Search is not available for this dataset
text
string
meta
dict
------------------------------------------------------------------------ -- The Agda standard library -- -- Natural number division ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Nat.DivMod where open import Agda.Builtin.Nat using (div-helper; mod-helper) open import Data.Fin.Base using (Fin; toℕ; fromℕ<) open import Data.Fin.Properties using (toℕ-fromℕ<) open import Data.Nat.Base as Nat open import Data.Nat.DivMod.Core open import Data.Nat.Divisibility.Core open import Data.Nat.Properties open import Data.Nat.Tactic.RingSolver open import Relation.Binary.PropositionalEquality open import Relation.Nullary.Decidable using (False) open ≤-Reasoning ------------------------------------------------------------------------ -- Definitions -- The division and modulus operations are only defined when the divisor -- is non-zero. The proof of this is defined as an irrelevant -- implict argument of type `False (divisor ≟ 0)`. This allows this -- proof to be automatically inferred when the divisor is of the form -- `suc n`, and hence minimises the number of these proofs that -- need be passed around. You can therefore write `m / suc n` without -- issue. infixl 7 _/_ _%_ -- Natural division _/_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → ℕ m / (suc n) = div-helper 0 n m n -- Natural remainder/modulus _%_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → ℕ m % (suc n) = mod-helper 0 n m n ------------------------------------------------------------------------ -- Relationship between _%_ and _div_ m≡m%n+[m/n]*n : ∀ m n → m ≡ m % suc n + (m / suc n) * suc n m≡m%n+[m/n]*n m n = div-mod-lemma 0 0 m n m%n≡m∸m/n*n : ∀ m n → m % suc n ≡ m ∸ (m / suc n) * suc n m%n≡m∸m/n*n m n-1 = begin-equality m % n ≡˘⟨ m+n∸n≡m (m % n) m/n*n ⟩ m % n + m/n*n ∸ m/n*n ≡˘⟨ cong (_∸ m/n*n) (m≡m%n+[m/n]*n m n-1) ⟩ m ∸ m/n*n ∎ where n = suc n-1; m/n*n = (m / n) * n ------------------------------------------------------------------------ -- Properties of _%_ n%1≡0 : ∀ n → n % 1 ≡ 0 n%1≡0 = a[modₕ]1≡0 n%n≡0 : ∀ n → suc n % suc n ≡ 0 n%n≡0 n = n[modₕ]n≡0 0 n m%n%n≡m%n : ∀ m n → m % suc n % suc n ≡ m % suc n m%n%n≡m%n m n = modₕ-idem 0 m n [m+n]%n≡m%n : ∀ m n → (m + suc n) % suc n ≡ m % suc n [m+n]%n≡m%n m n = a+n[modₕ]n≡a[modₕ]n 0 m n [m+kn]%n≡m%n : ∀ m k n → (m + k * (suc n)) % suc n ≡ m % suc n [m+kn]%n≡m%n m zero n-1 = cong (_% suc n-1) (+-identityʳ m) [m+kn]%n≡m%n m (suc k) n-1 = begin-equality (m + (n + k * n)) % n ≡⟨ cong (_% n) (sym (+-assoc m n (k * n))) ⟩ (m + n + k * n) % n ≡⟨ [m+kn]%n≡m%n (m + n) k n-1 ⟩ (m + n) % n ≡⟨ [m+n]%n≡m%n m n-1 ⟩ m % n ∎ where n = suc n-1 m*n%n≡0 : ∀ m n → (m * suc n) % suc n ≡ 0 m*n%n≡0 = [m+kn]%n≡m%n 0 m%n<n : ∀ m n → m % suc n < suc n m%n<n m n = s≤s (a[modₕ]n<n 0 m n) m%n≤m : ∀ m n → m % suc n ≤ m m%n≤m m n = a[modₕ]n≤a 0 m n m≤n⇒m%n≡m : ∀ {m n} → m ≤ n → m % suc n ≡ m m≤n⇒m%n≡m {m} {n} m≤n with ≤⇒≤″ m≤n ... | less-than-or-equal {k} refl = a≤n⇒a[modₕ]n≡a 0 (m + k) m k %-pred-≡0 : ∀ {m n} {≢0} → (suc m % n) {≢0} ≡ 0 → (m % n) {≢0} ≡ n ∸ 1 %-pred-≡0 {m} {suc n-1} eq = a+1[modₕ]n≡0⇒a[modₕ]n≡n-1 0 n-1 m eq m<[1+n%d]⇒m≤[n%d] : ∀ {m} n d {≢0} → m < (suc n % d) {≢0} → m ≤ (n % d) {≢0} m<[1+n%d]⇒m≤[n%d] {m} n (suc d-1) = k<1+a[modₕ]n⇒k≤a[modₕ]n 0 m n d-1 [1+m%d]≤1+n⇒[m%d]≤n : ∀ m n d {≢0} → 0 < (suc m % d) {≢0} → (suc m % d) {≢0} ≤ suc n → (m % d) {≢0} ≤ n [1+m%d]≤1+n⇒[m%d]≤n m n (suc d-1) leq = 1+a[modₕ]n≤1+k⇒a[modₕ]n≤k 0 n m d-1 leq %-distribˡ-+ : ∀ m n d {≢0} → ((m + n) % d) {≢0} ≡ (((m % d) {≢0} + (n % d) {≢0}) % d) {≢0} %-distribˡ-+ m n d@(suc d-1) = begin-equality (m + n) % d ≡⟨ cong (λ v → (v + n) % d) (m≡m%n+[m/n]*n m d-1) ⟩ (m % d + m / d * d + n) % d ≡⟨ cong (_% d) (+-assoc (m % d) _ n) ⟩ (m % d + (m / d * d + n)) % d ≡⟨ cong (λ v → (m % d + v) % d) (+-comm _ n) ⟩ (m % d + (n + m / d * d)) % d ≡⟨ cong (_% d) (sym (+-assoc (m % d) n _)) ⟩ (m % d + n + m / d * d) % d ≡⟨ [m+kn]%n≡m%n (m % d + n) (m / d) d-1 ⟩ (m % d + n) % d ≡⟨ cong (λ v → (m % d + v) % d) (m≡m%n+[m/n]*n n d-1) ⟩ (m % d + (n % d + (n / d) * d)) % d ≡⟨ sym (cong (_% d) (+-assoc (m % d) (n % d) _)) ⟩ (m % d + n % d + (n / d) * d) % d ≡⟨ [m+kn]%n≡m%n (m % d + n % d) (n / d) d-1 ⟩ (m % d + n % d) % d ∎ %-distribˡ-* : ∀ m n d {≢0} → ((m * n) % d) {≢0} ≡ (((m % d) {≢0} * (n % d) {≢0}) % d) {≢0} %-distribˡ-* m n d@(suc d-1) = begin-equality (m * n) % d ≡⟨ cong (λ h → (h * n) % d) (m≡m%n+[m/n]*n m d-1) ⟩ ((m′ + k * d) * n) % d ≡⟨ cong (λ h → ((m′ + k * d) * h) % d) (m≡m%n+[m/n]*n n d-1) ⟩ ((m′ + k * d) * (n′ + j * d)) % d ≡⟨ cong (_% d) (lemma m′ n′ k j d) ⟩ (m′ * n′ + (m′ * j + (n′ + j * d) * k) * d) % d ≡⟨ [m+kn]%n≡m%n (m′ * n′) (m′ * j + (n′ + j * d) * k) d-1 ⟩ (m′ * n′) % d ≡⟨⟩ ((m % d) * (n % d)) % d ∎ where m′ = m % d n′ = n % d k = m / d j = n / d lemma : ∀ m′ n′ k j d → (m′ + k * d) * (n′ + j * d) ≡ m′ * n′ + (m′ * j + (n′ + j * d) * k) * d lemma = solve-∀ %-remove-+ˡ : ∀ {m} n {d} {≢0} → d ∣ m → ((m + n) % d) {≢0} ≡ (n % d) {≢0} %-remove-+ˡ {m} n {d@(suc d-1)} (divides p refl) = begin-equality (p * d + n) % d ≡⟨ cong (_% d) (+-comm (p * d) n) ⟩ (n + p * d) % d ≡⟨ [m+kn]%n≡m%n n p d-1 ⟩ n % d ∎ %-remove-+ʳ : ∀ m {n d} {≢0} → d ∣ n → ((m + n) % d) {≢0} ≡ (m % d) {≢0} %-remove-+ʳ m {n} {suc _} eq rewrite +-comm m n = %-remove-+ˡ {n} m eq ------------------------------------------------------------------------ -- Properties of _/_ /-congˡ : ∀ {m n o : ℕ} {o≢0} → m ≡ n → (m / o) {o≢0} ≡ (n / o) {o≢0} /-congˡ refl = refl /-congʳ : ∀ {m n o : ℕ} {n≢0 o≢0} → n ≡ o → (m / n) {n≢0} ≡ (m / o) {o≢0} /-congʳ {_} {suc _} {suc _} refl = refl 0/n≡0 : ∀ n {≢0} → (0 / n) {≢0} ≡ 0 0/n≡0 (suc n-1) = refl n/1≡n : ∀ n → n / 1 ≡ n n/1≡n n = a[divₕ]1≡a 0 n n/n≡1 : ∀ n {≢0} → (n / n) {≢0} ≡ 1 n/n≡1 (suc n-1) = n[divₕ]n≡1 n-1 n-1 m*n/n≡m : ∀ m n {≢0} → (m * n / n) {≢0} ≡ m m*n/n≡m m (suc n-1) = a*n[divₕ]n≡a 0 m n-1 m/n*n≡m : ∀ {m n} {≢0} → n ∣ m → (m / n) {≢0} * n ≡ m m/n*n≡m {_} {n@(suc n-1)} (divides q refl) = cong (_* n) (m*n/n≡m q n) m*[n/m]≡n : ∀ {m n} {≢0} → m ∣ n → m * (n / m) {≢0} ≡ n m*[n/m]≡n {m} m∣n = trans (*-comm m (_ / m)) (m/n*n≡m m∣n) m/n*n≤m : ∀ m n {≢0} → (m / n) {≢0} * n ≤ m m/n*n≤m m n@(suc n-1) = begin (m / n) * n ≤⟨ m≤m+n ((m / n) * n) (m % n) ⟩ (m / n) * n + m % n ≡⟨ +-comm _ (m % n) ⟩ m % n + (m / n) * n ≡⟨ sym (m≡m%n+[m/n]*n m n-1) ⟩ m ∎ m/n<m : ∀ m n {≢0} → m ≥ 1 → n ≥ 2 → (m / n) {≢0} < m m/n<m m n@(suc n-1) m≥1 n≥2 = *-cancelʳ-< {n} (m / n) m (begin-strict (m / n) * n ≤⟨ m/n*n≤m m n ⟩ m <⟨ m<m*n m≥1 n≥2 ⟩ m * n ∎) /-mono-≤ : ∀ {m n o p} {o≢0 p≢0} → m ≤ n → o ≥ p → (m / o) {o≢0} ≤ (n / p) {p≢0} /-mono-≤ m≤n (s≤s o≥p) = divₕ-mono-≤ 0 m≤n o≥p /-monoˡ-≤ : ∀ {m n o} {o≢0} → m ≤ n → (m / o) {o≢0} ≤ (n / o) {o≢0} /-monoˡ-≤ {o≢0 = o≢0} m≤n = /-mono-≤ {o≢0 = o≢0} {o≢0} m≤n ≤-refl /-monoʳ-≤ : ∀ m {n o} {n≢0 o≢0} → n ≥ o → (m / n) {n≢0} ≤ (m / o) {o≢0} /-monoʳ-≤ _ {n≢0 = n≢0} {o≢0} n≥o = /-mono-≤ {o≢0 = n≢0} {o≢0} ≤-refl n≥o m≥n⇒m/n>0 : ∀ {m n n≢0} → m ≥ n → (m / n) {n≢0} > 0 m≥n⇒m/n>0 {m@(suc m-1)} {n@(suc n-1)} m≥n = begin 1 ≡⟨ sym (n/n≡1 m) ⟩ m / m ≤⟨ /-monoʳ-≤ m m≥n ⟩ m / n ∎ +-distrib-/ : ∀ m n {d} {≢0} → (m % d) {≢0} + (n % d) {≢0} < d → ((m + n) / d) {≢0} ≡ (m / d) {≢0} + (n / d) {≢0} +-distrib-/ m n {suc d-1} leq = +-distrib-divₕ 0 0 m n d-1 leq +-distrib-/-∣ˡ : ∀ {m} n {d} {≢0} → d ∣ m → ((m + n) / d) {≢0} ≡ (m / d) {≢0} + (n / d) {≢0} +-distrib-/-∣ˡ {m} n {d@(suc d-1)} (divides p refl) = +-distrib-/ m n (begin-strict p * d % d + n % d ≡⟨ cong (_+ n % d) (m*n%n≡0 p d-1) ⟩ n % d <⟨ m%n<n n d-1 ⟩ d ∎) +-distrib-/-∣ʳ : ∀ {m} n {d} {≢0} → d ∣ n → ((m + n) / d) {≢0} ≡ (m / d) {≢0} + (n / d) {≢0} +-distrib-/-∣ʳ {m} n {d@(suc d-1)} (divides p refl) = +-distrib-/ m n (begin-strict m % d + p * d % d ≡⟨ cong (m % d +_) (m*n%n≡0 p d-1) ⟩ m % d + 0 ≡⟨ +-identityʳ _ ⟩ m % d <⟨ m%n<n m d-1 ⟩ d ∎) *-/-assoc : ∀ m {n d} {≢0} → d ∣ n → (m * n / d) {≢0} ≡ m * ((n / d) {≢0}) *-/-assoc zero {_} {d@(suc _)} d∣n = 0/n≡0 (suc d) *-/-assoc (suc m) {n} {d@(suc _)} d∣n = begin-equality (n + m * n) / d ≡⟨ +-distrib-/-∣ˡ _ d∣n ⟩ n / d + (m * n) / d ≡⟨ cong (n / d +_) (*-/-assoc m d∣n) ⟩ n / d + m * (n / d) ∎ ------------------------------------------------------------------------ -- A specification of integer division. record DivMod (dividend divisor : ℕ) : Set where constructor result field quotient : ℕ remainder : Fin divisor property : dividend ≡ toℕ remainder + quotient * divisor infixl 7 _div_ _mod_ _divMod_ _div_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → ℕ _div_ = _/_ _mod_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → Fin divisor m mod (suc n) = fromℕ< (m%n<n m n) _divMod_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → DivMod dividend divisor m divMod n@(suc n-1) = result (m / n) (m mod n) (begin-equality m ≡⟨ m≡m%n+[m/n]*n m n-1 ⟩ m % n + [m/n]*n ≡⟨ cong (_+ [m/n]*n) (sym (toℕ-fromℕ< (m%n<n m n-1))) ⟩ toℕ (fromℕ< (m%n<n m n-1)) + [m/n]*n ∎) where [m/n]*n = m / n * n ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 1.1 a≡a%n+[a/n]*n = m≡m%n+[m/n]*n {-# WARNING_ON_USAGE a≡a%n+[a/n]*n "Warning: a≡a%n+[a/n]*n was deprecated in v1.1. Please use m≡m%n+[m/n]*n instead." #-} a%1≡0 = n%1≡0 {-# WARNING_ON_USAGE a%1≡0 "Warning: a%1≡0 was deprecated in v1.1. Please use n%1≡0 instead." #-} a%n%n≡a%n = m%n%n≡m%n {-# WARNING_ON_USAGE a%n%n≡a%n "Warning: a%n%n≡a%n was deprecated in v1.1. Please use m%n%n≡m%n instead." #-} [a+n]%n≡a%n = [m+n]%n≡m%n {-# WARNING_ON_USAGE [a+n]%n≡a%n "Warning: [a+n]%n≡a%n was deprecated in v1.1. Please use [m+n]%n≡m%n instead." #-} [a+kn]%n≡a%n = [m+kn]%n≡m%n {-# WARNING_ON_USAGE [a+kn]%n≡a%n "Warning: [a+kn]%n≡a%n was deprecated in v1.1. Please use [m+kn]%n≡m%n instead." #-} kn%n≡0 = m*n%n≡0 {-# WARNING_ON_USAGE kn%n≡0 "Warning: kn%n≡0 was deprecated in v1.1. Please use m*n%n≡0 instead." #-} a%n<n = m%n<n {-# WARNING_ON_USAGE a%n<n "Warning: a%n<n was deprecated in v1.1. Please use m%n<n instead." #-}
{ "alphanum_fraction": 0.4112813885, "avg_line_length": 36.7186440678, "ext": "agda", "hexsha": "48329677b5a16ed20a43764b799026722a78f259", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Nat/DivMod.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Nat/DivMod.agda", "max_line_length": 120, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Nat/DivMod.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 5419, "size": 10832 }
{-# OPTIONS --cubical #-} module Miscellaneous.CubicalInteger where import Lvl open import Numeral.Natural as ℕ using (ℕ) open import Numeral.Sign as Sign using (−|+ ; −|0|+ ; ➖ ; ➕) open import Type.Cubical open import Type.Cubical.Path.Equality open import Type apply : ∀{ℓ}{T : Type{ℓ}}{x y : T} → Interval → (x ≡ y) → T apply i xy = xy i infix 10010 −ₙ_ +ₙ_ infix 10020 _+_ _−_ -- The type of integers ℤ = {…,−2,−1,0,1,2,…}. -- Represented by using the exclusive union of ℕ and ℕ, but the zeroes are equal. data ℤ : Type{Lvl.𝟎} where signed : (−|+) → ℕ → ℤ 𝟎-sign : (signed ➖ ℕ.𝟎 ≡ signed ➕ ℕ.𝟎) -- Intuitive constructor patterns -- −ₙ_ : ℕ → ℤ -- +ₙ_ : ℕ → ℤ pattern −ₙ_ n = signed ➖ n pattern +ₙ_ n = signed ➕ n pattern 𝟎 = +ₙ(ℕ.𝟎) -- Zero (0). pattern 𝟏 = +ₙ(ℕ.𝟏) -- One (1). pattern −𝟏 = −ₙ(ℕ.𝟏) -- Negative one (−1). open import Structure.Relator.Properties open import Type.Cubical.Path open import Type.Cubical.Path.Proofs -- module _ where -- open import Type.Isomorphism -- postulate univalence : ∀{ℓ}{A B : Type{ℓ}} → (A ≅ B) ≅ (A ≡ B) elim : ∀{ℓ} → (P : ℤ → Type{ℓ}) → (neg : (n : ℕ) → P(−ₙ n)) → (pos : (n : ℕ) → P(+ₙ n)) → PathP(pointOn(map P 𝟎-sign)) (neg ℕ.𝟎) (pos ℕ.𝟎) → ((n : ℤ) → P(n)) elim(P) neg _ eq (−ₙ n) = neg n elim(P) _ pos eq (+ₙ n) = pos n elim(P) _ _ eq (𝟎-sign i) = eq i -- Sign. -- The sign part of an integer where zero is interpreted as positive. -- Notes on the proof of the path: -- The 𝟎-sign case guarantees that the function respects the congruence property (in this case (−0 = +0) → (sign(−0) = sign(+0))). -- It is proven by providing the value on a path varying on the variable `i`. In this case, it is constant (both −0 and +0 maps to ➕). sign : ℤ → (−|+) sign (signed _ ℕ.𝟎) = ➕ sign (signed s (ℕ.𝐒(_))) = s sign (𝟎-sign i) = ➕ -- Zeroable sign. sign₀ : ℤ → (−|0|+) sign₀ (signed s ℕ.𝟎) = Sign.𝟎 sign₀ (signed s (ℕ.𝐒(_))) = Sign.zeroable s sign₀ (𝟎-sign i) = Sign.𝟎 -- Absolute value. -- The natural part of an integer. absₙ : ℤ → ℕ absₙ(−ₙ n) = n absₙ(+ₙ n) = n absₙ(𝟎-sign _) = ℕ.𝟎 open import Data.Either open import Functional using (_$_) open import Logic.Propositional import Numeral.Sign.Oper as Sign import Numeral.Natural.Oper as ℕ open import Relator.Equals using () renaming (_≡_ to Id ; [≡]-intro to Id-intro) open import Relator.Equals.Proofs.Equivalence using () renaming ([≡]-equiv to Id-equiv ; [≡]-symmetry to Id-symmetry ; [≡]-to-function to Id-to-function ; [≡]-function to Id-function) open import Syntax.Transitivity Sign-decidable-eq : ∀(s₁ s₂ : (−|+)) → (Id s₁ s₂ ∨ ¬(Id s₁ s₂)) Sign-decidable-eq ➕ ➕ = [∨]-introₗ Id-intro Sign-decidable-eq ➕ ➖ = [∨]-introᵣ \() Sign-decidable-eq ➖ ➕ = [∨]-introᵣ \() Sign-decidable-eq ➖ ➖ = [∨]-introₗ Id-intro step : (−|+) → ℤ → ℤ step s₁ (signed s₂ n) with Sign-decidable-eq s₁ s₂ step _ (signed s n) | Left _ = signed s (ℕ.𝐒(n)) step s₁ (signed s₂ ℕ.𝟎) | Right _ = signed s₁ (ℕ.𝐒(ℕ.𝟎)) step s₁ (signed s₂ (ℕ.𝐒(n))) | Right _ = signed s₂ n step ➕ (𝟎-sign i) = 𝟏 step ➖ (𝟎-sign i) = −𝟏 -- Predecessor. -- Alternative implementation: -- 𝐏(−ₙ n) = −ₙ(ℕ.𝐒(n)) -- 𝐏(+ₙ ℕ.𝟎) = −ₙ(ℕ.𝐒(ℕ.𝟎)) -- 𝐏(+ₙ(ℕ.𝐒 n)) = +ₙ n -- 𝐏(𝟎-sign i) = reflexivity(_≡_) {−𝟏} i 𝐏 : ℤ → ℤ 𝐏 = step ➖ -- Successor. -- Alternative implementation: -- 𝐒(−ₙ(ℕ.𝐒 n)) = −ₙ n -- 𝐒(−ₙ ℕ.𝟎) = +ₙ(ℕ.𝐒(ℕ.𝟎)) -- 𝐒(+ₙ n) = +ₙ(ℕ.𝐒(n)) -- 𝐒(𝟎-sign i) = reflexivity(_≡_) {𝟏} i 𝐒 : ℤ → ℤ 𝐒 = step ➕ -- Negation. −_ : ℤ → ℤ −(signed s n) = signed (Sign.− s) n −(𝟎-sign i) = symmetry(_≡_) 𝟎-sign i -- Absolute value. abs : ℤ → ℤ abs(signed _ n) = signed ➕ n abs(𝟎-sign i) = 𝟎 -- Addition. _+_ : ℤ → ℤ → ℤ x + (signed _ ℕ.𝟎) = x x + (signed s (ℕ.𝐒(y))) = step s (x + (signed s y)) x + 𝟎-sign i = x -- Subtraction. _−_ : ℤ → ℤ → ℤ x − y = x + (− y) import Numeral.Natural.Oper.Proofs as ℕ _⋅_ : ℤ → ℤ → ℤ x ⋅ y = signed ((sign x) Sign.⨯ (sign y)) ((absₙ x) ℕ.⋅ (absₙ y)) 𝟎-signs : ∀{s₁ s₂} → (signed s₁ ℕ.𝟎 ≡ signed s₂ ℕ.𝟎) 𝟎-signs {➕} {➕} = reflexivity(_≡_) 𝟎-signs {➕} {➖} = symmetry(_≡_) 𝟎-sign 𝟎-signs {➖} {➕} = 𝟎-sign 𝟎-signs {➖} {➖} = reflexivity(_≡_) -- Notes on the proof of the path: -- 𝐏(𝟎-sign i) = −𝟏 -- 𝐒(𝐏(𝟎-sign i)) = 𝐒(−𝟏) = −𝟎 -- and -- • i=0: const(−ₙ 0) j = −ₙ 0 -- • i=1: 𝟎-sign j -- • j=0: −ₙ 0 -- • j=1: 𝟎-sign i -- which means: -- • i=0 ∧ j=0: −0 , −0 -- • i=0 ∧ j=1: −0 , −0 -- • i=1 ∧ j=0: −0 , −0 -- • i=1 ∧ j=1: +0 , +0 -- The value varies between −0 and +0. Therefore, a path between them should be used: 𝟎-sign. -- It is −𝟎 when i or j is 0 and +𝟎 when i and j is 0. Therefore, min. 𝐒-𝐏-inverses : ∀{n} → (𝐒(𝐏(n)) ≡ n) 𝐒-𝐏-inverses {+ₙ(ℕ.𝟎)} = 𝟎-sign 𝐒-𝐏-inverses {+ₙ(ℕ.𝐒(x))} = reflexivity(_≡_) 𝐒-𝐏-inverses {−ₙ x} = reflexivity(_≡_) 𝐒-𝐏-inverses {𝟎-sign i} j = 𝟎-sign (Interval.min i j) 𝐏-𝐒-inverses : ∀{n} → (𝐏(𝐒(n)) ≡ n) 𝐏-𝐒-inverses {−ₙ(ℕ.𝟎)} = symmetry(_≡_) 𝟎-sign 𝐏-𝐒-inverses {−ₙ(ℕ.𝐒(x))} = reflexivity(_≡_) 𝐏-𝐒-inverses {+ₙ x} = reflexivity(_≡_) 𝐏-𝐒-inverses {𝟎-sign i} j = 𝟎-sign (Interval.max i (Interval.flip j)) step-inverses : ∀{s₁ s₂}{n} → ¬(Id s₁ s₂) → (step s₁ (step s₂ n) ≡ n) step-inverses {➕} {➕} eq with () ← eq Id-intro step-inverses {➕} {➖} eq = 𝐒-𝐏-inverses step-inverses {➖} {➕} eq = 𝐏-𝐒-inverses step-inverses {➖} {➖} eq with () ← eq Id-intro open import Structure.Function.Domain {- TODO: Is something similar to this possible? Maybe (rel = ∀{x} → Unique(P(x))) instead? induction : ∀{ℓ} → (P : ℤ → Type{ℓ}) → (∀{x y} → (x ≡ y) → P(x) → P(y)) → ((n : ℕ) → P(−ₙ n)) → P(𝟎) → ((n : ℕ) → P(+ₙ n)) → ((n : ℤ) → P(n)) induction(P) rel neg zero pos n = elim(P) neg pos ? n -} open import Functional using (_∘_) import Numeral.Sign.Proofs as Sign open import Structure.Function import Structure.Operator.Names as Names open import Structure.Operator.Properties open import Structure.Operator 𝐒-to-step : ∀{s}{n} → (signed s (ℕ.𝐒(n)) ≡ step s (signed s n)) 𝐒-to-step {➕} {n} = reflexivity(_≡_) 𝐒-to-step {➖} {n} = reflexivity(_≡_) step-swap : ∀{s₁ s₂}{x} → (step s₁ (step s₂ x) ≡ step s₂ (step s₁ x)) step-swap {➕} {➕} {x} = reflexivity(_≡_) step-swap {➕} {➖} {x} = 𝐒-𝐏-inverses {x} 🝖 symmetry(_≡_) 𝐏-𝐒-inverses step-swap {➖} {➕} {x} = 𝐏-𝐒-inverses {x} 🝖 symmetry(_≡_) 𝐒-𝐏-inverses step-swap {➖} {➖} {x} = reflexivity(_≡_) [+]ᵣ-of-step : ∀{s}{x y} → (x + step s(y) ≡ step s(x + y)) [+]ᵣ-of-step {s₁}{x} {signed s₂ n} with Sign-decidable-eq s₁ s₂ [+]ᵣ-of-step {s} {x} {signed s n} | Left Id-intro = reflexivity(_≡_) [+]ᵣ-of-step {➕} {x} {signed ➕ n} | Right p with () ← p Id-intro [+]ᵣ-of-step {➕} {x} {signed ➖ ℕ.𝟎} | Right _ = reflexivity(_≡_) [+]ᵣ-of-step {➖} {x} {signed ➕ ℕ.𝟎} | Right _ = reflexivity(_≡_) [+]ᵣ-of-step {➕} {x} {signed ➖ (ℕ.𝐒 n)} | Right _ = symmetry(_≡_) 𝐒-𝐏-inverses [+]ᵣ-of-step {➖} {x} {signed ➕ (ℕ.𝐒 n)} | Right _ = symmetry(_≡_) 𝐏-𝐒-inverses [+]ᵣ-of-step {➖} {x} {signed ➖ n} | Right p with () ← p Id-intro [+]ᵣ-of-step {➕} {x} {𝟎-sign i} = reflexivity(_≡_) [+]ᵣ-of-step {➖} {x} {𝟎-sign i} = reflexivity(_≡_) [+]ₗ-of-step : ∀{s}{x y} → (step s(x) + y ≡ step s(x + y)) [+]ₗ-of-step {s₁} {x} {signed s₂ ℕ.𝟎} = reflexivity(_≡_) [+]ₗ-of-step {s₁} {x} {signed s₂ (ℕ.𝐒 n)} = step s₁ x + signed s₂ (ℕ.𝐒 n) 🝖[ _≡_ ]-[] step s₂ (step s₁ x + signed s₂ n) 🝖[ _≡_ ]-[ congruence₂ᵣ(step)(s₂) ([+]ₗ-of-step {s₁} {x} {signed s₂ n}) ] step s₂ (step s₁ (x + signed s₂ n)) 🝖[ _≡_ ]-[ step-swap{s₂}{s₁}{x + signed s₂ n} ] step s₁ (step s₂ (x + signed s₂ n)) 🝖[ _≡_ ]-[ congruence₂ᵣ(step)(s₁) ([+]ᵣ-of-step {s₂} {x} {signed s₂ n}) ]-sym step s₁ (x + step s₂ (signed s₂ n)) 🝖[ _≡_ ]-[ congruence₂ᵣ(step)(s₁) (congruence₂ᵣ(_+_)(x) (𝐒-to-step {s₂}{n})) ]-sym step s₁ (x + signed s₂ (ℕ.𝐒 n)) 🝖-end [+]ₗ-of-step {➕} {signed ➕ ℕ.𝟎} {𝟎-sign i} j = 𝟏 [+]ₗ-of-step {➕} {signed ➖ ℕ.𝟎} {𝟎-sign i} j = 𝟏 [+]ₗ-of-step {➖} {signed ➕ ℕ.𝟎} {𝟎-sign i} j = −𝟏 [+]ₗ-of-step {➖} {signed ➖ ℕ.𝟎} {𝟎-sign i} j = −𝟏 [+]ₗ-of-step {➕} {signed ➕ (ℕ.𝐒 n)} {𝟎-sign i} j = +ₙ (ℕ.𝐒(ℕ.𝐒 n)) [+]ₗ-of-step {➕} {signed ➖ (ℕ.𝐒 n)} {𝟎-sign i} j = −ₙ n [+]ₗ-of-step {➖} {signed ➕ (ℕ.𝐒 n)} {𝟎-sign i} j = +ₙ n [+]ₗ-of-step {➖} {signed ➖ (ℕ.𝐒 n)} {𝟎-sign i} j = −ₙ (ℕ.𝐒(ℕ.𝐒 n)) [+]ₗ-of-step {➕} {𝟎-sign i₁} {𝟎-sign i} j = 𝟏 [+]ₗ-of-step {➖} {𝟎-sign i₁} {𝟎-sign i} j = −𝟏 instance [−]-involution : Involution(−_) Involution.proof [−]-involution {signed s n} rewrite involution(Sign.−_) {s} = reflexivity(_≡_) Involution.proof [−]-involution {𝟎-sign i} = reflexivity(_≡_) instance [+]-commutativity : Commutativity(_+_) Commutativity.proof [+]-commutativity {x}{y} = p{x}{y} where p : Names.Commutativity(_+_) ps : ∀{x}{s}{n} → (x + signed s (ℕ.𝐒 n) ≡ signed s (ℕ.𝐒 n) + x) ps {x}{s}{n} = (x + signed s (ℕ.𝐒 n)) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(_) (𝐒-to-step{s}{n}) ] (x + step s(signed s n)) 🝖[ _≡_ ]-[ [+]ᵣ-of-step {s}{x}{signed s n} ] step s(x + signed s n) 🝖[ _≡_ ]-[ congruence₂ᵣ(step)(s) (p {x} {signed s n}) ] step s(signed s n + x) 🝖[ _≡_ ]-[ [+]ₗ-of-step {s}{signed s n}{x} ]-sym (step s(signed s n) + x) 🝖[ _≡_ ]-[ congruence₂ₗ(_+_)(x) (𝐒-to-step{s}{n}) ]-sym (signed s (ℕ.𝐒 n) + x) 🝖-end {-# INLINE ps #-} p {signed s₁ ℕ.𝟎} {signed s₂ ℕ.𝟎} = congruence₂(_+_) (𝟎-signs {s₁}{s₂}) (𝟎-signs {s₂}{s₁}) p {signed s₁ ℕ.𝟎} {signed s₂ (ℕ.𝐒 n₂)} = ps {signed s₁ ℕ.𝟎}{s₂}{n₂} p {signed s₁ (ℕ.𝐒 n₁)} {signed s₂ ℕ.𝟎} = symmetry(_≡_) (ps {signed s₂ ℕ.𝟎}{s₁}{n₁}) p {signed s₁ (ℕ.𝐒 n₁)} {signed s₂ (ℕ.𝐒 n₂)} = ps {signed s₁ (ℕ.𝐒 n₁)}{s₂}{n₂} p {signed ➕ ℕ.𝟎} {𝟎-sign i} j = 𝟎-sign (Interval.max i (Interval.flip j)) p {signed ➖ ℕ.𝟎} {𝟎-sign i} j = 𝟎-sign (Interval.min i j) p {signed ➕ (ℕ.𝐒 n)} {𝟎-sign i} j = {!!} p {signed ➖ (ℕ.𝐒 n)} {𝟎-sign i} j = {!!} p {𝟎-sign i} {signed ➕ ℕ.𝟎} j = 𝟎-sign (Interval.max i j) p {𝟎-sign i} {signed ➖ ℕ.𝟎} j = 𝟎-sign (Interval.min i (Interval.flip j)) p {𝟎-sign i} {signed ➕ (ℕ.𝐒 n)} j = {!!} p {𝟎-sign i} {signed ➖ (ℕ.𝐒 n)} j = {!!} p {𝟎-sign i} {𝟎-sign j} k = {!!} instance [+]-identityᵣ : Identityᵣ(_+_)(𝟎) Identityᵣ.proof [+]-identityᵣ {signed _ _} = reflexivity(_≡_) Identityᵣ.proof [+]-identityᵣ {𝟎-sign i} = reflexivity(_≡_) instance [+]-identityₗ : Identityₗ(_+_)(𝟎) Identityₗ.proof [+]-identityₗ {x} = commutativity(_+_) {𝟎}{x} 🝖 identityᵣ(_+_)(𝟎) instance [+]-identity : Identity(_+_)(𝟎) [+]-identity = intro open import Logic.IntroInstances instance [+][−]-inverseFunctionᵣ : InverseFunctionᵣ(_+_)(−_) [+][−]-inverseFunctionᵣ = intro(\{x} → p{x}) where p : Names.InverseFunctionᵣ(_+_)(𝟎)(−_) p {signed ➕ ℕ.𝟎} = reflexivity(_≡_) p {signed ➖ ℕ.𝟎} = 𝟎-sign p {signed s (ℕ.𝐒 n)} = signed s (ℕ.𝐒 n) + (− signed s (ℕ.𝐒 n)) 🝖[ _≡_ ]-[] signed s (ℕ.𝐒 n) + signed (Sign.− s) (ℕ.𝐒 n) 🝖[ _≡_ ]-[ congruence₂(_+_) (𝐒-to-step {s} {n}) (𝐒-to-step {Sign.− s} {n}) ] step s (signed s n) + step (Sign.− s) (signed (Sign.− s) n) 🝖[ _≡_ ]-[ [+]ₗ-of-step {s}{signed s n}{step (Sign.− s) (signed (Sign.− s) n)} ] step s (signed s n + step (Sign.− s) (signed (Sign.− s) n)) 🝖[ _≡_ ]-[ congruence₂ᵣ(step)(s) ([+]ᵣ-of-step {Sign.− s}{signed s n}{signed (Sign.− s) n}) ] step s (step (Sign.− s) (signed s n + signed (Sign.− s) n)) 🝖[ _≡_ ]-[ step-inverses (Sign.[−]-no-fixpoints ∘ symmetry(Id)) ] signed s n + signed (Sign.− s) n 🝖[ _≡_ ]-[] signed s n + (− signed s n) 🝖[ _≡_ ]-[ p{signed s n} ] 𝟎 🝖-end p {𝟎-sign i} j = 𝟎-sign (Interval.max i j) instance [+][−]-inverseFunctionₗ : InverseFunctionₗ(_+_)(−_) InverseFunctionₗ.proof [+][−]-inverseFunctionₗ {x} = commutativity(_+_) {− x}{x} 🝖 inverseFunctionᵣ(_+_)(−_) {x} instance [+][−]-inverseFunction : InverseFunction(_+_)(−_) [+][−]-inverseFunction = intro instance [+]-associativity : Associativity(_+_) [+]-associativity = intro(\{x}{y}{z} → p{x}{y}{z}) where p : Names.Associativity(_+_) p {x} {y} {signed s ℕ.𝟎} = reflexivity(_≡_) p {x} {y} {signed s (ℕ.𝐒 z)} = (x + y) + signed s (ℕ.𝐒 z) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(x + y) (𝐒-to-step {s}{z}) ] (x + y) + step s (signed s z) 🝖[ _≡_ ]-[ [+]ᵣ-of-step {s}{x + y}{signed s z} ] step s ((x + y) + signed s z) 🝖[ _≡_ ]-[ congruence₂ᵣ(step)(s) (p{x}{y}{signed s z}) ] step s (x + (y + signed s z)) 🝖[ _≡_ ]-[ [+]ᵣ-of-step {s}{x}{y + signed s z} ]-sym x + step s (y + signed s z) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(x) ([+]ᵣ-of-step {s}{y}{signed s z}) ]-sym x + (y + step s (signed s z)) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(x) (congruence₂ᵣ(_+_)(y) (𝐒-to-step {s})) ]-sym x + (y + signed s (ℕ.𝐒 z)) 🝖-end p {x} {y} {𝟎-sign i} = reflexivity(_≡_) Stepᵣ-injective : ∀{s}{x y} → (step s x ≡ step s y) → (x ≡ y) Stepᵣ-injective {s} {x} {y} p = symmetry(_≡_) (step-inverses Sign.[−]-no-fixpoints) 🝖 congruence₂ᵣ(step)(Sign.− s) p 🝖 step-inverses Sign.[−]-no-fixpoints open import Numeral.Natural.Equiv.Path instance absₙ-signed-inverses : ∀{s} → Inverseᵣ(absₙ)(signed s) Inverseᵣ.proof (absₙ-signed-inverses {➕}) = reflexivity(Path) Inverseᵣ.proof (absₙ-signed-inverses {➖}) = reflexivity(Path) Signedᵣ-injective : ∀{s}{x y} → (signed s x ≡ signed s y) → (Id x y) Signedᵣ-injective {s} p = ℕ-Path-to-Id (symmetry(Path) (inverseᵣ(absₙ)(signed s)) 🝖 congruence₁(absₙ) p 🝖 inverseᵣ(absₙ)(signed s)) ℤ-different-identities : ¬(𝟎 ≡ 𝟏) ℤ-different-identities p with () ← Signedᵣ-injective p open import Structure.Relator instance postulate [⋅]-commutativity : Commutativity(_⋅_) {-Commutativity.proof [⋅]-commutativity {signed s₁ x} {signed s₂ y} = congruence₂(signed) (sub₂(Id)(Path) (commutativity ⦃ Id-equiv ⦄ (Sign._⨯_) {s₁}{s₂})) (sub₂(Id)(Path) (commutativity ⦃ Id-equiv ⦄ (ℕ._⋅_) {x}{y})) Commutativity.proof [⋅]-commutativity {signed ➕ x} {𝟎-sign i} j = {!!} -- {!substitute₁(\expr → ((signed ➕ x) ⋅ expr) ≡ (expr ⋅ (signed ➕ x))) ? ?!} Commutativity.proof [⋅]-commutativity {signed ➖ x} {𝟎-sign i} = {!sub₂(Id)(Path) ?!} Commutativity.proof [⋅]-commutativity {𝟎-sign i} {signed s y} = {!𝟎-sign i!} Commutativity.proof [⋅]-commutativity {𝟎-sign i} {𝟎-sign i₁} = {!!}-} {-Commutativity.proof [⋅]-commutativity {signed s₁ x} {signed s₂ y} rewrite commutativity ⦃ Id-equiv ⦄ (ℕ._⋅_) {x}{y} rewrite commutativity ⦃ Id-equiv ⦄ (Sign._⨯_) {s₁}{s₂} = reflexivity(Path) Commutativity.proof [⋅]-commutativity {signed ➕ x} {𝟎-sign i} = {!substitute₁(\expr → ((signed ➕ x) ⋅ expr) ≡ (expr ⋅ (signed ➕ x))) ? ?!} Commutativity.proof [⋅]-commutativity {signed ➖ x} {𝟎-sign i} = {!sub₂(Id)(Path) ?!} Commutativity.proof [⋅]-commutativity {𝟎-sign i} {signed s y} = {!𝟎-sign i!} Commutativity.proof [⋅]-commutativity {𝟎-sign i} {𝟎-sign i₁} = {!!}-} -- (signed ➕ x) ⋅ -0 ≡ -0 ⋅ (signed ➕ x) -- (signed ➕ x) ⋅ +0 ≡ +0 ⋅ (signed ➕ x) instance postulate [⋅]-associativity : Associativity(_⋅_) open import Numeral.Sign.Proofs open import Structure.Operator instance [⋅]-identityᵣ : Identityᵣ(_⋅_)(𝟏) Identityᵣ.proof [⋅]-identityᵣ {signed s x} rewrite identityᵣ(Sign._⨯_)(➕) {s} = {!!} -- rewrite identityᵣ(Sign._⨯_)(➕) {s} = {!!} -- reflexivity(Path) -- congruence₂ₗ(signed)(x) {!!} Identityᵣ.proof [⋅]-identityᵣ {𝟎-sign i} = {!!} -- reflexivity(Path) instance [⋅]-identityₗ : Identityₗ(_⋅_)(𝟏) Identityₗ.proof [⋅]-identityₗ {signed s x} = {!!} -- rewrite identityₗ(Sign._⨯_)(➕) {s} = {!!} -- reflexivity(Path) Identityₗ.proof [⋅]-identityₗ {𝟎-sign i} = {!!} -- reflexivity(Path) instance [⋅]-identity : Identity(_⋅_)(𝟏) [⋅]-identity = intro instance postulate [⋅][+]-distributivityₗ : Distributivityₗ(_⋅_)(_+_) instance postulate [⋅][+]-distributivityᵣ : Distributivityᵣ(_⋅_)(_+_) open import Logic.Predicate open import Structure.Operator.Field open import Structure.Operator.Group open import Structure.Operator.Monoid open import Structure.Operator.Ring instance [+]-monoid : Monoid(_+_) Monoid.identity-existence [+]-monoid = [∃]-intro 𝟎 instance [+]-group : Group(_+_) Group.monoid [+]-group = [+]-monoid Group.inverse-existence [+]-group = [∃]-intro (−_) ⦃ [+][−]-inverseFunction ⦄ instance [+]-commutativeGroup : CommutativeGroup(_+_) [+]-commutativeGroup = intro instance [⋅]-monoid : Monoid(_⋅_) Monoid.identity-existence [⋅]-monoid = [∃]-intro 𝟏 instance [⋅]-rng : Rng(_+_)(_⋅_) [⋅]-rng = intro instance [⋅]-unity : Unity(_+_)(_⋅_) Unity.[⋅]-identity-existence [⋅]-unity = [∃]-intro 𝟏 instance [⋅]-ring : Ring(_+_)(_⋅_) [⋅]-ring = intro instance [⋅]-ringNonZero : Unity.DistinctIdentities [⋅]-unity Ring.NonZero.proof [⋅]-ringNonZero = ℤ-different-identities ∘ symmetry(_≡_) open import Data open import Data.Boolean import Data.Boolean.Operators open Data.Boolean.Operators.Programming open import Data.Boolean.Stmt open import Functional import Numeral.Natural.Oper.Comparisons as ℕ import Numeral.Natural.Oper.Comparisons.Proofs as ℕ test : (−|+) → (−|+) → (ℕ → ℕ → Bool) test ➕ ➕ = (ℕ._≤?_) test ➕ ➖ = ((_&&_) on₂ ((!) ∘ ℕ.positive?)) test ➖ ➕ = (const ∘ const) 𝑇 test ➖ ➖ = (ℕ._≥?_) _≤_ : ℤ → ℤ → Type{Lvl.𝟎} signed s₁ x ≤ signed s₂ y = IsTrue(test s₁ s₂ x y) signed ➕ ℕ.𝟎 ≤ 𝟎-sign _ = ⊤ signed ➕ (ℕ.𝐒 x) ≤ 𝟎-sign _ = ⊥ signed ➖ _ ≤ 𝟎-sign _ = ⊤ 𝟎-sign _ ≤ signed ➕ _ = ⊤ 𝟎-sign _ ≤ signed ➖ ℕ.𝟎 = ⊤ 𝟎-sign _ ≤ signed ➖ (ℕ.𝐒 y) = ⊥ 𝟎-sign _ ≤ 𝟎-sign _ = ⊤ {-data _≤_ : ℤ → ℤ → Type{Lvl.𝟎} where neg : ∀{x y} → (x ℕ.≥ y) → ((signed ➖ x) ≤ (signed ➖ y)) mix : ∀{x y} → ((signed ➖ x) ≤ (signed ➕ y)) pos : ∀{x y} → (x ℕ.≤ y) → ((signed ➕ x) ≤ (signed ➕ y)) -} instance [≤]-reflexivity : Reflexivity(_≤_) Reflexivity.proof [≤]-reflexivity {signed ➕ ℕ.𝟎} = <> Reflexivity.proof [≤]-reflexivity {signed ➕ (ℕ.𝐒 x)} = ℕ.[≤?]-reflexivity {x} Reflexivity.proof [≤]-reflexivity {signed ➖ ℕ.𝟎} = <> Reflexivity.proof [≤]-reflexivity {signed ➖ (ℕ.𝐒 x)} = ℕ.[≤?]-reflexivity {x} Reflexivity.proof [≤]-reflexivity {𝟎-sign i} = <> {- instance [≤]-antisymmetry : Antisymmetry(_≤_)(_≡_) Antisymmetry.proof [≤]-antisymmetry {signed x x₁} {signed x₂ x₃} lt gt = ? Antisymmetry.proof [≤]-antisymmetry {signed x x₁} {𝟎-sign i} lt gt = ? Antisymmetry.proof [≤]-antisymmetry {𝟎-sign i} {signed x x₁} lt gt = ? Antisymmetry.proof [≤]-antisymmetry {𝟎-sign i} {𝟎-sign i₁} lt gt = ? -}
{ "alphanum_fraction": 0.5622273682, "avg_line_length": 39.592750533, "ext": "agda", "hexsha": "7138816562912913fdea04034d1c4a6d6fd27e06", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Miscellaneous/CubicalInteger.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Miscellaneous/CubicalInteger.agda", "max_line_length": 218, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Miscellaneous/CubicalInteger.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 8644, "size": 18569 }
-- simply-typed label-dependent λ-calculus w/ DeBruijn indices -- {-# OPTIONS --show-implicit #-} module LDLC where open import Agda.Primitive open import Agda.Builtin.Bool open import Data.Bool.Properties hiding (≤-trans ; <-trans ; ≤-refl ; <-irrefl) open import Data.Empty open import Data.Nat renaming (_+_ to _+ᴺ_ ; _≤_ to _≤ᴺ_ ; _≥_ to _≥ᴺ_ ; _<_ to _<ᴺ_ ; _>_ to _>ᴺ_ ; _≟_ to _≟ᴺ_) open import Data.Nat.Properties renaming (_<?_ to _<ᴺ?_) open import Data.Integer renaming (_+_ to _+ᶻ_ ; _≤_ to _≤ᶻ_ ; _≥_ to _≥ᶻ_ ; _<_ to _<ᶻ_ ; _>_ to _>ᶻ_) open import Data.Integer.Properties using (⊖-≥ ; 0≤n⇒+∣n∣≡n ; +-monoˡ-≤) open import Data.List hiding (length ; _++_) open import Data.List.Relation.Unary.All open import Relation.Unary using (Decidable) open import Data.Vec.Relation.Unary.Any open import Data.Vec.Base hiding (length ; _++_ ; foldr) open import Relation.Binary.PropositionalEquality renaming (trans to ≡-trans) open import Relation.Nullary open import Relation.Nullary.Decidable open import Relation.Nullary.Negation open import Data.Fin open import Data.Fin.Subset renaming (∣_∣ to ∣_∣ˢ) open import Data.Fin.Subset.Properties using (anySubset?) open import Data.Fin.Properties using (any?) open import Data.Product open import Data.Sum open import Function open import Extensionality open import Auxiliary module defs where data Exp {n : ℕ} : Set where Var : ℕ → Exp {n} Abs : Exp {n} → Exp {n} App : Exp {n} → Exp {n} → Exp {n} LabI : Fin n → Exp {n} LabE : {s : Subset n} → (f : ∀ l → l ∈ s → Exp {n}) → Exp {n} → Exp {n} Prod : Exp {n} → Exp {n} → Exp {n} Let : Exp {n} → Exp {n} → Exp {n} data Val {n : ℕ} : Exp {n} → Set where VVar : {n : ℕ} → Val (Var n) VLab : {x : Fin n} → Val (LabI x) VFun : {e : Exp} → Val (Abs e) VProd : {e e' : Exp} → Val e → Val e' → Val (Prod e e') data Ty {n : ℕ} : Set where Label : Subset n → Ty Pi : Ty {n} → Ty {n} → Ty Sigma : Ty {n} → Ty {n} → Ty Case : {s : Subset n} → (f : ∀ l → l ∈ s → Ty {n}) → Exp{n} → Ty -- shifting and substitution -- shifting, required to avoid variable-capturing in substitution -- see Pierce 2002, pg. 78/79 ↑ᴺ_,_[_] : ℤ → ℕ → ℕ → ℕ ↑ᴺ d , c [ x ] with (x <ᴺ? c) ... | yes p = x ... | no ¬p = ∣ ℤ.pos x +ᶻ d ∣ ↑_,_[_] : ∀ {n} → ℤ → ℕ → Exp {n} → Exp ↑ d , c [ Var x ] = Var (↑ᴺ d , c [ x ]) ↑ d , c [ Abs t ] = Abs (↑ d , (ℕ.suc c) [ t ]) ↑ d , c [ App t t₁ ] = App (↑ d , c [ t ]) (↑ d , c [ t₁ ]) ↑ d , c [ LabI x ] = LabI x ↑ d , c [ LabE f e ] = LabE (λ l x → ↑ d , c [ (f l x) ]) (↑ d , c [ e ]) ↑ d , c [ Prod e e' ] = Prod (↑ d , c [ e ]) (↑ d , (ℕ.suc c) [ e' ]) ↑ d , c [ Let e e' ] = Let (↑ d , c [ e ]) (↑ d , (ℕ.suc (ℕ.suc c)) [ e' ]) -- shorthands ↑¹[_] : ∀ {n} → Exp {n} → Exp ↑¹[ e ] = ↑ (ℤ.pos 1) , 0 [ e ] ↑⁻¹[_] : ∀ {n} → Exp {n} → Exp ↑⁻¹[ e ] = ↑ (ℤ.negsuc 0) , 0 [ e ] -- substitution -- see Pierce 2002, pg. 80 [_↦_]_ : ∀ {n} → ℕ → Exp {n} → Exp → Exp [ k ↦ s ] Var x with (_≟ᴺ_ x k) ... | yes p = s ... | no ¬p = Var x [ k ↦ s ] Abs t = Abs ([ ℕ.suc k ↦ ↑¹[ s ] ] t) [ k ↦ s ] App t t₁ = App ([ k ↦ s ] t) ([ k ↦ s ] t₁) [ k ↦ s ] LabI ins = LabI ins [ k ↦ s ] LabE f e = LabE (λ l x → [ k ↦ s ] (f l x)) ([ k ↦ s ] e) [ k ↦ s ] Prod e e' = Prod ([ k ↦ s ] e) ([ ℕ.suc k ↦ ↑¹[ s ] ] e') [ k ↦ s ] Let e e' = Let ([ k ↦ s ] e) ([ (ℕ.suc (ℕ.suc k)) ↦ ↑ (ℤ.pos 2) , 0 [ s ] ] e') -- type substitution [_↦_]ᵀ_ : ∀ {n} → ℕ → Exp {n} → Ty {n} → Ty {n} [ k ↦ s ]ᵀ Label x = Label x [ k ↦ s ]ᵀ Pi t t₁ = Pi ([ k ↦ s ]ᵀ t) ([ k ↦ s ]ᵀ t₁) [ k ↦ s ]ᵀ Sigma t t₁ = Sigma ([ k ↦ s ]ᵀ t) ([ k ↦ s ]ᵀ t₁) [ k ↦ s ]ᵀ Case f e = Case (λ l x → [ k ↦ s ]ᵀ (f l x)) ([ k ↦ s ] e) -- variable in expression data _∈`_ {N : ℕ} : ℕ → Exp {N} → Set where in-Var : {n : ℕ} → n ∈` Var n in-Abs : {n : ℕ} {e : Exp} → (ℕ.suc n) ∈` e → n ∈` Abs e in-App : {n : ℕ} {e e' : Exp} → n ∈` e ⊎ n ∈` e' → n ∈` App e e' in-LabE : {n : ℕ} {s : Subset N} {f : (∀ l → l ∈ s → Exp {N})} {e : Exp {N}} → (∃₂ λ l i → n ∈` (f l i)) ⊎ n ∈` e → n ∈` LabE {N} {s} f e in-Prod : {n : ℕ} {e e' : Exp} → n ∈` e ⊎ (ℕ.suc n) ∈` e' → n ∈` Prod e e' in-Let : {n : ℕ} {e e' : Exp} → n ∈` e ⊎ (ℕ.suc (ℕ.suc n)) ∈` e' → n ∈` Let e e' -- variable in type data _∈`ᵀ_ {N : ℕ} : ℕ → Ty {N} → Set where in-Pi : {n : ℕ} {A B : Ty {N}} → n ∈`ᵀ A ⊎ n ∈`ᵀ B → n ∈`ᵀ Pi A B in-Sigma : {n : ℕ} {A B : Ty {N}} → n ∈`ᵀ A ⊎ n ∈`ᵀ B → n ∈`ᵀ Sigma A B in-Case : {n : ℕ} {s : Subset N} {f : ∀ l → l ∈ s → Ty {N}} {e : Exp {N}} → (∃₂ λ l i → n ∈`ᵀ (f l i)) ⊎ n ∈` e → n ∈`ᵀ Case f e -- Type environment, formation and typing of expressions data TEnv {n : ℕ} : Set data _∶_∈_ {n : ℕ} : ℕ → Ty {n} → TEnv {n} → Set data _⊢_ {n : ℕ} : TEnv {n} → Ty {n} → Set data _⊢_∶_ {n : ℕ} : TEnv {n} → Exp {n} → Ty {n} → Set data _⊢_≡ᵀ_ {n : ℕ} : TEnv {n} → Ty {n} → Ty {n} → Set data _⊢_≡ᵀ'_ {n : ℕ} : TEnv {n} → Ty {n} → Ty {n} → Set data TEnv {n} where [] : TEnv ⟨_,_⟩ : (T : Ty) (Γ : TEnv {n}) {ok : Γ ⊢ T} → TEnv length : {n : ℕ} → TEnv {n} → ℕ length [] = 0 length ⟨ T , Γ ⟩ = ℕ.suc (length Γ) -- env-tail ⟨ A , B , C , [] ⟩ 0 = ⟨ B , C , [] ⟩ env-tail : {n : ℕ} → TEnv {n} → ℕ → TEnv {n} env-tail [] n = [] env-tail ⟨ T , Γ ⟩ zero = Γ env-tail ⟨ T , Γ ⟩ (ℕ.suc n) = env-tail Γ n data _∶_∈_ {n} where here : {T : Ty} {Γ : TEnv} {ok : Γ ⊢ T} → 0 ∶ T ∈ ⟨ T , Γ ⟩ {ok} there : {n : ℕ} {T₁ T₂ : Ty} {Γ : TEnv} {ok : Γ ⊢ T₂} → n ∶ T₁ ∈ Γ → (ℕ.suc n) ∶ T₁ ∈ ⟨ T₂ , Γ ⟩ {ok} -- Type formation data _⊢_ {n} where TLabF : {Γ : TEnv {n}} {s : Subset n} → Γ ⊢ Label s TPiF : {Γ : TEnv {n}} {A B : Ty} → (ok : Γ ⊢ A) → ⟨ A , Γ ⟩ {ok} ⊢ B → Γ ⊢ Pi A B TSigmaF : {Γ : TEnv {n}} {A B : Ty} → (ok : Γ ⊢ A) → ⟨ A , Γ ⟩ {ok} ⊢ B → Γ ⊢ Sigma A B TCaseF : {Γ : TEnv {n}} {s : Subset n} {e : Exp {n}} {f : ∀ l → l ∈ s → Ty} → (f' : ∀ l i → Γ ⊢ (f l i)) → (v : Val e) → Γ ⊢ e ∶ Label s → Γ ⊢ Case {n} {s} f e -- Typing expressions data _⊢_∶_ {n} where TConv : {Γ : TEnv} {T T' : Ty {n}} {e : Exp} → Γ ⊢ e ∶ T → Γ ⊢ T ≡ᵀ T' → Γ ⊢ e ∶ T' TVarE : {m : ℕ} {Γ : TEnv} {T T' : Ty} → m ∶ T ∈ Γ → env-tail Γ m ⊢ T' ≡ᵀ T → Γ ⊢ (Var m) ∶ T' -- adjustment: env-tail Γ m ⊢ T' ≡ᵀ T -- -- Terms of the form ⟨ A , Γ ⟩ ⊢ Var 0 ∶ B can occur through type conversion (if ≡ᵀ⇒⊢, i.e. Γ ⊢ A ≡ᵀ B ⇒ Γ ⊢ A × Γ ⊢ B, should hold), e.g.: -- --- ∅ ⊢ Label ≡ᵀ (Case (λ ⇒ Label) l) --- ⟨ Label , ∅ ⟩ ⊢ (Case (λ ⇒ Label) 0) ≡ᵀ (Case (λ ⇒ Label) 0) ---- ∅ ⊢ Pi Label (Case (λ ⇒ Label) 0) ≡ᵀ Pi (Case (λ ⇒ Label) l) (Case (λ ⇒ Label) 0) -- --- (Γ ⊢ A ≡ᵀ B ⇒ Γ ⊢ A × Γ ⊢ B) --- ∅ ⊢ Pi Label (Case (λ ⇒ Label) 0) ≡ᵀ Pi (Case (λ ⇒ Label) l) (Case (λ ⇒ Label) 0) ---- ∅ ⊢ Pi (Case (λ ⇒ Label) l) (Case (λ ⇒ Label) 0) ----- ⟨ (Case (λ ⇒ Label) l) , ∅ ⟩ ⊢ (Case (λ ⇒ Label) 0) ------ ⟨ (Case (λ ⇒ Label) l) , ∅ ⟩ ⊢ 0 : Label TPiI : {Γ : TEnv} {A B : Ty} {e : Exp} {ok : Γ ⊢ A} {ok' : ⟨ A , Γ ⟩ {ok} ⊢ B} → ⟨ A , Γ ⟩ {ok} ⊢ e ∶ B → Γ ⊢ (Abs e) ∶ (Pi A B) TPiE : {Γ : TEnv} {A B : Ty} {e e' : Exp} → Γ ⊢ e ∶ (Pi A B) → Γ ⊢ e' ∶ A → Γ ⊢ ([ 0 ↦ e' ]ᵀ B) → Γ ⊢ App e e' ∶ ([ 0 ↦ e' ]ᵀ B) TSigmaI : {Γ : TEnv} {A B : Ty} {e e' : Exp} {ok : Γ ⊢ A} {ok' : ⟨ A , Γ ⟩ {ok} ⊢ B} → Γ ⊢ e ∶ A → ⟨ A , Γ ⟩ {ok} ⊢ e' ∶ B → Γ ⊢ Prod e e' ∶ (Sigma A B) -- adjustment (also in TPiI): {ok' : ⟨ A , Γ ⟩ ⊢ B} -- -- since I couldn't prove that it holds without the rule (Γ ⊢ e ∶ T does not imply Γ ⊢ T, see TSigmaE: Let e e' ∶ C because of e') TSigmaE : {Γ : TEnv {n}} {A B C : Ty} {e e' : Exp} {ok : Γ ⊢ A} {ok' : ⟨ A , Γ ⟩ {ok} ⊢ B} → Γ ⊢ e ∶ (Sigma A B) → ⟨ B , ⟨ A , Γ ⟩ {ok} ⟩ {ok'} ⊢ e' ∶ C → ¬ (0 ∈`ᵀ C) × ¬ (1 ∈`ᵀ C) → Γ ⊢ Let e e' ∶ C TLabI : {Γ : TEnv} {x : Fin n} {s : Subset n} → (ins : x ∈ s) → Γ ⊢ LabI x ∶ Label {n} s TLabEl : {Γ : TEnv {n}} {T : Ty} {s : Subset n} {x : Fin n} {ins : x ∈ s} {f : ∀ l → l ∈ s → Exp} {scopecheck : ∀ l i m → m ∈` (f l i) → m <ᴺ length Γ} → Γ ⊢ f x ins ∶ T → Γ ⊢ LabI {n} x ∶ Label {n} s → Γ ⊢ LabE {n} {s} f (LabI {n} x) ∶ T TLabEx : {Γ : TEnv} {T : Ty {n}} {m : ℕ} {s : Subset n} {f : ∀ l → l ∈ s → Exp} {g : ∀ l → l ∈ s → Ty {n}} → (u : ∀ l i → (Γ ⊢ [ m ↦ (LabI l) ] (f l i) ∶ (g l i))) → Γ ⊢ Var m ∶ Label {n} s → Γ ⊢ LabE {n} {s} f (Var m) ∶ Case g (Var m) -- Type conversion data _⊢_≡ᵀ_ {n} where CRefl : {Γ : TEnv {n}} {T : Ty} {ok : Γ ⊢ T} → Γ ⊢ T ≡ᵀ T CSym : {Γ : TEnv {n}} {T T' : Ty} → Γ ⊢ T ≡ᵀ T' → Γ ⊢ T' ≡ᵀ T CTrans : {Γ : TEnv {n}} {T T' T'' : Ty} → Γ ⊢ T ≡ᵀ T' → Γ ⊢ T' ≡ᵀ T'' → Γ ⊢ T ≡ᵀ T'' CLabEta : {Γ : TEnv {n}} {s : Subset n} {x : Fin n} {T : Ty} {ins : x ∈ s} → Γ ⊢ LabI x ∶ Label s → Γ ⊢ T → Γ ⊢ T ≡ᵀ (Case {s = s} (λ l i → T) (LabI x)) CLabBeta : {Γ : TEnv {n}} {s : Subset n} {x : Fin n} {f : (∀ l → l ∈ s → Ty)} → Γ ⊢ Case f (LabI x) → (ins : x ∈ s) → Γ ⊢ Case f (LabI x) ≡ᵀ (f x ins) CPi : {Γ : TEnv {n}} {A B A' B' : Ty} {ok : Γ ⊢ A} → Γ ⊢ A ≡ᵀ B → ⟨ A , Γ ⟩ {ok} ⊢ A' ≡ᵀ B' → Γ ⊢ Pi A A' ≡ᵀ Pi B B' CSigma : {Γ : TEnv {n}} {A B A' B' : Ty} {ok : Γ ⊢ A} → Γ ⊢ A ≡ᵀ B → ⟨ A , Γ ⟩ {ok} ⊢ A' ≡ᵀ B' → Γ ⊢ Sigma A A' ≡ᵀ Sigma B B' CLab : {Γ : TEnv {n}} {s : Subset n} {f f' : (∀ l → l ∈ s → Ty)} {e : Exp {n}} → (Γ ⊢ Case f e) → (∀ l i → Γ ⊢ (f l i) ≡ᵀ (f' l i)) → Γ ⊢ Case f e ≡ᵀ Case f' e -- adjustment: (Val e) -> (Γ ⊢ Case f e) else illegal terms possible and property ≡ᵀ⇒⊢ wouldn't hold (i.e. Γ ⊢ A ≡ᵀ B ⇒ Γ ⊢ A × Γ ⊢ B) -- Type conversion without explicit transitivity and symmetry data _⊢_≡ᵀ'_ {n} where CRefl' : {Γ : TEnv {n}} {T : Ty} {ok : Γ ⊢ T} → Γ ⊢ T ≡ᵀ' T CLabEta' : {Γ : TEnv {n}} {s : Subset n} {x : Fin n} {T : Ty} {ins : x ∈ s} {f : (∀ l → l ∈ s → Ty)} → Γ ⊢ LabI x ∶ Label s → (∀ l → (ins' : l ∈ s) → Γ ⊢ f l ins') → (Γ ⊢ f x ins ≡ᵀ' T) → Γ ⊢ T ≡ᵀ' (Case {s = s} f (LabI x)) CLabBeta' : {Γ : TEnv {n}} {s : Subset n} {x : Fin n} {f : (∀ l → l ∈ s → Ty)} {T : Ty {n}} → Γ ⊢ Case f (LabI x) → (ins : x ∈ s) → (Γ ⊢ f x ins ≡ᵀ' T) → Γ ⊢ Case f (LabI x) ≡ᵀ' T CPi' : {Γ : TEnv {n}} {A B A' B' : Ty} {ok : Γ ⊢ A} → Γ ⊢ A ≡ᵀ' B → (⟨ A , Γ ⟩ {ok} ⊢ A' ≡ᵀ' B')→ Γ ⊢ Pi A A' ≡ᵀ' Pi B B' CSigma' : {Γ : TEnv {n}} {A B A' B' : Ty} {ok : Γ ⊢ A} → Γ ⊢ A ≡ᵀ' B → ⟨ A , Γ ⟩ {ok} ⊢ A' ≡ᵀ' B' → Γ ⊢ Sigma A A' ≡ᵀ' Sigma B B' CLab' : {Γ : TEnv {n}} {s : Subset n} {f f' : (∀ l → l ∈ s → Ty)} {e : Exp {n}} {ok : ∀ l' → (i : l' ∈ s) → Γ ⊢ f l' i} {ok' : ∀ l' → (i : l' ∈ s) → Γ ⊢ f' l' i} → (Γ ⊢ Case f e) → (∀ l i → Γ ⊢ (f l i) ≡ᵀ' (f' l i)) → Γ ⊢ Case f e ≡ᵀ' Case f' e -- Type environment equivalency for ≡ᵀ data _≡ᵀ_ {n} : TEnv {n} → TEnv {n} → Set where tzero : [] ≡ᵀ [] tsuc : {Γ Δ : TEnv {n}} {T T' : Ty} {ok : Γ ⊢ T} {ok' : Δ ⊢ T'} → Γ ≡ᵀ Δ → Δ ⊢ T ≡ᵀ T' → ⟨ T , Γ ⟩ {ok} ≡ᵀ ⟨ T' , Δ ⟩ {ok'} ≡ᵀ-tail : {n : ℕ} {Γ Δ : TEnv {n}} → (m : ℕ) → Γ ≡ᵀ Δ → env-tail Γ m ≡ᵀ env-tail Δ m ≡ᵀ-tail {n} {.[]} {.[]} m tzero = tzero ≡ᵀ-tail {n} {.(⟨ _ , _ ⟩)} {.(⟨ _ , _ ⟩)} zero (tsuc eq x) = eq ≡ᵀ-tail {n} {(⟨ T , Γ ⟩)} {(⟨ T' , Δ ⟩)} (ℕ.suc m) (tsuc eq x) = ≡ᵀ-tail m eq ≡ᵀ-length : {n : ℕ} {Γ Δ : TEnv {n}} → Γ ≡ᵀ Δ → length Γ ≡ length Δ ≡ᵀ-length {n} {.[]} {.[]} tzero = refl ≡ᵀ-length {n} {.(⟨ _ , _ ⟩)} {.(⟨ _ , _ ⟩)} (tsuc eq x) = cong ℕ.suc (≡ᵀ-length eq) env-tail-in : {n m : ℕ} {T : Ty {n}} {Γ : TEnv} → (ℕ.suc m) ∶ T ∈ Γ → 0 ∶ T ∈ env-tail Γ m env-tail-in {n} {.0} {T} {.(⟨ _ , ⟨ T , _ ⟩ ⟩)} (there here) = here env-tail-in {n} {(ℕ.suc m)} {T} {(⟨ T' , ⟨ T'' , Γ ⟩ ⟩)} (there (there ins)) = env-tail-in (there ins) -- DEFINITIONS ≡ᵀ-extr : {n m : ℕ} {Γ Δ : TEnv} {A : Ty {n}} → (m ∶ A ∈ Γ) → Γ ≡ᵀ Δ → ∃[ B ] (m ∶ B ∈ Δ × (env-tail Δ m) ⊢ A ≡ᵀ B) ⊢-envsub : {n : ℕ} {A : Ty {n}} {Γ Δ : TEnv {n}} → Γ ⊢ A → Γ ≡ᵀ Δ → Δ ⊢ A ⊢∶-envsub : {n : ℕ} {A : Ty {n}} {Γ Δ : TEnv {n}} {e : Exp} → Γ ⊢ e ∶ A → Γ ≡ᵀ Δ → Δ ⊢ e ∶ A ⊢≡ᵀ-envsub : {n : ℕ} {A B : Ty {n}} {Γ Δ : TEnv {n}} → Γ ⊢ A ≡ᵀ B → Γ ≡ᵀ Δ → Δ ⊢ A ≡ᵀ B -- IMPLEMENTATIONS ≡ᵀ-extr {n} {.0} {(⟨ A , Γ ⟩)} {(⟨ B , Δ ⟩)} {.A} here (tsuc eq x) = B , (here , x) ≡ᵀ-extr {n} {.(ℕ.suc _)} {.(⟨ _ , _ ⟩)} {.(⟨ _ , _ ⟩)} {A} (there j) (tsuc eq x) with ≡ᵀ-extr j eq ... | fst , snd , snd₁ = fst , ((there snd) , snd₁) ⊢-envsub {n} {.(Label _)} {Γ} {Δ} TLabF eq = TLabF ⊢-envsub {n} {.(Pi _ _)} {Γ} {Δ} (TPiF j j₁) eq = TPiF (⊢-envsub j eq) (⊢-envsub j₁ (tsuc eq (CRefl{ok = ⊢-envsub j eq}))) ⊢-envsub {n} {.(Sigma _ _)} {Γ} {Δ} (TSigmaF j j₁) eq = TSigmaF (⊢-envsub j eq) (⊢-envsub j₁ (tsuc eq (CRefl{ok = ⊢-envsub j eq}))) ⊢-envsub {n} {.(Case _ _)} {Γ} {Δ} (TCaseF f' v x) eq = TCaseF (λ l i → ⊢-envsub (f' l i) eq) v (⊢∶-envsub x eq) ⊢∶-envsub {n} {A} {Γ} {Δ} {e} (TConv j x) eq = TConv (⊢∶-envsub j eq) (⊢≡ᵀ-envsub x eq) ⊢∶-envsub {n} {A} {Γ} {Δ} {Var m} (TVarE j eq') eq = TVarE (proj₁ (proj₂ (≡ᵀ-extr j eq))) (CTrans (⊢≡ᵀ-envsub eq' (≡ᵀ-tail m eq)) (proj₂ (proj₂ (≡ᵀ-extr j eq)))) ⊢∶-envsub {n} {.(Pi _ _)} {Γ} {Δ} {.(Abs _)} (TPiI{ok = ok}{ok' = ok'} j) eq = TPiI{ok = ⊢-envsub ok eq}{ok' = ⊢-envsub ok' (tsuc eq (CRefl{ok = ⊢-envsub ok eq}))} (⊢∶-envsub j (tsuc eq (CRefl{ok = ⊢-envsub ok eq}))) ⊢∶-envsub {n} {.([ 0 ↦ _ ]ᵀ _)} {Γ} {Δ} {.(App _ _)} (TPiE j j₁ x) eq = TPiE (⊢∶-envsub j eq) (⊢∶-envsub j₁ eq) (⊢-envsub x eq) ⊢∶-envsub {n} {.(Sigma _ _)} {Γ} {Δ} {.(Prod _ _)} (TSigmaI {ok = ok}{ok' = ok'} j j₁) eq = TSigmaI {ok = ⊢-envsub ok eq}{ok' = ⊢-envsub ok' (tsuc eq (CRefl{ok = ⊢-envsub ok eq}))} (⊢∶-envsub j eq) (⊢∶-envsub j₁ (tsuc eq (CRefl{ok = ⊢-envsub ok eq}))) ⊢∶-envsub {n} {A} {Γ} {Δ} {.(Let _ _)} (TSigmaE {ok = ok} {ok' = ok'} j j₁ nin) eq = TSigmaE{ok = ⊢-envsub ok eq}{ok' = ⊢-envsub ok' (tsuc eq (CRefl{ok = ⊢-envsub ok eq}))} (⊢∶-envsub j eq) (⊢∶-envsub j₁ (tsuc (tsuc eq (CRefl{ok = ⊢-envsub ok eq})) (CRefl{ok = ⊢-envsub ok' (tsuc eq (CRefl{ok = ⊢-envsub ok eq}))}))) nin ⊢∶-envsub {n} {.(Label _)} {Γ} {Δ} {.(LabI _)} (TLabI ins) eq = TLabI ins ⊢∶-envsub {n} {A} {Γ} {Δ} {.(LabE _ (LabI _))} (TLabEl{scopecheck = scopecheck} j j₁) eq rewrite (≡ᵀ-length eq) = TLabEl{scopecheck = scopecheck} (⊢∶-envsub j eq) (⊢∶-envsub j₁ eq) ⊢∶-envsub {n} {A} {Γ} {Δ} {.(LabE _ (Var _))} (TLabEx{T = T} f' j) eq = TLabEx{T = T} (λ l i → ⊢∶-envsub (f' l i) eq) (⊢∶-envsub j eq) ⊢≡ᵀ-envsub {n} {A} {.A} {Γ} {Δ} (CRefl{ok = ok}) eq = CRefl{ok = ⊢-envsub ok eq} ⊢≡ᵀ-envsub {n} {A} {B} {Γ} {Δ} (CSym j) eq = CSym (⊢≡ᵀ-envsub j eq) ⊢≡ᵀ-envsub {n} {A} {B} {Γ} {Δ} (CTrans j j₁) eq = CTrans (⊢≡ᵀ-envsub j eq) (⊢≡ᵀ-envsub j₁ eq) ⊢≡ᵀ-envsub {n} {A} {.(Case (λ l i → A) (LabI _))} {Γ} {Δ} (CLabEta{ins = ins} x x₁) eq = CLabEta{ins = ins} (⊢∶-envsub x eq) (⊢-envsub x₁ eq) ⊢≡ᵀ-envsub {n} {(Case f (LabI l))} {.(f l ins)} {Γ} {Δ} (CLabBeta x ins) eq = CLabBeta ((⊢-envsub x eq)) ins ⊢≡ᵀ-envsub {n} {.(Pi _ _)} {.(Pi _ _)} {Γ} {Δ} (CPi{ok = ok} j j₁) eq = CPi{ok = ⊢-envsub ok eq} (⊢≡ᵀ-envsub j eq) (⊢≡ᵀ-envsub j₁ (tsuc eq (CRefl{ok = ⊢-envsub ok eq}))) ⊢≡ᵀ-envsub {n} {.(Sigma _ _)} {.(Sigma _ _)} {Γ} {Δ} (CSigma{ok = ok} j j₁) eq = CSigma{ok = ⊢-envsub ok eq} (⊢≡ᵀ-envsub j eq) (⊢≡ᵀ-envsub j₁ (tsuc eq (CRefl{ok = ⊢-envsub ok eq}))) ⊢≡ᵀ-envsub {n} {.(Case _ _)} {.(Case _ _)} {Γ} {Δ} (CLab v x) eq = CLab (⊢-envsub v eq) (λ l i → ⊢≡ᵀ-envsub (x l i) eq) -- uniqueness of judgements val-uniqueness : {n : ℕ} {e : Exp {n}} → (v v' : Val e) → v ≡ v' val-uniqueness {n} {.(Var n₁)} (VVar {n = n₁}) (VVar {n = .n₁}) = refl val-uniqueness {n} {.(LabI x)} (VLab {x = x}) (VLab {x = .x}) = refl val-uniqueness {n} {.(Abs e)} (VFun {e = e}) (VFun {e = .e}) = refl val-uniqueness {n} {.(Prod e e')} (VProd {e = e} {e' = e'} v v') (VProd {e = .e} {e' = .e'} v₁ v₁') = cong₂ VProd (val-uniqueness v v₁) (val-uniqueness v' v₁') ins-uniqueness : {n : ℕ} {s : Subset n} {l : Fin n} → (i i' : l ∈ s) → i ≡ i' ins-uniqueness {.(ℕ.suc _)} {.(true ∷ _)} {.zero} here here = refl ins-uniqueness {.(ℕ.suc _)} {.(_ ∷ _)} {.(Fin.suc _)} (there i) (there i') = cong there (ins-uniqueness i i') -- Type environment equivalency for ≡ᵀ' data _≡ᵀ'_ {n} : TEnv {n} → TEnv {n} → Set where tzero : [] ≡ᵀ' [] tsuc : {Γ Δ : TEnv {n}} {T T' : Ty} {ok : Γ ⊢ T} {ok' : Δ ⊢ T'} → Γ ≡ᵀ' Δ → Δ ⊢ T ≡ᵀ' T' → ⟨ T , Γ ⟩ {ok} ≡ᵀ' ⟨ T' , Δ ⟩ {ok'} ≡ᵀ'-refl : {n : ℕ} {Γ : TEnv {n}} → Γ ≡ᵀ' Γ ≡ᵀ'-refl {n} {[]} = tzero ≡ᵀ'-refl {n} {⟨ T , Γ ⟩ {ok = ok}} = tsuc ≡ᵀ'-refl (CRefl'{ok = ok}) ≡ᵀ'-tail : {n : ℕ} {Γ Δ : TEnv {n}} → (m : ℕ) → Γ ≡ᵀ' Δ → env-tail Γ m ≡ᵀ' env-tail Δ m ≡ᵀ'-tail {n} {.[]} {.[]} m tzero = tzero ≡ᵀ'-tail {n} {.(⟨ _ , _ ⟩)} {.(⟨ _ , _ ⟩)} zero (tsuc eq x) = eq ≡ᵀ'-tail {n} {(⟨ T , Γ ⟩)} {(⟨ T' , Δ ⟩)} (ℕ.suc m) (tsuc eq x) = ≡ᵀ'-tail m eq ≡ᵀ'-length : {n : ℕ} {Γ Δ : TEnv {n}} → Γ ≡ᵀ' Δ → length Γ ≡ length Δ ≡ᵀ'-length {n} {.[]} {.[]} tzero = refl ≡ᵀ'-length {n} {.(⟨ _ , _ ⟩)} {.(⟨ _ , _ ⟩)} (tsuc eq x) = cong ℕ.suc (≡ᵀ'-length eq) -- DEFINITIONS ⊢∧≡ᵀ'⇒⊢ : {n : ℕ} {Γ : TEnv {n}} {T T' : Ty} → Γ ⊢ T → Γ ⊢ T ≡ᵀ' T' → Γ ⊢ T' ≡ᵀ'⇒⊢ : {n : ℕ} {Γ : TEnv {n}} {T T' : Ty} → Γ ⊢ T ≡ᵀ' T' → Γ ⊢ T × Γ ⊢ T' ≡ᵀ⊆≡ᵀ' : {n : ℕ} {A B : Ty {n}} {Γ : TEnv {n}} → Γ ⊢ A ≡ᵀ B → Γ ⊢ A ≡ᵀ' B ≡ᵀ'⊆≡ᵀ : {n : ℕ} {A B : Ty {n}} {Γ : TEnv {n}} → Γ ⊢ A ≡ᵀ' B → Γ ⊢ A ≡ᵀ B ≡ᵀ⊆≡ᵀ'-env : {n : ℕ} {Γ Δ : TEnv {n}} → Γ ≡ᵀ Δ → Γ ≡ᵀ' Δ ≡ᵀ'⊆≡ᵀ-env : {n : ℕ} {Γ Δ : TEnv {n}} → Γ ≡ᵀ' Δ → Γ ≡ᵀ Δ ≡ᵀ'-trans : {n : ℕ} {A B C : Ty {n}} {Γ : TEnv {n}} → Γ ⊢ A ≡ᵀ' B → Γ ⊢ B ≡ᵀ' C → Γ ⊢ A ≡ᵀ' C ≡ᵀ'-sym : {n : ℕ} {A B : Ty {n}} {Γ : TEnv {n}} → Γ ⊢ A ≡ᵀ' B → Γ ⊢ B ≡ᵀ' A ≡ᵀ-extr' : {n m : ℕ} {Γ Δ : TEnv} {A : Ty {n}} → (m ∶ A ∈ Γ) → Γ ≡ᵀ' Δ → ∃[ B ] (m ∶ B ∈ Δ × (env-tail Δ m) ⊢ A ≡ᵀ' B) ⊢-envsub' : {n : ℕ} {A : Ty {n}} {Γ Δ : TEnv {n}} → Γ ⊢ A → Γ ≡ᵀ' Δ → Δ ⊢ A ⊢∶-envsub' : {n : ℕ} {A : Ty {n}} {Γ Δ : TEnv {n}} {e : Exp} → Γ ⊢ e ∶ A → Γ ≡ᵀ' Δ → Δ ⊢ e ∶ A ⊢≡ᵀ-envsub' : {n : ℕ} {A B : Ty {n}} {Γ Δ : TEnv {n}} → Γ ⊢ A ≡ᵀ' B → Γ ≡ᵀ' Δ → Δ ⊢ A ≡ᵀ' B -- IMPLEMENTATIONS --- TRANSITIVITY ≡ᵀ'-trans {n} {A} {.A} {C} {Γ} CRefl' j' = j' ≡ᵀ'-trans {n} {Case f (LabI z)} {B} {.B} {Γ} (CLabBeta' x ins eq) CRefl' = CLabBeta' x ins eq ≡ᵀ'-trans {n} {Case f (LabI z)} {B} {C} {Γ} (CLabBeta' x ins eq) j = CLabBeta' x ins (≡ᵀ'-trans eq j) ≡ᵀ'-trans {n} {.(Pi _ _)} {.(Pi _ _)} {.(Pi _ _)} {Γ} (CPi' j j₁) CRefl' = CPi' j j₁ ≡ᵀ'-trans {n} {.(Pi _ _)} {.(Pi _ _)} {.(Pi _ _)} {Γ} (CPi' {ok = ok} j j₁) (CPi' j' j'') = CPi' {ok = ok} (≡ᵀ'-trans j j') (≡ᵀ'-trans j₁ (⊢≡ᵀ-envsub' j'' (tsuc ≡ᵀ'-refl (≡ᵀ'-sym j)))) ≡ᵀ'-trans {n} {.(Pi _ _)} {.(Pi _ _)} {.(Case _ (LabI _))} {Γ} (CPi' j j₁) (CLabEta' x x₁ j') = CLabEta' x x₁ (≡ᵀ'-trans j' (≡ᵀ'-sym (CPi' j j₁))) ≡ᵀ'-trans {n} {.(Sigma _ _)} {.(Sigma _ _)} {.(Sigma _ _)} {Γ} (CSigma' j j₁) CRefl' = CSigma' j j₁ ≡ᵀ'-trans {n} {.(Sigma _ _)} {.(Sigma _ _)} {.(Sigma _ _)} {Γ} (CSigma' j j₁) (CSigma' j' j'') = CSigma' (≡ᵀ'-trans j j') (≡ᵀ'-trans j₁ (⊢≡ᵀ-envsub' j'' (tsuc ≡ᵀ'-refl (≡ᵀ'-sym j)))) ≡ᵀ'-trans {n} {.(Sigma _ _)} {.(Sigma _ _)} {.(Case _ (LabI _))} {Γ} (CSigma' j j₁) (CLabEta' x x₁ j') = CLabEta' x x₁ (≡ᵀ'-trans j' (≡ᵀ'-sym (CSigma' j j₁))) ≡ᵀ'-trans {n} {.(Case _ _)} {.(Case _ _)} {.(Case _ _)} {Γ} (CLab' {ok = ok}{ok' = ok'} v x) CRefl' = CLab'{ok = ok}{ok' = ok'} v x ≡ᵀ'-trans {n} {.(Case _ (LabI _))} {.(Case _ (LabI _))} {C} {Γ} (CLab' {ok = ok} v x) (CLabBeta'{x = x₂} x₁ ins j') = CLabBeta' (TCaseF ok VLab (TLabI ins)) ins (≡ᵀ'-trans (x x₂ ins) j') ≡ᵀ'-trans {n} {.(Case _ _)} {.(Case _ _)} {.(Case _ _)} {Γ} (CLab'{ok = ok} v x) (CLab'{ok' = ok'} v₁ x₁) = CLab'{ok = ok}{ok' = ok'} v (λ l i → ≡ᵀ'-trans (x l i) (x₁ l i)) ≡ᵀ'-trans {n} {(Case f e)} {(Case f' .e)} {(Case f'' (LabI l))} {Γ} (CLab'{ok = ok}{ok' = ok'} (TCaseF u v w) x) (CLabEta'{ins = ins} x₁ x₂ j') = CLabEta'{ins = ins} x₁ x₂ (≡ᵀ'-trans j' (CLab'{ok = ok'}{ok' = ok} (TCaseF ok' v w) λ l₁ i → ≡ᵀ'-sym (x l₁ i))) ≡ᵀ'-trans {n} {A} {.(Case _ (LabI _))} {.(Case _ (LabI _))} {Γ} (CLabEta' x x₁ x₂) CRefl' = CLabEta' x x₁ x₂ ≡ᵀ'-trans {n} {A} {.(Case _ (LabI _))} {C} {Γ} (CLabEta' {ins = ins'} x x₁ x₂) (CLabBeta' x₃ ins j') rewrite (ins-uniqueness ins ins') = ≡ᵀ'-trans (≡ᵀ'-sym x₂) j' ≡ᵀ'-trans {n} {A} {(Case f (LabI l))} {(Case f' (LabI .l))} {Γ} (CLabEta'{ins = ins} x x₁ x₂) (CLab'{ok' = ok'} v x₃) = CLabEta'{ins = ins} x ok' (≡ᵀ'-trans (≡ᵀ'-sym (x₃ l ins)) x₂) ≡ᵀ'-trans {n} {A} {(Case f (LabI l))} {(Case f' (LabI l'))} {Γ} (CLabEta'{ins = ins} x x₁ x₂) (CLabEta'{ins = ins'} x₃ x₄ j') = CLabEta'{ins = ins'} x₃ x₄ (≡ᵀ'-trans j' (≡ᵀ'-trans (CLabBeta' (TCaseF x₁ VLab x) ins (CRefl'{ok = x₁ l ins})) x₂)) --- SYMMETRY ≡ᵀ'-sym {n} {A} {.A} {Γ} (CRefl'{ok = ok}) = CRefl'{ok = ok} ≡ᵀ'-sym {n} {(Case f (LabI x₁))} {B} {Γ} (CLabBeta' (TCaseF f' v x) ins eq) = CLabEta' x f' eq ≡ᵀ'-sym {n} {.(Pi _ _)} {.(Pi _ _)} {Γ} (CPi'{ok = ok} j j₁) = CPi'{ok = ⊢∧≡ᵀ'⇒⊢ ok j} (≡ᵀ'-sym j) (⊢≡ᵀ-envsub' (≡ᵀ'-sym j₁) (tsuc ≡ᵀ'-refl j)) ≡ᵀ'-sym {n} {.(Sigma _ _)} {.(Sigma _ _)} {Γ} (CSigma'{ok = ok} j j₁) = CSigma'{ok = ⊢∧≡ᵀ'⇒⊢ ok j} (≡ᵀ'-sym j) (⊢≡ᵀ-envsub' (≡ᵀ'-sym j₁) (tsuc ≡ᵀ'-refl j)) ≡ᵀ'-sym {n} {.(Case _ _)} {.(Case _ _)} {Γ} (CLab'{ok = ok}{ok' = ok'} (TCaseF u v w) x) = CLab'{ok = ok'}{ok' = ok} (TCaseF ok' v w) (λ l i → ≡ᵀ'-sym (x l i)) ≡ᵀ'-sym {n} {A} {(Case f (LabI x'))} {Γ} (CLabEta'{ins = ins} x x₁ x₂) = CLabBeta' (TCaseF x₁ VLab x) ins x₂ -- CLabBeta' (TCaseF x₁ VLab x) ins refl --- ⊢∧≡ᵀ'⇒⊢ ≡ᵀ'⇒⊢ ⊢∧≡ᵀ'⇒⊢ {n} {Γ} {T} {.T} j CRefl' = j ⊢∧≡ᵀ'⇒⊢ {n} {Γ} {T} {.(Case _ (LabI _))} j (CLabEta' x x₁ eq) = TCaseF x₁ VLab x ⊢∧≡ᵀ'⇒⊢ {n} {Γ} {.(Pi _ _)} {.(Pi _ _)} (TPiF j j₁) (CPi'{ok = ok} eq eq₁) = TPiF (⊢∧≡ᵀ'⇒⊢ ok eq ) (⊢∧≡ᵀ'⇒⊢ (⊢-envsub' j₁ (tsuc ≡ᵀ'-refl eq)) (⊢≡ᵀ-envsub' eq₁ (tsuc ≡ᵀ'-refl eq))) ⊢∧≡ᵀ'⇒⊢ {n} {Γ} {.(Sigma _ _)} {.(Sigma _ _)} (TSigmaF j j₁) (CSigma'{ok = ok} eq eq₁) = TSigmaF (⊢∧≡ᵀ'⇒⊢ ok eq ) (⊢∧≡ᵀ'⇒⊢ (⊢-envsub' j₁ (tsuc ≡ᵀ'-refl eq)) (⊢≡ᵀ-envsub' eq₁ (tsuc ≡ᵀ'-refl eq))) ⊢∧≡ᵀ'⇒⊢ {n} {Γ} {(Case f (LabI l))} {T'} (TCaseF f' v x) (CLabBeta' x₁ ins eq) = ⊢∧≡ᵀ'⇒⊢ (f' l ins) eq ⊢∧≡ᵀ'⇒⊢ {n} {Γ} {.(Case _ _)} {.(Case _ _)} (TCaseF f' v x) (CLab'{ok = ok}{ok' = ok'} z x₁) = TCaseF ok' v x ≡ᵀ'⇒⊢ {n} {Γ} {T} {.T} (CRefl'{ok = ok}) = ok , ok ≡ᵀ'⇒⊢ {n} {Γ} {T} {(Case f (LabI l))} (CLabEta'{ins = ins} x x₁ j) = ⊢∧≡ᵀ'⇒⊢ (x₁ l ins) j , TCaseF x₁ VLab x ≡ᵀ'⇒⊢ {n} {Γ} {Case f (LabI l)} {T'} (CLabBeta' (TCaseF f' v x) ins j) = (TCaseF f' v x) , (⊢∧≡ᵀ'⇒⊢ (f' l ins) j) ≡ᵀ'⇒⊢ {n} {Γ} {.(Pi _ _)} {.(Pi _ _)} (CPi'{ok = ok} j j₁) = TPiF ok (proj₁ (≡ᵀ'⇒⊢ j₁)) , TPiF (⊢∧≡ᵀ'⇒⊢ ok j) (⊢-envsub' (proj₂ (≡ᵀ'⇒⊢ j₁)) (tsuc ≡ᵀ'-refl j)) ≡ᵀ'⇒⊢ {n} {Γ} {.(Sigma _ _)} {.(Sigma _ _)} (CSigma'{ok = ok} j j₁) = TSigmaF ok (proj₁ (≡ᵀ'⇒⊢ j₁)) , TSigmaF (⊢∧≡ᵀ'⇒⊢ ok j) (⊢-envsub' (proj₂ (≡ᵀ'⇒⊢ j₁)) (tsuc ≡ᵀ'-refl j)) ≡ᵀ'⇒⊢ {n} {Γ} {.(Case _ _)} {.(Case _ _)} (CLab' {ok = ok} {ok' = ok'} (TCaseF f' v x₁) x) = TCaseF ok v x₁ , TCaseF ok' v x₁ --- EQUIVALENCE ≡ᵀ & ≡ᵀ' ≡ᵀ⊆≡ᵀ' {n} {A} {.A} {Γ} (CRefl{ok = ok}) = CRefl'{ok = ok} ≡ᵀ⊆≡ᵀ' {n} {A} {B} {Γ} (CSym j) = ≡ᵀ'-sym (≡ᵀ⊆≡ᵀ' j) ≡ᵀ⊆≡ᵀ' {n} {A} {B} {Γ} (CTrans j j₁) = ≡ᵀ'-trans (≡ᵀ⊆≡ᵀ' j) (≡ᵀ⊆≡ᵀ' j₁) ≡ᵀ⊆≡ᵀ' {n} {A} {.(Case (λ l i → A) (LabI _))} {Γ} (CLabEta{ins = ins} x x₁) = CLabEta' {ins = ins} x (λ l ins₁ → x₁) (CRefl'{ok = x₁}) ≡ᵀ⊆≡ᵀ' {n} {Case f (LabI l)} {.(f l ins)} {Γ} (CLabBeta (TCaseF f' v x) ins) = CLabBeta' (TCaseF f' v x) ins (CRefl' {ok = f' l ins}) ≡ᵀ⊆≡ᵀ' {n} {.(Pi _ _)} {.(Pi _ _)} {Γ} (CPi j j₁) = CPi' (≡ᵀ⊆≡ᵀ' j) (≡ᵀ⊆≡ᵀ' j₁) ≡ᵀ⊆≡ᵀ' {n} {.(Sigma _ _)} {.(Sigma _ _)} {Γ} (CSigma j j₁) = CSigma' (≡ᵀ⊆≡ᵀ' j) (≡ᵀ⊆≡ᵀ' j₁) ≡ᵀ⊆≡ᵀ' {n} {.(Case _ _)} {.(Case _ _)} {Γ} (CLab v x) = CLab'{ok = λ l' i → proj₁ (≡ᵀ'⇒⊢ (≡ᵀ⊆≡ᵀ' (x l' i)))}{ok' = λ l' i → proj₂ (≡ᵀ'⇒⊢ (≡ᵀ⊆≡ᵀ' (x l' i)))} v (λ l i → ≡ᵀ⊆≡ᵀ' (x l i)) ≡ᵀ'⊆≡ᵀ {n} {A} {.A} {Γ} (CRefl'{ok = ok}) = CRefl{ok = ok} ≡ᵀ'⊆≡ᵀ {n} {A} {(Case f (LabI l))} {Γ} (CLabEta'{ins = ins} x x₁ eq) = CSym (CTrans (CLabBeta (TCaseF x₁ VLab x) ins) (≡ᵀ'⊆≡ᵀ eq)) ≡ᵀ'⊆≡ᵀ {n} {(Case f (LabI l))} {B} {Γ} (CLabBeta' x ins eq) = CTrans (CLabBeta x ins) (≡ᵀ'⊆≡ᵀ eq) ≡ᵀ'⊆≡ᵀ {n} {.(Pi _ _)} {.(Pi _ _)} {Γ} (CPi' j j₁) = CPi (≡ᵀ'⊆≡ᵀ j ) (≡ᵀ'⊆≡ᵀ j₁) ≡ᵀ'⊆≡ᵀ {n} {.(Sigma _ _)} {.(Sigma _ _)} {Γ} (CSigma' j j₁) = CSigma (≡ᵀ'⊆≡ᵀ j) (≡ᵀ'⊆≡ᵀ j₁) ≡ᵀ'⊆≡ᵀ {n} {.(Case _ _)} {.(Case _ _)} {Γ} (CLab' v x) = CLab v (λ l i → ≡ᵀ'⊆≡ᵀ (x l i)) ≡ᵀ⊆≡ᵀ'-env {n} {.[]} {.[]} tzero = tzero ≡ᵀ⊆≡ᵀ'-env {n} {.(⟨ _ , _ ⟩)} {.(⟨ _ , _ ⟩)} (tsuc eq x) = tsuc (≡ᵀ⊆≡ᵀ'-env eq) (≡ᵀ⊆≡ᵀ' x) ≡ᵀ'⊆≡ᵀ-env {n} {.[]} {.[]} tzero = tzero ≡ᵀ'⊆≡ᵀ-env {n} {.(⟨ _ , _ ⟩)} {.(⟨ _ , _ ⟩)} (tsuc eq x) = tsuc (≡ᵀ'⊆≡ᵀ-env eq) (≡ᵀ'⊆≡ᵀ x) --- ENVIRONMENT EQUIVALENCE ≡ᵀ-extr' {n} {.0} {(⟨ A , Γ ⟩)} {(⟨ T' , Δ ⟩)} {A} here (tsuc{T' = .T'} eq x) = T' , (here , x) ≡ᵀ-extr' {n} {(ℕ.suc m)} {(⟨ T , Γ ⟩)} {⟨ T' , Δ ⟩} {A} (there ins) (tsuc eq x) with ≡ᵀ-extr' {m = m} {Γ} {Δ} ins eq ... | fst , snd , snd₁ = fst , ((there snd) , snd₁) ⊢-envsub' {n} {.(Label _)} {Γ} {Δ} TLabF eq = TLabF ⊢-envsub' {n} {.(Pi _ _)} {Γ} {Δ} (TPiF j j₁) eq = TPiF (⊢-envsub' j eq) (⊢-envsub' j₁ (tsuc eq (CRefl'{ok = ⊢-envsub' j eq}))) ⊢-envsub' {n} {.(Sigma _ _)} {Γ} {Δ} (TSigmaF j j₁) eq = TSigmaF (⊢-envsub' j eq) (⊢-envsub' j₁ (tsuc eq (CRefl'{ok = ⊢-envsub' j eq}))) ⊢-envsub' {n} {.(Case _ _)} {Γ} {Δ} (TCaseF f' v x) eq = TCaseF (λ l i → ⊢-envsub' (f' l i) eq) v (⊢∶-envsub' x eq) ⊢∶-envsub' {n} {A} {Γ} {Δ} {e} (TConv j x₁) eq = TConv (⊢∶-envsub' j eq) (⊢≡ᵀ-envsub x₁ (≡ᵀ'⊆≡ᵀ-env eq)) ⊢∶-envsub' {n} {A} {Γ} {Δ} {Var m} (TVarE j q) eq = TVarE (proj₁ (proj₂ (≡ᵀ-extr' j eq))) (CTrans (⊢≡ᵀ-envsub q (≡ᵀ-tail m (≡ᵀ'⊆≡ᵀ-env eq))) (≡ᵀ'⊆≡ᵀ (proj₂ (proj₂ (≡ᵀ-extr' j eq))))) ⊢∶-envsub' {n} {.(Pi _ _)} {Γ} {Δ} {Abs e} (TPiI{ok = ok}{ok' = ok'} j) eq = TPiI{ok = ⊢-envsub' ok eq}{ok' = ⊢-envsub' ok' (tsuc eq (CRefl'{ok = ⊢-envsub ok (≡ᵀ'⊆≡ᵀ-env eq) }))} (⊢∶-envsub' j (tsuc eq (CRefl'{ok = ⊢-envsub' ok eq}))) ⊢∶-envsub' {n} {.([ 0 ↦ e₁ ]ᵀ _)} {Γ} {Δ} {App e e₁} (TPiE j j₁ x) eq = TPiE (⊢∶-envsub' j eq) (⊢∶-envsub' j₁ eq) (⊢-envsub' x eq) ⊢∶-envsub' {n} {.(Label _)} {Γ} {Δ} {LabI x} (TLabI ins) eq = TLabI ins ⊢∶-envsub' {n} {A} {Γ} {Δ} {LabE f .(LabI _)} (TLabEl{scopecheck = sc} j j₁) eq rewrite (≡ᵀ'-length eq) = TLabEl{scopecheck = sc} (⊢∶-envsub' j eq) (⊢∶-envsub' j₁ eq) ⊢∶-envsub' {n} {A} {Γ} {Δ} {LabE f .(Var _)} (TLabEx{T = T} f' j) eq = TLabEx{T = T} (λ l i → ⊢∶-envsub' (f' l i) eq) (⊢∶-envsub' j eq) ⊢∶-envsub' {n} {.(Sigma _ _)} {Γ} {Δ} {Prod e e₁} (TSigmaI{ok = ok}{ok' = ok'} j j₁) eq = TSigmaI{ok = ⊢-envsub' ok eq}{ok' = ⊢-envsub' ok' (tsuc eq (CRefl'{ok = ⊢-envsub ok (≡ᵀ'⊆≡ᵀ-env eq)}))} (⊢∶-envsub' j eq) (⊢∶-envsub' j₁ (tsuc eq (CRefl'{ok = ⊢-envsub' ok eq}))) ⊢∶-envsub' {n} {A} {Γ} {Δ} {Let e e₁} (TSigmaE{ok = ok}{ok' = ok'} j j₁ nin) eq = TSigmaE{ok = ⊢-envsub' ok eq}{ok' = ⊢-envsub' ok' (tsuc eq (CRefl'{ok = ⊢-envsub' ok eq}))} (⊢∶-envsub' j eq) (⊢∶-envsub' j₁ (tsuc (tsuc eq (CRefl'{ok = ⊢-envsub' ok eq})) (CRefl'{ok = ⊢-envsub' ok' (tsuc eq (CRefl'{ok = ⊢-envsub' ok eq}))}))) nin ⊢≡ᵀ-envsub' {n} {A} {.A} {Γ} {Δ} (CRefl'{ok = ok}) eq = CRefl'{ok = ⊢-envsub' ok eq} ⊢≡ᵀ-envsub' {n} {A} {.(Case _ (LabI _))} {Γ} {Δ} (CLabEta' x x₁ j) eq = CLabEta' (⊢∶-envsub' x eq) (λ l ins' → ⊢-envsub' (x₁ l ins') eq) (⊢≡ᵀ-envsub' j eq) ⊢≡ᵀ-envsub' {n} {.(Case _ (LabI _))} {B} {Γ} {Δ} (CLabBeta' x ins j) eq = CLabBeta' (⊢-envsub' x eq) ins (⊢≡ᵀ-envsub' j eq) ⊢≡ᵀ-envsub' {n} {.(Pi _ _)} {.(Pi _ _)} {Γ} {Δ} (CPi'{ok = ok} j j₁) eq = CPi'{ok = ⊢-envsub' ok eq} (⊢≡ᵀ-envsub' j eq) (⊢≡ᵀ-envsub' j₁ (tsuc eq (CRefl'{ok = ⊢-envsub' ok eq}))) ⊢≡ᵀ-envsub' {n} {.(Sigma _ _)} {.(Sigma _ _)} {Γ} {Δ} (CSigma'{ok = ok} j j₁) eq = CSigma'{ok = ⊢-envsub' ok eq} (⊢≡ᵀ-envsub' j eq) (⊢≡ᵀ-envsub' j₁ (tsuc eq (CRefl'{ok = ⊢-envsub' ok eq}))) ⊢≡ᵀ-envsub' {n} {.(Case _ _)} {.(Case _ _)} {Γ} {Δ} (CLab'{ok = ok}{ok' = ok'} v x) eq = CLab'{ok = λ l' i → ⊢-envsub' (ok l' i) eq}{ok' = λ l' i → ⊢-envsub' (ok' l' i) eq} (⊢-envsub' v eq) (λ l i → ⊢≡ᵀ-envsub' (x l i) eq) --- COROLLARIES ≢ᵀ'⇒≢ᵀ : {n : ℕ} {A B : Ty {n}} {Γ : TEnv {n}} → ¬ (Γ ⊢ A ≡ᵀ' B) → ¬ (Γ ⊢ A ≡ᵀ B) ≢ᵀ'⇒≢ᵀ {n} {A} {B} {Γ} = contraposition ≡ᵀ⊆≡ᵀ' -- Normalform of types; no redex possible data Nf {n : ℕ} : Ty → Set where NLab : {s : Subset n} → Nf (Label s) NPi : {A B : Ty {n}} → Nf (Pi A B) NSigma : {A B : Ty {n}} → Nf (Sigma A B) -- operational semantics (call-by-value) module operational where open defs -- reduction relation data _⇒_ {n : ℕ} : Exp {n} → Exp {n} → Set where ξ-App1 : {e₁ e₁' e₂ : Exp} → e₁ ⇒ e₁' → App e₁ e₂ ⇒ App e₁' e₂ ξ-App2 : {e e' v : Exp} → Val v → e ⇒ e' → App v e ⇒ App v e' ξ-Prod1 : {e₁ e₁' e₂ : Exp} → e₁ ⇒ e₁' → Prod e₁ e₂ ⇒ Prod e₁' e₂ ξ-Prod2 : {e₂ e₂' v : Exp} → Val v → e₂ ⇒ e₂' → Prod v e₂ ⇒ Prod v e₂' ξ-Let : {e₁ e₁' e₂ : Exp} → e₁ ⇒ e₁' → Let e₁ e₂ ⇒ Let e₁' e₂ β-App : {e v : Exp} → Val v → (App (Abs e) v) ⇒ (↑⁻¹[ ([ 0 ↦ ↑¹[ v ] ] e) ]) β-Let : {e e' e'' : Exp} → Val e → Val e' → Let (Prod e e') e'' ⇒ ↑ (ℤ.negsuc 1) , 0 [ ([ 0 ↦ ↑ (ℤ.pos 1) , 0 [ e ] ] ([ 0 ↦ ↑ (ℤ.pos 1) , 1 [ e' ] ] e'')) ] β-LabE : {s : Subset n} {f : ∀ l → l ∈ s → Exp} {x : Fin n} → (ins : x ∈ s) → LabE f (LabI x) ⇒ f x ins ---- properties & lemmas --- properties of shifting -- ∣ + x +ᶻ k ∣ +ᴺ m ≡ ∣ + (x +ᴺ m) +ᶻ k ∣ aux-calc-1 : {x m : ℕ} {k : ℤ} → k >ᶻ + 0 → ∣ + x +ᶻ k ∣ +ᴺ m ≡ ∣ + (x +ᴺ m) +ᶻ k ∣ aux-calc-1 {x} {m} {+_ n} ge rewrite (+-assoc x n m) | (+-comm n m) | (sym (+-assoc x m n)) = refl ↑ᴺk,l[x]+m≡↑ᴺk,l+m[x+m] : {k : ℤ} {l x m : ℕ} → k >ᶻ + 0 → ↑ᴺ k , l [ x ] +ᴺ m ≡ ↑ᴺ k , l +ᴺ m [ x +ᴺ m ] ↑ᴺk,l[x]+m≡↑ᴺk,l+m[x+m] {k} {l} {x} {m} ge with x <ᴺ? l ... | yes p with x +ᴺ m <ᴺ? l +ᴺ m ... | yes q = refl ... | no ¬q = contradiction (+-monoˡ-< m p) ¬q ↑ᴺk,l[x]+m≡↑ᴺk,l+m[x+m] {k} {l} {x} {m} ge | no ¬p with x +ᴺ m <ᴺ? l +ᴺ m ... | yes q = contradiction q (<⇒≱ (+-monoˡ-< m (≰⇒> ¬p))) ... | no ¬q = aux-calc-1 ge -- corollary for suc suc[↑ᴺk,l[x]]≡↑ᴺk,sucl[sucx] : {k : ℤ} {l x : ℕ} → k >ᶻ + 0 → ℕ.suc (↑ᴺ k , l [ x ]) ≡ ↑ᴺ k , ℕ.suc l [ ℕ.suc x ] suc[↑ᴺk,l[x]]≡↑ᴺk,sucl[sucx] {k} {l} {x} ge with (↑ᴺk,l[x]+m≡↑ᴺk,l+m[x+m] {k} {l} {x} {1} ge) ... | w rewrite (n+1≡sucn{↑ᴺ k , l [ x ]}) | (n+1≡sucn{x}) | (n+1≡sucn{l}) = w ↑-var-refl : {n : ℕ} {d : ℤ} {c : ℕ} {x : ℕ} {le : ℕ.suc x ≤ᴺ c} → ↑ d , c [ Var {n} x ] ≡ Var x ↑-var-refl {n} {d} {c} {x} {le} with (x <ᴺ? c) ... | no ¬p = contradiction le ¬p ... | yes p = refl ↑¹-var : {n x : ℕ} → ↑¹[ Var {n} x ] ≡ Var (ℕ.suc x) ↑¹-var {n} {zero} = refl ↑¹-var {n} {ℕ.suc x} rewrite (sym (n+1≡sucn{x +ᴺ 1})) | (sym (n+1≡sucn{x})) = cong ↑¹[_] (↑¹-var{n}{x}) ↑⁻¹ₖ[↑¹ₖ[s]]≡s : {n : ℕ} {e : Exp {n} } {k : ℕ} → ↑ -[1+ 0 ] , k [ ↑ + 1 , k [ e ] ] ≡ e ↑⁻¹ₖ[↑¹ₖ[s]]≡s {n} {Var x} {k} with (x <ᴺ? k) -- x < k -- => ↑⁻¹ₖ(↑¹ₖ(Var n)) = ↑⁻¹ₖ(Var n) = Var n ... | yes p = ↑-var-refl{n}{ -[1+ 0 ]}{k}{x}{p} -- x ≥ k -- => ↑⁻¹ₖ(↑¹ₖ(Var n)) = ↑⁻¹ₖ(Var |n + 1|) = Var (||n + 1| - 1|) = Var n ... | no ¬p with (¬[x≤k]⇒¬[sucx≤k] ¬p) ... | ¬p' with (x +ᴺ 1) <ᴺ? k ... | yes pp = contradiction pp ¬p' ... | no ¬pp rewrite (∣nℕ+1⊖1∣≡n{x}) = refl ↑⁻¹ₖ[↑¹ₖ[s]]≡s {n} {Abs e} {k} = cong Abs ↑⁻¹ₖ[↑¹ₖ[s]]≡s ↑⁻¹ₖ[↑¹ₖ[s]]≡s {n} {App e e₁} = cong₂ App ↑⁻¹ₖ[↑¹ₖ[s]]≡s ↑⁻¹ₖ[↑¹ₖ[s]]≡s ↑⁻¹ₖ[↑¹ₖ[s]]≡s {n} {LabI ins} = refl ↑⁻¹ₖ[↑¹ₖ[s]]≡s {n} {LabE f e} = cong₂ LabE (f-ext (λ x → f-ext (λ ins → ↑⁻¹ₖ[↑¹ₖ[s]]≡s))) ↑⁻¹ₖ[↑¹ₖ[s]]≡s ↑⁻¹ₖ[↑¹ₖ[s]]≡s {n} {Prod e e'} = cong₂ Prod ↑⁻¹ₖ[↑¹ₖ[s]]≡s ↑⁻¹ₖ[↑¹ₖ[s]]≡s ↑⁻¹ₖ[↑¹ₖ[s]]≡s {n} {Let e e'} = cong₂ Let ↑⁻¹ₖ[↑¹ₖ[s]]≡s ↑⁻¹ₖ[↑¹ₖ[s]]≡s ↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] : {n : ℕ} {k l : ℤ} {c : ℕ} {s : Exp {n}} → l ≥ᶻ +0 → ↑ k , c [ ↑ l , c [ s ] ] ≡ ↑ (l +ᶻ k) , c [ s ] ↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] {n} {k} {l} {c} {Var x} ge with x <ᴺ? c ↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] {n} {k} {l} {c} {Var x} ge | no ¬p with ∣ + x +ᶻ l ∣ <ᴺ? c ... | yes q = contradiction q (<⇒≱ (n≤m⇒n<sucm (≤-trans (≮⇒≥ ¬p) (m≥0⇒∣n+m∣≥n ge)))) ... | no ¬q rewrite (0≤n⇒+∣n∣≡n{+ x +ᶻ l} (m≥0⇒n+m≥0 ge)) | (Data.Integer.Properties.+-assoc (+_ x) l k) = refl ↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] {n} {k} {l} {c} {Var x} ge | yes p with x <ᴺ? c ... | yes p' = refl ... | no ¬p' = contradiction p ¬p' ↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] {n} {k} {l} {c} {Abs s} le = cong Abs (↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s]{n}{k}{l}{ℕ.suc c}{s} le) ↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] {n} {k} {l} {c} {App s s₁} le = cong₂ App (↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s]{n}{k}{l}{c}{s} le) (↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s]{n}{k}{l}{c}{s₁} le) ↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] {n} {k} {l} {c} {LabI ins} le = refl ↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] {n} {k} {l} {c} {LabE f e} le = cong₂ LabE (f-ext (λ x → f-ext (λ ins → ↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] {n} {k} {l} {c} {f x ins} le))) ( ↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] {n} {k} {l} {c} {e} le) ↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] {n} {k} {l} {c} {Prod e e'} le = cong₂ Prod (↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] le) (↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] le) ↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] {n} {k} {l} {c} {Let e e'} le = cong₂ Let (↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] le) (↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] le) ↑k,q[↑l,c[s]]≡↑l+k,c[s] : {n : ℕ} {k l : ℤ} {q c : ℕ} {s : Exp {n}} → + q ≤ᶻ + c +ᶻ l → c ≤ᴺ q → ↑ k , q [ ↑ l , c [ s ] ] ≡ ↑ (l +ᶻ k) , c [ s ] ↑k,q[↑l,c[s]]≡↑l+k,c[s] {n} {k} {l} {q} {c} {Var x} ge₁ ge₂ with x <ᴺ? c ... | yes p with x <ᴺ? q ... | yes p' = refl ... | no ¬p' = contradiction (≤-trans p ge₂) ¬p' ↑k,q[↑l,c[s]]≡↑l+k,c[s] {n} {k} {l} {q} {c} {Var x} ge₁ ge₂ | no ¬p with ∣ + x +ᶻ l ∣ <ᴺ? q ... | yes p' = contradiction p' (≤⇒≯ (+a≤b⇒a≤∣b∣{q}{+ x +ᶻ l} (Data.Integer.Properties.≤-trans ge₁ ((Data.Integer.Properties.+-monoˡ-≤ l (+≤+ (≮⇒≥ ¬p))))))) ... | no ¬p' rewrite (0≤n⇒+∣n∣≡n{+ x +ᶻ l} (Data.Integer.Properties.≤-trans (+≤+ z≤n) ((Data.Integer.Properties.≤-trans ge₁ ((Data.Integer.Properties.+-monoˡ-≤ l (+≤+ (≮⇒≥ ¬p)))))))) | (Data.Integer.Properties.+-assoc (+_ x) l k) = refl ↑k,q[↑l,c[s]]≡↑l+k,c[s] {n} {k} {l} {q} {c} {Abs s} ge₁ ge₂ = cong Abs (↑k,q[↑l,c[s]]≡↑l+k,c[s] {n} {k} {l} {ℕ.suc q} {ℕ.suc c} {s} (+q≤+c+l⇒+1q≤+1c+l{q}{c}{l} ge₁) (s≤s ge₂)) ↑k,q[↑l,c[s]]≡↑l+k,c[s] {n} {k} {l} {q} {c} {App s s₁} ge₁ ge₂ = cong₂ App (↑k,q[↑l,c[s]]≡↑l+k,c[s] {n} {k} {l} {q} {c} {s} ge₁ ge₂) (↑k,q[↑l,c[s]]≡↑l+k,c[s]{n} {k} {l} {q} {c} {s₁} ge₁ ge₂) ↑k,q[↑l,c[s]]≡↑l+k,c[s] {n} {k} {l} {q} {c} {LabI e} ge₁ ge₂ = refl ↑k,q[↑l,c[s]]≡↑l+k,c[s] {n} {k} {l} {q} {c} {LabE f e} ge₁ ge₂ = cong₂ LabE (f-ext (λ x → f-ext (λ ins → ↑k,q[↑l,c[s]]≡↑l+k,c[s] {n} {k} {l} {q} {c} {f x ins} ge₁ ge₂))) (↑k,q[↑l,c[s]]≡↑l+k,c[s] {n} {k} {l} {q} {c} {e} ge₁ ge₂) ↑k,q[↑l,c[s]]≡↑l+k,c[s] {n} {k} {l} {q} {c} {Prod e e'} ge₁ ge₂ = cong₂ Prod (↑k,q[↑l,c[s]]≡↑l+k,c[s] ge₁ ge₂) (↑k,q[↑l,c[s]]≡↑l+k,c[s] ((+q≤+c+l⇒+1q≤+1c+l{q}{c}{l} ge₁)) (s≤s ge₂)) ↑k,q[↑l,c[s]]≡↑l+k,c[s] {n} {k} {l} {q} {c} {Let e e'} ge₁ ge₂ = cong₂ Let (↑k,q[↑l,c[s]]≡↑l+k,c[s] ge₁ ge₂) (↑k,q[↑l,c[s]]≡↑l+k,c[s] ((+q≤+c+l⇒+1q≤+1c+l{ℕ.suc q}{ℕ.suc c}{l} (+q≤+c+l⇒+1q≤+1c+l{q}{c}{l} ge₁))) (s≤s (s≤s ge₂))) aux-calc-2 : {x l : ℕ} {k : ℤ} → k >ᶻ + 0 → ∣ + (x +ᴺ l) +ᶻ k ∣ ≡ ∣ + x +ᶻ k ∣ +ᴺ l aux-calc-2 {x} {l} {+_ n} ge rewrite (+-assoc x l n) | (+-comm l n) | (+-assoc x n l) = refl ↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] : {n : ℕ} {k : ℤ} {q c l : ℕ} {s : Exp {n}} → c ≤ᴺ q → + 0 <ᶻ k → ↑ k , q +ᴺ l [ ↑ + l , c [ s ] ] ≡ ↑ + l , c [ ↑ k , q [ s ] ] ↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] {n} {k} {q} {c} {l} {Var x} le le' with x <ᴺ? q ... | yes p with x <ᴺ? c ... | yes p' with x <ᴺ? q +ᴺ l ... | yes p'' = refl ... | no ¬p'' = contradiction (≤-stepsʳ l p) ¬p'' ↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] {n} {k} {q} {c} {l} {Var x} le le' | yes p | no ¬p' with x +ᴺ l <ᴺ? q +ᴺ l ... | yes p'' = refl ... | no ¬p'' = contradiction (Data.Nat.Properties.+-monoˡ-≤ l p) ¬p'' ↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] {n} {k} {q} {c} {l} {Var x} le le' | no ¬p with x <ᴺ? c ... | yes p' = contradiction p' (<⇒≱ (a≤b<c⇒a<c le (≰⇒> ¬p))) ... | no ¬p' with x +ᴺ l <ᴺ? q +ᴺ l | ∣ + x +ᶻ k ∣ <ᴺ? c ... | _ | yes p''' = contradiction p''' (<⇒≱ (a≤b<c⇒a<c (≰⇒≥ ¬p') (s≤s (m>0⇒∣n+m∣>n {x} {k} le')))) ... | yes p'' | _ = contradiction p'' (<⇒≱ (+-monoˡ-< l (≰⇒> ¬p))) ... | no ¬p'' | no ¬p''' = cong Var (aux-calc-2 {x} {l} {k} le') ↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] {n} {k} {q} {c} {l} {Abs s} le le' = cong Abs (↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] {n} {k} {ℕ.suc q} {ℕ.suc c} {l} {s} (s≤s le) le') ↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] {n} {k} {q} {c} {l} {App s s₁} le le' = cong₂ App (↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] {n} {k} {q} {c} {l} {s} le le') (↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] {n} {k} {q} {c} {l} {s₁} le le') ↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] {n} {k} {q} {c} {l} {LabI x} le le' = refl ↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] {n} {k} {q} {c} {l} {LabE f s} le le' = cong₂ LabE (f-ext (λ x → f-ext (λ ins → ↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] {n} {k} {q} {c} {l} {f x ins} le le'))) (↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] {n} {k} {q} {c} {l} {s} le le') ↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] {n} {k} {q} {c} {l} {Prod e e'} le le' = cong₂ Prod (↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] le le') (↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] (s≤s le) le') ↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] {n} {k} {q} {c} {l} {Let e e'} le le' = cong₂ Let (↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] le le') (↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] (s≤s (s≤s le)) le') -- corollaries ↑k,sucq[↑1,c[s]]≡↑1,c[↑k,q[s]] : {n : ℕ} {k : ℤ} {q c : ℕ} {s : Exp {n}} → c ≤ᴺ q → + 0 <ᶻ k → ↑ k , ℕ.suc q [ ↑ + 1 , c [ s ] ] ≡ ↑ + 1 , c [ ↑ k , q [ s ] ] ↑k,sucq[↑1,c[s]]≡↑1,c[↑k,q[s]] {n} {k} {q} {c} {s} le le' rewrite (sym (n+1≡sucn{q})) = ↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]]{n}{k}{q}{c}{1}{s} le le' ↑k,sucsucq[↑2,c[s]]≡↑2,c[↑k,q[s]] : {n : ℕ} {k : ℤ} {q c : ℕ} {s : Exp {n}} → c ≤ᴺ q → + 0 <ᶻ k → ↑ k , ℕ.suc (ℕ.suc q) [ ↑ + 2 , c [ s ] ] ≡ ↑ + 2 , c [ ↑ k , q [ s ] ] ↑k,sucsucq[↑2,c[s]]≡↑2,c[↑k,q[s]] {n} {k} {q} {c} {s} le le' rewrite (sym (n+2≡sucsucn{q})) = ↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]]{n}{k}{q}{c}{2}{s} le le' ↑Lab-triv : {n : ℕ} {l : Fin n} (k : ℤ) (q : ℕ) → LabI l ≡ ↑ k , q [ LabI l ] ↑Lab-triv {n} {l} k q = refl ↑ᴺ-triv : {m : ℤ} {n x : ℕ} → x ≥ᴺ n → ↑ᴺ m , n [ x ] ≡ ∣ + x +ᶻ m ∣ ↑ᴺ-triv {m} {n} {x} ge with x <ᴺ? n ... | yes p = contradiction p (≤⇒≯ ge) ... | no ¬p = refl ↑ᴺ⁰-refl : {n : ℕ} {c : ℕ} {x : ℕ} → ↑ᴺ + 0 , c [ x ] ≡ x ↑ᴺ⁰-refl {n} {c} {x} with x <ᴺ? c ... | yes p = refl ... | no ¬p = +-identityʳ x ↑⁰-refl : {n : ℕ} {c : ℕ} {e : Exp {n}} → ↑ + 0 , c [ e ] ≡ e ↑⁰-refl {n} {c} {Var x} = cong Var (↑ᴺ⁰-refl{n}{c}{x}) ↑⁰-refl {n} {c} {Abs e} = cong Abs (↑⁰-refl{n}{ℕ.suc c}{e}) ↑⁰-refl {n} {c} {App e e₁} = cong₂ App (↑⁰-refl{n}{c}{e}) (↑⁰-refl{n}{c}{e₁}) ↑⁰-refl {n} {c} {LabI x} = refl ↑⁰-refl {n} {c} {LabE x e} = cong₂ LabE (f-ext (λ l → f-ext λ i → ↑⁰-refl{n}{c}{x l i})) (↑⁰-refl{n}{c}{e}) ↑⁰-refl {n} {c} {Prod e e'} = cong₂ Prod ↑⁰-refl ↑⁰-refl ↑⁰-refl {n} {c} {Let e e'} = cong₂ Let ↑⁰-refl ↑⁰-refl --- properties of substitution subst-trivial : {n : ℕ} {x : ℕ} {s : Exp {n}} → [ x ↦ s ] Var x ≡ s subst-trivial {n} {x} {s} with x Data.Nat.≟ x ... | no ¬p = contradiction refl ¬p ... | yes p = refl var-subst-refl : {N n m : ℕ} {neq : n ≢ m} {e : Exp {N}} → [ n ↦ e ] (Var m) ≡ (Var m) var-subst-refl {N} {n} {m} {neq} {e} with _≟ᴺ_ n m | map′ (≡ᵇ⇒≡ m n) (≡⇒≡ᵇ m n) (Data.Bool.Properties.T? (m ≡ᵇ n)) ... | yes p | _ = contradiction p neq ... | no ¬p | yes q = contradiction q (≢-sym ¬p) ... | no ¬p | no ¬q = refl -- inversive lemma for variable in expression relation inv-in-var : {N n m : ℕ} → _∈`_ {N} n (Var m) → n ≡ m inv-in-var {N} {n} {.n} in-Var = refl inv-in-abs : {N n : ℕ} {e : Exp {N}} → _∈`_ {N} n (Abs e) → (ℕ.suc n) ∈` e inv-in-abs {N} {n} {e} (in-Abs i) = i inv-in-app : {N n : ℕ} {e e' : Exp {N}} → _∈`_ {N} n (App e e') → (_∈`_ n e ⊎ _∈`_ n e') inv-in-app {N} {n} {e} {e'} (in-App d) = d inv-in-labe : {N n : ℕ} {s : Subset N} {f : (∀ l → l ∈ s → Exp {N})} {e : Exp {N}} → _∈`_ {N} n (LabE {N} {s} f e) → (∃₂ λ l i → n ∈` (f l i)) ⊎ n ∈` e inv-in-labe {N} {n} {s} {f} {e} (in-LabE d) = d notin-shift : {N n k q : ℕ} {e : Exp {N}} → n ≥ᴺ q → ¬ n ∈` e → ¬ ((n +ᴺ k) ∈` ↑ + k , q [ e ]) notin-shift {N} {n} {k} {q} {Var x} geq j z with x <ᴺ? q ... | no ¬p with x ≟ᴺ n ... | yes p' rewrite p' = contradiction in-Var j ... | no ¬p' with cong (_∸ k) (inv-in-var z) ... | w rewrite (m+n∸n≡m n k) | (m+n∸n≡m x k) = contradiction (sym w) ¬p' notin-shift {N} {n} {k} {q} {Var .(n +ᴺ k)} geq j in-Var | yes p = contradiction geq (<⇒≱ (≤-trans (s≤s (m≤m+n n k)) p)) -- q ≤ n VS ℕ.suc (n + k) ≤ n notin-shift {N} {n} {k} {q} {Abs e} geq j (in-Abs x) = notin-shift (s≤s geq) (λ x₁ → contradiction (in-Abs x₁) j) x notin-shift {N} {n} {k} {q} {App e e₁} geq j z with dm2 (contraposition in-App j) | (inv-in-app z) ... | fst , snd | inj₁ x = notin-shift geq fst x ... | fst , snd | inj₂ y = notin-shift geq snd y notin-shift {N} {n} {k} {q} {LabI x} geq j () notin-shift {N} {n} {k} {q} {LabE f e} geq j z with dm2 (contraposition in-LabE j) | (inv-in-labe z) ... | fst , snd | inj₂ y = notin-shift geq snd y ... | fst , snd | inj₁ (fst₁ , fst₂ , snd₁) = notin-shift geq (¬∃⟶∀¬ (¬∃⟶∀¬ fst fst₁) fst₂) snd₁ notin-shift {N} {n} {k} {q} {Prod e e'} geq j (in-Prod (inj₁ x)) = notin-shift geq (λ x₁ → contradiction (in-Prod (inj₁ x₁)) j) x notin-shift {N} {n} {k} {q} {Prod e e'} geq j (in-Prod (inj₂ y)) = notin-shift (s≤s geq) (λ x → contradiction (in-Prod (inj₂ x)) j) y notin-shift {N} {n} {k} {q} {Let e e'} geq j (in-Let (inj₁ x)) = notin-shift geq (λ x₁ → contradiction (in-Let (inj₁ x₁)) j) x notin-shift {N} {n} {k} {q} {Let e e'} geq j (in-Let (inj₂ y)) = notin-shift (s≤s (s≤s geq)) (λ x → contradiction (in-Let (inj₂ x)) j) y -- corollary notin-shift-one : {N n : ℕ} {e : Exp{N}} → ¬ n ∈` e → ¬ (ℕ.suc n ∈` ↑¹[ e ]) notin-shift-one {N} {n} {e} nin rewrite (sym (n+1≡sucn{n})) = notin-shift{N}{n}{1} z≤n nin -- if n ∉ fv(e), then substitution of n does not do anything subst-refl-notin : {N n : ℕ} {e e' : Exp {N}} → ¬ n ∈` e → [ n ↦ e' ] e ≡ e subst-refl-notin {N} {n} {Var x} {e'} nin with x ≟ᴺ n ... | yes p rewrite p = contradiction in-Var nin ... | no ¬p = refl subst-refl-notin {N} {n} {Abs e} {e'} nin = cong Abs (subst-refl-notin (contraposition in-Abs nin)) subst-refl-notin {N} {n} {App e e₁} {e'} nin with dm2 (contraposition in-App nin) ... | fst , snd = cong₂ App (subst-refl-notin fst) (subst-refl-notin snd) subst-refl-notin {N} {n} {LabI x} {e'} nin = refl subst-refl-notin {N} {n} {LabE x e} {e'} nin with dm2 (contraposition in-LabE nin) ... | fst , snd = cong₂ LabE (f-ext (λ l → f-ext (λ x₁ → subst-refl-notin{e' = e'} (¬∃⟶∀¬ (¬∃⟶∀¬ (fst) l) x₁)))) (subst-refl-notin (snd)) subst-refl-notin {N} {n} {Prod e e'} {e''} nin = cong₂ Prod (subst-refl-notin (λ x → contradiction (in-Prod (inj₁ x)) nin)) (subst-refl-notin (λ x → contradiction (in-Prod (inj₂ x)) nin)) subst-refl-notin {N} {n} {Let e e'} {e''} nin = cong₂ Let (subst-refl-notin (λ x → contradiction (in-Let (inj₁ x)) nin)) (subst-refl-notin (λ x → contradiction (in-Let (inj₂ x)) nin)) notin-subst : {N n : ℕ} {e e' : Exp {N}} → ¬ n ∈` e' → ¬ (n ∈` ([ n ↦ e' ] e)) notin-subst {N} {n} {Var x} {e'} nin with x ≟ᴺ n ... | yes p = nin ... | no ¬p = λ x₁ → contradiction (inv-in-var x₁) (≢-sym ¬p) notin-subst {N} {n} {Abs e} {e'} nin with notin-shift{k = 1} z≤n nin ... | w rewrite (n+1≡sucn{n}) = λ x → notin-subst {n = ℕ.suc n} {e = e} {e' = ↑¹[ e' ]} w (inv-in-abs x) notin-subst {N} {n} {App e e₁} {e'} nin (in-App z) with z ... | inj₁ x = notin-subst{e = e} nin x ... | inj₂ y = notin-subst{e = e₁} nin y notin-subst {N} {n} {LabI x} {e'} nin = λ () notin-subst {N} {n} {LabE f e} {e'} nin (in-LabE z) with z ... | inj₁ (fst , fst₁ , snd) = notin-subst{e = f fst fst₁} nin snd ... | inj₂ y = notin-subst{e = e} nin y -- notin-shift : {N n k q : ℕ} {e : Exp {N}} → n ≥ᴺ q → ¬ n ∈` e → ¬ ((n +ᴺ k) ∈` ↑ + k , q [ e ]) notin-subst {N} {n} {Prod e e'} {e''} nin (in-Prod (inj₁ x)) = notin-subst{e = e} nin x notin-subst {N} {n} {Prod e e'} {e''} nin (in-Prod (inj₂ y)) with notin-shift{k = 1} z≤n nin ... | w rewrite (n+1≡sucn{n}) = notin-subst {n = ℕ.suc n}{e = e'}{e' = ↑¹[ e'' ]} w y notin-subst {N} {n} {Let e e'} {e''} nin (in-Let (inj₁ x)) = notin-subst{e = e} nin x notin-subst {N} {n} {Let e e'} {e''} nin (in-Let (inj₂ y)) with notin-shift{k = 2} z≤n nin ... | w rewrite (n+2≡sucsucn{n}) = notin-subst {n = ℕ.suc (ℕ.suc n)} {e = e'} {e' = ↑ + 2 , 0 [ e'' ]} w y subst2-refl-notin : {N n : ℕ} {e e' s : Exp {N}} → ¬ n ∈` e' → [ n ↦ e ] ([ n ↦ e' ] s) ≡ [ n ↦ e' ] s subst2-refl-notin {N} {n} {e} {e'} {s} nin = subst-refl-notin (notin-subst{e = s} nin) -- if n ∈ [ m ↦ s ] e, n ∉ s, then n ≢ m subst-in-neq : {N n m : ℕ} {e s : Exp{N}} → ¬ n ∈` s → n ∈` ([ m ↦ s ] e) → n ≢ m subst-in-neq {N} {n} {m} {Var x} {s} nin ins with x ≟ᴺ m ... | yes p = contradiction ins nin subst-in-neq {N} {.x} {m} {Var x} {s} nin in-Var | no ¬p = ¬p subst-in-neq {N} {n} {m} {Abs e} {s} nin (in-Abs ins) = sucn≢sucm⇒n≢m (subst-in-neq{e = e} (notin-shift-one nin) ins) subst-in-neq {N} {n} {m} {App e e₁} {s} nin (in-App (inj₁ x)) = subst-in-neq{e = e} nin x subst-in-neq {N} {n} {m} {App e e₁} {s} nin (in-App (inj₂ y)) = subst-in-neq{e = e₁} nin y subst-in-neq {N} {n} {m} {LabE f e} {s} nin (in-LabE (inj₁ (fst , fst₁ , snd))) = subst-in-neq{e = f fst fst₁} nin snd subst-in-neq {N} {n} {m} {LabE f e} {s} nin (in-LabE (inj₂ y)) = subst-in-neq{e = e} nin y subst-in-neq {N} {n} {m} {Prod e e'} {s} nin (in-Prod (inj₁ x)) = subst-in-neq{e = e} nin x subst-in-neq {N} {n} {m} {Prod e e'} {s} nin (in-Prod (inj₂ y)) = sucn≢sucm⇒n≢m (subst-in-neq{e = e'} (notin-shift-one nin) y) subst-in-neq {N} {n} {m} {Let e e'} {s} nin (in-Let (inj₁ x)) = subst-in-neq{e = e} nin x subst-in-neq {N} {n} {m} {Let e e'} {s} nin (in-Let (inj₂ y)) with notin-shift{k = 2} z≤n nin ... | w rewrite (n+2≡sucsucn{n}) = sucn≢sucm⇒n≢m (sucn≢sucm⇒n≢m (subst-in-neq{e = e'} w y)) -- if n ≢ m, n ∈` e, then n ∈` [ m ↦ e' ] e subst-in : {N n m : ℕ} {e e' : Exp {N}} → n ≢ m → n ∈` e → n ∈` ([ m ↦ e' ] e) subst-in {N} {n} {m} {Var x} {e'} neq (in-Var) with n ≟ᴺ m ... | yes p = contradiction p neq ... | no ¬p = in-Var subst-in {N} {n} {m} {Abs e} {e'} neq (in-Abs j) = in-Abs (subst-in (n≢m⇒sucn≢sucm neq) j) subst-in {N} {n} {m} {App e e₁} {e'} neq (in-App z) with z ... | inj₁ x = in-App (inj₁ (subst-in neq x)) ... | inj₂ y = in-App (inj₂ (subst-in neq y)) subst-in {N} {n} {m} {LabE f e} {e'} neq (in-LabE z) with z ... | inj₁ (fst , fst₁ , snd) = in-LabE (inj₁ (fst , (fst₁ , (subst-in neq snd)))) ... | inj₂ y = in-LabE (inj₂ (subst-in neq y)) subst-in {N} {n} {m} {Prod e e'} {e''} neq (in-Prod (inj₁ x)) = in-Prod (inj₁ (subst-in neq x)) subst-in {N} {n} {m} {Prod e e'} {e''} neq (in-Prod (inj₂ y)) = in-Prod (inj₂ (subst-in (n≢m⇒sucn≢sucm neq) y)) subst-in {N} {n} {m} {Let e e'} {e''} neq (in-Let (inj₁ x)) = in-Let (inj₁ (subst-in neq x)) subst-in {N} {n} {m} {Let e e'} {e''} neq (in-Let (inj₂ y)) = in-Let (inj₂ (subst-in (n≢m⇒sucn≢sucm (n≢m⇒sucn≢sucm neq)) y)) -- if n ≢ m, n ∉ e', n ∈ [ m ↦ e' ] e, then n ∈ e subst-in-reverse : {N n m : ℕ} {e e' : Exp {N}} → n ≢ m → ¬ (n ∈` e') → n ∈` ([ m ↦ e' ] e) → n ∈` e subst-in-reverse {N} {n} {m} {Var x} {e'} neq nin ins with x ≟ᴺ m ... | yes p = contradiction ins nin ... | no ¬p = ins subst-in-reverse {N} {n} {m} {Abs e} {e'} neq nin (in-Abs ins) = in-Abs (subst-in-reverse (n≢m⇒sucn≢sucm neq) (notin-shift-one{N}{n}{e'} nin) ins) subst-in-reverse {N} {n} {m} {App e e₁} {e'} neq nin (in-App (inj₁ x)) = in-App (inj₁ (subst-in-reverse neq nin x)) subst-in-reverse {N} {n} {m} {App e e₁} {e'} neq nin (in-App (inj₂ y)) = in-App (inj₂ (subst-in-reverse neq nin y)) subst-in-reverse {N} {n} {m} {LabE f e} {e'} neq nin (in-LabE (inj₁ (fst , fst₁ , snd))) = in-LabE (inj₁ (fst , (fst₁ , subst-in-reverse{e = f fst fst₁} neq nin snd))) subst-in-reverse {N} {n} {m} {LabE f e} {e'} neq nin (in-LabE (inj₂ y)) = in-LabE (inj₂ (subst-in-reverse neq nin y)) subst-in-reverse {N} {n} {m} {Prod e e'} {e''} neq nin (in-Prod (inj₁ x)) = in-Prod (inj₁ (subst-in-reverse neq nin x)) subst-in-reverse {N} {n} {m} {Prod e e'} {e''} neq nin (in-Prod (inj₂ y)) = in-Prod (inj₂ (subst-in-reverse (n≢m⇒sucn≢sucm neq) (notin-shift-one{e = e''} nin) y)) subst-in-reverse {N} {n} {m} {Let e e'} {e''} neq nin (in-Let (inj₁ x)) = in-Let (inj₁ (subst-in-reverse neq nin x)) subst-in-reverse {N} {n} {m} {Let e e'} {e''} neq nin (in-Let (inj₂ y)) with notin-shift{k = 2} z≤n nin ... | w rewrite (n+2≡sucsucn{n}) = in-Let (inj₂ (subst-in-reverse (n≢m⇒sucn≢sucm (n≢m⇒sucn≢sucm neq)) w y)) var-env-< : {N : ℕ} {Γ : TEnv {N}} {T : Ty} {n : ℕ} (j : n ∶ T ∈ Γ) → n <ᴺ (length Γ) var-env-< {N} {.(⟨ T , _ ⟩)} {T} {.0} here = s≤s z≤n var-env-< {N} {.(⟨ _ , _ ⟩)} {T} {.(ℕ.suc _)} (there j) = s≤s (var-env-< j) -- variables contained in a term are < length of env. free-vars-env-< : {N : ℕ} {e : Exp {N}} {Γ : TEnv {N}} {T : Ty {N}} → Γ ⊢ e ∶ T → (∀ n → n ∈` e → n <ᴺ length Γ) free-vars-env-< {N} {Var x₁} {Γ} {T} (TConv j x) .x₁ in-Var = free-vars-env-< j x₁ in-Var free-vars-env-< {N} {Var x₁} {Γ} {T} (TVarE x eq) .x₁ in-Var = var-env-< x free-vars-env-< {N} {Abs e} {Γ} {T} (TConv j x₁) n x = free-vars-env-< j n x free-vars-env-< {N} {Abs e} {Γ} {.(Pi _ _)} (TPiI j) n (in-Abs x) = ≤-pred (free-vars-env-< j (ℕ.suc n) x) free-vars-env-< {N} {App e e₁} {Γ} {T} (TConv j x₁) n x = free-vars-env-< j n x free-vars-env-< {N} {App e e₁} {Γ} {.([ 0 ↦ e₁ ]ᵀ _)} (TPiE j j₁ x₁) n (in-App (inj₁ x)) = free-vars-env-< j n x free-vars-env-< {N} {App e e₁} {Γ} {.([ 0 ↦ e₁ ]ᵀ _)} (TPiE j j₁ x₁) n (in-App (inj₂ y)) = free-vars-env-< j₁ n y free-vars-env-< {N} {LabE f e} {Γ} {T} (TConv j x₁) n x = free-vars-env-< j n x free-vars-env-< {N} {LabE f .(LabI _)} {Γ} {T} (TLabEl{scopecheck = s} j j₁) n (in-LabE (inj₁ (fst , fst₁ , snd))) = s fst fst₁ n snd free-vars-env-< {N} {LabE f (Var m)} {Γ} {T} (TLabEx f' j) n x with n ≟ᴺ m ... | yes p rewrite p = free-vars-env-< j m in-Var free-vars-env-< {N} {LabE f (Var m)} {Γ} {T} (TLabEx f' j) n (in-LabE (inj₁ (fst , fst₁ , snd))) | no ¬p = free-vars-env-< (f' fst fst₁) n (subst-in ¬p snd) free-vars-env-< {N} {LabE f (Var m)} {Γ} {T} (TLabEx f' j) n (in-LabE (inj₂ y)) | no ¬p = contradiction (inv-in-var y) ¬p free-vars-env-< {N} {Prod e e₁} {Γ} {T} (TConv j x₁) n x = free-vars-env-< j n x free-vars-env-< {N} {Prod e e₁} {Γ} {.(Sigma _ _)} (TSigmaI j j₁) n (in-Prod (inj₁ x)) = free-vars-env-< j n x free-vars-env-< {N} {Prod e e₁} {Γ} {.(Sigma _ _)} (TSigmaI j j₁) n (in-Prod (inj₂ y)) = ≤-pred (free-vars-env-< j₁ (ℕ.suc n) y) free-vars-env-< {N} {Let e e₁} {Γ} {T} (TConv j x₁) n x = free-vars-env-< j n x free-vars-env-< {N} {Let e e₁} {Γ} {T} (TSigmaE j j₁ nin) n (in-Let (inj₁ x)) = free-vars-env-< j n x free-vars-env-< {N} {Let e e₁} {Γ} {T} (TSigmaE j j₁ nin) n (in-Let (inj₂ y)) = ≤-pred (≤-pred (free-vars-env-< j₁ (ℕ.suc (ℕ.suc n)) y)) -- closed expressions have no free variables closed-free-vars : {N : ℕ} {e : Exp {N}} {T : Ty {N}} → [] ⊢ e ∶ T → (∀ n → ¬ (n ∈` e)) closed-free-vars {N} {Var x} {T} j n z = contradiction (free-vars-env-< j n z) (λ ()) closed-free-vars {N} {Abs e} {T} (TConv j x) n = closed-free-vars j n closed-free-vars {N} {Abs e} {.(Pi _ _)} (TPiI j) n (in-Abs x) = contradiction ((free-vars-env-< j (ℕ.suc n) x)) (≤⇒≯ (s≤s z≤n)) closed-free-vars {N} {LabI x} {T} (TConv j x₁) n = closed-free-vars j n closed-free-vars {N} {LabI x} {.(Label _)} (TLabI ins) n = λ () closed-free-vars {N} {Prod e e₁} {T} (TConv j x) n = closed-free-vars j n closed-free-vars {N} {Prod e e₁} {.(Sigma _ _)} (TSigmaI j j₁) n (in-Prod (inj₁ x)) = closed-free-vars j n x closed-free-vars {N} {Prod e e₁} {.(Sigma _ _)} (TSigmaI j j₁) n (in-Prod (inj₂ y)) = contradiction (free-vars-env-< j₁ (ℕ.suc n) y) (≤⇒≯ (s≤s z≤n)) closed-free-vars {N} {Let e e₁} {T} (TConv j x) n = closed-free-vars j n closed-free-vars {N} {Let e e₁} {T} (TSigmaE j j₁ nin) n (in-Let (inj₁ x)) = closed-free-vars j n x closed-free-vars {N} {Let e e₁} {T} (TSigmaE j j₁ nin) n (in-Let (inj₂ y)) = contradiction (free-vars-env-< j₁ (ℕ.suc (ℕ.suc n)) y) (≤⇒≯ (s≤s (s≤s z≤n))) closed-free-vars {N} {e} {T} j n x = contradiction (free-vars-env-< j n x) (≤⇒≯ z≤n) -- App & LabE have the same proof -- shifting with a threshold above number of free variables has no effect shift-env-size : {n : ℕ} {k : ℤ} {q : ℕ} {e : Exp {n}} → (∀ n → n ∈` e → n <ᴺ q) → ↑ k , q [ e ] ≡ e shift-env-size {n} {k} {q} {Var x} lmap with x <ᴺ? q ... | yes p = refl ... | no ¬p = contradiction (lmap x in-Var) ¬p shift-env-size {n} {k} {q} {Abs e} lmap = cong Abs (shift-env-size (extr lmap)) where extr : (∀ n → n ∈` Abs e → n <ᴺ q) → (∀ n → n ∈` e → n <ᴺ ℕ.suc q) extr lmap zero ins = s≤s z≤n extr lmap (ℕ.suc n) ins = s≤s (lmap n (in-Abs ins)) shift-env-size {n} {k} {q} {App e e'} lmap = cong₂ App (shift-env-size (extr lmap)) (shift-env-size(extr' lmap)) where extr : (∀ n → n ∈` App e e' → n <ᴺ q) → (∀ n → n ∈` e → n <ᴺ q) extr lmap n ins = lmap n (in-App (inj₁ ins)) extr' : (∀ n → n ∈` App e e' → n <ᴺ q) → (∀ n → n ∈` e' → n <ᴺ q) extr' lmap n ins = lmap n (in-App (inj₂ ins)) shift-env-size {n} {k} {q} {LabI x} lmap = refl shift-env-size {n} {k} {q} {LabE{s = s} f e} lmap = cong₂ LabE (f-ext λ l' → (f-ext λ x → shift-env-size (extr lmap l' x))) (shift-env-size (extr' lmap)) where extr : (∀ n → n ∈` LabE f e → n <ᴺ q) → (l : Fin n) → (x : l ∈ s) → (∀ n → n ∈` f l x → n <ᴺ q) extr lmap l x n ins = lmap n (in-LabE (inj₁ (l , (x , ins)))) extr' : (∀ n → n ∈` LabE f e → n <ᴺ q) → (∀ n → n ∈` e → n <ᴺ q) extr' lmap n ins = lmap n (in-LabE (inj₂ ins)) shift-env-size {n} {k} {q} {Prod e e'} lmap = cong₂ Prod (shift-env-size (extr lmap)) (shift-env-size (extr' lmap)) where extr : (∀ n → n ∈` Prod e e' → n <ᴺ q) → (∀ n → n ∈` e → n <ᴺ q) extr lmap n ins = lmap n (in-Prod (inj₁ ins)) extr' : (∀ n → n ∈` Prod e e' → n <ᴺ q) → (∀ n → n ∈` e' → n <ᴺ ℕ.suc q) extr' lmap zero ins = s≤s z≤n extr' lmap (ℕ.suc n) ins = s≤s (lmap n (in-Prod (inj₂ ins))) shift-env-size {n} {k} {q} {Let e e'} lmap = cong₂ Let (shift-env-size (extr lmap)) (shift-env-size (extr' lmap)) where extr : (∀ n → n ∈` Let e e' → n <ᴺ q) → (∀ n → n ∈` e → n <ᴺ q) extr lmap n ins = lmap n (in-Let (inj₁ ins)) extr' : (∀ n → n ∈` Let e e' → n <ᴺ q) → (∀ n → n ∈` e' → n <ᴺ ℕ.suc (ℕ.suc q)) extr' lmap zero ins = s≤s z≤n extr' lmap (ℕ.suc zero) ins = s≤s (s≤s z≤n) extr' lmap (ℕ.suc (ℕ.suc n)) ins = s≤s (s≤s (lmap n (in-Let (inj₂ ins)))) -- shifting has no effect on closed terms (corollary of shift-env-size) closed-no-shift : {n : ℕ} {k : ℤ} {q : ℕ} {e : Exp {n}} {T : Ty {n}} → [] ⊢ e ∶ T → ↑ k , q [ e ] ≡ e closed-no-shift {n} {k} {zero} {e} {T} j = shift-env-size (free-vars-env-< j) closed-no-shift {n} {k} {ℕ.suc q} {e} {T} j = shift-env-size λ n i → <-trans (free-vars-env-< j n i) (s≤s z≤n) -- subst-change-in : {N n m : ℕ} {e s s' : Exp{N}} → ¬ (n ∈` s) × ¬ (n ∈` s') → n ∈` ([ m ↦ s ] e) → n ∈` ([ m ↦ s' ] e) subst-change-in {N} {n} {m} {Var x} {s} {s'} (fst , snd) ins with x ≟ᴺ m ... | yes eq = contradiction ins fst ... | no ¬eq = ins subst-change-in {N} {n} {m} {Abs e} {s} {s'} (fst , snd) (in-Abs ins) = in-Abs (subst-change-in{N}{ℕ.suc n}{ℕ.suc m}{e} (notin-shift-one{N}{n}{s} fst , notin-shift-one{N}{n}{s'} snd) ins) subst-change-in {N} {n} {m} {App e e₁} {s} {s'} p (in-App (inj₁ x)) = in-App (inj₁ (subst-change-in{N}{n}{m}{e} p x)) subst-change-in {N} {n} {m} {App e e₁} {s} {s'} p (in-App (inj₂ y)) = in-App (inj₂ (subst-change-in{N}{n}{m}{e₁} p y)) subst-change-in {N} {n} {m} {LabE f e} {s} {s'} p (in-LabE (inj₁ (fst , fst₁ , snd))) = in-LabE (inj₁ (fst , (fst₁ , (subst-change-in{N}{n}{m}{f fst fst₁}{s}{s'} p snd)))) subst-change-in {N} {n} {m} {LabE f e} {s} {s'} p (in-LabE (inj₂ y)) = in-LabE (inj₂ (subst-change-in {N} {n} {m} {e} p y)) subst-change-in {N} {n} {m} {Prod e e'} {s} {s'} p (in-Prod (inj₁ x)) = in-Prod (inj₁ (subst-change-in{m = m}{e} p x)) subst-change-in {N} {n} {m} {Prod e e'} {s} {s'} (fst , snd) (in-Prod (inj₂ y)) = in-Prod (inj₂ (subst-change-in {N} {ℕ.suc n} {ℕ.suc m} {e'} (notin-shift-one{N}{n}{s} fst , notin-shift-one {N} {n} {s'} snd) y)) subst-change-in {N} {n} {m} {Let e e'} {s} {s'} p (in-Let (inj₁ x)) = in-Let (inj₁ (subst-change-in {N} {n} {m} {e} p x)) subst-change-in {N} {n} {m} {Let e e'} {s} {s'} (fst , snd) (in-Let (inj₂ y)) with notin-shift{k = 2} z≤n fst | notin-shift{k = 2} z≤n snd ... | w | w' rewrite (n+2≡sucsucn{n}) = in-Let (inj₂ (subst-change-in {N} {ℕ.suc (ℕ.suc n)} {ℕ.suc (ℕ.suc m)} {e'} (w , w') y)) -- swapping of substitutions A & B if variables of A are not free in substitution term of B and vice versa subst-subst-swap : {N n m : ℕ} {e e' s : Exp {N}} → n ≢ m → ¬ n ∈` e' → ¬ m ∈` e → [ n ↦ e ] ([ m ↦ e' ] s) ≡ [ m ↦ e' ] ([ n ↦ e ] s) subst-subst-swap {N} {n} {m} {e} {e'} {Var x} neq nin nin' with x ≟ᴺ m | x ≟ᴺ n ... | yes p | yes p' = contradiction (≡-trans (sym p') p) neq ... | yes p | no ¬p' with x ≟ᴺ m ... | yes p'' = subst-refl-notin nin ... | no ¬p'' = contradiction p ¬p'' subst-subst-swap {N} {n} {m} {e} {e'} {Var x} neq nin nin' | no ¬p | yes p' with x ≟ᴺ n ... | yes p'' = sym (subst-refl-notin nin') ... | no ¬p'' = contradiction p' ¬p'' subst-subst-swap {N} {n} {m} {e} {e'} {Var x} neq nin nin' | no ¬p | no ¬p' with x ≟ᴺ n | x ≟ᴺ m ... | yes p'' | _ = contradiction p'' ¬p' ... | _ | yes p''' = contradiction p''' ¬p ... | no p'' | no ¬p''' = refl subst-subst-swap {N} {n} {m} {e} {e'} {Abs s} neq nin nin' with (notin-shift{n = n}{1}{0} z≤n nin) | (notin-shift{n = m}{1}{0} z≤n nin') ... | w | w' rewrite (n+1≡sucn{n}) | (n+1≡sucn{m}) = cong Abs (subst-subst-swap{s = s} (n≢m⇒sucn≢sucm neq) w w') subst-subst-swap {N} {n} {m} {e} {e'} {App s s₁} neq nin nin' = cong₂ App (subst-subst-swap{s = s} neq nin nin') (subst-subst-swap{s = s₁} neq nin nin') subst-subst-swap {N} {n} {m} {e} {e'} {LabI x} neq nin nin' = refl subst-subst-swap {N} {n} {m} {e} {e'} {LabE f s} neq nin nin' = cong₂ LabE (f-ext (λ l → f-ext (λ x → subst-subst-swap{s = f l x} neq nin nin' ))) (subst-subst-swap{s = s} neq nin nin') subst-subst-swap {N} {n} {m} {e} {e'} {Prod s s'} neq nin nin' with (notin-shift-one nin) | (notin-shift-one nin') ... | w | w' = cong₂ Prod (subst-subst-swap{s = s} neq nin nin') (subst-subst-swap{s = s'} (n≢m⇒sucn≢sucm neq) w w') subst-subst-swap {N} {n} {m} {e} {e'} {Let s s'} neq nin nin' with notin-shift{k = 2} z≤n nin | notin-shift{k = 2} z≤n nin' ... | w | w' rewrite (n+2≡sucsucn{n}) | (n+2≡sucsucn{m}) = cong₂ Let (subst-subst-swap{s = s} neq nin nin') (subst-subst-swap{s = s'} (n≢m⇒sucn≢sucm (n≢m⇒sucn≢sucm neq)) w w') -- this should be true for all k, but limiting to positive k makes the proof simpler aux-calc-3 : {m x : ℕ} {k : ℤ} → k >ᶻ + 0 → ∣ + m +ᶻ k ∣ ≡ ∣ + x +ᶻ k ∣ → m ≡ x aux-calc-3 {m} {x} {+_ n} gt eqv = +-cancelʳ-≡ m x eqv aux-calc-4 : {m x : ℕ} {k : ℤ} → k >ᶻ + 0 → m ≤ᴺ x → m <ᴺ ∣ + x +ᶻ k ∣ aux-calc-4 {m} {x} {+_ zero} (+<+ ()) aux-calc-4 {m} {x} {+[1+ n ]} (+<+ (s≤s z≤n)) leq = a≤b<c⇒a<c leq (m<m+n x {ℕ.suc n} (s≤s z≤n)) subst-shift-swap : {n : ℕ} {k : ℤ} {x q : ℕ} {s e : Exp {n}} → k >ᶻ + 0 → ↑ k , q [ [ x ↦ e ] s ] ≡ [ ↑ᴺ k , q [ x ] ↦ ↑ k , q [ e ] ] ↑ k , q [ s ] subst-shift-swap {n} {k} {x} {q} {Var m} {e} gt with m ≟ᴺ x ... | yes p with m <ᴺ? q | x <ᴺ? q ... | yes p' | yes p'' with m ≟ᴺ x ... | yes p''' = refl ... | no ¬p''' = contradiction p ¬p''' subst-shift-swap {n} {k} {x} {q} {Var m} {e} gt | yes p | yes p' | no ¬p'' rewrite (cong ℕ.suc p) = contradiction p' ¬p'' subst-shift-swap {n} {k} {x} {q} {Var m} {e} gt | yes p | no ¬p' | yes p'' rewrite (cong ℕ.suc p) = contradiction p'' ¬p' subst-shift-swap {n} {k} {x} {q} {Var m} {e} gt | yes p | no ¬p' | no ¬p'' with ∣ + m +ᶻ k ∣ ≟ᴺ ∣ + x +ᶻ k ∣ ... | yes p''' = refl ... | no ¬p''' rewrite p = contradiction refl ¬p''' subst-shift-swap {n} {k} {x} {q} {Var m} {e} gt | no ¬p with m <ᴺ? q | x <ᴺ? q ... | yes p' | yes p'' with m ≟ᴺ x ... | yes p''' = contradiction p''' ¬p ... | no ¬p''' = refl subst-shift-swap {n} {k} {x} {q} {Var m} {e} gt | no ¬p | yes p' | no ¬p'' with m ≟ᴺ ∣ + x +ᶻ k ∣ ... | yes p''' = contradiction p''' (<⇒≢ (aux-calc-4 gt (≤-pred (≤-trans p' (≰⇒≥ ¬p''))))) ... | no ¬p''' = refl subst-shift-swap {n} {k} {x} {q} {Var m} {e} gt | no ¬p | no ¬p' | yes p'' with ∣ + m +ᶻ k ∣ ≟ᴺ x ... | yes p''' = contradiction p''' (≢-sym (<⇒≢ (aux-calc-4{x}{m}{k} gt (≤-pred (≤-trans p'' (≰⇒≥ ¬p')))))) ... | no ¬p''' = refl subst-shift-swap {n} {k} {x} {q} {Var m} {e} gt | no ¬p | no ¬p' | no ¬p'' with ∣ + m +ᶻ k ∣ ≟ᴺ ∣ + x +ᶻ k ∣ ... | yes p''' = contradiction p''' (contraposition (aux-calc-3 gt) ¬p) ... | no ¬p''' = refl subst-shift-swap {n} {k} {x} {q} {Abs s} {e} gt with (subst-shift-swap{n}{k}{ℕ.suc x}{ℕ.suc q}{s}{↑¹[ e ]} gt) ... | w rewrite (↑k,sucq[↑1,c[s]]≡↑1,c[↑k,q[s]] {n} {k} {q} {0} {e} z≤n gt) | (suc[↑ᴺk,l[x]]≡↑ᴺk,sucl[sucx] {k} {q} {x} gt) = cong Abs w subst-shift-swap {n} {k} {x} {q} {App s₁ s₂} {e} gt = cong₂ App (subst-shift-swap {n} {k} {x} {q} {s₁} {e} gt) (subst-shift-swap {n} {k} {x} {q} {s₂} {e} gt) subst-shift-swap {n} {k} {x} {q} {LabI ins} {e} gt = refl subst-shift-swap {n} {k} {x} {q} {LabE f s} {e} gt = cong₂ LabE (f-ext (λ l → f-ext (λ ins → subst-shift-swap {n} {k} {x} {q} {f l ins} {e} gt))) (subst-shift-swap {n} {k} {x} {q} {s} {e} gt) subst-shift-swap {n} {k} {x} {q} {Prod s s'} {e} gt with (subst-shift-swap{n}{k}{ℕ.suc x}{ℕ.suc q}{s'}{↑¹[ e ]} gt) ... | w rewrite (↑k,sucq[↑1,c[s]]≡↑1,c[↑k,q[s]] {n} {k} {q} {0} {e} z≤n gt) | (suc[↑ᴺk,l[x]]≡↑ᴺk,sucl[sucx] {k} {q} {x} gt) = cong₂ Prod (subst-shift-swap {n} {k} {x} {q} {s} {e} gt) w subst-shift-swap {n} {k} {x} {q} {Let s s'} {e} gt with (subst-shift-swap{n}{k}{ℕ.suc (ℕ.suc x)}{ℕ.suc (ℕ.suc q)}{s'}{↑ + 2 , 0 [ e ]} gt) ... | w rewrite (↑k,sucsucq[↑2,c[s]]≡↑2,c[↑k,q[s]] {n} {k} {q} {0} {e} z≤n gt) | sym (suc[↑ᴺk,l[x]]≡↑ᴺk,sucl[sucx] {k} {(ℕ.suc q)} {(ℕ.suc x)} gt ) | sym (suc[↑ᴺk,l[x]]≡↑ᴺk,sucl[sucx] {k} {q} {x} gt ) = cong₂ Let (subst-shift-swap {n} {k} {x} {q} {s} {e} gt) w --- typing: canonical forms, inequalities case-redex-eq : {n : ℕ} {s : Subset n} {f : (l : Fin n) → l ∈ s → Ty} {e : Exp} {T T' : Ty} → (([] ⊢ Case f e ≡ᵀ T) × ([] ⊢ Case f e ≡ᵀ T')) → [] ⊢ T ≡ᵀ T' case-redex-eq {n} {s} {f} {e} {T} {T'} (fst , snd) = CTrans (CSym fst) snd type-lab : {n : ℕ} {T : Ty {n}} {x : Fin n} → [] ⊢ LabI x ∶ T → ∃[ s ]( [] ⊢ T ≡ᵀ Label s × x ∈ s ) type-lab {n} {Label x₁} {x} (TLabI ins) = x₁ , (CRefl{ok = TLabF}) , ins type-lab {n} {e} {x} (TConv j y) with type-lab j ... | fst , snd , snd' = fst , CTrans (CSym y) snd , snd' type-prod : {n : ℕ} {T : Ty {n}} {e e' : Exp} → [] ⊢ Prod e e' ∶ T → ∃[ A ](∃[ B ]( [] ⊢ T ≡ᵀ Sigma A B )) type-prod {n} {T} {x} (TSigmaI{A = A}{B = B}{ok = ok}{ok' = ok'} y y') = A , (B , (CRefl{ok = TSigmaF ok ok'})) type-prod {n} {T} {x} (TConv j y) with type-prod j ... | fst , fst₁ , snd = fst , (fst₁ , (CTrans (CSym y) snd)) type-abs : {n : ℕ} {T : Ty {n}} {e : Exp} → [] ⊢ Abs e ∶ T → ∃[ A ](∃[ B ]( [] ⊢ T ≡ᵀ Pi A B)) type-abs {n} {.(Pi _ _)} {e} (TPiI{A = A}{B = B}{ok = ok}{ok' = ok'} j) = A , (B , (CRefl{ok = TPiF ok ok'})) type-abs {n} {T} {e} (TConv j x) with type-abs j ... | fst , fst₁ , snd = fst , fst₁ , CTrans (CSym x) snd canonical-forms-pi : {n : ℕ} {A B : Ty {n}} {e : Exp {n}} → [] ⊢ e ∶ Pi A B → Val e → ∃[ e' ]( e ≡ Abs e' ) canonical-forms-pi {n} {A} {B} {Var x} j VVar = contradiction (in-Var) (closed-free-vars j x) canonical-forms-pi {n} {A} {B} {Abs e} j v = e , refl canonical-forms-pi {n} {A} {B} {LabI x} (TConv {T = Label x₂} j x₁) v = contradiction x₁ (≢ᵀ'⇒≢ᵀ (λ ())) canonical-forms-pi {n} {A} {B} {LabI x} (TConv {T = Pi T T₁} j x₁) v = (proj₁ (canonical-forms-pi j v)) , (≡-trans refl (proj₂ (canonical-forms-pi j v))) canonical-forms-pi {n} {A} {B} {LabI x} (TConv {T = Sigma T T₁} j x₁) v = contradiction x₁ (≢ᵀ'⇒≢ᵀ (λ ())) canonical-forms-pi {n} {A} {B} {LabI x} (TConv {T = Case f x₂} j x₁) v = contradiction (case-redex-eq (proj₁ (proj₂ (type-lab j)) , x₁)) (≢ᵀ'⇒≢ᵀ (λ ())) canonical-forms-pi {n} {A} {B} {Prod e e'} (TConv {T = Label x₁} j x) v = contradiction x (≢ᵀ'⇒≢ᵀ (λ ())) canonical-forms-pi {n} {A} {B} {Prod e e'} (TConv {T = Pi T' T''} j x) v = (proj₁ (canonical-forms-pi j v)) , (≡-trans refl (proj₂ (canonical-forms-pi j v))) canonical-forms-pi {n} {A} {B} {Prod e e'} (TConv {T = Sigma T' T''} j x) v = contradiction x (≢ᵀ'⇒≢ᵀ (λ ())) canonical-forms-pi {n} {A} {B} {Prod e e'} (TConv {T = Case f x₁} j x) v = contradiction (case-redex-eq (proj₂ (proj₂ (type-prod j)) , x)) (≢ᵀ'⇒≢ᵀ (λ ())) canonical-forms-sigma : {n : ℕ} {A B : Ty {n}} {e : Exp {n}} → [] ⊢ e ∶ Sigma A B → Val e → ∃[ e₁ ]( ∃[ e₂ ] ( e ≡ Prod e₁ e₂ )) canonical-forms-sigma {n} {A} {B} {Var x} j VVar = contradiction (in-Var) (closed-free-vars j x) canonical-forms-sigma {n} {A} {B} {Abs e} (TConv {T = Label x₁} j x) v = contradiction x (≢ᵀ'⇒≢ᵀ (λ ())) canonical-forms-sigma {n} {A} {B} {Abs e} (TConv {T = Pi T T₁} j x) v = contradiction x (≢ᵀ'⇒≢ᵀ (λ ())) canonical-forms-sigma {n} {A} {B} {Abs e} (TConv {T = Sigma T T₁} j x) v = (proj₁ (canonical-forms-sigma j v)) , (proj₂ (canonical-forms-sigma j v)) canonical-forms-sigma {n} {A} {B} {Abs e} (TConv {T = Case f x₁} j x) v = contradiction (case-redex-eq (proj₂ (proj₂ (type-abs j)) , x)) (≢ᵀ'⇒≢ᵀ (λ ())) canonical-forms-sigma {n} {A} {B} {LabI x} (TConv {T = Label x₁} j y) v = contradiction y (≢ᵀ'⇒≢ᵀ (λ ())) canonical-forms-sigma {n} {A} {B} {LabI x} (TConv {T = Pi T T₁} j y) v = contradiction y (≢ᵀ'⇒≢ᵀ (λ ())) canonical-forms-sigma {n} {A} {B} {LabI x} (TConv {T = Sigma T T₁} j y) v = (proj₁ (canonical-forms-sigma j v)) , (proj₂ (canonical-forms-sigma j v)) canonical-forms-sigma {n} {A} {B} {LabI x} (TConv {T = Case f x₁} j y) v = contradiction (case-redex-eq (proj₁ (proj₂ (type-lab j)) , y)) (≢ᵀ'⇒≢ᵀ (λ ())) canonical-forms-sigma {n} {A} {B} {Prod e e₁} j v = e , e₁ , refl ---- progress and preservation -- progress theorem, i.e. a well-typed closed expression is either a value -- or can be reduced further data Progress {n : ℕ} (e : Exp {n}) {T : Ty} {j : [] ⊢ e ∶ T} : Set where step : {e' : Exp{n}} → e ⇒ e' → Progress e value : Val e → Progress e progress : {n : ℕ} (e : Exp {n}) {T : Ty} {j : [] ⊢ e ∶ T} → Progress e {T} {j} progress {n} e {T} {TConv{T = T'}{T' = .T} j x} with progress e {j = j} ... | step {e' = e'} x₁ = step x₁ ... | value x₁ = value x₁ progress {n} .(Abs _) {.(Pi _ _)} {TPiI j} = value VFun progress {n} .(App e e') {T} {TPiE{e = e} {e' = e'} j j₁ x} with progress e {j = j} ... | step x₁ = step (ξ-App1 x₁) ... | value x₁ with progress e' {j = j₁} ... | step x₂ = step (ξ-App2 x₁ x₂) ... | value x₂ with canonical-forms-pi j x₁ ... | fst , snd rewrite snd = step (β-App x₂) progress {n} .(Prod _ _) {.(Sigma _ _)} {TSigmaI{e = e}{e' = e'} j j₁} with progress e {j = j} ... | step x = step (ξ-Prod1 x) ... | value x = {!!} progress {n} .(Let _ _) {T} {TSigmaE{e = e} {e' = e'} j j₁ nin} with progress e {j = j} ... | step x = step (ξ-Let x) ... | value x with canonical-forms-sigma j x ... | fst , snd , snd₁ rewrite snd₁ with x ... | VProd y y₁ = step (β-Let y y₁) progress {n} .(LabI _) {.(Label _)} {TLabI ins} = value VLab progress {n} .(LabE _ (LabI _)) {T} {TLabEl{ins = ins} j j₁} = step (β-LabE ins) progress {n} (LabE f (Var m)) {T} {TLabEx f' j} = contradiction (free-vars-env-< j m in-Var) λ ()
{ "alphanum_fraction": 0.4534026196, "avg_line_length": 64.1461187215, "ext": "agda", "hexsha": "7b3b97c7e45018acb56db59c288eb1f306f571e0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "kcaliban/ldlc", "max_forks_repo_path": "src/ldlc/LDLC.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "kcaliban/ldlc", "max_issues_repo_path": "src/ldlc/LDLC.agda", "max_line_length": 331, "max_stars_count": null, "max_stars_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "kcaliban/ldlc", "max_stars_repo_path": "src/ldlc/LDLC.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 37032, "size": 70240 }
-- This module introduces implicit arguments. module Id8 where id8 : {A : Set} -> A -> A id8 = \{A} x -> x -- this doesn't work since the type checker assumes -- that the implicit A has been has been omitted in -- the left-hand side (as in id6).
{ "alphanum_fraction": 0.5352564103, "avg_line_length": 31.2, "ext": "agda", "hexsha": "99e2ad53e3bd30587888347944762e3d16195514", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejtokarcik/agda-semantics", "max_forks_repo_path": "tests/covered/Id8.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejtokarcik/agda-semantics", "max_issues_repo_path": "tests/covered/Id8.agda", "max_line_length": 79, "max_stars_count": 3, "max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andrejtokarcik/agda-semantics", "max_stars_repo_path": "tests/covered/Id8.agda", "max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z", "num_tokens": 73, "size": 312 }
module Mask where open import Basics open import Ix open import All open import Cutting open import Splitting open import Perm open import Interior open import Recutter module MASK {I}(C : I |> I) where open _|>_ open INTERIOR C open RECUTTER C module CHOP {P}(pc : CutKit P)(rec : Recutter) where glue : (is : List I) -> (d : Subs is) -> All (Interior P) (subCollect is d) -> All (Interior P) is glue [] <> <> = <> glue (i ,- is) (inl <> , ds) (p , ps) = p , glue is ds ps glue (i ,- is) (inr c , ds) ps with isRiffle (slrs (inners C c) (subCollect is ds)) ps glue (i ,- is) (inr c , ds) .(riffle (slrs (inners C c) (subCollect is ds)) lp rp) | mkRiffle lp rp = < c 8>< lp > , glue is ds rp chop : (i : I)(c c' : Cuts C i) -> All (Interior P) (inners C c) -> All (Interior P) (inners C c') chops : (is : List I) -> All (Interior P) is -> (d : Subs is) -> All (Interior P) (subCollect is d) chop i c c' ps with rec i c c' ... | d , d' , m with chops (inners C c) ps d ... | qs = glue (inners C c') d' (permute m qs) chops [] <> <> = <> chops (i ,- is) (p , ps) (inl <> , ds) = p , chops is ps ds chops (i ,- is) (tile p , ps) (inr c' , ds) = cat (inners C c') (subCollect is ds) (all (\ _ -> tile) _ (pc i c' p)) (chops is ps ds) chops (i ,- is) (< c 8>< ps' > , ps) (inr c' , ds) = cat (inners C c') (subCollect is ds) (chop i c c' ps') (chops is ps ds) mask : forall {O Q} -> [ O -:> Interior P -:> Interior Q ] -> [ Interior O -:> Interior P -:> Interior Q ] mask {O}{Q} f = ifold f help where help : [ Cutting C (Interior P -:> Interior Q) -:> Interior P -:> Interior Q ] help i (c' 8>< fs) (tile p) with pc i c' p ... | ps = < c' 8>< allAp (inners C c') fs (all (\ _ -> tile) _ ps) > help i (c' 8>< fs) < c 8>< ps > = < c' 8>< allAp (inners C c') fs (chop i c c' ps) >
{ "alphanum_fraction": 0.5165562914, "avg_line_length": 40.0612244898, "ext": "agda", "hexsha": "3d2ceb9531aa957a9c29133fc1c2fa26b5c4e398", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pigworker/InteriorDesign", "max_forks_repo_path": "Mask.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pigworker/InteriorDesign", "max_issues_repo_path": "Mask.agda", "max_line_length": 93, "max_stars_count": 6, "max_stars_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pigworker/InteriorDesign", "max_stars_repo_path": "Mask.agda", "max_stars_repo_stars_event_max_datetime": "2018-07-31T02:00:13.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-18T15:25:39.000Z", "num_tokens": 710, "size": 1963 }
{- This file contains: - Definition of set truncations -} {-# OPTIONS --safe #-} module Cubical.HITs.SetTruncation.Base where open import Cubical.Core.Primitives open import Cubical.Foundations.Pointed -- set truncation as a higher inductive type: data ∥_∥₂ {ℓ} (A : Type ℓ) : Type ℓ where ∣_∣₂ : A → ∥ A ∥₂ squash₂ : ∀ (x y : ∥ A ∥₂) (p q : x ≡ y) → p ≡ q -- Pointed version ∥_∥₂∙ : ∀ {ℓ} (A : Pointed ℓ) → Pointed ℓ fst ∥ A ∥₂∙ = ∥ fst A ∥₂ snd ∥ A ∥₂∙ = ∣ pt A ∣₂
{ "alphanum_fraction": 0.6087866109, "avg_line_length": 19.9166666667, "ext": "agda", "hexsha": "033d8650632c431ce06d438397872b50a0036999", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/HITs/SetTruncation/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/HITs/SetTruncation/Base.agda", "max_line_length": 50, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/HITs/SetTruncation/Base.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z", "num_tokens": 203, "size": 478 }
open import Categories open import Monads module Monads.EM {a b}{C : Cat {a}{b}}(M : Monad C) where open import Library open import Functors open Cat C open Monad M record Alg : Set (a ⊔ b) where constructor alg field acar : Obj astr : ∀ Z → Hom Z acar → Hom (T Z) acar alaw1 : ∀ {Z}{f : Hom Z acar} → f ≅ comp (astr Z f) η alaw2 : ∀{Z}{W}{k : Hom Z (T W)}{f : Hom W acar} → astr Z (comp (astr W f) k) ≅ comp (astr W f) (bind k) open Alg AlgEq : {X Y : Alg} → acar X ≅ acar Y → (astr X ≅ astr Y) → X ≅ Y AlgEq {alg acar astr _ _} {alg ._ ._ _ _} refl refl = cong₂ (alg acar astr) (iext λ _ → iext λ _ → ir _ _) (iext λ _ → iext λ _ → iext λ _ → iext λ _ → ir _ _) record AlgMorph (A B : Alg) : Set (a ⊔ b) where constructor algmorph field amor : Hom (acar A) (acar B) ahom : ∀{Z}{f : Hom Z (acar A)} → comp amor (astr A Z f) ≅ astr B Z (comp amor f) open AlgMorph AlgMorphEq : {X Y : Alg}{f g : AlgMorph X Y} → amor f ≅ amor g → f ≅ g AlgMorphEq {f = algmorph amor _}{algmorph .amor _} refl = cong (algmorph amor) (iext λ _ → iext λ _ → ir _ _) AlgMorphEq' : {X X' Y Y' : Alg} {f : AlgMorph X Y}{g : AlgMorph X' Y'} → X ≅ X' → Y ≅ Y' → amor f ≅ amor g → f ≅ g AlgMorphEq' refl refl = AlgMorphEq IdMorph : {A : Alg} → AlgMorph A A IdMorph {A} = record { amor = iden; ahom = λ {Z} {f} → proof comp iden (astr A Z f) ≅⟨ idl ⟩ astr A Z f ≅⟨ cong (astr A Z) (sym idl) ⟩ astr A Z (comp iden f) ∎} CompMorph : {X Y Z : Alg} → AlgMorph Y Z → AlgMorph X Y → AlgMorph X Z CompMorph {X}{Y}{Z} f g = record { amor = comp (amor f) (amor g); ahom = λ{W}{h} → proof comp (comp (amor f) (amor g)) (astr X W h) ≅⟨ ass ⟩ comp (amor f) (comp (amor g) (astr X W h)) ≅⟨ cong (comp (amor f)) (ahom g) ⟩ comp (amor f) (astr Y W (comp (amor g) h)) ≅⟨ ahom f ⟩ astr Z W (comp (amor f) (comp (amor g) h)) ≅⟨ cong (astr Z W) (sym ass) ⟩ astr Z W (comp (comp (amor f) (amor g)) h) ∎} idlMorph : {X Y : Alg}{f : AlgMorph X Y} → CompMorph IdMorph f ≅ f idlMorph = AlgMorphEq idl idrMorph : {X Y : Alg}{f : AlgMorph X Y} → CompMorph f IdMorph ≅ f idrMorph = AlgMorphEq idr assMorph : {W X Y Z : Alg} {f : AlgMorph Y Z}{g : AlgMorph X Y}{h : AlgMorph W X} → CompMorph (CompMorph f g) h ≅ CompMorph f (CompMorph g h) assMorph = AlgMorphEq ass EM : Cat {a ⊔ b}{a ⊔ b} EM = record{ Obj = Alg; Hom = AlgMorph; iden = IdMorph; comp = CompMorph; idl = idlMorph; idr = idrMorph; ass = λ{_}{_}{_}{_}{f}{g}{h} → assMorph {f = f}{g}{h}} -- -}
{ "alphanum_fraction": 0.5414156627, "avg_line_length": 28.5591397849, "ext": "agda", "hexsha": "14c0828d6c39b543e1583c57fb63e1877f1c0d9e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "Monads/EM.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "Monads/EM.agda", "max_line_length": 70, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "Monads/EM.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 1129, "size": 2656 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Sn.Properties where open import Cubical.Foundations.Pointed open import Cubical.Foundations.Path open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Transport open import Cubical.Foundations.Prelude open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Univalence open import Cubical.HITs.S1 open import Cubical.Data.Nat hiding (elim) open import Cubical.Data.Sigma open import Cubical.HITs.Sn.Base open import Cubical.HITs.Susp open import Cubical.HITs.Truncation open import Cubical.Homotopy.Loopspace open import Cubical.Homotopy.Connected private variable ℓ : Level sphereConnected : (n : HLevel) → isConnected (suc n) (S₊ n) sphereConnected n = ∣ ptSn n ∣ , elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) (λ a → sym (spoke ∣_∣ (ptSn n)) ∙ spoke ∣_∣ a) -- Elimination principles for spheres sphereElim : (n : ℕ) {A : (S₊ (suc n)) → Type ℓ} → ((x : S₊ (suc n)) → isOfHLevel (suc n) (A x)) → A (ptSn (suc n)) → (x : S₊ (suc n)) → A x sphereElim zero hlev pt = toPropElim hlev pt sphereElim (suc n) hlev pt north = pt sphereElim (suc n) {A = A} hlev pt south = subst A (merid (ptSn (suc n))) pt sphereElim (suc n) {A = A} hlev pt (merid a i) = sphereElim n {A = λ a → PathP (λ i → A (merid a i)) pt (subst A (merid (ptSn (suc n))) pt)} (λ a → isOfHLevelPathP' (suc n) (hlev south) _ _) (λ i → transp (λ j → A (merid (ptSn (suc n)) (i ∧ j))) (~ i) pt) a i sphereElim2 : ∀ {ℓ} (n : ℕ) {A : (S₊ (suc n)) → (S₊ (suc n)) → Type ℓ} → ((x y : S₊ (suc n)) → isOfHLevel (suc n) (A x y)) → A (ptSn (suc n)) (ptSn (suc n)) → (x y : S₊ (suc n)) → A x y sphereElim2 n hlev pt = sphereElim n (λ _ → isOfHLevelΠ (suc n) λ _ → hlev _ _) (sphereElim n (hlev _ ) pt) private compPath-lem : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : z ≡ y) → PathP (λ i → (p ∙ sym q) i ≡ y) p q compPath-lem {y = y} p q i j = hcomp (λ k → λ { (i = i0) → p j ; (i = i1) → q (~ k ∨ j) ; (j = i1) → y }) (p (j ∨ i)) -- Elimination rule for fibrations (x : Sⁿ) → (y : Sᵐ) → A x y of h-Level (n + m). -- The following principle is just the special case of the "Wedge Connectivity Lemma" -- for spheres (See Cubical.Homotopy.WedgeConnectivity or chapter 8.6 in the HoTT book). -- We prove it directly here for two reasons: -- (i) it should perform better -- (ii) we get a slightly stronger statement for spheres -- One of the homotopies will, by design, be refl wedgeConSn : ∀ {ℓ} (n m : ℕ) {A : (S₊ (suc n)) → (S₊ (suc m)) → Type ℓ} → ((x : S₊ (suc n)) (y : S₊ (suc m)) → isOfHLevel ((suc n) + (suc m)) (A x y)) → (f : (x : _) → A (ptSn (suc n)) x) → (g : (x : _) → A x (ptSn (suc m))) → (g (ptSn (suc n)) ≡ f (ptSn (suc m))) → Σ[ F ∈ ((x : S₊ (suc n)) (y : S₊ (suc m)) → A x y) ] ((x : S₊ (suc m)) → F (ptSn (suc n)) x ≡ f x) × ((x : S₊ (suc n)) → F x (ptSn (suc m)) ≡ g x) wedgeConSn zero zero {A = A} hlev f g hom = F , (λ _ → refl) , right where helper : SquareP (λ i j → A (loop i) (loop j)) (cong f loop) (cong f loop) (λ i → hcomp (λ k → λ { (i = i0) → hom k ; (i = i1) → hom k }) (g (loop i))) λ i → hcomp (λ k → λ { (i = i0) → hom k ; (i = i1) → hom k }) (g (loop i)) helper = transport (sym (PathP≡Path _ _ _)) (isOfHLevelPathP' 1 (hlev base base) _ _ _ _) F : (x y : S¹) → A x y F base y = f y F (loop i) base = hcomp (λ k → λ { (i = i0) → hom k ; (i = i1) → hom k }) (g (loop i)) F (loop i) (loop j) = helper i j right : (x : S¹) → F x base ≡ g x right base = sym hom right (loop i) j = hcomp (λ k → λ { (i = i0) → hom (~ j ∧ k) ; (i = i1) → hom (~ j ∧ k) ; (j = i1) → g (loop i) }) (g (loop i)) wedgeConSn zero (suc m) {A = A} hlev f g hom = F , left , (λ _ → refl) where transpLemma : (x : S₊ (suc m)) → transport (λ i₁ → A base (merid x i₁)) (g base) ≡ f south transpLemma x = cong (transport (λ i₁ → A base (merid x i₁))) hom ∙ (λ i → transp (λ j → A base (merid x (i ∨ j))) i (f (merid x i))) pathOverMerid : (x : S₊ (suc m)) → PathP (λ i₁ → A base (merid x i₁)) (g base) (transport (λ i₁ → A base (merid (ptSn (suc m)) i₁)) (g base)) pathOverMerid x i = hcomp (λ k → λ { (i = i0) → g base ; (i = i1) → (transpLemma x ∙ sym (transpLemma (ptSn (suc m)))) k}) (transp (λ i₁ → A base (merid x (i₁ ∧ i))) (~ i) (g base)) pathOverMeridId : pathOverMerid (ptSn (suc m)) ≡ λ i → transp (λ i₁ → A base (merid (ptSn (suc m)) (i₁ ∧ i))) (~ i) (g base) pathOverMeridId = (λ j i → hcomp (λ k → λ {(i = i0) → g base ; (i = i1) → rCancel (transpLemma (ptSn (suc m))) j k}) (transp (λ i₁ → A base (merid (ptSn (suc m)) (i₁ ∧ i))) (~ i) (g base))) ∙ λ j i → hfill (λ k → λ { (i = i0) → g base ; (i = i1) → transport (λ i₁ → A base (merid (ptSn (suc m)) i₁)) (g base)}) (inS (transp (λ i₁ → A base (merid (ptSn (suc m)) (i₁ ∧ i))) (~ i) (g base))) (~ j) indStep : Σ[ F ∈ ((x : _) (a : _) → PathP (λ i → A x (merid a i)) (g x) (subst (λ y → A x y) (merid (ptSn (suc m))) (g x))) ] _ indStep = wedgeConSn zero m (λ _ _ → isOfHLevelPathP' (2 + m) (hlev _ _) _ _) pathOverMerid (λ a i → transp (λ i₁ → A a (merid (ptSn (suc m)) (i₁ ∧ i))) (~ i) (g a)) (sym pathOverMeridId) F : (x : S¹) (y : Susp (S₊ (suc m))) → A x y F x north = g x F x south = subst (λ y → A x y) (merid (ptSn (suc m))) (g x) F x (merid a i) = indStep .fst x a i left : (x : Susp (S₊ (suc m))) → F base x ≡ f x left north = hom left south = cong (subst (A base) (merid (ptSn (suc m)))) hom ∙ λ i → transp (λ j → A base (merid (ptSn (suc m)) (i ∨ j))) i (f (merid (ptSn (suc m)) i)) left (merid a i) j = hcomp (λ k → λ { (i = i0) → hom j ; (i = i1) → transpLemma (ptSn (suc m)) j ; (j = i0) → indStep .snd .fst a (~ k) i ; (j = i1) → f (merid a i)}) (hcomp (λ k → λ { (i = i0) → hom j ; (i = i1) → compPath-lem (transpLemma a) (transpLemma (ptSn (suc m))) k j ; (j = i1) → f (merid a i)}) (hcomp (λ k → λ { (i = i0) → hom j ; (j = i0) → transp (λ i₂ → A base (merid a (i₂ ∧ i))) (~ i) (g base) ; (j = i1) → transp (λ j → A base (merid a (i ∧ (j ∨ k)))) (k ∨ ~ i) (f (merid a (i ∧ k)))}) (transp (λ i₂ → A base (merid a (i₂ ∧ i))) (~ i) (hom j)))) wedgeConSn (suc n) m {A = A} hlev f g hom = F , ((λ _ → refl) , right) where transpLemma : (x : S₊ (suc n)) → transport (λ i₁ → A (merid x i₁) (ptSn (suc m))) (f (ptSn (suc m))) ≡ g south transpLemma x = cong (transport (λ i₁ → A (merid x i₁) (ptSn (suc m)))) (sym hom) ∙ (λ i → transp (λ j → A (merid x (i ∨ j)) (ptSn (suc m))) i (g (merid x i))) pathOverMerid : (x : S₊ (suc n)) → PathP (λ i₁ → A (merid x i₁) (ptSn (suc m))) (f (ptSn (suc m))) (transport (λ i₁ → A (merid (ptSn (suc n)) i₁) (ptSn (suc m))) (f (ptSn (suc m)))) pathOverMerid x i = hcomp (λ k → λ { (i = i0) → f (ptSn (suc m)) ; (i = i1) → (transpLemma x ∙ sym (transpLemma (ptSn (suc n)))) k }) (transp (λ i₁ → A (merid x (i₁ ∧ i)) (ptSn (suc m))) (~ i) (f (ptSn (suc m)))) pathOverMeridId : pathOverMerid (ptSn (suc n)) ≡ λ i → transp (λ i₁ → A (merid (ptSn (suc n)) (i₁ ∧ i)) (ptSn (suc m))) (~ i) (f (ptSn (suc m))) pathOverMeridId = (λ j i → hcomp (λ k → λ { (i = i0) → f (ptSn (suc m)) ; (i = i1) → rCancel (transpLemma (ptSn (suc n))) j k }) (transp (λ i₁ → A (merid (ptSn (suc n)) (i₁ ∧ i)) (ptSn (suc m))) (~ i) (f (ptSn (suc m))))) ∙ λ j i → hfill (λ k → λ { (i = i0) → f (ptSn (suc m)) ; (i = i1) → transport (λ i₁ → A (merid (ptSn (suc n)) i₁) (ptSn (suc m))) (f (ptSn (suc m))) }) (inS (transp (λ i₁ → A (merid (ptSn (suc n)) (i₁ ∧ i)) (ptSn (suc m))) (~ i) (f (ptSn (suc m))))) (~ j) indStep : Σ[ F ∈ ((a : _) (y : _) → PathP (λ i → A (merid a i) y) (f y) (subst (λ x → A x y) (merid (ptSn (suc n))) (f y))) ] _ indStep = wedgeConSn n m (λ _ _ → isOfHLevelPathP' (suc (n + suc m)) (hlev _ _) _ _) (λ a i → transp (λ i₁ → A (merid (ptSn (suc n)) (i₁ ∧ i)) a) (~ i) (f a)) pathOverMerid pathOverMeridId F : (x : Susp (S₊ (suc n))) (y : S₊ (suc m)) → A x y right : (x : Susp (S₊ (suc n))) → F x (ptSn (suc m)) ≡ g x F north y = f y F south y = subst (λ x → A x y) (merid (ptSn (suc n))) (f y) F (merid a i) y = indStep .fst a y i right north = sym hom right south = cong (subst (λ x → A x (ptSn (suc m))) (merid (ptSn (suc n)))) (sym hom) ∙ λ i → transp (λ j → A (merid (ptSn (suc n)) (i ∨ j)) (ptSn (suc m))) i (g (merid (ptSn (suc n)) i)) right (merid a i) j = hcomp (λ k → λ { (i = i0) → hom (~ j) ; (i = i1) → transpLemma (ptSn (suc n)) j ; (j = i0) → indStep .snd .snd a (~ k) i ; (j = i1) → g (merid a i)}) (hcomp (λ k → λ { (i = i0) → hom (~ j) ; (i = i1) → compPath-lem (transpLemma a) (transpLemma (ptSn (suc n))) k j ; (j = i1) → g (merid a i)}) (hcomp (λ k → λ { (i = i0) → hom (~ j) ; (j = i0) → transp (λ i₂ → A (merid a (i₂ ∧ i)) (ptSn (suc m))) (~ i) (f (ptSn (suc m))) ; (j = i1) → transp (λ j → A (merid a (i ∧ (j ∨ k))) (ptSn (suc m))) (k ∨ ~ i) (g (merid a (i ∧ k))) }) (transp (λ i₂ → A (merid a (i₂ ∧ i)) (ptSn (suc m))) (~ i) (hom (~ j))))) -- We get ∥ Sⁿ⁺² ∥ₙ₊₂ ≃ ∥ Ω Sⁿ⁺³ ∥ₙ₊₂ from the Freudenthal suspension theorem. -- Cavallos proof of the Freudenthal suspenion theorem (see Cubical.Homotopy.Freudenthal) -- can be modified to completely avoid theory about connectedness if one -- only considers (n+2)-spheres: module miniFreudenthal (n : HLevel) where σ : S₊ (2 + n) → typ (Ω (S₊∙ (3 + n))) σ a = merid a ∙ merid north ⁻¹ S2+n = S₊ (2 + n) 4n+2 = (2 + n) + (2 + n) module WC-S (p : north ≡ north) where P : (a b : S2+n) → Type₀ P a b = σ b ≡ p → hLevelTrunc 4n+2 (fiber (λ x → merid x ∙ merid a ⁻¹) p) hLevelP : (a b : S2+n) → isOfHLevel 4n+2 (P a b) hLevelP _ _ = isOfHLevelΠ 4n+2 λ _ → isOfHLevelTrunc 4n+2 leftFun : (a : S2+n) → P a north leftFun a r = ∣ a , (rCancel' (merid a) ∙ rCancel' (merid north) ⁻¹) ∙ r ∣ rightFun : (b : S2+n) → P north b rightFun b r = ∣ b , r ∣ funsAgree : leftFun north ≡ rightFun north funsAgree i r = ∣ north , ((cong (_∙ r) (rCancel' (rCancel' (merid north))) ∙ lUnit r ⁻¹) i) ∣ totalFun : (a b : S2+n) → P a b totalFun = wedgeConSn (suc n) (suc n) hLevelP rightFun leftFun funsAgree .fst leftId : (λ x → totalFun x north) ≡ leftFun leftId x i = wedgeConSn (suc n) (suc n) hLevelP rightFun leftFun funsAgree .snd .snd i x fwd : (p : north ≡ north) (a : S2+n) → hLevelTrunc 4n+2 (fiber σ p) → hLevelTrunc 4n+2 (fiber (λ x → merid x ∙ merid a ⁻¹) p) fwd p a = rec (isOfHLevelTrunc 4n+2) (uncurry (WC-S.totalFun p a)) fwdnorth : (p : north ≡ north) → fwd p north ≡ idfun _ fwdnorth p = funExt (elim (λ _ → isOfHLevelPath 4n+2 (isOfHLevelTrunc 4n+2) _ _) λ p → refl) isEquivFwd : (p : north ≡ north) (a : S2+n) → isEquiv (fwd p a) isEquivFwd p = suspToPropElim (ptSn (suc n)) (λ _ → isPropIsEquiv _) helper where helper : isEquiv (fwd p north) helper = subst isEquiv (sym (fwdnorth p)) (idIsEquiv _) interpolate : (a : S2+n) → PathP (λ i → S2+n → north ≡ merid a i) (λ x → merid x ∙ merid a ⁻¹) merid interpolate a i x j = compPath-filler (merid x) (merid a ⁻¹) (~ i) j Code : (y : Susp S2+n) → north ≡ y → Type₀ Code north p = hLevelTrunc 4n+2 (fiber σ p) Code south q = hLevelTrunc 4n+2 (fiber merid q) Code (merid a i) p = Glue (hLevelTrunc 4n+2 (fiber (interpolate a i) p)) (λ { (i = i0) → _ , (fwd p a , isEquivFwd p a) ; (i = i1) → _ , idEquiv _ }) encode' : (y : S₊ (3 + n)) (p : north ≡ y) → Code y p encode' y = J Code ∣ north , rCancel' (merid north) ∣ encodeMerid : (a : S2+n) → encode' south (merid a) ≡ ∣ a , refl ∣ encodeMerid a = cong (transport (λ i → gluePath i)) (funExt⁻ (funExt⁻ (WC-S.leftId refl) a) _ ∙ λ i → ∣ a , lem (rCancel' (merid a)) (rCancel' (merid north)) i ∣) ∙ transport (PathP≡Path gluePath _ _) (λ i → ∣ a , (λ j k → rCancel-filler' (merid a) i j k) ∣) where gluePath : I → Type _ gluePath i = hLevelTrunc 4n+2 (fiber (interpolate a i) (λ j → merid a (i ∧ j))) lem : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : z ≡ y) → (p ∙ q ⁻¹) ∙ q ≡ p lem p q = assoc p (q ⁻¹) q ⁻¹ ∙∙ cong (p ∙_) (lCancel q) ∙∙ rUnit p ⁻¹ contractCodeNorth : (p : north ≡ north) (c : Code north p) → encode' north p ≡ c contractCodeNorth = transport (λ i → (p : north ≡ merid north (~ i)) (c : Code (merid north (~ i)) p) → encode' (merid north (~ i)) p ≡ c) λ p → elim (λ _ → isOfHLevelPath 4n+2 (isOfHLevelTrunc 4n+2) _ _) (uncurry λ a → J (λ p r → encode' south p ≡ ∣ a , r ∣) (encodeMerid a)) isConnectedσ : isConnectedFun 4n+2 σ fst (isConnectedσ p) = encode' north p snd (isConnectedσ p) = contractCodeNorth p isConnectedσ-Sn : (n : ℕ) → isConnectedFun (4 + n) (miniFreudenthal.σ n) isConnectedσ-Sn n = isConnectedFunSubtr _ n _ (subst (λ x → isConnectedFun x (miniFreudenthal.σ n)) helper (miniFreudenthal.isConnectedσ n)) where helper : 2 + (n + (2 + n)) ≡ n + (4 + n) helper = cong suc (sym (+-suc n _)) ∙ sym (+-suc n _) stabSpheres-n≥2 : (n : ℕ) → Iso (hLevelTrunc (4 + n) (S₊ (2 + n))) (hLevelTrunc (4 + n) (typ (Ω (S₊∙ (3 + n))))) stabSpheres-n≥2 n = connectedTruncIso (4 + n) (miniFreudenthal.σ n) (isConnectedσ-Sn n)
{ "alphanum_fraction": 0.4350091787, "avg_line_length": 49.814159292, "ext": "agda", "hexsha": "8fc06f1e7657466e9f115ca4d49b318e2864e7f8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ayberkt/cubical", "max_forks_repo_path": "Cubical/HITs/Sn/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ayberkt/cubical", "max_issues_repo_path": "Cubical/HITs/Sn/Properties.agda", "max_line_length": 127, "max_stars_count": null, "max_stars_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ayberkt/cubical", "max_stars_repo_path": "Cubical/HITs/Sn/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5968, "size": 16887 }
{-# OPTIONS --safe --warning=error #-} open import Sets.EquivalenceRelations open import Setoids.Setoids open import Groups.FreeGroup.Definition open import Groups.Homomorphisms.Definition open import Groups.Homomorphisms.Lemmas open import Groups.Definition open import Decidable.Sets open import Numbers.Naturals.Order open import LogicalFormulae open import Semirings.Definition open import Groups.Lemmas module Groups.FreeGroup.UniversalProperty {a : _} {A : Set a} (decA : DecidableSet A) where open import Groups.FreeGroup.Word decA open import Groups.FreeGroup.Group decA universalPropertyFunction : {c d : _} {C : Set c} {S : Setoid {c} {d} C} {_+_ : C → C → C} (G : Group S _+_) → (f : A → C) → ReducedWord → C universalPropertyFunction G f empty = Group.0G G universalPropertyFunction {_+_ = _+_} G f (prependLetter (ofLetter l) w x) = (f l) + universalPropertyFunction G f w universalPropertyFunction {_+_ = _+_} G f (prependLetter (ofInv l) w x) = (Group.inverse G (f l)) + universalPropertyFunction G f w private prepLemma : {c d : _} {C : Set c} {S : Setoid {c} {d} C} {_+_ : C → C → C} → (G : Group S _+_) → (f : A → C) → (x : ReducedWord) (l : _) → Setoid._∼_ S (universalPropertyFunction G f (prepend x (ofLetter l))) ((f l) + universalPropertyFunction G f x) prepLemma {S = S} G f empty l = reflexive where open Setoid S open Equivalence eq prepLemma {S = S} G f (prependLetter (ofLetter x) w pr) l = reflexive where open Setoid S open Equivalence eq prepLemma {S = S} G f (prependLetter (ofInv x) w pr) l with decA l x ... | inl refl = transitive (symmetric identLeft) (transitive (+WellDefined (symmetric invRight) reflexive) (symmetric +Associative)) where open Group G open Setoid S open Equivalence eq ... | inr l!=x = reflexive where open Setoid S open Equivalence eq prepLemma' : {c d : _} {C : Set c} {S : Setoid {c} {d} C} {_+_ : C → C → C} → (G : Group S _+_) → (f : A → C) → (x : ReducedWord) (l : _) → Setoid._∼_ S (universalPropertyFunction G f (prepend x (ofInv l))) (Group.inverse G (f l) + universalPropertyFunction G f x) prepLemma' {S = S} G f empty l = reflexive where open Setoid S open Equivalence eq prepLemma' {S = S} G f (prependLetter (ofLetter x) w pr) l with decA l x ... | inl refl = symmetric (transitive +Associative (transitive (+WellDefined invLeft reflexive) identLeft)) where open Group G open Setoid S open Equivalence eq ... | inr l!=x = reflexive where open Setoid S open Equivalence eq prepLemma' {S = S} G f (prependLetter (ofInv x) w pr) l = reflexive where open Setoid S open Equivalence eq homLemma : {c d : _} {C : Set c} {S : Setoid {c} {d} C} {_+_ : C → C → C} → (G : Group S _+_) → (f : A → C) → (x y : ReducedWord) → Setoid._∼_ S (universalPropertyFunction G f (x +W y)) (universalPropertyFunction G f x + universalPropertyFunction G f y) homLemma {S = S} G f empty y = symmetric identLeft where open Setoid S open Equivalence eq open Group G homLemma {S = S} G f (prependLetter (ofLetter l) x pr) y = transitive (transitive (prepLemma G f (x +W y) l) (+WellDefined reflexive (homLemma G f x y))) (+Associative {f l}) where open Setoid S open Equivalence eq open Group G homLemma {S = S} G f (prependLetter (ofInv l) x pr) y = transitive (transitive (prepLemma' G f (x +W y) l) (+WellDefined reflexive (homLemma G f x y))) +Associative where open Setoid S open Equivalence eq open Group G universalPropertyHom : {c d : _} {C : Set c} {S : Setoid {c} {d} C} {_+_ : C → C → C} (G : Group S _+_) → (f : A → C) → GroupHom freeGroup G (universalPropertyFunction G f) GroupHom.groupHom (universalPropertyHom {S = S} G f) {x} {y} = homLemma G f x y GroupHom.wellDefined (universalPropertyHom {S = S} G f) refl = Equivalence.reflexive (Setoid.eq S) freeEmbedding : A → ReducedWord freeEmbedding a = prependLetter (ofLetter a) empty (wordEmpty refl) freeEmbeddingInjective : {a b : A} → freeEmbedding a ≡ freeEmbedding b → a ≡ b freeEmbeddingInjective {a} {b} pr = ofLetterInjective (prependLetterInjective' pr) universalPropertyDiagram : {c d : _} {C : Set c} {S : Setoid {c} {d} C} → {_+_ : C → C → C} → (G : Group S _+_) → (f : A → C) → (x : A) → Setoid._∼_ S (f x) (universalPropertyFunction G f (freeEmbedding x)) universalPropertyDiagram {S = S} G f x = symmetric (Group.identRight G) where open Setoid S open Equivalence eq universalPropertyUniqueness : {c d : _} {C : Set c} {S : Setoid {c} {d} C} → {_+_ : C → C → C} → (G : Group S _+_) → (f : A → C) → {f' : ReducedWord → C} → (GroupHom freeGroup G f') → ((x : A) → Setoid._∼_ S (f x) (f' (freeEmbedding x))) → (x : ReducedWord) → Setoid._∼_ S (f' x) (universalPropertyFunction G f x) universalPropertyUniqueness {S = S} G f {f'} f'IsHom commutes empty = imageOfIdentityIsIdentity f'IsHom universalPropertyUniqueness {S = S} G f {f'} f'IsHom commutes (prependLetter (ofLetter a) w pr) = transitive (transitive (GroupHom.wellDefined f'IsHom (equalityCommutative (prependValid w a pr))) (GroupHom.groupHom f'IsHom)) (+WellDefined (symmetric (commutes a)) (universalPropertyUniqueness G f f'IsHom commutes w)) where open Setoid S open Equivalence eq open Group G universalPropertyUniqueness {S = S} G f {f'} f'IsHom commutes (prependLetter (ofInv a) w pr) = transitive (transitive (GroupHom.wellDefined f'IsHom (equalityCommutative (prependValid' w a pr))) (transitive (GroupHom.groupHom f'IsHom) (+WellDefined (homRespectsInverse f'IsHom) reflexive))) (+WellDefined (symmetric (inverseWellDefined G (commutes a))) (universalPropertyUniqueness G f f'IsHom commutes w)) where open Setoid S open Equivalence eq open Group G
{ "alphanum_fraction": 0.6682692308, "avg_line_length": 52, "ext": "agda", "hexsha": "85dd12f55a4464eb841c4dbf80fec2eed63c1a37", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/FreeGroup/UniversalProperty.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/FreeGroup/UniversalProperty.agda", "max_line_length": 405, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/FreeGroup/UniversalProperty.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 1907, "size": 5824 }
{-# OPTIONS --universe-polymorphism #-} open import Categories.Category open import Categories.Object.BinaryProducts module Categories.Object.BinaryProducts.N-ary {o ℓ e} (C : Category o ℓ e) (BP : BinaryProducts C) where open Category C open BinaryProducts BP open Equiv import Categories.Object.Product open Categories.Object.Product C open import Data.Nat using (ℕ; zero; suc) open import Data.Vec open import Data.Product.N-ary hiding ([]) Prod : {n : ℕ} → Vec Obj (suc n) → Obj Prod { zero} (A ∷ []) = A Prod {suc n} (A ∷ As) = A × Prod {n} As πˡ : {n m : ℕ} → (As : Vec Obj (suc n)) → (Bs : Vec Obj (suc m)) → Prod (As ++ Bs) ⇒ Prod As πˡ { zero} (A ∷ []) Bs = π₁ πˡ {suc n} (A ∷ As) Bs = ⟨ π₁ , πˡ {n} As Bs ∘ π₂ ⟩ πʳ : {n m : ℕ} → (As : Vec Obj (suc n)) → (Bs : Vec Obj (suc m)) → Prod (As ++ Bs) ⇒ Prod Bs πʳ { zero} (A ∷ []) Bs = π₂ πʳ {suc n} (A ∷ As) Bs = πʳ {n} As Bs ∘ π₂ glue : {n m : ℕ}{X : Obj} → (As : Vec Obj (suc n)) → (Bs : Vec Obj (suc m)) → (f : X ⇒ Prod As) → (g : X ⇒ Prod Bs) → X ⇒ Prod (As ++ Bs) glue { zero}{m} (A ∷ []) Bs f g = ⟨ f , g ⟩ glue {suc n}{m} (A ∷ As) Bs f g = ⟨ π₁ ∘ f , glue As Bs (π₂ ∘ f) g ⟩ open HomReasoning .commuteˡ : {n m : ℕ}{X : Obj} → (As : Vec Obj (suc n)) → (Bs : Vec Obj (suc m)) → {f : X ⇒ Prod As} → {g : X ⇒ Prod Bs} → πˡ As Bs ∘ glue As Bs f g ≡ f commuteˡ { zero} (A ∷ []) Bs {f}{g} = commute₁ commuteˡ {suc n} (A ∷ As) Bs {f}{g} = begin ⟨ π₁ , πˡ As Bs ∘ π₂ ⟩ ∘ ⟨ π₁ ∘ f , glue As Bs (π₂ ∘ f) g ⟩ ↓⟨ ⟨⟩∘ ⟩ ⟨ π₁ ∘ ⟨ π₁ ∘ f , glue As Bs (π₂ ∘ f) g ⟩ , (πˡ As Bs ∘ π₂) ∘ ⟨ π₁ ∘ f , glue As Bs (π₂ ∘ f) g ⟩ ⟩ ↓⟨ ⟨⟩-cong₂ commute₁ assoc ⟩ ⟨ π₁ ∘ f , πˡ As Bs ∘ π₂ ∘ ⟨ π₁ ∘ f , glue As Bs (π₂ ∘ f) g ⟩ ⟩ ↓⟨ ⟨⟩-congʳ (refl ⟩∘⟨ commute₂) ⟩ ⟨ π₁ ∘ f , πˡ As Bs ∘ glue As Bs (π₂ ∘ f) g ⟩ ↓⟨ ⟨⟩-congʳ (commuteˡ As Bs) ⟩ ⟨ π₁ ∘ f , π₂ ∘ f ⟩ ↓⟨ g-η ⟩ f ∎ .commuteʳ : {n m : ℕ}{X : Obj} → (As : Vec Obj (suc n)) → (Bs : Vec Obj (suc m)) → {f : X ⇒ Prod As} → {g : X ⇒ Prod Bs} → πʳ As Bs ∘ glue As Bs f g ≡ g commuteʳ { zero} (A ∷ []) Bs {f}{g} = commute₂ commuteʳ {suc n} (A ∷ As) Bs {f}{g} = begin (πʳ As Bs ∘ π₂) ∘ ⟨ π₁ ∘ f , glue As Bs (π₂ ∘ f) g ⟩ ↓⟨ assoc ⟩ πʳ As Bs ∘ π₂ ∘ ⟨ π₁ ∘ f , glue As Bs (π₂ ∘ f) g ⟩ ↓⟨ refl ⟩∘⟨ commute₂ ⟩ πʳ As Bs ∘ glue As Bs (π₂ ∘ f) g ↓⟨ commuteʳ As Bs ⟩ g ∎ .N-universal : {n m : ℕ}{X : Obj} → (As : Vec Obj (suc n)) → (Bs : Vec Obj (suc m)) → {f : X ⇒ Prod As} → {g : X ⇒ Prod Bs} → {h : X ⇒ Prod (As ++ Bs) } → πˡ As Bs ∘ h ≡ f → πʳ As Bs ∘ h ≡ g → glue As Bs f g ≡ h N-universal { zero} (A ∷ []) Bs {f}{g}{h} h-commuteˡ h-commuteʳ = universal h-commuteˡ h-commuteʳ N-universal {suc n} (A ∷ As) Bs {f}{g}{h} h-commuteˡ h-commuteʳ = begin ⟨ π₁ ∘ f , glue As Bs (π₂ ∘ f) g ⟩ ↓⟨ ⟨⟩-congʳ (N-universal As Bs π₂∘h-commuteˡ π₂∘h-commuteʳ) ⟩ ⟨ π₁ ∘ f , π₂ ∘ h ⟩ ↑⟨ ⟨⟩-congˡ π₁∘h-commuteˡ ⟩ ⟨ π₁ ∘ h , π₂ ∘ h ⟩ ↓⟨ g-η ⟩ h ∎ where -- h-commuteˡ : ⟨ π₁ , πˡ As Bs ∘ π₂ ⟩ ∘ h ≡ f -- h-commuteʳ : (πʳ As Bs ∘ π₂) ∘ h ≡ g π₁∘h-commuteˡ : π₁ ∘ h ≡ π₁ ∘ f π₁∘h-commuteˡ = begin π₁ ∘ h ↑⟨ commute₁ ⟩∘⟨ refl ⟩ (π₁ ∘ ⟨ π₁ , πˡ As Bs ∘ π₂ ⟩) ∘ h ↓⟨ assoc ⟩ π₁ ∘ ⟨ π₁ , πˡ As Bs ∘ π₂ ⟩ ∘ h ↓⟨ refl ⟩∘⟨ h-commuteˡ ⟩ π₁ ∘ f ∎ π₂∘h-commuteˡ : πˡ As Bs ∘ π₂ ∘ h ≡ π₂ ∘ f π₂∘h-commuteˡ = begin πˡ As Bs ∘ π₂ ∘ h ↑⟨ assoc ⟩ (πˡ As Bs ∘ π₂) ∘ h ↑⟨ commute₂ ⟩∘⟨ refl ⟩ (π₂ ∘ ⟨ π₁ , πˡ As Bs ∘ π₂ ⟩) ∘ h ↓⟨ assoc ⟩ π₂ ∘ ⟨ π₁ , πˡ As Bs ∘ π₂ ⟩ ∘ h ↓⟨ refl ⟩∘⟨ h-commuteˡ ⟩ π₂ ∘ f ∎ π₂∘h-commuteʳ : πʳ As Bs ∘ π₂ ∘ h ≡ g π₂∘h-commuteʳ = trans (sym assoc) h-commuteʳ isProduct : {n m : ℕ} → (As : Vec Obj (suc n)) → (Bs : Vec Obj (suc m)) → Product (Prod As) (Prod Bs) isProduct {n}{m} As Bs = record { A×B = Prod (As ++ Bs) ; π₁ = πˡ As Bs ; π₂ = πʳ As Bs ; ⟨_,_⟩ = glue As Bs ; commute₁ = commuteˡ As Bs ; commute₂ = commuteʳ As Bs ; universal = N-universal As Bs }
{ "alphanum_fraction": 0.472061657, "avg_line_length": 25.95, "ext": "agda", "hexsha": "ad1536d6068466fd2e07f1ba9fd74a31365ce2d0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Object/BinaryProducts/N-ary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Object/BinaryProducts/N-ary.agda", "max_line_length": 97, "max_stars_count": 1, "max_stars_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "p-pavel/categories", "max_stars_repo_path": "Categories/Object/BinaryProducts/N-ary.agda", "max_stars_repo_stars_event_max_datetime": "2018-12-29T21:51:57.000Z", "max_stars_repo_stars_event_min_datetime": "2018-12-29T21:51:57.000Z", "num_tokens": 2063, "size": 4152 }
{-# OPTIONS --cubical --no-import-sorts #-} module Cubical.Codata.Stream where open import Cubical.Codata.Stream.Base public open import Cubical.Codata.Stream.Properties public
{ "alphanum_fraction": 0.7877094972, "avg_line_length": 25.5714285714, "ext": "agda", "hexsha": "db94ecfa43b8e88e5a08a2d7878cfde7b16e9b19", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Codata/Stream.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Codata/Stream.agda", "max_line_length": 51, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Codata/Stream.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 40, "size": 179 }
module Structure.Operator.Ring.Proofs where import Data.Tuple as Tuple open import Functional open import Logic.IntroInstances open import Logic.Propositional import Lvl open import Structure.Function open import Structure.Function.Domain open import Structure.Operator.Properties open import Structure.Operator.Ring open import Structure.Operator open import Structure.Operator.Proofs open import Structure.Relator.Properties open import Structure.Setoid open import Syntax.Implication open import Syntax.Transitivity open import Type.Properties.MereProposition open import Type.Properties.Singleton open import Type.Properties.Singleton.Proofs open import Type private variable ℓ ℓₑ : Lvl.Level private variable T : Type{ℓ} private variable _+_ _⋅_ : T → T → T module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ ⦃ rng : Rng{T = T}(_+_)(_⋅_) ⦄ where open Rng(rng) instance [+]-cancellationₗ : Cancellationₗ(_+_) [+]-cancellationₗ = One.cancellationₗ-by-associativity-inverse instance [+]-cancellationᵣ : Cancellationᵣ(_+_) [+]-cancellationᵣ = One.cancellationᵣ-by-associativity-inverse instance [⋅]-absorberₗ : Absorberₗ(_⋅_)(𝟎) Absorberₗ.proof [⋅]-absorberₗ {x} = One.zero-when-redundant-addition $ 𝟎 ⋅ x 🝖-[ congruence₂ₗ(_⋅_)(x) (identityₗ(_+_)(𝟎)) ]-sym (𝟎 + 𝟎) ⋅ x 🝖-[ distributivityᵣ(_⋅_)(_+_) ] (𝟎 ⋅ x) + (𝟎 ⋅ x) 🝖-end instance [⋅]-absorberᵣ : Absorberᵣ(_⋅_)(𝟎) Absorberᵣ.proof [⋅]-absorberᵣ {x} = One.zero-when-redundant-addition $ x ⋅ 𝟎 🝖-[ congruence₂ᵣ(_⋅_)(x) (identityₗ(_+_)(𝟎)) ]-sym x ⋅ (𝟎 + 𝟎) 🝖-[ distributivityₗ(_⋅_)(_+_) ] (x ⋅ 𝟎) + (x ⋅ 𝟎) 🝖-end -- TODO: Stuff provable in groups [−]-binaryOperator : BinaryOperator(_−_) BinaryOperator.congruence [−]-binaryOperator {x₁}{y₁}{x₂}{y₂} xy1 xy2 = (x₁ − x₂) 🝖[ _≡_ ]-[] (x₁ + (− x₂)) 🝖[ _≡_ ]-[ congruence₂(_+_) xy1 (congruence₁(−_) xy2) ] (y₁ + (− y₂)) 🝖[ _≡_ ]-[] (y₁ − y₂) 🝖-end postulate [⋅][−]-distributivityₗ : Distributivityₗ(_⋅_)(_−_) postulate [⋅][−]-distributivityᵣ : Distributivityᵣ(_⋅_)(_−_) instance [−]-involution : Involution(−_) [−]-involution = intro One.double-inverse [+]-negation-distribution : ∀{x y} → (−(x + y) ≡ (− x) + (− y)) [+]-negation-distribution = One.inverse-distribution 🝖 commutativity(_+_) [−]-negation-distribution : ∀{x y} → (−(x − y) ≡ y − x) [−]-negation-distribution = One.inverse-distribution 🝖 congruence₂ₗ(_−_) ⦃ [−]-binaryOperator ⦄ (_) (involution(−_)) -- TODO: See abs-of-negation for a similiar proof postulate zero-when-equal-negation : ∀{x} → (− x ≡ x) → (x ≡ 𝟎) instance [+]-inversePropₗ : InversePropertyₗ(_+_)(−_) [+]-inversePropₗ = One.inverse-propertyₗ-by-groupₗ instance [+]-inversePropᵣ : InversePropertyᵣ(_+_)(−_) [+]-inversePropᵣ = One.inverse-propertyᵣ-by-groupᵣ [+][−]-inverseOperᵣ : InverseOperatorᵣ(_+_)(_−_) [+][−]-inverseOperᵣ = One.standard-inverse-inverse-operatorᵣ-by-inverse-propᵣ ⦃ inverPropᵣ = [+]-inversePropᵣ ⦄ [−][+]-inverseOperᵣ : InverseOperatorᵣ(_−_)(_+_) [−][+]-inverseOperᵣ = One.standard-inverse-operatorᵣ-by-involuting-inverse-propᵣ ⦃ inverPropᵣ = [+]-inversePropᵣ ⦄ -- TODO: Defined set subset of natural numbers and integers by using summation ∑. That is: (x ∈ ℕ) = ∃{Obj = ℕ}(n ↦ ∑(0 ‥ n) (const 𝟏)) [−]-of-𝟎 : ((− 𝟎) ≡ 𝟎) [−]-of-𝟎 = − 𝟎 🝖-[ symmetry(_≡_) (identityₗ(_+_)(𝟎)) ] 𝟎 + (− 𝟎) 🝖-[ inverseFunctionᵣ(_+_)(−_) ] 𝟎 🝖-end [−]-is-𝟎 : ∀{x} → ((− x) ≡ 𝟎) ↔ (x ≡ 𝟎) [−]-is-𝟎 = [↔]-intro (p ↦ congruence₁(−_) p 🝖 [−]-of-𝟎) (p ↦ symmetry(_≡_) (involution(−_)) 🝖 congruence₁(−_) p 🝖 [−]-of-𝟎) [−]-difference-is-𝟎 : ∀{x y} → ((x − y) ≡ 𝟎) ↔ (x ≡ y) [−]-difference-is-𝟎 {x}{y} = [↔]-intro l r where l = (x ≡ y ) ⇒-[ congruence₂ᵣ(_−_) ⦃ [−]-binaryOperator ⦄ (x) ] (x − x ≡ x − y) ⇒-[ symmetry(_≡_) ] (x − y ≡ x − x) ⇒-[ _🝖 inverseFunctionᵣ(_+_)(−_) ] (x − y ≡ 𝟎 ) ⇒-end r = (x − y ≡ 𝟎 ) ⇒-[] (x + (− y) ≡ 𝟎 ) ⇒-[ congruence₂ₗ(_+_)(y) ] ((x + (− y)) + y ≡ 𝟎 + y) ⇒-[ symmetry(_≡_) (associativity(_+_)) 🝖_ ] (x + ((− y) + y) ≡ 𝟎 + y) ⇒-[ congruence₂ᵣ(_+_)(x) (symmetry(_≡_) (inverseFunctionₗ(_+_)(−_))) 🝖_ ] (x + 𝟎 ≡ 𝟎 + y) ⇒-[ (\p → symmetry(_≡_) (identityᵣ(_+_)(𝟎)) 🝖 p 🝖 identityₗ(_+_)(𝟎)) ] (x ≡ y ) ⇒-end module _ ⦃ unity : Unity(_+_)(_⋅_) ⦄ where open import Type.Properties.MereProposition open import Type.Properties.Singleton open import Type.Properties.Singleton.Proofs open Unity(unity) singleton-when-identities-equal : (𝟎 ≡ 𝟏) ↔ IsUnit(T) singleton-when-identities-equal = [↔]-intro l r where l : (𝟎 ≡ 𝟏) ← IsUnit(T) l p = uniqueness(_) ⦃ inst = unit-is-prop ⦃ proof = p ⦄ ⦄ r : (𝟎 ≡ 𝟏) → IsUnit(T) IsUnit.unit (r oi) = 𝟎 IsUnit.uniqueness (r oi) {x} = x 🝖[ _≡_ ]-[ identityᵣ(_⋅_)(𝟏) ]-sym x ⋅ 𝟏 🝖[ _≡_ ]-[ congruence₂ᵣ(_⋅_)(x) oi ]-sym x ⋅ 𝟎 🝖[ _≡_ ]-[ absorberᵣ(_⋅_)(𝟎) ] 𝟎 🝖-end [⋅]ₗ-of-[−1] : ∀{x} → ((− 𝟏) ⋅ x ≡ − x) [⋅]ₗ-of-[−1] {x} = One.unique-inverseᵣ-by-id $ x + ((− 𝟏) ⋅ x) 🝖-[ congruence₂ₗ(_+_)(_) (identityₗ(_⋅_)(𝟏)) ]-sym (𝟏 ⋅ x) + ((− 𝟏) ⋅ x) 🝖-[ distributivityᵣ(_⋅_)(_+_) ]-sym (𝟏 + (− 𝟏)) ⋅ x 🝖-[ congruence₂ₗ(_⋅_)(x) (inverseFunctionᵣ(_+_)(−_)) ] 𝟎 ⋅ x 🝖-[ absorberₗ(_⋅_)(𝟎) ] 𝟎 🝖-end [⋅]ᵣ-of-[−1] : ∀{x} → (x ⋅ (− 𝟏) ≡ − x) [⋅]ᵣ-of-[−1] {x} = One.unique-inverseₗ-by-id $ (x ⋅ (− 𝟏)) + x 🝖-[ congruence₂ᵣ(_+_)(_) (identityᵣ(_⋅_)(𝟏)) ]-sym (x ⋅ (− 𝟏)) + (x ⋅ 𝟏) 🝖-[ distributivityₗ(_⋅_)(_+_) ]-sym x ⋅ ((− 𝟏) + 𝟏) 🝖-[ congruence₂ᵣ(_⋅_)(x) (inverseFunctionₗ(_+_)(−_)) ] x ⋅ 𝟎 🝖-[ absorberᵣ(_⋅_)(𝟎) ] 𝟎 🝖-end [⋅]ₗ-of-[−] : ∀{x y} → ((− x) ⋅ y ≡ −(x ⋅ y)) [⋅]ₗ-of-[−] {x}{y} = ((− x) ⋅ y) 🝖-[ congruence₂ₗ(_⋅_)(y) [⋅]ₗ-of-[−1] ]-sym (((− 𝟏) ⋅ x) ⋅ y) 🝖-[ associativity(_⋅_) ] ((− 𝟏) ⋅ (x ⋅ y)) 🝖-[ [⋅]ₗ-of-[−1] ] (−(x ⋅ y)) 🝖-end [⋅]ᵣ-of-[−] : ∀{x y} → (x ⋅ (− y) ≡ −(x ⋅ y)) [⋅]ᵣ-of-[−] {x}{y} = (x ⋅ (− y)) 🝖-[ congruence₂ᵣ(_⋅_)(x) [⋅]ᵣ-of-[−1] ]-sym (x ⋅ (y ⋅ (− 𝟏))) 🝖-[ associativity(_⋅_) ]-sym ((x ⋅ y) ⋅ (− 𝟏)) 🝖-[ [⋅]ᵣ-of-[−1] ] (−(x ⋅ y)) 🝖-end [⋅]-of-[−] : ∀{x y} → ((− x) ⋅ (− y) ≡ x ⋅ y) [⋅]-of-[−] {x}{y} = ((− x) ⋅ (− y)) 🝖[ _≡_ ]-[ [⋅]ᵣ-of-[−] ] −((− x) ⋅ y) 🝖[ _≡_ ]-[ congruence₁(−_) [⋅]ₗ-of-[−] ] −(−(x ⋅ y)) 🝖[ _≡_ ]-[ involution(−_) ] (x ⋅ y) 🝖-end
{ "alphanum_fraction": 0.5132769619, "avg_line_length": 38.9653179191, "ext": "agda", "hexsha": "78bf3afad3f073509850a27261b6d4b4a17bf25d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Operator/Ring/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Operator/Ring/Proofs.agda", "max_line_length": 137, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Operator/Ring/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 3269, "size": 6741 }
module Lambda where open import Data.Bool using (true; false) open import Data.Nat renaming (_≟_ to _≟N_) import Data.Stream as S open import Data.Vec using ([]; _∷_) open import Relation.Binary.PropositionalEquality open import Check open import Eval open import Operations.Combinatorial open import Operations.Stateful open import Types open import Utils ex₀ : S.take 5 ([] ⟦ alternator bitO ⟧) ≡ false ∷ true ∷ false ∷ true ∷ false ∷ [] ex₀ = refl ex₁ : S.take 5 ([] ⟦ constant bitI ⟧) ≡ true ∷ true ∷ true ∷ true ∷ true ∷ [] ex₁ = refl
{ "alphanum_fraction": 0.6927175844, "avg_line_length": 26.8095238095, "ext": "agda", "hexsha": "2cd7b13ca9130b9bb9288c55981955189461ec39", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6f3df71dcd958c6a1d1bf4f175dc16c220d42124", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "bens/hwlc", "max_forks_repo_path": "Lambda.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6f3df71dcd958c6a1d1bf4f175dc16c220d42124", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "bens/hwlc", "max_issues_repo_path": "Lambda.agda", "max_line_length": 82, "max_stars_count": null, "max_stars_repo_head_hexsha": "6f3df71dcd958c6a1d1bf4f175dc16c220d42124", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "bens/hwlc", "max_stars_repo_path": "Lambda.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 172, "size": 563 }
-- Andreas, 2012-06-05 let for record patterns -- {-# OPTIONS --show-implicit #-} -- {-# OPTIONS -v tc.term.let.pattern:100 #-} -- {-# OPTIONS -v tc.lhs.top:100 #-} module LetPair where import Common.Level -- open import Common.Equality data _×_ (A B : Set) : Set where _,_ : (fst : A)(snd : B) → A × B swap : {A B : Set} → A × B → B × A swap p = let (a , b) = p -- works only for record patterns in (b , a)
{ "alphanum_fraction": 0.5795724466, "avg_line_length": 22.1578947368, "ext": "agda", "hexsha": "2637d402ae3eb5d14605911e8dd46a9a408e582c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/LetPair.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/LetPair.agda", "max_line_length": 52, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/LetPair.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 144, "size": 421 }
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-} module Light.Library.Data.Unit where open import Light.Level using (Level ; Setω) record Dependencies : Setω where record Library (dependencies : Dependencies) : Setω where field ℓ : Level Unit : Set ℓ unit : Unit open Library ⦃ ... ⦄ public
{ "alphanum_fraction": 0.6494565217, "avg_line_length": 24.5333333333, "ext": "agda", "hexsha": "da7d87014d28273bf9f8dd196436061a15d43d49", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "Zambonifofex/lightlib", "max_forks_repo_path": "Light/Library/Data/Unit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "Zambonifofex/lightlib", "max_issues_repo_path": "Light/Library/Data/Unit.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "zamfofex/lightlib", "max_stars_repo_path": "Light/Library/Data/Unit.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z", "num_tokens": 87, "size": 368 }
{-# OPTIONS --without-K #-} module RepresPerm where open import Enumeration using (Enum) open import Equiv using (_≃_; id≃; sym≃; trans≃; mkqinv; module qinv; _⋆_; path⊎) open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong) open import Data.Nat using (ℕ; suc) open import Data.Fin using (Fin; zero) open import Data.Product using (_,_) open import FinEquiv open import Data.Unit using (⊤) open import Data.Sum using (_⊎_) open import LeftCancellation -- A Representable Permutation consists of -- 1. an Enumeration of A -- 2. an Enumeration of B -- 3. an isomorphism between A and B record RPerm (A : Set) (n : ℕ) (B : Set) (m : ℕ) : Set where constructor rp field #A : Enum A n #B : Enum B m iso : A ≃ B open RPerm -- first theorem about these: same size! thm1 : ∀ {n m} {A B} → (X : RPerm A n B m) → n ≡ m thm1 {0} {0 } (rp _ _ _ ) = refl thm1 {0} {suc m} (rp (fA , isoA) (fB , mkqinv g α β) (f , iso)) with fA (I.g (g zero)) where module I = qinv iso ... | () thm1 {suc n} {0} (rp (fA , isoA) B≃Fm (f , iso)) with B≃Fm ⋆ f (IA.g zero) where module IA = qinv isoA ... | () thm1 {suc n} {suc m} {A} {B} (rp A≃Fsn B≃Fsm A≃B) = cong suc (thm1 {n} {m} {Fin n} {Fin m} (rp id≃ id≃ Fn≃Fm)) where Fsn≃Fsm : Fin (suc n) ≃ Fin (suc m) Fsn≃Fsm = trans≃ (trans≃ (sym≃ A≃Fsn) A≃B) B≃Fsm 1+n≃1+m : (Fin 1 ⊎ Fin n) ≃ (Fin 1 ⊎ Fin m) 1+n≃1+m = trans≃ (trans≃ (Plus.fwd-iso {suc 0} {n}) Fsn≃Fsm) (sym≃ (Plus.fwd-iso {suc 0} {m})) ⊤⊎n≃⊤⊎m : (⊤ ⊎ Fin n) ≃ (⊤ ⊎ Fin m) ⊤⊎n≃⊤⊎m = trans≃ (trans≃ (path⊎ (sym≃ Fin1≃⊤) id≃) 1+n≃1+m) (path⊎ Fin1≃⊤ id≃) Fn≃Fm = left-cancel-⊤ ⊤⊎n≃⊤⊎m
{ "alphanum_fraction": 0.5358532518, "avg_line_length": 34.5961538462, "ext": "agda", "hexsha": "bef8164a3f77508e35e476463ec7cab2f1f53c4d", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/RepresPerm.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/RepresPerm.agda", "max_line_length": 87, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/RepresPerm.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 774, "size": 1799 }
open import Data.Product using ( ∃ ; _×_ ; _,_ ; proj₁ ; proj₂ ) open import Relation.Unary using ( _∈_ ) open import Web.Semantic.DL.ABox using ( ABox ) open import Web.Semantic.DL.ABox.Interp using ( Interp ; _*_ ) open import Web.Semantic.DL.ABox.Interp.Morphism using ( _≲_ ; ≲-trans ; _**_ ; _≋_ ) open import Web.Semantic.DL.KB using ( KB ; _,_ ; tbox ) open import Web.Semantic.DL.KB.Model using ( _⊨_ ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox using ( _,_ ) open import Web.Semantic.Util using ( _⊕_⊕_ ; inode ; enode ) module Web.Semantic.DL.Integrity {Σ : Signature} {X V Y : Set} where -- A variant of the notion of OWL integrity in: -- Boris Motik, Ian Horrocks, and Ulrike Sattler. Bridging the gap between OWL and -- relational databases. In Proc. Conf. World Wide Web (WWW2007), pp 807–816, 2007. -- They propose defining that an integrity constraint S (given as a T-Box) is valid -- for a knowlege base K whenever S is valid in every minimal Herbrand model. -- We strengthen this requirement to say that there is a minimal model of K, -- which validtes S. infixr 4 _>>_ _,_ infix 2 _⊕_⊨_ -- J ∈ Initial I K whenever J is the initial extension of I -- satisfying K, that is there is I≲J s.t. I ⊨ K -- and for any other such I≲K, there is a unique -- J≲K which commutes with I≲J and I≲K. _>>_ : ∀ {I : Interp Σ X} {J K : Interp Σ (X ⊕ V ⊕ Y)} → (I ≲ inode * J) → (J ≲ K) → (I ≲ inode * K) I≲J >> J≲K = ≲-trans I≲J (inode ** J≲K) Unique : ∀ (I : Interp Σ X) → (J K : Interp Σ (X ⊕ V ⊕ Y)) → (I ≲ inode * J) → (I ≲ inode * K) → Set Unique I J K I≲J I≲K = ∀ (J≲₁K J≲₂K : J ≲ K) → (I≲K ≋ I≲J >> J≲₁K) → (I≲K ≋ I≲J >> J≲₂K) → (J≲₁K ≋ J≲₂K) data Mediated (I : Interp Σ X) (J K : Interp Σ (X ⊕ V ⊕ Y)) (I≲J : I ≲ inode * J) (I≲K : I ≲ inode * K) : Set where _,_ : (J≲K : J ≲ K) → (I≲K ≋ I≲J >> J≲K) × (Unique I J K I≲J I≲K) → Mediated I J K I≲J I≲K med-≲ : ∀ {I} {J K : Interp Σ (X ⊕ V ⊕ Y)} {I≲J I≲K} → (Mediated I J K I≲J I≲K) → (J ≲ K) med-≲ (J≲K , I≲K≋I≲J≲K , J≲K-uniq) = J≲K med-≋ : ∀ {I} {J K : Interp Σ (X ⊕ V ⊕ Y)} {I≲J I≲K} → (m : Mediated I J K I≲J I≲K) → (I≲K ≋ I≲J >> med-≲ m) med-≋ (J≲K , I≲K≋I≲J≲K , J≲K-uniq) = I≲K≋I≲J≲K med-uniq : ∀ {I} {J K : Interp Σ (X ⊕ V ⊕ Y)} {I≲J I≲K} → (Mediated I J K I≲J I≲K) → Unique I J K I≲J I≲K med-uniq (J≲K , I≲K≋I≲J≲K , J≲K-uniq) = J≲K-uniq Mediator : ∀ (I : Interp Σ X) → (J : Interp Σ (X ⊕ V ⊕ Y)) → (I ≲ inode * J) → (KB Σ (X ⊕ V ⊕ Y)) → Set₁ Mediator I J I≲J KB = ∀ K (I≲K : I ≲ inode * K) → (K ⊨ KB) → Mediated I J K I≲J I≲K data Initial I KB (J : Interp Σ (X ⊕ V ⊕ Y)) : Set₁ where _,_ : ∀ (I≲J : I ≲ inode * J) → (J ⊨ KB) × (Mediator I J I≲J KB) → (J ∈ Initial I KB) init-≲ : ∀ {I KB} {J : Interp Σ (X ⊕ V ⊕ Y)} → (J ∈ Initial I KB) → (I ≲ inode * J) init-≲ (I≲J , J⊨KB , J-med) = I≲J init-⊨ : ∀ {I KB} {J : Interp Σ (X ⊕ V ⊕ Y)} → (J ∈ Initial I KB) → (J ⊨ KB) init-⊨ (I≲J , J⊨KB , J-med) = J⊨KB init-med : ∀ {I KB} {J : Interp Σ (X ⊕ V ⊕ Y)} → (J-init : J ∈ Initial I KB) → Mediator I J (init-≲ J-init) KB init-med (I≲J , J⊨KB , J-med) = J-med -- I ⊕ KB₁ ⊨ KB₂ whenever the initial extension of I satisfying -- KB₁ exists, and has exports satisfying KB₂. data _⊕_⊨_ I (KB₁ : KB Σ (X ⊕ V ⊕ Y)) KB₂ : Set₁ where _,_ : ∀ J → ((J ∈ Initial I KB₁) × (enode * J ⊨ KB₂)) → (I ⊕ KB₁ ⊨ KB₂) extension : ∀ {I KB₁ KB₂} → (I ⊕ KB₁ ⊨ KB₂) → (Interp Σ (X ⊕ V ⊕ Y)) extension (J , J-init , J⊨KB₂) = J ext-init : ∀ {I} {KB₁ : KB Σ (X ⊕ V ⊕ Y)} {KB₂} → (I⊕KB₁⊨KB₂ : I ⊕ KB₁ ⊨ KB₂) → (extension I⊕KB₁⊨KB₂ ∈ Initial I KB₁) ext-init (J , J-init , J⊨KB₂) = J-init ext-⊨ : ∀ {I} {KB₁ : KB Σ (X ⊕ V ⊕ Y)} {KB₂} → (I⊕KB₁⊨KB₂ : I ⊕ KB₁ ⊨ KB₂) → (enode * (extension I⊕KB₁⊨KB₂) ⊨ KB₂) ext-⊨ (J , J-init , J⊨KB₂) = J⊨KB₂ ext✓ : ∀ {I S T} {F : ABox Σ (X ⊕ V ⊕ Y)} {B} → (I⊕SF⊨TB : I ⊕ S , F ⊨ T , B) → (enode * (extension I⊕SF⊨TB) ⊨ (S , T) , B) ext✓ I⊕SF⊨TB = ( ( proj₁ (init-⊨ (ext-init I⊕SF⊨TB)) , proj₁ (ext-⊨ I⊕SF⊨TB) ) , proj₂ (ext-⊨ I⊕SF⊨TB) )
{ "alphanum_fraction": 0.5424189958, "avg_line_length": 38.875, "ext": "agda", "hexsha": "1eb4ad627a40f5e15aacbe1dac761ae6ad9e581e", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z", "max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z", "max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-web-semantic", "max_forks_repo_path": "src/Web/Semantic/DL/Integrity.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-web-semantic", "max_issues_repo_path": "src/Web/Semantic/DL/Integrity.agda", "max_line_length": 85, "max_stars_count": 9, "max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-web-semantic", "max_stars_repo_path": "src/Web/Semantic/DL/Integrity.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z", "num_tokens": 2027, "size": 4043 }
module Sort where open import Sec4 import Sec2 postulate _≤_ : {A : Set} → A → A → Prop postulate tot-list : {A : Set} → (a b : A) → (a ≤ b) ∨ (b ≤ a) postulate trans-list : {A : Set} → (a b c : A) → (a ≤ b) → (b ≤ c) → (a ≤ c) -- XXX: Definition of a list data List (A : Set) : Set where Nil : List A _∷_ : A → List A → List A -- XXX: definition of an ordered list all-ordered-list : {A : Set} → (a : A) → (l : List A) → Prop all-ordered-list a Nil = ⊤ all-ordered-list a (x ∷ l) = (a ≤ x) ∧ all-ordered-list a l ordered-list : {A : Set} → List A → Prop ordered-list Nil = ⊤ ordered-list (x ∷ l) = all-ordered-list x l ∧ (ordered-list l) -- XXX: Inserting elements in the list insert-list : {A : Set} → (a : A) → (l : List A) → List A insert-list a Nil = a ∷ Nil insert-list a (x ∷ l) with (tot-list a x) insert-list a (x ∷ l) | ora h = a ∷ (x ∷ l) insert-list a (x ∷ l) | orb h = x ∷ (insert-list a l) lem1 : {A : Set} → (a x : A) → (l : List A) → (p : all-ordered-list x l) → (p1 : a ≤ x) → (all-ordered-list a l) lem1 a x Nil p p1 = ⋆ lem1 a x (x₁ ∷ l) (and x₂ x₃) p1 = and (trans-list a x x₁ p1 x₂) (lem1 a x l x₃ p1) lem2 : {A : Set} → (x a : A) → (l : List A) → (h : x ≤ a) → (p1 : all-ordered-list x l) → (p2 : ordered-list l) → (v : ordered-list (insert-list a l)) → all-ordered-list x (insert-list a l) lem2 x a Nil h p1 p3 v = and h ⋆ lem2 x a (x₁ ∷ l) h p1 p3 v with (tot-list a x₁) lem2 x₂ a (x₁ ∷ l) h p1 p3 v | ora x = and h p1 lem2 x₂ a (x₁ ∷ l) h (and x₃ x₄) (and x₅ x₆) (and x₇ x₈) | orb x = and x₃ (lem2 x₂ a l h x₄ x₆ x₈) thm2 : {A : Set} → ∀ (a : A) → ∀ (l : List A) → (p : ordered-list l) → (ordered-list (insert-list a l)) thm2 a Nil p = and ⋆ ⋆ thm2 a (x ∷ l) p with (tot-list a x) thm2 a (x ∷ l) (and x₁ x₂) | ora h = and (and h (lem1 a x l x₁ h)) (and x₁ x₂) thm2 a (x ∷ l) (and x₁ x₂) | orb h = let v = (thm2 a l x₂) in and (lem2 x a l h x₁ x₂ v) v -- XXX: append lists _++_ : {A : Set} → (l : List A) → (m : List A) → List A Nil ++ m = m (x ∷ l) ++ m = x ∷ (l ++ m) -- XXX: Length of a list length : {A : Set} → (l : List A) → Sec2.ℕ length Nil = Sec2.Z length (x ∷ l) = Sec2.S (length l) -- XXX: reverse of a list rev : {A : Set} → (List A) → (List A) rev Nil = Nil rev (x ∷ l) = (rev l) ++ (x ∷ Nil) -- XXX: Theorem on length of lists thm : {A : Set} → (l : List A) → (m : List A) → ((length l) Sec2.+ (length m) Sec2.≡ length (l ++ m)) thm Nil m = Sec2.refl thm (x ∷ l) m = let xx = thm l m in Sec2.cong xx cong : {A : Set} → (x : A) → (l m : List A) → (l Sec2.≡ m) → (x ∷ l) Sec2.≡ (x ∷ m) cong x l .l Sec2.refl = Sec2.refl cong2 : {A : Set} → (l m q : List A) → (l Sec2.≡ m) → (l ++ q) Sec2.≡ (m ++ q) cong2 l .l q Sec2.refl = Sec2.refl ++-lem : {A : Set} → (l : List A) → ((l ++ Nil) Sec2.≡ l) ++-lem Nil = Sec2.refl ++-lem (x ∷ l) = cong x (l ++ Nil) l (++-lem l) assoc : {A : Set} → (l m q : List A) → l ++ (m ++ q) Sec2.≡ (l ++ m) ++ q assoc Nil m q = Sec2.refl assoc (x ∷ l) m q = cong x (l ++ (m ++ q)) ((l ++ m) ++ q) (assoc l m q) rev-lem : {A : Set} → ∀ (l m : List A) → rev (l ++ m) Sec2.≡ (rev m) ++ (rev l) rev-lem Nil m rewrite ++-lem (rev m) = Sec2.refl rev-lem (x ∷ l) m rewrite assoc (rev m) (rev l) (x ∷ Nil) = let p = rev-lem l m in cong2 (rev (l ++ m)) (rev m ++ rev l) (x ∷ Nil) p -- XXX: Involution of reversal of lists rev-involute : {A : Set} → (l : List A) → l Sec2.≡ (rev (rev l)) rev-involute Nil = Sec2.refl rev-involute (x ∷ l) rewrite rev-lem (rev l) (x ∷ Nil) = cong x l (rev (rev l)) (rev-involute l)
{ "alphanum_fraction": 0.4520614784, "avg_line_length": 33.8760330579, "ext": "agda", "hexsha": "57315dad5c52ba579d6781f472830f0de4153e26", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "amal029/agda-tutorial-dybjer", "max_forks_repo_path": "Sort.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "amal029/agda-tutorial-dybjer", "max_issues_repo_path": "Sort.agda", "max_line_length": 103, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "amal029/agda-tutorial-dybjer", "max_stars_repo_path": "Sort.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-08T12:52:30.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:52:30.000Z", "num_tokens": 1659, "size": 4099 }
open import Coinduction using ( ♭ ) open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ; sym ; cong ; cong₂ ) open import System.IO.Transducers using ( _⇒_ ; inp ; out ; done ; out*' ; _⟫_ ; _⟨&⟩_ ; _⟨&⟩[_]_ ; discard ; π₁ ; π₂ ; ⟦_⟧ ; _≃_ ) open import System.IO.Transducers.Session using ( [] ; _∷_ ; _&_ ) open import System.IO.Transducers.Trace using ( _≤_ ; Trace ; [] ; _∷_ ) open import System.IO.Transducers.Properties.Lemmas using ( cong₃ ; revApp ; out*'-semantics ) open import System.IO.Transducers.Properties.BraidedMonoidal using ( _++_ ) open import System.IO.Transducers.Properties.Category using ( _⟦⟫⟧_ ; ⟫-semantics ) module System.IO.Transducers.Properties.LaxProduct where open Relation.Binary.PropositionalEquality.≡-Reasoning _⟦⟨&⟩⟧_ : ∀ {S T U} → (f : Trace S → Trace T) → (g : Trace S → Trace U) → (Trace S) → (Trace (T & U)) (f ⟦⟨&⟩⟧ g) as = f as ++ g as _⟦⟨&⟩[_]⟧_ : ∀ {S T U V} → (Trace S → Trace T) → (U ≤ V) → (Trace S → Trace U) → (Trace S → Trace (T & V)) (f ⟦⟨&⟩[ cs ]⟧ g) as = f as ++ (revApp cs (g as)) ⟨&⟩[]-semantics : ∀ {S T U V} → (P : S ⇒ T) → (cs : U ≤ V) → (Q : S ⇒ U) → (⟦ P ⟨&⟩[ cs ] Q ⟧ ≃ ⟦ P ⟧ ⟦⟨&⟩[ cs ]⟧ ⟦ Q ⟧) ⟨&⟩[]-semantics (inp {T = []} F) cs Q as with ⟦ inp F ⟧ as ⟨&⟩[]-semantics (inp {T = []} F) cs Q as | [] = out*'-semantics cs Q as ⟨&⟩[]-semantics (inp {T = W ∷ Ts} F) cs (inp G) [] = refl ⟨&⟩[]-semantics (inp {T = W ∷ Ts} F) cs (inp G) (a ∷ as) = ⟨&⟩[]-semantics (♭ F a) cs (♭ G a) as ⟨&⟩[]-semantics (inp {T = W ∷ Ts} F) cs (out c Q) as = ⟨&⟩[]-semantics (inp F) (c ∷ cs) Q as ⟨&⟩[]-semantics (inp {T = W ∷ Ts} F) cs done [] = refl ⟨&⟩[]-semantics (inp {T = W ∷ Ts} F) cs done (a ∷ as) = ⟨&⟩[]-semantics (♭ F a) (a ∷ cs) done as ⟨&⟩[]-semantics (out b P) cs Q as = cong (_∷_ b) (⟨&⟩[]-semantics P cs Q as) ⟨&⟩[]-semantics (done {[]}) cs Q [] = out*'-semantics cs Q [] ⟨&⟩[]-semantics (done {W ∷ Ts}) cs (inp F) [] = refl ⟨&⟩[]-semantics (done {W ∷ Ts}) cs (inp F) (a ∷ as) = cong (_∷_ a) (⟨&⟩[]-semantics done cs (♭ F a) as) ⟨&⟩[]-semantics (done {W ∷ Ts}) cs (out c Q) as = ⟨&⟩[]-semantics done (c ∷ cs) Q as ⟨&⟩[]-semantics (done {W ∷ Ts}) cs done [] = refl ⟨&⟩[]-semantics (done {W ∷ Ts}) cs done (a ∷ as) = cong (_∷_ a) (⟨&⟩[]-semantics done (a ∷ cs) done as) ⟨&⟩-semantics : ∀ {S T U} → (P : S ⇒ T) → (Q : S ⇒ U) → (⟦ P ⟨&⟩ Q ⟧ ≃ ⟦ P ⟧ ⟦⟨&⟩⟧ ⟦ Q ⟧) ⟨&⟩-semantics P Q = ⟨&⟩[]-semantics P [] Q ⟫-dist-⟨&⟩ : ∀ {S T U V} → (P : T ⇒ U) → (Q : T ⇒ V) → (R : S ⇒ T) → (⟦ R ⟫ (P ⟨&⟩ Q) ⟧ ≃ ⟦ (R ⟫ P) ⟨&⟩ (R ⟫ Q) ⟧) ⟫-dist-⟨&⟩ P Q R as = begin ⟦ R ⟫ P ⟨&⟩ Q ⟧ as ≡⟨ ⟫-semantics R (P ⟨&⟩ Q) as ⟩ ⟦ P ⟨&⟩ Q ⟧ (⟦ R ⟧ as) ≡⟨ ⟨&⟩-semantics P Q (⟦ R ⟧ as) ⟩ ⟦ P ⟧ (⟦ R ⟧ as) ++ ⟦ Q ⟧ (⟦ R ⟧ as) ≡⟨ cong₂ _++_ (sym (⟫-semantics R P as)) (sym (⟫-semantics R Q as)) ⟩ ⟦ R ⟫ P ⟧ as ++ ⟦ R ⟫ Q ⟧ as ≡⟨ sym (⟨&⟩-semantics (R ⟫ P) (R ⟫ Q) as) ⟩ ⟦ (R ⟫ P) ⟨&⟩ (R ⟫ Q) ⟧ as ∎
{ "alphanum_fraction": 0.4603481625, "avg_line_length": 50.0322580645, "ext": "agda", "hexsha": "6109b3e4777b63ad684db6c4520afdf7c250c36c", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z", "max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z", "max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ilya-fiveisky/agda-system-io", "max_forks_repo_path": "src/System/IO/Transducers/Properties/LaxProduct.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ilya-fiveisky/agda-system-io", "max_issues_repo_path": "src/System/IO/Transducers/Properties/LaxProduct.agda", "max_line_length": 131, "max_stars_count": 10, "max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ilya-fiveisky/agda-system-io", "max_stars_repo_path": "src/System/IO/Transducers/Properties/LaxProduct.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z", "num_tokens": 1441, "size": 3102 }
module fold-Tree where open import map-Tree using (Tree; leaf; node) fold-Tree : ∀ {A B C : Set} → (A → C) → (C → B → C → C) → Tree A B → C fold-Tree f _ (leaf a) = f a fold-Tree f g (node treeˡ b treeʳ) = g (fold-Tree f g treeˡ) b (fold-Tree f g treeʳ)
{ "alphanum_fraction": 0.5746268657, "avg_line_length": 33.5, "ext": "agda", "hexsha": "aa6bb012a559ced0de1f38500e51275d8f70f493", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "akiomik/plfa-solutions", "max_forks_repo_path": "part1/lists/fold-Tree.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "akiomik/plfa-solutions", "max_issues_repo_path": "part1/lists/fold-Tree.agda", "max_line_length": 84, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "akiomik/plfa-solutions", "max_stars_repo_path": "part1/lists/fold-Tree.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z", "num_tokens": 106, "size": 268 }
module moveArg where open import Agda.Builtin.Nat open import Agda.Builtin.Bool stuff : ( number : Nat) -> Bool -> Bool stuff number bool = {! !} stuff2 : Nat -> Bool -> Bool stuff2 number bool = bool nonsense : Bool nonsense = stuff 0 true dep : (A : Set) -> (B : A) -> Bool -> Bool dep a b c = c unnamedDep : (A : Set) -> A -> Bool -> Bool unnamedDep a b c = c sameName : (A : Set) -> {A : Set} -> A -> A sameName set a = a nonDep : (A : Set) -> (B : Set) -> B -> B nonDep set1 set2 b = b data List (A : Set) : Nat -> Set where nil : List A 0 cons : {n : Nat} -> A -> List A n -> List A (suc n) map : {n : Nat} -> {A : Set} -> {B : Set} -> (A -> B) -> List A n -> List B n map f nil = nil map f (cons x xs) = cons (f x) (map f xs) map2 : {A : Set} -> {n : Nat} -> {B : Set} -> (A -> B) -> List A n -> List B n map2 f nil = nil map2 f (cons x xs) = cons (f x) (map2 f xs)
{ "alphanum_fraction": 0.5345982143, "avg_line_length": 22.4, "ext": "agda", "hexsha": "8c07de5d788e01da8c3f8e1292967236ddadf780", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "omega12345/RefactorAgda", "max_forks_repo_path": "RefactorAgdaEngine/Test/Tests/input/MoveArg.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_issues_repo_issues_event_max_datetime": "2019-02-05T12:53:36.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-31T08:03:07.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "omega12345/RefactorAgda", "max_issues_repo_path": "RefactorAgdaEngine/Test/Tests/input/MoveArg.agda", "max_line_length": 78, "max_stars_count": 5, "max_stars_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "omega12345/RefactorAgda", "max_stars_repo_path": "RefactorAgdaEngine/Test/Tests/input/MoveArg.agda", "max_stars_repo_stars_event_max_datetime": "2019-05-03T10:03:36.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-31T14:10:18.000Z", "num_tokens": 339, "size": 896 }
{-# OPTIONS --without-K --safe #-} -- This module defines an intermediate calculus that is set up in the D<: universe -- which bridges F<:- and D<:. The goal here is purely technical - to simply reduce -- duplication. module DsubReduced where open import Data.List as List open import Data.List.All as All open import Data.Nat as ℕ open import Data.Maybe as Maybe open import Data.Product open import Function open import Data.Maybe.Properties as Maybeₚ open import Data.Nat.Properties as ℕₚ open import Relation.Nullary open import Relation.Binary.PropositionalEquality as ≡ open import DsubDef open import FsubMinus open import FsubMinus2 open import Utils -- D<: Reduced -- -- This judgment for contexts and types in D<: defines a corresponding calculus after -- interpreting F<:⁻ into D<:. That is, D<: reduced is the image derivation of -- interpreting F<:⁻ in D<:. infix 4 _⊢ᵣ_<:_ data _⊢ᵣ_<:_ : Env → Typ → Typ → Set where drtop : ∀ {Γ T} → Covar T → Γ ⊢ᵣ T <: ⊤ drrefl : ∀ {Γ T} → Covar T → Γ ⊢ᵣ T <: T drall : ∀ {Γ S U S′ U′} → Covar S → Covar U → Covar S′ → Covar U′ → (S′<:S : Γ ⊢ᵣ S′ <: S) → (U<:U′ : ⟨A: ⊥ ⋯ S′ ⟩ ∷ Γ ⊢ᵣ U <: U′) → Γ ⊢ᵣ Π ⟨A: ⊥ ⋯ S ⟩ ∙ U <: Π ⟨A: ⊥ ⋯ S′ ⟩ ∙ U′ drsel : ∀ {Γ n U U′} → (T∈Γ : env-lookup Γ n ≡ just ⟨A: ⊥ ⋯ U ⟩) → Covar U → Γ ⊢ᵣ U <: U′ → Γ ⊢ᵣ n ∙A <: U′ module FsubMinusToDsubR where open FsubMinus.FsubMinus renaming (Env to Env′ ; _↑_ to _⇑_) hiding (env-lookup) infix 5 ⟦_⟧ ⟪_⟫ ⟦_⟧ : Ftyp → Typ ⟦ ⊤ ⟧ = ⊤ ⟦ var x ⟧ = x ∙A ⟦ Π<: S ∙ U ⟧ = Π ⟨A: ⊥ ⋯ ⟦ S ⟧ ⟩ ∙ ⟦ U ⟧ ⟪_⟫ : Env′ → Env ⟪ [] ⟫ = [] ⟪ T ∷ Γ ⟫ = ⟨A: ⊥ ⋯ ⟦ T ⟧ ⟩ ∷ ⟪ Γ ⟫ module ⟦⟧-Bijective where open import Function.Bijection open import Function.Surjection open import Function.Equality CovTyp : Set CovTyp = ∃ λ T → Covar T ⟦⟧-covar : ∀ T → Covar ⟦ T ⟧ ⟦⟧-covar ⊤ = cv⊤ ⟦⟧-covar (var x) = cv∙A _ ⟦⟧-covar (Π<: S ∙ U) = cvΠ (⟦⟧-covar S) (⟦⟧-covar U) ⟦⟧-func : ≡.setoid Ftyp ⟶ ≡.setoid CovTyp ⟦⟧-func = record { _⟨$⟩_ = < ⟦_⟧ , ⟦⟧-covar > ; cong = ≡.cong < ⟦_⟧ , ⟦⟧-covar > } ⟦⟧-injective : ∀ {S U} → ⟦ S ⟧ ≡ ⟦ U ⟧ → S ≡ U ⟦⟧-injective {⊤} {⊤} eq = refl ⟦⟧-injective {⊤} {var x} () ⟦⟧-injective {⊤} {Π<: _ ∙ _} () ⟦⟧-injective {var x} {⊤} () ⟦⟧-injective {var x} {var .x} refl = refl ⟦⟧-injective {var x} {Π<: _ ∙ _} () ⟦⟧-injective {Π<: _ ∙ _} {⊤} () ⟦⟧-injective {Π<: _ ∙ _} {var x} () ⟦⟧-injective {Π<: S₁ ∙ U₁} {Π<: S₂ ∙ U₂} eq with ⟦ S₁ ⟧ | ⟦ S₂ ⟧ | ⟦ U₁ ⟧ | ⟦ U₂ ⟧ | ⟦⟧-injective {S₁} {S₂} | ⟦⟧-injective {U₁} {U₂} ⟦⟧-injective {Π<: S₁ ∙ U₁} {Π<: S₂ ∙ U₂} refl | _ | _ | _ | _ | rec₁ | rec₂ = ≡.cong₂ Π<:_∙_ (rec₁ refl) (rec₂ refl) ⟦⟧-func-injective : ∀ {S U} → (CovTyp ∋ (⟦ S ⟧ , ⟦⟧-covar S)) ≡ (⟦ U ⟧ , ⟦⟧-covar U) → S ≡ U ⟦⟧-func-injective {S} {U} eq with ⟦ S ⟧ | ⟦⟧-covar S | ⟦ U ⟧ | ⟦⟧-covar U | ⟦⟧-injective {S} {U} ⟦⟧-func-injective {S} {U} refl | _ | _ | _ | _ | inj = inj refl infix 5 ⟦_⟧⁻¹ ⟦_⟧⁻¹ : CovTyp → Ftyp ⟦ _ , cv⊤ ⟧⁻¹ = ⊤ ⟦ _ , cv∙A x ⟧⁻¹ = var x ⟦ _ , cvΠ S U ⟧⁻¹ = Π<: ⟦ -, S ⟧⁻¹ ∙ ⟦ -, U ⟧⁻¹ ⟦⟧-func-inv : ≡.setoid CovTyp ⟶ ≡.setoid Ftyp ⟦⟧-func-inv = record { _⟨$⟩_ = ⟦_⟧⁻¹ ; cong = ≡.cong ⟦_⟧⁻¹ } ⟦⟧-left-inverse-⟦⟧⁻¹ : ∀ {T} (cT : Covar T) → (⟦ ⟦ -, cT ⟧⁻¹ ⟧ , ⟦⟧-covar ⟦ -, cT ⟧⁻¹) ≡ (CovTyp ∋ (-, cT)) ⟦⟧-left-inverse-⟦⟧⁻¹ cv⊤ = refl ⟦⟧-left-inverse-⟦⟧⁻¹ (cv∙A n) = refl ⟦⟧-left-inverse-⟦⟧⁻¹ (cvΠ S U) with ⟦ ⟦ -, S ⟧⁻¹ ⟧ | ⟦ ⟦ -, U ⟧⁻¹ ⟧ | ⟦⟧-covar ⟦ -, S ⟧⁻¹ | ⟦⟧-covar ⟦ -, U ⟧⁻¹ | ⟦⟧-left-inverse-⟦⟧⁻¹ S | ⟦⟧-left-inverse-⟦⟧⁻¹ U ... | _ | _ | _ | _ | refl | refl = refl ⟦⟧-bijective : Bijective ⟦⟧-func ⟦⟧-bijective = record { injective = ⟦⟧-func-injective ; surjective = record { from = ⟦⟧-func-inv ; right-inverse-of = λ { (_ , T) → ⟦⟧-left-inverse-⟦⟧⁻¹ T } } } open ⟦⟧-Bijective using (⟦⟧-covar ; ⟦⟧-injective) public ⟪⟫-contraEnv : ∀ Γ → ContraEnv ⟪ Γ ⟫ ⟪⟫-contraEnv [] = [] ⟪⟫-contraEnv (T ∷ Γ) = ctt (⟦⟧-covar T) ∷ ⟪⟫-contraEnv Γ ⟦⟧-↑-comm : ∀ T n → ⟦ T ⟧ ↑ n ≡ ⟦ T ⇑ n ⟧ ⟦⟧-↑-comm ⊤ n = refl ⟦⟧-↑-comm (var x) n with n ≤? x ... | yes n≤x = refl ... | no n>x = refl ⟦⟧-↑-comm (Π<: S ∙ U) n rewrite ⟦⟧-↑-comm S n | ⟦⟧-↑-comm U (suc n) = refl <:∈⇒env-lookup : ∀ {n T Γ} → n <: T ∈ Γ → env-lookup ⟪ Γ ⟫ n ≡ just ⟨A: ⊥ ⋯ ⟦ T ⟧ ⟩ <:∈⇒env-lookup {_} {_} {T ∷ ._} hd rewrite ⟦⟧-↑-comm T 0 = refl <:∈⇒env-lookup {suc n} {_} {._ ∷ Γ} (tl {_} {T} T∈Γ) with lookupOpt ⟪ Γ ⟫ n | <:∈⇒env-lookup T∈Γ ... | nothing | () ... | just _ | eq rewrite sym $ ⟦⟧-↑-comm T 0 = cong (just ∘ (_↑ 0)) (just-injective eq) F<:⇒D<:ᵣ : ∀ {Γ S U} → Γ ⊢F S <: U → ⟪ Γ ⟫ ⊢ᵣ ⟦ S ⟧ <: ⟦ U ⟧ F<:⇒D<:ᵣ ftop = drtop (⟦⟧-covar _) F<:⇒D<:ᵣ fvrefl = drrefl (cv∙A _) F<:⇒D<:ᵣ (fbinds T∈Γ T<:U) = drsel (<:∈⇒env-lookup T∈Γ) (⟦⟧-covar _) (F<:⇒D<:ᵣ T<:U) F<:⇒D<:ᵣ (fall S′<:S U<:U′) = drall (⟦⟧-covar _) (⟦⟧-covar _) (⟦⟧-covar _) (⟦⟧-covar _) (F<:⇒D<:ᵣ S′<:S) (F<:⇒D<:ᵣ U<:U′) env-lookup⇒<:∈ : ∀ {n T Γ} → env-lookup Γ n ≡ just ⟨A: ⊥ ⋯ T ⟩ → ∀ {Γ′} → Γ ≡ ⟪ Γ′ ⟫ → ∃ λ T′ → T ≡ ⟦ T′ ⟧ × n <: T′ ∈ Γ′ env-lookup⇒<:∈ T∈Γ eqΓ = aux (lookup⇒↦∈ T∈Γ) refl eqΓ where aux : ∀ {n T Γ} → n ↦ T ∈ Γ → ∀ {U Γ′} → T ≡ ⟨A: ⊥ ⋯ U ⟩ → Γ ≡ ⟪ Γ′ ⟫ → ∃ λ U′ → U ≡ ⟦ U′ ⟧ × n <: U′ ∈ Γ′ aux hd {_} {[]} eqT () aux hd {_} {T ∷ Γ′} refl refl rewrite ⟦⟧-↑-comm T 0 = T ⇑ zero , refl , hd aux (tl T∈Γ) {_} {[]} eqT () aux (tl {T = ⊤} T∈Γ) {_} {_ ∷ Γ′} () refl aux (tl {T = ⊥} T∈Γ) {_} {_ ∷ Γ′} () refl aux (tl {T = n ∙A} T∈Γ) {_} {_ ∷ Γ′} () refl aux (tl {T = Π S ∙ U} T∈Γ) {_} {_ ∷ Γ′} () refl aux (tl {T = ⟨A: ⊤ ⋯ U ⟩} T∈Γ) {_} {_ ∷ Γ′} () refl aux (tl {T = ⟨A: ⊥ ⋯ U ⟩} T∈Γ) {_} {_ ∷ Γ′} refl refl with aux T∈Γ refl refl ... | U′ , refl , U′∈Γ′ rewrite ⟦⟧-↑-comm U′ 0 = U′ ⇑ zero , refl , tl U′∈Γ′ aux (tl {T = ⟨A: _ ∙A ⋯ U ⟩} T∈Γ) {_} {_ ∷ Γ′} () refl aux (tl {T = ⟨A: Π _ ∙ _ ⋯ U ⟩} T∈Γ) {_} {_ ∷ Γ′} () refl aux (tl {T = ⟨A: ⟨A: _ ⋯ _ ⟩ ⋯ U ⟩} T∈Γ) {_} {_ ∷ Γ′} () refl D<:ᵣ⇒F<: : ∀ {Γ′ S′ U′} → Γ′ ⊢ᵣ S′ <: U′ → ∀ {Γ S U} → Γ′ ≡ ⟪ Γ ⟫ → S′ ≡ ⟦ S ⟧ → U′ ≡ ⟦ U ⟧ → Γ ⊢F S <: U D<:ᵣ⇒F<: (drtop S′) {Γ} {S} {⊤} eqΓ eqS refl = ftop D<:ᵣ⇒F<: (drtop S′) {Γ} {S} {var x} eqΓ eqS () D<:ᵣ⇒F<: (drtop S′) {Γ} {S} {Π<: U ∙ U₁} eqΓ eqS () D<:ᵣ⇒F<: (drrefl S′) {Γ} {S} {U} eqΓ eqS eqU rewrite ⟦⟧-injective (≡.trans (sym eqS) eqU) = <:-refl Γ U D<:ᵣ⇒F<: (drall cS cU cS′ cU′ S′<:S U<:U′) {Γ} {⊤} {⊤} eqΓ () eqU D<:ᵣ⇒F<: (drall cS cU cS′ cU′ S′<:S U<:U′) {Γ} {⊤} {var x} eqΓ () eqU D<:ᵣ⇒F<: (drall cS cU cS′ cU′ S′<:S U<:U′) {Γ} {⊤} {Π<: U ∙ U₁} eqΓ () eqU D<:ᵣ⇒F<: (drall cS cU cS′ cU′ S′<:S U<:U′) {Γ} {var _} {⊤} eqΓ () eqU D<:ᵣ⇒F<: (drall cS cU cS′ cU′ S′<:S U<:U′) {Γ} {var _} {var _} eqΓ () eqU D<:ᵣ⇒F<: (drall cS cU cS′ cU′ S′<:S U<:U′) {Γ} {var _} {Π<: _ ∙ _} eqΓ () eqU D<:ᵣ⇒F<: (drall cS cU cS′ cU′ S′<:S U<:U′) {Γ} {Π<: _ ∙ _} {⊤} eqΓ refl () D<:ᵣ⇒F<: (drall cS cU cS′ cU′ S′<:S U<:U′) {Γ} {Π<: _ ∙ _} {var _} eqΓ refl () D<:ᵣ⇒F<: (drall cS cU cS′ cU′ S′<:S U<:U′) {Γ} {Π<: S ∙ U} {Π<: S′ ∙ U′} eqΓ refl refl = fall (D<:ᵣ⇒F<: S′<:S eqΓ refl refl) (D<:ᵣ⇒F<: U<:U′ (cong (⟨A: ⊥ ⋯ ⟦ S′ ⟧ ⟩ ∷_) eqΓ) refl refl) D<:ᵣ⇒F<: (drsel T∈Γ cT S<:U) {Γ} {⊤} {U} eqΓ () eqU D<:ᵣ⇒F<: (drsel T∈Γ cT S<:U) {Γ} {var x} {U} eqΓ refl eqU with env-lookup⇒<:∈ T∈Γ eqΓ ... | U′ , eqU′ , T′∈Γ = fbinds T′∈Γ (D<:ᵣ⇒F<: S<:U eqΓ eqU′ eqU) D<:ᵣ⇒F<: (drsel T∈Γ cT S<:U) {Γ} {Π<: _ ∙ _} {U} eqΓ () eqU
{ "alphanum_fraction": 0.4192123666, "avg_line_length": 38.8142857143, "ext": "agda", "hexsha": "0d35553d0482701a9edefe10d648a7c06d7373df", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "48214a55ebb484fd06307df4320813d4a002535b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "HuStmpHrrr/popl20-artifact", "max_forks_repo_path": "agda/DsubReduced.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "48214a55ebb484fd06307df4320813d4a002535b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "HuStmpHrrr/popl20-artifact", "max_issues_repo_path": "agda/DsubReduced.agda", "max_line_length": 111, "max_stars_count": 1, "max_stars_repo_head_hexsha": "48214a55ebb484fd06307df4320813d4a002535b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "HuStmpHrrr/popl20-artifact", "max_stars_repo_path": "agda/DsubReduced.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-23T08:40:28.000Z", "max_stars_repo_stars_event_min_datetime": "2021-09-23T08:40:28.000Z", "num_tokens": 4529, "size": 8151 }
{-# OPTIONS --safe #-} module Cubical.Data.List.FinData where open import Cubical.Foundations.Prelude open import Cubical.Data.List open import Cubical.Data.FinData variable ℓ : Level A : Type ℓ -- copy-paste from agda-stdlib lookup : ∀ (xs : List A) → Fin (length xs) → A lookup (x ∷ xs) zero = x lookup (x ∷ xs) (suc i) = lookup xs i
{ "alphanum_fraction": 0.6820809249, "avg_line_length": 21.625, "ext": "agda", "hexsha": "38820211215289f92bffeb663c691f961d4b1369", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Data/List/FinData.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Data/List/FinData.agda", "max_line_length": 46, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Data/List/FinData.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 113, "size": 346 }
-- Minimal implicational modal logic, PHOAS approach, final encoding module Pf.BoxMp where open import Lib using (Nat; suc) -- Types infixr 0 _=>_ data Ty : Set where UNIT : Ty _=>_ : Ty -> Ty -> Ty BOX : Ty -> Ty -- Context and truth judgement with modal depth Cx : Set1 Cx = Ty -> Nat -> Set isTrue : Ty -> Nat -> Cx -> Set isTrue a d tc = tc a d -- Terms TmRepr : Set1 TmRepr = Nat -> Cx -> Ty -> Set module ArrMp where record Tm (tr : TmRepr) : Set1 where infixl 1 _$_ field var : forall {d tc a} -> isTrue a d tc -> tr d tc a lam' : forall {d tc a b} -> (isTrue a d tc -> tr d tc b) -> tr d tc (a => b) _$_ : forall {d tc a b} -> tr d tc (a => b) -> tr d tc a -> tr d tc b lam'' : forall {d tc a b} -> (tr d tc a -> tr d tc b) -> tr d tc (a => b) lam'' f = lam' \x -> f (var x) syntax lam'' (\a -> b) = lam a => b open Tm {{...}} public module BoxMp where record Tm (tr : TmRepr) : Set1 where field box : forall {d tc a} -> tr (suc d) tc a -> tr d tc (BOX a) unbox' : forall {d >d tc a b} -> tr d tc (BOX a) -> (isTrue a >d tc -> tr d tc b) -> tr d tc b isArrMp : ArrMp.Tm tr open ArrMp.Tm isArrMp public unbox'' : forall {d >d tc a b} -> tr d tc (BOX a) -> (tr >d tc a -> tr d tc b) -> tr d tc b unbox'' x' f = unbox' x' \x -> f (var x) syntax unbox'' x' (\x -> y) = unbox x' as x => y open Tm {{...}} public Thm : Ty -> Set1 Thm a = forall {tr d tc} {{_ : Tm tr}} -> tr d tc a open BoxMp public -- Example theorems rNec : forall {a} -> Thm a -> Thm (BOX a) rNec x = box x aK : forall {a b} -> Thm (BOX (a => b) => BOX a => BOX b) aK = lam f' => lam x' => unbox f' as f => unbox x' as x => box (f $ x) aT : forall {a} -> Thm (BOX a => a) aT = lam x' => unbox x' as x => x a4 : forall {a} -> Thm (BOX a => BOX (BOX a)) a4 = lam x' => unbox x' as x => box (box x) t1 : forall {a} -> Thm (a => BOX (a => a)) t1 = lam _ => box (lam y => y)
{ "alphanum_fraction": 0.4927395934, "avg_line_length": 22.4565217391, "ext": "agda", "hexsha": "b471dbd66bed8a75646de20157efe49d4f80cdfd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/formal-logic", "max_forks_repo_path": "src/Pf/BoxMp.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/formal-logic", "max_issues_repo_path": "src/Pf/BoxMp.agda", "max_line_length": 100, "max_stars_count": 26, "max_stars_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/formal-logic", "max_stars_repo_path": "src/Pf/BoxMp.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-13T12:37:44.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-31T09:49:52.000Z", "num_tokens": 787, "size": 2066 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Equivalence closures of binary relations -- -- This module is DEPRECATED. Please use the -- Relation.Binary.Construct.Closure.Equivalence module directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Binary.EquivalenceClosure where open import Relation.Binary.Construct.Closure.Equivalence public
{ "alphanum_fraction": 0.546201232, "avg_line_length": 32.4666666667, "ext": "agda", "hexsha": "c76a60199d8aaddcd62d8479fdc47a385a946ffa", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/EquivalenceClosure.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/EquivalenceClosure.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/EquivalenceClosure.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 75, "size": 487 }
module Examples where open import Prelude open import T ---- some example programs -- boy, de bruijn indexes are unreadable w = weaken-closed one : TNat one = suc zero two = suc one three = suc two t-plus : TCExp (nat ⇒ nat ⇒ nat) t-plus = Λ (Λ (rec (var (S Z)) (var Z) (suc (var Z)))) t-compose : ∀{A B C} → TCExp ((A ⇒ B) ⇒ (C ⇒ A) ⇒ (C ⇒ B)) t-compose = Λ (Λ (Λ (var (S (S Z)) $ ((var (S Z)) $ (var Z))))) t-id : ∀{A} → TCExp (A ⇒ A) t-id = Λ (var Z) t-iterate : ∀{A} → TCExp (nat ⇒ (A ⇒ A) ⇒ (A ⇒ A)) t-iterate = Λ (Λ (rec (var (S Z)) (w t-id) (w t-compose $ var (S Z) $ var Z))) t-ack : TCExp (nat ⇒ nat ⇒ nat) t-ack = Λ (rec (var Z) (Λ (suc (var Z))) (Λ (w t-iterate $ var Z $ var (S Z) $ (var (S Z) $ w one)))) ack-test : TNat ack-test = t-ack $ two $ two plus-test : TNat plus-test = t-plus $ two $ two
{ "alphanum_fraction": 0.5266272189, "avg_line_length": 28.1666666667, "ext": "agda", "hexsha": "c99c378ec9eb7e901b75adfa8ae16d821e6f62ca", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-05-04T22:37:18.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-26T11:39:14.000Z", "max_forks_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "msullivan/godels-t", "max_forks_repo_path": "Examples.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "msullivan/godels-t", "max_issues_repo_path": "Examples.agda", "max_line_length": 72, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "msullivan/godels-t", "max_stars_repo_path": "Examples.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-22T00:28:03.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-25T01:52:57.000Z", "num_tokens": 337, "size": 845 }
open import Prelude open import Nat open import List module contexts where -- helper function diff-1 : ∀{n m} → n < m → Nat diff-1 n<m = difference (n<m→1+n≤m n<m) ---- the core declarations ---- -- TODO move definitions _ctx : Set → Set A ctx = List (Nat ∧ A) -- nil context ∅ : {A : Set} → A ctx ∅ = [] -- singleton context ■_ : {A : Set} → (Nat ∧ A) → A ctx ■_ (x , a) = (x , a) :: [] infixr 100 ■_ -- context extension/insertion - never use _::_ _,,_ : ∀{A} → A ctx → (Nat ∧ A) → A ctx [] ,, (x , a) = ■ (x , a) ((hx , ha) :: t) ,, (x , a) with <dec x hx ... | Inl x<hx = (x , a) :: ((diff-1 x<hx , ha) :: t) ... | Inr (Inl refl) = (x , a) :: t ... | Inr (Inr hx<x) = (hx , ha) :: (t ,, (diff-1 hx<x , a)) infixl 10 _,,_ -- membership, or presence, in a context data _∈_ : {A : Set} (p : Nat ∧ A) → (Γ : A ctx) → Set where InH : {A : Set} {Γ : A ctx} {x : Nat} {a : A} → (x , a) ∈ ((x , a) :: Γ) InT : {A : Set} {Γ : A ctx} {x s : Nat} {a a' : A} → (x , a) ∈ Γ → ((x + 1+ s , a)) ∈ ((s , a') :: Γ) -- the domain of a context dom : {A : Set} → A ctx → Nat → Set dom {A} Γ x = Σ[ a ∈ A ] ((x , a) ∈ Γ) -- apartness for contexts _#_ : {A : Set} (n : Nat) → (Γ : A ctx) → Set x # Γ = dom Γ x → ⊥ _##_ : {A : Set} → A ctx → A ctx → Set Γ1 ## Γ2 = (x : Nat) → dom Γ1 x → x # Γ2 _≈_ : {A : Set} → A ctx → A ctx → Set _≈_ {A} Γ1 Γ2 = (x : Nat) (a1 a2 : A) → (x , a1) ∈ Γ1 ∧ (x , a2) ∈ Γ2 → a1 == a2 -- TODO theorems and explanation ctxmap : {A B : Set} → (A → B) → A ctx → B ctx ctxmap f Γ = map (λ {(hx , ha) → (hx , f ha)}) Γ -- TODO theorems -- returns a list of the values stored in the context ctx⇒values : {A : Set} → A ctx → List A -- TODO theorems -- converts a list of key-value pairs into a context, with later pairs in the list -- overriding bindings definend by previous pairs list⇒ctx : {A : Set} → List (Nat ∧ A) → A ctx -- TODO theorems -- converts a list of key-value pairs into a multi-context, where each value of -- the result is the sublist of values from the former that were mapped to by the -- corresponding key list⇒list-ctx : {A : Set} → List (Nat ∧ A) → (List A) ctx -- union merge A B is the union of A and B, -- with (merge a b) being invoked to handle the mappings they have in common union : {A : Set} → (A → A → A) → A ctx → A ctx → A ctx -- The primary way to test membership is to use _∈_, -- but this can be used in cases where using _∈_ -- would be too verbose or awkward. -- The lookup theorems prove that they are compatible _⦃⦃_⦄⦄ : {A : Set} → A ctx → Nat → Maybe A [] ⦃⦃ x ⦄⦄ = None ((hx , ha) :: t) ⦃⦃ x ⦄⦄ with <dec x hx ... | Inl x<hx = None ... | Inr (Inl refl) = Some ha ... | Inr (Inr hx<x) = t ⦃⦃ diff-1 hx<x ⦄⦄ ---- lemmas ---- undiff-1 : (x s : Nat) → (x<s+1+x : x < s + 1+ x) → s == diff-1 x<s+1+x undiff-1 x s x<s+1+x rewrite n+1+m==1+n+m {s} {x} | ! (m-n==1+m-1+n n≤m+n (n<m→1+n≤m x<s+1+x)) | +comm {s} {x} = ! (n+m-n==m n≤n+m) too-small : {A : Set} {Γ : A ctx} {xl xb : Nat} {a : A} → xl < xb → dom ((xb , a) :: Γ) xl → ⊥ too-small (_ , ne) (_ , InH) = ne refl too-small (x+1+xb≤xb , x+1+xb==xb) (_ , InT _) = x+1+xb==xb (≤antisym x+1+xb≤xb (≤trans (≤1+ ≤refl) n≤m+n)) all-not-none : {A : Set} {Γ : A ctx} {x : Nat} {a : A} → None ≠ (((x , a) :: Γ) ⦃⦃ x ⦄⦄) all-not-none {x = x} rewrite <dec-refl x = λ () all-bindings-==-rec-eq : {A : Set} {Γ1 Γ2 : A ctx} {x : Nat} {a : A} → ((x' : Nat) → ((x , a) :: Γ1) ⦃⦃ x' ⦄⦄ == ((x , a) :: Γ2) ⦃⦃ x' ⦄⦄) → ((x' : Nat) → Γ1 ⦃⦃ x' ⦄⦄ == Γ2 ⦃⦃ x' ⦄⦄) all-bindings-==-rec-eq {x = x} h x' with h (x' + 1+ x) ... | eq with <dec (x' + 1+ x) x ... | Inl x'+1+x<x = abort (<antisym x'+1+x<x (n<m→n<s+m n<1+n)) ... | Inr (Inl x'+1+x==x) = abort ((flip n≠n+1+m) (n+1+m==1+n+m · (+comm {1+ x} · x'+1+x==x))) ... | Inr (Inr x<x'+1+x) rewrite ! (undiff-1 x x' x<x'+1+x) = eq all-bindings-==-rec : {A : Set} {Γ1 Γ2 : A ctx} {x1 x2 : Nat} {a1 a2 : A} → ((x : Nat) → ((x1 , a1) :: Γ1) ⦃⦃ x ⦄⦄ == ((x2 , a2) :: Γ2) ⦃⦃ x ⦄⦄) → ((x : Nat) → Γ1 ⦃⦃ x ⦄⦄ == Γ2 ⦃⦃ x ⦄⦄) all-bindings-==-rec {x1 = x1} {x2} h x with h x1 | h x2 ... | eq1 | eq2 rewrite <dec-refl x1 | <dec-refl x2 with <dec x1 x2 | <dec x2 x1 ... | Inl _ | _ = abort (somenotnone eq1) ... | Inr _ | Inl _ = abort (somenotnone (! eq2)) ... | Inr (Inl refl) | Inr (Inl refl) rewrite someinj eq1 | someinj eq2 = all-bindings-==-rec-eq h x ... | Inr (Inl refl) | Inr (Inr x2<x2) = abort (<antirefl x2<x2) ... | Inr (Inr x2<x2) | Inr (Inl refl) = abort (<antirefl x2<x2) ... | Inr (Inr x2<x1) | Inr (Inr x1<x2) = abort (<antisym x1<x2 x2<x1) ---- core theorems ---- -- lookup is decidable lookup-dec : {A : Set} (Γ : A ctx) (x : Nat) → Σ[ a ∈ A ] (Γ ⦃⦃ x ⦄⦄ == Some a) ∨ Γ ⦃⦃ x ⦄⦄ == None lookup-dec Γ x with Γ ⦃⦃ x ⦄⦄ ... | Some a = Inl (a , refl) ... | None = Inr refl -- The next two theorems show that lookup (_⦃⦃_⦄⦄) is consistent with membership (_∈_) lookup-cons-1 : {A : Set} {Γ : A ctx} {x : Nat} {a : A} → Γ ⦃⦃ x ⦄⦄ == Some a → (x , a) ∈ Γ lookup-cons-1 {Γ = []} () lookup-cons-1 {Γ = (hx , ha) :: t} {x} h with <dec x hx lookup-cons-1 {_} {(hx , ha) :: t} {x} () | Inl _ lookup-cons-1 {_} {(hx , ha) :: t} {.hx} refl | Inr (Inl refl) = InH lookup-cons-1 {_} {(hx , ha) :: t} {x} {a = a} h | Inr (Inr hx<x) = tr (λ y → (y , a) ∈ ((hx , ha) :: t)) (m-n+n==m (n<m→1+n≤m hx<x)) (InT (lookup-cons-1 {Γ = t} h)) lookup-cons-2 : {A : Set} {Γ : A ctx} {x : Nat} {a : A} → (x , a) ∈ Γ → Γ ⦃⦃ x ⦄⦄ == Some a lookup-cons-2 {x = x} InH rewrite <dec-refl x = refl lookup-cons-2 (InT {Γ = Γ} {x = x} {s} {a} x∈Γ) with <dec (x + 1+ s) s ... | Inl x+1+s<s = abort (<antisym x+1+s<s (n<m→n<s+m n<1+n)) ... | Inr (Inl x+1+s==s) = abort ((flip n≠n+1+m) (n+1+m==1+n+m · (+comm {1+ s} · x+1+s==s))) ... | Inr (Inr s<x+1+s) with lookup-cons-2 x∈Γ ... | h rewrite ! (undiff-1 s x s<x+1+s) = h -- membership (_∈_) respects insertion (_,,_) x,a∈Γ,,x,a : {A : Set} {Γ : A ctx} {x : Nat} {a : A} → (x , a) ∈ (Γ ,, (x , a)) x,a∈Γ,,x,a {Γ = []} {x} {a} = InH x,a∈Γ,,x,a {_} {(hx , ha) :: t} {x} {a} with <dec x hx ... | Inl _ = InH ... | Inr (Inl refl) = InH ... | Inr (Inr hx<x) = tr (λ y → (y , a) ∈ ((hx , ha) :: (t ,, (diff-1 hx<x , a)))) (m-n+n==m (n<m→1+n≤m hx<x)) (InT (x,a∈Γ,,x,a {Γ = t} {diff-1 hx<x} {a})) -- insertion can't generate spurious membership x∈Γ+→x∈Γ : {A : Set} {Γ : A ctx} {x x' : Nat} {a a' : A} → x ≠ x' → (x , a) ∈ (Γ ,, (x' , a')) → (x , a) ∈ Γ x∈Γ+→x∈Γ {Γ = []} x≠x' InH = abort (x≠x' refl) x∈Γ+→x∈Γ {Γ = []} x≠x' (InT ()) x∈Γ+→x∈Γ {Γ = (hx , ha) :: t} {x' = x'} x≠x' x∈Γ+ with <dec x' hx x∈Γ+→x∈Γ {_} {(hx , ha) :: t} {x' = x'} x≠x' InH | Inl x'<hx = abort (x≠x' refl) x∈Γ+→x∈Γ {_} {(hx , ha) :: t} {x' = x'} x≠x' (InT InH) | Inl x'<hx rewrite m-n+n==m (n<m→1+n≤m x'<hx) = InH x∈Γ+→x∈Γ {_} {(hx , ha) :: t} {x' = x'} x≠x' (InT (InT {x = x} x∈Γ+)) | Inl x'<hx rewrite +assc {x} {1+ (diff-1 x'<hx)} {1+ x'} | m-n+n==m (n<m→1+n≤m x'<hx) = InT x∈Γ+ x∈Γ+→x∈Γ {_} {(hx , ha) :: t} {x' = .hx} x≠x' InH | Inr (Inl refl) = abort (x≠x' refl) x∈Γ+→x∈Γ {_} {(hx , ha) :: t} {x' = .hx} x≠x' (InT x∈Γ+) | Inr (Inl refl) = InT x∈Γ+ x∈Γ+→x∈Γ {_} {(hx , ha) :: t} {x' = x'} x≠x' InH | Inr (Inr hx<x') = InH x∈Γ+→x∈Γ {_} {(hx , ha) :: t} {x' = x'} x≠x' (InT x∈Γ+) | Inr (Inr hx<x') = InT (x∈Γ+→x∈Γ (λ where refl → x≠x' (m-n+n==m (n<m→1+n≤m hx<x'))) x∈Γ+) -- insertion respects membership x∈Γ→x∈Γ+ : {A : Set} {Γ : A ctx} {x x' : Nat} {a a' : A} → x ≠ x' → (x , a) ∈ Γ → (x , a) ∈ (Γ ,, (x' , a')) x∈Γ→x∈Γ+ {x = x} {x'} {a} {a'} x≠x' (InH {Γ = Γ'}) with <dec x' x ... | Inl x'<x = tr (λ y → (y , a) ∈ ((x' , a') :: ((diff-1 x'<x , a) :: Γ'))) (m-n+n==m (n<m→1+n≤m x'<x)) (InT InH) ... | Inr (Inl refl) = abort (x≠x' refl) ... | Inr (Inr x<x') = InH x∈Γ→x∈Γ+ {x = .(_ + 1+ _)} {x'} {a} {a'} x≠x' (InT {Γ = Γ} {x} {s} {a' = a''} x∈Γ) with <dec x' s ... | Inl x'<s = tr (λ y → (y , a) ∈ ((x' , a') :: ((diff-1 x'<s , a'') :: Γ))) ((+assc {b = 1+ (diff-1 x'<s)}) · (ap1 (_+_ x) (1+ap (m-n+n==m (n<m→1+n≤m x'<s))))) (InT (InT x∈Γ)) ... | Inr (Inl refl) = InT x∈Γ ... | Inr (Inr s<x') = InT (x∈Γ→x∈Γ+ (λ where refl → x≠x' (m-n+n==m (n<m→1+n≤m s<x'))) x∈Γ) -- Decidability of membership -- This also packages up an appeal to context membership into a form that -- lets us retain more information ctxindirect : {A : Set} (Γ : A ctx) (x : Nat) → dom Γ x ∨ x # Γ ctxindirect [] x = Inr (λ ()) ctxindirect ((hx , ha) :: t) x with <dec x hx ... | Inl x<hx = Inr (too-small x<hx) ... | Inr (Inl refl) = Inl (ha , InH) ... | Inr (Inr hx<x) with ctxindirect t (diff-1 hx<x) ctxindirect ((hx , ha) :: t) x | Inr (Inr hx<x) | Inl (a , rec) = Inl (a , tr (λ y → (y , a) ∈ ((hx , ha) :: t)) (m-n+n==m (n<m→1+n≤m hx<x)) (InT rec)) ctxindirect {A} ((hx , ha) :: t) x | Inr (Inr hx<x) | Inr dne = Inr x∉Γ where x∉Γ : Σ[ a ∈ A ] ((x , a) ∈ ((hx , ha) :: t)) → ⊥ x∉Γ (_ , x∈Γ) with x∈Γ ... | InH = (π2 hx<x) refl ... | InT {x = s} x-hx-1∈t rewrite ! (undiff-1 hx s hx<x) = dne (_ , x-hx-1∈t) -- contexts give at most one binding for each variable ctxunicity : {A : Set} {Γ : A ctx} {x : Nat} {a a' : A} → (x , a) ∈ Γ → (x , a') ∈ Γ → a == a' ctxunicity ah a'h with lookup-cons-2 ah | lookup-cons-2 a'h ... | ah' | a'h' = someinj (! ah' · a'h') -- everything is apart from the nil context x#∅ : {A : Set} {x : Nat} → _#_ {A} x ∅ x#∅ (_ , ()) -- if an index is in the domain of a singleton context, it's the only -- index in the context lem-dom-eq : {A : Set} {a : A} {n m : Nat} → dom (■ (m , a)) n → n == m lem-dom-eq (_ , InH) = refl lem-dom-eq (_ , InT ()) -- If two contexts are semantically equivalent -- (i.e. they represent the same mapping from ids to values), -- then they are physically equal as judged by _==_ ctx-==-eqv : {A : Set} {Γ1 Γ2 : A ctx} → ((x : Nat) → Γ1 ⦃⦃ x ⦄⦄ == Γ2 ⦃⦃ x ⦄⦄) → Γ1 == Γ2 ctx-==-eqv {Γ1 = []} {[]} all-bindings-== = refl ctx-==-eqv {Γ1 = []} {(hx2 , ha2) :: t2} all-bindings-== = abort (all-not-none {Γ = t2} {x = hx2} (all-bindings-== hx2)) ctx-==-eqv {Γ1 = (hx1 , ha1) :: t1} {[]} all-bindings-== = abort (all-not-none {Γ = t1} {x = hx1} (! (all-bindings-== hx1))) ctx-==-eqv {Γ1 = (hx1 , ha1) :: t1} {(hx2 , ha2) :: t2} all-bindings-== rewrite ctx-==-eqv {Γ1 = t1} {t2} (all-bindings-==-rec all-bindings-==) with all-bindings-== hx1 | all-bindings-== hx2 ... | ha1== | ha2== rewrite <dec-refl hx1 | <dec-refl hx2 with <dec hx1 hx2 | <dec hx2 hx1 ... | Inl hx1<hx2 | _ = abort (somenotnone ha1==) ... | Inr (Inl refl) | Inl hx2<hx1 = abort (somenotnone (! ha2==)) ... | Inr (Inr hx2<hx1) | Inl hx2<'hx1 = abort (somenotnone (! ha2==)) ... | Inr (Inl refl) | Inr _ rewrite someinj ha1== = refl ... | Inr (Inr hx2<hx1) | Inr (Inl refl) rewrite someinj ha2== = refl ... | Inr (Inr hx2<hx1) | Inr (Inr hx1<hx2) = abort (<antisym hx1<hx2 hx2<hx1) -- equality of contexts is decidable ctx-==-dec : {A : Set} (Γ1 Γ2 : A ctx) → ((a1 a2 : A) → a1 == a2 ∨ a1 ≠ a2) → Γ1 == Γ2 ∨ Γ1 ≠ Γ2 ctx-==-dec [] [] _ = Inl refl ctx-==-dec [] (_ :: _) _ = Inr (λ ()) ctx-==-dec (_ :: _) [] _ = Inr (λ ()) ctx-==-dec ((hx1 , ha1) :: t1) ((hx2 , ha2) :: t2) A==dec with natEQ hx1 hx2 | A==dec ha1 ha2 | ctx-==-dec t1 t2 A==dec ... | Inl refl | Inl refl | Inl refl = Inl refl ... | Inl refl | Inl refl | Inr ne = Inr λ where refl → ne refl ... | Inl refl | Inr ne | _ = Inr λ where refl → ne refl ... | Inr ne | _ | _ = Inr λ where refl → ne refl -- A useful way to destruct context membership. Never destruct a context via _::_ ctx-split : {A : Set} {Γ : A ctx} {n m : Nat} {an am : A} → (n , an) ∈ (Γ ,, (m , am)) → (n ≠ m ∧ (n , an) ∈ Γ) ∨ (n == m ∧ an == am) ctx-split {Γ = Γ} {n} {m} {an} {am} n∈Γ+ with natEQ n m ... | Inl refl = Inr (refl , ctxunicity n∈Γ+ (x,a∈Γ,,x,a {Γ = Γ})) ... | Inr n≠m = Inl (n≠m , x∈Γ+→x∈Γ n≠m n∈Γ+) -- I'd say "God dammit agda" but AFAICT Coq is terrible about this as well lemma-bullshit : {A : Set} (Γ' : A ctx) (a : A) (n m : Nat) → Σ[ Γ ∈ A ctx ] (Γ == (n + 1+ m , a) :: Γ') lemma-bullshit Γ' a n m = ((n + 1+ m , a) :: Γ') , refl -- Allows the elimination of contexts. Never destruct a context via _::_ ctx-elim : {A : Set} {Γ : A ctx} → Γ == ∅ ∨ Σ[ n ∈ Nat ] Σ[ a ∈ A ] Σ[ Γ' ∈ A ctx ] (Γ == Γ' ,, (n , a) ∧ n # Γ') ctx-elim {Γ = []} = Inl refl ctx-elim {Γ = (n , a) :: []} = Inr (_ , _ , _ , refl , x#∅) ctx-elim {Γ = (n , a) :: ((m , a2) :: Γ'')} with lemma-bullshit Γ'' a2 m n ... | Γ' , eq = Inr (n , a , Γ' , eqP , not-dom) where eqP : (n , a) :: ((m , a2) :: Γ'') == Γ' ,, (n , a) eqP rewrite eq with <dec n (m + 1+ n) ... | Inl n<m+1+n rewrite ! (undiff-1 n m n<m+1+n) = refl ... | Inr (Inl n==m+1+n) = abort (n≠n+1+m (n==m+1+n · (n+1+m==1+n+m · +comm {1+ m}))) ... | Inr (Inr m+1+n<n) = abort (<antisym m+1+n<n (n<m→n<s+m n<1+n)) not-dom : dom Γ' n → ⊥ not-dom rewrite eq = λ n∈Γ' → too-small (n<m→n<s+m n<1+n) n∈Γ' -- When using ctx-elim, this theorem is useful for establishing termination ctx-decreasing : {A : Set} {Γ : A ctx} {n : Nat} {a : A} → n # Γ → ∥ Γ ,, (n , a) ∥ == 1+ ∥ Γ ∥ ctx-decreasing {Γ = []} n#Γ = refl ctx-decreasing {Γ = (n' , a') :: Γ} {n} n#Γ with <dec n n' ... | Inl n<n' = refl ... | Inr (Inl refl) = abort (n#Γ (_ , InH)) ... | Inr (Inr n'<n) = 1+ap (ctx-decreasing λ {(a , diff∈Γ) → n#Γ (a , tr (λ y → (y , a) ∈ ((n' , a') :: Γ)) (m-n+n==m (n<m→1+n≤m n'<n)) (InT diff∈Γ))}) ---- contrapositives of some previous theorems ---- lem-neq-apart : {A : Set} {a : A} {n m : Nat} → n ≠ m → n # (■ (m , a)) lem-neq-apart n≠m h = n≠m (lem-dom-eq h) x#Γ→x#Γ+ : {A : Set} {Γ : A ctx} {x x' : Nat} {a' : A} → x ≠ x' → x # Γ → x # (Γ ,, (x' , a')) x#Γ→x#Γ+ {Γ = Γ} {x} {x'} {a'} x≠x' x#Γ with ctxindirect (Γ ,, (x' , a')) x ... | Inl (_ , x∈Γ+) = abort (x#Γ (_ , x∈Γ+→x∈Γ x≠x' x∈Γ+)) ... | Inr x#Γ+ = x#Γ+ x#Γ+→x#Γ : {A : Set} {Γ : A ctx} {x x' : Nat} {a' : A} → x # (Γ ,, (x' , a')) → x # Γ x#Γ+→x#Γ {Γ = Γ} {x} {x'} {a'} x#Γ+ with ctxindirect Γ x ... | Inr x#Γ = x#Γ ... | Inl (_ , x∈Γ) with natEQ x x' ... | Inl refl = abort (x#Γ+ (_ , x,a∈Γ,,x,a {Γ = Γ})) ... | Inr x≠x' = abort (x#Γ+ (_ , x∈Γ→x∈Γ+ x≠x' x∈Γ)) lookup-cp-1 : {A : Set} {Γ : A ctx} {x : Nat} → x # Γ → Γ ⦃⦃ x ⦄⦄ == None lookup-cp-1 {Γ = Γ} {x} x#Γ with lookup-dec Γ x ... | Inl (_ , x∈Γ) = abort (x#Γ (_ , (lookup-cons-1 x∈Γ))) ... | Inr x#'Γ = x#'Γ lookup-cp-2 : {A : Set} {Γ : A ctx} {x : Nat} → Γ ⦃⦃ x ⦄⦄ == None → x # Γ lookup-cp-2 {Γ = Γ} {x} x#Γ with ctxindirect Γ x ... | Inl (_ , x∈Γ) = abort (somenotnone ((! (lookup-cons-2 x∈Γ)) · x#Γ)) ... | Inr x#'Γ = x#'Γ ---- some definitions ---- merge' : {A : Set} → (A → A → A) → Maybe A → A → A merge' merge ma1 a2 with ma1 ... | None = a2 ... | Some a1 = merge a1 a2 union' : {A : Set} → (A → A → A) → A ctx → A ctx → Nat → A ctx union' merge Γ1 [] _ = Γ1 union' merge Γ1 ((hx , ha) :: Γ2) offset = union' merge (Γ1 ,, (hx + offset , merge' merge (Γ1 ⦃⦃ hx + offset ⦄⦄) ha)) Γ2 (1+ hx + offset) union merge Γ1 Γ2 = union' merge Γ1 Γ2 0 ---- union theorems ---- lemma-math' : ∀{x x1 n} → x ≠ x1 + (n + 1+ x) lemma-math' {x} {x1} {n} rewrite ! (+assc {x1} {n} {1+ x}) | n+1+m==1+n+m {x1 + n} {x} | +comm {1+ x1 + n} {x} = n≠n+1+m lemma-union'-0 : {A : Set} {m : A → A → A} {Γ1 Γ2 : A ctx} {x n : Nat} {a : A} → (x , a) ∈ Γ1 → (x , a) ∈ union' m Γ1 Γ2 (n + 1+ x) lemma-union'-0 {Γ2 = []} x∈Γ1 = x∈Γ1 lemma-union'-0 {Γ2 = (x1 , a1) :: Γ2} {x} {n} x∈Γ1 rewrite ! (+assc {1+ x1} {n} {1+ x}) = lemma-union'-0 {Γ2 = Γ2} {n = 1+ x1 + n} (x∈Γ→x∈Γ+ (lemma-math' {x1 = x1} {n}) x∈Γ1) lemma-union'-1 : {A : Set} {m : A → A → A} {Γ1 Γ2 : A ctx} {x n : Nat} {a : A} → (x , a) ∈ Γ1 → (n≤x : n ≤ x) → (difference n≤x) # Γ2 → (x , a) ∈ union' m Γ1 Γ2 n lemma-union'-1 {Γ2 = []} {x} x∈Γ1 n≤x x-n#Γ2 = x∈Γ1 lemma-union'-1 {m = m} {Γ1} {(x1 , a1) :: Γ2} {x} {n} {a} x∈Γ1 n≤x x-n#Γ2 with <dec x (x1 + n) lemma-union'-1 {m = m} {Γ1} {(x1 , a1) :: Γ2} {x} {n} {a} x∈Γ1 n≤x x-n#Γ2 | Inl x<x1+n with Γ1 ⦃⦃ x1 + n ⦄⦄ lemma-union'-1 {m = m} {Γ1} {(x1 , a1) :: Γ2} {x} {n} {a} x∈Γ1 n≤x x-n#Γ2 | Inl x<x1+n | Some a' = tr (λ y → (x , a) ∈ union' m (Γ1 ,, (x1 + n , m a' a1)) Γ2 y) (n+1+m==1+n+m {difference (π1 x<x1+n)} · 1+ap (m-n+n==m (π1 x<x1+n))) (lemma-union'-0 {Γ2 = Γ2} (x∈Γ→x∈Γ+ (π2 x<x1+n) x∈Γ1)) lemma-union'-1 {m = m} {Γ1} {(x1 , a1) :: Γ2} {x} {n} {a} x∈Γ1 n≤x x-n#Γ2 | Inl x<x1+n | None = tr (λ y → (x , a) ∈ union' m (Γ1 ,, (x1 + n , a1)) Γ2 y) (n+1+m==1+n+m {difference (π1 x<x1+n)} · 1+ap (m-n+n==m (π1 x<x1+n))) (lemma-union'-0 {Γ2 = Γ2} (x∈Γ→x∈Γ+ (π2 x<x1+n) x∈Γ1)) lemma-union'-1 {m = m} {Γ1} {(x1 , a1) :: Γ2} {x} {n} {a} x∈Γ1 n≤x x-n#Γ2 | Inr (Inl refl) rewrite +comm {x1} {n} | n+m-n==m n≤x = abort (x-n#Γ2 (_ , InH)) lemma-union'-1 {m = m} {Γ1} {(x1 , a1) :: Γ2} {x} {n} {a} x∈Γ1 n≤x x-n#Γ2 | Inr (Inr x1+n<x) rewrite (! (a+b==c→a==c-b (+assc {diff-1 x1+n<x} · m-n+n==m (n<m→1+n≤m x1+n<x)) n≤x)) = lemma-union'-1 (x∈Γ→x∈Γ+ (flip (π2 x1+n<x)) x∈Γ1) (n<m→1+n≤m x1+n<x) λ {(_ , x-x1-n∈Γ2) → x-n#Γ2 (_ , InT x-x1-n∈Γ2)} lemma-union'-2 : {A : Set} {m : A → A → A} {Γ1 Γ2 : A ctx} {x n : Nat} {a : A} → (x + n) # Γ1 → (x , a) ∈ Γ2 → (x + n , a) ∈ union' m Γ1 Γ2 n lemma-union'-2 {Γ1 = Γ1} x+n#Γ1 (InH {Γ = Γ2}) rewrite lookup-cp-1 x+n#Γ1 = lemma-union'-0 {Γ2 = Γ2} {n = Z} (x,a∈Γ,,x,a {Γ = Γ1}) lemma-union'-2 {Γ1 = Γ1} {n = n} x+n#Γ1 (InT {Γ = Γ2} {x = x} {s} x∈Γ2) rewrite +assc {x} {1+ s} {n} with Γ1 ⦃⦃ s + n ⦄⦄ ... | Some a' = lemma-union'-2 (λ {(_ , x∈Γ1+) → x+n#Γ1 (_ , x∈Γ+→x∈Γ (flip (lemma-math' {x1 = Z})) x∈Γ1+)}) x∈Γ2 ... | None = lemma-union'-2 (λ {(_ , x∈Γ1+) → x+n#Γ1 (_ , x∈Γ+→x∈Γ (flip (lemma-math' {x1 = Z})) x∈Γ1+)}) x∈Γ2 lemma-union'-3 : {A : Set} {m : A → A → A} {Γ1 Γ2 : A ctx} {x n : Nat} {a1 a2 : A} → (x + n , a1) ∈ Γ1 → (x , a2) ∈ Γ2 → (x + n , m a1 a2) ∈ union' m Γ1 Γ2 n lemma-union'-3 {Γ1 = Γ1} x+n∈Γ1 (InH {Γ = Γ2}) rewrite lookup-cons-2 x+n∈Γ1 = lemma-union'-0 {Γ2 = Γ2} {n = Z} (x,a∈Γ,,x,a {Γ = Γ1}) lemma-union'-3 {Γ1 = Γ1} {n = n} x+n∈Γ1 (InT {Γ = Γ2} {x = x} {s} x∈Γ2) rewrite +assc {x} {1+ s} {n} with Γ1 ⦃⦃ s + n ⦄⦄ ... | Some a' = lemma-union'-3 (x∈Γ→x∈Γ+ (flip (lemma-math' {x1 = Z})) x+n∈Γ1) x∈Γ2 ... | None = lemma-union'-3 (x∈Γ→x∈Γ+ (flip (lemma-math' {x1 = Z})) x+n∈Γ1) x∈Γ2 lemma-union'-4 : {A : Set} {m : A → A → A} {Γ1 Γ2 : A ctx} {x n : Nat} → dom (union' m Γ1 Γ2 n) x → dom Γ1 x ∨ (Σ[ s ∈ Nat ] (x == n + s ∧ dom Γ2 s)) lemma-union'-4 {Γ2 = []} x∈un = Inl x∈un lemma-union'-4 {Γ1 = Γ1} {(x1 , a1) :: Γ2} {x} {n} x∈un with lemma-union'-4 {Γ2 = Γ2} x∈un ... | Inr (s , refl , _ , s∈Γ2) rewrite +comm {x1} {n} | ! (n+1+m==1+n+m {n + x1} {s}) | +assc {n} {x1} {1+ s} | +comm {x1} {1+ s} | ! (n+1+m==1+n+m {s} {x1}) = Inr (_ , refl , _ , InT s∈Γ2) ... | Inl (_ , x∈Γ1+) with natEQ x (n + x1) ... | Inl refl = Inr (_ , refl , _ , InH) ... | Inr x≠n+x1 rewrite +comm {x1} {n} = Inl (_ , x∈Γ+→x∈Γ x≠n+x1 x∈Γ1+) x,a∈Γ1→x∉Γ2→x,a∈Γ1∪Γ2 : {A : Set} {m : A → A → A} {Γ1 Γ2 : A ctx} {x : Nat} {a : A} → (x , a) ∈ Γ1 → x # Γ2 → (x , a) ∈ union m Γ1 Γ2 x,a∈Γ1→x∉Γ2→x,a∈Γ1∪Γ2 {Γ2 = Γ2} x∈Γ1 x#Γ2 = lemma-union'-1 x∈Γ1 0≤n (tr (λ y → y # Γ2) (! (n+m-n==m 0≤n)) x#Γ2) x∉Γ1→x,a∈Γ2→x,a∈Γ1∪Γ2 : {A : Set} {m : A → A → A} {Γ1 Γ2 : A ctx} {x : Nat} {a : A} → x # Γ1 → (x , a) ∈ Γ2 → (x , a) ∈ union m Γ1 Γ2 x∉Γ1→x,a∈Γ2→x,a∈Γ1∪Γ2 {Γ1 = Γ1} {x = x} x#Γ1 x∈Γ2 with lemma-union'-2 {n = Z} (tr (λ y → y # Γ1) (! n+Z==n) x#Γ1) x∈Γ2 ... | rslt rewrite n+Z==n {x} = rslt x∈Γ1→x∈Γ2→x∈Γ1∪Γ2 : {A : Set} {m : A → A → A} {Γ1 Γ2 : A ctx} {x : Nat} {a1 a2 : A} → (x , a1) ∈ Γ1 → (x , a2) ∈ Γ2 → (x , m a1 a2) ∈ union m Γ1 Γ2 x∈Γ1→x∈Γ2→x∈Γ1∪Γ2 {Γ1 = Γ1} {Γ2} {x} {a1} x∈Γ1 x∈Γ2 with lemma-union'-3 (tr (λ y → (y , a1) ∈ Γ1) (! n+Z==n) x∈Γ1) x∈Γ2 ... | rslt rewrite n+Z==n {x} = rslt x∈Γ1∪Γ2→x∈Γ1∨x∈Γ2 : {A : Set} {m : A → A → A} {Γ1 Γ2 : A ctx} {x : Nat} → dom (union m Γ1 Γ2) x → dom Γ1 x ∨ dom Γ2 x x∈Γ1∪Γ2→x∈Γ1∨x∈Γ2 x∈Γ1∪Γ2 with lemma-union'-4 {n = Z} x∈Γ1∪Γ2 x∈Γ1∪Γ2→x∈Γ1∨x∈Γ2 x∈Γ1∪Γ2 | Inl x'∈Γ1 = Inl x'∈Γ1 x∈Γ1∪Γ2→x∈Γ1∨x∈Γ2 x∈Γ1∪Γ2 | Inr (_ , refl , x'∈Γ2) = Inr x'∈Γ2 ---- contraction and exchange ---- -- TODO these proofs could use refactoring - -- contraction should probably make use of ctx-==-dec and -- exchange is way too long and repetitive contraction : {A : Set} {Γ : A ctx} {x : Nat} {a a' : A} → Γ ,, (x , a') ,, (x , a) == Γ ,, (x , a) contraction {Γ = []} {x} rewrite <dec-refl x = refl contraction {Γ = (hx , ha) :: t} {x} {a} {a'} with <dec x hx ... | Inl _ rewrite <dec-refl x = refl ... | Inr (Inl refl) rewrite <dec-refl hx = refl ... | Inr (Inr hx<x) with <dec x hx ... | Inl x<hx = abort (<antisym x<hx hx<x) ... | Inr (Inl refl) = abort (<antirefl hx<x) ... | Inr (Inr hx<'x) rewrite diff-proof-irrelevance (n<m→1+n≤m hx<x) (n<m→1+n≤m hx<'x) | contraction {Γ = t} {diff-1 hx<'x} {a} {a'} = refl exchange : {A : Set} {Γ : A ctx} {x1 x2 : Nat} {a1 a2 : A} → x1 ≠ x2 → Γ ,, (x1 , a1) ,, (x2 , a2) == Γ ,, (x2 , a2) ,, (x1 , a1) exchange {A} {Γ} {x1} {x2} {a1} {a2} x1≠x2 = ctx-==-eqv fun where fun : (x : Nat) → (Γ ,, (x1 , a1) ,, (x2 , a2)) ⦃⦃ x ⦄⦄ == (Γ ,, (x2 , a2) ,, (x1 , a1)) ⦃⦃ x ⦄⦄ fun x with natEQ x x1 | natEQ x x2 | ctxindirect Γ x fun x | Inl refl | Inl refl | _ = abort (x1≠x2 refl) fun x1 | Inl refl | Inr x≠x2 | Inl (_ , x1∈Γ) with x,a∈Γ,,x,a {Γ = Γ} {x1} {a1} ... | x∈Γ+1 with x∈Γ→x∈Γ+ {a' = a2} x≠x2 x∈Γ+1 | x,a∈Γ,,x,a {Γ = Γ ,, (x2 , a2)} {x1} {a1} ... | x∈Γ++1 | x∈Γ++2 rewrite lookup-cons-2 x∈Γ++1 | lookup-cons-2 x∈Γ++2 = refl fun x1 | Inl refl | Inr x≠x2 | Inr x1#Γ with x,a∈Γ,,x,a {Γ = Γ} {x1} {a1} ... | x∈Γ+1 with x∈Γ→x∈Γ+ {a' = a2} x≠x2 x∈Γ+1 | x,a∈Γ,,x,a {Γ = Γ ,, (x2 , a2)} {x1} {a1} ... | x∈Γ++1 | x∈Γ++2 rewrite lookup-cons-2 x∈Γ++1 | lookup-cons-2 x∈Γ++2 = refl fun x2 | Inr x≠x1 | Inl refl | Inl (_ , x2∈Γ) with x,a∈Γ,,x,a {Γ = Γ} {x2} {a2} ... | x∈Γ+2 with x∈Γ→x∈Γ+ {a' = a1} x≠x1 x∈Γ+2 | x,a∈Γ,,x,a {Γ = Γ ,, (x1 , a1)} {x2} {a2} ... | x∈Γ++1 | x∈Γ++2 rewrite lookup-cons-2 x∈Γ++1 | lookup-cons-2 x∈Γ++2 = refl fun x2 | Inr x≠x1 | Inl refl | Inr x2#Γ with x,a∈Γ,,x,a {Γ = Γ} {x2} {a2} ... | x∈Γ+2 with x∈Γ→x∈Γ+ {a' = a1} x≠x1 x∈Γ+2 | x,a∈Γ,,x,a {Γ = Γ ,, (x1 , a1)} {x2} {a2} ... | x∈Γ++1 | x∈Γ++2 rewrite lookup-cons-2 x∈Γ++1 | lookup-cons-2 x∈Γ++2 = refl fun x | Inr x≠x1 | Inr x≠x2 | Inl (_ , x∈Γ) with x∈Γ→x∈Γ+ {a' = a1} x≠x1 x∈Γ | x∈Γ→x∈Γ+ {a' = a2} x≠x2 x∈Γ ... | x∈Γ+1 | x∈Γ+2 with x∈Γ→x∈Γ+ {a' = a2} x≠x2 x∈Γ+1 | x∈Γ→x∈Γ+ {a' = a1} x≠x1 x∈Γ+2 ... | x∈Γ++1 | x∈Γ++2 rewrite lookup-cons-2 x∈Γ++1 | lookup-cons-2 x∈Γ++2 = refl fun x | Inr x≠x1 | Inr x≠x2 | Inr x#Γ with x#Γ→x#Γ+ {a' = a1} x≠x1 x#Γ | x#Γ→x#Γ+ {a' = a2} x≠x2 x#Γ ... | x#Γ+1 | x#Γ+2 with x#Γ→x#Γ+ {a' = a2} x≠x2 x#Γ+1 | x#Γ→x#Γ+ {a' = a1} x≠x1 x#Γ+2 ... | x#Γ++1 | x#Γ++2 rewrite lookup-cp-1 x#Γ++1 | lookup-cp-1 x#Γ++2 = refl ---- remaining function definitions ---- list⇒ctx = foldl _,,_ ∅ list⇒list-ctx {A} l = foldl f ∅ (reverse l) where f : (List A) ctx → Nat ∧ A → (List A) ctx f Γ (n , a) with ctxindirect Γ n ... | Inl (as , n∈Γ) = Γ ,, (n , a :: as) ... | Inr n#Γ = Γ ,, (n , a :: []) ctx⇒values = map π2
{ "alphanum_fraction": 0.4136867832, "avg_line_length": 39.4, "ext": "agda", "hexsha": "f835e7beb35a8276b2c3d427a6f5be202b109789", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnat-myth-", "max_forks_repo_path": "contexts.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnat-myth-", "max_issues_repo_path": "contexts.agda", "max_line_length": 101, "max_stars_count": 1, "max_stars_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnat-myth-", "max_stars_repo_path": "contexts.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-19T23:42:31.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-19T23:42:31.000Z", "num_tokens": 12868, "size": 26595 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.Empty.Base where open import Cubical.Core.Everything data ⊥ : Type₀ where rec : ∀ {ℓ} {A : Type ℓ} → ⊥ → A rec () elim : ∀ {ℓ} {A : ⊥ → Type ℓ} → (x : ⊥) → A x elim ()
{ "alphanum_fraction": 0.5720164609, "avg_line_length": 18.6923076923, "ext": "agda", "hexsha": "43cef061357e8a84fde5deb41f9c263bef3f7bc8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/Data/Empty/Base.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/Data/Empty/Base.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/Data/Empty/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 91, "size": 243 }
open import Stlc hiding (⟹*-Preorder; _⟹*⟪_⟫_; example₀; example₁) open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_; refl) open import Relation.Binary using (Preorder) import Relation.Binary.PreorderReasoning as PreorderReasoning ⟹*-Preorder : Preorder _ _ _ ⟹*-Preorder = record { Carrier = Term ; _≈_ = _≡_ ; _∼_ = _⟹*_ ; isPreorder = record { isEquivalence = P.isEquivalence ; reflexive = λ {refl → ⟨⟩} ; trans = _>>_ } } open PreorderReasoning ⟹*-Preorder using (_IsRelatedTo_; begin_; _∎) renaming (_≈⟨_⟩_ to _≡⟨_⟩_; _∼⟨_⟩_ to _⟹*⟨_⟩_) infixr 2 _⟹*⟪_⟫_ _⟹*⟪_⟫_ : ∀ x {y z} → x ⟹ y → y IsRelatedTo z → x IsRelatedTo z x ⟹*⟪ x⟹y ⟫ yz = x ⟹*⟨ ⟨ x⟹y ⟩ ⟩ yz example₀ : not · true ⟹* false example₀ = begin not · true ⟹*⟪ β⇒ value-true ⟫ if true then false else true ⟹*⟪ β𝔹₁ ⟫ false ∎ example₁ : I² · I · (not · false) ⟹* true example₁ = begin I² · I · (not · false) ⟹*⟪ γ⇒₁ (β⇒ value-λ) ⟫ (λ[ x ∶ 𝔹 ] I · var x) · (not · false) ⟹*⟪ γ⇒₂ value-λ (β⇒ value-false) ⟫ (λ[ x ∶ 𝔹 ] I · var x) · (if false then false else true) ⟹*⟪ γ⇒₂ value-λ β𝔹₂ ⟫ (λ[ x ∶ 𝔹 ] I · var x) · true ⟹*⟪ β⇒ value-true ⟫ I · true ⟹*⟪ β⇒ value-true ⟫ true ∎
{ "alphanum_fraction": 0.5439814815, "avg_line_length": 25.4117647059, "ext": "agda", "hexsha": "beb47e55d7166b67f4def314158c06a700b67447", "lang": "Agda", "max_forks_count": 304, "max_forks_repo_forks_event_max_datetime": "2022-03-28T11:35:02.000Z", "max_forks_repo_forks_event_min_datetime": "2018-07-16T18:24:59.000Z", "max_forks_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "manikdv/plfa.github.io", "max_forks_repo_path": "extra/extra/Preorder.agda", "max_issues_count": 323, "max_issues_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_issues_repo_issues_event_max_datetime": "2022-03-30T07:42:57.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-05T22:34:34.000Z", "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "manikdv/plfa.github.io", "max_issues_repo_path": "extra/extra/Preorder.agda", "max_line_length": 85, "max_stars_count": 1003, "max_stars_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "manikdv/plfa.github.io", "max_stars_repo_path": "extra/extra/Preorder.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-27T07:03:28.000Z", "max_stars_repo_stars_event_min_datetime": "2018-07-05T18:15:14.000Z", "num_tokens": 597, "size": 1296 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Impl.OBM.Rust.RustTypes open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Consensus.Types.EpochIndep open import Util.Prelude module LibraBFT.Impl.OBM.Util where -- To tolerate f failures, cluster must contain at least n ≥ 3f + 1 nodes, -- where n − f nodes form a quorum, assuming 1 vote per node. -- Note: our Haskell implementation and our model of it support non-uniform voting power, -- that is NOT reflected in these functions, but is reflected in functions in ValidatorVerifier. numNodesNeededForNFailures : U64 -> U64 numNodesNeededForNFailures numFaultsAllowed = 3 * numFaultsAllowed + 1 checkBftAndRun : ∀ {names : Set} {b : Set} → U64 → List names → (U64 → List names → b) → Either ErrLog b checkBftAndRun numFailures authors f = if-dec length authors <? numNodesNeededForNFailures numFailures then Left fakeErr --(ErrL [ "checkBftAndRun: not enough authors for given number of failures" -- , show numFailures, show (length authors) ]) else pure (f numFailures authors)
{ "alphanum_fraction": 0.7380597015, "avg_line_length": 44.6666666667, "ext": "agda", "hexsha": "043a388613eb1afe6150280f9ffe73ef73487bec", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/OBM/Util.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/OBM/Util.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/OBM/Util.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 360, "size": 1340 }
module Problem1 where {- If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below 1000. -} open import Data.Nat open import Data.Nat.Divisibility open import Data.Nat.DivMod open import Data.Nat.Properties open import Data.List open import Data.Sum open import Function.Nary.NonDependent using (congₙ) open import Relation.Unary.Properties open import Relation.Binary.PropositionalEquality problem′ : ℕ → ℕ problem′ n = sum (filter ((3 ∣?_) ∪? (5 ∣?_)) (upTo n)) example : ℕ example = problem′ 10 example-correct : example ≡ 23 example-correct = refl -- this is actually quick enough but I'm sure we can do better problem : ℕ problem = problem′ 1000 module Lemmas where import Agda.Builtin.Nat open import Algebra.Definitions open import Data.Bool using (true; false) open import Data.Empty open import Data.List.Properties open import Data.Nat.LCM open import Relation.Nullary open import Relation.Unary -- first definition of triangle numbers. This is easiest to work with triangle : ℕ → ℕ triangle zero = zero triangle n@(suc x) = n + triangle x -- second definition of triangle numbers. This looks pretty but sadly ⌊_/2⌋ -- is O(n) so this works out pretty slow in practice triangle′ : ℕ → ℕ triangle′ n = ⌊ n * suc n /2⌋ -- Identity to do with adding to half something +-⌊n/2⌋ : ∀ m n → m + ⌊ n /2⌋ ≡ ⌊ 2 * m + n /2⌋ +-⌊n/2⌋ zero n = refl +-⌊n/2⌋ (suc m) n = begin suc (m + ⌊ n /2⌋) ≡⟨ cong suc (+-⌊n/2⌋ m n) ⟩ suc ⌊ 2 * m + n /2⌋ ≡⟨ cong (λ x → suc ⌊ m + x + n /2⌋) (+-identityʳ m) ⟩ ⌊ suc (suc m + m) + n /2⌋ ≡˘⟨ cong (λ x → ⌊ suc x + n /2⌋) (+-suc m m) ⟩ ⌊ suc (m + suc m + n) /2⌋ ≡˘⟨ cong (λ x → ⌊ suc (m + suc x + n) /2⌋) (+-identityʳ m) ⟩ ⌊ 2 * suc m + n /2⌋ ∎ where open ≡-Reasoning -- The first two definitions of triangle numbers match! triangle≗triangle′ : triangle ≗ triangle′ triangle≗triangle′ zero = refl triangle≗triangle′ (suc x) = begin triangle (suc x) ≡⟨ cong (suc x +_) (triangle≗triangle′ x) ⟩ suc x + ⌊ x * suc x /2⌋ ≡⟨ +-⌊n/2⌋ (suc x) (x * suc x) ⟩ ⌊ 2 * suc x + x * suc x /2⌋ ≡˘⟨ cong ⌊_/2⌋ (*-distribʳ-+ (suc x) 2 x) ⟩ ⌊ (2 + x) * suc x /2⌋ ≡⟨ cong ⌊_/2⌋ (*-comm (2 + x) _) ⟩ triangle′ (suc x) ∎ where open ≡-Reasoning -- the third and final definition of triangle numbers -- This uses builtin division under the hood which gets compiled to proper -- division operators (I think ultimately GMP integer division) so it's fast triangle″ : ℕ → ℕ triangle″ n = n * suc n / 2 -- halfing is the same as dividing by 2, as you might expect //2 : ∀ n → ⌊ n /2⌋ ≡ n / 2 //2 zero = refl //2 (suc zero) = refl //2 (suc (suc n)) = begin suc ⌊ n /2⌋ ≡⟨ cong suc (//2 n) ⟩ suc (n / 2) ≡˘⟨ +-distrib-/ 2 n (m%n<n n 1) ⟩ suc (suc n) / 2 ∎ where open ≡-Reasoning -- the second and third definitions of triangle numbers also match! triangle′≗triangle″ : triangle′ ≗ triangle″ triangle′≗triangle″ n = //2 _ -- and so the first and thirdd definitions match triangle≗triangle″ : triangle ≗ triangle″ triangle≗triangle″ x = trans (triangle≗triangle′ x) (triangle′≗triangle″ x) -- if we're almost done dividing, we're not going to change the answer foo : ∀ {k m n j} → n ≤ j → Agda.Builtin.Nat.div-helper k m n j ≡ k foo z≤n = refl foo (s≤s p) = foo p -- dividing a small number by a big one gets 0 m<n⇒m/n≡0 : ∀ {m n n≢0} → m < n → (m / n) {n≢0} ≡ 0 m<n⇒m/n≡0 (s≤s p) = foo p -- if i divides both m and n then it divides their difference ∣m∣n⇒∣m∸n : ∀ {i m n} → i ∣ m → i ∣ n → i ∣ m ∸ n ∣m∣n⇒∣m∸n (divides p refl) (divides q refl) = divides (p ∸ q) (sym (*-distribʳ-∸ _ p q)) lemma : {x d : ℕ} → suc d ∣ suc x → suc x / suc d ≡ suc (x / suc d) lemma {x} {zero} p = begin suc x / 1 ≡⟨ n/1≡n (suc x) ⟩ suc x ≡˘⟨ cong suc (n/1≡n x) ⟩ suc (x / 1) ∎ where open ≡-Reasoning lemma {x} {suc d} (divides (suc q) p) = begin suc x / suc (suc d) ≡⟨ cong (_/ suc (suc d)) p ⟩ suc q * suc (suc d) / suc (suc d) ≡⟨ m*n/n≡m (suc q) (suc (suc d)) ⟩ suc q ≡˘⟨ cong suc (m*n/n≡m q (suc (suc d))) ⟩ suc (q * suc (suc d) / suc (suc d)) ≡⟨⟩ suc ((suc q ∸ 1) * suc (suc d) / suc (suc d)) ≡⟨ cong (λ x → suc (x / suc (suc d))) (*-distribʳ-∸ (suc (suc d)) (suc q) 1) ⟩ suc ((suc q * suc (suc d) ∸ 1 * suc (suc d)) / suc (suc d)) ≡⟨ cong (λ x → suc ((suc q * suc (suc d) ∸ x) / suc (suc d))) (*-identityˡ (suc (suc d))) ⟩ suc ((suc q * suc (suc d) ∸ suc (suc d)) / suc (suc d)) ≡˘⟨ cong (λ x → suc ((x ∸ suc (suc d)) / suc (suc d))) p ⟩ suc (0 + (x ∸ suc d) / suc (suc d)) ≡˘⟨ cong (λ n → suc (n + (x ∸ suc d) / suc (suc d))) (m<n⇒m/n≡0 (n<1+n (suc d))) ⟩ suc (suc d / suc (suc d) + (x ∸ suc d) / suc (suc d)) ≡˘⟨ cong suc (+-distrib-/-∣ʳ {suc d} (x ∸ suc d) (∣m∣n⇒∣m∸n (divides (suc q) p) ∣-refl)) ⟩ suc ((suc d + (x ∸ suc d)) / suc (suc d)) ≡˘⟨ cong (λ x → suc (x / suc (suc d))) (+-∸-assoc (suc d) (+-cancelˡ-≤ 1 (≤-trans (≤-trans (≤-reflexive (sym (*-identityˡ (suc (suc d))))) (*-monoˡ-≤ (suc (suc d)) (s≤s {n = q} z≤n))) (≤-reflexive (sym p)))))⟩ suc (((suc d + x) ∸ suc d) / suc (suc d)) ≡⟨ cong (λ x → suc (x / suc (suc d))) (m+n∸m≡n (suc d) x) ⟩ suc (x / suc (suc d)) ∎ where open ≡-Reasoning bar : ∀ {x d} → ¬ (suc (suc d) ∣ suc x) → x % suc (suc d) ≤ d bar {x} {d} ¬p with suc x % suc (suc d) | inspect (λ a → a % suc (suc d)) (suc x) ... | zero | [ p ] = ⊥-elim (¬p (m%n≡0⇒n∣m (suc x) (suc d) p)) ... | suc n | [ p ] = [1+m%d]≤1+n⇒[m%d]≤n x d (suc (suc d)) (≤-trans (s≤s z≤n) (≤-reflexive (sym p))) (+-cancelˡ-≤ 1 (m%n<n (suc x) (suc d))) lemma₂ : {x d : ℕ} → ¬ (suc d ∣ suc x) → suc x / suc d ≡ x / suc d lemma₂ {x} {zero} ¬p = ⊥-elim (¬p (1∣ suc x)) lemma₂ {x} {suc d} ¬p with suc x % suc (suc d) | inspect (λ a → a % suc (suc d)) (suc x) ... | zero | [ p ] = ⊥-elim (¬p (m%n≡0⇒n∣m _ _ p)) ... | suc n | [ p ] = +-distrib-/ 1 x (+-monoʳ-≤ 2 (bar ¬p)) prop : ∀ d l → suc d * triangle (l / suc d) ≡ sum (filter (suc d ∣?_) (downFrom (suc l))) prop d zero = *-zeroʳ d prop d (suc l) with suc d ∣? suc l ... | true because ofʸ p = begin suc d * triangle (suc l / suc d) ≡⟨ cong (λ x → suc d * triangle x) (lemma p) ⟩ suc d * triangle (suc (l / suc d)) ≡⟨ *-distribˡ-+ (suc d) (suc (l / suc d)) (triangle (l / suc d)) ⟩ suc d * (suc (l / suc d)) + suc d * triangle (l / suc d) ≡˘⟨ cong (λ x → suc d * x + suc d * triangle (l / suc d)) (lemma p) ⟩ suc d * (suc l / suc d) + suc d * triangle (l / suc d) ≡⟨ cong (_+ suc d * triangle (l / suc d)) (m*[n/m]≡n p) ⟩ suc l + suc d * triangle (l / suc d) ≡⟨ cong (suc l +_) (prop d l) ⟩ sum (suc l ∷ filter (suc d ∣?_) (downFrom (suc l))) ≡˘⟨ cong sum (filter-accept (suc d ∣?_) p) ⟩ sum (filter (suc d ∣?_) (suc l ∷ downFrom (suc l))) ∎ where open ≡-Reasoning ... | false because ofⁿ ¬p = begin suc d * triangle (suc l / suc d) ≡⟨ cong (λ n → suc d * triangle n) (lemma₂ ¬p) ⟩ suc d * triangle (l / suc d) ≡⟨ prop d l ⟩ sum (filter (suc d ∣?_) (downFrom (suc l))) ≡˘⟨ cong sum (filter-reject (suc d ∣?_) ¬p) ⟩ sum (filter (suc d ∣?_) (suc l ∷ downFrom (suc l))) ∎ where open ≡-Reasoning notLemmaAux : ∀ {A : Set} (∙ : A → A → A) (ε : A) (comm : Commutative _≡_ ∙) (assoc : Associative _≡_ ∙) (n : A) (ns : List A) → foldr ∙ ε (n ∷ ns) ≡ foldr ∙ (∙ n ε) ns notLemmaAux _∙_ ε comm assoc n [] = refl notLemmaAux _∙_ ε comm assoc n (m ∷ ns) = begin n ∙ (m ∙ foldr _∙_ ε ns) ≡˘⟨ assoc n m _ ⟩ (n ∙ m) ∙ foldr _∙_ ε ns ≡⟨ cong (_∙ foldr _∙_ ε ns) (comm n m) ⟩ (m ∙ n) ∙ foldr _∙_ ε ns ≡⟨ assoc m n _ ⟩ m ∙ (n ∙ foldr _∙_ ε ns) ≡⟨ cong (m ∙_) (notLemmaAux _∙_ ε comm assoc n ns) ⟩ m ∙ foldr _∙_ (n ∙ ε) ns ∎ where open ≡-Reasoning foldr-downFrom-insert : ∀ {A : Set} (_∙_ : A → A → A) (ε : A) (f : ℕ → A) (n : ℕ) → foldr _∙_ (f zero ∙ ε) (applyDownFrom (λ x → f (suc x)) n) ≡ foldr _∙_ ε (applyDownFrom f (suc n)) foldr-downFrom-insert _∙_ ε f zero = refl foldr-downFrom-insert _∙_ ε f (suc n) = cong (f (suc n) ∙_) (foldr-downFrom-insert _∙_ ε f n) notLemmaFilterAuxⁿ : ∀ {A : Set} (∙ : A → A → A) (ε : A) {p} {P : Pred A p} (P? : Decidable P) (f : ℕ → A) (n : ℕ) → ¬ P (f 0) → foldr ∙ ε (filter P? (applyDownFrom (λ x → f (suc x)) n)) ≡ foldr ∙ ε (filter P? (applyDownFrom f (suc n))) notLemmaFilterAuxⁿ ∙ ε P? f zero ¬p = cong (foldr ∙ ε) (sym (filter-reject P? ¬p)) notLemmaFilterAuxⁿ ∙ ε P? f (suc n) ¬p with does (P? (f (suc n))) ... | false = notLemmaFilterAuxⁿ ∙ ε P? f n ¬p ... | true = cong (∙ (f (suc n))) (notLemmaFilterAuxⁿ ∙ ε P? f n ¬p) foldr-filter-downFrom-insert : ∀ {A : Set} (_∙_ : A → A → A) (ε : A) {p} {P : Pred A p} (P? : Decidable P) (f : ℕ → A) (n : ℕ) → P (f zero) → foldr _∙_ (f zero ∙ ε) (filter P? (applyDownFrom (λ x → f (suc x)) n)) ≡ foldr _∙_ ε (filter P? (applyDownFrom f (suc n))) foldr-filter-downFrom-insert _∙_ ε P? f zero p = begin f zero ∙ ε ≡˘⟨ cong (foldr _∙_ ε) (filter-accept P? p) ⟩ foldr _∙_ ε (filter P? (f zero ∷ [])) ∎ where open ≡-Reasoning foldr-filter-downFrom-insert _∙_ ε P? f (suc n) p with does (P? (f (suc n))) ... | true = cong (f (suc n) ∙_) (foldr-filter-downFrom-insert _∙_ ε P? f n p) ... | false = foldr-filter-downFrom-insert _∙_ ε P? f n p notLemmaFilter : ∀ {A : Set} (∙ : A → A → A) (ε : A) (comm : Commutative _≡_ ∙) (assoc : Associative _≡_ ∙) {p} {P : Pred A p} (P? : Decidable P) (f : ℕ → A) (n : ℕ) → foldr ∙ ε (filter P? (applyUpTo f n)) ≡ foldr ∙ ε (filter P? (applyDownFrom f n)) notLemmaFilter ∙ ε comm assoc P? f zero = refl notLemmaFilter ∙ ε comm assoc P? f (suc n) with P? (f zero) ... | false because ofⁿ ¬p = begin foldr ∙ ε (filter P? (applyUpTo (λ x → f (suc x)) n)) ≡⟨ notLemmaFilter ∙ ε comm assoc P? (λ x → f (suc x)) n ⟩ foldr ∙ ε (filter P? (applyDownFrom (λ x → f (suc x)) n)) ≡⟨ notLemmaFilterAuxⁿ ∙ ε P? f n ¬p ⟩ foldr ∙ ε (filter P? (applyDownFrom f (suc n))) ∎ where open ≡-Reasoning ... | true because ofʸ p = begin ∙ (f zero) (foldr ∙ ε (filter P? (applyUpTo (λ x → f (suc x)) n))) ≡⟨ notLemmaAux ∙ ε comm assoc (f zero) (filter P? (applyUpTo (λ x → f (suc x)) n)) ⟩ foldr ∙ (∙ (f zero) (ε)) (filter P? (applyUpTo (λ x → f (suc x)) n)) ≡⟨ notLemmaFilter ∙ (∙ (f zero) ε) comm assoc P? (λ x → f (suc x)) n ⟩ foldr ∙ (∙ (f zero) (ε)) (filter P? (applyDownFrom (λ x → f (suc x)) n)) ≡⟨ foldr-filter-downFrom-insert ∙ ε P? f n p ⟩ foldr ∙ ε (filter P? (applyDownFrom f (suc n))) ∎ where open ≡-Reasoning prop′ : ∀ d l → suc d * triangle″ (l / suc d) ≡ sum (filter (suc d ∣?_) (upTo (suc l))) prop′ d l = begin suc d * triangle″ (l / suc d) ≡˘⟨ cong (λ x → suc d * x) (triangle≗triangle″ (l / suc d)) ⟩ suc d * triangle (l / suc d) ≡⟨ prop d l ⟩ sum (filter (suc d ∣?_) (downFrom (suc l))) ≡˘⟨ notLemmaFilter _+_ 0 +-comm +-assoc (suc d ∣?_) (λ x → x) (suc l) ⟩ sum (filter (suc d ∣?_) (upTo (suc l))) ∎ where open ≡-Reasoning recombine-divisors : ∀ d d′ xs → sum (filter (suc d ∣?_) xs) + sum (filter (suc d′ ∣?_) xs) ≡ sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs) + sum (filter (lcm (suc d) (suc d′) ∣?_) xs) recombine-divisors d d′ [] = refl recombine-divisors d d′ (x ∷ xs) with suc d ∣? x | suc d′ ∣? x ... | .true because ofʸ p | .true because ofʸ q = begin sum (filter (suc d ∣?_) (x ∷ xs)) + sum (filter (suc d′ ∣?_) (x ∷ xs)) ≡⟨ cong₂ (λ x y → sum x + sum y) (filter-accept (suc d ∣?_) p) (filter-accept (suc d′ ∣?_) q) ⟩ sum (x ∷ filter (suc d ∣?_) xs) + sum (x ∷ filter (suc d′ ∣?_) xs) ≡⟨⟩ (x + sum (filter (suc d ∣?_) xs)) + (x + sum (filter (suc d′ ∣?_) xs)) ≡⟨ +-assoc x (sum (filter (suc d ∣?_) xs)) _ ⟩ x + (sum (filter (suc d ∣?_) xs) + (x + sum (filter (suc d′ ∣?_) xs))) ≡˘⟨ cong (x +_) (+-assoc (sum (filter (suc d ∣?_) xs)) x _) ⟩ x + ((sum (filter (suc d ∣?_) xs) + x) + sum (filter (suc d′ ∣?_) xs)) ≡⟨ cong (λ n → x + (n + sum (filter (suc d′ ∣?_) xs))) (+-comm _ x) ⟩ x + ((x + sum (filter (suc d ∣?_) xs)) + sum (filter (suc d′ ∣?_) xs)) ≡⟨ cong (x +_) (+-assoc x (sum (filter (suc d ∣?_) xs)) _) ⟩ x + (x + (sum (filter (suc d ∣?_) xs) + sum (filter (suc d′ ∣?_) xs))) ≡˘⟨ +-assoc x x _ ⟩ (x + x) + (sum (filter (suc d ∣?_) xs) + sum (filter (suc d′ ∣?_) xs)) ≡⟨ cong ((x + x) +_) (recombine-divisors d d′ xs) ⟩ (x + x) + (sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs) + sum (filter (lcm (suc d) (suc d′) ∣?_) xs)) ≡⟨ +-assoc x x _ ⟩ x + (x + (sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs) + sum (filter (lcm (suc d) (suc d′) ∣?_) xs))) ≡˘⟨ cong (x +_) (+-assoc x (sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs)) _) ⟩ x + ((x + sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs)) + sum (filter (lcm (suc d) (suc d′) ∣?_) xs)) ≡⟨ cong (λ n → x + (n + sum (filter (lcm (suc d) (suc d′) ∣?_) xs))) (+-comm x _) ⟩ x + ((sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs) + x) + sum (filter (lcm (suc d) (suc d′) ∣?_) xs)) ≡⟨ cong (x +_) (+-assoc (sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs)) x _) ⟩ x + (sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs) + (x + sum (filter (lcm (suc d) (suc d′) ∣?_) xs))) ≡˘⟨ +-assoc x (sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs)) _ ⟩ (x + sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs)) + (x + sum (filter (lcm (suc d) (suc d′) ∣?_) xs)) ≡⟨⟩ sum (x ∷ filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs) + sum (x ∷ filter (lcm (suc d) (suc d′) ∣?_) xs) ≡˘⟨ cong₂ (λ x y → sum x + sum y) (filter-accept ((suc d ∣?_) ∪? (suc d′ ∣?_)) (inj₁ p)) (filter-accept (lcm (suc d) (suc d′) ∣?_) (lcm-least p q))⟩ sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) (x ∷ xs)) + sum (filter (lcm (suc d) (suc d′) ∣?_) (x ∷ xs)) ∎ where open ≡-Reasoning ... | .true because ofʸ p | .false because ofⁿ ¬q = begin sum (filter (suc d ∣?_) (x ∷ xs)) + sum (filter (suc d′ ∣?_) (x ∷ xs)) ≡⟨ cong₂ (λ x y → sum x + sum y) (filter-accept (suc d ∣?_) p) (filter-reject (suc d′ ∣?_) ¬q) ⟩ sum (x ∷ filter (suc d ∣?_) xs) + sum (filter (suc d′ ∣?_) xs) ≡⟨ +-assoc x (sum (filter (suc d ∣?_) xs)) _ ⟩ x + (sum (filter (suc d ∣?_) xs) + sum (filter (suc d′ ∣?_) xs)) ≡⟨ cong (x +_) (recombine-divisors d d′ xs) ⟩ x + (sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs) + sum (filter (lcm (suc d) (suc d′) ∣?_) xs)) ≡˘⟨ +-assoc x (sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs)) _ ⟩ (x + sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs)) + sum (filter (lcm (suc d) (suc d′) ∣?_) xs) ≡˘⟨ cong₂ (λ x y → sum x + sum y) (filter-accept ((suc d ∣?_) ∪? (suc d′ ∣?_)) (inj₁ p)) (filter-reject (lcm (suc d) (suc d′) ∣?_) (λ r → ¬q (∣-trans (n∣lcm[m,n] (suc d) (suc d′)) r))) ⟩ sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) (x ∷ xs)) + sum (filter (lcm (suc d) (suc d′) ∣?_) (x ∷ xs)) ∎ where open ≡-Reasoning ... | .false because ofⁿ ¬p | .true because ofʸ q = begin sum (filter (suc d ∣?_) (x ∷ xs)) + sum (filter (suc d′ ∣?_) (x ∷ xs)) ≡⟨ cong₂ (λ x y → sum x + sum y) (filter-reject (suc d ∣?_) ¬p) (filter-accept (suc d′ ∣?_) q) ⟩ sum (filter (suc d ∣?_) xs) + sum (x ∷ filter (suc d′ ∣?_) xs) ≡˘⟨ +-assoc (sum (filter (suc d ∣?_) xs)) x _ ⟩ (sum (filter (suc d ∣?_) xs) + x) + sum (filter (suc d′ ∣?_) xs) ≡⟨ cong (_+ sum (filter (suc d′ ∣?_) xs)) (+-comm _ x) ⟩ (x + sum (filter (suc d ∣?_) xs)) + sum (filter (suc d′ ∣?_) xs) ≡⟨ +-assoc x (sum (filter (suc d ∣?_) xs)) _ ⟩ x + (sum (filter (suc d ∣?_) xs) + sum (filter (suc d′ ∣?_) xs)) ≡⟨ cong (x +_) (recombine-divisors d d′ xs) ⟩ x + (sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs) + sum (filter (lcm (suc d) (suc d′) ∣?_) xs)) ≡˘⟨ +-assoc x (sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs)) _ ⟩ (x + sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs)) + sum (filter (lcm (suc d) (suc d′) ∣?_) xs) ≡˘⟨ cong₂ (λ x y → sum x + sum y) (filter-accept ((suc d ∣?_) ∪? (suc d′ ∣?_)) (inj₂ q)) (filter-reject (lcm (suc d) (suc d′) ∣?_) λ r → ¬p (∣-trans (m∣lcm[m,n] (suc d) (suc d′)) r)) ⟩ sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) (x ∷ xs)) + sum (filter (lcm (suc d) (suc d′) ∣?_) (x ∷ xs)) ∎ where open ≡-Reasoning ... | .false because ofⁿ ¬p | .false because ofⁿ ¬q = begin sum (filter (suc d ∣?_) (x ∷ xs)) + sum (filter (suc d′ ∣?_) (x ∷ xs)) ≡⟨ cong₂ (λ x y → sum x + sum y) (filter-reject (suc d ∣?_) ¬p) (filter-reject (suc d′ ∣?_) ¬q) ⟩ sum (filter (suc d ∣?_) xs) + sum (filter (suc d′ ∣?_) xs) ≡⟨ recombine-divisors d d′ xs ⟩ sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) xs) + sum (filter (lcm (suc d) (suc d′) ∣?_) xs) ≡˘⟨ cong₂ (λ x y → sum x + sum y) (filter-reject ((suc d ∣?_) ∪? (suc d′ ∣?_)) [ ¬p , ¬q ]) (filter-reject (lcm (suc d) (suc d′) ∣?_) (λ r → ¬p (∣-trans (m∣lcm[m,n] (suc d) (suc d′)) r))) ⟩ sum (filter ((suc d ∣?_) ∪? (suc d′ ∣?_)) (x ∷ xs)) + sum (filter (lcm (suc d) (suc d′) ∣?_) (x ∷ xs)) ∎ where open ≡-Reasoning solution′ : ℕ → ℕ solution′ zero = zero solution′ (suc n) = 3 * Lemmas.triangle″ (n / 3) + 5 * Lemmas.triangle″ (n / 5) ∸ 15 * Lemmas.triangle″ (n / 15) solution-correct : problem′ ≗ solution′ solution-correct zero = refl solution-correct (suc n) = begin sum (filter ((3 ∣?_) ∪? (5 ∣?_)) (upTo (suc n))) ≡˘⟨ +-identityʳ _ ⟩ sum (filter ((3 ∣?_) ∪? (5 ∣?_)) (upTo (suc n))) + 0 ≡˘⟨ cong (sum (filter ((3 ∣?_) ∪? (5 ∣?_)) (upTo (suc n))) +_) (n∸n≡0 (sum (filter (15 ∣?_) (upTo (suc n))))) ⟩ sum (filter ((3 ∣?_) ∪? (5 ∣?_)) (upTo (suc n))) + (sum (filter (15 ∣?_) (upTo (suc n))) ∸ sum (filter (15 ∣?_) (upTo (suc n)))) ≡˘⟨ +-∸-assoc (sum (filter ((3 ∣?_) ∪? (5 ∣?_)) (upTo (suc n)))) {sum (filter (15 ∣?_) (upTo (suc n)))} ≤-refl ⟩ (sum (filter ((3 ∣?_) ∪? (5 ∣?_)) (upTo (suc n))) + sum (filter (15 ∣?_) (upTo (suc n)))) ∸ sum (filter (15 ∣?_) (upTo (suc n))) ≡˘⟨ cong (_∸ sum (filter (15 ∣?_) (upTo (suc n)))) (Lemmas.recombine-divisors 2 4 (upTo (suc n))) ⟩ (sum (filter (3 ∣?_) (upTo (suc n))) + sum (filter (5 ∣?_) (upTo (suc n)))) ∸ sum (filter (15 ∣?_) (upTo (suc n))) ≡˘⟨ congₙ 3 (λ x y z → x + y ∸ z) (Lemmas.prop′ 2 n) (Lemmas.prop′ 4 n) (Lemmas.prop′ 14 n) ⟩ (3 * Lemmas.triangle″ (n / 3) + 5 * Lemmas.triangle″ (n / 5)) ∸ 15 * Lemmas.triangle″ (n / 15) ∎ where open ≡-Reasoning solution : ℕ solution = solution′ 1000 -- output the solution open import Data.Nat.Show open import IO import IO.Primitive as Prim main : Prim.IO _ main = run (putStrLn (show solution))
{ "alphanum_fraction": 0.5117905781, "avg_line_length": 61.2694805195, "ext": "agda", "hexsha": "6e7cf4b989edb83c340de1fc57b41be7c65d5d90", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a79ee0ec6de898320a38008bf786714ad551f36e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Taneb/project-euler", "max_forks_repo_path": "Problem1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a79ee0ec6de898320a38008bf786714ad551f36e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Taneb/project-euler", "max_issues_repo_path": "Problem1.agda", "max_line_length": 287, "max_stars_count": 6, "max_stars_repo_head_hexsha": "a79ee0ec6de898320a38008bf786714ad551f36e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Taneb/project-euler", "max_stars_repo_path": "Problem1.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-21T17:13:46.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-02T19:18:26.000Z", "num_tokens": 8791, "size": 18871 }
-- {-# OPTIONS -v tc.cover.splittree:10 -v tc.cc:30 #-} module Issue829 where record ⊤ : Set where constructor tt data ⊥ : Set where postulate P : ⊥ → Set data D : (A : Set) → A → Set where c : ⊥ → (x : ⊤) → D ⊤ x f : {A : Set} {x : A} → D A x → ⊥ f (c () .tt) g : (x : ⊥) → P x g () h : (A : Set) (x : A) (d : D A x) → P (f d) h .⊤ tt (c x .tt) = g x -- Bug.agda:21,21-24 -- Incomplete pattern matching when applying Bug.f -- when checking that the expression g x has type P (f (c x tt)) -- Agda 2.3.2 gives the following more reasonable error message: -- -- Bug.agda:21,21-24 -- x != f (c x tt) of type ⊥ -- when checking that the expression g x has type P (f (c x tt)) -- This regression is caused by the patch "Fixed issue 827 : incomplete -- case tree caused by record pattern translation".
{ "alphanum_fraction": 0.5904059041, "avg_line_length": 22.5833333333, "ext": "agda", "hexsha": "a0e67bbd192bb558320ca44429fd85a6d2353867", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue829.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue829.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue829.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 295, "size": 813 }
-- -- Created by Dependently-Typed Lambda Calculus on 2019-05-15 -- one-linear-layout -- Author: ice10 -- {-# OPTIONS --without-K --safe #-} import Relation.Binary variable A : Set private variable B : Set
{ "alphanum_fraction": 0.6971153846, "avg_line_length": 17.3333333333, "ext": "agda", "hexsha": "86c9e3d9e7deaebef252109fa57ddf24b816d2b2", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-03-12T21:33:35.000Z", "max_forks_repo_forks_event_min_datetime": "2019-10-07T01:38:12.000Z", "max_forks_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "dubinsky/intellij-dtlc", "max_forks_repo_path": "testData/parse/agda/one-linear-layout.agda", "max_issues_count": 16, "max_issues_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be", "max_issues_repo_issues_event_max_datetime": "2021-03-15T17:04:36.000Z", "max_issues_repo_issues_event_min_datetime": "2019-03-30T04:29:32.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "dubinsky/intellij-dtlc", "max_issues_repo_path": "testData/parse/agda/one-linear-layout.agda", "max_line_length": 61, "max_stars_count": 30, "max_stars_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "dubinsky/intellij-dtlc", "max_stars_repo_path": "testData/parse/agda/one-linear-layout.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-29T13:18:34.000Z", "max_stars_repo_stars_event_min_datetime": "2019-05-11T16:26:38.000Z", "num_tokens": 55, "size": 208 }
module Data.Num.Continuous where open import Data.Num.Core open import Data.Num.Maximum open import Data.Num.Bounded open import Data.Num.Next open import Data.Num.Increment open import Data.Nat open import Data.Nat.Properties open import Data.Nat.Properties.Simple open import Data.Nat.Properties.Extra open import Data.Fin as Fin using (Fin; fromℕ≤; inject≤) renaming (zero to z; suc to s) open import Data.Fin.Properties using (toℕ-fromℕ≤; bounded) open import Data.Product open import Function open import Relation.Nullary.Decidable open import Relation.Nullary open import Relation.Nullary.Negation open import Relation.Binary open import Relation.Binary.PropositionalEquality open ≡-Reasoning open ≤-Reasoning renaming (begin_ to start_; _∎ to _□; _≡⟨_⟩_ to _≈⟨_⟩_) open DecTotalOrder decTotalOrder using (reflexive) renaming (refl to ≤-refl) ------------------------------------------------------------------------ Continuous : ∀ b d o → Set Continuous b d o = (xs : Numeral b d o) → Incrementable xs Bounded⇒¬Continuous : ∀ {b d o} → Bounded b d o → ¬ (Continuous b d o) Bounded⇒¬Continuous (xs , max) claim = contradiction (claim xs) (Maximum⇒¬Incrementable xs max) first-endpoint : ∀ b d o → Numeral (suc b) (suc d) o first-endpoint b d o = greatest-digit d ∙ first-endpoint-¬Incrementable : ∀ {b d o} → (proper : 2 ≤ suc (d + o)) → (gapped : Gapped#0 b d o) → ¬ (Incrementable (first-endpoint b d o)) first-endpoint-¬Incrementable {b} {d} {o} proper gapped with nextView (first-endpoint b d o) proper first-endpoint-¬Incrementable proper gapped | Interval b d o ¬greatest = contradiction (greatest-digit-is-the-Greatest d) ¬greatest first-endpoint-¬Incrementable proper gapped | GappedEndpoint b d o greatest _ = GappedEndpoint⇒¬Incrementable (first-endpoint b d o) greatest proper gapped first-endpoint-¬Incrementable proper gapped | UngappedEndpoint b d o greatest ¬gapped = contradiction gapped ¬gapped Gapped#0⇒¬Continuous : ∀ {b d o} → (proper : 2 ≤ suc (d + o)) → (gapped : Gapped#0 b d o) → ¬ (Continuous (suc b) (suc d) o) Gapped#0⇒¬Continuous {b} {d} {o} proper gapped#0 cont = contradiction (cont (first-endpoint b d o)) (first-endpoint-¬Incrementable proper gapped#0) ¬Gapped#0⇒Continuous : ∀ {b d o} → (proper : 2 ≤ suc (d + o)) → (¬gapped : ¬ (Gapped#0 b d o)) → Continuous (suc b) (suc d) o ¬Gapped#0⇒Continuous proper ¬gapped#0 xs with Incrementable? xs ¬Gapped#0⇒Continuous proper ¬gapped#0 xs | yes incr = incr ¬Gapped#0⇒Continuous proper ¬gapped#0 xs | no ¬incr = contradiction (¬Gapped⇒Incrementable xs proper (¬Gapped#0⇒¬Gapped xs proper ¬gapped#0)) ¬incr Continuous-Proper : ∀ b d o → (proper : 2 ≤ suc (d + o)) → Dec (Continuous (suc b) (suc d) o) Continuous-Proper b d o proper with Gapped#0? b d o Continuous-Proper b d o proper | yes gapped#0 = no (Gapped#0⇒¬Continuous proper gapped#0) Continuous-Proper b d o proper | no ¬gapped#0 = yes (¬Gapped#0⇒Continuous proper ¬gapped#0) Continuous? : ∀ b d o → Dec (Continuous b d o) Continuous? b d o with numView b d o Continuous? _ _ _ | NullBase d o = no (Bounded⇒¬Continuous (Bounded-NullBase d o)) Continuous? _ _ _ | NoDigits b o = yes (λ xs → NoDigits-explode xs) Continuous? _ _ _ | AllZeros b = no (Bounded⇒¬Continuous (Bounded-AllZeros b)) Continuous? _ _ _ | Proper b d o proper = Continuous-Proper b d o proper -- Continuous⇒¬Gapped#0 : ∀ {b d o} -- → (cont : True (Continuous? (suc b) (suc d) o)) -- → (proper : suc d + o ≥ 2) -- → ¬ (Gapped#0 b d o) -- Continuous⇒¬Gapped#0 cont proper gapped#0 = contradiction (toWitness cont) (Gapped#0⇒¬Continuous proper gapped#0) -- -- a partial function that only maps ℕ to Continuous Nums -- fromℕ : ∀ {b d o} -- → (True (Continuous? b (suc d) o)) -- → (val : ℕ) -- → (True (o ≤? val)) -- → Numeral b (suc d) o -- fromℕ {o = zero} cont zero o≤n = z ∙ -- fromℕ {o = zero} cont (suc n) o≤n = 1+ cont (fromℕ cont n tt) -- fromℕ {o = suc o} cont zero () -- fromℕ {o = suc o} cont (suc n) o≤n with o ≟ n -- fromℕ {b} {d} {suc o} cont (suc n) o≤n | yes o≡n = z ∙ -- fromℕ {b} {d} {suc o} cont (suc n) o≤n | no o≢n = 1+ cont (fromℕ cont n (fromWitness o<n)) -- where -- o<n : o < n -- o<n = ≤∧≢⇒< (≤-pred (toWitness o≤n)) o≢n 1+ : ∀ {b d o} → {cont : True (Continuous? b d o)} → (xs : Numeral b d o) → Numeral b d o 1+ {cont = cont} xs = proj₁ (toWitness cont xs) 1+-toℕ : ∀ {b d o} → {cont : True (Continuous? b d o)} → (xs : Numeral b d o) → ⟦ 1+ {cont = cont} xs ⟧ ≡ suc ⟦ xs ⟧ 1+-toℕ {cont = cont} xs = proj₂ (toWitness cont xs)
{ "alphanum_fraction": 0.6417974629, "avg_line_length": 37.8130081301, "ext": "agda", "hexsha": "d64533c22c21dcf33194194c26f06068ec7bd0d5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/numeral", "max_forks_repo_path": "Data/Num/Continuous.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/numeral", "max_issues_repo_path": "Data/Num/Continuous.agda", "max_line_length": 116, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/numeral", "max_stars_repo_path": "Data/Num/Continuous.agda", "max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z", "num_tokens": 1628, "size": 4651 }
module FFI.Data.HaskellString where open import Agda.Builtin.String using (String) {-# FOREIGN GHC import qualified Data.String #-} {-# FOREIGN GHC import qualified Data.Text #-} postulate HaskellString : Set {-# COMPILE GHC HaskellString = type Data.String.String #-} postulate pack : HaskellString → String {-# COMPILE GHC pack = Data.Text.pack #-} postulate unpack : String → HaskellString {-# COMPILE GHC unpack = Data.Text.unpack #-}
{ "alphanum_fraction": 0.7348314607, "avg_line_length": 26.1764705882, "ext": "agda", "hexsha": "cb4ace3702e716f4ae3a0ff907f09dad7f8b415b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "XanderYZZ/luau", "max_forks_repo_path": "prototyping/FFI/Data/HaskellString.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "XanderYZZ/luau", "max_issues_repo_path": "prototyping/FFI/Data/HaskellString.agda", "max_line_length": 59, "max_stars_count": 1, "max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "TheGreatSageEqualToHeaven/luau", "max_stars_repo_path": "prototyping/FFI/Data/HaskellString.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z", "num_tokens": 93, "size": 445 }
------------------------------------------------------------------------ -- Definitions of functions that generate list ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --exact-split #-} module Math.Combinatorics.ListFunction where open import Data.List open import Data.List.NonEmpty as NE using (List⁺) open import Data.Nat open import Data.Product as Prod using (_×_; _,_) open import Function open import Relation.Binary.PropositionalEquality hiding ([_]) module _ {a} {A : Set a} where -- applyEach (_+ 10) (upTo 3) -- >>> (10 ∷ 1 ∷ 2 ∷ []) ∷ (0 ∷ 11 ∷ 2 ∷ []) ∷ (0 ∷ 1 ∷ 12 ∷ []) ∷ [] applyEach : (A → A) → List A → List (List A) applyEach f [] = [] applyEach f (x ∷ xs) = (f x ∷ xs) ∷ map (x ∷_) (applyEach f xs) module _ {a} {A : Set a} where -- Combinations -- combinations 2 (upTo 3) -- >>> (0 ∷ 1 ∷ []) ∷ (0 ∷ 2 ∷ []) ∷ -- >>> (0 ∷ 3 ∷ []) ∷ (1 ∷ 2 ∷ []) ∷ (1 ∷ 3 ∷ []) ∷ (2 ∷ 3 ∷ []) ∷ [] combinations : ℕ → List A → List (List A) combinations 0 xs = [ [] ] combinations (suc k) [] = [] combinations (suc k) (x ∷ xs) = map (x ∷_) (combinations k xs) ++ combinations (suc k) xs -- combinationsWithComplement 2 (upTo 2) -- >>> (0 ∷ 1 ∷ [] , 2 ∷ []) ∷ -- >>> (0 ∷ 2 ∷ [] , 1 ∷ []) ∷ (1 ∷ 2 ∷ [] , 0 ∷ []) ∷ [] combinationsWithComplement : ℕ → List A → List (List A × List A) combinationsWithComplement 0 xs = [ [] , xs ] combinationsWithComplement (suc k) [] = [] combinationsWithComplement (suc k) (x ∷ xs) = map (Prod.map₁ (x ∷_)) (combinationsWithComplement k xs) ++ map (Prod.map₂ (x ∷_)) (combinationsWithComplement (suc k) xs) -- split list into two list (include empty list and order is preserved) -- splits₂ (upTo 3) -- >>> ([] , 0 ∷ 1 ∷ 2 ∷ []) ∷ -- >>> (0 ∷ [] , 1 ∷ 2 ∷ []) ∷ -- >>> (0 ∷ 1 ∷ [] , 2 ∷ []) ∷ (0 ∷ 1 ∷ 2 ∷ [] , []) ∷ [] splits₂ : List A → List (List A × List A) splits₂ [] = ([] , []) ∷ [] splits₂ (x ∷ xs) = ([] , x ∷ xs) ∷ map (Prod.map₁ (x ∷_)) (splits₂ xs) splits : ℕ → List A → List (List (List A)) splits 0 xs = [] splits 1 xs = [ xs ∷ [] ] splits (suc (suc k)) xs = concatMap f (splits (suc k) xs) where f : List (List A) → List (List (List A)) f [] = [] f (ys ∷ yss) = map (λ { (as , bs) → as ∷ bs ∷ yss }) (splits₂ ys) splits⁺₂Acc : A → List A → List (List⁺ A × List⁺ A) splits⁺₂Acc x [] = [] splits⁺₂Acc x (y ∷ xs) = (x NE.∷ [] , y NE.∷ xs) ∷ map (Prod.map₁ (x NE.∷⁺_)) (splits⁺₂Acc y xs) -- split list into two list (exclude empty list and order is preserved) splits⁺₂ : List⁺ A → List (List⁺ A × List⁺ A) splits⁺₂ (x NE.∷ xs) = splits⁺₂Acc x xs splits⁺ : ℕ → List⁺ A → List (List (List⁺ A)) splits⁺ 0 xs = [] splits⁺ 1 xs = [ xs ∷ [] ] splits⁺ (suc (suc k)) xs = concatMap f (splits⁺ (suc k) xs) where f : List (List⁺ A) → List (List (List⁺ A)) f [] = [] f (ys ∷ yss) = map (λ { (as , bs) → as ∷ bs ∷ yss }) (splits⁺₂ ys) splits⁺AllAcc : A → List A → List⁺ (List⁺ (List⁺ A)) splits⁺AllAcc x [] = ((x NE.∷ []) NE.∷ []) NE.∷ [] splits⁺AllAcc x (y ∷ xs) = NE.map (λ zs → (x NE.∷ []) NE.∷⁺ zs) yss NE.⁺++⁺ NE.map (λ { (z NE.∷ zs) → (x NE.∷⁺ z) NE.∷ zs} ) yss where yss = splits⁺AllAcc y xs splits⁺All : List⁺ A → List⁺ (List⁺ (List⁺ A)) splits⁺All (x NE.∷ xs) = splits⁺AllAcc x xs -- Partition of set -- Generalization of `combinationsWithComplement` -- partitions 2 (upTo 3) -- >>> ((0 ∷ []) ∷ (1 ∷ 2 ∷ []) ∷ []) ∷ -- >>> ((0 ∷ 1 ∷ []) ∷ (2 ∷ []) ∷ []) ∷ -- >>> ((1 ∷ []) ∷ (0 ∷ 2 ∷ []) ∷ []) ∷ [] partitions : ℕ → List A → List (List (List A)) partitions 0 [] = [ [] ] partitions 0 (x ∷ xs) = [] partitions (suc k) [] = [] partitions (suc k) (x ∷ xs) = map ([ x ] ∷_) (partitions k xs) ++ concatMap (applyEach (x ∷_)) (partitions (suc k) xs) partitionsAll : List A → List (List (List A)) partitionsAll [] = [ [] ] partitionsAll (x ∷ xs) = map ([ x ] ∷_) yss ++ concatMap (applyEach (x ∷_)) yss where yss = partitionsAll xs module _ {a} {A : Set a} where -- insertEverywhere 100 (upTo 2) -- >>> (100 ∷ 0 ∷ 1 ∷ []) ∷ (0 ∷ 100 ∷ 1 ∷ []) ∷ (0 ∷ 1 ∷ 100 ∷ []) ∷ [] insertEverywhere : A → List A → List (List A) insertEverywhere x [] = [ [ x ] ] insertEverywhere x (y ∷ ys) = (x ∷ y ∷ ys) ∷ map (y ∷_) (insertEverywhere x ys) module _ {a} {A : Set a} where -- permutations (upTo 2) -- >>> (0 ∷ 1 ∷ []) ∷ (1 ∷ 0 ∷ []) ∷ [] permutations : List A → List (List A) permutations [] = [ [] ] permutations (x ∷ xs) = concatMap (insertEverywhere x) (permutations xs)
{ "alphanum_fraction": 0.4768876804, "avg_line_length": 38.5564516129, "ext": "agda", "hexsha": "db1158e8d122b90dbc42429e625d296c35268865", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9fafa35c940ff7b893a80120f6a1f22b0a3917b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-combinatorics", "max_forks_repo_path": "Math/Combinatorics/ListFunction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9fafa35c940ff7b893a80120f6a1f22b0a3917b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-combinatorics", "max_issues_repo_path": "Math/Combinatorics/ListFunction.agda", "max_line_length": 81, "max_stars_count": 3, "max_stars_repo_head_hexsha": "9fafa35c940ff7b893a80120f6a1f22b0a3917b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-combinatorics", "max_stars_repo_path": "Math/Combinatorics/ListFunction.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-25T07:25:27.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-25T08:24:15.000Z", "num_tokens": 1859, "size": 4781 }
{-# OPTIONS --cubical --no-import-sorts --safe --experimental-lossy-unification #-} module Cubical.ZCohomology.EilenbergSteenrodZ where open import Cubical.Homotopy.EilenbergSteenrod open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.Groups.Wedge open import Cubical.ZCohomology.Groups.Sn open import Cubical.Relation.Nullary open import Cubical.Data.Nat open import Cubical.Data.Bool open import Cubical.Data.Int open import Cubical.Data.Empty renaming (rec to ⊥-rec) open import Cubical.Data.Unit open import Cubical.Data.Sigma open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.HLevels open import Cubical.Foundations.GroupoidLaws renaming (assoc to assoc∙) open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.HITs.SetTruncation renaming (map to sMap ; rec to sRec ; elim2 to sElim2; elim to sElim ; rec2 to sRec2) open import Cubical.HITs.PropositionalTruncation renaming (map to pMap ; rec to pRec ; elim to pElim ; elim2 to pElim2) open import Cubical.HITs.Truncation renaming (rec to trRec ; map to trMap ; elim to trEilim ; elim2 to trElim2) open import Cubical.HITs.Susp open import Cubical.HITs.Pushout open import Cubical.HITs.Wedge open import Cubical.HITs.Sn open import Cubical.HITs.S1 open import Cubical.Algebra.Group open import Cubical.Algebra.AbGroup open coHomTheory open Iso open IsGroup open GroupStr open GroupIso open GroupHom private suspΩFun' : ∀ {ℓ} {A : Type ℓ} (n : ℕ) (f : A → Path _ (0ₖ _) (0ₖ _)) → Susp A → coHomK (suc n) suspΩFun' n f north = 0ₖ _ suspΩFun' n f south = 0ₖ _ suspΩFun' n f (merid a i) = f a i suspΩFun : ∀ {ℓ} {A : Type ℓ} (n : ℕ) (f : A → coHomK n) → Susp A → coHomK (suc n) suspΩFun n f = suspΩFun' n λ a → Kn→ΩKn+1 n (f a) ≡suspΩFun : ∀ {ℓ} (n : ℕ) (A : Pointed ℓ) (f : Susp (typ A) → coHomK (suc n)) (p : f north ≡ 0ₖ _) → f ≡ suspΩFun' n λ a → sym p ∙∙ (cong f (merid a)) ∙∙ (cong f (sym (merid (pt A))) ∙ p) ≡suspΩFun n s f p i north = p i ≡suspΩFun n s f p i south = (cong f (sym (merid (pt s))) ∙ p) i ≡suspΩFun n s f p i (merid a j) = doubleCompPath-filler (sym p) (cong f (merid a)) (cong f (sym (merid (pt s))) ∙ p) i j -- induction principle for Hⁿ(Susp A) SuspCohomElim : ∀ {ℓ ℓ'} {A : Pointed ℓ} (n : ℕ) {B : coHom (suc n) (Susp (typ A)) → Type ℓ'} → ((x : coHom (suc n) (Susp (typ A))) → isProp (B x)) → ((f : typ A → Path _ (0ₖ _) (0ₖ _)) → f (pt A) ≡ refl → B ∣ suspΩFun' n f ∣₂) → (x : _) → B x SuspCohomElim {A = A} n {B = B} isprop f = coHomPointedElim _ north isprop λ g gid → subst (B ∘ ∣_∣₂) (sym (≡suspΩFun n A g gid)) (f _ ((λ i → (sym gid ∙∙ (λ j → g (merid (pt A) (~ i ∧ j))) ∙∙ ((λ j → g (merid (pt A) (~ i ∧ ~ j))) ∙ gid))) ∙∙ (λ i → (λ j → gid (i ∨ ~ j)) ∙∙ refl ∙∙ lUnit (λ j → gid (i ∨ j)) (~ i)) ∙∙ sym (rUnit refl))) -- (Reduced) cohomology functor coHomFunctor : {ℓ : Level} (n : Int) → Pointed ℓ → AbGroup {ℓ} coHomFunctor (pos n) = coHomRedGroup n coHomFunctor (negsuc n) _ = trivialAbGroup -- Alternative definition with reduced groups replaced by unrecued one for n ≥ 1 coHomFunctor' : {ℓ : Level} (n : Int) → Pointed ℓ → AbGroup {ℓ} coHomFunctor' (pos zero) = coHomFunctor 0 coHomFunctor' (pos (suc n)) A = coHomGroup (suc n) (typ A) coHomFunctor' (negsuc n) = coHomFunctor (negsuc n) coHomFunctor≡coHomFunctor' : ∀ {ℓ} → coHomFunctor {ℓ} ≡ coHomFunctor' coHomFunctor≡coHomFunctor' = funExt λ {(pos zero) → refl ; (pos (suc n)) → funExt λ A → sym (coHomGroup≡coHomRedGroup n A) ; (negsuc n) → refl} -- Ĥ⁰(Susp A) is contractible H0-susp : ∀ {ℓ} {A : Pointed ℓ} → isContr (coHomRed 0 (Susp (typ A) , north)) fst H0-susp = 0ₕ∙ _ snd (H0-susp {A = A}) = sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ {(f , p) → cong ∣_∣₂ (Σ≡Prop (λ _ → isSetInt _ _) (funExt λ {north → sym p ; south → sym p ∙ cong f (merid (pt A)) ; (merid a i) j → isSet→isSet' (isSetInt) (sym p) (sym p ∙ cong f (merid (pt A))) refl (cong f (merid a)) i j}))} -- We need that Hⁿ⁺¹(Susp A) ≃ Hⁿ(A) private suspFunCharacFun : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → ((Susp (typ A)) → coHomK (suc n)) → (typ A → (coHomK n)) suspFunCharacFun {A = A} n f x = ΩKn+1→Kn n (sym (rCancelₖ (suc n) (f north)) ∙∙ cong (λ x → f x -[ (suc n) ]ₖ f north) ((merid x) ∙ sym (merid (pt A))) ∙∙ rCancelₖ (suc n) (f north)) linvLem : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) (f : typ A → Path (coHomK (suc n)) (0ₖ _) (0ₖ _)) (fId : f (pt A) ≡ refl) → (x : _) → suspΩFun n (suspFunCharacFun {A = A} n (suspΩFun' n f)) x ≡ suspΩFun' n f x linvLem n f fId north = refl linvLem n f fId south = refl linvLem {A = A} n f fId (merid x i) j = helper n x f fId j i where helper : (n : ℕ) (a : typ A) (f : typ A → Path (coHomK (suc n)) (0ₖ _) (0ₖ _)) (fId : f (pt A) ≡ refl) → Kn→ΩKn+1 n (suspFunCharacFun {A = A} n (suspΩFun' n f) a) ≡ f a helper zero a f fId = Iso.rightInv (Iso-Kn-ΩKn+1 0) (sym (rCancelₖ _ (0ₖ 1)) ∙∙ cong (λ x → suspΩFun' 0 f x +ₖ 0ₖ 1) (merid a ∙ (sym (merid (pt A)))) ∙∙ rCancelₖ _ (0ₖ 1)) ∙∙ (λ i → sym (transportRefl (λ _ → 0ₖ 1) i) ∙∙ cong (λ x → rUnitₖ 1 (suspΩFun' 0 f x) i) (merid a ∙ (sym (merid (pt A)))) ∙∙ transportRefl (λ _ → 0ₖ 1) i) ∙∙ (λ i → rUnit (congFunct (suspΩFun' 0 f) (merid a) (sym (merid (pt A))) i) (~ i)) ∙∙ cong (λ p → f a ∙ sym p) fId ∙∙ sym (rUnit (f a)) helper (suc n) a f fId = Iso.rightInv (Iso-Kn-ΩKn+1 (suc n)) (sym (rCancelₖ _ (0ₖ (suc (suc n)))) ∙∙ cong (λ x → suspΩFun' (suc n) f x +ₖ 0ₖ (suc (suc n))) (merid a ∙ (sym (merid (pt A)))) ∙∙ rCancelₖ _ (0ₖ (suc (suc n)))) ∙∙ ((λ i → sym (transportRefl (λ _ → 0ₖ (suc (suc n))) i) ∙∙ cong (λ x → rUnitₖ (suc (suc n)) (suspΩFun' (suc n) f x) i) (merid a ∙ (sym (merid (pt A)))) ∙∙ transportRefl (λ _ → 0ₖ (suc (suc n))) i)) ∙∙ (λ i → rUnit (congFunct (suspΩFun' (suc n) f) (merid a) (sym (merid (pt A))) i) (~ i)) ∙∙ cong (λ p → f a ∙ sym p) fId ∙∙ sym (rUnit (f a)) suspFunCharac : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → Iso (coHom (suc (suc n)) (Susp (typ A))) (coHom (suc n) (typ A)) fun (suspFunCharac {A = A} n) = sMap λ f → suspFunCharacFun {A = A} (suc n) f inv (suspFunCharac {A = A} n) = sMap (suspΩFun (suc n)) rightInv (suspFunCharac {A = A} n) = sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) (λ f → trRec (isProp→isOfHLevelSuc n (setTruncIsSet _ _)) (λ fId → cong ∣_∣₂ (funExt λ x → (cong (ΩKn+1→Kn (suc n)) ((λ i → (sym (transportRefl (λ _ → 0ₖ _) i) ∙∙ cong (λ x → suspΩFun (suc n) f x +ₖ 0ₖ _) (merid x ∙ sym (merid (pt A))) ∙∙ transportRefl (λ _ → 0ₖ _) i)) ∙∙ (sym (rUnit (cong (λ x → suspΩFun (suc n) f x +ₖ 0ₖ _) ((merid x) ∙ sym (merid (pt A)))))) ∙∙ (λ i → congFunct (λ x → rUnitₖ _ (suspΩFun (suc n) f x) i) (merid x) (sym (merid (pt A))) i))) ∙∙ ΩKn+1→Kn-hom (suc n) (Kn→ΩKn+1 (suc n) (f x)) (sym (Kn→ΩKn+1 (suc n) (f (pt A)))) ∙∙ cong₂ _+ₖ_ (Iso.leftInv (Iso-Kn-ΩKn+1 (suc n)) (f x)) (cong (λ x → ΩKn+1→Kn (suc n) (sym (Kn→ΩKn+1 (suc n) x))) fId) ∙∙ cong (λ y → f x +ₖ ΩKn+1→Kn (suc n) (sym y)) (Kn→ΩKn+10ₖ (suc n)) ∙∙ cong (f x +ₖ_) (ΩKn+1→Kn-refl (suc n)) ∙ rUnitₖ _ (f x))) (fst (isConnectedPathKn n (f (pt A)) (0ₖ _)))) leftInv (suspFunCharac {A = A} n) = SuspCohomElim {A = A} _ (λ _ → setTruncIsSet _ _) λ f fId → cong ∣_∣₂ (funExt (linvLem (suc n) f fId)) -- We also need that H¹(Susp A) ≃ Ĥ⁰(A) suspFunCharac0 : ∀ {ℓ} {A : Pointed ℓ} → Iso (∥ ((Susp (typ A)) → coHomK 1) ∥₂) ∥ A →∙ (Int , 0) ∥₂ fun (suspFunCharac0 {A = A}) = sMap λ f → suspFunCharacFun {A = A} 0 f , (cong (ΩKn+1→Kn 0) ((λ i → sym (rCancelₖ _ (f north)) ∙∙ cong (λ x → f x -ₖ f north) (rCancel (merid (pt A)) i) ∙∙ rCancelₖ _ (f north)) ∙∙ (doubleCompPath-elim (sym (rCancelₖ _ (f north))) refl (rCancelₖ _ (f north))) ∙∙ (cong (_∙ (rCancelₖ _ (f north))) (sym (rUnit (sym (rCancelₖ _ (f north)))))) ∙ (lCancel (rCancelₖ _ (f north))))) inv suspFunCharac0 = sMap λ f → suspΩFun 0 (fst f) rightInv (suspFunCharac0 {A = A}) = sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ {(f , p) → cong ∣_∣₂ (Σ≡Prop (λ _ → isSetInt _ _) (funExt (λ x → (λ j → transp (λ i → helix (wedgeMapS¹ (intLoop (p j) (~ i)) base)) j ((transport (λ i → helix (trRec isGroupoidS¹ (λ x → x) (rUnitₖ 1 ∣ intLoop (f x) i ∣ j))) (pos 0)))) ∙ windingIntLoop (f x))))} leftInv (suspFunCharac0 {A = A}) = SuspCohomElim {A = A} _ (λ _ → setTruncIsSet _ _) λ f fId → cong ∣_∣₂ (funExt (linvLem 0 f fId)) -- We now prove that the alternative definition of cohomology is a cohomology theory. private -- First, we need to that coHomFunctor' is contravariant theMorph : ∀ {ℓ} (n : Int) {A B : Pointed ℓ} (f : A →∙ B) → AbGroupHom (coHomFunctor' n B) (coHomFunctor' n A) fun (theMorph (pos zero) f) = sMap λ g → (λ x → fst g (fst f x)) , cong (fst g) (snd f) ∙ snd g isHom (theMorph (pos zero) f) = sElim2 (λ _ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ f g → cong ∣_∣₂ (Σ≡Prop (λ _ → isSetInt _ _) refl) theMorph (pos (suc n)) f = coHomMorph _ (fst f) fun (theMorph (negsuc n) f) = idfun _ isHom (theMorph (negsuc n) f) _ _ = refl open coHomTheory isCohomTheoryZ' : ∀ {ℓ} → coHomTheory {ℓ} coHomFunctor' Hmap isCohomTheoryZ' = theMorph -------------------------- Suspension -------------------------- -- existence of suspension isomorphism fst (Suspension isCohomTheoryZ') (pos zero) {A = A} = invGroupEquiv (GrIsoToGrEquiv (Iso+Hom→GrIso (invIso suspFunCharac0) (sElim2 (λ _ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ f g → cong ∣_∣₂ (funExt λ { north → refl ; south → refl ; (merid a i) j → helper a (fst f) (fst g) j i})))) where helper : (a : typ A) (f g : typ A → coHomK 0) → Kn→ΩKn+1 0 (f a +[ 0 ]ₖ g a) ≡ cong₂ _+ₖ_ (Kn→ΩKn+1 0 (f a)) (Kn→ΩKn+1 0 (g a)) helper a f g = Kn→ΩKn+1-hom 0 (f a) (g a) ∙ ∙≡+₁ (Kn→ΩKn+1 _ (f a)) (Kn→ΩKn+1 _ (g a)) fst (Suspension isCohomTheoryZ') (pos (suc n)) {A = A} = invGroupEquiv (GrIsoToGrEquiv (Iso+Hom→GrIso (invIso (suspFunCharac {A = A} n)) (sElim2 (λ _ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ f g → cong ∣_∣₂ (funExt λ { north → refl ; south → refl ; (merid a i) j → helper a f g j i})))) where helper : (a : typ A) (f g : typ A → coHomK (suc n)) → Kn→ΩKn+1 (suc n) (f a +ₖ g a) ≡ cong₂ _+ₖ_ (Kn→ΩKn+1 (suc n) (f a)) (Kn→ΩKn+1 (suc n) (g a)) helper a f g = Kn→ΩKn+1-hom (suc n) (f a) (g a) ∙ ∙≡+₂ n (Kn→ΩKn+1 _ (f a)) (Kn→ΩKn+1 _ (g a)) fst (Suspension isCohomTheoryZ') (negsuc zero) {A = A} = GrIsoToGrEquiv (Iso+Hom→GrIso (isContr→Iso (H0-susp {A = _ , pt A}) isContrUnit*) λ _ _ → refl) fst (Suspension isCohomTheoryZ') (negsuc (suc n)) = idGroupEquiv _ -- naturality of the suspension isomorphism snd (Suspension (isCohomTheoryZ' {ℓ})) (f , p) (pos zero) = funExt (sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ {(f , _) → cong ∣_∣₂ (funExt λ {north → refl ; south → refl ; (merid a i) → refl})}) snd (Suspension (isCohomTheoryZ' {ℓ})) (f , p) (pos (suc n)) = funExt (sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ f → cong ∣_∣₂ (funExt λ {north → refl ; south → refl ; (merid a i) → refl})) snd (Suspension (isCohomTheoryZ' {ℓ})) (f , p) (negsuc zero) = refl snd (Suspension (isCohomTheoryZ' {ℓ})) (f , p) (negsuc (suc n)) = refl -------------------------- Exactness --------------------------- Exactness isCohomTheoryZ' {A = A} {B = B} f n = isoToPath (exactnessIso n f) where exactnessIso : (n : Int) (f : A →∙ B) → Iso (Ker (theMorph n f)) (Im (theMorph n (cfcod (fst f) , refl))) fun (exactnessIso (pos zero) (f , p)) = uncurry (sElim (λ _ → isSetΠ λ _ → isSetΣ setTruncIsSet λ _ → isProp→isSet propTruncIsProp) λ {(g , q) inker → ∣ g , q ∣₂ , pRec propTruncIsProp (λ gId → ∣ ∣ (λ { (inl tt) → 0 ; (inr b) → g b ; (push a i) → funExt⁻ (cong fst gId) a (~ i)}) , q ∣₂ , cong ∣_∣₂ (Σ≡Prop (λ _ → isSetInt _ _) refl) ∣) (Iso.fun PathIdTrunc₀Iso inker)}) inv (exactnessIso (pos zero) (f , p)) = uncurry (sElim (λ _ → isSetΠ λ _ → isSetΣ setTruncIsSet λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ {(g , q) inim' → ∣ g , q ∣₂ , pRec (setTruncIsSet _ _) (uncurry (sElim (λ _ → isSetΠ (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)) (λ pushmap pushId' → pRec (setTruncIsSet _ _) (λ pushId → cong ∣_∣₂ (Σ≡Prop (λ _ → isSetInt _ _) (funExt λ x → sym (funExt⁻ (cong fst pushId) (f x)) ∙∙ cong (fst pushmap) (sym (push x) ∙ push (pt A)) ∙∙ (cong (fst pushmap ∘ inr) p ∙ snd pushmap)))) (Iso.fun PathIdTrunc₀Iso pushId')))) inim'}) rightInv (exactnessIso (pos zero) (f , p)) = uncurry (sElim (λ _ → isSetΠ λ _ → isOfHLevelPath 2 (isSetΣ setTruncIsSet (λ _ → isProp→isSet propTruncIsProp)) _ _) λ {(p , q) _ → Σ≡Prop (λ _ → propTruncIsProp) refl}) leftInv (exactnessIso (pos zero) (f , p)) = uncurry (sElim (λ _ → isSetΠ λ _ → isOfHLevelPath 2 (isSetΣ setTruncIsSet (λ _ → isProp→isSet (setTruncIsSet _ _))) _ _) λ {(p , q) _ → Σ≡Prop (λ _ → setTruncIsSet _ _) refl}) fun (exactnessIso (pos (suc n)) f) ker = (fst ker) , inIm-helper (fst ker) (snd ker) where inIm-helper : (x : coHom (suc n) (typ B)) → isInKer _ _ (theMorph (pos (suc n)) {A = A} {B = B} f) x → isInIm _ _ (theMorph (pos (suc n)) {A = B} {B = _ , inr (pt B)} (cfcod (fst f) , refl)) x inIm-helper = coHomPointedElim _ (pt B) (λ _ → isPropΠ λ _ → propTruncIsProp) λ g gId inker → pRec propTruncIsProp (λ gIdTot → ∣ ∣ (λ { (inl tt) → 0ₖ _ ; (inr b) → g b ; (push a i) → funExt⁻ gIdTot a (~ i)}) ∣₂ , cong ∣_∣₂ (funExt λ b → refl) ∣) (Iso.fun PathIdTrunc₀Iso inker) inv (exactnessIso (pos (suc n)) f) im = fst im , inKer-helper (fst im) (snd im) where inKer-helper : (x : coHom (suc n) (typ B)) → isInIm _ _ (theMorph (pos (suc n)) {A = B} {B = _ , inr (pt B)} (cfcod (fst f) , refl)) x → isInKer _ _ (theMorph (pos (suc n)) {A = A} {B = B} f) x inKer-helper = coHomPointedElim _ (pt B) (λ _ → isPropΠ λ _ → setTruncIsSet _ _) λ g gId → pRec (setTruncIsSet _ _) (uncurry λ cg p → subst (isInKer (coHomGr (suc n) (typ B)) (coHomGr (suc n) (typ A)) (coHomMorph (suc n) (fst f))) p (helper cg)) where helper : (cg : _) → coHomFun (suc n) (fst f) (coHomFun (suc n) (cfcod (fst f)) cg) ≡ 0ₕ _ helper = sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ cg → trRec (isProp→isOfHLevelSuc n (setTruncIsSet _ _)) (λ p → (cong ∣_∣₂ (funExt λ x → cong cg (sym (push x)) ∙ p))) (isConnectedPathKn _ (cg (inl tt)) (0ₖ (suc n)) .fst) rightInv (exactnessIso (pos (suc n)) f) _ = Σ≡Prop (λ _ → propTruncIsProp) refl leftInv (exactnessIso (pos (suc n)) f) _ = Σ≡Prop (λ _ → setTruncIsSet _ _) refl exactnessIso (negsuc n) (f , p) = isContr→Iso ((tt* , refl) , λ {(tt* , p) → Σ≡Prop (λ _ → isOfHLevelPath 1 isPropUnit* _ _) refl}) ((tt* , ∣ tt* , refl ∣) , λ {(tt* , p) → Σ≡Prop (λ _ → propTruncIsProp) refl}) -------------------------- Dimension --------------------------- Dimension isCohomTheoryZ' (pos zero) p = ⊥-rec (p refl) fst (Dimension isCohomTheoryZ' (pos (suc n)) _) = 0ₕ _ snd (Dimension isCohomTheoryZ' (pos (suc n)) _) = sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) (λ f → trRec (isProp→isOfHLevelSuc n (setTruncIsSet _ _)) (λ f-true → trRec (isProp→isOfHLevelSuc n (setTruncIsSet _ _)) (λ f-false → cong ∣_∣₂ (funExt (λ {(lift true) → f-true ; (lift false) → f-false}))) (isConnectedPathKn n (0ₖ _) (f (lift false)) .fst)) (isConnectedPathKn n (0ₖ _) (f (lift true)) .fst)) Dimension isCohomTheoryZ' (negsuc n) _ = isContrUnit* ------------------------ Binary wedges ------------------------- BinaryWedge isCohomTheoryZ' (pos zero) = GrIsoToGrEquiv (H⁰Red-⋁ _ _) BinaryWedge isCohomTheoryZ' (pos (suc n)) = GrIsoToGrEquiv (Hⁿ-⋁ _ _ n) BinaryWedge isCohomTheoryZ' (negsuc n) = GrIsoToGrEquiv (compGroupIso (IsoContrGroupTrivialGroup isContrUnit*) (invGroupIso (IsoContrGroupTrivialGroup (isOfHLevel× 0 isContrUnit* isContrUnit*)))) -- Substituting back for our original theory, we are done isCohomTheoryZ : ∀ {ℓ} → coHomTheory {ℓ} coHomFunctor isCohomTheoryZ = subst coHomTheory (sym coHomFunctor≡coHomFunctor') isCohomTheoryZ'
{ "alphanum_fraction": 0.4565166706, "avg_line_length": 56.2860892388, "ext": "agda", "hexsha": "5b166638eac2843fb32f5afa9d79110d2f51fece", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/ZCohomology/EilenbergSteenrodZ.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/ZCohomology/EilenbergSteenrodZ.agda", "max_line_length": 132, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/ZCohomology/EilenbergSteenrodZ.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7306, "size": 21445 }
module Modal where open import Prelude open import Star data Progress (A : Set) : Set where cont : A -> Progress A stop : Progress A record Some {A : Set}(R : Rel A) : Set where field a : A b : A edge : R a b some : {A : Set}{R : Rel A}{a b : A} -> R a b -> Some R some x = record {a = _; b = _; edge = x} EdgePred : {A : Set} -> Rel A -> Set1 EdgePred R = forall {a b} -> R a b -> Set data PStep {A : Set}{R : Rel A}(P : EdgePred R) : Rel (Progress (Some (Star R))) where step : {a b c : A}{x : R a b}{xs : Star R b c} -> PStep P (cont (some (x • xs))) (cont (some xs)) done : {a b c : A}{x : R a b}{xs : Star R b c} -> P x -> PStep P (cont (some (x • xs))) stop Any : {A : Set}{R : Rel A}(P : EdgePred R) -> EdgePred (Star R) Any P xs = Star (PStep P) (cont (some xs)) stop mapAny : {A₁ A₂ : Set}{R₁ : Rel A₁}{R₂ : Rel A₂} {P₁ : EdgePred R₁}{P₂ : EdgePred R₂}{a b : A₁}{xs : Star R₁ a b} {i : A₁ -> A₂}{f : R₁ =[ i ]=> R₂} -> ({a b : A₁}{x : R₁ a b} -> P₁ x -> P₂ (f x)) -> Any P₁ xs -> Any (\{a b} -> P₂{a}{b}) (map i f xs) mapAny h (step • i) = step • mapAny h i mapAny h (done p • ε) = done (h p) • ε mapAny h (done p • (() • _)) data Check {A : Set}{R : Rel A}(P : EdgePred R) : Rel (Some (Star R)) where check : {a b c : A}{x : R a b}{xs : Star R b c} -> P x -> Check P (some (x • xs)) (some xs) checkedEdge : {A : Set}{R : Rel A}{P : EdgePred R}{xs ys : Some (Star R)} -> Check P xs ys -> Some R checkedEdge (check {x = x} _) = some x uncheck : {X : Set}{R : Rel X}{P : EdgePred R}{xs ys : Some (Star R)} (chk : Check P xs ys) -> P (Some.edge (checkedEdge chk)) uncheck (check p) = p All : {A : Set}{R : Rel A}(P : EdgePred R) -> EdgePred (Star R) All P {a}{b} xs = Star (Check P) (some xs) (some {a = b} ε) data Lookup {A : Set}{R : Rel A}(P Q : EdgePred R) : Set where result : {a b : A} -> (x : R a b) -> P x -> Q x -> Lookup P Q lookup : {A : Set}{R : Rel A}{P Q : EdgePred R}{a b : A}{xs : Star R a b} -> Any P xs -> All Q xs -> Lookup (\{a b} -> P{a}{b}) Q lookup (step • i) (check _ • xs) = lookup i xs lookup (done p • ε) (check q • _ ) = result _ p q lookup (done p • (() • _)) (check q • _ )
{ "alphanum_fraction": 0.4978070175, "avg_line_length": 34.5454545455, "ext": "agda", "hexsha": "67e293ca64efa3d3b4dde991f2dc6c9ebf788c5a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/AIM6/Path/Modal.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/AIM6/Path/Modal.agda", "max_line_length": 76, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/AIM6/Path/Modal.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 874, "size": 2280 }
{-# OPTIONS --without-K --safe #-} module Categories.Utils.Product where open import Level open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂) open import Relation.Binary.PropositionalEquality -- "very dependent" versions of map and zipWith map⁎ : ∀ {a b p q} {A : Set a} {B : A → Set b} {P : A → Set p} {Q : {x : A} → P x → B x → Set q} → (f : (x : A) → B x) → (∀ {x} → (y : P x) → Q y (f x)) → (v : Σ A P) → Σ (B (proj₁ v)) (Q (proj₂ v)) map⁎ f g (x , y) = (f x , g y) map⁎′ : ∀ {a b p q} {A : Set a} {B : A → Set b} {P : Set p} {Q : P → Set q} → (f : (x : A) → B x) → ((x : P) → Q x) → (v : A × P) → B (proj₁ v) × Q (proj₂ v) map⁎′ f g (x , y) = (f x , g y) zipWith : ∀ {a b c p q r s} {A : Set a} {B : Set b} {C : Set c} {P : A → Set p} {Q : B → Set q} {R : C → Set r} {S : (x : C) → R x → Set s} (_∙_ : A → B → C) → (_∘_ : ∀ {x y} → P x → Q y → R (x ∙ y)) → (_*_ : (x : C) → (y : R x) → S x y) → (x : Σ A P) → (y : Σ B Q) → S (proj₁ x ∙ proj₁ y) (proj₂ x ∘ proj₂ y) zipWith _∙_ _∘_ _*_ (a , p) (b , q) = (a ∙ b) * (p ∘ q) syntax zipWith f g h = f -< h >- g
{ "alphanum_fraction": 0.4522706209, "avg_line_length": 56.7894736842, "ext": "agda", "hexsha": "86543bbcbd8256cadfa5d13a278893f72aa6ce65", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Utils/Product.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Utils/Product.agda", "max_line_length": 309, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Utils/Product.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 510, "size": 1079 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.SetoidDiscrete where open import Categories.Category open import Level open import Relation.Binary using (Setoid) open import Function open import Data.Unit {- This is a better version of Discrete, which is more in line with the rest of this library, and makes a Category out of a Setoid. But here we have no choice, and we need to truncate the equivalence. -} Discrete : ∀ {o ℓ e} (A : Setoid o ℓ) → Category o ℓ e Discrete {_} {_} {e} A = record { Obj = Carrier ; _⇒_ = _≈_ ; _≈_ = λ _ _ → Lift e ⊤ ; id = refl ; _∘_ = flip trans } where open Setoid A
{ "alphanum_fraction": 0.6507462687, "avg_line_length": 24.8148148148, "ext": "agda", "hexsha": "419ccf875ae6c67840aee4eaa90dd3108d16e723", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-categories", "max_forks_repo_path": "src/Categories/Category/SetoidDiscrete.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-categories", "max_issues_repo_path": "src/Categories/Category/SetoidDiscrete.agda", "max_line_length": 69, "max_stars_count": 5, "max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bblfish/agda-categories", "max_stars_repo_path": "src/Categories/Category/SetoidDiscrete.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 200, "size": 670 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Sets.EquivalenceRelations open import Setoids.Setoids open import Rings.Definition open import Rings.PrincipalIdealDomains.Definition open import Rings.IntegralDomains.Definition open import Rings.Ideals.Maximal.Definition module Rings.PrincipalIdealDomains.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} (intDom : IntegralDomain R) (pid : {c : _} → PrincipalIdealDomain intDom {c}) where open import Rings.Ideals.Definition R open import Rings.Irreducibles.Definition intDom open import Rings.Ideals.Principal.Definition R open import Rings.Divisible.Definition R open import Rings.Associates.Lemmas intDom open import Rings.Ideals.Lemmas R open import Rings.Units.Definition R open import Rings.Irreducibles.Lemmas intDom open import Rings.Units.Lemmas R open import Rings.Ideals.Prime.Definition {R = R} open import Rings.Ideals.Prime.Lemmas {R = R} open import Rings.Primes.Definition intDom open import Rings.Primes.Lemmas intDom open import Rings.Ideals.Principal.Lemmas R open import Rings.Ideals.Maximal.Lemmas {R = R} open Ring R open Setoid S open Equivalence eq irreducibleImpliesMaximalIdeal : {r : A} → Irreducible r → {d : _} → MaximalIdeal (generatedIdeal r) {d} MaximalIdeal.notContained (irreducibleImpliesMaximalIdeal {r} irred {d}) = 1R MaximalIdeal.notContainedIsNotContained (irreducibleImpliesMaximalIdeal {r} irred {d}) = Irreducible.nonunit irred MaximalIdeal.isMaximal (irreducibleImpliesMaximalIdeal {r} irred {d}) {biggerPred} bigger biggerContains (outsideR , (biggerContainsOutside ,, notInR)) {x} = biggerPrincipal' (unitImpliesGeneratedIdealEverything w {x}) where biggerGen : A biggerGen = PrincipalIdeal.generator (pid bigger) biggerPrincipal : {x : A} → biggerPred x → biggerGen ∣ x biggerPrincipal = PrincipalIdeal.genGenerates (pid bigger) bp : biggerPred biggerGen bp = PrincipalIdeal.genIsInIdeal (pid bigger) biggerPrincipal' : {x : A} → biggerGen ∣ x → biggerPred x biggerPrincipal' {y} bg|y = memberDividesImpliesMember bigger bp bg|y u : biggerGen ∣ r u = biggerPrincipal (biggerContains (1R , transitive *Commutative identIsIdent)) biggerGenNonzero : biggerGen ∼ 0R → False biggerGenNonzero bg=0 = notInR (Ideal.isSubset (generatedIdeal r) (symmetric t) (Ideal.containsIdentity (generatedIdeal r))) where t : outsideR ∼ 0R t with biggerPrincipal {outsideR} biggerContainsOutside ... | mult , pr = transitive (symmetric pr) (transitive (*WellDefined bg=0 reflexive) (transitive *Commutative timesZero)) v : (r ∣ biggerGen) → False v r|bg with mutualDivisionImpliesAssociate r|bg u (Irreducible.nonzero irred) v r|bg | assoc = notInR (associateImpliesGeneratedIdealsEqual' assoc (PrincipalIdeal.genGenerates (pid bigger) biggerContainsOutside)) w : Unit biggerGen w = dividesIrreducibleImpliesUnit irred u v primeIdealIsMaximal : {c : _} {pred : A → Set c} → {i : Ideal pred} → (nonzero : Sg A (λ a → ((a ∼ 0R) → False) && pred a)) → PrimeIdeal i → {d : _} → MaximalIdeal i {d} primeIdealIsMaximal {pred = pred} {i} (m , (m!=0 ,, predM)) prime {d = d} = maximalIdealWellDefined (generatedIdeal (PrincipalIdeal.generator princ)) i (memberDividesImpliesMember i (PrincipalIdeal.genIsInIdeal princ)) (PrincipalIdeal.genGenerates princ) isMaximal where princ : PrincipalIdeal i princ = pid i isPrime : Prime (PrincipalIdeal.generator princ) isPrime = primeIdealImpliesPrime (λ gen=0 → PrimeIdeal.notContainedIsNotContained prime (exFalso (m!=0 (generatorZeroImpliesAllZero princ gen=0 predM)))) (primeIdealWellDefined i (generatedIdeal (PrincipalIdeal.generator princ)) (PrincipalIdeal.genGenerates princ) (memberDividesImpliesMember i (PrincipalIdeal.genIsInIdeal princ)) prime) isIrreducible : Irreducible (PrincipalIdeal.generator princ) isIrreducible = primeIsIrreducible isPrime isMaximal : MaximalIdeal (generatedIdeal (PrincipalIdeal.generator princ)) {d} isMaximal = irreducibleImpliesMaximalIdeal isIrreducible {d} irreducibleImpliesPrime : {x : A} → Irreducible x → Prime x irreducibleImpliesPrime {x} irred = primeIdealImpliesPrime (Irreducible.nonzero irred) (idealMaximalImpliesIdealPrime (generatedIdeal x) (irreducibleImpliesMaximalIdeal irred))
{ "alphanum_fraction": 0.7608497031, "avg_line_length": 59.1621621622, "ext": "agda", "hexsha": "0b2ec2e82730d119bd61fce9af9dabcba8a39833", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/PrincipalIdealDomains/Lemmas.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/PrincipalIdealDomains/Lemmas.agda", "max_line_length": 342, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/PrincipalIdealDomains/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 1264, "size": 4378 }
module x02-842Induction where -- Library import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong; sym) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _≡⟨_⟩_; _∎) open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_) -- PLFA coverage of identity, associativity, commutativity, distributivity. -- An example of the associative law for addition. _ : (3 + 4) + 5 ≡ 3 + (4 + 5) _ = begin (3 + 4) + 5 ≡⟨⟩ 7 + 5 ≡⟨⟩ 12 ≡⟨⟩ 3 + 9 ≡⟨⟩ 3 + (4 + 5) ∎ -- A theorem easy to prove. +-identityᴸ : ∀ (m : ℕ) → zero + m ≡ m +-identityᴸ m = {!!} -- A first nontrivial theorem. -- An equational proof is shown in PLFA. -- It uses helpers cong and sym imported from the standard library, -- and a form of equational reasoning that allows more elaborate justification. -- Instead we will use 'rewrite'. +-identityʳ : ∀ (m : ℕ) → m + zero ≡ m +-identityʳ m = {!!} -- Associativity of addition. -- (Done first in PLFA.) +-assoc : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p) +-assoc m n p = {!!} -- A useful lemma about addition. -- Equational proof shown in PLFA. +-suc : ∀ (m n : ℕ) → m + suc n ≡ suc (m + n) +-suc m n = {!!} -- Commutativity of addition. -- Equational proof shown in PLFA. +-comm : ∀ (m n : ℕ) → m + n ≡ n + m +-comm m n = {!!} -- 842 exercise: AddSwap (1 point) -- Please do this without using induction/recursion. +-swap : ∀ (m n p : ℕ) → (m + n) + p ≡ n + (m + p) +-swap m n p = {!!} -- 842 exercise: AddDistMult (2 points) -- Show that addition distributes over multiplication. *-+-rdistrib : ∀ (m n p : ℕ) → (m + n) * p ≡ m * p + n * p *-+-rdistrib m n p = {!!} -- 842 exercise: MultAssoc (2 points) -- Show that multiplication is associative. *-assoc : ∀ (m n p : ℕ) → (m * n) * p ≡ m * (n * p) *-assoc m n p = {!!} -- 842 exercise: MultComm (3 points) -- Show that multiplication is commutative. -- As with the addition proof above, helper lemmas will be needed. *-comm : ∀ (m n : ℕ) → m * n ≡ n * m *-comm m n = {!!} -- 842 exercise: LeftMonusZero (1 point) -- PLFA asks "Did your proof require induction?" -- (which should give you an indication of the expected answer). 0∸n≡0 : ∀ (m : ℕ) → zero ∸ m ≡ zero 0∸n≡0 m = {!!} -- 842 exercise: MonusAssocish (2 points) -- Show a form of associativity for monus. ∸-+-assoc : ∀ (m n p : ℕ) → m ∸ n ∸ p ≡ m ∸ (n + p) ∸-+-assoc m n p = {!!} -- 842 extended exercise: properties of binary representation. -- This is based on the PLFA Bin-laws exercise. -- Copied from 842Naturals. data Bin-ℕ : Set where bits : Bin-ℕ _x0 : Bin-ℕ → Bin-ℕ _x1 : Bin-ℕ → Bin-ℕ dbl : ℕ → ℕ dbl zero = zero dbl (suc n) = suc (suc (dbl n)) -- Copy your versions of 'inc', 'to', 'from', 'bin-+' over from 842Naturals. -- You may choose to change them here to make proofs easier. -- But make sure to test them if you do! inc : Bin-ℕ → Bin-ℕ inc m = {!!} tob : ℕ → Bin-ℕ tob m = {!!} fromb : Bin-ℕ → ℕ fromb m = {!!} _bin-+_ : Bin-ℕ → Bin-ℕ → Bin-ℕ m bin-+ n = {!!} -- 842 exercise: DoubleB (1 point) -- Write the Bin-ℕ version of dbl, here called dblb. -- As with the other Bin-ℕ operations, don't use tob/fromb. dblb : Bin-ℕ → Bin-ℕ dblb m = {!!} -- Here are some properties of tob/fromb/inc suggested by PLFA Induction. -- Please complete the proofs. -- 842 exercise: FromInc (1 point) from∘inc : ∀ (m : Bin-ℕ) → fromb (inc m) ≡ suc (fromb m) from∘inc m = {!!} -- 842 exercise: FromToB (1 point) from∘tob : ∀ (m : ℕ) → fromb (tob m) ≡ m from∘tob m = {!!} -- 842 exercise: ToFromB (2 points) -- The property ∀ (m : Bin-ℕ) → tob (fromb m) ≡ m cannot be proved. -- Can you see why? -- However, this restriction of it can be proved. to/from-corr : ∀ (m : Bin-ℕ) (n : ℕ) → m ≡ tob n → fromb m ≡ n to/from-corr m n m≡tn = {!!} -- Here are a few more properties for you to prove. -- 842 exercise: DblBInc (1 point) dblb∘inc : ∀ (m : Bin-ℕ) → dblb (inc m) ≡ inc (inc (dblb m)) dblb∘inc m = {!!} -- 842 exercise: ToDbl (1 point) to∘dbl : ∀ (m : ℕ) → tob (dbl m) ≡ dblb (tob m) to∘dbl m = {!!} -- 842 exercise: FromDblB (1 point) from∘dblb : ∀ (m : Bin-ℕ) → fromb (dblb m) ≡ dbl (fromb m) from∘dblb m = {!!} -- 842 exercise: BinPlusLInc (2 points) -- This helper function translates the second case for unary addition -- suc m + n = suc (m + n) -- into the binary setting. It's useful in the next proof. -- Hint: induction on both m and n is needed. bin-+-linc : ∀ (m n : Bin-ℕ) → (inc m) bin-+ n ≡ inc (m bin-+ n) bin-+-linc m n = {!!} -- 842 exercise: PlusUnaryBinary (2 points) -- This theorem relates unary and binary addition. to∘+ : ∀ (m n : ℕ) → tob (m + n) ≡ tob m bin-+ tob n to∘+ m n = {!!} -- This ends the extended exercise. -- The following theorems proved in PLFA can be found in the standard library. -- import Data.Nat.Properties using (+-assoc; +-identityʳ; +-suc; +-comm) -- Unicode used in this chapter: {- ∀ U+2200 FOR ALL (\forall, \all) ʳ U+02B3 MODIFIER LETTER SMALL R (\^r) ′ U+2032 PRIME (\') ″ U+2033 DOUBLE PRIME (\') ‴ U+2034 TRIPLE PRIME (\') ⁗ U+2057 QUADRUPLE PRIME (\') -}
{ "alphanum_fraction": 0.596297755, "avg_line_length": 24.5314009662, "ext": "agda", "hexsha": "a0fd7a74499065d427271b8dc4591c0d9d012b3e", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x02-842Induction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x02-842Induction.agda", "max_line_length": 79, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x02-842Induction.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 1849, "size": 5078 }
{-# OPTIONS --cubical #-} module _ where open import Agda.Primitive.Cubical open import Agda.Builtin.Cubical.Path data Interval : Set where left right : Interval sq : left ≡ right -- Agda should not loop when typechecking the following definition. -- -- Termination checking should catch that `id left` is not -- normalizing, given our definition of reduction. -- -- Hence conversion checking shouldn't reduce applications of `id`. id : Interval → Interval id (sq i) = sq i id left = id (sq i0) id right = id (sq i1)
{ "alphanum_fraction": 0.7183364839, "avg_line_length": 25.1904761905, "ext": "agda", "hexsha": "53a95e315ae284702228da93939d844dd4eac727", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue3572.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue3572.agda", "max_line_length": 67, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue3572.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 137, "size": 529 }
import cedille-options open import general-util module process-cmd (options : cedille-options.options) {mF : Set → Set} {{mFm : monad mF}} (progress-update : string → mF ⊤) (write-to-log : string → mF ⊤) where --open import cedille-find open import cedille-types open import classify options {mF} ⦃ mFm ⦄ write-to-log open import constants open import conversion open import ctxt open import free-vars open import rename open import spans options { mF } ⦃ mFm ⦄ open import subst open import syntax-util open import type-util open import toplevel-state options { mF } ⦃ mFm ⦄ open import to-string options open import datatype-util open import rewriting open import elab-util options import cws-types import cws -- generate spans from the given comments-and-whitespace syntax tree process-cwst-etys : cws-types.entities → spanM ⊤ process-cwst-ety : cws-types.entity → spanM ⊤ process-cwst-etys (cws-types.Entity ety etys) = process-cwst-ety ety >> process-cwst-etys etys process-cwst-etys cws-types.EndEntity = return triv process-cwst-ety cws-types.EntityNonws = return triv process-cwst-ety (cws-types.EntityWs pi pi') = return triv process-cwst-ety (cws-types.EntityComment pi pi') = [- comment-span pi pi' -] return triv process-cwst : toplevel-state → filepath → spanM toplevel-state process-cwst s filename with include-elt.cwst (get-include-elt s filename) process-cwst s filename | nothing = return s process-cwst s filename | just (cws-types.File etys) = process-cwst-etys etys >> return s check-and-add-params : ctxt → posinfo → ex-params → spanM (ctxt × params) check-and-add-params Γ pi' (p@(ExParam pi1 me pi1' x atk pi2) :: ps') = Γ ⊢ atk ↝ atk~ / let Γ' = Γ , pi1' - x :` atk~ qx = pi1' % x in [- punctuation-span "Parens (parameter)" pi1 pi2 -] [- Decl-span Γ' decl-param pi1 pi1' x atk~ me pi2 pi' -] [- var-span me Γ' pi1' x checking atk~ nothing -] check-and-add-params Γ' pi' ps' >>=c λ Γ'' ps~ → return2 Γ'' (Param me qx atk~ :: ps~) check-and-add-params Γ pi' [] = return2 Γ [] optAs-posinfo-var : ctxt → maybe import-as → posinfo × var → spanM (posinfo × var) optAs-posinfo-var Γ nothing = return optAs-posinfo-var Γ (just (ImportAs pi x)) orig = [- Import-module-span Γ orig [] [ not-for-navigation ] nothing -] return2 pi x {-# TERMINATING #-} {- notice that these are elaborating functions: they take an ex-QQQ and return a QQQ (along with other activity) -} process-cmd : toplevel-state → ex-cmd → spanM (toplevel-state × cmd) process-cmds : toplevel-state → ex-cmds → spanM (toplevel-state × cmds) process-ctrs : (uqv lqv mqv : var) → params → posinfo → toplevel-state → ex-ctrs → spanM ((ctxt → ctxt) × ctrs) process-params : toplevel-state → posinfo → ex-params → spanM (toplevel-state × params) process-start : toplevel-state → filepath → (progress-name : string) → ex-file → spanM (toplevel-state × file) process-file : toplevel-state → filepath → (progress-name : string) → mF (toplevel-state × file × string × string × params × qualif) maybe-add-opaque-span : optopaque → (end : posinfo) → spanM ⊤ maybe-add-opaque-span nothing pi = return triv maybe-add-opaque-span (just piₒ) pi = spanM-add $ Opaque-span piₒ pi process-cmd s (ExCmdDef op (ExDefTerm pi x (just tp) t) pi') = let Γ = toplevel-state.Γ s in Γ ⊢ tp ⇐ KdStar ↝ tp' / Γ ⊢ t ⇐ tp' ↝ t' / check-erased-margs Γ (term-start-pos t) (term-end-pos t) t' (just tp') >> let Γ' = ctxt-term-def pi globalScope (isNothing op) x (just t') tp' Γ in maybe-add-opaque-span op pi' >> [- DefTerm-span Γ' pi x checking (just tp') t' pi' [] -] check-redefined pi x s (CmdDefTerm x t') ([- uncurry (Var-span Γ' pi x checking) (compileFail-in Γ t') -] return (record s { Γ = Γ' })) process-cmd s (ExCmdDef op (ExDefTerm pi x nothing t) pi') = let Γ = toplevel-state.Γ s in Γ ⊢ t ↝ t~ ⇒ T~ / check-erased-margs Γ (term-start-pos t) (term-end-pos t) t~ nothing >> let Γ' = ctxt-term-def pi globalScope (isNothing op) x (just t~) T~ Γ in maybe-add-opaque-span op pi' >> [- DefTerm-span Γ' pi x synthesizing (just T~) t~ pi' [] -] check-redefined pi x s (CmdDefTerm x t~) ([- uncurry (Var-span Γ' pi x synthesizing) (compileFail-in Γ t~) -] return (record s { Γ = Γ' })) process-cmd s (ExCmdDef op (ExDefType pi x k tp) pi') = let Γ = toplevel-state.Γ s in Γ ⊢ k ↝ k~ / Γ ⊢ tp ⇐ k~ ↝ tp~ / let Γ' = ctxt-type-def pi globalScope (isNothing op) x (just tp~) k~ Γ in maybe-add-opaque-span op pi' >> spanM-add (DefType-span Γ' pi x checking (just k~) tp~ pi' []) >> check-redefined pi x s (CmdDefType x k~ tp~) ([- TpVar-span Γ' pi x checking [] nothing -] return (record s { Γ = Γ' })) process-cmd s (ExCmdKind pi x ps k pi') = let Γ = toplevel-state.Γ s in check-and-add-params Γ pi' ps >>=c λ Γₚₛ ps~ → Γₚₛ ⊢ k ↝ k~ / let Γ' = ctxt-kind-def pi x ps~ k~ Γ in [- DefKind-span Γ' pi x k~ pi' -] check-redefined pi x s (CmdDefKind x ps~ k~) ([- KdVar-span Γ' (pi , x) (posinfo-plus-str pi x) ps~ checking [] nothing -] return (record s { Γ = Γ' })) process-cmd s (ExCmdData (DefDatatype pi pi' x ps k cs) pi'') = let Γ = toplevel-state.Γ s old-Γ = Γ in [- DefDatatype-header-span pi -] check-and-add-params Γ pi'' ps >>=c λ Γₚₛ ps' → Γₚₛ ⊢ k ↝ k' / let mn = ctxt.mn Γ qx = mn # x mps = ctxt.ps Γ ++ ps' Γ-decl = λ Γ → ctxt-type-decl pi' x k' $ data-highlight Γ (pi' % x) cmd-fail = CmdDefType x (params-to-kind ps' k') (TpHole pi') fail = λ e → [- TpVar-span Γ pi' x checking [] (just e) -] return2 s cmd-fail in process-ctrs x (pi' % x) qx mps pi' (record s {Γ = Γ-decl Γₚₛ}) cs >>=c λ Γ-cs cs~ → maybe-else' (cedille-options.options.datatype-encoding options >>=c λ fp f → f) (fail "Missing directive for datatype encoding. Please add a datatype-encoding directive to your .cedille/options file. See cedille/.cedille/options for the current location") λ de → let is = kind-to-indices Γₚₛ k' kᵢ = indices-to-kind is $ KdAbs ignored-var (Tkt $ indices-to-tpapps is $ params-to-tpapps mps $ TpVar qx) KdStar in either-else' (init-encoding Γₚₛ de (Data x ps' is cs~)) fail λ ecs → check-redefined pi' x (record s {Γ = Γ-cs Γ}) (CmdDefData ecs x ps' k' cs~) let fₓ = fresh-var (add-indices-to-ctxt is Γ) "X" cs~ = map-fst (mn #_) <$> cs~ Γ' = Γ-cs Γ kₘᵤ = abs-expand-kind ps' $ KdAbs ignored-var (Tkk k') KdStar Γ' = ctxt-type-def pi' globalScope opacity-open (data-Is/ x) nothing kₘᵤ Γ' Tₘᵤ = params-to-alls ps' $ TpApp (params-to-tpapps mps (TpVar (mn # data-Is/ x))) (Ttp (params-to-tpapps mps $ TpVar qx)) Γ' = ctxt-term-def pi' globalScope opacity-open (data-is/ x) nothing Tₘᵤ Γ' Tₜₒ = abs-expand-type ps' $ mall fₓ (Tkk $ indices-to-kind is KdStar) $ TpAbs Erased ignored-var (Tkt (TpApp (params-to-tpapps mps $ TpVar $ mn # data-Is/ x) $ Ttp $ TpVar fₓ)) $ indices-to-alls is $ TpAbs NotErased ignored-var (Tkt (indices-to-tpapps is $ TpVar fₓ)) $ indices-to-tpapps is $ params-to-tpapps mps $ TpVar qx Γ' = ctxt-term-def pi' globalScope opacity-open (data-to/ x) (just id-term) Tₜₒ Γ' Γ' = ctxt-datatype-def pi' x ps' kᵢ k' cs~ ecs Γ' in [- DefDatatype-span Γ' pi pi' x ps' (abs-expand-kind ps' k') kₘᵤ k' Tₘᵤ Tₜₒ cs~ k pi'' -] [- TpVar-span Γ' pi' x checking (kind-data old-Γ k' :: params-data old-Γ ps') nothing -] return (record s {Γ = Γ'}) -- TODO ignore checking but still gen spans if need-to-check false? process-cmd s (ExCmdImport (ExImport pi op pi' x oa as pi'')) = let fnₒ = ctxt.fn (toplevel-state.Γ s) ie = get-include-elt s fnₒ oa' = maybe-map (λ {(ImportAs pi x) → x}) oa in case trie-lookup (include-elt.import-to-dep ie) x of λ where nothing → [- Import-span pi "missing" pi'' [] (just ("File not found: " ^ x)) -] return2 (set-include-elt s fnₒ (record ie {err = tt})) (CmdImport (Import op x x oa' [])) (just fnᵢ) → spanM-push (process-file s fnᵢ x) >>= uncurry₂ λ s f _ → process-import (toplevel-state.Γ s) op oa fnₒ fnᵢ (lookup-mod-params (toplevel-state.Γ s) fnᵢ) (maybe-else' (lookup-mod-params (toplevel-state.Γ s) fnₒ) [] id) >>=c λ e as~ → let s-e = scope-file s fnₒ fnᵢ oa' as~ Γ = toplevel-state.Γ s in [- Import-span pi fnᵢ pi'' [] (snd s-e ||-maybe e) -] return2 (fst s-e) (CmdImport (Import op fnᵢ x oa' as~)) where -- When importing a file publicly, you may use any number of arguments as long as the -- parameters of the current module are not free in them. -- You may then use any number of single-variable parameters from the current module -- as arguments as long as they retain the same order as before and have no non-parameter -- arguments between them -- (so parameters A, B, C, ..., Z can be used as arguments ·C ·X, but not ·X ·C) public-import-params-ok : params → args → err-m public-import-params-ok ps = h nothing where err = just "You can only use parameters for arguments to public imports if the are in order at the end" params-order : params → trie ℕ params-order = h 0 where h : ℕ → params → trie ℕ h n [] = empty-trie h n (Param me x atk :: ps) = trie-insert (h (suc n) ps) x n pso = params-order ps ps-free : arg → err-m → err-m ps-free a e = if ~ are-free-in-h pso (free-vars-arg a) then e else err h : maybe ℕ → args → err-m h c (a :: as) = maybe-else' (arg-var a >>= trie-lookup pso) (maybe-else' c (ps-free a $ h nothing as) λ _ → err) λ aₙ → maybe-else' c (h (just aₙ) as) λ cₙ → if cₙ ≥ aₙ then err else h (just aₙ) as h n [] = nothing process-import : ctxt → opt-public → maybe import-as → (cur imp : filepath) → maybe params → params → spanM (err-m × args) process-import Γ op oa fnₒ fnᵢ nothing _ = return2 (just "Undefined module import (this probably shouldn't happen?)") [] process-import Γ Public (just _) fnₒ fnᵢ (just psᵢ) psₒ = return2 (just "Public imports aren't allowed to be qualified") [] process-import Γ op oa fnₒ fnᵢ (just psᵢ) psₒ = optAs-posinfo-var Γ oa (pi' , x) >>= λ pi-v → check-args Γ as psᵢ >>= λ as~ → [- Import-module-span Γ (pi' , x) psᵢ [ location-data (fnᵢ , "1") ] nothing -] return2 (ifMaybe op $ public-import-params-ok psₒ as~) as~ process-cmds s (c :: cs) = process-cmd s c >>=c λ s c → process-cmds s cs >>=c λ s cs → return2 s (c :: cs) process-cmds s [] = return2 s [] process-ctrs uX lX mX ps piₓ s csₒ c? = h s csₒ c? where h : toplevel-state → ex-ctrs → spanM ((ctxt → ctxt) × ctrs) h s [] = return2 id [] h s (ExCtr pi x T :: cs) = let Γ = toplevel-state.Γ s in Γ ⊢ T ⇐ KdStar ↝ T~ / let T = hnf-ctr Γ lX T~ 𝕃tpkd-to-string = foldr (λ tk s → rope-to-string (tpkd-to-string Γ tk) ^ " ; " ^ s) "" neg-ret-err : maybe string neg-ret-err = let err-msg = λ s s' → just (uX ^ s ^ " type of the constructor: " ^ s') in case run-posM (positivity.ctr-positive lX Γ T) of λ where (ctorOk , l) → nothing (ctorNegative , l) → err-msg " occurs negatively in the" ("Searching types: " ^ 𝕃tpkd-to-string l) (ctorNotInReturnType , l) → err-msg " is not the return" "" in let T = [ Γ - TpVar mX / lX ] T Tₚₛ = [ Γ - params-to-tpapps ps (TpVar mX) / lX ] T~ in h s cs >>=c λ Γ-f cs → let Γ = toplevel-state.Γ s Γ-f' = ctxt-ctr-def pi x Tₚₛ ps (length csₒ) (length csₒ ∸ suc (length cs)) in check-redefined pi x s (Ctr x T :: cs) (let Γ = Γ-f' Γ in [- Var-span Γ pi x checking [ summary-data x (ctxt-type-def piₓ globalScope opacity-open uX nothing KdStar Γ) (abs-expand-type ps T) ] neg-ret-err -] return (record s {Γ = Γ})) >>=c λ s → return2 (Γ-f ∘ Γ-f') process-params s pi ps = let Γ = toplevel-state.Γ s in check-and-add-params Γ pi ps >>=c λ Γₚₛ ps → return2 (record s {Γ = ctxt-add-current-params (record Γₚₛ { ps = ps })}) ps process-start s filename pn (ExModule is pi1 pi2 mn ps cs pi3) = spanM-push (progress-update pn) >> process-cmds s (map ExCmdImport is) >>=c λ s is' → process-params s (params-end-pos first-position ps) ps >>=c λ s ps → process-cmds s cs >>=c λ s cs → process-cwst s filename >>= λ s → let pi2' = posinfo-plus-str pi2 mn in [- File-span (toplevel-state.Γ s) first-position (posinfo-plus pi3 1) filename -] [- Module-span pi2 pi2' -] [- Module-header-span pi1 pi2' -] return2 s (Module mn ps (is' ++ cs)) -- where -- unqual-cmd : ctxt → renamectxt → cmd → cmd -- unqual-cmd Γ ρ (CmdDefTerm x t) = CmdDefTerm x (subst-renamectxt Γ ρ t) -- unqual-cmd Γ ρ (CmdDefType x k T) = CmdDefType x (subst-renamectxt Γ ρ k) (subst-renamectxt Γ ρ T) -- unqual-cmd Γ ρ (CmdDefKind x ps k) = CmdDefKind x (substh-params Γ ρ empty-trie ps) (subst-renamectxt (add-params-to-ctxt ps Γ) ρ k) -- unqual-cmd Γ ρ (CmdDefData eds x ps k cs) = CmdDefData eds x (substh-params Γ ρ empty-trie ps) (subst-renamectxt (add-params-to-ctxt ps Γ) ρ k) (map-snd (subst-renamectxt (add-params-to-ctxt ps Γ) ρ) <$> cs) -- unqual-cmd Γ ρ (CmdImport (Import op fnᵢ x oa as)) = CmdImport (Import op fnᵢ x oa (subst-renamectxt Γ ρ -arg_ <$> as)) {- process (type-check if necessary) the given file. We assume the given top-level state has a syntax tree associated with the file. -} process-file s filename pn with get-include-elt s filename process-file s filename pn | ie = proceed s (include-elt.ast ie) (include-elt.ast~ ie) (set-need-to-add-symbols-to-context-include-elt ie ff) >>= λ where (s , ie , ret-mod , f) → return ({-set-include-elt s filename ie-} s , f , ret-mod) where proceed : toplevel-state → maybe ex-file → maybe file → include-elt → mF (toplevel-state × include-elt × (string × string × params × qualif) × file) proceed s nothing f~ ie' = progress-update filename >> -- write-to-log "should not happen" >> return (s , ie' , ctxt-get-current-mod (toplevel-state.Γ s) , maybe-else' f~ (Module ignored-var [] []) id) {- should not happen -} proceed s (just x) f~ ie' with include-elt.need-to-add-symbols-to-context ie proceed s (just x) (just f~) ie' | ff = let Γ = toplevel-state.Γ s mod = ctxt.fn Γ , ctxt.mn Γ , ctxt.ps Γ , ctxt.qual Γ in return (s , ie' , mod , f~) proceed (mk-toplevel-state ip fns is Γ logFilePath) (just x) f~ ie' | _ with include-elt.do-type-check ie | ctxt-get-current-mod Γ proceed (mk-toplevel-state ip fns is Γ logFilePath) (just x) f~ ie' | _ | do-check | prev-mod = let Γ = ctxt-initiate-file Γ filename (start-modname x) in process-start (mk-toplevel-state ip fns (trie-insert is filename ie') Γ logFilePath) filename pn x empty-spans >>= λ where ((mk-toplevel-state ip fns is Γ logFilePath , f) , ss) → let ret-mod = ctxt.fn Γ , ctxt.mn Γ , ctxt.ps Γ , ctxt.qual Γ ie'' = if do-check then set-spans-include-elt ie' ss f else record ie' { ast~ = include-elt.ast~ ie' ||-maybe just f } in progress-update pn >> return (mk-toplevel-state ip (if do-check then (filename :: fns) else fns) (trie-insert is filename ie'') (ctxt-set-current-mod Γ prev-mod) logFilePath , ie'' , ret-mod , f) -- proceed s (just x) f~ ie' | ff = -- return (s , ie' , ctxt-get-current-mod (toplevel-state.Γ s) , -- maybe-else' f~ (Module ignored-var [] []) id)
{ "alphanum_fraction": 0.6231264749, "avg_line_length": 48.3919753086, "ext": "agda", "hexsha": "a2e28d0623b7ad6029b97ca62fde82942b3c3cae", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ice1k/cedille", "max_forks_repo_path": "src/process-cmd.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ice1k/cedille", "max_issues_repo_path": "src/process-cmd.agda", "max_line_length": 211, "max_stars_count": null, "max_stars_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ice1k/cedille", "max_stars_repo_path": "src/process-cmd.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5299, "size": 15679 }
{- This second-order signature was created from the following second-order syntax description: syntax Naturals | Nat type N : 0-ary term ze : N su : N -> N nrec : N α (α,N).α -> α theory (zeβ) z : α s : (α,N).α |> nrec (ze, z, r m. s[r,m]) = z (suβ) z : α s : (α,N).α n : N |> nrec (su (n), z, r m. s[r,m]) = s[nrec (n, z, r m. s[r,m]), n] -} module Naturals.Signature where open import SOAS.Context -- Type declaration data NatT : Set where N : NatT open import SOAS.Syntax.Signature NatT public open import SOAS.Syntax.Build NatT public -- Operator symbols data Natₒ : Set where zeₒ suₒ : Natₒ nrecₒ : {α : NatT} → Natₒ -- Term signature Nat:Sig : Signature Natₒ Nat:Sig = sig λ { zeₒ → ⟼₀ N ; suₒ → (⊢₀ N) ⟼₁ N ; (nrecₒ {α}) → (⊢₀ N) , (⊢₀ α) , (α , N ⊢₂ α) ⟼₃ α } open Signature Nat:Sig public
{ "alphanum_fraction": 0.5664018161, "avg_line_length": 19.152173913, "ext": "agda", "hexsha": "53c6bca83b03ef1e847ec765684a85da51c7ef0c", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/Naturals/Signature.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/Naturals/Signature.agda", "max_line_length": 100, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/Naturals/Signature.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 359, "size": 881 }
{-# OPTIONS --instance-search-depth=10 #-} data ⊥ : Set where it : {A : Set} {{_ : A}} → A it {{x}} = x postulate Eq : Set → Set instance postulate weaken : Eq ⊥ → Eq _ loop : Eq ⊥ loop = it
{ "alphanum_fraction": 0.5583756345, "avg_line_length": 14.0714285714, "ext": "agda", "hexsha": "0c5e96464470dafceb06da07fb77d1b1498cf586", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Fail/Issue2269.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Fail/Issue2269.agda", "max_line_length": 42, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Fail/Issue2269.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 69, "size": 197 }
{-# OPTIONS --universe-polymorphism #-} module Issue228 where postulate Level : Set zero : Level suc : Level → Level ∞ : Level _⊔_ : Level → Level → Level {-# BUILTIN LEVEL Level #-} {-# BUILTIN LEVELZERO zero #-} {-# BUILTIN LEVELSUC suc #-} {-# BUILTIN LEVELMAX _⊔_ #-} infixl 6 _⊔_ data _×_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where _,_ : A → B → A × B data Large : Set ∞ where large : Large data Small : Set₁ where small : Set → Small P : Set P = Large × Small [_] : Set → P [ A ] = (large , small A) potentially-bad : P potentially-bad = [ P ]
{ "alphanum_fraction": 0.57, "avg_line_length": 16.2162162162, "ext": "agda", "hexsha": "7f65470ae43add339bdf3482d13ffa8fb5c7d686", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/fail/Issue228.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/fail/Issue228.agda", "max_line_length": 58, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/Issue228.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 216, "size": 600 }
-- {-# OPTIONS -v tc.polarity:10 -v tc.conv.elim:25 #-} module Issue755 where open import Common.Prelude renaming (Nat to ℕ) open import Common.Equality abstract foo : Bool → ℕ → ℕ foo true x = 0 foo false x = 0 -- should work works : ∀{b} → foo b 0 ≡ foo b 1 → foo b 0 ≡ foo b 1 works refl = refl -- should fail test : ∀{b} → foo b 0 ≡ foo b 1 → foo b 0 ≡ foo b 1 test refl = refl -- 0 != 1 of type ℕ -- when checking that the pattern refl has type foo 0 ≡ foo 1
{ "alphanum_fraction": 0.6203319502, "avg_line_length": 21.9090909091, "ext": "agda", "hexsha": "d2c5dc45024dd3133db1818de6e5b17ebf85140d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue755.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue755.agda", "max_line_length": 61, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue755.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 177, "size": 482 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.ZCohomology.CohomologyRings.Coproduct where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Data.Nat renaming (_+_ to _+n_ ; _·_ to _·n_ ; snotz to nsnotz) open import Cubical.Data.Sigma open import Cubical.Data.Sum open import Cubical.Algebra.Group open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Group.DirProd open import Cubical.Algebra.AbGroup open import Cubical.Algebra.Ring open import Cubical.Algebra.Ring.DirectProd open import Cubical.Algebra.DirectSum.DirectSumHIT.Base open import Cubical.HITs.SetTruncation as ST open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.Groups.Coproduct open import Cubical.ZCohomology.RingStructure.CupProduct open import Cubical.ZCohomology.RingStructure.CohomologyRing private variable ℓ ℓ' : Level module Equiv-Coproduct-Properties {X : Type ℓ} {Y : Type ℓ'} where open Iso open IsGroupHom open GroupStr open PlusBis open RingStr (snd (H*R X)) using () renaming ( 0r to 0H*X ; 1r to 1H*X ; _+_ to _+H*X_ ; -_ to -H*X_ ; _·_ to _cupX_ ; +Assoc to +H*XAssoc ; +IdL to +H*XIdL ; +IdR to +H*XIdR ; +Comm to +H*XComm ; ·Assoc to ·H*XAssoc ; ·IdL to ·H*XIdL ; ·IdR to ·H*XIdR ; is-set to isSetH*X ) open RingStr (snd (H*R Y)) using () renaming ( 0r to 0H*Y ; 1r to 1H*Y ; _+_ to _+H*Y_ ; -_ to -H*Y_ ; _·_ to _cupY_ ; +Assoc to +H*YAssoc ; +IdL to +H*YIdL ; +IdR to +H*YIdR ; +Comm to +H*YComm ; ·Assoc to ·H*YAssoc ; ·IdL to ·H*YIdL ; ·IdR to ·H*YIdR ; is-set to isSetH*Y ) -- warning this does not open H*(X×Y) ! -- This just a notation shorter and pratical open RingStr (snd (DirectProd-Ring (H*R X) (H*R Y))) using () renaming ( 0r to 0H*X×Y ; 1r to 1H*X×Y ; _+_ to _+H*X×Y_ ; -_ to -H*X×Y_ ; _·_ to _cupX×Y_ ; +Assoc to +H*X×YAssoc ; +IdL to +H*X×YIdL ; +IdR to +H*X×YIdR ; +Comm to +H*X×YComm ; ·Assoc to ·H*X×YAssoc ; ·IdL to ·H*X×YIdL ; ·IdR to ·H*X×YIdR ; is-set to isSetH*X×Y ) open RingStr (snd (H*R (X ⊎ Y))) using () renaming ( 0r to 0H*X⊎Y ; 1r to 1H*X⊎Y ; _+_ to _+H*X⊎Y_ ; -_ to -H*X⊎Y_ ; _·_ to _cupX⊎Y_ ; +Assoc to +H*X⊎YAssoc ; +IdL to +H*X⊎YIdL ; +IdR to +H*X⊎YIdR ; +Comm to +H*X⊎YComm ; ·Assoc to ·H*X⊎YAssoc ; ·IdL to ·H*X⊎YIdL ; ·IdR to ·H*X⊎YIdR ; is-set to isSetH*X⊎Y ) ----------------------------------------------------------------------------- -- Notation needed for type checking -- indeed several base coexists and two cannot be inferef without implicit argument -- it is clearer to add a notation baseX : (n : ℕ) → (x : coHom n X) → H* X baseX n x = base n x baseY : (n : ℕ) → (x : coHom n Y) → H* Y baseY n x = base n x ----------------------------------------------------------------------------- -- Direct Sens H*-X⊎Y→H*-X×H*-Y : H* (X ⊎ Y) → (H* X) × (H* Y) H*-X⊎Y→H*-X×H*-Y = DS-Rec-Set.f _ _ _ _ isSetH*X×Y (0H*X , 0H*Y) (λ n a → (base n (fst (fun (fst Equiv-Coproduct-CoHom) a))) , (base n (snd (fun (fst Equiv-Coproduct-CoHom) a)))) _+H*X×Y_ +H*X×YAssoc +H*X×YIdR +H*X×YComm (λ n → ≡-× ((cong (λ A → baseX n (fst A)) (pres1 (snd Equiv-Coproduct-CoHom))) ∙ base-neutral n) (((cong (λ B → baseY n (snd B)) (pres1 (snd Equiv-Coproduct-CoHom))) ∙ base-neutral n))) λ n a b → sym (≡-× (cong (λ A → baseX n (fst A)) (pres· (snd Equiv-Coproduct-CoHom) a b) ∙ cong (base n) (helper1 _ _ _) ∙ sym (base-add n _ _)) (cong (λ B → baseY n (snd B)) (pres· (snd Equiv-Coproduct-CoHom) a b) ∙ cong (base n) (helper2 _ _ _) ∙ sym (base-add n _ _))) where helper1 : (n : ℕ) → (x y : coHom n X × coHom n Y) → fst ((DirProd (coHomGr n X) (coHomGr n Y) .snd GroupStr.· x) y) ≡ ((fst x) +ₕ (fst y)) helper1 n (fst₁ , snd₁) (fst₂ , snd₂) = refl helper2 : (n : ℕ) → (x y : coHom n X × coHom n Y) → snd ((DirProd (coHomGr n X) (coHomGr n Y) .snd GroupStr.· x) y) ≡ ((snd x) +ₕ (snd y)) helper2 n (fst₁ , snd₁) (fst₂ , snd₂) = refl ----------------------------------------------------------------------------- -- Converse Sens -- One need to convert seperatly the X an Y -- Otherwise the traduction fails in the case base n a , 0 -- because one need then to lift x + 0 ≡ 0 -- which doesn't work because the + being lifted is on H*(Y) and not H*(X)×H*(Y) H*-X→H*-X⊎Y : H*(X) → H*(X ⊎ Y) H*-X→H*-X⊎Y = DS-Rec-Set.f _ _ _ _ isSetH*X⊎Y 0H*X⊎Y (λ n a → base n (inv (fst Equiv-Coproduct-CoHom) (a , (0ₕ n)))) _+H*X⊎Y_ +H*X⊎YAssoc +H*X⊎YIdR +H*X⊎YComm (λ n → cong (base n) (pres1 (snd (invGroupIso Equiv-Coproduct-CoHom))) ∙ base-neutral n) λ n a a' → base-add _ _ _ ∙ cong (base n) (sym (pres· (snd (invGroupIso Equiv-Coproduct-CoHom)) _ _)) ∙ cong (base n) (cong (inv (fst Equiv-Coproduct-CoHom)) (≡-× refl (AbGroupStr.+IdL (snd (coHomGroup n Y)) (0ₕ n)))) H*-Y→H*-X⊎Y : H*(Y) → H*(X ⊎ Y) H*-Y→H*-X⊎Y = DS-Rec-Set.f _ _ _ _ isSetH*X⊎Y 0H*X⊎Y (λ m b → base m (inv (fst Equiv-Coproduct-CoHom) (0ₕ m , b))) _+H*X⊎Y_ +H*X⊎YAssoc +H*X⊎YIdR +H*X⊎YComm (λ m → cong (base m) (pres1 (snd (invGroupIso Equiv-Coproduct-CoHom))) ∙ base-neutral m) λ m b b' → base-add _ _ _ ∙ cong (base m) (sym (pres· (snd (invGroupIso Equiv-Coproduct-CoHom)) (0ₕ m , b) (0ₕ m , b'))) ∙ cong (base m) (cong (inv (fst Equiv-Coproduct-CoHom)) (≡-× (AbGroupStr.+IdL (snd (coHomGroup m X)) (0ₕ m)) refl)) H*-X×H*-Y→H*-X⊎Y : H*(X) × H*(Y) → H*(X ⊎ Y) H*-X×H*-Y→H*-X⊎Y (x , y) = (H*-X→H*-X⊎Y x) +H*X⊎Y (H*-Y→H*-X⊎Y y) H*-X×H*-Y→H*-X⊎Y-pres+ : (x y : H*(X) × H*(Y)) → H*-X×H*-Y→H*-X⊎Y (x +H*X×Y y) ≡ ((H*-X×H*-Y→H*-X⊎Y x) +H*X⊎Y (H*-X×H*-Y→H*-X⊎Y y)) H*-X×H*-Y→H*-X⊎Y-pres+ (x , y) (x' , y') = RingTheory.+ShufflePairs (H*R (X ⊎ Y)) _ _ _ _ ----------------------------------------------------------------------------- -- Section Sens e-sectX : (x : H* X) → H*-X⊎Y→H*-X×H*-Y (H*-X→H*-X⊎Y x) ≡ (x , 0H*Y) e-sectX = DS-Ind-Prop.f _ _ _ _ (λ _ → isSetH*X×Y _ _) refl (λ n a → ≡-× (cong (base n) (cong fst (rightInv (fst Equiv-Coproduct-CoHom) (a , 0ₕ n)))) (cong (base n) (cong snd (rightInv (fst Equiv-Coproduct-CoHom) (a , 0ₕ n)))) ∙ ≡-× refl (base-neutral n)) λ {U V} ind-U ind-V → cong₂ _+H*X×Y_ ind-U ind-V ∙ ≡-× refl (+H*YIdR _) e-sectY : (y : H* Y) → (H*-X⊎Y→H*-X×H*-Y (H*-Y→H*-X⊎Y y)) ≡ (0H*X , y) e-sectY = DS-Ind-Prop.f _ _ _ _ (λ _ → isSetH*X×Y _ _) refl (λ m b → ≡-× (cong (base m) (cong fst (rightInv (fst Equiv-Coproduct-CoHom) (0ₕ m , b)))) (cong (base m) (cong snd (rightInv (fst Equiv-Coproduct-CoHom) (0ₕ m , b)))) ∙ ≡-× (base-neutral m) refl) λ {U V} ind-U ind-V → cong₂ _+H*X×Y_ ind-U ind-V ∙ ≡-× (+H*XIdR _) refl e-sect : (z : H*(X) × H*(Y)) → H*-X⊎Y→H*-X×H*-Y (H*-X×H*-Y→H*-X⊎Y z) ≡ z e-sect (x , y) = cong₂ _+H*X×Y_ (e-sectX x) (e-sectY y) ∙ ≡-× (+H*XIdR x) (+H*YIdL y) ----------------------------------------------------------------------------- -- Retraction Sens e-retr : (x : H*(X ⊎ Y)) → H*-X×H*-Y→H*-X⊎Y (H*-X⊎Y→H*-X×H*-Y x) ≡ x e-retr = DS-Ind-Prop.f _ _ _ _ (λ _ → isSetH*X⊎Y _ _) (+H*X⊎YIdR _) (λ n a → ((base n (T⁻ ((fst (T a)) , 0ₕ n))) +H*X⊎Y (base n (T⁻ (0ₕ n , snd (T a))))) ≡⟨ base-add n _ _ ⟩ base n ((T⁻ ((fst (T a)) , 0ₕ n)) +ₕ (T⁻ (0ₕ n , snd (T a)))) ≡⟨ cong (base n) (sym (pres· (snd (invGroupIso Equiv-Coproduct-CoHom)) ((fst (T a)) , 0ₕ n) (0ₕ n , snd (T a)))) ⟩ base n (T⁻ ( fst (T a) +ₕ 0ₕ n , 0ₕ n +ₕ snd (T a))) ≡⟨ cong (base n) (cong T⁻ (≡-× (rUnitₕ n (fst (T a))) (lUnitₕ n (snd (T a))))) ⟩ base n (T⁻ ( fst (T a) , snd (T a))) ≡⟨ cong (base n) (cong T⁻ (helper1 _ _ (T a))) ⟩ base n (T⁻ (T a)) ≡⟨ cong (base n) (leftInv (fst Equiv-Coproduct-CoHom) a) ⟩ base n a ∎) λ {U V} ind-U ind-V → (H*-X×H*-Y→H*-X⊎Y-pres+ _ _) ∙ (cong₂ _+H*X⊎Y_ ind-U ind-V) where T : {n : ℕ} → coHom n (X ⊎ Y) → coHom n X × coHom n Y T {n} = fun (fst (Equiv-Coproduct-CoHom)) T⁻ : {n : ℕ} → coHom n X × coHom n Y → coHom n (X ⊎ Y) T⁻ {n} = inv (fst (Equiv-Coproduct-CoHom)) helper1 : (A : Type ℓ) → (B : Type ℓ') → (x : A × B) → (fst x , snd x) ≡ x helper1 A B (fst₁ , snd₁) = refl ----------------------------------------------------------------------------- -- Ring Equiv-Coproduct-CoHomphism H*-X⊎Y→H*-X×H*-Y-pres1 : H*-X⊎Y→H*-X×H*-Y 1H*X⊎Y ≡ (1H*X , 1H*Y) H*-X⊎Y→H*-X×H*-Y-pres1 = refl H*-X⊎Y→H*-X×H*-Y-pres+ : (x y : H* (X ⊎ Y)) → H*-X⊎Y→H*-X×H*-Y ( x +H*X⊎Y y) ≡ H*-X⊎Y→H*-X×H*-Y x +H*X×Y H*-X⊎Y→H*-X×H*-Y y H*-X⊎Y→H*-X×H*-Y-pres+ x y = refl H*-X⊎Y→H*-X×H*-Y-pres· : (x y : H* (X ⊎ Y)) → H*-X⊎Y→H*-X×H*-Y ( x cupX⊎Y y) ≡ H*-X⊎Y→H*-X×H*-Y x cupX×Y H*-X⊎Y→H*-X×H*-Y y H*-X⊎Y→H*-X×H*-Y-pres· = DS-Ind-Prop.f _ _ _ _ (λ x p q i y → isSetH*X×Y _ _ (p y) (q y) i) (λ y → refl) (λ n a → DS-Ind-Prop.f _ _ _ _ (λ _ → isSetH*X×Y _ _) refl (λ m b → (base (n +' m) (fst (T (a ⌣ b)))) , base (n +' m) (snd (T (a ⌣ b))) ≡⟨ ≡-× (cong (base (n +' m)) (helperX a b)) (cong (base (n +' m)) (helperY a b)) ⟩ (base (n +' m) ((fst (T a)) ⌣ (fst (T b)))) , base (n +' m) ((snd (T a)) ⌣ (snd (T b))) ∎ ) λ {U V} ind-U ind-V → cong₂ _+H*X×Y_ ind-U ind-V) (λ {U V} ind-U ind-V y → cong₂ _+H*X×Y_ (ind-U y) (ind-V y)) where T : {n : ℕ} → coHom n (X ⊎ Y) → coHom n X × coHom n Y T {n} = fun (fst (Equiv-Coproduct-CoHom)) helperX : {n : ℕ} → {m : ℕ} → (a : coHom n (X ⊎ Y)) → (b : coHom m (X ⊎ Y)) → fst (T (a ⌣ b)) ≡ (fst (T a)) ⌣ (fst (T b)) helperX = ST.elim (λ x → isProp→isSet λ u v i y → squash₂ _ _ (u y) (v y) i ) λ g → ST.elim (λ _ → isProp→isSet (squash₂ _ _)) (λ h → refl) helperY : {n : ℕ} → {m : ℕ} → (a : coHom n (X ⊎ Y)) → (b : coHom m (X ⊎ Y)) → snd (T (a ⌣ b)) ≡ (snd (T a)) ⌣ (snd (T b)) helperY = ST.elim (λ x → isProp→isSet λ u v i y → squash₂ _ _ (u y) (v y) i ) λ g → ST.elim (λ _ → isProp→isSet (squash₂ _ _)) (λ h → refl) ----------------------------------------------------------------------------- -- Computation of the Cohomology Ring module _ (X : Type ℓ) (Y : Type ℓ') where open Equiv-Coproduct-Properties open Iso open RingEquivs CohomologyRing-Coproduct : RingEquiv (H*R(X ⊎ Y)) (DirectProd-Ring (H*R X) (H*R Y)) fst (CohomologyRing-Coproduct) = isoToEquiv is where is : Iso (H* (X ⊎ Y)) (H* X × H* Y) fun is = H*-X⊎Y→H*-X×H*-Y inv is = H*-X×H*-Y→H*-X⊎Y rightInv is = e-sect leftInv is = e-retr snd (CohomologyRing-Coproduct) = makeIsRingHom H*-X⊎Y→H*-X×H*-Y-pres1 H*-X⊎Y→H*-X×H*-Y-pres+ H*-X⊎Y→H*-X×H*-Y-pres·
{ "alphanum_fraction": 0.4548301614, "avg_line_length": 39.785942492, "ext": "agda", "hexsha": "12c5b4efb8bd04eabb4ce3ea7409e70a7fe45fa1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/ZCohomology/CohomologyRings/Coproduct.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/ZCohomology/CohomologyRings/Coproduct.agda", "max_line_length": 141, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/ZCohomology/CohomologyRings/Coproduct.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5033, "size": 12453 }
-- {-# OPTIONS -v tc.lhs:40 #-} {-# OPTIONS -v scope.pat:40 #-} module Issue822 where module M₁ where postulate [_] : Set module M₂ where data D : Set₁ where [_] : Set → D module M₃ where data D : Set₁ where [_] : Set → D open M₁ open M₂ open M₃ Foo : _ → Set Foo [ A ] = A -- Strange error message: -- Bug.agda:16,1-14 -- Left hand side gives too many arguments to a function of type -- D → Set -- when checking that the clause Foo [ A ] = A has type D → Set -- If the two open statements are swapped, then we get a more -- reasonable error message: -- Bug.agda:16,1-10 -- Ambiguous name [_]. It could refer to any one of -- M₂.[_] bound at /home/nad/research/dtp/pretty/Bug.agda:10,5-8 -- M₁.[_] bound at /home/nad/research/dtp/pretty/Bug.agda:5,13-16 -- when scope checking the left-hand side Foo [ A ] in the definition -- of Foo -- One could perhaps also argue that the code above should be -- syntactically correct, because M₁.[_] can't be used in the pattern -- (except for under a dot). -- Andreas, 2013-03-21 -- To reproduce an error, one now needs ambiguous constructors.
{ "alphanum_fraction": 0.6678635548, "avg_line_length": 23.2083333333, "ext": "agda", "hexsha": "39028c902e87ffa414f9df4dc2b22e084f665b89", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue822.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue822.agda", "max_line_length": 69, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/Issue822.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 349, "size": 1114 }
{-# OPTIONS --no-auto-inline #-} open import Agda.Builtin.Reflection renaming (bindTC to _>>=_) open import Agda.Builtin.Nat open import Agda.Builtin.Unit open import Agda.Builtin.List open import Agda.Builtin.Equality _>>_ : {A B : Set} → TC A → TC B → TC B m >> m' = m >>= λ _ → m' -- Normally auto-inlined id : {A : Set} → A → A id x = x id-inline : {A : Set} → A → A id-inline x = x {-# INLINE id-inline #-} f₁ : Nat → Nat f₁ n = id n f₂ : Nat → Nat f₂ n = id-inline n macro rhs : Name → Term → TC ⊤ rhs f hole = do function (clause _ _ rhs ∷ _) ← getDefinition f where _ → typeError (strErr "fail" ∷ []) `rhs ← quoteTC rhs unify hole `rhs pattern vArg x = arg (arg-info visible relevant) x pattern hArg x = arg (arg-info hidden relevant) x -- Should not be inlined check₁ : rhs f₁ ≡ def (quote id) (hArg (def (quote Nat) []) ∷ vArg (var 0 []) ∷ []) check₁ = refl -- Should be inlined check₂ : rhs f₂ ≡ var 0 [] check₂ = refl
{ "alphanum_fraction": 0.6185031185, "avg_line_length": 21.8636363636, "ext": "agda", "hexsha": "629628e0596e5c299ab6b790debf12c8aae80e23", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/Issue3075.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue3075.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue3075.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 327, "size": 962 }
-- Andreas, 2017-08-23, issue #2714 -- This file should compile from within the interaction mode -- without warning about missing main function. {-# OPTIONS --no-main #-}
{ "alphanum_fraction": 0.7167630058, "avg_line_length": 24.7142857143, "ext": "agda", "hexsha": "30d15c344e1a5cd0e16ef67f4cd150da843eee7f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue2714.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue2714.agda", "max_line_length": 60, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue2714.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 41, "size": 173 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Order morphisms ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary.Core module Relation.Binary.Morphism.Structures {a b} {A : Set a} {B : Set b} where open import Data.Product using (_,_) open import Function.Definitions open import Level open import Relation.Binary.Morphism.Definitions A B private variable ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level ------------------------------------------------------------------------ -- Raw relations ------------------------------------------------------------------------ record IsRelHomomorphism (_∼₁_ : Rel A ℓ₁) (_∼₂_ : Rel B ℓ₂) (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field cong : Homomorphic₂ _∼₁_ _∼₂_ ⟦_⟧ record IsRelMonomorphism (_∼₁_ : Rel A ℓ₁) (_∼₂_ : Rel B ℓ₂) (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isHomomorphism : IsRelHomomorphism _∼₁_ _∼₂_ ⟦_⟧ injective : Injective _∼₁_ _∼₂_ ⟦_⟧ open IsRelHomomorphism isHomomorphism public record IsRelIsomorphism (_∼₁_ : Rel A ℓ₁) (_∼₂_ : Rel B ℓ₂) (⟦_⟧ : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field isMonomorphism : IsRelMonomorphism _∼₁_ _∼₂_ ⟦_⟧ surjective : Surjective _∼₁_ _∼₂_ ⟦_⟧ open IsRelMonomorphism isMonomorphism bijective : Bijective _∼₁_ _∼₂_ ⟦_⟧ bijective = injective , surjective ------------------------------------------------------------------------ -- Raw orders ------------------------------------------------------------------------ record IsOrderHomomorphism (_≈₁_ : Rel A ℓ₁) (_≈₂_ : Rel B ℓ₂) (_∼₁_ : Rel A ℓ₃) (_∼₂_ : Rel B ℓ₄) (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃ ⊔ ℓ₄) where field cong : Homomorphic₂ _≈₁_ _≈₂_ ⟦_⟧ mono : Homomorphic₂ _∼₁_ _∼₂_ ⟦_⟧ module Eq where isRelHomomorphism : IsRelHomomorphism _≈₁_ _≈₂_ ⟦_⟧ isRelHomomorphism = record { cong = cong } isRelHomomorphism : IsRelHomomorphism _∼₁_ _∼₂_ ⟦_⟧ isRelHomomorphism = record { cong = mono } record IsOrderMonomorphism (_≈₁_ : Rel A ℓ₁) (_≈₂_ : Rel B ℓ₂) (_∼₁_ : Rel A ℓ₃) (_∼₂_ : Rel B ℓ₄) (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃ ⊔ ℓ₄) where field isOrderHomomorphism : IsOrderHomomorphism _≈₁_ _≈₂_ _∼₁_ _∼₂_ ⟦_⟧ injective : Injective _≈₁_ _≈₂_ ⟦_⟧ cancel : Injective _∼₁_ _∼₂_ ⟦_⟧ open IsOrderHomomorphism isOrderHomomorphism public hiding (module Eq) module Eq where isRelMonomorphism : IsRelMonomorphism _≈₁_ _≈₂_ ⟦_⟧ isRelMonomorphism = record { isHomomorphism = IsOrderHomomorphism.Eq.isRelHomomorphism isOrderHomomorphism ; injective = injective } isRelMonomorphism : IsRelMonomorphism _∼₁_ _∼₂_ ⟦_⟧ isRelMonomorphism = record { isHomomorphism = isRelHomomorphism ; injective = cancel } record IsOrderIsomorphism (_≈₁_ : Rel A ℓ₁) (_≈₂_ : Rel B ℓ₂) (_∼₁_ : Rel A ℓ₃) (_∼₂_ : Rel B ℓ₄) (⟦_⟧ : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃ ⊔ ℓ₄) where field isOrderMonomorphism : IsOrderMonomorphism _≈₁_ _≈₂_ _∼₁_ _∼₂_ ⟦_⟧ surjective : Surjective _≈₁_ _≈₂_ ⟦_⟧ open IsOrderMonomorphism isOrderMonomorphism public hiding (module Eq) module Eq where isRelIsomorphism : IsRelIsomorphism _≈₁_ _≈₂_ ⟦_⟧ isRelIsomorphism = record { isMonomorphism = IsOrderMonomorphism.Eq.isRelMonomorphism isOrderMonomorphism ; surjective = surjective }
{ "alphanum_fraction": 0.5234934962, "avg_line_length": 31.9237288136, "ext": "agda", "hexsha": "c1ac4d2cd9913efeba00e40c1d21b85e23b521bc", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Morphism/Structures.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Morphism/Structures.agda", "max_line_length": 85, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Morphism/Structures.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1339, "size": 3767 }
module CoInf where open import Codata.Musical.Notation -- Check that ∞ can be used as an "expression". test : Set → Set test = ∞
{ "alphanum_fraction": 0.7099236641, "avg_line_length": 16.375, "ext": "agda", "hexsha": "d53954c95155dd1df15066e85e4b5378134ebb81", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/LibSucceed/CoInf.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/LibSucceed/CoInf.agda", "max_line_length": 47, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/LibSucceed/CoInf.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 39, "size": 131 }
{-# OPTIONS --warning=error --safe --without-K #-} open import Groups.Definition open import Groups.Groups open import Groups.Homomorphisms.Definition open import Setoids.Setoids open import Sets.EquivalenceRelations open import Groups.Lemmas open import Groups.Homomorphisms.Lemmas module Groups.QuotientGroup.Definition {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_·A_ : A → A → A} {_·B_ : B → B → B} (G : Group S _·A_) {H : Group T _·B_} {f : A → B} (fHom : GroupHom G H f) where quotientGroupSetoid : (Setoid {a} {d} A) quotientGroupSetoid = ansSetoid where open Setoid T open Group H open Equivalence eq ansSetoid : Setoid A Setoid._∼_ ansSetoid r s = (f (r ·A (Group.inverse G s))) ∼ 0G Equivalence.reflexive (Setoid.eq ansSetoid) {b} = transitive (GroupHom.wellDefined fHom (Group.invRight G)) (imageOfIdentityIsIdentity fHom) Equivalence.symmetric (Setoid.eq ansSetoid) {m} {n} pr = i where g : f (Group.inverse G (m ·A Group.inverse G n)) ∼ 0G g = transitive (homRespectsInverse fHom {m ·A Group.inverse G n}) (transitive (inverseWellDefined H pr) (invIdent H)) h : f (Group.inverse G (Group.inverse G n) ·A Group.inverse G m) ∼ 0G h = transitive (GroupHom.wellDefined fHom (Equivalence.symmetric (Setoid.eq S) (invContravariant G))) g i : f (n ·A Group.inverse G m) ∼ 0G i = transitive (GroupHom.wellDefined fHom (Group.+WellDefined G (Equivalence.symmetric (Setoid.eq S) (invTwice G n)) (Equivalence.reflexive (Setoid.eq S)))) h Equivalence.transitive (Setoid.eq ansSetoid) {m} {n} {o} prmn prno = transitive (GroupHom.wellDefined fHom (Group.+WellDefined G (Equivalence.reflexive (Setoid.eq S)) (Equivalence.symmetric (Setoid.eq S) (Group.identLeft G)))) k where g : f (m ·A Group.inverse G n) ·B f (n ·A Group.inverse G o) ∼ 0G ·B 0G g = replaceGroupOp H reflexive reflexive prmn prno reflexive h : f (m ·A Group.inverse G n) ·B f (n ·A Group.inverse G o) ∼ 0G h = transitive g identLeft i : f ((m ·A Group.inverse G n) ·A (n ·A Group.inverse G o)) ∼ 0G i = transitive (GroupHom.groupHom fHom) h j : f (m ·A (((Group.inverse G n) ·A n) ·A Group.inverse G o)) ∼ 0G j = transitive (GroupHom.wellDefined fHom (fourWay+Associative G)) i k : f (m ·A ((Group.0G G) ·A Group.inverse G o)) ∼ 0G k = transitive (GroupHom.wellDefined fHom (Group.+WellDefined G (Equivalence.reflexive (Setoid.eq S)) (Group.+WellDefined G (Equivalence.symmetric (Setoid.eq S) (Group.invLeft G)) (Equivalence.reflexive (Setoid.eq S))))) j quotientGroupByHom : Group (quotientGroupSetoid) _·A_ Group.+WellDefined (quotientGroupByHom) {x} {y} {m} {n} x~m y~n = ans where open Setoid T open Equivalence (Setoid.eq T) p1 : f ((x ·A y) ·A (Group.inverse G (m ·A n))) ∼ f ((x ·A y) ·A ((Group.inverse G n) ·A (Group.inverse G m))) p2 : f ((x ·A y) ·A ((Group.inverse G n) ·A (Group.inverse G m))) ∼ f (x ·A ((y ·A (Group.inverse G n)) ·A (Group.inverse G m))) p3 : f (x ·A ((y ·A (Group.inverse G n)) ·A (Group.inverse G m))) ∼ (f x) ·B f ((y ·A (Group.inverse G n)) ·A (Group.inverse G m)) p4 : (f x) ·B f ((y ·A (Group.inverse G n)) ·A (Group.inverse G m)) ∼ (f x) ·B (f (y ·A (Group.inverse G n)) ·B f (Group.inverse G m)) p5 : (f x) ·B (f (y ·A (Group.inverse G n)) ·B f (Group.inverse G m)) ∼ (f x) ·B (Group.0G H ·B f (Group.inverse G m)) p6 : (f x) ·B (Group.0G H ·B f (Group.inverse G m)) ∼ (f x) ·B f (Group.inverse G m) p7 : (f x) ·B f (Group.inverse G m) ∼ f (x ·A (Group.inverse G m)) p8 : f (x ·A (Group.inverse G m)) ∼ Group.0G H p1 = GroupHom.wellDefined fHom (Group.+WellDefined G (Equivalence.reflexive (Setoid.eq S)) (invContravariant G)) p2 = GroupHom.wellDefined fHom (Equivalence.symmetric (Setoid.eq S) (fourWay+Associative G)) p3 = GroupHom.groupHom fHom p4 = Group.+WellDefined H reflexive (GroupHom.groupHom fHom) p5 = Group.+WellDefined H reflexive (replaceGroupOp H (symmetric y~n) reflexive reflexive reflexive reflexive) p6 = Group.+WellDefined H reflexive (Group.identLeft H) p7 = symmetric (GroupHom.groupHom fHom) p8 = x~m ans : f ((x ·A y) ·A (Group.inverse G (m ·A n))) ∼ Group.0G H ans = transitive p1 (transitive p2 (transitive p3 (transitive p4 (transitive p5 (transitive p6 (transitive p7 p8)))))) Group.0G (quotientGroupByHom) = Group.0G G Group.inverse (quotientGroupByHom) = Group.inverse G Group.+Associative (quotientGroupByHom) {a} {b} {c} = ans where open Setoid T open Equivalence (Setoid.eq T) ans : f ((a ·A (b ·A c)) ·A (Group.inverse G ((a ·A b) ·A c))) ∼ Group.0G H ans = transitive (GroupHom.wellDefined fHom (transferToRight'' G (Group.+Associative G))) (imageOfIdentityIsIdentity fHom) Group.identRight (quotientGroupByHom) {a} = ans where open Group G open Setoid T open Equivalence eq transitiveG = Equivalence.transitive (Setoid.eq S) ans : f ((a ·A 0G) ·A inverse a) ∼ Group.0G H ans = transitive (GroupHom.wellDefined fHom (transitiveG (Group.+WellDefined G (Group.identRight G) (Equivalence.reflexive (Setoid.eq S))) (Group.invRight G))) (imageOfIdentityIsIdentity fHom) Group.identLeft (quotientGroupByHom) {a} = ans where open Group G open Setoid T open Equivalence eq transitiveG = Equivalence.transitive (Setoid.eq S) ans : f ((0G ·A a) ·A (inverse a)) ∼ Group.0G H ans = transitive (GroupHom.wellDefined fHom (transitiveG (Group.+WellDefined G (Group.identLeft G) (Equivalence.reflexive (Setoid.eq S))) (Group.invRight G))) (imageOfIdentityIsIdentity fHom) Group.invLeft (quotientGroupByHom) {x} = ans where open Group G open Setoid T open Equivalence eq ans : f ((inverse x ·A x) ·A (inverse 0G)) ∼ (Group.0G H) ans = transitive (GroupHom.wellDefined fHom (Equivalence.transitive (Setoid.eq S) (replaceGroupOp G (Equivalence.symmetric (Setoid.eq S) (Group.invLeft G)) (Equivalence.symmetric (Setoid.eq S) (invIdent G)) (Equivalence.reflexive (Setoid.eq S)) ((Equivalence.reflexive (Setoid.eq S))) ((Equivalence.reflexive (Setoid.eq S)))) (identRight {0G}))) (imageOfIdentityIsIdentity fHom) Group.invRight (quotientGroupByHom) {x} = ans where open Group G open Setoid T open Equivalence eq ans : f ((x ·A inverse x) ·A (inverse 0G)) ∼ (Group.0G H) ans = transitive (GroupHom.wellDefined fHom (Equivalence.transitive (Setoid.eq S) (replaceGroupOp G (Equivalence.symmetric (Setoid.eq S) (Group.invRight G)) (Equivalence.symmetric (Setoid.eq S) (invIdent G)) (Equivalence.reflexive (Setoid.eq S)) (Equivalence.reflexive (Setoid.eq S)) (Equivalence.reflexive (Setoid.eq S))) (identRight {0G}))) (imageOfIdentityIsIdentity fHom)
{ "alphanum_fraction": 0.6673054245, "avg_line_length": 64.6095238095, "ext": "agda", "hexsha": "808f62c662a00fba0555b54ab2989ddc2a11b7aa", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/QuotientGroup/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/QuotientGroup/Definition.agda", "max_line_length": 382, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/QuotientGroup/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 2318, "size": 6784 }
module Prolegomenon where open import Agda.Primitive open import Relation.Binary open import Algebra open import Category.Applicative.Predicate open import Algebra open import Algebra.Structures open import Category.Monad.Indexed open import Algebra.FunctionProperties.Core open import Function PowerRightIdentity : ∀ {a ℓ} {A : Set a} → Rel A ℓ → ∀ {b} {B : Set b} → B → (B → A → A) → Set _ PowerRightIdentity _≈_ e _◃_ = ∀ x → (e ◃ x) ≈ x PowerAssociative : ∀ {a b ℓ} {A : Set a} {B : Set b} → (A → A → Set ℓ) → (B → A → A) → (B → B → B) → Set _ PowerAssociative _≈_ _◃_ _∙_ = ∀ x a b → ((b ∙ a) ◃ x) ≈ (b ◃ (a ◃ x)) _over_ : ∀ {f} {F : Set f} {g} → (F → F → Set g) → ∀ {i} {I : Set i} {a} {A : Set a} → (A → I → F) → A → A → Set (i ⊔ g) _*_ over f = λ x y → ∀ i → f x i * f y i record IsMonoidTransformer {s ℓˢ} {S : Set s} (≈ˢ : Rel S ℓˢ) {m ℓᵐ} {M : Set m} (≈ᵐ : Rel M ℓᵐ) (∙ : Op₂ M) (ε : M) (◃ : M → S → S) : Set (s ⊔ ℓˢ ⊔ m ⊔ ℓᵐ) where field ◃-identity : PowerRightIdentity ≈ˢ ε ◃ ≈ˢ-over-◃-⟶-≈ᵐ : ≈ˢ over ◃ ⇒ ≈ᵐ ≈ᵐ-to-≈ˢ-over-◃ : ≈ᵐ ⇒ ≈ˢ over ◃ ◃-extracts-∙ : PowerAssociative ≈ˢ ◃ ∙ record MonoidTransformer ℓˢ ℓ⁼ˢ ℓᵐ ℓ⁼ᵐ : Set (lsuc (ℓˢ ⊔ ℓ⁼ˢ ⊔ ℓᵐ ⊔ ℓ⁼ᵐ)) where field base : Setoid ℓˢ ℓ⁼ˢ exponent : Monoid ℓᵐ ℓ⁼ᵐ module B = Setoid base module E = Monoid exponent {- open Setoid base public renaming (Carrier to Carrierˢ ;_≈_ to _≈ˢ_ ;reflexive to reflexiveˢ ;refl to reflˢ ;trans to transˢ ;sym to symˢ ) open Monoid exponent public renaming (Carrier to Carrierᵐ ;_≈_ to _≈ᵐ_ ;reflexive to reflexiveᵐ ;_∙_ to _∙_ ;ε to ε ;refl to reflᵐ ;trans to transᵐ ;sym to symᵐ) -} infixl 6 _◃_ field _◃_ : E.Carrier → B.Carrier → B.Carrier isMonoidTransformer : IsMonoidTransformer B._≈_ E._≈_ E._∙_ E.ε _◃_ open IsMonoidTransformer isMonoidTransformer public
{ "alphanum_fraction": 0.5912951168, "avg_line_length": 28.9846153846, "ext": "agda", "hexsha": "e2247d7e84979beb1938f7b2546ec6325e41d7db", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/Prolegomenon.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/Prolegomenon.agda", "max_line_length": 162, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/Prolegomenon.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 872, "size": 1884 }
module Int where open import Agda.Builtin.FromNat open import Agda.Builtin.FromNeg open import Data.Char hiding (fromNat) open import Data.Integer hiding (_≤_; suc) open import Data.Integer.Literals open import Data.List open import Data.Nat hiding (_≤_) open import Data.String open import Data.Unit hiding (_≤_) open import Function open import Show postulate Int : Set primShow : Int → List Char primFromInteger : ℤ → Int primToInteger : Int → ℤ primMinBound : Int primMaxBound : Int {-# COMPILE GHC Int = type Int #-} {-# COMPILE GHC primShow = show #-} {-# COMPILE GHC primFromInteger = fromInteger #-} {-# COMPILE GHC primToInteger = toInteger #-} {-# COMPILE GHC primMinBound = minBound #-} {-# COMPILE GHC primMaxBound = maxBound #-} instance ShowInt : Show Int ShowInt = fromHaskell primShow instance Numberℤ : Number ℤ Numberℤ = number -- Its values can be automatically derived as instance arguments, but -- is otherwise identical to the standard library version data _ℕ≤_ : ℕ → ℕ → Set where instance z≤n : ∀ {n} → zero ℕ≤ n instance s≤s : ∀ {m n} {{m≤n : m ℕ≤ n}} → suc m ℕ≤ suc n -- Its values can be automatically derived as instance arguments, but -- is otherwise identical to the standard library version data _≤_ : ℤ → ℤ → Set where instance -≤- : {m n : ℕ} → {{n≤m : n ℕ≤ m}} → -[1+ m ] ≤ -[1+ n ] instance -≤+ : {m n : ℕ} → (-[1+ m ]) ≤ (+ n) instance +≤+ : {m n : ℕ} → {{m≤n : m ℕ≤ n}} → (+ m) ≤ (+ n) -- Use a literal for the bound so that Agda can automatically check -- the constraints for fromNat and fromNeg. Value taken from -- https://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html#t:Int maxBound : ℤ maxBound = 536870911 -- Use the actual bound in compiled code {-# COMPILE GHC maxBound = toInteger (maxBound :: Int) #-} instance NumberInt : Number Int NumberInt = record { Constraint = Constraint ; fromNat = fromNatInt } where Constraint : ℕ → Set Constraint n = (+ n) ≤ maxBound fromNatInt : ∀ n → {{_ : Constraint n}} → Int fromNatInt n = primFromInteger (+ n)
{ "alphanum_fraction": 0.6713253012, "avg_line_length": 31.4393939394, "ext": "agda", "hexsha": "4dd97837612d5da8867e6fb11ceeddf60dc8fd12", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c5ffd117f6d5a98f7c68a2a6b9be54a150c70945", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda-editor", "max_forks_repo_path": "src/Int.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c5ffd117f6d5a98f7c68a2a6b9be54a150c70945", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda-editor", "max_issues_repo_path": "src/Int.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "c5ffd117f6d5a98f7c68a2a6b9be54a150c70945", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda-editor", "max_stars_repo_path": "src/Int.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 624, "size": 2075 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Sigma open import lib.NType2 open import Preliminaries open import Truncation_Level_Criteria module Anonymous_Existence_CollSplit where -- CHAPTER 4 -- SECTION 4.1 -- Lemma 4.1.2, part 1 constant-implies-path-constant : ∀ {i j} {X : Type i} {Y : Type j} → (f : X → Y) → (const f) → (x₁ x₂ : X) → const (ap f {x = x₁} {y = x₂}) constant-implies-path-constant {X = X} f c x₁ x₂ p₁ p₂ = claim-cor where claim : {x₃ x₄ : X} → {p : x₃ == x₄} → (ap f p) == ! (c x₃ x₃) ∙ (c x₃ x₄) claim {x₃} {p = idp} = ! (!-inv-l (c x₃ x₃)) claim-cor : ap f p₁ == ap f p₂ claim-cor = ap f p₁ =⟨ claim ⟩ ! (c x₁ x₁) ∙ (c x₁ x₂) =⟨ ! claim ⟩ ap f p₂ ∎ -- Lemma 4.1.2, part 2 constant-refl : ∀ {i j} {X : Type i} {Y : Type j} → (f : X → Y) → (const f) → (x : X) → (p : x == x) → ap f p == idp constant-refl f c x p = constant-implies-path-constant f c x x p idp -- todo: this is not in the library? -- We also need the following very simple lemma: ap-id-trivial : ∀ {i} {X : Type i} → {x₁ x₂ : X} → (p : x₁ == x₂) → ap (idf X) p == p ap-id-trivial idp = idp -- Main Lemma 4.1.1 needs a bit of preparation. fix : ∀ {i} {X : Type i} → (f : X → X) → Type i fix {X = X} f = Σ X λ x → x == f x -- let us give a name to the map X → fix f: to-fix : ∀ {i} {X : Type i} → (f : X → X) → (const f) → X → fix f to-fix f c x₀ = f x₀ , c _ _ -- the other direction is just projection: from-fix : ∀ {i} {X : Type i} → (f : X → X) → fix f → X from-fix f (x₀ , p₀) = x₀ -- let us structure the proof of the fixed point lemma a bit: module fixedpoint {i : ULevel} {X : Type i} (f : X → X) (c : const f) where -- let us show that (x , p) == (x , q) first module _ (x : X) (p q : x == f x) where t : x == x t = p ∙ ! q r : f x == f x r = ap f t r-is-triv : r == idp r-is-triv = constant-refl f c x t t' : x == x t' = ap (idf X) t t'-is-t : t' == t t'-is-t = ap-id-trivial t trans-t-p-is-q : transport (λ y → y == f y) t p == q trans-t-p-is-q = transport (λ y → y == f y) t p =⟨ transport-is-comp (idf X) f t p ⟩ ! t' ∙ p ∙ r =⟨ ap (λ s → ! s ∙ p ∙ r) t'-is-t ⟩ ! t ∙ p ∙ r =⟨ ! (∙-assoc (! t) _ _) ⟩ (! t ∙ p) ∙ r =⟨ ap (λ s → (! t ∙ p) ∙ s) r-is-triv ⟩ (! t ∙ p) ∙ idp =⟨ ∙-unit-r _ ⟩ ! t ∙ p =⟨ ap (λ s → s ∙ p) (!-∙ p (! q)) ⟩ (! (! q) ∙ ! p) ∙ p =⟨ ∙-assoc (! (! q)) _ _ ⟩ ! (! q) ∙ ! p ∙ p =⟨ ap (λ s → ! (! q) ∙ s) (!-inv-l p) ⟩ ! (! q) ∙ idp =⟨ ∙-unit-r _ ⟩ ! (! q) =⟨ !-! _ ⟩ q ∎ single-x-claim : (x , p) == (x , q) single-x-claim = pair= t (from-transp _ _ trans-t-p-is-q) -- Now, we can prove that (x₁ , p₁) and (x₂ , p₂) are always equal: fix-paths : has-all-paths (fix f) fix-paths (x₁ , p₁) (x₂ , p₂) = (x₁ , p₁) =⟨ pair= (p₁ ∙ c x₁ x₂ ∙ ! p₂) (from-transp _ (p₁ ∙ c x₁ x₂ ∙ ! p₂) idp) ⟩ (x₂ , _) =⟨ single-x-claim x₂ _ _ ⟩ (x₂ , p₂) ∎ -- finally, the proof of the fixed point lemma fixed-point : ∀ {i} {X : Type i} → (f : X → X) → (const f) → is-prop (fix f) fixed-point {X = X} f c = all-paths-is-prop (fixedpoint.fix-paths f c) -- Sattler's argument fixed-point-alt : ∀ {i} {X : Type i} → (f : X → X) → (const f) → is-prop (fix f) fixed-point-alt {X = X} f c = inhab-to-contr-is-prop inh→contr where inh→contr : fix f → is-contr (fix f) inh→contr (x₀ , p₀) = equiv-preserves-level {A = Σ X λ x → x == f x₀} {B = fix f} claim-Σ (pathto-is-contr _) where claim : (x : X) → (x == f x₀) ≃ (x == f x) claim x = (λ p → p ∙ c x₀ x) , post∙-is-equiv _ claim-Σ : (Σ X λ x → x == f x₀) ≃ fix f claim-Σ = equiv-Σ-snd claim --from here, we need truncation module with-weak-trunc where open wtrunc -- Corollary 4.1.3 -- let us define the following map: trunc-to-fix : ∀ {i} {X : Type i} → (fc : coll X) → ∣∣ X ∣∣ → fix (fst fc) trunc-to-fix (f , c) z = tr-rec (fixed-point f c) (to-fix f c) z coll→splitSup : ∀ {i} {X : Type i} → coll X → splitSup X coll→splitSup (f , c) = (from-fix f) ∘ trunc-to-fix (f , c) -- Theorem 4.1.4 coll↔splitSup : ∀ {i} {X : Type i} → coll X ↔ splitSup X coll↔splitSup {X = X} = coll→splitSup , splitSup→coll where splitSup→coll : splitSup X → coll X splitSup→coll hst = f , c where f = hst ∘ ∣_∣ c : const f c x₁ x₂ = f x₁ =⟨ idp ⟩ hst ∣ x₁ ∣ =⟨ ap hst (prop-has-all-paths tr-is-prop _ _) ⟩ hst ∣ x₂ ∣ =⟨ idp ⟩ f x₂ ∎ -- preparation for Statement 4.1.5 - we need to prove that -- f : X → X with an inhabitant of ∣∣ const f ∣∣ is enough -- to show that fix f is propositional. fixed-point-strong : ∀ {i} {X : Type i} → (f : X → X) → ∣∣ const f ∣∣ → is-prop (fix f) fixed-point-strong {X = X} f = tr-rec {X = const f} {P = is-prop(fix f)} is-prop-is-prop (fixed-point f) -- Statement 4.1.5 (we exclude the part which is already included in Theorem 4.1.4) -- to get an easy proof of the addendum, we structure it in the following way: module thm46 {i : ULevel} {X : Type i} where module _ (fhc : Σ (X → X) (λ f → ∣∣ const f ∣∣)) where f = fst fhc hc = snd fhc trunc-const-fix : ∣∣ X ∣∣ → ∣∣ const f ∣∣ → fix f trunc-const-fix z = tr-rec {X = const f} {P = fix f} (fixed-point-strong f hc) (λ c → trunc-to-fix (f , c) z) trunc-fix : ∣∣ X ∣∣ → fix f trunc-fix z = trunc-const-fix z hc g : X → X g = fst ∘ trunc-fix ∘ ∣_∣ g-const : const g g-const x₁ x₂ = ap (fst ∘ trunc-fix) (prop-has-all-paths tr-is-prop _ _) coll↔hideProof : ∀ {i} {X : Type i} → coll X ↔ Σ (X → X) (λ f → ∣∣ const f ∣∣) coll↔hideProof {X = X} = one , two where one : coll X → Σ (X → X) (λ f → ∣∣ const f ∣∣) one (f , c) = f , ∣ c ∣ two : (Σ (X → X) (λ f → ∣∣ const f ∣∣)) → coll X two fhc = thm46.g fhc , thm46.g-const fhc -- Statement 4.1.5 addendum merely-equal : ∀ {i} {X : Type i} → (fhc : Σ (X → X) (λ f → ∣∣ const f ∣∣)) → ∣∣ ((x : X) → fst fhc x == thm46.g fhc x) ∣∣ merely-equal {X = X} (f , hc) = tr-rec tr-is-prop (∣_∣ ∘ const-equal) hc where open thm46 const-equal : const f → (x : X) → f x == thm46.g (f , hc) x const-equal c x = f x =⟨ idp ⟩ fst (to-fix f c x) =⟨ ap fst (! (trunc-β _ _ x)) ⟩ fst (trunc-to-fix (f , c) ∣ x ∣) =⟨ ap fst (! (trunc-β _ _ c)) ⟩ fst (trunc-const-fix (f , hc) ∣ x ∣ ∣ c ∣) =⟨ ap (λ hc' → fst (trunc-const-fix (f , hc) ∣ x ∣ hc')) (prop-has-all-paths tr-is-prop _ _) ⟩ fst (trunc-const-fix (f , hc) ∣ x ∣ hc) =⟨ idp ⟩ fst (trunc-fix (f , hc) ∣ x ∣) =⟨ idp ⟩ g (f , hc) x ∎
{ "alphanum_fraction": 0.4815661618, "avg_line_length": 39.5367231638, "ext": "agda", "hexsha": "d1bd7cbd060bef3bbe5ea5ac637870f2f0e2069c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "nicolai/thesis/Anonymous_Existence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "nicolai/thesis/Anonymous_Existence.agda", "max_line_length": 144, "max_stars_count": 1, "max_stars_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nicolaikraus/HoTT-Agda", "max_stars_repo_path": "nicolai/thesis/Anonymous_Existence.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 2904, "size": 6998 }
{-# OPTIONS --without-K #-} module PathStructure.Unit where open import Equivalence open import Types split-path : {x y : ⊤} → x ≡ y → ⊤ split-path _ = _ merge-path : {x y : ⊤} → ⊤ → x ≡ y merge-path _ = refl split-merge-eq : {x y : ⊤} → (x ≡ y) ≃ ⊤ split-merge-eq = split-path , (merge-path , λ _ → refl) , (merge-path , J {A = ⊤} (λ _ _ p → refl ≡ p) (λ _ → refl) _ _)
{ "alphanum_fraction": 0.534351145, "avg_line_length": 19.65, "ext": "agda", "hexsha": "6f34b75edd471db971d8394e6a91a7072f466d9b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vituscze/HoTT-lectures", "max_forks_repo_path": "src/PathStructure/Unit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "vituscze/HoTT-lectures", "max_issues_repo_path": "src/PathStructure/Unit.agda", "max_line_length": 40, "max_stars_count": null, "max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "vituscze/HoTT-lectures", "max_stars_repo_path": "src/PathStructure/Unit.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 152, "size": 393 }
-- Andreas, 2017-11-01, issue #2824 -- Allow built-ins that define a new name to be in parametrized module. module Issue2824SizeU (A : Set) where -- This is the top-level module header. {-# BUILTIN SIZEUNIV SizeU #-} -- Should succeed.
{ "alphanum_fraction": 0.7083333333, "avg_line_length": 26.6666666667, "ext": "agda", "hexsha": "e83b7ebf7112d3be16cc38d6fb3080224a42a693", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2824SizeU.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2824SizeU.agda", "max_line_length": 78, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2824SizeU.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 68, "size": 240 }
open import Agda.Builtin.Nat data Vec (A : Set) : Nat → Set where variable A : Set x : A n : Nat xs : Vec A n postulate IsNil : Vec A 0 → Set foo : (xs : Vec A n) → IsNil xs foo = {!!}
{ "alphanum_fraction": 0.5566502463, "avg_line_length": 11.9411764706, "ext": "agda", "hexsha": "c05bda6e019d38cfdb390ca8c6c034ff7baff918", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue3276.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue3276.agda", "max_line_length": 36, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue3276.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 82, "size": 203 }
module prelude.Stream where open import prelude open import Data.List as L using (List) record Stream (a : Set) : Set where constructor _∷_ coinductive field hd : a tl : Stream a open Stream take : ∀ {a} → ℕ → Stream a → List a take ℕz xs = L.[] take (ℕs n) xs = hd xs L.∷ take n (tl xs)
{ "alphanum_fraction": 0.6144200627, "avg_line_length": 18.7647058824, "ext": "agda", "hexsha": "87658d6a90797166226205fe3146e90a4ab86916", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-30T11:45:57.000Z", "max_forks_repo_forks_event_min_datetime": "2021-07-10T17:19:37.000Z", "max_forks_repo_head_hexsha": "425de958985aacbd3284d3057fe21fd682e315ea", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dspivak/poly", "max_forks_repo_path": "code-examples/agda/prelude/Stream.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "425de958985aacbd3284d3057fe21fd682e315ea", "max_issues_repo_issues_event_max_datetime": "2022-01-12T10:06:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-09-02T02:29:39.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dspivak/poly", "max_issues_repo_path": "code-examples/agda/prelude/Stream.agda", "max_line_length": 41, "max_stars_count": 53, "max_stars_repo_head_hexsha": "425de958985aacbd3284d3057fe21fd682e315ea", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mstone/poly", "max_stars_repo_path": "code-examples/agda/prelude/Stream.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T23:08:27.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-18T16:31:04.000Z", "num_tokens": 104, "size": 319 }
-- WARNING: This file was generated automatically by Vehicle -- and should not be modified manually! -- Metadata -- - Agda version: 2.6.2 -- - AISEC version: 0.1.0.1 -- - Time generated: ??? {-# OPTIONS --allow-exec #-} open import Vehicle open import Vehicle.Data.Tensor open import Data.Product open import Data.Integer as ℤ using (ℤ) open import Data.Rational as ℚ using (ℚ) open import Data.List open import Relation.Binary.PropositionalEquality module reachability-output where private VEHICLE_PROJECT_FILE = "TODO_projectFile" f : Tensor ℚ (2 ∷ []) → ℚ f = evaluate record { projectFile = VEHICLE_PROJECT_FILE ; networkUUID = "TODO_networkUUID" } abstract reachable : ∃ λ (x : Tensor ℚ (2 ∷ [])) → f x ≡ ℤ.+ 0 ℚ./ 1 reachable = checkProperty record { projectFile = VEHICLE_PROJECT_FILE ; propertyUUID = "TODO_propertyUUID" }
{ "alphanum_fraction": 0.7071759259, "avg_line_length": 25.4117647059, "ext": "agda", "hexsha": "8f417c1a571454800f13fd759febc047fb030a45", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2021-11-16T14:30:47.000Z", "max_forks_repo_forks_event_min_datetime": "2021-03-15T15:22:31.000Z", "max_forks_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "wenkokke/vehicle", "max_forks_repo_path": "examples/network/reachability/reachability-output.agda", "max_issues_count": 53, "max_issues_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674", "max_issues_repo_issues_event_max_datetime": "2021-12-15T22:42:01.000Z", "max_issues_repo_issues_event_min_datetime": "2021-04-16T07:26:42.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "wenkokke/vehicle", "max_issues_repo_path": "examples/network/reachability/reachability-output.agda", "max_line_length": 61, "max_stars_count": 11, "max_stars_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "wenkokke/vehicle", "max_stars_repo_path": "examples/network/reachability/reachability-output.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T01:35:39.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-24T05:55:15.000Z", "num_tokens": 247, "size": 864 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cohomology.Theory open import groups.ExactSequence open import groups.HomSequence module cw.cohomology.grid.LongExactSequence {i} (CT : CohomologyTheory i) {X Y Z : Ptd i} (n : ℤ) (f : X ⊙→ Y) (g : Y ⊙→ Z) where open CohomologyTheory CT open import cohomology.PtdMapSequence CT open import cw.cohomology.grid.CofiberSplit (fst f) (fst g) open import cw.cohomology.grid.PtdMap f g {- X --> Y ----> Z | | | v v v 1 -> Y/X --> Z/X | this | v one v 1 ---> Z/Y -} private ⊙D-span : ⊙Span ⊙D-span = ⊙span Y/X Z Y (⊙cfcod' f) g ⊙D : Ptd i ⊙D = ⊙Pushout ⊙D-span Y/X-to-D : Y/X ⊙→ ⊙D Y/X-to-D = B/A-to-D , idp open import cohomology.LongExactSequence CT n Y/X-to-D ⊙E : Ptd i ⊙E = ⊙Cofiber (⊙left ⊙D-span) Z/Y-to-E : Z/Y ⊙→ ⊙E Z/Y-to-E = C/B-to-E , idp Z/X-to-D : Z/X ⊙→ ⊙D Z/X-to-D = C/A-to-D , idp grid-co∂ : C n Y/X →ᴳ C (succ n) Z/Y grid-co∂ = record {f = CEl-fmap (succ n) Z/Y-to-E ∘ GroupHom.f co∂ ; pres-comp = lemma} where abstract lemma = ∘ᴳ-pres-comp (C-fmap (succ n) Z/Y-to-E) co∂ grid-∂-before-Susp : C/B → Susp B/A grid-∂-before-Susp = extract-glue ∘ C/B-to-E ⊙grid-∂-before-Susp : Z/Y ⊙→ ⊙Susp Y/X ⊙grid-∂-before-Susp = grid-∂-before-Susp , lemma where abstract lemma = snd (⊙extract-glue ⊙∘ Z/Y-to-E) abstract grid-co∂-β : GroupHom.f grid-co∂ ∼ CEl-fmap (succ n) ⊙grid-∂-before-Susp ∘ <– (CEl-Susp n Y/X) grid-co∂-β x = ∘-CEl-fmap (succ n) Z/Y-to-E ⊙extract-glue _ abstract grid-∂-before-Susp-glue-β : ∀ x → ap (fst ⊙grid-∂-before-Susp) (glue x) == merid (cfcod x) grid-∂-before-Susp-glue-β x = ap-∘ extract-glue C/B-to-E (glue x) ∙ ap (ap extract-glue) (C/B-to-E-glue-β x) ∙ ap-∙' extract-glue (glue (cfcod x)) (ap cfcod (glue x)) ∙ ap2 _∙'_ (ExtractGlue.glue-β (cfcod x)) (∘-ap extract-glue cfcod (glue x) ∙ ap-cst south (glue x)) C-grid-cofiber-seq : HomSequence (C n Z/X) (C (succ n) Y/X) C-grid-cofiber-seq = C n Z/X →⟨ C-fmap n Y/X-to-Z/X ⟩ᴳ C n Y/X →⟨ grid-co∂ ⟩ᴳ C (succ n) Z/Y →⟨ C-fmap (succ n) Z/X-to-Z/Y ⟩ᴳ C (succ n) Z/X →⟨ C-fmap (succ n) Y/X-to-Z/X ⟩ᴳ C (succ n) Y/X ⊣|ᴳ private C-cofiber-seq-to-C-grid-cofiber-seq : HomSeqMap C-cofiber-seq C-grid-cofiber-seq (C-fmap n Z/X-to-D) (idhom _) C-cofiber-seq-to-C-grid-cofiber-seq = C-fmap n Z/X-to-D ↓⟨ comm-sqrᴳ (λ d → ! (C-fmap-idf n _) ∙ (C-comm-square n B/A-to-C/A-comm-square □$ᴳ d)) ⟩ᴳ idhom _ ↓⟨ comm-sqrᴳ (λ _ → idp) ⟩ᴳ C-fmap (succ n) Z/Y-to-E ↓⟨ C-comm-square (succ n) C/A-to-C/B-comm-square ⟩ᴳ C-fmap (succ n) Z/X-to-D ↓⟨ comm-sqrᴳ (λ d → ! (C-fmap-idf (succ n) _) ∙ (C-comm-square (succ n) B/A-to-C/A-comm-square □$ᴳ d)) ⟩ᴳ idhom _ ↓|ᴳ C-cofiber-seq-equiv-C-grid-cofiber-seq : HomSeqEquiv C-cofiber-seq C-grid-cofiber-seq (C-fmap n Z/X-to-D) (idhom _) C-cofiber-seq-equiv-C-grid-cofiber-seq = C-cofiber-seq-to-C-grid-cofiber-seq , CEl-isemap n Z/X-to-D C/A-to-D-is-equiv , idf-is-equiv _ , CEl-isemap (succ n) Z/Y-to-E C/B-to-E-is-equiv , CEl-isemap (succ n) Z/X-to-D C/A-to-D-is-equiv , idf-is-equiv _ abstract C-grid-cofiber-seq-is-exact : is-exact-seq C-grid-cofiber-seq C-grid-cofiber-seq-is-exact = seq-equiv-preserves-exact C-cofiber-seq-equiv-C-grid-cofiber-seq C-cofiber-seq-is-exact C-grid-cofiber-exact-seq : ExactSequence (C n Z/X) (C (succ n) Y/X) C-grid-cofiber-exact-seq = C-grid-cofiber-seq , C-grid-cofiber-seq-is-exact
{ "alphanum_fraction": 0.5668635875, "avg_line_length": 33.25, "ext": "agda", "hexsha": "9e5b3e5246942b56b39cbe677b18c818938113bc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/cw/cohomology/grid/LongExactSequence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/cw/cohomology/grid/LongExactSequence.agda", "max_line_length": 107, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/cw/cohomology/grid/LongExactSequence.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1528, "size": 3724 }
-- Andreas, 2014-11-25, issue reported by Peter Divianski (divipp) {-# OPTIONS --show-implicit #-} -- {-# OPTIONS -v tc:10 #-} -- {-# OPTIONS -v tc.inj:49 #-} -- {-# OPTIONS -v tc.polarity:49 #-} -- {-# OPTIONS -v tc.lhs:40 #-} -- After loading the following Agda code, the last occurrence of 'one' is yellow. -- Remarks: -- Probably not an error, but it is against my expectation. -- The code was obtained by shrinking a more complex one. -- I guess that the lifting of the local function 'f' happens not as I expect it. -- The code is quite fragile, the any of following changes fix the problem: -- - using record ⊤ instead of data Unit -- - lifting 'f' to be a global function -- - replacing 'unit' by '_' in the definition of 'f' -- - giving the implicit argument {v = unit ∷ []} to g -- Tested with Agda 2.4.2.1 and with the development version of Agda on GitHub (20 Nov 2014) open import Common.Prelude using (Nat; zero; suc; Unit; unit) data Vec (A : Set) : Nat → Set where [] : Vec A zero _∷_ : ∀ {n} → A → Vec A n → Vec A (suc n) -- n is forced -- Singleton type data Sg {A : Set} (x : A) : Set where sg : Sg x -- modified length function (counts till 1) nonNil : ∀ {n} → Vec Unit n → Nat nonNil [] = zero nonNil (i ∷ is) = suc (f i) where f : Unit → Nat f unit = zero g : ∀ {n} {v : Vec Unit n} → Sg (nonNil v) → Sg v g sg = sg one : Sg (suc zero) one = sg test : Sg (unit ∷ []) test = g one -- `one' is yellow, a meta coming from the forced n {- Analysis g :=> Sg (nonNil {_n} _v) -> Sg _v one :=> Sg (suc zero) suc zero =?= nonNil {_n} _v use injectivity _n := suc _n' _v := _∷_ {_nv} _i _is zero =?= f {_nv} {_i} {_is} _i using injectivity on f creates unsolved, because "forced" meta: inverting injective function _.f : ({.n : Nat} (i : Unit) (is : Vec Unit .n) → Unit → Nat) for zero (args = [$ {_32}, $ _33, $ _34, $ _33]) meta patterns [_35, _36, _37] perm = x0,x1,x2 -> x0,x1,x2 tel = {.n : Nat} (i : Unit) (is : Vec Unit .n) ps = [[]!{VarP ".n"}, []k(VarP "i"), []k(VarP "is"), []r(ConP Common.Prelude.Unit.unit(inductive)[] Nothing [])] inversion lhs = [$ {_35}, $ _36, $ _37, $ unit] rhs = [$ {_32}, $ _33, $ _34, $ _33] type = ({.n : Nat} (i : Unit) (is : Vec Unit .n) → Unit → Nat) a = ({.n : Nat} (i : Unit) (is : Vec Unit .n) → Unit → Nat) v = (_.f) arg1 = {_35} arg2 = {_32} -- Here, the equality check is skipped as n is "forced", so the -- assignment _35 := _32 does not happen a = ((i : Unit) (is : Vec Unit _35) → Unit → Nat) v = (_.f {_35}) arg1 = _36 arg2 = _33 term _36 := _33 term _36 := _33 solving _36 := _33 a = ((is : Vec Unit _35) → Unit → Nat) v = (_.f {_35} _33) arg1 = _37 arg2 = _34 term _37 := _34 term _37 := _34 solving _37 := _34 a = (Unit → Nat) v = (_.f {_35} _33 _34) arg1 = unit arg2 = _33 compareTerm unit == _33 : Unit term _33 := unit term _33 := unit solving _33 := unit compareTerm zero == (_.f {_32} unit _34 unit) : Nat -} -- Should work without unsolved metas.
{ "alphanum_fraction": 0.5866491286, "avg_line_length": 29.2403846154, "ext": "agda", "hexsha": "03014757dd1476190eb784c3f6d664e750355504", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1366.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1366.agda", "max_line_length": 92, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1366.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 1092, "size": 3041 }
open import Agda.Builtin.Equality _∋_ : ∀ {a} (A : Set a) → A → A A ∋ x = x cong : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) {x y} → x ≡ y → f x ≡ f y cong f refl = refl record IsRG (Node : Set) (Edge : Set) : Set where field src : Edge → Node tgt : Edge → Node rfl : Node → Edge eq-src-rfl : ∀{x} → src (rfl x) ≡ x eq-tgt-rfl : ∀{x} → tgt (rfl x) ≡ x open IsRG {{...}} public module norecord where source : ∀{Node Edge : Set} {{i : IsRG Node Edge}} → Edge → Node source x = src x lemma1 : ∀{Node Edge : Set} {{i : IsRG Node Edge}} → (e : Edge) → (Node ∋ source e) ≡ src e lemma1 e = refl rfl-src : ∀{Node Edge : Set} {{i : IsRG Node Edge}} → Edge → Edge rfl-src {Node} e = rfl (Node ∋ src e) lemma2 : ∀{Node Edge : Set} {{i : IsRG Node Edge}} → (n : Node) → rfl-src {Node} (rfl n) ≡ (Edge ∋ rfl n) lemma2 {Node}{Edge} n = cong (rfl {Node = Node}) (eq-src-rfl {Edge = Edge}) module yesrecord where record RG : Set₁ where constructor mkRG field Node : Set Edge : Set {{isRG}} : IsRG Node Edge open RG public source : ∀{rg} → Edge rg → Node rg source x = src x lemma1 : ∀{rg} → (e : Edge rg) → (Node rg ∋ source {mkRG (Node rg) (Edge rg)} e) ≡ src e --causes problems: --lemma1 : ∀{rg} → (e : Edge rg) → (Node rg ∋ source {_} e) ≡ src e lemma1 e = refl rfl-src : ∀{rg} → Edge rg → Edge rg rfl-src {rg} e = rfl (Node rg ∋ src e) lemma2 : ∀{rg} → (n : Node rg) → rfl-src {rg} (rfl n) ≡ (Edge rg ∋ rfl n) lemma2 {rg} n = cong (rfl {Node = Node rg}) (eq-src-rfl {Edge = Edge rg})
{ "alphanum_fraction": 0.5365699874, "avg_line_length": 27.8245614035, "ext": "agda", "hexsha": "a8f548fb81c96609fe9e5f7b8b1be18e559da6a9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2670.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2670.agda", "max_line_length": 107, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2670.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 626, "size": 1586 }
{- Jesper, 2019-07-05: At first, the fix to #3859 causes the line below to raise a type error: Cannot instantiate the metavariable _6 to solution Set (Agda.Primitive.lsuc (Agda.Primitive.lsuc Agda.Primitive.lzero) Agda.Primitive.⊔ Agda.Primitive.lsuc a) since it contains the variable a which is not in scope of the metavariable or irrelevant in the metavariable but relevant in the solution when checking that the expression λ (A : Set a) → Set has type (A : Set a) → Set₁ Now it is no longer the case. This test case is here to make sure the error doesn't come back. -} F = λ {a} (A : Set a) → Set
{ "alphanum_fraction": 0.7277147488, "avg_line_length": 36.2941176471, "ext": "agda", "hexsha": "451ce108d200ce89bc36eb54c5c1bfa9919a027c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3859b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3859b.agda", "max_line_length": 74, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3859b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 184, "size": 617 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Ints.DiffInt.Base where open import Cubical.Foundations.Prelude open import Cubical.HITs.SetQuotients open import Cubical.Foundations.Isomorphism open import Cubical.Data.Sigma open import Cubical.Data.Nat hiding (+-comm ; +-assoc) renaming (_+_ to _+ℕ_) open import Cubical.Data.Int rel : (ℕ × ℕ) → (ℕ × ℕ) → Type₀ rel (a₀ , b₀) (a₁ , b₁) = x ≡ y where x = a₀ +ℕ b₁ y = a₁ +ℕ b₀ ℤ = (ℕ × ℕ) / rel -- Proof of equivalence between Int and DiffInt private -- Prove all the identities for ℕ×ℕ first and use that to build to ℤ Int→ℕ×ℕ : Int → (ℕ × ℕ) Int→ℕ×ℕ (pos n) = ( n , zero ) Int→ℕ×ℕ (negsuc n) = ( zero , suc n ) ℕ×ℕ→Int : (ℕ × ℕ) → Int ℕ×ℕ→Int(n , m) = n ℕ- m relInt→ℕ×ℕ : ∀ m n → rel (Int→ℕ×ℕ (m ℕ- n)) (m , n) relInt→ℕ×ℕ zero zero = refl relInt→ℕ×ℕ zero (suc n) = refl relInt→ℕ×ℕ (suc m) zero = refl relInt→ℕ×ℕ (suc m) (suc n) = fst (Int→ℕ×ℕ (m ℕ- n)) +ℕ suc n ≡⟨ +-suc (fst (Int→ℕ×ℕ (m ℕ- n))) n ⟩ suc (fst (Int→ℕ×ℕ (m ℕ- n)) +ℕ n) ≡⟨ cong suc (relInt→ℕ×ℕ m n) ⟩ suc (m +ℕ snd (Int→ℕ×ℕ (m ℕ- n))) ∎ Int→ℕ×ℕ→Int : ∀ n → ℕ×ℕ→Int (Int→ℕ×ℕ n) ≡ n Int→ℕ×ℕ→Int (pos n) = refl Int→ℕ×ℕ→Int (negsuc n) = refl ℕ×ℕ→Int→ℕ×ℕ : ∀ p → rel (Int→ℕ×ℕ (ℕ×ℕ→Int p)) p ℕ×ℕ→Int→ℕ×ℕ (p₀ , p₁) = relInt→ℕ×ℕ p₀ p₁ -- Now build to ℤ using the above Int→ℤ : Int → ℤ Int→ℤ n = [ Int→ℕ×ℕ n ] ℤ→Int : ℤ → Int ℤ→Int [ z ] = ℕ×ℕ→Int z ℤ→Int(eq/ a b r i) = lemℤeq a b r i where lemℤeq : (a b : (ℕ × ℕ)) → rel a b → ℕ×ℕ→Int(a) ≡ ℕ×ℕ→Int(b) lemℤeq (a₀ , a₁) (b₀ , b₁) r = a₀ ℕ- a₁ ≡⟨ pos- a₀ a₁ ⟩ pos a₀ - pos a₁ ≡[ i ]⟨ ((pos a₀ - pos a₁) + -Cancel (pos b₁) (~ i)) ⟩ (pos a₀ - pos a₁) + (pos b₁ - pos b₁) ≡⟨ +-assoc (pos a₀ + (- pos a₁)) (pos b₁) (- pos b₁) ⟩ ((pos a₀ - pos a₁) + pos b₁) - pos b₁ ≡[ i ]⟨ +-assoc (pos a₀) (- pos a₁) (pos b₁) (~ i) + (- pos b₁) ⟩ (pos a₀ + ((- pos a₁) + pos b₁)) - pos b₁ ≡[ i ]⟨ (pos a₀ + +-comm (- pos a₁) (pos b₁) i) - pos b₁ ⟩ (pos a₀ + (pos b₁ - pos a₁)) - pos b₁ ≡[ i ]⟨ +-assoc (pos a₀) (pos b₁) (- pos a₁) i + (- pos b₁) ⟩ ((pos a₀ + pos b₁) - pos a₁) - pos b₁ ≡[ i ]⟨ (pos+ a₀ b₁ (~ i) - pos a₁) - pos b₁ ⟩ (pos (a₀ +ℕ b₁) - pos a₁) - pos b₁ ≡[ i ]⟨ (pos (r i) - pos a₁) - pos b₁ ⟩ (pos (b₀ +ℕ a₁) - pos a₁) - pos b₁ ≡[ i ]⟨ (pos+ b₀ a₁ i - pos a₁) - pos b₁ ⟩ ((pos b₀ + pos a₁) - pos a₁) - pos b₁ ≡[ i ]⟨ +-assoc (pos b₀) (pos a₁) (- pos a₁) (~ i) + (- pos b₁) ⟩ (pos b₀ + (pos a₁ - pos a₁)) - pos b₁ ≡[ i ]⟨ (pos b₀ + (-Cancel (pos a₁) i)) - pos b₁ ⟩ pos b₀ - pos b₁ ≡[ i ]⟨ pos- b₀ b₁ (~ i) ⟩ b₀ ℕ- b₁ ∎ ℤ→Int(squash/ x x₀ p q i j) = isSetInt (ℤ→Int x) (ℤ→Int x₀) (cong ℤ→Int p) (cong ℤ→Int q) i j Int→ℤ→Int : ∀ z → ℤ→Int (Int→ℤ z) ≡ z Int→ℤ→Int (pos n) = refl Int→ℤ→Int (negsuc n) = refl ℤ→Int→ℤ : ∀ z → Int→ℤ (ℤ→Int z) ≡ z ℤ→Int→ℤ = elimProp (λ z → squash/ (Int→ℤ (ℤ→Int z)) z) ℕ×ℕprf where ℕ×ℕprf : (a : ℕ × ℕ) → Int→ℤ (ℤ→Int [ a ]) ≡ [ a ] ℕ×ℕprf (a , b) = eq/ (Int→ℕ×ℕ (ℕ×ℕ→Int (a , b))) (a , b) (ℕ×ℕ→Int→ℕ×ℕ (a , b)) Int≡DiffInt : Int ≡ ℤ Int≡DiffInt = isoToPath (iso Int→ℤ ℤ→Int ℤ→Int→ℤ Int→ℤ→Int)
{ "alphanum_fraction": 0.4749487255, "avg_line_length": 40.1529411765, "ext": "agda", "hexsha": "d0baa68274de613113fe0338b93de9849331c8a6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/HITs/Ints/DiffInt/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/HITs/Ints/DiffInt/Base.agda", "max_line_length": 122, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/HITs/Ints/DiffInt/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1685, "size": 3413 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Level using (0ℓ) open import Data.String -- This module defines utility functions to help working on proofs. module LibraBFT.Base.Util where -- These should obviously not be used in any legitimate proof. They are just for convenience when -- we want to avoid importing a module with open holes while working on something else. -- This variant allows a comment to be attached conveniently obm-dangerous-magic' : ∀ {ℓ} {A : Set ℓ} → String → A obm-dangerous-magic' {ℓ} {A} _ = magic where postulate magic : A obm-dangerous-magic! : ∀ {ℓ} {A : Set ℓ} → A obm-dangerous-magic! {ℓ} {A} = obm-dangerous-magic' ""
{ "alphanum_fraction": 0.7204058625, "avg_line_length": 35.48, "ext": "agda", "hexsha": "de5fa50e168c13630482ee43f45a6c2211a2b8d5", "lang": "Agda", "max_forks_count": 6, "max_forks_repo_forks_event_max_datetime": "2022-02-18T01:04:32.000Z", "max_forks_repo_forks_event_min_datetime": "2020-12-16T19:43:52.000Z", "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Base/Util.agda", "max_issues_count": 72, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": "2022-03-25T05:36:11.000Z", "max_issues_repo_issues_event_min_datetime": "2021-02-04T05:04:33.000Z", "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Base/Util.agda", "max_line_length": 111, "max_stars_count": 4, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Base/Util.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-18T19:24:05.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-16T19:43:41.000Z", "num_tokens": 249, "size": 887 }
------------------------------------------------------------------------------ -- Distributive laws on a binary operation: Task B ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module DistributiveLaws.TaskB-I where open import DistributiveLaws.Base open import DistributiveLaws.PropertiesI open import Common.FOL.Relation.Binary.EqReasoning ------------------------------------------------------------------------------ prop₂ : ∀ u x y z → (x · y · (z · u)) · ((x · y · (z · u)) · (x · z · (y · u))) ≡ x · z · (y · u) prop₂ u x y z = xy·zu · (xy·zu · xz·yu) ≡⟨ j₁ ⟩ xy·zu · (x·zu · y·zu · xz·yu) ≡⟨ j₂ ⟩ xy·zu · (x·zu · xz·yu · (y·zu · xz·yu)) ≡⟨ j₃ ⟩ -- Note: The paper proof has a typo in the third proof step: -- xy·zu · (xz·xu · xz·yu · (z·zu · xz·yu)) xy·zu · (xz·xu · xz·yu · (y·zu · xz·yu)) ≡⟨ j₄ ⟩ xy·zu · (xz · xu·yu · (y·zu · xz·yu)) ≡⟨ j₅ ⟩ xy·zu · (xz · xyu · (y·zu · xz·yu)) ≡⟨ j₆ ⟩ xy·zu · (xz · xyu · (yz·yu · xz·yu)) ≡⟨ j₇ ⟩ xy·zu · (xz · xyu · (yz·xz · yu)) ≡⟨ j₈ ⟩ xy·zu · (xz · xyu · (yxz · yu)) ≡⟨ j₉ ⟩ xy·zu · (xz · xyu · (yx·yu · z·yu)) ≡⟨ j₁₀ ⟩ xy·zu · (xz · xyu · (y·xu · z·yu)) ≡⟨ j₁₁ ⟩ xyz · xyu · (xz · xyu · (y·xu · z·yu)) ≡⟨ j₁₂ ⟩ xz·yz · xyu · (xz · xyu · (y·xu · z·yu)) ≡⟨ j₁₃ ⟩ xz · xyu · (yz · xyu) · (xz · xyu · (y·xu · z·yu)) ≡⟨ j₁₄ ⟩ xz · xyu · (yz · xyu · (y·xu · z·yu)) ≡⟨ j₁₅ ⟩ xz · xyu · (yz · xu·yu · (y·xu · z·yu)) ≡⟨ j₁₆ ⟩ xz · xyu · (y · xu·yu · (z · xu·yu) · (y·xu · z·yu)) ≡⟨ j₁₇ ⟩ xz · xyu · (y · xu·yu · (y·xu · z·yu) · (z · xu·yu · (y·xu · z·yu))) ≡⟨ j₁₈ ⟩ xz · xyu · (y·xu · y·yu · (y·xu · z·yu) · (z · xu·yu · (y·xu · z·yu))) ≡⟨ j₁₉ ⟩ xz · xyu · (y·xu · (y·yu · z·yu) · (z · xu·yu · (y·xu · z·yu))) ≡⟨ j₂₀ ⟩ xz · xyu · (y·xu · yz·yu · (z · xu·yu · (y·xu · z·yu))) ≡⟨ j₂₁ ⟩ xz · xyu · (y·xu · y·zu · (z · xu·yu · (y·xu · z·yu))) ≡⟨ j₂₂ ⟩ xz · xyu · (y · xu·zu · (z · xu·yu · (y·xu · z·yu))) ≡⟨ j₂₃ ⟩ xz · xyu · (y · xu·zu · (z·xu · z·yu · (y·xu · z·yu))) ≡⟨ j₂₄ ⟩ (xz · xyu) · (y · xu·zu · (z·xu · y·xu · z·yu)) ≡⟨ j₂₅ ⟩ xz · xyu · (y · xu·zu · (zy·xu · z·yu)) ≡⟨ j₂₆ ⟩ xz · xyu · (y · xu·zu · (zy·xu · zy·zu)) ≡⟨ j₂₇ ⟩ xz · xyu · (y · xu·zu · (zy · xu·zu)) ≡⟨ j₂₈ ⟩ xz · xyu · (y·zy · xu·zu) ≡⟨ j₂₉ ⟩ xz · xyu · (y·zy · xzu) ≡⟨ j₃₀ ⟩ xz·xy · xzu · (y·zy · xzu) ≡⟨ j₃₁ ⟩ x·zy · xzu · (y·zy · xzu) ≡⟨ j₃₂ ⟩ x·zy · y·zy · xzu ≡⟨ j₃₃ ⟩ xy·zy · xzu ≡⟨ j₃₄ ⟩ xzy · xzu ≡⟨ j₃₅ ⟩ xz·yu ∎ where -- Two variables abbreviations xz = x · z yu = y · u yz = y · z zy = z · y -- Three variables abbreviations xyu = x · y · u xyz = x · y · z xzu = x · z · u xzy = x · z · y yxz = y · x · z x·yu = x · (y · u) x·zu = x · (z · u) x·zy = x · (z · y) y·xu = y · (x · u) y·yu = y · (y · u) y·zu = y · (z · u) y·zy = y · (z · y) z·xu = z · (x · u) z·yu = z · (y · u) -- Four variables abbreviations xu·yu = x · u · (y · u) xu·zu = x · u · (z · u) xy·yz = x · y · (y · z) xy·zu = x · y · (z · u) xy·zy = x · y · (z · y) xz·xu = x · z · (x · u) xz·xy = x · z · (x · y) xz·yu = x · z · (y · u) xz·yz = x · z · (y · z) yx·yu = y · x · (y · u) yz·xz = y · z · (x · z) yz·yu = y · z · (y · u) zy·xu = z · y · (x · u) zy·zu = z · y · (z · u) -- Steps justifications j₁ : xy·zu · (xy·zu · xz·yu) ≡ xy·zu · (x·zu · y·zu · xz·yu) j₁ = ·-rightCong (·-leftCong (rightDistributive x y (z · u))) j₂ : xy·zu · (x·zu · y·zu · xz·yu) ≡ xy·zu · (x·zu · xz·yu · (y·zu · xz·yu)) j₂ = ·-rightCong (rightDistributive x·zu y·zu xz·yu) j₃ : xy·zu · (x·zu · xz·yu · (y·zu · xz·yu)) ≡ xy·zu · (xz·xu · xz·yu · (y·zu · xz·yu)) j₃ = ·-rightCong (·-leftCong (·-leftCong (leftDistributive x z u))) j₄ : xy·zu · (xz·xu · xz·yu · (y·zu · xz·yu)) ≡ xy·zu · (xz · xu·yu · (y·zu · xz·yu)) j₄ = ·-rightCong (·-leftCong (sym (leftDistributive (x · z) (x · u) (y · u)))) j₅ : xy·zu · (xz · xu·yu · (y·zu · xz·yu)) ≡ xy·zu · (xz · xyu · (y·zu · xz·yu)) j₅ = ·-rightCong (·-leftCong (·-rightCong (sym (rightDistributive x y u)))) j₆ : xy·zu · (xz · xyu · (y·zu · xz·yu)) ≡ xy·zu · (xz · xyu · (yz·yu · xz·yu)) j₆ = ·-rightCong (·-rightCong (·-leftCong (leftDistributive y z u))) j₇ : xy·zu · (xz · xyu · (yz·yu · xz·yu)) ≡ xy·zu · (xz · xyu · (yz·xz · yu)) j₇ = ·-rightCong (·-rightCong (sym (rightDistributive (y · z) (x · z) (y · u)))) j₈ : xy·zu · (xz · xyu · (yz·xz · yu)) ≡ xy·zu · (xz · xyu · (yxz · yu)) j₈ = ·-rightCong (·-rightCong (·-leftCong (sym (rightDistributive y x z)))) j₉ : xy·zu · (xz · xyu · (yxz · yu)) ≡ xy·zu · (xz · xyu · (yx·yu · z·yu)) j₉ = ·-rightCong (·-rightCong (rightDistributive (y · x) z yu)) j₁₀ : xy·zu · (xz · xyu · (yx·yu · z·yu)) ≡ xy·zu · (xz · xyu · (y·xu · z·yu)) j₁₀ = ·-rightCong (·-rightCong (·-leftCong (sym (leftDistributive y x u)))) j₁₁ : xy·zu · (xz · xyu · (y·xu · z·yu)) ≡ xyz · xyu · (xz · xyu · (y·xu · z·yu)) j₁₁ = ·-leftCong (leftDistributive (x · y) z u) j₁₂ : xyz · xyu · (xz · xyu · (y·xu · z·yu)) ≡ xz·yz · xyu · (xz · xyu · (y·xu · z·yu)) j₁₂ = ·-leftCong (·-leftCong (rightDistributive x y z)) j₁₃ : xz·yz · xyu · (xz · xyu · (y·xu · z·yu)) ≡ xz · xyu · (yz · xyu) · (xz · xyu · (y·xu · z·yu)) j₁₃ = ·-leftCong (rightDistributive (x · z) (y · z) xyu) j₁₄ : xz · xyu · (yz · xyu) · (xz · xyu · (y·xu · z·yu)) ≡ xz · xyu · (yz · xyu · (y·xu · z·yu)) j₁₄ = sym (leftDistributive (xz · xyu) (yz · xyu) (y·xu · z·yu)) j₁₅ : xz · xyu · (yz · xyu · (y·xu · z·yu)) ≡ xz · xyu · (yz · xu·yu · (y·xu · z·yu)) j₁₅ = ·-rightCong (·-leftCong (·-rightCong (rightDistributive x y u))) j₁₆ : xz · xyu · (yz · xu·yu · (y·xu · z·yu)) ≡ xz · xyu · (y · xu·yu · (z · xu·yu) · (y·xu · z·yu)) j₁₆ = ·-rightCong (·-leftCong (rightDistributive y z xu·yu)) j₁₇ : xz · xyu · (y · xu·yu · (z · xu·yu) · (y·xu · z·yu)) ≡ xz · xyu · (y · xu·yu · (y·xu · z·yu) · (z · xu·yu · (y·xu · z·yu))) j₁₇ = subst (λ t → xz · xyu · (y · xu·yu · (z · xu·yu) · (y·xu · z·yu)) ≡ xz · xyu · t) (rightDistributive (y · xu·yu) (z · xu·yu) (y·xu · z·yu)) refl j₁₈ : xz · xyu · (y · xu·yu · (y·xu · z·yu) · (z · xu·yu · (y·xu · z·yu))) ≡ xz · xyu · (y·xu · y·yu · (y·xu · z·yu) · (z · xu·yu · (y·xu · z·yu))) j₁₈ = ·-rightCong (·-leftCong (·-leftCong (leftDistributive y (x · u) (y · u)))) j₁₉ : xz · xyu · (y·xu · y·yu · (y·xu · z·yu) · (z · xu·yu · (y·xu · z·yu))) ≡ xz · xyu · (y·xu · (y·yu · z·yu) · (z · xu·yu · (y·xu · z·yu))) j₁₉ = subst (λ t → xz · xyu · (y·xu · y·yu · (y·xu · z·yu) · (z · xu·yu · (y·xu · z·yu))) ≡ xz · xyu · (t · (z · xu·yu · (y·xu · z·yu)))) (sym (leftDistributive y·xu y·yu z·yu)) refl j₂₀ : xz · xyu · (y·xu · (y·yu · z·yu) · (z · xu·yu · (y·xu · z·yu))) ≡ xz · xyu · (y·xu · yz·yu · (z · xu·yu · (y·xu · z·yu))) j₂₀ = ·-rightCong (·-leftCong (·-rightCong (sym (rightDistributive y z (y · u))))) j₂₁ : xz · xyu · (y·xu · yz·yu · (z · xu·yu · (y·xu · z·yu))) ≡ xz · xyu · (y·xu · y·zu · (z · xu·yu · (y·xu · z·yu))) j₂₁ = ·-rightCong (·-leftCong (·-rightCong (sym (leftDistributive y z u)))) j₂₂ : xz · xyu · (y·xu · y·zu · (z · xu·yu · (y·xu · z·yu))) ≡ xz · xyu · (y · xu·zu · (z · xu·yu · (y·xu · z·yu))) j₂₂ = ·-rightCong (·-leftCong (sym (leftDistributive y (x · u) (z · u)))) j₂₃ : xz · xyu · (y · xu·zu · (z · xu·yu · (y·xu · z·yu))) ≡ xz · xyu · (y · xu·zu · (z·xu · z·yu · (y·xu · z·yu))) j₂₃ = ·-rightCong (·-rightCong (·-leftCong (leftDistributive z (x · u) (y · u)))) j₂₄ : xz · xyu · (y · xu·zu · (z·xu · z·yu · (y·xu · z·yu))) ≡ (xz · xyu) · (y · xu·zu · (z·xu · y·xu · z·yu)) j₂₄ = ·-rightCong (·-rightCong (sym (rightDistributive z·xu y·xu z·yu))) j₂₅ : (xz · xyu) · (y · xu·zu · (z·xu · y·xu · z·yu)) ≡ xz · xyu · (y · xu·zu · (zy·xu · z·yu)) j₂₅ = ·-rightCong (·-rightCong (·-leftCong (sym (rightDistributive z y (x · u))))) j₂₆ : xz · xyu · (y · xu·zu · (zy·xu · z·yu)) ≡ xz · xyu · (y · xu·zu · (zy·xu · zy·zu)) j₂₆ = ·-rightCong (·-rightCong (·-rightCong (leftDistributive z y u))) j₂₇ : xz · xyu · (y · xu·zu · (zy·xu · zy·zu)) ≡ xz · xyu · (y · xu·zu · (zy · xu·zu)) j₂₇ = ·-rightCong (·-rightCong (sym (leftDistributive (z · y) (x · u) (z · u)))) j₂₈ : xz · xyu · (y · xu·zu · (zy · xu·zu)) ≡ xz · xyu · (y·zy · xu·zu) j₂₈ = ·-rightCong (sym (rightDistributive y zy xu·zu)) j₂₉ : xz · xyu · (y·zy · xu·zu) ≡ xz · xyu · (y·zy · xzu) j₂₉ = ·-rightCong (·-rightCong (sym (rightDistributive x z u))) j₃₀ : xz · xyu · (y·zy · xzu) ≡ xz·xy · xzu · (y·zy · xzu) j₃₀ = ·-leftCong (leftDistributive xz (x · y) u) j₃₁ : xz·xy · xzu · (y·zy · xzu) ≡ x·zy · xzu · (y·zy · xzu) j₃₁ = ·-leftCong (·-leftCong (sym (leftDistributive x z y))) j₃₂ : x·zy · xzu · (y·zy · xzu) ≡ x·zy · y·zy · xzu j₃₂ = sym (rightDistributive x·zy y·zy xzu) j₃₃ : x·zy · y·zy · xzu ≡ xy·zy · xzu j₃₃ = ·-leftCong (sym (rightDistributive x y zy)) j₃₄ : xy·zy · xzu ≡ xzy · xzu j₃₄ = ·-leftCong (sym (rightDistributive x z y)) j₃₅ : xzy · xzu ≡ xz·yu j₃₅ = sym (leftDistributive xz y u)
{ "alphanum_fraction": 0.3992611537, "avg_line_length": 39.6879699248, "ext": "agda", "hexsha": "5d671adf23315717dcdf5bb4215a27d9d949c107", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/DistributiveLaws/TaskB-I.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/DistributiveLaws/TaskB-I.agda", "max_line_length": 84, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/DistributiveLaws/TaskB-I.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 4945, "size": 10557 }
-- Andreas, 2019-07-05, during work on issue #3889 -- Test-case for with extracted from the standard library {-# OPTIONS --cubical-compatible #-} open import Agda.Primitive open import Agda.Builtin.Equality open import Agda.Builtin.List open import Common.Equality open import Common.Product data Any {a}{A : Set a} {p} (P : A → Set p) : List A → Set (a ⊔ p) where here : ∀ {x xs} (px : P x) → Any P (x ∷ xs) there : ∀ {x xs} (pxs : Any P xs) → Any P (x ∷ xs) _∈_ : ∀{a}{A : Set a} → A → List A → Set _ x ∈ xs = Any (x ≡_) xs map : ∀ {a} {A : Set a} {p q} {P : A → Set p} {Q : A → Set q} → (∀{x} → P x → Q x) → ∀{xs} → Any P xs → Any Q xs map g (here px) = here (g px) map g (there pxs) = there (map g pxs) map₁ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (A → B) → A × C → B × C map₁ f (x , y)= f x , y map₂ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : A → Set c} → (∀ {x} → B x → C x) → Σ A B → Σ A C map₂ f (x , y) = (x , f y) find : ∀ {a} {p} {A : Set a} {P : A → Set p} {xs} → Any P xs → Σ _ λ x → x ∈ xs × P x find (here px) = (_ , here refl , px) find (there pxs) = map₂ (map₁ there) (find pxs) lose : ∀ {a} {p} {A : Set a} {P : A → Set p} {x xs} → x ∈ xs → P x → Any P xs lose x∈xs px = map (λ eq → subst _ eq px) x∈xs map∘find : ∀ {a p} {A : Set a} {P : A → Set p} {xs} (p : Any P xs) → let p′ = find p in {f : ∀{x} → proj₁ p′ ≡ x → P x} → f refl ≡ proj₂ (proj₂ p′) → map f (proj₁ (proj₂ p′)) ≡ p map∘find (here p) hyp = cong here hyp map∘find (there p) hyp = cong there (map∘find p hyp) find∘map : ∀ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} {xs : List A} (p : Any P xs) (f : ∀{x} → P x → Q x) → find (map f p) ≡ map₂ (map₂ f) (find p) find∘map (here p) f = refl find∘map (there p) f rewrite find∘map p f = refl lose∘find : ∀ {a p} {A : Set a} {P : A → Set p} {xs : List A} (p : Any P xs) → (let (y , z) = proj₂ (find p)) → lose y z ≡ p lose∘find p = map∘find p refl postulate a b ℓ : Level A : Set a B : Set b P : A → Set ℓ Q : B → Set ℓ -- Level needed Any-×⁺ : ∀ {xs ys} → Any P xs × Any Q ys → Any (λ x → Any (λ y → P x × Q y) ys) xs Any-×⁺ (p , q) = map (λ p → map (λ q → (p , q)) q) p Any-×⁻ : ∀ {xs ys} → Any (λ x → Any (λ y → P x × Q y) ys) xs → Any P xs × Any Q ys Any-×⁻ pq with map₂ (map₂ find) (find pq) ... | (x , x∈xs , y , y∈ys , p , q) = (lose x∈xs p , lose y∈ys q) module _ where from∘to : ∀{xs ys} (pq : Any P xs × Any Q ys) → Any-×⁻ (Any-×⁺ pq) ≡ pq -- from∘to (p , q) = {!!} from∘to (p , q) rewrite find∘map p (λ p → map (λ q → (p , q)) q) | find∘map q (λ q → proj₂ (proj₂ (find p)) , q) | lose∘find p | lose∘find q = refl
{ "alphanum_fraction": 0.4757106873, "avg_line_length": 33.0833333333, "ext": "agda", "hexsha": "50351e5e07be3e3c974411ecb99e04981e23ad17", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue3889.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue3889.agda", "max_line_length": 112, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue3889.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1222, "size": 2779 }
{-# OPTIONS --universe-polymorphism #-} module Categories.CategorySolver where open import Level open import Categories.Category open import Categories.Functor hiding (equiv) renaming (id to idF; _≡_ to _≡F_; _∘_ to _∘F_; ∘-resp-≡ to ∘F-resp-≡F) open import Categories.NaturalTransformation hiding (equiv) renaming (id to idT; _≡_ to _≡T_) {- We need a way to force the universe levels of two categories to be the same, to hack together a reified morphism type. These lift operations let us do this in reification. -} liftCategory : ∀ {o ℓ e o′ ℓ′ e′} (C : Category o ℓ e) → Category (o ⊔ o′) (ℓ ⊔ ℓ′) (e ⊔ e′) liftCategory {o} {ℓ} {e} {o′} {ℓ′} {e′} C = record { Obj = Lift {ℓ = o′} (Category.Obj C); _⇒_ = λ s d → Lift {ℓ = ℓ′} ((lower s) ⇒ (lower d)); _≡_ = λ m₀ m₁ → Lift {ℓ = e′} (lower m₀ ≡ lower m₁); id = lift id; _∘_ = λ m₀ m₁ → lift (lower m₀ ∘ lower m₁); assoc = λ {A} {B} {C₁} {D} {f} {g} {h} → lift C.assoc; identityˡ = λ {A} {B} {f} → lift C.identityˡ; identityʳ = λ {A} {B} {f} → lift C.identityʳ; equiv = record { refl = λ {x} → lift Equiv.refl ; sym = λ x → lift (Equiv.sym (lower x)) ; trans = λ x y → lift (Equiv.trans (lower x) (lower y)) }; ∘-resp-≡ = λ x y → lift (∘-resp-≡ (lower x) (lower y)) } where module C = Category C open C liftFunctor : ∀ {o₀ ℓ₀ e₀ o′₀ ℓ′₀ e′₀ o₁ ℓ₁ e₁ o′₁ ℓ′₁ e′₁} {C : Category o₀ ℓ₀ e₀} {D : Category o₁ ℓ₁ e₁} → Functor C D → Functor (liftCategory {o′ = o′₀} {ℓ′₀} {e′₀} C) (liftCategory {o′ = o′₁} {ℓ′₁} {e′₁} D) liftFunctor {o₀} {ℓ₀} {e₀} {o′₀} {ℓ′₀} {e′₀} {o₁} {ℓ₁} {e₁} {o′₁} {ℓ′₁} {e′₁} {C} {D} F = record { F₀ = λ x → lift (F.F₀ (lower x)); F₁ = λ m → lift (F.F₁ (lower m)); identity = lift F.identity; homomorphism = lift F.homomorphism; F-resp-≡ = λ H → lift (F.F-resp-≡ (lower H)) } where module C = Category C module D = Category D module ↑C = Category (liftCategory {o′ = o′₀} {ℓ′₀} {e′₀} C) module ↑D = Category (liftCategory {o′ = o′₁} {ℓ′₁} {e′₁} D) module F = Functor F mutual data ReifiedMorphismHelper {o ℓ e} {C : Category o ℓ e} : Category.Obj C → Category.Obj C → Set (suc (o ⊔ ℓ ⊔ e)) where ∥_₁∥₀_ : ∀ {D : Category o ℓ e} → (F : Functor D C) → {s d : Category.Obj D} → (m : ReifiedMorphism {C = D} s d) → ReifiedMorphismHelper (Functor.F₀ F s) (Functor.F₀ F d) data ReifiedMorphism {o ℓ e} {C : Category o ℓ e} : Category.Obj C → Category.Obj C → Set (suc (o ⊔ ℓ ⊔ e)) where _∥∘∥_ : ∀ {s d d′ : Category.Obj C} → (m2 : ReifiedMorphism {C = C} d d′) → (m1 : ReifiedMorphism {C = C} s d) → ReifiedMorphism s d′ ∥id∥ : ∀ {x : Category.Obj C} → ReifiedMorphism x x ∥_₁∥₁ : ∀ {s d : Category.Obj C} (m : ReifiedMorphismHelper {C = C} s d) → ReifiedMorphism s d ∥_∥ : ∀ {s d : Category.Obj C} → (m : Category._⇒_ C s d) → ReifiedMorphism s d pattern ∥F₁∥m D F s d F₀s F₀d m = ∥_₁∥₁ {F₀s} {F₀d} (∥_₁∥₀_ {D} F {s} {d} m) pattern ∥_₁∥_ F m = ∥ (∥ F ₁∥₀ m) ₁∥₁ ⟱ : ∀ {o ℓ e} → {C : Category o ℓ e} → {s d : Category.Obj C} → ReifiedMorphism {C = C} s d → Category._⇒_ C s d ⟱ {C = C} (∥m₂∥ ∥∘∥ ∥m₁∥) = ⟱ ∥m₂∥ ∘ ⟱ ∥m₁∥ where open Category C ⟱ {C = C} ∥id∥ = Category.id C ⟱ (∥ F ₁∥ ∥m∥) = Functor.F₁ F (⟱ ∥m∥) ⟱ ∥ m ∥ = m record ReifiedMorphismOf {o ℓ e} {C : Category o ℓ e} {s d : Category.Obj C} (m : Category._⇒_ C s d) : Set (suc o ⊔ suc ℓ ⊔ suc e) where constructor reify field reified : ReifiedMorphism {C = C} s d .reified≡ : Category._≡_ C (⟱ {C = C} reified) m ReifiedMorphismSimplify : ∀ {o ℓ e} → {C : Category o ℓ e} → {s d : Category.Obj C} → (m : ReifiedMorphism {C = C} s d) → ReifiedMorphismOf {C = C} (⟱ m) ReifiedMorphismSimplify {C = C} ∥ m ∥ = reify ∥ m ∥ (Category.Equiv.refl C) ReifiedMorphismSimplify {C = C} ∥id∥ = reify ∥id∥ (Category.Equiv.refl C) ReifiedMorphismSimplify {C = C} (∥m₀∥ ∥∘∥ ∥m₁∥) = ReifiedMorphismSimplify∥∘∥ {∥m₀∥ = ∥m₀∥} {∥m₁∥} (ReifiedMorphismSimplify ∥m₀∥) (ReifiedMorphismSimplify ∥m₁∥) where module C = Category C open C.HomReasoning ReifiedMorphismSimplify∥∘∥ : ∀ {s d d′ : C.Obj} → {∥m₀∥ : ReifiedMorphism {C = C} d d′} → {∥m₁∥ : ReifiedMorphism {C = C} s d} → ReifiedMorphismOf {C = C} (⟱ ∥m₀∥) → ReifiedMorphismOf {C = C} (⟱ ∥m₁∥) → ReifiedMorphismOf {C = C} (⟱ (∥m₀∥ ∥∘∥ ∥m₁∥)) ReifiedMorphismSimplify∥∘∥ {∥m₀∥ = ∥m₀∥} {∥m₁∥} (reify ∥id∥ id≡m₀) (reify ∥m₁∥′ m₁′≡m₁) = reify ∥m₁∥′ (begin ⟱ ∥m₁∥′ ↑⟨ C.identityˡ ⟩ C.id C.∘ ⟱ ∥m₁∥′ ↓⟨ C.∘-resp-≡ id≡m₀ m₁′≡m₁ ⟩ ⟱ (∥m₀∥ ∥∘∥ ∥m₁∥) ∎) ReifiedMorphismSimplify∥∘∥ {∥m₀∥ = ∥m₀∥} {∥m₁∥} (reify ∥m₀∥′ m₀′≡m₀) (reify ∥id∥ id≡m₁) = reify ∥m₀∥′ (begin ⟱ ∥m₀∥′ ↑⟨ C.identityʳ ⟩ ⟱ ∥m₀∥′ C.∘ C.id ↓⟨ C.∘-resp-≡ m₀′≡m₀ id≡m₁ ⟩ ⟱ (∥m₀∥ ∥∘∥ ∥m₁∥) ∎) ReifiedMorphismSimplify∥∘∥ {∥m₀∥ = ∥m₀∥} {∥m₁∥} (reify (∥m₀₀∥ ∥∘∥ ∥m₀₁∥) m₀₀∘m₀₁≡m₀) (reify ∥m₁∥′ m₁′≡m₁) = reify (∥m₀₀∥ ∥∘∥ (∥m₀₁∥ ∥∘∥ ∥m₁∥′)) (begin ⟱ (∥m₀₀∥ ∥∘∥ (∥m₀₁∥ ∥∘∥ ∥m₁∥′)) ↑⟨ C.assoc ⟩ (⟱ ∥m₀₀∥ C.∘ ⟱ ∥m₀₁∥) C.∘ ⟱ ∥m₁∥′ ↓⟨ C.∘-resp-≡ m₀₀∘m₀₁≡m₀ m₁′≡m₁ ⟩ ⟱ (∥m₀∥ ∥∘∥ ∥m₁∥) ∎) ReifiedMorphismSimplify∥∘∥ (reify ∥m₀∥′ m₀′≡m₀) (reify ∥m₁∥′ m₁′≡m₁) = reify (∥m₀∥′ ∥∘∥ ∥m₁∥′) (C.∘-resp-≡ m₀′≡m₀ m₁′≡m₁) ReifiedMorphismSimplify {C = C} (∥F₁∥m D F s d ._ ._ ∥m∥) = ReifiedMorphismSimplifyF₀m {s = s} {d} {∥m∥} (ReifiedMorphismSimplify ∥m∥) where module C = Category C module D = Category D module F = Functor F open C.HomReasoning ReifiedMorphismSimplifyF₀m : ∀ {s d : D.Obj} → {∥m∥ : ReifiedMorphism {C = D} s d} → ReifiedMorphismOf {C = D} (⟱ ∥m∥) → ReifiedMorphismOf {C = C} (F.F₁ (⟱ ∥m∥)) ReifiedMorphismSimplifyF₀m {∥m∥ = ∥m∥} (reify ∥id∥ id≡m) = reify ∥id∥ (begin C.id ↑⟨ F.identity ⟩ F.F₁ D.id ↓⟨ F.F-resp-≡ id≡m ⟩ F.F₁ (⟱ ∥m∥) ∎) ReifiedMorphismSimplifyF₀m {∥m∥ = ∥m∥} (reify (∥m₀∥ ∥∘∥ ∥m₁∥) m₀∘m₁≡m) = reify (∥ F ₁∥ ∥m₀∥ ∥∘∥ ∥ F ₁∥ ∥m₁∥) (begin F.F₁ (⟱ ∥m₀∥) C.∘ F.F₁ (⟱ ∥m₁∥) ↑⟨ F.homomorphism ⟩ F.F₁ (⟱ ∥m₀∥ D.∘ ⟱ ∥m₁∥) ↓⟨ F.F-resp-≡ m₀∘m₁≡m ⟩ F.F₁ (⟱ ∥m∥) ∎) ReifiedMorphismSimplifyF₀m {∥m∥ = ∥m∥} (reify ∥m∥′ m′≡m) = reify (∥ F ₁∥ ∥m∥′) (F.F-resp-≡ m′≡m) .removeIdentities : ∀ {o ℓ e} {C : Category o ℓ e} {s d : Category.Obj C} {m : Category._⇒_ C s d} → (∥m∥ : ReifiedMorphismOf {C = C} m) → Category._≡_ C (⟱ (ReifiedMorphismOf.reified (ReifiedMorphismSimplify (ReifiedMorphismOf.reified ∥m∥)))) m removeIdentities {C = C} {m = m} ∥m∥ = begin ⟱ (ReifiedMorphismOf.reified (ReifiedMorphismSimplify (ReifiedMorphismOf.reified ∥m∥))) ↓⟨ ReifiedMorphismOf.reified≡ (ReifiedMorphismSimplify (ReifiedMorphismOf.reified ∥m∥)) ⟩ ⟱ (ReifiedMorphismOf.reified ∥m∥) ↓⟨ ReifiedMorphismOf.reified≡ ∥m∥ ⟩ m ∎ where module C = Category C open C.HomReasoning .removeIdentities≡ : ∀ {o ℓ e} {C : Category o ℓ e} {s d : Category.Obj C} {m₀ m₁ : Category._⇒_ C s d} → (∥m₀∥ : ReifiedMorphismOf {C = C} m₀) → (∥m₁∥ : ReifiedMorphismOf {C = C} m₁) → Category._≡_ C (⟱ (ReifiedMorphismOf.reified (ReifiedMorphismSimplify (ReifiedMorphismOf.reified ∥m₀∥)))) (⟱ (ReifiedMorphismOf.reified (ReifiedMorphismSimplify (ReifiedMorphismOf.reified ∥m₁∥)))) → Category._≡_ C m₀ m₁ removeIdentities≡ {C = C} {m₀ = m₀} {m₁} ∥m₀∥ ∥m₁∥ m₀≡m₁ = begin m₀ ↑⟨ ReifiedMorphismOf.reified≡ ∥m₀∥ ⟩ ⟱ (ReifiedMorphismOf.reified ∥m₀∥) ↑⟨ ReifiedMorphismOf.reified≡ (ReifiedMorphismSimplify (ReifiedMorphismOf.reified ∥m₀∥)) ⟩ ⟱ (ReifiedMorphismOf.reified (ReifiedMorphismSimplify (ReifiedMorphismOf.reified ∥m₀∥))) ↓⟨ m₀≡m₁ ⟩ ⟱ (ReifiedMorphismOf.reified (ReifiedMorphismSimplify (ReifiedMorphismOf.reified ∥m₁∥))) ↓⟨ ReifiedMorphismOf.reified≡ (ReifiedMorphismSimplify (ReifiedMorphismOf.reified ∥m₁∥)) ⟩ ⟱ (ReifiedMorphismOf.reified ∥m₁∥) ↓⟨ ReifiedMorphismOf.reified≡ ∥m₁∥ ⟩ m₁ ∎ where module C = Category C open C.HomReasoning
{ "alphanum_fraction": 0.4599756197, "avg_line_length": 52.3617021277, "ext": "agda", "hexsha": "7adbe26bc2970bdcdab8926a9f03a1a16013879d", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/CategorySolver.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/CategorySolver.agda", "max_line_length": 174, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/CategorySolver.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 3994, "size": 9844 }
------------------------------------------------------------------------------ -- The FOTC co-inductive lists type ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- N.B. This module is re-exported by FOTC.Data.Colist. module FOTC.Data.Colist.Type where open import FOTC.Base open import FOTC.Base.List ------------------------------------------------------------------------------ -- The FOTC co-lists type (co-inductive predicate for total list). -- Functional for the Colist predicate. -- ColistF : (D → Set) → D → Set -- ColistF A xs = xs ≡ [] ∨ ∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs' -- Colist is the greatest fixed-point of ColistF (by Colist-out and -- Colist-coind). postulate Colist : D → Set postulate -- Colist is a post-fixed point of ColistF, i.e. -- -- Colist ≤ ColistF Colist. Colist-out : ∀ {xs} → Colist xs → xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ Colist xs') {-# ATP axiom Colist-out #-} -- Colist is the greatest post-fixed point of ColistF, i.e. -- -- ∀ A. A ≤ ColistF A ⇒ A ≤ Colist. -- -- N.B. This is an axiom schema. Because in the automatic proofs we -- *must* use an instance, we do not add this postulate as an ATP -- axiom. postulate Colist-coind : (A : D → Set) → -- A is post-fixed point of ColistF. (∀ {xs} → A xs → xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs')) → -- Colist is greater than A. ∀ {xs} → A xs → Colist xs
{ "alphanum_fraction": 0.4941176471, "avg_line_length": 31.0576923077, "ext": "agda", "hexsha": "6e25f5502c53aa6ada6e29a571bb8a4465532376", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Data/Colist/Type.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Data/Colist/Type.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Data/Colist/Type.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 462, "size": 1615 }
module Eq where infix 4 _≡_ {- data _≡_ {A : Set} : A → A → Set where Refl : {x : A} → x ≡ x -} data _≡_ {a} {A : Set a} (x : A) : A → Set a where Refl : x ≡ x {-# BUILTIN EQUALITY _≡_ #-} {-# BUILTIN REFL Refl #-}
{ "alphanum_fraction": 0.4977578475, "avg_line_length": 14.8666666667, "ext": "agda", "hexsha": "cec06c6fc3a28c1b1495d13819fbee9fe47ab187", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76743baacba0f07992bac5234ba8045d18706893", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "mjhopkins/PowerOfPi", "max_forks_repo_path": "Eq.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76743baacba0f07992bac5234ba8045d18706893", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "mjhopkins/PowerOfPi", "max_issues_repo_path": "Eq.agda", "max_line_length": 50, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76743baacba0f07992bac5234ba8045d18706893", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "mjhopkins/PowerOfPi", "max_stars_repo_path": "Eq.agda", "max_stars_repo_stars_event_max_datetime": "2018-07-25T13:12:15.000Z", "max_stars_repo_stars_event_min_datetime": "2018-07-25T13:12:15.000Z", "num_tokens": 102, "size": 223 }
-- {-# OPTIONS -v tc.cc:30 -v tc.cover.splittree:10 #-} -- 2013-05-03 Andreas, issue raise by Nisse. module Issue842 where data D : Set where c₁ c₂ : D F : D → Set₁ F c₁ = Set F = λ _ → Set -- While not unthinkable, this is not the intended use of varying arity. -- Since we are already splitting on the first argument, it should be -- present on the lhs also in the second clause. -- This will now give the error: -- Incomplete pattern matching for F. Missing cases: -- F c₂
{ "alphanum_fraction": 0.6865979381, "avg_line_length": 24.25, "ext": "agda", "hexsha": "6cf8a63fb9ff2c9239f4970d4c765a0792441bf4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue842.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue842.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/Issue842.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 142, "size": 485 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Category.Monoidal module Experiment.Categories.Solver.Category.Monoidal {o ℓ e} {𝒞 : Category o ℓ e} (M : Monoidal 𝒞) where open import Level open import Relation.Binary using (Rel; REL) open import Data.List open import Categories.Morphism 𝒞 open Category 𝒞 open Monoidal M infixr 10 _:⊗₀_ _:⊗₁_ data Sig : Set o where ∥_∥ : Obj → Sig :unit : Sig _:⊗₀_ : Sig → Sig → Sig private variable A B C : Obj W X Y Z : Sig data Expr : Rel Sig (o ⊔ ℓ) where :id : Expr X X _:∘_ : Expr Y Z → Expr X Y → Expr X Z _:⊗₁_ : Expr X Y → Expr Z W → Expr (X :⊗₀ Z) (Y :⊗₀ W) :λ⇒ : Expr (:unit :⊗₀ X) X :λ⇐ : Expr X (:unit :⊗₀ X) :ρ⇒ : Expr (X :⊗₀ :unit) X :ρ⇐ : Expr X (X :⊗₀ :unit) :α⇒ : Expr ((X :⊗₀ Y) :⊗₀ Z) (X :⊗₀ (Y :⊗₀ Z)) :α⇐ : Expr (X :⊗₀ (Y :⊗₀ Z)) ((X :⊗₀ Y) :⊗₀ Z) -- ∥_∥ : A ⇒ B → Expr ∥ A ∥ ∥ B ∥ NSig : Set o NSig = List Obj {- data NExpr : REL Sig NSig (o ⊔ ℓ) where :id : NExpr ∥ A ∥ (A ∷ []) :λ⇒ : NExpr (:unit :⊗₀ X) (normaliseSig X) -} ⟦_⟧Sig : Sig → Obj ⟦ ∥ A ∥ ⟧Sig = A ⟦ :unit ⟧Sig = unit ⟦ X :⊗₀ Y ⟧Sig = ⟦ X ⟧Sig ⊗₀ ⟦ Y ⟧Sig ⟦_⟧NSig : NSig → Obj ⟦ [] ⟧NSig = unit ⟦ A ∷ X ⟧NSig = A ⊗₀ ⟦ X ⟧NSig normaliseSig : Sig → NSig normaliseSig ∥ A ∥ = A ∷ [] normaliseSig :unit = [] normaliseSig (X :⊗₀ Y) = normaliseSig X ++ normaliseSig Y private λ⇒ = unitorˡ.from λ⇐ = unitorˡ.to ρ⇒ = unitorʳ.from ρ⇐ = unitorʳ.to α⇒ = associator.from α⇐ = associator.to ⟦_⟧ : Expr X Y → ⟦ X ⟧Sig ⇒ ⟦ Y ⟧Sig ⟦ :id ⟧ = id ⟦ e₁ :∘ e₂ ⟧ = ⟦ e₁ ⟧ ∘ ⟦ e₂ ⟧ ⟦ e₁ :⊗₁ e₂ ⟧ = ⟦ e₁ ⟧ ⊗₁ ⟦ e₂ ⟧ ⟦ :λ⇒ ⟧ = λ⇒ ⟦ :λ⇐ ⟧ = λ⇐ ⟦ :ρ⇒ ⟧ = ρ⇒ ⟦ :ρ⇐ ⟧ = ρ⇐ ⟦ :α⇒ ⟧ = α⇒ ⟦ :α⇐ ⟧ = α⇐ ⟦_⟧⁻¹ : Expr X Y → ⟦ Y ⟧Sig ⇒ ⟦ X ⟧Sig ⟦ :id ⟧⁻¹ = id ⟦ e₁ :∘ e₂ ⟧⁻¹ = ⟦ e₂ ⟧⁻¹ ∘ ⟦ e₁ ⟧⁻¹ ⟦ e₁ :⊗₁ e₂ ⟧⁻¹ = ⟦ e₁ ⟧⁻¹ ⊗₁ ⟦ e₂ ⟧⁻¹ ⟦ :λ⇒ ⟧⁻¹ = λ⇐ ⟦ :λ⇐ ⟧⁻¹ = λ⇒ ⟦ :ρ⇒ ⟧⁻¹ = ρ⇐ ⟦ :ρ⇐ ⟧⁻¹ = ρ⇒ ⟦ :α⇒ ⟧⁻¹ = α⇐ ⟦ :α⇐ ⟧⁻¹ = α⇒ ⟦_⟧≅ : Expr X Y → ⟦ X ⟧Sig ≅ ⟦ Y ⟧Sig ⟦ :id ⟧≅ = ≅.refl ⟦ e₁ :∘ e₂ ⟧≅ = ≅.trans ⟦ e₂ ⟧≅ ⟦ e₁ ⟧≅ ⟦ e₁ :⊗₁ e₂ ⟧≅ = {! !} ⟦ :λ⇒ ⟧≅ = {! !} ⟦ :λ⇐ ⟧≅ = {! !} ⟦ :ρ⇒ ⟧≅ = {! !} ⟦ :ρ⇐ ⟧≅ = {! !} ⟦ :α⇒ ⟧≅ = {! !} ⟦ :α⇐ ⟧≅ = {! !} -- theorem : (e₁ e₂ : Expr S T) → ⟦ e₁ ⟧ ≈ ⟦ e₂ ⟧ -- lemma : Expr S T → ⟦ S ⟧Sig ≅ ⟦ T ⟧Sig -- lemma : ⟦ normaliseSig S ⟧NSig ≅ ⟦ S ⟧Sig -- resp : ⟦ S ⟧NSig ≅ ⟦ T ⟧NSig -- lemma : Expr S T → normaliseSig S ≡ normaliseSig T
{ "alphanum_fraction": 0.4436119874, "avg_line_length": 22.6428571429, "ext": "agda", "hexsha": "63d1c905ad3fe89a933a9466ec5472c0238e4788", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Experiment/Categories/Solver/Category/Monoidal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Experiment/Categories/Solver/Category/Monoidal.agda", "max_line_length": 57, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Experiment/Categories/Solver/Category/Monoidal.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 1475, "size": 2536 }
{-# OPTIONS --without-K --exact-split --allow-unsolved-metas #-} module 23-id-pushout where import 22-descent open 22-descent public -- Section 19.1 Characterizing families of maps over pushouts module hom-Fam-pushout { l1 l2 l3 l4 l5 : Level} { S : UU l1} { A : UU l2} { B : UU l3} { f : S → A} { g : S → B} ( P : Fam-pushout l4 f g) ( Q : Fam-pushout l5 f g) where private PA = pr1 P PB = pr1 (pr2 P) PS = pr2 (pr2 P) QA = pr1 Q QB = pr1 (pr2 Q) QS = pr2 (pr2 Q) {- Definition 19.1.1 -} hom-Fam-pushout : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l5) hom-Fam-pushout = Σ ( (x : A) → (PA x) → (QA x)) (λ hA → Σ ( (y : B) → (PB y) → (QB y)) (λ hB → ( s : S) → ( (hB (g s)) ∘ (map-equiv (PS s))) ~ ((map-equiv (QS s)) ∘ (hA (f s))))) {- Remark 19.1.2. We characterize the identity type of hom-Fam-pushout. -} htpy-hom-Fam-pushout : ( h k : hom-Fam-pushout) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l5) htpy-hom-Fam-pushout h k = Σ ( (x : A) → (pr1 h x) ~ (pr1 k x)) (λ HA → Σ ( (y : B) → (pr1 (pr2 h) y) ~ (pr1 (pr2 k) y)) (λ HB → ( s : S) → ( ((HB (g s)) ·r (map-equiv (PS s))) ∙h (pr2 (pr2 k) s)) ~ ( (pr2 (pr2 h) s) ∙h ((map-equiv (QS s)) ·l (HA (f s)))))) reflexive-htpy-hom-Fam-pushout : ( h : hom-Fam-pushout) → htpy-hom-Fam-pushout h h reflexive-htpy-hom-Fam-pushout h = pair ( λ x → htpy-refl) ( pair ( λ y → htpy-refl) ( λ s → htpy-inv htpy-right-unit)) htpy-hom-Fam-pushout-eq : ( h k : hom-Fam-pushout) → Id h k → htpy-hom-Fam-pushout h k htpy-hom-Fam-pushout-eq h .h refl = reflexive-htpy-hom-Fam-pushout h is-contr-total-htpy-hom-Fam-pushout : ( h : hom-Fam-pushout) → is-contr (Σ (hom-Fam-pushout) (htpy-hom-Fam-pushout h)) is-contr-total-htpy-hom-Fam-pushout h = is-contr-total-Eq-structure ( λ kA kB-ke (HA : (x : A) → (pr1 h x) ~ (kA x)) → Σ ( (y : B) → (pr1 (pr2 h) y) ~ (pr1 kB-ke y)) (λ HB → ( s : S) → ( ((HB (g s)) ·r (map-equiv (PS s))) ∙h (pr2 kB-ke s)) ~ ( (pr2 (pr2 h) s) ∙h ((map-equiv (QS s)) ·l (HA (f s)))))) ( is-contr-total-Eq-Π ( λ x τ → (pr1 h x) ~ τ) ( λ x → is-contr-total-htpy (pr1 h x)) ( pr1 h)) ( pair (pr1 h) (λ x → htpy-refl)) ( is-contr-total-Eq-structure ( λ kB ke (HB : (y : B) → (pr1 (pr2 h) y) ~ kB y) → (s : S) → ( ((HB (g s)) ·r (map-equiv (PS s))) ∙h (ke s)) ~ ( (pr2 (pr2 h) s) ∙h ((map-equiv (QS s)) ·l htpy-refl))) ( is-contr-total-Eq-Π ( λ y τ → (pr1 (pr2 h) y) ~ τ) ( λ y → is-contr-total-htpy (pr1 (pr2 h) y)) ( pr1 (pr2 h))) ( pair (pr1 (pr2 h)) (λ y → htpy-refl)) ( is-contr-total-Eq-Π ( λ (s : S) he → (he ~ (pr2 (pr2 h) s ∙h (map-equiv (QS s) ·l htpy-refl)))) ( λ s → is-contr-total-htpy' ((pr2 (pr2 h) s) ∙h ((map-equiv (QS s)) ·l htpy-refl))) ( λ s → ((pr2 (pr2 h) s) ∙h ((map-equiv (QS s)) ·l htpy-refl))))) is-equiv-htpy-hom-Fam-pushout-eq : ( h k : hom-Fam-pushout) → is-equiv (htpy-hom-Fam-pushout-eq h k) is-equiv-htpy-hom-Fam-pushout-eq h = fundamental-theorem-id h ( reflexive-htpy-hom-Fam-pushout h) ( is-contr-total-htpy-hom-Fam-pushout h) ( htpy-hom-Fam-pushout-eq h) eq-htpy-hom-Fam-pushout : ( h k : hom-Fam-pushout) → htpy-hom-Fam-pushout h k → Id h k eq-htpy-hom-Fam-pushout h k = inv-is-equiv (is-equiv-htpy-hom-Fam-pushout-eq h k) open hom-Fam-pushout public {- Definition 19.1.3. Given a cocone structure on X and a family of maps indexed by X, we obtain a morphism of descent data. -} Naturality-fam-maps : { l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : A → UU l3} ( f : (a : A) → B a → C a) {x x' : A} (p : Id x x') → UU _ Naturality-fam-maps {B = B} {C} f {x} {x'} p = (y : B x) → Id (f x' (tr B p y)) (tr C p (f x y)) naturality-fam-maps : { l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : A → UU l3} ( f : (a : A) → B a → C a) {x x' : A} (p : Id x x') → Naturality-fam-maps f p naturality-fam-maps f refl y = refl hom-Fam-pushout-map : { l1 l2 l3 l4 l5 l6 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} { f : S → A} {g : S → B} (c : cocone f g X) → ( P : X → UU l5) (Q : X → UU l6) → ((x : X) → P x → Q x) → hom-Fam-pushout (desc-fam c P) (desc-fam c Q) hom-Fam-pushout-map {f = f} {g} c P Q h = pair ( precomp-Π (pr1 c) (λ x → P x → Q x) h) ( pair ( precomp-Π (pr1 (pr2 c)) (λ x → P x → Q x) h) ( λ s → naturality-fam-maps h (pr2 (pr2 c) s))) {- Theorem 19.1.4. The function hom-Fam-pushout-map is an equivalence. -} square-path-over-fam-maps : { l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : A → UU l3} { x x' : A} (p : Id x x') (f : B x → C x) (f' : B x' → C x') → Id (tr (λ a → B a → C a) p f) f' → ( y : B x) → Id (f' (tr B p y)) (tr C p (f y)) square-path-over-fam-maps refl f f' = htpy-eq ∘ inv hom-Fam-pushout-dep-cocone : { l1 l2 l3 l4 l5 l6 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} { f : S → A} {g : S → B} (c : cocone f g X) → ( P : X → UU l5) (Q : X → UU l6) → dep-cocone f g c (λ x → P x → Q x) → hom-Fam-pushout (desc-fam c P) (desc-fam c Q) hom-Fam-pushout-dep-cocone {f = f} {g} c P Q = tot (λ hA → tot (λ hB → postcomp-Π (λ s → square-path-over-fam-maps (pr2 (pr2 c) s) (hA (f s)) (hB (g s))))) is-equiv-square-path-over-fam-maps : { l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : A → UU l3} { x x' : A} (p : Id x x') (f : B x → C x) (f' : B x' → C x') → is-equiv (square-path-over-fam-maps p f f') is-equiv-square-path-over-fam-maps refl f f' = is-equiv-comp' htpy-eq inv (is-equiv-inv f f') (funext f' f) is-equiv-hom-Fam-pushout-dep-cocone : { l1 l2 l3 l4 l5 l6 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} { f : S → A} {g : S → B} (c : cocone f g X) → ( P : X → UU l5) (Q : X → UU l6) → is-equiv (hom-Fam-pushout-dep-cocone c P Q) is-equiv-hom-Fam-pushout-dep-cocone {f = f} {g} c P Q = is-equiv-tot-is-fiberwise-equiv (λ hA → is-equiv-tot-is-fiberwise-equiv (λ hB → is-equiv-postcomp-Π _ ( λ s → is-equiv-square-path-over-fam-maps ( pr2 (pr2 c) s) ( hA (f s)) ( hB (g s))))) coherence-naturality-fam-maps : { l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} (P : B → UU l3) (Q : B → UU l4) → { f f' : A → B} (H : f ~ f') (h : (b : B) → P b → Q b) (a : A) → Id ( square-path-over-fam-maps (H a) (h (f a)) (h (f' a)) (apd h (H a))) ( naturality-fam-maps h (H a)) coherence-naturality-fam-maps {A = A} {B} P Q {f} {f'} H = ind-htpy f ( λ f' H → ( h : (b : B) → P b → Q b) (a : A) → Id ( square-path-over-fam-maps (H a) (h (f a)) (h (f' a)) (apd h (H a))) ( naturality-fam-maps h (H a))) ( λ h a → refl) ( H) triangle-hom-Fam-pushout-dep-cocone : { l1 l2 l3 l4 l5 l6 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} { f : S → A} {g : S → B} (c : cocone f g X) → ( P : X → UU l5) (Q : X → UU l6) → ( hom-Fam-pushout-map c P Q) ~ ( ( hom-Fam-pushout-dep-cocone c P Q) ∘ ( dep-cocone-map f g c (λ x → P x → Q x))) triangle-hom-Fam-pushout-dep-cocone {f = f} {g} c P Q h = eq-htpy-hom-Fam-pushout ( desc-fam c P) ( desc-fam c Q) ( hom-Fam-pushout-map c P Q h) ( hom-Fam-pushout-dep-cocone c P Q ( dep-cocone-map f g c (λ x → P x → Q x) h)) ( pair ( λ a → htpy-refl) ( pair ( λ b → htpy-refl) ( λ s → ( htpy-eq ( coherence-naturality-fam-maps P Q (pr2 (pr2 c)) h s)) ∙h ( htpy-inv htpy-right-unit)))) is-equiv-hom-Fam-pushout-map : { l1 l2 l3 l4 l5 l6 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} { f : S → A} {g : S → B} (c : cocone f g X) → ( up-X : (l : Level) → universal-property-pushout l f g c) ( P : X → UU l5) (Q : X → UU l6) → is-equiv (hom-Fam-pushout-map c P Q) is-equiv-hom-Fam-pushout-map {l5 = l5} {l6} {f = f} {g} c up-X P Q = is-equiv-comp ( hom-Fam-pushout-map c P Q) ( hom-Fam-pushout-dep-cocone c P Q) ( dep-cocone-map f g c (λ x → P x → Q x)) ( triangle-hom-Fam-pushout-dep-cocone c P Q) ( dependent-universal-property-universal-property-pushout f g c up-X (l5 ⊔ l6) (λ x → P x → Q x)) ( is-equiv-hom-Fam-pushout-dep-cocone c P Q) equiv-hom-Fam-pushout-map : { l1 l2 l3 l4 l5 l6 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} { f : S → A} {g : S → B} (c : cocone f g X) → ( up-X : (l : Level) → universal-property-pushout l f g c) ( P : X → UU l5) (Q : X → UU l6) → ( (x : X) → P x → Q x) ≃ hom-Fam-pushout (desc-fam c P) (desc-fam c Q) equiv-hom-Fam-pushout-map c up-X P Q = pair ( hom-Fam-pushout-map c P Q) ( is-equiv-hom-Fam-pushout-map c up-X P Q) {- Definition 19.2.1. Universal families over spans -} ev-pt-hom-Fam-pushout : { l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} { f : S → A} {g : S → B} (P : Fam-pushout l4 f g) (Q : Fam-pushout l5 f g) {a : A} → (pr1 P a) → (hom-Fam-pushout P Q) → pr1 Q a ev-pt-hom-Fam-pushout P Q {a} p h = pr1 h a p is-universal-Fam-pushout : { l1 l2 l3 l4 : Level} (l : Level) {S : UU l1} {A : UU l2} {B : UU l3} { f : S → A} {g : S → B} (P : Fam-pushout l4 f g) (a : A) (p : pr1 P a) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ lsuc l) is-universal-Fam-pushout l {f = f} {g} P a p = ( Q : Fam-pushout l f g) → is-equiv (ev-pt-hom-Fam-pushout P Q p) {- Lemma 19.2.2. The descent data of the identity type is a universal family. -} triangle-is-universal-id-Fam-pushout' : { l l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} { f : S → A} {g : S → B} (c : cocone f g X) (a : A) ( Q : (x : X) → UU l) → ( ev-refl (pr1 c a) {B = λ x p → Q x}) ~ ( ( ev-pt-hom-Fam-pushout ( desc-fam c (Id (pr1 c a))) ( desc-fam c Q) ( refl)) ∘ ( hom-Fam-pushout-map c (Id (pr1 c a)) Q)) triangle-is-universal-id-Fam-pushout' c a Q = htpy-refl is-universal-id-Fam-pushout' : { l l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} { f : S → A} {g : S → B} (c : cocone f g X) ( up-X : (l' : Level) → universal-property-pushout l' f g c) (a : A) → ( Q : (x : X) → UU l) → is-equiv ( ev-pt-hom-Fam-pushout ( desc-fam c (Id (pr1 c a))) ( desc-fam c Q) ( refl)) is-universal-id-Fam-pushout' c up-X a Q = is-equiv-left-factor ( ev-refl (pr1 c a) {B = λ x p → Q x}) ( ev-pt-hom-Fam-pushout ( desc-fam c (Id (pr1 c a))) ( desc-fam c Q) ( refl)) ( hom-Fam-pushout-map c (Id (pr1 c a)) Q) ( triangle-is-universal-id-Fam-pushout' c a Q) ( is-equiv-ev-refl (pr1 c a)) ( is-equiv-hom-Fam-pushout-map c up-X (Id (pr1 c a)) Q) is-universal-id-Fam-pushout : { l1 l2 l3 l4 : Level} (l : Level) { S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} { f : S → A} {g : S → B} (c : cocone f g X) ( up-X : (l' : Level) → universal-property-pushout l' f g c) (a : A) → is-universal-Fam-pushout l (desc-fam c (Id (pr1 c a))) a refl is-universal-id-Fam-pushout l {S = S} {A} {B} {X} {f} {g} c up-X a Q = inv-map-equiv ( precomp-Π-equiv ( equiv-desc-fam c up-X) ( λ (Q : Fam-pushout l f g) → is-equiv (ev-pt-hom-Fam-pushout ( desc-fam c (Id (pr1 c a))) Q refl))) ( is-universal-id-Fam-pushout' c up-X a) ( Q) {- We construct the identity morphism and composition, and we show that morphisms equipped with two-sided inverses are equivalences. -} id-hom-Fam-pushout : { l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} { f : S → A} {g : S → B} → ( P : Fam-pushout l4 f g) → hom-Fam-pushout P P id-hom-Fam-pushout P = pair ( λ a → id) ( pair ( λ b → id) ( λ s → htpy-refl)) comp-hom-Fam-pushout : { l1 l2 l3 l4 l5 l6 : Level} {S : UU l1} {A : UU l2} {B : UU l3} { f : S → A} {g : S → B} → ( P : Fam-pushout l4 f g) (Q : Fam-pushout l5 f g) (R : Fam-pushout l6 f g) → hom-Fam-pushout Q R → hom-Fam-pushout P Q → hom-Fam-pushout P R comp-hom-Fam-pushout {f = f} {g} P Q R k h = pair ( λ a → (pr1 k a) ∘ (pr1 h a)) ( pair ( λ b → (pr1 (pr2 k) b) ∘ (pr1 (pr2 h) b)) ( λ s → coherence-square-comp-horizontal ( pr1 h (f s)) ( pr1 k (f s)) ( map-equiv (pr2 (pr2 P) s)) ( map-equiv (pr2 (pr2 Q) s)) ( map-equiv (pr2 (pr2 R) s)) ( pr1 (pr2 h) (g s)) ( pr1 (pr2 k) (g s)) ( pr2 (pr2 h) s) ( pr2 (pr2 k) s))) has-inverse-hom-Fam-pushout : { l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} { f : S → A} {g : S → B} → ( P : Fam-pushout l4 f g) (Q : Fam-pushout l5 f g) (h : hom-Fam-pushout P Q) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l5) has-inverse-hom-Fam-pushout P Q h = Σ ( hom-Fam-pushout Q P) (λ k → ( htpy-hom-Fam-pushout Q Q ( comp-hom-Fam-pushout Q P Q h k) ( id-hom-Fam-pushout Q)) × ( htpy-hom-Fam-pushout P P ( comp-hom-Fam-pushout P Q P k h) ( id-hom-Fam-pushout P))) is-equiv-hom-Fam-pushout : { l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} { f : S → A} {g : S → B} (P : Fam-pushout l4 f g) (Q : Fam-pushout l5 f g) → hom-Fam-pushout P Q → UU (l2 ⊔ l3 ⊔ l4 ⊔ l5) is-equiv-hom-Fam-pushout {A = A} {B} {f} {g} P Q h = ((a : A) → is-equiv (pr1 h a)) × ((b : B) → is-equiv (pr1 (pr2 h) b)) is-equiv-has-inverse-hom-Fam-pushout : { l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} { f : S → A} {g : S → B} → ( P : Fam-pushout l4 f g) (Q : Fam-pushout l5 f g) (h : hom-Fam-pushout P Q) → has-inverse-hom-Fam-pushout P Q h → is-equiv-hom-Fam-pushout P Q h is-equiv-has-inverse-hom-Fam-pushout P Q h has-inv-h = pair ( λ a → is-equiv-has-inverse ( pr1 (pr1 has-inv-h) a) ( pr1 (pr1 (pr2 has-inv-h)) a) ( pr1 (pr2 (pr2 has-inv-h)) a)) ( λ b → is-equiv-has-inverse ( pr1 (pr2 (pr1 has-inv-h)) b) ( pr1 (pr2 (pr1 (pr2 has-inv-h))) b) ( pr1 (pr2 (pr2 (pr2 has-inv-h))) b)) equiv-is-equiv-hom-Fam-pushout : { l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} { f : S → A} {g : S → B} (P : Fam-pushout l4 f g) (Q : Fam-pushout l5 f g) → ( h : hom-Fam-pushout P Q) → is-equiv-hom-Fam-pushout P Q h → equiv-Fam-pushout P Q equiv-is-equiv-hom-Fam-pushout P Q h is-equiv-h = pair ( λ a → pair (pr1 h a) (pr1 is-equiv-h a)) ( pair ( λ b → pair (pr1 (pr2 h) b) (pr2 is-equiv-h b)) ( pr2 (pr2 h))) {- Theorem 19.1.3. Characterization of identity types of pushouts. -} hom-identity-is-universal-Fam-pushout : { l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l5} { f : S → A} {g : S → B} (c : cocone f g X) → ( up-X : (l : Level) → universal-property-pushout l f g c) → ( P : Fam-pushout l4 f g) (a : A) (p : pr1 P a) → is-universal-Fam-pushout l5 P a p → Σ ( hom-Fam-pushout P (desc-fam c (Id (pr1 c a)))) ( λ h → Id (pr1 h a p) refl) hom-identity-is-universal-Fam-pushout {f = f} {g} c up-X P a p is-univ-P = {!!} is-identity-is-universal-Fam-pushout : { l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l5} { f : S → A} {g : S → B} (c : cocone f g X) → ( up-X : (l : Level) → universal-property-pushout l f g c) → ( P : Fam-pushout l4 f g) (a : A) (p : pr1 P a) → is-universal-Fam-pushout l5 P a p → Σ ( equiv-Fam-pushout P (desc-fam c (Id (pr1 c a)))) ( λ e → Id (map-equiv (pr1 e a) p) refl) is-identity-is-universal-Fam-pushout {f = f} {g} c up-X a P p₀ is-eq-P = {!!}
{ "alphanum_fraction": 0.5112647209, "avg_line_length": 37.2, "ext": "agda", "hexsha": "8149c4e6a693bf5b8a93db25f58275486530ca61", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "tmoux/HoTT-Intro", "max_forks_repo_path": "Agda/23-id-pushout.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "tmoux/HoTT-Intro", "max_issues_repo_path": "Agda/23-id-pushout.agda", "max_line_length": 82, "max_stars_count": null, "max_stars_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "tmoux/HoTT-Intro", "max_stars_repo_path": "Agda/23-id-pushout.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6875, "size": 15624 }
-- In Agda 2.5.3 the error was: -- μ₂ is not strictly positive, because it occurs -- in the third argument to ⟦_⟧ -- in the type of the constructor fix -- in the definition of μ₂. open import Data.Nat using (ℕ;zero;suc) open import Data.Fin using (Fin;zero;suc) open import Data.Vec open import Data.Empty open import Data.Product open import Data.Sum open import Data.Unit Σ# : {n : ℕ} -> (Fin n -> Set) -> Set Σ# {zero} f = ⊥ Σ# {suc zero} f = f zero Σ# {suc n} f = f zero ⊎ Σ# {n} λ i -> f (suc i) module Matrices {Ix : Set} {Σ : (Ix -> Set) -> Set} where Matrix : Set1 Matrix = (i j : Ix) -> Set _<+>_ : Matrix -> Matrix -> Matrix m <+> n = λ i j -> m i j ⊎ n i j {-# INLINE _<+>_ #-} _<*>_ : Matrix -> Matrix -> Matrix m <*> n = λ i j -> Σ λ k -> m i k × n k j {-# INLINE _<*>_ #-} data Poly {Coeffs : Set1} : Set1 where 0p 1p : Poly X : Poly _+_ _*_ : (D1 D2 : Poly {Coeffs}) -> Poly {Coeffs} K : Coeffs -> Poly module Dim {n : ℕ} where open Matrices {Fin n} {Σ#} ⟦_⟧ : Poly {Vec (Vec Set n) n} -> Matrix -> Matrix ⟦ 0p ⟧ x i j = ⊥ ⟦ 1p ⟧ x i j = ⊤ ⟦ X ⟧ x i j = x i j ⟦ D1 + D2 ⟧ x i j = (⟦ D1 ⟧ x <+> ⟦ D2 ⟧ x) i j ⟦ D1 * D2 ⟧ x i j = (⟦ D1 ⟧ x <*> ⟦ D2 ⟧ x) i j ⟦ K S ⟧ x i j = lookup (lookup S i) j ⟪_⟫ : Poly {Set} -> Set → Set ⟪ 0p ⟫ x = ⊥ ⟪ 1p ⟫ x = ⊤ ⟪ X ⟫ x = x ⟪ D1 + D2 ⟫ x = (⟪ D1 ⟫ x ⊎ ⟪ D2 ⟫ x) ⟪ D1 * D2 ⟫ x = (⟪ D1 ⟫ x × ⟪ D2 ⟫ x) ⟪ K S ⟫ x = S data μ₁ (p : Poly) : Set where fix : ⟪ p ⟫ (μ₁ p) -> μ₁ p data μ₂ (p : Poly) (i j : Fin n) : Set where fix : ⟦ p ⟧ (μ₂ p) i j -> μ₂ p i j
{ "alphanum_fraction": 0.5012626263, "avg_line_length": 24.75, "ext": "agda", "hexsha": "930dd97be843057ec8c1bc675259340baf6a98eb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "aa5e3a127bf17a8c80d947f3c286758a36dadc36", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "jappeace/agda", "max_forks_repo_path": "test/LibSucceed/Issue421.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aa5e3a127bf17a8c80d947f3c286758a36dadc36", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "jappeace/agda", "max_issues_repo_path": "test/LibSucceed/Issue421.agda", "max_line_length": 57, "max_stars_count": null, "max_stars_repo_head_hexsha": "aa5e3a127bf17a8c80d947f3c286758a36dadc36", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "jappeace/agda", "max_stars_repo_path": "test/LibSucceed/Issue421.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 736, "size": 1584 }
{-# OPTIONS --without-K #-} module hott.level.core where open import level open import sum open import sets.nat.core open import equality.core open import equality.groupoid h : ∀ {i} → ℕ → Set i → Set i h 0 X = Σ X λ x → (x' : X) → x ≡ x' h (suc n) X = (x x' : X) → h n (x ≡ x') contr : ∀ {i} → Set i → Set i contr = h 0 prop : ∀ {i} → Set i → Set i prop X = (x x' : X) → x ≡ x' h1⇒prop : ∀ {i} {X : Set i} → h 1 X → prop X h1⇒prop h1 x x' = proj₁ (h1 x x') prop⇒h1 : ∀ {i} {X : Set i} → prop X → h 1 X prop⇒h1 {X = X} f x y = p₀ x y , lem x y where p₀ : (x y : X) → x ≡ y p₀ x y = f x y · (f y y)⁻¹ lem : (x y : X)(p : x ≡ y) → p₀ x y ≡ p lem x .x refl = left-inverse (f x x) contr⇒prop : ∀ {i} {X : Set i} → contr X → prop X contr⇒prop (x , p) = λ x' x'' → sym (p x') · p x'' h↑ : ∀ {i n}{X : Set i} → h n X → h (suc n) X h↑ {n = 0} c = prop⇒h1 (contr⇒prop c) h↑ {n = suc n} hn = λ x x' → h↑ (hn x x') -- Prop: the set of propositions HProp : ∀ i → Set (lsuc i) HProp i = Σ (Set i) (h 1) -- HSet : sets HSet : ∀ i → Set (lsuc i) HSet i = Σ (Set i) (h 2) -- Types by h-level (shifted by 2) Type : ∀ i → ℕ → Set (lsuc i) Type i n = Σ (Set i) (h (suc (suc n))) _⁻¹_ : ∀ {i k} {X : Set i} {Y : Set k} → (X → Y) → Y → Set (i ⊔ k) f ⁻¹ y = Σ _ λ x → f x ≡ y -- singletons are contractible singl-contr : ∀ {i} {A : Set i} → (x : A) → contr (singleton x) singl-contr {A = A} x = (x , refl) , λ { (x' , p) → lem x' p } where lem : (x' : A)(p : x ≡ x') → (x , refl) ≡ (x' , p) lem .x refl = refl singl-contr' : ∀ {i} {A : Set i} → (x : A) → contr (singleton' x) singl-contr' {A = A} x = (x , refl) , λ { (x' , p) → lem x' p } where lem : (x' : A)(p : x' ≡ x) → (x , refl) ≡ (x' , p) lem .x refl = refl
{ "alphanum_fraction": 0.4771167048, "avg_line_length": 26.4848484848, "ext": "agda", "hexsha": "534f4de794b801411d6c8507a69dfe428fc067ea", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "hott/level/core.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "HoTT/M-types", "max_issues_repo_path": "hott/level/core.agda", "max_line_length": 66, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "hott/level/core.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 823, "size": 1748 }
{-# OPTIONS --allow-unsolved-metas #-} open import Level open import Ordinals module OD {n : Level } (O : Ordinals {n} ) where open import zf open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary hiding (_⇔_) open import Relation.Binary.Core hiding (_⇔_) open import logic import OrdUtil open import nat open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal open Ordinals.IsNext isNext open OrdUtil O -- Ordinal Definable Set record OD : Set (suc n ) where field def : (x : Ordinal ) → Set n open OD open _∧_ open _∨_ open Bool record _==_ ( a b : OD ) : Set n where field eq→ : ∀ { x : Ordinal } → def a x → def b x eq← : ∀ { x : Ordinal } → def b x → def a x ==-refl : { x : OD } → x == x ==-refl {x} = record { eq→ = λ x → x ; eq← = λ x → x } open _==_ ==-trans : { x y z : OD } → x == y → y == z → x == z ==-trans x=y y=z = record { eq→ = λ {m} t → eq→ y=z (eq→ x=y t) ; eq← = λ {m} t → eq← x=y (eq← y=z t) } ==-sym : { x y : OD } → x == y → y == x ==-sym x=y = record { eq→ = λ {m} t → eq← x=y t ; eq← = λ {m} t → eq→ x=y t } ⇔→== : { x y : OD } → ( {z : Ordinal } → (def x z ⇔ def y z)) → x == y eq→ ( ⇔→== {x} {y} eq ) {z} m = proj1 eq m eq← ( ⇔→== {x} {y} eq ) {z} m = proj2 eq m -- next assumptions are our axiom -- -- OD is an equation on Ordinals, so it contains Ordinals. If these Ordinals have one-to-one -- correspondence to the OD then the OD looks like a ZF Set. -- -- If all ZF Set have supreme upper bound, the solutions of OD have to be bounded, i.e. -- bbounded ODs are ZF Set. Unbounded ODs are classes. -- -- In classical Set Theory, HOD is used, as a subset of OD, -- HOD = { x | TC x ⊆ OD } -- where TC x is a transitive clusure of x, i.e. Union of all elemnts of all subset of x. -- This is not possible because we don't have V yet. So we assumes HODs are bounded OD. -- -- We also assumes HODs are isomorphic to Ordinals, which is ususally proved by Goedel number tricks. -- There two contraints on the HOD order, one is ∋, the other one is ⊂. -- ODs have an ovbious maximum, but Ordinals are not, but HOD has no maximum because there is an aribtrary -- bound on each HOD. -- -- In classical Set Theory, sup is defined by Uion, since we are working on constructive logic, -- we need explict assumption on sup. -- -- ==→o≡ is necessary to prove axiom of extensionality. -- Ordinals in OD , the maximum Ords : OD Ords = record { def = λ x → One } record HOD : Set (suc n) where field od : OD odmax : Ordinal <odmax : {y : Ordinal} → def od y → y o< odmax open HOD record ODAxiom : Set (suc n) where field -- HOD is isomorphic to Ordinal (by means of Goedel number) & : HOD → Ordinal * : Ordinal → HOD c<→o< : {x y : HOD } → def (od y) ( & x ) → & x o< & y ⊆→o≤ : {y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → & y o< osuc (& z) *iso : {x : HOD } → * ( & x ) ≡ x &iso : {x : Ordinal } → & ( * x ) ≡ x ==→o≡ : {x y : HOD } → (od x == od y) → x ≡ y sup-o : (A : HOD) → ( ( x : Ordinal ) → def (od A) x → Ordinal ) → Ordinal sup-o< : (A : HOD) → { ψ : ( x : Ordinal ) → def (od A) x → Ordinal } → ∀ {x : Ordinal } → (lt : def (od A) x ) → ψ x lt o< sup-o A ψ -- possible order restriction ho< : {x : HOD} → & x o< next (odmax x) postulate odAxiom : ODAxiom open ODAxiom odAxiom -- odmax minimality -- -- since we have ==→o≡ , so odmax have to be unique. We should have odmaxmin in HOD. -- We can calculate the minimum using sup but it is tedius. -- Only Select has non minimum odmax. -- We have the same problem on 'def' itself, but we leave it. odmaxmin : Set (suc n) odmaxmin = (y : HOD) (z : Ordinal) → ((x : Ordinal)→ def (od y) x → x o< z) → odmax y o< osuc z -- OD ⇔ Ordinal leads a contradiction, so we need bounded HOD ¬OD-order : ( & : OD → Ordinal ) → ( * : Ordinal → OD ) → ( { x y : OD } → def y ( & x ) → & x o< & y) → ⊥ ¬OD-order & * c<→o< = osuc-< <-osuc (c<→o< {Ords} OneObj ) -- Open supreme upper bound leads a contradition, so we use domain restriction on sup ¬open-sup : ( sup-o : (Ordinal → Ordinal ) → Ordinal) → ((ψ : Ordinal → Ordinal ) → (x : Ordinal) → ψ x o< sup-o ψ ) → ⊥ ¬open-sup sup-o sup-o< = o<> <-osuc (sup-o< next-ord (sup-o next-ord)) where next-ord : Ordinal → Ordinal next-ord x = osuc x -- Ordinal in OD ( and ZFSet ) Transitive Set Ord : ( a : Ordinal ) → HOD Ord a = record { od = record { def = λ y → y o< a } ; odmax = a ; <odmax = lemma } where lemma : {x : Ordinal} → x o< a → x o< a lemma {x} lt = lt od∅ : HOD od∅ = Ord o∅ odef : HOD → Ordinal → Set n odef A x = def ( od A ) x _∋_ : ( a x : HOD ) → Set n _∋_ a x = odef a ( & x ) -- _c<_ : ( x a : HOD ) → Set n -- x c< a = a ∋ x d→∋ : ( a : HOD ) { x : Ordinal} → odef a x → a ∋ (* x) d→∋ a lt = subst (λ k → odef a k ) (sym &iso) lt -- odef-subst : {Z : HOD } {X : Ordinal }{z : HOD } {x : Ordinal }→ odef Z X → Z ≡ z → X ≡ x → odef z x -- odef-subst df refl refl = df otrans : {a x y : Ordinal } → odef (Ord a) x → odef (Ord x) y → odef (Ord a) y otrans x<a y<x = ordtrans y<x x<a -- If we have reverse of c<→o<, everything becomes Ordinal ∈→c<→HOD=Ord : ( o<→c< : {x y : Ordinal } → x o< y → odef (* y) x ) → {x : HOD } → x ≡ Ord (& x) ∈→c<→HOD=Ord o<→c< {x} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where lemma1 : {y : Ordinal} → odef x y → odef (Ord (& x)) y lemma1 {y} lt = subst ( λ k → k o< & x ) &iso (c<→o< {* y} {x} (d→∋ x lt)) lemma2 : {y : Ordinal} → odef (Ord (& x)) y → odef x y lemma2 {y} lt = subst (λ k → odef k y ) *iso (o<→c< {y} {& x} lt ) -- avoiding lv != Zero error orefl : { x : HOD } → { y : Ordinal } → & x ≡ y → & x ≡ y orefl refl = refl ==-iso : { x y : HOD } → od (* (& x)) == od (* (& y)) → od x == od y ==-iso {x} {y} eq = record { eq→ = λ {z} d → lemma ( eq→ eq (subst (λ k → odef k z ) (sym *iso) d )) ; eq← = λ {z} d → lemma ( eq← eq (subst (λ k → odef k z ) (sym *iso) d )) } where lemma : {x : HOD } {z : Ordinal } → odef (* (& x)) z → odef x z lemma {x} {z} d = subst (λ k → odef k z) (*iso) d =-iso : {x y : HOD } → (od x == od y) ≡ (od (* (& x)) == od y) =-iso {_} {y} = cong ( λ k → od k == od y ) (sym *iso) ord→== : { x y : HOD } → & x ≡ & y → od x == od y ord→== {x} {y} eq = ==-iso (lemma (& x) (& y) (orefl eq)) where lemma : ( ox oy : Ordinal ) → ox ≡ oy → od (* ox) == od (* oy) lemma ox ox refl = ==-refl o≡→== : { x y : Ordinal } → x ≡ y → od (* x) == od (* y) o≡→== {x} {.x} refl = ==-refl o∅≡od∅ : * (o∅ ) ≡ od∅ o∅≡od∅ = ==→o≡ lemma where lemma0 : {x : Ordinal} → odef (* o∅) x → odef od∅ x lemma0 {x} lt with c<→o< {* x} {* o∅} (subst (λ k → odef (* o∅) k ) (sym &iso) lt) ... | t = subst₂ (λ j k → j o< k ) &iso &iso t lemma1 : {x : Ordinal} → odef od∅ x → odef (* o∅) x lemma1 {x} lt = ⊥-elim (¬x<0 lt) lemma : od (* o∅) == od od∅ lemma = record { eq→ = lemma0 ; eq← = lemma1 } ord-od∅ : & (od∅ ) ≡ o∅ ord-od∅ = sym ( subst (λ k → k ≡ & (od∅ ) ) &iso (cong ( λ k → & k ) o∅≡od∅ ) ) ≡o∅→=od∅ : {x : HOD} → & x ≡ o∅ → od x == od od∅ ≡o∅→=od∅ {x} eq = record { eq→ = λ {y} lt → ⊥-elim ( ¬x<0 {y} (subst₂ (λ j k → j o< k ) &iso eq ( c<→o< {* y} {x} (d→∋ x lt)))) ; eq← = λ {y} lt → ⊥-elim ( ¬x<0 lt )} =od∅→≡o∅ : {x : HOD} → od x == od od∅ → & x ≡ o∅ =od∅→≡o∅ {x} eq = trans (cong (λ k → & k ) (==→o≡ {x} {od∅} eq)) ord-od∅ ∅0 : record { def = λ x → Lift n ⊥ } == od od∅ eq→ ∅0 {w} (lift ()) eq← ∅0 {w} lt = lift (¬x<0 lt) ∅< : { x y : HOD } → odef x (& y ) → ¬ ( od x == od od∅ ) ∅< {x} {y} d eq with eq→ (==-trans eq (==-sym ∅0) ) d ∅< {x} {y} d eq | lift () ∅6 : { x : HOD } → ¬ ( x ∋ x ) -- no Russel paradox ∅6 {x} x∋x = o<¬≡ refl ( c<→o< {x} {x} x∋x ) odef-iso : {A B : HOD } {x y : Ordinal } → x ≡ y → (odef A y → odef B y) → odef A x → odef B x odef-iso refl t = t is-o∅ : ( x : Ordinal ) → Dec ( x ≡ o∅ ) is-o∅ x with trio< x o∅ is-o∅ x | tri< a ¬b ¬c = no ¬b is-o∅ x | tri≈ ¬a b ¬c = yes b is-o∅ x | tri> ¬a ¬b c = no ¬b -- the pair _,_ : HOD → HOD → HOD x , y = record { od = record { def = λ t → (t ≡ & x ) ∨ ( t ≡ & y ) } ; odmax = omax (& x) (& y) ; <odmax = lemma } where lemma : {t : Ordinal} → (t ≡ & x) ∨ (t ≡ & y) → t o< omax (& x) (& y) lemma {t} (case1 refl) = omax-x _ _ lemma {t} (case2 refl) = omax-y _ _ pair<y : {x y : HOD } → y ∋ x → & (x , x) o< osuc (& y) pair<y {x} {y} y∋x = ⊆→o≤ lemma where lemma : {z : Ordinal} → def (od (x , x)) z → def (od y) z lemma (case1 refl) = y∋x lemma (case2 refl) = y∋x -- another possible restriction. We reqest no minimality on odmax, so it may arbitrary larger. odmax<& : { x y : HOD } → x ∋ y → Set n odmax<& {x} {y} x∋y = odmax x o< & x in-codomain : (X : HOD ) → ( ψ : HOD → HOD ) → OD in-codomain X ψ = record { def = λ x → ¬ ( (y : Ordinal ) → ¬ ( odef X y ∧ ( x ≡ & (ψ (* y ))))) } _∩_ : ( A B : HOD ) → HOD A ∩ B = record { od = record { def = λ x → odef A x ∧ odef B x } ; odmax = omin (odmax A) (odmax B) ; <odmax = λ y → min1 (<odmax A (proj1 y)) (<odmax B (proj2 y))} record _⊆_ ( A B : HOD ) : Set (suc n) where field incl : { x : HOD } → A ∋ x → B ∋ x open _⊆_ infixr 220 _⊆_ -- if we have & (x , x) ≡ osuc (& x), ⊆→o≤ → c<→o< ⊆→o≤→c<→o< : ({x : HOD} → & (x , x) ≡ osuc (& x) ) → ({y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → & y o< osuc (& z) ) → {x y : HOD } → def (od y) ( & x ) → & x o< & y ⊆→o≤→c<→o< peq ⊆→o≤ {x} {y} y∋x with trio< (& x) (& y) ⊆→o≤→c<→o< peq ⊆→o≤ {x} {y} y∋x | tri< a ¬b ¬c = a ⊆→o≤→c<→o< peq ⊆→o≤ {x} {y} y∋x | tri≈ ¬a b ¬c = ⊥-elim ( o<¬≡ (peq {x}) (pair<y (subst (λ k → k ∋ x) (sym ( ==→o≡ {x} {y} (ord→== b))) y∋x ))) ⊆→o≤→c<→o< peq ⊆→o≤ {x} {y} y∋x | tri> ¬a ¬b c = ⊥-elim ( o<> (⊆→o≤ {x , x} {y} y⊆x,x ) lemma1 ) where lemma : {z : Ordinal} → (z ≡ & x) ∨ (z ≡ & x) → & x ≡ z lemma (case1 refl) = refl lemma (case2 refl) = refl y⊆x,x : {z : Ordinal} → def (od (x , x)) z → def (od y) z y⊆x,x {z} lt = subst (λ k → def (od y) k ) (lemma lt) y∋x lemma1 : osuc (& y) o< & (x , x) lemma1 = subst (λ k → osuc (& y) o< k ) (sym (peq {x})) (osucc c ) ε-induction : { ψ : HOD → Set (suc n)} → ( {x : HOD } → ({ y : HOD } → x ∋ y → ψ y ) → ψ x ) → (x : HOD ) → ψ x ε-induction {ψ} ind x = subst (λ k → ψ k ) *iso (ε-induction-ord (osuc (& x)) <-osuc ) where induction : (ox : Ordinal) → ((oy : Ordinal) → oy o< ox → ψ (* oy)) → ψ (* ox) induction ox prev = ind ( λ {y} lt → subst (λ k → ψ k ) *iso (prev (& y) (o<-subst (c<→o< lt) refl &iso ))) ε-induction-ord : (ox : Ordinal) { oy : Ordinal } → oy o< ox → ψ (* oy) ε-induction-ord ox {oy} lt = TransFinite {λ oy → ψ (* oy)} induction oy Select : (X : HOD ) → ((x : HOD ) → Set n ) → HOD Select X ψ = record { od = record { def = λ x → ( odef X x ∧ ψ ( * x )) } ; odmax = odmax X ; <odmax = λ y → <odmax X (proj1 y) } Replace : HOD → (HOD → HOD) → HOD Replace X ψ = record { od = record { def = λ x → (x o< sup-o X (λ y X∋y → & (ψ (* y)))) ∧ def (in-codomain X ψ) x } ; odmax = rmax ; <odmax = rmax<} where rmax : Ordinal rmax = sup-o X (λ y X∋y → & (ψ (* y))) rmax< : {y : Ordinal} → (y o< rmax) ∧ def (in-codomain X ψ) y → y o< rmax rmax< lt = proj1 lt -- -- If we have LEM, Replace' is equivalent to Replace -- in-codomain' : (X : HOD ) → ((x : HOD) → X ∋ x → HOD) → OD in-codomain' X ψ = record { def = λ x → ¬ ( (y : Ordinal ) → ¬ ( odef X y ∧ ((lt : odef X y) → x ≡ & (ψ (* y ) (d→∋ X lt) )))) } Replace' : (X : HOD) → ((x : HOD) → X ∋ x → HOD) → HOD Replace' X ψ = record { od = record { def = λ x → (x o< sup-o X (λ y X∋y → & (ψ (* y) (d→∋ X X∋y) ))) ∧ def (in-codomain' X ψ) x } ; odmax = rmax ; <odmax = rmax< } where rmax : Ordinal rmax = sup-o X (λ y X∋y → & (ψ (* y) (d→∋ X X∋y))) rmax< : {y : Ordinal} → (y o< rmax) ∧ def (in-codomain' X ψ) y → y o< rmax rmax< lt = proj1 lt Union : HOD → HOD Union U = record { od = record { def = λ x → ¬ (∀ (u : Ordinal ) → ¬ ((odef U u) ∧ (odef (* u) x))) } ; odmax = osuc (& U) ; <odmax = umax< } where umax< : {y : Ordinal} → ¬ ((u : Ordinal) → ¬ def (od U) u ∧ def (od (* u)) y) → y o< osuc (& U) umax< {y} not = lemma (FExists _ lemma1 not ) where lemma0 : {x : Ordinal} → def (od (* x)) y → y o< x lemma0 {x} x<y = subst₂ (λ j k → j o< k ) &iso &iso (c<→o< (d→∋ (* x) x<y )) lemma2 : {x : Ordinal} → def (od U) x → x o< & U lemma2 {x} x<U = subst (λ k → k o< & U ) &iso (c<→o< (d→∋ U x<U)) lemma1 : {x : Ordinal} → def (od U) x ∧ def (od (* x)) y → ¬ (& U o< y) lemma1 {x} lt u<y = o<> u<y (ordtrans (lemma0 (proj2 lt)) (lemma2 (proj1 lt)) ) lemma : ¬ ((& U) o< y ) → y o< osuc (& U) lemma not with trio< y (& U) lemma not | tri< a ¬b ¬c = ordtrans a <-osuc lemma not | tri≈ ¬a refl ¬c = <-osuc lemma not | tri> ¬a ¬b c = ⊥-elim (not c) _∈_ : ( A B : HOD ) → Set n A ∈ B = B ∋ A OPwr : (A : HOD ) → HOD OPwr A = Ord ( sup-o (Ord (osuc (& A))) ( λ x A∋x → & ( A ∩ (* x)) ) ) Power : HOD → HOD Power A = Replace (OPwr (Ord (& A))) ( λ x → A ∩ x ) -- {_} : ZFSet → ZFSet -- { x } = ( x , x ) -- better to use (x , x) directly union→ : (X z u : HOD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z union→ X z u xx not = ⊥-elim ( not (& u) ( ⟪ proj1 xx , subst ( λ k → odef k (& z)) (sym *iso) (proj2 xx) ⟫ )) union← : (X z : HOD) (X∋z : Union X ∋ z) → ¬ ( (u : HOD ) → ¬ ((X ∋ u) ∧ (u ∋ z ))) union← X z UX∋z = FExists _ lemma UX∋z where lemma : {y : Ordinal} → odef X y ∧ odef (* y) (& z) → ¬ ((u : HOD) → ¬ (X ∋ u) ∧ (u ∋ z)) lemma {y} xx not = not (* y) ⟪ d→∋ X (proj1 xx) , proj2 xx ⟫ data infinite-d : ( x : Ordinal ) → Set n where iφ : infinite-d o∅ isuc : {x : Ordinal } → infinite-d x → infinite-d (& ( Union (* x , (* x , * x ) ) )) -- ω can be diverged in our case, since we have no restriction on the corresponding ordinal of a pair. -- We simply assumes infinite-d y has a maximum. -- -- This means that many of OD may not be HODs because of the & mapping divergence. -- We should have some axioms to prevent this such as & x o< next (odmax x). -- -- postulate -- ωmax : Ordinal -- <ωmax : {y : Ordinal} → infinite-d y → y o< ωmax -- -- infinite : HOD -- infinite = record { od = record { def = λ x → infinite-d x } ; odmax = ωmax ; <odmax = <ωmax } infinite : HOD infinite = record { od = record { def = λ x → infinite-d x } ; odmax = next o∅ ; <odmax = lemma } where u : (y : Ordinal ) → HOD u y = Union (* y , (* y , * y)) -- next< : {x y z : Ordinal} → x o< next z → y o< next x → y o< next z lemma8 : {y : Ordinal} → & (* y , * y) o< next (odmax (* y , * y)) lemma8 = ho< --- (x,y) < next (omax x y) < next (osuc y) = next y lemmaa : {x y : HOD} → & x o< & y → & (x , y) o< next (& y) lemmaa {x} {y} x<y = subst (λ k → & (x , y) o< k ) (sym nexto≡) (subst (λ k → & (x , y) o< next k ) (sym (omax< _ _ x<y)) ho< ) lemma81 : {y : Ordinal} → & (* y , * y) o< next (& (* y)) lemma81 {y} = nexto=n (subst (λ k → & (* y , * y) o< k ) (cong (λ k → next k) (omxx _)) lemma8) lemma9 : {y : Ordinal} → & (* y , (* y , * y)) o< next (& (* y , * y)) lemma9 = lemmaa (c<→o< (case1 refl)) lemma71 : {y : Ordinal} → & (* y , (* y , * y)) o< next (& (* y)) lemma71 = next< lemma81 lemma9 lemma1 : {y : Ordinal} → & (u y) o< next (osuc (& (* y , (* y , * y)))) lemma1 = ho< --- main recursion lemma : {y : Ordinal} → infinite-d y → y o< next o∅ lemma {o∅} iφ = x<nx lemma (isuc {y} x) = next< (lemma x) (next< (subst (λ k → & (* y , (* y , * y)) o< next k) &iso lemma71 ) (nexto=n lemma1)) empty : (x : HOD ) → ¬ (od∅ ∋ x) empty x = ¬x<0 _=h=_ : (x y : HOD) → Set n x =h= y = od x == od y pair→ : ( x y t : HOD ) → (x , y) ∋ t → ( t =h= x ) ∨ ( t =h= y ) pair→ x y t (case1 t≡x ) = case1 (subst₂ (λ j k → j =h= k ) *iso *iso (o≡→== t≡x )) pair→ x y t (case2 t≡y ) = case2 (subst₂ (λ j k → j =h= k ) *iso *iso (o≡→== t≡y )) pair← : ( x y t : HOD ) → ( t =h= x ) ∨ ( t =h= y ) → (x , y) ∋ t pair← x y t (case1 t=h=x) = case1 (cong (λ k → & k ) (==→o≡ t=h=x)) pair← x y t (case2 t=h=y) = case2 (cong (λ k → & k ) (==→o≡ t=h=y)) o<→c< : {x y : Ordinal } → x o< y → (Ord x) ⊆ (Ord y) o<→c< lt = record { incl = λ z → ordtrans z lt } ⊆→o< : {x y : Ordinal } → (Ord x) ⊆ (Ord y) → x o< osuc y ⊆→o< {x} {y} lt with trio< x y ⊆→o< {x} {y} lt | tri< a ¬b ¬c = ordtrans a <-osuc ⊆→o< {x} {y} lt | tri≈ ¬a b ¬c = subst ( λ k → k o< osuc y) (sym b) <-osuc ⊆→o< {x} {y} lt | tri> ¬a ¬b c with (incl lt) (o<-subst c (sym &iso) refl ) ... | ttt = ⊥-elim ( o<¬≡ refl (o<-subst ttt &iso refl )) ψiso : {ψ : HOD → Set n} {x y : HOD } → ψ x → x ≡ y → ψ y ψiso {ψ} t refl = t selection : {ψ : HOD → Set n} {X y : HOD} → ((X ∋ y) ∧ ψ y) ⇔ (Select X ψ ∋ y) selection {ψ} {X} {y} = ⟪ ( λ cond → ⟪ proj1 cond , ψiso {ψ} (proj2 cond) (sym *iso) ⟫ ) , ( λ select → ⟪ proj1 select , ψiso {ψ} (proj2 select) *iso ⟫ ) ⟫ selection-in-domain : {ψ : HOD → Set n} {X y : HOD} → Select X ψ ∋ y → X ∋ y selection-in-domain {ψ} {X} {y} lt = proj1 ((proj2 (selection {ψ} {X} )) lt) sup-c< : (ψ : HOD → HOD) → {X x : HOD} → X ∋ x → & (ψ x) o< (sup-o X (λ y X∋y → & (ψ (* y)))) sup-c< ψ {X} {x} lt = subst (λ k → & (ψ k) o< _ ) *iso (sup-o< X lt ) replacement← : {ψ : HOD → HOD} (X x : HOD) → X ∋ x → Replace X ψ ∋ ψ x replacement← {ψ} X x lt = ⟪ sup-c< ψ {X} {x} lt , lemma ⟫ where lemma : def (in-codomain X ψ) (& (ψ x)) lemma not = ⊥-elim ( not ( & x ) ⟪ lt , cong (λ k → & (ψ k)) (sym *iso)⟫ ) replacement→ : {ψ : HOD → HOD} (X x : HOD) → (lt : Replace X ψ ∋ x) → ¬ ( (y : HOD) → ¬ (x =h= ψ y)) replacement→ {ψ} X x lt = contra-position lemma (lemma2 (proj2 lt)) where lemma2 : ¬ ((y : Ordinal) → ¬ odef X y ∧ ((& x) ≡ & (ψ (* y)))) → ¬ ((y : Ordinal) → ¬ odef X y ∧ (* (& x) =h= ψ (* y))) lemma2 not not2 = not ( λ y d → not2 y ⟪ proj1 d , lemma3 (proj2 d)⟫) where lemma3 : {y : Ordinal } → (& x ≡ & (ψ (* y))) → (* (& x) =h= ψ (* y)) lemma3 {y} eq = subst (λ k → * (& x) =h= k ) *iso (o≡→== eq ) lemma : ( (y : HOD) → ¬ (x =h= ψ y)) → ( (y : Ordinal) → ¬ odef X y ∧ (* (& x) =h= ψ (* y)) ) lemma not y not2 = not (* y) (subst (λ k → k =h= ψ (* y)) *iso ( proj2 not2 )) --- --- Power Set --- --- First consider ordinals in HOD --- --- A ∩ x = record { def = λ y → odef A y ∧ odef x y } subset of A -- -- ∩-≡ : { a b : HOD } → ({x : HOD } → (a ∋ x → b ∋ x)) → a =h= ( b ∩ a ) ∩-≡ {a} {b} inc = record { eq→ = λ {x} x<a → ⟪ (subst (λ k → odef b k ) &iso (inc (d→∋ a x<a))) , x<a ⟫ ; eq← = λ {x} x<a∩b → proj2 x<a∩b } -- -- Transitive Set case -- we have t ∋ x → Ord a ∋ x means t is a subset of Ord a, that is (Ord a) ∩ t =h= t -- OPwr (Ord a) is a sup of (Ord a) ∩ t, so OPwr (Ord a) ∋ t -- OPwr A = Ord ( sup-o ( λ x → & ( A ∩ (* x )) ) ) -- ord-power← : (a : Ordinal ) (t : HOD) → ({x : HOD} → (t ∋ x → (Ord a) ∋ x)) → OPwr (Ord a) ∋ t ord-power← a t t→A = subst (λ k → odef (OPwr (Ord a)) k ) (lemma1 lemma-eq) lemma where lemma-eq : ((Ord a) ∩ t) =h= t eq→ lemma-eq {z} w = proj2 w eq← lemma-eq {z} w = ⟪ subst (λ k → odef (Ord a) k ) &iso ( t→A (d→∋ t w)) , w ⟫ lemma1 : {a : Ordinal } { t : HOD } → (eq : ((Ord a) ∩ t) =h= t) → & ((Ord a) ∩ (* (& t))) ≡ & t lemma1 {a} {t} eq = subst (λ k → & ((Ord a) ∩ k) ≡ & t ) (sym *iso) (cong (λ k → & k ) (==→o≡ eq )) lemma2 : (& t) o< (osuc (& (Ord a))) lemma2 = ⊆→o≤ {t} {Ord a} (λ {x} x<t → subst (λ k → def (od (Ord a)) k) &iso (t→A (d→∋ t x<t))) lemma : & ((Ord a) ∩ (* (& t)) ) o< sup-o (Ord (osuc (& (Ord a)))) (λ x lt → & ((Ord a) ∩ (* x))) lemma = sup-o< _ lemma2 -- -- Every set in HOD is a subset of Ordinals, so make OPwr (Ord (& A)) first -- then replace of all elements of the Power set by A ∩ y -- -- Power A = Replace (OPwr (Ord (& A))) ( λ y → A ∩ y ) -- we have oly double negation form because of the replacement axiom -- power→ : ( A t : HOD) → Power A ∋ t → {x : HOD} → t ∋ x → ¬ ¬ (A ∋ x) power→ A t P∋t {x} t∋x = FExists _ lemma5 lemma4 where a = & A lemma2 : ¬ ( (y : HOD) → ¬ (t =h= (A ∩ y))) lemma2 = replacement→ {λ x → A ∩ x} (OPwr (Ord (& A))) t P∋t lemma3 : (y : HOD) → t =h= ( A ∩ y ) → ¬ ¬ (A ∋ x) lemma3 y eq not = not (proj1 (eq→ eq t∋x)) lemma4 : ¬ ((y : Ordinal) → ¬ (t =h= (A ∩ * y))) lemma4 not = lemma2 ( λ y not1 → not (& y) (subst (λ k → t =h= ( A ∩ k )) (sym *iso) not1 )) lemma5 : {y : Ordinal} → t =h= (A ∩ * y) → ¬ ¬ (odef A (& x)) lemma5 {y} eq not = (lemma3 (* y) eq) not power← : (A t : HOD) → ({x : HOD} → (t ∋ x → A ∋ x)) → Power A ∋ t power← A t t→A = ⟪ lemma1 , lemma2 ⟫ where a = & A lemma0 : {x : HOD} → t ∋ x → Ord a ∋ x lemma0 {x} t∋x = c<→o< (t→A t∋x) lemma3 : OPwr (Ord a) ∋ t lemma3 = ord-power← a t lemma0 lemma4 : (A ∩ * (& t)) ≡ t lemma4 = let open ≡-Reasoning in begin A ∩ * (& t) ≡⟨ cong (λ k → A ∩ k) *iso ⟩ A ∩ t ≡⟨ sym (==→o≡ ( ∩-≡ {t} {A} t→A )) ⟩ t ∎ sup1 : Ordinal sup1 = sup-o (Ord (osuc (& (Ord (& A))))) (λ x A∋x → & ((Ord (& A)) ∩ (* x))) lemma9 : def (od (Ord (Ordinals.osuc O (& (Ord (& A)))))) (& (Ord (& A))) lemma9 = <-osuc lemmab : & ((Ord (& A)) ∩ (* (& (Ord (& A) )))) o< sup1 lemmab = sup-o< (Ord (osuc (& (Ord (& A))))) lemma9 lemmad : Ord (osuc (& A)) ∋ t lemmad = ⊆→o≤ (λ {x} lt → subst (λ k → def (od A) k ) &iso (t→A (d→∋ t lt))) lemmac : ((Ord (& A)) ∩ (* (& (Ord (& A) )))) =h= Ord (& A) lemmac = record { eq→ = lemmaf ; eq← = lemmag } where lemmaf : {x : Ordinal} → def (od ((Ord (& A)) ∩ (* (& (Ord (& A)))))) x → def (od (Ord (& A))) x lemmaf {x} lt = proj1 lt lemmag : {x : Ordinal} → def (od (Ord (& A))) x → def (od ((Ord (& A)) ∩ (* (& (Ord (& A)))))) x lemmag {x} lt = ⟪ lt , subst (λ k → def (od k) x) (sym *iso) lt ⟫ lemmae : & ((Ord (& A)) ∩ (* (& (Ord (& A))))) ≡ & (Ord (& A)) lemmae = cong (λ k → & k ) ( ==→o≡ lemmac) lemma7 : def (od (OPwr (Ord (& A)))) (& t) lemma7 with osuc-≡< lemmad lemma7 | case2 lt = ordtrans (c<→o< lt) (subst (λ k → k o< sup1) lemmae lemmab ) lemma7 | case1 eq with osuc-≡< (⊆→o≤ {* (& t)} {* (& (Ord (& t)))} (λ {x} lt → lemmah lt )) where lemmah : {x : Ordinal } → def (od (* (& t))) x → def (od (* (& (Ord (& t))))) x lemmah {x} lt = subst (λ k → def (od k) x ) (sym *iso) (subst (λ k → k o< (& t)) &iso (c<→o< (subst₂ (λ j k → def (od j) k) *iso (sym &iso) lt ))) lemma7 | case1 eq | case1 eq1 = subst (λ k → k o< sup1) (trans lemmae lemmai) lemmab where lemmai : & (Ord (& A)) ≡ & t lemmai = let open ≡-Reasoning in begin & (Ord (& A)) ≡⟨ sym (cong (λ k → & (Ord k)) eq) ⟩ & (Ord (& t)) ≡⟨ sym &iso ⟩ & (* (& (Ord (& t)))) ≡⟨ sym eq1 ⟩ & (* (& t)) ≡⟨ &iso ⟩ & t ∎ lemma7 | case1 eq | case2 lt = ordtrans lemmaj (subst (λ k → k o< sup1) lemmae lemmab ) where lemmak : & (* (& (Ord (& t)))) ≡ & (Ord (& A)) lemmak = let open ≡-Reasoning in begin & (* (& (Ord (& t)))) ≡⟨ &iso ⟩ & (Ord (& t)) ≡⟨ cong (λ k → & (Ord k)) eq ⟩ & (Ord (& A)) ∎ lemmaj : & t o< & (Ord (& A)) lemmaj = subst₂ (λ j k → j o< k ) &iso lemmak lt lemma1 : & t o< sup-o (OPwr (Ord (& A))) (λ x lt → & (A ∩ (* x))) lemma1 = subst (λ k → & k o< sup-o (OPwr (Ord (& A))) (λ x lt → & (A ∩ (* x)))) lemma4 (sup-o< (OPwr (Ord (& A))) lemma7 ) lemma2 : def (in-codomain (OPwr (Ord (& A))) (_∩_ A)) (& t) lemma2 not = ⊥-elim ( not (& t) ⟪ lemma3 , lemma6 ⟫ ) where lemma6 : & t ≡ & (A ∩ * (& t)) lemma6 = cong ( λ k → & k ) (==→o≡ (subst (λ k → t =h= (A ∩ k)) (sym *iso) ( ∩-≡ {t} {A} t→A ))) extensionality0 : {A B : HOD } → ((z : HOD) → (A ∋ z) ⇔ (B ∋ z)) → A =h= B eq→ (extensionality0 {A} {B} eq ) {x} d = odef-iso {A} {B} (sym &iso) (proj1 (eq (* x))) d eq← (extensionality0 {A} {B} eq ) {x} d = odef-iso {B} {A} (sym &iso) (proj2 (eq (* x))) d extensionality : {A B w : HOD } → ((z : HOD ) → (A ∋ z) ⇔ (B ∋ z)) → (w ∋ A) ⇔ (w ∋ B) proj1 (extensionality {A} {B} {w} eq ) d = subst (λ k → w ∋ k) ( ==→o≡ (extensionality0 {A} {B} eq) ) d proj2 (extensionality {A} {B} {w} eq ) d = subst (λ k → w ∋ k) (sym ( ==→o≡ (extensionality0 {A} {B} eq) )) d infinity∅ : infinite ∋ od∅ infinity∅ = subst (λ k → odef infinite k ) lemma iφ where lemma : o∅ ≡ & od∅ lemma = let open ≡-Reasoning in begin o∅ ≡⟨ sym &iso ⟩ & ( * o∅ ) ≡⟨ cong ( λ k → & k ) o∅≡od∅ ⟩ & od∅ ∎ infinity : (x : HOD) → infinite ∋ x → infinite ∋ Union (x , (x , x )) infinity x lt = subst (λ k → odef infinite k ) lemma (isuc {& x} lt) where lemma : & (Union (* (& x) , (* (& x) , * (& x)))) ≡ & (Union (x , (x , x))) lemma = cong (λ k → & (Union ( k , ( k , k ) ))) *iso isZF : IsZF (HOD ) _∋_ _=h=_ od∅ _,_ Union Power Select Replace infinite isZF = record { isEquivalence = record { refl = ==-refl ; sym = ==-sym; trans = ==-trans } ; pair→ = pair→ ; pair← = pair← ; union→ = union→ ; union← = union← ; empty = empty ; power→ = power→ ; power← = power← ; extensionality = λ {A} {B} {w} → extensionality {A} {B} {w} ; ε-induction = ε-induction ; infinity∅ = infinity∅ ; infinity = infinity ; selection = λ {X} {ψ} {y} → selection {X} {ψ} {y} ; replacement← = replacement← ; replacement→ = λ {ψ} → replacement→ {ψ} } HOD→ZF : ZF HOD→ZF = record { ZFSet = HOD ; _∋_ = _∋_ ; _≈_ = _=h=_ ; ∅ = od∅ ; _,_ = _,_ ; Union = Union ; Power = Power ; Select = Select ; Replace = Replace ; infinite = infinite ; isZF = isZF }
{ "alphanum_fraction": 0.4614981077, "avg_line_length": 43.113085622, "ext": "agda", "hexsha": "f1f6f53150ceafa05e2b0491c42642ade89e216b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/zf-in-agda", "max_forks_repo_path": "src/OD.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/zf-in-agda", "max_issues_repo_path": "src/OD.agda", "max_line_length": 143, "max_stars_count": 5, "max_stars_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/zf-in-agda", "max_stars_repo_path": "src/OD.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-10T13:27:48.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-02T13:46:23.000Z", "num_tokens": 11712, "size": 26687 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cw.CW open import homotopy.DisjointlyPointedSet open import groups.Int open import cohomology.Theory open import cohomology.ChainComplex module cw.cohomology.ReconstructedCochainsIsoCellularCochains {i : ULevel} (OT : OrdinaryTheory i) where open OrdinaryTheory OT open import cw.cohomology.WedgeOfCells OT open import cw.cohomology.cellular.ChainComplex as CCC open import cw.cohomology.reconstructed.cochain.Complex OT as RCC open import cw.cohomology.reconstructed.TipAndAugment OT private rcc-iso-ccc-nth : ∀ {n} (⊙skel : ⊙Skeleton n) {m} (m≤n : m ≤ n) → ⊙has-cells-with-choice 0 ⊙skel i → AbGroup.grp (RCC.cochain-template ⊙skel (inl m≤n)) ≃ᴳ hom-group (AbGroup.grp (CCC.chain-template (⊙Skeleton.skel ⊙skel) (inl m≤n))) (C2-abgroup 0) rcc-iso-ccc-nth ⊙skel {m = O} (inl idp) ac = FreeAbGroup-extend-iso (C2-abgroup 0) ∘eᴳ C2×CX₀-diag-β ⊙skel ac rcc-iso-ccc-nth ⊙skel {m = S m} (inl idp) ac = FreeAbGroup-extend-iso (C2-abgroup 0) ∘eᴳ CXₙ/Xₙ₋₁-diag-β ⊙skel ac rcc-iso-ccc-nth ⊙skel {m = O} (inr ltS) ac = rcc-iso-ccc-nth (⊙cw-init ⊙skel) (inl idp) (⊙init-has-cells-with-choice ⊙skel ac) rcc-iso-ccc-nth ⊙skel {m = S m} (inr ltS) ac = rcc-iso-ccc-nth (⊙cw-init ⊙skel) (inl idp) (⊙init-has-cells-with-choice ⊙skel ac) rcc-iso-ccc-nth ⊙skel {m = O} (inr (ltSR lt)) ac = rcc-iso-ccc-nth (⊙cw-init ⊙skel) (inr lt) (⊙init-has-cells-with-choice ⊙skel ac) rcc-iso-ccc-nth ⊙skel {m = S m} (inr (ltSR lt)) ac = rcc-iso-ccc-nth (⊙cw-init ⊙skel) (inr lt) (⊙init-has-cells-with-choice ⊙skel ac) rcc-iso-ccc-above : ∀ {n} (⊙skel : ⊙Skeleton n) {m} (m≰n : ¬ (m ≤ n)) → AbGroup.grp (RCC.cochain-template ⊙skel (inr m≰n)) ≃ᴳ hom-group (AbGroup.grp (CCC.chain-template (⊙Skeleton.skel ⊙skel) (inr m≰n))) (C2-abgroup 0) rcc-iso-ccc-above ⊙skel _ = pre∘ᴳ-iso (C2-abgroup 0) lower-iso ∘eᴳ trivial-iso-Unit (hom₁-Unit-is-trivial (C2-abgroup 0)) ⁻¹ᴳ ∘eᴳ lower-iso rcc-iso-ccc-template : ∀ {n} (⊙skel : ⊙Skeleton n) {m : ℕ} (m≤n? : Dec (m ≤ n)) → ⊙has-cells-with-choice 0 ⊙skel i → AbGroup.grp (RCC.cochain-template ⊙skel m≤n?) ≃ᴳ hom-group (AbGroup.grp (CCC.chain-template (⊙Skeleton.skel ⊙skel) m≤n?)) (C2-abgroup 0) rcc-iso-ccc-template ⊙skel {m} (inl m≤n) ac = rcc-iso-ccc-nth ⊙skel m≤n ac rcc-iso-ccc-template ⊙skel {m} (inr m≰n) _ = rcc-iso-ccc-above ⊙skel m≰n rcc-iso-ccc : ∀ {n} (⊙skel : ⊙Skeleton n) (m : ℕ) → ⊙has-cells-with-choice 0 ⊙skel i → AbGroup.grp (RCC.cochain-template ⊙skel (≤-dec m n)) ≃ᴳ hom-group (AbGroup.grp (CCC.chain-template (⊙Skeleton.skel ⊙skel) (≤-dec m n))) (C2-abgroup 0) rcc-iso-ccc {n} ⊙skel m = rcc-iso-ccc-template ⊙skel (≤-dec m n) rhead-iso-chead : C2 0 ≃ᴳ hom-group (Lift-group {j = i} ℤ-group) (C2-abgroup 0) rhead-iso-chead = pre∘ᴳ-iso (C2-abgroup 0) (lower-iso {j = i}) ∘eᴳ ℤ→ᴳ-iso-idf (C2-abgroup 0) ⁻¹ᴳ
{ "alphanum_fraction": 0.6352159468, "avg_line_length": 47.03125, "ext": "agda", "hexsha": "f79f6e64ab5d78b28a2f518fa97bdedeea72a59f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/cw/cohomology/ReconstructedCochainsIsoCellularCochains.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/cw/cohomology/ReconstructedCochainsIsoCellularCochains.agda", "max_line_length": 101, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/cw/cohomology/ReconstructedCochainsIsoCellularCochains.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1358, "size": 3010 }
module Squash where data _==_ {A : Set}(a : A) : A -> Set where refl : a == a data Wrap (A : Set) : Set where wrap : A -> Wrap A data Squash (A : Set) : Set where squash : .A -> Squash A postulate A : Set a1 a2 : A irr : squash a1 == squash a2 irr = refl
{ "alphanum_fraction": 0.5682656827, "avg_line_length": 14.2631578947, "ext": "agda", "hexsha": "5a11bb95de4039e971b18db1aa0b14154fce2e94", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Squash.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Squash.agda", "max_line_length": 43, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Squash.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 104, "size": 271 }
module Issue2935 where data ℕ : Set where zero : ℕ suc : ℕ → ℕ bad : ℕ → ℕ bad zero = zero bad suc = zero
{ "alphanum_fraction": 0.6052631579, "avg_line_length": 11.4, "ext": "agda", "hexsha": "c54eaa84a9747ab92e0f200ad2e627ea5969fd60", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2935.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2935.agda", "max_line_length": 22, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2935.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 42, "size": 114 }
module Impure.LFRef.Syntax where open import Prelude open import Data.Vec hiding ([_]; map) open import Data.List hiding ([_]) open import Data.List.All hiding (lookup) data Term : (n : ℕ) → Set data Type : (n : ℕ) → Set data Term where var : ∀ {n} → Fin n → Term n loc : ∀ {n} → ℕ → Term n unit : ∀ {n} → Term n -- constructor application con : ∀ {n} → (fn : ℕ) → (ts : List (Term n)) → Term n infixl 30 _·★_ data Exp : ℕ → Set where -- basic lambda expressions tm : ∀ {n} → Term n → Exp n -- function calls _·★_ : ∀ {n} → (fn : ℕ) → (as : List (Term n)) → Exp n -- heap manipulation ref : ∀ {n} → Exp n → Exp n !_ : ∀ {n} → Exp n → Exp n _≔_ : ∀ {n} → Exp n → Exp n → Exp n data SeqExp : ℕ → Set where lett : ∀ {n} → (x : Exp n) → (e : SeqExp (suc n)) → SeqExp n ret : ∀ {n} → Exp n → SeqExp n data Val : Term 0 → Set where loc : ∀ {i} → Val (loc i) unit : Val unit con : ∀ {k ts} → Val (con k ts) data ExpVal : Exp zero → Set where tm : ∀ {t} → Val t → ExpVal (tm t) data SeqExpVal : SeqExp zero → Set where ret-tm : ∀ {t} → Val t → SeqExpVal (ret (tm t)) -- telescoped contexts/arguments data Tele : (n m : ℕ) → Set where ε : ∀ {n} → Tele n 0 _⟶_ : ∀ {m n} → Type n → Tele (suc n) m → Tele n (suc m) infixl 20 _[_] data Type where _[_] : ∀ {n} → ℕ → (ts : List (Term n)) → Type n Ref : ∀ {n} → (A : Type n) → Type n Unit : ∀ {n} → Type n Store : Set Store = List (∃ Val) record ConType : Set where field m : ℕ args : Tele 0 m tp : ℕ indices : List (Term m) record Fun : Set where field m : ℕ args : Tele 0 m returntype : Type m body : Exp m record Sig : Set where field types : List (∃ (Tele 0)) constructors : List ConType funs : List Fun open import Data.Fin.Substitution module App {T} (l : Lift T Term) where open Lift l _tp/_ : ∀ {n n'} → Type n → Sub T n n' → Type n' _/_ : ∀ {n n'} → Term n → Sub T n n' → Term n' var x / s = lift $ lookup x s unit / s = unit _/_ {n} {n'} (con c ts) s = con c (map/ ts) where -- inlined for termination checker.. map/ : List (Term n) → List (Term n') map/ [] = [] map/ (x ∷ ts₁) = x / s ∷ map/ ts₁ loc x / s = loc x _tele/_ : ∀ {n m n'} → Tele n m → Sub T n n' → Tele n' m ε tele/ s = ε (x ⟶ t) tele/ s = (x tp/ s) ⟶ (t tele/ (s ↑)) _tp/_ {n} {n'} (k [ ts ]) s = k [ map/ ts ] where -- inlined for termination checker.. map/ : List (Term n) → List (Term n') map/ [] = [] map/ (x ∷ ts₁) = x / s ∷ map/ ts₁ (Ref A) tp/ s = Ref (A tp/ s) Unit tp/ s = Unit _exp/_ : ∀ {n n'} → Exp n → Sub T n n' → Exp n' tm x exp/ s = tm (x / s) _exp/_ {n} {n'} (fn ·★ ts) s = fn ·★ map/ ts where -- inlined for termination checker.. map/ : List (Term n) → List (Term n') map/ [] = [] map/ (x ∷ ts₁) = x / s ∷ map/ ts₁ ref x exp/ s = ref (x exp/ s) (! x) exp/ s = ! (x exp/ s) (y ≔ x) exp/ s = (y exp/ s) ≔ (x exp/ s) _seq/_ : ∀ {n n'} → SeqExp n → Sub T n n' → SeqExp n' lett x e seq/ s = lett (x exp/ s) (e seq/ (s ↑)) ret e seq/ s = ret (e exp/ s) open Application (record { _/_ = _/_ }) using (_/✶_) tmSubst : TermSubst Term tmSubst = record { var = var; app = App._/_ } open TermSubst tmSubst hiding (var) public open App termLift using (_exp/_; _tp/_; _tele/_; _seq/_) public
{ "alphanum_fraction": 0.5197387949, "avg_line_length": 24.7720588235, "ext": "agda", "hexsha": "badfa6dbfe17b0ab496d6378719cd42e7e08ea76", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Impure/LFRef/Syntax.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Impure/LFRef/Syntax.agda", "max_line_length": 63, "max_stars_count": null, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Impure/LFRef/Syntax.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1313, "size": 3369 }
{-# OPTIONS --type-in-type #-} Ty% : Set; Ty% = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι% : Ty%; ι% = λ _ ι% _ → ι% arr% : Ty% → Ty% → Ty%; arr% = λ A B Ty% ι% arr% → arr% (A Ty% ι% arr%) (B Ty% ι% arr%) Con% : Set;Con% = (Con% : Set) (nil : Con%) (snoc : Con% → Ty% → Con%) → Con% nil% : Con%;nil% = λ Con% nil% snoc → nil% snoc% : Con% → Ty% → Con%;snoc% = λ Γ A Con% nil% snoc% → snoc% (Γ Con% nil% snoc%) A Var% : Con% → Ty% → Set;Var% = λ Γ A → (Var% : Con% → Ty% → Set) (vz : (Γ : _)(A : _) → Var% (snoc% Γ A) A) (vs : (Γ : _)(B A : _) → Var% Γ A → Var% (snoc% Γ B) A) → Var% Γ A vz% : ∀{Γ A} → Var% (snoc% Γ A) A;vz% = λ Var% vz% vs → vz% _ _ vs% : ∀{Γ B A} → Var% Γ A → Var% (snoc% Γ B) A;vs% = λ x Var% vz% vs% → vs% _ _ _ (x Var% vz% vs%) Tm% : Con% → Ty% → Set;Tm% = λ Γ A → (Tm% : Con% → Ty% → Set) (var : (Γ : _) (A : _) → Var% Γ A → Tm% Γ A) (lam : (Γ : _) (A B : _) → Tm% (snoc% Γ A) B → Tm% Γ (arr% A B)) (app : (Γ : _) (A B : _) → Tm% Γ (arr% A B) → Tm% Γ A → Tm% Γ B) → Tm% Γ A var% : ∀{Γ A} → Var% Γ A → Tm% Γ A;var% = λ x Tm% var% lam app → var% _ _ x lam% : ∀{Γ A B} → Tm% (snoc% Γ A) B → Tm% Γ (arr% A B);lam% = λ t Tm% var% lam% app → lam% _ _ _ (t Tm% var% lam% app) app% : ∀{Γ A B} → Tm% Γ (arr% A B) → Tm% Γ A → Tm% Γ B;app% = λ t u Tm% var% lam% app% → app% _ _ _ (t Tm% var% lam% app%) (u Tm% var% lam% app%) v0% : ∀{Γ A} → Tm% (snoc% Γ A) A;v0% = var% vz% v1% : ∀{Γ A B} → Tm% (snoc% (snoc% Γ A) B) A;v1% = var% (vs% vz%) v2% : ∀{Γ A B C} → Tm% (snoc% (snoc% (snoc% Γ A) B) C) A;v2% = var% (vs% (vs% vz%)) v3% : ∀{Γ A B C D} → Tm% (snoc% (snoc% (snoc% (snoc% Γ A) B) C) D) A;v3% = var% (vs% (vs% (vs% vz%))) v4% : ∀{Γ A B C D E} → Tm% (snoc% (snoc% (snoc% (snoc% (snoc% Γ A) B) C) D) E) A;v4% = var% (vs% (vs% (vs% (vs% vz%)))) test% : ∀{Γ A} → Tm% Γ (arr% (arr% A A) (arr% A A));test% = lam% (lam% (app% v1% (app% v1% (app% v1% (app% v1% (app% v1% (app% v1% v0%)))))))
{ "alphanum_fraction": 0.4182908546, "avg_line_length": 27.7916666667, "ext": "agda", "hexsha": "d1a25151390d3a00c19fa6f1864a3cb89837f60b", "lang": "Agda", "max_forks_count": 19, "max_forks_repo_forks_event_max_datetime": "2022-03-03T19:46:54.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-05T21:11:34.000Z", "max_forks_repo_head_hexsha": "6a87f295148bd753d2519d50c2e1011b64c859ff", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "int-index/smalltt", "max_forks_repo_path": "bench/stlc_small.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "6a87f295148bd753d2519d50c2e1011b64c859ff", "max_issues_repo_issues_event_max_datetime": "2022-02-28T21:51:10.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-16T09:14:57.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "int-index/smalltt", "max_issues_repo_path": "bench/stlc_small.agda", "max_line_length": 87, "max_stars_count": 377, "max_stars_repo_head_hexsha": "6a87f295148bd753d2519d50c2e1011b64c859ff", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "int-index/smalltt", "max_stars_repo_path": "bench/stlc_small.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T21:31:01.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-26T16:57:16.000Z", "num_tokens": 1056, "size": 2001 }
open import FRP.JS.String using ( String ; _≟_ ; _<_ ) open import FRP.JS.Bool using ( Bool ; true ; false ; _∧_ ) open import FRP.JS.True using ( True ) open import FRP.JS.Maybe using ( Maybe ; just ; nothing ) module FRP.JS.Keys where infixr 4 _∷_ data IKeys : Set where [] : IKeys _∷_ : (k : String) → (ks : IKeys) → IKeys {-# COMPILED_JS IKeys function(x,v) { if ((x.array.length) <= (x.offset)) { return v["[]"](); } else { return v["_∷_"](x.key(),x.tail()); } } #-} {-# COMPILED_JS [] require("agda.keys").iempty #-} {-# COMPILED_JS _∷_ function(k) { return function(ks) { return ks.cons(k); }; } #-} head : IKeys → Maybe String head [] = nothing head (k ∷ ks) = just k {-# COMPILED_JS head function(ks) { return require("agda.box").box(ks.key()); } #-} _<?_ : String → Maybe String → Bool k <? nothing = true k <? just l = k < l sorted : IKeys → Bool sorted [] = true sorted (k ∷ ks) = (k <? head ks) ∧ (sorted ks) record Keys : Set where constructor keys field ikeys : IKeys {ikeys✓} : True (sorted ikeys) open Keys public {-# COMPILED_JS Keys function(x,v) { return v.keys(require("agda.keys").iarray(x),null); } #-} {-# COMPILED_JS keys function(ks) { return function() { return ks.keys(); }; } #-} {-# COMPILED_JS ikeys function(ks) { return require("agda.keys").iarray(ks); } #-} {-# COMPILED_JS ikeys✓ function(ks) { return null; } #-} _∈i_ : String → IKeys → Bool l ∈i [] = false l ∈i (k ∷ ks) with k ≟ l ... | true = true ... | false with k < l ... | true = l ∈i ks ... | false = false _∈_ : String → Keys → Bool l ∈ keys ks = l ∈i ks
{ "alphanum_fraction": 0.5927545284, "avg_line_length": 26.6833333333, "ext": "agda", "hexsha": "2c93e1497465df6753c4aa09e5799f073eee2543", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z", "max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z", "max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_forks_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-frp-js", "max_forks_repo_path": "src/agda/FRP/JS/Keys.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-frp-js", "max_issues_repo_path": "src/agda/FRP/JS/Keys.agda", "max_line_length": 94, "max_stars_count": 63, "max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_stars_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-frp-js", "max_stars_repo_path": "src/agda/FRP/JS/Keys.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z", "num_tokens": 539, "size": 1601 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Ring.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Structures.Axioms open import Cubical.Structures.Auto open import Cubical.Structures.Macro open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.AbGroup open import Cubical.Reflection.StrictEquiv open Iso private variable ℓ ℓ' : Level record IsRing {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) : Type ℓ where constructor isring field +IsAbGroup : IsAbGroup 0r _+_ -_ ·IsMonoid : IsMonoid 1r _·_ dist : (x y z : R) → (x · (y + z) ≡ (x · y) + (x · z)) × ((x + y) · z ≡ (x · z) + (y · z)) -- This is in the Agda stdlib, but it's redundant -- zero : (x : R) → (x · 0r ≡ 0r) × (0r · x ≡ 0r) open IsAbGroup +IsAbGroup public renaming ( assoc to +Assoc ; identity to +Identity ; lid to +Lid ; rid to +Rid ; inverse to +Inv ; invl to +Linv ; invr to +Rinv ; comm to +Comm ; isSemigroup to +IsSemigroup ; isMonoid to +IsMonoid ; isGroup to +IsGroup ) open IsMonoid ·IsMonoid public renaming ( assoc to ·Assoc ; identity to ·Identity ; lid to ·Lid ; rid to ·Rid ; isSemigroup to ·IsSemigroup ) hiding ( is-set ) -- We only want to export one proof of this ·Rdist+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z) ·Rdist+ x y z = dist x y z .fst ·Ldist+ : (x y z : R) → (x + y) · z ≡ (x · z) + (y · z) ·Ldist+ x y z = dist x y z .snd record RingStr (A : Type ℓ) : Type (ℓ-suc ℓ) where constructor ringstr field 0r : A 1r : A _+_ : A → A → A _·_ : A → A → A -_ : A → A isRing : IsRing 0r 1r _+_ _·_ -_ infix 8 -_ infixl 7 _·_ infixl 6 _+_ open IsRing isRing public Ring : Type (ℓ-suc ℓ) Ring = TypeWithStr _ RingStr isSetRing : (R : Ring {ℓ}) → isSet ⟨ R ⟩ isSetRing R = R .snd .RingStr.isRing .IsRing.·IsMonoid .IsMonoid.isSemigroup .IsSemigroup.is-set makeIsRing : {R : Type ℓ} {0r 1r : R} {_+_ _·_ : R → R → R} { -_ : R → R} (is-setR : isSet R) (+-assoc : (x y z : R) → x + (y + z) ≡ (x + y) + z) (+-rid : (x : R) → x + 0r ≡ x) (+-rinv : (x : R) → x + (- x) ≡ 0r) (+-comm : (x y : R) → x + y ≡ y + x) (r+-assoc : (x y z : R) → x · (y · z) ≡ (x · y) · z) (·-rid : (x : R) → x · 1r ≡ x) (·-lid : (x : R) → 1r · x ≡ x) (·-rdist-+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z)) (·-ldist-+ : (x y z : R) → (x + y) · z ≡ (x · z) + (y · z)) → IsRing 0r 1r _+_ _·_ -_ makeIsRing is-setR assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-lid ·-rdist-+ ·-ldist-+ = isring (makeIsAbGroup is-setR assoc +-rid +-rinv +-comm) (makeIsMonoid is-setR ·-assoc ·-rid ·-lid) λ x y z → ·-rdist-+ x y z , ·-ldist-+ x y z makeRing : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) (is-setR : isSet R) (+-assoc : (x y z : R) → x + (y + z) ≡ (x + y) + z) (+-rid : (x : R) → x + 0r ≡ x) (+-rinv : (x : R) → x + (- x) ≡ 0r) (+-comm : (x y : R) → x + y ≡ y + x) (+-assoc : (x y z : R) → x · (y · z) ≡ (x · y) · z) (·-rid : (x : R) → x · 1r ≡ x) (·-lid : (x : R) → 1r · x ≡ x) (·-rdist-+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z)) (·-ldist-+ : (x y z : R) → (x + y) · z ≡ (x · z) + (y · z)) → Ring makeRing 0r 1r _+_ _·_ -_ is-setR assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-lid ·-rdist-+ ·-ldist-+ = _ , ringstr 0r 1r _+_ _·_ -_ (makeIsRing is-setR assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-lid ·-rdist-+ ·-ldist-+ ) record RingEquiv (R : Ring {ℓ}) (S : Ring {ℓ'}) (e : ⟨ R ⟩ ≃ ⟨ S ⟩) : Type (ℓ-max ℓ ℓ') where constructor ringequiv private module R = RingStr (snd R) module S = RingStr (snd S) field pres1 : equivFun e R.1r ≡ S.1r isHom+ : (x y : ⟨ R ⟩) → equivFun e (x R.+ y) ≡ equivFun e x S.+ equivFun e y isHom· : (x y : ⟨ R ⟩) → equivFun e (x R.· y) ≡ equivFun e x S.· equivFun e y record RingHom (R S : Ring {ℓ}) : Type ℓ where constructor ringhom private module R = RingStr (snd R) module S = RingStr (snd S) field f : ⟨ R ⟩ → ⟨ S ⟩ pres1 : f R.1r ≡ S.1r isHom+ : (x y : ⟨ R ⟩) → f (x R.+ y) ≡ f x S.+ f y isHom· : (x y : ⟨ R ⟩) → f (x R.· y) ≡ f x S.· f y _$_ : {R S : Ring {ℓ}} → (φ : RingHom R S) → (x : ⟨ R ⟩) → ⟨ S ⟩ φ $ x = RingHom.f φ x module RingΣTheory {ℓ} where RawRingStructure = λ (X : Type ℓ) → (X → X → X) × X × (X → X → X) RawRingEquivStr = AutoEquivStr RawRingStructure rawRingUnivalentStr : UnivalentStr _ RawRingEquivStr rawRingUnivalentStr = autoUnivalentStr RawRingStructure RingAxioms : (R : Type ℓ) (s : RawRingStructure R) → Type ℓ RingAxioms R (_+_ , 1r , _·_) = AbGroupΣTheory.AbGroupAxioms R _+_ × IsMonoid 1r _·_ × ((x y z : R) → (x · (y + z) ≡ (x · y) + (x · z)) × ((x + y) · z ≡ (x · z) + (y · z))) RingStructure : Type ℓ → Type ℓ RingStructure = AxiomsStructure RawRingStructure RingAxioms RingΣ : Type (ℓ-suc ℓ) RingΣ = TypeWithStr ℓ RingStructure RingEquivStr : StrEquiv RingStructure ℓ RingEquivStr = AxiomsEquivStr RawRingEquivStr RingAxioms isPropRingAxioms : (R : Type ℓ) (s : RawRingStructure R) → isProp (RingAxioms R s) isPropRingAxioms R (_+_ , 1r , _·_) = isProp× (AbGroupΣTheory.isPropAbGroupAxioms R _+_) (isPropΣ (isPropIsMonoid 1r _·_) λ R → isPropΠ3 λ _ _ _ → isProp× (IsSemigroup.is-set (R .IsMonoid.isSemigroup) _ _) (IsSemigroup.is-set (R .IsMonoid.isSemigroup) _ _)) Ring→RingΣ : Ring → RingΣ Ring→RingΣ (R , ringstr 0r 1r _+_ _·_ -_ (isring +-isAbelianGroup ·-isMonoid dist)) = ( R , (_+_ , 1r , _·_) , AbGroupΣTheory.AbGroup→AbGroupΣ (_ , abgroupstr _ _ _ +-isAbelianGroup) .snd .snd , ·-isMonoid , dist ) RingΣ→Ring : RingΣ → Ring RingΣ→Ring (_ , (y1 , y2 , y3) , z , w1 , w2) = _ , ringstr _ y2 y1 y3 _ (isring (AbGroupΣTheory.AbGroupΣ→AbGroup (_ , _ , z ) .snd .AbGroupStr.isAbGroup) w1 w2) RingIsoRingΣ : Iso Ring RingΣ RingIsoRingΣ = iso Ring→RingΣ RingΣ→Ring (λ _ → refl) (λ _ → refl) ringUnivalentStr : UnivalentStr RingStructure RingEquivStr ringUnivalentStr = axiomsUnivalentStr _ isPropRingAxioms rawRingUnivalentStr RingΣPath : (R S : RingΣ) → (R ≃[ RingEquivStr ] S) ≃ (R ≡ S) RingΣPath = SIP ringUnivalentStr RingEquivΣ : (R S : Ring) → Type ℓ RingEquivΣ R S = Ring→RingΣ R ≃[ RingEquivStr ] Ring→RingΣ S RingIsoΣPath : {R S : Ring} → Iso (Σ[ e ∈ ⟨ R ⟩ ≃ ⟨ S ⟩ ] RingEquiv R S e) (RingEquivΣ R S) fun RingIsoΣPath (e , ringequiv h1 h2 h3) = e , h2 , h1 , h3 inv RingIsoΣPath (e , h1 , h2 , h3) = e , ringequiv h2 h1 h3 rightInv RingIsoΣPath _ = refl leftInv RingIsoΣPath _ = refl RingPath : (R S : Ring) → (Σ[ e ∈ ⟨ R ⟩ ≃ ⟨ S ⟩ ] RingEquiv R S e) ≃ (R ≡ S) RingPath R S = Σ[ e ∈ ⟨ R ⟩ ≃ ⟨ S ⟩ ] RingEquiv R S e ≃⟨ strictIsoToEquiv RingIsoΣPath ⟩ RingEquivΣ R S ≃⟨ RingΣPath _ _ ⟩ Ring→RingΣ R ≡ Ring→RingΣ S ≃⟨ isoToEquiv (invIso (congIso RingIsoRingΣ)) ⟩ R ≡ S ■ RingPath : (R S : Ring {ℓ}) → (Σ[ e ∈ ⟨ R ⟩ ≃ ⟨ S ⟩ ] RingEquiv R S e) ≃ (R ≡ S) RingPath = RingΣTheory.RingPath isPropIsRing : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) → isProp (IsRing 0r 1r _+_ _·_ -_) isPropIsRing 0r 1r _+_ _·_ -_ (isring RG RM RD) (isring SG SM SD) = λ i → isring (isPropIsAbGroup _ _ _ RG SG i) (isPropIsMonoid _ _ RM SM i) (isPropDistr RD SD i) where isSetR : isSet _ isSetR = RM .IsMonoid.isSemigroup .IsSemigroup.is-set isPropDistr : isProp ((x y z : _) → ((x · (y + z)) ≡ ((x · y) + (x · z))) × (((x + y) · z) ≡ ((x · z) + (y · z)))) isPropDistr = isPropΠ3 λ _ _ _ → isProp× (isSetR _ _) (isSetR _ _) -- Rings have an abelian group and a monoid Ring→AbGroup : Ring {ℓ} → AbGroup {ℓ} Ring→AbGroup (A , ringstr _ _ _ _ _ R) = A , abgroupstr _ _ _ (IsRing.+IsAbGroup R) Ring→Monoid : Ring {ℓ} → Monoid {ℓ} Ring→Monoid (A , ringstr _ _ _ _ _ R) = monoid _ _ _ (IsRing.·IsMonoid R)
{ "alphanum_fraction": 0.5290365895, "avg_line_length": 34.5057915058, "ext": "agda", "hexsha": "651a833ccddde738c4b377cbc7a3b22892f46b58", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/Algebra/Ring/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/Algebra/Ring/Base.agda", "max_line_length": 101, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/Algebra/Ring/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3607, "size": 8937 }
{-# OPTIONS --without-K --safe #-} module Categories.Functor.Cocontinuous where open import Level open import Data.Product using (Σ) open import Categories.Category open import Categories.Functor import Categories.Category.Construction.Cocones as Coc import Categories.Diagram.Cocone.Properties as Cocₚ import Categories.Diagram.Colimit as Col import Categories.Morphism as Mor private variable o ℓ e : Level C D E J : Category o ℓ e -- G preserves the colimit of F. CoimitPreserving : (G : Functor C D) {F : Functor J C} (L : Col.Colimit F) → Set _ CoimitPreserving {C = C} {D = D} G {F} L = Σ (Col.Colimit (G ∘F F)) λ L′ → G.F₀ (Col.Colimit.coapex L) ≅ Col.Colimit.coapex L′ where module F = Functor F module G = Functor G open Mor D -- cocontinuous functors preserves all colimits. Cocontinuous : ∀ (o ℓ e : Level) (G : Functor C D) → Set _ Cocontinuous {C = C} o ℓ e G = ∀ {J : Category o ℓ e} {F : Functor J C} (L : Col.Colimit F) → CoimitPreserving G L
{ "alphanum_fraction": 0.693856999, "avg_line_length": 33.1, "ext": "agda", "hexsha": "7c5d653faeae3a998374f1e8e3540fc1f6d2d9fd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Functor/Cocontinuous.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Functor/Cocontinuous.agda", "max_line_length": 126, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Functor/Cocontinuous.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 303, "size": 993 }
module Data.Num.Unary where open import Data.Unit open import Data.Empty open import Data.List open import Data.Nat renaming (_+_ to _⊹_) data Digit : Set where [1] : Digit Unary : Set Unary = List Digit _⊕_ : Digit → Digit → Digit [1] ⊕ [1] = [1] _⊚_ : Digit → Digit → Digit [1] ⊚ [1] = [1] add : Digit → Unary → Unary add [1] [] = [1] ∷ [] add [1] ([1] ∷ xs) = [1] ∷ add [1] xs _+_ : Unary → Unary → Unary [] + ys = ys xs + [] = xs (x ∷ xs) + (y ∷ ys) = x ⊕ y ∷ add (x ⊚ y) (xs + ys) _≈_ : Unary → Unary → Set [] ≈ [] = ⊤ [] ≈ (x ∷ ys) = ⊥ (x ∷ xs) ≈ [] = ⊥ (x ∷ xs) ≈ (y ∷ ys) = xs ≈ ys fromℕ : ℕ → Unary fromℕ zero = [] fromℕ (suc n) = fromℕ n -- fromℕ zero = [] -- fromℕ (suc n) = [1] ∷ fromℕ n toℕ : Unary → ℕ toℕ [] = zero toℕ (_ ∷ xs) = suc (toℕ xs)
{ "alphanum_fraction": 0.5038363171, "avg_line_length": 17.3777777778, "ext": "agda", "hexsha": "37fbddef0e84d66997b4a3cb081aa7fd19b8dbf6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/numeral", "max_forks_repo_path": "Data/Num/Sandbox/Unary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/numeral", "max_issues_repo_path": "Data/Num/Sandbox/Unary.agda", "max_line_length": 51, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/numeral", "max_stars_repo_path": "Data/Num/Sandbox/Unary.agda", "max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z", "num_tokens": 353, "size": 782 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use -- Data.Vec.Relation.Binary.Pointwise.Inductive directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Vec.Relation.Pointwise.Inductive where open import Data.Vec.Relation.Binary.Pointwise.Inductive public {-# WARNING_ON_IMPORT "Data.Vec.Relation.Pointwise.Inductive was deprecated in v1.0. Use Data.Vec.Relation.Binary.Pointwise.Inductive instead." #-}
{ "alphanum_fraction": 0.5785837651, "avg_line_length": 32.1666666667, "ext": "agda", "hexsha": "73462b03187cbf1b42f6df6187412e515c05c67a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Vec/Relation/Pointwise/Inductive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Vec/Relation/Pointwise/Inductive.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Vec/Relation/Pointwise/Inductive.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 113, "size": 579 }
-- The previous error was: -- Auto in hole `?0` raises a typing error: -- (zero ∷ L) != L of type (List ℕ) -- when checking that the expression x₁ has type (foo L) open import Agda.Builtin.List open import Agda.Builtin.Nat data ⊥ : Set where foo : List Nat → Set foo [] = ⊥ foo (zero ∷ L) = foo L foo (suc N ∷ L) = foo (suc N ∷ L) bar : (L : List Nat) → (foo L) → List Nat bar [] x = [] bar (zero ∷ L) x₁ = bar L {!!} bar (suc x ∷ L) x₁ = {!!}
{ "alphanum_fraction": 0.56587473, "avg_line_length": 22.0476190476, "ext": "agda", "hexsha": "30af5c5ed18cfae25a83698979351c8cbc2a80ed", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue1169.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue1169.agda", "max_line_length": 58, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue1169.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 170, "size": 463 }
{-# OPTIONS --rewriting #-} open import Common.Nat open import Common.Equality postulate _↦_ : ∀ {a} {A : Set a} → A → A → Set {-# BUILTIN REWRITE _↦_ #-} postulate P : ∀ {a} {A : Set a} → A → Set postulate rew₁ : (f : Nat → Nat → Nat) → P (λ (x y z : Nat) → f z x) ↦ P f {-# REWRITE rew₁ #-} f : Nat → Nat → Nat → Nat f x _ z = x + z test : P f ≡ P (λ x z → z + x) test = refl postulate rew₂ : (f : Nat → Nat) → P (λ (x y : Nat) → f y) ↦ P f {-# REWRITE rew₂ #-} g : Nat → Nat → Nat g x y = y test₂ : P g ≡ P (λ (y : Nat) → y) test₂ = refl h : Nat → Nat → Nat → Nat h x y z = x test₃ : P h ≡ P (λ (z : Nat) → z) test₃ = refl
{ "alphanum_fraction": 0.5031152648, "avg_line_length": 16.8947368421, "ext": "agda", "hexsha": "fc88c5ef4210576d1478b47d5e8aa301a8f5b2f6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/HORewriting.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/HORewriting.agda", "max_line_length": 74, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/HORewriting.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 269, "size": 642 }
module SizedIO.Console where open import Level using () renaming (zero to lzero) open import Size open import NativeIO open import SizedIO.Base data ConsoleCommand : Set where putStrLn : String → ConsoleCommand getLine : ConsoleCommand ConsoleResponse : ConsoleCommand → Set ConsoleResponse (putStrLn s) = Unit ConsoleResponse getLine = String consoleI : IOInterface Command consoleI = ConsoleCommand Response consoleI = ConsoleResponse IOConsole : Size → Set → Set IOConsole i = IO consoleI i IOConsole+ : Size → Set → Set IOConsole+ i = IO+ consoleI i translateIOConsoleLocal : (c : ConsoleCommand) → NativeIO (ConsoleResponse c) translateIOConsoleLocal (putStrLn s) = nativePutStrLn s translateIOConsoleLocal getLine = nativeGetLine translateIOConsole : {A : Set} → IOConsole ∞ A → NativeIO A translateIOConsole = translateIO translateIOConsoleLocal main : NativeIO Unit main = nativePutStrLn "Console"
{ "alphanum_fraction": 0.7754010695, "avg_line_length": 25.2702702703, "ext": "agda", "hexsha": "6ab8afa1d3fbb2d91aa22ed47be898aed7710861", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "stephanadls/state-dependent-gui", "max_forks_repo_path": "src/SizedIO/Console.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "stephanadls/state-dependent-gui", "max_issues_repo_path": "src/SizedIO/Console.agda", "max_line_length": 77, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "stephanadls/state-dependent-gui", "max_stars_repo_path": "src/SizedIO/Console.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-31T17:20:59.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T15:37:39.000Z", "num_tokens": 236, "size": 935 }
{-# OPTIONS --cubical-compatible #-} module Common.Nat where open import Agda.Builtin.Nat public using ( Nat; zero; suc; _+_; _*_ ) renaming ( _-_ to _∸_ ) pred : Nat → Nat pred zero = zero pred (suc n) = n
{ "alphanum_fraction": 0.6244343891, "avg_line_length": 17, "ext": "agda", "hexsha": "4d04760abadabadf249cb8c67524c9d5fbfc5028", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Common/Nat.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Common/Nat.agda", "max_line_length": 39, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Common/Nat.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 72, "size": 221 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of permutation ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Binary.Permutation.Inductive.Properties where open import Algebra open import Algebra.FunctionProperties open import Algebra.Structures open import Data.List.Base as List open import Data.List.Relation.Binary.Permutation.Inductive open import Data.List.Relation.Unary.Any using (Any; here; there) open import Data.List.Relation.Unary.All using (All; []; _∷_) open import Data.List.Membership.Propositional open import Data.List.Membership.Propositional.Properties open import Data.List.Relation.Binary.BagAndSetEquality using (bag; _∼[_]_; empty-unique; drop-cons; commutativeMonoid) import Data.List.Properties as Lₚ open import Data.Product using (_,_; _×_; ∃; ∃₂) open import Function using (_∘_) open import Function.Equality using (_⟨$⟩_) open import Function.Inverse as Inv using (inverse) open import Relation.Unary using (Pred) open import Relation.Binary open import Relation.Binary.PropositionalEquality as ≡ using (_≡_ ; refl ; cong; cong₂; _≢_; inspect) open PermutationReasoning ------------------------------------------------------------------------ -- sym module _ {a} {A : Set a} where ↭-sym-involutive : ∀ {xs ys : List A} (p : xs ↭ ys) → ↭-sym (↭-sym p) ≡ p ↭-sym-involutive refl = refl ↭-sym-involutive (prep x ↭) = cong (prep x) (↭-sym-involutive ↭) ↭-sym-involutive (swap x y ↭) = cong (swap x y) (↭-sym-involutive ↭) ↭-sym-involutive (trans ↭₁ ↭₂) = cong₂ trans (↭-sym-involutive ↭₁) (↭-sym-involutive ↭₂) ------------------------------------------------------------------------ -- Relationships to other predicates module _ {a} {A : Set a} where All-resp-↭ : ∀ {ℓ} {P : Pred A ℓ} → (All P) Respects _↭_ All-resp-↭ refl wit = wit All-resp-↭ (prep x p) (px ∷ wit) = px ∷ All-resp-↭ p wit All-resp-↭ (swap x y p) (px ∷ py ∷ wit) = py ∷ px ∷ All-resp-↭ p wit All-resp-↭ (trans p₁ p₂) wit = All-resp-↭ p₂ (All-resp-↭ p₁ wit) Any-resp-↭ : ∀ {ℓ} {P : Pred A ℓ} → (Any P) Respects _↭_ Any-resp-↭ refl wit = wit Any-resp-↭ (prep x p) (here px) = here px Any-resp-↭ (prep x p) (there wit) = there (Any-resp-↭ p wit) Any-resp-↭ (swap x y p) (here px) = there (here px) Any-resp-↭ (swap x y p) (there (here px)) = here px Any-resp-↭ (swap x y p) (there (there wit)) = there (there (Any-resp-↭ p wit)) Any-resp-↭ (trans p p₁) wit = Any-resp-↭ p₁ (Any-resp-↭ p wit) ∈-resp-↭ : ∀ {x : A} → (x ∈_) Respects _↭_ ∈-resp-↭ = Any-resp-↭ ------------------------------------------------------------------------ -- map module _ {a b} {A : Set a} {B : Set b} (f : A → B) where map⁺ : ∀ {xs ys} → xs ↭ ys → map f xs ↭ map f ys map⁺ refl = refl map⁺ (prep x p) = prep _ (map⁺ p) map⁺ (swap x y p) = swap _ _ (map⁺ p) map⁺ (trans p₁ p₂) = trans (map⁺ p₁) (map⁺ p₂) ------------------------------------------------------------------------ -- _++_ module _ {a} {A : Set a} where ++⁺ˡ : ∀ xs {ys zs : List A} → ys ↭ zs → xs ++ ys ↭ xs ++ zs ++⁺ˡ [] ys↭zs = ys↭zs ++⁺ˡ (x ∷ xs) ys↭zs = prep x (++⁺ˡ xs ys↭zs) ++⁺ʳ : ∀ {xs ys : List A} zs → xs ↭ ys → xs ++ zs ↭ ys ++ zs ++⁺ʳ zs refl = refl ++⁺ʳ zs (prep x ↭) = prep x (++⁺ʳ zs ↭) ++⁺ʳ zs (swap x y ↭) = swap x y (++⁺ʳ zs ↭) ++⁺ʳ zs (trans ↭₁ ↭₂) = trans (++⁺ʳ zs ↭₁) (++⁺ʳ zs ↭₂) ++⁺ : _++_ Preserves₂ _↭_ ⟶ _↭_ ⟶ _↭_ ++⁺ ws↭xs ys↭zs = trans (++⁺ʳ _ ws↭xs) (++⁺ˡ _ ys↭zs) -- Some useful lemmas zoom : ∀ h {t xs ys : List A} → xs ↭ ys → h ++ xs ++ t ↭ h ++ ys ++ t zoom h {t} = ++⁺ˡ h ∘ ++⁺ʳ t inject : ∀ (v : A) {ws xs ys zs} → ws ↭ ys → xs ↭ zs → ws ++ [ v ] ++ xs ↭ ys ++ [ v ] ++ zs inject v ws↭ys xs↭zs = trans (++⁺ˡ _ (prep v xs↭zs)) (++⁺ʳ _ ws↭ys) shift : ∀ v (xs ys : List A) → xs ++ [ v ] ++ ys ↭ v ∷ xs ++ ys shift v [] ys = refl shift v (x ∷ xs) ys = begin x ∷ (xs ++ [ v ] ++ ys) <⟨ shift v xs ys ⟩ x ∷ v ∷ xs ++ ys <<⟨ refl ⟩ v ∷ x ∷ xs ++ ys ∎ drop-mid-≡ : ∀ {x} ws xs {ys} {zs} → ws ++ [ x ] ++ ys ≡ xs ++ [ x ] ++ zs → ws ++ ys ↭ xs ++ zs drop-mid-≡ [] [] eq with cong tail eq drop-mid-≡ [] [] eq | refl = refl drop-mid-≡ [] (x ∷ xs) refl = shift _ xs _ drop-mid-≡ (w ∷ ws) [] refl = ↭-sym (shift _ ws _) drop-mid-≡ (w ∷ ws) (x ∷ xs) eq with Lₚ.∷-injective eq ... | refl , eq′ = prep w (drop-mid-≡ ws xs eq′) drop-mid : ∀ {x} ws xs {ys zs} → ws ++ [ x ] ++ ys ↭ xs ++ [ x ] ++ zs → ws ++ ys ↭ xs ++ zs drop-mid {x} ws xs p = drop-mid′ p ws xs refl refl where drop-mid′ : ∀ {l′ l″ : List A} → l′ ↭ l″ → ∀ ws xs {ys zs : List A} → ws ++ [ x ] ++ ys ≡ l′ → xs ++ [ x ] ++ zs ≡ l″ → ws ++ ys ↭ xs ++ zs drop-mid′ refl ws xs refl eq = drop-mid-≡ ws xs (≡.sym eq) drop-mid′ (prep x p) [] [] refl eq with cong tail eq drop-mid′ (prep x p) [] [] refl eq | refl = p drop-mid′ (prep x p) [] (x ∷ xs) refl refl = trans p (shift _ _ _) drop-mid′ (prep x p) (w ∷ ws) [] refl refl = trans (↭-sym (shift _ _ _)) p drop-mid′ (prep x p) (w ∷ ws) (x ∷ xs) refl refl = prep _ (drop-mid′ p ws xs refl refl) drop-mid′ (swap y z p) [] [] refl refl = prep _ p drop-mid′ (swap y z p) [] (x ∷ []) refl eq with cong {B = List _} (λ { (x ∷ _ ∷ xs) → x ∷ xs ; _ → [] }) eq drop-mid′ (swap y z p) [] (x ∷ []) refl eq | refl = prep _ p drop-mid′ (swap y z p) [] (x ∷ _ ∷ xs) refl refl = prep _ (trans p (shift _ _ _)) drop-mid′ (swap y z p) (w ∷ []) [] refl eq with cong tail eq drop-mid′ (swap y z p) (w ∷ []) [] refl eq | refl = prep _ p drop-mid′ (swap y z p) (w ∷ x ∷ ws) [] refl refl = prep _ (trans (↭-sym (shift _ _ _)) p) drop-mid′ (swap y y p) (y ∷ []) (y ∷ []) refl refl = prep _ p drop-mid′ (swap y z p) (y ∷ []) (z ∷ y ∷ xs) refl refl = begin _ ∷ _ <⟨ p ⟩ _ ∷ (xs ++ _ ∷ _) <⟨ shift _ _ _ ⟩ _ ∷ _ ∷ xs ++ _ <<⟨ refl ⟩ _ ∷ _ ∷ xs ++ _ ∎ drop-mid′ (swap y z p) (y ∷ z ∷ ws) (z ∷ []) refl refl = begin _ ∷ _ ∷ ws ++ _ <<⟨ refl ⟩ _ ∷ (_ ∷ ws ++ _) <⟨ ↭-sym (shift _ _ _) ⟩ _ ∷ (ws ++ _ ∷ _) <⟨ p ⟩ _ ∷ _ ∎ drop-mid′ (swap y z p) (y ∷ z ∷ ws) (z ∷ y ∷ xs) refl refl = swap y z (drop-mid′ p _ _ refl refl) drop-mid′ (trans p₁ p₂) ws xs refl refl with ∈-∃++ (∈-resp-↭ p₁ (∈-insert ws)) ... | (h , t , refl) = trans (drop-mid′ p₁ ws h refl refl) (drop-mid′ p₂ h xs refl refl) -- Algebraic properties ++-identityˡ : LeftIdentity {A = List A} _↭_ [] _++_ ++-identityˡ xs = refl ++-identityʳ : RightIdentity {A = List A} _↭_ [] _++_ ++-identityʳ xs = ↭-reflexive (Lₚ.++-identityʳ xs) ++-identity : Identity {A = List A} _↭_ [] _++_ ++-identity = ++-identityˡ , ++-identityʳ ++-assoc : Associative {A = List A} _↭_ _++_ ++-assoc xs ys zs = ↭-reflexive (Lₚ.++-assoc xs ys zs) ++-comm : Commutative _↭_ _++_ ++-comm [] ys = ↭-sym (++-identityʳ ys) ++-comm (x ∷ xs) ys = begin x ∷ xs ++ ys ↭⟨ prep x (++-comm xs ys) ⟩ x ∷ ys ++ xs ≡⟨ cong (λ v → x ∷ v ++ xs) (≡.sym (Lₚ.++-identityʳ _)) ⟩ (x ∷ ys ++ []) ++ xs ↭⟨ ++⁺ʳ xs (↭-sym (shift x ys [])) ⟩ (ys ++ [ x ]) ++ xs ↭⟨ ++-assoc ys [ x ] xs ⟩ ys ++ ([ x ] ++ xs) ≡⟨⟩ ys ++ (x ∷ xs) ∎ ++-isMagma : IsMagma _↭_ _++_ ++-isMagma = record { isEquivalence = ↭-isEquivalence ; ∙-cong = ++⁺ } ++-magma : Magma _ _ ++-magma = record { isMagma = ++-isMagma } ++-isSemigroup : IsSemigroup _↭_ _++_ ++-isSemigroup = record { isMagma = ++-isMagma ; assoc = ++-assoc } ++-semigroup : Semigroup a _ ++-semigroup = record { isSemigroup = ++-isSemigroup } ++-isMonoid : IsMonoid _↭_ _++_ [] ++-isMonoid = record { isSemigroup = ++-isSemigroup ; identity = ++-identity } ++-monoid : Monoid a _ ++-monoid = record { isMonoid = ++-isMonoid } ++-isCommutativeMonoid : IsCommutativeMonoid _↭_ _++_ [] ++-isCommutativeMonoid = record { isSemigroup = ++-isSemigroup ; identityˡ = ++-identityˡ ; comm = ++-comm } ++-commutativeMonoid : CommutativeMonoid _ _ ++-commutativeMonoid = record { isCommutativeMonoid = ++-isCommutativeMonoid } ------------------------------------------------------------------------ -- _∷_ module _ {a} {A : Set a} where drop-∷ : ∀ {x : A} {xs ys} → x ∷ xs ↭ x ∷ ys → xs ↭ ys drop-∷ = drop-mid [] [] ------------------------------------------------------------------------ -- _∷ʳ_ module _ {a} {A : Set a} where ∷↭∷ʳ : ∀ (x : A) xs → x ∷ xs ↭ xs ∷ʳ x ∷↭∷ʳ x xs = ↭-sym (begin xs ++ [ x ] ↭⟨ shift x xs [] ⟩ x ∷ xs ++ [] ≡⟨ Lₚ.++-identityʳ _ ⟩ x ∷ xs ∎) ------------------------------------------------------------------------ -- Relationships to other relations module _ {a} {A : Set a} where ↭⇒∼bag : _↭_ ⇒ _∼[ bag ]_ ↭⇒∼bag xs↭ys {v} = inverse (to xs↭ys) (from xs↭ys) (from∘to xs↭ys) (to∘from xs↭ys) where to : ∀ {xs ys} → xs ↭ ys → v ∈ xs → v ∈ ys to xs↭ys = Any-resp-↭ {A = A} xs↭ys from : ∀ {xs ys} → xs ↭ ys → v ∈ ys → v ∈ xs from xs↭ys = Any-resp-↭ (↭-sym xs↭ys) from∘to : ∀ {xs ys} (p : xs ↭ ys) (q : v ∈ xs) → from p (to p q) ≡ q from∘to refl v∈xs = refl from∘to (prep _ _) (here refl) = refl from∘to (prep _ p) (there v∈xs) = cong there (from∘to p v∈xs) from∘to (swap x y p) (here refl) = refl from∘to (swap x y p) (there (here refl)) = refl from∘to (swap x y p) (there (there v∈xs)) = cong (there ∘ there) (from∘to p v∈xs) from∘to (trans p₁ p₂) v∈xs rewrite from∘to p₂ (Any-resp-↭ p₁ v∈xs) | from∘to p₁ v∈xs = refl to∘from : ∀ {xs ys} (p : xs ↭ ys) (q : v ∈ ys) → to p (from p q) ≡ q to∘from p with from∘to (↭-sym p) ... | res rewrite ↭-sym-involutive p = res ∼bag⇒↭ : _∼[ bag ]_ ⇒ _↭_ ∼bag⇒↭ {[]} eq with empty-unique (Inv.sym eq) ... | refl = refl ∼bag⇒↭ {x ∷ xs} eq with ∈-∃++ (to ⟨$⟩ (here ≡.refl)) where open Inv.Inverse (eq {x}) ... | zs₁ , zs₂ , p rewrite p = begin x ∷ xs <⟨ ∼bag⇒↭ (drop-cons (Inv._∘_ (comm zs₁ (x ∷ zs₂)) eq)) ⟩ x ∷ (zs₂ ++ zs₁) <⟨ ++-comm zs₂ zs₁ ⟩ x ∷ (zs₁ ++ zs₂) ↭˘⟨ shift x zs₁ zs₂ ⟩ zs₁ ++ x ∷ zs₂ ∎ where open CommutativeMonoid (commutativeMonoid bag A) ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 1.0 ↭⇒~bag = ↭⇒∼bag {-# WARNING_ON_USAGE ↭⇒~bag "Warning: ↭⇒~bag was deprecated in v1.0. Please use ? instead (now typed with '\\sim' rather than '~')." #-} ~bag⇒↭ = ∼bag⇒↭ {-# WARNING_ON_USAGE ~bag⇒↭ "Warning: ~bag⇒↭ was deprecated in v1.0. Please use ? instead (now typed with '\\sim' rather than '~')." #-}
{ "alphanum_fraction": 0.4472184987, "avg_line_length": 37.7721518987, "ext": "agda", "hexsha": "dc4f04380ddfb2a22d25764982637c3b5b600970", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Permutation/Inductive/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Permutation/Inductive/Properties.agda", "max_line_length": 103, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Permutation/Inductive/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4514, "size": 11936 }
{-# OPTIONS --without-K --exact-split --rewriting #-} open import lib.Basics open import lib.types.Coproduct open import lib.types.Sigma open import lib.types.Pi open import lib.types.Paths open import Graphs.Definition open import Coequalizers.Definition open import Util.Misc module Coequalizers.PullbackStability where module PullbackStability {i k j : ULevel} (E : Type i) (V : Type k) ⦃ gph : Graph E V ⦄ (X : (V / E) → Type j) where VX = Σ V (X ∘ c[_]) EX = Σ E (X ∘ c[_] ∘ π₀) instance gph-pb : Graph EX VX gph-pb = record { π₀ = λ {(e , x) → ((π₀ e) , x)} ; π₁ = λ {(e , x) → ((π₁ e) , (transport X (quot e) x))} } pb-equiv : (VX / EX) ≃ Σ (V / E) X pb-equiv = equiv f g (λ {(e , x) → f-g' e x}) g-f where f-point : VX → Σ (V / E) X f-point (v , x) = (c[ v ] , x) f : (VX / EX) → Σ (V / E) X f = Coeq-rec f-point λ {(e , x) → pair= (quot e) (transp-↓' X (quot e) x)} g'-path : (e : E) → (λ x → c[ (π₀ e , x) ]) == (λ x → c[ (π₁ e , x) ]) [ (λ z → X z → VX / EX) ↓ (quot e) ] g'-path e = ↓-app→cst-in (λ {t} {t'} q → quot (e , t) ∙ ap c[_] (pair= idp (to-transp q))) g'-point : (v : V) → (X c[ v ]) → (VX / EX) g'-point v x = c[ v , x ] g' : (z : V / E) → (X z) → (VX / EX) g' = Coeq-elim (λ z → (X z) → (VX / EX)) g'-point g'-path g : Σ (V / E) X → (VX / EX) g (z , x) = g' z x g-f : (z : VX / EX) → (g (f z) == z) g-f = Coeq-elim _ (λ _ → idp) λ {(e , x) → ↓-app=idf-in (lemma e x)} where lemma1 : {z z' : V / E} (p : z == z') (x : X z) → ap g (pair= p (transp-↓' X p x)) == ↓-app→cst-out (apd g' p) (transp-↓' X p x) lemma1 idp x = idp lemma2 : {z z' : V / E} (p : z == z') (x : X z) → (to-transp ((transp-↓' X p x))) == idp lemma2 idp x = idp lemma : (e : E) → (x : X c[ π₀ e ]) → idp ∙' quot (e , x) == ap (g ∘ f) (quot (e , x)) ∙ idp lemma e x = ! $ ap (g ∘ f) (quot (e , x)) ∙ idp =⟨ ∙-unit-r _ ⟩ ap (g ∘ f) (quot (e , x)) =⟨ ap-∘ g f (quot (e , x)) ⟩ ap g (ap f (quot (e , x))) =⟨ ap (ap g) (Coeq-rec-β= _ _ _) ⟩ ap g (pair= (quot e) (transp-↓' X (quot e) x)) =⟨ lemma1 (quot e) x ⟩ ↓-app→cst-out (apd g' (quot e)) (transp-↓' X (quot e) x) =⟨ ap (λ w → ↓-app→cst-out w (transp-↓' X (quot e) x) ) (Coeq-β= _ _ _ _) ⟩ ↓-app→cst-out (↓-app→cst-in λ q → quot (e , _) ∙ ap c[_] (pair= idp (to-transp q))) (transp-↓' X (quot e) x) =⟨ ↓-app→cst-β ((λ q → quot (e , _) ∙ ap c[_] (pair= idp (to-transp q)))) ((transp-↓' X (quot e) x)) ⟩ (λ q → quot (e , _) ∙ ap c[_] (pair= idp (to-transp q))) (transp-↓' X (quot e) x) =⟨ idp ⟩ quot (e , _) ∙ ap c[_] (pair= idp (to-transp ((transp-↓' X (quot e) x)))) =⟨ quot (e , x) ∙ₗ ap (ap c[_]) (pair== idp (lemma2 (quot e) x)) ⟩ quot (e , x) ∙ idp =⟨ ∙-unit-r _ ⟩ quot (e , x) =⟨ ! (∙'-unit-l _) ⟩ idp ∙' quot (e , x) =∎ f-g' : (z : V / E) → (x : X z) → f (g' z x) == (z , x) f-g' = Coeq-elim (λ z → (x : X z) → f (g' z x) == (z , x) ) (λ v x → idp) λ e → lemma1 (quot e) (λ _ → idp) (λ _ → idp) (λ x → (lemma2 (e , x))) where fg : (z : V / E) → (x : X z) → Σ (V / E) X fg z x = f (g' z x) lemma1 : {z z' : V / E} (p : z == z') (α : (x : X z) → f (g' z x) == (z , x)) (β : (x' : X z') → f (g' z' x') == (z' , x')) → ((x : X z) → ((α x) ∙ Σ-transp X p x) == (↓-app→cst-out (apd fg p) (transp-↓' _ p x) ∙ (β (transport X p x)))) → α == β [ (λ z'' → (x : X z'') → f (g' z'' x) == (z'' , x)) ↓ p ] lemma1 idp α β q = λ= (λ x → ! (∙-unit-r _) ∙ q x) expandapd : {z z' : V / E} (p : z == z') {x : X z} {x' : X z'} (q : x == x' [ X ↓ p ]) → ↓-app→cst-out (apd fg p) q == ap f (↓-app→cst-out (apd g' p) q) expandapd idp idp = idp lemma2 : (ex : EX) → (idp ∙ Σ-transp X (quot (fst ex)) (snd ex)) == (↓-app→cst-out (apd fg (quot (fst ex))) (transp-↓' _ (quot (fst ex)) (snd ex)) ∙ idp) lemma2 ex@(e , x) = ! $ ↓-app→cst-out (apd fg (quot e)) (transp-↓' _ (quot e) x) ∙ idp =⟨ ∙-unit-r _ ⟩ ↓-app→cst-out (apd fg (quot e)) (transp-↓' _ (quot e) x) =⟨ expandapd (quot e) ((transp-↓' _ (quot e) x)) ⟩ ap f (↓-app→cst-out (apd g' (quot e)) ((transp-↓' _ (quot e) x))) =⟨ ap (λ w → ap f (↓-app→cst-out w (((transp-↓' _ (quot e) x))))) (Coeq-β= ((λ z → (X z) → (VX / EX))) (λ v x → c[ v , x ]) g'-path e) ⟩ ap f (↓-app→cst-out (g'-path e) (transp-↓' _ (quot e) x)) =⟨ ap (ap f) (↓-app→cst-β ((λ {t} {t'} q → quot (e , t) ∙ ap c[_] (pair= idp (to-transp q)))) ((transp-↓' _ (quot e) x))) ⟩ ap f (quot ex ∙ ap c[_] (pair= idp (to-transp (transp-↓' X (quot e) x)))) =⟨ ap-∙ f (quot ex) (ap c[_] (pair= idp (to-transp (transp-↓' X (quot e) x)))) ⟩ ap f (quot ex) ∙ ap f (ap c[_] (pair= idp (to-transp (transp-↓' X (quot e) x)))) =⟨ ap f (quot ex) ∙ₗ ∘-ap f c[_] _ ⟩ ap f (quot ex) ∙ ap (f ∘ c[_]) (pair= idp (to-transp (transp-↓' X (quot e) x))) =⟨ idp ⟩ ap f (quot ex) ∙ ap f-point (pair= idp (to-transp (transp-↓' X (quot e) x))) =⟨ Coeq-rec-β= _ _ _ ∙ᵣ ap f-point (pair= idp (to-transp (transp-↓' X (quot e) x))) ⟩ pair= (quot e) (transp-↓' X (quot e) x) ∙ ap f-point (pair= idp (to-transp (transp-↓' X (quot e) x))) =⟨ ap (λ w → pair= (quot e) (transp-↓' X (quot e) x) ∙ ap f-point (pair= idp w)) (lemma2a (quot e) x) ⟩ pair= (quot e) (transp-↓' X (quot e) x) ∙ ap f-point (pair= idp idp) =⟨ ∙-unit-r _ ⟩ pair= (quot e) (transp-↓' X (quot e) x) =⟨ idp ⟩ Σ-transp X (quot e) x =⟨ idp ⟩ idp ∙ Σ-transp X (quot e) x =∎ where lemma2a : {z z' : V / E} (p : z == z') (x : X z) → (to-transp (transp-↓' X p x)) == idp lemma2a idp x = idp
{ "alphanum_fraction": 0.3902888752, "avg_line_length": 48.2074074074, "ext": "agda", "hexsha": "3ede676194899a299dbde6b35af9cf0127a987a5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "awswan/nielsenschreier-hott", "max_forks_repo_path": "main/Coequalizers/PullbackStability.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "awswan/nielsenschreier-hott", "max_issues_repo_path": "main/Coequalizers/PullbackStability.agda", "max_line_length": 165, "max_stars_count": null, "max_stars_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "awswan/nielsenschreier-hott", "max_stars_repo_path": "main/Coequalizers/PullbackStability.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2723, "size": 6508 }
module WrongHidingInLambda where f : (A : Set) -> A -> A f = \{A} x -> x
{ "alphanum_fraction": 0.5394736842, "avg_line_length": 10.8571428571, "ext": "agda", "hexsha": "36e195039e5ddf8356fe48e74448ea374cdd030f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/WrongHidingInLambda.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/WrongHidingInLambda.agda", "max_line_length": 32, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/WrongHidingInLambda.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 31, "size": 76 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Universe levels ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Level where -- Levels. open import Agda.Primitive as Prim public using (Level; _⊔_; Setω) renaming (lzero to zero; lsuc to suc) -- Lifting. record Lift {a} ℓ (A : Set a) : Set (a ⊔ ℓ) where constructor lift field lower : A open Lift public -- Synonyms 0ℓ : Level 0ℓ = zero levelOfType : ∀ {a} → Set a → Level levelOfType {a} _ = a levelOfTerm : ∀ {a} {A : Set a} → A → Level levelOfTerm {a} _ = a
{ "alphanum_fraction": 0.490881459, "avg_line_length": 18.8, "ext": "agda", "hexsha": "2aefd377862bfc939dfa4b0433e3c412c879e1ba", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Level.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Level.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Level.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 177, "size": 658 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Category.Construction.Properties.Presheaves.Complete {o ℓ e} (C : Category o ℓ e) where open import Categories.Category.Complete open import Categories.Category.Complete.Finitely open import Categories.Category.Complete.Properties open import Categories.Category.Cocomplete open import Categories.Category.Cocomplete.Finitely open import Categories.Category.Cocomplete.Properties open import Categories.Category.Construction.Presheaves open import Categories.Category.Instance.Setoids open import Categories.Category.Instance.Properties.Setoids private module C = Category C Presheaves-Complete : ∀ o′ ℓ′ e′ ℓ″ e″ → Complete o′ ℓ′ e′ (Presheaves C) Presheaves-Complete o′ ℓ′ e′ ℓ″ e″ = Functors-Complete C.op (Setoids-Complete o′ ℓ′ e′ ℓ″ e″) Presheaves-FinitelyComplete : ∀ o′ ℓ′ e′ ℓ″ e″ → FinitelyComplete (Presheaves C) Presheaves-FinitelyComplete o′ ℓ′ e′ ℓ″ e″ = Complete⇒FinitelyComplete (Presheaves C) (Presheaves-Complete o′ ℓ′ e′ ℓ″ e″) Presheaves-Cocomplete : ∀ o′ ℓ′ e′ ℓ″ e″ → Cocomplete o′ ℓ′ e′ (Presheaves C) Presheaves-Cocomplete o′ ℓ′ e′ ℓ″ e″ = Functors-Cocomplete C.op (Setoids-Cocomplete o′ ℓ′ e′ ℓ″ e″) Presheaves-FinitelyCocomplete : ∀ o′ ℓ′ e′ ℓ″ e″ → FinitelyCocomplete (Presheaves C) Presheaves-FinitelyCocomplete o′ ℓ′ e′ ℓ″ e″ = Cocomplete⇒FinitelyCocomplete (Presheaves C) (Presheaves-Cocomplete o′ ℓ′ e′ ℓ″ e″)
{ "alphanum_fraction": 0.7576601671, "avg_line_length": 46.3225806452, "ext": "agda", "hexsha": "2df22bdf875a30698629402308460338484a78da", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Construction/Properties/Presheaves/Complete.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Construction/Properties/Presheaves/Complete.agda", "max_line_length": 130, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Construction/Properties/Presheaves/Complete.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 443, "size": 1436 }
------------------------------------------------------------------------ -- The parser type ------------------------------------------------------------------------ module TotalParserCombinators.Parser where open import Algebra open import Category.Monad open import Codata.Musical.Notation open import Data.List open import Data.Maybe using (Maybe; nothing; just) open import Data.List.Categorical as ListMonad using () renaming (module MonadProperties to ListMonadProp) open import Data.List.Relation.Binary.BagAndSetEquality open import Data.Product using (proj₂) open import Function open import Level open import Relation.Binary.PropositionalEquality open RawMonadPlus {f = zero} ListMonad.monadPlus using () renaming ( return to return′ ; ∅ to fail′ ; _∣_ to _∣′_ ; _⊛_ to _⊛′_ ; _>>=_ to _>>=′_ ) ------------------------------------------------------------------------ -- Helper functions -- Flattening for potential lists. flatten : {A : Set} → Maybe (List A) → List A flatten nothing = [] flatten (just xs) = xs -- fs ⊛flatten mxs is a variant of fs ⊛′ flatten mxs, with the -- property that fs ⊛flatten nothing evaluates to []. _⊛flatten_ : {A B : Set} → List (A → B) → Maybe (List A) → List B fs ⊛flatten nothing = [] fs ⊛flatten just xs = fs ⊛′ xs -- Applies the function to the value, returning the empty list if -- there is no function. apply : {A B : Set} → Maybe (A → List B) → A → List B apply nothing x = [] apply (just f) x = f x -- bind mxs mf is a variant of flatten mxs >>=′ apply mf, with the -- property that bind mxs nothing evaluates to []. bind : {A B : Set} → Maybe (List A) → Maybe (A → List B) → List B bind mxs nothing = [] bind mxs (just f) = flatten mxs >>=′ f -- Verification of some claims made above. module Claims where ⊛flatten-⊛-flatten : ∀ {A B : Set} (fs : List (A → B)) mxs → fs ⊛flatten mxs ≡ (fs ⊛′ flatten mxs) ⊛flatten-⊛-flatten fs nothing = sym $ ListMonadProp.right-zero fs ⊛flatten-⊛-flatten fs (just xs) = refl ⊛flatten-nothing : {A B : Set} (fs : List (A → B)) → fs ⊛flatten nothing ≡ [] ⊛flatten-nothing fs = refl bind-flatten->>=-apply : ∀ {A B : Set} mxs (mf : Maybe (A → List B)) → bind mxs mf ≡ (flatten mxs >>=′ apply mf) bind-flatten->>=-apply mxs (just f) = refl bind-flatten->>=-apply mxs nothing = sym $ ListMonadProp.right-zero (flatten mxs) bind-nothing : {A B : Set} (mxs : Maybe (List A)) → bind mxs nothing ≡ [] {A = B} bind-nothing mxs = refl ------------------------------------------------------------------------ -- Parsers infixl 50 _⊛_ _<$>_ _⊛flatten_ infixl 10 _>>=_ infixl 5 _∣_ -- The list index is the "initial bag"; it contains the results which -- can be emitted without consuming any input. For -- p : Parser Tok R xs -- we have -- x ∈ xs iff x ∈ p · [] -- (see TotalParserCombinators.InitialBag). mutual data Parser (Tok : Set) : (R : Set) → List R → Set₁ where return : ∀ {R} (x : R) → Parser Tok R (return′ x) fail : ∀ {R} → Parser Tok R fail′ token : Parser Tok Tok fail′ _∣_ : ∀ {R xs₁ xs₂} (p₁ : Parser Tok R xs₁ ) (p₂ : Parser Tok R xs₂) → Parser Tok R (xs₁ ∣′ xs₂) _<$>_ : ∀ {R₁ R₂ xs} (f : R₁ → R₂) (p : Parser Tok R₁ xs) → Parser Tok R₂ (map f xs) _⊛_ : ∀ {R₁ R₂ fs xs} (p₁ : ∞⟨ xs ⟩Parser Tok (R₁ → R₂) (flatten fs) ) (p₂ : ∞⟨ fs ⟩Parser Tok R₁ (flatten xs)) → Parser Tok R₂ (flatten fs ⊛flatten xs) _>>=_ : ∀ {R₁ R₂ xs} {f : Maybe (R₁ → List R₂)} (p₁ : ∞⟨ f ⟩Parser Tok R₁ (flatten xs)) (p₂ : (x : R₁) → ∞⟨ xs ⟩Parser Tok R₂ (apply f x)) → Parser Tok R₂ (bind xs f) nonempty : ∀ {R xs} (p : Parser Tok R xs) → Parser Tok R [] cast : ∀ {R xs₁ xs₂} (xs₁≈xs₂ : xs₁ ∼[ bag ] xs₂) (p : Parser Tok R xs₁) → Parser Tok R xs₂ ∞⟨_⟩Parser : {A : Set} → Maybe A → Set → (R : Set) → List R → Set₁ ∞⟨ nothing ⟩Parser Tok R₁ xs = ∞ (Parser Tok R₁ xs) ∞⟨ just _ ⟩Parser Tok R₁ xs = Parser Tok R₁ xs -- Note that, with the definition above, a sequenced parser is -- /allowed/ to be delayed if the "other" parser is not nullable, but -- it does not have to be. -- Note also that it would be safe to make the first argument of _>>=_ -- coinductive if apply f x ≡_[] for all x in xs. I suspect that this -- criterion would be awkward to work with, though. Instead I only -- allow the argument to be coinductive if f ≡ nothing. -- Finally note that some of the combinators above are not included in -- the paper "Total Parser Combinators". ------------------------------------------------------------------------ -- Examples private -- Note that these parsers can be both left and right recursive: leftRight : ∀ {R Tok} → Parser Tok R _ leftRight {R} = ♯ (const <$> leftRight) ⊛ ♯ leftRight {R} leftRight′ : ∀ {R Tok} → Parser Tok R _ leftRight′ {R} = ♯ leftRight′ {R} >>= λ _ → ♯ leftRight′ -- More examples, included to ensure that all implicit arguments are -- inferred automatically. p : {Tok R : Set} → Parser Tok R _ p = token >>= λ _ → ♯ p p′ : {Tok : Set} → Parser Tok Tok _ p′ = ♯ p′ >>= λ _ → token ------------------------------------------------------------------------ -- Helper functions -- Returns the initial bag. initial-bag : ∀ {Tok R xs} → Parser Tok R xs → List R initial-bag {xs = xs} _ = xs -- Forces if necessary. ♭? : ∀ {Tok R₁ R₂} {m : Maybe R₂} {xs} → ∞⟨ m ⟩Parser Tok R₁ xs → Parser Tok R₁ xs ♭? {m = nothing} = ♭ ♭? {m = just _} = id -- Is the argument parser forced? If the result is just something, -- then it is. forced? : ∀ {Tok A R xs} {m : Maybe A} → ∞⟨ m ⟩Parser Tok R xs → Maybe A forced? {m = m} _ = m forced?′ : {Tok R₁ R₂ A : Set} {m : Maybe A} {f : R₁ → List R₂} → ((x : R₁) → ∞⟨ m ⟩Parser Tok R₂ (f x)) → Maybe A forced?′ {m = m} _ = m -- Short synonyms for just and nothing. ◌ stands for "delayed" (think -- "not here") and ○ for "not delayed". ◌ : {R : Set} → Maybe R ◌ = nothing ○ : {R : Set} {x : R} → Maybe R ○ {x = x} = just x
{ "alphanum_fraction": 0.5308565211, "avg_line_length": 33.1597938144, "ext": "agda", "hexsha": "a9a9046fbce8a0f3932daa79fb287b7b9a4ab347", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "TotalParserCombinators/Parser.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "TotalParserCombinators/Parser.agda", "max_line_length": 76, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "TotalParserCombinators/Parser.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 2002, "size": 6433 }