Search is not available for this dataset
text
string | meta
dict |
---|---|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Some properties about subsets
------------------------------------------------------------------------
module Data.Fin.Subset.Properties where
open import Algebra
import Algebra.Properties.BooleanAlgebra as BoolProp
open import Data.Empty using (⊥-elim)
open import Data.Fin using (Fin); open Data.Fin.Fin
open import Data.Fin.Subset
open import Data.Nat using (ℕ)
open import Data.Product
open import Data.Sum as Sum
open import Data.Vec hiding (_∈_)
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence
using (_⇔_; equivalence; module Equivalence)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P using (_≡_)
------------------------------------------------------------------------
-- Constructor mangling
drop-there : ∀ {s n x} {p : Subset n} → suc x ∈ s ∷ p → x ∈ p
drop-there (there x∈p) = x∈p
drop-∷-⊆ : ∀ {n s₁ s₂} {p₁ p₂ : Subset n} → s₁ ∷ p₁ ⊆ s₂ ∷ p₂ → p₁ ⊆ p₂
drop-∷-⊆ p₁s₁⊆p₂s₂ x∈p₁ = drop-there $ p₁s₁⊆p₂s₂ (there x∈p₁)
drop-∷-Empty : ∀ {n s} {p : Subset n} → Empty (s ∷ p) → Empty p
drop-∷-Empty ¬∃∈ (x , x∈p) = ¬∃∈ (suc x , there x∈p)
------------------------------------------------------------------------
-- Properties involving ⊥
∉⊥ : ∀ {n} {x : Fin n} → x ∉ ⊥
∉⊥ (there p) = ∉⊥ p
⊥⊆ : ∀ {n} {p : Subset n} → ⊥ ⊆ p
⊥⊆ x∈⊥ with ∉⊥ x∈⊥
... | ()
Empty-unique : ∀ {n} {p : Subset n} →
Empty p → p ≡ ⊥
Empty-unique {p = []} ¬∃∈ = P.refl
Empty-unique {p = s ∷ p} ¬∃∈ with Empty-unique (drop-∷-Empty ¬∃∈)
Empty-unique {p = outside ∷ .⊥} ¬∃∈ | P.refl = P.refl
Empty-unique {p = inside ∷ .⊥} ¬∃∈ | P.refl =
⊥-elim (¬∃∈ (zero , here))
------------------------------------------------------------------------
-- Properties involving ⊤
∈⊤ : ∀ {n} {x : Fin n} → x ∈ ⊤
∈⊤ {x = zero} = here
∈⊤ {x = suc x} = there ∈⊤
⊆⊤ : ∀ {n} {p : Subset n} → p ⊆ ⊤
⊆⊤ = const ∈⊤
------------------------------------------------------------------------
-- A property involving ⁅_⁆
x∈⁅y⁆⇔x≡y : ∀ {n} {x y : Fin n} → x ∈ ⁅ y ⁆ ⇔ x ≡ y
x∈⁅y⁆⇔x≡y {x = x} {y} =
equivalence (to y) (λ x≡y → P.subst (λ y → x ∈ ⁅ y ⁆) x≡y (x∈⁅x⁆ x))
where
to : ∀ {n x} (y : Fin n) → x ∈ ⁅ y ⁆ → x ≡ y
to (suc y) (there p) = P.cong suc (to y p)
to zero here = P.refl
to zero (there p) with ∉⊥ p
... | ()
x∈⁅x⁆ : ∀ {n} (x : Fin n) → x ∈ ⁅ x ⁆
x∈⁅x⁆ zero = here
x∈⁅x⁆ (suc x) = there (x∈⁅x⁆ x)
------------------------------------------------------------------------
-- A property involving _∪_
∪⇔⊎ : ∀ {n} {p₁ p₂ : Subset n} {x} → x ∈ p₁ ∪ p₂ ⇔ (x ∈ p₁ ⊎ x ∈ p₂)
∪⇔⊎ = equivalence (to _ _) from
where
to : ∀ {n} (p₁ p₂ : Subset n) {x} → x ∈ p₁ ∪ p₂ → x ∈ p₁ ⊎ x ∈ p₂
to [] [] ()
to (inside ∷ p₁) (s₂ ∷ p₂) here = inj₁ here
to (outside ∷ p₁) (inside ∷ p₂) here = inj₂ here
to (s₁ ∷ p₁) (s₂ ∷ p₂) (there x∈p₁∪p₂) =
Sum.map there there (to p₁ p₂ x∈p₁∪p₂)
⊆∪ˡ : ∀ {n p₁} (p₂ : Subset n) → p₁ ⊆ p₁ ∪ p₂
⊆∪ˡ [] ()
⊆∪ˡ (s ∷ p₂) here = here
⊆∪ˡ (s ∷ p₂) (there x∈p₁) = there (⊆∪ˡ p₂ x∈p₁)
⊆∪ʳ : ∀ {n} (p₁ p₂ : Subset n) → p₂ ⊆ p₁ ∪ p₂
⊆∪ʳ p₁ p₂ rewrite BooleanAlgebra.∨-comm (booleanAlgebra _) p₁ p₂
= ⊆∪ˡ p₁
from : ∀ {n} {p₁ p₂ : Subset n} {x} → x ∈ p₁ ⊎ x ∈ p₂ → x ∈ p₁ ∪ p₂
from (inj₁ x∈p₁) = ⊆∪ˡ _ x∈p₁
from (inj₂ x∈p₂) = ⊆∪ʳ _ _ x∈p₂
------------------------------------------------------------------------
-- _⊆_ is a partial order
-- The "natural poset" associated with the boolean algebra.
module NaturalPoset where
private
open module BA {n} = BoolProp (booleanAlgebra n) public
using (poset)
open module Po {n} = Poset (poset {n = n}) public
-- _⊆_ is equivalent to the natural lattice order.
orders-equivalent : ∀ {n} {p₁ p₂ : Subset n} → p₁ ⊆ p₂ ⇔ p₁ ≤ p₂
orders-equivalent = equivalence (to _ _) (from _ _)
where
to : ∀ {n} (p₁ p₂ : Subset n) → p₁ ⊆ p₂ → p₁ ≤ p₂
to [] [] p₁⊆p₂ = P.refl
to (inside ∷ p₁) (_ ∷ p₂) p₁⊆p₂ with p₁⊆p₂ here
to (inside ∷ p₁) (.inside ∷ p₂) p₁⊆p₂ | here = P.cong (_∷_ inside) (to p₁ p₂ (drop-∷-⊆ p₁⊆p₂))
to (outside ∷ p₁) (_ ∷ p₂) p₁⊆p₂ = P.cong (_∷_ outside) (to p₁ p₂ (drop-∷-⊆ p₁⊆p₂))
from : ∀ {n} (p₁ p₂ : Subset n) → p₁ ≤ p₂ → p₁ ⊆ p₂
from [] [] p₁≤p₂ x = x
from (.inside ∷ _) (_ ∷ _) p₁≤p₂ here rewrite P.cong head p₁≤p₂ = here
from (_ ∷ p₁) (_ ∷ p₂) p₁≤p₂ (there xs[i]=x) =
there (from p₁ p₂ (P.cong tail p₁≤p₂) xs[i]=x)
-- _⊆_ is a partial order.
poset : ℕ → Poset _ _ _
poset n = record
{ Carrier = Subset n
; _≈_ = _≡_
; _≤_ = _⊆_
; isPartialOrder = record
{ isPreorder = record
{ isEquivalence = P.isEquivalence
; reflexive = λ i≡j → from ⟨$⟩ reflexive i≡j
; trans = λ x⊆y y⊆z → from ⟨$⟩ trans (to ⟨$⟩ x⊆y) (to ⟨$⟩ y⊆z)
}
; antisym = λ x⊆y y⊆x → antisym (to ⟨$⟩ x⊆y) (to ⟨$⟩ y⊆x)
}
}
where
open NaturalPoset
open module E {p₁ p₂} =
Equivalence (orders-equivalent {n = n} {p₁ = p₁} {p₂ = p₂})
|
{
"alphanum_fraction": 0.4564102564,
"avg_line_length": 33.5350318471,
"ext": "agda",
"hexsha": "722a0767a0fa15bad8487eb9de07922695cc4cb7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Data/Fin/Subset/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Data/Fin/Subset/Properties.agda",
"max_line_length": 100,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Data/Fin/Subset/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 2227,
"size": 5265
}
|
{-
- UARel given by a universe and equivalences
- SubstRel and DUARel for the element family over the universe
-}
{-# OPTIONS --no-exact-split --safe #-}
module Cubical.Displayed.Universe where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Displayed.Base
open import Cubical.Displayed.Subst
private
variable
ℓA ℓ≅A ℓB ℓ≅B ℓP : Level
𝒮-Univ : ∀ ℓ → UARel (Type ℓ) ℓ
𝒮-Univ ℓ .UARel._≅_ = _≃_
𝒮-Univ ℓ .UARel.ua _ _ = isoToEquiv (invIso univalenceIso)
𝒮ˢ-El : ∀ ℓ → SubstRel (𝒮-Univ ℓ) (λ X → X)
𝒮ˢ-El ℓ .SubstRel.act e = e
𝒮ˢ-El ℓ .SubstRel.uaˢ e a = uaβ e a
𝒮ᴰ-El : ∀ ℓ → DUARel (𝒮-Univ ℓ) (λ X → X) ℓ
𝒮ᴰ-El ℓ .DUARel._≅ᴰ⟨_⟩_ a e a' = e .fst a ≡ a'
𝒮ᴰ-El ℓ .DUARel.uaᴰ a e a' = invEquiv (ua-ungluePath-Equiv e)
|
{
"alphanum_fraction": 0.6996547756,
"avg_line_length": 26.3333333333,
"ext": "agda",
"hexsha": "5a2da6f0ee54dd3f696f38df5493f7935231fe36",
"lang": "Agda",
"max_forks_count": 134,
"max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z",
"max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "marcinjangrzybowski/cubical",
"max_forks_repo_path": "Cubical/Displayed/Universe.agda",
"max_issues_count": 584,
"max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "marcinjangrzybowski/cubical",
"max_issues_repo_path": "Cubical/Displayed/Universe.agda",
"max_line_length": 64,
"max_stars_count": 301,
"max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "marcinjangrzybowski/cubical",
"max_stars_repo_path": "Cubical/Displayed/Universe.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z",
"num_tokens": 388,
"size": 869
}
|
module nodcap.Show where
open import Coinduction
open import Category.Monad.State using (State; StateMonadState; module RawMonadState)
open import Data.Nat as ℕ using (ℕ; suc; zero)
open import Data.Nat.Show as ℕS using ()
open import Data.Fin as F using (Fin; suc; zero)
open import Data.Pos as ℕ⁺
open import Data.List as L using (List; []; _∷_; length)
open import Data.List.Any as LA using (Any; here; there)
open import Data.List.Any.Properties as LAP using (++ˡ; ++ʳ)
open import Data.Product as PR using (proj₁)
open import Data.String as S using (String; _++_)
open import Data.Stream as X using (Stream; _∷_; lookup)
open import Data.Vec as V using (Vec)
open import Function using (_∘_)
open import Function.Equality using (_⟨$⟩_)
open import Function.Inverse as I using ()
open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_)
open import Data.Environment
open import nodcap.Base
open import nodcap.Typing
open I.Inverse using (to; from)
showTerm : {Γ : Environment} → ⊢ Γ → String
showTerm {Γ} x = proj₁ (go bound x state)
where
open RawMonadState (StateMonadState (Stream String))
names : Stream String
names = X.map (("x" S.++_) ∘ ℕS.show) (naturals 0)
where
naturals : ℕ → Stream ℕ
naturals n = n ∷ ♯ naturals (suc n)
fresh : State (Stream String) String
fresh = get >>= λ{(x ∷ xs) → put (♭ xs) >> return x}
go : {Γ : Environment} (bound : {w : Type} → w ∈ Γ → String) → ⊢ Γ → State (Stream String) String
go bound ax
= return (boundˣ ++ "<->" ++ boundʸ)
where
boundˣ = bound (here P.refl)
boundʸ = bound (there (here P.refl))
go bound (cut {Γ} {Δ} {A} x y) = fresh >>= withFresh
where
withFresh : String → State (Stream String) String
withFresh boundˣ
= go bound₁ x >>= λ x'
→ go bound₂ y >>= λ y'
→ return ("new " ++ boundˣ ++ ".(" ++ x' ++ "|" ++ y' ++ ")")
where
bound₁ : {w : Type} → w ∈ A ∷ Γ → String
bound₁ (here px) = boundˣ
bound₁ (there i) = bound (++ˡ i)
bound₂ : {w : Type} → w ∈ A ^ ∷ Δ → String
bound₂ (here px) = boundˣ
bound₂ (there i) = bound (++ʳ Γ i)
go bound (send {Γ} {Δ} {A} {B} x y) = fresh >>= withFresh
where
withFresh : String → State (Stream String) String
withFresh boundʸ
= go bound₁ x >>= λ x'
→ go bound₂ y >>= λ y'
→ return (boundˣ ++ "[" ++ boundʸ ++ "].(" ++ x' ++ "|" ++ y' ++ ")")
where
boundˣ = bound (here P.refl)
bound₁ : {w : Type} → w ∈ A ∷ Γ → String
bound₁ (here px) = boundʸ
bound₁ (there i) = bound (there (++ˡ i))
bound₂ : {w : Type} → w ∈ B ∷ Δ → String
bound₂ (here px) = bound (here P.refl)
bound₂ (there i) = bound (there (++ʳ Γ i))
go bound (recv {Γ} {A} {B} x) = fresh >>= withFresh
where
withFresh : String → State (Stream String) String
withFresh boundʸ
= go bound₁ x >>= λ x'
→ return (boundˣ ++ "(" ++ boundʸ ++ ")." ++ x')
where
boundˣ = bound (here P.refl)
bound₁ : {w : Type} → w ∈ A ∷ B ∷ Γ → String
bound₁ (here px) = boundʸ
bound₁ (there (here px)) = boundˣ
bound₁ (there (there i)) = bound (there i)
go bound (sel₁ {Γ} {A} {B} x)
= go bound₁ x >>= λ x'
→ return (boundˣ ++ "[inl]." ++ x')
where
boundˣ = bound (here P.refl)
bound₁ : {w : Type} → w ∈ A ∷ Γ → String
bound₁ (here px) = boundˣ
bound₁ (there i) = bound (there i)
go bound (sel₂ {Γ} {A} {B} x)
= go bound₁ x >>= λ x'
→ return (boundˣ ++ "[inr]." ++ x')
where
boundˣ = bound (here P.refl)
bound₁ : {w : Type} → w ∈ B ∷ Γ → String
bound₁ (here px) = boundˣ
bound₁ (there i) = bound (there i)
go bound (case {Γ} {A} {B} x y)
= go bound₁ x >>= λ x'
→ go bound₂ y >>= λ y'
→ return ("case " ++ boundˣ ++ " {" ++ x' ++ ";" ++ y' ++ "}")
where
boundˣ = bound (here P.refl)
bound₁ : {w : Type} → w ∈ A ∷ Γ → String
bound₁ (here px) = boundˣ
bound₁ (there i) = bound (there i)
bound₂ : {w : Type} → w ∈ B ∷ Γ → String
bound₂ (here px) = boundˣ
bound₂ (there i) = bound (there i)
go bound halt
= return (boundˣ ++ "[].0")
where
boundˣ = bound (here P.refl)
go bound (wait x)
= go (bound ∘ there) x >>= λ x'
→ return (boundˣ ++ "()." ++ x')
where
boundˣ = bound (here P.refl)
go bound loop
= return ("case " ++ boundˣ ++ " {;}")
where
boundˣ = bound (here P.refl)
go bound (mk?₁ {Γ} {A} x) = fresh >>= withFresh
where
withFresh : String → State (Stream String) String
withFresh boundʸ
= go bound₁ x >>= λ x'
→ return ("?" ++ boundˣ ++ "[" ++ boundʸ ++ "]." ++ x')
where
boundˣ = bound (here P.refl)
bound₁ : {w : Type} → w ∈ A ∷ Γ → String
bound₁ (here px) = boundʸ
bound₁ (there i) = bound (there i)
go bound (mk!₁ {Γ} {A} x) = fresh >>= withFresh
where
withFresh : String → State (Stream String) String
withFresh boundʸ
= go bound₁ x >>= λ x'
→ return ("!" ++ boundˣ ++ "(" ++ boundʸ ++ ")." ++ x')
where
boundˣ = bound (here P.refl)
bound₁ : {w : Type} → w ∈ A ∷ Γ → String
bound₁ (here px) = boundʸ
bound₁ (there i) = bound (there i)
go bound (cont {Γ} {A} {m} {n} x)
= go bound₁ x
where
boundˣ = bound (here P.refl)
bound₁ : {w : Type} → w ∈ ?[ m ] A ∷ ?[ n ] A ∷ Γ → String
bound₁ (here px) = boundˣ
bound₁ (there (here px)) = boundˣ
bound₁ (there (there i)) = bound (there i)
go bound (pool {Γ} {Δ} {A} {m} {n} x y)
= go bound₁ x >>= λ x'
→ go bound₂ y >>= λ y'
→ return ("(" ++ x' ++ "|" ++ y' ++ ")")
where
boundˣ = bound (here P.refl)
bound₁ : {w : Type} → w ∈ ![ m ] A ∷ Γ → String
bound₁ (here px) = boundˣ
bound₁ (there i) = bound (there (++ˡ i))
bound₂ : {w : Type} → w ∈ ![ n ] A ∷ Δ → String
bound₂ (here px) = boundˣ
bound₂ (there i) = bound (there (++ʳ Γ i))
go bound (exch b x) = go (bound ∘ (to b ⟨$⟩_)) x
bound : {w : Type} → w ∈ Γ → String
bound i = V.lookup (toFin i) (X.take (length Γ) names)
where
toFin : {Γ : Environment} {w : Type} → w ∈ Γ → Fin (length Γ)
toFin (here px) = zero
toFin (there i) = suc (toFin i)
state : Stream String
state = X.drop (length Γ) names
|
{
"alphanum_fraction": 0.5052910053,
"avg_line_length": 37.3846153846,
"ext": "agda",
"hexsha": "899b812e302c13f7f807a950fa38730c70e0de18",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-09-05T08:58:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-05T08:58:13.000Z",
"max_forks_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "pepijnkokke/nodcap",
"max_forks_repo_path": "src/cpnd1/nodcap/Show.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "pepijnkokke/nodcap",
"max_issues_repo_path": "src/cpnd1/nodcap/Show.agda",
"max_line_length": 101,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "wenkokke/nodcap",
"max_stars_repo_path": "src/cpnd1/nodcap/Show.agda",
"max_stars_repo_stars_event_max_datetime": "2019-09-24T20:16:35.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-09-05T08:58:11.000Z",
"num_tokens": 2213,
"size": 6804
}
|
-- Andreas, 2016-12-20, issue #2348
-- {-# OPTIONS -v tc.proj.like:100 #-}
{-# OPTIONS --show-implicit #-} -- NEEDED
-- something projection like
record Wrap (A : Set) : Set where
field out : A
proj-like : {{A : Set}} {{r : Wrap A}} → A
proj-like {{r = r}} = Wrap.out r
-- display term with projection like thing
postulate
B : Set
b : B
P : B → Set
p : P b
instance
w : Wrap B
ok = proj-like {{B}} {{r = w}}
test : P (proj-like {{B}})
test = p -- triggers error message
-- EXPECTED ERROR:
-- b != Wrap.out w of type B
-- when checking that the expression p has type P (proj-like {{r = w}})
|
{
"alphanum_fraction": 0.585089141,
"avg_line_length": 18.696969697,
"ext": "agda",
"hexsha": "fe133efa88a7d92ede1fab715656dfa102e6a8ce",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2348.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2348.agda",
"max_line_length": 71,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2348.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 197,
"size": 617
}
|
module Syntax.Function where
import Lvl
open import Type
open import Syntax.Type
private variable ℓ : Lvl.Level
private variable T A B C : Type{ℓ}
infix 2 [↦] [⤠] [⤇]
-- Custom syntax for an anonymous function
-- Example:
-- f : A → A
-- f = a ↦ a
--
-- g : (A → A → A) → (A → A → A)
-- g(_▫_) = a₁ ↦ a₂ ↦ (a₁ ▫ a₂)
[↦] : T → T
[↦] x = x
syntax [↦](\x → y) = x ↦ y
{-# DISPLAY [↦] x = x #-}
-- Custom syntax for an anonymous function with an implicit argument
-- Example:
-- f : A → A
-- f = a ↦ a
[⤠] : (A → B) → ({A} → B)
[⤠] f{x} = f(x)
syntax [⤠](\x → y) = x ⤠ y
{-# DISPLAY [⤠] x = x #-}
-- Custom syntax for an anonymous function with an instance argument
[⤇] : (A → B) → (⦃ _ : A ⦄ → B)
[⤇] f ⦃ x ⦄ = f(x)
syntax [⤇](\x → y) = x ⤇ y
{-# DISPLAY [⤇] x = x #-}
-- Functions with two parameters as an infix binary operator
_⦗_⦘_ : A → (A → B → C) → B → C
a ⦗ op ⦘ b = op a b
infix 10000 _⦗_⦘_
infixl 10000 _⦗_⦘ₗ_
infixr 10000 _⦗_⦘ᵣ_
_⦗_⦘ₗ_ = _⦗_⦘_
_⦗_⦘ᵣ_ = _⦗_⦘_
{- TODO: Fix these with stuff in Lang.Function
f : {a : A} → A
f = (a ⤠ a)
g : ⦃ a₁ : A ⦄ ⦃ a₂ : A ⦄ → A
g = (a₁ ⤇ a₂ ⤇ a₁)
-}
|
{
"alphanum_fraction": 0.5075690116,
"avg_line_length": 19.701754386,
"ext": "agda",
"hexsha": "7d339801ac14b471f97e36959be71ddbb037f211",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Syntax/Function.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Syntax/Function.agda",
"max_line_length": 68,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Syntax/Function.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 562,
"size": 1123
}
|
open import Agda.Builtin.Nat
open import Agda.Builtin.Unit
open import Agda.Builtin.Reflection renaming (bindTC to _>>=_)
open import Agda.Builtin.List
open import Agda.Builtin.Sigma
open import Agda.Builtin.Equality
infixr -1 _$_
_$_ : ∀ {a b}{A : Set a}{B : Set b} → (A → B) → A → B
f $ x = f x
map : ∀ {a b}{A : Set a}{B : Set b} → (A → B) → List A → List B
map f [] = []
map f (x ∷ xs) = f x ∷ map f xs
reverse : ∀ {a}{A : Set a} → List A → List A
reverse {A = A} xs = reverseAcc xs []
where
reverseAcc : List A → List A → List A
reverseAcc [] a = a
reverseAcc (x ∷ xs) a = reverseAcc xs (x ∷ a)
data Fin : Nat → Set where
zero : ∀ {n} → Fin (suc n)
suc : ∀ {n} → Fin n → Fin (suc n)
infixr 5 _∷_
data Vec {a} (A : Set a) : Nat → Set a where
[] : Vec A zero
_∷_ : ∀ {n} (x : A) (xs : Vec A n) → Vec A (suc n)
data Ix : (d : Nat) → (s : Vec Nat d) → Set where
[] : Ix 0 []
_∷_ : ∀ {d s x} → Fin x → (ix : Ix d s) → Ix (suc d) (x ∷ s)
record Ar {a} (X : Set a) (d : Nat) (s : Vec Nat d) : Set a where
constructor imap
field sel : Ix d s → X
open Ar public
foo : Nat → Nat
foo x = 1 + x
test-ar : ∀ {n} → (a : Ar Nat 1 (n ∷ [])) → Ar Nat 1 (n ∷ [])
test-ar (imap f) = imap λ iv → foo $ foo $ f iv
-- Make sure that the telescope is also reconstructed when
-- calling getDefinition with withReconstructed.
macro
z : Name → Term → TC ⊤
z n hole = do
(function (clause tel ps t ∷ [])) ←
withReconstructed $ getDefinition n
where _ → quoteTC "ERROR" >>= unify hole
t ← withReconstructed
$ inContext (reverse tel)
$ normalise t
quoteTC t >>= unify hole
test₁ : z test-ar
≡ con (quote imap) (_ ∷ _ ∷ _ ∷ _ ∷
arg _ (lam _ (abs "iv"
(con (quote Nat.suc) _)))
∷ [])
test₁ = refl
-- Make sure that getType behaves correctly under withReconstructed.
macro
q : Name → Term → TC ⊤
q n hole = do
t ← withReconstructed $
getType n
t ← withReconstructed $
normalise t
quoteTC t >>= unify hole
test₂ : Term
test₂ = q test-ar
|
{
"alphanum_fraction": 0.5440487348,
"avg_line_length": 26.0243902439,
"ext": "agda",
"hexsha": "8f6ef819f9f21e126545495de01f62e01c8ec271",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "Seanpm2001-Agda-lang/agda",
"max_forks_repo_path": "test/Succeed/recons-tele.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "Seanpm2001-Agda-lang/agda",
"max_issues_repo_path": "test/Succeed/recons-tele.agda",
"max_line_length": 68,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Succeed/recons-tele.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-05T00:25:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-05T00:25:14.000Z",
"num_tokens": 751,
"size": 2134
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of constructions over unary relations
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Relation.Unary.Properties where
open import Data.Product using (_×_; _,_; swap; proj₁)
open import Data.Sum.Base using (inj₁; inj₂)
open import Data.Unit using (tt)
open import Relation.Binary.Core hiding (Decidable)
open import Relation.Unary
open import Relation.Nullary using (yes; no)
open import Relation.Nullary.Product using (_×-dec_)
open import Relation.Nullary.Sum using (_⊎-dec_)
open import Relation.Nullary.Negation using (¬?)
open import Function using (_$_; _∘_)
----------------------------------------------------------------------
-- The empty set
module _ {a} {A : Set a} where
∅? : Decidable {A = A} ∅
∅? _ = no λ()
∅-Empty : Empty {A = A} ∅
∅-Empty x ()
∁∅-Universal : Universal {A = A} (∁ ∅)
∁∅-Universal = λ x x∈∅ → x∈∅
----------------------------------------------------------------------
-- The universe
module _ {a} {A : Set a} where
U? : Decidable {A = A} U
U? _ = yes tt
U-Universal : Universal {A = A} U
U-Universal = λ _ → _
∁U-Empty : Empty {A = A} (∁ U)
∁U-Empty = λ x x∈∁U → x∈∁U _
----------------------------------------------------------------------
-- Subset properties
module _ {a ℓ} {A : Set a} where
∅-⊆ : (P : Pred A ℓ) → ∅ ⊆ P
∅-⊆ P ()
⊆-U : (P : Pred A ℓ) → P ⊆ U
⊆-U P _ = _
⊆-refl : Reflexive (_⊆_ {A = A} {ℓ})
⊆-refl x∈P = x∈P
⊆-trans : Transitive (_⊆_ {A = A} {ℓ})
⊆-trans P⊆Q Q⊆R x∈P = Q⊆R (P⊆Q x∈P)
⊂-asym : Asymmetric (_⊂_ {A = A} {ℓ})
⊂-asym (_ , Q⊈P) = Q⊈P ∘ proj₁
----------------------------------------------------------------------
-- Decidability properties
module _ {a} {A : Set a} where
∁? : ∀ {ℓ} {P : Pred A ℓ} → Decidable P → Decidable (∁ P)
∁? P? x = ¬? (P? x)
_∪?_ : ∀ {ℓ₁ ℓ₂} {P : Pred A ℓ₁} {Q : Pred A ℓ₂} →
Decidable P → Decidable Q → Decidable (P ∪ Q)
_∪?_ P? Q? x = (P? x) ⊎-dec (Q? x)
_∩?_ : ∀ {ℓ₁ ℓ₂} {P : Pred A ℓ₁} {Q : Pred A ℓ₂} →
Decidable P → Decidable Q → Decidable (P ∩ Q)
_∩?_ P? Q? x = (P? x) ×-dec (Q? x)
module _ {a b} {A : Set a} {B : Set b} where
_×?_ : ∀ {ℓ₁ ℓ₂} {P : Pred A ℓ₁} {Q : Pred B ℓ₂} →
Decidable P → Decidable Q → Decidable (P ⟨×⟩ Q)
_×?_ P? Q? (a , b) = (P? a) ×-dec (Q? b)
_⊙?_ : ∀ {ℓ₁ ℓ₂} {P : Pred A ℓ₁} {Q : Pred B ℓ₂} →
Decidable P → Decidable Q → Decidable (P ⟨⊙⟩ Q)
_⊙?_ P? Q? (a , b) = (P? a) ⊎-dec (Q? b)
_⊎?_ : ∀ {ℓ} {P : Pred A ℓ} {Q : Pred B ℓ} →
Decidable P → Decidable Q → Decidable (P ⟨⊎⟩ Q)
_⊎?_ P? Q? (inj₁ a) = P? a
_⊎?_ P? Q? (inj₂ b) = Q? b
_~? : ∀ {ℓ} {P : Pred (A × B) ℓ} →
Decidable P → Decidable (P ~)
_~? P? = P? ∘ swap
|
{
"alphanum_fraction": 0.4478079332,
"avg_line_length": 27.6346153846,
"ext": "agda",
"hexsha": "8d1d0e642aa396b7a040c34de418746f66cb609e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Unary/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Unary/Properties.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Unary/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1135,
"size": 2874
}
|
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.Truncation.Base where
open import Cubical.Data.NatMinusOne
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.HITs.Sn
data ∥_∥_ {ℓ} (A : Type ℓ) (n : ℕ₋₁) : Type ℓ where
∣_∣ : A → ∥ A ∥ n
hub : (f : S (1+ n) → ∥ A ∥ n) → ∥ A ∥ n
spoke : (f : S (1+ n) → ∥ A ∥ n) (x : S (1+ n)) → hub f ≡ f x
|
{
"alphanum_fraction": 0.5965346535,
"avg_line_length": 28.8571428571,
"ext": "agda",
"hexsha": "3995c525e88e6de9e3abb8acffe3a2fba707a220",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/HITs/Truncation/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/HITs/Truncation/Base.agda",
"max_line_length": 63,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/HITs/Truncation/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 175,
"size": 404
}
|
module _ where
open import Agda.Builtin.Bool
open import Agda.Builtin.Nat renaming (_==_ to _==N_; _<_ to _<N_)
record Eq (A : Set) : Set where
field
_==_ : A → A → Bool
open Eq {{...}}
record Ord (A : Set) : Set where
constructor mkOrd
field
_<_ : A → A → Bool
overlap {{eqA}} : Eq A
open Ord {{...}} hiding (eqA)
record Num (A : Set) : Set where
constructor mkNum
field
fromNat : Nat → A
overlap {{eqA}} : Eq A
open Num {{...}} hiding (eqA)
instance
EqNat : Eq Nat
_==_ {{EqNat}} = _==N_
OrdNat : Ord Nat
_<_ {{OrdNat}} = _<N_
Ord.eqA OrdNat = EqNat
NumNat : Num Nat
fromNat {{NumNat}} n = n
Num.eqA NumNat = EqNat
infixr 3 _||_
_||_ : Bool → Bool → Bool
true || x = true
false || x = x
-- Here it will pick the eq dictionary from the Ord
leq3 : {A : Set} {{OrdA : Ord A}} {{NumA : Num A}} → A → Bool
leq3 x = x == fromNat 3 || x < fromNat 3
open import Agda.Builtin.Equality
2<3 : true ≡ leq3 2
2<3 = refl
it : ∀ {a} {A : Set a} {{_ : A}} → A
it {{x}} = x
-- Check that you get the first shared dictionary
getShared : {A : Set} {{OrdA : Ord A}} {{NumA : Num A}} → Eq A
getShared = it
itsOrd : {A : Set} {{OrdA : Ord A}} {{NumA : Num A}} → getShared ≡ Ord.eqA OrdA
itsOrd = refl
-- Check that it also works if you pattern match on the dictionaries
leq3' : {A : Set} {{OrdA : Ord A}} {{NumA : Num A}} → A → Bool
leq3' {{mkOrd _<_}} {{mkNum fromNat}} x = x == fromNat 3 || x < fromNat 3
|
{
"alphanum_fraction": 0.5828178694,
"avg_line_length": 20.7857142857,
"ext": "agda",
"hexsha": "58ac8e80c349fefd82b82efd032ab59710e8233b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/SharedSuperclasses.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/SharedSuperclasses.agda",
"max_line_length": 79,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/SharedSuperclasses.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 542,
"size": 1455
}
|
{-# OPTIONS --rewriting #-}
module GSeTT.GSeTT where
open import GSeTT.Syntax
open import GSeTT.Rules
import GSeTT.CwF-structure
import GSeTT.Dec-Type-Checking
import GSeTT.Uniqueness-Derivations
open import GSeTT.Typed-Syntax
|
{
"alphanum_fraction": 0.7613168724,
"avg_line_length": 18.6923076923,
"ext": "agda",
"hexsha": "8f9af49737310ab3a96d9eb042104abbc73be87a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thibautbenjamin/catt-formalization",
"max_forks_repo_path": "GSeTT/GSeTT.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thibautbenjamin/catt-formalization",
"max_issues_repo_path": "GSeTT/GSeTT.agda",
"max_line_length": 37,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thibautbenjamin/catt-formalization",
"max_stars_repo_path": "GSeTT/GSeTT.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 76,
"size": 243
}
|
------------------------------------------------------------------------
-- Code related to the paper "Isomorphism Is Equality" by Thierry
-- Coquand and Nils Anders Danielsson
--
-- The code is written by Nils Anders Danielsson
------------------------------------------------------------------------
-- Note that the code has been changed after the paper was published.
{-# OPTIONS --without-K --safe #-}
module README.Isomorphism-is-equality where
---=====================================================================
-- 2: Preliminaries
------------------------------------------------------------------------
-- 2.1: Hierarchy of Types
-- The lifting operator ↑. (Note that Agda is universe-polymorphic.)
import Prelude
------------------------------------------------------------------------
-- 2.2: Quantifiers
-- Σ, ∃ and _×_. (The code sometimes uses ∃ instead of Σ.)
import Prelude
------------------------------------------------------------------------
-- 2.3: Equality
-- Axiomatisations of equality, used in order to ensure that the
-- elimination rule (J) does not compute. J is called elim in the
-- code.
import Equality
-- Bijections (_↔_), the key property of equality of Σ-types
-- (Σ-≡,≡↔≡).
import Bijection
-- Extensionality.
import Equality
-- "∀ x. f x ≡ g x is in bijective correspondence with f ≡ g"
-- (extensionality-isomorphism).
import Equivalence
------------------------------------------------------------------------
-- 2.4: More Types
-- ⊤, ⊥, _+_ (called _⊎_ in the code), ℕ.
import Prelude
-- Logical equivalences (_⇔_).
import Logical-equivalence
------------------------------------------------------------------------
-- 2.5: Univalent Foundations
-- Contractible.
import Equality
-- H-level, Is-proposition, Is-set.
import H-level
-- Results that can be used to establish that a type has a certain
-- h-level.
import H-level
import H-level.Closure
import Equality.Decidable-UIP
-- Propositional second components of pairs can be dropped
-- (ignore-propositional-component).
import Function-universe
-- Is-equivalence, subst P eq is an equivalence
-- (subst-is-equivalence), _≃_, _≃_ is logically equivalent to _↔_ and
-- related properties (_≃_.bijection, ↔⇒≃, ↔↔≃, ⇔↔≃), Σ and Π preserve
-- equivalences (Σ-preserves, Π-preserves).
import Equivalence
-- More congruence properties (including _⊎-cong_ and →-cong).
import Function-universe
-- ≡⇒≃, Univalence, ≃⇒≡, the univalence axiom implies extensionality
-- (dependent-extensionality), the transport theorem
-- (transport-theorem), resp eq is an equivalence
-- (resp-is-equivalence), resp eq preserves compositions
-- (resp-preserves-compositions).
import Univalence-axiom
---=====================================================================
-- 3: Isomorphism Is Equality
------------------------------------------------------------------------
-- 3.1: Parameters
-- The parameters are represented using a record type called Universe.
import Univalence-axiom.Isomorphism-is-equality.Simple
------------------------------------------------------------------------
-- 3.2: Codes for Structures
-- Code, Instance, Is-isomorphism, Isomorphic, Carrier, element,
-- equality-pair-lemma.
import Univalence-axiom.Isomorphism-is-equality.Simple
------------------------------------------------------------------------
-- 3.3: Main Theorem
-- The main result (isomorphism-is-equality), isomorphism is equal to
-- equality (isomorphic≡≡), the right-to-left direction of the
-- bijection is equal to a simple function
-- (from-isomorphism-is-equality).
import Univalence-axiom.Isomorphism-is-equality.Simple
------------------------------------------------------------------------
-- 3.4: A Universe
-- U, El, cast, resp, resp-id, Is-isomorphism′,
-- isomorphism-definitions-isomorphic.
import Univalence-axiom.Isomorphism-is-equality.Simple
-- The operators _→-eq_ (→-cong-⇔), _×-eq_ (_×-cong_) and _+-eq_
-- (_⊎-cong_).
import Function-universe
-- The operators _→-rel_, _×-rel_ and _+-rel_ (_⊎-rel_).
import Prelude
------------------------------------------------------------------------
-- 3.5: Examples
-- Monoids, posets, discrete fields, fixpoint operators.
import Univalence-axiom.Isomorphism-is-equality.Simple
---=====================================================================
-- 4: Related Work
-- Aczel's structure identity principle (structure-identity-principle).
import Structure-identity-principle
-- The structure identity principle can be used to prove a slightly
-- restricted variant of our main theorem (isomorphism-is-equality′,
-- from-isomorphism-is-equality′).
import
Univalence-axiom.Isomorphism-is-equality.Structure-identity-principle
|
{
"alphanum_fraction": 0.5629363232,
"avg_line_length": 27.4825581395,
"ext": "agda",
"hexsha": "013704c2505f8ea75106840763ced62646591c04",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "README/Isomorphism-is-equality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "README/Isomorphism-is-equality.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "README/Isomorphism-is-equality.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 1073,
"size": 4727
}
|
{-# OPTIONS --copattern --safe --no-sized-types --guardedness #-}
module Copattern where
open import Data.Nat
open import Relation.Binary.PropositionalEquality
record Stream (A : Set) : Set where
coinductive
field
head : A
tail : Stream A
open Stream public
-- | Bisimulation as equality
record _==_ {A : Set} (x : Stream A) (y : Stream A) : Set where
coinductive
field
refl-head : head x ≡ head y
refl-tail : tail x == tail y
open _==_ public
module Introduction where
ones : Stream ℕ
head ones = suc zero
tail ones = ones
repeat : {A : Set} -> A -> Stream A
repeat {A} a = P
where
P : Stream A
head P = a
tail P = repeat a
even : ∀ {A} -> Stream A -> Stream A
even {A} a = P
where
P : Stream A
head P = head a
tail P = even (tail (tail a))
odd : ∀ {A} -> Stream A -> Stream A
odd {A} a = P
where
P : Stream A
head P = head (tail a)
tail P = odd (tail (tail a))
module Bisimulation where
open Introduction
refl′ : ∀ {A} -> (a : Stream A) -> a == a
refl′ a = f
where
f : a == a
refl-head f = refl
refl-tail f = refl′ (tail a)
oddEven : ∀ {A} -> (a : Stream A) -> odd a == even (tail a)
oddEven a = f
where
f : odd a == even (tail a)
refl-head f = refl
refl-tail f = oddEven ((tail (tail a)))
module Merge where
open Bisimulation
open Introduction
merge : ∀ {A} -> Stream A -> Stream A -> Stream A
merge {A} a b = ma
where
ma : Stream A
head ma = head a
tail ma = merge b (tail a)
-- Merge! Even! Odd!
moe : ∀ {A} -> (a : Stream A) -> (merge (even a) (odd a) == a)
moe a = f
where
f : merge (even a) (odd a) == a
refl-head f = refl
refl-head (refl-tail f) = refl
refl-tail (refl-tail f) = moe (tail (tail a))
|
{
"alphanum_fraction": 0.5655783066,
"avg_line_length": 21.2588235294,
"ext": "agda",
"hexsha": "ec7f32ffd6c731c12668acf06c271cb9eeaef7ae",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-12-13T04:50:46.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-12-13T04:50:46.000Z",
"max_forks_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Brethland/LEARNING-STUFF",
"max_forks_repo_path": "Agda/Copattern.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Brethland/LEARNING-STUFF",
"max_issues_repo_path": "Agda/Copattern.agda",
"max_line_length": 65,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Brethland/LEARNING-STUFF",
"max_stars_repo_path": "Agda/Copattern.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-11T10:35:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-02-03T05:05:52.000Z",
"num_tokens": 606,
"size": 1807
}
|
module safe where
-- Note that if every module listed here is safe in isolation, it does
-- not mean that they are using compatible options. As a consequence,
-- importing a combination of some of the modules listed may lead to
-- an unsafe result.
|
{
"alphanum_fraction": 0.764,
"avg_line_length": 35.7142857143,
"ext": "agda",
"hexsha": "bede43fc6cd41ab296bcb7511b4b3f8a58db0c9f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/travis/safe.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/travis/safe.agda",
"max_line_length": 70,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/travis/safe.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 53,
"size": 250
}
|
module sv20.assign2.Second where
open import sv20.assign2.SetTheory.Logic using (_⇔_; ¬_; _∧_; _∨_) renaming (_,_ to ⟨_,_⟩)
open import sv20.assign2.SetTheory.ZAxioms using (𝓢; _⊆_; _∈_; _∉_; _≡_; _⊂_; sym; cong; subs; trans;
proj₁; proj₂;
empt; ext; union; pair; pow; sub; pem; sum)
open import sv20.assign2.SetTheory.Algebra using (_∪_; _-_; _∩_)
∪-dist : (A B C : 𝓢) → A ∪ (B ∪ C) ≡ (A ∪ B) ∪ C
∪-dist = ?
-- I could try going this route. This would prove certain things using
-- ZFC and would be really neat but requires too much work.
|
{
"alphanum_fraction": 0.5612403101,
"avg_line_length": 46.0714285714,
"ext": "agda",
"hexsha": "094031750cd0d7494587e8f5a37d70a6eb74aae6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "helq/old_code",
"max_forks_repo_path": "proglangs-learning/Agda/sv20/assign2/Second_old3.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_issues_repo_issues_event_max_datetime": "2021-06-07T15:39:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-03-10T19:20:21.000Z",
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "helq/old_code",
"max_issues_repo_path": "proglangs-learning/Agda/sv20/assign2/Second_old3.agda",
"max_line_length": 101,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "helq/old_code",
"max_stars_repo_path": "proglangs-learning/Agda/sv20/assign2/Second_old3.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 209,
"size": 645
}
|
{-# OPTIONS --without-K #-}
module FiniteTypeEquiv where
open import Level
open import Data.Nat using (ℕ)
open import Data.Fin using (Fin)
open import Data.Product
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Function.Equality using (_∘_; _⟶_; _⟨$⟩_)
open ≡-Reasoning
open import Function renaming (_∘_ to _○_)
open import FinVec
------------------------------------------------------------------------------
-- Permutations
record CPerm {ℓ : Level} (values : ℕ) (size : ℕ) : Set ℓ where
constructor cp
field
π : FinVec values size
πᵒ : FinVec size values
αp : π ∘̂ πᵒ ≡ 1C
βp : πᵒ ∘̂ π ≡ 1C
-- Permutations are compared by ≡
-- The setoid of permutations under ≡
SCPerm : ∀ {ℓ} → ℕ → ℕ → Setoid ℓ ℓ
SCPerm m n = setoid (CPerm m n)
------------------------------------------------------------------------------
-- Equivalences
_∼_ : ∀ {ℓ ℓ'} → {A : Set ℓ} {P : A → Set ℓ'} →
(f g : (x : A) → P x) → Set (ℓ ⊔ ℓ')
_∼_ {ℓ} {ℓ'} {A} {P} f g = (x : A) → f x ≡ g x
record qinv {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) :
Set (ℓ ⊔ ℓ') where
constructor mkqinv
field
g : B → A
α : (f ○ g) ∼ id
β : (g ○ f) ∼ id
_≃_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (ℓ ⊔ ℓ')
A ≃ B = Σ (A → B) qinv
sym≃ : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} → (A ≃ B) → (B ≃ A)
sym≃ (A→B , equiv) = e.g , mkqinv A→B e.β e.α
where module e = qinv equiv
-- Equivalences are compared by ≋ which reduces to extensional
-- equality of the underlying back and forth functions
_⋆_ : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} → (A ≃ B) → (x : A) → B
(f , _) ⋆ x = f x
record _≋_ {ℓ ℓ' : Level} {A : Set ℓ} {B : Set ℓ'} (eq₁ eq₂ : A ≃ B) :
Set (ℓ ⊔ ℓ') where
constructor eq
field
f≡ : ∀ x → eq₁ ⋆ x ≡ eq₂ ⋆ x
g≡ : ∀ x → (sym≃ eq₁) ⋆ x ≡ (sym≃ eq₂) ⋆ x
id≋ : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} {x : A ≃ B} → x ≋ x
id≋ = record { f≡ = λ x → refl ; g≡ = λ x → refl }
sym≋ : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} {x y : A ≃ B} → x ≋ y → y ≋ x
sym≋ (eq f≡ g≡) = eq (λ a → sym (f≡ a)) (λ b → sym (g≡ b))
trans≋ : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} {x y z : A ≃ B} → x ≋ y → y ≋ z → x ≋ z
trans≋ (eq f≡ g≡) (eq h≡ i≡) =
eq (λ a → trans (f≡ a) (h≡ a)) (λ b → trans (g≡ b) (i≡ b))
-- The setoid of equivalences under ≋
_S≃_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Setoid (ℓ ⊔ ℓ') (ℓ ⊔ ℓ')
_S≃_ A B = record
{ Carrier = A ≃ B
; _≈_ = _≋_
; isEquivalence = record
{ refl = id≋
; sym = sym≋
; trans = trans≋
}
}
------------------------------------------------------------------------------
-- Univalence...
-- On one side we have permutations under ≡
-- On the other we have equivalences under ≋
--
-- The equivalence of these two sides uses a version of ≃ (called ≃S)
-- that relates setoids each with its own equivalence relation
infix 4 _≃S_
record _≃S_ {ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level} (A : Setoid ℓ₁ ℓ₂) (B : Setoid ℓ₃ ℓ₄) :
Set (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃ ⊔ ℓ₄) where
constructor equiv
field
f : A ⟶ B
g : B ⟶ A
α : ∀ {x y} → Setoid._≈_ B x y → Setoid._≈_ B ((f ∘ g) ⟨$⟩ x) y
β : ∀ {x y} → Setoid._≈_ A x y → Setoid._≈_ A ((g ∘ f) ⟨$⟩ x) y
univalence : {m n : ℕ} →
_≃S_ {zero} {zero} {zero} {zero} (SCPerm m n) (Fin m S≃ Fin n)
univalence {m} {n} = equiv {!!} {!!} {!!} {!!}
------------------------------------------------------------------------------
|
{
"alphanum_fraction": 0.4720812183,
"avg_line_length": 28.8706896552,
"ext": "agda",
"hexsha": "15bfceacad5df92ee88a7e24d2756ee80269b3ae",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/Obsolete/FiniteTypeEquiv.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/Obsolete/FiniteTypeEquiv.agda",
"max_line_length": 82,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/Obsolete/FiniteTypeEquiv.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 1435,
"size": 3349
}
|
module Issue857 where
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
data ⊤ : Set where
tt : ⊤
data ⊥ : Set where
⊥-elim : {A : Set} → ⊥ → A
⊥-elim = λ ()
bad : (x : ⊥) → ⊥-elim x ≡ tt
bad x = {!!} -- Goal type: x ≡ tt, with x : ⊥.
|
{
"alphanum_fraction": 0.4661354582,
"avg_line_length": 15.6875,
"ext": "agda",
"hexsha": "f0a506e5d21172c3240925535a049ca8c063bcd9",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue857.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue857.agda",
"max_line_length": 47,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue857.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 118,
"size": 251
}
|
module Oscar.Property where
open import Oscar.Builtin.Numbatural
open import Oscar.Builtin.Objectevel
𝑴 : ℕ → ∀ {𝔬} → Ø 𝔬 → ∀ 𝔪 → Ø 𝔬 ∙̂ ↑̂ 𝔪
𝑴 ∅ 𝔒 𝔪 = 𝔒 → Ø 𝔪
𝑴 (↑ n) 𝔒 𝔪 = 𝔒 → 𝑴 n 𝔒 𝔪
𝑴² : ∀ (m : ℕ) n {𝔬} {𝔒 : Ø 𝔬} {𝔪} → 𝑴 n 𝔒 𝔪 → ∀ 𝔮 → Ø 𝔬 ∙̂ 𝔪 ∙̂ ↑̂ 𝔮
𝑴² m ∅ 𝔒 𝔮 = ∀ {o} → 𝑴 m (𝔒 o) 𝔮
𝑴² m (↑ n) 𝔒 𝔮 = ∀ {o} → 𝑴² m n (𝔒 o) 𝔮
|
{
"alphanum_fraction": 0.4684684685,
"avg_line_length": 23.7857142857,
"ext": "agda",
"hexsha": "653a32096a64661f1a9216822094c5f2324f73df",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/Property.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/Property.agda",
"max_line_length": 69,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/Property.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 253,
"size": 333
}
|
-- Andreas, 2015-06-29 fixed handling of projections in positivity checker
-- {-# OPTIONS -v tc.polarity:20 -v tc.proj.like:10 -v tc.pos:10 --show-implicit #-}
-- {-# OPTIONS -v tc.pos.occ:70 #-}
open import Common.Prelude
open import Common.Product
dup : (b : Bool) (X : Set) → Set × Set
dup true X = (X → X) , X
dup false X = (X → X) , X
postulate b : Bool
data D : Set where
c : proj₁ (dup b D) → D
-- ERROR WAS:
-- D is not strictly positive, because it occurs
-- in the second argument to dup
-- in the type of the constructor c
-- in the definition of D.
-- EXPECTED ERROR:
-- D is not strictly positive, because it occurs
-- in the second argument to dup
-- in the first argument to proj₁
-- in the type of the constructor c
-- in the definition of D.
|
{
"alphanum_fraction": 0.6653696498,
"avg_line_length": 25.7,
"ext": "agda",
"hexsha": "f6ff5e11e3f149bb7cdb1e8fa971acbd45cc4cfa",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue1592c.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue1592c.agda",
"max_line_length": 85,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue1592c.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 228,
"size": 771
}
|
------------------------------------------------------------------------------
-- Agda-Prop Library.
-- Normal Forms.
------------------------------------------------------------------------------
open import Data.Nat
using (suc; zero; _+_;_*_)
renaming (_⊔_ to max; ℕ to Nat )
module Data.PropFormula.NormalForms (n : Nat) where
------------------------------------------------------------------------------
open import Data.Bool.Base
using ( Bool; true; false; if_then_else_; not)
renaming (_∧_ to _and_; _∨_ to _or_)
open import Data.Fin using ( Fin; #_ )
open import Data.List using ( List; [_]; []; _++_; _∷_ ; concatMap; map )
open import Data.PropFormula.Properties n using ( subst )
open import Data.PropFormula.Syntax n
open import Data.PropFormula.Views n
open import Relation.Nullary using (yes; no)
open import Data.PropFormula.Theorems n
open import Function using ( _∘_; _$_ )
open import Relation.Binary.PropositionalEquality using ( _≡_; sym )
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Negation Normal Form (NNF)
------------------------------------------------------------------------------
-- Def.
nnf₁ : Nat → PropFormula → PropFormula
nnf₁ (suc n) φ
with n-view φ
... | conj φ₁ φ₂ = nnf₁ n φ₁ ∧ nnf₁ n φ₂
... | disj φ₁ φ₂ = nnf₁ n φ₁ ∨ nnf₁ n φ₂
... | impl φ₁ φ₂ = nnf₁ n ((¬ φ₁) ∨ φ₂)
... | biimpl φ₁ φ₂ = nnf₁ n ((φ₁ ⊃ φ₂) ∧ (φ₂ ⊃ φ₁))
... | nconj φ₁ φ₂ = nnf₁ n ((¬ φ₁) ∨ (¬ φ₂))
... | ndisj φ₁ φ₂ = nnf₁ n ((¬ φ₁) ∧ (¬ φ₂))
... | nneg φ₁ = nnf₁ n φ₁
... | nimpl φ₁ φ₂ = nnf₁ n (¬ (φ₂ ∨ (¬ φ₁)))
... | nbiim φ₁ φ₂ = nnf₁ n (¬ ((φ₁ ⊃ φ₂) ∧ (φ₂ ⊃ φ₁)))
... | ntop = ⊥
... | nbot = ⊤
... | other .φ = φ
nnf₁ zero φ = φ
-- Theorem.
nnf₁-lem
: ∀ {Γ} {φ}
→ (n : Nat)
→ Γ ⊢ φ
→ Γ ⊢ nnf₁ n φ
-- Proof.
nnf₁-lem {Γ} {φ} (suc n) Γ⊢φ
with n-view φ
... | conj φ₁ φ₂ =
∧-intro
(nnf₁-lem n (∧-proj₁ Γ⊢φ))
(nnf₁-lem n (∧-proj₂ Γ⊢φ))
... | disj φ₁ φ₂ =
(⊃-elim
(⊃-intro
(∨-elim
(∨-intro₁
(nnf₁ n φ₂)
(nnf₁-lem n (assume φ₁)))
(∨-intro₂
(nnf₁ n φ₁)
(nnf₁-lem n (assume φ₂)))))
Γ⊢φ)
... | impl φ₁ φ₂ = nnf₁-lem n (⊃-to-¬∨ Γ⊢φ)
... | biimpl φ₁ φ₂ = nnf₁-lem n (⇔-equiv₁ Γ⊢φ)
... | nconj φ₁ φ₂ = nnf₁-lem n (¬∧-to-¬∨¬ Γ⊢φ)
... | ndisj φ₁ φ₂ = nnf₁-lem n (¬∨-to-¬∧¬ Γ⊢φ)
... | nneg φ₁ = nnf₁-lem n (¬¬-equiv₁ Γ⊢φ)
... | nimpl φ₁ φ₂ = nnf₁-lem n (subst⊢¬ helper Γ⊢φ)
where
helper : Γ ⊢ φ₂ ∨ ¬ φ₁ ⊃ (φ₁ ⊃ φ₂)
helper = ⊃-intro (¬∨-to-⊃ (∨-comm (assume (φ₂ ∨ ¬ φ₁))))
... | nbiim φ₁ φ₂ =
nnf₁-lem n
(subst⊢¬
(⊃-intro
(⇔-equiv₂
(assume ((φ₁ ⊃ φ₂) ∧ (φ₂ ⊃ φ₁)))))
Γ⊢φ)
... | ntop = ¬-elim Γ⊢φ ⊤-intro
... | nbot = ⊤-intro
... | other .φ = Γ⊢φ
nnf₁-lem {Γ} {φ} zero Γ⊢φ = Γ⊢φ
--------------------------------------------------------------------------- ∎
-- Complexity measure.
nnf-cm : PropFormula → Nat
nnf-cm φ with n-view φ
... | conj φ₁ φ₂ = nnf-cm φ₁ + nnf-cm φ₂ + 1
... | disj φ₁ φ₂ = nnf-cm φ₁ + nnf-cm φ₂ + 1
... | impl φ₁ φ₂ = 2 * nnf-cm φ₁ + nnf-cm φ₂ + 1
... | biimpl φ₁ φ₂ = 2 * (nnf-cm φ₁ + nnf-cm φ₂) + 3
... | nconj φ₁ φ₂ = nnf-cm (¬ φ₁) + nnf-cm (¬ φ₂) + 1
... | ndisj φ₁ φ₂ = nnf-cm (¬ φ₁) + nnf-cm (¬ φ₂) + 1
... | nneg φ₁ = nnf-cm (¬ φ₁) + 1
... | nimpl φ₁ φ₂ = nnf-cm φ₁ + nnf-cm (¬ φ₂) + 3
... | nbiim φ₁ φ₂ = nnf-cm φ₁ + nnf-cm φ₂ +
nnf-cm (¬ φ₁) + nnf-cm (¬ φ₂) + 8
... | ntop = 1
... | nbot = 1
... | other .φ = 1
-- Def.
nnf : PropFormula → PropFormula
nnf φ = nnf₁ (nnf-cm φ) φ
-- Theorem.
nnf-lem
: ∀ {Γ} {φ}
→ Γ ⊢ φ
→ Γ ⊢ nnf φ
-- Proof.
nnf-lem {Γ} {φ} Γ⊢φ = nnf₁-lem (nnf-cm φ) Γ⊢φ
--------------------------------------------------------------------------- ∎
------------------------------------------------------------------------------
-- Disjunctive Normal Form (DNF)
------------------------------------------------------------------------------
-- Def.
dist-∧ : PropFormula → PropFormula
dist-∧ φ with d-view-aux φ
... | case₁ φ₁ φ₂ φ₃ = dist-∧ (φ₁ ∧ φ₃) ∨ dist-∧ (φ₂ ∧ φ₃)
... | case₂ φ₁ φ₂ φ₃ = dist-∧ (φ₁ ∧ φ₂) ∨ dist-∧ (φ₁ ∧ φ₃)
... | other .φ = φ
-- Theorem.
dist-∧-lem
: ∀ {Γ} {φ}
→ Γ ⊢ φ
→ Γ ⊢ dist-∧ φ
-- Proof.
dist-∧-lem {Γ} {φ} Γ⊢φ with d-view-aux φ
dist-∧-lem {Γ} {.((φ ∨ ψ) ∧ γ)} Γ⊢⟨φ∨ψ⟩∧γ | case₁ φ ψ γ =
⊃-elim
(⊃-intro
(∨-elim
(∨-intro₁ (dist-∧ (ψ ∧ γ))
(dist-∧-lem
(∧-intro
(assume φ)
(weaken φ (∧-proj₂ Γ⊢⟨φ∨ψ⟩∧γ)))))
(∨-intro₂ (dist-∧ (φ ∧ γ))
(dist-∧-lem
(∧-intro
(assume ψ)
(weaken ψ (∧-proj₂ Γ⊢⟨φ∨ψ⟩∧γ)))))))
(∧-proj₁ Γ⊢⟨φ∨ψ⟩∧γ)
dist-∧-lem {Γ} {.(φ ∧ (ψ ∨ γ))} Γ⊢φ∧⟨ψ∨γ⟩ | case₂ φ ψ γ =
⊃-elim
(⊃-intro
(∨-elim
(∨-intro₁ (dist-∧ (φ ∧ γ))
(dist-∧-lem
(∧-intro
(weaken ψ (∧-proj₁ Γ⊢φ∧⟨ψ∨γ⟩))
(assume ψ))))
(∨-intro₂ (dist-∧ (φ ∧ ψ))
(dist-∧-lem
(∧-intro
(weaken γ (∧-proj₁ Γ⊢φ∧⟨ψ∨γ⟩))
(assume γ))))))
(∧-proj₂ Γ⊢φ∧⟨ψ∨γ⟩)
dist-∧-lem {Γ} {.φ} Γ⊢φ | other φ = Γ⊢φ
--------------------------------------------------------------------------- ∎
-- Theorem.
from-dist-∧-lem
: ∀ {Γ} {φ}
→ Γ ⊢ dist-∧ φ
→ Γ ⊢ φ
-- Proof.
from-dist-∧-lem {Γ} {φ} Γ⊢φ with d-view-aux φ
from-dist-∧-lem {Γ} {.((φ ∨ ψ) ∧ γ)} Γ⊢⟨φ∨ψ⟩∧γ | case₁ φ ψ γ =
∧-comm
(∧-dist₂
(⊃-elim
(⊃-intro
(∨-elim
(∨-intro₁ (γ ∧ ψ)
(∧-comm
(from-dist-∧-lem
(assume (dist-∧ (φ ∧ γ))))))
(∨-intro₂ (γ ∧ φ)
(∧-comm
(from-dist-∧-lem
(assume (dist-∧ (ψ ∧ γ))))))))
Γ⊢⟨φ∨ψ⟩∧γ))
from-dist-∧-lem {Γ} {.(φ ∧ (ψ ∨ γ))} Γ⊢φ∧⟨ψ∨γ⟩ | case₂ φ ψ γ =
∧-dist₂
(⊃-elim
(⊃-intro
(∨-elim
(∨-intro₁ (φ ∧ γ)
(from-dist-∧-lem (assume (dist-∧ (φ ∧ ψ)))))
(∨-intro₂ (φ ∧ ψ)
(from-dist-∧-lem (assume (dist-∧ (φ ∧ γ)))))))
Γ⊢φ∧⟨ψ∨γ⟩)
from-dist-∧-lem {Γ} {.φ} Γ⊢φ | other φ = Γ⊢φ
--------------------------------------------------------------------------- ∎
-- Def.
dnf-dist : PropFormula → PropFormula
dnf-dist φ with d-view φ
dnf-dist .(φ ∧ ψ) | conj φ ψ = dist-∧ (dnf-dist φ ∧ dnf-dist ψ)
dnf-dist .(φ ∨ ψ) | disj φ ψ = dnf-dist φ ∨ dnf-dist ψ
dnf-dist φ | other .φ = φ
-- Theorem.
dnf-dist-lem
: ∀ {Γ} {φ}
→ Γ ⊢ φ
→ Γ ⊢ dnf-dist φ
-- Proof.
dnf-dist-lem {Γ} {φ} Γ⊢φ with d-view φ
dnf-dist-lem {Γ} {φ ∧ ψ} Γ⊢φ∧ψ | conj .φ .ψ =
dist-∧-lem
(∧-intro
(dnf-dist-lem (∧-proj₁ Γ⊢φ∧ψ))
(dnf-dist-lem (∧-proj₂ Γ⊢φ∧ψ)))
dnf-dist-lem {Γ} {φ ∨ ψ} Γ⊢φ∨ψ | disj .φ .ψ =
⊃-elim
(⊃-intro
(∨-elim
(∨-intro₁ (dnf-dist ψ) (dnf-dist-lem (assume φ)))
(∨-intro₂ (dnf-dist φ) (dnf-dist-lem (assume ψ)))))
Γ⊢φ∨ψ
dnf-dist-lem {Γ} {φ} Γ⊢φ | other .φ = Γ⊢φ
--------------------------------------------------------------------------- ∎
-- Theorem.
from-dnf-dist-lem
: ∀ {Γ} {φ}
→ Γ ⊢ dnf-dist φ
→ Γ ⊢ φ
-- Proof.
from-dnf-dist-lem {_} {φ} Γ⊢φ with d-view φ
from-dnf-dist-lem {_} {φ ∧ ψ} Γ⊢φ∧ψ | conj .φ .ψ =
∧-intro
(from-dnf-dist-lem {φ = φ}
(∧-proj₁ (from-dist-∧-lem Γ⊢φ∧ψ)))
(from-dnf-dist-lem {φ = ψ}
(∧-proj₂ {φ = dnf-dist φ}
(from-dist-∧-lem Γ⊢φ∧ψ)))
from-dnf-dist-lem {_} {φ ∨ ψ} Γ⊢φ∨ψ | disj .φ .ψ =
⊃-elim
(⊃-intro
(∨-elim
(∨-intro₁ ψ
(from-dnf-dist-lem (assume (dnf-dist φ))))
(∨-intro₂ φ
(from-dnf-dist-lem (assume (dnf-dist ψ))))))
Γ⊢φ∨ψ
from-dnf-dist-lem {_} {φ} Γ⊢φ | other .φ = Γ⊢φ
--------------------------------------------------------------------------- ∎
-- Def.
dnf : PropFormula → PropFormula
dnf = dnf-dist ∘ nnf
-- Theorem.
dnf-lem
: ∀ {Γ} {φ}
→ Γ ⊢ φ
→ Γ ⊢ dnf φ
-- Proof.
dnf-lem = dnf-dist-lem ∘ nnf-lem
--------------------------------------------------------------------------- ∎
------------------------------------------------------------------------------
-- Conjunctive Normal Forms (CNF)
------------------------------------------------------------------------------
-- Def.
dist-∨ : PropFormula → PropFormula
dist-∨ φ with c-view-aux φ
dist-∨ .((φ₁ ∧ φ₂) ∨ φ₃) | case₁ φ₁ φ₂ φ₃ =
dist-∨ (φ₁ ∨ φ₃) ∧ dist-∨ (φ₂ ∨ φ₃)
dist-∨ .(φ₁ ∨ (φ₂ ∧ φ₃)) | case₂ φ₁ φ₂ φ₃ =
dist-∨ (φ₁ ∨ φ₂) ∧ dist-∨ (φ₁ ∨ φ₃)
dist-∨ φ | other .φ = φ
-- Theorem.
dist-∨-lem
: ∀ {Γ} {φ}
→ Γ ⊢ φ
→ Γ ⊢ dist-∨ φ
-- Proof.
dist-∨-lem {Γ} {φ} Γ⊢φ with c-view-aux φ
dist-∨-lem {Γ} {.((φ ∧ ψ) ∨ γ)} Γ⊢φ | case₁ φ ψ γ =
∧-intro
(dist-∨-lem (∧-proj₁ helper))
(dist-∨-lem (∧-proj₂ helper))
where
helper : Γ ⊢ (φ ∨ γ) ∧ (ψ ∨ γ)
helper =
∧-intro
(∨-comm (∧-proj₁ (∨-dist₁ (∨-comm Γ⊢φ))))
(∨-comm (∧-proj₂ (∨-dist₁ (∨-comm Γ⊢φ))))
dist-∨-lem {Γ} {.(φ ∨ (ψ ∧ γ))} Γ⊢φ | case₂ φ ψ γ =
∧-intro
(dist-∨-lem (∧-proj₁ (∨-dist₁ Γ⊢φ)))
(dist-∨-lem (∧-proj₂ (∨-dist₁ Γ⊢φ)))
dist-∨-lem {Γ} {.φ} Γ⊢φ | other φ = Γ⊢φ
--------------------------------------------------------------------------- ∎
-- Theorem.
from-dist-∨-lem
: ∀ {Γ} {φ}
→ Γ ⊢ dist-∨ φ
→ Γ ⊢ φ
-- Proof.
from-dist-∨-lem {Γ} {φ} Γ⊢φ with c-view-aux φ
from-dist-∨-lem {Γ} {.((φ ∧ ψ) ∨ γ)} Γ⊢φ | case₁ φ ψ γ =
∨-comm
(∨-dist₂
(∧-intro
(∨-comm
(from-dist-∨-lem (∧-proj₁ Γ⊢φ)))
(∨-comm
(from-dist-∨-lem (∧-proj₂ Γ⊢φ)))))
from-dist-∨-lem {Γ} {.(φ ∨ (ψ ∧ γ))} Γ⊢φ | case₂ φ ψ γ =
∨-dist₂
(∧-intro (from-dist-∨-lem (∧-proj₁ Γ⊢φ))
(from-dist-∨-lem (∧-proj₂ Γ⊢φ)))
from-dist-∨-lem {Γ} {.φ} Γ⊢φ | other φ = Γ⊢φ
--------------------------------------------------------------------------- ∎
-- Def.
cnf-dist : PropFormula → PropFormula
cnf-dist φ with d-view φ
cnf-dist .(φ ∧ ψ) | conj φ ψ = cnf-dist φ ∧ cnf-dist ψ
cnf-dist .(φ ∨ ψ) | disj φ ψ = dist-∨ ((cnf-dist φ) ∨ (cnf-dist ψ))
cnf-dist φ | other .φ = φ
-- Theorem.
cnf-dist-lem
: ∀ {Γ} {φ}
→ Γ ⊢ φ
→ Γ ⊢ cnf-dist φ
-- Proof.
cnf-dist-lem {_} {φ} Γ⊢φ
with d-view φ
cnf-dist-lem {_} {.(φ ∧ ψ)} Γ⊢φ∧ψ | conj φ ψ =
∧-intro (cnf-dist-lem (∧-proj₁ Γ⊢φ∧ψ)) (cnf-dist-lem (∧-proj₂ Γ⊢φ∧ψ))
cnf-dist-lem {_} {.(φ ∨ ψ)} Γ⊢φ∨ψ | disj φ ψ =
dist-∨-lem
(⊃-elim
(⊃-intro
(∨-elim
(∨-intro₁ (cnf-dist ψ) (cnf-dist-lem (assume φ)))
(∨-intro₂ (cnf-dist φ) (cnf-dist-lem (assume ψ)))))
Γ⊢φ∨ψ)
cnf-dist-lem {_} {.φ} Γ⊢φ | other φ = Γ⊢φ
--------------------------------------------------------------------------- ∎
-- Theorem.
from-cnf-dist-lem
: ∀ {Γ} {φ}
→ Γ ⊢ cnf-dist φ
→ Γ ⊢ φ
-- Proof.
from-cnf-dist-lem {_} {φ} Γ⊢cnfdist
with d-view φ
from-cnf-dist-lem {_} {.(φ ∧ ψ)} Γ⊢cnfdistφ∧ψ | conj φ ψ =
∧-intro
(from-cnf-dist-lem (∧-proj₁ Γ⊢cnfdistφ∧ψ))
(from-cnf-dist-lem (∧-proj₂ Γ⊢cnfdistφ∧ψ))
from-cnf-dist-lem {_} {.(φ ∨ ψ)} Γ⊢cnfdistφ∨ψ | disj φ ψ =
⊃-elim
(⊃-intro
(∨-elim
(∨-intro₁ ψ (from-cnf-dist-lem (assume (cnf-dist φ))))
(∨-intro₂ φ (from-cnf-dist-lem (assume (cnf-dist ψ))))))
(from-dist-∨-lem Γ⊢cnfdistφ∨ψ)
from-cnf-dist-lem {_} {.φ} Γ⊢φ | other φ = Γ⊢φ
--------------------------------------------------------------------------- ∎
-- Def.
cnf : PropFormula → PropFormula
cnf = cnf-dist ∘ nnf
-- Theorem.
cnf-lem
: ∀ {Γ} {φ}
→ Γ ⊢ φ
→ Γ ⊢ cnf φ
-- Proof.
cnf-lem = cnf-dist-lem ∘ nnf-lem -- ▪
----------------------------------------------------------------------------
-- Testing for a normal form.
is∨ : PropFormula → Bool
is∨ φ
with d-view φ
is∨ .(φ₁ ∧ φ₂) | conj φ₁ φ₂ = false
is∨ .(φ₁ ∨ φ₂) | disj φ₁ φ₂ = is∨ φ₁ and is∨ φ₂
is∨ φ | other .φ = true
is∧∨ : PropFormula → Bool
is∧∨ φ
with d-view φ
is∧∨ .(φ₁ ∧ φ₂) | conj φ₁ φ₂ = is∧∨ φ₁ and is∧∨ φ₂
is∧∨ .(φ₁ ∨ φ₂) | disj φ₁ φ₂ = is∨ φ₁ and is∨ φ₂
is∧∨ φ | other .φ = true
is∧ : PropFormula → Bool
is∧ φ
with d-view φ
is∧ .(φ₁ ∧ φ₂) | conj φ₁ φ₂ = is∧ φ₁ and is∧ φ₂
is∧ .(φ₁ ∨ φ₂) | disj φ₁ φ₂ = false
is∧ φ | other .φ = true
is∨∧ : PropFormula → Bool
is∨∧ φ
with d-view φ
is∨∧ .(φ₁ ∧ φ₂) | conj φ₁ φ₂ = is∧ φ₁ and is∧ φ₂
is∨∧ .(φ₁ ∨ φ₂) | disj φ₁ φ₂ = is∨∧ φ₁ and is∨∧ φ₂
is∨∧ φ | other .φ = true
isNNF : PropFormula → Bool
isNNF φ
with push-neg-view φ
isNNF φ | yes .φ = false
isNNF .(φ₁ ∧ φ₂) | no-∧ φ₁ φ₂ = isNNF φ₁ and isNNF φ₂
isNNF .(φ₁ ∨ φ₂) | no-∨ φ₁ φ₂ = isNNF φ₁ and isNNF φ₂
isNNF φ | no .φ = true
isCNF : PropFormula → Bool
isCNF φ = isNNF φ and is∧∨ φ
isDNF : PropFormula → Bool
isDNF φ = isNNF φ and is∨∧ φ
|
{
"alphanum_fraction": 0.4123462556,
"avg_line_length": 27.6258064516,
"ext": "agda",
"hexsha": "c3028f512c33542af2f891fa4013fae2273a0f90",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2017-12-01T17:01:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-03-30T16:41:56.000Z",
"max_forks_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jonaprieto/agda-prop",
"max_forks_repo_path": "src/Data/PropFormula/NormalForms.agda",
"max_issues_count": 18,
"max_issues_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae",
"max_issues_repo_issues_event_max_datetime": "2017-12-18T16:34:21.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-03-08T14:33:10.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jonaprieto/agda-prop",
"max_issues_repo_path": "src/Data/PropFormula/NormalForms.agda",
"max_line_length": 78,
"max_stars_count": 13,
"max_stars_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jonaprieto/agda-prop",
"max_stars_repo_path": "src/Data/PropFormula/NormalForms.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T03:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-05-01T16:45:41.000Z",
"num_tokens": 5650,
"size": 12846
}
|
module Tactic.Nat.Simpl.Lemmas where
open import Prelude
open import Tactic.Nat.NF
open import Tactic.Nat.Exp
open import Container.Bag
open import Tactic.Nat.Auto
open import Prelude.Nat.Properties
open import Container.List.Properties
open import Tactic.Nat.Auto.Lemmas
product1-sound : ∀ xs → product1 xs ≡ productR xs
product1-sound [] = refl
product1-sound (x ∷ xs)
rewrite sym (cong (λ x → foldl _*_ x xs) (mul-one-r x))
| foldl-assoc _*_ mul-assoc x 1 xs
| foldl-foldr _*_ 1 mul-assoc add-zero-r mul-one-r xs
= refl
map-eq : ∀ {c b} {A : Set c} {B : Set b} (f g : A → B) →
(∀ x → f x ≡ g x) → ∀ xs → map f xs ≡ map g xs
map-eq f g f=g [] = refl
map-eq f g f=g (x ∷ xs) rewrite f=g x | map-eq f g f=g xs = refl
fst-*** : ∀ {a b} {A₁ A₂ : Set a} {B₁ B₂ : Set b}
(f : A₁ → B₁) (g : A₂ → B₂) (p : A₁ × A₂) →
fst ((f *** g) p) ≡ f (fst p)
fst-*** f g (x , y) = refl
snd-*** : ∀ {a b} {A₁ A₂ : Set a} {B₁ B₂ : Set b}
(f : A₁ → B₁) (g : A₂ → B₂) (p : A₁ × A₂) →
snd ((f *** g) p) ≡ g (snd p)
snd-*** f g (x , y) = refl
eta : ∀ {a b} {A : Set a} {B : Set b} (p : A × B) → p ≡ (fst p , snd p)
eta (x , y) = refl
private
shuffle₁ : (a b c : Nat) → a + (b + c) ≡ b + (a + c)
shuffle₁ a b c = auto
module _ {Atom : Set} {{_ : Ord Atom}} where
NFEqS : NF Atom × NF Atom → Env Atom → Set
NFEqS (nf₁ , nf₂) ρ = ⟦ nf₁ ⟧ns ρ ≡ ⟦ nf₂ ⟧ns ρ
NFEq : NF Atom × NF Atom → Env Atom → Set
NFEq (nf₁ , nf₂) ρ = ⟦ nf₁ ⟧n ρ ≡ ⟦ nf₂ ⟧n ρ
ts-sound : ∀ x (ρ : Env Atom) → ⟦ x ⟧ts ρ ≡ ⟦ x ⟧t ρ
ts-sound (0 , x) ρ = mul-zero-r (product1 (map ρ x))
ts-sound (1 , x) ρ = product1-sound (map ρ x) ⟨≡⟩ʳ add-zero-r _
ts-sound (suc (suc i) , x) ρ
rewrite sym (product1-sound (map ρ x))
= auto
private
et : Env Atom → Nat × Tm Atom → Nat
et = flip ⟦_⟧t
ets : Env Atom → Nat × Tm Atom → Nat
ets = flip ⟦_⟧ts
plus-nf : Nat → Env Atom → NF Atom → Nat
plus-nf = λ a ρ xs → a + ⟦ xs ⟧n ρ
ns-sound : ∀ nf (ρ : Env Atom) → ⟦ nf ⟧ns ρ ≡ ⟦ nf ⟧n ρ
ns-sound [] ρ = refl
ns-sound (x ∷ nf) ρ
rewrite sym (foldl-map-fusion _+_ (ets ρ) (ets ρ x) nf)
| ts-sound x ρ
| map-eq (ets ρ) (et ρ) (flip ts-sound ρ) nf
| sym (foldl-foldr _+_ 0 add-assoc (λ _ → refl) add-zero-r (map (et ρ) nf))
| sym (foldl-assoc _+_ add-assoc (et ρ x) 0 (map (et ρ) nf))
| add-zero-r (et ρ x)
= refl
private
lem-sound : ∀ a b ρ f g (xs : NF Atom × NF Atom) →
a + ⟦ fst ((f *** g) xs) ⟧n ρ ≡ b + ⟦ snd ((f *** g) xs) ⟧n ρ →
a + ⟦ f (fst xs) ⟧n ρ ≡ b + ⟦ g (snd xs) ⟧n ρ
lem-sound a b ρ f g xs H =
cong (plus-nf a ρ) (fst-*** f g xs)
ʳ⟨≡⟩ H
⟨≡⟩ cong (plus-nf b ρ) (snd-*** f g xs)
cancel-sound′ : ∀ a b nf₁ nf₂ (ρ : Env Atom) →
a + ⟦ fst (cancel nf₁ nf₂) ⟧n ρ ≡ b + ⟦ snd (cancel nf₁ nf₂) ⟧n ρ →
a + ⟦ nf₁ ⟧n ρ ≡ b + ⟦ nf₂ ⟧n ρ
cancel-sound′ a b [] [] ρ H = H
cancel-sound′ a b [] (x ∷ nf₂) ρ H = H
cancel-sound′ a b (x ∷ nf₁) [] ρ H = H
cancel-sound′ a b ((i , x) ∷ nf₁) ((j , y) ∷ nf₂) ρ H
with compare x y
... | less _ = add-assoc a _ _ ⟨≡⟩ cancel-sound′ (a + et ρ (i , x)) b nf₁ ((j , y) ∷ nf₂) ρ
(add-assoc a _ _ ʳ⟨≡⟩ lem-sound a b ρ (_∷_ (i , x)) id (cancel nf₁ ((j , y) ∷ nf₂)) H)
... | greater _ =
cancel-sound′ a (b + et ρ (j , y)) ((i , x) ∷ nf₁) nf₂ ρ
(lem-sound a b ρ id (_∷_ (j , y)) (cancel ((i , x) ∷ nf₁) nf₂) H ⟨≡⟩ add-assoc b _ _)
⟨≡⟩ʳ add-assoc b _ _
cancel-sound′ a b ((i , x) ∷ nf₁) ((j , .x) ∷ nf₂) ρ H | equal refl
with compare i j
cancel-sound′ a b ((i , x) ∷ nf₁) ((.(suc k + i) , .x) ∷ nf₂) ρ H | equal refl | less (diff! k) =
shuffle₁ a (et ρ (i , x)) _
⟨≡⟩ cong (et ρ (i , x) +_) (cancel-sound′ a (b + et ρ (suc k , x)) nf₁ nf₂ ρ
(lem-sound a b ρ id (_∷_ (suc k , x)) (cancel nf₁ nf₂) H ⟨≡⟩ add-assoc b _ _))
⟨≡⟩ auto
cancel-sound′ a b ((.(suc k + j) , x) ∷ nf₁) ((j , .x) ∷ nf₂) ρ H | equal refl | greater (diff! k) =
sym (shuffle₁ b (et ρ (j , x)) _
⟨≡⟩ cong (et ρ (j , x) +_) (sym (cancel-sound′ (a + et ρ (suc k , x)) b nf₁ nf₂ ρ
(add-assoc a _ _ ʳ⟨≡⟩ lem-sound a b ρ (_∷_ (suc k , x)) id (cancel nf₁ nf₂) H)))
⟨≡⟩ auto)
cancel-sound′ a b ((i , x) ∷ nf₁) ((.i , .x) ∷ nf₂) ρ H | equal refl | equal refl =
shuffle₁ a (et ρ (i , x)) _
⟨≡⟩ cong (et ρ (i , x) +_) (cancel-sound′ a b nf₁ nf₂ ρ H)
⟨≡⟩ shuffle₁ (et ρ (i , x)) b _
cancel-sound-s′ : ∀ a b nf₁ nf₂ (ρ : Env Atom) →
a + ⟦ fst (cancel nf₁ nf₂) ⟧ns ρ ≡ b + ⟦ snd (cancel nf₁ nf₂) ⟧ns ρ →
a + ⟦ nf₁ ⟧ns ρ ≡ b + ⟦ nf₂ ⟧ns ρ
cancel-sound-s′ a b nf₁ nf₂ ρ eq =
(a +_) $≡ ns-sound nf₁ ρ ⟨≡⟩
cancel-sound′ a b nf₁ nf₂ ρ
((a +_) $≡ ns-sound (fst (cancel nf₁ nf₂)) ρ ʳ⟨≡⟩
eq ⟨≡⟩ (b +_) $≡ ns-sound (snd (cancel nf₁ nf₂)) ρ) ⟨≡⟩ʳ
(b +_) $≡ ns-sound nf₂ ρ
cancel-sound : ∀ nf₁ nf₂ ρ → NFEqS (cancel nf₁ nf₂) ρ → NFEq (nf₁ , nf₂) ρ
cancel-sound nf₁ nf₂ ρ H rewrite cong (λ p → NFEqS p ρ) (eta (cancel nf₁ nf₂)) =
(cancel-sound′ 0 0 nf₁ nf₂ ρ
(ns-sound (fst (cancel nf₁ nf₂)) ρ
ʳ⟨≡⟩ H ⟨≡⟩
ns-sound (snd (cancel nf₁ nf₂)) ρ))
private
prod : Env Atom → List Atom → Nat
prod ρ x = productR (map ρ x)
private
lem-complete : ∀ a b ρ f g (xs : NF Atom × NF Atom) →
a + ⟦ f (fst xs) ⟧n ρ ≡ b + ⟦ g (snd xs) ⟧n ρ →
a + ⟦ fst ((f *** g) xs) ⟧n ρ ≡ b + ⟦ snd ((f *** g) xs) ⟧n ρ
lem-complete a b ρ f g xs H =
cong (plus-nf a ρ) (fst-*** f g xs)
⟨≡⟩ H
⟨≡⟩ʳ cong (plus-nf b ρ) (snd-*** f g xs)
cancel-complete′ : ∀ a b nf₁ nf₂ (ρ : Env Atom) →
a + ⟦ nf₁ ⟧n ρ ≡ b + ⟦ nf₂ ⟧n ρ →
a + ⟦ fst (cancel nf₁ nf₂) ⟧n ρ ≡ b + ⟦ snd (cancel nf₁ nf₂) ⟧n ρ
cancel-complete′ a b [] [] ρ H = H
cancel-complete′ a b [] (x ∷ nf₂) ρ H = H
cancel-complete′ a b (x ∷ nf₁) [] ρ H = H
cancel-complete′ a b ((i , x) ∷ nf₁) ((j , y) ∷ nf₂) ρ H with compare x y
... | less lt =
lem-complete a b ρ (_∷_ (i , x)) id (cancel nf₁ ((j , y) ∷ nf₂))
(add-assoc a _ _
⟨≡⟩ cancel-complete′ (a + et ρ (i , x)) b nf₁ ((j , y) ∷ nf₂) ρ
(add-assoc a _ _ ʳ⟨≡⟩ H))
... | greater _ =
lem-complete a b ρ id (_∷_ (j , y)) (cancel ((i , x) ∷ nf₁) nf₂)
(cancel-complete′ a (b + et ρ (j , y)) ((i , x) ∷ nf₁) nf₂ ρ
(H ⟨≡⟩ add-assoc b _ _)
⟨≡⟩ʳ add-assoc b _ _)
cancel-complete′ a b ((i , x) ∷ nf₁) ((j , .x) ∷ nf₂) ρ H | equal refl with compare i j
cancel-complete′ a b ((i , x) ∷ nf₁) ((.(suc (k + i)) , .x) ∷ nf₂) ρ H | equal refl | less (diff! k) =
lem-complete a b ρ id (_∷_ (suc k , x)) (cancel nf₁ nf₂)
(cancel-complete′ a (b + suc k * prod ρ x) nf₁ nf₂ ρ
(add-inj₂ (i * prod ρ x) _ _
(shuffle₁ (i * prod ρ x) a _
⟨≡⟩ H ⟨≡⟩ auto))
⟨≡⟩ʳ add-assoc b _ _)
cancel-complete′ a b ((.(suc (k + j)) , x) ∷ nf₁) ((j , .x) ∷ nf₂) ρ H | equal refl | greater (diff! k) =
lem-complete a b ρ (_∷_ (suc k , x)) id (cancel nf₁ nf₂)
(add-assoc a _ _ ⟨≡⟩
cancel-complete′ (a + suc k * prod ρ x) b nf₁ nf₂ ρ
(add-inj₂ (j * prod ρ x) _ _
(sym (shuffle₁ (j * prod ρ x) b _ ⟨≡⟩ʳ
auto ʳ⟨≡⟩ H))))
cancel-complete′ a b ((i , x) ∷ nf₁) ((.i , .x) ∷ nf₂) ρ H | equal refl | equal refl =
cancel-complete′ a b nf₁ nf₂ ρ
(add-inj₂ (i * prod ρ x) _ _
(shuffle₁ a (i * prod ρ x) _ ʳ⟨≡⟩ H ⟨≡⟩ shuffle₁ b (i * prod ρ x) _))
cancel-complete-s′ : ∀ a b nf₁ nf₂ (ρ : Env Atom) →
a + ⟦ nf₁ ⟧ns ρ ≡ b + ⟦ nf₂ ⟧ns ρ →
a + ⟦ fst (cancel nf₁ nf₂) ⟧ns ρ ≡ b + ⟦ snd (cancel nf₁ nf₂) ⟧ns ρ
cancel-complete-s′ a b nf₁ nf₂ ρ eq =
(a +_) $≡ ns-sound (fst (cancel nf₁ nf₂)) ρ ⟨≡⟩
cancel-complete′ a b nf₁ nf₂ ρ
((a +_) $≡ ns-sound nf₁ ρ ʳ⟨≡⟩
eq ⟨≡⟩ (b +_) $≡ ns-sound nf₂ ρ) ⟨≡⟩ʳ
(b +_) $≡ ns-sound (snd (cancel nf₁ nf₂)) ρ
cancel-complete : ∀ nf₁ nf₂ ρ → NFEq (nf₁ , nf₂) ρ → NFEqS (cancel nf₁ nf₂) ρ
cancel-complete nf₁ nf₂ ρ H rewrite cong (λ p → NFEqS p ρ) (eta (cancel nf₁ nf₂)) =
ns-sound (fst (cancel nf₁ nf₂)) ρ
⟨≡⟩ cancel-complete′ 0 0 nf₁ nf₂ ρ H
⟨≡⟩ʳ ns-sound (snd (cancel nf₁ nf₂)) ρ
|
{
"alphanum_fraction": 0.4791641933,
"avg_line_length": 41.9054726368,
"ext": "agda",
"hexsha": "30a47727b863603f919568406be5e91197a88056",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lclem/agda-prelude",
"max_forks_repo_path": "src/Tactic/Nat/Simpl/Lemmas.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lclem/agda-prelude",
"max_issues_repo_path": "src/Tactic/Nat/Simpl/Lemmas.agda",
"max_line_length": 107,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lclem/agda-prelude",
"max_stars_repo_path": "src/Tactic/Nat/Simpl/Lemmas.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3768,
"size": 8423
}
|
------------------------------------------------------------------------------
-- Agda-Prop Library.
-- Extension Theorems of the Syntax definitions.
------------------------------------------------------------------------------
open import Data.Nat using ( ℕ )
module Data.PropFormula.Theorems.Weakening ( n : ℕ ) where
------------------------------------------------------------------------------
open import Data.PropFormula.Syntax n
open import Data.PropFormula.Properties n using ( substΓ )
open import Data.List using ( List ; [] ; _∷_ ; _++_ ; [_] )
open import Relation.Binary.PropositionalEquality
using ( _≡_; refl; cong; trans; sym)
------------------------------------------------------------------------------
-- Theorem.
weaken-Δ₁
: ∀ {Γ} {φ}
→ (Δ : Ctxt)
→ Γ ⊢ φ
→ Γ ⨆ Δ ⊢ φ
-- Proof.
weaken-Δ₁ {[]} {φ} [] Γ⊢φ = Γ⊢φ
weaken-Δ₁ {x ∷ Γ} {φ} [] Γ⊢φ = substΓ (sym helper) Γ⊢φ
where
helper : ∀ {Γ} → Γ ⨆ [] ≡ Γ
helper {[]} = refl
helper {x ∷ Γ} rewrite helper {Γ = Γ} = refl
weaken-Δ₁ {Γ} {φ} (x ∷ []) Γ⊢φ = weaken x Γ⊢φ
weaken-Δ₁ {Γ} {φ} (x₁ ∷ Δ) Γ⊢φ =
substΓ
helper
(weaken-Δ₁ Δ
(weaken x₁ Γ⊢φ))
where
helper : ∀ {Γ Δ} {x} → (Γ , x ) ⨆ Δ ≡ Γ ⨆ (x ∷ Δ)
helper {[]} {Δ} = refl
helper {y ∷ Γ} {Δ} {x} rewrite helper {Γ = Γ} {Δ = Δ} {x = x} = refl
-------------------------------------------------------------------------- ∎
-- Theorem.
weaken-Δ₂
: ∀ {Γ} {φ}
→ (Δ : Ctxt)
→ Γ ⊢ φ
→ Δ ⨆ Γ ⊢ φ
-- Proof.
weaken-Δ₂ {_} [] Γ⊢φ = Γ⊢φ
weaken-Δ₂ {[]} (hyp ∷ []) Γ⊢φ = weaken₂ hyp Γ⊢φ
weaken-Δ₂ {_} (hyp ∷ []) Γ⊢φ = weaken₂ hyp Γ⊢φ
weaken-Δ₂ {_} (hyp ∷ hyps) Γ⊢φ = weaken₂ hyp (weaken-Δ₂ hyps Γ⊢φ)
-------------------------------------------------------------------------- ∎
|
{
"alphanum_fraction": 0.3935629588,
"avg_line_length": 29.0327868852,
"ext": "agda",
"hexsha": "af33ca3dca9e79ededfb1330c90f9f5fc58c4ea4",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2017-12-01T17:01:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-03-30T16:41:56.000Z",
"max_forks_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jonaprieto/agda-prop",
"max_forks_repo_path": "src/Data/PropFormula/Theorems/Weakening.agda",
"max_issues_count": 18,
"max_issues_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae",
"max_issues_repo_issues_event_max_datetime": "2017-12-18T16:34:21.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-03-08T14:33:10.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jonaprieto/agda-prop",
"max_issues_repo_path": "src/Data/PropFormula/Theorems/Weakening.agda",
"max_line_length": 78,
"max_stars_count": 13,
"max_stars_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jonaprieto/agda-prop",
"max_stars_repo_path": "src/Data/PropFormula/Theorems/Weakening.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T03:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-05-01T16:45:41.000Z",
"num_tokens": 634,
"size": 1771
}
|
-- Andreas, 2016-07-08, issue reported by Nisse
module Issue2081 where
module M where
private
Private : Set₁
Private = Set
-- The local module should be private as well!
module Public where
-- The definitions inside this module should not be private
-- unless declared so explicitly!
Public : Set₁
Public = Set
private
Bla = Public -- should work!
-- This `where` should not give a 'useless private' error:
where open Public
module Pu = M.Public -- should fail!
|
{
"alphanum_fraction": 0.6432532348,
"avg_line_length": 21.64,
"ext": "agda",
"hexsha": "300e38dd809ed000f50b672102eaca9121d8bf0e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue2081.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue2081.agda",
"max_line_length": 67,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue2081.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 131,
"size": 541
}
|
{-
Macros (autoDesc, AutoStructure, AutoEquivStr, autoUnivalentStr) for automatically generating structure definitions.
For example:
autoDesc (λ (X : Type₀) → X → X × ℕ) ↦ function+ var (var , constant ℕ)
We prefer to use the constant structure whenever possible, e.g., [autoDesc (λ (X : Type₀) → ℕ → ℕ)]
is [constant (ℕ → ℕ)] rather than [function (constant ℕ) (constant ℕ)].
Writing [auto* (λ X → ⋯)] doesn't seem to work, but [auto* (λ (X : Type ℓ) → ⋯)] does.
-}
{-# OPTIONS --cubical --no-exact-split --safe #-}
module Cubical.Structures.Relational.Auto where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma
open import Cubical.Data.Nat
open import Cubical.Data.List
open import Cubical.Data.Bool
open import Cubical.Data.Maybe
open import Cubical.Structures.Relational.Macro as Macro
import Agda.Builtin.Reflection as R
-- Magic number
private
FUEL = 10000
-- Mark a constant type with a proof it is a set
abstract
Const[_] : ∀ {ℓ} → hSet ℓ → Type ℓ
Const[ A ] = A .fst
-- Some reflection utilities
private
_>>=_ = R.bindTC
_<|>_ = R.catchTC
_>>_ : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → R.TC A → R.TC B → R.TC B
f >> g = f >>= λ _ → g
infixl 4 _>>=_ _>>_ _<|>_
varg : ∀ {ℓ} {A : Type ℓ} → A → R.Arg A
varg = R.arg (R.arg-info R.visible R.relevant)
tLevel = R.def (quote Level) []
tType : R.Term → R.Term
tType ℓ = R.def (quote Type) [ varg ℓ ]
thSet : R.Term → R.Term
thSet ℓ = R.def (quote hSet) [ varg ℓ ]
tPosRelDesc : R.Term → R.Term
tPosRelDesc ℓ = R.def (quote PosRelDesc) [ varg ℓ ]
tRelDesc : R.Term → R.Term
tRelDesc ℓ = R.def (quote RelDesc) [ varg ℓ ]
func : (ℓ ℓ' : Level) → Type (ℓ-suc (ℓ-max ℓ ℓ'))
func ℓ ℓ' = Type ℓ → Type ℓ'
tStruct : R.Term → R.Term → R.Term
tStruct ℓ ℓ' = R.def (quote func) (varg ℓ ∷ varg ℓ' ∷ [])
newMeta = R.checkType R.unknown
-- We try to build a descriptor by unifying the provided structure with combinators we're aware of. We
-- redefine the structure combinators as the *Shape terms below so that we don't depend on the specific way
-- these are defined in other files (order of implicit arguments and so on); the syntactic analysis that goes
-- on here means that we would get mysterious errors if those changed.
private
constantShape : ∀ {ℓ'} (ℓ : Level) (A : hSet ℓ') → (Type ℓ → Type ℓ')
constantShape _ A _ = Const[ A ]
pointedShape : (ℓ : Level) → Type ℓ → Type ℓ
pointedShape _ X = X
productShape : ∀ {ℓ₀ ℓ₁} (ℓ : Level)
→ (Type ℓ → Type ℓ₀) → (Type ℓ → Type ℓ₁) → Type ℓ → Type (ℓ-max ℓ₀ ℓ₁)
productShape _ A₀ A₁ X = A₀ X × A₁ X
paramShape : ∀ {ℓ₀ ℓ'} (ℓ : Level)
→ Type ℓ' → (Type ℓ → Type ℓ₀) → Type ℓ → Type (ℓ-max ℓ' ℓ₀)
paramShape _ A A₀ X = A → A₀ X
functionShape : ∀ {ℓ₀ ℓ₁} (ℓ : Level)
→ (Type ℓ → Type ℓ₀) → (Type ℓ → Type ℓ₁) → Type ℓ → Type (ℓ-max ℓ₀ ℓ₁)
functionShape _ A₀ A₁ X = A₀ X → A₁ X
maybeShape : ∀ {ℓ₀} (ℓ : Level)
→ (Type ℓ → Type ℓ₀) → Type ℓ → Type ℓ₀
maybeShape _ A₀ X = Maybe (A₀ X)
private
-- Build transport structure descriptor from a function [t : Type ℓ → Type ℓ']
buildPosRelDesc : ℕ → R.Term → R.Term → R.Term → R.TC R.Term
buildPosRelDesc zero ℓ ℓ' t = R.typeError (R.strErr "Ran out of fuel! at \n" ∷ R.termErr t ∷ [])
buildPosRelDesc (suc fuel) ℓ ℓ' t =
tryConstant t <|> tryPointed t <|> tryProduct t <|> tryMaybe t <|>
R.typeError (R.strErr "Can't automatically generate a positive structure for\n" ∷ R.termErr t ∷ [])
where
tryConstant : R.Term → R.TC R.Term
tryConstant t =
newMeta (thSet ℓ') >>= λ A →
R.unify t (R.def (quote constantShape) (varg ℓ ∷ varg A ∷ [])) >>
R.returnTC (R.con (quote PosRelDesc.constant) (varg A ∷ []))
tryPointed : R.Term → R.TC R.Term
tryPointed t =
R.unify t (R.def (quote pointedShape) (varg ℓ ∷ [])) >>
R.returnTC (R.con (quote PosRelDesc.var) [])
tryProduct : R.Term → R.TC R.Term
tryProduct t =
newMeta tLevel >>= λ ℓ₀ →
newMeta tLevel >>= λ ℓ₁ →
newMeta (tStruct ℓ ℓ₀) >>= λ A₀ →
newMeta (tStruct ℓ ℓ₁) >>= λ A₁ →
R.unify t (R.def (quote productShape) (varg ℓ ∷ varg A₀ ∷ varg A₁ ∷ [])) >>
buildPosRelDesc fuel ℓ ℓ₀ A₀ >>= λ d₀ →
buildPosRelDesc fuel ℓ ℓ₁ A₁ >>= λ d₁ →
R.returnTC (R.con (quote PosRelDesc._,_) (varg d₀ ∷ varg d₁ ∷ []))
tryMaybe : R.Term → R.TC R.Term
tryMaybe t =
newMeta tLevel >>= λ ℓ₀ →
newMeta (tStruct ℓ ℓ₀) >>= λ A₀ →
R.unify t (R.def (quote maybeShape) (varg ℓ ∷ varg A₀ ∷ [])) >>
buildPosRelDesc fuel ℓ ℓ₀ A₀ >>= λ d₀ →
R.returnTC (R.con (quote PosRelDesc.maybe) (varg d₀ ∷ []))
autoPosRelDesc' : R.Term → R.Term → R.TC Unit
autoPosRelDesc' t hole =
R.inferType hole >>= λ H →
newMeta tLevel >>= λ ℓ →
newMeta tLevel >>= λ ℓ' →
R.unify (tPosRelDesc ℓ) H >>
R.checkType t (tStruct ℓ ℓ') >>
buildPosRelDesc FUEL ℓ ℓ' t >>= R.unify hole
-- Build structure descriptor from a function [t : Type ℓ → Type ℓ']
buildRelDesc : ℕ → R.Term → R.Term → R.Term → R.TC R.Term
buildRelDesc zero ℓ ℓ' t = R.typeError (R.strErr "Ran out of fuel! at \n" ∷ R.termErr t ∷ [])
buildRelDesc (suc fuel) ℓ ℓ' t =
tryConstant t <|> tryPointed t <|> tryProduct t <|> tryParam t <|> tryFunction t <|>
tryMaybe t <|>
R.typeError (R.strErr "Can't automatically generate a structure for\n" ∷ R.termErr t ∷ [])
where
tryConstant : R.Term → R.TC R.Term
tryConstant t =
newMeta (thSet ℓ') >>= λ A →
R.unify t (R.def (quote constantShape) (varg ℓ ∷ varg A ∷ [])) >>
R.returnTC (R.con (quote RelDesc.constant) (varg A ∷ []))
tryPointed : R.Term → R.TC R.Term
tryPointed t =
R.unify t (R.def (quote pointedShape) (varg ℓ ∷ [])) >>
R.returnTC (R.con (quote RelDesc.var) [])
tryProduct : R.Term → R.TC R.Term
tryProduct t =
newMeta tLevel >>= λ ℓ₀ →
newMeta tLevel >>= λ ℓ₁ →
newMeta (tStruct ℓ ℓ₀) >>= λ A₀ →
newMeta (tStruct ℓ ℓ₁) >>= λ A₁ →
R.unify t (R.def (quote productShape) (varg ℓ ∷ varg A₀ ∷ varg A₁ ∷ [])) >>
buildRelDesc fuel ℓ ℓ₀ A₀ >>= λ d₀ →
buildRelDesc fuel ℓ ℓ₁ A₁ >>= λ d₁ →
R.returnTC (R.con (quote RelDesc._,_) (varg d₀ ∷ varg d₁ ∷ []))
tryParam : R.Term → R.TC R.Term
tryParam t =
newMeta (tType R.unknown) >>= λ A →
newMeta tLevel >>= λ ℓ₀ →
newMeta (tStruct ℓ ℓ₀) >>= λ A₀ →
R.unify t (R.def (quote paramShape) (varg ℓ ∷ varg A ∷ varg A₀ ∷ [])) >>
buildRelDesc fuel ℓ ℓ₀ A₀ >>= λ d₀ →
R.returnTC (R.con (quote RelDesc.param) (varg A ∷ varg d₀ ∷ []))
tryFunction : R.Term → R.TC R.Term
tryFunction t =
newMeta tLevel >>= λ ℓ₀ →
newMeta tLevel >>= λ ℓ₁ →
newMeta (tStruct ℓ ℓ₀) >>= λ A₀ →
newMeta (tStruct ℓ ℓ₁) >>= λ A₁ →
R.unify t (R.def (quote functionShape) (varg ℓ ∷ varg A₀ ∷ varg A₁ ∷ [])) >>
buildPosRelDesc fuel ℓ ℓ₀ A₀ >>= λ d₀ →
buildRelDesc fuel ℓ ℓ₁ A₁ >>= λ d₁ →
R.returnTC (R.con (quote RelDesc.function+) (varg d₀ ∷ varg d₁ ∷ []))
tryMaybe : R.Term → R.TC R.Term
tryMaybe t =
newMeta tLevel >>= λ ℓ₀ →
newMeta (tStruct ℓ ℓ₀) >>= λ A₀ →
R.unify t (R.def (quote maybeShape) (varg ℓ ∷ varg A₀ ∷ [])) >>
buildRelDesc fuel ℓ ℓ₀ A₀ >>= λ d₀ →
R.returnTC (R.con (quote RelDesc.maybe) (varg d₀ ∷ []))
autoRelDesc' : R.Term → R.Term → R.TC Unit
autoRelDesc' t hole =
R.inferType hole >>= λ H →
newMeta tLevel >>= λ ℓ →
newMeta tLevel >>= λ ℓ' →
R.unify (tRelDesc ℓ) H >>
R.checkType t (tStruct ℓ ℓ') >>
buildRelDesc FUEL ℓ ℓ' t >>= R.unify hole
macro
-- (Type ℓ → Type ℓ₁) → PosRelDesc ℓ
autoPosRelDesc : R.Term → R.Term → R.TC Unit
autoPosRelDesc = autoPosRelDesc'
-- (S : Type ℓ → Type ℓ₁) → RelDesc ℓ
autoRelDesc : R.Term → R.Term → R.TC Unit
autoRelDesc = autoRelDesc'
-- (S : Type ℓ → Type ℓ₁) → (Type ℓ → Type ℓ₁)
-- Sanity check: should be the identity
AutoStructure : R.Term → R.Term → R.TC Unit
AutoStructure t hole =
newMeta (tRelDesc R.unknown) >>= λ d →
R.unify hole (R.def (quote RelMacroStructure) [ varg d ]) >>
autoRelDesc' t d
-- (S : Type ℓ → Type ℓ₁) → StrRel S _
AutoRelStr : R.Term → R.Term → R.TC Unit
AutoRelStr t hole =
newMeta (tRelDesc R.unknown) >>= λ d →
R.unify hole (R.def (quote RelMacroRelStr) [ varg d ]) >>
autoRelDesc' t d
-- (S : Type ℓ → Type ℓ₁) → SuitableStrRel S (AutoStrRel S)
autoSuitableRel : R.Term → R.Term → R.TC Unit
autoSuitableRel t hole =
newMeta (tRelDesc R.unknown) >>= λ d →
R.unify hole (R.def (quote relMacroSuitableRel) [ varg d ]) >>
autoRelDesc' t d
-- (S : Type ℓ → Type ℓ₁) → StrRelMatchesEquiv (AutoRelStr S) (AutoEquivStr S)
autoMatchesEquiv : R.Term → R.Term → R.TC Unit
autoMatchesEquiv t hole =
newMeta (tRelDesc R.unknown) >>= λ d →
R.unify hole (R.def (quote relMacroMatchesEquiv) [ varg d ]) >>
autoRelDesc' t d
|
{
"alphanum_fraction": 0.6032663037,
"avg_line_length": 35.7182539683,
"ext": "agda",
"hexsha": "43e3d849151e016f0afb29e09f8fe2a588946efb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Schippmunk/cubical",
"max_forks_repo_path": "Cubical/Structures/Relational/Auto.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Schippmunk/cubical",
"max_issues_repo_path": "Cubical/Structures/Relational/Auto.agda",
"max_line_length": 116,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Schippmunk/cubical",
"max_stars_repo_path": "Cubical/Structures/Relational/Auto.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3324,
"size": 9001
}
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module LogicalFormulae where
infix 5 _≡_
data _≡_ {a} {A : Set a} (x : A) : A → Set a where
refl : x ≡ x
{-# BUILTIN EQUALITY _≡_ #-}
data False : Set where
data False' {a : _} : Set a where
record True : Set where
{-# BUILTIN UNIT True #-}
record True' {a : _} : Set a where
infix 10 _||_
data _||_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
inl : A → A || B
inr : B → A || B
infix 15 _&&_
record _&&_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
constructor _,,_
field
fst : A
snd : B
equalityLeft : {a b : _} {A : Set a} {B : Set b} {x1 x2 : A && B} → (x1 ≡ x2) → _&&_.fst x1 ≡ _&&_.fst x2
equalityLeft {x1 = a ,, _} {.a ,, _} refl = refl
equalityRight : {a b : _} {A : Set a} {B : Set b} {x1 x2 : A && B} → (x1 ≡ x2) → _&&_.snd x1 ≡ _&&_.snd x2
equalityRight {x1 = _ ,, a} {_ ,, .a} refl = refl
infix 15 _&_&_
record _&_&_ {a b c} (A : Set a) (B : Set b) (C : Set c) : Set (a ⊔ b ⊔ c) where
field
one : A
two : B
three : C
data Sg {n : _} {m : _} (A : Set m) (B : A → Set n) : Set (m ⊔ n) where
_,_ : (a : A) → (b : B a) → Sg A B
underlying : {n m : _} {A : _} {prop : _} → Sg {n} {m} A prop -> A
underlying (a , b) = a
underlyingRefl : {n m : _} {A : _} {prop : _} → {r s : Sg {n} {m} A prop} → r ≡ s → underlying r ≡ underlying s
underlyingRefl {r = (a , b)} {(.a , .b)} refl = refl
transitivity : {a : _} {A : Set a} {x y z : A} → (x ≡ y) → (y ≡ z) → (x ≡ z)
transitivity refl refl = refl
liftEquality : {a : _} {A B : Set a} (f g : A → B) → (x y : A) → (f ≡ g) → (x ≡ y) → ((f x) ≡ (g y))
liftEquality f .f x .x refl refl = refl
applyEquality : {a : _} {b : _} {A : Set a} {B : Set b} (f : A → B) → {x y : A} → (x ≡ y) → ((f x) ≡ (f y))
applyEquality {A} {B} f {x} {.x} refl = refl
applyEquality2 : {a b c : _} {A : Set a} {B : Set b} {C : Set c} (f : A → B → C) → {x y : A} → (x ≡ y) → {m n : B} → (m ≡ n) → f x m ≡ f y n
applyEquality2 f x=y m=n rewrite x=y | m=n = refl
identityOfIndiscernablesLeft : {m n o : _} {A : Set m} {B : Set n} {a : A} {b : B} {c : A} → (prop : A → B → Set o) → (prop a b) → (a ≡ c) → (prop c b)
identityOfIndiscernablesLeft {a = a} {b} {.a} prop pAB refl = pAB
identityOfIndiscernablesRight : {m n o : _} {A : Set m} {B : Set n} {a : A} {b c : B} → (prop : A → B → Set o) → (prop a b) → (b ≡ c) → (prop a c)
identityOfIndiscernablesRight {a = a} {b} {.b} prop prAB refl = prAB
equalityCommutative : {a : _} {A : Set a} {x y : A} → (x ≡ y) → (y ≡ x)
equalityCommutative refl = refl
exFalso : {n : _} {A : Set n} → .(x : False) → A
exFalso {a} = λ ()
exFalso' : {r n : _} {A : Set n} → .(x : False' {r}) → A
exFalso' ()
orIsAssociative : {n : _} {a b c : Set n} → ((a || b) || c) → (a || (b || c))
orIsAssociative (inl (inl x)) = inl x
orIsAssociative (inl (inr x)) = inr (inl x)
orIsAssociative (inr x) = inr (inr x)
lemConstructive : {n : _} → {p : Set n} → (p || (p → False)) → (((p → False) → False) → p)
lemConstructive (inl p) = λ _ → p
lemConstructive (inr notP) = λ negnegP → exFalso (negnegP notP)
lemConverse : {n : _} → {p : Set n} → p → ((p → False) → False)
lemConverse p = λ notP → notP p
typeCast : {a : _} {A : Set a} {B : Set a} (el : A) (pr : A ≡ B) → B
typeCast {a} {A} {.A} elt refl = elt
data Singleton {a} {A : Set a} (x : A) : Set a where
_with≡_ : (y : A) → x ≡ y → Singleton x
inspect : ∀ {a} {A : Set a} (x : A) → Singleton x
inspect x = x with≡ refl
curry : {a b c : _} {A : Set a} {B : Set b} {C : Set c} (f : A → B → C) → ((Sg A (λ _ → B)) → C)
curry f (a , b) = f a b
uncurry : {a b c : _} {A : Set a} {B : Set b} {C : Set c} (f : (Sg A (λ _ → B)) → C) → (A → B → C)
uncurry f a b = f (a , b)
decidableOr : {a b : _} → (A : Set a) → (B : Set b) → (A || (A → False)) → (A || B) → (A || ((A → False) && B))
decidableOr {a} {b} A B decidable (inl x) = inl x
decidableOr {a} {b} A B (inl y) (inr x) = inl y
decidableOr {a} {b} A B (inr y) (inr x) = inr (record { fst = y ; snd = x})
embedLevel : {a b : _} → Set a → Set (a ⊔ b)
embedLevel {a} {b} A = A && (True' {b})
|
{
"alphanum_fraction": 0.5020616056,
"avg_line_length": 35.852173913,
"ext": "agda",
"hexsha": "0acefc96baa3822960f481627da1bf86d206c69e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "LogicalFormulae.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "LogicalFormulae.agda",
"max_line_length": 151,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "LogicalFormulae.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 1861,
"size": 4123
}
|
------------------------------------------------------------------------
-- A variant of set quotients with erased higher constructors
------------------------------------------------------------------------
-- This module contains some basic definitions with few dependencies
-- (in particular, not Quotient). See Quotient.Erased for more
-- definitions. The definitions below are reexported from
-- Quotient.Erased.
{-# OPTIONS --erased-cubical --safe #-}
-- Partly following the HoTT book, but adapted for erasure.
--
-- Unlike the HoTT book, but following the cubical library (in which
-- set quotients were implemented by Zesen Qian and Anders Mörtberg),
-- the quotienting relations are not (always) required to be
-- propositional.
-- The module is parametrised by a notion of equality. The higher
-- constructors of the HIT defining quotients use path equality, but
-- the supplied notion of equality is used for many other things.
import Equality.Path as P
module Quotient.Erased.Basics
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq hiding (elim)
open import Prelude
open import Bijection equality-with-J using (_↔_)
open import Equality.Path.Isomorphisms eq
open import Function-universe equality-with-J hiding (_∘_)
open import H-level equality-with-J
import H-level P.equality-with-J as PH
open import H-level.Closure equality-with-J
private
variable
a b p r : Level
A B : Type a
R : A → A → Type r
x y : A
------------------------------------------------------------------------
-- Quotients
-- The quotient type constructor.
infix 5 _/ᴱ_
data _/ᴱ_ (A : Type a) (@0 R : A → A → Type r) : Type (a ⊔ r) where
[_] : A → A /ᴱ R
@0 []-respects-relationᴾ : {x y : A} → R x y → [ x ] P.≡ [ y ]
@0 /ᴱ-is-setᴾ : P.Is-set (A /ᴱ R)
-- [_] respects the quotient relation (in erased contexts).
@0 []-respects-relation : R x y → _≡_ {A = A /ᴱ R} [ x ] [ y ]
[]-respects-relation = _↔_.from ≡↔≡ ∘ []-respects-relationᴾ
-- Quotients are sets (in erased contexts).
@0 /ᴱ-is-set : Is-set (A /ᴱ R)
/ᴱ-is-set = _↔_.from (H-level↔H-level 2) /ᴱ-is-setᴾ
------------------------------------------------------------------------
-- Eliminators
-- An eliminator, expressed using paths.
record Elimᴾ′ {A : Type a} {@0 R : A → A → Type r}
(P : A /ᴱ R → Type p) :
Type (a ⊔ r ⊔ p) where
no-eta-equality
field
[]ʳ : ∀ x → P [ x ]
@0 []-respects-relationʳ :
(r : R x y) →
P.[ (λ i → P ([]-respects-relationᴾ r i)) ] []ʳ x ≡ []ʳ y
@0 is-setʳ :
{eq₁ eq₂ : x P.≡ y} {p : P x} {q : P y}
(eq₃ : P.[ (λ i → P (eq₁ i)) ] p ≡ q)
(eq₄ : P.[ (λ i → P (eq₂ i)) ] p ≡ q) →
P.[ (λ i → P.[ (λ j → P (/ᴱ-is-setᴾ eq₁ eq₂ i j)) ] p ≡ q) ]
eq₃ ≡ eq₄
open Elimᴾ′ public
elimᴾ′ :
{@0 R : A → A → Type r}
{P : A /ᴱ R → Type p} →
Elimᴾ′ P → (x : A /ᴱ R) → P x
elimᴾ′ {A = A} {R = R} {P = P} e = helper
where
module E = Elimᴾ′ e
helper : (x : A /ᴱ R) → P x
helper [ x ] = E.[]ʳ x
helper ([]-respects-relationᴾ r i) = E.[]-respects-relationʳ r i
helper (/ᴱ-is-setᴾ p q i j) =
E.is-setʳ (λ i → helper (p i)) (λ i → helper (q i)) i j
-- A possibly more useful eliminator, expressed using paths.
record Elimᴾ {A : Type a} {@0 R : A → A → Type r}
(P : A /ᴱ R → Type p) :
Type (a ⊔ r ⊔ p) where
no-eta-equality
field
[]ʳ : ∀ x → P [ x ]
@0 []-respects-relationʳ :
(r : R x y) →
P.[ (λ i → P ([]-respects-relationᴾ r i)) ] []ʳ x ≡ []ʳ y
@0 is-setʳ : ∀ x → P.Is-set (P x)
open Elimᴾ public
elimᴾ :
{@0 R : A → A → Type r}
{P : A /ᴱ R → Type p} →
Elimᴾ P → (x : A /ᴱ R) → P x
elimᴾ e = elimᴾ′ λ where
.[]ʳ → E.[]ʳ
.[]-respects-relationʳ → E.[]-respects-relationʳ
.is-setʳ → P.heterogeneous-UIP E.is-setʳ _
where
module E = Elimᴾ e
private
-- One can define elimᴾ′ using elimᴾ.
elimᴾ′₂ :
{@0 R : A → A → Type r}
{P : A /ᴱ R → Type p} →
Elimᴾ′ P → (x : A /ᴱ R) → P x
elimᴾ′₂ {P = P} e = elimᴾ λ where
.[]ʳ → E.[]ʳ
.[]-respects-relationʳ → E.[]-respects-relationʳ
.is-setʳ x {y} {z} p q → $⟨ E.is-setʳ p q ⟩
P.[ (λ i →
P.[ (λ j → P (/ᴱ-is-setᴾ P.refl P.refl i j)) ] y ≡ z) ]
p ≡ q ↝⟨ P.subst (λ eq → P.[ (λ i → P.[ (λ j → P (eq i j)) ] y ≡ z) ] p ≡ q)
(PH.mono₁ 2 /ᴱ-is-setᴾ _ _) ⟩
P.[ (λ _ → P.[ (λ _ → P x) ] y ≡ z) ] p ≡ q ↔⟨⟩
p P.≡ q □
where
module E = Elimᴾ′ e
-- A non-dependent eliminator, expressed using paths.
record Recᴾ {A : Type a} (@0 R : A → A → Type r) (B : Type b) :
Type (a ⊔ r ⊔ b) where
no-eta-equality
field
[]ʳ : A → B
@0 []-respects-relationʳ : (r : R x y) → []ʳ x P.≡ []ʳ y
@0 is-setʳ : P.Is-set B
open Recᴾ public
recᴾ :
{@0 R : A → A → Type r} →
Recᴾ R B → A /ᴱ R → B
recᴾ r = elimᴾ λ where
.[]ʳ → R.[]ʳ
.[]-respects-relationʳ → R.[]-respects-relationʳ
.is-setʳ _ → R.is-setʳ
where
module R = Recᴾ r
-- An eliminator.
record Elim {A : Type a} {@0 R : A → A → Type r}
(P : A /ᴱ R → Type p) :
Type (a ⊔ r ⊔ p) where
no-eta-equality
field
[]ʳ : ∀ x → P [ x ]
@0 []-respects-relationʳ :
(r : R x y) →
subst P ([]-respects-relation r) ([]ʳ x) ≡ []ʳ y
@0 is-setʳ : ∀ x → Is-set (P x)
open Elim public
elim :
{@0 R : A → A → Type r}
{P : A /ᴱ R → Type p} →
Elim P → (x : A /ᴱ R) → P x
elim e = elimᴾ λ where
.[]ʳ → E.[]ʳ
.[]-respects-relationʳ → subst≡→[]≡ ∘ E.[]-respects-relationʳ
.is-setʳ → _↔_.to (H-level↔H-level 2) ∘ E.is-setʳ
where
module E = Elim e
-- A non-dependent eliminator.
record Rec {A : Type a} (@0 R : A → A → Type r) (B : Type b) :
Type (a ⊔ r ⊔ b) where
no-eta-equality
field
[]ʳ : A → B
@0 []-respects-relationʳ : (r : R x y) → []ʳ x ≡ []ʳ y
@0 is-setʳ : Is-set B
open Rec public
rec :
{@0 R : A → A → Type r} →
Rec R B → A /ᴱ R → B
rec r = recᴾ λ where
.[]ʳ → R.[]ʳ
.[]-respects-relationʳ → _↔_.to ≡↔≡ ∘ R.[]-respects-relationʳ
.is-setʳ → _↔_.to (H-level↔H-level 2) R.is-setʳ
where
module R = Rec r
-- A variant of elim that can be used if the motive composed with [_]
-- is a family of propositions.
--
-- I took the idea for this eliminator from Nicolai Kraus.
record Elim-prop
{A : Type a} {@0 R : A → A → Type r}
(P : A /ᴱ R → Type p) :
Type (a ⊔ r ⊔ p) where
no-eta-equality
field
[]ʳ : ∀ x → P [ x ]
@0 is-propositionʳ : ∀ x → Is-proposition (P [ x ])
open Elim-prop public
elim-prop :
{@0 R : A → A → Type r}
{P : A /ᴱ R → Type p} →
Elim-prop P → (x : A /ᴱ R) → P x
elim-prop e = elim λ where
.[]ʳ → E.[]ʳ
.[]-respects-relationʳ _ → E.is-propositionʳ _ _ _
.is-setʳ → elim λ @0 where
.[]ʳ → mono₁ 1 ∘ E.is-propositionʳ
.[]-respects-relationʳ _ → H-level-propositional ext 2 _ _
.is-setʳ _ → mono₁ 1 (H-level-propositional ext 2)
where
module E = Elim-prop e
-- A variant of rec that can be used if the motive is a proposition.
record Rec-prop (A : Type a) (B : Type b) : Type (a ⊔ b) where
no-eta-equality
field
[]ʳ : A → B
@0 is-propositionʳ : Is-proposition B
open Rec-prop public
rec-prop :
{@0 R : A → A → Type r} →
Rec-prop A B → A /ᴱ R → B
rec-prop r = elim-prop λ where
.[]ʳ → R.[]ʳ
.is-propositionʳ _ → R.is-propositionʳ
where
module R = Rec-prop r
|
{
"alphanum_fraction": 0.4830989391,
"avg_line_length": 29.2635379061,
"ext": "agda",
"hexsha": "01120f9653f1a417d8ffdadbb21a3f082c6abb8f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Quotient/Erased/Basics.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Quotient/Erased/Basics.agda",
"max_line_length": 142,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Quotient/Erased/Basics.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 2976,
"size": 8106
}
|
module conversion where
open import lib
open import cedille-types
open import ctxt
open import is-free
open import lift
open import rename
open import subst
open import syntax-util
open import general-util
open import erase
{- Some notes:
-- hnf{TERM} implements erasure as well as normalization.
-- hnf{TYPE} does not descend into terms.
-- definitions are assumed to be in hnf
-}
data unfolding : Set where
no-unfolding : unfolding
unfold : (unfold-all : 𝔹) {- if ff we unfold just the head -}
→ (unfold-lift : 𝔹) {- if tt we unfold lifting types -}
→ (dampen-after-head-beta : 𝔹) {- if tt we will not unfold definitions after a head beta reduction -}
→ (erase : 𝔹) -- if tt erase the term as we unfold
→ unfolding
unfolding-get-erased : unfolding → 𝔹
unfolding-get-erased no-unfolding = ff
unfolding-get-erased (unfold _ _ _ e) = e
unfolding-set-erased : unfolding → 𝔹 → unfolding
unfolding-set-erased no-unfolding e = no-unfolding
unfolding-set-erased (unfold b1 b2 b3 _) e = unfold b1 b2 b3 e
unfold-all : unfolding
unfold-all = unfold tt tt ff tt
unfold-head : unfolding
unfold-head = unfold ff tt ff tt
unfold-head-no-lift : unfolding
unfold-head-no-lift = unfold ff ff ff ff
unfold-head-one : unfolding
unfold-head-one = unfold ff tt tt tt
unfold-dampen : (after-head-beta : 𝔹) → unfolding → unfolding
unfold-dampen _ no-unfolding = no-unfolding
unfold-dampen _ (unfold tt b b' e) = unfold tt b b e -- we do not dampen unfolding when unfolding everywhere
unfold-dampen tt (unfold ff b tt e) = no-unfolding
unfold-dampen tt (unfold ff b ff e) = (unfold ff b ff e)
unfold-dampen ff _ = no-unfolding
unfolding-elab : unfolding → unfolding
unfolding-elab no-unfolding = no-unfolding
unfolding-elab (unfold b b' b'' _) = unfold b b' b'' ff
conv-t : Set → Set
conv-t T = ctxt → T → T → 𝔹
{-# TERMINATING #-}
-- main entry point
-- does not assume erased
conv-term : conv-t term
conv-type : conv-t type
conv-kind : conv-t kind
-- assume erased
conv-terme : conv-t term
conv-argse : conv-t (𝕃 term)
conv-typee : conv-t type
conv-kinde : conv-t kind
-- call hnf, then the conv-X-norm functions
conv-term' : conv-t term
conv-type' : conv-t type
hnf : {ed : exprd} → ctxt → (u : unfolding) → ⟦ ed ⟧ → (is-head : 𝔹) → ⟦ ed ⟧
-- assume head normalized inputs
conv-term-norm : conv-t term
conv-type-norm : conv-t type
conv-kind-norm : conv-t kind
hnf-optClass : ctxt → unfolding → optClass → optClass
-- hnf-tk : ctxt → unfolding → tk → tk
-- does not assume erased
conv-tk : conv-t tk
conv-liftingType : conv-t liftingType
conv-optClass : conv-t optClass
-- conv-optType : conv-t optType
conv-tty* : conv-t (𝕃 tty)
-- assume erased
conv-tke : conv-t tk
conv-liftingTypee : conv-t liftingType
conv-optClasse : conv-t optClass
-- -- conv-optTypee : conv-t optType
conv-ttye* : conv-t (𝕃 tty)
conv-ctr-ps : ctxt → var → var → maybe (𝕃 (var × type) × 𝕃 (var × type))
conv-ctr-args : conv-t (var × args)
conv-ctr : conv-t var
conv-term Γ t t' = conv-terme Γ (erase t) (erase t')
conv-terme Γ t t' with decompose-apps t | decompose-apps t'
conv-terme Γ t t' | Var _ x , args | Var _ x' , args' =
ctxt-eq-rep Γ x x' && conv-argse Γ (erase-args args) (erase-args args')
|| conv-ctr-args Γ (x , args) (x' , args')
|| conv-term' Γ t t'
conv-terme Γ t t' | _ | _ = conv-term' Γ t t'
conv-argse Γ [] [] = tt
conv-argse Γ (a :: args) (a' :: args') = conv-terme Γ a a' && conv-argse Γ args args'
conv-argse Γ _ _ = ff
conv-type Γ t t' = conv-typee Γ (erase t) (erase t')
conv-typee Γ t t' with decompose-tpapps t | decompose-tpapps t'
conv-typee Γ t t' | TpVar _ x , args | TpVar _ x' , args' =
ctxt-eq-rep Γ x x' && conv-tty* Γ args args'
|| conv-type' Γ t t'
conv-typee Γ t t' | _ | _ = conv-type' Γ t t'
conv-kind Γ k k' = conv-kinde Γ (erase k) (erase k')
conv-kinde Γ k k' = conv-kind-norm Γ (hnf Γ unfold-head k tt) (hnf Γ unfold-head k' tt)
conv-term' Γ t t' = conv-term-norm Γ (hnf Γ unfold-head t tt) (hnf Γ unfold-head t' tt)
conv-type' Γ t t' = conv-type-norm Γ (hnf Γ unfold-head t tt) (hnf Γ unfold-head t' tt)
-- is-head is only used in hnf{TYPE}
hnf{TERM} Γ no-unfolding e hd = erase-term e
hnf{TERM} Γ u (Parens _ t _) hd = hnf Γ u t hd
hnf{TERM} Γ u (App t1 Erased t2) hd = hnf Γ u t1 hd
hnf{TERM} Γ u (App t1 NotErased t2) hd with hnf Γ u t1 hd
hnf{TERM} Γ u (App _ NotErased t2) hd | Lam _ _ _ x _ t1 = hnf Γ (unfold-dampen tt u) (subst Γ t2 x t1) hd
hnf{TERM} Γ u (App _ NotErased t2) hd | t1 = App t1 NotErased (hnf Γ (unfold-dampen ff u) t2 ff)
hnf{TERM} Γ u (Lam _ Erased _ _ _ t) hd = hnf Γ u t hd
hnf{TERM} Γ u (Lam _ NotErased _ x oc t) hd with hnf (ctxt-var-decl x Γ) u t hd
hnf{TERM} Γ u (Lam _ NotErased _ x oc t) hd | (App t' NotErased (Var _ x')) with x =string x' && ~ (is-free-in skip-erased x t')
hnf{TERM} Γ u (Lam _ NotErased _ x oc t) hd | (App t' NotErased (Var _ x')) | tt = t' -- eta-contraction
hnf{TERM} Γ u (Lam _ NotErased _ x oc t) hd | (App t' NotErased (Var _ x')) | ff =
Lam posinfo-gen NotErased posinfo-gen x NoClass (App t' NotErased (Var posinfo-gen x'))
hnf{TERM} Γ u (Lam _ NotErased _ x oc t) hd | t' = Lam posinfo-gen NotErased posinfo-gen x NoClass t'
hnf{TERM} Γ u (Let _ ff (DefTerm _ x _ t) t') hd = hnf Γ u (subst Γ t x t') hd
hnf{TERM} Γ u (Let _ tt (DefTerm _ x _ t) t') hd = hnf Γ u t' hd
hnf{TERM} Γ u (Let _ fe (DefType _ x _ _) t') hd = hnf (ctxt-var-decl x Γ) u t' hd
hnf{TERM} Γ (unfold _ _ _ _) (Var _ x) hd with ctxt-lookup-term-var-def Γ x
hnf{TERM} Γ (unfold _ _ _ _) (Var _ x) hd | nothing = Var posinfo-gen x
hnf{TERM} Γ (unfold ff _ _ e) (Var _ x) hd | just t = erase-if e t -- definitions should be stored in hnf
hnf{TERM} Γ (unfold tt b b' e) (Var _ x) hd | just t = hnf Γ (unfold tt b b' e) t hd -- this might not be fully normalized, only head-normalized
hnf{TERM} Γ u (AppTp t tp) hd = hnf Γ u t hd
hnf{TERM} Γ u (Sigma _ t) hd = hnf Γ u t hd
hnf{TERM} Γ u (Epsilon _ _ _ t) hd = hnf Γ u t hd
hnf{TERM} Γ u (IotaPair _ t1 t2 _ _) hd = hnf Γ u t1 hd
hnf{TERM} Γ u (IotaProj t _ _) hd = hnf Γ u t hd
hnf{TERM} Γ u (Phi _ eq t₁ t₂ _) hd = hnf Γ u t₂ hd
hnf{TERM} Γ u (Rho _ _ _ t _ t') hd = hnf Γ u t' hd
hnf{TERM} Γ u (Chi _ T t') hd = hnf Γ u t' hd
hnf{TERM} Γ u (Delta _ T t') hd = id-term
hnf{TERM} Γ u (Theta _ u' t ls) hd = hnf Γ u (lterms-to-term u' t ls) hd
hnf{TERM} Γ u (Beta _ _ (SomeTerm t _)) hd = hnf Γ u t hd
hnf{TERM} Γ u (Beta _ _ NoTerm) hd = id-term
hnf{TERM} Γ u (Open _ _ _ _ t) hd = hnf Γ u t hd
hnf{TERM} Γ u (Mu' _ _ t _ _ cs _) hd with decompose-apps (hnf Γ u t hd)
hnf{TERM} Γ u (Mu' _ _ t _ _ cs _) hd | tₕ , as with Mu' pi-gen NoTerm (recompose-apps as tₕ) NoType pi-gen (map (λ {(Case _ x as' t) → Case pi-gen x as' (hnf (foldr (λ {(CaseTermArg _ NotErased x) → ctxt-var-decl x; _ → id}) Γ as') (unfold-dampen ff u) t hd)}) (erase-cases cs)) pi-gen | tₕ
hnf{TERM} Γ u (Mu' _ _ t _ _ cs _) hd | _ , as | tₒ | Var _ x with foldl (λ {(Case _ xₘ cas tₘ) m? → m? maybe-or (conv-ctr-ps Γ xₘ x ≫=maybe uncurry λ psₘ ps → just (caseArgs-to-lams cas tₘ , length (erase-caseArgs cas) , length ps))}) nothing (erase-cases cs)
hnf{TERM} Γ u (Mu' _ _ t _ _ cs _) hd | _ , as | tₒ | Var _ x | just (tₓ , nas , nps) with drop nps (erase-args as)
hnf{TERM} Γ u (Mu' _ _ t _ _ cs _) hd | _ , as | tₒ | Var _ x | just (tₓ , nas , nps) | as' with nas =ℕ length as'
hnf{TERM} Γ u (Mu' _ _ t _ _ cs _) hd | _ , as | tₒ | Var _ x | just (tₓ , nas , nps) | as' | tt = hnf Γ (unfold-dampen tt u) (recompose-apps (map (TermArg NotErased) as') tₓ) hd
hnf{TERM} Γ u (Mu' _ _ t _ _ cs _) hd | _ , as | tₒ | Var _ x | just (tₓ , nas , nps) | as' | ff = tₒ
hnf{TERM} Γ u (Mu' _ _ t _ _ cs _) hd | _ , as | tₒ | Var _ x | nothing = tₒ
hnf{TERM} Γ u (Mu' _ _ t _ _ cs _) hd | _ , as | tₒ | _ = tₒ
hnf{TERM} Γ u (Mu _ _ x t _ _ cs _) hd with decompose-apps (hnf Γ u t hd)
hnf{TERM} Γ u (Mu _ _ x t _ _ cs _) hd | tₕ , as with (λ t → Mu pi-gen pi-gen x t NoType pi-gen (map (λ {(Case _ x as' t) → Case pi-gen x as' (hnf (foldr (λ {(CaseTermArg _ NotErased x) → ctxt-var-decl x; _ → id}) Γ as') (unfold-dampen ff u) t hd)}) (erase-cases cs)) pi-gen) | tₕ
hnf{TERM} Γ u (Mu _ _ x t _ _ cs _) hd | tₕ , as | tₒ | Var _ x' with foldl (λ {(Case _ xₘ cas tₘ) m? → m? maybe-or (conv-ctr-ps Γ xₘ x' ≫=maybe uncurry λ psₘ ps → just (caseArgs-to-lams cas tₘ , length (erase-caseArgs cas) , length ps))}) nothing (erase-cases cs) | fresh-var "x" (ctxt-binds-var Γ) empty-renamectxt
hnf{TERM} Γ u (Mu _ _ x t _ _ cs _) hd | tₕ , as | tₒ | Var _ x' | just (tₓ , nas , nps) | fₓ with drop nps (erase-args as)
hnf{TERM} Γ u (Mu _ _ x t _ _ cs _) hd | tₕ , as | tₒ | Var _ x' | just (tₓ , nas , nps) | fₓ | as' with nas =ℕ length as'
hnf{TERM} Γ u (Mu _ _ x t _ _ cs _) hd | tₕ , as | tₒ | Var _ x' | just (tₓ , nas , nps) | fₓ | as' | tt = hnf Γ (unfold-dampen tt u) (recompose-apps (map (TermArg NotErased) as') (subst Γ (mlam fₓ $ tₒ $ mvar fₓ) x tₓ)) hd
hnf{TERM} Γ u (Mu _ _ x t _ _ cs _) hd | tₕ , as | tₒ | Var _ x' | just (tₓ , nas , nps) | fₓ | as' | ff = tₒ $ recompose-apps (map (TermArg NotErased) as') tₕ
hnf{TERM} Γ u (Mu _ _ x t _ _ cs _) hd | tₕ , as | tₒ | Var _ x' | nothing | fₓ = tₒ $ recompose-apps as tₕ
hnf{TERM} Γ u (Mu _ _ x t _ _ cs _) hd | tₕ , as | tₒ | _ = tₒ $ recompose-apps as tₕ
hnf{TERM} Γ u x hd = x
hnf{TYPE} Γ no-unfolding e _ = e
hnf{TYPE} Γ u (TpParens _ t _) hd = hnf Γ u t hd
hnf{TYPE} Γ u (NoSpans t _) hd = hnf Γ u t hd
hnf{TYPE} Γ (unfold ff b' _ _) (TpVar _ x) ff = TpVar posinfo-gen x
hnf{TYPE} Γ (unfold b b' _ _) (TpVar _ x) _ with ctxt-lookup-type-var-def Γ x
hnf{TYPE} Γ (unfold b b' _ _) (TpVar _ x) _ | just tp = tp
hnf{TYPE} Γ (unfold b b' _ _) (TpVar _ x) _ | nothing = TpVar posinfo-gen x
hnf{TYPE} Γ u (TpAppt tp t) hd with hnf Γ u tp hd
hnf{TYPE} Γ u (TpAppt _ t) hd | TpLambda _ _ x _ tp = hnf Γ u (subst Γ t x tp) hd
hnf{TYPE} Γ u (TpAppt _ t) hd | tp = TpAppt tp (erase-if (unfolding-get-erased u) t)
hnf{TYPE} Γ u (TpApp tp tp') hd with hnf Γ u tp hd
hnf{TYPE} Γ u (TpApp _ tp') hd | TpLambda _ _ x _ tp = hnf Γ u (subst Γ tp' x tp) hd
hnf{TYPE} Γ u (TpApp _ tp') hd | tp with hnf Γ u tp' hd
hnf{TYPE} Γ u (TpApp _ _) hd | tp | tp' = try-pull-lift-types tp tp'
{- given (T1 T2), with T1 and T2 types, see if we can pull a lifting operation from the heads of T1 and T2 to
surround the entire application. If not, just return (T1 T2). -}
where try-pull-lift-types : type → type → type
try-pull-lift-types tp1 tp2 with decompose-tpapps tp1 | decompose-tpapps (hnf Γ u tp2 tt)
try-pull-lift-types tp1 tp2 | Lft _ _ X t l , args1 | Lft _ _ X' t' l' , args2 =
if conv-tty* Γ args1 args2 then
try-pull-term-in Γ t l (length args1) [] []
else
TpApp tp1 tp2
where try-pull-term-in : ctxt → term → liftingType → ℕ → 𝕃 var → 𝕃 liftingType → type
try-pull-term-in Γ t (LiftParens _ l _) n vars ltps = try-pull-term-in Γ t l n vars ltps
try-pull-term-in Γ t (LiftArrow _ l) 0 vars ltps =
recompose-tpapps args1
(Lft posinfo-gen posinfo-gen X
(Lam* vars (hnf Γ no-unfolding (App t NotErased (App* t' (map (λ v → NotErased , mvar v) vars))) tt))
(LiftArrow* ltps l))
try-pull-term-in Γ (Lam _ _ _ x _ t) (LiftArrow l1 l2) (suc n) vars ltps =
try-pull-term-in (ctxt-var-decl x Γ) t l2 n (x :: vars) (l1 :: ltps)
try-pull-term-in Γ t (LiftArrow l1 l2) (suc n) vars ltps =
let x = fresh-var "x" (ctxt-binds-var Γ) empty-renamectxt in
try-pull-term-in (ctxt-var-decl x Γ) (App t NotErased (mvar x)) l2 n (x :: vars) (l1 :: ltps)
try-pull-term-in Γ t l n vars ltps = TpApp tp1 tp2
try-pull-lift-types tp1 tp2 | _ | _ = TpApp tp1 tp2
hnf{TYPE} Γ u@(unfold all? _ _ _) (Abs _ b _ x atk tp) _
with Abs posinfo-gen b posinfo-gen x (hnf Γ u atk ff) (hnf (ctxt-var-decl x Γ) u tp ff)
hnf{TYPE} Γ u (Abs _ b _ x atk tp) _ | tp' with to-abs tp'
hnf{TYPE} Γ u (Abs _ _ _ _ _ _) _ | tp'' | just (mk-abs b x atk tt {- x is free in tp -} tp) = Abs posinfo-gen b posinfo-gen x atk tp
hnf{TYPE} Γ u (Abs _ _ _ _ _ _) _ | tp'' | just (mk-abs b x (Tkk k) ff tp) = Abs posinfo-gen b posinfo-gen x (Tkk k) tp
hnf{TYPE} Γ u (Abs _ _ _ _ _ _) _ | tp'' | just (mk-abs b x (Tkt tp') ff tp) = TpArrow tp' b tp
hnf{TYPE} Γ u (Abs _ _ _ _ _ _) _ | tp'' | nothing = tp''
hnf{TYPE} Γ u (TpArrow tp1 arrowtype tp2) _ = TpArrow (hnf Γ u tp1 ff) arrowtype (hnf Γ u tp2 ff)
hnf{TYPE} Γ u (TpEq _ t1 t2 _) _
= TpEq posinfo-gen (erase t1) (erase t2) posinfo-gen
hnf{TYPE} Γ u (TpLambda _ _ x atk tp) _ =
TpLambda posinfo-gen posinfo-gen x (hnf Γ u atk ff) (hnf (ctxt-var-decl x Γ) u tp ff)
hnf{TYPE} Γ u @ (unfold b tt b'' b''') (Lft _ _ y t l) _ =
let t = hnf (ctxt-var-decl y Γ) u t tt in
do-lift Γ (Lft posinfo-gen posinfo-gen y t l) y l (λ t → hnf{TERM} Γ unfold-head t ff) t
-- We need hnf{TYPE} to preserve types' well-kindedness, so we must check if
-- the defined term is being checked against a type and use chi to make sure
-- that wherever it is substituted, the term will have the same directionality.
-- For example, "[e ◂ {a ≃ b} = ρ e' - β] - A (ρ e - a)", would otherwise
-- head-normalize to A (ρ (ρ e' - β) - a), which wouldn't check because it
-- synthesizes the type of "ρ e' - β" (which in turn fails to synthesize the type
-- of "β"). Similar issues could happen if the term is synthesized and it uses a ρ,
-- and then substitutes into a place where it would be checked against a type.
hnf{TYPE} Γ u (TpLet _ (DefTerm _ x ot t) T) hd =
hnf Γ u (subst Γ (Chi posinfo-gen ot t) x T) hd
-- Note that if we ever remove the requirement that type-lambdas have a classifier,
-- we would need to introduce a type-level chi to do the same thing as above.
-- Currently, synthesizing or checking a type should not make a difference.
hnf{TYPE} Γ u (TpLet _ (DefType _ x k T) T') hd = hnf Γ u (subst Γ T x T') hd
hnf{TYPE} Γ u x _ = x
hnf{KIND} Γ no-unfolding e hd = e
hnf{KIND} Γ u (KndParens _ k _) hd = hnf Γ u k hd
hnf{KIND} Γ u@(unfold a _ _ _) (KndVar _ x ys) hd with ctxt-lookup-kind-var-def Γ x
... | nothing = KndVar posinfo-gen x ys
... | just (zs , k) with a | subst-params-args Γ zs ys k
... | tt | (kᵢ , [] , []) = hnf Γ u kᵢ hd
... | ff | (kᵢ , [] , []) = kᵢ
... | tf | (kᵢ , ps , as) = KndVar pi-gen x ys
hnf{KIND} Γ u@(unfold a _ _ _) (KndPi _ _ x atk k) hd =
if is-free-in check-erased x k then
KndPi posinfo-gen posinfo-gen x atk (if a then hnf (ctxt-var-decl x Γ) u k ff else k)
else
tk-arrow-kind atk (if a then hnf Γ u k ff else k)
hnf{KIND} Γ u@(unfold tt _ _ _) (KndArrow k k') hd =
KndArrow (hnf Γ u k ff) (hnf Γ u k' ff)
hnf{KIND} Γ u@(unfold tt _ _ _) (KndTpArrow T k) hd =
KndTpArrow (hnf Γ u T ff) (hnf Γ u k ff)
hnf{KIND} Γ u x hd = x
hnf{LIFTINGTYPE} Γ u x hd = x
hnf{TK} Γ u (Tkk k) _ = Tkk (hnf Γ u k tt)
hnf{TK} Γ u (Tkt tp) _ = Tkt (hnf Γ u tp ff)
hnf{QUALIF} Γ u x hd = x
hnf{ARG} Γ u x hd = x
hnf-optClass Γ u NoClass = NoClass
hnf-optClass Γ u (SomeClass atk) = SomeClass (hnf Γ u atk ff)
{- this function reduces a term to "head-applicative" normal form,
which avoids unfolding definitions if they would lead to a top-level
lambda-abstraction or top-level application headed by a variable for which we
do not have a (global) definition. -}
{-# TERMINATING #-}
hanf : ctxt → (e : 𝔹) → term → term
hanf Γ e t with hnf Γ (unfolding-set-erased unfold-head-one e) t tt
hanf Γ e t | t' with decompose-apps t'
hanf Γ e t | t' | (Var _ x) , [] = t'
hanf Γ e t | t' | (Var _ x) , args with ctxt-lookup-term-var-def Γ x
hanf Γ e t | t' | (Var _ x) , args | nothing = t'
hanf Γ e t | t' | (Var _ x) , args | just _ = hanf Γ e t'
hanf Γ e t | t' | h , args {- h could be a Lambda if args is [] -} = t
-- unfold across the term-type barrier
hnf-term-type : ctxt → (e : 𝔹) → type → type
hnf-term-type Γ e (TpEq _ t1 t2 _) = TpEq posinfo-gen (hanf Γ e t1) (hanf Γ e t2) posinfo-gen
hnf-term-type Γ e (TpAppt tp t) = hnf Γ (unfolding-set-erased unfold-head e) (TpAppt tp (hanf Γ e t)) tt
hnf-term-type Γ e tp = hnf Γ unfold-head tp tt
conv-cases : conv-t cases
conv-cases Γ cs₁ cs₂ = isJust $ foldl (λ c₂ x → x ≫=maybe λ cs₁ → conv-cases' Γ cs₁ c₂) (just cs₁) cs₂ where
conv-cases' : ctxt → cases → case → maybe cases
conv-cases' Γ [] (Case _ x₂ as₂ t₂) = nothing
conv-cases' Γ (c₁ @ (Case _ x₁ as₁ t₁) :: cs₁) c₂ @ (Case _ x₂ as₂ t₂) with conv-ctr Γ x₁ x₂
...| ff = conv-cases' Γ cs₁ c₂ ≫=maybe λ cs₁ → just (c₁ :: cs₁)
...| tt = maybe-if (length as₂ =ℕ length as₁ && conv-term Γ (snd (expand-case c₁)) (snd (expand-case (Case pi-gen x₂ as₂ t₂)))) ≫maybe just cs₁
ctxt-term-udef : posinfo → defScope → opacity → var → term → ctxt → ctxt
conv-term-norm Γ (Var _ x) (Var _ x') = ctxt-eq-rep Γ x x' || conv-ctr Γ x x'
-- hnf implements erasure for terms, so we can ignore some subterms for App and Lam cases below
conv-term-norm Γ (App t1 m t2) (App t1' m' t2') = conv-term-norm Γ t1 t1' && conv-term Γ t2 t2'
conv-term-norm Γ (Lam _ l _ x oc t) (Lam _ l' _ x' oc' t') = conv-term (ctxt-rename x x' (ctxt-var-decl-if x' Γ)) t t'
conv-term-norm Γ (Hole _) _ = tt
conv-term-norm Γ _ (Hole _) = tt
conv-term-norm Γ (Mu _ _ x₁ t₁ _ _ cs₁ _) (Mu _ _ x₂ t₂ _ _ cs₂ _) =
let --fₓ = fresh-var x₂ (ctxt-binds-var Γ) empty-renamectxt
--μ = mlam fₓ $ Mu pi-gen pi-gen x₂ (mvar fₓ) NoType pi-gen cs₂ pi-gen
Γ' = ctxt-rename x₁ x₂ $ ctxt-var-decl x₂ Γ in --ctxt-term-udef pi-gen localScope OpacTrans x₂ μ Γ in
conv-term Γ t₁ t₂ && conv-cases Γ' cs₁ cs₂ -- (subst-cases Γ' id-term (mu-name-cast x₁) cs₁) (subst-cases Γ' id-term (mu-name-cast x₂) cs₂)
conv-term-norm Γ (Mu' _ _ t₁ _ _ cs₁ _) (Mu' _ _ t₂ _ _ cs₂ _) = conv-term Γ t₁ t₂ && conv-cases Γ cs₁ cs₂
{- it can happen that a term is equal to a lambda abstraction in head-normal form,
if that lambda-abstraction would eta-contract following some further beta-reductions.
We implement this here by implicitly eta-expanding the variable and continuing
the comparison.
A simple example is
λ v . t ((λ a . a) v) ≃ t
-}
conv-term-norm Γ (Lam _ l _ x oc t) t' =
let x' = fresh-var x (ctxt-binds-var Γ) empty-renamectxt in
conv-term (ctxt-rename x x' Γ) t (App t' NotErased (Var posinfo-gen x'))
conv-term-norm Γ t' (Lam _ l _ x oc t) =
let x' = fresh-var x (ctxt-binds-var Γ) empty-renamectxt in
conv-term (ctxt-rename x x' Γ) (App t' NotErased (Var posinfo-gen x')) t
conv-term-norm Γ _ _ = ff
conv-type-norm Γ (TpVar _ x) (TpVar _ x') = ctxt-eq-rep Γ x x'
conv-type-norm Γ (TpApp t1 t2) (TpApp t1' t2') = conv-type-norm Γ t1 t1' && conv-type Γ t2 t2'
conv-type-norm Γ (TpAppt t1 t2) (TpAppt t1' t2') = conv-type-norm Γ t1 t1' && conv-term Γ t2 t2'
conv-type-norm Γ (Abs _ b _ x atk tp) (Abs _ b' _ x' atk' tp') =
eq-maybeErased b b' && conv-tk Γ atk atk' && conv-type (ctxt-rename x x' (ctxt-var-decl-if x' Γ)) tp tp'
conv-type-norm Γ (TpArrow tp1 a1 tp2) (TpArrow tp1' a2 tp2') = eq-maybeErased a1 a2 && conv-type Γ tp1 tp1' && conv-type Γ tp2 tp2'
conv-type-norm Γ (TpArrow tp1 a tp2) (Abs _ b _ _ (Tkt tp1') tp2') = eq-maybeErased a b && conv-type Γ tp1 tp1' && conv-type Γ tp2 tp2'
conv-type-norm Γ (Abs _ b _ _ (Tkt tp1) tp2) (TpArrow tp1' a tp2') = eq-maybeErased a b && conv-type Γ tp1 tp1' && conv-type Γ tp2 tp2'
conv-type-norm Γ (Iota _ _ x m tp) (Iota _ _ x' m' tp') =
conv-type Γ m m' && conv-type (ctxt-rename x x' (ctxt-var-decl-if x' Γ)) tp tp'
conv-type-norm Γ (TpEq _ t1 t2 _) (TpEq _ t1' t2' _) = conv-term Γ t1 t1' && conv-term Γ t2 t2'
conv-type-norm Γ (Lft _ _ x t l) (Lft _ _ x' t' l') =
conv-liftingType Γ l l' && conv-term (ctxt-rename x x' (ctxt-var-decl-if x' Γ)) t t'
conv-type-norm Γ (TpLambda _ _ x atk tp) (TpLambda _ _ x' atk' tp') =
conv-tk Γ atk atk' && conv-type (ctxt-rename x x' (ctxt-var-decl-if x' Γ)) tp tp'
{-conv-type-norm Γ (TpLambda _ _ x atk tp) tp' =
let x' = fresh-var x (ctxt-binds-var Γ) empty-renamectxt
tp'' = if tk-is-type atk then TpAppt tp' (mvar x') else TpApp tp' (mtpvar x') in
conv-type-norm (ctxt-rename x x' Γ) tp tp''
conv-type-norm Γ tp' (TpLambda _ _ x atk tp) =
let x' = fresh-var x (ctxt-binds-var Γ) empty-renamectxt
tp'' = if tk-is-type atk then TpAppt tp' (mvar x') else TpApp tp' (mtpvar x') in
conv-type-norm (ctxt-rename x x' Γ) tp'' tp-}
conv-type-norm Γ _ _ = ff
{- even though hnf turns Pi-kinds where the variable is not free in the body into arrow kinds,
we still need to check off-cases, because normalizing the body of a kind could cause the
bound variable to be erased (hence allowing it to match an arrow kind). -}
conv-kind-norm Γ (KndArrow k k₁) (KndArrow k' k'') = conv-kind Γ k k' && conv-kind Γ k₁ k''
conv-kind-norm Γ (KndArrow k k₁) (KndPi _ _ x (Tkk k') k'') = conv-kind Γ k k' && conv-kind Γ k₁ k''
conv-kind-norm Γ (KndArrow k k₁) _ = ff
conv-kind-norm Γ (KndPi _ _ x (Tkk k₁) k) (KndArrow k' k'') = conv-kind Γ k₁ k' && conv-kind Γ k k''
conv-kind-norm Γ (KndPi _ _ x atk k) (KndPi _ _ x' atk' k'') =
conv-tk Γ atk atk' && conv-kind (ctxt-rename x x' (ctxt-var-decl-if x' Γ)) k k''
conv-kind-norm Γ (KndPi _ _ x (Tkt t) k) (KndTpArrow t' k'') = conv-type Γ t t' && conv-kind Γ k k''
conv-kind-norm Γ (KndPi _ _ x (Tkt t) k) _ = ff
conv-kind-norm Γ (KndPi _ _ x (Tkk k') k) _ = ff
conv-kind-norm Γ (KndTpArrow t k) (KndTpArrow t' k') = conv-type Γ t t' && conv-kind Γ k k'
conv-kind-norm Γ (KndTpArrow t k) (KndPi _ _ x (Tkt t') k') = conv-type Γ t t' && conv-kind Γ k k'
conv-kind-norm Γ (KndTpArrow t k) _ = ff
conv-kind-norm Γ (Star x) (Star x') = tt
conv-kind-norm Γ (Star x) _ = ff
conv-kind-norm Γ _ _ = ff -- should not happen, since the kinds are in hnf
conv-tk Γ tk tk' = conv-tke Γ (erase-tk tk) (erase-tk tk')
conv-tke Γ (Tkk k) (Tkk k') = conv-kind Γ k k'
conv-tke Γ (Tkt t) (Tkt t') = conv-type Γ t t'
conv-tke Γ _ _ = ff
conv-liftingType Γ l l' = conv-liftingTypee Γ (erase l) (erase l')
conv-liftingTypee Γ l l' = conv-kind Γ (liftingType-to-kind l) (liftingType-to-kind l')
conv-optClass Γ NoClass NoClass = tt
conv-optClass Γ (SomeClass x) (SomeClass x') = conv-tk Γ (erase-tk x) (erase-tk x')
conv-optClass Γ _ _ = ff
conv-optClasse Γ NoClass NoClass = tt
conv-optClasse Γ (SomeClass x) (SomeClass x') = conv-tk Γ x x'
conv-optClasse Γ _ _ = ff
conv-tty* Γ [] [] = tt
conv-tty* Γ (tterm t :: args) (tterm t' :: args')
= conv-term Γ (erase t) (erase t') && conv-tty* Γ args args'
conv-tty* Γ (ttype t :: args) (ttype t' :: args')
= conv-type Γ (erase t) (erase t') && conv-tty* Γ args args'
conv-tty* Γ _ _ = ff
conv-ttye* Γ [] [] = tt
conv-ttye* Γ (tterm t :: args) (tterm t' :: args') = conv-term Γ t t' && conv-ttye* Γ args args'
conv-ttye* Γ (ttype t :: args) (ttype t' :: args') = conv-type Γ t t' && conv-ttye* Γ args args'
conv-ttye* Γ _ _ = ff
conv-ctr Γ x₁ x₂ = conv-ctr-args Γ (x₁ , []) (x₂ , [])
conv-ctr-ps Γ x₁ x₂ with env-lookup Γ x₁ | env-lookup Γ x₂
...| just (ctr-def ps₁ T₁ n₁ i₁ a₁ , _) | just (ctr-def ps₂ T₂ n₂ i₂ a₂ , _) =
maybe-if (n₁ =ℕ n₂ && i₁ =ℕ i₂ && a₁ =ℕ a₂) ≫maybe
just (erase-params ps₁ , erase-params ps₂)
...| _ | _ = nothing
conv-ctr-args Γ (x₁ , as₁) (x₂ , as₂) =
maybe-else' (conv-ctr-ps Γ x₁ x₂) ff $ uncurry λ ps₁ ps₂ →
conv-argse Γ (drop (length ps₁) $ erase-args as₁) (drop (length ps₂) $ erase-args as₂)
hnf-qualif-term : ctxt → term → term
hnf-qualif-term Γ t = hnf Γ unfold-head (qualif-term Γ t) tt
hnf-qualif-type : ctxt → type → type
hnf-qualif-type Γ t = hnf Γ unfold-head (qualif-type Γ t) tt
hnf-qualif-kind : ctxt → kind → kind
hnf-qualif-kind Γ t = hnf Γ unfold-head (qualif-kind Γ t) tt
{-# TERMINATING #-}
inconv : ctxt → term → term → 𝔹
inconv Γ t₁ t₂ = inconv-lams empty-renamectxt empty-renamectxt
(hnf Γ unfold-all t₁ tt) (hnf Γ unfold-all t₂ tt)
where
fresh : var → renamectxt → renamectxt → var
fresh x ρ₁ = fresh-var x (λ x → ctxt-binds-var Γ x || renamectxt-in-field ρ₁ x)
make-subst : renamectxt → renamectxt → 𝕃 var → 𝕃 var → term → term → (renamectxt × renamectxt × term × term)
make-subst ρ₁ ρ₂ [] [] t₁ t₂ = ρ₁ , ρ₂ , t₁ , t₂ -- subst-renamectxt Γ ρ₁ t₁ , subst-renamectxt Γ ρ₂ t₂
make-subst ρ₁ ρ₂ (x₁ :: xs₁) [] t₁ t₂ =
let x = fresh x₁ ρ₁ ρ₂ in
make-subst (renamectxt-insert ρ₁ x₁ x) (renamectxt-insert ρ₂ x x) xs₁ [] t₁ (mapp t₂ $ mvar x)
make-subst ρ₁ ρ₂ [] (x₂ :: xs₂) t₁ t₂ =
let x = fresh x₂ ρ₁ ρ₂ in
make-subst (renamectxt-insert ρ₁ x x) (renamectxt-insert ρ₂ x₂ x) [] xs₂ (mapp t₁ $ mvar x) t₂
make-subst ρ₁ ρ₂ (x₁ :: xs₁) (x₂ :: xs₂) t₁ t₂ =
let x = fresh x₁ ρ₁ ρ₂ in
make-subst (renamectxt-insert ρ₁ x₁ x) (renamectxt-insert ρ₂ x₂ x) xs₁ xs₂ t₁ t₂
inconv-lams : renamectxt → renamectxt → term → term → 𝔹
inconv-apps : renamectxt → renamectxt → var → var → args → args → 𝔹
inconv-ctrs : renamectxt → renamectxt → var → var → args → args → 𝔹
inconv-mu : renamectxt → renamectxt → maybe (var × var) → cases → cases → 𝔹
inconv-args : renamectxt → renamectxt → args → args → 𝔹
inconv-args ρ₁ ρ₂ a₁ a₂ =
let a₁ = erase-args a₁; a₂ = erase-args a₂ in
~ length a₁ =ℕ length a₂
|| list-any (uncurry $ inconv-lams ρ₁ ρ₂) (zip a₁ a₂)
inconv-lams ρ₁ ρ₂ t₁ t₂ =
elim-pair (decompose-lams t₁) λ l₁ b₁ →
elim-pair (decompose-lams t₂) λ l₂ b₂ →
elim-pair (make-subst ρ₁ ρ₂ l₁ l₂ b₁ b₂) λ ρ₁ ρ₂b₁₂ →
elim-pair ρ₂b₁₂ λ ρ₂ b₁₂ →
elim-pair b₁₂ λ b₁ b₂ →
case (decompose-apps b₁ , decompose-apps b₂) of uncurry λ where
(Var _ x₁ , a₁) (Var _ x₂ , a₂) →
inconv-apps ρ₁ ρ₂ x₁ x₂ a₁ a₂ || inconv-ctrs ρ₁ ρ₂ x₁ x₂ a₁ a₂
(Mu _ _ x₁ t₁ _ _ ms₁ _ , a₁) (Mu _ _ x₂ t₂ _ _ ms₂ _ , a₂) →
inconv-mu ρ₁ ρ₂ (just $ x₁ , x₂) ms₁ ms₂ ||
inconv-lams ρ₁ ρ₂ t₁ t₂ || inconv-args ρ₁ ρ₂ a₁ a₂
(Mu' _ _ t₁ _ _ ms₁ _ , a₁) (Mu' _ _ t₂ _ _ ms₂ _ , a₂) →
inconv-mu ρ₁ ρ₂ nothing ms₁ ms₂ ||
inconv-lams ρ₁ ρ₂ t₁ t₂ || inconv-args ρ₁ ρ₂ a₁ a₂
_ _ → ff
inconv-apps ρ₁ ρ₂ x₁ x₂ a₁ a₂ =
maybe-else' (renamectxt-lookup ρ₁ x₁) ff λ x₁ →
maybe-else' (renamectxt-lookup ρ₂ x₂) ff λ x₂ →
~ x₁ =string x₂
|| inconv-args ρ₁ ρ₂ a₁ a₂
inconv-ctrs ρ₁ ρ₂ x₁ x₂ as₁ as₂ with env-lookup Γ x₁ | env-lookup Γ x₂
...| just (ctr-def ps₁ _ n₁ i₁ a₁ , _) | just (ctr-def ps₂ _ n₂ i₂ a₂ , _) =
let ps₁ = erase-params ps₁; ps₂ = erase-params ps₂
as₁ = erase-args as₁; as₂ = erase-args as₂ in
length as₁ ≤ length ps₁ + a₁ && -- Could use of "≤" here conflict with η-equality?
length as₂ ≤ length ps₂ + a₂ &&
(~ n₁ =ℕ n₂ ||
~ i₁ =ℕ i₂ ||
~ a₁ =ℕ a₂ ||
~ length as₁ + length ps₂ =ℕ length as₂ + length ps₁ ||
-- ^ as₁ ∸ ps₁ ≠ as₂ ∸ ps₂, + ps₁ + ps₂ to both sides ^
list-any (uncurry $ inconv-lams ρ₁ ρ₂)
(zip (drop (length ps₁) as₁) (drop (length ps₂) as₂)))
...| _ | _ = ff
inconv-mu ρ₁ ρ₂ xs? ms₁ ms₂ =
~ length ms₁ =ℕ length ms₂ ||
maybe-else ff id
(foldr {B = maybe 𝔹} (λ c b? → b? ≫=maybe λ b → inconv-case c ≫=maybe λ b' → just (b || b')) (just ff) ms₁)
where
matching-case : case → maybe (term × ℕ × ℕ)
matching-case (Case _ x _ _) = foldl (λ where
(Case _ xₘ cas tₘ) m? → m? maybe-or
(conv-ctr-ps Γ xₘ x ≫=maybe uncurry λ psₘ ps →
just (caseArgs-to-lams cas tₘ , length cas , length ps)))
nothing ms₂
inconv-case : case → maybe 𝔹
inconv-case c₁ @ (Case _ x cas₁ t₁) =
matching-case c₁ ≫=maybe λ c₂ →
just (inconv-lams ρ₁ ρ₂ (caseArgs-to-lams cas₁ t₁) (fst c₂))
ctxt-params-def : params → ctxt → ctxt
ctxt-params-def ps Γ@(mk-ctxt (fn , mn , _ , q) syms i symb-occs Δ) =
mk-ctxt (fn , mn , ps' , q) syms i symb-occs Δ
where ps' = qualif-params Γ ps
ctxt-kind-def : posinfo → var → params → kind → ctxt → ctxt
ctxt-kind-def pi v ps2 k Γ@(mk-ctxt (fn , mn , ps1 , q) (syms , mn-fn) i symb-occs Δ) = mk-ctxt
(fn , mn , ps1 , qualif-insert-params q (mn # v) v ps1)
(trie-insert-append2 syms fn mn v , mn-fn)
(trie-insert i (mn # v) (kind-def (ps1 ++ qualif-params Γ ps2) k' , fn , pi))
symb-occs Δ
where
k' = hnf Γ unfold-head (qualif-kind Γ k) tt
ctxt-datatype-decl : var → var → args → ctxt → ctxt
ctxt-datatype-decl vₒ vᵣ as Γ@(mk-ctxt mod ss is os (Δ , μ' , μ)) =
mk-ctxt mod ss is os $ Δ , trie-insert μ' (mu-Type/ vᵣ) (vₒ , mu-isType/ vₒ , as) , μ
-- assumption: classifier (i.e. kind) already qualified
ctxt-datatype-def : posinfo → var → params → kind → kind → ctrs → ctxt → ctxt
ctxt-datatype-def pi v psᵢ kᵢ k cs Γ@(mk-ctxt (fn , mn , ps , q) (syms , mn-fn) i os (Δ , μ' , μ)) =
let v' = mn # v
q' = qualif-insert-params q v' v ps in
mk-ctxt (fn , mn , ps , q')
(trie-insert-append2 syms fn mn v , mn-fn)
(trie-insert i v' (type-def (just ps) OpacTrans nothing (abs-expand-kind psᵢ k) , fn , pi)) os
(trie-insert Δ v' (ps ++ psᵢ , kᵢ , k , cs) , μ' , trie-insert μ (data-Is/ v') v')
-- assumption: classifier (i.e. kind) already qualified
ctxt-type-def : posinfo → defScope → opacity → var → maybe type → kind → ctxt → ctxt
ctxt-type-def pi s op v t k Γ@(mk-ctxt (fn , mn , ps , q) (syms , mn-fn) i symb-occs Δ) = mk-ctxt
(fn , mn , ps , q')
((if (s iff localScope) then syms else trie-insert-append2 syms fn mn v) , mn-fn)
(trie-insert i v' (type-def (def-params s ps) op t' k , fn , pi))
symb-occs Δ
where
t' = maybe-map (λ t → hnf Γ unfold-head (qualif-type Γ t) tt) t
v' = if s iff localScope then pi % v else mn # v
q' = qualif-insert-params q v' v (if s iff localScope then [] else ps)
ctxt-ctr-def : posinfo → var → type → params → (ctrs-length ctr-index : ℕ) → ctxt → ctxt
ctxt-ctr-def pi c t ps' n i Γ@(mk-ctxt mod@(fn , mn , ps , q) (syms , mn-fn) is symb-occs Δ) = mk-ctxt
(fn , mn , ps , q')
((trie-insert-append2 syms fn mn c) , mn-fn)
(trie-insert is c' (ctr-def (ps ++ ps') t n i (unerased-arrows t) , fn , pi))
symb-occs Δ
where
c' = mn # c
q' = qualif-insert-params q c' c ps
-- assumption: classifier (i.e. type) already qualified
ctxt-term-def : posinfo → defScope → opacity → var → maybe term → type → ctxt → ctxt
ctxt-term-def pi s op v t tp Γ@(mk-ctxt (fn , mn , ps , q) (syms , mn-fn) i symb-occs Δ) = mk-ctxt
(fn , mn , ps , q')
((if (s iff localScope) then syms else trie-insert-append2 syms fn mn v) , mn-fn)
(trie-insert i v' (term-def (def-params s ps) op t' tp , fn , pi))
symb-occs Δ
where
t' = maybe-map (λ t → hnf Γ unfold-head (qualif-term Γ t) tt) t
v' = if s iff localScope then pi % v else mn # v
q' = qualif-insert-params q v' v (if s iff localScope then [] else ps)
ctxt-term-udef pi s op v t Γ@(mk-ctxt (fn , mn , ps , q) (syms , mn-fn) i symb-occs Δ) = mk-ctxt
(fn , mn , ps , qualif-insert-params q v' v (if s iff localScope then [] else ps))
((if (s iff localScope) then syms else trie-insert-append2 syms fn mn v) , mn-fn)
(trie-insert i v' (term-udef (def-params s ps) op t' , fn , pi))
symb-occs Δ
where
t' = hnf Γ unfold-head (qualif-term Γ t) tt
v' = if s iff localScope then pi % v else mn # v
|
{
"alphanum_fraction": 0.6221707074,
"avg_line_length": 50.9163934426,
"ext": "agda",
"hexsha": "b791c77c7de2443591df9a78a6d4058aa14cda50",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f5ce42258b7d9bc66f75cd679c785d6133b82b58",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CarlOlson/cedille",
"max_forks_repo_path": "src/conversion.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f5ce42258b7d9bc66f75cd679c785d6133b82b58",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CarlOlson/cedille",
"max_issues_repo_path": "src/conversion.agda",
"max_line_length": 316,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f5ce42258b7d9bc66f75cd679c785d6133b82b58",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CarlOlson/cedille",
"max_stars_repo_path": "src/conversion.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 12082,
"size": 31059
}
|
-- | In this module we show that the substream relation is transitive.
open import Streams
open import Relation.Binary.PropositionalEquality as P
open import Data.Product
open import Function.Equivalence
mutual
record F : Set where
coinductive
field out : Fμ
data Fμ : Set where
pres : F → Fμ
drop : Fμ → Fμ
open F public
μfilter : ∀{A} → Fμ → Stream A → Stream A
filter : ∀{A} → F → Stream A → Stream A
filter x = μfilter (out x)
hd (μfilter (pres x) s) = hd s
tl (μfilter (pres x) s) = filter x (tl s)
μfilter (drop u) s = μfilter u (tl s)
comp : F → F → F
μcomp : Fμ → Fμ → Fμ
out (comp x y) = μcomp (out x) (out y)
μcomp (pres x) (pres y) = pres (comp x y)
μcomp (pres x) (drop v) = drop (μcomp (out x) v)
μcomp (drop u) v = drop (μcomp u v)
_•_ : F → F → F
y • x = comp x y
_•μ_ : Fμ → Fμ → Fμ
v •μ u = μcomp u v
filter-comp : ∀{A} → ∀ x y (s : Stream A) →
filter (y • x) s ~ filter y (filter x s)
μfilter-comp : ∀{A} → ∀ u v (s : Stream A) →
μfilter (v •μ u) s ~ μfilter v (μfilter u s)
filter-comp x y s = μfilter-comp (out x) (out y) s
hd~(μfilter-comp (pres x) (pres y) s) = refl
tl~(μfilter-comp (pres x) (pres y) s) = filter-comp x y (tl s)
μfilter-comp (pres x) (drop v) s = μfilter-comp (out x) v (tl s)
-- The following cases are just the same, they need to be there for Agda to
-- reduce the definition of μcomp
μfilter-comp (drop u) (pres x) s = μfilter-comp u (pres x) (tl s)
μfilter-comp (drop u) (drop v) s = μfilter-comp u (drop v) (tl s)
_≤[_]_ : ∀{A} → Stream A → F → Stream A → Set
s ≤[ x ] t = s ~ filter x t
_≤μ[_]_ : ∀{A} → Stream A → Fμ → Stream A → Set
s ≤μ[ x ] t = s ~ μfilter x t
mutual
record _≤_ {A : Set} (s t : Stream A) : Set where
coinductive
field out≤ : s ≤μ t
data _≤μ_ {A : Set} (s t : Stream A) : Set where
ma : hd s ≡ hd t → (tl s) ≤ (tl t) → s ≤μ t
sk : s ≤μ (tl t) → s ≤μ t
open _≤_ public
witness : ∀{A} {s t : Stream A} → s ≤ t → F
xwitness : ∀{A} {s t : Stream A} → s ≤μ t → Fμ
out (witness p) = xwitness (out≤ p)
xwitness (ma _ t≤) = pres (witness t≤)
xwitness (sk u) = drop (xwitness u)
impl₁ : ∀{A} {s t : Stream A} → (p : s ≤ t) → s ≤[ witness p ] t
ximpl₁ : ∀{A} {s t : Stream A} → (p : s ≤μ t) → s ≤μ[ xwitness p ] t
impl₁ {A} {s} {t} p = ximpl₁ (out≤ p)
hd~ (ximpl₁ (ma h≡ t≤)) = h≡
tl~ (ximpl₁ (ma h≡ t≤)) = impl₁ t≤
ximpl₁ (sk q) = ximpl₁ q
impl₂ : ∀{A} {s t : Stream A} (x : F) → s ≤[ x ] t → s ≤ t
ximpl₂ : ∀{A} {s t : Stream A} (u : Fμ) → s ≤μ[ u ] t → s ≤μ t
out≤ (impl₂ x p) = ximpl₂ (out x) p
ximpl₂ (pres x) p = ma (hd~ p) (impl₂ x (tl~ p))
ximpl₂ (drop u) p = sk (ximpl₂ u p)
≤⇔filter-≤ : ∀{A} (s t : Stream A) →
s ≤ t ⇔ ∃ λ p → s ≤[ p ] t
≤⇔filter-≤ s t = equivalence (λ x → witness x , impl₁ x)
(λ {(x , p) → impl₂ x p})
filter-resp~ : ∀{A} {s t : Stream A} (x : F) →
s ~ t → filter x s ~ filter x t
μfilter-resp~ : ∀{A} {s t : Stream A} (u : Fμ) →
s ~ t → μfilter u s ~ μfilter u t
filter-resp~ x p = μfilter-resp~ (out x) p
hd~ (μfilter-resp~ (pres x) p) = hd~ p
tl~ (μfilter-resp~ (pres x) p) = filter-resp~ x (tl~ p)
μfilter-resp~ (drop u) p = μfilter-resp~ u (tl~ p)
{-
We prove transitivity of the witnessed substream relation by
r ~ filter x s
~ filter x (filter y t)
~ filter (comp x y) t
-}
≤-filter-trans : ∀{A} {r s t : Stream A} {x y} →
r ≤[ x ] s → s ≤[ y ] t → r ≤[ x • y ] t
≤-filter-trans {x = x} {y} p q =
~trans p (
~trans (filter-resp~ x q)
(~sym (filter-comp y x _)))
≤-trans : ∀{A} {r s t : Stream A} →
r ≤ s → s ≤ t → r ≤ t
≤-trans p q = impl₂ (witness p • witness q)
(≤-filter-trans {x = witness p}
{y = witness q}
(impl₁ p)
(impl₁ q)
)
-- lem : ∀{A} {s t : Stream A} → hd s ≡ hd t → tl s ≤ tl t → t ≤μ tl s → tl t ≤μ tl s
-- lem s0≡t0 t'≤s' (ma t0≡s1 t'≤s'') with out≤ t'≤s'
-- lem s0≡t0 t'≤s' (ma t0≡s1 t'≤s'') | ma s1≡t1 s''≤t'' = ma (P.sym s1≡t1) {!!}
-- lem s0≡t0 t'≤s' (ma t0≡s1 t'≤s'') | sk p = {!!}
-- lem {s = s} s0≡t0 s'≤t' (sk p) = {!!}
-- ≤-antisym : ∀{A} {s t : Stream A} →
-- s ≤ t → t ≤ s → s ~ t
-- ≤μ-antisym : ∀{A} {s t : Stream A} →
-- s ≤μ t → t ≤μ s → s ~ t
-- ≤-antisym p q = ≤μ-antisym (out≤ p) (out≤ q)
-- hd~ (≤μ-antisym (ma hs≡ht ts≤tt) _) = hs≡ht
-- tl~ (≤μ-antisym (ma hs≡ht ts≤tt) (ma ht≡hs tt≤ts)) = ≤-antisym ts≤tt tt≤ts
-- tl~ (≤μ-antisym (ma hs≡ht ts≤tt) (sk q)) = ≤μ-antisym (out≤ ts≤tt) {!!}
-- ≤μ-antisym (sk p) q = {!!}
{-
------------------
--- Try to convince Agda that x = zip(ev(x), odd(x)) is well-defined.
even : ∀{A} → Stream A → Stream A
hd (even s) = hd s
tl (even s) = even (tl (tl s))
odd : ∀{A} → Stream A → Stream A
odd s = even (tl s)
zips : ∀{A} → Stream A → Stream A → Stream A
hd (zips s t) = hd s
tl (zips s t) = zips t (tl s)
open import Data.Nat
foo : Stream ℕ
hd foo = 0
tl foo = zips (even foo) (odd foo)
-- H : Stream ℕ → Stream ℕ → Stream ℕ
-- f : ℕ → Stream ℕ → Stream ℕ → Stream ℕ
-- H s t = f (hd t) s t
-- hd (f zero s t) = hd s
-- tl (f zero s t) = H s (tl t)
-- f (suc n) s t = f n (tl s) t
-}
|
{
"alphanum_fraction": 0.5060698027,
"avg_line_length": 28.192513369,
"ext": "agda",
"hexsha": "d834280c4c68a1fa9d6b0c6ce9a69c3dad09f041",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hbasold/Sandbox",
"max_forks_repo_path": "Streams/Substream.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hbasold/Sandbox",
"max_issues_repo_path": "Streams/Substream.agda",
"max_line_length": 85,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hbasold/Sandbox",
"max_stars_repo_path": "Streams/Substream.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2220,
"size": 5272
}
|
{-# OPTIONS --without-K --safe #-}
module Definition.Conversion.Conversion where
open import Definition.Untyped
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.Typed.RedSteps
open import Definition.Typed.Properties
open import Definition.Conversion
open import Definition.Conversion.Stability
open import Definition.Conversion.Soundness
open import Definition.Typed.Consequences.Syntactic
open import Definition.Typed.Consequences.Substitution
open import Definition.Typed.Consequences.Injectivity
open import Definition.Typed.Consequences.Equality
open import Definition.Typed.Consequences.Reduction
open import Tools.Product
import Tools.PropositionalEquality as PE
mutual
-- Conversion of algorithmic equality.
convConv↑Term : ∀ {t u A B Γ Δ}
→ ⊢ Γ ≡ Δ
→ Γ ⊢ A ≡ B
→ Γ ⊢ t [conv↑] u ∷ A
→ Δ ⊢ t [conv↑] u ∷ B
convConv↑Term Γ≡Δ A≡B ([↑]ₜ B₁ t′ u′ D d d′ whnfB whnft′ whnfu′ t<>u) =
let _ , ⊢B = syntacticEq A≡B
B′ , whnfB′ , D′ = whNorm ⊢B
B₁≡B′ = trans (sym (subset* D)) (trans A≡B (subset* (red D′)))
in [↑]ₜ B′ t′ u′ (stabilityRed* Γ≡Δ (red D′))
(stabilityRed*Term Γ≡Δ (conv* d B₁≡B′))
(stabilityRed*Term Γ≡Δ (conv* d′ B₁≡B′)) whnfB′ whnft′ whnfu′
(convConv↓Term Γ≡Δ B₁≡B′ whnfB′ t<>u)
-- Conversion of algorithmic equality with terms and types in WHNF.
convConv↓Term : ∀ {t u A B Γ Δ}
→ ⊢ Γ ≡ Δ
→ Γ ⊢ A ≡ B
→ Whnf B
→ Γ ⊢ t [conv↓] u ∷ A
→ Δ ⊢ t [conv↓] u ∷ B
convConv↓Term Γ≡Δ A≡B whnfB (ℕ-ins x) rewrite ℕ≡A A≡B whnfB =
ℕ-ins (stability~↓ Γ≡Δ x)
convConv↓Term Γ≡Δ A≡B whnfB (Empty-ins x) rewrite Empty≡A A≡B whnfB =
Empty-ins (stability~↓ Γ≡Δ x)
convConv↓Term Γ≡Δ A≡B whnfB (Unit-ins x) rewrite Unit≡A A≡B whnfB =
Unit-ins (stability~↓ Γ≡Δ x)
convConv↓Term Γ≡Δ A≡B whnfB (ne-ins t u x x₁) with ne≡A x A≡B whnfB
convConv↓Term Γ≡Δ A≡B whnfB (ne-ins t u x x₁) | B , neB , PE.refl =
ne-ins (stabilityTerm Γ≡Δ (conv t A≡B)) (stabilityTerm Γ≡Δ (conv u A≡B))
neB (stability~↓ Γ≡Δ x₁)
convConv↓Term Γ≡Δ A≡B whnfB (univ x x₁ x₂) rewrite U≡A A≡B =
univ (stabilityTerm Γ≡Δ x) (stabilityTerm Γ≡Δ x₁) (stabilityConv↓ Γ≡Δ x₂)
convConv↓Term Γ≡Δ A≡B whnfB (zero-refl x) rewrite ℕ≡A A≡B whnfB =
let _ , ⊢Δ , _ = contextConvSubst Γ≡Δ
in zero-refl ⊢Δ
convConv↓Term Γ≡Δ A≡B whnfB (suc-cong x) rewrite ℕ≡A A≡B whnfB =
suc-cong (stabilityConv↑Term Γ≡Δ x)
convConv↓Term Γ≡Δ A≡B whnfB (η-eq x₁ x₂ y y₁ x₃) with Π≡A A≡B whnfB
convConv↓Term Γ≡Δ A≡B whnfB (η-eq x₁ x₂ y y₁ x₃) | F′ , G′ , PE.refl =
let F≡F′ , G≡G′ = injectivity A≡B
in η-eq (stabilityTerm Γ≡Δ (conv x₁ A≡B))
(stabilityTerm Γ≡Δ (conv x₂ A≡B)) y y₁
(convConv↑Term (Γ≡Δ ∙ F≡F′) G≡G′ x₃)
convConv↓Term Γ≡Δ A≡B whnfB (Σ-η ⊢p ⊢r pProd rProd fstConv sndConv)
with Σ≡A A≡B whnfB
... | F , G , PE.refl =
let F≡ , G≡ = Σ-injectivity A≡B
⊢F = proj₁ (syntacticEq F≡)
⊢G = proj₁ (syntacticEq G≡)
⊢fst = fstⱼ ⊢F ⊢G ⊢p
in Σ-η (stabilityTerm Γ≡Δ (conv ⊢p A≡B))
(stabilityTerm Γ≡Δ (conv ⊢r A≡B))
pProd
rProd
(convConv↑Term Γ≡Δ F≡ fstConv)
(convConv↑Term Γ≡Δ (substTypeEq G≡ (refl ⊢fst)) sndConv)
convConv↓Term Γ≡Δ A≡B whnfB (η-unit [t] [u] tUnit uUnit) rewrite Unit≡A A≡B whnfB =
let [t] = stabilityTerm Γ≡Δ [t]
[u] = stabilityTerm Γ≡Δ [u]
in η-unit [t] [u] tUnit uUnit
-- Conversion of algorithmic equality with the same context.
convConvTerm : ∀ {t u A B Γ}
→ Γ ⊢ t [conv↑] u ∷ A
→ Γ ⊢ A ≡ B
→ Γ ⊢ t [conv↑] u ∷ B
convConvTerm t<>u A≡B = convConv↑Term (reflConEq (wfEq A≡B)) A≡B t<>u
|
{
"alphanum_fraction": 0.5949597298,
"avg_line_length": 41.3870967742,
"ext": "agda",
"hexsha": "7f8d156540f2087ba9547ffcd6d06a44161d556e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Vtec234/logrel-mltt",
"max_forks_repo_path": "Definition/Conversion/Conversion.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Vtec234/logrel-mltt",
"max_issues_repo_path": "Definition/Conversion/Conversion.agda",
"max_line_length": 85,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Vtec234/logrel-mltt",
"max_stars_repo_path": "Definition/Conversion/Conversion.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1604,
"size": 3849
}
|
module z05-00-internal-verification where
open import bool
open import eq
open import nat
open import nat-thms
open import product
open import sum
{-
------------------------------------------------------------------------------
so far: EXTERNAL VERIFICATION
- written programs (e.g., 'length')
- proved properties (e.g., 'length-reverse')
This style of verification in type theory is called external verification
- proofs are external to programs
- proofs are distinct artifacts about some pre-existing programs
INTERNAL VERIFICATION
write functions with semantically expressive types
write datatypes that put restrictions on data
may require embedding proofs in code
------------------------------------------------------------------------------
-- p 99 VECTORS - length of vector included in type : vector is INDEXED by its length
-- vector.agda
-}
data 𝕍 {ℓ} (A : Set ℓ) : ℕ → Set ℓ where
[] : 𝕍 A 0
_::_ : {n : ℕ} (x : A) (xs : 𝕍 A n) → 𝕍 A (suc n)
-- compare to list (overloaded constructors OK)
data L {ℓ} (A : Set ℓ) : Set ℓ where
[] : L A
_::_ : (x : A) (xs : L A) → L A
infixr 6 _::_ _++𝕍_
-- p 101
[_]𝕍 : ∀ {ℓ} {A : Set ℓ} → A → 𝕍 A 1
[ x ]𝕍 = x :: []
-- type level addition on length
_++𝕍_ : ∀ {ℓ} {A : Set ℓ}{n m : ℕ} → 𝕍 A n → 𝕍 A m → 𝕍 A (n + m)
[] ++𝕍 ys = ys
(x :: xs) ++𝕍 ys = x :: xs ++𝕍 ys
-- p 102
-- no 'nil' list corner case
head𝕍 : ∀ {ℓ} {A : Set ℓ} {n : ℕ} → 𝕍 A (suc n) → A
head𝕍 (x :: _) = x
-- type level subtraction
tail𝕍 : ∀ {ℓ} {A : Set ℓ} {n : ℕ} → 𝕍 A n → 𝕍 A (pred n)
tail𝕍 [] = []
tail𝕍 (_ :: xs) = xs
-- p 103
-- length preserving (for lists, length preservation is separate proof)
map𝕍 : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} {n : ℕ} → (A → B) → 𝕍 A n → 𝕍 B n
map𝕍 f [] = []
map𝕍 f (x :: xs) = f x :: map𝕍 f xs
-- p 104
-- takes a vector of length m
-- each element is vector of length n
-- concats into single vector of length m * n
concat𝕍 : ∀{ℓ} {A : Set ℓ} {n m : ℕ} → 𝕍 (𝕍 A n) m → 𝕍 A (m * n)
concat𝕍 [] = []
concat𝕍 (x :: xs) = x ++𝕍 (concat𝕍 xs)
-- p 104
-- no need for maybe result as in lists by requiring n < m
nth𝕍 : ∀ {ℓ} {A : Set ℓ} {m : ℕ}
→ (n : ℕ)
→ n < m ≡ tt
→ 𝕍 A m
→ A
nth𝕍 0 _ (x :: _) = x
-- Proof p (that index is less than length of vector) reused in recursive call.
-- index is suc n
-- length of list is suc m, for implicit m
-- Agda implicitly introduces .m with suc .m
-- p proves suc n < suc m ≡ tt
-- def/eq to n < m ≡ tt
-- so p has correct type to make the recursive call
nth𝕍 (suc n) p (_ :: xs) = nth𝕍 n p xs
-- us absurd pattern for the proof in last two cases
-- length of list is zero, so no index can be smaller than that length
-- must case-split on the index so Agda can the absurdity
-- because the definition of _<_ splits on both inputs
-- - returns ff separately for when the first input is is 0 and the second is 0
-- - and for the first input being suc n and second is 0
nth𝕍 (suc n) () []
nth𝕍 0 () []
-- p 105
repeat𝕍 : ∀ {ℓ} {A : Set ℓ} → (a : A) (n : ℕ) → 𝕍 A n
repeat𝕍 a 0 = []
repeat𝕍 a (suc n) = a :: (repeat𝕍 a n)
{-
------------------------------------------------------------------------------
-- p 106 BRAUN TREES : balanced binary heaps
either empty or
node consisting of some data x and a left and a right subtree
data may be stored so that x is smaller than all data in left and right subtrees
if such an ordering property is desired
BRAUN TREE PROPERTY (BTP) : crucial property : sizes of left and right trees:
for each node in the tree
- either size (left) = size ( right ) or
size (left) = size ( right ) + 1
ensures depth of the trees is ≤ log₂(N), where N is the number of nodes
property maintained (via types) during insert
make the type A and ordering on that type be parameters of the module
braun-tree.adga
-}
module braun-tree {ℓ} (A : Set ℓ) (_<A_ : A → A → 𝔹) where
-- index n is size (number of elements of type A) of the tree
data braun-tree : (n : ℕ) → Set ℓ where
bt-empty : braun-tree 0
bt-node : ∀ {n m : ℕ}
→ A
→ braun-tree n
→ braun-tree m
→ n ≡ m ∨ n ≡ suc m -- 'v' defined in sum.agda for disjunction of two types
→ braun-tree (suc (n + m))
{- -- p 107
sum.agda
-- types A and B, possibly at different levels, accounted via ⊔ in return type
-- ⊔ part of Agda’s primitive level system : imported from Agda.Primitive module in level.agda
-- use this in code that intended to be run
data _⊎_ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') : Set (ℓ ⊔ ℓ') where
inj₁ : (x : A) → A ⊎ B -- built from an A
inj₂ : (y : B) → A ⊎ B -- built from an B
-- use this to represent a logical proposition
_∨_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (ℓ ⊔ ℓ')
_∨_ = _⊎_
NO SEMANTIC DIFFERENCE - just different notation to help understanding code
-}
{-
--------------------------------------------------
-- p 107-108 INSERTION
-- this version keeps smaller (_<A_) elements closer to root when inserting
-}
-- type says given BT of size n, returns BT of size suc n
bt-insert : ∀ {n : ℕ} → A → braun-tree n → braun-tree (suc n)
-- insert into empty
-- Create node with element and empty subtrees (both with size 0).
-- 4th arg to BT constructor is BTP proof
-- - both 0 so 'refl'
-- - wrap in inj₁ to say 0 ≡ 0 (not n ≡ suc n)
bt-insert a bt-empty = bt-node a bt-empty bt-empty (inj₁ refl)
-- insert info non empty: tree has left and right satisfying BTP
-- left of size n; right of size m
-- p is BTP proof
-- inferred type of return is BT (suc (suc (n + m)))
-- because type before insert is BT (suc (n + m)) - left plus node element plus right
-- insert adds ONE, so BT (suc (suc (m + n)))
bt-insert a (bt-node{n}{m} a' l r p)
-- regardless of what happens, left and right will be swapped, so size sum will have m first
-- do rewrite before case splitting on which disjunct of BTP holds (n ≡ m or n ≡ suc m)
-- does not change structure of tree
-- will change what proof is used for BTP for new node returned.
-- case split via WITH on P
-- could split on p directly in pattern for input BT,
-- but here rewrite is factored to be done once
-- could do WITH on an if_then_else_ term, to put the min of element being inserted (a)
-- and element at current root (a') as 1st component pair (a1), max as 2nd (a2)
-- want min (a1) to be data at root of new BT
-- want to insert max (a2) recursively into right
rewrite +comm n m
with p | if a <A a' then (a , a') else (a' , a)
-- inj₁ case
-- case where p is inj₁ for NEW new pattern variable 'p'
-- underscore in place of original proof/p
-- because considering case where original is 'inj₁ p'
-- p : n ≡ m
-- so new node
-- with smaller element a1 at root and then swapped left and update right
-- has type 'inj₂ refl'
-- BTP for new node is suc m ≡ n v suc m ≡ suc n
-- because size of new left is suc m, since it is the updated version of old right
-- case has proof n ≡ m
-- rewrite with that proof changes that to suc m ≡ suc n
-- 'inj 2 refl' proves it
bt-insert a (bt-node{n}{m} a' l r _) | inj₁ p | (a1 , a2)
rewrite p = (bt-node a1 (bt-insert a2 r) l (inj₂ refl))
-- inj₂ case : n ≡ suc m
-- so need proof suc m ≡ n v suc m ≡ suc n
-- 'sym p' gives 'suc m ≡ n'
-- wrap in 'inj₁'
bt-insert a (bt-node{n}{m} a' l r _) | inj₂ p | (a1 , a2) =
(bt-node a1 (bt-insert a2 r) l (inj₁ (sym p)))
{-
--------------------------------------------------
-- p 110 REMOVE MIN ELEMENT
-}
-- input has at least one element; returns pair of element and a BT one smaller
bt-remove-min : ∀ {p : ℕ} → braun-tree (suc p) → A × braun-tree p
-- no need for case of empty input
-- because size would be 0, but input is 'suc p'
-- removing sole node; return data and bt-empty
bt-remove-min (bt-node a bt-empty bt-empty u) = a , bt-empty
-- next two equations for left is empty and right subtree is a node -- IMPOSSIBLE by BTP
-- still need to handle both proves with absurd
bt-remove-min (bt-node a bt-empty (bt-node _ _ _ _) (inj₁ ()))
bt-remove-min (bt-node a bt-empty (bt-node _ _ _ _) (inj₂ ()))
-- right empty, left node (implies left size is 1, but not needed)
-- return data left
-- need to confirm size relationships satisfied, because
-- size of input is suc (suc (n’ + m’) + 0)
-- size of output is suc (n’ + m’)
-- use +0 to drop the '+ 0'
bt-remove-min (bt-node a (bt-node{n’}{m’} a’ l’ r’ u’) bt-empty u)
rewrite +0 (n’ + m’) = a , bt-node a’ l’ r’ u’
-- left and right of input both nodes (not empty)
-- return data input (the min data)
-- reassemble output BT: remove min from left:
bt-remove-min (bt-node a (bt-node a1 l1 r1 u1) (bt-node a2 l2 r2 u2) u)
with bt-remove-min (bt-node a1 l1 r1 u1)
-- then match on result of recursive call to bt-remove-min.
-- produces min a1’ of left and updated left l’
-- then WITH to pick smaller of a1’ (minimum of left) and a2, minimum of right
-- similar to the bt-insert with an if_then_else_ term.
bt-remove-min (bt-node a (bt-node a1 l1 r1 u1) (bt-node a2 l2 r2 u2) u) | a1’ , l’
with if a1’ <A a2 then (a1’ , a2) else (a2 , a1’)
-- p 113 first words TODO
bt-remove-min (bt-node a (bt-node{n1}{m1} a1 l1 r1 u1) (bt-node{n2}{m2} _ l2 r2 u2) u)
| _ , l’ | smaller , other
rewrite +suc (n1 + m1) (n2 + m2) |
+comm (n1 + m1) (n2 + m2) = a , bt-node smaller (bt-node other l2 r2 u2) l’ (lem u)
where lem : ∀ {x y}
→ suc x ≡ y ∨ suc x ≡ suc y
→ y ≡ x ∨ y ≡ suc x
lem (inj₁ p) = inj₂ (sym p)
lem (inj₂ p) = inj₁ (sym (suc-inj p))
{-
------------------------------------------------------------------------------
-- p 114 Sigma Types
Above expresses invariant properties of data using internally verified datatypes.
Any data constructed via the constructors are guaranteed to satisfy the property,
due to restrictions enforced by the constructors.
Different case: state that a property holds of an existing data type.
done using Σ-types (“sigma”)
similar to Cartesian product type A × B (elements of A × B are pairs (a, b))
- but generalization where type of 2nd element can depend on type of 1st
- aka "dependent product type" (though the notation comes from sum types, see below)
see nat-nonzero.agda : type for nonzero natural numbers:
-- a nat 'n' AND a proof 'iszero n ≡ ff'
ℕ⁺ : Set
ℕ⁺ = Σ ℕ (λ n → iszero n ≡ ff)
conceptually similar to Cartesian product : N × (iszero n ≡ ff)
- pair of number and equality proof
- in Cartesian product version, 'n' is free
- Σ-types enable referring to 1st of pair
see product.agda : def of Σ
parametrized by
- type A
- function B
- input : type A
- returns a type
- types can be at different levels
- Like sum types, Σ type is then at level ℓ ⊔ ℓ' (least upper bound of the two levels)
data Σ {ℓ ℓ'} (A : Set ℓ) (B : A → Set ℓ') : Set (ℓ ⊔ ℓ') where
_,_ : (a : A) → (b : B a) → Σ A B
^
B depends on
------------------------------------------------------------------------------
-- p 115 example: addition on nonzero nats
-}
open import nat-nonzero hiding (_+⁺_)
_+⁺_ : ℕ⁺ → ℕ⁺ → ℕ⁺
(zero , ()) +⁺ n2 -- cannot happen, so uses absurd pattern
(1 , p1) +⁺ y = suc⁺ y
(suc (suc n1) , p1) +⁺ y = suc⁺ ((suc n1 , refl) +⁺ y) -- recursive call
{-
-- p 115 5.3.1 Why Sigma and Pi?
why Σ symbol for type of dependent pairs?
- because Σ-types generalize disjoint unions
- in math, a disjoint union is union of two sets
- where elements are tagged to indicate from which set they have come
- cardinality of A ⊎ B, is sum of cardinalities of A and B
even if they have a nonempty intersection.
- This is where we get the notation for sum types in Figure 5.2.
- The disjoint union can be defined mathematically as
({0} × A) ∪ ({1} × B)
- each element of union looks like (n, x)
where if the tag n is 0, then x P A, and
if n is 1, then x P B.
------------------------------------------------------------------------------
-- p 116 Binary Search Trees
for some type A and an ordering relation on that type
values in left subtree always ≤ value at node ℕ
values in right subtree always > value at node ℕ
see z05-01-bst-test.agda
z05-01-bst.agda
-- p 117-120
TODO : read/understand discussion of
bool-relations.agda
relations.agda
------------------------------------------------------------------------------
-- p 123 Internal vs. External Verification
internal verification : datatypes defined with invariants; functions take proofs of preconditions
- Datatypes with essential invariants : enforce via internal
- Complex programs
- doing external of complex will cause reasoning about complexity
not relevant to property being proved
- internal weaves proofs thru code and datatype
external verification : theorems about functions proved separately
- Algebraic Properties e.g., proving associativity
- Functions used in an internal verification's specification
-- e.g., min/max used in bst - need to externally prove properties about min/max
------------------------------------------------------------------------------
-- p 126 Exercises
1. Nested vector type.
Fill in the hole to define a type for matrices of nats
where the type lists the dimensions of the matrix:
-}
-- inner vector is a row
_by_matrix : ℕ → ℕ → Set
rows by cols matrix = 𝕍 (𝕍 ℕ cols) rows
matrix-to-vec-vec : ∀ {rows cols : ℕ} → rows by cols matrix → 𝕍 (𝕍 ℕ cols) rows
matrix-to-vec-vec 𝕞 = 𝕞
-- 2a
zero-matrix : (rows cols : ℕ) → rows by cols matrix
zero-matrix rows cols = repeat𝕍 (repeat𝕍 0 cols) rows
_ : zero-matrix 2 3 ≡ (0 :: 0 :: 0 :: []) ::
(0 :: 0 :: 0 :: []) :: []
_ = refl
_ : zero-matrix 0 0 ≡ []
_ = refl
_ : zero-matrix 0 1 ≡ []
_ = refl
_ : zero-matrix 1 0 ≡ [] :: []
_ = refl
_ : zero-matrix 1 1 ≡ (0 :: []) :: []
_ = refl
-- 2b
matrix-elt : ∀ {rows cols : ℕ}
→ rows by cols matrix
→ (r : ℕ)
→ (c : ℕ)
→ r < rows ≡ tt
→ c < cols ≡ tt
→ ℕ
matrix-elt 𝕞 r c r<rows c<cols = nth𝕍 c c<cols (nth𝕍 r r<rows (matrix-to-vec-vec 𝕞))
-- 2c
diagonal-matrix : ℕ → (n : ℕ) → n by n matrix
diagonal-matrix d n = mkRows n n n
where
-- when constructing rows/cols
-- - row/col param corresponds to row/col - rows/cols
-- - e.g., for 2 x 3 matrix
-- row param 2 corresponds 2 - 2 = 0
mkElt : ℕ → ℕ → ℕ
mkElt i col = if i =ℕ col then d else zero
mkCols : (ℕ → ℕ) → (cols : ℕ) → 𝕍 ℕ cols
mkCols _ zero = []
mkCols f sc@(suc c) = f sc :: mkCols f c
mkRows : ℕ → (rows : ℕ) → (cols : ℕ) → 𝕍 (𝕍 ℕ cols) rows
mkRows _ zero _ = []
mkRows i (suc r) c = mkCols (mkElt i) c :: mkRows (i ∸ 1) r c
identity-matrix : (n : ℕ) → n by n matrix
identity-matrix = diagonal-matrix 1
idm5 : 5 by 5 matrix
idm5 = identity-matrix 5
_ : idm5 ≡ (1 :: 0 :: 0 :: 0 :: 0 :: []) ::
(0 :: 1 :: 0 :: 0 :: 0 :: []) ::
(0 :: 0 :: 1 :: 0 :: 0 :: []) ::
(0 :: 0 :: 0 :: 1 :: 0 :: []) ::
(0 :: 0 :: 0 :: 0 :: 1 :: []) :: []
_ = refl
_ : matrix-elt idm5 0 0 refl refl ≡ 1
_ = refl
_ : matrix-elt idm5 1 1 refl refl ≡ 1
_ = refl
_ : matrix-elt idm5 0 1 refl refl ≡ 0
_ = refl
-- 2d
-- BEGIN https://typeslogicscats.gitlab.io/posts/agda-matrix.lagda.html
prepend-column
: ∀ {m n : ℕ}
→ 𝕍 ℕ n -- a column
→ n by m matrix
→ n by suc m matrix -- prepends the given column to the matrix
prepend-column [] [] = []
prepend-column (x :: xs) (vec :: vecs) = (x :: vec) :: (prepend-column xs vecs)
-- inverse of prepend-column (NOT USED)
unprepend-column
: ∀ {m n : ℕ}
→ n by suc m matrix
→ (𝕍 ℕ n) × (n by m matrix)
unprepend-column [] = ([] , [])
unprepend-column ((x :: vec) :: matrix) = let xs-vecs = unprepend-column matrix
in x :: fst xs-vecs , vec :: snd xs-vecs
fill-empty : (n : ℕ) → n by 0 matrix
fill-empty 0 = []
fill-empty (suc n) = [] :: fill-empty n
transpose : ∀ {i : ℕ} {j : ℕ} → i by j matrix → j by i matrix
transpose {0} {j} [] = fill-empty j
transpose {suc _} {_} (row :: rows) = prepend-column row (transpose rows)
-- END https://typeslogicscats.gitlab.io/posts/agda-matrix.lagda.html
ex2x3 : 2 by 3 matrix
ex2x3 = (1 :: 2 :: 3 :: []) ::
(0 :: 6 :: 7 :: []) :: []
_ : transpose ex2x3 ≡ (1 :: 0 :: []) ::
(2 :: 6 :: []) ::
(3 :: 7 :: []) :: []
_ = refl
-- BEGIN https://www.cs.nott.ac.uk/~psztxa/g53cfr/solutions/ex02.agda
vreturn : {A : Set} {n : ℕ} → A → 𝕍 A n
vreturn {n = zero} a = []
vreturn {n = suc m} a = a :: vreturn {n = m} a
vapp : {A B : Set} {n : ℕ} → 𝕍 (A → B) n → 𝕍 A n → 𝕍 B n
vapp [] [] = []
vapp (f :: fs) (a :: as) = f a :: vapp fs as
transposeX : {m n : ℕ} → m by n matrix → n by m matrix
transposeX [] = vreturn []
transposeX (as :: ass) = vapp (vapp (vreturn _::_ ) as) (transposeX ass)
_ : transposeX ex2x3 ≡ (1 :: 0 :: []) ::
(2 :: 6 :: []) ::
(3 :: 7 :: []) :: []
_ = refl
-- END https://www.cs.nott.ac.uk/~psztxa/g53cfr/solutions/ex02.agda
-- BEGIN HORRIBLE HACKY TRY
postulate
yyy : (n : ℕ) → (rc : ℕ) → rc < n ≡ tt
xx : ∀ {x y : ℕ}
→ x =ℕ 0 ≡ ff
→ y =ℕ 0 ≡ ff
→ x ∸ y < x ≡ tt
xx {x} {suc y} x≠0 y≠0
rewrite ∸< {x} {y} x≠0
= refl
transpose' : ∀ {n m : ℕ} → n by m matrix → m by n matrix
transpose' {0} {m} _ = zero-matrix m 0
transpose' {1} {m} _ = zero-matrix m 1
transpose' n@{suc (suc _)} {zero} 𝕞 = zero-matrix zero n
transpose' n@{suc (suc _)} m@{suc _} 𝕞 = mkRows m n
where
mkElt : (newRow : ℕ)
→ newRow =ℕ 0 ≡ ff
→ (newCol : ℕ)
→ newCol =ℕ 0 ≡ ff
→ ℕ
mkElt newRow rp newCol cp =
matrix-elt 𝕞 (n ∸ newCol) (m ∸ newRow)
-- (xx cp refl) (xx rp refl)
-- (yyy (n ∸ newCol) n) (yyy (m ∸ newRow) m)
{!!} {!!}
mkCols : (∀ (new : ℕ) → new =ℕ 0 ≡ ff → ℕ) → (cols : ℕ) → 𝕍 ℕ cols
mkCols _ zero = []
mkCols f sc@(suc c) = f sc refl :: mkCols f c
mkRows : (rows : ℕ) → (cols : ℕ) → 𝕍 (𝕍 ℕ cols) rows
mkRows zero _ = []
mkRows sr@(suc r) c = mkCols (mkElt sr refl) c :: mkRows r c
_ : transpose' ex2x3 ≡ (1 :: 0 :: []) ::
(2 :: 6 :: []) ::
(3 :: 7 :: []) :: []
_ = refl
-- END HORRIBLE HACKY TRY
-- 2e
dotProduct𝕍 : ∀ {n : ℕ} → 𝕍 ℕ n → 𝕍 ℕ n → ℕ
dotProduct𝕍 [] [] = 0
dotProduct𝕍 (a :: as) (b :: bs) = a * b + (dotProduct𝕍 as bs)
_ : dotProduct𝕍 (1 :: 3 :: 5 :: []) (4 :: 2 :: 1 :: []) ≡ 15
_ = refl
foldr : ∀ {A B : Set} {n : ℕ} → (A → B → B) → B → 𝕍 A n → B
foldr f z [] = z
foldr f z (x :: xs) = f x (foldr f z xs)
zipWith : ∀ {A B C : Set} {n : ℕ} → (A → B → C) → 𝕍 A n → 𝕍 B n → 𝕍 C n
zipWith _ [] [] = []
zipWith f (x :: xs) (y :: ys) = f x y :: zipWith f xs ys
dotProduct𝕍' : ∀ {n : ℕ} → 𝕍 ℕ n → 𝕍 ℕ n → ℕ
dotProduct𝕍' as bs = foldr _+_ 0 (zipWith _*_ as bs)
_ : dotProduct𝕍' (1 :: 3 :: 5 :: []) (4 :: 2 :: 1 :: []) ≡ 15
_ = refl
-- 2f
matrix-* : ∀ {m n p : ℕ} → m by n matrix → n by p matrix → m by p matrix
matrix-* [] _ = []
matrix-* {m} {n} {p} (a :: as) bs =
doRow {n} {p} a (transpose bs) :: matrix-* as bs
where
doRow : ∀ {n p : ℕ} → 𝕍 ℕ n → p by n matrix → 𝕍 ℕ p
doRow a [] = []
doRow {n} {p} a (b :: bs) = dotProduct𝕍 a b :: doRow a bs
ma : 2 by 3 matrix
ma = (2 :: 3 :: 4 :: []) ::
(1 :: 0 :: 0 :: []) :: []
mb : 3 by 2 matrix
mb = (0 :: 1000 :: []) ::
(1 :: 100 :: []) ::
(0 :: 10 :: []) :: []
_ : matrix-* ma mb ≡ (3 :: 2340 :: []) ::
(0 :: 1000 :: []) :: []
_ = refl
identity-2 : 2 by 2 matrix
identity-2 = identity-matrix 2
some-mat : 2 by 2 matrix
some-mat =
(1 :: 2 :: []) ::
(3 :: 4 :: []) :: []
some-mat-trans : 2 by 2 matrix
some-mat-trans =
(1 :: 3 :: []) ::
(2 :: 4 :: []) :: []
_ : matrix-* some-mat identity-2 ≡ some-mat
_ = refl
_ : transpose some-mat ≡ some-mat-trans
_ = refl
left-mat : 2 by 3 matrix
left-mat =
(1 :: 2 :: 3 :: []) ::
(4 :: 5 :: 6 :: []) :: []
right-mat : 3 by 2 matrix
right-mat =
( 7 :: 8 :: []) ::
( 9 :: 10 :: []) ::
(11 :: 12 :: []) :: []
product : 2 by 2 matrix
product =
( 58 :: 64 :: []) ::
(139 :: 154 :: []) :: []
_ : matrix-* left-mat right-mat ≡ product
_ = refl
-- TODO https://www.cs.nott.ac.uk/~psztxa/g53cfr/solutions/ex02.agda
-- 3
-- from list.agda
data 𝕃 {ℓ} (A : Set ℓ) : Set ℓ where
[] : 𝕃 A
_::_ : (x : A) (xs : 𝕃 A) → 𝕃 A
-- from vector.agda
𝕍-to-𝕃 : ∀ {ℓ} {A : Set ℓ} {n : ℕ} → 𝕍 A n → 𝕃 A
𝕍-to-𝕃 [] = []
𝕍-to-𝕃 (x :: xs) = x :: (𝕍-to-𝕃 xs)
𝕃-to-𝕍 : ∀ {ℓ} {A : Set ℓ} → 𝕃 A → Σ ℕ (λ n → 𝕍 A n)
𝕃-to-𝕍 [] = (0 , [])
𝕃-to-𝕍 (x :: xs) with 𝕃-to-𝕍 xs
... | (n , v) = (suc n , x :: v)
e3 : ∀ {ℓ} {A : Set ℓ} {n : ℕ}
→ (v : 𝕍 A n)
→ 𝕃-to-𝕍 (𝕍-to-𝕃 v) ≡ n , v
e3 [] = refl
e3 (x :: v) with e3 v
... | zz rewrite zz = refl
-- 4. fun takes V (A × B) n ; returns pair V A n and V B n
-- similar to Haskell unzip
unzip : ∀ {ℓ} {A B : Set ℓ} {n : ℕ}
→ 𝕍 (A × B) n
→ 𝕍 A n × 𝕍 B n
unzip [] = [] , []
unzip ((a , b) :: v) =
let rest = unzip v
in a :: fst rest , b :: snd rest
_ : unzip ((1 , 10) :: (2 , 20) :: (3 , 30) :: []) ≡ ( 1 :: 2 :: 3 :: [])
, (10 :: 20 :: 30 :: [])
_ = refl
{- TODO
-- 5. Implement remove-min / remove-max functions for bst. type.
Using remove-min, define a general remove function
- finds first value isomorphic to given one
- returns bst without that value.
If node holding that value has two (non-leaf) nodes as left and right sub-trees,
then necessary to replace the removed element with its successor.
This is the minimum value in the right subtree.
-- 6. In list-merge-sort.agda : merge-sort using Braun trees.
State and prove theorems about merge-sort.
E.g., prove length of input list and length of returned sorted list are the same.
-}
|
{
"alphanum_fraction": 0.5512166494,
"avg_line_length": 31.7804878049,
"ext": "agda",
"hexsha": "bea1bfeb48922acafc7cb610fbc000f1851eb909",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z05-00-internal-verification.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z05-00-internal-verification.agda",
"max_line_length": 97,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z05-00-internal-verification.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 7721,
"size": 22151
}
|
{-# OPTIONS --erased-cubical #-}
-- Modules that use --cubical can be imported when --erased-cubical is
-- used.
open import Erased-cubical-Open-public.Cubical
-- However, re-exports from such modules, made using module
-- application, can only be used in erased contexts.
_ : Set
_ = A
|
{
"alphanum_fraction": 0.7182130584,
"avg_line_length": 22.3846153846,
"ext": "agda",
"hexsha": "a3fb1b38e370484ab6215c5fc5a4e93f2b96c640",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Fail/Erased-cubical-Open-public.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Fail/Erased-cubical-Open-public.agda",
"max_line_length": 70,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Fail/Erased-cubical-Open-public.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 79,
"size": 291
}
|
{-# OPTIONS --without-K --safe #-}
open import Level
-- ⊥ is Initial
module Categories.Category.Instance.Zero where
open import Data.Empty using (⊥; ⊥-elim)
open import Function renaming (id to idf)
open import Categories.Category
open import Categories.Functor
open import Categories.Category.Instance.Cats
import Categories.Object.Initial as Init
-- Unlike for ⊤ being Terminal, Agda can't deduce these, need to be explicit
module _ {o ℓ e : Level} where
open Init (Cats o ℓ e)
Zero : Category o ℓ e
Zero = record
{ Obj = Lift o ⊥
; _⇒_ = λ _ _ → Lift ℓ ⊥
; _≈_ = λ _ _ → Lift e ⊥
; id = λ { { lift () } }
; _∘_ = λ a _ → a -- left-biased rather than strict
; assoc = λ { {lift () } }
; sym-assoc = λ { {lift () } }
; identityˡ = λ { {()} }
; identityʳ = λ { {()} }
; identity² = λ { {()} }
; ∘-resp-≈ = λ { () }
; equiv = record
{ refl = λ { {()} }
; sym = idf
; trans = λ a _ → a
}
}
Zero-⊥ : Initial
Zero-⊥ = record
{ ⊥ = Zero
; ! = record
{ F₀ = λ { (lift x) → ⊥-elim x }
; F₁ = λ { (lift ()) }
; identity = λ { {lift ()} }
; homomorphism = λ { {lift ()} }
; F-resp-≈ = λ { () }
}
; !-unique = λ f → record
{ F⇒G = record { η = λ { () } ; commute = λ { () } ; sym-commute = λ { () } }
; F⇐G = record { η = λ { () } ; commute = λ { () } ; sym-commute = λ { () } }
; iso = λ { (lift ()) }
}
}
|
{
"alphanum_fraction": 0.4744525547,
"avg_line_length": 26.4385964912,
"ext": "agda",
"hexsha": "4d08af6fce367c02c9be2b5e4f00810d9fcad85d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Instance/Zero.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Instance/Zero.agda",
"max_line_length": 83,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Instance/Zero.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 516,
"size": 1507
}
|
module Issue113 where
module X where
postulate D : Set
open X public
postulate x : D
-- Should give the proper error message, not __IMPOSSIBLE__ from Highlight.Generate
typeIncorrect : Set
typeIncorrect = Set1
|
{
"alphanum_fraction": 0.7706422018,
"avg_line_length": 14.5333333333,
"ext": "agda",
"hexsha": "e817138969df6fb56d0741727420a77b9f8789ec",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue113.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue113.agda",
"max_line_length": 83,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue113.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 57,
"size": 218
}
|
{-# OPTIONS --without-K --safe #-}
module Data.Binary.Relations.Raw where
-- This module defines the "raw" relations on the binary types. In other words,
-- these relations are all functions which return either ⊤ or ⊥.
--
-- Each relation is generic of its strictness: if its first argument is O, it's a
-- strict relation (_<_); otherwise it's non-strict (_≤_).
open import Data.Binary.Bits
open import Data.Binary.Definitions
open import Data.Unit using (⊤; tt)
open import Data.Empty using (⊥; ⊥-elim)
open import Relation.Nullary
open import Data.Bool.Properties using (T?)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Binary.Operations.Unary
open import Data.Binary.Operations.Addition
------------------------------------------------------------------------
-- Definition of relations
infix 4 ⟅_⟆_≺ᵇ_ ⟅_⟆_≺⁺_ ⟅_⟆_≺_
⟅_⟆_≺ᵇ_ : Bit → Bit → Bit → Bit
⟅ p ⟆ I ≺ᵇ q = q ∧ p
⟅ p ⟆ O ≺ᵇ q = p ∨ q
⟅_⟆_≺⁺_ : Bit → 𝔹⁺ → 𝔹⁺ → Set
⟅ p ⟆ 1ᵇ ≺⁺ (y ∷ ys) = ⊤
⟅ p ⟆ 1ᵇ ≺⁺ 1ᵇ = T p
⟅ p ⟆ (x ∷ xs) ≺⁺ 1ᵇ = ⊥
⟅ p ⟆ (x ∷ xs) ≺⁺ (y ∷ ys) = ⟅ ⟅ p ⟆ x ≺ᵇ y ⟆ xs ≺⁺ ys
⟅_⟆_≺_ : Bit → 𝔹 → 𝔹 → Set
⟅ p ⟆ 0ᵇ ≺ 0ᵇ = T p
⟅ p ⟆ 0ᵇ ≺ (0< _) = ⊤
⟅ p ⟆ 0< xs ≺ 0ᵇ = ⊥
⟅ p ⟆ 0< xs ≺ 0< ys = ⟅ p ⟆ xs ≺⁺ ys
------------------------------------------------------------------------
-- Properties
weaken⁺ : ∀ x xs ys → ⟅ x ⟆ xs ≺⁺ ys → ⟅ I ⟆ xs ≺⁺ ys
weaken⁺ x (O ∷ xs) 1ᵇ xs<ys = xs<ys
weaken⁺ x (O ∷ xs) (y ∷ ys) xs<ys = weaken⁺ (x ∨ y) xs ys xs<ys
weaken⁺ x (I ∷ xs) 1ᵇ xs<ys = xs<ys
weaken⁺ x (I ∷ xs) (O ∷ ys) xs<ys = xs<ys
weaken⁺ x (I ∷ xs) (I ∷ ys) xs<ys = weaken⁺ x xs ys xs<ys
weaken⁺ O 1ᵇ 1ᵇ xs<ys = tt
weaken⁺ O 1ᵇ (x ∷ xs) xs<ys = tt
weaken⁺ I 1ᵇ ys xs<ys = xs<ys
weaken : ∀ xs ys → ⟅ O ⟆ xs ≺ ys → ⟅ I ⟆ xs ≺ ys
weaken (0< xs) (0< ys) xs<ys = weaken⁺ O xs ys xs<ys
weaken (0< x) 0ᵇ xs<ys = xs<ys
weaken 0ᵇ (0< x) xs<ys = tt
weaken 0ᵇ 0ᵇ xs<ys = tt
≺⁺-trans : ∀ x y xs ys zs → ⟅ x ⟆ xs ≺⁺ ys → ⟅ y ⟆ ys ≺⁺ zs → ⟅ x ∧ y ⟆ xs ≺⁺ zs
≺⁺-trans c₁ c₂ 1ᵇ ys (x ∷ zs) xs<ys ys<zs = tt
≺⁺-trans c₁ c₂ (x ∷ xs) 1ᵇ 1ᵇ xs<ys ys<zs = xs<ys
≺⁺-trans c₁ c₂ (x ∷ xs) 1ᵇ (z ∷ zs) () ys<zs
≺⁺-trans c₁ c₂ (x ∷ xs) (y ∷ ys) 1ᵇ xs<ys ys<zs = ys<zs
≺⁺-trans O O 1ᵇ 1ᵇ 1ᵇ xs<ys ys<zs = ys<zs
≺⁺-trans O O 1ᵇ (x ∷ xs) 1ᵇ xs<ys ys<zs = ys<zs
≺⁺-trans O I 1ᵇ 1ᵇ 1ᵇ xs<ys ys<zs = xs<ys
≺⁺-trans O I 1ᵇ (x ∷ xs) 1ᵇ xs<ys ys<zs = ys<zs
≺⁺-trans I O 1ᵇ 1ᵇ 1ᵇ xs<ys ys<zs = ys<zs
≺⁺-trans I O 1ᵇ (x ∷ xs) 1ᵇ xs<ys ys<zs = ys<zs
≺⁺-trans I I 1ᵇ ys 1ᵇ xs<ys ys<zs = tt
≺⁺-trans I c₂ (I ∷ xs) (O ∷ ys) (O ∷ zs) xs<ys ys<zs = ≺⁺-trans O (c₂ ∨ O) xs ys zs xs<ys ys<zs
≺⁺-trans I c₂ (I ∷ xs) (I ∷ ys) (O ∷ zs) xs<ys ys<zs = ≺⁺-trans I O xs ys zs xs<ys ys<zs
≺⁺-trans O c₂ (I ∷ xs) (O ∷ ys) (I ∷ zs) xs<ys ys<zs = ≺⁺-trans O (c₂ ∨ I) xs ys zs xs<ys ys<zs
≺⁺-trans O c₂ (I ∷ xs) (I ∷ ys) (I ∷ zs) xs<ys ys<zs = ≺⁺-trans O c₂ xs ys zs xs<ys ys<zs
≺⁺-trans O c₂ (I ∷ xs) (O ∷ ys) (O ∷ zs) xs<ys ys<zs = ≺⁺-trans O (c₂ ∨ O) xs ys zs xs<ys ys<zs
≺⁺-trans O c₂ (I ∷ xs) (I ∷ ys) (O ∷ zs) xs<ys ys<zs = ≺⁺-trans O O xs ys zs xs<ys ys<zs
≺⁺-trans O c₂ (O ∷ xs) (y ∷ ys) (I ∷ zs) xs<ys ys<zs = weaken⁺ (y ∧ (⟅ c₂ ⟆ y ≺ᵇ I)) xs zs (≺⁺-trans y (⟅ c₂ ⟆ y ≺ᵇ I) xs ys zs xs<ys ys<zs)
≺⁺-trans O c₂ (O ∷ xs) (O ∷ ys) (O ∷ zs) xs<ys ys<zs = ≺⁺-trans O (c₂ ∨ O) xs ys zs xs<ys ys<zs
≺⁺-trans O c₂ (O ∷ xs) (I ∷ ys) (O ∷ zs) xs<ys ys<zs = ≺⁺-trans I O xs ys zs xs<ys ys<zs
≺⁺-trans I O (I ∷ xs) (O ∷ ys) (I ∷ zs) xs<ys ys<zs = ≺⁺-trans O I xs ys zs xs<ys ys<zs
≺⁺-trans I O (I ∷ xs) (I ∷ ys) (I ∷ zs) xs<ys ys<zs = ≺⁺-trans I O xs ys zs xs<ys ys<zs
≺⁺-trans I O (O ∷ xs) (y ∷ ys) (I ∷ zs) xs<ys ys<zs = weaken⁺ (⟅ O ⟆ y ≺ᵇ I) xs zs (≺⁺-trans I (⟅ O ⟆ y ≺ᵇ I) xs ys zs xs<ys ys<zs)
≺⁺-trans I O (O ∷ xs) (O ∷ ys) (O ∷ zs) xs<ys ys<zs = ≺⁺-trans I O xs ys zs xs<ys ys<zs
≺⁺-trans I O (O ∷ xs) (I ∷ ys) (O ∷ zs) xs<ys ys<zs = ≺⁺-trans I O xs ys zs xs<ys ys<zs
≺⁺-trans I I (I ∷ xs) (O ∷ ys) (I ∷ zs) xs<ys ys<zs = weaken⁺ O xs zs (≺⁺-trans (O ∧ I) (⟅ I ⟆ O ≺ᵇ I) xs ys zs xs<ys ys<zs)
≺⁺-trans I I (I ∷ xs) (I ∷ ys) (I ∷ zs) xs<ys ys<zs = ≺⁺-trans (I ∧ I) (⟅ I ⟆ I ≺ᵇ I) xs ys zs xs<ys ys<zs
≺⁺-trans I I (O ∷ xs) (y ∷ ys) (z ∷ zs) xs<ys ys<zs = weaken⁺ (⟅ I ⟆ y ≺ᵇ z) xs zs (≺⁺-trans I (⟅ I ⟆ y ≺ᵇ z) xs ys zs xs<ys ys<zs)
≺-trans : ∀ x y xs ys zs → ⟅ x ⟆ xs ≺ ys → ⟅ y ⟆ ys ≺ zs → ⟅ x ∧ y ⟆ xs ≺ zs
≺-trans x y (0< x₁) (0< x₃) (0< x₂) xs<ys ys<zs = ≺⁺-trans x y x₁ x₃ x₂ xs<ys ys<zs
≺-trans x y (0< x₁) 0ᵇ (0< x₂) () ys<zs
≺-trans x y (0< x₁) (0< x₂) 0ᵇ xs<ys ys<zs = ys<zs
≺-trans x y (0< x₁) 0ᵇ 0ᵇ xs<ys ys<zs = xs<ys
≺-trans x y 0ᵇ ys (0< x₁) xs<ys ys<zs = tt
≺-trans x y 0ᵇ (0< x₁) 0ᵇ tt ()
≺-trans O O 0ᵇ 0ᵇ 0ᵇ xs<ys ys<zs = ys<zs
≺-trans O I 0ᵇ 0ᵇ 0ᵇ xs<ys ys<zs = xs<ys
≺-trans I O 0ᵇ 0ᵇ 0ᵇ xs<ys ys<zs = ys<zs
≺-trans I I 0ᵇ 0ᵇ 0ᵇ xs<ys ys<zs = tt
asym-≺⁺ : ∀ c xs ys → ⟅ c ⟆ ys ≺⁺ xs → ¬ ⟅ not c ⟆ xs ≺⁺ ys
asym-≺⁺ O 1ᵇ 1ᵇ ys<xs xs<ys = ys<xs
asym-≺⁺ O 1ᵇ (x ∷ xs) ys<xs xs<ys = ys<xs
asym-≺⁺ O (O ∷ xs) 1ᵇ ys<xs xs<ys = xs<ys
asym-≺⁺ O (O ∷ xs) (O ∷ ys) ys<xs xs<ys = asym-≺⁺ I ys xs xs<ys ys<xs
asym-≺⁺ O (O ∷ xs) (I ∷ ys) ys<xs xs<ys = asym-≺⁺ I ys xs xs<ys ys<xs
asym-≺⁺ O (I ∷ xs) 1ᵇ ys<xs xs<ys = xs<ys
asym-≺⁺ O (I ∷ xs) (O ∷ ys) ys<xs xs<ys = asym-≺⁺ O ys xs xs<ys ys<xs
asym-≺⁺ O (I ∷ xs) (I ∷ ys) ys<xs xs<ys = asym-≺⁺ I ys xs xs<ys ys<xs
asym-≺⁺ I 1ᵇ 1ᵇ ys<xs xs<ys = xs<ys
asym-≺⁺ I 1ᵇ (x ∷ xs) ys<xs xs<ys = ys<xs
asym-≺⁺ I (O ∷ xs) 1ᵇ ys<xs xs<ys = xs<ys
asym-≺⁺ I (O ∷ xs) (O ∷ ys) ys<xs xs<ys = asym-≺⁺ O ys xs xs<ys ys<xs
asym-≺⁺ I (O ∷ xs) (I ∷ ys) ys<xs xs<ys = asym-≺⁺ I ys xs xs<ys ys<xs
asym-≺⁺ I (I ∷ xs) 1ᵇ ys<xs xs<ys = xs<ys
asym-≺⁺ I (I ∷ xs) (O ∷ ys) ys<xs xs<ys = asym-≺⁺ O ys xs xs<ys ys<xs
asym-≺⁺ I (I ∷ xs) (I ∷ ys) ys<xs xs<ys = asym-≺⁺ O ys xs xs<ys ys<xs
asym-≺ : ∀ c xs ys → ⟅ c ⟆ ys ≺ xs → ¬ ⟅ not c ⟆ xs ≺ ys
asym-≺ c (0< xs) (0< ys) ys<xs xs<ys = asym-≺⁺ c xs ys ys<xs xs<ys
asym-≺ c (0< x) 0ᵇ ys<xs xs<ys = xs<ys
asym-≺ c 0ᵇ (0< x) ys<xs xs<ys = ys<xs
asym-≺ c 0ᵇ 0ᵇ ys<xs xs<ys = asym-≺⁺ c 1ᵇ 1ᵇ ys<xs xs<ys
pos-asym-≺⁺ : ∀ c xs ys → ¬ ⟅ c ⟆ ys ≺⁺ xs → ⟅ not c ⟆ xs ≺⁺ ys
pos-asym-≺⁺ c 1ᵇ (x ∷ ys) ys≺xs = tt
pos-asym-≺⁺ c (x ∷ xs) 1ᵇ ys≺xs = ys≺xs tt
pos-asym-≺⁺ c (I ∷ xs) (I ∷ ys) ys≺xs = pos-asym-≺⁺ c xs ys ys≺xs
pos-asym-≺⁺ O (O ∷ xs) (O ∷ ys) ys≺xs = pos-asym-≺⁺ O xs ys ys≺xs
pos-asym-≺⁺ I (O ∷ xs) (O ∷ ys) ys≺xs = pos-asym-≺⁺ I xs ys ys≺xs
pos-asym-≺⁺ O (O ∷ xs) (I ∷ ys) ys≺xs = pos-asym-≺⁺ O xs ys ys≺xs
pos-asym-≺⁺ I (O ∷ xs) (I ∷ ys) ys≺xs = pos-asym-≺⁺ O xs ys ys≺xs
pos-asym-≺⁺ O (I ∷ xs) (O ∷ ys) ys≺xs = pos-asym-≺⁺ I xs ys ys≺xs
pos-asym-≺⁺ I (I ∷ xs) (O ∷ ys) ys≺xs = pos-asym-≺⁺ I xs ys ys≺xs
pos-asym-≺⁺ O 1ᵇ 1ᵇ ys≺xs = tt
pos-asym-≺⁺ I 1ᵇ 1ᵇ ys≺xs = ys≺xs tt
pos-asym-≺ : ∀ c xs ys → ¬ ⟅ c ⟆ ys ≺ xs → ⟅ not c ⟆ xs ≺ ys
pos-asym-≺ c (0< xs) (0< ys) ys≮xs = pos-asym-≺⁺ c xs ys ys≮xs
pos-asym-≺ c (0< x) 0ᵇ ys≮xs = ys≮xs tt
pos-asym-≺ c 0ᵇ (0< x) ys≮xs = tt
pos-asym-≺ O 0ᵇ 0ᵇ ys≮xs = tt
pos-asym-≺ I 0ᵇ 0ᵇ ys≮xs = ys≮xs tt
≺⁺-antisym : ∀ c → Antisymmetric _≡_ ⟅ c ⟆_≺⁺_
≺⁺-antisym c {1ᵇ} {1ᵇ} xs<ys ys<xs = refl
≺⁺-antisym c {1ᵇ} {x ∷ ys} xs<ys ()
≺⁺-antisym c {x ∷ xs} {1ᵇ} () ys<xs
≺⁺-antisym c {O ∷ xs} {O ∷ ys} xs<ys ys<xs = cong (O ∷_) (≺⁺-antisym (c ∨ O) xs<ys ys<xs)
≺⁺-antisym c {O ∷ xs} {I ∷ ys} xs<ys ys<xs = ⊥-elim (asym-≺⁺ O xs ys ys<xs (weaken⁺ (c ∨ I) xs ys xs<ys))
≺⁺-antisym c {I ∷ xs} {O ∷ ys} xs<ys ys<xs = ⊥-elim (asym-≺⁺ O ys xs xs<ys (weaken⁺ (c ∨ I) ys xs ys<xs))
≺⁺-antisym c {I ∷ xs} {I ∷ ys} xs<ys ys<xs = cong (I ∷_) (≺⁺-antisym c xs<ys ys<xs)
≺-antisym : ∀ c → Antisymmetric _≡_ ⟅ c ⟆_≺_
≺-antisym c {0< x} {0< x₁} xs<ys ys<xs = cong 0<_ (≺⁺-antisym c xs<ys ys<xs)
≺-antisym c {0< x} {0ᵇ} () ys<xs
≺-antisym c {0ᵇ} {0< x} xs<ys ()
≺-antisym c {0ᵇ} {0ᵇ} xs<ys ys<xs = refl
≼-refl : ∀ xs → ⟅ I ⟆ xs ≺⁺ xs
≼-refl 1ᵇ = tt
≼-refl (O ∷ xs) = ≼-refl xs
≼-refl (I ∷ xs) = ≼-refl xs
≺⁺-inc⁺⁺ : ∀ x xs → ⟅ x ⟆ xs ≺⁺ inc⁺⁺ xs
≺⁺-inc⁺⁺ _ 1ᵇ = tt
≺⁺-inc⁺⁺ c (I ∷ xs) = ≺⁺-inc⁺⁺ O xs
≺⁺-inc⁺⁺ O (O ∷ xs) = ≼-refl xs
≺⁺-inc⁺⁺ I (O ∷ xs) = ≼-refl xs
≺⁺-add : ∀ ys xs c₁ c₂ → ⟅ c₁ ⟆ xs ≺⁺ add c₂ ys xs
≺⁺-add 1ᵇ 1ᵇ c₁ O = tt
≺⁺-add 1ᵇ 1ᵇ c₁ I = tt
≺⁺-add 1ᵇ (x ∷ xs) c₁ O = ≺⁺-inc⁺⁺ c₁ (x ∷ xs)
≺⁺-add 1ᵇ (x ∷ xs) c₁ I = ≺⁺-inc⁺⁺ (⟅ c₁ ⟆ x ≺ᵇ x) xs
≺⁺-add (y ∷ ys) (x ∷ xs) c₁ c₂ = ≺⁺-add ys xs (⟅ c₁ ⟆ x ≺ᵇ sumᵇ c₂ y x) (carryᵇ c₂ y x)
≺⁺-add (y ∷ ys) 1ᵇ c₁ I = tt
≺⁺-add (O ∷ ys) 1ᵇ c₁ O = tt
≺⁺-add (I ∷ ys) 1ᵇ c₁ O = tt
≺-add : ∀ ys xs → ⟅ I ⟆ xs ≺ ys + xs
≺-add (0< x) (0< x₁) = ≺⁺-add x x₁ I O
≺-add (0< x) 0ᵇ = tt
≺-add 0ᵇ (0< x) = ≼-refl x
≺-add 0ᵇ 0ᵇ = tt
------------------------------------------------------------------------
-- Decidability
infix 4 _!_≺⁺?_ _!_≺?_
_!_≺⁺?_ : ∀ x xs ys → Dec (⟅ x ⟆ xs ≺⁺ ys)
c ! 1ᵇ ≺⁺? x ∷ xs = yes tt
c ! 1ᵇ ≺⁺? 1ᵇ = T? c
c ! x ∷ xs ≺⁺? 1ᵇ = no (λ z → z)
c ! x ∷ xs ≺⁺? y ∷ ys = (⟅ c ⟆ x ≺ᵇ y) ! xs ≺⁺? ys
_!_≺?_ : ∀ x xs ys → Dec (⟅ x ⟆ xs ≺ ys)
c ! 0< xs ≺? 0< ys = c ! xs ≺⁺? ys
c ! 0< xs ≺? 0ᵇ = no (λ z → z)
c ! 0ᵇ ≺? 0< _ = yes tt
c ! 0ᵇ ≺? 0ᵇ = T? c
compare-≺ : ∀ c → Conn ⟅ c ⟆_≺_ ⟅ not c ⟆_≺_
compare-≺ c xs ys with c ! xs ≺? ys
compare-≺ c xs ys | yes p = inj₁ p
compare-≺ c xs ys | no ¬p = inj₂ (pos-asym-≺ c ys xs ¬p)
|
{
"alphanum_fraction": 0.5035080026,
"avg_line_length": 43.2322274882,
"ext": "agda",
"hexsha": "37c9fb6e11b45c1be736ac036947018df85c1dc1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-binary",
"max_forks_repo_path": "Data/Binary/Relations/Raw.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-binary",
"max_issues_repo_path": "Data/Binary/Relations/Raw.agda",
"max_line_length": 140,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-binary",
"max_stars_repo_path": "Data/Binary/Relations/Raw.agda",
"max_stars_repo_stars_event_max_datetime": "2019-03-21T21:30:10.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-03-21T21:30:10.000Z",
"num_tokens": 5592,
"size": 9122
}
|
{-# OPTIONS --rewriting #-}
module Properties.Step where
open import Agda.Builtin.Equality using (_≡_; refl)
open import Agda.Builtin.Float using (primFloatPlus; primFloatMinus; primFloatTimes; primFloatDiv; primFloatEquality; primFloatLess)
open import Agda.Builtin.Bool using (true; false)
open import Agda.Builtin.String using (primStringAppend)
open import FFI.Data.Maybe using (just; nothing)
open import Luau.Heap using (Heap; _[_]; alloc; ok; function_is_end)
open import Luau.Syntax using (Block; Expr; nil; var; val; addr; bool; function_is_end; block_is_end; _$_; local_←_; return; done; _∙_; name; fun; arg; number; binexp; +; -; *; /; <; >; <=; >=; ==; ~=; ··; string)
open import Luau.OpSem using (_⟦_⟧_⟶_; _⊢_⟶ᴱ_⊣_; _⊢_⟶ᴮ_⊣_; app₁ ; app₂ ; beta; function; block; return; done; local; subst; binOp₀; binOp₁; binOp₂; +; -; *; /; <; >; <=; >=; ==; ~=; ··; evalEqOp; evalNeqOp)
open import Luau.RuntimeError using (BinOpError; RuntimeErrorᴱ; RuntimeErrorᴮ; FunctionMismatch; BinOpMismatch₁; BinOpMismatch₂; UnboundVariable; SEGV; app₁; app₂; block; local; return; bin₁; bin₂; +; -; *; /; <; >; <=; >=; ··)
open import Luau.RuntimeType using (valueType; function; number)
open import Luau.Substitution using (_[_/_]ᴮ)
open import Properties.Remember using (remember; _,_)
open import Utility.Bool using (not; _or_)
data BinOpStepResult v op w : Set where
step : ∀ x → (v ⟦ op ⟧ w ⟶ x) → BinOpStepResult v op w
error₁ : BinOpError op (valueType(v)) → BinOpStepResult v op w
error₂ : BinOpError op (valueType(w)) → BinOpStepResult v op w
binOpStep : ∀ v op w → BinOpStepResult v op w
binOpStep nil + w = error₁ (+ (λ ()))
binOpStep (addr a) + w = error₁ (+ (λ ()))
binOpStep (number m) + nil = error₂ (+ (λ ()))
binOpStep (number m) + (addr a) = error₂ (+ (λ ()))
binOpStep (number m) + (number n) = step (number (primFloatPlus m n)) (+ m n)
binOpStep (number m) + (bool b) = error₂ (+ (λ ()))
binOpStep (number m) + (string x) = error₂ (+ (λ ()))
binOpStep (number m) - (string x) = error₂ (- (λ ()))
binOpStep (number m) * (string x) = error₂ (* (λ ()))
binOpStep (number m) / (string x) = error₂ (/ (λ ()))
binOpStep (number m) < (string x) = error₂ (< (λ ()))
binOpStep (number m) > (string x) = error₂ (> (λ ()))
binOpStep (number m) == (string x) = step (bool false) (== (number m) (string x))
binOpStep (number m) ~= (string x) = step (bool true) (~= (number m) (string x))
binOpStep (number m) <= (string x) = error₂ (<= (λ ()))
binOpStep (number m) >= (string x) = error₂ (>= (λ ()))
binOpStep (bool b) + w = error₁ (+ (λ ()))
binOpStep nil - w = error₁ (- (λ ()))
binOpStep (addr a) - w = error₁ (- (λ ()))
binOpStep (number x) - nil = error₂ (- (λ ()))
binOpStep (number x) - (addr a) = error₂ (- (λ ()))
binOpStep (number x) - (number n) = step (number (primFloatMinus x n)) (- x n)
binOpStep (number x) - (bool b) = error₂ (- (λ ()))
binOpStep (bool b) - w = error₁ (- (λ ()))
binOpStep nil * w = error₁ (* (λ ()))
binOpStep (addr a) * w = error₁ (* (λ ()))
binOpStep (number m) * nil = error₂ (* (λ ()))
binOpStep (number m) * (addr a) = error₂ (* (λ ()))
binOpStep (number m) * (number n) = step (number (primFloatDiv m n)) (* m n)
binOpStep (number m) * (bool b) = error₂ (* (λ ()))
binOpStep (bool b) * w = error₁ (* (λ ()))
binOpStep nil / w = error₁ (/ (λ ()))
binOpStep (addr a) / w = error₁ (/ (λ ()))
binOpStep (number m) / nil = error₂ (/ (λ ()))
binOpStep (number m) / (addr a) = error₂ (/ (λ ()))
binOpStep (number m) / (number n) = step (number (primFloatTimes m n)) (/ m n)
binOpStep (number m) / (bool b) = error₂ (/ (λ ()))
binOpStep (bool b) / w = error₁ (/ (λ ()))
binOpStep nil < w = error₁ (< (λ ()))
binOpStep (addr a) < w = error₁ (< (λ ()))
binOpStep (number m) < nil = error₂ (< (λ ()))
binOpStep (number m) < (addr a) = error₂ (< (λ ()))
binOpStep (number m) < (number n) = step (bool (primFloatLess m n)) (< m n)
binOpStep (number m) < (bool b) = error₂ (< (λ ()))
binOpStep (bool b) < w = error₁ (< (λ ()))
binOpStep nil > w = error₁ (> (λ ()))
binOpStep (addr a) > w = error₁ (> (λ ()))
binOpStep (number m) > nil = error₂ (> (λ ()))
binOpStep (number m) > (addr a) = error₂ (> (λ ()))
binOpStep (number m) > (number n) = step (bool (primFloatLess n m)) (> m n)
binOpStep (number m) > (bool b) = error₂ (> (λ ()))
binOpStep (bool b) > w = error₁ (> (λ ()))
binOpStep v == w = step (bool (evalEqOp v w)) (== v w)
binOpStep v ~= w = step (bool (evalNeqOp v w)) (~= v w)
binOpStep nil <= w = error₁ (<= (λ ()))
binOpStep (addr a) <= w = error₁ (<= (λ ()))
binOpStep (number m) <= nil = error₂ (<= (λ ()))
binOpStep (number m) <= (addr a) = error₂ (<= (λ ()))
binOpStep (number m) <= (number n) = step (bool (primFloatLess m n or primFloatEquality m n)) (<= m n)
binOpStep (number m) <= (bool b) = error₂ (<= (λ ()))
binOpStep (bool b) <= w = error₁ (<= (λ ()))
binOpStep nil >= w = error₁ (>= (λ ()))
binOpStep (addr a) >= w = error₁ (>= (λ ()))
binOpStep (number m) >= nil = error₂ (>= (λ ()))
binOpStep (number m) >= (addr a) = error₂ (>= (λ ()))
binOpStep (number m) >= (number n) = step (bool (primFloatLess n m or primFloatEquality m n)) (>= m n)
binOpStep (number m) >= (bool b) = error₂ (>= (λ ()))
binOpStep (bool b) >= w = error₁ (>= (λ ()))
binOpStep (string x) + w = error₁ (+ (λ ()))
binOpStep (string x) - w = error₁ (- (λ ()))
binOpStep (string x) * w = error₁ (* (λ ()))
binOpStep (string x) / w = error₁ (/ (λ ()))
binOpStep (string x) < w = error₁ (< (λ ()))
binOpStep (string x) > w = error₁ (> (λ ()))
binOpStep (string x) <= w = error₁ (<= (λ ()))
binOpStep (string x) >= w = error₁ (>= (λ ()))
binOpStep nil ·· y = error₁ (·· (λ ()))
binOpStep (addr x) ·· y = error₁ (BinOpError.·· (λ ()))
binOpStep (number x) ·· y = error₁ (BinOpError.·· (λ ()))
binOpStep (bool x) ·· y = error₁ (BinOpError.·· (λ ()))
binOpStep (string x) ·· nil = error₂ (·· (λ ()))
binOpStep (string x) ·· (addr y) = error₂ (·· (λ ()))
binOpStep (string x) ·· (number y) = error₂ (·· (λ ()))
binOpStep (string x) ·· (bool y) = error₂ (·· (λ ()))
binOpStep (string x) ·· (string y) = step (string (primStringAppend x y)) (·· x y)
data StepResultᴮ {a} (H : Heap a) (B : Block a) : Set
data StepResultᴱ {a} (H : Heap a) (M : Expr a) : Set
data StepResultᴮ H B where
step : ∀ H′ B′ → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → StepResultᴮ H B
return : ∀ v {B′} → (B ≡ (return (val v) ∙ B′)) → StepResultᴮ H B
done : (B ≡ done) → StepResultᴮ H B
error : (RuntimeErrorᴮ H B) → StepResultᴮ H B
data StepResultᴱ H M where
step : ∀ H′ M′ → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → StepResultᴱ H M
value : ∀ V → (M ≡ val V) → StepResultᴱ H M
error : (RuntimeErrorᴱ H M) → StepResultᴱ H M
stepᴱ : ∀ {a} H M → StepResultᴱ {a} H M
stepᴮ : ∀ {a} H B → StepResultᴮ {a} H B
stepᴱ H (val v) = value v refl
stepᴱ H (var x) = error UnboundVariable
stepᴱ H (M $ N) with stepᴱ H M
stepᴱ H (M $ N) | step H′ M′ D = step H′ (M′ $ N) (app₁ D)
stepᴱ H (_ $ N) | value v refl with stepᴱ H N
stepᴱ H (_ $ N) | value v refl | step H′ N′ s = step H′ (val v $ N′) (app₂ v s)
stepᴱ H (_ $ _) | value (addr a) refl | value w refl with remember (H [ a ])
stepᴱ H (_ $ _) | value (addr a) refl | value w refl | (nothing , p) = error (app₁ (SEGV p))
stepᴱ H (_ $ _) | value (addr a) refl | value w refl | (just(function F is B end) , p) = step H (block (fun F) is B [ w / name (arg F) ]ᴮ end) (beta function F is B end w refl p)
stepᴱ H (_ $ _) | value nil refl | value w refl = error (FunctionMismatch nil w (λ ()))
stepᴱ H (_ $ _) | value (number m) refl | value w refl = error (FunctionMismatch (number m) w (λ ()))
stepᴱ H (_ $ _) | value (bool b) refl | value w refl = error (FunctionMismatch (bool b) w (λ ()))
stepᴱ H (_ $ _) | value (string x) refl | value w refl = error (FunctionMismatch (string x) w (λ ()))
stepᴱ H (M $ N) | value V p | error E = error (app₂ E)
stepᴱ H (M $ N) | error E = error (app₁ E)
stepᴱ H (block b is B end) with stepᴮ H B
stepᴱ H (block b is B end) | step H′ B′ D = step H′ (block b is B′ end) (block D)
stepᴱ H (block b is (return _ ∙ B′) end) | return v refl = step H (val v) (return v)
stepᴱ H (block b is done end) | done refl = step H (val nil) done
stepᴱ H (block b is B end) | error E = error (block E)
stepᴱ H (function F is C end) with alloc H (function F is C end)
stepᴱ H function F is C end | ok a H′ p = step H′ (val (addr a)) (function a p)
stepᴱ H (binexp M op N) with stepᴱ H M
stepᴱ H (binexp M op N) | step H′ M′ s = step H′ (binexp M′ op N) (binOp₁ s)
stepᴱ H (binexp M op N) | error E = error (bin₁ E)
stepᴱ H (binexp M op N) | value v refl with stepᴱ H N
stepᴱ H (binexp M op N) | value v refl | step H′ N′ s = step H′ (binexp (val v) op N′) (binOp₂ s)
stepᴱ H (binexp M op N) | value v refl | error E = error (bin₂ E)
stepᴱ H (binexp M op N) | value v refl | value w refl with binOpStep v op w
stepᴱ H (binexp M op N) | value v refl | value w refl | step x p = step H (val x) (binOp₀ p)
stepᴱ H (binexp M op N) | value v refl | value w refl | error₁ E = error (BinOpMismatch₁ v w E)
stepᴱ H (binexp M op N) | value v refl | value w refl | error₂ E = error (BinOpMismatch₂ v w E)
stepᴮ H (function F is C end ∙ B) with alloc H (function F is C end)
stepᴮ H (function F is C end ∙ B) | ok a H′ p = step H′ (B [ addr a / name (fun F) ]ᴮ) (function a p)
stepᴮ H (local x ← M ∙ B) with stepᴱ H M
stepᴮ H (local x ← M ∙ B) | step H′ M′ D = step H′ (local x ← M′ ∙ B) (local D)
stepᴮ H (local x ← _ ∙ B) | value v refl = step H (B [ v / name x ]ᴮ) (subst v)
stepᴮ H (local x ← M ∙ B) | error E = error (local E)
stepᴮ H (return M ∙ B) with stepᴱ H M
stepᴮ H (return M ∙ B) | step H′ M′ D = step H′ (return M′ ∙ B) (return D)
stepᴮ H (return _ ∙ B) | value V refl = return V refl
stepᴮ H (return M ∙ B) | error E = error (return E)
stepᴮ H done = done refl
|
{
"alphanum_fraction": 0.598185754,
"avg_line_length": 56.4011627907,
"ext": "agda",
"hexsha": "cadd153076e18fa2a37ac18b32897fcf909a80d7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "XanderYZZ/luau",
"max_forks_repo_path": "prototyping/Properties/Step.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "XanderYZZ/luau",
"max_issues_repo_path": "prototyping/Properties/Step.agda",
"max_line_length": 227,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "TheGreatSageEqualToHeaven/luau",
"max_stars_repo_path": "prototyping/Properties/Step.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z",
"num_tokens": 3755,
"size": 9701
}
|
-- Andreas, 2015-11-24, reported by Wolfram Kahl
{-# OPTIONS -v impossible:60 #-}
-- {-# OPTIONS -v tc.section:60 #-}
-- {-# OPTIONS -v scope:10 #-}
-- -- {-# OPTIONS -v tc.mod.apply:100 #-}
postulate N : Set
module A (O : Set) where
record R : Set where
field f : O
module L where
open R public
module B (P : Set) where
module M (Q : Set) where
-- private open module AQ = A Q public -- Works, as module is named
open A Q public -- Did not work, as module is anonymous
private open module MP = M P public
-- OR: open MP public
open B
open L N
|
{
"alphanum_fraction": 0.6155172414,
"avg_line_length": 20.7142857143,
"ext": "agda",
"hexsha": "368e3eaef2c9fdf9e7cfa457539e081a9b4e74dd",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1701II.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1701II.agda",
"max_line_length": 72,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1701II.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 177,
"size": 580
}
|
{-# OPTIONS --copatterns #-}
module InstantiatedRecordModuleNoCopattern where
module M (A : Set1) where
open M -- underapplied open
open M Set -- fully applied open
record R : Set2 where
constructor inn
field
out : Set1
r : R
r = inn Set
open R r -- fully applied open
bla = out
-- This is an ill-formed copattern:
-- field of instantiated record module is not a projection!!
wrong : R
out wrong = Set
-- InstantiatedRecordModuleNoCopattern.agda:23,1-16
-- Not a valid projection for a copattern: out
-- when checking that the clause out wrong = Set has type R
|
{
"alphanum_fraction": 0.7140410959,
"avg_line_length": 20.1379310345,
"ext": "agda",
"hexsha": "e806ca0a47e691decaa447dbad67249c33525d8e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/InstantiatedRecordModuleNoCopattern.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/InstantiatedRecordModuleNoCopattern.agda",
"max_line_length": 60,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/InstantiatedRecordModuleNoCopattern.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 159,
"size": 584
}
|
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (Rel)
module Algebra.Structures.Field
{a ℓ} {A : Set a}
(_≈_ : Rel A ℓ)
where
open import Algebra.Linear.Core
open import Relation.Nullary using (¬_)
open import Algebra.Structures _≈_
open import Algebra.FunctionProperties _≈_
open import Level using (_⊔_)
record NonZero (0# : A) : Set (a ⊔ ℓ) where
field
value : A
non-zero : ¬ (value ≈ 0#)
MultiplicativeInverse : ∀ (0# : A) -> Set (a ⊔ ℓ)
MultiplicativeInverse 0# = NonZero 0# → NonZero 0#
record IsField (_+_ _*_ : Op₂ A) (0# 1# : A) (-_ : Op₁ A) (_⁻¹ : MultiplicativeInverse 0#) : Set (a ⊔ ℓ) where
field
isCommutativeRing : IsCommutativeRing _+_ _*_ -_ 0# 1#
_⁻¹-involutive : ∀ (x : NonZero 0#) → NonZero.value ((x ⁻¹) ⁻¹) ≈ NonZero.value x
_⁻¹-inverse : ∀ (x : NonZero 0#) → ((NonZero.value x) * (NonZero.value (x ⁻¹))) ≈ 1#
0#-not-1# : ¬ (0# ≈ 1#)
open IsCommutativeRing isCommutativeRing public
open import Algebra.Properties.Ring (record { isRing = isRing }) public
|
{
"alphanum_fraction": 0.6353276353,
"avg_line_length": 28.4594594595,
"ext": "agda",
"hexsha": "9de497b077e85ca77fd2819d7a9a975d7002ab1d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "felko/linear-algebra",
"max_forks_repo_path": "src/Algebra/Structures/Field.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "felko/linear-algebra",
"max_issues_repo_path": "src/Algebra/Structures/Field.agda",
"max_line_length": 110,
"max_stars_count": 15,
"max_stars_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "felko/linear-algebra",
"max_stars_repo_path": "src/Algebra/Structures/Field.agda",
"max_stars_repo_stars_event_max_datetime": "2020-12-30T06:18:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-02T14:11:00.000Z",
"num_tokens": 386,
"size": 1053
}
|
{-# OPTIONS --without-K --exact-split #-}
module integers where
import rings-with-properties
open rings-with-properties public
--------------------------------------------------------------------------------
{- We give a self-contained proof that ℤ is the initial pointed type with an
automorphism. -}
-- We first introduce the type of pointed types with an automorphism
UU-Pointed-Type-With-Aut :
(l : Level) → UU (lsuc l)
UU-Pointed-Type-With-Aut l =
Σ (UU l) (λ X → X × (X ≃ X))
-- Some trivial bureaucracy for the type of pointed types with an automorphism
type-Pointed-Type-With-Aut :
{l : Level} → UU-Pointed-Type-With-Aut l → UU l
type-Pointed-Type-With-Aut X = pr1 X
point-Pointed-Type-With-Aut :
{l : Level} (X : UU-Pointed-Type-With-Aut l) → type-Pointed-Type-With-Aut X
point-Pointed-Type-With-Aut X = pr1 (pr2 X)
aut-Pointed-Type-With-Aut :
{l : Level} (X : UU-Pointed-Type-With-Aut l) →
type-Pointed-Type-With-Aut X ≃ type-Pointed-Type-With-Aut X
aut-Pointed-Type-With-Aut X = pr2 (pr2 X)
map-aut-Pointed-Type-With-Aut :
{l : Level} (X : UU-Pointed-Type-With-Aut l) →
type-Pointed-Type-With-Aut X → type-Pointed-Type-With-Aut X
map-aut-Pointed-Type-With-Aut X =
map-equiv (aut-Pointed-Type-With-Aut X)
inv-map-aut-Pointed-Type-With-Aut :
{l : Level} (X : UU-Pointed-Type-With-Aut l) →
type-Pointed-Type-With-Aut X → type-Pointed-Type-With-Aut X
inv-map-aut-Pointed-Type-With-Aut X =
inv-map-equiv (aut-Pointed-Type-With-Aut X)
issec-inv-map-aut-Pointed-Type-With-Aut :
{l : Level} (X : UU-Pointed-Type-With-Aut l) →
((map-aut-Pointed-Type-With-Aut X) ∘ (inv-map-aut-Pointed-Type-With-Aut X))
~ id
issec-inv-map-aut-Pointed-Type-With-Aut X =
issec-inv-map-equiv (aut-Pointed-Type-With-Aut X)
isretr-inv-map-aut-Pointed-Type-With-Aut :
{l : Level} (X : UU-Pointed-Type-With-Aut l) →
((inv-map-aut-Pointed-Type-With-Aut X) ∘ (map-aut-Pointed-Type-With-Aut X))
~ id
isretr-inv-map-aut-Pointed-Type-With-Aut X =
isretr-inv-map-equiv (aut-Pointed-Type-With-Aut X)
-- ℤ is a pointed type with an automorphism
ℤ-Pointed-Type-With-Aut : UU-Pointed-Type-With-Aut lzero
ℤ-Pointed-Type-With-Aut =
pair ℤ (pair zero-ℤ equiv-succ-ℤ)
-- We introduce the type of morphisms of pointed types with an automorphism
hom-Pointed-Type-With-Aut :
{l1 l2 : Level} →
UU-Pointed-Type-With-Aut l1 → UU-Pointed-Type-With-Aut l2 → UU (l1 ⊔ l2)
hom-Pointed-Type-With-Aut {l1} {l2} X Y =
Σ ( type-Pointed-Type-With-Aut X → type-Pointed-Type-With-Aut Y)
( λ f →
Id (f (point-Pointed-Type-With-Aut X)) (point-Pointed-Type-With-Aut Y)
×
( ( f ∘ (map-aut-Pointed-Type-With-Aut X)) ~
( (map-aut-Pointed-Type-With-Aut Y) ∘ f)))
-- Some trivial bureaucracy about morphisms of pointed types with an
-- automorphism
map-hom-Pointed-Type-With-Aut :
{l1 l2 : Level} (X : UU-Pointed-Type-With-Aut l1)
(Y : UU-Pointed-Type-With-Aut l2) → hom-Pointed-Type-With-Aut X Y →
type-Pointed-Type-With-Aut X → type-Pointed-Type-With-Aut Y
map-hom-Pointed-Type-With-Aut X Y f = pr1 f
preserves-point-map-hom-Pointed-Type-With-Aut :
{l1 l2 : Level} (X : UU-Pointed-Type-With-Aut l1)
(Y : UU-Pointed-Type-With-Aut l2) (f : hom-Pointed-Type-With-Aut X Y) →
Id ( map-hom-Pointed-Type-With-Aut X Y f (point-Pointed-Type-With-Aut X))
( point-Pointed-Type-With-Aut Y)
preserves-point-map-hom-Pointed-Type-With-Aut X Y f = pr1 (pr2 f)
preserves-aut-map-hom-Pointed-Type-With-Aut :
{l1 l2 : Level} (X : UU-Pointed-Type-With-Aut l1)
(Y : UU-Pointed-Type-With-Aut l2) (f : hom-Pointed-Type-With-Aut X Y) →
( ( map-hom-Pointed-Type-With-Aut X Y f) ∘ (map-aut-Pointed-Type-With-Aut X))
~
( ( map-aut-Pointed-Type-With-Aut Y) ∘ (map-hom-Pointed-Type-With-Aut X Y f))
preserves-aut-map-hom-Pointed-Type-With-Aut X Y f = pr2 (pr2 f)
-- We characterize the identity type of hom-Pointed-Type-With-Aut
htpy-hom-Pointed-Type-With-Aut :
{l1 l2 : Level} (X : UU-Pointed-Type-With-Aut l1)
(Y : UU-Pointed-Type-With-Aut l2) (h1 h2 : hom-Pointed-Type-With-Aut X Y) →
UU (l1 ⊔ l2)
htpy-hom-Pointed-Type-With-Aut X Y h1 h2 =
Σ ( map-hom-Pointed-Type-With-Aut X Y h1
~ map-hom-Pointed-Type-With-Aut X Y h2)
( λ H →
( Id ( preserves-point-map-hom-Pointed-Type-With-Aut X Y h1)
( ( H (point-Pointed-Type-With-Aut X)) ∙
( preserves-point-map-hom-Pointed-Type-With-Aut X Y h2)))
×
( ( x : type-Pointed-Type-With-Aut X) →
( Id ( ( preserves-aut-map-hom-Pointed-Type-With-Aut X Y h1 x) ∙
( ap (map-aut-Pointed-Type-With-Aut Y) (H x)))
( ( H (map-aut-Pointed-Type-With-Aut X x)) ∙
( preserves-aut-map-hom-Pointed-Type-With-Aut X Y h2 x)))))
refl-htpy-hom-Pointed-Type-With-Aut :
{l1 l2 : Level} (X : UU-Pointed-Type-With-Aut l1)
(Y : UU-Pointed-Type-With-Aut l2) (h : hom-Pointed-Type-With-Aut X Y) →
htpy-hom-Pointed-Type-With-Aut X Y h h
refl-htpy-hom-Pointed-Type-With-Aut X Y h =
pair refl-htpy (pair refl (λ x → right-unit))
htpy-hom-Pointed-Type-With-Aut-eq :
{l1 l2 : Level} (X : UU-Pointed-Type-With-Aut l1)
(Y : UU-Pointed-Type-With-Aut l2) (h1 h2 : hom-Pointed-Type-With-Aut X Y) →
Id h1 h2 → htpy-hom-Pointed-Type-With-Aut X Y h1 h2
htpy-hom-Pointed-Type-With-Aut-eq X Y h1 .h1 refl =
refl-htpy-hom-Pointed-Type-With-Aut X Y h1
-- This is the meat of the characterization of the type of morphisms of pointed
-- types with an equivalence. The only hard part is feeding the families
-- explicitly to Agda over and over again, because Agda is apparently not that
-- good at figuring out what the correct family is.
is-contr-total-htpy-hom-Pointed-Type-With-Aut :
{l1 l2 : Level} (X : UU-Pointed-Type-With-Aut l1)
(Y : UU-Pointed-Type-With-Aut l2) (h1 : hom-Pointed-Type-With-Aut X Y) →
is-contr
( Σ ( hom-Pointed-Type-With-Aut X Y)
( htpy-hom-Pointed-Type-With-Aut X Y h1))
is-contr-total-htpy-hom-Pointed-Type-With-Aut X Y h1 =
is-contr-total-Eq-structure
( λ ( map-h2 : type-Pointed-Type-With-Aut X → type-Pointed-Type-With-Aut Y)
( str-h2 : ( Id ( map-h2 (point-Pointed-Type-With-Aut X))
( point-Pointed-Type-With-Aut Y)) ×
( ( x : type-Pointed-Type-With-Aut X) →
Id ( map-h2 (map-aut-Pointed-Type-With-Aut X x))
( map-aut-Pointed-Type-With-Aut Y (map-h2 x))))
( H : map-hom-Pointed-Type-With-Aut X Y h1 ~ map-h2)
→ ( Id ( preserves-point-map-hom-Pointed-Type-With-Aut X Y h1)
( ( H (point-Pointed-Type-With-Aut X)) ∙
( pr1 str-h2)))
×
( ( x : type-Pointed-Type-With-Aut X) →
( Id ( ( preserves-aut-map-hom-Pointed-Type-With-Aut X Y h1 x) ∙
( ap (map-aut-Pointed-Type-With-Aut Y) (H x)))
( ( H (map-aut-Pointed-Type-With-Aut X x)) ∙
( pr2 str-h2 x)))))
( is-contr-total-htpy (map-hom-Pointed-Type-With-Aut X Y h1))
( pair (map-hom-Pointed-Type-With-Aut X Y h1) refl-htpy)
( is-contr-total-Eq-structure
( λ ( pt-h2 : Id ( map-hom-Pointed-Type-With-Aut X Y h1
( point-Pointed-Type-With-Aut X))
( point-Pointed-Type-With-Aut Y))
( aut-h2 : ( x : type-Pointed-Type-With-Aut X) →
Id ( map-hom-Pointed-Type-With-Aut X Y h1
( map-aut-Pointed-Type-With-Aut X x))
( map-aut-Pointed-Type-With-Aut Y
( map-hom-Pointed-Type-With-Aut X Y h1 x)))
( α : Id ( preserves-point-map-hom-Pointed-Type-With-Aut X Y h1)
( pt-h2))
→ ( ( x : type-Pointed-Type-With-Aut X) →
Id ( ( preserves-aut-map-hom-Pointed-Type-With-Aut X Y h1 x) ∙
( refl))
( aut-h2 x)))
( is-contr-total-path
( preserves-point-map-hom-Pointed-Type-With-Aut X Y h1))
( pair (preserves-point-map-hom-Pointed-Type-With-Aut X Y h1) refl)
( is-contr-equiv'
( Σ ( ( x : type-Pointed-Type-With-Aut X) →
Id ( map-hom-Pointed-Type-With-Aut X Y h1
( map-aut-Pointed-Type-With-Aut X x))
( map-aut-Pointed-Type-With-Aut Y
( map-hom-Pointed-Type-With-Aut X Y h1 x)))
( λ aut-h2 →
( x : type-Pointed-Type-With-Aut X) →
Id ( preserves-aut-map-hom-Pointed-Type-With-Aut X Y h1 x)
( aut-h2 x)))
( equiv-tot (equiv-htpy-concat htpy-right-unit))
( is-contr-total-htpy
( preserves-aut-map-hom-Pointed-Type-With-Aut X Y h1))))
-- We complete the characterization of the identity type of the type of
-- morphisms of types with a point and an automorphism
is-equiv-htpy-hom-Pointed-Type-With-Aut :
{l1 l2 : Level} (X : UU-Pointed-Type-With-Aut l1)
(Y : UU-Pointed-Type-With-Aut l2) (h1 h2 : hom-Pointed-Type-With-Aut X Y) →
is-equiv (htpy-hom-Pointed-Type-With-Aut-eq X Y h1 h2)
is-equiv-htpy-hom-Pointed-Type-With-Aut X Y h1 =
fundamental-theorem-id h1
( refl-htpy-hom-Pointed-Type-With-Aut X Y h1)
( is-contr-total-htpy-hom-Pointed-Type-With-Aut X Y h1)
( htpy-hom-Pointed-Type-With-Aut-eq X Y h1)
eq-htpy-hom-Pointed-Type-With-Aut :
{l1 l2 : Level} (X : UU-Pointed-Type-With-Aut l1)
(Y : UU-Pointed-Type-With-Aut l2) (h1 h2 : hom-Pointed-Type-With-Aut X Y) →
htpy-hom-Pointed-Type-With-Aut X Y h1 h2 → Id h1 h2
eq-htpy-hom-Pointed-Type-With-Aut X Y h1 h2 =
inv-is-equiv (is-equiv-htpy-hom-Pointed-Type-With-Aut X Y h1 h2)
-- We show that from ℤ there is a morphism of pointed types with automorphism
-- to any pointed type with automorphisms
map-initial-Pointed-Type-With-Aut :
{l : Level} (X : UU-Pointed-Type-With-Aut l) →
ℤ → type-Pointed-Type-With-Aut X
map-initial-Pointed-Type-With-Aut X (inl zero-ℕ) =
inv-map-aut-Pointed-Type-With-Aut X (point-Pointed-Type-With-Aut X)
map-initial-Pointed-Type-With-Aut X (inl (succ-ℕ k)) =
inv-map-aut-Pointed-Type-With-Aut X
( map-initial-Pointed-Type-With-Aut X (inl k))
map-initial-Pointed-Type-With-Aut X (inr (inl star)) =
point-Pointed-Type-With-Aut X
map-initial-Pointed-Type-With-Aut X (inr (inr zero-ℕ)) =
map-aut-Pointed-Type-With-Aut X (point-Pointed-Type-With-Aut X)
map-initial-Pointed-Type-With-Aut X (inr (inr (succ-ℕ k))) =
map-aut-Pointed-Type-With-Aut X
( map-initial-Pointed-Type-With-Aut X (inr (inr k)))
preserves-point-map-initial-Pointed-Type-With-Aut :
{l : Level} (X : UU-Pointed-Type-With-Aut l) →
Id ( map-initial-Pointed-Type-With-Aut X zero-ℤ)
( point-Pointed-Type-With-Aut X)
preserves-point-map-initial-Pointed-Type-With-Aut X = refl
preserves-aut-map-initial-Pointed-Type-With-Aut :
{l : Level} (X : UU-Pointed-Type-With-Aut l) (k : ℤ) →
Id ( map-initial-Pointed-Type-With-Aut X (succ-ℤ k))
( map-aut-Pointed-Type-With-Aut X
( map-initial-Pointed-Type-With-Aut X k))
preserves-aut-map-initial-Pointed-Type-With-Aut X (inl zero-ℕ) =
inv
( issec-inv-map-aut-Pointed-Type-With-Aut X (point-Pointed-Type-With-Aut X))
preserves-aut-map-initial-Pointed-Type-With-Aut X (inl (succ-ℕ k)) =
inv
( issec-inv-map-aut-Pointed-Type-With-Aut X
( map-initial-Pointed-Type-With-Aut X (inl k)))
preserves-aut-map-initial-Pointed-Type-With-Aut X (inr (inl star)) =
refl
preserves-aut-map-initial-Pointed-Type-With-Aut X (inr (inr zero-ℕ)) =
refl
preserves-aut-map-initial-Pointed-Type-With-Aut X (inr (inr (succ-ℕ x))) =
refl
hom-initial-Pointed-Type-With-Aut :
{l : Level} (X : UU-Pointed-Type-With-Aut l) →
hom-Pointed-Type-With-Aut ℤ-Pointed-Type-With-Aut X
hom-initial-Pointed-Type-With-Aut X =
pair
( map-initial-Pointed-Type-With-Aut X)
( pair
( preserves-point-map-initial-Pointed-Type-With-Aut X)
( preserves-aut-map-initial-Pointed-Type-With-Aut X))
-- We now show that the morphism from ℤ to a pointed type with an automorphism
-- is unique, using our characterization of the identity type of the type of
-- morphisms of pointed types with an automorphism
htpy-initial-Pointed-Type-With-Aut :
{l : Level} (X : UU-Pointed-Type-With-Aut l)
(h : hom-Pointed-Type-With-Aut ℤ-Pointed-Type-With-Aut X) →
map-initial-Pointed-Type-With-Aut X ~
map-hom-Pointed-Type-With-Aut ℤ-Pointed-Type-With-Aut X h
htpy-initial-Pointed-Type-With-Aut X h (inl zero-ℕ) =
map-eq-transpose-equiv'
( aut-Pointed-Type-With-Aut X)
( ( inv
( preserves-point-map-hom-Pointed-Type-With-Aut ℤ-Pointed-Type-With-Aut
X h)) ∙
( preserves-aut-map-hom-Pointed-Type-With-Aut ℤ-Pointed-Type-With-Aut
X h neg-one-ℤ))
htpy-initial-Pointed-Type-With-Aut X h (inl (succ-ℕ k)) =
map-eq-transpose-equiv'
( aut-Pointed-Type-With-Aut X)
( ( htpy-initial-Pointed-Type-With-Aut X h (inl k)) ∙
( preserves-aut-map-hom-Pointed-Type-With-Aut ℤ-Pointed-Type-With-Aut
X h (inl (succ-ℕ k))))
htpy-initial-Pointed-Type-With-Aut X h (inr (inl star)) =
inv
( preserves-point-map-hom-Pointed-Type-With-Aut ℤ-Pointed-Type-With-Aut X h)
htpy-initial-Pointed-Type-With-Aut X h (inr (inr zero-ℕ)) =
( ap ( map-aut-Pointed-Type-With-Aut X)
( htpy-initial-Pointed-Type-With-Aut X h (inr (inl star)))) ∙
( inv
( preserves-aut-map-hom-Pointed-Type-With-Aut ℤ-Pointed-Type-With-Aut
X h (inr (inl star))))
htpy-initial-Pointed-Type-With-Aut X h (inr (inr (succ-ℕ k))) =
( ap ( map-aut-Pointed-Type-With-Aut X)
( htpy-initial-Pointed-Type-With-Aut X h (inr (inr k)))) ∙
( inv
( preserves-aut-map-hom-Pointed-Type-With-Aut ℤ-Pointed-Type-With-Aut
X h (inr (inr k))))
-- The following two steps become trivial if X is a set
coh-point-htpy-initial-Pointed-Type-With-Aut :
{l : Level} (X : UU-Pointed-Type-With-Aut l)
(h : hom-Pointed-Type-With-Aut ℤ-Pointed-Type-With-Aut X) →
Id ( preserves-point-map-initial-Pointed-Type-With-Aut X)
( ( htpy-initial-Pointed-Type-With-Aut X h zero-ℤ) ∙
( preserves-point-map-hom-Pointed-Type-With-Aut
ℤ-Pointed-Type-With-Aut X h))
coh-point-htpy-initial-Pointed-Type-With-Aut X h =
inv
( left-inv
( preserves-point-map-hom-Pointed-Type-With-Aut
ℤ-Pointed-Type-With-Aut X h))
coh-aut-htpy-initial-Pointed-Type-With-Aut :
{l : Level} (X : UU-Pointed-Type-With-Aut l)
(h : hom-Pointed-Type-With-Aut ℤ-Pointed-Type-With-Aut X)
(k : ℤ) →
Id ( ( preserves-aut-map-initial-Pointed-Type-With-Aut X k) ∙
( ap ( map-aut-Pointed-Type-With-Aut X)
( htpy-initial-Pointed-Type-With-Aut X h k)))
( ( htpy-initial-Pointed-Type-With-Aut X h (succ-ℤ k)) ∙
( preserves-aut-map-hom-Pointed-Type-With-Aut
ℤ-Pointed-Type-With-Aut X h k))
coh-aut-htpy-initial-Pointed-Type-With-Aut X h (inl zero-ℕ) =
inv
( inv-con
( issec-inv-map-equiv
( aut-Pointed-Type-With-Aut X)
( point-Pointed-Type-With-Aut X))
( ( htpy-initial-Pointed-Type-With-Aut X h zero-ℤ) ∙
( preserves-aut-map-hom-Pointed-Type-With-Aut
ℤ-Pointed-Type-With-Aut X h neg-one-ℤ))
( ap ( map-equiv (aut-Pointed-Type-With-Aut X))
( htpy-initial-Pointed-Type-With-Aut X h neg-one-ℤ))
( triangle-eq-transpose-equiv'
( aut-Pointed-Type-With-Aut X)
( ( inv
( preserves-point-map-hom-Pointed-Type-With-Aut
ℤ-Pointed-Type-With-Aut X h)) ∙
( preserves-aut-map-hom-Pointed-Type-With-Aut
ℤ-Pointed-Type-With-Aut X h neg-one-ℤ))))
coh-aut-htpy-initial-Pointed-Type-With-Aut X h (inl (succ-ℕ k)) =
inv
( inv-con
( issec-inv-map-equiv
( aut-Pointed-Type-With-Aut X)
( map-initial-Pointed-Type-With-Aut X (inl k)))
( ( htpy-initial-Pointed-Type-With-Aut X h (inl k)) ∙
( preserves-aut-map-hom-Pointed-Type-With-Aut
ℤ-Pointed-Type-With-Aut X h (inl (succ-ℕ k))))
( ap ( map-equiv (aut-Pointed-Type-With-Aut X))
( htpy-initial-Pointed-Type-With-Aut X h (inl (succ-ℕ k))))
( triangle-eq-transpose-equiv'
( aut-Pointed-Type-With-Aut X)
( ( htpy-initial-Pointed-Type-With-Aut X h (inl k)) ∙
( preserves-aut-map-hom-Pointed-Type-With-Aut
ℤ-Pointed-Type-With-Aut X h (inl (succ-ℕ k))))))
coh-aut-htpy-initial-Pointed-Type-With-Aut X h (inr (inl star)) =
( inv right-unit) ∙
( ( ap ( concat
( ap
( map-aut-Pointed-Type-With-Aut X)
( htpy-initial-Pointed-Type-With-Aut X h zero-ℤ))
( map-aut-Pointed-Type-With-Aut X
( map-hom-Pointed-Type-With-Aut
ℤ-Pointed-Type-With-Aut X h zero-ℤ)))
( inv (left-inv
( preserves-aut-map-hom-Pointed-Type-With-Aut
ℤ-Pointed-Type-With-Aut X h zero-ℤ)))) ∙
( inv
( assoc
( ap
( map-aut-Pointed-Type-With-Aut X)
( htpy-initial-Pointed-Type-With-Aut X h zero-ℤ))
( inv
( preserves-aut-map-hom-Pointed-Type-With-Aut
ℤ-Pointed-Type-With-Aut X h zero-ℤ))
( preserves-aut-map-hom-Pointed-Type-With-Aut
ℤ-Pointed-Type-With-Aut X h zero-ℤ))))
coh-aut-htpy-initial-Pointed-Type-With-Aut X h (inr (inr zero-ℕ)) =
( inv right-unit) ∙
( ( ap ( concat
( ap
( map-aut-Pointed-Type-With-Aut X)
( htpy-initial-Pointed-Type-With-Aut X h one-ℤ))
( map-aut-Pointed-Type-With-Aut X
( map-hom-Pointed-Type-With-Aut
ℤ-Pointed-Type-With-Aut X h one-ℤ)))
( inv (left-inv
( preserves-aut-map-hom-Pointed-Type-With-Aut
ℤ-Pointed-Type-With-Aut X h one-ℤ)))) ∙
( inv
( assoc
( ap
( map-aut-Pointed-Type-With-Aut X)
( htpy-initial-Pointed-Type-With-Aut X h one-ℤ))
( inv
( preserves-aut-map-hom-Pointed-Type-With-Aut
ℤ-Pointed-Type-With-Aut X h one-ℤ))
( preserves-aut-map-hom-Pointed-Type-With-Aut
ℤ-Pointed-Type-With-Aut X h one-ℤ))))
coh-aut-htpy-initial-Pointed-Type-With-Aut X h (inr (inr (succ-ℕ k))) =
( inv right-unit) ∙
( ( ap ( concat
( ap
( map-aut-Pointed-Type-With-Aut X)
( htpy-initial-Pointed-Type-With-Aut X h (inr (inr (succ-ℕ k)))))
( map-aut-Pointed-Type-With-Aut X
( map-hom-Pointed-Type-With-Aut
ℤ-Pointed-Type-With-Aut X h (inr (inr (succ-ℕ k))))))
( inv (left-inv
( preserves-aut-map-hom-Pointed-Type-With-Aut
ℤ-Pointed-Type-With-Aut X h (inr (inr (succ-ℕ k))))))) ∙
( inv
( assoc
( ap
( map-aut-Pointed-Type-With-Aut X)
( htpy-initial-Pointed-Type-With-Aut X h (inr (inr (succ-ℕ k)))))
( inv
( preserves-aut-map-hom-Pointed-Type-With-Aut
ℤ-Pointed-Type-With-Aut X h (inr (inr (succ-ℕ k)))))
( preserves-aut-map-hom-Pointed-Type-With-Aut
ℤ-Pointed-Type-With-Aut X h (inr (inr (succ-ℕ k)))))))
is-initial-ℤ-Pointed-Type-With-Aut :
{l : Level} (X : UU-Pointed-Type-With-Aut l) →
is-contr (hom-Pointed-Type-With-Aut ℤ-Pointed-Type-With-Aut X)
is-initial-ℤ-Pointed-Type-With-Aut X =
pair
( hom-initial-Pointed-Type-With-Aut X)
( λ h →
eq-htpy-hom-Pointed-Type-With-Aut ℤ-Pointed-Type-With-Aut X
( hom-initial-Pointed-Type-With-Aut X)
( h)
( pair
( htpy-initial-Pointed-Type-With-Aut X h)
( pair
( coh-point-htpy-initial-Pointed-Type-With-Aut X h)
( coh-aut-htpy-initial-Pointed-Type-With-Aut X h))))
--------------------------------------------------------------------------------
{- We exhibit ℤ as an abelian group, and as a ring. -}
add-ℤ-Semi-Group : Semi-Group lzero
add-ℤ-Semi-Group = pair ℤ-Set (pair add-ℤ associative-add-ℤ)
is-unital-add-ℤ-Semi-Group : is-unital add-ℤ-Semi-Group
is-unital-add-ℤ-Semi-Group = pair zero-ℤ (pair left-unit-law-add-ℤ right-unit-law-add-ℤ)
add-ℤ-Monoid : Monoid lzero
add-ℤ-Monoid = pair add-ℤ-Semi-Group is-unital-add-ℤ-Semi-Group
has-inverses-add-ℤ-Monoid : is-group' add-ℤ-Semi-Group is-unital-add-ℤ-Semi-Group
has-inverses-add-ℤ-Monoid = pair neg-ℤ (pair left-inverse-law-add-ℤ right-inverse-law-add-ℤ)
is-group-add-ℤ-Semi-Group : is-group add-ℤ-Semi-Group
is-group-add-ℤ-Semi-Group = pair is-unital-add-ℤ-Semi-Group has-inverses-add-ℤ-Monoid
ℤ-Group : Group lzero
ℤ-Group = pair add-ℤ-Semi-Group is-group-add-ℤ-Semi-Group
ℤ-Ab : Ab lzero
ℤ-Ab = pair ℤ-Group commutative-add-ℤ
has-mul-ℤ-Ab : has-mul-Ab ℤ-Ab
has-mul-ℤ-Ab =
pair
( pair mul-ℤ associative-mul-ℤ)
( pair
( pair one-ℤ (pair left-unit-law-mul-ℤ right-unit-law-mul-ℤ))
( pair left-distributive-mul-add-ℤ right-distributive-mul-add-ℤ))
ℤ-Ring : Ring lzero
ℤ-Ring = pair ℤ-Ab has-mul-ℤ-Ab
ℤ-Comm-Ring : Comm-Ring lzero
ℤ-Comm-Ring = pair ℤ-Ring commutative-mul-ℤ
mul-ℤ-Semi-Group : Semi-Group lzero
mul-ℤ-Semi-Group = pair ℤ-Set (pair mul-ℤ associative-mul-ℤ)
mul-ℤ-Monoid : Monoid lzero
mul-ℤ-Monoid =
pair
( mul-ℤ-Semi-Group)
( pair one-ℤ (pair left-unit-law-mul-ℤ right-unit-law-mul-ℤ))
--------------------------------------------------------------------------------
{- We characterize the identity type of ℤ. -}
Eq-ℤ : ℤ → ℤ → UU lzero
Eq-ℤ (inl x) (inl y) = Eq-ℕ x y
Eq-ℤ (inl x) (inr y) = empty
Eq-ℤ (inr x) (inl x₁) = empty
Eq-ℤ (inr (inl x)) (inr (inl y)) = unit
Eq-ℤ (inr (inl x)) (inr (inr y)) = empty
Eq-ℤ (inr (inr x)) (inr (inl y)) = empty
Eq-ℤ (inr (inr x)) (inr (inr y)) = Eq-ℕ x y
is-prop-Eq-ℤ :
(x y : ℤ) → is-prop (Eq-ℤ x y)
is-prop-Eq-ℤ (inl x) (inl y) = is-prop-Eq-ℕ x y
is-prop-Eq-ℤ (inl x) (inr y) = is-prop-empty
is-prop-Eq-ℤ (inr x) (inl x₁) = is-prop-empty
is-prop-Eq-ℤ (inr (inl x)) (inr (inl y)) = is-prop-unit
is-prop-Eq-ℤ (inr (inl x)) (inr (inr y)) = is-prop-empty
is-prop-Eq-ℤ (inr (inr x)) (inr (inl y)) = is-prop-empty
is-prop-Eq-ℤ (inr (inr x)) (inr (inr y)) = is-prop-Eq-ℕ x y
refl-Eq-ℤ :
(x : ℤ) → Eq-ℤ x x
refl-Eq-ℤ (inl x) = refl-Eq-ℕ x
refl-Eq-ℤ (inr (inl x)) = star
refl-Eq-ℤ (inr (inr x)) = refl-Eq-ℕ x
Eq-ℤ-eq :
{x y : ℤ} → Id x y → Eq-ℤ x y
Eq-ℤ-eq {x} {.x} refl = refl-Eq-ℤ x
contraction-total-Eq-ℤ :
(x : ℤ) (y : Σ ℤ (Eq-ℤ x)) → Id (pair x (refl-Eq-ℤ x)) y
contraction-total-Eq-ℤ (inl x) (pair (inl y) e) =
eq-pair
( ap inl (eq-Eq-ℕ x y e))
( is-prop'-is-prop
( is-prop-Eq-ℕ x y)
( tr
( Eq-ℤ (inl x))
( ap inl (eq-Eq-ℕ x y e))
( refl-Eq-ℤ (inl x)))
( e))
contraction-total-Eq-ℤ (inr (inl star)) (pair (inr (inl star)) e) =
eq-pair refl (is-prop'-is-prop is-prop-unit (refl-Eq-ℤ zero-ℤ) e)
contraction-total-Eq-ℤ (inr (inr x)) (pair (inr (inr y)) e) =
eq-pair
( ap (inr ∘ inr) (eq-Eq-ℕ x y e))
( is-prop'-is-prop
( is-prop-Eq-ℕ x y)
( tr
( Eq-ℤ (inr (inr x)))
( ap (inr ∘ inr) (eq-Eq-ℕ x y e))
( refl-Eq-ℤ (inr (inr x))))
( e))
is-contr-total-Eq-ℤ :
(x : ℤ) → is-contr (Σ ℤ (Eq-ℤ x))
is-contr-total-Eq-ℤ x =
pair (pair x (refl-Eq-ℤ x)) (contraction-total-Eq-ℤ x)
is-equiv-Eq-ℤ-eq :
(x y : ℤ) → is-equiv (Eq-ℤ-eq {x} {y})
is-equiv-Eq-ℤ-eq x =
fundamental-theorem-id x
( refl-Eq-ℤ x)
( is-contr-total-Eq-ℤ x)
( λ y → Eq-ℤ-eq {x} {y})
eq-Eq-ℤ :
{x y : ℤ} → Eq-ℤ x y → Id x y
eq-Eq-ℤ {x} {y} = inv-is-equiv (is-equiv-Eq-ℤ-eq x y)
--------------------------------------------------------------------------------
{- We prove some basic arithmetic properties of the integers. -}
--------------------------------------------------------------------------------
{- We show that addition from the left and from the right are both equivalences.
We conclude that they are both injective maps. -}
is-emb-add-ℤ :
(x : ℤ) → is-emb (add-ℤ x)
is-emb-add-ℤ x =
is-emb-is-equiv (add-ℤ x) (is-equiv-add-ℤ x)
is-injective-add-ℤ :
(x y z : ℤ) → Id (add-ℤ x y) (add-ℤ x z) → Id y z
is-injective-add-ℤ x y z = inv-is-equiv (is-emb-add-ℤ x y z)
is-emb-add-ℤ' :
(y : ℤ) → is-emb (add-ℤ' y)
is-emb-add-ℤ' y = is-emb-is-equiv (add-ℤ' y) (is-equiv-add-ℤ' y)
is-injective-add-ℤ' :
(y x w : ℤ) → Id (add-ℤ x y) (add-ℤ w y) → Id x w
is-injective-add-ℤ' y x w = inv-is-equiv (is-emb-add-ℤ' y x w)
--------------------------------------------------------------------------------
{- We show that multiplication by neg-one-ℤ is an equivalence. -}
is-emb-neg-ℤ : is-emb neg-ℤ
is-emb-neg-ℤ = is-emb-is-equiv neg-ℤ is-equiv-neg-ℤ
is-injective-neg-ℤ :
(x y : ℤ) → Id (neg-ℤ x) (neg-ℤ y) → Id x y
is-injective-neg-ℤ x y = inv-is-equiv (is-emb-neg-ℤ x y)
--------------------------------------------------------------------------------
{- We show that if x = mul-ℤ x y for some non-zero integer x, then y = 1. -}
--------------------------------------------------------------------------------
{- We show that multiplication by a non-zero integer is an embedding. -}
{-
is-injective-mul-ℤ :
(x y z : ℤ) → ¬ (Id zero-ℤ x) → Id (mul-ℤ x y) (mul-ℤ x z) → Id y z
is-injective-mul-ℤ (inl zero-ℕ) y z p q = is-injective-neg-ℤ y z q
is-injective-mul-ℤ (inl (succ-ℕ x)) y z p q = {!!}
is-injective-mul-ℤ (inr x) y z p q = {!x!}
neq-zero-mul-ℤ :
(x y : ℤ) → ¬ (Id zero-ℤ x) → ¬ (Id zero-ℤ y) → ¬ (Id zero-ℤ (mul-ℤ x y))
neq-zero-mul-ℤ x y Hx Hy = {!!}
-}
--------------------------------------------------------------------------------
{- We prove some interchange laws and moves on iterated multiplications. -}
interchange-2-3-mul-ℤ :
{a b c d : ℤ} →
Id (mul-ℤ (mul-ℤ a b) (mul-ℤ c d)) (mul-ℤ (mul-ℤ a c) (mul-ℤ b d))
interchange-2-3-mul-ℤ {a} {b} {c} {d} =
( associative-mul-ℤ a b (mul-ℤ c d)) ∙
( ( ap ( mul-ℤ a)
( ( inv (associative-mul-ℤ b c d)) ∙
( ( ap (λ t → mul-ℤ t d) (commutative-mul-ℤ b c)) ∙
( associative-mul-ℤ c b d)))) ∙
( inv (associative-mul-ℤ a c (mul-ℤ b d))))
interchange-1-3-mul-ℤ :
{a b c d : ℤ} →
Id (mul-ℤ (mul-ℤ a b) (mul-ℤ c d)) (mul-ℤ (mul-ℤ c b) (mul-ℤ a d))
interchange-1-3-mul-ℤ {a} {b} {c} {d} =
( ap (λ t → mul-ℤ t (mul-ℤ c d)) (commutative-mul-ℤ a b)) ∙
( ( interchange-2-3-mul-ℤ {b}) ∙
( ap (λ t → mul-ℤ t (mul-ℤ a d)) (commutative-mul-ℤ b c)))
move-four-mul-ℤ :
{a b c d : ℤ} →
Id (mul-ℤ (mul-ℤ a b) (mul-ℤ c d)) (mul-ℤ (mul-ℤ a d) (mul-ℤ b c))
move-four-mul-ℤ {a} {b} {c} {d} =
( associative-mul-ℤ a b (mul-ℤ c d)) ∙
( ( ap ( mul-ℤ a)
( ( inv (associative-mul-ℤ b c d)) ∙
( commutative-mul-ℤ (mul-ℤ b c) d))) ∙
( inv (associative-mul-ℤ a d (mul-ℤ b c))))
move-five-mul-ℤ :
{a b c d : ℤ} →
Id (mul-ℤ (mul-ℤ a b) (mul-ℤ c d)) (mul-ℤ (mul-ℤ b c) (mul-ℤ a d))
move-five-mul-ℤ {a} {b} {c} {d} =
( interchange-2-3-mul-ℤ {a} {b} {c} {d}) ∙
( ( ap (λ t → mul-ℤ t (mul-ℤ b d)) (commutative-mul-ℤ a c)) ∙
( ( interchange-2-3-mul-ℤ {c}) ∙
( ap (λ t → mul-ℤ t (mul-ℤ a d)) (commutative-mul-ℤ c b))))
|
{
"alphanum_fraction": 0.5938571642,
"avg_line_length": 39.6277695716,
"ext": "agda",
"hexsha": "de5e041d9023bc8e661bdaca13a039c97872f264",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "UlrikBuchholtz/HoTT-Intro",
"max_forks_repo_path": "Agda/integers.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "UlrikBuchholtz/HoTT-Intro",
"max_issues_repo_path": "Agda/integers.agda",
"max_line_length": 92,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "UlrikBuchholtz/HoTT-Intro",
"max_stars_repo_path": "Agda/integers.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 9793,
"size": 26828
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
open import Cubical.Categories.Category
open import Cubical.Categories.Morphism renaming (isIso to isIsoC)
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open Iso
open import Cubical.Foundations.HLevels
open Precategory
open import Cubical.Core.Glue
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport using (transpFill)
module Cubical.Categories.Constructions.Slice {ℓ ℓ' : Level} (C : Precategory ℓ ℓ') (c : C .ob) {{isC : isCategory C}} where
open import Cubical.Data.Sigma
-- just a helper to prevent redundency
TypeC : Type (ℓ-suc (ℓ-max ℓ ℓ'))
TypeC = Type (ℓ-max ℓ ℓ')
-- Components of a slice category
record SliceOb : TypeC where
constructor sliceob
field
{S-ob} : C .ob
S-arr : C [ S-ob , c ]
open SliceOb public
record SliceHom (a b : SliceOb) : Type ℓ' where
constructor slicehom
field
S-hom : C [ S-ob a , S-ob b ]
-- commutative diagram
S-comm : S-hom ⋆⟨ C ⟩ (S-arr b) ≡ S-arr a
open SliceHom public
-- Helpers for working with equality
-- can probably replace these by showing that SliceOb is isomorphic to Sigma and
-- that paths are isomorphic to Sigma? But sounds like that would need a lot of transp
SliceOb-≡-intro : ∀ {a b} {f g}
→ (p : a ≡ b)
→ PathP (λ i → C [ p i , c ]) f g
→ sliceob {a} f ≡ sliceob {b} g
SliceOb-≡-intro p q = λ i → sliceob {p i} (q i)
module _ {xf yg : SliceOb} where
private
x = xf .S-ob
f = xf .S-arr
y = yg .S-ob
g = yg .S-arr
-- a path between slice objects is the "same" as a pair of paths between C obs and C arrows
SOPathIsoPathΣ : Iso (xf ≡ yg) (Σ[ p ∈ x ≡ y ] PathP (λ i → C [ p i , c ]) f g)
SOPathIsoPathΣ .fun p = (λ i → (p i) .S-ob) , (λ i → (p i) .S-arr)
SOPathIsoPathΣ .inv (p , q) i = sliceob {p i} (q i)
SOPathIsoPathΣ .rightInv _ = refl
SOPathIsoPathΣ .leftInv _ = refl
SOPath≃PathΣ = isoToEquiv SOPathIsoPathΣ
SOPath≡PathΣ = ua (isoToEquiv SOPathIsoPathΣ)
-- intro and elim for working with SliceHom equalities (is there a better way to do this?)
SliceHom-≡-intro : ∀ {a b} {f g} {c₁} {c₂}
→ (p : f ≡ g)
→ PathP (λ i → (p i) ⋆⟨ C ⟩ (S-arr b) ≡ S-arr a) c₁ c₂
→ slicehom f c₁ ≡ slicehom g c₂
SliceHom-≡-intro p q = λ i → slicehom (p i) (q i)
SliceHom-≡-elim : ∀ {a b} {f g} {c₁} {c₂}
→ slicehom f c₁ ≡ slicehom g c₂
→ Σ[ p ∈ f ≡ g ] PathP (λ i → (p i) ⋆⟨ C ⟩ (S-arr b) ≡ S-arr a) c₁ c₂
SliceHom-≡-elim r = (λ i → S-hom (r i)) , λ i → S-comm (r i)
SliceHom-≡-intro' : ∀ {a b} {f g : C [ a .S-ob , b .S-ob ]} {c₁} {c₂}
→ (p : f ≡ g)
→ slicehom f c₁ ≡ slicehom g c₂
SliceHom-≡-intro' {a} {b} {f} {g} {c₁} {c₂} p i = slicehom (p i) (c₁≡c₂ i)
where
c₁≡c₂ : PathP (λ i → (p i) ⋆⟨ C ⟩ (b .S-arr) ≡ a .S-arr) c₁ c₂
c₁≡c₂ = isOfHLevel→isOfHLevelDep 1 (λ _ → isC .isSetHom _ _) c₁ c₂ p
-- SliceHom is isomorphic to the Sigma type with the same components
SliceHom-Σ-Iso : ∀ {a b}
→ Iso (SliceHom a b) (Σ[ h ∈ C [ S-ob a , S-ob b ] ] h ⋆⟨ C ⟩ (S-arr b) ≡ S-arr a)
SliceHom-Σ-Iso .fun (slicehom h c) = h , c
SliceHom-Σ-Iso .inv (h , c) = slicehom h c
SliceHom-Σ-Iso .rightInv = λ x → refl
SliceHom-Σ-Iso .leftInv = λ x → refl
-- Precategory definition
SliceCat : Precategory _ _
SliceCat .ob = SliceOb
SliceCat .Hom[_,_] = SliceHom
SliceCat .id (sliceob {x} f) = slicehom (C .id x) (C .⋆IdL _)
SliceCat ._⋆_ {sliceob j} {sliceob k} {sliceob l} (slicehom f p) (slicehom g p') =
slicehom
(f ⋆⟨ C ⟩ g)
( f ⋆⟨ C ⟩ g ⋆⟨ C ⟩ l
≡⟨ C .⋆Assoc _ _ _ ⟩
f ⋆⟨ C ⟩ (g ⋆⟨ C ⟩ l)
≡⟨ cong (λ v → f ⋆⟨ C ⟩ v) p' ⟩
f ⋆⟨ C ⟩ k
≡⟨ p ⟩
j
∎)
SliceCat .⋆IdL (slicehom S-hom S-comm) =
SliceHom-≡-intro (⋆IdL C _) (toPathP (isC .isSetHom _ _ _ _))
SliceCat .⋆IdR (slicehom S-hom S-comm) =
SliceHom-≡-intro (⋆IdR C _) (toPathP (isC .isSetHom _ _ _ _))
SliceCat .⋆Assoc f g h =
SliceHom-≡-intro (⋆Assoc C _ _ _) (toPathP (isC .isSetHom _ _ _ _))
-- SliceCat is a Category
instance
isCatSlice : isCategory SliceCat
isCatSlice .isSetHom {a} {b} (slicehom f c₁) (slicehom g c₂) p q = cong isoP p'≡q'
where
-- paths between SliceHoms are equivalent to the projection paths
p' : Σ[ p ∈ f ≡ g ] PathP (λ i → (p i) ⋆⟨ C ⟩ (S-arr b) ≡ S-arr a) c₁ c₂
p' = SliceHom-≡-elim p
q' : Σ[ p ∈ f ≡ g ] PathP (λ i → (p i) ⋆⟨ C ⟩ (S-arr b) ≡ S-arr a) c₁ c₂
q' = SliceHom-≡-elim q
-- we want all paths between (dependent) paths of this type to be equal
B = λ v → v ⋆⟨ C ⟩ (S-arr b) ≡ S-arr a
-- need the groupoidness for dependent paths
homIsGroupoidDep : isOfHLevelDep 2 B
homIsGroupoidDep = isOfHLevel→isOfHLevelDep 2 (λ v x y → isSet→isGroupoid (isC .isSetHom) _ _ x y)
-- we first prove that the projected paths are equal
p'≡q' : p' ≡ q'
p'≡q' = ΣPathP ((isC .isSetHom _ _ _ _) , toPathP (homIsGroupoidDep _ _ _ _ _))
-- and then we can use equivalence to lift these paths up
-- to actual SliceHom paths
isoP = λ g → cong (inv SliceHom-Σ-Iso) (fun (ΣPathIsoPathΣ) g)
-- SliceCat is univalent if C is univalent
module _ ⦃ isU : isUnivalent C ⦄ where
open CatIso
open Iso
module _ { xf yg : SliceOb } where
private
x = xf .S-ob
y = yg .S-ob
-- names for the equivalences/isos
pathIsoEquiv : (x ≡ y) ≃ (CatIso x y)
pathIsoEquiv = univEquiv isU x y
isoPathEquiv : (CatIso x y) ≃ (x ≡ y)
isoPathEquiv = invEquiv pathIsoEquiv
pToIIso' : Iso (x ≡ y) (CatIso x y)
pToIIso' = equivToIso pathIsoEquiv
-- the iso in SliceCat we're given induces an iso in C between x and y
module _ ( cIso@(catiso kc lc s r) : CatIso {C = SliceCat} xf yg ) where
extractIso' : CatIso {C = C} x y
extractIso' .mor = kc .S-hom
extractIso' .inv = lc .S-hom
extractIso' .sec i = (s i) .S-hom
extractIso' .ret i = (r i) .S-hom
instance
preservesUnivalenceSlice : isUnivalent SliceCat
-- we prove the equivalence by going through Iso
preservesUnivalenceSlice .univ xf@(sliceob {x} f) yg@(sliceob {y} g) = isoToIsEquiv sIso
where
-- this is just here because the type checker can't seem to infer xf and yg
pToIIso : Iso (x ≡ y) (CatIso x y)
pToIIso = pToIIso' {xf = xf} {yg}
-- the meat of the proof
sIso : Iso (xf ≡ yg) (CatIso xf yg)
sIso .fun p = pathToIso xf yg p -- we use the normal pathToIso via path induction to get an isomorphism
sIso .inv is@(catiso kc lc s r) = SliceOb-≡-intro x≡y (symP (sym (lc .S-comm) ◁ lf≡f))
where
-- we get a path between xf and yg by combining paths between
-- x and y, and f and g
-- 1. x≡y follows from univalence of C
-- 2. f≡g is more tricky; by commutativity, we know that g ≡ l ⋆ f
-- so we want l to be id; we get this by showing: id ≡ pathToIso x y x≡y ≡ l
-- where the first step follows from path induction, and the second from univalence of C
-- morphisms in C from kc and lc
k = kc .S-hom
l = lc .S-hom
-- extract out the iso between x and y
extractIso : CatIso {C = C} x y
extractIso = extractIso' is
-- and we can use univalence of C to get x ≡ y
x≡y : x ≡ y
x≡y = pToIIso .inv extractIso
-- to show that f ≡ g, we show that l ≡ id
-- by using C's isomorphism
pToI≡id : PathP (λ i → C [ x≡y (~ i) , x ]) (pathToIso {C = C} x y x≡y .inv) (C .id x)
pToI≡id = J (λ y p → PathP (λ i → C [ p (~ i) , x ]) (pathToIso {C = C} x y p .inv) (C .id x))
(λ j → JRefl pToIFam pToIBase j .inv)
x≡y
where
idx = C .id x
pToIFam = (λ z _ → CatIso {C = C} x z)
pToIBase = catiso (C .id x) idx (C .⋆IdL idx) (C .⋆IdL idx)
l≡pToI : l ≡ pathToIso {C = C} x y x≡y .inv
l≡pToI i = pToIIso .rightInv extractIso (~ i) .inv
l≡id : PathP (λ i → C [ x≡y (~ i) , x ]) l (C .id x)
l≡id = l≡pToI ◁ pToI≡id
lf≡f : PathP (λ i → C [ x≡y (~ i) , c ]) (l ⋆⟨ C ⟩ f) f
lf≡f = (λ i → (l≡id i) ⋆⟨ C ⟩ f) ▷ C .⋆IdL _
sIso .rightInv is@(catiso kc lc s r) i = catiso (kc'≡kc i) (lc'≡lc i) (s'≡s i) (r'≡r i)
-- we prove rightInv using a combination of univalence and the fact that homs are an h-set
where
kc' = (sIso .fun) (sIso .inv is) .mor
lc' = (sIso .fun) (sIso .inv is) .inv
k' = kc' .S-hom
l' = lc' .S-hom
k = kc .S-hom
l = lc .S-hom
extractIso : CatIso {C = C} x y
extractIso = extractIso' is
-- we do the equality component wise
-- mor
k'≡k : k' ≡ k
k'≡k i = (pToIIso .rightInv extractIso) i .mor
kcom'≡kcom : PathP (λ j → (k'≡k j) ⋆⟨ C ⟩ g ≡ f) (kc' .S-comm) (kc .S-comm)
kcom'≡kcom = isSetHomP1 _ _ λ i → (k'≡k i) ⋆⟨ C ⟩ g
kc'≡kc : kc' ≡ kc
kc'≡kc i = slicehom (k'≡k i) (kcom'≡kcom i)
-- inv
l'≡l : l' ≡ l
l'≡l i = (pToIIso .rightInv extractIso) i .inv
lcom'≡lcom : PathP (λ j → (l'≡l j) ⋆⟨ C ⟩ f ≡ g) (lc' .S-comm) (lc .S-comm)
lcom'≡lcom = isSetHomP1 _ _ λ i → (l'≡l i) ⋆⟨ C ⟩ f
lc'≡lc : lc' ≡ lc
lc'≡lc i = slicehom (l'≡l i) (lcom'≡lcom i)
-- sec
s' = (sIso .fun) (sIso .inv is) .sec
s'≡s : PathP (λ i → lc'≡lc i ⋆⟨ SliceCat ⟩ kc'≡kc i ≡ SliceCat .id _) s' s
s'≡s = isSetHomP1 _ _ λ i → lc'≡lc i ⋆⟨ SliceCat ⟩ kc'≡kc i
-- ret
r' = (sIso .fun) (sIso .inv is) .ret
r'≡r : PathP (λ i → kc'≡kc i ⋆⟨ SliceCat ⟩ lc'≡lc i ≡ SliceCat .id _) r' r
r'≡r = isSetHomP1 _ _ λ i → kc'≡kc i ⋆⟨ SliceCat ⟩ lc'≡lc i
sIso .leftInv p = p'≡p
-- to show that the round trip is equivalent to the identity
-- we show that this is true for each component (S-ob, S-arr)
-- and then combine
-- specifically, we show that p'Ob≡pOb and p'Mor≡pMor
-- and it follows that p'≡p
where
p' = (sIso .inv) (sIso .fun p)
pOb : x ≡ y
pOb i = (p i) .S-ob
p'Ob : x ≡ y
p'Ob i = (p' i) .S-ob
pMor : PathP (λ i → C [ pOb i , c ]) f g
pMor i = (p i) .S-arr
p'Mor : PathP (λ i → C [ p'Ob i , c ]) f g
p'Mor i = (p' i) .S-arr
-- we first show that it's equivalent to use sIso first then extract, or to extract first than use pToIIso
extractCom : extractIso' (sIso .fun p) ≡ pToIIso .fun pOb
extractCom = J (λ yg' p̃ → extractIso' (pathToIso xf yg' p̃) ≡ pToIIso' {xf = xf} {yg'} .fun (λ i → (p̃ i) .S-ob))
(cong extractIso' (JRefl pToIFam' pToIBase') ∙ sym (JRefl pToIFam pToIBase))
p
where
idx = C .id x
pToIFam = (λ z _ → CatIso {C = C} x z)
pToIBase = catiso (C .id x) idx (C .⋆IdL idx) (C .⋆IdL idx)
idxf = SliceCat .id xf
pToIFam' = (λ z _ → CatIso {C = SliceCat} xf z)
pToIBase' = catiso (SliceCat .id xf) idxf (SliceCat .⋆IdL idxf) (SliceCat .⋆IdL idxf)
-- why does this not follow definitionally?
-- from extractCom, we get that performing the roundtrip on pOb gives us back p'Ob
ppp : p'Ob ≡ (pToIIso .inv) (pToIIso .fun pOb)
ppp = cong (pToIIso .inv) extractCom
-- apply univalence of C
-- this gives us the first component that we want
p'Ob≡pOb : p'Ob ≡ pOb
p'Ob≡pOb = ppp ∙ pToIIso .leftInv pOb
-- isSetHom gives us the second component, path between morphisms
p'Mor≡pMor : PathP (λ j → PathP (λ i → C [ (p'Ob≡pOb j) i , c ]) f g) p'Mor pMor
p'Mor≡pMor = isSetHomP2l _ _ p'Mor pMor p'Ob≡pOb
-- we can use the above paths to show that p' ≡ p
p'≡p : p' ≡ p
p'≡p i = comp (λ i' → SOPath≡PathΣ {xf = xf} {yg} (~ i'))
(λ j → λ { (i = i0) → left (~ j) ; (i = i1) → right (~ j) })
(p'Σ≡pΣ i)
where
-- we break up p' and p into their constituent paths
-- first via transport and then via our component definitions from before
-- we show that p'ΣT ≡ p'Σ (and same for p) via univalence
-- and p'Σ≡pΣ follows from our work from above
p'ΣT : Σ[ p ∈ x ≡ y ] PathP (λ i → C [ p i , c ]) f g
p'ΣT = transport SOPath≡PathΣ p'
p'Σ : Σ[ p ∈ x ≡ y ] PathP (λ i → C [ p i , c ]) f g
p'Σ = (p'Ob , p'Mor)
pΣT : Σ[ p ∈ x ≡ y ] PathP (λ i → C [ p i , c ]) f g
pΣT = transport SOPath≡PathΣ p
pΣ : Σ[ p ∈ x ≡ y ] PathP (λ i → C [ p i , c ]) f g
pΣ = (pOb , pMor)-- transport SOPathP≡PathPSO p
-- using the computation rule to ua
p'ΣT≡p'Σ : p'ΣT ≡ p'Σ
p'ΣT≡p'Σ = uaβ SOPath≃PathΣ p'
pΣT≡pΣ : pΣT ≡ pΣ
pΣT≡pΣ = uaβ SOPath≃PathΣ p
p'Σ≡pΣ : p'Σ ≡ pΣ
p'Σ≡pΣ = ΣPathP (p'Ob≡pOb , p'Mor≡pMor)
-- two sides of the square we're connecting
left : PathP (λ i → SOPath≡PathΣ {xf = xf} {yg} i) p' p'Σ
left = transport-filler SOPath≡PathΣ p' ▷ p'ΣT≡p'Σ
right : PathP (λ i → SOPath≡PathΣ {xf = xf} {yg} i) p pΣ
right = transport-filler SOPath≡PathΣ p ▷ pΣT≡pΣ
-- properties
-- TODO: move to own file
open isIsoC renaming (inv to invC)
-- make a slice isomorphism from just the hom
sliceIso : ∀ {a b} (f : C [ a .S-ob , b .S-ob ]) (c : (f ⋆⟨ C ⟩ b .S-arr) ≡ a .S-arr)
→ isIsoC {C = C} f
→ isIsoC {C = SliceCat} (slicehom f c)
sliceIso f c isof .invC = slicehom (isof .invC) (sym (invMoveL (isIso→areInv isof) c))
sliceIso f c isof .sec = SliceHom-≡-intro' (isof .sec)
sliceIso f c isof .ret = SliceHom-≡-intro' (isof .ret)
|
{
"alphanum_fraction": 0.522739726,
"avg_line_length": 38.0208333333,
"ext": "agda",
"hexsha": "fb2cfd3138a180c8a60c4725a80f78a67e3a4cd0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Categories/Constructions/Slice.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Categories/Constructions/Slice.agda",
"max_line_length": 126,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Categories/Constructions/Slice.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5668,
"size": 14600
}
|
module Reals where
-- (a set with properties of) the reals
data ℝ : Set where
r0 : ℝ
r1 : ℝ
_+_ : ℝ → ℝ → ℝ
-- equality
data _==_ : ℝ → ℝ → Set where
AXrefl== : ∀ {r} → r == r
AXsymm== : ∀ {r s} → r == s → s == r
AXtrans== : ∀ {r s t} → r == s → s == t → r == t
AX+0 : ∀ {r} → (r + r0) == r
AXsymm+ : ∀ {r s} → (r + s) == (s + r)
AX+== : ∀ {r s t} → r == s → (r + t) == (s + t)
THM0+ : {r : ℝ} → r == (r0 + r)
THM0+ = AXsymm== (AXtrans== AXsymm+ AX+0)
-- AXsymm+ AX+0 r0 + r == r + r0 and r + r0 == r
-- AXtrans== so r0 + r == r
-- AXsymm== so r == r0 + r
THM0+alt : {r : ℝ} → r == (r0 + r)
THM0+alt {r} = AXsymm== {r0 + r} {r} ((AXtrans== {r0 + r} {r + r0} {r}) (AXsymm+ {r0} {r}) (AX+0 {r}))
-- strict partial ordering
data _<_ : ℝ → ℝ → Set where
AXtrans<<< : ∀ {r s t} → r < s → s < t → r < t
AX<=< : ∀ {r s t} → r < s → s == t → r < t
AX=<< : ∀ {r s t} → r == s → s < t → r < t
AX0<1 : r0 < r1
AX+<< : ∀ {r s t} → r < s → (r + t) < (s + t)
THM<+1 : {r : ℝ} → r < (r + r1)
THM<+1 = AX<=< (AX=<< THM0+ (AX+<< AX0<1)) AXsymm+
-- AX0<1 0 < 1
-- AX<+ % so 0 + r < 1 + r
-- AX=<< lem0+ % so r < 1 + r
-- AX<=< % AXsymm+ so r < r + 1
|
{
"alphanum_fraction": 0.3654147105,
"avg_line_length": 31.1707317073,
"ext": "agda",
"hexsha": "df4dda904ef694b748768bafe3b684924ff195df",
"lang": "Agda",
"max_forks_count": 66,
"max_forks_repo_forks_event_max_datetime": "2022-01-18T10:12:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-01-21T21:36:16.000Z",
"max_forks_repo_head_hexsha": "421132600b62845f00ced5344267775b4795df04",
"max_forks_repo_licenses": [
"BSD-3-Clause",
"MIT"
],
"max_forks_repo_name": "jjallaire/skylighting",
"max_forks_repo_path": "skylighting-core/test/cases/abc.agda",
"max_issues_count": 133,
"max_issues_repo_head_hexsha": "421132600b62845f00ced5344267775b4795df04",
"max_issues_repo_issues_event_max_datetime": "2022-03-13T21:07:07.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-01-19T10:19:36.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause",
"MIT"
],
"max_issues_repo_name": "jjallaire/skylighting",
"max_issues_repo_path": "skylighting-core/test/cases/abc.agda",
"max_line_length": 104,
"max_stars_count": 139,
"max_stars_repo_head_hexsha": "421132600b62845f00ced5344267775b4795df04",
"max_stars_repo_licenses": [
"BSD-3-Clause",
"MIT"
],
"max_stars_repo_name": "jjallaire/skylighting",
"max_stars_repo_path": "skylighting-core/test/cases/abc.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-31T05:41:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-14T19:36:22.000Z",
"num_tokens": 621,
"size": 1278
}
|
-- Andreas, 2017-01-21, issue #2423 overloading inherited projections
-- {-# OPTIONS -v tc.lhs.split:30 #-}
-- {-# OPTIONS -v tc.proj.amb:100 #-}
-- {-# OPTIONS -v tc.mod.apply:100 #-}
postulate
A : Set
record R : Set where
field f : A
record S : Set where
field r : R
open R r public
-- The inherited projection (in the eyes of the scope checker) S.f
-- is actually a composition of projections R.f ∘ S.r
-- s .S.f = s .S.r .R.f
open S
open R
test : S → S
test s .f = s .f
-- Error WAS:
-- Cannot eliminate type S with pattern .f (did you supply too many arguments?)
-- NOW:
-- Cannot eliminate type S with projection R.f
-- Shows the chosen disambiguation in error message.
|
{
"alphanum_fraction": 0.6481481481,
"avg_line_length": 21.2727272727,
"ext": "agda",
"hexsha": "cbbb62e0b4d17cf6949a48db0015ff7d289c709d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "802a28aa8374f15fe9d011ceb80317fdb1ec0949",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Blaisorblade/Agda",
"max_forks_repo_path": "test/Fail/Issue2423.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "802a28aa8374f15fe9d011ceb80317fdb1ec0949",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "Blaisorblade/Agda",
"max_issues_repo_path": "test/Fail/Issue2423.agda",
"max_line_length": 79,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "802a28aa8374f15fe9d011ceb80317fdb1ec0949",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "Blaisorblade/Agda",
"max_stars_repo_path": "test/Fail/Issue2423.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 213,
"size": 702
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Morphisms between algebraic structures
------------------------------------------------------------------------
module Algebra.Morphism where
open import Relation.Binary
open import Algebra
open import Algebra.FunctionProperties
import Algebra.Properties.Group as GroupP
open import Function
open import Data.Product
open import Level
import Relation.Binary.EqReasoning as EqR
------------------------------------------------------------------------
-- Basic definitions
module Definitions {f t ℓ}
(From : Set f) (To : Set t) (_≈_ : Rel To ℓ) where
Morphism : Set _
Morphism = From → To
Homomorphic₀ : Morphism → From → To → Set _
Homomorphic₀ ⟦_⟧ ∙ ∘ = ⟦ ∙ ⟧ ≈ ∘
Homomorphic₁ : Morphism → Fun₁ From → Op₁ To → Set _
Homomorphic₁ ⟦_⟧ ∙_ ∘_ = ∀ x → ⟦ ∙ x ⟧ ≈ ∘ ⟦ x ⟧
Homomorphic₂ : Morphism → Fun₂ From → Op₂ To → Set _
Homomorphic₂ ⟦_⟧ _∙_ _∘_ =
∀ x y → ⟦ x ∙ y ⟧ ≈ (⟦ x ⟧ ∘ ⟦ y ⟧)
------------------------------------------------------------------------
-- An example showing how a morphism type can be defined
-- Ring homomorphisms.
record _-Ring⟶_ {r₁ r₂ r₃ r₄}
(From : Ring r₁ r₂) (To : Ring r₃ r₄) :
Set (r₁ ⊔ r₂ ⊔ r₃ ⊔ r₄) where
private
module F = Ring From
module T = Ring To
open Definitions F.Carrier T.Carrier T._≈_
field
⟦_⟧ : Morphism
⟦⟧-cong : ⟦_⟧ Preserves F._≈_ ⟶ T._≈_
+-homo : Homomorphic₂ ⟦_⟧ F._+_ T._+_
*-homo : Homomorphic₂ ⟦_⟧ F._*_ T._*_
1-homo : Homomorphic₀ ⟦_⟧ F.1# T.1#
open EqR T.setoid
0-homo : Homomorphic₀ ⟦_⟧ F.0# T.0#
0-homo =
GroupP.left-identity-unique T.+-group ⟦ F.0# ⟧ ⟦ F.0# ⟧ (begin
T._+_ ⟦ F.0# ⟧ ⟦ F.0# ⟧ ≈⟨ T.sym (+-homo F.0# F.0#) ⟩
⟦ F._+_ F.0# F.0# ⟧ ≈⟨ ⟦⟧-cong (proj₁ F.+-identity F.0#) ⟩
⟦ F.0# ⟧ ∎)
-‿homo : Homomorphic₁ ⟦_⟧ F.-_ T.-_
-‿homo x =
GroupP.left-inverse-unique T.+-group ⟦ F.-_ x ⟧ ⟦ x ⟧ (begin
T._+_ ⟦ F.-_ x ⟧ ⟦ x ⟧ ≈⟨ T.sym (+-homo (F.-_ x) x) ⟩
⟦ F._+_ (F.-_ x) x ⟧ ≈⟨ ⟦⟧-cong (proj₁ F.-‿inverse x) ⟩
⟦ F.0# ⟧ ≈⟨ 0-homo ⟩
T.0# ∎)
|
{
"alphanum_fraction": 0.4757021846,
"avg_line_length": 31.1527777778,
"ext": "agda",
"hexsha": "b17087eaffeab652908dd5ae38e6979bc3c9ba29",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Algebra/Morphism.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Algebra/Morphism.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Algebra/Morphism.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 838,
"size": 2243
}
|
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.Nullification.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.PathSplitEquiv
open isPathSplitEquiv
isNull : ∀ {ℓ ℓ'} (S : Type ℓ) (A : Type ℓ') → Type (ℓ-max ℓ ℓ')
isNull S A = isPathSplitEquiv (const {A = A} {B = S})
data Null {ℓ ℓ'} (S : Type ℓ) (A : Type ℓ') : Type (ℓ-max ℓ ℓ') where
∣_∣ : A → Null S A
-- the image of every map (S → Null S A) is contractible in Null S A
hub : (f : S → Null S A) → Null S A
spoke : (f : S → Null S A) (s : S) → hub f ≡ f s
-- the image of every map (S → x ≡ y) for x y : A is contractible in x ≡ y
≡hub : ∀ {x y} (p : S → x ≡ y) → x ≡ y
≡spoke : ∀ {x y} (p : S → x ≡ y) (s : S) → ≡hub p ≡ p s
isNull-Null : ∀ {ℓ ℓ'} {S : Type ℓ} {A : Type ℓ'} → isNull S (Null S A)
fst (sec isNull-Null) f = hub f
snd (sec isNull-Null) f i s = spoke f s i
fst (secCong isNull-Null x y) p i = ≡hub (funExt⁻ p) i
snd (secCong isNull-Null x y) p i j s = ≡spoke (funExt⁻ p) s i j
|
{
"alphanum_fraction": 0.5839622642,
"avg_line_length": 40.7692307692,
"ext": "agda",
"hexsha": "a035eb088cef358b6d44920aa97c6435105e4fd6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "borsiemir/cubical",
"max_forks_repo_path": "Cubical/HITs/Nullification/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "borsiemir/cubical",
"max_issues_repo_path": "Cubical/HITs/Nullification/Base.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "borsiemir/cubical",
"max_stars_repo_path": "Cubical/HITs/Nullification/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 443,
"size": 1060
}
|
module Numeral.Natural.Prime.Proofs.Representation where
import Lvl
open import Data.Either as Either using ()
open import Data.Tuple as Tuple using ()
open import Functional
open import Function.Equals
open import Lang.Instance
open import Logic.Predicate
open import Logic.Propositional
open import Numeral.CoordinateVector
open import Numeral.Finite
open import Numeral.Natural
open import Numeral.Natural.Oper
open import Numeral.Natural.Prime
open import Numeral.Natural.Relation
open import Numeral.Natural.Relation.Divisibility
open import Numeral.Natural.Relation.Divisibility.Proofs
open import Numeral.Natural.Relation.Divisibility.Proofs.Product
open import Relator.Equals
open import Relator.Equals.Proofs.Equiv
open import Structure.Relator.Equivalence.Proofs
open import Structure.Relator.Properties
open import Structure.Setoid renaming (_≡_ to _≡ₛ_ ; _≢_ to _≢ₛ_)
open import Structure.Setoid.Uniqueness
open import Syntax.Transitivity
open import Type
open import Type.Dependent
private variable a b : ℕ
record PrimePowers(f : ℕ → ℕ) : Type{Lvl.𝟎} where
constructor intro
field
positive-powers : Σ ℕ (n ↦ Vector(n)(ℕ))
zeroes-correctness : ∀{n} → Positive(f(n)) ↔ ∃(i ↦ (Σ.right positive-powers(i) ≡ n))
prime-correctness : ∀{i} → Prime(Σ.right positive-powers(i))
product : ℕ
product = foldᵣ(_⋅_)(1) (map(n ↦ n ^ f(n)) (Σ.right positive-powers))
powers-is-positive : ∀{i} → Positive(f(Σ.right positive-powers(i)))
powers-is-positive = [↔]-to-[←] zeroes-correctness ([∃]-intro _ ⦃ [≡]-intro ⦄)
-- postulate power-divide-product : ∀{i} → (Σ.right positive-powers i ∣ product)
{-power-divide-product {pp}{i = 𝟎} = divides-with-[⋅]
{b = (PrimePowers.positive-powers pp 𝟎) ^ (PrimePowers.power pp (PrimePowers.positive-powers pp 𝟎))}
{c = foldᵣ(_⋅_)(1) (tail(map(n ↦ n ^ PrimePowers.power pp(n)) (PrimePowers.positive-powers pp)))}
([∨]-introₗ (divides-withᵣ-[^] ⦃ PrimePowers.powers-is-positive pp ⦄ (reflexivity(_∣_))))
power-divide-product {pp}{i = 𝐒 i} = divides-with-[⋅]
{b = (PrimePowers.positive-powers pp 𝟎) ^ (PrimePowers.power pp (PrimePowers.positive-powers pp 𝟎))}
{c = foldᵣ(_⋅_)(1) (tail(map(n ↦ n ^ PrimePowers.power pp(n)) (PrimePowers.positive-powers pp)))}
([∨]-introᵣ {!!})
-}
instance
PrimePowers-equiv : Equiv(∃ PrimePowers)
Equiv._≡_ PrimePowers-equiv = (_⊜_) on₂ [∃]-witness
Equiv.equivalence PrimePowers-equiv = on₂-equivalence ⦃ Equiv.equivalence [⊜]-equiv ⦄
{-
-- Each positive number have a corresponding finite multiset of prime numbers such that it is equal to the product of the numbers in the multiset.
-- Examples:
-- n = (p₁ ^ n₁) ⋅ (p₂ ^ n₂) ⋅ … ⋅ (pₖ ^ nₖ)
-- Also called:
-- • Fundamental theorem of arithmetic.
-- • Canonical representation of positive integers by primes.
-- • Unique prime factorization theorem.
prime-representation : ∀{n} → ⦃ pos : Positive(n) ⦄ → ∃! ⦃ PrimePowers-equiv ⦄ (pp ↦ (n ≡ PrimePowers.product pp))
∃.witness (Tuple.left prime-representation) = {!!}
∃.proof (Tuple.left prime-representation) = {!!}
_⊜_.proof (Tuple.right (prime-representation {𝐒 n}) {pp1} {pp2} p1 p2) {p} = {!!}
-}
open import Logic.Classical
open import Numeral.Natural.Decidable
{-
prime-representation : ∀{n} → ⦃ pos : Positive(n) ⦄ → ∃! ⦃ PrimePowers-equiv ⦄ (pp ↦ (n ≡ PrimePowers.product([∃]-proof pp)))
prime-representation {𝐒 n} ⦃ pos ⦄ = [∧]-intro p1 (\{x}{y} → p2{x}{y}) where
p1 : ∃(pp ↦ (𝐒(n) ≡ PrimePowers.product ([∃]-proof pp)))
p2 : Unique(pp ↦ (𝐒(n) ≡ PrimePowers.product ([∃]-proof pp)))
p2 {[∃]-intro x ⦃ ppx ⦄}{[∃]-intro y ⦃ ppy ⦄} px py with PrimePowers.positive-powers ppx | PrimePowers.positive-powers ppy
p2 {[∃]-intro x ⦃ ppx ⦄} {[∃]-intro y ⦃ ppy ⦄} px py | intro 𝟎 b | intro 𝟎 d = intro {!!}
p2 {[∃]-intro x ⦃ ppx ⦄} {[∃]-intro y ⦃ ppy ⦄} px py | intro 𝟎 b | intro (𝐒 c) d = {!!}
p2 {[∃]-intro x ⦃ ppx ⦄} {[∃]-intro y ⦃ ppy ⦄} px py | intro (𝐒 a) b | intro 𝟎 d = {!!}
p2 {[∃]-intro x ⦃ ppx ⦄} {[∃]-intro y ⦃ ppy ⦄} px py | intro (𝐒 a) b | intro (𝐒 c) d = {!!}
-- let xy = symmetry(_≡_) px 🝖 py
-- in intro \{p} → {!PrimePowers.power-divide-product ppx!}
-}
|
{
"alphanum_fraction": 0.6719014255,
"avg_line_length": 45.9888888889,
"ext": "agda",
"hexsha": "cddfabd92b37bccf592749f3d5c30323a77fa4fb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Natural/Prime/Proofs/Representation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Natural/Prime/Proofs/Representation.agda",
"max_line_length": 146,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Natural/Prime/Proofs/Representation.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1504,
"size": 4139
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Some defined operations over Rings
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
-- This module gives the definition of _^_ which is used throughout
-- the library. It's a little different from the normal definition:
--
-- x ^ zero = 1#
-- x ^ suc i = x * x ^ i
--
-- This is for two reasons. First, we want to avoid unnecessarily
-- multiplying by 1# if possible:
--
-- Standard definition: x ^ 2 = x * x * 1#
-- Our definition: x ^ 2 = x * x
--
-- This speeds up typechecking and makes for much more readable
-- proofs.
--
-- Secondly, we want to associate to the left:
--
-- Standard definition: x ^ 3 = x * (x * (x * 1#))
-- Our definition: x ^ 2 = (x * x) * x
--
-- As counterintuitive as it may seem, this also speeds up
-- typechecking.
open import Algebra
module Algebra.Operations.Ring
{ℓ₁ ℓ₂} (ring : RawRing ℓ₁ ℓ₂)
where
open import Data.Nat.Base as ℕ using (ℕ; suc; zero)
open RawRing ring
infixr 8 _^_+1
_^_+1 : Carrier → ℕ → Carrier
x ^ zero +1 = x
x ^ suc n +1 = (x ^ n +1) * x
infixr 8 _^_
_^_ : Carrier → ℕ → Carrier
x ^ zero = 1#
x ^ suc i = x ^ i +1
{-# INLINE _^_ #-}
|
{
"alphanum_fraction": 0.5425940138,
"avg_line_length": 25.0576923077,
"ext": "agda",
"hexsha": "0d783bfaa635673e2c6bcaaba1b4d217caae6c77",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Algebra/Operations/Ring.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Algebra/Operations/Ring.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Algebra/Operations/Ring.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 376,
"size": 1303
}
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import Optics.All
open import LibraBFT.Prelude
open import LibraBFT.Lemmas
open import LibraBFT.Base.PKCS
open import LibraBFT.Base.Encode
open import LibraBFT.Base.KVMap as KVMap
open import LibraBFT.Impl.Base.Types
open import LibraBFT.Impl.Consensus.Types.EpochIndep
open import LibraBFT.Impl.Util.Crypto
open import LibraBFT.Abstract.Types.EpochConfig UID NodeId
-- This module defines the types that depend on an EpochConfig,
-- but never inspect it. Consequently, we define everyting over
-- an abstract 𝓔 passed around as a module parameter.
--
-- Importantly, though, we are connecting abstract and concrete
-- votes by defining what constitutes enough "evidence" that a
-- vote was cast, which is passed around in the abstract model as
-- the variable (𝓥 : VoteEvidence); here we instantiate it to
-- 'ConcreteVoteEvidence'.
--
-- TODO-3: update types to reflect more recent version of LibraBFT.
-- This is a substantial undertaking that should probably be led by
-- someone who can access our internal implementation.
--
-- TODO-4: Make the Optics.Reflection stuff work with record
-- parameters, so we can merge all modules back into Types. For
-- now, this is the easiest way to avoid the issue that making a
-- module inside Consensus.Types called EpochDep will break
-- mkLens (not sure why).
module LibraBFT.Impl.Consensus.Types.EpochDep (𝓔 : EpochConfig) where
open EpochConfig 𝓔
open WithAbsVote 𝓔
-- A 'ConcreteVoteEvidence' is a piece of information that
-- captures that the 'vd : AbsVoteData' in question was not /invented/
-- but instead, comes from a concrete vote that is /valid/ (that is,
-- signature has been checked and author belongs to this epoch).
--
-- Moreover, we will also store the RecordChain that leads to the vote;
-- this requires some mutually-recursive shenanigans, so we first declare
-- ConcreteVoteEvidence, then import the necessary modules, and then define it.
record ConcreteVoteEvidence (vd : AbsVoteData) : Set
open import LibraBFT.Abstract.Abstract UID _≟UID_ NodeId 𝓔 ConcreteVoteEvidence as Abs hiding (qcVotes; Vote)
data VoteCoherence (v : Vote) (b : Abs.Block) : Set where
initial : v ^∙ vParentId ≡ genesisUID
→ v ^∙ vParentRound ≡ 0
→ Abs.bPrevQC b ≡ nothing
→ VoteCoherence v b
¬initial : ∀{b' q}
→ v ^∙ vParentId ≢ genesisUID
→ v ^∙ vParentRound ≢ 0
→ v ^∙ vParentId ≡ Abs.bId b'
→ v ^∙ vParentRound ≡ Abs.bRound b'
→ (Abs.B b') ← (Abs.Q q)
→ (Abs.Q q) ← (Abs.B b)
→ VoteCoherence v b
-- Estabilishing validity of a concrete vote involves checking:
--
-- i) Vote author belongs to the current epoch
-- ii) Vote signature is correctly verified
-- iii) Existence of a RecordChain up to the voted-for block.
-- iv) Coherence of 'vdParent' field with the above record chain.
--
record IsValidVote (v : Vote) : Set where
constructor IsValidVote∙new
inductive
field
₋ivvMember : Member
₋ivvAuthor : isMember? (₋vAuthor v) ≡ just ₋ivvMember
₋ivvSigned : WithVerSig (getPubKey ₋ivvMember) v
₋ivvVDhash : v ^∙ vLedgerInfo ∙ liConsensusDataHash ≡ hashVD (v ^∙ vVoteData)
-- A valid vote must vote for a block that exists and is
-- inserted in a RecordChain.
₋ivvBlock : Abs.Block
₋ivvBlockId : v ^∙ vProposedId ≡ Abs.bId ₋ivvBlock
-- Moreover; we must check that the 'parent' field of the vote is coherent.
₋ivvCoherent : VoteCoherence v ₋ivvBlock
-- Finally, the vote is for the correct epoch
₋ivvEpoch : v ^∙ vEpoch ≡ epoch
₋ivvEpoch2 : v ^∙ vParent ∙ biEpoch ≡ epoch -- Not needed?
open IsValidVote public
-- A valid vote can be directly mapped to an AbsVoteData. Abstraction of QCs
-- and blocks will be given in LibraBFT.Concrete.Records, since those are
-- more involved functions.
α-ValidVote : (v : Vote) → Member → AbsVoteData
α-ValidVote v mbr = AbsVoteData∙new (v ^∙ vProposed ∙ biRound)
mbr
(v ^∙ vProposed ∙ biId)
-- α-ValidVote is the same for two votes that have the same vAuthor, vdProposed and vOrder
α-ValidVote-≡ : ∀ {cv v'} {m : Member}
→ ₋vdProposed (₋vVoteData cv) ≡ ₋vdProposed (₋vVoteData v')
→ α-ValidVote cv m ≡ α-ValidVote v' m
α-ValidVote-≡ {cv} {v'} prop≡ =
AbsVoteData-η (cong ₋biRound prop≡) refl (cong ₋biId prop≡)
-- Finally; evidence for some abstract vote consists of a concrete valid vote
-- that is coherent with the abstract vote data.
record ConcreteVoteEvidence vd where
constructor CVE∙new
inductive
field
₋cveVote : Vote
₋cveIsValidVote : IsValidVote ₋cveVote
₋cveIsAbs : α-ValidVote ₋cveVote (₋ivvMember ₋cveIsValidVote) ≡ vd
open ConcreteVoteEvidence public
-- Gets the signature of a concrete vote evidence
₋cveSignature : ∀{vd} → ConcreteVoteEvidence vd → Signature
₋cveSignature = ₋vSignature ∘ ₋cveVote
-- A valid quorum certificate contains a collection of valid votes, such that
-- the members represented by those votes (which exist because the votes are valid)
-- constitutes a quorum.
record MetaIsValidQC (qc : QuorumCert) : Set where
field
₋ivqcMetaVotesValid : All (IsValidVote ∘ rebuildVote qc) (qcVotes qc)
₋ivqcMetaIsQuorum : IsQuorum (All-reduce ₋ivvMember ₋ivqcMetaVotesValid)
open MetaIsValidQC public
vqcMember : (qc : QuorumCert) → MetaIsValidQC qc
→ ∀ {as} → as ∈ qcVotes qc → Member
vqcMember qc v {α , _ , _} as∈qc with All-lookup (₋ivqcMetaVotesValid v) as∈qc
...| prf = ₋ivvMember prf
-- A block tree depends on a epoch config but works regardlesss of which
-- EpochConfig we have.
record BlockTree : Set where
constructor BlockTree∙new
field
₋btIdToBlock : KVMap HashValue LinkableBlock
₋btRootId : HashValue
₋btHighestCertifiedBlockId : HashValue
₋btHighestQuorumCert : QuorumCert
-- btHighestTimeoutCert : Maybe TimeoutCertificate
₋btHighestCommitCert : QuorumCert
₋btPendingVotes : PendingVotes
₋btPrunedBlockIds : List HashValue
₋btMaxPrunedBlocksInMem : ℕ
₋btIdToQuorumCert : KVMap HashValue (Σ QuorumCert MetaIsValidQC)
open BlockTree public
unquoteDecl btIdToBlock btRootId btHighestCertifiedBlockId btHighestQuorumCert
btHighestCommitCert btPendingVotes btPrunedBlockIds
btMaxPrunedBlocksInMem btIdToQuorumCert = mkLens (quote BlockTree)
(btIdToBlock ∷ btRootId ∷ btHighestCertifiedBlockId ∷ btHighestQuorumCert ∷
btHighestCommitCert ∷ btPendingVotes ∷ btPrunedBlockIds ∷
btMaxPrunedBlocksInMem ∷ btIdToQuorumCert ∷ [])
record BlockStore : Set where
constructor BlockStore∙new
field
₋bsInner : BlockTree
-- bsStateComputer : StateComputer
-- bsStorage : CBPersistentStorage
open BlockStore public
unquoteDecl bsInner = mkLens (quote BlockStore)
(bsInner ∷ [])
-- These are the parts of the RoundManager that depend on an
-- EpochConfig. We do not particularly care which EpochConfig
-- they care about yet.
--
record RoundManagerWithEC : Set where
constructor RoundManagerWithEC∙new
field
₋epBlockStore : BlockStore
open RoundManagerWithEC public
unquoteDecl epBlockStore = mkLens (quote RoundManagerWithEC)
(epBlockStore ∷ [])
lBlockTree : Lens RoundManagerWithEC BlockTree
lBlockTree = epBlockStore ∙ bsInner
|
{
"alphanum_fraction": 0.6817102138,
"avg_line_length": 42.3227513228,
"ext": "agda",
"hexsha": "3e6629008e9d3d977553176f7a29780c7936943a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "cwjnkins/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Impl/Consensus/Types/EpochDep.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "cwjnkins/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Impl/Consensus/Types/EpochDep.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "cwjnkins/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Impl/Consensus/Types/EpochDep.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2345,
"size": 7999
}
|
module Plain.Models where
open import Data.Nat
open import Plain.Terms
-- The (complete) Herbrand universe for Σ
U' : {n : ℕ} → (Signature n) → Set
U' Σ = GTerm Σ
open import Relation.Unary as U
open import Level
-- a (complete) Herbrand interpretation
record Interp {n : ℕ} (Σ : Signature n) : Set₁ where
field
Carrier : Pred (U' Σ) Level.zero
open Interp
_∩ᵢ_ : {n : ℕ} → {Σ : Signature n} → Interp Σ → Interp Σ
→ Interp Σ
i₁ ∩ᵢ i₂ = record { Carrier = (Carrier i₁) U.∩ Carrier i₂ }
_∪ᵢ_ : {n : ℕ} → {Σ : Signature n} → Interp Σ → Interp Σ
→ Interp Σ
i₁ ∪ᵢ i₂ = record { Carrier = (Carrier i₁) U.∪ Carrier i₂ }
open import Data.List as L
open import Data.List.All as LAl
open import Data.List.Any as LAn
open import Relation.Binary.Core
open Program
-- | Inductive model property
record IsIndModel {n : ℕ}
{Σ : Signature n} (i : Interp Σ) (P : Program Σ) : Set₂ where
field
forwClosed :
(bs' : List (GTerm Σ))
→ All (λ b → b ∈ Carrier i) bs'
→ (σ : GSubst Σ)
→ (a : Term Σ Var)
→ (bs : List (Term Σ Var))
→ Any (λ cl → cl ≡ (a :- bs)) (prg P)
→ (L.map (app σ) bs) ≡ bs'
→ (app σ a ∈ Carrier i)
open IsIndModel
-- | Ind Model
record IndModel {n : ℕ}
{Σ : Signature n} (P : Program Σ) : Set₂ where
field
iInterp : Interp Σ
isIndModel : IsIndModel iInterp P
open IndModel
open import Data.Product
open import Data.List.All.Properties -- using (All-map)
{-
-- | Model intersection
_∩m_ : {n : ℕ} → {Σ : Signature n} → {P : Program Σ}
→ (m₁ : IndModel P) → (m₂ : IndModel P)
→ IndModel P
_∩m_ {n} {Σ} {P} m₁ m₂ = record
{ interp = interp m₁ ∩ᵢ interp m₂
; isIndModel = prop-model-intersection-pair P m₁ m₂ }
-}
⋂ᵢ : {n : ℕ} → {Σ : Signature n} →
(I : Set) → (I → Interp Σ)
→ Interp Σ
⋂ᵢ I f = record { Carrier = ⋂ I (λ i t → t ∈ Carrier (f i)) }
open import Function
prop-model-intersection : {n : ℕ} → {Σ : Signature n} →
(P : Program Σ)
→ (I : Set) -- ^ is non-empty by what argument?
→ (mps : I → IndModel P)
→ IsIndModel ( ⋂ᵢ I (iInterp ∘ mps)) P
prop-model-intersection P I mps =
record { forwClosed = λ bs' pbs' σ a bs pcl pbs i →
forwClosed (isIndModel (mps i)) bs'
(LAl.map (λ k → k i) pbs')
σ a bs pcl pbs
}
-- | Coinductive model
record IsCoiModel {n : ℕ}
{Σ : Signature n} (i : Interp Σ) (P : Program Σ) : Set₂ where
field
backClosed :
{a : Term Σ Var} → {bs : List (Term Σ Var)}
→ (a' : GTerm Σ)
→ a' ∈ Carrier i
→ ∃ (λ (σclsp : GSubst Σ ×
Any (λ c → a :- bs ≡ c) (prg P))
→ app (proj₁ σclsp) a ≡ a'
→ All (λ c → c ∈ Carrier i) (L.map (app (proj₁ σclsp)) bs))
open IsCoiModel
-- | Coi Model
record CoiModel {n : ℕ}
{Σ : Signature n} (P : Program Σ) : Set₂ where
field
cInterp : Interp Σ
isCoiModel : IsCoiModel cInterp P
open CoiModel
⋃ᵢ : {n : ℕ} → {Σ : Signature n} →
(I : Set) → (I → Interp Σ)
→ Interp Σ
⋃ᵢ I f = record { Carrier = λ x → ⋃ I (λ i t → t ∈ Carrier (f i)) x }
open import Data.Product as DP
-- | model union property
prop-model-union : {n : ℕ} → {Σ : Signature n} →
(P : Program Σ)
→ (I : Set) -- ^ is non-empty by what argument?
→ (mps : I → CoiModel P)
→ IsCoiModel ( ⋃ᵢ I (cInterp ∘ mps)) P
prop-model-union P I mps =
record { backClosed = λ a' x →
DP.map (λ id → id)
(λ x₂ x₃ → LAl.map (λ x₄ → proj₁ x , x₄) (x₂ x₃))
(backClosed (isCoiModel (mps (proj₁ x))) a' (proj₂ x)) }
open import Data.Unit
prop-ex-ind-model : {n : ℕ} → {Σ : Signature n}
→ (P : Program Σ)
→ IndModel P
prop-ex-ind-model P = record
{ iInterp = record { Carrier = U }
; isIndModel = record { forwClosed = λ bs' x σ a bs x₁ x₂ → tt }
}
open import Data.Empty
prop-ex-coi-model : {n : ℕ} → {Σ : Signature n}
→ (P : Program Σ)
→ CoiModel P
prop-ex-coi-model P = record
{ cInterp = record { Carrier = ∅ }
; isCoiModel = record { backClosed = λ a' () }
}
|
{
"alphanum_fraction": 0.5772854596,
"avg_line_length": 25.335483871,
"ext": "agda",
"hexsha": "08ee99a2f796bbdd557e1d7292852e3cf16b711b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "411ca7970b6f64857a36ebcf648c9a58b90bb4b2",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "frantisekfarka/lp-mod",
"max_forks_repo_path": "Plain/Models.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "411ca7970b6f64857a36ebcf648c9a58b90bb4b2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "frantisekfarka/lp-mod",
"max_issues_repo_path": "Plain/Models.agda",
"max_line_length": 69,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "411ca7970b6f64857a36ebcf648c9a58b90bb4b2",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "frantisekfarka/lp-mod",
"max_stars_repo_path": "Plain/Models.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1536,
"size": 3927
}
|
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; sym; trans; cong)
open Eq.≡-Reasoning
open import Data.Nat using (ℕ; zero; suc; _+_; _*_)
open import Data.Nat.Properties.Simple using (+-suc)
open import Data.Product using (∃; ∃-syntax; _,_)
data even : ℕ → Set
data odd : ℕ → Set
data even where
even-zero : even zero
even-suc : ∀ {n : ℕ} → odd n → even (suc n)
data odd where
odd-suc : ∀ {n : ℕ} → even n → odd (suc n)
lemma : ∀ (m : ℕ) → 2 * suc m ≡ suc (suc (2 * m))
lemma m =
begin
2 * suc m
≡⟨⟩
suc m + (suc m + zero)
≡⟨⟩
suc (m + (suc (m + zero)))
≡⟨ cong suc (+-suc m (m + zero)) ⟩
suc (suc (m + (m + zero)))
≡⟨⟩
suc (suc (2 * m))
∎
∃-even : ∀ {n : ℕ} → even n → ∃[ m ] (2 * m ≡ n)
∃-odd : ∀ {n : ℕ} → odd n → ∃[ m ] (1 + 2 * m ≡ n)
∃-even even-zero = zero , refl
∃-even (even-suc o) with ∃-odd o
... | m , refl = suc m , lemma m
∃-odd (odd-suc e) with ∃-even e
... | m , refl = m , refl
∃-even′ : ∀ {n : ℕ} → even n → ∃[ m ] (n ≡ 2 * m)
∃-odd′ : ∀ {n : ℕ} → odd n → ∃[ m ] (n ≡ 1 + 2 * m)
∃-even′ even-zero = zero , refl
∃-even′ (even-suc o) with ∃-odd′ o
... | m , eqn rewrite eqn | +-suc m (m + 0) = suc m , {!!}
∃-odd′ (odd-suc e) with ∃-even′ e
... | m , eqn rewrite eqn = m , refl
data Even : ℕ → Set where
ev0 : Even zero
ev2 : ∀ {n} → Even n → Even (suc (suc n))
ev-ex : ∀ {n : ℕ} → Even n → ∃[ m ] (2 * m ≡ n)
ev-ex ev0 = (zero , refl)
ev-ex (ev2 ev) with ev-ex ev
... | (m , refl) = (suc m , lemma m)
|
{
"alphanum_fraction": 0.473354232,
"avg_line_length": 26.1475409836,
"ext": "agda",
"hexsha": "3055800aa7ad38106ec0cbeb371dcbcea77c963a",
"lang": "Agda",
"max_forks_count": 304,
"max_forks_repo_forks_event_max_datetime": "2022-03-28T11:35:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-07-16T18:24:59.000Z",
"max_forks_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "manikdv/plfa.github.io",
"max_forks_repo_path": "extra/extra/RewriteWTF.agda",
"max_issues_count": 323,
"max_issues_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T07:42:57.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-05T22:34:34.000Z",
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "manikdv/plfa.github.io",
"max_issues_repo_path": "extra/extra/RewriteWTF.agda",
"max_line_length": 78,
"max_stars_count": 1003,
"max_stars_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "manikdv/plfa.github.io",
"max_stars_repo_path": "extra/extra/RewriteWTF.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-27T07:03:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-07-05T18:15:14.000Z",
"num_tokens": 681,
"size": 1595
}
|
{-# OPTIONS --allow-unsolved-metas #-}
case_of_ : {A B : Set} → A → (A → B) → B
case x of f = f x
data D : Set where
c : D → D
postulate
d : D
A : Set
P : A → Set
record R : Set where
no-eta-equality
field
f : A
-- R : Set
-- Rf : R → A
data Box : Set where
box : R → Box
postulate
f : D → Box
-- pat-lam : Box → A
-- pat-lam (box y) = R.f y
g : D → A
g x = case f x of λ
{ (box y) → R.f y
}
postulate B : Set
p : P (g (c d))
p with B
p | z = {!!}
|
{
"alphanum_fraction": 0.4866529774,
"avg_line_length": 11.8780487805,
"ext": "agda",
"hexsha": "5f47222f2aa7ba81f20dd07357946c2c59bfbf8a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2193.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2193.agda",
"max_line_length": 40,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2193.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 206,
"size": 487
}
|
{-# OPTIONS --safe #-}
module Definition.Typed.Decidable where
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Typed.Consequences.Syntactic
open import Definition.Conversion
open import Definition.Conversion.Decidable
open import Definition.Conversion.Soundness
open import Definition.Conversion.Stability
open import Definition.Conversion.Consequences.Completeness
open import Tools.Nullary
open import Tools.Product
-- Decidability of conversion of well-formed types
dec : ∀ {A B r Γ} → Γ ⊢ A ^ r → Γ ⊢ B ^ r → Dec (Γ ⊢ A ≡ B ^ r)
dec ⊢A ⊢B =
let ⊢Γ≡Γ = reflConEq (wf ⊢A)
in map soundnessConv↑ completeEq
(decConv↑ ⊢Γ≡Γ (completeEq (refl ⊢A)) (completeEq (refl ⊢B)))
-- Decidability of conversion of well-formed terms
decTerm : ∀ {t u A r Γ} → Γ ⊢ t ∷ A ^ r → Γ ⊢ u ∷ A ^ r → Dec (Γ ⊢ t ≡ u ∷ A ^ r)
decTerm {r = [ ! , l ]} ⊢t ⊢u =
let ⊢Γ≡Γ = reflConEq (wfTerm ⊢t)
in map soundnessConv↑Term completeEqTerm
(decConv↑TermConv ⊢Γ≡Γ (refl (syntacticTerm ⊢t)) (completeEqTerm (genRefl ⊢t)) (completeEqTerm (genRefl ⊢u)))
decTerm {r = [ % , l ]} ⊢t ⊢u =
let ⊢Γ≡Γ = reflConEq (wfTerm ⊢t)
in map (λ x → proj₂ (proj₂ (soundness~↑% x))) completeEqTerm
(decConv↑TermConv ⊢Γ≡Γ (refl (syntacticTerm ⊢t)) (completeEqTerm (genRefl ⊢t)) (completeEqTerm (genRefl ⊢u)))
|
{
"alphanum_fraction": 0.6826086957,
"avg_line_length": 38.3333333333,
"ext": "agda",
"hexsha": "6d188c3ffa11764cc82c4aac31a888ae6c91d849",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/Typed/Decidable.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/Typed/Decidable.agda",
"max_line_length": 119,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/Typed/Decidable.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 490,
"size": 1380
}
|
open import Relation.Binary using (IsDecEquivalence)
open import Agda.Builtin.Equality
-- module UnifyMguFTerminationHunt (FunctionName : Set) ⦃ isDecEquivalenceA : IsDecEquivalence (_≡_ {A = FunctionName}) ⦄ where
module UnifyMguFTerminationHunt where
postulate
FunctionName : Set
instance isDecEquivalenceA : IsDecEquivalence (_≡_ {A = FunctionName})
open IsDecEquivalence isDecEquivalenceA using () renaming (_≟_ to _≟F_)
open import UnifyTermF FunctionName
open import Data.Product using (∃; _,_)
open import Data.Maybe using (Maybe; just; nothing)
open import Category.Monad using (RawMonad)
import Level
open RawMonad (Data.Maybe.monad {Level.zero})
open import Relation.Nullary using (Dec; yes; no)
open import Data.Fin using (Fin)
open import Data.Nat using (suc)
postulate
_◃′_ : ∀ {m n} -> (f : m ~> n) -> Term m -> Term n
_for'_ : ∀ {n} (t' : Term n) (x : Fin (suc n)) -> Fin (suc n) -> Term n
amterm : ∀ {m} (s t : Term m) (acc : ∃ (AList m)) -> Maybe (∃ (AList m))
amterm leaf leaf acc = just acc
amterm leaf (function _ _) acc = nothing
amterm leaf (s' fork t') acc = nothing
amterm (s' fork t') leaf acc = nothing
amterm (s' fork t') (function _ _) acc = nothing
amterm (s1 fork s2) (t1 fork t2) acc = amterm s2 t2 =<< amterm s1 t1 acc {- Data.Maybe.maybe (⋆amgu.amgu ⋆amguTerm' s2 t2) nothing (⋆amgu.amgu ⋆amguTerm' s1 t1 acc) -}
amterm (function fn₁ ts₁) leaf acc = nothing
amterm (function fn₁ {n₁} ts₁) (function fn₂ {n₂} ts₂) acc = nothing
amterm (function fn₁ ts₁) (_ fork _) acc = nothing
amterm (i x) (i y) (m , anil) = nothing
amterm (i x) t (m , anil) = nothing
amterm t (i x) (m , anil) = nothing
amterm s t (n , σ asnoc r / z) =
(λ σ -> σ ∃asnoc r / z) <$>
-- amgu ((r for z) ◃ s) ((r for z) ◃ t) (n , σ)
amterm ((r for' z) ◃′ s) ((r for' z) ◃′ t) (n , σ)
-- instance ⋆amguTerm' : ⋆amgu Term
-- ⋆amguTerm' .⋆amgu.amgu leaf leaf acc = just acc
-- ⋆amguTerm' .⋆amgu.amgu leaf (function _ _) acc = nothing
-- ⋆amguTerm' .⋆amgu.amgu leaf (s' fork t') acc = nothing
-- ⋆amguTerm' .⋆amgu.amgu (s' fork t') leaf acc = nothing
-- ⋆amguTerm' .⋆amgu.amgu (s' fork t') (function _ _) acc = nothing
-- ⋆amguTerm' .⋆amgu.amgu (s1 fork s2) (t1 fork t2) acc = amgu s2 t2 =<< amgu s1 t1 acc {- Data.Maybe.maybe (⋆amgu.amgu ⋆amguTerm' s2 t2) nothing (⋆amgu.amgu ⋆amguTerm' s1 t1 acc) -}
-- ⋆amguTerm' .⋆amgu.amgu (function fn₁ ts₁) leaf acc = nothing
-- ⋆amguTerm' .⋆amgu.amgu (function fn₁ {n₁} ts₁) (function fn₂ {n₂} ts₂) acc = nothing
-- ⋆amguTerm' .⋆amgu.amgu (function fn₁ ts₁) (_ fork _) acc = nothing
-- ⋆amguTerm' .⋆amgu.amgu (i x) (i y) (m , anil) = nothing
-- ⋆amguTerm' .⋆amgu.amgu (i x) t (m , anil) = nothing
-- ⋆amguTerm' .⋆amgu.amgu t (i x) (m , anil) = nothing
-- ⋆amguTerm' .⋆amgu.amgu s t (n , σ asnoc r / z) =
-- (λ σ -> σ ∃asnoc r / z) <$>
-- -- amgu ((r for z) ◃ s) ((r for z) ◃ t) (n , σ)
-- amgu ((r for z) ◃′ s) ((r for z) ◃′ t) (n , σ)
-- -- instance ⋆amguTerm' : ⋆amgu Term
-- -- ⋆amgu.amgu ⋆amguTerm' leaf leaf acc = just acc
-- -- ⋆amgu.amgu ⋆amguTerm' leaf (function _ _) acc = nothing
-- -- ⋆amgu.amgu ⋆amguTerm' leaf (s' fork t') acc = nothing
-- -- ⋆amgu.amgu ⋆amguTerm' (s' fork t') leaf acc = nothing
-- -- ⋆amgu.amgu ⋆amguTerm' (s' fork t') (function _ _) acc = nothing
-- -- ⋆amgu.amgu ⋆amguTerm' (s1 fork s2) (t1 fork t2) acc = {!amgu s2 t2 =<< amgu s1 t1 acc!} {- Data.Maybe.maybe (⋆amgu.amgu ⋆amguTerm' s2 t2) nothing (⋆amgu.amgu ⋆amguTerm' s1 t1 acc) -}
-- -- ⋆amgu.amgu ⋆amguTerm' (function fn₁ ts₁) leaf acc = nothing
-- -- ⋆amgu.amgu ⋆amguTerm' (function fn₁ {n₁} ts₁) (function fn₂ {n₂} ts₂) acc = nothing
-- -- ⋆amgu.amgu ⋆amguTerm' (function fn₁ ts₁) (_ fork _) acc = nothing
-- -- ⋆amgu.amgu ⋆amguTerm' (i x) (i y) (m , anil) = nothing
-- -- ⋆amgu.amgu ⋆amguTerm' (i x) t (m , anil) = nothing
-- -- ⋆amgu.amgu ⋆amguTerm' t (i x) (m , anil) = nothing
-- -- ⋆amgu.amgu ⋆amguTerm' s t (n , σ asnoc r / z) =
-- -- (λ σ -> σ ∃asnoc r / z) <$>
-- -- -- amgu ((r for z) ◃ s) ((r for z) ◃ t) (n , σ)
-- -- amgu ((r for z) ◃′ s) ((r for z) ◃′ t) (n , σ)
-- -- -- mutual
-- -- -- instance ⋆amguTerm : ⋆amgu Term
-- -- -- ⋆amgu.amgu ⋆amguTerm leaf leaf acc = just acc
-- -- -- ⋆amgu.amgu ⋆amguTerm leaf (function _ _) acc = nothing
-- -- -- ⋆amgu.amgu ⋆amguTerm leaf (s' fork t') acc = nothing
-- -- -- ⋆amgu.amgu ⋆amguTerm (s' fork t') leaf acc = nothing
-- -- -- ⋆amgu.amgu ⋆amguTerm (s' fork t') (function _ _) acc = nothing
-- -- -- ⋆amgu.amgu ⋆amguTerm (s1 fork s2) (t1 fork t2) acc =
-- -- -- amgu s2 t2 =<< amgu s1 t1 acc
-- -- -- ⋆amgu.amgu ⋆amguTerm (function fn₁ ts₁) leaf acc = nothing
-- -- -- ⋆amgu.amgu ⋆amguTerm (function fn₁ {n₁} ts₁) (function fn₂ {n₂} ts₂) acc
-- -- -- with fn₁ ≟F fn₂
-- -- -- … | no _ = nothing
-- -- -- … | yes _ with n₁ ≟ n₂
-- -- -- … | no _ = nothing
-- -- -- … | yes refl = amgu ts₁ ts₂ acc
-- -- -- ⋆amgu.amgu ⋆amguTerm (function fn₁ ts₁) (_ fork _) acc = nothing
-- -- -- ⋆amgu.amgu ⋆amguTerm (i x) (i y) (m , anil) = just (flexFlex x y)
-- -- -- ⋆amgu.amgu ⋆amguTerm (i x) t (m , anil) = flexRigid x t
-- -- -- ⋆amgu.amgu ⋆amguTerm t (i x) (m , anil) = flexRigid x t
-- -- -- ⋆amgu.amgu ⋆amguTerm s t (n , σ asnoc r / z) =
-- -- -- (λ σ -> σ ∃asnoc r / z) <$>
-- -- -- amgu ((r for z) ◃ s) ((r for z) ◃ t) (n , σ)
-- -- -- instance ⋆amguVecTerm : ∀ {N} → ⋆amgu (flip Vec N ∘ Term)
-- -- -- ⋆amgu.amgu ⋆amguVecTerm [] [] acc = just acc
-- -- -- ⋆amgu.amgu ⋆amguVecTerm (t₁ ∷ t₁s) (t₂ ∷ t₂s) acc = amgu t₁s t₂s =<< amgu t₁ t₂ acc
-- -- -- mgu : ∀ {m} -> (s t : Term m) -> Maybe (∃ (AList m))
-- -- -- mgu {m} s t = amgu s t (m , anil)
|
{
"alphanum_fraction": 0.5688105118,
"avg_line_length": 49.4358974359,
"ext": "agda",
"hexsha": "219b0765e28a519c64c50e4da0c21a0c491f2e4f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/UnifyMguFTerminationHunt.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/UnifyMguFTerminationHunt.agda",
"max_line_length": 188,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/UnifyMguFTerminationHunt.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2494,
"size": 5784
}
|
{-# OPTIONS --without-K #-}
module SEquivSCPermEquiv where
open import Level using (Level; _⊔_)
open import Data.Fin using (Fin)
open import Data.Product using (_,_; proj₁; proj₂)
open import Data.Vec using (tabulate)
open import Function using (_∘_; id)
open import Data.Vec.Properties using (lookup∘tabulate)
open import Relation.Binary using (Setoid)
open import Function.Equality using (_⟨$⟩_; _⟶_)
renaming (_∘_ to _⊚_)
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; sym; trans; cong; module ≡-Reasoning)
--
open import Proofs using (_!!_; finext)
open import Equiv using (_≃_; qinv; module isqinv)
open import EquivEquiv using (_S≃_; eq; _≋_; id≋)
open import ConcretePermutation using (CPerm; cp; _∘̂_; 1C; cauchyext; SCPerm)
open import ConcretePermutationProperties using (p≡)
--
infix 4 _≃S_
------------------------------------------------------------------------------
-- The big (semantic) theorem!
-- On one side we have the setoid of permutations under ≡
-- On the other we have the setoid of equivalences under ≋
--
-- The regular equivalence ≃ relates sets. To relate the above two
-- setoids, this regular equivalence is generalized to an equivalence
-- ≃S that relates setoids each with its own equivalence relation.
record _≃S_ {ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level} (A : Setoid ℓ₁ ℓ₂) (B : Setoid ℓ₃ ℓ₄) :
Set (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃ ⊔ ℓ₄) where
constructor equiv
field
f : A ⟶ B
g : B ⟶ A
α : ∀ {x y} → Setoid._≈_ B x y → Setoid._≈_ B ((f ⊚ g) ⟨$⟩ x) y
β : ∀ {x y} → Setoid._≈_ A x y → Setoid._≈_ A ((g ⊚ f) ⟨$⟩ x) y
-- Big theorem
univalence : ∀ {m n} → (SCPerm m n) ≃S (Fin m S≃ Fin n)
univalence {m} {n} = equiv fwd bwd α β
where
fwd' : (CPerm m n) → (Fin m ≃ Fin n)
fwd' (cp π πᵒ αp βp) =
(λ m → πᵒ !! m) ,
let index = (λ n → π !! n) in qinv index pf₁ pf₂
where
open ≡-Reasoning
pf₁ : ∀ m → πᵒ !! (π !! m) ≡ m
pf₁ m = begin (
πᵒ !! (π !! m)
≡⟨ sym (lookup∘tabulate (λ x → πᵒ !! (π !! x)) m) ⟩
(π ∘̂ πᵒ) !! m
≡⟨ cong (λ x → x !! m) αp ⟩
1C !! m
≡⟨ lookup∘tabulate id m ⟩
m ∎)
pf₂ : ∀ m → π !! (πᵒ !! m) ≡ m
pf₂ m = begin (
π !! (πᵒ !! m)
≡⟨ sym (lookup∘tabulate (λ x → π !! (πᵒ !! x)) m) ⟩
(πᵒ ∘̂ π) !! m
≡⟨ cong (λ x → x !! m) βp ⟩
1C !! m
≡⟨ lookup∘tabulate id m ⟩
m ∎)
bwd' : (Fin m ≃ Fin n) → (CPerm m n)
bwd' (f , qinv g α β) =
cp (tabulate g) (tabulate f) g∘̂f≡1C f∘̂g≡1C
where
open ≡-Reasoning
g∘̂f≡1C : tabulate g ∘̂ tabulate f ≡ 1C
g∘̂f≡1C = finext (λ i → begin (
tabulate f !! (tabulate g !! i)
≡⟨ lookup∘tabulate f (tabulate g !! i) ⟩
f (tabulate g !! i)
≡⟨ cong f (lookup∘tabulate g i) ⟩
f (g i)
≡⟨ α i ⟩
i ∎))
f∘̂g≡1C : tabulate f ∘̂ tabulate g ≡ 1C
f∘̂g≡1C = finext (λ i → begin (
tabulate g !! (tabulate f !! i)
≡⟨ lookup∘tabulate g (tabulate f !! i) ⟩
g (tabulate f !! i)
≡⟨ cong g (lookup∘tabulate f i) ⟩
g (f i)
≡⟨ β i ⟩
i ∎))
fwd : (SCPerm m n) ⟶ (Fin m S≃ Fin n)
fwd = record
{ _⟨$⟩_ = fwd'
; cong = λ { {π} {.π} refl → id≋ }
}
bwd : (Fin m S≃ Fin n) ⟶ (SCPerm m n)
bwd = record
{ _⟨$⟩_ = bwd'
; cong = λ eq₁≋eq₂ → p≡ (finext (_≋_.g≡ eq₁≋eq₂))
}
α : {eq₁ eq₂ : Fin m ≃ Fin n} → eq₁ ≋ eq₂ → (fwd ⊚ bwd ⟨$⟩ eq₁) ≋ eq₂
α {eq₁} {eq₂} eq₁≋eq₂ =
eq (λ x → trans (lookup∘tabulate (proj₁ eq₁) x) (_≋_.f≡ eq₁≋eq₂ x))
(λ x → trans (lookup∘tabulate (isqinv.g (proj₂ eq₁)) x) (_≋_.g≡ eq₁≋eq₂ x))
β : {π₁ π₂ : CPerm m n} → π₁ ≡ π₂ → (bwd ⊚ fwd ⟨$⟩ π₁) ≡ π₂
β {π} {.π} refl = p≡ (cauchyext (CPerm.π π))
|
{
"alphanum_fraction": 0.4790492526,
"avg_line_length": 32.3888888889,
"ext": "agda",
"hexsha": "72ebdac0951b57bf72abc812dada0b1572edbfee",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/SEquivSCPermEquiv.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/SEquivSCPermEquiv.agda",
"max_line_length": 86,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/SEquivSCPermEquiv.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 1597,
"size": 4081
}
|
{-# OPTIONS --without-K #-}
open import Base
{-
This file contains the lemma that
a point (1 -> A) has n-connected fibers
if A is (S n)-connected.
The other direction will be added whenever
it is needed.
-}
module Homotopy.PointConnected {i} (A : Set i) (a : A) where
open import Homotopy.Connected
open import Homotopy.Truncation
open import Homotopy.PathTruncation
point : unit {i} → A
point _ = a
abstract
point-has-connected-fibers : ∀ {n} →
is-connected (S n) A → has-connected-fibers n point
point-has-connected-fibers {n} A-is-conn a₂ = center [a≡a₂]n , path
where
[a≡a₂]n : τ n (a ≡ a₂)
[a≡a₂]n = connected-has-all-τ-paths A-is-conn a a₂
center : τ n (a ≡ a₂) → τ n (hfiber point a₂)
center = τ-extend-nondep ⦃ τ-is-truncated n _ ⦄
(λ shift → proj $ tt , shift)
path′ : ∀ f → proj f ≡ center [a≡a₂]n
path′ (tt , a≡a₂) = ap center $ contr-has-all-paths
(connected-has-connected-paths A-is-conn a a₂) (proj a≡a₂) [a≡a₂]n
path : ∀ f → f ≡ center [a≡a₂]n
path = τ-extend ⦃ λ _ → ≡-is-truncated n $ τ-is-truncated n _ ⦄ path′
|
{
"alphanum_fraction": 0.589787234,
"avg_line_length": 28.6585365854,
"ext": "agda",
"hexsha": "31ae06f50dcc946b15b2fb26c2a3b410e52c30d7",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/Homotopy/PointConnected.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/Homotopy/PointConnected.agda",
"max_line_length": 77,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "old/Homotopy/PointConnected.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 417,
"size": 1175
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Morphisms between algebraic structures
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary.Core
module Algebra.Morphism.Structures where
open import Algebra.Core
open import Algebra.Bundles
import Algebra.Morphism.Definitions as MorphismDefinitions
open import Level using (Level; _⊔_)
import Function.Definitions as FunctionDefinitions
open import Relation.Binary.Morphism.Structures
private
variable
a b ℓ₁ ℓ₂ : Level
------------------------------------------------------------------------
-- Morphisms over magma-like structures
------------------------------------------------------------------------
module MagmaMorphisms (M₁ : RawMagma a ℓ₁) (M₂ : RawMagma b ℓ₂) where
open RawMagma M₁ renaming (Carrier to A; _≈_ to _≈₁_; _∙_ to _∙_)
open RawMagma M₂ renaming (Carrier to B; _≈_ to _≈₂_; _∙_ to _◦_)
open MorphismDefinitions A B _≈₂_
open FunctionDefinitions _≈₁_ _≈₂_
record IsMagmaHomomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
field
isRelHomomorphism : IsRelHomomorphism _≈₁_ _≈₂_ ⟦_⟧
homo : Homomorphic₂ ⟦_⟧ _∙_ _◦_
open IsRelHomomorphism isRelHomomorphism public
renaming (cong to ⟦⟧-cong)
record IsMagmaMonomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
field
isMagmaHomomorphism : IsMagmaHomomorphism ⟦_⟧
injective : Injective ⟦_⟧
open IsMagmaHomomorphism isMagmaHomomorphism public
isRelMonomorphism : IsRelMonomorphism _≈₁_ _≈₂_ ⟦_⟧
isRelMonomorphism = record
{ isHomomorphism = isRelHomomorphism
; injective = injective
}
record IsMagmaIsomorphism (⟦_⟧ : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
isMagmaMonomorphism : IsMagmaMonomorphism ⟦_⟧
surjective : Surjective ⟦_⟧
open IsMagmaMonomorphism isMagmaMonomorphism public
isRelIsomorphism : IsRelIsomorphism _≈₁_ _≈₂_ ⟦_⟧
isRelIsomorphism = record
{ isMonomorphism = isRelMonomorphism
; surjective = surjective
}
------------------------------------------------------------------------
-- Morphisms over monoid-like structures
------------------------------------------------------------------------
module MonoidMorphisms (M₁ : RawMonoid a ℓ₁) (M₂ : RawMonoid b ℓ₂) where
open RawMonoid M₁ renaming (Carrier to A; _≈_ to _≈₁_; _∙_ to _∙_; ε to ε₁)
open RawMonoid M₂ renaming (Carrier to B; _≈_ to _≈₂_; _∙_ to _◦_; ε to ε₂)
open MorphismDefinitions A B _≈₂_
open FunctionDefinitions _≈₁_ _≈₂_
open MagmaMorphisms (RawMonoid.rawMagma M₁) (RawMonoid.rawMagma M₂)
record IsMonoidHomomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
field
isMagmaHomomorphism : IsMagmaHomomorphism ⟦_⟧
ε-homo : Homomorphic₀ ⟦_⟧ ε₁ ε₂
open IsMagmaHomomorphism isMagmaHomomorphism public
record IsMonoidMonomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
field
isMonoidHomomorphism : IsMonoidHomomorphism ⟦_⟧
injective : Injective ⟦_⟧
open IsMonoidHomomorphism isMonoidHomomorphism public
isMagmaMonomorphism : IsMagmaMonomorphism ⟦_⟧
isMagmaMonomorphism = record
{ isMagmaHomomorphism = isMagmaHomomorphism
; injective = injective
}
open IsMagmaMonomorphism isMagmaMonomorphism public
using (isRelMonomorphism)
record IsMonoidIsomorphism (⟦_⟧ : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
isMonoidMonomorphism : IsMonoidMonomorphism ⟦_⟧
surjective : Surjective ⟦_⟧
open IsMonoidMonomorphism isMonoidMonomorphism public
isMagmaIsomorphism : IsMagmaIsomorphism ⟦_⟧
isMagmaIsomorphism = record
{ isMagmaMonomorphism = isMagmaMonomorphism
; surjective = surjective
}
open IsMagmaIsomorphism isMagmaIsomorphism public
using (isRelIsomorphism)
------------------------------------------------------------------------
-- Morphisms over group-like structures
------------------------------------------------------------------------
module GroupMorphisms (G₁ : RawGroup a ℓ₁) (G₂ : RawGroup b ℓ₂) where
open RawGroup G₁ renaming
(Carrier to A; _≈_ to _≈₁_; _∙_ to _∙_; _⁻¹ to _⁻¹₁; ε to ε₁)
open RawGroup G₂ renaming
(Carrier to B; _≈_ to _≈₂_; _∙_ to _◦_; _⁻¹ to _⁻¹₂; ε to ε₂)
open MorphismDefinitions A B _≈₂_
open FunctionDefinitions _≈₁_ _≈₂_
open MagmaMorphisms (RawGroup.rawMagma G₁) (RawGroup.rawMagma G₂)
open MonoidMorphisms (RawGroup.rawMonoid G₁) (RawGroup.rawMonoid G₂)
record IsGroupHomomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
field
isMonoidHomomorphism : IsMonoidHomomorphism ⟦_⟧
⁻¹-homo : Homomorphic₁ ⟦_⟧ _⁻¹₁ _⁻¹₂
open IsMonoidHomomorphism isMonoidHomomorphism public
record IsGroupMonomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
field
isGroupHomomorphism : IsGroupHomomorphism ⟦_⟧
injective : Injective ⟦_⟧
open IsGroupHomomorphism isGroupHomomorphism
renaming (homo to ∙-homo) public
isMonoidMonomorphism : IsMonoidMonomorphism ⟦_⟧
isMonoidMonomorphism = record
{ isMonoidHomomorphism = isMonoidHomomorphism
; injective = injective
}
open IsMonoidMonomorphism isMonoidMonomorphism public
using (isRelMonomorphism)
record IsGroupIsomorphism (⟦_⟧ : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
isGroupMonomorphism : IsGroupMonomorphism ⟦_⟧
surjective : Surjective ⟦_⟧
open IsGroupMonomorphism isGroupMonomorphism public
isMonoidIsomorphism : IsMonoidIsomorphism ⟦_⟧
isMonoidIsomorphism = record
{ isMonoidMonomorphism = isMonoidMonomorphism
; surjective = surjective
}
open IsMonoidIsomorphism isMonoidIsomorphism public
using (isRelIsomorphism)
------------------------------------------------------------------------
-- Morphisms over ring-like structures
------------------------------------------------------------------------
module RingMorphisms (R₁ : RawRing a ℓ₁) (R₂ : RawRing b ℓ₂) where
open RawRing R₁ renaming
( Carrier to A; _≈_ to _≈₁_
; *-rawMonoid to *-rawMonoid₁
; +-rawGroup to +-rawGroup₁)
open RawRing R₂ renaming
( Carrier to B; _≈_ to _≈₂_
; *-rawMonoid to *-rawMonoid₂
; +-rawGroup to +-rawGroup₂)
module + = GroupMorphisms +-rawGroup₁ +-rawGroup₂
module * = MonoidMorphisms *-rawMonoid₁ *-rawMonoid₂
open MorphismDefinitions A B _≈₂_
open FunctionDefinitions _≈₁_ _≈₂_
record IsRingHomomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
field
+-isGroupHomomorphism : +.IsGroupHomomorphism ⟦_⟧
*-isMonoidHomomorphism : *.IsMonoidHomomorphism ⟦_⟧
open +.IsGroupHomomorphism +-isGroupHomomorphism renaming
(homo to +-homo; ε-homo to 0#-homo) public
open *.IsMonoidHomomorphism *-isMonoidHomomorphism renaming
(homo to *-homo; ε-homo to 1#-homo) public
record IsRingMonomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
field
isRingHomomorphism : IsRingHomomorphism ⟦_⟧
injective : Injective ⟦_⟧
open IsRingHomomorphism isRingHomomorphism public
+-isGroupMonomorphism : +.IsGroupMonomorphism ⟦_⟧
+-isGroupMonomorphism = record
{ isGroupHomomorphism = +-isGroupHomomorphism
; injective = injective
}
*-isMonoidMonomorphism : *.IsMonoidMonomorphism ⟦_⟧
*-isMonoidMonomorphism = record
{ isMonoidHomomorphism = *-isMonoidHomomorphism
; injective = injective
}
open *.IsMonoidMonomorphism *-isMonoidMonomorphism public
using (isRelMonomorphism)
record IsRingIsomorphism (⟦_⟧ : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
isRingMonomorphism : IsRingMonomorphism ⟦_⟧
surjective : Surjective ⟦_⟧
open IsRingMonomorphism isRingMonomorphism public
+-isGroupIsomorphism : +.IsGroupIsomorphism ⟦_⟧
+-isGroupIsomorphism = record
{ isGroupMonomorphism = +-isGroupMonomorphism
; surjective = surjective
}
*-isMonoidIsomorphism : *.IsMonoidIsomorphism ⟦_⟧
*-isMonoidIsomorphism = record
{ isMonoidMonomorphism = *-isMonoidMonomorphism
; surjective = surjective
}
open *.IsMonoidIsomorphism *-isMonoidIsomorphism public
using (isRelIsomorphism)
------------------------------------------------------------------------
-- Re-export contents of modules publicly
open MagmaMorphisms public
open MonoidMorphisms public
open GroupMorphisms public
open RingMorphisms public
|
{
"alphanum_fraction": 0.6212521539,
"avg_line_length": 32.9734848485,
"ext": "agda",
"hexsha": "2858e9f79f6a3235df149a0ec3b3fa453665c923",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Algebra/Morphism/Structures.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Algebra/Morphism/Structures.agda",
"max_line_length": 77,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Algebra/Morphism/Structures.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 2812,
"size": 8705
}
|
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.SmashProduct.Base where
open import Cubical.Foundations.Prelude
-- This should be upstreamed to Basics when we develop some theory
-- about pointed types
ptType : Type₁
ptType = Σ[ A ∈ Type₀ ] A
pt : ∀ (A : ptType) → A .fst
pt A = A .snd
data Smash (A B : ptType) : Type₀ where
basel : Smash A B
baser : Smash A B
proj : (x : A .fst) → (y : B .fst) → Smash A B
gluel : (a : A .fst) → proj a (pt B) ≡ basel
gluer : (b : B .fst) → proj (pt A) b ≡ baser
-- Commutativity
comm : {A B : ptType} → Smash A B → Smash B A
comm basel = baser
comm baser = basel
comm (proj x y) = proj y x
comm (gluel a i) = gluer a i
comm (gluer b i) = gluel b i
commK : ∀ {A B : ptType} → (x : Smash A B) → comm (comm x) ≡ x
commK basel = refl
commK baser = refl
commK (proj x y) = refl
commK (gluel a x) = refl
commK (gluer b x) = refl
-- WIP below
SmashPt : (A B : ptType) → ptType
SmashPt A B = (Smash A B , basel)
-- -- A (B C) = C (B A) = C (A B) = (A B) C
-- rearrange : ∀ {A B C : ptType} → Smash A (SmashPt B C) → Smash C (SmashPt B A)
-- rearrange basel = baser
-- rearrange baser = basel
-- rearrange {B = B} {C = C} (proj x basel) = proj (C .snd) baser
-- rearrange {C = C} (proj x baser) = proj (C .snd) basel -- ?
-- rearrange (proj x (proj y z)) = proj z (proj y x)
-- rearrange {C = C} (proj x (gluel a i)) = proj (C .snd) {!!}
-- rearrange (proj x (gluer b i)) = {!!}
-- rearrange (gluel a i) = {!!}
-- rearrange (gluer b i) = {!gluel ? i!}
|
{
"alphanum_fraction": 0.5792563601,
"avg_line_length": 28.9245283019,
"ext": "agda",
"hexsha": "d244501446737117e392689211686e70f2413365",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/HITs/SmashProduct/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/HITs/SmashProduct/Base.agda",
"max_line_length": 81,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/HITs/SmashProduct/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 601,
"size": 1533
}
|
module ListThms where
open import Sec4
import Sec2
{-
Definition of a list
-}
data List (A : Set) : Set where
[] : List A -- Empty list
_∷_ : A → List A → List A -- Cons
infixr 4 _∷_
-- Proposition stating what is a non empty list
nelist : {A : Set} → (List A) → Prop
nelist [] = ⊥
nelist (x ∷ x₁) = ⊤
-- Head function that only works on non empty list
head : {A : Set} → (l : List A) → (p : nelist l) → A
head [] () -- This can never happen
head (x ∷ _) ⋆ = x -- This is the head of the list
-- The tail of the list only works on non empty list
tail : {A : Set} → (l : List A) → (p : nelist l) → (List A)
tail [] ()
tail (_ ∷ l) ⋆ = l
-- definition of a map
map : {A B : Set} → (A → B) → (List A) → List B
map f [] = []
map f (x ∷ l) = (f x) ∷ map f l
-- definition of fold left
fold : {A B : Set} → (A → B → B) → B → (List A) → B
fold f x [] = x
fold f x (x₁ ∷ l) = fold f (f x₁ x) l
-- reduce only works on lists of length > 0
reduce : {A : Set} → (l : List A) → (p : nelist l) → (A → A → A) → A
reduce [] ()
reduce (x ∷ l) _ f = fold f x l
-- length of a list
length : {A : Set} → (List A) → Sec2.ℕ
length [] = Sec2.Z
length (x ∷ l) = (Sec2.S Sec2.Z) Sec2.+ (length l)
-- Proposition on ≤
_<=_ : Sec2.ℕ → Sec2.ℕ → Prop
Sec2.Z <= Sec2.Z = ⊤
Sec2.Z <= Sec2.S y = ⊤
Sec2.S x <= y = x <= y
_>=_ : Sec2.ℕ → Sec2.ℕ → Prop
Sec2.Z >= Sec2.Z = ⊤
Sec2.Z >= Sec2.S y = ⊥
Sec2.S x >= y = x >= y
-- Indexing into the list
_!!_ : {A : Set} → ∀ (l : List A) → ∀ (i : Sec2.ℕ) → (nelist l)
→ Exists A (λ _ → ((i >= Sec2.Z) ∧ (i <= (length l))))
([] !! i) ()
((x ∷ l) !! i) ⋆ = [ x , (and (lem1 i) (lem (x ∷ l) i))]
where
cong-<= : (x y : Sec2.ℕ) → (x <= y) → (x <= Sec2.S y)
cong-<= Sec2.Z y p = ⋆
cong-<= (Sec2.S x) Sec2.Z p = cong-<= x Sec2.Z p
cong-<= (Sec2.S x) (Sec2.S y) p = cong-<= x (Sec2.S y) p
lem1 : (i : Sec2.ℕ) → (i >= Sec2.Z)
lem1 Sec2.Z = ⋆
lem1 (Sec2.S i) = lem1 i
lem2 : (i : Sec2.ℕ) → (i <= Sec2.Z)
lem2 Sec2.Z = ⋆
lem2 (Sec2.S i₁) = lem2 i₁
lem : {A : Set} → (l : List A) → (i : Sec2.ℕ) → (i <= (length l))
lem [] Sec2.Z = ⋆
lem [] (Sec2.S i) = lem2 i
lem (x₁ ∷ l₁) i = cong-<= i (length l₁) (lem l₁ i)
data Maybe (A : Set) : Set where
Nothing : Maybe A
Just : A → Maybe A
index : {A : Set} → ∀ (l : List A)
→ (nelist l)
→ ∀ (i : Sec2.ℕ)
→ Sec2.So ((i Sec2.≥ Sec2.Z) Sec2.& (i Sec2.< (length l)))
→ Maybe A
index l _ i _ = index' l i (Sec2.Z)
where
index' : {A : Set} → ∀ (l : List A) → ∀(i : Sec2.ℕ)
→ (c : Sec2.ℕ) → Maybe A
index' [] i₁ c = Nothing
index' (x₁ ∷ l₁) i₁ c with (i₁ Sec2.== c)
index' (x₁ ∷ l₁) i₁ c | Sec2.T = Just x₁
index' (x₁ ∷ l₁) i₁ c | Sec2.F = index' l₁ i₁ (Sec2.S c)
exx1 : Maybe Sec2.ℕ
exx1 = index (1 ∷ []) ⋆ 0 Sec2.ok
index'' : {A : Set} → ∀ (l : List A)
→ ∀ (i : Sec2.ℕ)
→ Sec2.So (i Sec2.< (length l))
→ A
index'' [] Sec2.Z ()
index'' [] (Sec2.S i) ()
index'' (x ∷ l) Sec2.Z Sec2.ok = x
index'' (x ∷ l) (Sec2.S i) p = index'' l i p
-- append two lists
_++_ : {A : Set} → (l : List A) → (l' : List A) → (List A)
[] ++ l' = l'
(x ∷ l) ++ l' = (x ∷ (l ++ l'))
-- composition of two functions
_∘_ : {A B C : Set} → (A → B) → (B → C) → (A → C)
f ∘ g = λ x → (g (f x))
cong : {A : Set} → (x : A) → (l m : List A) → (l Sec2.≡ m) → (x ∷ l) Sec2.≡ (x ∷ m)
cong x l .l Sec2.refl = Sec2.refl
cong2 : {A : Set} → (l m q : List A) → (l Sec2.≡ m) → (l ++ q) Sec2.≡ (m ++ q)
cong2 l .l q Sec2.refl = Sec2.refl
thm1-map : {A B : Set} → (f : A → B) → (l : List A) → (m : List A) → (map f (l ++ m)) Sec2.≡ (map f l) ++ (map f m)
thm1-map f [] m = Sec2.refl
thm1-map f (x ∷ l) m with (f x)
thm1-map f (x ∷ l) m | p = cong p (map f (l ++ m)) (map f l ++ map f m) (thm1-map f l m)
-- map ∘
thm2-map : {A B C : Set} → (f : A → B) → (g : B → C) → (l : List A) → (map (f ∘ g) l Sec2.≡ ((map f) ∘ (map g)) l)
thm2-map f₁ g₁ [] = Sec2.refl
thm2-map f₁ g₁ (x ∷ l) with (thm2-map f₁ g₁ l)
thm2-map f₁ g₁ (x ∷ l) | p = cong (g₁ (f₁ x)) (map (λ z → g₁ (f₁ z)) l) (map g₁ (map f₁ l)) p
-- Non empty list by construction
data NeList (A : Set) : Set where
^_^ : A → NeList A
_∶_ : A → NeList A → NeList A
infixr 60 ^_^
infixr 60 _∶_
-- XXX: Prove these in Coq along with the other theorem from Mike Naha's
-- tutorial in Agda.
|
{
"alphanum_fraction": 0.4757412399,
"avg_line_length": 28,
"ext": "agda",
"hexsha": "95cbd3fa5e9fb035b3cac057b91352c02147cd04",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "amal029/agda-tutorial-dybjer",
"max_forks_repo_path": "ListThms.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "amal029/agda-tutorial-dybjer",
"max_issues_repo_path": "ListThms.agda",
"max_line_length": 115,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "amal029/agda-tutorial-dybjer",
"max_stars_repo_path": "ListThms.agda",
"max_stars_repo_stars_event_max_datetime": "2019-08-08T12:52:30.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:52:30.000Z",
"num_tokens": 1961,
"size": 4452
}
|
{-# OPTIONS --cubical --safe #-}
module Data.Empty.Properties where
open import Data.Empty.Base
open import Cubical.Data.Empty using (isProp⊥) public
open import Level
open import HLevels
isProp¬ : (A : Type a) → isProp (¬ A)
isProp¬ _ f g i x = isProp⊥ (f x) (g x) i
|
{
"alphanum_fraction": 0.6900369004,
"avg_line_length": 22.5833333333,
"ext": "agda",
"hexsha": "21267743cef64da8b5701d29ba5cd9bf69a6b719",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Data/Empty/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Data/Empty/Properties.agda",
"max_line_length": 53,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Data/Empty/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z",
"num_tokens": 87,
"size": 271
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.Category.Topos {o ℓ e} (C : Category o ℓ e) where
open import Level
open import Categories.Category.CartesianClosed C
open import Categories.Category.Complete.Finitely C
open import Categories.Diagram.Equalizer C
open import Categories.Diagram.SubobjectClassifier C
open Category C
record Topos : Set (levelOfTerm C) where
field
cartesianClosed : CartesianClosed
subobjectClassifier : SubobjectClassifier
equalizer : ∀ {A B} (f g : A ⇒ B) → Equalizer f g
open CartesianClosed cartesianClosed public
module subobjectClassifier = SubobjectClassifier subobjectClassifier
finitelyComplete : FinitelyComplete
finitelyComplete = record
{ cartesian = cartesian
; equalizer = equalizer
}
open FinitelyComplete finitelyComplete using (module equalizer; pullback) public
|
{
"alphanum_fraction": 0.761589404,
"avg_line_length": 27.4545454545,
"ext": "agda",
"hexsha": "470f44003661c74c2e4b5be02beb47f71f90c573",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Taneb/agda-categories",
"max_forks_repo_path": "Categories/Category/Topos.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Taneb/agda-categories",
"max_issues_repo_path": "Categories/Category/Topos.agda",
"max_line_length": 82,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Taneb/agda-categories",
"max_stars_repo_path": "Categories/Category/Topos.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 212,
"size": 906
}
|
------------------------------------------------------------------------------
-- Axiomatic PA propositional equality
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module PA.Axiomatic.Mendelson.Relation.Binary.PropositionalEqualityI where
open import PA.Axiomatic.Mendelson.Base
------------------------------------------------------------------------------
-- Identity properties
≈-refl : ∀ {n} → n ≈ n
≈-refl {n} = S₁ (S₅ n) (S₅ n)
≈-sym : ∀ {m n} → m ≈ n → n ≈ m
≈-sym h = S₁ h ≈-refl
≈-trans : ∀ {m n o} → m ≈ n → n ≈ o → m ≈ o
≈-trans h = S₁ (≈-sym h)
------------------------------------------------------------------------------
-- Substitution
-- Using Mendelson's axioms we cannot prove
-- a ≈ b A(x)
-- ----------------- substitution
-- A(x)
-- where A(x) is an arbitrary propositional function, We can prove
-- substitutivity of `_≈_` for the proper functional symbols of the
-- language (`succ`, `add` and `mult`). That is, we can prove (by
-- induction)
-- succCong : ∀ {m n} → m ≈ n → succ m ≈ succ n
-- +-rightCong : ∀ {m n p} → n ≈ p → m + n ≈ m + p
-- +-leftCong : ∀ {m n p} → m ≈ n → m + p ≈ n + p
-- *-rightCong : ∀ {m n p} → n ≈ p → m * n ≈ m * p
-- *-leftCong : ∀ {m n p} → m ≈ n → m * p ≈ n * p
-- The proofs of the above properties are in the `PropertiesI` module.
|
{
"alphanum_fraction": 0.4290364583,
"avg_line_length": 32.6808510638,
"ext": "agda",
"hexsha": "a21ba5ab5cbaf51f0413dea27f8fb3da03cceac6",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/PA/Axiomatic/Mendelson/Relation/Binary/PropositionalEqualityI.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/PA/Axiomatic/Mendelson/Relation/Binary/PropositionalEqualityI.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/PA/Axiomatic/Mendelson/Relation/Binary/PropositionalEqualityI.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 445,
"size": 1536
}
|
{-# OPTIONS --without-K #-}
module Lecture7 where
import Lecture6
open Lecture6 public
-- Section 7.1 Fiberwise equivalences
tot : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → ((x : A) → B x → C x) → ( Σ A B → Σ A C)
tot f (dpair x y) = dpair x (f x y)
-- There is a function from the fibers of the induced map on total spaces, to the fibers of the fiberwise transformation
fib-ftr-fib-tot : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → (t : Σ A C) → fib (tot f) t → fib (f (pr1 t)) (pr2 t)
fib-ftr-fib-tot f .(dpair x (f x y)) (dpair (dpair x y) refl) = dpair y refl
-- This function has a converse
fib-tot-fib-ftr : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → (t : Σ A C) → fib (f (pr1 t)) (pr2 t) → fib (tot f) t
fib-tot-fib-ftr F (dpair a .(F a y)) (dpair y refl) = dpair (dpair a y) refl
issec-fib-tot-fib-ftr : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → (t : Σ A C) → ((fib-ftr-fib-tot f t) ∘ (fib-tot-fib-ftr f t)) ~ id
issec-fib-tot-fib-ftr f (dpair x .(f x y)) (dpair y refl) = refl
isretr-fib-tot-fib-ftr : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → (t : Σ A C) → ((fib-tot-fib-ftr f t) ∘ (fib-ftr-fib-tot f t)) ~ id
isretr-fib-tot-fib-ftr f .(dpair x (f x y)) (dpair (dpair x y) refl) = refl
-- We establish that the fibers of the induced map on total spaces are equivalent to the fibers of the fiberwise transformation.
is-equiv-fib-ftr-fib-tot : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → (t : Σ A C) → is-equiv (fib-ftr-fib-tot f t)
is-equiv-fib-ftr-fib-tot f t =
pair
(dpair (fib-tot-fib-ftr f t) (issec-fib-tot-fib-ftr f t))
(dpair (fib-tot-fib-ftr f t) (isretr-fib-tot-fib-ftr f t))
-- Any fiberwise equivalence induces an equivalence on total spaces
is-equiv-tot-is-equiv-ftr :
{i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} →
(f : (x : A) → B x → C x) → ((x : A) → is-equiv (f x)) →
is-equiv (tot f )
is-equiv-tot-is-equiv-ftr f H =
is-equiv-is-contr-map
(λ t → is-contr-is-equiv
(fib-ftr-fib-tot f t)
(is-equiv-fib-ftr-fib-tot f t)
(is-contr-map-is-equiv (H _) (pr2 t)))
-- Convesely, any fiberwise transformation that induces an equivalence on total spaces is a fiberwise equivalence.
is-equiv-ftr-is-equiv-tot :
{i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} →
(f : (x : A) → B x → C x) → is-equiv (tot f) →
(x : A) → is-equiv (f x)
is-equiv-ftr-is-equiv-tot f H x =
is-equiv-is-contr-map
(λ z → is-contr-is-equiv'
(fib-ftr-fib-tot f (dpair x z))
(is-equiv-fib-ftr-fib-tot f (dpair x z))
(is-contr-map-is-equiv H (dpair x z)))
-- Section 7.2 The fundamental theorem
-- The general form of the fundamental theorem of identity types
id-fundamental-gen : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → is-contr (Σ A B) → (f : (x : A) → Id a x → B x) → (x : A) → is-equiv (f x)
id-fundamental-gen {_} {_} {A} {B} a b C f x =
is-equiv-ftr-is-equiv-tot f
(is-equiv-is-contr _ (is-contr-total-path A a) C) x
-- The canonical form of the fundamental theorem of identity types
id-fundamental : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) →
is-contr (Σ A B) →
(x : A) → is-equiv (ind-Id (λ x p → B x) b x)
id-fundamental {i} {j} {A} {B} a b H =
id-fundamental-gen a b H (ind-Id (λ x p → B x) b)
-- The converse of the fundamental theorem of identity types
id-fundamental' : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) →
((x : A) → is-equiv (ind-Id (λ x p → B x) b x)) → is-contr (Σ A B)
id-fundamental' {i} {j} {A} {B} a b H =
is-contr-is-equiv'
(tot (ind-Id (λ x p → B x) b))
(is-equiv-tot-is-equiv-ftr _ H)
(is-contr-total-path A a)
-- As an application we show that equivalences are embeddings.
is-emb : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → UU (i ⊔ j)
is-emb f = (x y : _) → is-equiv (ap f {x} {y})
is-emb-is-equiv : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → is-equiv f → is-emb f
is-emb-is-equiv {i} {j} {A} {B} f E x =
id-fundamental-gen x refl
(is-contr-is-equiv' (tot (λ y (p : Id (f y) (f x)) → inv p))
(is-equiv-tot-is-equiv-ftr _ (λ y → is-equiv-inv (f y) (f x)))
(is-contr-map-is-equiv E (f x)))
(λ y p → ap f p)
-- Exercises
-- Exercise 7.1
tot-htpy : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k}
{f g : (x : A) → B x → C x} → (H : (x : A) → f x ~ g x) → tot f ~ tot g
tot-htpy H (dpair x y) = eq-pair (dpair refl (H x y))
tot-id : {i j : Level} {A : UU i} (B : A → UU j) →
(tot (λ x (y : B x) → y)) ~ id
tot-id B (dpair x y) = refl
tot-comp : {i j j' j'' : Level} {A : UU i} {B : A → UU j} {B' : A → UU j'} {B'' : A → UU j''} (f : (x : A) → B x → B' x) (g : (x : A) → B' x → B'' x) →
tot (λ x → (g x) ∘ (f x)) ~ ((tot g) ∘ (tot f))
tot-comp f g (dpair x y) = refl
-- Exercise 7.7
id-fundamental-retr : {i j : Level} {A : UU i} {B : A → UU j} (a : A) →
(i : (x : A) → B x → Id a x) → (R : (x : A) → retr (i x)) →
(x : A) → is-equiv (i x)
id-fundamental-retr {_} {_} {A} {B} a i R =
is-equiv-ftr-is-equiv-tot i
(is-equiv-is-contr (tot i)
(is-contr-retract-of (Σ _ (λ y → Id a y))
(dpair (tot i)
(dpair (tot λ x → pr1 (R x))
(htpy-concat
(tot (λ x → pr1 (R x) ∘ i x))
(htpy-inv (tot-comp i (λ x → pr1 (R x))))
(htpy-concat (tot (λ x → id))
(tot-htpy λ x → pr2 (R x))
(tot-id B)))))
(is-contr-total-path _ a))
(is-contr-total-path _ a))
|
{
"alphanum_fraction": 0.5252952582,
"avg_line_length": 44.6692913386,
"ext": "agda",
"hexsha": "2b1394cbaf54f70e3e59884cb19caa1485558f68",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2018-06-25T15:05:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-02-22T19:58:46.000Z",
"max_forks_repo_head_hexsha": "af64d808630f4f1498a75201b6ca4d74d662516b",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "glangmead/hott_cmu80818",
"max_forks_repo_path": "Lecture7.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "af64d808630f4f1498a75201b6ca4d74d662516b",
"max_issues_repo_issues_event_max_datetime": "2018-03-25T14:44:31.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-02-22T21:01:16.000Z",
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "glangmead/hott_cmu80818",
"max_issues_repo_path": "Lecture7.agda",
"max_line_length": 178,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "af64d808630f4f1498a75201b6ca4d74d662516b",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "glangmead/hott_cmu80818",
"max_stars_repo_path": "Lecture7.agda",
"max_stars_repo_stars_event_max_datetime": "2018-09-04T02:52:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-03T20:32:19.000Z",
"num_tokens": 2405,
"size": 5673
}
|
{-# OPTIONS --rewriting #-}
module Luau.StrictMode.ToString where
open import Agda.Builtin.Nat using (Nat; suc)
open import FFI.Data.String using (String; _++_)
open import Luau.Subtyping using (_≮:_; Tree; witness; scalar; function; function-ok; function-err)
open import Luau.StrictMode using (Warningᴱ; Warningᴮ; UnallocatedAddress; UnboundVariable; FunctionCallMismatch; FunctionDefnMismatch; BlockMismatch; app₁; app₂; BinOpMismatch₁; BinOpMismatch₂; bin₁; bin₂; block₁; return; LocalVarMismatch; local₁; local₂; function₁; function₂; heap; expr; block; addr)
open import Luau.Syntax using (Expr; val; yes; var; var_∈_; _⟨_⟩∈_; _$_; addr; number; binexp; nil; function_is_end; block_is_end; done; return; local_←_; _∙_; fun; arg; name)
open import Luau.Type using (strict; number; boolean; string; nil)
open import Luau.TypeCheck(strict) using (_⊢ᴮ_∈_; _⊢ᴱ_∈_)
open import Luau.Addr.ToString using (addrToString)
open import Luau.Var.ToString using (varToString)
open import Luau.Type.ToString using (typeToString)
open import Luau.Syntax.ToString using (binOpToString)
tmp : Nat → String
tmp 0 = "w"
tmp 1 = "x"
tmp 2 = "y"
tmp 3 = "z"
tmp (suc (suc (suc n))) = tmp n ++ "'"
treeToString : Tree → Nat → String → String
treeToString (scalar number) n v = v ++ " is a number"
treeToString (scalar boolean) n v = v ++ " is a boolean"
treeToString (scalar string) n v = v ++ " is a string"
treeToString (scalar nil) n v = v ++ " is nil"
treeToString function n v = v ++ " is a function"
treeToString (function-ok t) n v = treeToString t n (v ++ "()")
treeToString (function-err t) n v = v ++ "(" ++ w ++ ") can error when\n " ++ treeToString t (suc n) w where w = tmp n
subtypeWarningToString : ∀ {T U} → (T ≮: U) → String
subtypeWarningToString (witness t p q) = "\n because provided type contains v, where " ++ treeToString t 0 "v"
warningToStringᴱ : ∀ {H Γ T} M → {D : Γ ⊢ᴱ M ∈ T} → Warningᴱ H D → String
warningToStringᴮ : ∀ {H Γ T} B → {D : Γ ⊢ᴮ B ∈ T} → Warningᴮ H D → String
warningToStringᴱ (var x) (UnboundVariable p) = "Unbound variable " ++ varToString x
warningToStringᴱ (val (addr a)) (UnallocatedAddress p) = "Unallocated address " ++ addrToString a
warningToStringᴱ (M $ N) (FunctionCallMismatch {T = T} {U = U} p) = "Function has type " ++ typeToString T ++ " but argument has type " ++ typeToString U ++ subtypeWarningToString p
warningToStringᴱ (M $ N) (app₁ W) = warningToStringᴱ M W
warningToStringᴱ (M $ N) (app₂ W) = warningToStringᴱ N W
warningToStringᴱ (function f ⟨ var x ∈ T ⟩∈ U is B end) (FunctionDefnMismatch {V = V} p) = "Function expresion " ++ varToString f ++ " has return type " ++ typeToString U ++ " but body returns " ++ typeToString V ++ subtypeWarningToString p
warningToStringᴱ (function f ⟨ var x ∈ T ⟩∈ U is B end) (function₁ W) = warningToStringᴮ B W ++ "\n in function expression " ++ varToString f
warningToStringᴱ block var b ∈ T is B end (BlockMismatch {U = U} p) = "Block " ++ varToString b ++ " has type " ++ typeToString T ++ " but body returns " ++ typeToString U ++ subtypeWarningToString p
warningToStringᴱ block var b ∈ T is B end (block₁ W) = warningToStringᴮ B W ++ "\n in block " ++ varToString b
warningToStringᴱ (binexp M op N) (BinOpMismatch₁ {T = T} p) = "Binary operator " ++ binOpToString op ++ " lhs has type " ++ typeToString T ++ subtypeWarningToString p
warningToStringᴱ (binexp M op N) (BinOpMismatch₂ {U = U} p) = "Binary operator " ++ binOpToString op ++ " rhs has type " ++ typeToString U ++ subtypeWarningToString p
warningToStringᴱ (binexp M op N) (bin₁ W) = warningToStringᴱ M W
warningToStringᴱ (binexp M op N) (bin₂ W) = warningToStringᴱ N W
warningToStringᴮ (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (FunctionDefnMismatch {V = V} p) = "Function declaration " ++ varToString f ++ " has return type " ++ typeToString U ++ " but body returns " ++ typeToString V ++ subtypeWarningToString p
warningToStringᴮ (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function₁ W) = warningToStringᴮ C W ++ "\n in function declaration " ++ varToString f
warningToStringᴮ (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function₂ W) = warningToStringᴮ B W
warningToStringᴮ (local var x ∈ T ← M ∙ B) (LocalVarMismatch {U = U} p) = "Local variable " ++ varToString x ++ " has type " ++ typeToString T ++ " but expression has type " ++ typeToString U ++ subtypeWarningToString p
warningToStringᴮ (local var x ∈ T ← M ∙ B) (local₁ W) = warningToStringᴱ M W ++ "\n in local variable declaration " ++ varToString x
warningToStringᴮ (local var x ∈ T ← M ∙ B) (local₂ W) = warningToStringᴮ B W
warningToStringᴮ (return M ∙ B) (return W) = warningToStringᴱ M W ++ "\n in return statement"
|
{
"alphanum_fraction": 0.6961100365,
"avg_line_length": 76.2786885246,
"ext": "agda",
"hexsha": "08ee13b8cbe6cddf2f92d92f385f41298aeab326",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d37d0c857ba543ea47f0b8fce5678f7aadf5239e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "EtiTheSpirit/luau",
"max_forks_repo_path": "prototyping/Luau/StrictMode/ToString.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d37d0c857ba543ea47f0b8fce5678f7aadf5239e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "EtiTheSpirit/luau",
"max_issues_repo_path": "prototyping/Luau/StrictMode/ToString.agda",
"max_line_length": 303,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "d37d0c857ba543ea47f0b8fce5678f7aadf5239e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "EtiTheSpirit/luau",
"max_stars_repo_path": "prototyping/Luau/StrictMode/ToString.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1492,
"size": 4653
}
|
{-# OPTIONS --cubical-compatible #-}
module WithoutK-PatternSynonyms1 where
-- Equality defined with one index.
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
pattern r = refl
-- The --cubical-compatible option works with pattern synonyms.
K : (A : Set) (x : A) (P : x ≡ x → Set) → P refl → (p : x ≡ x ) → P p
K A x P pr r = pr
|
{
"alphanum_fraction": 0.601744186,
"avg_line_length": 24.5714285714,
"ext": "agda",
"hexsha": "76983fb8ecadd74d6308c6ab12af422bbae97534",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Fail/WithoutK-PatternSynonyms1.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Fail/WithoutK-PatternSynonyms1.agda",
"max_line_length": 70,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Fail/WithoutK-PatternSynonyms1.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 120,
"size": 344
}
|
module BetterExampleOfDot where
open import Data.Nat
open import Agda.Builtin.Equality
data CannotContruct : ℕ → Set where
test : ∀ a b →
((a b : ℕ) → a + b ≡ b + a) →
CannotContruct (a + b) →
CannotContruct (b + a)
test a b theory p with a + b | theory a b
... | .(b + a) | refl = p
|
{
"alphanum_fraction": 0.5638629283,
"avg_line_length": 21.4,
"ext": "agda",
"hexsha": "07bba1a922c9b7224abc299a48d52cbc0a7e4b2e",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-03-12T21:33:35.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-10-07T01:38:12.000Z",
"max_forks_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "dubinsky/intellij-dtlc",
"max_forks_repo_path": "testData/parse/agda/BetterExampleOfDot.agda",
"max_issues_count": 16,
"max_issues_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be",
"max_issues_repo_issues_event_max_datetime": "2021-03-15T17:04:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-03-30T04:29:32.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "dubinsky/intellij-dtlc",
"max_issues_repo_path": "testData/parse/agda/BetterExampleOfDot.agda",
"max_line_length": 43,
"max_stars_count": 30,
"max_stars_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "dubinsky/intellij-dtlc",
"max_stars_repo_path": "testData/parse/agda/BetterExampleOfDot.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-29T13:18:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-05-11T16:26:38.000Z",
"num_tokens": 108,
"size": 321
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Heterogeneously-indexed binary relations
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Relation.Binary.Indexed.Heterogeneous where
------------------------------------------------------------------------
-- Publicly export core definitions
open import Relation.Binary.Indexed.Heterogeneous.Core public
open import Relation.Binary.Indexed.Heterogeneous.Definitions public
open import Relation.Binary.Indexed.Heterogeneous.Structures public
open import Relation.Binary.Indexed.Heterogeneous.Bundles public
------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 0.17
REL = IREL
{-# WARNING_ON_USAGE REL
"Warning: REL was deprecated in v0.17.
Please use IREL instead."
#-}
Rel = IRel
{-# WARNING_ON_USAGE Rel
"Warning: Rel was deprecated in v0.17.
Please use IRel instead."
#-}
Setoid = IndexedSetoid
{-# WARNING_ON_USAGE Setoid
"Warning: Setoid was deprecated in v0.17.
Please use IndexedSetoid instead."
#-}
IsEquivalence = IsIndexedEquivalence
{-# WARNING_ON_USAGE IsEquivalence
"Warning: IsEquivalence was deprecated in v0.17.
Please use IsIndexedEquivalence instead."
#-}
|
{
"alphanum_fraction": 0.5891156463,
"avg_line_length": 30.625,
"ext": "agda",
"hexsha": "40451a6eee51e0a3fbd931fc9857604cbf29fd23",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Indexed/Heterogeneous.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Indexed/Heterogeneous.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Indexed/Heterogeneous.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 279,
"size": 1470
}
|
module Text.Greek.SBLGNT.2John where
open import Data.List
open import Text.Greek.Bible
open import Text.Greek.Script
open import Text.Greek.Script.Unicode
ΙΩΑΝΝΟΥ-Β : List (Word)
ΙΩΑΝΝΟΥ-Β =
word (Ὁ ∷ []) "2John.1.1"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "2John.1.1"
∷ word (ἐ ∷ κ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ῇ ∷ []) "2John.1.1"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ᾳ ∷ []) "2John.1.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2John.1.1"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2John.1.1"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "2John.1.1"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "2John.1.1"
∷ word (ο ∷ ὓ ∷ ς ∷ []) "2John.1.1"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "2John.1.1"
∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ῶ ∷ []) "2John.1.1"
∷ word (ἐ ∷ ν ∷ []) "2John.1.1"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ ᾳ ∷ []) "2John.1.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2John.1.1"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "2John.1.1"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "2John.1.1"
∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "2John.1.1"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2John.1.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2John.1.1"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2John.1.1"
∷ word (ο ∷ ἱ ∷ []) "2John.1.1"
∷ word (ἐ ∷ γ ∷ ν ∷ ω ∷ κ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "2John.1.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "2John.1.1"
∷ word (ἀ ∷ ∙λ ∷ ή ∷ θ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "2John.1.1"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "2John.1.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "2John.1.2"
∷ word (ἀ ∷ ∙λ ∷ ή ∷ θ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "2John.1.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "2John.1.2"
∷ word (μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "2John.1.2"
∷ word (ἐ ∷ ν ∷ []) "2John.1.2"
∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "2John.1.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2John.1.2"
∷ word (μ ∷ ε ∷ θ ∷ []) "2John.1.2"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2John.1.2"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "2John.1.2"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "2John.1.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "2John.1.2"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ []) "2John.1.2"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "2John.1.3"
∷ word (μ ∷ ε ∷ θ ∷ []) "2John.1.3"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2John.1.3"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "2John.1.3"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ ο ∷ ς ∷ []) "2John.1.3"
∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "2John.1.3"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "2John.1.3"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2John.1.3"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ό ∷ ς ∷ []) "2John.1.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2John.1.3"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "2John.1.3"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2John.1.3"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2John.1.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "2John.1.3"
∷ word (υ ∷ ἱ ∷ ο ∷ ῦ ∷ []) "2John.1.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "2John.1.3"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ό ∷ ς ∷ []) "2John.1.3"
∷ word (ἐ ∷ ν ∷ []) "2John.1.3"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ ᾳ ∷ []) "2John.1.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2John.1.3"
∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ ῃ ∷ []) "2John.1.3"
∷ word (Ἐ ∷ χ ∷ ά ∷ ρ ∷ η ∷ ν ∷ []) "2John.1.4"
∷ word (∙λ ∷ ί ∷ α ∷ ν ∷ []) "2John.1.4"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "2John.1.4"
∷ word (ε ∷ ὕ ∷ ρ ∷ η ∷ κ ∷ α ∷ []) "2John.1.4"
∷ word (ἐ ∷ κ ∷ []) "2John.1.4"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "2John.1.4"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ω ∷ ν ∷ []) "2John.1.4"
∷ word (σ ∷ ο ∷ υ ∷ []) "2John.1.4"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "2John.1.4"
∷ word (ἐ ∷ ν ∷ []) "2John.1.4"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ ᾳ ∷ []) "2John.1.4"
∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "2John.1.4"
∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "2John.1.4"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ β ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2John.1.4"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "2John.1.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "2John.1.4"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ό ∷ ς ∷ []) "2John.1.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2John.1.5"
∷ word (ν ∷ ῦ ∷ ν ∷ []) "2John.1.5"
∷ word (ἐ ∷ ρ ∷ ω ∷ τ ∷ ῶ ∷ []) "2John.1.5"
∷ word (σ ∷ ε ∷ []) "2John.1.5"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ α ∷ []) "2John.1.5"
∷ word (ο ∷ ὐ ∷ χ ∷ []) "2John.1.5"
∷ word (ὡ ∷ ς ∷ []) "2John.1.5"
∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "2John.1.5"
∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὴ ∷ ν ∷ []) "2John.1.5"
∷ word (γ ∷ ρ ∷ ά ∷ φ ∷ ω ∷ ν ∷ []) "2John.1.5"
∷ word (σ ∷ ο ∷ ι ∷ []) "2John.1.5"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2John.1.5"
∷ word (ἣ ∷ ν ∷ []) "2John.1.5"
∷ word (ε ∷ ἴ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2John.1.5"
∷ word (ἀ ∷ π ∷ []) "2John.1.5"
∷ word (ἀ ∷ ρ ∷ χ ∷ ῆ ∷ ς ∷ []) "2John.1.5"
∷ word (ἵ ∷ ν ∷ α ∷ []) "2John.1.5"
∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "2John.1.5"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "2John.1.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2John.1.6"
∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "2John.1.6"
∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "2John.1.6"
∷ word (ἡ ∷ []) "2John.1.6"
∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "2John.1.6"
∷ word (ἵ ∷ ν ∷ α ∷ []) "2John.1.6"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "2John.1.6"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2John.1.6"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "2John.1.6"
∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "2John.1.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2John.1.6"
∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "2John.1.6"
∷ word (ἡ ∷ []) "2John.1.6"
∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ή ∷ []) "2John.1.6"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2John.1.6"
∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "2John.1.6"
∷ word (ἠ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "2John.1.6"
∷ word (ἀ ∷ π ∷ []) "2John.1.6"
∷ word (ἀ ∷ ρ ∷ χ ∷ ῆ ∷ ς ∷ []) "2John.1.6"
∷ word (ἵ ∷ ν ∷ α ∷ []) "2John.1.6"
∷ word (ἐ ∷ ν ∷ []) "2John.1.6"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "2John.1.6"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ῆ ∷ τ ∷ ε ∷ []) "2John.1.6"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "2John.1.7"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "2John.1.7"
∷ word (π ∷ ∙λ ∷ ά ∷ ν ∷ ο ∷ ι ∷ []) "2John.1.7"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "2John.1.7"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "2John.1.7"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "2John.1.7"
∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ν ∷ []) "2John.1.7"
∷ word (ο ∷ ἱ ∷ []) "2John.1.7"
∷ word (μ ∷ ὴ ∷ []) "2John.1.7"
∷ word (ὁ ∷ μ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2John.1.7"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "2John.1.7"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "2John.1.7"
∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "2John.1.7"
∷ word (ἐ ∷ ν ∷ []) "2John.1.7"
∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ί ∷ []) "2John.1.7"
∷ word (ο ∷ ὗ ∷ τ ∷ ό ∷ ς ∷ []) "2John.1.7"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2John.1.7"
∷ word (ὁ ∷ []) "2John.1.7"
∷ word (π ∷ ∙λ ∷ ά ∷ ν ∷ ο ∷ ς ∷ []) "2John.1.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2John.1.7"
∷ word (ὁ ∷ []) "2John.1.7"
∷ word (ἀ ∷ ν ∷ τ ∷ ί ∷ χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "2John.1.7"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "2John.1.8"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "2John.1.8"
∷ word (ἵ ∷ ν ∷ α ∷ []) "2John.1.8"
∷ word (μ ∷ ὴ ∷ []) "2John.1.8"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "2John.1.8"
∷ word (ἃ ∷ []) "2John.1.8"
∷ word (ε ∷ ἰ ∷ ρ ∷ γ ∷ α ∷ σ ∷ ά ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "2John.1.8"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2John.1.8"
∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ὸ ∷ ν ∷ []) "2John.1.8"
∷ word (π ∷ ∙λ ∷ ή ∷ ρ ∷ η ∷ []) "2John.1.8"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ά ∷ β ∷ η ∷ τ ∷ ε ∷ []) "2John.1.8"
∷ word (π ∷ ᾶ ∷ ς ∷ []) "2John.1.9"
∷ word (ὁ ∷ []) "2John.1.9"
∷ word (π ∷ ρ ∷ ο ∷ ά ∷ γ ∷ ω ∷ ν ∷ []) "2John.1.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2John.1.9"
∷ word (μ ∷ ὴ ∷ []) "2John.1.9"
∷ word (μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "2John.1.9"
∷ word (ἐ ∷ ν ∷ []) "2John.1.9"
∷ word (τ ∷ ῇ ∷ []) "2John.1.9"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ῇ ∷ []) "2John.1.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "2John.1.9"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2John.1.9"
∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "2John.1.9"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "2John.1.9"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "2John.1.9"
∷ word (ὁ ∷ []) "2John.1.9"
∷ word (μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "2John.1.9"
∷ word (ἐ ∷ ν ∷ []) "2John.1.9"
∷ word (τ ∷ ῇ ∷ []) "2John.1.9"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ῇ ∷ []) "2John.1.9"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "2John.1.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2John.1.9"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "2John.1.9"
∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "2John.1.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2John.1.9"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "2John.1.9"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "2John.1.9"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "2John.1.9"
∷ word (ε ∷ ἴ ∷ []) "2John.1.10"
∷ word (τ ∷ ι ∷ ς ∷ []) "2John.1.10"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "2John.1.10"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2John.1.10"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2John.1.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2John.1.10"
∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "2John.1.10"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "2John.1.10"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ὴ ∷ ν ∷ []) "2John.1.10"
∷ word (ο ∷ ὐ ∷ []) "2John.1.10"
∷ word (φ ∷ έ ∷ ρ ∷ ε ∷ ι ∷ []) "2John.1.10"
∷ word (μ ∷ ὴ ∷ []) "2John.1.10"
∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ τ ∷ ε ∷ []) "2John.1.10"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "2John.1.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "2John.1.10"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "2John.1.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2John.1.10"
∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ε ∷ ι ∷ ν ∷ []) "2John.1.10"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "2John.1.10"
∷ word (μ ∷ ὴ ∷ []) "2John.1.10"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "2John.1.10"
∷ word (ὁ ∷ []) "2John.1.11"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "2John.1.11"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2John.1.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "2John.1.11"
∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ε ∷ ι ∷ ν ∷ []) "2John.1.11"
∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ε ∷ ῖ ∷ []) "2John.1.11"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2John.1.11"
∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "2John.1.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2John.1.11"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2John.1.11"
∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ο ∷ ῖ ∷ ς ∷ []) "2John.1.11"
∷ word (Π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2John.1.12"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "2John.1.12"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2John.1.12"
∷ word (γ ∷ ρ ∷ ά ∷ φ ∷ ε ∷ ι ∷ ν ∷ []) "2John.1.12"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "2John.1.12"
∷ word (ἐ ∷ β ∷ ο ∷ υ ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ ν ∷ []) "2John.1.12"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "2John.1.12"
∷ word (χ ∷ ά ∷ ρ ∷ τ ∷ ο ∷ υ ∷ []) "2John.1.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2John.1.12"
∷ word (μ ∷ έ ∷ ∙λ ∷ α ∷ ν ∷ ο ∷ ς ∷ []) "2John.1.12"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2John.1.12"
∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ ζ ∷ ω ∷ []) "2John.1.12"
∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2John.1.12"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2John.1.12"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2John.1.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2John.1.12"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "2John.1.12"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2John.1.12"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "2John.1.12"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "2John.1.12"
∷ word (ἵ ∷ ν ∷ α ∷ []) "2John.1.12"
∷ word (ἡ ∷ []) "2John.1.12"
∷ word (χ ∷ α ∷ ρ ∷ ὰ ∷ []) "2John.1.12"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2John.1.12"
∷ word (π ∷ ε ∷ π ∷ ∙λ ∷ η ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "2John.1.12"
∷ word (ᾖ ∷ []) "2John.1.12"
∷ word (Ἀ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ε ∷ τ ∷ α ∷ ί ∷ []) "2John.1.13"
∷ word (σ ∷ ε ∷ []) "2John.1.13"
∷ word (τ ∷ ὰ ∷ []) "2John.1.13"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "2John.1.13"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "2John.1.13"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ῆ ∷ ς ∷ []) "2John.1.13"
∷ word (σ ∷ ο ∷ υ ∷ []) "2John.1.13"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "2John.1.13"
∷ word (ἐ ∷ κ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ῆ ∷ ς ∷ []) "2John.1.13"
∷ []
|
{
"alphanum_fraction": 0.3610887996,
"avg_line_length": 43.76953125,
"ext": "agda",
"hexsha": "fe25fa9ea0f646a41dbdb796610e3c55c89e6eef",
"lang": "Agda",
"max_forks_count": 5,
"max_forks_repo_forks_event_max_datetime": "2017-06-11T11:25:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-27T22:34:13.000Z",
"max_forks_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "scott-fleischman/GreekGrammar",
"max_forks_repo_path": "agda/Text/Greek/SBLGNT/2John.agda",
"max_issues_count": 13,
"max_issues_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_issues_repo_issues_event_max_datetime": "2020-09-07T11:58:38.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-28T20:04:08.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "scott-fleischman/GreekGrammar",
"max_issues_repo_path": "agda/Text/Greek/SBLGNT/2John.agda",
"max_line_length": 77,
"max_stars_count": 44,
"max_stars_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "scott-fleischman/GreekGrammar",
"max_stars_repo_path": "agda/Text/Greek/SBLGNT/2John.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-06T15:41:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-29T14:48:51.000Z",
"num_tokens": 7802,
"size": 11205
}
|
{-# OPTIONS --safe #-}
module Cubical.HITs.FreeComMonoids where
open import Cubical.HITs.FreeComMonoids.Base public
open import Cubical.HITs.FreeComMonoids.Properties public
|
{
"alphanum_fraction": 0.8125,
"avg_line_length": 25.1428571429,
"ext": "agda",
"hexsha": "c90d9c9be804f6d15a0cdad4e35e22509755e65b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/HITs/FreeComMonoids.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/HITs/FreeComMonoids.agda",
"max_line_length": 57,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/HITs/FreeComMonoids.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 45,
"size": 176
}
|
{-# OPTIONS --cubical --safe #-}
module Data.Bits.Order.Reverse where
open import Prelude
open import Data.Bits
-- Least significant bit first
infix 4 _≲ᴮ_&_
_≲ᴮ_&_ : Bits → Bits → Bool → Bool
[] ≲ᴮ ys & true = true
[] ≲ᴮ [] & false = false
[] ≲ᴮ 0∷ ys & false = true
[] ≲ᴮ 1∷ ys & false = true
0∷ xs ≲ᴮ [] & s = false
0∷ xs ≲ᴮ 0∷ ys & s = xs ≲ᴮ ys & s
0∷ xs ≲ᴮ 1∷ ys & s = xs ≲ᴮ ys & true
1∷ xs ≲ᴮ [] & s = false
1∷ xs ≲ᴮ 0∷ ys & s = xs ≲ᴮ ys & false
1∷ xs ≲ᴮ 1∷ ys & s = xs ≲ᴮ ys & s
infix 4 _≤ᴮ_ _<ᴮ_
_≤ᴮ_ : Bits → Bits → Bool
xs ≤ᴮ ys = xs ≲ᴮ ys & true
_<ᴮ_ : Bits → Bits → Bool
xs <ᴮ ys = xs ≲ᴮ ys & false
infix 4 _≤_ _<_
_≤_ : Bits → Bits → Type
xs ≤ ys = T (xs ≤ᴮ ys)
_<_ : Bits → Bits → Type
xs < ys = T (xs <ᴮ ys)
|
{
"alphanum_fraction": 0.5102564103,
"avg_line_length": 21.6666666667,
"ext": "agda",
"hexsha": "f1661e10d3253c0b9a6b0c2b7e75dc5ea947ff7a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Bits/Order/Reverse.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Bits/Order/Reverse.agda",
"max_line_length": 41,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Bits/Order/Reverse.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 406,
"size": 780
}
|
module LanguageConstructs where
open import Haskell.Prelude
{-# FOREIGN AGDA2HS {-# LANGUAGE LambdaCase #-} #-}
--------------------------------------------------
-- Lists
oneTwoThree : List Int
oneTwoThree = 1 ∷ 2 ∷ 3 ∷ []
{-# COMPILE AGDA2HS oneTwoThree #-}
exactlyTwo : List a → Maybe (a × a)
exactlyTwo (x ∷ y ∷ []) = Just (x , y)
exactlyTwo _ = Nothing
{-# COMPILE AGDA2HS exactlyTwo #-}
--------------------------------------------------
-- If-then-else
ifThenElse : Int → String
ifThenElse n = if n >= 10 then "big" else "small"
{-# COMPILE AGDA2HS ifThenElse #-}
--------------------------------------------------
-- Case
maybeToList : Maybe a → List a
maybeToList = λ where Nothing → []
(Just x) → x ∷ []
{-# COMPILE AGDA2HS maybeToList #-}
mhead : List a → Maybe a
mhead xs = case xs of λ where
[] → Nothing
(x ∷ _) → Just x
{-# COMPILE AGDA2HS mhead #-}
-- Applied to lambda
plus5minus5 : Int → Int
plus5minus5 n = case n + 5 of λ m → m - 5
{-# COMPILE AGDA2HS plus5minus5 #-}
-- Applied to non-lambda
len : List a → Int
len xs = case xs of length
{-# COMPILE AGDA2HS len #-}
-- Underapplied
applyToFalse : (Bool → a) → a
applyToFalse = case false of_
{-# COMPILE AGDA2HS applyToFalse #-}
caseOf : a → (a → b) → b
caseOf = case_of_
{-# COMPILE AGDA2HS caseOf #-}
--------------------------------------------------
-- Enums
enum₁ : List Int
enum₁ = enumFromTo 5 10
{-# COMPILE AGDA2HS enum₁ #-}
enum₂ : List Integer
enum₂ = enumFromThenTo 10 20 100
{-# COMPILE AGDA2HS enum₂ #-}
enum₃ : List Bool
enum₃ = enumFrom false
{-# COMPILE AGDA2HS enum₃ #-}
enum₄ : List Ordering
enum₄ = enumFromThen LT EQ
{-# COMPILE AGDA2HS enum₄ #-}
underappliedEnum : List Int → List (List Int)
underappliedEnum = map (enumFromTo 1)
{-# COMPILE AGDA2HS underappliedEnum #-}
|
{
"alphanum_fraction": 0.5736899563,
"avg_line_length": 21.3023255814,
"ext": "agda",
"hexsha": "59948cf2299311be70bc0abf948e15756afb1abb",
"lang": "Agda",
"max_forks_count": 18,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z",
"max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "seanpm2001/agda2hs",
"max_forks_repo_path": "test/LanguageConstructs.agda",
"max_issues_count": 63,
"max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "seanpm2001/agda2hs",
"max_issues_repo_path": "test/LanguageConstructs.agda",
"max_line_length": 51,
"max_stars_count": 55,
"max_stars_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dxts/agda2hs",
"max_stars_repo_path": "test/LanguageConstructs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z",
"num_tokens": 549,
"size": 1832
}
|
{-# OPTIONS --without-K #-}
open import lib.Base
module lib.Coinduction where
infix 1000 ♯_
postulate -- Coinduction
∞ : ∀ {i} (A : Type i) → Type i
♯_ : ∀ {i} {A : Type i} → A → ∞ A
♭ : ∀ {i} {A : Type i} → ∞ A → A
{-# BUILTIN INFINITY ∞ #-}
{-# BUILTIN SHARP ♯_ #-}
{-# BUILTIN FLAT ♭ #-}
|
{
"alphanum_fraction": 0.5,
"avg_line_length": 18.4705882353,
"ext": "agda",
"hexsha": "f04fed13735f7c03dd2c6a5e9608c4f059b650e5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "danbornside/HoTT-Agda",
"max_forks_repo_path": "lib/Coinduction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "danbornside/HoTT-Agda",
"max_issues_repo_path": "lib/Coinduction.agda",
"max_line_length": 35,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "danbornside/HoTT-Agda",
"max_stars_repo_path": "lib/Coinduction.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 126,
"size": 314
}
|
open import Agda.Builtin.Bool
record ⊤ : Set where constructor tt
data ⊥ : Set where
record Σ (A : Set) (B : A → Set) : Set where
field
fst : A
snd : B fst
open Σ
T : Bool → Set
T false = ⊥
T true = ⊤
Foo : Bool → Set
Foo false = Bool → Bool
Foo true = Σ Bool T
foo : (x : Bool) → Foo x
foo false x = x
foo true .fst = true
foo true .snd = tt
|
{
"alphanum_fraction": 0.5858310627,
"avg_line_length": 15.2916666667,
"ext": "agda",
"hexsha": "c88cebf34793f3be05c14c2f1c38fef23218584a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2964b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2964b.agda",
"max_line_length": 44,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2964b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 137,
"size": 367
}
|
{-# OPTIONS --without-K --safe #-}
open import Algebra.Structures.Bundles.Field
module Algebra.Linear.Category.Vect
{k ℓᵏ} (K : Field k ℓᵏ)
{a ℓ}
where
open import Relation.Binary using (Setoid)
open import Algebra.Linear.Structures.Bundles
open import Algebra.Linear.Morphism.Bundles K
open import Categories.Category
open LinearMap
id : ∀ {V : VectorSpace K a ℓ} -> LinearMap V V
id {V = V} = record
{ ⟦_⟧ = λ u -> u
; isLinearMap = record
{ isAbelianGroupMorphism = record
{ gp-homo = record
{ mn-homo = record
{ sm-homo = record
{ ⟦⟧-cong = λ r -> r
; ∙-homo = λ x y → VectorSpace.refl V }
; ε-homo = VectorSpace.refl V } } }
; ∙-homo = λ c u → VectorSpace.refl V } }
_∘_ : ∀ {U V W : VectorSpace K a ℓ} -> LinearMap V W -> LinearMap U V -> LinearMap U W
_∘_ {U = U} {V} {W} f g = record
{ ⟦_⟧ = λ u → f ⟪$⟫ g ⟪$⟫ u
; isLinearMap = record
{ isAbelianGroupMorphism = record
{ gp-homo = record
{ mn-homo = record
{ sm-homo = record
{ ⟦⟧-cong = λ r → ⟦⟧-cong f (⟦⟧-cong g r)
; ∙-homo = λ u v → VectorSpace.trans W (⟦⟧-cong f (+-homo g u v)) (+-homo f (g ⟪$⟫ u) (g ⟪$⟫ v))
}
; ε-homo = VectorSpace.trans W (⟦⟧-cong f (0#-homo g)) (0#-homo f)
}
}
}
; ∙-homo = λ c u → VectorSpace.trans W (⟦⟧-cong f (∙-homo g c u)) (∙-homo f c (g ⟪$⟫ u))
}
}
private
module Assoc
{U V W X : VectorSpace K a ℓ}
{f : LinearMap U V} {g : LinearMap V W} {h : LinearMap W X}
where
open Setoid (linearMap-setoid U X)
open import Relation.Binary.EqReasoning (linearMap-setoid U X)
right : ((h ∘ g) ∘ f) ≈ (h ∘ (g ∘ f))
right r = ⟦⟧-cong h (⟦⟧-cong g (⟦⟧-cong f r))
left : (h ∘ (g ∘ f)) ≈ ((h ∘ g) ∘ f)
left r = ⟦⟧-cong h (⟦⟧-cong g (⟦⟧-cong f r))
Vect : Category _ _ _
Vect = record
{ Obj = VectorSpace K a ℓ
; _⇒_ = λ V W → LinearMap V W
; _≈_ = λ {V} {W} -> Setoid._≈_ (linearMap-setoid V W)
; id = id
; _∘_ = _∘_
; assoc = λ {U} {V} {W} {X} {f} {g} {h} -> Assoc.right {U} {V} {W} {X} {f} {g} {h}
; sym-assoc = λ {U} {V} {W} {X} {f} {g} {h} -> Assoc.left {U} {V} {W} {X} {f} {g} {h}
; identityˡ = λ {U} {V} {f} -> ⟦⟧-cong f
; identityʳ = λ {U} {V} {f} → ⟦⟧-cong f
; equiv = λ {V} {W} -> Setoid.isEquivalence (linearMap-setoid V W)
; ∘-resp-≈ = λ {U} {V} {W} {f} {h} {g} {i} rf rg rx →
VectorSpace.trans W (rf (⟦⟧-cong g rx)) (⟦⟧-cong h (rg (VectorSpace.refl U)))
}
|
{
"alphanum_fraction": 0.5132,
"avg_line_length": 31.6455696203,
"ext": "agda",
"hexsha": "2d3de69349451a5c270a1252711527e25f363fda",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "felko/linear-algebra",
"max_forks_repo_path": "src/Algebra/Linear/Category/Vect.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "felko/linear-algebra",
"max_issues_repo_path": "src/Algebra/Linear/Category/Vect.agda",
"max_line_length": 108,
"max_stars_count": 15,
"max_stars_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "felko/linear-algebra",
"max_stars_repo_path": "src/Algebra/Linear/Category/Vect.agda",
"max_stars_repo_stars_event_max_datetime": "2020-12-30T06:18:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-02T14:11:00.000Z",
"num_tokens": 1080,
"size": 2500
}
|
-- Andreas, 2017-07-11, issue #2637, reported by nad.
--
-- This error was triggered by a meta m in a constraint UnBlock m
-- which is solved to infinity by the size solver.
-- The constraint printer did not expect such a situation
-- and crashed when printing the UnBlock constraint.
{-# OPTIONS --allow-unsolved-metas #-}
module _ (Z : Set) where
open import Common.Size
open import Common.Product
postulate
map : (A B C : Set) → (A → C) → A × B → C × B
I : Set
P : I → Set
Q : Size → I → Set
f : I → I
lemma₁ : (R : I → Set) → (∀ x → R (f x) → R x) → ∀ x → R x → R (f x)
lemma₂ : ∀ i x → Q i (f x) → Q i x
works : ∀ i x → Q i (f x) × P x → Q i (f (f x)) × P x
works i x = map
(Q i (f x))
(P x)
(Q i (f (f x)))
(lemma₁ (Q i) (λ y → lemma₂ i y) (f x))
-- Replacing any underscore by its solution or parts of its solution
-- makes the internal error disappear.
lemma₃ : ∀ i x → Q i (f x) × P x → Q i (f (f x)) × P x
lemma₃ i x = map
(Q _ _)
(P x)
(Q _ (f (f x)))
(lemma₁ _ (λ y → lemma₂ _ _) _)
|
{
"alphanum_fraction": 0.5549242424,
"avg_line_length": 25.756097561,
"ext": "agda",
"hexsha": "48116aab17d681fa64d589bd6cbe7d55d2ecc248",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2637.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2637.agda",
"max_line_length": 70,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2637.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 388,
"size": 1056
}
|
{-# OPTIONS --without-K --safe #-}
open import Algebra
module Magma.Properties
{a ℓ} (M : Magma a ℓ) where
open Magma M
|
{
"alphanum_fraction": 0.6507936508,
"avg_line_length": 12.6,
"ext": "agda",
"hexsha": "312b39f3ce807a901ffad003a0037c20e0c90cdf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra",
"max_forks_repo_path": "src/Magma/Properties.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048",
"max_issues_repo_issues_event_max_datetime": "2021-10-09T08:24:56.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-04T05:30:30.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra",
"max_issues_repo_path": "src/Magma/Properties.agda",
"max_line_length": 34,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra",
"max_stars_repo_path": "src/Magma/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-17T09:14:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-08-15T06:16:13.000Z",
"num_tokens": 39,
"size": 126
}
|
module RationalUtils where
open import Algebra
import Algebra.Morphism.RingMonomorphism as RingMonomorphisms
open import Data.Rational
open import Data.Rational.Properties
open import Data.Nat using (z≤n; s≤s)
open import Data.Integer using (+≤+; +<+; +_; -[1+_])
open import Data.Product using (_×_; _,_)
open import Data.Sum
open import Function.Base using (_∘_; _∘′_)
open import Level using (0ℓ)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary using (yes; no)
open import Relation.Nullary.Negation using (contradiction)
open import Vehicle.Data.Tensor
open ≤-Reasoning
private
variable
p q : ℚ
private
module +-*-Monomorphism = RingMonomorphisms toℚᵘ-isRingMonomorphism-+-*
------------------------------------------------------------------------
-- Things to work out how to put in standard library
2ℚ = + 2 / 1
3ℚ = + 3 / 1
≰⇒≥ : _≰_ ⇒ _≥_
≰⇒≥ = <⇒≤ ∘′ ≰⇒>
p≤0⇒∣p∣≡-p : p ≤ 0ℚ → ∣ p ∣ ≡ - p
p≤0⇒∣p∣≡-p {mkℚ +[1+ n ] _ _} p≤0 = contradiction (nonPositive p≤0) λ()
p≤0⇒∣p∣≡-p {mkℚ +0 _ _} _ = refl
p≤0⇒∣p∣≡-p {mkℚ -[1+ n ] _ _} _ = refl
neg-involutive : Involutive _≡_ (-_)
neg-involutive (mkℚ +[1+ n ] _ _) = refl
neg-involutive (mkℚ +0 _ _) = refl
neg-involutive (mkℚ -[1+ n ] _ _) = refl
p≤∣p∣ : ∀ p → p ≤ ∣ p ∣
p≤∣p∣ p with 0ℚ ≤? p
... | yes 0≤p = ≤-reflexive (sym (0≤p⇒∣p∣≡p 0≤p))
... | no 0≰p = ≤-trans (≰⇒≥ 0≰p) (0≤∣p∣ p)
-p≤∣p∣ : ∀ p → - p ≤ ∣ p ∣
-p≤∣p∣ p with 0ℚ ≤? p
... | yes 0≤p = ≤-trans (neg-antimono-≤ 0≤p) (0≤∣p∣ p)
... | no 0≰p = ≤-reflexive (sym (p≤0⇒∣p∣≡-p (≰⇒≥ 0≰p)))
-p≤q⇒-q≤p : - p ≤ q → - q ≤ p
-p≤q⇒-q≤p {p} {q} = subst (- q ≤_) (neg-involutive p) ∘ neg-antimono-≤
p≤-q⇒q≤-p : p ≤ - q → q ≤ - p
p≤-q⇒q≤-p {p} {q} = subst (_≤ - p) (neg-involutive q) ∘ neg-antimono-≤
-p<q⇒-q<p : - p < q → - q < p
-p<q⇒-q<p {p} {q} = subst (- q <_) (neg-involutive p) ∘ neg-antimono-<
p<-q⇒q<-p : p < - q → q < - p
p<-q⇒q<-p {p} {q} = subst (_< - p) (neg-involutive q) ∘ neg-antimono-<
postulate p-[p+q]≡q : ∀ p q → p - (p + q) ≡ q
postulate p+q-p≡q : ∀ p q → p + q - p ≡ q
postulate p-q+q≡p : ∀ p q → p - q + q ≡ p
postulate *-monoʳ-≤ : ∀ r → Positive r → (r *_) Preserves _≤_ ⟶ _≤_
postulate p<r-q⇒p+q<r : ∀ p q r → p < r - q → p + q < r
∣p∣≤q⇒-q≤p≤q : ∀ p → ∣ p ∣ ≤ q → - q ≤ p × p ≤ q
∣p∣≤q⇒-q≤p≤q p ∣p∣≤q =
-p≤q⇒-q≤p (≤-trans (-p≤∣p∣ p) ∣p∣≤q)
, ≤-trans (p≤∣p∣ p) ∣p∣≤q
-p≤q≤p⇒∣q∣≤p : - p ≤ q → q ≤ p → ∣ q ∣ ≤ p
-p≤q≤p⇒∣q∣≤p {p} {q} -q≤p q≤p with ∣p∣≡p∨∣p∣≡-p q
... | inj₁ ∣q∣≡q = subst (_≤ p) (sym ∣q∣≡q) q≤p
... | inj₂ ∣q∣≡-q = subst (_≤ p) (sym ∣q∣≡-q) (-p≤q⇒-q≤p -q≤p)
∣p∣<q⇒-q<p<q : ∀ p → ∣ p ∣ < q → - q < p × p < q
∣p∣<q⇒-q<p<q p ∣p∣<q =
-p<q⇒-q<p (≤-<-trans (-p≤∣p∣ p) ∣p∣<q)
, ≤-<-trans (p≤∣p∣ p) ∣p∣<q
-p<q<p⇒∣q∣<p : - p < q → q < p → ∣ q ∣ < p
-p<q<p⇒∣q∣<p {p} {q} -p<q q<p with ∣p∣≡p∨∣p∣≡-p q
... | inj₁ ∣q∣≡q = subst (_< p) (sym ∣q∣≡q) q<p
... | inj₂ ∣q∣≡-q = subst (_< p) (sym ∣q∣≡-q) (-p<q⇒-q<p -p<q)
p+q-q≡p : ∀ p q → p + q - q ≡ p
p+q-q≡p p q = begin-equality
p + q - q ≡⟨ +-assoc p q (- q) ⟩
p + (q - q) ≡⟨ cong (λ v → p + v) (+-inverseʳ q) ⟩
p + 0ℚ ≡⟨ +-identityʳ p ⟩
p ∎
+-isCommutativeSemigroup : IsCommutativeSemigroup _≡_ _+_
+-isCommutativeSemigroup = isCommutativeSemigroup
where open IsCommutativeMonoid +-0-isCommutativeMonoid
+-commutativeSemigroup : CommutativeSemigroup 0ℓ 0ℓ
+-commutativeSemigroup = record
{ isCommutativeSemigroup = +-isCommutativeSemigroup
}
2*p≡p+p : ∀ p → 2ℚ * p ≡ p + p
2*p≡p+p p = begin-equality
2ℚ * p ≡⟨⟩
(1ℚ + 1ℚ) * p ≡⟨ *-distribʳ-+ p 1ℚ 1ℚ ⟩
1ℚ * p + 1ℚ * p ≡⟨ cong₂ _+_ (*-identityˡ p) (*-identityˡ p) ⟩
p + p ∎
|
{
"alphanum_fraction": 0.5111413043,
"avg_line_length": 29.44,
"ext": "agda",
"hexsha": "07bee4507b422c2169a7f08c3e425f15dee44fd4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "vehicle-lang/vehicle",
"max_forks_repo_path": "examples/windController/agdaProof/RationalUtils.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T20:49:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-07T14:09:13.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "vehicle-lang/vehicle",
"max_issues_repo_path": "examples/windController/agdaProof/RationalUtils.agda",
"max_line_length": 73,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "vehicle-lang/vehicle",
"max_stars_repo_path": "examples/windController/agdaProof/RationalUtils.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-17T18:51:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-10T12:56:42.000Z",
"num_tokens": 2062,
"size": 3680
}
|
module _ where
open import Common.Prelude
open import Common.String
record IsString {a} (A : Set a) : Set a where
field
fromString : String → A
open IsString {{...}} public
{-# BUILTIN FROMSTRING fromString #-}
instance
StringIsString : IsString String
StringIsString = record { fromString = λ s → s }
ListIsString : IsString (List Char)
ListIsString = record { fromString = stringToList }
foo : List Char
foo = "foo"
open import Common.Equality
thm : "foo" ≡ 'f' ∷ 'o' ∷ 'o' ∷ []
thm = refl
|
{
"alphanum_fraction": 0.6737864078,
"avg_line_length": 18.3928571429,
"ext": "agda",
"hexsha": "20308bfeefe1e36e9f868aeb4ff805ab85930c1b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/OverloadedString.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/OverloadedString.agda",
"max_line_length": 53,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/OverloadedString.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 155,
"size": 515
}
|
module maybe-thms where
open import eq
open import level
open import maybe
open import product
open import sum
maybe-dec : ∀ {ℓ}{A : Set ℓ}(x : maybe A) → x ≡ nothing ∨ Σ A (λ a → x ≡ just a)
maybe-dec nothing = inj₁ refl
maybe-dec (just a) = inj₂ (a , refl)
|
{
"alphanum_fraction": 0.6769230769,
"avg_line_length": 23.6363636364,
"ext": "agda",
"hexsha": "3b8da0d318d5127894bebedba398fd38126e9a05",
"lang": "Agda",
"max_forks_count": 17,
"max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z",
"max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rfindler/ial",
"max_forks_repo_path": "maybe-thms.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rfindler/ial",
"max_issues_repo_path": "maybe-thms.agda",
"max_line_length": 80,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rfindler/ial",
"max_stars_repo_path": "maybe-thms.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z",
"num_tokens": 90,
"size": 260
}
|
open import SOAS.Metatheory.Syntax
-- Unit law of metasubstitution
module SOAS.Metatheory.SecondOrder.Unit {T : Set}(Syn : Syntax {T}) where
open Syntax Syn
open import SOAS.Metatheory.FreeMonoid Syn
open import SOAS.Metatheory.SecondOrder.Metasubstitution Syn
open import SOAS.Families.Core {T}
open import SOAS.Common
open import SOAS.Context
open import SOAS.Variable
open import SOAS.Construction.Structure as Structure
open import SOAS.ContextMaps.Combinators
open import SOAS.ContextMaps.CategoryOfRenamings {T}
import SOAS.Abstract.Coalgebra {T} as →□
open →□.Sorted
open →□.Unsorted using (⊤ᵇ) renaming (Coalg to UCoalg ; Coalg⇒ to UCoalg⇒)
import SOAS.Abstract.Box {T} as □ ; open □.Sorted
open import SOAS.Abstract.Monoid
open import SOAS.Abstract.ExpStrength
open import SOAS.Coalgebraic.Monoid
open import SOAS.Metatheory Syn
open import SOAS.Metatheory.Monoid ⅀F ⅀:Str
open import SOAS.ContextMaps.Properties
open Theory
private
variable
Γ Δ Π : Ctx
α β : T
𝔛 𝔜 ℨ : Familyₛ
-- Metasubstitution unit is a coalgebra homomorphisem from ⊤
ms-unitᵇ⇒ : UCoalg⇒ ⊤ᵇ [ 𝔛 ⊸ (𝕋ᵇ 𝔛) ]ᵇ (λ _ → ms-unit)
ms-unitᵇ⇒ {𝔛} = record
{ ⟨r⟩ = λ{ {Γ = Γ}{Δ}{ρ} → iext (dext λ {Π} 𝔪 → sym (begin
𝕣𝕖𝕟 𝔛 (ms-unit 𝔪) (Π ∔∣ ρ)
≡⟨ Renaming.𝕥⟨𝕞⟩ 𝔛 ⟩
𝕞𝕧𝕒𝕣 𝔛 𝔪 (λ p → 𝕣𝕖𝕟 𝔛 (𝕧𝕒𝕣 𝔛 (inl Π p)) (Π ∔∣ ρ))
≡⟨ 𝕞≈₂ 𝔛 (λ v → Renaming.𝕥⟨𝕧⟩ 𝔛) ⟩
𝕞𝕧𝕒𝕣 𝔛 𝔪 (λ v → 𝕧𝕒𝕣 𝔛 ((Π ∔∣ ρ) (inl Π v)))
≡⟨ 𝕞≈₂ 𝔛 (λ v → cong (𝕧𝕒𝕣 𝔛) (∔.+₁∘i₁ {f = id′ᵣ Π}{g = ρ})) ⟩
𝕞𝕧𝕒𝕣 𝔛 𝔪 (λ v → 𝕧𝕒𝕣 𝔛 (∔.i₁ v))
∎))}
} where open ≡-Reasoning
-- Right unit of metasubstitution
□msub-runitᵃ⇒ : MetaAlg⇒ 𝔛 (𝕋ᵃ 𝔛) (□ᵃ 𝔛 (𝕋ᵃ 𝔛)) λ t ρ → □msub t ρ ms-unit
□msub-runitᵃ⇒ {𝔛} = record
{ ⟨𝑎𝑙𝑔⟩ = λ{ {t = t} → dext λ ρ → begin
□msub (𝕒𝕝𝕘 𝔛 t) ρ ms-unit
≡⟨ cong (λ - → - ms-unit) □MS.𝕥⟨𝕒⟩ ⟩
𝕒𝕝𝕘 𝔛 (□estr [ 𝔛 ⊸ 𝕋ᵇ 𝔛 ]ᵇ (𝕋 𝔛) (⅀₁ □msub t) ρ ms-unit)
≡⟨ cong (𝕒𝕝𝕘 𝔛) (estr-unit′ ms-unitᵇ⇒) ⟩
𝕒𝕝𝕘 𝔛 (⅀₁ (λ e′ → e′ ms-unit) (str ℐᴮ ⟅ 𝔛 ⇨ 𝕋 𝔛 ⟆ (⅀₁ □msub t) ρ))
≡˘⟨ cong (𝕒𝕝𝕘 𝔛) (str-nat₂ ((λ e′ → e′ ms-unit)) (⅀₁ □msub t) ρ) ⟩
𝕒𝕝𝕘 𝔛 (str ℐᴮ (𝕋 𝔛) (⅀₁ (λ { h′ ς → h′ ς ms-unit }) (⅀₁ □msub t)) ρ)
≡˘⟨ congr ⅀.homomorphism (λ - → 𝕒𝕝𝕘 𝔛 (str ℐᴮ (𝕋 𝔛) - ρ)) ⟩
𝕒𝕝𝕘 𝔛 (str ℐᴮ (𝕋 𝔛) (⅀₁ (λ{ t ρ → □msub t ρ ms-unit}) t) ρ)
∎ }
; ⟨𝑣𝑎𝑟⟩ = λ{ {v = v} → dext λ ρ → cong (λ - → - ms-unit) □MS.𝕥⟨𝕧⟩}
; ⟨𝑚𝑣𝑎𝑟⟩ = λ{ {𝔪 = 𝔪}{ε} → dext λ ρ → begin
□msub (𝕞𝕧𝕒𝕣 𝔛 𝔪 ε) ρ ms-unit
≡⟨ cong (λ - → - ms-unit) □MS.𝕥⟨𝕞⟩ ⟩
𝕤𝕦𝕓 𝔛 (ms-unit 𝔪) (copair (𝕋 𝔛) (λ v → □msub (ε v) ρ ms-unit) (𝕧𝕒𝕣 𝔛))
≡⟨ Substitution.𝕥⟨𝕞⟩ 𝔛 ⟩
𝕞𝕧𝕒𝕣 𝔛 𝔪 (λ v → 𝕤𝕦𝕓 𝔛 (𝕧𝕒𝕣 𝔛 (∔.i₁ v)) (copair (𝕋 𝔛) (λ v → □msub (ε v) ρ ms-unit) (𝕧𝕒𝕣 𝔛)))
≡⟨ 𝕞≈₂ 𝔛 (λ v → begin
𝕤𝕦𝕓 𝔛 (𝕧𝕒𝕣 𝔛 (∔.i₁ v)) (copair (𝕋 𝔛) (λ 𝔫 → □msub (ε 𝔫) ρ ms-unit) (𝕧𝕒𝕣 𝔛))
≡⟨ Mon.lunit (𝕋ᵐ 𝔛) ⟩
copair (𝕋 𝔛) (λ 𝔫 → □msub (ε 𝔫) ρ ms-unit) (𝕧𝕒𝕣 𝔛) (∔.i₁ v)
≡⟨ copair∘i₁ (𝕋 𝔛) v ⟩
□msub (ε v) ρ ms-unit
∎) ⟩
𝕞𝕧𝕒𝕣 𝔛 𝔪 (λ v → □msub (ε v) ρ ms-unit)
∎ }
} where open ≡-Reasoning
□msub-runit : (t : 𝕋 𝔛 α Γ)(ρ : Γ ↝ Δ)
→ □msub t ρ ms-unit ≡ 𝕣𝕖𝕟 𝔛 t ρ
□msub-runit {𝔛} t ρ = sym (cong (λ - → - ρ) (Renaming.𝕤𝕖𝕞! 𝔛 □msub-runitᵃ⇒ t))
|
{
"alphanum_fraction": 0.5499691548,
"avg_line_length": 36.0222222222,
"ext": "agda",
"hexsha": "a4943725a166ba31530c8405656efbe096ba5010",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "SOAS/Metatheory/SecondOrder/Unit.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "SOAS/Metatheory/SecondOrder/Unit.agda",
"max_line_length": 100,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "SOAS/Metatheory/SecondOrder/Unit.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 2041,
"size": 3242
}
|
module RandomAccessList.Zeroless.Properties where
open import BuildingBlock
open import BuildingBlock.BinaryLeafTree using (BinaryLeafTree; Node; Leaf; split)
open import RandomAccessList.Zeroless.Core
open import RandomAccessList.Zeroless.Core.Properties
open import RandomAccessList.Zeroless
open import Data.Unit using (tt)
open import Data.Nat
open import Data.Nat.Etc
open import Data.Nat.Properties.Simple
open import Data.Product as Prod
open import Function
open import Relation.Nullary using (Dec; yes; no; ¬_)
open import Relation.Nullary.Decidable using (False; True; fromWitnessFalse; fromWitness)
open import Relation.Nullary.Negation using (contradiction; contraposition)
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; _≢_; refl; cong; cong₂; trans; sym; inspect)
open PropEq.≡-Reasoning
tailₙ-suc : ∀ {n A} → (xs : 1-2-RAL A n) → (p : ⟦ xs ⟧ ≢ 0)
→ suc ⟦ tailₙ xs p ⟧ₙ ≡ ⟦ xs ⟧ₙ
tailₙ-suc {n} {A} [] p = contradiction (⟦[]⟧≡0 ([] {A} {n}) refl) p
tailₙ-suc (x 1∷ xs) p with ⟦ xs ⟧ ≟ 0
tailₙ-suc {n} (x 1∷ xs) p | yes q =
begin
suc 0
≡⟨ cong suc (sym (*-right-zero 0)) ⟩
suc (2 * 0)
≡⟨ cong (λ w → suc (2 * w)) (sym (no-zero-divisor (2 * 2 ^ n) ⟦ xs ⟧ₙ (m^n≢0 2 (suc n) (λ ())) q)) ⟩
suc (2 * ⟦ xs ⟧ₙ)
∎
tailₙ-suc (x 1∷ xs) p | no ¬q =
begin
3 + 2 * ⟦ tailₙ xs ¬q ⟧ₙ
≡⟨ cong suc (sym (+-*-suc 2 ⟦ tailₙ xs ¬q ⟧ₙ)) ⟩
1 + 2 * suc ⟦ tailₙ xs ¬q ⟧ₙ
≡⟨ cong (λ w → 1 + 2 * w) (tailₙ-suc xs ¬q) ⟩
1 + (2 * ⟦ xs ⟧ₙ)
∎
tailₙ-suc (x , y 2∷ xs) p = refl
tail-suc : ∀ {A} → (xs : 1-2-RAL A 0) → (p : ⟦ xs ⟧ ≢ 0)
→ suc ⟦ tail xs p ⟧ ≡ ⟦ xs ⟧
tail-suc {A} [] p = contradiction (⟦[]⟧≡0 ([] {A} {0}) refl) p
tail-suc (x 1∷ xs) p with ⟦ xs ⟧ ≟ 0
tail-suc (x 1∷ xs) p | yes q = cong (λ w → suc (w + 0)) (sym q)
tail-suc (x 1∷ xs) p | no ¬q =
begin
3 + 2 * ⟦ tailₙ xs ¬q ⟧ₙ + 0
≡⟨ cong (λ w → 1 + w + 0) (sym (+-*-suc 2 ⟦ tailₙ xs ¬q ⟧ₙ)) ⟩
1 + 2 * suc ⟦ tailₙ xs ¬q ⟧ₙ + 0
≡⟨ cong (λ w → 1 + 2 * w + 0) (tailₙ-suc xs ¬q) ⟩
1 + 2 * ⟦ xs ⟧ₙ + 0
∎
tail-suc (x , y 2∷ xs) p = refl
|
{
"alphanum_fraction": 0.5592286501,
"avg_line_length": 36.9152542373,
"ext": "agda",
"hexsha": "d492180ff25aac37df7ebbd68ee2eda4522bf985",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/numeral",
"max_forks_repo_path": "legacy/RandomAccessList/Zeroless/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/numeral",
"max_issues_repo_path": "legacy/RandomAccessList/Zeroless/Properties.agda",
"max_line_length": 104,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/numeral",
"max_stars_repo_path": "legacy/RandomAccessList/Zeroless/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z",
"num_tokens": 945,
"size": 2178
}
|
{-# OPTIONS --cubical --safe #-}
module HITs.PropositionalTruncation where
open import Cubical.HITs.PropositionalTruncation
using (squash; ∥_∥; ∣_∣)
renaming (recPropTrunc to rec; recPropTrunc→Set to rec→set)
public
|
{
"alphanum_fraction": 0.7455357143,
"avg_line_length": 24.8888888889,
"ext": "agda",
"hexsha": "b253e8d6876164a73eee44c6896d171ff97baf34",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/HITs/PropositionalTruncation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/HITs/PropositionalTruncation.agda",
"max_line_length": 61,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/HITs/PropositionalTruncation.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 76,
"size": 224
}
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import Util.Prelude
------------------------------------------------------------------------------
open import Agda.Builtin.Float
module LibraBFT.Impl.OBM.Rust.RustTypes where
-- TODO-2 : reasoning about integer overflow
F64 : Set
F64 = Float -- This is 'Double' in Haskell. In Agda, 'Float' is represented as a Haskell 'Double'.
U64 : Set
U64 = ℕ
U128 : Set
U128 = ℕ
Usize : Set
Usize = ℕ
postulate -- TODO-1: VecDeque, vdNew
VecDeque : Set
vdNew : VecDeque
|
{
"alphanum_fraction": 0.6477115118,
"avg_line_length": 22.53125,
"ext": "agda",
"hexsha": "d3c44c8916af9303b36b1694080c6d1925a303b6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/OBM/Rust/RustTypes.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/OBM/Rust/RustTypes.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/OBM/Rust/RustTypes.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 194,
"size": 721
}
|
-- Andreas, 2014-07-02 Documenting the ETA pragma
open import Common.Equality
mutual
data Colist (A : Set) : Set where
[] : Colist A
_∷_ : A → ∞Colist A → Colist A
record ∞Colist (A : Set) : Set where
eta-equality
coinductive
constructor delay
field force : Colist A
open ∞Colist
-- By default, recursive records do not have eta,
-- but it can be turned on by force.
-- In case of colists, it is ok, since there is no
-- infinite eta-expansion (unlike for streams).
test : {A : Set} (x : ∞Colist A) → x ≡ delay (force x)
test x = refl
|
{
"alphanum_fraction": 0.6486956522,
"avg_line_length": 23,
"ext": "agda",
"hexsha": "e306784075bbfb2f836f43a011425dabf992510b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Succeed/EtaColist.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Succeed/EtaColist.agda",
"max_line_length": 54,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/EtaColist.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 185,
"size": 575
}
|
record Foo : Set where
cppattern -- Typo here
no-eta-equality
|
{
"alphanum_fraction": 0.5465116279,
"avg_line_length": 21.5,
"ext": "agda",
"hexsha": "b5d2179cecd29d899233f63dd4e1b4088f9ca32b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Fail/issue5072.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Fail/issue5072.agda",
"max_line_length": 44,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Fail/issue5072.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 22,
"size": 86
}
|
-- Andreas, 2016-12-30, issue #1886, reported by nad
-- {-# OPTIONS -v tc.data:40 -v scope.data.def:40 -v tc.decl:10 #-}
data D (X : Set) : Set
data D (X : Set Set) where
|
{
"alphanum_fraction": 0.6091954023,
"avg_line_length": 21.75,
"ext": "agda",
"hexsha": "5ce9801a1984bcc1d57d5141833607ecdfd8b8d7",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Fail/Issue1886.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Fail/Issue1886.agda",
"max_line_length": 67,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Fail/Issue1886.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 65,
"size": 174
}
|
------------------------------------------------------------------------
-- The "terminates" relation
------------------------------------------------------------------------
open import Atom
module Termination (atoms : χ-atoms) where
open import Equality.Propositional
open import Logical-equivalence using (_⇔_)
open import Prelude
open import Chi atoms
open import Deterministic atoms
open import Propositional atoms
-- Terminates e means that e terminates with a value.
Terminates : Exp → Type
Terminates p = ∃ λ v → p ⇓ v
-- This relation is propositional.
Terminates-propositional :
∀ {e} →
Is-proposition (Terminates e)
Terminates-propositional (_ , e₁) (_ , e₂) =
Σ-≡,≡→≡ (⇓-deterministic e₁ e₂)
(⇓-propositional _ _)
|
{
"alphanum_fraction": 0.5723684211,
"avg_line_length": 25.3333333333,
"ext": "agda",
"hexsha": "60dc07cf49f63eadad60cdfc3eb0f805cd091bda",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/chi",
"max_forks_repo_path": "src/Termination.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_issues_repo_issues_event_max_datetime": "2020-06-08T11:08:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-05-21T23:29:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/chi",
"max_issues_repo_path": "src/Termination.agda",
"max_line_length": 72,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/chi",
"max_stars_repo_path": "src/Termination.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-20T16:27:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:07.000Z",
"num_tokens": 190,
"size": 760
}
|
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.NType2
open import lib.types.Pi
open import lib.types.Group
open import lib.types.Int
open import lib.types.List
open import lib.types.Word
open import lib.types.SetQuotient
open import lib.groups.Homomorphism
module lib.groups.GeneratedGroup {i m} where
module GeneratedGroup (A : Type i) (R : Rel (Word A) m) where
-- [qwr-sym] is not needed, but it seems more principled to
-- make [QuotWordRel] an equivalence relation.
data QuotWordRel : Word A → Word A → Type (lmax i m) where
qwr-refl : ∀ {l₁ l₂} → l₁ == l₂ → QuotWordRel l₁ l₂
qwr-trans : ∀ {l₁ l₂ l₃} → QuotWordRel l₁ l₂ → QuotWordRel l₂ l₃ → QuotWordRel l₁ l₃
qwr-sym : ∀ {l₁ l₂} → QuotWordRel l₁ l₂ → QuotWordRel l₂ l₁
qwr-cong : ∀ {l₁ l₂ l₃ l₄} → QuotWordRel l₁ l₂ → QuotWordRel l₃ l₄ → QuotWordRel (l₁ ++ l₃) (l₂ ++ l₄)
qwr-flip-r : ∀ x₁ → QuotWordRel (x₁ :: flip x₁ :: nil) nil
qwr-rel : ∀ {l₁ l₂} → R l₁ l₂ → QuotWordRel l₁ l₂
qwr-cong-l : ∀ {l₁ l₂} → QuotWordRel l₁ l₂ → ∀ l₃ → QuotWordRel (l₁ ++ l₃) (l₂ ++ l₃)
qwr-cong-l qwr l₃ = qwr-cong qwr (qwr-refl idp)
qwr-cong-r : ∀ l₁ {l₂ l₃} → QuotWordRel l₂ l₃ → QuotWordRel (l₁ ++ l₂) (l₁ ++ l₃)
qwr-cong-r l₁ qwr = qwr-cong (qwr-refl (idp {a = l₁})) qwr
abstract
infixr 10 _qwr⟨_⟩_
infixr 10 _qwr⟨id⟩_
infix 15 _qwr∎
_qwr⟨_⟩_ : ∀ l₁ {l₂ l₃} → QuotWordRel l₁ l₂ → QuotWordRel l₂ l₃ → QuotWordRel l₁ l₃
_ qwr⟨ p ⟩ q = qwr-trans p q
_qwr⟨id⟩_ : ∀ l₁ {l₂} → QuotWordRel l₁ l₂ → QuotWordRel l₁ l₂
_ qwr⟨id⟩ q = q
_qwr∎ : ∀ l → QuotWordRel l l
_ qwr∎ = qwr-refl idp
qwr-flip-l : ∀ x₁ → QuotWordRel (flip x₁ :: x₁ :: nil) nil
qwr-flip-l x₁ =
flip x₁ :: x₁ :: nil
qwr⟨ qwr-refl (ap (λ s → flip x₁ :: s :: nil) (! (flip-flip x₁))) ⟩
flip x₁ :: flip (flip x₁) :: nil
qwr⟨ qwr-flip-r (flip x₁) ⟩
nil qwr∎
-- The quotient
QuotWord : Type (lmax i m)
QuotWord = SetQuot QuotWordRel
qw[_] : Word A → QuotWord
qw[_] = q[_]
{-
In the case where this module is used to realize some free construction F
(e.g. free group, free abelian group), this function becomes the unit of
the adjunction F -| U (where U is the forgetful functor).
-}
insert : A → QuotWord
insert a = qw[ inl a :: nil ]
module QuotWordElim {k} {P : QuotWord → Type k}
{{_ : {x : QuotWord} → is-set (P x)}} (incl* : (a : Word A) → P qw[ a ])
(rel* : ∀ {a₁ a₂} (r : QuotWordRel a₁ a₂) → incl* a₁ == incl* a₂ [ P ↓ quot-rel r ])
= SetQuotElim incl* rel*
open QuotWordElim public renaming (f to QuotWord-elim) hiding (quot-rel-β)
module QuotWordRec {k} {B : Type k} {{_ : is-set B}} (incl* : Word A → B)
(rel* : ∀ {a₁ a₂} (r : QuotWordRel a₁ a₂) → incl* a₁ == incl* a₂)
= SetQuotRec incl* rel*
open QuotWordRec public renaming (f to QuotWord-rec)
private
infixl 80 _⊞_
_⊞_ : QuotWord → QuotWord → QuotWord
_⊞_ = QuotWord-rec
(λ l₁ → QuotWord-rec (λ l₂ → qw[ l₁ ++ l₂ ])
(λ r → quot-rel $ qwr-cong-r l₁ r))
(λ {l₁} {l₁'} r → λ= $ QuotWord-elim
(λ l₂ → quot-rel $ qwr-cong-l r l₂)
(λ _ → prop-has-all-paths-↓))
abstract
qwr-cancel-l : ∀ l
→ QuotWordRel (Word-inverse l ++ l) nil
qwr-cancel-l nil = qwr-refl idp
qwr-cancel-l (x :: l) =
Word-inverse (x :: l) ++ (x :: l)
qwr⟨id⟩
(Word-inverse l ++ (flip x :: nil)) ++ (x :: l)
qwr⟨ qwr-refl (++-assoc (reverse (Word-flip l)) (flip x :: nil) (x :: l)) ⟩
Word-inverse l ++ ((flip x :: nil) ++ (x :: l))
qwr⟨id⟩
Word-inverse l ++ (flip x :: x :: l)
qwr⟨ qwr-cong-r (reverse (Word-flip l)) (qwr-cong-l (qwr-flip-l x) l) ⟩
Word-inverse l ++ l
qwr⟨ qwr-cancel-l l ⟩
nil qwr∎
qwr-cancel-r : ∀ l
→ QuotWordRel (l ++ Word-inverse l) nil
qwr-cancel-r l =
l ++ Word-inverse l
qwr⟨ qwr-refl (ap (_++ Word-inverse l) (! (Word-inverse-inverse l))) ⟩
Word-inverse (Word-inverse l) ++ Word-inverse l
qwr⟨ qwr-cancel-l (Word-inverse l) ⟩
nil qwr∎
qwr-cong-inverse : ∀ {l₁ l₂}
→ QuotWordRel l₁ l₂ → QuotWordRel (Word-inverse l₁) (Word-inverse l₂)
qwr-cong-inverse {l₁} {l₂} r =
Word-inverse l₁
qwr⟨ qwr-refl (! (++-unit-r (Word-inverse l₁))) ⟩
Word-inverse l₁ ++ nil
qwr⟨ qwr-cong-r (Word-inverse l₁) (qwr-sym (qwr-cancel-r l₂)) ⟩
Word-inverse l₁ ++ (l₂ ++ Word-inverse l₂)
qwr⟨ qwr-cong-r (Word-inverse l₁) (qwr-cong-l (qwr-sym r) (Word-inverse l₂)) ⟩
reverse (Word-flip l₁) ++ (l₁ ++ Word-inverse l₂)
qwr⟨ qwr-refl (! (++-assoc (Word-inverse l₁) l₁ (Word-inverse l₂))) ⟩
(Word-inverse l₁ ++ l₁) ++ Word-inverse l₂
qwr⟨ qwr-cong-l (qwr-cancel-l l₁) (Word-inverse l₂) ⟩
Word-inverse l₂ qwr∎
⊟ : QuotWord → QuotWord
⊟ = QuotWord-rec (qw[_] ∘ Word-inverse)
(λ r → quot-rel $ qwr-cong-inverse r)
⊞-unit : QuotWord
⊞-unit = qw[ nil ]
abstract
⊞-unit-l : ∀ g → ⊞-unit ⊞ g == g
⊞-unit-l = QuotWord-elim
(λ _ → idp)
(λ _ → prop-has-all-paths-↓)
⊞-assoc : ∀ g₁ g₂ g₃ → (g₁ ⊞ g₂) ⊞ g₃ == g₁ ⊞ (g₂ ⊞ g₃)
⊞-assoc = QuotWord-elim
(λ l₁ → QuotWord-elim
(λ l₂ → QuotWord-elim
(λ l₃ → ap qw[_] $ ++-assoc l₁ l₂ l₃)
(λ _ → prop-has-all-paths-↓))
(λ _ → prop-has-all-paths-↓))
(λ _ → prop-has-all-paths-↓)
⊟-inv-l : ∀ g → (⊟ g) ⊞ g == ⊞-unit
⊟-inv-l = QuotWord-elim
(λ l → quot-rel (qwr-cancel-l l))
(λ _ → prop-has-all-paths-↓)
QuotWord-group-structure : GroupStructure QuotWord
QuotWord-group-structure = record
{ ident = ⊞-unit
; inv = ⊟
; comp = _⊞_
; unit-l = ⊞-unit-l
; assoc = ⊞-assoc
; inv-l = ⊟-inv-l
}
GenGroup : Group (lmax i m)
GenGroup = group _ QuotWord-group-structure
module GenGroup = Group GenGroup
open GenGroup using (El) public
abstract
pres-exp : ∀ (a : A) z →
qw[ Word-exp a z ] == GenGroup.exp qw[ inl a :: nil ] z
pres-exp a (pos O) = idp
pres-exp a (pos (S O)) = idp
pres-exp a (pos (S (S n))) =
ap (GenGroup.comp qw[ inl a :: nil ]) (pres-exp a (pos (S n)))
pres-exp a (negsucc O) = idp
pres-exp a (negsucc (S n)) =
ap (GenGroup.comp qw[ inr a :: nil ]) (pres-exp a (negsucc n))
rel-holds : ∀ {w₁} {w₂} (r : R w₁ w₂) → qw[ w₁ ] == qw[ w₂ ]
rel-holds r = quot-rel (qwr-rel r)
-- freeness
module HomomorphismEquiv {j} (G : Group j) where
private
module G = Group G
open RelationRespectingFunctions A R G public
module _ (fun : RelationRespectingFunction) where
private
module fun = RelationRespectingFunction fun
f* = fun.f
abstract
Word-extendᴳ-emap : ∀ {l₁ l₂}
→ QuotWordRel l₁ l₂
→ Word-extendᴳ G f* l₁ == Word-extendᴳ G f* l₂
Word-extendᴳ-emap (qwr-refl idp) = idp
Word-extendᴳ-emap (qwr-trans qwr qwr₁) = (Word-extendᴳ-emap qwr) ∙ (Word-extendᴳ-emap qwr₁)
Word-extendᴳ-emap (qwr-sym qwr) = ! (Word-extendᴳ-emap qwr)
Word-extendᴳ-emap (qwr-flip-r x) =
G.comp (PlusMinus-extendᴳ G f* x) (PlusMinus-extendᴳ G f* (flip x))
=⟨ ap (G.comp (PlusMinus-extendᴳ G f* x)) (PlusMinus-extendᴳ-flip G f* x) ⟩
G.comp (PlusMinus-extendᴳ G f* x) (G.inv (PlusMinus-extendᴳ G f* x))
=⟨ G.inv-r (PlusMinus-extendᴳ G f* x) ⟩
G.ident =∎
Word-extendᴳ-emap (qwr-cong {l₁} {l₂} {l₃} {l₄} qwr qwr') =
Word-extendᴳ G f* (l₁ ++ l₃)
=⟨ Word-extendᴳ-++ G f* l₁ l₃ ⟩
G.comp (Word-extendᴳ G f* l₁) (Word-extendᴳ G f* l₃)
=⟨ ap2 G.comp (Word-extendᴳ-emap qwr) (Word-extendᴳ-emap qwr') ⟩
G.comp (Word-extendᴳ G f* l₂) (Word-extendᴳ G f* l₄)
=⟨ ! (Word-extendᴳ-++ G f* l₂ l₄) ⟩
Word-extendᴳ G f* (l₂ ++ l₄) =∎
Word-extendᴳ-emap (qwr-rel r) = fun.respects r
extend : (GenGroup →ᴳ G)
extend = record {M} where
module M where
f : QuotWord → G.El
f = QuotWord-rec (Word-extendᴳ G f*)
(λ r → Word-extendᴳ-emap r)
abstract
pres-comp : preserves-comp GenGroup.comp G.comp f
pres-comp =
QuotWord-elim
(λ l₁ → QuotWord-elim
(λ l₂ → Word-extendᴳ-++ G f* l₁ l₂)
(λ _ → prop-has-all-paths-↓))
(λ _ → prop-has-all-paths-↓)
private
module Lemma (hom : GenGroup →ᴳ G) where
private
open GroupHom hom
restr : A → G.El
restr a = f qw[ inl a :: nil ]
abstract
PlusMinus-extendᴳ-hom : ∀ x → PlusMinus-extendᴳ G restr x == f qw[ x :: nil ]
PlusMinus-extendᴳ-hom (inl x) = idp
PlusMinus-extendᴳ-hom (inr x) = ! $ pres-inv qw[ inl x :: nil ]
Word-extendᴳ-hom : ∀ l → Word-extendᴳ G restr l == f qw[ l ]
Word-extendᴳ-hom nil = ! pres-ident
Word-extendᴳ-hom (x :: nil) = PlusMinus-extendᴳ-hom x
Word-extendᴳ-hom (x :: l@(_ :: _)) =
G.comp (PlusMinus-extendᴳ G restr x) (Word-extendᴳ G restr l)
=⟨ ap2 G.comp (PlusMinus-extendᴳ-hom x) (Word-extendᴳ-hom l) ⟩
G.comp (f qw[ x :: nil ]) (f qw[ l ])
=⟨ ! (pres-comp _ _) ⟩
f qw[ x :: l ] =∎
restr-respects-rel : ∀ {l₁ l₂} → R l₁ l₂ → Word-extendᴳ G restr l₁ == Word-extendᴳ G restr l₂
restr-respects-rel {l₁} {l₂} r =
Word-extendᴳ G restr l₁
=⟨ Word-extendᴳ-hom l₁ ⟩
f qw[ l₁ ]
=⟨ ap f (quot-rel (qwr-rel r)) ⟩
f qw[ l₂ ]
=⟨ ! (Word-extendᴳ-hom l₂) ⟩
Word-extendᴳ G restr l₂ =∎
restrict : RelationRespectingFunction
restrict = rel-res-fun restr restr-respects-rel
open Lemma
extend-is-equiv : is-equiv extend
extend-is-equiv = is-eq _ from to-from from-to where
to = extend
from = restrict
abstract
to-from : ∀ h → to (from h) == h
to-from h = group-hom= $ λ= $ QuotWord-elim
(λ l → Word-extendᴳ-hom h l)
(λ _ → prop-has-all-paths-↓)
from-to : ∀ fun → from (to fun) == fun
from-to fun = RelationRespectingFunction= (λ= λ a → idp)
extend-equiv : RelationRespectingFunction ≃ (GenGroup →ᴳ G)
extend-equiv = extend , extend-is-equiv
|
{
"alphanum_fraction": 0.5423040604,
"avg_line_length": 36.1433447099,
"ext": "agda",
"hexsha": "705b27a9eac3d73443c0c88632dc8275258371e5",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AntoineAllioux/HoTT-Agda",
"max_forks_repo_path": "core/lib/groups/GeneratedGroup.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AntoineAllioux/HoTT-Agda",
"max_issues_repo_path": "core/lib/groups/GeneratedGroup.agda",
"max_line_length": 106,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AntoineAllioux/HoTT-Agda",
"max_stars_repo_path": "core/lib/groups/GeneratedGroup.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 4032,
"size": 10590
}
|
module Nat.Class where
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
record Nat (ℕ : Set) : Set₁ where
field
zero : ℕ
succ : ℕ → ℕ
ind : (P : ℕ → Set) → P zero → (∀ {k} → P k → P (succ k)) → ∀ n → P n
_+_ : ℕ → ℕ → ℕ
+-zero : ∀ {n} → zero + n ≡ n
+-succ : ∀ {m n} → succ m + n ≡ m + succ n
module _ {ℕ : Set} {{nn : Nat ℕ}} where
open Nat nn
+-succˡ : {m n : ℕ} → succ m + n ≡ succ (m + n)
+-succˡ {m} {n} = ind Succˡ Succˡ-zero Succˡ-succ m n
where
Succˡ : ℕ → Set
Succˡ m′ = ∀ n′ → succ m′ + n′ ≡ succ (m′ + n′)
Succˡ-zero : Succˡ zero
Succˡ-zero n′ =
begin
succ zero + n′
≡⟨ +-succ ⟩
zero + succ n′
≡⟨ +-zero ⟩
succ n′
≡⟨ cong succ (sym +-zero) ⟩
succ (zero + n′)
∎
Succˡ-succ : ∀ {m′} → Succˡ m′ → Succˡ (succ m′)
Succˡ-succ {m′} ih n′ =
begin
succ (succ m′) + n′
≡⟨ +-succ ⟩
succ m′ + succ n′
≡⟨ ih (succ n′) ⟩
succ (m′ + succ n′)
≡⟨ cong succ (sym +-succ) ⟩
succ (succ m′ + n′)
∎
+-succʳ : {m n : ℕ} → m + succ n ≡ succ (m + n)
+-succʳ = trans (sym +-succ) +-succˡ
+-assoc : {m n p : ℕ} → (m + n) + p ≡ m + (n + p)
+-assoc {m} {n} {p} = ind Assoc Assoc-zero Assoc-succ m
where
Assoc : ℕ → Set
Assoc k = (k + n) + p ≡ k + (n + p)
Assoc-zero : Assoc zero
Assoc-zero =
begin
(zero + n) + p
≡⟨ cong (_+ p) +-zero ⟩
n + p
≡⟨ sym +-zero ⟩
zero + (n + p)
∎
Assoc-succ : ∀ {k} → Assoc k → Assoc (succ k)
Assoc-succ {k} ih =
begin
(succ k + n) + p
≡⟨ cong (_+ p) +-succˡ ⟩
succ (k + n) + p
≡⟨ +-succˡ ⟩
succ ((k + n) + p)
≡⟨ cong succ ih ⟩
succ (k + (n + p))
≡⟨ sym +-succˡ ⟩
succ k + (n + p)
∎
|
{
"alphanum_fraction": 0.3989821883,
"avg_line_length": 23.9634146341,
"ext": "agda",
"hexsha": "3de5919dcb02720d3ef7d172e70d92b665f47b95",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-28T12:49:47.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-28T12:49:47.000Z",
"max_forks_repo_head_hexsha": "1b51e83acf193a556a61d44a4585a6467a383fa3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "iblech/agda-quotients",
"max_forks_repo_path": "src/Nat/Class.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b51e83acf193a556a61d44a4585a6467a383fa3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "iblech/agda-quotients",
"max_issues_repo_path": "src/Nat/Class.agda",
"max_line_length": 73,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "1b51e83acf193a556a61d44a4585a6467a383fa3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "iblech/agda-quotients",
"max_stars_repo_path": "src/Nat/Class.agda",
"max_stars_repo_stars_event_max_datetime": "2021-04-29T13:10:27.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-29T13:10:27.000Z",
"num_tokens": 783,
"size": 1965
}
|
------------------------------------------------------------------------
-- Small parser combinator library used by Mixfix.Cyclic.Grammar
------------------------------------------------------------------------
module Mixfix.Cyclic.Lib where
open import Algebra
open import Codata.Musical.Notation
open import Function using (const)
open import Data.Bool using (Bool; true; false)
open import Data.Nat using (ℕ; zero; suc; _+_)
open import Data.List using (List; []; _∷_; _++_)
import Data.List.Properties
private module LM {A : Set} = Monoid (Data.List.Properties.++-monoid A)
open import Data.List.NonEmpty using (List⁺; _∷_; [_]; _∷⁺_)
open import Data.Maybe using (Maybe; just; nothing; maybe)
open import Data.Vec using (Vec; []; _∷_)
open import Data.Product
import Data.String.Properties as String
open import Relation.Binary
open DecSetoid String.≡-decSetoid using (_≟_)
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality as P using (_≡_; refl)
open import TotalParserCombinators.Parser
renaming (_⊛_ to _⊛′_; _<$>_ to _<$>′_)
import TotalParserCombinators.Lib as Lib
open import Mixfix.Operator using (NamePart)
private
open module Tok = Lib.Token NamePart _≟_ using (tok)
------------------------------------------------------------------------
-- Programs
-- Agda's termination checker only accepts corecursive definitions if
-- they are /syntactically/ guarded by constructors. The following
-- small language of "parser programs" reifies a selection of parser
-- combinators as /constructors/. These constructors are then used in
-- Mixfix.Cyclic.Grammar in order to ensure that Agda accepts the
-- grammars defined there.
infix 55 _+
infixl 50 _⊛_ _⊛∞_ _<$>_
infixl 5 _∣_
infixr 5 _∥_
data ParserProg : Set → Set₁ where
fail : ∀ {R} → ParserProg R
_∣_ : ∀ {R}
(p₁ : ParserProg R)
(p₂ : ParserProg R) →
ParserProg R
_⊛_ : ∀ {R₁ R₂}
(p₁ : ParserProg (R₁ → R₂))
(p₂ : ParserProg R₁) →
ParserProg R₂
_⊛∞_ : ∀ {R₁ R₂}
(p₁ : ∞ (ParserProg (R₁ → R₂)))
(p₂ : ∞ (ParserProg R₁)) →
ParserProg R₂
_<$>_ : ∀ {R₁ R₂} (f : R₁ → R₂)
(p : ParserProg R₁) →
ParserProg R₂
_+ : ∀ {R} (p : ParserProg R) →
ParserProg (List⁺ R)
_between_ : ∀ {R n}
(p : ∞ (ParserProg R)) (toks : Vec NamePart (1 + n)) →
ParserProg (Vec R n)
_∥_ : ∀ {I i} {R : I → Set}
(p₁ : ParserProg (R i))
(p₂ : ParserProg (∃ R)) →
ParserProg (∃ R)
-- Interprets the parser programs as parsers.
⟦_⟧ : ∀ {R} → ParserProg R → Parser NamePart R []
⟦ fail ⟧ = fail
⟦ p₁ ∣ p₂ ⟧ = ⟦ p₁ ⟧ ∣ ⟦ p₂ ⟧
⟦ p₁ ⊛ p₂ ⟧ = ⟦ p₁ ⟧ ⊛′ ⟦ p₂ ⟧
⟦ p₁ ⊛∞ p₂ ⟧ = ♯ ⟦ ♭ p₁ ⟧ ⊛′ ♯ ⟦ ♭ p₂ ⟧
⟦ f <$> p ⟧ = f <$>′ ⟦ p ⟧
⟦ p + ⟧ = one <$>′ ⟦ p ⟧
⊛′ ♯ (⟦ just <$> p + ⟧ ∣ return nothing)
where one = λ x → maybe (_∷⁺_ x) [ x ]
⟦ p between (t ∷ []) ⟧ = const [] <$>′ tok t
⟦ p between
(t ∷ t′ ∷ ts) ⟧ = const _∷_ <$>′ tok t
⊛′ ♯ ⟦ ♭ p ⟧
⊛′ ♯ ⟦ p between (t′ ∷ ts) ⟧
⟦ p₁ ∥ p₂ ⟧ = -,_ <$>′ ⟦ p₁ ⟧
∣ ⟦ p₂ ⟧
------------------------------------------------------------------------
-- Semantics of the programs
module Semantics where
open import TotalParserCombinators.Semantics as Sem
renaming ([_-_]_⊛_ to [_-_]_⊛′_)
-- This definition may seem unnecessary: why not simply define
--
-- x ∈⟦ p ⟧· s = x ∈ ⟦ p ⟧ · s?
--
-- One reason is that it is hard for Agda to infer the value of p
-- from ⟦ p ⟧ (note that ⟦_⟧ is a function which evaluates). By
-- using the definition below this problem is avoided. A more
-- important reason may be that the definition below ensures that
-- the details of ⟦_⟧ do not need to be understood.
infix 60 <$>_
infixl 50 _⊛_ _⊛∞_
infix 4 _∈⟦_⟧·_
data _∈⟦_⟧·_ : ∀ {R} → R → ParserProg R → List NamePart → Set₁ where
∣ˡ : ∀ {R x s}
{p₁ : ParserProg R} {p₂ : ParserProg R}
(x∈p₁ : x ∈⟦ p₁ ⟧· s) → x ∈⟦ p₁ ∣ p₂ ⟧· s
∣ʳ : ∀ {R x s}
{p₁ : ParserProg R} {p₂ : ParserProg R}
(x∈p₂ : x ∈⟦ p₂ ⟧· s) → x ∈⟦ p₁ ∣ p₂ ⟧· s
_⊛_ : ∀ {s₁ s₂ R₁ R₂ f x}
{p₁ : ParserProg (R₁ → R₂)}
{p₂ : ParserProg R₁}
(f∈p₁ : f ∈⟦ p₁ ⟧· s₁)
(x∈p₂ : x ∈⟦ p₂ ⟧· s₂) →
f x ∈⟦ p₁ ⊛ p₂ ⟧· s₁ ++ s₂
_⊛∞_ : ∀ {s₁ s₂ R₁ R₂ f x}
{p₁ : ∞ (ParserProg (R₁ → R₂))}
{p₂ : ∞ (ParserProg R₁)}
(f∈p₁ : f ∈⟦ ♭ p₁ ⟧· s₁)
(x∈p₂ : x ∈⟦ ♭ p₂ ⟧· s₂) →
f x ∈⟦ p₁ ⊛∞ p₂ ⟧· s₁ ++ s₂
<$>_ : ∀ {s R₁ R₂ x} {f : R₁ → R₂} {p : ParserProg R₁}
(x∈p : x ∈⟦ p ⟧· s) → f x ∈⟦ f <$> p ⟧· s
+-[] : ∀ {R x s} {p : ParserProg R}
(x∈p : x ∈⟦ p ⟧· s) → [ x ] ∈⟦ p + ⟧· s
+-∷ : ∀ {R x s₁ s₂ xs} {p : ParserProg R}
(x∈p : x ∈⟦ p ⟧· s₁) (xs∈p : xs ∈⟦ p + ⟧· s₂) →
x ∷⁺ xs ∈⟦ p + ⟧· s₁ ++ s₂
between-[] : ∀ {R t} {p : ∞ (ParserProg R)} →
[] ∈⟦ p between (t ∷ []) ⟧· t ∷ []
between-∷ : ∀ {R n t x xs s₁ s₂}
{p : ∞ (ParserProg R)} {ts : Vec NamePart (suc n)}
(x∈p : x ∈⟦ ♭ p ⟧· s₁)
(xs∈⋯ : xs ∈⟦ p between ts ⟧· s₂) →
x ∷ xs ∈⟦ p between (t ∷ ts) ⟧· t ∷ s₁ ++ s₂
∥ˡ : ∀ {I i} {R : I → Set} {x s}
{p₁ : ParserProg (R i)}
{p₂ : ParserProg (∃ R)}
(x∈p₁ : x ∈⟦ p₁ ⟧· s) → (-, x) ∈⟦ p₁ ∥ p₂ ⟧· s
∥ʳ : ∀ {I i} {R : I → Set} {s i′} {x : R i′}
{p₁ : ParserProg (R i)}
{p₂ : ParserProg (∃ R)}
(x∈p₂ : (-, x) ∈⟦ p₂ ⟧· s) → (-, x) ∈⟦ p₁ ∥ p₂ ⟧· s
-- The semantics is correct. (Note that this proof only establishes
-- language equivalence, not parser equivalence; see
-- TotalParserCombinators.Semantics.)
sound : ∀ {R x s} {p : ParserProg R} →
x ∈⟦ p ⟧· s → x ∈ ⟦ p ⟧ · s
sound (∣ˡ x∈p₁) = ∣-left (sound x∈p₁)
sound (∣ʳ x∈p₂) = ∣-right [] (sound x∈p₂)
sound (f∈p₁ ⊛ x∈p₂) = [ ○ - ○ ] sound f∈p₁ ⊛′ sound x∈p₂
sound (f∈p₁ ⊛∞ x∈p₂) = [ ◌ - ◌ ] sound f∈p₁ ⊛′ sound x∈p₂
sound (<$> x∈p) = <$> sound x∈p
sound (+-[] x∈p) = cast∈ refl refl (proj₂ LM.identity _)
([ ○ - ◌ ] <$> sound x∈p ⊛′ ∣-right [] return)
sound (+-∷ x∈p xs∈p) = [ ○ - ◌ ] <$> sound x∈p ⊛′ ∣-left (<$> sound xs∈p)
sound (∥ˡ x∈p₁) = ∣-left {x = (-, _)} (<$> sound x∈p₁)
sound (∥ʳ x∈p₂) = ∣-right [] (sound x∈p₂)
sound between-[] = <$> Tok.complete
sound (between-∷ {ts = _ ∷ _} x∈p xs∈⋯) =
[ ○ - ◌ ] [ ○ - ◌ ] <$> Tok.complete ⊛′ sound x∈p ⊛′ sound xs∈⋯
complete : ∀ {R x s} (p : ParserProg R) →
x ∈ ⟦ p ⟧ · s → x ∈⟦ p ⟧· s
complete fail ()
complete (p₁ ∣ p₂) (∣-left x∈p₁) = ∣ˡ (complete p₁ x∈p₁)
complete (p₁ ∣ p₂) (∣-right .[] x∈p₂) = ∣ʳ (complete p₂ x∈p₂)
complete (p₁ ⊛ p₂) (f∈p₁ ⊛ y∈p₂) = complete p₁ f∈p₁ ⊛ complete p₂ y∈p₂
complete (p₁ ⊛∞ p₂) (f∈p₁ ⊛ y∈p₂) = complete (♭ p₁) f∈p₁ ⊛∞ complete (♭ p₂) y∈p₂
complete (f <$> p) (<$> x∈p) = <$> complete p x∈p
complete (p +) (<$> x∈p ⊛ ∣-left (<$> xs∈p+)) =
+-∷ (complete p x∈p) (complete (p +) xs∈p+)
complete (p +) (_⊛_ {s₁ = s} (<$> x∈p) (∣-right .[] return)) =
P.subst (λ s → _ ∈⟦ p + ⟧· s)
(P.sym (proj₂ LM.identity s))
(+-[] (complete p x∈p))
complete (p between (t ∷ [])) (<$> t∈) with Tok.sound t t∈
... | (refl , refl) = between-[]
complete (p between (t ∷ t′ ∷ ts)) (<$> t∈ ⊛ x∈p ⊛ xs∈)
with Tok.sound t t∈
... | (refl , refl) =
between-∷ (complete (♭ p) x∈p) (complete (p between (t′ ∷ ts)) xs∈)
complete (p₁ ∥ p₂) (∣-left (<$> x∈p₁)) = ∥ˡ (complete p₁ x∈p₁)
complete (p₁ ∥ p₂) (∣-right .[] x∈p₂) = ∥ʳ (complete p₂ x∈p₂)
------------------------------------------------------------------------
-- A variant of the semantics
-- The alternative semantics defined below may be slightly harder to
-- understand, but it is (language) equivalent to the one above, and
-- it simplifies the proof in Mixfix.Cyclic.Show.
module Semantics-⊕ where
open import TotalParserCombinators.Semantics.Continuation as ContSem
hiding (sound; complete)
infix 60 <$>_
infixl 50 _⊛_ _⊛∞_
infix 4 _⊕_∈⟦_⟧·_
data _⊕_∈⟦_⟧·_ : ∀ {R} →
R → List NamePart →
ParserProg R → List NamePart → Set₁ where
∣ˡ : ∀ {R x s s₁}
{p₁ : ParserProg R} {p₂ : ParserProg R}
(x∈p₁ : x ⊕ s₁ ∈⟦ p₁ ⟧· s) → x ⊕ s₁ ∈⟦ p₁ ∣ p₂ ⟧· s
∣ʳ : ∀ {R x s s₁}
{p₁ : ParserProg R} {p₂ : ParserProg R}
(x∈p₂ : x ⊕ s₁ ∈⟦ p₂ ⟧· s) → x ⊕ s₁ ∈⟦ p₁ ∣ p₂ ⟧· s
_⊛_ : ∀ {s s₁ s₂ R₁ R₂ f x}
{p₁ : ParserProg (R₁ → R₂)}
{p₂ : ParserProg R₁}
(f∈p₁ : f ⊕ s₁ ∈⟦ p₁ ⟧· s)
(x∈p₂ : x ⊕ s₂ ∈⟦ p₂ ⟧· s₁) →
f x ⊕ s₂ ∈⟦ p₁ ⊛ p₂ ⟧· s
_⊛∞_ : ∀ {s s₁ s₂ R₁ R₂ f x}
{p₁ : ∞ (ParserProg (R₁ → R₂))}
{p₂ : ∞ (ParserProg R₁)}
(f∈p₁ : f ⊕ s₁ ∈⟦ ♭ p₁ ⟧· s)
(x∈p₂ : x ⊕ s₂ ∈⟦ ♭ p₂ ⟧· s₁) →
f x ⊕ s₂ ∈⟦ p₁ ⊛∞ p₂ ⟧· s
<$>_ : ∀ {s s′ R₁ R₂ x} {f : R₁ → R₂} {p : ParserProg R₁}
(x∈p : x ⊕ s′ ∈⟦ p ⟧· s) → f x ⊕ s′ ∈⟦ f <$> p ⟧· s
+-[] : ∀ {R x s s₁} {p : ParserProg R}
(x∈p : x ⊕ s₁ ∈⟦ p ⟧· s) → [ x ] ⊕ s₁ ∈⟦ p + ⟧· s
+-∷ : ∀ {R x s s₁ s₂ xs} {p : ParserProg R}
(x∈p : x ⊕ s₁ ∈⟦ p ⟧· s) (xs∈p : xs ⊕ s₂ ∈⟦ p + ⟧· s₁) →
x ∷⁺ xs ⊕ s₂ ∈⟦ p + ⟧· s
between-[] : ∀ {R t s} {p : ∞ (ParserProg R)} →
[] ⊕ s ∈⟦ p between (t ∷ []) ⟧· t ∷ s
between-∷ : ∀ {R n t x xs s s₁ s₂}
{p : ∞ (ParserProg R)} {ts : Vec NamePart (suc n)}
(x∈p : x ⊕ s₁ ∈⟦ ♭ p ⟧· s)
(xs∈⋯ : xs ⊕ s₂ ∈⟦ p between ts ⟧· s₁) →
x ∷ xs ⊕ s₂ ∈⟦ p between (t ∷ ts) ⟧· t ∷ s
∥ˡ : ∀ {I i} {R : I → Set} {x s s′}
{p₁ : ParserProg (R i)}
{p₂ : ParserProg (∃ R)}
(x∈p₁ : x ⊕ s′ ∈⟦ p₁ ⟧· s) →
(-, x) ⊕ s′ ∈⟦ p₁ ∥ p₂ ⟧· s
∥ʳ : ∀ {I i} {R : I → Set} {s s′ i′} {x : R i′}
{p₁ : ParserProg (R i)}
{p₂ : ParserProg (∃ R)}
(x∈p₂ : (-, x) ⊕ s′ ∈⟦ p₂ ⟧· s) →
(-, x) ⊕ s′ ∈⟦ p₁ ∥ p₂ ⟧· s
tok-sound : ∀ t {t′ s₁ s} →
t′ ⊕ s₁ ∈ tok t · s →
t ≡ t′ × s ≡ t′ ∷ s₁
tok-sound t ∈ with ContSem.sound′ ∈
tok-sound t ∈ | (s , refl , ∈′) with Tok.sound t ∈′
tok-sound t ∈ | (.(t ∷ []) , refl , ∈′) | (refl , refl) = (refl , refl)
tok-complete : ∀ {t s} → t ⊕ s ∈ tok t · t ∷ s
tok-complete = ContSem.complete′ (_ , refl , Tok.complete)
sound : ∀ {R x s s′} {p : ParserProg R} →
x ⊕ s′ ∈⟦ p ⟧· s → x ⊕ s′ ∈ ⟦ p ⟧ · s
sound (∣ˡ x∈p₁) = ∣-left (sound x∈p₁)
sound (∣ʳ x∈p₂) = ∣-right [] (sound x∈p₂)
sound (f∈p₁ ⊛ x∈p₂) = [ ○ - ○ ] sound f∈p₁ ⊛ sound x∈p₂
sound (f∈p₁ ⊛∞ x∈p₂) = [ ◌ - ◌ ] sound f∈p₁ ⊛ sound x∈p₂
sound (<$> x∈p) = <$> sound x∈p
sound (+-[] x∈p) = [ ○ - ◌ ] <$> sound x∈p ⊛ ∣-right [] return
sound (+-∷ x∈p xs∈p) = [ ○ - ◌ ] <$> sound x∈p ⊛ ∣-left (<$> sound xs∈p)
sound (∥ˡ x∈p₁) = ∣-left {x = (-, _)} (<$> sound x∈p₁)
sound (∥ʳ x∈p₂) = ∣-right [] (sound x∈p₂)
sound between-[] = <$> tok-complete
sound (between-∷ {ts = _ ∷ _} x∈p xs∈⋯) =
[ ○ - ◌ ] [ ○ - ◌ ] <$> tok-complete ⊛ sound x∈p ⊛ sound xs∈⋯
complete : ∀ {R x s s′} (p : ParserProg R) →
x ⊕ s′ ∈ ⟦ p ⟧ · s → x ⊕ s′ ∈⟦ p ⟧· s
complete fail ()
complete (p₁ ∣ p₂) (∣-left x∈p₁) = ∣ˡ (complete p₁ x∈p₁)
complete (p₁ ∣ p₂) (∣-right .[] x∈p₂) = ∣ʳ (complete p₂ x∈p₂)
complete (p₁ ⊛ p₂) ([ .○ - .○ ] f∈p₁ ⊛ y∈p₂) = complete p₁ f∈p₁ ⊛ complete p₂ y∈p₂
complete (p₁ ⊛∞ p₂) ([ .◌ - .◌ ] f∈p₁ ⊛ y∈p₂) = complete (♭ p₁) f∈p₁ ⊛∞ complete (♭ p₂) y∈p₂
complete (f <$> p) (<$> x∈p) = <$> complete p x∈p
complete (p +) ([ .○ - .◌ ] <$> x∈p ⊛ ∣-left (<$> xs∈p+)) = +-∷ (complete p x∈p) (complete (p +) xs∈p+)
complete (p +) ([ .○ - .◌ ] <$> x∈p ⊛ ∣-right .[] return) = +-[] (complete p x∈p)
complete (p between (t ∷ [])) (<$> t∈) with tok-sound t t∈
... | (refl , refl) = between-[]
complete (p between (t ∷ t′ ∷ ts)) ([ .○ - .◌ ] [ .○ - .◌ ] <$> t∈ ⊛ x∈p ⊛ xs∈)
with tok-sound t t∈
... | (refl , refl) =
between-∷ (complete (♭ p) x∈p) (complete (p between (t′ ∷ ts)) xs∈)
complete (p₁ ∥ p₂) (∣-left (<$> x∈p₁)) = ∥ˡ (complete p₁ x∈p₁)
complete (p₁ ∥ p₂) (∣-right .[] x∈p₂) = ∥ʳ (complete p₂ x∈p₂)
|
{
"alphanum_fraction": 0.4204051013,
"avg_line_length": 41.9182389937,
"ext": "agda",
"hexsha": "2a97c2032b03b143fd4b4482df1f377ea0ddaae3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "Mixfix/Cyclic/Lib.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "Mixfix/Cyclic/Lib.agda",
"max_line_length": 106,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/parser-combinators",
"max_stars_repo_path": "Mixfix/Cyclic/Lib.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z",
"num_tokens": 5581,
"size": 13330
}
|
{-# OPTIONS --cubical #-}
module Demos.AgdaBasics where
open import Level
open import Data.Nat
open import Data.String
data Bool : Type where
false : Bool
true : Bool
_,not! : Bool → Bool
false ,not! = true
true ,not! = false
_∧_ : Bool → Bool → Bool
false ∧ y = false
true ∧ y = y
infixr 1 if_then_else_
if_then_else_ : Bool → A → A → A
if false then true-path else false-path = false-path
if true then true-path else false-path = true-path
natOrString : (x : Bool) → if x then ℕ else String
natOrString true = 4
natOrString false = "false"
|
{
"alphanum_fraction": 0.688172043,
"avg_line_length": 19.2413793103,
"ext": "agda",
"hexsha": "c4f6cb6639969b23cc66f3d699a9124e526f0352",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Demos/AgdaBasics.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Demos/AgdaBasics.agda",
"max_line_length": 52,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Demos/AgdaBasics.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 176,
"size": 558
}
|
module PairUnifier where
record PairUnifier {t} {T : Set t} (t₁ t₂ : T) : Set t where
field
|
{
"alphanum_fraction": 0.6666666667,
"avg_line_length": 16,
"ext": "agda",
"hexsha": "f19c81e4656901710eab9fe133c8097f2f87db7c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/PairUnifier.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/PairUnifier.agda",
"max_line_length": 60,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/PairUnifier.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 36,
"size": 96
}
|
------------------------------------------------------------------------
-- Weak bisimilarity
------------------------------------------------------------------------
{-# OPTIONS --erased-cubical --sized-types #-}
open import Prelude hiding (module W)
module Delay-monad.Alternative.Weak-bisimilarity {a} {A : Type a} where
open import Equality.Propositional
open import Logical-equivalence using (_⇔_)
open import Equivalence-relation equality-with-J
open import Function-universe equality-with-J
open import H-level equality-with-J
open import H-level.Closure equality-with-J
open import Delay-monad.Alternative
open import Delay-monad.Alternative.Equivalence
open import Delay-monad.Alternative.Partial-order
import Delay-monad.Bisimilarity as B
import Delay-monad.Partial-order as PO
infix 4 _≈_
-- Weak bisimilarity.
_≈_ : Delay A → Delay A → Type a
x ≈ y = x ∥⊑∥ y × y ∥⊑∥ x
-- Weak bisimilarity is pointwise propositional.
≈-propositional : ∀ x y → Is-proposition (x ≈ y)
≈-propositional x y =
×-closure 1 (∥⊑∥-propositional x y) (∥⊑∥-propositional y x)
-- Weak bisimilarity is an equivalence relation.
≈-is-equivalence-relation : Is-equivalence-relation _≈_
≈-is-equivalence-relation = record
{ reflexive = λ {x} → ∥⊑∥-reflexive x , ∥⊑∥-reflexive x
; symmetric = λ { (p , q) → q , p }
; transitive = λ {x y z} → Σ-zip (∥⊑∥-transitive x y z)
(flip (∥⊑∥-transitive z y x))
}
-- The notion of weak bisimilarity defined here is logically
-- equivalent (via Delay⇔Delay) to the one defined for the
-- coinductive delay monad (if A is a set).
≈⇔≈ :
Is-set A →
∀ x y → x ≈ y ⇔ _⇔_.to Delay⇔Delay x B.≈ _⇔_.to Delay⇔Delay y
≈⇔≈ A-set x y =
x ∥⊑∥ y × y ∥⊑∥ x ↝⟨ inverse (⊑⇔∥⊑∥ A-set x y ×-cong ⊑⇔∥⊑∥ A-set y x) ⟩
x ⊑ y × y ⊑ x ↝⟨ ⊑⇔⊑ x y ×-cong ⊑⇔⊑ y x ⟩
to x PO.⊑ to y × to y PO.⊑ to x ↝⟨ inverse PO.≈⇔⊑×⊒ ⟩□
to x B.≈ to y □
where
open _⇔_ Delay⇔Delay
≈⇔≈′ :
Is-set A →
∀ {x y} → x B.≈ y ⇔ _⇔_.from Delay⇔Delay x ≈ _⇔_.from Delay⇔Delay y
≈⇔≈′ A-set {x} {y} =
x B.≈ y ↝⟨ PO.≈⇔⊑×⊒ ⟩
x PO.⊑ y × y PO.⊑ x ↝⟨ ⊑⇔⊑′ ×-cong ⊑⇔⊑′ ⟩
from x ⊑ from y × from y ⊑ from x ↝⟨ ⊑⇔∥⊑∥ A-set (from x) (from y) ×-cong ⊑⇔∥⊑∥ A-set (from y) (from x) ⟩□
from x ∥⊑∥ from y × from y ∥⊑∥ from x □
where
open _⇔_ Delay⇔Delay
|
{
"alphanum_fraction": 0.5495420483,
"avg_line_length": 32.904109589,
"ext": "agda",
"hexsha": "8e7f3419af71df3eae27fa7311e80ad08a177fc5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/partiality-monad",
"max_forks_repo_path": "src/Delay-monad/Alternative/Weak-bisimilarity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/partiality-monad",
"max_issues_repo_path": "src/Delay-monad/Alternative/Weak-bisimilarity.agda",
"max_line_length": 113,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/partiality-monad",
"max_stars_repo_path": "src/Delay-monad/Alternative/Weak-bisimilarity.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z",
"num_tokens": 993,
"size": 2402
}
|
-- This code is closely based on code due to Andy Morris.
data _≡⁰_ {A : Set} (@0 x : A) : @0 A → Set where refl : x ≡⁰ x
data _≡ʷ_ {A : Set} (@ω x : A) : @ω A → Set where refl : x ≡ʷ x
works : ∀ {A} {@0 x y : A} → x ≡⁰ y → x ≡ʷ y
works refl = refl
also-works : ∀ {A} {@0 x y : A} → x ≡⁰ y → x ≡ʷ y
also-works {x = x} refl = refl {x = x}
|
{
"alphanum_fraction": 0.5131964809,
"avg_line_length": 31,
"ext": "agda",
"hexsha": "31ed25b9fa8973cafc749e904058ca84c5cd6234",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Succeed/Issue5191.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Succeed/Issue5191.agda",
"max_line_length": 63,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Succeed/Issue5191.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 160,
"size": 341
}
|
{-
Definition of various kinds of categories.
This library follows the UniMath terminology, that is:
Concept Ob C Hom C Univalence
Precategory Type Type No
Category Type Set No
Univalent Category Type Set Yes
This file also contains
- pathToIso : Turns a path between two objects into an isomorphism between them
- opposite categories
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Categories.Category where
open import Cubical.Core.Glue
open import Cubical.Foundations.Prelude
private
variable
ℓ ℓ' : Level
-- Precategories
record Precategory ℓ ℓ' : Type (ℓ-suc (ℓ-max ℓ ℓ')) where
-- no-eta-equality ; NOTE: need eta equality for `opop`
field
ob : Type ℓ
Hom[_,_] : ob → ob → Type ℓ'
id : ∀ x → Hom[ x , x ]
_⋆_ : ∀ {x y z} (f : Hom[ x , y ]) (g : Hom[ y , z ]) → Hom[ x , z ]
⋆IdL : ∀ {x y : ob} (f : Hom[ x , y ]) → (id x) ⋆ f ≡ f
⋆IdR : ∀ {x y} (f : Hom[ x , y ]) → f ⋆ (id y) ≡ f
⋆Assoc : ∀ {u v w x} (f : Hom[ u , v ]) (g : Hom[ v , w ]) (h : Hom[ w , x ]) → (f ⋆ g) ⋆ h ≡ f ⋆ (g ⋆ h)
-- composition: alternative to diagramatic order
_∘_ : ∀ {x y z} (g : Hom[ y , z ]) (f : Hom[ x , y ]) → Hom[ x , z ]
g ∘ f = f ⋆ g
open Precategory
-- Helpful syntax/notation
_[_,_] : (C : Precategory ℓ ℓ') → (x y : C .ob) → Type ℓ'
_[_,_] = Hom[_,_]
-- needed to define this in order to be able to make the subsequence syntax declaration
seq' : ∀ (C : Precategory ℓ ℓ') {x y z} (f : C [ x , y ]) (g : C [ y , z ]) → C [ x , z ]
seq' = _⋆_
infix 15 seq'
syntax seq' C f g = f ⋆⟨ C ⟩ g
-- composition
comp' : ∀ (C : Precategory ℓ ℓ') {x y z} (g : C [ y , z ]) (f : C [ x , y ]) → C [ x , z ]
comp' = _∘_
infix 16 comp'
syntax comp' C g f = g ∘⟨ C ⟩ f
-- Categories
record isCategory (C : Precategory ℓ ℓ') : Type (ℓ-max ℓ ℓ') where
field
isSetHom : ∀ {x y} → isSet (C [ x , y ])
-- Isomorphisms and paths in precategories
record CatIso {C : Precategory ℓ ℓ'} (x y : C .Precategory.ob) : Type ℓ' where
constructor catiso
field
mor : C [ x , y ]
inv : C [ y , x ]
sec : inv ⋆⟨ C ⟩ mor ≡ C .id y
ret : mor ⋆⟨ C ⟩ inv ≡ C .id x
pathToIso : {C : Precategory ℓ ℓ'} (x y : C .ob) (p : x ≡ y) → CatIso {C = C} x y
pathToIso {C = C} x y p = J (λ z _ → CatIso x z) (catiso (C .id x) idx (C .⋆IdL idx) (C .⋆IdL idx)) p
where
idx = C .id x
-- Univalent Categories
record isUnivalent (C : Precategory ℓ ℓ') : Type (ℓ-max ℓ ℓ') where
field
univ : (x y : C .ob) → isEquiv (pathToIso {C = C} x y)
open isUnivalent public
-- Opposite Categories
_^op : Precategory ℓ ℓ' → Precategory ℓ ℓ'
(C ^op) .ob = C .ob
(C ^op) .Hom[_,_] x y = C .Hom[_,_] y x
(C ^op) .id = C .id
(C ^op) ._⋆_ f g = C ._⋆_ g f
(C ^op) .⋆IdL = C .⋆IdR
(C ^op) .⋆IdR = C .⋆IdL
(C ^op) .⋆Assoc f g h = sym (C .⋆Assoc _ _ _)
open isCategory public
-- opposite of opposite is definitionally equal to itself
involutiveOp : ∀ {C : Precategory ℓ ℓ'} → (C ^op) ^op ≡ C
involutiveOp = refl
-- Other useful operations on categories
-- whisker the parallel morphisms g and g' with f
lPrecatWhisker : {C : Precategory ℓ ℓ'} {x y z : C .ob} (f : C [ x , y ]) (g g' : C [ y , z ]) (p : g ≡ g') → f ⋆⟨ C ⟩ g ≡ f ⋆⟨ C ⟩ g'
lPrecatWhisker {C = C} f _ _ p = cong (_⋆_ C f) p
|
{
"alphanum_fraction": 0.5524096386,
"avg_line_length": 26.7741935484,
"ext": "agda",
"hexsha": "ff6c617b103c132560471ddf810fc81652315217",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "apabepa10/cubical",
"max_forks_repo_path": "Cubical/Categories/Category.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "apabepa10/cubical",
"max_issues_repo_path": "Cubical/Categories/Category.agda",
"max_line_length": 134,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "apabepa10/cubical",
"max_stars_repo_path": "Cubical/Categories/Category.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1351,
"size": 3320
}
|
open import Coinduction using ( ♭ ; ♯_ )
open import Data.Unit using ( ⊤ ; tt )
open import System.IO.Transducers.Syntax
using ( lazy ; strict ; _⇒_is_ ; inp ; out ; done )
renaming ( _⟫_ to _⟫'_ ; _[&]_ to _[&]'_ ; _⟨&⟩_ to _⟨&⟩'_ ;
discard to discard' ; π₁ to π₁' ; π₂ to π₂' ;
⟦_⟧ to ⟦_⟧' )
open import System.IO.Transducers.Session using ( Session ; I ; Σ ; _&_ )
open import System.IO.Transducers.Trace using ( Trace )
module System.IO.Transducers.Function where
-- We can regard strict transducers as functions.
-- Note that in the case of S ⇒ T where S is a Σ session,
-- this agrees with the type of inp, so we can regard
-- inp as a function of type ∞ (S ⇒ T) → (S to T is s).
LHS : Session → Set
LHS I = ⊤
LHS (Σ {A} V F) = A
RHS : (S T : Session) → (LHS S) → Set₁
RHS I T a = I ⇒ T is strict
RHS (Σ V F) T a = ♭ F a ⇒ T is lazy
_⇛_ : Session → Session → Set₁
S ⇛ T = (a : LHS S) → (RHS S T a)
-- Map from functions to syntax and back.
φ : ∀ {S T} → (S ⇒ T is strict) → (S ⇛ T)
φ {I} done a = done
φ {Σ W F} (inp P) a = ♭ P a
φ {Σ W F} done a = out a done
φ' : ∀ {S T} → (S ⇛ T) → (S ⇒ T is strict)
φ' {I} P = P tt
φ' {Σ W F} P = inp (♯ P)
-- Semantics of functions is inherited from semantics on syntax
⟦_⟧ : ∀ {S T} → (S ⇛ T) → (Trace S) → (Trace T)
⟦ P ⟧ = ⟦ φ' P ⟧'
-- Structure on functions is inherited from structure on syntax
id : ∀ {S} → (S ⇛ S)
id {S} = φ (done {S})
_⟫_ : ∀ {S T U} → (S ⇛ T) → (T ⇛ U) → (S ⇛ U)
_⟫_ {S} P Q = φ (φ' {S} P ⟫' φ' Q)
_[&]_ : ∀ {S T U V} → (S ⇛ T) → (U ⇛ V) → ((S & U) ⇛ (T & V))
_[&]_ {S} P Q = φ (φ' {S} P [&]' φ' Q)
_⟨&⟩_ : ∀ {S T U} → (S ⇛ T) → (S ⇛ U) → (S ⇛ (T & U))
_⟨&⟩_ {S} P Q = φ (φ' {S} P ⟨&⟩' φ' Q)
discard : ∀ {S} → (S ⇛ I)
discard {S} = φ (discard' {S})
π₁ : ∀ {S T} → ((S & T) ⇛ S)
π₁ {S} = φ (π₁' {S})
π₂ : ∀ {S T} → ((S & T) ⇛ T)
π₂ {S} = φ (π₂' {S})
|
{
"alphanum_fraction": 0.5015957447,
"avg_line_length": 28.0597014925,
"ext": "agda",
"hexsha": "ab0b2e4fbc272f9c580f93c93a8a9d8383e6fad3",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z",
"max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ilya-fiveisky/agda-system-io",
"max_forks_repo_path": "src/System/IO/Transducers/Function.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ilya-fiveisky/agda-system-io",
"max_issues_repo_path": "src/System/IO/Transducers/Function.agda",
"max_line_length": 73,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ilya-fiveisky/agda-system-io",
"max_stars_repo_path": "src/System/IO/Transducers/Function.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z",
"num_tokens": 831,
"size": 1880
}
|
{-# OPTIONS --without-K #-}
open import HoTT
open import homotopy.HSpace renaming (HSpaceStructure to HSS)
open import homotopy.Freudenthal
open import homotopy.IterSuspensionStable
open import homotopy.Pi2HSusp
open import homotopy.EM1HSpace
module homotopy.EilenbergMacLane where
-- EM(G,n) when G is π₁(A,a₀)
module EMImplicit {i} (A : Type i) (cA : is-connected ⟨0⟩ A)
(gA : has-level ⟨ 1 ⟩ A) (A-H : HSS A)
(μcoh : HSS.μe- A-H (HSS.e A-H) == HSS.μ-e A-H (HSS.e A-H)) where
private
a₀ = HSS.e A-H
X = ⊙[ A , a₀ ]
⊙EM : (n : ℕ) → Ptd i
⊙EM O = ⊙Ω X
⊙EM (S n) = ⊙Trunc ⟨ S n ⟩ (⊙Susp^ n X)
module _ (n : ℕ) where
EM = fst (⊙EM n)
embase = snd (⊙EM n)
EM-level : (n : ℕ) → has-level ⟨ n ⟩ (fst (⊙EM n))
EM-level O = gA a₀ a₀
EM-level (S n) = Trunc-level
EM-conn : (n : ℕ) → is-connected ⟨ n ⟩ (EM (S n))
EM-conn n = Trunc-preserves-conn ⟨ S n ⟩
(transport (λ t → is-connected t (fst (⊙Susp^ n X)))
(nlemma n) (⊙Susp^-conn n cA))
where nlemma : (n : ℕ) → (n -2) +2+ ⟨0⟩ == ⟨ n ⟩
nlemma O = idp
nlemma (S n) = ap S (nlemma n)
{-
π (S k) (EM (S n)) (embase (S n)) == π k (EM n) (embase n)
where k > 0 and n = S (S n')
-}
module Stable (k n' : ℕ) (tk : k ≠ 0) (tsk : S k ≠ 0)
(indexing : k ≤ S (S n'))
where
private
n : ℕ
n = S (S n')
lte : ⟨ k ⟩ ≤T ⟨ n ⟩
lte = ⟨⟩-monotone-≤ $ indexing
kle : k ≤ (S n') *2
kle = ≤-trans indexing (lemma n')
where lemma : (n' : ℕ) → S (S n') ≤ (S n') *2
lemma O = inl idp
lemma (S n') = ≤-trans (≤-ap-S (lemma n')) (inr ltS)
private
module SS = Susp^Stable X cA (S n') k tk tsk kle
abstract
stable : π (S k) tsk (⊙EM (S n))
== π k tk (⊙EM n)
stable =
π (S k) tsk (⊙EM (S n))
=⟨ π-below-trunc _ tsk _ _ (≤T-ap-S lte) ⟩
π (S k) tsk (⊙Susp^ n X)
=⟨ SS.stable ⟩
π k tk (⊙Susp^ (S n') X)
=⟨ ! (π-below-trunc _ tk _ _ lte) ⟩
π k tk (⊙EM n) ∎
module BelowDiagonal where
π₁ : (n : ℕ) (t1 : 1 ≠ 0 )
→ π 1 t1 (⊙EM (S (S n))) == LiftUnit-Group
π₁ n t1 =
contr-is-0ᴳ (π 1 t1 (⊙EM (S (S n))))
(connected-at-level-is-contr
(raise-level-≤T (≤T-ap-S (≤T-ap-S (-2≤T (n -2))))
(Trunc-level {n = ⟨0⟩}))
(Trunc-preserves-conn ⟨0⟩ (path-conn (EM-conn (S n)))))
-- some clutter here arises from the definition of <;
-- any simple way to avoid this?
π-below : (k n : ℕ) (tk : k ≠ 0) → (k < n)
→ π k tk (⊙EM n) == LiftUnit-Group
π-below 0 _ tk lt = ⊥-rec (tk idp)
π-below 1 .2 tk ltS = π₁ 0 tk
π-below 1 .3 tk (ltSR ltS) = π₁ 1 tk
π-below 1 (S (S n)) tk (ltSR (ltSR _)) = π₁ n tk
π-below (S (S k)) ._ tssk ltS =
Stable.stable (S k) k (ℕ-S≠O k) tssk (inr ltS)
∙ π-below (S k) _ (ℕ-S≠O k) ltS
π-below (S (S k)) ._ tssk (ltSR ltS) =
Stable.stable (S k) (S k) (ℕ-S≠O k) tssk (inr (ltSR ltS))
∙ π-below (S k) _ (ℕ-S≠O k) (ltSR ltS)
π-below (S (S k)) ._ tssk (ltSR (ltSR ltS)) =
Stable.stable (S k) (S (S k)) (ℕ-S≠O k) tssk (inr (ltSR (ltSR ltS)))
∙ π-below (S k) _ (ℕ-S≠O k) (ltSR (ltSR ltS))
π-below (S (S k)) (S (S (S n))) tssk (ltSR (ltSR (ltSR lt))) =
Stable.stable (S k) n (ℕ-S≠O k) tssk
(inr (<-cancel-S (ltSR (ltSR (ltSR lt)))))
∙ π-below (S k) _ (ℕ-S≠O k) (<-cancel-S (ltSR (ltSR (ltSR lt))))
module OnDiagonal where
π₁ : (tn : 1 ≠ O) (t1 : 1 ≠ O)
→ π 1 tn (⊙EM 1) == π 1 t1 X
π₁ tn t1 =
π-below-trunc 1 tn ⟨ 1 ⟩ X ≤T-refl
∙ ap (λ t → π 1 t X)
(prop-has-all-paths (Π-level (λ _ → ⊥-is-prop)) tn t1)
private
module Π₂ = Pi2HSusp A gA cA A-H μcoh
π₂ : (tn : 2 ≠ O) (t1 : 1 ≠ O)
→ π 2 tn (⊙EM 2) == π 1 t1 X
π₂ tn t1 =
π-below-trunc 2 tn ⟨ 2 ⟩ (⊙Susp X) ≤T-refl
∙ Π₂.π₂-Suspension t1 tn
π-diag : (n : ℕ) (tn : n ≠ 0) (t1 : 1 ≠ O)
→ π n tn (⊙EM n) == π 1 t1 X
π-diag 0 tn _ = ⊥-rec (tn idp)
π-diag 1 tn t1 = π₁ tn t1
π-diag 2 tn t1 = π₂ tn t1
π-diag (S (S (S n))) tn t1 =
Stable.stable (S (S n)) n (ℕ-S≠O _) tn ≤-refl
∙ π-diag (S (S n)) (ℕ-S≠O _) t1
module AboveDiagonal where
π-above : (k n : ℕ) (tk : k ≠ 0) → (n < k)
→ π k tk (⊙EM n) == LiftUnit-Group
π-above k n tk lt =
contr-is-0ᴳ (π k tk (⊙EM n))
(inhab-prop-is-contr
[ idp^ k ]
(Trunc-preserves-level ⟨0⟩ (Ω^-level-in ⟨-1⟩ k _
(raise-level-≤T (lemma lt) (EM-level n)))))
where lemma : {k n : ℕ} → n < k → S (S (n -2)) ≤T ((k -2) +2+ ⟨-1⟩)
lemma ltS = inl (! (+2+-comm _ ⟨-1⟩))
lemma (ltSR lt) = ≤T-trans (lemma lt) (inr ltS)
module Spectrum where
private
module Π₂ = Pi2HSusp A gA cA A-H μcoh
spectrum0 : ⊙Ω (⊙EM 1) == ⊙EM 0
spectrum0 =
⊙Ω (⊙EM 1)
=⟨ ⊙ua (Trunc=-equiv _ _) idp ⟩
⊙Trunc ⟨ 0 ⟩ (⊙Ω X)
=⟨ ⊙ua (unTrunc-equiv _ (gA a₀ a₀)) idp ⟩
⊙Ω X ∎
spectrum1 : ⊙Ω (⊙EM 2) == ⊙EM 1
spectrum1 =
⊙Ω (⊙EM 2)
=⟨ ⊙ua (Trunc=-equiv _ _) idp ⟩
⊙Trunc ⟨ 1 ⟩ (⊙Ω (⊙Susp X))
=⟨ Π₂.⊙main-lemma ⟩
X
=⟨ ! (⊙ua (unTrunc-equiv _ gA) idp) ⟩
⊙EM 1 ∎
private
nlemma : (n : ℕ) → Path {A = ℕ₋₂} (S ((n -2) +2+ ⟨0⟩)) (S (S (n -1)))
nlemma O = idp
nlemma (S n) = ap S (nlemma n)
sconn : (n : ℕ) → is-connected (S (S (n -1))) (fst (⊙Susp^ (S n) X))
sconn n = transport (λ t → is-connected t (fst (⊙Susp^ (S n) X)))
(nlemma n) (⊙Susp^-conn (S n) cA)
kle : (n : ℕ) → ⟨ S (S n) ⟩ ≤T S ((n -1) +2+ S (n -1))
kle O = inl idp
kle (S n) = ≤T-trans (≤T-ap-S (kle n))
(≤T-trans (inl (! (+2+-βr (S n -1) (S n -1))))
(inr ltS))
module FS (n : ℕ) =
FreudenthalEquiv (n -1) (⟨ S (S n) ⟩) (kle n)
(fst (⊙Susp^ (S n) X)) (snd (⊙Susp^ (S n) X)) (sconn n)
spectrumSS : (n : ℕ)
→ ⊙Ω (⊙EM (S (S (S n)))) == ⊙EM (S (S n))
spectrumSS n =
⊙Ω (⊙EM (S (S (S n))))
=⟨ ⊙ua (Trunc=-equiv _ _) idp ⟩
⊙Trunc ⟨ S (S n) ⟩ (⊙Ω (⊙Susp^ (S (S n)) X))
=⟨ ! (FS.⊙path n) ⟩
⊙EM (S (S n)) ∎
abstract
spectrum : (n : ℕ) → ⊙Ω (⊙EM (S n)) == ⊙EM n
spectrum 0 = spectrum0
spectrum 1 = spectrum1
spectrum (S (S n)) = spectrumSS n
module EMExplicit {i} (G : Group i) (G-abelian : is-abelian G) where
module K₁ = EM₁ G
module HSpace = EM₁HSpace G G-abelian
open EMImplicit K₁.EM₁ K₁.EM₁-conn K₁.emlevel HSpace.H-EM₁ HSpace.μcoh public
open BelowDiagonal public using (π-below)
π-diag : (n : ℕ) (tn : n ≠ 0) → π n tn (⊙EM n) == G
π-diag n tn =
OnDiagonal.π-diag n tn (ℕ-S≠O 0) ∙ K₁.π₁.π₁-iso
open AboveDiagonal public using (π-above)
open Spectrum public using (spectrum)
|
{
"alphanum_fraction": 0.4696228045,
"avg_line_length": 31.2882882883,
"ext": "agda",
"hexsha": "995d606a761b198ed556a3715ddbdae1cbc6b8c0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "danbornside/HoTT-Agda",
"max_forks_repo_path": "homotopy/EilenbergMacLane.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "danbornside/HoTT-Agda",
"max_issues_repo_path": "homotopy/EilenbergMacLane.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "danbornside/HoTT-Agda",
"max_stars_repo_path": "homotopy/EilenbergMacLane.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3116,
"size": 6946
}
|
------------------------------------------------------------------------
-- An example
------------------------------------------------------------------------
module RecursiveTypes.Subtyping.Example where
open import Codata.Musical.Notation
open import Data.Fin
open import Data.Nat
open import RecursiveTypes.Syntax
open import RecursiveTypes.Subtyping.Semantic.Coinductive
-- σ = μX. X ⟶ X.
σ : Ty 0
σ = μ var zero ⟶ var zero
-- τ = μX. (X ⟶ ⊥) ⟶ ⊤.
τ : Ty 0
τ = μ (var zero ⟶ ⊥) ⟶ ⊤
-- σ is a subtype of τ.
σ≤τ : σ ≤Coind τ
σ≤τ = ♯ (♯ σ≤τ ⟶ ♯ ⊥) ⟶ ♯ ⊤
|
{
"alphanum_fraction": 0.4707964602,
"avg_line_length": 20.1785714286,
"ext": "agda",
"hexsha": "104caa697dcdaa0b658eb6e4c0cc6eb7ed790ecd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/codata",
"max_forks_repo_path": "RecursiveTypes/Subtyping/Example.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/codata",
"max_issues_repo_path": "RecursiveTypes/Subtyping/Example.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/codata",
"max_stars_repo_path": "RecursiveTypes/Subtyping/Example.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z",
"num_tokens": 172,
"size": 565
}
|
module Sigma.Subst.Properties where
open import Data.Nat using (ℕ; _+_; zero; suc)
open import Data.Fin using (Fin; zero; suc)
open import Sigma.Subst.Core
open import Sigma.Renaming.Base
open import Function using (_∘_)
open import Data.Product using (∃₂; _×_) renaming ( _,_ to ⟨_,_⟩ )
open import Relation.Binary.PropositionalEquality as Eq
using (_≡_; refl; sym; trans; cong; cong₂; cong-app)
open Eq.≡-Reasoning
-- ------------------------------------------------------------------------
-- We require a restricted form of functional extensionality
-- to prove whether to subsitutions are equivalent
postulate
extensionality : ∀ { T U : Set } { f g : T → U }
→ (∀ (x : T) → f x ≡ g x)
→ f ≡ g
-- ------------------------------------------------------------------------
-- Expansion law
-- ------------------------------------------------------------------------
expansion : ∀ { T } ( σ₁ σ₂ : Sub T 0 )
→ σ₁ ≡ σ₂
expansion σ₁ σ₂ = extensionality λ ()
-- ------------------------------------------------------------------------
-- ∷-laws
-- ------------------------------------------------------------------------
-- Also known as the Interaction laws
∷-cong : ∀ { n } { T } { x₁ x₂ : T } { σ₁ σ₂ : Sub T n }
→ x₁ ≡ x₂
→ σ₁ ≡ σ₂
-- ----------------
→ x₁ ∷ σ₁ ≡ x₂ ∷ σ₂
∷-cong x₁≡x₂ σ₁≡σ₂ = cong₂ (_∷_) x₁≡x₂ σ₁≡σ₂
∷-head : ∀ { n } { T } { x : T } { σ : Sub T n }
→ head (x ∷ σ) ≡ x
∷-head = refl
∷-tail : ∀ { n } { T } { x : T } { σ : Sub T n }
→ tail (x ∷ σ) ≡ σ
∷-tail = refl
∷-uncons : ∀ { n } { T } { x : T } { σ : Sub T n }
→ uncons (x ∷ σ) ≡ ⟨ x , σ ⟩
∷-uncons = refl
∷-head-tail-id : ∀ { n } { T } ( σ : Sub T (1 + n) )
→ head σ ∷ tail σ ≡ σ
∷-head-tail-id σ = extensionality lemma
where
lemma : ∀ x → (head σ ∷ tail σ) x ≡ σ x
lemma zero = refl
lemma (suc x) = refl
∷-id-η : ∀ { n } → ( zero ∷ ↑ ) ≡ id { n = 1 + n }
∷-id-η = ∷-head-tail-id id
∷-∘-distrib : ∀ { n } { T U } { x : T } ( σ : Sub T n ) ( f : T → U )
→ f ∘ ( x ∷ σ ) ≡ f x ∷ f ∘ σ
∷-∘-distrib { x = x } σ f = extensionality lemma
where
lemma : ∀ y → (f ∘ (x ∷ σ)) y ≡ ( f x ∷ (f ∘ σ) ) y
lemma zero = refl
lemma (suc y) = refl
∃-split : ∀ { n } { T } ( σ₁ : Sub T (1 + n) )
→ ∃₂ λ ( x : T ) ( σ₂ : Sub T n ) → σ₁ ≡ x ∷ σ₂
∃-split σ = ⟨ head σ , ⟨ tail σ , sym (∷-head-tail-id σ) ⟩ ⟩
-- TODO: Prove these.
-- x₁ ≡ head (x₁ ∷ σ₁) ::-head
-- ≡ head (x₂ ∷ σ₂) cong
-- ≡ x₂ ::-head
postulate
∷-injectiveˡ : ∀ { n } { T } ( x₁ x₂ : T ) ( σ₁ σ₂ : Sub T n )
→ x₁ ∷ σ₁ ≡ x₁ ∷ σ₂ → x₁ ≡ x₂
∷-injectiveʳ : ∀ { n } { T } ( x₁ x₂ : T ) ( σ₁ σ₂ : Sub T n )
→ x₁ ∷ σ₁ ≡ x₁ ∷ σ₂ → σ₁ ≡ σ₂
∷-injective : ∀ { n } { T } ( x₁ x₂ : T ) ( σ₁ σ₂ : Sub T n )
→ x₁ ∷ σ₁ ≡ x₁ ∷ σ₂ → (x₁ ≡ x₂) × (σ₁ ≡ σ₂)
∷-injective x₁ x₂ σ₁ σ₂ x₁∷σ₁≡x₁∷σ₂ = ⟨ (∷-injectiveˡ x₁ x₂ σ₁ σ₂ x₁∷σ₁≡x₁∷σ₂) , (∷-injectiveʳ x₁ x₂ σ₁ σ₂ x₁∷σ₁≡x₁∷σ₂) ⟩
-- ------------------------------------------------------------------------
-- Coincidence laws
-- ------------------------------------------------------------------------
-- Equivalences between uni and multi-variate primitives
++-∷ : ∀ { n } { T } (x : T) (σ : Sub T n)
→ x ∷ σ ≡ [ x ] ++ σ
++-∷ x σ = refl
-- ------------------------------------------------------------------------
-- Multi-variate interaction laws
-- ------------------------------------------------------------------------
++-cong : ∀ { m n } { T } {σ₁¹ σ₁² : Sub T m} {σ₂¹ σ₂² : Sub T n}
→ σ₁¹ ≡ σ₁²
→ σ₂¹ ≡ σ₂²
-- -----------------------
→ σ₁¹ ++ σ₂¹ ≡ σ₁² ++ σ₂²
++-cong refl refl = refl
-- TODO: ++-injective
-- TODO: ++-≥ and ++-<
∷-drop : ∀ { m n } { T } (x : T) (σ : Sub T (m + n))
→ drop (suc m) (x ∷ σ) ≡ drop m σ
∷-drop x σ = extensionality (lemma x σ)
where
lemma : ∀ { m n } { T } (x : T) (σ : Sub T (m + n))
→ ∀ y → drop (suc m) (x ∷ σ) y ≡ drop m σ y
lemma {zero} x σ y = refl
lemma {suc m} x σ y = refl
++-drop : ∀ { m n : ℕ } { T } (σ₁ : Sub T m) (σ₂ : Sub T n)
→ drop m (σ₁ ++ σ₂) ≡ σ₂
++-drop σ₁ σ₂ = extensionality (lemma σ₁ σ₂)
where
lemma : ∀ { m n } { T } (σ₁ : Sub T m) (σ₂ : Sub T n)
→ ∀ x → drop m (σ₁ ++ σ₂) x ≡ σ₂ x
lemma {zero} σ₁ σ₂ x = refl
lemma {suc m} σ₁ σ₂ x = lemma (σ₁ ∘ ↑) σ₂ x
∷-take : ∀ { m n } { T } (x : T) (σ : Sub T (m + n))
→ take (suc m) (x ∷ σ) ≡ x ∷ take m σ
∷-take x σ = extensionality (lemma x σ)
where
lemma : ∀ { m n } { T } (x : T) (σ : Sub T (m + n))
→ ∀ y → take (suc m) (x ∷ σ) y ≡ (x ∷ take m σ) y
lemma x σ zero = refl
lemma x σ (suc y) = refl
++-take : ∀ { m n } { T } (σ₁ : Sub T m) (σ₂ : Sub T n)
→ take m (σ₁ ++ σ₂) ≡ σ₁
++-take σ₁ σ₂ = extensionality (lemma σ₁ σ₂)
where
lemma : ∀ { m n } { T } (σ₁ : Sub T m) (σ₂ : Sub T n)
→ ∀ x → take m (σ₁ ++ σ₂) x ≡ σ₁ x
lemma σ₁ σ₂ zero = refl
lemma σ₁ σ₂ (suc x) = lemma (σ₁ ∘ ↑) σ₂ x
++-take-drop-id : ∀ m { n } { T } (σ : Sub T (m + n))
→ take m σ ++ drop m σ ≡ σ
++-take-drop-id m σ = extensionality (lemma m σ)
where
lemma : ∀ m { n } { T } (σ : Sub T (m + n))
→ ∀ x → (take m σ ++ drop m σ) x ≡ σ x
lemma zero σ x = refl
lemma (suc m) σ zero = refl
lemma (suc m) σ (suc x) = lemma m (σ ∘ ↑) x
∃-splitAt : ∀ m { n } { T } ( σ : Sub T (m + n) )
→ ∃₂ λ ( σ₁ : Sub T m ) ( σ₂ : Sub T n ) → σ ≡ σ₁ ++ σ₂
∃-splitAt m σ = ⟨ take m σ , ⟨ drop m σ , sym (++-take-drop-id m σ) ⟩ ⟩
take-∘-distrib : ∀ m { n } { T U } (σ : Sub T (m + n)) (f : T → U)
→ take m (f ∘ σ) ≡ f ∘ (take m σ)
take-∘-distrib m σ f = extensionality (lemma m σ f)
where
lemma : ∀ m { n } { T U } (σ : Sub T (m + n)) (f : T → U)
→ ∀ x → take m (f ∘ σ) x ≡ (f ∘ (take m σ)) x
lemma .(suc _) σ f zero = refl
lemma .(suc _) σ f (suc x) = refl
drop-∘-distrib : ∀ m { n } { T U } (σ : Sub T (m + n)) (f : T → U)
→ drop m (f ∘ σ) ≡ f ∘ (drop m σ)
drop-∘-distrib m σ f = extensionality (lemma m σ f)
where
lemma : ∀ m { n } { T U } (σ : Sub T (m + n)) (f : T → U)
→ ∀ x → drop m (f ∘ σ) x ≡ (f ∘ (drop m σ)) x
lemma zero σ f x = refl
lemma (suc m) σ f x = refl
++-∘-distrib : ∀ { m n } { T U } (σ₁ : Sub T m) (σ₂ : Sub T n) (f : T → U)
→ f ∘ ( σ₁ ++ σ₂ ) ≡ (f ∘ σ₁) ++ (f ∘ σ₂)
++-∘-distrib { m } σ₁ σ₂ f =
let σ = σ₁ ++ σ₂ in
begin
f ∘ σ
≡⟨ sym (++-take-drop-id m (f ∘ σ)) ⟩
take m (f ∘ σ) ++ drop m (f ∘ σ)
≡⟨ cong₂ _++_ (take-∘-distrib m σ f) (drop-∘-distrib m σ f) ⟩
f ∘ (take m σ) ++ f ∘ (drop m σ)
≡⟨ cong₂ (λ σ₁ σ₂ → f ∘ σ₁ ++ f ∘ σ₂) (++-take σ₁ σ₂) (++-drop σ₁ σ₂) ⟩
(f ∘ σ₁) ++ (f ∘ σ₂)
∎
-- ------------------------------------------------------------------------
-- Sub↔Vec
-- ------------------------------------------------------------------------
-- TODO
|
{
"alphanum_fraction": 0.4053131493,
"avg_line_length": 31.4859813084,
"ext": "agda",
"hexsha": "a3635babec7076587f8da4897ec9bf5f07a0ae6c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bb895fa8a3ccbefbd2c4a135c79744ba06895be7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "johnyob/agda-sigma",
"max_forks_repo_path": "src/Sigma/Subst/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bb895fa8a3ccbefbd2c4a135c79744ba06895be7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "johnyob/agda-sigma",
"max_issues_repo_path": "src/Sigma/Subst/Properties.agda",
"max_line_length": 121,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bb895fa8a3ccbefbd2c4a135c79744ba06895be7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "johnyob/agda-sigma",
"max_stars_repo_path": "src/Sigma/Subst/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2790,
"size": 6738
}
|
------------------------------------------------------------------------
-- Parsing of mixfix operators
------------------------------------------------------------------------
-- This module defines a grammar for the precedence graph g.
open import Mixfix.Expr
module Mixfix.Cyclic.Grammar
(i : PrecedenceGraphInterface)
(g : PrecedenceGraphInterface.PrecedenceGraph i)
where
open import Codata.Musical.Notation
open import Function using (flip; _$_)
open import Data.List using (List; []; _∷_)
open import Data.List.Membership.Propositional using (_∈_)
open import Data.List.Relation.Unary.Any using (here; there)
open import Data.Product
import Relation.Binary.PropositionalEquality as P
open PrecedenceCorrect i g
import TotalParserCombinators.Parser as Parser
open import Mixfix.Fixity
open import Mixfix.Operator
open import Mixfix.Cyclic.Lib renaming (ParserProg to Parser)
-- The following definition uses a lexicographic combination of
-- guarded corecursion and structural recursion.
mutual
-- Expressions.
expr : ∞ (Parser (Expr anyPrecedence))
expr = ♯ precs anyPrecedence
-- Expressions corresponding to zero or more nodes in the precedence
-- graph: operator applications where the outermost operator has one
-- of the precedences ps. The graph g is used for internal
-- expressions.
precs : (ps : List Precedence) → Parser (Expr ps)
precs [] = fail
precs (p ∷ ps) = (λ e → here P.refl ∙ proj₂ e) <$> prec p
∣ weakenE <$> precs ps
-- Expressions corresponding to one node in the precedence graph:
-- operator applications where the outermost operator has
-- precedence p. The graph g is used for internal expressions.
-- The code would be more readable if the delay constructors (♯_)
-- could be omitted.
prec : (p : Precedence) → Parser (∃ (ExprIn p))
prec p = closedOps ∥ nonAssoc ∥ preRight⁺ ∥ postLeft⁺ ∥ fail
module Prec where
-- [ fix ] parses the internal parts of operators with the
-- current precedence level and fixity fix.
[_] = λ (fix : Fixity) → inner (ops p fix)
-- Operator applications where the outermost operator binds
-- tighter than the current precedence level.
p↑ = precs (↑ p)
-- Closed operators.
closedOps : Parser (ExprIn p non)
closedOps = ⟪_⟫ <$> [ closed ]
-- Non-associative infix operators.
nonAssoc : Parser (ExprIn p non)
nonAssoc = ♯ (_⟨_⟩_ <$> p↑ ⊛ [ infx non ]) ⊛∞ ♯ p↑
-- Right associative and prefix operators.
preRight : Parser (Outer p right → ExprIn p right)
preRight = ⟪_⟩_ <$> [ prefx ]
∣ _⟨_⟩ʳ_ <$> p↑ ⊛ [ infx right ]
preRight⁺ : Parser (ExprIn p right)
preRight⁺ = ♯ preRight
⊛∞
♯ (similar <$> preRight⁺ ∣ tighter <$> p↑)
-- Left associative and postfix operators.
postLeft : Parser (Outer p left → ExprIn p left)
postLeft = (λ op e₁ → e₁ ⟨ op ⟫ ) <$> [ postfx ]
∣ (λ op e₂ e₁ → e₁ ⟨ op ⟩ˡ e₂) <$> [ infx left ] ⊛ p↑
postLeft⁺ : Parser (ExprIn p left)
postLeft⁺ = ♯ (flip _$_ <$> ( similar <$> postLeft⁺
∣ tighter <$> p↑
))
⊛∞
♯ postLeft
-- Internal parts (all name parts plus internal expressions) of
-- operators of the given precedence and fixity.
inner : ∀ {fix} (ops : List (∃ (Operator fix))) →
Parser (Inner ops)
inner [] = fail
inner ((_ , op) ∷ ops) =
(λ args → here P.refl ∙ args) <$> (expr between nameParts op)
∣ weakenI <$> inner ops
-- Expression parsers.
expression : Parser.Parser NamePart (Expr anyPrecedence) []
expression = ⟦ ♭ expr ⟧
|
{
"alphanum_fraction": 0.5978835979,
"avg_line_length": 34.0540540541,
"ext": "agda",
"hexsha": "6f17d801c90d639d26086c67b088eef33ae92178",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "Mixfix/Cyclic/Grammar.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "Mixfix/Cyclic/Grammar.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/parser-combinators",
"max_stars_repo_path": "Mixfix/Cyclic/Grammar.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z",
"num_tokens": 993,
"size": 3780
}
|
{-
This second-order equational theory was created from the following second-order syntax description:
syntax PCF
type
N : 0-ary
_↣_ : 2-ary | r30
B : 0-ary
term
app : α ↣ β α -> β | _$_ l20
lam : α.β -> α ↣ β | ƛ_ r10
tr : B
fl : B
ze : N
su : N -> N
pr : N -> N
iz : N -> B | 0?
if : B α α -> α
fix : α.α -> α
theory
(ƛβ) b : α.β a : α |> app (lam(x.b[x]), a) = b[a]
(ƛη) f : α ↣ β |> lam (x. app(f, x)) = f
(zz) |> iz (ze) = tr
(zs) n : N |> iz (su (n)) = fl
(ps) n : N |> pr (su (n)) = n
(ift) t f : α |> if (tr, t, f) = t
(iff) t f : α |> if (fl, t, f) = f
(fix) t : α.α |> fix (x.t[x]) = t[fix (x.t[x])]
-}
module PCF.Equality where
open import SOAS.Common
open import SOAS.Context
open import SOAS.Variable
open import SOAS.Families.Core
open import SOAS.Families.Build
open import SOAS.ContextMaps.Inductive
open import PCF.Signature
open import PCF.Syntax
open import SOAS.Metatheory.SecondOrder.Metasubstitution PCF:Syn
open import SOAS.Metatheory.SecondOrder.Equality PCF:Syn
private
variable
α β γ τ : PCFT
Γ Δ Π : Ctx
infix 1 _▹_⊢_≋ₐ_
-- Axioms of equality
data _▹_⊢_≋ₐ_ : ∀ 𝔐 Γ {α} → (𝔐 ▷ PCF) α Γ → (𝔐 ▷ PCF) α Γ → Set where
ƛβ : ⁅ α ⊩ β ⁆ ⁅ α ⁆̣ ▹ ∅ ⊢ (ƛ 𝔞⟨ x₀ ⟩) $ 𝔟 ≋ₐ 𝔞⟨ 𝔟 ⟩
ƛη : ⁅ α ↣ β ⁆̣ ▹ ∅ ⊢ ƛ (𝔞 $ x₀) ≋ₐ 𝔞
zz : ⁅⁆ ▹ ∅ ⊢ 0? ze ≋ₐ tr
zs : ⁅ N ⁆̣ ▹ ∅ ⊢ 0? (su 𝔞) ≋ₐ fl
ps : ⁅ N ⁆̣ ▹ ∅ ⊢ pr (su 𝔞) ≋ₐ 𝔞
ift : ⁅ α ⁆ ⁅ α ⁆̣ ▹ ∅ ⊢ if tr 𝔞 𝔟 ≋ₐ 𝔞
iff : ⁅ α ⁆ ⁅ α ⁆̣ ▹ ∅ ⊢ if fl 𝔞 𝔟 ≋ₐ 𝔟
fix : ⁅ α ⊩ α ⁆̣ ▹ ∅ ⊢ fix (𝔞⟨ x₀ ⟩) ≋ₐ 𝔞⟨ (fix (𝔞⟨ x₀ ⟩)) ⟩
open EqLogic _▹_⊢_≋ₐ_
open ≋-Reasoning
|
{
"alphanum_fraction": 0.4763279446,
"avg_line_length": 25.1014492754,
"ext": "agda",
"hexsha": "e24f112a545dce9d6ea4d5cff1126c089929c260",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "out/PCF/Equality.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "out/PCF/Equality.agda",
"max_line_length": 99,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "out/PCF/Equality.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 903,
"size": 1732
}
|
{-
This file contains:
- Definition of propositional truncation
-}
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.PropositionalTruncation.Base where
open import Cubical.Core.Primitives
-- Propositional truncation as a higher inductive type:
data ∥_∥ {ℓ} (A : Type ℓ) : Type ℓ where
∣_∣ : A → ∥ A ∥
squash : ∀ (x y : ∥ A ∥) → x ≡ y
-- Mere existence
∃ : ∀ {ℓ ℓ'} (A : Type ℓ) (B : A → Type ℓ') → Type (ℓ-max ℓ ℓ')
∃ A B = ∥ Σ A B ∥
infix 2 ∃-syntax
∃-syntax : ∀ {ℓ ℓ'} (A : Type ℓ) (B : A → Type ℓ') → Type (ℓ-max ℓ ℓ')
∃-syntax = ∃
syntax ∃-syntax A (λ x → B) = ∃[ x ∈ A ] B
|
{
"alphanum_fraction": 0.5711892797,
"avg_line_length": 19.2580645161,
"ext": "agda",
"hexsha": "e040012dfc116459808514b4e2537dacbe8c69ed",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmester0/cubical",
"max_forks_repo_path": "Cubical/HITs/PropositionalTruncation/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmester0/cubical",
"max_issues_repo_path": "Cubical/HITs/PropositionalTruncation/Base.agda",
"max_line_length": 70,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmester0/cubical",
"max_stars_repo_path": "Cubical/HITs/PropositionalTruncation/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z",
"num_tokens": 252,
"size": 597
}
|
-- Andreas, 2017-01-18, issue #2408
-- DLubs were not serialized, thus, there was a problem with
-- level dependent on unused values.
{-# OPTIONS --show-irrelevant #-}
-- {-# OPTIONS -v tc:20 #-}
open import Agda.Primitive
data ⊥ : Set where
data Unit : Set where
unit : Unit
-- Argument a is unused in l
l : (u : Unit) (a : ⊥) → Level
l unit a = lzero
postulate
u : Unit
F : (a : ⊥) → Set (l u a)
-- checked type signature
-- F : (a : ⊥) → Set (l u a)
-- of sort dLub Set (λ a → Set (lsuc (l u a)))
|
{
"alphanum_fraction": 0.5923076923,
"avg_line_length": 18.5714285714,
"ext": "agda",
"hexsha": "96671042cacb9a0af88f52cc902d6a07505e4a78",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2408Unused.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2408Unused.agda",
"max_line_length": 60,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2408Unused.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 180,
"size": 520
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.