Search is not available for this dataset
text
string
meta
dict
-- Andreas, 2014-04-12, Order of declaration mattered in the presence -- of meta variables involving sizes -- {-# OPTIONS -v tc.meta:10 -v tc.meta.assign:10 #-} -- Error persists without option sized-types {-# OPTIONS --sized-types #-} module _ where open import Common.Size -- different error if we do not use the built-ins (Size vs Size<) module Works where mutual data Colist' i : Set where inn : (xs : Colist i) → Colist' i record Colist i : Set where coinductive field out : ∀ {j : Size< i} → Colist' j module Fails where mutual record Colist i : Set where coinductive field out : ∀ {j : Size< i} → Colist' j data Colist' i : Set where inn : (xs : Colist i) → Colist' i -- Error: Issue1087.agda:21,45-46 -- Cannot instantiate the metavariable _20 to solution (Size< i) since -- it contains the variable i which is not in scope of the -- metavariable or irrelevant in the metavariable but relevant in the -- solution -- when checking that the expression j has type _20 -- Works now.
{ "alphanum_fraction": 0.6710900474, "avg_line_length": 26.375, "ext": "agda", "hexsha": "dcd62faa00e1629a8b45c893a4f9a177455bafb0", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1087.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1087.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1087.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 297, "size": 1055 }
module Luau.OpSem where open import Agda.Builtin.Equality using (_≡_) open import FFI.Data.Maybe using (just) open import Luau.Heap using (Heap; _≡_⊕_↦_; lookup; function_⟨_⟩_end) open import Luau.Substitution using (_[_/_]ᴮ) open import Luau.Syntax using (Expr; Stat; Block; nil; addr; var; function⟨_⟩_end; _$_; block_is_end; local_←_; _∙_; done; function_⟨_⟩_end; return) open import Luau.Value using (addr; val) data _⊢_⟶ᴮ_⊣_ : Heap → Block → Block → Heap → Set data _⊢_⟶ᴱ_⊣_ : Heap → Expr → Expr → Heap → Set data _⊢_⟶ᴱ_⊣_ where nil : ∀ {H} → ------------------- H ⊢ nil ⟶ᴱ nil ⊣ H function : ∀ {H H′ a x B} → H′ ≡ H ⊕ a ↦ (function "anon" ⟨ x ⟩ B end) → ------------------------------------------- H ⊢ (function⟨ x ⟩ B end) ⟶ᴱ (addr a) ⊣ H′ app : ∀ {H H′ M M′ N} → H ⊢ M ⟶ᴱ M′ ⊣ H′ → ----------------------------- H ⊢ (M $ N) ⟶ᴱ (M′ $ N) ⊣ H′ beta : ∀ {H M a f x B} → (lookup H a) ≡ just(function f ⟨ x ⟩ B end) → ----------------------------------------------------- H ⊢ (addr a $ M) ⟶ᴱ (block f is local x ← M ∙ B end) ⊣ H block : ∀ {H H′ B B′ b} → H ⊢ B ⟶ᴮ B′ ⊣ H′ → ---------------------------------------------------- H ⊢ (block b is B end) ⟶ᴱ (block b is B′ end) ⊣ H′ return : ∀ {H V B b} → -------------------------------------------------------- H ⊢ (block b is return (val V) ∙ B end) ⟶ᴱ (val V) ⊣ H done : ∀ {H b} → --------------------------------- H ⊢ (block b is done end) ⟶ᴱ nil ⊣ H data _⊢_⟶ᴮ_⊣_ where local : ∀ {H H′ x M M′ B} → H ⊢ M ⟶ᴱ M′ ⊣ H′ → ------------------------------------------------- H ⊢ (local x ← M ∙ B) ⟶ᴮ (local x ← M′ ∙ B) ⊣ H′ subst : ∀ {H x v B} → ------------------------------------------------- H ⊢ (local x ← val v ∙ B) ⟶ᴮ (B [ v / x ]ᴮ) ⊣ H function : ∀ {H H′ a f x B C} → H′ ≡ H ⊕ a ↦ (function f ⟨ x ⟩ C end) → -------------------------------------------------------------- H ⊢ (function f ⟨ x ⟩ C end ∙ B) ⟶ᴮ (B [ addr a / f ]ᴮ) ⊣ H′ return : ∀ {H H′ M M′ B} → H ⊢ M ⟶ᴱ M′ ⊣ H′ → -------------------------------------------- H ⊢ (return M ∙ B) ⟶ᴮ (return M′ ∙ B) ⊣ H′ data _⊢_⟶*_⊣_ : Heap → Block → Block → Heap → Set where refl : ∀ {H B} → ---------------- H ⊢ B ⟶* B ⊣ H step : ∀ {H H′ H″ B B′ B″} → H ⊢ B ⟶ᴮ B′ ⊣ H′ → H′ ⊢ B′ ⟶* B″ ⊣ H″ → ------------------ H ⊢ B ⟶* B″ ⊣ H″
{ "alphanum_fraction": 0.3587755102, "avg_line_length": 26.3440860215, "ext": "agda", "hexsha": "dcd474bf834f389f776539f848f3a78ff5a73950", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "FreakingBarbarians/luau", "max_forks_repo_path": "prototyping/Luau/OpSem.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "FreakingBarbarians/luau", "max_issues_repo_path": "prototyping/Luau/OpSem.agda", "max_line_length": 148, "max_stars_count": 1, "max_stars_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FreakingBarbarians/luau", "max_stars_repo_path": "prototyping/Luau/OpSem.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-11T21:30:17.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-11T21:30:17.000Z", "num_tokens": 1001, "size": 2450 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Definition open import Numbers.Naturals.Definition open import Numbers.Naturals.Order open import Setoids.Setoids open import Sets.EquivalenceRelations open import Rings.Definition open import Rings.IntegralDomains.Definition open import Orders.Total.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Rings.EuclideanDomains.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} (R : Ring S _+_ _*_) where open import Rings.Divisible.Definition R open Setoid S open Equivalence eq open Ring R open Group additiveGroup record DivisionAlgorithmResult (norm : {a : A} → ((a ∼ 0R) → False) → ℕ) {x y : A} (x!=0 : (x ∼ 0R) → False) (y!=0 : (y ∼ 0R) → False) : Set (a ⊔ b) where field quotient : A rem : A remSmall : (rem ∼ 0R) || Sg ((rem ∼ 0R) → False) (λ rem!=0 → (norm rem!=0) <N (norm y!=0)) divAlg : x ∼ ((quotient * y) + rem) record DivisionAlgorithmResult' (norm : (a : A) → ℕ) (x y : A) : Set (a ⊔ b) where field quotient : A rem : A remSmall : (rem ∼ 0R) || ((norm rem) <N (norm y)) divAlg : x ∼ ((quotient * y) + rem) record EuclideanDomain : Set (a ⊔ lsuc b) where field isIntegralDomain : IntegralDomain R norm : {a : A} → ((a ∼ 0R) → False) → ℕ normSize : {a b : A} → (a!=0 : (a ∼ 0R) → False) → (b!=0 : (b ∼ 0R) → False) → (c : A) → b ∼ (a * c) → (norm a!=0) ≤N (norm b!=0) divisionAlg : {a b : A} → (a!=0 : (a ∼ 0R) → False) → (b!=0 : (b ∼ 0R) → False) → DivisionAlgorithmResult norm a!=0 b!=0 normWellDefined : {a : A} → (p1 p2 : (a ∼ 0R) → False) → norm p1 ≡ norm p2 normWellDefined {a} p1 p2 with normSize p1 p2 1R (symmetric (transitive *Commutative identIsIdent)) normWellDefined {a} p1 p2 | inl n1<n2 with normSize p2 p1 1R (symmetric (transitive *Commutative identIsIdent)) normWellDefined {a} p1 p2 | inl n1<n2 | inl n2<n1 = exFalso (TotalOrder.irreflexive ℕTotalOrder (TotalOrder.<Transitive ℕTotalOrder n1<n2 n2<n1)) normWellDefined {a} p1 p2 | inl n1<n2 | inr n2=n1 = equalityCommutative n2=n1 normWellDefined {a} p1 p2 | inr n1=n2 = n1=n2 normWellDefined' : {a b : A} → (a ∼ b) → (a!=0 : (a ∼ 0R) → False) → (b!=0 : (b ∼ 0R) → False) → norm a!=0 ≡ norm b!=0 normWellDefined' a=b a!=0 b!=0 with normSize a!=0 b!=0 1R (symmetric (transitive *Commutative (transitive identIsIdent a=b))) normWellDefined' a=b a!=0 b!=0 | inl a<b with normSize b!=0 a!=0 1R (symmetric (transitive *Commutative (transitive identIsIdent (symmetric a=b)))) normWellDefined' a=b a!=0 b!=0 | inl a<b | inl b<a = exFalso (TotalOrder.irreflexive ℕTotalOrder (TotalOrder.<Transitive ℕTotalOrder a<b b<a)) normWellDefined' a=b a!=0 b!=0 | inl a<b | inr n= = equalityCommutative n= normWellDefined' a=b a!=0 b!=0 | inr n= = n= record EuclideanDomain' : Set (a ⊔ lsuc b) where field isIntegralDomain : IntegralDomain R norm : A → ℕ normWellDefined : {a b : A} → (a ∼ b) → norm a ≡ norm b normSize : (a b : A) → (a ∣ b) → ((b ∼ 0R) → False) → norm a ≤N (norm b) divisionAlg : (a b : A) → ((b ∼ 0R) → False) → DivisionAlgorithmResult' norm a b normEquiv : (e : EuclideanDomain) (decidableZero : (a : A) → (a ∼ 0R) || ((a ∼ 0R) → False)) → A → ℕ normEquiv e decidableZero a with decidableZero a ... | inl a=0 = 0 ... | inr a!=0 = EuclideanDomain.norm e a!=0 normSizeEquiv : (e : EuclideanDomain) (decidableZero : (a : A) → (a ∼ 0R) || ((a ∼ 0R) → False)) (a b : A) → (a ∣ b) → ((b ∼ 0R) → False) → normEquiv e decidableZero a ≤N normEquiv e decidableZero b normSizeEquiv e decidableZero a b (c , ac=b) b!=0 = ans where abstract a!=0 : (a ∼ 0R) → False a!=0 a=0 = b!=0 (transitive (symmetric ac=b) (transitive (*WellDefined a=0 reflexive) (transitive *Commutative timesZero))) normIs : normEquiv e decidableZero a ≡ EuclideanDomain.norm e a!=0 normIs with decidableZero a normIs | inl a=0 = exFalso (a!=0 a=0) normIs | inr a!=0' = EuclideanDomain.normWellDefined e a!=0' a!=0 normIs' : normEquiv e decidableZero b ≡ EuclideanDomain.norm e b!=0 normIs' with decidableZero b normIs' | inl b=0 = exFalso (b!=0 b=0) normIs' | inr b!=0' = EuclideanDomain.normWellDefined e b!=0' b!=0 ans : (normEquiv e decidableZero a) ≤N (normEquiv e decidableZero b) ans with EuclideanDomain.normSize e a!=0 b!=0 c (symmetric ac=b) ans | inl n<Nn = inl (identityOfIndiscernablesLeft _<N_ (identityOfIndiscernablesRight _<N_ n<Nn (equalityCommutative normIs')) (equalityCommutative normIs)) ans | inr n=n = inr (transitivity normIs (transitivity n=n (equalityCommutative normIs'))) divisionAlgEquiv : (e : EuclideanDomain) (decidableZero : (a : A) → (a ∼ 0R) || ((a ∼ 0R) → False)) → (a b : A) → ((b ∼ 0R) → False) → DivisionAlgorithmResult' (normEquiv e decidableZero) a b divisionAlgEquiv e decidableZero a b b!=0 with decidableZero a divisionAlgEquiv e decidableZero a b b!=0 | inl a=0 = record { quotient = 0R ; rem = 0R ; remSmall = inl reflexive ; divAlg = transitive a=0 (transitive (symmetric identLeft) (+WellDefined (symmetric (transitive *Commutative timesZero)) reflexive)) } divisionAlgEquiv e decidableZero a b b!=0 | inr a!=0 with EuclideanDomain.divisionAlg e a!=0 b!=0 divisionAlgEquiv e decidableZero a b b!=0 | inr a!=0 | record { quotient = quotient ; rem = rem ; remSmall = inl x ; divAlg = divAlg } = record { quotient = quotient ; rem = rem ; remSmall = inl x ; divAlg = divAlg } divisionAlgEquiv e decidableZero a b b!=0 | inr a!=0 | record { quotient = quotient ; rem = rem ; remSmall = inr (rem!=0 , pr) ; divAlg = divAlg } = record { quotient = quotient ; rem = rem ; remSmall = inr (identityOfIndiscernablesLeft _<N_ (identityOfIndiscernablesRight _<N_ pr (equalityCommutative normIs')) (equalityCommutative normIs)) ; divAlg = divAlg } where normIs : normEquiv e decidableZero rem ≡ EuclideanDomain.norm e rem!=0 normIs with decidableZero rem normIs | inl rem=0 = exFalso (rem!=0 rem=0) normIs | inr rem!=0' = EuclideanDomain.normWellDefined e rem!=0' rem!=0 normIs' : normEquiv e decidableZero b ≡ EuclideanDomain.norm e b!=0 normIs' with decidableZero b normIs' | inl b=0 = exFalso (b!=0 b=0) normIs' | inr b!=0' = EuclideanDomain.normWellDefined e b!=0' b!=0 normWellDefined : (e : EuclideanDomain) (decidableZero : (a : A) → (a ∼ 0R) || ((a ∼ 0R) → False)) {a b : A} (a=b : a ∼ b) → normEquiv e decidableZero a ≡ normEquiv e decidableZero b normWellDefined e decidableZero {a} {b} a=b with decidableZero a normWellDefined e decidableZero {a} {b} a=b | inl a=0 with decidableZero b normWellDefined e decidableZero {a} {b} a=b | inl a=0 | inl b=0 = refl normWellDefined e decidableZero {a} {b} a=b | inl a=0 | inr b!=0 = exFalso (b!=0 (transitive (symmetric a=b) a=0)) normWellDefined e decidableZero {a} {b} a=b | inr a!=0 with decidableZero b normWellDefined e decidableZero {a} {b} a=b | inr a!=0 | inl b=0 = exFalso (a!=0 (transitive a=b b=0)) normWellDefined e decidableZero {a} {b} a=b | inr a!=0 | inr b!=0 = EuclideanDomain.normWellDefined' e a=b a!=0 b!=0 eucDomsEquiv : (decidableZero : (a : A) → (a ∼ 0R) || ((a ∼ 0R) → False)) → EuclideanDomain → EuclideanDomain' eucDomsEquiv decidableZero e = record { isIntegralDomain = EuclideanDomain.isIntegralDomain e ; norm = normEquiv e decidableZero ; normSize = normSizeEquiv e decidableZero ; divisionAlg = divisionAlgEquiv e decidableZero ; normWellDefined = normWellDefined e decidableZero }
{ "alphanum_fraction": 0.663292488, "avg_line_length": 65.2869565217, "ext": "agda", "hexsha": "6a15b3b16e98783312c3632cb25ff2e994898414", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/EuclideanDomains/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/EuclideanDomains/Definition.agda", "max_line_length": 361, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/EuclideanDomains/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 2772, "size": 7508 }
module Logic.Classical.Propositional where open import Boolean open import Data open import Functional import Lvl -- Propositional logic. Working with propositions and their truth (whether they are true or false). module ProofSystems {ℓ₁} {ℓ₂} {Proposition : Set(ℓ₁)} {Formula : Set(ℓ₁) → Set(ℓ₂)} (symbols : Syntax.Symbols Proposition Formula) where open Syntax.Symbols(symbols) module TruthTables where -- The "proofs" that results by these postulates are very much alike the classical notation of natural deduction proofs in written as trees. -- A function that has the type (Node(A) → Node(B)) is a proof of (A ⊢ B) (A is the assumption, B is the single conclusion) -- A function that has the type (Node(A₁) → Node(A₂) → Node(A₃) → .. → Node(B)) is a proof of ({A₁,A₂,A₃,..} ⊢ B) (Aᵢ is the assumptions, B is the single result) -- A function's function body is the "tree proof" -- • The inner most (deepest) expression is at the top of a normal tree -- • The outer most (shallow) expression is at the bottom of a normal tree that should result in a construction of the conclusion -- One difference is that one cannot introduce assumptions however one wants. There are however rules that allows one to to this by using a function, and can be written as a lambda abstraction if one want it to look similar to the tree proofs. module NaturalDeduction where -- Intro rules are like constructors of formulas -- Elimination rules are like deconstructors of formulas record Rules : Set(Lvl.𝐒(ℓ₁ Lvl.⊔ ℓ₂)) where field {Node} : Formula(Proposition) → Set(ℓ₁ Lvl.⊔ ℓ₂) field [⊤]-intro : Node(⊤) [⊥]-intro : ∀{φ : Formula(Proposition)} → Node(φ) → Node(¬ φ) → Node(⊥) [¬]-intro : ∀{φ : Formula(Proposition)} → (Node(φ) → Node(⊥)) → Node(¬ φ) [¬]-elim : ∀{φ : Formula(Proposition)} → (Node(¬ φ) → Node(⊥)) → Node(φ) [∧]-intro : ∀{φ₁ φ₂ : Formula(Proposition)} → Node(φ₁) → Node(φ₂) → Node(φ₁ ∧ φ₂) [∧]-elimₗ : ∀{φ₁ φ₂ : Formula(Proposition)} → Node(φ₁ ∧ φ₂) → Node(φ₁) [∧]-elimᵣ : ∀{φ₁ φ₂ : Formula(Proposition)} → Node(φ₁ ∧ φ₂) → Node(φ₂) [∨]-introₗ : ∀{φ₁ φ₂ : Formula(Proposition)} → Node(φ₁) → Node(φ₁ ∨ φ₂) [∨]-introᵣ : ∀{φ₁ φ₂ : Formula(Proposition)} → Node(φ₂) → Node(φ₁ ∨ φ₂) [∨]-elim : ∀{φ₁ φ₂ φ₃ : Formula(Proposition)} → (Node(φ₁) → Node(φ₃)) → (Node(φ₂) → Node(φ₃)) → Node(φ₁ ∨ φ₂) → Node(φ₃) [⇒]-intro : ∀{φ₁ φ₂ : Formula(Proposition)} → (Node(φ₁) → Node(φ₂)) → Node(φ₁ ⇒ φ₂) [⇒]-elim : ∀{φ₁ φ₂ : Formula(Proposition)} → Node(φ₁ ⇒ φ₂) → Node(φ₁) → Node(φ₂) [⇐]-intro : ∀{φ₁ φ₂ : Formula(Proposition)} → (Node(φ₂) → Node(φ₁)) → Node(φ₁ ⇐ φ₂) [⇐]-elim : ∀{φ₁ φ₂ : Formula(Proposition)} → Node(φ₁ ⇐ φ₂) → Node(φ₂) → Node(φ₁) [⇔]-intro : ∀{φ₁ φ₂ : Formula(Proposition)} → (Node(φ₂) → Node(φ₁)) → (Node(φ₁) → Node(φ₂)) → Node(φ₁ ⇔ φ₂) [⇔]-elimₗ : ∀{φ₁ φ₂ : Formula(Proposition)} → Node(φ₁ ⇔ φ₂) → Node(φ₂) → Node(φ₁) [⇔]-elimᵣ : ∀{φ₁ φ₂ : Formula(Proposition)} → Node(φ₁ ⇔ φ₂) → Node(φ₁) → Node(φ₂) -- Double negated proposition is positive [¬¬]-elim : ∀{φ : Formula(Proposition)} → Node(¬ (¬ φ)) → Node(φ) [¬¬]-elim nna = [¬]-elim(na ↦ [⊥]-intro na nna) [⊥]-elim : ∀{φ : Formula(Proposition)} → Node(⊥) → Node(φ) [⊥]-elim bottom = [¬]-elim(_ ↦ bottom) module Meta(rules : Rules) (meta-symbols : Syntax.Symbols (Set(ℓ₁ Lvl.⊔ ℓ₂)) id) where open import Data.List open Rules(rules) open Syntax.Symbols(meta-symbols) renaming ( •_ to ◦_ ; ⊤ to ⊤ₘ ; ⊥ to ⊥ₘ ; ¬_ to ¬ₘ_ ; _∧_ to _∧ₘ_ ; _∨_ to _∨ₘ_ ; _⇒_ to _⇒ₘ_ ) module Theorems where open import Data.List.Proofs{ℓ₁}{ℓ₂} import List.Theorems open Data.List.Relation.Membership open Data.List.Relation.Membership.Relators open import Relator.Equals{ℓ₁}{ℓ₂} open import Relator.Equals.Proofs{ℓ₁}{ℓ₂} -- [⊢]-subset : (Γ₁ ⊆ Γ₂) → (Γ₁ ⊢ φ) → (Γ₂ ⊢ φ) -- [⊢]-subset proof = -- [⊢]-subset : ∀{T}{L₁ L₂ : List(Stmt)} → (L₁ ⊆ L₂) → ∀{X} → (f(L₁) → X) → (f(L₂) → X) [⊢]-id : ∀{φ} → ([ φ ] ⊢ φ) [⊢]-id = id -- [⊢]-lhs-commutativity : ∀{Γ₁ Γ₂}{φ} → ((Γ₁ ++ Γ₂) ⊢ φ) → ((Γ₂ ++ Γ₁) ⊢ φ) -- [⊢]-lhs-commutativity = id -- [⊢]-test : ∀{φ₁ φ₂ φ₃} → ([ φ₁ ⊰ φ₂ ⊰ φ₃ ] ⊢ φ₁) → (Node(φ₁) ⨯ (Node(φ₂) ⨯ Node(φ₃)) → Node(φ₁)) -- [⊢]-test = id [⊢]-weakening : ∀{Γ}{φ₁} → (Γ ⊢ φ₁) → ∀{φ₂} → ((φ₂ ⊰ Γ) ⊢ φ₁) [⊢]-weakening {∅} (⊢φ₁) (φ₂) = (⊢φ₁) [⊢]-weakening {_ ⊰ _} (Γ⊢φ₁) (φ₂ , Γ) = (Γ⊢φ₁) (Γ) -- [⊢]-weakening₂ : ∀{Γ₁}{φ₁} → (Γ₁ ⊢ φ₁) → ∀{Γ₂} → ((Γ₁ ++ Γ₂) ⊢ φ₁) -- [⊢]-weakening₂ {Γ₁}{φ₁} (Γ⊢φ₁) {∅} = [≡]-elimᵣ {_}{_}{_} [++]-identityₗ {expr ↦ (expr ⊢ φ₁)} Γ⊢φ₁ -- [⊢]-weakening₂ {Γ₁}{φ₁} (Γ₁⊢φ₁) {φ₂ ⊰ Γ₂} = [⊢]-weakening₂ {Γ₁}{φ₁} ([⊢]-weakening{Γ₁}{φ₁} (Γ₁⊢φ₁) {φ₂}) {Γ₂} [⊢]-compose : ∀{Γ}{φ₁ φ₂} → (Γ ⊢ φ₁) → ([ φ₁ ] ⊢ φ₂) → (Γ ⊢ φ₂) [⊢]-compose {∅} (φ₁) (φ₁⊢φ₂) = (φ₁⊢φ₂) (φ₁) [⊢]-compose {_ ⊰ _} (Γ⊢φ₁) (φ₁⊢φ₂) (Γ) = (φ₁⊢φ₂) ((Γ⊢φ₁) (Γ)) [⊢]-compose₂ : ∀{Γ}{φ₁ φ₂} → (Γ ⊢ φ₁) → ((φ₁ ⊰ Γ) ⊢ φ₂) → (Γ ⊢ φ₂) [⊢]-compose₂ {∅} (φ₁) (φ₁⊢φ₂) = (φ₁⊢φ₂)(φ₁) [⊢]-compose₂ {_ ⊰ _} (Γ⊢φ₁) (φ₁Γ⊢φ₂) (Γ) = (φ₁Γ⊢φ₂) ((Γ⊢φ₁) (Γ) , (Γ)) -- [⊢]-test : ∀{φ₁ φ₂ γ₁ γ₂} → ([ γ₁ ⊰ γ₂ ] ⊢ φ₁) → ([ φ₁ ⊰ γ₁ ⊰ γ₂ ] ⊢ φ₂) → ([ γ₁ ⊰ γ₂ ] ⊢ φ₂) -- [⊢]-test (Γ⊢φ₁) (φ₁Γ⊢φ₂) (Γ) = (φ₁Γ⊢φ₂) ((Γ⊢φ₁) (Γ) , (Γ)) -- [⊢]-compose₃ : ∀{Γ₁ Γ₂}{φ₁ φ₂} → (Γ₁ ⊢ φ₁) → ((φ₁ ⊰ Γ₂) ⊢ φ₂) → ((Γ₁ ++ Γ₂) ⊢ φ₂) -- [⊢]-compose₃ {∅} {∅} (φ₁) (φ₁⊢φ₂) = (φ₁⊢φ₂) (φ₁) -- [⊢]-compose₃ {_ ⊰ _}{∅} = [⊢]-compose -- [⊢]-compose₃ {∅}{∅} (φ₁) (φ₁⊢φ₂) = (φ₁⊢φ₂) (φ₁) -- [⊢]-compose₃ {Γ}{∅} = [≡]-elimᵣ [++]-identityₗ [⊢]-compose{Γ} -- [⊢]-compose₃ {∅}{Γ} = [⊢]-compose₂{Γ} -- [⊢]-compose₃ {_ ⊰ _}{_ ⊰ _} = [⊢]-compose₂ -- olt-9-17 : ∀{Γ}{φ} → (Γ ⊢ φ) → ((φ ⊰ Γ) ⊢ ⊥) → (inconsistent Γ) -- olt-9-17 Γ⊢φ Γφ⊢⊥ = (Γ ↦ [⊥]-intro (Γ⊢φ Γ) ([⊥]-elim(Γφ⊢⊥ Γ))) module Theorems(rules : Rules) where open Rules(rules) -- Ensures that a certain proof is a certain proposition -- (Like type ascription, ensures that a certain expression has a certain type) -- Example: -- (A :with: a) where a : Node(A) -- ((A ∧ B) :with: [∧]-intro a b) where a : Node(A), b : Node(B) _:with:_ : ∀(φ : Formula(Proposition)) → Node(φ) → Node(φ) _:with:_ _ x = x infixl 100 _:with:_ -- The ability to derive anything from a contradiction ex-falso-quodlibet : ∀{A : Formula(Proposition)} → Node(⊥) → Node(A) ex-falso-quodlibet = [⊥]-elim [∧]-symmetry : ∀{A B : Formula(Proposition)} → Node(A ∧ B) → Node(B ∧ A) [∧]-symmetry {A} {B} A∧B = ((B ∧ A) :with: [∧]-intro (B :with: [∧]-elimᵣ(A∧B)) (A :with: [∧]-elimₗ(A∧B)) ) [∨]-symmetry : ∀{A B : Formula(Proposition)} → Node(A ∨ B) → Node(B ∨ A) [∨]-symmetry {A} {B} A∨B = ((B ∨ A) :with: [∨]-elim [∨]-introᵣ [∨]-introₗ A∨B ) contrapositive : ∀{A B : Formula(Proposition)} → Node(A ⇒ B) → Node((¬ B) ⇒ (¬ A)) contrapositive {A} {B} A→B = ((¬ B) ⇒ (¬ A)) :with: [⇒]-intro(nb ↦ (¬ A) :with: [¬]-intro(a ↦ ⊥ :with: [⊥]-intro (B :with: [⇒]-elim (A→B) a) ((¬ B) :with: nb) ) ) [⇒]-syllogism : ∀{A B C : Formula(Proposition)} → Node(A ⇒ B) → Node(B ⇒ C) → Node(A ⇒ C) [⇒]-syllogism {A} {B} {C} A→B B→C = ([⇒]-intro(a ↦ ([⇒]-elim B→C ([⇒]-elim A→B a) ) )) [∨]-syllogism : ∀{A B : Formula(Proposition)} → Node(A ∨ B) → Node((¬ A) ⇒ B) [∨]-syllogism {A} {B} A∨B = ([∨]-elim (a ↦ ((¬ A) ⇒ B) :with: [⇒]-syllogism (((¬ A) ⇒ (¬ (¬ B))) :with: contrapositive (((¬ B) ⇒ A) :with: [⇒]-intro(_ ↦ a)) ) (((¬ (¬ B)) ⇒ B) :with: [⇒]-intro [¬¬]-elim) ) (b ↦ ((¬ A) ⇒ B) :with: [⇒]-intro(_ ↦ b)) A∨B ) -- Currying [∧]→[⇒]-in-assumption : {X Y Z : Formula(Proposition)} → Node((X ∧ Y) ⇒ Z) → Node(X ⇒ (Y ⇒ Z)) [∧]→[⇒]-in-assumption x∧y→z = ([⇒]-intro(x ↦ ([⇒]-intro(y ↦ ([⇒]-elim (x∧y→z) ([∧]-intro x y) ) )) )) -- Uncurrying [∧]←[⇒]-in-assumption : {X Y Z : Formula(Proposition)} → Node(X ⇒ (Y ⇒ Z)) → Node((X ∧ Y) ⇒ Z) [∧]←[⇒]-in-assumption x→y→z = ([⇒]-intro(x∧y ↦ ([⇒]-elim ([⇒]-elim (x→y→z) ([∧]-elimₗ x∧y) ) ([∧]-elimᵣ x∧y) ) )) -- It is either that a proposition is true or its negation is true. -- A proposition is either true or false. -- There is no other truth values than true and false. excluded-middle : ∀{A : Formula(Proposition)} → Node(A ∨ (¬ A)) excluded-middle {A} = ([¬]-elim(¬[a∨¬a] ↦ (⊥ :with: [⊥]-intro ((A ∨ (¬ A)) :with: [∨]-introᵣ ((¬ A) :with: [¬]-intro(a ↦ (⊥ :with: [⊥]-intro ((A ∨ (¬ A)) :with: [∨]-introₗ(a)) ((¬(A ∨ (¬ A))) :with: ¬[a∨¬a]) ) )) ) (¬[a∨¬a]) ) )) -- It cannot be that a proposition is true and its negation is true at the same time. -- A proposition cannot be true and false at the same time. non-contradiction : ∀{A : Formula(Proposition)} → Node(¬ (A ∧ (¬ A))) non-contradiction {A} = ([¬]-intro(a∧¬a ↦ (⊥ :with: [⊥]-intro (A :with: [∧]-elimₗ a∧¬a) ((¬ A) :with: [∧]-elimᵣ a∧¬a) ) )) -- TODO: Mix of excluded middle and non-contradiction: (A ⊕ (¬ A)) -- The standard proof technic: Assume the opposite of the conclusion and prove that it leads to a contradiction proof-by-contradiction : ∀{A B : Formula(Proposition)} → (Node(¬ A) → Node(B)) → (Node(¬ A) → Node(¬ B)) → Node(A) proof-by-contradiction {A} {B} ¬a→b ¬a→¬b = (A :with: [¬]-elim(¬a ↦ (⊥ :with: [⊥]-intro (B :with: ¬a→b(¬a)) ((¬ B) :with: ¬a→¬b(¬a)) ) )) peirce : ∀{A B : Formula(Proposition)} → Node((A ⇒ B) ⇒ A) → Node(A) peirce {A} {B} [A→B]→A = (A :with: [¬]-elim(¬a ↦ ([⊥]-intro (A :with: [⇒]-elim [A→B]→A ((A ⇒ B) :with: [⇒]-intro(a ↦ (B :with: [⊥]-elim ([⊥]-intro a ¬a ) ) )) ) ((¬ A) :with: ¬a) ) )) skip-[⇒]-assumption : ∀{A B : Formula(Proposition)} → (Node(A ⇒ B) → Node(A)) → Node(A) skip-[⇒]-assumption A⇒B→A = (peirce ([⇒]-intro (A⇒B→A) ) ) {- data □ : Formula(Proposition) → Set where Initial : ∀{φ} → □(φ) [∧]-intro : ∀{φ₁ φ₂} → □(φ₁) → □(φ₂) → □(φ₁ ∧ φ₂) [∧]-elimₗ : ∀{φ₁ φ₂} → □(φ₁ ∧ φ₂) → □(φ₁) [∧]-elimᵣ : ∀{φ₁ φ₂} → □(φ₁ ∧ φ₂) → □(φ₂) [∨]-introₗ : ∀{φ₁ φ₂} → □(φ₁) → □(φ₁ ∨ φ₂) [∨]-introᵣ : ∀{φ₁ φ₂} → □(φ₁) → □(φ₁ ∨ φ₂) [∨]-elim : ∀{φ₁ φ₂ φ₃} → (□(φ₁) → □(φ₃)) → (□(φ₂) → □(φ₃)) → □(φ₃) [⇒]-intro : ∀{φ₁ φ₂} → (□(φ₁) → □(φ₂)) → □(φ₁ ⇒ φ₂) [⇒]-elim : ∀{φ₁ φ₂} → □(φ₁ ⇒ φ₂) → □(φ₁) → □(φ₂) [¬]-intro : ∀{φ} → (□(φ) → □(⊥)) → □(¬ φ) [¬]-elim : ∀{φ} → (□(¬ φ) → □(⊥)) → □(φ) data □ : Formula(Proposition) → Set where Initial : ∀{φ} → □(φ) [∧]-intro : ∀{φ₁ φ₂} → □(φ₁) → □(φ₂) → □(φ₁ ∧ φ₂) [∧]-elimₗ : ∀{φ₁ φ₂} → □(φ₁ ∧ φ₂) → □(φ₁) [∧]-elimᵣ : ∀{φ₁ φ₂} → □(φ₁ ∧ φ₂) → □(φ₂) [∨]-introₗ : ∀{φ₁ φ₂} → □(φ₁) → □(φ₁ ∨ φ₂) [∨]-introᵣ : ∀{φ₁ φ₂} → □(φ₁) → □(φ₁ ∨ φ₂) [∨]-elim : ∀{φ₁ φ₂ φ₃} → (□(φ₁) → □(φ₃)) → (□(φ₂) → □(φ₃)) → □(φ₃) [⇒]-intro : ∀{φ₁ φ₂} → (□(φ₁) → □(φ₂)) → □(φ₁ ⇒ φ₂) [⇒]-elim : ∀{φ₁ φ₂} → □(φ₁ ⇒ φ₂) → □(φ₁) → □(φ₂) [¬]-intro : ∀{φ} → (□(φ) → □(⊥)) → □(¬ φ) [¬¬]-elim : ∀{φ} → □(¬(¬ φ)) → □(φ) -}
{ "alphanum_fraction": 0.4427542034, "avg_line_length": 40.1607717042, "ext": "agda", "hexsha": "a22ee359b405fc97684cc7b8587cb3186ab7108f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Metalogic/OLD_Propositional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Metalogic/OLD_Propositional.agda", "max_line_length": 245, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Metalogic/OLD_Propositional.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 5567, "size": 12490 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Coprimality ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} -- Disabled to prevent warnings from deprecated names {-# OPTIONS --warn=noUserWarning #-} module Data.Nat.Coprimality where open import Data.Empty open import Data.Fin.Base using (toℕ; fromℕ<) open import Data.Fin.Properties using (toℕ-fromℕ<) open import Data.Nat.Base open import Data.Nat.Divisibility open import Data.Nat.GCD open import Data.Nat.GCD.Lemmas open import Data.Nat.Primality open import Data.Nat.Properties open import Data.Nat.DivMod open import Data.Product as Prod open import Function open import Level using (0ℓ) open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_; refl; cong; subst; module ≡-Reasoning) open import Relation.Nullary open import Relation.Nullary.Negation using (contradiction) open import Relation.Binary open ≤-Reasoning ------------------------------------------------------------------------ -- Definition -- -- Coprime m n is inhabited iff m and n are coprime (relatively -- prime), i.e. if their only common divisor is 1. Coprime : Rel ℕ 0ℓ Coprime m n = ∀ {i} → i ∣ m × i ∣ n → i ≡ 1 ------------------------------------------------------------------------ -- Relationship between GCD and coprimality coprime⇒GCD≡1 : ∀ {m n} → Coprime m n → GCD m n 1 coprime⇒GCD≡1 {m} {n} c = GCD.is (1∣ m , 1∣ n) (∣-reflexive ∘ c) GCD≡1⇒coprime : ∀ {m n} → GCD m n 1 → Coprime m n GCD≡1⇒coprime g cd with GCD.greatest g cd ... | divides q eq = m*n≡1⇒n≡1 q _ (P.sym eq) coprime⇒gcd≡1 : ∀ {m n} → Coprime m n → gcd m n ≡ 1 coprime⇒gcd≡1 coprime = GCD.unique (gcd-GCD _ _) (coprime⇒GCD≡1 coprime) gcd≡1⇒coprime : ∀ {m n} → gcd m n ≡ 1 → Coprime m n gcd≡1⇒coprime gcd≡1 = GCD≡1⇒coprime (subst (GCD _ _) gcd≡1 (gcd-GCD _ _)) coprime-/gcd : ∀ m n {gcd≢0} → Coprime ((m / gcd m n) {gcd≢0}) ((n / gcd m n) {gcd≢0}) coprime-/gcd m n {gcd≢0} = GCD≡1⇒coprime (GCD-/gcd m n {gcd≢0}) ------------------------------------------------------------------------ -- Relational properties of Coprime sym : Symmetric Coprime sym c = c ∘ swap private 0≢1 : 0 ≢ 1 0≢1 () 2+≢1 : ∀ {n} → suc (suc n) ≢ 1 2+≢1 () coprime? : Decidable Coprime coprime? i j with mkGCD i j ... | (0 , g) = no (0≢1 ∘ GCD.unique g ∘ coprime⇒GCD≡1) ... | (1 , g) = yes (GCD≡1⇒coprime g) ... | (suc (suc d) , g) = no (2+≢1 ∘ GCD.unique g ∘ coprime⇒GCD≡1) ------------------------------------------------------------------------ -- Other basic properties -- Everything is coprime to 1. 1-coprimeTo : ∀ m → Coprime 1 m 1-coprimeTo m = ∣1⇒≡1 ∘ proj₁ -- Nothing except for 1 is coprime to 0. 0-coprimeTo-m⇒m≡1 : ∀ {m} → Coprime 0 m → m ≡ 1 0-coprimeTo-m⇒m≡1 {m} c = c (m ∣0 , ∣-refl) -- If m and n are coprime, then n + m and n are also coprime. coprime-+ : ∀ {m n} → Coprime m n → Coprime (n + m) n coprime-+ c (d₁ , d₂) = c (∣m+n∣m⇒∣n d₁ d₂ , d₂) ------------------------------------------------------------------------ -- Relationship with Bezout's lemma -- If the "gcd" in Bézout's identity is non-zero, then the "other" -- divisors are coprime. Bézout-coprime : ∀ {i j d} → Bézout.Identity (suc d) (i * suc d) (j * suc d) → Coprime i j Bézout-coprime (Bézout.+- x y eq) (divides q₁ refl , divides q₂ refl) = lem₁₀ y q₂ x q₁ eq Bézout-coprime (Bézout.-+ x y eq) (divides q₁ refl , divides q₂ refl) = lem₁₀ x q₁ y q₂ eq -- Coprime numbers satisfy Bézout's identity. coprime-Bézout : ∀ {i j} → Coprime i j → Bézout.Identity 1 i j coprime-Bézout = Bézout.identity ∘ coprime⇒GCD≡1 -- If i divides jk and is coprime to j, then it divides k. coprime-divisor : ∀ {k i j} → Coprime i j → i ∣ j * k → i ∣ k coprime-divisor {k} c (divides q eq′) with coprime-Bézout c ... | Bézout.+- x y eq = divides (x * k ∸ y * q) (lem₈ x y eq eq′) ... | Bézout.-+ x y eq = divides (y * q ∸ x * k) (lem₉ x y eq eq′) -- If d is a common divisor of mk and nk, and m and n are coprime, -- then d divides k. coprime-factors : ∀ {d m n k} → Coprime m n → d ∣ m * k × d ∣ n * k → d ∣ k coprime-factors c (divides q₁ eq₁ , divides q₂ eq₂) with coprime-Bézout c ... | Bézout.+- x y eq = divides (x * q₁ ∸ y * q₂) (lem₁₁ x y eq eq₁ eq₂) ... | Bézout.-+ x y eq = divides (y * q₂ ∸ x * q₁) (lem₁₁ y x eq eq₂ eq₁) ------------------------------------------------------------------------ -- Primality implies coprimality. prime⇒coprime : ∀ m → Prime m → ∀ n → 0 < n → n < m → Coprime m n prime⇒coprime (suc (suc m)) _ _ _ _ {1} _ = refl prime⇒coprime (suc (suc m)) p _ _ _ {0} (divides q 2+m≡q*0 , _) = ⊥-elim $ m+1+n≢m 0 (begin-equality 2 + m ≡⟨ 2+m≡q*0 ⟩ q * 0 ≡⟨ *-zeroʳ q ⟩ 0 ∎) prime⇒coprime (suc (suc m)) p (suc n) _ 1+n<2+m {suc (suc i)} (2+i∣2+m , 2+i∣1+n) = ⊥-elim (p _ 2+i′∣2+m) where i<m : i < m i<m = +-cancelˡ-< 2 (begin-strict 2 + i ≤⟨ ∣⇒≤ 2+i∣1+n ⟩ 1 + n <⟨ 1+n<2+m ⟩ 2 + m ∎) 2+i′∣2+m : 2 + toℕ (fromℕ< i<m) ∣ 2 + m 2+i′∣2+m = subst (_∣ 2 + m) (P.sym (cong (2 +_) (toℕ-fromℕ< i<m))) 2+i∣2+m ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use GCD from `Data.Nat.GCD` as continued support for the -- proofs below is not guaranteed. -- Version 1.1. data GCD′ : ℕ → ℕ → ℕ → Set where gcd-* : ∀ {d} q₁ q₂ (c : Coprime q₁ q₂) → GCD′ (q₁ * d) (q₂ * d) d {-# WARNING_ON_USAGE GCD′ "Warning: GCD′ was deprecated in v1.1." #-} gcd-gcd′ : ∀ {d m n} → GCD m n d → GCD′ m n d gcd-gcd′ g with GCD.commonDivisor g gcd-gcd′ {zero} g | (divides q₁ refl , divides q₂ refl) with q₁ * 0 | *-comm 0 q₁ | q₂ * 0 | *-comm 0 q₂ ... | .0 | refl | .0 | refl = gcd-* 1 1 (1-coprimeTo 1) gcd-gcd′ {suc d} g | (divides q₁ refl , divides q₂ refl) = gcd-* q₁ q₂ (Bézout-coprime (Bézout.identity g)) {-# WARNING_ON_USAGE gcd-gcd′ "Warning: gcd-gcd′ was deprecated in v1.1." #-} gcd′-gcd : ∀ {m n d} → GCD′ m n d → GCD m n d gcd′-gcd (gcd-* q₁ q₂ c) = GCD.is (n∣m*n q₁ , n∣m*n q₂) (coprime-factors c) {-# WARNING_ON_USAGE gcd′-gcd "Warning: gcd′-gcd was deprecated in v1.1." #-} mkGCD′ : ∀ m n → ∃ λ d → GCD′ m n d mkGCD′ m n = Prod.map id gcd-gcd′ (mkGCD m n) {-# WARNING_ON_USAGE mkGCD′ "Warning: mkGCD′ was deprecated in v1.1." #-} -- Version 1.2 coprime-gcd = coprime⇒GCD≡1 {-# WARNING_ON_USAGE coprime-gcd "Warning: coprime-gcd was deprecated in v1.2. Please use coprime⇒GCD≡1 instead." #-} gcd-coprime = GCD≡1⇒coprime {-# WARNING_ON_USAGE gcd-coprime "Warning: gcd-coprime was deprecated in v1.2. Please use GCD≡1⇒coprime instead." #-}
{ "alphanum_fraction": 0.5375036625, "avg_line_length": 32.5047619048, "ext": "agda", "hexsha": "896b401c071e3ed525cc8a32dcd7131ffd197bf9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Nat/Coprimality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Nat/Coprimality.agda", "max_line_length": 75, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Nat/Coprimality.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 2707, "size": 6826 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.ImplShared.Base.Types open import LibraBFT.Abstract.Types.EpochConfig UID NodeId open import LibraBFT.Concrete.System open import LibraBFT.Concrete.System.Parameters open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Consensus.Types.EpochDep open import LibraBFT.ImplShared.Util.Crypto open import Optics.All open import Util.KVMap open import Util.Lemmas open import Util.PKCS open import Util.Prelude open import Yasm.Base open EpochConfig -- In this module, we define two "implementation obligations" -- (ImplObligationᵢ for i ∈ {1 , 2}), which are predicates over -- reachable states of a system defined by -- 'LibraBFT.Concrete.System.Parameters'. These two properties relate -- votes sent by the same sender, ensuring that if they are for the -- same epoch and round, then they vote for the same blockID; the -- first relates a vote output by the handler to a vote sent -- previously, and the second relates two votes both sent by the -- handler. -- -- We then prove that, if an implementation satisfies these two -- semantic obligations, along with a structural one about messages -- sent by honest peers in the implementation, then the implemenation -- satisfies the LibraBFT.Abstract.Properties.VotesOnce invariant. -- It is not actually necessary to provide an EpochConfig to define -- these implementation obligations, but it is needed below to state -- the goal of the proof (voo). In contrast, the PreferredRound rule -- requires and EpochConfig to state the obligations, because they -- are defined in terms of abstract Records, which are defined for an -- EpochConfig. We introduce the EpochConfig at the top of this -- module for consistency with the PreferredRound rule so that the -- order of parameters to invoke the respective proofs is consistent. module LibraBFT.Concrete.Properties.VotesOnce (iiah : SystemInitAndHandlers ℓ-RoundManager ConcSysParms) (𝓔 : EpochConfig) where open SystemTypeParameters ConcSysParms open SystemInitAndHandlers iiah open ParamsWithInitAndHandlers iiah open import LibraBFT.Concrete.Properties.Common iiah 𝓔 open import LibraBFT.ImplShared.Util.HashCollisions iiah open import Yasm.Yasm ℓ-RoundManager ℓ-VSFP ConcSysParms iiah PeerCanSignForPK PeerCanSignForPK-stable -- TODO-3: This may not be the best way to state the implementation obligation. Why not reduce -- this as much as possible before giving the obligation to the implementation? For example, this -- will still require the implementation to deal with hash collisons (v and v' could be different, -- but yield the same bytestring and therefore same signature). Also, avoid the need for the -- implementation to reason about messages sent by step-cheat, or give it something to make this -- case easy to eliminate. ImplObligation₂ : Set (ℓ+1 ℓ-RoundManager) ImplObligation₂ = ∀{pid s' outs pk}{pre : SystemState} → ReachableSystemState pre -- For any honest call to /handle/ or /init/, → (sps : StepPeerState pid (msgPool pre) (initialised pre) (peerStates pre pid) (s' , outs)) → ∀{v m v' m'} → Meta-Honest-PK pk -- For every vote v represented in a message output by the call → v ⊂Msg m → send m ∈ outs → (sig : WithVerSig pk v) → ¬ (∈BootstrapInfo bootstrapInfo (ver-signature sig)) → ¬ (MsgWithSig∈ pk (ver-signature sig) (msgPool pre)) → PeerCanSignForPK (StepPeer-post {pre = pre} (step-honest sps)) v pid pk -- And if there exists another v' that is also new and valid → v' ⊂Msg m' → send m' ∈ outs → (sig' : WithVerSig pk v') → ¬ (∈BootstrapInfo bootstrapInfo (ver-signature sig')) → ¬ (MsgWithSig∈ pk (ver-signature sig') (msgPool pre)) → PeerCanSignForPK (StepPeer-post {pre = pre} (step-honest sps)) v' pid pk -- If v and v' share the same epoch and round → v ^∙ vEpoch ≡ v' ^∙ vEpoch → v ^∙ vRound ≡ v' ^∙ vRound ---------------------------------------------------------- -- Then, an honest implemenation promises v and v' vote for the same blockId. → v ^∙ vProposedId ≡ v' ^∙ vProposedId -- Next, we prove that, given the necessary obligations, module Proof (sps-corr : StepPeerState-AllValidParts) (Impl-bsvc : ImplObl-bootstrapVotesConsistent) (Impl-bsvr : ImplObl-bootstrapVotesRound≡0) (Impl-nvr≢0 : ImplObl-NewVoteRound≢0) (Impl-∈BI? : (sig : Signature) → Dec (∈BootstrapInfo bootstrapInfo sig)) (Impl-IRO : IncreasingRoundObligation) (Impl-VO2 : ImplObligation₂) where -- Any reachable state satisfies the VO rule for any epoch in the system. module _ {st : SystemState}(r : ReachableSystemState st) where open Structural sps-corr -- Bring in intSystemState open PerEpoch 𝓔 open PerState st open PerReachableState r open ConcreteCommonProperties st r sps-corr Impl-bsvr Impl-nvr≢0 open WithEC open import LibraBFT.Concrete.Obligations.VotesOnce 𝓔 (ConcreteVoteEvidence 𝓔) as VO -- The VO proof is done by induction on the execution trace leading to 'st'. In -- Agda, this is 'r : RechableSystemState st' above. private -- From this point onwards, it might be easier to read this proof starting at 'voo' -- at the end of the file. Next, we provide an overview the proof. -- -- We wish to prove that, for any two votes v and v' cast by an honest α in the message -- pool of a state st, if v and v' have equal rounds and epochs, then they vote for the -- same block. -- -- The base case and the case for a new epoch in the system are trivial. For the base case -- we get to a contradiction because it's not possible to have any message in the msgpool. -- -- Regarding the PeerStep case. The induction hypothesis tells us that the property holds -- in the pre-state. Next, we reason about the post-state. We start by analyzing whether -- v and v' have been sent as outputs of the PeerStep under scrutiny or were already in -- the pool before. -- -- There are four possibilities: -- -- i) v and v' were aleady present in the msgPool before: use induction hypothesis. -- ii) v and v' are both in the output produced by the PeerStep under scrutiny. -- iii) v was present before, but v' is new. -- iv) v' was present before, but v is new. -- -- In order to obtain this four possiblities we invoke newMsg⊎msgSent4 lemma, which -- receives proof that some vote is in a message that is in the msgPool of the post state -- and returns evidence that either the vote is new or that some message with the same -- signature was sent before. -- -- Case (i) is trivial; cases (iii) and (iv) are symmetric and reduce to an implementation -- obligation (Impl-VO1) and case (ii) reduces to a different implementation obligation -- (Impl-VO2). VotesOnceProof : ∀ {pk round epoch blockId₁ blockId₂} {st : SystemState} → ReachableSystemState st → Meta-Honest-PK pk → (m₁ : VoteForRound∈ pk round epoch blockId₁ (msgPool st)) → (m₂ : VoteForRound∈ pk round epoch blockId₂ (msgPool st)) → blockId₁ ≡ blockId₂ VotesOnceProof step-0 _ m₁ = ⊥-elim (¬Any[] (msg∈pool m₁)) VotesOnceProof step@(step-s r theStep) pkH m₁ m₂ with msgRound≡ m₁ | msgEpoch≡ m₁ | msgBId≡ m₁ | msgRound≡ m₂ | msgEpoch≡ m₂ | msgBId≡ m₂ ...| refl | refl | refl | refl | refl | refl with Impl-∈BI? (_vSignature (msgVote m₁)) | Impl-∈BI? (_vSignature (msgVote m₂)) ...| yes init₁ | yes init₂ = Impl-bsvc (msgVote m₁) (msgVote m₂) init₁ init₂ ...| yes init₁ | no ¬init₂ = ⊥-elim (NewVoteRound≢0 step pkH m₂ ¬init₂ (Impl-bsvr (msgSigned m₁) init₁)) ...| no ¬init₁ | yes init₂ = ⊥-elim (NewVoteRound≢0 step pkH m₁ ¬init₁ (Impl-bsvr (msgSigned m₂) init₂)) ...| no ¬init₁ | no ¬init₂ with theStep ...| step-peer cheat@(step-cheat c) = let m₁sb4 = ¬cheatForgeNewSig r cheat unit pkH (msgSigned m₁) (msg⊆ m₁) (msg∈pool m₁) ¬init₁ m₂sb4 = ¬cheatForgeNewSig r cheat unit pkH (msgSigned m₂) (msg⊆ m₂) (msg∈pool m₂) ¬init₂ v₁sb4 = msgSentB4⇒VoteRound∈ (msgSigned m₁) m₁sb4 v₂sb4 = msgSentB4⇒VoteRound∈ (msgSigned m₂) m₂sb4 in VotesOnceProof r pkH (proj₁ v₁sb4) (proj₁ v₂sb4) ...| step-peer (step-honest stP) with ⊎-map₂ (msgSentB4⇒VoteRound∈ (msgSigned m₁)) (newMsg⊎msgSentB4 r stP pkH (msgSigned m₁) ¬init₁ (msg⊆ m₁) (msg∈pool m₁)) | ⊎-map₂ (msgSentB4⇒VoteRound∈ (msgSigned m₂)) (newMsg⊎msgSentB4 r stP pkH (msgSigned m₂) ¬init₂ (msg⊆ m₂) (msg∈pool m₂)) ...| inj₂ (v₁sb4 , refl) | inj₂ (v₂sb4 , refl) = VotesOnceProof r pkH v₁sb4 v₂sb4 ...| inj₁ (m₁∈outs , v₁pk , v₁New) | inj₁ (m₂∈outs , v₂pk , v₂New) = Impl-VO2 r stP pkH (msg⊆ m₁) m₁∈outs (msgSigned m₁) ¬init₁ v₁New v₁pk (msg⊆ m₂) m₂∈outs (msgSigned m₂) ¬init₂ v₂New v₂pk refl refl ...| inj₁ (m₁∈outs , v₁pk , v₁New) | inj₂ (v₂sb4 , refl) = let round≡ = trans (msgRound≡ v₂sb4) (msgRound≡ m₂) ¬bootstrapV₂ = ¬Bootstrap∧Round≡⇒¬Bootstrap step pkH m₂ ¬init₂ (msgSigned v₂sb4) round≡ epoch≡ = sym (msgEpoch≡ v₂sb4) in either (λ v₂<v₁ → ⊥-elim (<⇒≢ v₂<v₁ (msgRound≡ v₂sb4))) (λ v₁sb4 → VotesOnceProof r pkH v₁sb4 v₂sb4) (Impl-IRO r stP pkH (msg⊆ m₁) m₁∈outs (msgSigned m₁) ¬init₁ v₁New v₁pk (msg⊆ v₂sb4) (msg∈pool v₂sb4) (msgSigned v₂sb4) ¬bootstrapV₂ epoch≡) ...| inj₂ (v₁sb4 , refl) | inj₁ (m₂∈outs , v₂pk , v₂New) = let round≡ = trans (msgRound≡ v₁sb4) (msgRound≡ m₁) ¬bootstrapV₁ = ¬Bootstrap∧Round≡⇒¬Bootstrap step pkH m₁ ¬init₁ (msgSigned v₁sb4) round≡ in either (λ v₁<v₂ → ⊥-elim (<⇒≢ v₁<v₂ (msgRound≡ v₁sb4))) (λ v₂sb4 → VotesOnceProof r pkH v₁sb4 v₂sb4) (Impl-IRO r stP pkH (msg⊆ m₂) m₂∈outs (msgSigned m₂) ¬init₂ v₂New v₂pk (msg⊆ v₁sb4) (msg∈pool v₁sb4) (msgSigned v₁sb4) ¬bootstrapV₁ (sym (msgEpoch≡ v₁sb4))) voo : VO.Type intSystemState voo hpk refl sv refl sv' refl with vmsg≈v (vmFor sv) | vmsg≈v (vmFor sv') ...| refl | refl with vmsgEpoch (vmFor sv) | vmsgEpoch (vmFor sv') ...| refl | refl = let vfr = mkVoteForRound∈ (nm (vmFor sv)) (cv ((vmFor sv))) (cv∈nm (vmFor sv)) (vmSender sv) (nmSentByAuth sv) (vmsgSigned (vmFor sv)) (vmsgEpoch (vmFor sv)) refl refl vfr' = mkVoteForRound∈ (nm (vmFor sv')) (cv (vmFor sv')) (cv∈nm (vmFor sv')) (vmSender sv') (nmSentByAuth sv') (vmsgSigned (vmFor sv')) (vmsgEpoch (vmFor sv')) refl refl in VotesOnceProof r hpk vfr vfr'
{ "alphanum_fraction": 0.6610636784, "avg_line_length": 52.2976744186, "ext": "agda", "hexsha": "2551eb3001dfad95ea58b0b6b00662a3ecdd026c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Concrete/Properties/VotesOnce.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Concrete/Properties/VotesOnce.agda", "max_line_length": 128, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Concrete/Properties/VotesOnce.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3489, "size": 11244 }
open import Data.Product using ( _×_ ; _,_ ) open import Data.Sum using ( _⊎_ ) open import Relation.Unary using ( _∈_ ; _∉_ ) open import Web.Semantic.DL.FOL using ( Formula ; true ; false ; _∧_ ; _∈₁_ ; _∈₁_⇒_ ; _∈₂_ ; _∈₂_⇒_ ; _∼_ ; _∼_⇒_ ; ∀₁ ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox.Interp using ( Interp ; Δ ; _⊨_≈_ ; con ; rol ) open import Web.Semantic.Util using ( True ; False ) module Web.Semantic.DL.FOL.Model {Σ : Signature} where _⊨f_ : (I : Interp Σ) → Formula Σ (Δ I) → Set I ⊨f true = True I ⊨f false = False I ⊨f (F ∧ G) = (I ⊨f F) × (I ⊨f G) I ⊨f (x ∈₁ c) = x ∈ (con I c) I ⊨f (x ∈₁ c ⇒ F) = (x ∈ (con I c)) → (I ⊨f F) I ⊨f ((x , y) ∈₂ r) = (x , y) ∈ (rol I r) I ⊨f ((x , y) ∈₂ r ⇒ F) = ((x , y) ∈ (rol I r)) → (I ⊨f F) I ⊨f (x ∼ y) = I ⊨ x ≈ y I ⊨f (x ∼ y ⇒ F) = (I ⊨ x ≈ y) → (I ⊨f F) I ⊨f ∀₁ F = ∀ x → (I ⊨f F x)
{ "alphanum_fraction": 0.5337078652, "avg_line_length": 40.4545454545, "ext": "agda", "hexsha": "3df87eec09adbde9903af55126972876b6924daf", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z", "max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z", "max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-web-semantic", "max_forks_repo_path": "src/Web/Semantic/DL/FOL/Model.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-web-semantic", "max_issues_repo_path": "src/Web/Semantic/DL/FOL/Model.agda", "max_line_length": 122, "max_stars_count": 9, "max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-web-semantic", "max_stars_repo_path": "src/Web/Semantic/DL/FOL/Model.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z", "num_tokens": 435, "size": 890 }
data Cx (U : Set) : Set where ∅ : Cx U _,_ : Cx U → U → Cx U data _∈_ {U : Set} (A : U) : Cx U → Set where top : ∀ {Γ} → A ∈ (Γ , A) pop : ∀ {B Γ} → A ∈ Γ → A ∈ (Γ , B) infixr 3 _⇒_ data Ty : Set where ι : Ty _⇒_ : Ty → Ty → Ty □_ : Ty → Ty infix 1 _⊢_ data _⊢_ : Cx Ty → Ty → Set where var : ∀ {Γ A} → A ∈ Γ → Γ ⊢ A app : ∀ {Γ A B} → Γ ⊢ A ⇒ B → Γ ⊢ A → Γ ⊢ B nec : ∀ {A} → ∅ ⊢ A → ∅ ⊢ □ A kcom : ∀ {Γ A B} → Γ ⊢ A ⇒ B ⇒ A scom : ∀ {Γ A B C} → Γ ⊢ (A ⇒ B ⇒ C) ⇒ (A ⇒ B) ⇒ A ⇒ C dist : ∀ {Γ A B} → Γ ⊢ □ (A ⇒ B) ⇒ □ A ⇒ □ B down : ∀ {Γ A} → Γ ⊢ □ A ⇒ A up : ∀ {Γ A} → Γ ⊢ □ A ⇒ □ □ A icom : ∀ {A Γ} → Γ ⊢ A ⇒ A icom {A} = app (app (scom {A = A} {B = A ⇒ A} {C = A}) kcom) kcom ded : ∀ {A B Γ} → Γ , A ⊢ B → Γ ⊢ A ⇒ B ded (var top) = icom ded (var (pop i)) = app kcom (var i) ded (app t u) = app (app scom (ded t)) (ded u) ded (nec t) = ? ded kcom = app kcom kcom ded scom = app kcom scom ded dist = app kcom dist ded down = app kcom down ded up = app kcom up
{ "alphanum_fraction": 0.3889908257, "avg_line_length": 27.25, "ext": "agda", "hexsha": "c3c1825ed6ea54e78f171618a64675bae54913bc", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2079.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2079.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2079.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 551, "size": 1090 }
module Numeral.Integer.Relation.Divisibility where open import Functional open import Logic.Propositional import Numeral.Natural.Relation.Divisibility as ℕ open import Numeral.Integer open import Type _∣_ = (ℕ._∣_) on₂ absₙ _∤_ = (¬_) ∘₂ (_∣_)
{ "alphanum_fraction": 0.764940239, "avg_line_length": 22.8181818182, "ext": "agda", "hexsha": "3046b3c89b9f5a35e41fe8288a32800f4cd2c5dc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Integer/Relation/Divisibility.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Integer/Relation/Divisibility.agda", "max_line_length": 54, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Integer/Relation/Divisibility.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 79, "size": 251 }
module Oscar.Data.Product where open import Data.Product public using (Σ; _,_; proj₁; proj₂; ∃; ∃₂; _×_)
{ "alphanum_fraction": 0.7009345794, "avg_line_length": 21.4, "ext": "agda", "hexsha": "81b6f6a1b431aa265f9b255c4aea92af5f92252c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Data/Product.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Data/Product.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Data/Product.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 35, "size": 107 }
module BasicIPC.Metatheory.Gentzen-TarskiGluedClosedImplicit where open import BasicIPC.Syntax.Gentzen public open import BasicIPC.Semantics.TarskiGluedClosedImplicit public open ImplicitSyntax (∅ ⊢_) public -- Completeness with respect to a particular model. module _ {{_ : Model}} where reify : ∀ {A} → ⊩ A → ∅ ⊢ A reify {α P} s = syn s reify {A ▻ B} s = syn s reify {A ∧ B} s = pair (reify (π₁ s)) (reify (π₂ s)) reify {⊤} s = unit reify⋆ : ∀ {Ξ} → ⊩⋆ Ξ → ∅ ⊢⋆ Ξ reify⋆ {∅} ∙ = ∙ reify⋆ {Ξ , A} (ts , t) = reify⋆ ts , reify t -- Soundness with respect to all models, or evaluation. eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A eval (var i) γ = lookup i γ eval (lam t) γ = multicut (reify⋆ γ) (lam t) ⅋ λ a → eval t (γ , a) eval (app t u) γ = eval t γ ⟪$⟫ eval u γ eval (pair t u) γ = eval t γ , eval u γ eval (fst t) γ = π₁ (eval t γ) eval (snd t) γ = π₂ (eval t γ) eval unit γ = ∙ -- TODO: Correctness of evaluation with respect to conversion. -- The canonical model. private instance canon : Model canon = record { ⊩ᵅ_ = λ P → ∅ ⊢ α P } -- Completeness with respect to all models, or quotation, for closed terms only. quot₀ : ∀ {A} → ∅ ⊨ A → ∅ ⊢ A quot₀ t = reify (t ∙) -- Normalisation by evaluation, for closed terms only. norm₀ : ∀ {A} → ∅ ⊢ A → ∅ ⊢ A norm₀ = quot₀ ∘ eval -- TODO: Correctness of normalisation with respect to conversion.
{ "alphanum_fraction": 0.5862068966, "avg_line_length": 23.3870967742, "ext": "agda", "hexsha": "77aaf9099cce31f6147e1b1d630eba7f27929e0c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "BasicIPC/Metatheory/Gentzen-TarskiGluedClosedImplicit.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "BasicIPC/Metatheory/Gentzen-TarskiGluedClosedImplicit.agda", "max_line_length": 80, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "BasicIPC/Metatheory/Gentzen-TarskiGluedClosedImplicit.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 546, "size": 1450 }
------------------------------------------------------------------------ -- Operations on and properties of decidable relations ------------------------------------------------------------------------ module Relation.Nullary.Decidable where open import Data.Empty open import Data.Function open import Data.Bool open import Data.Product hiding (map) open import Relation.Nullary open import Relation.Binary.PropositionalEquality decToBool : ∀ {P} → Dec P → Bool decToBool (yes _) = true decToBool (no _) = false True : ∀ {P} → Dec P → Set True Q = T (decToBool Q) False : ∀ {P} → Dec P → Set False Q = T (not (decToBool Q)) witnessToTruth : ∀ {P} {Q : Dec P} → True Q → P witnessToTruth {Q = yes p} _ = p witnessToTruth {Q = no _} () map : ∀ {P Q} → P ⇔ Q → Dec P → Dec Q map eq (yes p) = yes (proj₁ eq p) map eq (no ¬p) = no (¬p ∘ proj₂ eq) fromYes : ∀ {P} → P → Dec P → P fromYes _ (yes p) = p fromYes p (no ¬p) = ⊥-elim (¬p p) fromYes-map-commute : ∀ {P Q p q} (eq : P ⇔ Q) (d : Dec P) → fromYes q (map eq d) ≡ proj₁ eq (fromYes p d) fromYes-map-commute _ (yes p) = refl fromYes-map-commute {p = p} _ (no ¬p) = ⊥-elim (¬p p)
{ "alphanum_fraction": 0.5460069444, "avg_line_length": 28.0975609756, "ext": "agda", "hexsha": "67bdbb7341d11a1fe122ceeb9b587ce4cf1691e1", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Relation/Nullary/Decidable.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Relation/Nullary/Decidable.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Relation/Nullary/Decidable.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 371, "size": 1152 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Induction.WellFounded where open import Cubical.Foundations.Everything Rel : ∀{ℓ} → Type ℓ → ∀ ℓ' → Type _ Rel A ℓ = A → A → Type ℓ module _ {ℓ ℓ'} {A : Type ℓ} (_<_ : A → A → Type ℓ') where WFRec : ∀{ℓ''} → (A → Type ℓ'') → A → Type _ WFRec P x = ∀ y → y < x → P y data Acc (x : A) : Type (ℓ-max ℓ ℓ') where acc : WFRec Acc x → Acc x WellFounded : Type _ WellFounded = ∀ x → Acc x module _ {ℓ ℓ'} {A : Type ℓ} {_<_ : A → A → Type ℓ'} where isPropAcc : ∀ x → isProp (Acc _<_ x) isPropAcc x (acc p) (acc q) = λ i → acc (λ y y<x → isPropAcc y (p y y<x) (q y y<x) i) access : ∀{x} → Acc _<_ x → WFRec _<_ (Acc _<_) x access (acc r) = r private wfi : ∀{ℓ''} {P : A → Type ℓ''} → ∀ x → (wf : Acc _<_ x) → (∀ x → (∀ y → y < x → P y) → P x) → P x wfi x (acc p) e = e x λ y y<x → wfi y (p y y<x) e module WFI (wf : WellFounded _<_) where module _ {ℓ''} {P : A → Type ℓ''} (e : ∀ x → (∀ y → y < x → P y) → P x) where private wfi-compute : ∀ x ax → wfi x ax e ≡ e x (λ y _ → wfi y (wf y) e) wfi-compute x (acc p) = λ i → e x (λ y y<x → wfi y (isPropAcc y (p y y<x) (wf y) i) e) induction : ∀ x → P x induction x = wfi x (wf x) e induction-compute : ∀ x → induction x ≡ (e x λ y _ → induction y) induction-compute x = wfi-compute x (wf x)
{ "alphanum_fraction": 0.4944055944, "avg_line_length": 29.7916666667, "ext": "agda", "hexsha": "a442f007cf5eb7d8f5facd7f2b508d3488f590d0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Induction/WellFounded.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Induction/WellFounded.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Induction/WellFounded.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 590, "size": 1430 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} open import Cubical.Core.Everything open import Cubical.Algebra.Monoid module Cubical.Algebra.Monoid.Construct.Opposite {ℓ} (M : Monoid ℓ) where open import Cubical.Foundations.Prelude open import Cubical.Data.Prod using (_,_) open Monoid M import Cubical.Algebra.Semigroup.Construct.Opposite semigroup as OpSemigroup open OpSemigroup public hiding (Op-isSemigroup; Sᵒᵖ) •ᵒᵖ-identityˡ : LeftIdentity ε _•ᵒᵖ_ •ᵒᵖ-identityˡ _ = identityʳ _ •ᵒᵖ-identityʳ : RightIdentity ε _•ᵒᵖ_ •ᵒᵖ-identityʳ _ = identityˡ _ •ᵒᵖ-identity : Identity ε _•ᵒᵖ_ •ᵒᵖ-identity = •ᵒᵖ-identityˡ , •ᵒᵖ-identityʳ Op-isMonoid : IsMonoid Carrier _•ᵒᵖ_ ε Op-isMonoid = record { isSemigroup = OpSemigroup.Op-isSemigroup ; identity = •ᵒᵖ-identity } Mᵒᵖ : Monoid ℓ Mᵒᵖ = record { isMonoid = Op-isMonoid }
{ "alphanum_fraction": 0.75, "avg_line_length": 24.7058823529, "ext": "agda", "hexsha": "9e237d62d498a014f226a2e59b365c9cf9859d3b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Algebra/Monoid/Construct/Opposite.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Algebra/Monoid/Construct/Opposite.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Algebra/Monoid/Construct/Opposite.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 351, "size": 840 }
module Structure.Operator.Vector.LinearMap.Equiv where open import Functional open import Function.Proofs open import Logic.Predicate import Lvl open import Structure.Category open import Structure.Function open import Structure.Function.Multi open import Structure.Operator.Properties open import Structure.Operator.Vector.LinearMap open import Structure.Operator.Vector.LinearMaps open import Structure.Operator.Vector.Proofs open import Structure.Operator.Vector open import Structure.Relator.Properties open import Structure.Setoid open import Syntax.Transitivity open import Type private variable ℓ ℓᵥ ℓᵥₗ ℓᵥᵣ ℓᵥ₁ ℓᵥ₂ ℓᵥ₃ ℓₛ ℓᵥₑ ℓᵥₑₗ ℓᵥₑᵣ ℓᵥₑ₁ ℓᵥₑ₂ ℓᵥₑ₃ ℓₛₑ : Lvl.Level private variable V Vₗ Vᵣ V₁ V₂ V₃ S : Type{ℓ} private variable _+ᵥ_ _+ᵥₗ_ _+ᵥᵣ_ _+ᵥ₁_ _+ᵥ₂_ _+ᵥ₃_ : V → V → V private variable _⋅ₛᵥ_ _⋅ₛᵥₗ_ _⋅ₛᵥᵣ_ _⋅ₛᵥ₁_ _⋅ₛᵥ₂_ _⋅ₛᵥ₃_ : S → V → V private variable _+ₛ_ _⋅ₛ_ : S → S → S private variable f g : Vₗ → Vᵣ open VectorSpace ⦃ … ⦄ module _ ⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄ where private variable A B : VectorSpaceVObject {ℓᵥ}{_}{ℓᵥₑ}{ℓₛₑ} ⦃ equiv-S ⦄ (_+ₛ_)(_⋅ₛ_) [_→ˡⁱⁿᵉᵃʳᵐᵃᵖ_]-equiv : Equiv(A →ˡⁱⁿᵉᵃʳᵐᵃᵖ B) Equiv._≡_ [_→ˡⁱⁿᵉᵃʳᵐᵃᵖ_]-equiv ([∃]-intro f) ([∃]-intro g) = {!!} Equiv.equivalence [_→ˡⁱⁿᵉᵃʳᵐᵃᵖ_]-equiv = {!!}
{ "alphanum_fraction": 0.7505995204, "avg_line_length": 35.7428571429, "ext": "agda", "hexsha": "1381f7b8dcc22b2247e7adfe82169e2dd7df4754", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Operator/Vector/Equiv.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Operator/Vector/Equiv.agda", "max_line_length": 89, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Operator/Vector/Equiv.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 643, "size": 1251 }
data D (X : Set) : Set data D (X : Set) where -- Should complain about repeated type signature for X
{ "alphanum_fraction": 0.6730769231, "avg_line_length": 14.8571428571, "ext": "agda", "hexsha": "c61eae3f5236cc970e1f0e97cee4907b25d3768f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1886.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1886.agda", "max_line_length": 54, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1886.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 30, "size": 104 }
------------------------------------------------------------------------ -- Streams ------------------------------------------------------------------------ module Stream where open import Codata.Musical.Stream public renaming (_∷_ to _≺_)
{ "alphanum_fraction": 0.3016528926, "avg_line_length": 30.25, "ext": "agda", "hexsha": "bf7182a271a88226a2581733884b0838d5955ec5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "Stream.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "Stream.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "Stream.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 30, "size": 242 }
open import Data.Product using ( _×_ ; _,_ ) open import Relation.Unary using ( _∈_ ) open import Web.Semantic.DL.ABox using ( ABox ; ε ; _,_ ; _∼_ ; _∈₁_ ; _∈₂_ ) open import Web.Semantic.DL.ABox.Interp using ( ⌊_⌋ ; ind ) open import Web.Semantic.DL.ABox.Model using ( _⊨a_ ) open import Web.Semantic.DL.Concept.Model using ( ⟦⟧₁-resp-≈ ) open import Web.Semantic.DL.Concept.Skolemization using ( CSkolems ; cskolem ; cskolem-sound ) open import Web.Semantic.DL.FOL using ( Formula ; true ; _∧_ ; _∈₁_ ; _∈₂_ ; _∼_ ) open import Web.Semantic.DL.FOL.Model using ( _⊨f_ ) open import Web.Semantic.DL.Role.Skolemization using ( rskolem ; rskolem-sound ) open import Web.Semantic.DL.Role.Model using ( ⟦⟧₂-resp-≈ ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.Util using ( True ; tt ) module Web.Semantic.DL.ABox.Skolemization {Σ : Signature} {X : Set} where askolem : ∀ {Δ} → (X → Δ) → ABox Σ X → Formula Σ Δ askolem i ε = true askolem i (A , B) = (askolem i A) ∧ (askolem i B) askolem i (x ∼ y) = i x ∼ i y askolem i (x ∈₁ c) = i x ∈₁ c askolem i ((x , y) ∈₂ r) = (i x , i y) ∈₂ r askolem-sound : ∀ I A → (⌊ I ⌋ ⊨f askolem (ind I) A) → (I ⊨a A) askolem-sound I ε _ = tt askolem-sound I (A , B) (I⊨A , I⊨B) = (askolem-sound I A I⊨A , askolem-sound I B I⊨B) askolem-sound I (x ∼ y) I⊨x∼y = I⊨x∼y askolem-sound I (x ∈₁ c) I⊨x∈c = I⊨x∈c askolem-sound I ((x , y) ∈₂ r) I⊨xy∈r = I⊨xy∈r
{ "alphanum_fraction": 0.6490857947, "avg_line_length": 47.4, "ext": "agda", "hexsha": "f62b76fd7a8fd6734497adf5db0b29185b2a0437", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z", "max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z", "max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-web-semantic", "max_forks_repo_path": "src/Web/Semantic/DL/ABox/Skolemization.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-web-semantic", "max_issues_repo_path": "src/Web/Semantic/DL/ABox/Skolemization.agda", "max_line_length": 94, "max_stars_count": 9, "max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-web-semantic", "max_stars_repo_path": "src/Web/Semantic/DL/ABox/Skolemization.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z", "num_tokens": 618, "size": 1422 }
module Control.Monad.Transformer where open import Prelude record Transformer {a b} (T : (Set a → Set b) → (Set a → Set b)) : Set (lsuc a ⊔ lsuc b) where field lift : {M : Set a → Set b} {{_ : Monad M}} {A : Set a} → M A → T M A open Transformer {{...}} public
{ "alphanum_fraction": 0.594095941, "avg_line_length": 24.6363636364, "ext": "agda", "hexsha": "b115b753d9a1fcf67a6f86984ef718e2cc58d241", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Control/Monad/Transformer.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Control/Monad/Transformer.agda", "max_line_length": 94, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Control/Monad/Transformer.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 92, "size": 271 }
{-# OPTIONS --without-K #-} module Computability.Enumeration.Base where open import Computability.Prelude open import Computability.Function record Enumerable (A : Set) : Set where field enum : ℕ → A bijective : Bijective enum open Enumerable ℕ-Enumerable : Enumerable ℕ enum ℕ-Enumerable n = n proj₁ (bijective ℕ-Enumerable) eq = eq proj₁ (proj₂ (bijective ℕ-Enumerable) y) = y proj₂ (proj₂ (bijective ℕ-Enumerable) y) = refl
{ "alphanum_fraction": 0.7352941176, "avg_line_length": 22.1, "ext": "agda", "hexsha": "0a5e6919971f177efdc10af089193744353d26d7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b5cf338eb0adb90c1897383e05251ddd954efff", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jesyspa/computability-in-agda", "max_forks_repo_path": "Computability/Enumeration/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b5cf338eb0adb90c1897383e05251ddd954efff", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jesyspa/computability-in-agda", "max_issues_repo_path": "Computability/Enumeration/Base.agda", "max_line_length": 47, "max_stars_count": 2, "max_stars_repo_head_hexsha": "1b5cf338eb0adb90c1897383e05251ddd954efff", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jesyspa/computability-in-agda", "max_stars_repo_path": "Computability/Enumeration/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-30T11:15:51.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-19T15:51:22.000Z", "num_tokens": 122, "size": 442 }
{-# OPTIONS --rewriting #-} open import Common.Prelude open import Common.Equality {-# BUILTIN REWRITE _≡_ #-} postulate f g : Nat → Nat f-zero : f zero ≡ g zero f-suc : ∀ n → f n ≡ g n → f (suc n) ≡ g (suc n) r : (n : Nat) → f n ≡ g n r zero = f-zero r (suc n) = f-suc n refl where rn : f n ≡ g n rn = r n {-# REWRITE rn #-}
{ "alphanum_fraction": 0.5282485876, "avg_line_length": 17.7, "ext": "agda", "hexsha": "cead70498540bf95616158f76e2643756cac4eb9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/RewritingRuleInWhereBlock.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/RewritingRuleInWhereBlock.agda", "max_line_length": 50, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/RewritingRuleInWhereBlock.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 141, "size": 354 }
{-# OPTIONS --cubical-compatible #-} module Common.Equality where open import Agda.Builtin.Equality public open import Common.Level subst : ∀ {a p}{A : Set a}(P : A → Set p){x y : A} → x ≡ y → P x → P y subst P refl t = t cong : ∀ {a b}{A : Set a}{B : Set b}(f : A → B){x y : A} → x ≡ y → f x ≡ f y cong f refl = refl sym : ∀ {a}{A : Set a}{x y : A} → x ≡ y → y ≡ x sym refl = refl trans : ∀ {a}{A : Set a}{x y z : A} → x ≡ y → y ≡ z → x ≡ z trans refl refl = refl
{ "alphanum_fraction": 0.5319148936, "avg_line_length": 26.1111111111, "ext": "agda", "hexsha": "c05635fb1ccd42746e7ba5cf2a0442e54f405c3c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Common/Equality.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Common/Equality.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Common/Equality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 192, "size": 470 }
module _ {T : Type{ℓₒ}} ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where instance PredSet-setLike : SetLike{C = PredSet{ℓ}(T) ⦃ equiv ⦄} (_∈_) SetLike._⊆_ PredSet-setLike = _⊆_ SetLike._≡_ PredSet-setLike = _≡_ SetLike.[⊆]-membership PredSet-setLike = [↔]-intro intro _⊆_.proof SetLike.[≡]-membership PredSet-setLike = [↔]-intro intro _≡_.proof instance PredSet-emptySet : SetLike.EmptySet{C = PredSet{ℓ}(T) ⦃ equiv ⦄} (_∈_) SetLike.EmptySet.∅ PredSet-emptySet = ∅ SetLike.EmptySet.membership PredSet-emptySet () instance PredSet-universalSet : SetLike.UniversalSet{C = PredSet{ℓ}(T) ⦃ equiv ⦄} (_∈_) SetLike.UniversalSet.𝐔 PredSet-universalSet = 𝐔 SetLike.UniversalSet.membership PredSet-universalSet = record {} instance PredSet-unionOperator : SetLike.UnionOperator{C = PredSet{ℓ}(T) ⦃ equiv ⦄} (_∈_) SetLike.UnionOperator._∪_ PredSet-unionOperator = _∪_ SetLike.UnionOperator.membership PredSet-unionOperator = [↔]-intro id id instance PredSet-intersectionOperator : SetLike.IntersectionOperator{C = PredSet{ℓ}(T) ⦃ equiv ⦄} (_∈_) SetLike.IntersectionOperator._∩_ PredSet-intersectionOperator = _∩_ SetLike.IntersectionOperator.membership PredSet-intersectionOperator = [↔]-intro id id instance PredSet-complementOperator : SetLike.ComplementOperator{C = PredSet{ℓ}(T) ⦃ equiv ⦄} (_∈_) SetLike.ComplementOperator.∁ PredSet-complementOperator = ∁_ SetLike.ComplementOperator.membership PredSet-complementOperator = [↔]-intro id id module _ {T : Type{ℓ}} ⦃ equiv : Equiv{ℓ}(T) ⦄ where -- TODO: Levels in SetLike instance PredSet-mapFunction : SetLike.MapFunction{C₁ = PredSet{ℓ}(T) ⦃ equiv ⦄}{C₂ = PredSet{ℓ}(T) ⦃ equiv ⦄} (_∈_)(_∈_) SetLike.MapFunction.map PredSet-mapFunction f = map f SetLike.MapFunction.membership PredSet-mapFunction = [↔]-intro id id instance PredSet-unmapFunction : SetLike.UnmapFunction{C₁ = PredSet{ℓ}(T) ⦃ equiv ⦄}{C₂ = PredSet{ℓ}(T) ⦃ equiv ⦄} (_∈_)(_∈_) SetLike.UnmapFunction.unmap PredSet-unmapFunction = unmap SetLike.UnmapFunction.membership PredSet-unmapFunction = [↔]-intro id id instance PredSet-unapplyFunction : SetLike.UnapplyFunction{C = PredSet{ℓ}(T) ⦃ equiv ⦄} (_∈_) {O = T} SetLike.UnapplyFunction.unapply PredSet-unapplyFunction = unapply SetLike.UnapplyFunction.membership PredSet-unapplyFunction = [↔]-intro id id instance PredSet-filterFunction : SetLike.FilterFunction{C = PredSet{ℓ}(T) ⦃ equiv ⦄} (_∈_) {ℓ}{ℓ} SetLike.FilterFunction.filter PredSet-filterFunction = filter SetLike.FilterFunction.membership PredSet-filterFunction = [↔]-intro id id {- TODO: SetLike is not general enough module _ {T : Type{ℓ}} ⦃ equiv : Equiv{ℓ}(T) ⦄ where instance -- PredSet-bigUnionOperator : SetLike.BigUnionOperator{Cₒ = PredSet(PredSet(T) ⦃ {!!} ⦄) ⦃ {!!} ⦄} {Cᵢ = PredSet(T) ⦃ {!!} ⦄} (_∈_)(_∈_) SetLike.BigUnionOperator.⋃ PredSet-bigUnionOperator = {!⋃!} SetLike.BigUnionOperator.membership PredSet-bigUnionOperator = {!!} -}
{ "alphanum_fraction": 0.6862871928, "avg_line_length": 49.0793650794, "ext": "agda", "hexsha": "f86be87d64f01fd85ffe37d3b4e13bd083de6d1f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Sets/ExtensionalPredicateSet/SetLike.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Sets/ExtensionalPredicateSet/SetLike.agda", "max_line_length": 140, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Sets/ExtensionalPredicateSet/SetLike.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1080, "size": 3092 }
{-# OPTIONS --cubical --safe #-} module Cubical.Structures.CommRing where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.Foundations.SIP renaming (SNS-PathP to SNS) open import Cubical.Structures.NAryOp open import Cubical.Structures.Pointed open import Cubical.Structures.Ring hiding (⟨_⟩) private variable ℓ ℓ' : Level comm-ring-axioms : (X : Type ℓ) (s : raw-ring-structure X) → Type ℓ comm-ring-axioms X (_+_ , ₁ , _·_) = (ring-axioms X (_+_ , ₁ , _·_)) × ((x y : X) → x · y ≡ y · x) comm-ring-structure : Type ℓ → Type ℓ comm-ring-structure = add-to-structure raw-ring-structure comm-ring-axioms CommRing : Type (ℓ-suc ℓ) CommRing {ℓ} = TypeWithStr ℓ comm-ring-structure comm-ring-iso : StrIso comm-ring-structure ℓ comm-ring-iso = add-to-iso (join-iso (nAryFunIso 2) (join-iso pointed-iso (nAryFunIso 2))) comm-ring-axioms comm-ring-axioms-isProp : (X : Type ℓ) (s : raw-ring-structure X) → isProp (comm-ring-axioms X s) comm-ring-axioms-isProp X (_·_ , ₀ , _+_) = isPropΣ (ring-axioms-isProp X (_·_ , ₀ , _+_)) λ ((((isSetX , _) , _) , _) , _) → isPropΠ2 λ _ _ → isSetX _ _ comm-ring-is-SNS : SNS {ℓ} comm-ring-structure comm-ring-iso comm-ring-is-SNS = add-axioms-SNS _ comm-ring-axioms-isProp raw-ring-is-SNS CommRingPath : (M N : CommRing {ℓ}) → (M ≃[ comm-ring-iso ] N) ≃ (M ≡ N) CommRingPath = SIP comm-ring-is-SNS -- CommRing is Ring CommRing→Ring : CommRing {ℓ} → Ring CommRing→Ring (R , str , isRing , ·comm) = R , str , isRing -- CommRing Extractors ⟨_⟩ : CommRing {ℓ} → Type ℓ ⟨ R , _ ⟩ = R module _ (R : CommRing {ℓ}) where commring+-operation = ring+-operation (CommRing→Ring R) commring-is-set = ring-is-set (CommRing→Ring R) commring+-assoc = ring+-assoc (CommRing→Ring R) commring+-id = ring+-id (CommRing→Ring R) commring+-rid = ring+-rid (CommRing→Ring R) commring+-lid = ring+-lid (CommRing→Ring R) commring+-inv = ring+-inv (CommRing→Ring R) commring+-rinv = ring+-rinv (CommRing→Ring R) commring+-linv = ring+-linv (CommRing→Ring R) commring+-comm = ring+-comm (CommRing→Ring R) commring·-operation = ring·-operation (CommRing→Ring R) commring·-assoc = ring·-assoc (CommRing→Ring R) commring·-id = ring·-id (CommRing→Ring R) commring·-rid = ring·-rid (CommRing→Ring R) commring·-lid = ring·-lid (CommRing→Ring R) commring-ldist = ring-ldist (CommRing→Ring R) commring-rdist = ring-rdist (CommRing→Ring R) module commring-operation-syntax where commring+-operation-syntax : (R : CommRing {ℓ}) → ⟨ R ⟩ → ⟨ R ⟩ → ⟨ R ⟩ commring+-operation-syntax R = commring+-operation R infixr 14 commring+-operation-syntax syntax commring+-operation-syntax G x y = x +⟨ G ⟩ y commring·-operation-syntax : (R : CommRing {ℓ}) → ⟨ R ⟩ → ⟨ R ⟩ → ⟨ R ⟩ commring·-operation-syntax R = commring·-operation R infixr 18 commring·-operation-syntax syntax commring·-operation-syntax G x y = x ·⟨ G ⟩ y open commring-operation-syntax commring-comm : (R : CommRing {ℓ}) (x y : ⟨ R ⟩) → x ·⟨ R ⟩ y ≡ y ·⟨ R ⟩ x commring-comm (_ , _ , _ , P) = P -- CommRing ·syntax module commring-·syntax (R : CommRing {ℓ}) where open ring-·syntax (CommRing→Ring R) public
{ "alphanum_fraction": 0.6587183308, "avg_line_length": 30.5, "ext": "agda", "hexsha": "2350c23187375564eeae15a99e0d83beec363005", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmester0/cubical", "max_forks_repo_path": "Cubical/Structures/CommRing.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmester0/cubical", "max_issues_repo_path": "Cubical/Structures/CommRing.agda", "max_line_length": 107, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmester0/cubical", "max_stars_repo_path": "Cubical/Structures/CommRing.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z", "max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z", "num_tokens": 1163, "size": 3355 }
{-# OPTIONS --cubical #-} open import Cubical.Core.Glue open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.Foundations.Isomorphism open import Cubical.Data.Nat open import Cubical.Data.Empty open import Cubical.Data.Unit open import Cubical.Data.Prod open import Cubical.Data.BinNat open import Cubical.Data.Bool open import Cubical.Relation.Nullary open import Direction module NNat where -- much of this is based directly on the -- BinNat module in the Cubical Agda library data BNat : Type₀ where b0 : BNat b1 : BNat x0 : BNat → BNat x1 : BNat → BNat sucBNat : BNat → BNat sucBNat b0 = b1 sucBNat b1 = x0 b1 sucBNat (x0 bs) = x1 bs sucBNat (x1 bs) = x0 (sucBNat bs) BNat→ℕ : BNat → ℕ BNat→ℕ b0 = 0 BNat→ℕ b1 = 1 BNat→ℕ (x0 x) = doubleℕ (BNat→ℕ x) BNat→ℕ (x1 x) = suc (doubleℕ (BNat→ℕ x)) -- BNat→Binℕ : BNat → Binℕ -- BNat→Binℕ pos0 = binℕ0 -- BNat→Binℕ pos1 = binℕpos pos1 -- BNat→Binℕ (x0 x) = {!binℕpos (x0 binℕpos (BNat→Binℕ x))!} -- BNat→Binℕ (x1 x) = {!!} BNat→ℕsucBNat : (b : BNat) → BNat→ℕ (sucBNat b) ≡ suc (BNat→ℕ b) BNat→ℕsucBNat b0 = refl BNat→ℕsucBNat b1 = refl BNat→ℕsucBNat (x0 b) = refl BNat→ℕsucBNat (x1 b) = λ i → doubleℕ (BNat→ℕsucBNat b i) ℕ→BNat : ℕ → BNat ℕ→BNat zero = b0 ℕ→BNat (suc zero) = b1 ℕ→BNat (suc (suc n)) = sucBNat (ℕ→BNat (suc n)) ℕ→BNatSuc : ∀ n → ℕ→BNat (suc n) ≡ sucBNat (ℕ→BNat n) ℕ→BNatSuc zero = refl ℕ→BNatSuc (suc n) = refl bNatInd : {P : BNat → Type₀} → P b0 → ((b : BNat) → P b → P (sucBNat b)) → (b : BNat) → P b -- prove later... BNat→ℕ→BNat : (b : BNat) → ℕ→BNat (BNat→ℕ b) ≡ b BNat→ℕ→BNat b = bNatInd refl hs b where hs : (b : BNat) → ℕ→BNat (BNat→ℕ b) ≡ b → ℕ→BNat (BNat→ℕ (sucBNat b)) ≡ sucBNat b hs b hb = ℕ→BNat (BNat→ℕ (sucBNat b)) ≡⟨ cong ℕ→BNat (BNat→ℕsucBNat b) ⟩ ℕ→BNat (suc (BNat→ℕ b)) ≡⟨ ℕ→BNatSuc (BNat→ℕ b) ⟩ sucBNat (ℕ→BNat (BNat→ℕ b)) ≡⟨ cong sucBNat hb ⟩ sucBNat b ∎ ℕ→BNat→ℕ : (n : ℕ) → BNat→ℕ (ℕ→BNat n) ≡ n ℕ→BNat→ℕ zero = refl ℕ→BNat→ℕ (suc n) = BNat→ℕ (ℕ→BNat (suc n)) ≡⟨ cong BNat→ℕ (ℕ→BNatSuc n) ⟩ BNat→ℕ (sucBNat (ℕ→BNat n)) ≡⟨ BNat→ℕsucBNat (ℕ→BNat n) ⟩ suc (BNat→ℕ (ℕ→BNat n)) ≡⟨ cong suc (ℕ→BNat→ℕ n) ⟩ suc n ∎ BNat≃ℕ : BNat ≃ ℕ BNat≃ℕ = isoToEquiv (iso BNat→ℕ ℕ→BNat ℕ→BNat→ℕ BNat→ℕ→BNat) BNat≡ℕ : BNat ≡ ℕ BNat≡ℕ = ua BNat≃ℕ open NatImpl NatImplBNat : NatImpl BNat z NatImplBNat = b0 s NatImplBNat = sucBNat -- data np (r : ℕ) : Type₀ where bp : DirNum r → np r zp : ∀ (d d′ : DirNum r) → bp d ≡ bp d′ xp : DirNum r → np r → np r sucnp : ∀ {r} → np r → np r sucnp {zero} (bp tt) = xp tt (bp tt) sucnp {zero} (zp tt tt i) = xp tt (bp tt) sucnp {zero} (xp tt n) = xp tt (sucnp n) sucnp {suc r} (bp d) = xp (one-n (suc r)) (bp d) sucnp {suc r} (zp d d′ i) = xp (one-n (suc r)) (zp d d′ i) sucnp {suc r} (xp d n) with max? d ... | no _ = xp (next d) n ... | yes _ = xp (zero-n (suc r)) (sucnp n) np→ℕ : (r : ℕ) (x : np r) → ℕ np→ℕ r (bp x) = 0 np→ℕ r (zp d d′ i) = 0 np→ℕ zero (xp x x₁) = suc (np→ℕ zero x₁) np→ℕ (suc r) (xp x x₁) = sucn (DirNum→ℕ x) (doublesℕ (suc r) (np→ℕ (suc r) x₁)) ℕ→np : (r : ℕ) → (n : ℕ) → np r ℕ→np r zero = bp (zero-n r) ℕ→np zero (suc n) = xp tt (ℕ→np zero n) ℕ→np (suc r) (suc n) = sucnp (ℕ→np (suc r) n) ---- generalize bnat: data N (r : ℕ) : Type₀ where bn : DirNum r → N r xr : DirNum r → N r → N r -- should define induction principle for N r -- we have 2ⁿ "unary" constructors, analogous to BNat with 2¹ (b0 and b1) -- rename n to r -- this likely introduces inefficiencies compared -- to BinNat, with the max? check etc. sucN : ∀ {n} → N n → N n sucN {zero} (bn tt) = xr tt (bn tt) sucN {zero} (xr tt x) = xr tt (sucN x) sucN {suc n} (bn (↓ , ds)) = (bn (↑ , ds)) sucN {suc n} (bn (↑ , ds)) with max? ds ... | no _ = (bn (↓ , next ds)) ... | yes _ = xr (zero-n (suc n)) (bn (one-n (suc n))) sucN {suc n} (xr d x) with max? d ... | no _ = xr (next d) x ... | yes _ = xr (zero-n (suc n)) (sucN x) sucnN : {r : ℕ} → (n : ℕ) → (N r → N r) sucnN n = iter n sucN doubleN : (r : ℕ) → N r → N r doubleN zero (bn tt) = bn tt doubleN zero (xr d x) = sucN (sucN (doubleN zero x)) doubleN (suc r) (bn x) with zero-n? x ... | yes _ = bn x -- bad: ... | no _ = caseBool (bn (doubleDirNum (suc r) x)) (xr (zero-n (suc r)) (bn x)) (doubleable-n? x) -- ... | no _ | doubleable = {!bn (doubleDirNum x)!} -- ... | no _ | notdoubleable = xr (zero-n (suc r)) (bn x) doubleN (suc r) (xr x x₁) = sucN (sucN (doubleN (suc r) x₁)) doublesN : (r : ℕ) → ℕ → N r → N r doublesN r zero m = m doublesN r (suc n) m = doublesN r n (doubleN r m) N→ℕ : (r : ℕ) (x : N r) → ℕ N→ℕ zero (bn tt) = zero N→ℕ zero (xr tt x) = suc (N→ℕ zero x) N→ℕ (suc r) (bn x) = DirNum→ℕ x N→ℕ (suc r) (xr d x) = sucn (DirNum→ℕ d) (doublesℕ (suc r) (N→ℕ (suc r) x)) N→ℕsucN : (r : ℕ) (x : N r) → N→ℕ r (sucN x) ≡ suc (N→ℕ r x) N→ℕsucN zero (bn tt) = refl N→ℕsucN zero (xr tt x) = suc (N→ℕ zero (sucN x)) ≡⟨ cong suc (N→ℕsucN zero x) ⟩ suc (suc (N→ℕ zero x)) ∎ N→ℕsucN (suc r) (bn (↓ , d)) = refl N→ℕsucN (suc r) (bn (↑ , d)) with max? d ... | no d≠max = doubleℕ (DirNum→ℕ (next d)) ≡⟨ cong doubleℕ (next≡suc r d d≠max) ⟩ doubleℕ (suc (DirNum→ℕ d)) ∎ ... | yes d≡max = -- this can probably be shortened by not reducing down to zero sucn (doubleℕ (DirNum→ℕ (zero-n r))) (doublesℕ r (suc (suc (doubleℕ (doubleℕ (DirNum→ℕ (zero-n r))))))) ≡⟨ cong (λ x → sucn (doubleℕ x) (doublesℕ r (suc (suc (doubleℕ (doubleℕ x)))))) (zero-n→0 {r}) ⟩ sucn (doubleℕ zero) (doublesℕ r (suc (suc (doubleℕ (doubleℕ zero))))) ≡⟨ refl ⟩ doublesℕ (suc r) (suc zero) -- 2^(r+1) ≡⟨ sym (doubleDoubles r 1) ⟩ doubleℕ (doublesℕ r (suc zero)) --2*2^r ≡⟨ sym (sucPred (doubleℕ (doublesℕ r (suc zero))) (doubleDoublesOne≠0 r)) ⟩ suc (predℕ (doubleℕ (doublesℕ r (suc zero)))) ≡⟨ cong suc (sym (sucPred (predℕ (doubleℕ (doublesℕ r (suc zero)))) (predDoubleDoublesOne≠0 r))) ⟩ suc (suc (predℕ (predℕ (doubleℕ (doublesℕ r (suc zero)))))) ≡⟨ cong (λ x → suc (suc x)) (sym (doublePred (doublesℕ r (suc zero)))) ⟩ suc (suc (doubleℕ (predℕ (doublesℕ r (suc zero))))) ≡⟨ cong (λ x → suc (suc (doubleℕ x))) (sym (maxr≡pred2ʳ r d d≡max)) ⟩ suc (suc (doubleℕ (DirNum→ℕ d))) -- 2*(2^r - 1) + 2 = 2^(r+1) - 2 + 2 = 2^(r+1) ∎ N→ℕsucN (suc r) (xr (↓ , d) x) = refl N→ℕsucN (suc r) (xr (↑ , d) x) with max? d ... | no d≠max = sucn (doubleℕ (DirNum→ℕ (next d))) (doublesℕ r (doubleℕ (N→ℕ (suc r) x))) ≡⟨ cong (λ y → sucn (doubleℕ y) (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))) (next≡suc r d d≠max) ⟩ sucn (doubleℕ (suc (DirNum→ℕ d))) (doublesℕ r (doubleℕ (N→ℕ (suc r) x))) ≡⟨ refl ⟩ suc (suc (iter (doubleℕ (DirNum→ℕ d)) suc (doublesℕ r (doubleℕ (N→ℕ (suc r) x))))) ∎ ... | yes d≡max = sucn (doubleℕ (DirNum→ℕ (zero-n r))) (doublesℕ r (doubleℕ (N→ℕ (suc r) (sucN x)))) ≡⟨ cong (λ z → sucn (doubleℕ z) (doublesℕ r (doubleℕ (N→ℕ (suc r) (sucN x))))) (zero-n≡0 {r}) ⟩ sucn (doubleℕ zero) (doublesℕ r (doubleℕ (N→ℕ (suc r) (sucN x)))) ≡⟨ refl ⟩ doublesℕ r (doubleℕ (N→ℕ (suc r) (sucN x))) ≡⟨ cong (λ x → doublesℕ r (doubleℕ x)) (N→ℕsucN (suc r) x) ⟩ doublesℕ r (doubleℕ (suc (N→ℕ (suc r) x))) ≡⟨ refl ⟩ doublesℕ r (suc (suc (doubleℕ (N→ℕ (suc r) x)))) -- 2^r * (2x + 2) = 2^(r+1)x + 2^(r+1) ≡⟨ doublesSucSuc r (doubleℕ (N→ℕ (suc r) x)) ⟩ sucn (doublesℕ (suc r) 1) -- _ + 2^(r+1) (doublesℕ (suc r) (N→ℕ (suc r) x)) -- 2^(r+1)x + 2^(r+1) ≡⟨ H r (doublesℕ (suc r) (N→ℕ (suc r) x)) ⟩ suc (suc (sucn (doubleℕ (predℕ (doublesℕ r 1))) -- _ + 2(2^r - 1) + 2 (doublesℕ (suc r) (N→ℕ (suc r) x)))) ≡⟨ refl ⟩ suc (suc (sucn (doubleℕ (predℕ (doublesℕ r 1))) (doublesℕ r (doubleℕ (N→ℕ (suc r) x))))) ≡⟨ cong (λ z → suc (suc (sucn (doubleℕ z) (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))))) (sym (max→ℕ r)) ⟩ suc (suc (sucn (doubleℕ (DirNum→ℕ (max-n r))) (doublesℕ r (doubleℕ (N→ℕ (suc r) x))))) ≡⟨ cong (λ z → suc (suc (sucn (doubleℕ (DirNum→ℕ z)) (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))))) (sym (d≡max)) ⟩ suc (suc (sucn (doubleℕ (DirNum→ℕ d)) (doublesℕ r (doubleℕ (N→ℕ (suc r) x))))) -- (2^r*2x + (2*(2^r - 1))) + 2 = 2^(r+1)x + 2^(r+1) ∎ where H : (n m : ℕ) → sucn (doublesℕ (suc n) 1) m ≡ suc (suc (sucn (doubleℕ (predℕ (doublesℕ n 1))) m)) H zero m = refl H (suc n) m = sucn (doublesℕ n 4) m ≡⟨ cong (λ z → sucn z m) (doublesSucSuc n 2) ⟩ sucn (sucn (doublesℕ (suc n) 1) (doublesℕ n 2)) m ≡⟨ refl ⟩ sucn (sucn (doublesℕ n 2) (doublesℕ n 2)) m ≡⟨ {!!} ⟩ sucn (doubleℕ (doublesℕ n 2)) m ≡⟨ {!!} ⟩ {!!} ℕ→N : (r : ℕ) → (n : ℕ) → N r ℕ→N r zero = bn (zero-n r) ℕ→N zero (suc n) = xr tt (ℕ→N zero n) ℕ→N (suc r) (suc n) = sucN (ℕ→N (suc r) n) ℕ→Nsuc : (r : ℕ) (n : ℕ) → ℕ→N r (suc n) ≡ sucN (ℕ→N r n) ℕ→Nsuc r n = {!!} ℕ→Nsucn : (r : ℕ) (n m : ℕ) → ℕ→N r (sucn n m) ≡ sucnN n (ℕ→N r m) ℕ→Nsucn r n m = {!!} -- NℕNlemma is actually a pretty important fact; -- this is what allows the direct isomorphism of N and ℕ to go -- without the need for an extra datatype, e.g. Pos for BinNat, -- since each ℕ < 2^r maps to its "numeral" in N r. -- should rename and move elsewhere. numeral-next : (r : ℕ) (d : DirNum r) → N (suc r) numeral-next r d = bn (embed-next r d) -- NℕNlemma : (r : ℕ) (d : DirNum r) → ℕ→N r (DirNum→ℕ d) ≡ bn d NℕNlemma zero tt = refl NℕNlemma (suc r) (↓ , ds) = ℕ→N (suc r) (doubleℕ (DirNum→ℕ ds)) ≡⟨ {!!} ⟩ {!!} NℕNlemma (suc r) (↑ , ds) = {!!} N→ℕ→N : (r : ℕ) → (x : N r) → ℕ→N r (N→ℕ r x) ≡ x N→ℕ→N zero (bn tt) = refl N→ℕ→N zero (xr tt x) = cong (xr tt) (N→ℕ→N zero x) N→ℕ→N (suc r) (bn (↓ , ds)) = ℕ→N (suc r) (doubleℕ (DirNum→ℕ ds)) ≡⟨ cong (λ x → ℕ→N (suc r) x) (double-lemma ds) ⟩ ℕ→N (suc r) (DirNum→ℕ {suc r} (↓ , ds)) ≡⟨ NℕNlemma (suc r) (↓ , ds) ⟩ bn (↓ , ds) ∎ N→ℕ→N (suc r) (bn (↑ , ds)) = sucN (ℕ→N (suc r) (doubleℕ (DirNum→ℕ ds))) ≡⟨ cong (λ x → sucN (ℕ→N (suc r) x)) (double-lemma ds) ⟩ sucN (ℕ→N (suc r) (DirNum→ℕ {suc r} (↓ , ds))) ≡⟨ cong sucN (NℕNlemma (suc r) (↓ , ds)) ⟩ sucN (bn (↓ , ds)) ≡⟨ refl ⟩ bn (↑ , ds) ∎ N→ℕ→N (suc r) (xr (↓ , ds) x) = ℕ→N (suc r) (sucn (doubleℕ (DirNum→ℕ ds)) (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))) ≡⟨ cong (λ z → ℕ→N (suc r) (sucn z (doublesℕ r (doubleℕ (N→ℕ (suc r) x))))) (double-lemma ds) ⟩ ℕ→N (suc r) (sucn (DirNum→ℕ {suc r} (↓ , ds)) (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))) ≡⟨ refl ⟩ ℕ→N (suc r) (sucn (DirNum→ℕ {suc r} (↓ , ds)) (doublesℕ (suc r) (N→ℕ (suc r) x))) ≡⟨ ℕ→Nsucn (suc r) (DirNum→ℕ {suc r} (↓ , ds)) (doublesℕ (suc r) (N→ℕ (suc r) x)) ⟩ sucnN (DirNum→ℕ {suc r} (↓ , ds)) (ℕ→N (suc r) (doublesℕ (suc r) (N→ℕ (suc r) x))) ≡⟨ cong (λ z → sucnN (DirNum→ℕ {suc r} (↓ , ds)) z) (H (suc r) (suc r) (N→ℕ (suc r) x)) ⟩ sucnN (DirNum→ℕ {suc r} (↓ , ds)) (doublesN (suc r) (suc r) (ℕ→N (suc r) (N→ℕ (suc r) x))) ≡⟨ cong (λ z → sucnN (DirNum→ℕ {suc r} (↓ , ds)) (doublesN (suc r) (suc r) z)) (N→ℕ→N (suc r) x) ⟩ sucnN (DirNum→ℕ {suc r} (↓ , ds)) (doublesN (suc r) (suc r) x) ≡⟨ G (suc r) (↓ , ds) x snotz ⟩ xr (↓ , ds) x ∎ where H : (r m n : ℕ) → ℕ→N r (doublesℕ m n) ≡ doublesN r m (ℕ→N r n) H r m n = {!!} G : (r : ℕ) (d : DirNum r) (x : N r) → ¬ (r ≡ 0) → sucnN (DirNum→ℕ {r} d) (doublesN r r x) ≡ xr d x G zero d x 0≠0 = ⊥-elim (0≠0 refl) G (suc r) d (bn x) r≠0 = {!!} G (suc r) d (xr x x₁) r≠0 = {!!} N→ℕ→N (suc r) (xr (↑ , ds) x) with max? ds ... | no ds≠max = sucN (ℕ→N (suc r) (sucn (doubleℕ (DirNum→ℕ ds)) (doublesℕ r (doubleℕ (N→ℕ (suc r) x))))) ≡⟨ sym (ℕ→Nsuc (suc r) (sucn (doubleℕ (DirNum→ℕ ds)) (doublesℕ r (doubleℕ (N→ℕ (suc r) x))))) ⟩ ℕ→N (suc r) (suc (sucn (doubleℕ (DirNum→ℕ ds)) (doublesℕ r (doubleℕ (N→ℕ (suc r) x))))) ≡⟨ refl ⟩ ℕ→N (suc r) (suc (sucn (doubleℕ (DirNum→ℕ ds)) (doublesℕ (suc r) (N→ℕ (suc r) x)))) ≡⟨ cong (λ z → ℕ→N (suc r) z) (sym (sucnsuc (doubleℕ (DirNum→ℕ ds)) (doublesℕ (suc r) (N→ℕ (suc r) x)))) ⟩ ℕ→N (suc r) (sucn (doubleℕ (DirNum→ℕ ds)) (suc (doublesℕ (suc r) (N→ℕ (suc r) x)))) ≡⟨ ℕ→Nsucn (suc r) (doubleℕ (DirNum→ℕ ds)) (suc (doublesℕ (suc r) (N→ℕ (suc r) x))) ⟩ sucnN (doubleℕ (DirNum→ℕ ds)) (ℕ→N (suc r) (suc (doublesℕ (suc r) (N→ℕ (suc r) x)))) ≡⟨ cong (λ z → sucnN (doubleℕ (DirNum→ℕ ds)) z) (ℕ→Nsuc (suc r) (doublesℕ (suc r) (N→ℕ (suc r) x))) ⟩ -- (2^(r+1)*x + 1) + 2*ds -- = 2*(2^r*x + ds) + 1 -- = 2*( sucnN (doubleℕ (DirNum→ℕ ds)) (sucN (ℕ→N (suc r) (doublesℕ (suc r) (N→ℕ (suc r) x)))) ≡⟨ {!!} ⟩ {!!} ... | yes ds≡max = {!!} ℕ→N→ℕ : (r : ℕ) → (n : ℕ) → N→ℕ r (ℕ→N r n) ≡ n ℕ→N→ℕ zero zero = refl ℕ→N→ℕ (suc r) zero = doubleℕ (DirNum→ℕ (zero-n r)) ≡⟨ cong doubleℕ (zero-n≡0 {r}) ⟩ doubleℕ zero ≡⟨ refl ⟩ zero ∎ ℕ→N→ℕ zero (suc n) = cong suc (ℕ→N→ℕ zero n) ℕ→N→ℕ (suc r) (suc n) = N→ℕ (suc r) (sucN (ℕ→N (suc r) n)) ≡⟨ N→ℕsucN (suc r) (ℕ→N (suc r) n) ⟩ suc (N→ℕ (suc r) (ℕ→N (suc r) n)) ≡⟨ cong suc (ℕ→N→ℕ (suc r) n) ⟩ suc n ∎ N≃ℕ : (r : ℕ) → N r ≃ ℕ N≃ℕ r = isoToEquiv (iso (N→ℕ r) (ℕ→N r) (ℕ→N→ℕ r) (N→ℕ→N r)) N≡ℕ : (r : ℕ) → N r ≡ ℕ N≡ℕ r = ua (N≃ℕ r) ---- pos approach: data NPos (n : ℕ) : Type₀ where npos1 : NPos n x⇀ : DirNum n → NPos n → NPos n sucNPos : ∀ {n} → NPos n → NPos n sucNPos {zero} npos1 = x⇀ tt npos1 sucNPos {zero} (x⇀ tt x) = x⇀ tt (sucNPos x) sucNPos {suc n} npos1 = x⇀ (next (one-n (suc n))) npos1 sucNPos {suc n} (x⇀ d x) with (max? d) ... | (no _) = x⇀ (next d) x ... | (yes _) = x⇀ (zero-n (suc n)) (sucNPos x) -- some examples for sanity check 2₂ : NPos 1 2₂ = x⇀ (↓ , tt) npos1 3₂ : NPos 1 3₂ = x⇀ (↑ , tt) npos1 4₂ : NPos 1 4₂ = x⇀ (↓ , tt) (x⇀ (↓ , tt) npos1) 2₄ : NPos 2 2₄ = x⇀ (↓ , (↑ , tt)) npos1 -- how does this make sense? 3₄ : NPos 2 3₄ = x⇀ (↑ , (↑ , tt)) npos1 -- how does this make sense? -- sucnpos1≡x⇀one-n : ∀ {r} → sucNPos npos1 ≡ x⇀ (one-n r) npos1 -- sucnpos1≡x⇀one-n {zero} = refl -- sucnpos1≡x⇀one-n {suc r} = {!!} -- sucnposx⇀zero-n≡x⇀one-n : ∀ {r} {p} → sucNPos (x⇀ (zero-n r) p) ≡ x⇀ (one-n r) p -- sucnposx⇀zero-n≡x⇀one-n {zero} {npos1} = {!!} -- sucnposx⇀zero-n≡x⇀one-n {zero} {x⇀ x p} = {!!} -- sucnposx⇀zero-n≡x⇀one-n {suc r} {p} = refl nPosInd : ∀ {r} {P : NPos r → Type₀} → P npos1 → ((p : NPos r) → P p → P (sucNPos p)) → (p : NPos r) → P p nPosInd {r} {P} h1 hs ps = f ps where H : (p : NPos r) → P (x⇀ (zero-n r) p) → P (x⇀ (zero-n r) (sucNPos p)) --H p hx0p = hs (x⇀ (one-n r) p) (hs (x⇀ (zero-n r) p) hx0p) f : (ps : NPos r) → P ps f npos1 = h1 f (x⇀ d ps) with (max? d) ... | (no _) = {!nPosInd (hs npos1 h1) H ps!} ... | (yes _) = {!hs (x⇀ (zero-n r) ps) (nPosInd (hs npos1 h1) H ps)!} -- nPosInd {zero} {P} h1 hs ps = f ps -- where -- H : (p : NPos zero) → P (x⇀ (zero-n zero) p) → P (x⇀ (zero-n zero) (sucNPos p)) -- H p hx0p = hs (x⇀ tt (x⇀ (zero-n zero) p)) (hs (x⇀ (zero-n zero) p) hx0p) -- f : (ps : NPos zero) → P ps -- f npos1 = h1 -- f (x⇀ tt ps) = nPosInd (hs npos1 h1) H ps -- nPosInd {suc r} {P} h1 hs ps = f ps -- where -- H : (p : NPos (suc r)) → P (x⇀ (zero-n (suc r)) p) → P (x⇀ (zero-n (suc r)) (sucNPos p)) -- --H p hx0p = hs (x⇀ (one-n r) p) (hs (x⇀ (zero-n r) p) hx0p) -- f : (ps : NPos (suc r)) → P ps -- f npos1 = h1 -- f (x⇀ d ps) = {!!} NPos→ℕ : ∀ r → NPos r → ℕ NPos→ℕ zero npos1 = suc zero NPos→ℕ zero (x⇀ tt x) = suc (NPos→ℕ zero x) NPos→ℕ (suc r) npos1 = suc zero NPos→ℕ (suc r) (x⇀ d x) with max? d ... | no _ = sucn (DirNum→ℕ (next d)) (doublesℕ (suc r) (NPos→ℕ (suc r) x)) ... | yes _ = sucn (DirNum→ℕ (next d)) (doublesℕ (suc r) (suc (NPos→ℕ (suc r) x))) -- NPos→ℕ (suc r) (x⇀ d x) = -- sucn (DirNum→ℕ d) (doublesℕ (suc r) (NPos→ℕ (suc r) x)) NPos→ℕsucNPos : ∀ r → (p : NPos r) → NPos→ℕ r (sucNPos p) ≡ suc (NPos→ℕ r p) NPos→ℕsucNPos zero npos1 = refl NPos→ℕsucNPos zero (x⇀ d p) = cong suc (NPos→ℕsucNPos zero p) NPos→ℕsucNPos (suc r) npos1 = {!!} sucn (doubleℕ (DirNum→ℕ (zero-n r))) (doublesℕ r 2) ≡⟨ cong (λ y → sucn y (doublesℕ r 2)) (zero-n→0) ⟩ sucn (doubleℕ zero) (doublesℕ r 2) ≡⟨ refl ⟩ doublesℕ r 2 ≡⟨ {!!} ⟩ {!!} NPos→ℕsucNPos (suc r) (x⇀ d p) with max? d ... | no _ = {!!} ... | yes _ = {!!} -- zero≠NPos→ℕ : ∀ {r} → (p : NPos r) → ¬ (zero ≡ NPos→ℕ r p) -- zero≠NPos→ℕ {r} p = {!!} ℕ→NPos : ∀ r → ℕ → NPos r ℕ→NPos zero zero = npos1 ℕ→NPos zero (suc zero) = npos1 ℕ→NPos zero (suc (suc n)) = sucNPos (ℕ→NPos zero (suc n)) ℕ→NPos (suc r) zero = npos1 ℕ→NPos (suc r) (suc zero) = npos1 ℕ→NPos (suc r) (suc (suc n)) = sucNPos (ℕ→NPos (suc r) (suc n)) lemma : ∀ {r} → (ℕ→NPos r (NPos→ℕ r npos1)) ≡ npos1 lemma {zero} = refl lemma {suc r} = refl NPos→ℕ→NPos : ∀ r → (p : NPos r) → ℕ→NPos r (NPos→ℕ r p) ≡ p NPos→ℕ→NPos r p = nPosInd lemma hs p where hs : (p : NPos r) → ℕ→NPos r (NPos→ℕ r p) ≡ p → ℕ→NPos r (NPos→ℕ r (sucNPos p)) ≡ (sucNPos p) hs p hp = ℕ→NPos r (NPos→ℕ r (sucNPos p)) ≡⟨ {!!} ⟩ ℕ→NPos r (suc (NPos→ℕ r p)) ≡⟨ {!!} ⟩ sucNPos (ℕ→NPos r (NPos→ℕ r p)) ≡⟨ cong sucNPos hp ⟩ sucNPos p ∎ -- note: the cases for zero and suc r are almost identical -- (why) does this need to split? ℕ→NPos→ℕ : ∀ r → (n : ℕ) → NPos→ℕ r (ℕ→NPos r (suc n)) ≡ (suc n) ℕ→NPos→ℕ zero zero = refl ℕ→NPos→ℕ zero (suc n) = NPos→ℕ zero (sucNPos (ℕ→NPos zero (suc n))) ≡⟨ {!!} ⟩ suc (NPos→ℕ zero (ℕ→NPos zero (suc n))) ≡⟨ cong suc (ℕ→NPos→ℕ zero n) ⟩ suc (suc n) ∎ ℕ→NPos→ℕ (suc r) zero = refl ℕ→NPos→ℕ (suc r) (suc n) = NPos→ℕ (suc r) (sucNPos (ℕ→NPos (suc r) (suc n))) ≡⟨ {!!} ⟩ suc (NPos→ℕ (suc r) (ℕ→NPos (suc r) (suc n))) ≡⟨ cong suc (ℕ→NPos→ℕ (suc r) n) ⟩ suc (suc n) ∎
{ "alphanum_fraction": 0.5038930355, "avg_line_length": 33.0195035461, "ext": "agda", "hexsha": "123aba03793af34365f2ff689c791296871a7ce8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "wrrnhttn/agda-cubical-multidimensional", "max_forks_repo_path": "Multidimensional/NNat.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add", "max_issues_repo_issues_event_max_datetime": "2019-07-02T16:24:01.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-19T20:40:07.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "wrrnhttn/agda-cubical-multidimensional", "max_issues_repo_path": "Multidimensional/NNat.agda", "max_line_length": 116, "max_stars_count": null, "max_stars_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "wrrnhttn/agda-cubical-multidimensional", "max_stars_repo_path": "Multidimensional/NNat.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 9496, "size": 18623 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use `Data.Vec.Functional` instead. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} -- Disabled to prevent warnings from other Table modules {-# OPTIONS --warn=noUserWarning #-} module Data.Table.Properties where {-# WARNING_ON_IMPORT "Data.Table.Properties was deprecated in v1.2. Use Data.Vec.Functional.Properties instead." #-} open import Data.Table open import Data.Table.Relation.Binary.Equality open import Data.Bool.Base using (true; false; if_then_else_) open import Data.Nat.Base using (zero; suc) open import Data.Empty using (⊥-elim) open import Data.Fin using (Fin; suc; zero; _≟_; punchIn) import Data.Fin.Properties as FP open import Data.Fin.Permutation as Perm using (Permutation; _⟨$⟩ʳ_; _⟨$⟩ˡ_) open import Data.List.Base as L using (List; _∷_; []) open import Data.List.Relation.Unary.Any using (here; there; index) open import Data.List.Membership.Propositional using (_∈_) open import Data.Product as Product using (Σ; ∃; _,_; proj₁; proj₂) open import Data.Vec.Base as V using (Vec; _∷_; []) import Data.Vec.Properties as VP open import Level using (Level) open import Function.Base using (_∘_; flip) open import Function.Inverse using (Inverse) open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_; refl; sym; cong) open import Relation.Nullary using (does) open import Relation.Nullary.Decidable using (dec-true; dec-false) open import Relation.Nullary.Negation using (contradiction) private variable a : Level A : Set a ------------------------------------------------------------------------ -- select -- Selecting from any table is the same as selecting from a constant table. select-const : ∀ {n} (z : A) (i : Fin n) t → select z i t ≗ select z i (replicate (lookup t i)) select-const z i t j with does (j ≟ i) ... | true = refl ... | false = refl -- Selecting an element from a table then looking it up is the same as looking -- up the index in the original table select-lookup : ∀ {n x i} (t : Table A n) → lookup (select x i t) i ≡ lookup t i select-lookup {i = i} t rewrite dec-true (i ≟ i) refl = refl -- Selecting an element from a table then removing the same element produces a -- constant table select-remove : ∀ {n x} i (t : Table A (suc n)) → remove i (select x i t) ≗ replicate {n = n} x select-remove i t j rewrite dec-false (punchIn i j ≟ i) (FP.punchInᵢ≢i _ _) = refl ------------------------------------------------------------------------ -- permute -- Removing an index 'i' from a table permuted with 'π' is the same as -- removing the element, then permuting with 'π' minus 'i'. remove-permute : ∀ {m n} (π : Permutation (suc m) (suc n)) i (t : Table A (suc n)) → remove (π ⟨$⟩ˡ i) (permute π t) ≗ permute (Perm.remove (π ⟨$⟩ˡ i) π) (remove i t) remove-permute π i t j = P.cong (lookup t) (Perm.punchIn-permute′ π i j) ------------------------------------------------------------------------ -- fromList fromList-∈ : ∀ {xs : List A} (i : Fin (L.length xs)) → lookup (fromList xs) i ∈ xs fromList-∈ {xs = x ∷ xs} zero = here refl fromList-∈ {xs = x ∷ xs} (suc i) = there (fromList-∈ i) index-fromList-∈ : ∀ {xs : List A} {i} → index (fromList-∈ {xs = xs} i) ≡ i index-fromList-∈ {xs = x ∷ xs} {zero} = refl index-fromList-∈ {xs = x ∷ xs} {suc i} = cong suc index-fromList-∈ fromList-index : ∀ {xs} {x : A} (x∈xs : x ∈ xs) → lookup (fromList xs) (index x∈xs) ≡ x fromList-index (here px) = sym px fromList-index (there x∈xs) = fromList-index x∈xs ------------------------------------------------------------------------ -- There exists an isomorphism between tables and vectors. ↔Vec : ∀ {n} → Inverse (≡-setoid A n) (P.setoid (Vec A n)) ↔Vec = record { to = record { _⟨$⟩_ = toVec ; cong = VP.tabulate-cong } ; from = P.→-to-⟶ fromVec ; inverse-of = record { left-inverse-of = VP.lookup∘tabulate ∘ lookup ; right-inverse-of = VP.tabulate∘lookup } } ------------------------------------------------------------------------ -- Other lookup∈ : ∀ {xs : List A} (i : Fin (L.length xs)) → ∃ λ x → x ∈ xs lookup∈ i = _ , fromList-∈ i
{ "alphanum_fraction": 0.5739051095, "avg_line_length": 36.5333333333, "ext": "agda", "hexsha": "0df7e54ada19c7540acb374a912dfbaf5a15d55e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Table/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Table/Properties.agda", "max_line_length": 87, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Table/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1250, "size": 4384 }
open import Oscar.Prelude open import Oscar.Class open import Oscar.Class.Unit open import Oscar.Class.Leftunit module Oscar.Class.Leftunit.ToUnit where module _ {𝔞} {𝔄 : Ø 𝔞} {𝔢} {𝔈 : Ø 𝔢} {ℓ} {_↦_ : 𝔄 → 𝔄 → Ø ℓ} (let _↦_ = _↦_; infix 4 _↦_) {ε : 𝔈} {_◃_ : 𝔈 → 𝔄 → 𝔄} (let _◃_ = _◃_; infix 16 _◃_) {x : 𝔄} ⦃ _ : Leftunit.class _↦_ ε _◃_ x ⦄ where instance Leftunit--Unit : Unit.class (ε ◃ x ↦ x) Leftunit--Unit .⋆ = leftunit
{ "alphanum_fraction": 0.591611479, "avg_line_length": 22.65, "ext": "agda", "hexsha": "63d5229bd40dd7197d984bfcb7328b3c91fb4f5d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Leftunit/ToUnit.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Leftunit/ToUnit.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Leftunit/ToUnit.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 212, "size": 453 }
module Lectures.One where -- Check background color -- Check fontsize -- Ask questions at *any* time data ⊤ : Set where tt : ⊤ data ⊥ : Set where absurd : ⊥ → {P : Set} → P absurd () -- Introduce most common key bindings -- C-c C-l load -- C-c C-, show context -- C-c C-. show context + type -- C-c C-SPACE input -- C-c C-A auto -- C-c C-r refine -- C-c C-d type inference -- C-c C-c pattern match -- Briefly introduce syntax -- Introduce Set 0 modus-ponens : {P Q : Set} → P → (P → Q) → Q modus-ponens p f = f p -- Introduce misfix operators ¬_ : Set → Set ¬ P = P → ⊥ contra-elim : {P : Set} → P → ¬ P → ⊥ contra-elim = modus-ponens -- no-dne : {P : Set} → ¬ ¬ P → P -- no-dne ¬¬P = {!!} data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} _+_ : ℕ → ℕ → ℕ zero + n = n suc m + n = suc (m + n) _isEven : ℕ → Set zero isEven = ⊤ suc zero isEven = ⊥ suc (suc n) isEven = n isEven half : (n : ℕ) → n isEven → ℕ half zero tt = zero half (suc (suc n)) p = suc (half n p) _ : ℕ _ = half 8 tt -- Comment on termination checking -- brexit : ⊥ -- brexit = brexit
{ "alphanum_fraction": 0.5592163847, "avg_line_length": 16.5147058824, "ext": "agda", "hexsha": "6e928a760818091fa9fc63baab1d3b6465d509a3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d9359c5bfd0eaf69efe1113945d7f3145f6b2dff", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "UoG-Agda/Agda101", "max_forks_repo_path": "Lectures/One.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d9359c5bfd0eaf69efe1113945d7f3145f6b2dff", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "UoG-Agda/Agda101", "max_issues_repo_path": "Lectures/One.agda", "max_line_length": 44, "max_stars_count": null, "max_stars_repo_head_hexsha": "d9359c5bfd0eaf69efe1113945d7f3145f6b2dff", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UoG-Agda/Agda101", "max_stars_repo_path": "Lectures/One.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 421, "size": 1123 }
{-# OPTIONS --without-K --exact-split --allow-unsolved-metas #-} module 13-propositional-truncation where import 12-univalence open 12-univalence public -- Section 13 Propositional truncations, the image of a map, and the replacement axiom -- Section 13.1 Propositional truncations -- Definition 13.1.1 type-hom-Prop : { l1 l2 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) → UU (l1 ⊔ l2) type-hom-Prop P Q = type-Prop P → type-Prop Q hom-Prop : { l1 l2 : Level} → UU-Prop l1 → UU-Prop l2 → UU-Prop (l1 ⊔ l2) hom-Prop P Q = pair ( type-hom-Prop P Q) ( is-prop-function-type (type-Prop P) (type-Prop Q) (is-prop-type-Prop Q)) is-prop-type-hom-Prop : { l1 l2 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) → is-prop (type-hom-Prop P Q) is-prop-type-hom-Prop P Q = is-prop-function-type ( type-Prop P) ( type-Prop Q) ( is-prop-type-Prop Q) equiv-Prop : { l1 l2 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) → UU (l1 ⊔ l2) equiv-Prop P Q = (type-Prop P) ≃ (type-Prop Q) precomp-Prop : { l1 l2 l3 : Level} {A : UU l1} (P : UU-Prop l2) → (A → type-Prop P) → (Q : UU-Prop l3) → (type-hom-Prop P Q) → (A → type-Prop Q) precomp-Prop P f Q g = g ∘ f is-propositional-truncation : ( l : Level) {l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) → ( A → type-Prop P) → UU (lsuc l ⊔ l1 ⊔ l2) is-propositional-truncation l P f = (Q : UU-Prop l) → is-equiv (precomp-Prop P f Q) universal-property-propositional-truncation : ( l : Level) {l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) (f : A → type-Prop P) → UU (lsuc l ⊔ l1 ⊔ l2) universal-property-propositional-truncation l {A = A} P f = (Q : UU-Prop l) (g : A → type-Prop Q) → is-contr (Σ (type-hom-Prop P Q) (λ h → (h ∘ f) ~ g)) -- Some unnumbered remarks after Definition 13.1.3 universal-property-is-propositional-truncation : (l : Level) {l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) (f : A → type-Prop P) → is-propositional-truncation l P f → universal-property-propositional-truncation l P f universal-property-is-propositional-truncation l P f is-ptr-f Q g = is-contr-equiv' ( Σ (type-hom-Prop P Q) (λ h → Id (h ∘ f) g)) ( equiv-tot (λ h → equiv-funext)) ( is-contr-map-is-equiv (is-ptr-f Q) g) map-is-propositional-truncation : {l1 l2 l3 : Level} {A : UU l1} (P : UU-Prop l2) (f : A → type-Prop P) → ({l : Level} → is-propositional-truncation l P f) → (Q : UU-Prop l3) (g : A → type-Prop Q) → type-hom-Prop P Q map-is-propositional-truncation P f is-ptr-f Q g = pr1 ( center ( universal-property-is-propositional-truncation _ P f is-ptr-f Q g)) htpy-is-propositional-truncation : {l1 l2 l3 : Level} {A : UU l1} (P : UU-Prop l2) (f : A → type-Prop P) → (is-ptr-f : {l : Level} → is-propositional-truncation l P f) → (Q : UU-Prop l3) (g : A → type-Prop Q) → ((map-is-propositional-truncation P f is-ptr-f Q g) ∘ f) ~ g htpy-is-propositional-truncation P f is-ptr-f Q g = pr2 ( center ( universal-property-is-propositional-truncation _ P f is-ptr-f Q g)) is-propositional-truncation-universal-property : (l : Level) {l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) (f : A → type-Prop P) → universal-property-propositional-truncation l P f → is-propositional-truncation l P f is-propositional-truncation-universal-property l P f up-f Q = is-equiv-is-contr-map ( λ g → is-contr-equiv ( Σ (type-hom-Prop P Q) (λ h → (h ∘ f) ~ g)) ( equiv-tot (λ h → equiv-funext)) ( up-f Q g)) -- Remark 13.1.2 is-propositional-truncation' : ( l : Level) {l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) → ( A → type-Prop P) → UU (lsuc l ⊔ l1 ⊔ l2) is-propositional-truncation' l {A = A} P f = (Q : UU-Prop l) → (A → type-Prop Q) → (type-hom-Prop P Q) is-propositional-truncation-simpl : { l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) ( f : A → type-Prop P) → ( (l : Level) → is-propositional-truncation' l P f) → ( (l : Level) → is-propositional-truncation l P f) is-propositional-truncation-simpl P f up-P l Q = is-equiv-is-prop ( is-prop-Π (λ x → is-prop-type-Prop Q)) ( is-prop-Π (λ x → is-prop-type-Prop Q)) ( up-P l Q) -- Example 13.1.3 is-propositional-truncation-const-star : { l1 : Level} (A : UU-pt l1) ( l : Level) → is-propositional-truncation l unit-Prop (const (type-UU-pt A) unit star) is-propositional-truncation-const-star A = is-propositional-truncation-simpl ( unit-Prop) ( const (type-UU-pt A) unit star) ( λ l P f → const unit (type-Prop P) (f (pt-UU-pt A))) -- Example 13.1.4 is-propositional-truncation-id : { l1 : Level} (P : UU-Prop l1) → ( l : Level) → is-propositional-truncation l P id is-propositional-truncation-id P l Q = is-equiv-id (type-hom-Prop P Q) -- Proposition 13.1.5 abstract is-equiv-is-equiv-precomp-Prop : {l1 l2 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) (f : type-hom-Prop P Q) → ((l : Level) (R : UU-Prop l) → is-equiv (precomp-Prop Q f R)) → is-equiv f is-equiv-is-equiv-precomp-Prop P Q f is-equiv-precomp-f = is-equiv-is-equiv-precomp-subuniverse id (λ l → is-prop) P Q f is-equiv-precomp-f triangle-3-for-2-is-ptruncation : {l1 l2 l3 : Level} {A : UU l1} (P : UU-Prop l2) (P' : UU-Prop l3) (f : A → type-Prop P) (f' : A → type-Prop P') (h : type-hom-Prop P P') (H : (h ∘ f) ~ f') → {l : Level} (Q : UU-Prop l) → ( precomp-Prop P' f' Q) ~ ( (precomp-Prop P f Q) ∘ (precomp h (type-Prop Q))) triangle-3-for-2-is-ptruncation P P' f f' h H Q g = eq-htpy (λ p → inv (ap g (H p))) is-equiv-is-ptruncation-is-ptruncation : {l1 l2 l3 : Level} {A : UU l1} (P : UU-Prop l2) (P' : UU-Prop l3) (f : A → type-Prop P) (f' : A → type-Prop P') (h : type-hom-Prop P P') (H : (h ∘ f) ~ f') → ((l : Level) → is-propositional-truncation l P f) → ((l : Level) → is-propositional-truncation l P' f') → is-equiv h is-equiv-is-ptruncation-is-ptruncation P P' f f' h H is-ptr-P is-ptr-P' = is-equiv-is-equiv-precomp-Prop P P' h ( λ l Q → is-equiv-right-factor ( precomp-Prop P' f' Q) ( precomp-Prop P f Q) ( precomp h (type-Prop Q)) ( triangle-3-for-2-is-ptruncation P P' f f' h H Q) ( is-ptr-P l Q) ( is-ptr-P' l Q)) is-ptruncation-is-ptruncation-is-equiv : {l1 l2 l3 : Level} {A : UU l1} (P : UU-Prop l2) (P' : UU-Prop l3) (f : A → type-Prop P) (f' : A → type-Prop P') (h : type-hom-Prop P P') (H : (h ∘ f) ~ f') → is-equiv h → ((l : Level) → is-propositional-truncation l P f) → ((l : Level) → is-propositional-truncation l P' f') is-ptruncation-is-ptruncation-is-equiv P P' f f' h H is-equiv-h is-ptr-f l Q = is-equiv-comp ( precomp-Prop P' f' Q) ( precomp-Prop P f Q) ( precomp h (type-Prop Q)) ( triangle-3-for-2-is-ptruncation P P' f f' h H Q) ( is-equiv-precomp-is-equiv h is-equiv-h (type-Prop Q)) ( is-ptr-f l Q) is-ptruncation-is-equiv-is-ptruncation : {l1 l2 l3 : Level} {A : UU l1} (P : UU-Prop l2) (P' : UU-Prop l3) (f : A → type-Prop P) (f' : A → type-Prop P') (h : type-hom-Prop P P') (H : (h ∘ f) ~ f') → ((l : Level) → is-propositional-truncation l P' f') → is-equiv h → ((l : Level) → is-propositional-truncation l P f) is-ptruncation-is-equiv-is-ptruncation P P' f f' h H is-ptr-f' is-equiv-h l Q = is-equiv-left-factor ( precomp-Prop P' f' Q) ( precomp-Prop P f Q) ( precomp h (type-Prop Q)) ( triangle-3-for-2-is-ptruncation P P' f f' h H Q) ( is-ptr-f' l Q) ( is-equiv-precomp-is-equiv h is-equiv-h (type-Prop Q)) -- Corollary 13.1.6 is-uniquely-unique-propositional-truncation : {l1 l2 l3 : Level} {A : UU l1} (P : UU-Prop l2) (P' : UU-Prop l3) (f : A → type-Prop P) (f' : A → type-Prop P') → ({l : Level} → is-propositional-truncation l P f) → ({l : Level} → is-propositional-truncation l P' f') → is-contr (Σ (equiv-Prop P P') (λ e → (map-equiv e ∘ f) ~ f')) is-uniquely-unique-propositional-truncation P P' f f' is-ptr-f is-ptr-f' = is-contr-total-Eq-substructure ( universal-property-is-propositional-truncation _ P f is-ptr-f P' f') ( is-subtype-is-equiv) ( map-is-propositional-truncation P f is-ptr-f P' f') ( htpy-is-propositional-truncation P f is-ptr-f P' f') ( is-equiv-is-ptruncation-is-ptruncation P P' f f' ( map-is-propositional-truncation P f is-ptr-f P' f') ( htpy-is-propositional-truncation P f is-ptr-f P' f') ( λ l → is-ptr-f) ( λ l → is-ptr-f')) -- Axiom 13.1.8 postulate trunc-Prop : {l : Level} → UU l → UU-Prop l type-trunc-Prop : {l : Level} → UU l → UU l type-trunc-Prop A = pr1 (trunc-Prop A) is-prop-type-trunc-Prop : {l : Level} (A : UU l) → is-prop (type-trunc-Prop A) is-prop-type-trunc-Prop A = pr2 (trunc-Prop A) postulate unit-trunc-Prop : {l : Level} (A : UU l) → A → type-Prop (trunc-Prop A) postulate is-propositional-truncation-trunc-Prop : {l1 l2 : Level} (A : UU l1) → is-propositional-truncation l2 (trunc-Prop A) (unit-trunc-Prop A) universal-property-trunc-Prop : {l1 l2 : Level} (A : UU l1) → universal-property-propositional-truncation l2 ( trunc-Prop A) ( unit-trunc-Prop A) universal-property-trunc-Prop A = universal-property-is-propositional-truncation _ ( trunc-Prop A) ( unit-trunc-Prop A) ( is-propositional-truncation-trunc-Prop A) map-universal-property-trunc-Prop : {l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) → (A → type-Prop P) → type-hom-Prop (trunc-Prop A) P map-universal-property-trunc-Prop {A = A} P f = map-is-propositional-truncation ( trunc-Prop A) ( unit-trunc-Prop A) ( is-propositional-truncation-trunc-Prop A) ( P) ( f) -- Proposition 13.1.9 unique-functor-trunc-Prop : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-contr ( Σ ( type-hom-Prop (trunc-Prop A) (trunc-Prop B)) ( λ h → (h ∘ (unit-trunc-Prop A)) ~ ((unit-trunc-Prop B) ∘ f))) unique-functor-trunc-Prop {l1} {l2} {A} {B} f = universal-property-trunc-Prop A (trunc-Prop B) ((unit-trunc-Prop B) ∘ f) functor-trunc-Prop : {l1 l2 : Level} {A : UU l1} {B : UU l2} → (A → B) → type-hom-Prop (trunc-Prop A) (trunc-Prop B) functor-trunc-Prop f = pr1 (center (unique-functor-trunc-Prop f)) htpy-functor-trunc-Prop : { l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → ( (functor-trunc-Prop f) ∘ (unit-trunc-Prop A)) ~ ((unit-trunc-Prop B) ∘ f) htpy-functor-trunc-Prop f = pr2 (center (unique-functor-trunc-Prop f)) htpy-uniqueness-functor-trunc-Prop : { l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → ( h : type-hom-Prop (trunc-Prop A) (trunc-Prop B)) → ( ( h ∘ (unit-trunc-Prop A)) ~ ((unit-trunc-Prop B) ∘ f)) → (functor-trunc-Prop f) ~ h htpy-uniqueness-functor-trunc-Prop f h H = htpy-eq (ap pr1 (contraction (unique-functor-trunc-Prop f) (pair h H))) id-functor-trunc-Prop : { l1 : Level} {A : UU l1} → functor-trunc-Prop (id {A = A}) ~ id id-functor-trunc-Prop {l1} {A} = htpy-uniqueness-functor-trunc-Prop id id refl-htpy comp-functor-trunc-Prop : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} ( g : B → C) (f : A → B) → ( functor-trunc-Prop (g ∘ f)) ~ ( (functor-trunc-Prop g) ∘ (functor-trunc-Prop f)) comp-functor-trunc-Prop g f = htpy-uniqueness-functor-trunc-Prop ( g ∘ f) ( (functor-trunc-Prop g) ∘ (functor-trunc-Prop f)) ( ( (functor-trunc-Prop g) ·l (htpy-functor-trunc-Prop f)) ∙h ( ( htpy-functor-trunc-Prop g) ·r f)) -- Section 13.2 Propositional truncations as higher inductive types -- Definition 13.2.1 case-paths-induction-principle-propositional-truncation : { l : Level} {l1 l2 : Level} {A : UU l1} ( P : UU-Prop l2) (α : (p q : type-Prop P) → Id p q) (f : A → type-Prop P) → ( B : type-Prop P → UU l) → UU (l ⊔ l2) case-paths-induction-principle-propositional-truncation P α f B = (p q : type-Prop P) (x : B p) (y : B q) → Id (tr B (α p q) x) y induction-principle-propositional-truncation : (l : Level) {l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) (α : (p q : type-Prop P) → Id p q) (f : A → type-Prop P) → UU (lsuc l ⊔ l1 ⊔ l2) induction-principle-propositional-truncation l {l1} {l2} {A} P α f = ( B : type-Prop P → UU l) → ( g : (x : A) → (B (f x))) → ( β : case-paths-induction-principle-propositional-truncation P α f B) → Σ ((p : type-Prop P) → B p) (λ h → (x : A) → Id (h (f x)) (g x)) -- Lemma 13.2.2 is-prop-case-paths-induction-principle-propositional-truncation : { l : Level} {l1 l2 : Level} {A : UU l1} ( P : UU-Prop l2) (α : (p q : type-Prop P) → Id p q) (f : A → type-Prop P) → ( B : type-Prop P → UU l) → case-paths-induction-principle-propositional-truncation P α f B → ( p : type-Prop P) → is-prop (B p) is-prop-case-paths-induction-principle-propositional-truncation P α f B β p = is-prop-is-contr-if-inh (λ x → pair (tr B (α p p) x) (β p p x)) case-paths-induction-principle-propositional-truncation-is-prop : { l : Level} {l1 l2 : Level} {A : UU l1} ( P : UU-Prop l2) (α : (p q : type-Prop P) → Id p q) (f : A → type-Prop P) → ( B : type-Prop P → UU l) → ( (p : type-Prop P) → is-prop (B p)) → case-paths-induction-principle-propositional-truncation P α f B case-paths-induction-principle-propositional-truncation-is-prop P α f B is-prop-B p q x y = is-prop'-is-prop (is-prop-B q) (tr B (α p q) x) y -- Definition 13.2.3 dependent-universal-property-propositional-truncation : ( l : Level) {l1 l2 : Level} {A : UU l1} ( P : UU-Prop l2) (f : A → type-Prop P) → UU (lsuc l ⊔ l1 ⊔ l2) dependent-universal-property-propositional-truncation l {l1} {l2} {A} P f = ( Q : type-Prop P → UU-Prop l) → is-equiv (precomp-Π f (type-Prop ∘ Q)) -- Theorem 13.2.4 abstract dependent-universal-property-is-propositional-truncation : { l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) (f : A → type-Prop P) → ( {l : Level} → is-propositional-truncation l P f) → ( {l : Level} → dependent-universal-property-propositional-truncation l P f) dependent-universal-property-is-propositional-truncation {l1} {l2} {A} P f is-ptr-f Q = is-fiberwise-equiv-is-equiv-toto-is-equiv-base-map ( λ (g : A → type-Prop P) → (x : A) → type-Prop (Q (g x))) ( precomp f (type-Prop P)) ( λ h → precomp-Π f (λ p → type-Prop (Q (h p)))) ( is-ptr-f P) ( is-equiv-top-is-equiv-bottom-square ( inv-choice-∞ { C = λ (x : type-Prop P) (p : type-Prop P) → type-Prop (Q p)}) ( inv-choice-∞ { C = λ (x : A) (p : type-Prop P) → type-Prop (Q p)}) ( toto ( λ (g : A → type-Prop P) → (x : A) → type-Prop (Q (g x))) ( precomp f (type-Prop P)) ( λ h → precomp-Π f (λ p → type-Prop (Q (h p))))) ( precomp f (Σ (type-Prop P) (λ p → type-Prop (Q p)))) ( ind-Σ (λ h h' → refl)) ( is-equiv-inv-choice-∞) ( is-equiv-inv-choice-∞) ( is-ptr-f (Σ-Prop P Q))) ( id {A = type-Prop P}) dependent-universal-property-trunc-Prop : {l l1 : Level} (A : UU l1) → dependent-universal-property-propositional-truncation l ( trunc-Prop A) ( unit-trunc-Prop A) dependent-universal-property-trunc-Prop A = dependent-universal-property-is-propositional-truncation ( trunc-Prop A) ( unit-trunc-Prop A) ( is-propositional-truncation-trunc-Prop A) abstract is-propositional-truncation-dependent-universal-property : { l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) (f : A → type-Prop P) → ( {l : Level} → dependent-universal-property-propositional-truncation l P f) → ( {l : Level} → is-propositional-truncation l P f) is-propositional-truncation-dependent-universal-property P f dup-f Q = dup-f (λ p → Q) abstract induction-principle-dependent-universal-property-propositional-truncation : { l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) (f : A → type-Prop P) → ( {l : Level} → dependent-universal-property-propositional-truncation l P f) → ( {l : Level} → induction-principle-propositional-truncation l P ( is-prop'-is-prop (is-prop-type-Prop P)) f) induction-principle-dependent-universal-property-propositional-truncation P f dup-f B g α = tot ( λ h → htpy-eq) ( center ( is-contr-map-is-equiv ( dup-f ( λ p → pair ( B p) ( is-prop-case-paths-induction-principle-propositional-truncation ( P) ( is-prop'-is-prop (is-prop-type-Prop P)) f B α p))) ( g))) abstract dependent-universal-property-induction-principle-propositional-truncation : { l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) (f : A → type-Prop P) → ( {l : Level} → induction-principle-propositional-truncation l P ( is-prop'-is-prop (is-prop-type-Prop P)) f) → ( {l : Level} → dependent-universal-property-propositional-truncation l P f) dependent-universal-property-induction-principle-propositional-truncation P f ind-f Q = is-equiv-is-prop ( is-prop-Π (λ p → is-prop-type-Prop (Q p))) ( is-prop-Π (λ a → is-prop-type-Prop (Q (f a)))) ( λ g → pr1 ( ind-f ( λ p → type-Prop (Q p)) ( g) ( case-paths-induction-principle-propositional-truncation-is-prop ( P) ( is-prop'-is-prop (is-prop-type-Prop P)) ( f) ( λ p → type-Prop (Q p)) ( λ p → is-prop-type-Prop (Q p))))) -- Exercises -- Exercise 13.1 is-propositional-truncation-retract : {l l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) → (R : (type-Prop P) retract-of A) → is-propositional-truncation l P (retraction-retract-of R) is-propositional-truncation-retract {A = A} P R Q = is-equiv-is-prop ( is-prop-function-type ( type-Prop P) ( type-Prop Q) ( is-prop-type-Prop Q)) ( is-prop-function-type ( A) ( type-Prop Q) ( is-prop-type-Prop Q)) ( λ g → g ∘ (section-retract-of R)) -- Exercise 13.2 is-propositional-truncation-prod : {l1 l2 l3 l4 : Level} {A : UU l1} (P : UU-Prop l2) (f : A → type-Prop P) {A' : UU l3} (P' : UU-Prop l4) (f' : A' → type-Prop P') → ({l : Level} → is-propositional-truncation l P f) → ({l : Level} → is-propositional-truncation l P' f') → {l : Level} → is-propositional-truncation l (prod-Prop P P') (functor-prod f f') is-propositional-truncation-prod P f P' f' is-ptr-f is-ptr-f' Q = is-equiv-top-is-equiv-bottom-square ( ev-pair) ( ev-pair) ( precomp (functor-prod f f') (type-Prop Q)) ( λ h a a' → h (f a) (f' a')) ( refl-htpy) ( is-equiv-ev-pair) ( is-equiv-ev-pair) ( is-equiv-comp' ( λ h a a' → h a (f' a')) ( λ h a p' → h (f a) p') ( is-ptr-f (pair (type-hom-Prop P' Q) (is-prop-type-hom-Prop P' Q))) ( is-equiv-postcomp-Π ( λ a g a' → g (f' a')) ( λ a → is-ptr-f' Q))) equiv-prod-trunc-Prop : {l1 l2 : Level} (A : UU l1) (A' : UU l2) → equiv-Prop (trunc-Prop (A × A')) (prod-Prop (trunc-Prop A) (trunc-Prop A')) equiv-prod-trunc-Prop A A' = pr1 ( center ( is-uniquely-unique-propositional-truncation ( trunc-Prop (A × A')) ( prod-Prop (trunc-Prop A) (trunc-Prop A')) ( unit-trunc-Prop (A × A')) ( functor-prod (unit-trunc-Prop A) (unit-trunc-Prop A')) ( is-propositional-truncation-trunc-Prop (A × A')) ( is-propositional-truncation-prod ( trunc-Prop A) ( unit-trunc-Prop A) ( trunc-Prop A') ( unit-trunc-Prop A') ( is-propositional-truncation-trunc-Prop A) ( is-propositional-truncation-trunc-Prop A')))) -- Exercise 13.3 -- Exercise 13.3(a) conj-Prop = prod-Prop disj-Prop : {l1 l2 : Level} → UU-Prop l1 → UU-Prop l2 → UU-Prop (l1 ⊔ l2) disj-Prop P Q = trunc-Prop (coprod (type-Prop P) (type-Prop Q)) inl-disj-Prop : {l1 l2 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) → type-hom-Prop P (disj-Prop P Q) inl-disj-Prop P Q = (unit-trunc-Prop (coprod (type-Prop P) (type-Prop Q))) ∘ inl inr-disj-Prop : {l1 l2 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) → type-hom-Prop Q (disj-Prop P Q) inr-disj-Prop P Q = (unit-trunc-Prop (coprod (type-Prop P) (type-Prop Q))) ∘ inr -- Exercise 13.3(b) ev-disj-Prop : {l1 l2 l3 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) (R : UU-Prop l3) → type-hom-Prop ( hom-Prop (disj-Prop P Q) R) ( conj-Prop (hom-Prop P R) (hom-Prop Q R)) ev-disj-Prop P Q R h = pair (h ∘ (inl-disj-Prop P Q)) (h ∘ (inr-disj-Prop P Q)) inv-ev-disj-Prop : {l1 l2 l3 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) (R : UU-Prop l3) → type-hom-Prop ( conj-Prop (hom-Prop P R) (hom-Prop Q R)) ( hom-Prop (disj-Prop P Q) R) inv-ev-disj-Prop P Q R (pair f g) = map-universal-property-trunc-Prop R (ind-coprod (λ t → type-Prop R) f g) is-equiv-ev-disj-Prop : {l1 l2 l3 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) (R : UU-Prop l3) → is-equiv (ev-disj-Prop P Q R) is-equiv-ev-disj-Prop P Q R = is-equiv-is-prop ( is-prop-type-Prop (hom-Prop (disj-Prop P Q) R)) ( is-prop-type-Prop (conj-Prop (hom-Prop P R) (hom-Prop Q R))) ( inv-ev-disj-Prop P Q R) -- Exercise 13.5 {- impredicative-trunc-Prop : {l : Level} → UU l → UU-Prop (lsuc l) impredicative-trunc-Prop {l} A = (P : UU-Prop l) → (A → type-Prop P) → type-Prop P -}
{ "alphanum_fraction": 0.5925559482, "avg_line_length": 36.5318416523, "ext": "agda", "hexsha": "eae7466b26daa73b65319b6c65be12695976f95d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "hemangandhi/HoTT-Intro", "max_forks_repo_path": "Agda/13-propositional-truncation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "hemangandhi/HoTT-Intro", "max_issues_repo_path": "Agda/13-propositional-truncation.agda", "max_line_length": 146, "max_stars_count": null, "max_stars_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "hemangandhi/HoTT-Intro", "max_stars_repo_path": "Agda/13-propositional-truncation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 8268, "size": 21225 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Convenient syntax for reasoning with a partial setoid ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Relation.Binary.Reasoning.PartialSetoid {s₁ s₂} (S : PartialSetoid s₁ s₂) where open PartialSetoid S import Relation.Binary.Reasoning.Base.Partial _≈_ trans as Base ------------------------------------------------------------------------ -- Re-export the contents of the base module open Base public hiding (step-∼) ------------------------------------------------------------------------ -- Additional reasoning combinators infixr 2 step-≈ step-≈˘ -- A step using an equality step-≈ = Base.step-∼ syntax step-≈ x y≈z x≈y = x ≈⟨ x≈y ⟩ y≈z -- A step using a symmetric equality step-≈˘ : ∀ x {y z} → y IsRelatedTo z → y ≈ x → x IsRelatedTo z step-≈˘ x y∼z y≈x = x ≈⟨ sym y≈x ⟩ y∼z syntax step-≈˘ x y≈z y≈x = x ≈˘⟨ y≈x ⟩ y≈z
{ "alphanum_fraction": 0.4851390221, "avg_line_length": 27.4473684211, "ext": "agda", "hexsha": "be686b19ea8b4f1eda398dab940dd037d9d6fae8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Reasoning/PartialSetoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Reasoning/PartialSetoid.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Reasoning/PartialSetoid.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 294, "size": 1043 }
module Issue1232.Fin where data Fin : Set where zero : Fin
{ "alphanum_fraction": 0.7142857143, "avg_line_length": 10.5, "ext": "agda", "hexsha": "c695f54820524ed503c04495227ff19c089b738e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue1232/Fin.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue1232/Fin.agda", "max_line_length": 26, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue1232/Fin.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 20, "size": 63 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} import LibraBFT.Impl.Consensus.ConsensusTypes.Vote as Vote import LibraBFT.Impl.Consensus.ConsensusTypes.TimeoutCertificate as TimeoutCertificate open import LibraBFT.Impl.OBM.Rust.RustTypes import LibraBFT.Impl.Types.CryptoProxies as CryptoProxies import LibraBFT.Impl.Types.LedgerInfoWithSignatures as LedgerInfoWithSignatures import LibraBFT.Impl.Types.ValidatorVerifier as ValidatorVerifier open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Util.Crypto open import LibraBFT.ImplShared.Util.Dijkstra.All open import Optics.All open import Util.Hash import Util.KVMap as Map open import Util.Prelude module LibraBFT.Impl.Consensus.PendingVotes where insertVoteM : Vote → ValidatorVerifier → LBFT VoteReceptionResult insertVoteM vote vv = do let liDigest = hashLI (vote ^∙ vLedgerInfo) atv ← use (lPendingVotes ∙ pvAuthorToVote) caseMD Map.lookup (vote ^∙ vAuthor) atv of λ where (just previouslySeenVote) → ifD liDigest ≟Hash (hashLI (previouslySeenVote ^∙ vLedgerInfo)) then (do let newTimeoutVote = Vote.isTimeout vote ∧ not (Vote.isTimeout previouslySeenVote) if not newTimeoutVote then pure DuplicateVote else continue1 liDigest) else pure EquivocateVote nothing → continue1 liDigest where continue2 : U64 → LBFT VoteReceptionResult continue1 : HashValue → LBFT VoteReceptionResult continue1 liDigest = do pv ← use lPendingVotes lPendingVotes ∙ pvAuthorToVote %= Map.kvm-insert-Haskell (vote ^∙ vAuthor) vote let liWithSig = CryptoProxies.addToLi (vote ^∙ vAuthor) (vote ^∙ vSignature) (fromMaybe (LedgerInfoWithSignatures∙new (vote ^∙ vLedgerInfo) Map.empty) (Map.lookup liDigest (pv ^∙ pvLiDigestToVotes))) lPendingVotes ∙ pvLiDigestToVotes %= Map.kvm-insert-Haskell liDigest liWithSig case⊎D ValidatorVerifier.checkVotingPower vv (Map.kvm-keys (liWithSig ^∙ liwsSignatures)) of λ where (Right unit) → pure (NewQuorumCertificate (QuorumCert∙new (vote ^∙ vVoteData) liWithSig)) (Left (ErrVerify (TooLittleVotingPower votingPower _))) → continue2 votingPower (Left _) → pure VRR_TODO continue2 qcVotingPower = caseMD vote ^∙ vTimeoutSignature of λ where (just timeoutSignature) → do pv ← use lPendingVotes let partialTc = TimeoutCertificate.addSignature (vote ^∙ vAuthor) timeoutSignature (fromMaybe (TimeoutCertificate∙new (Vote.timeout vote)) (pv ^∙ pvMaybePartialTC)) lPendingVotes ∙ pvMaybePartialTC %= const (just partialTc) case⊎D ValidatorVerifier.checkVotingPower vv (Map.kvm-keys (partialTc ^∙ tcSignatures)) of λ where (Right unit) → pure (NewTimeoutCertificate partialTc) (Left (ErrVerify (TooLittleVotingPower votingPower _))) → pure (TCVoteAdded votingPower) (Left _) → pure VRR_TODO nothing → pure (QCVoteAdded qcVotingPower)
{ "alphanum_fraction": 0.674, "avg_line_length": 43.75, "ext": "agda", "hexsha": "5f36e103fb40f85d852a77237559651122f50cde", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Consensus/PendingVotes.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Consensus/PendingVotes.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Consensus/PendingVotes.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 914, "size": 3500 }
{-# OPTIONS --without-K --safe #-} module Polynomial.Simple.AlmostCommutativeRing where import Algebra.Solver.Ring.AlmostCommutativeRing as Complex open import Level open import Relation.Binary open import Algebra open import Algebra.Structures open import Algebra.FunctionProperties import Algebra.Morphism as Morphism open import Function open import Level open import Data.Maybe as Maybe using (Maybe; just; nothing) record IsAlmostCommutativeRing {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) (_+_ _*_ : A → A → A) (-_ : A → A) (0# 1# : A) : Set (a ⊔ ℓ) where field isCommutativeSemiring : IsCommutativeSemiring _≈_ _+_ _*_ 0# 1# -‿cong : -_ Preserves _≈_ ⟶ _≈_ -‿*-distribˡ : ∀ x y → ((- x) * y) ≈ (- (x * y)) -‿+-comm : ∀ x y → ((- x) + (- y)) ≈ (- (x + y)) open IsCommutativeSemiring isCommutativeSemiring public import Polynomial.Exponentiation as Exp record AlmostCommutativeRing c ℓ : Set (suc (c ⊔ ℓ)) where infix 8 -_ infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ infixr 8 _^_ field Carrier : Set c _≈_ : Rel Carrier ℓ _+_ : Op₂ Carrier _*_ : Op₂ Carrier -_ : Op₁ Carrier 0# : Carrier 0≟_ : (x : Carrier) → Maybe (0# ≈ x) 1# : Carrier isAlmostCommutativeRing : IsAlmostCommutativeRing _≈_ _+_ _*_ -_ 0# 1# open IsAlmostCommutativeRing isAlmostCommutativeRing hiding (refl) public open import Data.Nat as ℕ using (ℕ) commutativeSemiring : CommutativeSemiring _ _ commutativeSemiring = record { isCommutativeSemiring = isCommutativeSemiring } open CommutativeSemiring commutativeSemiring public using ( +-semigroup; +-monoid; +-commutativeMonoid ; *-semigroup; *-monoid; *-commutativeMonoid ; semiring ) rawRing : RawRing _ _ rawRing = record { Carrier = Carrier ; _≈_ = _≈_ ; _+_ = _+_ ; _*_ = _*_ ; -_ = -_ ; 0# = 0# ; 1# = 1# } _^_ : Carrier → ℕ → Carrier _^_ = Exp._^_ rawRing {-# NOINLINE _^_ #-} refl : ∀ {x} → x ≈ x refl = IsAlmostCommutativeRing.refl isAlmostCommutativeRing flipped : ∀ {c ℓ} → AlmostCommutativeRing c ℓ → AlmostCommutativeRing c ℓ flipped rng = record { Carrier = Carrier ; _≈_ = _≈_ ; _+_ = flip _+_ ; _*_ = flip _*_ ; -_ = -_ ; 0# = 0# ; 0≟_ = 0≟_ ; 1# = 1# ; isAlmostCommutativeRing = record { -‿cong = -‿cong ; -‿*-distribˡ = λ x y → *-comm y (- x) ⟨ trans ⟩ (-‿*-distribˡ x y ⟨ trans ⟩ -‿cong (*-comm x y)) ; -‿+-comm = λ x y → -‿+-comm y x ; isCommutativeSemiring = record { +-isCommutativeMonoid = record { isSemigroup = record { isMagma = record { isEquivalence = isEquivalence ; ∙-cong = flip (+-cong ) } ; assoc = λ x y z → sym (+-assoc z y x) } ; identityˡ = +-identityʳ ; comm = λ x y → +-comm y x } ; *-isCommutativeMonoid = record { isSemigroup = record { isMagma = record { isEquivalence = isEquivalence ; ∙-cong = flip (*-cong ) } ; assoc = λ x y z → sym (*-assoc z y x) } ; identityˡ = *-identityʳ ; comm = λ x y → *-comm y x } ; distribʳ = λ x y z → distribˡ _ _ _ ; zeroˡ = zeroʳ } } } where open AlmostCommutativeRing rng record _-Raw-AlmostCommutative⟶_ {c r₁ r₂ r₃} (From : RawRing c r₁) (To : AlmostCommutativeRing r₂ r₃) : Set (c ⊔ r₁ ⊔ r₂ ⊔ r₃) where private module F = RawRing From module T = AlmostCommutativeRing To open Morphism.Definitions F.Carrier T.Carrier T._≈_ field ⟦_⟧ : Morphism +-homo : Homomorphic₂ ⟦_⟧ F._+_ T._+_ *-homo : Homomorphic₂ ⟦_⟧ F._*_ T._*_ -‿homo : Homomorphic₁ ⟦_⟧ F.-_ T.-_ 0-homo : Homomorphic₀ ⟦_⟧ F.0# T.0# 1-homo : Homomorphic₀ ⟦_⟧ F.1# T.1# -raw-almostCommutative⟶ : ∀ {r₁ r₂} (R : AlmostCommutativeRing r₁ r₂) → AlmostCommutativeRing.rawRing R -Raw-AlmostCommutative⟶ R -raw-almostCommutative⟶ R = record { ⟦_⟧ = id ; +-homo = λ _ _ → refl ; *-homo = λ _ _ → refl ; -‿homo = λ _ → refl ; 0-homo = refl ; 1-homo = refl } where open AlmostCommutativeRing R -- A homomorphism induces a notion of equivalence on the raw ring. Induced-equivalence : ∀ {c₁ c₂ ℓ₁ ℓ₂} {Coeff : RawRing c₁ ℓ₁} {R : AlmostCommutativeRing c₂ ℓ₂} → Coeff -Raw-AlmostCommutative⟶ R → Rel (RawRing.Carrier Coeff) ℓ₂ Induced-equivalence {R = R} morphism a b = ⟦ a ⟧ ≈ ⟦ b ⟧ where open AlmostCommutativeRing R open _-Raw-AlmostCommutative⟶_ morphism ------------------------------------------------------------------------ -- Conversions -- Commutative rings are almost commutative rings. fromCommutativeRing : ∀ {r₁ r₂} → (CR : CommutativeRing r₁ r₂) → (∀ x → Maybe ((CommutativeRing._≈_ CR) (CommutativeRing.0# CR) x)) → AlmostCommutativeRing _ _ fromCommutativeRing CR 0≟_ = record { isAlmostCommutativeRing = record { isCommutativeSemiring = isCommutativeSemiring ; -‿cong = -‿cong ; -‿*-distribˡ = -‿*-distribˡ ; -‿+-comm = ⁻¹-∙-comm } ; 0≟_ = 0≟_ } where open CommutativeRing CR import Algebra.Properties.Ring as R; open R ring import Algebra.Properties.AbelianGroup as AG; open AG +-abelianGroup fromCommutativeSemiring : ∀ {r₁ r₂} → (CS : CommutativeSemiring r₁ r₂) → (∀ x → Maybe ((CommutativeSemiring._≈_ CS) (CommutativeSemiring.0# CS) x)) → AlmostCommutativeRing _ _ fromCommutativeSemiring CS 0≟_ = record { -_ = id ; isAlmostCommutativeRing = record { isCommutativeSemiring = isCommutativeSemiring ; -‿cong = id ; -‿*-distribˡ = λ _ _ → refl ; -‿+-comm = λ _ _ → refl } ; 0≟_ = 0≟_ } where open CommutativeSemiring CS
{ "alphanum_fraction": 0.5651170458, "avg_line_length": 31.2680412371, "ext": "agda", "hexsha": "d59c338f2d76f54cb6b62965347243610dd4cca9", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-20T07:07:11.000Z", "max_forks_repo_forks_event_min_datetime": "2019-04-16T02:23:16.000Z", "max_forks_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mckeankylej/agda-ring-solver", "max_forks_repo_path": "src/Polynomial/Simple/AlmostCommutativeRing.agda", "max_issues_count": 5, "max_issues_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500", "max_issues_repo_issues_event_max_datetime": "2022-03-12T01:55:42.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-17T20:48:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mckeankylej/agda-ring-solver", "max_issues_repo_path": "src/Polynomial/Simple/AlmostCommutativeRing.agda", "max_line_length": 175, "max_stars_count": 36, "max_stars_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mckeankylej/agda-ring-solver", "max_stars_repo_path": "src/Polynomial/Simple/AlmostCommutativeRing.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-15T00:57:55.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-25T16:40:52.000Z", "num_tokens": 2146, "size": 6066 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.NType2 open import lib.types.Bool open import lib.types.Empty open import lib.types.Paths open import lib.types.Pi open import lib.types.Sigma {- This file contains various lemmas that rely on lib.types.Paths or functional extensionality for pointed maps. -} module lib.types.Pointed where {- Sequences of pointed maps and paths between their compositions -} infixr 80 _◃⊙∘_ data ⊙FunctionSeq {i} : Ptd i → Ptd i → Type (lsucc i) where ⊙idf-seq : {X : Ptd i} → ⊙FunctionSeq X X _◃⊙∘_ : {X Y Z : Ptd i} (g : Y ⊙→ Z) (fs : ⊙FunctionSeq X Y) → ⊙FunctionSeq X Z infix 30 _⊙–→_ _⊙–→_ = ⊙FunctionSeq infix 90 _◃⊙idf _◃⊙idf : ∀ {i} {X Y : Ptd i} → (X ⊙→ Y) → X ⊙–→ Y _◃⊙idf fs = fs ◃⊙∘ ⊙idf-seq ⊙compose : ∀ {i} {X Y : Ptd i} → (X ⊙–→ Y) → X ⊙→ Y ⊙compose ⊙idf-seq = ⊙idf _ ⊙compose (g ◃⊙∘ fs) = g ⊙∘ ⊙compose fs record _=⊙∘_ {i} {X Y : Ptd i} (fs gs : X ⊙–→ Y) : Type i where constructor =⊙∘-in field =⊙∘-out : ⊙compose fs == ⊙compose gs open _=⊙∘_ public {- Pointed maps -} ⊙→-level : ∀ {i j} (X : Ptd i) (Y : Ptd j) {n : ℕ₋₂} → has-level n (de⊙ Y) → has-level n (X ⊙→ Y) ⊙→-level X Y Y-level = Σ-level (Π-level (λ _ → Y-level)) (λ f' → =-preserves-level Y-level) ⊙app= : ∀ {i j} {X : Ptd i} {Y : Ptd j} {f g : X ⊙→ Y} → f == g → f ⊙∼ g ⊙app= {X = X} {Y = Y} p = app= (fst= p) , ↓-ap-in (_== pt Y) (λ u → u (pt X)) (snd= p) -- function extensionality for pointed maps ⊙λ= : ∀ {i j} {X : Ptd i} {Y : Ptd j} {f g : X ⊙→ Y} → f ⊙∼ g → f == g ⊙λ= {g = g} (p , α) = pair= (λ= p) (↓-app=cst-in (↓-idf=cst-out α ∙ ap (_∙ snd g) (! (app=-β p _)))) ⊙λ=' : ∀ {i j} {X : Ptd i} {Y : Ptd j} {f g : X ⊙→ Y} (p : fst f ∼ fst g) (α : snd f == snd g [ (λ y → y == pt Y) ↓ p (pt X) ]) → f == g ⊙λ=' {g = g} = curry ⊙λ= -- associativity of pointed maps ⊙∘-assoc-pt : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} {a₁ a₂ : A} (f : A → B) {b : B} (g : B → C) {c : C} (p : a₁ == a₂) (q : f a₂ == b) (r : g b == c) → ⊙∘-pt (g ∘ f) p (⊙∘-pt g q r) == ⊙∘-pt g (⊙∘-pt f p q) r ⊙∘-assoc-pt _ _ idp _ _ = idp ⊙∘-assoc : ∀ {i j k l} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l} (h : Z ⊙→ W) (g : Y ⊙→ Z) (f : X ⊙→ Y) → ((h ⊙∘ g) ⊙∘ f) ⊙∼ (h ⊙∘ (g ⊙∘ f)) ⊙∘-assoc (h , hpt) (g , gpt) (f , fpt) = (λ _ → idp) , ⊙∘-assoc-pt g h fpt gpt hpt ⊙∘-cst-l : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} → (f : X ⊙→ Y) → (⊙cst :> (Y ⊙→ Z)) ⊙∘ f ⊙∼ ⊙cst ⊙∘-cst-l {Z = Z} f = (λ _ → idp) , ap (_∙ idp) (ap-cst (pt Z) (snd f)) ⊙∘-cst-r : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} → (f : Y ⊙→ Z) → f ⊙∘ (⊙cst :> (X ⊙→ Y)) ⊙∼ ⊙cst ⊙∘-cst-r {X = X} f = (λ _ → snd f) , ↓-idf=cst-in' idp private ⊙coe-pt : ∀ {i} {X Y : Ptd i} (p : X == Y) → coe (ap de⊙ p) (pt X) == pt Y ⊙coe-pt idp = idp ⊙coe : ∀ {i} {X Y : Ptd i} → X == Y → X ⊙→ Y ⊙coe p = coe (ap de⊙ p) , ⊙coe-pt p ⊙coe-equiv : ∀ {i} {X Y : Ptd i} → X == Y → X ⊙≃ Y ⊙coe-equiv p = ⊙coe p , snd (coe-equiv (ap de⊙ p)) transport-post⊙∘ : ∀ {i} {j} (X : Ptd i) {Y Z : Ptd j} (p : Y == Z) (f : X ⊙→ Y) → transport (X ⊙→_) p f == ⊙coe p ⊙∘ f transport-post⊙∘ X p@idp f = ! (⊙λ= (⊙∘-unit-l f)) ⊙coe-∙ : ∀ {i} {X Y Z : Ptd i} (p : X == Y) (q : Y == Z) → ⊙coe (p ∙ q) ◃⊙idf =⊙∘ ⊙coe q ◃⊙∘ ⊙coe p ◃⊙idf ⊙coe-∙ p@idp q = =⊙∘-in idp private ⊙coe'-pt : ∀ {i} {X Y : Ptd i} (p : de⊙ X == de⊙ Y) (q : pt X == pt Y [ idf _ ↓ p ]) → coe p (pt X) == pt Y ⊙coe'-pt p@idp q = q ⊙coe' : ∀ {i} {X Y : Ptd i} (p : de⊙ X == de⊙ Y) (q : pt X == pt Y [ idf _ ↓ p ]) → X ⊙→ Y ⊙coe' p q = coe p , ⊙coe'-pt p q private ⊙transport-pt : ∀ {i j} {A : Type i} (B : A → Ptd j) {x y : A} (p : x == y) → transport (de⊙ ∘ B) p (pt (B x)) == pt (B y) ⊙transport-pt B idp = idp ⊙transport : ∀ {i j} {A : Type i} (B : A → Ptd j) {x y : A} (p : x == y) → (B x ⊙→ B y) ⊙transport B p = transport (de⊙ ∘ B) p , ⊙transport-pt B p ⊙transport-∙ : ∀ {i j} {A : Type i} (B : A → Ptd j) {x y z : A} (p : x == y) (q : y == z) → ⊙transport B (p ∙ q) ◃⊙idf =⊙∘ ⊙transport B q ◃⊙∘ ⊙transport B p ◃⊙idf ⊙transport-∙ B p@idp q = =⊙∘-in idp ⊙transport-⊙coe : ∀ {i j} {A : Type i} (B : A → Ptd j) {x y : A} (p : x == y) → ⊙transport B p == ⊙coe (ap B p) ⊙transport-⊙coe B p@idp = idp ⊙transport-natural : ∀ {i j k} {A : Type i} {B : A → Ptd j} {C : A → Ptd k} {x y : A} (p : x == y) (h : ∀ a → B a ⊙→ C a) → h y ⊙∘ ⊙transport B p == ⊙transport C p ⊙∘ h x ⊙transport-natural p@idp h = ! (⊙λ= (⊙∘-unit-l (h _))) {- This requires that B and C have the same universe level -} ⊙transport-natural-=⊙∘ : ∀ {i j} {A : Type i} {B C : A → Ptd j} {x y : A} (p : x == y) (h : ∀ a → B a ⊙→ C a) → h y ◃⊙∘ ⊙transport B p ◃⊙idf =⊙∘ ⊙transport C p ◃⊙∘ h x ◃⊙idf ⊙transport-natural-=⊙∘ p h = =⊙∘-in (⊙transport-natural p h) {- Pointed equivalences -} -- Extracting data from an pointed equivalence module _ {i j} {X : Ptd i} {Y : Ptd j} (⊙e : X ⊙≃ Y) where ⊙≃-to-≃ : de⊙ X ≃ de⊙ Y ⊙≃-to-≃ = fst (fst ⊙e) , snd ⊙e ⊙–> : X ⊙→ Y ⊙–> = fst ⊙e ⊙–>-pt = snd ⊙–> ⊙<– : Y ⊙→ X ⊙<– = is-equiv.g (snd ⊙e) , lemma ⊙e where lemma : {Y : Ptd j} (⊙e : X ⊙≃ Y) → is-equiv.g (snd ⊙e) (pt Y) == pt X lemma ((f , idp) , f-ise) = is-equiv.g-f f-ise (pt X) ⊙<–-pt = snd ⊙<– infix 120 _⊙⁻¹ _⊙⁻¹ : Y ⊙≃ X _⊙⁻¹ = ⊙<– , is-equiv-inverse (snd ⊙e) module _ {i j} {X : Ptd i} {Y : Ptd j} where ⊙<–-inv-l : (⊙e : X ⊙≃ Y) → ⊙<– ⊙e ⊙∘ ⊙–> ⊙e == ⊙idf _ ⊙<–-inv-l ⊙e = ⊙λ= (<–-inv-l (⊙≃-to-≃ ⊙e) , ↓-idf=cst-in' (lemma ⊙e)) where lemma : {Y : Ptd j} (⊙e : X ⊙≃ Y) → snd (⊙<– ⊙e ⊙∘ ⊙–> ⊙e) == is-equiv.g-f (snd ⊙e) (pt X) lemma ((f , idp) , f-ise) = idp ⊙<–-inv-r : (⊙e : X ⊙≃ Y) → ⊙–> ⊙e ⊙∘ ⊙<– ⊙e == ⊙idf _ ⊙<–-inv-r ⊙e = ⊙λ= (<–-inv-r (⊙≃-to-≃ ⊙e) , ↓-idf=cst-in' (lemma ⊙e)) where lemma : {Y : Ptd j} (⊙e : X ⊙≃ Y) → snd (⊙–> ⊙e ⊙∘ ⊙<– ⊙e) == is-equiv.f-g (snd ⊙e) (pt Y) lemma ((f , idp) , f-ise) = ∙-unit-r _ ∙ is-equiv.adj f-ise (pt X) module _ {i} {X Y : Ptd i} where ⊙<–-inv-l-=⊙∘ : (⊙e : X ⊙≃ Y) → ⊙<– ⊙e ◃⊙∘ ⊙–> ⊙e ◃⊙idf =⊙∘ ⊙idf-seq ⊙<–-inv-l-=⊙∘ ⊙e = =⊙∘-in (⊙<–-inv-l ⊙e) ⊙<–-inv-r-=⊙∘ : (⊙e : X ⊙≃ Y) → ⊙–> ⊙e ◃⊙∘ ⊙<– ⊙e ◃⊙idf =⊙∘ ⊙idf-seq ⊙<–-inv-r-=⊙∘ ⊙e = =⊙∘-in (⊙<–-inv-r ⊙e) module _ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} (⊙e : X ⊙≃ Y) where post⊙∘-is-equiv : is-equiv (λ (k : Z ⊙→ X) → ⊙–> ⊙e ⊙∘ k) post⊙∘-is-equiv = is-eq (⊙–> ⊙e ⊙∘_) (⊙<– ⊙e ⊙∘_) (to-from ⊙e) (from-to ⊙e) where abstract to-from : ∀ {Y} (⊙e : X ⊙≃ Y) (k : Z ⊙→ Y) → ⊙–> ⊙e ⊙∘ (⊙<– ⊙e ⊙∘ k) == k to-from ((f , idp) , f-ise) (k , k-pt) = ⊙λ=' (f.f-g ∘ k) (↓-idf=cst-in' $ lemma k-pt) where module f = is-equiv f-ise lemma : ∀ {y₀} (k-pt : y₀ == f (pt X)) → ⊙∘-pt f (⊙∘-pt f.g k-pt (f.g-f _)) idp == f.f-g y₀ ∙' k-pt lemma idp = ∙-unit-r _ ∙ f.adj _ from-to : ∀ {Y} (⊙e : X ⊙≃ Y) (k : Z ⊙→ X) → ⊙<– ⊙e ⊙∘ (⊙–> ⊙e ⊙∘ k) == k from-to ((f , idp) , f-ise) (k , idp) = ⊙λ=' (f.g-f ∘ k) $ ↓-idf=cst-in' idp where module f = is-equiv f-ise post⊙∘-equiv : (Z ⊙→ X) ≃ (Z ⊙→ Y) post⊙∘-equiv = _ , post⊙∘-is-equiv pre⊙∘-is-equiv : is-equiv (λ (k : Y ⊙→ Z) → k ⊙∘ ⊙–> ⊙e) pre⊙∘-is-equiv = is-eq (_⊙∘ ⊙–> ⊙e) (_⊙∘ ⊙<– ⊙e) (to-from ⊙e) (from-to ⊙e) where abstract to-from : ∀ {Z} (⊙e : X ⊙≃ Y) (k : X ⊙→ Z) → (k ⊙∘ ⊙<– ⊙e) ⊙∘ ⊙–> ⊙e == k to-from ((f , idp) , f-ise) (k , idp) = ⊙λ=' (ap k ∘ f.g-f) $ ↓-idf=cst-in' $ ∙-unit-r _ where module f = is-equiv f-ise from-to : ∀ {Z} (⊙e : X ⊙≃ Y) (k : Y ⊙→ Z) → (k ⊙∘ ⊙–> ⊙e) ⊙∘ ⊙<– ⊙e == k from-to ((f , idp) , f-ise) (k , idp) = ⊙λ=' (ap k ∘ f.f-g) $ ↓-idf=cst-in' $ ∙-unit-r _ ∙ ap-∘ k f (f.g-f (pt X)) ∙ ap (ap k) (f.adj (pt X)) where module f = is-equiv f-ise pre⊙∘-equiv : (Y ⊙→ Z) ≃ (X ⊙→ Z) pre⊙∘-equiv = _ , pre⊙∘-is-equiv {- Pointed maps out of bool -} -- intuition : [f true] is fixed and the only changable part is [f false]. ⊙Bool→-to-idf : ∀ {i} {X : Ptd i} → ⊙Bool ⊙→ X → de⊙ X ⊙Bool→-to-idf (h , _) = h false ⊙Bool→-equiv-idf : ∀ {i} (X : Ptd i) → (⊙Bool ⊙→ X) ≃ de⊙ X ⊙Bool→-equiv-idf {i} X = equiv ⊙Bool→-to-idf g f-g g-f where g : de⊙ X → ⊙Bool ⊙→ X g x = Bool-rec (pt X) x , idp abstract f-g : ∀ x → ⊙Bool→-to-idf (g x) == x f-g x = idp g-f : ∀ H → g (⊙Bool→-to-idf H) == H g-f (h , hpt) = pair= (λ= lemma) (↓-app=cst-in $ idp =⟨ ! (!-inv-l hpt) ⟩ ! hpt ∙ hpt =⟨ ! (app=-β lemma true) |in-ctx (λ w → w ∙ hpt) ⟩ app= (λ= lemma) true ∙ hpt =∎) where lemma : ∀ b → fst (g (h false)) b == h b lemma true = ! hpt lemma false = idp ⊙Bool→-equiv-idf-nat : ∀ {i j} {X : Ptd i} {Y : Ptd j} (F : X ⊙→ Y) → CommSquareEquiv (F ⊙∘_) (fst F) ⊙Bool→-to-idf ⊙Bool→-to-idf ⊙Bool→-equiv-idf-nat F = (comm-sqr λ _ → idp) , snd (⊙Bool→-equiv-idf _) , snd (⊙Bool→-equiv-idf _)
{ "alphanum_fraction": 0.438290254, "avg_line_length": 32.6167883212, "ext": "agda", "hexsha": "86ef4538d0b91c50d083a070efd14d4084919bfe", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Pointed.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Pointed.agda", "max_line_length": 94, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Pointed.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 4928, "size": 8937 }
open import Signature -- | One signature for terms and one for predicates. module Logic (Σ Δ : Sig) (V : Set) where open import Data.Empty renaming (⊥ to Ø) open import Data.Unit open import Data.Sum open import Data.Product renaming (Σ to ∐) open import Data.Nat open import Data.Fin FinSet : Set → Set FinSet X = ∃ λ n → (Fin n → X) dom : ∀{X} → FinSet X → Set dom (n , _) = Fin n get : ∀{X} (F : FinSet X) → dom F → X get (_ , f) k = f k drop : ∀{X} (F : FinSet domEmpty : ∀{X} → FinSet X → Set domEmpty (zero , _) = ⊤ domEmpty (suc _ , _) = Ø open import Terms Σ Term : Set Term = T V -- | An atom is either a predicate on terms or bottom. Atom : Set Atom = ⟪ Δ ⟫ Term -- ⊎ ⊤ {- ⊥ : Atom ⊥ = inj₂ tt -} Formula : Set Formula = Atom Sentence : Set Sentence = FinSet Formula data Parity : Set where ind : Parity coind : Parity record Clause : Set where constructor _⊢[_]_ field head : Sentence par : Parity concl : Formula open Clause public Program : Set Program = FinSet Clause indClauses : Program → Program indClauses (zero , P) = zero , λ () indClauses (suc n , P) = {!!}
{ "alphanum_fraction": 0.6318141197, "avg_line_length": 16.7014925373, "ext": "agda", "hexsha": "bca5438b8a2ccaa4cef75fbbc93790cdd8354fa0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "LP/Logic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "LP/Logic.agda", "max_line_length": 54, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "LP/Logic.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 382, "size": 1119 }
-- Andreas, 2017-01-24, issue #2429 -- Respect subtyping also for irrelevant lambdas! -- Subtyping: (.A → B) ≤ (A → B) -- Where a function is expected, we can put one which does not use its argument. id : ∀{A B : Set} → (.A → B) → A → B id f = f test : ∀{A B : Set} → (.A → B) → A → B test f = λ .a → f a -- Should work! -- The eta-expansion should not change anything!
{ "alphanum_fraction": 0.5962566845, "avg_line_length": 24.9333333333, "ext": "agda", "hexsha": "1dd1c054a64bc2094ce3cb55a002c843a24916ba", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2429-subtyping.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Succeed/Issue2429-subtyping.agda", "max_line_length": 80, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Succeed/Issue2429-subtyping.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 128, "size": 374 }
{-# OPTIONS --cubical --safe #-} module Data.Empty.Properties where open import Data.Empty.Base open import Level open import HLevels isProp⊥ : isProp ⊥ isProp⊥ () isProp¬ : (A : Type a) → isProp (¬ A) isProp¬ _ f g i x = isProp⊥ (f x) (g x) i
{ "alphanum_fraction": 0.6506024096, "avg_line_length": 16.6, "ext": "agda", "hexsha": "249a09694759c91090725e8e72779e179524dcd6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Empty/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Empty/Properties.agda", "max_line_length": 41, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Empty/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 88, "size": 249 }
------------------------------------------------------------------------ -- The Agda standard library -- -- The type for booleans and some operations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Bool.Base where open import Data.Unit.Base using (⊤) open import Data.Empty open import Relation.Nullary infixr 6 _∧_ infixr 5 _∨_ _xor_ infix 0 if_then_else_ ------------------------------------------------------------------------ -- The boolean type open import Agda.Builtin.Bool public ------------------------------------------------------------------------ -- Some operations not : Bool → Bool not true = false not false = true -- A function mapping true to an inhabited type and false to an empty -- type. T : Bool → Set T true = ⊤ T false = ⊥ if_then_else_ : ∀ {a} {A : Set a} → Bool → A → A → A if true then t else f = t if false then t else f = f _∧_ : Bool → Bool → Bool true ∧ b = b false ∧ b = false _∨_ : Bool → Bool → Bool true ∨ b = true false ∨ b = b _xor_ : Bool → Bool → Bool true xor b = not b false xor b = b
{ "alphanum_fraction": 0.4857142857, "avg_line_length": 21.1320754717, "ext": "agda", "hexsha": "201ac71e304a024836603e6cf5326769f6145419", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Bool/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Bool/Base.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Bool/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 280, "size": 1120 }
open import prelude open import ch6 using (Term ; var ; fun ; _$_ ; two ; four) -- A stack is a list of values -- Values are either closures or errors data Value : Set where error : Value closure : List(Value) → Term → Value Stack = List(Value) lookup : (s : Stack) → (x : Nat) → Value lookup nil x = error lookup (v :: s) zero = v lookup (v :: s) (suc x) = lookup s x -- Big step sematics data _▷_⇓_ : Stack → Term → Value → Set where E─Var : ∀ {s x} → -------------------------- s ▷ (var x) ⇓ (lookup s x) E─Fun : ∀ {s t} → --------------------------- s ▷ (fun t) ⇓ (closure s t) E─App : ∀ {s s′ t t′ u u′ v} → s ▷ t ⇓ (closure s′ t′) → s ▷ u ⇓ u′ → (u′ :: s′) ▷ t′ ⇓ v → ------------------- s ▷ (t $ u) ⇓ v E─AppErr : ∀ {s t u} → s ▷ t ⇓ error → ------------------- s ▷ (t $ u) ⇓ error -- An interpreter result data Result : Stack → Term → Set where result : ∀ {s t} → (v : Value) → (s ▷ t ⇓ v) → ------------- Result s t {-# NON_TERMINATING #-} interpret : (s : Stack) → (t : Term) → Result s t interpret s (var x) = result (lookup s x) E─Var interpret s (fun t) = result (closure s t) E─Fun interpret s (t₁ $ t₂) = helper₁ (interpret s t₁) where helper₃ : ∀ {s′ t′ u′} → (s ▷ t₁ ⇓ (closure s′ t′)) → (s ▷ t₂ ⇓ u′) → Result (u′ :: s′) t′ → Result s (t₁ $ t₂) helper₃ p q (result v r) = result v (E─App p q r) helper₂ : ∀ {s′ t′} → (s ▷ t₁ ⇓ (closure s′ t′)) → Result s t₂ → Result s (t₁ $ t₂) helper₂ {s′} {t′} p (result u′ q) = helper₃ p q (interpret (u′ :: s′) t′) helper₁ : Result s t₁ → Result s (t₁ $ t₂) helper₁ (result error p) = result error (E─AppErr p) helper₁ (result (closure s′ t′) p) = helper₂ p (interpret s t₂) -- Shorthand for starting from the empty stack i = interpret nil
{ "alphanum_fraction": 0.4991807755, "avg_line_length": 24.0921052632, "ext": "agda", "hexsha": "bd74f1b2671a5cdc933ccfabdd1af16db26bcd63", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "de2ae6c24d001b85a5032c9e06cc731557dbc5e5", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "asajeffrey/tapl", "max_forks_repo_path": "ch6-stack-machine.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "de2ae6c24d001b85a5032c9e06cc731557dbc5e5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "asajeffrey/tapl", "max_issues_repo_path": "ch6-stack-machine.agda", "max_line_length": 113, "max_stars_count": 3, "max_stars_repo_head_hexsha": "de2ae6c24d001b85a5032c9e06cc731557dbc5e5", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "asajeffrey/tapl", "max_stars_repo_path": "ch6-stack-machine.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-15T12:09:59.000Z", "max_stars_repo_stars_event_min_datetime": "2021-03-12T22:44:19.000Z", "num_tokens": 690, "size": 1831 }
------------------------------------------------------------------------------ -- Agda-Prop Library. -- Normal Forms. ------------------------------------------------------------------------------ open import Data.Nat using (ℕ) module Data.PropFormula.NormalForms (n : ℕ) where ------------------------------------------------------------------------------ open import Data.Nat.Base public open import Data.Fin using ( Fin; #_ ) open import Data.List using ( List; [_]; []; _++_; _∷_ ; concatMap; map ) open import Data.PropFormula.Properties n using ( subst ) open import Data.PropFormula.Syntax n open import Data.PropFormula.Theorems n open import Relation.Nullary using (yes; no) open import Function using ( _∘_; _$_ ) open import Relation.Binary.PropositionalEquality using ( _≡_; sym ) ------------------------------------------------------------------------------ data Literal : Set where Var : Fin n → Literal ¬l_ : Literal → Literal Clause : Set Clause = List Literal ------------------------------------------------------------------------------ -- Conjunctive Normal Form (CNF) ------------------------------------------------------------------------------ Cnf : Set Cnf = List Clause varCnf_ : Literal → Cnf varCnf l = [ [ l ] ] _∧Cnf_ : (φ ψ : Cnf) → Cnf φ ∧Cnf ψ = φ ++ ψ _∨Cnf_ : (φ ψ : Cnf) → Cnf [] ∨Cnf ψ = ψ φ ∨Cnf [] = [] cls ∨Cnf (x ∷ ψ) = (cls ∨⋆ x) ∧Cnf (cls ∨Cnf ψ) where _∨⋆_ : Cnf → Clause → Cnf xs ∨⋆ ys = concatMap (λ x → [ x ++ ys ]) xs ¬Cnf₀_ : Literal → Literal ¬Cnf₀ Var x = ¬l Var x ¬Cnf₀ (¬l lit) = lit ¬Cnf₁ : Clause → Cnf ¬Cnf₁ [] = [] -- ¬ ⊥ → ⊤ ¬Cnf₁ cls = map (λ lit → [ ¬Cnf₀ lit ]) cls ¬Cnf : Cnf → Cnf ¬Cnf [] = [ [] ] ¬Cnf fm = concatMap (λ cl → ¬Cnf₁ cl) fm _⊃Cnf_ : (φ ψ : Cnf) → Cnf φ ⊃Cnf ψ = (¬Cnf φ) ∨Cnf ψ _⇔Cnf_ : (φ ψ : Cnf) → Cnf φ ⇔Cnf ψ = (φ ⊃Cnf ψ) ∧Cnf (ψ ⊃Cnf φ) toCnf : PropFormula → Cnf toCnf (Var x) = varCnf Var x toCnf ⊤ = [] toCnf ⊥ = [ [] ] toCnf (φ ∧ ψ) = toCnf φ ∧Cnf toCnf ψ toCnf (φ ∨ ψ) = toCnf φ ∨Cnf toCnf ψ toCnf (φ ⊃ ψ) = toCnf φ ⊃Cnf toCnf ψ toCnf (φ ⇔ ψ) = toCnf φ ⇔Cnf toCnf ψ toCnf (¬ φ) = ¬Cnf (toCnf φ) toPropLiteral : Literal → PropFormula toPropLiteral (Var x) = Var x toPropLiteral (¬l lit) = ¬ toPropLiteral lit toPropClause : Clause → PropFormula toPropClause [] = ⊥ toPropClause (l ∷ []) = toPropLiteral l toPropClause (l ∷ ls) = toPropLiteral l ∨ toPropClause ls toProp : Cnf → PropFormula toProp [] = ⊤ toProp (fm ∷ [] ) = toPropClause fm toProp (fm ∷ fms) = toPropClause fm ∧ toProp fms cnf : PropFormula → PropFormula cnf = toProp ∘ toCnf
{ "alphanum_fraction": 0.4979031643, "avg_line_length": 26.4949494949, "ext": "agda", "hexsha": "6498295209ca303935cf6de4b9e15c9d00c448a3", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2017-12-01T17:01:25.000Z", "max_forks_repo_forks_event_min_datetime": "2017-03-30T16:41:56.000Z", "max_forks_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jonaprieto/agda-prop", "max_forks_repo_path": "notes/NormalForms.agda", "max_issues_count": 18, "max_issues_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae", "max_issues_repo_issues_event_max_datetime": "2017-12-18T16:34:21.000Z", "max_issues_repo_issues_event_min_datetime": "2017-03-08T14:33:10.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jonaprieto/agda-prop", "max_issues_repo_path": "notes/NormalForms.agda", "max_line_length": 78, "max_stars_count": 13, "max_stars_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jonaprieto/agda-prop", "max_stars_repo_path": "notes/NormalForms.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T03:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2017-05-01T16:45:41.000Z", "num_tokens": 912, "size": 2623 }
module Prelude.Equality.Inspect where open import Prelude.Function using (id) open import Prelude.Equality open import Prelude.Product module _ {a b} {A : Set a} {B : A → Set b} (f : ∀ x → B x) (x : A) where -- The Graph idiom is more powerful than the old Inspect idiom -- (defined in terms of Graph below), in that it lets you both -- abstract over a term and keep the equation that the old term -- equals the abstracted variable. -- Use as follows: -- example : Γ → T (f e) -- example xs with f e | graphAt f e -- ... | z | ingraph eq = ? -- eq : f e ≡ z, goal : T z data Graph (y : B x) : Set b where ingraph : f x ≡ y → Graph y graphAt : Graph (f x) graphAt = ingraph refl {-# INLINE graphAt #-} module _ {a} {A : Set a} where Inspect : A → Set a Inspect x = Σ _ λ y → Graph id x y infix 4 _with≡_ pattern _with≡_ x eq = x , ingraph eq inspect : ∀ x → Inspect x inspect x = x , ingraph refl {-# INLINE inspect #-}
{ "alphanum_fraction": 0.6159346272, "avg_line_length": 25.7631578947, "ext": "agda", "hexsha": "563d36b35685ebbcc59c8064b791d3b66a0ef3fd", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Prelude/Equality/Inspect.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Prelude/Equality/Inspect.agda", "max_line_length": 72, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Prelude/Equality/Inspect.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 320, "size": 979 }
module Issue2492 where open import Agda.Builtin.Nat infix 0 _! data Singleton {A : Set} : A → Set where _! : (a : A) → Singleton a _ : Singleton 10 _ = {!!}
{ "alphanum_fraction": 0.6358024691, "avg_line_length": 14.7272727273, "ext": "agda", "hexsha": "d8023e5120a9b74ffdff2dc82b7083bbbbec6a4f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue2492.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue2492.agda", "max_line_length": 40, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue2492.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 57, "size": 162 }
------------------------------------------------------------------------ -- Application of substitutions ------------------------------------------------------------------------ open import Data.Universe.Indexed module deBruijn.Substitution.Data.Application.Application {i u e} {Uni : IndexedUniverse i u e} where import deBruijn.Context; open deBruijn.Context Uni open import deBruijn.Substitution.Data.Basics open import deBruijn.Substitution.Data.Map open import Level using (_⊔_) import Relation.Binary.PropositionalEquality as P -- Given an operation which applies substitutions to terms one can -- define composition of substitutions. record Application {t₁} (T₁ : Term-like t₁) {t₂} (T₂ : Term-like t₂) : Set (i ⊔ u ⊔ e ⊔ t₁ ⊔ t₂) where open Term-like T₂ renaming (_⊢_ to _⊢₂_; _≅-⊢_ to _≅-⊢₂_) field -- Application of substitutions to terms. app : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Sub T₁ ρ̂ → [ T₂ ⟶ T₂ ] ρ̂ -- Post-application of substitutions to terms. infixl 8 _/⊢_ _/⊢_ : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} → Γ ⊢₂ σ → Sub T₁ ρ̂ → Δ ⊢₂ σ /̂ ρ̂ t /⊢ ρ = app ρ · t -- Reverse composition. (Fits well with post-application.) infixl 9 _∘_ _∘_ : ∀ {Γ Δ Ε} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} → Sub T₂ ρ̂₁ → Sub T₁ ρ̂₂ → Sub T₂ (ρ̂₁ ∘̂ ρ̂₂) ρ₁ ∘ ρ₂ = map (app ρ₂) ρ₁ -- Application of multiple substitutions to terms. app⋆ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Subs T₁ ρ̂ → [ T₂ ⟶ T₂ ] ρ̂ app⋆ = fold [ T₂ ⟶ T₂ ] [id] (λ f ρ → app ρ [∘] f) infixl 8 _/⊢⋆_ _/⊢⋆_ : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} → Γ ⊢₂ σ → Subs T₁ ρ̂ → Δ ⊢₂ σ /̂ ρ̂ t /⊢⋆ ρs = app⋆ ρs · t -- Some congruence lemmas. app-cong : ∀ {Γ₁ Δ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρ₁ : Sub T₁ ρ̂₁} {Γ₂ Δ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρ₂ : Sub T₁ ρ̂₂} → ρ₁ ≅-⇨ ρ₂ → app ρ₁ ≅-⟶ app ρ₂ app-cong P.refl = [ P.refl ] /⊢-cong : ∀ {Γ₁ Δ₁ σ₁} {t₁ : Γ₁ ⊢₂ σ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρ₁ : Sub T₁ ρ̂₁} {Γ₂ Δ₂ σ₂} {t₂ : Γ₂ ⊢₂ σ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρ₂ : Sub T₁ ρ̂₂} → t₁ ≅-⊢₂ t₂ → ρ₁ ≅-⇨ ρ₂ → t₁ /⊢ ρ₁ ≅-⊢₂ t₂ /⊢ ρ₂ /⊢-cong P.refl P.refl = P.refl ∘-cong : ∀ {Γ₁ Δ₁ Ε₁} {ρ̂₁₁ : Γ₁ ⇨̂ Δ₁} {ρ̂₂₁ : Δ₁ ⇨̂ Ε₁} {ρ₁₁ : Sub T₂ ρ̂₁₁} {ρ₂₁ : Sub T₁ ρ̂₂₁} {Γ₂ Δ₂ Ε₂} {ρ̂₁₂ : Γ₂ ⇨̂ Δ₂} {ρ̂₂₂ : Δ₂ ⇨̂ Ε₂} {ρ₁₂ : Sub T₂ ρ̂₁₂} {ρ₂₂ : Sub T₁ ρ̂₂₂} → ρ₁₁ ≅-⇨ ρ₁₂ → ρ₂₁ ≅-⇨ ρ₂₂ → ρ₁₁ ∘ ρ₂₁ ≅-⇨ ρ₁₂ ∘ ρ₂₂ ∘-cong P.refl P.refl = P.refl app⋆-cong : ∀ {Γ₁ Δ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρs₁ : Subs T₁ ρ̂₁} {Γ₂ Δ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρs₂ : Subs T₁ ρ̂₂} → ρs₁ ≅-⇨⋆ ρs₂ → app⋆ ρs₁ ≅-⟶ app⋆ ρs₂ app⋆-cong P.refl = [ P.refl ] /⊢⋆-cong : ∀ {Γ₁ Δ₁ σ₁} {t₁ : Γ₁ ⊢₂ σ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρs₁ : Subs T₁ ρ̂₁} {Γ₂ Δ₂ σ₂} {t₂ : Γ₂ ⊢₂ σ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρs₂ : Subs T₁ ρ̂₂} → t₁ ≅-⊢₂ t₂ → ρs₁ ≅-⇨⋆ ρs₂ → t₁ /⊢⋆ ρs₁ ≅-⊢₂ t₂ /⊢⋆ ρs₂ /⊢⋆-cong P.refl P.refl = P.refl abstract -- An unfolding lemma. ▻-∘ : ∀ {Γ Δ Ε} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} {σ} (ρ₁ : Sub T₂ ρ̂₁) (t : Δ ⊢₂ σ / ρ₁) (ρ₂ : Sub T₁ ρ̂₂) → (ρ₁ ▻⇨[ σ ] t) ∘ ρ₂ ≅-⇨ ρ₁ ∘ ρ₂ ▻⇨[ σ ] t /⊢ ρ₂ ▻-∘ ρ₁ t ρ₂ = map-▻ (app ρ₂) ρ₁ t -- Applying a composed substitution to a variable is equivalent to -- applying one substitution and then the other. /∋-∘ : ∀ {Γ Δ Ε σ} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} (x : Γ ∋ σ) (ρ₁ : Sub T₂ ρ̂₁) (ρ₂ : Sub T₁ ρ̂₂) → x /∋ ρ₁ ∘ ρ₂ ≅-⊢₂ x /∋ ρ₁ /⊢ ρ₂ /∋-∘ x ρ₁ ρ₂ = /∋-map x (app ρ₂) ρ₁
{ "alphanum_fraction": 0.4776825303, "avg_line_length": 32.8446601942, "ext": "agda", "hexsha": "01dca6a90e4f668661fe76d4e5bfd46f2eb07b15", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/dependently-typed-syntax", "max_forks_repo_path": "deBruijn/Substitution/Data/Application/Application.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/dependently-typed-syntax", "max_issues_repo_path": "deBruijn/Substitution/Data/Application/Application.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/dependently-typed-syntax", "max_stars_repo_path": "deBruijn/Substitution/Data/Application/Application.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-08T22:51:36.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T12:14:44.000Z", "num_tokens": 1907, "size": 3383 }
-- Andreas, 2021-10-08, first test case for unsupported generalization variable X : Set Y = X -- Expected: -- Generalizable variable GeneralizeRHS.X is not supported here -- when scope checking X
{ "alphanum_fraction": 0.7412935323, "avg_line_length": 18.2727272727, "ext": "agda", "hexsha": "73d615a71d2ad8eb44aad5c98d9cef1a739bffcb", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Fail/GeneralizeRHS.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Fail/GeneralizeRHS.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Fail/GeneralizeRHS.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 53, "size": 201 }
module Text.XML.Everything where -- Imported packages import Web.URI.Everything
{ "alphanum_fraction": 0.8048780488, "avg_line_length": 13.6666666667, "ext": "agda", "hexsha": "8049889191a06130e01cb4ca53821ee9f03ba183", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:38:28.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:38:28.000Z", "max_forks_repo_head_hexsha": "ebf33024374ad8adb72d9f41432fda1465ef5f5a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-text-xml", "max_forks_repo_path": "src/Text/XML/Everything.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ebf33024374ad8adb72d9f41432fda1465ef5f5a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-text-xml", "max_issues_repo_path": "src/Text/XML/Everything.agda", "max_line_length": 32, "max_stars_count": null, "max_stars_repo_head_hexsha": "ebf33024374ad8adb72d9f41432fda1465ef5f5a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-text-xml", "max_stars_repo_path": "src/Text/XML/Everything.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 19, "size": 82 }
open import bool open import list open import nat _⇒_ : 𝕃 Set → Set → Set [] ⇒ rettp = rettp (x :: inputtps) ⇒ rettp = x → inputtps ⇒ rettp _⇒𝕃_ : 𝕃 Set → Set → Set inputtps ⇒𝕃 rettp = (map 𝕃 inputtps) ⇒ (𝕃 rettp) eatInputs : {inputtps : 𝕃 Set}{rettp : Set} → inputtps ⇒𝕃 rettp eatInputs {[]} {rettp₁} = [] eatInputs {x₁ :: inputtps₁} {rettp₁} _ = eatInputs{inputtps₁}{rettp₁} zipWith : {inputtps : 𝕃 Set}{rettp : Set} → (inputtps ⇒ rettp) → inputtps ⇒𝕃 rettp zipWith {[]} {rettp} a = [ a ] zipWith {tp :: inputtps} {rettp} f [] = eatInputs {inputtps}{rettp} zipWith {tp :: inputtps} {rettp} f (h :: t) = helper{inputtps}{rettp} (f h) (zipWith{tp :: inputtps}{rettp} f t) where helper : {inputtps : 𝕃 Set}{rettp : Set} → inputtps ⇒ rettp → inputtps ⇒𝕃 rettp → inputtps ⇒𝕃 rettp helper {[]} {rettp₁} f F = f :: F helper {tp :: inputtps} {rettp} _ _ [] = eatInputs{inputtps}{rettp} helper {tp :: inputtps} {rettp} f F (h :: t) = helper{inputtps}{rettp} (f h) (F t) testTpList : 𝕃 Set testTpList = (𝔹 :: ℕ :: ℕ :: []) test = zipWith{testTpList}{ℕ} (λ b n m → if b then n else m) (tt :: tt :: ff :: []) (1 :: 2 :: 3 :: []) (10 :: 20 :: 30 :: 1000 :: [])
{ "alphanum_fraction": 0.5614886731, "avg_line_length": 37.4545454545, "ext": "agda", "hexsha": "931c356a92dc16e02f6e189970c159a3da067913", "lang": "Agda", "max_forks_count": 17, "max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z", "max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rfindler/ial", "max_forks_repo_path": "list-zipWith.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rfindler/ial", "max_issues_repo_path": "list-zipWith.agda", "max_line_length": 134, "max_stars_count": 29, "max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rfindler/ial", "max_stars_repo_path": "list-zipWith.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z", "max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z", "num_tokens": 486, "size": 1236 }
module Data.Tuple.Equiv where import Lvl open import Data.Tuple as Tuple using (_⨯_ ; _,_) open import Structure.Function open import Structure.Operator open import Structure.Setoid open import Type private variable ℓ ℓₑ ℓₑ₁ ℓₑ₂ : Lvl.Level private variable A B : Type{ℓ} record Extensionality ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ (equiv : Equiv{ℓₑ}(A ⨯ B)) : Type{Lvl.of(A) Lvl.⊔ Lvl.of(B) Lvl.⊔ ℓₑ₁ Lvl.⊔ ℓₑ₂ Lvl.⊔ ℓₑ} where constructor intro private instance _ = equiv field ⦃ [,]-function ⦄ : BinaryOperator(_,_) ⦃ left-function ⦄ : Function(Tuple.left) ⦃ right-function ⦄ : Function(Tuple.right)
{ "alphanum_fraction": 0.688751926, "avg_line_length": 32.45, "ext": "agda", "hexsha": "d7ad47b6a4846949c3ac5a7a0662b6dc69efc153", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/Tuple/Equiv.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/Tuple/Equiv.agda", "max_line_length": 173, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/Tuple/Equiv.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 258, "size": 649 }
module PosFunction where data Functor : Set1 where |Id| : Functor |K| : Set -> Functor _|+|_ : Functor -> Functor -> Functor _|x|_ : Functor -> Functor -> Functor data _⊕_ (A B : Set) : Set where inl : A -> A ⊕ B inr : B -> A ⊕ B data _×_ (A B : Set) : Set where _,_ : A -> B -> A × B -- The positivity checker can see that [_] is positive in its second argument. [_] : Functor -> Set -> Set [ |Id| ] X = X [ |K| A ] X = A [ F |+| G ] X = [ F ] X ⊕ [ G ] X [ F |x| G ] X = [ F ] X × [ G ] X data μ_ (F : Functor) : Set where <_> : [ F ] (μ F) -> μ F
{ "alphanum_fraction": 0.5008635579, "avg_line_length": 23.16, "ext": "agda", "hexsha": "a666ed6cfba836d2b9065ca1c857ae36aa32b917", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/PosFunction.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/PosFunction.agda", "max_line_length": 78, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/PosFunction.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 230, "size": 579 }
module UniDB.Subst.Star where open import UniDB.Subst.Core open import UniDB.Morph.Star module _ {T : STX} {{vrT : Vr T}} {{apTT : Ap T T}} {Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} where instance iLkStar : Lk T (Star Ξ) lk {{iLkStar}} ε i = vr i lk {{iLkStar}} (ξs ▻ ξ) i = ap {T} ξ (lk ξs i) iLkIdmStar : LkIdm T (Star Ξ) lk-idm {{iLkIdmStar}} i = refl -- iLkCompApStar : {{apIdmT : ApIdm T T}} → LkCompAp T (Star Ξ) -- lk-⊙-ap {{iLkCompApStar}} ξs ε i = sym (ap-idm T T (Star Ξ) (lk T (Star Ξ) ξs i)) -- lk-⊙-ap {{iLkCompApStar}} ξs (ζs ▻ ζ) i = -- begin -- ap T T Ξ ζ (lk T (Star Ξ) (ξs ⊙ ζs) i) -- ≡⟨ cong (ap T T Ξ ζ) (lk-⊙-ap T (Star Ξ) ξs ζs i) ⟩ -- ap T T Ξ ζ (ap T T (Star Ξ) ζs (lk T (Star Ξ) ξs i)) -- ≡⟨ {!!} ⟩ -- ap T T (Star Ξ) (ζs ▻ ζ) (lk T (Star Ξ) ξs i) -- ∎
{ "alphanum_fraction": 0.4859075536, "avg_line_length": 29.5666666667, "ext": "agda", "hexsha": "835a76f5a30f03c099f4b6c03cbb22d845f83efa", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "skeuchel/unidb-agda", "max_forks_repo_path": "UniDB/Subst/Star.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "skeuchel/unidb-agda", "max_issues_repo_path": "UniDB/Subst/Star.agda", "max_line_length": 95, "max_stars_count": null, "max_stars_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "skeuchel/unidb-agda", "max_stars_repo_path": "UniDB/Subst/Star.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 456, "size": 887 }
module Formalization.RecursiveFunction where import Lvl open import Data open import Data.ListSized open import Numeral.Finite open import Numeral.Natural open import Syntax.Number open import Type{Lvl.𝟎} -- Function(n) is a syntactic representation of recursive functions of type (ℕⁿ → ℕ). -- The syntax data Function : ℕ → Type where -- Base cases Base : Function(0) Successor : Function(1) Projection : ∀{n : ℕ} → (i : 𝕟(n)) → Function(n) -- Inductive cases Composition : ∀{m n : ℕ} → Function(n) → List(Function(m))(n) → Function(m) Recursion : ∀{n : ℕ} → Function(n) → Function(𝐒(𝐒(n))) → Function(𝐒(n)) Minimization : ∀{n : ℕ} → Function(𝐒(n)) → Function(n) Primitive : Type Primitive = ℕ module _ where open import Data.ListSized.Functions open import Functional open import Logic.Predicate open import Numeral.Natural.Relation.Order private variable m n : ℕ private variable i : 𝕟(n) private variable x v : Primitive private variable xs vs : List(Primitive)(n) private variable f g : Function(m) private variable fs gs : List(Function(m))(n) -- The operational semantics. data _$_⟹_ : ∀{m n} → List(Function(m))(n) → List(Primitive)(m) → List(Primitive)(n) → Type data _$_⟶_ : ∀{n} → Function(n) → List(Primitive)(n) → ℕ → Type where zero : (Base $ ∅ ⟶ 𝟎) succ : (Successor $ singleton(n) ⟶ 𝐒(n)) proj : (Projection{n}(i) $ xs ⟶ index(i)(xs)) comp : (f $ vs ⟶ v) → (gs $ xs ⟹ vs) → (Composition{m}{n} f gs $ xs ⟶ v) rec𝟎 : (f $ xs ⟶ v) → (Recursion f g $ (𝟎 ⊰ xs) ⟶ v) rec𝐒 : (Recursion f g $ (n ⊰ xs) ⟶ x) → (g $ (n ⊰ x ⊰ xs) ⟶ v) → (Recursion f g $ (𝐒(n) ⊰ xs) ⟶ v) min : (f $ (n ⊰ xs) ⟶ 𝟎) → ∃{Obj = ℕ → ℕ}(k ↦ ∀{m} → (m < n) → (f $ (m ⊰ xs) ⟶ 𝐒(k(m)))) → (Minimization f $ xs ⟶ n) data _$_⟹_ where base : (∅ $ xs ⟹ ∅) step : (f $ xs ⟶ v) → (fs $ xs ⟹ vs) → ((f ⊰ fs) $ xs ⟹ (v ⊰ vs)) -- TODO: The denotational semantics should use partial functions, but even if that was used, one needs to decide whether there is a 0 in an arbitrary function's range. This is not possible, I guess? open import Logic.Propositional open import Numeral.Natural.Relation.Order.Proofs open import Relator.Equals open import Relator.Equals.Proofs open import Structure.Operator open import Structure.Setoid.Uniqueness [$⟹]-deterministic : Unique(fs $ xs ⟹_) [$⟶]-deterministic : Unique(f $ xs ⟶_) [$⟶]-deterministic zero zero = [≡]-intro [$⟶]-deterministic succ succ = [≡]-intro [$⟶]-deterministic proj proj = [≡]-intro [$⟶]-deterministic (comp p₁ p₂) (comp q₁ q₂) rewrite [$⟹]-deterministic p₂ q₂ = [$⟶]-deterministic p₁ q₁ [$⟶]-deterministic (rec𝟎 p) (rec𝟎 q) = [$⟶]-deterministic p q [$⟶]-deterministic (rec𝐒 p₁ p₂) (rec𝐒 q₁ q₂) rewrite [$⟶]-deterministic p₁ q₁ = [$⟶]-deterministic p₂ q₂ [$⟶]-deterministic {x = x}{y = y} (min p₁ ([∃]-intro k₁ ⦃ p₂ ⦄)) (min q₁ ([∃]-intro k₂ ⦃ q₂ ⦄)) with [<]-trichotomy {x}{y} ... | [∨]-introₗ ([∨]-introₗ lt) with () ← [$⟶]-deterministic p₁ (q₂ lt) ... | [∨]-introₗ ([∨]-introᵣ eq) = eq ... | [∨]-introᵣ gt with () ← [$⟶]-deterministic q₁ (p₂ gt) [$⟹]-deterministic base base = [≡]-intro [$⟹]-deterministic (step p pl) (step q ql) = congruence₂(_⊰_) ([$⟶]-deterministic p q) ([$⟹]-deterministic pl ql) [$⟶]-not-total : ∃{Obj = Function(n)}(f ↦ ∀{xs} → ¬ ∃(f $ xs ⟶_)) ∃.witness [$⟶]-not-total = Minimization (Composition Successor (singleton (Projection 0))) ∃.proof [$⟶]-not-total ([∃]-intro _ ⦃ min (comp () _) _ ⦄)
{ "alphanum_fraction": 0.5991573034, "avg_line_length": 42.8915662651, "ext": "agda", "hexsha": "cce368c228d1c66c7854325c0b38d288661b12b5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Formalization/RecursiveFunction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Formalization/RecursiveFunction.agda", "max_line_length": 200, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Formalization/RecursiveFunction.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1347, "size": 3560 }
{-# OPTIONS --without-K #-} module FinEquiv where -- The goal is to establish that finite sets and equivalences form a -- commutative semiring. import Level using (zero) open import Data.Empty using (⊥; ⊥-elim) open import Data.Unit using (⊤; tt) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (_,_; _×_; proj₁; proj₂) open import Data.Nat using (ℕ; zero; suc; _+_; _*_; ≤-pred; _<_; _≤_; _≥_; _≤?_; module ≤-Reasoning) open import Data.Nat.DivMod using (_divMod_; result) open import Data.Nat.Properties using (≰⇒>; 1+n≰n; m≤m+n; ¬i+1+j≤i) open import Data.Nat.Properties.Simple using (+-right-identity; +-assoc; +-suc; +-comm; *-right-zero) open import Data.Fin using (Fin; zero; suc; inject+; raise; toℕ; fromℕ≤; reduce≥) open import Data.Fin.Properties using (bounded; inject+-lemma; toℕ-raise; toℕ-injective; toℕ-fromℕ≤) open import Algebra using (CommutativeSemiring) open import Algebra.Structures using (IsSemigroup; IsCommutativeMonoid; IsCommutativeSemiring) open import Function using (_∘_; id; case_of_) open import Relation.Nullary using (yes; no) open import Relation.Binary using (IsEquivalence) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong; cong₂; subst; module ≡-Reasoning; inspect; [_]) -- open import Equiv using (_∼_; _≃_; id≃; sym≃; trans≃; _●_; qinv; module isqinv; _⊎≃_; _×≃_) open import TypeEquiv using (assocl₊equiv; unite₊′equiv; unite₊equiv; swap₊equiv; unite⋆equiv; unite⋆′equiv; swap⋆equiv; assocl⋆equiv; distzequiv; distzrequiv; distequiv; distlequiv) open import Proofs using ( -- LeqLemmas _<?_; cong+r≤; cong+l≤; cong*r≤; -- FinNatLemmas inj₁-≡; inj₂-≡; inject+-injective; raise-injective; addMul-lemma ) ------------------------------------------------------------------------------ -- This is the relation we are interested in showing is a commutative -- semiring. _fin≃_ : (m n : ℕ) → Set m fin≃ n = Fin m ≃ Fin n -- Additive unit and multiplicative unit are Fin 0 and Fin 1 which are -- equivalent to ⊥ and ⊤ abstract Fin0-⊥ : Fin 0 → ⊥ Fin0-⊥ () F0≃⊥ : Fin 0 ≃ ⊥ F0≃⊥ = f , qinv g α β where f : Fin 0 → ⊥ f () g : ⊥ → Fin 0 g () α : f ∘ g ∼ id α () β : g ∘ f ∼ id β () Fin1≃⊤ : Fin 1 ≃ ⊤ Fin1≃⊤ = f , qinv g α β where f : Fin 1 → ⊤ f zero = tt f (suc ()) g : ⊤ → Fin 1 g tt = zero α : f ∘ g ∼ id α tt = refl β : g ∘ f ∼ id β zero = refl β (suc ()) ------------------------------------------------------------------------------ -- Additive monoid module Plus where infix 9 _+F_ -- Main goal is to show (Fin m ⊎ Fin n) ≃ Fin (m + n) It is then -- fairly easy to show that ⊎ satisfies the commutative monoid -- axioms fwd : {m n : ℕ} → (Fin m ⊎ Fin n) → Fin (m + n) fwd {m} {n} (inj₁ x) = inject+ n x fwd {m} {n} (inj₂ y) = raise m y bwd : {m n : ℕ} → Fin (m + n) → (Fin m ⊎ Fin n) bwd {m} {n} = λ i → case (toℕ i <? m) of λ { (yes p) → inj₁ (fromℕ≤ p) ; (no ¬p) → inj₂ (reduce≥ i (≤-pred (≰⇒> ¬p))) } fwd∘bwd~id : {m n : ℕ} → fwd {m} {n} ∘ bwd ∼ id fwd∘bwd~id {m} i with toℕ i <? m fwd∘bwd~id i | yes p = sym (inj₁-≡ i p) fwd∘bwd~id i | no ¬p = sym (inj₂-≡ i (≤-pred (≰⇒> ¬p))) bwd∘fwd~id : {m n : ℕ} → bwd {m} {n} ∘ fwd ∼ id bwd∘fwd~id {m} {n} (inj₁ x) with toℕ (inject+ n x) <? m bwd∘fwd~id {n = n} (inj₁ x) | yes p = cong inj₁ (inject+-injective (fromℕ≤ p) x (sym (inj₁-≡ (inject+ n x) p))) bwd∘fwd~id {m} {n} (inj₁ x) | no ¬p = ⊥-elim (1+n≰n pf) where open ≤-Reasoning pf : suc (toℕ x) ≤ toℕ x pf = let q = (≤-pred (≰⇒> ¬p)) in begin ( suc (toℕ x) ≤⟨ bounded x ⟩ m ≤⟨ q ⟩ toℕ (inject+ n x) ≡⟨ sym (inject+-lemma n x) ⟩ toℕ x ∎ ) bwd∘fwd~id {m} {n} (inj₂ y) with toℕ (raise m y) <? m bwd∘fwd~id {m} {n} (inj₂ y) | yes p = ⊥-elim (1+n≰n pf) where open ≤-Reasoning pf : suc m ≤ m pf = begin ( suc m ≤⟨ m≤m+n (suc m) (toℕ y) ⟩ suc (m + toℕ y) ≡⟨ cong suc (sym (toℕ-raise m y)) ⟩ suc (toℕ (raise m y)) ≤⟨ p ⟩ m ∎) bwd∘fwd~id {m} {n} (inj₂ y) | no ¬p = cong inj₂ (raise-injective {m} (reduce≥ (raise m y) (≤-pred (≰⇒> ¬p))) y (sym (inj₂-≡ (raise m y) (≤-pred (≰⇒> ¬p))))) -- the main equivalence fwd-iso : {m n : ℕ} → (Fin m ⊎ Fin n) ≃ Fin (m + n) fwd-iso {m} {n} = fwd , qinv bwd (fwd∘bwd~id {m}) (bwd∘fwd~id {m}) -- aliases for the above which are more convenient ⊎≃+ : {m n : ℕ} → (Fin m ⊎ Fin n) ≃ Fin (m + n) ⊎≃+ = fwd-iso +≃⊎ : {m n : ℕ} → Fin (m + n) ≃ (Fin m ⊎ Fin n) +≃⊎ = sym≃ fwd-iso -- additive monoid equivalences -- unite+ unite+ : {m : ℕ} → Fin (0 + m) ≃ Fin m unite+ = unite₊equiv ● F0≃⊥ ⊎≃ id≃ ● +≃⊎ -- and on the other side as well unite+r : {m : ℕ} → Fin (m + 0) ≃ Fin m unite+r = unite₊′equiv ● id≃ ⊎≃ F0≃⊥ ● +≃⊎ -- uniti+ uniti+ : {m : ℕ} → Fin m ≃ Fin (0 + m) uniti+ = sym≃ unite+ uniti+r : {m : ℕ} → Fin m ≃ Fin (m + 0) uniti+r = sym≃ unite+r -- swap₊ swap+ : {m n : ℕ} → Fin (m + n) ≃ Fin (n + m) swap+ {m} = ⊎≃+ ● swap₊equiv ● +≃⊎ {m} -- associativity assocl+ : {m n o : ℕ} → Fin (m + (n + o)) ≃ Fin ((m + n) + o) assocl+ {m} = ⊎≃+ ● ⊎≃+ ⊎≃ id≃ ● assocl₊equiv ● id≃ ⊎≃ +≃⊎ ● +≃⊎ {m} assocr+ : {m n o : ℕ} → Fin ((m + n) + o) ≃ Fin (m + (n + o)) assocr+ {m} = sym≃ (assocl+ {m}) -- congruence _+F_ : {m n o p : ℕ} → (Fin m ≃ Fin n) → (Fin o ≃ Fin p) → Fin (m + o) ≃ Fin (n + p) Fm≃Fn +F Fo≃Fp = ⊎≃+ ● Fm≃Fn ⊎≃ Fo≃Fp ● +≃⊎ ----------------------------------------------------------------------------- -- Multiplicative monoid module Times where infixl 7 _*F_ -- main goal is to show (Fin m × Fin n) ≃ Fin (m * n) It is then -- fairly easy to show that × satisfies the commutative monoid -- axioms fwd : {m n : ℕ} → (Fin m × Fin n) → Fin (m * n) fwd {suc m} {n} (zero , k) = inject+ (m * n) k fwd {n = n} (suc i , k) = raise n (fwd (i , k)) private soundness : ∀ {m n} (i : Fin m) (j : Fin n) → toℕ (fwd (i , j)) ≡ toℕ i * n + toℕ j soundness {suc m} {n} zero j = sym (inject+-lemma (m * n) j) soundness {n = n} (suc i) j rewrite toℕ-raise n (fwd (i , j)) | soundness i j = sym (+-assoc n (toℕ i * n) (toℕ j)) absurd-quotient : (m n q : ℕ) (r : Fin (suc n)) (k : Fin (m * suc n)) (k≡r+q*sn : toℕ k ≡ toℕ r + q * suc n) (p : m ≤ q) → ⊥ absurd-quotient m n q r k k≡r+q*sn p = ¬i+1+j≤i (toℕ k) {toℕ r} k≥k+sr where k≥k+sr : toℕ k ≥ toℕ k + suc (toℕ r) k≥k+sr = begin (toℕ k + suc (toℕ r) ≡⟨ +-suc (toℕ k) (toℕ r) ⟩ suc (toℕ k) + toℕ r ≤⟨ cong+r≤ (bounded k) (toℕ r) ⟩ (m * suc n) + toℕ r ≡⟨ +-comm (m * suc n) (toℕ r) ⟩ toℕ r + (m * suc n) ≡⟨ refl ⟩ toℕ r + m * suc n ≤⟨ cong+l≤ (cong*r≤ p (suc n)) (toℕ r) ⟩ toℕ r + q * suc n ≡⟨ sym k≡r+q*sn ⟩ toℕ k ∎) where open ≤-Reasoning elim-right-zero : ∀ {ℓ} {Whatever : Set ℓ} (m : ℕ) → Fin (m * 0) → Whatever elim-right-zero m i = ⊥-elim (Fin0-⊥ (subst Fin (*-right-zero m) i)) bwd : {m n : ℕ} → Fin (m * n) → (Fin m × Fin n) bwd {m} {0} k = elim-right-zero m k bwd {m} {suc n} k with (toℕ k) divMod (suc n) ... | result q r k≡r+q*sn = (fromℕ≤ {q} {m} (q<m) , r) where q<m : q < m q<m with suc q ≤? m ... | no ¬p = ⊥-elim (absurd-quotient m n q r k k≡r+q*sn (≤-pred (≰⇒> ¬p))) ... | yes p = p fwd∘bwd~id : {m n : ℕ} → fwd {m} {n} ∘ bwd ∼ id fwd∘bwd~id {m} {zero} i = elim-right-zero m i fwd∘bwd~id {m} {suc n} i with (toℕ i) divMod (suc n) ... | result q r k≡r+q*sn with suc q ≤? m ... | yes p = toℕ-injective ( begin ( toℕ (fwd (fromℕ≤ p , r)) ≡⟨ soundness (fromℕ≤ p) r ⟩ toℕ (fromℕ≤ p) * (suc n) + toℕ r ≡⟨ cong (λ x → x * (suc n) + toℕ r) (toℕ-fromℕ≤ p) ⟩ q * (suc n) + toℕ r ≡⟨ +-comm _ (toℕ r) ⟩ toℕ r + q * (suc n) ≡⟨ sym (k≡r+q*sn) ⟩ toℕ i ∎)) where open ≡-Reasoning ... | no ¬p = ⊥-elim (absurd-quotient m n q r i k≡r+q*sn (≤-pred (≰⇒> ¬p))) bwd∘fwd~id : {m n : ℕ} → bwd {m} {n} ∘ fwd ∼ id bwd∘fwd~id {n = zero} (b , ()) bwd∘fwd~id {m} {suc n} (b , d) with fwd (b , d) | inspect fwd (b , d) ... | k | [ eq ] with (toℕ k) divMod (suc n) ... | result q r pf with q <? m ... | no ¬p = ⊥-elim (absurd-quotient m n q r k pf (≤-pred (≰⇒> ¬p))) ... | yes p = cong₂ _,_ pf₁ (proj₁ same-quot) where open ≡-Reasoning eq' : toℕ d + toℕ b * suc n ≡ toℕ r + q * suc n eq' = begin ( toℕ d + toℕ b * suc n ≡⟨ +-comm (toℕ d) _ ⟩ toℕ b * suc n + toℕ d ≡⟨ trans (sym (soundness b d)) (cong toℕ eq) ⟩ toℕ k ≡⟨ pf ⟩ toℕ r + q * suc n ∎ ) same-quot : (r ≡ d) × (q ≡ toℕ b) same-quot = addMul-lemma q (toℕ b) n r d ( sym eq' ) pf₁ = (toℕ-injective (trans (toℕ-fromℕ≤ p) (proj₂ same-quot))) fwd-iso : {m n : ℕ} → (Fin m × Fin n) ≃ Fin (m * n) fwd-iso {m} {n} = fwd , qinv bwd (fwd∘bwd~id {m}) (bwd∘fwd~id {m}) -- convenient aliases ×≃* : {m n : ℕ} → (Fin m × Fin n) ≃ Fin (m * n) ×≃* = fwd-iso *≃× : {m n : ℕ} → Fin (m * n) ≃ (Fin m × Fin n) *≃× = sym≃ ×≃* -- multiplicative monoid equivalences -- unite* unite* : {m : ℕ} → Fin (1 * m) ≃ Fin m unite* {m} = unite⋆equiv ● Fin1≃⊤ ×≃ id≃ ● *≃× -- uniti* uniti* : {m : ℕ} → Fin m ≃ Fin (1 * m) uniti* = sym≃ unite* -- unite*r unite*r : {m : ℕ} → Fin (m * 1) ≃ Fin m unite*r {m} = unite⋆′equiv ● id≃ ×≃ Fin1≃⊤ ● *≃× -- uniti*r uniti*r : {m : ℕ} → Fin m ≃ Fin (m * 1) uniti*r = sym≃ unite*r -- swap* swap* : {m n : ℕ} → Fin (m * n) ≃ Fin (n * m) swap* {m} {n} = ×≃* ● swap⋆equiv ● *≃× {m} -- associativity assocl* : {m n o : ℕ} → Fin (m * (n * o)) ≃ Fin ((m * n) * o) assocl* {m} {n} {o} = ×≃* ● ×≃* ×≃ id≃ ● assocl⋆equiv ● id≃ ×≃ *≃× ● *≃× {m} assocr* : {m n o : ℕ} → Fin ((m * n) * o) ≃ Fin (m * (n * o)) assocr* {m} {n} {o} = sym≃ (assocl* {m}) -- congruence _*F_ : {m n o p : ℕ} → Fin m ≃ Fin n → Fin o ≃ Fin p → Fin (m * o) ≃ Fin (n * p) Fm≃Fn *F Fo≃Fp = ×≃* ● Fm≃Fn ×≃ Fo≃Fp ● *≃× ------------------------------------------------------------------------------ -- Distributivity of multiplication over addition module PlusTimes where -- now that we have two monoids, we need to check distributivity -- note that the sequence below is "logically right", *but* could be -- replaced by id≃ ! distz : {m : ℕ} → Fin (0 * m) ≃ Fin 0 distz {m} = sym≃ F0≃⊥ ● distzequiv ● F0≃⊥ ×≃ id≃ ● *≃× {0} {m} where open Times factorz : {m : ℕ} → Fin 0 ≃ Fin (0 * m) factorz {m} = sym≃ (distz {m}) distzr : {m : ℕ} → Fin (m * 0) ≃ Fin 0 distzr {m} = sym≃ F0≃⊥ ● distzrequiv ● id≃ ×≃ F0≃⊥ ● *≃× {m} {0} where open Times factorzr : {n : ℕ} → Fin 0 ≃ Fin (n * 0) factorzr {n} = sym≃ (distzr {n}) dist : {m n o : ℕ} → Fin ((m + n) * o) ≃ Fin ((m * o) + (n * o)) dist {m} {n} {o} = ⊎≃+ {m * o} {n * o} ● ×≃* {m} ⊎≃ ×≃* ● distequiv ● +≃⊎ ×≃ id≃ ● *≃× where open Times open Plus factor : {m n o : ℕ} → Fin ((m * o) + (n * o)) ≃ Fin ((m + n) * o) factor {m} = sym≃ (dist {m}) distl : {m n o : ℕ} → Fin (m * (n + o)) ≃ Fin ((m * n) + (m * o)) distl {m} {n} {o} = ⊎≃+ {m * n} {m * o} ● ×≃* {m} ⊎≃ ×≃* ● distlequiv ● id≃ ×≃ +≃⊎ ● *≃× where open Plus open Times factorl : {m n o : ℕ} → Fin ((m * n) + (m * o)) ≃ Fin (m * (n + o)) factorl {m} = sym≃ (distl {m}) ------------------------------------------------------------------------------ -- Summarizing... we have a commutative semiring structure fin≃IsEquiv : IsEquivalence _fin≃_ fin≃IsEquiv = record { refl = id≃ ; sym = sym≃ ; trans = trans≃ } finPlusIsSG : IsSemigroup _fin≃_ _+_ finPlusIsSG = record { isEquivalence = fin≃IsEquiv ; assoc = λ m n o → Plus.assocr+ {m} {n} {o} ; ∙-cong = Plus._+F_ } finTimesIsSG : IsSemigroup _fin≃_ _*_ finTimesIsSG = record { isEquivalence = fin≃IsEquiv ; assoc = λ m n o → Times.assocr* {m} {n} {o} ; ∙-cong = Times._*F_ } finPlusIsCM : IsCommutativeMonoid _fin≃_ _+_ 0 finPlusIsCM = record { isSemigroup = finPlusIsSG ; identityˡ = λ m → id≃ ; comm = λ m n → Plus.swap+ {m} {n} } finTimesIsCM : IsCommutativeMonoid _fin≃_ _*_ 1 finTimesIsCM = record { isSemigroup = finTimesIsSG ; identityˡ = λ m → Times.unite* {m} ; comm = λ m n → Times.swap* {m} {n} } finIsCSR : IsCommutativeSemiring _fin≃_ _+_ _*_ 0 1 finIsCSR = record { +-isCommutativeMonoid = finPlusIsCM ; *-isCommutativeMonoid = finTimesIsCM ; distribʳ = λ o m n → PlusTimes.dist {m} {n} {o} ; zeroˡ = λ m → PlusTimes.distz {m} } finCSR : CommutativeSemiring Level.zero Level.zero finCSR = record { Carrier = ℕ ; _≈_ = _fin≃_ ; _+_ = _+_ ; _*_ = _*_ ; 0# = 0 ; 1# = 1 ; isCommutativeSemiring = finIsCSR } ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.4668234257, "avg_line_length": 29.7139737991, "ext": "agda", "hexsha": "e30cb2c35f26aa6cf27f80be9add1cb5da78c804", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/Obsolete/FinEquiv.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/Obsolete/FinEquiv.agda", "max_line_length": 90, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/Obsolete/FinEquiv.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 5908, "size": 13609 }
-- {-# OPTIONS -v tc.meta:30 --show-irrelevant #-} -- Andreas, 2013-10-29 submitted by sanzhiyan -- Documents need for different treating of DontCare in -- linearity analysis of Miller unification. -- Now, there can be DontCares stemming from irrelevant projections. module Issue927 where import Common.Level module Fails where postulate Σ : (B : Set) (C : B → Set) → Set <_,_> : {A : Set} {B : A → Set} {C : ∀ x → B x → Set} (f : (x : A) → B x) → (g : (x : A) → C x (f x)) → ((x : A) → Σ (B x) (C x)) record _⟶_ (A B : Set) : Set where field .app : A → B open _⟶_ public .⟪_,_⟫ : ∀ (A B C : Set) → (A ⟶ B) → (A ⟶ C) → A → Σ B (\ _ → C) ⟪_,_⟫ A B C f₁ f₂ = < app f₁ , app f₂ > -- Using darcs Agda, the following code triggers an -- internal error at src/full/Agda/TypeChecking/MetaVars.hs:897
{ "alphanum_fraction": 0.5591647332, "avg_line_length": 26.1212121212, "ext": "agda", "hexsha": "00a4a67ea1bf824af4538ccad2ee3544a3aa6b93", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue927.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue927.agda", "max_line_length": 68, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/Issue927.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 317, "size": 862 }
module Issue630 where Test = (A : Set) → A → A g : Test g = λ _ x → {!!} -- the goal should be displayed as ?1 : A -- not ?1 : _
{ "alphanum_fraction": 0.5378787879, "avg_line_length": 13.2, "ext": "agda", "hexsha": "6bb5fd4a4e03d660c72f18c8584949e112ae291e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue630.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue630.agda", "max_line_length": 41, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue630.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 47, "size": 132 }
-- Here is a smaller test case. The error message is produced using -- the latest (at the time of writing) development version of Agda. module Issue183 where postulate A : Set T : Set T = A → A data L (A : Set) : Set where data E (x : T) : T → Set where e : E x x foo : (f : A → A) → L (E f (λ x → f x)) foo = λ _ → e -- Previously: -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/Syntax/Translation/AbstractToConcrete.hs:705 -- Should now give a proper error message.
{ "alphanum_fraction": 0.669793621, "avg_line_length": 24.2272727273, "ext": "agda", "hexsha": "92175fa2df68aab9defb7ab186b746f4b7f50028", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/agda-kanso", "max_forks_repo_path": "test/fail/Issue183.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/agda-kanso", "max_issues_repo_path": "test/fail/Issue183.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/Issue183.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 160, "size": 533 }
{-# OPTIONS --cubical --postfix-projections --safe #-} open import Relation.Binary open import Prelude hiding (tt) module Data.List.Sort.Sorted {e} {E : Type e} {r₁ r₂} (totalOrder : TotalOrder E r₁ r₂) where open import Relation.Binary.Construct.LowerBound totalOrder open TotalOrder totalOrder renaming (refl to refl-≤) open TotalOrder lb-ord renaming (≤-trans to ⌊trans⌋) using () open import Data.List open import Data.Unit.UniversePolymorphic as Poly using (tt) open import Data.List.Relation.Binary.Permutation open import Function.Isomorphism open import Data.Fin open import Data.List.Membership private variable lb : ⌊∙⌋ Sorted-cons : E → (⌊∙⌋ → Type (r₁ ℓ⊔ r₂)) → ⌊∙⌋ → Type (r₁ ℓ⊔ r₂) Sorted-cons x xs lb = (lb ⌊≤⌋ ⌊ x ⌋) × xs ⌊ x ⌋ SortedFrom : ⌊∙⌋ → List E → Type _ SortedFrom = flip (foldr Sorted-cons (const Poly.⊤)) Sorted : List E → Type _ Sorted = SortedFrom ⌊⊥⌋ ord-in : ∀ x xs → SortedFrom lb xs → x ∈ xs → lb ⌊≤⌋ ⌊ x ⌋ ord-in {lb = lb} x (x₁ ∷ xs) p (f0 , x∈xs) = subst (λ z → lb ⌊≤⌋ ⌊ z ⌋) x∈xs (p .fst) ord-in {lb} x (y ∷ xs) p (fs n , x∈xs) = ⌊trans⌋ {lb} (p .fst) (ord-in x xs (p .snd) (n , x∈xs)) perm-head : ∀ {lbˣ lbʸ} x xs y ys → SortedFrom lbˣ (x ∷ xs) → SortedFrom lbʸ (y ∷ ys) → (x ∷ xs ↭ y ∷ ys) → x ≡ y perm-head x xs y ys Sxs Sys xs⇔ys with xs⇔ys _ .inv (f0 , refl) ... | f0 , y∈xs = y∈xs ... | fs n , y∈xs with xs⇔ys _ .fun (f0 , refl) ... | f0 , x∈ys = sym x∈ys ... | fs m , x∈ys = antisym (ord-in y xs (Sxs .snd) (n , y∈xs)) (ord-in x ys (Sys .snd) (m , x∈ys)) perm-same : ∀ {lbˣ lbʸ} xs ys → SortedFrom lbˣ xs → SortedFrom lbʸ ys → xs ↭ ys → xs ≡ ys perm-same [] [] Sxs Sys xs⇔ys = refl perm-same [] (y ∷ ys) Sxs Sys xs⇔ys = ⊥-elim (xs⇔ys _ .inv (f0 , refl) .fst) perm-same (x ∷ xs) [] Sxs Sys xs⇔ys = ⊥-elim (xs⇔ys _ .fun (f0 , refl) .fst) perm-same {lbˣ} {lbʸ} (x ∷ xs) (y ∷ ys) Sxs Sys xs⇔ys = let h = perm-head {lbˣ} {lbʸ} x xs y ys Sxs Sys xs⇔ys in cong₂ _∷_ h (perm-same xs ys (Sxs .snd) (Sys .snd) (tailₚ x xs ys (subst (λ y′ → x ∷ xs ↭ y′ ∷ ys) (sym h) xs⇔ys))) sorted-perm-eq : ∀ xs ys → Sorted xs → Sorted ys → xs ↭ ys → xs ≡ ys sorted-perm-eq = perm-same
{ "alphanum_fraction": 0.6037558685, "avg_line_length": 40.1886792453, "ext": "agda", "hexsha": "14f631ea51de80e437be7fd96b9f149f681efa54", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/List/Sort/Sorted.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/List/Sort/Sorted.agda", "max_line_length": 113, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/List/Sort/Sorted.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 954, "size": 2130 }
module Holey where open import Basics open import Ix open import All open import Cutting open import Interior open import Recutter open import Mask module HOLEY {I}(C : I |> I) where open _|>_ C open INTERIOR C open RECUTTER C open MASK C data Holey {I : Set}(P : I -> Set)(i : I) : Set where hole : Holey P i fill : P i -> Holey P i module SUPERIMPOSE {P}(pc : CutKit P)(rec : Recutter) where cutHole : CutKit (Holey P) cutHole i c hole = allPu (\ i -> hole) (inners c) cutHole i c (fill p) = all (\ _ -> fill) (inners c) (pc i c p) open CHOP cutHole rec superimpose : [ Interior (Holey P) -:> Interior (Holey P) -:> Interior (Holey P) ] superimpose = mask \ { i hole y -> y ; i (fill x) y -> tile (fill x) }
{ "alphanum_fraction": 0.5942211055, "avg_line_length": 21.5135135135, "ext": "agda", "hexsha": "8a3031fe7e87adb929c3bcf61073dc45d5f39099", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pigworker/InteriorDesign", "max_forks_repo_path": "Holey.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pigworker/InteriorDesign", "max_issues_repo_path": "Holey.agda", "max_line_length": 86, "max_stars_count": 6, "max_stars_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pigworker/InteriorDesign", "max_stars_repo_path": "Holey.agda", "max_stars_repo_stars_event_max_datetime": "2018-07-31T02:00:13.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-18T15:25:39.000Z", "num_tokens": 270, "size": 796 }
-- Andreas, 2019-10-13, issue 4125 -- Avoid unnecessary normalization in type checker. -- Print to the user what they wrote, not its expanded form. -- {-# OPTIONS -v tc:25 #-} postulate We-do-not-want-to : Set → Set see-this-in-the-output : Set A = We-do-not-want-to see-this-in-the-output postulate P : A → Set test : ∀{a} → P a → P a test p = {!!} -- C-c C-, -- Expected to see -- a : A -- in the context, not the expanded monster of A. -- Testing that the etaExpandVar strategy of the unifier -- does not reduce the context. record ⊤ : Set where data D : ⊤ → Set where c : ∀{x} → D x etaExp : ∀{a} → D record{} → P a etaExp c = {!!} -- C-c C-, -- WAS (2.5.x-2.6.0): -- a : We-do-not-want-to see-this-in-the-output (not in scope) -- EXPECTED -- a : A
{ "alphanum_fraction": 0.6071887035, "avg_line_length": 21.0540540541, "ext": "agda", "hexsha": "c64ed12173839a00ee4ff07f64942f2f923537bf", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue4125.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue4125.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue4125.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 263, "size": 779 }
module Numeric.Rational.Properties where open import Prelude open import Numeric.Rational open import Numeric.Nat.Properties open import Numeric.Nat.Divide open import Numeric.Nat.Divide.Properties open import Numeric.Nat.Prime open import Numeric.Nat.Prime.Properties open import Numeric.Nat.GCD open import Numeric.Nat.GCD.Properties open import Tactic.Nat open import Tactic.Nat.Coprime -- Correctness proofs for the efficient arithmetic operations ------- private lem-coprime : ∀ n₁ n₂ s′ d₁′ d₂′ g g₁ → s′ * g₁ ≡ n₁ * d₂′ + n₂ * d₁′ → Coprime n₁ (d₁′ * g) → Coprime d₁′ d₂′ → Coprime s′ d₁′ lem-coprime n₁ n₂ s′ d₁′ d₂′ g g₁ s′g₁=s n₁⊥d₁ d₁′⊥d₂′ = coprimeByPrimes s′ d₁′ λ p isP p|s′ p|d₁′ → let s = n₁ * d₂′ + n₂ * d₁′ d₁ = d₁′ * g p|d₁ : p Divides d₁ p|d₁ = divides-mul-l g p|d₁′ p|s : p Divides s p|s = transport (p Divides_) s′g₁=s (divides-mul-l g₁ p|s′) p|n₁d₂′ : p Divides (n₁ * d₂′) p|n₁d₂′ = divides-sub-r p|s (divides-mul-r n₂ p|d₁′) p∤n₁ : ¬ (p Divides n₁) p∤n₁ p|n₁ = prime-divide-coprime p n₁ d₁ isP n₁⊥d₁ p|n₁ p|d₁ p|d₂′ : p Divides d₂′ p|d₂′ = case prime-split n₁ d₂′ isP p|n₁d₂′ of λ where (left p|n₁) → ⊥-elim (p∤n₁ p|n₁) (right p|d₂′) → p|d₂′ in divide-coprime p d₁′ d₂′ d₁′⊥d₂′ p|d₁′ p|d₂′ addQ-sound : ∀ x y → x + y ≡ slowAddQ x y addQ-sound (ratio n₁ d₁ n₁⊥d₁) (ratio n₂ d₂ n₂⊥d₂) with gcd (n₁ * d₂ + n₂ * d₁) (d₁ * d₂) | gcd d₁ d₂ ... | gcd-res g₀ g₀-gcd@(is-gcd (factor p pg₀=n₀) (factor q qg₀=d₀) _) | gcd-res g isgcd-dd@(is-gcd (factor! d₁′) (factor! d₂′) _) with gcd (n₁ * d₂′ + n₂ * d₁′) g ... | gcd-res g₁ isgcd-sg@(is-gcd (factor s′ s′g₁=s) (factor! g′) _) = let n₀ = n₁ * d₂ + n₂ * d₁ d₀ = d₁ * d₂ s = n₁ * d₂′ + n₂ * d₁′ instance nz-g₀ = nonzero-is-gcd-r ⦃ mul-nonzero d₁ d₂ ⦄ g₀-gcd nz-g = nonzero-is-gcd-l isgcd-dd nz-g₁ = nonzero-is-gcd-r isgcd-sg nz-gg₁ = mul-nonzero g g₁ s′gg₁=n₀ : s′ * (g * g₁) ≡ n₀ s′gg₁=n₀ = s′ * (g * g₁) ≡⟨ auto ⟩ s′ * g₁ * g ≡⟨ _* g $≡ s′g₁=s ⟩ (n₁ * d₂′ + n₂ * d₁′) * g ≡⟨ auto ⟩ n₀ ∎ ddg′gg₁=d₀ : d₁′ * d₂′ * g′ * (g * g₁) ≡ d₀ ddg′gg₁=d₀ = auto s′⊥ddg : Coprime s′ (d₁′ * d₂′ * g′) s′⊥ddg = let[ _ := is-gcd-factors-coprime isgcd-dd ] let[ _ := lem-coprime n₁ n₂ s′ d₁′ d₂′ g g₁ s′g₁=s n₁⊥d₁ auto-coprime ] let[ _ := lem-coprime n₂ n₁ s′ d₂′ d₁′ g g₁ (s′g₁=s ⟨≡⟩ auto) n₂⊥d₂ auto-coprime ] let[ _ := is-gcd-factors-coprime isgcd-sg ] auto-coprime gg₁-gcd : IsGCD (g * g₁) n₀ d₀ gg₁-gcd = is-gcd-by-coprime-factors (g * g₁) n₀ d₀ (factor s′ s′gg₁=n₀) (factor (d₁′ * d₂′ * g′) ddg′gg₁=d₀) s′⊥ddg gg₁=g₀ : g * g₁ ≡ g₀ gg₁=g₀ = is-gcd-unique (g * g₁) g₀ gg₁-gcd g₀-gcd s′g₀=n₀ : s′ * g₀ ≡ n₀ s′g₀=n₀ = s′ *_ $≡ sym gg₁=g₀ ⟨≡⟩ s′gg₁=n₀ ddgg₀=d₀ : d₁′ * d₂′ * g′ * g₀ ≡ d₀ ddgg₀=d₀ = d₁′ * d₂′ * g′ *_ $≡ sym gg₁=g₀ ⟨≡⟩ ddg′gg₁=d₀ s′=p : s′ ≡ p s′=p = mul-inj₁ s′ p g₀ (s′g₀=n₀ ⟨≡⟩ʳ pg₀=n₀) ddg=q : d₁′ * d₂′ * g′ ≡ q ddg=q = mul-inj₁ _ q g₀ (ddgg₀=d₀ ⟨≡⟩ʳ qg₀=d₀) in cong-ratio s′=p ddg=q mulQ-sound : ∀ x y → x * y ≡ slowMulQ x y mulQ-sound (ratio n₁ d₁ n₁⊥d₁) (ratio n₂ d₂ n₂⊥d₂) with gcd n₁ d₂ | gcd n₂ d₁ | gcd (n₁ * n₂) (d₁ * d₂) ... | gcd-res g₁ gcd₁₂@(is-gcd (factor! n₁′) (factor! d₂′) _) | gcd-res g₂ gcd₂₁@(is-gcd (factor! n₂′) (factor! d₁′) _) | gcd-res g gcdnd@(is-gcd (factor n′ n′g=n) (factor d′ d′g=d) _) = let instance _ = nonzero-is-gcd-r gcd₁₂ _ = nonzero-is-gcd-r gcd₂₁ _ = mul-nonzero g₁ g₂ g=gg : g ≡ g₁ * g₂ g=gg = is-gcd-unique _ _ gcdnd $ is-gcd-by-coprime-factors _ _ _ (factor (n₁′ * n₂′) auto) (factor (d₁′ * d₂′) auto) $ let[ _ := is-gcd-factors-coprime gcd₁₂ ] let[ _ := is-gcd-factors-coprime gcd₂₁ ] auto-coprime neq : n₁′ * n₂′ ≡ n′ neq = case g=gg of λ where refl → mul-inj₁ (n₁′ * n₂′) n′ (g₁ * g₂) (by n′g=n) deq : d₁′ * d₂′ ≡ d′ deq = case g=gg of λ where refl → mul-inj₁ (d₁′ * d₂′) d′ (g₁ * g₂) (by d′g=d) in cong-ratio neq deq
{ "alphanum_fraction": 0.4994492179, "avg_line_length": 34.1278195489, "ext": "agda", "hexsha": "136b2d98ae041b5745e2d5a820d3a5355e19ad71", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Numeric/Rational/Properties.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Numeric/Rational/Properties.agda", "max_line_length": 90, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Numeric/Rational/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 2009, "size": 4539 }
-- BEGIN prelude.agda -- the Haskell $ and . ($) (A::Set) (B::Set) (f :: A -> B) (a :: A) :: B = f a compose (B,C,A::Set)(f :: B -> C)(g :: A -> B) :: A -> C = \ (x::A) -> f (g x) {- hardwired into Agda Integer :: Set = ? Bool :: Set = data True | False -} not (b::Bool) :: Bool = case b of { (True) -> False; -- Agda does not require @_ for built-in constructors (False) -> True;} (||) (b1::Bool)(b2::Bool) :: Bool = case b1 of { (True) -> True@_; (False) -> case b2 of { (True) -> True@_; (False) -> False@_;};} (&&) (b1::Bool)(b2::Bool) :: Bool = case b1 of { (True) -> case b2 of { (True) -> False@_; (False) -> True@_;}; (False) -> False@_;} Pair (a::Set)(b::Set) :: Set = data Pair (x::a) (y::b) Triple (a::Set)(b::Set)(c::Set) :: Set = data Triple (x::a) (y::b) (z::c) flip (a::Set)(b::Set)(c::Set)(f::a -> b -> c)(x::b)(y::a) :: c = f y x {- hardwired into Agda: List (a::Set) :: Set = data Nil | (:) (x::a) (xs::List a) -} foldl (a::Set)(b::Set)(f::a -> b -> a)(acc::a)(l::List b) :: a = case l of { (Nil) -> acc; (x:xs) -> foldl a b f (f acc x) xs;} reverse (a::Set)(l::List a) :: List a = foldl (List a) a (flip a (List a) (List a) (\(h::a) -> \(h'::List a) -> (:)@_ h h')) Nil@_ l append (a::Set)(l1::List a)(l2::List a) :: List a = case l1 of { (Nil) -> l2; (x:xs) -> x : (append a xs l2);} null (a::Set)(l::List a) :: Bool = case l of { (Nil) -> True@_; (x:xs) -> False@_;} map (a,b::Set)(f::a -> b)(l::List a) :: List b = case l of (Nil) -> Nil (x:xs) -> f x : map a b f xs Maybe (a::Set) :: Set = data Nothing | Just (x::a) -- Should not be here - temporary addition to provide an "interesting" type -- data Simple = A | B | C -gone -- Properties -- naive implementation of Property.hs -- from SET.alfa Rel (X::Set) :: Type = X -> X -> Set Id (X::Set) :: Rel X = idata ref (x::X) :: _ x x Zero :: Set = data whenZero (X::Set)(z::Zero) :: X = case z of { } Unit :: Set = data tt Sum (X::Set)(Y::X -> Set) :: Set = sig{fst :: X; snd :: Y fst;} Plus (X::Set)(Y::Set) :: Set = data inl (x::X) | inr (y::Y) package Property where Prop :: Type = Set (===) (A :: Set) (a :: A) (b :: A) :: Prop = Id A a b -- translate forAll into a dependent function type forAll (A :: Set) (f :: A -> Prop) :: Prop = (x :: A) -> f x exists (A :: Set) (f :: A -> Prop) :: Prop = sig { witness :: A; prop :: f witness; } (/\) (A,B :: Prop) :: Prop = Sum A (\(a::A) -> B) (\/) (A,B :: Prop) :: Prop = Plus A B (<=>) (A,B :: Prop) :: Prop = (A -> B) /\ (B -> A) (==>) (A,B :: Prop) :: Prop = (A -> B) true :: Prop = Unit false :: Prop = Zero nt (A :: Prop) :: Prop = A -> false -- cannot do the naive using because of universe conflict -- List cannot have a parameter which is not a set, and Prop is a type --using (L :: List Prop) (A :: Prop) :: Prop -- = A holds (b::Bool) :: Prop = if b then true else false holdsNot (b::Bool) :: Prop = if b then false else true -- Class of inhabited types class Inhabited (a::Set) :: Set exports arbitrary :: a error (a::Set)(|ia::Inhabited a)(msg::String) :: a = arbitrary -- Prelude types are inhabited instance iBool :: Inhabited Bool where arbitrary = True instance iString :: Inhabited String where arbitrary = "I AM ARBITRARY" instance iInteger :: Inhabited Integer where arbitrary = 123456789 {- Syntax error: instance iRational :: Inhabited Rational where arbitrary = 0.123456789 -} instance iList (|a::Set) :: Inhabited (List a) where arbitrary = Nil -- instance iList (a::Set)(ia::Inhabited a) :: Inhabited (List a) where -- END prelude.agda
{ "alphanum_fraction": 0.4980784012, "avg_line_length": 20.5421052632, "ext": "agda", "hexsha": "ed87c2d855d98deb56efdd1524456133d0e1996e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4172bef9f4eede7e45dc002a70bf8c6dd9a56b5c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "siddharthist/hs2agda", "max_forks_repo_path": "lib/prelude.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "4172bef9f4eede7e45dc002a70bf8c6dd9a56b5c", "max_issues_repo_issues_event_max_datetime": "2016-10-25T17:50:18.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-25T02:27:55.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "siddharthist/CoverTranslator", "max_issues_repo_path": "lib/prelude.agda", "max_line_length": 77, "max_stars_count": 17, "max_stars_repo_head_hexsha": "4172bef9f4eede7e45dc002a70bf8c6dd9a56b5c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "siddharthist/hs2agda", "max_stars_repo_path": "lib/prelude.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-25T19:54:48.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-25T10:07:49.000Z", "num_tokens": 1424, "size": 3903 }
------------------------------------------------------------------------------ -- Addition as a function constant ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.AddConstant where ------------------------------------------------------------------------------ -- We add 3 to the fixities of the Agda standard library 0.8.1 (see -- Algebra.agda and Relation/Binary/Core.agda). infixl 9 _·_ infix 7 _≡_ postulate D : Set _·_ : D → D → D true false if : D zero succ pred iszero : D _≡_ : D → D → Set postulate if-true : ∀ t {t'} → if · true · t · t' ≡ t if-false : ∀ {t} t' → if · false · t · t' ≡ t' pred-0 : pred · zero ≡ zero pred-S : ∀ n → pred · (succ · n) ≡ n iszero-0 : iszero · zero ≡ true iszero-S : ∀ n → iszero · (succ · n) ≡ false {-# ATP axioms if-true if-false pred-0 pred-S iszero-0 iszero-S #-} postulate + : D +-eq : ∀ m n → + · m · n ≡ if · (iszero · m) · n · (succ · (+ · (pred · m) · n)) {-# ATP axiom +-eq #-} postulate +-0x : ∀ n → + · zero · n ≡ n +-Sx : ∀ m n → + · (succ · m) · n ≡ succ · (+ · m · n) {-# ATP prove +-0x #-} {-# ATP prove +-Sx #-} -- $ cd fotc/notes/thesis -- $ agda -i. -i ~/fot FOTC/AddConstant.agda -- $ apia -i. -i ~/fot FOTC/AddConstant.agda -- Proving the conjecture in /tmp/FOTC/AddConstant/37-43-0x.tptp ... -- Vampire 0.6 (revision 903) proved the conjecture -- Proving the conjecture in /tmp/FOTC/AddConstant/38-43-Sx.tptp ... -- Vampire 0.6 (revision 903) proved the conjecture
{ "alphanum_fraction": 0.4589700057, "avg_line_length": 33.3396226415, "ext": "agda", "hexsha": "f925817b7b0d83b28d5471ec26449ec041b4c46e", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/thesis/report/FOTC/AddConstant.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/thesis/report/FOTC/AddConstant.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/thesis/report/FOTC/AddConstant.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 548, "size": 1767 }
module sv20.assign2.SetTheory.Algebra where open import sv20.assign2.SetTheory.Subset open import sv20.assign2.SetTheory.Logic open import sv20.assign2.SetTheory.ZAxioms infix 6 _∪_ infix 6 _-_ infix 6 _∩_ -- Properties involving operations between sets, algebra of sets. -- In this module some properties involving union, difference -- and intersection of set are proved. -- First, some properties of the union between sets, justified by the -- union axiom. _∪_ : 𝓢 → 𝓢 → 𝓢 x ∪ y = proj₁ (union x y) -- {-# ATP definition _∪_ #-} -- Theorem 20, p. 27 (Suppes 1960) ∪-d : (x y : 𝓢) → ∀ {z} → z ∈ x ∪ y ⇔ z ∈ x ∨ z ∈ y ∪-d x y = proj₂ _ (union x y) -- ∧-projections of past theorem for convenience. ∪-d₁ : (A B : 𝓢) → ∀ {x} → x ∈ (A ∪ B) → x ∈ A ∨ x ∈ B ∪-d₁ A B = ∧-proj₁ (∪-d A B) ∪-d₂ : (A B : 𝓢) → ∀ {x} → x ∈ A ∨ x ∈ B → x ∈ (A ∪ B) ∪-d₂ A B = ∧-proj₂ (∪-d A B) -- Theorem 21, p. 27 (Suppes 1960) A∪B≡B∪A : (A B : 𝓢) → A ∪ B ≡ B ∪ A A∪B≡B∪A A B = equalitySubset (A ∪ B) (B ∪ A) (p₁ , p₂) where p₁ : (x : 𝓢) → x ∈ (A ∪ B) → x ∈ (B ∪ A) p₁ x x₁ = ∪-d₂ B A (∨-sym _ _ (∪-d₁ A B x₁)) p₂ : (x : 𝓢) → x ∈ (B ∪ A) → x ∈ (A ∪ B) p₂ x x₁ = ∪-d₂ A B (∨-sym _ _ (∪-d₁ B A x₁)) -- Theorem 23, p. 27 (Suppes 1960) A∪A≡A : (A : 𝓢) → A ∪ A ≡ A A∪A≡A A = equalitySubset (A ∪ A) A (p₁ , p₂) where p₁ : (x :  𝓢) → x ∈ (A ∪ A) → x ∈ A p₁ x x₁ = ∨-idem _ (∪-d₁ A A x₁) p₂ : (x : 𝓢) → x ∈ A → x ∈ (A ∪ A) p₂ x x₁ = ∪-d₂ A A (inj₁ x₁) -- Theorem 25, p. 27 (Suppes 1960) ∪-prop : (A B : 𝓢) → A ⊆ A ∪ B ∪-prop A B t x = ∪-d₂ _ _ (inj₁ x) ⊆∪ : (x A B : 𝓢) → x ⊆ A ∧ x ⊆ B → x ⊆ A ∪ B ⊆∪ x A B (x₁ , x₂) t x₃ = trans-⊆ _ _ _ (x₁ , (∪-prop _ _)) _ x₃ ∪-prop₂ : (x A B : 𝓢) → x ⊆ A ∨ x ⊆ B → x ⊆ A ∪ B ∪-prop₂ x A B (inj₁ x₁) t x₂ = ∪-d₂ _ _ (inj₁ (x₁ _ x₂)) ∪-prop₂ x A B (inj₂ x₁) t x₂ = ∪-d₂ _ _ (inj₂ (x₁ _ x₂)) ∪-prop₃ : (A B : 𝓢) → B ⊆ A ∪ B ∪-prop₃ A B t x = ∪-d₂ _ _ (inj₂ x) -- Theorem 27, p. 27 (Suppes 1960) ∪-prop₄ : (x y A : 𝓢) → x ⊆ A → y ⊆ A → x ∪ y ⊆ A ∪-prop₄ x y A x⊆A y⊆A t t∈x∪y = ∨-idem _ p₂ where p₁ : t ∈ x ∨ t ∈ y p₁ = ∪-d₁ _ _ t∈x∪y p₂ : t ∈ A ∨ t ∈ A p₂ = ∨-prop₅ p₁ (x⊆A _) (y⊆A _) -- Properties about the intersection opertaion. Its existence is justified -- as an axiom derived from the sub axiom schema. _∩_ : 𝓢 → 𝓢 → 𝓢 x ∩ y = proj₁ (sub (λ z → z ∈ y) x) -- Instantiation of the subset axiom schema needed for justifiying -- the operation. sub₂ : (x y : 𝓢) → ∃ (λ B → {z : 𝓢} → (z ∈ B ⇔ z ∈ x ∧ z ∈ y)) sub₂ x y = sub (λ z → z ∈ y) x -- Theorem 12, p.25 (Suppes 1960) ∩-def : (x y : 𝓢) → ∀ {z} → z ∈ x ∩ y ⇔ z ∈ x ∧ z ∈ y ∩-def x y = proj₂ _ (sub₂ x y) -- Projections of ∩-def, useful for avoiding repeating this -- projections later. ∩-d₁ : (x A B : 𝓢) → x ∈ (A ∩ B) → x ∈ A ∧ x ∈ B ∩-d₁ x A B = ∧-proj₁ (∩-def A B) ∩-d₂ : (x A B : 𝓢) → x ∈ A ∧ x ∈ B → x ∈ (A ∩ B) ∩-d₂ x A B = ∧-proj₂ (∩-def A B) -- Theorem 13, p.26 (Suppes 1960) ∩-sym : (A B : 𝓢) → A ∩ B ≡ B ∩ A ∩-sym A B = equalitySubset (A ∩ B) (B ∩ A) (p₁ , p₂) where p₁ : (x : 𝓢) → x ∈ A ∩ B → x ∈ B ∩ A p₁ x x∈A∩B = ∩-d₂ x B A (x∈B , x∈A) where x∈A : x ∈ A x∈A = ∧-proj₁ (∩-d₁ x A B x∈A∩B) x∈B : x ∈ B x∈B = ∧-proj₂ (∩-d₁ x A B x∈A∩B) p₂ : (x :  𝓢) → x ∈ B ∩ A → x ∈ A ∩ B p₂ x x∈B∩A = ∩-d₂ x A B (x∈A , x∈B) where x∈A : x ∈ A x∈A = ∧-proj₂ (∩-d₁ x B A x∈B∩A) x∈B : x ∈ B x∈B = ∧-proj₁ (∩-d₁ x B A x∈B∩A) -- Theorem 14, p. 26 (Suppes 1960). ∩-dist : (A B C : 𝓢) → (A ∩ B) ∩ C ≡ A ∩ (B ∩ C) ∩-dist A B C = equalitySubset ((A ∩ B) ∩ C) (A ∩ (B ∩ C)) (p₁ , p₂) where p₁ : (x : 𝓢) → x ∈ (A ∩ B) ∩ C → x ∈ A ∩ (B ∩ C) p₁ x x₁ = ∩-d₂ x A (B ∩ C) (x∈A , x∈B∩C) where x∈B∩C : x ∈ B ∩ C x∈B∩C = ∩-d₂ x B C (x∈B , x∈C) where x∈A∩B : x ∈ A ∩ B x∈A∩B = ∧-proj₁ (∩-d₁ x (A ∩ B) _ x₁) x∈B : x ∈ B x∈B = ∧-proj₂ (∩-d₁ x _ B x∈A∩B) x∈C : x ∈ C x∈C = ∧-proj₂ (∩-d₁ x _ C x₁) x∈A : x ∈ A x∈A = ∧-proj₁ (∩-d₁ x A _ x∈A∩B) where x∈A∩B : x ∈ A ∩ B x∈A∩B = ∧-proj₁ (∩-d₁ x (A ∩ B) _ x₁) p₂ : (x : 𝓢) → x ∈ A ∩ (B ∩ C) → x ∈ (A ∩ B) ∩ C p₂ x x₁ = ∩-d₂ x (A ∩ B) C (x∈A∩B , x∈C) where x∈A∩B : x ∈ A ∩ B x∈A∩B = ∩-d₂ x A B (x∈A , x∈B) where x∈A : x ∈ A x∈A = ∧-proj₁ (∩-d₁ x A _ x₁) x∈B∩C : x ∈ B ∩ C x∈B∩C = ∧-proj₂ (∩-d₁ x _ (B ∩ C) x₁) x∈B : x ∈ B x∈B = ∧-proj₁ (∩-d₁ x B _ x∈B∩C) x∈C : x ∈ C x∈C = ∧-proj₂ (∩-d₁ x _ C x∈B∩C) where x∈B∩C : x ∈ B ∩ C x∈B∩C = ∧-proj₂ (∩-d₁ x _ (B ∩ C) x₁) -- Theorem 15, p. 26 (Suppes). ∩-itself : (A : 𝓢) → A ∩ A ≡ A ∩-itself A = equalitySubset (A ∩ A) A (p₁ , p₂) where p₁ : (x : 𝓢) → x ∈ A ∩ A → x ∈ A p₁ x x₁ = ∧-proj₁ (∩-d₁ _ A _ x₁) p₂ : (x :  𝓢) → x ∈ A → x ∈ A ∩ A p₂ x x₁ = ∩-d₂ _ A A (x₁ , x₁) -- Theorem 17, p. 26 (Suppes 1960). A∩B⊆A : (A B : 𝓢) → A ∩ B ⊆ A A∩B⊆A A B _ p = ∧-proj₁ (∩-d₁ _ A _ p) -- Properties involving the difference between sets. The existence of this -- sets is also justified as an instance of the subset axiom schema. -- Instantiation of the subset schema that will justify the operation -- of difference between sets. sub₃ : (x y : 𝓢) → ∃ (λ B → {z : 𝓢} → (z ∈ B ⇔ z ∈ x ∧ z ∉ y)) sub₃ x y = sub (λ z → z ∉ y) x _-_ : 𝓢 → 𝓢 → 𝓢 x - y = proj₁ (sub₃ x y) -- Theorem 31, p.28 (Suppes 1960). dif-def : (x y : 𝓢) → ∀ {z} → z ∈ (x - y) ⇔ z ∈ x ∧ z ∉ y dif-def x y = proj₂ _ (sub₃ x y) -- Again both ∧-projections of the past theorem. dif-d₁ : (A B z : 𝓢) → z ∈ A - B → z ∈ A ∧ z ∉ B dif-d₁ A B z = ∧-proj₁ (dif-def A B) dif-d₂ : (A B z : 𝓢) → z ∈ A ∧ z ∉ B → z ∈ A - B dif-d₂ A B z = ∧-proj₂ (dif-def A B) -- Theorem 33, p. 29 (Suppes 1960). ∩- : (A B : 𝓢) → A ∩ (A - B) ≡ A - B ∩- A B = equalitySubset (A ∩ (A - B)) (A - B) (p₁ , p₂) where p₁ : (x : 𝓢) → x ∈ A ∩ (A - B) → x ∈ A - B p₁ x x∈∩- = dif-d₂ A B x (x∈A , x∉B) where x∈A : x ∈ A x∈A = ∧-proj₁ (∩-d₁ x A _ x∈∩-) x∈A-B : x ∈ A - B x∈A-B = ∧-proj₂ (∩-d₁ x _ (A - B) x∈∩-) x∉B : x ∉ B x∉B = ∧-proj₂ (dif-d₁ A B x x∈A-B) p₂ : (x : 𝓢) → x ∈ A - B → x ∈ A ∩ (A - B) p₂ x x∈A-B = ∩-d₂ x A (A - B) ((∧-proj₁ (dif-d₁ A B x x∈A-B)) , x∈A-B) -- References -- -- Suppes, Patrick (1960). Axiomatic Set Theory. -- The University Series in Undergraduate Mathematics. -- D. Van Nostrand Company, inc. -- -- Enderton, Herbert B. (1977). Elements of Set Theory. -- Academic Press Inc.
{ "alphanum_fraction": 0.4677849193, "avg_line_length": 27.9780701754, "ext": "agda", "hexsha": "746943b7b5e27be44e7ac0e5992c69fca182c0bf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "helq/old_code", "max_forks_repo_path": "proglangs-learning/Agda/sv20/assign2/SetTheory/Algebra.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_issues_repo_issues_event_max_datetime": "2021-06-07T15:39:48.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-10T19:20:21.000Z", "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "helq/old_code", "max_issues_repo_path": "proglangs-learning/Agda/sv20/assign2/SetTheory/Algebra.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "helq/old_code", "max_stars_repo_path": "proglangs-learning/Agda/sv20/assign2/SetTheory/Algebra.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3477, "size": 6379 }
{-# OPTIONS --without-K #-} module Types where open import Level using (_⊔_; Lift; lift; lower) public infix 1 _≡_ infixr 1 _⊎_ infixr 2 _×_ infix 3 ¬_ infixr 4 _,_ infixr 9 _∘_ -- The negative fragment. Π : ∀ {a b} (A : Set a) → (A → Set b) → Set _ Π A B = (x : A) → B x record Σ {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where constructor _,_ field π₁ : A π₂ : B π₁ open Σ public -- Projections are defined automatically. _×_ : ∀ {a b} → Set a → Set b → Set _ A × B = Σ A λ _ → B -- Unit type with definitional η. record ⊤ : Set where constructor tt id : ∀ {a} {A : Set a} → A → A id x = x _∘_ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : ∀ a → B a → Set c} (f : ∀ {a} (b : B a) → C a b) (g : ∀ a → B a) → ∀ x → C x (g x) (f ∘ g) x = f (g x) -- The positive fragment. data ⊥ : Set where -- Ex falso quodlibet. 0-elim : ∀ {p} {P : Set p} → ⊥ → P 0-elim () ¬_ : ∀ {a} → Set a → Set a ¬ A = A → ⊥ -- Unit type without definitional η. data Unit : Set where tt : Unit 1-elim : ∀ {p} (P : Unit → Set p) → P tt → ∀ z → P z 1-elim P c tt = c data _⊎_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where inl : A → A ⊎ B inr : B → A ⊎ B -- Case analysis. case : ∀ {a b p} {A : Set a} {B : Set b} (P : A ⊎ B → Set p) (f : ∀ a → P (inl a)) (g : ∀ b → P (inr b)) → ∀ z → P z case P f g (inl a) = f a case P f g (inr b) = g b -- Simga as a positive type. data Σ′ {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where _,_ : (a : A) → B a → Σ′ A B split : ∀ {a b p} {A : Set a} {B : A → Set b} (P : Σ′ A B → Set p) (f : (a : A) (b : B a) → P (a , b)) → ∀ z → P z split P f (a , b) = f a b -- Natural numbers. data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} ind : ∀ {p} (P : ℕ → Set p) (s : ∀ n → P n → P (suc n)) (z : P zero) → ∀ z → P z ind P s z zero = z ind P s z (suc n) = s n (ind P s z n) -- Identity type. data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x -- When the type cannot be infered. Id : ∀ {a} (A : Set a) (x y : A) → Set _ Id _ x y = x ≡ y -- Path induction. J : ∀ {a p} {A : Set a} (P : ∀ (x : A) y → x ≡ y → Set p) (f : ∀ x → P x x refl) → ∀ x y → (p : x ≡ y) → P x y p J P f x .x refl = f x
{ "alphanum_fraction": 0.4726862302, "avg_line_length": 20.8962264151, "ext": "agda", "hexsha": "e274e27d6392fbf886f2beb3a48af74c485f6f9a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vituscze/HoTT-lectures", "max_forks_repo_path": "src/Types.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "vituscze/HoTT-lectures", "max_issues_repo_path": "src/Types.agda", "max_line_length": 67, "max_stars_count": null, "max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "vituscze/HoTT-lectures", "max_stars_repo_path": "src/Types.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1016, "size": 2215 }
-- notes-04-thursday.agda open import mylib {- Infinite datastructure - streams, Stream A 0 ,1 , 2 ,3 ,4, ... : Stream ℕ 1, 1 , 2, 3 ,5 ,.. 2, 3, 5, 7, 11,.. duality, categorical mirror _×_ (products) and _⊎_ (coproducts, sums) Inductive datatypes: finite datastructures Coinductive datatypes: Streams, ℕ∞ (conatural numbers) -} record Stream (A : Set) : Set where constructor _∷_ coinductive field head : A tail : Stream A open Stream {- _∷S_ : A → Stream A → Stream A head (a ∷S as) = a tail (a ∷S as) = as -} from : ℕ → Stream ℕ head (from n) = n tail (from n) = from (suc n) -- from is productive because it is guarded mapS : (A → B) → Stream A → Stream B head (mapS f as) = f (head as) tail (mapS f as) = mapS f (tail as) {- filterS : (A → Bool) → Stream A → Stream A head (filterS f as) = if f (head as) then (head as) else {!!} tail (filterS f as) = {!!} -- no guarded definition of filter -} -- Conatural numbers data Maybe (A : Set) : Set where nothing : Maybe A just : A → Maybe A -- Maybe A = 1 ⊎ A pred : ℕ → Maybe ℕ pred zero = nothing pred (suc n) = just n zero-suc : Maybe ℕ → ℕ zero-suc nothing = zero zero-suc (just n) = suc n -- Lambek's lemma, initial algebras record ℕ∞ : Set where coinductive field pred∞ : Maybe ℕ∞ -- terminal coalgebra -- emb : ℕ → ℕ∞ -- 2 ways -- f : ℕ∞ → ℕ -- no way, cons local continuity open ℕ∞ zero∞ : ℕ∞ pred∞ zero∞ = nothing suc∞ : ℕ∞ → ℕ∞ pred∞ (suc∞ n) = just n ∞ : ℕ∞ pred∞ ∞ = just ∞ {- _+_ : ℕ → ℕ → ℕ zero + n = n suc m + n = suc (m + n) -} _+∞_ : ℕ∞ → ℕ∞ → ℕ∞ pred∞ (m +∞ n) with pred∞ m ... | nothing = pred∞ n ... | just m' = just (m' +∞ n) {- Dependent types (families) A dependent type is a function whose codomain is Set. List : Set → Set Not proper? Vec : Set → ℕ → Set Vec A n = tuple of n as { as | length as = n} -- type theoretic of comprehension Fin : ℕ → Set Fin n = a set with n elements {0 , 1, .. , n-1} Function type A B : Set A → B : Set Dependent function type (Π-type) A : Set B : A → Set (x : A) → B x {x : A} → B x -- hidden arguments zeros : (n : ℕ) → Vec ℕ n -} data Vec (A : Set) : ℕ → Set where [] : Vec A 0 _∷_ : {n : ℕ} → A → Vec A n → Vec A (suc n) zeros : (n : ℕ) → Vec ℕ n zeros zero = [] zeros (suc n) = 0 ∷ zeros n {- _++_ : List A → List A → List A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ (xs ++ ys) -} _++v_ : {m n : ℕ} → Vec A m → Vec A n → Vec A (m + n) [] ++v ys = ys (x ∷ xs) ++v ys = x ∷ (xs ++v ys) data Fin : ℕ → Set where zero : {n : ℕ} → Fin (suc n) suc : {n : ℕ} → Fin n → Fin (suc n) {- Fin 0 = {} Fin 1 = { zero{0} } Fin 2 = { zero{1} , suc{1} (zero{0}) } ... -} _!!_ : {n : ℕ} → Vec A n → Fin n → A -- safe lookup function (a ∷ as) !! zero = a (a ∷ as) !! suc n = as !! n
{ "alphanum_fraction": 0.5387610619, "avg_line_length": 17.7672955975, "ext": "agda", "hexsha": "282ed7936cb9b3962cd1c3f96a7820510fec60d5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f328e596d98a7d052b34144447dd14de0f57e534", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "FoxySeta/mgs-2021", "max_forks_repo_path": "Type Theory/notes-04-thursday.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "f328e596d98a7d052b34144447dd14de0f57e534", "max_issues_repo_issues_event_max_datetime": "2021-07-14T20:35:48.000Z", "max_issues_repo_issues_event_min_datetime": "2021-07-14T20:34:53.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "FoxySeta/mgs-2021", "max_issues_repo_path": "Type Theory/notes-04-thursday.agda", "max_line_length": 63, "max_stars_count": null, "max_stars_repo_head_hexsha": "f328e596d98a7d052b34144447dd14de0f57e534", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FoxySeta/mgs-2021", "max_stars_repo_path": "Type Theory/notes-04-thursday.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1149, "size": 2825 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Pi open import lib.types.Pointed module lib.types.Span where record Span {i j k : ULevel} : Type (lsucc (lmax (lmax i j) k)) where constructor span field A : Type i B : Type j C : Type k f : C → A g : C → B private span=-raw : ∀ {i j k} {A A' : Type i} (p : A == A') {B B' : Type j} (q : B == B') {C C' : Type k} (r : C == C') {f : C → A} {f' : C' → A'} (s : f == f' [ (λ CA → fst CA → snd CA) ↓ pair×= r p ]) {g : C → B} {g' : C' → B'} (t : g == g' [ (λ CB → fst CB → snd CB) ↓ pair×= r q ]) → (span A B C f g) == (span A' B' C' f' g') span=-raw idp idp idp idp idp = idp abstract span= : ∀ {i j k} {A A' : Type i} (p : A ≃ A') {B B' : Type j} (q : B ≃ B') {C C' : Type k} (r : C ≃ C') {f : C → A} {f' : C' → A'} (s : (a : C) → (–> p) (f a) == f' (–> r a)) {g : C → B} {g' : C' → B'} (t : (b : C) → (–> q) (g b) == g' (–> r b)) → (span A B C f g) == (span A' B' C' f' g') span= p q r {f} {f'} s {g} {g'} t = span=-raw (ua p) (ua q) (ua r) (↓-→-in (λ α → ↓-snd×-in (ua r) (ua p) (↓-idf-ua-in p ( s _ ∙ ap f' (↓-idf-ua-out r (↓-fst×-out (ua r) (ua p) α)))))) (↓-→-in (λ β → ↓-snd×-in (ua r) (ua q) (↓-idf-ua-in q ( t _ ∙ ap g' (↓-idf-ua-out r (↓-fst×-out (ua r) (ua q) β)))))) record ⊙Span {i j k : ULevel} : Type (lsucc (lmax (lmax i j) k)) where constructor ⊙span field X : Ptd i Y : Ptd j Z : Ptd k f : fst (Z ⊙→ X) g : fst (Z ⊙→ Y) ⊙span-out : ∀ {i j k} → ⊙Span {i} {j} {k} → Span {i} {j} {k} ⊙span-out (⊙span X Y Z f g) = span (fst X) (fst Y) (fst Z) (fst f) (fst g) {- Helper for path induction on pointed spans -} ⊙span-J : ∀ {i j k l} (P : ⊙Span {i} {j} {k} → Type l) → ({A : Type i} {B : Type j} {Z : Ptd k} (f : fst Z → A) (g : fst Z → B) → P (⊙span (A , f (snd Z)) (B , g (snd Z)) Z (f , idp) (g , idp))) → Π ⊙Span P ⊙span-J P t (⊙span (A , ._) (B , ._) Z (f , idp) (g , idp)) = t f g
{ "alphanum_fraction": 0.4135772749, "avg_line_length": 32.9682539683, "ext": "agda", "hexsha": "8b2bc41cf9f1d0cbedbddd083332139e699a3f7d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "lib/types/Span.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "lib/types/Span.agda", "max_line_length": 76, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "lib/types/Span.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 956, "size": 2077 }
module Data.Real.Order where open import Assume open import Data.Real.Base open import Data.Bool using (T; T?) open import Data.Unit using (⊤; tt) open import Relation.Nullary using (Dec; yes; no; ¬_) open import Relation.Binary.PropositionalEquality using (_≡_) open import Relation.Binary open import Level using (0ℓ) -- TODO -- should this move to Data.Real.Equality? _≉_ : Rel ℝ 0ℓ x ≉ y = ¬ x ≈ y ≉-isApartnessRelation : IsApartnessRelation _≈_ _≉_ ≉-isApartnessRelation = assume ≉-apartnessRelation : ApartnessRelation 0ℓ 0ℓ 0ℓ ≉-apartnessRelation = record { isApartnessRelation = ≉-isApartnessRelation } _≤_ : ℝ → ℝ → Set x ≤ y = T (x ≤ᵇ y) open import Relation.Binary.Construct.NonStrictToStrict _≈_ _≤_ public using (_<_; <-isStrictTotalOrder₁) _≤?_ : ∀ x y → Dec (x ≤ y) x ≤? y = T? (x ≤ᵇ y) ≤-isTotalOrder : IsTotalOrder _≈_ _≤_ ≤-isTotalOrder = assume ≤-isDecTotalOrder : IsDecTotalOrder _≈_ _≤_ ≤-isDecTotalOrder = record { isTotalOrder = ≤-isTotalOrder ; _≟_ = _≈?_ ; _≤?_ = _≤?_ } ≤-decTotalOrder : DecTotalOrder 0ℓ 0ℓ 0ℓ ≤-decTotalOrder = record { isDecTotalOrder = ≤-isDecTotalOrder } <-isStrictTotalOrder : IsStrictTotalOrder _≈_ _<_ <-isStrictTotalOrder = <-isStrictTotalOrder₁ _≈?_ ≤-isTotalOrder abs : ℝ → ℝ abs x = if does (0.0 ≤? x) then x else - x where open import Data.Bool using (if_then_else_) open import Relation.Nullary using (does)
{ "alphanum_fraction": 0.7105831533, "avg_line_length": 27.78, "ext": "agda", "hexsha": "7d122b80ccab36f3579aeb297ee459b95127f604", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a193aeebf1326f960975b19d3e31b46fddbbfaa2", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "cspollard/reals", "max_forks_repo_path": "src/Data/Real/Order.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a193aeebf1326f960975b19d3e31b46fddbbfaa2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "cspollard/reals", "max_issues_repo_path": "src/Data/Real/Order.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "a193aeebf1326f960975b19d3e31b46fddbbfaa2", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "cspollard/reals", "max_stars_repo_path": "src/Data/Real/Order.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 503, "size": 1389 }
------------------------------------------------------------------------ -- Various definitions of "true infinitely often", and some proofs -- showing that this property commutes with binary sums (in the -- double-negation monad, and sometimes with extra assumptions) ------------------------------------------------------------------------ module InfinitelyOften where open import Algebra open import Axiom.ExcludedMiddle open import Category.Monad open import Codata.Musical.Notation open import Data.Empty open import Data.Nat import Data.Nat.Properties as NatProp open import Data.Product as Prod hiding (map) open import Data.Sum hiding (map) open import Data.Unit using (tt) open import Function.Base open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using (_⇔_; equivalence; module Equivalence) import Function.Related as Related open import Level using (Lift; lift; lower) open import Relation.Binary hiding (_⇒_; _⇔_) open import Relation.Nullary open import Relation.Nullary.Negation import Relation.Nullary.Universe as Univ open import Relation.Unary hiding (_⇒_) private open module M {f} = RawMonad {f = f} ¬¬-Monad module NatOrder = DecTotalOrder NatProp.≤-decTotalOrder module NatLattice = DistributiveLattice NatProp.⊓-⊔-distributiveLattice ------------------------------------------------------------------------ -- Above module Above where -- P Above i holds if P holds somewhere above i (perhaps at i -- itself). infix 4 _Above_ _Above_ : (ℕ → Set) → (ℕ → Set) P Above i = ∃ λ j → i ≤ j × P j -- Conversion lemma. move-suc : ∀ {P i} → P Above suc i ⇔ (P ∘ suc) Above i move-suc {P} {i} = equivalence ⇒ ⇐ where ⇒ : P Above suc i → (P ∘ suc) Above i ⇒ (.(1 + j) , s≤s {n = j} i≤j , P[1+j]) = (j , i≤j , P[1+j]) ⇐ : (P ∘ suc) Above i → P Above suc i ⇐ (j , i≤j , P[1+j]) = (1 + j , s≤s i≤j , P[1+j]) -- A closure lemma. stable-up : ∀ {P} → (∀ i → Stable (P Above i)) → (∀ i → Stable ((P ∘ suc) Above i)) stable-up stable i ¬¬P∘suc⇑i = Equivalence.to move-suc ⟨$⟩ stable (1 + i) (_⟨$⟩_ (Equivalence.from move-suc) <$> ¬¬P∘suc⇑i) ------------------------------------------------------------------------ -- Has upper bound module Has-upper-bound where open Above using (_Above_) -- P Has-upper-bound i means that P does not hold for any j ≥ i. infix 4 _Has-upper-bound_ _Has-upper-bound_ : (ℕ → Set) → (ℕ → Set) P Has-upper-bound i = ∀ j → i ≤ j → ¬ P j -- A closure lemma. up : ∀ {P i} → P Has-upper-bound i → (P ∘ suc) Has-upper-bound i up ¬p = λ j i≤j → ¬p (suc j) (NatProp.≤-step i≤j) -- A conversion lemma. move-suc : ∀ {P i} → P Has-upper-bound suc i ⇔ (P ∘ suc) Has-upper-bound i move-suc {P} {i} = equivalence ⇒ ⇐ where ⇒ : P Has-upper-bound suc i → (P ∘ suc) Has-upper-bound i ⇒ P↯[1+i] j i≤j P[1+j] = P↯[1+i] (1 + j) (s≤s i≤j) P[1+j] ⇐ : (P ∘ suc) Has-upper-bound i → P Has-upper-bound suc i ⇐ P∘suc↯i .(1 + j) (s≤s {n = j} i≤j) Pj = P∘suc↯i j i≤j Pj -- _Has-upper-bound_ and _Above_ are mutually inconsistent. mutually-inconsistent : ∀ {P i} → P Has-upper-bound i ⇔ (¬ (P Above i)) mutually-inconsistent {P} {i} = equivalence ⇒ ⇐ where ⇒ : P Has-upper-bound i → ¬ (P Above i) ⇒ P↯i (j , i≤j , Pj) = P↯i j i≤j Pj ⇐ : ¬ (P Above i) → P Has-upper-bound i ⇐ ¬P⇑i j i≤j Pj = ¬P⇑i (j , i≤j , Pj) ------------------------------------------------------------------------ -- Below module Below where open Above using (_Above_) -- P Below i holds if P holds everywhere below i (including at i). infix 4 _Below_ _Below_ : (ℕ → Set) → (ℕ → Set) P Below i = ∀ j → j ≤ i → P j -- _Below_ P has a comonadic structure (at least if morphism -- equality is trivial). map : ∀ {P Q} → P ⊆ Q → _Below_ P ⊆ _Below_ Q map P⊆Q P⇓i j j≤i = P⊆Q (P⇓i j j≤i) counit : ∀ {P} → _Below_ P ⊆ P counit P⇓i = P⇓i _ NatOrder.refl cojoin : ∀ {P} → _Below_ P ⊆ _Below_ (_Below_ P) cojoin P⇓i = λ j j≤i k k≤j → P⇓i _ (NatOrder.trans k≤j j≤i) -- _Above_ (_Below_ P) is pointwise equivalent to _Below_ P. ⇑⇓⇔⇓ : ∀ {P} i → (_Below_ P) Above i ⇔ P Below i ⇑⇓⇔⇓ {P} i = equivalence ⇒ ⇐ where ⇒ : (_Below_ P) Above i → P Below i ⇒ (j , i≤j , P⇓j) k k≤i = P⇓j k (NatOrder.trans k≤i i≤j) ⇐ : P Below i → (_Below_ P) Above i ⇐ P⇓i = (i , NatOrder.refl , P⇓i) ------------------------------------------------------------------------ -- Mixed inductive/coinductive definition of "true infinitely often" module Mixed where open Above using (_Above_) -- Inf P means that P is true for infinitely many natural numbers. data Inf (P : ℕ → Set) : Set where now : (p : P 0) (inf : ∞ (Inf (P ∘ suc))) → Inf P skip : (inf : Inf (P ∘ suc) ) → Inf P -- Inf commutes with binary sums in the double-negation monad if one -- of the predicates satisfies a certain stability condition. up : ∀ {P} → Inf P → Inf (P ∘ suc) up (now p inf) = ♭ inf up (skip inf) = inf filter₁ : ∀ {P Q} → Inf (P ∪ Q) → ¬ ∃ Q → Inf P filter₁ (now (inj₁ p) inf) ¬q = now p (♯ filter₁ (♭ inf) (¬q ∘ Prod.map suc id)) filter₁ (now (inj₂ q) inf) ¬q = ⊥-elim (¬q (0 , q)) filter₁ (skip inf) ¬q = skip (filter₁ inf (¬q ∘ Prod.map suc id)) filter₂ : ∀ {P Q} → (∀ i → Stable (Q Above i)) → Inf (P ∪ Q) → ¬ Inf P → Inf Q filter₂ {P} {Q} stable p∪q ¬p = helper witness stable p∪q ¬p where open Related.EquationalReasoning witness : ∃ Q witness = Prod.map id proj₂ $ stable 0 ( ¬ (Q Above 0) ∼⟨ contraposition (Prod.map id (_,_ z≤n)) ⟩ ¬ ∃ Q ∼⟨ filter₁ p∪q ⟩ Inf P ∼⟨ ¬p ⟩ ⊥ ∎) helper : ∀ {P Q} → ∃ Q → (∀ i → Stable (Q Above i)) → Inf (P ∪ Q) → ¬ Inf P → Inf Q helper (zero , q) stable p∪q ¬p = now q (♯ filter₂ (Above.stable-up stable) (up p∪q) (¬p ∘ skip)) helper (suc i , q) stable p∪q ¬p = skip (helper (i , q) (Above.stable-up stable) (up p∪q) (¬p ∘ skip)) commutes : ∀ {P Q} → (∀ i → Stable (Q Above i)) → Inf (P ∪ Q) → ¬ ¬ (Inf P ⊎ Inf Q) commutes stable p∪q = call/cc λ ¬[p⊎q] → return $ inj₂ $ filter₂ stable p∪q (¬[p⊎q] ∘ inj₁) ------------------------------------------------------------------------ -- Alternative inductive/coinductive definition of "true infinitely -- often" module Alternative where open Mixed using (now; skip) -- Always P means that P holds for every natural number. data Always (P : ℕ → Set) : Set where now : (p : P 0) (next : ∞ (Always (P ∘ suc))) → Always P -- Eventually P means that P holds for some natural number. data Eventually (P : ℕ → Set) : Set where now : (p : P 0) → Eventually P later : (p : Eventually (P ∘ suc)) → Eventually P -- Inf P means that P is true for infinitely many natural numbers. Inf : (ℕ → Set) → Set Inf P = Always (λ n → Eventually (P ∘ _+_ n)) -- This definition is equivalent to the previous one. up : ∀ P → Inf P → Inf (P ∘ suc) up _ (now _ inf) = ♭ inf equivalent : ∀ {P} → Inf P ⇔ Mixed.Inf P equivalent = equivalence ⇒ ⇐ where ⇒ : ∀ {P} → Inf P → Mixed.Inf P ⇒ (now p inf) = ⇒′ p (♭ inf) where ⇒′ : ∀ {P} → Eventually P → Inf (P ∘ suc) → Mixed.Inf P ⇒′ (now p) inf = now p (♯ ⇒ inf) ⇒′ {P} (later p) inf = skip (⇒′ p (up (P ∘ suc) inf)) ⇐ : ∀ {P} → Mixed.Inf P → Inf P ⇐ inf = now (eventually inf) (♯ ⇐ (Mixed.up inf)) where eventually : ∀ {P} → Mixed.Inf P → Eventually P eventually (now p _) = now p eventually (skip inf) = later (eventually inf) ------------------------------------------------------------------------ -- Functional/inductive definition of "true infinitely often" module Functional where open Mixed using (now; skip) open Above using (_Above_) -- Inf P means that P is true for infinitely many natural numbers. Inf : (ℕ → Set) → Set Inf P = ∀ i → P Above i -- This definition is equivalent to the ones above. up : ∀ {P} → Inf P → Inf (P ∘ suc) up ∀iP⇑i i = Equivalence.to Above.move-suc ⟨$⟩ ∀iP⇑i (suc i) equivalent : ∀ {P} → Inf P ⇔ Mixed.Inf P equivalent = equivalence ⇒ ⇐ where ⇒ : ∀ {P} → Inf P → Mixed.Inf P ⇒ {P} inf with inf 0 ... | (j , _ , p) = helper inf j p where helper : ∀ {P} → Inf P → ∀ j → P j → Mixed.Inf P helper inf zero p = now p (♯ ⇒ (up inf)) helper inf (suc n) p = skip (helper (up inf) n p) ⇐ : ∀ {P} → Mixed.Inf P → Inf P ⇐ (now p inf) zero = (0 , z≤n , p) ⇐ (skip inf) zero = Prod.map suc (Prod.map (const z≤n) id) $ ⇐ inf zero ⇐ inf (suc i) = Prod.map suc (Prod.map s≤s id) $ ⇐ (Mixed.up inf) i -- Inf is a functor (at least if morphism equality is trivial). map : ∀ {P₁ P₂} → P₁ ⊆ P₂ → Inf P₁ → Inf P₂ map P₁⊆P₂ inf = λ i → Prod.map id (Prod.map id P₁⊆P₂) (inf i) ------------------------------------------------------------------------ -- Definition of "only true finitely often" module Fin where open Mixed using (now; skip) open Has-upper-bound using (_Has-upper-bound_) -- Fin P means that P is only true for finitely many natural -- numbers. Fin : (ℕ → Set) → Set Fin P = ∃ λ i → P Has-upper-bound i -- Fin implies the negation of Mixed.Inf. ⇐ : ∀ {P} → Fin P → ¬ Mixed.Inf P ⇐ = uncurry ⇐′ where ⇐′ : ∀ {P} i → P Has-upper-bound i → ¬ Mixed.Inf P ⇐′ zero fin (now p inf) = fin 0 z≤n p ⇐′ zero fin (skip inf) = ⇐′ zero (λ j i≤j → fin (suc j) z≤n) inf ⇐′ (suc i) fin inf = ⇐′ i (Equivalence.to Has-upper-bound.move-suc ⟨$⟩ fin) (Mixed.up inf) -- The other direction (with a double-negated conclusion) implies -- that Mixed.Inf commutes with binary sums (in the double-negation -- monad). filter : ∀ {P Q} → Mixed.Inf (P ∪ Q) → Fin P → Mixed.Inf Q filter inf (i , fin) = filter′ inf i fin where filter′ : ∀ {P Q} → Mixed.Inf (P ∪ Q) → ∀ i → P Has-upper-bound i → Mixed.Inf Q filter′ (now (inj₁ p) inf) 0 fin = ⊥-elim (fin 0 z≤n p) filter′ (now (inj₁ p) inf) (suc i) fin = skip (filter′ (♭ inf) i (Equivalence.to Has-upper-bound.move-suc ⟨$⟩ fin)) filter′ (now (inj₂ q) inf) i fin = now q (♯ filter′ (♭ inf) i (Has-upper-bound.up fin)) filter′ (skip inf) i fin = skip (filter′ inf i (Has-upper-bound.up fin)) commutes : ∀ {P Q} → (¬ Mixed.Inf P → ¬ ¬ Fin P) → Mixed.Inf (P ∪ Q) → ¬ ¬ (Mixed.Inf P ⊎ Mixed.Inf Q) commutes ⇒ p∪q = call/cc λ ¬[p⊎q] → ⇒ (¬[p⊎q] ∘ inj₁) >>= λ fin → return $ inj₂ (filter p∪q fin) -- Fin is preserved by binary sums. ∪-preserves : ∀ {P Q} → Fin P → Fin Q → Fin (P ∪ Q) ∪-preserves {P} {Q} (i , ¬p) (j , ¬q) = (i ⊔ j , helper) where open NatProp.≤-Reasoning helper : ∀ k → i ⊔ j ≤ k → ¬ (P ∪ Q) k helper k i⊔j≤k (inj₁ p) = ¬p k (begin i ≤⟨ NatProp.m≤m⊔n i j ⟩ i ⊔ j ≤⟨ i⊔j≤k ⟩ k ∎) p helper k i⊔j≤k (inj₂ q) = ¬q k (begin j ≤⟨ NatProp.m≤m⊔n j i ⟩ j ⊔ i ≡⟨ NatLattice.∧-comm j i ⟩ i ⊔ j ≤⟨ i⊔j≤k ⟩ k ∎) q ------------------------------------------------------------------------ -- Double-negation shift lemmas module Double-negation-shift where open Below using (_Below_) -- General double-negation shift property. DNS : (ℕ → Set) → Set DNS P = (∀ i → ¬ ¬ P i) → ¬ ¬ (∀ i → P i) -- DNS holds for stable predicates. Stable⇒DNS : ∀ {P} → (∀ i → Stable (P i)) → DNS P Stable⇒DNS stable ∀¬¬P = λ ¬∀P → ¬∀P (λ i → stable i (∀¬¬P i)) -- DNS follows from excluded middle. EM⇒DNS : ∀ {P} → ExcludedMiddle Level.zero → DNS P EM⇒DNS {P} em hyp = return hyp′ where hyp′ : ∀ i → P i hyp′ i = decidable-stable em (hyp i) -- DNS follows from the double-negation of excluded middle. ¬¬EM⇒DNS : ∀ {P} → ¬ ¬ ExcludedMiddle Level.zero → DNS P ¬¬EM⇒DNS em hyp = ¬¬-map lower (em >>= λ em → ¬¬-map lift (EM⇒DNS em hyp)) -- DNS respects predicate equivalence. respects : ∀ {P₁ P₂} → (∀ i → P₁ i ⇔ P₂ i) → DNS P₁ → DNS P₂ respects P₁⇔P₂ dns ∀i¬¬P₂i ¬∀iP₂i = dns (λ i ¬P₁i → ∀i¬¬P₂i i (λ P₂i → ¬P₁i (Equivalence.from (P₁⇔P₂ i) ⟨$⟩ P₂i))) (λ ∀iP₁i → ¬∀iP₂i (λ i → Equivalence.to (P₁⇔P₂ i) ⟨$⟩ ∀iP₁i i)) -- Double-negation shift property restricted to predicates which are -- downwards closed. DNS⇓ : (ℕ → Set) → Set DNS⇓ P = (∀ {i j} → i ≥ j → P i → P j) → (∀ i → ¬ ¬ P i) → ¬ ¬ (∀ i → P i) -- Certain instances of DNS imply other instances of DNS⇓, and vice -- versa. DNS⇒DNS⇓ : ∀ {P} → DNS (_Below_ P) → DNS⇓ P DNS⇒DNS⇓ {P} shift downwards-closed ∀i¬¬Pi = _∘_ Below.counit <$> shift (λ i → unit <$> ∀i¬¬Pi i) where unit : P ⊆ _Below_ P unit Pi j j≤i = downwards-closed j≤i Pi -- The following lemma is due to Thierry Coquand (but the proof, -- including any inelegance, is due to me). DNS⇓⇒DNS : ∀ {P} → DNS⇓ (_Below_ P) → DNS P DNS⇓⇒DNS {P} shift ∀¬¬P = _∘_ Below.counit <$> ¬¬∀P⇓ where P⇓-downwards-closed : ∀ {i j} → i ≥ j → P Below i → P Below j P⇓-downwards-closed i≥j P⇓i = λ j′ j′≤j → P⇓i j′ (NatOrder.trans j′≤j i≥j) Q : ℕ → Set Q i = ∀ {j} → j ≤′ i → P j q-zero : P 0 → Q 0 q-zero P0 ≤′-refl = P0 q-suc : ∀ {i} → P (suc i) → Q i → Q (suc i) q-suc P1+i Qi ≤′-refl = P1+i q-suc P1+i Qi (≤′-step j≤i) = Qi j≤i ∀¬¬Q : ∀ i → ¬ ¬ Q i ∀¬¬Q zero = q-zero <$> ∀¬¬P zero ∀¬¬Q (suc i) = q-suc <$> ∀¬¬P (suc i) ⊛ ∀¬¬Q i ∀¬¬P⇓ : ∀ i → ¬ ¬ (P Below i) ∀¬¬P⇓ i = (λ Qi j j≤i → Qi (NatProp.≤⇒≤′ j≤i)) <$> ∀¬¬Q i ¬¬∀P⇓ : ¬ ¬ (∀ i → P Below i) ¬¬∀P⇓ = shift P⇓-downwards-closed ∀¬¬P⇓ ------------------------------------------------------------------------ -- "Non-constructive" definition of "true infinitely often" module NonConstructive where open Fin using (Fin) open Above using (_Above_) open Below using (_Below_) open Has-upper-bound using (_Has-upper-bound_) open Double-negation-shift using (DNS; DNS⇓) -- Inf P means that P is true for infinitely many natural numbers. Inf : (ℕ → Set) → Set Inf P = ¬ Fin P -- Inf commutes with binary sums (in the double-negation monad). commutes : ∀ {P Q} → Inf (P ∪ Q) → ¬ ¬ (Inf P ⊎ Inf Q) commutes p∪q = call/cc λ ¬[p⊎q] → (λ ¬p ¬q → ⊥-elim (p∪q $ Fin.∪-preserves ¬p ¬q)) <$> ¬[p⊎q] ∘ inj₁ ⊛ ¬[p⊎q] ∘ inj₂ -- Inf is a functor (at least if morphism equality is trivial). map : ∀ {P₁ P₂} → P₁ ⊆ P₂ → Inf P₁ → Inf P₂ map P₁⊆P₂ ¬fin = λ fin → ¬fin (Prod.map id (λ never j i≤j P₁j → never j i≤j (P₁⊆P₂ P₁j)) fin) -- If we have a constructive proof of "true infinitely often", then -- we get a "non-constructive" proof as well. ⇒ : ∀ {P} → Functional.Inf P → Inf P ⇒ inf (i , fin) with inf i ... | (j , i≤j , p) = fin j i≤j p -- The other direction can be proved iff we have a double-negation -- shift lemma. Other-direction : (ℕ → Set) → Set Other-direction P = Inf P → ¬ ¬ Functional.Inf P equivalent₁ : ∀ {P} → Other-direction P ⇔ DNS (_Above_ P) equivalent₁ = equivalence ⇒shift shift⇒ where shift⇒ : ∀ {P} → DNS (_Above_ P) → Other-direction P shift⇒ shift ¬fin = shift (λ i ¬p → ¬fin (i , Equivalence.from Has-upper-bound.mutually-inconsistent ⟨$⟩ ¬p)) ⇒shift : ∀ {P} → Other-direction P → DNS (_Above_ P) ⇒shift hyp p = hyp (uncurry (λ i fin → p i (Equivalence.to Has-upper-bound.mutually-inconsistent ⟨$⟩ fin))) equivalent₂ : ∀ {P} → Other-direction (_Below_ P) ⇔ DNS P equivalent₂ {P} = equivalence ⇒shift shift⇒ where shift⇒ : DNS P → Other-direction (_Below_ P) shift⇒ shift inf ¬inf = shift (λ i ¬Pi → inf (i , λ j i≤j ∀k≤j[Pk] → ¬Pi (∀k≤j[Pk] i i≤j))) (λ ∀iPi → ¬inf (λ i → i , NatOrder.refl , λ j j≤i → ∀iPi j)) ⇒shift : ∀ {P} → Other-direction (_Below_ P) → DNS P ⇒shift {P} = Other-direction (_Below_ P) ∼⟨ (λ other₁ → Inf (_Below_ (_Below_ P)) ∼⟨ map Below.counit ⟩ Inf (_Below_ P) ∼⟨ other₁ ⟩ ¬ ¬ Functional.Inf (_Below_ P) ∼⟨ _<$>_ (Functional.map Below.cojoin) ⟩ (¬ ¬ Functional.Inf (_Below_ (_Below_ P))) ∎) ⟩ Other-direction (_Below_ (_Below_ P)) ∼⟨ _⟨$⟩_ (Equivalence.to equivalent₁) ⟩ DNS (_Above_ (_Below_ (_Below_ P))) ∼⟨ Double-negation-shift.respects Below.⇑⇓⇔⇓ ⟩ DNS (_Below_ (_Below_ P)) ∼⟨ Double-negation-shift.DNS⇒DNS⇓ ⟩ DNS⇓ (_Below_ P) ∼⟨ Double-negation-shift.DNS⇓⇒DNS ⟩ DNS P ∎ where open Related.EquationalReasoning equivalent : (∀ P → Other-direction P) ⇔ (∀ P → DNS P) equivalent = equivalence (λ other P → _⟨$⟩_ (Equivalence.to equivalent₂) (other (_Below_ P))) (λ shift P → _⟨$⟩_ (Equivalence.from equivalent₁) (shift (_Above_ P))) -- Some lemmas used below. up : ∀ {P} → Inf P → Inf (P ∘ suc) up = contraposition (Prod.map suc (_⟨$⟩_ (Equivalence.from Has-upper-bound.move-suc))) witness : ∀ {P} → Inf P → ¬ ¬ ∃ P witness ¬fin ¬p = ¬fin (0 , λ i _ Pi → ¬p (i , Pi)) ------------------------------------------------------------------------ -- Definition of "true infinitely often" which uses double-negation module DoubleNegated where open Fin using (Fin) open Has-upper-bound using (_Has-upper-bound_) infixl 4 _⟪$⟫_ mutual -- Inf P means that P is true for infinitely many natural numbers. data Inf (P : ℕ → Set) : Set₁ where now : (p : P 0) (inf : ∞ (¬¬Inf (P ∘ suc))) → Inf P skip : (inf : Inf (P ∘ suc) ) → Inf P data ¬¬Inf (P : ℕ → Set) : Set₁ where _⟪$⟫_ : {A : Set} (f : A → Inf P) (m : ¬ ¬ A) → ¬¬Inf P -- ¬¬Inf is equivalent to the non-constructive definition given -- above. expand : ∀ {P} → ¬¬Inf P → ¬ ¬ Inf P expand (f ⟪$⟫ m) = λ ¬inf → m (¬inf ∘ f) ¬¬equivalent : ∀ {P} → NonConstructive.Inf P ⇔ ¬¬Inf P ¬¬equivalent = equivalence ⇒ ⇐ where ⇒ : ∀ {P} → NonConstructive.Inf P → ¬¬Inf P ⇒ ¬fin = helper ¬fin ⟪$⟫ NonConstructive.witness ¬fin where helper : ∀ {P} → NonConstructive.Inf P → ∃ P → Inf P helper ¬fin (zero , p) = now p (♯ ⇒ (NonConstructive.up ¬fin)) helper ¬fin (suc i , p) = skip (helper (NonConstructive.up ¬fin) (i , p)) ⇐ : ∀ {P} → ¬¬Inf P → NonConstructive.Inf P ⇐ ¬¬inf (i , fin) = ⇐′ ¬¬inf i fin where mutual ⇐′ : ∀ {P} → ¬¬Inf P → ∀ i → ¬ P Has-upper-bound i ⇐′ ¬¬inf i fin = ¬¬-map (helper i fin) (expand ¬¬inf) id helper : ∀ {P} → ∀ i → P Has-upper-bound i → ¬ Inf P helper i ¬p (skip inf) = helper i (Has-upper-bound.up ¬p) inf helper zero ¬p (now p inf) = ¬p 0 z≤n p helper (suc i) ¬p (now p ¬¬inf) = ⇐′ (♭ ¬¬inf) i (λ j i≤j → ¬p (suc j) (s≤s i≤j)) -- Inf is equivalent to the non-constructive definition given above -- (in the double-negation monad). ⇐ : ∀ {P} → Inf P → NonConstructive.Inf P ⇐ {P} = Inf P ∼⟨ (λ inf → const inf ⟪$⟫ return tt) ⟩ ¬¬Inf P ∼⟨ _⟨$⟩_ (Equivalence.from ¬¬equivalent) ⟩ NonConstructive.Inf P ∎ where open Related.EquationalReasoning ⇒ : ∀ {P} → NonConstructive.Inf P → ¬ ¬ Inf P ⇒ {P} = NonConstructive.Inf P ∼⟨ _⟨$⟩_ (Equivalence.to ¬¬equivalent) ⟩ ¬¬Inf P ∼⟨ expand ⟩ (¬ ¬ Inf P) ∎ where open Related.EquationalReasoning equivalent : ∀ {P} → ¬ ¬ (NonConstructive.Inf P ⇔ Inf P) equivalent {P} = (λ ⇒′ → equivalence (⇒′ ∘ lift) ⇐) <$> Univ.¬¬-pull (Univ._⇒_ _ Univ.Id) (λ inf → ⇒ (lower inf)) -- Inf commutes with binary sums (in the double-negation monad). commutes : ∀ {P Q} → Inf (P ∪ Q) → ¬ ¬ (Inf P ⊎ Inf Q) commutes {P} {Q} p∪q = negated-stable $ ¬¬-map helper $ NonConstructive.commutes (⇐ p∪q) where helper : NonConstructive.Inf P ⊎ NonConstructive.Inf Q → ¬ ¬ (Inf P ⊎ Inf Q) helper (inj₁ p) = λ ¬p∪q → ⇒ p (¬p∪q ∘ inj₁) helper (inj₂ q) = λ ¬p∪q → ⇒ q (¬p∪q ∘ inj₂) -- You may wonder why double-negation is introduced in a roundabout -- way in ¬¬Inf above. The reason is that the more direct definition, -- used in DoubleNegated₂ below, is not strictly positive. Furthermore -- DoubleNegated₂.equivalent is not accepted by the termination -- checker. {- module DoubleNegated₂ where open DoubleNegated using (now; skip; _⟪$⟫_) data Inf (P : ℕ → Set) : Set where now : (p : P 0) (inf : ∞ (¬ ¬ Inf (P ∘ suc))) → Inf P skip : (inf : Inf (P ∘ suc) ) → Inf P equivalent : ∀ {P} → DoubleNegated.Inf P ⇔ Inf P equivalent = equivalence ⇒ ⇐ where ⇐ : ∀ {P} → Inf P → DoubleNegated.Inf P ⇐ (now p inf) = now p (♯ (⇐ ⟪$⟫ ♭ inf)) ⇐ (skip inf) = skip (⇐ inf) ⇒ : ∀ {P} → DoubleNegated.Inf P → Inf P ⇒ (now p inf) with ♭ inf ... | f ⟪$⟫ m = now p (♯ λ ¬inf → m (λ x → ¬inf (⇒ (f x)))) ⇒ (skip inf) = skip (⇒ inf) -}
{ "alphanum_fraction": 0.5207205525, "avg_line_length": 33.1190108192, "ext": "agda", "hexsha": "36c9979dd2ee40cdf2a75bd554cf439fb515eb4b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "InfinitelyOften.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "InfinitelyOften.agda", "max_line_length": 119, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "InfinitelyOften.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 7827, "size": 21428 }
import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; subst₂; cong) open import Data.Nat.Base open import Data.Fin hiding (_+_; #_) open import Data.Product using (∃; _×_; _,_; ∃-syntax) open import DeBruijn open import Substitution using (rename-subst-commute; subst-commute) open import Beta infix 3 _⇉_ data _⇉_ : ∀ {n} → Term n → Term n → Set where ⇉-c : ∀ {n} {x : Fin n} --------- → # x ⇉ # x ⇉-ƛ : ∀ {n} {M M′ : Term (suc n)} → M ⇉ M′ ---------- → ƛ M ⇉ ƛ M′ ⇉-ξ : ∀ {n} {M M′ N N′ : Term n} → M ⇉ M′ → N ⇉ N′ --------------- → M · N ⇉ M′ · N′ ⇉-β : ∀ {n} {M M′ : Term (suc n)} {N N′ : Term n} → M ⇉ M′ → N ⇉ N′ --------------------- → (ƛ M) · N ⇉ M′ [ N′ ] par-subst : ∀ {n m} → Subst n m → Subst n m → Set par-subst σ σ′ = ∀ {x} → σ x ⇉ σ′ x par-rename : ∀ {n m} {ρ : Rename n m} {M M′ : Term n} → M ⇉ M′ ------------------------ → rename ρ M ⇉ rename ρ M′ par-rename ⇉-c = ⇉-c par-rename (⇉-ƛ p) = ⇉-ƛ (par-rename p) par-rename (⇉-ξ p₁ p₂) = ⇉-ξ (par-rename p₁) (par-rename p₂) par-rename {n}{m}{ρ} (⇉-β {n}{N}{N′}{M}{M′} p₁ p₂) with ⇉-β (par-rename {ρ = ext ρ} p₁) (par-rename {ρ = ρ} p₂) ... | G rewrite rename-subst-commute {n}{m}{N′}{M′}{ρ} = G par-subst-exts : ∀ {n m} {σ σ′ : Subst n m} → par-subst σ σ′ --------------------------- → par-subst (exts σ) (exts σ′) par-subst-exts s {x = zero} = ⇉-c par-subst-exts s {x = suc x} = par-rename s subst-par : ∀ {n m} {σ σ′ : Subst n m} {M M′ : Term n} → par-subst σ σ′ → M ⇉ M′ ---------------------- → subst σ M ⇉ subst σ′ M′ subst-par {M = # x} s ⇉-c = s subst-par {n}{m}{σ}{σ′} {ƛ N} s (⇉-ƛ p) = ⇉-ƛ (subst-par {σ = exts σ}{σ′ = exts σ′} (λ {x} → par-subst-exts s {x = x}) p) subst-par {M = L · M} s (⇉-ξ p₁ p₂) = ⇉-ξ (subst-par s p₁) (subst-par s p₂) subst-par {n}{m}{σ}{σ′} {(ƛ N) · M} s (⇉-β {M′ = M′}{N′ = N′} p₁ p₂) with ⇉-β (subst-par {σ = exts σ}{σ′ = exts σ′}{M = N} (λ {x} → par-subst-exts s {x = x}) p₁) (subst-par {σ = σ} s p₂) ... | G rewrite subst-commute {N = M′}{M = N′}{σ = σ′} = G par-subst-zero : ∀ {n} {M M′ : Term n} → M ⇉ M′ ---------------------------------------- → par-subst (subst-zero M) (subst-zero M′) par-subst-zero M⇉M′ {zero} = M⇉M′ par-subst-zero M⇉M′ {suc x} = ⇉-c sub-par : ∀ {n} {M M′ : Term (suc n)} {N N′ : Term n} → M ⇉ M′ → N ⇉ N′ ------------------- → M [ N ] ⇉ M′ [ N′ ] sub-par M⇉M′ N⇉N′ = subst-par (par-subst-zero N⇉N′) M⇉M′ par-refl : ∀ {n} {M : Term n} ----- → M ⇉ M par-refl {M = # x} = ⇉-c par-refl {M = ƛ N} = ⇉-ƛ par-refl par-refl {M = L · M} = ⇉-ξ par-refl par-refl beta-par : ∀ {n} {M N : Term n} → M —→ N ------ → M ⇉ N beta-par {M = L · M} (—→-ξₗ r) = ⇉-ξ (beta-par {M = L} r) par-refl beta-par {M = L · M} (—→-ξᵣ r) = ⇉-ξ par-refl (beta-par {M = M} r) beta-par {M = ƛ N} (—→-ƛ r) = ⇉-ƛ (beta-par r) beta-par {M = (ƛ N) · M} —→-β = ⇉-β par-refl par-refl par-betas : ∀ {n} {M N : Term n} → M ⇉ N ------ → M —↠ N par-betas {M = # _} (⇉-c {x = x}) = # x ∎ par-betas {M = ƛ M} (⇉-ƛ p) = —↠-cong-ƛ (par-betas p) par-betas {M = M · N} (⇉-ξ p₁ p₂) = —↠-cong (par-betas p₁) (par-betas p₂) par-betas {M = (ƛ M) · N} (⇉-β {M′ = M′}{N′ = N′} p₁ p₂) = let a : (ƛ M) · N —↠ (ƛ M′) · N a = —↠-congₗ (—↠-cong-ƛ (par-betas p₁)) b : (ƛ M′) · N —↠ (ƛ M′) · N′ b = —↠-congᵣ (par-betas p₂) c = (ƛ M′) · N′ —→⟨ —→-β ⟩ M′ [ N′ ] ∎ in —↠-trans (—↠-trans a b) c infix 3 _⇉*_ infixr 3 _⇉⟨_⟩_ infix 4 _∎ data _⇉*_ : ∀ {n} → Term n → Term n → Set where _∎ : ∀ {n} (M : Term n) ------ → M ⇉* M _⇉⟨_⟩_ : ∀ {n} {L N : Term n} (M : Term n) → M ⇉ L → L ⇉* N ------ → M ⇉* N betas-pars : ∀ {n} {M N : Term n} → M —↠ N ------ → M ⇉* N betas-pars (M ∎) = M ∎ betas-pars (M —→⟨ b ⟩ bs) = M ⇉⟨ beta-par b ⟩ betas-pars bs pars-betas : ∀ {n} {M N : Term n} → M ⇉* N ------ → M —↠ N pars-betas (M ∎) = M ∎ pars-betas (M ⇉⟨ p ⟩ ps) = —↠-trans (par-betas p) (pars-betas ps)
{ "alphanum_fraction": 0.4237909135, "avg_line_length": 25.4285714286, "ext": "agda", "hexsha": "e0c889abe0eb61835084519b9e17cb3ffe49370a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "iwilare/church-rosser", "max_forks_repo_path": "Parallel.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "iwilare/church-rosser", "max_issues_repo_path": "Parallel.agda", "max_line_length": 73, "max_stars_count": 5, "max_stars_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "iwilare/church-rosser", "max_stars_repo_path": "Parallel.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-22T01:43:09.000Z", "max_stars_repo_stars_event_min_datetime": "2020-06-02T07:27:54.000Z", "num_tokens": 2022, "size": 4094 }
-- Basic intuitionistic propositional calculus, without ∨ or ⊥. -- Hilbert-style formalisation of closed syntax. -- Sequences of terms. module BasicIPC.Syntax.ClosedHilbertSequential where open import BasicIPC.Syntax.Common public -- Derivations. infix 3 ⊦⊢_ data ⊦⊢_ : Cx Ty → Set where nil : ⊦⊢ ∅ mp : ∀ {Ξ A B} → A ▻ B ∈ Ξ → A ∈ Ξ → ⊦⊢ Ξ → ⊦⊢ Ξ , B ci : ∀ {Ξ A} → ⊦⊢ Ξ → ⊦⊢ Ξ , A ▻ A ck : ∀ {Ξ A B} → ⊦⊢ Ξ → ⊦⊢ Ξ , A ▻ B ▻ A cs : ∀ {Ξ A B C} → ⊦⊢ Ξ → ⊦⊢ Ξ , (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C cpair : ∀ {Ξ A B} → ⊦⊢ Ξ → ⊦⊢ Ξ , A ▻ B ▻ A ∧ B cfst : ∀ {Ξ A B} → ⊦⊢ Ξ → ⊦⊢ Ξ , A ∧ B ▻ A csnd : ∀ {Ξ A B} → ⊦⊢ Ξ → ⊦⊢ Ξ , A ∧ B ▻ B unit : ∀ {Ξ} → ⊦⊢ Ξ → ⊦⊢ Ξ , ⊤ infix 3 ⊢_ ⊢_ : Ty → Set ⊢ A = ∃ (λ Ξ → ⊦⊢ Ξ , A) -- Concatenation of derivations. _⧺⊦_ : ∀ {Ξ Ξ′} → ⊦⊢ Ξ → ⊦⊢ Ξ′ → ⊦⊢ Ξ ⧺ Ξ′ us ⧺⊦ nil = us us ⧺⊦ mp i j ts = mp (mono∈ weak⊆⧺₂ i) (mono∈ weak⊆⧺₂ j) (us ⧺⊦ ts) us ⧺⊦ ci ts = ci (us ⧺⊦ ts) us ⧺⊦ ck ts = ck (us ⧺⊦ ts) us ⧺⊦ cs ts = cs (us ⧺⊦ ts) us ⧺⊦ cpair ts = cpair (us ⧺⊦ ts) us ⧺⊦ cfst ts = cfst (us ⧺⊦ ts) us ⧺⊦ csnd ts = csnd (us ⧺⊦ ts) us ⧺⊦ unit ts = unit (us ⧺⊦ ts) -- Modus ponens in expanded form. app : ∀ {A B} → ⊢ A ▻ B → ⊢ A → ⊢ B app {A} {B} (Ξ , ts) (Ξ′ , us) = Ξ″ , vs where Ξ″ = (Ξ′ , A) ⧺ (Ξ , A ▻ B) vs = mp top (mono∈ (weak⊆⧺₁ (Ξ , A ▻ B)) top) (us ⧺⊦ ts)
{ "alphanum_fraction": 0.431670282, "avg_line_length": 28.2244897959, "ext": "agda", "hexsha": "ae48238040d048f6016629c4e1570b2dad8ca64a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "BasicIPC/Syntax/ClosedHilbertSequential.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "BasicIPC/Syntax/ClosedHilbertSequential.agda", "max_line_length": 67, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "BasicIPC/Syntax/ClosedHilbertSequential.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 843, "size": 1383 }
{-# OPTIONS --safe #-} module Cubical.Algebra.Semigroup.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Reflection.RecordEquiv open import Cubical.Displayed.Base open import Cubical.Displayed.Auto open import Cubical.Displayed.Record open import Cubical.Displayed.Universe open Iso private variable ℓ : Level -- Semigroups as a record, inspired by the Agda standard library: -- -- https://github.com/agda/agda-stdlib/blob/master/src/Algebra/Bundles.agda#L48 -- https://github.com/agda/agda-stdlib/blob/master/src/Algebra/Structures.agda#L50 -- -- Note that as we are using Path for all equations the IsMagma record -- would only contain isSet A if we had it. record IsSemigroup {A : Type ℓ} (_·_ : A → A → A) : Type ℓ where no-eta-equality constructor issemigroup field is-set : isSet A ·Assoc : (x y z : A) → x · (y · z) ≡ (x · y) · z unquoteDecl IsSemigroupIsoΣ = declareRecordIsoΣ IsSemigroupIsoΣ (quote IsSemigroup) record SemigroupStr (A : Type ℓ) : Type ℓ where constructor semigroupstr field _·_ : A → A → A isSemigroup : IsSemigroup _·_ infixl 7 _·_ open IsSemigroup isSemigroup public Semigroup : ∀ ℓ → Type (ℓ-suc ℓ) Semigroup ℓ = TypeWithStr ℓ SemigroupStr module _ (A : Type ℓ) (_·_ : A → A → A) (h : IsSemigroup _·_) where semigroup : Semigroup ℓ semigroup .fst = A semigroup .snd .SemigroupStr._·_ = _·_ semigroup .snd .SemigroupStr.isSemigroup = h record IsSemigroupEquiv {A : Type ℓ} {B : Type ℓ} (M : SemigroupStr A) (e : A ≃ B) (N : SemigroupStr B) : Type ℓ where -- Shorter qualified names private module M = SemigroupStr M module N = SemigroupStr N field isHom : (x y : A) → equivFun e (x M.· y) ≡ equivFun e x N.· equivFun e y open SemigroupStr open IsSemigroup open IsSemigroupEquiv SemigroupEquiv : (M N : Semigroup ℓ) → Type ℓ SemigroupEquiv M N = Σ[ e ∈ ⟨ M ⟩ ≃ ⟨ N ⟩ ] IsSemigroupEquiv (M .snd) e (N .snd) isPropIsSemigroup : {A : Type ℓ} (_·_ : A → A → A) → isProp (IsSemigroup _·_) isPropIsSemigroup _·_ = isOfHLevelRetractFromIso 1 IsSemigroupIsoΣ (isPropΣ isPropIsSet (λ isSetA → isPropΠ3 λ _ _ _ → isSetA _ _)) 𝒮ᴰ-Semigroup : DUARel (𝒮-Univ ℓ) SemigroupStr ℓ 𝒮ᴰ-Semigroup = 𝒮ᴰ-Record (𝒮-Univ _) IsSemigroupEquiv (fields: data[ _·_ ∣ autoDUARel _ _ ∣ isHom ] prop[ isSemigroup ∣ (λ _ _ → isPropIsSemigroup _) ]) SemigroupPath : (M N : Semigroup ℓ) → SemigroupEquiv M N ≃ (M ≡ N) SemigroupPath = ∫ 𝒮ᴰ-Semigroup .UARel.ua
{ "alphanum_fraction": 0.6968911917, "avg_line_length": 27.02, "ext": "agda", "hexsha": "7ec2bd84c08bc49d6c249ffa41100e1ab40e26f7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/Semigroup/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/Semigroup/Base.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/Semigroup/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 958, "size": 2702 }
{-# OPTIONS --copatterns --show-implicit #-} module Issue940 where module _ (A : Set) where record Box : Set where constructor box field unbox : A open Box postulate x : A ex : Box ex = box x -- works ex' : Box unbox ex' = x -- Error WAS: -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/TypeChecking/Substitute.hs:326 postulate A : Set ok : Box A Box.unbox ok = x A -- works
{ "alphanum_fraction": 0.629707113, "avg_line_length": 14.9375, "ext": "agda", "hexsha": "ce696363bf9d2224ce7b063bca76258ac2323b42", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue940.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue940.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue940.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 148, "size": 478 }
module Issue558b where data Nat : Set where Z : Nat S : Nat → Nat data _≡_ {A : Set} (a : A) : A → Set where Refl : a ≡ a plus : Nat → Nat → Nat plus Z n = n plus (S n) m = S (plus n m) data Addable (τ : Set) : Set where addable : (τ → τ → τ) → Addable τ plus' : {τ : Set} → Addable τ → τ → τ → τ plus' (addable p) = p record ⊤ : Set where module AddableM {τ : Set} {a : ⊤} (a : Addable τ) where _+_ : τ → τ → τ _+_ = plus' a -- record Addable (τ : Set) : Set where -- constructor addable -- field -- _+_ : τ → τ → τ open module AddableIFS {t : Set} {a : ⊤} {{r : Addable t}} = AddableM {t} r data CommAddable (τ : Set) {a : ⊤} : Set where commAddable : (addable : Addable τ) → ((a b : τ) → (a + b) ≡ (b + a)) → CommAddable τ private addableCA' : {τ : Set} (ca : CommAddable τ) → Addable τ addableCA' (commAddable a _) = a comm' : {τ : Set} (ca : CommAddable τ) → let a = addableCA' ca in (a b : τ) → (a + b) ≡ (b + a) comm' (commAddable _ c) = c module CommAddableM {τ : Set} {a : ⊤} (ca : CommAddable τ) where addableCA : Addable τ addableCA = addableCA' ca comm : (a b : τ) → (a + b) ≡ (b + a) comm = comm' ca natAdd : Addable Nat natAdd = addable plus postulate commPlus : (a b : Nat) → plus a b ≡ plus b a commNatAdd : CommAddable Nat commNatAdd = commAddable natAdd commPlus open CommAddableM {{...}} test : (Z + Z) ≡ Z test = comm Z Z a : {x y : Nat} → (S (S Z) + (x + y)) ≡ ((x + y) + S (S Z)) a {x}{y} = comm (S (S Z)) (x + y)
{ "alphanum_fraction": 0.5503669113, "avg_line_length": 22.7121212121, "ext": "agda", "hexsha": "6d00062b19a8ba60bcd102b75a50a158fc967e82", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue558b.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue558b.agda", "max_line_length": 86, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue558b.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 620, "size": 1499 }
-- Andreas, 2017-01-01, issue 2372, reported by m0davis -- This file is imported by Issue2372ImportInst. module Issue2372Inst where postulate D : Set record R : Set₁ where field r : Set open R {{ ... }} public instance iR = record { r = D }
{ "alphanum_fraction": 0.6758893281, "avg_line_length": 15.8125, "ext": "agda", "hexsha": "e6623e78fb7afa74494bc73c9c63b6b1a7535507", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2372Inst.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2372Inst.agda", "max_line_length": 55, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2372Inst.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 80, "size": 253 }
{-# OPTIONS --rewriting #-} module Examples.Run where open import Agda.Builtin.Equality using (_≡_; refl) open import Luau.Syntax using (nil; var; _$_; function_⟨_⟩_end; return; _∙_; done) open import Luau.Value using (nil) open import Luau.Run using (run; return) open import Luau.Heap using (emp; lookup-next; next-emp; lookup-next-emp) import Agda.Builtin.Equality.Rewrite {-# REWRITE lookup-next next-emp lookup-next-emp #-} x = var "x" id = var "id" ex1 : (run (function "id" ⟨ "x" ⟩ return x ∙ done end ∙ return (id $ nil) ∙ done) ≡ return nil _) ex1 = refl
{ "alphanum_fraction": 0.6942003515, "avg_line_length": 29.9473684211, "ext": "agda", "hexsha": "bfa798394b51c7eae61ddc47d5b97a42e9a4043e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "FreakingBarbarians/luau", "max_forks_repo_path": "prototyping/Examples/Run.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "FreakingBarbarians/luau", "max_issues_repo_path": "prototyping/Examples/Run.agda", "max_line_length": 97, "max_stars_count": 1, "max_stars_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FreakingBarbarians/luau", "max_stars_repo_path": "prototyping/Examples/Run.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-11T21:30:17.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-11T21:30:17.000Z", "num_tokens": 180, "size": 569 }
module Issue5563 where F : (@0 A : Set) → A → A F A x = let y : A y = x in y
{ "alphanum_fraction": 0.4555555556, "avg_line_length": 10, "ext": "agda", "hexsha": "d66baf84240999c8e41fd7d78ff7de666c2ba8d3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue5563.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue5563.agda", "max_line_length": 24, "max_stars_count": 1, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue5563.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:25:14.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:25:14.000Z", "num_tokens": 40, "size": 90 }
module Cats.Category.Fun.Facts where open import Cats.Category open import Cats.Category.Cat using (_≈_) open import Cats.Category.Fun using (Trans ; Fun ; ≈-intro ; ≈-elim) open import Cats.Functor using (Functor) open import Cats.Trans.Iso using (NatIso ; iso ; forth-natural ; back-natural) open import Level using (_⊔_) open Functor open Trans open Category._≅_ module _ {lo la l≈ lo′ la′ l≈′} {C : Category lo la l≈} {D : Category lo′ la′ l≈′} {F G : Functor C D} where private module C = Category C module D = Category D open D.≈-Reasoning open Category (Fun C D) using (_≅_) NatIso→≅ : NatIso F G → F ≅ G NatIso→≅ i = record { forth = Forth i ; back = Back i ; back-forth = ≈-intro (back-forth (iso i)) ; forth-back = ≈-intro (forth-back (iso i)) } where open NatIso ≅→NatIso : F ≅ G → NatIso F G ≅→NatIso i = record { iso = λ {c} → record { forth = component (forth i) c ; back = component (back i) c ; back-forth = ≈-elim (back-forth i) ; forth-back = ≈-elim (forth-back i) } ; forth-natural = natural (forth i) } ≈→≅ : F ≈ G → F ≅ G ≈→≅ eq = NatIso→≅ eq ≅→≈ : F ≅ G → F ≈ G ≅→≈ i = ≅→NatIso i
{ "alphanum_fraction": 0.5627466456, "avg_line_length": 21.8448275862, "ext": "agda", "hexsha": "0611058d4dba5379ad330dbf7deec75b6b811f6f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Category/Fun/Facts.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Category/Fun/Facts.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Category/Fun/Facts.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 452, "size": 1267 }
{-# OPTIONS --without-K --rewriting #-} module Classifying where open import Basics open import Flat open import lib.types.Sigma open import lib.Equivalence2 open import lib.types.Truncation BAut : ∀ {i} {X : Type i} (x : X) → Type i BAut {X = X} x = Σ X $ (\y → ∥ x == y ∥) ♭-commutes-with-BAut : {@♭ i : ULevel } (@♭ X : Type i) (@♭ x : X) → (♭ (BAut x)) ≃ BAut (x ^♭) ♭-commutes-with-BAut X x = ♭ (BAut x) ≃⟨ ♭-commutes-with-Σ ⟩ Σ (♭ X) (\u → let♭ y ^♭:= u in♭ (♭ ∥ x == y ∥)) ≃⟨ Σ-emap-r lemma₂ ⟩ Σ (♭ X) (\u → let♭ y ^♭:= u in♭ ∥ ♭ (x == y) ∥) ≃⟨ Σ-emap-r lemma₁ ⟩ BAut (x ^♭) ≃∎ where lemma₁ : (z : ♭ X) → (let♭ y ^♭:= z in♭ ∥ ♭ (x == y) ∥) ≃ ∥ (x ^♭) == z ∥ lemma₁ (z ^♭) = Trunc-emap (♭-identity-eq x z) lemma₂ : (z : ♭ X) → (let♭ y ^♭:= z in♭ (♭ ∥ x == y ∥)) ≃ (let♭ y ^♭:= z in♭ ∥ ♭ (x == y) ∥) lemma₂ (z ^♭) = (♭-Trunc-eq (x == z)) ⁻¹ _is-locally-crisply-discrete : {@♭ i : ULevel} (@♭ X : Type i) → Type i _is-locally-crisply-discrete X = (@♭ x y : X) → (x == y) is-discrete
{ "alphanum_fraction": 0.38359375, "avg_line_length": 36.5714285714, "ext": "agda", "hexsha": "6f6edcd152c8764376c0add3142c1754f01e5ac1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "glangmead/formalization", "max_forks_repo_path": "cohesion/david_jaz_261/Classifying.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "glangmead/formalization", "max_issues_repo_path": "cohesion/david_jaz_261/Classifying.agda", "max_line_length": 99, "max_stars_count": 6, "max_stars_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "glangmead/formalization", "max_stars_repo_path": "cohesion/david_jaz_261/Classifying.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-13T05:51:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-06T17:39:22.000Z", "num_tokens": 539, "size": 1280 }
module Section8 where open import Section7 public -- 8. Correctness of conversion between terms -- ========================================== -- -- The conversion rules for terms are sound: -- Theorem 9. postulate thm₉ : ∀ {Γ A t₀ t₁} → (M N : Γ ⊢ A) → t₀ 𝒟 M → t₁ 𝒟 N → Γ ⊢ t₀ ≊ t₁ ∷ A → M ≅ N -- Proof: The proof is by induction on the proof of `Γ ⊢ t₀ ≊ t₁ ∷ A`. We illustrate the proof -- with the reflexivity case. In this case we have that `t₀` and `t₁` are the same, hence by Corollary 3 -- we get `M ≅ N`. -- -- To prove that the conversion rules are complete -- is straightforward by induction on the proof of `M ≅ N`. -- Theorem 10. postulate thm₁₀ : ∀ {Γ A} → (M N : Γ ⊢ A) → M ≅ N → Γ ⊢ M ⁻ ≊ N ⁻ ∷ A
{ "alphanum_fraction": 0.5499351492, "avg_line_length": 26.5862068966, "ext": "agda", "hexsha": "c6b791c9d08037cd69736c4682e8914bd43cac5f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/coquand", "max_forks_repo_path": "src/Section8.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/coquand", "max_issues_repo_path": "src/Section8.agda", "max_line_length": 105, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/coquand", "max_stars_repo_path": "src/Section8.agda", "max_stars_repo_stars_event_max_datetime": "2017-09-07T12:44:40.000Z", "max_stars_repo_stars_event_min_datetime": "2017-03-27T01:29:58.000Z", "num_tokens": 265, "size": 771 }
open import Agda.Primitive using (lzero; lsuc; _⊔_) import SecondOrder.Arity import SecondOrder.Signature import SecondOrder.Metavariable import SecondOrder.Renaming import SecondOrder.Term module SecondOrder.Theory {ℓ} {𝔸 : SecondOrder.Arity.Arity} (Σ : SecondOrder.Signature.Signature ℓ 𝔸) where open SecondOrder.Metavariable Σ public open SecondOrder.Term Σ public open SecondOrder.Signature.Signature Σ public open SecondOrder.Renaming Σ record Axiom : Set ℓ where constructor make-ax field ax-mv-ctx : MContext -- metavariable context of an equation ax-sort : sort -- sort of an equation ax-lhs : Term ax-mv-ctx ctx-empty ax-sort -- left-hand side ax-rhs : Term ax-mv-ctx ctx-empty ax-sort -- right-hand side record Theory ℓa : Set (lsuc (ℓ ⊔ ℓa)) where field ax : Set ℓa -- the axioms ax-eq : ax → Axiom -- each axiom has a corresponding Axiom ax-mv-ctx : ax → MContext -- the meta-context of each axiom ax-mv-ctx ε = Axiom.ax-mv-ctx (ax-eq ε) ax-sort : ax → sort -- the sort of each axiom ax-sort ε = Axiom.ax-sort (ax-eq ε) -- the left- and right-hand side of each axiom s ≈ t, promoted to any context ax-lhs : ∀ (ε : ax) {Γ} → Term (ax-mv-ctx ε) Γ (ax-sort ε) ax-lhs ε = [ inʳ ]ʳ Axiom.ax-lhs (ax-eq ε) ax-rhs : ∀ (ε : ax) {Γ} → Term (ax-mv-ctx ε) Γ (ax-sort ε) ax-rhs ε = [ inʳ ]ʳ Axiom.ax-rhs (ax-eq ε)
{ "alphanum_fraction": 0.6610644258, "avg_line_length": 31.7333333333, "ext": "agda", "hexsha": "3dcc87295a3375740a6258e9e4522eb4f081ff11", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejbauer/formaltt", "max_forks_repo_path": "src/SecondOrder/Theory.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejbauer/formaltt", "max_issues_repo_path": "src/SecondOrder/Theory.agda", "max_line_length": 81, "max_stars_count": 1, "max_stars_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andrejbauer/formal", "max_stars_repo_path": "src/SecondOrder/Theory.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-18T18:21:00.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-18T18:21:00.000Z", "num_tokens": 490, "size": 1428 }
------------------------------------------------------------------------------ -- Properties for the bisimilarity relation ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Relation.Binary.Bisimilarity.PropertiesI where open import Common.FOL.Relation.Binary.EqReasoning open import FOTC.Base open import FOTC.Base.List open import FOTC.Base.List.PropertiesI open import FOTC.Relation.Binary.Bisimilarity.Type ------------------------------------------------------------------------------ {-# TERMINATING #-} ≈→≡ : ∀ {xs ys} → xs ≈ ys → xs ≡ ys ≈→≡ {xs} {ys} h with ≈-out h ... | x' , xs' , ys' , prf₁ , prf₂ , prf₃ = xs ≡⟨ prf₁ ⟩ x' ∷ xs' ≡⟨ ∷-rightCong (≈→≡ prf₃) ⟩ x' ∷ ys' ≡⟨ sym prf₂ ⟩ ys ∎
{ "alphanum_fraction": 0.4462193823, "avg_line_length": 32.3793103448, "ext": "agda", "hexsha": "092646cea8a8a63b7b12b043754606cf7dc070f4", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Relation/Binary/Bisimilarity/PropertiesI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Relation/Binary/Bisimilarity/PropertiesI.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Relation/Binary/Bisimilarity/PropertiesI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 252, "size": 939 }
{-# OPTIONS --cubical --safe #-} module Data.Binary.PerformanceTests.Multiplication where open import Prelude open import Data.Binary.Definition open import Data.Binary.Addition using (_+_) open import Data.Binary.Multiplication using (_*_) open import Data.Binary.Increment using (inc) one-thousand : 𝔹 one-thousand = 2ᵇ 1ᵇ 1ᵇ 2ᵇ 1ᵇ 2ᵇ 2ᵇ 2ᵇ 2ᵇ 0ᵇ pow-r : 𝔹 → ℕ → 𝔹 pow-r x zero = 1ᵇ 0ᵇ pow-r x (suc n) = x * pow-r (inc x) n pow-l : 𝔹 → ℕ → 𝔹 pow-l x zero = 1ᵇ 0ᵇ pow-l x (suc n) = pow-l (inc x) n * x n : ℕ n = 6 f : 𝔹 f = one-thousand -- The actual performance test (uncomment and time how long it takes to type-check) -- _ : pow-r f n ≡ pow-l f n -- _ = refl
{ "alphanum_fraction": 0.6661742984, "avg_line_length": 21.8387096774, "ext": "agda", "hexsha": "deada951a851702fe0e8897e46371392347f01a4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Binary/PerformanceTests/Multiplication.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Binary/PerformanceTests/Multiplication.agda", "max_line_length": 83, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Binary/PerformanceTests/Multiplication.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 281, "size": 677 }
{-# OPTIONS --without-K #-} module Data.Tuple.Base where open import Level using (_⊔_) -- non-dependent pair; failed to reuse _×_ record Pair {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where constructor _,_ field fst : A snd : B {-# FOREIGN GHC type AgdaPair a b c d = (c , d) #-} -- {-# COMPILE GHC Pair = type MAlonzo.Code.Data.Tuple.AgdaPair #-} {-# COMPILE GHC Pair = data MAlonzo.Code.Data.Tuple.AgdaPair ((,)) #-} infixl 5 _∥_ _∥_ = Pair
{ "alphanum_fraction": 0.6168831169, "avg_line_length": 23.1, "ext": "agda", "hexsha": "dbead0787f0fa9e7993e2c2977bc28c6db1f814e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "semenov-vladyslav/bytes-agda", "max_forks_repo_path": "src/Data/Tuple/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "semenov-vladyslav/bytes-agda", "max_issues_repo_path": "src/Data/Tuple/Base.agda", "max_line_length": 70, "max_stars_count": null, "max_stars_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "semenov-vladyslav/bytes-agda", "max_stars_repo_path": "src/Data/Tuple/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 156, "size": 462 }
------------------------------------------------------------------------------ -- Group theory ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module GroupTheory.README where ------------------------------------------------------------------------------ -- Description -- Theory of groups using Agda postulates for the group axioms. ------------------------------------------------------------------------------ -- The axioms open import GroupTheory.Base -- Basic properties open import GroupTheory.PropertiesATP open import GroupTheory.PropertiesI -- Commutator properties open import GroupTheory.Commutator.PropertiesATP open import GroupTheory.Commutator.PropertiesI -- Abelian groups open import GroupTheory.AbelianGroup.PropertiesATP
{ "alphanum_fraction": 0.4842105263, "avg_line_length": 30.6451612903, "ext": "agda", "hexsha": "e0b1f8f26908170399b51590794299821ab9028d", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/GroupTheory/README.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/GroupTheory/README.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/GroupTheory/README.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 143, "size": 950 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Setoids.Setoids open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Numbers.Naturals.Semiring open import Sets.Cardinality.Finite.Definition open import Groups.Definition module Groups.FiniteGroups.Definition where record FiniteGroup {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_·_ : A → A → A} (G : Group S _·_) {c : _} (quotientSet : Set c) : Set (a ⊔ b ⊔ c) where field toSet : SetoidToSet S quotientSet finite : FiniteSet quotientSet groupOrder : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_·_ : A → A → A} {underG : Group S _·_} {c : _} {quotientSet : Set c} (G : FiniteGroup underG quotientSet) → ℕ groupOrder record { toSet = toSet ; finite = record { size = size ; mapping = mapping ; bij = bij } } = size
{ "alphanum_fraction": 0.6601226994, "avg_line_length": 45.2777777778, "ext": "agda", "hexsha": "6c2e43e99a4bcc0d10457f23d891fd7c64d50ea2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/FiniteGroups/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/FiniteGroups/Definition.agda", "max_line_length": 169, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/FiniteGroups/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 274, "size": 815 }
------------------------------------------------------------------------ -- A tiny library of derived combinators ------------------------------------------------------------------------ module TotalRecognisers.LeftRecursion.Lib (Tok : Set) where open import Codata.Musical.Notation open import Data.Bool hiding (_∧_; _≤_) open import Data.Bool.Properties open import Function hiding (_∋_) open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using (module Equivalence) open import Data.List open import Data.Nat using (ℕ; zero; suc) open import Data.Product as Prod open import Relation.Binary open import Relation.Binary.PropositionalEquality hiding ([_]) open import Relation.Nullary.Decidable import TotalRecognisers.LeftRecursion open TotalRecognisers.LeftRecursion Tok ------------------------------------------------------------------------ -- Kleene star -- The intended semantics of the Kleene star. infixr 5 _∷_ infix 4 _∈[_]⋆ data _∈[_]⋆ {n} : List Tok → P n → Set where [] : ∀ {p} → [] ∈[ p ]⋆ _∷_ : ∀ {s₁ s₂ p} → s₁ ∈ p → s₂ ∈[ p ]⋆ → s₁ ++ s₂ ∈[ p ]⋆ module KleeneStar₁ where infix 15 _⋆ _+ -- This definition requires that the argument recognisers are not -- nullable. mutual _⋆ : P false → P true p ⋆ = empty ∣ p + _+ : P false → P false p + = p · ♯ (p ⋆) -- The definition of _⋆ above is correct. ⋆-sound : ∀ {s p} → s ∈ p ⋆ → s ∈[ p ]⋆ ⋆-sound (∣-left empty) = [] ⋆-sound (∣-right (pr₁ · pr₂)) = pr₁ ∷ ⋆-sound pr₂ ⋆-complete : ∀ {s p} → s ∈[ p ]⋆ → s ∈ p ⋆ ⋆-complete [] = ∣-left empty ⋆-complete (_∷_ {[]} pr₁ pr₂) = ⋆-complete pr₂ ⋆-complete (_∷_ {_ ∷ _} pr₁ pr₂) = ∣-right {n₁ = true} (pr₁ · ⋆-complete pr₂) module KleeneStar₂ where infix 15 _⋆ -- This definition works for any argument recogniser. _⋆ : ∀ {n} → P n → P true _⋆ = KleeneStar₁._⋆ ∘ nonempty -- The definition of _⋆ above is correct. ⋆-sound : ∀ {s n} {p : P n} → s ∈ p ⋆ → s ∈[ p ]⋆ ⋆-sound (∣-left empty) = [] ⋆-sound (∣-right (nonempty pr₁ · pr₂)) = pr₁ ∷ ⋆-sound pr₂ ⋆-complete : ∀ {s n} {p : P n} → s ∈[ p ]⋆ → s ∈ p ⋆ ⋆-complete [] = ∣-left empty ⋆-complete (_∷_ {[]} pr₁ pr₂) = ⋆-complete pr₂ ⋆-complete (_∷_ {_ ∷ _} pr₁ pr₂) = ∣-right {n₁ = true} (nonempty pr₁ · ⋆-complete pr₂) -- Note, however, that for actual parsing the corresponding -- definition would not be correct. The reason is that p would give -- a result also when the empty string was accepted, and these -- results are ignored by the definition above. In the case of -- actual parsing the result of p ⋆, when p is nullable, should be a -- stream and not a finite list. ------------------------------------------------------------------------ -- A simplified sequencing operator infixl 10 _⊙_ _⊙_ : ∀ {n₁ n₂} → P n₁ → P n₂ → P (n₁ ∧ n₂) _⊙_ {n₁ = n₁} p₁ p₂ = ♯? p₁ · ♯? {b = n₁} p₂ module ⊙ where complete : ∀ {n₁ n₂ s₁ s₂} {p₁ : P n₁} {p₂ : P n₂} → s₁ ∈ p₁ → s₂ ∈ p₂ → s₁ ++ s₂ ∈ p₁ ⊙ p₂ complete {n₁} {n₂} s₁∈p₁ s₂∈p₂ = add-♭♯ n₂ s₁∈p₁ · add-♭♯ n₁ s₂∈p₂ infixl 10 _⊙′_ infix 4 _⊙_∋_ data _⊙_∋_ {n₁ n₂} (p₁ : P n₁) (p₂ : P n₂) : List Tok → Set where _⊙′_ : ∀ {s₁ s₂} (s₁∈p₁ : s₁ ∈ p₁) (s₂∈p₂ : s₂ ∈ p₂) → p₁ ⊙ p₂ ∋ s₁ ++ s₂ sound : ∀ {n₁} n₂ {s} {p₁ : P n₁} {p₂ : P n₂} → s ∈ p₁ ⊙ p₂ → p₁ ⊙ p₂ ∋ s sound {n₁} n₂ (s₁∈p₁ · s₂∈p₂) = drop-♭♯ n₂ s₁∈p₁ ⊙′ drop-♭♯ n₁ s₂∈p₂ ------------------------------------------------------------------------ -- A combinator which repeats a recogniser a fixed number of times ⟨_^_⟩-nullable : Bool → ℕ → Bool ⟨ n ^ zero ⟩-nullable = true ⟨ n ^ suc i ⟩-nullable = n ∧ ⟨ n ^ i ⟩-nullable infixl 15 _^_ _^_ : ∀ {n} → P n → (i : ℕ) → P ⟨ n ^ i ⟩-nullable p ^ 0 = empty p ^ suc i = p ⊙ p ^ i -- Some lemmas relating _^_ to _⋆. open KleeneStar₂ ^≤⋆ : ∀ {n} {p : P n} i → p ^ i ≤ p ⋆ ^≤⋆ {n} {p} i s∈ = ⋆-complete $ helper i s∈ where helper : ∀ i {s} → s ∈ p ^ i → s ∈[ p ]⋆ helper zero empty = [] helper (suc i) (s₁∈p · s₂∈pⁱ) = drop-♭♯ ⟨ n ^ i ⟩-nullable s₁∈p ∷ helper i (drop-♭♯ n s₂∈pⁱ) ⋆≤^ : ∀ {n} {p : P n} {s} → s ∈ p ⋆ → ∃ λ i → s ∈ p ^ i ⋆≤^ {n} {p} s∈p⋆ = helper (⋆-sound s∈p⋆) where helper : ∀ {s} → s ∈[ p ]⋆ → ∃ λ i → s ∈ p ^ i helper [] = (0 , empty) helper (s₁∈p ∷ s₂∈p⋆) = Prod.map suc (λ {i} s₂∈pⁱ → add-♭♯ ⟨ n ^ i ⟩-nullable s₁∈p · add-♭♯ n s₂∈pⁱ) (helper s₂∈p⋆) ------------------------------------------------------------------------ -- A recogniser which only accepts a given token module Tok (dec : Decidable (_≡_ {A = Tok})) where tok : Tok → P false tok t = sat (⌊_⌋ ∘ dec t) sound : ∀ {s t} → s ∈ tok t → s ≡ [ t ] sound (sat ok) = cong [_] $ sym $ toWitness ok complete : ∀ {t} → [ t ] ∈ tok t complete = sat (fromWitness refl) ------------------------------------------------------------------------ -- A recogniser which accepts the empty string iff the argument is -- true (and never accepts non-empty strings) accept-if-true : ∀ b → P b accept-if-true true = empty accept-if-true false = fail module AcceptIfTrue where sound : ∀ b {s} → s ∈ accept-if-true b → s ≡ [] × T b sound true empty = (refl , _) sound false () complete : ∀ {b} → T b → [] ∈ accept-if-true b complete ok with Equivalence.to T-≡ ⟨$⟩ ok ... | refl = empty
{ "alphanum_fraction": 0.4996345029, "avg_line_length": 30.2320441989, "ext": "agda", "hexsha": "4758e64f1d01d01d672ab3c969d16dcdb1accde7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "TotalRecognisers/LeftRecursion/Lib.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "TotalRecognisers/LeftRecursion/Lib.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "TotalRecognisers/LeftRecursion/Lib.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 2128, "size": 5472 }
-- Andreas, 2016-06-08 issue #2006 (actually #289) open import Common.Reflection open import Common.Prelude bla : Term → Term bla = {!!} -- Splitting here should be fine macro comp : Term → Term → TC ⊤ comp x t = bindTC (quoteTC (bla x)) (λ y → unify t y) foo : Term foo = comp Set
{ "alphanum_fraction": 0.6563573883, "avg_line_length": 19.4, "ext": "agda", "hexsha": "bb5c6b118854fcd066e5223708e5c1e275fce922", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue2006.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue2006.agda", "max_line_length": 55, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue2006.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 93, "size": 291 }
{-# OPTIONS --rewriting #-} module Luau.StrictMode where open import Agda.Builtin.Equality using (_≡_) open import FFI.Data.Maybe using (just; nothing) open import Luau.Syntax using (Expr; Stat; Block; BinaryOperator; yes; nil; addr; var; binexp; var_∈_; _⟨_⟩∈_; function_is_end; _$_; block_is_end; local_←_; _∙_; done; return; name; +; -; *; /; <; >; <=; >=; ··) open import Luau.Type using (Type; nil; number; string; boolean; _⇒_; _∪_; _∩_; src; tgt) open import Luau.Subtyping using (_≮:_) open import Luau.Heap using (Heap; function_is_end) renaming (_[_] to _[_]ᴴ) open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_) renaming (_[_] to _[_]ⱽ) open import Luau.TypeCheck using (_⊢ᴮ_∈_; _⊢ᴱ_∈_; ⊢ᴴ_; ⊢ᴼ_; _⊢ᴴᴱ_▷_∈_; _⊢ᴴᴮ_▷_∈_; var; addr; app; binexp; block; return; local; function; srcBinOp) open import Properties.Contradiction using (¬) open import Properties.TypeCheck using (typeCheckᴮ) open import Properties.Product using (_,_) data Warningᴱ (H : Heap yes) {Γ} : ∀ {M T} → (Γ ⊢ᴱ M ∈ T) → Set data Warningᴮ (H : Heap yes) {Γ} : ∀ {B T} → (Γ ⊢ᴮ B ∈ T) → Set data Warningᴱ H {Γ} where UnallocatedAddress : ∀ {a T} → (H [ a ]ᴴ ≡ nothing) → --------------------- Warningᴱ H (addr {a} T) UnboundVariable : ∀ {x T p} → (Γ [ x ]ⱽ ≡ nothing) → ------------------------ Warningᴱ H (var {x} {T} p) FunctionCallMismatch : ∀ {M N T U} {D₁ : Γ ⊢ᴱ M ∈ T} {D₂ : Γ ⊢ᴱ N ∈ U} → (U ≮: src T) → ----------------- Warningᴱ H (app D₁ D₂) app₁ : ∀ {M N T U} {D₁ : Γ ⊢ᴱ M ∈ T} {D₂ : Γ ⊢ᴱ N ∈ U} → Warningᴱ H D₁ → ----------------- Warningᴱ H (app D₁ D₂) app₂ : ∀ {M N T U} {D₁ : Γ ⊢ᴱ M ∈ T} {D₂ : Γ ⊢ᴱ N ∈ U} → Warningᴱ H D₂ → ----------------- Warningᴱ H (app D₁ D₂) BinOpMismatch₁ : ∀ {op M N T U} {D₁ : Γ ⊢ᴱ M ∈ T} {D₂ : Γ ⊢ᴱ N ∈ U} → (T ≮: srcBinOp op) → ------------------------------ Warningᴱ H (binexp {op} D₁ D₂) BinOpMismatch₂ : ∀ {op M N T U} {D₁ : Γ ⊢ᴱ M ∈ T} {D₂ : Γ ⊢ᴱ N ∈ U} → (U ≮: srcBinOp op) → ------------------------------ Warningᴱ H (binexp {op} D₁ D₂) bin₁ : ∀ {op M N T U} {D₁ : Γ ⊢ᴱ M ∈ T} {D₂ : Γ ⊢ᴱ N ∈ U} → Warningᴱ H D₁ → ------------------------------ Warningᴱ H (binexp {op} D₁ D₂) bin₂ : ∀ {op M N T U} {D₁ : Γ ⊢ᴱ M ∈ T} {D₂ : Γ ⊢ᴱ N ∈ U} → Warningᴱ H D₂ → ------------------------------ Warningᴱ H (binexp {op} D₁ D₂) FunctionDefnMismatch : ∀ {f x B T U V} {D : (Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V} → (V ≮: U) → ------------------------- Warningᴱ H (function {f} {U = U} D) function₁ : ∀ {f x B T U V} {D : (Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V} → Warningᴮ H D → ------------------------- Warningᴱ H (function {f} {U = U} D) BlockMismatch : ∀ {b B T U} {D : Γ ⊢ᴮ B ∈ U} → (U ≮: T) → ------------------------------ Warningᴱ H (block {b} {T = T} D) block₁ : ∀ {b B T U} {D : Γ ⊢ᴮ B ∈ U} → Warningᴮ H D → ------------------------------ Warningᴱ H (block {b} {T = T} D) data Warningᴮ H {Γ} where return : ∀ {M B T U} {D₁ : Γ ⊢ᴱ M ∈ T} {D₂ : Γ ⊢ᴮ B ∈ U} → Warningᴱ H D₁ → ------------------ Warningᴮ H (return D₁ D₂) LocalVarMismatch : ∀ {x M B T U V} {D₁ : Γ ⊢ᴱ M ∈ U} {D₂ : (Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V} → (U ≮: T) → -------------------- Warningᴮ H (local D₁ D₂) local₁ : ∀ {x M B T U V} {D₁ : Γ ⊢ᴱ M ∈ U} {D₂ : (Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V} → Warningᴱ H D₁ → -------------------- Warningᴮ H (local D₁ D₂) local₂ : ∀ {x M B T U V} {D₁ : Γ ⊢ᴱ M ∈ U} {D₂ : (Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V} → Warningᴮ H D₂ → -------------------- Warningᴮ H (local D₁ D₂) FunctionDefnMismatch : ∀ {f x B C T U V W} {D₁ : (Γ ⊕ x ↦ T) ⊢ᴮ C ∈ V} {D₂ : (Γ ⊕ f ↦ (T ⇒ U)) ⊢ᴮ B ∈ W} → (V ≮: U) → ------------------------------------- Warningᴮ H (function D₁ D₂) function₁ : ∀ {f x B C T U V W} {D₁ : (Γ ⊕ x ↦ T) ⊢ᴮ C ∈ V} {D₂ : (Γ ⊕ f ↦ (T ⇒ U)) ⊢ᴮ B ∈ W} → Warningᴮ H D₁ → -------------------- Warningᴮ H (function D₁ D₂) function₂ : ∀ {f x B C T U V W} {D₁ : (Γ ⊕ x ↦ T) ⊢ᴮ C ∈ V} {D₂ : (Γ ⊕ f ↦ (T ⇒ U)) ⊢ᴮ B ∈ W} → Warningᴮ H D₂ → -------------------- Warningᴮ H (function D₁ D₂) data Warningᴼ (H : Heap yes) : ∀ {V} → (⊢ᴼ V) → Set where FunctionDefnMismatch : ∀ {f x B T U V} {D : (x ↦ T) ⊢ᴮ B ∈ V} → (V ≮: U) → --------------------------------- Warningᴼ H (function {f} {U = U} D) function₁ : ∀ {f x B T U V} {D : (x ↦ T) ⊢ᴮ B ∈ V} → Warningᴮ H D → --------------------------------- Warningᴼ H (function {f} {U = U} D) data Warningᴴ H (D : ⊢ᴴ H) : Set where addr : ∀ a {O} → (p : H [ a ]ᴴ ≡ O) → Warningᴼ H (D a p) → --------------- Warningᴴ H D data Warningᴴᴱ H {Γ M T} : (Γ ⊢ᴴᴱ H ▷ M ∈ T) → Set where heap : ∀ {D₁ : ⊢ᴴ H} {D₂ : Γ ⊢ᴱ M ∈ T} → Warningᴴ H D₁ → ----------------- Warningᴴᴱ H (D₁ , D₂) expr : ∀ {D₁ : ⊢ᴴ H} {D₂ : Γ ⊢ᴱ M ∈ T} → Warningᴱ H D₂ → --------------------- Warningᴴᴱ H (D₁ , D₂) data Warningᴴᴮ H {Γ B T} : (Γ ⊢ᴴᴮ H ▷ B ∈ T) → Set where heap : ∀ {D₁ : ⊢ᴴ H} {D₂ : Γ ⊢ᴮ B ∈ T} → Warningᴴ H D₁ → ----------------- Warningᴴᴮ H (D₁ , D₂) block : ∀ {D₁ : ⊢ᴴ H} {D₂ : Γ ⊢ᴮ B ∈ T} → Warningᴮ H D₂ → --------------------- Warningᴴᴮ H (D₁ , D₂)
{ "alphanum_fraction": 0.4303076339, "avg_line_length": 27.1443298969, "ext": "agda", "hexsha": "1b0280427b861381b4e19af707ee83599f900707", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5bb9f379b07e378db0a170e7c4030e3a943b2f14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MeltzDev/luau", "max_forks_repo_path": "prototyping/Luau/StrictMode.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5bb9f379b07e378db0a170e7c4030e3a943b2f14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MeltzDev/luau", "max_issues_repo_path": "prototyping/Luau/StrictMode.agda", "max_line_length": 211, "max_stars_count": null, "max_stars_repo_head_hexsha": "5bb9f379b07e378db0a170e7c4030e3a943b2f14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MeltzDev/luau", "max_stars_repo_path": "prototyping/Luau/StrictMode.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2411, "size": 5266 }
open import FRP.JS.RSet using ( RSet ; _⇒_ ; ⟦_⟧ ; ⟨_⟩ ) module FRP.JS.Event where infixr 4 _∪_ postulate Evt : RSet → RSet map : ∀ {A B} → ⟦ A ⇒ B ⟧ → ⟦ Evt A ⇒ Evt B ⟧ ∅ : ∀ {A} → ⟦ Evt A ⟧ _∪_ : ∀ {A} → ⟦ Evt A ⇒ Evt A ⇒ Evt A ⟧ accumBy : ∀ {A B} → ⟦ ⟨ B ⟩ ⇒ A ⇒ ⟨ B ⟩ ⟧ → B → ⟦ Evt A ⇒ Evt ⟨ B ⟩ ⟧ {-# COMPILED_JS map function(A) { return function(B) { return function(f) { return function(s) { return function(e) { return e.map(function (t,v) { return f(t)(v); }); }; }; }; }; } #-} {-# COMPILED_JS ∅ function(A) { return require("agda.frp.signal").zero; } #-} {-# COMPILED_JS _∪_ function(A) { return function(s) { return function(x) { return function(y) { return x.merge(y); }; }; }; } #-} {-# COMPILED_JS accumBy function(A) { return function(B) { return function(f) { return function(b) { return function(s) { return function(e) { return e.accumBy(function(t,b,a) { return f(t)(b)(a); },b); }; }; }; }; }; } #-} tag : ∀ {A B} → ⟦ B ⟧ → ⟦ Evt A ⇒ Evt B ⟧ tag b = map (λ _ → b)
{ "alphanum_fraction": 0.5272373541, "avg_line_length": 31.1515151515, "ext": "agda", "hexsha": "ed4d3e6072dc13d3a8a40c1255f7d32f38e5ffbf", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z", "max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z", "max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_forks_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-frp-js", "max_forks_repo_path": "src/agda/FRP/JS/Event.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-frp-js", "max_issues_repo_path": "src/agda/FRP/JS/Event.agda", "max_line_length": 80, "max_stars_count": 63, "max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_stars_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-frp-js", "max_stars_repo_path": "src/agda/FRP/JS/Event.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z", "num_tokens": 408, "size": 1028 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} open import Cubical.Core.Everything open import Cubical.Relation.Binary.Raw module Cubical.Relation.Binary.Raw.Construct.NonStrictToStrict {a ℓ} {A : Type a} (_≤_ : RawRel A ℓ) where open import Cubical.Relation.Binary.Raw.Properties open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.Data.Sum.Base using (inl; inr) open import Cubical.Data.Empty hiding (rec) open import Cubical.Foundations.Function using (_∘_; flip) open import Cubical.Relation.Nullary open import Cubical.HITs.PropositionalTruncation hiding (elim) private _≢_ : RawRel A a x ≢ y = ¬ (x ≡ y) ------------------------------------------------------------------------ -- _≤_ can be turned into _<_ as follows: _<_ : RawRel A _ x < y = x ≤ y × x ≢ y ------------------------------------------------------------------------ -- Relationship between relations <⇒≤ : _<_ ⇒ _≤_ <⇒≤ = fst <⇒≢ : _<_ ⇒ _≢_ <⇒≢ = snd ≤∧≢⇒< : ∀ {x y} → x ≤ y → x ≢ y → x < y ≤∧≢⇒< = _,_ <⇒≱ : Antisymmetric _≤_ → ∀ {x y} → x < y → ¬ (y ≤ x) <⇒≱ antisym (x≤y , x≢y) y≤x = x≢y (antisym x≤y y≤x) ≤⇒≯ : Antisymmetric _≤_ → ∀ {x y} → x ≤ y → ¬ (y < x) ≤⇒≯ antisym x≤y y<x = <⇒≱ antisym y<x x≤y ≰⇒> : Reflexive _≤_ → Total _≤_ → ∀ {x y} → ¬ (x ≤ y) → y < x ≰⇒> rfl total {x} {y} x≰y with total x y ... | inl x≤y = elim (x≰y x≤y) ... | inr y≤x = y≤x , x≰y ∘ reflx→fromeq _≤_ rfl ∘ sym ≮⇒≥ : Discrete A → Reflexive _≤_ → Total _≤_ → ∀ {x y} → ¬ (x < y) → y ≤ x ≮⇒≥ _≟_ ≤-refl _≤?_ {x} {y} x≮y with x ≟ y ... | yes x≈y = reflx→fromeq _≤_ ≤-refl (sym x≈y) ... | no x≢y with y ≤? x ... | inl y≤x = y≤x ... | inr x≤y = elim (x≮y (x≤y , x≢y)) ------------------------------------------------------------------------ -- Relational properties <-isPropValued : isPropValued _≤_ → isPropValued _<_ <-isPropValued propv x y = isProp× (propv x y) (isPropΠ λ _ → isProp⊥) <-toNotEq : ToNotEq _<_ <-toNotEq (_ , x≢y) x≡y = x≢y x≡y <-irrefl : Irreflexive _<_ <-irrefl = tonoteq→irrefl _<_ <-toNotEq <-transitive : IsPartialOrder _≤_ → Transitive _<_ <-transitive po (x≤y , x≢y) (y≤z , y≉z) = (transitive x≤y y≤z , x≢y ∘ antisym x≤y ∘ transitive y≤z ∘ fromEq ∘ sym) where open IsPartialOrder po <-≤-trans : Transitive _≤_ → Antisymmetric _≤_ → Trans _<_ _≤_ _<_ <-≤-trans transitive antisym (x≤y , x≢y) y≤z = transitive x≤y y≤z , (λ x≡z → x≢y (antisym x≤y (Respectsʳ≡ _≤_ (sym x≡z) y≤z))) ≤-<-trans : Transitive _≤_ → Antisymmetric _≤_ → Trans _≤_ _<_ _<_ ≤-<-trans trans antisym x≤y (y≤z , y≢z) = trans x≤y y≤z , (λ x≡z → y≢z (antisym y≤z (Respectsˡ≡ _≤_ x≡z x≤y))) <-asym : Antisymmetric _≤_ → Asymmetric _<_ <-asym antisym (x≤y , x≢y) (y≤x , _) = x≢y (antisym x≤y y≤x) <-decidable : Discrete A → Decidable _≤_ → Decidable _<_ <-decidable _≟_ _≤?_ x y with x ≤? y ... | no ¬p = no (¬p ∘ fst) ... | yes p with x ≟ y ... | yes q = no (λ x<y → snd x<y q) ... | no ¬q = yes (p , ¬q) ------------------------------------------------------------------------ -- Structures isStrictPartialOrder : IsPartialOrder _≤_ → IsStrictPartialOrder _<_ isStrictPartialOrder po = record { irrefl = <-irrefl ; transitive = <-transitive po } where open IsPartialOrder po
{ "alphanum_fraction": 0.5398122919, "avg_line_length": 30.8691588785, "ext": "agda", "hexsha": "591500a3823eaa9d0c6aa4187f74899d78d8dd88", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Relation/Binary/Raw/Construct/NonStrictToStrict.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Relation/Binary/Raw/Construct/NonStrictToStrict.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Relation/Binary/Raw/Construct/NonStrictToStrict.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1402, "size": 3303 }
{-# OPTIONS --erased-cubical #-} module Common.Path where open import Agda.Builtin.Cubical.Path public open import Agda.Builtin.Cubical.HCompU open import Agda.Primitive.Cubical renaming (primINeg to ~_; primIMax to _∨_; primIMin to _∧_; primHComp to hcomp; primTransp to transp; primComp to comp; itIsOne to 1=1) public open import Agda.Builtin.Cubical.Sub renaming (Sub to _[_↦_]; primSubOut to outS; inc to inS) public open Helpers public
{ "alphanum_fraction": 0.6063268893, "avg_line_length": 43.7692307692, "ext": "agda", "hexsha": "3dc81348b7bf9daefbe1898adb01448bc7e17943", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Common/Path.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Common/Path.agda", "max_line_length": 104, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Common/Path.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 143, "size": 569 }
open import Agda.Primitive using (lzero; lsuc; _⊔_) import SecondOrder.Arity import SecondOrder.VContext module SecondOrder.Signature ℓ (𝔸 : SecondOrder.Arity.Arity) where open SecondOrder.Arity.Arity 𝔸 -- a second-order algebraic signature record Signature : Set (lsuc ℓ) where -- a signature consists of a set of sorts and a set of operations -- e.g. sorts A, B, C, ... and operations f, g, h field sort : Set ℓ -- sorts oper : Set ℓ -- operations open SecondOrder.VContext sort public -- each operation has arity and a sort (the sort of its codomain) field oper-arity : oper → arity -- the arity of an operation oper-sort : oper → sort -- the operation sort arg-sort : ∀ (f : oper) → arg (oper-arity f) → sort -- the sorts of arguments -- a second order operation can bind some free variables that occur as its arguments -- e.g. the lambda operation binds one type and one term arg-bind : ∀ (f : oper) → arg (oper-arity f) → VContext -- the argument bindings -- the arguments of an operation oper-arg : oper → Set oper-arg f = arg (oper-arity f)
{ "alphanum_fraction": 0.6626192541, "avg_line_length": 32.0277777778, "ext": "agda", "hexsha": "8d98d97760e982b95cb011a72d57e581c255c98c", "lang": "Agda", "max_forks_count": 6, "max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z", "max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z", "max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejbauer/formaltt", "max_forks_repo_path": "src/SecondOrder/Signature.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z", "max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejbauer/formaltt", "max_issues_repo_path": "src/SecondOrder/Signature.agda", "max_line_length": 90, "max_stars_count": 21, "max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cilinder/formaltt", "max_stars_repo_path": "src/SecondOrder/Signature.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z", "num_tokens": 320, "size": 1153 }
-------------------------------------------------------------------------------- -- This is part of Agda Inference Systems open import Agda.Builtin.Equality open import Data.Product open import Level open import Relation.Unary using (_⊆_) module is-lib.InfSys.Induction {𝓁} where private variable U : Set 𝓁 open import is-lib.InfSys.Base {𝓁} open MetaRule open IS {- Inductive Interpretation -} data Ind⟦_⟧ {𝓁c 𝓁p 𝓁n : Level} (is : IS {𝓁c} {𝓁p} {𝓁n} U) : U → Set (𝓁 ⊔ 𝓁c ⊔ 𝓁p ⊔ 𝓁n) where fold : ∀{u} → ISF[ is ] Ind⟦ is ⟧ u → Ind⟦ is ⟧ u {- Induction Principle -} ind[_] : ∀{𝓁c 𝓁p 𝓁n 𝓁'} → (is : IS {𝓁c} {𝓁p} {𝓁n} U) -- IS → (S : U → Set 𝓁') -- specification → ISClosed is S -- S is closed → Ind⟦ is ⟧ ⊆ S ind[ is ] S cl (fold (rn , c , refl , pr)) = cl rn c λ i → ind[ is ] S cl (pr i) {- Apply Rule -} apply-ind : ∀{𝓁c 𝓁p 𝓁n}{is : IS {𝓁c} {𝓁p} {𝓁n} U} → (rn : is .Names) → RClosed (is .rules rn) Ind⟦ is ⟧ apply-ind {is = is} rn = prefix⇒closed (is .rules rn) {P = Ind⟦ _ ⟧} λ{(c , refl , pr) → fold (rn , c , refl , pr)} {- Postfix - Prefix -} ind-postfix : ∀{𝓁c 𝓁p 𝓁n}{is : IS {𝓁c} {𝓁p} {𝓁n} U} → Ind⟦ is ⟧ ⊆ ISF[ is ] Ind⟦ is ⟧ ind-postfix (fold x) = x ind-prefix : ∀{𝓁c 𝓁p 𝓁n}{is : IS {𝓁c} {𝓁p} {𝓁n} U} → ISF[ is ] Ind⟦ is ⟧ ⊆ Ind⟦ is ⟧ ind-prefix x = fold x
{ "alphanum_fraction": 0.5014492754, "avg_line_length": 31.3636363636, "ext": "agda", "hexsha": "debdce851227252ed2ec6fd6d2ad630049b75d88", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "boystrange/FairSubtypingAgda", "max_forks_repo_path": "src/is-lib/InfSys/Induction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "boystrange/FairSubtypingAgda", "max_issues_repo_path": "src/is-lib/InfSys/Induction.agda", "max_line_length": 117, "max_stars_count": 4, "max_stars_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "boystrange/FairSubtypingAgda", "max_stars_repo_path": "src/is-lib/InfSys/Induction.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-24T14:38:47.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-29T14:32:30.000Z", "num_tokens": 621, "size": 1380 }
module SizedPolyIO.ConsoleObject where open import Size open import Level using (_⊔_) renaming (suc to lsuc) open import SizedPolyIO.Console open import SizedPolyIO.Object open import SizedPolyIO.IOObject -- A console object is an IO object for the IO interface of console ConsoleObject : ∀{μ ρ}(i : Size) → (iface : Interface μ ρ) → Set (μ ⊔ ρ) ConsoleObject i iface = IOObject consoleI iface i
{ "alphanum_fraction": 0.7593052109, "avg_line_length": 26.8666666667, "ext": "agda", "hexsha": "898f941f8d4a91efbcd461a567c1585bc3c55bbd", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "src/SizedPolyIO/ConsoleObject.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "src/SizedPolyIO/ConsoleObject.agda", "max_line_length": 73, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "src/SizedPolyIO/ConsoleObject.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 111, "size": 403 }
module _ where open import Common.Equality postulate _def_ _more_ _less_ : Set → Set → Set X : Set infix 21 _more_ -- default fixity should be 20 infix 19 _less_ test : (X more X def X less X) ≡ _less_ (_def_ (_more_ X X) X) X test = refl module NoFix where data NoFix : Set₁ where _+_ : Set → Set → NoFix module YesFix where data YesFix : Set₁ where _+_ : Set → Set → YesFix infix 10 _+_ open NoFix open YesFix -- overloaded _+_ should get fixity 10 test₂ : X less X + X ≡ NoFix._+_ (_less_ X X) X test₂ = refl
{ "alphanum_fraction": 0.6722222222, "avg_line_length": 16.3636363636, "ext": "agda", "hexsha": "cd9f241c334b9a2aa1bfd69c4dd644e281df4e7b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/DefaultFixity.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/DefaultFixity.agda", "max_line_length": 64, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/DefaultFixity.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 195, "size": 540 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Rings.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Rings.Units.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} (R : Ring S _+_ _*_) where open Setoid S open Ring R Unit : A → Set (a ⊔ b) Unit r = Sg A (λ s → (r * s) ∼ 1R)
{ "alphanum_fraction": 0.6348039216, "avg_line_length": 25.5, "ext": "agda", "hexsha": "ae5edb50e4c8c2bf843c9c5a09c5a90b8b28fa15", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/Units/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/Units/Definition.agda", "max_line_length": 123, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/Units/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 148, "size": 408 }
------------------------------------------------------------------------------ -- Properties of the iter₀ function ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Program.Iter0.PropertiesI where open import Common.FOL.Relation.Binary.EqReasoning open import FOTC.Base open import FOTC.Base.List open import FOTC.Base.PropertiesI open import FOTC.Data.List.PropertiesI open import FOTC.Data.Nat.Type open import FOTC.Data.Nat.List.Type open import FOTC.Program.Iter0.Iter0 open import FOTC.Program.Iter0.PropertiesI ------------------------------------------------------------------------------ {-# TERMINATING #-} iter₀-ListN : ∀ f {n} → N n → (∀ {n} → N n → N (f · n)) → ListN (iter₀ f n) iter₀-ListN f nzero h = subst ListN (sym (iter₀-0 f)) lnnil iter₀-ListN f (nsucc {n} Nn) h = subst ListN (sym prf) (lncons (nsucc Nn) (iter₀-ListN f (h (nsucc Nn)) h)) where prf : iter₀ f (succ₁ n) ≡ succ₁ n ∷ iter₀ f (f · (succ₁ n)) prf = iter₀ f (succ₁ n) ≡⟨ iter₀-eq f (succ₁ n) ⟩ (if (iszero₁ (succ₁ n)) then [] else (succ₁ n ∷ iter₀ f (f · (succ₁ n)))) ≡⟨ ifCong₁ (iszero-S n) ⟩ (if false then [] else (succ₁ n ∷ iter₀ f (f · (succ₁ n)))) ≡⟨ if-false (succ₁ n ∷ iter₀ f (f · (succ₁ n))) ⟩ succ₁ n ∷ iter₀ f (f · (succ₁ n)) ∎
{ "alphanum_fraction": 0.508864084, "avg_line_length": 37.1463414634, "ext": "agda", "hexsha": "3295e030250342640898c1d48f483f65a9b376a4", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Program/Iter0/PropertiesI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Program/Iter0/PropertiesI.agda", "max_line_length": 81, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Program/Iter0/PropertiesI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 457, "size": 1523 }
module Common where open import Data.Bool open import Data.Maybe open import Data.Sum open import Data.Product BoolQ : Set₁ BoolQ = (A : Set) -> A -> A -> A unBoolQ : {A : Set} -> A -> A -> BoolQ -> A unBoolQ a a' q = q _ a a' trueQ : BoolQ trueQ = \_ a a' -> a falseQ : BoolQ falseQ = \_ a a' -> a' fromBoolQ : BoolQ -> Bool fromBoolQ q = unBoolQ true false q toBoolQ : Bool -> BoolQ toBoolQ true = trueQ toBoolQ false = falseQ MaybeQ : Set -> Set₁ MaybeQ A = (B : Set) -> (A -> B) -> B -> B unMaybeQ : {A B : Set} -> (A -> B) -> B -> MaybeQ A -> B unMaybeQ f b q = q _ f b justQ : {A : Set} -> A -> MaybeQ A justQ a = \_ f b -> f a nothingQ : {A : Set} -> MaybeQ A nothingQ = \_ f b -> b fromMaybeQ : {A : Set} -> MaybeQ A -> Maybe A fromMaybeQ q = unMaybeQ just nothing q toMaybeQ : {A : Set} -> Maybe A -> MaybeQ A toMaybeQ (just a) = justQ a toMaybeQ nothing = nothingQ EitherQ : Set -> Set -> Set₁ EitherQ A B = (C : Set) -> (A -> C) -> (B -> C) -> C unEitherQ : {A B C : Set} -> (A -> C) -> (B -> C) -> EitherQ A B -> C unEitherQ f g q = q _ f g leftQ : {A B : Set} -> A -> EitherQ A B leftQ a = \_ f g -> f a rightQ : {A B : Set} -> B -> EitherQ A B rightQ b = \_ f g -> g b fromEitherQ : {A B : Set} -> EitherQ A B -> A ⊎ B fromEitherQ q = unEitherQ inj₁ inj₂ q toEitherQ : {A B : Set} -> A ⊎ B -> EitherQ A B toEitherQ (inj₁ a) = leftQ a toEitherQ (inj₂ b) = rightQ b PairQ : Set -> Set -> Set₁ PairQ A B = (C : Set) -> (A -> B -> C) -> C unPairQ : {A B C : Set} -> (A -> B -> C) -> PairQ A B -> C unPairQ f q = q _ f pairQ : {A B : Set} -> A -> B -> PairQ A B pairQ a b = \_ f -> f a b fromPairQ : {A B : Set} -> PairQ A B -> A × B fromPairQ q = unPairQ (\a b -> (a , b)) q toPairQ : {A B : Set} -> A × B -> PairQ A B toPairQ (a , b) = pairQ a b fstQ : {A B : Set} -> PairQ A B -> A fstQ q = unPairQ (\a b -> a) q sndQ : {A B : Set} -> PairQ A B -> B sndQ q = unPairQ (\a b -> b) q
{ "alphanum_fraction": 0.5423376623, "avg_line_length": 21.6292134831, "ext": "agda", "hexsha": "7a77f33f5fdcb611d02fbb5e2907c604feb9f072", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "14e819383dd8730e1c3cbd9c2ce53335bd95188b", "max_forks_repo_licenses": [ "X11", "MIT" ], "max_forks_repo_name": "mietek/scott-encoding", "max_forks_repo_path": "agda-explicit/Common.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "14e819383dd8730e1c3cbd9c2ce53335bd95188b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11", "MIT" ], "max_issues_repo_name": "mietek/scott-encoding", "max_issues_repo_path": "agda-explicit/Common.agda", "max_line_length": 69, "max_stars_count": 6, "max_stars_repo_head_hexsha": "14e819383dd8730e1c3cbd9c2ce53335bd95188b", "max_stars_repo_licenses": [ "X11", "MIT" ], "max_stars_repo_name": "mietek/scott-encoding", "max_stars_repo_path": "agda-explicit/Common.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-08T16:31:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-27T19:33:52.000Z", "num_tokens": 797, "size": 1925 }
{-# OPTIONS --without-K #-} module Music where open import Data.Nat using (ℕ; zero; suc; _+_; _*_) open import Data.Integer using (ℤ; +_) open import Data.List using (List; foldr; []; _∷_; reverse) open import Data.Product using (_×_; _,_) open import Data.Vec using (Vec; []; _∷_; replicate; concat; map; zipWith; toList; _++_; sum; foldr₁) open import Function using (_∘_) open import Note open import Pitch open import Interval -- A point in the music grid, which can either be a tone, -- a continuation of a previous tone, or a rest. data Point : Set where tone : Pitch → Point hold : Pitch → Point rest : Point data Melody (n : ℕ) : Set where melody : Vec Point n → Melody n unmelody : {n : ℕ} → Melody n → Vec Point n unmelody (melody ps) = ps note→melody : (n : Note) → Melody (noteDuration n) note→melody (tone (duration zero) p) = melody [] note→melody (tone (duration (suc d)) p) = melody (tone p ∷ replicate (hold p)) note→melody (rest _) = melody (replicate rest) -- Assumes melody is well-formed in that a held note has the -- same pitch as the note before it. -- Does not consolidate rests. melody→notes : {n : ℕ} → Melody n → List Note melody→notes (melody m) = (reverse ∘ mn 0 ∘ reverse ∘ toList) m where mn : ℕ → List Point → List Note -- c is the number of held points mn c [] = [] mn c (tone p ∷ ps) = tone (duration (suc c)) p ∷ mn 0 ps mn c (hold _ ∷ ps) = mn (suc c) ps mn c (rest ∷ ps) = rest (duration 1) ∷ mn 0 ps pitches→melody : {n : ℕ} → (d : Duration) → (ps : Vec Pitch n) → Melody (n * unduration d) pitches→melody d ps = melody (concat (map (unmelody ∘ note→melody ∘ tone d) ps)) transposePoint : ℤ → Point → Point transposePoint k (tone p) = tone (transposePitch k p) transposePoint k (hold p) = hold (transposePitch k p) transposePoint k rest = rest transposeMelody : {n : ℕ} → ℤ → Melody n → Melody n transposeMelody k = melody ∘ map (transposePoint k) ∘ unmelody data Chord (n : ℕ) : Set where chord : Vec Point n → Chord n unchord : {n : ℕ} → Chord n → Vec Point n unchord (chord ps) = ps -- We represent music as a v × d grid where v is the number of voices and d is the duration. -- The primary representation is as parallel melodies (counterpoint). data Counterpoint (v : ℕ) (d : ℕ): Set where cp : Vec (Melody d) v → Counterpoint v d uncp : {v d : ℕ} → Counterpoint v d → Vec (Melody d) v uncp (cp m) = m -- An alternative representation of music is as a series of chords (harmonic progression). data Harmony (v : ℕ) (d : ℕ): Set where harmony : Vec (Chord v) d → Harmony v d unharmony : {v d : ℕ} → Harmony v d → Vec (Chord v) d unharmony (harmony h) = h pitches→harmony : {n : ℕ} (d : Duration) → (ps : Vec Pitch n) → Harmony n (unduration d) pitches→harmony (duration zero) ps = harmony [] pitches→harmony (duration (suc d)) ps = harmony (chord (map tone ps) ∷ replicate (chord (map hold ps))) pitchPair→Harmony : (d : Duration) → PitchPair → Harmony 2 (unduration d) pitchPair→Harmony d (p , q) = pitches→harmony d (p ∷ q ∷ []) pitchInterval→Harmony : (d : Duration) → PitchInterval → Harmony 2 (unduration d) pitchInterval→Harmony d = pitchPair→Harmony d ∘ pitchIntervalToPitchPair {- pitchIntervalsToCounterpoint : PitchInterval → Counterpoint pitchIntervalsToCounterpoint = pitchPairToCounterpoint ∘ pitchIntervalToPitchPair -} addEmptyVoice : {v d : ℕ} → Harmony v d → Harmony (suc v) d addEmptyVoice (harmony h) = harmony (map (chord ∘ (rest ∷_) ∘ unchord) h) infixl 5 _+H+_ _+H+_ : {v d d' : ℕ} → Harmony v d → Harmony v d' → Harmony v (d + d') h +H+ h' = harmony (unharmony h ++ unharmony h') foldIntoHarmony : {k n : ℕ} (ds : Vec Duration (suc k)) → (pss : Vec (Vec Pitch n) (suc k)) → Harmony n (foldr₁ _+_ (map unduration ds)) foldIntoHarmony (d ∷ []) (ps ∷ []) = pitches→harmony d ps foldIntoHarmony (d ∷ d' ∷ ds) (ps ∷ ps' ∷ pss) = (pitches→harmony d ps) +H+ (foldIntoHarmony (d' ∷ ds) (ps' ∷ pss)) -- matrix transposition mtranspose : {A : Set}{m n : ℕ} → Vec (Vec A n) m → Vec (Vec A m) n mtranspose [] = replicate [] mtranspose (xs ∷ xss) = zipWith _∷_ xs (mtranspose xss) counterpoint→harmony : {v d : ℕ} → Counterpoint v d → Harmony v d counterpoint→harmony = harmony ∘ map chord ∘ mtranspose ∘ map unmelody ∘ uncp harmony→counterpoint : {v d : ℕ} → Harmony v d → Counterpoint v d harmony→counterpoint = cp ∘ map melody ∘ mtranspose ∘ map unchord ∘ unharmony
{ "alphanum_fraction": 0.6533989267, "avg_line_length": 39.5752212389, "ext": "agda", "hexsha": "68902f7332436083664bdad4d60b40e6a8eed398", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z", "max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/MusicTools", "max_forks_repo_path": "doc/icfp20/code/Music.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z", "max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/MusicTools", "max_issues_repo_path": "doc/icfp20/code/Music.agda", "max_line_length": 136, "max_stars_count": 28, "max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/MusicTools", "max_stars_repo_path": "doc/icfp20/code/Music.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z", "num_tokens": 1481, "size": 4472 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Inverse where open import Level using (Level; suc; _⊔_) open import Categories.Category open import Data.Product import Categories.Morphism record pseudo-iso {o ℓ e} (C : Category o ℓ e) : Set (o ⊔ ℓ ⊔ e) where open Category C open Definitions C open Categories.Morphism C infix 10 _⁻¹ field _⁻¹ : ∀ {A B} → (f : A ⇒ B) → B ⇒ A pseudo-iso₁ : ∀ {A B} {f : A ⇒ B} → f ∘ f ⁻¹ ∘ f ≈ f pseudo-iso₂ : ∀ {A B} {f : A ⇒ B} → f ⁻¹ ∘ f ∘ f ⁻¹ ≈ f ⁻¹ record Inverse {o ℓ e} (C : Category o ℓ e) : Set (o ⊔ ℓ ⊔ e) where open Category C open Definitions C open Categories.Morphism C open pseudo-iso field piso : pseudo-iso C unique : ∀ {p : pseudo-iso C} {A B} → (f : A ⇒ B) → _⁻¹ piso f ≈ _⁻¹ p f
{ "alphanum_fraction": 0.5944584383, "avg_line_length": 25.6129032258, "ext": "agda", "hexsha": "9421634b05b98c8964baa9f60b2f782b47054e46", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Inverse.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Inverse.agda", "max_line_length": 76, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Inverse.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 311, "size": 794 }
module Human.Char where open import Human.Nat open import Human.Bool postulate Char : Set {-# BUILTIN CHAR Char #-} primitive primIsLower : Char → Bool primIsDigit : Char → Bool primIsAlpha : Char → Bool primIsSpace : Char → Bool primIsAscii : Char → Bool primIsLatin1 : Char → Bool primIsPrint : Char → Bool primIsHexDigit : Char → Bool primToUpper primToLower : Char → Char primCharToNat : Char → Nat primNatToChar : Nat → Char primCharEquality : Char → Char → Bool -- {-# COMPILE JS primCharToNat = function(c) { return c.charCodeAt(0); } #-} -- {-# COMPILE JS primNatToChar = function(c) { return JSON.stringify(c); } #-} -- {-# COMPILE JS primCharEquality = function(c) { return function(d) { return c === d; }; } #-}
{ "alphanum_fraction": 0.583908046, "avg_line_length": 33.4615384615, "ext": "agda", "hexsha": "7a30e1fc8f840c1d2174593c83026ac6aadade3e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MaisaMilena/JuiceMaker", "max_forks_repo_path": "src/Human/Char.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MaisaMilena/JuiceMaker", "max_issues_repo_path": "src/Human/Char.agda", "max_line_length": 96, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MaisaMilena/JuiceMaker", "max_stars_repo_path": "src/Human/Char.agda", "max_stars_repo_stars_event_max_datetime": "2020-11-28T05:46:27.000Z", "max_stars_repo_stars_event_min_datetime": "2019-03-29T17:35:20.000Z", "num_tokens": 228, "size": 870 }
-- Andreas, 2019-12-03, issue #4200 reported and testcase by nad open import Agda.Builtin.Bool data D : Set where c₁ : D @0 c₂ : D f : D → Bool f c₁ = true f c₂ = false @0 _ : D _ = c₂ -- OK. _ : D _ = c₂ -- Not allowed. -- Expected error: -- Identifier c₂ is declared erased, so it cannot be used here -- when checking that the expression c₂ has type D
{ "alphanum_fraction": 0.6457765668, "avg_line_length": 15.9565217391, "ext": "agda", "hexsha": "e3354b32677cbf95f5f9c1c1a57dd4cf673caa0f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Fail/Issue4200.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Fail/Issue4200.agda", "max_line_length": 64, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Fail/Issue4200.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 125, "size": 367 }