Search is not available for this dataset
text
string | meta
dict |
---|---|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Finite sets, based on AVL trees
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (StrictTotalOrder)
module Data.AVL.Sets
{a ℓ₁ ℓ₂} (strictTotalOrder : StrictTotalOrder a ℓ₁ ℓ₂)
where
open import Data.Bool
open import Data.List.Base as List using (List)
open import Data.Maybe.Base as Maybe
open import Data.Product as Prod using (_×_; _,_; proj₁)
open import Data.Unit
open import Function
open import Level
import Data.AVL strictTotalOrder as AVL
open StrictTotalOrder strictTotalOrder renaming (Carrier to A)
------------------------------------------------------------------------
-- The set type (note that Set is a reserved word)
⟨Set⟩ : Set (a ⊔ ℓ₂)
⟨Set⟩ = AVL.Tree (AVL.const ⊤)
------------------------------------------------------------------------
-- Repackaged functions
empty : ⟨Set⟩
empty = AVL.empty
singleton : A → ⟨Set⟩
singleton k = AVL.singleton k _
insert : A → ⟨Set⟩ → ⟨Set⟩
insert k = AVL.insert k _
delete : A → ⟨Set⟩ → ⟨Set⟩
delete = AVL.delete
infix 4 _∈?_
_∈?_ : A → ⟨Set⟩ → Bool
_∈?_ = AVL._∈?_
headTail : ⟨Set⟩ → Maybe (A × ⟨Set⟩)
headTail s = Maybe.map (Prod.map₁ proj₁) (AVL.headTail s)
initLast : ⟨Set⟩ → Maybe (⟨Set⟩ × A)
initLast s = Maybe.map (Prod.map₂ proj₁) (AVL.initLast s)
fromList : List A → ⟨Set⟩
fromList = AVL.fromList ∘ List.map (_, _)
toList : ⟨Set⟩ → List A
toList = List.map proj₁ ∘ AVL.toList
|
{
"alphanum_fraction": 0.557827476,
"avg_line_length": 24.8412698413,
"ext": "agda",
"hexsha": "afecf1637cd31650dc41b9d60a317ffa680fe033",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/AVL/Sets.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/AVL/Sets.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/AVL/Sets.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 412,
"size": 1565
}
|
{-# OPTIONS --warning=error --safe --without-K --guardedness #-}
open import Everything.Safe
open import Numbers.Reals.Definition
open import Fields.Orders.Limits.Definition
open import Rings.Orders.Partial.Bounded
open import Rings.Orders.Total.Bounded
open import Rings.Orders.Total.BaseExpansion
open import Fields.Orders.Limits.Lemmas
open import Rings.Orders.Total.Examples
--open import Fields.CauchyCompletion.Archimedean
open import Sets.Cardinality.Infinite.Examples
open import ProjectEuler.Problem2
open import LectureNotes.NumbersAndSets.Examples1
open import LectureNotes.Groups.Lecture1
module Everything.Guardedness where
|
{
"alphanum_fraction": 0.8367029549,
"avg_line_length": 29.2272727273,
"ext": "agda",
"hexsha": "8d7f7b856ba1e6d7c285183362a658e453e62b07",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Everything/Guardedness.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Everything/Guardedness.agda",
"max_line_length": 64,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Everything/Guardedness.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 142,
"size": 643
}
|
module STLC.Properties.Determinism where
open import STLC.Term
open import STLC.Term.Reduction
open import Data.Nat using (ℕ; _+_)
open import Relation.Nullary using (¬_)
open import Relation.Nullary.Negation using (contradiction)
open import Data.Product using (Σ; _,_; ∃; Σ-syntax; ∃-syntax)
open import Relation.Binary.PropositionalEquality as Eq
using (refl; _≡_; cong₂)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎)
infix 4 _¬—→
_¬—→ : ∀ { n : ℕ } -> Term n -> Set
t₁ ¬—→ = ¬ (∃[ t₂ ] (t₁ —→ t₂))
¬—→-value : ∀ { n : ℕ } { t : Term n }
-> Value t
-- --------
-> t ¬—→
¬—→-value {_} {ƛ _} v = λ ()
—→-¬value : ∀ { n : ℕ } { t₁ t₂ : Term n }
-> t₁ —→ t₂
-- ---------
-> ¬ Value t₁
—→-¬value { _ } { _ } { t₂ } s v = ¬—→-value v (t₂ , s)
determinism : ∀ { n : ℕ } { t₁ t₂ t₃ : Term n }
-> t₁ —→ t₂
-> t₁ —→ t₃
-- --------
-> t₂ ≡ t₃
determinism (β-·₁ s₁) (β-·₁ s₂) = cong₂ (_·_) (determinism s₁ s₂) refl
determinism (β-·₂ _ s₁) (β-·₂ _ s₂) = cong₂ (_·_) refl (determinism s₁ s₂)
determinism (β-ƛ _) (β-ƛ _) = refl
determinism (β-·₁ s) (β-·₂ v _) = contradiction v (—→-¬value s)
determinism (β-·₂ v _) (β-·₁ s) = contradiction v (—→-¬value s)
determinism (β-·₂ _ s) (β-ƛ v) = contradiction v (—→-¬value s)
determinism (β-ƛ v) (β-·₂ _ s) = contradiction v (—→-¬value s)
|
{
"alphanum_fraction": 0.5515151515,
"avg_line_length": 26.4,
"ext": "agda",
"hexsha": "1a23e56ba958c034c5bcaef49e3f3de1a540a9e6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "aeb2be63381d891fabe5317e3c27553deb6bca6d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "johnyob/agda-types",
"max_forks_repo_path": "src/STLC/Properties/Determinism.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aeb2be63381d891fabe5317e3c27553deb6bca6d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "johnyob/agda-types",
"max_issues_repo_path": "src/STLC/Properties/Determinism.agda",
"max_line_length": 75,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "aeb2be63381d891fabe5317e3c27553deb6bca6d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "johnyob/agda-types",
"max_stars_repo_path": "src/STLC/Properties/Determinism.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 563,
"size": 1320
}
|
-- Martin-Löf identity type
{-# OPTIONS --without-K --safe #-}
module TypeTheory.Identity where
open import Level renaming (zero to lzero; suc to lsuc)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P using (refl; _≡_)
renaming (trans to ≡-trans; sym to ≡-sym; cong to ≡-cong)
import Relation.Binary.Reasoning.Setoid as SetoidReasoning
record JBundle a : Set (lsuc a) where
field
Carrier : Set a
_≈_ : Rel Carrier a
≈-refl : ∀ {x} → x ≈ x
J : (C : ∀ x y → x ≈ y → Set a) → (∀ x → C x x ≈-refl) →
∀ x y (p : x ≈ y) → C x y p
J-β : ∀ (C : ∀ x y → x ≈ y → Set a) (c : ∀ x → C x x ≈-refl) x →
J C c x x ≈-refl ≡ c x
module JBundleProperties {a} (jBundle : JBundle a) where
open JBundle jBundle renaming (Carrier to A)
sym : ∀ {x y} → x ≈ y → y ≈ x
sym {x} {y} x≈y = J (λ x₁ y₁ x₁≈y₁ → y₁ ≈ x₁) (λ _ → ≈-refl) x y x≈y
sym-≈-refl : ∀ x → sym (≈-refl {x}) ≡ ≈-refl
sym-≈-refl x = J-β (λ x₁ y₁ x₁≈y₁ → y₁ ≈ x₁) (λ _ → ≈-refl) x
sym-involutive : ∀ {x y} (p : x ≈ y) → sym (sym p) ≡ p
sym-involutive {x} {y} p =
J (λ x₁ y₁ x₁≈y₁ → sym (sym x₁≈y₁) ≡ x₁≈y₁)
(λ z → ≡-trans (≡-cong sym (sym-≈-refl z)) (sym-≈-refl z)) x y p
sym-injective : ∀ {x y} {p q : x ≈ y} → sym p ≡ sym q → p ≡ q
sym-injective {p = p} {q} eq = begin
p ≡⟨ ≡-sym (sym-involutive p) ⟩
sym (sym p) ≡⟨ ≡-cong sym eq ⟩
sym (sym q) ≡⟨ sym-involutive q ⟩
q ∎
where open P.≡-Reasoning
{-
trans : ∀ {x y z} → x ≈ y → y ≈ z → x ≈ z
trans {x} {y} {z} x≈y y≈z = J D (λ u → λ w q → q) x y x≈y z y≈z
where
D : ∀ u v → u ≈ v → Set _
D u v u≈v = ∀ w → (q : v ≈ w) → u ≈ w
-}
trans : ∀ {x y z} → x ≈ y → y ≈ z → x ≈ z
trans {x} {y} {z} x≈y y≈z = J D (λ u → λ w q → J E (λ _ → ≈-refl) u w q) x y x≈y z y≈z
where
D : ∀ u v → u ≈ v → Set _
D u v u≈v = ∀ w → v ≈ w → u ≈ w
E : ∀ u v → u ≈ v → Set _
E u v q = u ≈ v
|
{
"alphanum_fraction": 0.4865277072,
"avg_line_length": 35.125,
"ext": "agda",
"hexsha": "00f4ae2789a07d86b4e28b09aaa70eb510d8d0dd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "TypeTheory/Identity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "TypeTheory/Identity.agda",
"max_line_length": 88,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "TypeTheory/Identity.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 937,
"size": 1967
}
|
module _ where
open import Common.Prelude hiding (_>>=_)
open import Common.Reflection
open import Common.Equality
infix 0 case_of_
case_of_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B
case x of f = f x
blockOnFresh : TC ⊤
blockOnFresh =
checkType unknown unknown >>= λ
{ (meta m _) → blockOnMeta m
; _ → typeError (strErr "impossible" ∷ []) }
macro
weirdButShouldWork : Tactic
weirdButShouldWork hole =
inferType hole >>= λ goal →
case goal of λ
{ (meta _ _) → blockOnFresh
; _ → unify hole (lit (nat 42))
}
-- When the goal is a meta the tactic will block on a different, fresh, meta.
-- That's silly, but should still work. Once the goal is resolved the tactic
-- doesn't block any more so everything should be fine.
thing : _
solves : Nat
thing = weirdButShouldWork
solves = thing
check : thing ≡ 42
check = refl
|
{
"alphanum_fraction": 0.6689814815,
"avg_line_length": 23.3513513514,
"ext": "agda",
"hexsha": "119d2d9465bb903f679cbd153a4a098adb7f0813",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Succeed/BlockOnFreshMeta.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Succeed/BlockOnFreshMeta.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/BlockOnFreshMeta.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 264,
"size": 864
}
|
open import Syntax
import Renaming
import Instantiation
module Theory (𝕊 : Signature) where
open Expression 𝕊
open Instantiation
open Renaming
infix 5 □⦂_
infix 5 _≡_⦂type-by□
infix 5 _≡_⦂_by□
data BoundaryThesis : ∀ (cl : Class) (𝕄 : MShape) (γ : VShape) → Set where
□⦂type : ∀ {𝕄 γ} → BoundaryThesis (obj Ty) 𝕄 γ
□⦂_ : ∀ {𝕄 γ} (A : ExprTy 𝕄 γ) → BoundaryThesis (obj Tm) 𝕄 γ
_≡_⦂type-by□ : ∀ {𝕄 γ} (A B : ExprTy 𝕄 γ) → BoundaryThesis EqTy 𝕄 γ
_≡_⦂_by□ : ∀ {𝕄 γ} (u v : ExprTm 𝕄 γ) (A : ExprTy 𝕄 γ) → BoundaryThesis EqTm 𝕄 γ
rename-boundary-thesis : ∀ {cl 𝕄 γ δ} → (γ →ʳ δ) → BoundaryThesis cl 𝕄 γ → BoundaryThesis cl 𝕄 δ
rename-boundary-thesis ρ □⦂type = □⦂type
rename-boundary-thesis ρ (□⦂ A) = □⦂ [ ρ ]ʳ A
rename-boundary-thesis ρ (A ≡ B ⦂type-by□) = [ ρ ]ʳ A ≡ [ ρ ]ʳ B ⦂type-by□
rename-boundary-thesis ρ (u ≡ v ⦂ A by□) = [ ρ ]ʳ u ≡ [ ρ ]ʳ v ⦂ [ ρ ]ʳ A by□
instantiate-boundary-thesis : ∀ {cl 𝕂 𝕄 γ} → (𝕊 % 𝕂 →ⁱ 𝕄 ∥ γ) → BoundaryThesis cl 𝕂 γ → BoundaryThesis cl 𝕄 γ
instantiate-boundary-thesis I □⦂type = □⦂type
instantiate-boundary-thesis I (□⦂ A) = □⦂ [ I ]ⁱ A
instantiate-boundary-thesis I (A ≡ B ⦂type-by□) = [ I ]ⁱ A ≡ [ I ]ⁱ B ⦂type-by□
instantiate-boundary-thesis I (u ≡ v ⦂ A by□) = [ I ]ⁱ u ≡ [ I ]ⁱ v ⦂ [ I ]ⁱ A by□
VContext : ∀ (𝕄 : MShape) (γ : VShape) → Set
VContext 𝕄 γ = ∀ (x : var γ) → ExprTy 𝕄 γ
instantiate-vcontext : ∀ {𝕂 𝕄 γ} (I : 𝕊 % 𝕂 →ⁱ 𝕄 ∥ γ) (Γ : VContext 𝕂 γ) → VContext 𝕄 γ
instantiate-vcontext I Γ x = [ I ]ⁱ Γ x
VExtension : ∀ (𝕄 : MShape) (γ δ : VShape) → Set
VExtension 𝕄 γ δ = ∀ (x : var δ) → ExprTy 𝕄 (γ ⊕ δ)
empty-vextension : ∀ {𝕄 γ} → VExtension 𝕄 γ 𝟘
empty-vextension ()
-- variable context extension
infixl 6 _⊕ᶜ_
_⊕ᶜ_ : ∀ {𝕄 γ δ} → VContext 𝕄 γ → VExtension 𝕄 γ δ → VContext 𝕄 (γ ⊕ δ)
(Γ ⊕ᶜ Δ) (var-left x) = [ var-left ]ʳ (Γ x)
(Γ ⊕ᶜ Δ) (var-right y) = Δ y
rename-vextension : ∀ {𝕄 β γ δ} → (β →ʳ γ) → VExtension 𝕄 β δ → VExtension 𝕄 γ δ
rename-vextension ρ Δ x = [ [ (var-left ∘ʳ ρ) , var-right ]ʳ ]ʳ Δ x
instantiate-vextension : ∀ {𝕂 𝕄 γ δ} → (I : 𝕊 % 𝕂 →ⁱ 𝕄 ∥ γ) → VExtension 𝕂 γ δ → VExtension 𝕄 γ δ
instantiate-vextension I Δ x = [ ⇑ⁱ I ]ⁱ (Δ x)
record JudgementThesis (cl : Class) (𝕄 : MShape) (γ : VShape) : Set where
constructor _⟦_⟧
field
jdg-bdry : BoundaryThesis cl 𝕄 γ
jdg-head : Expr cl 𝕄 γ
presupposition : ∀ {cl 𝕄 γ} → JudgementThesis cl 𝕄 γ → BoundaryThesis cl 𝕄 γ
presupposition (𝒷 ⟦ _ ⟧) = 𝒷
-- shorthands for the four judgement forms
infix 5 _⦂type
_⦂type : ∀ {𝕄 γ} (A : ExprTy 𝕄 γ) → JudgementThesis (obj Ty) 𝕄 γ
A ⦂type = □⦂type ⟦ A ⟧
infix 5 _⦂_
_⦂_ : ∀ {𝕄 γ} (e : ExprTm 𝕄 γ) (A : ExprTy 𝕄 γ) → JudgementThesis (obj Tm) 𝕄 γ
e ⦂ A = (□⦂ A) ⟦ e ⟧
infix 5 _≡_by_
_≡_by_ : ∀ {𝕄 γ} (A B : ExprTy 𝕄 γ) (ξ : Expr EqTy 𝕄 γ) → JudgementThesis (EqTy) 𝕄 γ
A ≡ B by ξ = (A ≡ B ⦂type-by□) ⟦ ξ ⟧
infix 5 _≡_⦂_by_
_≡_⦂_by_ : ∀ {𝕄 γ} (d e : ExprTm 𝕄 γ) (A : ExprTy 𝕄 γ) (ξ : Expr EqTm 𝕄 γ) → JudgementThesis (EqTm) 𝕄 γ
d ≡ e ⦂ A by ξ = (d ≡ e ⦂ A by□) ⟦ ξ ⟧
rename-judgement-thesis : ∀ {cl 𝕄 γ δ} → (γ →ʳ δ) → JudgementThesis cl 𝕄 γ → JudgementThesis cl 𝕄 δ
rename-judgement-thesis ρ (b ⟦ e ⟧) = (rename-boundary-thesis ρ b) ⟦ [ ρ ]ʳ e ⟧
instantiate-judgement-thesis : ∀ {cl 𝕂 𝕄 γ} → (𝕊 % 𝕂 →ⁱ 𝕄 ∥ γ) → JudgementThesis cl 𝕂 γ → JudgementThesis cl 𝕄 γ
instantiate-judgement-thesis I (B ⟦ e ⟧) = (instantiate-boundary-thesis I B) ⟦ [ I ]ⁱ e ⟧
infix 4 ⟪_⟫_
record Abstracted (F : MShape → VShape → Set) (𝕄 : MShape) (γ δ : VShape) : Set where
constructor ⟪_⟫_
field
abstr-vextenson : VExtension 𝕄 γ δ
abstr-body : F 𝕄 (γ ⊕ δ)
non-abstracted : ∀ (F : MShape → VShape → Set) (r : ∀ {𝕄 β γ} → (β →ʳ γ) → F 𝕄 β → F 𝕄 γ)
{𝕄 : MShape} {γ : VShape} (t : F 𝕄 γ) → Abstracted F 𝕄 γ 𝟘
non-abstracted F r t = ⟪ empty-vextension ⟫ (r var-left t)
rename-abstracted : ∀ (F : MShape → VShape → Set) (r : ∀ {𝕄 β γ} → (β →ʳ γ) → F 𝕄 β → F 𝕄 γ) {𝕄 β γ δ} (ρ : β →ʳ γ) →
Abstracted F 𝕄 β δ → Abstracted F 𝕄 γ δ
rename-abstracted F r ρ (⟪ Δ ⟫ t) = ⟪ rename-vextension ρ Δ ⟫ (r (⇑ʳ ρ) t)
instantiate-abstracted : ∀ (F : MShape → VShape → Set) (ι : ∀ {𝕂 𝕄 γ} → (𝕊 % 𝕂 →ⁱ 𝕄 ∥ γ) → F 𝕂 γ → F 𝕄 γ)
{𝕂 𝕄 γ δ} (I : 𝕊 % 𝕂 →ⁱ 𝕄 ∥ γ) → Abstracted F 𝕂 γ δ → Abstracted F 𝕄 γ δ
instantiate-abstracted F ι I (⟪ Δ ⟫ t) = ⟪ (instantiate-vextension I Δ) ⟫ ι (⇑ⁱ I) t
AbstractedBoundary : ∀ cl 𝕄 γ δ → Set
AbstractedBoundary cl 𝕄 γ δ = Abstracted (BoundaryThesis cl) 𝕄 γ δ
infix 4 ⟪⟫ᵇ_
⟪⟫ᵇ_ : ∀ {cl 𝕄 γ} → BoundaryThesis cl 𝕄 γ → AbstractedBoundary cl 𝕄 γ 𝟘
⟪⟫ᵇ_ {cl = cl} 𝒷 = non-abstracted (BoundaryThesis cl) rename-boundary-thesis 𝒷
rename-abstracted-boundary : ∀ {cl 𝕄 β γ δ} (ρ : β →ʳ γ) →
AbstractedBoundary cl 𝕄 β δ → AbstractedBoundary cl 𝕄 γ δ
rename-abstracted-boundary {cl = cl} = rename-abstracted (BoundaryThesis cl) rename-boundary-thesis
instantiate-abstracted-boundary : ∀ {cl 𝕂 𝕄 γ δ} (I : 𝕊 % 𝕂 →ⁱ 𝕄 ∥ γ) →
AbstractedBoundary cl 𝕂 γ δ → AbstractedBoundary cl 𝕄 γ δ
instantiate-abstracted-boundary {cl = cl} = instantiate-abstracted (BoundaryThesis cl) instantiate-boundary-thesis
AbstractedJudgement : ∀ cl 𝕄 γ δ → Set
AbstractedJudgement cl 𝕄 γ δ = Abstracted (JudgementThesis cl) 𝕄 γ δ
infix 4 ⟪⟫ʲ_
⟪⟫ʲ_ : ∀ {cl 𝕄 γ} → JudgementThesis cl 𝕄 γ → AbstractedJudgement cl 𝕄 γ 𝟘
⟪⟫ʲ_ {cl = cl} 𝒷 = non-abstracted (JudgementThesis cl) rename-judgement-thesis 𝒷
fill-abstraction : ∀ {cl 𝕄 γ δ} (ℬ : AbstractedBoundary cl 𝕄 γ δ) → Arg cl 𝕄 γ δ → AbstractedJudgement cl 𝕄 γ δ
fill-abstraction (⟪ Δ ⟫ 𝒷) e = ⟪ Δ ⟫ (𝒷 ⟦ e ⟧)
rename-abstracted-judgement : ∀ {cl 𝕄 β γ δ} (ρ : β →ʳ γ) →
AbstractedJudgement cl 𝕄 β δ → AbstractedJudgement cl 𝕄 γ δ
rename-abstracted-judgement {cl = cl} = rename-abstracted (JudgementThesis cl) rename-judgement-thesis
instantiate-abstracted-judgement : ∀ {cl 𝕂 𝕄 γ δ} (I : 𝕊 % 𝕂 →ⁱ 𝕄 ∥ γ) →
AbstractedJudgement cl 𝕂 γ δ → AbstractedJudgement cl 𝕄 γ δ
instantiate-abstracted-judgement {cl = cl} = instantiate-abstracted (JudgementThesis cl) instantiate-judgement-thesis
MContext : ∀ (𝕄 : MShape) → Set
MContext 𝕄 = ∀ {clᴹ : Class} {γᴹ : VShape} (M : [ clᴹ , γᴹ ]∈ 𝕄) → AbstractedBoundary clᴹ 𝕄 𝟘 γᴹ
HypotheticalBoundary : ∀ cl {𝕄 : MShape} {γ} (Θ : MContext 𝕄) (Γ : VContext 𝕄 γ) δ → Set
HypotheticalBoundary cl {𝕄 = 𝕄} {γ = γ} Θ Γ δ = Abstracted (BoundaryThesis cl) 𝕄 γ δ
instantiate-hypothetical-boundary :
∀ {cl 𝕂 𝕄 γ δ} (I : 𝕊 % 𝕂 →ⁱ 𝕄 ∥ γ) {Ξ : MContext 𝕂} {Γ : VContext 𝕂 γ} {Θ : MContext 𝕄} →
HypotheticalBoundary cl Ξ Γ δ → HypotheticalBoundary cl Θ (instantiate-vcontext I Γ) δ
instantiate-hypothetical-boundary I B = instantiate-abstracted-boundary I B
HypotheticalJudgement : ∀ cl {𝕄 : MShape} {γ} (Θ : MContext 𝕄) (Γ : VContext 𝕄 γ) δ → Set
HypotheticalJudgement cl {𝕄 = 𝕄} {γ = γ} Θ Γ δ = Abstracted (JudgementThesis cl) 𝕄 γ δ
instantiate-hypothetical-judgement :
∀ {cl 𝕂 𝕄 γ δ} (I : 𝕊 % 𝕂 →ⁱ 𝕄 ∥ γ) {Ξ : MContext 𝕂} {Γ : VContext 𝕂 γ} {Θ : MContext 𝕄} →
HypotheticalJudgement cl Ξ Γ δ → HypotheticalJudgement cl Θ (instantiate-vcontext I Γ) δ
instantiate-hypothetical-judgement I B = instantiate-abstracted-judgement I B
infix 6 _⇛_
record Rule (cl : Class) (𝕄 : MShape) : Set where
constructor _⇛_
field
premises : MContext 𝕄
conclusion : JudgementThesis cl 𝕄 𝟘
Theory = ∀ {cl} {𝕄} → Rule cl 𝕄 → Set
instantiate-conclusion : ∀ {cl 𝕂 𝕄 γ} (I : 𝕊 % 𝕂 →ⁱ 𝕄 ∥ γ) → JudgementThesis cl 𝕂 𝟘 → JudgementThesis cl 𝕄 γ
instantiate-conclusion I 𝒿 = instantiate-judgement-thesis I (rename-judgement-thesis 𝟘-initial 𝒿)
module Derivation (𝒯 : Theory) where
open Rule
infix 3 _,_⊢ʲ_
infix 3 _,_⊢ᵇ_
data _,_⊢ʲ_ :
∀ {cl 𝕄 γ δ} (Θ : MContext 𝕄) (Γ : VContext 𝕄 γ) (𝒥 : HypotheticalJudgement cl Θ Γ δ) → Set
data _,_⊢ᵇ_ :
∀ {cl 𝕄 γ δ} (Θ : MContext 𝕄) (Γ : VContext 𝕄 γ) (ℬ : HypotheticalBoundary cl Θ Γ δ) → Set
-- derivable instantiation
is-derivable : ∀ {𝕂 𝕄 γ} (I : 𝕊 % 𝕂 →ⁱ 𝕄 ∥ γ) (Ξ : MContext 𝕂) (Θ : MContext 𝕄) (Γ : VContext 𝕄 γ) → Set
is-derivable {𝕂 = 𝕂} I Ξ Θ Γ =
∀ {clᴷ γᴷ} (M : [ clᴷ , γᴷ ]∈ 𝕂) →
Θ , Γ ⊢ʲ fill-abstraction (instantiate-abstracted-boundary I (rename-abstracted-boundary 𝟘-initial (Ξ M))) (I M)
data _,_⊢ʲ_ where
TT-VAR :
∀ {𝕄 γ} {Θ : MContext 𝕄} {Γ : VContext 𝕄 γ} (x : var γ) → Θ , Γ ⊢ʲ (⟪⟫ʲ (expr-var x ⦂ Γ x))
TT-RULE :
∀ {cl 𝕂 𝕄 γ} {Ξ : MContext 𝕂} {Θ : MContext 𝕄} {Γ : VContext 𝕄 γ}
(I : 𝕊 % 𝕂 →ⁱ 𝕄 ∥ γ) {𝒿 : JudgementThesis cl 𝕂 𝟘} (R : 𝒯 (Ξ ⇛ 𝒿)) →
Θ , Γ ⊢ᵇ ⟪⟫ᵇ instantiate-boundary-thesis I (rename-boundary-thesis 𝟘-initial (presupposition 𝒿)) →
is-derivable I Ξ Θ Γ →
Θ , Γ ⊢ʲ ⟪⟫ʲ instantiate-conclusion I 𝒿
TT-ABSTR :
∀ {cl 𝕄 γ δ} {Θ : MContext 𝕄} {Γ : VContext 𝕄 γ} {Δ : VExtension 𝕄 γ δ} {𝒿 : JudgementThesis cl 𝕄 (γ ⊕ δ) } →
Θ , Γ ⊕ᶜ Δ ⊢ʲ ⟪⟫ʲ 𝒿 →
Θ , Γ ⊢ʲ ⟪ Δ ⟫ 𝒿
TT-META :
{!!}
TT-META-CONGR :
{!!}
TT-EQTY-REFL :
{!!}
TT-EQTY-SYM :
{!!}
TT-EQTY-TRANS :
{!!}
TT-EQTM-REFL :
{!!}
TT-EQTM-SYM :
{!!}
TT-EQTM-TRANS :
{!!}
TT-CONV-TM :
{!!}
TT-CONV-EQTM :
{!!}
data _,_⊢ᵇ_ where
TT-BDRY-TY :
∀ {𝕄 γ} {Θ : MContext 𝕄} {Γ : VContext 𝕄 γ} →
Θ , Γ ⊢ᵇ ⟪⟫ᵇ □⦂type
TT-BDRY-TM :
∀ {𝕄 γ} {Θ : MContext 𝕄} {Γ : VContext 𝕄 γ} {A} →
Θ , Γ ⊢ʲ ⟪⟫ʲ A ⦂type →
Θ , Γ ⊢ᵇ ⟪⟫ᵇ □⦂ A
TT-BDRY-EQTY :
∀ {𝕄 γ} {Θ : MContext 𝕄} {Γ : VContext 𝕄 γ} {A B} →
Θ , Γ ⊢ʲ ⟪⟫ʲ A ⦂type →
Θ , Γ ⊢ʲ ⟪⟫ʲ B ⦂type →
Θ , Γ ⊢ᵇ ⟪⟫ᵇ A ≡ B ⦂type-by□
TT-BDRY-EQTM :
∀ {𝕄 γ} {Θ : MContext 𝕄} {Γ : VContext 𝕄 γ} {u v A} →
Θ , Γ ⊢ʲ ⟪⟫ʲ A ⦂type →
Θ , Γ ⊢ʲ ⟪⟫ʲ u ⦂ A →
Θ , Γ ⊢ʲ ⟪⟫ʲ v ⦂ A →
Θ , Γ ⊢ᵇ ⟪⟫ᵇ u ≡ v ⦂ A by□
TT-BDRY-ABSTR :
∀ {cl 𝕄 γ δ} {Θ : MContext 𝕄} {Γ : VContext 𝕄 γ} {Δ : VExtension 𝕄 γ δ} {𝒷 : BoundaryThesis cl 𝕄 (γ ⊕ δ) } →
Θ , Γ ⊕ᶜ Δ ⊢ᵇ ⟪⟫ᵇ 𝒷 →
Θ , Γ ⊢ᵇ ⟪ Δ ⟫ 𝒷
-- Missing: well-formed extensions and contexts
|
{
"alphanum_fraction": 0.557948129,
"avg_line_length": 39.2819548872,
"ext": "agda",
"hexsha": "b2cbf3fa3f1a95dcc1387d605a3190f7704d06f5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9b634d284a0ec5108c68489575194cd573f38908",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/dependent-type-theory-syntax",
"max_forks_repo_path": "src/Theory.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9b634d284a0ec5108c68489575194cd573f38908",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/dependent-type-theory-syntax",
"max_issues_repo_path": "src/Theory.agda",
"max_line_length": 121,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "9b634d284a0ec5108c68489575194cd573f38908",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andrejbauer/dependent-type-theory-syntax",
"max_stars_repo_path": "src/Theory.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-14T01:48:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-05-25T11:14:42.000Z",
"num_tokens": 4966,
"size": 10449
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Non-empty lists
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.NonEmpty where
open import Category.Monad
open import Data.Bool.Base using (Bool; false; true; not; T)
open import Data.Bool.Properties
open import Data.List as List using (List; []; _∷_)
open import Data.Maybe.Base using (Maybe ; nothing; just)
open import Data.Nat as Nat
open import Data.Product as Prod using (∃; _×_; proj₁; proj₂; _,_; -,_)
open import Data.These as These using (These; this; that; these)
open import Data.Sum as Sum using (_⊎_; inj₁; inj₂)
open import Data.Unit
open import Data.Vec as Vec using (Vec; []; _∷_)
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence
using () renaming (module Equivalence to Eq)
open import Relation.Binary.PropositionalEquality as P using (_≡_; refl)
open import Relation.Nullary.Decidable using (⌊_⌋)
------------------------------------------------------------------------
-- Non-empty lists
infixr 5 _∷_
record List⁺ {a} (A : Set a) : Set a where
constructor _∷_
field
head : A
tail : List A
open List⁺ public
-- Basic combinators
module _ {a} {A : Set a} where
uncons : List⁺ A → A × List A
uncons (hd ∷ tl) = hd , tl
[_] : A → List⁺ A
[ x ] = x ∷ []
infixr 5 _∷⁺_
_∷⁺_ : A → List⁺ A → List⁺ A
x ∷⁺ y ∷ xs = x ∷ y ∷ xs
length : List⁺ A → ℕ
length (x ∷ xs) = suc (List.length xs)
------------------------------------------------------------------------
-- Conversion
module _ {a} {A : Set a} where
toList : List⁺ A → List A
toList (x ∷ xs) = x ∷ xs
fromList : List A → Maybe (List⁺ A)
fromList [] = nothing
fromList (x ∷ xs) = just (x ∷ xs)
fromVec : ∀ {n} → Vec A (suc n) → List⁺ A
fromVec (x ∷ xs) = x ∷ Vec.toList xs
toVec : (xs : List⁺ A) → Vec A (length xs)
toVec (x ∷ xs) = x ∷ Vec.fromList xs
lift : ∀ {a b} {A : Set a} {B : Set b} →
(∀ {m} → Vec A (suc m) → ∃ λ n → Vec B (suc n)) →
List⁺ A → List⁺ B
lift f xs = fromVec (proj₂ (f (toVec xs)))
------------------------------------------------------------------------
-- Other operations
map : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → List⁺ A → List⁺ B
map f (x ∷ xs) = (f x ∷ List.map f xs)
-- Right fold. Note that s is only applied to the last element (see
-- the examples below).
foldr : ∀ {a b} {A : Set a} {B : Set b} →
(A → B → B) → (A → B) → List⁺ A → B
foldr {A = A} {B} c s (x ∷ xs) = foldr′ x xs
where
foldr′ : A → List A → B
foldr′ x [] = s x
foldr′ x (y ∷ xs) = c x (foldr′ y xs)
-- Right fold.
foldr₁ : ∀ {a} {A : Set a} → (A → A → A) → List⁺ A → A
foldr₁ f = foldr f id
-- Left fold. Note that s is only applied to the first element (see
-- the examples below).
foldl : ∀ {a b} {A : Set a} {B : Set b} →
(B → A → B) → (A → B) → List⁺ A → B
foldl c s (x ∷ xs) = List.foldl c (s x) xs
-- Left fold.
foldl₁ : ∀ {a} {A : Set a} → (A → A → A) → List⁺ A → A
foldl₁ f = foldl f id
-- Append (several variants).
module _ {a} {A : Set a} where
infixr 5 _⁺++⁺_ _++⁺_ _⁺++_
_⁺++⁺_ : List⁺ A → List⁺ A → List⁺ A
(x ∷ xs) ⁺++⁺ (y ∷ ys) = x ∷ (xs List.++ y ∷ ys)
_⁺++_ : List⁺ A → List A → List⁺ A
(x ∷ xs) ⁺++ ys = x ∷ (xs List.++ ys)
_++⁺_ : List A → List⁺ A → List⁺ A
xs ++⁺ ys = List.foldr _∷⁺_ ys xs
concat : List⁺ (List⁺ A) → List⁺ A
concat (xs ∷ xss) = xs ⁺++ List.concat (List.map toList xss)
concatMap : ∀ {a b} {A : Set a} {B : Set b} → (A → List⁺ B) → List⁺ A → List⁺ B
concatMap f = concat ∘′ map f
-- Reverse
reverse : ∀ {a} {A : Set a} → List⁺ A → List⁺ A
reverse = lift (-,_ ∘′ Vec.reverse)
-- Align and Zip
module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where
alignWith : (These A B → C) → List⁺ A → List⁺ B → List⁺ C
alignWith f (a ∷ as) (b ∷ bs) = f (these a b) ∷ List.alignWith f as bs
zipWith : (A → B → C) → List⁺ A → List⁺ B → List⁺ C
zipWith f (a ∷ as) (b ∷ bs) = f a b ∷ List.zipWith f as bs
unalignWith : (A → These B C) → List⁺ A → These (List⁺ B) (List⁺ C)
unalignWith f = foldr (These.alignWith mcons mcons ∘′ f)
(These.map [_] [_] ∘′ f)
where mcons : ∀ {e} {E : Set e} → These E (List⁺ E) → List⁺ E
mcons = These.fold [_] id _∷⁺_
unzipWith : (A → B × C) → List⁺ A → List⁺ B × List⁺ C
unzipWith f (a ∷ as) = Prod.zip _∷_ _∷_ (f a) (List.unzipWith f as)
module _ {a b} {A : Set a} {B : Set b} where
align : List⁺ A → List⁺ B → List⁺ (These A B)
align = alignWith id
zip : List⁺ A → List⁺ B → List⁺ (A × B)
zip = zipWith _,_
unalign : List⁺ (These A B) → These (List⁺ A) (List⁺ B)
unalign = unalignWith id
unzip : List⁺ (A × B) → List⁺ A × List⁺ B
unzip = unzipWith id
-- Snoc.
infixl 5 _∷ʳ_ _⁺∷ʳ_
_∷ʳ_ : ∀ {a} {A : Set a} → List A → A → List⁺ A
[] ∷ʳ y = [ y ]
(x ∷ xs) ∷ʳ y = x ∷ (xs List.∷ʳ y)
_⁺∷ʳ_ : ∀ {a} {A : Set a} → List⁺ A → A → List⁺ A
xs ⁺∷ʳ x = toList xs ∷ʳ x
-- A snoc-view of non-empty lists.
infixl 5 _∷ʳ′_
data SnocView {a} {A : Set a} : List⁺ A → Set a where
_∷ʳ′_ : (xs : List A) (x : A) → SnocView (xs ∷ʳ x)
snocView : ∀ {a} {A : Set a} (xs : List⁺ A) → SnocView xs
snocView (x ∷ xs) with List.initLast xs
snocView (x ∷ .[]) | [] = [] ∷ʳ′ x
snocView (x ∷ .(xs List.∷ʳ y)) | xs List.∷ʳ' y = (x ∷ xs) ∷ʳ′ y
-- The last element in the list.
last : ∀ {a} {A : Set a} → List⁺ A → A
last xs with snocView xs
last .(ys ∷ʳ y) | ys ∷ʳ′ y = y
-- Groups all contiguous elements for which the predicate returns the
-- same result into lists.
split : ∀ {a} {A : Set a}
(p : A → Bool) → List A →
List (List⁺ (∃ (T ∘ p)) ⊎ List⁺ (∃ (T ∘ not ∘ p)))
split p [] = []
split p (x ∷ xs) with p x | P.inspect p x | split p xs
... | true | P.[ px≡t ] | inj₁ xs′ ∷ xss = inj₁ ((x , Eq.from T-≡ ⟨$⟩ px≡t) ∷⁺ xs′) ∷ xss
... | true | P.[ px≡t ] | xss = inj₁ [ x , Eq.from T-≡ ⟨$⟩ px≡t ] ∷ xss
... | false | P.[ px≡f ] | inj₂ xs′ ∷ xss = inj₂ ((x , Eq.from T-not-≡ ⟨$⟩ px≡f) ∷⁺ xs′) ∷ xss
... | false | P.[ px≡f ] | xss = inj₂ [ x , Eq.from T-not-≡ ⟨$⟩ px≡f ] ∷ xss
-- If we flatten the list returned by split, then we get the list we
-- started with.
flatten : ∀ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} →
List (List⁺ (∃ P) ⊎ List⁺ (∃ Q)) → List A
flatten = List.concat ∘
List.map Sum.[ toList ∘ map proj₁ , toList ∘ map proj₁ ]
flatten-split :
∀ {a} {A : Set a}
(p : A → Bool) (xs : List A) → flatten (split p xs) ≡ xs
flatten-split p [] = refl
flatten-split p (x ∷ xs)
with p x | P.inspect p x | split p xs | flatten-split p xs
... | true | P.[ _ ] | [] | hyp = P.cong (_∷_ x) hyp
... | true | P.[ _ ] | inj₁ _ ∷ _ | hyp = P.cong (_∷_ x) hyp
... | true | P.[ _ ] | inj₂ _ ∷ _ | hyp = P.cong (_∷_ x) hyp
... | false | P.[ _ ] | [] | hyp = P.cong (_∷_ x) hyp
... | false | P.[ _ ] | inj₁ _ ∷ _ | hyp = P.cong (_∷_ x) hyp
... | false | P.[ _ ] | inj₂ _ ∷ _ | hyp = P.cong (_∷_ x) hyp
-- Groups all contiguous elements /not/ satisfying the predicate into
-- lists. Elements satisfying the predicate are dropped.
wordsBy : ∀ {a} {A : Set a} → (A → Bool) → List A → List (List⁺ A)
wordsBy p =
List.mapMaybe Sum.[ const nothing , just ∘′ map proj₁ ] ∘ split p
------------------------------------------------------------------------
-- Examples
-- Note that these examples are simple unit tests, because the type
-- checker verifies them.
private
module Examples {A B : Set}
(_⊕_ : A → B → B)
(_⊗_ : B → A → B)
(_⊙_ : A → A → A)
(f : A → B)
(a b c : A)
where
hd : head (a ∷⁺ b ∷⁺ [ c ]) ≡ a
hd = refl
tl : tail (a ∷⁺ b ∷⁺ [ c ]) ≡ b ∷ c ∷ []
tl = refl
mp : map f (a ∷⁺ b ∷⁺ [ c ]) ≡ f a ∷⁺ f b ∷⁺ [ f c ]
mp = refl
right : foldr _⊕_ f (a ∷⁺ b ∷⁺ [ c ]) ≡ (a ⊕ (b ⊕ f c))
right = refl
right₁ : foldr₁ _⊙_ (a ∷⁺ b ∷⁺ [ c ]) ≡ (a ⊙ (b ⊙ c))
right₁ = refl
left : foldl _⊗_ f (a ∷⁺ b ∷⁺ [ c ]) ≡ ((f a ⊗ b) ⊗ c)
left = refl
left₁ : foldl₁ _⊙_ (a ∷⁺ b ∷⁺ [ c ]) ≡ ((a ⊙ b) ⊙ c)
left₁ = refl
⁺app⁺ : (a ∷⁺ b ∷⁺ [ c ]) ⁺++⁺ (b ∷⁺ [ c ]) ≡
a ∷⁺ b ∷⁺ c ∷⁺ b ∷⁺ [ c ]
⁺app⁺ = refl
⁺app : (a ∷⁺ b ∷⁺ [ c ]) ⁺++ (b ∷ c ∷ []) ≡
a ∷⁺ b ∷⁺ c ∷⁺ b ∷⁺ [ c ]
⁺app = refl
app⁺ : (a ∷ b ∷ c ∷ []) ++⁺ (b ∷⁺ [ c ]) ≡
a ∷⁺ b ∷⁺ c ∷⁺ b ∷⁺ [ c ]
app⁺ = refl
conc : concat ((a ∷⁺ b ∷⁺ [ c ]) ∷⁺ [ b ∷⁺ [ c ] ]) ≡
a ∷⁺ b ∷⁺ c ∷⁺ b ∷⁺ [ c ]
conc = refl
rev : reverse (a ∷⁺ b ∷⁺ [ c ]) ≡ c ∷⁺ b ∷⁺ [ a ]
rev = refl
snoc : (a ∷ b ∷ c ∷ []) ∷ʳ a ≡ a ∷⁺ b ∷⁺ c ∷⁺ [ a ]
snoc = refl
snoc⁺ : (a ∷⁺ b ∷⁺ [ c ]) ⁺∷ʳ a ≡ a ∷⁺ b ∷⁺ c ∷⁺ [ a ]
snoc⁺ = refl
split-true : split (const true) (a ∷ b ∷ c ∷ []) ≡
inj₁ ((a , tt) ∷⁺ (b , tt) ∷⁺ [ c , tt ]) ∷ []
split-true = refl
split-false : split (const false) (a ∷ b ∷ c ∷ []) ≡
inj₂ ((a , tt) ∷⁺ (b , tt) ∷⁺ [ c , tt ]) ∷ []
split-false = refl
split-≡1 :
split (λ n → ⌊ n Nat.≟ 1 ⌋) (1 ∷ 2 ∷ 3 ∷ 1 ∷ 1 ∷ 2 ∷ 1 ∷ []) ≡
inj₁ [ 1 , tt ] ∷ inj₂ ((2 , tt) ∷⁺ [ 3 , tt ]) ∷
inj₁ ((1 , tt) ∷⁺ [ 1 , tt ]) ∷ inj₂ [ 2 , tt ] ∷ inj₁ [ 1 , tt ] ∷
[]
split-≡1 = refl
wordsBy-true : wordsBy (const true) (a ∷ b ∷ c ∷ []) ≡ []
wordsBy-true = refl
wordsBy-false : wordsBy (const false) (a ∷ b ∷ c ∷ []) ≡
(a ∷⁺ b ∷⁺ [ c ]) ∷ []
wordsBy-false = refl
wordsBy-≡1 :
wordsBy (λ n → ⌊ n Nat.≟ 1 ⌋) (1 ∷ 2 ∷ 3 ∷ 1 ∷ 1 ∷ 2 ∷ 1 ∷ []) ≡
(2 ∷⁺ [ 3 ]) ∷ [ 2 ] ∷ []
wordsBy-≡1 = refl
|
{
"alphanum_fraction": 0.4651973347,
"avg_line_length": 29.2065868263,
"ext": "agda",
"hexsha": "db5182fa94833a670833b4a796413c42f673839c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/NonEmpty.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/NonEmpty.agda",
"max_line_length": 94,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/NonEmpty.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4126,
"size": 9755
}
|
module Type.Properties.Singleton.Proofs where
import Data.Tuple as Tuple
open import Data.Proofs
open import Function.Axioms
open import Logic.Classical
open import Logic
import Lvl
open import Type.Properties.Empty
open import Type.Properties.Inhabited
open import Type.Properties.MereProposition
open import Type.Properties.Singleton
open import Logic.Propositional
open import Logic.Predicate
open import Structure.Setoid
open import Structure.Function
open import Structure.Operator
open import Structure.Relator.Equivalence
open import Structure.Relator.Properties
open import Structure.Type.Identity
open import Syntax.Function
open import Type.Dependent
open import Type
private variable ℓ ℓₑ ℓₑ₁ ℓₑ₂ ℓₑ₃ ℓₑ₄ ℓₑ₅ : Lvl.Level
private variable A B T U P : Type{ℓ}
module _ ⦃ equiv : Equiv{ℓₑ}(U) ⦄ where
unit-is-pos : ⦃ proof : IsUnit(U) ⦄ → ◊(U)
unit-is-pos ⦃ intro unit uniqueness ⦄ = intro ⦃ unit ⦄
unit-is-prop : ⦃ proof : IsUnit(U) ⦄ → MereProposition(U)
unit-is-prop ⦃ intro unit uniqueness ⦄ = intro (\{x}{y} → transitivity(_≡_) (uniqueness{x}) (symmetry(_≡_)(uniqueness{y})))
pos-prop-is-unit : ⦃ _ : (◊ U) ⦄ → ⦃ _ : MereProposition(U) ⦄ → IsUnit(U)
pos-prop-is-unit ⦃ intro ⦃ unit ⦄ ⦄ ⦃ intro uniqueness ⦄ = intro unit (\{x} → uniqueness{x}{unit})
module _ ⦃ equiv-p : Equiv{ℓₑ}(P) ⦄ ⦃ prop-p : MereProposition(P) ⦄ ⦃ equiv-a : Equiv{ℓₑ₁}(A) ⦄ where
prop-fn-unique-value : ∀{f : P → A} → ⦃ _ : Function(f) ⦄ → (∀{x y} → (f(x) ≡ f(y)))
prop-fn-unique-value {f = f}{x}{y} = congruence₁(f) (MereProposition.uniqueness(prop-p){x}{y})
module _ ⦃ equiv-u : Equiv{ℓₑ}(U) ⦄ ⦃ unit-u : IsUnit(U) ⦄ ⦃ equiv-a : Equiv{ℓₑ₁}(A) ⦄ where
unit-fn-unique-value : ∀{f : U → A} → ⦃ _ : Function(f) ⦄ → (∀{x y} → (f(x) ≡ f(y)))
unit-fn-unique-value = prop-fn-unique-value ⦃ prop-p = unit-is-prop ⦃ proof = unit-u ⦄ ⦄
module _
⦃ equiv-a : Equiv{ℓₑ₁}(A) ⦄
⦃ equiv-b : Equiv{ℓₑ₂}(B) ⦄
⦃ equiv-ab : Equiv{ℓₑ₃}(A ∧ B) ⦄
⦃ op : BinaryOperator([∧]-intro) ⦄ where
instance
prop-conjunction : ⦃ prop-a : MereProposition(A) ⦄ ⦃ prop-b : MereProposition(B) ⦄ → MereProposition(A ∧ B)
MereProposition.uniqueness prop-conjunction {[∧]-intro a₁ b₁} {[∧]-intro a₂ b₂} = congruence₂([∧]-intro) (uniqueness(A)) (uniqueness(B))
module _
⦃ equiv-b : Equiv{ℓₑ₁}(B) ⦄
⦃ equiv-ab : Equiv{ℓₑ₂}(A → B) ⦄
⦃ funcExt : FunctionExtensionality(A)(B) ⦄
where
prop-implication : ⦃ prop-b : MereProposition(B) ⦄ → MereProposition(A → B)
MereProposition.uniqueness prop-implication = functionExtensionality(A)(B) (uniqueness(B))
module _
{B : A → Type{ℓ}}
⦃ equiv-b : ∀{a} → Equiv{ℓₑ₁}(B(a)) ⦄
⦃ equiv-ab : Equiv{ℓₑ₂}((a : A) → B(a)) ⦄
⦃ funcExt : DependentFunctionExtensionality(A)(B) ⦄
where
prop-dependent-implication : ⦃ prop-b : ∀{a} → MereProposition(B(a)) ⦄ → MereProposition((a : A) → B(a))
MereProposition.uniqueness prop-dependent-implication = dependentFunctionExtensionality(A)(B)(\{a} → uniqueness(B(a)))
module _ ⦃ equiv-top : Equiv{ℓₑ}(⊤) ⦄ where
instance
prop-top : MereProposition(⊤) ⦃ equiv-top ⦄
prop-top = unit-is-prop
module _ ⦃ equiv-bottom : Equiv{ℓₑ}(⊥) ⦄ where
instance
prop-bottom : MereProposition(⊥) ⦃ equiv-bottom ⦄
MereProposition.uniqueness prop-bottom {}
module _
{P : A → Type{ℓ}} ⦃ equiv-p : ∀{x} → Equiv{ℓₑ₁}(P(x)) ⦄
⦃ equiv-ap : Equiv{ℓₑ₂}(∀ₗ P) ⦄
⦃ funcExt : DependentImplicitFunctionExtensionality(A)(P) ⦄
where
prop-universal : ⦃ prop-p : ∀{x} → MereProposition(P(x)) ⦄ → MereProposition(∀ₗ P)
MereProposition.uniqueness prop-universal = dependentImplicitFunctionExtensionality(A)(P) (\{x} → uniqueness(P(x)))
module _
⦃ equiv-a : Equiv{ℓₑ₁}(A) ⦄
⦃ equiv-b : Equiv{ℓₑ₂}(B) ⦄
⦃ equiv-ba : Equiv{ℓₑ₃}(A ← B) ⦄
⦃ equiv-ab : Equiv{ℓₑ₄}(A → B) ⦄
⦃ equiv-eq : Equiv{ℓₑ₅}(A ↔ B) ⦄
⦃ op : BinaryOperator([↔]-intro) ⦄
⦃ funcExtₗ : FunctionExtensionality(B)(A) ⦄
⦃ funcExtᵣ : FunctionExtensionality(A)(B) ⦄
where
prop-equivalence : ⦃ prop-a : MereProposition(A) ⦄ → ⦃ prop-b : MereProposition(B) ⦄ → MereProposition(A ↔ B)
prop-equivalence = prop-conjunction ⦃ prop-a = prop-implication ⦄ ⦃ prop-b = prop-implication ⦄
module _
⦃ equiv-a : Equiv{ℓₑ₁}(A) ⦄
⦃ equiv-bottom : Equiv{ℓₑ₂}(⊥) ⦄
⦃ equiv-na : Equiv{ℓₑ₃}(¬ A) ⦄
⦃ funcExt : FunctionExtensionality (A)(⊥) ⦃ equiv-bottom ⦄ ⦄
where
prop-negation : MereProposition(¬ A)
prop-negation = prop-implication
module _
⦃ equiv-a : Equiv{ℓₑ₁}(A) ⦄
⦃ equiv-b : Equiv{ℓₑ₂}(B) ⦄
⦃ equiv-ab : Equiv{ℓₑ₃}(A ∨ B) ⦄
(left-right-neq : ∀{a : A}{b : B} → ([∨]-introₗ a ≢ [∨]-introᵣ b))
where
not-prop-disjunction : MereProposition(A ∨ B) → IsEmpty(A ∧ B)
IsEmpty.empty (not-prop-disjunction (intro uniqueness)) ([∧]-intro a b) with () ← left-right-neq(uniqueness{[∨]-introₗ a}{[∨]-introᵣ b})
{-
module _ {B : A → Type{ℓ}} where
open import Type.Identity
open import Relator.Equals.Proofs.Equiv
open import Structure.Relator
open import Structure.Setoid.Uniqueness
open import Syntax.Transitivity
congruence₁-dependent : ∀{ℓ₁ ℓ₂}{A : Type{ℓ₁}}{B : A → Type{ℓ₂}}{a₁ a₂ : A} → (f : (a : A) → B(a)) → (pa : a₁ ≡ a₂) → (substitute₁(B) pa (f a₁) ≡ f a₂)
congruence₁-dependent _ intro = intro
-- congruence₂-dependent : ∀{C : (a : A) → B(a) → Type{ℓ}}{a₁ a₂ : A}{b₁ : B(a₁)}{b₂ : B(a₂)}{f : (a : A) → (b : B(a)) → C a b} → (pa : a₁ ≡ a₂) → (f a₁ b₁ ≡ f a₂ b₂)
-- (substitute₁(B) ? b₁)
prop-sigma : Unique(B) → (∀{a} → MereProposition(B(a))) → MereProposition(Σ A B)
MereProposition.uniqueness (prop-sigma unique-B prop-B) {intro xa xb} {intro ya yb} =
intro xa xb 🝖[ _≡_ ]-[ {!(congruence₁-dependent(intro) (unique-B xb yb))!} ]
intro ya (substitute₁(B) (unique-B xb yb) xb) 🝖[ _≡_ ]-[ {!intro xa xb!} ]
intro ya yb 🝖-end
-}
{- TODO
module _
⦃ equiv-a : Equiv(A) ⦄
{B : A → Type{ℓ}} ⦃ equiv-b : ∀{x} → Equiv(B(x)) ⦄
⦃ equiv-sigma : Equiv(Σ A B) ⦄ -- TODO: Not an arbitrary one
where
prop-sigma : MereProposition(Σ A B) → ? -- TODO: Maybe MereProposition(B) → MereProposition(A)
prop-sigma (intro uniqueness₁) = {!!}
-}
{- TODO: Maybe generalize and move the stuff from Data.Proofs to here
-- Any binary relation on Unit is an equivalence given that it is reflexive.
module _ ⦃ equiv-u : Equiv(U) ⦄ ⦃ is-unit : IsUnit(U) ⦄ {_▫_ : U → U → Stmt} where
unit-equiv : Equiv(U)
Equiv._≡_ unit-equiv = (_▫_)
Reflexivity.proof (Equivalence.reflexivity (Equiv.equivalence unit-equiv)) = {!!}
Symmetry.proof (Equivalence.symmetry (Equiv.equivalence unit-equiv)) _ = {!!}
Transitivity.proof (Equivalence.transitivity (Equiv.equivalence unit-equiv)) _ _ = {!!}
-}
|
{
"alphanum_fraction": 0.6352379532,
"avg_line_length": 41.6335403727,
"ext": "agda",
"hexsha": "b29dda83751a64f1f7a509dde72cc66316b46c4e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Type/Properties/Singleton/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Type/Properties/Singleton/Proofs.agda",
"max_line_length": 168,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Type/Properties/Singleton/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 2742,
"size": 6703
}
|
-- Shadowing is allowed.
module Shadow where
module M (A : Set) where
id : Set -> Set
id A = A
|
{
"alphanum_fraction": 0.6116504854,
"avg_line_length": 10.3,
"ext": "agda",
"hexsha": "9cb7f3ad1ff8806d26238dbbb5fe8fbd960de374",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Shadow.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Shadow.agda",
"max_line_length": 24,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Shadow.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 33,
"size": 103
}
|
{-# OPTIONS --without-K #-}
open import Base
open import Homotopy.Connected
{-
Wedge is a pushout.
-}
module Homotopy.Wedge
where
import Homotopy.Pushout as P
record wedge-diag i : Set (suc i) where
constructor diag_,_,_,_
field
A : Set i
B : Set i
a : A
b : B
f : unit {i} → A
f _ = a
g : unit {i} → B
g _ = b
wedge-diag-to-pushout-diag : ∀ {i} → wedge-diag i → P.pushout-diag i
wedge-diag-to-pushout-diag {i} (diag A , B , a , b) = P.diag A , B , unit {i} , (λ _ → a) , (λ _ → b)
wedge : ∀ {i} → wedge-diag i → Set i
wedge d = P.pushout (wedge-diag-to-pushout-diag d)
left : ∀ {i} {d : wedge-diag i} → wedge-diag.A d → wedge d
left = P.left
right : ∀ {i} {d : wedge-diag i} → wedge-diag.B d → wedge d
right = P.right
glue : ∀ {i} {d : wedge-diag i} → left (wedge-diag.a d) ≡ right (wedge-diag.b d)
glue = P.glue tt
wedge-rec : ∀ {i} {d : wedge-diag i}
→ let open wedge-diag d in
∀ {j} (P : wedge d → Set j)
(left* : ∀ a → P (left a))
(right* : ∀ b → P (right b))
(glue* : transport P glue (left* a) ≡ right* b)
→ (∀ x → P x)
wedge-rec P left* right* glue* = P.pushout-rec P left* right* (λ _ → glue*)
wedge-rec-nondep : ∀ {i} {d : wedge-diag i}
→ let open wedge-diag d in
∀ {j} (P : Set j)
(left* : ∀ a → P)
(right* : ∀ b → P)
(glue* : left* a ≡ right* b)
→ (wedge d → P)
wedge-rec-nondep P left* right* glue* = P.pushout-rec-nondep P left* right* (λ _ → glue*)
{-
module _ (f : X → Y) where
nA (A-is-conn : is-connected n A)
nB (B-is-conn : is-connected n B)
(P : A → B → Set k)
⦃ P-is-trunc : ∀ a b → is-connected (n +2+ m) (P a b) ⦄
extension :
-}
|
{
"alphanum_fraction": 0.5285547786,
"avg_line_length": 24.8695652174,
"ext": "agda",
"hexsha": "3b078cfd9fc19be00bed48c6091768c6ddc7ca0c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/Homotopy/Wedge.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/Homotopy/Wedge.agda",
"max_line_length": 103,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda",
"max_stars_repo_path": "old/Homotopy/Wedge.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z",
"num_tokens": 668,
"size": 1716
}
|
-- Patterns are parsed as expressions. That means that expressions can contain
-- pattern parts. That's of course not ok.
module NotAnExpression where
X = x @ y -- as pattern as an expression
|
{
"alphanum_fraction": 0.7525773196,
"avg_line_length": 27.7142857143,
"ext": "agda",
"hexsha": "5ededc25716c5abc6ba6aa0c68bc36b885254ab9",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/NotAnExpression.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/NotAnExpression.agda",
"max_line_length": 78,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/NotAnExpression.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 43,
"size": 194
}
|
module Data.Bin.BitListBijection where
--
-- This module gives a bijection between the two setoids:
-- - the set (ℕ)
-- - The set (List Bit), interpreted as least-significant-bit first,
-- with the equivalence relation that ignores the zeroes at the end of the list
open import Data.List
open import Data.List.Properties
import Data.Digit
open Data.Digit using (Bit)
open import Data.Fin using (zero; suc; Fin; inject₁) renaming (toℕ to finToℕ)
open import Data.Nat using (ℕ; zero;suc)
open import Data.Nat using (_+_)
open import Data.Nat.Properties using (+-suc; +-identityʳ) renaming (suc-injective to suc-inj)
open import Data.Fin.Properties using () renaming (suc-injective to fin-suc-inj)
infix 3 _≈_
0×_ : ℕ → List Bit
0× n = replicate n zero
open import Relation.Binary using (IsEquivalence; Setoid; Reflexive; Symmetric; Transitive)
import Relation.Binary.PropositionalEquality
module PropEq = Relation.Binary.PropositionalEquality
open import Algebra
import Level
open import Algebra.FunctionProperties
open import Data.Product renaming (map to pmap)
₀ = Level.zero
open PropEq using (_≡_)
[]-identityʳ : ∀ l → l ++ [] ≡ l
[]-identityʳ = proj₂ (Monoid.identity (Data.List.Properties.++-monoid Bit))
patternMatch : ∀ {A : Set} (P : A → Set) {x} → P x → ∃ λ z → P z × x ≡ z
patternMatch _ {x = x} px = (x , (px , PropEq.refl))
generalizing_case_of_ : ∀ {a b} {A : Set a} {B : Set b} → (P : A → Set) → ∀ {x} → P x → (∀ {z} → P z → x ≡ z → B) → B
generalizing P case p of f = f p PropEq.refl
open import Data.Sum
open import Function
open import Data.Digit
data All-zero : List Bit → Set where
[] : All-zero []
cons : ∀ {t} → All-zero t → All-zero (0b ∷ t)
-- ᵢ for "Inductive"
data _≈_ : List Bit → List Bit → Set where
both-zero : ∀ {a b} (a-zero : All-zero a) (b-zero : All-zero b) → a ≈ b
heads-match : ∀ h at bt → at ≈ bt → (h ∷ at) ≈ (h ∷ bt)
All-zero-respects-equivalence : ∀ {x y} → x ≈ y → All-zero x → All-zero y
All-zero-respects-equivalence (both-zero a-zero b-zero) z = b-zero
All-zero-respects-equivalence (heads-match .zero at bt eq) (cons z) = cons (All-zero-respects-equivalence eq z)
≈-sym : ∀ {a b} → a ≈ b → b ≈ a
≈-sym (both-zero a-zero b-zero) = both-zero b-zero a-zero
≈-sym (heads-match h at bt l) = heads-match h bt at (≈-sym l)
≈-trans : ∀ {a b c} → a ≈ b → b ≈ c → a ≈ c
≈-trans (both-zero a-zero b-zero) b≈c = both-zero a-zero (All-zero-respects-equivalence b≈c b-zero)
≈-trans a≈b (both-zero b-zero c-zero) = both-zero (All-zero-respects-equivalence (≈-sym a≈b) b-zero) c-zero
≈-trans (heads-match h at bt r1) (heads-match .h .bt bt₁ r2) = heads-match h _ _ (≈-trans r1 r2)
0×-is-all-zero : ∀ {n} → All-zero (0× n)
0×-is-all-zero {ℕ.zero} = []
0×-is-all-zero {ℕ.suc n} = cons 0×-is-all-zero
az-replicate : ∀ {a} → All-zero a → (0× length a) ≡ a
az-replicate [] = PropEq.refl
az-replicate (cons x) = PropEq.cong (λ z → 0b ∷ z) (az-replicate x)
≈-refl : Reflexive _≈_
≈-refl {[]} = both-zero [] []
≈-refl {x ∷ x₁} = heads-match x x₁ x₁ ≈-refl
≡→≈ : ∀ {x y} → x ≡ y → x ≈ y
≡→≈ {x} .{x} PropEq.refl = ≈-refl {x}
isEquivalence : IsEquivalence _≈_
isEquivalence = record
{ refl = ≈-refl
; trans = ≈-trans
; sym = ≈-sym
}
setoid : Setoid ₀ ₀
setoid = record {isEquivalence = isEquivalence}
toℕ : List Bit → ℕ
toℕ = fromDigits
open import Function using (_∘_; _⟨_⟩_)
fromℕ : ℕ → List Bit
fromℕ = proj₁ ∘ toDigits 2
ℕ-setoid = PropEq.setoid ℕ
open import Function using (id)
open import Function.Bijection using (Bijection; Bijective)
open import Function.Equality using (_⟶_)
zeroIsZero : ∀ {l} → All-zero l → toℕ l ≡ 0
zeroIsZero [] = PropEq.refl
zeroIsZero (cons q) rewrite zeroIsZero q = PropEq.refl
toℕ-cong : ∀ {x y} → x ≈ y → toℕ x ≡ toℕ y
toℕ-cong (both-zero a-zero b-zero) =
PropEq.trans (zeroIsZero a-zero) (PropEq.sym (zeroIsZero b-zero))
toℕ-cong (heads-match h at bt q) rewrite toℕ-cong q = PropEq.refl
fromℕ⟶ : ℕ-setoid ⟶ setoid
fromℕ⟶ = record
{ _⟨$⟩_ = fromℕ
; cong = λ eq → ≡→≈ (PropEq.cong fromℕ eq)
}
toℕ⟶ : setoid ⟶ ℕ-setoid
toℕ⟶ = record
{ _⟨$⟩_ = toℕ
; cong = toℕ-cong
}
fromℕ-inj : ∀ {x y} → fromℕ x ≈ fromℕ y → x ≡ y
fromℕ-inj {x} {y} eq =
PropEq.trans
(PropEq.sym (proj₂ (toDigits 2 x)))
(PropEq.trans
(toℕ-cong eq)
(proj₂ (toDigits 2 y)))
open import Data.Nat.DivMod
bitToℕ : Bit → ℕ
bitToℕ = Data.Fin.toℕ
open Data.Nat using (_*_)
+-inj₁ : ∀ c {a b} → c + a ≡ c + b → a ≡ b
+-inj₁ zero eq = eq
+-inj₁ (suc c) {a} {b} eq = +-inj₁ c {a} {b} (suc-inj eq)
module DigitInj where
open import Data.Nat.Properties using (isCommutativeSemiring)
open import Algebra.Structures
open IsCommutativeSemiring isCommutativeSemiring hiding (zero)
open import Data.Empty using (⊥; ⊥-elim)
finToℕ-inj : ∀ {base} {x y : Fin base} → finToℕ x ≡ finToℕ y → x ≡ y
finToℕ-inj {.(suc _)} {zero} {zero} eq = PropEq.refl
finToℕ-inj {.(suc _)} {zero} {suc y} ()
finToℕ-inj {.(suc _)} {suc x} {zero} ()
finToℕ-inj {.(suc _)} {suc x} {suc y} eq = PropEq.cong suc (finToℕ-inj (suc-inj eq))
fin-not-enough : ∀ {base} → (x : Fin base) → ∀ whatever → finToℕ x ≡ base + whatever → ⊥
fin-not-enough {.(suc _)} zero _ ()
fin-not-enough {.(suc _)} (suc x) _ eq = fin-not-enough _ _ (Data.Nat.Properties.suc-injective eq)
digit-inj2 : ∀ {base : ℕ} (h₁ h₂ : Fin base) (t₁ t₂ : ℕ)
→ t₁ * base + finToℕ h₁
≡ t₂ * base + finToℕ h₂
→ h₁ ≡ h₂ × t₁ ≡ t₂
digit-inj2 x y zero zero eq = finToℕ-inj eq , PropEq.refl
digit-inj2 {base} x y zero (suc ys) eq =
⊥-elim (fin-not-enough x (ys * base + finToℕ y) (PropEq.trans eq (+-assoc _ (ys * base) (finToℕ y))))
digit-inj2 {base} x y (suc xs) zero eq =
⊥-elim (fin-not-enough y (xs * base + finToℕ x) (PropEq.trans (PropEq.sym eq) (+-assoc _ (xs * base) (finToℕ x))))
digit-inj2 {base} x y (suc xs) (suc ys) eq =
case digit-inj2 x y xs ys (+-inj₁ base eq') of
λ { (eq1 , eq2) → eq1 , PropEq.cong suc eq2 } where
eq' =
PropEq.trans
(PropEq.sym (+-assoc base (xs * base) _))
(PropEq.trans eq
(+-assoc base (ys * base) _))
digit-inj : ∀ {base : ℕ} (h₁ h₂ : Fin base) (t₁ t₂ : ℕ)
→ finToℕ h₁ + t₁ * base
≡ finToℕ h₂ + t₂ * base
→ h₁ ≡ h₂ × t₁ ≡ t₂
digit-inj x y xs ys eq =
digit-inj2 _ _ _ _ (PropEq.trans (+-comm (xs * _) (finToℕ x)) (PropEq.trans eq (+-comm _ (ys * _))))
digit-inj = DigitInj.digit-inj
toℕ-inj-zero : ∀ xs → toℕ xs ≡ 0 → All-zero xs
toℕ-inj-zero [] eq = []
toℕ-inj-zero (x ∷ xs) eq =
case digit-inj x zero (toℕ xs) 0 eq of
λ { (PropEq.refl , snd) → cons (toℕ-inj-zero xs snd) }
toℕ-inj2 : ∀ {x y} → toℕ x ≡ toℕ y → x ≈ y
toℕ-inj2 {[]} {ys} eq = both-zero [] (toℕ-inj-zero ys (PropEq.sym eq))
toℕ-inj2 {xs} {[]} eq = both-zero (toℕ-inj-zero xs eq) []
toℕ-inj2 {x ∷ xs} {y ∷ ys} eq =
case digit-inj x y (fromDigits xs) (fromDigits ys) eq of
λ { (PropEq.refl , eq) → heads-match x xs ys (toℕ-inj2 eq) }
bijective : Bijective toℕ⟶
bijective = record
{ injective = toℕ-inj2
; surjective = record
{ from = fromℕ⟶
; right-inverse-of = proj₂ ∘ toDigits 2
}
}
bijection-to-ℕ : Bijection setoid ℕ-setoid
bijection-to-ℕ = record { bijective = bijective }
|
{
"alphanum_fraction": 0.5898282695,
"avg_line_length": 34.2533936652,
"ext": "agda",
"hexsha": "91ecdb44677fa5e9a060a01915b187ddabaa836b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "Rotsor/BinDivMod",
"max_forks_repo_path": "Data/Bin/BitListBijection.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "Rotsor/BinDivMod",
"max_issues_repo_path": "Data/Bin/BitListBijection.agda",
"max_line_length": 120,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "Rotsor/BinDivMod",
"max_stars_repo_path": "Data/Bin/BitListBijection.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-18T13:58:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-18T13:58:14.000Z",
"num_tokens": 2925,
"size": 7570
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- The Conat type and some operations
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe --sized-types #-}
module Codata.Conat where
open import Size
open import Codata.Thunk
open import Data.Nat.Base using (ℕ ; zero ; suc)
open import Relation.Nullary
------------------------------------------------------------------------
-- Definition and first values
data Conat (i : Size) : Set where
zero : Conat i
suc : Thunk Conat i → Conat i
infinity : ∀ {i} → Conat i
infinity = suc λ where .force → infinity
fromℕ : ℕ → Conat ∞
fromℕ zero = zero
fromℕ (suc n) = suc λ where .force → fromℕ n
------------------------------------------------------------------------
-- Arithmetic operations
pred : ∀ {i} {j : Size< i} → Conat i → Conat j
pred zero = zero
pred (suc n) = n .force
infixl 6 _∸_ _+_
infixl 7 _*_
_∸_ : Conat ∞ → ℕ → Conat ∞
m ∸ zero = m
m ∸ suc n = pred m ∸ n
_ℕ+_ : ℕ → ∀ {i} → Conat i → Conat i
zero ℕ+ n = n
suc m ℕ+ n = suc λ where .force → m ℕ+ n
_+ℕ_ : ∀ {i} → Conat i → ℕ → Conat i
zero +ℕ n = fromℕ n
suc m +ℕ n = suc λ where .force → (m .force) +ℕ n
_+_ : ∀ {i} → Conat i → Conat i → Conat i
zero + n = n
suc m + n = suc λ where .force → (m .force) + n
_*_ : ∀ {i} → Conat i → Conat i → Conat i
m * zero = zero
zero * n = zero
suc m * suc n = suc λ where .force → n .force + (m .force * suc n)
-- Max and Min
infixl 6 _⊔_
infixl 7 _⊓_
_⊔_ : ∀ {i} → Conat i → Conat i → Conat i
zero ⊔ n = n
m ⊔ zero = m
suc m ⊔ suc n = suc λ where .force → m .force ⊔ n .force
_⊓_ : ∀ {i} → Conat i → Conat i → Conat i
zero ⊓ n = zero
m ⊓ zero = zero
suc m ⊓ suc n = suc λ where .force → m .force ⊔ n .force
------------------------------------------------------------------------
-- Finiteness
data Finite : Conat ∞ → Set where
zero : Finite zero
suc : ∀ {n} → Finite (n .force) → Finite (suc n)
toℕ : ∀ {n} → Finite n → ℕ
toℕ zero = zero
toℕ (suc n) = suc (toℕ n)
¬Finite∞ : ¬ (Finite infinity)
¬Finite∞ (suc p) = ¬Finite∞ p
------------------------------------------------------------------------
-- Order wrt to Nat
data _ℕ≤_ : ℕ → Conat ∞ → Set where
zℕ≤n : ∀ {n} → zero ℕ≤ n
sℕ≤s : ∀ {k n} → k ℕ≤ n .force → suc k ℕ≤ suc n
_ℕ<_ : ℕ → Conat ∞ → Set
k ℕ< n = suc k ℕ≤ n
_ℕ≤infinity : ∀ k → k ℕ≤ infinity
zero ℕ≤infinity = zℕ≤n
suc k ℕ≤infinity = sℕ≤s (k ℕ≤infinity)
|
{
"alphanum_fraction": 0.4725318471,
"avg_line_length": 24.1538461538,
"ext": "agda",
"hexsha": "a420f938126c00616a000d9368cb1495e879b05e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Codata/Conat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Codata/Conat.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Codata/Conat.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 901,
"size": 2512
}
|
{-# OPTIONS --rewriting --prop --confluence-check --cumulativity #-}
open import Agda.Primitive
open import Agda.Builtin.Bool
open import Agda.Builtin.Nat
open import Agda.Builtin.List
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Rewrite
open import Agda.Builtin.Sigma
open import Agda.Builtin.Unit
open import Data.Vec.Base
open import Data.Bool
open import Data.Sum
open import Data.Product using (_×_)
open import ett-rr
{- Axiomatisation of the Cast calculus -}
{- diagonal cases -}
postulate cast : (A : Set ℓ) (B : Set ℓ₁) → A → B
postulate cast-set : (A : Set ℓ) → cast (Set ℓ) (Set ℓ) A ≡ A
{-# REWRITE cast-set #-}
postulate cast-prop : (A : Prop ℓ) → cast (Prop ℓ) (Prop ℓ) A ≡ A
{-# REWRITE cast-prop #-}
postulate cast-Pi : (A : Set ℓ) (B : A → Set ℓ₁) (A' : Set ℓ₂) (B' : A' → Set ℓ₃) (f : (a : A) → B a) →
cast ((a : A) → B a) ((a' : A') → B' a') f ≡
λ (a' : A') → cast _ _ (f (cast A' A a'))
{-# REWRITE cast-Pi #-}
postulate cast-Sigma : (A : Set ℓ) (B : A → Set ℓ₁) (A' : Set ℓ₂) (B' : A' → Set ℓ₃) (p : Σ {a = ℓ} {b = ℓ₁} A B) →
cast (Σ A B) (Σ A' B') p ≡ (cast {ℓ = ℓ} {ℓ₁ = ℓ₂} A A' (p .fst) , cast (B (p .fst)) (B' (cast A A' (p .fst))) (p .snd))
{-# REWRITE cast-Sigma #-}
postulate cast-Sum-inj₁ : (A A' : Set ℓ) (B B' : Set ℓ₁) (a : A) →
cast (A ⊎ B) (A' ⊎ B') (inj₁ a) ≡ inj₁ (cast A A' a)
postulate cast-Sum-inj₂ : (A A' : Set ℓ) (B B' : Set ℓ₁) (b : B) →
cast (A ⊎ B) (A' ⊎ B') (inj₂ b) ≡ inj₂ (cast B B' b)
postulate cast-Sum-raise : (A A' : Set ℓ) (B B' : Set ℓ₁) (a : A) →
cast (A ⊎ B) (A' ⊎ B') (raise _) ≡ raise _
postulate cast-Sum-unk : (A A' : Set ℓ) (B B' : Set ℓ₁) (a : A) →
cast (A ⊎ B) (A' ⊎ B') (unk _) ≡ unk _
{-# REWRITE cast-Sum-inj₁ #-}
{-# REWRITE cast-Sum-inj₂ cast-Sum-raise cast-Sum-unk #-}
postulate cast-List-nil : (A A' : Set ℓ) →
cast (List A) (List A') [] ≡ []
postulate cast-List-cons : (A A' : Set ℓ) (a : A) (l : List {a = ℓ} A) →
cast (List A) (List {a = ℓ} A') (a ∷ l) ≡
cast A A' a ∷ cast (List A) (List A') l
postulate cast-List-raise : (A A' : Set ℓ) →
cast (List A) (List A') (raise (List _)) ≡ raise (List _)
postulate cast-List-unk : (A A' : Set ℓ) →
cast (List A) (List A') (unk (List _)) ≡ unk (List _)
{-# REWRITE cast-List-nil #-}
{-# REWRITE cast-List-cons cast-List-raise cast-List-unk #-}
postulate cast-Nat-zero : cast Nat Nat 0 ≡ 0
postulate cast-Nat-suc : (n : Nat ) → cast Nat Nat (suc n) ≡ suc (cast _ _ n)
postulate cast-Nat-raise : cast Nat Nat (raise Nat) ≡ raise Nat
postulate cast-Nat-unk : cast Nat Nat (unk Nat) ≡ unk Nat
{-# REWRITE cast-Nat-zero cast-Nat-suc cast-Nat-raise cast-Nat-unk #-}
postulate cast-Bool-true : cast Bool Bool true ≡ true
postulate cast-Bool-false : cast Bool Bool false ≡ false
postulate cast-Bool-raise : cast Bool Bool (raise Bool) ≡ raise Bool
postulate cast-Bool-unk : cast Bool Bool (unk Bool) ≡ unk Bool
{-# REWRITE cast-Bool-true cast-Bool-false cast-Bool-raise cast-Bool-unk #-}
postulate cast-Unit : cast ⊤ ⊤ tt ≡ tt
{- Beware that raise ⊤ ≡ tt ≡ unk ⊤ because of definitional singleton -}
postulate cast-Unit-raise : cast ⊤ ⊤ (raise ⊤) ≡ raise ⊤
postulate cast-Unit-unk : cast ⊤ ⊤ (unk ⊤) ≡ unk ⊤
{-# REWRITE cast-Unit cast-Unit-raise cast-Unit-unk #-}
{- non-diagonal cases -}
postulate cast-Set-bad : (A : Set (lsuc ℓ)) → cast (Set (lsuc ℓ)) (Set ℓ) A ≡ raise _
{-# REWRITE cast-Set-bad #-}
postulate cast-raise : ∀ ℓ ℓ₁ → (x : raise {ℓ = lsuc ℓ} (Set ℓ)) (A : Set ℓ₁) → cast (raise {ℓ = lsuc ℓ} (Set ℓ)) A x ≡ raise _
{-# REWRITE cast-raise #-}
postulate cast-Pi-Sigma : (A A' : Set ℓ) (B : A → Set ℓ₁) (B' : A' → Set ℓ₁) (f : (a : A) → B a) →
cast ((a : A) → B a) (Σ {a = ℓ} {b = ℓ₁} A' B') f ≡ raise (Σ A' B')
{-# REWRITE cast-Pi-Sigma #-}
postulate cast-Pi-Nat : (A : Set ℓ) (B : A → Set ℓ₁) (f : (a : A) → B a) →
cast ((a : A) → B a) Nat f ≡ raise Nat
{-# REWRITE cast-Pi-Nat #-}
-- missing many conflict rules
{- Rules specific to Unk -}
{- unk-cast ℓ A a is just a copy of cast A (Unk ℓ) a
but we need to split it off for rewriting.
Making it private so that the only closed values we can create in Unk ℓ come from cast -}
private
postulate unk-cast : ∀ (A : Set ℓ) → A → Unk (lsuc ℓ)
postulate cast-Unk : (A : Set ℓ) (B : Set ℓ₁) (f : A) →
cast (Unk (lsuc ℓ)) B (unk-cast A f) ≡ cast A B f
{-# REWRITE cast-Unk #-}
postulate cast-Unk-raise : ∀ ℓ → (B : Set ℓ₁) →
cast (Unk ℓ) B (raise _) ≡ raise _
{-# REWRITE cast-Unk-raise #-}
postulate cast-Pi-Unk : (A : Set ℓ) (B : A → Set ℓ₁) (f : (a : A) → B a) →
cast ((a : A) → B a) (Unk (lsuc (ℓ ⊔ ℓ₁))) f ≡ unk-cast (Unk ℓ → Unk ℓ₁) (cast ((a : A) → B a) (Unk ℓ → Unk ℓ₁) f)
{-# REWRITE cast-Pi-Unk #-}
postulate cast-Pi-Unk-bad : (f : Unk ℓ → Unk ℓ₁) →
cast (Unk ℓ → Unk ℓ₁) (Unk (ℓ ⊔ ℓ₁)) f ≡ raise _
{-# REWRITE cast-Pi-Unk-bad #-}
postulate cast-Sigma-Unk : (A : Set ℓ) (B : A → Set ℓ₁) (x : Σ {a = ℓ} {b = ℓ₁} A B) →
cast (Σ A B) (Unk (lsuc (ℓ ⊔ ℓ₁))) x ≡ unk-cast (_×_ {a = ℓ} {b = ℓ₁} (Unk ℓ) (Unk ℓ₁)) (cast (Σ A B) (Unk ℓ × Unk ℓ₁) x)
{-# REWRITE cast-Sigma-Unk #-}
delta : Unk ℓ → Unk ℓ
delta {ℓ} x = cast (Unk ℓ) (Unk ℓ → Unk ℓ) x x
omega : Unk ℓ
omega {ℓ} = delta {ℓ = ℓ} (cast (Unk ℓ → Unk ℓ) (Unk ℓ) (delta {ℓ = ℓ}))
foo : Unk (lsuc lzero)
foo = cast (Nat → Nat → Nat) (Unk _) _+_
postulate cast-Nat-Unk : (n : Nat) → cast Nat (Unk (lsuc lzero)) n ≡ unk-cast Nat n
record i (A : Set ℓ) : Set (ℓ ⊔ ℓ₁) where
constructor inj
field
uninj : A
open i public
postulate cast-Nat-Unk' : (n : Nat) → cast (i {ℓ = ℓ} {ℓ₁ = ℓ₁} Nat) (Unk (lsuc ℓ)) (inj n) ≡ unk-cast Nat n
postulate cast-Nat-iNat : (n : Nat) → cast Nat (i {ℓ = ℓ} {ℓ₁ = ℓ₁} Nat) n ≡ inj n
{-# REWRITE cast-Nat-Unk cast-Nat-Unk' cast-Nat-iNat #-}
retr : (A : Set ℓ) (a : A) → A
retr {ℓ} A a = cast (Unk (lsuc ℓ)) A (cast A (Unk (lsuc ℓ)) a)
retr-0 : retr {lzero} Nat 0 ≡ 0
retr-0 = refl
retr-arr : (A : Set ℓ) (a : A) → A
retr-arr {ℓ} A = retr (A → A) (λ a → a)
zero' : Nat
zero' = uninj (retr-arr {lsuc lzero} (i {ℓ₁ = lsuc lzero} Nat) (inj 0))
|
{
"alphanum_fraction": 0.5378177309,
"avg_line_length": 33.4300518135,
"ext": "agda",
"hexsha": "43d3323c1840b8a8f2c247c4dd5998ba48b3e904",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-01-06T13:36:28.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-04-23T17:34:44.000Z",
"max_forks_repo_head_hexsha": "c93256a11d59038998f09a01c5b42f6ffe42d5c4",
"max_forks_repo_licenses": [
"WTFPL"
],
"max_forks_repo_name": "CoqHott/exceptional-tt",
"max_forks_repo_path": "agda-rr/cast-cic.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "c93256a11d59038998f09a01c5b42f6ffe42d5c4",
"max_issues_repo_issues_event_max_datetime": "2019-02-28T18:28:53.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-02-28T16:35:41.000Z",
"max_issues_repo_licenses": [
"WTFPL"
],
"max_issues_repo_name": "CoqHott/exceptional-tt",
"max_issues_repo_path": "agda-rr/cast-cic.agda",
"max_line_length": 145,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "c93256a11d59038998f09a01c5b42f6ffe42d5c4",
"max_stars_repo_licenses": [
"WTFPL"
],
"max_stars_repo_name": "CoqHott/exceptional-tt",
"max_stars_repo_path": "agda-rr/cast-cic.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-23T12:45:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-10-13T01:31:56.000Z",
"num_tokens": 2595,
"size": 6452
}
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Concrete.Records
open import LibraBFT.Concrete.System
open import LibraBFT.Concrete.System.Parameters
open import LibraBFT.Concrete.Obligations.PreferredRound
import LibraBFT.Concrete.Properties.Common as Common
import LibraBFT.Concrete.Properties.PreferredRound as PR
open import LibraBFT.Impl.Consensus.Network as Network
open import LibraBFT.Impl.Consensus.Network.Properties as NetworkProps
open import LibraBFT.Impl.Consensus.RoundManager
import LibraBFT.Impl.Handle as Handle
open import LibraBFT.Impl.Handle.Properties
open import LibraBFT.Impl.Handle.InitProperties
open initHandlerSpec
open import LibraBFT.Impl.IO.OBM.InputOutputHandlers
open import LibraBFT.Impl.IO.OBM.Properties.InputOutputHandlers
open import LibraBFT.Impl.Properties.Common
open import LibraBFT.ImplShared.Consensus.Types
open import LibraBFT.ImplShared.Consensus.Types.EpochDep
open import LibraBFT.ImplShared.Interface.Output
open import LibraBFT.ImplShared.Util.Crypto
open import LibraBFT.ImplShared.Util.Dijkstra.All
open ReachableSystemStateProps
open import LibraBFT.Impl.Properties.Util
open import Optics.All
open import Util.Lemmas
open import Util.PKCS
open import Util.Prelude
open Invariants
open RoundManagerTransProps
open import LibraBFT.Abstract.Types.EpochConfig UID NodeId
open ParamsWithInitAndHandlers Handle.InitHandler.initAndHandlers
open import LibraBFT.ImplShared.Util.HashCollisions Handle.InitHandler.initAndHandlers
open import Yasm.Yasm ℓ-RoundManager ℓ-VSFP ConcSysParms
Handle.InitHandler.initAndHandlers
PeerCanSignForPK PeerCanSignForPK-stable
open Structural impl-sps-avp
-- This module proves the two "PreferredRound" proof obligations for our handler.
module LibraBFT.Impl.Properties.PreferredRound (𝓔 : EpochConfig) where
------------------------------------------------------------------------------
preferredRound₁ : PR.ImplObligation₁ Handle.InitHandler.initAndHandlers 𝓔
preferredRound₁ {pid} {pid'} {pk = pk} {pre} preach sps@(step-init rm×acts uni) {v = v} {m = m} {v' = v'} {m' = m'}
hpk v'⊂m' m'∈acts sig' ¬bootstrap' pcs4' v⊂m m∈pool sig ¬bootstrap eid≡ rnd< v≈vabs v'≈vabs'
c3
with initHandlerSpec.contract pid fakeBootstrapInfo rm×acts
...| init-contract
with initHandlerSpec.ContractOk.isInitPM init-contract m'∈acts
...| (_ , refl , noSigs)
with v'⊂m'
...| vote∈qc vs∈qc _ qc∈pm = ⊥-elim (noSigs vs∈qc qc∈pm)
preferredRound₁ {pid} {pid'} {pk = pk} {pre} preach sps@(step-msg {sndr , P vm} vm'∈pool ini) {v = v} {m = m} {v' = v'} {m' = m'}
hpk v'⊂m' m'∈acts sig' ¬bootstrap' pcs4' v⊂m m∈pool sig ¬bootstrap eid≡ rnd< v≈vabs v'≈vabs'
c3 = obm-dangerous-magic' "Extend and use handleProposalSpec.contract"
preferredRound₁ {pid} {pre = pre} preach sps@(step-msg {_ , V vm} _ _)
_ v'⊂m' m'∈acts sig' ¬bootstrap' ¬msb _ _ _ _ _ _ _ _ _
with v'⊂m'
...| vote∈qc vs∈qc v≈rbld qc∈m' rewrite cong _vSignature v≈rbld =
⊥-elim ∘′ ¬msb $ qcVoteSigsSentB4-handle pid preach sps m'∈acts qc∈m' sig' vs∈qc v≈rbld ¬bootstrap'
...| vote∈vm = ⊥-elim (sendVote∉actions{outs = hvOut}{st = hvPre} (sym noVotes) m'∈acts)
where
hvPre = peerStates pre pid
hvOut = LBFT-outs (handleVote 0 vm) hvPre
open handleVoteSpec.Contract (handleVoteSpec.contract! 0 vm (msgPool pre) hvPre)
------------------------------------------------------------------------------
-- This proof is essentially the same as the votesOnce₂: no handler sends two different Votes
-- TODO-2: refactor for DRY?
preferredRound₂ : PR.ImplObligation₂ Handle.InitHandler.initAndHandlers 𝓔
preferredRound₂ {pid} _ (step-init rm×acts uni) _ v⊂m m∈acts _ _ _ _ _ _ _ _ _ _ _ _
with initHandlerSpec.contract pid fakeBootstrapInfo rm×acts
...| init-contract
with initHandlerSpec.ContractOk.isInitPM init-contract m∈acts
...| (_ , refl , noSigs)
with v⊂m
...| vote∈qc vs∈qc _ qc∈pm = ⊥-elim (noSigs vs∈qc qc∈pm)
preferredRound₂ {pid}{pk = pk}{pre} rss (step-msg{sndr , m“} m“∈pool ini) {v = v}{v' = v'} hpk v⊂m m∈acts sig ¬bootstrap ¬msb4 pcsfpk v'⊂m' m'∈acts sig' ¬bootstrap' ¬msb4' _ _ round<
with v⊂m
...| vote∈qc vs∈qc v≈rbld qc∈m rewrite cong _vSignature v≈rbld =
⊥-elim ∘′ ¬msb4 $ qcVoteSigsSentB4-handle pid rss (step-msg m“∈pool ini) m∈acts qc∈m sig vs∈qc v≈rbld ¬bootstrap
...| vote∈vm
with v'⊂m'
...| vote∈qc vs∈qc' v≈rbld' qc∈m' rewrite cong _vSignature v≈rbld' =
⊥-elim ∘′ ¬msb4' $ qcVoteSigsSentB4-handle pid rss (step-msg m“∈pool ini) m'∈acts qc∈m' sig' vs∈qc' v≈rbld' ¬bootstrap'
...| vote∈vm
with m“
...| P pm = ⊥-elim (<⇒≢ round< (cong (_^∙ vRound) v≡v'))
where
hpPool = msgPool pre
hpPre = peerStates pre pid
hpOut = LBFT-outs (handleProposal 0 pm) hpPre
open handleProposalSpec.Contract (handleProposalSpec.contract! 0 pm hpPool hpPre)
v≡v' : v ≡ v'
v≡v'
with BlockId-correct? (pm ^∙ pmProposal)
...| no ¬validProposal = ⊥-elim (sendVote∉actions {outs = hpOut} {st = hpPre} (sym (proj₂ $ invalidProposal ¬validProposal)) m∈acts)
...| yes refl
with voteAttemptCorrect refl (nohc rss m“∈pool pid ini (invariantsCorrect pid pre ini rss) refl refl )
...| Voting.mkVoteAttemptCorrectWithEpochReq (Left (_ , Voting.mkVoteUnsentCorrect noVoteMsgOuts _)) _ =
⊥-elim (sendVote∉actions{outs = hpOut}{st = hpPre} (sym noVoteMsgOuts) m∈acts)
...| Voting.mkVoteAttemptCorrectWithEpochReq (Right (Voting.mkVoteSentCorrect vm pid voteMsgOuts _)) _ = begin
v ≡⟨ cong (_^∙ vmVote) (sendVote∈actions{outs = hpOut}{st = hpPre} (sym voteMsgOuts) m∈acts) ⟩
vm ^∙ vmVote ≡⟨ (sym $ cong (_^∙ vmVote) (sendVote∈actions{outs = hpOut}{st = hpPre} (sym voteMsgOuts) m'∈acts)) ⟩
v' ∎
where
open ≡-Reasoning
... | V vm = ⊥-elim (sendVote∉actions{outs = hvOut}{st = hvPre} (sym noVotes) m∈acts)
where
hvPre = peerStates pre pid
hvOut = LBFT-outs (handle pid (V vm) 0) hvPre
open handleVoteSpec.Contract (handleVoteSpec.contract! 0 vm (msgPool pre) hvPre)
|
{
"alphanum_fraction": 0.6866635176,
"avg_line_length": 48.4809160305,
"ext": "agda",
"hexsha": "4d702232f3795a3a4ac710f921768cf66180c0c9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/Properties/PreferredRound.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/Properties/PreferredRound.agda",
"max_line_length": 182,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/Properties/PreferredRound.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2114,
"size": 6351
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Functions.Embedding where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.Properties
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Path
open import Cubical.Foundations.Powerset
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Univalence using (ua; univalence)
open import Cubical.Functions.Fibration
open import Cubical.Data.Sigma
open import Cubical.Functions.Fibration
open import Cubical.Functions.FunExtEquiv
open import Cubical.Relation.Nullary using (Discrete; yes; no)
open import Cubical.Structures.Axioms
open import Cubical.Reflection.StrictEquiv
open import Cubical.Data.Nat using (ℕ; zero; suc)
open import Cubical.Data.Sigma
private
variable
ℓ ℓ₁ ℓ₂ : Level
A B : Type ℓ
f h : A → B
w x : A
y z : B
-- Embeddings are generalizations of injections. The usual
-- definition of injection as:
--
-- f x ≡ f y → x ≡ y
--
-- is not well-behaved with higher h-levels, while embeddings
-- are.
isEmbedding : (A → B) → Type _
isEmbedding f = ∀ w x → isEquiv {A = w ≡ x} (cong f)
isEmbeddingIsProp : isProp (isEmbedding f)
isEmbeddingIsProp {f = f} = isPropΠ2 λ _ _ → isPropIsEquiv (cong f)
-- If A and B are h-sets, then injective functions between
-- them are embeddings.
--
-- Note: It doesn't appear to be possible to omit either of
-- the `isSet` hypotheses.
injEmbedding
: {f : A → B}
→ isSet A → isSet B
→ (∀{w x} → f w ≡ f x → w ≡ x)
→ isEmbedding f
injEmbedding {f = f} iSA iSB inj w x
= isoToIsEquiv (iso (cong f) inj sect retr)
where
sect : section (cong f) inj
sect p = iSB (f w) (f x) _ p
retr : retract (cong f) inj
retr p = iSA w x _ p
-- If `f` is an embedding, we'd expect the fibers of `f` to be
-- propositions, like an injective function.
hasPropFibers : (A → B) → Type _
hasPropFibers f = ∀ y → isProp (fiber f y)
-- This can be relaxed to having all prop fibers over the image, see [hasPropFibersOfImage→isEmbedding]
hasPropFibersOfImage : (A → B) → Type _
hasPropFibersOfImage f = ∀ x → isProp (fiber f (f x))
-- some notation
_↪_ : Type ℓ₁ → Type ℓ₂ → Type (ℓ-max ℓ₁ ℓ₂)
A ↪ B = Σ[ f ∈ (A → B) ] isEmbedding f
hasPropFibersIsProp : isProp (hasPropFibers f)
hasPropFibersIsProp = isPropΠ (λ _ → isPropIsProp)
private
lemma₀ : (p : y ≡ z) → fiber f y ≡ fiber f z
lemma₀ {f = f} p = λ i → fiber f (p i)
lemma₁ : isEmbedding f → ∀ x → isContr (fiber f (f x))
lemma₁ {f = f} iE x = value , path
where
value : fiber f (f x)
value = (x , refl)
path : ∀(fi : fiber f (f x)) → value ≡ fi
path (w , p) i
= case equiv-proof (iE w x) p of λ
{ ((q , sq) , _)
→ hfill (λ j → λ { (i = i0) → (x , refl)
; (i = i1) → (w , sq j)
})
(inS (q (~ i) , λ j → f (q (~ i ∨ j))))
i1
}
isEmbedding→hasPropFibers : isEmbedding f → hasPropFibers f
isEmbedding→hasPropFibers iE y (x , p)
= subst (λ f → isProp f) (lemma₀ p) (isContr→isProp (lemma₁ iE x)) (x , p)
private
fibCong→PathP
: {f : A → B}
→ (p : f w ≡ f x)
→ (fi : fiber (cong f) p)
→ PathP (λ i → fiber f (p i)) (w , refl) (x , refl)
fibCong→PathP p (q , r) i = q i , λ j → r j i
PathP→fibCong
: {f : A → B}
→ (p : f w ≡ f x)
→ (pp : PathP (λ i → fiber f (p i)) (w , refl) (x , refl))
→ fiber (cong f) p
PathP→fibCong p pp = (λ i → fst (pp i)) , (λ j i → snd (pp i) j)
PathP≡fibCong
: {f : A → B}
→ (p : f w ≡ f x)
→ PathP (λ i → fiber f (p i)) (w , refl) (x , refl) ≡ fiber (cong f) p
PathP≡fibCong p
= isoToPath (iso (PathP→fibCong p) (fibCong→PathP p) (λ _ → refl) (λ _ → refl))
hasPropFibers→isEmbedding : hasPropFibers f → isEmbedding f
hasPropFibers→isEmbedding {f = f} iP w x .equiv-proof p
= subst isContr (PathP≡fibCong p) (isProp→isContrPathP (λ i → iP (p i)) fw fx)
where
fw : fiber f (f w)
fw = (w , refl)
fx : fiber f (f x)
fx = (x , refl)
hasPropFibersOfImage→hasPropFibers : hasPropFibersOfImage f → hasPropFibers f
hasPropFibersOfImage→hasPropFibers {f = f} fibImg y a b =
subst (λ y → isProp (fiber f y)) (snd a) (fibImg (fst a)) a b
hasPropFibersOfImage→isEmbedding : hasPropFibersOfImage f → isEmbedding f
hasPropFibersOfImage→isEmbedding = hasPropFibers→isEmbedding ∘ hasPropFibersOfImage→hasPropFibers
isEmbedding≡hasPropFibers : isEmbedding f ≡ hasPropFibers f
isEmbedding≡hasPropFibers
= isoToPath
(iso isEmbedding→hasPropFibers
hasPropFibers→isEmbedding
(λ _ → hasPropFibersIsProp _ _)
(λ _ → isEmbeddingIsProp _ _))
isEquiv→hasPropFibers : isEquiv f → hasPropFibers f
isEquiv→hasPropFibers e b = isContr→isProp (equiv-proof e b)
isEquiv→isEmbedding : isEquiv f → isEmbedding f
isEquiv→isEmbedding e = λ _ _ → congEquiv (_ , e) .snd
Equiv→Embedding : A ≃ B → A ↪ B
Equiv→Embedding (f , isEquivF) = (f , isEquiv→isEmbedding isEquivF)
iso→isEmbedding : ∀ {ℓ} {A B : Type ℓ}
→ (isom : Iso A B)
-------------------------------
→ isEmbedding (Iso.fun isom)
iso→isEmbedding {A = A} {B} isom = (isEquiv→isEmbedding (equivIsEquiv (isoToEquiv isom)))
isEmbedding→Injection :
∀ {ℓ} {A B C : Type ℓ}
→ (a : A → B)
→ (e : isEmbedding a)
----------------------
→ ∀ {f g : C → A} →
∀ x → (a (f x) ≡ a (g x)) ≡ (f x ≡ g x)
isEmbedding→Injection a e {f = f} {g} x = sym (ua (cong a , e (f x) (g x)))
-- if `f` has a retract, then `cong f` has, as well. If `B` is a set, then `cong f`
-- further has a section, making `f` an embedding.
module _ {f : A → B} (retf : hasRetract f) where
open Σ retf renaming (fst to g ; snd to ϕ)
congRetract : f w ≡ f x → w ≡ x
congRetract {w = w} {x = x} p = sym (ϕ w) ∙∙ cong g p ∙∙ ϕ x
isRetractCongRetract : retract (cong {x = w} {y = x} f) congRetract
isRetractCongRetract p = transport (PathP≡doubleCompPathˡ _ _ _ _) (λ i j → ϕ (p j) i)
hasRetract→hasRetractCong : hasRetract (cong {x = w} {y = x} f)
hasRetract→hasRetractCong = congRetract , isRetractCongRetract
retractableIntoSet→isEmbedding : isSet B → isEmbedding f
retractableIntoSet→isEmbedding setB w x =
isoToIsEquiv (iso (cong f) congRetract (λ _ → setB _ _ _ _) (hasRetract→hasRetractCong .snd))
Embedding-into-Discrete→Discrete : A ↪ B → Discrete B → Discrete A
Embedding-into-Discrete→Discrete (f , isEmbeddingF) _≟_ x y with f x ≟ f y
... | yes p = yes (invIsEq (isEmbeddingF x y) p)
... | no ¬p = no (¬p ∘ cong f)
Embedding-into-isProp→isProp : A ↪ B → isProp B → isProp A
Embedding-into-isProp→isProp (f , isEmbeddingF) isProp-B x y
= invIsEq (isEmbeddingF x y) (isProp-B (f x) (f y))
Embedding-into-isSet→isSet : A ↪ B → isSet B → isSet A
Embedding-into-isSet→isSet (f , isEmbeddingF) isSet-B x y p q =
p ≡⟨ sym (retIsEq isEquiv-cong-f p) ⟩
cong-f⁻¹ (cong f p) ≡⟨ cong cong-f⁻¹ cong-f-p≡cong-f-q ⟩
cong-f⁻¹ (cong f q) ≡⟨ retIsEq isEquiv-cong-f q ⟩
q ∎
where
cong-f-p≡cong-f-q = isSet-B (f x) (f y) (cong f p) (cong f q)
isEquiv-cong-f = isEmbeddingF x y
cong-f⁻¹ = invIsEq isEquiv-cong-f
Embedding-into-hLevel→hLevel
: ∀ n → A ↪ B → isOfHLevel (suc n) B → isOfHLevel (suc n) A
Embedding-into-hLevel→hLevel zero = Embedding-into-isProp→isProp
Embedding-into-hLevel→hLevel (suc n) (f , isEmbeddingF) Blvl x y
= isOfHLevelRespectEquiv (suc n) (invEquiv equiv) subLvl
where
equiv : (x ≡ y) ≃ (f x ≡ f y)
equiv .fst = cong f
equiv .snd = isEmbeddingF x y
subLvl : isOfHLevel (suc n) (f x ≡ f y)
subLvl = Blvl (f x) (f y)
-- We now show that the powerset is the subtype classifier
-- i.e. ℙ X ≃ Σ[A ∈ Type ℓ] (A ↪ X)
Embedding→Subset : {X : Type ℓ} → Σ[ A ∈ Type ℓ ] (A ↪ X) → ℙ X
Embedding→Subset (_ , f , isEmbeddingF) x = fiber f x , isEmbedding→hasPropFibers isEmbeddingF x
Subset→Embedding : {X : Type ℓ} → ℙ X → Σ[ A ∈ Type ℓ ] (A ↪ X)
Subset→Embedding {X = X} A = D , fst , Ψ
where
D = Σ[ x ∈ X ] x ∈ A
Ψ : isEmbedding fst
Ψ w x = isEmbeddingFstΣProp (∈-isProp A)
Subset→Embedding→Subset : {X : Type ℓ} → section (Embedding→Subset {ℓ} {X}) (Subset→Embedding {ℓ} {X})
Subset→Embedding→Subset _ = funExt λ x → Σ≡Prop (λ _ → isPropIsProp) (ua (FiberIso.fiberEquiv _ x))
Embedding→Subset→Embedding : {X : Type ℓ} → retract (Embedding→Subset {ℓ} {X}) (Subset→Embedding {ℓ} {X})
Embedding→Subset→Embedding {ℓ = ℓ} {X = X} (A , f , ψ) =
cong (equivFun Σ-assoc-≃) (Σ≡Prop (λ _ → isEmbeddingIsProp) (secEq (fibrationEquiv X ℓ) (A , f)))
Subset≃Embedding : {X : Type ℓ} → ℙ X ≃ (Σ[ A ∈ Type ℓ ] (A ↪ X))
Subset≃Embedding = isoToEquiv (iso Subset→Embedding Embedding→Subset
Embedding→Subset→Embedding Subset→Embedding→Subset)
Subset≡Embedding : {X : Type ℓ} → ℙ X ≡ (Σ[ A ∈ Type ℓ ] (A ↪ X))
Subset≡Embedding = ua Subset≃Embedding
isEmbedding-∘ : isEmbedding f → isEmbedding h → isEmbedding (f ∘ h)
isEmbedding-∘ {f = f} {h = h} Embf Embh w x
= compEquiv (cong h , Embh w x) (cong f , Embf (h w) (h x)) .snd
isEmbedding→embedsFibersIntoSingl
: isEmbedding f
→ ∀ z → fiber f z ↪ singl z
isEmbedding→embedsFibersIntoSingl {f = f} isE z = e , isEmbE where
e : fiber f z → singl z
e x = f (fst x) , sym (snd x)
isEmbE : isEmbedding e
isEmbE u v = goal where
-- "adjust" ΣeqCf by trivial equivalences that hold judgementally, which should save compositions
Dom′ : ∀ u v → Type _
Dom′ u v = Σ[ p ∈ fst u ≡ fst v ] PathP (λ i → f (p i) ≡ z) (snd u) (snd v)
Cod′ : ∀ u v → Type _
Cod′ u v = Σ[ p ∈ f (fst u) ≡ f (fst v) ] PathP (λ i → p i ≡ z) (snd u) (snd v)
ΣeqCf : Dom′ u v ≃ Cod′ u v
ΣeqCf = Σ-cong-equiv-fst (_ , isE _ _)
dom→ : u ≡ v → Dom′ u v
dom→ p = cong fst p , cong snd p
dom← : Dom′ u v → u ≡ v
dom← p i = p .fst i , p .snd i
cod→ : e u ≡ e v → Cod′ u v
cod→ p = cong fst p , cong (sym ∘ snd) p
cod← : Cod′ u v → e u ≡ e v
cod← p i = p .fst i , sym (p .snd i)
goal : isEquiv (cong e)
goal .equiv-proof x .fst .fst =
dom← (equivCtr ΣeqCf (cod→ x) .fst)
goal .equiv-proof x .fst .snd j =
cod← (equivCtr ΣeqCf (cod→ x) .snd j)
goal .equiv-proof x .snd (g , p) i .fst =
dom← (equivCtrPath ΣeqCf (cod→ x) (dom→ g , cong cod→ p) i .fst)
goal .equiv-proof x .snd (g , p) i .snd j =
cod← (equivCtrPath ΣeqCf (cod→ x) (dom→ g , cong cod→ p) i .snd j)
isEmbedding→hasPropFibers′ : isEmbedding f → hasPropFibers f
isEmbedding→hasPropFibers′ {f = f} iE z =
Embedding-into-isProp→isProp (isEmbedding→embedsFibersIntoSingl iE z) isPropSingl
universeEmbedding :
∀ {ℓ ℓ₁ : Level}
→ (F : Type ℓ → Type ℓ₁)
→ (∀ X → F X ≃ X)
→ isEmbedding F
universeEmbedding F liftingEquiv = hasPropFibersOfImage→isEmbedding propFibersF where
lemma : ∀ A B → (F A ≡ F B) ≃ (B ≡ A)
lemma A B = (F A ≡ F B) ≃⟨ univalence ⟩
(F A ≃ F B) ≃⟨ equivComp (liftingEquiv A) (liftingEquiv B) ⟩
(A ≃ B) ≃⟨ invEquivEquiv ⟩
(B ≃ A) ≃⟨ invEquiv univalence ⟩
(B ≡ A) ■
fiberSingl : ∀ X → fiber F (F X) ≃ singl X
fiberSingl X = Σ-cong-equiv-snd (λ _ → lemma _ _)
propFibersF : hasPropFibersOfImage F
propFibersF X = Embedding-into-isProp→isProp (Equiv→Embedding (fiberSingl X)) isPropSingl
liftEmbedding : (ℓ ℓ₁ : Level)
→ isEmbedding (Lift {i = ℓ} {j = ℓ₁})
liftEmbedding ℓ ℓ₁ = universeEmbedding (Lift {j = ℓ₁}) (λ _ → invEquiv LiftEquiv)
module FibrationIdentityPrinciple {B : Type ℓ} {ℓ₁} where
-- note that fibrationEquiv (for good reason) uses ℓ₁ = ℓ-max ℓ ℓ₁, so we have to work
-- some universe magic to achieve good universe polymorphism
-- First, prove it for the case that's dealt with in fibrationEquiv
Fibration′ = Fibration B (ℓ-max ℓ ℓ₁)
module Lifted (f g : Fibration′) where
f≃g′ : Type (ℓ-max ℓ ℓ₁)
f≃g′ = ∀ b → fiber (f .snd) b ≃ fiber (g .snd) b
Fibration′IP : f≃g′ ≃ (f ≡ g)
Fibration′IP =
f≃g′
≃⟨ equivΠCod (λ _ → invEquiv univalence) ⟩
(∀ b → fiber (f .snd) b ≡ fiber (g .snd) b)
≃⟨ funExtEquiv ⟩
fiber (f .snd) ≡ fiber (g .snd)
≃⟨ invEquiv (congEquiv (fibrationEquiv B ℓ₁)) ⟩
f ≡ g
■
-- Then embed into the above case by lifting the type
L : Type _ → Type _ -- local synonym fixing the levels of Lift
L = Lift {i = ℓ₁} {j = ℓ}
liftFibration : Fibration B ℓ₁ → Fibration′
liftFibration (A , f) = L A , f ∘ lower
hasPropFibersLiftFibration : hasPropFibers liftFibration
hasPropFibersLiftFibration (A , f) =
Embedding-into-isProp→isProp (Equiv→Embedding fiberChar)
(isPropΣ (isEmbedding→hasPropFibers (liftEmbedding _ _) A)
λ _ → isEquiv→hasPropFibers (snd (invEquiv (preCompEquiv LiftEquiv))) _)
where
fiberChar : fiber liftFibration (A , f)
≃ (Σ[ (E , eq) ∈ fiber L A ] fiber (_∘ lower) (transport⁻ (λ i → eq i → B) f))
fiberChar =
fiber liftFibration (A , f)
≃⟨ Σ-cong-equiv-snd (λ _ → invEquiv ΣPath≃PathΣ) ⟩
(Σ[ (E , g) ∈ Fibration B ℓ₁ ] Σ[ eq ∈ (L E ≡ A) ] PathP (λ i → eq i → B) (g ∘ lower) f)
≃⟨ boringSwap ⟩
(Σ[ (E , eq) ∈ fiber L A ] Σ[ g ∈ (E → B) ] PathP (λ i → eq i → B) (g ∘ lower) f)
≃⟨ Σ-cong-equiv-snd (λ _ → Σ-cong-equiv-snd λ _ → transportEquiv (PathP≡Path⁻ _ _ _)) ⟩
(Σ[ (E , eq) ∈ fiber L A ] fiber (_∘ lower) (transport⁻ (λ i → eq i → B) f))
■ where
unquoteDecl boringSwap =
declStrictEquiv boringSwap
(λ ((E , g) , (eq , p)) → ((E , eq) , (g , p)))
(λ ((E , g) , (eq , p)) → ((E , eq) , (g , p)))
isEmbeddingLiftFibration : isEmbedding liftFibration
isEmbeddingLiftFibration = hasPropFibers→isEmbedding hasPropFibersLiftFibration
-- and finish off
module _ (f g : Fibration B ℓ₁) where
open Lifted (liftFibration f) (liftFibration g)
f≃g : Type (ℓ-max ℓ ℓ₁)
f≃g = ∀ b → fiber (f .snd) b ≃ fiber (g .snd) b
FibrationIP : f≃g ≃ (f ≡ g)
FibrationIP =
f≃g ≃⟨ equivΠCod (λ b → equivComp (Σ-cong-equiv-fst LiftEquiv)
(Σ-cong-equiv-fst LiftEquiv)) ⟩
f≃g′ ≃⟨ Fibration′IP ⟩
(liftFibration f ≡ liftFibration g) ≃⟨ invEquiv (_ , isEmbeddingLiftFibration _ _) ⟩
(f ≡ g) ■
open FibrationIdentityPrinciple renaming (f≃g to _≃Fib_) using (FibrationIP) public
Embedding : (B : Type ℓ₁) → (ℓ : Level) → Type (ℓ-max ℓ₁ (ℓ-suc ℓ))
Embedding B ℓ = Σ[ A ∈ Type ℓ ] A ↪ B
module EmbeddingIdentityPrinciple {B : Type ℓ} {ℓ₁} (f g : Embedding B ℓ₁) where
module _ where
open Σ f renaming (fst to F) public
open Σ g renaming (fst to G) public
open Σ (f .snd) renaming (fst to ffun; snd to isEmbF) public
open Σ (g .snd) renaming (fst to gfun; snd to isEmbG) public
f≃g : Type _
f≃g = (∀ b → fiber ffun b → fiber gfun b) ×
(∀ b → fiber gfun b → fiber ffun b)
toFibr : Embedding B ℓ₁ → Fibration B ℓ₁
toFibr (A , (f , _)) = (A , f)
isEmbeddingToFibr : isEmbedding toFibr
isEmbeddingToFibr w x = fullEquiv .snd where
-- carefully managed such that (cong toFibr) is the equivalence
fullEquiv : (w ≡ x) ≃ (toFibr w ≡ toFibr x)
fullEquiv = compEquiv (congEquiv (invEquiv Σ-assoc-≃)) (invEquiv (Σ≡PropEquiv (λ _ → isEmbeddingIsProp)))
EmbeddingIP : f≃g ≃ (f ≡ g)
EmbeddingIP =
f≃g
≃⟨ strictIsoToEquiv (invIso toProdIso) ⟩
(∀ b → (fiber ffun b → fiber gfun b) × (fiber gfun b → fiber ffun b))
≃⟨ equivΠCod (λ _ → isEquivPropBiimpl→Equiv (isEmbedding→hasPropFibers isEmbF _)
(isEmbedding→hasPropFibers isEmbG _)) ⟩
(∀ b → (fiber (f .snd .fst) b) ≃ (fiber (g .snd .fst) b))
≃⟨ FibrationIP (toFibr f) (toFibr g) ⟩
(toFibr f ≡ toFibr g)
≃⟨ invEquiv (_ , isEmbeddingToFibr _ _) ⟩
f ≡ g
■
open EmbeddingIdentityPrinciple renaming (f≃g to _≃Emb_) using (EmbeddingIP) public
|
{
"alphanum_fraction": 0.6150536293,
"avg_line_length": 37.4672897196,
"ext": "agda",
"hexsha": "b68a7f89e8f502c0220fab270e65a8a1af7fc256",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Edlyr/cubical",
"max_forks_repo_path": "Cubical/Functions/Embedding.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Edlyr/cubical",
"max_issues_repo_path": "Cubical/Functions/Embedding.agda",
"max_line_length": 109,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Edlyr/cubical",
"max_stars_repo_path": "Cubical/Functions/Embedding.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6353,
"size": 16036
}
|
-- IIRDg is expressible in IIRDr + Identity
module Proof where
open import LF
open import IIRD
open import IIRDr
open import DefinitionalEquality
open import Identity
open import Proof.Setup
import Logic.ChainReasoning as Chain
-- We can then define general IIRDs using the ε function from Proof.Setup.
Ug : {I : Set}{D : I -> Set1} -> OPg I D -> I -> Set
Ug γ = Ur (ε γ)
Tg : {I : Set}{D : I -> Set1}(γ : OPg I D)(i : I) -> Ug γ i -> D i
Tg γ = Tr (ε γ)
introg : {I : Set}{D : I -> Set1}(γ : OPg I D)(a : Gu γ (Ug γ) (Tg γ)) ->
Ug γ (Gi γ (Ug γ) (Tg γ) a)
introg γ a = intror (G→H γ (Ug γ) (Tg γ) a)
-- To prove the reduction behviour of Tg we first have to prove that the
-- top-level reduction of the encoding behaves as it should. At bit simplified
-- that Ht (ε γ) (Gi a) ≡ Gt γ a
Tg-eq : {I : Set}{D : I -> Set1}(γ : OPg I D)(U : I -> Set)(T : (i : I) -> U i -> D i)
(a : Gu γ U T) ->
Ht (ε γ) U T (Gi γ U T a) (G→H γ U T a) ≡₁ Gt γ U T a
Tg-eq {I}{D} (ι < i | e >') U T ★ = refl-≡₁
Tg-eq (σ A γ) U T < a | b > = Tg-eq (γ a) U T b
Tg-eq (δ A i γ) U T < g | b > = Tg-eq (γ (T « i × g »)) U T b
-- The statement we're interested in is a special case of the more general
-- lemma above.
Tg-equality : {I : Set}{D : I -> Set1}(γ : OPg I D)(a : Gu γ (Ug γ) (Tg γ)) ->
Tg γ (Gi γ (Ug γ) (Tg γ) a) (introg γ a) ≡₁ Gt γ (Ug γ) (Tg γ) a
Tg-equality γ a = Tg-eq γ (Ug γ) (Tg γ) a
-- The elimination rule for generalised IIRDs.
-- It's basically the elimination of the encoding followed by the elimination
-- of the proof the the index is the right one.
Rg : {I : Set}{D : I -> Set1}(γ : OPg I D)(F : (i : I) -> Ug γ i -> Set1)
(h : (a : Gu γ (Ug γ) (Tg γ)) -> KIH γ (Ug γ) (Tg γ) F a -> F (Gi γ (Ug γ) (Tg γ) a) (introg γ a))
(i : I)(u : Ug γ i) -> F i u
Rg {I}{D} γ F h = Rr (ε γ) F \i a ih ->
G→H∘H→G-subst γ U T
(\i a -> F i (intror a))
i a (lem1 i a ih)
where
U = Ug γ
T = Tg γ
lem1 : (i : I)(a : Hu (ε γ) U T i) ->
KIH (ε γ i) U T F a ->
F (Gi γ U T (H→G γ U T i a))
(intror (G→H γ U T (H→G γ U T i a)))
lem1 i a ih = h (H→G γ U T i a) (\v -> εIArg-subst γ U T F i a v (ih (εIArg γ U T i a v)))
open module Chain-≡ = Chain.Poly.Heterogenous1 _≡₁_ (\x -> refl-≡₁) trans-≡₁
open module Chain-≡₀ = Chain.Poly.Heterogenous _≡_ (\x -> refl-≡) trans-≡
renaming (chain>_ to chain>₀_; _===_ to _===₀_; _by_ to _by₀_)
-- Again we have to generalise
Rg-eq : {I : Set}{D : I -> Set1}(γ : OPg I D)(U : I -> Set)(T : (i : I) -> U i -> D i)
(F : (i : I) -> U i -> Set1)(intro : (a : Gu γ U T) -> U (Gi γ U T a))
(g : (i : I)(u : U i) -> F i u)
(h : (a : Gu γ U T) -> KIH γ U T F a -> F (Gi γ U T a) (intro a))
(a : Gu γ U T) ->
let i = Gi γ U T a
a' = G→H γ U T a
in h (H→G γ U T i a')
(\v -> εIArg-subst γ U T F i a' v
(Kmap (ε γ i) U T F g a' (εIArg γ U T i a' v)))
≡₁ h a (Kmap γ U T F g a)
Rg-eq {I}{D} γ U T F intro g h a = app-≡₁
(cong-≡₁⁰ h (H→G∘G→H-identity γ U T a))
(η-≡₁⁰ \x y p ->
chain> εIArg-subst γ U T F i a' x (Kmap (ε γ i) U T F g a' (εIArg γ U T i a' x))
=== Kmap (ε γ i) U T F g a' (εIArg γ U T i a' x)
by εIArg-identity γ U T F a x (Kmap (ε γ i) U T F g a' (εIArg γ U T i a' x))
=== Kmap γ U T F g a y
by app-≡₁⁰
(cong-≡₁⁰ g
(chain>₀ KIArg→I (ε γ i) U T a' (εIArg γ U T i a' x)
===₀ KIArg→I γ U T (H→G γ U T i a') x by₀ εIArg→I-identity γ U T i a' x
===₀ KIArg→I γ U T a y by₀
app-≡₀ (cong-≡' (KIArg→I γ U T)
(H→G∘G→H-identity γ U T a)
) p
)
)
(chain>₀ KIArg→U (ε γ i) U T a' (εIArg γ U T i a' x)
===₀ KIArg→U γ U T (H→G γ U T i a') x by₀ εIArg→U-identity γ U T i a' x
===₀ KIArg→U γ U T a y by₀
app-≡₀ (cong-≡' (KIArg→U γ U T)
(H→G∘G→H-identity γ U T a)
) p
)
)
where
i = Gi γ U T a
a' = G→H γ U T a
Rg-equality : {I : Set}{D : I -> Set1}(γ : OPg I D)(F : (i : I) -> Ug γ i -> Set1)
(h : (a : Gu γ (Ug γ) (Tg γ)) -> KIH γ (Ug γ) (Tg γ) F a -> F (Gi γ (Ug γ) (Tg γ) a) (introg γ a))
(a : Gu γ (Ug γ) (Tg γ)) ->
Rg γ F h (Gi γ (Ug γ) (Tg γ) a) (introg γ a)
≡₁ h a (Kmap γ (Ug γ) (Tg γ) F (Rg γ F h) a)
Rg-equality {I}{D} γ F h a =
chain> Rg γ F h (Gi γ U T a) (introg γ a)
=== h'' i a' ih by refl-≡₁
=== G→H∘H→G-subst γ U T F' i a' (h' i a' ih)
by refl-≡₁
=== h' i a' ih by G→H∘H→G-identity γ U T F' a (h' i a' ih)
=== h (H→G γ U T i a') (\v -> εIArg-subst γ U T F i a' v (ih (εIArg γ U T i a' v)))
by refl-≡₁
=== h a (Kmap γ U T F (Rg γ F h) a) by Rg-eq γ U T F (introg γ) (Rg γ F h) h a
where
U = Ug γ
T = Tg γ
F' = \i a -> F i (intror a)
i = Gi γ U T a
a' = G→H γ U T a
h' : (i : I)(a : Hu (ε γ) U T i) -> KIH (ε γ i) U T F a -> F _ _
h' = \i a ih -> h (H→G γ U T i a) \v ->
εIArg-subst γ U T F i a v
(ih (εIArg γ U T i a v))
h'' = \i a ih -> G→H∘H→G-subst γ U T F' i a (h' i a ih)
ih = Kmap (ε γ i) U T F (Rg γ F h) a'
|
{
"alphanum_fraction": 0.4258807115,
"avg_line_length": 43.7709923664,
"ext": "agda",
"hexsha": "f625fdc7fa99d32f132a3efdf702423f511d277c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/iird/Proof.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/iird/Proof.agda",
"max_line_length": 112,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/outdated-and-incorrect/iird/Proof.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 2377,
"size": 5734
}
|
module Deriv where
open import Relation.Binary.Bundles using (DecSetoid)
open import Algebra.Bundles using (Semiring)
open import Level using (0ℓ)
open import Relation.Nullary using (yes; no)
module _ (S : DecSetoid 0ℓ 0ℓ) (Targ : Set) where
open DecSetoid S renaming (Carrier to Key)
infixl 6 _+_
infixl 7 _*_
data Expr : Set where
↑ : Targ → Expr
! : Key → Expr
_+_ : Expr → Expr → Expr
_*_ : Expr → Expr → Expr
module _ {S : DecSetoid 0ℓ 0ℓ} (R : Semiring 0ℓ 0ℓ) where
private module S = DecSetoid S
open S renaming (Carrier to Key)
private module R = Semiring R
open R using (0#; 1#) renaming (Carrier to Targ)
eval
: (lookup : Key → Targ)
→ (expr : Expr S Targ)
→ Targ
eval lookup (↑ x) = x
eval lookup (! x) = lookup x
eval lookup (x + x₁) = eval lookup x₁ R.+ eval lookup x₁
eval lookup (x * x₁) = eval lookup x₁ R.* eval lookup x₁
deriv : Expr S Targ → Key → Expr S Targ
deriv (↑ x) k = ↑ 0#
deriv (! x) k with x ≟ k
deriv (! x) k | yes _ = ↑ 1#
deriv (! x) k | no _ = ↑ 0#
deriv (e + e₁) k = deriv e k + deriv e₁ k
deriv (e * e₁) k = (deriv e k * e₁) + (e * deriv e₁ k)
open import Data.Nat using (ℕ)
open import Data.Nat.Properties using (+-*-semiring)
open import Data.String
open import Relation.Binary.PropositionalEquality using (decSetoid)
asdf : Expr (decSetoid _≟_) ℕ
asdf = ↑ 2 + (↑ 5 * (! "hello" * ! "goodbye"))
asdf' : Expr (decSetoid _≟_) ℕ
asdf' = deriv +-*-semiring asdf "hello"
normalize : ∀ {D} → Expr D ℕ → Expr D ℕ
normalize (x + y) with normalize x | normalize y
normalize (x + y) | ↑ w | ↑ z = ↑ (w Data.Nat.+ z)
normalize (x + y) | ↑ 0 | z = z
normalize (x + y) | w | ↑ 0 = w
normalize (x + y) | w | z = w + z
normalize (x * y) with normalize x | normalize y
normalize (x * y) | ↑ w | ↑ z = ↑ (w Data.Nat.* z)
normalize (x * y) | ↑ 0 | z = ↑ 0
normalize (x * y) | w | ↑ 0 = ↑ 0
normalize (x * y) | ↑ 1 | z = z
normalize (x * y) | w | ↑ 1 = w
normalize (x * y) | w | z = w * z
normalize z = z
module _ (R : Semiring 0ℓ 0ℓ) where
open Semiring R
private module R = Semiring R
asdf'' : Carrier
asdf'' = 1# R.+ 0#
|
{
"alphanum_fraction": 0.5882352941,
"avg_line_length": 27.3291139241,
"ext": "agda",
"hexsha": "cd4aeba472b17858c08a09a8683d46a004e02ff2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "78c3dec24834ffeca5e74cb75578e9b210a5be62",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "cspollard/diff",
"max_forks_repo_path": "src/Deriv.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "78c3dec24834ffeca5e74cb75578e9b210a5be62",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "cspollard/diff",
"max_issues_repo_path": "src/Deriv.agda",
"max_line_length": 67,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "78c3dec24834ffeca5e74cb75578e9b210a5be62",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "cspollard/diff",
"max_stars_repo_path": "src/Deriv.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 807,
"size": 2159
}
|
-- Andreas, 2017-07-27
module _ where
module A where
record A : Set where
open A
open A
-- ERROR WAS:
-- Ambiguous module name A. It could refer to any one of
-- A.A
-- Issue705.A
-- EXPECTED:
-- Ambiguous module name A. It could refer to any one of
-- A.A (record module)
-- Issue705.A
|
{
"alphanum_fraction": 0.6534653465,
"avg_line_length": 14.4285714286,
"ext": "agda",
"hexsha": "ce3b6ceb8761a698f3ebb552128462b1d41c7bf0",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue705-record.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue705-record.agda",
"max_line_length": 56,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue705-record.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 95,
"size": 303
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Polynomial reasoning
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Tactic.RingSolver.Core.AlmostCommutativeRing
-- Some specialised tools for equational reasoning.
module Tactic.RingSolver.Core.Polynomial.Reasoning
{a ℓ} (ring : AlmostCommutativeRing a ℓ)
where
open AlmostCommutativeRing ring
open import Relation.Binary.Reasoning.Setoid setoid public
infixr 1 ≪+_ +≫_ ≪*_ *≫_
infixr 0 _⊙_
≪+_ : ∀ {x₁ x₂ y} → x₁ ≈ x₂ → x₁ + y ≈ x₂ + y
≪+ prf = +-cong prf refl
{-# INLINE ≪+_ #-}
+≫_ : ∀ {x y₁ y₂} → y₁ ≈ y₂ → x + y₁ ≈ x + y₂
+≫_ = +-cong refl
{-# INLINE +≫_ #-}
≪*_ : ∀ {x₁ x₂ y} → x₁ ≈ x₂ → x₁ * y ≈ x₂ * y
≪* prf = *-cong prf refl
{-# INLINE ≪*_ #-}
*≫_ : ∀ {x y₁ y₂} → y₁ ≈ y₂ → x * y₁ ≈ x * y₂
*≫_ = *-cong refl
{-# INLINE *≫_ #-}
-- transitivity as an operator
_⊙_ : ∀ {x y z} → x ≈ y → y ≈ z → x ≈ z
_⊙_ = trans
{-# INLINE _⊙_ #-}
|
{
"alphanum_fraction": 0.5024154589,
"avg_line_length": 24.6428571429,
"ext": "agda",
"hexsha": "fdd85c74026506a6c02f050502e278083f582d4b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/Polynomial/Reasoning.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/Polynomial/Reasoning.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/Polynomial/Reasoning.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 383,
"size": 1035
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.Queue.Untruncated2ListInvariant where
open import Cubical.Foundations.Everything
open import Cubical.Data.Empty as ⊥
open import Cubical.Data.List
open import Cubical.Data.Maybe
open import Cubical.Data.Prod
module Untruncated2ListInvariant {ℓ} (A : Type ℓ) where
-- Invariant
Inv : List A → List A → Type ℓ
Inv xs ys = ys ≡ [] → xs ≡ []
isPropInv : (xs ys : List A) → isProp (Inv xs ys)
isPropInv xs ys = isPropΠ λ _ → isPropXs≡[]
Inv-ys≡ys' : {xs ys ys' : List A} → (p : ys ≡ ys') →
(invL : Inv xs ys) → (invR : Inv xs ys') → PathP (λ i → Inv xs (p i)) invL invR
Inv-ys≡ys' {xs = xs} p invL invR = isProp→PathP (λ i → isPropInv xs (p i)) invL invR
inv-xs-∷ : {xs ys : List A} {y : A} → Inv xs (y ∷ ys)
inv-xs-∷ contra = ⊥.rec (¬cons≡nil contra)
inv-xs-∷ʳ : {xs ys : List A} → {y : A} → Inv xs (ys ∷ʳ y)
inv-xs-∷ʳ contra = ⊥.rec (¬snoc≡nil contra)
inv-[]-ys : {ys : List A} → Inv [] ys
inv-[]-ys ys = refl
inv-invalid : {xs : List A} {x : A} → Inv (xs ∷ʳ x) [] → ⊥
inv-invalid inv = ¬snoc≡nil (inv refl)
-- Queue
data Q : Type ℓ where
Q⟨_,_!_⟩ : (xs ys : List A) → (inv : Inv xs ys) → Q
tilt : ∀ xs ys z l r → Q⟨ xs ++ [ z ] , ys ! l ⟩ ≡ Q⟨ xs , ys ++ [ z ] ! r ⟩
Q-ys≡ys' : ∀ xs {ys ys' : List A} l r → (p : ys ≡ ys') → Q⟨ xs , ys ! l ⟩ ≡ Q⟨ xs , ys' ! r ⟩
Q-ys≡ys' xs l r p i = Q⟨ xs , p i ! Inv-ys≡ys' p l r i ⟩
flush-xs : ∀ xs ys l r → Q⟨ xs , ys ! l ⟩ ≡ Q⟨ [] , ys ++ rev xs ! r ⟩
flush-xs xs ys l r = helper xs ys l r (snocView xs)
where
helper : ∀ xs ys l r → SnocView xs → Q⟨ xs , ys ! l ⟩ ≡ Q⟨ [] , ys ++ rev xs ! r ⟩
helper .[] ys l r nil i = Q⟨ [] , ++-unit-r ys (~ i) ! Inv-ys≡ys' (++-unit-r ys ⁻¹) l r i ⟩
helper .(xs ∷ʳ x) ys l r (snoc x xs s) = move-x ∙ IH ∙ Q-ys≡ys' [] inv-[]-ys r lemma
where
move-x : Q⟨ xs ∷ʳ x , ys ! l ⟩ ≡ Q⟨ xs , ys ∷ʳ x ! inv-xs-∷ʳ ⟩
move-x = tilt xs ys x l inv-xs-∷ʳ
IH : Q⟨ xs , ys ∷ʳ x ! inv-xs-∷ʳ ⟩ ≡ Q⟨ [] , (ys ∷ʳ x) ++ rev xs ! inv-[]-ys ⟩
IH = helper xs (ys ∷ʳ x) inv-xs-∷ʳ inv-[]-ys s
lemma : (ys ∷ʳ x) ++ rev xs ≡ ys ++ rev (xs ∷ʳ x)
lemma = ++-assoc ys (x ∷ []) (rev xs) ∙ cong (ys ++_) (cons≡rev-snoc x xs)
emp : Q
emp = Q⟨ [] , [] ! inv-[]-ys ⟩
enq : A → Q → Q
enq a Q⟨ xs , [] ! inv ⟩ = Q⟨ xs , a ∷ [] ! inv-xs-∷ ⟩
enq a Q⟨ xs , y ∷ ys ! inv ⟩ = Q⟨ a ∷ xs , y ∷ ys ! inv-xs-∷ ⟩
enq a (tilt xs [] z l r i) = proof i
where
proof : Q⟨ xs ++ z ∷ [] , a ∷ [] ! inv-xs-∷ ⟩ ≡ Q⟨ a ∷ xs , z ∷ [] ! inv-xs-∷ ⟩
proof = ⊥.rec (inv-invalid l)
enq a (tilt xs (y ∷ ys) z l r i) = tilt (a ∷ xs) (y ∷ ys) z inv-xs-∷ inv-xs-∷ i
deq : Q → Maybe (Q × A)
deq Q⟨ xs , [] ! inv ⟩ = nothing
deq Q⟨ xs , y ∷ [] ! inv ⟩ = just (Q⟨ [] , rev xs ! inv-[]-ys ⟩ , y)
deq Q⟨ xs , y₁ ∷ y₂ ∷ ys ! inv ⟩ = just (Q⟨ xs , y₂ ∷ ys ! inv-xs-∷ ⟩ , y₁)
deq (tilt xs [] z l r i) = proof i
where
proof : nothing ≡ just (Q⟨ [] , rev xs ! inv-[]-ys ⟩ , z)
proof = ⊥.rec (inv-invalid l)
deq (tilt xs (y ∷ []) z l r i) = just (proof i , y)
where
proof : Q⟨ [] , rev (xs ∷ʳ z) ! inv-[]-ys ⟩ ≡ Q⟨ xs , z ∷ [] ! inv-xs-∷ ⟩
proof = Q-ys≡ys' [] inv-[]-ys inv-xs-∷ (cons≡rev-snoc z xs ⁻¹) ∙ flush-xs xs (z ∷ []) inv-xs-∷ inv-xs-∷ ⁻¹
deq (tilt xs (y₁ ∷ y₂ ∷ ys) z l r i) = just ((tilt xs (y₂ ∷ ys) z inv-xs-∷ inv-xs-∷ i) , y₁)
|
{
"alphanum_fraction": 0.4932895914,
"avg_line_length": 40.8902439024,
"ext": "agda",
"hexsha": "c744cc6ac70bce8b5e48fb46d4fdc43e1a913b02",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Data/Queue/Untruncated2ListInvariant.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Data/Queue/Untruncated2ListInvariant.agda",
"max_line_length": 109,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Data/Queue/Untruncated2ListInvariant.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1561,
"size": 3353
}
|
module Numeral.Natural.Function.GreatestCommonDivisor.Proofs where
open import Data
open import Functional
open import Logic.Propositional
open import Numeral.Finite
open import Numeral.Natural
open import Numeral.Natural.Function.GreatestCommonDivisor
open import Numeral.Natural.Oper
open import Numeral.Natural.Oper.FlooredDivision
open import Numeral.Natural.Oper.FlooredDivision.Proofs.Inverse
open import Numeral.Natural.Oper.Modulo
open import Numeral.Natural.Relation.Divisibility
open import Numeral.Natural.Relation.Divisibility.Proofs
open import Numeral.Natural.Relation.Divisibility.Proofs.Modulo
open import Numeral.Natural.Relation.Order
open import Relator.Equals
open import Relator.Equals.Proofs.Equiv
open import Structure.Relator
open import Structure.Relator.Properties
open import Structure.Operator
open import Structure.Operator.Properties
open import Syntax.Number
open import Syntax.Transitivity
private variable a b c d d₁ d₂ : ℕ
gcd-same : (gcd(a)(a) ≡ a)
gcd-same = [↔]-to-[→] Gcd-gcd-value (Gcd.intro₂ (reflexivity(_∣_)) (reflexivity(_∣_)) (const id))
instance
gcd-identityₗ : Identityₗ(gcd)(𝟎)
Identityₗ.proof gcd-identityₗ = [↔]-to-[→] Gcd-gcd-value (Gcd.intro₂ Div𝟎 (reflexivity(_∣_)) (const id))
instance
gcd-identityᵣ : Identityᵣ(gcd)(𝟎)
Identityᵣ.proof gcd-identityᵣ = [≡]-intro
instance
gcd-absorberₗ : Absorberₗ(gcd)(1)
Absorberₗ.proof gcd-absorberₗ{b} = [↔]-to-[→] (Gcd-gcd-value{_}{b}) (Gcd.intro₂ [1]-divides [1]-divides const)
instance
gcd-absorberᵣ : Absorberᵣ(gcd)(1)
Absorberᵣ.proof gcd-absorberᵣ{a} = [↔]-to-[→] (Gcd-gcd-value{a}{_}) (Gcd.intro₂ [1]-divides [1]-divides (const id))
instance
gcd-commutativity : Commutativity(gcd)
Commutativity.proof gcd-commutativity {x}{y} = [↔]-to-[→] (Gcd-gcd-value {x}{y}) (Gcd-swap Gcd-gcd)
instance
gcd-associativity : Associativity(gcd)
Associativity.proof gcd-associativity {x}{y}{z} = [↔]-to-[→] (Gcd-gcd-value) (assoc Gcd-gcd Gcd-gcd Gcd-gcd) where
assoc : Gcd x y d₁ → Gcd y z d₂ → Gcd x d₂ d → Gcd d₁ z d
assoc xyd₁ yzd₂ xd₂d =
let d₁x = Gcd.divisorₗ xyd₁
d₁y = Gcd.divisorᵣ xyd₁
xyd₁m = Gcd.maximum₂ xyd₁
d₂y = Gcd.divisorₗ yzd₂
d₂z = Gcd.divisorᵣ yzd₂
yzd₂m = Gcd.maximum₂ yzd₂
dx = Gcd.divisorₗ xd₂d
dd₂ = Gcd.divisorᵣ xd₂d
xd₂dm = Gcd.maximum₂ xd₂d
in Gcd.intro₂
(xyd₁m dx (dd₂ 🝖 d₂y))
(dd₂ 🝖 d₂z)
(\dd₁ dz → xd₂dm (dd₁ 🝖 d₁x) (xd₂dm (dd₁ 🝖 d₁x) (yzd₂m (dd₁ 🝖 d₁y) dz) 🝖 dd₂))
gcd-dividesₗ : (gcd(a)(b) ∣ a)
gcd-dividesₗ {a}{b} = Gcd.divisorₗ{a}{b} Gcd-gcd
gcd-dividesᵣ : (gcd(a)(b) ∣ b)
gcd-dividesᵣ {a}{b} = Gcd.divisorᵣ{a}{b} Gcd-gcd
gcd-divisors : (d ∣ a) → (d ∣ b) → (d ∣ gcd(a)(b))
gcd-divisors da db = Gcd.maximum₂ Gcd-gcd da db
gcd-of-mod : (gcd(a mod 𝐒(b))(𝐒(b)) ≡ gcd(a)(𝐒(b)))
gcd-of-mod{a}{b} = [↔]-to-[→] (Gcd-gcd-value{a mod 𝐒(b)}{𝐒(b)}) (p Gcd-gcd) where
p : Gcd(a)(𝐒(b)) d → Gcd(a mod 𝐒(b))(𝐒(b)) d
p abd =
let da = Gcd.divisorₗ abd
db = Gcd.divisorᵣ abd
m = Gcd.maximum₂ abd
in Gcd.intro₂ ([↔]-to-[→] (divides-mod db) da) db (Dab ↦ Db ↦ m ([↔]-to-[←] (divides-mod Db) Dab) Db)
-- TODO: Is it neccessary to prove this? By gcd-dividesₗ and gcd-dividesᵣ, one get (gcd(a)(b) ∣ min(a)(b)) and the divisor is always smaller
-- gcd-min-order : (gcd(a)(b) ≤ min(a)(b))
gcd-with-[+] : (gcd(a + b)(b) ≡ gcd(a)(b))
gcd-with-[+] {a}{b} = [↔]-to-[→] Gcd-gcd-value (p Gcd-gcd) where
p : Gcd(a)(b) d → Gcd(a + b)(b) d
p abd =
let da = Gcd.divisorₗ abd
db = Gcd.divisorᵣ abd
m = Gcd.maximum₂ abd
in Gcd.intro₂ (divides-with-[+] da db) db (Dab ↦ Db ↦ m ([↔]-to-[←] (divides-without-[+] Dab) Db) Db)
gcd-with₁-[⋅] : (gcd(a ⋅ b)(b) ≡ b)
gcd-with₁-[⋅] {a}{b} = [↔]-to-[→] (Gcd-gcd-value {a ⋅ b}{b}) (Gcd.intro₂ (divides-with-[⋅] {b}{a} ([∨]-introᵣ (reflexivity(_∣_)))) (reflexivity(_∣_)) (const id))
gcd-with-[⋅] : (gcd(a ⋅ c)(b ⋅ c) ≡ gcd(a)(b) ⋅ c)
gcd-with-[⋅] {a}{𝟎} {b} = [≡]-intro
gcd-with-[⋅] {a}{𝐒(c)}{b} =
gcd(a ⋅ 𝐒(c)) (b ⋅ 𝐒(c)) 🝖[ _≡_ ]-[ q ]-sym
gcd(a ⋅ 𝐒(c)) (b ⋅ 𝐒(c)) ⌊/⌋ 𝐒(c) ⋅ 𝐒(c) 🝖[ _≡_ ]-[ congruence₂ₗ(_⋅_)(𝐒(c)) ([↔]-to-[→] Gcd-gcd-value (p{gcd(a ⋅ 𝐒(c))(b ⋅ 𝐒(c)) ⌊/⌋ 𝐒(c)} ([↔]-to-[←] Gcd-gcd-value (symmetry(_≡_) q)))) ]-sym
gcd(a)(b) ⋅ 𝐒(c) 🝖-end
where
p : Gcd a b d ← Gcd(a ⋅ 𝐒(c))(b ⋅ 𝐒(c))(d ⋅ 𝐒(c))
p acbcdc =
let dcac = Gcd.divisorₗ acbcdc
dcbc = Gcd.divisorᵣ acbcdc
m = Gcd.maximum₂ acbcdc
in Gcd.intro₂ (divides-without-[⋅]ᵣ-both {z = c} dcac) (divides-without-[⋅]ᵣ-both {z = c} dcbc) (\{D} → Da ↦ Db ↦ divides-without-[⋅]ᵣ-both {z = c} (m{D ⋅ 𝐒(c)} (divides-with-[⋅]ᵣ-both {z = 𝐒(c)} Da) (divides-with-[⋅]ᵣ-both {z = 𝐒(c)} Db)))
q = [⋅][⌊/⌋]-inverseOperatorᵣ (gcd-divisors{𝐒(c)}{a ⋅ 𝐒(c)}{b ⋅ 𝐒(c)} (divides-with-[⋅] {𝐒(c)}{a} ([∨]-introᵣ (reflexivity(_∣_)))) (divides-with-[⋅] {𝐒(c)}{b} ([∨]-introᵣ (reflexivity(_∣_)))))
gcd-0 : ((a ≡ 𝟎) ∧ (b ≡ 𝟎)) ↔ (gcd a b ≡ 𝟎)
gcd-0 = [↔]-intro l r where
l : ((a ≡ 𝟎) ∧ (b ≡ 𝟎)) ← (gcd a b ≡ 𝟎)
l {𝟎} {𝟎} p = [∧]-intro [≡]-intro [≡]-intro
l {𝐒 a} {𝐒 b} p
with intro zv _ ← [↔]-to-[←] (Gcd-gcd-value{𝐒(a)}{𝐒(b)}) p
with () ← [0]-divides-not (zv 𝟎)
r : ((a ≡ 𝟎) ∧ (b ≡ 𝟎)) → (gcd a b ≡ 𝟎)
r {𝟎} {𝟎} _ = [≡]-intro
open import Logic.Classical
open import Logic.Propositional.Theorems
open import Numeral.Natural.Decidable
open import Numeral.Natural.Relation
open import Numeral.Natural.Relation.Proofs
open import Type.Properties.Decidable.Proofs
gcd-positive : (Positive(a) ∨ Positive(b)) ↔ Positive(gcd a b)
gcd-positive{a}{b} = [↔]-transitivity ([∨]-map-[↔] Positive-non-zero Positive-non-zero) ([↔]-transitivity ([↔]-symmetry ([¬]-preserves-[∧][∨] ⦃ decider-classical(a ≡ 𝟎) ⦄ ⦃ decider-classical(b ≡ 𝟎) ⦄)) ([↔]-transitivity ([¬]-unaryOperator (gcd-0 {a}{b})) ([↔]-symmetry Positive-non-zero)))
gcd-of-successor : ∀{n} → Gcd(n)(𝐒(n))(1)
gcd-of-successor = Gcd.intro₂ [1]-divides [1]-divides p where
p : ∀{d n} → (d ∣ n) → (d ∣ 𝐒(n)) → (d ∣ 1)
p Div𝟎 dsn = dsn
p (Div𝐒 dn) dsn = p dn ([↔]-to-[→] (divides-without-[+] dsn) (reflexivity(_∣_)))
open import Logic.Propositional.Theorems
open import Numeral.Natural.Coprime
open import Numeral.Natural.Coprime.Proofs
open import Numeral.Natural.Oper.FlooredDivision.Proofs
open import Numeral.Natural.Oper.FlooredDivision.Proofs.Inverse
open import Numeral.Natural.Oper.Proofs
open import Numeral.Natural.Relation.Order.Proofs
open import Syntax.Implication
[⌊/⌋₀]-gcd-coprime : (Positive(a) ∨ Positive(b)) → Coprime(a ⌊/⌋₀ gcd(a)(b)) (b ⌊/⌋₀ gcd(a)(b))
[⌊/⌋₀]-gcd-coprime {a}{b} nz =
let d = gcd(a)(b)
D = gcd(a ⌊/⌋₀ d) (b ⌊/⌋₀ d)
gcd-D = Gcd-gcd {a ⌊/⌋₀ d} {b ⌊/⌋₀ d}
d-pos = [↔]-to-[→] Positive-greater-than-zero ([↔]-to-[→] gcd-positive nz)
in
• (
Gcd.divisorₗ gcd-D ⇒
(D ∣ (a ⌊/⌋₀ d)) ⇒-[ divides-with-[⋅]ᵣ-both {z = d} ]
(D ⋅ d ∣ (a ⌊/⌋₀ d) ⋅ d) ⇒-[ substitute₂ᵣ(_∣_) ([⋅][⌊/⌋₀]-inverseOperatorᵣ d-pos (gcd-dividesₗ {b = b})) ]
(D ⋅ d ∣ a) ⇒-[ substitute₂ₗ(_∣_) (commutativity(_⋅_) {D}{d}) ]
(d ⋅ D ∣ a) ⇒-end
)
• (
Gcd.divisorᵣ gcd-D ⇒
(D ∣ (b ⌊/⌋₀ d)) ⇒-[ divides-with-[⋅]ᵣ-both {z = d} ]
(D ⋅ d ∣ (b ⌊/⌋₀ d) ⋅ d) ⇒-[ substitute₂ᵣ(_∣_) ([⋅][⌊/⌋₀]-inverseOperatorᵣ d-pos gcd-dividesᵣ) ]
(D ⋅ d ∣ b) ⇒-[ substitute₂ₗ(_∣_) (commutativity(_⋅_) {D}{d}) ]
(d ⋅ D ∣ b) ⇒-end
)
⇒₂-[ Gcd.maximum₂ Gcd-gcd ]
((d ⋅ D) ∣ d) ⇒-[]
((d ⋅ D) ∣ (d ⋅ 1)) ⇒-[ divides-without-[⋅]ₗ-both' d-pos ]
(D ∣ 1) ⇒-[ [1]-only-divides-[1] ]
(D ≡ 1) ⇒-[ [↔]-to-[←] Coprime-gcd ]
Coprime(a ⌊/⌋₀ d) (b ⌊/⌋₀ d) ⇒-end
[⌊/⌋]-gcd-coprime : (nz : Positive(a) ∨ Positive(b)) → Coprime((a ⌊/⌋ gcd(a)(b)) ⦃ [↔]-to-[→] gcd-positive nz ⦄) ((b ⌊/⌋ gcd(a)(b)) ⦃ [↔]-to-[→] gcd-positive nz ⦄)
[⌊/⌋]-gcd-coprime {a}{b} nz = substitute₂(Coprime)
([⌊/⌋][⌊/⌋₀]-equality ⦃ [↔]-to-[→] gcd-positive nz ⦄)
([⌊/⌋][⌊/⌋₀]-equality ⦃ [↔]-to-[→] gcd-positive nz ⦄)
([⌊/⌋₀]-gcd-coprime nz)
|
{
"alphanum_fraction": 0.5747800587,
"avg_line_length": 43.5319148936,
"ext": "agda",
"hexsha": "ef2c84883e8aff9fa1d00405f160bf03c0ef4a82",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Natural/Function/GreatestCommonDivisor/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Natural/Function/GreatestCommonDivisor/Proofs.agda",
"max_line_length": 289,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Natural/Function/GreatestCommonDivisor/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 3768,
"size": 8184
}
|
open import Relation.Binary.Core
module TreeSort.Impl1.Correctness.Order {A : Set}
(_≤_ : A → A → Set)
(tot≤ : Total _≤_)
(trans≤ : Transitive _≤_) where
open import BSTree _≤_
open import BSTree.Properties _≤_ trans≤
open import BTree {A}
open import Data.List
open import Data.Sum
open import Function using (_∘_)
open import List.Sorted _≤_
open import TreeSort.Impl1 _≤_ tot≤
lemma-insert-*⊴ : {x y : A}{t : BTree} → x ≤ y → t *⊴ y → insert x t *⊴ y
lemma-insert-*⊴ x≤y lelf = lend x≤y lelf
lemma-insert-*⊴ {x = x}{t = node z l r} x≤y (lend z≤y r≤y)
with tot≤ x z
... | inj₁ x≤z = lend z≤y r≤y
... | inj₂ z≤x = lend z≤y (lemma-insert-*⊴ x≤y r≤y)
lemma-insert-⊴* : {x y : A}{t : BTree} → y ≤ x → y ⊴* t → y ⊴* insert x t
lemma-insert-⊴* y≤x gelf = gend y≤x gelf
lemma-insert-⊴* {x = x} {t = node z l r} y≤x (gend y≤z y≤l)
with tot≤ x z
... | inj₁ x≤z = gend y≤z (lemma-insert-⊴* y≤x y≤l)
... | inj₂ z≤x = gend y≤z y≤l
lemma-insert-bst : {t : BTree}(x : A) → BSTree t → BSTree (insert x t)
lemma-insert-bst x slf = snd slf slf lelf gelf
lemma-insert-bst x (snd {x = y} sl sr l≤y y≤r)
with tot≤ x y
... | inj₁ x≤y = snd (lemma-insert-bst x sl) sr (lemma-insert-*⊴ x≤y l≤y) y≤r
... | inj₂ y≤x = snd sl (lemma-insert-bst x sr) l≤y (lemma-insert-⊴* y≤x y≤r)
lemma-treeSort-bst : (xs : List A) → BSTree (treeSort xs)
lemma-treeSort-bst [] = slf
lemma-treeSort-bst (x ∷ xs) = lemma-insert-bst x (lemma-treeSort-bst xs)
theorem-treeSort-sorted : (xs : List A) → Sorted (flatten (treeSort xs))
theorem-treeSort-sorted = lemma-bst-sorted ∘ lemma-treeSort-bst
|
{
"alphanum_fraction": 0.5998778253,
"avg_line_length": 34.1041666667,
"ext": "agda",
"hexsha": "fa5ac1f31386d9ea159bf9f8a52e86e71f9f4895",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/TreeSort/Impl1/Correctness/Order.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/TreeSort/Impl1/Correctness/Order.agda",
"max_line_length": 77,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/TreeSort/Impl1/Correctness/Order.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 693,
"size": 1637
}
|
module HighlightPositivity where
data A : Set where
inA : (A -> A) -> A
data B : Set
data C : Set
data B where
inB : (C -> B) -> B
data C where
inC : B -> C
record D : Set where
inductive
field
outD : D -> D
endo : Set -> Set
endo X = X -> X
data E : Set where
inE : endo E -> E
data F (X : Set -> Set) : Set where
inF : X (F X) -> F X
open import Agda.Builtin.Bool
data GU : Set
GT : Bool -> Set
data GU where
inGU : ∀ b → GT b -> GU
GT false = Bool
GT true = GU -> Bool
open import Agda.Builtin.Equality
data H : Set where
inH : ∀ f → f ≡ (λ (x : H) → x) -> H -- non-positive occurrence is
-- in the implicit type of f
|
{
"alphanum_fraction": 0.5459770115,
"avg_line_length": 15.4666666667,
"ext": "agda",
"hexsha": "6770861c392ed1bc2b4ffbbddd2f8b16a13484ae",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/HighlightPositivity.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/HighlightPositivity.agda",
"max_line_length": 68,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/HighlightPositivity.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 237,
"size": 696
}
|
import Loop
import Loop.Bundles
import Loop.Definitions
import Loop.Properties
import Loop.Structures
import Magma
import Magma.Bundles
import Magma.Definitions
import Magma.Properties
import Magma.Structures
import Morphism.Structures
import Quasigroup
import Quasigroup.Bundles
import Quasigroup.Definitions
import Quasigroup.Properties
import Quasigroup.Structures
|
{
"alphanum_fraction": 0.8777173913,
"avg_line_length": 21.6470588235,
"ext": "agda",
"hexsha": "2d5c3f802b60af21c66625d653d2125c30db2fbe",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra",
"max_forks_repo_path": "Everything.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048",
"max_issues_repo_issues_event_max_datetime": "2021-10-09T08:24:56.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-04T05:30:30.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra",
"max_issues_repo_path": "Everything.agda",
"max_line_length": 29,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra",
"max_stars_repo_path": "Everything.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-17T09:14:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-08-15T06:16:13.000Z",
"num_tokens": 90,
"size": 368
}
|
module Lec3 where
open import CS410-Prelude
not : Two -> Two
not tt = ff
not ff = tt
data TwoTestable (b : Two) : (x : Two) -> Set where
same : TwoTestable b b
diff : TwoTestable b (not b)
twoTest : (b x : Two) -> TwoTestable b x
twoTest tt tt = same
twoTest tt ff = diff
twoTest ff tt = diff
twoTest ff ff = same
twoTest' : (b x : Two) -> TwoTestable b x
twoTest' = caseTwo (caseTwo same diff) (caseTwo diff same)
xor : Two -> Two -> Two
xor b x with twoTest b x
xor b .b | same = ff
xor b .(not b) | diff = tt
xorHelp : (b x : Two) -> TwoTestable b x -> Two
xorHelp b .b same = ff
xorHelp b .(not b) diff = tt
xor' : Two -> Two -> Two
xor' b x = xorHelp b x (twoTest b x)
|
{
"alphanum_fraction": 0.6203438395,
"avg_line_length": 21.1515151515,
"ext": "agda",
"hexsha": "7039ac296f6e59c4535a159d9901703af99b11ee",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "clarkdm/CS410",
"max_forks_repo_path": "Lec3.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "clarkdm/CS410",
"max_issues_repo_path": "Lec3.agda",
"max_line_length": 58,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "clarkdm/CS410",
"max_stars_repo_path": "Lec3.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 250,
"size": 698
}
|
module _ (X : Set) where
open import Agda.Builtin.Equality
postulate
A : Set
data D : Set where
c : A → D
variable
P : D → Set
postulate
p : (f : ∀ x → P (c x)) (x y : A) → f x ≡ f y
|
{
"alphanum_fraction": 0.556122449,
"avg_line_length": 12.25,
"ext": "agda",
"hexsha": "452a8d5367e28403b8d9852be75c154b2026e7b8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue3807.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue3807.agda",
"max_line_length": 47,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue3807.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 79,
"size": 196
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.Prod where
open import Cubical.Data.Prod.Base public
open import Cubical.Data.Prod.Properties public
|
{
"alphanum_fraction": 0.7687861272,
"avg_line_length": 28.8333333333,
"ext": "agda",
"hexsha": "45d63c43c1263091a4179699d214ea06bdb4b60b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Data/Prod.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Data/Prod.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Data/Prod.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 42,
"size": 173
}
|
module Issue462 where
data _≡_ {A : Set} : A → A → Set where
≡-refl : (x : A) → x ≡ x
postulate A : Set
record R (_≈_ _∼_ : A → A → Set) : Set where
field
≈-refl : (x : A) → x ≈ x
∼-reflexive : (x y : A) → x ≈ y → x ∼ y
∼-refl : (x : A) → x ∼ x
∼-refl x = ∼-reflexive x x (≈-refl x)
postulate
_≈_ : A → A → Set
≈-refl : ((x : A) → x ≡ x) → (x : A) → x ≈ x
≈-irr : (x : A) (p : x ≈ x) → p ≡ p
≡-r : R _≡_ _≡_
≡-r = record
{ ≈-refl = ≡-refl
; ∼-reflexive = λ _ _ p → p
}
≈-reflexive : (x y : A) → x ≡ y → x ≈ y
≈-reflexive .x .x (≡-refl x) = ≈-refl (R.∼-refl ≡-r) x
≈-r : R _≡_ _≈_
≈-r = record
{ ≈-refl = ≡-refl
; ∼-reflexive = ≈-reflexive
}
foo : A → Set₁
foo x with ≈-irr x (R.∼-refl ≈-r x)
foo x | _ = Set
-- The generated with function should not contain unsolved
-- meta-variables.
|
{
"alphanum_fraction": 0.4628975265,
"avg_line_length": 20.2142857143,
"ext": "agda",
"hexsha": "f9c05f60849cec8a3e5cd02b506bbd183f519567",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue462.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue462.agda",
"max_line_length": 58,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue462.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 454,
"size": 849
}
|
{-
This file contains quotient groups
-}
{-# OPTIONS --safe #-}
module Cubical.Algebra.Group.QuotientGroup where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Powerset
open import Cubical.Foundations.GroupoidLaws hiding (assoc)
open import Cubical.Data.Sigma
open import Cubical.HITs.SetQuotients.Base renaming (_/_ to _/s_)
open import Cubical.HITs.SetQuotients.Properties
open import Cubical.Relation.Binary.Base
open import Cubical.Algebra.Group.Base
open import Cubical.Algebra.Group.Properties
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.Group.Subgroup
private
variable
ℓ : Level
module _ (G' : Group ℓ) (H' : Subgroup G') (Hnormal : isNormal H') where
open BinaryRelation
open isSubgroup (snd H')
open GroupStr (snd G')
open GroupTheory G'
private
G = ⟨ G' ⟩
_~_ : G → G → Type ℓ
x ~ y = x · inv y ∈ ⟪ H' ⟫
isRefl~ : isRefl _~_
isRefl~ x = subst-∈ ⟪ H' ⟫ (sym (·InvR x)) id-closed
G/H : Type ℓ
G/H = G /s _~_
1/H : G/H
1/H = [ 1g ]
_·/H_ : G/H → G/H → G/H
x ·/H y = setQuotBinOp isRefl~ isRefl~ _·_ rem x y
where
rem : (a a' b b' : G)
→ a · inv a' ∈ ⟪ H' ⟫
→ b · inv b' ∈ ⟪ H' ⟫
→ (a · b) · inv (a' · b') ∈ ⟪ H' ⟫
rem a a' b b' haa' hbb' = subst-∈ ⟪ H' ⟫ (cong (_ ·_) (sym (invDistr _ _))) rem5
where
rem1 : (inv a' · a) · b · inv b' ∈ ⟪ H' ⟫
rem1 = ·CommNormalSubgroup H' Hnormal
(op-closed hbb' (·CommNormalSubgroup H' Hnormal haa'))
rem2 : ((inv a' · a) · b) · inv b' ∈ ⟪ H' ⟫
rem2 = subst-∈ ⟪ H' ⟫ (·Assoc _ _ _) rem1
rem3 : inv b' · (inv a' · a) · b ∈ ⟪ H' ⟫
rem3 = ·CommNormalSubgroup H' Hnormal rem2
rem4 : (inv b' · inv a') · (a · b) ∈ ⟪ H' ⟫
rem4 = subst-∈ ⟪ H' ⟫ (cong (inv b' ·_) (sym (·Assoc _ _ _)) ∙ ·Assoc _ _ _) rem3
rem5 : (a · b) · inv b' · inv a' ∈ ⟪ H' ⟫
rem5 = ·CommNormalSubgroup H' Hnormal rem4
inv/H : G/H → G/H
inv/H = setQuotUnaryOp inv rem
where
rem : (a a' : G) → a · inv a' ∈ ⟪ H' ⟫ → inv a · inv (inv a') ∈ ⟪ H' ⟫
rem a a' haa' = subst-∈ ⟪ H' ⟫ (cong (inv a ·_) (sym (invInv a'))) rem1
where
ha'a : a' · inv a ∈ ⟪ H' ⟫
ha'a = subst-∈ ⟪ H' ⟫ (invDistr a (inv a') ∙ cong (_· inv a) (invInv a')) (inv-closed haa')
rem1 : inv a · a' ∈ ⟪ H' ⟫
rem1 = ·CommNormalSubgroup H' Hnormal ha'a
·/H-assoc : (a b c : G/H) → (a ·/H (b ·/H c)) ≡ ((a ·/H b) ·/H c)
·/H-assoc = elimProp3 (λ x y z → squash/ _ _) λ x y z → cong [_] (·Assoc x y z)
·/H-rid : (a : G/H) → (a ·/H 1/H) ≡ a
·/H-rid = elimProp (λ x → squash/ _ _) λ x → cong [_] (·IdR x)
·/H-invr : (a : G/H) → (a ·/H inv/H a) ≡ 1/H
·/H-invr = elimProp (λ x → squash/ _ _) λ x → cong [_] (·InvR x)
asGroup : Group ℓ
asGroup = makeGroup-right 1/H _·/H_ inv/H squash/ ·/H-assoc ·/H-rid ·/H-invr
_/_ : (G : Group ℓ) → (H : NormalSubgroup G) → Group ℓ
G / H = asGroup G (H .fst) (H .snd)
[_]/G : {G : Group ℓ} {H : NormalSubgroup G} → ⟨ G ⟩ → ⟨ G / H ⟩
[ x ]/G = [ x ]
-- Quotienting by a trivial subgroup
module _ {G' : Group ℓ} (H' : NormalSubgroup G')
(contrH : (x y : fst G') → _~_ G' (fst H') (snd H') x y → x ≡ y) where
private
-- open isSubgroup (snd H')
open GroupStr (snd G')
open GroupTheory G'
G = fst G'
G/H' = fst (G' / H')
Code : (g : G) → G/H' → hProp ℓ
Code g =
elim (λ _ → isSetHProp)
(λ a → (g ≡ a) , is-set _ _)
λ a b r → Σ≡Prop (λ _ → isPropIsProp) (cong (g ≡_) (contrH a b r))
decode : (g : G) (x : G/H') → [ g ] ≡ x → Code g x .fst
decode g x = J (λ x _ → Code g x .fst) refl
trivialRel→elimPath : {g h : G} → Path G/H' [ g ] [ h ] → g ≡ h
trivialRel→elimPath {g = g} {h = h} = decode g [ h ]
trivialRelIso : GroupIso G' (G' / H')
Iso.fun (fst trivialRelIso) g = [ g ]
Iso.inv (fst trivialRelIso) =
rec is-set (λ g → g) contrH
Iso.rightInv (fst trivialRelIso) =
elimProp (λ _ → squash/ _ _) λ _ → refl
Iso.leftInv (fst trivialRelIso) _ = refl
snd trivialRelIso =
makeIsGroupHom λ _ _ → refl
|
{
"alphanum_fraction": 0.5556863668,
"avg_line_length": 30.7753623188,
"ext": "agda",
"hexsha": "f5e282940baadd0b26f3fee3169c1c2b92743373",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/Group/QuotientGroup.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/Group/QuotientGroup.agda",
"max_line_length": 97,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/Group/QuotientGroup.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1716,
"size": 4247
}
|
{-# OPTIONS --cubical --safe #-}
module Relation.Nullary where
|
{
"alphanum_fraction": 0.6875,
"avg_line_length": 16,
"ext": "agda",
"hexsha": "88b9e19975f0ac6bfb3cb55b22e6d130c813ebd0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Relation/Nullary.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Relation/Nullary.agda",
"max_line_length": 32,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Relation/Nullary.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 15,
"size": 64
}
|
module HBound where
import Relation.Unary.PredicateTransformer as PT
open import Relation.Unary
open import Level
open import Relation.Binary using (Rel; IsEquivalence; module IsEquivalence; Reflexive; Symmetric; Transitive)
open import Category.Applicative
--naturalTrans : ∀ {a ℓ₁ ℓ₂ : Level } (ix : Set a ) (f : RU.Pred {a} ix ℓ₁ ) (g : RU.Pred {a} ix ℓ₂) -> Set (suc (ℓ₁ ∪ ℓ₂ ∪ a) )
-- naturalTrans ix f g = ∀ (x : ix) -> f x -> g x
-- indexed natural transformation as family predicates
-- note: this is not the most general notion of a natural transformation
NatIx : ∀ {i j k : Level } (a : Set k) (f : Pred a i) (g : Pred a j) -> Set ( j ⊔ i ⊔ k)
NatIx a f g = ∀ ( x : a ) -> (f x -> g x )
-- this is a simplified model of a homogenuous natural transformation
Nat : ∀ {i j } -> ∀ { a : Set i} -> Rel (Pred a j) (i ⊔ j )
Nat f g = forall x -> (f x -> g x )
{-
question: is using a formal model of categorical arrows useful here
-}
record NatFunctor {i j } {a : Set i} (t : Pred a j -> Pred a j) : Set ( i ⊔ suc j) where
field
natMap : ∀ {f g} -> Nat f g -> Nat (t f) (t g )
-- record NatTraverseable
|
{
"alphanum_fraction": 0.6109185442,
"avg_line_length": 32.9714285714,
"ext": "agda",
"hexsha": "eab916700c42254b4e3f8b40ef42658c3866cc3a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e0de23b3c78313a7f6856c3d48c3d6a2ce3962dd",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "hopper-lang/hopper-v0",
"max_forks_repo_path": "models/agda/HBound.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "e0de23b3c78313a7f6856c3d48c3d6a2ce3962dd",
"max_issues_repo_issues_event_max_datetime": "2020-02-19T01:08:47.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-02-19T01:08:47.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "hopper-lang/hopper-v0",
"max_issues_repo_path": "models/agda/HBound.agda",
"max_line_length": 132,
"max_stars_count": 17,
"max_stars_repo_head_hexsha": "e0de23b3c78313a7f6856c3d48c3d6a2ce3962dd",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "hopper-lang/hopper-v0",
"max_stars_repo_path": "models/agda/HBound.agda",
"max_stars_repo_stars_event_max_datetime": "2019-03-18T03:02:06.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-09-23T16:03:03.000Z",
"num_tokens": 391,
"size": 1154
}
|
module DayConvolution where
open import Library
open import Functors
open import Categories
open import Categories.Sets
open import MonoidalCat
-- first draft
ODay : ∀{l m}(M : Monoidal {l}{m})
(F G : Fun (Monoidal.C M) (Sets {l})) ->
Cat.Obj (Monoidal.C M) -> Set _
ODay M F G X =
Σ Obj \Y -> Σ Obj \Z -> OMap F Y × OMap G Z × Hom X (OMap ⊗ (Y , Z))
where open Monoidal M; open Cat C; open Fun
HDay : ∀{l m}(M : Monoidal {l}{m})
(F G : Fun (Monoidal.C M) (Sets {l})) -> ∀{X X'} ->
Cat.Hom (Monoidal.C M) X X' -> ODay M F G X' -> ODay M F G X
HDay M F G f (y , z , fy , gz , g) = y , z , fy , gz , comp g f
where open Monoidal M; open Cat C
DayF : ∀{l m}(M : Monoidal {l}{m})
(F G : Fun (Monoidal.C M) (Sets {l})) -> Fun ((Monoidal.C M) Op) Sets
DayF M F G = functor
(ODay M F G)
(HDay M F G)
(\ {X} -> ext (\{ (y , z , fy , gz , g) ->
cong (λ g → y , z , fy , gz , g) idr}))
(\ {X Y Z h k} -> ext (\{ (y , z , fy , gz , g) ->
cong (λ l → y , z , fy , gz , l) (sym ass)}))
where open Monoidal M; open Cat C
-- subject to some additional conditions
-- forall h : y -> y'.
-- (y , F h fy' , gz , g) ~ (y' , z , fy' , gz , [h,id] . g)
--
-- forall k : z -> z'
-- (y , z , fy , G k gz' , g) ~ (y , z' , fy , gz' , [id,k] . g)
|
{
"alphanum_fraction": 0.5019305019,
"avg_line_length": 30.1162790698,
"ext": "agda",
"hexsha": "7d04a4b315fb2d870442155850497655edde7216",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jmchapman/Relative-Monads",
"max_forks_repo_path": "DayConvolution.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jmchapman/Relative-Monads",
"max_issues_repo_path": "DayConvolution.agda",
"max_line_length": 76,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jmchapman/Relative-Monads",
"max_stars_repo_path": "DayConvolution.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z",
"num_tokens": 508,
"size": 1295
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Substitution lemmas
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Fin.Substitution.Lemmas where
import Category.Applicative.Indexed as Applicative
open import Data.Fin.Substitution
open import Data.Nat hiding (_⊔_)
open import Data.Fin using (Fin; zero; suc; lift)
open import Data.Vec
import Data.Vec.Properties as VecProp
open import Function as Fun using (_∘_; _$_)
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; refl; sym; cong; cong₂)
open import Relation.Binary.Construct.Closure.ReflexiveTransitive
using (Star; ε; _◅_; _▻_)
open PropEq.≡-Reasoning
open import Level using (Level; _⊔_)
open import Relation.Unary using (Pred)
-- A lemma which does not refer to any substitutions.
lift-commutes : ∀ {n} k j (x : Fin (j + (k + n))) →
lift j suc (lift j (lift k suc) x) ≡
lift j (lift (suc k) suc) (lift j suc x)
lift-commutes k zero x = refl
lift-commutes k (suc j) zero = refl
lift-commutes k (suc j) (suc x) = cong suc (lift-commutes k j x)
-- The modules below prove a number of substitution lemmas, on the
-- assumption that the underlying substitution machinery satisfies
-- certain properties.
record Lemmas₀ {ℓ : Level} (T : Pred ℕ ℓ) : Set ℓ where
field simple : Simple T
open Simple simple
extensionality : ∀ {m n} {ρ₁ ρ₂ : Sub T m n} →
(∀ x → lookup ρ₁ x ≡ lookup ρ₂ x) → ρ₁ ≡ ρ₂
extensionality {ρ₁ = []} {[]} hyp = refl
extensionality {ρ₁ = t₁ ∷ ρ₁} { t₂ ∷ ρ₂} hyp with hyp zero
extensionality {ρ₁ = t₁ ∷ ρ₁} {.t₁ ∷ ρ₂} hyp | refl =
cong (_∷_ t₁) (extensionality (hyp ∘ suc))
id-↑⋆ : ∀ {n} k → id ↑⋆ k ≡ id {k + n}
id-↑⋆ zero = refl
id-↑⋆ (suc k) = begin
(id ↑⋆ k) ↑ ≡⟨ cong _↑ (id-↑⋆ k) ⟩
id ↑ ∎
lookup-map-weaken-↑⋆ : ∀ {m n} k x {ρ : Sub T m n} →
lookup (map weaken ρ ↑⋆ k) x ≡
lookup ((ρ ↑) ↑⋆ k) (lift k suc x)
lookup-map-weaken-↑⋆ zero x = refl
lookup-map-weaken-↑⋆ (suc k) zero = refl
lookup-map-weaken-↑⋆ (suc k) (suc x) {ρ} = begin
lookup (map weaken (map weaken ρ ↑⋆ k)) x ≡⟨ VecProp.lookup-map x weaken (map weaken ρ ↑⋆ k) ⟩
weaken (lookup (map weaken ρ ↑⋆ k) x) ≡⟨ cong weaken (lookup-map-weaken-↑⋆ k x) ⟩
weaken (lookup ((ρ ↑) ↑⋆ k) (lift k suc x)) ≡⟨ sym $ VecProp.lookup-map (lift k suc x) weaken ((ρ ↑) ↑⋆ k) ⟩
lookup (map weaken ((ρ ↑) ↑⋆ k)) (lift k suc x) ∎
record Lemmas₁ {ℓ} (T : Pred ℕ ℓ) : Set ℓ where
field lemmas₀ : Lemmas₀ T
open Lemmas₀ lemmas₀
open Simple simple
field weaken-var : ∀ {n} {x : Fin n} → weaken (var x) ≡ var (suc x)
lookup-map-weaken : ∀ {m n} x {y} {ρ : Sub T m n} →
lookup ρ x ≡ var y →
lookup (map weaken ρ) x ≡ var (suc y)
lookup-map-weaken x {y} {ρ} hyp = begin
lookup (map weaken ρ) x ≡⟨ VecProp.lookup-map x weaken ρ ⟩
weaken (lookup ρ x) ≡⟨ cong weaken hyp ⟩
weaken (var y) ≡⟨ weaken-var ⟩
var (suc y) ∎
mutual
lookup-id : ∀ {n} (x : Fin n) → lookup id x ≡ var x
lookup-id zero = refl
lookup-id (suc x) = lookup-wk x
lookup-wk : ∀ {n} (x : Fin n) → lookup wk x ≡ var (suc x)
lookup-wk x = lookup-map-weaken x {ρ = id} (lookup-id x)
lookup-↑⋆ : ∀ {m n} (f : Fin m → Fin n) {ρ : Sub T m n} →
(∀ x → lookup ρ x ≡ var (f x)) →
∀ k x → lookup (ρ ↑⋆ k) x ≡ var (lift k f x)
lookup-↑⋆ f hyp zero x = hyp x
lookup-↑⋆ f hyp (suc k) zero = refl
lookup-↑⋆ f {ρ = ρ} hyp (suc k) (suc x) =
lookup-map-weaken x {ρ = ρ ↑⋆ k} (lookup-↑⋆ f hyp k x)
lookup-lift-↑⋆ : ∀ {m n} (f : Fin n → Fin m) {ρ : Sub T m n} →
(∀ x → lookup ρ (f x) ≡ var x) →
∀ k x → lookup (ρ ↑⋆ k) (lift k f x) ≡ var x
lookup-lift-↑⋆ f hyp zero x = hyp x
lookup-lift-↑⋆ f hyp (suc k) zero = refl
lookup-lift-↑⋆ f {ρ = ρ} hyp (suc k) (suc x) =
lookup-map-weaken (lift k f x) {ρ = ρ ↑⋆ k} (lookup-lift-↑⋆ f hyp k x)
lookup-wk-↑⋆ : ∀ {n} k (x : Fin (k + n)) →
lookup (wk ↑⋆ k) x ≡ var (lift k suc x)
lookup-wk-↑⋆ = lookup-↑⋆ suc lookup-wk
lookup-wk-↑⋆-↑⋆ : ∀ {n} k j (x : Fin (j + (k + n))) →
lookup (wk ↑⋆ k ↑⋆ j) x ≡
var (lift j (lift k suc) x)
lookup-wk-↑⋆-↑⋆ k = lookup-↑⋆ (lift k suc) (lookup-wk-↑⋆ k)
lookup-sub-↑⋆ : ∀ {n t} k (x : Fin (k + n)) →
lookup (sub t ↑⋆ k) (lift k suc x) ≡ var x
lookup-sub-↑⋆ = lookup-lift-↑⋆ suc lookup-id
open Lemmas₀ lemmas₀ public
record Lemmas₂ {ℓ} (T : Pred ℕ ℓ) : Set ℓ where
field
lemmas₁ : Lemmas₁ T
application : Application T T
open Lemmas₁ lemmas₁
subst : Subst T
subst = record { simple = simple; application = application }
open Subst subst
field var-/ : ∀ {m n x} {ρ : Sub T m n} → var x / ρ ≡ lookup ρ x
suc-/-sub : ∀ {n x} {t : T n} → var (suc x) / sub t ≡ var x
suc-/-sub {x = x} {t} = begin
var (suc x) / sub t ≡⟨ var-/ ⟩
lookup (sub t) (suc x) ≡⟨ refl ⟩
lookup id x ≡⟨ lookup-id x ⟩
var x ∎
lookup-⊙ : ∀ {m n k} x {ρ₁ : Sub T m n} {ρ₂ : Sub T n k} →
lookup (ρ₁ ⊙ ρ₂) x ≡ lookup ρ₁ x / ρ₂
lookup-⊙ x {ρ₁} {ρ₂} = VecProp.lookup-map x (λ t → t / ρ₂) ρ₁
lookup-⨀ : ∀ {m n} x (ρs : Subs T m n) →
lookup (⨀ ρs) x ≡ var x /✶ ρs
lookup-⨀ x ε = lookup-id x
lookup-⨀ x (ρ ◅ ε) = sym var-/
lookup-⨀ x (ρ ◅ (ρ′ ◅ ρs′)) = begin
lookup (⨀ (ρ ◅ ρs)) x ≡⟨ refl ⟩
lookup (⨀ ρs ⊙ ρ) x ≡⟨ lookup-⊙ x {ρ₁ = ⨀ (ρ′ ◅ ρs′)} ⟩
lookup (⨀ ρs) x / ρ ≡⟨ cong₂ _/_ (lookup-⨀ x (ρ′ ◅ ρs′)) refl ⟩
var x /✶ ρs / ρ ∎
where ρs = ρ′ ◅ ρs′
id-⊙ : ∀ {m n} {ρ : Sub T m n} → id ⊙ ρ ≡ ρ
id-⊙ {ρ = ρ} = extensionality λ x → begin
lookup (id ⊙ ρ) x ≡⟨ lookup-⊙ x {ρ₁ = id} ⟩
lookup id x / ρ ≡⟨ cong₂ _/_ (lookup-id x) refl ⟩
var x / ρ ≡⟨ var-/ ⟩
lookup ρ x ∎
lookup-wk-↑⋆-⊙ : ∀ {m n} k {x} {ρ : Sub T (k + suc m) n} →
lookup (wk ↑⋆ k ⊙ ρ) x ≡ lookup ρ (lift k suc x)
lookup-wk-↑⋆-⊙ k {x} {ρ} = begin
lookup (wk ↑⋆ k ⊙ ρ) x ≡⟨ lookup-⊙ x {ρ₁ = wk ↑⋆ k} ⟩
lookup (wk ↑⋆ k) x / ρ ≡⟨ cong₂ _/_ (lookup-wk-↑⋆ k x) refl ⟩
var (lift k suc x) / ρ ≡⟨ var-/ ⟩
lookup ρ (lift k suc x) ∎
wk-⊙-sub′ : ∀ {n} {t : T n} k → wk ↑⋆ k ⊙ sub t ↑⋆ k ≡ id
wk-⊙-sub′ {t = t} k = extensionality λ x → begin
lookup (wk ↑⋆ k ⊙ sub t ↑⋆ k) x ≡⟨ lookup-wk-↑⋆-⊙ k ⟩
lookup (sub t ↑⋆ k) (lift k suc x) ≡⟨ lookup-sub-↑⋆ k x ⟩
var x ≡⟨ sym (lookup-id x) ⟩
lookup id x ∎
wk-⊙-sub : ∀ {n} {t : T n} → wk ⊙ sub t ≡ id
wk-⊙-sub = wk-⊙-sub′ zero
var-/-wk-↑⋆ : ∀ {n} k (x : Fin (k + n)) →
var x / wk ↑⋆ k ≡ var (lift k suc x)
var-/-wk-↑⋆ k x = begin
var x / wk ↑⋆ k ≡⟨ var-/ ⟩
lookup (wk ↑⋆ k) x ≡⟨ lookup-wk-↑⋆ k x ⟩
var (lift k suc x) ∎
wk-↑⋆-⊙-wk : ∀ {n} k j →
wk {n} ↑⋆ k ↑⋆ j ⊙ wk ↑⋆ j ≡
wk ↑⋆ j ⊙ wk ↑⋆ suc k ↑⋆ j
wk-↑⋆-⊙-wk k j = extensionality λ x → begin
lookup (wk ↑⋆ k ↑⋆ j ⊙ wk ↑⋆ j) x ≡⟨ lookup-⊙ x {ρ₁ = wk ↑⋆ k ↑⋆ j} ⟩
lookup (wk ↑⋆ k ↑⋆ j) x / wk ↑⋆ j ≡⟨ cong₂ _/_ (lookup-wk-↑⋆-↑⋆ k j x) refl ⟩
var (lift j (lift k suc) x) / wk ↑⋆ j ≡⟨ var-/-wk-↑⋆ j (lift j (lift k suc) x) ⟩
var (lift j suc (lift j (lift k suc) x)) ≡⟨ cong var (lift-commutes k j x) ⟩
var (lift j (lift (suc k) suc) (lift j suc x)) ≡⟨ sym (lookup-wk-↑⋆-↑⋆ (suc k) j (lift j suc x)) ⟩
lookup (wk ↑⋆ suc k ↑⋆ j) (lift j suc x) ≡⟨ sym var-/ ⟩
var (lift j suc x) / wk ↑⋆ suc k ↑⋆ j ≡⟨ cong₂ _/_ (sym (lookup-wk-↑⋆ j x)) refl ⟩
lookup (wk ↑⋆ j) x / wk ↑⋆ suc k ↑⋆ j ≡⟨ sym (lookup-⊙ x {ρ₁ = wk ↑⋆ j}) ⟩
lookup (wk ↑⋆ j ⊙ wk ↑⋆ suc k ↑⋆ j) x ∎
open Subst subst public hiding (simple; application)
open Lemmas₁ lemmas₁ public
record Lemmas₃ {ℓ} (T : Pred ℕ ℓ) : Set ℓ where
field lemmas₂ : Lemmas₂ T
open Lemmas₂ lemmas₂
field
/✶-↑✶ : ∀ {m n} (ρs₁ ρs₂ : Subs T m n) →
(∀ k x → var x /✶ ρs₁ ↑✶ k ≡ var x /✶ ρs₂ ↑✶ k) →
∀ k t → t /✶ ρs₁ ↑✶ k ≡ t /✶ ρs₂ ↑✶ k
/✶-↑✶′ : ∀ {m n} (ρs₁ ρs₂ : Subs T m n) →
(∀ k → ⨀ (ρs₁ ↑✶ k) ≡ ⨀ (ρs₂ ↑✶ k)) →
∀ k t → t /✶ ρs₁ ↑✶ k ≡ t /✶ ρs₂ ↑✶ k
/✶-↑✶′ ρs₁ ρs₂ hyp = /✶-↑✶ ρs₁ ρs₂ (λ k x → begin
var x /✶ ρs₁ ↑✶ k ≡⟨ sym (lookup-⨀ x (ρs₁ ↑✶ k)) ⟩
lookup (⨀ (ρs₁ ↑✶ k)) x ≡⟨ cong (Fun.flip lookup x) (hyp k) ⟩
lookup (⨀ (ρs₂ ↑✶ k)) x ≡⟨ lookup-⨀ x (ρs₂ ↑✶ k) ⟩
var x /✶ ρs₂ ↑✶ k ∎)
id-vanishes : ∀ {n} (t : T n) → t / id ≡ t
id-vanishes = /✶-↑✶′ (ε ▻ id) ε id-↑⋆ zero
⊙-id : ∀ {m n} {ρ : Sub T m n} → ρ ⊙ id ≡ ρ
⊙-id {ρ = ρ} = begin
map (λ t → t / id) ρ ≡⟨ VecProp.map-cong id-vanishes ρ ⟩
map Fun.id ρ ≡⟨ VecProp.map-id ρ ⟩
ρ ∎
open Lemmas₂ lemmas₂ public hiding (wk-⊙-sub′)
record Lemmas₄ {ℓ} (T : Pred ℕ ℓ) : Set ℓ where
field lemmas₃ : Lemmas₃ T
open Lemmas₃ lemmas₃
field /-wk : ∀ {n} {t : T n} → t / wk ≡ weaken t
private
↑-distrib′ : ∀ {m n k} {ρ₁ : Sub T m n} {ρ₂ : Sub T n k} →
(∀ t → t / ρ₂ / wk ≡ t / wk / ρ₂ ↑) →
(ρ₁ ⊙ ρ₂) ↑ ≡ ρ₁ ↑ ⊙ ρ₂ ↑
↑-distrib′ {ρ₁ = ρ₁} {ρ₂} hyp = begin
(ρ₁ ⊙ ρ₂) ↑ ≡⟨ refl ⟩
var zero ∷ map weaken (ρ₁ ⊙ ρ₂) ≡⟨ cong₂ _∷_ (sym var-/) lemma ⟩
var zero / ρ₂ ↑ ∷ map weaken ρ₁ ⊙ ρ₂ ↑ ≡⟨ refl ⟩
ρ₁ ↑ ⊙ ρ₂ ↑ ∎
where
lemma = begin
map weaken (map (λ t → t / ρ₂) ρ₁) ≡⟨ sym (VecProp.map-∘ _ _ _) ⟩
map (λ t → weaken (t / ρ₂)) ρ₁ ≡⟨ VecProp.map-cong (λ t → begin
weaken (t / ρ₂) ≡⟨ sym /-wk ⟩
t / ρ₂ / wk ≡⟨ hyp t ⟩
t / wk / ρ₂ ↑ ≡⟨ cong₂ _/_ /-wk refl ⟩
weaken t / ρ₂ ↑ ∎) ρ₁ ⟩
map (λ t → weaken t / ρ₂ ↑) ρ₁ ≡⟨ VecProp.map-∘ _ _ _ ⟩
map (λ t → t / ρ₂ ↑) (map weaken ρ₁) ∎
↑⋆-distrib′ : ∀ {m n o} {ρ₁ : Sub T m n} {ρ₂ : Sub T n o} →
(∀ k t → t / ρ₂ ↑⋆ k / wk ≡ t / wk / ρ₂ ↑⋆ suc k) →
∀ k → (ρ₁ ⊙ ρ₂) ↑⋆ k ≡ ρ₁ ↑⋆ k ⊙ ρ₂ ↑⋆ k
↑⋆-distrib′ hyp zero = refl
↑⋆-distrib′ {ρ₁ = ρ₁} {ρ₂} hyp (suc k) = begin
(ρ₁ ⊙ ρ₂) ↑⋆ suc k ≡⟨ cong _↑ (↑⋆-distrib′ hyp k) ⟩
(ρ₁ ↑⋆ k ⊙ ρ₂ ↑⋆ k) ↑ ≡⟨ ↑-distrib′ (hyp k) ⟩
ρ₁ ↑⋆ suc k ⊙ ρ₂ ↑⋆ suc k ∎
map-weaken : ∀ {m n} {ρ : Sub T m n} → map weaken ρ ≡ ρ ⊙ wk
map-weaken {ρ = ρ} = begin
map weaken ρ ≡⟨ VecProp.map-cong (λ _ → sym /-wk) ρ ⟩
map (λ t → t / wk) ρ ≡⟨ refl ⟩
ρ ⊙ wk ∎
private
⊙-wk′ : ∀ {m n} {ρ : Sub T m n} k →
ρ ↑⋆ k ⊙ wk ↑⋆ k ≡ wk ↑⋆ k ⊙ ρ ↑ ↑⋆ k
⊙-wk′ {ρ = ρ} k = sym (begin
wk ↑⋆ k ⊙ ρ ↑ ↑⋆ k ≡⟨ lemma ⟩
map weaken ρ ↑⋆ k ≡⟨ cong (λ ρ′ → ρ′ ↑⋆ k) map-weaken ⟩
(ρ ⊙ wk) ↑⋆ k ≡⟨ ↑⋆-distrib′ (λ k t →
/✶-↑✶′ (ε ▻ wk ↑⋆ k ▻ wk) (ε ▻ wk ▻ wk ↑⋆ suc k)
(wk-↑⋆-⊙-wk k) zero t) k ⟩
ρ ↑⋆ k ⊙ wk ↑⋆ k ∎)
where
lemma = extensionality λ x → begin
lookup (wk ↑⋆ k ⊙ ρ ↑ ↑⋆ k) x ≡⟨ lookup-wk-↑⋆-⊙ k ⟩
lookup (ρ ↑ ↑⋆ k) (lift k suc x) ≡⟨ sym (lookup-map-weaken-↑⋆ k x) ⟩
lookup (map weaken ρ ↑⋆ k) x ∎
⊙-wk : ∀ {m n} {ρ : Sub T m n} → ρ ⊙ wk ≡ wk ⊙ ρ ↑
⊙-wk = ⊙-wk′ zero
wk-commutes : ∀ {m n} {ρ : Sub T m n} t →
t / ρ / wk ≡ t / wk / ρ ↑
wk-commutes {ρ = ρ} = /✶-↑✶′ (ε ▻ ρ ▻ wk) (ε ▻ wk ▻ ρ ↑) ⊙-wk′ zero
↑⋆-distrib : ∀ {m n o} {ρ₁ : Sub T m n} {ρ₂ : Sub T n o} →
∀ k → (ρ₁ ⊙ ρ₂) ↑⋆ k ≡ ρ₁ ↑⋆ k ⊙ ρ₂ ↑⋆ k
↑⋆-distrib = ↑⋆-distrib′ (λ _ → wk-commutes)
/-⊙ : ∀ {m n k} {ρ₁ : Sub T m n} {ρ₂ : Sub T n k} t →
t / ρ₁ ⊙ ρ₂ ≡ t / ρ₁ / ρ₂
/-⊙ {ρ₁ = ρ₁} {ρ₂} t =
/✶-↑✶′ (ε ▻ ρ₁ ⊙ ρ₂) (ε ▻ ρ₁ ▻ ρ₂) ↑⋆-distrib zero t
⊙-assoc : ∀ {m n k o}
{ρ₁ : Sub T m n} {ρ₂ : Sub T n k} {ρ₃ : Sub T k o} →
ρ₁ ⊙ (ρ₂ ⊙ ρ₃) ≡ (ρ₁ ⊙ ρ₂) ⊙ ρ₃
⊙-assoc {ρ₁ = ρ₁} {ρ₂} {ρ₃} = begin
map (λ t → t / ρ₂ ⊙ ρ₃) ρ₁ ≡⟨ VecProp.map-cong /-⊙ ρ₁ ⟩
map (λ t → t / ρ₂ / ρ₃) ρ₁ ≡⟨ VecProp.map-∘ _ _ _ ⟩
map (λ t → t / ρ₃) (map (λ t → t / ρ₂) ρ₁) ∎
map-weaken-⊙-sub : ∀ {m n} {ρ : Sub T m n} {t} → map weaken ρ ⊙ sub t ≡ ρ
map-weaken-⊙-sub {ρ = ρ} {t} = begin
map weaken ρ ⊙ sub t ≡⟨ cong₂ _⊙_ map-weaken refl ⟩
ρ ⊙ wk ⊙ sub t ≡⟨ sym ⊙-assoc ⟩
ρ ⊙ (wk ⊙ sub t) ≡⟨ cong (_⊙_ ρ) wk-⊙-sub ⟩
ρ ⊙ id ≡⟨ ⊙-id ⟩
ρ ∎
sub-⊙ : ∀ {m n} {ρ : Sub T m n} t → sub t ⊙ ρ ≡ ρ ↑ ⊙ sub (t / ρ)
sub-⊙ {ρ = ρ} t = begin
sub t ⊙ ρ ≡⟨ refl ⟩
t / ρ ∷ id ⊙ ρ ≡⟨ cong (_∷_ (t / ρ)) id-⊙ ⟩
t / ρ ∷ ρ ≡⟨ cong (_∷_ (t / ρ)) (sym map-weaken-⊙-sub) ⟩
t / ρ ∷ map weaken ρ ⊙ sub (t / ρ) ≡⟨ cong₂ _∷_ (sym var-/) refl ⟩
ρ ↑ ⊙ sub (t / ρ) ∎
suc-/-↑ : ∀ {m n} {ρ : Sub T m n} x →
var (suc x) / ρ ↑ ≡ var x / ρ / wk
suc-/-↑ {ρ = ρ} x = begin
var (suc x) / ρ ↑ ≡⟨ var-/ ⟩
lookup (map weaken ρ) x ≡⟨ cong (Fun.flip lookup x) (map-weaken {ρ = ρ}) ⟩
lookup (ρ ⊙ wk) x ≡⟨ lookup-⊙ x {ρ₁ = ρ} ⟩
lookup ρ x / wk ≡⟨ cong₂ _/_ (sym var-/) refl ⟩
var x / ρ / wk ∎
open Lemmas₃ lemmas₃ public
hiding (/✶-↑✶; /✶-↑✶′; wk-↑⋆-⊙-wk;
lookup-wk-↑⋆-⊙; lookup-map-weaken-↑⋆)
-- For an example of how AppLemmas can be used, see
-- Data.Fin.Substitution.List.
record AppLemmas {ℓ₁ ℓ₂} (T₁ : Pred ℕ ℓ₁) (T₂ : Pred ℕ ℓ₂) : Set (ℓ₁ ⊔ ℓ₂) where
field
application : Application T₁ T₂
lemmas₄ : Lemmas₄ T₂
open Application application using (_/_; _/✶_)
open Lemmas₄ lemmas₄
using (id; _⊙_; wk; weaken; sub; _↑; ⨀) renaming (_/_ to _⊘_)
field
id-vanishes : ∀ {n} (t : T₁ n) → t / id ≡ t
/-⊙ : ∀ {m n k} {ρ₁ : Sub T₂ m n} {ρ₂ : Sub T₂ n k} t →
t / ρ₁ ⊙ ρ₂ ≡ t / ρ₁ / ρ₂
private module L₄ = Lemmas₄ lemmas₄
/-⨀ : ∀ {m n} t (ρs : Subs T₂ m n) → t / ⨀ ρs ≡ t /✶ ρs
/-⨀ t ε = id-vanishes t
/-⨀ t (ρ ◅ ε) = refl
/-⨀ t (ρ ◅ (ρ′ ◅ ρs′)) = begin
t / ⨀ ρs ⊙ ρ ≡⟨ /-⊙ t ⟩
t / ⨀ ρs / ρ ≡⟨ cong₂ _/_ (/-⨀ t (ρ′ ◅ ρs′)) refl ⟩
t /✶ ρs / ρ ∎
where ρs = ρ′ ◅ ρs′
⨀→/✶ : ∀ {m n} (ρs₁ ρs₂ : Subs T₂ m n) →
⨀ ρs₁ ≡ ⨀ ρs₂ → ∀ t → t /✶ ρs₁ ≡ t /✶ ρs₂
⨀→/✶ ρs₁ ρs₂ hyp t = begin
t /✶ ρs₁ ≡⟨ sym (/-⨀ t ρs₁) ⟩
t / ⨀ ρs₁ ≡⟨ cong (_/_ t) hyp ⟩
t / ⨀ ρs₂ ≡⟨ /-⨀ t ρs₂ ⟩
t /✶ ρs₂ ∎
wk-commutes : ∀ {m n} {ρ : Sub T₂ m n} t →
t / ρ / wk ≡ t / wk / ρ ↑
wk-commutes {ρ = ρ} = ⨀→/✶ (ε ▻ ρ ▻ wk) (ε ▻ wk ▻ ρ ↑) L₄.⊙-wk
sub-commutes : ∀ {m n} {t′} {ρ : Sub T₂ m n} t →
t / sub t′ / ρ ≡ t / ρ ↑ / sub (t′ ⊘ ρ)
sub-commutes {t′ = t′} {ρ} =
⨀→/✶ (ε ▻ sub t′ ▻ ρ) (ε ▻ ρ ↑ ▻ sub (t′ ⊘ ρ)) (L₄.sub-⊙ t′)
wk-sub-vanishes : ∀ {n t′} (t : T₁ n) → t / wk / sub t′ ≡ t
wk-sub-vanishes {t′ = t′} = ⨀→/✶ (ε ▻ wk ▻ sub t′) ε L₄.wk-⊙-sub
/-weaken : ∀ {m n} {ρ : Sub T₂ m n} t → t / map weaken ρ ≡ t / ρ / wk
/-weaken {ρ = ρ} = ⨀→/✶ (ε ▻ map weaken ρ) (ε ▻ ρ ▻ wk) L₄.map-weaken
open Application application public
open L₄ public
hiding (application; _⊙_; _/_; _/✶_;
id-vanishes; /-⊙; wk-commutes)
record Lemmas₅ {ℓ} (T : Pred ℕ ℓ) : Set ℓ where
field lemmas₄ : Lemmas₄ T
private module L₄ = Lemmas₄ lemmas₄
appLemmas : AppLemmas T T
appLemmas = record
{ application = L₄.application
; lemmas₄ = lemmas₄
; id-vanishes = L₄.id-vanishes
; /-⊙ = L₄./-⊙
}
open AppLemmas appLemmas public hiding (lemmas₄)
------------------------------------------------------------------------
-- Instantiations and code for facilitating instantiations
-- Lemmas about variable substitutions (renamings).
module VarLemmas where
open VarSubst
lemmas₃ : Lemmas₃ Fin
lemmas₃ = record
{ lemmas₂ = record
{ lemmas₁ = record
{ lemmas₀ = record
{ simple = simple
}
; weaken-var = refl
}
; application = application
; var-/ = refl
}
; /✶-↑✶ = λ _ _ hyp → hyp
}
private module L₃ = Lemmas₃ lemmas₃
lemmas₅ : Lemmas₅ Fin
lemmas₅ = record
{ lemmas₄ = record
{ lemmas₃ = lemmas₃
; /-wk = L₃.lookup-wk _
}
}
open Lemmas₅ lemmas₅ public hiding (lemmas₃)
-- Lemmas about "term" substitutions.
record TermLemmas (T : ℕ → Set) : Set₁ where
field
termSubst : TermSubst T
open TermSubst termSubst
field
app-var : ∀ {T′} {lift : Lift T′ T} {m n x} {ρ : Sub T′ m n} →
app lift (var x) ρ ≡ Lift.lift lift (lookup ρ x)
/✶-↑✶ : ∀ {T₁ T₂} {lift₁ : Lift T₁ T} {lift₂ : Lift T₂ T} →
let open Lifted lift₁
using () renaming (_↑✶_ to _↑✶₁_; _/✶_ to _/✶₁_)
open Lifted lift₂
using () renaming (_↑✶_ to _↑✶₂_; _/✶_ to _/✶₂_)
in
∀ {m n} (ρs₁ : Subs T₁ m n) (ρs₂ : Subs T₂ m n) →
(∀ k x → var x /✶₁ ρs₁ ↑✶₁ k ≡ var x /✶₂ ρs₂ ↑✶₂ k) →
∀ k t → t /✶₁ ρs₁ ↑✶₁ k ≡ t /✶₂ ρs₂ ↑✶₂ k
private module V = VarLemmas
lemmas₃ : Lemmas₃ T
lemmas₃ = record
{ lemmas₂ = record
{ lemmas₁ = record
{ lemmas₀ = record
{ simple = simple
}
; weaken-var = λ {_ x} → begin
var x /Var V.wk ≡⟨ app-var ⟩
var (lookup V.wk x) ≡⟨ cong var (V.lookup-wk x) ⟩
var (suc x) ∎
}
; application = Subst.application subst
; var-/ = app-var
}
; /✶-↑✶ = /✶-↑✶
}
private module L₃ = Lemmas₃ lemmas₃
lemmas₅ : Lemmas₅ T
lemmas₅ = record
{ lemmas₄ = record
{ lemmas₃ = lemmas₃
; /-wk = λ {_ t} → begin
t / wk ≡⟨ /✶-↑✶ (ε ▻ wk) (ε ▻ V.wk)
(λ k x → begin
var x / wk ↑⋆ k ≡⟨ L₃.var-/-wk-↑⋆ k x ⟩
var (lift k suc x) ≡⟨ cong var (sym (V.var-/-wk-↑⋆ k x)) ⟩
var (lookup (V._↑⋆_ V.wk k) x) ≡⟨ sym app-var ⟩
var x /Var V._↑⋆_ V.wk k ∎)
zero t ⟩
t /Var V.wk ≡⟨⟩
weaken t ∎
}
}
open Lemmas₅ lemmas₅ public hiding (lemmas₃)
|
{
"alphanum_fraction": 0.4356792315,
"avg_line_length": 36.763915547,
"ext": "agda",
"hexsha": "2eb52a30b59fc0bc6a8b1e7b681795f93e6ce7dd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Fin/Substitution/Lemmas.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Fin/Substitution/Lemmas.agda",
"max_line_length": 117,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Fin/Substitution/Lemmas.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 8783,
"size": 19154
}
|
open import eq
open import bool
open import bool-relations using (transitive; total)
open import maybe
open import nat
open import nat-thms using (≤-trans; ≤-total)
open import product
module z05-01-bst-test where
open import bool-relations _≤_ hiding (transitive; total)
import z05-01-bst as BST
open BST nat _≤_ (λ {x} {y} {z} → ≤-trans {x} {y} {z})
(λ {x} {y} → ≤-total {x} {y})
empty : bst 0 0
empty = bst-leaf refl
_ : bst-search 0 empty ≡ nothing
_ = refl
_ : bst-insert 5 empty ≡ bst-node 5 (bst-leaf refl) (bst-leaf refl) refl refl
_ = refl
bst-5 : bst 0 5
bst-5 = bst-insert 5 empty
_ : maybe (Σ ℕ (λ z → (5 < z || 5 =ℕ z) && (z < 5 || z =ℕ 5) ≡ tt))
_ = bst-search 5 bst-5
_ : bst-insert 9 bst-5 ≡ bst-node 5 (bst-leaf refl)
(bst-node 9 (bst-leaf refl) (bst-leaf refl) refl refl) refl refl
_ = refl
_ : bst 0 9
_ = bst-insert 9 bst-5
_ : bst 0 5
_ = bst-dec-lb {0} {0} {5} (bst-leaf refl) refl
|
{
"alphanum_fraction": 0.6012332991,
"avg_line_length": 23.7317073171,
"ext": "agda",
"hexsha": "3d4e5fd9e8570c4dc79a5b0c96b7a4142052c5b7",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z05-01-bst-test.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z05-01-bst-test.agda",
"max_line_length": 91,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z05-01-bst-test.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 369,
"size": 973
}
|
module Data.TreeRep where
open import Prelude hiding (_>>=_) renaming (_>>=′_ to _>>=_)
open import Container.Traversable
open import Builtin.Reflection
open import Builtin.Float
data Leaf : Set where
char : Char → Leaf
string : String → Leaf
float : Float → Leaf
name : Name → Leaf
data TreeRep : Set where
leaf : Leaf → TreeRep
node : Nat → List TreeRep → TreeRep
--- Eq instance ---
private
leaf-char-inj : ∀ {x y} → Leaf.char x ≡ char y → x ≡ y
leaf-char-inj refl = refl
leaf-string-inj : ∀ {x y} → Leaf.string x ≡ string y → x ≡ y
leaf-string-inj refl = refl
leaf-float-inj : ∀ {x y} → Leaf.float x ≡ float y → x ≡ y
leaf-float-inj refl = refl
leaf-name-inj : ∀ {x y} → Leaf.name x ≡ name y → x ≡ y
leaf-name-inj refl = refl
leaf-inj : ∀ {x y} → leaf x ≡ leaf y → x ≡ y
leaf-inj refl = refl
node-inj₁ : ∀ {x y z w} → node x z ≡ node y w → x ≡ y
node-inj₁ refl = refl
node-inj₂ : ∀ {x y z w} → node x z ≡ node y w → z ≡ w
node-inj₂ refl = refl
eq-leaf : (x y : Leaf) → Dec (x ≡ y)
eq-leaf (char x) (char x₁) = decEq₁ leaf-char-inj (x == x₁)
eq-leaf (string x) (string x₁) = decEq₁ leaf-string-inj (x == x₁)
eq-leaf (float x) (float x₁) = decEq₁ leaf-float-inj (x == x₁)
eq-leaf (name x) (name x₁) = decEq₁ leaf-name-inj (x == x₁)
eq-leaf (char x) (string x₁) = no λ()
eq-leaf (char x) (float x₁) = no λ()
eq-leaf (char x) (name x₁) = no λ()
eq-leaf (string x) (char x₁) = no λ()
eq-leaf (string x) (float x₁) = no λ()
eq-leaf (string x) (name x₁) = no λ()
eq-leaf (float x) (char x₁) = no λ()
eq-leaf (float x) (string x₁) = no λ()
eq-leaf (float x) (name x₁) = no λ()
eq-leaf (name x) (char x₁) = no λ()
eq-leaf (name x) (string x₁) = no λ()
eq-leaf (name x) (float x₁) = no λ()
instance
EqLeaf : Eq Leaf
_==_ {{EqLeaf}} = eq-leaf
private
eq-tree : (x y : TreeRep) → Dec (x ≡ y)
eq-trees : (xs ys : List TreeRep) → Dec (xs ≡ ys)
eq-tree (leaf x) (leaf x₁) = decEq₁ leaf-inj (x == x₁)
eq-tree (leaf x) (node x₁ x₂) = no λ()
eq-tree (node x x₁) (leaf x₂) = no λ()
eq-tree (node x xs) (node y ys) = decEq₂ node-inj₁ node-inj₂ (x == y) (eq-trees xs ys)
eq-trees [] [] = yes refl
eq-trees [] (x ∷ ys) = no λ()
eq-trees (x ∷ xs) [] = no λ()
eq-trees (x ∷ xs) (y ∷ ys) = decEq₂ cons-inj-head cons-inj-tail (eq-tree x y) (eq-trees xs ys)
instance
EqTree : Eq TreeRep
_==_ {{EqTree}} = eq-tree
--- Ord instance ---
data LessLeaf : Leaf → Leaf → Set where
char : ∀ {x y} → x < y → LessLeaf (char x) (char y)
string : ∀ {x y} → x < y → LessLeaf (string x) (string y)
float : ∀ {x y} → x < y → LessLeaf (float x) (float y)
name : ∀ {x y} → x < y → LessLeaf (name x) (name y)
char<string : ∀ {x y} → LessLeaf (char x) (string y)
char<float : ∀ {x y} → LessLeaf (char x) (float y)
char<name : ∀ {x y} → LessLeaf (char x) (name y)
string<float : ∀ {x y} → LessLeaf (string x) (float y)
string<name : ∀ {x y} → LessLeaf (string x) (name y)
float<name : ∀ {x y} → LessLeaf (float x) (name y)
private
cmp-leaf : (a b : Leaf) → Comparison LessLeaf a b
cmp-leaf (char x) (char x₁) = mapComparison char (compare x x₁)
cmp-leaf (string x) (string x₁) = mapComparison string (compare x x₁)
cmp-leaf (float x) (float x₁) = mapComparison float (compare x x₁)
cmp-leaf (name x) (name x₁) = mapComparison name (compare x x₁)
cmp-leaf (char x) (string x₁) = less char<string
cmp-leaf (char x) (float x₁) = less char<float
cmp-leaf (char x) (name x₁) = less char<name
cmp-leaf (string x) (char x₁) = greater char<string
cmp-leaf (string x) (float x₁) = less string<float
cmp-leaf (string x) (name x₁) = less string<name
cmp-leaf (float x) (char x₁) = greater char<float
cmp-leaf (float x) (string x₁) = greater string<float
cmp-leaf (float x) (name x₁) = less float<name
cmp-leaf (name x) (char x₁) = greater char<name
cmp-leaf (name x) (string x₁) = greater string<name
cmp-leaf (name x) (float x₁) = greater float<name
instance
OrdLeaf : Ord Leaf
OrdLeaf = defaultOrd cmp-leaf
OrdLawsLeaf : Ord/Laws Leaf
Ord/Laws.super OrdLawsLeaf = it
less-antirefl {{OrdLawsLeaf}} (char lt) = less-antirefl {A = Nat } lt
less-antirefl {{OrdLawsLeaf}} (string lt) = less-antirefl {A = List Char} lt
less-antirefl {{OrdLawsLeaf}} (float lt) = less-antirefl {A = Float } lt
less-antirefl {{OrdLawsLeaf}} (name lt) = less-antirefl {A = Name } lt
less-trans {{OrdLawsLeaf}} (char lt) (char lt₁) = char (less-trans {A = Nat } lt lt₁)
less-trans {{OrdLawsLeaf}} (string lt) (string lt₁) = string (less-trans {A = List Char} lt lt₁)
less-trans {{OrdLawsLeaf}} (float lt) (float lt₁) = float (less-trans {A = Float } lt lt₁)
less-trans {{OrdLawsLeaf}} (name lt) (name lt₁) = name (less-trans {A = Name } lt lt₁)
less-trans {{OrdLawsLeaf}} (char lt) char<string = char<string
less-trans {{OrdLawsLeaf}} (char lt) char<float = char<float
less-trans {{OrdLawsLeaf}} (char lt) char<name = char<name
less-trans {{OrdLawsLeaf}} (string lt) string<float = string<float
less-trans {{OrdLawsLeaf}} (string lt) string<name = string<name
less-trans {{OrdLawsLeaf}} (float lt) float<name = float<name
less-trans {{OrdLawsLeaf}} char<string (string lt) = char<string
less-trans {{OrdLawsLeaf}} char<string string<float = char<float
less-trans {{OrdLawsLeaf}} char<string string<name = char<name
less-trans {{OrdLawsLeaf}} char<float (float lt) = char<float
less-trans {{OrdLawsLeaf}} char<float float<name = char<name
less-trans {{OrdLawsLeaf}} char<name (name lt) = char<name
less-trans {{OrdLawsLeaf}} string<float (float lt) = string<float
less-trans {{OrdLawsLeaf}} string<float float<name = string<name
less-trans {{OrdLawsLeaf}} string<name (name lt) = string<name
less-trans {{OrdLawsLeaf}} float<name (name lt) = float<name
data LessTree : TreeRep → TreeRep → Set where
leaf : ∀ {x y} → x < y → LessTree (leaf x) (leaf y)
leaf<node : ∀ {x y ys} → LessTree (leaf x) (node y ys)
tag< : ∀ {x y xs ys} → x < y → LessTree (node x xs) (node y ys)
children< : ∀ {x xs ys} → LessList LessTree xs ys → LessTree (node x xs) (node x ys)
private
cmp-tree : ∀ x y → Comparison LessTree x y
cmp-trees : ∀ xs ys → Comparison (LessList LessTree) xs ys
cmp-tree (leaf x) (leaf y) = mapComparison leaf (compare x y)
cmp-tree (leaf _) (node _ _) = less leaf<node
cmp-tree (node _ _) (leaf _) = greater leaf<node
cmp-tree (node x xs) (node y ys) with compare x y
cmp-tree (node x xs) (node y ys) | less x<y = less (tag< x<y)
cmp-tree (node x xs) (node y ys) | greater x>y = greater (tag< x>y)
cmp-tree (node x xs) (node .x ys) | equal refl with cmp-trees xs ys
cmp-tree (node x xs) (node .x ys) | equal refl | less lt = less (children< lt)
cmp-tree (node x xs) (node .x .xs) | equal refl | equal refl = equal refl
cmp-tree (node x xs) (node .x ys) | equal refl | greater gt = greater (children< gt)
cmp-trees [] [] = equal refl
cmp-trees [] (x ∷ ys) = less nil<cons
cmp-trees (x ∷ xs) [] = greater nil<cons
cmp-trees (x ∷ xs) (y ∷ ys) = compareCons (cmp-tree x y) (cmp-trees xs ys)
instance
OrdTree : Ord TreeRep
OrdTree = defaultOrd cmp-tree
private
antirefl : {t : TreeRep} → t < t → ⊥
antirefls : {ts : List TreeRep} → ts < ts → ⊥
antirefl (leaf lt) = less-antirefl {A = Leaf} lt
antirefl (tag< lt) = less-antirefl {A = Nat} lt
antirefl (children< lt) = antirefls lt
antirefls (head< lt) = antirefl lt
antirefls (tail< lt) = antirefls lt
ltrans : {s t u : TreeRep} → s < t → t < u → s < u
ltranss : {ss ts us : List TreeRep} → ss < ts → ts < us → ss < us
ltrans (leaf lt) (leaf lt₁) = leaf (less-trans {A = Leaf} lt lt₁)
ltrans (leaf lt) leaf<node = leaf<node
ltrans leaf<node (tag< lt) = leaf<node
ltrans leaf<node (children< lt) = leaf<node
ltrans (tag< lt) (tag< lt₁) = tag< (less-trans {A = Nat} lt lt₁)
ltrans (tag< lt) (children< lt₁) = tag< lt
ltrans (children< lt) (tag< lt₁) = tag< lt₁
ltrans (children< lt) (children< lt₁) = children< (ltranss lt lt₁)
ltranss nil<cons (head< lt) = nil<cons
ltranss nil<cons (tail< lt₁) = nil<cons
ltranss (head< lt) (head< lt₁) = head< (ltrans lt lt₁)
ltranss (head< lt) (tail< lt₁) = head< lt
ltranss (tail< lt) (head< lt₁) = head< lt₁
ltranss (tail< lt) (tail< lt₁) = tail< (ltranss lt lt₁)
instance
OrdLawsTree : Ord/Laws TreeRep
Ord/Laws.super OrdLawsTree = it
less-antirefl {{OrdLawsTree}} = antirefl
less-trans {{OrdLawsTree}} = ltrans
--- Encoding types as trees ---
record TreeEncoding {a} (A : Set a) : Set a where
constructor treeEncoding
field
treeEncode : A → TreeRep
treeDecode : TreeRep → Maybe A
isTreeEmbedding : ∀ x → treeDecode (treeEncode x) ≡ just x
open TreeEncoding {{...}} public
module _ {a} {A : Set a} {{_ : TreeEncoding A}} where
private
encode-injective : (x y : A) → treeEncode x ≡ treeEncode y → x ≡ y
encode-injective x y eq = eraseEquality $ just-inj $
isTreeEmbedding x ʳ⟨≡⟩ cong treeDecode eq ⟨≡⟩ isTreeEmbedding y
decTreeEq : (x y : A) → Dec (x ≡ y)
decTreeEq x y with treeEncode x == treeEncode y
decTreeEq x y | yes eq = yes (encode-injective x y eq)
decTreeEq x y | no !eq = no λ x=y → !eq (cong treeEncode x=y)
EqByTreeEncoding : Eq A
_==_ {{EqByTreeEncoding}} = decTreeEq
data LessEncoding (x y : A) : Set a where
less-enc : treeEncode x < treeEncode y → LessEncoding x y
OrdByTreeEncoding : Ord A
OrdByTreeEncoding = defaultOrd λ x y → injectComparison (encode-injective _ _) less-enc $
(compare on treeEncode) x y
OrdLawsByTreeEncoding : Ord/Laws A
Ord/Laws.super OrdLawsByTreeEncoding = OrdByTreeEncoding
less-antirefl {{OrdLawsByTreeEncoding}} (less-enc lt) = less-antirefl {A = TreeRep} lt
less-trans {{OrdLawsByTreeEncoding}} (less-enc lt) (less-enc lt₁) = less-enc (less-trans {A = TreeRep} lt lt₁)
--- Encodings for standard types ---
instance
EncodeNat : TreeEncoding Nat
EncodeNat = treeEncoding enc dec (λ _ → refl)
where
enc : Nat → TreeRep
enc n = node n []
dec : TreeRep → Maybe Nat
dec (node n _) = just n
dec (leaf _) = nothing
EncodeBool : TreeEncoding Bool
EncodeBool = treeEncoding enc dec emb
where
enc : Bool → TreeRep
enc false = node 0 []
enc true = node 1 []
dec : TreeRep → Maybe Bool
dec (node 0 _) = just false
dec _ = just true
emb : ∀ b → dec (enc b) ≡ just b
emb false = refl
emb true = refl
EncodeMaybe : ∀ {a} {A : Set a} {{_ : TreeEncoding A}} → TreeEncoding (Maybe A)
EncodeMaybe {A = A} = treeEncoding enc dec emb
where
enc : Maybe A → TreeRep
enc nothing = node 0 []
enc (just x) = node 1 [ treeEncode x ]
dec : TreeRep → Maybe (Maybe A)
dec (node 0 _) = just nothing
dec (node _ (x ∷ _)) = just <$> treeDecode x
dec _ = nothing
emb : ∀ x → dec (enc x) ≡ just x
emb nothing = refl
emb (just x) = just =$= isTreeEmbedding x
EncodeSigma : ∀ {a b} {A : Set a} {B : A → Set b}
{{EncA : TreeEncoding A}} {{EncB : ∀ {x} → TreeEncoding (B x)}} →
TreeEncoding (Σ A B)
EncodeSigma {A = A} {B = B} = treeEncoding enc dec emb
where
enc : Σ A B → TreeRep
enc (x , y) = node 0 (treeEncode x ∷ treeEncode y ∷ [])
dec : TreeRep → Maybe (Σ A B)
dec (node _ (x ∷ y ∷ _)) = do
x ← treeDecode x ofType Maybe A
y ← treeDecode y
just (x , y)
dec _ = nothing
emb : ∀ x → dec (enc x) ≡ just x
emb (x , y) rewrite isTreeEmbedding x | isTreeEmbedding y = refl
EncodeList : ∀ {a} {A : Set a} {{_ : TreeEncoding A}} → TreeEncoding (List A)
treeEncode {{EncodeList}} xs = node 0 (map treeEncode xs)
treeDecode {{EncodeList}} (node _ xs) = traverse′ treeDecode xs
treeDecode {{EncodeList}} _ = nothing
isTreeEmbedding {{EncodeList}} [] = refl
isTreeEmbedding {{EncodeList}} (x ∷ xs) = _∷_ =$= isTreeEmbedding x =*= isTreeEmbedding xs
--- Example ---
-- private
-- data TestData : Set where
-- cA : TestData → TestData
-- cB : TestData → TestData → TestData
-- cC : TestData
-- cD : TestData → TestData → TestData
-- private
-- encodeTest : TestData → TreeRep
-- encodeTest (cA x) = node 0 (encodeTest x ∷ [])
-- encodeTest (cB x y) = node 1 (encodeTest x ∷ encodeTest y ∷ [])
-- encodeTest cC = node 2 []
-- encodeTest (cD x y) = node 3 (encodeTest x ∷ encodeTest y ∷ [])
-- decodeTest : TreeRep → Maybe TestData
-- decodeTest (leaf _) = nothing
-- decodeTest (node 0 (x ∷ [])) = cA <$> decodeTest x
-- decodeTest (node 1 (x ∷ y ∷ [])) = cB <$> decodeTest x <*> decodeTest y
-- decodeTest (node 2 []) = just cC
-- decodeTest (node 3 (x ∷ y ∷ [])) = cD <$> decodeTest x <*> decodeTest y
-- decodeTest _ = nothing
-- embeddingTest : ∀ x → decodeTest (encodeTest x) ≡ just x
-- embeddingTest (cA x) = cA =$= embeddingTest x
-- embeddingTest (cB x y) = cB =$= embeddingTest x =*= embeddingTest y
-- embeddingTest cC = refl
-- embeddingTest (cD x y) = cD =$= embeddingTest x =*= embeddingTest y
-- instance
-- EncodeTest : TreeEncoding TestData
-- EncodeTest = record { treeEncode = encodeTest
-- ; treeDecode = decodeTest
-- ; isTreeEmbedding = embeddingTest }
-- EqTest : Eq TestData
-- EqTest = EqByTreeEncoding
-- OrdTest : Ord TestData
-- OrdTest = OrdByTreeEncoding
|
{
"alphanum_fraction": 0.5961068812,
"avg_line_length": 39.106741573,
"ext": "agda",
"hexsha": "45def4d49f6b627e87871b5a31f3e4291fe9b86b",
"lang": "Agda",
"max_forks_count": 24,
"max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z",
"max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "L-TChen/agda-prelude",
"max_forks_repo_path": "src/Data/TreeRep.agda",
"max_issues_count": 59,
"max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "L-TChen/agda-prelude",
"max_issues_repo_path": "src/Data/TreeRep.agda",
"max_line_length": 115,
"max_stars_count": 111,
"max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "L-TChen/agda-prelude",
"max_stars_repo_path": "src/Data/TreeRep.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z",
"num_tokens": 4829,
"size": 13922
}
|
module _ where
open import Agda.Builtin.Reflection renaming (bindTC to _>>=_)
open import Agda.Builtin.Unit
open import Agda.Builtin.List
open import Agda.Builtin.Nat
open import Agda.Builtin.Equality
open import Agda.Builtin.Bool
_>>_ : {A B : Set} → TC A → TC B → TC B
m >> m₁ = m >>= λ _ → m₁
data Fin : Nat → Set where
zero : ∀ {n} → Fin (suc n)
suc : ∀ {n} → Fin n → Fin (suc n)
macro
reflectAndCheck : ∀ {a} {A : Set a} → A → Term → TC ⊤
reflectAndCheck {A = A} x hole = withNormalisation true do
`x ← quoteTC x
`A ← quoteTC A
``x ← checkType `x `A >>= quoteTC
unify hole ``x
quoteUnquote : ∀ {a} {A : Set a} → A → Term → TC ⊤
quoteUnquote x hole = withNormalisation true do
`x ← quoteTC x
unify hole `x
module _ (n : Nat) (A : Set) (m : Nat) (j : Fin m) where
plam₁ : Fin n → Fin m
plam₁ = λ where zero → j; (suc i) → j
`plam₁ : Term
`plam₁ = reflectAndCheck plam₁
plam₁′ : Fin n → Fin m
plam₁′ = quoteUnquote plam₁
refined₁ : n ≡ suc m → Nat
refined₁ refl = 0
where
plam : Fin n → Fin m
plam = λ where zero → j; (suc i) → i
`plam : Term
`plam = reflectAndCheck plam
plam′ : Fin n → Fin m
plam′ = quoteUnquote plam
refined₂ : m ≡ suc n → Nat
refined₂ refl = 0
where
plam : Fin n → Fin m
plam = λ where zero → j; (suc i) → suc (suc i)
`plam : Term
`plam = reflectAndCheck plam
plam′ : Fin n → Fin m
plam′ = quoteUnquote plam
|
{
"alphanum_fraction": 0.5807537012,
"avg_line_length": 22.8615384615,
"ext": "agda",
"hexsha": "14f6201c2104d4d0750bc04aebd601794065c0f0",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/QuotePatternLambda.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/QuotePatternLambda.agda",
"max_line_length": 62,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/QuotePatternLambda.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 556,
"size": 1486
}
|
{-# OPTIONS --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Substitution.Introductions.Universe {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Typed.Weakening
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.Properties
open import Definition.LogicalRelation.Substitution
open import Definition.LogicalRelation.Substitution.MaybeEmbed
open import Tools.Product
open import Tools.Empty
import Definition.LogicalRelation.Weakening as wkLR
import Tools.PropositionalEquality as PE
import Data.Nat as Nat
-- Validity of the universe type.
U¹ᵛ : ∀ {Γ rU l} → (ι ¹ <∞ l) → ([Γ] : ⊩ᵛ Γ)
→ Γ ⊩ᵛ⟨ l ⟩ Univ rU ¹ ^ [ ! , ∞ ] / [Γ]
U¹ᵛ {Γ} {rU} ∞< [Γ] ⊢Δ [σ] =
Ugen ⊢Δ , (λ [σ′] [σ≡σ′] → id (Uⱼ ⊢Δ))
U⁰ᵛ : ∀ {Γ rU l' l} → (⁰ ≤ l') → (ι l' <∞ l) → ([Γ] : ⊩ᵛ Γ)
→ Γ ⊩ᵛ⟨ l ⟩ Univ rU ⁰ ^ [ ! , ι ¹ ] / [Γ]
U⁰ᵛ {Γ} {rU} (<is≤ 0<1) ∞< [Γ] ⊢Δ [σ] = emb ∞< (Uᵣ (Uᵣ rU ⁰ emb< PE.refl [[ Ugenⱼ ⊢Δ , Ugenⱼ ⊢Δ , id (Ugenⱼ ⊢Δ) ]])) , (λ [σ′] [σ≡σ′] → id (Ugenⱼ ⊢Δ))
U⁰ᵛ {Γ} {rU} (≡is≤ PE.refl) l< [Γ] ⊢Δ [σ] =
Uᵣ (Uᵣ rU ⁰ l< PE.refl [[ Ugenⱼ ⊢Δ , Ugenⱼ ⊢Δ , id (Ugenⱼ ⊢Δ) ]])
, (λ [σ′] [σ≡σ′] → id (Ugenⱼ ⊢Δ))
Uᵛgen : ∀ {Γ rU lU lU' l} → (lU ≤ lU') → (ι lU' <∞ l) → ([Γ] : ⊩ᵛ Γ)
→ Γ ⊩ᵛ⟨ l ⟩ Univ rU lU ^ [ ! , next lU ] / [Γ]
Uᵛgen {lU = ⁰} = U⁰ᵛ
Uᵛgen {lU = ¹} (≡is≤ PE.refl) = U¹ᵛ
Uᵛ : ∀ {Γ rU lU l} → (ι lU <∞ l) → ([Γ] : ⊩ᵛ Γ)
→ Γ ⊩ᵛ⟨ l ⟩ Univ rU lU ^ [ ! , next lU ] / [Γ]
Uᵛ = Uᵛgen (≡is≤ PE.refl)
Uᵗᵛ₁ : ∀ {Γ rU} → (⊢Γ : ⊢ Γ) → Γ ⊩⟨ ∞ ⟩ Univ rU ⁰ ∷ Univ ! ¹ ^ [ ! , ∞ ] / Ugen ⊢Γ
Uᵗᵛ₁ {Γ} {rU} ⊢Γ = Uₜ (Univ rU ⁰) (idRedTerm:*: (univ 0<1 ⊢Γ)) Uₙ (≅-U⁰refl ⊢Γ)
(λ σ ⊢Δ₁ → Uᵣ′ (Univ rU ⁰) (ι ¹) rU ⁰ emb< PE.refl (idRed:*: (Ugenⱼ ⊢Δ₁)))
Uᵗᵛ : ∀ {Γ rU} → ([Γ] : ⊩ᵛ Γ) → Γ ⊩ᵛ⟨ ∞ ⟩ Univ rU ⁰ ∷ Univ ! ¹ ^ [ ! , ∞ ] / [Γ] / Uᵛ ∞< [Γ]
Uᵗᵛ {Γ} {rU} [Γ] = λ ⊢Δ [σ] → Uᵗᵛ₁ ⊢Δ
, λ [σ′] [σ≡σ′] → Uₜ₌ (Uᵗᵛ₁ ⊢Δ) (Uᵗᵛ₁ ⊢Δ) (≅-U⁰refl ⊢Δ) λ [ρ] ⊢Δ → id (Ugenⱼ ⊢Δ)
-- Valid terms of type U are valid types.
univᵛ : ∀ {A Γ rU lU lU' l} ([Γ] : ⊩ᵛ Γ)
(lU< : lU ≤ lU')
([U] : Γ ⊩ᵛ⟨ l ⟩ Univ rU lU ^ [ ! , next lU ] / [Γ])
→ Γ ⊩ᵛ⟨ l ⟩ A ∷ Univ rU lU ^ [ ! , next lU ] / [Γ] / [U]
→ Γ ⊩ᵛ⟨ ι lU' ⟩ A ^ [ rU , ι lU ] / [Γ]
univᵛ {lU = lU} {l = l} [Γ] lU< [U] [A] ⊢Δ [σ] =
let [A]₁ = irrelevance-≤ lU< (univEq (proj₁ ([U] ⊢Δ [σ])) (proj₁ ([A] ⊢Δ [σ]))) in
[A]₁ , λ [σ′] [σ≡σ′] → univEqEq (proj₁ ([U] ⊢Δ [σ])) [A]₁
((proj₂ ([A] ⊢Δ [σ])) [σ′] [σ≡σ′])
-- Valid term equality of type U is valid type equality.
univEqᵛ : ∀ {A B Γ rU lU l l′} ([Γ] : ⊩ᵛ Γ)
([U] : Γ ⊩ᵛ⟨ l′ ⟩ Univ rU lU ^ [ ! , next lU ] / [Γ])
([A] : Γ ⊩ᵛ⟨ l ⟩ A ^ [ rU , ι lU ] / [Γ])
→ Γ ⊩ᵛ⟨ l′ ⟩ A ≡ B ∷ Univ rU lU ^ [ ! , next lU ] / [Γ] / [U]
→ Γ ⊩ᵛ⟨ l ⟩ A ≡ B ^ [ rU , ι lU ] / [Γ] / [A]
univEqᵛ {A} [Γ] [U] [A] [t≡u] ⊢Δ [σ] =
univEqEq (proj₁ ([U] ⊢Δ [σ])) (proj₁ ([A] ⊢Δ [σ])) ([t≡u] ⊢Δ [σ])
univᵗᵛ : ∀ {Γ A t r l′} ([Γ] : ⊩ᵛ Γ)
→ ([U] : Γ ⊩ᵛ⟨ ∞ ⟩ Univ r l′ ^ [ ! , next l′ ] / [Γ] )
→ ([A] : Γ ⊩ᵛ⟨ ∞ ⟩ A ∷ Univ r l′ ^ [ ! , next l′ ] / [Γ] / [U])
→ Γ ⊩ᵛ⟨ ∞ ⟩ t ∷ A ^ [ r , ι l′ ] / [Γ] / maybeEmbᵛ {A = A} [Γ] (univᵛ {A = A} [Γ] (≡is≤ PE.refl) [U] [A])
→ Γ ⊩ᵛ⟨ ι l′ ⟩ t ∷ A ^ [ r , ι l′ ] / [Γ] / univᵛ {A = A} [Γ] (≡is≤ PE.refl) [U] [A]
univᵗᵛ {Γ} {A} {t} {r} {⁰} [Γ] [U] [A] [t] ⊢Δ [σ] =
univEqTerm (proj₁ ([U] ⊢Δ [σ])) (proj₁ ([A] ⊢Δ [σ])) (proj₁ ([t] ⊢Δ [σ])) ,
λ [σ′] [σ≡σ′] → univEqEqTerm (proj₁ ([U] ⊢Δ [σ])) (proj₁ ([A] ⊢Δ [σ])) (proj₁ ([t] ⊢Δ [σ])) (proj₂ ([t] ⊢Δ [σ]) [σ′] [σ≡σ′])
univᵗᵛ {Γ} {A} {t} {r} {¹} [Γ] [U] [A] [t] ⊢Δ [σ] =
univEqTerm (proj₁ ([U] ⊢Δ [σ])) (proj₁ ([A] ⊢Δ [σ])) (proj₁ ([t] ⊢Δ [σ])) ,
λ [σ′] [σ≡σ′] → univEqEqTerm (proj₁ ([U] ⊢Δ [σ])) (proj₁ ([A] ⊢Δ [σ])) (proj₁ ([t] ⊢Δ [σ])) (proj₂ ([t] ⊢Δ [σ]) [σ′] [σ≡σ′])
un-univᵛ : ∀ {A Γ r l} ([Γ] : ⊩ᵛ Γ)
([U] : Γ ⊩ᵛ⟨ next l ⟩ Univ r l ^ [ ! , next l ] / [Γ])
→ Γ ⊩ᵛ⟨ ι l ⟩ A ^ [ r , ι l ] / [Γ]
→ Γ ⊩ᵛ⟨ next l ⟩ A ∷ Univ r l ^ [ ! , next l ] / [Γ] / [U]
un-univᵛ {l = l} [Γ] [U] [A] = λ ⊢Δ [σ] →
irrelevanceTerm (Ugen (wf (escape (proj₁ ([A] ⊢Δ [σ]))))) (proj₁ ([U] ⊢Δ [σ])) (un-univEq (proj₁ ([A] ⊢Δ [σ]))) ,
λ [σ′] [σ≡σ′] → irrelevanceEqTerm (Ugen (wf (escape (proj₁ ([A] ⊢Δ [σ]))))) (proj₁ ([U] ⊢Δ [σ])) (un-univEqEq (proj₁ ([A] ⊢Δ [σ])) (proj₁ ([A] ⊢Δ [σ′])) (proj₂ ([A] ⊢Δ [σ]) [σ′] [σ≡σ′]))
un-univEqᵛ : ∀ {A B Γ r l} ([Γ] : ⊩ᵛ Γ)
([U] : Γ ⊩ᵛ⟨ next l ⟩ Univ r l ^ [ ! , next l ] / [Γ])
→ ([A] : Γ ⊩ᵛ⟨ ι l ⟩ A ^ [ r , ι l ] / [Γ])
→ ([B] : Γ ⊩ᵛ⟨ ι l ⟩ B ^ [ r , ι l ] / [Γ])
→ Γ ⊩ᵛ⟨ ι l ⟩ A ≡ B ^ [ r , ι l ] / [Γ] / [A]
→ Γ ⊩ᵛ⟨ next l ⟩ A ≡ B ∷ Univ r l ^ [ ! , next l ] / [Γ] / [U]
un-univEqᵛ {l = l} [Γ] [U] [A] [B] [A≡B] = λ ⊢Δ [σ] →
irrelevanceEqTerm (Ugen (wf (escape (proj₁ ([A] ⊢Δ [σ]))))) (proj₁ ([U] ⊢Δ [σ])) (un-univEqEq (proj₁ ([A] ⊢Δ [σ])) (proj₁ ([B] ⊢Δ [σ])) ([A≡B] ⊢Δ [σ]))
|
{
"alphanum_fraction": 0.4423298731,
"avg_line_length": 48.1666666667,
"ext": "agda",
"hexsha": "b3e324082c828ad979af32459dd050461fb0af5e",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Universe.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Universe.agda",
"max_line_length": 189,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Universe.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 3062,
"size": 5202
}
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import cohomology.Theory
open import groups.ExactSequence
open import groups.Exactness
open import groups.HomSequence
open import groups.KernelImageUniqueFactorization
import cw.cohomology.GridPtdMap as GPM
open import cw.CW
module cw.cohomology.HigherCohomologyGroups {i} (OT : OrdinaryTheory i)
{n} (⊙skel : ⊙Skeleton {i} (S (S (S n)))) (ac : ⊙has-cells-with-choice 0 ⊙skel i) where
private
Sn≤SSSn : S n ≤ S (S (S n))
Sn≤SSSn = lteSR lteS
n≤SSn : n ≤ S (S n)
n≤SSn = lteSR lteS
n≤SSSn : n ≤ S (S (S n))
n≤SSSn = lteSR (lteSR lteS)
⊙skel₋₁ = ⊙cw-init ⊙skel
ac₋₁ = ⊙init-has-cells-with-choice ⊙skel ac
⊙skel₋₂ = ⊙cw-init ⊙skel₋₁
⊙skel₋₃ = ⊙cw-take n≤SSSn ⊙skel
ac₋₃ = ⊙take-has-cells-with-choice n≤SSSn ⊙skel ac
open OrdinaryTheory OT
open import cw.cohomology.HigherCoboundaryGrid OT
open import cw.cohomology.Descending OT
open import cw.cohomology.InnerGrid OT (ℕ-to-ℤ (S (S n)))
(⊙cw-incl-last ⊙skel₋₂)
(⊙cw-incl-last ⊙skel₋₁)
(⊙cw-incl-last ⊙skel)
open import cw.cohomology.WedgeOfCells OT
open import cw.cohomology.HigherCoboundary OT ⊙skel
import cw.cohomology.HigherCoboundary OT ⊙skel₋₁ as LC
import cw.cohomology.GridLongExactSequence cohomology-theory as GLES
{-
H apex
Coker ≃ C(X₂/X₀)<---C(X₃/X₀) ≃ C(X)
^ ^
| |
| |
C(X₂/X₁)<---C(X₃/X₁) ≃ Ker
WoC G
WoC := Wedges of Cells
-}
private
C-apex : Group i
C-apex = C (ℕ-to-ℤ (S (S n))) (⊙Cofiber (⊙cw-incl-tail n≤SSSn ⊙skel))
open import cohomology.LongExactSequence cohomology-theory
(ℕ-to-ℤ (S n)) (⊙cw-incl-tail n≤SSSn ⊙skel)
C-apex-iso-C-cw : C-apex ≃ᴳ C (ℕ-to-ℤ (S (S n))) ⊙⟦ ⊙skel ⟧
C-apex-iso-C-cw = Exact2.G-trivial-and-L-trivial-implies-H-iso-K
(exact-seq-index 1 C-cofiber-exact-seq)
(exact-seq-index 2 C-cofiber-exact-seq)
(C-cw-at-higher ⊙skel₋₃ ltS ac₋₃)
(C-cw-at-higher ⊙skel₋₃ (ltSR ltS) ac₋₃)
G : Group i
G = C (ℕ-to-ℤ (S (S n))) (⊙Cofiber (⊙cw-incl-tail Sn≤SSSn ⊙skel))
G-iso-Ker : G ≃ᴳ Ker.grp cw-co∂-last
G-iso-Ker = Ker-cw-co∂-last ⊙skel ac
H : Group i
H = C (ℕ-to-ℤ (S (S n))) (⊙Cofiber (⊙cw-incl-tail n≤SSn ⊙skel₋₁))
Coker-iso-H : LC.CokerCo∂ ≃ᴳ H
Coker-iso-H = Coker-cw-co∂-last ⊙skel₋₁ ac₋₁
module GLES-top = GLES (ℕ-to-ℤ (S n))
(⊙cw-incl-nth Sn≤SSSn ⊙skel) (⊙cw-incl-tail Sn≤SSSn ⊙skel)
module GPM-top = GPM
(⊙cw-incl-nth Sn≤SSSn ⊙skel) (⊙cw-incl-tail Sn≤SSSn ⊙skel)
G-to-C-apex : G →ᴳ C-apex
G-to-C-apex = C-fmap (ℕ-to-ℤ (S (S n))) GPM-top.Z/X-to-Z/Y
abstract
G-to-C-apex-is-surj : is-surjᴳ G-to-C-apex
G-to-C-apex-is-surj = Exact.K-trivial-implies-φ-is-surj
(exact-seq-index 2 GLES-top.C-grid-cofiber-exact-seq)
(CXₙ/Xₙ₋₁->-is-trivial ⊙skel₋₂ ltS (⊙take-has-cells-with-choice Sn≤SSSn ⊙skel ac))
module GLES-right = GLES (ℕ-to-ℤ (S n))
(⊙cw-incl-tail n≤SSn ⊙skel₋₁) (⊙cw-incl-last ⊙skel)
module GPM-right = GPM
(⊙cw-incl-tail n≤SSn ⊙skel₋₁) (⊙cw-incl-last ⊙skel)
C-apex-to-H : C-apex →ᴳ H
C-apex-to-H = C-fmap (ℕ-to-ℤ (S (S n))) GPM-right.Y/X-to-Z/X
abstract
C-apex-to-H-is-inj : is-injᴳ C-apex-to-H
C-apex-to-H-is-inj = Exact.G-trivial-implies-ψ-is-inj
(exact-seq-index 2 GLES-right.C-grid-cofiber-exact-seq)
(CXₙ/Xₙ₋₁-<-is-trivial ⊙skel ltS ac)
C-WoC : Group i
C-WoC = C (ℕ-to-ℤ (S (S n))) (⊙Cofiber (⊙cw-incl-last ⊙skel₋₁))
G-to-C-WoC : G →ᴳ C-WoC
G-to-C-WoC = C-fmap (ℕ-to-ℤ (S (S n)))
(GPM.Y/X-to-Z/X (⊙cw-incl-last ⊙skel₋₁) (⊙cw-incl-last ⊙skel))
C-WoC-to-H : C-WoC →ᴳ H
C-WoC-to-H = C-fmap (ℕ-to-ℤ (S (S n)))
(GPM.Z/X-to-Z/Y (⊙cw-incl-nth Sn≤SSSn ⊙skel) (⊙cw-incl-last ⊙skel₋₁))
open import groups.KernelImage cw-co∂-last LC.cw-co∂-last
(CXₙ/Xₙ₋₁-is-abelian ⊙skel₋₁ (ℕ-to-ℤ (S (S n))))
C-cw-iso-ker/im : C (ℕ-to-ℤ (S (S n))) ⊙⟦ ⊙skel ⟧ ≃ᴳ Ker/Im
C-cw-iso-ker/im = lemma ∘eᴳ C-apex-iso-C-cw ⁻¹ᴳ where
lemma : C-apex ≃ᴳ Ker/Im
lemma = H-iso-Ker/Im
cw-co∂-last LC.cw-co∂-last
(CXₙ/Xₙ₋₁-is-abelian ⊙skel₋₁ (ℕ-to-ℤ (S (S n))))
φ₁ φ₁-is-surj φ₂ φ₂-is-inj lemma-comm
where
φ₁ = G-to-C-apex ∘ᴳ GroupIso.g-hom G-iso-Ker
abstract
φ₁-is-surj : is-surjᴳ φ₁
φ₁-is-surj = ∘-is-surj G-to-C-apex-is-surj (equiv-is-surj (GroupIso.g-is-equiv G-iso-Ker))
φ₂ = GroupIso.g-hom Coker-iso-H ∘ᴳ C-apex-to-H
abstract
φ₂-is-inj : is-injᴳ φ₂
φ₂-is-inj = ∘-is-inj (equiv-is-inj (GroupIso.g-is-equiv Coker-iso-H)) C-apex-to-H-is-inj
abstract
lemma-comm : ∀ g →
GroupIso.g Coker-iso-H (GroupHom.f (C-apex-to-H ∘ᴳ G-to-C-apex) (GroupIso.g G-iso-Ker g))
== q[ fst g ]
lemma-comm g =
GroupIso.g Coker-iso-H (GroupHom.f C-apex-to-H (GroupHom.f G-to-C-apex (GroupIso.g G-iso-Ker g)))
=⟨ ap (GroupIso.g Coker-iso-H) (! (C-inner-grid-commutes □$ᴳ GroupIso.g G-iso-Ker g)) ⟩
GroupIso.g Coker-iso-H (GroupHom.f C-WoC-to-H (GroupHom.f G-to-C-WoC (GroupIso.g G-iso-Ker g)))
=⟨ ap (GroupIso.g Coker-iso-H ∘ GroupHom.f C-WoC-to-H ∘ fst) (GroupIso.f-g G-iso-Ker g) ⟩
GroupIso.g Coker-iso-H (GroupHom.f C-WoC-to-H (fst g))
=⟨ GroupIso.g-f Coker-iso-H q[ fst g ] ⟩
q[ fst g ]
=∎
|
{
"alphanum_fraction": 0.5968890555,
"avg_line_length": 33.9872611465,
"ext": "agda",
"hexsha": "2d1a09ae3aaa003d1457e1d510e48e2b9c5730d8",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "theorems/cw/cohomology/HigherCohomologyGroups.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "theorems/cw/cohomology/HigherCohomologyGroups.agda",
"max_line_length": 107,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "theorems/cw/cohomology/HigherCohomologyGroups.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2440,
"size": 5336
}
|
module PiNF-algebra where
open import Data.Product hiding (map)
open import Level
open import Relation.Binary.Core
open import Algebra
import Algebra.FunctionProperties as FunctionProperties
open import Algebra.FunctionProperties.Core
open import Algebra.Structures
open import PiNF-syntax
------------------------------------------------------------------------------
-- Establish that Pi syntactically is a commutative semiring
⟷IsEquivalence : IsEquivalence _⟷_
⟷IsEquivalence = record {
refl = id⟷ ;
sym = sym ;
trans = _◎_
}
+IsSemigroup : IsSemigroup _⟷_ PLUS
+IsSemigroup = record {
isEquivalence = ⟷IsEquivalence ;
assoc = λ x y z → assocr₊ {x} {y} {z} ;
∙-cong = _⊕_
}
+0IsMonoid : IsMonoid _⟷_ PLUS ZERO
+0IsMonoid = record {
isSemigroup = +IsSemigroup ;
identity = ((λ x → unite₊ {x}) ,
(λ x → swap₊ ◎ unite₊ {x}))
}
+0IsCommutativeMonoid : IsCommutativeMonoid _⟷_ PLUS ZERO
+0IsCommutativeMonoid = record {
isSemigroup = +IsSemigroup ;
identityˡ = λ x → unite₊ {x} ;
comm = λ x y → swap₊ {x} {y}
}
+0CommutativeMonoid : CommutativeMonoid _ _
+0CommutativeMonoid = record {
Carrier = B ;
_≈_ = _⟷_ ;
_∙_ = PLUS ;
ε = ZERO ;
isCommutativeMonoid = +0IsCommutativeMonoid
}
--
⋆IsSemigroup : IsSemigroup _⟷_ TIMES
⋆IsSemigroup = record {
isEquivalence = ⟷IsEquivalence ;
assoc = λ x y z → assocr⋆ {x} {y} {z} ;
∙-cong = _⊗_
}
⋆1IsMonoid : IsMonoid _⟷_ TIMES ONE
⋆1IsMonoid = record {
isSemigroup = ⋆IsSemigroup ;
identity = ((λ x → unite⋆ {x}) ,
(λ x → swap⋆ ◎ unite⋆ {x}))
}
⋆1IsCommutativeMonoid : IsCommutativeMonoid _⟷_ TIMES ONE
⋆1IsCommutativeMonoid = record {
isSemigroup = ⋆IsSemigroup ;
identityˡ = λ x → unite⋆ {x} ;
comm = λ x y → swap⋆ {x} {y}
}
⋆1CommutativeMonoid : CommutativeMonoid _ _
⋆1CommutativeMonoid = record {
Carrier = B ;
_≈_ = _⟷_ ;
_∙_ = TIMES ;
ε = ONE ;
isCommutativeMonoid = ⋆1IsCommutativeMonoid
}
record IsCommutativeSemiringWithoutAnnihilatingZero
{a ℓ} {A : Set a} (≈ : Rel A ℓ)
(+ * : Op₂ A) (0# 1# : A)
: Set (a ⊔ ℓ) where
open FunctionProperties ≈
field
+-isCommutativeMonoid : IsCommutativeMonoid ≈ + 0#
*-isCommutativeMonoid : IsCommutativeMonoid ≈ * 1#
distrib : * DistributesOver +
record CommutativeSemiringWithoutAnnihilatingZero c ℓ : Set (suc (c ⊔ ℓ)) where
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
0# : Carrier
1# : Carrier
isCommutativeSemiringWithoutAnnihilatingZero :
IsCommutativeSemiringWithoutAnnihilatingZero _≈_ _+_ _*_ 0# 1#
B-isCommutativeSemiringWithoutAnnihilatingZero
: IsCommutativeSemiringWithoutAnnihilatingZero _⟷_ PLUS TIMES ZERO ONE
B-isCommutativeSemiringWithoutAnnihilatingZero = record {
+-isCommutativeMonoid = +0IsCommutativeMonoid ;
*-isCommutativeMonoid = ⋆1IsCommutativeMonoid ;
distrib = ( (λ x y z → dist' {x} {y} {z}) ,
(λ x y z → dist {y} {z} {x} ))
}
------------------------------------------------------------------------------
-- Establish that Pi+negatives+fractionals syntactically is a meadow
+0-IsGroup : IsGroup _⟷_ PLUS ZERO NEG
+0-IsGroup = record {
isMonoid = +0IsMonoid ;
inverse = ( (λ x → swap₊ ◎ ε₊ {x}) ,
(λ x → ε₊ {x}) );
⁻¹-cong = neg
}
+0-IsAbelianGroup : IsAbelianGroup _⟷_ PLUS ZERO NEG
+0-IsAbelianGroup = record {
isGroup = +0-IsGroup ;
comm = λ x y → swap₊ {x} {y}
}
B-IsRing : IsRing _⟷_ PLUS TIMES NEG ZERO ONE
B-IsRing = record {
+-isAbelianGroup = +0-IsAbelianGroup ;
*-isMonoid = ⋆1IsMonoid ;
distrib = ( (λ x y z → dist' {x} {y} {z}) ,
(λ x y z → dist {y} {z} {x} ))
}
B-IsCommutativeRing : IsCommutativeRing _⟷_ PLUS TIMES NEG ZERO ONE
B-IsCommutativeRing = record {
isRing = B-IsRing ;
*-comm = λ x y → swap⋆ {x} {y}
}
--
B-CommutativeRing : CommutativeRing _ _
B-CommutativeRing = record {
Carrier = B ;
_≈_ = _⟷_ ;
_+_ = PLUS ;
_*_ = TIMES ;
-_ = NEG ;
0# = ZERO ;
1# = ONE ;
isCommutativeRing = B-IsCommutativeRing
}
--
record IsMeadow
{a ℓ} {A : Set a} (≈ : Rel A ℓ)
(+ * : Op₂ A) (- r : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ) where
open FunctionProperties ≈
field
+*-isCommutativeRing : IsCommutativeRing ≈ + * - 0# 1#
*-refl-l : ∀ x → ≈ (r (r x)) x
*-refl-r : ∀ x → ≈ x (r (r x))
*-ril-l : ∀ x → ≈ (* x (* x (r x))) x
*-ril-r : ∀ x → ≈ x (* x (* x (r x)))
r-cong : ∀ x y → ≈ x y → ≈ (r x) (r y)
record Meadow c ℓ : Set (suc (c ⊔ ℓ)) where
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
-_ : Op₁ Carrier
r : Op₁ Carrier
0# : Carrier
1# : Carrier
isMeadow : IsMeadow _≈_ _+_ _*_ -_ r 0# 1#
B-/IsMeadow : IsMeadow _⟷_ PLUS TIMES NEG RECIP ZERO ONE
B-/IsMeadow = record {
+*-isCommutativeRing = B-IsCommutativeRing ;
*-refl-l = λ x → refe⋆ {x} ;
*-refl-r = λ x → sym (refe⋆ {x}) ;
*-ril-l = λ x → sym (rili⋆ {x}) ;
*-ril-r = λ x → rili⋆ {x} ;
r-cong = λ x y → recip {x} {y}
}
B-/Meadow : Meadow _ _
B-/Meadow = record {
Carrier = B ;
_≈_ = _⟷_ ;
_+_ = PLUS ;
_*_ = TIMES ;
-_ = NEG ;
r = RECIP ;
0# = ZERO ;
1# = ONE ;
isMeadow = B-/IsMeadow
}
------------------------------------------------------------------------------
|
{
"alphanum_fraction": 0.5616014559,
"avg_line_length": 26.1666666667,
"ext": "agda",
"hexsha": "1f62762201f0d2ec4cc7575c3db09f4434f55b8a",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "agda/PiNF-algebra.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "agda/PiNF-algebra.agda",
"max_line_length": 79,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "agda/PiNF-algebra.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 2061,
"size": 5495
}
|
open import Nat
open import Prelude
module core where
-- types
data τ̇ : Set where
num : τ̇
⦇-⦈ : τ̇
_==>_ : τ̇ → τ̇ → τ̇
-- expressions, prefixed with a · to distinguish name clashes with agda
-- built-ins
data ė : Set where
_·:_ : ė → τ̇ → ė
X : Nat → ė
·λ : Nat → ė → ė
N : Nat → ė
_·+_ : ė → ė → ė
⦇-⦈ : ė
⦇⌜_⌟⦈ : ė → ė
_∘_ : ė → ė → ė
---- contexts and some operations on them
-- variables are named with naturals in ė. therefore we represent
-- contexts as functions from names for variables (nats) to possible
-- bindings.
·ctx : Set
·ctx = Nat → Maybe τ̇
-- convenient shorthand for the (unique up to fun. ext.) empty context
∅ : ·ctx
∅ _ = None
-- add a new binding to the context, clobbering anything that might have
-- been there before.
_,,_ : ·ctx → (Nat × τ̇) → ·ctx
(Γ ,, (x , t)) y with natEQ x y
(Γ ,, (x , t)) .x | Inl refl = Some t
(Γ ,, (x , t)) y | Inr neq = Γ y
-- membership, or presence, in a context
_∈_ : (p : Nat × τ̇) → (Γ : ·ctx) → Set
(x , t) ∈ Γ = (Γ x) == Some t
-- apartness for contexts, so that we can follow barendregt's convention
_#_ : (n : Nat) → (Γ : ·ctx) → Set
x # Γ = (Γ x) == None
-- without: remove a variable from a context
_/_ : ·ctx → Nat → ·ctx
(Γ / x) y with natEQ x y
(Γ / x) .x | Inl refl = None
(Γ / x) y | Inr neq = Γ y
-- the type consistency judgement
data _~_ : (t1 : τ̇) → (t2 : τ̇) → Set where
TCRefl : {t : τ̇} → t ~ t
TCHole1 : {t : τ̇} → t ~ ⦇-⦈
TCHole2 : {t : τ̇} → ⦇-⦈ ~ t
TCArr : {t1 t2 t1' t2' : τ̇} →
t1 ~ t1' →
t2 ~ t2' →
(t1 ==> t2) ~ (t1' ==> t2')
-- type inconsistency. a judgmental version and associated proofs are in
-- judgemental-inconsistency.agda. each definition implies the other, but
-- the two are isomorphic only if you treat proofs of inconsistency at
-- arrow types as being proof-irrelevant---that is, if you don't
-- distinguish between cases where the inconsistency between a pair of
-- function types stems from the domain, range, or both. we use the form
-- below throughout the rest of the development because we do not care to
-- make that distinction.
_~̸_ : τ̇ → τ̇ → Set
t1 ~̸ t2 = (t1 ~ t2) → ⊥
--- matching for arrows
data _▸arr_ : τ̇ → τ̇ → Set where
MAHole : ⦇-⦈ ▸arr (⦇-⦈ ==> ⦇-⦈)
MAArr : {t1 t2 : τ̇} → (t1 ==> t2) ▸arr (t1 ==> t2)
-- matching produces unique answers
matcharrunicity : ∀{ t t2 t3 } →
t ▸arr t2 →
t ▸arr t3 →
t2 == t3
matcharrunicity MAHole MAHole = refl
matcharrunicity MAArr MAArr = refl
-- if a type matches, then it's consistent with the least restrictive
-- function type
matchconsist : ∀{t t'} →
t ▸arr t' →
t ~ (⦇-⦈ ==> ⦇-⦈)
matchconsist MAHole = TCHole2
matchconsist MAArr = TCArr TCHole1 TCHole1
matchnotnum : ∀{t1 t2} → num ▸arr (t1 ==> t2) → ⊥
matchnotnum ()
-- bidirectional type checking judgements for ė
mutual
-- synthesis
data _⊢_=>_ : (Γ : ·ctx) → (e : ė) → (t : τ̇) → Set where
SAsc : {Γ : ·ctx} {e : ė} {t : τ̇} →
Γ ⊢ e <= t →
Γ ⊢ (e ·: t) => t
SVar : {Γ : ·ctx} {t : τ̇} {n : Nat} →
(n , t) ∈ Γ →
Γ ⊢ X n => t
SAp : {Γ : ·ctx} {e1 e2 : ė} {t t' t2 : τ̇} →
Γ ⊢ e1 => t →
t ▸arr (t2 ==> t') →
Γ ⊢ e2 <= t2 →
Γ ⊢ (e1 ∘ e2) => t'
SNum : {Γ : ·ctx} {n : Nat} →
Γ ⊢ N n => num
SPlus : {Γ : ·ctx} {e1 e2 : ė} →
Γ ⊢ e1 <= num →
Γ ⊢ e2 <= num →
Γ ⊢ (e1 ·+ e2) => num
SEHole : {Γ : ·ctx} → Γ ⊢ ⦇-⦈ => ⦇-⦈
SNEHole : {Γ : ·ctx} {e : ė} {t : τ̇} →
Γ ⊢ e => t →
Γ ⊢ ⦇⌜ e ⌟⦈ => ⦇-⦈
-- analysis
data _⊢_<=_ : (Γ : ·ctx) → (e : ė) → (t : τ̇) → Set where
ASubsume : {Γ : ·ctx} {e : ė} {t t' : τ̇} →
Γ ⊢ e => t' →
t ~ t' →
Γ ⊢ e <= t
ALam : {Γ : ·ctx} {e : ė} {t t1 t2 : τ̇} {x : Nat} →
x # Γ →
t ▸arr (t1 ==> t2) →
(Γ ,, (x , t1)) ⊢ e <= t2 →
Γ ⊢ (·λ x e) <= t
----- some theorems about the rules and judgement presented so far.
-- a variable is apart from any context from which it is removed
aar : (Γ : ·ctx) (x : Nat) → x # (Γ / x)
aar Γ x with natEQ x x
aar Γ x | Inl refl = refl
aar Γ x | Inr x≠x = abort (x≠x refl)
-- contexts give at most one binding for each variable
ctxunicity : {Γ : ·ctx} {n : Nat} {t t' : τ̇} →
(n , t) ∈ Γ →
(n , t') ∈ Γ →
t == t'
ctxunicity {n = n} p q with natEQ n n
ctxunicity p q | Inl refl = someinj (! p · q)
ctxunicity _ _ | Inr x≠x = abort (x≠x refl)
-- type consistency is symmetric
~sym : {t1 t2 : τ̇} → t1 ~ t2 → t2 ~ t1
~sym TCRefl = TCRefl
~sym TCHole1 = TCHole2
~sym TCHole2 = TCHole1
~sym (TCArr p1 p2) = TCArr (~sym p1) (~sym p2)
-- type consistency isn't transitive
not-trans : ((t1 t2 t3 : τ̇) → t1 ~ t2 → t2 ~ t3 → t1 ~ t3) → ⊥
not-trans t with t (num ==> num) ⦇-⦈ num TCHole1 TCHole2
... | ()
-- if the domain or codomain of a pair of arrows isn't consistent, the
-- whole arrow isn't consistent.
lemarr1 : {t1 t2 t3 t4 : τ̇} → (t1 ~ t3 → ⊥) → (t1 ==> t2) ~ (t3 ==> t4) → ⊥
lemarr1 v TCRefl = v TCRefl
lemarr1 v (TCArr p _) = v p
lemarr2 : {t1 t2 t3 t4 : τ̇} → (t2 ~ t4 → ⊥) → (t1 ==> t2) ~ (t3 ==> t4) → ⊥
lemarr2 v TCRefl = v TCRefl
lemarr2 v (TCArr _ p) = v p
-- every pair of types is either consistent or not consistent
~dec : (t1 t2 : τ̇) → ((t1 ~ t2) + (t1 ~̸ t2))
-- this takes care of all hole cases, so we don't consider them below
~dec _ ⦇-⦈ = Inl TCHole1
~dec ⦇-⦈ _ = Inl TCHole2
-- num cases
~dec num num = Inl TCRefl
~dec num (t2 ==> t3) = Inr (λ ())
-- arrow cases
~dec (t1 ==> t2) num = Inr (λ ())
~dec (t1 ==> t2) (t3 ==> t4) with ~dec t1 t3 | ~dec t2 t4
... | Inl x | Inl y = Inl (TCArr x y)
... | Inl _ | Inr y = Inr (lemarr2 y)
... | Inr x | _ = Inr (lemarr1 x)
-- theorem: no pair of types is both consistent and not consistent. this
-- is immediate from our encoding of the ~̸ judgement in the formalism
-- here; in the exact mathematics presented in the paper, this would
-- require induction to relate the two judgements.
~apart : {t1 t2 : τ̇} → (t1 ~̸ t2) → (t1 ~ t2) → ⊥
~apart v p = v p
-- synthesis only produces equal types. note that there is no need for an
-- analagous theorem for analytic positions because we think of
-- the type as an input
synthunicity : {Γ : ·ctx} {e : ė} {t t' : τ̇} →
(Γ ⊢ e => t)
→ (Γ ⊢ e => t')
→ t == t'
synthunicity (SAsc _) (SAsc _) = refl
synthunicity {Γ = G} (SVar in1) (SVar in2) = ctxunicity {Γ = G} in1 in2
synthunicity (SAp D1 MAHole b) (SAp D2 MAHole y) = refl
synthunicity (SAp D1 MAHole b) (SAp D2 MAArr y) with synthunicity D1 D2
... | ()
synthunicity (SAp D1 MAArr b) (SAp D2 MAHole y) with synthunicity D1 D2
... | ()
synthunicity (SAp D1 MAArr b) (SAp D2 MAArr y) with synthunicity D1 D2
... | refl = refl
synthunicity SNum SNum = refl
synthunicity (SPlus _ _ ) (SPlus _ _ ) = refl
synthunicity SEHole SEHole = refl
synthunicity (SNEHole _) (SNEHole _) = refl
----- the zippered form of the forms above and the rules for actions on them
-- those types without holes anywhere
tcomplete : τ̇ → Set
tcomplete num = ⊤
tcomplete ⦇-⦈ = ⊥
tcomplete (t1 ==> t2) = (tcomplete t1) × (tcomplete t2)
-- similarly to the complete types, the complete expressions
ecomplete : ė → Set
ecomplete (e1 ·: t) = ecomplete e1 × tcomplete t
ecomplete (X _) = ⊤
ecomplete (·λ _ e1) = ecomplete e1
ecomplete (N x) = ⊤
ecomplete (e1 ·+ e2) = ecomplete e1 × ecomplete e2
ecomplete ⦇-⦈ = ⊥
ecomplete ⦇⌜ e1 ⌟⦈ = ⊥
ecomplete (e1 ∘ e2) = ecomplete e1 × ecomplete e2
-- zippered form of types
data τ̂ : Set where
▹_◃ : τ̇ → τ̂
_==>₁_ : τ̂ → τ̇ → τ̂
_==>₂_ : τ̇ → τ̂ → τ̂
-- zippered form of expressions
data ê : Set where
▹_◃ : ė → ê
_·:₁_ : ê → τ̇ → ê
_·:₂_ : ė → τ̂ → ê
·λ : Nat → ê → ê
_∘₁_ : ê → ė → ê
_∘₂_ : ė → ê → ê
_·+₁_ : ê → ė → ê
_·+₂_ : ė → ê → ê
⦇⌜_⌟⦈ : ê → ê
-- erasure of cursor for types and expressions, judgementally. see
-- jugemental-erase.agda for an argument that this defines an isomorphic
-- object to the direct metafunction provided in the text of the paper
data erase-t : τ̂ → τ̇ → Set where
ETTop : ∀{t} → erase-t (▹ t ◃) t
ETArrL : ∀{t1 t1' t2} → erase-t t1 t1' → erase-t (t1 ==>₁ t2) (t1' ==> t2)
ETArrR : ∀{t1 t2 t2'} → erase-t t2 t2' → erase-t (t1 ==>₂ t2) (t1 ==> t2')
data erase-e : ê → ė → Set where
EETop : ∀{x} → erase-e (▹ x ◃) x
EEAscL : ∀{e e' t} → erase-e e e' → erase-e (e ·:₁ t) (e' ·: t)
EEAscR : ∀{e t t'} → erase-t t t' → erase-e (e ·:₂ t) (e ·: t')
EELam : ∀{x e e'} → erase-e e e' → erase-e (·λ x e) (·λ x e')
EEApL : ∀{e1 e1' e2} → erase-e e1 e1' → erase-e (e1 ∘₁ e2) (e1' ∘ e2)
EEApR : ∀{e1 e2 e2'} → erase-e e2 e2' → erase-e (e1 ∘₂ e2) (e1 ∘ e2')
EEPlusL : ∀{e1 e1' e2} → erase-e e1 e1' → erase-e (e1 ·+₁ e2) (e1' ·+ e2)
EEPlusR : ∀{e1 e2 e2'} → erase-e e2 e2' → erase-e (e1 ·+₂ e2) (e1 ·+ e2')
EENEHole : ∀{e e'} → erase-e e e' → erase-e ⦇⌜ e ⌟⦈ ⦇⌜ e' ⌟⦈
-- the three grammars that define actions
data direction : Set where
child : Nat → direction
parent : direction
data shape : Set where
arrow : shape
num : shape
asc : shape
var : Nat → shape
lam : Nat → shape
ap : shape
numlit : Nat → shape
plus : shape
nehole : shape
data action : Set where
move : direction → action
construct : shape → action
del : action
finish : action
-- type actions
data _+_+>_ : (t : τ̂) → (α : action) → (t' : τ̂) → Set where
TMArrChild1 : {t1 t2 : τ̇} →
▹ t1 ==> t2 ◃ + move (child 1) +> (▹ t1 ◃ ==>₁ t2)
TMArrChild2 : {t1 t2 : τ̇} →
▹ t1 ==> t2 ◃ + move (child 2) +> (t1 ==>₂ ▹ t2 ◃)
TMArrParent1 : {t1 t2 : τ̇} →
(▹ t1 ◃ ==>₁ t2) + move parent +> ▹ t1 ==> t2 ◃
TMArrParent2 : {t1 t2 : τ̇} →
(t1 ==>₂ ▹ t2 ◃) + move parent +> ▹ t1 ==> t2 ◃
TMDel : {t : τ̇} →
(▹ t ◃) + del +> (▹ ⦇-⦈ ◃)
TMConArrow : {t : τ̇} →
(▹ t ◃) + construct arrow +> (t ==>₂ ▹ ⦇-⦈ ◃)
TMConNum : (▹ ⦇-⦈ ◃) + construct num +> (▹ num ◃)
TMArrZip1 : {t1 t1' : τ̂} {t2 : τ̇} {α : action} →
(t1 + α +> t1') →
((t1 ==>₁ t2) + α +> (t1' ==>₁ t2))
TMArrZip2 : {t2 t2' : τ̂} {t1 : τ̇} {α : action} →
(t2 + α +> t2') →
((t1 ==>₂ t2) + α +> (t1 ==>₂ t2'))
-- expression movement
data _+_+>e_ : (e : ê) → (α : action) → (e' : ê) → Set where
-- rules for ascriptions
EMAscChild1 : {e : ė} {t : τ̇} →
(▹ e ·: t ◃) + move (child 1) +>e (▹ e ◃ ·:₁ t)
EMAscChild2 : {e : ė} {t : τ̇} →
(▹ e ·: t ◃) + move (child 2) +>e (e ·:₂ ▹ t ◃)
EMAscParent1 : {e : ė} {t : τ̇} →
(▹ e ◃ ·:₁ t) + move parent +>e (▹ e ·: t ◃)
EMAscParent2 : {e : ė} {t : τ̇} →
(e ·:₂ ▹ t ◃) + move parent +>e (▹ e ·: t ◃)
-- rules for lambdas
EMLamChild1 : {e : ė} {x : Nat} →
▹ (·λ x e) ◃ + move (child 1) +>e ·λ x (▹ e ◃)
EMLamParent : {e : ė} {x : Nat} →
·λ x (▹ e ◃) + move parent +>e ▹ (·λ x e) ◃
-- rules for 2-ary constructors
EMPlusChild1 : {e1 e2 : ė} →
(▹ e1 ·+ e2 ◃) + move (child 1) +>e (▹ e1 ◃ ·+₁ e2)
EMPlusChild2 : {e1 e2 : ė} →
(▹ e1 ·+ e2 ◃) + move (child 2) +>e (e1 ·+₂ ▹ e2 ◃)
EMPlusParent1 : {e1 e2 : ė} →
(▹ e1 ◃ ·+₁ e2) + move parent +>e (▹ e1 ·+ e2 ◃)
EMPlusParent2 : {e1 e2 : ė} →
(e1 ·+₂ ▹ e2 ◃) + move parent +>e (▹ e1 ·+ e2 ◃)
EMApChild1 : {e1 e2 : ė} →
(▹ e1 ∘ e2 ◃) + move (child 1)+>e (▹ e1 ◃ ∘₁ e2)
EMApChild2 : {e1 e2 : ė} →
(▹ e1 ∘ e2 ◃) + move (child 2) +>e (e1 ∘₂ ▹ e2 ◃)
EMApParent1 : {e1 e2 : ė} →
(▹ e1 ◃ ∘₁ e2) + move parent +>e (▹ e1 ∘ e2 ◃)
EMApParent2 : {e1 e2 : ė} →
(e1 ∘₂ ▹ e2 ◃) + move parent +>e (▹ e1 ∘ e2 ◃)
-- rules for non-empty holes
EMNEHoleChild1 : {e : ė} →
(▹ ⦇⌜ e ⌟⦈ ◃) + move (child 1) +>e ⦇⌜ ▹ e ◃ ⌟⦈
EMNEHoleParent : {e : ė} →
⦇⌜ ▹ e ◃ ⌟⦈ + move parent +>e (▹ ⦇⌜ e ⌟⦈ ◃)
mutual
-- synthetic action expressions
data _⊢_=>_~_~>_=>_ : (Γ : ·ctx) → (e1 : ê) → (t1 : τ̇)
→ (α : action) → (e2 : ê) → (t2 : τ̇) → Set where
SAMove : {δ : direction} {e e' : ê} {Γ : ·ctx} {t : τ̇} →
(e + move δ +>e e') →
Γ ⊢ e => t ~ move δ ~> e' => t
SADel : {Γ : ·ctx} {e : ė} {t : τ̇} →
Γ ⊢ ▹ e ◃ => t ~ del ~> ▹ ⦇-⦈ ◃ => ⦇-⦈
SAConAsc : {Γ : ·ctx} {e : ė} {t : τ̇} →
Γ ⊢ ▹ e ◃ => t ~ construct asc ~> (e ·:₂ ▹ t ◃ ) => t
SAConVar : {Γ : ·ctx} {x : Nat} {t : τ̇} →
(p : (x , t) ∈ Γ) →
Γ ⊢ ▹ ⦇-⦈ ◃ => ⦇-⦈ ~ construct (var x) ~> ▹ X x ◃ => t
SAConLam : {Γ : ·ctx} {x : Nat} →
(x # Γ) →
Γ ⊢ ▹ ⦇-⦈ ◃ => ⦇-⦈ ~ construct (lam x) ~>
((·λ x ⦇-⦈) ·:₂ (▹ ⦇-⦈ ◃ ==>₁ ⦇-⦈)) => (⦇-⦈ ==> ⦇-⦈)
SAConApArr : {Γ : ·ctx} {t t1 t2 : τ̇} {e : ė} →
t ▸arr (t1 ==> t2) →
Γ ⊢ ▹ e ◃ => t ~ construct ap ~> e ∘₂ ▹ ⦇-⦈ ◃ => t2
SAConApOtw : {Γ : ·ctx} {t : τ̇} {e : ė} →
(t ~̸ (⦇-⦈ ==> ⦇-⦈)) →
Γ ⊢ ▹ e ◃ => t ~ construct ap ~> ⦇⌜ e ⌟⦈ ∘₂ ▹ ⦇-⦈ ◃ => ⦇-⦈
SAConNumlit : {Γ : ·ctx} {n : Nat} →
Γ ⊢ ▹ ⦇-⦈ ◃ => ⦇-⦈ ~ construct (numlit n) ~> ▹ N n ◃ => num
SAConPlus1 : {Γ : ·ctx} {e : ė} {t : τ̇} →
(t ~ num) →
Γ ⊢ ▹ e ◃ => t ~ construct plus ~> e ·+₂ ▹ ⦇-⦈ ◃ => num
SAConPlus2 : {Γ : ·ctx} {e : ė} {t : τ̇} →
(t ~̸ num) →
Γ ⊢ ▹ e ◃ => t ~ construct plus ~> ⦇⌜ e ⌟⦈ ·+₂ ▹ ⦇-⦈ ◃ => num
SAConNEHole : {Γ : ·ctx} {e : ė} {t : τ̇} →
Γ ⊢ ▹ e ◃ => t ~ construct nehole ~> ⦇⌜ ▹ e ◃ ⌟⦈ => ⦇-⦈
SAFinish : {Γ : ·ctx} {e : ė} {t : τ̇} →
(Γ ⊢ e => t) →
Γ ⊢ ▹ ⦇⌜ e ⌟⦈ ◃ => ⦇-⦈ ~ finish ~> ▹ e ◃ => t
SAZipAsc1 : {Γ : ·ctx} {e e' : ê} {α : action} {t : τ̇} →
(Γ ⊢ e ~ α ~> e' ⇐ t) →
Γ ⊢ (e ·:₁ t) => t ~ α ~> (e' ·:₁ t) => t
SAZipAsc2 : {Γ : ·ctx} {e : ė} {α : action} {t t' : τ̂} {t◆ t'◆ : τ̇} →
(t + α +> t') →
(erase-t t' t'◆) →
(erase-t t t◆) →
(Γ ⊢ e <= t'◆) →
Γ ⊢ (e ·:₂ t) => t◆ ~ α ~> (e ·:₂ t') => t'◆
SAZipApArr : {Γ : ·ctx} {t t1 t2 t3 t4 : τ̇} {α : action} {eh eh' : ê} {e eh◆ : ė} →
(t ▸arr (t3 ==> t4)) →
(erase-e eh eh◆) →
(Γ ⊢ (eh◆) => t2) →
(Γ ⊢ eh => t2 ~ α ~> eh' => t) →
(Γ ⊢ e <= t3) →
Γ ⊢ (eh ∘₁ e) => t1 ~ α ~> (eh' ∘₁ e) => t4
SAZipApAna : {Γ : ·ctx} {t' t2 t : τ̇} {e : ė} {eh eh' : ê} {α : action} →
(t' ▸arr (t2 ==> t)) →
(Γ ⊢ e => t') →
(Γ ⊢ eh ~ α ~> eh' ⇐ t2) →
Γ ⊢ (e ∘₂ eh) => t ~ α ~> (e ∘₂ eh') => t
SAZipPlus1 : {Γ : ·ctx} {e : ė} {eh eh' : ê} {α : action} →
(Γ ⊢ eh ~ α ~> eh' ⇐ num) →
Γ ⊢ (eh ·+₁ e) => num ~ α ~> (eh' ·+₁ e) => num
SAZipPlus2 : {Γ : ·ctx} {e : ė} {eh eh' : ê} {α : action} →
(Γ ⊢ eh ~ α ~> eh' ⇐ num) →
Γ ⊢ (e ·+₂ eh) => num ~ α ~> (e ·+₂ eh') => num
SAZipHole : {Γ : ·ctx} {e e' : ê} {t t' : τ̇} {α : action} {e◆ : ė} →
(erase-e e e◆) →
(Γ ⊢ e◆ => t) →
(Γ ⊢ e => t ~ α ~> e' => t') →
Γ ⊢ ⦇⌜ e ⌟⦈ => ⦇-⦈ ~ α ~> ⦇⌜ e' ⌟⦈ => ⦇-⦈
-- analytic action expressions
data _⊢_~_~>_⇐_ : (Γ : ·ctx) → (e : ê) → (α : action) →
(e' : ê) → (t : τ̇) → Set where
AASubsume : {Γ : ·ctx} {e e' : ê} {t t' t'' : τ̇} {α : action} {e◆ : ė} →
(erase-e e e◆) →
(Γ ⊢ e◆ => t') →
(Γ ⊢ e => t' ~ α ~> e' => t'') →
(t ~ t'') →
Γ ⊢ e ~ α ~> e' ⇐ t
AAMove : {e e' : ê} {δ : direction} {Γ : ·ctx} {t : τ̇} →
(e + move δ +>e e') →
Γ ⊢ e ~ move δ ~> e' ⇐ t
AADel : {e : ė} {Γ : ·ctx} {t : τ̇} →
Γ ⊢ ▹ e ◃ ~ del ~> ▹ ⦇-⦈ ◃ ⇐ t
AAConAsc : {Γ : ·ctx} {e : ė} {t : τ̇} →
Γ ⊢ ▹ e ◃ ~ construct asc ~> (e ·:₂ ▹ t ◃) ⇐ t
AAConVar : {Γ : ·ctx} {t t' : τ̇} {x : Nat} →
(t ~̸ t') →
(p : (x , t') ∈ Γ) →
Γ ⊢ ▹ ⦇-⦈ ◃ ~ construct (var x) ~> ⦇⌜ ▹ X x ◃ ⌟⦈ ⇐ t
AAConLam1 : {Γ : ·ctx} {x : Nat} {t t1 t2 : τ̇} →
(x # Γ) →
(t ▸arr (t1 ==> t2)) →
Γ ⊢ ▹ ⦇-⦈ ◃ ~ construct (lam x) ~>
·λ x (▹ ⦇-⦈ ◃) ⇐ t
AAConLam2 : {Γ : ·ctx} {x : Nat} {t : τ̇} →
(x # Γ) →
(t ~̸ (⦇-⦈ ==> ⦇-⦈)) →
Γ ⊢ ▹ ⦇-⦈ ◃ ~ construct (lam x) ~>
⦇⌜ ·λ x ⦇-⦈ ·:₂ (▹ ⦇-⦈ ◃ ==>₁ ⦇-⦈) ⌟⦈ ⇐ t
AAConNumlit : {Γ : ·ctx} {t : τ̇} {n : Nat} →
(t ~̸ num) →
Γ ⊢ ▹ ⦇-⦈ ◃ ~ construct (numlit n) ~> ⦇⌜ ▹ (N n) ◃ ⌟⦈ ⇐ t
AAFinish : {Γ : ·ctx} {e : ė} {t : τ̇} →
(Γ ⊢ e <= t) →
Γ ⊢ ▹ ⦇⌜ e ⌟⦈ ◃ ~ finish ~> ▹ e ◃ ⇐ t
AAZipLam : {Γ : ·ctx} {x : Nat} {t t1 t2 : τ̇} {e e' : ê} {α : action} →
x # Γ →
(t ▸arr (t1 ==> t2)) →
((Γ ,, (x , t1)) ⊢ e ~ α ~> e' ⇐ t2) →
Γ ⊢ (·λ x e) ~ α ~> (·λ x e') ⇐ t
|
{
"alphanum_fraction": 0.4077968295,
"avg_line_length": 39.0442105263,
"ext": "agda",
"hexsha": "0dc9c5dcc182723d6247555fe7cc8fc936c1ad8c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-07-03T03:45:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-07-03T03:45:07.000Z",
"max_forks_repo_head_hexsha": "db3d21a1e3f17ef77ad557ed12374979f381b6b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/agda-popl17",
"max_forks_repo_path": "core.agda",
"max_issues_count": 37,
"max_issues_repo_head_hexsha": "db3d21a1e3f17ef77ad557ed12374979f381b6b7",
"max_issues_repo_issues_event_max_datetime": "2016-11-09T18:13:55.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-07-07T16:23:11.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/agda-popl17",
"max_issues_repo_path": "core.agda",
"max_line_length": 92,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "db3d21a1e3f17ef77ad557ed12374979f381b6b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/agda-popl17",
"max_stars_repo_path": "core.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-11T12:30:50.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-01T22:44:11.000Z",
"num_tokens": 8452,
"size": 18546
}
|
{-# OPTIONS --rewriting #-}
module Properties.DecSubtyping where
open import Agda.Builtin.Equality using (_≡_; refl)
open import FFI.Data.Either using (Either; Left; Right; mapLR; swapLR; cond)
open import Luau.FunctionTypes using (src; srcⁿ; tgt)
open import Luau.Subtyping using (_<:_; _≮:_; Tree; Language; ¬Language; witness; unknown; never; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-scalar; function-scalar; function-ok; function-err; left; right; _,_)
open import Luau.Type using (Type; Scalar; nil; number; string; boolean; never; unknown; _⇒_; _∪_; _∩_)
open import Properties.Contradiction using (CONTRADICTION; ¬)
open import Properties.Functions using (_∘_)
open import Properties.Subtyping using (<:-refl; <:-trans; ≮:-trans-<:; <:-trans-≮:; <:-never; <:-unknown; <:-∪-left; <:-∪-right; <:-∪-lub; ≮:-∪-left; ≮:-∪-right; <:-∩-left; <:-∩-right; <:-∩-glb; ≮:-∩-left; ≮:-∩-right; dec-language; scalar-<:; <:-everything; <:-function; ≮:-function-left; ≮:-function-right)
open import Properties.TypeNormalization using (FunType; Normal; never; unknown; _∩_; _∪_; _⇒_; normal; <:-normalize; normalize-<:)
open import Properties.FunctionTypes using (fun-¬scalar; ¬fun-scalar; fun-function; src-unknown-≮:; tgt-never-≮:; src-tgtᶠ-<:)
open import Properties.Equality using (_≢_)
-- Honest this terminates, since src and tgt reduce the depth of nested arrows
{-# TERMINATING #-}
dec-subtypingˢⁿ : ∀ {T U} → Scalar T → Normal U → Either (T ≮: U) (T <: U)
dec-subtypingᶠ : ∀ {T U} → FunType T → FunType U → Either (T ≮: U) (T <: U)
dec-subtypingᶠⁿ : ∀ {T U} → FunType T → Normal U → Either (T ≮: U) (T <: U)
dec-subtypingⁿ : ∀ {T U} → Normal T → Normal U → Either (T ≮: U) (T <: U)
dec-subtyping : ∀ T U → Either (T ≮: U) (T <: U)
dec-subtypingˢⁿ T U with dec-language _ (scalar T)
dec-subtypingˢⁿ T U | Left p = Left (witness (scalar T) (scalar T) p)
dec-subtypingˢⁿ T U | Right p = Right (scalar-<: T p)
dec-subtypingᶠ {T = T} _ (U ⇒ V) with dec-subtypingⁿ U (normal (src T)) | dec-subtypingⁿ (normal (tgt T)) V
dec-subtypingᶠ {T = T} _ (U ⇒ V) | Left p | q = Left (≮:-trans-<: (src-unknown-≮: (≮:-trans-<: p (<:-normalize (src T)))) (<:-function <:-refl <:-unknown))
dec-subtypingᶠ {T = T} _ (U ⇒ V) | Right p | Left q = Left (≮:-trans-<: (tgt-never-≮: (<:-trans-≮: (normalize-<: (tgt T)) q)) (<:-trans (<:-function <:-never <:-refl) <:-∪-right))
dec-subtypingᶠ T (U ⇒ V) | Right p | Right q = Right (src-tgtᶠ-<: T (<:-trans p (normalize-<: _)) (<:-trans (<:-normalize _) q))
dec-subtypingᶠ T (U ∩ V) with dec-subtypingᶠ T U | dec-subtypingᶠ T V
dec-subtypingᶠ T (U ∩ V) | Left p | q = Left (≮:-∩-left p)
dec-subtypingᶠ T (U ∩ V) | Right p | Left q = Left (≮:-∩-right q)
dec-subtypingᶠ T (U ∩ V) | Right p | Right q = Right (<:-∩-glb p q)
dec-subtypingᶠⁿ T never = Left (witness function (fun-function T) never)
dec-subtypingᶠⁿ T unknown = Right <:-unknown
dec-subtypingᶠⁿ T (U ⇒ V) = dec-subtypingᶠ T (U ⇒ V)
dec-subtypingᶠⁿ T (U ∩ V) = dec-subtypingᶠ T (U ∩ V)
dec-subtypingᶠⁿ T (U ∪ V) with dec-subtypingᶠⁿ T U
dec-subtypingᶠⁿ T (U ∪ V) | Left (witness t p q) = Left (witness t p (q , ¬fun-scalar V T p))
dec-subtypingᶠⁿ T (U ∪ V) | Right p = Right (<:-trans p <:-∪-left)
dec-subtypingⁿ never U = Right <:-never
dec-subtypingⁿ unknown unknown = Right <:-refl
dec-subtypingⁿ unknown U with dec-subtypingᶠⁿ (never ⇒ unknown) U
dec-subtypingⁿ unknown U | Left p = Left (<:-trans-≮: <:-unknown p)
dec-subtypingⁿ unknown U | Right p₁ with dec-subtypingˢⁿ number U
dec-subtypingⁿ unknown U | Right p₁ | Left p = Left (<:-trans-≮: <:-unknown p)
dec-subtypingⁿ unknown U | Right p₁ | Right p₂ with dec-subtypingˢⁿ string U
dec-subtypingⁿ unknown U | Right p₁ | Right p₂ | Left p = Left (<:-trans-≮: <:-unknown p)
dec-subtypingⁿ unknown U | Right p₁ | Right p₂ | Right p₃ with dec-subtypingˢⁿ nil U
dec-subtypingⁿ unknown U | Right p₁ | Right p₂ | Right p₃ | Left p = Left (<:-trans-≮: <:-unknown p)
dec-subtypingⁿ unknown U | Right p₁ | Right p₂ | Right p₃ | Right p₄ with dec-subtypingˢⁿ boolean U
dec-subtypingⁿ unknown U | Right p₁ | Right p₂ | Right p₃ | Right p₄ | Left p = Left (<:-trans-≮: <:-unknown p)
dec-subtypingⁿ unknown U | Right p₁ | Right p₂ | Right p₃ | Right p₄ | Right p₅ = Right (<:-trans <:-everything (<:-∪-lub p₁ (<:-∪-lub p₂ (<:-∪-lub p₃ (<:-∪-lub p₄ p₅)))))
dec-subtypingⁿ (S ⇒ T) U = dec-subtypingᶠⁿ (S ⇒ T) U
dec-subtypingⁿ (S ∩ T) U = dec-subtypingᶠⁿ (S ∩ T) U
dec-subtypingⁿ (S ∪ T) U with dec-subtypingⁿ S U | dec-subtypingˢⁿ T U
dec-subtypingⁿ (S ∪ T) U | Left p | q = Left (≮:-∪-left p)
dec-subtypingⁿ (S ∪ T) U | Right p | Left q = Left (≮:-∪-right q)
dec-subtypingⁿ (S ∪ T) U | Right p | Right q = Right (<:-∪-lub p q)
dec-subtyping T U with dec-subtypingⁿ (normal T) (normal U)
dec-subtyping T U | Left p = Left (<:-trans-≮: (normalize-<: T) (≮:-trans-<: p (<:-normalize U)))
dec-subtyping T U | Right p = Right (<:-trans (<:-normalize T) (<:-trans p (normalize-<: U)))
|
{
"alphanum_fraction": 0.6456104945,
"avg_line_length": 69.7887323944,
"ext": "agda",
"hexsha": "332520a947967568e5e1e0ca0d16d984005e93eb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "TheGreatSageEqualToHeaven/luau",
"max_forks_repo_path": "prototyping/Properties/DecSubtyping.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "TheGreatSageEqualToHeaven/luau",
"max_issues_repo_path": "prototyping/Properties/DecSubtyping.agda",
"max_line_length": 310,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "TheGreatSageEqualToHeaven/luau",
"max_stars_repo_path": "prototyping/Properties/DecSubtyping.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z",
"num_tokens": 1905,
"size": 4955
}
|
record category { ℓ₀ ℓ₁ } { k : Set ℓ₀ } (_⇒_ : k → k → Set ℓ₁) : Set (lsuc lzero ⊔ ℓ₀ ⊔ ℓ₁)
record groupoid { ℓ₀ ℓ₁ } { k : Set ℓ₀ } (_≈_ : k → k → Set ℓ₁) : Set (lsuc lzero ⊔ ℓ₀ ⊔ ℓ₁)
record groupoid { ℓ₀ ℓ₁ } { k } _≈_
where
coinductive
field
⦃ cat ⦄ : category _≈_
field
symmetry : ∀ { x y } → x ≈ y → y ≈ x
record category { ℓ₀ ℓ₁ } { k } _⇒_
where
coinductive
field
id : ∀ { a } → a ⇒ a
_∘_ : ∀ { a b c } → b ⇒ c → a ⇒ b → a ⇒ c
field
_≈_ : { a b : k } → (f g : a ⇒ b) → Set
⦃ hom ⦄ : { a b : k } → groupoid { k = a ⇒ b } _≈_
field
lunit : ∀ { a b } { x : a ⇒ b } → (id ∘ x) ≈ x
runit : ∀ { a b } { x : a ⇒ b } → (x ∘ id) ≈ x
assoc : ∀ { a b c d } { x : c ⇒ d } { y : b ⇒ c } { z : a ⇒ b } → (x ∘ (y ∘ z)) ≈ ((x ∘ y) ∘ z)
open category ⦃ ... ⦄
open groupoid ⦃ ... ⦄
|
{
"alphanum_fraction": 0.3894500561,
"avg_line_length": 35.64,
"ext": "agda",
"hexsha": "82ef0beb90dcd46c85ff8356a2f841f1a8d51c17",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9fd9fbf9f265bf526a2ec83e9442dedc7106b80c",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "seanwestfall/agda_explorations",
"max_forks_repo_path": "src/categories.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9fd9fbf9f265bf526a2ec83e9442dedc7106b80c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "seanwestfall/agda_explorations",
"max_issues_repo_path": "src/categories.agda",
"max_line_length": 99,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "9fd9fbf9f265bf526a2ec83e9442dedc7106b80c",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "seanwestfall/agda_explorations",
"max_stars_repo_path": "src/categories.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 426,
"size": 891
}
|
module Data.List.Membership.Propositional.Instances where
open import Data.List using (List; _∷_)
open import Data.List.Relation.Unary.Any using (here; there)
open import Data.List.Membership.Propositional using (_∈_)
open import Relation.Binary.PropositionalEquality using (refl)
open import Level using (Level)
private
variable
a : Level
A : Set a
x y : A
xs : List A
instance
⦃here⦄ : x ∈ x ∷ xs
⦃here⦄ = here refl
⦃there⦄ : ⦃ x ∈ xs ⦄ → x ∈ y ∷ xs
⦃there⦄ ⦃ x∈xs ⦄ = there x∈xs
|
{
"alphanum_fraction": 0.6737864078,
"avg_line_length": 21.4583333333,
"ext": "agda",
"hexsha": "b5481e594e8803a5306cf847bf7d10993b1c922e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "921a0dc44a69a74391031ca61568c624ab7f9c94",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "johnyob/agda-union",
"max_forks_repo_path": "src/Data/List/Membership/Propositional/Instances.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "921a0dc44a69a74391031ca61568c624ab7f9c94",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "johnyob/agda-union",
"max_issues_repo_path": "src/Data/List/Membership/Propositional/Instances.agda",
"max_line_length": 62,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "921a0dc44a69a74391031ca61568c624ab7f9c94",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "johnyob/agda-union",
"max_stars_repo_path": "src/Data/List/Membership/Propositional/Instances.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 183,
"size": 515
}
|
{-# OPTIONS --safe --warning=error #-}
open import Setoids.Setoids
open import Groups.FreeGroup.Definition
open import Groups.Definition
open import Decidable.Sets
open import Numbers.Naturals.Order
open import LogicalFormulae
open import Semirings.Definition
module Groups.FreeGroup.Group {a : _} {A : Set a} (decA : DecidableSet A) where
open import Groups.FreeGroup.Word decA
prepend : ReducedWord → FreeCompletion A → ReducedWord
prepend empty x = prependLetter x empty (wordEmpty refl)
prepend (prependLetter (ofLetter y) w pr) (ofLetter x) = prependLetter (ofLetter x) (prependLetter (ofLetter y) w pr) (wordEnding (succIsPositive _) (freeCompletionEqualFalse decA {ofLetter x} {ofInv x} λ ()))
prepend (prependLetter (ofInv y) w pr) (ofLetter x) with decA x y
... | inl x=y = w
... | inr x!=y = prependLetter (ofLetter x) (prependLetter (ofInv y) w pr) (wordEnding (succIsPositive _) (freeCompletionEqualFalse decA {ofLetter x} {ofLetter y} λ pr → x!=y (ofLetterInjective pr)))
prepend (prependLetter (ofLetter y) w pr) (ofInv x) with decA x y
... | inl x=y = w
... | inr x!=y = prependLetter (ofInv x) (prependLetter (ofLetter y) w pr) (wordEnding (succIsPositive _) (freeCompletionEqualFalse decA λ pr → x!=y (ofInvInjective pr)))
prepend (prependLetter (ofInv y) w pr) (ofInv x) = prependLetter (ofInv x) (prependLetter (ofInv y) w pr) (wordEnding (succIsPositive _) (freeCompletionEqualFalse decA {ofInv x} {ofLetter x} (λ ())))
_+W_ : ReducedWord → ReducedWord → ReducedWord
empty +W b = b
prependLetter letter a x +W b = prepend (a +W b) letter
prependValid : (w : ReducedWord) (l : A) → (x : PrependIsValid w (ofLetter l)) → prepend w (ofLetter l) ≡ prependLetter (ofLetter l) w x
prependValid empty l (wordEmpty refl) = refl
prependValid (prependLetter (ofLetter l2) w x) l pr = prependLetterRefl
prependValid (prependLetter (ofInv l2) w x) l pr with decA l l2
prependValid (prependLetter (ofInv l2) w x) .l2 (wordEnding _ x1) | inl refl = exFalso (freeCompletionEqualFalse' decA x1 refl)
... | inr l!=l2 = prependLetterRefl
prependValid' : (w : ReducedWord) (l : A) → (x : PrependIsValid w (ofInv l)) → prepend w (ofInv l) ≡ prependLetter (ofInv l) w x
prependValid' empty l (wordEmpty refl) = refl
prependValid' (prependLetter (ofLetter l2) w x) l pr with decA l l2
prependValid' (prependLetter (ofLetter l2) w x) .l2 (wordEnding _ x1) | inl refl = exFalso (freeCompletionEqualFalse' decA x1 refl)
... | inr l!=l2 = prependLetterRefl
prependValid' (prependLetter (ofInv l2) w x) l pr = prependLetterRefl
prependInv : (w : ReducedWord) (l : A) → prepend (prepend w (ofLetter l)) (ofInv l) ≡ w
prependInv empty l with decA l l
... | inl l=l = refl
... | inr l!=l = exFalso (l!=l refl)
prependInv (prependLetter (ofLetter l2) w x) l with decA l l
... | inl l=l = refl
... | inr l!=l = exFalso (l!=l refl)
prependInv (prependLetter (ofInv l2) w x) l with decA l l2
prependInv (prependLetter (ofInv l2) w x) .l2 | inl refl = prependValid' w l2 x
... | inr l!=l2 with decA l l
prependInv (prependLetter (ofInv l2) w x) l | inr l!=l2 | inl refl = refl
prependInv (prependLetter (ofInv l2) w x) l | inr l!=l2 | inr bad = exFalso (bad refl)
prependInv' : (w : ReducedWord) (l : A) → prepend (prepend w (ofInv l)) (ofLetter l) ≡ w
prependInv' empty l with decA l l
... | inl l=l = refl
... | inr l!=l = exFalso (l!=l refl)
prependInv' (prependLetter (ofLetter l2) w x) l with decA l l2
prependInv' (prependLetter (ofLetter l2) w x) .l2 | inl refl = prependValid w l2 x
... | inr l!=l2 with decA l l
... | inl refl = refl
... | inr l!=l = exFalso (l!=l refl)
prependInv' (prependLetter (ofInv l2) w x) l with decA l l
prependInv' (prependLetter (ofInv l2) w x) l | inl refl = refl
prependInv' (prependLetter (ofInv l2) w x) l | inr l!=l = exFalso (l!=l refl)
prependAndAdd : (a b : ReducedWord) (l : FreeCompletion A) → prepend (a +W b) l ≡ (prepend a l) +W b
prependAndAdd empty b l = refl
prependAndAdd (prependLetter (ofLetter x) w pr) b (ofLetter y) = refl
prependAndAdd (prependLetter (ofLetter x) w pr) b (ofInv y) with decA y x
prependAndAdd (prependLetter (ofLetter x) w pr) b (ofInv .x) | inl refl = prependInv _ _
... | inr y!=x = refl
prependAndAdd (prependLetter (ofInv x) w pr) b (ofLetter y) with decA y x
prependAndAdd (prependLetter (ofInv x) w pr) b (ofLetter .x) | inl refl = prependInv' _ _
... | inr y!=x = refl
prependAndAdd (prependLetter (ofInv x) w pr) b (ofInv y) = refl
+WAssoc : (a b c : ReducedWord) → (a +W (b +W c)) ≡ ((a +W b) +W c)
+WAssoc empty b c = refl
+WAssoc (prependLetter letter a x) b c rewrite equalityCommutative (prependAndAdd (a +W b) c letter) | +WAssoc a b c = refl
inverseW : ReducedWord → ReducedWord
inverseW empty = empty
inverseW (prependLetter letter w x) = (inverseW w) +W prependLetter (freeInverse letter) empty (wordEmpty refl)
identRightW : (a : ReducedWord) → a +W empty ≡ a
identRightW empty = refl
identRightW (prependLetter (ofLetter l) a x) rewrite identRightW a = prependValid a l x
identRightW (prependLetter (ofInv l) a x) rewrite identRightW a = prependValid' a l x
invLeftW : (a : ReducedWord) → (inverseW a) +W a ≡ empty
invLeftW empty = refl
invLeftW (prependLetter (ofLetter l) a x) rewrite equalityCommutative (+WAssoc (inverseW a) (prependLetter (ofInv l) empty (wordEmpty refl)) (prependLetter (ofLetter l) a x)) = t
where
t : (inverseW a +W (prepend (prependLetter (ofLetter l) a x) (ofInv l))) ≡ empty
t with decA l l
... | inl refl = invLeftW a
... | inr l!=l = exFalso (l!=l refl)
invLeftW (prependLetter (ofInv l) a x) rewrite equalityCommutative (+WAssoc (inverseW a) (prependLetter (ofLetter l) empty (wordEmpty refl)) (prependLetter (ofInv l) a x)) = t
where
t : (inverseW a +W (prepend (prependLetter (ofInv l) a x) (ofLetter l))) ≡ empty
t with decA l l
... | inl refl = invLeftW a
... | inr l!=l = exFalso (l!=l refl)
invRightW : (a : ReducedWord) → a +W (inverseW a) ≡ empty
invRightW empty = refl
invRightW (prependLetter (ofLetter l) a x) rewrite +WAssoc a (inverseW a) (prependLetter (ofInv l) empty (wordEmpty refl)) | invRightW a = t
where
t : prepend (prependLetter (ofInv l) empty (wordEmpty refl)) (ofLetter l) ≡ empty
t with decA l l
... | inl refl = refl
... | inr l!=l = exFalso (l!=l refl)
invRightW (prependLetter (ofInv l) a x) rewrite +WAssoc a (inverseW a) (prependLetter (ofLetter l) empty (wordEmpty refl)) | invRightW a = t
where
t : prepend (prependLetter (ofLetter l) empty (wordEmpty refl)) (ofInv l) ≡ empty
t with decA l l
... | inl refl = refl
... | inr l!=l = exFalso (l!=l refl)
freeGroup : Group (reflSetoid ReducedWord) _+W_
Group.+WellDefined freeGroup refl refl = refl
Group.0G freeGroup = empty
Group.inverse freeGroup = inverseW
Group.+Associative freeGroup {a} {b} {c} = +WAssoc a b c
Group.identRight freeGroup {a} = identRightW a
Group.identLeft freeGroup {a} = refl
Group.invLeft freeGroup {a} = invLeftW a
Group.invRight freeGroup {a} = invRightW a
|
{
"alphanum_fraction": 0.6952777379,
"avg_line_length": 52.3834586466,
"ext": "agda",
"hexsha": "4bf45c11d0fa024c0e3246f276d65e0f53bee89f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Groups/FreeGroup/Group.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Groups/FreeGroup/Group.agda",
"max_line_length": 209,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Groups/FreeGroup/Group.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 2371,
"size": 6967
}
|
module Type.Category.IntensionalFunctionsCategory{ℓ} where
open import Data
open import Functional
open import Logic.Propositional
open import Relator.Equals
open import Relator.Equals.Proofs.Equiv
open import Structure.Category
open import Structure.Categorical.Properties
open import Structure.Operator
open import Type
open import Type.Properties.Singleton
-- The type category is a category containing all types of a single universe level in the language.
-- The objects are all sets/types.
-- The morphisms are all functions where the domain/codomain-pair are from these objects.
typeIntensionalFnCategory : Category{Obj = Type{ℓ}}(_→ᶠ_)
Category._∘_ typeIntensionalFnCategory = _∘_
Category.id typeIntensionalFnCategory = id
BinaryOperator.congruence (Category.binaryOperator typeIntensionalFnCategory) [≡]-intro [≡]-intro = [≡]-intro
Category.associativity typeIntensionalFnCategory = Morphism.intro [≡]-intro
Category.identity typeIntensionalFnCategory = [∧]-intro (Morphism.intro [≡]-intro) (Morphism.intro [≡]-intro)
typeIntensionalFnCategoryObject : CategoryObject
typeIntensionalFnCategoryObject = intro typeIntensionalFnCategory
Unit-terminalObject : Object.Terminal{Obj = Type{ℓ}}(_→ᶠ_) (Unit)
IsUnit.unit Unit-terminalObject = const <>
IsUnit.uniqueness Unit-terminalObject = [≡]-intro
|
{
"alphanum_fraction": 0.7926920209,
"avg_line_length": 44.7,
"ext": "agda",
"hexsha": "e03c98df55652b4544cfefab99a87e824515410d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Type/Category/IntensionalFunctionsCategory.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Type/Category/IntensionalFunctionsCategory.agda",
"max_line_length": 115,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Type/Category/IntensionalFunctionsCategory.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 336,
"size": 1341
}
|
{-# OPTIONS --universe-polymorphism #-}
module Categories.Monoidal where
open import Level
open import Categories.Category
open import Categories.Bifunctor using (Bifunctor)
open import Categories.NaturalIsomorphism
open import Categories.NaturalTransformation using (_∘₁_) renaming (_≡_ to _≡ⁿ_)
open import Categories.Monoidal.Helpers
record Monoidal {o ℓ e} (C : Category o ℓ e) : Set (o ⊔ ℓ ⊔ e) where
private module C = Category C
open C hiding (id; identityˡ; identityʳ; assoc)
field
⊗ : Bifunctor C C C
id : Obj
open MonoidalHelperFunctors C ⊗ id
field
identityˡ : NaturalIsomorphism id⊗x x
identityʳ : NaturalIsomorphism x⊗id x
assoc : NaturalIsomorphism [x⊗y]⊗z x⊗[y⊗z]
open Coherence identityˡ identityʳ assoc
field
.triangle : TriangleLeftSide ≡ⁿ (TriangleRightSide ∘₁ TriangleTopSide)
.pentagon : (PentagonNESide ∘₁ PentagonNWSide) ≡ⁿ (PentagonSESide ∘₁ (PentagonSSide ∘₁ PentagonSWSide))
|
{
"alphanum_fraction": 0.7397691501,
"avg_line_length": 28.8787878788,
"ext": "agda",
"hexsha": "5eba32fd20cd12caa9c9e284a22d75947c49b21f",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Monoidal.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Monoidal.agda",
"max_line_length": 107,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Monoidal.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 316,
"size": 953
}
|
-- Andreas, 2016-02-16, issue 1777, reported by Martin Stone Davis
data D : Set where
c : D
record R : Set where
field f : D
test : R → D
test record { f = x } with x
... | y = {!y!}
-- Splitting on y should give
-- test record { f = x } | c = ?
|
{
"alphanum_fraction": 0.5787401575,
"avg_line_length": 16.9333333333,
"ext": "agda",
"hexsha": "67482a4c470772d0bd50698ecebb9f2e32390d70",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "hborum/agda",
"max_forks_repo_path": "test/interaction/Issue1777.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/interaction/Issue1777.agda",
"max_line_length": 66,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/interaction/Issue1777.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 89,
"size": 254
}
|
open import Nat
open import Prelude
open import binders-disjoint-checks
open import judgemental-erase
open import lemmas-matching
open import moveerase
open import statics-core
open import synth-unicity
module sensibility where
mutual
-- if an action transforms a zexp in a synthetic posistion to another zexp,
-- they have the same type up erasure of the cursor
actsense-synth : {Γ : tctx} {e e' : zexp} {e◆ e'◆ : hexp} {t t' : htyp} {α : action} →
erase-e e e◆ →
erase-e e' e'◆ →
Γ ⊢ e => t ~ α ~> e' => t' →
Γ ⊢ e◆ => t →
Γ ⊢ e'◆ => t'
-- in the movement case, we defer to the movement erasure theorem
actsense-synth er er' (SAMove x) wt with erasee-det (moveerasee' er x) er'
... | refl = wt
-- in all the nonzipper cases, the cursor must be at the top for the
-- action rule to apply, so we just build the new derivation
-- directly. no recursion is needed; these are effectively base cases.
actsense-synth _ EETop SADel _ = SEHole
actsense-synth EETop (EEAscR ETTop) SAConAsc wt = SAsc (ASubsume wt TCRefl)
actsense-synth _ EETop (SAConVar p) _ = SVar p
actsense-synth EETop (EEHalfLamL ETTop) (SAConLam x) SEHole = SLam x SEHole
actsense-synth EETop (EEApR EETop) (SAConApArr x) wt = SAp wt x (ASubsume SEHole TCHole1)
actsense-synth EETop (EEApR EETop) (SAConApOtw x) wt =
SAp (SNEHole wt) MAHole (ASubsume SEHole TCRefl)
actsense-synth _ EETop SAConNumlit _ = SNum
actsense-synth EETop (EEPlusR EETop) (SAConPlus1 TCRefl) wt =
SPlus (ASubsume wt TCRefl) (ASubsume SEHole TCHole1)
actsense-synth EETop (EEPlusR EETop) (SAConPlus1 TCHole2) wt =
SPlus (ASubsume wt TCHole1) (ASubsume SEHole TCHole1)
actsense-synth EETop (EEPlusR EETop) (SAConPlus2 _) wt =
SPlus (ASubsume (SNEHole wt) TCHole1) (ASubsume SEHole TCHole1)
actsense-synth EETop (EENEHole EETop) (SAConNEHole) wt = SNEHole wt
actsense-synth _ EETop (SAFinish x) _ = x
actsense-synth EETop (EEAscR (ETPlusL ETTop)) SAConInl SEHole =
SAsc (AInl MSSum (ASubsume SEHole TCRefl))
actsense-synth EETop (EEAscR (ETPlusR ETTop)) SAConInr SEHole =
SAsc (AInr MSSum (ASubsume SEHole TCRefl))
actsense-synth EETop (EEAscL (EECase2 EETop)) (SAConCase1 c d e₁) f =
SAsc (ACase c d e₁ f (ASubsume SEHole TCRefl) (ASubsume SEHole TCRefl))
actsense-synth EETop (EEAscL (EECase1 (EENEHole EETop))) (SAConCase2 c d e₁) f =
SAsc (ACase c d MSHole (SNEHole f) (ASubsume SEHole TCRefl) (ASubsume SEHole TCRefl))
actsense-synth EETop (EEPairL EETop) SAConPair SEHole = SPair SEHole SEHole
actsense-synth EETop EETop (SAConFst1 pr) wt = SFst wt pr
actsense-synth EETop (EEFst er) (SAConFst2 inc) wt with erase-e◆ er
... | refl = SFst (SNEHole wt) MPHole
actsense-synth EETop EETop (SAConSnd1 pr) wt = SSnd wt pr
actsense-synth EETop (EESnd er) (SAConSnd2 inc) wt with erase-e◆ er
... | refl = SSnd (SNEHole wt) MPHole
--- zipper cases. in each, we recur on the smaller action derivation
--- following the zipper structure, then reassemble the result
actsense-synth (EEAscL er) (EEAscL er') (SAZipAsc1 x) (SAsc x₁)
with actsense-ana er er' x x₁
... | ih = SAsc ih
actsense-synth (EEAscR x₁) (EEAscR x) (SAZipAsc2 x₂ x₃ x₄ x₅) (SAsc x₆)
with eraset-det x x₃
... | refl = SAsc x₅
actsense-synth (EEHalfLamL x₆) (EEHalfLamL x₇) (SAZipLam1 x x₁ x₂ x₃ x₄ x₅) (SLam x₈ wt)
with eraset-det x₁ x₆ | eraset-det x₂ x₇
... | refl | refl = SLam x₈ x₅
actsense-synth (EEHalfLamR er) (EEHalfLamR er') (SAZipLam2 x x₁ x₂ x₃) (SLam x₄ wt)
with actsense-synth x₁ er' x₃ x₂
... | ih = SLam x₄ ih
actsense-synth er (EEApL er') (SAZipApArr x x₁ x₂ act x₃) wt
with actsense-synth x₁ er' act x₂
... | ih = SAp ih x x₃
actsense-synth (EEApR er) (EEApR er') (SAZipApAna x x₁ x₂) (SAp wt x₃ x₄)
with synthunicity x₁ wt
... | refl with ▸arr-unicity x x₃
... | refl with actsense-ana er er' x₂ x₄
... | ih = SAp wt x ih
actsense-synth (EEPlusL er) (EEPlusL er') (SAZipPlus1 x) (SPlus x₁ x₂)
with actsense-ana er er' x x₁
... | ih = SPlus ih x₂
actsense-synth (EEPlusR er) (EEPlusR er') (SAZipPlus2 x) (SPlus x₁ x₂)
with actsense-ana er er' x x₂
... | ih = SPlus x₁ ih
actsense-synth er (EENEHole er') (SAZipNEHole x x₁ act) wt
with actsense-synth x er' act x₁
... | ih = SNEHole ih
actsense-synth (EEPairL er) (EEPairL er') (SAZipPair1 x₁ x₂ y x₃) (SPair z₁ z₂)
with actsense-synth er er' y z₁
... | ih = SPair ih z₂
actsense-synth (EEPairR er) (EEPairR er') (SAZipPair2 x₁ x₂ x₃ y) (SPair z₁ z₂)
with actsense-synth er er' y z₂
... | ih = SPair z₁ ih
actsense-synth (EEFst er) (EEFst er') (SAZipFst x₁ x₂ x₃ x₄ y) (SFst z₁ z₂)
with actsense-synth x₃ er' y x₄
... | ih = SFst ih x₂
actsense-synth (EESnd er) (EESnd er') (SAZipSnd x₁ x₂ x₃ x₄ y) (SSnd z₁ z₂)
with actsense-synth x₃ er' y x₄
... | ih = SSnd ih x₂
-- if an action transforms an zexp in an analytic posistion to another zexp,
-- they have the same type up erasure of the cursor.
actsense-ana : {Γ : tctx} {e e' : zexp} {e◆ e'◆ : hexp} {t : htyp} {α : action} →
erase-e e e◆ →
erase-e e' e'◆ →
Γ ⊢ e ~ α ~> e' ⇐ t →
Γ ⊢ e◆ <= t →
Γ ⊢ e'◆ <= t
-- in the subsumption case, punt to the other theorem
actsense-ana er1 er2 (AASubsume x x₁ x₂ x₃) _ = ASubsume (actsense-synth x er2 x₂ x₁) x₃
-- for movement, appeal to the movement-erasure theorem
actsense-ana er1 er2 (AAMove x) wt with erasee-det (moveerasee' er1 x) er2
... | refl = wt
-- in the nonzipper cases, we again know where the hole must be, so we
-- force it and then build the relevant derivation directly.
actsense-ana EETop EETop AADel wt = ASubsume SEHole TCHole1
actsense-ana EETop (EEAscR ETTop) AAConAsc wt = ASubsume (SAsc wt) TCRefl
actsense-ana EETop (EENEHole EETop) (AAConVar x₁ p) wt = ASubsume (SNEHole (SVar p)) TCHole1
actsense-ana EETop (EELam EETop) (AAConLam1 x₁ x₂) wt = ALam x₁ x₂ (ASubsume SEHole TCHole1)
actsense-ana EETop (EENEHole EETop) (AAConNumlit x) wt = ASubsume (SNEHole SNum) TCHole1
actsense-ana EETop EETop (AAFinish x) wt = x
actsense-ana EETop (EENEHole (EEAscR (ETArrL ETTop))) (AAConLam2 x _) (ASubsume SEHole q) =
ASubsume (SNEHole (SAsc (ALam x MAArr (ASubsume SEHole TCRefl)))) q
-- all subsumptions in the right derivation are bogus, because there's no
-- rule for lambdas synthetically
actsense-ana (EELam _) (EELam _) (AAZipLam _ _ _) (ASubsume () _)
-- that leaves only the zipper cases for lambda, where we force the
-- forms and then recurr into the body of the lambda being checked.
actsense-ana (EELam er1) (EELam er2) (AAZipLam x₁ x₂ act) (ALam x₄ x₅ wt)
with ▸arr-unicity x₂ x₅
... | refl with actsense-ana er1 er2 act wt
... | ih = ALam x₄ x₅ ih
-- constructing injections
actsense-ana EETop (EEInl EETop) (AAConInl1 e) _ = AInl e (ASubsume SEHole TCHole1)
actsense-ana EETop (EENEHole (EEAscR (ETPlusL ETTop))) (AAConInl2 e) _ =
ASubsume (SNEHole (SAsc (AInl MSSum (ASubsume SEHole TCRefl)))) TCHole1
actsense-ana EETop (EEInr EETop) (AAConInr1 e) _ = AInr e (ASubsume SEHole TCHole1)
actsense-ana EETop (EENEHole (EEAscR (ETPlusL ETTop))) (AAConInr2 e) _ =
ASubsume (SNEHole (SAsc (AInr MSSum (ASubsume SEHole TCRefl)))) TCHole1
-- constructing case
actsense-ana EETop (EECase1 EETop) (AAConCase a b) wt =
ACase a b MSHole SEHole (ASubsume SEHole TCHole1) (ASubsume SEHole TCHole1)
-- the ASubsume cases are all impossible, by forcing the form via the erasure
actsense-ana (EEInl _) (EEInl _) (AAZipInl _ _ ) (ASubsume () _)
actsense-ana (EEInr _) (EEInr _) (AAZipInr _ _) (ASubsume () _)
actsense-ana (EECase1 _) (EECase1 _) (AAZipCase1 _ _ _ _ _ _ _ _) (ASubsume () _)
actsense-ana (EECase2 _) (EECase2 _) (AAZipCase2 _ _ _ _ _) (ASubsume () _)
actsense-ana (EECase3 _) (EECase3 _) (AAZipCase3 _ _ _ _ _) (ASubsume () _)
-- zipper cases for sum types
actsense-ana (EEInl er1) (EEInl er2) (AAZipInl m1 b) (AInl m2 wt)
with ▸sum-unicity m1 m2
... | refl with actsense-ana er1 er2 b wt
... | wt' = AInl m1 wt'
actsense-ana (EEInr er1) (EEInr er2) (AAZipInr m1 b) (AInr m2 wt)
with ▸sum-unicity m1 m2
... | refl with actsense-ana er1 er2 b wt
... | wt' = AInr m1 wt'
actsense-ana (EECase1 er1) (EECase1 er2) (AAZipCase1 x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈)
(ACase x₉ x₁₀ x₁₁ x₁₂ wt wt₁)
with actsense-synth x₃ (rel◆ _) x₅ x₄
... | ih = ACase x₉ x₁₀ x₆ (lem-synth-erase ih er2) x₇ x₈
actsense-ana (EECase2 er1) (EECase2 er2) (AAZipCase2 x₁ x₂ s1 x₄ x₅)
(ACase x₇ x₈ x₉ s2 wt wt₁)
with synthunicity s1 s2
... | refl with ▸sum-unicity x₉ x₄
... | refl with actsense-ana er1 er2 x₅ wt
... | ih = ACase x₇ x₈ x₉ s2 ih wt₁
actsense-ana (EECase3 er1) (EECase3 er2) (AAZipCase3 x₁ x₃ s1 x₄ x₆)
(ACase x₇ x₈ x₉ s2 wt wt₁)
with synthunicity s2 s1
... | refl with ▸sum-unicity x₉ x₄
... | refl with actsense-ana er1 er2 x₆ wt₁
... | ih = ACase x₇ x₈ x₉ s2 wt ih
|
{
"alphanum_fraction": 0.6421252773,
"avg_line_length": 51.172972973,
"ext": "agda",
"hexsha": "a458e310ffff1837d86e7290db94bbe59afbe2d7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-agda",
"max_forks_repo_path": "sensibility.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-agda",
"max_issues_repo_path": "sensibility.agda",
"max_line_length": 96,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-agda",
"max_stars_repo_path": "sensibility.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3768,
"size": 9467
}
|
------------------------------------------------------------------------
-- A function that runs computations
------------------------------------------------------------------------
{-# OPTIONS --erased-cubical --safe #-}
open import Prelude hiding (⊥)
module Partiality-monad.Inductive.Approximate {a} {A : Type a} where
open import Equality.Propositional.Cubical
open import H-level.Truncation.Propositional equality-with-paths
open import Partiality-monad.Inductive
open import Partiality-monad.Inductive.Eliminators
-- Runs the computation. The given number is used to decide which
-- element to choose in sequences that are encountered.
approximate : A ⊥ → ℕ → ∥ Maybe A ∥
approximate x n = ⊥-rec-⊥
(record
{ pe = ∣ nothing ∣
; po = λ x → ∣ just x ∣
; pl = λ _ rec → rec n
; pp = λ _ → truncation-is-proposition
})
x
|
{
"alphanum_fraction": 0.5755813953,
"avg_line_length": 28.6666666667,
"ext": "agda",
"hexsha": "f318a13ee6a1ccc71ab1e9e8e06dad427f9caa53",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/partiality-monad",
"max_forks_repo_path": "src/Partiality-monad/Inductive/Approximate.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/partiality-monad",
"max_issues_repo_path": "src/Partiality-monad/Inductive/Approximate.agda",
"max_line_length": 72,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/partiality-monad",
"max_stars_repo_path": "src/Partiality-monad/Inductive/Approximate.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z",
"num_tokens": 213,
"size": 860
}
|
module Categories.PushOuts where
open import Library
open import Categories
open Cat
record Square {a}{b}{C : Cat {a}{b}}{X Y Z}(f : Hom C Z X)(g : Hom C Z Y) : Set (a ⊔ b) where
constructor square
field W : Obj C
h : Hom C X W
k : Hom C Y W
scom : comp C h f ≅ comp C k g
record SqMap {a}{b}{C : Cat {a}{b}}{X Y Z : Obj C}{f : Hom C Z X}{g : Hom C Z Y}
(sq sq' : Square {a}{b}{C} f g) : Set (a ⊔ b) where
constructor sqmap
open Square
field sqMor : Hom C (W sq) (W sq')
leftTr : comp C sqMor (h sq) ≅ h sq'
rightTr : comp C sqMor (k sq) ≅ k sq'
open SqMap
record PushOut {a}{b}{C : Cat {a}{b}}{X Y Z}(f : Hom C Z X)(g : Hom C Z Y) : Set (a ⊔ b) where
constructor pushout
field sq : Square {a}{b}{C} f g
uniqPush : (sq' : Square f g) → Σ (SqMap sq sq')
\ u → (u' : SqMap sq sq') → sqMor u ≅ sqMor u'
|
{
"alphanum_fraction": 0.5223555071,
"avg_line_length": 30.5666666667,
"ext": "agda",
"hexsha": "4dd46dfb2607ce0e84edddee3af5691eda962c5d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jmchapman/Relative-Monads",
"max_forks_repo_path": "Categories/PushOuts.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jmchapman/Relative-Monads",
"max_issues_repo_path": "Categories/PushOuts.agda",
"max_line_length": 94,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jmchapman/Relative-Monads",
"max_stars_repo_path": "Categories/PushOuts.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z",
"num_tokens": 347,
"size": 917
}
|
-- Overlapping instances are only allowed if all valid candidates are
-- overappable.
module _ where
postulate
A : Set
record B : Set where
field overlap {{a}} : A
record C : Set where
field overlap {{a}} : A
record D : Set where
field {{a}} : A
it : ∀ {a} {A : Set a} {{_ : A}} → A
it {{x}} = x
work : {{b : B}} {{c : C}} → A
work = it
-- One variable candidate
fail₁ : {{a : A}} {{b : B}} → A
fail₁ = it
-- One non-overlappable field candidate
fail₂ : {{c : C}} {{d : D}} → A
fail₂ = it
instance postulate a : A
-- One top-level candidate
fail₃ : {{b : B}} → A
fail₃ = it
|
{
"alphanum_fraction": 0.5774410774,
"avg_line_length": 15.6315789474,
"ext": "agda",
"hexsha": "950020cfb9755883eabb287ac5bdc315affa67fa",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/DisallowedOverlaps.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/DisallowedOverlaps.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/DisallowedOverlaps.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 207,
"size": 594
}
|
{-# OPTIONS -v tc.unquote:30 #-}
open import Common.Prelude
open import Common.Reflection
open import Agda.Builtin.Sigma
data Box : Bool → Set where
box : (b : Bool) → Box b
works : (b : Bool) → Box b → Bool
works b (box .b) = unquote (give (var 0 []))
works₂ : (b : Bool) → Box b → Bool
unquoteDef works₂ = defineFun works₂ (clause
( ("b" , vArg unknown) ∷ [])
( vArg (var 0)
∷ vArg (con (quote box)
(vArg (dot unknown) ∷ []))
∷ [])
(var 0 []) ∷ [])
works₃ : (b : Bool) → Box b → (x y : Bool) → Bool
unquoteDef works₃ = defineFun works₃ (clause
( ("y" , vArg unknown)
∷ ("x" , vArg unknown)
∷ ("b" , vArg unknown)
∷ [])
( vArg (var 2)
∷ vArg (con (quote box)
(vArg (dot unknown) ∷ []))
∷ vArg (var 1)
∷ vArg (var 0)
∷ [])
(var 2 []) ∷ [])
|
{
"alphanum_fraction": 0.5454545455,
"avg_line_length": 23.2941176471,
"ext": "agda",
"hexsha": "b6742216a5b11b6c6ddba20ab0978916f4e73592",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Succeed/Issue1344.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Succeed/Issue1344.agda",
"max_line_length": 49,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Succeed/Issue1344.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 304,
"size": 792
}
|
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Algebra.Polynomials.Multivariate.Equiv.Poly1-Poly where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Nat renaming (_+_ to _+n_; _·_ to _·n_)
open import Cubical.Data.Vec renaming ( [] to <> ; _∷_ to _::_)
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.Polynomials.Univariate.Base
open import Cubical.Algebra.Polynomials.Univariate.Properties
open import Cubical.Algebra.CommRing.Instances.UnivariatePoly
open import Cubical.Algebra.Polynomials.Multivariate.Base
open import Cubical.Algebra.Polynomials.Multivariate.Properties
open import Cubical.Algebra.CommRing.Instances.MultivariatePoly
private variable
ℓ : Level
module Equiv-Poly1-Poly: (A' : CommRing ℓ) where
private
A = fst A'
open PolyMod A'
renaming
( Poly to Poly:
; isSetPoly to isSetPoly:
)
open PolyModTheory A'
renaming
( 0P to 0P:
; Poly- to Poly:-
; _Poly+_ to _Poly:+_
; Poly+Lid to Poly:+Lid
; Poly+Rid to Poly:+Rid
; Poly+Assoc to Poly:+Assoc
; Poly+Inverses to Poly:+Inverses
; Poly+Comm to Poly:+Comm
; _Poly*_ to _Poly:*_
; 1P to 1P:
; 0PRightAnnihilates to 0PRightAnnihilates:
; 0PLeftAnnihilates to 0PLeftAnnihilates:
; Poly*Lid to Poly:*Lid
; Poly*Rid to Poly:*Rid
; Poly*Associative to Poly:*Assoc
; Poly*Commutative to Poly:*Comm
; prod-Xn-0P to prod-Xn-0P:
)
open Nth-Poly-structure A' 1
-- Notation P, Q, R... for Poly 1
-- x, y, w... for Poly:
-- a,b,c... for A
-----------------------------------------------------------------------------
-- direct
trad-base : (v : Vec ℕ 1) → A → Poly:
trad-base (n :: <>) a = prod-Xn n [ a ]
trad-base-neutral : (v : Vec ℕ 1) → trad-base v 0r ≡ []
trad-base-neutral (n :: <>) = cong (prod-Xn n) drop0 ∙ prod-Xn-0P: n
trad-base-add : (v : Vec ℕ 1) → (a b : A) → (trad-base v a) Poly:+ (trad-base v b) ≡ trad-base v (a + b)
trad-base-add (n :: <>) a b = prod-Xn-sum n (a ∷ []) (b ∷ [])
Poly1→Poly: : Poly A' 1 → Poly:
Poly1→Poly: = Poly-Rec-Set.f A' 1 Poly: isSetPoly:
[]
trad-base
(λ x y → x Poly:+ y)
Poly:+Assoc
Poly:+Rid
Poly:+Comm
trad-base-neutral
trad-base-add
Poly1→Poly:-gmorph : (P Q : Poly A' 1) → Poly1→Poly: (P Poly+ Q) ≡ (Poly1→Poly: P) Poly:+ (Poly1→Poly: Q)
Poly1→Poly:-gmorph P Q = refl
-----------------------------------------------------------------------------
-- converse
Poly:→Poly1-int : (n : ℕ) → Poly: → Poly A' 1
Poly:→Poly1-int n [] = 0P
Poly:→Poly1-int n (a ∷ x) = (base (n :: <>) a) Poly+ Poly:→Poly1-int (suc n) x
Poly:→Poly1-int n (drop0 i) = ((cong (λ X → X Poly+ 0P) (base-0P (n :: <>))) ∙ (Poly+-Rid 0P)) i
Poly:→Poly1 : Poly: → Poly A' 1
Poly:→Poly1 x = Poly:→Poly1-int 0 x
Poly:→Poly1-int-gmorph : (x y : Poly:) → (n : ℕ) → Poly:→Poly1-int n (x Poly:+ y) ≡ (Poly:→Poly1-int n x) Poly+ (Poly:→Poly1-int n y)
Poly:→Poly1-int-gmorph = ElimProp.f
(λ x → (y : Poly:) → (n : ℕ) → Poly:→Poly1-int n (x Poly:+ y) ≡ (Poly:→Poly1-int n x Poly+ Poly:→Poly1-int n y))
(λ y n → (cong (Poly:→Poly1-int n) (Poly:+Lid y)) ∙ (sym (Poly+-Lid (Poly:→Poly1-int n y))))
(λ a x ind-x → ElimProp.f
(λ y → (n : ℕ) → Poly:→Poly1-int n ((a ∷ x) Poly:+ y) ≡ (Poly:→Poly1-int n (a ∷ x) Poly+ Poly:→Poly1-int n y))
(λ n → sym (Poly+-Rid (Poly:→Poly1-int n (a ∷ x))))
(λ b y ind-y n → sym (
(Poly-com-adv (base (n :: <>) a) (Poly:→Poly1-int (suc n) x) (base (n :: <>) b) (Poly:→Poly1-int (suc n) y))
∙
(cong₂ _Poly+_ (base-Poly+ (n :: <>) a b) (sym (ind-x y (suc n))))) )
λ {y} p q i n j → trunc
(Poly:→Poly1-int n ((a ∷ x) Poly:+ y))
(Poly:→Poly1-int n (a ∷ x) Poly+ Poly:→Poly1-int n y)
(p n) (q n) i j )
λ {x} p q i y n j → trunc (Poly:→Poly1-int n (x Poly:+ y)) (Poly:→Poly1-int n x Poly+ Poly:→Poly1-int n y) (p y n) (q y n) i j
Poly:→Poly1-gmorph : (x y : Poly:) → Poly:→Poly1 (x Poly:+ y) ≡ (Poly:→Poly1 x) Poly+ (Poly:→Poly1 y)
Poly:→Poly1-gmorph x y = Poly:→Poly1-int-gmorph x y 0
-----------------------------------------------------------------------------
-- section
e-sect-int : (x : Poly:) → (n : ℕ) → Poly1→Poly: (Poly:→Poly1-int n x) ≡ prod-Xn n x
e-sect-int = ElimProp.f
(λ z → (n : ℕ) → Poly1→Poly: (Poly:→Poly1-int n z) ≡ prod-Xn n z)
(λ n → sym (prod-Xn-0P: n))
(λ a x ind-x n → ((prod-Xn n [ a ] ) Poly:+ (Poly1→Poly: (Poly:→Poly1-int (suc n) x)))
≡⟨ cong (λ X → prod-Xn n [ a ] Poly:+ X) (ind-x (suc n)) ⟩
(prod-Xn n (a ∷ []) Poly:+ ( 0r ∷ prod-Xn n x))
≡⟨ prod-Xn-∷ n a x ⟩
prod-Xn n (a ∷ x) ∎)
(λ {x} p q i n j → isSetPoly: (Poly1→Poly: (Poly:→Poly1-int n x)) (prod-Xn n x) (p n) (q n) i j)
e-sect : (x : Poly:) → Poly1→Poly: (Poly:→Poly1 x) ≡ x
e-sect x = e-sect-int x 0
-----------------------------------------------------------------------------
-- retraction
idde : (m n : ℕ) → (a : A) → Poly:→Poly1-int n (prod-Xn m [ a ]) ≡ base ((n +n m) :: <>) a
idde zero n a = Poly+-Rid (base (n :: <>) a) ∙ cong (λ X → base (X :: <>) a) (sym (+-zero n))
idde (suc m) n a = cong (λ X → X Poly+ Poly:→Poly1-int (suc n) (prod-Xn m (a ∷ []))) (base-0P (n :: <>))
∙ Poly+-Lid (Poly:→Poly1-int (suc n) (prod-Xn m (a ∷ [])))
∙ idde m (suc n) a
∙ cong (λ X → base (X :: <>) a) (sym (+-suc n m))
idde-v : (v : Vec ℕ 1) → (a : A) → Poly:→Poly1-int 0 (trad-base v a) ≡ base v a
idde-v (n :: <>) a = (idde n 0 a)
e-retr : (P : Poly A' 1) → Poly:→Poly1 (Poly1→Poly: P) ≡ P
e-retr = Poly-Ind-Prop.f A' 1
(λ P → Poly:→Poly1 (Poly1→Poly: P) ≡ P)
(λ _ → trunc _ _)
refl
(λ v a → idde-v v a)
λ {P Q} ind-P ind-Q → cong Poly:→Poly1 (Poly1→Poly:-gmorph P Q)
∙
Poly:→Poly1-gmorph (Poly1→Poly: P) (Poly1→Poly: Q)
∙
cong₂ _Poly+_ ind-P ind-Q
-----------------------------------------------------------------------------
-- Ring morphism
map-1P : Poly1→Poly: 1P ≡ 1P:
map-1P = refl
trad-base-prod : (v v' : Vec ℕ 1) → (a a' : A) → trad-base (v +n-vec v') (a · a') ≡
(trad-base v a Poly:* trad-base v' a')
trad-base-prod (k :: <>) (l :: <>) a a' = sym ((prod-Xn-prod k l [ a ] [ a' ]) ∙ cong (λ X → prod-Xn (k +n l) [ X ]) (+Rid (a · a')))
Poly1→Poly:-rmorph : (P Q : Poly A' 1) → Poly1→Poly: (P Poly* Q) ≡ (Poly1→Poly: P) Poly:* (Poly1→Poly: Q)
Poly1→Poly:-rmorph = Poly-Ind-Prop.f A' 1
(λ P → (Q : Poly A' 1) → Poly1→Poly: (P Poly* Q) ≡ (Poly1→Poly: P Poly:* Poly1→Poly: Q))
(λ P p q i Q j → isSetPoly: (Poly1→Poly: (P Poly* Q)) (Poly1→Poly: P Poly:* Poly1→Poly: Q) (p Q) (q Q) i j)
(λ Q → refl)
(λ v a → Poly-Ind-Prop.f A' 1
(λ P → Poly1→Poly: (base v a Poly* P) ≡ (Poly1→Poly: (base v a) Poly:* Poly1→Poly: P))
(λ _ → isSetPoly: _ _)
(sym (0PLeftAnnihilates: (trad-base v a)))
(λ v' a' → trad-base-prod v v' a a')
λ {U V} ind-U ind-V → (cong₂ _Poly:+_ ind-U ind-V)
∙ sym (Poly*LDistrPoly+ (Poly1→Poly: (base v a)) (Poly1→Poly: U) (Poly1→Poly: V)))
λ {U V} ind-U ind-V Q → (cong₂ _Poly:+_ (ind-U Q) (ind-V Q))
∙ sym (Poly*RDistrPoly+ (Poly1→Poly: U) (Poly1→Poly: V) (Poly1→Poly: Q))
-- -----------------------------------------------------------------------------
-- -- Ring Equivalences
module _ (A' : CommRing ℓ) where
open Equiv-Poly1-Poly: A'
CRE-Poly1-Poly: : CommRingEquiv (PolyCommRing A' 1) (UnivariatePoly A')
fst CRE-Poly1-Poly: = isoToEquiv is
where
is : Iso _ _
Iso.fun is = Poly1→Poly:
Iso.inv is = Poly:→Poly1
Iso.rightInv is = e-sect
Iso.leftInv is = e-retr
snd CRE-Poly1-Poly: = makeIsRingHom map-1P Poly1→Poly:-gmorph Poly1→Poly:-rmorph
|
{
"alphanum_fraction": 0.4424541457,
"avg_line_length": 44.1848341232,
"ext": "agda",
"hexsha": "092d7b862a3b3ca6053cdc7ed4cd4bbe4b3f99b8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "howsiyu/cubical",
"max_forks_repo_path": "Cubical/Algebra/Polynomials/Multivariate/Equiv/Poly1-Poly.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "howsiyu/cubical",
"max_issues_repo_path": "Cubical/Algebra/Polynomials/Multivariate/Equiv/Poly1-Poly.agda",
"max_line_length": 166,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "howsiyu/cubical",
"max_stars_repo_path": "Cubical/Algebra/Polynomials/Multivariate/Equiv/Poly1-Poly.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3063,
"size": 9323
}
|
test.id : (A:Set) -> (x:A) -> A
test.id A x = x
nat.plus : (x:Nat) -> (y:Nat) -> Nat
nat.plus (nat.suc x) y = nat.suc (nat.plus x y)
nat.plus nat.zero y = y
|
{
"alphanum_fraction": 0.5375,
"avg_line_length": 17.7777777778,
"ext": "agda",
"hexsha": "3239a66da9d0ef50ce7456f32b9fd649ad0659d0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/core/core.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/core/core.agda",
"max_line_length": 47,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/core/core.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 67,
"size": 160
}
|
import Lvl
open import Structure.Setoid
open import Type
module Structure.Operator.Vector.Subspaces.Image
{ℓₛ ℓₛₑ}
{S : Type{ℓₛ}}
⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄
{_+ₛ_ _⋅ₛ_ : S → S → S}
where
open import Logic.Predicate
open import Sets.ExtensionalPredicateSet as PredSet using (PredSet ; _∈_ ; [∋]-binaryRelator)
open import Structure.Container.SetLike as SetLike using (SetElement)
open import Structure.Function.Multi
open import Structure.Operator
open import Structure.Operator.Properties
open import Structure.Operator.Vector
open import Structure.Operator.Vector.LinearMap
open import Structure.Operator.Vector.Proofs
open import Structure.Operator.Vector.Subspace
open import Structure.Relator.Properties
open import Syntax.Function
open import Syntax.Implication
open import Syntax.Transitivity
open VectorSpace ⦃ … ⦄
open VectorSpaceVObject ⦃ … ⦄ using (_+ᵥ_; _⋅ₛᵥ_)
open VectorSpaceVObject using (Vector)
private variable ℓ ℓᵥ ℓᵥₑ : Lvl.Level
private variable V W : VectorSpaceVObject {ℓᵥ = ℓᵥ} {ℓᵥₑ = ℓᵥₑ} ⦃ equiv-S = equiv-S ⦄ (_+ₛ_)(_⋅ₛ_)
private variable F : V →ˡⁱⁿᵉᵃʳᵐᵃᵖ W
image : (V →ˡⁱⁿᵉᵃʳᵐᵃᵖ W) → PredSet(Vector(W))
image {V = V}{W = W} ([∃]-intro f) = PredSet.⊶ f
image-subspace : Subspace(image(F))
SetLike.FunctionProperties._closed-under₂_.proof (Subspace.add-closure (image-subspace {_} {_} {V} {_} {_} {W} {F = F@([∃]-intro f)})) {x} {y} xim yim =
• (
xim ⇒
x ∈ image(F) ⇒-[]
∃(a ↦ f(a) ≡ x) ⇒-end
)
• (
yim ⇒
y ∈ image(F) ⇒-[]
∃(a ↦ f(a) ≡ y) ⇒-end
) ⇒₂-[ [∃]-map₂ (_+ᵥ_) (p ↦ q ↦ (preserving₂(f)(_+ᵥ_)(_+ᵥ_) 🝖 congruence₂(_+ᵥ_) p q)) ]
∃(a ↦ f(a) ≡ x +ᵥ y) ⇒-[]
(x +ᵥ y) ∈ image(F) ⇒-end
where
instance _ = V
instance _ = W
SetLike.FunctionProperties._closed-under₁_.proof (Subspace.mul-closure (image-subspace {_} {_} {V} {_} {_} {W} {F = F@([∃]-intro f)}) {s}) {v} vim =
vim ⇒
v ∈ image(F) ⇒-[]
∃(x ↦ f(x) ≡ v) ⇒-[ [∃]-map-proof (congruence₂ᵣ(_⋅ₛᵥ_)(s)) ]
∃(x ↦ s ⋅ₛᵥ f(x) ≡ s ⋅ₛᵥ v) ⇒-[ [∃]-map (s ⋅ₛᵥ_) (preserving₁(f)(s ⋅ₛᵥ_)(s ⋅ₛᵥ_) 🝖_) ]
∃(x ↦ f(x) ≡ s ⋅ₛᵥ v) ⇒-[]
(s ⋅ₛᵥ v) ∈ image(F) ⇒-end
where
instance _ = V
instance _ = W
|
{
"alphanum_fraction": 0.6087149844,
"avg_line_length": 34.6,
"ext": "agda",
"hexsha": "f92df6a73514bcefe518a9fb76971fe3b6794db9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Operator/Vector/Subspaces/Image.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Operator/Vector/Subspaces/Image.agda",
"max_line_length": 152,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Operator/Vector/Subspaces/Image.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 954,
"size": 2249
}
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import cw.CW
open import cw.FinCW
open import cw.FinBoundary
open import cohomology.Theory
{- The reason that RephraseDualizedFirstFinBoundary did not handle this case
is because [FinSkeleton n] does not compute. -}
module cw.cohomology.cochainequiv.DualizedFirstBoundary (OT : OrdinaryTheory lzero)
(⊙fin-skel : ⊙FinSkeleton 1) where
open OrdinaryTheory OT
private
fin-skel = ⊙FinSkeleton.skel ⊙fin-skel
I = AttachedFinSkeleton.numCells fin-skel
I₋₁ = AttachedFinSkeleton.skel fin-skel
abstract
rephrase-dualized-first-boundary-in-degree : ∀ g <I
→ FormalSum-extend (C2-abgroup 0) g (GroupHom.f (fboundary-last fin-skel) fs[ inl <I :: nil ])
== Group.sum (C2 0) (λ <I₋₁ → Group.exp (C2 0) (g <I₋₁) (fdegree-last fin-skel <I <I₋₁))
rephrase-dualized-first-boundary-in-degree g <I =
FormalSum-extend (C2-abgroup 0) g (GroupHom.f (fboundary-last fin-skel) fs[ inl <I :: nil ])
=⟨ ap (FormalSum-extend (C2-abgroup 0) g) $
app= (is-equiv.g-f (FreeAbGroup-extend-is-equiv (FreeAbGroup (Fin I₋₁))) (fboundary'-last fin-skel)) <I ⟩
FormalSum-extend (C2-abgroup 0) g
(Group.sum (FreeAbGroup.grp (Fin I₋₁))
(λ <I₋₁ → Group.exp (FreeAbGroup.grp (Fin I₋₁)) fs[ inl <I₋₁ :: nil ] (fdegree-last fin-skel <I <I₋₁)))
=⟨ GroupHom.pres-sum (FreeAbGroup-extend (C2-abgroup 0) g)
(λ <I₋₁ → Group.exp (FreeAbGroup.grp (Fin I₋₁)) fs[ inl <I₋₁ :: nil ] (fdegree-last fin-skel <I <I₋₁)) ⟩
Group.sum (C2 0)
(λ <I₋₁ →
(FormalSum-extend (C2-abgroup 0) g
(Group.exp (FreeAbGroup.grp (Fin I₋₁)) fs[ inl <I₋₁ :: nil ] (fdegree-last fin-skel <I <I₋₁))))
=⟨ ap (Group.sum (C2 0))
(λ= λ <I₋₁ →
GroupHom.pres-exp (FreeAbGroup-extend (C2-abgroup 0) g)
fs[ inl <I₋₁ :: nil ]
(fdegree-last fin-skel <I <I₋₁)) ⟩
Group.sum (C2 0)
(λ <I₋₁ →
(Group.exp (C2 0)
(FormalSum-extend (C2-abgroup 0) g fs[ inl <I₋₁ :: nil ])
(fdegree-last fin-skel <I <I₋₁)))
=⟨ ap (Group.sum (C2 0))
(λ= λ <I₋₁ → ap (λ g → Group.exp (C2 0) g (fdegree-last fin-skel <I <I₋₁)) $
app= (is-equiv.g-f (FreeAbGroup-extend-is-equiv (C2-abgroup 0)) g) <I₋₁) ⟩
Group.sum (C2 0) (λ <I₋₁ → (Group.exp (C2 0) (g <I₋₁) (fdegree-last fin-skel <I <I₋₁)))
=∎
|
{
"alphanum_fraction": 0.6030949394,
"avg_line_length": 43.4727272727,
"ext": "agda",
"hexsha": "5592b97a86b1be470a5dd75c5ac19657f3a452d1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/cw/cohomology/cochainequiv/DualizedFirstBoundary.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/cw/cohomology/cochainequiv/DualizedFirstBoundary.agda",
"max_line_length": 115,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/cw/cohomology/cochainequiv/DualizedFirstBoundary.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 917,
"size": 2391
}
|
open import SOAS.Common
open import SOAS.Families.Core
open import Categories.Object.Initial
open import SOAS.Coalgebraic.Strength
import SOAS.Metatheory.MetaAlgebra
-- Initial-algebra semantics
module SOAS.Metatheory.Semantics {T : Set}
(⅀F : Functor 𝔽amiliesₛ 𝔽amiliesₛ) (⅀:Str : Strength ⅀F)
(𝔛 : Familyₛ) (open SOAS.Metatheory.MetaAlgebra ⅀F 𝔛)
(𝕋:Init : Initial 𝕄etaAlgebras)
where
open import SOAS.Context
open import SOAS.Variable
open import SOAS.Construction.Structure as Structure
open import SOAS.Abstract.Hom
import SOAS.Abstract.Coalgebra as →□ ; open →□.Sorted
import SOAS.Abstract.Box as □ ; open □.Sorted
open import SOAS.Metatheory.Algebra ⅀F
open Strength ⅀:Str
private
variable
Γ Δ Θ Π : Ctx
α β : T
𝒫 𝒬 𝒜 : Familyₛ
open Initial 𝕋:Init
open Object ⊥ public renaming (𝐶 to 𝕋 ; ˢ to 𝕋ᵃ)
open MetaAlg 𝕋ᵃ public renaming (𝑎𝑙𝑔 to 𝕒𝕝𝕘 ; 𝑣𝑎𝑟 to 𝕧𝕒𝕣 ; 𝑚𝑣𝑎𝑟 to 𝕞𝕧𝕒𝕣 ;
𝑚≈₁ to 𝕞≈₁ ; 𝑚≈₂ to 𝕞≈₂)
module Semantics (𝒜ᵃ : MetaAlg 𝒜) where
open Morphism (! {𝒜 ⋉ 𝒜ᵃ}) public renaming (𝑓 to 𝕤𝕖𝕞 ; ˢ⇒ to 𝕤𝕖𝕞ᵃ⇒)
open MetaAlg⇒ 𝕤𝕖𝕞ᵃ⇒ public renaming (⟨𝑎𝑙𝑔⟩ to ⟨𝕒⟩ ; ⟨𝑣𝑎𝑟⟩ to ⟨𝕧⟩ ; ⟨𝑚𝑣𝑎𝑟⟩ to ⟨𝕞⟩)
open MetaAlg 𝒜ᵃ
module 𝒜 = MetaAlg 𝒜ᵃ
eq : {g h : 𝕋 ⇾̣ 𝒜} (gᵃ : MetaAlg⇒ 𝕋ᵃ 𝒜ᵃ g) (hᵃ : MetaAlg⇒ 𝕋ᵃ 𝒜ᵃ h) (t : 𝕋 α Γ)
→ g t ≡ h t
eq {g = g}{h} gᵃ hᵃ t = !-unique₂ (g ⋉ gᵃ) (h ⋉ hᵃ) {x = t}
-- The interpretation is equal to any other pointed meta-Λ-algebra
𝕤𝕖𝕞! : {g : 𝕋 ⇾̣ 𝒜}(gᵃ : MetaAlg⇒ 𝕋ᵃ 𝒜ᵃ g)(t : 𝕋 α Γ) → 𝕤𝕖𝕞 t ≡ g t
𝕤𝕖𝕞! {g = g} gᵃ t = !-unique (g ⋉ gᵃ) {x = t}
-- Corollaries: every meta-algebra endo-homomorphism is the identity, including 𝕤𝕖𝕞
eq-id : {g : 𝕋 ⇾̣ 𝕋} (gᵃ : MetaAlg⇒ 𝕋ᵃ 𝕋ᵃ g) (t : 𝕋 α Γ) →
g t ≡ t
eq-id gᵃ t = Semantics.eq 𝕋ᵃ gᵃ (idᵃ 𝕋ᵃ) t
𝕤𝕖𝕞-id : {t : 𝕋 α Γ} → Semantics.𝕤𝕖𝕞 𝕋ᵃ t ≡ t
𝕤𝕖𝕞-id {t = t} = eq-id (Semantics.𝕤𝕖𝕞ᵃ⇒ 𝕋ᵃ) t
|
{
"alphanum_fraction": 0.6373448462,
"avg_line_length": 30.3770491803,
"ext": "agda",
"hexsha": "0e09b13a713739e33e0bb5341e26809e487b383f",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "SOAS/Metatheory/Semantics.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "SOAS/Metatheory/Semantics.agda",
"max_line_length": 83,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "SOAS/Metatheory/Semantics.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 1079,
"size": 1853
}
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT.Base
open import HoTT.HLevel
module HoTT.HLevel.Truncate where
open variables
postulate _↦_ : ∀ {a} {A : Set a} → A → A → Set a
{-# BUILTIN REWRITE _↦_ #-}
postulate
∥_∥ : 𝒰 i → 𝒰 i
∣_∣ : A → ∥ A ∥
instance ∥-hlevel : hlevel 1 ∥ A ∥
∥-rec : ⦃ hlevel 1 B ⦄ → (A → B) → ∥ A ∥ → B
∥-β : ⦃ _ : hlevel 1 B ⦄ → (f : A → B) (x : A) → ∥-rec f ∣ x ∣ ↦ f x
{-# REWRITE ∥-β #-}
{-
data Squash (A : 𝒰 i) : 𝒰 i where
squash : A → Squash A
∥_∥ : 𝒰 i → 𝒰 i
∥_∥ = Squash
∣_∣ : A → ∥ A ∥
∣_∣ = squash
postulate instance ∥-hlevel : hlevel 1 ∥ A ∥
∥-rec : {B : 𝒰 i} → ⦃ hlevel 1 B ⦄ → (A → B) → ∥ A ∥ → B
∥-rec f (squash x) = f x
-}
|
{
"alphanum_fraction": 0.4956896552,
"avg_line_length": 19.8857142857,
"ext": "agda",
"hexsha": "665068a4a5cf37e24ecd1e81d4e47f79e99e91d0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "michaelforney/hott",
"max_forks_repo_path": "HoTT/HLevel/Truncate.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "michaelforney/hott",
"max_issues_repo_path": "HoTT/HLevel/Truncate.agda",
"max_line_length": 70,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "michaelforney/hott",
"max_stars_repo_path": "HoTT/HLevel/Truncate.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 362,
"size": 696
}
|
module Issue296 where
postulate
Unit : Set
IO : Set → Set
foo : ((A B : Set) → Unit) → IO Unit
bar : (A B : Set) → Unit
{-# BUILTIN IO IO #-}
{-# COMPILE GHC IO = type IO #-}
{-# COMPILE GHC Unit = type () #-}
{-# COMPILE GHC bar = undefined #-}
main : IO Unit
main = foo bar
|
{
"alphanum_fraction": 0.5567010309,
"avg_line_length": 18.1875,
"ext": "agda",
"hexsha": "ad5f6f4712d08c5cdae4bf98a53bdb6f6a6e3c0a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue296.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue296.agda",
"max_line_length": 39,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue296.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 93,
"size": 291
}
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import groups.Cokernel
open import groups.Exactness
open import groups.ExactSequence
open import cohomology.Theory
open import cw.CW
open import cw.WedgeOfCells
module cw.cohomology.reconstructed.TipCoboundary {i} (OT : OrdinaryTheory i)
(⊙skel : ⊙Skeleton {i} 1) where
open OrdinaryTheory OT
open import cohomology.LongExactSequence cohomology-theory 0 (⊙cw-incl-last ⊙skel)
open import cw.cohomology.WedgeOfCells OT ⊙skel
open import cw.cohomology.reconstructed.TipAndAugment OT (⊙cw-init ⊙skel)
CX₁/X₀-is-abelian = CXₙ/Xₙ₋₁-is-abelian 1
cw-co∂-head' : CX₀ 0 →ᴳ CXₙ/Xₙ₋₁ 1
cw-co∂-head' = co∂
⊙cw-∂-head'-before-Susp : ⊙Xₙ/Xₙ₋₁ (⊙Skeleton.skel ⊙skel) ⊙→ ⊙Susp (⊙cw-head ⊙skel)
⊙cw-∂-head'-before-Susp = ⊙∂-before-Susp
cw-∂-head'-before-Susp : Xₙ/Xₙ₋₁ (⊙Skeleton.skel ⊙skel) → Susp (cw-head (⊙Skeleton.skel ⊙skel))
cw-∂-head'-before-Susp = ∂-before-Susp
abstract
cw-∂-head'-before-Susp-glue-β : ∀ x → ap cw-∂-head'-before-Susp (cfglue x) == merid x
cw-∂-head'-before-Susp-glue-β = ∂-before-Susp-glue-β
cw-co∂-head : C2×CX₀ 0 →ᴳ CXₙ/Xₙ₋₁ 1
cw-co∂-head = record {f = GroupHom.f cw-co∂-head' ∘ snd; pres-comp = lemma}
where abstract lemma = ∘ᴳ-pres-comp cw-co∂-head' (×ᴳ-snd {G = C2 0} {H = CX₀ 0})
abstract
-- This relies on the [lemma] above being non-abstract within this scope.
co∂-head-incl-exact : is-exact cw-co∂-head (C-fmap 1 (⊙cfcod' (⊙cw-incl-last ⊙skel)))
co∂-head-incl-exact = pre∘-is-exact
(×ᴳ-snd {G = C2 0} {H = CX₀ 0})
(×ᴳ-snd-is-surj {G = C2 0} {H = CX₀ 0})
(exact-seq-index 1 C-cofiber-exact-seq)
module CokerCo∂Head where
grp = Coker cw-co∂-head CX₁/X₀-is-abelian
open Group grp public
|
{
"alphanum_fraction": 0.6830697129,
"avg_line_length": 34.14,
"ext": "agda",
"hexsha": "6924342e2ce0f49aeefda7c0ecf1e06383a52163",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/cw/cohomology/reconstructed/TipCoboundary.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/cw/cohomology/reconstructed/TipCoboundary.agda",
"max_line_length": 95,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/cw/cohomology/reconstructed/TipCoboundary.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 744,
"size": 1707
}
|
------------------------------------------------------------------------------
-- Reasoning partially about functions
------------------------------------------------------------------------------
{-# OPTIONS --allow-unsolved-metas #-}
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- We cannot reasoning partially about partial functions intended to
-- operate in total values.
module FOT.FOTC.Data.Nat.AddPartialRightIdentity where
open import FOTC.Base
open import FOTC.Data.Nat
------------------------------------------------------------------------------
-- How proceed?
+-partialRightIdentity : ∀ n → n + zero ≡ n
+-partialRightIdentity n = {!!}
|
{
"alphanum_fraction": 0.4550063371,
"avg_line_length": 32.875,
"ext": "agda",
"hexsha": "31e236aff4bebbb443625deaab653c5d4c368b23",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/Data/Nat/AddPartialRightIdentity.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/Data/Nat/AddPartialRightIdentity.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/Data/Nat/AddPartialRightIdentity.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 131,
"size": 789
}
|
test = forall _Set_ → Set
|
{
"alphanum_fraction": 0.6923076923,
"avg_line_length": 13,
"ext": "agda",
"hexsha": "6f404304410f985fce70c6597bbb2a3e5d15ae84",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/InvalidNamePartSet.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Fail/InvalidNamePartSet.agda",
"max_line_length": 25,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Fail/InvalidNamePartSet.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 9,
"size": 26
}
|
open import Prelude
module List where
data List (A : Set) : Set where
[] : List A
_::_ : (a : A) (as : List A) → List A
-- list append, structural on the left
_++_ : {A : Set} → List A → List A → List A
[] ++ l₂ = l₂
(h :: l₁) ++ l₂ = h :: (l₁ ++ l₂)
-- list membership, as a proposition
data _inList_ {A : Set} : A → List A → Set where
InH : {a : A} {as : List A} → a inList (a :: as)
InT : {a a' : A} {as : List A} → a inList as → a inList (a' :: as)
-- if everything isn't in a list, it's the empty list
∅∈l→l==[] : {A : Set} {l : List A} → ((a : A) → a inList l → ⊥) → l == []
∅∈l→l==[] {l = []} h = refl
∅∈l→l==[] {l = a' :: as} h = abort (h a' InH)
-- if a isn't in a cons, it's not in the tail either
a∉a'::as→a∉as : {A : Set} {as : List A} {a a' : A} →
(a inList (a' :: as) → ⊥) →
a inList as →
⊥
a∉a'::as→a∉as h h' = h (InT h')
-- if x isn't in either side of an append, it's not in the result
not-in-append-comm : {A : Set} {x : A} {l₁ l₂ : List A} →
dec A →
(x inList l₁ → ⊥) →
(x inList l₂ → ⊥) →
x inList (l₁ ++ l₂) → ⊥
not-in-append-comm {l₁ = []} dec h₁ h₂ h₃ = h₂ h₃
not-in-append-comm {x = x} {a₁ :: _} dec h₁ h₂ h₃ with dec a₁ x
not-in-append-comm {l₁ = l₁} dec h₁ h₂ h₃ | Inl h = h₁ (tr (λ y → y inList l₁) h InH)
not-in-append-comm dec h₁ h₂ InH | Inr h = abort (h refl)
not-in-append-comm dec h₁ h₂ (InT h₃) | Inr h = not-in-append-comm dec (a∉a'::as→a∉as h₁) h₂ h₃
remove-all : {A : Set} → dec A → List A → A → List A
remove-all dec [] a = []
remove-all dec (a' :: as) a
with dec a a' | remove-all dec as a
... | Inl _ | l' = l'
... | Inr _ | l' = a' :: l'
-- (homomorphism) removing distributes over append
remove-all-append-comm : {A : Set} →
(dec : dec A) →
(l₁ l₂ : List A) →
(a : A) →
remove-all dec l₁ a ++ remove-all dec l₂ a == remove-all dec (l₁ ++ l₂) a
remove-all-append-comm dec [] l₂ a = refl
remove-all-append-comm dec (a₁ :: as₁) l₂ a with dec a a₁ | remove-all-append-comm dec as₁ l₂ a
remove-all-append-comm dec (a₁ :: as₁) l₂ a | Inl refl | h = h
remove-all-append-comm dec (a₁ :: as₁) l₂ a | Inr _ | h = ap1 (λ y → a₁ :: y) h
-- an element isn't in the list that results from removing all instances of it
remove-all-not-in : {A : Set} →
(dec : dec A) →
(l : List A) →
(a : A) →
a inList remove-all dec l a →
⊥
remove-all-not-in dec [] a ()
remove-all-not-in dec (a' :: as) a h with dec a a'
remove-all-not-in dec (a' :: as) a h | Inl refl = remove-all-not-in dec as a' h
remove-all-not-in dec (a' :: as) .a' InH | Inr a≠a' = a≠a' refl
remove-all-not-in dec (a' :: as) a (InT h) | Inr a≠a' = remove-all-not-in dec as a h
-- an element that was never in a list still isn't once you remove any element.
a∉l→a∉remove-all-l-a' : {A : Set} →
{l : List A} →
{a a' : A} →
(dec : dec A) →
(a inList l → ⊥) →
a inList remove-all dec l a' →
⊥
a∉l→a∉remove-all-l-a' {l = []} {a} _ h₁ h₂ = h₁ h₂
a∉l→a∉remove-all-l-a' {l = lh :: lt} {a} {a'} dec h₁ h₂ with dec a lh | dec a' lh
a∉l→a∉remove-all-l-a' {l = lh :: lt} {a} dec h₁ h₂ | Inl a==lh | _ = h₁ (tr (λ y → a inList (y :: lt) ) a==lh InH)
a∉l→a∉remove-all-l-a' {l = lh :: lt} dec h₁ h₂ | Inr _ | Inl _ = a∉l→a∉remove-all-l-a' dec (a∉a'::as→a∉as h₁) h₂
a∉l→a∉remove-all-l-a' {l = lh :: lt} dec h₁ InH | Inr a≠lh | Inr _ = a≠lh refl
a∉l→a∉remove-all-l-a' {l = lh :: lt} dec h₁ (InT h₂) | Inr _ | Inr _ = a∉l→a∉remove-all-l-a' dec (a∉a'::as→a∉as h₁) h₂
-- if an element is in an append, it's in one side or the other
inList++ : {A : Set} {x : A} → ∀{l1 l2} → dec A → x inList (l1 ++ l2) → (x inList l1) + (x inList l2)
inList++ {l1 = []} dec xin = Inr xin
inList++ {x = x} {l1 = a :: l1} dec inl with dec x a
inList++ {x = .a} {a :: l1} dec inl | Inl refl = Inl InH
inList++ {x = .a} {a :: l1} dec InH | Inr x₁ = abort (x₁ refl)
inList++ {x = x} {a :: l1} dec (InT inl) | Inr x₁ with inList++ {l1 = l1} dec inl
inList++ {x = x} {a :: l1} dec (InT inl) | Inr x₁ | Inl x₂ = Inl (InT x₂)
inList++ {x = x} {a :: l1} dec (InT inl) | Inr x₁ | Inr x₂ = Inr x₂
|
{
"alphanum_fraction": 0.4516327788,
"avg_line_length": 50.1958762887,
"ext": "agda",
"hexsha": "96513ee4581472813b09d336cbfe93d9b8723060",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-livelits-agda",
"max_forks_repo_path": "List.agda",
"max_issues_count": 9,
"max_issues_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a",
"max_issues_repo_issues_event_max_datetime": "2020-10-20T20:44:13.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-09-30T20:27:56.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazel-palette-agda",
"max_issues_repo_path": "List.agda",
"max_line_length": 134,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazel-palette-agda",
"max_stars_repo_path": "List.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-19T15:38:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-04T06:45:06.000Z",
"num_tokens": 1877,
"size": 4869
}
|
-- Andreas, 2012-01-13
module Issue555a where
-- Do we want to allow this?
data Exp : Set → Set1
data Exp Γ where -- needs to report that too many parameters are given
var : Exp Γ
bla : {Δ : Set} → Exp Δ → Exp (Δ → Γ) → Exp Γ
-- A declared index is turned into a parameter by the definition.
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
data Vec : Set → ℕ → Set
data Vec A where
nil : Vec A zero
_∷_ : {n : ℕ} → A → Vec A n → Vec A (suc n)
|
{
"alphanum_fraction": 0.6194690265,
"avg_line_length": 22.6,
"ext": "agda",
"hexsha": "e1fa32c88e9be57be97131284acbb206996a7cfc",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue555a.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue555a.agda",
"max_line_length": 70,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue555a.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 156,
"size": 452
}
|
open import SOAS.Common
{-
Framework for constructing categories of objects with extra structure.
The definitions required to construct a category is:
* the category of carrier objects (e.g. sets, presheaves, etc.)
* the extra operations and laws that the carrier objects are equipped with
* the preservation properties of morphisms between the structures
* proofs that the identities and composition of the carrier category preserve
the extra structure
-}
module SOAS.Construction.Structure
(CarrierCat : Category 1ℓ 0ℓ 0ℓ)
(HasStruct : Category.Obj CarrierCat → Set) where
private module ℂ = Category CarrierCat
-- The carrier of the structure, e.g. sets, presheaves, etc.
Carrier : Set₁
Carrier = ℂ.Obj
infix 1 _⋉_
-- Objects in the category for the structure: a carrier object together with
-- the algebraic structure
record Object : Set₁ where
constructor _⋉_
field
𝐶 : Carrier
ˢ : HasStruct 𝐶
open Object public
-- Properties of the morphisms between two objects, usually concerning
-- the preservation of the extra operations
MorphismProps : Set₁
MorphismProps = {𝐶₁ 𝐶₂ : Carrier}
→ HasStruct 𝐶₁
→ HasStruct 𝐶₂
→ CarrierCat [ 𝐶₁ , 𝐶₂ ] → Set
-- Morphisms in the category for the algebraic structure: an underlying
-- morphism with preservation properties of the extra structure
record Morphism (IsHomomorphism : MorphismProps) (O₁ O₂ : Object) : Set where
constructor _⋉_
field
𝑓 : CarrierCat [ 𝐶 O₁ , 𝐶 O₂ ]
ˢ⇒ : IsHomomorphism (ˢ O₁)(ˢ O₂) 𝑓
open Morphism public
-- Properties required to turn the objects and morphisms into a category; namely
-- that the identity and composition in the carrier category are homomorphisms
record CategoryProps : Set₁ where
field
IsHomomorphism : MorphismProps
id-hom : {𝐶 : Carrier}{𝐶ˢ : HasStruct 𝐶} → IsHomomorphism 𝐶ˢ 𝐶ˢ ℂ.id
comp-hom : {𝐶 𝐷 𝐸 : Carrier}
{𝐶ˢ : HasStruct 𝐶}{𝐷ˢ : HasStruct 𝐷}{𝐸ˢ : HasStruct 𝐸} →
(𝑔 : CarrierCat [ 𝐷 , 𝐸 ])(𝑓 : CarrierCat [ 𝐶 , 𝐷 ]) →
(𝑔ʰ : IsHomomorphism 𝐷ˢ 𝐸ˢ 𝑔)(𝑓ʰ : IsHomomorphism 𝐶ˢ 𝐷ˢ 𝑓) →
IsHomomorphism 𝐶ˢ 𝐸ˢ (𝑔 ℂ.∘ 𝑓)
module _ (P : CategoryProps) where
open CategoryProps P
-- Category generated from the algebraic structure
StructCat : Category 1ℓ 0ℓ 0ℓ
StructCat = categoryHelper (record
{ Obj = Object
; _⇒_ = Morphism IsHomomorphism
; _≈_ = λ g₁ g₂ → 𝑓 g₁ ℂ.≈ 𝑓 g₂
; id = ℂ.id ⋉ id-hom
; _∘_ = λ{ (𝑔 ⋉ 𝑔ˢ⇒) (𝑓 ⋉ 𝑓ˢ⇒) → (𝑔 ℂ.∘ 𝑓) ⋉ (comp-hom 𝑔 𝑓 𝑔ˢ⇒ 𝑓ˢ⇒)}
; assoc = ℂ.assoc
; identityˡ = ℂ.identityˡ
; identityʳ = ℂ.identityʳ
; equiv = record { refl = ℂ.Equiv.refl ; sym = ℂ.Equiv.sym ; trans = ℂ.Equiv.trans }
; ∘-resp-≈ = ℂ.∘-resp-≈
})
-- Forget the structure of a carrier object
Forget : Object → Carrier
Forget (𝐶 ⋉ _) = 𝐶
-- Forgetful functor from the structure category to the carrier category
ForgetF : Functor StructCat CarrierCat
ForgetF = record
{ F₀ = Forget
; F₁ = λ (𝑓 ⋉ _) → 𝑓
; identity = ℂ.Equiv.refl
; homomorphism = ℂ.Equiv.refl
; F-resp-≈ = λ x → x
}
where
open ≡-Reasoning
-- Free constructions with respect to the forgetful functor
module Free where
open import SOAS.Construction.Free ForgetF public
|
{
"alphanum_fraction": 0.6717417783,
"avg_line_length": 31.8834951456,
"ext": "agda",
"hexsha": "f58713df891456aae68829fc3fbd7bd34db45244",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "SOAS/Construction/Structure.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "SOAS/Construction/Structure.agda",
"max_line_length": 88,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "SOAS/Construction/Structure.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 1162,
"size": 3284
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category.Core
module Categories.Morphism.Extremal.Properties {o ℓ e} (𝒞 : Category o ℓ e) where
open import Level
open import Function using (_$_)
open import Categories.Diagram.Equalizer 𝒞
open import Categories.Diagram.Coequalizer 𝒞
open import Categories.Morphism 𝒞
open import Categories.Morphism.Extremal 𝒞
open import Categories.Morphism.Properties 𝒞
open import Categories.Morphism.Reasoning 𝒞
open import Categories.Morphism.Regular 𝒞
open Category 𝒞
open HomReasoning
private
variable
A B : Obj
f g : A ⇒ B
--------------------------------------------------------------------------------
-- Extremal Epimorphisms
RegularEpi⇒IsExtremalEpi : ∀ {A B} {f : A ⇒ B} (e : RegularEpi f) → IsExtremalEpi (RegularEpi⇒Epi e)
RegularEpi⇒IsExtremalEpi {A = A} {B = B} {f = f} regular {X = X} {i = i} {g = k} i-mono f≈i∘k =
record
{ inv = i⁻¹
; iso = record
{ isoˡ = isoˡ
; isoʳ = isoʳ
}
}
where
open RegularEpi regular renaming (g to r; h to s)
open IsCoequalizer coequalizer
i⁻¹ : B ⇒ X
i⁻¹ = coequalize $ i-mono (k ∘ s) (k ∘ r) $ begin
i ∘ k ∘ s ≈⟨ pullˡ (⟺ f≈i∘k) ⟩
f ∘ s ≈⟨ equality ⟩
f ∘ r ≈⟨ pushˡ f≈i∘k ⟩
i ∘ k ∘ r ∎
isoʳ : i ∘ i⁻¹ ≈ id
isoʳ = RegularEpi⇒Epi regular (i ∘ i⁻¹) id $ begin
(i ∘ i⁻¹) ∘ f ≈⟨ pullʳ (⟺ universal) ⟩
i ∘ k ≈˘⟨ f≈i∘k ⟩
f ≈˘⟨ identityˡ ⟩
id ∘ f ∎
isoˡ : i⁻¹ ∘ i ≈ id
isoˡ = i-mono (i⁻¹ ∘ i) id $ begin
i ∘ i⁻¹ ∘ i ≈⟨ cancelˡ isoʳ ⟩
i ≈˘⟨ identityʳ ⟩
i ∘ id ∎
RegularEpi⇒ExtremalEpi : (e : RegularEpi f) → ExtremalEpi f
RegularEpi⇒ExtremalEpi e = record
{ epi = RegularEpi⇒Epi e
; extremal = RegularEpi⇒IsExtremalEpi e
}
ExtremalEpi-∘₂ : ExtremalEpi (f ∘ g) → ExtremalEpi f
ExtremalEpi-∘₂ fg-extremal = record
{ epi = Epi-∘₂ epi
; extremal = λ i-mono eq → extremal i-mono (pushˡ eq)
}
where
open ExtremalEpi fg-extremal
ExtremalEpi-∘ : ∀ {A B C} {f : B ⇒ C} {g : A ⇒ B} → ExtremalEpi f → RegularEpi g → ExtremalEpi (f ∘ g)
ExtremalEpi-∘ {A = A} {B = B} {C = C} {f = f} {g = g} f-extremal g-regular = record
{ epi = fg-epi
; extremal = fg-extremal
}
where
module f-extremal = ExtremalEpi f-extremal
module g-regular = RegularEpi g-regular
open IsCoequalizer g-regular.coequalizer
g-epi : Epi g
g-epi = RegularEpi⇒Epi g-regular
fg-epi : Epi (f ∘ g)
fg-epi = Epi-∘ f-extremal.epi g-epi
fg-extremal : IsExtremalEpi fg-epi
fg-extremal {X = X} {i = i} {g = h} i-mono f∘g≈i∘h =
f-extremal.extremal i-mono $ g-epi _ _ $ begin
f ∘ g ≈⟨ f∘g≈i∘h ⟩
i ∘ h ≈⟨ pushʳ universal ⟩
(i ∘ k) ∘ g ∎
where
k : B ⇒ X
k = coequalize $ i-mono _ _ $ begin
i ∘ h ∘ g-regular.h ≈⟨ extendʳ (⟺ f∘g≈i∘h) ⟩
f ∘ g ∘ g-regular.h ≈⟨ refl⟩∘⟨ equality ⟩
f ∘ g ∘ g-regular.g ≈⟨ extendʳ f∘g≈i∘h ⟩
i ∘ h ∘ g-regular.g ∎
ExtremalEpi+Mono⇒IsIso : ExtremalEpi f → Mono f → IsIso f
ExtremalEpi+Mono⇒IsIso {f = f} f-extremal f-mono = extremal f-mono (⟺ identityʳ)
where
open ExtremalEpi f-extremal
--------------------------------------------------------------------------------
-- Extremal Monomorphisms
RegularMono⇒IsExtremalMono : ∀ {A B} {f : A ⇒ B} (m : RegularMono f) → IsExtremalMono (RegularMono⇒Mono m)
RegularMono⇒IsExtremalMono {A = A} {B = B} {f = f} regular {X = X} {g = k} {i = i} i-epi f≈k∘i =
record
{ inv = i⁻¹
; iso = record
{ isoˡ = isoˡ
; isoʳ = isoʳ
}
}
where
open RegularMono regular renaming (g to r; h to s)
open IsEqualizer equalizer
i⁻¹ : X ⇒ A
i⁻¹ = equalize $ i-epi (s ∘ k) (r ∘ k) $ begin
(s ∘ k) ∘ i ≈⟨ pullʳ (⟺ f≈k∘i) ⟩
s ∘ f ≈⟨ equality ⟩
r ∘ f ≈⟨ pushʳ f≈k∘i ⟩
(r ∘ k) ∘ i ∎
isoˡ : i⁻¹ ∘ i ≈ id
isoˡ = RegularMono⇒Mono regular (i⁻¹ ∘ i) id $ begin
f ∘ i⁻¹ ∘ i ≈⟨ pullˡ (⟺ universal) ⟩
k ∘ i ≈˘⟨ f≈k∘i ⟩
f ≈˘⟨ identityʳ ⟩
f ∘ id ∎
isoʳ : i ∘ i⁻¹ ≈ id
isoʳ = i-epi (i ∘ i⁻¹) id $ begin
(i ∘ i⁻¹) ∘ i ≈⟨ cancelʳ isoˡ ⟩
i ≈˘⟨ identityˡ ⟩
id ∘ i ∎
RegularMono⇒ExtremalMono : RegularMono f → ExtremalMono f
RegularMono⇒ExtremalMono m = record
{ mono = RegularMono⇒Mono m
; extremal = RegularMono⇒IsExtremalMono m
}
ExtremalMono-∘₂ : ExtremalMono (f ∘ g) → ExtremalMono g
ExtremalMono-∘₂ fg-extremal = record
{ mono = Mono-∘₂ mono
; extremal = λ i-epi eq → extremal i-epi (pushʳ eq)
}
where
open ExtremalMono fg-extremal
ExtremalMono-∘ : ∀ {A B C} {f : B ⇒ C} {g : A ⇒ B} → RegularMono f → ExtremalMono g → ExtremalMono (f ∘ g)
ExtremalMono-∘ {A = A} {B = B} {f = f} {g = g} f-regular g-extremal = record
{ mono = fg-mono
; extremal = fg-extremal
}
where
module f-regular = RegularMono f-regular
open IsEqualizer f-regular.equalizer
module g-extremal = ExtremalMono g-extremal
f-mono : Mono f
f-mono = (RegularMono⇒Mono f-regular)
fg-mono : Mono (f ∘ g)
fg-mono = Mono-∘ f-mono g-extremal.mono
fg-extremal : IsExtremalMono fg-mono
fg-extremal {X = X} {g = h} {i = e} e-epi f∘g≈h∘e =
g-extremal.extremal e-epi $ f-mono _ _ $ begin
f ∘ g ≈⟨ f∘g≈h∘e ⟩
h ∘ e ≈⟨ pushˡ universal ⟩
f ∘ k ∘ e ∎
where
k : X ⇒ B
k = equalize $ e-epi _ _ $ begin
(f-regular.h ∘ h) ∘ e ≈⟨ extendˡ (⟺ f∘g≈h∘e) ⟩
(f-regular.h ∘ f) ∘ g ≈⟨ equality ⟩∘⟨refl ⟩
(f-regular.g ∘ f) ∘ g ≈⟨ extendˡ f∘g≈h∘e ⟩
(f-regular.g ∘ h) ∘ e ∎
ExtremalMono+Epi⇒IsIso : ExtremalMono f → Epi f → IsIso f
ExtremalMono+Epi⇒IsIso {f = f} f-extremal f-epi = extremal f-epi (⟺ identityˡ)
where
open ExtremalMono f-extremal
--------------------------------------------------------------------------------
-- Extremal Morphisms in Balanced Categories
-- https://ncatlab.org/nlab/show/balanced+category
module _ (balanced : ∀ {A B} {f : A ⇒ B} → Mono f → Epi f → IsIso f) where
Mono+Epi⇒IsExtremalEpi : (e : Epi f) → IsExtremalEpi e
Mono+Epi⇒IsExtremalEpi {f = f} f-epi {i = i} {g = g} i-mono f≈i∘g = balanced i-mono i-epi
where
i-epi : Epi i
i-epi g₁ g₂ g₁∘i≈g₂∘i = f-epi g₁ g₂ $ begin
g₁ ∘ f ≈⟨ pushʳ f≈i∘g ⟩
(g₁ ∘ i) ∘ g ≈⟨ g₁∘i≈g₂∘i ⟩∘⟨refl ⟩
(g₂ ∘ i) ∘ g ≈⟨ pullʳ (⟺ f≈i∘g) ⟩
g₂ ∘ f ∎
Mono+Epi⇒IsExtremalMono : (m : Mono f) → IsExtremalMono m
Mono+Epi⇒IsExtremalMono {f = f} f-mono {g = g} {i = i} i-epi f≈g∘i = balanced i-mono i-epi
where
i-mono : Mono i
i-mono g₁ g₂ i∘g₁≈i∘g₂ = f-mono g₁ g₂ $ begin
f ∘ g₁ ≈⟨ pushˡ f≈g∘i ⟩
g ∘ i ∘ g₁ ≈⟨ refl⟩∘⟨ i∘g₁≈i∘g₂ ⟩
g ∘ i ∘ g₂ ≈⟨ pullˡ (⟺ f≈g∘i) ⟩
f ∘ g₂ ∎
|
{
"alphanum_fraction": 0.530762565,
"avg_line_length": 31.1891891892,
"ext": "agda",
"hexsha": "c15eb7de05cea4fd91ad1bcf1fae3974c04f7235",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "maxsnew/agda-categories",
"max_forks_repo_path": "src/Categories/Morphism/Extremal/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "maxsnew/agda-categories",
"max_issues_repo_path": "src/Categories/Morphism/Extremal/Properties.agda",
"max_line_length": 106,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "maxsnew/agda-categories",
"max_stars_repo_path": "src/Categories/Morphism/Extremal/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3109,
"size": 6924
}
|
{-# OPTIONS --safe #-}
module Cubical.Algebra.Group.Instances.Int where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Int renaming (Int to IntType ; _+_ to _+Int_ ; _-_ to _-Int_; -_ to -Int_ ; _·_ to _·Int_)
open import Cubical.Algebra.Group.Base
open GroupStr
Int : Group₀
fst Int = IntType
1g (snd Int) = 0
_·_ (snd Int) = _+Int_
inv (snd Int) = _-Int_ 0
isGroup (snd Int) = isGroupInt
where
abstract
isGroupInt : IsGroup (pos 0) _+Int_ (_-Int_ (pos 0))
isGroupInt = makeIsGroup isSetInt +-assoc (λ x → refl) (λ x → +-comm 0 x)
(λ x → +-comm x (pos 0 -Int x) ∙ minusPlus x 0) (λ x → minusPlus x 0)
|
{
"alphanum_fraction": 0.6436090226,
"avg_line_length": 31.6666666667,
"ext": "agda",
"hexsha": "76030b039e3631979f1d3847c2587969bd6af914",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-03-12T20:08:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-03-12T20:08:45.000Z",
"max_forks_repo_head_hexsha": "94b474af2909727d04706d562d949928c19faf7b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jespercockx/cubical",
"max_forks_repo_path": "Cubical/Algebra/Group/Instances/Int.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "94b474af2909727d04706d562d949928c19faf7b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jespercockx/cubical",
"max_issues_repo_path": "Cubical/Algebra/Group/Instances/Int.agda",
"max_line_length": 115,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "94b474af2909727d04706d562d949928c19faf7b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jespercockx/cubical",
"max_stars_repo_path": "Cubical/Algebra/Group/Instances/Int.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 233,
"size": 665
}
|
{-# OPTIONS --without-K #-}
-- This module implements the dependent Σ-type.
module hott.core.sigma where
open import hott.core.universe
record Σ {ℓ₀ ℓ₁}
{A : Type ℓ₀}
(B : A → Type ℓ₁) : Type (ℓ₀ ⊔ ℓ₁) where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
-- The product type is just the non-dependent Σ-type.
_×_ : ∀{ℓ₀ ℓ₁} (A : Type ℓ₀)
(B : Type ℓ₁) → Type (ℓ₀ ⊔ ℓ₁)
A × B = Σ λ (_ : A) → B
-- Since the , constructor is infixr, we can write (a , (b , c)) as
-- just (a , b , c). The convention that we follow for tuples is that
-- of a list. We assign the paring function the least precedence
-- because we would like to write all other stuff inside the tuple
-- naturally e.g. (p ≡ q , q ≡ r) etc. We ensure that no other
-- operator has 0 precedence.
infixr 0 _,_
infixr 0 _×_
-- The projection to the first component.
fst : ∀{ℓ₀ ℓ₁} {A : Type ℓ₀} {B : A → Type ℓ₁}
→ Σ B → A
fst = Σ.proj₁
-- The projection to the second component.
snd : ∀{ℓ₀ ℓ₁} {A : Type ℓ₀} {B : A → Type ℓ₁}
→ (σ : Σ B) → B (fst σ)
snd = Σ.proj₂
|
{
"alphanum_fraction": 0.608897127,
"avg_line_length": 26.975,
"ext": "agda",
"hexsha": "4c7a3600d00485d0d260c567534221ffb985ae5e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "piyush-kurur/hott",
"max_forks_repo_path": "agda/hott/core/sigma.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "piyush-kurur/hott",
"max_issues_repo_path": "agda/hott/core/sigma.agda",
"max_line_length": 69,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "piyush-kurur/hott",
"max_stars_repo_path": "agda/hott/core/sigma.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 393,
"size": 1079
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category.Core
open import Categories.Comonad
-- verbatim dual of Categories.Adjoint.Construction.EilenbergMoore
module Categories.Adjoint.Construction.CoEilenbergMoore {o ℓ e} {C : Category o ℓ e} (M : Comonad C) where
open import Categories.Category.Construction.CoEilenbergMoore M
open import Categories.Adjoint
open import Categories.Functor
open import Categories.Functor.Properties
open import Categories.NaturalTransformation.NaturalIsomorphism using (niHelper)
open import Categories.NaturalTransformation.Core
open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_)
open import Categories.Morphism.Reasoning C
private
module C = Category C
module M = Comonad M
open M.F
open C
open HomReasoning
open Equiv
Forgetful : Functor CoEilenbergMoore C
Forgetful = record
{ F₀ = Comodule.A
; F₁ = Comodule⇒.arr
; identity = refl
; homomorphism = refl
; F-resp-≈ = λ eq → eq
}
Cofree : Functor C CoEilenbergMoore
Cofree = record
{ F₀ = λ A → record
{ A = F₀ A
; coaction = M.δ.η A
; commute = M.sym-assoc
; identity = Comonad.identityʳ M
}
; F₁ = λ f → record
{ arr = F₁ f
; commute = M.δ.commute f
}
; identity = identity
; homomorphism = homomorphism
; F-resp-≈ = F-resp-≈
}
UC≃M : Forgetful ∘F Cofree ≃ M.F
UC≃M = niHelper (record
{ η = λ _ → F₁ C.id
; η⁻¹ = λ _ → F₁ C.id
; commute = λ f → [ M.F ]-resp-square id-comm-sym
; iso = λ _ → record
{ isoˡ = elimˡ identity ○ identity
; isoʳ = elimˡ identity ○ identity
}
})
Forgetful⊣Cofree : Forgetful ⊣ Cofree
Forgetful⊣Cofree = record
{ unit = record
{ η = λ X → let module X = Comodule X
in record
{ arr = X.coaction
; commute = ⟺ X.commute
}
; commute = Comodule⇒.commute
; sym-commute = λ f → ⟺ (Comodule⇒.commute f)
}
; counit = record
{ η = M.ε.η
; commute = M.ε.commute
; sym-commute = M.ε.sym-commute
}
; zig = λ {A} → Comodule.identity A
; zag = λ {B} → Comonad.identityˡ M
}
|
{
"alphanum_fraction": 0.6644067797,
"avg_line_length": 25.4938271605,
"ext": "agda",
"hexsha": "d4ba7604f17c7640d7e3d07fe6c26364dd714bbc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Adjoint/Construction/CoEilenbergMoore.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Adjoint/Construction/CoEilenbergMoore.agda",
"max_line_length": 106,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Adjoint/Construction/CoEilenbergMoore.agda",
"max_stars_repo_stars_event_max_datetime": "2019-05-22T03:54:24.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-05-21T17:07:19.000Z",
"num_tokens": 696,
"size": 2065
}
|
------------------------------------------------------------------------------
-- Axiomatic Peano arithmetic base
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module PA.Axiomatic.Standard.Base where
infixl 7 _*_
infixl 6 _+_
------------------------------------------------------------------------------
-- First-order logic with equality.
open import Common.FOL.FOL-Eq public renaming ( D to ℕ )
-- Common definitions.
open import Common.DefinitionsATP
-- Non-logical constants
postulate
zero : ℕ
succ : ℕ → ℕ
_+_ _*_ : ℕ → ℕ → ℕ
-- Proper axioms
-- From (Machover 1996, p. 263) and (Hájek and Pudlák 1998, p. 28):
--
-- PA₁. 0 ≠ n'
-- PA₂. m' = n' → m = n
-- PA₃. 0 + n = n
-- PA₄. m' + n = (m + n)'
-- PA₅. 0 * n = 0
-- PA₆. m' * n = n + (m * n)
-- Axiom of induction:
-- φ(0) → (∀n.φ(n) → φ(succ n)) → ∀n.φ(n), for any formulae φ
postulate
PA₁ : ∀ {n} → zero ≢ succ n
PA₂ : ∀ {m n} → succ m ≡ succ n → m ≡ n
PA₃ : ∀ n → zero + n ≡ n
PA₄ : ∀ m n → succ m + n ≡ succ (m + n)
PA₅ : ∀ n → zero * n ≡ zero
PA₆ : ∀ m n → succ m * n ≡ n + m * n
{-# ATP axioms PA₁ PA₂ PA₃ PA₄ PA₅ PA₆ #-}
-- The axiom of induction is an axiom schema, therefore we do not
-- translate it to TPTP.
postulate
ℕ-ind : (A : ℕ → Set) → A zero → (∀ n → A n → A (succ n)) → ∀ n → A n
------------------------------------------------------------------------------
-- References
--
-- Machover, Moshé (1996). Set theory, Logic and their
-- Limitations. Cambridge University Press.
-- Hájek, Petr and Pudlák, Pavel (1998). Metamathematics of
-- First-Order Arithmetic. 2nd printing. Springer.
|
{
"alphanum_fraction": 0.471468144,
"avg_line_length": 29.1129032258,
"ext": "agda",
"hexsha": "091823e4663fcf069ee11344f139ef16316cc48b",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/PA/Axiomatic/Standard/Base.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/PA/Axiomatic/Standard/Base.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/PA/Axiomatic/Standard/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 565,
"size": 1805
}
|
{-# OPTIONS --without-K #-}
module Data.ByteString.IO where
import Data.ByteString.Primitive as Prim
open import Data.ByteString
open import Data.Word8 using (Word8)
open import Data.Nat using (ℕ)
open import Data.Colist using (Colist)
open import Data.List using (List)
open import Data.String using (String)
open import IO using (IO; _>>_; _>>=_; lift; return)
open import Data.Unit using (⊤)
open import Coinduction using (♯_)
readBinaryFile : ∀ {k} → String → IO (ByteString k)
readBinaryFile {Lazy} f = lift (Prim.readBinaryFileLazy f)
readBinaryFile {Strict} f = lift (Prim.readBinaryFileStrict f)
readBinaryFile′ : ∀ {k} → String → IO (ByteStringRep k)
readBinaryFile′ {k} f = ♯ readBinaryFile f >>= (λ bs → ♯ return (unpack bs))
writeBinaryFile : ∀ {k} → String → ByteString k → IO ⊤
writeBinaryFile {Lazy} f s =
♯ lift (Prim.writeBinaryFileLazy f s) >>
♯ return _
writeBinaryFile {Strict} f s =
♯ lift (Prim.writeBinaryFileStrict f s) >>
♯ return _
writeBinaryFile′ : ∀ {k} → String → ByteStringRep k → IO ⊤
writeBinaryFile′ {k} f bs = writeBinaryFile f (pack bs)
|
{
"alphanum_fraction": 0.706959707,
"avg_line_length": 28.7368421053,
"ext": "agda",
"hexsha": "897582f1c0ca63a631f558434e8c6a7c52f95471",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "semenov-vladyslav/bytes-agda",
"max_forks_repo_path": "src/Data/ByteString/IO.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "semenov-vladyslav/bytes-agda",
"max_issues_repo_path": "src/Data/ByteString/IO.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "semenov-vladyslav/bytes-agda",
"max_stars_repo_path": "src/Data/ByteString/IO.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 321,
"size": 1092
}
|
------------------------------------------------------------------------------
-- Mutual recursive functions
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.Data.Nat.MutualRecursiveFunctions where
open import FOTC.Base
open import FOTC.Data.Nat.UnaryNumbers
------------------------------------------------------------------------------
postulate
even : D → D
odd : D → D
even-0 : even zero ≡ true
even-S : ∀ d → even (succ₁ d) ≡ odd d
odd-0 : odd zero ≡ false
odd-S : ∀ d → odd (succ₁ d) ≡ even d
{-# ATP axioms even-0 even-S odd-0 odd-S #-}
postulate even-2 : even 2' ≡ true
{-# ATP prove even-2 #-}
postulate even-3 : even 3' ≡ false
{-# ATP prove even-3 #-}
postulate odd-2 : odd 2' ≡ false
{-# ATP prove odd-2 #-}
postulate odd-3 : odd 3' ≡ true
{-# ATP prove odd-3 #-}
|
{
"alphanum_fraction": 0.4451923077,
"avg_line_length": 26.6666666667,
"ext": "agda",
"hexsha": "dc225caf35e9dd212e56f088263d129ae2e92d8e",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/Data/Nat/MutualRecursiveFunctions.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/Data/Nat/MutualRecursiveFunctions.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/Data/Nat/MutualRecursiveFunctions.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 255,
"size": 1040
}
|
{-# OPTIONS --sized-types #-}
open import Relation.Binary.Core
module Mergesort.Impl1 {A : Set}
(_≤_ : A → A → Set)
(tot≤ : Total _≤_) where
open import Bound.Lower A
open import Bound.Lower.Order _≤_
open import Data.Product
open import Data.Sum
open import Size
open import SList
open import SOList.Lower _≤_
deal : {ι : Size} → SList A {ι} → SList A {ι} × SList A {ι}
deal snil = (snil , snil)
deal (x ∙ snil) = (x ∙ snil , snil)
deal (x ∙ (y ∙ xs))
with deal xs
... | (ys , zs) = (x ∙ ys , y ∙ zs)
merge : {ι ι' : Size}{b : Bound} → SOList {ι} b → SOList {ι'} b → SOList b
merge onil ys = ys
merge xs onil = xs
merge (:< {x = x} b≤x xs) (:< {x = y} b≤y ys)
with tot≤ x y
... | inj₁ x≤y = :< b≤x (merge xs (:< (lexy x≤y) ys))
... | inj₂ y≤x = :< b≤y (merge (:< (lexy y≤x) xs) ys)
mergesort : {ι : Size} → SList A {↑ ι} → SOList bot
mergesort snil = onil
mergesort (x ∙ snil) = :< {x = x} lebx onil
mergesort (x ∙ (y ∙ xs))
with deal xs
... | (ys , zs) = merge (mergesort (x ∙ ys)) (mergesort (y ∙ zs))
|
{
"alphanum_fraction": 0.5481758653,
"avg_line_length": 28.8918918919,
"ext": "agda",
"hexsha": "bf5619ee91afa276edd084c120ef7bcc36b5682f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/Mergesort/Impl1.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/Mergesort/Impl1.agda",
"max_line_length": 75,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/Mergesort/Impl1.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 444,
"size": 1069
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.Category.BicartesianClosed {o ℓ e} (𝒞 : Category o ℓ e) where
open import Level
open import Categories.Category.CartesianClosed 𝒞
open import Categories.Category.Cocartesian 𝒞
record BicartesianClosed : Set (levelOfTerm 𝒞) where
field
cartesianClosed : CartesianClosed
cocartesian : Cocartesian
module cartesianClosed = CartesianClosed cartesianClosed
module cocartesian = Cocartesian cocartesian
open cartesianClosed public
open cocartesian public
|
{
"alphanum_fraction": 0.7813051146,
"avg_line_length": 25.7727272727,
"ext": "agda",
"hexsha": "dda23fc72e4fff896674e51df089381d3d2ee8ae",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Category/BicartesianClosed.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Category/BicartesianClosed.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Category/BicartesianClosed.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 142,
"size": 567
}
|
open import Prelude
open import Data.Nat
open import Data.Nat.Properties
open import Induction.Nat
module Implicits.Resolution.GenericFinite.Examples.MaximumDepth
where
open import Implicits.Resolution.GenericFinite.TerminationCondition
_<′?_ : (x y : ℕ) → Dec (x <′ y)
x <′? y with (suc x) ≤? y
x <′? y | yes p = yes (≤⇒≤′ p)
x <′? y | no ¬p = no (λ p → ¬p (≤′⇒≤ p))
MaxDepthCondition : TerminationCondition
MaxDepthCondition = record
{ TCtx = ℕ
; _<_ = _<′_
; _<?_ = _<′?_
; step = λ n _ _ _ _ → n ∸ 1
; wf-< = <-well-founded
}
|
{
"alphanum_fraction": 0.6304347826,
"avg_line_length": 22.08,
"ext": "agda",
"hexsha": "27775eb790a0231807c88abe2ede4dc58fe819e1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Implicits/Resolution/GenericFinite/Examples/MaximumDepth.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Implicits/Resolution/GenericFinite/Examples/MaximumDepth.agda",
"max_line_length": 67,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Implicits/Resolution/GenericFinite/Examples/MaximumDepth.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 210,
"size": 552
}
|
-- Andreas, 2016-10-03, re issue #2231
-- Testing whether the
{-# OPTIONS --guardedness-preserving-type-constructors #-}
-- stuff works in abstract blocks
-- {-# OPTIONS -v term:30 -v tc.term.expr.coind:100 #-}
module AbstractGuardednessPreservingTypeConstructors where
infix 1000 ♯_
postulate
∞ : ∀ {a} (A : Set a) → Set a
♯_ : ∀ {a} {A : Set a} → A → ∞ A
♭ : ∀ {a} {A : Set a} → ∞ A → A
{-# BUILTIN INFINITY ∞ #-}
{-# BUILTIN SHARP ♯_ #-}
{-# BUILTIN FLAT ♭ #-}
-- Preliminaries.
data ⊥ : Set where
record ⊤ : Set where
constructor tt
data Bool : Set where
true false : Bool
data _⊎_ (A B : Set) : Set where
inj₁ : A → A ⊎ B
inj₂ : B → A ⊎ B
-- Σ cannot be a record type below.
data Σ (A : Set) (B : A → Set) : Set where
_,_ : (x : A) → B x → Σ A B
syntax Σ A (λ x → B) = Σ[ x ∶ A ] B
data Rec (A : ∞ Set) : Set where
fold : ♭ A → Rec A
abstract
-- Corecursive definition of the natural numbers.
ℕ : Set
ℕ = ⊤ ⊎ Rec (♯ ℕ)
zero : ℕ
zero = inj₁ _
suc : ℕ → ℕ
suc n = inj₂ (fold n)
ℕ-rec : (P : ℕ → Set) →
P zero →
(∀ n → P n → P (suc n)) →
∀ n → P n
ℕ-rec P z s (inj₁ _) = z
ℕ-rec P z s (inj₂ (fold n)) = s n (ℕ-rec P z s n)
-- Corecursive definition of the W-type.
W : (A : Set) → (A → Set) → Set
W A B = Rec (♯ (Σ[ x ∶ A ] (B x → W A B)))
syntax W A (λ x → B) = W[ x ∶ A ] B
sup : {A : Set} {B : A → Set} (x : A) (f : B x → W A B) → W A B
sup x f = fold (x , f)
W-rec : {A : Set} {B : A → Set}
(P : W A B → Set) →
(∀ {x} {f : B x → W A B} → (∀ y → P (f y)) → P (sup x f)) →
∀ x → P x
W-rec P h (fold (x , f)) = h (λ y → W-rec P h (f y))
-- Induction-recursion encoded as corecursion-recursion.
-- The following definitions are needed on the type level, so we cannot make them abstract.
data Label : Set where
′0 ′1 ′2 ′σ ′π ′w : Label
mutual
U : Set
U = Σ Label U′
U′ : Label → Set
U′ ′0 = ⊤
U′ ′1 = ⊤
U′ ′2 = ⊤
U′ ′σ = Rec (♯ (Σ[ a ∶ U ] (El a → U)))
U′ ′π = Rec (♯ (Σ[ a ∶ U ] (El a → U)))
U′ ′w = Rec (♯ (Σ[ a ∶ U ] (El a → U)))
El : U → Set
El (′0 , _) = ⊥
El (′1 , _) = ⊤
El (′2 , _) = Bool
El (′σ , fold (a , b)) = Σ[ x ∶ El a ] El (b x)
El (′π , fold (a , b)) = (x : El a) → El (b x)
El (′w , fold (a , b)) = W[ x ∶ El a ] El (b x)
-- The recursor can be abstract.
abstract
U-rec : (P : ∀ u → El u → Set) →
P (′1 , _) tt →
P (′2 , _) true →
P (′2 , _) false →
(∀ {a b x y} →
P a x → P (b x) y → P (′σ , fold (a , b)) (x , y)) →
(∀ {a b f} →
(∀ x → P (b x) (f x)) → P (′π , fold (a , b)) f) →
(∀ {a b x f} →
(∀ y → P (′w , fold (a , b)) (f y)) →
P (′w , fold (a , b)) (sup x f)) →
∀ u (x : El u) → P u x
U-rec P P1 P2t P2f Pσ Pπ Pw = rec
where
rec : ∀ u (x : El u) → P u x
rec (′0 , _) ()
rec (′1 , _) _ = P1
rec (′2 , _) true = P2t
rec (′2 , _) false = P2f
rec (′σ , fold (a , b)) (x , y) = Pσ (rec _ x) (rec _ y)
rec (′π , fold (a , b)) f = Pπ (λ x → rec _ (f x))
rec (′w , fold (a , b)) (fold (x , f)) = Pw (λ y → rec _ (f y))
|
{
"alphanum_fraction": 0.4206253758,
"avg_line_length": 24.637037037,
"ext": "agda",
"hexsha": "e057cda29d8963a847512d9ee2eb42a4b87ac06d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/AbstractGuardednessPreservingTypeConstructors.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Fail/AbstractGuardednessPreservingTypeConstructors.agda",
"max_line_length": 91,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Fail/AbstractGuardednessPreservingTypeConstructors.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 1398,
"size": 3326
}
|
{-# OPTIONS --allow-unsolved-metas #-}
module nat where
open import Data.Nat
open import Data.Nat.Properties
open import Data.Empty
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import Relation.Binary.Core
open import Relation.Binary.Definitions
open import logic
nat-<> : { x y : ℕ } → x < y → y < x → ⊥
nat-<> (s≤s x<y) (s≤s y<x) = nat-<> x<y y<x
nat-≤> : { x y : ℕ } → x ≤ y → y < x → ⊥
nat-≤> (s≤s x<y) (s≤s y<x) = nat-≤> x<y y<x
nat-<≡ : { x : ℕ } → x < x → ⊥
nat-<≡ (s≤s lt) = nat-<≡ lt
nat-≡< : { x y : ℕ } → x ≡ y → x < y → ⊥
nat-≡< refl lt = nat-<≡ lt
¬a≤a : {la : ℕ} → suc la ≤ la → ⊥
¬a≤a (s≤s lt) = ¬a≤a lt
a<sa : {la : ℕ} → la < suc la
a<sa {zero} = s≤s z≤n
a<sa {suc la} = s≤s a<sa
refl-≤s : {x : ℕ } → x ≤ suc x
refl-≤s {zero} = z≤n
refl-≤s {suc x} = s≤s (refl-≤s {x})
a≤sa : {x : ℕ } → x ≤ suc x
a≤sa {zero} = z≤n
a≤sa {suc x} = s≤s (a≤sa {x})
=→¬< : {x : ℕ } → ¬ ( x < x )
=→¬< {zero} ()
=→¬< {suc x} (s≤s lt) = =→¬< lt
>→¬< : {x y : ℕ } → (x < y ) → ¬ ( y < x )
>→¬< (s≤s x<y) (s≤s y<x) = >→¬< x<y y<x
<-∨ : { x y : ℕ } → x < suc y → ( (x ≡ y ) ∨ (x < y) )
<-∨ {zero} {zero} (s≤s z≤n) = case1 refl
<-∨ {zero} {suc y} (s≤s lt) = case2 (s≤s z≤n)
<-∨ {suc x} {zero} (s≤s ())
<-∨ {suc x} {suc y} (s≤s lt) with <-∨ {x} {y} lt
<-∨ {suc x} {suc y} (s≤s lt) | case1 eq = case1 (cong (λ k → suc k ) eq)
<-∨ {suc x} {suc y} (s≤s lt) | case2 lt1 = case2 (s≤s lt1)
n≤n : (n : ℕ) → n Data.Nat.≤ n
n≤n zero = z≤n
n≤n (suc n) = s≤s (n≤n n)
<→m≤n : {m n : ℕ} → m < n → m Data.Nat.≤ n
<→m≤n {zero} lt = z≤n
<→m≤n {suc m} {zero} ()
<→m≤n {suc m} {suc n} (s≤s lt) = s≤s (<→m≤n lt)
max : (x y : ℕ) → ℕ
max zero zero = zero
max zero (suc x) = (suc x)
max (suc x) zero = (suc x)
max (suc x) (suc y) = suc ( max x y )
-- _*_ : ℕ → ℕ → ℕ
-- _*_ zero _ = zero
-- _*_ (suc n) m = m + ( n * m )
exp : ℕ → ℕ → ℕ
exp _ zero = 1
exp n (suc m) = n * ( exp n m )
minus : (a b : ℕ ) → ℕ
minus a zero = a
minus zero (suc b) = zero
minus (suc a) (suc b) = minus a b
_-_ = minus
m+= : {i j m : ℕ } → m + i ≡ m + j → i ≡ j
m+= {i} {j} {zero} refl = refl
m+= {i} {j} {suc m} eq = m+= {i} {j} {m} ( cong (λ k → pred k ) eq )
+m= : {i j m : ℕ } → i + m ≡ j + m → i ≡ j
+m= {i} {j} {m} eq = m+= ( subst₂ (λ j k → j ≡ k ) (+-comm i _ ) (+-comm j _ ) eq )
less-1 : { n m : ℕ } → suc n < m → n < m
less-1 {zero} {suc (suc _)} (s≤s (s≤s z≤n)) = s≤s z≤n
less-1 {suc n} {suc m} (s≤s lt) = s≤s (less-1 {n} {m} lt)
sa=b→a<b : { n m : ℕ } → suc n ≡ m → n < m
sa=b→a<b {0} {suc zero} refl = s≤s z≤n
sa=b→a<b {suc n} {suc (suc n)} refl = s≤s (sa=b→a<b refl)
minus+n : {x y : ℕ } → suc x > y → minus x y + y ≡ x
minus+n {x} {zero} _ = trans (sym (+-comm zero _ )) refl
minus+n {zero} {suc y} (s≤s ())
minus+n {suc x} {suc y} (s≤s lt) = begin
minus (suc x) (suc y) + suc y
≡⟨ +-comm _ (suc y) ⟩
suc y + minus x y
≡⟨ cong ( λ k → suc k ) (
begin
y + minus x y
≡⟨ +-comm y _ ⟩
minus x y + y
≡⟨ minus+n {x} {y} lt ⟩
x
∎
) ⟩
suc x
∎ where open ≡-Reasoning
sn-m=sn-m : {m n : ℕ } → m ≤ n → suc n - m ≡ suc ( n - m )
sn-m=sn-m {0} {n} z≤n = refl
sn-m=sn-m {suc m} {suc n} (s≤s m<n) = sn-m=sn-m m<n
si-sn=i-n : {i n : ℕ } → n < i → suc (i - suc n) ≡ (i - n)
si-sn=i-n {i} {n} n<i = begin
suc (i - suc n) ≡⟨ sym (sn-m=sn-m n<i ) ⟩
suc i - suc n ≡⟨⟩
i - n
∎ where
open ≡-Reasoning
n-m<n : (n m : ℕ ) → n - m ≤ n
n-m<n zero zero = z≤n
n-m<n (suc n) zero = s≤s (n-m<n n zero)
n-m<n zero (suc m) = z≤n
n-m<n (suc n) (suc m) = ≤-trans (n-m<n n m ) refl-≤s
n-n-m=m : {m n : ℕ } → m ≤ n → m ≡ (n - (n - m))
n-n-m=m {0} {zero} z≤n = refl
n-n-m=m {0} {suc n} z≤n = n-n-m=m {0} {n} z≤n
n-n-m=m {suc m} {suc n} (s≤s m≤n) = sym ( begin
suc n - ( n - m ) ≡⟨ sn-m=sn-m (n-m<n n m) ⟩
suc (n - ( n - m )) ≡⟨ cong (λ k → suc k ) (sym (n-n-m=m m≤n)) ⟩
suc m
∎ ) where
open ≡-Reasoning
0<s : {x : ℕ } → zero < suc x
0<s {_} = s≤s z≤n
<-minus-0 : {x y z : ℕ } → z + x < z + y → x < y
<-minus-0 {x} {suc _} {zero} lt = lt
<-minus-0 {x} {y} {suc z} (s≤s lt) = <-minus-0 {x} {y} {z} lt
<-minus : {x y z : ℕ } → x + z < y + z → x < y
<-minus {x} {y} {z} lt = <-minus-0 ( subst₂ ( λ j k → j < k ) (+-comm x _) (+-comm y _ ) lt )
x≤x+y : {z y : ℕ } → z ≤ z + y
x≤x+y {zero} {y} = z≤n
x≤x+y {suc z} {y} = s≤s (x≤x+y {z} {y})
<-plus : {x y z : ℕ } → x < y → x + z < y + z
<-plus {zero} {suc y} {z} (s≤s z≤n) = s≤s (subst (λ k → z ≤ k ) (+-comm z _ ) x≤x+y )
<-plus {suc x} {suc y} {z} (s≤s lt) = s≤s (<-plus {x} {y} {z} lt)
<-plus-0 : {x y z : ℕ } → x < y → z + x < z + y
<-plus-0 {x} {y} {z} lt = subst₂ (λ j k → j < k ) (+-comm _ z) (+-comm _ z) ( <-plus {x} {y} {z} lt )
≤-plus : {x y z : ℕ } → x ≤ y → x + z ≤ y + z
≤-plus {0} {y} {zero} z≤n = z≤n
≤-plus {0} {y} {suc z} z≤n = subst (λ k → z < k ) (+-comm _ y ) x≤x+y
≤-plus {suc x} {suc y} {z} (s≤s lt) = s≤s ( ≤-plus {x} {y} {z} lt )
≤-plus-0 : {x y z : ℕ } → x ≤ y → z + x ≤ z + y
≤-plus-0 {x} {y} {zero} lt = lt
≤-plus-0 {x} {y} {suc z} lt = s≤s ( ≤-plus-0 {x} {y} {z} lt )
x+y<z→x<z : {x y z : ℕ } → x + y < z → x < z
x+y<z→x<z {zero} {y} {suc z} (s≤s lt1) = s≤s z≤n
x+y<z→x<z {suc x} {y} {suc z} (s≤s lt1) = s≤s ( x+y<z→x<z {x} {y} {z} lt1 )
*≤ : {x y z : ℕ } → x ≤ y → x * z ≤ y * z
*≤ lt = *-mono-≤ lt ≤-refl
*< : {x y z : ℕ } → x < y → x * suc z < y * suc z
*< {zero} {suc y} lt = s≤s z≤n
*< {suc x} {suc y} (s≤s lt) = <-plus-0 (*< lt)
<to<s : {x y : ℕ } → x < y → x < suc y
<to<s {zero} {suc y} (s≤s lt) = s≤s z≤n
<to<s {suc x} {suc y} (s≤s lt) = s≤s (<to<s {x} {y} lt)
<tos<s : {x y : ℕ } → x < y → suc x < suc y
<tos<s {zero} {suc y} (s≤s z≤n) = s≤s (s≤s z≤n)
<tos<s {suc x} {suc y} (s≤s lt) = s≤s (<tos<s {x} {y} lt)
≤to< : {x y : ℕ } → x < y → x ≤ y
≤to< {zero} {suc y} (s≤s z≤n) = z≤n
≤to< {suc x} {suc y} (s≤s lt) = s≤s (≤to< {x} {y} lt)
x<y→≤ : {x y : ℕ } → x < y → x ≤ suc y
x<y→≤ {zero} {.(suc _)} (s≤s z≤n) = z≤n
x<y→≤ {suc x} {suc y} (s≤s lt) = s≤s (x<y→≤ {x} {y} lt)
open import Data.Product
minus<=0 : {x y : ℕ } → x ≤ y → minus x y ≡ 0
minus<=0 {0} {zero} z≤n = refl
minus<=0 {0} {suc y} z≤n = refl
minus<=0 {suc x} {suc y} (s≤s le) = minus<=0 {x} {y} le
minus>0 : {x y : ℕ } → x < y → 0 < minus y x
minus>0 {zero} {suc _} (s≤s z≤n) = s≤s z≤n
minus>0 {suc x} {suc y} (s≤s lt) = minus>0 {x} {y} lt
distr-minus-* : {x y z : ℕ } → (minus x y) * z ≡ minus (x * z) (y * z)
distr-minus-* {x} {zero} {z} = refl
distr-minus-* {x} {suc y} {z} with <-cmp x y
distr-minus-* {x} {suc y} {z} | tri< a ¬b ¬c = begin
minus x (suc y) * z
≡⟨ cong (λ k → k * z ) (minus<=0 {x} {suc y} (x<y→≤ a)) ⟩
0 * z
≡⟨ sym (minus<=0 {x * z} {z + y * z} le ) ⟩
minus (x * z) (z + y * z)
∎ where
open ≡-Reasoning
le : x * z ≤ z + y * z
le = ≤-trans lemma (subst (λ k → y * z ≤ k ) (+-comm _ z ) (x≤x+y {y * z} {z} ) ) where
lemma : x * z ≤ y * z
lemma = *≤ {x} {y} {z} (≤to< a)
distr-minus-* {x} {suc y} {z} | tri≈ ¬a refl ¬c = begin
minus x (suc y) * z
≡⟨ cong (λ k → k * z ) (minus<=0 {x} {suc y} refl-≤s ) ⟩
0 * z
≡⟨ sym (minus<=0 {x * z} {z + y * z} (lt {x} {z} )) ⟩
minus (x * z) (z + y * z)
∎ where
open ≡-Reasoning
lt : {x z : ℕ } → x * z ≤ z + x * z
lt {zero} {zero} = z≤n
lt {suc x} {zero} = lt {x} {zero}
lt {x} {suc z} = ≤-trans lemma refl-≤s where
lemma : x * suc z ≤ z + x * suc z
lemma = subst (λ k → x * suc z ≤ k ) (+-comm _ z) (x≤x+y {x * suc z} {z})
distr-minus-* {x} {suc y} {z} | tri> ¬a ¬b c = +m= {_} {_} {suc y * z} ( begin
minus x (suc y) * z + suc y * z
≡⟨ sym (proj₂ *-distrib-+ z (minus x (suc y) ) _) ⟩
( minus x (suc y) + suc y ) * z
≡⟨ cong (λ k → k * z) (minus+n {x} {suc y} (s≤s c)) ⟩
x * z
≡⟨ sym (minus+n {x * z} {suc y * z} (s≤s (lt c))) ⟩
minus (x * z) (suc y * z) + suc y * z
∎ ) where
open ≡-Reasoning
lt : {x y z : ℕ } → suc y ≤ x → z + y * z ≤ x * z
lt {x} {y} {z} le = *≤ le
minus- : {x y z : ℕ } → suc x > z + y → minus (minus x y) z ≡ minus x (y + z)
minus- {x} {y} {z} gt = +m= {_} {_} {z} ( begin
minus (minus x y) z + z
≡⟨ minus+n {_} {z} lemma ⟩
minus x y
≡⟨ +m= {_} {_} {y} ( begin
minus x y + y
≡⟨ minus+n {_} {y} lemma1 ⟩
x
≡⟨ sym ( minus+n {_} {z + y} gt ) ⟩
minus x (z + y) + (z + y)
≡⟨ sym ( +-assoc (minus x (z + y)) _ _ ) ⟩
minus x (z + y) + z + y
∎ ) ⟩
minus x (z + y) + z
≡⟨ cong (λ k → minus x k + z ) (+-comm _ y ) ⟩
minus x (y + z) + z
∎ ) where
open ≡-Reasoning
lemma1 : suc x > y
lemma1 = x+y<z→x<z (subst (λ k → k < suc x ) (+-comm z _ ) gt )
lemma : suc (minus x y) > z
lemma = <-minus {_} {_} {y} ( subst ( λ x → z + y < suc x ) (sym (minus+n {x} {y} lemma1 )) gt )
minus-* : {M k n : ℕ } → n < k → minus k (suc n) * M ≡ minus (minus k n * M ) M
minus-* {zero} {k} {n} lt = begin
minus k (suc n) * zero
≡⟨ *-comm (minus k (suc n)) zero ⟩
zero * minus k (suc n)
≡⟨⟩
0 * minus k n
≡⟨ *-comm 0 (minus k n) ⟩
minus (minus k n * 0 ) 0
∎ where
open ≡-Reasoning
minus-* {suc m} {k} {n} lt with <-cmp k 1
minus-* {suc m} {.0} {zero} lt | tri< (s≤s z≤n) ¬b ¬c = refl
minus-* {suc m} {.0} {suc n} lt | tri< (s≤s z≤n) ¬b ¬c = refl
minus-* {suc zero} {.1} {zero} lt | tri≈ ¬a refl ¬c = refl
minus-* {suc (suc m)} {.1} {zero} lt | tri≈ ¬a refl ¬c = minus-* {suc m} {1} {zero} lt
minus-* {suc m} {.1} {suc n} (s≤s ()) | tri≈ ¬a refl ¬c
minus-* {suc m} {k} {n} lt | tri> ¬a ¬b c = begin
minus k (suc n) * M
≡⟨ distr-minus-* {k} {suc n} {M} ⟩
minus (k * M ) ((suc n) * M)
≡⟨⟩
minus (k * M ) (M + n * M )
≡⟨ cong (λ x → minus (k * M) x) (+-comm M _ ) ⟩
minus (k * M ) ((n * M) + M )
≡⟨ sym ( minus- {k * M} {n * M} (lemma lt) ) ⟩
minus (minus (k * M ) (n * M)) M
≡⟨ cong (λ x → minus x M ) ( sym ( distr-minus-* {k} {n} )) ⟩
minus (minus k n * M ) M
∎ where
M = suc m
lemma : {n k m : ℕ } → n < k → suc (k * suc m) > suc m + n * suc m
lemma {zero} {suc k} {m} (s≤s lt) = s≤s (s≤s (subst (λ x → x ≤ m + k * suc m) (+-comm 0 _ ) x≤x+y ))
lemma {suc n} {suc k} {m} lt = begin
suc (suc m + suc n * suc m)
≡⟨⟩
suc ( suc (suc n) * suc m)
≤⟨ ≤-plus-0 {_} {_} {1} (*≤ lt ) ⟩
suc (suc k * suc m)
∎ where open ≤-Reasoning
open ≡-Reasoning
open import Data.List
ℕL-inject : {h h1 : ℕ } {x y : List ℕ } → h ∷ x ≡ h1 ∷ y → h ≡ h1
ℕL-inject refl = refl
ℕL-inject-t : {h h1 : ℕ } {x y : List ℕ } → h ∷ x ≡ h1 ∷ y → x ≡ y
ℕL-inject-t refl = refl
ℕL-eq? : (x y : List ℕ ) → Dec (x ≡ y )
ℕL-eq? [] [] = yes refl
ℕL-eq? [] (x ∷ y) = no (λ ())
ℕL-eq? (x ∷ x₁) [] = no (λ ())
ℕL-eq? (h ∷ x) (h1 ∷ y) with h ≟ h1 | ℕL-eq? x y
... | yes y1 | yes y2 = yes ( cong₂ (λ j k → j ∷ k ) y1 y2 )
... | yes y1 | no n = no (λ e → n (ℕL-inject-t e))
... | no n | t = no (λ e → n (ℕL-inject e))
|
{
"alphanum_fraction": 0.3982225261,
"avg_line_length": 34.3167155425,
"ext": "agda",
"hexsha": "0d913994c9f6e4e21cb34ea86752f4ca59a4219b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/Galois",
"max_forks_repo_path": "src/nat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/Galois",
"max_issues_repo_path": "src/nat.agda",
"max_line_length": 113,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/Galois",
"max_stars_repo_path": "src/nat.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-16T03:37:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-16T03:37:05.000Z",
"num_tokens": 5784,
"size": 11702
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.Functor.Instance.UnderlyingQuiver where
-- The forgetful functor from categories to its underlying quiver
-- **except** that this functor only goes from **StrictCats**,
-- i.e. where Functor equivalence is propositional equality, not
-- NaturalIsomorphism.
open import Level using (Level)
-- open import Function using (_$_; flip)
open import Relation.Binary.PropositionalEquality
using (refl)
open import Relation.Binary.PropositionalEquality.Subst.Properties
using (module Transport)
open import Data.Quiver using (Quiver)
open import Data.Quiver.Morphism using (Morphism; _≃_)
open import Categories.Category.Core using (Category)
open import Categories.Category.Instance.Quivers using (Quivers)
open import Categories.Category.Instance.StrictCats
open import Categories.Functor using (Functor)
open import Categories.Functor.Equivalence using (_≡F_)
import Categories.Morphism.HeterogeneousIdentity as HId
private
variable
o ℓ e o′ ℓ′ e′ : Level
A B : Category o ℓ e
Underlying₀ : Category o ℓ e → Quiver o ℓ e
Underlying₀ C = record { Category C }
Underlying₁ : Functor A B → Morphism (Underlying₀ A) (Underlying₀ B)
Underlying₁ F = record { Functor F }
private
≡F-resp-≃ : {F G : Functor A B} → F ≡F G → Underlying₁ F ≃ Underlying₁ G
≡F-resp-≃ {B = B} {F} {G} F≈G = record
{ F₀≡ = λ {X} → eq₀ F≈G X
; F₁≡ = λ {x} {y} {f} →
let open Category B using (_∘_)
open HId B
UB = Underlying₀ B
open Transport (Quiver._⇒_ UB) using (_▸_; _◂_)
module F = Functor F using (₁)
module G = Functor G using (₁)
open Quiver.EdgeReasoning (Underlying₀ B)
in begin
F.₁ f ▸ eq₀ F≈G y ≈⟨ hid-subst-cod (F.₁ f) (eq₀ F≈G y) ⟩
hid (eq₀ F≈G y) ∘ F.₁ f ≈⟨ eq₁ F≈G f ⟩
G.₁ f ∘ hid (eq₀ F≈G x) ≈˘⟨ hid-subst-dom (eq₀ F≈G x) (G.₁ f) ⟩
eq₀ F≈G x ◂ G.₁ f ∎
}
where open _≡F_
Underlying : Functor (StrictCats o ℓ e) (Quivers o ℓ e)
Underlying = record
{ F₀ = Underlying₀
; F₁ = Underlying₁
; identity = λ {A} → record { F₀≡ = refl ; F₁≡ = Category.Equiv.refl A }
; homomorphism = λ where {Z = Z} → record { F₀≡ = refl ; F₁≡ = Category.Equiv.refl Z }
; F-resp-≈ = ≡F-resp-≃
}
|
{
"alphanum_fraction": 0.6516015796,
"avg_line_length": 35.0615384615,
"ext": "agda",
"hexsha": "eeaddf12374698fd0733f1e455f94513c8d94061",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "602ed2ae05dd449d77fc299c07a1cdd02ee5b823",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "sstucki/agda-categories",
"max_forks_repo_path": "src/Categories/Functor/Instance/UnderlyingQuiver.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "602ed2ae05dd449d77fc299c07a1cdd02ee5b823",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "sstucki/agda-categories",
"max_issues_repo_path": "src/Categories/Functor/Instance/UnderlyingQuiver.agda",
"max_line_length": 88,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "602ed2ae05dd449d77fc299c07a1cdd02ee5b823",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "sstucki/agda-categories",
"max_stars_repo_path": "src/Categories/Functor/Instance/UnderlyingQuiver.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 767,
"size": 2279
}
|
module Eta (Gnd : Set)(U : Set)(El : U -> Set) where
open import Basics
open import Pr
open import Nom
import Kind
open Kind Gnd U El
import Cxt
open Cxt Kind
import Loc
open Loc Kind
import Term
open Term Gnd U El
import Shift
open Shift Gnd U El
data Sawn (G : Cxt)(C : Kind)(L : Loc)(R : Kind) : Kind -> Set where
snil : Sawn G C L R R
scons : {S T : Kind} -> Sawn G C L R (S |> T) ->
G [ L / Term C ]- S ->
Sawn G C L R T
sarg : {A : U}{K : El A -> Kind} ->
Sawn G C L R (Pi A K) -> (a : El A) ->
Sawn G C L R (K a)
stitch : {G : Cxt}{C : Kind}{Z : Gnd}{L : Loc}{R S : Kind} ->
Sawn G C L R S -> G [ L / Args C Z ]- S -> G [ L / Args C Z ]- R
stitch snil s = s
stitch (scons r s) t = stitch r (s G& t)
stitch (sarg r a) t = stitch r (a G^ t)
sawsh : {G : Cxt}{C : Kind}{L M : Loc} ->
({T : Kind} -> G [ L / Head ]- T -> G [ M / Head ]- T) ->
{R S : Kind} -> Sawn G C L R S -> Sawn G C M R S
sawsh rho snil = snil
sawsh rho (scons r s) = scons (sawsh rho r) (shift rho s)
sawsh rho (sarg r a) = sarg (sawsh rho r) a
long : {G : Cxt}{C : Kind}{L : Loc}(S : Kind){T : Kind} ->
G [ L / Head ]- T ->
Sawn G C L T S ->
G [ L / Term C ]- S
long (Ty Z) h s = h G$ (stitch s Gnil)
long (Pi A K) h s = Gfn A \ a -> long (K a) h (sarg s a)
long (S |> T) h s =
G\\ (long T (popH h) (scons (sawsh popH s) (long S (# top -! _) snil)))
var : {G : Cxt}{C : Kind}(x : Nom){Gx : [| G Has x |]} ->
G [ EL / Term C ]- (wit ((G ?- x) {Gx}))
var {G} x {Gx} with (G ?- x) {Gx}
... | [ T / g ] = long T (` x -! g) snil
|
{
"alphanum_fraction": 0.4795856185,
"avg_line_length": 31.5576923077,
"ext": "agda",
"hexsha": "f55d1cd89b0ed81c3ecc0a521c6da6a17eb3905e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "benchmark/Syntacticosmos/Eta.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "benchmark/Syntacticosmos/Eta.agda",
"max_line_length": 74,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "benchmark/Syntacticosmos/Eta.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 671,
"size": 1641
}
|
module Structure.Groupoid.Groupoids where
open import Data
open import Data.Proofs
open import Functional
open import Logic
import Lvl
import Relator.Equals as Eq
open import Structure.Setoid
open import Structure.Groupoid
open import Structure.Categorical.Proofs
open import Structure.Categorical.Properties
open import Structure.Operator
open import Type
private variable ℓ ℓ₁ ℓ₂ ℓₑ : Lvl.Level
private variable Obj A B : Type{ℓ}
private variable _▫_ : Obj → Obj → Type{ℓ}
private variable f : A → B
emptyGroupoid : Groupoid{ℓ₁}{ℓ₂}{ℓₑ}(empty-morphism) ⦃ \{} ⦄
Groupoid._∘_ emptyGroupoid = empty-comp
Groupoid.id emptyGroupoid = empty-id
Groupoid.inv emptyGroupoid = empty-inv
Groupoid.binaryOperator emptyGroupoid {}
Groupoid.associativity emptyGroupoid = empty-associativity ⦃ \{} ⦄
Groupoid.identity emptyGroupoid = empty-identity ⦃ \{} ⦄
Groupoid.inverter emptyGroupoid = empty-inverter ⦃ \{} ⦄
singleGroupoid : ∀{ℓₒ ℓᵢ ℓₚₐ₁ ℓₚₐ₂ ℓₚᵢ₁ ℓₚᵢ₂ ℓₚᵢ₃ ℓᵢₙ : Lvl.Level} → Groupoid{ℓ₁}{ℓ₂}(single-morphism)
Groupoid._∘_ (singleGroupoid{ℓ₁}{ℓ₂}{ℓₒ}{ℓᵢ}{ℓₚₐ₁}{ℓₚₐ₂}{ℓₚᵢ₁}{ℓₚᵢ₂}{ℓₚᵢ₃}) = single-comp{ℓ₂}{ℓₒ}
Groupoid.id (singleGroupoid{ℓ₁}{ℓ₂}{ℓₒ}{ℓᵢ}{ℓₚₐ₁}{ℓₚₐ₂}{ℓₚᵢ₁}{ℓₚᵢ₂}{ℓₚᵢ₃}) = single-id{ℓ₂}{ℓᵢ}
Groupoid.inv (singleGroupoid{ℓ₁}{ℓ₂}{ℓₒ}{ℓᵢ}{ℓₚₐ₁}{ℓₚₐ₂}{ℓₚᵢ₁}{ℓₚᵢ₂}{ℓₚᵢ₃}) = single-inv{ℓ₂}{ℓᵢ}
BinaryOperator.congruence (Groupoid.binaryOperator singleGroupoid) Eq.[≡]-intro Eq.[≡]-intro = Eq.[≡]-intro
Groupoid.associativity (singleGroupoid{ℓ₁}{ℓ₂}{ℓₒ}{ℓᵢ}{ℓₚₐ₁}{ℓₚₐ₂}{ℓₚᵢ₁}{ℓₚᵢ₂}{ℓₚᵢ₃}) = single-associativity{ℓ₂}{ℓ₂}{ℓₚₐ₁}{ℓ₁}{ℓₚₐ₂}
Groupoid.identity (singleGroupoid{ℓ₁}{ℓ₂}{ℓₒ}{ℓᵢ}{ℓₚₐ₁}{ℓₚₐ₂}{ℓₚᵢ₁}{ℓₚᵢ₂}{ℓₚᵢ₃}) = single-identity{ℓ₂}{ℓ₂}{ℓₚᵢ₁}{ℓ₁}{ℓₚᵢ₂}{ℓₚᵢ₃}
Groupoid.inverter (singleGroupoid{ℓ₁}{ℓ₂}{ℓₒ}{ℓᵢ}{ℓₚₐ₁}{ℓₚₐ₂}{ℓₚᵢ₁}{ℓₚᵢ₂}{ℓₚᵢ₃}{ℓᵢₙ}) = single-inverter{ℓ₂}{ℓ₂}{ℓₚᵢ₁}{ℓ₁}{ℓₚᵢ₂}{ℓₚᵢ₃}{ℓᵢₙ}
on₂-groupoid : ⦃ morphism-equiv : ∀{x y} → Equiv{ℓₑ}{ℓ}(x ▫ y) ⦄ → Groupoid{Obj = B}(_▫_) ⦃ morphism-equiv ⦄ → (f : A → B) → Groupoid((_▫_) on₂ f)
Groupoid._∘_ (on₂-groupoid C _) = Groupoid._∘_ C
Groupoid.id (on₂-groupoid C _) = Groupoid.id C
Groupoid.inv (on₂-groupoid C _) = Groupoid.inv C
BinaryOperator.congruence (Groupoid.binaryOperator (on₂-groupoid C _)) = BinaryOperator.congruence(Groupoid.binaryOperator C)
Groupoid.associativity (on₂-groupoid C f) = on₂-associativity f (Groupoid.associativity C)
Groupoid.identity (on₂-groupoid C f) = on₂-identity f (Groupoid.identity C)
Groupoid.inverter (on₂-groupoid C f) = on₂-inverter f (Groupoid.inverter C)
|
{
"alphanum_fraction": 0.7163593566,
"avg_line_length": 54.2340425532,
"ext": "agda",
"hexsha": "b4bec304cad6a5266415ef7a319142fc43dca553",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Groupoid/Groupoids.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Groupoid/Groupoids.agda",
"max_line_length": 146,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Groupoid/Groupoids.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1246,
"size": 2549
}
|
-- Andreas, 2012-10-18
module Issue481a where
open import Common.Issue481ParametrizedModule Set1
-- ommon.Issue481ParametrizedModule should not be in scope
module PM = Common.Issue481ParametrizedModule
|
{
"alphanum_fraction": 0.8173076923,
"avg_line_length": 18.9090909091,
"ext": "agda",
"hexsha": "c6d69336395a8645d6898619db2d97192665f7b4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/Issue481a.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/Issue481a.agda",
"max_line_length": 59,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "np/agda-git-experiment",
"max_stars_repo_path": "test/fail/Issue481a.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 59,
"size": 208
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- The free monad construction on containers
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe --sized-types #-}
module Data.Container.FreeMonad where
open import Level
open import Data.Sum using (inj₁; inj₂ ; [_,_]′)
open import Data.Product
open import Data.Container
open import Data.Container.Combinator using (const; _⊎_)
open import Data.W
open import Category.Monad
infixl 1 _⋆C_
infix 1 _⋆_
------------------------------------------------------------------------
-- The free monad construction over a container and a set is, in
-- universal algebra terminology, also known as the term algebra over a
-- signature (a container) and a set (of variable symbols). The return
-- of the free monad corresponds to variables and the bind operator
-- corresponds to (parallel) substitution.
-- A useful intuition is to think of containers describing single
-- operations and the free monad construction over a container and a set
-- describing a tree of operations as nodes and elements of the set as
-- leafs. If one starts at the root, then any path will pass finitely
-- many nodes (operations described by the container) and eventually end
-- up in a leaf (element of the set) -- hence the Kleene star notation
-- (the type can be read as a regular expression).
_⋆C_ : ∀ {x s p} → Container s p → Set x → Container (s ⊔ x) p
C ⋆C X = const X ⊎ C
_⋆_ : ∀ {x s p} → Container s p → Set x → Set (x ⊔ s ⊔ p)
C ⋆ X = μ (C ⋆C X)
module _ {s p} {C : Container s p} where
inn : ∀ {x} {X : Set x} → ⟦ C ⟧ (C ⋆ X) → C ⋆ X
inn (s , f) = sup (inj₂ s , f)
rawMonad : ∀ {x} → RawMonad {s ⊔ p ⊔ x} (C ⋆_)
rawMonad = record { return = return; _>>=_ = _>>=_ }
where
return : ∀ {X} → X → C ⋆ X
return x = sup (inj₁ x , λ ())
_>>=_ : ∀ {X Y} → C ⋆ X → (X → C ⋆ Y) → C ⋆ Y
sup (inj₁ x , _) >>= k = k x
sup (inj₂ s , f) >>= k = inn (s , λ p → f p >>= k)
|
{
"alphanum_fraction": 0.5747182754,
"avg_line_length": 35.8070175439,
"ext": "agda",
"hexsha": "6de62f4c1b904e7c3b8c432ed87bc00df713e681",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/FreeMonad.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/FreeMonad.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/FreeMonad.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 600,
"size": 2041
}
|
{-# OPTIONS --without-K #-}
open import HoTT.Base
module HoTT.Transport.Coproduct where
private
variable
i : Level
X : 𝒰 i
A B : X → 𝒰 i
x₁ x₂ : X
transport-+ : (p : x₁ == x₂) →
transport (λ x → A x + B x) p ~
+-rec (inl ∘ transport A p) (inr ∘ transport B p)
transport-+ refl (inl a) = refl
transport-+ refl (inr b) = refl
|
{
"alphanum_fraction": 0.5442359249,
"avg_line_length": 20.7222222222,
"ext": "agda",
"hexsha": "b9ca2677d9a99d6d04ae3a1d534412c84ff25a11",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "michaelforney/hott",
"max_forks_repo_path": "HoTT/Transport/Coproduct.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "michaelforney/hott",
"max_issues_repo_path": "HoTT/Transport/Coproduct.agda",
"max_line_length": 63,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "michaelforney/hott",
"max_stars_repo_path": "HoTT/Transport/Coproduct.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 133,
"size": 373
}
|
{-# OPTIONS --verbose=10 #-}
module inorder where
open import Data.Nat
open import Data.Vec
open import Agda.Builtin.Sigma
open import Data.Product
open import Data.Fin using (fromℕ)
open import trees
open import optics
open import lemmas
inorderTree : {A : Set} -> Tree A -> Σ[ n ∈ ℕ ] Vec A n × (Vec A n -> Tree A)
inorderTree empty = (0 , ([] , λ _ -> empty))
inorderTree {A} (node t x t₁) with inorderTree t | inorderTree t₁
... | (n₁ , (g₁ , p₁)) | (n₂ , (g₂ , p₂)) =
(n₁ + (1 + n₂) , (g₁ ++ (x ∷ g₂) ,
λ v -> node (p₁ (take n₁ v)) (head (drop n₁ v)) (righttree v)))
where
righttree : Vec A (n₁ + (1 + n₂)) -> Tree A
-- righttree v = p₂ (drop 1 (drop n₁ v))
righttree v rewrite +-suc n₁ n₂ = p₂ (drop (1 + n₁) v)
inorder : {A : Set} -> Traversal (Tree A) (Tree A) A A
inorder = record{ extract = inorderTree }
module tests where
tree1 : Tree ℕ
tree1 = node (node empty 1 empty) 3 empty
open Traversal
inorder1 : Vec ℕ 2
inorder1 = get inorder tree1
updatedinorder1 : Tree ℕ
updatedinorder1 = put inorder tree1 (2 ∷ 3 ∷ [])
|
{
"alphanum_fraction": 0.5617597293,
"avg_line_length": 28.8292682927,
"ext": "agda",
"hexsha": "e02c4e68a2dcd67b2c258ec300a99022ce54580b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "90fc9586f4c126ee83b8aa54ad417bb7a5325b1b",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "hablapps/safeoptics",
"max_forks_repo_path": "src/main/agda/inorder.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "90fc9586f4c126ee83b8aa54ad417bb7a5325b1b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "hablapps/safeoptics",
"max_issues_repo_path": "src/main/agda/inorder.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "90fc9586f4c126ee83b8aa54ad417bb7a5325b1b",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "hablapps/safeoptics",
"max_stars_repo_path": "src/main/agda/inorder.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 399,
"size": 1182
}
|
open import Function using (flip; _∘_; _$_)
open import Auto.Counting
open import Data.Nat using (ℕ)
open import Data.List using (List; _∷_; [])
open import Data.Product using (∃; _,_; proj₂)
open import Data.Maybe
open import Data.Sum using (inj₁; inj₂; isInj₂)
module Auto.Example.Sublists where
infix 3 _⊆_
data _⊆_ {a} {A : Set a} : List A → List A → Set a where
stop : [] ⊆ []
drop : ∀ {xs y ys} → xs ⊆ ys → xs ⊆ y ∷ ys
keep : ∀ {x xs ys} → xs ⊆ ys → x ∷ xs ⊆ x ∷ ys
refl : ∀ {a} {A : Set a} {xs : List A} → xs ⊆ xs
refl {xs = []} = stop
refl {xs = x ∷ xs} = keep refl
trans : ∀ {a} {A : Set a} {xs ys zs : List A} → xs ⊆ ys → ys ⊆ zs → xs ⊆ zs
trans p stop = p
trans p (drop q) = drop (trans p q)
trans (drop p) (keep q) = drop (trans p q)
trans (keep p) (keep q) = keep (trans p q)
hintdb₁ : HintDB
hintdb₁ = ε << quote drop
<< quote keep
<< quote trans
lemma₁ : {ws xs ys zs : List ℕ}
→ ws ⊆ 1 ∷ xs → xs ⊆ ys → ys ⊆ zs → ws ⊆ 1 ∷ 2 ∷ zs
lemma₁ = tactic (auto dfs 10 hintdb₁)
lemma₂ : {ws xs ys zs : List ℕ}
→ ws ⊆ 1 ∷ xs → xs ⊆ ys → ys ⊆ zs → ws ⊆ 2 ∷ zs
lemma₂ = tactic (auto dfs 10 hintdb₁)
{-
db₂ : HintDB
db₂ = ε << quote trans
<< quote keep
<< quote drop
test₂ : {A : Set} {ws xs ys zs : List A} → ws ⊆ xs → ys ⊆ zs → ws ⊆ zs
test₂ = tactic (auto dfs 10 db₁)
-}
|
{
"alphanum_fraction": 0.5335235378,
"avg_line_length": 26.4528301887,
"ext": "agda",
"hexsha": "d73ebe99beab85d9d25e3a54af78a3a98f23942b",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2019-07-07T07:37:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-07-10T10:47:30.000Z",
"max_forks_repo_head_hexsha": "f384b5c236645fcf8ab93179723a7355383a8716",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "wenkokke/AutoInAgda",
"max_forks_repo_path": "src/Auto/Example/Sublists.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f384b5c236645fcf8ab93179723a7355383a8716",
"max_issues_repo_issues_event_max_datetime": "2017-11-06T16:49:27.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-11-03T09:46:19.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "wenkokke/AutoInAgda",
"max_issues_repo_path": "src/Auto/Example/Sublists.agda",
"max_line_length": 75,
"max_stars_count": 22,
"max_stars_repo_head_hexsha": "f384b5c236645fcf8ab93179723a7355383a8716",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "wenkokke/AutoInAgda",
"max_stars_repo_path": "src/Auto/Example/Sublists.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-20T15:04:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-07-18T18:14:09.000Z",
"num_tokens": 539,
"size": 1402
}
|
module Issue1441 where
open import Common.Nat
open import Common.Unit
open import Common.IO
data Sing : (n : Nat) → Set where
sing : ∀ n → Sing n
data D : Set → Set where
c : ∀ n → D (Sing n)
test : (A : Set) → D A → Nat
test .(Sing n) (c n) = n
main : IO Unit
main = printNat (test (Sing 1) (c 1))
-- should succeed and print 1
|
{
"alphanum_fraction": 0.6205882353,
"avg_line_length": 16.1904761905,
"ext": "agda",
"hexsha": "44c9f1760bf7cb9a962be47cc2c4a118e38fecc6",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Compiler/simple/Issue1441.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Compiler/simple/Issue1441.agda",
"max_line_length": 37,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Compiler/simple/Issue1441.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 117,
"size": 340
}
|
open import Common.Size
postulate
A : Set
f : Size → A
-- k < j ==> ∃ l < j
works : ∀ i (j : Size< (↑ i)) (k : Size< j) → (((l : Size< j) → A) → A) → A
works i j k ret = ret λ l → f l
-- k < j <= i ==> ∃ l < i
test1 : ∀ i (j : Size< (↑ i)) (k : Size< j) → (((l : Size< i) → A) → A) → A
test1 i j k ret = ret λ l → f l
-- k' < k < j <= i + 1 ==> ∃ l < i
test : ∀ i (j : Size< (↑ ↑ i)) (k : Size< j) (k' : Size< k) → (((l : Size< i) → A) → A) → A
test i j k k' ret = ret λ l → f l
|
{
"alphanum_fraction": 0.4004106776,
"avg_line_length": 27.0555555556,
"ext": "agda",
"hexsha": "20d1f7c753ac8f6f2e2a67f8318e619f3d3531b8",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1523d.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1523d.agda",
"max_line_length": 91,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1523d.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 226,
"size": 487
}
|
module Tactic.Deriving where
open import Prelude hiding (abs)
open import Tactic.Reflection
private
makeArgs : Nat → List (Arg Nat) → List (Arg Term)
makeArgs n xs = reverse $ map (fmap (λ i → var (n - i - 1) [])) xs
computeInstanceType : Name → Nat → List (Arg Nat) → Type → Maybe Term
computeInstanceType class n xs (agda-sort _) =
just (def class (vArg (var n (makeArgs n xs)) ∷ []))
computeInstanceType class n xs (pi a (abs s b)) =
pi (hArg (unArg a)) ∘ abs s <$> computeInstanceType class (suc n) ((n <$ a) ∷ xs) b
computeInstanceType _ _ _ _ = nothing
computeTel : Name → Nat → List (Arg Nat) → Telescope → Telescope → Telescope × List (Arg Term)
computeTel d n xs is [] = reverse is , makeArgs (n + length is) xs
computeTel d n xs is (a ∷ tel) =
first (hArg (unArg a) ∷_) $
case computeInstanceType d 0 [] (weaken 1 $ unArg a) of λ
{ (just i) → computeTel d (1 + n) ((n <$ a) ∷ xs)
(iArg (weaken (length is) i) ∷ weaken 1 is) tel
; nothing → computeTel d (1 + n) ((n <$ a) ∷ xs) (weaken 1 is) tel }
-- Computes the telescope of instances for a given datatype and class. For instance,
-- instanceTelescope (quote Vec) (quote Eq) computes to
-- {a : Level} {A : Set a} {{_ : Eq A}} {n : Nat} , 3 ∷ 2 ∷ 0 ∷ []
instanceTelescope : Name → Name → TC (Telescope × List (Arg Term))
instanceTelescope d class = computeTel class 0 [] [] <$> (fst ∘ telView <$> getType d)
-- Compute the type of an instance declaration for an arbitrary datatype and class.
instanceType : Name → Name → TC Type
instanceType d class =
caseM instanceTelescope d class of λ
{ (tel , vs) → pure $ telPi tel $ def₁ class (def d vs)
}
|
{
"alphanum_fraction": 0.6286894923,
"avg_line_length": 43.4358974359,
"ext": "agda",
"hexsha": "b7a7580fcd172ab684d00aec6777820f694c231f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lclem/agda-prelude",
"max_forks_repo_path": "src/Tactic/Deriving.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lclem/agda-prelude",
"max_issues_repo_path": "src/Tactic/Deriving.agda",
"max_line_length": 96,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lclem/agda-prelude",
"max_stars_repo_path": "src/Tactic/Deriving.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 535,
"size": 1694
}
|
{-# OPTIONS --no-termination-check #-}
module oldPi where
open import Data.Nat hiding (_⊔_; suc; _+_; _*_)
open import Data.Vec
open import Data.Empty
open import Data.Unit
open import Data.Sum hiding (map)
open import Data.Product hiding (map)
open import Function
open import Level
open import Relation.Binary.PropositionalEquality hiding (sym)
open import Relation.Binary.Core
open import Algebra
import Algebra.FunctionProperties as FunctionProperties
open import Algebra.FunctionProperties.Core
open import Algebra.Structures
infixr 30 _⟷_
infixr 30 _⟺_
infixr 20 _⊙_
infixr 20 _◎_
------------------------------------------------------------------------------
-- First we define a universe of our value types
data B : Set where
ZERO : B
ONE : B
PLUS : B → B → B
NEG : B → B
TIMES : B → B → B
RECIP : B → B
⟦_⟧ : B → Set
⟦ ZERO ⟧ = ⊥
⟦ ONE ⟧ = ⊤
⟦ PLUS b1 b2 ⟧ = ⟦ b1 ⟧ ⊎ ⟦ b2 ⟧
⟦ NEG b ⟧ = {!!}
⟦ TIMES b1 b2 ⟧ = ⟦ b1 ⟧ × ⟦ b2 ⟧
⟦ RECIP b ⟧ = {!!}
------------------------------------------------------------------------------
-- Now we define another universe for our equivalences. First the codes for
-- equivalences.
data _⟷_ : B → B → Set where
unite₊ : { b : B } → PLUS ZERO b ⟷ b
uniti₊ : { b : B } → b ⟷ PLUS ZERO b
swap₊ : { b₁ b₂ : B } → PLUS b₁ b₂ ⟷ PLUS b₂ b₁
assocl₊ : { b₁ b₂ b₃ : B } → PLUS b₁ (PLUS b₂ b₃) ⟷ PLUS (PLUS b₁ b₂) b₃
assocr₊ : { b₁ b₂ b₃ : B } → PLUS (PLUS b₁ b₂) b₃ ⟷ PLUS b₁ (PLUS b₂ b₃)
unite⋆ : { b : B } → TIMES ONE b ⟷ b
uniti⋆ : { b : B } → b ⟷ TIMES ONE b
swap⋆ : { b₁ b₂ : B } → TIMES b₁ b₂ ⟷ TIMES b₂ b₁
assocl⋆ : { b₁ b₂ b₃ : B } → TIMES b₁ (TIMES b₂ b₃) ⟷ TIMES (TIMES b₁ b₂) b₃
assocr⋆ : { b₁ b₂ b₃ : B } → TIMES (TIMES b₁ b₂) b₃ ⟷ TIMES b₁ (TIMES b₂ b₃)
dist : { b₁ b₂ b₃ : B } →
TIMES (PLUS b₁ b₂) b₃ ⟷ PLUS (TIMES b₁ b₃) (TIMES b₂ b₃)
factor : { b₁ b₂ b₃ : B } →
PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) ⟷ TIMES (PLUS b₁ b₂) b₃
η₊ : { b : B } → ZERO ⟷ PLUS (NEG b) b
ε₊ : { b : B } → PLUS b (NEG b) ⟷ ZERO
refe⋆ : { b : B } → RECIP (RECIP b) ⟷ b
refi⋆ : { b : B } → b ⟷ RECIP (RECIP b)
rile⋆ : { b : B } → TIMES b (TIMES b (RECIP b)) ⟷ b
rili⋆ : { b : B } → b ⟷ TIMES b (TIMES b (RECIP b))
id⟷ : { b : B } → b ⟷ b
sym : { b₁ b₂ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₁)
_◎_ : { b₁ b₂ b₃ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₃) → (b₁ ⟷ b₃)
_⊕_ : { b₁ b₂ b₃ b₄ : B } →
(b₁ ⟷ b₃) → (b₂ ⟷ b₄) → (PLUS b₁ b₂ ⟷ PLUS b₃ b₄)
_⊗_ : { b₁ b₂ b₃ b₄ : B } →
(b₁ ⟷ b₃) → (b₂ ⟷ b₄) → (TIMES b₁ b₂ ⟷ TIMES b₃ b₄)
--
dist' : {b₁ b₂ b₃ : B} → TIMES b₁ (PLUS b₂ b₃) ⟷ PLUS (TIMES b₁ b₂) (TIMES b₁ b₃)
dist' = swap⋆ ◎ dist ◎ (swap⋆ ⊕ swap⋆)
midtofront : {a b c : B} → TIMES a (TIMES b c) ⟷ TIMES b (TIMES a c)
midtofront = assocl⋆ ◎ (swap⋆ ⊗ id⟷) ◎ assocr⋆
------------------------------------------------------------------------------
-- Establish that syntactically we have a commutative semiring
⟷IsEquivalence : IsEquivalence _⟷_
⟷IsEquivalence = record {
refl = id⟷ ;
sym = sym ;
trans = _◎_
}
+IsSemigroup : IsSemigroup _⟷_ PLUS
+IsSemigroup = record {
isEquivalence = ⟷IsEquivalence ;
assoc = λ x y z → assocr₊ {x} {y} {z} ;
∙-cong = _⊕_
}
+0IsMonoid : IsMonoid _⟷_ PLUS ZERO
+0IsMonoid = record {
isSemigroup = +IsSemigroup ;
identity = ((λ x → unite₊ {x}) ,
(λ x → swap₊ ◎ unite₊ {x}))
}
+0IsCommutativeMonoid : IsCommutativeMonoid _⟷_ PLUS ZERO
+0IsCommutativeMonoid = record {
isSemigroup = +IsSemigroup ;
identityˡ = λ x → unite₊ {x} ;
comm = λ x y → swap₊ {x} {y}
}
+0CommutativeMonoid : CommutativeMonoid _ _
+0CommutativeMonoid = record {
Carrier = B ;
_≈_ = _⟷_ ;
_∙_ = PLUS ;
ε = ZERO ;
isCommutativeMonoid = +0IsCommutativeMonoid
}
--
⋆IsSemigroup : IsSemigroup _⟷_ TIMES
⋆IsSemigroup = record {
isEquivalence = ⟷IsEquivalence ;
assoc = λ x y z → assocr⋆ {x} {y} {z} ;
∙-cong = _⊗_
}
⋆1IsMonoid : IsMonoid _⟷_ TIMES ONE
⋆1IsMonoid = record {
isSemigroup = ⋆IsSemigroup ;
identity = ((λ x → unite⋆ {x}) ,
(λ x → swap⋆ ◎ unite⋆ {x}))
}
⋆1IsCommutativeMonoid : IsCommutativeMonoid _⟷_ TIMES ONE
⋆1IsCommutativeMonoid = record {
isSemigroup = ⋆IsSemigroup ;
identityˡ = λ x → unite⋆ {x} ;
comm = λ x y → swap⋆ {x} {y}
}
⋆1CommutativeMonoid : CommutativeMonoid _ _
⋆1CommutativeMonoid = record {
Carrier = B ;
_≈_ = _⟷_ ;
_∙_ = TIMES ;
ε = ONE ;
isCommutativeMonoid = ⋆1IsCommutativeMonoid
}
record IsCommutativeSemiringWithoutAnnihilatingZero
{a ℓ} {A : Set a} (≈ : Rel A ℓ)
(+ * : Op₂ A) (0# 1# : A)
: Set (a ⊔ ℓ) where
open FunctionProperties ≈
field
+-isCommutativeMonoid : IsCommutativeMonoid ≈ + 0#
*-isCommutativeMonoid : IsCommutativeMonoid ≈ * 1#
distrib : * DistributesOver +
record CommutativeSemiringWithoutAnnihilatingZero c ℓ : Set (suc (c ⊔ ℓ)) where
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
0# : Carrier
1# : Carrier
isCommutativeSemiringWithoutAnnihilatingZero :
IsCommutativeSemiringWithoutAnnihilatingZero _≈_ _+_ _*_ 0# 1#
B-isCommutativeSemiringWithoutAnnihilatingZero
: IsCommutativeSemiringWithoutAnnihilatingZero _⟷_ PLUS TIMES ZERO ONE
B-isCommutativeSemiringWithoutAnnihilatingZero = record {
+-isCommutativeMonoid = +0IsCommutativeMonoid ;
*-isCommutativeMonoid = ⋆1IsCommutativeMonoid ;
distrib = ( (λ x y z → dist' {x} {y} {z}) ,
(λ x y z → dist {y} {z} {x} ))
}
------------------------------------------------------------------------------
-- Now we want to add negatives and fractionals...
-- Define module over a ring (the types bot, top, disjoint union, and product
-- do form a ring as shown in the type-iso library)
module MR (C : CommutativeSemiringWithoutAnnihilatingZero Level.zero Level.zero) where
open Data.Nat using (ℕ; zero; suc; _*_)
open Data.Vec using ([]; _∷_; map; _++_)
open CommutativeSemiringWithoutAnnihilatingZero using (Carrier; _+_)
R-module : Set → ℕ → Set
R-module c dim = Vec c dim
{--
zeroV : ∀ {b : Set} → R-module b 0
zeroV = []
tensorV : {b₁ b₂ : Set } {m₁ m₂ : ℕ} →
R-module b₁ m₁ → R-module b₂ m₂ →
R-module (b₁ × b₂) (m₁ * m₂)
tensorV [] _ = []
tensorV (x ∷ xs) ys = (map (λ y → (x , y)) ys) ++ (tensorV xs ys)
--}
addV : {n : ℕ} → R-module (Carrier C) n → R-module (Carrier C) n
→ R-module (Carrier C) n
addV x y = Data.Vec.zipWith (_+_ C) x y
open MR
--
neg : {b₁ b₂ : B} → (b₁ ⟷ b₂) → (NEG b₁ ⟷ NEG b₂)
neg {b₁} {b₂} c = -- -b1
uniti₊ ◎ -- 0 + (-b1)
(η₊ {b₂} ⊕ id⟷) ◎ -- (-b2 + b2) + (-b1)
((id⟷ ⊕ sym c) ⊕ id⟷) ◎ -- (-b2 + b1) + (-b1)
assocr₊ ◎ -- (-b2) + (b1 + (-b1))
(id⟷ ⊕ ε₊) ◎ -- (-b2) + 0
swap₊ ◎ -- 0 + (-b2)
unite₊ -- -b2
--
mul0 : {b : B} → TIMES ZERO b ⟷ ZERO
mul0 = -- 0*b
uniti₊ ◎ -- 0 + 0*b
(η₊ ⊕ id⟷) ◎ -- (-(0*b) + 0*b) + 0*b
assocr₊ ◎ -- -(0*b) + (0*b + 0*b)
(id⟷ ⊕ factor) ◎ -- -(0*b) + (0+0)*b
(id⟷ ⊕ (unite₊ ⊗ id⟷)) ◎ -- -(0*b) + 0*b
swap₊ ◎ ε₊ -- 0
inv0 : TIMES ZERO (RECIP ZERO) ⟷ ZERO
inv0 = mul0
--
recip : {b₁ b₂ : B} → (b₁ ⟷ b₂) → (RECIP b₁ ⟷ RECIP b₂)
recip {b₁} {b₂} c = -- 1/a
rili⋆ {RECIP b₁} ◎ -- 1/a * (1/a * 1/1/a)
(id⟷ ⊗ (id⟷ ⊗ refe⋆)) ◎ -- 1/a * (1/a * a)
assocl⋆ ◎ -- (1/a * 1/a) * a
(id⟷ ⊗ reciplem c) ◎ -- (1/a * 1/a) * (a * ((a * 1/b) * (b * 1/b)))
assocl⋆ ◎ -- (((1/a * 1/a) * a) * ((a * 1/b) * (b * 1/b)))
((id⟷ ⊗ refi⋆ ) ⊗ id⟷) ◎ -- (((1/a *1/a) * 1/(1/a)) * ((a * 1/b) * (b * 1/b))
((assocr⋆ ◎ rile⋆ ) ⊗ (id⟷ ⊗ ((sym c) ⊗ id⟷))) ◎ -- 1/a * ((a * 1/b) * (a * 1/b))
(id⟷ ⊗ (assocr⋆ ◎ (id⟷ ⊗ midtofront))) ◎ -- 1/a * (a * (a * (1/b * 1/b)))
(assocl⋆ ◎ assocl⋆) ◎ -- ((1/a * a) * a) * (1/b * 1/b)
(((swap⋆ ⊗ id⟷) ◎ swap⋆) ⊗ id⟷) ◎ -- ((a * (a * 1/a)) * (1/b * 1/b))
(rile⋆ ⊗ id⟷ ) ◎ -- a * (1/b * 1/b)
((c ◎ refi⋆ ) ⊗ id⟷) ◎ swap⋆ ◎ -- (1/b * 1/b) * 1/(1/b)
assocr⋆ ◎ rile⋆ -- 1/b
where
reciplem : {b₁ b₂ : B} → (b₁ ⟷ b₂) → (b₁ ⟷ (TIMES b₁ (TIMES (TIMES b₁ (RECIP b₂)) (TIMES b₂ (RECIP b₂)))))
reciplem {b₁} {b₂} c = c ◎ -- b
rili⋆ ◎ -- b * (b * 1/b)
(rili⋆ ⊗ id⟷) ◎ -- (b * (b * 1/b)) * (b * 1/b)
(((sym c) ⊗ ((sym c) ⊗ id⟷)) ⊗ id⟷) ◎ -- ((a * (a * 1/b)) * (b * 1/b))
assocr⋆ -- a * ((a * 1/b) * (b * 1/b))
--
adjoint : { b₁ b₂ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₁)
adjoint unite₊ = uniti₊
adjoint uniti₊ = unite₊
adjoint swap₊ = swap₊
adjoint assocl₊ = assocr₊
adjoint assocr₊ = assocl₊
adjoint unite⋆ = uniti⋆
adjoint uniti⋆ = unite⋆
adjoint swap⋆ = swap⋆
adjoint assocl⋆ = assocr⋆
adjoint assocr⋆ = assocl⋆
adjoint dist = factor
adjoint factor = dist
adjoint η₊ = swap₊ ◎ ε₊
adjoint ε₊ = η₊ ◎ swap₊
adjoint refe⋆ = refi⋆
adjoint refi⋆ = refe⋆
adjoint rile⋆ = rili⋆
adjoint rili⋆ = rile⋆
adjoint id⟷ = id⟷
adjoint (sym c) = c
adjoint (c₁ ◎ c₂) = adjoint c₂ ◎ adjoint c₁
adjoint (c₁ ⊕ c₂) = adjoint c₁ ⊕ adjoint c₂
adjoint (c₁ ⊗ c₂) = adjoint c₁ ⊗ adjoint c₂
eval :{ b₁ b₂ : B } → (b₁ ⟷ b₂) → ⟦ b₁ ⟧ → ⟦ b₂ ⟧
eval unite₊ (inj₁ ())
eval unite₊ (inj₂ v) = v
eval uniti₊ v = inj₂ v
eval swap₊ (inj₁ v) = inj₂ v
eval swap₊ (inj₂ v) = inj₁ v
eval assocl₊ (inj₁ v) = inj₁ (inj₁ v)
eval assocl₊ (inj₂ (inj₁ v)) = inj₁ (inj₂ v)
eval assocl₊ (inj₂ (inj₂ v)) = inj₂ v
eval assocr₊ (inj₁ (inj₁ v)) = inj₁ v
eval assocr₊ (inj₁ (inj₂ v)) = inj₂ (inj₁ v)
eval assocr₊ (inj₂ v) = inj₂ (inj₂ v)
eval unite⋆ (tt , v) = v
eval uniti⋆ v = (tt , v)
eval swap⋆ (v₁ , v₂) = (v₂ , v₁)
eval assocl⋆ (v₁ , (v₂ , v₃)) = ((v₁ , v₂) , v₃)
eval assocr⋆ ((v₁ , v₂) , v₃) = (v₁ , (v₂ , v₃))
eval dist (inj₁ v₁ , v₃) = inj₁ (v₁ , v₃)
eval dist (inj₂ v₂ , v₃) = inj₂ (v₂ , v₃)
eval factor (inj₁ (v₁ , v₃)) = (inj₁ v₁ , v₃)
eval factor (inj₂ (v₂ , v₃)) = (inj₂ v₂ , v₃)
eval η₊ ()
eval ε₊ (inj₁ x) = {!!}
eval ε₊ (inj₂ y) = {!!}
eval refe⋆ v = {!!}
eval refi⋆ v = {!!}
eval rile⋆ v = {!!}
eval rili⋆ v = {!!}
eval id⟷ v = v
eval (sym c) v = eval (adjoint c) v
eval (c₁ ◎ c₂) v = eval c₂ (eval c₁ v)
eval (c₁ ⊕ c₂) (inj₁ v) = inj₁ (eval c₁ v)
eval (c₁ ⊕ c₂) (inj₂ v) = inj₂ (eval c₂ v)
eval (c₁ ⊗ c₂) (v₁ , v₂) = (eval c₁ v₁ , eval c₂ v₂)
------------------------------------------------------------------------------
-- Define the alternative semantics based on small-step semantics
--
+0-IsGroup : IsGroup _⟷_ PLUS ZERO NEG
+0-IsGroup = record {
isMonoid = +0IsMonoid ;
inverse = ( (λ x → swap₊ ◎ ε₊ {x}) ,
(λ x → ε₊ {x}) );
⁻¹-cong = neg
}
+0-IsAbelianGroup : IsAbelianGroup _⟷_ PLUS ZERO NEG
+0-IsAbelianGroup = record {
isGroup = +0-IsGroup ;
comm = λ x y → swap₊ {x} {y}
}
B-IsRing : IsRing _⟷_ PLUS TIMES NEG ZERO ONE
B-IsRing = record {
+-isAbelianGroup = +0-IsAbelianGroup ;
*-isMonoid = ⋆1IsMonoid ;
distrib = ( (λ x y z → dist' {x} {y} {z}) ,
(λ x y z → dist {y} {z} {x} ))
}
B-IsCommutativeRing : IsCommutativeRing _⟷_ PLUS TIMES NEG ZERO ONE
B-IsCommutativeRing = record {
isRing = B-IsRing ;
*-comm = λ x y → swap⋆ {x} {y}
}
--
B-CommutativeRing : CommutativeRing _ _
B-CommutativeRing = record {
Carrier = B ;
_≈_ = _⟷_ ;
_+_ = PLUS ;
_*_ = TIMES ;
-_ = NEG ;
0# = ZERO ;
1# = ONE ;
isCommutativeRing = B-IsCommutativeRing
}
--
record IsMeadow
{a ℓ} {A : Set a} (≈ : Rel A ℓ)
(+ * : Op₂ A) (- r : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ) where
open FunctionProperties ≈
field
+*-isCommutativeRing : IsCommutativeRing ≈ + * - 0# 1#
*-refl-l : ∀ x → ≈ (r (r x)) x
*-refl-r : ∀ x → ≈ x (r (r x))
*-ril-l : ∀ x → ≈ (* x (* x (r x))) x
*-ril-r : ∀ x → ≈ x (* x (* x (r x)))
r-cong : ∀ x y → ≈ x y → ≈ (r x) (r y)
record Meadow c ℓ : Set (suc (c ⊔ ℓ)) where
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
-_ : Op₁ Carrier
r : Op₁ Carrier
0# : Carrier
1# : Carrier
isMeadow : IsMeadow _≈_ _+_ _*_ -_ r 0# 1#
B-/IsMeadow : IsMeadow _⟷_ PLUS TIMES NEG RECIP ZERO ONE
B-/IsMeadow = record {
+*-isCommutativeRing = B-IsCommutativeRing ;
*-refl-l = λ x → refe⋆ {x} ;
*-refl-r = λ x → sym (refe⋆ {x}) ;
*-ril-l = λ x → sym (rili⋆ {x}) ;
*-ril-r = λ x → rili⋆ {x} ;
r-cong = λ x y → recip {x} {y}
}
B-/Meadow : Meadow _ _
B-/Meadow = record {
Carrier = B ;
_≈_ = _⟷_ ;
_+_ = PLUS ;
_*_ = TIMES ;
-_ = NEG ;
r = RECIP ;
0# = ZERO ;
1# = ONE ;
isMeadow = B-/IsMeadow
}
------------------------------------------------------------------------------
-- NOW WE DEFINE THE SEMANTIC NOTION OF EQUIVALENCE
record _⟺_ (b₁ b₂ : B) : Set where
constructor equiv
field
f₁₂ : ⟦ b₁ ⟧ → ⟦ b₂ ⟧
f₂₁ : ⟦ b₂ ⟧ → ⟦ b₁ ⟧
p₁ : ∀ { x : ⟦ b₁ ⟧ } → f₂₁ (f₁₂ x) ≡ x
p₂ : ∀ { x : ⟦ b₂ ⟧ } → f₁₂ (f₂₁ x) ≡ x
open _⟺_ public
lem-⟺-inv : ∀{A B C : Set }(g₁₂ : A → B )(g₂₁ : B → A)
(g₂₃ : B → C)(g₃₂ : C → B) →
(∀ {x : B } → g₁₂ (g₂₁ x) ≡ x) → ({y : C } → g₂₃ (g₃₂ y) ≡ y ) →
(∀ {z} → g₂₃ (g₁₂ (g₂₁ (g₃₂ z))) ≡ z)
lem-⟺-inv g₁₂ g₂₁ g₂₃ g₃₂ p₁ p₂ {z = z} = trans p p₂
where w = g₁₂ (g₂₁ (g₃₂ z))
p = cong g₂₃ {w} p₁
_⊙_ : {b₁ b₂ b₃ : B} → b₁ ⟺ b₂ → b₂ ⟺ b₃ → b₁ ⟺ b₃
r ⊙ s = equiv (λ x → f₁₂ s ( f₁₂ r x)) (λ x → f₂₁ r ( f₂₁ s x))
(lem-⟺-inv (f₂₁ s) (f₁₂ s) (f₂₁ r) (f₁₂ r) (p₁ s) (p₁ r))
(lem-⟺-inv (f₁₂ r) (f₂₁ r) (f₁₂ s) (f₂₁ s) (p₂ r) (p₂ s))
-- THESE ARE NEEDED MULTIPLE TIMES, FACTOR OUT
zeroe : {A : Set} → ⊥ ⊎ A → A
zeroe (inj₁ ())
zeroe (inj₂ V) = V
zeroi : {A : Set} → A → ⊥ ⊎ A
zeroi v = inj₂ v
zeroeip : { A : Set } { x : ⊥ ⊎ A } → zeroi (zeroe x) ≡ x
zeroeip { x = inj₁ () }
zeroeip { x = inj₂ v } = refl
sw : {A₁ A₂ : Set} → A₁ ⊎ A₂ → A₂ ⊎ A₁
sw (inj₁ v) = inj₂ v
sw (inj₂ v) = inj₁ v
swp : { A₁ A₂ : Set } → { x : A₁ ⊎ A₂ } → sw (sw x) ≡ x
swp { x = inj₁ v } = refl
swp { x = inj₂ v } = refl
-- And finally we map each code to an actual equivalence
iso : { b₁ b₂ : B } → b₁ ⟷ b₂ → b₁ ⟺ b₂
iso id⟷ = equiv id id refl refl
iso (f ◎ g) = (iso f) ⊙ (iso g)
iso unite₊ = equiv zeroe zeroi zeroeip refl
iso swap₊ = equiv sw sw swp swp
iso _ = {!!}
------------------------------------------------------------------------------
-- Examples
BOOL : B
BOOL = PLUS ONE ONE
BOOL² : B
BOOL² = TIMES BOOL BOOL
BOOL³ : B
BOOL³ = TIMES BOOL BOOL²
unitπ : ⟦ ONE ⟧
unitπ = tt
trueπ : ⟦ BOOL ⟧
trueπ = inj₁ tt
falseπ : ⟦ BOOL ⟧
falseπ = inj₂ tt
e0 : ⟦ BOOL² ⟧
e0 = (falseπ , falseπ)
e1 : ⟦ BOOL² ⟧
e1 = (falseπ , trueπ)
e2 : ⟦ BOOL² ⟧
e2 = (trueπ , falseπ)
e3 : ⟦ BOOL² ⟧
e3 = (trueπ , trueπ)
notπ : BOOL ⟷ BOOL
notπ = swap₊
ifc : { b : B } → (b ⟷ b) → (TIMES BOOL b ⟷ TIMES BOOL b)
ifc c = dist ◎ ((id⟷ ⊗ c) ⊕ id⟷) ◎ factor
cnot : BOOL² ⟷ BOOL²
cnot = ifc notπ
toffoli : BOOL³ ⟷ BOOL³
toffoli = ifc cnot
test1 : ⟦ BOOL³ ⟧
test1 = eval toffoli (trueπ , (trueπ , trueπ))
------------------------------------------------------------------------------
|
{
"alphanum_fraction": 0.4909417962,
"avg_line_length": 29.2045028143,
"ext": "agda",
"hexsha": "6b9d12285421898b1cf9101ba9ca572a19d8ffff",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "agda/oldPi.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "agda/oldPi.agda",
"max_line_length": 110,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "agda/oldPi.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 6843,
"size": 15566
}
|
postulate
A : Set
a : A
record B : Set where
constructor i
field b : A
open B
data D : (X : Set) → X → Set where
c : D B (record { b = a })
accepted : (X : Set) (x : X) → D X x → Set
accepted .B (i a) c = A
rejected : (X : Set) (x : X) → D X x → Set
rejected .B (record { b = a }) c = A
-- WAS:
-- I'm not sure if there should be a case for the constructor c,
-- because I get stuck when trying to solve the following unification
-- problems (inferred index ≟ expected index):
-- B ≟ X
-- record { b = a } ≟ x
-- when checking that the pattern c has type D X x
-- SHOULD: succeed
|
{
"alphanum_fraction": 0.5923460899,
"avg_line_length": 20.724137931,
"ext": "agda",
"hexsha": "d980e0c78301e6121f261eada48fad6c608c3db6",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2850.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2850.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2850.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 203,
"size": 601
}
|
module SystemF.Syntax.Type where
open import Prelude
open import Data.Fin hiding (lift)
open import Data.Fin.Substitution
open import Extensions.Substitution
open import Data.Star using (Star; ε; _◅_)
infixl 10 _→'_
data Type (ν : ℕ) : Set where
tc : ℕ → Type ν
tvar : (n : Fin ν) → Type ν
_→'_ : Type ν → Type ν → Type ν
_⟶_ : Type ν → Type ν → Type ν
∀' : Type (suc ν) → Type ν
data Base {ν} : (Type ν) → Set where
tc : ∀ n → Base (tc n)
tvar : ∀ n → Base (tvar n)
_⟶_ : ∀ a b → Base (a ⟶ b)
module Functions where
-- proposition that states that the given polytype
-- is a (possibly polymorphic) function
data IsFunction {ν : ℕ} : Type ν → Set where
lambda : (a b : Type ν) → IsFunction (a →' b)
∀'-lambda : ∀ {f} → IsFunction f → IsFunction (∀' f)
-- decision procedure for IsFunction
is-function : ∀ {ν} → (a : Type ν) → Dec (IsFunction a)
is-function (tc c) = no (λ ())
is-function (tvar n) = no (λ ())
is-function (a →' b) = yes (lambda a b)
is-function (a ⟶ b) = no (λ ())
is-function (∀' a) with is-function a
is-function (∀' a) | yes a-is-f = yes $ ∀'-lambda a-is-f
is-function (∀' a) | no a-not-f = no (λ{ (∀'-lambda a-is-f) → a-not-f a-is-f })
domain : ∀ {ν} {f : Type ν} → IsFunction f → Type ν
domain (lambda a b) = a
domain (∀'-lambda f) = ∀' (domain f)
codomain : ∀ {ν} {f : Type ν} → IsFunction f → Type ν
codomain (lambda a b) = b
codomain (∀'-lambda f) = ∀' (codomain f)
open Functions public
|
{
"alphanum_fraction": 0.5884330868,
"avg_line_length": 30.3469387755,
"ext": "agda",
"hexsha": "7bd68b637b832b76166a516ff565370b24074aa8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/SystemF/Syntax/Type.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/SystemF/Syntax/Type.agda",
"max_line_length": 81,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/SystemF/Syntax/Type.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 530,
"size": 1487
}
|
module NoQualifiedInstances.Import.A where
record I : Set where
instance
postulate i : I
|
{
"alphanum_fraction": 0.7741935484,
"avg_line_length": 13.2857142857,
"ext": "agda",
"hexsha": "87c9a85924c42d677f16f0df93ec6b7ecd8d9e02",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/NoQualifiedInstances/Import/A.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/NoQualifiedInstances/Import/A.agda",
"max_line_length": 42,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/NoQualifiedInstances/Import/A.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 23,
"size": 93
}
|
open import Categories
open import Monads
module Monads.EM.Adjunction {a b}{C : Cat {a}{b}}(M : Monad C) where
open import Library
open import Functors
open import Adjunctions
open import Monads.EM M
open import Monads.EM.Functors M
open Cat C
open Fun
open Monad M
open Adj
open Alg
open AlgMorph
EMAdj : Adj C EM
EMAdj = record {
L = EML;
R = EMR;
left = λ f → comp (amor f) η;
right = λ {X}{Y} f →
record{amor = astr Y X f;
ahom = λ {Z}{g} →
proof
comp (astr Y X f) (astr (OMap EML X) Z g)
≅⟨ sym (alaw2 Y) ⟩
astr Y Z (comp (astr Y X f) g)
∎};
lawa = λ {X}{Y}(f : AlgMorph (OMap EML X) Y) → AlgMorphEq (
proof
astr Y X (comp (amor f) η)
≅⟨ sym (ahom f) ⟩
comp (amor f) (astr (OMap EML X) X η)
≡⟨⟩
comp (amor f) (bind η)
≅⟨ cong (comp (amor f)) law1 ⟩
comp (amor f) iden
≅⟨ idr ⟩
amor f
∎);
lawb = λ {X}{Y} f →
proof
comp (astr Y X f) η
≅⟨ sym (alaw1 Y) ⟩
f
∎;
natleft = λ{X}{X'}{Y}{Y'} f g h →
proof
comp (amor g) (comp (comp (amor h) η) f)
≅⟨ cong (comp (amor g)) ass ⟩
comp (amor g) (comp (amor h) (comp η f))
≅⟨ cong (comp (amor g) ∘ comp (amor h)) (sym law2) ⟩
comp (amor g) (comp (amor h) (comp (bind (comp η f)) η))
≅⟨ cong (comp (amor g)) (sym ass) ⟩
comp (amor g) (comp (comp (amor h) (bind (comp η f))) η)
≅⟨ sym ass ⟩
comp (comp (amor g) (comp (amor h) (bind (comp η f)))) η
∎;
natright = λ{X}{X'}{Y}{Y'} f g h → AlgMorphEq (
proof
astr Y' X' (comp (amor g) (comp h f))
≅⟨ sym (ahom g) ⟩
comp (amor g) (astr Y X' (comp h f))
≅⟨ cong (λ h → comp (amor g) (astr Y X' (comp h f))) (alaw1 Y) ⟩
comp (amor g) (astr Y X' (comp (comp (astr Y X h) η) f))
≅⟨ cong (comp (amor g) ∘ astr Y X') ass ⟩
comp (amor g) (astr Y X' (comp (astr Y X h) (comp η f)))
≅⟨ cong (comp (amor g)) (alaw2 Y) ⟩
comp (amor g) (comp (astr Y X h) (bind (comp η f)))
∎)}
|
{
"alphanum_fraction": 0.5091538842,
"avg_line_length": 26.9466666667,
"ext": "agda",
"hexsha": "9d0f2863cb038dc652abc780245c42acf50dcef0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jmchapman/Relative-Monads",
"max_forks_repo_path": "Monads/EM/Adjunction.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jmchapman/Relative-Monads",
"max_issues_repo_path": "Monads/EM/Adjunction.agda",
"max_line_length": 68,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jmchapman/Relative-Monads",
"max_stars_repo_path": "Monads/EM/Adjunction.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z",
"num_tokens": 884,
"size": 2021
}
|
{-# OPTIONS --without-K --safe #-}
{-
Extremal Mono and Epimorphisms.
https://ncatlab.org/nlab/show/extremal+epimorphism
-}
open import Categories.Category.Core
module Categories.Morphism.Extremal {o ℓ e} (𝒞 : Category o ℓ e) where
open import Level
open import Categories.Morphism 𝒞
open Category 𝒞
IsExtremalEpi : ∀ {A B} {f : A ⇒ B} → Epi f → Set (o ⊔ ℓ ⊔ e)
IsExtremalEpi {A = A} {B = B} {f = f} epi =
∀ {X} {i : X ⇒ B} {g : A ⇒ X} → Mono i → f ≈ i ∘ g → IsIso i
IsExtremalMono : ∀ {A B} {f : A ⇒ B} → Mono f → Set (o ⊔ ℓ ⊔ e)
IsExtremalMono {A = A} {B = B} {f = f} mono =
∀ {X} {g : X ⇒ B} {i : A ⇒ X} → Epi i → f ≈ g ∘ i → IsIso i
record ExtremalEpi {A B} (f : A ⇒ B) : Set (o ⊔ ℓ ⊔ e) where
field
epi : Epi f
extremal : IsExtremalEpi epi
record ExtremalMono {A B} (f : A ⇒ B) : Set (o ⊔ ℓ ⊔ e) where
field
mono : Mono f
extremal : IsExtremalMono mono
|
{
"alphanum_fraction": 0.5725359911,
"avg_line_length": 25.0833333333,
"ext": "agda",
"hexsha": "375d5a75dbbc19f2f5d4664569d7a2128e8a250b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "maxsnew/agda-categories",
"max_forks_repo_path": "src/Categories/Morphism/Extremal.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "maxsnew/agda-categories",
"max_issues_repo_path": "src/Categories/Morphism/Extremal.agda",
"max_line_length": 70,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "maxsnew/agda-categories",
"max_stars_repo_path": "src/Categories/Morphism/Extremal.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 383,
"size": 903
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Homotopy.Loopspace where
open import Cubical.Core.Everything
open import Cubical.Data.Nat
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.GroupoidLaws
open import Cubical.HITs.SetTruncation
open import Cubical.HITs.Truncation hiding (elim2)
{- loop space of a pointed type -}
Ω : {ℓ : Level} → Pointed ℓ → Pointed ℓ
Ω (_ , a) = ((a ≡ a) , refl)
{- n-fold loop space of a pointed type -}
Ω^_ : ∀ {ℓ} → ℕ → Pointed ℓ → Pointed ℓ
(Ω^ 0) p = p
(Ω^ (suc n)) p = Ω ((Ω^ n) p)
{- homotopy Group -}
π : ∀ {ℓ} (n : ℕ) (A : Pointed ℓ) → Type ℓ
π n A = ∥ typ ((Ω^ n) A) ∥ 2
{- loop space map -}
Ω→ : ∀ {ℓA ℓB} {A : Pointed ℓA} {B : Pointed ℓB} (f : A →∙ B) → (Ω A →∙ Ω B)
Ω→ (f , f∙) = (λ p → (sym f∙ ∙ cong f p) ∙ f∙) , cong (λ q → q ∙ f∙) (sym (rUnit (sym f∙))) ∙ lCancel f∙
Eckmann-Hilton : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) (α β : typ ((Ω^ (2 + n)) A))
→ α ∙ β ≡ β ∙ α
Eckmann-Hilton {A = A} n α β i =
comp (λ k → rUnit (snd ((Ω^ (1 + n)) A)) (~ k) ≡ rUnit (snd ((Ω^ (1 + n)) A)) (~ k)) -- note : rUnit refl := lUnit refl
(λ k → λ { (i = i0) → (cong (λ x → rUnit x (~ k)) α) ∙ cong (λ x → lUnit x (~ k)) β
; (i = i1) → (cong (λ x → lUnit x (~ k)) β) ∙ cong (λ x → rUnit x (~ k)) α})
((λ j → α (j ∧ ~ i) ∙ β (j ∧ i)) ∙ λ j → α (~ i ∨ j) ∙ β (i ∨ j))
{- Homotopy group version -}
π-comp : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → ∥ typ ((Ω^ (suc n)) A) ∥₂
→ ∥ typ ((Ω^ (suc n)) A) ∥₂ → ∥ typ ((Ω^ (suc n)) A) ∥₂
π-comp n = elim2 (λ _ _ → setTruncIsSet) λ p q → ∣ p ∙ q ∣₂
Eckmann-Hilton-π : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) (p q : ∥ typ ((Ω^ (2 + n)) A) ∥₂)
→ π-comp (1 + n) p q ≡ π-comp (1 + n) q p
Eckmann-Hilton-π n = elim2 (λ x y → isOfHLevelPath 2 setTruncIsSet _ _)
λ p q → cong ∣_∣₂ (Eckmann-Hilton n p q)
|
{
"alphanum_fraction": 0.514750763,
"avg_line_length": 39.32,
"ext": "agda",
"hexsha": "bf19f964b95d30326261afca816528bfefbce24f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ayberkt/cubical",
"max_forks_repo_path": "Cubical/Homotopy/Loopspace.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ayberkt/cubical",
"max_issues_repo_path": "Cubical/Homotopy/Loopspace.agda",
"max_line_length": 121,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ayberkt/cubical",
"max_stars_repo_path": "Cubical/Homotopy/Loopspace.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 887,
"size": 1966
}
|
open import Mockingbird.Forest using (Forest)
-- A Gallery of Sage Birds
module Mockingbird.Problems.Chapter13 {b ℓ} (forest : Forest {b} {ℓ}) where
open import Function using (_$_)
open import Data.Product using (proj₂)
open import Mockingbird.Forest.Birds forest
import Mockingbird.Problems.Chapter09 forest as Chapter₉
import Mockingbird.Problems.Chapter10 forest as Chapter₁₀
import Mockingbird.Problems.Chapter11 forest as Chapter₁₁
import Mockingbird.Problems.Chapter12 forest as Chapter₁₂
open Forest forest
problem₁ : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasMockingbird ⦄ ⦃ _ : HasRobin ⦄ → HasSageBird
problem₁ = record
{ Θ = B ∙ M ∙ (R ∙ M ∙ B)
; isSageBird = λ x → begin
x ∙ (B ∙ M ∙ (R ∙ M ∙ B) ∙ x) ≈⟨ congˡ lemma ⟩
x ∙ (M ∙ (B ∙ x ∙ M)) ≈⟨ isFond ⟩
M ∙ (B ∙ x ∙ M) ≈˘⟨ lemma ⟩
B ∙ M ∙ (R ∙ M ∙ B) ∙ x ∎
} where
isFond = λ {x} → proj₂ (Chapter₁₁.problem₂ x)
lemma : ∀ {x} → B ∙ M ∙ (R ∙ M ∙ B) ∙ x ≈ M ∙ (B ∙ x ∙ M)
lemma {x} = begin
B ∙ M ∙ (R ∙ M ∙ B) ∙ x ≈⟨ isBluebird M (R ∙ M ∙ B) x ⟩
M ∙ (R ∙ M ∙ B ∙ x) ≈⟨ congˡ $ isRobin M B x ⟩
M ∙ (B ∙ x ∙ M) ∎
problem₂ : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasMockingbird ⦄ ⦃ _ : HasCardinal ⦄ → HasSageBird
problem₂ = record
{ Θ = B ∙ M ∙ (C ∙ B ∙ M)
; isSageBird = λ x → begin
x ∙ (B ∙ M ∙ (C ∙ B ∙ M) ∙ x) ≈⟨ congˡ lemma ⟩
x ∙ (M ∙ (B ∙ x ∙ M)) ≈⟨ isFond ⟩
M ∙ (B ∙ x ∙ M) ≈˘⟨ lemma ⟩
B ∙ M ∙ (C ∙ B ∙ M) ∙ x ∎
} where
isFond = λ {x} → proj₂ (Chapter₁₁.problem₂ x)
lemma : ∀ {x} → B ∙ M ∙ (C ∙ B ∙ M) ∙ x ≈ M ∙ (B ∙ x ∙ M)
lemma {x} = begin
B ∙ M ∙ (C ∙ B ∙ M) ∙ x ≈⟨ isBluebird M (C ∙ B ∙ M) x ⟩
M ∙ (C ∙ B ∙ M ∙ x) ≈⟨ congˡ $ isCardinal B M x ⟩
M ∙ (B ∙ x ∙ M) ∎
problem₃ : ⦃ _ : HasMockingbird ⦄ ⦃ _ : HasBluebird ⦄ ⦃ _ : HasLark ⦄ → HasSageBird
problem₃ = record
{ Θ = B ∙ M ∙ L
; isSageBird = isSageBird ⦃ Chapter₁₀.hasSageBird ⦄
} where instance hasComposition = Chapter₁₁.problem₁
problem₄ : ⦃ _ : HasMockingbird ⦄ ⦃ _ : HasBluebird ⦄ ⦃ _ : HasWarbler ⦄ → HasSageBird
problem₄ = record
{ Θ = B ∙ M ∙ (B ∙ W ∙ B)
; isSageBird = isSageBird ⦃ problem₃ ⦄
} where instance hasLark = Chapter₁₂.problem₃
problem₆ : ⦃ _ : HasQueerBird ⦄ ⦃ _ : HasLark ⦄ ⦃ _ : HasWarbler ⦄ → HasSageBird
problem₆ = record
{ Θ = W ∙ (Q ∙ L ∙ (Q ∙ L))
; isSageBird = λ x → begin
x ∙ (W ∙ (Q ∙ L ∙ (Q ∙ L)) ∙ x) ≈⟨ congˡ lemma ⟩
x ∙ (L ∙ x ∙ (L ∙ x)) ≈⟨ isFond ⟩
L ∙ x ∙ (L ∙ x) ≈˘⟨ lemma ⟩
W ∙ (Q ∙ L ∙ (Q ∙ L)) ∙ x ∎
} where
isFond = λ {x} → proj₂ (Chapter₉.problem₂₅ x)
lemma : ∀ {x} → W ∙ (Q ∙ L ∙ (Q ∙ L)) ∙ x ≈ L ∙ x ∙ (L ∙ x)
lemma {x} = begin
W ∙ (Q ∙ L ∙ (Q ∙ L)) ∙ x ≈⟨ isWarbler (Q ∙ L ∙ (Q ∙ L)) x ⟩
Q ∙ L ∙ (Q ∙ L) ∙ x ∙ x ≈⟨ congʳ $ isQueerBird L (Q ∙ L) x ⟩
Q ∙ L ∙ (L ∙ x) ∙ x ≈⟨ isQueerBird L (L ∙ x) x ⟩
L ∙ x ∙ (L ∙ x) ∎
problem₅ : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasCardinal ⦄ ⦃ _ : HasWarbler ⦄ → HasSageBird
problem₅ = problem₆
where
instance
hasQueerBird = Chapter₁₁.problem₃₇′
hasLark = Chapter₁₂.problem₃
problem₇ = problem₅
problem₈ : ⦃ _ : HasMockingbird ⦄ ⦃ _ : HasQueerBird ⦄ → HasSageBird
problem₈ = record
{ Θ = Q ∙ (Q ∙ M) ∙ M
; isSageBird = λ x → sym $ begin
Q ∙ (Q ∙ M) ∙ M ∙ x ≈⟨ isQueerBird (Q ∙ M) M x ⟩
M ∙ (Q ∙ M ∙ x) ≈⟨ isMockingbird (Q ∙ M ∙ x) ⟩
Q ∙ M ∙ x ∙ (Q ∙ M ∙ x) ≈⟨ isQueerBird M x (Q ∙ M ∙ x) ⟩
x ∙ (M ∙ (Q ∙ M ∙ x)) ≈˘⟨ congˡ $ isQueerBird (Q ∙ M) M x ⟩
x ∙ (Q ∙ (Q ∙ M) ∙ M ∙ x) ∎
}
-- TODO: formalise regularity.
problem₉ : ⦃ _ : HasStarling ⦄ ⦃ _ : HasLark ⦄ → HasSageBird
problem₉ = record
{ Θ = S ∙ L ∙ L
; isSageBird = λ x → begin
x ∙ (S ∙ L ∙ L ∙ x) ≈⟨ congˡ $ isStarling L L x ⟩
x ∙ (L ∙ x ∙ (L ∙ x)) ≈⟨ isFond ⟩
L ∙ x ∙ (L ∙ x) ≈˘⟨ isStarling L L x ⟩
S ∙ L ∙ L ∙ x ∎
} where
isFond = λ {x} → proj₂ (Chapter₉.problem₂₅ x)
problem₁₀ : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasWarbler ⦄ ⦃ _ : HasStarling ⦄ → HasSageBird
problem₁₀ = record
{ Θ = W ∙ S ∙ (B ∙ W ∙ B)
; isSageBird = λ x → begin
x ∙ (W ∙ S ∙ (B ∙ W ∙ B) ∙ x) ≈⟨⟩
x ∙ (W ∙ S ∙ L ∙ x) ≈⟨ congˡ $ congʳ $ isWarbler S L ⟩
x ∙ (S ∙ L ∙ L ∙ x) ≈⟨ isSageBird ⦃ problem₉ ⦄ x ⟩
S ∙ L ∙ L ∙ x ≈˘⟨ congʳ $ isWarbler S L ⟩
W ∙ S ∙ L ∙ x ≈⟨⟩
W ∙ S ∙ (B ∙ W ∙ B) ∙ x ∎
} where instance hasLark = Chapter₁₂.problem₃
problem₁₁ : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasMockingbird ⦄ ⦃ _ : HasThrush ⦄ → HasTuringBird
problem₁₁ = record
{ U = B ∙ (B ∙ W ∙ (C ∙ B)) ∙ M
; isTuringBird = λ x y → begin
B ∙ (B ∙ W ∙ (C ∙ B)) ∙ M ∙ x ∙ y ≈⟨ congʳ $ isBluebird (B ∙ W ∙ (C ∙ B)) M x ⟩
B ∙ W ∙ (C ∙ B) ∙ (M ∙ x) ∙ y ≈⟨ congʳ $ isBluebird W (C ∙ B) (M ∙ x) ⟩
W ∙ (C ∙ B ∙ (M ∙ x)) ∙ y ≈⟨ isWarbler (C ∙ B ∙ (M ∙ x)) y ⟩
C ∙ B ∙ (M ∙ x) ∙ y ∙ y ≈⟨ congʳ $ isCardinal B (M ∙ x) y ⟩
B ∙ y ∙ (M ∙ x) ∙ y ≈⟨ isBluebird y (M ∙ x) y ⟩
y ∙ (M ∙ x ∙ y) ≈⟨ congˡ $ congʳ $ isMockingbird x ⟩
y ∙ (x ∙ x ∙ y) ∎
} where
instance
hasCardinal = Chapter₁₁.problem₂₁′
hasLark = Chapter₁₂.problem₇
problem₁₂ : ⦃ _ : HasTuringBird ⦄ → HasSageBird
problem₁₂ = record
{ Θ = U ∙ U
; isSageBird = λ x → sym $ isTuringBird U x
}
problem₁₃ : ⦃ _ : HasQueerBird ⦄ ⦃ _ : HasWarbler ⦄ → HasOwl
problem₁₃ = record
{ O = Q ∙ Q ∙ W
; isOwl = λ x y → begin
Q ∙ Q ∙ W ∙ x ∙ y ≈⟨ congʳ $ isQueerBird Q W x ⟩
W ∙ (Q ∙ x) ∙ y ≈⟨ isWarbler (Q ∙ x) y ⟩
Q ∙ x ∙ y ∙ y ≈⟨ isQueerBird x y y ⟩
y ∙ (x ∙ y) ∎
}
problem₁₄ : ⦃ _ : HasOwl ⦄ ⦃ _ : HasLark ⦄ → HasTuringBird
problem₁₄ = record
{ U = L ∙ O
; isTuringBird = λ x y → begin
L ∙ O ∙ x ∙ y ≈⟨ congʳ $ isLark O x ⟩
O ∙ (x ∙ x) ∙ y ≈⟨ isOwl (x ∙ x) y ⟩
y ∙ (x ∙ x ∙ y) ∎
}
problem₁₅ : ⦃ _ : HasOwl ⦄ ⦃ _ : HasIdentity ⦄ → HasMockingbird
problem₁₅ = record
{ M = O ∙ I
; isMockingbird = λ x → begin
O ∙ I ∙ x ≈⟨ isOwl I x ⟩
x ∙ (I ∙ x) ≈⟨ congˡ $ isIdentity x ⟩
x ∙ x ∎
}
problem₁₆ : ⦃ _ : HasStarling ⦄ ⦃ _ : HasIdentity ⦄ → HasOwl
problem₁₆ = record
{ O = S ∙ I
; isOwl = λ x y → begin
S ∙ I ∙ x ∙ y ≈⟨ isStarling I x y ⟩
I ∙ y ∙ (x ∙ y) ≈⟨ congʳ $ isIdentity y ⟩
y ∙ (x ∙ y) ∎
}
problem₁₇ : ∀ x y → x IsFondOf y → x IsFondOf x ∙ y
problem₁₇ x y xy≈y = begin
x ∙ (x ∙ y) ≈⟨ congˡ xy≈y ⟩
x ∙ y ∎
problem₁₈ : ⦃ _ : HasOwl ⦄ ⦃ _ : HasSageBird ⦄ → IsSageBird (O ∙ Θ)
problem₁₈ x = begin
x ∙ (O ∙ Θ ∙ x) ≈⟨ congˡ $ isOwl Θ x ⟩
x ∙ (x ∙ (Θ ∙ x)) ≈⟨ isFond ⟩
x ∙ (Θ ∙ x) ≈˘⟨ isOwl Θ x ⟩
O ∙ Θ ∙ x ∎
where
isFond : x IsFondOf (x ∙ (Θ ∙ x))
isFond = problem₁₇ x (Θ ∙ x) (isSageBird x)
problem₁₉ : ⦃ _ : HasOwl ⦄ ⦃ _ : HasSageBird ⦄ → IsSageBird (Θ ∙ O)
problem₁₉ x = sym $ begin
Θ ∙ O ∙ x ≈˘⟨ congʳ $ isSageBird O ⟩
O ∙ (Θ ∙ O) ∙ x ≈⟨ isOwl (Θ ∙ O) x ⟩
x ∙ (Θ ∙ O ∙ x) ∎
problem₂₀ : ⦃ _ : HasOwl ⦄ → ∀ A → O IsFondOf A → IsSageBird A
problem₂₀ A OA≈A x = begin
x ∙ (A ∙ x) ≈˘⟨ isOwl A x ⟩
O ∙ A ∙ x ≈⟨ congʳ OA≈A ⟩
A ∙ x ∎
problem₂₁ : ⦃ _ : HasSageBird ⦄ → ∀ A → IsChoosy A → IsSageBird (Θ ∙ A)
problem₂₁ A isChoosy = isChoosy (Θ ∙ A) $ isSageBird A
open import Mockingbird.Forest.Extensionality forest
problem₂₂ : ⦃ _ : HasOwl ⦄ ⦃ _ : HasSageBird ⦄ → O ∙ Θ ≋ Θ
problem₂₂ x = begin
O ∙ Θ ∙ x ≈⟨ isOwl Θ x ⟩
x ∙ (Θ ∙ x) ≈⟨ isSageBird x ⟩
Θ ∙ x ∎
problem₂₃ : ⦃ _ : Extensional ⦄ ⦃ _ : HasOwl ⦄ ⦃ _ : HasSageBird ⦄ → O IsFondOf Θ
problem₂₃ = ext problem₂₂
|
{
"alphanum_fraction": 0.4790757381,
"avg_line_length": 34.4690265487,
"ext": "agda",
"hexsha": "1be4ede685cf02564cf7978c5b3b3aac8b060122",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "splintah/combinatory-logic",
"max_forks_repo_path": "Mockingbird/Problems/Chapter13.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "splintah/combinatory-logic",
"max_issues_repo_path": "Mockingbird/Problems/Chapter13.agda",
"max_line_length": 88,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "splintah/combinatory-logic",
"max_stars_repo_path": "Mockingbird/Problems/Chapter13.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T23:44:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-28T23:44:42.000Z",
"num_tokens": 4032,
"size": 7790
}
|
open import Prelude
open import Nat
open import List
open import contexts
module unions where
-- values mapped in Γ2 replace those mapped in Γ1
_∪_ : {A : Set} → A ctx → A ctx → A ctx
Γ1 ∪ Γ2 = union (λ a b → b) Γ1 Γ2
-- duplicate mappings are combined by append (_++_)
_⊎_ : {A : Set} → (List A) ctx → (List A) ctx → (List A) ctx
Γ1 ⊎ Γ2 = union (λ a b → a ++ b) Γ1 Γ2
infixl 50 _∪_
infixl 50 _⊎_
|
{
"alphanum_fraction": 0.618705036,
"avg_line_length": 24.5294117647,
"ext": "agda",
"hexsha": "6598e58a5f5717018d5df71ae94851c7e08c93e6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnat-myth-",
"max_forks_repo_path": "unions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnat-myth-",
"max_issues_repo_path": "unions.agda",
"max_line_length": 62,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnat-myth-",
"max_stars_repo_path": "unions.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-19T23:42:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-19T23:42:31.000Z",
"num_tokens": 160,
"size": 417
}
|
open import Data.Word.Primitive public using ( Word8 ; Word16 ; Word32 ; Word64 )
module Data.Word where
data WordSize : Set where
#8 #16 #32 #64 : WordSize
Word : WordSize → Set
Word #8 = Word8
Word #16 = Word16
Word #32 = Word32
Word #64 = Word64
Byte : Set
Byte = Word8
|
{
"alphanum_fraction": 0.6857142857,
"avg_line_length": 17.5,
"ext": "agda",
"hexsha": "ddd67fd015a2616e971a3856c68659e619f32f89",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z",
"max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ilya-fiveisky/agda-system-io",
"max_forks_repo_path": "src/Data/Word.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ilya-fiveisky/agda-system-io",
"max_issues_repo_path": "src/Data/Word.agda",
"max_line_length": 81,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ilya-fiveisky/agda-system-io",
"max_stars_repo_path": "src/Data/Word.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z",
"num_tokens": 91,
"size": 280
}
|
open import Data.Empty using ( ⊥ )
open import FRP.LTL.RSet.Core using ( RSet )
module FRP.LTL.RSet.Empty where
F : RSet
F t = ⊥
|
{
"alphanum_fraction": 0.6818181818,
"avg_line_length": 14.6666666667,
"ext": "agda",
"hexsha": "9bb11d3958cd075aeceef65830c697fc2af3446f",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:04.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-01T07:33:00.000Z",
"max_forks_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-frp-ltl",
"max_forks_repo_path": "src/FRP/LTL/RSet/Empty.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_issues_repo_issues_event_max_datetime": "2015-03-02T15:23:53.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-01T07:01:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-frp-ltl",
"max_issues_repo_path": "src/FRP/LTL/RSet/Empty.agda",
"max_line_length": 44,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-frp-ltl",
"max_stars_repo_path": "src/FRP/LTL/RSet/Empty.agda",
"max_stars_repo_stars_event_max_datetime": "2020-06-15T02:51:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-02T20:25:05.000Z",
"num_tokens": 44,
"size": 132
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.