst-l {Z = Z} f = (λ _ → idp) , ap (_∙ idp) (ap-cst (pt Z) (snd f)) ⊙∘-cst-r : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} → (f : Y ⊙→ Z) → f ⊙∘ (⊙cst :> (X ⊙→ Y)) ⊙∼ ⊙cst ⊙∘-cst-r {X = X} f = (λ _ → snd f) , ↓-idf=cst-in' idp {- Pointed equivalences -} -- Extracting data from an pointed equivalence module _ {i j} {X : Ptd i} {Y : Ptd j} (⊙e : X ⊙≃ Y) where ⊙≃-to-≃ : de⊙ X ≃ de⊙ Y ⊙≃-to-≃ = fst (fst ⊙e) , snd ⊙e ⊙–> : X ⊙→ Y ⊙–> = fst ⊙e ⊙–>-pt = snd ⊙–> ⊙<– : Y ⊙→ X ⊙<– = is-equiv.g (snd ⊙e) , lemma ⊙e where lemma : {Y : Ptd j} (⊙e : X ⊙≃ Y) → is-equiv.g (snd ⊙e) (pt Y) == pt X lemma ((f , idp) , f-ise) = is-equiv.g-f f-ise (pt X) ⊙<–-pt = snd ⊙<– infix 120 _⊙⁻¹ _⊙⁻¹ : Y ⊙≃ X _⊙⁻¹ = ⊙<– , is-equiv-inverse (snd ⊙e) module _ {i j} {X : Ptd i} {Y : Ptd j} where ⊙<–-inv-l : (⊙e : X ⊙≃ Y) → ⊙<– ⊙e ⊙∘ ⊙–> ⊙e ⊙∼ ⊙idf _ ⊙<–-inv-l ⊙e = <–-inv-l (⊙≃-to-≃ ⊙e) , ↓-idf=cst-in' (lemma ⊙e) where lemma : {Y : Ptd j} (⊙e : X ⊙≃ Y) → snd (⊙<– ⊙e ⊙∘ ⊙–> ⊙e) == is-equiv.g-f (snd ⊙e) (pt X) lemma ((f , idp) , f-ise) = idp ⊙<–-inv-r : (⊙e : X ⊙≃ Y) → ⊙–> ⊙e ⊙∘ ⊙<– ⊙e ⊙∼ ⊙idf _ ⊙<–-inv-r ⊙e = <–-inv-r (⊙≃-to-≃ ⊙e) , ↓-idf=cst-in' (lemma ⊙e) where lemma : {Y : Ptd j} (⊙e : X ⊙≃ Y) → snd (⊙–> ⊙e ⊙∘ ⊙<– ⊙e) == is-equiv.f-g (snd ⊙e) (pt Y) lemma ((f , idp) , f-ise) = ∙-unit-r _ ∙ is-equiv.adj f-ise (pt X) module _ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} (⊙e : X ⊙≃ Y) where post⊙∘-is-equiv : is-equiv (λ (k : Z ⊙→ X) → ⊙–> ⊙e ⊙∘ k) post⊙∘-is-equiv = is-eq (⊙–> ⊙e ⊙∘_) (⊙<– ⊙e ⊙∘_) (to-from ⊙e) (from-to ⊙e) where abstract to-from : ∀ {Y} (⊙e : X ⊙≃ Y) (k : Z ⊙→ Y) → ⊙–> ⊙e ⊙∘ (⊙<– ⊙e ⊙∘ k) == k to-from ((f , idp) , f-ise) (k , k-pt) = ⊙λ=' (f.f-g ∘ k) (↓-idf=cst-in' $ lemma k-pt) where module f = is-equiv f-ise lemma : ∀ {y₀} (k-pt : y₀ == f (pt X)) → ⊙∘-pt f (⊙∘-pt f.g k-pt (f.g-f _)) idp == f.f-g y₀ ∙' k-pt lemma idp = ∙-unit-r _ ∙ f.adj _ from-to : ∀ {Y} (⊙e : X ⊙≃ Y) (k : Z ⊙→ X) → ⊙<– ⊙e ⊙∘ (⊙–> ⊙e ⊙∘ k) == k from-to ((f , idp) , f-ise) (k , idp) = ⊙λ=' (f.g-f ∘ k) $ ↓-idf=cst-in' idp where module f = is-equiv f-ise post⊙∘-equiv : (Z ⊙→ X) ≃ (Z ⊙→ Y) post⊙∘-equiv = _ , post⊙∘-is-equiv pre⊙∘-is-equiv : is-equiv (λ (k : Y ⊙→ Z) → k ⊙∘ ⊙–> ⊙e) pre⊙∘-is-equiv = is-eq (_⊙∘ ⊙–> ⊙e) (_⊙∘ ⊙<– ⊙e) (to-from ⊙e) (from-to ⊙e) where abstract to-from : ∀ {Z} (⊙e : X ⊙≃ Y) (k : X ⊙→ Z) → (k ⊙∘ ⊙<– ⊙e) ⊙∘ ⊙–> ⊙e == k to-from ((f , idp) , f-ise) (k , idp) = ⊙λ=' (ap k ∘ f.g-f) $ ↓-idf=cst-in' $ ∙-unit-r _ where module f = is-equiv f-ise from-to : ∀ {Z} (⊙e : X ⊙≃ Y) (k : Y ⊙→ Z) → (k ⊙∘ ⊙–> ⊙e) ⊙∘ ⊙<– ⊙e == k from-to ((f , idp) , f-ise) (k , idp) = ⊙λ=' (ap k ∘ f.f-g) $ ↓-idf=cst-in' $ ∙-unit-r _ ∙ ap-∘ k f (f.g-f (pt X)) ∙ ap (ap k) (f.adj (pt X)) where module f = is-equiv f-ise pre⊙∘-equiv : (Y ⊙→ Z) ≃ (X ⊙→ Z) pre⊙∘-equiv = _ , pre⊙∘-is-equiv {- Pointed maps out of bool -} -- intuition : [f true] is fixed and the only changable part is [f false]. ⊙Bool→-to-idf : ∀ {i} {X : Ptd i} → ⊙Bool ⊙→ X → de⊙ X ⊙Bool→-to-idf (h , _) = h false ⊙Bool→-equiv-idf : ∀ {i} (X : Ptd i) → (⊙Bool ⊙→ X) ≃ de⊙ X ⊙Bool→-equiv-idf {i} X = equiv ⊙Bool→-to-idf g f-g g-f where g : de⊙ X → ⊙Bool ⊙→ X g x = Bool-rec (pt X) x , idp abstract f-g : ∀ x → ⊙Bool→-to-idf (g x) == x f-g x = idp g-f : ∀ H → g (⊙Bool→-to-idf H) == H g-f (h , hpt) = pair= (λ= lemma) (↓-app=cst-in $ idp =⟨ ! (!-inv-l hpt) ⟩ ! hpt ∙ hpt =⟨ ! (app=-β lemma true) |in-ctx (λ w → w ∙ hpt) ⟩ app= (λ= lemma) true ∙ hpt =∎) where lemma : ∀ b → fst (g (h false)) b == h b lemma true = ! hpt lemma false = idp ⊙Bool→-equiv-idf-nat : ∀ {i j} {X : Ptd i} {Y : Ptd j} (F : X ⊙→ Y) → CommSquareEquiv (F ⊙∘_) (fst F) ⊙Bool→-to-idf ⊙Bool→-to-idf ⊙Bool→-equiv-idf-nat F = (comm-sqr λ _ → idp) , snd (⊙Bool→-equiv-idf _) , snd (⊙Bool→-equiv-idf _)
{ "alphanum_fraction": 0.4291739895, "avg_line_length": 33.2748538012, "ext": "agda", "hexsha": "7f9bfd8ecd973b3751478370dc2fe272caed26f7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Pointed.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Pointed.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Pointed.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3066, "size": 5690 }
------------------------------------------------------------------------ -- Some results/examples related to CCS, implemented using the -- classical definition of bisimilarity ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} open import Prelude module Bisimilarity.CCS.Examples.Classical {ℓ} {Name : Type ℓ} where open import Equality.Propositional open import Prelude.Size open import Bisimilarity.CCS.Classical import Bisimilarity.Classical.Equational-reasoning-instances open import Equational-reasoning open import Labelled-transition-system.CCS Name open import Relation open import Bisimilarity.Classical CCS ------------------------------------------------------------------------ -- Exercise 6.2.4 from "Enhancements of the bisimulation proof method" -- by Pous and Sangiorgi 6-2-4 : ∀ {a} → ! ! a ∙ ∼ ! a ∙ 6-2-4 {a} = bisimulation-up-to-∼⊆∼ R-is base where data R : Rel₂ ℓ (Proc ∞) where base : R (! ! a ∙ , ! a ∙) impossible : ∀ {μ P q} {Q : Type q} → ! ! a ∙ [ μ ]⟶ P → μ ≡ τ → Q impossible {μ} !!a⟶P μ≡τ = ⊥-elim $ name≢τ (name a ≡⟨ !-only (!-only ·-only) !!a⟶P ⟩ μ ≡⟨ μ≡τ ⟩∎ τ ∎) R-is : Bisimulation-up-to-bisimilarity R R-is = ⟪ lr , rl ⟫ where lemma = λ {P : Proc ∞} P∼!a∣∅ → ! ! a ∙ ∣ P ∼⟨ reflexive ∣-cong P∼!a∣∅ ⟩ ! ! a ∙ ∣ (! a ∙ ∣ ∅) ∼⟨ reflexive ∣-cong ∣-right-identity ⟩ ! ! a ∙ ∣ ! a ∙ ∼⟨ 6-1-2 ⟩■ ! ! a ∙ lr : ∀ {P P′ Q μ} → R (P , Q) → P [ μ ]⟶ P′ → ∃ λ Q′ → Q [ μ ]⟶ Q′ × (Bisimilarity ⊙ R ⊙ Bisimilarity) (P′ , Q′) lr {P′ = P′} base !!a⟶P′ = case 6-1-3-2 !!a⟶P′ of λ where (inj₂ (μ≡τ , _)) → impossible !!a⟶P′ μ≡τ (inj₁ (P″ , !a⟶P″ , P′∼!!a∣P″)) → case 6-1-3-2 !a⟶P″ of λ where (inj₂ (μ≡τ , _)) → impossible !!a⟶P′ μ≡τ (inj₁ (.∅ , action , P″∼!a∣∅)) → _ , (! a ∙ [ name a ]⟶⟨ replication (par-right action) ⟩ ! a ∙ ∣ ∅) , _ , (P′ ∼⟨ P′∼!!a∣P″ ⟩ ! ! a ∙ ∣ P″ ∼⟨ ∼: lemma P″∼!a∣∅ ⟩■ ! ! a ∙) , _ , base , (! a ∙ ∼⟨ symmetric ∣-right-identity ⟩■ ! a ∙ ∣ ∅) rl : ∀ {P Q Q′ μ} → R (P , Q) → Q [ μ ]⟶ Q′ → ∃ λ P′ → P [ μ ]⟶ P′ × (Bisimilarity ⊙ R ⊙ Bisimilarity) (P′ , Q′) rl {Q′ = Q′} base !a⟶Q′ = case 6-1-3-2 !a⟶Q′ of λ where (inj₂ (refl , .∅ , Q″ , .a , action , a⟶Q″ , _)) → ⊥-elim (names-are-not-inverted a⟶Q″) (inj₁ (.∅ , action , Q′∼!a∣∅)) → _ , (! ! a ∙ [ name a ]⟶⟨ replication (par-right !a⟶Q′) ⟩ ! ! a ∙ ∣ Q′) , _ , (! ! a ∙ ∣ Q′ ∼⟨ lemma Q′∼!a∣∅ ⟩■ ! ! a ∙) , _ , base , (! a ∙ ∼⟨ symmetric ∣-right-identity ⟩ ! a ∙ ∣ ∅ ∼⟨ symmetric Q′∼!a∣∅ ⟩■ Q′) ------------------------------------------------------------------------ -- A result mentioned in "Enhancements of the bisimulation proof -- method" by Pous and Sangiorgi ∙∣∙∼∙∙ : ∀ {a} → a ∙ ∣ a ∙ ∼ name a ∙ (a ∙) ∙∣∙∼∙∙ {a} = bisimulation-up-to-∪⊆∼ R-is base where data R : Rel₂ ℓ (Proc ∞) where base : R (a ∙ ∣ a ∙ , name a ∙ (a ∙)) R-is : Bisimulation-up-to-∪ R R-is = ⟪ lr , rl ⟫ where lr : ∀ {P P′ Q μ} → R (P , Q) → P [ μ ]⟶ P′ → ∃ λ Q′ → Q [ μ ]⟶ Q′ × (R ∪ Bisimilarity) (P′ , Q′) lr base (par-left action) = _ , (name a ∙ (a ∙) [ name a ]⟶⟨ action ⟩ a ∙) , inj₂ (∅ ∣ a ∙ ∼⟨ ∣-left-identity ⟩■ a ∙) lr base (par-right action) = _ , (name a ∙ (a ∙) [ name a ]⟶⟨ action ⟩ a ∙) , inj₂ (a ∙ ∣ ∅ ∼⟨ ∣-right-identity ⟩■ a ∙) lr base (par-τ action tr) = ⊥-elim (names-are-not-inverted tr) rl : ∀ {P Q Q′ μ} → R (P , Q) → Q [ μ ]⟶ Q′ → ∃ λ P′ → P [ μ ]⟶ P′ × (R ∪ Bisimilarity) (P′ , Q′) rl base action = _ , (a ∙ ∣ a ∙ [ name a ]⟶⟨ par-right action ⟩ a ∙ ∣ ∅) , inj₂ (a ∙ ∣ ∅ ∼⟨ ∣-right-identity ⟩■ a ∙)
{ "alphanum_fraction": 0.3935839119, "avg_line_length": 31.8854961832, "ext": "agda", "hexsha": "3c0384b24f09e21232821e5f076892e39cccde3c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/up-to", "max_forks_repo_path": "src/Bisimilarity/CCS/Examples/Classical.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/up-to", "max_issues_repo_path": "src/Bisimilarity/CCS/Examples/Classical.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/up-to", "max_stars_repo_path": "src/Bisimilarity/CCS/Examples/Classical.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1732, "size": 4177 }
{-# OPTIONS --without-K --safe #-} -- Bundled version of a Cocartesian Category module Categories.Category.Cocartesian.Bundle where open import Level open import Categories.Category.Core using (Category) open import Categories.Category.Cocartesian using (Cocartesian) -- open import Categories.Category.Cartesian.Monoidal using (module CartesianMonoidal) -- open import Categories.Category.Monoidal using (MonoidalCategory) record CocartesianCategory o ℓ e : Set (suc (o ⊔ ℓ ⊔ e)) where field U : Category o ℓ e -- U for underlying cocartesian : Cocartesian U open Category U public open Cocartesian cocartesian public {- monoidalCategory : MonoidalCategory o ℓ e monoidalCategory = record { U = U ; monoidal = CocartesianMonoidal.monoidal cocartesian } -}
{ "alphanum_fraction": 0.7382716049, "avg_line_length": 30, "ext": "agda", "hexsha": "0fca3aed0f279d259a3445a043b573dd4c11e7f6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "602ed2ae05dd449d77fc299c07a1cdd02ee5b823", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "sstucki/agda-categories", "max_forks_repo_path": "src/Categories/Category/Cocartesian/Bundle.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "602ed2ae05dd449d77fc299c07a1cdd02ee5b823", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "sstucki/agda-categories", "max_issues_repo_path": "src/Categories/Category/Cocartesian/Bundle.agda", "max_line_length": 86, "max_stars_count": null, "max_stars_repo_head_hexsha": "602ed2ae05dd449d77fc299c07a1cdd02ee5b823", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "sstucki/agda-categories", "max_stars_repo_path": "src/Categories/Category/Cocartesian/Bundle.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 205, "size": 810 }
module integer7 where import Relation.Binary.PropositionalEquality as PropEq open PropEq using (_≡_; refl; cong; sym) open import Data.Nat -- Int data Int : Set where O : Int I : ℕ → ℕ → Int postulate zeroZ : (x : ℕ) → I x x ≡ O -- plusInt _++_ : Int → Int → Int O ++ O = O O ++ X = X X ++ O = X I x y ++ I z w = I (x + z) (y + w) postulate ++Assoc : (X Y Z : Int) → (X ++ Y) ++ Z ≡ X ++ (Y ++ Z) ++Comm : (X Y : Int) → X ++ Y ≡ Y ++ X -- productInt _**_ : Int → Int → Int O ** O = O O ** _ = O _ ** O = O I x y ** I z w = I (x * z + y * w) (x * w + y * z) postulate **Assoc : (X Y Z : Int) → (X ** Y) ** Z ≡ X ** (Y ** Z) **Dist : (X Y Z : Int) → X ** (Y ++ Z) ≡ (X ** Y) ++ (X ** Z) -- (-1) ** (-1) = 1 minus1 : I 0 1 ** I 0 1 ≡ I 1 0 minus1 = refl -1+1 : I 0 1 ++ I 1 0 ≡ I 1 1 -1+1 = refl -1*1 : I 0 1 ** I 1 0 ≡ I 0 1 -1*1 = refl minus2 : I 0 1 ** I 0 1 ≡ I 1 0 minus2 = begin I 0 1 ** I 0 1 ≡⟨ refl ⟩ (I 0 1 ** I 0 1) ++ O ≡⟨ sym (cong (\ x → (I 0 1 ** I 0 1) ++ x) (zeroZ 1)) ⟩ (I 0 1 ** I 0 1) ++ (I 1 1) ≡⟨ sym (cong (\ x → (I 0 1 ** I 0 1) ++ x) -1+1) ⟩ (I 0 1 ** I 0 1) ++ (I 0 1 ++ I 1 0) ≡⟨ sym (++Assoc O O (I (suc (suc zero)) (suc zero))) ⟩ ((I 0 1 ** I 0 1) ++ I 0 1) ++ I 1 0 ≡⟨ sym (cong (\ x → ((I 0 1 ** I 0 1) ++ x) ++ I 1 0) -1*1) ⟩ ((I 0 1 ** I 0 1) ++ (I 0 1 ** I 1 0)) ++ I 1 0 ≡⟨ sym (cong (\ x → x ++ I 1 0) (**Dist (I 0 1) (I 0 1) (I 1 0))) ⟩ (I 0 1 ** (I 0 1 ++ I 1 0)) ++ I 1 0 ≡⟨ refl ⟩ (I 0 1 ** I 1 1) ++ I 1 0 ≡⟨ cong (\ x → ((I 0 1 ** x) ++ I 1 0)) (zeroZ 1) ⟩ (I 0 1 ** O) ++ I 1 0 ≡⟨ refl ⟩ O ++ I 1 0 ≡⟨ refl ⟩ I 1 0 ∎ where open PropEq.≡-Reasoning
{ "alphanum_fraction": 0.4061004785, "avg_line_length": 26.125, "ext": "agda", "hexsha": "d9062048bb80eec1ece7ca624a99ea053ecac0db", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "righ1113/Agda", "max_forks_repo_path": "integer7.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "righ1113/Agda", "max_issues_repo_path": "integer7.agda", "max_line_length": 69, "max_stars_count": null, "max_stars_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "righ1113/Agda", "max_stars_repo_path": "integer7.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 932, "size": 1672 }
{-# OPTIONS --rewriting --without-K #-} open import Agda.Primitive open import Prelude import GSeTT.Syntax import GSeTT.Rules open import GSeTT.Typed-Syntax import Globular-TT.Syntax module Globular-TT.Rules {l} (index : Set l) (rule : index → GSeTT.Typed-Syntax.Ctx × (Globular-TT.Syntax.Pre-Ty index)) where open import Globular-TT.Syntax index {- Notational shortcuts : the context corresponding to an index -} Ci : index → Pre-Ctx Ci i = GPre-Ctx (fst (fst (rule i))) Ti : index → Pre-Ty Ti i = snd (rule i) data _⊢C : Pre-Ctx → Set (lsuc l) data _⊢T_ : Pre-Ctx → Pre-Ty → Set (lsuc l) data _⊢t_#_ : Pre-Ctx → Pre-Tm → Pre-Ty → Set (lsuc l) data _⊢S_>_ : Pre-Ctx → Pre-Sub → Pre-Ctx → Set (lsuc l) data _⊢C where ec : ⊘ ⊢C cc : ∀ {Γ A x} → Γ ⊢C → Γ ⊢T A → x == C-length Γ → (Γ ∙ x # A) ⊢C data _⊢T_ where ob : ∀ {Γ} → Γ ⊢C → Γ ⊢T ∗ ar : ∀ {Γ A t u} → Γ ⊢T A → Γ ⊢t t # A → Γ ⊢t u # A → Γ ⊢T ⇒ A t u data _⊢t_#_ where var : ∀ {Γ x A} → Γ ⊢C → x # A ∈ Γ → Γ ⊢t (Var x) # A tm : ∀ {Δ γ A i} → Ci i ⊢T Ti i → Δ ⊢S γ > Ci i → (A == (Ti i [ γ ]Pre-Ty)) → Δ ⊢t Tm-constructor i γ # A data _⊢S_>_ where es : ∀ {Δ} → Δ ⊢C → Δ ⊢S <> > ⊘ sc : ∀ {Δ Γ γ x y A t} → Δ ⊢S γ > Γ → (Γ ∙ x # A) ⊢C → (Δ ⊢t t # (A [ γ ]Pre-Ty)) → x == y → Δ ⊢S < γ , y ↦ t > > (Γ ∙ x # A) {- Derivability is preserved by the translation from GSeTT to our TT -} x∈GCtx : ∀ {x A Γ} → x GSeTT.Syntax.# A ∈ Γ → x # GPre-Ty A ∈ GPre-Ctx Γ x∈GCtx {Γ = Γ :: a} (inl x∈Γ) = inl (x∈GCtx x∈Γ) x∈GCtx {Γ = Γ :: (x,A)} (inr (idp , idp)) = inr (idp , idp) G-length : ∀ Γ → length Γ == C-length (GPre-Ctx Γ) G-length nil = idp G-length (Γ :: _) = S= (G-length Γ) GCtx : ∀ (Γ : GSeTT.Syntax.Pre-Ctx) → Γ GSeTT.Rules.⊢C → (GPre-Ctx Γ) ⊢C GTy : ∀ (Γ : GSeTT.Syntax.Pre-Ctx) (A : GSeTT.Syntax.Pre-Ty) → Γ GSeTT.Rules.⊢T A → (GPre-Ctx Γ) ⊢T (GPre-Ty A) GTm : ∀ (Γ : GSeTT.Syntax.Pre-Ctx) (A : GSeTT.Syntax.Pre-Ty) (t : GSeTT.Syntax.Pre-Tm) → Γ GSeTT.Rules.⊢t t # A → (GPre-Ctx Γ) ⊢t (GPre-Tm t) # (GPre-Ty A) GCtx .nil GSeTT.Rules.ec = ec GCtx (Γ :: (.(length Γ) , A)) (GSeTT.Rules.cc Γ⊢ Γ⊢A idp) = coe (ap (λ n → (GPre-Ctx (Γ :: (n , A)) ⊢C)) (G-length Γ) ^) (cc (GCtx Γ Γ⊢) (GTy Γ A Γ⊢A) idp) GTy Γ .GSeTT.Syntax.∗ (GSeTT.Rules.ob Γ⊢) = ob (GCtx Γ Γ⊢) GTy Γ (GSeTT.Syntax.⇒ A t u) (GSeTT.Rules.ar Γ⊢t:A Γ⊢u:A) = ar (GTy Γ A (GSeTT.Rules.Γ⊢t:A→Γ⊢A Γ⊢t:A)) (GTm Γ A t Γ⊢t:A) (GTm Γ A u Γ⊢u:A) GTm Γ A (GSeTT.Syntax.Var x) (GSeTT.Rules.var Γ⊢ x∈Γ) = var (GCtx Γ Γ⊢) (x∈GCtx x∈Γ) {- Properties of the type theory -} {- weakening admissibility -} wkT : ∀ {Γ A y B} → Γ ⊢T A → (Γ ∙ y # B) ⊢C → (Γ ∙ y # B) ⊢T A wkt : ∀ {Γ A t y B} → Γ ⊢t t # A → (Γ ∙ y # B) ⊢C → (Γ ∙ y # B) ⊢t t # A wkS : ∀ {Δ Γ γ y B} → Δ ⊢S γ > Γ → (Δ ∙ y # B) ⊢C → (Δ ∙ y # B) ⊢S γ > Γ wkT (ob _) Γ,y:B⊢ = ob Γ,y:B⊢ wkT (ar Γ⊢A Γ⊢t:A Γ⊢u:A) Γ,y:B⊢ = ar (wkT Γ⊢A Γ,y:B⊢) (wkt Γ⊢t:A Γ,y:B⊢) (wkt Γ⊢u:A Γ,y:B⊢) wkt (var Γ⊢C x∈Γ) Γ,y:B⊢ = var Γ,y:B⊢ (inl x∈Γ) wkt (tm Ci⊢Ti Γ⊢γ:Δ idp) Γ,y:B⊢ = tm Ci⊢Ti (wkS Γ⊢γ:Δ Γ,y:B⊢) idp wkS (es _) Δ,y:B⊢ = es Δ,y:B⊢ wkS (sc Δ⊢γ:Γ Γ,x:A⊢ Δ⊢t:A[γ] idp) Δ,y:B⊢ = sc (wkS Δ⊢γ:Γ Δ,y:B⊢) Γ,x:A⊢ (wkt Δ⊢t:A[γ] Δ,y:B⊢) idp {- Consistency : all objects appearing in derivable judgments are derivable -} Γ⊢A→Γ⊢ : ∀ {Γ A} → Γ ⊢T A → Γ ⊢C Γ⊢t:A→Γ⊢ : ∀ {Γ A t} → Γ ⊢t t # A → Γ ⊢C Δ⊢γ:Γ→Δ⊢ : ∀ {Δ Γ γ} → Δ ⊢S γ > Γ → Δ ⊢C Γ⊢A→Γ⊢ (ob Γ⊢) = Γ⊢ Γ⊢A→Γ⊢ (ar Γ⊢A Γ⊢t:A Γ⊢u:A) = Γ⊢t:A→Γ⊢ Γ⊢t:A Γ⊢t:A→Γ⊢ (var Γ⊢ _) = Γ⊢ Γ⊢t:A→Γ⊢ (tm _ Γ⊢γ:Δ idp) = Δ⊢γ:Γ→Δ⊢ Γ⊢γ:Δ Δ⊢γ:Γ→Δ⊢ (es Δ⊢) = Δ⊢ Δ⊢γ:Γ→Δ⊢ (sc Δ⊢γ:Γ Γ,x:A⊢ Δ⊢t:A[γ] idp) = Δ⊢γ:Γ→Δ⊢ Δ⊢γ:Γ Δ⊢γ:Γ→Γ⊢ : ∀ {Δ Γ γ} → Δ ⊢S γ > Γ → Γ ⊢C Δ⊢γ:Γ→Γ⊢ (es Δ⊢) = ec Δ⊢γ:Γ→Γ⊢ (sc Δ⊢γ:Γ Γ,x:A⊢ Δ⊢t:A[γ] idp) = Γ,x:A⊢ Γ,x:A⊢→Γ,x:A⊢A : ∀ {Γ x A} → (Γ ∙ x # A) ⊢C → (Γ ∙ x # A) ⊢T A Γ,x:A⊢→Γ,x:A⊢A Γ,x:A⊢@(cc Γ⊢ Γ⊢A idp) = wkT Γ⊢A Γ,x:A⊢ Γ,x:A⊢→Γ,x:A⊢x:A : ∀ {Γ x A} → (Γ ∙ x # A) ⊢C → (Γ ∙ x # A) ⊢t (Var x) # A Γ,x:A⊢→Γ,x:A⊢x:A Γ,x:A⊢ = var Γ,x:A⊢ (inr (idp , idp)) Γ⊢src : ∀ {Γ A t u} → Γ ⊢T ⇒ A t u → Γ ⊢t t # A Γ⊢src (ar Γ⊢ Γ⊢t Γ⊢u) = Γ⊢t Γ⊢tgt : ∀ {Γ A t u} → Γ ⊢T ⇒ A t u → Γ ⊢t u # A Γ⊢tgt (ar Γ⊢ Γ⊢t Γ⊢u) = Γ⊢u -- The proposition Γ⊢t:A→Γ⊢A is slightly harder and is moved in CwF-Struture since it depends on lemmas there -- Type epressing that the rules are well-founded (useful to show that judgments are decidable) well-founded : Set (lsuc l) well-founded = ∀ (i : index) → Ci i ⊢T Ti i → dimC (Ci i) ≤ dim (Ti i) -- Derivation of a term constructed by a term constructor Γ⊢tm→Ci⊢Ti : ∀ {i Γ γ A} → Γ ⊢t (Tm-constructor i γ) # A → Ci i ⊢T Ti i Γ⊢tm→Ci⊢Ti (tm Ci⊢Ti _ idp) = Ci⊢Ti Γ⊢tm→Γ⊢γ : ∀ {i Γ γ A} → Γ ⊢t (Tm-constructor i γ) # A → Γ ⊢S γ > Ci i Γ⊢tm→Γ⊢γ (tm _ Γ⊢γ idp) = Γ⊢γ
{ "alphanum_fraction": 0.5072494221, "avg_line_length": 41.025862069, "ext": "agda", "hexsha": "383f4eb718416562569bdb889e7a44c9ce0c1dc6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thibautbenjamin/catt-formalization", "max_forks_repo_path": "Globular-TT/Rules.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thibautbenjamin/catt-formalization", "max_issues_repo_path": "Globular-TT/Rules.agda", "max_line_length": 158, "max_stars_count": null, "max_stars_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thibautbenjamin/catt-formalization", "max_stars_repo_path": "Globular-TT/Rules.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2794, "size": 4759 }
import Lvl open import Structure.Operator.Ring open import Structure.Setoid open import Type module Structure.Operator.Ring.Characteristic {ℓ ℓₑ} {T : Type{ℓ}} ⦃ equiv : Equiv{ℓₑ}(T) ⦄ (_+_ _⋅_ : T → T → T) ⦃ ring : Ring(_+_)(_⋅_) ⦄ where open Ring(ring) open import Function.Iteration open import Numeral.Natural as ℕ using (ℕ) import Numeral.Natural.Relation.Order as ℕ open import Relator.Equals using () renaming (_≡_ to _≡ₑ_) CharacteristicMultiple : ℕ → Type CharacteristicMultiple(n) = ∀{a} → (repeatᵣ(n)(_+_) a 𝟎 ≡ 𝟎) data Characteristic : ℕ → Type{ℓ Lvl.⊔ ℓₑ} where none : (∀{n} → CharacteristicMultiple(n) → (n ≡ₑ ℕ.𝟎)) → Characteristic(ℕ.𝟎) pos : ∀{n} → CharacteristicMultiple(ℕ.𝐒(n)) → (∀{m} → CharacteristicMultiple(ℕ.𝐒(m)) → (ℕ.𝐒(m) ℕ.≥ ℕ.𝐒(n))) → Characteristic(ℕ.𝐒(n))
{ "alphanum_fraction": 0.6732919255, "avg_line_length": 40.25, "ext": "agda", "hexsha": "072985e6dc376f080baa793ba9b12e284c63c02b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Operator/Ring/Characteristic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Operator/Ring/Characteristic.agda", "max_line_length": 146, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Operator/Ring/Characteristic.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 324, "size": 805 }
------------------------------------------------------------------------ -- The syntax of, and a type system for, the untyped λ-calculus with -- constants ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} module Lambda.Syntax where open import Equality.Propositional open import Prelude open import Prelude.Size open import Maybe equality-with-J open import Vec.Function equality-with-J ------------------------------------------------------------------------ -- Terms -- Variables are represented using de Bruijn indices. infixl 9 _·_ data Tm (n : ℕ) : Type where con : (i : ℕ) → Tm n var : (x : Fin n) → Tm n ƛ : Tm (suc n) → Tm n _·_ : Tm n → Tm n → Tm n ------------------------------------------------------------------------ -- Closure-based definition of values -- Environments and values. Defined in a module parametrised by the -- type of terms. module Closure (Tm : ℕ → Type) where mutual -- Environments. Env : ℕ → Type Env n = Vec Value n -- Values. Lambdas are represented using closures, so values do -- not contain any free variables. data Value : Type where con : (i : ℕ) → Value ƛ : ∀ {n} (t : Tm (suc n)) (ρ : Env n) → Value ------------------------------------------------------------------------ -- Type system -- Recursive, simple types, defined coinductively. infixr 8 _⇾_ mutual data Ty (i : Size) : Type where nat : Ty i _⇾_ : (σ τ : ∞Ty i) → Ty i record ∞Ty (i : Size) : Type where coinductive field force : {j : Size< i} → Ty j open ∞Ty public -- A conversion function. [_] : Ty ∞ → ∞Ty ∞ [ σ ] .force = σ -- Contexts. Ctxt : ℕ → Type Ctxt n = Vec (Ty ∞) n -- Type system. infix 4 _⊢_∈_ data _⊢_∈_ {n} (Γ : Ctxt n) : Tm n → Ty ∞ → Type where con : ∀ {i} → Γ ⊢ con i ∈ nat var : ∀ {x} → Γ ⊢ var x ∈ Γ x ƛ : ∀ {t σ τ} → cons (force σ) Γ ⊢ t ∈ force τ → Γ ⊢ ƛ t ∈ σ ⇾ τ _·_ : ∀ {t₁ t₂ σ τ} → Γ ⊢ t₁ ∈ σ ⇾ τ → Γ ⊢ t₂ ∈ force σ → Γ ⊢ t₁ · t₂ ∈ force τ ------------------------------------------------------------------------ -- Some definitions used in several type soundness proofs open Closure Tm -- WF-Value, WF-Env and WF-MV specify when a -- value/environment/potential value is well-formed with respect to a -- given context (and type). mutual data WF-Value : Ty ∞ → Value → Type where con : ∀ {i} → WF-Value nat (con i) ƛ : ∀ {n Γ σ τ} {t : Tm (1 + n)} {ρ} → cons (force σ) Γ ⊢ t ∈ force τ → WF-Env Γ ρ → WF-Value (σ ⇾ τ) (ƛ t ρ) WF-Env : ∀ {n} → Ctxt n → Env n → Type WF-Env Γ ρ = ∀ x → WF-Value (Γ x) (ρ x) WF-MV : Ty ∞ → Maybe Value → Type WF-MV σ v = maybe (WF-Value σ) Prelude.⊥ v -- Some "constructors" for WF-Env. nil-wf : WF-Env nil nil nil-wf () cons-wf : ∀ {n} {Γ : Ctxt n} {ρ σ v} → WF-Value σ v → WF-Env Γ ρ → WF-Env (cons σ Γ) (cons v ρ) cons-wf v-wf ρ-wf fzero = v-wf cons-wf v-wf ρ-wf (fsuc x) = ρ-wf x ------------------------------------------------------------------------ -- Examples -- A non-terminating term. ω : Tm 0 ω = ƛ (var fzero · var fzero) Ω : Tm 0 Ω = ω · ω -- Ω is well-typed. Ω-well-typed : (τ : Ty ∞) → nil ⊢ Ω ∈ τ Ω-well-typed τ = _·_ {σ = σ} {τ = [ τ ]} (ƛ (var · var)) (ƛ (var · var)) where σ : ∀ {i} → ∞Ty i σ .force = σ ⇾ [ τ ] -- A call-by-value fixpoint combinator. Z : Tm 0 Z = ƛ (t · t) where t = ƛ (var (fsuc fzero) · ƛ (var (fsuc fzero) · var (fsuc fzero) · var fzero)) -- This combinator is also well-typed. Z-well-typed : ∀ {σ τ} → nil ⊢ Z ∈ [ [ [ σ ] ⇾ [ τ ] ] ⇾ [ [ σ ] ⇾ [ τ ] ] ] ⇾ [ [ σ ] ⇾ [ τ ] ] Z-well-typed {σ = σ} {τ = τ} = ƛ (_·_ {σ = υ} {τ = [ _ ]} (ƛ (var · ƛ (var · var · var))) (ƛ (var · ƛ (var · var · var)))) where υ : ∀ {i} → ∞Ty i force υ = υ ⇾ [ [ σ ] ⇾ [ τ ] ]
{ "alphanum_fraction": 0.4650565262, "avg_line_length": 22.8941176471, "ext": "agda", "hexsha": "ee986ecff93929dbbb4e17d5e1284fa85bfd1545", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/partiality-monad", "max_forks_repo_path": "src/Lambda/Syntax.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/partiality-monad", "max_issues_repo_path": "src/Lambda/Syntax.agda", "max_line_length": 72, "max_stars_count": 2, "max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/partiality-monad", "max_stars_repo_path": "src/Lambda/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z", "num_tokens": 1379, "size": 3892 }
module Plylet where open import Data.String.Base open import Data.Char.Base open import Data.List.Base data Type : Set where -- The type of the unit value TUnit : Type -- The type constructor for functions → TFunc : Type -> Type -> Type -- A type loaded from the prelude TBuiltin : String -> Type data Term : Set where -- The value of unit VUnit : Term -- An well-typed application is a valid term VApp : Term → Term → Term -- A well-formed let expression is a valid term VLet : Char -> Term -> Term -> Term -- A function from the prelude VFunc : String -> Term data Judgment : Set where -- A typing judgment TypeJ : Term → Type → Judgment -- A coercion validity judgment CoerceJ : Type → Type → Judgment Gamma : Set Gamma = List Judgment baseEnv : Gamma baseEnv = TypeJ VUnit TUnit ∷ []
{ "alphanum_fraction": 0.6509758898, "avg_line_length": 22.9210526316, "ext": "agda", "hexsha": "7a9726f09d71214cadb19b8a59c8ef8a6bdf15d1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0fd0c9d0ff00529b48f65b638fe288172916bf71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Kazark/plylet", "max_forks_repo_path": "Plylet.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0fd0c9d0ff00529b48f65b638fe288172916bf71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Kazark/plylet", "max_issues_repo_path": "Plylet.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "0fd0c9d0ff00529b48f65b638fe288172916bf71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Kazark/plylet", "max_stars_repo_path": "Plylet.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 232, "size": 871 }
------------------------------------------------------------------------------ -- Properties related with lists (using induction on the FOTC lists type) ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Data.List.PropertiesByInductionATP where open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.List open import FOTC.Data.Nat.Type ------------------------------------------------------------------------------ -- Totality properties -- See Issue https://github.com/asr/apia/issues/81 . lengthList-NA : D → Set lengthList-NA ds = N (length ds) {-# ATP definition lengthList-NA #-} lengthList-N : ∀ {xs} → List xs → N (length xs) lengthList-N = List-ind lengthList-NA A[] h where postulate A[] : lengthList-NA [] {-# ATP prove A[] #-} postulate h : ∀ a {as} → lengthList-NA as → lengthList-NA (a ∷ as) {-# ATP prove h #-} ------------------------------------------------------------------------------ -- See Issue https://github.com/asr/apia/issues/81 . ++-assocA : D → D → D → Set ++-assocA ys zs as = (as ++ ys) ++ zs ≡ as ++ ys ++ zs {-# ATP definition ++-assocA #-} ++-assoc : ∀ {xs} → List xs → ∀ ys zs → (xs ++ ys) ++ zs ≡ xs ++ ys ++ zs ++-assoc Lxs ys zs = List-ind (++-assocA ys zs) A[] h Lxs where postulate A[] : ++-assocA ys zs [] {-# ATP prove A[] #-} postulate h : ∀ a {as} → ++-assocA ys zs as → ++-assocA ys zs (a ∷ as) {-# ATP prove h #-}
{ "alphanum_fraction": 0.4780728845, "avg_line_length": 33.0408163265, "ext": "agda", "hexsha": "8683f7b7152ed55ccd9d79ed087a7418615ab169", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Data/List/PropertiesByInductionATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Data/List/PropertiesByInductionATP.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Data/List/PropertiesByInductionATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 414, "size": 1619 }
module Implicits.Resolution.Infinite.NormalFormEquiv where open import Prelude open import Implicits.Syntax open import Implicits.Resolution.Infinite.Resolution open import Implicits.Resolution.Embedding open import Implicits.Resolution.Embedding.Lemmas open import SystemF.Everything as F using () open import SystemF.NormalForm open import Data.Vec hiding ([_]) open import Relation.Binary.HeterogeneousEquality as H using () open import Data.List.Any open import Data.List.Properties open import Data.Vec.Properties as VP using () open import Extensions.Vec open import Function.Equivalence using (_⇔_; equivalence) mutual from-⇓ : ∀ {ν n t a τ} {Γ : F.Ctx ν n} → Γ ⊢ t ⇓ a → ⟦ Γ ⟧ctx← ⊢ ⟦ a ⟧tp← ↓ τ → ∃ λ i → ⟦ Γ ⟧ctx← ⊢ ⟦ lookup i Γ ⟧tp← ↓ τ from-⇓ {Γ = Γ} (nvar i) ↓τ = i , ↓τ from-⇓ (napp p x) ↓τ = from-⇓ p (i-iabs (from-⇑ x) ↓τ) from-⇓ {Γ = Γ} (ntapp {a = a} b p) ↓τ = from-⇓ p (i-tabs ⟦ b ⟧tp← (subst (λ z → ⟦ Γ ⟧ctx← ⊢ z ↓ _) (⟦a/sub⟧tp← a b) ↓τ)) from-⇑ : ∀ {ν n t a} {Γ : F.Ctx ν n} → Γ ⊢ t ⇑ a → ⟦ Γ ⟧ctx← ⊢ᵣ ⟦ a ⟧tp← from-⇑ (nbase b x) with ⟦base⟧tp← b from-⇑ (nbase b x) | τ , eq with from-⇓ x (subst (λ z → _ ⊢ z ↓ τ) (sym $ eq) (i-simp τ)) from-⇑ (nbase b x) | τ , eq | i , lookup-i↓tc = subst (λ z → _ ⊢ᵣ z) (sym $ eq) (r-simp (lookup-∈ i _) lookup-i↓tc) from-⇑ (nabs p) = r-iabs (from-⇑ p) from-⇑ (ntabs p) = r-tabs (subst (λ z → z ⊢ᵣ _) (⟦weaken⟧ctx← _) (from-⇑ p)) to-⇓ : ∀ {ν} {Δ : ICtx ν} {a τ t₁} → Δ ⊢ a ↓ τ → ⟦ Δ ⟧ctx→ ⊢ t₁ ⇓ ⟦ a ⟧tp→ → ∃ λ t₂ → ⟦ Δ ⟧ctx→ ⊢ t₂ ⇓ ⟦ simpl τ ⟧tp→ to-⇓ (i-simp a) q = , q to-⇓ (i-iabs x p) q = to-⇓ p (napp q (proj₂ $ to-⇑ x)) to-⇓ {Δ = Δ} (i-tabs {ρ = a} b p) q = to-⇓ p (subst (λ z → ⟦ Δ ⟧ctx→ ⊢ _ ⇓ z) (sym $ ⟦a/sub⟧tp→ a b) (ntapp ⟦ b ⟧tp→ q)) to-⇑ : ∀ {ν} {Δ : ICtx ν} {a} → Δ ⊢ᵣ a → ∃ λ t → ⟦ Δ ⟧ctx→ ⊢ t ⇑ ⟦ a ⟧tp→ to-⇑ {Δ = Δ} (r-simp {r = a} r r↓τ) = , nbase (⟦simpl⟧tp→ _) (proj₂ $ to-⇓ r↓τ var⇓a) where var⇓a : ⟦ Δ ⟧ctx→ ⊢ _ ⇓ ⟦ a ⟧tp→ var⇓a = let (i , eq) = ∈⟶index (VP.List-∈⇒∈ r) in let i' = (subst Fin (sym $ length-map _ Δ) i) in subst (λ z → ⟦ Δ ⟧ctx→ ⊢ (F.var i') ⇓ z) (lookup⟦⟧ Δ i eq) (nvar i') to-⇑ (r-iabs p) = , nabs (proj₂ $ to-⇑ p) to-⇑ {Δ = Δ} (r-tabs {ρ = a} p) = , ntabs (⇑-subst-n (length-weaken-Δ Δ) (H.sym $ ⟦weaken⟧ctx→ Δ) (proj₂ (to-⇑ p))) -- System F η-long-β-normal forms are isomorphic to infinite resolution derivations equivalent : ∀ {ν} (Δ : ICtx ν) r → Δ ⊢ᵣ r ⇔ (∃ λ t → ⟦ Δ ⟧ctx→ ⊢ t ⇑ ⟦ r ⟧tp→) equivalent Δ r = equivalence (λ x → to-⇑ x) (λ x → subst₂ (λ Δ' r' → Δ' ⊢ᵣ r') (ctx→← _) (tp→← r) (from-⇑ (proj₂ x))) {-} open import Function.Inverse open import Function.Equality -- from-⇑ : ∀ {ν n t a} {Γ : F.Ctx ν n} → Γ ⊢ t ⇑ a → ⟦ Γ ⟧ctx← ⊢ᵣ ⟦ a ⟧tp← from-⇑' : ∀ {ν a} {Δ : ICtx ν} → (∃ λ t → ⟦ Δ ⟧ctx→ ⊢ t ⇑ ⟦ a ⟧tp→) → Δ ⊢ᵣ a from-⇑' (_ , p) = subst₂ (λ Δ a → Δ ⊢ᵣ a) (ctx→← _) (tp→← _) (from-⇑ p) -- from-⇓' : ∀ {ν a} {Δ : ICtx ν} {τ} → (∃ λ t → ⟦ Δ ⟧ctx→ ⊢ t ⇓ ⟦ a ⟧tp→) → Δ ⊢ Δ ⊢ a ↓ τ -- from-⇓' {τ = τ} (_ , p) = subst₂ (λ Δ a → Δ ⊢ a ↓ τ) (ctx→← _) (tp→← _) (from-⇓ p) -- from-to-⇓ : ∀ {ν a} {Δ : ICtx ν} {τ} → (p : Δ ⊢ a ↓ τ) → from-⇓' (to-⇓ p) ≡ p -- from-to-⇓ p = ? from-to-⇑ : ∀ {ν a} {Δ : ICtx ν} → (p : Δ ⊢ᵣ a) → from-⇑' (to-⇑ p) ≡ p from-to-⇑ (r-simp x x₁) = {!!} from-to-⇑ (r-iabs p) = begin from-⇑' (, (nabs (proj₂ (to-⇑ p)))) ≡⟨ refl ⟩ subst₂ (λ Δ a → Δ ⊢ᵣ a) (ctx→← _) (tp→← _) (from-⇑ (nabs (proj₂ (to-⇑ p)))) ≡⟨ refl ⟩ subst₂ (λ Δ a → Δ ⊢ᵣ a) (ctx→← _) (tp→← _) (r-iabs (from-⇑ (proj₂ (to-⇑ p)))) ≡⟨ {!!} ⟩ r-iabs (subst₂ (λ Δ a → Δ ⊢ᵣ a) (ctx→← _) (tp→← _) (from-⇑ (proj₂ (to-⇑ p)))) ≡⟨ refl ⟩ r-iabs (from-⇑' (to-⇑ p)) ≡⟨ Prelude.cong r-iabs (from-to-⇑ p) ⟩ r-iabs p ∎ from-to-⇑ (r-tabs p) with from-to-⇑ p from-to-⇑ (r-tabs p) | x = {!x!} where lem : ∀ {ν a} {Δ : ICtx ν} → to-from-⇑ : ∀ {ν a} {Δ : ICtx ν} → (p : ∃ λ t → ⟦ Δ ⟧ctx→ ⊢ t ⇑ ⟦ a ⟧tp→) → to-⇑ (from-⇑' p) ≡ p to-from-⇑ p = {!!} iso' : ∀ {ν a} {Δ : ICtx ν} → (→-to-⟶ (to-⇑ {Δ = Δ} {a = a})) InverseOf (→-to-⟶ from-⇑') iso' = record { left-inverse-of = to-from-⇑; right-inverse-of = from-to-⇑ } -}
{ "alphanum_fraction": 0.4901252408, "avg_line_length": 40.3106796117, "ext": "agda", "hexsha": "fbbbc290bcf2c0b902ace760a56af51164378f1c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Resolution/Infinite/NormalFormEquiv.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Resolution/Infinite/NormalFormEquiv.agda", "max_line_length": 96, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Resolution/Infinite/NormalFormEquiv.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 2188, "size": 4152 }
-- Solver for cartesian category -- Normalisation is based on https://arxiv.org/abs/math/9911059 {-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Category.Cartesian module Experiment.Categories.Solver.Category.Cartesian {o ℓ e} {𝒞 : Category o ℓ e} (cartesian : Cartesian 𝒞) where open import Level open import Relation.Binary using (Rel; REL) import Categories.Morphism.Reasoning as MR open Category 𝒞 open Cartesian cartesian open HomReasoning open MR 𝒞 private variable A B C D E F : Obj infixr 9 _:∘_ infixr 7 _:×_ infix 11 :⟨_,_⟩ data Sig : Set o where ∥_∥ : Obj → Sig :⊤ : Sig _:×_ : Sig → Sig → Sig ⟦_⟧Sig : Sig → Obj ⟦ ∥ A ∥ ⟧Sig = A ⟦ :⊤ ⟧Sig = ⊤ ⟦ S₁ :× S₂ ⟧Sig = ⟦ S₁ ⟧Sig × ⟦ S₂ ⟧Sig private variable S T U V : Sig -- Expression for cartesian category data Expr : Rel Sig (o ⊔ ℓ) where :id : Expr S S _:∘_ : Expr T U → Expr S T → Expr S U :π₁ : Expr (S :× T) S :π₂ : Expr (S :× T) T :⟨_,_⟩ : Expr U S → Expr U T → Expr U (S :× T) ∥_∥ : A ⇒ B → Expr ∥ A ∥ ∥ B ∥ ∥_!∥ : A ⇒ ⊤ → Expr ∥ A ∥ :⊤ -- Atomised expression data AExpr : REL Sig Obj (o ⊔ ℓ) where :π₁ : AExpr (∥ A ∥ :× T) A :π₂ : AExpr (S :× ∥ B ∥) B _:∘π₁ : AExpr S A → AExpr (S :× T) A _:∘π₂ : AExpr T A → AExpr (S :× T) A -- Normalised expression data NExpr : Rel Sig (o ⊔ ℓ) where :id : NExpr ∥ A ∥ ∥ A ∥ :!N : NExpr S :⊤ ⟪_⟫ : AExpr S A → NExpr S ∥ A ∥ :⟨_,_⟩ : NExpr U S → NExpr U T → NExpr U (S :× T) ∥_∥∘_ : B ⇒ C → NExpr S ∥ B ∥ → NExpr S ∥ C ∥ -- Semantics ⟦_⟧ : Expr S T → ⟦ S ⟧Sig ⇒ ⟦ T ⟧Sig ⟦ :id ⟧ = id ⟦ e₁ :∘ e₂ ⟧ = ⟦ e₁ ⟧ ∘ ⟦ e₂ ⟧ ⟦ :π₁ ⟧ = π₁ ⟦ :π₂ ⟧ = π₂ ⟦ :⟨ e₁ , e₂ ⟩ ⟧ = ⟨ ⟦ e₁ ⟧ , ⟦ e₂ ⟧ ⟩ ⟦ ∥ f ∥ ⟧ = f ⟦ ∥ g !∥ ⟧ = g ⟦_⟧A : AExpr S B → ⟦ S ⟧Sig ⇒ B ⟦ :π₁ ⟧A = π₁ ⟦ :π₂ ⟧A = π₂ ⟦ e :∘π₁ ⟧A = ⟦ e ⟧A ∘ π₁ ⟦ e :∘π₂ ⟧A = ⟦ e ⟧A ∘ π₂ ⟦_⟧N : NExpr S T → ⟦ S ⟧Sig ⇒ ⟦ T ⟧Sig ⟦ :id ⟧N = id ⟦ :!N ⟧N = ! ⟦ ⟪ e ⟫ ⟧N = ⟦ e ⟧A ⟦ :⟨ e₁ , e₂ ⟩ ⟧N = ⟨ ⟦ e₁ ⟧N , ⟦ e₂ ⟧N ⟩ ⟦ ∥ f ∥∘ e ⟧N = f ∘ ⟦ e ⟧N _∘AN_ : AExpr T A → NExpr S T → NExpr S ∥ A ∥ :π₁ ∘AN :⟨ e₂ , e₃ ⟩ = e₂ :π₂ ∘AN :⟨ e₂ , e₃ ⟩ = e₃ (e₁ :∘π₁) ∘AN :⟨ e₂ , e₃ ⟩ = e₁ ∘AN e₂ (e₁ :∘π₂) ∘AN :⟨ e₂ , e₃ ⟩ = e₁ ∘AN e₃ _∘π₁N : NExpr S U → NExpr (S :× T) U :id ∘π₁N = ⟪ :π₁ ⟫ :!N ∘π₁N = :!N ⟪ e ⟫ ∘π₁N = ⟪ e :∘π₁ ⟫ :⟨ e₁ , e₂ ⟩ ∘π₁N = :⟨ e₁ ∘π₁N , e₂ ∘π₁N ⟩ (∥ f ∥∘ e) ∘π₁N = ∥ f ∥∘ (e ∘π₁N) _∘π₂N : NExpr T U → NExpr (S :× T) U :id ∘π₂N = ⟪ :π₂ ⟫ :!N ∘π₂N = :!N ⟪ e ⟫ ∘π₂N = ⟪ e :∘π₂ ⟫ :⟨ e₁ , e₂ ⟩ ∘π₂N = :⟨ e₁ ∘π₂N , e₂ ∘π₂N ⟩ (∥ f ∥∘ e) ∘π₂N = ∥ f ∥∘ (e ∘π₂N) _∘N_ : NExpr T U → NExpr S T → NExpr S U :id ∘N e₂ = e₂ :!N ∘N e₂ = :!N ⟪ e₁ ⟫ ∘N e₂ = e₁ ∘AN e₂ :⟨ e₁ , e₂ ⟩ ∘N e₃ = :⟨ e₁ ∘N e₃ , e₂ ∘N e₃ ⟩ (∥ f ∥∘ e₁) ∘N e₂ = ∥ f ∥∘ (e₁ ∘N e₂) π₁N : ∀ S T → NExpr (S :× T) S π₂N : ∀ S T → NExpr (S :× T) T π₁N ∥ _ ∥ T = ⟪ :π₁ ⟫ π₁N :⊤ T = :!N π₁N (S₁ :× S₂) T = :⟨ (π₁N S₁ S₂) ∘π₁N , (π₂N S₁ S₂) ∘π₁N ⟩ π₂N S ∥ _ ∥ = ⟪ :π₂ ⟫ π₂N S :⊤ = :!N π₂N S (T₁ :× T₂) = :⟨ (π₁N T₁ T₂) ∘π₂N , (π₂N T₁ T₂) ∘π₂N ⟩ idN : ∀ S → NExpr S S idN ∥ _ ∥ = :id idN :⊤ = :!N idN (S :× T) = :⟨ π₁N S T , π₂N S T ⟩ -- expand id, π₁ and π₂ normalise : Expr S T → NExpr S T normalise :id = idN _ normalise (e₁ :∘ e₂) = normalise e₁ ∘N normalise e₂ normalise :π₁ = π₁N _ _ normalise :π₂ = π₂N _ _ normalise :⟨ e₁ , e₂ ⟩ = :⟨ normalise e₁ , normalise e₂ ⟩ normalise ∥ f ∥ = ∥ f ∥∘ :id normalise ∥ g !∥ = :!N ∘AN-homo : (e₁ : AExpr T A) (e₂ : NExpr S T) → ⟦ e₁ ∘AN e₂ ⟧N ≈ ⟦ e₁ ⟧A ∘ ⟦ e₂ ⟧N ∘AN-homo :π₁ :⟨ e₂ , e₃ ⟩ = ⟺ project₁ ∘AN-homo :π₂ :⟨ e₂ , e₃ ⟩ = ⟺ project₂ ∘AN-homo (e₁ :∘π₁) :⟨ e₂ , e₃ ⟩ = ∘AN-homo e₁ e₂ ○ pushʳ (⟺ project₁) ∘AN-homo (e₁ :∘π₂) :⟨ e₂ , e₃ ⟩ = ∘AN-homo e₁ e₃ ○ pushʳ (⟺ project₂) ∘N-homo : (e₁ : NExpr T U) (e₂ : NExpr S T) → ⟦ e₁ ∘N e₂ ⟧N ≈ ⟦ e₁ ⟧N ∘ ⟦ e₂ ⟧N ∘N-homo :id e₂ = ⟺ identityˡ ∘N-homo :!N e₂ = !-unique _ ∘N-homo ⟪ e₁ ⟫ e₂ = ∘AN-homo e₁ e₂ ∘N-homo :⟨ e₁ , e₂ ⟩ e₃ = ⟨⟩-cong₂ (∘N-homo e₁ e₃) (∘N-homo e₂ e₃) ○ ⟺ ⟨⟩∘ ∘N-homo (∥ f ∥∘ e₁) e₂ = pushʳ (∘N-homo e₁ e₂) ∘π₁N-homo : ∀ (e : NExpr S U) → ⟦ (_∘π₁N {T = T}) e ⟧N ≈ ⟦ e ⟧N ∘ π₁ ∘π₁N-homo :id = ⟺ identityˡ ∘π₁N-homo :!N = !-unique _ ∘π₁N-homo ⟪ e ⟫ = refl ∘π₁N-homo :⟨ e₁ , e₂ ⟩ = ⟨⟩-cong₂ (∘π₁N-homo e₁) (∘π₁N-homo e₂) ○ ⟺ ⟨⟩∘ ∘π₁N-homo (∥ f ∥∘ e) = pushʳ (∘π₁N-homo e) ∘π₂N-homo : ∀ (e : NExpr T U) → ⟦ (_∘π₂N {S = S}) e ⟧N ≈ ⟦ e ⟧N ∘ π₂ ∘π₂N-homo :id = ⟺ identityˡ ∘π₂N-homo :!N = !-unique _ ∘π₂N-homo ⟪ e ⟫ = refl ∘π₂N-homo :⟨ e₁ , e₂ ⟩ = ⟨⟩-cong₂ (∘π₂N-homo e₁) (∘π₂N-homo e₂) ○ ⟺ ⟨⟩∘ ∘π₂N-homo (∥ f ∥∘ e) = pushʳ (∘π₂N-homo e) private ∘π₁N′ : ∀ S T → NExpr S U → NExpr (S :× T) U ∘π₁N′ _ _ = _∘π₁N ∘π₂N′ : ∀ S T → NExpr T U → NExpr (S :× T) U ∘π₂N′ _ _ = _∘π₂N π₁N-homo : ∀ S T → ⟦ π₁N S T ⟧N ≈ π₁ π₂N-homo : ∀ S T → ⟦ π₂N S T ⟧N ≈ π₂ π₁N-homo ∥ A ∥ T = refl π₁N-homo :⊤ T = !-unique _ π₁N-homo (S₁ :× S₂) T = begin ⟨ ⟦ ∘π₁N′ (S₁ :× S₂) T (π₁N S₁ S₂) ⟧N , ⟦ ∘π₁N′ (S₁ :× S₂) T (π₂N S₁ S₂) ⟧N ⟩ ≈⟨ ⟨⟩-cong₂ (∘π₁N-homo (π₁N S₁ S₂)) (∘π₁N-homo (π₂N S₁ S₂)) ⟩ ⟨ ⟦ π₁N S₁ S₂ ⟧N ∘ π₁ , ⟦ π₂N S₁ S₂ ⟧N ∘ π₁ ⟩ ≈˘⟨ ⟨⟩∘ ⟩ ⟨ ⟦ π₁N S₁ S₂ ⟧N , ⟦ π₂N S₁ S₂ ⟧N ⟩ ∘ π₁ ≈⟨ ⟨⟩-cong₂ (π₁N-homo S₁ S₂) (π₂N-homo S₁ S₂) ⟩∘⟨refl ⟩ ⟨ π₁ , π₂ ⟩ ∘ π₁ ≈⟨ elimˡ η ⟩ π₁ ∎ π₂N-homo S ∥ A ∥ = refl π₂N-homo S :⊤ = !-unique _ π₂N-homo S (T₁ :× T₂) = begin ⟨ ⟦ ∘π₂N′ S (T₁ :× T₂) (π₁N T₁ T₂) ⟧N , ⟦ ∘π₂N′ S (T₁ :× T₂) (π₂N T₁ T₂) ⟧N ⟩ ≈⟨ ⟨⟩-cong₂ (∘π₂N-homo (π₁N T₁ T₂)) (∘π₂N-homo (π₂N T₁ T₂)) ⟩ ⟨ ⟦ π₁N T₁ T₂ ⟧N ∘ π₂ , ⟦ π₂N T₁ T₂ ⟧N ∘ π₂ ⟩ ≈˘⟨ ⟨⟩∘ ⟩ ⟨ ⟦ π₁N T₁ T₂ ⟧N , ⟦ π₂N T₁ T₂ ⟧N ⟩ ∘ π₂ ≈⟨ ⟨⟩-cong₂ (π₁N-homo T₁ T₂) (π₂N-homo T₁ T₂) ⟩∘⟨refl ⟩ ⟨ π₁ , π₂ ⟩ ∘ π₂ ≈⟨ elimˡ η ⟩ π₂ ∎ idN-homo : ∀ S → ⟦ idN S ⟧N ≈ id idN-homo ∥ _ ∥ = refl idN-homo :⊤ = !-unique id idN-homo (S₁ :× S₂) = ⟨⟩-cong₂ (π₁N-homo S₁ S₂) (π₂N-homo S₁ S₂) ○ η correct : ∀ (e : Expr S T) → ⟦ normalise e ⟧N ≈ ⟦ e ⟧ correct {S} :id = idN-homo S correct (e₁ :∘ e₂) = begin ⟦ normalise e₁ ∘N normalise e₂ ⟧N ≈⟨ ∘N-homo (normalise e₁) (normalise e₂) ⟩ ⟦ normalise e₁ ⟧N ∘ ⟦ normalise e₂ ⟧N ≈⟨ correct e₁ ⟩∘⟨ correct e₂ ⟩ ⟦ e₁ ⟧ ∘ ⟦ e₂ ⟧ ∎ correct {S :× T} {S} :π₁ = π₁N-homo S T correct {S :× T} {T} :π₂ = π₂N-homo S T correct :⟨ e₁ , e₂ ⟩ = ⟨⟩-cong₂ (correct e₁) (correct e₂) correct ∥ f ∥ = identityʳ correct ∥ g !∥ = !-unique g solve : (e₁ e₂ : Expr S T) → ⟦ normalise e₁ ⟧N ≈ ⟦ normalise e₂ ⟧N → ⟦ e₁ ⟧ ≈ ⟦ e₂ ⟧ solve e₁ e₂ eq = begin ⟦ e₁ ⟧ ≈˘⟨ correct e₁ ⟩ ⟦ normalise e₁ ⟧N ≈⟨ eq ⟩ ⟦ normalise e₂ ⟧N ≈⟨ correct e₂ ⟩ ⟦ e₂ ⟧ ∎ -- Combinators ∥-∥ : ∀ {f : A ⇒ B} → Expr ∥ A ∥ ∥ B ∥ ∥-∥ {f = f} = ∥ f ∥ :! : Expr ∥ A ∥ :⊤ :! = ∥ ! !∥ :swap : Expr (S :× T) (T :× S) :swap = :⟨ :π₂ , :π₁ ⟩ :assocˡ : Expr ((S :× T) :× U) (S :× T :× U) :assocˡ = :⟨ :π₁ :∘ :π₁ , :⟨ :π₂ :∘ :π₁ , :π₂ ⟩ ⟩ :assocʳ : Expr (S :× T :× U) ((S :× T) :× U) :assocʳ = :⟨ :⟨ :π₁ , :π₁ :∘ :π₂ ⟩ , :π₂ :∘ :π₂ ⟩ infixr 8 _:⁂_ _:⁂_ : Expr S T → Expr U V → Expr (S :× U) (T :× V) e₁ :⁂ e₂ = :⟨ e₁ :∘ :π₁ , e₂ :∘ :π₂ ⟩ :first : Expr S T → Expr (S :× U) (T :× U) :first e = e :⁂ :id :second : Expr T U → Expr (S :× T) (S :× U) :second e = :id :⁂ e
{ "alphanum_fraction": 0.4447558046, "avg_line_length": 29.1595330739, "ext": "agda", "hexsha": "05c33a713222f8574a31b49fe54a123cab297b91", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Experiment/Categories/Solver/Category/Cartesian.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Experiment/Categories/Solver/Category/Cartesian.agda", "max_line_length": 82, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Experiment/Categories/Solver/Category/Cartesian.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 4406, "size": 7494 }
open import Oscar.Prelude module Oscar.Class.[ExtensibleType] where record [ExtensibleType] {𝔵} {𝔛 : Ø 𝔵} {𝔟} {𝔒₂ : 𝔛 → Ø 𝔟} {ℓ̇} (_↦_ : ∀ {x} → 𝔒₂ x → 𝔒₂ x → Ø ℓ̇) : Ø₀ where constructor ∁ no-eta-equality
{ "alphanum_fraction": 0.5676855895, "avg_line_length": 17.6153846154, "ext": "agda", "hexsha": "eb3034c525299c3fc5586f9c74b688421ab62c0b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Class/[ExtensibleType].agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Class/[ExtensibleType].agda", "max_line_length": 43, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Class/[ExtensibleType].agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 113, "size": 229 }
open import Relation.Binary.Core module TreeSort.Impl1.Correctness.Permutation {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) where open import BTree {A} open import Data.List open import Data.Sum open import List.Permutation.Base A open import List.Permutation.Base.Concatenation A open import List.Permutation.Base.Equivalence A open import TreeSort.Impl1 _≤_ tot≤ lemma-++∼ : {x : A}{xs ys : List A} → (x ∷ (xs ++ ys)) ∼ (xs ++ (x ∷ ys)) lemma-++∼ {xs = xs} = ∼x /head (lemma++/l {xs = xs} /head) refl∼ lemma-flatten∼ : (x : A) → (t : BTree) → (x ∷ flatten t) ∼ flatten (insert x t) lemma-flatten∼ x leaf = ∼x /head /head ∼[] lemma-flatten∼ x (node y l r) with tot≤ x y ... | inj₁ x≤y = lemma++∼r (lemma-flatten∼ x l) ... | inj₂ y≤x = trans∼ (lemma-++∼ {xs = flatten l}) (lemma++∼l {xs = flatten l} (∼x (/tail /head) /head (lemma-flatten∼ x r))) theorem-treeSort∼ : (xs : List A) → xs ∼ (flatten (treeSort xs)) theorem-treeSort∼ [] = ∼[] theorem-treeSort∼ (x ∷ xs) = trans∼ (∼x /head /head (theorem-treeSort∼ xs)) (lemma-flatten∼ x (treeSort xs))
{ "alphanum_fraction": 0.6045248869, "avg_line_length": 34.53125, "ext": "agda", "hexsha": "f37837655194338e96ced6a0c43fecb1011e1333", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/TreeSort/Impl1/Correctness/Permutation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/TreeSort/Impl1/Correctness/Permutation.agda", "max_line_length": 127, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/TreeSort/Impl1/Correctness/Permutation.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 413, "size": 1105 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Basic lemmas showing that various types are related (isomorphic or -- equivalent or…) ------------------------------------------------------------------------ module Function.Related.TypeIsomorphisms where open import Algebra import Algebra.FunctionProperties as FP import Algebra.Operations import Algebra.RingSolver.Natural-coefficients open import Algebra.Structures open import Data.Empty open import Data.Nat as Nat using (zero; suc) open import Data.Product as Prod hiding (swap) open import Data.Sum as Sum open import Data.Unit open import Level hiding (zero; suc) open import Function open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence as Eq using (_⇔_; module Equivalence) open import Function.Inverse as Inv using (_↔_; module Inverse) open import Function.Related as Related open import Relation.Binary open import Relation.Binary.Product.Pointwise open import Relation.Binary.PropositionalEquality as P using (_≡_; _≗_) open import Relation.Binary.Sum open import Relation.Nullary open import Relation.Nullary.Decidable as Dec using (True) ------------------------------------------------------------------------ -- Σ is "associative" Σ-assoc : ∀ {a b c} {A : Set a} {B : A → Set b} {C : (a : A) → B a → Set c} → Σ (Σ A B) (uncurry C) ↔ Σ A (λ a → Σ (B a) (C a)) Σ-assoc = record { to = P.→-to-⟶ λ p → proj₁ (proj₁ p) , (proj₂ (proj₁ p) , proj₂ p) ; from = P.→-to-⟶ _ ; inverse-of = record { left-inverse-of = λ _ → P.refl ; right-inverse-of = λ _ → P.refl } } ------------------------------------------------------------------------ -- ⊥, ⊤, _×_ and _⊎_ form a commutative semiring ×-CommutativeMonoid : Symmetric-kind → (ℓ : Level) → CommutativeMonoid _ _ ×-CommutativeMonoid k ℓ = record { Carrier = Set ℓ ; _≈_ = Related ⌊ k ⌋ ; _∙_ = _×_ ; ε = Lift ⊤ ; isCommutativeMonoid = record { isSemigroup = record { isEquivalence = Setoid.isEquivalence $ Related.setoid k ℓ ; assoc = λ _ _ _ → ↔⇒ Σ-assoc ; ∙-cong = _×-cong_ } ; identityˡ = λ A → ↔⇒ $ left-identity A ; comm = λ A B → ↔⇒ $ comm A B } } where open FP _↔_ left-identity : LeftIdentity (Lift {ℓ = ℓ} ⊤) _×_ left-identity _ = record { to = P.→-to-⟶ proj₂ ; from = P.→-to-⟶ λ y → _ , y ; inverse-of = record { left-inverse-of = λ _ → P.refl ; right-inverse-of = λ _ → P.refl } } comm : Commutative _×_ comm _ _ = record { to = P.→-to-⟶ Prod.swap ; from = P.→-to-⟶ Prod.swap ; inverse-of = record { left-inverse-of = λ _ → P.refl ; right-inverse-of = λ _ → P.refl } } ⊎-CommutativeMonoid : Symmetric-kind → (ℓ : Level) → CommutativeMonoid _ _ ⊎-CommutativeMonoid k ℓ = record { Carrier = Set ℓ ; _≈_ = Related ⌊ k ⌋ ; _∙_ = _⊎_ ; ε = Lift ⊥ ; isCommutativeMonoid = record { isSemigroup = record { isEquivalence = Setoid.isEquivalence $ Related.setoid k ℓ ; assoc = λ A B C → ↔⇒ $ assoc A B C ; ∙-cong = _⊎-cong_ } ; identityˡ = λ A → ↔⇒ $ left-identity A ; comm = λ A B → ↔⇒ $ comm A B } } where open FP _↔_ left-identity : LeftIdentity (Lift ⊥) (_⊎_ {a = ℓ} {b = ℓ}) left-identity A = record { to = P.→-to-⟶ [ (λ ()) ∘′ lower , id ] ; from = P.→-to-⟶ inj₂ ; inverse-of = record { right-inverse-of = λ _ → P.refl ; left-inverse-of = [ ⊥-elim ∘ lower , (λ _ → P.refl) ] } } assoc : Associative _⊎_ assoc A B C = record { to = P.→-to-⟶ [ [ inj₁ , inj₂ ∘ inj₁ ] , inj₂ ∘ inj₂ ] ; from = P.→-to-⟶ [ inj₁ ∘ inj₁ , [ inj₁ ∘ inj₂ , inj₂ ] ] ; inverse-of = record { left-inverse-of = [ [ (λ _ → P.refl) , (λ _ → P.refl) ] , (λ _ → P.refl) ] ; right-inverse-of = [ (λ _ → P.refl) , [ (λ _ → P.refl) , (λ _ → P.refl) ] ] } } comm : Commutative _⊎_ comm _ _ = record { to = P.→-to-⟶ swap ; from = P.→-to-⟶ swap ; inverse-of = record { left-inverse-of = inv ; right-inverse-of = inv } } where swap : {A B : Set ℓ} → A ⊎ B → B ⊎ A swap = [ inj₂ , inj₁ ] inv : ∀ {A B} → swap ∘ swap {A} {B} ≗ id inv = [ (λ _ → P.refl) , (λ _ → P.refl) ] ×⊎-CommutativeSemiring : Symmetric-kind → (ℓ : Level) → CommutativeSemiring (Level.suc ℓ) ℓ ×⊎-CommutativeSemiring k ℓ = record { Carrier = Set ℓ ; _≈_ = Related ⌊ k ⌋ ; _+_ = _⊎_ ; _*_ = _×_ ; 0# = Lift ⊥ ; 1# = Lift ⊤ ; isCommutativeSemiring = isCommutativeSemiring } where open CommutativeMonoid open FP _↔_ left-zero : LeftZero (Lift ⊥) (_×_ {a = ℓ} {b = ℓ}) left-zero A = record { to = P.→-to-⟶ proj₁ ; from = P.→-to-⟶ (⊥-elim ∘′ lower) ; inverse-of = record { left-inverse-of = λ p → ⊥-elim (lower $ proj₁ p) ; right-inverse-of = λ x → ⊥-elim (lower x) } } right-distrib : _×_ DistributesOverʳ _⊎_ right-distrib A B C = record { to = P.→-to-⟶ $ uncurry [ curry inj₁ , curry inj₂ ] ; from = P.→-to-⟶ from ; inverse-of = record { right-inverse-of = [ (λ _ → P.refl) , (λ _ → P.refl) ] ; left-inverse-of = uncurry [ (λ _ _ → P.refl) , (λ _ _ → P.refl) ] } } where from : B × A ⊎ C × A → (B ⊎ C) × A from = [ Prod.map inj₁ id , Prod.map inj₂ id ] abstract -- If isCommutativeSemiring is made concrete, then it takes much -- more time to type-check coefficient-dec (at the time of -- writing, on a given system, using certain Agda options). isCommutativeSemiring : IsCommutativeSemiring {ℓ = ℓ} (Related ⌊ k ⌋) _⊎_ _×_ (Lift ⊥) (Lift ⊤) isCommutativeSemiring = record { +-isCommutativeMonoid = isCommutativeMonoid $ ⊎-CommutativeMonoid k ℓ ; *-isCommutativeMonoid = isCommutativeMonoid $ ×-CommutativeMonoid k ℓ ; distribʳ = λ A B C → ↔⇒ $ right-distrib A B C ; zeroˡ = λ A → ↔⇒ $ left-zero A } private -- A decision procedure used by the solver below. coefficient-dec : ∀ s ℓ → let open CommutativeSemiring (×⊎-CommutativeSemiring s ℓ) open Algebra.Operations semiring renaming (_×_ to Times) in ∀ m n → Dec (Times m 1# ∼[ ⌊ s ⌋ ] Times n 1#) coefficient-dec equivalence ℓ m n with m | n ... | zero | zero = yes (Eq.equivalence id id) ... | zero | suc _ = no (λ eq → lower (Equivalence.from eq ⟨$⟩ inj₁ _)) ... | suc _ | zero = no (λ eq → lower (Equivalence.to eq ⟨$⟩ inj₁ _)) ... | suc _ | suc _ = yes (Eq.equivalence (λ _ → inj₁ _) (λ _ → inj₁ _)) coefficient-dec bijection ℓ m n = Dec.map′ to (from m n) (Nat._≟_ m n) where open CommutativeSemiring (×⊎-CommutativeSemiring bijection ℓ) using (1#; semiring) open Algebra.Operations semiring renaming (_×_ to Times) to : ∀ {m n} → m ≡ n → Times m 1# ↔ Times n 1# to {m} P.refl = Times m 1# ∎ where open Related.EquationalReasoning from : ∀ m n → Times m 1# ↔ Times n 1# → m ≡ n from zero zero _ = P.refl from zero (suc n) 0↔+ = ⊥-elim $ lower $ Inverse.from 0↔+ ⟨$⟩ inj₁ _ from (suc m) zero +↔0 = ⊥-elim $ lower $ Inverse.to +↔0 ⟨$⟩ inj₁ _ from (suc m) (suc n) +↔+ = P.cong suc $ from m n (pred↔pred +↔+) where open P.≡-Reasoning ↑⊤ : Set ℓ ↑⊤ = Lift ⊤ inj₁≢inj₂ : ∀ {A : Set ℓ} {x : ↑⊤ ⊎ A} {y} → x ≡ inj₂ y → x ≡ inj₁ _ → ⊥ inj₁≢inj₂ {x = x} {y} eq₁ eq₂ = P.subst [ const ⊥ , const ⊤ ] (begin inj₂ y ≡⟨ P.sym eq₁ ⟩ x ≡⟨ eq₂ ⟩ inj₁ _ ∎) _ g′ : {A B : Set ℓ} (f : (↑⊤ ⊎ A) ↔ (↑⊤ ⊎ B)) (x : A) (y z : ↑⊤ ⊎ B) → Inverse.to f ⟨$⟩ inj₂ x ≡ y → Inverse.to f ⟨$⟩ inj₁ _ ≡ z → B g′ _ _ (inj₂ y) _ _ _ = y g′ _ _ (inj₁ _) (inj₂ z) _ _ = z g′ f _ (inj₁ _) (inj₁ _) eq₁ eq₂ = ⊥-elim $ inj₁≢inj₂ (Inverse.to-from f eq₁) (Inverse.to-from f eq₂) g : {A B : Set ℓ} → (↑⊤ ⊎ A) ↔ (↑⊤ ⊎ B) → A → B g f x = g′ f x _ _ P.refl P.refl g′∘g′ : ∀ {A B} (f : (↑⊤ ⊎ A) ↔ (↑⊤ ⊎ B)) x y₁ z₁ y₂ z₂ eq₁₁ eq₂₁ eq₁₂ eq₂₂ → g′ (reverse f) (g′ f x y₁ z₁ eq₁₁ eq₂₁) y₂ z₂ eq₁₂ eq₂₂ ≡ x g′∘g′ f x (inj₂ y₁) _ (inj₂ y₂) _ eq₁₁ _ eq₁₂ _ = P.cong [ const y₂ , id ] (begin inj₂ y₂ ≡⟨ P.sym eq₁₂ ⟩ Inverse.from f ⟨$⟩ inj₂ y₁ ≡⟨ Inverse.to-from f eq₁₁ ⟩ inj₂ x ∎) g′∘g′ f x (inj₁ _) (inj₂ _) (inj₁ _) (inj₂ z₂) eq₁₁ _ _ eq₂₂ = P.cong [ const z₂ , id ] (begin inj₂ z₂ ≡⟨ P.sym eq₂₂ ⟩ Inverse.from f ⟨$⟩ inj₁ _ ≡⟨ Inverse.to-from f eq₁₁ ⟩ inj₂ x ∎) g′∘g′ f _ (inj₂ y₁) _ (inj₁ _) _ eq₁₁ _ eq₁₂ _ = ⊥-elim $ inj₁≢inj₂ (Inverse.to-from f eq₁₁) eq₁₂ g′∘g′ f _ (inj₁ _) (inj₂ z₁) (inj₂ y₂) _ _ eq₂₁ eq₁₂ _ = ⊥-elim $ inj₁≢inj₂ eq₁₂ (Inverse.to-from f eq₂₁) g′∘g′ f _ (inj₁ _) (inj₂ _) (inj₁ _) (inj₁ _) eq₁₁ _ _ eq₂₂ = ⊥-elim $ inj₁≢inj₂ (Inverse.to-from f eq₁₁) eq₂₂ g′∘g′ f _ (inj₁ _) (inj₁ _) _ _ eq₁₁ eq₂₁ _ _ = ⊥-elim $ inj₁≢inj₂ (Inverse.to-from f eq₁₁) (Inverse.to-from f eq₂₁) g∘g : ∀ {A B} (f : (↑⊤ ⊎ A) ↔ (↑⊤ ⊎ B)) x → g (reverse f) (g f x) ≡ x g∘g f x = g′∘g′ f x _ _ _ _ P.refl P.refl P.refl P.refl pred↔pred : {A B : Set ℓ} → (↑⊤ ⊎ A) ↔ (↑⊤ ⊎ B) → A ↔ B pred↔pred X⊎↔X⊎ = record { to = P.→-to-⟶ $ g X⊎↔X⊎ ; from = P.→-to-⟶ $ g (reverse X⊎↔X⊎) ; inverse-of = record { left-inverse-of = g∘g X⊎↔X⊎ ; right-inverse-of = g∘g (reverse X⊎↔X⊎) } } module Solver s {ℓ} = Algebra.RingSolver.Natural-coefficients (×⊎-CommutativeSemiring s ℓ) (coefficient-dec s ℓ) private -- A test of the solver above. test : (A B C : Set) → (Lift ⊤ × A × (B ⊎ C)) ↔ (A × B ⊎ C × (Lift ⊥ ⊎ A)) test = solve 3 (λ A B C → con 1 :* (A :* (B :+ C)) := A :* B :+ C :* (con 0 :+ A)) Inv.id where open Solver bijection ------------------------------------------------------------------------ -- Some reordering lemmas ΠΠ↔ΠΠ : ∀ {a b p} {A : Set a} {B : Set b} (P : A → B → Set p) → ((x : A) (y : B) → P x y) ↔ ((y : B) (x : A) → P x y) ΠΠ↔ΠΠ _ = record { to = P.→-to-⟶ λ f x y → f y x ; from = P.→-to-⟶ λ f y x → f x y ; inverse-of = record { left-inverse-of = λ _ → P.refl ; right-inverse-of = λ _ → P.refl } } ∃∃↔∃∃ : ∀ {a b p} {A : Set a} {B : Set b} (P : A → B → Set p) → (∃₂ λ x y → P x y) ↔ (∃₂ λ y x → P x y) ∃∃↔∃∃ {a} {b} {p} _ = record { to = P.→-to-⟶ λ p → (proj₁ (proj₂ p) , proj₁ p , proj₂ (proj₂ p)) ; from = P.→-to-⟶ λ p → (proj₁ (proj₂ p) , proj₁ p , proj₂ (proj₂ p)) ; inverse-of = record { left-inverse-of = λ _ → P.refl ; right-inverse-of = λ _ → P.refl } } ------------------------------------------------------------------------ -- Implicit and explicit function spaces are isomorphic Π↔Π : ∀ {a b} {A : Set a} {B : A → Set b} → ((x : A) → B x) ↔ ({x : A} → B x) Π↔Π = record { to = P.→-to-⟶ λ f {x} → f x ; from = P.→-to-⟶ λ f x → f {x} ; inverse-of = record { left-inverse-of = λ _ → P.refl ; right-inverse-of = λ _ → P.refl } } ------------------------------------------------------------------------ -- _→_ preserves the symmetric relations _→-cong-⇔_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} → A ⇔ B → C ⇔ D → (A → C) ⇔ (B → D) A⇔B →-cong-⇔ C⇔D = record { to = P.→-to-⟶ λ f x → Equivalence.to C⇔D ⟨$⟩ f (Equivalence.from A⇔B ⟨$⟩ x) ; from = P.→-to-⟶ λ f x → Equivalence.from C⇔D ⟨$⟩ f (Equivalence.to A⇔B ⟨$⟩ x) } →-cong : ∀ {a b c d} → P.Extensionality a c → P.Extensionality b d → ∀ {k} {A : Set a} {B : Set b} {C : Set c} {D : Set d} → A ∼[ ⌊ k ⌋ ] B → C ∼[ ⌊ k ⌋ ] D → (A → C) ∼[ ⌊ k ⌋ ] (B → D) →-cong extAC extBD {equivalence} A⇔B C⇔D = A⇔B →-cong-⇔ C⇔D →-cong extAC extBD {bijection} A↔B C↔D = record { to = Equivalence.to A→C⇔B→D ; from = Equivalence.from A→C⇔B→D ; inverse-of = record { left-inverse-of = λ f → extAC λ x → begin Inverse.from C↔D ⟨$⟩ (Inverse.to C↔D ⟨$⟩ f (Inverse.from A↔B ⟨$⟩ (Inverse.to A↔B ⟨$⟩ x))) ≡⟨ Inverse.left-inverse-of C↔D _ ⟩ f (Inverse.from A↔B ⟨$⟩ (Inverse.to A↔B ⟨$⟩ x)) ≡⟨ P.cong f $ Inverse.left-inverse-of A↔B x ⟩ f x ∎ ; right-inverse-of = λ f → extBD λ x → begin Inverse.to C↔D ⟨$⟩ (Inverse.from C↔D ⟨$⟩ f (Inverse.to A↔B ⟨$⟩ (Inverse.from A↔B ⟨$⟩ x))) ≡⟨ Inverse.right-inverse-of C↔D _ ⟩ f (Inverse.to A↔B ⟨$⟩ (Inverse.from A↔B ⟨$⟩ x)) ≡⟨ P.cong f $ Inverse.right-inverse-of A↔B x ⟩ f x ∎ } } where open P.≡-Reasoning A→C⇔B→D = ↔⇒ A↔B →-cong-⇔ ↔⇒ C↔D ------------------------------------------------------------------------ -- ¬_ preserves the symmetric relations ¬-cong-⇔ : ∀ {a b} {A : Set a} {B : Set b} → A ⇔ B → (¬ A) ⇔ (¬ B) ¬-cong-⇔ A⇔B = A⇔B →-cong-⇔ (⊥ ∎) where open Related.EquationalReasoning ¬-cong : ∀ {a b} → P.Extensionality a Level.zero → P.Extensionality b Level.zero → ∀ {k} {A : Set a} {B : Set b} → A ∼[ ⌊ k ⌋ ] B → (¬ A) ∼[ ⌊ k ⌋ ] (¬ B) ¬-cong extA extB A≈B = →-cong extA extB A≈B (⊥ ∎) where open Related.EquationalReasoning ------------------------------------------------------------------------ -- _⇔_ preserves _⇔_ -- The type of the following proof is a bit more general. Related-cong : ∀ {k a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} → A ∼[ ⌊ k ⌋ ] B → C ∼[ ⌊ k ⌋ ] D → (A ∼[ ⌊ k ⌋ ] C) ⇔ (B ∼[ ⌊ k ⌋ ] D) Related-cong {A = A} {B} {C} {D} A≈B C≈D = Eq.equivalence (λ A≈C → B ∼⟨ sym A≈B ⟩ A ∼⟨ A≈C ⟩ C ∼⟨ C≈D ⟩ D ∎) (λ B≈D → A ∼⟨ A≈B ⟩ B ∼⟨ B≈D ⟩ D ∼⟨ sym C≈D ⟩ C ∎) where open Related.EquationalReasoning ------------------------------------------------------------------------ -- A lemma relating True dec and P, where dec : Dec P True↔ : ∀ {p} {P : Set p} (dec : Dec P) → ((p₁ p₂ : P) → p₁ ≡ p₂) → True dec ↔ P True↔ (yes p) irr = record { to = P.→-to-⟶ (λ _ → p) ; from = P.→-to-⟶ (λ _ → _) ; inverse-of = record { left-inverse-of = λ _ → P.refl ; right-inverse-of = irr p } } True↔ (no ¬p) _ = record { to = P.→-to-⟶ (λ ()) ; from = P.→-to-⟶ (λ p → ¬p p) ; inverse-of = record { left-inverse-of = λ () ; right-inverse-of = λ p → ⊥-elim (¬p p) } } ------------------------------------------------------------------------ -- Equality between pairs can be expressed as a pair of equalities Σ-≡,≡↔≡ : ∀ {a b} {A : Set a} {B : A → Set b} {p₁ p₂ : Σ A B} → (∃ λ (p : proj₁ p₁ ≡ proj₁ p₂) → P.subst B p (proj₂ p₁) ≡ proj₂ p₂) ↔ (p₁ ≡ p₂) Σ-≡,≡↔≡ {A = A} {B} = record { to = P.→-to-⟶ to ; from = P.→-to-⟶ from ; inverse-of = record { left-inverse-of = left-inverse-of ; right-inverse-of = right-inverse-of } } where to : {p₁ p₂ : Σ A B} → Σ (proj₁ p₁ ≡ proj₁ p₂) (λ p → P.subst B p (proj₂ p₁) ≡ proj₂ p₂) → p₁ ≡ p₂ to (P.refl , P.refl) = P.refl from : {p₁ p₂ : Σ A B} → p₁ ≡ p₂ → Σ (proj₁ p₁ ≡ proj₁ p₂) (λ p → P.subst B p (proj₂ p₁) ≡ proj₂ p₂) from P.refl = P.refl , P.refl left-inverse-of : {p₁ p₂ : Σ A B} (p : Σ (proj₁ p₁ ≡ proj₁ p₂) (λ x → P.subst B x (proj₂ p₁) ≡ proj₂ p₂)) → from (to p) ≡ p left-inverse-of (P.refl , P.refl) = P.refl right-inverse-of : {p₁ p₂ : Σ A B} (p : p₁ ≡ p₂) → to (from p) ≡ p right-inverse-of P.refl = P.refl ×-≡,≡↔≡ : ∀ {a b} {A : Set a} {B : Set b} {p₁ p₂ : A × B} → (proj₁ p₁ ≡ proj₁ p₂ × proj₂ p₁ ≡ proj₂ p₂) ↔ p₁ ≡ p₂ ×-≡,≡↔≡ {A = A} {B} = record { to = P.→-to-⟶ to ; from = P.→-to-⟶ from ; inverse-of = record { left-inverse-of = left-inverse-of ; right-inverse-of = right-inverse-of } } where to : {p₁ p₂ : A × B} → (proj₁ p₁ ≡ proj₁ p₂) × (proj₂ p₁ ≡ proj₂ p₂) → p₁ ≡ p₂ to (P.refl , P.refl) = P.refl from : {p₁ p₂ : A × B} → p₁ ≡ p₂ → (proj₁ p₁ ≡ proj₁ p₂) × (proj₂ p₁ ≡ proj₂ p₂) from P.refl = P.refl , P.refl left-inverse-of : {p₁ p₂ : A × B} → (p : (proj₁ p₁ ≡ proj₁ p₂) × (proj₂ p₁ ≡ proj₂ p₂)) → from (to p) ≡ p left-inverse-of (P.refl , P.refl) = P.refl right-inverse-of : {p₁ p₂ : A × B} (p : p₁ ≡ p₂) → to (from p) ≡ p right-inverse-of P.refl = P.refl
{ "alphanum_fraction": 0.4523446758, "avg_line_length": 34.2104247104, "ext": "agda", "hexsha": "c4e3b652d4bc17a93c3af88b2ccac627cfb4ea0d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Function/Related/TypeIsomorphisms.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Function/Related/TypeIsomorphisms.agda", "max_line_length": 106, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Function/Related/TypeIsomorphisms.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 6948, "size": 17721 }
-- Andreas, 2013-10-24 Bug reported to me by Christoph-Simon Senjak module Issue924 where open import Level open import Data.Empty open import Data.Product open import Data.Sum open import Data.Bool open import Data.Maybe.Base import Data.Nat as ℕ open import Data.Nat using (ℕ) import Data.Nat.Divisibility as ℕ import Data.Nat.Properties as ℕ open import Data.Nat.DivMod import Data.Fin as F open import Data.Fin using (Fin) import Data.Fin.Properties as F import Data.List as L open import Data.List using (List) open import Data.Vec open import Relation.Nullary open import Relation.Binary.PropositionalEquality open ≡-Reasoning open import Algebra open import Algebra.Structures Byte : Set Byte = Fin 256 infixr 8 _^_ _^_ : ℕ → ℕ → ℕ _ ^ 0 = 1 n ^ (ℕ.suc m) = n ℕ.* (n ^ m) BitVecToNat : {n : ℕ} → Vec Bool n → ℕ BitVecToNat [] = 0 BitVecToNat (true ∷ r) = ℕ.suc (2 ℕ.* (BitVecToNat r)) BitVecToNat (false ∷ r) = (2 ℕ.* (BitVecToNat r)) postulate ≤lem₁ : {a b : ℕ} → (a ℕ.< b) → (2 ℕ.* a) ℕ.< (2 ℕ.* b) postulate ≤lem₂ : {a b : ℕ} → (a ℕ.< (ℕ.suc b)) → (ℕ.suc (2 ℕ.* a)) ℕ.< (2 ℕ.* (ℕ.suc b)) postulate ≤lem₃ : {a b c : ℕ} → (c ℕ.+ (a ℕ.* 2) ℕ.< (2 ℕ.* b)) → a ℕ.< b ¬0<b∧0≡b : {b : ℕ} → 0 ℕ.< b → 0 ≡ b → ⊥ ¬0<b∧0≡b {0} () 0≡b ¬0<b∧0≡b {ℕ.suc n} 0<b () 0<a∧0<b→0<ab : (a b : ℕ) → (0 ℕ.< a) → (0 ℕ.< b) → (0 ℕ.< (a ℕ.* b)) 0<a∧0<b→0<ab a b 0<a 0<b with 1 ℕ.≤? (a ℕ.* b) ... | yes y = y ... | no n with (a ℕ.* b) | inspect (λ x → a ℕ.* x) b ... | ℕ.suc ns | _ = ⊥-elim (n (ℕ.s≤s (ℕ.z≤n {ns}))) ... | 0 | [ eq ] with ℕ.m*n≡0⇒m≡0∨n≡0 a {b} eq ... | inj₁ a≡0 = ⊥-elim (¬0<b∧0≡b 0<a (sym a≡0)) ... | inj₂ b≡0 = ⊥-elim (¬0<b∧0≡b 0<b (sym b≡0)) 0<s^b : {a b : ℕ} → (0 ℕ.< ((ℕ.suc a) ^ b)) 0<s^b {_} {0} = ℕ.s≤s ℕ.z≤n 0<s^b {m} {ℕ.suc n} = 0<a∧0<b→0<ab (ℕ.suc m) ((ℕ.suc m) ^ n) (ℕ.s≤s ℕ.z≤n) (0<s^b {m} {n}) <-lemma : (b : ℕ) → (0 ℕ.< b) → ∃ λ a → ℕ.suc a ≡ b <-lemma (ℕ.suc b) (ℕ.s≤s (ℕ.z≤n {.b})) = ( b , refl ) 2^lem₁ : (a : ℕ) → ∃ λ b → (ℕ.suc b) ≡ (2 ^ a) 2^lem₁ a = <-lemma (2 ^ a) (0<s^b {1} {a}) BitVecToNatLemma : {n : ℕ} → (s : Vec Bool n) → ((BitVecToNat s) ℕ.< (2 ^ n)) BitVecToNatLemma {0} [] = ℕ.s≤s ℕ.z≤n BitVecToNatLemma {ℕ.suc n} (false ∷ r) = ≤lem₁ (BitVecToNatLemma r) BitVecToNatLemma {ℕ.suc n} (true ∷ r) = ret₃ where q = 2^lem₁ n t = proj₁ q s : (ℕ.suc t) ≡ 2 ^ n s = proj₂ q ret₁ : (BitVecToNat r) ℕ.< (ℕ.suc t) ret₁ = subst (λ u → (BitVecToNat r) ℕ.< u) (sym s) (BitVecToNatLemma r) ret₂ : (ℕ.suc (2 ℕ.* (BitVecToNat r))) ℕ.< (2 ℕ.* (ℕ.suc t)) ret₂ = ≤lem₂ ret₁ ret₃ : (ℕ.suc (2 ℕ.* (BitVecToNat r))) ℕ.< (2 ^ (ℕ.suc n)) ret₃ = subst (λ u → (ℕ.suc (2 ℕ.* (BitVecToNat r))) ℕ.< (2 ℕ.* u)) s ret₂ BitVecToFin : {n : ℕ} → Vec Bool n → Fin (2 ^ n) BitVecToFin s = F.fromℕ< (BitVecToNatLemma s) FinToBitVec : {n : ℕ} → (m : Fin (2 ^ n)) → ∃ λ (s : Vec Bool n) → (BitVecToFin s ≡ m) FinToBitVec {0} F.zero = ( [] , refl ) FinToBitVec {0} (F.suc ()) FinToBitVec {ℕ.suc n} k = ( ret₁ , lem₇ ) where open CommutativeSemiring ℕ.+-*-commutativeSemiring using (*-comm) kn = F.toℕ k p2^n' = 2^lem₁ (ℕ.suc n) p2^n = proj₁ p2^n' p2^nl : ℕ.suc p2^n ≡ 2 ^ (ℕ.suc n) p2^nl = proj₂ p2^n' kn<2^n : kn ℕ.< 2 ^ (ℕ.suc n) kn<2^n = subst (λ d → kn ℕ.< d) p2^nl (subst (λ d → kn ℕ.< ℕ.suc (ℕ.pred d)) (sym p2^nl) (ℕ.s≤s (F.toℕ≤pred[n] k))) dm = kn divMod 2 quot = DivMod.quotient dm rem = F.toℕ (DivMod.remainder dm) Fin2toBool : Fin 2 → Bool Fin2toBool F.zero = false Fin2toBool (F.suc F.zero) = true Fin2toBool (F.suc (F.suc ())) zl = 2^lem₁ n lem₀ : rem ℕ.+ quot ℕ.* 2 ℕ.< (2 ^ (ℕ.suc n)) lem₀ = subst (λ d → d ℕ.< (2 ^ (ℕ.suc n))) (DivMod.property dm) kn<2^n lem₁ : (DivMod.quotient dm) ℕ.< (2 ^ n) lem₁ = ≤lem₃ {a = quot} {b = 2 ^ n} {c = rem} lem₀ fQuot : Fin (2 ^ n) fQuot = F.fromℕ< lem₁ -- the recursive call prevRet : ∃ λ (s : Vec Bool n) → (BitVecToFin s ≡ fQuot) prevRet = FinToBitVec (F.fromℕ< lem₁) prevRetEq : (BitVecToFin (proj₁ prevRet) ≡ fQuot) prevRetEq = proj₂ prevRet lem₉ : {n : ℕ} → (r : Vec Bool n) → F.toℕ (BitVecToFin r) ≡ (BitVecToNat r) lem₉ r = trans (cong F.toℕ refl) (F.toℕ-fromℕ< (BitVecToNatLemma r)) prevRetEqℕ : quot ≡ BitVecToNat (proj₁ prevRet) prevRetEqℕ = trans (trans (sym (F.toℕ-fromℕ< lem₁)) (cong F.toℕ (sym prevRetEq))) (lem₉ (proj₁ prevRet)) ret₁ = (Fin2toBool (DivMod.remainder dm)) ∷ (proj₁ prevRet) lem₃ : (r : Fin 2) → (BitVecToNat ((Fin2toBool r) ∷ (proj₁ prevRet))) ≡ (F.toℕ r) ℕ.+ (2 ℕ.* (BitVecToNat (proj₁ prevRet))) lem₃ F.zero = refl lem₃ (F.suc F.zero) = refl lem₃ (F.suc (F.suc ())) lem₅ : rem ℕ.+ (2 ℕ.* (BitVecToNat (proj₁ prevRet))) ≡ kn lem₅ = subst (λ d → rem ℕ.+ d ≡ kn) (*-comm (BitVecToNat (proj₁ prevRet)) 2) (subst (λ d → rem ℕ.+ d ℕ.* 2 ≡ kn) prevRetEqℕ (sym (DivMod.property dm))) lem₆ : (BitVecToNat ret₁) ≡ kn lem₆ = begin BitVecToNat ret₁ ≡⟨ lem₃ (DivMod.remainder dm) ⟩ rem ℕ.+ (2 ℕ.* (BitVecToNat (proj₁ prevRet))) ≡⟨ lem₅ ⟩ kn ∎ -- lem₆ = trans lem₄ lem₅ lem₈ : kn ≡ F.toℕ (F.fromℕ< kn<2^n) lem₈ = sym (cong F.toℕ (F.fromℕ<-toℕ k kn<2^n)) lem₇ : (BitVecToFin ret₁) ≡ k lem₇ = trans (F.toℕ-injective (trans (lem₉ ret₁) (trans lem₆ lem₈))) (F.fromℕ<-toℕ k kn<2^n) record ByteStream : Set where constructor bs field cBit : Maybe (∃ λ (c : Fin 8) → Vec Bool (ℕ.suc (F.toℕ c))) str : List Byte property : (cBit ≡ nothing) → (str ≡ L.[]) byteStreamFromList : List Byte → ByteStream byteStreamFromList L.[] = bs nothing L.[] (λ _ → refl) byteStreamFromList (a L.∷ x) = bs (just ((F.fromℕ 7) , (proj₁ (FinToBitVec a)))) x (λ ()) -- Problem WAS: -- Normalization in unifyConArgs went berserk when checking this -- absurd lambda. Fixed by more cautious normalization in unifier.
{ "alphanum_fraction": 0.5411283729, "avg_line_length": 31.0406091371, "ext": "agda", "hexsha": "4783bec8f89864f8d32c69b2254dcae770bafff0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/LibSucceed/Issue924.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/LibSucceed/Issue924.agda", "max_line_length": 125, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/LibSucceed/Issue924.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2649, "size": 6115 }
module Cats.Category.Constructions.Exponential where open import Level open import Cats.Category.Base open import Cats.Category.Constructions.Product as Product using (HasBinaryProducts) open import Cats.Util.Conv import Cats.Category.Constructions.Unique as Unique module Build {lo la l≈} (Cat : Category lo la l≈) {{hasBinaryProducts : HasBinaryProducts Cat}} where open Category Cat open ≈-Reasoning open Unique.Build Cat open HasBinaryProducts hasBinaryProducts record Exp (B C : Obj) : Set (lo ⊔ la ⊔ l≈) where field Cᴮ : Obj eval : Cᴮ × B ⇒ C curry′ : ∀ {A} (f : A × B ⇒ C) → ∃![ f̃ ∈ A ⇒ Cᴮ ] (eval ∘ ⟨ f̃ × id ⟩ ≈ f) curry : ∀ {A} → A × B ⇒ C → A ⇒ Cᴮ curry f = curry′ f ⃗ eval-curry : ∀ {A} {f : A × B ⇒ C} → eval ∘ ⟨ curry f × id ⟩ ≈ f eval-curry {f = f} = ∃!′.prop (curry′ f) curry-unique : ∀ {A} {f : A × B ⇒ C} {g} → eval ∘ ⟨ g × id ⟩ ≈ f → curry f ≈ g curry-unique {f = f} = ∃!′.unique (curry′ f) uncurry : ∀ {A} → A ⇒ Cᴮ → A × B ⇒ C uncurry f = eval ∘ ⟨ f × id ⟩ curry∘uncurry : ∀ {A} {f : A ⇒ Cᴮ} → curry (uncurry f) ≈ f curry∘uncurry = curry-unique ≈.refl uncurry∘curry : ∀ {A} {f : A × B ⇒ C} → uncurry (curry f) ≈ f uncurry∘curry = eval-curry instance HasObj-Exp : ∀ {B C} → HasObj (Exp B C) lo la l≈ HasObj-Exp = record { Cat = Cat ; _ᴼ = Exp.Cᴮ } open Exp public curry∘curry : ∀ {A B C Y Z} (Cᴮ : Exp B C) (Yᶻ : Exp Y Z) → {f : Cᴮ ᴼ × Y ⇒ Z} {g : A × B ⇒ C} → curry Yᶻ f ∘ curry Cᴮ g ≈ curry Yᶻ (f ∘ ⟨ curry Cᴮ g × id ⟩) curry∘curry Cᴮ Yᶻ {f} {g} = ≈.sym (curry-unique Yᶻ ( begin eval Yᶻ ∘ ⟨ curry Yᶻ f ∘ curry Cᴮ g × id ⟩ ≈⟨ ∘-resp-r (⟨×⟩-resp ≈.refl (≈.sym id-l)) ⟩ eval Yᶻ ∘ ⟨ curry Yᶻ f ∘ curry Cᴮ g × id ∘ id ⟩ ≈⟨ ∘-resp-r (≈.sym ⟨×⟩-∘) ⟩ eval Yᶻ ∘ ⟨ curry Yᶻ f × id ⟩ ∘ ⟨ curry Cᴮ g × id ⟩ ≈⟨ unassoc ⟩ (eval Yᶻ ∘ ⟨ curry Yᶻ f × id ⟩) ∘ ⟨ curry Cᴮ g × id ⟩ ≈⟨ ∘-resp-l (eval-curry Yᶻ) ⟩ f ∘ ⟨ curry Cᴮ g × id ⟩ ∎ )) record HasExponentials {lo la l≈} (Cat : Category lo la l≈) : Set (lo ⊔ la ⊔ l≈) where private open module Bld = Build Cat using (Exp) open Category Cat open Unique.Build Cat infixr 1 _↝′_ _↝_ field {{hasBinaryProducts}} : HasBinaryProducts Cat _↝′_ : ∀ B C → Exp B C open HasBinaryProducts hasBinaryProducts _↝_ : Obj → Obj → Obj B ↝ C = (B ↝′ C) ᴼ eval : ∀ {B C} → (B ↝ C) × B ⇒ C eval {B} {C} = Bld.eval (B ↝′ C) curry : ∀ {A B C} → A × B ⇒ C → A ⇒ B ↝ C curry {B = B} {C} f = Bld.curry (B ↝′ C) f uncurry : ∀ {A B C} → A ⇒ B ↝ C → A × B ⇒ C uncurry {B = B} {C} = Bld.uncurry (B ↝′ C) eval-curry : ∀ {A B C} {f : A × B ⇒ C} → eval ∘ ⟨ curry f × id ⟩ ≈ f eval-curry {B = B} {C} = Bld.eval-curry (B ↝′ C) curry∘uncurry : ∀ {A B C} {f : A ⇒ B ↝ C} → curry (uncurry f) ≈ f curry∘uncurry {B = B} {C} = Bld.curry∘uncurry (B ↝′ C) uncurry∘curry : ∀ {A B C} {f : A × B ⇒ C} → uncurry (curry f) ≈ f uncurry∘curry {B = B} {C} = Bld.uncurry∘curry (B ↝′ C) curry∘curry : ∀ {A B C Y Z} → {f : (B ↝ C) × Y ⇒ Z} {g : A × B ⇒ C} → curry f ∘ curry g ≈ curry (f ∘ ⟨ curry g × id ⟩) curry∘curry {B = B} {C} {Y} {Z} = Bld.curry∘curry (B ↝′ C) (Y ↝′ Z)
{ "alphanum_fraction": 0.5031559964, "avg_line_length": 24.1086956522, "ext": "agda", "hexsha": "f72014abd17dcbdc16ea0adcd257c5f4efffd442", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Category/Constructions/Exponential.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Category/Constructions/Exponential.agda", "max_line_length": 69, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Category/Constructions/Exponential.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1518, "size": 3327 }
open import Prelude module Implicits.Resolution.Termination.SizeMeasures where open import Induction.WellFounded open import Induction.Nat open import Data.Product hiding (map) open import Data.Nat.Base using (_<′_) open import Data.Fin hiding (_+_; _≤_; _<_; _≤?_) open import Data.List hiding (map) open import Data.List.All open import Implicits.Syntax open import Implicits.Syntax.Type.Unification open import Data.Nat hiding (_<_) open import Data.Nat.Properties -- a strict sizemeasure for types ||_|| : ∀ {ν} → Type ν → ℕ || simpl (tc x) || = 1 || simpl (tvar n) || = 1 || simpl (a →' b) || = 1 + || a || + || b || || a ⇒ b || = 1 + || a || + || b || || ∀' a || = 1 + || a || -- size of the head of a type h||_|| : ∀ {ν} → Type ν → ℕ h|| a || = || proj₂ (a ◁) || -- type measure on metatypes m||_|| : ∀ {m ν} → MetaType m ν → ℕ m|| simpl (tc x) || = 1 m|| simpl (tvar n) || = 1 m|| simpl (mvar n) || = 1 m|| simpl (a →' b) || = suc (m|| a || + m|| b ||) m|| a ⇒ b || = 1 + (m|| a || + m|| b ||) m|| ∀' a || = 1 + m|| a || -- We package Type with it's deBruijn counter because -- we need to express orderings such as a sρ< ∀' a -- where the number of free variables varies. -- We could express that as ∀ {ν μ} → Type ν → Type μ → Set, -- but Well-founded _sρ<_ unifies ν and μ, -- such that the well-founded proof would be too narrow _hρ≤_ : (a b : ∃ Type) → Set (_ , a) hρ≤ (_ , b) = h|| a || ≤ h|| b || _hρ<_ : (a b : ∃ Type) → Set (_ , a) hρ< (_ , b) = h|| a || < h|| b || _hρ<?_ : ∀ {ν μ} → (a : Type ν) → (b : Type μ) → Dec ((ν , a) hρ< (μ , b)) a hρ<? b with h|| a || | h|| b || a hρ<? b | y | z = (suc y) ≤? z _ρ<_ : ∃ Type → ∃ Type → Set (_ , a) ρ< (_ , b) = || a || < || b || _ρ<?_ : (a b : ∃ Type) → Dec (a ρ< b) (_ , a) ρ<? (_ , b) with || a || | || b || (_ , a) ρ<? (_ , b) | y | z = (suc y) ≤? z _m<_ : ∃₂ MetaType → ∃₂ MetaType → Set (_ , _ , a) m< (_ , _ , b) = m|| a || < m|| b || _occ[_]<_ : ∀ {ν μ} (a : Type ν) (x : ℕ) (b : Type μ) → Set a occ[ x ]< b = (occ x (proj₂ (a ◁))) ≤ (occ x (proj₂ (b ◁))) -- oliveira's termination condition on types data ⊢term {ν} : (Type ν) → Set where term-simp : ∀ {τ} → ⊢term (simpl τ) term-tabs : ∀ {a} → ⊢term a → ⊢term (∀' a) term-iabs : ∀ {a b} → ⊢term a → ⊢term b → (, a) hρ< (, b) → All (λ x → a occ[ toℕ x ]< b) (fvars a ++ fvars b) → ⊢term (a ⇒ b)
{ "alphanum_fraction": 0.5065650148, "avg_line_length": 31.9054054054, "ext": "agda", "hexsha": "e5d2fd28e7c261b9f3becb69a64d5f74db3069f7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Resolution/Termination/SizeMeasures.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Resolution/Termination/SizeMeasures.agda", "max_line_length": 74, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Resolution/Termination/SizeMeasures.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 951, "size": 2361 }
{- This file contains: - Properties of set truncations -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.SetTruncation.Properties where open import Cubical.HITs.SetTruncation.Base open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Univalence open import Cubical.Data.Sigma private variable ℓ : Level A B C D : Type ℓ rec : isSet B → (A → B) → ∥ A ∥₂ → B rec Bset f ∣ x ∣₂ = f x rec Bset f (squash₂ x y p q i j) = Bset _ _ (cong (rec Bset f) p) (cong (rec Bset f) q) i j -- lemma 6.9.1 in HoTT book elim : {B : ∥ A ∥₂ → Type ℓ} (Bset : (x : ∥ A ∥₂) → isSet (B x)) (g : (a : A) → B (∣ a ∣₂)) (x : ∥ A ∥₂) → B x elim Bset g ∣ a ∣₂ = g a elim Bset g (squash₂ x y p q i j) = isOfHLevel→isOfHLevelDep 2 Bset _ _ (cong (elim Bset g) p) (cong (elim Bset g) q) (squash₂ x y p q) i j setTruncUniversal : isSet B → (∥ A ∥₂ → B) ≃ (A → B) setTruncUniversal {B = B} Bset = isoToEquiv (iso (λ h x → h ∣ x ∣₂) (rec Bset) (λ _ → refl) rinv) where rinv : (f : ∥ A ∥₂ → B) → rec Bset (λ x → f ∣ x ∣₂) ≡ f rinv f i x = elim (λ x → isProp→isSet (Bset (rec Bset (λ x → f ∣ x ∣₂) x) (f x))) (λ _ → refl) x i elim2 : {B : ∥ A ∥₂ → ∥ A ∥₂ → Type ℓ} (Bset : ((x y : ∥ A ∥₂) → isSet (B x y))) (g : (a b : A) → B ∣ a ∣₂ ∣ b ∣₂) (x y : ∥ A ∥₂) → B x y elim2 Bset g = elim (λ _ → isSetΠ (λ _ → Bset _ _)) (λ a → elim (λ _ → Bset _ _) (g a)) elim3 : {B : (x y z : ∥ A ∥₂) → Type ℓ} (Bset : ((x y z : ∥ A ∥₂) → isSet (B x y z))) (g : (a b c : A) → B ∣ a ∣₂ ∣ b ∣₂ ∣ c ∣₂) (x y z : ∥ A ∥₂) → B x y z elim3 Bset g = elim2 (λ _ _ → isSetΠ (λ _ → Bset _ _ _)) (λ a b → elim (λ _ → Bset _ _ _) (g a b)) setTruncIsSet : isSet ∥ A ∥₂ setTruncIsSet a b p q = squash₂ a b p q setTruncIdempotent≃ : isSet A → ∥ A ∥₂ ≃ A setTruncIdempotent≃ {A = A} hA = isoToEquiv f where f : Iso ∥ A ∥₂ A Iso.fun f = rec hA (idfun A) Iso.inv f x = ∣ x ∣₂ Iso.rightInv f _ = refl Iso.leftInv f = elim (λ _ → isSet→isGroupoid setTruncIsSet _ _) (λ _ → refl) setTruncIdempotent : isSet A → ∥ A ∥₂ ≡ A setTruncIdempotent hA = ua (setTruncIdempotent≃ hA) isContr→isContrSetTrunc : isContr A → isContr (∥ A ∥₂) isContr→isContrSetTrunc contr = ∣ fst contr ∣₂ , elim (λ _ → isOfHLevelPath 2 (setTruncIsSet) _ _) λ a → cong ∣_∣₂ (snd contr a) setTruncIso : Iso A B → Iso ∥ A ∥₂ ∥ B ∥₂ Iso.fun (setTruncIso is) = rec setTruncIsSet (λ x → ∣ Iso.fun is x ∣₂) Iso.inv (setTruncIso is) = rec setTruncIsSet (λ x → ∣ Iso.inv is x ∣₂) Iso.rightInv (setTruncIso is) = elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ a → cong ∣_∣₂ (Iso.rightInv is a) Iso.leftInv (setTruncIso is) = elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ a → cong ∣_∣₂ (Iso.leftInv is a) setSigmaIso : ∀ {ℓ} {B : A → Type ℓ} → Iso ∥ Σ A B ∥₂ ∥ Σ A (λ x → ∥ B x ∥₂) ∥₂ setSigmaIso {A = A} {B = B} = iso fun funinv sect retr where {- writing it out explicitly to avoid yellow highlighting -} fun : ∥ Σ A B ∥₂ → ∥ Σ A (λ x → ∥ B x ∥₂) ∥₂ fun = rec setTruncIsSet λ {(a , p) → ∣ a , ∣ p ∣₂ ∣₂} funinv : ∥ Σ A (λ x → ∥ B x ∥₂) ∥₂ → ∥ Σ A B ∥₂ funinv = rec setTruncIsSet (λ {(a , p) → rec setTruncIsSet (λ p → ∣ a , p ∣₂) p}) sect : section fun funinv sect = elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ { (a , p) → elim {B = λ p → fun (funinv ∣ a , p ∣₂) ≡ ∣ a , p ∣₂} (λ p → isOfHLevelPath 2 setTruncIsSet _ _) (λ _ → refl) p } retr : retract fun funinv retr = elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ { _ → refl } sigmaElim : ∀ {ℓ ℓ'} {B : ∥ A ∥₂ → Type ℓ} {C : Σ ∥ A ∥₂ B → Type ℓ'} (Bset : (x : Σ ∥ A ∥₂ B) → isSet (C x)) (g : (a : A) (b : B ∣ a ∣₂) → C (∣ a ∣₂ , b)) (x : Σ ∥ A ∥₂ B) → C x sigmaElim {B = B} {C = C} set g (x , y) = elim {B = λ x → (y : B x) → C (x , y)} (λ _ → isOfHLevelΠ 2 λ _ → set (_ , _)) g x y sigmaProdElim : ∀ {ℓ ℓ'} {C : ∥ A ∥₂ × ∥ B ∥₂ → Type ℓ} {D : Σ (∥ A ∥₂ × ∥ B ∥₂) C → Type ℓ'} (Bset : (x : Σ (∥ A ∥₂ × ∥ B ∥₂) C) → isSet (D x)) (g : (a : A) (b : B) (c : C (∣ a ∣₂ , ∣ b ∣₂)) → D ((∣ a ∣₂ , ∣ b ∣₂) , c)) (x : Σ (∥ A ∥₂ × ∥ B ∥₂) C) → D x sigmaProdElim {B = B} {C = C} {D = D} set g ((x , y) , c) = elim {B = λ x → (y : ∥ B ∥₂) (c : C (x , y)) → D ((x , y) , c)} (λ _ → isOfHLevelΠ 2 λ _ → isOfHLevelΠ 2 λ _ → set _) (λ x → elim (λ _ → isOfHLevelΠ 2 λ _ → set _) λ y c → g x y c) x y c prodElim : ∀ {ℓ} {C : ∥ A ∥₂ × ∥ B ∥₂ → Type ℓ} → ((x : ∥ A ∥₂ × ∥ B ∥₂) → isOfHLevel 2 (C x)) → ((a : A) (b : B) → C (∣ a ∣₂ , ∣ b ∣₂)) → (x : ∥ A ∥₂ × ∥ B ∥₂) → C x prodElim {A = A} {B = B} {C = C} hlevel ind (a , b) = schonf a b where schonf : (a : ∥ A ∥₂) (b : ∥ B ∥₂) → C (a , b) schonf = elim (λ x → isOfHLevelΠ 2 λ y → hlevel (_ , _)) λ a → elim (λ x → hlevel (_ , _)) λ b → ind a b prodElim2 : ∀ {ℓ} {E : (∥ A ∥₂ × ∥ B ∥₂) → (∥ C ∥₂ × ∥ D ∥₂) → Type ℓ} → ((x : ∥ A ∥₂ × ∥ B ∥₂) (y : ∥ C ∥₂ × ∥ D ∥₂) → isOfHLevel 2 (E x y)) → ((a : A) (b : B) (c : C) (d : D) → E (∣ a ∣₂ , ∣ b ∣₂) (∣ c ∣₂ , ∣ d ∣₂)) → ((x : ∥ A ∥₂ × ∥ B ∥₂) (y : ∥ C ∥₂ × ∥ D ∥₂) → (E x y)) prodElim2 isset f = prodElim (λ _ → isOfHLevelΠ 2 λ _ → isset _ _) λ a b → prodElim (λ _ → isset _ _) λ c d → f a b c d setTruncOfProdIso : Iso ∥ A × B ∥₂ (∥ A ∥₂ × ∥ B ∥₂) Iso.fun setTruncOfProdIso = rec (isOfHLevelΣ 2 setTruncIsSet (λ _ → setTruncIsSet)) λ { (a , b) → ∣ a ∣₂ , ∣ b ∣₂ } Iso.inv setTruncOfProdIso = prodElim (λ _ → setTruncIsSet) λ a b → ∣ a , b ∣₂ Iso.rightInv setTruncOfProdIso = prodElim (λ _ → isOfHLevelPath 2 (isOfHLevelΣ 2 setTruncIsSet (λ _ → setTruncIsSet)) _ _) λ _ _ → refl Iso.leftInv setTruncOfProdIso = elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ {(a , b) → refl}
{ "alphanum_fraction": 0.4895701643, "avg_line_length": 39.7987421384, "ext": "agda", "hexsha": "746652321c7c440d54cccf392ffba6b013b3b787", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "knrafto/cubical", "max_forks_repo_path": "Cubical/HITs/SetTruncation/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "knrafto/cubical", "max_issues_repo_path": "Cubical/HITs/SetTruncation/Properties.agda", "max_line_length": 115, "max_stars_count": null, "max_stars_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "knrafto/cubical", "max_stars_repo_path": "Cubical/HITs/SetTruncation/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2827, "size": 6328 }
{-# OPTIONS --cubical --safe --no-import-sorts #-} module Cubical.HITs.Delooping.Two.Properties where open import Cubical.Functions.Involution open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Foundations.Prelude open import Cubical.Foundations.Univalence open import Cubical.Data.Bool open import Cubical.Data.Empty open import Cubical.Data.Unit open import Cubical.HITs.Delooping.Two.Base open import Cubical.HITs.PropositionalTruncation private variable ℓ : Level module Embed where isSetIsPropDep : isOfHLevelDep {ℓ' = ℓ} 1 isSet isSetIsPropDep = isOfHLevel→isOfHLevelDep 1 (λ _ → isPropIsSet) notSet : PathP (λ i → isSet (notEq i)) isSetBool isSetBool notSet = isSetIsPropDep isSetBool isSetBool notEq notNot² : Square notEq refl refl notEq notNot² = involPath² notnot notNotSet : SquareP (λ i j → isSet (notNot² i j)) notSet refl refl notSet notNotSet = isPropDep→isSetDep' isSetIsPropDep (involPath² notnot) notSet refl refl notSet Code : Bℤ₂ → hSet ℓ-zero Code = Elim.rec (Bool , isSetBool) (λ i → notEq i , notSet i) (λ i j → λ where .fst → notNot² i j .snd → notNotSet i j) (isOfHLevelTypeOfHLevel 2) El : Bℤ₂ → Type₀ El b = Code b .fst module BINARY where open import Cubical.Data.FinSet.Binary.Large sem : Bℤ₂ → Binary _ sem = Elim.rec Base Loop Loop² isGroupoidBinary loop? : Bool → base ≡ base loop? false = refl loop? true = loop Loop²-coh : (a b c : Bool) → Type₀ Loop²-coh false false false = Unit Loop²-coh false true true = Unit Loop²-coh true false true = Unit Loop²-coh true true false = Unit Loop²-coh _ _ _ = ⊥ rf : Bool ≡ Bool → Bool rf P = transport P false Loop²-coh-lemma₀ : ∀(p q r : Bool) → r ⊕ p ≡ q → Loop²-coh p q r Loop²-coh-lemma₀ false false false sq = _ Loop²-coh-lemma₀ false true true sq = _ Loop²-coh-lemma₀ true false true sq = _ Loop²-coh-lemma₀ true true false sq = _ Loop²-coh-lemma₀ false true false = false≢true Loop²-coh-lemma₀ false false true = true≢false Loop²-coh-lemma₀ true false false = true≢false Loop²-coh-lemma₀ true true true = false≢true Loop²-coh-lemma : ∀(P Q R : Bool ≡ Bool) → Square P Q refl R → Loop²-coh (rf P) (rf Q) (rf R) Loop²-coh-lemma P Q R sq = Loop²-coh-lemma₀ p q r eqn where p = rf P q = rf Q r = rf R open BoolReflection cmp : P ∙ R ≡ Q cmp i j = hcomp (λ k → λ where (i = i0) → compPath-filler P R k j (i = i1) → Q j (j = i0) → Bool (j = i1) → R (i ∨ k)) (sq i j) rcmp : ⊕-Path (r ⊕ p) ≡ ⊕-Path q rcmp = ⊕-Path (r ⊕ p) ≡[ i ]⟨ ⊕-comp p r (~ i) ⟩ ⊕-Path p ∙ ⊕-Path r ≡[ i ]⟨ ⊕-complete P (~ i) ∙ ⊕-complete R (~ i) ⟩ P ∙ R ≡⟨ cmp ⟩ Q ≡⟨ ⊕-complete Q ⟩ ⊕-Path q ∎ open Iso eqn : r ⊕ p ≡ q eqn = transport (λ i → reflectIso .leftInv (r ⊕ p) i ≡ reflectIso .leftInv q i) (cong (reflectIso .inv) rcmp) loop²? : ∀ p q r → Loop²-coh p q r → Square (loop? p) (loop? q) refl (loop? r) loop²? false false false _ = refl loop²? false true true _ = λ i j → loop (i ∧ j) loop²? true false true _ = loop² loop²? true true false _ = refl module _ (B : Type₀) where based : (P : Bool ≃ B) → Bℤ₂ based _ = base pull₀ : (P Q : Bool ≃ B) → Bool ≡ Bool pull₀ P Q i = hcomp (λ k → λ where (i = i0) → ua P (~ k) (i = i1) → ua Q (~ k)) B pull₁ : (P Q : Bool ≃ B) → Square (ua P) (ua Q) (pull₀ P Q) refl pull₁ P Q i j = hcomp (λ k → λ where (i = i0) → ua P (~ k ∨ j) (i = i1) → ua Q (~ k ∨ j) (j = i1) → B) B pull₂ : (P Q R : Bool ≃ B) → Square (pull₀ P Q) (pull₀ P R) refl (pull₀ Q R) pull₂ P Q R i j = hcomp (λ k → λ where (j = i0) → ua P (~ k) (i = i0) (j = i1) → ua Q (~ k) (i = i1) (j = i1) → ua R (~ k)) B pull₃ : (P Q R : Bool ≃ B) → Cube (pull₁ P Q) (pull₁ P R) (λ _ → ua P) (pull₁ Q R) (pull₂ P Q R) (λ _ _ → B) pull₃ P Q R i j k = hcomp (λ τ → λ where (j = i0) → ua P (~ τ ∨ k) (i = i0) (j = i1) → ua Q (~ τ ∨ k) (i = i1) (j = i1) → ua R (~ τ ∨ k) (k = i1) → B) B looped : (P Q : Bool ≃ B) → based P ≡ based Q looped P Q = loop? b where b : Bool b = rf (pull₀ P Q) looped² : (P Q R : Bool ≃ B) → Square (looped P Q) (looped P R) refl (looped Q R) looped² P Q R = loop²? pq pr qr pqr where pq = rf (pull₀ P Q) pr = rf (pull₀ P R) qr = rf (pull₀ Q R) pqr : Loop²-coh pq pr qr pqr = Loop²-coh-lemma (pull₀ P Q) (pull₀ P R) (pull₀ Q R) (pull₂ P Q R) syn : Binary _ → Bℤ₂ syn (B , tP) = rec→Gpd trunc (based B) 3k tP where open 3-Constant 3k : 3-Constant (based B) 3k .link = looped B 3k .coh₁ = looped² B
{ "alphanum_fraction": 0.5374034294, "avg_line_length": 26.6683417085, "ext": "agda", "hexsha": "4cfe24f5c55b060949fba0c82238ec6b9109476e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/Delooping/Two/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/Delooping/Two/Properties.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/Delooping/Two/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2005, "size": 5307 }
---------------------------------------------------------------------- -- A monad with partiality and failure ---------------------------------------------------------------------- module PartialityAndFailure where open import Category.Monad open import Codata.Musical.Notation open import Category.Monad.Partiality as Partiality using (_⊥) open import Data.Maybe as Maybe using (Maybe; just; nothing; maybe) open import Data.Maybe.Categorical as MaybeC using () open import Level using (_⊔_) open import Function open import Relation.Binary as B hiding (Rel) open import Relation.Binary.PropositionalEquality as P using (_≡_) ------------------------------------------------------------------------ -- Danielsson's partiality-and-failure monad. -- The definitions below are slightly modified versions of those given -- in the code accompanying Danielsson's ICFP'12 paper "Operational -- Semantics Using the Partiality Monad". The original version along -- with additional explanations can be found at -- -- http://www.cse.chalmers.se/~nad/publications/danielsson-semantics-partiality-monad.html _?⊥ : ∀ {a} → Set a → Set a A ?⊥ = Maybe A ⊥ monad : ∀ {f} → RawMonad {f = f} (_⊥ ∘ Maybe) monad = MaybeC.monadT Partiality.monad private module M {f} = RawMonad (monad {f}) -- Re-export constructors and kinds of relations. open Partiality public using (now; later; Kind; OtherKind; geq; weak; strong; other) -- Failure. private -- This module encapsulates fail so we can define/overload it as a -- constructor of _?⊥P and RelP in the Workaround and -- AlternativeEquality modules below. Its definitions will be -- re-exported at the global scope later. module Failure {a} where fail : ∀ {A : Set a} → A ?⊥ fail = now nothing infix 7 _or-fail _or-fail : ∀ {A B : Set a} → (A → B ?⊥) → Maybe A → B ?⊥ f or-fail = maybe f fail ------------------------------------------------------------------------ -- Equality/ordering -- The default equality for the partiality monad (bisimilarity) -- specialized to include failure and with the underlying equality -- fixed to "syntactic" equality (_≡_). module Equality {a} {A : Set a} where open M using (_>>=_) private module E = Partiality.Equality (_≡_ {A = Maybe A}) open E public using (now; later; laterʳ; laterˡ) infix 4 _≅_ _≳_ _≲_ _≈_ -- The three relations specialized to include failure and with the -- underlying equality fixed to "syntactic" equality (_≡_). Rel : Kind → A ?⊥ → A ?⊥ → Set _ Rel k x y = E.Rel k x y _≅_ = Rel strong _≳_ = Rel (other geq) _≲_ = flip _≳_ _≈_ = Rel (other weak) fail : ∀ {k} → Rel k (Failure.fail) (Failure.fail) fail = now P.refl ------------------------------------------------------------------------ -- The (specialized) relations are equivalences or partial orders -- for the chosen underlying "syntactic" equality (_≡_) module Equivalence {a} {A : Set a} where open Partiality.Equivalence {A = Maybe A} {_∼_ = _≡_} public -- Equational reasoning with the underlying equality fixed to -- "syntactic" equality (_≡_). module Reasoning {a} {A : Set a} where open Partiality.Reasoning (P.isEquivalence {A = Maybe A}) public ------------------------------------------------------------------------ -- Laws related to bind module _ {a} {A B : Set a} where open Failure open Equality open M using (_>>=_) infixl 1 _>>=-cong_ -- Bind preserves all the relations. _>>=-cong_ : ∀ {k} {x₁ x₂} {f₁ f₂ : A → B ?⊥} → Rel k x₁ x₂ → (∀ x → Rel k (f₁ x) (f₂ x)) → Rel k (x₁ >>= f₁) (x₂ >>= f₂) _>>=-cong_ {k} {f₁ = f₁} {f₂} x₁≈x₂ f₁≈f₂ = x₁≈x₂ Partiality.>>=-cong helper where helper : ∀ {x y} → x ≡ y → Rel k ((f₁ or-fail) x) ((f₂ or-fail) y) helper {x = nothing} P.refl = now P.refl helper {x = just x} P.refl = f₁≈f₂ x ------------------------------------------------------------------------ -- Productivity checker workaround -- Just like the partiality monad, the partiality-and-fail monad -- suffers from the limitations of guarded coinduction. Luckily there -- is a (limited) workaround for this problem, namely to extend the -- datatype _?⊥ with a _>>=_ constructor, yielding an embedded -- language _?⊥P (of _?⊥ "programs") which internalizes the monadic -- bind operation. When writing corecursive functions in _?⊥P, one -- may use _>>=_ without guarding it with other constructors. By -- interpreting the resulting programs in _?⊥, one recovers the -- desired corecursive function. For details, see e.g. Danielsson's -- PAR'10 paper "Beating the Productivity Checker Using Embedded -- Languages". module Workaround {a} where private module W = Partiality.Workaround {a} infixl 1 _>>=_ -- The language of _?⊥ "programs" internalizing _>>=_. data _?⊥P : Set a → Set (Level.suc a) where return : ∀ {A} (x : A) → A ?⊥P later : ∀ {A} (x : ∞ (A ?⊥P)) → A ?⊥P fail : ∀ {A} → A ?⊥P _>>=_ : ∀ {A B} (x : A ?⊥P) (f : A → B ?⊥P) → B ?⊥P private mutual -- Translation of _?⊥ programs to _⊥ programs. ⟦_⟧P′ : ∀ {A} → A ?⊥P → (Maybe A) W.⊥P ⟦ return x ⟧P′ = W.now (just x) ⟦ later x ⟧P′ = W.later (♯ ⟦ (♭ x) ⟧P′) ⟦ fail ⟧P′ = W.now nothing ⟦ _>>=_ {A} {B} x f ⟧P′ = ⟦ x ⟧P′ W.>>= ⟦>>=⟧-helper f ⟦>>=⟧-helper : ∀ {A B : Set a} → (A → B ?⊥P) → Maybe A → (Maybe B) W.⊥P ⟦>>=⟧-helper f (just y) = ⟦ f y ⟧P′ ⟦>>=⟧-helper _ nothing = W.now nothing -- Interpretation of _?⊥ programs in _?⊥. ⟦_⟧P : ∀ {A} → A ?⊥P → A ?⊥ ⟦_⟧P = W.⟦_⟧P ∘ ⟦_⟧P′ -- The definitions above make sense. ⟦_⟧P is homomorphic with -- respect to now, later, fail and _>>=_. module Correct where open Equality {a} hiding (fail) open Reasoning {a} private module F = Failure {a} module PM {f} = RawMonad (Partiality.monad {f}) return-hom : ∀ {A} (x : A) → ⟦ return x ⟧P ≅ M.return x return-hom x = M.return x ∎ later-hom : ∀ {A} (x : ∞ (A ?⊥P)) → ⟦ later x ⟧P ≅ later (♯ ⟦ ♭ x ⟧P) later-hom x = later (♯ (⟦ ♭ x ⟧P ∎) ) fail-hom : ∀ {A} → ⟦ fail {A} ⟧P ≅ F.fail {A} fail-hom {A} = F.fail {A} ∎ >>=-hom : ∀ {A B} (x : A ?⊥P) (f : A → B ?⊥P) → ⟦ x >>= f ⟧P ≅ (⟦ x ⟧P M.>>= λ y → ⟦ f y ⟧P) >>=-hom {A} {B} x f = W.⟦ ⟦ x ⟧P′ W.>>= (⟦>>=⟧-helper f) ⟧P ≅⟨ W.Correct.>>=-hom ⟦ x ⟧P′ _ ⟩ (⟦ x ⟧P PM.>>= λ y → W.⟦ ⟦>>=⟧-helper f y ⟧P) ≅⟨ (⟦ x ⟧P ∎) Partiality.≡->>=-cong helper ⟩ (⟦ x ⟧P PM.>>= maybe (⟦_⟧P ∘ f) F.fail) ∎ where helper : ∀ y → W.⟦ ⟦>>=⟧-helper f y ⟧P ≅ maybe (⟦_⟧P ∘ f) F.fail y helper (just y) = ⟦ f y ⟧P ∎ helper nothing = F.fail ∎ ------------------------------------------------------------------------ -- An alternative, but equivalent, formulation of equality/ordering -- This version of equality works around some limitations of guarded -- corecursion and is therefore easier to use in corecursive proofs. -- However, it does not admit unrestricted use of transitivity. For a -- discussion of the technique and the related issues, see e.g. -- -- * "Operational Semantics Using the Partiality Monad", Danielsson, -- ICFP'12 -- -- * "Beating the Productivity Checker Using Embedded Languages", -- Danielsson, PAR'10 -- -- * "Subtyping, Declaratively -- An Exercise in Mixed Induction and -- Coinduction", Danielsson and Altenkirch, MPC'10 -- -- All of the above can be found at -- http://www.cse.chalmers.se/~nad/publications/ module AlternativeEquality {a} where open Equality {a} hiding (fail) private open module F = Failure {a} hiding (fail) module AE = Partiality.AlternativeEquality {a} mutual -- Proof "programs" with the underlying equality fixed to -- "syntactic" equality (_≡_) and extended to include failure. infix 4 _≅P_ _≳P_ _≈P_ infix 3 _∎ infixr 2 _≡⟨_⟩_ _≅⟨_⟩_ _≳⟨_⟩_ _≳⟨_⟩≅_ _≳⟨_⟩≈_ _≈⟨_⟩≅_ _≈⟨_⟩≲_ infixl 1 _>>=_ _≅P_ : ∀ {A} → B.Rel (A ?⊥) _ _≅P_ = RelP strong _≳P_ : ∀ {A} → B.Rel (A ?⊥) _ _≳P_ = RelP (other geq) _≈P_ : ∀ {A} → B.Rel (A ?⊥) _ _≈P_ = RelP (other weak) data RelP {A : Set a} : Kind → B.Rel (A ?⊥) (Level.suc a) where -- Congruences. return : ∀ {k x y} (x≡y : x ≡ y) → RelP k (M.return x) (M.return y) later : ∀ {k x y} (x∼y : ∞ (RelP k (♭ x) (♭ y))) → RelP k (later x) (later y) fail : ∀ {k} → RelP k (F.fail) (F.fail) _>>=_ : ∀ {B : Set a} {k x₁ x₂} {f₁ f₂ : B → A ?⊥} → let open M in (x₁≡x₂ : RelP k x₁ x₂) (f₁∼f₂ : ∀ x → RelP k (f₁ x) (f₂ x)) → RelP k (x₁ >>= f₁) (x₂ >>= f₂) -- Ordering/weak equality. laterʳ : ∀ {x y} (x≈y : RelP (other weak) x (♭ y)) → RelP (other weak) x (later y) laterˡ : ∀ {k x y} (x∼y : RelP (other k) (♭ x) y) → RelP (other k) (later x) y -- Equational reasoning. Note that including full transitivity -- for weak equality would make _≈P_ trivial; a similar problem -- applies to _≳P_ (never ≳P return x would be -- provable). Instead the definition of RelP includes limited -- notions of transitivity, similar to weak bisimulation up-to -- various things. _∎ : ∀ {k} x → RelP k x x sym : ∀ {k x y} {eq : Partiality.Equality k} (x∼y : RelP k x y) → RelP k y x _≡⟨_⟩_ : ∀ {k} x {y z} (x≡y : x ≡ y) (y∼z : RelP k y z) → RelP k x z _≅⟨_⟩_ : ∀ {k} x {y z} (x≅y : x ≅P y) (y∼z : RelP k y z) → RelP k x z _≳⟨_⟩_ : ∀ x {y z} (x≳y : x ≳ y) (y≳z : y ≳P z) → x ≳P z _≳⟨_⟩≅_ : ∀ x {y z} (x≳y : x ≳P y) (y≅z : y ≅P z) → x ≳P z _≳⟨_⟩≈_ : ∀ x {y z} (x≳y : x ≳P y) (y≈z : y ≈P z) → x ≈P z _≈⟨_⟩≅_ : ∀ x {y z} (x≈y : x ≈P y) (y≅z : y ≅P z) → x ≈P z _≈⟨_⟩≲_ : ∀ x {y z} (x≈y : x ≈P y) (y≲z : z ≳P y) → x ≈P z -- If any of the following transitivity-like rules were added to -- RelP, then RelP and Rel would no longer be equivalent: -- -- x ≳P y → y ≳P z → x ≳P z -- x ≳P y → y ≳ z → x ≳P z -- x ≲P y → y ≈P z → x ≈P z -- x ≈P y → y ≳P z → x ≈P z -- x ≲ y → y ≈P z → x ≈P z -- x ≈P y → y ≳ z → x ≈P z -- x ≈P y → y ≈P z → x ≈P z -- x ≈P y → y ≈ z → x ≈P z -- x ≈ y → y ≈P z → x ≈P z -- -- The reason is that any of these rules would make it possible -- to derive that never and now x are related. -- RelP is complete with respect to Rel. complete : ∀ {A k} {x y : A ?⊥} → Rel k x y → RelP k x y complete {x = now (just x)} {now (just .x)} (now P.refl) = return P.refl complete {x = now (just x)} {now nothing} (now ()) complete {x = now nothing} {now (just _)} (now ()) complete {x = now nothing} {now nothing} (now P.refl) = fail complete (later x∼y) = later (♯ complete (♭ x∼y)) complete (laterʳ x≈y) = laterʳ (complete x≈y) complete (laterˡ x∼y) = laterˡ (complete x∼y) private AE-RelP : ∀ {A : Set a} → Kind → B.Rel (A ?⊥) _ AE-RelP {A} = AE.RelP (P.setoid (Maybe A)) -- RelP is sound with respect to the alternative equality of the -- partiality monad. sound′ : ∀ {A k} {x y : A ?⊥} → RelP k x y → AE-RelP k x y sound′ (return x≡y) = AE.now (P.cong just x≡y) sound′ (later x∼y) = AE.later (♯ sound′ (♭ x∼y)) sound′ fail = AE.now P.refl sound′ {A} {k} (_>>=_ {B} {f₁ = f₁} {f₂} x f₁∼f₂) = sound′ x AE.>>= helper where helper : ∀ {x y} → x ≡ y → AE-RelP k ((f₁ or-fail) x) ((f₂ or-fail) y) helper {x = nothing} P.refl = AE.now P.refl helper {x = just x} P.refl = sound′ (f₁∼f₂ x) sound′ (laterʳ x) = AE.laterʳ (sound′ x) sound′ (laterˡ x) = AE.laterˡ (sound′ x) sound′ (x ∎) = x AE.∎ sound′ (sym {eq = eq} x) = AE.sym {eq = eq} (sound′ x) sound′ (x ≡⟨ x≡y ⟩ y≡z) = AE._≡⟨_⟩_ x x≡y (sound′ y≡z) sound′ (x ≅⟨ x≅y ⟩ y≅z) = AE._≅⟨_⟩_ x (sound′ x≅y) (sound′ y≅z) sound′ (x ≳⟨ x≳y ⟩ y≳z) = AE._≳⟨_⟩_ x x≳y (sound′ y≳z) sound′ (x ≳⟨ x≳y ⟩≅ y≅z) = AE._≳⟨_⟩≅_ x (sound′ x≳y) (sound′ y≅z) sound′ (x ≳⟨ x≳y ⟩≈ y≈z) = AE._≳⟨_⟩≈_ x (sound′ x≳y) (sound′ y≈z) sound′ (x ≈⟨ x≈y ⟩≅ y≅z) = AE._≈⟨_⟩≅_ x (sound′ x≈y) (sound′ y≅z) sound′ (x ≈⟨ x≈y ⟩≲ y≲z) = AE._≈⟨_⟩≲_ x (sound′ x≈y) (sound′ y≲z) -- RelP is sound with respect to Rel. sound : ∀ {A k} {x y : A ?⊥} → RelP k x y → Rel k x y sound = AE.sound ∘ sound′ open Failure public
{ "alphanum_fraction": 0.5231908024, "avg_line_length": 37.1315789474, "ext": "agda", "hexsha": "5fb75ce6ac6d538e01717d0967c9c89241d3ea12", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-07-06T23:12:48.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-29T12:24:46.000Z", "max_forks_repo_head_hexsha": "ea262cf7714cdb762643f10275c568596f57cd1d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "sstucki/system-f-agda", "max_forks_repo_path": "src/PartialityAndFailure.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "ea262cf7714cdb762643f10275c568596f57cd1d", "max_issues_repo_issues_event_max_datetime": "2019-05-11T19:23:26.000Z", "max_issues_repo_issues_event_min_datetime": "2017-05-30T06:43:04.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "sstucki/system-f-agda", "max_issues_repo_path": "src/PartialityAndFailure.agda", "max_line_length": 92, "max_stars_count": 68, "max_stars_repo_head_hexsha": "ea262cf7714cdb762643f10275c568596f57cd1d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "sstucki/system-f-agda", "max_stars_repo_path": "src/PartialityAndFailure.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-01T01:25:16.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-26T13:12:56.000Z", "num_tokens": 4876, "size": 12699 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Reflexive closures ------------------------------------------------------------------------ module Data.ReflexiveClosure where open import Data.Unit open import Level open import Relation.Binary open import Relation.Binary.Simple ------------------------------------------------------------------------ -- Reflexive closure data Refl {a ℓ} {A : Set a} (_∼_ : Rel A ℓ) : Rel A (a ⊔ ℓ) where [_] : ∀ {x y} (x∼y : x ∼ y) → Refl _∼_ x y refl : Reflexive (Refl _∼_) -- Map. map : ∀ {a a′ ℓ ℓ′} {A : Set a} {A′ : Set a′} {_R_ : Rel A ℓ} {_R′_ : Rel A′ ℓ′} {f : A → A′} → _R_ =[ f ]⇒ _R′_ → Refl _R_ =[ f ]⇒ Refl _R′_ map R⇒R′ [ xRy ] = [ R⇒R′ xRy ] map R⇒R′ refl = refl -- The reflexive closure has no effect on reflexive relations. drop-refl : ∀ {a ℓ} {A : Set a} {_R_ : Rel A ℓ} → Reflexive _R_ → Refl _R_ ⇒ _R_ drop-refl rfl [ x∼y ] = x∼y drop-refl rfl refl = rfl ------------------------------------------------------------------------ -- Example: Maybe module Maybe where Maybe : ∀ {ℓ} → Set ℓ → Set ℓ Maybe A = Refl (Const A) tt tt nothing : ∀ {a} {A : Set a} → Maybe A nothing = refl just : ∀ {a} {A : Set a} → A → Maybe A just = [_]
{ "alphanum_fraction": 0.4360153257, "avg_line_length": 26.6326530612, "ext": "agda", "hexsha": "cf121753fec7977155f9c7881f31a6f36cbc3a29", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/ReflexiveClosure.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/ReflexiveClosure.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/ReflexiveClosure.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 430, "size": 1305 }
{-# OPTIONS --cubical --no-import-sorts --safe --experimental-lossy-unification #-} {- Kan extension of a functor C → D to a functor PreShv C ℓ → PreShv D ℓ left or right adjoint to precomposition. -} module Cubical.Categories.Presheaf.KanExtension where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Functions.FunExtEquiv open import Cubical.HITs.SetQuotients open import Cubical.Categories.Category open import Cubical.Categories.Functor open import Cubical.Categories.NaturalTransformation open import Cubical.Categories.Adjoint open import Cubical.Categories.Presheaf.Base open import Cubical.Categories.Instances.Functors open import Cubical.Categories.Instances.Sets {- Left Kan extension of a functor C → D to a functor PreShv C ℓ → PreShv D ℓ left adjoint to precomposition. -} module Lan {ℓC ℓC' ℓD ℓD'} ℓS {C : Precategory ℓC ℓC'} {D : Precategory ℓD ℓD'} (F : Functor C D) where open Functor open NatTrans private module C = Precategory C module D = Precategory D {- We want the category SET ℓ we're mapping into to be large enough that the coend will take presheaves Cᵒᵖ → Set ℓ to presheaves Dᵒᵖ → Set ℓ, otherwise we get no adjunction with precomposition. So we must have ℓC,ℓC',ℓD' ≤ ℓ; the parameter ℓS allows ℓ to be larger than their maximum. -} ℓ = ℓ-max (ℓ-max (ℓ-max ℓC ℓC') ℓD') ℓS module _ (G : Functor (C ^op) (SET ℓ)) where -- Definition of the coend module _ (d : D.ob) where Raw : Type ℓ Raw = Σ[ c ∈ C.ob ] Σ[ g ∈ D.Hom[ d , F ⟅ c ⟆ ] ] G .F-ob c .fst data _≈_ : (u v : Raw) → Type ℓ where shift : {c c' : C.ob} (g : D.Hom[ d , F ⟅ c ⟆ ]) (f : C.Hom[ c , c' ]) (a : (G ⟅ c' ⟆) .fst) → (c' , (g D.⋆ F ⟪ f ⟫) , a) ≈ (c , g , (G ⟪ f ⟫) a) Quo = Raw / _≈_ pattern shift/ g f a i = eq/ _ _ (shift g f a) i -- Action of Quo on arrows in D mapR : {d d' : D.ob} (h : D.Hom[ d' , d ]) → Quo d → Quo d' mapR h [ c , g , a ] = [ c , h D.⋆ g , a ] mapR h (shift/ g f a i) = hcomp (λ j → λ { (i = i0) → [ _ , D.⋆Assoc h g (F ⟪ f ⟫) j , a ] ; (i = i1) → [ _ , h D.⋆ g , (G ⟪ f ⟫) a ] }) (shift/ (h D.⋆ g) f a i) mapR h (squash/ t u p q i j) = squash/ (mapR h t) (mapR h u) (cong (mapR h) p) (cong (mapR h) q) i j mapRId : (d : D.ob) → mapR (D.id d) ≡ (idfun _) mapRId d = funExt (elimProp (λ _ → squash/ _ _) (λ (c , g , a) i → [ c , D.⋆IdL g i , a ])) mapR∘ : {d d' d'' : D.ob} (h' : D.Hom[ d'' , d' ]) (h : D.Hom[ d' , d ]) → mapR (h' D.⋆ h) ≡ mapR h' ∘ mapR h mapR∘ h' h = funExt (elimProp (λ _ → squash/ _ _) (λ (c , g , a) i → [ c , D.⋆Assoc h' h g i , a ])) LanOb : Functor (C ^op) (SET ℓ) → Functor (D ^op) (SET _) LanOb G .F-ob d .fst = Quo G d LanOb G .F-ob d .snd = squash/ LanOb G .F-hom = mapR G LanOb G .F-id {d} = mapRId G d LanOb G .F-seq h h' = mapR∘ G h' h -- Action of Quo on arrows in Cᵒᵖ → Set module _ {G G' : Functor (C ^op) (SET ℓ)} (α : NatTrans G G') where mapL : (d : D.ob) → Quo G d → Quo G' d mapL d [ c , g , a ] = [ c , g , α .N-ob c a ] mapL d (shift/ g f a i) = hcomp (λ j → λ { (i = i0) → [ _ , (g D.⋆ F ⟪ f ⟫) , α .N-ob _ a ] ; (i = i1) → [ _ , g , funExt⁻ (α .N-hom f) a (~ j) ] }) (shift/ g f ((α ⟦ _ ⟧) a) i) mapL d (squash/ t u p q i j) = squash/ (mapL d t) (mapL d u) (cong (mapL d) p) (cong (mapL d) q) i j mapLR : {d d' : D.ob} (h : D.Hom[ d' , d ]) → mapL d' ∘ mapR G h ≡ mapR G' h ∘ mapL d mapLR h = funExt (elimProp (λ _ → squash/ _ _) (λ _ → refl)) mapLId : (G : Functor (C ^op) (SET ℓ)) (d : D.ob) → mapL (idTrans G) d ≡ idfun (Quo G d) mapLId G d = funExt (elimProp (λ _ → squash/ _ _) (λ _ → refl)) mapL∘ : {G G' G'' : Functor (C ^op) (SET ℓ)} (β : NatTrans G' G'') (α : NatTrans G G') (d : D.ob) → mapL (seqTrans α β) d ≡ mapL β d ∘ mapL α d mapL∘ β α d = funExt (elimProp (λ _ → squash/ _ _) (λ _ → refl)) LanHom : {G G' : Functor (C ^op) (SET ℓ)} → NatTrans G G' → NatTrans (LanOb G) (LanOb G') LanHom α .N-ob = mapL α LanHom α .N-hom = mapLR α -- Definition of the left Kan extension functor Lan : Functor (FUNCTOR (C ^op) (SET ℓ)) (FUNCTOR (D ^op) (SET ℓ)) Lan .F-ob = LanOb Lan .F-hom = LanHom Lan .F-id {G} = makeNatTransPath (funExt (mapLId G)) Lan .F-seq α β = makeNatTransPath (funExt (mapL∘ β α)) -- Adjunction between the left Kan extension and precomposition private F* = precomposeF (SET ℓ) (F ^opF) open UnitCounit η : 𝟙⟨ FUNCTOR (C ^op) (SET ℓ) ⟩ ⇒ funcComp F* Lan η .N-ob G .N-ob c a = [ c , D.id _ , a ] η .N-ob G .N-hom {c'} {c} f = funExt λ a → [ c , D.id _ , (G ⟪ f ⟫) a ] ≡⟨ sym (shift/ (D.id _) f a) ⟩ [ c' , ((D.id _) D.⋆ F ⟪ f ⟫) , a ] ≡[ i ]⟨ [ c' , lem i , a ] ⟩ [ c' , (F ⟪ f ⟫ D.⋆ (D.id _)) , a ] ∎ where lem : (D.id _) D.⋆ F ⟪ f ⟫ ≡ F ⟪ f ⟫ D.⋆ (D.id _) lem = D.⋆IdL (F ⟪ f ⟫) ∙ sym (D.⋆IdR (F ⟪ f ⟫)) η .N-hom f = makeNatTransPath refl ε : funcComp Lan F* ⇒ 𝟙⟨ FUNCTOR (D ^op) (SET ℓ) ⟩ ε .N-ob H .N-ob d = elim (λ _ → (H ⟅ d ⟆) .snd) (λ (c , g , a) → (H ⟪ g ⟫) a) (λ {_ _ (shift g f a) i → H .F-seq (F ⟪ f ⟫) g i a}) ε .N-ob H .N-hom g' = funExt (elimProp (λ _ → (H ⟅ _ ⟆) .snd _ _) (λ (c , g , a) → funExt⁻ (H .F-seq g g') a)) ε .N-hom {H} {H'} α = makeNatTransPath (funExt₂ λ d → elimProp (λ _ → (H' ⟅ _ ⟆) .snd _ _) (λ (c , g , a) → sym (funExt⁻ (α .N-hom g) a))) Δ₁ : ∀ G → seqTrans (Lan ⟪ η ⟦ G ⟧ ⟫) (ε ⟦ Lan ⟅ G ⟆ ⟧) ≡ idTrans _ Δ₁ G = makeNatTransPath (funExt₂ λ d → elimProp (λ _ → squash/ _ _) (λ (c , g , a) → [ c , g D.⋆ D.id _ , a ] ≡[ i ]⟨ [ c , (g D.⋆ F .F-id (~ i)) , a ] ⟩ [ c , g D.⋆ (F ⟪ C.id _ ⟫) , a ] ≡⟨ shift/ g (C.id _) a ⟩ [ c , g , (G ⟪ C.id _ ⟫) a ] ≡[ i ]⟨ [ c , g , G .F-id i a ] ⟩ [ c , g , a ] ∎)) Δ₂ : ∀ H → seqTrans (η ⟦ F* ⟅ H ⟆ ⟧) (F* ⟪ ε ⟦ H ⟧ ⟫) ≡ idTrans _ Δ₂ H = makeNatTransPath (funExt λ c → H .F-id) adj : Lan ⊣ F* adj = make⊣ η ε Δ₁ Δ₂ {- Right Kan extension of a functor C → D to a functor PreShv C ℓ → PreShv D ℓ right adjoint to precomposition. -} module Ran {ℓC ℓC' ℓD ℓD'} ℓS {C : Precategory ℓC ℓC'} {D : Precategory ℓD ℓD'} (F : Functor C D) where open Functor open NatTrans private module C = Precategory C module D = Precategory D {- We want the category SET ℓ we're mapping into to be large enough that the coend will take presheaves Cᵒᵖ → Set ℓ to presheaves Dᵒᵖ → Set ℓ, otherwise we get no adjunction with precomposition. So we must have ℓC,ℓC',ℓD' ≤ ℓ; the parameter ℓS allows ℓ to be larger than their maximum. -} ℓ = ℓ-max (ℓ-max (ℓ-max ℓC ℓC') ℓD') ℓS module _ (G : Functor (C ^op) (SET ℓ)) where -- Definition of the end record End (d : D.ob) : Type ℓ where field fun : (c : C.ob) (g : D.Hom[ F ⟅ c ⟆ , d ]) → G .F-ob c .fst coh : {c c' : C.ob} (f : C.Hom[ c , c' ]) (g : D.Hom[ F ⟅ c' ⟆ , d ]) → fun c (F ⟪ f ⟫ ⋆⟨ D ⟩ g) ≡ (G ⟪ f ⟫) (fun c' g) open End end≡ : {d : D.ob} {x x' : End d} → (∀ c g → x .fun c g ≡ x' .fun c g) → x ≡ x' end≡ h i .fun c g = h c g i end≡ {_} {x} {x'} h i .coh f g = isSet→isSet' (G .F-ob _ .snd) (x .coh f g) (x' .coh f g) (h _ (F ⟪ f ⟫ ⋆⟨ D ⟩ g)) (cong (G ⟪ f ⟫) (h _ g)) i -- Action of End on arrows in D mapR : {d d' : D.ob} (h : D.Hom[ d' , d ]) → End d → End d' mapR h x .fun c g = x .fun c (g ⋆⟨ D ⟩ h) mapR h x .coh f g = cong (x .fun _) (D.⋆Assoc (F ⟪ f ⟫) g h) ∙ x .coh f (g ⋆⟨ D ⟩ h) mapRId : (d : D.ob) → mapR (D.id d) ≡ (idfun _) mapRId h = funExt λ x → end≡ λ c g → cong (x .fun c) (D.⋆IdR g) mapR∘ : {d d' d'' : D.ob} (h' : D.Hom[ d'' , d' ]) (h : D.Hom[ d' , d ]) → mapR (h' D.⋆ h) ≡ mapR h' ∘ mapR h mapR∘ h' h = funExt λ x → end≡ λ c g → cong (x .fun c) (sym (D.⋆Assoc g h' h)) open End RanOb : Functor (C ^op) (SET ℓ) → Functor (D ^op) (SET _) RanOb G .F-ob d .fst = End G d RanOb G .F-ob d .snd = -- We use that End is equivalent to a Σ-type to prove its HLevel more easily isOfHLevelRetract 2 {B = Σ[ z ∈ ((c : C.ob) (g : D.Hom[ F ⟅ c ⟆ , d ]) → G .F-ob c .fst) ] ({c c' : C.ob} (f : C.Hom[ c , c' ]) (g : D.Hom[ F ⟅ c' ⟆ , d ]) → z c (F ⟪ f ⟫ ⋆⟨ D ⟩ g) ≡ (G ⟪ f ⟫) (z c' g)) } (λ x → λ where .fst → x .fun; .snd → x .coh) (λ σ → λ where .fun → σ .fst; .coh → σ .snd) (λ _ → refl) (isSetΣ (isSetΠ2 λ _ _ → G .F-ob _ .snd) (λ _ → isProp→isSet (isPropImplicitΠ λ _ → isPropImplicitΠ λ _ → isPropΠ2 λ _ _ → G .F-ob _ .snd _ _))) RanOb G .F-hom = mapR G RanOb G .F-id {d} = mapRId G d RanOb G .F-seq h h' = mapR∘ G h' h -- Action of End on arrows in Cᵒᵖ → Set module _ {G G' : Functor (C ^op) (SET ℓ)} (α : NatTrans G G') where mapL : (d : D.ob) → End G d → End G' d mapL d x .fun c g = (α ⟦ c ⟧) (x .fun c g) mapL d x .coh f g = cong (α ⟦ _ ⟧) (x .coh f g) ∙ funExt⁻ (α .N-hom f) (x .fun _ g) mapLR : {d d' : D.ob} (h : D.Hom[ d' , d ]) → mapL d' ∘ mapR G h ≡ mapR G' h ∘ mapL d mapLR h = funExt λ _ → end≡ _ λ _ _ → refl mapLId : (G : Functor (C ^op) (SET ℓ)) (d : D.ob) → mapL (idTrans G) d ≡ idfun (End G d) mapLId G d = funExt λ _ → end≡ _ λ _ _ → refl mapL∘ : {G G' G'' : Functor (C ^op) (SET ℓ)} (β : NatTrans G' G'') (α : NatTrans G G') (d : D.ob) → mapL (seqTrans α β) d ≡ mapL β d ∘ mapL α d mapL∘ β α d = funExt λ _ → end≡ _ λ _ _ → refl RanHom : {G G' : Functor (C ^op) (SET ℓ)} → NatTrans G G' → NatTrans (RanOb G) (RanOb G') RanHom α .N-ob = mapL α RanHom α .N-hom = mapLR α -- Definition of the right Kan extension functor Ran : Functor (FUNCTOR (C ^op) (SET ℓ)) (FUNCTOR (D ^op) (SET ℓ)) Ran .F-ob = RanOb Ran .F-hom = RanHom Ran .F-id {G} = makeNatTransPath (funExt (mapLId G)) Ran .F-seq α β = makeNatTransPath (funExt (mapL∘ β α)) -- Adjunction between precomposition and right Kan extension private F* = precomposeF (SET ℓ) (F ^opF) open UnitCounit η : 𝟙⟨ FUNCTOR (D ^op) (SET ℓ) ⟩ ⇒ (funcComp Ran F*) η .N-ob G .N-ob d a .fun c g = (G ⟪ g ⟫) a η .N-ob G .N-ob d a .coh f g = funExt⁻ (G .F-seq g (F ⟪ f ⟫)) a η .N-ob G .N-hom h = funExt λ a → end≡ _ λ c g → sym (funExt⁻ (G .F-seq h g) a) η .N-hom {G} {G'} α = makeNatTransPath (funExt₂ λ d a → end≡ _ λ c g → sym (funExt⁻ (α .N-hom g) a)) ε : funcComp F* Ran ⇒ 𝟙⟨ FUNCTOR (C ^op) (SET ℓ) ⟩ ε .N-ob H .N-ob c x = x .fun c (D.id _) ε .N-ob H .N-hom {c} {c'} g = funExt λ x → cong (x .fun c') (D.⋆IdL _ ∙ sym (D.⋆IdR _)) ∙ x .coh g (D.id _) ε .N-hom {H} {H'} α = makeNatTransPath refl Δ₁ : ∀ G → seqTrans (F* ⟪ η ⟦ G ⟧ ⟫) (ε ⟦ F* ⟅ G ⟆ ⟧) ≡ idTrans _ Δ₁ G = makeNatTransPath (funExt₂ λ c a → funExt⁻ (G .F-id) a) Δ₂ : ∀ H → seqTrans (η ⟦ Ran ⟅ H ⟆ ⟧) (Ran ⟪ ε ⟦ H ⟧ ⟫) ≡ idTrans _ Δ₂ H = makeNatTransPath (funExt₂ λ c x → end≡ _ λ c' g → cong (x .fun c') (D.⋆IdL g)) adj : F* ⊣ Ran adj = make⊣ η ε Δ₁ Δ₂
{ "alphanum_fraction": 0.4999124803, "avg_line_length": 33.4093567251, "ext": "agda", "hexsha": "a9835d3da6a8e2da29dee80929884cf8240ea260", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/Categories/Presheaf/KanExtension.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/Categories/Presheaf/KanExtension.agda", "max_line_length": 110, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/Categories/Presheaf/KanExtension.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5093, "size": 11426 }
{- Problem #758 same as problem 757 but rewritten with only expressions of first-order logic Given premises: (all A)(all B)((subset A B) <-> (all x)((mem x A) -> (mem x B))) justification = 1.0 (all A)(all B)(some intAB)(IsInt A B intAB) justification = 1.0 (all A)(all B)(all intAB)((IsInt A B intAB) <-> (all x)((mem x intAB) <-> ((mem x A) & (mem x B)))) justification = 1.0 (all A)(all B)((mapsF A B) <-> ((all x)((mem x A) -> (some y)((mem y B) & (F x y))) & (all x)(all y)(all z)(((mem x A) & ((mem y A) & (mem z A))) -> (((F x y) & (F x z)) -> (same y z))))) justification = 1.0 (all A)(all x)(all y)((same x y) -> ((mem x A) -> (mem y A))) justification = 1.0 (all x)(same x x) justification = 1.0 (all x)(all y)((same x y) <-> (same y x)) justification = 1.0 (all x)(all y)(all z)(((same x y) & (same y z)) -> (same x z)) justification = 1.0 (all A)(all B)((equal A B) <-> ((subset A B) & (subset B A))) justification = 1.0 (all A)(all B)(some invFBA)(IsInvF B A invFBA) justification = 1.0 (all A)(all B)(all invFBA)((IsInvF B A invFBA) <-> (all x)((mem x invFBA) <-> ((mem x A) & (some y)((mem y B) & (F x y))))) justification = 1.0 Ultimate epistemic interests: (all A)(all B)(all X)(all Y)(((mapsF A B) & ((subset X B) & (subset Y B))) -> (some intXY)((IsInt X Y intXY) & (some invFIntXYA)((IsInvF intXY A invFIntXYA) & (some invFXA)((IsInvF X A invFXA) & (some invFYA)((IsInvF Y A invFYA) & (some intInvFXAInvFYA)((IsInt invFXA invFYA intInvFXAInvFYA) & (equal invFIntXYA intInvFXAInvFYA))))))) interest = 1.0 -} _↔_ : Set → Set → Set p ↔ q = p → q postulate U : Set subset : U → U → Set -- subsetMembership : ∀ {A} {B} →
{ "alphanum_fraction": 0.5577918344, "avg_line_length": 64.4074074074, "ext": "agda", "hexsha": "d3f8007c82f35e4d6ae14c7babf047bb9ebcb797", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/lisp-revised/758.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/lisp-revised/758.agda", "max_line_length": 357, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/lisp-revised/758.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 672, "size": 1739 }
{- Set quotients: -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.SetQuotients.Properties where open import Cubical.HITs.SetQuotients.Base open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.Univalence open import Cubical.Functions.FunExtEquiv open import Cubical.Data.Sigma open import Cubical.Relation.Nullary open import Cubical.Relation.Binary.Base open import Cubical.HITs.TypeQuotients as TypeQuot using (_/ₜ_ ; [_] ; eq/) open import Cubical.HITs.PropositionalTruncation as PropTrunc using (∥_∥ ; ∣_∣ ; squash) open import Cubical.HITs.SetTruncation as SetTrunc using (∥_∥₂ ; ∣_∣₂ ; squash₂ ; setTruncIsSet) private variable ℓ ℓ' ℓ'' : Level A : Type ℓ R : A → A → Type ℓ B : A / R → Type ℓ C : A / R → A / R → Type ℓ D : A / R → A / R → A / R → Type ℓ elimEq/ : (Bprop : (x : A / R ) → isProp (B x)) {x y : A / R} (eq : x ≡ y) (bx : B x) (by : B y) → PathP (λ i → B (eq i)) bx by elimEq/ {B = B} Bprop {x = x} = J (λ y eq → ∀ bx by → PathP (λ i → B (eq i)) bx by) (λ bx by → Bprop x bx by) elimProp : ((x : A / R ) → isProp (B x)) → ((a : A) → B ( [ a ])) → (x : A / R) → B x elimProp Bprop f [ x ] = f x elimProp Bprop f (squash/ x y p q i j) = isOfHLevel→isOfHLevelDep 2 (λ x → isProp→isSet (Bprop x)) (g x) (g y) (cong g p) (cong g q) (squash/ x y p q) i j where g = elimProp Bprop f elimProp Bprop f (eq/ a b r i) = elimEq/ Bprop (eq/ a b r) (f a) (f b) i elimProp2 : ((x y : A / R ) → isProp (C x y)) → ((a b : A) → C [ a ] [ b ]) → (x y : A / R) → C x y elimProp2 Cprop f = elimProp (λ x → isPropΠ (λ y → Cprop x y)) (λ x → elimProp (λ y → Cprop [ x ] y) (f x)) elimProp3 : ((x y z : A / R ) → isProp (D x y z)) → ((a b c : A) → D [ a ] [ b ] [ c ]) → (x y z : A / R) → D x y z elimProp3 Dprop f = elimProp (λ x → isPropΠ2 (λ y z → Dprop x y z)) (λ x → elimProp2 (λ y z → Dprop [ x ] y z) (f x)) -- lemma 6.10.2 in hott book []surjective : (x : A / R) → ∃[ a ∈ A ] [ a ] ≡ x []surjective = elimProp (λ x → squash) (λ a → ∣ a , refl ∣) elim : {B : A / R → Type ℓ} → ((x : A / R) → isSet (B x)) → (f : (a : A) → (B [ a ])) → ((a b : A) (r : R a b) → PathP (λ i → B (eq/ a b r i)) (f a) (f b)) → (x : A / R) → B x elim Bset f feq [ a ] = f a elim Bset f feq (eq/ a b r i) = feq a b r i elim Bset f feq (squash/ x y p q i j) = isOfHLevel→isOfHLevelDep 2 Bset (g x) (g y) (cong g p) (cong g q) (squash/ x y p q) i j where g = elim Bset f feq rec : {B : Type ℓ} (Bset : isSet B) (f : A → B) (feq : (a b : A) (r : R a b) → f a ≡ f b) → A / R → B rec Bset f feq [ a ] = f a rec Bset f feq (eq/ a b r i) = feq a b r i rec Bset f feq (squash/ x y p q i j) = Bset (g x) (g y) (cong g p) (cong g q) i j where g = rec Bset f feq rec2 : {B : Type ℓ} (Bset : isSet B) (f : A → A → B) (feql : (a b c : A) (r : R a b) → f a c ≡ f b c) (feqr : (a b c : A) (r : R b c) → f a b ≡ f a c) → A / R → A / R → B rec2 Bset f feql feqr = rec (isSetΠ (λ _ → Bset)) (λ a → rec Bset (f a) (feqr a)) (λ a b r → funExt (elimProp (λ _ → Bset _ _) (λ c → feql a b c r))) -- the recursor for maps into groupoids: -- i.e. for any type A with a binary relation R and groupoid B, -- we can construct a map A / R → B from a map A → B satisfying the conditions -- (i) ∀ (a b : A) → R a b → f a ≡ f b -- (ii) ∀ (a b : A) → isProp (f a ≡ f b) -- We start by proving that we can recover the set-quotient -- by set-truncating the (non-truncated type quotient) typeQuotSetTruncIso : Iso (A / R) ∥ A /ₜ R ∥₂ Iso.fun typeQuotSetTruncIso = rec setTruncIsSet (λ a → ∣ [ a ] ∣₂) λ a b r → cong ∣_∣₂ (eq/ a b r) Iso.inv typeQuotSetTruncIso = SetTrunc.rec squash/ (TypeQuot.rec [_] eq/) Iso.rightInv typeQuotSetTruncIso = SetTrunc.elim (λ _ → isProp→isSet (squash₂ _ _)) (TypeQuot.elimProp (λ _ → squash₂ _ _) λ _ → refl) Iso.leftInv typeQuotSetTruncIso = elimProp (λ _ → squash/ _ _) λ _ → refl module rec→Gpd {A : Type ℓ} {R : A → A → Type ℓ'} {B : Type ℓ''} (Bgpd : isGroupoid B) (f : A → B) (feq : ∀ (a b : A) → R a b → f a ≡ f b) (fprop : ∀ (a b : A) → isProp (f a ≡ f b)) where fun : A / R → B fun = f₁ ∘ f₂ where f₁ : ∥ A /ₜ R ∥₂ → B f₁ = SetTrunc.rec→Gpd.fun Bgpd f/ congF/Const where f/ : A /ₜ R → B f/ = TypeQuot.rec f feq congF/Const : (a b : A /ₜ R) (p q : a ≡ b) → cong f/ p ≡ cong f/ q congF/Const = TypeQuot.elimProp2 (λ _ _ → isPropΠ2 λ _ _ → Bgpd _ _ _ _) λ a b p q → fprop a b (cong f/ p) (cong f/ q) f₂ : A / R → ∥ A /ₜ R ∥₂ f₂ = Iso.fun typeQuotSetTruncIso setQuotUniversalIso : {B : Type ℓ} (Bset : isSet B) → Iso (A / R → B) (Σ[ f ∈ (A → B) ] ((a b : A) → R a b → f a ≡ f b)) Iso.fun (setQuotUniversalIso Bset) g = (λ a → g [ a ]) , λ a b r i → g (eq/ a b r i) Iso.inv (setQuotUniversalIso Bset) h = elim (λ x → Bset) (fst h) (snd h) Iso.rightInv (setQuotUniversalIso Bset) h = refl Iso.leftInv (setQuotUniversalIso Bset) g = funExt (λ x → PropTrunc.elim (λ sur → Bset (out (intro g) x) (g x)) (λ sur → cong (out (intro g)) (sym (snd sur)) ∙ (cong g (snd sur))) ([]surjective x)) where intro = Iso.fun (setQuotUniversalIso Bset) out = Iso.inv (setQuotUniversalIso Bset) setQuotUniversal : {B : Type ℓ} (Bset : isSet B) → (A / R → B) ≃ (Σ[ f ∈ (A → B) ] ((a b : A) → R a b → f a ≡ f b)) setQuotUniversal Bset = isoToEquiv (setQuotUniversalIso Bset) open BinaryRelation -- characterisation of binary functions/operations on set-quotients setQuotUniversal2Iso : {B : Type ℓ} (Bset : isSet B) → isRefl R → Iso (A / R → A / R → B) (Σ[ _∗_ ∈ (A → A → B) ] ((a a' b b' : A) → R a a' → R b b' → a ∗ b ≡ a' ∗ b')) Iso.fun (setQuotUniversal2Iso {A = A} {R = R} {B = B} Bset isReflR) _∗/_ = _∗_ , h where _∗_ = λ a b → [ a ] ∗/ [ b ] h : (a a' b b' : A) → R a a' → R b b' → a ∗ b ≡ a' ∗ b' h a a' b b' ra rb = cong (_∗/ [ b ]) (eq/ _ _ ra) ∙ cong ([ a' ] ∗/_) (eq/ _ _ rb) Iso.inv (setQuotUniversal2Iso {A = A} {R = R} {B = B} Bset isReflR) (_∗_ , h) = rec2 Bset _∗_ hleft hright where hleft : ∀ a b c → R a b → (a ∗ c) ≡ (b ∗ c) hleft _ _ c r = h _ _ _ _ r (isReflR c) hright : ∀ a b c → R b c → (a ∗ b) ≡ (a ∗ c) hright a _ _ r = h _ _ _ _ (isReflR a) r Iso.rightInv (setQuotUniversal2Iso {A = A} {R = R} {B = B} Bset isReflR) (_∗_ , h) = Σ≡Prop (λ _ → isPropΠ4 λ _ _ _ _ → isPropΠ2 λ _ _ → Bset _ _) refl Iso.leftInv (setQuotUniversal2Iso {A = A} {R = R} {B = B} Bset isReflR) _∗/_ = funExt₂ (elimProp2 (λ _ _ → Bset _ _) λ _ _ → refl) setQuotUniversal2 : {B : Type ℓ} (Bset : isSet B) → isRefl R → (A / R → A / R → B) ≃ (Σ[ _∗_ ∈ (A → A → B) ] ((a a' b b' : A) → R a a' → R b b' → a ∗ b ≡ a' ∗ b')) setQuotUniversal2 Bset isReflR = isoToEquiv (setQuotUniversal2Iso Bset isReflR) -- corollary for binary operations -- TODO: prove truncated inverse for effective relations setQuotBinOp : isRefl R → (_∗_ : A → A → A) → (∀ a a' b b' → R a a' → R b b' → R (a ∗ b) (a' ∗ b')) → (A / R → A / R → A / R) setQuotBinOp isReflR _∗_ h = Iso.inv (setQuotUniversal2Iso squash/ isReflR) ((λ a b → [ a ∗ b ]) , λ _ _ _ _ ra rb → eq/ _ _ (h _ _ _ _ ra rb)) setQuotSymmBinOp : isRefl R → isTrans R → (_∗_ : A → A → A) → (∀ a b → a ∗ b ≡ b ∗ a) → (∀ a a' b → R a a' → R (a ∗ b) (a' ∗ b)) → (A / R → A / R → A / R) setQuotSymmBinOp {A = A} {R = R} isReflR isTransR _∗_ ∗-symm h = setQuotBinOp isReflR _∗_ h' where h' : ∀ a a' b b' → R a a' → R b b' → R (a ∗ b) (a' ∗ b') h' a a' b b' ra rb = isTransR _ _ _ (h a a' b ra) (transport (λ i → R (∗-symm b a' i) (∗-symm b' a' i)) (h b b' a' rb)) effective : (Rprop : isPropValued R) (Requiv : isEquivRel R) (a b : A) → [ a ] ≡ [ b ] → R a b effective {A = A} {R = R} Rprop (equivRel R/refl R/sym R/trans) a b p = transport aa≡ab (R/refl _) where helper : A / R → hProp _ helper = rec isSetHProp (λ c → (R a c , Rprop a c)) (λ c d cd → Σ≡Prop (λ _ → isPropIsProp) (hPropExt (Rprop a c) (Rprop a d) (λ ac → R/trans _ _ _ ac cd) (λ ad → R/trans _ _ _ ad (R/sym _ _ cd)))) aa≡ab : R a a ≡ R a b aa≡ab i = helper (p i) .fst isEquivRel→effectiveIso : isPropValued R → isEquivRel R → (a b : A) → Iso ([ a ] ≡ [ b ]) (R a b) Iso.fun (isEquivRel→effectiveIso {R = R} Rprop Req a b) = effective Rprop Req a b Iso.inv (isEquivRel→effectiveIso {R = R} Rprop Req a b) = eq/ a b Iso.rightInv (isEquivRel→effectiveIso {R = R} Rprop Req a b) _ = Rprop a b _ _ Iso.leftInv (isEquivRel→effectiveIso {R = R} Rprop Req a b) _ = squash/ _ _ _ _ isEquivRel→isEffective : isPropValued R → isEquivRel R → isEffective R isEquivRel→isEffective Rprop Req a b = isoToIsEquiv (invIso (isEquivRel→effectiveIso Rprop Req a b)) discreteSetQuotients : Discrete A → isPropValued R → isEquivRel R → (∀ a₀ a₁ → Dec (R a₀ a₁)) → Discrete (A / R) discreteSetQuotients {A = A} {R = R} Adis Rprop Req Rdec = elim (λ a₀ → isSetΠ (λ a₁ → isProp→isSet (isPropDec (squash/ a₀ a₁)))) discreteSetQuotients' discreteSetQuotients'-eq where discreteSetQuotients' : (a : A) (y : A / R) → Dec ([ a ] ≡ y) discreteSetQuotients' a₀ = elim (λ a₁ → isProp→isSet (isPropDec (squash/ [ a₀ ] a₁))) dis dis-eq where dis : (a₁ : A) → Dec ([ a₀ ] ≡ [ a₁ ]) dis a₁ with Rdec a₀ a₁ ... | (yes p) = yes (eq/ a₀ a₁ p) ... | (no ¬p) = no λ eq → ¬p (effective Rprop Req a₀ a₁ eq ) dis-eq : (a b : A) (r : R a b) → PathP (λ i → Dec ([ a₀ ] ≡ eq/ a b r i)) (dis a) (dis b) dis-eq a b ab = J (λ b ab → ∀ k → PathP (λ i → Dec ([ a₀ ] ≡ ab i)) (dis a) k) (λ k → isPropDec (squash/ _ _) _ _) (eq/ a b ab) (dis b) discreteSetQuotients'-eq : (a b : A) (r : R a b) → PathP (λ i → (y : A / R) → Dec (eq/ a b r i ≡ y)) (discreteSetQuotients' a) (discreteSetQuotients' b) discreteSetQuotients'-eq a b ab = J (λ b ab → ∀ k → PathP (λ i → (y : A / R) → Dec (ab i ≡ y)) (discreteSetQuotients' a) k) (λ k → funExt (λ x → isPropDec (squash/ _ _) _ _)) (eq/ a b ab) (discreteSetQuotients' b) -- Quotienting by the truncated relation is equivalent to quotienting by untruncated relation truncRelIso : Iso (A / R) (A / (λ a b → ∥ R a b ∥)) Iso.fun truncRelIso = rec squash/ [_] λ _ _ r → eq/ _ _ ∣ r ∣ Iso.inv truncRelIso = rec squash/ [_] λ _ _ → PropTrunc.rec (squash/ _ _) λ r → eq/ _ _ r Iso.rightInv truncRelIso = elimProp (λ _ → squash/ _ _) λ _ → refl Iso.leftInv truncRelIso = elimProp (λ _ → squash/ _ _) λ _ → refl truncRelEquiv : A / R ≃ A / (λ a b → ∥ R a b ∥) truncRelEquiv = isoToEquiv truncRelIso -- Using this we can obtain a useful characterization of -- path-types for equivalence relations (not prop-valued) -- and their quotients isEquivRel→TruncIso : isEquivRel R → (a b : A) → Iso ([ a ] ≡ [ b ]) ∥ R a b ∥ isEquivRel→TruncIso {A = A} {R = R} Req a b = compIso (isProp→Iso (squash/ _ _) (squash/ _ _) (cong (Iso.fun truncRelIso)) (cong (Iso.inv truncRelIso))) (isEquivRel→effectiveIso (λ _ _ → PropTrunc.propTruncIsProp) ∥R∥eq a b) where open isEquivRel ∥R∥eq : isEquivRel λ a b → ∥ R a b ∥ reflexive ∥R∥eq a = ∣ reflexive Req a ∣ symmetric ∥R∥eq a b = PropTrunc.map (symmetric Req a b) transitive ∥R∥eq a b c = PropTrunc.map2 (transitive Req a b c)
{ "alphanum_fraction": 0.5217008328, "avg_line_length": 42.6211604096, "ext": "agda", "hexsha": "721d74ea6a633396368266a1be9ca03841d84b7d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/HITs/SetQuotients/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/HITs/SetQuotients/Properties.agda", "max_line_length": 121, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/HITs/SetQuotients/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4925, "size": 12488 }
module bool-thms2 where open import bool open import eq open import product open import sum ff-imp : ∀ (b : 𝔹) → (ff imp b) ≡ tt ff-imp ff = refl ff-imp tt = refl imp-tt : ∀ (b : 𝔹) → (b imp tt) ≡ tt imp-tt ff = refl imp-tt tt = refl imp-ff : ∀ (b : 𝔹) → (b imp ff) ≡ ~ b imp-ff tt = refl imp-ff ff = refl tt-imp : ∀ (b : 𝔹) → (tt imp b) ≡ b tt-imp tt = refl tt-imp ff = refl &&-tt : ∀ (b : 𝔹) → b && tt ≡ b &&-tt tt = refl &&-tt ff = refl ||-ff : ∀ (b : 𝔹) → b || ff ≡ b ||-ff tt = refl ||-ff ff = refl &&-contra : ∀ (b : 𝔹) → b && ~ b ≡ ff &&-contra ff = refl &&-contra tt = refl &&-comm : ∀ (b1 b2 : 𝔹) → b1 && b2 ≡ b2 && b1 &&-comm ff ff = refl &&-comm ff tt = refl &&-comm tt ff = refl &&-comm tt tt = refl ||-comm : ∀ (b1 b2 : 𝔹) → b1 || b2 ≡ b2 || b1 ||-comm ff ff = refl ||-comm ff tt = refl ||-comm tt ff = refl ||-comm tt tt = refl &&-assoc : ∀ (b1 b2 b3 : 𝔹) → b1 && (b2 && b3) ≡ (b1 && b2) && b3 &&-assoc ff _ _ = refl &&-assoc tt _ _ = refl ||-assoc : ∀ (b1 b2 b3 : 𝔹) → b1 || (b2 || b3) ≡ (b1 || b2) || b3 ||-assoc tt _ _ = refl ||-assoc ff _ _ = refl ~-over-&& : ∀ (b1 b2 : 𝔹) → ~ ( b1 && b2 ) ≡ (~ b1 || ~ b2) ~-over-&& tt _ = refl ~-over-&& ff _ = refl ~-over-|| : ∀ (b1 b2 : 𝔹) → ~ ( b1 || b2 ) ≡ (~ b1 && ~ b2) ~-over-|| tt _ = refl ~-over-|| ff _ = refl &&-over-||-l : ∀ (a b c : 𝔹) → a && (b || c) ≡ (a && b) || (a && c) &&-over-||-l tt _ _ = refl &&-over-||-l ff _ _ = refl &&-over-||-r : ∀ (a b c : 𝔹) → (a || b) && c ≡ (a && c) || (b && c) &&-over-||-r tt tt tt = refl &&-over-||-r tt tt ff = refl &&-over-||-r tt ff tt = refl &&-over-||-r tt ff ff = refl &&-over-||-r ff tt tt = refl &&-over-||-r ff tt ff = refl &&-over-||-r ff ff tt = refl &&-over-||-r ff ff ff = refl ||-over-&&-l : ∀ (a b c : 𝔹) → a || (b && c) ≡ (a || b) && (a || c) ||-over-&&-l tt _ _ = refl ||-over-&&-l ff _ _ = refl ||-over-&&-r : ∀ (a b c : 𝔹) → (a && b) || c ≡ (a || c) && (b || c) ||-over-&&-r tt _ _ = refl ||-over-&&-r ff _ ff = refl ||-over-&&-r ff tt tt = refl ||-over-&&-r ff ff tt = refl &&-cong₁ : ∀ {b1 b1' b2 : 𝔹} → b1 ≡ b1' → b1 && b2 ≡ b1' && b2 &&-cong₁ refl = refl &&-cong₂ : ∀ {b1 b2 b2' : 𝔹} → b2 ≡ b2' → b1 && b2 ≡ b1 && b2' &&-cong₂ refl = refl &&-intro : ∀ {b1 b2 : 𝔹} → b1 ≡ tt → b2 ≡ tt → b1 && b2 ≡ tt &&-intro{tt}{tt} _ _ = refl &&-intro{tt}{ff} _ () &&-intro{ff}{tt} () _ &&-intro{ff}{ff} () _ ||-intro1 : ∀ {b1 b2 : 𝔹} → b1 ≡ tt → b1 || b2 ≡ tt ||-intro1 {tt} p = refl ||-intro1 {ff} () &&-elim : ∀ {b1 b2 : 𝔹} → b1 && b2 ≡ tt → b1 ≡ tt ∧ b2 ≡ tt &&-elim{tt}{tt} _ = refl , refl &&-elim{ff}{_} () &&-elim{tt}{ff} () &&-elim1 : ∀ {b1 b2 : 𝔹} → b1 && b2 ≡ tt → b1 ≡ tt &&-elim1 p with &&-elim p &&-elim1 _ | p , _ = p &&-elim2 : ∀ {b1 b2 : 𝔹} → b1 && b2 ≡ tt → b2 ≡ tt &&-elim2{b1} p with &&-elim{b1} p &&-elim2 _ | _ , p = p ||-elim : ∀ {b1 b2 : 𝔹} → b1 || b2 ≡ tt → b1 ≡ tt ∨ b2 ≡ tt ||-elim {tt} refl = inj₁ refl ||-elim {ff} refl = inj₂ refl ~-cong : ∀ {b b' : 𝔹} → b ≡ b' → ~ b ≡ ~ b' ~-cong refl = refl ite-cong₁ : ∀{ℓ}{A : Set ℓ} {b b' : 𝔹}(x y : A) → b ≡ b' → (if b then x else y) ≡ (if b' then x else y) ite-cong₁ x y refl = refl ite-cong₂ : ∀{ℓ}{A : Set ℓ} (b : 𝔹){x x' : A}(y : A) → x ≡ x' → (if b then x else y) ≡ (if b then x' else y) ite-cong₂ b y refl = refl ite-cong₃ : ∀{ℓ}{A : Set ℓ} (b : 𝔹)(x : A){y y' : A} → y ≡ y' → (if b then x else y) ≡ (if b then x else y') ite-cong₃ b x refl = refl &&-split : ∀ {b b' : 𝔹} → b || b' ≡ ff → b ≡ ff ⊎ b' ≡ ff &&-split {tt} () &&-split {ff}{tt} () &&-split {ff}{ff} p = inj₁ refl ----------------------------------- -- Theorems about imp ----------------------------------- imp-same : ∀ (b : 𝔹) → (b imp b) ≡ tt imp-same ff = refl imp-same tt = refl imp-to-|| : ∀ (b1 b2 : 𝔹) → (b1 imp b2) ≡ (~ b1 || b2) imp-to-|| ff _ = refl imp-to-|| tt _ = refl imp-mp : ∀ {b b' : 𝔹} → (b imp b') ≡ tt → b ≡ tt → b' ≡ tt imp-mp {tt} {tt} p refl = refl imp-mp {ff} {ff} p q = q imp-mp {tt} {ff} p q = p imp-mp {ff} {tt} p q = refl imp-antisymm : ∀ {b1 b2 : 𝔹} → (b1 imp b2) ≡ tt → (b2 imp b1) ≡ tt → b1 ≡ b2 imp-antisymm{tt}{tt} p q = refl imp-antisymm{tt}{ff} () q imp-antisymm{ff}{tt} p () imp-antisymm{ff}{ff} p q = refl ----------------------------------- -- Theorems about xor ----------------------------------- ff-xor : ∀ (b : 𝔹) → ff xor b ≡ b ff-xor tt = refl ff-xor ff = refl tt-xor : ∀ (b : 𝔹) → tt xor b ≡ ~ b tt-xor tt = refl tt-xor ff = refl ~-xor-distrb : ∀ (a b : 𝔹) → ~ (a xor b) ≡ ~ a xor b ~-xor-distrb tt tt = refl ~-xor-distrb tt ff = refl ~-xor-distrb ff tt = refl ~-xor-distrb ff ff = refl xor-distrib-&& : ∀ (x y : 𝔹) → x xor (y && x) ≡ ~ y && x xor-distrib-&& tt tt = refl xor-distrib-&& tt ff = refl xor-distrib-&& ff tt = refl xor-distrib-&& ff ff = refl xor~hop : ∀ (a b : 𝔹) → ~ a xor b ≡ a xor ~ b xor~hop tt tt = refl xor~hop tt ff = refl xor~hop ff tt = refl xor~hop ff ff = refl xor-comm : ∀ (b1 b2 : 𝔹) → b1 xor b2 ≡ b2 xor b1 xor-comm tt tt = refl xor-comm tt ff = refl xor-comm ff tt = refl xor-comm ff ff = refl xor-assoc : (b1 b2 b3 : 𝔹) → b1 xor (b2 xor b3) ≡ (b1 xor b2) xor b3 xor-assoc tt tt tt = refl xor-assoc tt tt ff = refl xor-assoc tt ff tt = refl xor-assoc tt ff ff = refl xor-assoc ff tt tt = refl xor-assoc ff tt ff = refl xor-assoc ff ff tt = refl xor-assoc ff ff ff = refl xor-anti-idem : (b : 𝔹) → b xor b ≡ ff xor-anti-idem tt = refl xor-anti-idem ff = refl xor-≡ : {b1 b2 : 𝔹} → b1 xor b2 ≡ ff → b1 ≡ b2 xor-≡ {tt} {tt} p = refl xor-≡ {tt} {ff} () xor-≡ {ff} {tt} () xor-≡ {ff} {ff} p = refl ----------------------------------- -- Theorems about nor, nand ----------------------------------- nor-not : ∀ (b : 𝔹) → b nor b ≡ ~ b nor-not tt = refl nor-not ff = refl nor-or : ∀ (b1 b2 : 𝔹) → (b1 nor b2) nor (b1 nor b2) ≡ b1 || b2 nor-or tt b2 = refl nor-or ff tt = refl nor-or ff ff = refl nor-and : ∀ (b1 b2 : 𝔹) → (b1 nor b1) nor (b2 nor b2) ≡ b1 && b2 nor-and tt tt = refl nor-and tt ff = refl nor-and ff b2 = refl nor-comm : ∀ (b1 b2 : 𝔹) → b1 nor b2 ≡ b2 nor b1 nor-comm tt tt = refl nor-comm tt ff = refl nor-comm ff tt = refl nor-comm ff ff = refl nand-comm : ∀ (b1 b2 : 𝔹) → b1 nand b2 ≡ b2 nand b1 nand-comm tt tt = refl nand-comm tt ff = refl nand-comm ff tt = refl nand-comm ff ff = refl
{ "alphanum_fraction": 0.4813915858, "avg_line_length": 25.1219512195, "ext": "agda", "hexsha": "56a1c69efe314da0a724848c7b13a671721ab9ce", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "bool-thms2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "bool-thms2.agda", "max_line_length": 108, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "bool-thms2.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2905, "size": 6180 }
open import Prelude open import Data.Nat using (_≤?_) open import Data.Maybe using (Maybe; just; nothing) open import Data.Vec using (Vec; _∷_; []) open import RW.Language.RTerm open import RW.Language.FinTerm open import RW.Language.RTermUtils open import RW.Utils.Monads module RW.Language.GoalGuesser (maxH : ℕ) where open Monad {{...}} ---------------- -- Housekeeping private cast-RBinApp : {A B : Set} → (A → B) → RBinApp A → RBinApp B cast-RBinApp f (n , a , b) = n , replace-A (ovar ∘ f) a , replace-A (ovar ∘ f) b RBinApp02⊥ : RBinApp (Fin zero) → RBinApp ⊥ RBinApp02⊥ = cast-RBinApp (λ ()) symmetric : {A : Set} → RBinApp A → RBinApp A symmetric (n , a , b) = n , b , a ----------------- -- Term subsitution -- Given a RBinApp representing a type (t₁ ▵ t₂), will return a -- non-deterministic substitution of t₂ for t₁ in a given goal g. -- If no substitution could be performed, the empty list will be returned. _[_] : {A : Set}{{eqA : Eq A}} → RTerm A → RTerm A × RTerm A → NonDet (RTerm A) g [ ty1 , ty2 ] = map p2 (filter p1 (substRTermAux g ty1 ty2)) where -- Non-deterministic term substitution. Possibly empty substitution. -- Since we're only interested in the situations where a single substitution is performed, -- we also return a boolean flag indicating whether or not we already had a substitution. substRTermAux : {A : Set}{{ eqA : Eq A }} → RTerm A → RTerm A → RTerm A → NonDet (Bool × RTerm A) substRTermAux {A} {{eqA}} t m n with t ≟-RTerm m ...| yes _ = return (true , n) ...| no _ = substStep t m n where mutual substStep : RTerm A → RTerm A → RTerm A → NonDet (Bool × RTerm A) substStep (ovar x) _ _ = return (false , ovar x) substStep (ivar n) _ _ = return (false , ivar n) substStep (rlit l) _ _ = return (false , rlit l) substStep (rlam t) m n = substRTermAux t m n >>= return ∘ (λ p → p1 p , rlam (p2 p)) substStep (rapp a as) m n = substStep* as m n >>= return ∘ (λ p → p1 p , rapp a (p2 p)) -- For the list scenario, in the inductive step, we need to substitute m for n in x, -- and return either the result of such substitution or the result of substituting -- m for n recursively in la. Do not forget that _++_ is mplus for the list monad. substStep* : List (RTerm A) → RTerm A → RTerm A → NonDet (Bool × List (RTerm A)) substStep* [] _ _ = return (false , []) substStep* (x ∷ la) m n = substRTermAux x m n >>= λ x' → return (p1 x' , (p2 x' ∷ la)) ++ (substStep* la m n >>= return ∘ (λ p → p1 p , x ∷ p2 p)) -- Given a term and a type ty with n variables, will search for n subterms of t -- in a non-deterministic fashion, and will instantiate them as parameters to ty. {-# TERMINATING #-} apply : {n : ℕ} → RTerm ⊥ → RBinApp (Fin n) → NonDet (RTerm ⊥) -- If we have no more variables to instantiate on our type, -- we can proceed to substitute. apply {n = zero} g (_ , ty1 , ty2) = g [ Fin2RTerm⊥ ty1 , Fin2RTerm⊥ ty2 ] -- If not, we simply call with a recursively smaller n apply {n = suc n} g t = inst g t >>= apply g where -- Easy way of discarding the last variable of a Fin n. -- Mainly, we map Fin (1 + n) to 1 + Fin n. thin : {n : ℕ} → Fin (suc n) → Maybe (Fin n) thin {zero} _ = nothing thin {suc n} fz = just fz thin {suc n} (fs x) with thin x ...| nothing = nothing ...| just x' = just (fs x') -- Given a closed term t, returns a substitution σ defined -- by σ(n+1) = t, σ(k, k ≤ n) = var k. ▵_ : {n : ℕ} → RTerm ⊥ → Fin (suc n) → RTerm (Fin n) ▵_ {n} t x with thin x ...| nothing = replace-A (λ ()) t ...| just x' = ovar x' {-# TERMINATING #-} mk-inst-f : {n : ℕ} → RTerm ⊥ → NonDet (Fin (suc n) → RTerm (Fin n)) mk-inst-f (ovar ()) mk-inst-f (ivar n) = return (▵ (ivar n)) mk-inst-f (rlit l) = return (▵ (rlit l)) mk-inst-f (rlam t) with height (rlam t) ≤? maxH ...| yes _ = return (▵ (rlam t)) ++ mk-inst-f t ...| no _ = mk-inst-f t mk-inst-f (rapp n ts) with height (rapp n ts) ≤? maxH ...| yes _ = return (▵ (rapp n ts)) ++ concat (mapM mk-inst-f ts) ...| no _ = concat (mapM mk-inst-f ts) -- Given a term t and a type with (n+1) variables, instantiate the last variable -- from the type with a non-deterministic subterm of t, returns the resulting type. inst : {n : ℕ} → RTerm ⊥ → RBinApp (Fin (suc n)) → NonDet (RBinApp (Fin n)) inst {n} t (r , ty1 , ty2) = mk-inst-f {n} t >>= λ f → return (r , replace-A f ty1 , replace-A f ty2) -- TODO: Use vectors instead of lists... -- Given a goal (a ▵ b) and a list of types L, try to find intermediate goals g₁⋯gₙ such -- that ∀n . tyₙ ∈ L ⇒ tyₙ : gₙ₋₁ → gₙ , where g₀ = a and gₖ = b. divideGoal : RBinApp ⊥ → List (Σ ℕ (RBinApp ∘ Fin)) → Maybe (List (RTerm ⊥)) divideGoal (gh , g1 , g2) l = sfHead (filter chainIsValid (stepGoals g1 l)) where chainIsValid : List (RTerm ⊥) → Bool chainIsValid [] = false chainIsValid (x ∷ []) with x ≟-RTerm g2 ...| yes _ = true ...| no _ = false chainIsValid (x ∷ l) = chainIsValid l sfHead : {A : Set} → List A → Maybe A sfHead [] = nothing sfHead (x ∷ _) = just x -- Given a list of types, will return a possible list of goals that -- could be discharged by those types. stepGoals : RTerm ⊥ → List (Σ ℕ (RBinApp ∘ Fin)) → NonDet (List (RTerm ⊥)) stepGoals g [] = return (g ∷ []) stepGoals g ((nₜ , t) ∷ ts) = apply g t ++ apply g (symmetric t) >>= (λ g' → stepGoals g' ts >>= return ∘ (_∷_ g)) module Test where goal : RTerm ⊥ goal = rapp (rdef (quote _≡_)) (rapp (rdef (quote _+_)) (ivar 0 ∷ ivar 1 ∷ []) ∷ rapp (rdef (quote _+_)) (ivar 0 ∷ rapp (rdef (quote _+_)) (ivar 1 ∷ rapp (rcon (quote zero)) [] ∷ []) ∷ []) ∷ []) binGoal : RBinApp ⊥ binGoal = rdef (quote _≡_) , rapp (rdef (quote _+_)) (ivar 0 ∷ ivar 1 ∷ []) , rapp (rdef (quote _+_)) (ivar 0 ∷ (rapp (rdef (quote _+_)) (ivar 1 ∷ (rapp (rcon (quote zero)) []) ∷ []) ∷ [])) +-ri : RBinApp (Fin 1) +-ri = rdef (quote _≡_) , rapp (rdef (quote _+_)) (ovar fz ∷ rapp (rcon (quote zero)) [] ∷ []) , ovar fz +-a : RBinApp (Fin 3) +-a = rdef (quote _≡_) , rapp (rdef (quote _+_)) (rapp (rdef (quote _+_)) (ovar (fs $ fs fz) ∷ ovar (fs fz) ∷ []) ∷ ovar fz ∷ []) , rapp (rdef (quote _+_)) (ovar (fs $ fs fz) ∷ rapp (rdef (quote _+_)) (ovar (fs fz) ∷ ovar fz ∷ []) ∷ []) tylist : List (Σ ℕ (RBinApp ∘ Fin)) tylist = (1 , +-ri) ∷ (3 , +-a) ∷ []
{ "alphanum_fraction": 0.5409531963, "avg_line_length": 42.9938650307, "ext": "agda", "hexsha": "c8360c99ccab2537fa801087410a5dbc63544dd7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "VictorCMiraldo/agda-rw", "max_forks_repo_path": "RW/Language/GoalGuesser.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2", "max_issues_repo_issues_event_max_datetime": "2015-05-28T14:48:03.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-06T15:03:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "VictorCMiraldo/agda-rw", "max_issues_repo_path": "RW/Language/GoalGuesser.agda", "max_line_length": 125, "max_stars_count": 16, "max_stars_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "VictorCMiraldo/agda-rw", "max_stars_repo_path": "RW/Language/GoalGuesser.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-24T17:38:20.000Z", "max_stars_repo_stars_event_min_datetime": "2015-02-09T15:43:38.000Z", "num_tokens": 2368, "size": 7008 }
{-# OPTIONS --prop --rewriting #-} module Examples.Sorting.Sequential where open import Examples.Sorting.Sequential.Comparable open import Calf costMonoid open import Calf.Types.Nat open import Calf.Types.List open import Relation.Binary.PropositionalEquality as Eq using (_≡_) open import Data.Product using (_,_) test/forward = 1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ 7 ∷ 8 ∷ 9 ∷ 10 ∷ 11 ∷ 12 ∷ 13 ∷ 14 ∷ 15 ∷ 16 ∷ [] test/backward = 16 ∷ 15 ∷ 14 ∷ 13 ∷ 12 ∷ 11 ∷ 10 ∷ 9 ∷ 8 ∷ 7 ∷ 6 ∷ 5 ∷ 4 ∷ 3 ∷ 2 ∷ 1 ∷ [] test/shuffled = 4 ∷ 8 ∷ 12 ∷ 16 ∷ 13 ∷ 3 ∷ 5 ∷ 14 ∷ 9 ∷ 6 ∷ 7 ∷ 10 ∷ 11 ∷ 1 ∷ 2 ∷ 15 ∷ [] module Ex/InsertionSort where import Examples.Sorting.Sequential.InsertionSort NatComparable as Sort list' = list nat ex/insert : cmp (F list') ex/insert = Sort.insert 3 (1 ∷ 2 ∷ 4 ∷ []) ex/sort : cmp (F list') ex/sort = Sort.sort (1 ∷ 5 ∷ 3 ∷ 1 ∷ 2 ∷ []) ex/sort/forward : cmp (F list') ex/sort/forward = Sort.sort test/forward -- cost: 15 ex/sort/backward : cmp (F list') ex/sort/backward = Sort.sort test/backward -- cost: 120 ex/sort/shuffled : cmp (F list') ex/sort/shuffled = Sort.sort test/shuffled -- cost: 76 module Ex/MergeSort where import Examples.Sorting.Sequential.MergeSort NatComparable as Sort list' = list nat ex/split : cmp (F Sort.pair) ex/split = Sort.split (6 ∷ 2 ∷ 8 ∷ 3 ∷ 1 ∷ 8 ∷ 5 ∷ []) ex/merge : cmp (F list') ex/merge = Sort.merge (2 ∷ 3 ∷ 6 ∷ 8 ∷ [] , 1 ∷ 5 ∷ 8 ∷ []) ex/sort : cmp (F list') ex/sort = Sort.sort (1 ∷ 5 ∷ 3 ∷ 1 ∷ 2 ∷ []) ex/sort/forward : cmp (F list') ex/sort/forward = Sort.sort test/forward -- cost: 32 ex/sort/backward : cmp (F list') ex/sort/backward = Sort.sort test/backward -- cost: 32 ex/sort/shuffled : cmp (F list') ex/sort/shuffled = Sort.sort test/shuffled -- cost: 47 module SortEquivalence (M : Comparable) where open Comparable M open import Examples.Sorting.Sequential.Core M import Examples.Sorting.Sequential.InsertionSort M as ISort import Examples.Sorting.Sequential.MergeSort M as MSort isort≡msort : ◯ (ISort.sort ≡ MSort.sort) isort≡msort = IsSort⇒≡ ISort.sort ISort.sort/correct MSort.sort MSort.sort/correct
{ "alphanum_fraction": 0.641832485, "avg_line_length": 30.8714285714, "ext": "agda", "hexsha": "35027676887662ece77f97925ddd22452d8f2bef", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/Examples/Sorting/Sequential.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/Examples/Sorting/Sequential.agda", "max_line_length": 89, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/Examples/Sorting/Sequential.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 829, "size": 2161 }
{-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- From: On the Bright Side of Type Classes: Instances Arguments in -- Agda (ICFP'11). module InstanceArguments where open import Data.Bool.Base open import Data.Nat hiding ( equal ) renaming ( suc to succ ) -- Note: Agda doesn't have a primitive function primBoolEquality. boolEq : Bool → Bool → Bool boolEq true true = true boolEq false false = true {-# CATCHALL #-} boolEq _ _ = false natEq : ℕ → ℕ → Bool natEq zero zero = true natEq (succ m) (succ n) = natEq m n {-# CATCHALL #-} natEq _ _ = false record Eq (t : Set) : Set where field equal : t → t → Bool instance eqInstanceBool : Eq Bool eqInstanceBool = record { equal = boolEq } eqInstanceℕ : Eq ℕ eqInstanceℕ = record { equal = natEq } equal : {t : Set} → {{eqT : Eq t}} → t → t → Bool equal {{eqT}} = Eq.equal eqT test : Bool test = equal 5 3 ∨ equal true false
{ "alphanum_fraction": 0.6127497621, "avg_line_length": 25.0238095238, "ext": "agda", "hexsha": "3754ae6f225756fb82bbf05e677c7971a81e7c81", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/type-classes/InstanceArguments.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/type-classes/InstanceArguments.agda", "max_line_length": 67, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/type-classes/InstanceArguments.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 300, "size": 1051 }
-- WARNING: This file was generated automatically by Vehicle -- and should not be modified manually! -- Metadata -- - Agda version: 2.6.2 -- - AISEC version: 0.1.0.1 -- - Time generated: ??? open import AISEC.Utils open import Data.Real as ℝ using (ℝ) open import Data.List module MyTestModule where f : Tensor ℝ (1 ∷ []) → Tensor ℝ (1 ∷ []) f = evaluate record { databasePath = DATABASE_PATH ; networkUUID = NETWORK_UUID } increasing : ∀ (x : Tensor ℝ (1 ∷ [])) → let y = f (x) in x 0 ℝ.≤ y 0 increasing = checkProperty record { databasePath = DATABASE_PATH ; propertyUUID = ???? }
{ "alphanum_fraction": 0.657807309, "avg_line_length": 25.0833333333, "ext": "agda", "hexsha": "7a8730e1e7db2bccee00d2f59b12939de15b96f9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7cdd7734fe0d50cc7d5a3b3c6bdddba778cfe6df", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Yiergot/vehicle", "max_forks_repo_path": "examples/network/increasing/increasing-output.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cdd7734fe0d50cc7d5a3b3c6bdddba778cfe6df", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "Yiergot/vehicle", "max_issues_repo_path": "examples/network/increasing/increasing-output.agda", "max_line_length": 69, "max_stars_count": null, "max_stars_repo_head_hexsha": "7cdd7734fe0d50cc7d5a3b3c6bdddba778cfe6df", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "Yiergot/vehicle", "max_stars_repo_path": "examples/network/increasing/increasing-output.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 190, "size": 602 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some specialised instances of the ring solver ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Tactic.RingSolver.Core.Polynomial.Parameters -- Here, we provide proofs of homomorphism between the operations -- defined on polynomials and those on the underlying ring. module Tactic.RingSolver.Core.Polynomial.Homomorphism {r₁ r₂ r₃ r₄} (homo : Homomorphism r₁ r₂ r₃ r₄) where -- The lemmas are the general-purpose proofs we reuse in each other section open import Tactic.RingSolver.Core.Polynomial.Homomorphism.Lemmas homo using (pow-cong) public -- Proofs for each component of the polynomial open import Tactic.RingSolver.Core.Polynomial.Homomorphism.Addition homo using (⊞-hom) public open import Tactic.RingSolver.Core.Polynomial.Homomorphism.Multiplication homo using (⊠-hom) public open import Tactic.RingSolver.Core.Polynomial.Homomorphism.Negation homo using (⊟-hom) public open import Tactic.RingSolver.Core.Polynomial.Homomorphism.Exponentiation homo using (⊡-hom) public open import Tactic.RingSolver.Core.Polynomial.Homomorphism.Constants homo using (κ-hom) public open import Tactic.RingSolver.Core.Polynomial.Homomorphism.Variables homo using (ι-hom) public
{ "alphanum_fraction": 0.7016534867, "avg_line_length": 47.9655172414, "ext": "agda", "hexsha": "c900ca53f600ad94ad426270c0b389fe8a98147e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/Polynomial/Homomorphism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/Polynomial/Homomorphism.agda", "max_line_length": 102, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/Polynomial/Homomorphism.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 333, "size": 1391 }
{- This module contains - the type of vertical composition operations that can be defined on a reflexive graph -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.DStructures.Structures.VertComp where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Structure open import Cubical.Functions.FunExtEquiv open import Cubical.Homotopy.Base open import Cubical.Data.Sigma open import Cubical.Relation.Binary open import Cubical.Algebra.Group open import Cubical.Structures.LeftAction open import Cubical.DStructures.Base open import Cubical.DStructures.Meta.Properties open import Cubical.DStructures.Structures.Constant open import Cubical.DStructures.Structures.Type open import Cubical.DStructures.Structures.Group open import Cubical.DStructures.Structures.ReflGraph open MorphismLemmas open GroupLemmas private variable ℓ ℓ' : Level {- -- The type of vertical composition operations -- that can be defined over a reflexive graph 𝒢 -- -- we use the property isComposable instead of defining -- a type of composable morphisms of G₁, because -- otherwise it would be difficult to formulate -- properties involving an odd number of composable morphisms -- in a uniform and clean way. -} record VertComp (𝒢 : ReflGraph ℓ ℓ') : Type (ℓ-max ℓ ℓ') where no-eta-equality constructor vertcomp open ReflGraphNotation 𝒢 open ReflGraphLemmas 𝒢 -- the vertical composition operation with convenient syntax field vcomp : (g f : ⟨ G₁ ⟩) → isComposable g f → ⟨ G₁ ⟩ syntax vcomp g f p = g ∘⟨ p ⟩ f field -- vcomp preserves source and target σ-∘ : (g f : ⟨ G₁ ⟩) (c : isComposable g f) → s (g ∘⟨ c ⟩ f) ≡ s f τ-∘ : (g f : ⟨ G₁ ⟩) (c : isComposable g f) → t (g ∘⟨ c ⟩ f) ≡ t g -- vcomp is a homomorphism, also known as interchange law isHom-∘ : (g f : ⟨ G₁ ⟩) (c : isComposable g f) (g' f' : ⟨ G₁ ⟩) (c' : isComposable g' f') (c'' : isComposable (g +₁ g') (f +₁ f')) → (g +₁ g') ∘⟨ c'' ⟩ (f +₁ f') ≡ (g ∘⟨ c ⟩ f) +₁ (g' ∘⟨ c' ⟩ f') -- vcomp is associative assoc-∘ : (h g f : ⟨ G₁ ⟩) (c-hg : isComposable h g) (c-gf : isComposable g f) (c-h-gf : isComposable h (g ∘⟨ c-gf ⟩ f)) (c-hg-f : isComposable (h ∘⟨ c-hg ⟩ g) f) → h ∘⟨ c-h-gf ⟩ (g ∘⟨ c-gf ⟩ f) ≡ (h ∘⟨ c-hg ⟩ g) ∘⟨ c-hg-f ⟩ f -- composing with identity arrows does nothing lid-∘ : (f : ⟨ G₁ ⟩) (c : isComposable (𝒾 (t f)) f) → 𝒾 (t f) ∘⟨ c ⟩ f ≡ f rid-∘ : (g : ⟨ G₁ ⟩) (c : isComposable g (𝒾 (s g))) → g ∘⟨ c ⟩ 𝒾 (s g) ≡ g -- alternative lid/rid definition, but taking paramter c is more flexible -- lid-∘ : (f : ⟨ G₁ ⟩) → 𝒾 (t f) ∘⟨ σι-≡-fun (t f) ⟩ f ≡ f -- assoc-∘ : (h g f : ⟨ G₁ ⟩) (c : isComposable h g) (c' : isComposable g f) -- → h ∘⟨ c ∙ sym (τ-∘ g f c') ⟩ (g ∘⟨ c' ⟩ f) ≡ (h ∘⟨ c ⟩ g) ∘⟨ σ-∘ h g c ∙ c' ⟩ f -- → h ∘⟨ c-hg ∙ sym (τ-∘ g f c-gf) ⟩ (g ∘⟨ c-gf ⟩ f) -- ≡ (h ∘⟨ c-hg ⟩ g) ∘⟨ σ-∘ h g c-hg ∙ c-gf ⟩ f module _ {𝒢 : ReflGraph ℓ ℓ'} where open ReflGraphNotation 𝒢 open ReflGraphLemmas 𝒢 -- lemmas about a given vertical composition module _ (𝒞 : VertComp 𝒢) where open VertComp 𝒞 -- These are all propositions, so we use abstract. -- Most of these lemmas are nontrivial, because we need to keep a -- proof of composability at hand. abstract -- if (g, f), and (g', f') are composable, -- then so is (g + g', f + f') +-c : (g f : ⟨ G₁ ⟩) (c : isComposable g f) (g' f' : ⟨ G₁ ⟩) (c' : isComposable g' f') → isComposable (g +₁ g') (f +₁ f') +-c g f c g' f' c' = σ .isHom g g' ∙∙ cong (_+₀ s g') c ∙∙ cong (t f +₀_) c' ∙ sym (τ .isHom f f') -- if (g, f) is composable, and g ≡ g', -- then (g', f) is composable ∘-cong-l-c : {g f : ⟨ G₁ ⟩} (c : isComposable g f) {g' : ⟨ G₁ ⟩} (p : g ≡ g') → isComposable g' f ∘-cong-l-c c p = cong s (sym p) ∙ c -- if (g, f) is composable, and f ≡ f', -- then (g, f') is composable ∘-cong-r-c : {g f : ⟨ G₁ ⟩} (c : isComposable g f) {f' : ⟨ G₁ ⟩} (p : f ≡ f') → isComposable g f' ∘-cong-r-c c p = c ∙ cong t p -- if (g, f) are composable, and (g, f) ≡ (g', f'), -- then (g', f') is composable -- by combining the two lemmas above ∘-cong-c : {g f : ⟨ G₁ ⟩} (c : isComposable g f) {g' f' : ⟨ G₁ ⟩} (p : g ≡ g') (q : f ≡ f') → isComposable g' f' ∘-cong-c c p q = ∘-cong-l-c c p ∙ cong t q -- if (g, f) is composable, and g ≡ g', -- then g ∘ f ≡ g' ∘ f ∘-cong-l : {g f : ⟨ G₁ ⟩} (c : isComposable g f) {g' : ⟨ G₁ ⟩} (p : g ≡ g') → g ∘⟨ c ⟩ f ≡ g' ∘⟨ ∘-cong-l-c c p ⟩ f ∘-cong-l {g = g} {f = f} c {g'} p = cong₂ (λ h d → h ∘⟨ d ⟩ f) p (toPathP (isPropIsComposable g' f (transp (λ i → isComposable (p i) f) i0 c) (∘-cong-l-c c p))) -- if (g, f) is composable, and f ≡ f', -- then g ∘ f ≡ g ∘ f' ∘-cong-r : {g f : ⟨ G₁ ⟩} (c : isComposable g f) {f' : ⟨ G₁ ⟩} (p : f ≡ f') → g ∘⟨ c ⟩ f ≡ g ∘⟨ ∘-cong-r-c c p ⟩ f' ∘-cong-r {g = g} c {f'} p = cong₂ (λ h d → g ∘⟨ d ⟩ h) p (toPathP (isPropIsComposable g f' (transp (λ i → isComposable g (p i)) i0 c) (∘-cong-r-c c p))) -- if (g, f) are composable, and (g, f) ≡ (g', f'), -- then g ∘ f ≡ g' ∘ f' ∘-cong : {g f : ⟨ G₁ ⟩} (c : isComposable g f) {g' f' : ⟨ G₁ ⟩} (p : g ≡ g') (q : f ≡ f') → g ∘⟨ c ⟩ f ≡ g' ∘⟨ ∘-cong-c c p q ⟩ f' ∘-cong c p q = ∘-cong-l c p ∙ ∘-cong-r (∘-cong-l-c c p) q -- an alternate version of lid-∘ -- where a composable g is assumed and ι (σ g) -- instead of ι (τ f) is used ∘-lid' : {g f : ⟨ G₁ ⟩} (c : isComposable g f) (c' : isComposable (𝒾s g) f) → (𝒾s g) ∘⟨ c' ⟩ f ≡ f ∘-lid' {g} {f} c c' = (𝒾s g) ∘⟨ c' ⟩ f ≡⟨ ∘-cong-l c' (cong 𝒾 c) ⟩ 𝒾t f ∘⟨ ∘-cong-l-c c' (cong 𝒾 c) ⟩ f ≡⟨ lid-∘ f (∘-cong-l-c c' (cong 𝒾 c)) ⟩ f ∎ -- Fundamental theorem: -- Any vertical composition is necessarily of the form -- g ∘⟨ _ ⟩ f ≡ g - ι (σ g) + f -- This implies contractibility of VertComp 𝒢 VertComp→+₁ : (g f : ⟨ G₁ ⟩) (c : isComposable g f) → g ∘⟨ c ⟩ f ≡ (g -₁ 𝒾s g) +₁ f VertComp→+₁ g f c = g ∘⟨ c ⟩ f ≡⟨ ∘-cong c (sym (rId₁ g) ∙ cong (g +₁_) (sym (lCancel₁ isg))) (sym (lId₁ f) ∙ cong (_+₁ f) (sym (rCancel₁ isg))) ⟩ (g +₁ (-isg +₁ isg)) ∘⟨ c₁ ⟩ ((isg -₁ isg) +₁ f) ≡⟨ ∘-cong-l c₁ (assoc₁ g -isg isg) ⟩ ((g -₁ isg) +₁ isg) ∘⟨ c₂ ⟩ ((isg -₁ isg) +₁ f) ≡⟨ isHom-∘ (g -₁ isg) (isg -₁ isg) c₄ isg f c₃ c₂ ⟩ ((g +₁ -isg) ∘⟨ c₄ ⟩ (isg +₁ -isg)) +₁ (isg ∘⟨ c₃ ⟩ f) ≡⟨ cong (_+₁ (isg ∘⟨ c₃ ⟩ f)) (isHom-∘ g isg c₅ -isg -isg c₆ c₄) ⟩ ((g ∘⟨ c₅ ⟩ isg) +₁ (-isg ∘⟨ c₆ ⟩ -isg)) +₁ (isg ∘⟨ c₃ ⟩ f) ≡⟨ cong (λ z → (z +₁ (-isg ∘⟨ c₆ ⟩ -isg)) +₁ (isg ∘⟨ c₃ ⟩ f)) (rid-∘ g (isComp-g-isg g)) ⟩ (g +₁ (-isg ∘⟨ c₆ ⟩ -isg)) +₁ (isg ∘⟨ c₃ ⟩ f) ≡⟨ cong ((g +₁ (-isg ∘⟨ c₆ ⟩ -isg)) +₁_) (∘-lid' c c₃) ⟩ (g +₁ (-isg ∘⟨ c₆ ⟩ -isg)) +₁ f ≡⟨ cong (λ z → (g +₁ z) +₁ f) (-isg ∘⟨ c₆ ⟩ -isg ≡⟨ ∘-cong-r c₆ -- prove that is(-isg)≡-isg (sym (cong 𝒾s (sym (mapInv ι (s g))) ∙∙ cong 𝒾 (σι-≡-fun (-₀ s g)) ∙∙ mapInv ι (s g))) ⟩ -isg ∘⟨ c₈ ⟩ (𝒾s -isg) ≡⟨ rid-∘ -isg c₈ ⟩ -isg ∎) ⟩ (g -₁ isg) +₁ f ∎ where -- abbreviations to reduce the amount of parentheses isg = 𝒾s g -isg = -₁ isg itf = 𝒾t f -- composability proofs, -- none of which are really interesting. c₁ : isComposable (g +₁ (-isg +₁ isg)) ((isg -₁ isg) +₁ f) c₁ = ∘-cong-c c (sym (rId₁ g) ∙ cong (g +₁_) (sym (lCancel₁ isg))) (sym (lId₁ f) ∙ cong (_+₁ f) (sym (rCancel₁ isg))) c₂ : isComposable ((g -₁ isg) +₁ isg) ((isg -₁ isg) +₁ f) c₂ = ∘-cong-l-c c₁ (assoc₁ g -isg isg) c₃ : isComposable isg f c₃ = σι-≡-fun (s g) ∙ c c₄ : isComposable (g -₁ isg) (isg -₁ isg) c₄ = s (g -₁ isg) ≡⟨ σ-g--isg g ⟩ 0₀ ≡⟨ sym (cong t (rCancel₁ isg) ∙ mapId τ) ⟩ t (isg -₁ isg) ∎ c₅ : isComposable g isg c₅ = isComp-g-isg g c₆ : isComposable -isg -isg c₆ = s -isg ≡⟨ mapInv σ isg ⟩ -₀ (s isg) ≡⟨ cong -₀_ (σι-≡-fun (s g)) ⟩ -₀ (s g) ≡⟨ cong -₀_ (sym (τι-≡-fun (s g))) ⟩ -₀ (t isg) ≡⟨ sym (mapInv τ isg) ⟩ t -isg ∎ c₈ : isComposable -isg (𝒾s -isg) c₈ = ∘-cong-r-c c₆ (sym (cong 𝒾s (sym (mapInv ι (s g))) ∙∙ cong 𝒾 (σι-≡-fun (-₀ s g)) ∙∙ mapInv ι (s g))) -- properties of the interchange law IC2 : (g g' f : ⟨ G₁ ⟩) (c-gf : isComposable g f) → (g' +₁ (-is g' -₁ is g)) +₁ f ≡ (-is g +₁ f) +₁ (g' -₁ is g') IC2 g g' f c-gf = (g' +₁ (-isg' +₁ -isg)) +₁ f ≡⟨ cong ((g' +₁ (-isg' +₁ -isg)) +₁_) (sym (rCancel-rId G₁ f f') ∙ assoc₁ f f' -f') ⟩ (g' +₁ (-isg' +₁ -isg)) +₁ ((f +₁ f') -₁ f') ≡⟨ assoc₁ (g' +₁ (-isg' +₁ -isg)) (f +₁ f') (-₁ f') ⟩ ((g' +₁ (-isg' +₁ -isg)) +₁ (f +₁ f')) -₁ f' ≡⟨ cong (_-₁ f') (sym (lCancel-lId G₁ g _)) ⟩ ((-g +₁ g) +₁ ((g' +₁ (-isg' +₁ -isg)) +₁ (f +₁ f'))) -₁ f' ≡⟨ cong (_-₁ f') (sym (assoc₁ -g g _)) ⟩ (-g +₁ (g +₁ ((g' +₁ (-isg' +₁ -isg)) +₁ (f +₁ f')))) -₁ f' ≡⟨ cong (λ z → (-g +₁ z) -₁ f') (assoc₁ g _ (f +₁ f')) ⟩ (-g +₁ ((g +₁ (g' +₁ (-isg' +₁ -isg))) +₁ (f +₁ f'))) -₁ f' ≡⟨ cong (λ z → (-g +₁ (z +₁ (f +₁ f'))) -₁ f') (assoc₁ g g' (-isg' -₁ isg)) ⟩ (-g +₁ (((g +₁ g') +₁ (-isg' +₁ -isg)) +₁ (f +₁ f'))) -₁ f' ≡⟨ cong (λ z → (-g +₁ z) -₁ f') (sym q) ⟩ (-g +₁ ((g +₁ g') ∘⟨ c-gf'+ ⟩ (f +₁ f'))) -₁ f' ≡⟨ cong (λ z → (-g +₁ z) -₁ f') (isHom-∘ g f c-gf g' f' c-gf' c-gf'+) ⟩ (-g +₁ ((g ∘⟨ c-gf ⟩ f) +₁ (g' ∘⟨ c-gf' ⟩ f'))) -₁ f' ≡⟨ cong (λ z → (-g +₁ ((g ∘⟨ c-gf ⟩ f) +₁ z)) -₁ f') (VertComp→+₁ g' f' c-gf') ⟩ (-g +₁ ((g ∘⟨ c-gf ⟩ f) +₁ ((g' -₁ isg') +₁ f'))) -₁ f' ≡⟨ cong (λ z → (-g +₁ (z +₁ ((g' -₁ isg') +₁ f'))) -₁ f') (VertComp→+₁ g f c-gf) ⟩ (-g +₁ (((g -₁ isg) +₁ f) +₁ ((g' -₁ isg') +₁ f'))) -₁ f' ≡⟨ cong (λ z → (-g +₁ (z +₁ ((g' -₁ isg') +₁ f'))) -₁ f') (sym (assoc₁ g -isg f)) ⟩ (-g +₁ ((g +₁ (-isg +₁ f)) +₁ ((g' -₁ isg') +₁ f'))) -₁ f' ≡⟨ cong (λ z → (-g +₁ z) -₁ f') (sym (assoc₁ g (-isg +₁ f) _)) ⟩ (-g +₁ (g +₁ ((-isg +₁ f) +₁ ((g' -₁ isg') +₁ f')))) -₁ f' ≡⟨ cong (_-₁ f') (assoc₁ -g g _) ⟩ ((-g +₁ g) +₁ ((-isg +₁ f) +₁ ((g' -₁ isg') +₁ f'))) -₁ f' ≡⟨ cong (_-₁ f') (lCancel-lId G₁ g _) ⟩ ((-isg +₁ f) +₁ ((g' -₁ isg') +₁ f')) -₁ f' ≡⟨ sym (assoc₁ (-isg +₁ f) _ -f') ⟩ (-isg +₁ f) +₁ (((g' -₁ isg') +₁ f') -₁ f') ≡⟨ cong ((-isg +₁ f) +₁_) (sym (assoc₁ (g' -₁ isg') f' -f')) ⟩ (-isg +₁ f) +₁ ((g' -₁ isg') +₁ (f' -₁ f')) ≡⟨ cong ((-isg +₁ f) +₁_ ) (rCancel-rId G₁ (g' -₁ isg') f') ⟩ (-isg +₁ f) +₁ (g' -₁ isg') ∎ where -- abbreviations to reduce the number of parentheses -g = -₁ g isg = 𝒾s g isg' = 𝒾s g' -isg = -₁ isg -isg' = -₁ isg' f' = isg' -f' = -₁ f' -- composability proofs c-gf' = isComp-g-isg g' c-gf'+ = +-c g f c-gf g' f' c-gf' -- q = (g +₁ g') ∘⟨ c-gf'+ ⟩ (f +₁ f') ≡⟨ VertComp→+₁ (g +₁ g') (f +₁ f') c-gf'+ ⟩ ((g +₁ g') -₁ (𝒾s (g +₁ g'))) +₁ (f +₁ f') ≡⟨ cong (λ z → ((g +₁ g') -₁ z) +₁ (f +₁ f')) (ι∘σ .isHom g g') ⟩ ((g +₁ g') -₁ (isg +₁ isg')) +₁ (f +₁ f') ≡⟨ cong (λ z → ((g +₁ g') +₁ z) +₁ (f +₁ f')) (invDistr G₁ isg isg') ⟩ ((g +₁ g') +₁ (-isg' +₁ -isg)) +₁ (f +₁ f') ∎ IC3 : (g g' f : ⟨ G₁ ⟩) (c-gf : isComposable g f) → (-₁ f) +₁ ((is g +₁ is g') -₁ g') ≡ (is g' -₁ g') +₁ ((-₁ f) +₁ is g) IC3 g g' f c-gf = -f +₁ ((isg +₁ isg') -₁ g') ≡⟨ cong (λ z → -f +₁ ((isg +₁ z) -₁ g')) (sym (invInvo G₁ isg')) ⟩ -f +₁ ((isg -₁ -isg') -₁ g') ≡⟨ cong (λ z → -f +₁ ((z -₁ -isg') -₁ g')) (sym (invInvo G₁ isg)) ⟩ -f +₁ (((-₁ -isg) -₁ -isg') -₁ g') ≡⟨ cong (λ z → -f +₁ (z -₁ g')) (sym (invDistr G₁ -isg' -isg)) ⟩ -f +₁ ((-₁ (-isg' +₁ -isg)) -₁ g') ≡⟨ cong (λ z → -f +₁ z) (sym (invDistr G₁ g' (-isg' +₁ -isg))) ⟩ -f -₁ (g' +₁ (-isg' +₁ -isg)) ≡⟨ sym (invDistr G₁ _ f) ⟩ -₁ ((g' +₁ (-isg' +₁ -isg)) +₁ f) ≡⟨ cong -₁_ (IC2 g g' f c-gf) ⟩ -₁ ((-isg +₁ f) +₁ (g' -₁ isg')) ≡⟨ invDistr G₁ (-isg +₁ f) (g' -₁ isg') ⟩ (-₁ (g' -₁ isg')) +₁ (-₁ (-isg +₁ f)) ≡⟨ cong ((-₁ (g' -₁ isg')) +₁_) (invDistr G₁ -isg f) ⟩ (-₁ (g' -₁ isg')) +₁ (-f -₁ -isg) ≡⟨ cong (_+₁ (-f -₁ -isg)) (invDistr G₁ g' -isg') ⟩ ((-₁ -isg') -₁ g') +₁ (-f -₁ -isg) ≡⟨ cong (λ z → (z -₁ g') +₁ (-f -₁ -isg)) (invInvo G₁ isg') ⟩ (isg' -₁ g') +₁ (-f -₁ -isg) ≡⟨ cong (λ z → (isg' -₁ g') +₁ (-f +₁ z)) (invInvo G₁ isg) ⟩ (isg' -₁ g') +₁ (-f +₁ isg) ∎ where -f = -₁ f -g = -₁ g isg = 𝒾s g isg' = 𝒾s g' -isg = -₁ isg -isg' = -₁ isg' IC4 : (g g' f : ⟨ G₁ ⟩) (c-gf : isComposable g f) → f +₁ (((-is g) -₁ (is g')) +₁ g') ≡ ((-is g') +₁ g') +₁ (f -₁ (is g)) IC4 g g' f c-gf = f +₁ ((-isg -₁ isg') +₁ g') ≡⟨ cong (λ z → f +₁ ((-isg -₁ isg') +₁ z)) (sym (invInvo G₁ g')) ⟩ (f +₁ ((-isg -₁ isg') -₁ -g')) ≡⟨ cong (λ z → f +₁ ((-isg +₁ z) -₁ -g')) (sym (mapInv ι∘σ g')) ⟩ f +₁ ((-isg +₁ (is- g')) -₁ -g') ≡⟨ cong (λ z → f +₁ ((z +₁ (is- g')) -₁ -g')) (sym (mapInv ι∘σ g)) ⟩ f +₁ (((is- g) +₁ (is- g')) -₁ -g') ≡⟨ cong (_+₁ ((is- g +₁ is- g') -₁ -g')) (sym (invInvo G₁ f)) ⟩ (-₁ -f) +₁ (((is- g) +₁ (is- g')) -₁ -g') ≡⟨ IC3 -g -g' -f c--gf ⟩ ((is- g') -₁ -g') +₁ ((-₁ -f) +₁ (is- g)) ≡⟨ cong (λ z → (z -₁ -g') +₁ ((-₁ -f) +₁ (is- g))) (mapInv ι∘σ g') ⟩ (-isg' -₁ -g') +₁ ((-₁ -f) +₁ (is- g)) ≡⟨ cong (λ z → (-isg' +₁ z) +₁ ((-₁ -f) +₁ (is- g))) (invInvo G₁ g') ⟩ (-isg' +₁ g') +₁ ((-₁ -f) +₁ (is- g)) ≡⟨ cong (λ z → (-isg' +₁ g') +₁ (z +₁ (is- g))) (invInvo G₁ f) ⟩ (-isg' +₁ g') +₁ (f +₁ (is- g)) ≡⟨ cong (λ z → (-isg' +₁ g') +₁ (f +₁ z)) (mapInv ι∘σ g) ⟩ (-isg' +₁ g') +₁ (f -₁ isg) ∎ where -f = -₁ f -g = -₁ g -g' = -₁ g' isg = 𝒾s g isg' = 𝒾s g' -isg = -₁ isg -isg' = -₁ isg' c--gf = s -g ≡⟨ mapInv σ g ⟩ -₀ (s g) ≡⟨ cong -₀_ c-gf ⟩ -₀ (t f) ≡⟨ sym (mapInv τ f) ⟩ t -f ∎ -- g = itf IC5 : (g' f : ⟨ G₁ ⟩) → f +₁ (((-it f) -₁ (is g')) +₁ g') ≡ ((-is g') +₁ g') +₁ (f -₁ (it f)) IC5 g' f = f +₁ ((-itf -₁ isg') +₁ g') ≡⟨ cong (λ z → f +₁ (((-₁ (𝒾 z)) -₁ isg') +₁ g')) (sym c-gf) ⟩ f +₁ ((-isg -₁ isg') +₁ g') ≡⟨ IC4 g g' f c-gf ⟩ (-isg' +₁ g') +₁ (f -₁ isg) ≡⟨ cong (λ z → (-isg' +₁ g') +₁ (f -₁ (𝒾 z))) c-gf ⟩ (-isg' +₁ g') +₁ (f -₁ itf) ∎ where -f = -₁ f -itf = -it f itf = it f g = it f -g = -₁ g -g' = -₁ g' isg = 𝒾s g isg' = 𝒾s g' -isg = -₁ isg -isg' = -₁ isg' c-gf : isComposable g f c-gf = isComp-itf-f f open VertComp -- the record VertComp has no eta equality, so this can be used to -- construct paths between vertical compositions η-VertComp : (𝒱 : VertComp 𝒢) → vertcomp (vcomp 𝒱) (σ-∘ 𝒱) (τ-∘ 𝒱) (isHom-∘ 𝒱) (assoc-∘ 𝒱) (lid-∘ 𝒱) (rid-∘ 𝒱) ≡ 𝒱 vcomp (η-VertComp 𝒱 i) = vcomp 𝒱 σ-∘ (η-VertComp 𝒱 i) = σ-∘ 𝒱 τ-∘ (η-VertComp 𝒱 i) = τ-∘ 𝒱 isHom-∘ (η-VertComp 𝒱 i) = isHom-∘ 𝒱 assoc-∘ (η-VertComp 𝒱 i) = assoc-∘ 𝒱 lid-∘(η-VertComp 𝒱 i) = lid-∘ 𝒱 rid-∘ (η-VertComp 𝒱 i) = rid-∘ 𝒱 -- this is just a helper for the module below module _ (𝒞 𝒞' : VertComp 𝒢) where p∘ : vcomp 𝒞 ≡ vcomp 𝒞' p∘ = funExt₃ (λ g f c → VertComp→+₁ 𝒞 g f c ∙ sym (VertComp→+₁ 𝒞' g f c)) pσ : PathP (λ j → (g f : ⟨ G₁ ⟩) (c : isComposable g f) → s (p∘ j g f c) ≡ s f) (σ-∘ 𝒞) (σ-∘ 𝒞') pσ = isProp→PathP (λ i → isPropΠ3 (λ g f c → set₀ (s (p∘ i g f c)) (s f))) (σ-∘ 𝒞) (σ-∘ 𝒞') passoc : PathP (λ i → (h g f : ⟨ G₁ ⟩) (c-hg : isComposable h g) (c-gf : isComposable g f) (c-h-gf : isComposable h (p∘ i g f c-gf)) (c-hg-f : isComposable (p∘ i h g c-hg) f) → p∘ i h (p∘ i g f c-gf) c-h-gf ≡ p∘ i (p∘ i h g c-hg) f c-hg-f) (assoc-∘ 𝒞) (assoc-∘ 𝒞') passoc = isProp→PathP (λ j → isPropΠ4 (λ h g f c-hg → isPropΠ3 (λ c-gf c-h-gf c-hg-f → set₁ (p∘ j h (p∘ j g f c-gf) c-h-gf) (p∘ j (p∘ j h g c-hg) f c-hg-f)))) (assoc-∘ 𝒞) (assoc-∘ 𝒞') -- (p∘ j h (p∘ j g f c-gf) c-h-gf ≡ p∘ j (p∘ j h g c-hg) f c-hg-f) -- proof that there is at most one vertical composition on a reflexive graph module _ (𝒢 : ReflGraph ℓ ℓ') where open ReflGraphNotation 𝒢 open ReflGraphLemmas 𝒢 open VertComp isPropVertComp : isProp (VertComp 𝒢) vcomp (isPropVertComp 𝒞 𝒞' i) = funExt₃ (λ g f c → VertComp→+₁ 𝒞 g f c ∙ sym (VertComp→+₁ 𝒞' g f c)) i -- σ-∘ (isPropVertComp 𝒞 𝒞' i) = funExt₃ P i σ-∘ (isPropVertComp 𝒞 𝒞' i) = pσ 𝒞 𝒞' i where P : (g f : ⟨ G₁ ⟩) (c : isComposable g f) → PathP (λ j → s (vcomp (isPropVertComp 𝒞 𝒞' j) g f c) ≡ s f) (σ-∘ 𝒞 g f c) (σ-∘ 𝒞' g f c) P g f c = isProp→PathP (λ j → set₀ (s (vcomp (isPropVertComp 𝒞 𝒞' j) g f c)) (s f)) (σ-∘ 𝒞 g f c) (σ-∘ 𝒞' g f c) τ-∘ (isPropVertComp 𝒞 𝒞' i) = funExt₃ P i where P : (g f : ⟨ G₁ ⟩) (c : isComposable g f) → PathP (λ j → t (vcomp (isPropVertComp 𝒞 𝒞' j) g f c) ≡ t g) (τ-∘ 𝒞 g f c) (τ-∘ 𝒞' g f c) P g f c = isProp→PathP (λ j → set₀ (t (vcomp (isPropVertComp 𝒞 𝒞' j) g f c)) (t g)) (τ-∘ 𝒞 g f c) (τ-∘ 𝒞' g f c) isHom-∘ (isPropVertComp 𝒞 𝒞' i) = funExt₃ (λ g f c → funExt₃ (λ g' f' c' → funExt (λ c+ → P g f c g' f' c' c+))) i where P : (g f : ⟨ G₁ ⟩) (c : isComposable g f) (g' f' : ⟨ G₁ ⟩) (c' : isComposable g' f') (c+ : isComposable (g +₁ g') (f +₁ f')) → PathP (λ j → vcomp (isPropVertComp 𝒞 𝒞' j) (g +₁ g') (f +₁ f') c+ ≡ (vcomp (isPropVertComp 𝒞 𝒞' j) g f c) +₁ (vcomp (isPropVertComp 𝒞 𝒞' j) g' f' c')) (isHom-∘ 𝒞 g f c g' f' c' c+) (isHom-∘ 𝒞' g f c g' f' c' c+) P g f c g' f' c' c+ = isProp→PathP (λ j → set₁ (vcomp (isPropVertComp 𝒞 𝒞' j) (g +₁ g') (f +₁ f') c+) ((vcomp (isPropVertComp 𝒞 𝒞' j) g f c) +₁ (vcomp (isPropVertComp 𝒞 𝒞' j) g' f' c'))) (isHom-∘ 𝒞 g f c g' f' c' c+) (isHom-∘ 𝒞' g f c g' f' c' c+) assoc-∘ (isPropVertComp 𝒞 𝒞' i) = passoc 𝒞 𝒞' i lid-∘ (isPropVertComp 𝒞 𝒞' i) = funExt₂ P i where P : (f : ⟨ G₁ ⟩) (c : isComposable (𝒾 (t f)) f) → PathP (λ j → vcomp (isPropVertComp 𝒞 𝒞' j) (𝒾 (t f)) f c ≡ f) (lid-∘ 𝒞 f c) (lid-∘ 𝒞' f c) P f c = isProp→PathP (λ j → set₁ (vcomp (isPropVertComp 𝒞 𝒞' j) (𝒾 (t f)) f c) f) (lid-∘ 𝒞 f c) (lid-∘ 𝒞' f c) rid-∘ (isPropVertComp 𝒞 𝒞' i) = funExt₂ P i where P : (g : ⟨ G₁ ⟩) (c : isComposable g (𝒾 (s g))) → PathP (λ j → vcomp (isPropVertComp 𝒞 𝒞' j) g (𝒾 (s g)) c ≡ g) (rid-∘ 𝒞 g c) (rid-∘ 𝒞' g c) P g c = isProp→PathP (λ j → set₁ (vcomp (isPropVertComp 𝒞 𝒞' j) g (𝒾 (s g)) c) g) (rid-∘ 𝒞 g c) (rid-∘ 𝒞' g c)
{ "alphanum_fraction": 0.3701865988, "avg_line_length": 44.6590909091, "ext": "agda", "hexsha": "267d900ffe18b4f133967ad24bef83a382de88f2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/DStructures/Structures/VertComp.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/DStructures/Structures/VertComp.agda", "max_line_length": 187, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/DStructures/Structures/VertComp.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 9739, "size": 23580 }
module FFI.Data.String where import Agda.Builtin.String String = Agda.Builtin.String.String infixr 5 _++_ _++_ = Agda.Builtin.String.primStringAppend
{ "alphanum_fraction": 0.7843137255, "avg_line_length": 17, "ext": "agda", "hexsha": "5bb315cf3ed1d0afa4d89b84936d1a952ef368a5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "XanderYZZ/luau", "max_forks_repo_path": "prototyping/FFI/Data/String.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "XanderYZZ/luau", "max_issues_repo_path": "prototyping/FFI/Data/String.agda", "max_line_length": 43, "max_stars_count": 1, "max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "TheGreatSageEqualToHeaven/luau", "max_stars_repo_path": "prototyping/FFI/Data/String.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z", "num_tokens": 45, "size": 153 }
-- Dummy file.
{ "alphanum_fraction": 0.6, "avg_line_length": 7.5, "ext": "agda", "hexsha": "341c03aad60d00bd990be17132ba927fc576c7b1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue4835.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue4835.agda", "max_line_length": 14, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue4835.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 4, "size": 15 }
module Numeral.Natural.Prime.Proofs.Product where import Lvl open import Data.Either as Either using () open import Functional open import Lang.Instance open import Logic.Propositional open import Numeral.Natural open import Numeral.Natural.Relation.Divisibility.Proofs open import Numeral.Natural.Oper open import Numeral.Natural.Prime open import Numeral.Natural.Relation.Divisibility.Proofs.Product open import Sets.PredicateSet renaming (_≡_ to _≡ₛ_) open import Type private variable a b : ℕ -- The prime factors of a product is the prime factors of its factors. product-primeFactors : PrimeFactor(a ⋅ b) ≡ₛ (PrimeFactor(a) ∪ PrimeFactor(b)) product-primeFactors = [↔]-intro l r where l : PrimeFactor(a ⋅ b) ⊇ (PrimeFactor(a) ∪ PrimeFactor(b)) l{a}{b}{x} (Either.Left intro) = intro ⦃ factor = divides-with-[⋅] {x}{a}{b} ([∨]-introₗ infer) ⦄ l{a}{b}{x} (Either.Right intro) = intro ⦃ factor = divides-with-[⋅] {x}{a}{b} ([∨]-introᵣ infer) ⦄ r : PrimeFactor(a ⋅ b) ⊆ (PrimeFactor(a) ∪ PrimeFactor(b)) r{a}{b}{x} intro = Either.map (p ↦ intro ⦃ factor = p ⦄) (p ↦ intro ⦃ factor = p ⦄) (prime-divides-of-[⋅] {x}{a}{b} infer infer)
{ "alphanum_fraction": 0.7071057192, "avg_line_length": 42.7407407407, "ext": "agda", "hexsha": "12c7332d8fd455de1bc8129caf32d7f2ed7905cc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Prime/Proofs/Product.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Prime/Proofs/Product.agda", "max_line_length": 130, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Prime/Proofs/Product.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 390, "size": 1154 }
open import Nat open import Prelude open import core open import contexts module typ-dec where lemma-arr-l : ∀{t1 t2 t4} → t1 ==> t2 == t1 ==> t4 → t2 == t4 lemma-arr-l refl = refl lemma-arr-r : ∀{t1 t2 t3} → t1 ==> t2 == t3 ==> t2 → t1 == t3 lemma-arr-r refl = refl lemma-arr-b : ∀{t1 t2 t3 t4} → t1 ==> t2 == t3 ==> t4 → t1 == t3 lemma-arr-b refl = refl lemma-prod-l : ∀{t1 t2 t4} → t1 ⊗ t2 == t1 ⊗ t4 → t2 == t4 lemma-prod-l refl = refl lemma-prod-r : ∀{t1 t2 t3} → t1 ⊗ t2 == t3 ⊗ t2 → t1 == t3 lemma-prod-r refl = refl lemma-prod-b : ∀{t1 t2 t3 t4} → t1 ⊗ t2 == t3 ⊗ t4 → t1 == t3 lemma-prod-b refl = refl -- types are decidable typ-dec : dec typ typ-dec b b = Inl refl typ-dec b ⦇·⦈ = Inr (λ ()) typ-dec b (t2 ==> t3) = Inr (λ ()) typ-dec ⦇·⦈ b = Inr (λ ()) typ-dec ⦇·⦈ ⦇·⦈ = Inl refl typ-dec ⦇·⦈ (t2 ==> t3) = Inr (λ ()) typ-dec (t1 ==> t2) b = Inr (λ ()) typ-dec (t1 ==> t2) ⦇·⦈ = Inr (λ ()) typ-dec (t1 ==> t2) (t3 ==> t4) with typ-dec t1 t3 | typ-dec t2 t4 typ-dec (t1 ==> t2) (.t1 ==> .t2) | Inl refl | Inl refl = Inl refl typ-dec (t1 ==> t2) (.t1 ==> t4) | Inl refl | Inr x₁ = Inr (λ x → x₁ (lemma-arr-l x)) typ-dec (t1 ==> t2) (t3 ==> .t2) | Inr x | Inl refl = Inr (λ x₁ → x (lemma-arr-r x₁)) typ-dec (t1 ==> t2) (t3 ==> t4) | Inr x | Inr x₁ = Inr (λ x₂ → x (lemma-arr-b x₂)) typ-dec b (t2 ⊗ t3) = Inr (λ ()) typ-dec ⦇·⦈ (t2 ⊗ t3) = Inr (λ ()) typ-dec (t1 ==> t2) (t3 ⊗ t4) = Inr (λ ()) typ-dec (t1 ⊗ t2) b = Inr (λ ()) typ-dec (t1 ⊗ t2) ⦇·⦈ = Inr (λ ()) typ-dec (t1 ⊗ t2) (t3 ==> t4) = Inr (λ ()) typ-dec (t1 ⊗ t2) (t3 ⊗ t4) with typ-dec t1 t3 | typ-dec t2 t4 typ-dec (t1 ⊗ t2) (.t1 ⊗ .t2) | Inl refl | Inl refl = Inl refl typ-dec (t1 ⊗ t2) (.t1 ⊗ t4) | Inl refl | Inr x₁ = Inr (λ x → x₁ (lemma-prod-l x)) typ-dec (t1 ⊗ t2) (t3 ⊗ .t2) | Inr x | Inl refl = Inr (λ x' → x (lemma-prod-r x')) typ-dec (t1 ⊗ t2) (t3 ⊗ t4) | Inr x | Inr x₁ = Inr (λ x' → x (lemma-prod-b x')) -- if an arrow is disequal, it disagrees in the first or second argument ne-factor : ∀{τ1 τ2 τ3 τ4} → (τ1 ==> τ2) ≠ (τ3 ==> τ4) → (τ1 ≠ τ3) + (τ2 ≠ τ4) ne-factor {τ1} {τ2} {τ3} {τ4} ne with typ-dec τ1 τ3 | typ-dec τ2 τ4 ne-factor ne | Inl refl | Inl refl = Inl (λ x → ne refl) ne-factor ne | Inl x | Inr x₁ = Inr x₁ ne-factor ne | Inr x | Inl x₁ = Inl x ne-factor ne | Inr x | Inr x₁ = Inl x
{ "alphanum_fraction": 0.5072886297, "avg_line_length": 40.6949152542, "ext": "agda", "hexsha": "34eb6a106e7753e3a36699c5f76784f7c9beed78", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-livelits-agda", "max_forks_repo_path": "typ-dec.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_issues_repo_issues_event_max_datetime": "2020-10-20T20:44:13.000Z", "max_issues_repo_issues_event_min_datetime": "2020-09-30T20:27:56.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazel-palette-agda", "max_issues_repo_path": "typ-dec.agda", "max_line_length": 91, "max_stars_count": 4, "max_stars_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazel-palette-agda", "max_stars_repo_path": "typ-dec.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-19T15:38:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-04T06:45:06.000Z", "num_tokens": 1194, "size": 2401 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Functions.Fibration where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.Properties open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Path open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Data.Sigma private variable ℓ ℓb : Level B : Type ℓb module FiberIso {ℓ} (p⁻¹ : B → Type ℓ) (x : B) where p : Σ B p⁻¹ → B p = fst fwd : fiber p x → p⁻¹ x fwd ((x' , y) , q) = subst (λ z → p⁻¹ z) q y bwd : p⁻¹ x → fiber p x bwd y = (x , y) , refl fwd-bwd : ∀ x → fwd (bwd x) ≡ x fwd-bwd y = transportRefl y bwd-fwd : ∀ x → bwd (fwd x) ≡ x bwd-fwd ((x' , y) , q) i = h (r i) where h : Σ[ s ∈ singl x ] p⁻¹ (s .fst) → fiber p x h ((x , p) , y) = (x , y) , sym p r : Path (Σ[ s ∈ singl x ] p⁻¹ (s .fst)) ((x , refl ) , subst p⁻¹ q y) ((x' , sym q) , y ) r = ΣPathP (isContrSingl x .snd (x' , sym q) , toPathP (transport⁻Transport (λ i → p⁻¹ (q i)) y)) -- HoTT Lemma 4.8.1 fiberEquiv : fiber p x ≃ p⁻¹ x fiberEquiv = isoToEquiv (iso fwd bwd fwd-bwd bwd-fwd) open FiberIso using (fiberEquiv) public module _ {ℓ} {E : Type ℓ} (p : E → B) where -- HoTT Lemma 4.8.2 totalEquiv : E ≃ Σ B (fiber p) totalEquiv = isoToEquiv isom where isom : Iso E (Σ B (fiber p)) Iso.fun isom x = p x , x , refl Iso.inv isom (b , x , q) = x Iso.leftInv isom x i = x Iso.rightInv isom (b , x , q) i = q i , x , λ j → q (i ∧ j) module _ (B : Type ℓb) (ℓ : Level) where private ℓ' = ℓ-max ℓb ℓ -- HoTT Theorem 4.8.3 fibrationEquiv : (Σ[ E ∈ Type ℓ' ] (E → B)) ≃ (B → Type ℓ') fibrationEquiv = isoToEquiv isom where isom : Iso (Σ[ E ∈ Type ℓ' ] (E → B)) (B → Type ℓ') Iso.fun isom (E , p) = fiber p Iso.inv isom p⁻¹ = Σ B p⁻¹ , fst Iso.rightInv isom p⁻¹ i x = ua (fiberEquiv p⁻¹ x) i Iso.leftInv isom (E , p) i = ua e (~ i) , fst ∘ ua-unglue e (~ i) where e = totalEquiv p -- The path type in a fiber of f is equivalent to a fiber of (cong f) open import Cubical.Foundations.Function fiberPath : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} {f : A → B} {b : B} (h h' : fiber f b) → (Σ[ p ∈ (fst h ≡ fst h') ] (PathP (λ i → f (p i) ≡ b) (snd h) (snd h'))) ≡ fiber (cong f) (h .snd ∙∙ refl ∙∙ sym (h' .snd)) fiberPath h h' = cong (Σ (h .fst ≡ h' .fst)) (funExt λ p → flipSquarePath ∙ PathP≡doubleCompPathʳ _ _ _ _) fiber≡ : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} {f : A → B} {b : B} (h h' : fiber f b) → (h ≡ h') ≡ fiber (cong f) (h .snd ∙∙ refl ∙∙ sym (h' .snd)) fiber≡ {f = f} {b = b} h h' = ΣPath≡PathΣ ⁻¹ ∙ fiberPath h h' FibrationStr : (B : Type ℓb) → Type ℓ → Type (ℓ-max ℓ ℓb) FibrationStr B A = A → B Fibration : (B : Type ℓb) → (ℓ : Level) → Type (ℓ-max ℓb (ℓ-suc ℓ)) Fibration {ℓb = ℓb} B ℓ = Σ[ A ∈ Type ℓ ] FibrationStr B A
{ "alphanum_fraction": 0.5428659858, "avg_line_length": 34.3723404255, "ext": "agda", "hexsha": "04411c75f3a7191d6d367cc0746c6dc6200d7230", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "apabepa10/cubical", "max_forks_repo_path": "Cubical/Functions/Fibration.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "apabepa10/cubical", "max_issues_repo_path": "Cubical/Functions/Fibration.agda", "max_line_length": 106, "max_stars_count": null, "max_stars_repo_head_hexsha": "3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "apabepa10/cubical", "max_stars_repo_path": "Cubical/Functions/Fibration.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1314, "size": 3231 }
module Numeral.Natural.Relation.ModuloCongruence where open import Data.Boolean.Stmt open import Functional open import Numeral.Natural open import Numeral.Natural.Oper.Comparisons open import Numeral.Natural.Oper.Modulo open import Relator.Equals open import Type private variable m n x y : ℕ _≡_[mod_] : ℕ → ℕ → (m : ℕ) → .⦃ pos : IsTrue(positive? m) ⦄ → Type a ≡ b [mod m ] = ((_≡_) on₂ (_mod m)) a b open import Relator.Equals.Proofs.Equiv open import Structure.Relator.Equivalence open import Structure.Relator.Equivalence.Proofs open import Structure.Setoid using (Equiv ; intro) instance mod-congruence-equivalence : ⦃ pos : IsTrue(positive? m) ⦄ → Equivalence(_≡_[mod m ]) mod-congruence-equivalence {m} = on₂-equivalence {f = _mod m} ⦃ [≡]-equivalence ⦄ mod-congruence-equiv : (m : ℕ) → ⦃ pos : IsTrue(positive? m) ⦄ → Equiv(ℕ) mod-congruence-equiv m = intro(_≡_[mod m ]) ⦃ mod-congruence-equivalence {m} ⦄ open import Lang.Instance open import Logic.Propositional open import Numeral.Natural.Oper open import Numeral.Natural.Oper.Modulo.Proofs open import Numeral.Natural.Oper.Proofs open import Numeral.Natural.Relation.Divisibility open import Numeral.Natural.Relation.Order open import Structure.Function open import Structure.Function.Domain open import Structure.Function.Proofs open import Structure.Operator open import Structure.Operator.Proofs.Util open import Structure.Operator.Properties open import Structure.Relator.Properties open import Syntax.Implication open import Syntax.Transitivity mod-congruence-loose-linear-map : ∀{f g₁ g₂ h : ℕ → ℕ} (add : ∀{a b} → (f(a + b) ≡ g₁(a) + g₂(b))) → (mul : ∀{a b} → (g₂(a ⋅ b) ≡ a ⋅ h(b))) → ∀{m} ⦃ pos : IsTrue(positive? m) ⦄ → Function ⦃ mod-congruence-equiv m ⦄ ⦃ mod-congruence-equiv m ⦄ f Function.congruence (mod-congruence-loose-linear-map {f}{g₁}{g₂}{h} add mul {𝐒 m}) {a}{b} = mod-intro₂(\{a}{b} am bm → (am ≡ bm) → (f(a) mod 𝐒(m) ≡ f(b) mod 𝐒(m))) {𝐒 m} (\{a}{b}{n₁}{n₂} → p{a}{b}{n₁}{n₂}) {a}{b} where p : ∀{a b n₁ n₂} → (a < 𝐒(m)) → (b < 𝐒(m)) → (a ≡ b) → (f(a + (n₁ ⋅ 𝐒(m))) mod 𝐒(m)) ≡ (f(b + (n₂ ⋅ 𝐒(m))) mod 𝐒(m)) p {a}{b}{n₁}{n₂} am bm ab = f(a + (n₁ ⋅ 𝐒(m))) mod 𝐒(m) 🝖[ _≡_ ]-[ congruence₁(_mod 𝐒(m)) (add{a}{n₁ ⋅ 𝐒(m)}) ] (g₁(a) + g₂(n₁ ⋅ 𝐒(m))) mod 𝐒(m) 🝖[ _≡_ ]-[ congruence₁(_mod 𝐒(m)) (congruence₂ᵣ(_+_)(g₁(a)) (congruence₁(g₂) (commutativity(_⋅_) {n₁}{𝐒 m}))) ] (g₁(a) + g₂(𝐒(m) ⋅ n₁)) mod 𝐒(m) 🝖[ _≡_ ]-[ congruence₁(_mod 𝐒(m)) (congruence₂ᵣ(_+_)(g₁(a)) (mul{𝐒(m)}{n₁})) ] (g₁(a) + (𝐒(m) ⋅ h(n₁))) mod 𝐒(m) 🝖[ _≡_ ]-[ mod-of-modulus-sum-multiple{g₁(a)}{𝐒 m}{h(n₁)} ] g₁(a) mod 𝐒(m) 🝖[ _≡_ ]-[ congruence₁(_mod 𝐒(m)) (congruence₁(g₁) ab) ] g₁(b) mod 𝐒(m) 🝖[ _≡_ ]-[ mod-of-modulus-sum-multiple{g₁(b)}{𝐒 m}{h(n₂)} ]-sym (g₁(b) + (𝐒(m) ⋅ h(n₂))) mod 𝐒(m) 🝖[ _≡_ ]-[ congruence₁(_mod 𝐒(m)) (congruence₂ᵣ(_+_)(g₁(b)) (mul{𝐒(m)}{n₂})) ]-sym (g₁(b) + g₂(𝐒(m) ⋅ n₂)) mod 𝐒(m) 🝖[ _≡_ ]-[ congruence₁(_mod 𝐒(m)) (congruence₂ᵣ(_+_)(g₁(b)) (congruence₁(g₂) (commutativity(_⋅_) {n₂}{𝐒 m}))) ]-sym (g₁(b) + g₂(n₂ ⋅ 𝐒(m))) mod 𝐒(m) 🝖[ _≡_ ]-[ congruence₁(_mod 𝐒(m)) (add{b}{n₂ ⋅ 𝐒(m)}) ]-sym f(b + (n₂ ⋅ 𝐒(m))) mod 𝐒(m) 🝖-end module _ {m} ⦃ pos : IsTrue(positive?(m)) ⦄ where instance mod-congruence-𝐒-function : Function ⦃ mod-congruence-equiv m ⦄ ⦃ mod-congruence-equiv m ⦄ 𝐒 mod-congruence-𝐒-function = mod-congruence-loose-linear-map {𝐒}{𝐒}{id}{id} (reflexivity(_≡_)) (reflexivity(_≡_)) {m} instance mod-congruence-[+]-operator : BinaryOperator ⦃ mod-congruence-equiv m ⦄ ⦃ mod-congruence-equiv m ⦄ ⦃ mod-congruence-equiv m ⦄ (_+_) mod-congruence-[+]-operator = binaryOperator-from-function ⦃ _ ⦄ ⦃ _ ⦄ ⦃ _ ⦄ {_▫_ = _+_} ⦃ \{x} → functionₗ-from-commutative-functionᵣ ⦃ _ ⦄ ⦃ _ ⦄ {_+_} ⦃ r ⦄ ⦃ intro (\{x} → congruence₁(_mod m) (commutativity(_+_) {x})) ⦄ {x} ⦄ ⦃ r ⦄ where r : ∀{c} → Function ⦃ mod-congruence-equiv m ⦄ ⦃ mod-congruence-equiv m ⦄ (_+ c) r{c} = mod-congruence-loose-linear-map {_+ c}{_+ c}{id}{id} (\{a}{b} → One.commuteᵣ-assocₗ{_▫_ = _+_} {a}{b}{c}) (reflexivity(_≡_)) {m} -- r {_}{_}{𝟎} {_} p = p -- r {a}{b}{𝐒 c}{m} p = mod-congruence-with-𝐒 {a + c}{b + c}{m} (r {a}{b}{c}{m} p) instance mod-congruence-[⋅]-operator : BinaryOperator ⦃ mod-congruence-equiv m ⦄ ⦃ mod-congruence-equiv m ⦄ ⦃ mod-congruence-equiv m ⦄ (_⋅_) mod-congruence-[⋅]-operator = binaryOperator-from-function ⦃ _ ⦄ ⦃ _ ⦄ ⦃ _ ⦄ {_▫_ = _⋅_} ⦃ \{x} → functionₗ-from-commutative-functionᵣ ⦃ _ ⦄ ⦃ _ ⦄ {_⋅_} ⦃ \{c} → r{c} ⦄ ⦃ intro (\{x}{y} → congruence₁(_mod m) (commutativity(_⋅_) {x}{y})) ⦄ {x} ⦄ ⦃ \{c} → r{c} ⦄ where r : ∀{c} → Function ⦃ mod-congruence-equiv m ⦄ ⦃ mod-congruence-equiv m ⦄ (_⋅ c) r{c} = mod-congruence-loose-linear-map {_⋅ c}{_⋅ c}{_⋅ c}{_⋅ c} (\{a}{b} → distributivityᵣ(_⋅_)(_+_) {a}{b}{c}) (\{a}{b} → associativity(_⋅_) {a}{b}{c}) {m} mod-congruence-[^]ₗ-function : ∀{n} → Function ⦃ mod-congruence-equiv m ⦄ ⦃ mod-congruence-equiv m ⦄ (_^ n) Function.congruence (mod-congruence-[^]ₗ-function {𝟎}) _ = reflexivity(_≡_) Function.congruence (mod-congruence-[^]ₗ-function {𝐒 n}) {a} {b} p = BinaryOperator.congruence ⦃ _ ⦄ ⦃ _ ⦄ ⦃ _ ⦄ mod-congruence-[⋅]-operator {a}{b}{a ^ n}{b ^ n} p (Function.congruence ⦃ _ ⦄ ⦃ _ ⦄ (mod-congruence-[^]ₗ-function {n}) p) instance mod-congruence-𝐒-injective : ⦃ pos : IsTrue(positive?(m)) ⦄ → Injective ⦃ mod-congruence-equiv m ⦄ ⦃ mod-congruence-equiv m ⦄ 𝐒 Injective.proof (mod-congruence-𝐒-injective {𝐒 m}) {a}{b} = 𝐒(a) mod 𝐒(m) ≡ 𝐒(b) mod 𝐒(m) ⇒-[ swap (BinaryOperator.congruence ⦃ _ ⦄ ⦃ _ ⦄ ⦃ _ ⦄ (mod-congruence-[+]-operator {𝐒 m}) {𝐒 a}{𝐒 b}{m}{m}) (reflexivity(_≡_)) ] (𝐒(a) + m) mod 𝐒(m) ≡ (𝐒(b) + m) mod 𝐒(m) ⇒-[] (a + 𝐒(m)) mod 𝐒(m) ≡ (b + 𝐒(m)) mod 𝐒(m) ⇒-[ (p ↦ symmetry(_≡_) (mod-of-modulus-addᵣ{a}{m}) 🝖 p 🝖 mod-of-modulus-addᵣ{b}{m}) ] a mod 𝐒(m) ≡ b mod 𝐒(m) ⇒-end mod-congruence-[𝄩] : ∀{a b m} → ⦃ pos : IsTrue(positive?(m)) ⦄ → (a ≡ b [mod m ]) ↔ (m ∣ (a 𝄩 b)) mod-congruence-[𝄩] {a} {b} {𝐒 m} = [↔]-intro (l{a}{b}) (r{a}{b}) where l : ∀{a b} → (a mod 𝐒(m) ≡ b mod 𝐒(m)) ← (𝐒(m) ∣ (a 𝄩 b)) l {𝟎} {𝟎} div = [≡]-intro l {𝟎} {𝐒 b} div = symmetry(_≡_) ([↔]-to-[←] mod-divisibility div) l {𝐒 a} {𝟎} div = [↔]-to-[←] mod-divisibility div l {𝐒 a} {𝐒 b} div = congruence₁ ⦃ mod-congruence-equiv _ ⦄ ⦃ mod-congruence-equiv _ ⦄ (𝐒) {a}{b} (l{a}{b} div) r : ∀{a b} → (a mod 𝐒(m) ≡ b mod 𝐒(m)) → (𝐒(m) ∣ (a 𝄩 b)) r {𝟎} {𝟎} eq = Div𝟎 r {𝟎} {𝐒 b} eq = [↔]-to-[→] mod-divisibility (symmetry(_≡_) eq) r {𝐒 a} {𝟎} eq = [↔]-to-[→] mod-divisibility eq r {𝐒 a} {𝐒 b} eq = r{a}{b} (injective ⦃ mod-congruence-equiv _ ⦄ ⦃ mod-congruence-equiv _ ⦄ (𝐒) {a}{b} eq) open import Logic.Propositional.Theorems open import Numeral.Natural.Function.GreatestCommonDivisor open import Numeral.Natural.Function.GreatestCommonDivisor.Proofs open import Numeral.Natural.Oper.FlooredDivision open import Numeral.Natural.Oper.FlooredDivision.Proofs open import Numeral.Natural.Oper.FlooredDivision.Proofs.Inverse open import Numeral.Natural.Coprime open import Numeral.Natural.Coprime.Proofs open import Numeral.Natural.Relation open import Numeral.Natural.Relation.Divisibility.Proofs open import Numeral.Natural.Relation.Divisibility.Proofs.Product open import Structure.Relator -- TODO: Move the postulates below postulate divides-[⌊/⌋] : ∀{a b c} ⦃ pos : Positive(c) ⦄ → (c ∣ a) → (a ∣ b) → ((a ⌊/⌋ c) ∣ (b ⌊/⌋ c)) postulate [⋅]-positive : ∀{a b} → ⦃ Positive(a) ⦄ → ⦃ Positive(b) ⦄ → Positive(a ⋅ b) postulate [⌊/⌋][⋅]ₗ-compatibility : ∀{a b c} ⦃ pos : Positive(c) ⦄ → (c ∣ a) → (((a ⋅ b) ⌊/⌋ c) ≡ (a ⌊/⌋ c) ⋅ b) postulate [⌊/⌋][⋅]ᵣ-compatibility : ∀{a b c} ⦃ pos : Positive(c) ⦄ → (c ∣ a) → (((a ⋅ b) ⌊/⌋ c) ≡ a ⋅ (b ⌊/⌋ c)) mod-congruence-scale-modulus : ∀{m} → ⦃ pos : Positive(m) ⦄ → ∀{a b c} → (c ⋅ a ≡ c ⋅ b [mod m ]) ↔ (a ≡ b [mod((m ⌊/⌋ gcd c m) ⦃ _ ⦄)]) ⦃ _ ⦄ mod-congruence-scale-modulus {m} ⦃ pos ⦄ {a}{b}{c} = [↔]-transitivity ([↔]-transitivity mod-congruence-[𝄩] ([↔]-intro l r)) ([↔]-symmetry (mod-congruence-[𝄩] ⦃ [⌊/⌋]-positive ⦃ pos ⦄ ⦃ pgcd ⦄ ⦄)) where instance pgcd : Positive(gcd c m) pgcd = [↔]-to-[→] gcd-positive ([∨]-introᵣ pos) l : (m ∣ ((c ⋅ a) 𝄩 (c ⋅ b))) ← ((m ⌊/⌋ gcd c m) ⦃ _ ⦄ ∣ (a 𝄩 b)) l = (m ⌊/⌋ gcd c m) ∣ (a 𝄩 b) ⇒-[ divides-with-[⋅]ᵣ-both {z = gcd c m} ] ((m ⌊/⌋ gcd c m) ⋅ gcd c m) ∣ ((a 𝄩 b) ⋅ gcd c m) ⇒-[ substitute₂ₗ(_∣_) ([⋅][⌊/⌋]-inverseOperatorᵣ (Gcd.divisorᵣ Gcd-gcd)) ] m ∣ ((a 𝄩 b) ⋅ gcd c m) ⇒-[ divides-with-[⋅] {c = (c ⌊/⌋ gcd c m) ⦃ _ ⦄} ∘ [∨]-introₗ ] m ∣ ((a 𝄩 b) ⋅ gcd c m) ⋅ (c ⌊/⌋ gcd c m) ⇒-[ substitute₂ᵣ(_∣_) (associativity(_⋅_) {a 𝄩 b}{gcd c m}{(c ⌊/⌋ gcd c m) ⦃ _ ⦄}) ] m ∣ (a 𝄩 b) ⋅ (gcd c m ⋅ (c ⌊/⌋ gcd c m)) ⇒-[ substitute₂ᵣ(_∣_) (congruence₂ᵣ(_⋅_)(a 𝄩 b) (symmetry(_≡_) ([⌊/⌋][⋅]ᵣ-compatibility {gcd c m}{c}{gcd c m} (reflexivity(_∣_))))) ] m ∣ (a 𝄩 b) ⋅ ((gcd c m ⋅ c) ⌊/⌋ gcd c m) ⇒-[ substitute₂ᵣ(_∣_) (congruence₂ᵣ(_⋅_)(a 𝄩 b) ([⌊/⌋][swap⋅]-inverseOperatorᵣ {gcd c m}{c})) ] m ∣ (a 𝄩 b) ⋅ c ⇒-[ substitute₂ᵣ(_∣_) (commutativity(_⋅_) {a 𝄩 b}{c}) ] m ∣ c ⋅ (a 𝄩 b) ⇒-[ substitute₂ᵣ(_∣_) (distributivityₗ(_⋅_)(_𝄩_) {c}{a}{b}) ] m ∣ ((c ⋅ a) 𝄩 (c ⋅ b)) ⇒-end r : (m ∣ ((c ⋅ a) 𝄩 (c ⋅ b))) → ((m ⌊/⌋ gcd c m) ⦃ _ ⦄ ∣ (a 𝄩 b)) r = (m ∣ (c ⋅ a 𝄩 c ⋅ b)) ⇒-[ substitute₂ᵣ(_∣_) (symmetry(_≡_) (distributivityₗ(_⋅_)(_𝄩_) {c}{a}{b})) ] (m ∣ c ⋅ (a 𝄩 b)) ⇒-[ divides-[⌊/⌋] {m}{c ⋅ (a 𝄩 b)}{gcd c m} (Gcd.divisorᵣ Gcd-gcd) ] (m ⌊/⌋ gcd c m) ⦃ _ ⦄ ∣ ((c ⋅ (a 𝄩 b)) ⌊/⌋ gcd c m) ⦃ _ ⦄ ⇒-[ substitute₂ᵣ(_∣_) ([⌊/⌋][⋅]ₗ-compatibility {c}{a 𝄩 b}{gcd c m} ⦃ pgcd ⦄ (Gcd.divisorₗ {c}{m} Gcd-gcd)) ] (m ⌊/⌋ gcd c m) ⦃ _ ⦄ ∣ ((c ⌊/⌋ gcd c m) ⦃ pgcd ⦄ ⋅ (a 𝄩 b)) ⇒-[ swap(coprime-divides-of-[⋅] {(m ⌊/⌋ gcd c m) ⦃ _ ⦄}{(c ⌊/⌋ gcd c m) ⦃ _ ⦄}{a 𝄩 b}) (symmetry(Coprime) ([⌊/⌋]-gcd-coprime{c}{m} ([∨]-introᵣ pos))) ] ((m ⌊/⌋ gcd c m) ⦃ _ ⦄ ∣ (a 𝄩 b)) ⇒-end postulate mod-congruence-scale : ∀{m} ⦃ pos-m : Positive(m) ⦄ {c} ⦃ pos-c : Positive(c) ⦄ → ∀{a b} → (a ≡ b [mod m ]) → (c ⋅ a ≡ c ⋅ b [mod(c ⋅ m)]) ⦃ [⋅]-positive {c}{m} ⦄ postulate mod-congruence-divide : ∀{m} ⦃ pos-m : Positive(m) ⦄ {c} ⦃ pos-c : Positive(c) ⦄ → (c ∣ m) → ∀{a b} → (c ∣ a) → (c ∣ b) → (a ≡ b [mod m ]) → (a ⌊/⌋ c ≡ b ⌊/⌋ c [mod(m ⌊/⌋ c)]) ⦃ [⌊/⌋]-positive {m}{c} ⦄ postulate mod-congruence-smaller-modulus : ∀{m₁} ⦃ pos-m₁ : Positive(m₁) ⦄ {m₂} ⦃ pos-m₂ : Positive(m₂) ⦄ → (m₂ ∣ m₁) → ∀{a b} → (a ≡ b [mod m₁ ]) → (a ≡ b [mod m₂ ]) postulate mod-congruence-to-gcd-equality : ∀{m} ⦃ pos-m : Positive(m) ⦄ → ∀{a b} → (a ≡ b [mod m ]) → (gcd a m ≡ gcd b m) postulate mod-congruence-[−₀]-operator : ∀{m} ⦃ pos-m : Positive(m) ⦄ → ∀{a₁ a₂ b₁ b₂} → (a₁ ≥ b₁) → (a₂ ≥ b₂) → (a₁ ≡ a₂ [mod m ]) → (b₁ ≡ b₂ [mod m ]) → (a₁ −₀ b₁ ≡ a₂ −₀ b₂ [mod m ]) postulate mod-congruence-[⌊/⌋]-operator : ∀{m} ⦃ pos-m : Positive(m) ⦄ → ∀{a₁ a₂ b₁ b₂} ⦃ pos-b₁ : Positive(b₁) ⦄ ⦃ pos-b₂ : Positive(b₂) ⦄ → (a₁ ∣ b₁) → (a₂ ∣ b₂) → (a₁ ≡ a₂ [mod m ]) → (b₁ ≡ b₂ [mod m ]) → (a₁ ⌊/⌋ b₁ ≡ a₂ ⌊/⌋ b₂ [mod m ])
{ "alphanum_fraction": 0.5414001577, "avg_line_length": 67.9345238095, "ext": "agda", "hexsha": "9eb5603ddb2bd90910fb0751aa6720717e7c5d79", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Relation/ModuloCongruence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Relation/ModuloCongruence.agda", "max_line_length": 244, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Relation/ModuloCongruence.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 5735, "size": 11413 }
{-# OPTIONS --cubical #-} module Cubical.Codata.Conat where open import Cubical.Codata.Conat.Base public open import Cubical.Codata.Conat.Properties public
{ "alphanum_fraction": 0.7911392405, "avg_line_length": 22.5714285714, "ext": "agda", "hexsha": "b8fb936b8c20fa09ca46aa9bc26df23da7dc7b7d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "limemloh/cubical", "max_forks_repo_path": "Cubical/Codata/Conat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "limemloh/cubical", "max_issues_repo_path": "Cubical/Codata/Conat.agda", "max_line_length": 50, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "limemloh/cubical", "max_stars_repo_path": "Cubical/Codata/Conat.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z", "max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z", "num_tokens": 38, "size": 158 }
{-# OPTIONS --safe --without-K #-} open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; sym; cong; cong₂; subst; trans) open import Relation.Nullary.Decidable using (True; from-yes) open import Relation.Nullary.Negation using (¬?; contradiction) open Relation.Binary.PropositionalEquality.≡-Reasoning open import Function using (_∘_) open import Relation.Nullary using (yes; no) open import Data.Empty using (⊥) open import Data.Product using (_×_; _,_; Σ-syntax; proj₁; proj₂) open import Data.Fin.Base as Fin using (Fin; zero; suc) open import Data.Unit using (⊤; tt) open import Data.List.Base as List using (List; []; _∷_; [_]) import Data.List.Properties as Listₚ import Data.Char.Properties as Charₚ import Data.Digit as Digit import Data.List.Membership.Propositional as ∈ₗ import Data.List.Membership.Propositional.Properties as ∈ₗₚ open import Data.Nat.Base as ℕ using (ℕ; zero; suc) import Data.Nat.Properties as ℕₚ import Data.Nat.Show as ℕₛ import Data.Nat.Show.Properties as ℕₛₚ open import Data.String.Base as String using (String) import Data.Product.Properties as Productₚ open import Data.Vec.Base as Vec using ([]; _∷_; Vec) import Data.Vec.Properties as Vecₚ open import Data.Vec.Relation.Unary.Any as Any using (here; there) import Data.Vec.Membership.Propositional as ∈ᵥ import Data.Vec.Membership.Propositional.Properties as ∈ᵥₚ open import PiCalculus.Syntax open Raw open Scoped open Conversion open import PiCalculus.Utils module PiCalculus.Syntax.Properties where module _ where private variable n : ℕ P Q R S : Scoped n x y : Fin n namex namey : Name fromName∘toName : (i : Fin n) (ctx : Ctx n) → ∈toFin (∈ᵥₚ.∈-lookup i ctx) ≡ i fromName∘toName zero (x ∷ ctx) = refl fromName∘toName (suc i) (x ∷ ctx) rewrite fromName∘toName i ctx = refl toName∘fromName : ∀ {x} {ctx : Ctx n} (x∈ctx : x ∈ᵥ.∈ ctx) → Vec.lookup ctx (∈toFin x∈ctx) ≡ x toName∘fromName (here px) = sym px toName∘fromName (there x∈ctx) = toName∘fromName x∈ctx -- The circum (^) is not a decimal character ^∉DECIMALS : '^' ∈ᵥ.∉ Digit.digitChars ^∉DECIMALS = from-yes (¬? (Any.any? ('^' Charₚ.≟_) Digit.digitChars)) module _ (base : ℕ) {2≤base : True (2 ℕₚ.≤? base)} {base≤16 : True (base ℕₚ.≤? 16)} where charsInBase∈digitChars : ∀ n c → c ∈ₗ.∈ ℕₛ.charsInBase base {2≤base} {base≤16} n → c ∈ᵥ.∈ Digit.digitChars charsInBase∈digitChars n c i with ∈ₗₚ.∈-map⁻ Digit.showDigit i charsInBase∈digitChars n c i | d , _ , refl = ∈ᵥₚ.∈-lookup (Fin.inject≤ d _) Digit.digitChars -- In <name>^<natural> the <natural> does not contain ^, therefore toChars is injective toChars-injective : (x y : Name × ℕ) → toChars x ≡ toChars y → x ≡ y toChars-injective (nx , cx) (ny , cy) eq = cong₂ _,_ cancel-names (ℕₛₚ.charsInBase-injective 10 cx cy count-repr) where count-repr = ListInv.inv-++ʳ nx ny '^' (^∉DECIMALS ∘ charsInBase∈digitChars 10 cx '^') (^∉DECIMALS ∘ charsInBase∈digitChars 10 cy '^') eq cancel-names = Listₚ.++-cancelʳ nx ny (subst (λ ● → nx List.++ ('^' ∷ ●) ≡ _) count-repr eq) -- A fresh variable name created from inspecting a context cannot be in that context fresh-∉' : ∀ m name (xs : Ctx n) → toChars (name , m ℕ.+ (count name xs)) ∈ᵥ.∉ apply xs fresh-∉' m name (x ∷ xs) (here seq) with Listₚ.≡-dec Charₚ._≟_ name x fresh-∉' m name (x ∷ xs) (here seq) | yes refl = ℕₚ.m≢1+n+m _ (begin count name xs ≡˘⟨ Productₚ.,-injectiveʳ (toChars-injective (name , m ℕ.+ suc (count name xs)) (name , count name xs) seq) ⟩ m ℕ.+ suc (count name xs) ≡⟨ ℕₚ.+-suc m _ ⟩ suc m ℕ.+ count name xs ∎) fresh-∉' m name (x ∷ xs) (here seq) | no ¬q = contradiction (Productₚ.,-injectiveˡ (toChars-injective (name , m ℕ.+ count name xs) (x , count x xs) seq)) ¬q fresh-∉' m name (x ∷ xs) (there ∈ps) with Listₚ.≡-dec Charₚ._≟_ name x fresh-∉' m name (x ∷ xs) (there ∈ps) | yes refl rewrite ℕₚ.+-suc m (count name xs) = fresh-∉' (suc m) name _ ∈ps fresh-∉' m name (x ∷ xs) (there ∈ps) | no ¬q = fresh-∉' m name _ ∈ps fresh-∉ : ∀ name (xs : Ctx n) → toChars (name , count name xs) ∈ᵥ.∉ apply xs fresh-∉ name xs = fresh-∉' zero name xs -- Translating from de Bruijn to names results in a well-scoped process toRaw-WellScoped : (ctx : Ctx n) (P : Scoped n) → WellScoped (apply ctx) (toRaw ctx P) toRaw-WellScoped ctx 𝟘 = tt toRaw-WellScoped ctx (ν P ⦃ name ⦄) = toRaw-WellScoped (name ∷ ctx) P toRaw-WellScoped ctx (P ∥ Q) = toRaw-WellScoped ctx P , toRaw-WellScoped ctx Q toRaw-WellScoped ctx ((x ⦅⦆ P) ⦃ name ⦄) = ∈ᵥₚ.∈-lookup _ _ , toRaw-WellScoped (name ∷ ctx) P toRaw-WellScoped ctx (x ⟨ y ⟩ P) = ∈ᵥₚ.∈-lookup _ _ , ∈ᵥₚ.∈-lookup _ _ , toRaw-WellScoped ctx P -- Translating from de Bruijn to names results in no shadowed variables toRaw-NotShadowed : (ctx : Ctx n) (P : Scoped n) → NotShadowed (apply ctx) (toRaw ctx P) toRaw-NotShadowed ctx 𝟘 = tt toRaw-NotShadowed ctx (ν P ⦃ name ⦄) = fresh-∉ name ctx , (toRaw-NotShadowed (_ ∷ ctx) P) toRaw-NotShadowed ctx (P ∥ Q) = toRaw-NotShadowed ctx P , toRaw-NotShadowed ctx Q toRaw-NotShadowed ctx ((x ⦅⦆ P) ⦃ name ⦄) = fresh-∉ name ctx , toRaw-NotShadowed (name ∷ ctx) P toRaw-NotShadowed ctx (x ⟨ y ⟩ P) = toRaw-NotShadowed ctx P -- Translating from de Bruijn to names and back results in the same process modulo name hints data _α-≡_ {n} : Scoped n → Scoped n → Set where inaction : 𝟘 α-≡ 𝟘 scope : P α-≡ Q → ν P ⦃ namex ⦄ α-≡ ν Q ⦃ namey ⦄ comp : P α-≡ Q → R α-≡ S → (P ∥ R) α-≡ (Q ∥ S) input : P α-≡ Q → (x ⦅⦆ P) ⦃ namex ⦄ α-≡ (x ⦅⦆ Q) ⦃ namey ⦄ output : P α-≡ Q → (x ⟨ y ⟩ P) α-≡ (x ⟨ y ⟩ Q) fromRaw∘toRaw : (ctx : Ctx n) (P : Scoped n) → fromRaw' (apply ctx) (toRaw ctx P) (toRaw-WellScoped ctx P) α-≡ P fromRaw∘toRaw ctx 𝟘 = inaction fromRaw∘toRaw ctx (ν P ⦃ name ⦄) = scope (fromRaw∘toRaw (name ∷ ctx) P) fromRaw∘toRaw ctx (P ∥ Q) = comp (fromRaw∘toRaw ctx P) (fromRaw∘toRaw ctx Q) fromRaw∘toRaw ctx ((x ⦅⦆ P) ⦃ name ⦄) rewrite fromName∘toName x (apply ctx) = input (fromRaw∘toRaw (name ∷ ctx) P) fromRaw∘toRaw ctx (x ⟨ y ⟩ P) rewrite fromName∘toName x (apply ctx) | fromName∘toName y (apply ctx) = output (fromRaw∘toRaw ctx P) module _ where private variable n : ℕ P Q R S : Raw x y w z : Name ks vs : Ctx n _∈²_ : ∀ {n} → (Name × Name) → (Ctx n × Ctx n) → Set (x , y ) ∈² (xs , ys) = Σ[ i ∈ Fin _ ] (Vec.lookup xs i ≡ x × Vec.lookup ys i ≡ y) infix 5 _α[_↦_]≡_ data _α[_↦_]≡_ : Raw → ∀ {n} → Ctx n → Ctx n → Raw → Set where inaction : 𝟘 α[ ks ↦ vs ]≡ 𝟘 scope : P α[ x ∷ ks ↦ y ∷ vs ]≡ Q → ⦅ν x ⦆ P α[ ks ↦ vs ]≡ ⦅ν y ⦆ Q comp : P α[ ks ↦ vs ]≡ Q → R α[ ks ↦ vs ]≡ S → P ∥ R α[ ks ↦ vs ]≡ Q ∥ S input : (x , y) ∈² (ks , vs) → P α[ w ∷ ks ↦ z ∷ vs ]≡ Q → x ⦅ w ⦆ P α[ ks ↦ vs ]≡ y ⦅ z ⦆ Q output : (x , y) ∈² (ks , vs) → (w , z) ∈² (ks , vs) → P α[ ks ↦ vs ]≡ Q → x ⟨ w ⟩ P α[ ks ↦ vs ]≡ (y ⟨ z ⟩ Q) -- Translating a well-scoped process to de Bruijn and back results in the same process -- modulo alpha renaming, where the new names in `apply isf` map to the old in `ctx` toRaw∘fromRaw : (ctx : Ctx n) (P : Raw) (wsP : WellScoped ctx P) → toRaw ctx (fromRaw' ctx P wsP) α[ apply ctx ↦ ctx ]≡ P toRaw∘fromRaw ctx 𝟘 wsP = inaction toRaw∘fromRaw ctx (⦅ν x ⦆ P) wsP = scope (toRaw∘fromRaw (x ∷ ctx) P wsP) toRaw∘fromRaw ctx (P ∥ Q) (wsP , wsQ) = comp (toRaw∘fromRaw ctx P wsP) (toRaw∘fromRaw ctx Q wsQ) toRaw∘fromRaw ctx (x ⦅ y ⦆ P) (x∈ctx , wsP) = input (_ , refl , toName∘fromName x∈ctx) (toRaw∘fromRaw (y ∷ ctx) P wsP) toRaw∘fromRaw ctx (x ⟨ y ⟩ P) (x∈ctx , y∈ctx , wsP) = output (_ , refl , toName∘fromName x∈ctx) (_ , refl , toName∘fromName y∈ctx) (toRaw∘fromRaw ctx P wsP)
{ "alphanum_fraction": 0.5975714461, "avg_line_length": 44.0702702703, "ext": "agda", "hexsha": "8d02010b072e1d6dbae8195dcba15e29d6a7c389", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-14T16:24:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-25T13:57:13.000Z", "max_forks_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "guilhermehas/typing-linear-pi", "max_forks_repo_path": "src/PiCalculus/Syntax/Properties.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_issues_repo_issues_event_max_datetime": "2022-03-15T09:16:14.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-15T09:16:14.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "guilhermehas/typing-linear-pi", "max_issues_repo_path": "src/PiCalculus/Syntax/Properties.agda", "max_line_length": 115, "max_stars_count": 26, "max_stars_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "guilhermehas/typing-linear-pi", "max_stars_repo_path": "src/PiCalculus/Syntax/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-14T15:18:23.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-02T23:32:11.000Z", "num_tokens": 3218, "size": 8153 }
{-# OPTIONS --warning=error --safe --without-K #-} open import LogicalFormulae open import Numbers.Naturals.Semiring open import Numbers.Naturals.Definition open import Numbers.Naturals.Naturals open import Numbers.Naturals.Order open import Numbers.Naturals.Order.Lemmas open import Numbers.Naturals.Order.WellFounded open import Orders.WellFounded.Induction open import Orders.Total.Definition open import Semirings.Definition module Numbers.Naturals.EuclideanAlgorithm where open TotalOrder ℕTotalOrder open Semiring ℕSemiring open import Decidable.Lemmas ℕDecideEquality record divisionAlgResult (a : ℕ) (b : ℕ) : Set where field quot : ℕ rem : ℕ pr : a *N quot +N rem ≡ b remIsSmall : (rem <N a) || (a ≡ 0) quotSmall : (0 <N a) || ((0 ≡ a) && (quot ≡ 0)) record divisionAlgResult' (a : ℕ) (b : ℕ) : Set where field quot : ℕ rem : ℕ .pr : a *N quot +N rem ≡ b remIsSmall : (rem <N' a) || (a =N' 0) quotSmall : (0 <N' a) || ((0 =N' a) && (quot =N' 0)) collapseDivAlgResult : {a b : ℕ} → (divisionAlgResult a b) → divisionAlgResult' a b collapseDivAlgResult record { quot = q ; rem = r ; pr = pr ; remIsSmall = (inl x) ; quotSmall = (inl y) } = record { quot = q ; rem = r ; pr = pr ; remIsSmall = inl (<NTo<N' x) ; quotSmall = inl (<NTo<N' y) } collapseDivAlgResult record { quot = q ; rem = r ; pr = pr ; remIsSmall = (inl x) ; quotSmall = (inr y) } = record { quot = q ; rem = r ; pr = pr ; remIsSmall = inl (<NTo<N' x) ; quotSmall = inr (collapseN (_&&_.fst y) ,, collapseN (_&&_.snd y)) } collapseDivAlgResult record { quot = q ; rem = r ; pr = pr ; remIsSmall = (inr x) ; quotSmall = inl y } = record { quot = q ; rem = r ; pr = pr ; remIsSmall = inr (collapseN x) ; quotSmall = inl (<NTo<N' y) } collapseDivAlgResult record { quot = q ; rem = r ; pr = pr ; remIsSmall = (inr x) ; quotSmall = inr y } = record { quot = q ; rem = r ; pr = pr ; remIsSmall = inr (collapseN x) ; quotSmall = inr (collapseN (_&&_.fst y) ,, collapseN (_&&_.snd y)) } squashDivAlgResult : {a b : ℕ} → divisionAlgResult' a b → divisionAlgResult a b squashDivAlgResult record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inl x) ; quotSmall = (inl y) } = record { quot = quot ; rem = rem ; pr = squash pr ; remIsSmall = inl (<N'To<N x) ; quotSmall = inl (<N'To<N y) } squashDivAlgResult record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inl x) ; quotSmall = (inr y) } = record { quot = quot ; rem = rem ; pr = squash pr ; remIsSmall = inl (<N'To<N x) ; quotSmall = inr (squashN (_&&_.fst y) ,, squashN (_&&_.snd y)) } squashDivAlgResult record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inr x) ; quotSmall = (inl y) } = record { quot = quot ; rem = rem ; pr = squash pr ; remIsSmall = inr (squashN x) ; quotSmall = inl (<N'To<N y) } squashDivAlgResult record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inr x) ; quotSmall = (inr y) } = record { quot = quot ; rem = rem ; pr = squash pr ; remIsSmall = inr (squashN x) ; quotSmall = inr (squashN (_&&_.fst y) ,, squashN (_&&_.snd y)) } squashPreservesRem : {a b : ℕ} → (p : divisionAlgResult' a b) → divisionAlgResult.rem (squashDivAlgResult p) ≡ divisionAlgResult'.rem p squashPreservesRem record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inl x) ; quotSmall = (inl x₁) } = refl squashPreservesRem record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inl x) ; quotSmall = (inr x₁) } = refl squashPreservesRem record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inr x) ; quotSmall = (inl x₁) } = refl squashPreservesRem record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inr x) ; quotSmall = (inr x₁) } = refl squashPreservesQuot : {a b : ℕ} → (p : divisionAlgResult' a b) → divisionAlgResult.quot (squashDivAlgResult p) ≡ divisionAlgResult'.quot p squashPreservesQuot record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inl x) ; quotSmall = (inl x₁) } = refl squashPreservesQuot record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inl x) ; quotSmall = (inr x₁) } = refl squashPreservesQuot record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inr x) ; quotSmall = (inl x₁) } = refl squashPreservesQuot record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inr x) ; quotSmall = (inr x₁) } = refl collapsePreservesRem : {a b : ℕ} → (p : divisionAlgResult a b) → divisionAlgResult'.rem (collapseDivAlgResult p) ≡ divisionAlgResult.rem p collapsePreservesRem record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inl x) ; quotSmall = (inl x₁) } = refl collapsePreservesRem record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inl x) ; quotSmall = (inr x₁) } = refl collapsePreservesRem record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inr x) ; quotSmall = (inl x₁) } = refl collapsePreservesRem record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inr x) ; quotSmall = (inr x₁) } = refl collapsePreservesQuot : {a b : ℕ} → (p : divisionAlgResult a b) → divisionAlgResult'.quot (collapseDivAlgResult p) ≡ divisionAlgResult.quot p collapsePreservesQuot record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inl x) ; quotSmall = (inl x₁) } = refl collapsePreservesQuot record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inl x) ; quotSmall = (inr x₁) } = refl collapsePreservesQuot record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inr x) ; quotSmall = (inl x₁) } = refl collapsePreservesQuot record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inr x) ; quotSmall = (inr x₁) } = refl divAlgLessLemma : (a b : ℕ) → (0 <N a) → (r : divisionAlgResult a b) → (divisionAlgResult.quot r ≡ 0) || (divisionAlgResult.rem r <N b) divAlgLessLemma zero b pr _ = exFalso (TotalOrder.irreflexive ℕTotalOrder pr) divAlgLessLemma (succ a) b _ record { quot = zero ; rem = a%b ; pr = pr ; remIsSmall = remIsSmall } = inl refl divAlgLessLemma (succ a) b _ record { quot = (succ a/b) ; rem = a%b ; pr = pr ; remIsSmall = remIsSmall } = inr record { x = a/b +N a *N succ (a/b) ; proof = pr } modUniqueLemma : {rem1 rem2 a : ℕ} → (quot1 quot2 : ℕ) → rem1 <N a → rem2 <N a → a *N quot1 +N rem1 ≡ a *N quot2 +N rem2 → rem1 ≡ rem2 modUniqueLemma {rem1} {rem2} {a} zero zero rem1<a rem2<a pr rewrite Semiring.productZeroRight ℕSemiring a = pr modUniqueLemma {rem1} {rem2} {a} zero (succ quot2) rem1<a rem2<a pr rewrite Semiring.productZeroRight ℕSemiring a | pr | multiplicationNIsCommutative a (succ quot2) | equalityCommutative (Semiring.+Associative ℕSemiring a (quot2 *N a) rem2) = exFalso (cannotAddAndEnlarge' {a} {quot2 *N a +N rem2} rem1<a) modUniqueLemma {rem1} {rem2} {a} (succ quot1) zero rem1<a rem2<a pr rewrite Semiring.productZeroRight ℕSemiring a | equalityCommutative pr | multiplicationNIsCommutative a (succ quot1) | equalityCommutative (Semiring.+Associative ℕSemiring a (quot1 *N a) rem1) = exFalso (cannotAddAndEnlarge' {a} {quot1 *N a +N rem1} rem2<a) modUniqueLemma {rem1} {rem2} {a} (succ quot1) (succ quot2) rem1<a rem2<a pr rewrite multiplicationNIsCommutative a (succ quot1) | multiplicationNIsCommutative a (succ quot2) | equalityCommutative (Semiring.+Associative ℕSemiring a (quot1 *N a) rem1) | equalityCommutative (Semiring.+Associative ℕSemiring a (quot2 *N a) rem2) = modUniqueLemma {rem1} {rem2} {a} quot1 quot2 rem1<a rem2<a (go {a}{quot1}{rem1}{quot2}{rem2} pr) where go : {a quot1 rem1 quot2 rem2 : ℕ} → (a +N (quot1 *N a +N rem1) ≡ a +N (quot2 *N a +N rem2)) → a *N quot1 +N rem1 ≡ a *N quot2 +N rem2 go {a} {quot1} {rem1} {quot2} {rem2} pr rewrite multiplicationNIsCommutative quot1 a | multiplicationNIsCommutative quot2 a = canSubtractFromEqualityLeft {a} pr modIsUnique : {a b : ℕ} → (div1 div2 : divisionAlgResult a b) → divisionAlgResult.rem div1 ≡ divisionAlgResult.rem div2 modIsUnique {zero} {b} record { quot = quot1 ; rem = rem1 ; pr = pr1 ; remIsSmall = remIsSmall1 } record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = remIsSmall } = transitivity pr1 (equalityCommutative pr) modIsUnique {succ a} {b} record { quot = quot1 ; rem = rem1 ; pr = pr1 ; remIsSmall = (inl y) } record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inl x) } = modUniqueLemma {rem1} {rem} {succ a} quot1 quot y x (transitivity pr1 (equalityCommutative pr)) modIsUnique {succ a} {b} record { quot = quot1 ; rem = rem1 ; pr = pr1 ; remIsSmall = (inr ()) } record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inl x) } modIsUnique {succ a} {b} record { quot = quot1 ; rem = rem1 ; pr = pr1 ; remIsSmall = remIsSmall1 } record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inr ()) } transferAddition : (a b c : ℕ) → (a +N b) +N c ≡ (a +N c) +N b transferAddition a b c rewrite equalityCommutative (Semiring.+Associative ℕSemiring a b c) = p a b c where p : (a b c : ℕ) → a +N (b +N c) ≡ (a +N c) +N b p a b c = transitivity (applyEquality (a +N_) (Semiring.commutative ℕSemiring b c)) (Semiring.+Associative ℕSemiring a c b) divisionAlgLemma : (x b : ℕ) → x *N zero +N b ≡ b divisionAlgLemma x b rewrite (Semiring.productZeroRight ℕSemiring x) = refl divisionAlgLemma2 : (x b : ℕ) → (x ≡ b) → x *N succ zero +N zero ≡ b divisionAlgLemma2 x b pr rewrite (Semiring.productOneRight ℕSemiring x) = equalityCommutative (transitivity (equalityCommutative pr) (equalityCommutative (Semiring.sumZeroRight ℕSemiring x))) divisionAlgLemma3 : {a x : ℕ} → (p : succ a <N succ x) → (subtractionNResult.result (-N (inl p))) <N (succ x) divisionAlgLemma3 {a} {x} p = -NIsDecreasing {a} {succ x} p divisionAlgLemma4 : (p a q : ℕ) → ((p +N a *N p) +N q) +N succ a ≡ succ ((p +N a *N succ p) +N q) divisionAlgLemma4 p a q = ans where r : ((p +N a *N p) +N q) +N succ a ≡ succ (((p +N a *N p) +N q) +N a) ans : ((p +N a *N p) +N q) +N succ a ≡ succ ((p +N a *N succ p) +N q) s : ((p +N a *N p) +N q) +N a ≡ (p +N a *N succ p) +N q t : (p +N a *N p) +N a ≡ p +N a *N succ p s = transitivity (transferAddition (p +N a *N p) q a) (applyEquality (λ i → i +N q) t) ans = identityOfIndiscernablesRight _≡_ r (applyEquality succ s) r = succExtracts ((p +N a *N p) +N q) a t = transitivity (equalityCommutative (Semiring.+Associative ℕSemiring p (a *N p) a)) (applyEquality (λ n → p +N n) (equalityCommutative (transitivity (multiplicationNIsCommutative a (succ p)) (transitivity (Semiring.commutative ℕSemiring a _) (applyEquality (_+N a) (multiplicationNIsCommutative p _)))))) divisionAlg : (a : ℕ) → (b : ℕ) → divisionAlgResult a b divisionAlg zero = λ b → record { quot = zero ; rem = b ; pr = refl ; remIsSmall = inr refl ; quotSmall = inr (record { fst = refl ; snd = refl }) } divisionAlg (succ a) = rec <NWellfounded (λ n → divisionAlgResult (succ a) n) go where go : (x : ℕ) (indHyp : (y : ℕ) (y<x : y <N x) → divisionAlgResult (succ a) y) → divisionAlgResult (succ a) x go zero prop = record { quot = zero ; rem = zero ; pr = divisionAlgLemma (succ a) zero ; remIsSmall = inl (succIsPositive a) ; quotSmall = inl (succIsPositive a) } go (succ x) indHyp with totality (succ a) (succ x) go (succ x) indHyp | inl (inl sa<sx) with indHyp (subtractionNResult.result (-N (inl sa<sx))) (divisionAlgLemma3 sa<sx) ... | record { quot = prevQuot ; rem = prevRem ; pr = prevPr ; remIsSmall = smallRem } = p where p : divisionAlgResult (succ a) (succ x) addedA : (succ a *N prevQuot +N prevRem) +N (succ a) ≡ subtractionNResult.result (-N (inl sa<sx)) +N (succ a) addedA' : (succ a *N prevQuot +N prevRem) +N succ a ≡ succ x addedA'' : (succ a *N succ prevQuot) +N prevRem ≡ succ x addedA''' : succ ((prevQuot +N a *N succ prevQuot) +N prevRem) ≡ succ x addedA''' = identityOfIndiscernablesLeft _≡_ addedA'' refl p = record { quot = succ prevQuot ; rem = prevRem ; pr = addedA''' ; remIsSmall = smallRem ; quotSmall = inl (succIsPositive a) } addedA = applyEquality (λ n → n +N succ a) prevPr addedA' = identityOfIndiscernablesRight _≡_ addedA (addMinus {succ a} {succ x} (inl sa<sx)) addedA'' = identityOfIndiscernablesLeft _≡_ addedA' (divisionAlgLemma4 prevQuot a prevRem) go (succ x) indHyp | inr (sa=sx) = record { quot = succ zero ; rem = zero ; pr = divisionAlgLemma2 (succ a) (succ x) sa=sx ; remIsSmall = inl (succIsPositive a) ; quotSmall = inl (succIsPositive a) } go (succ x) indHyp | inl (inr (sx<sa)) = record { quot = zero ; rem = succ x ; pr = divisionAlgLemma (succ a) (succ x) ; remIsSmall = inl sx<sa ; quotSmall = inl (succIsPositive a) } data _∣_ : ℕ → ℕ → Set where divides : {a b : ℕ} → (res : divisionAlgResult a b) → divisionAlgResult.rem res ≡ zero → a ∣ b data _∣'_ : ℕ → ℕ → Set where divides' : {a b : ℕ} → (res : divisionAlgResult' a b) → .(divisionAlgResult'.rem res ≡ zero) → a ∣' b divToDiv' : {a b : ℕ} → a ∣ b → a ∣' b divToDiv' (divides res x) = divides' (collapseDivAlgResult res) (transitivity (collapsePreservesRem res) x) div'ToDiv : {a b : ℕ} → a ∣' b → a ∣ b div'ToDiv (divides' res x) = divides (squashDivAlgResult res) (transitivity (squashPreservesRem res) (squashN record { eq = x })) zeroDividesNothing : (a : ℕ) → zero ∣ succ a → False zeroDividesNothing a (divides record { quot = quot ; rem = rem ; pr = pr } x) = naughtE p where p : zero ≡ succ a p = transitivity (equalityCommutative x) pr record hcfData (a b : ℕ) : Set where field c : ℕ c|a : c ∣ a c|b : c ∣ b hcf : ∀ x → x ∣ a → x ∣ b → x ∣ c positiveTimes : {a b : ℕ} → (succ a *N succ b <N succ a) → False positiveTimes {a} {b} pr = zeroNeverGreater f' where g : succ a *N succ b <N succ a *N succ 0 g rewrite multiplicationNIsCommutative a 1 | Semiring.commutative ℕSemiring a 0 = pr f : succ b <N succ 0 f = cancelInequalityLeft {succ a} {succ b} g f' : b <N 0 f' = canRemoveSuccFrom<N f biggerThanCantDivideLemma : {a b : ℕ} → (a <N b) → (b ∣ a) → a ≡ 0 biggerThanCantDivideLemma {zero} {b} a<b b|a = refl biggerThanCantDivideLemma {succ a} {zero} a<b (divides record { quot = quot ; rem = .0 ; pr = pr ; remIsSmall = remIsSmall ; quotSmall = (inl (le x ())) } refl) biggerThanCantDivideLemma {succ a} {zero} a<b (divides record { quot = quot ; rem = .0 ; pr = () ; remIsSmall = remIsSmall ; quotSmall = (inr x) } refl) biggerThanCantDivideLemma {succ a} {succ b} a<b (divides record { quot = zero ; rem = .0 ; pr = pr ; remIsSmall = remIsSmall ; quotSmall = quotSmall } refl) rewrite Semiring.commutative ℕSemiring (b *N zero) 0 | multiplicationNIsCommutative b 0 = exFalso (naughtE pr) biggerThanCantDivideLemma {succ a} {succ b} a<b (divides record { quot = (succ quot) ; rem = .0 ; pr = pr ; remIsSmall = remIsSmall ; quotSmall = quotSmall } refl) rewrite Semiring.commutative ℕSemiring (quot +N b *N succ quot) 0 | equalityCommutative pr = exFalso (positiveTimes {b} {quot} a<b) biggerThanCantDivide : {a b : ℕ} → (x : ℕ) → (TotalOrder.max ℕTotalOrder a b) <N x → (x ∣ a) → (x ∣ b) → (a ≡ 0) && (b ≡ 0) biggerThanCantDivide {a} {b} x pr x|a x|b with totality a b biggerThanCantDivide {a} {b} x pr x|a x|b | inl (inl a<b) = exFalso (zeroNeverGreater f') where f : b ≡ 0 f = biggerThanCantDivideLemma pr x|b f' : a <N 0 f' rewrite equalityCommutative f = a<b biggerThanCantDivide {a} {b} x pr x|a x|b | inl (inr b<a) = exFalso (zeroNeverGreater f') where f : a ≡ 0 f = biggerThanCantDivideLemma pr x|a f' : b <N 0 f' rewrite equalityCommutative f = b<a biggerThanCantDivide {a} {b} x pr x|a x|b | inr a=b = (transitivity a=b f ,, f) where f : b ≡ 0 f = biggerThanCantDivideLemma pr x|b aDivA : (a : ℕ) → a ∣ a aDivA zero = divides (record { quot = 0 ; rem = 0 ; pr = equalityCommutative (oneTimesPlusZero zero) ; remIsSmall = inr refl ; quotSmall = inr (refl ,, refl) }) refl aDivA (succ a) = divides (record { quot = 1 ; rem = 0 ; pr = equalityCommutative (oneTimesPlusZero (succ a)) ; remIsSmall = inl (succIsPositive a) ; quotSmall = inl (succIsPositive a) }) refl aDivZero : (a : ℕ) → a ∣ zero aDivZero zero = aDivA zero aDivZero (succ a) = divides (record { quot = zero ; rem = zero ; pr = lemma (succ a) ; remIsSmall = inl (succIsPositive a) ; quotSmall = inl (succIsPositive a) }) refl where lemma : (b : ℕ) → b *N zero +N zero ≡ zero lemma b rewrite (Semiring.sumZeroRight ℕSemiring (b *N zero)) = Semiring.productZeroRight ℕSemiring b record extendedHcf (a b : ℕ) : Set where field hcf : hcfData a b c : ℕ c = hcfData.c hcf field extended1 : ℕ extended2 : ℕ extendedProof : (a *N extended1 ≡ b *N extended2 +N c) || (a *N extended1 +N c ≡ b *N extended2) divEqualityLemma1 : {a b c : ℕ} → b ≡ zero → b *N c +N 0 ≡ a → a ≡ b divEqualityLemma1 {a} {.0} {c} refl pr = equalityCommutative pr divEquality : {a b : ℕ} → a ∣ b → b ∣ a → a ≡ b divEquality {a} {b} (divides record { quot = quotAB ; rem = .0 ; pr = prAB ; remIsSmall = _ ; quotSmall = quotSmallAB } refl) (divides record { quot = quot ; rem = .0 ; pr = pr ; remIsSmall = _ ; quotSmall = (inl x) } refl) rewrite Semiring.commutative ℕSemiring (b *N quot) 0 | Semiring.commutative ℕSemiring (a *N quotAB) 0 | equalityCommutative pr | equalityCommutative (Semiring.*Associative ℕSemiring b quot quotAB) = res where lem : {b r : ℕ} → b *N r ≡ b → (0 <N b) → r ≡ 1 lem {zero} {r} pr () lem {succ b} {zero} pr _ rewrite multiplicationNIsCommutative b 0 = exFalso (naughtE pr) lem {succ b} {succ zero} pr _ = refl lem {succ b} {succ (succ r)} pr _ rewrite multiplicationNIsCommutative b (succ (succ r)) | Semiring.commutative ℕSemiring (succ r) (b +N (b +N r *N b)) | equalityCommutative (Semiring.+Associative ℕSemiring b (b +N r *N b) (succ r)) | Semiring.commutative ℕSemiring (b +N r *N b) (succ r) = exFalso (cannotAddAndEnlarge'' {succ b} pr) p : quot *N quotAB ≡ 1 p = lem prAB x q : quot ≡ 1 q = _&&_.fst (productOneImpliesOperandsOne p) res : b *N quot ≡ b res rewrite q | multiplicationNIsCommutative b 1 | Semiring.commutative ℕSemiring b 0 = refl divEquality {.0} {.0} (divides record { quot = quotAB ; rem = .0 ; pr = prAB ; remIsSmall = _ ; quotSmall = quotSmallAB } refl) (divides record { quot = quot ; rem = .0 ; pr = refl ; remIsSmall = _ ; quotSmall = (inr (refl ,, snd)) } refl) = refl hcfWelldefined : {a b : ℕ} → (ab : hcfData a b) → (ab' : hcfData a b) → (hcfData.c ab ≡ hcfData.c ab') hcfWelldefined {a} {b} record { c = c ; c|a = c|a ; c|b = c|b ; hcf = hcf } record { c = c' ; c|a = c|a' ; c|b = c|b' ; hcf = hcf' } with hcf c' c|a' c|b' ... | c'DivC with hcf' c c|a c|b ... | cDivC' = divEquality cDivC' c'DivC reverseHCF : {a b : ℕ} → (ab : extendedHcf a b) → extendedHcf b a reverseHCF {a} {b} record { hcf = record { c = c ; c|a = c|a ; c|b = c|b ; hcf = hcf } ; extended1 = extended1 ; extended2 = extended2 ; extendedProof = (inl x) } = record { hcf = record { c = c ; c|a = c|b ; c|b = c|a ; hcf = λ x z z₁ → hcf x z₁ z } ; extended1 = extended2 ; extended2 = extended1 ; extendedProof = inr (equalityCommutative x) } reverseHCF {a} {b} record { hcf = record { c = c ; c|a = c|a ; c|b = c|b ; hcf = hcf } ; extended1 = extended1 ; extended2 = extended2 ; extendedProof = (inr x) } = record { hcf = record { c = c ; c|a = c|b ; c|b = c|a ; hcf = λ x z z₁ → hcf x z₁ z } ; extended1 = extended2 ; extended2 = extended1 ; extendedProof = inl (equalityCommutative x) } oneDivN : (a : ℕ) → 1 ∣ a oneDivN a = divides (record { quot = a ; rem = zero ; pr = pr ; remIsSmall = inl (succIsPositive zero) ; quotSmall = inl (le zero refl) }) refl where pr : (a +N zero) +N zero ≡ a pr rewrite Semiring.sumZeroRight ℕSemiring (a +N zero) = Semiring.sumZeroRight ℕSemiring a hcfZero : (a : ℕ) → extendedHcf zero a hcfZero a = record { hcf = record { c = a ; c|a = aDivZero a ; c|b = aDivA a ; hcf = λ _ _ p → p } ; extended1 = 0 ; extended2 = 1 ; extendedProof = inr (equalityCommutative (Semiring.productOneRight ℕSemiring a))} hcfOne : (a : ℕ) → extendedHcf 1 a hcfOne a = record { hcf = record { c = 1 ; c|a = aDivA 1 ; c|b = oneDivN a ; hcf = λ _ z _ → z } ; extended1 = 1 ; extended2 = 0 ; extendedProof = inl g } where g : 1 ≡ a *N 0 +N 1 g rewrite multiplicationNIsCommutative a 0 = refl zeroIsValidRem : (a : ℕ) → (0 <N a) || (a ≡ 0) zeroIsValidRem zero = inr refl zeroIsValidRem (succ a) = inl (succIsPositive a) dividesBothImpliesDividesSum : {a x y : ℕ} → a ∣ x → a ∣ y → a ∣ (x +N y) dividesBothImpliesDividesSum {a} {x} {y} (divides record { quot = xDivA ; rem = .0 ; pr = prA ; quotSmall = qsm1 } refl) (divides record { quot = quot ; rem = .0 ; pr = pr ; quotSmall = qsm2 } refl) = divides (record { quot = xDivA +N quot ; rem = 0 ; pr = go {a} {x} {y} {xDivA} {quot} pr prA ; remIsSmall = zeroIsValidRem a ; quotSmall = (quotSmall qsm1 qsm2) }) refl where go : {a x y quot quot2 : ℕ} → (a *N quot2 +N zero ≡ y) → (a *N quot +N zero ≡ x) → a *N (quot +N quot2) +N zero ≡ x +N y go {a} {x} {y} {quot} {quot2} pr1 pr2 rewrite Semiring.sumZeroRight ℕSemiring (a *N quot) = identityOfIndiscernablesLeft _≡_ t (equalityCommutative (Semiring.sumZeroRight ℕSemiring (a *N (quot +N quot2)))) where t : a *N (quot +N quot2) ≡ x +N y t rewrite Semiring.sumZeroRight ℕSemiring (a *N quot2) = transitivity (Semiring.+DistributesOver* ℕSemiring a quot quot2) p where s : a *N quot +N a *N quot2 ≡ x +N a *N quot2 s = applyEquality (λ n → n +N a *N quot2) pr2 r : x +N a *N quot2 ≡ x +N y r = applyEquality (λ n → x +N n) pr1 p : a *N quot +N a *N quot2 ≡ x +N y p = transitivity s r quotSmall : ((0 <N a) || ((0 ≡ a) && (xDivA ≡ 0))) → ((0 <N a) || ((0 ≡ a) && (quot ≡ 0))) → (0 <N a) || ((0 ≡ a) && (xDivA +N quot ≡ 0)) quotSmall (inl x1) (inl x2) = inl x1 quotSmall (inl x1) (inr x2) = inl x1 quotSmall (inr x1) (inl x2) = inl x2 quotSmall (inr (a=0 ,, bl)) (inr (_ ,, bl2)) = inr (a=0 ,, ans) where ans : xDivA +N quot ≡ 0 ans rewrite bl | bl2 = refl dividesBothImpliesDividesDifference : {a b c : ℕ} → a ∣ b → a ∣ c → (c<b : c <N b) → a ∣ (subtractionNResult.result (-N (inl c<b))) dividesBothImpliesDividesDifference {zero} {b} {.0} prab (divides record { quot = quot ; rem = .0 ; pr = refl } refl) c<b = prab dividesBothImpliesDividesDifference {succ a} {b} {c} (divides record { quot = bDivSA ; rem = .0 ; pr = pr } refl) (divides record { quot = cDivSA ; rem = .0 ; pr = pr2 } refl) c<b rewrite (Semiring.sumZeroRight ℕSemiring (succ a *N cDivSA)) | (Semiring.sumZeroRight ℕSemiring (succ a *N bDivSA)) = divides (record { quot = subtractionNResult.result bDivSA-cDivSA ; rem = 0 ; pr = identityOfIndiscernablesLeft _≡_ (identityOfIndiscernablesLeft _≡_ s (equalityCommutative q)) (equalityCommutative (Semiring.sumZeroRight ℕSemiring _)) ; remIsSmall = inl (succIsPositive a) ; quotSmall = inl (succIsPositive a) }) refl where p : cDivSA <N bDivSA p rewrite (equalityCommutative pr2) | (equalityCommutative pr) = cancelInequalityLeft {succ a} {cDivSA} {bDivSA} c<b bDivSA-cDivSA : subtractionNResult cDivSA bDivSA (inl p) bDivSA-cDivSA = -N {cDivSA} {bDivSA} (inl p) la-ka = subtractionNResult.result (-N {succ a *N cDivSA} {succ a *N bDivSA} (inl (lessRespectsMultiplicationLeft cDivSA bDivSA (succ a) p (succIsPositive a)))) q : (succ a *N (subtractionNResult.result bDivSA-cDivSA)) ≡ la-ka q = subtractProduct {succ a} {cDivSA} {bDivSA} (succIsPositive a) p s : la-ka ≡ subtractionNResult.result (-N {c} {b} (inl c<b)) s = equivalentSubtraction (succ a *N cDivSA) b (succ a *N bDivSA) c (lessRespectsMultiplicationLeft cDivSA bDivSA (succ a) p (succIsPositive a)) c<b g where g : (succ a *N cDivSA) +N b ≡ (succ a *N bDivSA) +N c g rewrite equalityCommutative pr2 | equalityCommutative pr = Semiring.commutative ℕSemiring (cDivSA +N a *N cDivSA) (bDivSA +N a *N bDivSA) euclidLemma1 : {a b : ℕ} → (a<b : a <N b) → (t : ℕ) → a +N b <N t → a +N (subtractionNResult.result (-N (inl a<b))) <N t euclidLemma1 {zero} {b} zero<b t b<t = b<t euclidLemma1 {succ a} {b} sa<b t sa+b<t = identityOfIndiscernablesLeft _<N_ q (Semiring.commutative ℕSemiring (subtractionNResult.result (-N (inl sa<b))) (succ a)) where p : b <N t p = TotalOrder.<Transitive ℕTotalOrder (le a refl) sa+b<t q : (subtractionNResult.result (-N (inl sa<b))) +N succ a <N t q = identityOfIndiscernablesLeft _<N_ p (equalityCommutative (addMinus (inl sa<b))) euclidLemma2 : {a b max : ℕ} → (succ (a +N b) <N max) → b <N max euclidLemma2 {a} {b} {max} pr = lessTransitive {b} {succ (a +N b)} {max} (lemma a b) pr where lemma : (a b : ℕ) → b <N succ (a +N b) lemma a b rewrite Semiring.commutative ℕSemiring (succ a) b = addingIncreases b a euclidLemma3 : {a b max : ℕ} → (succ (succ (a +N b)) <N max) → succ b <N max euclidLemma3 {a} {b} {max} pr = euclidLemma2 {a} {succ b} {max} (identityOfIndiscernablesLeft _<N_ pr (applyEquality succ (equalityCommutative (succExtracts a b)))) euclidLemma4 : (a b c d h : ℕ) → (sa<b : (succ a) <N b) → (pr : subtractionNResult.result (-N (inl sa<b)) *N c ≡ (succ a) *N d +N h) → b *N c ≡ (succ a) *N (d +N c) +N h euclidLemma4 a b zero d h sa<b pr rewrite Semiring.sumZeroRight ℕSemiring d | Semiring.productZeroRight ℕSemiring b | Semiring.productZeroRight ℕSemiring (subtractionNResult.result (-N (inl sa<b))) = pr euclidLemma4 a b (succ c) d h sa<b pr rewrite subtractProduct' (succIsPositive c) sa<b = transitivity q' r' where q : (succ c) *N b ≡ succ (a +N c *N succ a) +N ((succ a) *N d +N h) q = moveOneSubtraction {succ (a +N c *N succ a)} {b +N c *N b} {(succ a) *N d +N h} {inl _} pr q' : b *N succ c ≡ succ (a +N c *N succ a) +N ((succ a) *N d +N h) q' rewrite multiplicationNIsCommutative b (succ c) = q r' : ((succ c) *N succ a) +N (((succ a) *N d) +N h) ≡ ((succ a) *N (d +N succ c)) +N h r' rewrite Semiring.+Associative ℕSemiring ((succ c) *N succ a) ((succ a) *N d) h = applyEquality (λ t → t +N h) {((succ c) *N succ a) +N ((succ a) *N d)} {(succ a) *N (d +N succ c)} (go (succ c) (succ a) d) where go' : (a b c : ℕ) → b *N a +N b *N c ≡ b *N (c +N a) go : (a b c : ℕ) → a *N b +N b *N c ≡ b *N (c +N a) go a b c rewrite multiplicationNIsCommutative a b = go' a b c go' a b c rewrite Semiring.commutative ℕSemiring (b *N a) (b *N c) = equalityCommutative (Semiring.+DistributesOver* ℕSemiring b c a) euclidLemma5 : (a b c d h : ℕ) → (sa<b : (succ a) <N b) → (pr : subtractionNResult.result (-N (inl sa<b)) *N c +N h ≡ (succ a) *N d) → (succ a) *N (d +N c) ≡ b *N c +N h euclidLemma5 a b c d h sa<b pr with (-N (inl sa<b)) euclidLemma5 a b zero d h sa<b pr | record { result = result ; pr = sub } rewrite Semiring.sumZeroRight ℕSemiring d | Semiring.productZeroRight ℕSemiring b | Semiring.productZeroRight ℕSemiring result = equalityCommutative pr euclidLemma5 a b (succ c) d h sa<b pr | record { result = result ; pr = sub } rewrite subtractProduct' (succIsPositive c) sa<b | equalityCommutative sub = pv'' where p : succ a *N d ≡ result *N succ c +N h p = equalityCommutative pr p' : a *N succ c +N succ a *N d ≡ (a *N succ c) +N ((result *N succ c) +N h) p' = applyEquality (λ t → a *N succ c +N t) p p'' : a *N succ c +N succ a *N d ≡ (a *N succ c +N result *N succ c) +N h p'' rewrite equalityCommutative (Semiring.+Associative ℕSemiring (a *N succ c) (result *N succ c) h) = p' p''' : a *N succ c +N succ a *N d ≡ (a +N result) *N succ c +N h p''' rewrite multiplicationNIsCommutative (a +N result) (succ c) | Semiring.+DistributesOver* ℕSemiring (succ c) a result | multiplicationNIsCommutative (succ c) a | multiplicationNIsCommutative (succ c) result = p'' pv : c +N (a *N succ c +N succ a *N d) ≡ (c +N (a +N result) *N succ c) +N h pv rewrite equalityCommutative (Semiring.+Associative ℕSemiring c ((a +N result) *N succ c) h) = applyEquality (λ t → c +N t) p''' pv' : (succ c) +N (a *N succ c +N succ a *N d) ≡ succ ((c +N (a +N result) *N succ c) +N h) pv' = applyEquality succ pv pv'' : (succ a) *N (d +N succ c) ≡ succ ((c +N (a +N result) *N succ c) +N h) pv'' = identityOfIndiscernablesLeft _≡_ pv' (go a c d) where go : (a c d : ℕ) → (succ c) +N (a *N succ c +N ((succ a) *N d)) ≡ (succ a) *N (d +N succ c) go a c d rewrite Semiring.+Associative ℕSemiring (succ c) (a *N succ c) ((succ a) *N d) = go' where go' : (succ a) *N (succ c) +N (succ a) *N d ≡ (succ a) *N (d +N succ c) go' rewrite Semiring.commutative ℕSemiring d (succ c) = equalityCommutative (Semiring.+DistributesOver* ℕSemiring (succ a) (succ c) d) euclid : (a b : ℕ) → extendedHcf a b euclid a b = inducted (succ a +N b) a b (a<SuccA (a +N b)) where P : ℕ → Set P sum = ∀ (a b : ℕ) → a +N b <N sum → extendedHcf a b go'' : {a b : ℕ} → (maxsum : ℕ) → (a <N b) → (a +N b <N maxsum) → (∀ y → y <N maxsum → P y) → extendedHcf a b go'' {zero} {b} maxSum zero<b b<maxsum indHyp = hcfZero b go'' {1} {b} maxSum 1<b b<maxsum indHyp = hcfOne b go'' {succ (succ a)} {b} maxSum ssa<b ssa+b<maxsum indHyp with (indHyp (succ b) (euclidLemma3 {a} {b} {maxSum} ssa+b<maxsum)) (subtractionNResult.result (-N (inl ssa<b))) (succ (succ a)) (identityOfIndiscernablesLeft _<N_ (a<SuccA b) (equalityCommutative (addMinus (inl ssa<b)))) go'' {succ (succ a)} {b} maxSum ssa<b ssa+b<maxsum indHyp | record { hcf = record { c = c ; c|a = c|a ; c|b = c|b ; hcf = hcf } ; extended1 = extended1 ; extended2 = extended2 ; extendedProof = inl extendedProof } = record { hcf = record { c = c ; c|a = c|b ; c|b = hcfDivB'' ; hcf = λ div prDivSSA prDivB → hcf div (dividesBothImpliesDividesDifference prDivB prDivSSA ssa<b) prDivSSA } ; extended2 = extended1; extended1 = extended2 +N extended1 ; extendedProof = inr (equalityCommutative (euclidLemma4 (succ a) b extended1 extended2 c ssa<b extendedProof)) } where hcfDivB : c ∣ ((succ (succ a)) +N (subtractionNResult.result (-N (inl ssa<b)))) hcfDivB = dividesBothImpliesDividesSum {c} {succ (succ a)} { subtractionNResult.result (-N (inl ssa<b))} c|b c|a hcfDivB' : c ∣ ((subtractionNResult.result (-N (inl ssa<b))) +N (succ (succ a))) hcfDivB' = identityOfIndiscernablesRight _∣_ hcfDivB (Semiring.commutative ℕSemiring (succ (succ a)) ( subtractionNResult.result (-N (inl ssa<b)))) hcfDivB'' : c ∣ b hcfDivB'' = identityOfIndiscernablesRight _∣_ hcfDivB' (addMinus (inl ssa<b)) go'' {succ (succ a)} {b} maxSum ssa<b ssa+b<maxsum indHyp | record { hcf = record { c = c ; c|a = c|a ; c|b = c|b ; hcf = hcf } ; extended1 = extended1 ; extended2 = extended2 ; extendedProof = inr extendedProof } = record { hcf = record { c = c ; c|a = c|b ; c|b = hcfDivB'' ; hcf = λ div prDivSSA prDivB → hcf div (dividesBothImpliesDividesDifference prDivB prDivSSA ssa<b) prDivSSA } ; extended2 = extended1; extended1 = extended2 +N extended1 ; extendedProof = inl (euclidLemma5 (succ a) b extended1 extended2 c ssa<b extendedProof) } where hcfDivB : c ∣ ((succ (succ a)) +N (subtractionNResult.result (-N (inl ssa<b)))) hcfDivB = dividesBothImpliesDividesSum {c} {succ (succ a)} { subtractionNResult.result (-N (inl ssa<b))} c|b c|a hcfDivB' : c ∣ ((subtractionNResult.result (-N (inl ssa<b))) +N (succ (succ a))) hcfDivB' = identityOfIndiscernablesRight _∣_ hcfDivB (Semiring.commutative ℕSemiring (succ (succ a)) (subtractionNResult.result (-N (inl ssa<b)))) hcfDivB'' : c ∣ b hcfDivB'' = identityOfIndiscernablesRight _∣_ hcfDivB' (addMinus (inl ssa<b)) go' : (maxSum a b : ℕ) → (a +N b <N maxSum) → (∀ y → y <N maxSum → P y) → extendedHcf a b go' maxSum a b a+b<maxsum indHyp with totality a b go' maxSum a b a+b<maxsum indHyp | inl (inl a<b) = go'' maxSum a<b a+b<maxsum indHyp go' maxSum a b a+b<maxsum indHyp | inl (inr b<a) = reverseHCF (go'' maxSum b<a (identityOfIndiscernablesLeft _<N_ a+b<maxsum (Semiring.commutative ℕSemiring a b)) indHyp) go' maxSum a .a _ indHyp | inr refl = record { hcf = record { c = a ; c|a = aDivA a ; c|b = aDivA a ; hcf = λ _ _ z → z } ; extended1 = 0 ; extended2 = 1 ; extendedProof = inr s} where s : a *N zero +N a ≡ a *N 1 s rewrite multiplicationNIsCommutative a zero | Semiring.productOneRight ℕSemiring a = refl go : ∀ x → (∀ y → y <N x → P y) → P x go maxSum indHyp = λ a b a+b<maxSum → go' maxSum a b a+b<maxSum indHyp inducted : ∀ x → P x inducted = rec <NWellfounded P go divOneImpliesOne : {a : ℕ} → a ∣ 1 → a ≡ 1 divOneImpliesOne {zero} a|1 = exFalso (zeroDividesNothing _ a|1) divOneImpliesOne {succ zero} a|1 = refl divOneImpliesOne {succ (succ a)} (divides record { quot = zero ; rem = .0 ; pr = pr ; remIsSmall = remIsSmall ; quotSmall = quotSmall } refl) rewrite Semiring.sumZeroRight ℕSemiring (a *N zero) | multiplicationNIsCommutative a 0 = exFalso (naughtE pr) divOneImpliesOne {succ (succ a)} (divides record { quot = (succ quot) ; rem = .0 ; pr = pr ; remIsSmall = remIsSmall ; quotSmall = quotSmall } refl) rewrite Semiring.commutative ℕSemiring quot (succ (quot +N a *N succ quot)) = exFalso (naughtE (equalityCommutative (succInjective pr)))
{ "alphanum_fraction": 0.6359801115, "avg_line_length": 79.7716346154, "ext": "agda", "hexsha": "397765a9f3b9bcde1a92a3afe4050b3502b87587", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Numbers/Naturals/EuclideanAlgorithm.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Numbers/Naturals/EuclideanAlgorithm.agda", "max_line_length": 614, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Numbers/Naturals/EuclideanAlgorithm.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 12349, "size": 33185 }
{-# OPTIONS --cubical #-} open import Agda.Builtin.Cubical.Path data I : Set where zero one : I zero≡one : zero ≡ one
{ "alphanum_fraction": 0.6532258065, "avg_line_length": 15.5, "ext": "agda", "hexsha": "28b85ec3607c56b7725f468bc9df0c15c1572303", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Compiler/simple/Higher-inductive-types-are-not-supported.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Compiler/simple/Higher-inductive-types-are-not-supported.agda", "max_line_length": 37, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Compiler/simple/Higher-inductive-types-are-not-supported.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 41, "size": 124 }
------------------------------------------------------------------------------ -- Theory T from the paper ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module T where infixl 9 _·_ -- The symbol is '\cdot'. infix 7 _≡_ ------------------------------------------------------------------------------ postulate T : Set zero K S : T succ : T → T _·_ : T → T → T -- The identity type on the universe of discourse. data _≡_ (x : T) : T → Set where refl : x ≡ x -- Conversion rules postulate cK : ∀ x y → K · x · y ≡ x cS : ∀ x y z → S · x · y · z ≡ x · z · (y · z)
{ "alphanum_fraction": 0.3447852761, "avg_line_length": 26.2903225806, "ext": "agda", "hexsha": "b1dea2c4c7a7f4bfaf6ee1fe6ee411ba17153759", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/papers/paper-2011/T.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/papers/paper-2011/T.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/papers/paper-2011/T.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 201, "size": 815 }
{-# OPTIONS --rewriting #-} module Properties.Subtyping where open import Agda.Builtin.Equality using (_≡_; refl) open import FFI.Data.Either using (Either; Left; Right; mapLR; swapLR; cond) open import Luau.Subtyping using (_<:_; _≮:_; Tree; Language; ¬Language; witness; unknown; never; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-scalar; function-scalar; function-ok; function-err; left; right; _,_) open import Luau.Type using (Type; Scalar; nil; number; string; boolean; never; unknown; _⇒_; _∪_; _∩_; src; tgt) open import Properties.Contradiction using (CONTRADICTION; ¬) open import Properties.Equality using (_≢_) open import Properties.Functions using (_∘_) open import Properties.Product using (_×_; _,_) -- Language membership is decidable dec-language : ∀ T t → Either (¬Language T t) (Language T t) dec-language nil (scalar number) = Left (scalar-scalar number nil (λ ())) dec-language nil (scalar boolean) = Left (scalar-scalar boolean nil (λ ())) dec-language nil (scalar string) = Left (scalar-scalar string nil (λ ())) dec-language nil (scalar nil) = Right (scalar nil) dec-language nil function = Left (scalar-function nil) dec-language nil (function-ok t) = Left (scalar-function-ok nil) dec-language nil (function-err t) = Right (scalar-function-err nil) dec-language boolean (scalar number) = Left (scalar-scalar number boolean (λ ())) dec-language boolean (scalar boolean) = Right (scalar boolean) dec-language boolean (scalar string) = Left (scalar-scalar string boolean (λ ())) dec-language boolean (scalar nil) = Left (scalar-scalar nil boolean (λ ())) dec-language boolean function = Left (scalar-function boolean) dec-language boolean (function-ok t) = Left (scalar-function-ok boolean) dec-language boolean (function-err t) = Right (scalar-function-err boolean) dec-language number (scalar number) = Right (scalar number) dec-language number (scalar boolean) = Left (scalar-scalar boolean number (λ ())) dec-language number (scalar string) = Left (scalar-scalar string number (λ ())) dec-language number (scalar nil) = Left (scalar-scalar nil number (λ ())) dec-language number function = Left (scalar-function number) dec-language number (function-ok t) = Left (scalar-function-ok number) dec-language number (function-err t) = Right (scalar-function-err number) dec-language string (scalar number) = Left (scalar-scalar number string (λ ())) dec-language string (scalar boolean) = Left (scalar-scalar boolean string (λ ())) dec-language string (scalar string) = Right (scalar string) dec-language string (scalar nil) = Left (scalar-scalar nil string (λ ())) dec-language string function = Left (scalar-function string) dec-language string (function-ok t) = Left (scalar-function-ok string) dec-language string (function-err t) = Right (scalar-function-err string) dec-language (T₁ ⇒ T₂) (scalar s) = Left (function-scalar s) dec-language (T₁ ⇒ T₂) function = Right function dec-language (T₁ ⇒ T₂) (function-ok t) = mapLR function-ok function-ok (dec-language T₂ t) dec-language (T₁ ⇒ T₂) (function-err t) = mapLR function-err function-err (swapLR (dec-language T₁ t)) dec-language never t = Left never dec-language unknown t = Right unknown dec-language (T₁ ∪ T₂) t = cond (λ p → cond (Left ∘ _,_ p) (Right ∘ right) (dec-language T₂ t)) (Right ∘ left) (dec-language T₁ t) dec-language (T₁ ∩ T₂) t = cond (Left ∘ left) (λ p → cond (Left ∘ right) (Right ∘ _,_ p) (dec-language T₂ t)) (dec-language T₁ t) -- ¬Language T is the complement of Language T language-comp : ∀ {T} t → ¬Language T t → ¬(Language T t) language-comp t (p₁ , p₂) (left q) = language-comp t p₁ q language-comp t (p₁ , p₂) (right q) = language-comp t p₂ q language-comp t (left p) (q₁ , q₂) = language-comp t p q₁ language-comp t (right p) (q₁ , q₂) = language-comp t p q₂ language-comp (scalar s) (scalar-scalar s p₁ p₂) (scalar s) = p₂ refl language-comp (scalar s) (function-scalar s) (scalar s) = language-comp function (scalar-function s) function language-comp (scalar s) never (scalar ()) language-comp function (scalar-function ()) function language-comp (function-ok t) (scalar-function-ok ()) (function-ok q) language-comp (function-ok t) (function-ok p) (function-ok q) = language-comp t p q language-comp (function-err t) (function-err p) (function-err q) = language-comp t q p -- ≮: is the complement of <: ¬≮:-impl-<: : ∀ {T U} → ¬(T ≮: U) → (T <: U) ¬≮:-impl-<: {T} {U} p t q with dec-language U t ¬≮:-impl-<: {T} {U} p t q | Left r = CONTRADICTION (p (witness t q r)) ¬≮:-impl-<: {T} {U} p t q | Right r = r <:-impl-¬≮: : ∀ {T U} → (T <: U) → ¬(T ≮: U) <:-impl-¬≮: p (witness t q r) = language-comp t r (p t q) -- reflexivity ≮:-refl : ∀ {T} → ¬(T ≮: T) ≮:-refl (witness t p q) = language-comp t q p <:-refl : ∀ {T} → (T <: T) <:-refl = ¬≮:-impl-<: ≮:-refl -- transititivity ≮:-trans-≡ : ∀ {S T U} → (S ≮: T) → (T ≡ U) → (S ≮: U) ≮:-trans-≡ p refl = p ≡-trans-≮: : ∀ {S T U} → (S ≡ T) → (T ≮: U) → (S ≮: U) ≡-trans-≮: refl p = p ≮:-trans : ∀ {S T U} → (S ≮: U) → Either (S ≮: T) (T ≮: U) ≮:-trans {T = T} (witness t p q) = mapLR (witness t p) (λ z → witness t z q) (dec-language T t) <:-trans : ∀ {S T U} → (S <: T) → (T <: U) → (S <: U) <:-trans p q = ¬≮:-impl-<: (cond (<:-impl-¬≮: p) (<:-impl-¬≮: q) ∘ ≮:-trans) -- Properties of scalars skalar = number ∪ (string ∪ (nil ∪ boolean)) function-≮:-scalar : ∀ {S T U} → (Scalar U) → ((S ⇒ T) ≮: U) function-≮:-scalar s = witness function function (scalar-function s) scalar-≮:-function : ∀ {S T U} → (Scalar U) → (U ≮: (S ⇒ T)) scalar-≮:-function s = witness (scalar s) (scalar s) (function-scalar s) unknown-≮:-scalar : ∀ {U} → (Scalar U) → (unknown ≮: U) unknown-≮:-scalar s = witness (function-ok (scalar s)) unknown (scalar-function-ok s) scalar-≮:-never : ∀ {U} → (Scalar U) → (U ≮: never) scalar-≮:-never s = witness (scalar s) (scalar s) never scalar-≢-impl-≮: : ∀ {T U} → (Scalar T) → (Scalar U) → (T ≢ U) → (T ≮: U) scalar-≢-impl-≮: s₁ s₂ p = witness (scalar s₁) (scalar s₁) (scalar-scalar s₁ s₂ p) -- Properties of tgt tgt-function-ok : ∀ {T t} → (Language (tgt T) t) → Language T (function-ok t) tgt-function-ok {T = nil} (scalar ()) tgt-function-ok {T = T₁ ⇒ T₂} p = function-ok p tgt-function-ok {T = never} (scalar ()) tgt-function-ok {T = unknown} p = unknown tgt-function-ok {T = boolean} (scalar ()) tgt-function-ok {T = number} (scalar ()) tgt-function-ok {T = string} (scalar ()) tgt-function-ok {T = T₁ ∪ T₂} (left p) = left (tgt-function-ok p) tgt-function-ok {T = T₁ ∪ T₂} (right p) = right (tgt-function-ok p) tgt-function-ok {T = T₁ ∩ T₂} (p₁ , p₂) = (tgt-function-ok p₁ , tgt-function-ok p₂) function-ok-tgt : ∀ {T t} → Language T (function-ok t) → (Language (tgt T) t) function-ok-tgt (function-ok p) = p function-ok-tgt (left p) = left (function-ok-tgt p) function-ok-tgt (right p) = right (function-ok-tgt p) function-ok-tgt (p₁ , p₂) = (function-ok-tgt p₁ , function-ok-tgt p₂) function-ok-tgt unknown = unknown skalar-function-ok : ∀ {t} → (¬Language skalar (function-ok t)) skalar-function-ok = (scalar-function-ok number , (scalar-function-ok string , (scalar-function-ok nil , scalar-function-ok boolean))) skalar-scalar : ∀ {T} (s : Scalar T) → (Language skalar (scalar s)) skalar-scalar number = left (scalar number) skalar-scalar boolean = right (right (right (scalar boolean))) skalar-scalar string = right (left (scalar string)) skalar-scalar nil = right (right (left (scalar nil))) tgt-never-≮: : ∀ {T U} → (tgt T ≮: U) → (T ≮: (skalar ∪ (never ⇒ U))) tgt-never-≮: (witness t p q) = witness (function-ok t) (tgt-function-ok p) (skalar-function-ok , function-ok q) never-tgt-≮: : ∀ {T U} → (T ≮: (skalar ∪ (never ⇒ U))) → (tgt T ≮: U) never-tgt-≮: (witness (scalar s) p (q₁ , q₂)) = CONTRADICTION (≮:-refl (witness (scalar s) (skalar-scalar s) q₁)) never-tgt-≮: (witness function p (q₁ , scalar-function ())) never-tgt-≮: (witness (function-ok t) p (q₁ , function-ok q₂)) = witness t (function-ok-tgt p) q₂ never-tgt-≮: (witness (function-err (scalar s)) p (q₁ , function-err (scalar ()))) -- Properties of src function-err-src : ∀ {T t} → (¬Language (src T) t) → Language T (function-err t) function-err-src {T = nil} never = scalar-function-err nil function-err-src {T = T₁ ⇒ T₂} p = function-err p function-err-src {T = never} (scalar-scalar number () p) function-err-src {T = never} (scalar-function-ok ()) function-err-src {T = unknown} never = unknown function-err-src {T = boolean} p = scalar-function-err boolean function-err-src {T = number} p = scalar-function-err number function-err-src {T = string} p = scalar-function-err string function-err-src {T = T₁ ∪ T₂} (left p) = left (function-err-src p) function-err-src {T = T₁ ∪ T₂} (right p) = right (function-err-src p) function-err-src {T = T₁ ∩ T₂} (p₁ , p₂) = function-err-src p₁ , function-err-src p₂ ¬function-err-src : ∀ {T t} → (Language (src T) t) → ¬Language T (function-err t) ¬function-err-src {T = nil} (scalar ()) ¬function-err-src {T = T₁ ⇒ T₂} p = function-err p ¬function-err-src {T = never} unknown = never ¬function-err-src {T = unknown} (scalar ()) ¬function-err-src {T = boolean} (scalar ()) ¬function-err-src {T = number} (scalar ()) ¬function-err-src {T = string} (scalar ()) ¬function-err-src {T = T₁ ∪ T₂} (p₁ , p₂) = (¬function-err-src p₁ , ¬function-err-src p₂) ¬function-err-src {T = T₁ ∩ T₂} (left p) = left (¬function-err-src p) ¬function-err-src {T = T₁ ∩ T₂} (right p) = right (¬function-err-src p) src-¬function-err : ∀ {T t} → Language T (function-err t) → (¬Language (src T) t) src-¬function-err {T = nil} p = never src-¬function-err {T = T₁ ⇒ T₂} (function-err p) = p src-¬function-err {T = never} (scalar-function-err ()) src-¬function-err {T = unknown} p = never src-¬function-err {T = boolean} p = never src-¬function-err {T = number} p = never src-¬function-err {T = string} p = never src-¬function-err {T = T₁ ∪ T₂} (left p) = left (src-¬function-err p) src-¬function-err {T = T₁ ∪ T₂} (right p) = right (src-¬function-err p) src-¬function-err {T = T₁ ∩ T₂} (p₁ , p₂) = (src-¬function-err p₁ , src-¬function-err p₂) src-¬scalar : ∀ {S T t} (s : Scalar S) → Language T (scalar s) → (¬Language (src T) t) src-¬scalar number (scalar number) = never src-¬scalar boolean (scalar boolean) = never src-¬scalar string (scalar string) = never src-¬scalar nil (scalar nil) = never src-¬scalar s (left p) = left (src-¬scalar s p) src-¬scalar s (right p) = right (src-¬scalar s p) src-¬scalar s (p₁ , p₂) = (src-¬scalar s p₁ , src-¬scalar s p₂) src-¬scalar s unknown = never src-unknown-≮: : ∀ {T U} → (T ≮: src U) → (U ≮: (T ⇒ unknown)) src-unknown-≮: (witness t p q) = witness (function-err t) (function-err-src q) (¬function-err-src p) unknown-src-≮: : ∀ {S T U} → (U ≮: S) → (T ≮: (U ⇒ unknown)) → (U ≮: src T) unknown-src-≮: (witness t x x₁) (witness (scalar s) p (function-scalar s)) = witness t x (src-¬scalar s p) unknown-src-≮: r (witness (function-ok (scalar s)) p (function-ok (scalar-scalar s () q))) unknown-src-≮: r (witness (function-ok (function-ok _)) p (function-ok (scalar-function-ok ()))) unknown-src-≮: r (witness (function-err t) p (function-err q)) = witness t q (src-¬function-err p) -- Properties of unknown and never unknown-≮: : ∀ {T U} → (T ≮: U) → (unknown ≮: U) unknown-≮: (witness t p q) = witness t unknown q never-≮: : ∀ {T U} → (T ≮: U) → (T ≮: never) never-≮: (witness t p q) = witness t p never unknown-≮:-never : (unknown ≮: never) unknown-≮:-never = witness (scalar nil) unknown never function-≮:-never : ∀ {T U} → ((T ⇒ U) ≮: never) function-≮:-never = witness function function never -- A Gentle Introduction To Semantic Subtyping (https://www.cduce.org/papers/gentle.pdf) -- defines a "set-theoretic" model (sec 2.5) -- Unfortunately we don't quite have this property, due to uninhabited types, -- for example (never -> T) is equivalent to (never -> U) -- when types are interpreted as sets of syntactic values. _⊆_ : ∀ {A : Set} → (A → Set) → (A → Set) → Set (P ⊆ Q) = ∀ a → (P a) → (Q a) _⊗_ : ∀ {A B : Set} → (A → Set) → (B → Set) → ((A × B) → Set) (P ⊗ Q) (a , b) = (P a) × (Q b) Comp : ∀ {A : Set} → (A → Set) → (A → Set) Comp P a = ¬(P a) set-theoretic-if : ∀ {S₁ T₁ S₂ T₂} → -- This is the "if" part of being a set-theoretic model (Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂)) → (∀ Q → Q ⊆ Comp((Language S₁) ⊗ Comp(Language T₁)) → Q ⊆ Comp((Language S₂) ⊗ Comp(Language T₂))) set-theoretic-if {S₁} {T₁} {S₂} {T₂} p Q q (t , u) Qtu (S₂t , ¬T₂u) = q (t , u) Qtu (S₁t , ¬T₁u) where S₁t : Language S₁ t S₁t with dec-language S₁ t S₁t | Left ¬S₁t with p (function-err t) (function-err ¬S₁t) S₁t | Left ¬S₁t | function-err ¬S₂t = CONTRADICTION (language-comp t ¬S₂t S₂t) S₁t | Right r = r ¬T₁u : ¬(Language T₁ u) ¬T₁u T₁u with p (function-ok u) (function-ok T₁u) ¬T₁u T₁u | function-ok T₂u = ¬T₂u T₂u not-quite-set-theoretic-only-if : ∀ {S₁ T₁ S₂ T₂} → -- We don't quite have that this is a set-theoretic model -- it's only true when Language T₁ and ¬Language T₂ t₂ are inhabited -- in particular it's not true when T₁ is never, or T₂ is unknown. ∀ s₂ t₂ → Language S₂ s₂ → ¬Language T₂ t₂ → -- This is the "only if" part of being a set-theoretic model (∀ Q → Q ⊆ Comp((Language S₁) ⊗ Comp(Language T₁)) → Q ⊆ Comp((Language S₂) ⊗ Comp(Language T₂))) → (Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂)) not-quite-set-theoretic-only-if {S₁} {T₁} {S₂} {T₂} s₂ t₂ S₂s₂ ¬T₂t₂ p = r where Q : (Tree × Tree) → Set Q (t , u) = Either (¬Language S₁ t) (Language T₁ u) q : Q ⊆ Comp((Language S₁) ⊗ Comp(Language T₁)) q (t , u) (Left ¬S₁t) (S₁t , ¬T₁u) = language-comp t ¬S₁t S₁t q (t , u) (Right T₂u) (S₁t , ¬T₁u) = ¬T₁u T₂u r : Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂) r function function = function r (function-err t) (function-err ¬S₁t) with dec-language S₂ t r (function-err t) (function-err ¬S₁t) | Left ¬S₂t = function-err ¬S₂t r (function-err t) (function-err ¬S₁t) | Right S₂t = CONTRADICTION (p Q q (t , t₂) (Left ¬S₁t) (S₂t , language-comp t₂ ¬T₂t₂)) r (function-ok t) (function-ok T₁t) with dec-language T₂ t r (function-ok t) (function-ok T₁t) | Left ¬T₂t = CONTRADICTION (p Q q (s₂ , t) (Right T₁t) (S₂s₂ , language-comp t ¬T₂t)) r (function-ok t) (function-ok T₁t) | Right T₂t = function-ok T₂t -- A counterexample when the argument type is empty. set-theoretic-counterexample-one : (∀ Q → Q ⊆ Comp((Language never) ⊗ Comp(Language number)) → Q ⊆ Comp((Language never) ⊗ Comp(Language string))) set-theoretic-counterexample-one Q q ((scalar s) , u) Qtu (scalar () , p) set-theoretic-counterexample-one Q q ((function-err t) , u) Qtu (scalar-function-err () , p) set-theoretic-counterexample-two : (never ⇒ number) ≮: (never ⇒ string) set-theoretic-counterexample-two = witness (function-ok (scalar number)) (function-ok (scalar number)) (function-ok (scalar-scalar number string (λ ()))) -- At some point we may deal with overloaded function resolution, which should fix this problem... -- The reason why this is connected to overloaded functions is that currently we have that the type of -- f(x) is (tgt T) where f:T. Really we should have the type depend on the type of x, that is use (tgt T U), -- where U is the type of x. In particular (tgt (S => T) (U & V)) should be the same as (tgt ((S&U) => T) V) -- and tgt(never => T) should be unknown. For example -- -- tgt((number => string) & (string => bool))(number) -- is tgt(number => string)(number) & tgt(string => bool)(number) -- is tgt(number => string)(number) & tgt(string => bool)(number&unknown) -- is tgt(number => string)(number) & tgt(string&number => bool)(unknown) -- is tgt(number => string)(number) & tgt(never => bool)(unknown) -- is string & unknown -- is string -- -- there's some discussion of this in the Gentle Introduction paper.
{ "alphanum_fraction": 0.6483252074, "avg_line_length": 50.9451612903, "ext": "agda", "hexsha": "b713eaf7db1520b08cd6061203a073e0092d52ce", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5bb9f379b07e378db0a170e7c4030e3a943b2f14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MeltzDev/luau", "max_forks_repo_path": "prototyping/Properties/Subtyping.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5bb9f379b07e378db0a170e7c4030e3a943b2f14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MeltzDev/luau", "max_issues_repo_path": "prototyping/Properties/Subtyping.agda", "max_line_length": 250, "max_stars_count": null, "max_stars_repo_head_hexsha": "5bb9f379b07e378db0a170e7c4030e3a943b2f14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MeltzDev/luau", "max_stars_repo_path": "prototyping/Properties/Subtyping.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5442, "size": 15793 }
------------------------------------------------------------------------------ -- The first-order theory of combinators (FOTC) base ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} {- FOTC The logical framework (Agda) * Logical constants * Curry-Howard isomorphism * Equality * Identity type * Term language and conversion rules * Postulates * Inductively defined predicates * Inductive families * Co-inductively defined predicates * Greatest fixed-points -} module FOTC.Base where -- First-order logic with equality. open import Common.FOL.FOL-Eq public -- Common definitions. open import Common.DefinitionsATP public infixl 7 _·_ infix 0 if_then_else_ ------------------------------------------------------------------------------ -- The term language of FOTC -- t ::= x | t · t | -- | true | false | if -- | 0 | succ | pred | iszero postulate _·_ : D → D → D -- FOTC application. true false if : D -- FOTC partial Booleans. zero succ pred iszero : D -- FOTC partial natural numbers. ------------------------------------------------------------------------------ -- Definitions -- We define some function symbols for convenience in writing and -- looking for an optimization for the ATPs. -- 2012-03-20. The definitions are inside an abstract block because -- the conversion rules (see below) are based on them, so we want to -- avoid their expansion. abstract if_then_else_ : D → D → D → D if b then t else t' = if · b · t · t' -- {-# ATP definition if_then_else_ #-} succ₁ : D → D succ₁ n = succ · n -- {-# ATP definition succ₁ #-} pred₁ : D → D pred₁ n = pred · n -- {-# ATP definition pred₁ #-} iszero₁ : D → D iszero₁ n = iszero · n -- {-# ATP definition iszero₁ #-} ------------------------------------------------------------------------------ -- Conversion rules -- The conversion relation _conv_ satifies (Aczel 1977, p. 8) -- -- x conv y <=> FOTC ⊢ x ≡ y, -- -- therefore, we introduce the conversion rules as non-logical axioms. -- N.B. Looking for an optimization for the ATPs, we write the -- conversion rules on the defined function symbols instead of on the -- term constants. -- Conversion rules for Booleans. -- if-true : ∀ t {t'} → if · true · t · t' ≡ t -- if-false : ∀ {t} t' → if · false · t · t' ≡ t' postulate if-true : ∀ t {t'} → (if true then t else t') ≡ t if-false : ∀ {t} t' → (if false then t else t') ≡ t' {-# ATP axioms if-true if-false #-} -- Conversion rules for pred. -- pred-0 : pred · zero ≡ zero -- pred-S : ∀ n → pred · (succ · n) ≡ n postulate pred-0 : pred₁ zero ≡ zero pred-S : ∀ n → pred₁ (succ₁ n) ≡ n {-# ATP axioms pred-0 pred-S #-} -- Conversion rules for iszero. -- iszero-0 : iszero · zero ≡ true -- iszero-S : ∀ n → iszero · (succ · n) ≡ false postulate iszero-0 : iszero₁ zero ≡ true iszero-S : ∀ n → iszero₁ (succ₁ n) ≡ false {-# ATP axioms iszero-0 iszero-S #-} ------------------------------------------------------------------------------ -- Discrimination rules -- 0≢S : ∀ {n} → zero ≢ succ · n postulate t≢f : true ≢ false 0≢S : ∀ {n} → zero ≢ succ₁ n {-# ATP axioms t≢f 0≢S #-} ------------------------------------------------------------------------------ -- References -- -- Aczel, Peter (1977). The Strength of MartinLöf’s Intuitionistic -- Type Theory with One Universe. In: Proc. of the Symposium on -- Mathematical Logic (Oulu, 1974). Ed. by Miettinen, S. and Väänanen, -- J. Report No. 2, Department of Philosophy, University of Helsinki, -- Helsinki, pp. 1–32.
{ "alphanum_fraction": 0.515625, "avg_line_length": 31.4838709677, "ext": "agda", "hexsha": "94520c4dcad0983bf10bbee692a4788f6ec0926c", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Base.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Base.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1030, "size": 3904 }
{-# OPTIONS --without-K --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution.Escape {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped open import Definition.Untyped.Properties open import Definition.Typed open import Definition.LogicalRelation open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Substitution open import Definition.LogicalRelation.Substitution.Properties open import Tools.Product -- Valid types are well-formed. escapeᵛ : ∀ {A l Γ} ([Γ] : ⊩ᵛ Γ) → Γ ⊩ᵛ⟨ l ⟩ A / [Γ] → Γ ⊢ A escapeᵛ [Γ] [A] = let ⊢Γ = soundContext [Γ] idSubst = idSubstS [Γ] in escape (irrelevance′ (subst-id _) (proj₁ ([A] ⊢Γ idSubst))) -- Valid type equality respects the equality relation. escapeEqᵛ : ∀ {A B l Γ} ([Γ] : ⊩ᵛ Γ) ([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]) → Γ ⊩ᵛ⟨ l ⟩ A ≡ B / [Γ] / [A] → Γ ⊢ A ≅ B escapeEqᵛ [Γ] [A] [A≡B] = let ⊢Γ = soundContext [Γ] idSubst = idSubstS [Γ] [idA] = proj₁ ([A] ⊢Γ idSubst) [idA]′ = irrelevance′ (subst-id _) [idA] in escapeEq [idA]′ (irrelevanceEq″ (subst-id _) (subst-id _) [idA] [idA]′ ([A≡B] ⊢Γ idSubst)) -- Valid terms are well-formed. escapeTermᵛ : ∀ {t A l Γ} ([Γ] : ⊩ᵛ Γ) ([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]) → Γ ⊩ᵛ⟨ l ⟩ t ∷ A / [Γ] / [A] → Γ ⊢ t ∷ A escapeTermᵛ [Γ] [A] [t] = let ⊢Γ = soundContext [Γ] idSubst = idSubstS [Γ] [idA] = proj₁ ([A] ⊢Γ idSubst) [idA]′ = irrelevance′ (subst-id _) (proj₁ ([A] ⊢Γ idSubst)) in escapeTerm [idA]′ (irrelevanceTerm″ (subst-id _) (subst-id _) [idA] [idA]′ (proj₁ ([t] ⊢Γ idSubst))) -- Valid term equality respects the equality relation. escapeEqTermᵛ : ∀ {t u A l Γ} ([Γ] : ⊩ᵛ Γ) ([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]) → Γ ⊩ᵛ⟨ l ⟩ t ≡ u ∷ A / [Γ] / [A] → Γ ⊢ t ≅ u ∷ A escapeEqTermᵛ [Γ] [A] [t≡u] = let ⊢Γ = soundContext [Γ] idSubst = idSubstS [Γ] [idA] = proj₁ ([A] ⊢Γ idSubst) [idA]′ = irrelevance′ (subst-id _) (proj₁ ([A] ⊢Γ idSubst)) in escapeTermEq [idA]′ (irrelevanceEqTerm″ (subst-id _) (subst-id _) (subst-id _) [idA] [idA]′ ([t≡u] ⊢Γ idSubst))
{ "alphanum_fraction": 0.5439834025, "avg_line_length": 37.65625, "ext": "agda", "hexsha": "bf181a3c1c6350a6fa6c6d4a01cfb720b7cd5f7e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Vtec234/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Substitution/Escape.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Vtec234/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Substitution/Escape.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Vtec234/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Substitution/Escape.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 932, "size": 2410 }
{-# OPTIONS --safe #-} module Cubical.HITs.SetQuotients.EqClass where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.HITs.PropositionalTruncation as Prop open import Cubical.HITs.SetQuotients as SetQuot open import Cubical.Relation.Nullary open import Cubical.Relation.Binary open import Cubical.Functions.Embedding open import Cubical.Functions.Surjection private variable ℓ ℓ' ℓ'' : Level -- another definition using equivalence classes open BinaryRelation open isEquivRel open Iso module _ {ℓ ℓ' : Level} (X : Type ℓ) where ℙ : Type (ℓ-max ℓ (ℓ-suc ℓ')) ℙ = X → hProp ℓ' ℙDec : Type (ℓ-max ℓ (ℓ-suc ℓ')) ℙDec = Σ[ P ∈ ℙ ] ((x : X) → Dec (P x .fst)) isSetℙ : isSet ℙ isSetℙ = isSetΠ λ x → isSetHProp isSetℙDec : isSet ℙDec isSetℙDec = isOfHLevelΣ 2 isSetℙ (λ P → isSetΠ (λ x → isProp→isSet (isPropDec (P x .snd)))) module _ (R : X → X → Type ℓ'') where isEqClass : ℙ → Type (ℓ-max (ℓ-max ℓ ℓ') ℓ'') isEqClass P = ∥ Σ[ x ∈ X ] ((a : X) → P a .fst ≃ ∥ R a x ∥) ∥ isPropIsEqClass : (P : ℙ) → isProp (isEqClass P) isPropIsEqClass P = isPropPropTrunc _∥_ : Type (ℓ-max (ℓ-max ℓ (ℓ-suc ℓ')) ℓ'') _∥_ = Σ[ P ∈ ℙ ] isEqClass P isSet∥ : isSet _∥_ isSet∥ = isOfHLevelΣ 2 isSetℙ (λ _ → isProp→isSet isPropPropTrunc) module _ (dec : (x x' : X) → Dec (R x x')) where _∥Dec_ : Type (ℓ-max (ℓ-max ℓ (ℓ-suc ℓ')) ℓ'') _∥Dec_ = Σ[ P ∈ ℙDec ] isEqClass (P .fst) isDecEqClass : (P : _∥_) → (x : X) → Dec (P .fst x .fst) isDecEqClass (P , h) a = Prop.rec (isPropDec (P a .snd)) (λ (x , p) → EquivPresDec (invEquiv (p a)) (Dec∥∥ (dec a x))) h Iso-∥Dec-∥ : Iso _∥Dec_ _∥_ Iso-∥Dec-∥ .fun P = P .fst .fst , P .snd Iso-∥Dec-∥ .inv P = (P .fst , isDecEqClass P) , P .snd Iso-∥Dec-∥ .rightInv P = refl Iso-∥Dec-∥ .leftInv P i .fst .fst = P .fst .fst Iso-∥Dec-∥ .leftInv P i .fst .snd x = isProp→PathP {B = λ i → Dec (P .fst .fst x .fst)} (λ i → isPropDec (P .fst .fst x .snd)) (isDecEqClass (Iso-∥Dec-∥ .fun P) x) (P .fst .snd x) i Iso-∥Dec-∥ .leftInv P i .snd = P .snd ∥Dec≃∥ : _∥Dec_ ≃ _∥_ ∥Dec≃∥ = isoToEquiv Iso-∥Dec-∥ module _ {ℓ ℓ' ℓ'' : Level} (X : Type ℓ) (R : X → X → Type ℓ'') (h : isEquivRel R) where ∥Rx∥Iso : (x x' : X)(r : R x x') → (a : X) → Iso ∥ R a x ∥ ∥ R a x' ∥ ∥Rx∥Iso x x' r a .fun = Prop.rec isPropPropTrunc (λ r' → ∣ h .transitive _ _ _ r' r ∣) ∥Rx∥Iso x x' r a .inv = Prop.rec isPropPropTrunc (λ r' → ∣ h .transitive _ _ _ r' (h .symmetric _ _ r) ∣) ∥Rx∥Iso x x' r a .leftInv _ = isPropPropTrunc _ _ ∥Rx∥Iso x x' r a .rightInv _ = isPropPropTrunc _ _ isEqClass∥Rx∥ : (x : X) → isEqClass X R (λ a → ∥ R a x ∥ , isPropPropTrunc) isEqClass∥Rx∥ x = ∣ x , (λ _ → idEquiv _) ∣ ∥R∥ : (x : X) → X ∥ R ∥R∥ x = (λ a → ∥ R a x ∥ , isPropPropTrunc) , isEqClass∥Rx∥ x ∥Rx∥Path : (x x' : X)(r : R x x') → ∥R∥ x ≡ ∥R∥ x' ∥Rx∥Path x x' r i .fst a .fst = ua (isoToEquiv (∥Rx∥Iso x x' r a)) i ∥Rx∥Path x x' r i .fst a .snd = isProp→PathP {B = λ i → isProp (∥Rx∥Path x x' r i .fst a .fst)} (λ i → isPropIsProp) isPropPropTrunc isPropPropTrunc i ∥Rx∥Path x x' r i .snd = isProp→PathP {B = λ i → isEqClass X R (∥Rx∥Path x x' r i .fst)} (λ i → isPropIsEqClass X R (∥Rx∥Path x x' r i .fst)) (isEqClass∥Rx∥ x) (isEqClass∥Rx∥ x') i /→∥ : X / R → X ∥ R /→∥ = SetQuot.rec (isSet∥ X R) ∥R∥ (λ x x' r → ∥Rx∥Path x x' r) inj/→∥' : (x x' : X) → ∥R∥ x ≡ ∥R∥ x' → ∥ R x x' ∥ inj/→∥' x x' p = transport (λ i → p i .fst x .fst) ∣ h .reflexive x ∣ inj/→∥ : (x y : X / R) → /→∥ x ≡ /→∥ y → x ≡ y inj/→∥ = SetQuot.elimProp2 {P = λ x y → /→∥ x ≡ /→∥ y → x ≡ y} (λ _ _ → isPropΠ (λ _ → squash/ _ _)) (λ x y q → Prop.rec (squash/ _ _) (λ r → eq/ _ _ r) (inj/→∥' x y q)) isEmbedding/→∥ : isEmbedding /→∥ isEmbedding/→∥ = injEmbedding squash/ (isSet∥ X R) (λ {x} {y} → inj/→∥ x y) surj/→∥ : (P : X ∥ R) → ((x , _) : Σ[ x ∈ X ] ((a : X) → P .fst a .fst ≃ ∥ R a x ∥)) → ∥R∥ x ≡ P surj/→∥ P (x , p) i .fst a .fst = ua (p a) (~ i) surj/→∥ P (x , p) i .fst a .snd = isProp→PathP {B = λ i → isProp (surj/→∥ P (x , p) i .fst a .fst)} (λ i → isPropIsProp) isPropPropTrunc (P .fst a .snd) i surj/→∥ P (x , p) i .snd = isProp→PathP {B = λ i → isEqClass X R (surj/→∥ P (x , p) i .fst)} (λ i → isPropIsEqClass X R (surj/→∥ P (x , p) i .fst)) (isEqClass∥Rx∥ x) (P .snd) i isSurjection/→∥ : isSurjection /→∥ isSurjection/→∥ P = Prop.rec isPropPropTrunc (λ p → ∣ [ p .fst ] , surj/→∥ P p ∣) (P .snd) -- both definitions are equivalent equivQuot : X / R ≃ X ∥ R equivQuot = /→∥ , isEmbedding×isSurjection→isEquiv (isEmbedding/→∥ , isSurjection/→∥)
{ "alphanum_fraction": 0.5411576207, "avg_line_length": 34.4344827586, "ext": "agda", "hexsha": "917cadff1caa64d60bd86f50ae442829a3521094", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/HITs/SetQuotients/EqClass.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/HITs/SetQuotients/EqClass.agda", "max_line_length": 107, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/HITs/SetQuotients/EqClass.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2310, "size": 4993 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module constructs the unit of the monoidal structure on -- R-modules, and similar for weaker module-like structures. -- The intended universal property is that the maps out of the tensor -- unit into M are isomorphic to the elements of M. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Algebra.Module.Construct.TensorUnit where open import Algebra.Bundles open import Algebra.Module.Bundles open import Level private variable c ℓ : Level leftSemimodule : {R : Semiring c ℓ} → LeftSemimodule R c ℓ leftSemimodule {R = semiring} = record { Carrierᴹ = Carrier ; _≈ᴹ_ = _≈_ ; _+ᴹ_ = _+_ ; _*ₗ_ = _*_ ; 0ᴹ = 0# ; isLeftSemimodule = record { +ᴹ-isCommutativeMonoid = +-isCommutativeMonoid ; isPreleftSemimodule = record { *ₗ-cong = *-cong ; *ₗ-zeroˡ = zeroˡ ; *ₗ-distribʳ = distribʳ ; *ₗ-identityˡ = *-identityˡ ; *ₗ-assoc = *-assoc ; *ₗ-zeroʳ = zeroʳ ; *ₗ-distribˡ = distribˡ } } } where open Semiring semiring rightSemimodule : {R : Semiring c ℓ} → RightSemimodule R c ℓ rightSemimodule {R = semiring} = record { Carrierᴹ = Carrier ; _≈ᴹ_ = _≈_ ; _+ᴹ_ = _+_ ; _*ᵣ_ = _*_ ; 0ᴹ = 0# ; isRightSemimodule = record { +ᴹ-isCommutativeMonoid = +-isCommutativeMonoid ; isPrerightSemimodule = record { *ᵣ-cong = *-cong ; *ᵣ-zeroʳ = zeroʳ ; *ᵣ-distribˡ = distribˡ ; *ᵣ-identityʳ = *-identityʳ ; *ᵣ-assoc = *-assoc ; *ᵣ-zeroˡ = zeroˡ ; *ᵣ-distribʳ = distribʳ } } } where open Semiring semiring bisemimodule : {R : Semiring c ℓ} → Bisemimodule R R c ℓ bisemimodule {R = semiring} = record { isBisemimodule = record { +ᴹ-isCommutativeMonoid = +-isCommutativeMonoid ; isPreleftSemimodule = LeftSemimodule.isPreleftSemimodule leftSemimodule ; isPrerightSemimodule = RightSemimodule.isPrerightSemimodule rightSemimodule ; *ₗ-*ᵣ-assoc = *-assoc } } where open Semiring semiring semimodule : {R : CommutativeSemiring c ℓ} → Semimodule R c ℓ semimodule {R = commutativeSemiring} = record { isSemimodule = record { isBisemimodule = Bisemimodule.isBisemimodule bisemimodule } } where open CommutativeSemiring commutativeSemiring leftModule : {R : Ring c ℓ} → LeftModule R c ℓ leftModule {R = ring} = record { -ᴹ_ = -_ ; isLeftModule = record { isLeftSemimodule = LeftSemimodule.isLeftSemimodule leftSemimodule ; -ᴹ‿cong = -‿cong ; -ᴹ‿inverse = -‿inverse } } where open Ring ring rightModule : {R : Ring c ℓ} → RightModule R c ℓ rightModule {R = ring} = record { -ᴹ_ = -_ ; isRightModule = record { isRightSemimodule = RightSemimodule.isRightSemimodule rightSemimodule ; -ᴹ‿cong = -‿cong ; -ᴹ‿inverse = -‿inverse } } where open Ring ring bimodule : {R : Ring c ℓ} → Bimodule R R c ℓ bimodule {R = ring} = record { isBimodule = record { isBisemimodule = Bisemimodule.isBisemimodule bisemimodule ; -ᴹ‿cong = -‿cong ; -ᴹ‿inverse = -‿inverse } } where open Ring ring ⟨module⟩ : {R : CommutativeRing c ℓ} → Module R c ℓ ⟨module⟩ {R = commutativeRing} = record { isModule = record { isBimodule = Bimodule.isBimodule bimodule } } where open CommutativeRing commutativeRing
{ "alphanum_fraction": 0.6291410144, "avg_line_length": 28.906779661, "ext": "agda", "hexsha": "2dbdda06cb5eb8e11b2d9dfd3e12d04464b20c84", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Algebra/Module/Construct/TensorUnit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Algebra/Module/Construct/TensorUnit.agda", "max_line_length": 75, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Algebra/Module/Construct/TensorUnit.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1251, "size": 3411 }
-- Andreas, 2019-06-26, issue #3855 -- Mark erased hypotheses as such in a non-erased goal. -- Same for irrelevance. Goal : ( A : Set) (@0 B : Set) (@irr C : Set) (@0 @irr D : Set) ( A : Set) (@0 B : Set) (@irr C : Set) (@0 @irr D : Set) → Set Goal A B C D = λ A B C D → {!!} -- Goal: Set -- ———————————————————————————————————————————————————————————— -- D : Set (erased, irrelevant) -- C : Set (irrelevant) -- B : Set (erased) -- A : Set -- D = D₁ : Set (not in scope, erased, irrelevant) -- C = C₁ : Set (not in scope, irrelevant) -- B = B₁ : Set (not in scope, erased) -- A = A₁ : Set (not in scope) -- Don't show erasure in erased goal! @0 ErasedGoal : ( A : Set) (@0 B : Set) (@irr C : Set) (@0 @irr D : Set) ( A : Set) (@0 B : Set) (@irr C : Set) (@0 @irr D : Set) → Set ErasedGoal A B C D = λ A B C D → {!!} -- Goal: Set -- ———————————————————————————————————————————————————————————— -- D : Set (irrelevant) -- C : Set (irrelevant) -- B : Set -- A : Set -- D = D₁ : Set (not in scope, irrelevant) -- C = C₁ : Set (not in scope, irrelevant) -- B = B₁ : Set (not in scope) -- A = A₁ : Set (not in scope) -- Don't show irrelevance in irrelevant goal! @irr IrrGoal : ( A : Set) (@0 B : Set) (@irr C : Set) (@0 @irr D : Set) ( A : Set) (@0 B : Set) (@irr C : Set) (@0 @irr D : Set) → Set IrrGoal A B C D = λ A B C D → {!!} -- Goal: Set -- ———————————————————————————————————————————————————————————— -- D : Set (erased) -- C : Set -- B : Set (erased) -- A : Set -- D = D₁ : Set (not in scope, erased) -- C = C₁ : Set (not in scope) -- B = B₁ : Set (not in scope, erased) -- A = A₁ : Set (not in scope)
{ "alphanum_fraction": 0.4138118543, "avg_line_length": 23.2784810127, "ext": "agda", "hexsha": "27d6aac709959a13a34effbdb827221dc142969a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue3855-8.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue3855-8.agda", "max_line_length": 63, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue3855-8.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 648, "size": 1839 }
{-# OPTIONS --without-K --cubical #-} module combinatorial-objects where import 14-univalence open 14-univalence public {- The type ℍ of hereditarily finite types is introduces as an inductive type. Note that this is the type of 'planar' combinatorial objects, because Fin n is a linearly ordered finite set with n elements. For a non-planar type of hereditarily finite types, we need to use the type 𝔽, which is the image of (Fin : ℕ → UU lzero). This latter type probably has the correct identity type, and is more interesting from the perspective of homotopy type theory. Planar hereditarily finite types are easier to handle though, so we study them first. -} data ℍ : UU lzero where join-ℍ : (n : ℕ) → (Fin n → ℍ) → ℍ width-ℍ : ℍ → ℕ width-ℍ (join-ℍ n x) = n branch-ℍ : (x : ℍ) → (Fin (width-ℍ x) → ℍ) branch-ℍ (join-ℍ n x) = x empty-ℍ : ℍ empty-ℍ = join-ℍ zero-ℕ ind-empty Fin-ℍ : ℕ → ℍ Fin-ℍ n = join-ℍ n (const (Fin n) ℍ empty-ℍ) unit-ℍ : ℍ unit-ℍ = Fin-ℍ one-ℕ {- Logical morphisms of hereditarily finite types. -} hom-ℍ : ℍ → ℍ → UU lzero hom-ℍ (join-ℍ m x) (join-ℍ n y) = Σ (Fin m → Fin n) (λ h → (i : Fin m) → hom-ℍ (x i) (y (h i))) map-base-hom-ℍ : (x y : ℍ) (f : hom-ℍ x y) → Fin (width-ℍ x) → Fin (width-ℍ y) map-base-hom-ℍ (join-ℍ m x) (join-ℍ n y) = pr1 hom-branch-hom-ℍ : (x y : ℍ) (f : hom-ℍ x y) (i : Fin (width-ℍ x)) → hom-ℍ (branch-ℍ x i) (branch-ℍ y (map-base-hom-ℍ x y f i)) hom-branch-hom-ℍ (join-ℍ m x) (join-ℍ n y) = pr2 htpy-hom-ℍ : {x y : ℍ} (f g : hom-ℍ x y) → UU lzero htpy-hom-ℍ {join-ℍ m x} {join-ℍ n y} (pair f F) g = Σ ( f ~ (map-base-hom-ℍ (join-ℍ m x) (join-ℍ n y) g)) ( λ H → ( i : Fin m) → htpy-hom-ℍ ( tr (λ t → hom-ℍ (x i) (y t)) (H i) (F i)) ( hom-branch-hom-ℍ (join-ℍ m x) (join-ℍ n y) g i)) refl-htpy-hom-ℍ : {x y : ℍ} {f : hom-ℍ x y} → htpy-hom-ℍ f f refl-htpy-hom-ℍ {join-ℍ m x} {join-ℍ n y} {pair f F} = pair refl-htpy (λ i → refl-htpy-hom-ℍ) htpy-hom-ℍ-eq : {x y : ℍ} {f g : hom-ℍ x y} → (Id f g) → htpy-hom-ℍ f g htpy-hom-ℍ-eq refl = refl-htpy-hom-ℍ is-contr-total-htpy-hom-ℍ : {x y : ℍ} (f : hom-ℍ x y) → is-contr (Σ (hom-ℍ x y) (htpy-hom-ℍ f)) is-contr-total-htpy-hom-ℍ {join-ℍ m x} {join-ℍ n y} (pair f F) = is-contr-total-Eq-structure ( λ g G (H : f ~ g) → ( i : Fin m) → htpy-hom-ℍ ( tr (λ t → hom-ℍ (x i) (y t)) (H i) (F i)) ( G i)) ( is-contr-total-htpy f) ( pair f refl-htpy) ( is-contr-total-Eq-Π ( λ i G → htpy-hom-ℍ (F i) G) ( λ i → is-contr-total-htpy-hom-ℍ (F i)) ( λ i → F i)) is-equiv-htpy-hom-ℍ-eq : {x y : ℍ} (f g : hom-ℍ x y) → is-equiv (htpy-hom-ℍ-eq {x} {y} {f} {g}) is-equiv-htpy-hom-ℍ-eq f = fundamental-theorem-id f ( refl-htpy-hom-ℍ) ( is-contr-total-htpy-hom-ℍ f) ( λ g → htpy-hom-ℍ-eq) eq-htpy-hom-ℍ : {x y : ℍ} {f g : hom-ℍ x y} → htpy-hom-ℍ f g → Id f g eq-htpy-hom-ℍ {x} {y} {f} {g} = inv-is-equiv (is-equiv-htpy-hom-ℍ-eq f g) id-ℍ : {x : ℍ} → hom-ℍ x x id-ℍ {join-ℍ n x} = pair id (λ i → id-ℍ) comp-ℍ : {x y z : ℍ} (g : hom-ℍ y z) (f : hom-ℍ x y) → hom-ℍ x z comp-ℍ {join-ℍ m x} {join-ℍ n y} {join-ℍ k z} (pair g G) (pair f F) = pair (g ∘ f) (λ i → comp-ℍ (G (f i)) (F i)) left-unit-law-htpy-hom-ℍ : {x y : ℍ} (f : hom-ℍ x y) → htpy-hom-ℍ (comp-ℍ id-ℍ f) f left-unit-law-htpy-hom-ℍ {join-ℍ m x} {join-ℍ n y} (pair f F) = pair refl-htpy (λ i → left-unit-law-htpy-hom-ℍ (F i)) left-unit-law-hom-ℍ : {x y : ℍ} (f : hom-ℍ x y) → Id (comp-ℍ id-ℍ f) f left-unit-law-hom-ℍ f = eq-htpy-hom-ℍ (left-unit-law-htpy-hom-ℍ f) right-unit-law-htpy-hom-ℍ : {x y : ℍ} (g : hom-ℍ x y) → htpy-hom-ℍ (comp-ℍ g id-ℍ) g right-unit-law-htpy-hom-ℍ {join-ℍ m x} {join-ℍ n y} (pair g G) = pair refl-htpy (λ i → right-unit-law-htpy-hom-ℍ (G i)) right-unit-law-hom-ℍ : {x y : ℍ} (g : hom-ℍ x y) → Id (comp-ℍ g id-ℍ) g right-unit-law-hom-ℍ g = eq-htpy-hom-ℍ (right-unit-law-htpy-hom-ℍ g) associative-htpy-comp-ℍ : {x y z w : ℍ} (h : hom-ℍ z w) (g : hom-ℍ y z) (f : hom-ℍ x y) → htpy-hom-ℍ (comp-ℍ (comp-ℍ h g) f) (comp-ℍ h (comp-ℍ g f)) associative-htpy-comp-ℍ {join-ℍ n1 x1} {join-ℍ n2 x2} {join-ℍ n3 x3} {join-ℍ n4 x4} (pair h H) (pair g G) (pair f F) = pair refl-htpy (λ i → associative-htpy-comp-ℍ (H (g (f i))) (G (f i)) (F i)) associative-comp-ℍ : {x y z w : ℍ} (h : hom-ℍ z w) (g : hom-ℍ y z) (f : hom-ℍ x y) → Id (comp-ℍ (comp-ℍ h g) f) (comp-ℍ h (comp-ℍ g f)) associative-comp-ℍ h g f = eq-htpy-hom-ℍ (associative-htpy-comp-ℍ h g f) {- {- Union of planar hereditarily finite sets -} {- map-add-Fin : {m n : ℕ} → Fin (add-ℕ m n) → coprod (Fin m) (Fin n) map-add-Fin {zero-ℕ} {n} x = inr x map-add-Fin {succ-ℕ m} {n} (inl x) = {!!} map-add-Fin {succ-ℕ m} {n} (inr star) = ? -} {- union-ℍ : ℍ → ℍ → ℍ union-ℍ (join-ℍ n f) (join-ℍ m g) = join-ℍ (add-ℕ n m) ((ind-coprod (λ x → ℍ) f g) ∘ map-add-Fin) -} {- We define the Rado graph to be the graph with set of vertices ℍ, and for each (f : Fin n → ℍ) and each (i : Fin n), an edge from (join-ℍ n f) to (f i). Note that in this definition of the Rado graph, there can be multiple edges from x to y. -} data Rado-ℍ : ℍ → ℍ → UU lzero where edge-Rado-ℍ : (n : ℕ) (f : Fin n → ℍ) (i : Fin n) → Rado-ℍ (join-ℍ n f) (f i) {- Next, we define the Ackermann bijection from ℍ to ℕ. -} finite-sum-ℕ : (n : ℕ) → (f : Fin n → ℕ) → ℕ finite-sum-ℕ zero-ℕ f = zero-ℕ finite-sum-ℕ (succ-ℕ n) f = add-ℕ (f (inr star)) (finite-sum-ℕ n (f ∘ inl)) map-Ackermann-ℍ : ℍ → ℕ map-Ackermann-ℍ (join-ℍ n f) = finite-sum-ℕ n (λ i → pow-ℕ (succ-ℕ (succ-ℕ zero-ℕ)) (map-Ackermann-ℍ (f i))) {- In order to construct the inverse of the Ackermann map, we need to show first that every natural number can be uniquely represented as a list of booleans. -} ℕ-list-bool : list bool → ℕ ℕ-list-bool nil = zero-ℕ ℕ-list-bool (cons false l) = pow-ℕ (succ-ℕ (succ-ℕ zero-ℕ)) (ℕ-list-bool l) ℕ-list-bool (cons true l) = succ-ℕ (pow-ℕ (succ-ℕ (succ-ℕ zero-ℕ)) (ℕ-list-bool l)) list-bool-ℕ : ℕ → list bool list-bool-ℕ zero-ℕ = nil list-bool-ℕ (succ-ℕ n) = {!!} inv-Ackermann-ℍ : ℕ → ℍ inv-Ackermann-ℍ n = {!!} -}
{ "alphanum_fraction": 0.5734072022, "avg_line_length": 33.172972973, "ext": "agda", "hexsha": "3e46a9a22fafd1ede6852abbef25d1cfb2d8a5a6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "tmoux/HoTT-Intro", "max_forks_repo_path": "Agda/combinatorial-objects.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "tmoux/HoTT-Intro", "max_issues_repo_path": "Agda/combinatorial-objects.agda", "max_line_length": 156, "max_stars_count": null, "max_stars_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "tmoux/HoTT-Intro", "max_stars_repo_path": "Agda/combinatorial-objects.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2938, "size": 6137 }
-- The default include path should contain Agda.Primitive module TestDefaultIncludePath where import Agda.Primitive -- That's it.
{ "alphanum_fraction": 0.7851851852, "avg_line_length": 13.5, "ext": "agda", "hexsha": "71a9a80da23b482238153297244a233525c95ee3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/TestDefaultIncludePath.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/TestDefaultIncludePath.agda", "max_line_length": 57, "max_stars_count": 1, "max_stars_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "masondesu/agda", "max_stars_repo_path": "test/succeed/TestDefaultIncludePath.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 30, "size": 135 }
record Pointed (A : Set) : Set where field point : A point : {A : Set} ⦃ p : Pointed A ⦄ → A point ⦃ p = p ⦄ = Pointed.point p record R : Set₁ where field A : Set instance is-pointed : Pointed A postulate r : R open R r x : R.A r x = point
{ "alphanum_fraction": 0.562962963, "avg_line_length": 12.2727272727, "ext": "agda", "hexsha": "4f06ffb6a3af6dd47c5c5c09831f51b02e3ae5b2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1915.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1915.agda", "max_line_length": 39, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1915.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 107, "size": 270 }
module Generic.Test.Data.Product where open import Generic.Main as Main hiding (Σ; proj₁; proj₂; _,′_) renaming (_,_ to _,′_) infixr 4 _,_ Σ : ∀ {α β} -> (A : Set α) -> (A -> Set β) -> Set (α ⊔ β) Σ = readData Main.Σ pattern _,_ x y = !#₀ (relv x ,′ relv y ,′ lrefl) proj₁ : ∀ {α β} {A : Set α} {B : A -> Set β} -> Σ A B -> A proj₁ (x , y) = x proj₂ : ∀ {α β} {A : Set α} {B : A -> Set β} -> (p : Σ A B) -> B (proj₁ {B = B} p) proj₂ (x , y) = y ηo : ∀ {α β} {A : Set α} {B : A -> Set β} -> (p : Σ A B) -> p ≡ proj₁ {B = B} p , proj₂ {B = B} p ηo (x , y) = refl
{ "alphanum_fraction": 0.4823943662, "avg_line_length": 28.4, "ext": "agda", "hexsha": "2390016b7f8598620612b6776b01138ddcdad131", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z", "max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z", "max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "turion/Generic", "max_forks_repo_path": "src/Generic/Test/Data/Product.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z", "max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "turion/Generic", "max_issues_repo_path": "src/Generic/Test/Data/Product.agda", "max_line_length": 97, "max_stars_count": 30, "max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "turion/Generic", "max_stars_repo_path": "src/Generic/Test/Data/Product.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z", "num_tokens": 262, "size": 568 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.NType2 open import lib.Equivalence2 open import lib.NConnected open import lib.types.TLevel open import lib.types.Truncation open import lib.types.Group open import lib.groups.LoopSpace open import lib.groups.Homomorphism module lib.types.EilenbergMacLane1 {i} where module _ (G : Group i) where postulate -- HIT EM₁ : Type i embase' : EM₁ emloop' : Group.El G → embase' == embase' emloop-comp' : ∀ g₁ g₂ → emloop' (Group.comp G g₁ g₂) == emloop' g₁ ∙ emloop' g₂ EM₁-level' : has-level ⟨ 1 ⟩ EM₁ ⊙EM₁ : Ptd i ⊙EM₁ = ⊙[ EM₁ , embase' ] module _ {G : Group i} where private module G = Group G embase = embase' G emloop = emloop' G emloop-comp = emloop-comp' G instance EM₁-level : {n : ℕ₋₂} → has-level (S (S (S n))) (EM₁ G) EM₁-level {⟨-2⟩} = EM₁-level' G EM₁-level {S n} = raise-level _ EM₁-level abstract -- This was in the original paper, but is actually derivable. emloop-ident : emloop G.ident == idp emloop-ident = ! $ anti-whisker-right (emloop G.ident) $ ap emloop (! $ G.unit-r G.ident) ∙ emloop-comp G.ident G.ident module EM₁Elim {j} {P : EM₁ G → Type j} {{_ : (x : EM₁ G) → has-level ⟨ 1 ⟩ (P x)}} (embase* : P embase) (emloop* : (g : G.El) → embase* == embase* [ P ↓ emloop g ]) (emloop-comp* : (g₁ g₂ : G.El) → emloop* (G.comp g₁ g₂) == emloop* g₁ ∙ᵈ emloop* g₂ [ (λ p → embase* == embase* [ P ↓ p ]) ↓ emloop-comp g₁ g₂ ]) where postulate -- HIT f : Π (EM₁ G) P embase-β : f embase ↦ embase* {-# REWRITE embase-β #-} postulate -- HIT emloop-β : (g : G.El) → apd f (emloop g) == emloop* g open EM₁Elim public using () renaming (f to EM₁-elim) module EM₁Rec {j} {C : Type j} {{_ : has-level ⟨ 1 ⟩ C}} (embase* : C) (hom* : G →ᴳ (Ω^S-group 0 ⊙[ C , embase* ])) where private module M = EM₁Elim {P = λ _ → C} embase* (λ g → ↓-cst-in (GroupHom.f hom* g)) (λ g₁ g₂ → ↓-cst-in2 (GroupHom.pres-comp hom* g₁ g₂) ∙'ᵈ ↓-cst-in-∙ (emloop g₁) (emloop g₂) (GroupHom.f hom* g₁) (GroupHom.f hom* g₂)) f = M.f emloop-β : (g : G.El) → ap f (emloop g) == GroupHom.f hom* g emloop-β g = apd=cst-in {f = f} (M.emloop-β g) open EM₁Rec public using () renaming (f to EM₁-rec) -- basic lemmas about [EM₁] module _ {G : Group i} where private module G = Group G abstract emloop-inv : ∀ g → emloop' G (G.inv g) == ! (emloop g) emloop-inv g = cancels-inverse _ _ lemma where cancels-inverse : ∀ {i} {A : Type i} {x y : A} (p : x == y) (q : y == x) → p ∙ q == idp → p == ! q cancels-inverse p idp r = ! (∙-unit-r p) ∙ r lemma : emloop' G (G.inv g) ∙ emloop g == idp lemma = ! (emloop-comp (G.inv g) g) ∙ ap emloop (G.inv-l g) ∙ emloop-ident {- EM₁ is 0-connected -} instance EM₁-conn : is-connected 0 (EM₁ G) EM₁-conn = has-level-in ([ embase ] , Trunc-elim (EM₁-elim {P = λ x → [ embase ] == [ x ]} {{λ _ → raise-level _ (=-preserves-level Trunc-level)}} idp (λ _ → prop-has-all-paths-↓) (λ _ _ → set-↓-has-all-paths-↓)))
{ "alphanum_fraction": 0.5509583207, "avg_line_length": 29.6126126126, "ext": "agda", "hexsha": "e670106929b3a3547e3112a9b074071cfda6bb24", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "core/lib/types/EilenbergMacLane1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "core/lib/types/EilenbergMacLane1.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "core/lib/types/EilenbergMacLane1.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1224, "size": 3287 }
{-# OPTIONS --prop --show-irrelevant #-} open import Agda.Builtin.Equality postulate A : Set P : Prop f : P → A g : A → P {-# TERMINATING #-} loop : A → A loop y = loop y mutual X : A X = _ test : ∀ y → X ≡ f (g (loop y)) test y = refl -- The occurs check should not try to normalize the argument `loop y` -- because it only appears in an irrelevant context.
{ "alphanum_fraction": 0.6062992126, "avg_line_length": 15.875, "ext": "agda", "hexsha": "9adfb361a2d0f41b8159365b6c35bdeabac1f5f0", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue4120-loop.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue4120-loop.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue4120-loop.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 121, "size": 381 }
open import Type module Relator.Congruence {ℓ₁}{ℓ₂} {X : Type{ℓ₁}}{Y : Type{ℓ₂}} where import Lvl open import Functional open import Logic open import Logic.Propositional open import Relator.Equals -- The congruence relation with respect to a relation infixl 15 _≅_of_ data _≅_of_ (x₁ : X) (x₂ : X) (f : X → Y) : Stmt{ℓ₂} where [≅]-intro : (f(x₁) ≡ f(x₂)) → (x₁ ≅ x₂ of f) [≅]-elim : ∀{x₁ x₂ : X}{f : X → Y} → (x₁ ≅ x₂ of f) → (f(x₁) ≡ f(x₂)) [≅]-elim ([≅]-intro eq) = eq
{ "alphanum_fraction": 0.6128364389, "avg_line_length": 26.8333333333, "ext": "agda", "hexsha": "225634cdec11e75b259a960e5712d51288b6aafb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Relator/Congruence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Relator/Congruence.agda", "max_line_length": 69, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Relator/Congruence.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 212, "size": 483 }
{-# OPTIONS --without-K #-} module PointedPi where open import Level using (_⊔_) renaming (zero to l0; suc to lsuc) open import Universe using (Universe) open import Categories.Category using (Category) open import Categories.Groupoid using (Groupoid) open import Categories.Functor using (Functor) open import Data.Empty using (⊥) open import Data.Unit using (⊤; tt) open import Data.Sum hiding ([_,_]) open import Data.Product open import Relation.Binary.PropositionalEquality as P open import Function using (flip) open import Data.Nat using (ℕ; zero; suc) open import Data.Nat.Properties.Simple using (+-right-identity) open import Data.Integer using (ℤ;+_;-[1+_]) renaming (suc to ℤsuc; -_ to ℤ-; _+_ to _ℤ+_) open import Data.List using (List; foldr; replicate; _++_) renaming (map to Lmap; [] to nil; _∷_ to _∷:_) open import Data.List.Any using (module Membership-≡; here; there) open Membership-≡ open import Data.List.Properties using () open import Categories.Groupoid.Sum using () renaming (Sum to GSum) open import Categories.Groupoid.Product using () renaming (Product to GProduct) open import PiU using (U; ZERO; ONE; PLUS; TIMES; toℕ) open import PiLevel0 open import PiLevel1 open import PiEquiv renaming (eval to ap; evalB to apB) open import Equiv open import PiIter data Pointed (t : U) : Set where ∙ : ⟦ t ⟧ → Pointed t -- yes, re-use name eval on purpose here eval : {t₁ t₂ : U} → (t₁ ⟷ t₂) → Pointed t₁ → Pointed t₂ eval c (∙ x) = ∙ (ap c x) -- all our values will be 'subtypes' of this: record V (t : U) : Set where constructor v field pt : ⟦ t ⟧ auto : t ⟷ t evalV : {t₁ t₂ : U} → (t₁ ⟷ t₂) → V t₁ → V t₂ evalV c (v pt auto) = v (ap c pt) (! c ◎ auto ◎ c) -- V equivalence record _≈_ {t : U} (a : V t) (b : V t) : Set where constructor veq field pt-eq : V.pt a P.≡ V.pt b auto-eq : V.auto a ⇔ V.auto b -- and in general, all our morphisms will be 'subtypes' of record H {s t : U} (a : V s) (b : V t) : Set where constructor mor field transp : s ⟷ t t-eq : evalV transp a ≈ b --- Generating sets: lists of combinators over a type GenSet : U → Set GenSet t = List (t ⟷ t) -- We will need to use a choice between 3 things. Don't want -- to abuse ⊎. The 3 things can be understood as -- Forward, Backward and Neutral. So we name it ⇕. infix 30 _⇕_ data _⇕_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where Fwd : (x : A) → A ⇕ B Bwd : (y : B) → A ⇕ B Neu : A ⇕ B -- note that this uses ≡ (inside ∈), not ⇔. On purpose. inGS : {t : U} → GenSet t → Set inGS {t} S = Σ (t ⟷ t) (λ p → (p ∈ S) ⇕ (p ∈ S)) -- flip a ⇕ flip⇕ : ∀ {a b} {A : Set a} {B : Set b} → A ⇕ B → B ⇕ A flip⇕ (Fwd x) = Bwd x flip⇕ (Bwd y) = Fwd y flip⇕ Neu = Neu -- type of sequences of applications from GenSet CombS : {t : U} → GenSet t → Set CombS {t} S = List ( inGS S ) extract : {t : U} {S : GenSet t} → inGS S → (t ⟷ t) extract (p , Fwd x) = p extract (p , Bwd y) = ! p extract (p , Neu ) = id⟷ interp : {t : U} {S : GenSet t} → CombS S → (t ⟷ t) interp l = foldr _◎_ id⟷ (Lmap extract l) -- the combinator (CombS S) acts as a sort of reference point data U↑ : Set where ↑ : U → U↑ # : {τ : U} → (S : GenSet τ) → CombS S → U↑ 1/ : {τ : U} → (S : GenSet τ) → CombS S → U↑ _⊞_ : U↑ → U↑ → U↑ _⊠_ : U↑ → U↑ → U↑ infix 40 _⇿_ data _⇿_ : U↑ → U↑ → Set where ↑ : {t₁ t₂ : U} → t₁ ⟷ t₂ → ↑ t₁ ⇿ ↑ t₂ ev : {t₁ : U} {S : GenSet t₁} → (q : CombS S) → ((# S q) ⊠ (1/ S q)) ⇿ ↑ ONE coev : {t₁ : U} {S : GenSet t₁} → (q : CombS S) → ↑ ONE ⇿ ((# S q) ⊠ (1/ S q)) id⇿ : {t₁ : U↑} → t₁ ⇿ t₁ -- needed for coev of ⊠ UG : Universe l0 (lsuc l0) UG = record { U = U↑ ; El = λ T → Σ[ ℂ ∈ Category l0 l0 l0 ] (Groupoid ℂ) } -- for convenience, create some types which are embedable into V D : U → Set D t = ⟦ t ⟧ embedD : {t : U} → D t → V t embedD w = v w id⟷ -- and D equality lifts to ≈ embedDeq : {τ : U} → (s t : D τ) → s ≡ t → embedD s ≈ embedD t embedDeq s .s P.refl = veq P.refl id⇔ -- even more to the point, it lifts to describing Hom sets -- note how we can't use embedDeq directly! embedDHom : {τ : U} → (s t : D τ) → s ≡ t → H (embedD s) (embedD t) embedDHom s .s P.refl = mor id⟷ (veq P.refl (trans⇔ idl◎l idl◎l)) -- this is the same as in 2DTypes/groupoid discreteC : U → Category _ _ _ discreteC t = record { Obj = D t ; _⇒_ = λ s₁ s₂ → s₁ P.≡ s₂ -- see embedDHom ; _≡_ = λ _ _ → ⊤ -- hard-code proof-irrelevance ; id = P.refl ; _∘_ = flip P.trans ; assoc = tt ; identityˡ = tt ; identityʳ = tt ; equiv = record { refl = tt ; sym = λ _ → tt ; trans = λ _ _ → tt } ; ∘-resp-≡ = λ _ _ → tt } -- ditto discreteG : (t : U) → Groupoid (discreteC t) discreteG S = record { _⁻¹ = λ { {A} {.A} refl → P.refl } ; iso = record { isoˡ = tt; isoʳ = tt } } ----------- --- Structure theorems for ⇕ extract-GS[]≡id⟷ : ∀ {t : U} → (gs : GenSet t) → gs ≡ nil → (∀ (y : inGS gs) → extract y ≡ id⟷) extract-GS[]≡id⟷ .nil refl (p , Fwd ()) extract-GS[]≡id⟷ .nil refl (p , Bwd ()) extract-GS[]≡id⟷ .nil refl (p , Neu) = refl private Iter→CombS : ∀ {τ : U} (c : τ ⟷ τ) → Iter c → CombS (c ∷: nil) Iter→CombS p (iter (+_ n) _ _) = replicate n (p , Fwd (here refl)) Iter→CombS p (iter (-[1+_] n) _ _) = replicate (suc n) (p , Bwd (here refl)) CombS→Iter : ∀ {τ : U} (c : τ ⟷ τ) → CombS (c ∷: nil) → Iter c CombS→Iter p nil = iter (+ 0) id⟷ id⇔ CombS→Iter p (x ∷: xs) with CombS→Iter p xs CombS→Iter p ((.p , Fwd (here refl)) ∷: xs) | iter i q pf = iter (ℤsuc i) (p ◎ q) (trans⇔ (id⇔ ⊡ pf) (trans⇔ (idr◎r ⊡ id⇔) (2! (lower (+ 1) i)))) CombS→Iter p ((p' , Fwd (there ())) ∷: xs) | iter i q pf CombS→Iter p ((.p , Bwd (here refl)) ∷: xs) | iter i q pf = iter (i ℤ+ -[1+ 0 ]) (q ◎ (! p)) (trans⇔ (pf ⊡ id⇔) (2! (lower i -[1+ 0 ]))) CombS→Iter p ((p' , Bwd (there ())) ∷: xs) | iter i q pf CombS→Iter p ((p' , Neu) ∷: xs) | iter i q pf = iter i q pf -- split Fwd case from Bwd preserve-iter : ∀ {τ : U} (c : τ ⟷ τ) → (n : ℕ) → let p = CombS→Iter c (replicate n (c , Fwd (here refl))) in Iter.i p ≡ + n preserve-iter c zero = refl preserve-iter c (suc n) = cong ℤsuc (preserve-iter c n) preserve-iterB : ∀ {τ : U} (c : τ ⟷ τ) → (n : ℕ) → let p = CombS→Iter c (replicate (suc n) (c , Bwd (here refl))) in Iter.i p ≡ -[1+ n ] preserve-iterB c zero = refl preserve-iterB c (suc i) = P.trans (cong (λ z → z ℤ+ -[1+ 0 ]) (preserve-iterB c i)) (cong (λ z → -[1+ (suc z) ]) (+-right-identity i)) P2C2P : ∀ {τ : U} (c : τ ⟷ τ) → (p : Iter c) → (CombS→Iter c (Iter→CombS c p)) ≡c p P2C2P c (iter (+_ zero) p' p'⇔p^i) = eqc refl (2! p'⇔p^i) P2C2P c (iter (+_ (suc n)) p' p'⇔p^i) with CombS→Iter c (replicate n (c , Fwd (here refl))) | P.inspect (λ nn → CombS→Iter c (replicate nn (c , Fwd (here refl)))) n ... | iter i q pf | [ eq ] = let i=n = (P.trans (cong Iter.i (P.sym eq)) (preserve-iter c n)) in eqc (cong ℤsuc i=n) (trans⇔ (id⇔ {c = c} ⊡ pf) (trans⇔ (id⇔ ⊡ P.subst (λ j → c ^ i ⇔ c ^ j) i=n (id⇔ {c = c ^ i})) (2! p'⇔p^i))) P2C2P c (iter (-[1+_] n) p' p'⇔p^i) with CombS→Iter c (replicate (suc n) (c , Bwd (here refl))) | P.inspect (λ nn → CombS→Iter c (replicate (suc nn) (c , Bwd (here refl)))) n ... | iter i q pf | [ eq ] = let i=n = P.trans (cong Iter.i (P.sym eq)) (preserve-iterB c n) in eqc i=n (trans⇔ (P.subst (λ j → q ⇔ c ^ j) i=n pf) (2! p'⇔p^i)) C2P2C : ∀ {τ : U} (c : τ ⟷ τ) → (q : CombS (c ∷: nil)) → interp (Iter→CombS c (CombS→Iter c q)) ⇔ interp q C2P2C c nil = id⇔ C2P2C c (x ∷: q) with CombS→Iter c q | (C2P2C c) q C2P2C c ((.c , Fwd (here refl)) ∷: q) | iter (+_ n) p' pf | pf2 = id⇔ ⊡ pf2 C2P2C c ((.c , Fwd (here refl)) ∷: q) | iter (-[1+_] zero) p' pf | pf2 = trans⇔ (linv◎r {c = c}) (id⇔ ⊡ trans⇔ idr◎r pf2) C2P2C c ((.c , Fwd (here refl)) ∷: q) | iter (-[1+_] (suc n)) p' pf | pf2 = trans⇔ (trans⇔ idl◎r (linv◎r ⊡ id⇔)) (trans⇔ assoc◎r (id⇔ ⊡ pf2)) C2P2C c ((comb , Fwd (there ())) ∷: q) | iter i p' pf | pf2 C2P2C c ((.c , Bwd (here refl)) ∷: q) | iter (+_ zero) p' pf | pf2 = id⇔ ⊡ pf2 C2P2C c ((.c , Bwd (here refl)) ∷: q) | iter (+_ (suc n)) p' pf | pf2 = trans⇔ (trans⇔ idl◎r (rinv◎r ⊡ id⇔)) (trans⇔ assoc◎r (id⇔ ⊡ pf2)) C2P2C c ((.c , Bwd (here refl)) ∷: q) | iter (-[1+_] n) p' pf | pf2 = id⇔ {c = ! c} ⊡ (P.subst (λ j → ! c ◎ foldr _◎_ id⟷ (Lmap extract (replicate j (c , Bwd (here refl)))) ⇔ foldr _◎_ id⟷ (Lmap extract q)) (P.sym (+-right-identity n)) pf2) C2P2C c ((comb , Bwd (there ())) ∷: q) | iter i p' pf | pf2 C2P2C c ((comb , Neu) ∷: q) | iter i p' pf | pf2 = trans⇔ pf2 idl◎r -- we would like to say: -- Iter[p]≃CombS[p] : ∀ {τ : U} (p : τ ⟷ τ) → Iter p ≃ CombS (p ∷: nil) -- but the homotopies have the wrong type (≡ rather than ≡c and ⇔). ----------- -- Generalization of # p to # S. orderC : {τ : U} → (S : GenSet τ) → Category _ _ _ orderC {τ} S = record { Obj = CombS S ; _⇒_ = λ q₁ q₂ → interp q₁ ⇔ interp q₂ ; _≡_ = λ _ _ → ⊤ ; id = id⇔ ; _∘_ = flip trans⇔ ; assoc = tt ; identityˡ = tt ; identityʳ = tt ; equiv = record { refl = tt; sym = λ _ → tt; trans = λ _ _ → tt } ; ∘-resp-≡ = λ _ _ → tt } orderG : {τ : U} → (S : GenSet τ) → Groupoid (orderC S) orderG {τ} S = record { _⁻¹ = 2! ; iso = record { isoˡ = tt ; isoʳ = tt } } commute-interp-++ : ∀ {τ : U} {S : GenSet τ} (f g : CombS S) → interp (f ++ g) ⇔ interp f ◎ interp g commute-interp-++ nil g = idl◎r commute-interp-++ (x ∷: f) g = trans⇔ (id⇔ ⊡ commute-interp-++ f g) assoc◎l 1/orderC : {τ : U} → (S : GenSet τ) → Category _ _ _ 1/orderC S = record { Obj = ⊤ ; _⇒_ = λ _ _ → CombS S ; _≡_ = λ p q → interp p ⇔ interp q ; id = nil ; _∘_ = _++_ ; assoc = λ { {f = f} {g} {h} → trans⇔ (commute-interp-++ (h ++ g) f) ( trans⇔ (commute-interp-++ h g ⊡ id⇔) ( trans⇔ assoc◎r ( trans⇔ (id⇔ ⊡ (2! (commute-interp-++ g f))) ( 2! (commute-interp-++ h (g ++ f)))))) } ; identityˡ = id⇔ -- could also use idl◎l like below ; identityʳ = λ { {f = f} → trans⇔ (commute-interp-++ f nil) idr◎l } ; equiv = record { refl = id⇔ ; sym = 2! ; trans = trans⇔ } ; ∘-resp-≡ = λ { {f = f} {h} {g} {i} f⇔h g⇔i → trans⇔ (commute-interp-++ f g) (trans⇔ (f⇔h ⊡ g⇔i) (2! (commute-interp-++ h i))) } } flipGS : {τ : U} {S : GenSet τ} → inGS S → inGS S flipGS (c , pf) = c , flip⇕ pf invert-CombS : {τ : U} {S : GenSet τ} → CombS S → CombS S invert-CombS pl = Data.List.map flipGS (Data.List.reverse pl) -- sometimes we need to do some list manipulations under interp lift-≡ : {t₁ t₂ : U} {p q : t₁ ⟷ t₂} → p ≡ q → p ⇔ q lift-≡ refl = id⇔ interp-invert : {τ : U} {S : GenSet τ} → (x : inGS S) → (f : CombS S) → interp (invert-CombS (x ∷: f)) ⇔ interp (invert-CombS f) ◎ extract (flipGS x) interp-invert (c , Fwd x) f = {!!} interp-invert (c , Bwd y) f = {!!} interp-invert (c , Neu) f = {!!} extract-flipGS : {τ : U} {S : GenSet τ} → (x : inGS S) → extract (flipGS x) ⇔ ! (extract x) extract-flipGS (proj₁ , Fwd x) = id⇔ extract-flipGS (proj₁ , Bwd y) = 2! !!⇔id extract-flipGS (proj₁ , Neu) = id⇔ private left-invCS : {τ : U} {S : GenSet τ} (f : CombS S) → interp (invert-CombS f ++ f) ⇔ id⟷ left-invCS nil = id⇔ left-invCS (x ∷: f) = trans⇔ (commute-interp-++ (invert-CombS (x ∷: f)) (x ∷: f)) (trans⇔ (interp-invert x f ⊡ id⇔) (trans⇔ assoc◎r (trans⇔ (id⇔ ⊡ assoc◎l) (trans⇔ (id⇔ ⊡ trans⇔ (trans⇔ (extract-flipGS x ⊡ id⇔) rinv◎l ⊡ id⇔) idl◎l) (trans⇔ (2! (commute-interp-++ (invert-CombS f) f)) (left-invCS f)))))) right-invCS : {τ : U} {S : GenSet τ} (f : CombS S) → interp (f ++ invert-CombS f) ⇔ id⟷ right-invCS l = {!!} 1/orderG : {τ : U} → (S : GenSet τ) → Groupoid (1/orderC S) 1/orderG s = record { _⁻¹ = invert-CombS ; iso = λ {_} {_} {f} → record { isoˡ = left-invCS f ; isoʳ = right-invCS f } } ----------- --- Our semantics into groupoids ⟦_⟧↑ : (T : U↑) → Universe.El UG T ⟦ ↑ S ⟧↑ = , discreteG S ⟦ # S q ⟧↑ = , orderG S -- the base point doesn't matter here? ⟦ 1/ S q ⟧↑ = , 1/orderG S -- ditto? ⟦ x ⊞ y ⟧↑ with ⟦ x ⟧↑ | ⟦ y ⟧↑ ... | (_ , G₁) | (_ , G₂) = , GSum G₁ G₂ ⟦ x ⊠ y ⟧↑ with ⟦ x ⟧↑ | ⟦ y ⟧↑ ... | (_ , G₁) | (_ , G₂) = , GProduct G₁ G₂ record W (t : U↑) : Set where constructor w field pt : Category.Obj (proj₁ ⟦ t ⟧↑) auto : Category._⇒_ (proj₁ ⟦ t ⟧↑) pt pt evalW : {s t : U↑} → s ⇿ t → W s → W t evalW (↑ x) (w pt auto) = w (ap x pt) refl evalW (ev q) (w (cc , tt) (cc⇔cc-pf , cc')) = w tt refl -- this is cheating, cc <=> cc' ?? evalW (coev q) (w tt refl) = w (q , tt) (id⇔ , q) -- but this isn't. evalW id⇿ (w pt auto) = w pt auto -- This should actually be Hom-set inhabitation, aka categorical equivalence -- (as we are in a groupoid setting). ObjEq : (t : U↑) → Category.Obj (proj₁ ⟦ t ⟧↑) → Category.Obj (proj₁ ⟦ t ⟧↑) → Set ObjEq (↑ x) a b = a P.≡ b ObjEq (# S x) a b = interp a ⇔ interp b ObjEq (1/ S x) a b = ⊤ ObjEq (s ⊞ t) (inj₁ x) (inj₁ y) = ObjEq s x y ObjEq (s ⊞ t) (inj₁ x) (inj₂ y) = ⊥ ObjEq (s ⊞ t) (inj₂ y) (inj₁ x) = ⊥ ObjEq (s ⊞ t) (inj₂ x) (inj₂ y) = ObjEq t x y ObjEq (s ⊠ t) (a , b) (c , d) = ObjEq s a c × ObjEq t b d HomEq : (t : U↑) → (a b : Category.Obj (proj₁ ⟦ t ⟧↑)) → Category._⇒_ (proj₁ ⟦ t ⟧↑) a b → Category._⇒_ (proj₁ ⟦ t ⟧↑) a b → Set HomEq (↑ x) a b h1 h2 = ⊤ -- this is basically proof-irrelevance h1 h2 HomEq (# S x) a b h1 h2 = ⊤ -- because h1 and h2 are the exact same ⇔ HomEq (1/ S x) tt tt h1 h2 = interp h1 ⇔ interp h2 -- here! HomEq (s ⊞ t) (inj₁ x) (inj₁ x₁) h1 h2 = HomEq s x x₁ h1 h2 HomEq (s ⊞ t) (inj₁ x) (inj₂ y) (Level.lift ()) h2 HomEq (s ⊞ t) (inj₂ y) (inj₁ x) (Level.lift ()) h2 HomEq (s ⊞ t) (inj₂ y) (inj₂ y₁) h1 h2 = HomEq t y y₁ h1 h2 HomEq (s ⊠ t) (a , b) (c , d) (a⇒c , b⇒d) (a⇒c' , b⇒d') = HomEq s a c a⇒c a⇒c' × HomEq t b d b⇒d b⇒d' -- W equivalence; note that transp is restricted to be the Homs of cat -- we might want to restrict that more. record _≈W_ {t : U↑} (a : W t) (b : W t) : Set where constructor weq cat = proj₁ ⟦ t ⟧↑ gpd = proj₂ ⟦ t ⟧↑ _∘_ = Category._∘_ cat field pt-eq : ObjEq t (W.pt a) (W.pt b) transp : Category._⇒_ cat (W.pt a) (W.pt b) auto-eq : HomEq t (W.pt a) (W.pt b) (W.auto b ∘ (transp ∘ (W.auto a))) transp
{ "alphanum_fraction": 0.5391669583, "avg_line_length": 36.4413265306, "ext": "agda", "hexsha": "384153d0994d6905e18597d967092ab4b65bbab6", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/PointedPi.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/PointedPi.agda", "max_line_length": 176, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/PointedPi.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 6419, "size": 14285 }
{-# OPTIONS --cubical --safe #-} module AssocList where open import Cubical.Core.Everything using (Type) open import Data.Bool using (Bool; false; true; _∨_; _∧_) open import Data.List using (List; []; _∷_; foldr) open import Data.Product using (_×_; _,_; proj₂) open import Function using (_∘_) AList : (A B : Type) → Type AList A B = List (A × List B) -- Does not deduplicate in list of B. insert : {A B : Type} → (A → A → Bool) → A × B → AList A B → AList A B insert eq (a , b) [] = (a , b ∷ []) ∷ [] insert eq (a , b) ((a' , bs) ∷ xs) with eq a a' ... | false = (a' , bs) ∷ insert eq (a , b) xs ... | true = (a' , b ∷ bs) ∷ xs lookup : {A B : Type} → (A → A → Bool) → A → AList A B → List B lookup eq _ [] = [] lookup eq a ((a' , bs) ∷ xs) with eq a a' ... | false = lookup eq a xs ... | true = bs
{ "alphanum_fraction": 0.5291375291, "avg_line_length": 30.6428571429, "ext": "agda", "hexsha": "8782e961157fed5c6917a579555afe3521a021ff", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z", "max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/MusicTools", "max_forks_repo_path": "agda/AssocList.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z", "max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/MusicTools", "max_issues_repo_path": "agda/AssocList.agda", "max_line_length": 70, "max_stars_count": 28, "max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/MusicTools", "max_stars_repo_path": "agda/AssocList.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z", "num_tokens": 304, "size": 858 }
-- Empty, unit and equality. ⊥ = (X : Set) → X ⊤ = (X : Set) → X → X data _≡_ {l}{A : Set l}(x : A) : A → Set l where <> : x ≡ x -- The fixpoint of the identity functor as a data definition. module Data where data μId : Set where In : μId → μId -- μId can be proved empty. Here are both a direct proof and one that -- relies on the eliminator for μId. ¬μId : μId → ⊥ ¬μId (In x) = ¬μId x μId-elim : ∀ {l}(P : μId → Set l) → (∀ x → P x → P (In x)) → ∀ x → P x μId-elim P m (In x) = m x (μId-elim P m x) ¬Id' : μId → ⊥ ¬Id' = μId-elim (λ _ → ⊥) (λ _ p → p) -- To prove ∀ x → ¬ (x ≡ In x) it is enough to call ¬μId (or ¬μId'): the -- equality proof is not inspected. ¬id≡In-empty : ∀ {x} → x ≡ In x → ⊥ ¬id≡In-empty {x} _ = ¬μId x -- or ¬Id' x -- Alternatively, one could use an absurd pattern which relies on the -- presence of a cycle. ¬id≡In-pm : ∀ {x} → x ≡ In x → ⊥ ¬id≡In-pm () -- The case of inductive records is a bit different. Here is the fixpoint -- of the identity functor as an inductive record definition. module Record where record μId : Set where inductive constructor In field Out : μId open μId -- It does not seem possible to prove Record.μId empty, as Agda does not -- consider the following definitions as terminating. {-# NON_TERMINATING #-} ¬μId : μId → ⊥ ¬μId (In x) = ¬μId x {-# NON_TERMINATING #-} μId-elim : ∀ {l}(P : μId → Set l) → (∀ x → P x → P (In x)) → ∀ x → P x μId-elim P m (In x) = m x (μId-elim P m x) ¬Id' : μId → ⊥ ¬Id' = μId-elim (λ _ → ⊥) (λ _ p → p) ¬id≡In-empty : ∀ {x} → x ≡ In x → ⊥ ¬id≡In-empty {x} _ = ¬μId x -- or ¬Id' x -- However, we can still use an absurd pattern as in Data.¬id≡In-pm. ¬id≡In-pm : ∀ {x} → x ≡ In x → ⊥ ¬id≡In-pm () -- This should not be possible.
{ "alphanum_fraction": 0.559911651, "avg_line_length": 24.1466666667, "ext": "agda", "hexsha": "41195b61c8fe11ca3c23c4d1fa7381274c80826e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "hborum/agda", "max_forks_repo_path": "test/Fail/Issue1271a.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Fail/Issue1271a.agda", "max_line_length": 73, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Fail/Issue1271a.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 713, "size": 1811 }
------------------------------------------------------------------------ -- Vectors, defined using an inductive family ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Equality module Vec.Data {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open import Prelude open import Bijection eq using (_↔_) open Derived-definitions-and-properties eq open import Function-universe eq hiding (_∘_) open import List eq using (length) open import Surjection eq using (_↠_; ↠-≡) ------------------------------------------------------------------------ -- The type -- Vectors. infixr 5 _∷_ data Vec {a} (A : Type a) : ℕ → Type a where [] : Vec A zero _∷_ : ∀ {n} → A → Vec A n → Vec A (suc n) ------------------------------------------------------------------------ -- Some simple functions -- Finds the element at the given position. index : ∀ {n} {a} {A : Type a} → Vec A n → Fin n → A index (x ∷ _) fzero = x index (_ ∷ xs) (fsuc i) = index xs i -- Updates the element at the given position. infix 3 _[_≔_] _[_≔_] : ∀ {n} {a} {A : Type a} → Vec A n → Fin n → A → Vec A n _[_≔_] [] () _ _[_≔_] (x ∷ xs) fzero y = y ∷ xs _[_≔_] (x ∷ xs) (fsuc i) y = x ∷ (xs [ i ≔ y ]) -- Applies the function to every element in the vector. map : ∀ {n a b} {A : Type a} {B : Type b} → (A → B) → Vec A n → Vec B n map f [] = [] map f (x ∷ xs) = f x ∷ map f xs -- Constructs a vector containing a certain number of copies of the -- given element. replicate : ∀ {n a} {A : Type a} → A → Vec A n replicate {zero} _ = [] replicate {suc _} x = x ∷ replicate x -- The head of the vector. head : ∀ {n a} {A : Type a} → Vec A (suc n) → A head (x ∷ _) = x -- The tail of the vector. tail : ∀ {n a} {A : Type a} → Vec A (suc n) → Vec A n tail (_ ∷ xs) = xs ------------------------------------------------------------------------ -- Conversions to and from lists -- Vectors can be converted to lists. to-list : ∀ {n} {a} {A : Type a} → Vec A n → List A to-list [] = [] to-list (x ∷ xs) = x ∷ to-list xs -- Lists can be converted to vectors. from-list : ∀ {a} {A : Type a} (xs : List A) → Vec A (length xs) from-list [] = [] from-list (x ∷ xs) = x ∷ from-list xs -- ∃ (Vec A) is isomorphic to List A. ∃Vec↔List : ∀ {a} {A : Type a} → ∃ (Vec A) ↔ List A ∃Vec↔List {A = A} = record { surjection = record { logical-equivalence = record { to = to-list ∘ proj₂ ; from = λ xs → length xs , from-list xs } ; right-inverse-of = to∘from } ; left-inverse-of = uncurry from∘to } where to∘from : (xs : List A) → to-list (from-list xs) ≡ xs to∘from [] = refl _ to∘from (x ∷ xs) = cong (x ∷_) (to∘from xs) tail′ : A → ∃ (Vec A) ↠ ∃ (Vec A) tail′ y = record { logical-equivalence = record { to = λ where (suc n , _ ∷ xs) → n , xs xs@(zero , _) → xs ; from = Σ-map suc (y ∷_) } ; right-inverse-of = refl } from∘to : ∀ n (xs : Vec A n) → (length (to-list xs) , from-list (to-list xs)) ≡ (n , xs) from∘to zero [] = refl _ from∘to (suc n) (x ∷ xs) = $⟨ from∘to n xs ⟩ (length (to-list xs) , from-list (to-list xs)) ≡ (n , xs) ↝⟨ _↠_.from $ ↠-≡ (tail′ x) ⟩□ (length (to-list (x ∷ xs)) , from-list (to-list (x ∷ xs))) ≡ (suc n , x ∷ xs) □
{ "alphanum_fraction": 0.4667621777, "avg_line_length": 27.6984126984, "ext": "agda", "hexsha": "5ae1a4dd825143e3e790d93ea9d792aaa6960ae3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Vec/Data.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Vec/Data.agda", "max_line_length": 94, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Vec/Data.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 1160, "size": 3490 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Object.Zero -- Kernels of morphisms. -- https://ncatlab.org/nlab/show/kernel module Categories.Object.Kernel {o ℓ e} {𝒞 : Category o ℓ e} (zero : Zero 𝒞) where open import Level using (_⊔_) open import Categories.Morphism 𝒞 open import Categories.Morphism.Reasoning 𝒞 hiding (glue) open Category 𝒞 open Zero zero open HomReasoning private variable A B X : Obj f h i j k : A ⇒ B -- Note: We could define Kernels directly as equalizers or as pullbacks, but it seems somewhat -- cleaner to just define them "as is" to avoid mucking about with extra morphisms that can -- get in the way. For example, if we defined them as 'Pullback f !' then our 'p₂' projection -- would _always_ be trivially equal to '¡ : K ⇒ zero'. record IsKernel {A B K} (k : K ⇒ A) (f : A ⇒ B) : Set (o ⊔ ℓ ⊔ e) where field commute : f ∘ k ≈ zero⇒ universal : ∀ {X} {h : X ⇒ A} → f ∘ h ≈ zero⇒ → X ⇒ K factors : ∀ {eq : f ∘ h ≈ zero⇒} → h ≈ k ∘ universal eq unique : ∀ {eq : f ∘ h ≈ zero⇒} → h ≈ k ∘ i → i ≈ universal eq universal-resp-≈ : ∀ {eq : f ∘ h ≈ zero⇒} {eq′ : f ∘ i ≈ zero⇒} → h ≈ i → universal eq ≈ universal eq′ universal-resp-≈ h≈i = unique (⟺ h≈i ○ factors) universal-∘ : f ∘ k ∘ h ≈ zero⇒ universal-∘ {h = h} = begin f ∘ k ∘ h ≈⟨ pullˡ commute ⟩ zero⇒ ∘ h ≈⟨ pullʳ (⟺ (¡-unique (¡ ∘ h))) ⟩ zero⇒ ∎ record Kernel {A B} (f : A ⇒ B) : Set (o ⊔ ℓ ⊔ e) where field {kernel} : Obj kernel⇒ : kernel ⇒ A isKernel : IsKernel kernel⇒ f open IsKernel isKernel public IsKernel⇒Kernel : IsKernel k f → Kernel f IsKernel⇒Kernel {k = k} isKernel = record { kernel⇒ = k ; isKernel = isKernel }
{ "alphanum_fraction": 0.6101888952, "avg_line_length": 28.6393442623, "ext": "agda", "hexsha": "7e49fddc64601acd397461d399f753c9a3338ce1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3ef03f73bce18f1efba2890df9ddf3d76ed2de32", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "FintanH/agda-categories", "max_forks_repo_path": "src/Categories/Object/Kernel.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3ef03f73bce18f1efba2890df9ddf3d76ed2de32", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "FintanH/agda-categories", "max_issues_repo_path": "src/Categories/Object/Kernel.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "3ef03f73bce18f1efba2890df9ddf3d76ed2de32", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FintanH/agda-categories", "max_stars_repo_path": "src/Categories/Object/Kernel.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 664, "size": 1747 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Pointwise table equality ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Table.Relation.Binary.Equality where open import Relation.Binary using (Setoid) open import Data.Table.Base open import Data.Nat using (ℕ) open import Function using (_∘_) open import Relation.Binary.PropositionalEquality as P using (_≡_; _→-setoid_) setoid : ∀ {c p} → Setoid c p → ℕ → Setoid _ _ setoid S n = record { Carrier = Table Carrier n ; _≈_ = λ t t′ → ∀ i → lookup t i ≈ lookup t′ i ; isEquivalence = record { refl = λ i → refl ; sym = λ p → sym ∘ p ; trans = λ p q i → trans (p i) (q i) } } where open Setoid S ≡-setoid : ∀ {a} → Set a → ℕ → Setoid _ _ ≡-setoid A = setoid (P.setoid A) module _ {a} {A : Set a} {n} where open Setoid (≡-setoid A n) public using () renaming (_≈_ to _≗_)
{ "alphanum_fraction": 0.5331991952, "avg_line_length": 27.6111111111, "ext": "agda", "hexsha": "3f162ffdc2a81b89598f01c88a059eab5a64870f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Table/Relation/Binary/Equality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Table/Relation/Binary/Equality.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Table/Relation/Binary/Equality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 292, "size": 994 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Instantiates the ring solver with two copies of the same ring with -- decidable equality ------------------------------------------------------------------------ open import Algebra.RingSolver.AlmostCommutativeRing open import Relation.Binary module Algebra.RingSolver.Simple {r₁ r₂} (R : AlmostCommutativeRing r₁ r₂) (_≟_ : Decidable (AlmostCommutativeRing._≈_ R)) where open AlmostCommutativeRing R import Algebra.RingSolver as RS open RS rawRing R (-raw-almostCommutative⟶ R) _≟_ public
{ "alphanum_fraction": 0.5748407643, "avg_line_length": 33.0526315789, "ext": "agda", "hexsha": "17c5036906ceec0a2b35f2051f325deb098e3bd5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Algebra/RingSolver/Simple.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Algebra/RingSolver/Simple.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Algebra/RingSolver/Simple.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 138, "size": 628 }
module Extensions.All where open import Data.List.All
{ "alphanum_fraction": 0.8181818182, "avg_line_length": 13.75, "ext": "agda", "hexsha": "0007e736046483125f6fa81ba8edadf01b1687de", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Extensions/All.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Extensions/All.agda", "max_line_length": 27, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Extensions/All.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 11, "size": 55 }
{-# OPTIONS --cubical #-} open import Agda.Primitive.Cubical postulate A : Set B : Set b : B postulate PathP : ∀ {ℓ} (A : I → Set ℓ) → A i0 → A i1 → Set ℓ {-# BUILTIN PATHP PathP #-} infix 4 _≡_ _≡_ : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ _≡_ {A = A} = PathP (λ _ → A) f : (\ {a : A} (x : B) → b) ≡ (\ _ → b) f i x = b
{ "alphanum_fraction": 0.4617647059, "avg_line_length": 16.1904761905, "ext": "agda", "hexsha": "e36f393213c9b6bb8c8f0efb69c59123c31940d5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2722.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2722.agda", "max_line_length": 53, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2722.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 160, "size": 340 }
{-# OPTIONS --without-K #-} open import lib.Base module test.fail.Test2 where module _ where private data #I : Type₀ where #zero : #I #one : #I I : Type₀ I = #I zero : I zero = #zero one : I one = #one postulate seg : zero == one I-elim : ∀ {i} {P : I → Type i} (zero* : P zero) (one* : P one) (seg* : zero* == one* [ P ↓ seg ]) → Π I P I-elim {i} {P} zero* one* seg* = I-elim-aux phantom where I-elim-aux : Phantom seg* → Π I P I-elim-aux phantom #zero = zero* I-elim-aux phantom #one = one* postulate P : I → Type₀ z : P zero o : P one s s' : z == o [ P ↓ seg ] absurd : I-elim z o s == I-elim z o s' absurd = idp
{ "alphanum_fraction": 0.5185714286, "avg_line_length": 16.6666666667, "ext": "agda", "hexsha": "0ed9f8f71aa031d23e01cf143fe8f6c055fa21d0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "test/fail/Test2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "test/fail/Test2.agda", "max_line_length": 65, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "test/fail/Test2.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 270, "size": 700 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of operations on containers ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Container.Properties where import Function as F open import Relation.Binary open import Data.Container.Core open import Data.Container.Relation.Binary.Equality.Setoid module _ {s p} {C : Container s p} where map-identity : ∀ {x e} (X : Setoid x e) xs → Eq X C (map F.id xs) xs map-identity X xs = refl X C map-compose : ∀ {x y z e} {X : Set x} {Y : Set y} (Z : Setoid z e) g (f : X → Y) xs → Eq Z C (map g (map f xs)) (map (g F.∘′ f) xs) map-compose Z g f xs = refl Z C
{ "alphanum_fraction": 0.501910828, "avg_line_length": 30.1923076923, "ext": "agda", "hexsha": "c20c6b144e0724153009c2cbbfaa6187fac13082", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Properties.agda", "max_line_length": 87, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 199, "size": 785 }
{-# OPTIONS --safe #-} module Cubical.Algebra.CommRingSolver.HornerForms where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat using (ℕ) open import Cubical.Data.Int hiding (_+_ ; _·_ ; -_) open import Cubical.Data.FinData open import Cubical.Data.Vec open import Cubical.Data.Bool open import Cubical.Relation.Nullary.Base using (yes; no) open import Cubical.Algebra.CommRingSolver.Utility open import Cubical.Algebra.CommRingSolver.RawRing open import Cubical.Algebra.CommRingSolver.IntAsRawRing open import Cubical.Algebra.CommRingSolver.RawAlgebra renaming (⟨_⟩ to ⟨_⟩ₐ) open import Cubical.Algebra.CommRingSolver.AlgebraExpression public private variable ℓ ℓ' : Level {- This defines the type of multivariate Polynomials over the RawRing R. The construction is based on the algebraic fact R[X₀][X₁]⋯[Xₙ] ≅ R[X₀,⋯,Xₙ] BUT: Contrary to algebraic convetions, we will give 'Xₙ' the lowest index in the definition of 'Variable' below. So if 'Variable n R k' is identified with 'Xₖ', then the RawRing we construct should rather be denoted with R[Xₙ][Xₙ₋₁]⋯[X₀] or, to be precise about the evaluation order: (⋯((R[Xₙ])[Xₙ₋₁])⋯)[X₀] -} data IteratedHornerForms (A : RawAlgebra ℤAsRawRing ℓ) : ℕ → Type ℓ where const : ℤ → IteratedHornerForms A ℕ.zero 0H : {n : ℕ} → IteratedHornerForms A (ℕ.suc n) _·X+_ : {n : ℕ} → IteratedHornerForms A (ℕ.suc n) → IteratedHornerForms A n → IteratedHornerForms A (ℕ.suc n) {- The following function returns true, if there is some obvious reason that the Horner-Expression should be zero. Since Equality is undecidable in a general RawAlgebra, we cannot have a function that fully lives up to the name 'isZero'. -} module _ (A : RawAlgebra ℤAsRawRing ℓ) where open RawRing ℤAsRawRing isZero : {n : ℕ} → IteratedHornerForms A n → Bool isZero (const (pos ℕ.zero)) = true isZero (const (pos (ℕ.suc _))) = false isZero (const (negsuc _)) = false isZero 0H = true isZero (P ·X+ Q) = (isZero P) and (isZero Q) leftIsZero : {n : ℕ} (P : IteratedHornerForms A (ℕ.suc n)) (Q : IteratedHornerForms A n) → isZero (P ·X+ Q) ≡ true → isZero P ≡ true leftIsZero P Q isZeroSum with isZero P ... | true = refl ... | false = byBoolAbsurdity (fst (extractFromAnd _ _ isZeroSum)) rightIsZero : {n : ℕ} (P : IteratedHornerForms A (ℕ.suc n)) (Q : IteratedHornerForms A n) → isZero (P ·X+ Q) ≡ true → isZero Q ≡ true rightIsZero P Q isZeroSum with isZero Q ... | true = refl ... | false = byBoolAbsurdity (snd (extractFromAnd _ _ isZeroSum)) module IteratedHornerOperations (A : RawAlgebra ℤAsRawRing ℓ) where open RawRing ℤAsRawRing private 1H' : (n : ℕ) → IteratedHornerForms A n 1H' ℕ.zero = const 1r 1H' (ℕ.suc n) = 0H ·X+ 1H' n 0H' : (n : ℕ) → IteratedHornerForms A n 0H' ℕ.zero = const 0r 0H' (ℕ.suc n) = 0H 1ₕ : {n : ℕ} → IteratedHornerForms A n 1ₕ {n = n} = 1H' n 0ₕ : {n : ℕ} → IteratedHornerForms A n 0ₕ {n = n} = 0H' n X : (n : ℕ) (k : Fin n) → IteratedHornerForms A n X (ℕ.suc m) zero = 1ₕ ·X+ 0ₕ X (ℕ.suc m) (suc k) = 0ₕ ·X+ X m k _+ₕ_ : {n : ℕ} → IteratedHornerForms A n → IteratedHornerForms A n → IteratedHornerForms A n (const r) +ₕ (const s) = const (r + s) 0H +ₕ Q = Q (P ·X+ r) +ₕ 0H = P ·X+ r (P ·X+ r) +ₕ (Q ·X+ s) = let left = (P +ₕ Q) right = (r +ₕ s) in if ((isZero A left) and (isZero A right)) then 0ₕ else left ·X+ right -ₕ : {n : ℕ} → IteratedHornerForms A n → IteratedHornerForms A n -ₕ (const x) = const (- x) -ₕ 0H = 0H -ₕ (P ·X+ Q) = (-ₕ P) ·X+ (-ₕ Q) _⋆_ : {n : ℕ} → IteratedHornerForms A n → IteratedHornerForms A (ℕ.suc n) → IteratedHornerForms A (ℕ.suc n) _·ₕ_ : {n : ℕ} → IteratedHornerForms A n → IteratedHornerForms A n → IteratedHornerForms A n r ⋆ 0H = 0H r ⋆ (P ·X+ Q) = if (isZero A r) then 0ₕ else (r ⋆ P) ·X+ (r ·ₕ Q) const x ·ₕ const y = const (x · y) 0H ·ₕ Q = 0H (P ·X+ Q) ·ₕ S = let z = (P ·ₕ S) in if (isZero A z) then (Q ⋆ S) else (z ·X+ 0ₕ) +ₕ (Q ⋆ S) isZeroPresLeft⋆ : {n : ℕ} (r : IteratedHornerForms A n) (P : IteratedHornerForms A (ℕ.suc n)) → isZero A r ≡ true → isZero A (r ⋆ P) ≡ true isZeroPresLeft⋆ r 0H isZero-r = refl isZeroPresLeft⋆ r (P ·X+ Q) isZero-r with isZero A r ... | true = refl ... | false = byBoolAbsurdity isZero-r isZeroPresLeft·ₕ : {n : ℕ} (P Q : IteratedHornerForms A n) → isZero A P ≡ true → isZero A (P ·ₕ Q) ≡ true isZeroPresLeft·ₕ (const (pos ℕ.zero)) (const _) isZeroP = refl isZeroPresLeft·ₕ (const (pos (ℕ.suc n))) (const _) isZeroP = byBoolAbsurdity isZeroP isZeroPresLeft·ₕ (const (negsuc n)) (const _) isZeroP = byBoolAbsurdity isZeroP isZeroPresLeft·ₕ 0H Q isZeroP = refl isZeroPresLeft·ₕ (P ·X+ Q) S isZeroSum with isZero A (P ·ₕ S) ≟ true ... | no p = byBoolAbsurdity (sym notZeroProd ∙ isZeroProd) where notZeroProd = ¬true→false _ p isZeroP = extractFromAndLeft isZeroSum isZeroProd = isZeroPresLeft·ₕ P S isZeroP ... | yes p with isZero A (P ·ₕ S) ... | true = isZeroPresLeft⋆ Q S isZeroQ where isZeroQ = extractFromAndRight isZeroSum ... | false = byBoolAbsurdity p asRawRing : (n : ℕ) → RawRing ℓ RawRing.Carrier (asRawRing n) = IteratedHornerForms A n RawRing.0r (asRawRing n) = 0ₕ RawRing.1r (asRawRing n) = 1ₕ RawRing._+_ (asRawRing n) = _+ₕ_ RawRing._·_ (asRawRing n) = _·ₕ_ RawRing.- (asRawRing n) = -ₕ Variable : (n : ℕ) (R : RawAlgebra ℤAsRawRing ℓ') (k : Fin n) → IteratedHornerForms R n Variable n R k = IteratedHornerOperations.X R n k Constant : (n : ℕ) (R : RawAlgebra ℤAsRawRing ℓ') (r : ℤ) → IteratedHornerForms R n Constant ℕ.zero R r = const r Constant (ℕ.suc n) R r = IteratedHornerOperations.0ₕ R ·X+ Constant n R r
{ "alphanum_fraction": 0.6178835111, "avg_line_length": 32.9459459459, "ext": "agda", "hexsha": "f7ff797f7cc3fafd1ba57a24ac8ee86c4234185c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/CommRingSolver/HornerForms.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/CommRingSolver/HornerForms.agda", "max_line_length": 87, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/CommRingSolver/HornerForms.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 2359, "size": 6095 }
open import Data.Fin using (Fin) open import Data.Nat using (ℕ; _+_) open import Data.Vec using (Vec; []; _∷_; _++_) open import Dipsy.Polarity module Dipsy.Base (FOp : {n : ℕ} (as : Vec Polarity n) (b : Polarity) → Set) (SOp : {n : ℕ} (as : Vec Polarity n) (b : Polarity) → Set) where open import Dipsy.Form FOp public open import Dipsy.Struct FOp SOp public Res : Set Res = {n₁ n₂ : ℕ} → {as₁ : Vec Polarity n₁} → {as₂ : Vec Polarity n₂} → {b : Polarity} → SOp (as₁ ++ flip b ∷ as₂) b → Context (flip b) b -- we need contexts with n holes if we want to encode structuralisation properly.. -- those are functions...
{ "alphanum_fraction": 0.6327160494, "avg_line_length": 25.92, "ext": "agda", "hexsha": "d21f1c52f76e84c5d1239c470394efbc067357c0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "06eec3f3325c71c81809ff19dfaf4fd43ba958ed", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "wenkokke/dipsy", "max_forks_repo_path": "src/Dipsy/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "06eec3f3325c71c81809ff19dfaf4fd43ba958ed", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "wenkokke/dipsy", "max_issues_repo_path": "src/Dipsy/Base.agda", "max_line_length": 82, "max_stars_count": 1, "max_stars_repo_head_hexsha": "06eec3f3325c71c81809ff19dfaf4fd43ba958ed", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "wenkokke/Dipsy", "max_stars_repo_path": "src/Dipsy/Base.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-10T13:43:29.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-10T13:43:29.000Z", "num_tokens": 225, "size": 648 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Right-biased universe-sensitive functor and monad instances for the -- Product type. -- -- To minimize the universe level of the RawFunctor, we require that -- elements of B are "lifted" to a copy of B at a higher universe level -- (a ⊔ b). See the Data.Product.Categorical.Examples for how this is -- done. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Algebra open import Level module Data.Product.Categorical.Right (a : Level) {b e} (B : RawMonoid b e) where open import Data.Product import Data.Product.Categorical.Right.Base as Base open import Category.Applicative using (RawApplicative) open import Category.Monad using (RawMonad; RawMonadT) open import Function using (id; flip; _∘_; _∘′_) import Function.Identity.Categorical as Id open RawMonoid B ------------------------------------------------------------------------ -- Re-export the base contents publically open Base Carrier a public ------------------------------------------------------------------------ -- Basic records applicative : RawApplicative Productᵣ applicative = record { pure = _, ε ; _⊛_ = zip id _∙_ } monadT : RawMonadT (_∘′ Productᵣ) monadT M = record { return = pure ∘′ (_, ε) ; _>>=_ = λ ma f → ma >>= uncurry λ x b → map₂ (b ∙_) <$> f x } where open RawMonad M monad : RawMonad Productᵣ monad = monadT Id.monad ------------------------------------------------------------------------ -- Get access to other monadic functions module _ {F} (App : RawApplicative {a ⊔ b} F) where open RawApplicative App sequenceA : ∀ {A} → Productᵣ (F A) → F (Productᵣ A) sequenceA (fa , y) = (_, y) <$> fa mapA : ∀ {A B} → (A → F B) → Productᵣ A → F (Productᵣ B) mapA f = sequenceA ∘ map₁ f forA : ∀ {A B} → Productᵣ A → (A → F B) → F (Productᵣ B) forA = flip mapA module _ {M} (Mon : RawMonad {a ⊔ b} M) where private App = RawMonad.rawIApplicative Mon sequenceM : ∀ {A} → Productᵣ (M A) → M (Productᵣ A) sequenceM = sequenceA App mapM : ∀ {A B} → (A → M B) → Productᵣ A → M (Productᵣ B) mapM = mapA App forM : ∀ {A B} → Productᵣ A → (A → M B) → M (Productᵣ B) forM = forA App
{ "alphanum_fraction": 0.5559912854, "avg_line_length": 28.3333333333, "ext": "agda", "hexsha": "0e7129441a89d792baf8d2cf3bf1d1449501c188", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Categorical/Right.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Categorical/Right.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Categorical/Right.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 669, "size": 2295 }
{-# OPTIONS --safe --warning=error --without-K #-} module Rings.IntegralDomains.Examples where
{ "alphanum_fraction": 0.7142857143, "avg_line_length": 16.3333333333, "ext": "agda", "hexsha": "1a962aa0dd5b58b17a9b8344d66292baeb8ca3e7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/IntegralDomains/Examples.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/IntegralDomains/Examples.agda", "max_line_length": 50, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/IntegralDomains/Examples.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 22, "size": 98 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Algebra.FunctionProperties.Consequences.Propositional {a} {A : Set a} where {-# WARNING_ON_IMPORT "Algebra.FunctionProperties.Consequences.Propositional was deprecated in v1.3. Use Algebra.Consequences.Propositional instead." #-} open import Algebra.Consequences.Propositional {A = A} public
{ "alphanum_fraction": 0.5602189781, "avg_line_length": 30.4444444444, "ext": "agda", "hexsha": "8d68750adf63348424f3a623ce2804a2d4d883d8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Algebra/FunctionProperties/Consequences/Propositional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Algebra/FunctionProperties/Consequences/Propositional.agda", "max_line_length": 78, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Algebra/FunctionProperties/Consequences/Propositional.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 99, "size": 548 }
---------------------------------------------------------------------- -- Copyright: 2013, Jan Stolarek, Lodz University of Technology -- -- -- -- License: See LICENSE file in root of the repo -- -- Repo address: https://github.com/jstolarek/dep-typed-wbl-heaps -- -- -- -- Basic implementation of weight-biased leftist heap. No proofs -- -- and no dependent types. Uses a two-pass merging algorithm. -- ---------------------------------------------------------------------- {-# OPTIONS --sized-types #-} module TwoPassMerge.NoProofs where open import Basics.Nat open import Basics hiding (_≥_) open import Sized -- Weight biased leftist heap is implemented using a binary tree. I -- will interchangeably refer to children of a node as "subtrees" or -- "subheaps". -- -- A Heap usually stores elements of some type (Set) A with an -- assigned priority. However to keep code easier to read each node -- will only store Priority (a natural number). This will not affect -- in any way proofs that we are conducting. -- We begin with a simple implementation that uses no dependent -- types. Note the we explicitly store rank in node constructor -- (recall that rank is defined as number of elements in a -- tree). Theoretically this information is redundant - we could -- compute the size of a tree whenever we need it. The reason I choose -- to store it in a node is that later, when we come to proving the -- rank invariant, it will be instructive to show how information -- stored inside a constructor is turned into an inductive family -- index. -- One more thing to note is that we will define most of our Heaps to -- be sized types, ie. to use an implict index that defines how a -- constructor affects the inductive size of the data structure. This -- information is used to guide the termination checker in the -- definitions of merge. data Heap : {i : Size} → Set where empty : {i : Size} → Heap {↑ i} node : {i : Size} → Priority → Rank → Heap {i} → Heap {i} → Heap {↑ i} -- Returns rank of node. rank : Heap → Nat rank empty = zero rank (node _ r _ _) = r -- Creates heap containing a single element with a given Priority singleton : Priority → Heap singleton p = node p one empty empty -- Note [Two-pass merging algorithm] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- We use a two-pass implementation of merging algorithm. One pass, -- implemented by merge, performs merging in a top-down manner. Second -- one, implemented by makeT, ensures that rank invariant of weight -- biased leftist tree is not violated after merging. -- -- Notation: -- -- h1, h2 - heaps being merged -- p1, p2 - priority of root element in h1 and h2 -- l1 - left subtree in the first heap -- r1 - right subtree in the first heap -- l2 - left subtree in the second heap -- r2 - right subtree in the second heap -- -- Merge function analyzes four cases. Two of them are base cases: -- -- a) h1 is empty - return h2 -- -- b) h2 is empty - return h1 -- -- The other two form the inductive definition of merge: -- -- c) priority p1 is higher than p2 - p1 becomes new root, l1 -- becomes its one child and result of merging r1 with h2 -- becomes the other child: -- -- p1 -- / \ -- / \ -- l1 r1+h2 -- here "+" denotes merging -- -- d) priority p2 is higher than p2 - p2 becomes new root, l2 -- becomes its one child and result of merging r2 with h1 -- becomes the other child. -- -- p2 -- / \ -- / \ -- l2 r2+h1 -- -- Note that there is no guarantee that rank of r1+h2 (or r2+h1) will -- be smaller than rank of l1 (or l2). To ensure that merged heap -- maintains the rank invariant we pass both childred - ie. either l1 -- and r1+h2 or l2 and r2+h1 - to makeT, which creates a new node by -- inspecting sizes of children and swapping them if necessary. -- makeT takes an element (priority) and two heaps (trees). It -- constructs a new heap with element at the root and two heaps as -- children. makeT ensures that WBL heap rank invariant is maintained -- in the newly created tree by reversing left and right subtrees when -- necessary (note the inversed r and l in the last case of makeT). makeT : Priority → Heap → Heap → Heap makeT p l r with rank l ≥ rank r makeT p l r | true = node p (suc (rank l + rank r)) l r makeT p l r | false = node p (suc (rank l + rank r)) r l -- merge combines two heaps into one. There are two base cases and two -- recursive cases - see [Two-pass Merging algorithm]. Recursive cases -- call makeT to ensure that rank invariant is maintained after -- merging. merge : {i j : Size} → Heap {i} → Heap {j} → Heap merge empty h2 = h2 merge h1 empty = h1 merge (node p1 h1-r l1 r1) (node p2 h2-r l2 r2) with p1 < p2 merge (node p1 h1-r l1 r1) (node p2 h2-r l2 r2) | true = makeT p1 l1 (merge r1 (node p2 h2-r l2 r2)) merge (node p1 h1-r l1 r1) (node p2 h2-r l2 r2) | false = makeT p2 l2 (merge (node p1 h1-r l1 r1) r2) -- Inserting into a heap is performed by merging that heap with newly -- created singleton heap. insert : Priority → Heap → Heap insert p h = merge (singleton p) h -- findMin returns element with highest priority, ie. root -- element. Here we encounter first serious problem: we can't return -- anything for empty node. If this was Haskell we could throw an -- error, but Agda is a total language. This means that every program -- written in Agda eventually terminates and produces a -- result. Throwing errors is not allowed. findMin : Heap → Priority findMin empty = {!!} -- does it make sense to assume default -- priority for empty heap? findMin (node p _ _ _) = p data Maybe (A : Set) : Set where nothing : Maybe A just : A → Maybe A findMinM : Heap → Maybe Priority findMinM empty = nothing findMinM (node p _ _ _) = just p -- deleteMin removes the element with the highest priority by merging -- subtrees of a root element. Again the case of empty heap is -- problematic. We could give it semantics by returning empty, but -- this just doesn't feel right. Why should we be able to remove -- elements from the empty heap? deleteMin : Heap → Heap deleteMin empty = {!!} -- should we insert empty? deleteMin (node _ _ l r) = merge l r -- As a quick sanity check let's construct some examples. Here's a -- heap constructed by inserting following priorities into an empty -- heap: 3, 0, 1, 2. heap : Heap heap = insert (suc (suc zero)) (insert (suc zero) (insert zero (insert (suc (suc (suc zero))) empty))) -- Example usage of findMin findMinInHeap : Priority findMinInHeap = findMin heap -- Example usage of deleteMin deleteMinFromHeap : Heap deleteMinFromHeap = deleteMin heap
{ "alphanum_fraction": 0.6491102181, "avg_line_length": 39.1460674157, "ext": "agda", "hexsha": "cebb5c22f791935699f1e664bd7926a6ade0dbe4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_forks_repo_path": "src/TwoPassMerge/NoProofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_issues_repo_path": "src/TwoPassMerge/NoProofs.agda", "max_line_length": 73, "max_stars_count": 1, "max_stars_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_stars_repo_path": "src/TwoPassMerge/NoProofs.agda", "max_stars_repo_stars_event_max_datetime": "2018-05-02T21:48:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-02T21:48:43.000Z", "num_tokens": 1799, "size": 6968 }
module Syntax where import Level open import Data.Unit as Unit renaming (tt to ∗) open import Data.List as List open import Data.Product open import Categories.Category using (Category) open import Function open import Relation.Binary.PropositionalEquality as PE hiding ([_]; subst) open import Relation.Binary using (module IsEquivalence; Setoid; module Setoid) open ≡-Reasoning open import Common.Context as Context Univ = ⊤ data FP : Set where μ : FP ν : FP mutual TypeCtx : Set TypeCtx = Ctx (TermCtx × Univ) data Type : TypeCtx → TermCtx → TermCtx → Univ → Set data TermCtx : Set where Ø : TermCtx _∷'_ : {i : Univ} → (Γ : TermCtx) → Type [] Γ Ø i → TermCtx data Term (Γ Γ' : TermCtx) {i : Univ} : Type [] Γ Γ' i → Type [] Γ Γ' i → Set TypeVar : TypeCtx → TermCtx → Univ → Set TypeVar Δ Γ i = Var Δ (Γ , i) data CtxMor (Γ : TermCtx) : TermCtx → Set where ⟨⟩ : CtxMor Γ Ø _⋉_ : {i : Univ} {Γ' : TermCtx} {A : Type [] Γ' Ø i} (f : CtxMor Γ Γ') → Term Γ (subst A f) → CtxMor Γ (Γ ∷' A) reidx : {Δ : TypeCtx} {Γ Γ' : TermCtx} {i : Univ} → CtxMor Γ' Γ → Type Δ Γ Ø i → Type Δ Γ' Ø i reidx = ? data Term (Γ Γ' : TermCtx) {i : Univ} : Type [] Γ Γ' i → Type [] Γ Γ' i → Set where in₁ : {i : Univ} {X : TypeVar [(Γ , i)] Γ i} {Γ₁ : TermCtx} (A₁ : Type [(Γ , i)] Γ₁ Ø i) (f₁ : Γ₁ ▹ Γ) → Term Γ Γ' i (tySubst (fp A₁ f₁ μ) A₁ X) (reidx f₁ (fp A₁ f₁ μ)) {- _++'_ : TermCtx → TermCtx → TermCtx Γ₁ ++' Ø = Γ₁ Γ₁ ++' (Γ₂ ∷' A) = -} data Type : TypeCtx → TermCtx → TermCtx → Univ → Set where tyVar : (Δ : TypeCtx) → (Γ : TermCtx) → (i : Univ) → Type Δ Ø Γ i -- app : fp : {Δ : TypeCtx} {Γ : TermCtx} {i : Univ} {X : TypeVar Δ Γ i} {Γ₁ : TermCtx} (A₁ : Type Δ Γ₁ Ø i) (f₁ : Γ₁ ▹ Γ) (ρ : FP) → Type Δ Ø Γ i {- fp : {Δ : TypeCtx} {X : TypeVar} {Γ Γ' Γ₁ : TermCtx} {i : Univ} (A₁ : Type Δ (Γ' ++' Γ₁) -}
{ "alphanum_fraction": 0.5397698849, "avg_line_length": 28.9710144928, "ext": "agda", "hexsha": "b515caf7fc4326886c65fea2d64f77ad9c39d6f2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "TypeTheory/FibDataTypes/Syntax.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "TypeTheory/FibDataTypes/Syntax.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "TypeTheory/FibDataTypes/Syntax.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 761, "size": 1999 }
------------------------------------------------------------------------ -- Functional semantics for an untyped λ-calculus with constants ------------------------------------------------------------------------ module Lambda.Closure.Functional where open import Category.Monad open import Category.Monad.Partiality as Partiality using (_⊥; never; OtherKind; other; steps) open import Codata.Musical.Notation open import Data.Empty using (⊥-elim) open import Data.List hiding (lookup) open import Data.Maybe hiding (_>>=_) import Data.Maybe.Categorical as Maybe open import Data.Nat open import Data.Product open import Data.Sum open import Data.Vec using (Vec; []; _∷_; lookup) open import Function import Level open import Relation.Binary using (module Preorder) open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Nullary open import Relation.Nullary.Negation open Partiality._⊥ private open module E {A : Set} = Partiality.Equality (_≡_ {A = A}) open module R {A : Set} = Partiality.Reasoning (P.isEquivalence {A = A}) open import Lambda.Syntax open Closure Tm open import Lambda.VirtualMachine open Functional private module VM = Closure Code ------------------------------------------------------------------------ -- A monad with partiality and failure PF : RawMonad {f = Level.zero} (_⊥ ∘ Maybe) PF = Maybe.monadT Partiality.monad module PF where open RawMonad PF public fail : {A : Set} → Maybe A ⊥ fail = now nothing _>>=-cong_ : ∀ {k} {A B : Set} {x₁ x₂ : Maybe A ⊥} {f₁ f₂ : A → Maybe B ⊥} → Rel k x₁ x₂ → (∀ x → Rel k (f₁ x) (f₂ x)) → Rel k (x₁ >>= f₁) (x₂ >>= f₂) _>>=-cong_ {k} {f₁ = f₁} {f₂} x₁≈x₂ f₁≈f₂ = Partiality._>>=-cong_ x₁≈x₂ helper where helper : ∀ {x y} → x ≡ y → Rel k (maybe f₁ fail x) (maybe f₂ fail y) helper {x = nothing} P.refl = fail ∎ helper {x = just x} P.refl = f₁≈f₂ x associative : {A B C : Set} (x : Maybe A ⊥) (f : A → Maybe B ⊥) (g : B → Maybe C ⊥) → (x >>= f >>= g) ≅ (x >>= λ y → f y >>= g) associative x f g = (x >>= f >>= g) ≅⟨ Partiality.associative P.refl x _ _ ⟩ (x >>=′ λ y → maybe f fail y >>= g) ≅⟨ Partiality._>>=-cong_ (x ∎) helper ⟩ (x >>= λ y → f y >>= g) ∎ where open RawMonad Partiality.monad renaming (_>>=_ to _>>=′_) helper : ∀ {y₁ y₂} → y₁ ≡ y₂ → (maybe f fail y₁ >>= g) ≅ maybe (λ z → f z >>= g) fail y₂ helper {y₁ = nothing} P.refl = fail ∎ helper {y₁ = just y} P.refl = (f y >>= g) ∎ >>=-inversion-⇓ : ∀ {k} {A B : Set} x {f : A → Maybe B ⊥} {y} → (x>>=f⇓ : (x >>= f) ⇓[ k ] just y) → ∃ λ z → ∃₂ λ (x⇓ : x ⇓[ k ] just z) (fz⇓ : f z ⇓[ k ] just y) → steps x⇓ + steps fz⇓ ≡ steps x>>=f⇓ >>=-inversion-⇓ x {f} x>>=f⇓ with Partiality.>>=-inversion-⇓ {_∼A_ = _≡_} P.refl x x>>=f⇓ ... | (nothing , x↯ , now () , _) ... | (just z , x⇓ , fz⇓ , eq) = (z , x⇓ , fz⇓ , eq) >>=-inversion-⇑ : ∀ {k} {A B : Set} x {f : A → Maybe B ⊥} → (x >>= f) ⇑[ other k ] → ¬ ¬ (x ⇑[ other k ] ⊎ ∃ λ y → x ⇓[ other k ] just y × f y ⇑[ other k ]) >>=-inversion-⇑ {k} x {f} x>>=f⇑ = helper ⟨$⟩ Partiality.>>=-inversion-⇑ P.isEquivalence x x>>=f⇑ where open RawMonad ¬¬-Monad renaming (_<$>_ to _⟨$⟩_) helper : (_ ⊎ ∃ λ (y : Maybe _) → _) → _ helper (inj₁ x⇑ ) = inj₁ x⇑ helper (inj₂ (just y , x⇓,fy⇑) ) = inj₂ (y , x⇓,fy⇑) helper (inj₂ (nothing , x↯,now∼never)) = ⊥-elim (Partiality.now≉never (proj₂ x↯,now∼never)) ------------------------------------------------------------------------ -- A workaround for the limitations of guardedness module Workaround where data Maybe_⊥P : Set → Set₁ where fail : ∀ {A} → Maybe A ⊥P return : ∀ {A} (x : A) → Maybe A ⊥P later : ∀ {A} (x : ∞ (Maybe A ⊥P)) → Maybe A ⊥P _>>=_ : ∀ {A B} (x : Maybe A ⊥P) (f : A → Maybe B ⊥P) → Maybe B ⊥P private data Maybe_⊥W : Set → Set₁ where fail : ∀ {A} → Maybe A ⊥W return : ∀ {A} (x : A) → Maybe A ⊥W later : ∀ {A} (x : Maybe A ⊥P) → Maybe A ⊥W mutual _>>=W_ : ∀ {A B} → Maybe A ⊥W → (A → Maybe B ⊥P) → Maybe B ⊥W fail >>=W f = fail return x >>=W f = whnf (f x) later x >>=W f = later (x >>= f) whnf : ∀ {A} → Maybe A ⊥P → Maybe A ⊥W whnf fail = fail whnf (return x) = return x whnf (later x) = later (♭ x) whnf (x >>= f) = whnf x >>=W f mutual private ⟪_⟫W : ∀ {A} → Maybe A ⊥W → Maybe A ⊥ ⟪ fail ⟫W = PF.fail ⟪ return x ⟫W = PF.return x ⟪ later x ⟫W = later (♯ ⟪ x ⟫P) ⟪_⟫P : ∀ {A} → Maybe A ⊥P → Maybe A ⊥ ⟪ p ⟫P = ⟪ whnf p ⟫W -- The definitions above make sense. ⟪_⟫P is homomorphic with respect -- to fail, return, later and _>>=_. fail-hom : ∀ {A} → ⟪ fail {A = A} ⟫P ≅ PF.fail fail-hom = PF.fail ∎ return-hom : ∀ {A} (x : A) → ⟪ return x ⟫P ≅ PF.return x return-hom x = PF.return x ∎ later-hom : ∀ {A} (x : ∞ Maybe A ⊥P) → ⟪ later x ⟫P ≅ later (♯ ⟪ ♭ x ⟫P) later-hom x = later (♯ (⟪ ♭ x ⟫P ∎)) mutual private >>=-homW : ∀ {A B} (x : Maybe A ⊥W) (f : A → Maybe B ⊥P) → ⟪ x >>=W f ⟫W ≅ PF._>>=_ ⟪ x ⟫W (λ y → ⟪ f y ⟫P) >>=-homW fail f = PF.fail ∎ >>=-homW (return x) f = ⟪ f x ⟫P ∎ >>=-homW (later x) f = later (♯ >>=-hom x f) >>=-hom : ∀ {A B} (x : Maybe A ⊥P) (f : A → Maybe B ⊥P) → ⟪ x >>= f ⟫P ≅ PF._>>=_ ⟪ x ⟫P (λ y → ⟪ f y ⟫P) >>=-hom x f = >>=-homW (whnf x) f open Workaround hiding (_>>=_) ------------------------------------------------------------------------ -- Semantics infix 5 _∙_ -- Note that this definition gives us determinism "for free". mutual ⟦_⟧′ : ∀ {n} → Tm n → Env n → Maybe Value ⊥P ⟦ con i ⟧′ ρ = return (con i) ⟦ var x ⟧′ ρ = return (lookup ρ x) ⟦ ƛ t ⟧′ ρ = return (ƛ t ρ) ⟦ t₁ · t₂ ⟧′ ρ = ⟦ t₁ ⟧′ ρ >>= λ v₁ → ⟦ t₂ ⟧′ ρ >>= λ v₂ → v₁ ∙ v₂ where open Workaround _∙_ : Value → Value → Maybe Value ⊥P con i ∙ v₂ = fail ƛ t₁ ρ ∙ v₂ = later (♯ (⟦ t₁ ⟧′ (v₂ ∷ ρ))) ⟦_⟧ : ∀ {n} → Tm n → Env n → Maybe Value ⊥ ⟦ t ⟧ ρ = ⟪ ⟦ t ⟧′ ρ ⟫P ------------------------------------------------------------------------ -- Example Ω-loops : ⟦ Ω ⟧ [] ≈ never Ω-loops = later (♯ Ω-loops) ------------------------------------------------------------------------ -- Some lemmas open PF hiding (_>>=_) -- An abbreviation. infix 5 _⟦·⟧_ _⟦·⟧_ : Maybe Value ⊥ → Maybe Value ⊥ → Maybe Value ⊥ v₁ ⟦·⟧ v₂ = v₁ >>= λ v₁ → v₂ >>= λ v₂ → ⟪ v₁ ∙ v₂ ⟫P where open PF -- _⟦·⟧_ preserves equality. _⟦·⟧-cong_ : ∀ {k v₁₁ v₁₂ v₂₁ v₂₂} → Rel k v₁₁ v₂₁ → Rel k v₁₂ v₂₂ → Rel k (v₁₁ ⟦·⟧ v₁₂) (v₂₁ ⟦·⟧ v₂₂) v₁₁≈v₂₁ ⟦·⟧-cong v₁₂≈v₂₂ = v₁₁≈v₂₁ >>=-cong λ v₁ → v₁₂≈v₂₂ >>=-cong λ v₂ → ⟪ v₁ ∙ v₂ ⟫P ∎ -- The semantics of application is compositional (with respect to the -- syntactic equality which is used). ·-comp : ∀ {n} (t₁ t₂ : Tm n) {ρ} → ⟦ t₁ · t₂ ⟧ ρ ≅ ⟦ t₁ ⟧ ρ ⟦·⟧ ⟦ t₂ ⟧ ρ ·-comp t₁ t₂ {ρ} = ⟦ t₁ · t₂ ⟧ ρ ≅⟨ >>=-hom (⟦ t₁ ⟧′ ρ) _ ⟩ PF._>>=_ (⟦ t₁ ⟧ ρ) (λ v₁ → ⟪ Workaround._>>=_ (⟦ t₂ ⟧′ ρ) (λ v₂ → v₁ ∙ v₂) ⟫P) ≅⟨ ((⟦ t₁ ⟧ ρ ∎) >>=-cong λ _ → >>=-hom (⟦ t₂ ⟧′ ρ) _) ⟩ ⟦ t₁ ⟧ ρ ⟦·⟧ ⟦ t₂ ⟧ ρ ∎ open PF ------------------------------------------------------------------------ -- Compiler correctness module Correctness {k : OtherKind} where infix 4 _≈P_ _≈W_ infixr 2 _≡⟨_⟩W_ _≈⟨_⟩P_ _≈⟨_⟩W_ mutual data _≈P_ : Maybe VM.Value ⊥ → Maybe VM.Value ⊥ → Set where _≈⟨_⟩P_ : ∀ x {y z} (x≈y : x ≈P y) (y≅z : y ≅ z) → x ≈P z correct : ∀ {n} t {ρ : Env n} {c s} {k : Value → Maybe VM.Value ⊥} → (hyp : ∀ v → exec ⟨ c , val (comp-val v) ∷ s , comp-env ρ ⟩ ≈W k v) → exec ⟨ comp t c , s , comp-env ρ ⟩ ≈P (⟦ t ⟧ ρ >>= k) data _≈W_ : Maybe VM.Value ⊥ → Maybe VM.Value ⊥ → Set where ⌈_⌉ : ∀ {x y} (x≈y : Rel (other k) x y) → x ≈W y later : ∀ {x y} (x≈y : ♭ x ≈P ♭ y) → later x ≈W later y laterˡ : ∀ {x y} (x≈y : ♭ x ≈W y) → later x ≈W y _≡⟨_⟩W_ : ∀ x {y z} → x ≡ y → y ≈W z → x ≈W z _ ≡⟨ P.refl ⟩W y≈z = y≈z _≈⟨_⟩W_ : ∀ x {y z} → x ≈W y → y ≅ z → x ≈W z ._ ≈⟨ later x≈y ⟩W later y≅z = later (_ ≈⟨ x≈y ⟩P ♭ y≅z) ._ ≈⟨ laterˡ x≈y ⟩W y≅z = laterˡ (_ ≈⟨ x≈y ⟩W y≅z) _ ≈⟨ ⌈ x≈y ⌉ ⟩W y≅z = ⌈ trans x≈y (Partiality.≅⇒ y≅z) ⌉ where trans = Preorder.trans (Partiality.preorder P.isPreorder _) -- The relation _≈_ does not admit unrestricted use of transitivity -- in corecursive proofs, so I have formulated the correctness proof -- using a continuation. Note that the proof would perhaps be easier -- if the semantics was also formulated in continuation-passing -- style. mutual correctW : ∀ {n} t {ρ : Env n} {c s} {k : Value → Maybe VM.Value ⊥} → (∀ v → exec ⟨ c , val (comp-val v) ∷ s , comp-env ρ ⟩ ≈W k v) → exec ⟨ comp t c , s , comp-env ρ ⟩ ≈W (⟦ t ⟧ ρ >>= k) correctW (con i) {ρ} {c} {s} {k} hyp = laterˡ ( exec ⟨ c , val (Lambda.Syntax.Closure.con i) ∷ s , comp-env ρ ⟩ ≈⟨ hyp (con i) ⟩W k (con i) ∎) correctW (var x) {ρ} {c} {s} {k} hyp = laterˡ ( exec ⟨ c , val (lookup (comp-env ρ) x) ∷ s , comp-env ρ ⟩ ≡⟨ P.cong (λ v → exec ⟨ c , val v ∷ s , comp-env ρ ⟩) $ lookup-hom x ρ ⟩W exec ⟨ c , val (comp-val (lookup ρ x)) ∷ s , comp-env ρ ⟩ ≈⟨ hyp (lookup ρ x) ⟩W k (lookup ρ x) ∎) correctW (ƛ t) {ρ} {c} {s} {k} hyp = laterˡ ( exec ⟨ c , val (comp-val (ƛ t ρ)) ∷ s , comp-env ρ ⟩ ≈⟨ hyp (ƛ t ρ) ⟩W k (ƛ t ρ) ∎) correctW (t₁ · t₂) {ρ} {c} {s} {k} hyp = exec ⟨ comp t₁ (comp t₂ (app ∷ c)) , s , comp-env ρ ⟩ ≈⟨ correctW t₁ (λ v₁ → correctW t₂ (λ v₂ → ∙-correctW v₁ v₂ hyp)) ⟩W (⟦ t₁ ⟧ ρ >>= λ v₁ → ⟦ t₂ ⟧ ρ >>= λ v₂ → ⟪ v₁ ∙ v₂ ⟫P >>= k) ≅⟨ ((⟦ t₁ ⟧ ρ ∎) >>=-cong λ _ → sym $ associative (⟦ t₂ ⟧ ρ) _ _) ⟩ (⟦ t₁ ⟧ ρ >>= λ v₁ → (⟦ t₂ ⟧ ρ >>= λ v₂ → ⟪ v₁ ∙ v₂ ⟫P) >>= k) ≅⟨ sym $ associative (⟦ t₁ ⟧ ρ) _ _ ⟩ (⟦ t₁ ⟧ ρ ⟦·⟧ ⟦ t₂ ⟧ ρ >>= k) ≅⟨ sym (·-comp t₁ t₂ >>=-cong λ v → k v ∎) ⟩ (⟦ t₁ · t₂ ⟧ ρ >>= k) ∎ ∙-correctW : ∀ {n} v₁ v₂ {ρ : Env n} {c s} {k : Value → Maybe VM.Value ⊥} → (∀ v → exec ⟨ c , val (comp-val v) ∷ s , comp-env ρ ⟩ ≈W k v) → exec ⟨ app ∷ c , val (comp-val v₂) ∷ val (comp-val v₁) ∷ s , comp-env ρ ⟩ ≈W (⟪ v₁ ∙ v₂ ⟫P >>= k) ∙-correctW (con i) v₂ _ = ⌈ PF.fail ∎ ⌉ ∙-correctW (ƛ t₁ ρ₁) v₂ {ρ} {c} {s} {k} hyp = exec ⟨ app ∷ c , val (comp-val v₂) ∷ val (comp-val (ƛ t₁ ρ₁)) ∷ s , comp-env ρ ⟩ ≈⟨ later ( exec ⟨ comp t₁ [ ret ] , ret c (comp-env ρ) ∷ s , comp-env (v₂ ∷ ρ₁) ⟩ ≈⟨ correct t₁ (λ v → laterˡ (hyp v)) ⟩P (⟦ t₁ ⟧ (v₂ ∷ ρ₁) >>= k) ∎) ⟩W (⟪ ƛ t₁ ρ₁ ∙ v₂ ⟫P >>= k) ∎ whnf : ∀ {x y} → x ≈P y → x ≈W y whnf (x ≈⟨ x≈y ⟩P y≅z) = x ≈⟨ whnf x≈y ⟩W y≅z whnf (correct t hyp) = correctW t hyp mutual soundW : ∀ {x y} → x ≈W y → Rel (other k) x y soundW ⌈ x≈y ⌉ = x≈y soundW (later x≈y) = later (♯ soundP x≈y) soundW (laterˡ x≈y) = laterˡ (soundW x≈y) soundP : ∀ {x y} → x ≈P y → Rel (other k) x y soundP x≈y = soundW (whnf x≈y) -- Note that the equality that is used here is syntactic. correct : ∀ t → exec ⟨ comp t [] , [] , [] ⟩ ≈ (⟦ t ⟧ [] >>= λ v → PF.return (comp-val v)) correct t = soundP $ Correctness.correct t (λ v → ⌈ PF.return (comp-val v) ∎ ⌉) where open Correctness
{ "alphanum_fraction": 0.4428430242, "avg_line_length": 35.1942028986, "ext": "agda", "hexsha": "a76283767f6e768947923ca731c89c487e07d64a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "Lambda/Closure/Functional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "Lambda/Closure/Functional.agda", "max_line_length": 138, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "Lambda/Closure/Functional.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 5060, "size": 12142 }
------------------------------------------------------------------------------ -- Example using distributive laws on a binary operation via Agsy ------------------------------------------------------------------------------ {-# OPTIONS --allow-unsolved-metas #-} {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- Tested with the development version of the Agda standard library on -- 02 February 2012. module Agsy.DistributiveLaws.TaskB where open import Relation.Binary.PropositionalEquality open ≡-Reasoning infixl 7 _·_ ------------------------------------------------------------------------------ -- Distributive laws axioms postulate D : Set -- The universe _·_ : D → D → D -- The binary operation. leftDistributive : ∀ x y z → x · (y · z) ≡ (x · y) · (x · z) rightDistributive : ∀ x y z → (x · y) · z ≡ (x · z) · (y · z) -- Properties taskB : ∀ u x y z → (x · y · (z · u)) · ((x · y · ( z · u)) · (x · z · (y · u))) ≡ x · z · (y · u) taskB u x y z = {!-t 20 -m!} -- Agsy fails
{ "alphanum_fraction": 0.4401378122, "avg_line_length": 31.3783783784, "ext": "agda", "hexsha": "2eeb0d89fe4b149af2a4427b4baa901f6101d5ef", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/Agsy/DistributiveLaws/TaskB.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/Agsy/DistributiveLaws/TaskB.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/Agsy/DistributiveLaws/TaskB.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 301, "size": 1161 }
module Syntax.Type where open import Type -- Assures that a value has a certain type type-ascript : ∀{ℓ} → (T : Type{ℓ}) → T → T type-ascript T x = x {-# INLINE type-ascript #-} _:-[_] = type-ascript infixr 0.98 _:-[_] {-# INLINE _:-[_] #-} infixl 10 type-ascript syntax type-ascript T x = x :of: T
{ "alphanum_fraction": 0.6336633663, "avg_line_length": 18.9375, "ext": "agda", "hexsha": "ccbf2eb7d86a098b6f9810fa140f27acbf92be38", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Syntax/Type.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Syntax/Type.agda", "max_line_length": 43, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Syntax/Type.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 106, "size": 303 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Inverses ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Function.Inverse where open import Level open import Function using (flip) open import Function.Bijection hiding (id; _∘_; bijection) open import Function.Equality as F using (_⟶_) renaming (_∘_ to _⟪∘⟫_) open import Function.LeftInverse as Left hiding (id; _∘_) open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≗_; _≡_) open import Relation.Unary using (Pred) ------------------------------------------------------------------------ -- Inverses record _InverseOf_ {f₁ f₂ t₁ t₂} {From : Setoid f₁ f₂} {To : Setoid t₁ t₂} (from : To ⟶ From) (to : From ⟶ To) : Set (f₁ ⊔ f₂ ⊔ t₁ ⊔ t₂) where field left-inverse-of : from LeftInverseOf to right-inverse-of : from RightInverseOf to ------------------------------------------------------------------------ -- The set of all inverses between two setoids record Inverse {f₁ f₂ t₁ t₂} (From : Setoid f₁ f₂) (To : Setoid t₁ t₂) : Set (f₁ ⊔ f₂ ⊔ t₁ ⊔ t₂) where field to : From ⟶ To from : To ⟶ From inverse-of : from InverseOf to open _InverseOf_ inverse-of public left-inverse : LeftInverse From To left-inverse = record { to = to ; from = from ; left-inverse-of = left-inverse-of } open LeftInverse left-inverse public using (injective; injection) bijection : Bijection From To bijection = record { to = to ; bijective = record { injective = injective ; surjective = record { from = from ; right-inverse-of = right-inverse-of } } } open Bijection bijection public using (equivalence; surjective; surjection; right-inverse; to-from; from-to) ------------------------------------------------------------------------ -- The set of all inverses between two sets (i.e. inverses with -- propositional equality) infix 3 _↔_ _↔̇_ _↔_ : ∀ {f t} → Set f → Set t → Set _ From ↔ To = Inverse (P.setoid From) (P.setoid To) _↔̇_ : ∀ {i f t} {I : Set i} → Pred I f → Pred I t → Set _ From ↔̇ To = ∀ {i} → From i ↔ To i inverse : ∀ {f t} {From : Set f} {To : Set t} → (to : From → To) (from : To → From) → (∀ x → from (to x) ≡ x) → (∀ x → to (from x) ≡ x) → From ↔ To inverse to from from∘to to∘from = record { to = P.→-to-⟶ to ; from = P.→-to-⟶ from ; inverse-of = record { left-inverse-of = from∘to ; right-inverse-of = to∘from } } ------------------------------------------------------------------------ -- If two setoids are in bijective correspondence, then there is an -- inverse between them fromBijection : ∀ {f₁ f₂ t₁ t₂} {From : Setoid f₁ f₂} {To : Setoid t₁ t₂} → Bijection From To → Inverse From To fromBijection b = record { to = Bijection.to b ; from = Bijection.from b ; inverse-of = record { left-inverse-of = Bijection.left-inverse-of b ; right-inverse-of = Bijection.right-inverse-of b } } ------------------------------------------------------------------------ -- Inverse is an equivalence relation -- Reflexivity id : ∀ {s₁ s₂} → Reflexive (Inverse {s₁} {s₂}) id {x = S} = record { to = F.id ; from = F.id ; inverse-of = record { left-inverse-of = LeftInverse.left-inverse-of id′ ; right-inverse-of = LeftInverse.left-inverse-of id′ } } where id′ = Left.id {S = S} -- Transitivity infixr 9 _∘_ _∘_ : ∀ {f₁ f₂ m₁ m₂ t₁ t₂} → TransFlip (Inverse {f₁} {f₂} {m₁} {m₂}) (Inverse {m₁} {m₂} {t₁} {t₂}) (Inverse {f₁} {f₂} {t₁} {t₂}) f ∘ g = record { to = to f ⟪∘⟫ to g ; from = from g ⟪∘⟫ from f ; inverse-of = record { left-inverse-of = LeftInverse.left-inverse-of (Left._∘_ (left-inverse f) (left-inverse g)) ; right-inverse-of = LeftInverse.left-inverse-of (Left._∘_ (right-inverse g) (right-inverse f)) } } where open Inverse -- Symmetry. sym : ∀ {f₁ f₂ t₁ t₂} → Sym (Inverse {f₁} {f₂} {t₁} {t₂}) (Inverse {t₁} {t₂} {f₁} {f₂}) sym inv = record { from = to ; to = from ; inverse-of = record { left-inverse-of = right-inverse-of ; right-inverse-of = left-inverse-of } } where open Inverse inv ------------------------------------------------------------------------ -- Transformations map : ∀ {f₁ f₂ t₁ t₂} {From : Setoid f₁ f₂} {To : Setoid t₁ t₂} {f₁′ f₂′ t₁′ t₂′} {From′ : Setoid f₁′ f₂′} {To′ : Setoid t₁′ t₂′} → (t : (From ⟶ To) → (From′ ⟶ To′)) → (f : (To ⟶ From) → (To′ ⟶ From′)) → (∀ {to from} → from InverseOf to → f from InverseOf t to) → Inverse From To → Inverse From′ To′ map t f pres eq = record { to = t to ; from = f from ; inverse-of = pres inverse-of } where open Inverse eq zip : ∀ {f₁₁ f₂₁ t₁₁ t₂₁} {From₁ : Setoid f₁₁ f₂₁} {To₁ : Setoid t₁₁ t₂₁} {f₁₂ f₂₂ t₁₂ t₂₂} {From₂ : Setoid f₁₂ f₂₂} {To₂ : Setoid t₁₂ t₂₂} {f₁ f₂ t₁ t₂} {From : Setoid f₁ f₂} {To : Setoid t₁ t₂} → (t : (From₁ ⟶ To₁) → (From₂ ⟶ To₂) → (From ⟶ To)) → (f : (To₁ ⟶ From₁) → (To₂ ⟶ From₂) → (To ⟶ From)) → (∀ {to₁ from₁ to₂ from₂} → from₁ InverseOf to₁ → from₂ InverseOf to₂ → f from₁ from₂ InverseOf t to₁ to₂) → Inverse From₁ To₁ → Inverse From₂ To₂ → Inverse From To zip t f pres eq₁ eq₂ = record { to = t (to eq₁) (to eq₂) ; from = f (from eq₁) (from eq₂) ; inverse-of = pres (inverse-of eq₁) (inverse-of eq₂) } where open Inverse
{ "alphanum_fraction": 0.5085295121, "avg_line_length": 30.8526315789, "ext": "agda", "hexsha": "8883e0a3ca31293fdf94f06a8135d9241fc95683", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Function/Inverse.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Function/Inverse.agda", "max_line_length": 99, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Function/Inverse.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1878, "size": 5862 }
-- Non-indexed (plain) monads in form of Kleisli triple, presented in point-free style. module Control.Comonad where open import Function using (id) renaming (_∘′_ to _∘_) open import Relation.Binary.PropositionalEquality open ≡-Reasoning open import Axiom.FunctionExtensionality open import Control.Functor record IsComonad (W : Set → Set) : Set₁ where -- Methods. field extract : ∀ {A } → W A → A extend : ∀ {A B} → (W A → B) → W A → W B -- Laws. field extend-β : ∀ {A B} {k : W A → B} → extract ∘ extend k ≡ k extend-η : ∀ {A} → extend {A = A} extract ≡ id extend-∘ : ∀ {A B C} {k : W A → B} {l : W B → C} → extend (l ∘ extend k) ≡ extend l ∘ extend k -- Comonadic composition. comComp : ∀ {A B C : Set} (l : W B → C) (k : W A → B) → (W A → C) comComp l k = l ∘ extend k -- Functoriality. isFunctor : IsFunctor W isFunctor = record { ops = record { map = map } ; laws = record { map-id = extend-η ; map-∘ = λ {A B C f g} → sym (map-∘-sym f g) } } where map : ∀ {A B} → (A → B) → W A → W B map f = extend (f ∘ extract) map-∘-sym : ∀ {A B C} (f : A → B) (g : B → C) → map g ∘ map f ≡ map (g ∘ f) map-∘-sym f g = begin map g ∘ map f ≡⟨⟩ extend (g ∘ extract) ∘ extend (f ∘ extract) ≡⟨ sym extend-∘ ⟩ extend (g ∘ extract ∘ extend (f ∘ extract)) ≡⟨ cong (λ z → extend (g ∘ z)) extend-β ⟩ extend (g ∘ f ∘ extract) ≡⟨⟩ map (g ∘ f) ∎ open IsFunctor isFunctor public -- Monads in Kleisli Triple presentation. record Comonad : Set₁ where constructor comonad field W : Set → Set W! : IsComonad W open IsComonad W! public -- Casting a Comonad to a Functor FunctorOfComonad : Comonad → Functor FunctorOfComonad WW = functor W isFunctor where open Comonad WW
{ "alphanum_fraction": 0.5377800938, "avg_line_length": 24.9220779221, "ext": "agda", "hexsha": "22a2e80c8608329a491c4aa3146cb5202e862d73", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andreasabel/cubical", "max_forks_repo_path": "src/Control/Comonad.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andreasabel/cubical", "max_issues_repo_path": "src/Control/Comonad.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andreasabel/cubical", "max_stars_repo_path": "src/Control/Comonad.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 691, "size": 1919 }
-- Andreas, 2016-01-21, issue 1791 -- With-clause stripping for copatterns with "polymorphic" field. -- {-# OPTIONS -v tc.with.strip:60 #-} postulate anything : ∀{A : Set} → A record Wrap (A : Set) : Set where field unwrap : A record Pointed (M : Set → Set) : Set₁ where field point : ∀{A} → M A -- field type starts with hidden quantifier! test : Pointed Wrap Wrap.unwrap (Pointed.point test) with Set₂ ... | _ = anything -- should succeed
{ "alphanum_fraction": 0.6659292035, "avg_line_length": 23.7894736842, "ext": "agda", "hexsha": "c5e69fcd18d870b66c4ac5b9826aa86745db1b5f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1791.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1791.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1791.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 139, "size": 452 }
module Generic.Property.Eq where open import Generic.Core SemEq : ∀ {i β} {I : Set i} -> Desc I β -> Set SemEq (var i) = ⊤ SemEq (π i q C) = ⊥ SemEq (D ⊛ E) = SemEq D × SemEq E mutual ExtendEq : ∀ {i β} {I : Set i} -> Desc I β -> Set β ExtendEq (var i) = ⊤ ExtendEq (π i q C) = ExtendEqᵇ i C q ExtendEq (D ⊛ E) = SemEq D × ExtendEq E ExtendEqᵇ : ∀ {ι α β γ q} {I : Set ι} i -> Binder α β γ i q I -> α ≤ℓ β -> Set β ExtendEqᵇ (arg-info v r) (coerce (A , D)) q = Coerce′ q $ RelEq r A × ∀ {x} -> ExtendEq (D x) instance {-# TERMINATING #-} -- Why? DataEq : ∀ {i β} {I : Set i} {D : Data (Desc I β)} {j} {{eqD : All ExtendEq (consTypes D)}} -> Eq (μ D j) DataEq {ι} {β} {I} {D₀} = record { _≟_ = decMu } where mutual decSem : ∀ D {{eqD : SemEq D}} -> IsSet (⟦ D ⟧ (μ D₀)) decSem (var i) d₁ d₂ = decMu d₁ d₂ decSem (π i q C) {{()}} decSem (D ⊛ E) {{eqD , eqE}} p₁ p₂ = decProd (decSem D {{eqD}}) (decSem E {{eqE}}) p₁ p₂ decExtend : ∀ {j} D {{eqD : ExtendEq D}} -> IsSet (Extend D (μ D₀) j) decExtend (var i) lrefl lrefl = yes refl decExtend (π i q C) p₁ p₂ = decExtendᵇ i C q p₁ p₂ decExtend (D ⊛ E) {{eqD , eqE}} p₁ p₂ = decProd (decSem D {{eqD}}) (decExtend E {{eqE}}) p₁ p₂ decExtendᵇ : ∀ {α γ q j} i (C : Binder α β γ i q I) q {{eqC : ExtendEqᵇ i C q}} -> IsSet (Extendᵇ i C q (μ D₀) j) decExtendᵇ (arg-info v r) (coerce (A , D)) q {{eqC}} p₁ p₂ = split q eqC λ eqA eqD -> decCoerce′ q (decProd (_≟_ {{EqRelValue {{eqA}}}}) (decExtend (D _) {{eqD}})) p₁ p₂ decAny : ∀ {j} (Ds : List (Desc I β)) {{eqD : All ExtendEq Ds}} -> ∀ d a b ns -> IsSet (Node D₀ (packData d a b Ds ns) j) decAny [] d a b tt () () decAny (D ∷ []) {{eqD , _}} d a b (_ , ns) e₁ e₂ = decExtend D {{eqD}} e₁ e₂ decAny (D ∷ E ∷ Ds) {{eqD , eqDs}} d a b (_ , ns) s₁ s₂ = decSum (decExtend D {{eqD}}) (decAny (E ∷ Ds) {{eqDs}} d a b ns) s₁ s₂ decMu : ∀ {j} -> IsSet (μ D₀ j) decMu (node e₁) (node e₂) = dcong node node-inj $ decAny (consTypes D₀) (dataName D₀) (parsTele D₀) (indsTele D₀) (consNames D₀) e₁ e₂
{ "alphanum_fraction": 0.4192465498, "avg_line_length": 46.224137931, "ext": "agda", "hexsha": "c5a11a07833c6e96f2bc423c7d62f0a7b8a25a65", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z", "max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z", "max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "turion/Generic", "max_forks_repo_path": "src/Generic/Property/Eq.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z", "max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "turion/Generic", "max_issues_repo_path": "src/Generic/Property/Eq.agda", "max_line_length": 95, "max_stars_count": 30, "max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "turion/Generic", "max_stars_repo_path": "src/Generic/Property/Eq.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z", "num_tokens": 960, "size": 2681 }
module prelude where Subset : Set → Set₁ Subset(X) = X → Set _∈_ : ∀ {X} → X → Subset(X) → Set (x ∈ A) = A(x) _⊆_ : ∀ {X} → Subset(X) → Subset(X) → Set (A ⊆ B) = ∀ x → (x ∈ A) → (x ∈ B) record Inhabited {X} (S : Subset(X)) : Set where constructor _,_ field witness : X field witness-in : (witness ∈ S) Rel : Set → Set₁ Rel(X) = X → X → Set data ℕ : Set where zero : ℕ succ : ℕ → ℕ data ℤ : Set where succ : ℕ → ℤ -ve : ℕ → ℤ +ve : ℕ → ℤ +ve zero = -ve zero +ve (succ n) = (succ n) sucz : ℤ → ℤ sucz (succ x) = succ (succ x) sucz (-ve zero) = succ zero sucz (-ve (succ x)) = -ve x pred : ℤ → ℤ pred (succ zero) = -ve zero pred (succ (succ x)) = succ x pred (-ve x) = -ve (succ x) _+_ : ℤ → ℤ → ℤ succ zero + y = sucz y succ (succ x) + y = sucz (succ x + y) -ve zero + y = y -ve (succ x) + y = pred (-ve x + y) data _^_ (X : Set) : ℕ → Set where nil : (X ^ zero) _∷_ : ∀ {n} → X → (X ^ n) → (X ^ succ(n)) data _≡_ {D : Set} (d : D) : D → Set where refl : (d ≡ d) sym : ∀ {D} {d e : D} → (d ≡ e) → (e ≡ d) sym refl = refl trans : ∀ {D} {d e f : D} → (d ≡ e) → (e ≡ f) → (d ≡ f) trans refl refl = refl subst : ∀ {X L R} (P : X → Set) → (L ≡ R) → (P R) → (P L) subst P refl p = p data _≣_ {X : Set₁} (x : X) : X → Set₁ where REFL : (x ≣ x) SYM : ∀ {D} {d e : D} → (d ≣ e) → (e ≣ d) SYM REFL = REFL TRANS : ∀ {D} {d e f : D} → (d ≣ e) → (e ≣ f) → (d ≣ f) TRANS REFL REFL = REFL SUBST : ∀ {X L R} (P : X → Set) → (L ≣ R) → (P R) → (P L) SUBST P REFL p = p succ-dist-+ : ∀ m n → ((succ m + n) ≡ sucz (+ve m + n)) succ-dist-+ zero n = refl succ-dist-+ (succ m) n = refl record ⊤ : Set where constructor tt data ⊥ : Set where ¬ : Set → Set ¬(X) = (X → ⊥) contradiction : ∀ {X : Set} → ⊥ → X contradiction () data _∨_ (X Y : Set) : Set where in₁ : X → (X ∨ Y) in₂ : Y → (X ∨ Y) _∪_ : ∀ {X} → Subset(X) → Subset(X) → Subset(X) (A ∪ B) x = (x ∈ A) ∨ (x ∈ B) record _∧_ (X Y : Set) : Set where constructor _,_ field proj₁ : X field proj₂ : Y _∩_ : ∀ {X} → Subset(X) → Subset(X) → Subset(X) (A ∩ B) x = (x ∈ A) ∧ (x ∈ B) All : ∀ {X n} → Subset(X) → Subset(X ^ n) All(S) nil = ⊤ All(S) (x ∷ xs) = (x ∈ S) ∧ (xs ∈ All(S)) All-resp-⊆ : ∀ {X} {A B : Subset(X)} {n} → (A ⊆ B) → (All {n = n} (A) ⊆ All(B)) All-resp-⊆ A⊆B nil tt = tt All-resp-⊆ A⊆B (x ∷ xs) (x∈A , xs∈A) = (A⊆B x x∈A , All-resp-⊆ A⊆B xs xs∈A) All-resp-∩ : ∀ {X} {A B : Subset(X)} {n} → ((All {n = n} (A) ∩ All(B)) ⊆ All(A ∩ B)) All-resp-∩ nil (tt , tt) = tt All-resp-∩ (d ∷ ds) ((d∈A , ds∈A) , (d∈B , ds∈B)) = ((d∈A , d∈B) , (All-resp-∩ ds (ds∈A , ds∈B))) record DirectedGraph(D : Set) : Set₁ where field _⇒_ : Rel(D) data _⇒+_ (d e : D) : Set where ⇒-impl-⇒+ : (d ⇒ e) → (d ⇒+ e) ⇒⇒+-impl-⇒+ : ∀ {f} → (d ⇒ f) → (f ⇒+ e) → (d ⇒+ e) record Forest(D : Set) : Set₁ where field DG : DirectedGraph(D) open DirectedGraph DG public field ⇒-parent-uniq : ∀ {d e f} → (d ⇒ f) → (e ⇒ f) → (d ≡ e) field ⇒-acyclic : ∀ {d} → (d ⇒+ d) → ⊥ record PartialOrder(D : Set) : Set₁ where field _≤_ : Rel(D) field ≤-refl : ∀ {d} → (d ≤ d) field ≤-trans : ∀ {d e f} → (d ≤ e) → (e ≤ f) → (d ≤ f) field ≤-asym : ∀ {d e} → (d ≤ e) → (e ≤ d) → (d ≡ e) field _≤?_ : ∀ d e → ((d ≤ e) ∨ ¬(d ≤ e)) _<_ : Rel(D) d < e = (d ≤ e) ∧ ¬(d ≡ e) ≡-impl-≤ : ∀ {d e} → (d ≡ e) → (d ≤ e) ≡-impl-≤ refl = ≤-refl <-trans-≤ : ∀ {d e f} → (d < e) → (e ≤ f) → (d < f) <-trans-≤ (d≤e , d≠e) e≤f = (≤-trans d≤e e≤f , (λ d≡f → d≠e (trans d≡f (≤-asym (≤-trans (≡-impl-≤ (sym d≡f)) d≤e) e≤f)))) ≤-trans-< : ∀ {d e f} → (d ≤ e) → (e < f) → (d < f) ≤-trans-< d≤e (e≤f , e≠f) = (≤-trans d≤e e≤f , (λ d≡f → e≠f (trans (≤-asym (≤-trans e≤f (≡-impl-≤ (sym d≡f))) d≤e) d≡f))) <-trans : ∀ {d e f} → (d < e) → (e < f) → (d < f) <-trans d<e (e≤f , e≠f) = <-trans-≤ d<e e≤f <-impl-≤ : ∀ {d e} → (d < e) → (d ≤ e) <-impl-≤ (d≤e , d≠e) = d≤e <-impl-≱ : ∀ {d e} → (d < e) → ¬(e ≤ d) <-impl-≱ (d≤e , d≠e) e≤d = d≠e (≤-asym d≤e e≤d) Past : D → Subset(D) Past(d) e = (e < d) Future : D → Subset(D) Future(d) e = (d < e) Decreasing : ∀ {n} → Subset(D ^ n) Decreasing nil = ⊤ Decreasing (d ∷ ds) = (ds ∈ (All(Past(d)) ∩ Decreasing)) Increasing : ∀ {n} → Subset(D ^ n) Increasing nil = ⊤ Increasing (d ∷ ds) = (ds ∈ (All(Future(d)) ∩ Increasing)) _≤*_ : ∀ {n} → Rel(D ^ n) nil ≤* nil = ⊤ (d ∷ ds) ≤* (e ∷ es) = (d ≤ e) ∧ (ds ≤* es) Min : Subset(D) → Subset(D) Min(S) d = (d ∈ S) ∧ (∀ e → (e ∈ S) → (d ≤ e)) Max : Subset(D) → Subset(D) Max(S) d = (d ∈ S) ∧ (∀ e → (e ∈ S) → (e ≤ d)) Min* : ∀ {n} → Subset(D ^ n) → Subset(D ^ n) Min*(S) ds = (ds ∈ S) ∧ (∀ es → (es ∈ S) → (ds ≤* es)) Max* : ∀ {n} → Subset(D ^ n) → Subset(D ^ n) Max*(S) ds = (ds ∈ S) ∧ (∀ es → (es ∈ S) → (es ≤* ds)) record FiniteTotalOrder(D : Set) : Set₁ where field PO : PartialOrder(D) open PartialOrder PO public field min_∵_ : ∀ (S : Subset(D)) → Inhabited(S) → Inhabited(Min(S)) field max_∵_ : ∀ (S : Subset(D)) → Inhabited(S) → Inhabited(Max(S)) ≤-total : ∀ d e → (d ≤ e) ∨ (e < d) ≤-total d e with d ≤? e ≤-total d e | in₁ d≤e = in₁ d≤e ≤-total d e | in₂ d≰e with max (λ f → (d ≡ f) ∨ (e ≡ f)) ∵ (d , in₁ refl) ≤-total d e | in₂ d≰e | .d , (in₁ refl , d-max) = in₂ (e≤d , e≠d) where e≤d = d-max e (in₂ refl) e≠d = λ e=d → d≰e (≡-impl-≤ (sym e=d)) ≤-total d e | in₂ d≰e | .e , (in₂ refl , e-max) = contradiction (d≰e (e-max d (in₁ refl))) Max-hd : ∀ S {n} d (ds : D ^ n) → ((d ∷ ds) ∈ Max*(Decreasing ∩ All(S))) → (d ∈ Max(S)) Max-hd S d ds (((d>ds , ds↓) , (d∈S , ds∈S)) , d∷ds-max) = (d∈S , d-max) where d-max : ∀ e → (e ∈ S) → (e ≤ d) d-max e e∈S with ≤-total e d d-max e e∈S | in₁ e≤d = e≤d d-max e e∈S | in₂ d<e with d∷ds-max (e ∷ ds) ((All-resp-⊆ (λ f d<f → <-trans d<f d<e) ds d>ds , ds↓) , (e∈S , ds∈S)) d-max e e∈S | in₂ d<e | (e≤d , ds≤ds) = e≤d Max-tl : ∀ S {n} d (ds : D ^ n) → ((d ∷ ds) ∈ Max*(Decreasing ∩ All(S))) → (ds ∈ Max*(All(Past(d)) ∩ (Decreasing ∩ All(S)))) Max-tl S d ds (((d>ds , ds↓) , (d∈S , ds∈S)) , d∷ds-max) = ((d>ds , (ds↓ , ds∈S)) , ds-max) where ds-max : ∀ es → (es ∈ (All(Past(d)) ∩ (Decreasing ∩ All(S)))) → (es ≤* ds) ds-max es (d>es , (es↓ , es∈S)) with d∷ds-max (d ∷ es) ((d>es , es↓) , (d∈S , es∈S)) ds-max es (d>es , (es↓ , es∈S)) | (d≤d , es≤ds) = es≤ds record Equivalence(D : Set) : Set₁ where field _~_ : Rel(D) field ~-refl : ∀ {d} → (d ~ d) field ~-trans : ∀ {d e f} → (d ~ e) → (e ~ f) → (d ~ f) field ~-sym : ∀ {d e} → (d ~ e) → (e ~ d) field _~?_ : ∀ d e → ((d ~ e) ∨ ¬(d ~ e)) ≡-impl-~ : ∀ {d e} → (d ≡ e) → (d ~ e) ≡-impl-~ refl = ~-refl
{ "alphanum_fraction": 0.4416304511, "avg_line_length": 27.016194332, "ext": "agda", "hexsha": "a47add97c64e66d072067b7b4afc85cd8f4c2d93", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cea700aea1488df1d27092c8f3d79d5d99f7e09a", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "cbrewster/ServoNavigation", "max_forks_repo_path": "notes/prelude.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cea700aea1488df1d27092c8f3d79d5d99f7e09a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "cbrewster/ServoNavigation", "max_issues_repo_path": "notes/prelude.agda", "max_line_length": 123, "max_stars_count": 1, "max_stars_repo_head_hexsha": "cea700aea1488df1d27092c8f3d79d5d99f7e09a", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "cbrewster/ServoNavigation", "max_stars_repo_path": "notes/prelude.agda", "max_stars_repo_stars_event_max_datetime": "2017-04-22T01:51:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-22T01:51:07.000Z", "num_tokens": 3335, "size": 6673 }
{-# OPTIONS --cubical --safe #-} module Codata.Stream where open import Prelude open import Data.List using (List; _∷_; []) open import Data.List.Kleene import Data.List.Kleene.Membership as Kleene open import Data.Fin Stream : Type a → Type a Stream A = ℕ → A infixr 5 _∈_ _∈_ : A → Stream A → Type _ x ∈ xs = fiber xs x toList : ℕ → Stream A → List A toList zero xs = [] toList (suc n) xs = xs zero ∷ toList n (xs ∘ suc) mutual concat⋆ : A ⋆ → Stream (A ⁺) → Stream A concat⋆ [] xs = concat⁺ (xs zero) (xs ∘ suc) concat⋆ (∹ x) xs = concat⁺ x xs concat⁺ : A ⁺ → Stream (A ⁺) → Stream A concat⁺ x xs zero = x .head concat⁺ x xs (suc n) = concat⋆ (x .tail) xs n concat : Stream (A ⁺) → Stream A concat xs = concat⁺ (xs zero) (xs ∘ suc) infixr 5 _∈²_ _∈²_ : A → Stream (A ⁺) → Type _ x ∈² xs = ∃[ n ] x Kleene.∈⁺ xs n mutual ◇++⋆ : ∀ (x : A) y ys → x Kleene.∈⋆ y → x ∈ concat⋆ y ys ◇++⋆ x (∹ y) ys x∈y = ◇++⁺ x y ys x∈y ◇++⁺ : ∀ (x : A) y ys → x Kleene.∈⁺ y → x ∈ concat⁺ y ys ◇++⁺ x y ys (f0 , x∈y) = zero , x∈y ◇++⁺ x y ys (fs n , x∈y) = let m , p = ◇++⋆ x (y .tail) ys (n , x∈y) in suc m , p mutual ++◇⋆ : ∀ (x : A) y ys → x ∈ concat ys → x ∈ concat⋆ y ys ++◇⋆ x [] ys x∈ys = x∈ys ++◇⋆ x (∹ y) ys x∈ys = ++◇⁺ x y ys x∈ys ++◇⁺ : ∀ (x : A) y ys → x ∈ concat ys → x ∈ concat⁺ y ys ++◇⁺ x y ys x∈ys = let n , p = ++◇⋆ x (y .tail) ys x∈ys in suc n , p concat-∈ : ∀ (x : A) xs → x ∈² xs → x ∈ concat xs concat-∈ x xs (zero , x∈xs) = ◇++⁺ x (xs zero) (xs ∘ suc) x∈xs concat-∈ x xs (suc n , x∈xs) = ++◇⁺ x (xs zero) (xs ∘ suc) (concat-∈ x (xs ∘ suc) (n , x∈xs))
{ "alphanum_fraction": 0.5124378109, "avg_line_length": 28.2105263158, "ext": "agda", "hexsha": "6b6c9c85220180cce1702ab51075c0975a1d448e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Codata/Stream.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Codata/Stream.agda", "max_line_length": 93, "max_stars_count": null, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Codata/Stream.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 784, "size": 1608 }
module Issue472 where postulate I : Set P : I → Set record ∃ (P : I → Set) : Set where constructor _,_ field fst : I snd : P fst open ∃ data S : ∃ P → Set where s : (i : I) (x : P i) → S (i , x) Foo : (p : ∃ P) → S p → Set Foo p (s .(fst p) .(snd p)) = I -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/TypeChecking/Substitute.hs:47
{ "alphanum_fraction": 0.5872235872, "avg_line_length": 16.9583333333, "ext": "agda", "hexsha": "e1884082a4088714878654c8e3aef40a24fdcfdb", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue472.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue472.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue472.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 149, "size": 407 }
import cedille-options open import general-util module classify (options : cedille-options.options) {mF : Set → Set} ⦃ mFm : monad mF ⦄ (write-to-log : string → mF ⊤) where open import cedille-types open import constants open import conversion open import ctxt open import datatype-util open import elab-util options open import free-vars open import meta-vars options {mF} ⦃ mFm ⦄ open import rename open import resugar open import rewriting open import spans options {mF} ⦃ mFm ⦄ open import subst open import syntax-util open import type-util open import to-string options open import untyped-spans options {mF} ⦃ mFm ⦄ span-error-t : Set span-error-t = (string × 𝕃 tagged-val) {-# TERMINATING #-} check-term : ctxt → ex-tm → (T? : maybe type) → spanM (check-ret T? term) check-type : ctxt → ex-tp → (k? : maybe kind) → spanM (check-ret k? type) check-kind : ctxt → ex-kd → spanM kind check-tpkd : ctxt → ex-tk → spanM tpkd check-args : ctxt → ex-args → params → spanM args check-let : ctxt → ex-def → erased? → posinfo → posinfo → spanM (ctxt × var × tagged-val × (∀ {ed : exprd} → ⟦ ed ⟧ → ⟦ ed ⟧) × (term → term)) check-mu : ctxt → posinfo → posinfo → var → ex-tm → maybe ex-tp → posinfo → ex-cases → posinfo → (T? : maybe type) → spanM (check-ret T? term) check-sigma : ctxt → posinfo → maybe ex-tm → ex-tm → maybe ex-tp → posinfo → ex-cases → posinfo → (T? : maybe type) → spanM (check-ret T? term) get-datatype-info-from-head-type : ctxt → var → 𝕃 tmtp → spanM (span-error-t ⊎ datatype-info) check-sigma-evidence : ctxt → maybe ex-tm → var → 𝕃 tmtp → spanM (span-error-t ⊎ (term × (term → term) × datatype-info)) check-cases : ctxt → ex-cases → (Dₓ : var) → (ctrs : trie type) → renamectxt → (ctr-ps : args) → (drop-as : ℕ) → type → (ctxt → term → type → term) → (ctxt → type → kind → type) → spanM (cases × err-m) check-case : ctxt → ex-case → (earlier : stringset) → (Dₓ : var) → (ctrs : trie (type × params × 𝕃 tmtp)) → renamectxt → (ctr-ps : args) → (drop-as : ℕ) → type → (ctxt → term → type → term) → (ctxt → type → kind → type) → spanM (case × trie (type × params × 𝕃 tmtp)) check-refinement : ctxt → type → kind → spanM (type × 𝕃 tagged-val × err-m) synth-tmtp' : ∀ {b X} → ctxt → if b then ex-tm else ex-tp → (if b then term else type → if b then type else kind → spanM X) → spanM X synth-tmtp' {tt} Γ t f = check-term Γ t nothing >>= uncurry f synth-tmtp' {ff} Γ T f = check-type Γ T nothing >>= uncurry f check-tmtp' : ∀ {b X} → ctxt → if b then ex-tm else ex-tp → if b then type else kind → (if b then term else type → spanM X) → spanM X check-tmtp' {tt} Γ t T f = check-term Γ t (just T) >>= f check-tmtp' {ff} Γ T k f = check-type Γ T (just k) >>= f check-tpkd' : ∀ {b X} → ctxt → if b then ex-kd else ex-tk → (if b then kind else tpkd → spanM X) → spanM X check-tpkd' {tt} Γ k f = check-kind Γ k >>= f check-tpkd' {ff} Γ k f = check-tpkd Γ k >>= f lambda-bound-conv? : ctxt → var → tpkd → tpkd → 𝕃 tagged-val → 𝕃 tagged-val × err-m lambda-bound-conv? Γ x tk tk' ts with conv-tpkd Γ tk tk' ...| tt = ts , nothing ...| ff = (to-string-tag-tk "declared classifier" Γ tk' :: to-string-tag-tk "expected classifier" Γ tk :: ts) , just "The classifier given for a λ-bound variable is not the one we expected" id' = id hnf-of : ∀ {X : Set} {ed} → ctxt → ⟦ ed ⟧ → (⟦ ed ⟧ → X) → X hnf-of Γ t f = f (hnf Γ unfold-head-elab t) -- "⊢" = "\vdash" or "\|-" -- "⇒" = "\r=" -- "⇐" = "\l=" infixr 2 hnf-of id' check-tpkd' check-tmtp' synth-tmtp' syntax synth-tmtp' Γ t (λ t~ → f) = Γ ⊢ t ↝ t~ ⇒ f syntax check-tmtp' Γ t T f = Γ ⊢ t ⇐ T ↝ f syntax check-tpkd' Γ k f = Γ ⊢ k ↝ f syntax id' (λ x → f) = x / f -- Supposed to look like a horizontal bar (as in typing rules) syntax hnf-of Γ t f = Γ ⊢ t =β= f -- t [-]t' check-term Γ (ExApp t e t') Tₑ? = check-term-spine Γ (ExApp t e t') (proto-maybe Tₑ?) tt on-fail return-when (Hole (term-start-pos t)) (TpHole (term-start-pos t)) >>=m (uncurry return-when ∘ check-term-spine-elim Γ) where open import type-inf options {mF} check-term check-type -- t ·T check-term Γ (ExAppTp tₕ Tₐ) Tₑ? = -- "Γ ⊢ tₕ ↝ tₕ~ ⇒ Tₕ~ /" desugars to "synth-tmtp' Γ tₕ λ tₕ~ Tₕ~ →" Γ ⊢ tₕ ↝ tₕ~ ⇒ Tₕ~ / Γ ⊢ Tₕ~ =β= λ where (TpAbs tt x (Tkk kₐ) Tᵣ) → Γ ⊢ Tₐ ⇐ kₐ ↝ Tₐ~ / let Tᵣ = [ Γ - Tₐ~ / x ] Tᵣ in [- AppTp-span tt (term-start-pos tₕ) (type-end-pos Tₐ) (maybe-to-checking Tₑ?) (head-type Γ Tₕ~ :: type-data Γ Tᵣ :: expected-type-if Γ Tₑ?) (check-for-type-mismatch-if Γ "synthesized" Tₑ? Tᵣ) -] return-when (AppTp tₕ~ Tₐ~) Tᵣ Tₕ'~ → untyped-type Γ Tₐ >>= λ Tₐ~ → [- AppTp-span tt (term-start-pos tₕ) (type-end-pos Tₐ) (maybe-to-checking Tₑ?) (head-type Γ Tₕ'~ :: arg-type Γ Tₐ~ :: expected-type-if Γ Tₑ?) (unless (is-hole Tₕ'~) ("The type synthesized from the head does not allow it to be applied" ^ " to a type argument")) -] return-when (AppTp tₕ~ Tₐ~) (TpHole (term-start-pos tₕ)) -- β[<t?>][{t?'}] check-term Γ (ExBeta pi t? t?') Tₑ? = maybe-map (λ {(PosTm t _) → untyped-term Γ t}) t? >>=? λ t?~ → maybe-map (λ {(PosTm t _) → untyped-term Γ t}) t?' >>=? λ t?'~ → let t'~ = maybe-else' t?'~ id-term id e-t~ = maybe-else' Tₑ? (maybe-else' t?~ (inj₁ ([] , "When synthesizing, specify what equality to prove with β<...>")) (λ t → inj₂ (t , nothing))) λ Tₑ → Γ ⊢ Tₑ =β= λ where (TpEq t₁ t₂) → if conv-term Γ t₁ t₂ then maybe-else' (t?~ >>= λ t~ → check-for-type-mismatch Γ "computed" (TpEq t~ t~) (TpEq t₁ t₂) >>= λ e → just (e , t~)) (inj₂ (t₁ , just t₂)) (uncurry λ e t~ → inj₁ ([ type-data Γ (TpEq t~ t~) ] , e)) else inj₁ ([] , "The two terms in the equation are not β-equal") Tₕ → inj₁ ([] , "The expected type is not an equation") e? = either-else' e-t~ (map-snd just) λ _ → [] , nothing fₓ = fresh-var Γ "x" t~T~ = either-else' e-t~ (λ _ → Hole pi , TpEq (Hole pi) (Hole pi)) $ uncurry λ t₁ → maybe-else (Beta t₁ t'~ , TpEq t₁ t₁) λ t₂ → (Beta t₁ t'~) , TpEq t₁ t₂ in [- uncurry (λ tvs → Beta-span pi (term-end-pos (ExBeta pi t? t?')) (maybe-to-checking Tₑ?) (expected-type-if Γ Tₑ? ++ tvs)) e? -] uncurry return-when t~T~ -- χ [T?] - t check-term Γ (ExChi pi T? t) Tₑ? = (maybe-else' T? (check-term Γ t nothing) λ T → Γ ⊢ T ⇐ KdStar ↝ T~ / Γ ⊢ t ⇐ T~ ↝ t~ / return2 t~ T~ ) >>= uncurry λ t~ T~ → [- Chi-span Γ pi (just T~) t (maybe-to-checking Tₑ?) (type-data Γ T~ :: expected-type-if Γ Tₑ?) (check-for-type-mismatch-if Γ (maybe-else' T? "synthesized" (const "computed")) Tₑ? T~) -] return-when t~ T~ -- δ [T?] - t check-term Γ (ExDelta pi T? t) Tₑ? = Γ ⊢ t ↝ t~ ⇒ Tcontra / maybe-else' T? (return (maybe-else' Tₑ? (TpAbs Erased "X" (Tkk KdStar) (TpVar "X")) id)) (λ T → Γ ⊢ T ⇐ KdStar ↝ return) >>= λ T~' → let b = Γ ⊢ Tcontra =β= λ {(TpEq t₁ t₂) → when (inconv Γ t₁ t₂) (t₁ , t₂); _ → nothing} b? = unless (conv-type Γ Tcontra (TpEq tt-term ff-term)) triv >> b in [- Delta-span pi t (maybe-to-checking Tₑ?) (to-string-tag "the contradiction" Γ Tcontra :: type-data Γ T~' :: expected-type-if Γ Tₑ?) (maybe-not b >> just "We could not find a contradiction in the synthesized type of the subterm") -] return-when (Delta b? T~' t~) T~' -- ε[lr][-?] t check-term Γ (ExEpsilon pi lr -? t) Tₑ? = let hnf-from = if -? then hanf Γ tt else hnf Γ unfold-head update-eq : term → term → type update-eq = λ t₁ t₂ → uncurry TpEq $ maybe-else' lr (hnf-from t₁ , hnf-from t₂) λ lr → if lr then (t₁ , hnf-from t₂) else (hnf-from t₁ , t₂) in case-ret {m = Tₑ?} (Γ ⊢ t ↝ t~ ⇒ T~ / Γ ⊢ T~ =β= λ where (TpEq t₁ t₂) → let Tᵣ = update-eq t₁ t₂ in [- Epsilon-span pi lr -? t (maybe-to-checking Tₑ?) [ type-data Γ Tᵣ ] nothing -] return2 t~ Tᵣ Tₕ → [- Epsilon-span pi lr -? t (maybe-to-checking Tₑ?) [ to-string-tag "synthesized type" Γ Tₕ ] (unless (is-hole Tₕ) "The synthesized type of the body is not an equation") -] return2 t~ Tₕ) λ Tₑ → Γ ⊢ Tₑ =β= λ where (TpEq t₁ t₂) → [- Epsilon-span pi lr -? t (maybe-to-checking Tₑ?) [ expected-type Γ (TpEq t₁ t₂) ] nothing -] Γ ⊢ t ⇐ update-eq t₁ t₂ ↝ return Tₕ → [- Epsilon-span pi lr -? t (maybe-to-checking Tₑ?) [ expected-type Γ Tₕ ] (unless (is-hole Tₕ) "The expected type is not an equation") -] untyped-term Γ t -- ● check-term Γ (ExHole pi) Tₑ? = [- hole-span Γ pi Tₑ? (maybe-to-checking Tₑ?) [] -] return-when (Hole pi) (TpHole pi) -- [ t₁ , t₂ [@ Tₘ,?] ] check-term Γ (ExIotaPair pi t₁ t₂ Tₘ? pi') Tₑ? = maybe-else' {B = spanM (err-m × 𝕃 tagged-val × term × term × term × type)} Tₑ? (maybe-else' Tₘ? (untyped-term Γ t₁ >>= λ t₁~ → untyped-term Γ t₂ >>= λ t₂~ → return (just "Iota pairs require a specified type when synthesizing" , [] , t₁~ , t₁~ , t₂~ , TpHole pi)) λ {(ExGuide pi'' x T₂) → Γ ⊢ t₁ ↝ t₁~ ⇒ T₁~ / (Γ , pi'' - x :` Tkt T₁~) ⊢ T₂ ⇐ KdStar ↝ T₂~ / Γ ⊢ t₂ ⇐ [ Γ - t₁~ / (pi'' % x) ] T₂~ ↝ t₂~ / let T₂~ = [ Γ - Var x / (pi'' % x) ] T₂~ bd = binder-data Γ pi'' x (Tkt T₁~) ff nothing (type-start-pos T₂) (type-end-pos T₂) in [- Var-span Γ pi'' x checking [ type-data Γ T₁~ ] nothing -] return (nothing , (type-data Γ (TpIota x T₁~ T₂~) :: [ bd ]) , IotaPair t₁~ t₂~ x T₂~ , t₁~ , t₂~ , TpIota x T₁~ T₂~)}) (λ Tₑ → Γ ⊢ Tₑ =β= λ where (TpIota x T₁ T₂) → Γ ⊢ t₁ ⇐ T₁ ↝ t₁~ / maybe-else' Tₘ? (Γ ⊢ t₂ ⇐ [ Γ - t₁~ / x ] T₂ ↝ t₂~ / return (nothing , (type-data Γ (TpIota x T₁ T₂) :: [ expected-type Γ Tₑ ]) , IotaPair t₁~ t₂~ x T₂ , t₁~ , t₂~ , TpIota x T₁ T₂)) λ {(ExGuide pi'' x' Tₘ) → (Γ , pi'' - x' :` Tkt T₁) ⊢ Tₘ ⇐ KdStar ↝ Tₘ~ / let Tₘ~ = [ Γ - Var x' / (pi'' % x') ] Tₘ~ T₂ = [ Γ - Var x' / x ] T₂ Tₛ = TpIota x' T₁ Tₘ~ in Γ ⊢ t₂ ⇐ [ Γ - t₁~ / x' ] Tₘ~ ↝ t₂~ / [- Var-span Γ pi'' x checking [ type-data Γ T₁ ] nothing -] return (check-for-type-mismatch Γ "computed" Tₘ~ T₂ , (type-data Γ Tₛ :: expected-type Γ (TpIota x' T₁ T₂) :: [ binder-data Γ pi'' x' (Tkt T₁) ff nothing (type-start-pos Tₘ) (type-end-pos Tₘ) ]) , IotaPair t₁~ t₂~ x' Tₘ~ , t₁~ , t₂~ , Tₛ)} Tₕ → untyped-term Γ t₁ >>= λ t₁~ → untyped-term Γ t₂ >>= λ t₂~ → return (unless (is-hole Tₕ) "The expected type is not an iota-type" , [ expected-type Γ Tₕ ] , t₁~ , t₁~ , t₂~ , Tₕ)) >>= λ where (err? , tvs , t~ , t₁~ , t₂~ , T~) → let conv-e = "The two components of the iota-pair are not convertible (as required)" conv-e? = unless (conv-term Γ t₁~ t₂~) conv-e conv-tvs = maybe-else' conv-e? [] λ _ → to-string-tag "hnf of the first component" Γ (hnf Γ unfold-head t₁~) :: [ to-string-tag "hnf of the second component" Γ (hnf Γ unfold-head t₂~) ] in [- IotaPair-span pi pi' (maybe-to-checking Tₑ?) (conv-tvs ++ tvs) (conv-e? ||-maybe err?) -] return-when t~ T~ -- t.(1 / 2) check-term Γ (ExIotaProj t n pi) Tₑ? = Γ ⊢ t ↝ t~ ⇒ T~ / let n? = case n of λ {"1" → just ι1; "2" → just ι2; _ → nothing} in maybe-else' n? ([- IotaProj-span t pi (maybe-to-checking Tₑ?) (expected-type-if Γ Tₑ?) (just "Iota-projections must use .1 or .2 only") -] return-when t~ (TpHole pi)) λ n → Γ ⊢ T~ =β= λ where (TpIota x T₁ T₂) → let Tᵣ = if n iff ι1 then T₁ else ([ Γ - t~ / x ] T₂) in [- IotaProj-span t pi (maybe-to-checking Tₑ?) (type-data Γ Tᵣ :: expected-type-if Γ Tₑ?) (check-for-type-mismatch-if Γ "synthesized" Tₑ? Tᵣ) -] return-when (IotaProj t~ n) Tᵣ Tₕ~ → [- IotaProj-span t pi (maybe-to-checking Tₑ?) (head-type Γ Tₕ~ :: expected-type-if Γ Tₑ?) (unless (is-hole Tₕ~) "The synthesized type of the head is not an iota-type") -] return-when (IotaProj t~ n) (TpHole pi) -- λ/Λ x [: T?]. t check-term Γ (ExLam pi e pi' x tk? t) Tₑ? = [- punctuation-span "Lambda" pi (posinfo-plus pi 1) -] let erase-err : (exp act : erased?) → tpkd → term → err-m × 𝕃 tagged-val erase-err = λ where Erased NotErased tk t → just ("The expected type is a ∀-abstraction (implicit input), " ^ "but the term is a λ-abstraction (explicit input)") , [] NotErased Erased tk t → just ("The expected type is a Π-abstraction (explicit input), " ^ "but the term is a Λ-abstraction (implicit input)") , [] Erased Erased tk t → maybe-else (nothing , []) (λ e-tv → just (fst e-tv) , [ snd e-tv ]) (trie-lookup (free-vars (erase t)) x >> just ("The Λ-bound variable occurs free in the erasure of the body" , erasure Γ t)) NotErased NotErased (Tkk _) t → just "λ-terms must bind a term, not a type (use Λ instead)" , [] NotErased NotErased (Tkt _) t → nothing , [] in case-ret {m = Tₑ?} (maybe-else' tk? (untyped-term (Γ , pi' - x :` Tkt (TpHole pi')) t >>= λ t~ → [- Lam-span Γ synthesizing pi pi' e x (Tkt (TpHole pi')) t [] (just ("We are not checking this abstraction against a type, " ^ "so a classifier must be given for the bound variable " ^ x)) -] return2 (Lam e x nothing (rename-var Γ (pi' % x) x t~)) (TpHole pi')) λ tk → Γ ⊢ tk ↝ tk~ / (Γ , pi' - x :` tk~) ⊢ t ↝ t~ ⇒ T~ / let T~ = rename-var Γ (pi' % x) x T~ t~ = rename-var Γ (pi' % x) x t~ Tᵣ = TpAbs e x tk~ T~ in [- var-span e (Γ , pi' - x :` tk~) pi' x checking tk~ nothing -] [- uncurry (λ tvs → Lam-span Γ synthesizing pi pi' e x tk~ t (type-data Γ Tᵣ :: tvs)) (twist-× (erase-err e e tk~ t~)) -] return2 (Lam e x (just tk~) t~) Tᵣ) λ Tₑ → Γ ⊢ Tₑ =β= λ where (TpAbs e' x' tk T) → maybe-map (check-tpkd Γ) tk? >>=? tk~? / let tk~ = maybe-else' tk~? tk id in --maybe-else' tk? (return tk) (λ tk → Γ ⊢ tk ↝ return) >>= tk~ / (Γ , pi' - x :` tk~) ⊢ t ⇐ rename-var Γ x' (pi' % x) T ↝ t~ / let xₙ = if x =string ignored-var && is-free-in x' T then x' else x t~ = rename-var Γ (pi' % x) xₙ t~ T = rename-var Γ x' xₙ T Tₛ = TpAbs e xₙ tk~ T Tₑ = TpAbs e' xₙ tk T vₑ = check-for-tpkd-mismatch-if Γ "computed" tk~? tk in [- var-span e (Γ , pi' - x :` tk~) pi' x (maybe-to-checking tk?) tk~ nothing -] [- uncurry (λ err tvs → Lam-span Γ checking pi pi' e x tk~ t (type-data Γ Tₛ :: expected-type Γ Tₑ :: tvs) (err ||-maybe vₑ)) (erase-err e' e tk~ t~) -] return (Lam e xₙ (just tk~) t~) Tₕ → maybe-else' tk? (return (Tkt (TpHole pi'))) (check-tpkd Γ) >>= tk~ / untyped-term (Γ , pi' - x :` tk~) t >>= t~ / [- Lam-span Γ checking pi pi' e x (Tkt (TpHole pi')) t [ expected-type Γ Tₕ ] (just "The expected type is not a ∀- or a Π-type") -] return (Lam e x (unless (is-hole -tk' tk~) tk~) (rename-var Γ (pi' % x) x t~)) -- [d] - t check-term Γ (ExLet pi e? d t) Tₑ? = check-let Γ d e? (term-start-pos t) (term-end-pos t) >>= λ where (Γ' , x , tv , σ , f) → case-ret-body {m = Tₑ?} (check-term Γ' t Tₑ?) λ t~ T~ → [- punctuation-span "Parens (let)" pi (term-end-pos t) -] [- Let-span e? pi (term-end-pos t) (maybe-to-checking Tₑ?) (maybe-else' Tₑ? (type-data Γ T~) (expected-type Γ) :: [ tv ]) (when (e? && is-free-in x (erase t~)) (unqual-local x ^ "occurs free in the body of the term")) -] return-when (f t~) (σ T~) -- open/close x - t check-term Γ (ExOpen pi o pi' x t) Tₑ? = let Γ? = ctxt-clarify-def Γ o x e? = maybe-not Γ? >> just (x ^ " does not have a definition that can be " ^ (if o then "opened" else "closed")) in [- Var-span Γ pi' x (maybe-to-checking Tₑ?) [ not-for-navigation ] nothing -] [- Open-span o pi x t (maybe-to-checking Tₑ?) (expected-type-if Γ Tₑ?) e? -] check-term (maybe-else' Γ? Γ id) t Tₑ? -- (t) check-term Γ (ExParens pi t pi') Tₑ? = [- punctuation-span "Parens (term)" pi pi' -] check-term Γ t Tₑ? -- φ t₌ - t₁ {t₂} check-term Γ (ExPhi pi t₌ t₁ t₂ pi') Tₑ? = case-ret-body {m = Tₑ?} (check-term Γ t₁ Tₑ?) λ t₁~ T~ → untyped-term Γ t₂ >>= λ t₂~ → Γ ⊢ t₌ ⇐ TpEq t₁~ t₂~ ↝ t₌~ / [- Phi-span pi pi' (maybe-to-checking Tₑ?) [ maybe-else' Tₑ? (type-data Γ T~) (expected-type Γ)] nothing -] return-when (Phi t₌~ t₁~ t₂~) T~ -- ρ[+]<ns> t₌ [@ Tₘ?] - t check-term Γ (ExRho pi ρ+ <ns> t₌ Tₘ? t) Tₑ? = Γ ⊢ t₌ ↝ t₌~ ⇒ T₌ / Γ ⊢ T₌ =β= λ where (TpEq t₁ t₂) → let tₗ = if isJust Tₑ? then t₁ else t₂ tᵣ = if isJust Tₑ? then t₂ else t₁ tvs = λ T~ Tᵣ → to-string-tag "equation" Γ (TpEq t₁ t₂) :: maybe-else' Tₑ? (to-string-tag "type of second subterm" Γ T~) (expected-type Γ) :: [ to-string-tag "rewritten type" Γ Tᵣ ] in maybe-else' Tₘ? (elim-pair (optNums-to-stringset <ns>) λ ns ns-e? → let x = fresh-var Γ "x" Γ' = ctxt-var-decl x Γ T-f = λ T → rewrite-type T Γ' ρ+ ns (just t₌~) tₗ x 0 Tᵣ-f = fst ∘ T-f nn-f = snd ∘ T-f Tₚ-f = map-fst (post-rewrite Γ' x t₌~ tᵣ) ∘ T-f in maybe-else' Tₑ? (Γ ⊢ t ↝ t~ ⇒ T~ / return2 t~ T~) (λ Tₑ → Γ ⊢ t ⇐ fst (Tₚ-f Tₑ) ↝ t~ / return2 t~ Tₑ) >>=c λ t~ T~ → elim-pair (Tₚ-f T~) λ Tₚ nn → [- Rho-span pi t₌ t (maybe-to-checking Tₑ?) ρ+ (inj₁ (fst nn)) (tvs T~ Tₚ) (ns-e? (snd nn)) -] return-when (Rho t₌~ x (erase (Tᵣ-f T~)) t~) Tₚ) λ where (ExGuide pi' x Tₘ) → [- Var-span Γ pi' x untyped [] nothing -] let Γ' = Γ , pi' - x :` Tkt (TpHole pi') in untyped-type Γ' Tₘ >>= λ Tₘ~ → let Tₘ~ = [ Γ' - Var x / (pi' % x) ] Tₘ~ T' = [ Γ' - tₗ / x ] Tₘ~ T'' = post-rewrite Γ' x t₌~ tᵣ (rewrite-at Γ' x (just t₌~) tt T' Tₘ~) check-str = if isJust Tₑ? then "computed" else "synthesized" in maybe-else' Tₑ? (check-term Γ t nothing) (λ Tₑ → Γ ⊢ t ⇐ T'' ↝ t~ / return2 t~ Tₑ) >>=c λ t~ T~ → [- Rho-span pi t₌ t (maybe-to-checking Tₑ?) ρ+ (inj₂ x) (tvs T~ T'') (check-for-type-mismatch Γ check-str T' T~) -] return-when (Rho t₌~ x Tₘ~ t~) T'' Tₕ → Γ ⊢ t ↝ t~ ⇒ λ T~ → [- Rho-span pi t₌ t (maybe-to-checking Tₑ?) ρ+ (inj₁ 1) (to-string-tag "type of first subterm" Γ Tₕ :: [ to-string-tag "type of second subterm" Γ T~ ]) (unless (is-hole Tₕ) "We could not synthesize an equation from the first subterm") -] return-when t~ T~ -- ς t check-term Γ (ExVarSigma pi t) Tₑ? = case-ret (Γ ⊢ t ↝ t~ ⇒ T / Γ ⊢ T =β= λ where (TpEq t₁ t₂) → [- VarSigma-span pi t synthesizing [ type-data Γ (TpEq t₂ t₁) ] nothing -] return2 (VarSigma t~) (TpEq t₂ t₁) Tₕ → [- VarSigma-span pi t synthesizing [ type-data Γ Tₕ ] (unless (is-hole Tₕ) "The synthesized type of the body is not an equation") -] return2 (VarSigma t~) Tₕ) λ Tₑ → Γ ⊢ Tₑ =β= λ where (TpEq t₁ t₂) → Γ ⊢ t ⇐ TpEq t₂ t₁ ↝ t~ / [- VarSigma-span pi t checking [ expected-type Γ (TpEq t₁ t₂) ] nothing -] return (VarSigma t~) Tₕ → [- VarSigma-span pi t checking [ expected-type Γ Tₕ ] (unless (is-hole Tₕ) "The expected type is not an equation") -] untyped-term Γ t -- θ t ts check-term Γ (ExTheta pi θ t ts) Tₑ? = case-ret {m = Tₑ?} ([- Theta-span Γ pi θ t ts synthesizing [] (just "Theta-terms can only be used when checking (and we are synthesizing here)") -] return2 (Hole pi) (TpHole pi)) λ Tₑ → Γ ⊢ t ↝ t~ ⇒ T / let x = case hnf Γ unfold-head t~ of λ {(Var x) → x; _ → "x"} x' = fresh-var Γ x in Γ ⊢ T =β= λ where (TpAbs me x (Tkk kd) tp) → (case θ of λ where (AbstractVars vs) → either-else' (wrap-vars vs Tₑ) (return2 (TpHole pi) ∘ just) λ Tₘ → return2 Tₘ nothing Abstract → return2 (TpLam x' (Tkt T) (rename-var Γ x x' Tₑ)) nothing AbstractEq → return2 (TpLam x' (Tkt T) (TpAbs Erased ignored-var (Tkt (TpEq t~ (Var x'))) (rename-var Γ x x' Tₑ))) nothing) >>=c λ Tₘ e₁ → check-refinement Γ Tₘ kd >>=c λ Tₘ → uncurry λ tvs e₂ → let tp' = [ Γ - Tₘ / x ] tp in check-lterms ts (AppTp t~ Tₘ) tp' >>=c λ t~ T~ → let e₃ = check-for-type-mismatch Γ "synthesized" T~ Tₑ t~ = case θ of λ {AbstractEq → AppEr t~ (Beta (erase t~) id-term); _ → t~} in [- Theta-span Γ pi θ t ts checking (type-data Γ T~ :: expected-type Γ Tₑ :: tvs) (e₁ ||-maybe (e₂ ||-maybe e₃)) -] return t~ Tₕ → [- Theta-span Γ pi θ t ts checking (head-type Γ Tₕ :: expected-type Γ Tₑ :: []) (unless (is-hole Tₕ) "The synthesized type of the head is not a type-forall") -] return (Hole pi) where check-lterms : 𝕃 lterm → term → type → spanM (term × type) check-lterms [] tm tp = return2 tm tp check-lterms (Lterm me t :: ts) tm tp = Γ ⊢ tp =β= λ where (TpAbs me' x (Tkt T) T') → Γ ⊢ t ⇐ T ↝ t~ / (if me iff me' then return triv else spanM-add (Theta-span Γ pi θ t [] checking [] (just "Mismatched erasure of theta arg"))) >> check-lterms ts (if me then AppEr tm t~ else App tm t~) ([ Γ - t~ / x ] T') Tₕ → (if is-hole Tₕ then id else [- Theta-span Γ pi θ t [] checking [ expected-type Γ Tₕ ] (just "The expected type is not an arrow type") -]_) (untyped-term Γ t >>= λ t~ → check-lterms ts (if me then AppEr tm t~ else App tm t~) Tₕ) var-not-in-scope : var → string var-not-in-scope x = "We could not compute a motive from the given term because " ^ "the abstracted variable " ^ x ^ " is not in scope" wrap-var : var → type → string ⊎ type wrap-var x T = let x' = fresh-var Γ x in maybe-else' (ctxt-lookup-tpkd-var Γ x) (inj₁ (var-not-in-scope x)) λ {(qx , as , tk) → inj₂ (TpLam x' tk (rename-var Γ qx x' T))} wrap-vars : 𝕃 var → type → var ⊎ type wrap-vars [] T = inj₂ T wrap-vars (x :: xs) T = wrap-vars xs T >>= wrap-var x motive : var → var → type → type → theta → term → type motive x x' T T' Abstract t = TpLam x' (Tkt T') (rename-var Γ x x' T) motive x x' T T' AbstractEq t = TpLam x' (Tkt T') (TpAbs Erased ignored-var (Tkt (TpEq t (Var x'))) (rename-var Γ x x' T)) motive x x' T T' (AbstractVars vs) t = T -- Shouldn't happen -- μ(' / rec.) t [@ Tₘ?] {ms...} check-term Γ (ExMu pi1 pi2 x t Tₘ? pi' ms pi'') Tₑ? = check-mu Γ pi1 pi2 x t Tₘ? pi' ms pi'' Tₑ? check-term Γ (ExSigma pi t? t Tₘ? pi' ms pi'') Tₑ? = check-sigma Γ pi t? t Tₘ? pi' ms pi'' Tₑ? -- x check-term Γ (ExVar pi x) Tₑ? = maybe-else' (ctxt-lookup-term-var Γ x) ([- Var-span Γ pi x (maybe-to-checking Tₑ?) (expected-type-if Γ Tₑ?) (just "Missing a type for a term variable") -] return-when (Var x) (TpHole pi)) λ {(qx , as , T) → [- Var-span Γ pi x (maybe-to-checking Tₑ?) (type-data Γ T :: expected-type-if Γ Tₑ?) (check-for-type-mismatch-if Γ "computed" Tₑ? T) -] return-when (apps-term (Var qx) as) T} -- ∀/Π x : tk. T check-type Γ (ExTpAbs pi e pi' x tk T) kₑ? = Γ ⊢ tk ↝ tk~ / (Γ , pi' - x :` tk~) ⊢ T ⇐ KdStar ↝ T~ / let T~ = rename-var Γ (pi' % x) x T~ in [- punctuation-span "Forall" pi (posinfo-plus pi 1) -] [- var-span ff (Γ , pi' - x :` tk~) pi' x checking tk~ nothing -] [- TpQuant-span Γ e pi pi' x tk~ T (maybe-to-checking kₑ?) (kind-data Γ KdStar :: expected-kind-if Γ kₑ?) (check-for-kind-mismatch-if Γ "computed" kₑ? KdStar) -] return-when (TpAbs e x tk~ T~) KdStar -- ι x : T₁. T₂ check-type Γ (ExTpIota pi pi' x T₁ T₂) kₑ? = Γ ⊢ T₁ ⇐ KdStar ↝ T₁~ / (Γ , pi' - x :` Tkt T₁~) ⊢ T₂ ⇐ KdStar ↝ T₂~ / let T₂~ = rename-var Γ (pi' % x) x T₂~ in [- punctuation-span "Iota" pi (posinfo-plus pi 1) -] [- Var-span (Γ , pi' - x :` Tkt T₁~) pi' x checking [ type-data Γ T₁~ ] nothing -] [- Iota-span Γ pi pi' x T₁~ T₂ (maybe-to-checking kₑ?) (kind-data Γ KdStar :: expected-kind-if Γ kₑ?) (check-for-kind-mismatch-if Γ "computed" kₑ? KdStar) -] return-when (TpIota x T₁~ T₂~) KdStar -- {^ T ^} (generated by theta) check-type Γ (ExTpNoSpans T pi) kₑ? = check-type Γ T kₑ? >>=spand return -- [d] - T check-type Γ (ExTpLet pi d T) kₑ? = check-let Γ d ff (type-start-pos T) (type-end-pos T) >>= λ where (Γ' , x , tv , σ , f) → case-ret-body {m = kₑ?} (check-type Γ' T kₑ?) λ T~ k~ → [- punctuation-span "Parens (let)" pi (type-end-pos T) -] [- TpLet-span pi (type-end-pos T) (maybe-to-checking kₑ?) (maybe-else' kₑ? (kind-data Γ k~) (expected-kind Γ) :: [ tv ]) -] return-when (σ T~) (σ k~) -- T · T' check-type Γ (ExTpApp T T') kₑ? = Γ ⊢ T ↝ T~ ⇒ kₕ / Γ ⊢ kₕ =β= λ where (KdAbs x (Tkk dom) cod) → Γ ⊢ T' ⇐ dom ↝ T'~ / let cod' = [ Γ - T'~ / x ] cod in [- TpApp-span (type-start-pos T) (type-end-pos T') (maybe-to-checking kₑ?) (kind-data Γ cod' :: expected-kind-if Γ kₑ?) (check-for-kind-mismatch-if Γ "synthesized" kₑ? cod') -] return-when (TpAppTp T~ T'~) cod' kₕ' → untyped-type Γ T' >>= T'~ / [- TpApp-span (type-start-pos T) (type-end-pos T') (maybe-to-checking kₑ?) (head-kind Γ kₕ' :: expected-kind-if Γ kₑ?) (unless (is-hole kₕ') $ "The synthesized kind of the head does not allow it to be applied" ^ " to a type argument") -] return-when (TpAppTp T~ T'~) (KdHole (type-start-pos T)) -- T t check-type Γ (ExTpAppt T t) kₑ? = Γ ⊢ T ↝ T~ ⇒ kₕ / Γ ⊢ kₕ =β= λ where (KdAbs x (Tkt dom) cod) → Γ ⊢ t ⇐ dom ↝ t~ / let cod' = [ Γ - t~ / x ] cod in [- TpAppt-span (type-start-pos T) (term-end-pos t) (maybe-to-checking kₑ?) (kind-data Γ cod' :: expected-kind-if Γ kₑ?) (check-for-kind-mismatch-if Γ "synthesized" kₑ? cod') -] return-when (TpAppTm T~ t~) cod' kₕ' → untyped-term Γ t >>= t~ / [- TpAppt-span (type-start-pos T) (term-end-pos t) (maybe-to-checking kₑ?) (head-kind Γ kₕ' :: expected-kind-if Γ kₑ?) (unless (is-hole kₕ') $ "The synthesized kind of the head does not allow it to be applied" ^ " to a term argument") -] return-when (TpAppTm T~ t~) (KdHole (type-start-pos T)) -- T ➔/➾ T' check-type Γ (ExTpArrow T e T') kₑ? = Γ ⊢ T ⇐ KdStar ↝ T~ / Γ ⊢ T' ⇐ KdStar ↝ T'~ / [- TpArrow-span T T' (maybe-to-checking kₑ?) (kind-data Γ KdStar :: expected-kind-if Γ kₑ?) (check-for-kind-mismatch-if Γ "computed" kₑ? KdStar) -] return-when (TpAbs e ignored-var (Tkt T~) T'~) KdStar -- { t₁ ≃ t₂ } check-type Γ (ExTpEq pi t₁ t₂ pi') kₑ? = untyped-term Γ t₁ >>= t₁~ / untyped-term Γ t₂ >>= t₂~ / [- punctuation-span "Parens (equation)" pi pi' -] [- TpEq-span pi pi' (maybe-to-checking kₑ?) (kind-data Γ KdStar :: expected-kind-if Γ kₑ?) (check-for-kind-mismatch-if Γ "computed" kₑ? KdStar) -] return-when (TpEq t₁~ t₂~) KdStar -- ● check-type Γ (ExTpHole pi) kₑ? = [- tp-hole-span Γ pi kₑ? (maybe-to-checking kₑ?) [] -] return-when (TpHole pi) (KdHole pi) -- λ x : tk. T check-type Γ (ExTpLam pi pi' x tk T) kₑ? = [- punctuation-span "Lambda (type)" pi (posinfo-plus pi 1) -] Γ ⊢ tk ↝ tk~ / case-ret ((Γ , pi' - x :` tk~) ⊢ T ↝ T~ ⇒ k / let kₛ = KdAbs x tk~ (rename-var Γ (pi' % x) x k) in [- var-span ff (Γ , pi' - x :` tk~) pi' x checking tk~ nothing -] [- TpLambda-span Γ pi pi' x tk~ T synthesizing [ kind-data Γ kₛ ] nothing -] return2 (TpLam x tk~ (rename-var Γ (pi' % x) x T~)) kₛ) λ kₑ → (Γ ⊢ kₑ =β= λ where (KdAbs x' tk' k) → (Γ , pi' - x :` tk~) ⊢ T ⇐ (rename-var Γ x' (pi' % x) k) ↝ T~ / let xₙ = if x =string ignored-var && is-free-in x' k then x' else x in return (xₙ , rename-var Γ (pi' % x) xₙ T~ , lambda-bound-conv? Γ x tk' tk~ []) kₕ → (Γ , pi' - x :` tk~) ⊢ T ↝ T~ ⇒ _ / return (x , rename-var Γ (pi' % x) x T~ , [] , unless (is-hole kₕ) "The expected kind is not an arrow- or Pi-kind") ) >>= λ where (xₙ , T~ , tvs , e?) → [- var-span ff (Γ , pi' - x :` tk~) pi' x checking tk~ nothing -] [- TpLambda-span Γ pi pi' x tk~ T checking (expected-kind Γ kₑ :: tvs) e? -] return (TpLam xₙ tk~ T~) -- (T) check-type Γ (ExTpParens pi T pi') kₑ? = [- punctuation-span "Parens (type)" pi pi' -] check-type Γ T kₑ? -- x check-type Γ (ExTpVar pi x) kₑ? = maybe-else' (ctxt-lookup-type-var Γ x) ([- TpVar-span Γ pi x (maybe-to-checking kₑ?) (expected-kind-if Γ kₑ?) (just "Undefined type variable") -] return-when (TpVar x) (KdHole pi)) λ where (qx , as , k) → [- TpVar-span Γ pi x (maybe-to-checking kₑ?) (expected-kind-if Γ kₑ? ++ [ kind-data Γ k ]) (check-for-kind-mismatch-if Γ "computed" kₑ? k) -] return-when (apps-type (TpVar qx) as) k -- Π x : tk. k check-kind Γ (ExKdAbs pi pi' x tk k) = Γ ⊢ tk ↝ tk~ / Γ , pi' - x :` tk~ ⊢ k ↝ k~ / [- KdAbs-span Γ pi pi' x tk~ k checking nothing -] [- var-span ff Γ pi' x checking tk~ nothing -] [- punctuation-span "Pi (kind)" pi (posinfo-plus pi 1) -] return (KdAbs x tk~ (rename-var Γ (pi' % x) x k~)) -- tk ➔ k check-kind Γ (ExKdArrow tk k) = Γ ⊢ tk ↝ tk~ / Γ ⊢ k ↝ k~ / [- KdArrow-span tk k checking nothing -] return (KdAbs ignored-var tk~ k~) -- ● check-kind Γ (ExKdHole pi) = [- kd-hole-span pi checking -] return (KdHole pi) -- (k) check-kind Γ (ExKdParens pi k pi') = [- punctuation-span "Parens (kind)" pi pi' -] check-kind Γ k -- ★ check-kind Γ (ExKdStar pi) = [- Star-span pi checking nothing -] return KdStar -- κ as... check-kind Γ (ExKdVar pi κ as) = case ctxt-lookup-kind-var-def Γ κ of λ where nothing → [- KdVar-span Γ (pi , κ) (args-end-pos (posinfo-plus-str pi κ) as) [] checking [] (just "Undefined kind variable") -] return (KdHole pi) (just (ps , k)) → check-args Γ as ps >>= λ as~ → [- KdVar-span Γ (pi , κ) (args-end-pos (posinfo-plus-str pi κ) as) ps checking (params-data Γ ps) (when (length as < length ps) ("Needed " ^ ℕ-to-string (length ps ∸ length as) ^ " further argument(s)")) -] return (fst (subst-params-args' Γ ps as~ k)) check-tpkd Γ (ExTkt T) = Tkt <$> check-type Γ T (just KdStar) check-tpkd Γ (ExTkk k) = Tkk <$> check-kind Γ k check-args Γ (ExTmArg me t :: as) (Param me' x (Tkt T) :: ps) = Γ ⊢ t ⇐ T ↝ t~ / let e-s = mk-span "Argument" (term-start-pos t) (term-end-pos t) [ expected-type Γ T ] (just "Mismatched argument erasure") e-m = λ r → if me iff me' then return {F = spanM} r else ([- e-s -] return {F = spanM} r) in check-args Γ as (subst-params Γ t~ x ps) >>= λ as~ → e-m ((if me then inj₂ (inj₁ t~) else inj₁ t~) :: as~) check-args Γ (ExTpArg T :: as) (Param _ x (Tkk k) :: ps) = Γ ⊢ T ⇐ k ↝ T~ / check-args Γ as (subst-params Γ T~ x ps) >>= λ as~ → return (inj₂ (inj₂ T~) :: as~) check-args Γ (ExTmArg me t :: as) (Param _ x (Tkk k) :: ps) = [- mk-span "Argument" (term-start-pos t) (term-end-pos t) [ expected-kind Γ k ] (just "Expected a type argument") -] return [] check-args Γ (ExTpArg T :: as) (Param me x (Tkt T') :: ps) = [- mk-span "Argument" (type-start-pos T) (type-end-pos T) [ expected-type Γ T' ] (just ("Expected a" ^ (if me then "n erased" else "") ^ " term argument")) -] return [] check-args Γ (a :: as) [] = let range = case a of λ {(ExTmArg me t) → term-start-pos t , term-end-pos t; (ExTpArg T) → type-start-pos T , type-end-pos T} in check-args Γ as [] >>= λ as~ → [- mk-span "Argument" (fst range) (snd range) [] (just "Too many arguments given") -] return [] check-args Γ [] _ = return [] check-erased-margs : ctxt → posinfo → posinfo → term → maybe type → spanM ⊤ check-erased-margs Γ pi pi' t T? = let psₑ = foldr (λ {(Param me x tk) psₑ → if me then x :: psₑ else psₑ}) [] (ctxt.ps Γ) fvs = free-vars (erase t) e = list-any (stringset-contains fvs) psₑ in if e then spanM-add (erased-marg-span Γ pi pi' T?) else spanMok check-let Γ (ExDefTerm pi x (just Tₑ) t) e? fm to = Γ ⊢ Tₑ ⇐ KdStar ↝ Tₑ~ / Γ ⊢ t ⇐ Tₑ~ ↝ t~ / elim-pair (compileFail-in Γ t~) λ tvs e → [- Var-span (Γ , pi - x :` Tkt Tₑ~) pi x checking (type-data Γ Tₑ~ :: tvs) e -] return (ctxt-term-def pi localScope opacity-open x (just t~) Tₑ~ Γ , pi % x , binder-data Γ pi x (Tkt Tₑ~) e? (just t~) fm to , (λ {ed} T' → [ Γ - t~ / (pi % x) ] T') , (λ t' → LetTm (e? || ~ is-free-in (pi % x) (erase t')) x nothing t~ ([ Γ - Var x / (pi % x) ] t'))) check-let Γ (ExDefTerm pi x nothing t) e? fm to = Γ ⊢ t ↝ t~ ⇒ Tₛ~ / elim-pair (compileFail-in Γ t~) λ tvs e → let Γ' = ctxt-term-def pi localScope opacity-open x (just t~) Tₛ~ Γ in [- Var-span Γ' pi x synthesizing (type-data Γ Tₛ~ :: tvs) e -] return (Γ' , pi % x , binder-data Γ pi x (Tkt Tₛ~) e? (just t~) fm to , (λ {ed} T' → [ Γ - t~ / (pi % x) ] T') , (λ t' → LetTm (e? || ~ is-free-in (pi % x) (erase t')) x nothing t~ ([ Γ - Var x / (pi % x) ] t'))) check-let Γ (ExDefType pi x k T) e? fm to = Γ ⊢ k ↝ k~ / Γ ⊢ T ⇐ k~ ↝ T~ / [- TpVar-span (Γ , pi - x :` Tkk k~) pi x checking [ kind-data Γ k~ ] nothing -] return (ctxt-type-def pi localScope opacity-open x (just T~) k~ Γ , pi % x , binder-data Γ pi x (Tkk k~) e? (just T~) fm to , (λ {ed} T' → [ Γ - T~ / (pi % x) ] T') , (λ t' → LetTp x k~ T~ ([ Γ - TpVar x / (pi % x) ] t'))) check-case Γ (ExCase pi x cas t) es Dₓ cs ρₒ as dps Tₘ cast-tm cast-tp = [- pattern-span pi x cas -] maybe-else' (trie-lookup (ctxt.qual Γ) x >>= uncurry λ x' _ → trie-lookup cs x' >>= λ T → just (x' , T)) (let e = maybe-else' (trie-lookup es x) ("This is not a constructor of " ^ unqual-local (unqual-all (ctxt.qual Γ) Dₓ)) λ _ → "This case is unreachable" in [- pattern-ctr-span Γ pi x [] [] (just e) -] return2 (Case x [] (Hole pi) []) cs) λ where (x' , Tₕ , ps , is) → decl-args Γ cas ps empty-trie ρₒ [] (const spanMok) >>= λ where (Γ' , cas' , e , σ , ρ , tvs , sm) → let rs = tmtps-to-args' Γ' σ (drop dps is) Tₘ' = TpAppTm (apps-type Tₘ rs) (app-caseArgs (cast-tm Γ') (cast-tp Γ') (recompose-apps as (Var x')) (zip cas cas')) Tₘ' = hnf Γ' unfold-no-defs Tₘ' in Γ' ⊢ t ⇐ Tₘ' ↝ t~ / sm t~ >> [- pattern-clause-span pi t (reverse tvs) -] [- pattern-ctr-span Γ' pi x cas' [] e -] return2 (Case x' (subst-case-args cas' Γ ρₒ) (subst-renamectxt Γ ρ t~) (args-to-tmtps (as ++ (subst-renamectxt Γ ρ -arg_ <$> rs)))) (trie-remove cs x') where subst-case-args : case-args → ctxt → renamectxt → case-args subst-case-args [] Γ ρ = [] subst-case-args (CaseArg e x tk? :: cs) Γ ρ = CaseArg e x (subst-renamectxt Γ ρ -tk_ <$> tk?) :: subst-case-args cs (ctxt-var-decl x Γ) (renamectxt-insert ρ x x) free-in-term : var → term → err-m free-in-term x t = when (is-free-in x (erase t)) "Erased argument occurs free in the body of the term" tmtp-to-arg' : ctxt → trie (Σi exprd ⟦_⟧) → tmtp → arg tmtp-to-arg' = λ Γ σ → either-else (Arg ∘ substs Γ σ) (ArgTp ∘ substs Γ σ) tmtps-to-args' : ctxt → trie (Σi exprd ⟦_⟧) → 𝕃 tmtp → args tmtps-to-args' = λ Γ σ → tmtp-to-arg' Γ σ <$>_ app-caseArgs : (term → type → term) → (type → kind → type) → term → 𝕃 (ex-case-arg × case-arg) → term app-caseArgs tf Tf = foldl λ where (ExCaseArg _ pi x , CaseArg me _ tk?) t → elim-pair (me , tk?) λ where tt (just (Tkt T)) → AppEr t (tf (Var (pi % x)) T) tt (just (Tkk k)) → AppTp t (Tf (TpVar (pi % x)) k) ff (just (Tkt T)) → App t (tf (Var (pi % x)) T) _ _ → t spos = term-start-pos t epos = term-end-pos t add-case-arg : ∀ {X Y} → ctxt → var → var → case-arg → spanM (X × case-args × Y) → spanM (X × case-args × Y) add-case-arg Γ x xₙ ca m = m >>=c λ X → return2 X ∘ map-fst λ cas → ca :: subst-case-args cas Γ (renamectxt-single x xₙ) decl-args : ctxt → ex-case-args → params → trie (Σi exprd ⟦_⟧) → renamectxt → 𝕃 tagged-val → (term → spanM ⊤) → spanM (ctxt × case-args × err-m × trie (Σi exprd ⟦_⟧) × renamectxt × 𝕃 tagged-val × (term → spanM ⊤)) decl-args Γ (ExCaseArg ExCaseArgTp pi x :: as) (Param me x' (Tkt T) :: ps) σ ρ xs sm = let T' = substs Γ σ T Γ' = ctxt-var-decl-loc pi x Γ xₙ = if x =string ignored-var then x' else x in add-case-arg Γ' (pi % x) xₙ (CaseArg tt xₙ (just (Tkt T'))) $ decl-args Γ' as ps (trie-insert σ x' (, TpVar (pi % x))) (renamectxt-insert ρ (pi % x) xₙ) (binder-data Γ' pi x (Tkt T') Erased nothing spos epos :: xs) λ t → [- TpVar-span Γ' pi x checking [ expected-type Γ T' ] (just ("This type argument should be a" ^ (if me then "n erased term" else " term"))) -] sm t decl-args Γ (ExCaseArg ExCaseArgTp pi x :: as) (Param _ x' (Tkk k) :: ps) σ ρ xs sm = let k' = substs Γ σ k Γ' = ctxt-type-decl pi x k' Γ xₙ = if x =string ignored-var then x' else x in add-case-arg Γ' (pi % x) xₙ (CaseArg tt xₙ (just (Tkk k'))) $ decl-args Γ' as ps (trie-insert σ x' (, TpVar (pi % x))) (renamectxt-insert ρ (pi % x) xₙ) (binder-data Γ' pi x (Tkk k') Erased nothing spos epos :: xs) λ t → [- TpVar-span Γ' pi x checking [ kind-data Γ k' ] (free-in-term x t) -] sm t decl-args Γ (ExCaseArg me pi x :: as) (Param me' x' (Tkt T) :: ps) σ ρ xs sm = let T' = substs Γ σ T e₁ = when (ex-case-arg-erased me xor me') "Mismatched erasure of term argument" e₂ = λ t → ifMaybe (ex-case-arg-erased me) $ free-in-term x t Γ' = Γ , pi - x :` (Tkt T') xₙ = if x =string ignored-var then x' else x in (add-case-arg Γ' (pi % x) xₙ (CaseArg me' xₙ (just (Tkt T'))) $ decl-args Γ' as ps (trie-insert σ x' (, Var (pi % x))) (renamectxt-insert ρ (pi % x) xₙ) (binder-data Γ' pi x (Tkt T') (ex-case-arg-erased me) nothing spos epos :: xs) λ t → [- Var-span Γ' pi x checking [ type-data Γ T' ] (e₁ ||-maybe e₂ t) -] sm t) decl-args Γ (ExCaseArg me pi x :: as) (Param me' x' (Tkk k) :: ps) σ ρ xs sm = let k' = substs Γ σ k Γ' = ctxt-var-decl-loc pi x Γ xₙ = if x =string ignored-var then x' else x in add-case-arg Γ' (pi % x) xₙ (CaseArg tt xₙ (just (Tkk k'))) $ decl-args Γ' as ps (trie-insert σ x' (, Var (pi % x))) (renamectxt-insert ρ (pi % x) xₙ) (binder-data Γ' pi x (Tkk k') (ex-case-arg-erased me) nothing spos epos :: xs) λ t → [- Var-span Γ' pi x checking [ expected-kind Γ k' ] (just "This term argument should be a type") -] sm t decl-args Γ [] [] σ ρ xs sm = return (Γ , [] , nothing , σ , ρ , xs , sm) decl-args Γ as [] σ ρ xs sm = return (Γ , [] , just (ℕ-to-string (length as) ^ " too many arguments supplied") , σ , ρ , xs , sm) decl-args Γ [] ps σ ρ xs sm = return (Γ , params-to-case-args (substs-params Γ σ ps) , just (ℕ-to-string (length ps) ^ " more arguments expected") , σ , ρ , xs , sm) check-cases Γ ms Dₓ cs ρ as dps Tₘ cast-tm cast-tp = foldr {B = stringset → trie (type × params × 𝕃 tmtp) → spanM (cases × trie (type × params × 𝕃 tmtp))} (λ m x es cs' → check-case Γ m es Dₓ cs' ρ as dps Tₘ cast-tm cast-tp >>=c λ m~ cs → x (stringset-insert es (ex-case-ctr m)) cs >>=c λ ms~ → return2 (m~ :: ms~)) (λ es → return2 []) ms empty-stringset (trie-map (decompose-ctr-type Γ) cs) >>=c λ ms~ missing-cases → let xs = map (map-snd snd) $ trie-mappings missing-cases csf = uncurry₂ λ Tₕ ps as → rope-to-string $ strRun Γ $ strVar (unqual-all (ctxt.qual Γ) Tₕ) >>str args-to-string (params-to-args ps) e = "Missing patterns: " ^ 𝕃-to-string csf ", " xs in return2 ms~ (unless (iszero (length xs)) e) check-refinement Γ Tₘ kₘ s = check-type (qualified-ctxt Γ) (resugar Tₘ) (just kₘ) empty-spans >>= uncurry λ Tₘ' s' → return $ (λ x → x , s) $ Tₘ' , [ to-string-tag "computed motive" Γ Tₘ ] , (when (spans-have-error s') "We could not compute a well-kinded motive") get-datatype-info-from-head-type Γ X as = return $ maybe-else' (data-lookup Γ X as) (inj₁ $ "The head type of the subterm is not a datatype" , [ head-type Γ (TpVar X) ]) (λ μ → inj₂ μ) check-sigma-evidence Γ tₑ? X as = maybe-else' tₑ? (get-datatype-info-from-head-type Γ X as >>=s λ d → return $ inj₂ (sigma-build-evidence X d , id , d)) (λ tₑ → Γ ⊢ tₑ ↝ tₑ~ ⇒ T / let ev-err = inj₁ $ ("The synthesized type of the evidence does not prove " ^ unqual-local (unqual-all (ctxt.qual Γ) X) ^ " is a datatype") , [ to-string-tag "evidence type" Γ T ] in case decompose-tpapps (hnf Γ unfold-head-elab T) of λ where (TpVar X' , as') → case reverse as' of λ where (Ttp T :: as') → return $ if ~ conv-type Γ T (TpVar X) then ev-err else maybe-else ev-err (λ {d@(mk-data-info X Xₒ asₚ asᵢ mps kᵢ k cs csₚₛ eds gds) → inj₂ (tₑ~ , (App $ recompose-apps (asₚ ++ tmtps-to-args Erased asᵢ) $ Var $ data-to/ X) , d)}) -- AS: it looks like we are reversing as' twice, so not reversing at all? (data-lookup-mu Γ X X' $ reverse as' ++ as) -- TODO: Make sure "X" isn't a _defined_ type, but a _declared_ one! -- This way we avoid the possibility that "as" has arguments -- to parameters in it, but only to indices. -- Also TODO: Make sure that parameters are equal in above conversion check! _ → return ev-err _ → return ev-err ) ctxt-mu-decls : ctxt → term → indices → type → datatype-info → posinfo → posinfo → posinfo → var → (cases → spanM ⊤) × ctxt × 𝕃 tagged-val × renamectxt × (ctxt → term → type → term) × (ctxt → type → kind → type) ctxt-mu-decls Γ t is Tₘ (mk-data-info X Xₒ asₚ asᵢ ps kᵢ k cs csₚₛ eds gds) pi₁ pi₂ pi₃ x = let X' = mu-Type/ x xₘᵤ = mu-isType/ x qXₘᵤ = data-Is/ X qXₜₒ = data-to/ X qX' = pi₁ % X' qxₘᵤ = pi₁ % xₘᵤ qx = pi₁ % x Tₘᵤ = TpAppTp (flip apps-type asₚ $ TpVar qXₘᵤ) $ TpVar qX' Γ' = ctxt-term-def pi₁ localScope opacity-open xₘᵤ nothing Tₘᵤ $ ctxt-datatype-decl X qx asₚ $ ctxt-type-decl pi₁ X' k Γ freshₓ = fresh-var (add-indices-to-ctxt is Γ') (maybe-else "x" id (is-var (Ttm t))) Tₓ = hnf Γ' unfold-no-defs (indices-to-alls is $ TpAbs ff freshₓ (Tkt $ indices-to-tpapps is $ TpVar qX') $ TpAppTm (indices-to-tpapps is Tₘ) $ Phi (Beta (Var freshₓ) (Var freshₓ)) (App (indices-to-apps is $ AppEr (AppTp (flip apps-term asₚ $ Var qXₜₒ) $ TpVar qX') $ Var qxₘᵤ) $ Var freshₓ) (Var freshₓ)) Γ'' = ctxt-term-decl pi₁ x Tₓ Γ' e₂? = unless (X =string Xₒ) "Abstract datatypes can only be pattern matched by σ" e₃ = λ x → just $ x ^ " occurs free in the erasure of the body (not allowed)" cs-fvs = stringset-contains ∘' free-vars-cases ∘' erase-cases e₃ₓ? = λ cs x → ifMaybe (cs-fvs cs x) $ e₃ x e₃? = λ cs → e₃ₓ? cs (mu-isType/ x) ||-maybe e₃ₓ? cs (mu-Type/ x) in (λ cs → [- var-span NotErased Γ'' pi₁ x checking (Tkt Tₓ) (e₂? ||-maybe e₃? cs) -] spanMok) , Γ'' , (binder-data Γ'' pi₁ X' (Tkk k) Erased nothing pi₂ pi₃ :: binder-data Γ'' pi₁ xₘᵤ (Tkt Tₘᵤ) Erased nothing pi₂ pi₃ :: binder-data Γ'' pi₁ x (Tkt Tₓ) NotErased nothing pi₂ pi₃ :: to-string-tag X' Γ'' k :: to-string-tag xₘᵤ Γ'' Tₘᵤ :: to-string-tag x Γ'' Tₓ :: []) , renamectxt-insert* empty-renamectxt ((qX' , X') :: (qxₘᵤ , xₘᵤ) :: (qx , x) :: []) , let cg = qX' , recompose-tpapps (args-to-tmtps asₚ) (TpVar qx) , AppEr (AppTp (recompose-apps asₚ (Var qXₜₒ)) (TpVar qX')) (Var qxₘᵤ) in flip (mk-ctr-fmap-η? ff ∘ ctxt-datatype-undef qX') cg , flip (mk-ctr-fmapₖ-η? ff ∘ ctxt-datatype-undef qX') cg check-mu Γ pi pi' x t Tₘ? pi'' cs pi''' Tₑ? = check-term Γ t nothing >>=c λ t~ T → let no-motive-err = just "A motive is required when synthesizing" no-motive = return (nothing , [] , no-motive-err) in case decompose-tpapps (hnf Γ unfold-head-elab T) of λ where (TpVar X , as) → get-datatype-info-from-head-type Γ X as on-fail (uncurry λ e tvs → spanM-add (Mu-span Γ pi pi''' nothing (maybe-to-checking Tₑ?) (expected-type-if Γ Tₑ? ++ tvs) $ just e) >> return-when {m = Tₑ?} (Hole pi) (TpHole pi)) >>=s λ where (d @ (mk-data-info Xₒ _ asₚ asᵢ ps kᵢ k cs' csₚₛ eds gds)) → let Rₓ = mu-Type/ x; qRₓ = pi' % Rₓ Γₘ = data-highlight (ctxt-type-decl pi' Rₓ k Γ) qRₓ ρₘ = subst Γₘ (recompose-tpapps (args-to-tmtps asₚ) (TpVar Xₒ)) qRₓ ρₘ' = subst Γₘ (TpVar Rₓ) qRₓ eₘ = λ Tₘ → when (negₒ (extract-pos (positivity.type+ qRₓ Γₘ (hnf-ctr Γₘ qRₓ Tₘ)))) (Rₓ ^ " occurs negatively in the motive") in maybe-map (λ Tₘ → check-type Γₘ Tₘ (just kᵢ)) Tₘ? >>=? λ Tₘ?' → let is = kind-to-indices Γ kᵢ eₘ = Tₘ?' >>= eₘ ret-tp = λ ps as t → maybe-else' Tₘ?' Tₑ? (λ Tₘ → just $ hnf Γ unfold-head-elab (TpAppTm (apps-type (ρₘ Tₘ) $ tmtps-to-args NotErased (drop (length ps) as)) t)) in (maybe-else' Tₘ?' (return Tₑ? on-fail no-motive >>=m λ Tₑ → let Tₘ = refine-motive Γ is (asᵢ ++ [ Ttm t~ ]) Tₑ in check-refinement Γ Tₘ kᵢ >>=c λ Tₘ → return2 (just Tₘ)) λ Tₘ → return (just Tₘ , [] , nothing)) >>=c λ Tₘ → uncurry λ tvs₁ e₁ → let Tₘ = maybe-else' Tₘ (TpHole pi) id is = drop-last 1 is reduce-cs = map λ {(Ctr x T) → Ctr x $ hnf Γ unfold-no-defs T} fcs = λ y → inst-ctrs Γ ps asₚ (map-snd (rename-var {TYPE} Γ Xₒ y) <$> cs') cs' = reduce-cs $ fcs (mu-Type/ (pi' % x)) in case (ctxt-mu-decls Γ t~ is Tₘ d pi' pi'' pi''' x) of λ where (sm , Γ' , bds , ρ , cast-tm , cast-tp) → let cs'' = foldl (λ {(Ctr x T) σ → trie-insert σ x T}) empty-trie cs' drop-ps = 0 scrutinee = t~ Tᵣ = ret-tp ps (args-to-tmtps asₚ ++ asᵢ) scrutinee in check-cases Γ' cs Xₒ cs'' ρ asₚ drop-ps Tₘ cast-tm cast-tp >>=c λ cs~ e₂ → let e₃ = maybe-else' Tᵣ (just "A motive is required when synthesizing") (check-for-type-mismatch-if Γ "synthesized" Tₑ?) in [- Mu-span Γ pi pi''' Tₘ?' (maybe-to-checking Tₑ?) (expected-type-if Γ Tₑ? ++ maybe-else' Tᵣ [] (λ Tᵣ → [ type-data Γ Tᵣ ]) ++ tvs₁ ++ bds) (e₁ ||-maybe (e₂ ||-maybe (e₃ ||-maybe eₘ))) -] sm cs~ >> return-when {m = Tₑ?} (subst-renamectxt Γ ρ (Mu x t~ (just (ρₘ' Tₘ)) d cs~)) (maybe-else' Tᵣ (TpHole pi) id) (Tₕ , as) → [- Mu-span Γ pi pi''' nothing (maybe-to-checking Tₑ?) [ head-type Γ Tₕ ] (just "The head type of the subterm is not a datatype") -] return-when {m = Tₑ?} (Hole pi) (TpHole pi) check-sigma Γ pi t? t Tₘ? pi'' cs pi''' Tₑ? = check-term Γ t nothing >>=c λ t~ T → let no-motive-err = just "A motive is required when synthesizing" no-motive = return (nothing , [] , no-motive-err) in case decompose-tpapps (hnf Γ unfold-head-elab T) of λ where (TpVar X , as) → check-sigma-evidence Γ t? X as on-fail (uncurry λ e tvs → spanM-add (Sigma-span Γ pi pi''' nothing (maybe-to-checking Tₑ?) (expected-type-if Γ Tₑ? ++ tvs) $ just e) >> return-when {m = Tₑ?} (Hole pi) (TpHole pi)) >>=s λ where (tₑ~ , cast , d @ (mk-data-info Xₒ _ asₚ asᵢ ps kᵢ k cs' csₚₛ eds gds)) → maybe-map (λ Tₘ → check-type Γ Tₘ (just kᵢ)) Tₘ? >>=? λ Tₘ?' → let is = kind-to-indices Γ kᵢ ret-tp = λ ps as t → maybe-else' Tₘ?' Tₑ? (λ Tₘ → just $ hnf Γ unfold-head-elab (TpAppTm (apps-type Tₘ $ tmtps-to-args NotErased (drop (length ps) as)) t)) in (maybe-else' Tₘ?' (return Tₑ? on-fail no-motive >>=m λ Tₑ → let Tₘ = refine-motive Γ is (asᵢ ++ [ Ttm t~ ]) Tₑ in check-refinement Γ Tₘ kᵢ >>=c λ Tₘ → return2 (just Tₘ)) λ Tₘ → return (just Tₘ , [] , nothing)) >>=c λ Tₘ → uncurry λ tvs₁ e₁ → let Tₘ = maybe-else' Tₘ (TpHole pi) id reduce-cs = map λ {(Ctr x T) → Ctr x $ hnf Γ unfold-no-defs T} fcs = λ y → inst-ctrs Γ ps asₚ (map-snd (rename-var {TYPE} Γ Xₒ y) <$> cs') cs' = reduce-cs $ if Xₒ =string X then csₚₛ else fcs X in let sm = const spanMok ρ = empty-renamectxt cast-tm = (λ Γ t T → t) cast-tp = (λ Γ T k → T) cs'' = foldl (λ {(Ctr x T) σ → trie-insert σ x T}) empty-trie cs' drop-ps = maybe-else 0 length (when (Xₒ =string X) ps) scrutinee = cast t~ Tᵣ = ret-tp ps (args-to-tmtps asₚ ++ asᵢ) scrutinee in check-cases Γ cs Xₒ cs'' ρ asₚ drop-ps Tₘ cast-tm cast-tp >>=c λ cs~ e₂ → let e₃ = maybe-else' Tᵣ (just "A motive is required when synthesizing") (check-for-type-mismatch-if Γ "synthesized" Tₑ?) in [- Sigma-span Γ pi pi''' Tₘ?' (maybe-to-checking Tₑ?) (expected-type-if Γ Tₑ? ++ maybe-else' Tᵣ [] (λ Tᵣ → [ type-data Γ Tᵣ ]) ++ tvs₁) (e₁ ||-maybe (e₂ ||-maybe e₃)) -] sm cs~ >> return-when {m = Tₑ?} (subst-renamectxt Γ ρ (Sigma (just tₑ~) t~ (just Tₘ) d cs~)) (maybe-else' Tᵣ (TpHole pi) id) (Tₕ , as) → [- Sigma-span Γ pi pi''' nothing (maybe-to-checking Tₑ?) [ head-type Γ Tₕ ] (just "The head type of the subterm is not a datatype") -] return-when {m = Tₑ?} (Hole pi) (TpHole pi)
{ "alphanum_fraction": 0.5208341276, "avg_line_length": 46.9248658318, "ext": "agda", "hexsha": "6a9c02c43dcb960d3e658ba4926d7d74b7755793", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ice1k/cedille", "max_forks_repo_path": "src/classify.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ice1k/cedille", "max_issues_repo_path": "src/classify.agda", "max_line_length": 311, "max_stars_count": null, "max_stars_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ice1k/cedille", "max_stars_repo_path": "src/classify.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 19348, "size": 52462 }
{-# OPTIONS --type-in-type #-} module poly.core where open import functors open import prelude _^ : Set → Set -- Presheaf I ^ = I → Set ∫ : Set -- Arena ∫ = ∃ _^ _⦅_⦆ : ∫ → Set → Set -- Interpret as a polynomial functor (A⁺ , A⁻) ⦅ y ⦆ = Σ[ a⁺ ∈ A⁺ ] (A⁻ a⁺ → y) module _ (A@(A⁺ , A⁻) B@(B⁺ , B⁻) : ∫) where ∫[_,_] : Set ∫[_,_] = (a⁺ : A⁺) → Σ[ b⁺ ∈ B⁺ ] (B⁻ b⁺ → A⁻ a⁺) module _ {A@(A⁺ , A⁻) B@(B⁺ , B⁻) : ∫} where lens : (get : A⁺ → B⁺) (set : (a⁺ : A⁺) → B⁻ (get a⁺) → A⁻ a⁺) → ∫[ A , B ] lens g s = λ a⁺ → g a⁺ , s a⁺ get : (l : ∫[ A , B ]) → A⁺ → B⁺ get l = π₁ ∘ l set : (A↝B : ∫[ A , B ]) → (a⁺ : A⁺) → B⁻ (get A↝B a⁺) → A⁻ a⁺ set l = π₂ ∘ l instance lens-cat : Category ∫[_,_] lens-cat = 𝒾: (λ a⁺ → a⁺ , id) ▸: (λ l1 l2 a⁺ → let b⁺ , setb = l1 a⁺ c⁺ , setc = l2 b⁺ in c⁺ , setb ∘ setc) 𝒾▸: (λ _ → refl) ▸𝒾: (λ _ → refl)
{ "alphanum_fraction": 0.3661257606, "avg_line_length": 27.3888888889, "ext": "agda", "hexsha": "ac32d3d28b562b32a2c5829a2d9bbcf78f4fb53d", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-30T11:45:57.000Z", "max_forks_repo_forks_event_min_datetime": "2021-07-10T17:19:37.000Z", "max_forks_repo_head_hexsha": "425de958985aacbd3284d3057fe21fd682e315ea", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dspivak/poly", "max_forks_repo_path": "code-examples/agda/poly/core.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "425de958985aacbd3284d3057fe21fd682e315ea", "max_issues_repo_issues_event_max_datetime": "2022-01-12T10:06:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-09-02T02:29:39.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dspivak/poly", "max_issues_repo_path": "code-examples/agda/poly/core.agda", "max_line_length": 64, "max_stars_count": 53, "max_stars_repo_head_hexsha": "425de958985aacbd3284d3057fe21fd682e315ea", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mstone/poly", "max_stars_repo_path": "code-examples/agda/poly/core.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T23:08:27.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-18T16:31:04.000Z", "num_tokens": 502, "size": 986 }
------------------------------------------------------------------------------ -- Bisimilarity relation on unbounded lists ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Relation.Binary.Bisimilarity.Type where open import FOTC.Base open import FOTC.Base.List infix 4 _≈_ _≉_ ------------------------------------------------------------------------------ -- The bisimilarity relation _≈_ on unbounded lists is the greatest -- fixed-point (by ≈-out and ≈-coind) of the bisimulation functional -- (FOTC.Relation.Binary.Bisimulation). -- The bisimilarity relation on unbounded lists. postulate _≈_ : D → D → Set -- The bisimilarity relation _≈_ on unbounded lists is a post-fixed -- point of the bisimulation functional (FOTC.Relation.Binary.Bisimulation). postulate ≈-out : ∀ {xs ys} → xs ≈ ys → ∃[ x' ] ∃[ xs' ] ∃[ ys' ] xs ≡ x' ∷ xs' ∧ ys ≡ x' ∷ ys' ∧ xs' ≈ ys' {-# ATP axiom ≈-out #-} -- The bisimilarity relation _≈_ on unbounded lists is the greatest -- post-fixed point of the bisimulation functional (see -- FOTC.Relation.Binary.Bisimulation). -- -- N.B. This is an axiom schema. Because in the automatic proofs we -- *must* use an instance, we do not add this postulate as an ATP -- axiom. postulate ≈-coind : (B : D → D → Set) → -- B is a post-fixed point of the bisimulation functional. (∀ {xs ys} → B xs ys → ∃[ x' ] ∃[ xs' ] ∃[ ys' ] xs ≡ x' ∷ xs' ∧ ys ≡ x' ∷ ys' ∧ B xs' ys') → -- _≈_ is greater than B. ∀ {xs ys} → B xs ys → xs ≈ ys ------------------------------------------------------------------------------ -- Auxiliary definition. _≉_ : D → D → Set x ≉ y = ¬ x ≈ y {-# ATP definition _≉_ #-}
{ "alphanum_fraction": 0.5138740662, "avg_line_length": 35.358490566, "ext": "agda", "hexsha": "6a8f6d7a6b5286378de37e79121763e0ab3a5554", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Relation/Binary/Bisimilarity/Type.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Relation/Binary/Bisimilarity/Type.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Relation/Binary/Bisimilarity/Type.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 515, "size": 1874 }
-- Modified: Andreas, 2011-04-11 freezing metas module Issue151 where record A : Set₁ where field El : Set data B (a : A) : Set₁ where b : ∀ a′ → B a′ → B a data C a : B a → B a → Set₁ where c : ∀ a′ (p : B a′) → C a (b record{ El = A.El a′ } p) (b a′ p) c′ : ∀ a′ (p : B a′) → C a (b a′ p) (b a′ p) -- In order to type check the second clause the unifier -- needs to eta contract the record in the target of the c -- constructor. foo : ∀ a (p : B a) (p′ : B a) → C a (b a p) p′ → Set₁ foo a p (b .a .p) (c′ .a .p) = Set foo a p (b .a .p) (c .a .p) = Set postulate D : A → Set d : (a : A) → D a -- The following definition generates a constraint -- α record{ El = A.El a } == D a -- on the metavariable above. To solve this the constraint -- solver has to eta contract the record to see that the -- left hand side is a proper Miller pattern. bar : (test : (a : A) -> _) -> (a : A) → D a bar test a = test record{ El = A.El a }
{ "alphanum_fraction": 0.567539267, "avg_line_length": 28.0882352941, "ext": "agda", "hexsha": "e1c103d5e99096dfa2c05030b1e8af813e123f6c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/succeed/Issue151.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/succeed/Issue151.agda", "max_line_length": 66, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue151.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 360, "size": 955 }
id : forall {k}{X : Set k} -> X -> X id x = x _o_ : forall {i j k} {A : Set i}{B : A -> Set j}{C : (a : A) -> B a -> Set k} -> (f : {a : A}(b : B a) -> C a b) -> (g : (a : A) -> B a) -> (a : A) -> C a (g a) f o g = \ a -> f (g a) data List (X : Set) : Set where [] : List X _,_ : X → List X → List X data Nat : Set where zero : Nat suc : Nat → Nat {-# BUILTIN NATURAL Nat #-} data Vec (X : Set) : Nat -> Set where [] : Vec X 0 _,_ : { n : Nat } → X → Vec X n → Vec X (suc n) vec : forall { n X } → X → Vec X n vec {zero} a = [] vec {suc n} a = a , vec a vapp : forall { n S T } → Vec (S → T) n → Vec S n → Vec T n vapp [] [] = [] vapp (x , st) (x₁ , s) = x x₁ , vapp st s record Applicative (F : Set → Set) : Set₁ where infixl 2 _⊛_ field pure : forall { X } → X → F X _⊛_ : forall { S T } → F (S → T) → F S → F T open Applicative {{...}} public instance applicativeVec : forall { n } → Applicative (λ X → Vec X n) applicativeVec = record { pure = vec; _⊛_ = vapp } instance applicativeComp : forall {F G} {{_ : Applicative F}} {{_ : Applicative G}} → Applicative (F o G) applicativeComp {{af}} {{ag}} = record { pure = λ z → Applicative.pure af (Applicative.pure ag z) ; _⊛_ = λ z → {!!} } record Traversable (T : Set → Set) : Set1 where field traverse : forall { F A B } {{ AF : Applicative F }} → (A → F B) → T A → F (T B) open Traversable {{...}} public instance traversableVec : forall {n} → Traversable (\X → Vec X n) traversableVec = record { traverse = vtr } where vtr : forall { n F A B } {{ AF : Applicative F }} → (A → F B) → Vec A n → F (Vec B n) vtr {{AF}} f [] = Applicative.pure AF [] vtr {{AF}} f (x , v) = Applicative._⊛_ AF (Applicative._⊛_ AF (Applicative.pure AF _,_) (f x)) (vtr f v)
{ "alphanum_fraction": 0.516075388, "avg_line_length": 26.9253731343, "ext": "agda", "hexsha": "bb0da65225f51970fb3dabd76a89b0fcef70c69a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2993.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2993.agda", "max_line_length": 98, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2993.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 699, "size": 1804 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Relations between properties of functions, such as associativity and -- commutativity (specialised to propositional equality) ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Algebra.FunctionProperties.Consequences.Propositional {a} {A : Set a} where open import Data.Sum using (inj₁; inj₂) open import Relation.Binary using (Rel; Setoid; Symmetric; Total) open import Relation.Binary.PropositionalEquality open import Relation.Unary using (Pred) open import Algebra.FunctionProperties {A = A} _≡_ import Algebra.FunctionProperties.Consequences (setoid A) as FP⇒ ------------------------------------------------------------------------ -- Re-export all proofs that don't require congruence or substitutivity open FP⇒ public hiding ( assoc+distribʳ+idʳ+invʳ⇒zeˡ ; assoc+distribˡ+idʳ+invʳ⇒zeʳ ; assoc+id+invʳ⇒invˡ-unique ; assoc+id+invˡ⇒invʳ-unique ; comm+distrˡ⇒distrʳ ; comm+distrʳ⇒distrˡ ; comm⇒sym[distribˡ] ; subst+comm⇒sym ; wlog ; sel⇒idem ) ------------------------------------------------------------------------ -- Group-like structures module _ {_•_ _⁻¹ ε} where assoc+id+invʳ⇒invˡ-unique : Associative _•_ → Identity ε _•_ → RightInverse ε _⁻¹ _•_ → ∀ x y → (x • y) ≡ ε → x ≡ (y ⁻¹) assoc+id+invʳ⇒invˡ-unique = FP⇒.assoc+id+invʳ⇒invˡ-unique (cong₂ _) assoc+id+invˡ⇒invʳ-unique : Associative _•_ → Identity ε _•_ → LeftInverse ε _⁻¹ _•_ → ∀ x y → (x • y) ≡ ε → y ≡ (x ⁻¹) assoc+id+invˡ⇒invʳ-unique = FP⇒.assoc+id+invˡ⇒invʳ-unique (cong₂ _) ------------------------------------------------------------------------ -- Ring-like structures module _ {_+_ _*_ -_ 0#} where assoc+distribʳ+idʳ+invʳ⇒zeˡ : Associative _+_ → _*_ DistributesOverʳ _+_ → RightIdentity 0# _+_ → RightInverse 0# -_ _+_ → LeftZero 0# _*_ assoc+distribʳ+idʳ+invʳ⇒zeˡ = FP⇒.assoc+distribʳ+idʳ+invʳ⇒zeˡ (cong₂ _+_) (cong₂ _*_) assoc+distribˡ+idʳ+invʳ⇒zeʳ : Associative _+_ → _*_ DistributesOverˡ _+_ → RightIdentity 0# _+_ → RightInverse 0# -_ _+_ → RightZero 0# _*_ assoc+distribˡ+idʳ+invʳ⇒zeʳ = FP⇒.assoc+distribˡ+idʳ+invʳ⇒zeʳ (cong₂ _+_) (cong₂ _*_) ------------------------------------------------------------------------ -- Bisemigroup-like structures module _ {_•_ _◦_ : Op₂ A} (•-comm : Commutative _•_) where comm+distrˡ⇒distrʳ : _•_ DistributesOverˡ _◦_ → _•_ DistributesOverʳ _◦_ comm+distrˡ⇒distrʳ = FP⇒.comm+distrˡ⇒distrʳ (cong₂ _) •-comm comm+distrʳ⇒distrˡ : _•_ DistributesOverʳ _◦_ → _•_ DistributesOverˡ _◦_ comm+distrʳ⇒distrˡ = FP⇒.comm+distrʳ⇒distrˡ (cong₂ _) •-comm comm⇒sym[distribˡ] : ∀ x → Symmetric (λ y z → (x ◦ (y • z)) ≡ ((x ◦ y) • (x ◦ z))) comm⇒sym[distribˡ] = FP⇒.comm⇒sym[distribˡ] (cong₂ _◦_) •-comm ------------------------------------------------------------------------ -- Selectivity module _ {_•_ : Op₂ A} where sel⇒idem : Selective _•_ → Idempotent _•_ sel⇒idem = FP⇒.sel⇒idem _≡_ ------------------------------------------------------------------------ -- Without Loss of Generality module _ {p} {P : Pred A p} where subst+comm⇒sym : ∀ {f} (f-comm : Commutative f) → Symmetric (λ a b → P (f a b)) subst+comm⇒sym = FP⇒.subst+comm⇒sym {P = P} subst wlog : ∀ {f} (f-comm : Commutative f) → ∀ {r} {_R_ : Rel _ r} → Total _R_ → (∀ a b → a R b → P (f a b)) → ∀ a b → P (f a b) wlog = FP⇒.wlog {P = P} subst
{ "alphanum_fraction": 0.5133350937, "avg_line_length": 35.7264150943, "ext": "agda", "hexsha": "f36d2ba4d8c26172da97f897977518295247ba0e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Algebra/FunctionProperties/Consequences/Propositional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Algebra/FunctionProperties/Consequences/Propositional.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Algebra/FunctionProperties/Consequences/Propositional.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1348, "size": 3787 }
------------------------------------------------------------------------ -- Application of substitutions to normal and neutral terms ------------------------------------------------------------------------ open import Level using (zero) open import Data.Universe module README.DependentlyTyped.NormalForm.Substitution (Uni₀ : Universe zero zero) where open import Data.Product as Prod renaming (curry to c; uncurry to uc) open import deBruijn.Substitution.Data open import Function.Base as F renaming (const to k) import README.DependentlyTyped.NormalForm as NF; open NF Uni₀ import README.DependentlyTyped.Term.Substitution as S open S Uni₀ using (module Apply) import README.DependentlyTyped.Term as Term; open Term Uni₀ import Relation.Binary.PropositionalEquality as P open P.≡-Reasoning -- Code for applying substitutions containing terms which can be -- transformed into /neutral/ terms. module Apply-n {T : Term-like Level.zero} (T↦Ne : T ↦ Tm-n ne) where open _↦_ T↦Ne hiding (var) T↦Tm : T ↦ Tm T↦Tm = record { trans = forget-n [∘] trans ; simple = simple } open Apply T↦Tm using (_/⊢_; _/⊢t_; app) -- Applies a substitution to an atomic type. infixl 8 _/⊢a_ _/⊢a_ : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} → Γ ⊢ σ atomic-type → (ρ : Sub T ρ̂) → Δ ⊢ σ / ρ atomic-type ⋆ /⊢a ρ = ⋆ el /⊢a ρ = el mutual -- Applies a renaming to a normal or neutral term. infixl 8 _/⊢n_ _/⊢n-lemma_ _/⊢n_ : ∀ {Γ Δ σ k} {ρ̂ : Γ ⇨̂ Δ} → Γ ⊢ σ ⟨ k ⟩ → (ρ : Sub T ρ̂) → Δ ⊢ σ / ρ ⟨ k ⟩ ne σ′ t /⊢n ρ = ne (σ′ /⊢a ρ) (t /⊢n ρ) var x /⊢n ρ = trans ⊙ (x /∋ ρ) ƛ t /⊢n ρ = ƛ (t /⊢n ρ ↑) t₁ · t₂ /⊢n ρ = [ t₁ · t₂ ]/⊢n ρ -- The body of the last case above. (At the time of writing the -- termination checker complains if [ t₁ · t₂ ]/⊢n ρ is replaced -- by t₁ · t₂ /⊢n ρ in the type signature of ·-/⊢n below.) [_·_]/⊢n : ∀ {Γ Δ sp₁ sp₂ σ} {ρ̂ : Γ ⇨̂ Δ} (t₁ : Γ ⊢ π sp₁ sp₂ , σ ⟨ ne ⟩) (t₂ : Γ ⊢ fst σ ⟨ no ⟩) (ρ : Sub T ρ̂) → Δ ⊢ snd σ /̂ ŝub ⟦ t₂ ⟧n /̂ ρ̂ ⟨ ne ⟩ [_·_]/⊢n {σ = σ} t₁ t₂ ρ = P.subst (λ v → _ ⊢ snd σ /̂ ⟦ ρ ⟧⇨ ↑̂ /̂ ŝub v ⟨ ne ⟩) (≅-Value-⇒-≡ $ P.sym (t₂ /⊢n-lemma ρ)) ((t₁ /⊢n ρ) · (t₂ /⊢n ρ)) abstract -- An unfolding lemma. ·-/⊢n : ∀ {Γ Δ sp₁ sp₂ σ} {ρ̂ : Γ ⇨̂ Δ} (t₁ : Γ ⊢ π sp₁ sp₂ , σ ⟨ ne ⟩) (t₂ : Γ ⊢ fst σ ⟨ no ⟩) (ρ : Sub T ρ̂) → [ t₁ · t₂ ]/⊢n ρ ≅-⊢n (t₁ /⊢n ρ) · (t₂ /⊢n ρ) ·-/⊢n {σ = σ} t₁ t₂ ρ = drop-subst-⊢n (λ v → snd σ /̂ ⟦ ρ ⟧⇨ ↑̂ /̂ ŝub v) (≅-Value-⇒-≡ $ P.sym $ t₂ /⊢n-lemma ρ) -- The application operation is well-behaved. _/⊢n-lemma_ : ∀ {Γ Δ σ k} {ρ̂ : Γ ⇨̂ Δ} (t : Γ ⊢ σ ⟨ k ⟩) (ρ : Sub T ρ̂) → ⟦ t ⟧n /Val ρ ≅-Value ⟦ t /⊢n ρ ⟧n ne σ′ t /⊢n-lemma ρ = begin [ ⟦ t ⟧n /Val ρ ] ≡⟨ t /⊢n-lemma ρ ⟩ [ ⟦ t /⊢n ρ ⟧n ] ∎ var x /⊢n-lemma ρ = /̂∋-⟦⟧⇨ x ρ ƛ t /⊢n-lemma ρ = begin [ c ⟦ t ⟧n /Val ρ ] ≡⟨ P.refl ⟩ [ c (⟦ t ⟧n /Val ρ ↑) ] ≡⟨ curry-cong (t /⊢n-lemma (ρ ↑)) ⟩ [ c ⟦ t /⊢n ρ ↑ ⟧n ] ∎ t₁ · t₂ /⊢n-lemma ρ = begin [ ⟦ t₁ · t₂ ⟧n /Val ρ ] ≡⟨ P.refl ⟩ [ (⟦ t₁ ⟧n /Val ρ) ˢ (⟦ t₂ ⟧n /Val ρ) ] ≡⟨ ˢ-cong (t₁ /⊢n-lemma ρ) (t₂ /⊢n-lemma ρ) ⟩ [ ⟦ t₁ /⊢n ρ ⟧n ˢ ⟦ t₂ /⊢n ρ ⟧n ] ≡⟨ P.refl ⟩ [ ⟦ (t₁ /⊢n ρ) · (t₂ /⊢n ρ) ⟧n ] ≡⟨ ⟦⟧n-cong (P.sym $ ·-/⊢n t₁ t₂ ρ) ⟩ [ ⟦ t₁ · t₂ /⊢n ρ ⟧n ] ∎ app-n : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Sub T ρ̂ → [ Tm-n ne ⟶ Tm-n ne ] ρ̂ app-n ρ = record { function = λ _ t → t /⊢n ρ ; corresponds = λ _ t → t /⊢n-lemma ρ } substitution₁-n : Substitution₁ (Tm-n ne) substitution₁-n = record { var = record { function = λ _ → var ; corresponds = λ _ _ → P.refl } ; app′ = Apply-n.app-n ; app′-var = λ _ _ _ → P.refl } open Substitution₁ substitution₁-n public hiding (var) -- Let us make _/⊢n_ and friends immediately available for use with -- /renamings/. open Apply-n (Translation-from.translation Var-↦) public
{ "alphanum_fraction": 0.4672520171, "avg_line_length": 33.1811023622, "ext": "agda", "hexsha": "58f4864d9c4f1a1fe1d381472b104df5b9c5c7f0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/dependently-typed-syntax", "max_forks_repo_path": "README/DependentlyTyped/NormalForm/Substitution.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/dependently-typed-syntax", "max_issues_repo_path": "README/DependentlyTyped/NormalForm/Substitution.agda", "max_line_length": 94, "max_stars_count": 5, "max_stars_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/dependently-typed-syntax", "max_stars_repo_path": "README/DependentlyTyped/NormalForm/Substitution.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-08T22:51:36.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T12:14:44.000Z", "num_tokens": 1916, "size": 4214 }
-- Andreas, 2015-02-07 Failed with-abstraction in rewrite-generated with. -- {-# OPTIONS -v tc.rewrite.top:25 -v tc.with.top:25 -v tc.with.abstract:50 #-} {-# OPTIONS --type-in-type #-} module Issue1420 where open import Common.Equality postulate ▶ : Set → Set ▷ : ▶ Set → Set next : ∀{A} → A → ▶ A _∗_ : ∀{A B} → ▶(A → B) → ▶ A → ▶ B ▶-def : ∀ A → ▷ (next A) ≡ ▶ A next∗ : ∀{A B : Set} (f : A → B) (a : A) → (next f ∗ next a) ≡ next (f a) Name : Set data Tm : Set where name : Name → Tm data R : Tm → Set where name : ∀{x : Name} → R (name x) print : Tm → ▶ Tm print (name x) = next (name x) -- Manually expanded with test : ∀ (t : Tm) → ▷ (next R ∗ (print t)) test (name x) with next R ∗ next (name x) | next∗ R (name x) ... | ._ | refl rewrite ▶-def (R (name x)) = next name -- Original rewrite fails : ∀ (t : Tm) → ▷ (next R ∗ (print t)) fails (name x) rewrite next∗ R (name x) | ▶-def (R (name x)) = next name -- should succeed
{ "alphanum_fraction": 0.5386178862, "avg_line_length": 23.4285714286, "ext": "agda", "hexsha": "5158f9a8eb99af1cf33de6cf707d08dc888ee76d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1420.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1420.agda", "max_line_length": 80, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1420.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 390, "size": 984 }
{-# OPTIONS --without-K --safe --no-sized-types --no-guardedness #-} module Agda.Builtin.String where open import Agda.Builtin.Bool open import Agda.Builtin.List open import Agda.Builtin.Char open import Agda.Builtin.Equality postulate String : Set {-# BUILTIN STRING String #-} primitive primStringToList : String → List Char primStringFromList : List Char → String primStringAppend : String → String → String primStringEquality : String → String → Bool primShowChar : Char → String primShowString : String → String primStringToListInjective : ∀ a b → primStringToList a ≡ primStringToList b → a ≡ b {-# COMPILE JS primStringToList = function(x) { return x.split(""); } #-} {-# COMPILE JS primStringFromList = function(x) { return x.join(""); } #-} {-# COMPILE JS primStringAppend = function(x) { return function(y) { return x+y; }; } #-} {-# COMPILE JS primStringEquality = function(x) { return function(y) { return x===y; }; } #-} {-# COMPILE JS primShowChar = function(x) { return JSON.stringify(x); } #-} {-# COMPILE JS primShowString = function(x) { return JSON.stringify(x); } #-}
{ "alphanum_fraction": 0.6904549509, "avg_line_length": 40.0357142857, "ext": "agda", "hexsha": "5653d86eba64cf5375200bc1e8c387979620b070", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "phadej/agda", "max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/String.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "phadej/agda", "max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/String.agda", "max_line_length": 93, "max_stars_count": null, "max_stars_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "phadej/agda", "max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/String.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 288, "size": 1121 }
{-# OPTIONS --safe --warning=error --without-K --guardedness #-} open import Setoids.Setoids open import Rings.Definition open import Rings.Orders.Partial.Definition open import Rings.Orders.Total.Definition open import Groups.Definition open import Groups.Lemmas open import Groups.Homomorphisms.Definition open import Fields.Fields open import Sets.EquivalenceRelations open import Sequences open import Setoids.Orders.Partial.Definition open import Setoids.Orders.Total.Definition open import Functions.Definition open import LogicalFormulae open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order module Fields.CauchyCompletion.Group {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) (F : Field R) where open Setoid S open SetoidTotalOrder (TotallyOrderedRing.total order) open SetoidPartialOrder pOrder open Equivalence eq open TotallyOrderedRing order open Field F open Group (Ring.additiveGroup R) open Ring R open import Rings.Orders.Total.Lemmas order open import Rings.Orders.Total.AbsoluteValue order open import Fields.CauchyCompletion.Definition order F open import Fields.CauchyCompletion.Addition order F open import Fields.CauchyCompletion.Setoid order F abstract +CCommutative : (a b : CauchyCompletion) → Setoid._∼_ cauchyCompletionSetoid (a +C b) (b +C a) +CCommutative a b ε 0<e = 0 , ans where foo : {x y : A} → (x + y) + inverse (y + x) ∼ 0G foo = Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq) (inverseWellDefined additiveGroup groupIsAbelian)) invRight ans : {m : ℕ} → 0 <N m → abs (index (apply _+_ (CauchyCompletion.elts (a +C b)) (map inverse (CauchyCompletion.elts (b +C a)))) m) < ε ans {m} 0<m rewrite indexAndApply (CauchyCompletion.elts (a +C b)) (map inverse (CauchyCompletion.elts (b +C a))) _+_ {m} | indexAndApply (CauchyCompletion.elts a) (CauchyCompletion.elts b) _+_ {m} | equalityCommutative (mapAndIndex (apply _+_ (CauchyCompletion.elts b) (CauchyCompletion.elts a)) inverse m) | indexAndApply (CauchyCompletion.elts b) (CauchyCompletion.elts a) _+_ {m} = <WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (absWellDefined _ _ foo) (identityOfIndiscernablesRight _∼_ (Equivalence.reflexive eq) absZero))) (Equivalence.reflexive eq) 0<e private abstract additionWellDefinedLeft : (a b c : CauchyCompletion) → Setoid._∼_ cauchyCompletionSetoid a b → Setoid._∼_ cauchyCompletionSetoid (a +C c) (b +C c) additionWellDefinedLeft record { elts = a ; converges = aConv } record { elts = b ; converges = bConv } record { elts = c ; converges = cConv } a=b ε 0<e with a=b ε 0<e ... | Na-b , prA-b = Na-b , ans where ans : {m : ℕ} → Na-b <N m → abs (index (apply _+_ (apply _+_ a c) (map inverse (apply _+_ b c))) m) < ε ans {m} mBig with prA-b {m} mBig ... | bl rewrite indexAndApply (apply _+_ a c) (map inverse (apply _+_ b c)) _+_ {m} | indexAndApply a c _+_ {m} | equalityCommutative (mapAndIndex (apply _+_ b c) inverse m) | indexAndApply b c _+_ {m} = <WellDefined (absWellDefined _ _ t) (Equivalence.reflexive eq) bl where t : index (apply _+_ a (map inverse b)) m ∼ ((index a m + index c m) + inverse (index b m + index c m)) t rewrite indexAndApply a (map inverse b) _+_ {m} | equalityCommutative (mapAndIndex b inverse m) = Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.symmetric eq identLeft) (+WellDefined (Equivalence.symmetric eq invRight) (Equivalence.reflexive eq))) (Equivalence.symmetric eq +Associative)) (+WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq (invContravariant additiveGroup))))) (+Associative {index a m}) additionPreservedLeft : {a b : A} {c : CauchyCompletion} → (a ∼ b) → Setoid._∼_ cauchyCompletionSetoid (injection a +C c) (injection b +C c) additionPreservedLeft {a} {b} {c} a=b = additionWellDefinedLeft (injection a) (injection b) c (injectionPreservesSetoid a b a=b) additionPreservedRight : {a b : A} {c : CauchyCompletion} → (a ∼ b) → Setoid._∼_ cauchyCompletionSetoid (c +C injection a) (c +C injection b) additionPreservedRight {a} {b} {c} a=b = Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {c +C injection a} {injection a +C c} {c +C injection b} (+CCommutative c (injection a)) (Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {injection a +C c} {injection b +C c} {c +C injection b} (additionPreservedLeft {a} {b} {c} a=b) (+CCommutative (injection b) c)) additionPreserved : {a b c d : A} → (a ∼ b) → (c ∼ d) → Setoid._∼_ cauchyCompletionSetoid (injection a +C injection c) (injection b +C injection d) additionPreserved {a} {b} {c} {d} a=b c=d = Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {injection a +C injection c} {injection a +C injection d} {injection b +C injection d} (additionPreservedRight {c} {d} {injection a} c=d) (additionPreservedLeft {a} {b} {injection d} a=b) additionWellDefinedRight : (a b c : CauchyCompletion) → Setoid._∼_ cauchyCompletionSetoid b c → Setoid._∼_ cauchyCompletionSetoid (a +C b) (a +C c) additionWellDefinedRight a b c b=c = Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {a +C b} {b +C a} {a +C c} (+CCommutative a b) (Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {b +C a} {c +C a} {a +C c} (additionWellDefinedLeft b c a b=c) (+CCommutative c a)) additionWellDefined : {a b c d : CauchyCompletion} → Setoid._∼_ cauchyCompletionSetoid a b → Setoid._∼_ cauchyCompletionSetoid c d → Setoid._∼_ cauchyCompletionSetoid (a +C c) (b +C d) additionWellDefined {a} {b} {c} {d} a=b c=d = Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {a +C c} {a +C d} {b +C d} (additionWellDefinedRight a c d c=d) (additionWellDefinedLeft a b d a=b) additionHom : (x y : A) → Setoid._∼_ cauchyCompletionSetoid (injection (x + y)) (injection x +C injection y) additionHom x y ε 0<e = 0 , ans where ans : {m : ℕ} → 0 <N m → abs (index (apply _+_ (CauchyCompletion.elts (injection (x + y))) (map inverse (CauchyCompletion.elts (injection x +C injection y)))) m) < ε ans {m} 0<m rewrite indexAndApply (CauchyCompletion.elts (injection (x + y))) (map inverse (CauchyCompletion.elts (injection x +C injection y))) _+_ {m} | equalityCommutative (mapAndIndex (apply _+_ (constSequence x) (constSequence y)) inverse m) | indexAndConst (x + y) m | indexAndApply (constSequence x) (constSequence y) _+_ {m} | indexAndConst x m | indexAndConst y m = <WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (absWellDefined _ _ invRight) (identityOfIndiscernablesRight _∼_ (Equivalence.reflexive eq) absZero))) (Equivalence.reflexive eq) 0<e Cassoc : {a b c : CauchyCompletion} → Setoid._∼_ cauchyCompletionSetoid (a +C (b +C c)) ((a +C b) +C c) Cassoc {a} {b} {c} ε 0<e = 0 , ans where ans : {m : ℕ} → 0 <N m → abs (index (CauchyCompletion.elts ((a +C (b +C c)) +C (-C ((a +C b) +C c)))) m) < ε ans {m} 0<m rewrite indexAndApply (CauchyCompletion.elts (a +C (b +C c))) (map inverse (CauchyCompletion.elts ((a +C b) +C c))) _+_ {m} | indexAndApply (CauchyCompletion.elts a) (apply _+_ (CauchyCompletion.elts b) (CauchyCompletion.elts c)) _+_ {m} | equalityCommutative (mapAndIndex (apply _+_ (apply _+_ (CauchyCompletion.elts a) (CauchyCompletion.elts b)) (CauchyCompletion.elts c)) inverse m) | indexAndApply (CauchyCompletion.elts b) (CauchyCompletion.elts c) _+_ {m} | indexAndApply (apply _+_ (CauchyCompletion.elts a) (CauchyCompletion.elts b)) (CauchyCompletion.elts c) _+_ {m} | indexAndApply (CauchyCompletion.elts a) (CauchyCompletion.elts b) _+_ {m} = <WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (absWellDefined _ _ (transferToRight'' (Ring.additiveGroup R) +Associative)) (identityOfIndiscernablesRight _∼_ (Equivalence.reflexive eq) absZero))) (Equivalence.reflexive eq) 0<e CidentRight : {a : CauchyCompletion} → Setoid._∼_ cauchyCompletionSetoid (a +C injection 0G) a CidentRight {a} ε 0<e = 0 , ans where ans : {m : ℕ} → 0 <N m → abs (index (apply _+_ (CauchyCompletion.elts (a +C injection 0G)) (map inverse (CauchyCompletion.elts a))) m) < ε ans {m} 0<m rewrite indexAndApply (CauchyCompletion.elts (a +C injection 0G)) (map inverse (CauchyCompletion.elts a)) _+_ {m} | indexAndApply (CauchyCompletion.elts a) (constSequence 0G) _+_ {m} | equalityCommutative (mapAndIndex (CauchyCompletion.elts a) inverse m) | indexAndConst 0G m = <WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (absWellDefined _ _ (Equivalence.transitive eq (+WellDefined (identRight) (Equivalence.reflexive eq)) (invRight))) (identityOfIndiscernablesRight _∼_ (Equivalence.reflexive eq) absZero))) (Equivalence.reflexive eq) 0<e CidentLeft : {a : CauchyCompletion} → Setoid._∼_ cauchyCompletionSetoid (injection 0G +C a) a CidentLeft {a} = Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {injection 0G +C a} {a +C injection 0G} {a} (+CCommutative (injection 0G) a) (CidentRight {a}) CinvRight : {a : CauchyCompletion} → Setoid._∼_ cauchyCompletionSetoid (a +C (-C a)) (injection 0G) CinvRight {a} ε 0<e = 0 , ans where ans : {m : ℕ} → (0 <N m) → abs (index (apply _+_ (CauchyCompletion.elts (a +C (-C a))) (map inverse (CauchyCompletion.elts (injection 0G)))) m) < ε ans {m} 0<m rewrite indexAndApply (CauchyCompletion.elts (a +C (-C a))) (map inverse (CauchyCompletion.elts (injection 0G))) _+_ {m} | indexAndApply (CauchyCompletion.elts a) (map inverse (CauchyCompletion.elts a)) _+_ {m} | equalityCommutative (mapAndIndex (CauchyCompletion.elts a) inverse m) | equalityCommutative (mapAndIndex (constSequence 0G) inverse m) | indexAndConst 0G m = <WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (absWellDefined _ _ (Equivalence.transitive eq (+WellDefined invRight (invIdent (Ring.additiveGroup R))) identRight)) (identityOfIndiscernablesRight _∼_ (Equivalence.reflexive eq) absZero))) (Equivalence.reflexive eq) 0<e CGroup : Group cauchyCompletionSetoid _+C_ Group.+WellDefined CGroup {a} {b} {c} {d} x y = additionWellDefined {a} {c} {b} {d} x y Group.0G CGroup = injection 0G Group.inverse CGroup = -C_ Group.+Associative CGroup {a} {b} {c} = Cassoc {a} {b} {c} Group.identRight CGroup {a} = CidentRight {a} Group.identLeft CGroup {a} = CidentLeft {a} Group.invLeft CGroup {a} = Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {(-C a) +C a} {a +C (-C a)} {injection 0G} (+CCommutative (-C a) a) (CinvRight {a}) Group.invRight CGroup {a} = CinvRight {a} CInjectionGroupHom : GroupHom (Ring.additiveGroup R) CGroup injection GroupHom.groupHom CInjectionGroupHom {x} {y} = additionHom x y GroupHom.wellDefined CInjectionGroupHom {x} {y} x=y = SetoidInjection.wellDefined CInjection {x} {y} x=y
{ "alphanum_fraction": 0.7139251915, "avg_line_length": 97.3245614035, "ext": "agda", "hexsha": "df4660256a50e711c9f5de5f729a1b3f5b5f956e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Fields/CauchyCompletion/Group.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Fields/CauchyCompletion/Group.agda", "max_line_length": 920, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Fields/CauchyCompletion/Group.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 3711, "size": 11095 }
module vector-test where open import bool open import nat open import list open import vector test-vector : 𝕍 𝔹 4 test-vector = ff :: tt :: ff :: ff :: [] test-vector2 : 𝕃 (𝕍 𝔹 2) test-vector2 = (ff :: tt :: []) :: (tt :: ff :: []) :: (tt :: ff :: []) :: [] test-vector3 : 𝕍 (𝕍 𝔹 3) 2 test-vector3 = (tt :: tt :: tt :: []) :: (ff :: ff :: ff :: []) :: [] test-vector-append : 𝕍 𝔹 8 test-vector-append = test-vector ++𝕍 test-vector test-set-vector : 𝕍 Set 3 test-set-vector = ℕ :: 𝔹 :: (𝔹 → 𝔹) :: []
{ "alphanum_fraction": 0.502722323, "avg_line_length": 22.9583333333, "ext": "agda", "hexsha": "42241ad1eaf1dde3d11dbc0124dd876ebf812685", "lang": "Agda", "max_forks_count": 17, "max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z", "max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rfindler/ial", "max_forks_repo_path": "vector-test.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rfindler/ial", "max_issues_repo_path": "vector-test.agda", "max_line_length": 48, "max_stars_count": 29, "max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rfindler/ial", "max_stars_repo_path": "vector-test.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z", "max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z", "num_tokens": 194, "size": 551 }