Search is not available for this dataset
text
string | meta
dict |
---|---|
-- Andreas, 2017-01-14, issue #2405 reported by m0davis
-- Instance not found due to regression introduced by
-- parameter-refinement.
-- {-# OPTIONS --show-implicit #-}
-- {-# OPTIONS -v tc.instance:70 #-}
-- {-# OPTIONS -v tc.meta.assign:40 #-}
-- {-# OPTIONS -v tc.conv:40 #-}
-- {-# OPTIONS -v tc.sig.param:100 #-}
postulate
R : Set → Set
S : (F : Set → Set) ⦃ _ : {A : Set} → R (F A) ⦄ → Set
module M1 (X : Set) where
postulate
F : Set → Set
instance Ri : {A : Set} → R (F A)
Si-works : S F ⦃ Ri ⦄
Si-test : S F
-- WAS:
-- No instance of type R (F A) was found in scope. -}
--
-- candidate:
-- Ri X : (A : Set) → R (F X A)
-- Ri 0 : Π Set λ A → R (F 1 0)
-- Ri 0 _A : R (F 0 (_A 1 0))
-- goal:
-- getMetaType
-- ? : (X A : Set) → R (F X A)
-- ? : Π Set λ X → Pi Set λ A → R (F 1 0)
-- ? : R (F A)
-- ? : R (F 1 0)
-- Should succeed.
|
{
"alphanum_fraction": 0.5045045045,
"avg_line_length": 24,
"ext": "agda",
"hexsha": "d61713485b9d05142fdbcdbb2cd07753a3a0f021",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2405.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2405.agda",
"max_line_length": 55,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2405.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 350,
"size": 888
}
|
------------------------------------------------------------------------------
-- Co-lists
------------------------------------------------------------------------------
{-# OPTIONS --allow-unsolved-metas #-}
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module GFPs.Colist where
open import FOTC.Base
open import FOTC.Base.List
------------------------------------------------------------------------------
-- Colist is a greatest fixed-point of a functor
-- The functor.
ListF : (D → Set) → D → Set
ListF A xs = xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs')
-- Colist is the greatest fixed-point of ListF.
postulate
Colist : D → Set
-- Colist is a post-fixed point of ListF, i.e.
--
-- Colist ≤ ListF Colist.
Colist-out-ho : ∀ {n} → Colist n → ListF Colist n
-- Colist is the greatest post-fixed point of ListF, i.e.
--
-- ∀ A. A ≤ ListF A ⇒ A ≤ Colist.
Colist-coind-ho :
(A : D → Set) →
-- A is post-fixed point of ListF.
(∀ {xs} → A xs → ListF A xs) →
-- Colist is greater than A.
∀ {xs} → A xs → Colist xs
------------------------------------------------------------------------------
-- First-order versions
Colist-out : ∀ {xs} →
Colist xs →
xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ Colist xs')
Colist-out = Colist-out-ho
Colist-coind :
(A : D → Set) →
(∀ {xs} → A xs → xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs')) →
∀ {xs} → A xs → Colist xs
Colist-coind = Colist-coind-ho
------------------------------------------------------------------------------
-- Because a greatest post-fixed point is a fixed-point, then the
-- Colist predicate is also a pre-fixed point of the functional ListF,
-- i.e.
--
-- ListF Colist ≤ Colist.
Colist-in-ho : ∀ {xs} → ListF Colist xs → Colist xs
Colist-in-ho h = Colist-coind-ho A h' h
where
A : D → Set
A xs = ListF Colist xs
h' : ∀ {xs} → A xs → ListF A xs
h' (inj₁ xs≡0) = inj₁ xs≡0
h' (inj₂ (x' , xs' , prf , CLxs' )) =
inj₂ (x' , xs' , prf , Colist-out CLxs')
-- The first-order version.
Colist-in : ∀ {xs} →
xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ Colist xs') →
Colist xs
Colist-in = Colist-in-ho
------------------------------------------------------------------------------
-- A stronger co-induction principle
--
-- From (Paulson, 1997. p. 16).
postulate
Colist-coind-stronger-ho :
(A : D → Set) →
(∀ {xs} → A xs → ListF A xs ∨ Colist xs) →
∀ {xs} → A xs → Colist xs
Colist-coind-ho' :
(A : D → Set) →
(∀ {xs} → A xs → ListF A xs) →
∀ {xs} → A xs → Colist xs
Colist-coind-ho' A h Axs =
Colist-coind-stronger-ho A (λ Ays → inj₁ (h Ays)) Axs
-- The first-order version.
Colist-coind-stronger :
(A : D → Set) →
(∀ {xs} → A xs →
(xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs'))
∨ Colist xs) →
∀ {xs} → A xs → Colist xs
Colist-coind-stronger = Colist-coind-stronger-ho
-- 13 January 2014. As expected, we cannot prove
-- Colist-coind-stronger-ho from Colist-coind-ho.
Colist-coind-stronger-ho' :
(A : D → Set) →
(∀ {xs} → A xs → ListF A xs ∨ Colist xs) →
∀ {xs} → A xs → Colist xs
Colist-coind-stronger-ho' A h {xs} Axs = case prf (λ h' → h') (h Axs)
where
prf : ListF A xs → Colist xs
prf h' = Colist-coind-ho A {!!} Axs
------------------------------------------------------------------------------
-- References
--
-- Paulson, L. C. (1997). Mechanizing Coinduction and Corecursion in
-- Higher-order Logic. Journal of Logic and Computation 7.2,
-- pp. 175–204.
|
{
"alphanum_fraction": 0.4686641012,
"avg_line_length": 29.5772357724,
"ext": "agda",
"hexsha": "103fe245d3185267679ea35119d6845978523d06",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/fixed-points/GFPs/Colist.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/fixed-points/GFPs/Colist.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/fixed-points/GFPs/Colist.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 1196,
"size": 3638
}
|
module Issue561 where
open import Common.Prelude hiding (primIsDigit)
primitive
primIsDigit : Char → Bool
main : IO Bool
main = return true
|
{
"alphanum_fraction": 0.7602739726,
"avg_line_length": 13.2727272727,
"ext": "agda",
"hexsha": "64c81dd9df6be0d24388116c0c71446b592302c9",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Compiler/simple/Issue561.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": "2017-02-24T19:38:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-02-24T19:27:31.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Compiler/simple/Issue561.agda",
"max_line_length": 47,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Compiler/simple/Issue561.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-23T04:56:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-02-24T16:53:22.000Z",
"num_tokens": 38,
"size": 146
}
|
------------------------------------------------------------------------
-- The Step function, used to define strong and weak bisimilarity as
-- well as expansion
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
open import Prelude
open import Labelled-transition-system
module Bisimilarity.Step
{ℓ}
(lts : LTS ℓ)
(open LTS lts)
(_[_]↝₁_ _[_]↝₂_ : Proc → Label → Proc → Type ℓ)
where
open import Equality.Propositional
open import Logical-equivalence using (_⇔_)
open import Bijection equality-with-J using (_↔_)
import Equivalence equality-with-J as Eq
open import Function-universe equality-with-J as F hiding (_∘_)
open import H-level.Closure equality-with-J
import Similarity.Step lts as One-sided
open import Indexed-container hiding (⟨_⟩)
open import Indexed-container.Combinators hiding (_∘_)
open import Relation
private
module Temporarily-private where
-- If _[_]↝₁_ and _[_]↝₂_ are instantiated with _[_]⟶_, then this is
-- basically the function from Definition 6.3.1 in Pous and
-- Sangiorgi's "Enhancements of the bisimulation proof method",
-- except that clause (3) is omitted.
--
-- Similarly, if the relations are instantiated with _[_]⇒̂_, then
-- this is basically the function wb₁, again with the exception that
-- clause (3) is omitted.
--
-- Finally, if _[_]↝₁_ is instantiated with _[_]⟶̂_ and _[_]↝₂_ is
-- instantiated with _[_]⇒_, then we get the expansion relation's
-- "step" function.
record Step {r} (R : Rel₂ r Proc) (pq : Proc × Proc) :
Type (ℓ ⊔ r) where
constructor ⟨_,_⟩
private
p = proj₁ pq
q = proj₂ pq
field
left-to-right : ∀ {p′ μ} →
p [ μ ]⟶ p′ → ∃ λ q′ → q [ μ ]↝₁ q′ × R (p′ , q′)
right-to-left : ∀ {q′ μ} →
q [ μ ]⟶ q′ → ∃ λ p′ → p [ μ ]↝₂ p′ × R (p′ , q′)
open Temporarily-private using (Step)
-- The Step function, expressed as an indexed container.
StepC : Container (Proc × Proc) (Proc × Proc)
StepC = One-sided.StepC _[_]↝₁_ ⟷ One-sided.StepC _[_]↝₂_
-- The strong bisimilarity container presented in the paper,
-- generalised to use _[_]↝₁_ and _[_]↝₂_.
StepC′ : Container (Proc × Proc) (Proc × Proc)
StepC′ =
(λ { (p , q) → (∀ {p′ μ} → p [ μ ]⟶ p′ → ∃ λ q′ → q [ μ ]↝₁ q′) ×
(∀ {q′ μ} → q [ μ ]⟶ q′ → ∃ λ p′ → p [ μ ]↝₂ p′)
})
◁
(λ { {(p , q)} (lr , rl) (p′ , q′) →
(∃ λ μ → ∃ λ (p⟶p′ : p [ μ ]⟶ p′) → proj₁ (lr p⟶p′) ≡ q′) ⊎
(∃ λ μ → ∃ λ (q⟶q′ : q [ μ ]⟶ q′) → proj₁ (rl q⟶q′) ≡ p′)
})
-- The interpretations of the two containers above are pointwise
-- logically equivalent, and in the presence of extensionality they
-- are pointwise isomorphic.
StepC↔StepC′ :
∀ {k r} {R : Rel₂ r Proc} {pq} →
Extensionality? k ℓ (ℓ ⊔ r) →
⟦ StepC ⟧ R pq ↝[ k ] ⟦ StepC′ ⟧ R pq
StepC↔StepC′ {pq = p , q} =
inverse-ext? λ {k} ext →
Σ-cong (inverse $
drop-⊤-left-Σ (One-sided.Magic↔⊤ _)
×-cong
drop-⊤-left-Σ (One-sided.Magic↔⊤ _)) λ { (lr , rl) →
implicit-∀-cong ext λ { {p′ , q′} →
Π-cong (lower-extensionality? k lzero ℓ ext)
(F.id ⊎-cong (
(∃ λ μ → ∃ λ (q⟶q′ : q [ μ ]⟶ q′) →
proj₁ (rl q⟶q′) ≡ p′) ↝⟨ inverse $ drop-⊤-left-Σ (_⇔_.to contractible⇔↔⊤ (singleton-contractible _)) ⟩
(∃ λ (q′p′≡ : ∃ λ q′p′ → q′p′ ≡ (q′ , p′)) →
∃ λ μ → ∃ λ (q⟶q′ : q [ μ ]⟶ proj₁ (proj₁ q′p′≡)) →
proj₁ (rl q⟶q′) ≡ proj₂ (proj₁ q′p′≡)) ↝⟨ inverse Σ-assoc ⟩
(∃ λ q′p′ → q′p′ ≡ (q′ , p′) ×
∃ λ μ → ∃ λ (q⟶q′ : q [ μ ]⟶ proj₁ q′p′) →
proj₁ (rl q⟶q′) ≡ proj₂ q′p′) ↔⟨ (∃-cong λ _ → (inverse $ Eq.≃-≡ (Eq.↔⇒≃ ×-comm)) ×-cong F.id) ⟩□
(∃ λ q′p′ → swap q′p′ ≡ (p′ , q′) ×
∃ λ μ → ∃ λ (q⟶q′ : q [ μ ]⟶ proj₁ q′p′) →
proj₁ (rl q⟶q′) ≡ proj₂ q′p′) □))
(λ _ → F.id) }}
-- The definition of Step in terms of a container is pointwise
-- logically equivalent to the direct definition, and in the presence
-- of extensionality it is pointwise isomorphic to the direct
-- definition.
Step↔StepC :
∀ {k r} {R : Rel₂ r Proc} {pq} →
Extensionality? k ℓ (ℓ ⊔ r) →
Step R pq ↝[ k ] ⟦ StepC ⟧ R pq
Step↔StepC {R = R} {pq} ext =
Step R pq ↔⟨ lemma ⟩
One-sided.Step _[_]↝₁_ R pq
×
One-sided.Step _[_]↝₂_ (R ⁻¹) (swap pq) ↝⟨ One-sided.Step↔StepC _ ext ×-cong One-sided.Step↔StepC _ ext ⟩
⟦ One-sided.StepC _[_]↝₁_ ⟧ R pq
×
⟦ One-sided.StepC _[_]↝₂_ ⟧ (R ⁻¹) (swap pq) ↝⟨ inverse-ext? (λ ext → ⟦⟷⟧↔ ext (One-sided.StepC _[_]↝₁_) (One-sided.StepC _[_]↝₂_)) ext ⟩□
⟦ StepC ⟧ R pq □
where
lemma : _ ↔ _
lemma = record
{ surjection = record
{ logical-equivalence = record
{ to = λ s → One-sided.⟨ Step.left-to-right s ⟩
, One-sided.⟨ Step.right-to-left s ⟩
; from = λ { (lr , rl) →
Temporarily-private.⟨ One-sided.Step.challenge lr
, One-sided.Step.challenge rl
⟩
}
}
; right-inverse-of = λ _ → refl
}
; left-inverse-of = λ _ → refl
}
-- A variant of the previous lemma, stated for StepC′ instead of
-- StepC.
Step↔StepC′ :
∀ {k r} {R : Rel₂ r Proc} {pq} →
Extensionality? k ℓ (ℓ ⊔ r) →
Step R pq ↝[ k ] ⟦ StepC′ ⟧ R pq
Step↔StepC′ {R = R} {pq} ext =
Step R pq ↝⟨ Step↔StepC ext ⟩
⟦ StepC ⟧ R pq ↝⟨ StepC↔StepC′ ext ⟩□
⟦ StepC′ ⟧ R pq □
module StepC {r} {R : Rel₂ r Proc} {p q} where
-- A "constructor".
⟨_,_⟩ :
(∀ {p′ μ} → p [ μ ]⟶ p′ → ∃ λ q′ → q [ μ ]↝₁ q′ × R (p′ , q′)) →
(∀ {q′ μ} → q [ μ ]⟶ q′ → ∃ λ p′ → p [ μ ]↝₂ p′ × R (p′ , q′)) →
⟦ StepC ⟧ R (p , q)
⟨ lr , rl ⟩ = _⇔_.to (Step↔StepC _) Temporarily-private.⟨ lr , rl ⟩
-- Some "projections".
left-to-right :
⟦ StepC ⟧ R (p , q) →
∀ {p′ μ} → p [ μ ]⟶ p′ → ∃ λ q′ → q [ μ ]↝₁ q′ × R (p′ , q′)
left-to-right = Step.left-to-right ∘ _⇔_.from (Step↔StepC _)
right-to-left :
⟦ StepC ⟧ R (p , q) →
∀ {q′ μ} → q [ μ ]⟶ q′ → ∃ λ p′ → p [ μ ]↝₂ p′ × R (p′ , q′)
right-to-left = Step.right-to-left ∘ _⇔_.from (Step↔StepC _)
open Temporarily-private public
|
{
"alphanum_fraction": 0.4992969848,
"avg_line_length": 33.3385416667,
"ext": "agda",
"hexsha": "1164873c4326f6d5bd4b1f1b4bdafe9661eb6979",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/up-to",
"max_forks_repo_path": "src/Bisimilarity/Step.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/up-to",
"max_issues_repo_path": "src/Bisimilarity/Step.agda",
"max_line_length": 141,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/up-to",
"max_stars_repo_path": "src/Bisimilarity/Step.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2458,
"size": 6401
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.Adjoint where
-- Adjoints
open import Level
open import Data.Product using (_,_; _×_)
open import Function using (_$_) renaming (_∘_ to _∙_)
open import Function.Equality using (Π; _⟶_)
import Function.Inverse as FI
open import Relation.Binary using (Rel; IsEquivalence; Setoid)
-- be explicit in imports to 'see' where the information comes from
open import Categories.Category.Core using (Category)
open import Categories.Category.Product using (Product; _⁂_)
open import Categories.Category.Instance.Setoids
open import Categories.Morphism
open import Categories.Functor using (Functor; _∘F_) renaming (id to idF)
open import Categories.Functor.Bifunctor using (Bifunctor)
open import Categories.Functor.Hom using (Hom[_][-,-])
open import Categories.Functor.Construction.LiftSetoids
open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper; _∘ₕ_; _∘ᵥ_; _∘ˡ_; _∘ʳ_)
renaming (id to idN)
open import Categories.NaturalTransformation.NaturalIsomorphism
using (NaturalIsomorphism; unitorˡ; unitorʳ; associator; _≃_)
import Categories.Morphism.Reasoning as MR
private
variable
o o′ o″ ℓ ℓ′ ℓ″ e e′ e″ : Level
C D E : Category o ℓ e
record Adjoint (L : Functor C D) (R : Functor D C) : Set (levelOfTerm L ⊔ levelOfTerm R) where
private
module C = Category C
module D = Category D
module L = Functor L
module R = Functor R
field
unit : NaturalTransformation idF (R ∘F L)
counit : NaturalTransformation (L ∘F R) idF
module unit = NaturalTransformation unit
module counit = NaturalTransformation counit
field
zig : ∀ {A : C.Obj} → counit.η (L.F₀ A) D.∘ L.F₁ (unit.η A) D.≈ D.id
zag : ∀ {B : D.Obj} → R.F₁ (counit.η B) C.∘ unit.η (R.F₀ B) C.≈ C.id
private
variable
A : C.Obj
B : D.Obj
Ladjunct : L.F₀ A D.⇒ B → A C.⇒ R.F₀ B
Ladjunct f = R.F₁ f C.∘ unit.η _
Radjunct : A C.⇒ R.F₀ B → L.F₀ A D.⇒ B
Radjunct f = counit.η _ D.∘ L.F₁ f
RLadjunct≈id : ∀ {f : L.F₀ A D.⇒ B} → Radjunct (Ladjunct f) D.≈ f
RLadjunct≈id {f = f} = begin
Radjunct (Ladjunct f) ≈⟨ refl⟩∘⟨ L.homomorphism ⟩
counit.η _ D.∘ L.F₁ (R.F₁ f) D.∘ L.F₁ (unit.η _) ≈⟨ pullˡ (counit.commute f) ⟩
(f D.∘ counit.η _) D.∘ L.F₁ (unit.η _) ≈⟨ pullʳ zig ⟩
f D.∘ D.id ≈⟨ D.identityʳ ⟩
f ∎
where open D.HomReasoning
open MR D
LRadjunct≈id : ∀ {f : A C.⇒ R.F₀ B} → Ladjunct (Radjunct f) C.≈ f
LRadjunct≈id {f = f} = begin
Ladjunct (Radjunct f) ≈⟨ R.homomorphism ⟩∘⟨refl ⟩
(R.F₁ (counit.η _) C.∘ R.F₁ (L.F₁ f)) C.∘ unit.η _ ≈˘⟨ pushʳ (unit.commute f) ⟩
R.F₁ (counit.η _) C.∘ unit.η _ C.∘ f ≈⟨ pullˡ zag ⟩
C.id C.∘ f ≈⟨ C.identityˡ ⟩
f ∎
where open C.HomReasoning
open MR C
Hom[L-,-] : Bifunctor C.op D (Setoids _ _)
Hom[L-,-] = Hom[ D ][-,-] ∘F (L.op ⁂ idF)
Hom[-,R-] : Bifunctor C.op D (Setoids _ _)
Hom[-,R-] = Hom[ C ][-,-] ∘F (idF ⁂ R)
module Hom[L-,-] = Functor Hom[L-,-]
module Hom[-,R-] = Functor Hom[-,R-]
-- Inverse is more 'categorical' than bijection defined via injection/surjection
Hom-inverse : ∀ A B → FI.Inverse (Hom[L-,-].F₀ (A , B)) (Hom[-,R-].F₀ (A , B))
Hom-inverse A B = record
{ to = record
{ _⟨$⟩_ = Ladjunct {A} {B}
; cong = C.∘-resp-≈ˡ ∙ R.F-resp-≈
}
; from = record
{ _⟨$⟩_ = Radjunct {A} {B}
; cong = D.∘-resp-≈ʳ ∙ L.F-resp-≈
}
; inverse-of = record
{ left-inverse-of = λ _ → RLadjunct≈id
; right-inverse-of = λ _ → LRadjunct≈id
}
}
module Hom-inverse {A} {B} = FI.Inverse (Hom-inverse A B)
op : Adjoint R.op L.op
op = record
{ unit = counit.op
; counit = unit.op
; zig = zag
; zag = zig
}
-- naturality condition on the two hom functors.
-- these conditions are separated out because a complication due to the
-- universe level in Agda.
module _ where
open C
open HomReasoning
open MR C
Ladjunct-comm : ∀ {X Y A B} {h i : L.F₀ X D.⇒ Y} {f : A ⇒ X} {g : Y D.⇒ B} →
h D.≈ i →
R.F₁ (g D.∘ h D.∘ L.F₁ f) ∘ unit.η A ≈ R.F₁ g ∘ (R.F₁ i ∘ unit.η X) ∘ f
Ladjunct-comm {X} {Y} {A} {B} {h} {i} {f} {g} eq = begin
R.F₁ (g D.∘ h D.∘ L.F₁ f) ∘ unit.η A ≈⟨ R.homomorphism ⟩∘⟨refl ⟩
(R.F₁ g ∘ R.F₁ (h D.∘ L.F₁ f)) ∘ unit.η A ≈⟨ (refl⟩∘⟨ R.homomorphism) ⟩∘⟨refl ⟩
(R.F₁ g ∘ R.F₁ h ∘ R.F₁ (L.F₁ f)) ∘ unit.η A ≈⟨ pullʳ assoc ⟩
R.F₁ g ∘ R.F₁ h ∘ R.F₁ (L.F₁ f) ∘ unit.η A ≈˘⟨ refl⟩∘⟨ ⟺ (R.F-resp-≈ eq) ⟩∘⟨ unit.commute f ⟩
R.F₁ g ∘ R.F₁ i ∘ unit.η X ∘ f ≈⟨ refl⟩∘⟨ sym-assoc ⟩
R.F₁ g ∘ (R.F₁ i ∘ unit.η X) ∘ f ∎
Ladjunct-comm′ : ∀ {X A B} {f : A ⇒ X} {g : L.F₀ X D.⇒ B} →
Ladjunct (g D.∘ L.F₁ f) ≈ Ladjunct g ∘ f
Ladjunct-comm′ = ∘-resp-≈ˡ R.homomorphism ○ (pullʳ (⟺ (unit.commute _))) ○ sym-assoc
Ladjunct-resp-≈ : ∀ {A B} {f g : L.F₀ A D.⇒ B} → f D.≈ g → Ladjunct f ≈ Ladjunct g
Ladjunct-resp-≈ eq = ∘-resp-≈ˡ (R.F-resp-≈ eq)
module _ where
open D
open HomReasoning
open MR D
Radjunct-comm : ∀ {X Y A B} {h i : X C.⇒ R.F₀ Y} {f : A C.⇒ X} {g : Y ⇒ B} →
h C.≈ i →
counit.η B ∘ L.F₁ (R.F₁ g C.∘ h C.∘ f) ≈ g ∘ (counit.η Y ∘ L.F₁ i) ∘ L.F₁ f
Radjunct-comm {X} {Y} {A} {B} {h} {i} {f} {g} eq = begin
counit.η B ∘ L.F₁ (R.F₁ g C.∘ h C.∘ f) ≈⟨ refl⟩∘⟨ L.homomorphism ⟩
counit.η B ∘ L.F₁ (R.F₁ g) ∘ L.F₁ (h C.∘ f) ≈⟨ pullˡ (counit.commute g) ⟩
(g ∘ counit.η Y) ∘ L.F₁ (h C.∘ f) ≈⟨ refl⟩∘⟨ L.homomorphism ⟩
(g ∘ counit.η Y) ∘ L.F₁ h ∘ L.F₁ f ≈⟨ refl⟩∘⟨ L.F-resp-≈ eq ⟩∘⟨refl ⟩
(g ∘ counit.η Y) ∘ L.F₁ i ∘ L.F₁ f ≈⟨ pullʳ sym-assoc ⟩
g ∘ (counit.η Y ∘ L.F₁ i) ∘ L.F₁ f ∎
Radjunct-comm′ : ∀ {Y A B} {f : A C.⇒ R.F₀ Y} {g : Y ⇒ B} →
Radjunct (R.F₁ g C.∘ f) ≈ g ∘ Radjunct f
Radjunct-comm′ = ∘-resp-≈ʳ L.homomorphism ○ pullˡ (counit.commute _) ○ assoc
Radjunct-resp-≈ : ∀ {A B} {f g : A C.⇒ R.F₀ B} → f C.≈ g → Radjunct f ≈ Radjunct g
Radjunct-resp-≈ eq = ∘-resp-≈ʳ (L.F-resp-≈ eq)
-- a complication: the two hom functors do not live in the same Setoids,
-- so they need to be mapped to the same Setoids first before establishing
-- natural isomorphism!
module _ where
private
levelℓ : Category o ℓ e → Level
levelℓ {ℓ = ℓ} _ = ℓ
levele : Category o ℓ e → Level
levele {e = e} _ = e
Hom[L-,-]′ : Bifunctor C.op D (Setoids _ _)
Hom[L-,-]′ = LiftSetoids (levelℓ C) (levele C) ∘F Hom[ D ][-,-] ∘F (L.op ⁂ idF)
Hom[-,R-]′ : Bifunctor C.op D (Setoids _ _)
Hom[-,R-]′ = LiftSetoids (levelℓ D) (levele D) ∘F Hom[ C ][-,-] ∘F (idF ⁂ R)
Hom-NI : NaturalIsomorphism Hom[L-,-]′ Hom[-,R-]′
Hom-NI = record
{ F⇒G = ntHelper record
{ η = λ _ → record
{ _⟨$⟩_ = λ f → lift (Ladjunct (lower f))
; cong = λ eq → lift (Ladjunct-resp-≈ (lower eq))
}
; commute = λ _ eq → lift $ Ladjunct-comm (lower eq)
}
; F⇐G = ntHelper record
{ η = λ _ → record
{ _⟨$⟩_ = λ f → lift (Radjunct (lower f))
; cong = λ eq → lift (Radjunct-resp-≈ (lower eq))
}
; commute = λ _ eq → lift $ Radjunct-comm (lower eq)
}
; iso = λ X → record
{ isoˡ = λ eq → let open D.HomReasoning in lift (RLadjunct≈id ○ lower eq)
; isoʳ = λ eq → let open C.HomReasoning in lift (LRadjunct≈id ○ lower eq)
}
}
module Hom-NI = NaturalIsomorphism Hom-NI
infix 5 _⊣_
_⊣_ = Adjoint
⊣-id : idF {C = C} ⊣ idF {C = C}
⊣-id {C = C} = record
{ unit = F⇐G unitorˡ
; counit = F⇒G unitorʳ
; zig = identityˡ
; zag = identityʳ
}
where open Category C
open NaturalIsomorphism
|
{
"alphanum_fraction": 0.5292742927,
"avg_line_length": 36.6216216216,
"ext": "agda",
"hexsha": "5d0ea0981e2e0b0b89ddca997ef613a3647f49e5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5a49c6ac87cbb7e20511c28f28205163fe69f48f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "laMudri/agda-categories",
"max_forks_repo_path": "src/Categories/Adjoint.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5a49c6ac87cbb7e20511c28f28205163fe69f48f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "laMudri/agda-categories",
"max_issues_repo_path": "src/Categories/Adjoint.agda",
"max_line_length": 108,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "5a49c6ac87cbb7e20511c28f28205163fe69f48f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "laMudri/agda-categories",
"max_stars_repo_path": "src/Categories/Adjoint.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3351,
"size": 8130
}
|
module main where
open import IO
main : Main
main = run (putStrLn "Hello World!")
|
{
"alphanum_fraction": 0.7142857143,
"avg_line_length": 12,
"ext": "agda",
"hexsha": "bd4670a480a64dfda52fe1ec89feeed7277b2939",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e258ac3c5645718c6ae7fc3f79c3790996255a11",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jappeace/agda-nix",
"max_forks_repo_path": "src/main.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e258ac3c5645718c6ae7fc3f79c3790996255a11",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jappeace/agda-nix",
"max_issues_repo_path": "src/main.agda",
"max_line_length": 36,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e258ac3c5645718c6ae7fc3f79c3790996255a11",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jappeace/agda-nix",
"max_stars_repo_path": "src/main.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 22,
"size": 84
}
|
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-}
module Light.Implementation.Relation.Binary.Equality.Propositional where
open import Agda.Builtin.Equality using (_≡_ ; refl)
open import Light.Library.Relation.Binary
using (SelfSymmetric ; SelfTransitive ; Reflexive ; Binary ; SelfBinary ; Symmetric ; Transitive ; CongruentFor ; Preserved)
open import Light.Implementation.Relation.Sets using (base) public
open import Light.Library.Relation.Binary.Equality using (SelfEquality ; wrap)
open import Light.Variable.Sets
open import Light.Variable.Levels
open Reflexive
open Symmetric
open Transitive
open Preserved
module _ {𝕒 : Set aℓ} where
instance relation : SelfBinary 𝕒
relation = record { are = λ a b → a ≡ b }
instance reflexive : Reflexive relation
reflexive .reflexivity = refl
instance symmetric : SelfSymmetric relation
symmetric .symmetry refl = refl
instance transitive : SelfTransitive relation
transitive .transitivity refl refl = refl
instance equals : SelfEquality 𝕒
equals = wrap relation
instance congruent : ∀ {f : 𝕒 → 𝕓} → CongruentFor f relation relation
congruent .preservation refl = refl
|
{
"alphanum_fraction": 0.731511254,
"avg_line_length": 34.5555555556,
"ext": "agda",
"hexsha": "b219f88a4897d9801c53c7ce78f609f66184b9e3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "Zambonifofex/lightlib",
"max_forks_repo_path": "Light/Implementation/Relation/Binary/Equality/Propositional.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "Zambonifofex/lightlib",
"max_issues_repo_path": "Light/Implementation/Relation/Binary/Equality/Propositional.agda",
"max_line_length": 130,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "zamfofex/lightlib",
"max_stars_repo_path": "Light/Implementation/Relation/Binary/Equality/Propositional.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z",
"num_tokens": 300,
"size": 1244
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.ZCohomology.Groups.Torus where
open import Cubical.ZCohomology.Base
open import Cubical.ZCohomology.Properties
open import Cubical.ZCohomology.Groups.Connected
open import Cubical.ZCohomology.MayerVietorisUnreduced
open import Cubical.ZCohomology.Groups.Unit
open import Cubical.ZCohomology.Groups.Sn
open import Cubical.ZCohomology.Groups.Prelims
open import Cubical.ZCohomology.KcompPrelims
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Function
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Data.Sigma
open import Cubical.Data.Int renaming (_+_ to _+ℤ_; +-comm to +ℤ-comm ; +-assoc to +ℤ-assoc)
open import Cubical.Data.Nat
open import Cubical.Data.Unit
open import Cubical.Algebra.Group
open import Cubical.HITs.Pushout
open import Cubical.HITs.S1
open import Cubical.HITs.Sn
open import Cubical.HITs.Susp
open import Cubical.HITs.SetTruncation renaming (rec to sRec ; elim to sElim ; elim2 to sElim2)
open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec ; elim2 to pElim2 ; ∣_∣ to ∣_∣₁)
open import Cubical.HITs.Nullification
open import Cubical.HITs.Truncation renaming (elim to trElim ; elim2 to trElim2 ; map to trMap ; rec to trRec)
--------- H⁰(T²) ------------
H⁰-T²≅ℤ : GroupEquiv (coHomGr 0 (S₊ 1 × S₊ 1)) intGroup
H⁰-T²≅ℤ =
H⁰-connected (north , north)
λ (a , b) → pRec propTruncIsProp
(λ id1 → pRec propTruncIsProp
(λ id2 → ∣ ΣPathP (id1 , id2) ∣₁)
(Sn-connected 0 b) )
(Sn-connected 0 a)
------------------ H¹(T²) -------------------------------
H¹-T²≅ℤ×ℤ : GroupEquiv (coHomGr 1 ((S₊ 1) × (S₊ 1))) (dirProd intGroup intGroup)
H¹-T²≅ℤ×ℤ =
groupequiv (isoToEquiv (setTruncIso (curryIso ⋄ codomainIso S1→K₁≡S1×Int ⋄ toProdIso)
⋄ setTruncOfProdIso))
(sElim2 (λ _ _ → isOfHLevelPath 2 (isOfHLevelΣ 2 setTruncIsSet (λ _ → setTruncIsSet)) _ _)
λ f g → ΣPathP ((cong ∣_∣₂
(funExt (λ x → helper (f (x , S¹→S1 base) +ₖ g (x , S¹→S1 base))
∙ sym (cong₂ (λ x y → x +ₖ y)
(helper (f (x , S¹→S1 base)))
(helper (g (x , S¹→S1 base))))))) ,
(cong ∣_∣₂
(funExt
(suspToPropRec
north
(λ _ → isSetInt _ _)
(cong winding
(basechange-lemma2
(λ x → f (north , S¹→S1 x))
(λ x → g (north , S¹→S1 x))
λ x → S¹map (trMap S1→S¹ x))
∙∙ winding-hom
(basechange2⁻
(S¹map (trMap S1→S¹ (f (north , S¹→S1 base))))
(λ i → S¹map (trMap S1→S¹ (f (north , S¹→S1 (loop i))))))
(basechange2⁻
(S¹map (trMap S1→S¹ (g (north , S¹→S1 base))))
(λ i → S¹map (trMap S1→S¹ (g (north , S¹→S1 (loop i))))))
∙∙ sym (addLemma
(winding
(basechange2⁻
(S¹map (trMap S1→S¹ (f (north , S¹→S1 base))))
(λ i → S¹map (trMap S1→S¹ (f (north , S¹→S1 (loop i)))))))
(winding
(basechange2⁻
(S¹map (trMap S1→S¹ (g (north , S¹→S1 base))))
(λ i → S¹map (trMap S1→S¹ (g (north , S¹→S1 (loop i))))))))))))))
□ dirProdEquiv (invGroupEquiv (Hⁿ-Sⁿ≅ℤ 0)) (H⁰-Sⁿ≅ℤ 0)
where
helper : (x : hLevelTrunc 3 (S₊ 1)) → ∣ S¹→S1 (S¹map (trMap S1→S¹ x)) ∣ ≡ x
helper = trElim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _)
λ a → cong ∣_∣ (S1→S¹-retr a)
-------------------------------------------------------------
----------------------- H²(T²) ------------------------------
open import Cubical.Foundations.Equiv
H²-T²≅ℤ : GroupEquiv (coHomGr 2 (S₊ 1 × S₊ 1)) intGroup
H²-T²≅ℤ = invGroupEquiv ℤ≅H²-T²
where
ℤ≅H²-T² : GroupEquiv intGroup (coHomGr 2 (S₊ 1 × S₊ 1))
GroupEquiv.eq ℤ≅H²-T² =
compEquiv (isoToEquiv helper')
(compEquiv (invEquiv (≃-× (GroupEquiv.eq H²-S¹≅0)
(invEquiv (GroupEquiv.eq (Hⁿ-Sⁿ≅ℤ 0)))))
(isoToEquiv
(invIso setTruncOfProdIso
⋄ invIso (setTruncIso (curryIso
⋄ codomainIso S1→K2≡K2×K1
⋄ toProdIso)))))
where
helper' : Iso Int (Unit × Int)
Iso.inv helper' = snd
Iso.fun helper' x = tt , x
Iso.leftInv helper' _ = refl
Iso.rightInv helper' _ = refl
GroupEquiv.isHom ℤ≅H²-T² a b =
(λ i → f (GroupEquiv.isHom (invGroupEquiv (dirProdEquiv H²-S¹≅0 (invGroupEquiv (Hⁿ-Sⁿ≅ℤ 0)))) (_ , a) (_ , b) i))
∙ ((λ i → f (guyId i , (g a +ₕ g b)))
∙∙ helper (g a) (g b)
∙∙ (λ i → f (guyId2 (~ i) , g a) +ₕ f (guyId2 (~ i) , g b)))
where
f = Iso.fun (((invIso setTruncOfProdIso ⋄ invIso (setTruncIso (curryIso ⋄ codomainIso S1→K2≡K2×K1 ⋄ toProdIso)))))
g = invEq (GroupEquiv.eq (invGroupEquiv (Hⁿ-Sⁿ≅ℤ 0)))
isPropH²-S¹ : isProp (coHom 2 (S₊ 1))
isPropH²-S¹ = transport (λ i → isProp (ua (GroupEquiv.eq H²-S¹≅0) (~ i))) isPropUnit
guyId : ∣ _ ∣₂ ≡ 0ₕ
guyId = isPropH²-S¹ _ _
guyId2 : ∣ _ ∣₂ ≡ 0ₕ
guyId2 = isPropH²-S¹ _ _
helper : (x y : ∥ ((S₊ 1) → (hLevelTrunc 3 (S₊ 1) )) ∥₂) →
f (0ₕ , x +ₕ y) ≡ f (0ₕ , x) +ₕ f (0ₕ , y)
helper =
sElim2 (λ _ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ f g i → ∣ (λ x → helper2 (f (fst x)) (g (fst x)) (snd x) i) ∣₂
where
helper2 : (x y : coHomK 1) (s : S₊ 1)
→ Iso.inv S1→K2≡K2×K1 (0ₖ , x +ₖ y) s ≡ (Iso.inv S1→K2≡K2×K1 (0ₖ , x)) s +ₖ (Iso.inv S1→K2≡K2×K1 (0ₖ , y)) s
helper2 =
trElim2 (λ _ _ → isOfHLevelΠ 3 λ _ → isOfHLevelTrunc 4 _ _)
λ a b →
λ {north → cong₂ (_+ₖ_) (sym (lUnitₖ 0ₖ)) (sym (lUnitₖ 0ₖ))
; south → cong₂ (_+ₖ_) (sym (lUnitₖ 0ₖ)) (sym (lUnitₖ 0ₖ))
; (merid south i) j →
hcomp (λ k → λ {(i = i0) → cong₂ (_+ₖ_) (sym (lUnitₖ 0ₖ)) (sym (lUnitₖ 0ₖ)) (j ∧ k)
; (i = i1) → cong₂ (_+ₖ_) (sym (lUnitₖ 0ₖ)) (sym (lUnitₖ 0ₖ)) (j ∧ k)
; (j = i0) → 0ₖ +ₖ Kn→ΩKn+1 1 (∣ a ∣ +ₖ ∣ b ∣) i
; (j = i1) → cong₂ (_+ₖ_) (sym (lUnitₖ (Kn→ΩKn+1 1 ∣ a ∣ i))) (sym (lUnitₖ (Kn→ΩKn+1 1 ∣ b ∣ i))) k})
(helper3 ∣ a ∣ ∣ b ∣ j i)
; (merid north i) → cong₂ (_+ₖ_) (sym (lUnitₖ 0ₖ)) (sym (lUnitₖ 0ₖ)) }
where
helper3 : (a b : coHomK 1) → cong (0ₖ +ₖ_) (Kn→ΩKn+1 1 (a +ₖ b)) ≡ cong₂ _+ₖ_ (Kn→ΩKn+1 1 a) (Kn→ΩKn+1 1 b)
helper3 a b = (cong (cong (0ₖ +ₖ_)) helper4
∙ congFunct (0ₖ +ₖ_) (Kn→ΩKn+1 1 a) (Kn→ΩKn+1 1 b))
∙∙ cong (_∙ cong (0ₖ +ₖ_) (Kn→ΩKn+1 1 b)) (helper5 (Kn→ΩKn+1 1 a))
∙∙ sym (cong₂Funct (_+ₖ_) (Kn→ΩKn+1 1 a) (Kn→ΩKn+1 1 b))
where
helper4 : Kn→ΩKn+1 1 (a +ₖ b) ≡ Kn→ΩKn+1 1 a ∙ Kn→ΩKn+1 1 b -- Termination issues unless this is put as a separate lemma...
helper4 = +ₖ→∙ 1 a b
helper6 : ∀{ℓ} {A : Type ℓ} {a b : A} (p : a ≡ b) → p ≡ (refl ∙ refl) ∙ p ∙ refl ∙ refl
helper6 p = (λ i → rUnit p i) ∙∙ (λ i → lUnit (p ∙ rUnit refl i) i) ∙∙ λ i → rUnit refl i ∙ p ∙ refl ∙ refl
helper5 : (a : Path (coHomK 2) 0ₖ 0ₖ) → cong (0ₖ +ₖ_) a ≡ cong (_+ₖ 0ₖ) a
helper5 a = (((helper6 (cong (0ₖ +ₖ_) a))
∙∙ (λ i → ((λ j → lUnitₖ 0ₖ (i ∧ j)) ∙ refl) ∙ cong (λ x → lUnitₖ x i) a ∙ refl ∙ λ j → lUnitₖ 0ₖ (i ∧ (~ j)))
∙∙ λ i → (lUnitₖ 0ₖ ∙ λ j → rUnitₖ 0ₖ ((~ i) ∨ (~ j))) ∙ cong (λ x → rUnitₖ x (~ i)) a ∙ (λ j → rUnitₖ 0ₖ (~ i ∨ j)) ∙ sym (lUnitₖ 0ₖ))
∙∙ (λ i → (lUnitₖ 0ₖ ∙ sym (rUnitₖ 0ₖ)) ∙ isCommΩK-based 2 (0ₖ +ₖ 0ₖ) (cong (_+ₖ 0ₖ) a) (rUnitₖ 0ₖ ∙ sym (lUnitₖ 0ₖ)) i)
∙∙ λ i → assoc (lUnitₖ 0ₖ ∙ sym (rUnitₖ 0ₖ)) (symDistr ((lUnitₖ 0ₖ)) (sym (rUnitₖ 0ₖ)) (~ i)) (cong (_+ₖ 0ₖ) a) i)
∙∙ cong (_∙ (cong (_+ₖ 0ₖ) a)) (rCancel (lUnitₖ 0ₖ ∙ sym (rUnitₖ 0ₖ)))
∙∙ sym (lUnit (cong (_+ₖ 0ₖ) a))
private
to₂ : coHom 2 (S₊ 1 × S₊ 1) → Int
to₂ = fst (GroupEquiv.eq H²-T²≅ℤ)
from₂ : Int → coHom 2 (S₊ 1 × S₊ 1)
from₂ = invEq (GroupEquiv.eq H²-T²≅ℤ)
to₁ : coHom 1 (S₊ 1 × S₊ 1) → Int × Int
to₁ = fst (GroupEquiv.eq H¹-T²≅ℤ×ℤ)
from₁ : Int × Int → coHom 1 (S₊ 1 × S₊ 1)
from₁ = invEq (GroupEquiv.eq H¹-T²≅ℤ×ℤ)
to₀ : coHom 0 (S₊ 1 × S₊ 1) → Int
to₀ = fst (GroupEquiv.eq H⁰-T²≅ℤ)
from₀ : Int → coHom 0 (S₊ 1 × S₊ 1)
from₀ = invEq (GroupEquiv.eq H⁰-T²≅ℤ)
|
{
"alphanum_fraction": 0.4609343536,
"avg_line_length": 51.7291666667,
"ext": "agda",
"hexsha": "98222404fc59a468eadbdca438818f2dead7810e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "knrafto/cubical",
"max_forks_repo_path": "Cubical/ZCohomology/Groups/Torus.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "knrafto/cubical",
"max_issues_repo_path": "Cubical/ZCohomology/Groups/Torus.agda",
"max_line_length": 154,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "knrafto/cubical",
"max_stars_repo_path": "Cubical/ZCohomology/Groups/Torus.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3776,
"size": 9932
}
|
module Data.List.FunctionsProven where
import Lvl
open import Data.Boolean
open import Data.List as List using (List ; ∅ ; _⊰_)
import Data.List.Functions as List
open import Data.List.Relation.Membership
open import Data.List.Relation.Quantification
open import Functional
open import Lang.Instance
open import Syntax.Function
open import Type
private variable ℓ : Lvl.Level
private variable A B T Result : Type{ℓ}
private variable P : T → Type{ℓ}
foldₗ : (Result → (x : T) → P(x) → Result) → Result → (l : List(T)) → AllElements(P)(l) → Result
foldₗ f result ∅ ∅ = result
foldₗ f result (x ⊰ l) (px ⊰ pl) = foldₗ f (f result x px) l pl
foldᵣ : ((x : T) → P(x) → Result → Result) → Result → (l : List(T)) → AllElements(P)(l) → Result
foldᵣ f init ∅ ∅ = init
foldᵣ f init (x ⊰ l) (px ⊰ pl) = f x px (foldᵣ f init l pl)
map : ((x : A) → P(x) → B) → ((l : List(A)) → AllElements(P)(l) → List(B))
map f ∅ ∅ = ∅
map f (x ⊰ l) (px ⊰ pl) = (f x px) ⊰ (map f l pl)
filter : ((x : T) → P(x) → Bool) → ((l : List(T)) → AllElements(P)(l) → List(T))
filter f ∅ ∅ = ∅
filter f (x ⊰ l) (px ⊰ pl) = (if(f(x) px) then (x List.⊰_) else id) (filter f l pl)
|
{
"alphanum_fraction": 0.5874587459,
"avg_line_length": 36.7272727273,
"ext": "agda",
"hexsha": "78137d864ecd88a7ab910594d3f97d1a10679cd2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/List/FunctionsProven.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/List/FunctionsProven.agda",
"max_line_length": 96,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/List/FunctionsProven.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 439,
"size": 1212
}
|
{-# OPTIONS --without-K #-}
module factorial where
open import Type
open import Data.Nat.NP
open import Data.Product
open import Data.Sum.NP
open import Data.Zero
open import Data.Maybe
open import Data.One using (𝟙)
open import Data.Fin.NP using (Fin; Fin′; zero; suc;
inject₁; inject!;
Fin▹ℕ; ℕ▹Fin; [zero:_,suc:_])
open import Function.NP
open import Function.Extensionality
open import HoTT
open Equivalences
open import Type.Identities
open import Algebra.FunctionProperties.Eq
{-
open import Function.Related as FR
open import Function.Related.TypeIsomorphisms.NP
import Function.Inverse.NP as I
open I using (_↔_; inverses; module Inverse) renaming (_$₁_ to to; _$₂_ to from)
open import Relation.Binary.Product.Pointwise
open import Relation.Binary.Sum
-}
open import Relation.Binary.PropositionalEquality.NP
renaming (!_ to ¡_)
open ≡-Reasoning
-- n ! ≡ product [1..n]
module v1 where
_! : ℕ → ℕ
zero ! = 1
suc n ! = (1 + n) * n !
_!★ : ℕ → ★
zero !★ = 𝟙
suc n !★ = Fin (1 + n) × n !★
module _ {{_ : UA}} where
!★≡Fin! : ∀ {n} → n !★ ≡ Fin (n !)
!★≡Fin! {zero} = ¡ Fin1≡𝟙
!★≡Fin! {suc n} = ×= idp !★≡Fin! ∙ Fin-×-*
module v2 where
_! : ℕ → ℕ
_+1! : ℕ → ℕ
zero ! = 1
suc n ! = n +1!
n +1! = n ! + n * n !
_!★ : ℕ → ★
zero !★ = 𝟙
suc n !★ = n !★ ⊎ Fin n × n !★
1+_!★ : ℕ → ★
1+ n !★ = n !★ ⊎ Fin n × n !★
module _ {{_ : UA}} where
!★≡Fin! : ∀ {n} → n !★ ≡ Fin (n !)
!★≡Fin! {zero} = ¡ Fin1≡𝟙
!★≡Fin! {suc n} = ⊎= !★≡Fin! (×= idp !★≡Fin! ∙ Fin-×-*)
∙ Fin-⊎-+
productFin : ∀ n → (Fin n → ℕ) → ℕ
productFin zero f = 1
productFin (suc n) f = f zero * productFin n (f ∘ suc)
product[0…_] : ℕ → (ℕ → ℕ) → ℕ
product[0… n ] f = productFin n (f ∘ Fin▹ℕ)
{-
product[0… zero ] f = 1
product[0… suc n ] f = f zero * product[0… n ] (f ∘ suc)
-}
product[1…_] : ℕ → (ℕ → ℕ) → ℕ
product[1… zero ] f = 1
product[1… suc n ] f = f 1 * product[1… n ] (f ∘ suc)
product[_to_] : ℕ → ℕ → (ℕ → ℕ) → ℕ
product[ start to stop ] f = product[0… stop ∸ start ] (f ∘ _+_ start)
{-
data Bnd (l : ℕ) : (h : ℕ) → Set where
low : Bnd l (suc l)
suc : ∀ {h} → Bnd l h → Bnd l (suc h)
Bnd▹ℕ : {l h : ℕ} → Bnd l h → ℕ
Bnd▹ℕ {l} low = l
Bnd▹ℕ (suc x) = suc (Bnd▹ℕ x)
productBnd : ∀ {l h} → l ≤ h → (Bnd l h → ℕ) → ℕ
productBnd z≤n f = {!!}
productBnd (s≤s p) f = {!!}
productBnd p f = {!f low * productBnd l h (f ∘ suc)!}
-}
test-product[1…3] : product[1… 3 ] ≡ (λ f → f 1 * (f 2 * (f 3 * 1)))
test-product[1…3] = idp
open v1
{-
adequate1 : ∀ n → n ! ≡ product[1… n ] id
adequate1 zero = ≡.refl
adequate1 (suc n) rewrite adequate1 n = {!!}
Π{x∈1…n}x + n * Π{x∈1…n}x
(1 + n) * Π{x∈1…n}x
Π{x∈1…n}1+x
-}
Π[0…_-1] : ℕ → (ℕ → ℕ) → ★
Π[0… n -1] f = Π (Fin n) (Fin ∘ f ∘ Fin▹ℕ)
Π[0…_] : ℕ → (ℕ → ℕ) → ★
Π[0… n ] = Π[0… suc n -1]
{-
Π[1…_] : ℕ → (ℕ → ℕ) → ★
Π[1… 0 ] f = 𝟙
Π[1… suc n ] f = {!!}
-}
Π[0…_-1]′ : ℕ → (ℕ → ℕ) → ★
Π[0… zero -1]′ f = 𝟙
Π[0… suc n -1]′ f = Fin (f 0) × Π[0… n -1]′ (f ∘ suc)
Π[0…_]′ : ℕ → (ℕ → ℕ) → ★
Π[0… n ]′ = Π[0… suc n -1]′
{-
Π[1…_]′ : ℕ → (ℕ → ℕ) → ★
Π[1… zero ]′ f = 𝟙
Π[1… suc n ]′ f = Fin (f 1) × Π[1… n ]′ (f ∘ suc)
-}
[zero:,suc:] = [zero:_,suc:_]
syntax [zero:,suc:] z (λ y → s) = [zero: z ,suc y :→ s ]
Π! : ℕ → ★
Π! n = Π[0… n ] suc
↺ : ℕ → ★
↺ n = Fin n → Fin n
Π!↺ : ∀ {n} → Π! n → ↺ (suc n)
Π!↺ {n} f = inject! ∘ f
Π!↺-inj : ∀ {n}(f : Π! n) → Injective (Π!↺ f)
Π!↺-inj f {x} {y} e = {!!}
-- Move to Type.Identities
module _ {{_ : UA}}{{_ : FunExt}} where
ΠMaybe : ∀ {A : ★} {F : Maybe A → ★} →
Π (Maybe A) F ≡ (F nothing × Π A (F ∘ just))
ΠMaybe {A} {F}
= (Π (Maybe A) F)
≡⟨ Π≃ Maybe≃𝟙⊎ (maybe (λ _ → idp) idp) ⟩
(Π (𝟙 ⊎ A) [inl: (λ _ → F nothing) ,inr: F ∘ just ])
≡⟨ dist-×-Π ⟩
((𝟙 → F nothing) × Π A (F ∘ just))
≡⟨ ×= 𝟙→A≡A idp ⟩
(F nothing × Π A (F ∘ just))
∎
ΠFin0≡𝟙 : ∀ {F : Fin 0 → ★} → Π (Fin 0) F ≡ 𝟙
ΠFin0≡𝟙 = Π= Fin0≡𝟘 (λ()) ∙ Π𝟘-uniq₀ (λ ())
ΠFin1+ : ∀ n {F : Fin (1 + n) → ★} →
Π (Fin (1 + n)) F ≡ (F zero × Π (Fin n) (F ∘ suc))
ΠFin1+ n {F}
= Π (Fin (1 + n)) F
≡⟨ Π≃ Fin∘suc≃𝟙⊎Fin [zero: idp ,suc _ :→ idp ] ⟩
Π (𝟙 ⊎ Fin n) [inl: (λ _ → F zero) ,inr: F ∘ suc ]
≡⟨ dist-×-Π[] ⟩
((𝟙 → F zero) × Π (Fin n) (F ∘ suc))
≡⟨ ×= 𝟙→A≡A idp ⟩
(F zero × Π (Fin n) (F ∘ suc))
∎
rot : ∀ {n} → Fin (suc n) → Fin (suc n)
rot {n} = [zero: ℕ▹Fin n ,suc: inject₁ ]
ΠFin1+' : ∀ n {F : Fin (1 + n) → ★} →
Π (Fin (1 + n)) F ≡ (F (ℕ▹Fin n) × Π (Fin n) (F ∘ inject₁))
ΠFin1+' n {F} =
Π (Fin (1 + n)) F
≡⟨ Π≃ Fin∘suc≃𝟙⊎Fin (λ x → {!WRONG!}) ⟩
Π (𝟙 ⊎ Fin n) [inl: (λ _ → F {!!}) ,inr: F ∘ {!!} ]
≡⟨ {!!} ⟩
Π (𝟙 ⊎ Fin n) [inl: (λ _ → F (ℕ▹Fin n)) ,inr: F ∘ inject₁ ]
≡⟨ dist-×-Π[] ⟩
((𝟙 → F (ℕ▹Fin n)) × Π (Fin n) (F ∘ inject₁))
≡⟨ ×= 𝟙→A≡A idp ⟩
(F (ℕ▹Fin n) × Π (Fin n) (F ∘ inject₁))
∎
{-
ΠFin1≡F0 : {F : Fin 1 → ★} → Π (Fin 1) F ≡ F zero
ΠFin1≡F0 = ΠFin1+ 0 ∙ ×= idp ΠFin0≡𝟙 ∙ A×𝟙≡A
ΠFin2≡F0×F1 : {F : Fin 2 → ★} → Π (Fin 2) F ≡ (F zero × F (suc zero))
ΠFin2≡F0×F1 = ΠFin1+ 1 ∙ ×= idp ΠFin1≡F0
test-Π[0…-1] : ∀ {f} → Π[0… 0 -1] f ≡ 𝟙
test-Π[0…-1] = ΠFin0≡𝟙
test-Π[0…0] : ∀ {f} → Π[0… 0 ] f ≡ Fin (f zero)
test-Π[0…0] = ΠFin1≡F0
test-Π[0…1] : ∀ {f} → Π[0… 1 ] f ≡ (Fin (f zero) × Fin (f (suc zero)))
test-Π[0…1] = ΠFin2≡F0×F1
ΠFin1+ʳ′ : ∀ n (F : ℕ → ★) →
Π (Fin (1 + n)) (F ∘ Fin▹ℕ) ≡ (F n × Π (Fin n) (F ∘ Fin▹ℕ))
ΠFin1+ʳ′ n F
= Π (Fin (1 + n)) (F ∘ Fin▹ℕ)
≡⟨ Π=′ (Fin (1 + n)) F∘Fin▹ℕ≗F' ⟩
Π (Fin (1 + n)) F'
≡⟨ ΠFin1+ n ⟩
(F' zero × Π (Fin n) (F' ∘ suc))
≡⟨by-definition⟩
(F n × Π (Fin n) (F ∘ Fin▹ℕ))
∎
where F' : (x : Fin (suc n)) → ★₀
F' zero = F n
F' (suc x) = F (Fin▹ℕ x)
F∘Fin▹ℕ≗F' : F ∘ Fin▹ℕ ≗ F'
F∘Fin▹ℕ≗F' zero = {!!}
F∘Fin▹ℕ≗F' (suc x₂) = {!!}
{-Π (Fin (1 + n)) (F ∘ Fin▹ℕ)
≡⟨ {!!} ⟩
Π (𝟙 ⊎ Fin n) {!!}
≡⟨ {!dist-×-Π!} ⟩
(F n × Π (Fin n) (F ∘ Fin▹ℕ))
∎
-}
module _ {{_ : UA}}{{_ : FunExt}} where
Π≡Π′[0…_-1] : ∀ n f → Π[0… n -1]′ f ≡ Π[0… n -1] f
Π≡Π′[0… zero -1] f = ¡ ΠFin0≡𝟙
Π≡Π′[0… suc n -1] f = Π[0… 1 + n -1]′ f
≡⟨by-definition⟩
(Fin (f 0) × Π[0… n -1]′ (f ∘ suc))
≡⟨ ×= idp (Π≡Π′[0… n -1] (f ∘ suc)) ⟩
(Fin (f 0) × Π[0… n -1] (f ∘ suc))
≡⟨ ¡ ΠFin1+ n ⟩
Π[0… 1 + n -1] f
∎
Π≡Π′[0…_] : ∀ n f → Π[0… n ]′ f ≡ Π[0… n ] f
Π≡Π′[0… n ] = Π≡Π′[0… suc n -1]
-- (A → B ⊎ C)
-- TODO
-- adequate! : ∀ n → Fin (suc n) × Fin (n !) ≡ Π (Fin n) (Fin′ ∘ suc)
example : ∀ {n} → (2 + n)! ≡ (2 + n) * (1 + n)!
example = idp
module _ {{_ : UA}}{{_ : FunExt}} where
{-
-- WRONG
adequate! : ∀ {n} → Fin (n !) ≡ Π[0… n -1] suc
adequate! {zero} = {!¡ ΠFin1≡F0!}
adequate! {suc n} = (Fin ((1 + n)!))
≡⟨by-definition⟩
Fin ((1 + n) * n !)
≡⟨ ¡ Fin-×-* ⟩
(Fin (1 + n) × Fin (n !))
≡⟨ ×= idp adequate! ⟩
(Fin (1 + n) × Π[0… n -1] suc)
≡⟨ {!ΠFin1+!} ⟩
(Fin 1 × Π[0… n -1] (_+_ 2))
≡⟨ ¡ ΠFin1+ n ⟩
Π[0… n ] suc
∎
-}
adequate! : ∀ {n} → Fin (n !) ≡ Π[0… n ] suc
adequate! {zero} = ¡ ΠFin1≡F0
adequate! {suc n} = (Fin ((1 + n)!))
≡⟨by-definition⟩
Fin ((1 + n) * n !)
≡⟨ ¡ Fin-×-* ⟩
(Fin (1 + n) × Fin (n !))
≡⟨ ×= idp adequate! ⟩
(Fin (1 + n) × Π[0… n ] suc)
≡⟨ ¡ ΠFin1+ʳ′ (suc n) _ ⟩
((x : Fin (2 + n)) → Fin (suc (Fin▹ℕ x)))
≡⟨ idp ⟩
Π[0… 1 + n ] suc
∎
{-
adequate! : ∀ {n} → Fin ((1 + n)!) ≡ Π[0… n -1] suc
adequate! {zero} = {!idp!}
adequate! {suc n} = (Fin ((2 + n)!))
≡⟨ {!!} ⟩
Fin ((1 + n) * (1 + n)!)
≡⟨ ¡ Fin-×-* ⟩
(Fin (1 + n) × Fin ((1 + n)!))
≡⟨ ×= idp adequate! ⟩
(Fin (1 + n) × Π[0… n -1] suc)
≡⟨ ¡ (ΠFin1+ʳ′ n (Fin ∘ suc)) ⟩
Π[0… suc n -1] suc
∎
-}
{-
HI: (n+1)! ≡ Π n suc
(n+2)!
(n+2) * (n+1)!
(n+2) * Π n suc
(n+1) * Π n suc + Π n suc
(2+n)*(n! * 1+n)
(n! * 1+n) + (1+n)*(n! * 1+n)
≡ Π n (2+)
≡ 1 × Π n (2+)
(2+n) * Π n suc
Π (1+n) suc
-- -}
-- -}
-- -}
-- -}
-- -}
|
{
"alphanum_fraction": 0.3881980556,
"avg_line_length": 25.7900874636,
"ext": "agda",
"hexsha": "fa8aa5cff726e4dc2a86b0bb91781ecccb938490",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "crypto-agda/explore",
"max_forks_repo_path": "experimental-examples/factorial.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "crypto-agda/explore",
"max_issues_repo_path": "experimental-examples/factorial.agda",
"max_line_length": 80,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "crypto-agda/explore",
"max_stars_repo_path": "experimental-examples/factorial.agda",
"max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z",
"num_tokens": 4436,
"size": 8846
}
|
module Ag03 where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; cong; sym)
open import Data.Nat using (ℕ; zero; suc; _+_; _*_)
open import Data.Nat.Properties using (+-comm; *-comm; +-suc)
data _≤_ : ℕ → ℕ → Set where
z≤n : ∀ {n : ℕ} → zero ≤ n
s≤s : ∀ {m n : ℕ} → m ≤ n → suc m ≤ suc n
infix 4 _≤_
inv-s≤s : ∀ {m n : ℕ}
→ suc m ≤ suc n
→ m ≤ n
inv-s≤s (s≤s m≤n) = m≤n
inv-z≤n : ∀ {m : ℕ}
→ m ≤ zero
→ m ≡ zero
inv-z≤n z≤n = refl
≤-refl : ∀ {n : ℕ} → n ≤ n
≤-refl {0} = z≤n
≤-refl {suc n} = s≤s ≤-refl
≤-trans : ∀ {m n p : ℕ } → m ≤ n → n ≤ p → m ≤ p
≤-trans z≤n _ = z≤n
≤-trans (s≤s m≤n) (s≤s n≤p) = s≤s (≤-trans m≤n n≤p)
≤-antisym : ∀ {m n : ℕ} → m ≤ n → n ≤ m → m ≡ n
≤-antisym z≤n z≤n = refl
≤-antisym (s≤s m≤n) (s≤s n≤m) = cong suc (≤-antisym m≤n n≤m)
data Total (m n : ℕ) : Set where
forward :
m ≤ n → Total m n
flipped :
n ≤ m → Total m n
+-monoʳ-≤ : ∀ (n p q : ℕ)
→ p ≤ q
-------------
→ n + p ≤ n + q
+-monoʳ-≤ zero p q p≤q = p≤q
+-monoʳ-≤ (suc n) p q p≤q = s≤s (+-monoʳ-≤ n p q p≤q)
+-monoˡ-≤ : ∀ (m n p : ℕ)
→ m ≤ n
-------------
→ m + p ≤ n + p
+-monoˡ-≤ m n p m≤n rewrite +-comm m p | +-comm n p = +-monoʳ-≤ p m n m≤n
+-mono-≤ : ∀ (m n p q : ℕ)
→ m ≤ n
→ p ≤ q
-------------
→ m + p ≤ n + q
+-mono-≤ m n p q m≤n p≤q = ≤-trans (+-monoˡ-≤ m n p m≤n) (+-monoʳ-≤ n p q p≤q)
*-mono-ʳ : ∀ (n p q : ℕ) → p ≤ q → n * p ≤ n * q
*-mono-ʳ 0 _ _ p≤q = z≤n
*-mono-ʳ (suc n) p q p≤q = +-mono-≤ p q (n * p) (n * q) p≤q (*-mono-ʳ n p q p≤q)
*-mono-ˡ : ∀ (m n p : ℕ) → m ≤ n → m * p ≤ n * p
*-mono-ˡ m n p m≤n rewrite *-comm m p | *-comm n p = *-mono-ʳ p m n m≤n
*-mono : ∀ (m n p q : ℕ) → m ≤ n → p ≤ q → m * p ≤ n * q
*-mono m n p q m≤n p≤q = ≤-trans (*-mono-ˡ m n p m≤n) (*-mono-ʳ n p q p≤q)
infix 4 _⟨_
data _⟨_ : ℕ → ℕ → Set where
z⟨s : ∀ {n : ℕ} → 0 ⟨ suc n
s⟨s : ∀ {m n : ℕ} → m ⟨ n → suc m ⟨ suc n
⟨-trans : ∀ {m n p : ℕ} → m ⟨ n → n ⟨ p → m ⟨ p
⟨-trans z⟨s (s⟨s n⟨p) = z⟨s
⟨-trans (s⟨s m⟨n) (s⟨s n⟨p) = s⟨s (⟨-trans m⟨n n⟨p)
data Total-trichotomy (m n : ℕ) : Set where
lt : m ⟨ n → Total-trichotomy m n
eq : m ≡ n → Total-trichotomy m n
gt : n ⟨ m → Total-trichotomy m n
trichotomy : ∀ (m n : ℕ) → Total-trichotomy m n
trichotomy zero zero = eq refl
trichotomy zero (suc n) = lt z⟨s
trichotomy (suc m) zero = gt z⟨s
trichotomy (suc m) (suc n) with trichotomy m n
... | lt m⟨n = lt (s⟨s m⟨n)
... | eq m≡n = eq (cong suc m≡n)
... | gt n⟨m = gt (s⟨s n⟨m)
+-monoʳ-⟨ : ∀ (n p q : ℕ) → p ⟨ q → n + p ⟨ n + q
+-monoʳ-⟨ 0 _ _ p⟨q = p⟨q
+-monoʳ-⟨ (suc n) p q p⟨q = s⟨s (+-monoʳ-⟨ n p q p⟨q)
+-monoˡ-⟨ : ∀ (m n p : ℕ) → m ⟨ n → m + p ⟨ n + p
+-monoˡ-⟨ m n p m⟨n rewrite +-comm m p | +-comm n p = +-monoʳ-⟨ p m n m⟨n
+-mono-⟨ : ∀ (m n p q : ℕ) → m ⟨ n → p ⟨ q → m + p ⟨ n + q
+-mono-⟨ m n p q m⟨n p⟨q = ⟨-trans (+-monoˡ-⟨ m n p m⟨n) (+-monoʳ-⟨ n p q p⟨q)
≤-iffˡ-⟨ : ∀ (m n : ℕ) → suc m ≤ n → m ⟨ n
≤-iffˡ-⟨ 0 _ (s≤s z≤n) = z⟨s
≤-iffˡ-⟨ (suc m) (suc n) (s≤s sm≤n) = s⟨s (≤-iffˡ-⟨ m n sm≤n)
≤-iffʳ-⟨ : ∀ (m n : ℕ) → m ⟨ n → suc m ≤ n
≤-iffʳ-⟨ .0 .(suc _) z⟨s = s≤s z≤n
≤-iffʳ-⟨ .(suc _) .(suc _) (s⟨s m⟨n) = s≤s (≤-iffʳ-⟨ _ _ m⟨n)
data Even : ℕ → Set
data Odd : ℕ → Set
data Even where
zero :
---------
Even zero
suc : ∀ {n : ℕ}
→ Odd n
------------
→ Even (suc n)
data Odd where
suc : ∀ {n : ℕ}
→ Even n
-----------
→ Odd (suc n)
e+e≡e : ∀ {m n : ℕ}
→ Even m
→ Even n
------------
→ Even (m + n)
o+e≡o : ∀ {m n : ℕ}
→ Odd m
→ Even n
-----------
→ Odd (m + n)
e+e≡e zero en = en
e+e≡e (suc om) en = suc (o+e≡o om en)
o+e≡o (suc em) en = suc (e+e≡e em en)
o+o≡e : ∀ {m n : ℕ} → Odd m → Odd n → Even (m + n)
o+o≡e {m} {suc n} om (suc en) rewrite +-suc m n = suc (o+e≡o om en)
e+o≡o : ∀ (m n : ℕ) → Even m → Odd n → Odd(m + n)
e+o≡o .0 .(suc _) zero (suc x) = suc x
e+o≡o (suc m) (suc n) (suc x) (suc x₁) rewrite +-suc m n = suc (suc (o+e≡o x x₁))
infixl 7 _e*e_ _o*e_ _o*o_ _e*o_
_e*e_ : ∀ {m n : ℕ} → Even m → Even n → Even (m * n)
_o*e_ : ∀ {m n : ℕ} → Odd m → Even n → Even (m * n)
_o*o_ : ∀ {m n : ℕ} → Odd m → Odd n → Odd (m * n)
_e*o_ : ∀ {m n : ℕ} → Even m → Odd n → Even (m * n)
zero e*e en = zero
suc x e*e en = e+e≡e en (x o*e en)
suc x o*e en = e+e≡e en (x e*e en)
suc x o*o on = o+e≡o on (x e*o on)
zero e*o on = zero
suc x e*o on = o+o≡e on (x o*o on)
|
{
"alphanum_fraction": 0.438172043,
"avg_line_length": 25.2203389831,
"ext": "agda",
"hexsha": "00108afab007036889910cc681c15a7ebce22f2e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-12-13T04:50:46.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-12-13T04:50:46.000Z",
"max_forks_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Brethland/LEARNING-STUFF",
"max_forks_repo_path": "Agda/Ag03.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Brethland/LEARNING-STUFF",
"max_issues_repo_path": "Agda/Ag03.agda",
"max_line_length": 81,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Brethland/LEARNING-STUFF",
"max_stars_repo_path": "Agda/Ag03.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-11T10:35:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-02-03T05:05:52.000Z",
"num_tokens": 2403,
"size": 4464
}
|
------------------------------------------------------------------------------
-- Simple example of a nested recursive function
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- From: Ana Bove and Venanzio Capretta. Nested general recursion and
-- partiality in type theory. Vol. 2152 of LNCS. 2001.
module FOT.FOTC.Program.Nest.NestConditional where
open import FOTC.Base
------------------------------------------------------------------------------
-- The nest function.
postulate
nest : D → D
nest-eq : ∀ n → nest n ≡ (if (iszero₁ n)
then zero
else (nest (nest (pred₁ n))))
{-# ATP axiom nest-eq #-}
|
{
"alphanum_fraction": 0.4170454545,
"avg_line_length": 35.2,
"ext": "agda",
"hexsha": "604526ab6eba641cc7a1d045e1a80449d5326f76",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/Program/Nest/NestConditional.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/Program/Nest/NestConditional.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/Program/Nest/NestConditional.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 165,
"size": 880
}
|
{-# OPTIONS --guardedness-preserving-type-constructors #-}
module Issue602 where
infix 1000 ♯_
postulate
∞ : ∀ {a} (A : Set a) → Set a
♯_ : ∀ {a} {A : Set a} → A → ∞ A
♭ : ∀ {a} {A : Set a} → ∞ A → A
{-# BUILTIN INFINITY ∞ #-}
{-# BUILTIN SHARP ♯_ #-}
{-# BUILTIN FLAT ♭ #-}
data CoNat : Set0 where
z : CoNat
s : ∞ CoNat → CoNat
record A : Set2 where
field
f : Set1
record B (a : ∞ A) : Set1 where
field
f : A.f (♭ a)
postulate
a : A
e : CoNat → A
e z = a
e (s n) = record
{ f = B (♯ e (♭ n))
}
|
{
"alphanum_fraction": 0.4981549815,
"avg_line_length": 15.4857142857,
"ext": "agda",
"hexsha": "4c889dae58ed0477d09fa9a321a6119de92c43b1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Issue602.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Issue602.agda",
"max_line_length": 58,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/Issue602.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 232,
"size": 542
}
|
{-# OPTIONS --safe --without-K #-}
module Data.Fin.Subset.Dec where
open import Data.Nat as ℕ
open import Data.Fin as Fin
open import Data.Fin.Subset
open import Relation.Nullary
open import Relation.Unary renaming (Decidable to Decidable₁) using ()
open import Function using (_∘_)
open import Data.Vec using ([]; _∷_)
subset : ∀ {n}{p} {P : Fin n → Set p} → Decidable₁ P → Subset n
subset {zero} dec = []
subset {suc n} dec with dec (# 0)
subset {suc n} dec | yes p0 = inside ∷ subset (dec ∘ Fin.suc)
subset {suc n} dec | no ¬p0 = outside ∷ subset (dec ∘ Fin.suc)
|
{
"alphanum_fraction": 0.6788830716,
"avg_line_length": 31.8333333333,
"ext": "agda",
"hexsha": "9bd8e3010dd8e36a30f6901dcc74b5fdb6bc5301",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "abacd166f63582b7395d9cc10b6323c0f69649e5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "tizmd/agda-finitary",
"max_forks_repo_path": "src/Data/Fin/Subset/Dec.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "abacd166f63582b7395d9cc10b6323c0f69649e5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "tizmd/agda-finitary",
"max_issues_repo_path": "src/Data/Fin/Subset/Dec.agda",
"max_line_length": 70,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "abacd166f63582b7395d9cc10b6323c0f69649e5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "tizmd/agda-finitary",
"max_stars_repo_path": "src/Data/Fin/Subset/Dec.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 179,
"size": 573
}
|
------------------------------------------------------------------------------
-- Well-founded induction on natural numbers
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- Adapted from
-- http://www.iis.sinica.edu.tw/~scm/2008/well-founded-recursion-and-accessibility/
-- and the Agda standard library 0.8.1.
module FOT.FOTC.Data.Nat.Induction.Acc.WF-I where
open import FOTC.Base
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.Type
------------------------------------------------------------------------------
-- The accessibility predicate: x is accessible if everything which is
-- smaller than x is also accessible (inductively).
data AccLT : D → Set where
accLT : ∀ {x} → N x → (∀ {y} → N y → y < x → AccLT y) → AccLT x
accFoldLT : {P : D → Set} →
(∀ {x} → N x → (∀ {y} → N y → y < x → P y) → P x) →
∀ {x} → N x → AccLT x → P x
accFoldLT f Nx (accLT _ h) = f Nx (λ Ny y<x → accFoldLT f Ny (h Ny y<x))
-- The accessibility predicate encodes what it means to be
-- well-founded; if all elements are accessible, then LT is
-- well-founded.
WellFoundedLT : Set
WellFoundedLT = ∀ {x} → N x → AccLT x
WellFoundedInductionLT : {P : D → Set} →
WellFoundedLT →
(∀ {x} → N x → (∀ {y} → N y → y < x → P y) → P x) →
∀ {x} → N x → P x
WellFoundedInductionLT wf f Nx = accFoldLT f Nx (wf Nx)
|
{
"alphanum_fraction": 0.4922696351,
"avg_line_length": 37.6046511628,
"ext": "agda",
"hexsha": "40967f0b096c341a75b1afb54a6e11dd5a8169e2",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/Data/Nat/Induction/Acc/WF-I.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/Data/Nat/Induction/Acc/WF-I.agda",
"max_line_length": 83,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/Data/Nat/Induction/Acc/WF-I.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 431,
"size": 1617
}
|
module vector-test-ctors where
open import bool
open import list
open import vector
----------------------------------------------------------------------
-- syntax
----------------------------------------------------------------------
test-vector : 𝕃 (𝕍 𝔹 2)
test-vector = (ff :: tt :: []) :: (tt :: ff :: []) :: (tt :: ff :: []) :: []
|
{
"alphanum_fraction": 0.3265306122,
"avg_line_length": 21.4375,
"ext": "agda",
"hexsha": "869e80f067fd0bbebd8a364ec698c576fee3d4c5",
"lang": "Agda",
"max_forks_count": 17,
"max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z",
"max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rfindler/ial",
"max_forks_repo_path": "vector-test-ctors.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rfindler/ial",
"max_issues_repo_path": "vector-test-ctors.agda",
"max_line_length": 76,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rfindler/ial",
"max_stars_repo_path": "vector-test-ctors.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z",
"num_tokens": 67,
"size": 343
}
|
open import Relation.Binary.PropositionalEquality using ( refl )
open import Web.Semantic.DL.Category.Object using ( Object )
open import Web.Semantic.DL.Category.Morphism using ( _≣_ )
open import Web.Semantic.DL.Category.Composition using ( _∙_ )
open import Web.Semantic.DL.Category.Tensor using ( _⊗_ ; _⟨⊗⟩_ )
open import Web.Semantic.DL.Category.Unit using ( I )
open import Web.Semantic.DL.Category.Wiring using
( identity ; symm ; assoc ; assoc⁻¹ ; unit₁ ; unit₁⁻¹ ; unit₂ ; unit₂⁻¹ )
open import Web.Semantic.DL.Category.Properties.Wiring using
( rewriting ; rewrite-compose ; rewrite-tensor
; rewrite-identity ; rewrite-symm ; rewrite-assoc ; rewrite-assoc⁻¹
; rewrite-unit₁ ; rewrite-unit₁⁻¹ ; rewrite-unit₂ ; rewrite-unit₂⁻¹ )
open import Web.Semantic.DL.Signature using ( Signature )
open import Web.Semantic.DL.TBox using ( TBox )
open import Web.Semantic.Util using ( _≡⊎≡_ )
module Web.Semantic.DL.Category.Properties.Tensor.Isomorphisms
{Σ : Signature} {S T : TBox Σ} where
symm-iso : ∀ (A₁ A₂ : Object S T) →
(symm A₁ A₂ ∙ symm A₂ A₁ ≣ identity (A₁ ⊗ A₂))
symm-iso A₁ A₂ =
rewriting
(rewrite-compose (rewrite-symm A₁ A₂) (rewrite-symm A₂ A₁))
((λ x → refl) ≡⊎≡ (λ x → refl))
(rewrite-identity (A₁ ⊗ A₂))
assoc-iso : ∀ (A₁ A₂ A₃ : Object S T) →
(assoc A₁ A₂ A₃ ∙ assoc⁻¹ A₁ A₂ A₃ ≣ identity ((A₁ ⊗ A₂) ⊗ A₃))
assoc-iso A₁ A₂ A₃ = rewriting
(rewrite-compose (rewrite-assoc A₁ A₂ A₃) (rewrite-assoc⁻¹ A₁ A₂ A₃))
(((λ x → refl) ≡⊎≡ (λ x → refl)) ≡⊎≡ (λ x → refl))
(rewrite-identity ((A₁ ⊗ A₂) ⊗ A₃))
assoc⁻¹-iso : ∀ (A₁ A₂ A₃ : Object S T) →
(assoc⁻¹ A₁ A₂ A₃ ∙ assoc A₁ A₂ A₃ ≣ identity (A₁ ⊗ (A₂ ⊗ A₃)))
assoc⁻¹-iso A₁ A₂ A₃ = rewriting
(rewrite-compose (rewrite-assoc⁻¹ A₁ A₂ A₃) (rewrite-assoc A₁ A₂ A₃))
((λ x → refl) ≡⊎≡ ((λ x → refl) ≡⊎≡ (λ x → refl)))
(rewrite-identity (A₁ ⊗ (A₂ ⊗ A₃)))
unit₁-iso : ∀ (A : Object S T) →
(unit₁ A ∙ unit₁⁻¹ A ≣ identity (I ⊗ A))
unit₁-iso A = rewriting
(rewrite-compose (rewrite-unit₁ A) (rewrite-unit₁⁻¹ A))
((λ ()) ≡⊎≡ (λ x → refl))
(rewrite-identity (I ⊗ A))
unit₁⁻¹-iso : ∀ (A : Object S T) →
(unit₁⁻¹ A ∙ unit₁ A ≣ identity A)
unit₁⁻¹-iso A = rewriting
(rewrite-compose (rewrite-unit₁⁻¹ A) (rewrite-unit₁ A))
(λ x → refl)
(rewrite-identity A)
unit₂-iso : ∀ (A : Object S T) →
(unit₂ A ∙ unit₂⁻¹ A ≣ identity (A ⊗ I))
unit₂-iso A = rewriting
(rewrite-compose (rewrite-unit₂ A) (rewrite-unit₂⁻¹ A))
((λ x → refl) ≡⊎≡ (λ ()))
(rewrite-identity (A ⊗ I))
unit₂⁻¹-iso : ∀ (A : Object S T) →
(unit₂⁻¹ A ∙ unit₂ A ≣ identity A)
unit₂⁻¹-iso A = rewriting
(rewrite-compose (rewrite-unit₂⁻¹ A) (rewrite-unit₂ A))
(λ x → refl)
(rewrite-identity A)
|
{
"alphanum_fraction": 0.6425120773,
"avg_line_length": 39,
"ext": "agda",
"hexsha": "b5e23b3871327e47c209466fad7d215479307dfc",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z",
"max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-web-semantic",
"max_forks_repo_path": "src/Web/Semantic/DL/Category/Properties/Tensor/Isomorphisms.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-web-semantic",
"max_issues_repo_path": "src/Web/Semantic/DL/Category/Properties/Tensor/Isomorphisms.agda",
"max_line_length": 75,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-web-semantic",
"max_stars_repo_path": "src/Web/Semantic/DL/Category/Properties/Tensor/Isomorphisms.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z",
"num_tokens": 1081,
"size": 2691
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
-- Equalizers in a Category C
module Categories.Diagram.Equalizer {o ℓ e} (C : Category o ℓ e) where
open Category C
open HomReasoning
open import Level
open import Data.Product as Σ
open import Function using (_$_)
open import Categories.Morphism C
open import Categories.Morphism.Reasoning C
private
variable
A B X : Obj
h i j k : A ⇒ B
record Equalizer (f g : A ⇒ B) : Set (o ⊔ ℓ ⊔ e) where
field
{obj} : Obj
arr : obj ⇒ A
equality : f ∘ arr ≈ g ∘ arr
equalize : ∀ {h : X ⇒ A} → f ∘ h ≈ g ∘ h → X ⇒ obj
universal : ∀ {eq : f ∘ h ≈ g ∘ h} → h ≈ arr ∘ equalize eq
unique : ∀ {eq : f ∘ h ≈ g ∘ h} → h ≈ arr ∘ i → i ≈ equalize eq
unique′ : (eq eq′ : f ∘ h ≈ g ∘ h) → equalize eq ≈ equalize eq′
unique′ eq eq′ = unique universal
id-equalize : id ≈ equalize equality
id-equalize = unique (sym identityʳ)
equalize-resp-≈ : ∀ {eq : f ∘ h ≈ g ∘ h} {eq′ : f ∘ i ≈ g ∘ i} →
h ≈ i → equalize eq ≈ equalize eq′
equalize-resp-≈ {h = h} {i = i} {eq = eq} {eq′ = eq′} h≈i = unique $ begin
i ≈˘⟨ h≈i ⟩
h ≈⟨ universal ⟩
arr ∘ equalize eq ∎
equalize-resp-≈′ : (eq : f ∘ h ≈ g ∘ h) → (eq′ : f ∘ i ≈ g ∘ i) →
h ≈ i → j ≈ equalize eq → k ≈ equalize eq′ → j ≈ k
equalize-resp-≈′ {j = j} {k = k} eq eq′ h≈i eqj eqk = begin
j ≈⟨ eqj ⟩
equalize eq ≈⟨ equalize-resp-≈ h≈i ⟩
equalize eq′ ≈˘⟨ eqk ⟩
k ∎
equality-∘ : f ∘ arr ∘ h ≈ g ∘ arr ∘ h
equality-∘ {h = h} = begin
f ∘ arr ∘ h ≈⟨ pullˡ equality ⟩
(g ∘ arr) ∘ h ≈⟨ assoc ⟩
g ∘ arr ∘ h ∎
unique-diagram : arr ∘ h ≈ arr ∘ i → h ≈ i
unique-diagram {h = h} {i = i} eq = begin
h ≈⟨ unique (sym eq) ⟩
equalize (extendʳ equality) ≈˘⟨ unique refl ⟩
i ∎
Equalizer⇒Mono : (e : Equalizer h i) → Mono (Equalizer.arr e)
Equalizer⇒Mono e f g eq =
equalize-resp-≈′ equality-∘ equality-∘ eq (unique refl) (unique refl)
where open Equalizer e
|
{
"alphanum_fraction": 0.5228915663,
"avg_line_length": 30.5147058824,
"ext": "agda",
"hexsha": "cf4261fe6332a612b3a895f8788963f3bdbba8e5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Diagram/Equalizer.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Diagram/Equalizer.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Diagram/Equalizer.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 853,
"size": 2075
}
|
open import Everything
module Test.SubstitunctionPropId {𝔭} (𝔓 : Ø 𝔭) where
open Substitunction 𝔓
relpropid-Substitunction : ∀ {m n ℓ} {f : Substitunction m n} (P : LeftExtensionṖroperty ℓ Substitunction Proposextensequality m) (let P₀ = π₀ (π₀ P)) → P₀ f → P₀ (ε ∙ f)
relpropid-Substitunction P pf = hmap _ P pf
|
{
"alphanum_fraction": 0.7232704403,
"avg_line_length": 31.8,
"ext": "agda",
"hexsha": "d003353582228dec49108bd7bf0dd769c8009935",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Test/SubstitunctionPropId.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Test/SubstitunctionPropId.agda",
"max_line_length": 171,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Test/SubstitunctionPropId.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 123,
"size": 318
}
|
module UniDB.Morph.Depth where
open import UniDB.Spec
open import Data.Sum
--------------------------------------------------------------------------------
data Depth (Ξ : MOR) : MOR where
depth : {γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) (δ : Dom) →
Depth Ξ (γ₁ ∪ δ) (γ₂ ∪ δ)
Fin-∪ : {γ₁ : Dom} (γ₂ δ : Dom) (i : Ix (γ₁ ∪ δ)) → Ix γ₁ ⊎ Ix (γ₂ ∪ δ)
Fin-∪ γ₂ zero i = inj₁ i
Fin-∪ γ₂ (suc δ) zero = inj₂ zero
Fin-∪ γ₂ (suc δ) (suc i) = map id suc (Fin-∪ γ₂ δ i)
instance
iLkDepth :
{T : STX} {{vrT : Vr T}} {{wkT : Wk T}}
{Ξ : MOR} {{lkTΞ : Lk T Ξ}} →
Lk T (Depth Ξ)
lk {{iLkDepth {T} {Ξ}}} (depth {γ₁} {γ₂} ξ δ) i with Fin-∪ γ₂ δ i
... | inj₁ j = wk δ (lk {T} {Ξ} ξ j)
... | inj₂ j = vr {T = T} j
iUpDepth : {Ξ : MOR} → Up (Depth Ξ)
_↑₁ {{iUpDepth}} (depth ξ δ) = depth ξ (suc δ)
_↑_ {{iUpDepth {Ξ}}} ξ 0 = ξ
_↑_ {{iUpDepth {Ξ}}} ξ (suc δ⁺) = ξ ↑ δ⁺ ↑₁
↑-zero {{iUpDepth}} ξ = refl
↑-suc {{iUpDepth {Ξ}}} ξ δ⁺ = refl
iWkmDepth : {Ξ : MOR} {{wkmΞ : Wkm Ξ}} → Wkm (Depth Ξ)
wkm {{iWkmDepth {Ξ}}} δ = depth (wkm {Ξ} δ) 0
iLkWkmDepth :
{T : STX} {{vrT : Vr T}} {{wkT : Wk T}} {{wkVrT : WkVr T}}
{Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{wkmΞ : Wkm Ξ}} {{lkWkmΞ : LkWkm T Ξ}} →
LkWkm T (Depth Ξ)
lk-wkm {{iLkWkmDepth {T} {Ξ}}} δ i = begin
wk 0 (lk {T} {Ξ} (wkm δ) i) ≡⟨ wk-zero (lk {T} {Ξ} (wkm δ) i) ⟩
lk {T} {Ξ} (wkm δ) i ≡⟨ lk-wkm {T} {Ξ} δ i ⟩
vr (wk δ i) ∎
iBetaDepth : {T : STX} {Ξ : MOR} {{betaTΞ : Beta T Ξ}} → Beta T (Depth Ξ)
beta {{iBetaDepth {T} {Ξ}}} t = depth (beta {T} {Ξ} t) 0
iLkUpDepth :
{T : STX} {{vrT : Vr T}} {{wkT : Wk T}} {{wkVrT : WkVr T}}
{Ξ : MOR} {{lkTΞ : Lk T Ξ}} →
LkUp T (Depth Ξ)
lk-↑₁-zero {{iLkUpDepth {T} {Ξ}}} (depth ξ δ) = refl
lk-↑₁-suc {{iLkUpDepth {T} {Ξ}}} (depth {γ₁} {γ₂} ξ δ) i with Fin-∪ γ₂ δ i
... | inj₁ j = wk-suc {T} δ (lk {T} {Ξ} ξ j)
... | inj₂ j = sym (wk₁-vr {T} j)
--------------------------------------------------------------------------------
|
{
"alphanum_fraction": 0.4411177645,
"avg_line_length": 33.9661016949,
"ext": "agda",
"hexsha": "6f89efcf7cdac97feca5e5a77d135c133d77a080",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "skeuchel/unidb-agda",
"max_forks_repo_path": "UniDB/Morph/Depth.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "skeuchel/unidb-agda",
"max_issues_repo_path": "UniDB/Morph/Depth.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "skeuchel/unidb-agda",
"max_stars_repo_path": "UniDB/Morph/Depth.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 987,
"size": 2004
}
|
{- NEW TRANSLATION STUFF: same thing but interpret source nat as ♭nat-}
open import Preliminaries
open import Source
open import Pilot
module Translation-New where
mutual
⟨⟨_⟩⟩ : Tp → CTp
⟨⟨ unit ⟩⟩ = unit
⟨⟨ nat ⟩⟩ = nat
⟨⟨ susp A ⟩⟩ = || A ||
⟨⟨ A ->s B ⟩⟩ = ⟨⟨ A ⟩⟩ ->c || B ||
⟨⟨ A ×s B ⟩⟩ = ⟨⟨ A ⟩⟩ ×c ⟨⟨ B ⟩⟩
⟨⟨ list A ⟩⟩ = list ⟨⟨ A ⟩⟩
⟨⟨ bool ⟩⟩ = bool
||_|| : Tp → CTp
|| τ || = C ×c ⟨⟨ τ ⟩⟩
⟨⟨_⟩⟩c : Source.Ctx → Pilot.Ctx
⟨⟨ [] ⟩⟩c = []
⟨⟨ x :: Γ ⟩⟩c = ⟨⟨ x ⟩⟩ :: ⟨⟨ Γ ⟩⟩c
interp-Cost : ∀{Γ} → Cost → Γ Pilot.|- C
interp-Cost 0c = 0C
interp-Cost 1c = 1C
interp-Cost (m +c n) = plusC (interp-Cost m) (interp-Cost n)
lookup : ∀{Γ τ} → τ Source.∈ Γ → ⟨⟨ τ ⟩⟩ Pilot.∈ ⟨⟨ Γ ⟩⟩c
lookup i0 = i0
lookup (iS x) = iS (lookup x)
-- translation from source expressions to complexity expressions
||_||e : ∀{Γ τ} → Γ Source.|- τ → ⟨⟨ Γ ⟩⟩c Pilot.|- || τ ||
|| unit ||e = prod 0C unit
|| var x ||e = prod 0C (var (lookup x))
|| z ||e = prod 0C z
|| suc e ||e = prod (l-proj (|| e ||e)) (s (r-proj (|| e ||e)))
|| rec e e0 e1 ||e = (l-proj (|| e ||e)) +C (rec (r-proj || e ||e) (1C +C || e0 ||e) (1C +C || e1 ||e))
|| lam e ||e = prod 0C (lam || e ||e)
|| app e1 e2 ||e = prod (plusC (plusC (l-proj (|| e1 ||e)) (l-proj (|| e2 ||e))) (l-proj (app (r-proj (|| e1 ||e)) (r-proj (|| e2 ||e)))))
(r-proj (app (r-proj (|| e1 ||e)) (r-proj (|| e2 ||e))))
|| prod e1 e2 ||e = prod (plusC (l-proj (|| e1 ||e)) (l-proj (|| e2 ||e))) (prod (r-proj (|| e1 ||e)) (r-proj (|| e2 ||e)))
|| delay e ||e = prod 0C (|| e ||e)
|| force e ||e = prod (plusC (l-proj (|| e ||e)) (l-proj (r-proj || e ||e))) (r-proj (r-proj (|| e ||e)))
|| split e0 e1 ||e = prod (plusC (l-proj (|| e0 ||e)) (l-proj E1)) (r-proj E1)
where E1 = (Pilot.subst || e1 ||e (Pilot.lem4 (l-proj (r-proj || e0 ||e)) (r-proj (r-proj || e0 ||e))))
|| nil ||e = prod 0C nil
|| e ::s e₁ ||e = prod (plusC (l-proj || e ||e) (l-proj || e₁ ||e)) ((r-proj || e ||e) ::c (r-proj || e₁ ||e))
|| listrec e e₁ e₂ ||e = l-proj || e ||e +C listrec (r-proj || e ||e) (1C +C || e₁ ||e) (1C +C || e₂ ||e)
|| true ||e = prod 0C true
|| false ||e = prod 0C false
|
{
"alphanum_fraction": 0.4517720951,
"avg_line_length": 40.5272727273,
"ext": "agda",
"hexsha": "ffa99903d57f6299a55ff39b2c82121eb668969f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "benhuds/Agda",
"max_forks_repo_path": "complexity/Translation-New.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e",
"max_issues_repo_issues_event_max_datetime": "2020-05-12T00:32:45.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-03-23T08:39:04.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "benhuds/Agda",
"max_issues_repo_path": "complexity/Translation-New.agda",
"max_line_length": 140,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "benhuds/Agda",
"max_stars_repo_path": "complexity/Translation-New.agda",
"max_stars_repo_stars_event_max_datetime": "2019-08-08T12:27:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-04-26T20:22:22.000Z",
"num_tokens": 1028,
"size": 2229
}
|
-- Andreas, 2020-03-27, re #3684
record R : Set₁ where
_ : R
_ = record { f = Set; f = Set }
-- Should complain about alien fields rather than duplicate fields
-- The record type R does not have the fields f, f
-- when checking that the expression record { f = Set ; f = Set } has type R
|
{
"alphanum_fraction": 0.6712328767,
"avg_line_length": 24.3333333333,
"ext": "agda",
"hexsha": "afe06b2bb4920c45f412ee972fb6d9c806032dd2",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Succeed/Issue3684-alien-duplicate-fields.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue3684-alien-duplicate-fields.agda",
"max_line_length": 76,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue3684-alien-duplicate-fields.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 84,
"size": 292
}
|
------------------------------------------------------------------------------
-- Agda internal syntax
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- Tested with Agda development version on 25 February 2013.
module InternalSyntax where
------------------------------------------------------------------------------
-- Sets
postulate A B C : Set
-- El {getSort = Type (Max [ClosedLevel 1]), unEl = Sort (Type (Max []))}
postulate A₁ : Set₁
-- El {getSort = Type (Max [ClosedLevel 2]), unEl = Sort (Type (Max [ClosedLevel 1]))}
------------------------------------------------------------------------------
-- The term is Def
postulate def : A
-- El {getSort = Type (Max []), unEl = Def InternalSyntax.A []}
------------------------------------------------------------------------------
-- The term is Pi
postulate fun₁ : A → B
-- El {getSort = Type (Max []),
-- unEl = Pi []r(El {getSort = Type (Max []), unEl = Def InternalSyntax.A []})
-- (NoAbs "_" El {getSort = Type (Max []), unEl = Def InternalSyntax.B []})}
postulate fun₂ : A → B → C
-- El {getSort = Type (Max []),
-- unEl = Pi []r(El {getSort = Type (Max []), unEl = Def InternalSyntax.A []})
-- (NoAbs "_" El {getSort = Type (Max []),
-- unEl = Pi []r(El {getSort = Type (Max []), unEl = Def InternalSyntax.B []})
-- (NoAbs "_" El {getSort = Type (Max []), unEl = Def InternalSyntax.C []})})}
postulate fun₃ : (a : A) → B
-- El (Type (Max []))
-- (Pi r(El (Type (Max []))
-- (Def InternalSyntax.A []))
-- (Abs "a" El (Type (Max []))
-- (Def InternalSyntax.B [])))
-- El {getSort = Type (Max []),
-- unEl = Pi []r(El {getSort = Type (Max []), unEl = Def InternalSyntax.A []})
-- (NoAbs "a" El {getSort = Type (Max []), unEl = Def InternalSyntax.B []})}
postulate P : A → Set
-- El {getSort = Type (Max [ClosedLevel 1]),
-- unEl = Pi []r(El {getSort = Type (Max []), unEl = Def InternalSyntax.A []})
-- (NoAbs "_" El {getSort = Type (Max [ClosedLevel 1]), unEl = Sort (Type (Max []))})}
postulate fun₅ : (a : A) → P a
-- El {getSort = Type (Max []),
-- unEl = Pi []r(El {getSort = Type (Max []), unEl = Def InternalSyntax.A []})
-- (Abs "a" El {getSort = Type (Max []), unEl = Def InternalSyntax.P [[]r(Var 0 [])]})}
|
{
"alphanum_fraction": 0.4429477021,
"avg_line_length": 35.5492957746,
"ext": "agda",
"hexsha": "b5e48ac9203e2406c6d9931b5eca1ca42fd7105d",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "notes/InternalSyntax.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "notes/InternalSyntax.agda",
"max_line_length": 105,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "notes/InternalSyntax.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 667,
"size": 2524
}
|
module Graph where
import Lvl
open import Data.Tuple as Tuple using (_⨯_ ; _,_)
open import Functional
open import Data.List
open import Logic.Propositional{Lvl.𝟎}
open import Logic.Predicate{Lvl.𝟎}{Lvl.𝟎}
open import Relator.Equals{Lvl.𝟎}
open import Data.List.Relation.Membership{Lvl.𝟎} using (_∈_)
-- EdgeClass(V)(E) means that E is a type which can represent an edge between vertices of type V.
record EdgeClass (V : Set) (Self : Set) : Set where
constructor edgeInstance
field
from : Self → V
to : Self → V
_withVertices_ : Self → (V ⨯ V) → Self
module Edge where
open EdgeClass ⦃ ... ⦄ public
instance
EdgeInstance-Tuple : ∀{V} → EdgeClass(V)(V ⨯ V)
Edge.from ⦃ EdgeInstance-Tuple ⦄ (v₁ , v₂) = v₁
Edge.to ⦃ EdgeInstance-Tuple ⦄ (v₁ , v₂) = v₂
Edge._withVertices_ ⦃ EdgeInstance-Tuple ⦄ (v₁ , v₂) (w₁ , w₂) = (w₁ , w₂)
record Graph (V : Set) (E : Set) ⦃ _ : EdgeClass(V)(E) ⦄ : Set where
constructor graph
field
edges : List(E)
-- Propositions
HasEdge[_⟶_] : V → V → Set
HasEdge[_⟶_](v₁)(v₂) = ∃(edge ↦ (edge ∈ edges)∧(Edge.from(edge) ≡ v₁)∧(Edge.to(edge) ≡ v₂))
HasEdge[_⟵_] : V → V → Set
HasEdge[_⟵_](v₁)(v₂) = HasEdge[_⟶_](v₂)(v₁)
HasEdge[_⟷_] : V → V → Set
HasEdge[_⟷_](v₁)(v₂) = HasEdge[_⟵_](v₁)(v₂) ∧ HasEdge[_⟶_](v₁)(v₂)
data Path : V → V → Set where
PathIntro : ∀{v₁ v₂ : V} → HasEdge[ v₁ ⟶ v₂ ] → Path(v₁)(v₂)
PathTransitivity : ∀{v₁ v₂ v₃ : V} → Path(v₁)(v₂) → Path(v₂)(v₃) → Path(v₁)(v₃)
Connected : V → V → Set
Connected(v₁)(v₂) = Path(v₁)(v₂)
Disconnected : V → V → Set
Disconnected(v₁)(v₂) = ¬(Connected(v₁)(v₂))
-- Constructions
mapVertices : ∀{V₂} → ⦃ _ : EdgeClass(V₂)(E) ⦄ → (V → V₂) → Graph(V₂)(E)
mapVertices(f) = record{edges = map(edge ↦ (edge Edge.withVertices(f(Edge.from(edge)) , f(Edge.to(edge))))) (edges)}
-- Boolean testing
-- with-edge
-- without-edge
-- has-edge
-- is-connected
-- is-disconnected
|
{
"alphanum_fraction": 0.6059386009,
"avg_line_length": 30.5692307692,
"ext": "agda",
"hexsha": "f3ef25f4368f0104341d40d7eadad0f4b09097c7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "old/Graph.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "old/Graph.agda",
"max_line_length": 118,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "old/Graph.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 775,
"size": 1987
}
|
-- Andreas, 2017-03-27 fixing regression #2472
-- Auto should be applicable also outside function clauses
-- {-# OPTIONS -v auto:100 #-}
open import Agda.Primitive
test : Set {!!}
test = Set
-- Auto should succeed on this goal
|
{
"alphanum_fraction": 0.6982758621,
"avg_line_length": 17.8461538462,
"ext": "agda",
"hexsha": "b72c1681efc4cc5337f9f3f93fcc311072801c3e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue2472.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue2472.agda",
"max_line_length": 58,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue2472.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 60,
"size": 232
}
|
module TermUnification where
open import OscarPrelude
open import Delay
open import VariableName
open import FunctionName
open import Arity
open import Vector
open import Term
mutual
substituteTerm⇑ : VariableName → Term → ∀ {i} → Term → Delay i Term
substituteTerm⇑ 𝑥ₛ τₛ τ@(variable 𝑥) = now $ ifYes 𝑥ₛ ≟ 𝑥 then τₛ else τ
substituteTerm⇑ 𝑥ₛ τₛ (function 𝑓 τs) =
substituteTerms⇑ 𝑥ₛ τₛ τs >>= λ τsₛ →
now $ function 𝑓 τsₛ
substituteTerms⇑ : VariableName → Term → ∀ {i} → Terms → Delay i Terms
substituteTerms⇑ 𝑥ₛ τₛ ⟨ ⟨ [] ⟩ ⟩ = now ⟨ ⟨ [] ⟩ ⟩
substituteTerms⇑ 𝑥ₛ τₛ ⟨ ⟨ τ ∷ τs ⟩ ⟩ =
let τs = substituteTerms⇑ 𝑥ₛ τₛ ⟨ ⟨ τs ⟩ ⟩
τ = substituteTerm⇑ 𝑥ₛ τₛ τ in
τs >>= λ { ⟨ ⟨ τs ⟩ ⟩ →
τ >>= λ { τ →
now $ ⟨ ⟨ τ ∷ τs ⟩ ⟩ } }
substituteTerms⇓ : (𝑥ₛ : VariableName) → (τₛ : Term) → (τs : Terms) → substituteTerms⇑ 𝑥ₛ τₛ τs ⇓
substituteTerms⇓ 𝑥ₛ τₛ ⟨ ⟨ [] ⟩ ⟩ = _ , now⇓
substituteTerms⇓ 𝑥ₛ τₛ ⟨ ⟨ (variable 𝑥) ∷ τs ⟩ ⟩ = _ , substituteTerms⇓ 𝑥ₛ τₛ ⟨ ⟨ τs ⟩ ⟩ ⇓>>=⇓ now⇓
substituteTerms⇓ 𝑥ₛ τₛ ⟨ ⟨ (function 𝑓 τs₁) ∷ τs ⟩ ⟩ = _ , substituteTerms⇓ 𝑥ₛ τₛ ⟨ ⟨ τs ⟩ ⟩ ⇓>>=⇓ ((substituteTerms⇓ 𝑥ₛ τₛ τs₁ ⇓>>=⇓ now⇓) >>=⇓ now⇓)
substituteTerm⇓ : (𝑥ₛ : VariableName) → (τₛ : Term) → (τ : Term) → substituteTerm⇑ 𝑥ₛ τₛ τ ⇓
substituteTerm⇓ 𝑥ₛ τₛ (variable 𝑥) = _ , now⇓
substituteTerm⇓ 𝑥ₛ τₛ (function 𝑓 τs) = _ , substituteTerms⇓ 𝑥ₛ τₛ τs ⇓>>=⇓ now⇓
substitute : VariableName → Term → Term → Term
substitute 𝑥ₛ τₛ τ = fst $ substituteTerm⇓ 𝑥ₛ τₛ τ
data AListOfSubstitutions : Set
where
[] : AListOfSubstitutions
_∷_ : VariableName × Term → AListOfSubstitutions → AListOfSubstitutions
substituteA : AListOfSubstitutions → Term → Term
substituteA [] τ = τ
substituteA ((𝑥ₛ , τₛ) ∷ as) τ = substituteA as (substitute 𝑥ₛ τₛ τ)
record Unifier (τ₁ τ₂ : Term) : Set
where
field
u₁ u₂ : AListOfSubstitutions
unifier-law : substituteA u₁ τ₁ ≡ substituteA u₂ τ₂
unify? : (τ₁ τ₂ : Term) → Dec $ Unifier τ₁ τ₂
unify? (variable x) (variable x₁) = {!!}
unify? (variable x) (function x₁ x₂) = {!!}
unify? (function x x₁) (variable x₂) = {!!}
unify? (function 𝑓₁ x₁) (function 𝑓₂ x₃) with 𝑓₁ ≟ 𝑓₂
unify? (function 𝑓₁ x₁) (function .𝑓₁ x₃) | yes refl = {!!}
unify? (function 𝑓₁ x₁) (function 𝑓₂ x₃) | no 𝑓₁≢𝑓₂ = no (λ { record { u₁ = u₁ ; u₂ = u₂ ; unifier-law = unifier-law } → {!!}})
|
{
"alphanum_fraction": 0.6308551783,
"avg_line_length": 37.5322580645,
"ext": "agda",
"hexsha": "75eaf4f30623bdeababbc53e6cb4289d0637c81c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/TermUnification.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/TermUnification.agda",
"max_line_length": 150,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/TermUnification.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1098,
"size": 2327
}
|
{-
Agda Implementors' Meeting VI
Göteborg
May 24 - 30, 2007
Hello Agda!
Ulf Norell
-}
-- Let's have a closer look at the module system
module Modules where
{-
Importing and opening modules
-}
-- You can import a module defined in a different file.
import Naturals
-- This will bring the module into scope and allows you to
-- access its contents using qualified names.
plusTwo : Naturals.Nat -> Naturals.Nat
plusTwo n = Naturals._+_ n 2
-- To bring everything from a module into scope you can open
-- the module.
open Naturals
z : Nat
z = zero
-- There's also a short-hand to import and open at the same time
open import Bool
_&&_ : Bool -> Bool -> Bool
x && y = if x then y else false
-- Sometimes it's nice to be able to control what is brought
-- into scope when you open a module. There are three modifiers
-- that affect this: using, hiding and renaming.
module DifferentWaysOfOpeningNat where
-- nothing but Nat
open Naturals using (Nat)
-- everything but zero
open Naturals hiding (zero)
-- everything, but zero and suc under different names
open Naturals renaming (zero to ZZ; suc to S_S)
two : Nat
two = S S ZZ S S
-- you can combine using or hiding with renaming, but not using
-- with hiding (for obvious reasons).
-- To re-export something opened use the public modifier.
module A where
open Naturals public using (Nat)
N = A.Nat -- now Nat is a visible name in module A
{-
Parameterised modules
-}
-- A very useful feature is parameterised modules.
data Vec (A : Set) : Nat -> Set where
[] : Vec A 0
_::_ : {n : Nat} -> A -> Vec A n -> Vec A (suc n)
infixr 40 _::_
module Sort {A : Set}(_≤_ : A -> A -> Bool) where
insert : {n : Nat} -> A -> Vec A n -> Vec A (suc n)
insert x [] = x :: []
insert x (y :: ys) = if x ≤ y
then x :: y :: ys
else y :: insert x ys
sort : {n : Nat} -> Vec A n -> Vec A n
sort [] = []
sort (x :: xs) = insert x (sort xs)
_≤_ : Nat -> Nat -> Bool
zero ≤ m = true
suc n ≤ zero = false
suc n ≤ suc m = n ≤ m
-- When used directly, functions from parameterised modules
-- take the parameters as extra arguments.
test = Sort.sort _≤_ (6 :: 2 :: 0 :: 4 :: [])
-- But, you can also apply the entire module to its arguments.
-- Let's open the new module while we're at it.
open module SortNat = Sort _≤_
test' = sort (3 :: 2 :: 4 :: 0 :: [])
{-
Local definitions
-}
data _==_ {A : Set}(x : A) : A -> Set where
refl : x == x
subst : {A : Set}(C : A -> Set){x y : A} -> x == y -> C x -> C y
subst C refl cx = cx
cong : {A B : Set}(f : A -> B){x y : A} -> x == y -> f x == f y
cong f refl = refl
lem₁ : (n : Nat) -> n + 0 == n
lem₁ zero = refl
lem₁ (suc n) = cong suc (lem₁ n)
lem₂ : (n m : Nat) -> n + suc m == suc n + m
lem₂ zero m = refl
lem₂ (suc n) m = cong suc (lem₂ n m)
-- You can define things locally to a function clause
reverse : {A : Set}{n : Nat} -> Vec A n -> Vec A n
reverse {A} = \xs -> subst (Vec A) (lem₁ _) (rev xs [])
where
rev : {n m : Nat} -> Vec A n -> Vec A m -> Vec A (n + m)
rev [] ys = ys
rev (_::_ {n} x xs) ys = subst (Vec A) (lem₂ n _)
(rev xs (x :: ys))
-- More precisely, each clause can have one local module. In the
-- example above we didn't bother naming the module. We could've
-- said
reverse' : {A : Set}{n : Nat} -> Vec A n -> Vec A n
reverse' {A}{n} = \xs -> subst (Vec A) (lem₁ n) (rev xs [])
module Rev where
rev : {m p : Nat} -> Vec A m -> Vec A p -> Vec A (m + p)
rev [] ys = ys
rev (_::_ {n} x xs) ys = subst (Vec A) (lem₂ n _)
(rev xs (x :: ys))
-- Now we can access the local function from inside the module Rev.
-- Variables bound in the left hand side of the clause become
-- parameters to the module, so since the implicit n argument to
-- reverse' is bound implicitly there's an extra argument of type
-- Nat which isn't used.
test'' = Rev.rev {_}{0} (4 :: 3 :: 2 :: []) (5 :: 6 :: [])
{-
What's next?
-}
-- The final thing on the agenda is records.
-- Move on to: Records.agda
|
{
"alphanum_fraction": 0.5789349112,
"avg_line_length": 24.2816091954,
"ext": "agda",
"hexsha": "98d108a614a0f2773dab87f23c4a059415f0404e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/AIM6/HelloAgda/Modules.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/AIM6/HelloAgda/Modules.agda",
"max_line_length": 67,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/AIM6/HelloAgda/Modules.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 1280,
"size": 4225
}
|
{-# OPTIONS --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Properties.Transitivity {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Typed.Weakening renaming (wk to TWwk)
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Properties.Escape
open import Definition.LogicalRelation.ShapeView
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.Properties.Conversion
open import Tools.Product
open import Tools.Empty
import Tools.PropositionalEquality as PE
import Data.Nat as Nat
mutual
-- Helper function for transitivity of type equality using shape views.
transEqT : ∀ {Γ A B C r l l′ l″}
{[A] : Γ ⊩⟨ l ⟩ A ^ r} {[B] : Γ ⊩⟨ l′ ⟩ B ^ r} {[C] : Γ ⊩⟨ l″ ⟩ C ^ r}
→ ShapeView₃ Γ l l′ l″ A B C r r r [A] [B] [C]
→ Γ ⊩⟨ l ⟩ A ≡ B ^ r / [A]
→ Γ ⊩⟨ l′ ⟩ B ≡ C ^ r / [B]
→ Γ ⊩⟨ l ⟩ A ≡ C ^ r / [A]
transEqT (Uᵥ UA UB UC) A≡B B≡C =
let
U≡U : Univ (LogRel._⊩¹U_^_.r UA) (LogRel._⊩¹U_^_.l′ UA) PE.≡ Univ (LogRel._⊩¹U_^_.r UB) (LogRel._⊩¹U_^_.l′ UB)
U≡U = whrDet* (A≡B , Uₙ) ((_⊢_:⇒*:_^_.D (LogRel._⊩¹U_^_.d UB)) , Uₙ)
r≡r , l≡l = Univ-PE-injectivity U≡U
in
PE.subst₂ (λ X Y → _ ⊢ _ ⇒* Univ X Y ^ [ ! , _ ]) (PE.sym r≡r) (PE.sym l≡l) B≡C
transEqT (ℕᵥ D D′ D″) A≡B B≡C = B≡C
transEqT (Emptyᵥ D D′ D″) A≡B B≡C = B≡C
transEqT (ne (ne K [[ ⊢A , ⊢B , D ]] neK K≡K) (ne K₁ D₁ neK₁ _)
(ne K₂ D₂ neK₂ _))
(ne₌ M D′ neM K≡M) (ne₌ M₁ D″ neM₁ K≡M₁)
rewrite whrDet* (red D₁ , ne neK₁) (red D′ , ne neM)
| whrDet* (red D₂ , ne neK₂) (red D″ , ne neM₁) =
ne₌ M₁ D″ neM₁
(~-trans K≡M K≡M₁)
transEqT {Γ} {r = [ r , ι lΠ ]} {l = l} {l′ = l′} {l″ = l″}
(Πᵥ (Πᵣ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ rF₁ lF₁ lG₁ _ _ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁)
(Πᵣ rF₂ lF₂ lG₂ _ _ F₂ G₂ D₂ ⊢F₂ ⊢G₂ A≡A₂ [F]₂ [G]₂ G-ext₂))
(Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′])
(Π₌ F″ G″ D″ A≡B₁ [F≡F′]₁ [G≡G′]₁) =
let ΠF₁G₁≡ΠF′G′ = whrDet* (red D₁ , Πₙ) (D′ , Πₙ)
F₁≡F′ , rF₁≡rF′ , lF₁≡lF′ , G₁≡G′ , lG₁≡lG′ , _ = Π-PE-injectivity ΠF₁G₁≡ΠF′G′
F₂≡F″ , rF₂≡rF′ , lF₂≡lF′ , G₂≡G″ , lG₂≡lG″ , _ = Π-PE-injectivity (whrDet* (red D₂ , Πₙ) (D″ , Πₙ))
substLift {Δ} {l} {a} {r} ρ x = Δ ⊩⟨ l ⟩ wk (lift ρ) x [ a ] ^ r
[F′] : ∀ {ρ Δ} [ρ] ⊢Δ → Δ ⊩⟨ l′ ⟩ wk ρ F′ ^ [ rF₁ , ι lF₁ ]
[F′] {ρ} [ρ] ⊢Δ = PE.subst (λ x → _ ⊩⟨ _ ⟩ wk ρ x ^ _) F₁≡F′ ([F]₁ [ρ] ⊢Δ)
[F″] : ∀ {ρ} {Δ} [ρ] ⊢Δ → Δ ⊩⟨ l″ ⟩ wk ρ F″ ^ [ rF₂ , ι lF₂ ]
[F″] {ρ} [ρ] ⊢Δ = PE.subst (λ x → _ ⊩⟨ _ ⟩ wk ρ x ^ _) F₂≡F″ ([F]₂ [ρ] ⊢Δ)
[F′≡F″] : ∀ {ρ} {Δ} [ρ] ⊢Δ → Δ ⊩⟨ l′ ⟩ wk ρ F′ ≡ wk ρ F″ ^ [ rF₁ , ι lF₁ ] / [F′] [ρ] ⊢Δ
[F′≡F″] {ρ} [ρ] ⊢Δ = irrelevanceEq′ (PE.cong (wk ρ) F₁≡F′) PE.refl PE.refl
([F]₁ [ρ] ⊢Δ) ([F′] [ρ] ⊢Δ) ([F≡F′]₁ [ρ] ⊢Δ)
[G′] : ∀ {ρ Δ a} [ρ] ⊢Δ
→ Δ ⊩⟨ l′ ⟩ a ∷ wk ρ F′ ^ [ rF₁ , ι lF₁ ] / [F′] [ρ] ⊢Δ
→ Δ ⊩⟨ l′ ⟩ wk (lift ρ) G′ [ a ] ^ [ r , ι lG₁ ]
[G′] {ρ} [ρ] ⊢Δ [a] =
let [a′] = irrelevanceTerm′ (PE.cong (wk ρ) (PE.sym F₁≡F′)) PE.refl PE.refl
([F′] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [a]
in PE.subst (substLift ρ) G₁≡G′ ([G]₁ [ρ] ⊢Δ [a′])
[G″] : ∀ {ρ Δ a} [ρ] ⊢Δ
→ Δ ⊩⟨ l″ ⟩ a ∷ wk ρ F″ ^ [ rF₂ , ι lF₂ ] / [F″] [ρ] ⊢Δ
→ Δ ⊩⟨ l″ ⟩ wk (lift ρ) G″ [ a ] ^ [ r , ι lG₂ ]
[G″] {ρ} [ρ] ⊢Δ [a] =
let [a″] = irrelevanceTerm′ (PE.cong (wk ρ) (PE.sym F₂≡F″)) PE.refl PE.refl
([F″] [ρ] ⊢Δ) ([F]₂ [ρ] ⊢Δ) [a]
in PE.subst (substLift ρ) G₂≡G″ ([G]₂ [ρ] ⊢Δ [a″])
[G′≡G″] : ∀ {ρ Δ a} [ρ] ⊢Δ
([a] : Δ ⊩⟨ l′ ⟩ a ∷ wk ρ F′ ^ [ rF₁ , ι lF₁ ] / [F′] [ρ] ⊢Δ)
→ Δ ⊩⟨ l′ ⟩ wk (lift ρ) G′ [ a ]
≡ wk (lift ρ) G″ [ a ] ^ [ r , ι lG₁ ] / [G′] [ρ] ⊢Δ [a]
[G′≡G″] {ρ} [ρ] ⊢Δ [a′] =
let [a]₁ = irrelevanceTerm′ (PE.cong (wk ρ) (PE.sym F₁≡F′)) PE.refl PE.refl
([F′] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [a′]
in irrelevanceEq′ (PE.cong (λ x → wk (lift ρ) x [ _ ]) G₁≡G′) PE.refl PE.refl
([G]₁ [ρ] ⊢Δ [a]₁) ([G′] [ρ] ⊢Δ [a′])
([G≡G′]₁ [ρ] ⊢Δ [a]₁)
-- Γ ⊢ .C ⇒* Π F″ ^ rF ▹ G″ ^ r
in Π₌ F″ G″ (PE.subst₃ _ rF₁≡rF′ lF₁≡lF′ lG₁≡lG′ D″) (PE.subst₃ _ rF₁≡rF′ lF₁≡lF′ lG₁≡lG′ (≅-trans A≡B (PE.subst (λ x → Γ ⊢ x ≅ Π F″ ^ rF₁ ° lF₁ ▹ G″ ° lG₁ ° lΠ ^ [ r , ι lΠ ]) ΠF₁G₁≡ΠF′G′ A≡B₁)))
(λ ρ ⊢Δ → transEq′ PE.refl PE.refl (PE.sym rF₁≡rF′) (PE.sym rF₂≡rF′) (PE.cong ι (PE.sym lF₁≡lF′)) (PE.cong ι (PE.sym lF₂≡lF′))
([F] ρ ⊢Δ) ([F′] ρ ⊢Δ) ([F″] ρ ⊢Δ)
([F≡F′] ρ ⊢Δ) ([F′≡F″] ρ ⊢Δ))
(λ ρ ⊢Δ [a] →
let [a′] = convTerm₁′ (PE.sym rF₁≡rF′) (PE.cong ι (PE.sym lF₁≡lF′)) ([F] ρ ⊢Δ) ([F′] ρ ⊢Δ) ([F≡F′] ρ ⊢Δ) [a]
[a″] = convTerm₁′ (PE.sym rF₂≡rF′) (PE.cong ι (PE.sym lF₂≡lF′)) ([F′] ρ ⊢Δ) ([F″] ρ ⊢Δ) ([F′≡F″] ρ ⊢Δ) [a′]
in transEq′ PE.refl PE.refl PE.refl PE.refl (PE.cong ι (PE.sym lG₁≡lG′)) (PE.cong ι (PE.sym lG₂≡lG″))
([G] ρ ⊢Δ [a]) ([G′] ρ ⊢Δ [a′]) ([G″] ρ ⊢Δ [a″])
([G≡G′] ρ ⊢Δ [a]) ([G′≡G″] ρ ⊢Δ [a′]))
transEqT {Γ} {r = r} {l = l} {l′ = l′} {l″ = l″}
(∃ᵥ (∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(∃ᵣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁)
(∃ᵣ F₂ G₂ D₂ ⊢F₂ ⊢G₂ A≡A₂ [F]₂ [G]₂ G-ext₂))
(∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′])
(∃₌ F″ G″ D″ A≡B₁ [F≡F′]₁ [G≡G′]₁) =
let ∃F₁G₁≡∃F′G′ = whrDet* (red D₁ , ∃ₙ) (D′ , ∃ₙ)
F₁≡F′ , G₁≡G′ = ∃-PE-injectivity ∃F₁G₁≡∃F′G′
F₂≡F″ , G₂≡G″ = ∃-PE-injectivity (whrDet* (red D₂ , ∃ₙ) (D″ , ∃ₙ))
substLift {Δ} {l} {a} {r} ρ x = Δ ⊩⟨ l ⟩ wk (lift ρ) x [ a ] ^ r
lr = TypeInfo.l r
[F′] : ∀ {ρ Δ} [ρ] ⊢Δ → Δ ⊩⟨ l′ ⟩ wk ρ F′ ^ [ % , lr ]
[F′] {ρ} [ρ] ⊢Δ = PE.subst (λ x → _ ⊩⟨ _ ⟩ wk ρ x ^ _) F₁≡F′ ([F]₁ [ρ] ⊢Δ)
[F″] : ∀ {ρ} {Δ} [ρ] ⊢Δ → Δ ⊩⟨ l″ ⟩ wk ρ F″ ^ [ % , lr ]
[F″] {ρ} [ρ] ⊢Δ = PE.subst (λ x → _ ⊩⟨ _ ⟩ wk ρ x ^ _) F₂≡F″ ([F]₂ [ρ] ⊢Δ)
[F′≡F″] : ∀ {ρ} {Δ} [ρ] ⊢Δ → Δ ⊩⟨ l′ ⟩ wk ρ F′ ≡ wk ρ F″ ^ [ % , lr ] / [F′] [ρ] ⊢Δ
[F′≡F″] {ρ} [ρ] ⊢Δ = irrelevanceEq′ (PE.cong (wk ρ) F₁≡F′) PE.refl PE.refl
([F]₁ [ρ] ⊢Δ) ([F′] [ρ] ⊢Δ) ([F≡F′]₁ [ρ] ⊢Δ)
[G′] : ∀ {ρ Δ a} [ρ] ⊢Δ
→ Δ ⊩⟨ l′ ⟩ a ∷ wk ρ F′ ^ [ % , lr ] / [F′] [ρ] ⊢Δ
→ Δ ⊩⟨ l′ ⟩ wk (lift ρ) G′ [ a ] ^ r
[G′] {ρ} [ρ] ⊢Δ [a] =
let [a′] = irrelevanceTerm′ (PE.cong (wk ρ) (PE.sym F₁≡F′)) PE.refl PE.refl
([F′] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [a]
in PE.subst (substLift ρ) G₁≡G′ ([G]₁ [ρ] ⊢Δ [a′])
[G″] : ∀ {ρ Δ a} [ρ] ⊢Δ
→ Δ ⊩⟨ l″ ⟩ a ∷ wk ρ F″ ^ [ % , lr ] / [F″] [ρ] ⊢Δ
→ Δ ⊩⟨ l″ ⟩ wk (lift ρ) G″ [ a ] ^ r
[G″] {ρ} [ρ] ⊢Δ [a] =
let [a″] = irrelevanceTerm′ (PE.cong (wk ρ) (PE.sym F₂≡F″)) PE.refl PE.refl
([F″] [ρ] ⊢Δ) ([F]₂ [ρ] ⊢Δ) [a]
in PE.subst (substLift ρ) G₂≡G″ ([G]₂ [ρ] ⊢Δ [a″])
[G′≡G″] : ∀ {ρ Δ a} [ρ] ⊢Δ
([a] : Δ ⊩⟨ l′ ⟩ a ∷ wk ρ F′ ^ [ % , lr ] / [F′] [ρ] ⊢Δ)
→ Δ ⊩⟨ l′ ⟩ wk (lift ρ) G′ [ a ]
≡ wk (lift ρ) G″ [ a ] ^ r / [G′] [ρ] ⊢Δ [a]
[G′≡G″] {ρ} [ρ] ⊢Δ [a′] =
let [a]₁ = irrelevanceTerm′ (PE.cong (wk ρ) (PE.sym F₁≡F′)) PE.refl PE.refl
([F′] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [a′]
in irrelevanceEq′ (PE.cong (λ x → wk (lift ρ) x [ _ ]) G₁≡G′) PE.refl PE.refl
([G]₁ [ρ] ⊢Δ [a]₁) ([G′] [ρ] ⊢Δ [a′])
([G≡G′]₁ [ρ] ⊢Δ [a]₁)
-- Γ ⊢ .C ⇒* ∃ F″ ^ rF ▹ G″ ^ r
in ∃₌ F″ G″ D″ (≅-trans A≡B (PE.subst (λ x → Γ ⊢ x ≅ ∃ F″ ▹ G″ ^ [ % , lr ]) ∃F₁G₁≡∃F′G′ A≡B₁))
(λ ρ ⊢Δ → transEq′ PE.refl PE.refl PE.refl PE.refl PE.refl PE.refl
([F] ρ ⊢Δ) ([F′] ρ ⊢Δ) ([F″] ρ ⊢Δ)
([F≡F′] ρ ⊢Δ) ([F′≡F″] ρ ⊢Δ))
(λ ρ ⊢Δ [a] →
let [a′] = convTerm₁′ PE.refl PE.refl ([F] ρ ⊢Δ) ([F′] ρ ⊢Δ) ([F≡F′] ρ ⊢Δ) [a]
[a″] = convTerm₁′ PE.refl PE.refl ([F′] ρ ⊢Δ) ([F″] ρ ⊢Δ) ([F′≡F″] ρ ⊢Δ) [a′]
in transEq ([G] ρ ⊢Δ [a]) ([G′] ρ ⊢Δ [a′]) ([G″] ρ ⊢Δ [a″])
([G≡G′] ρ ⊢Δ [a]) ([G′≡G″] ρ ⊢Δ [a′]))
transEqT (emb⁰¹¹ S) A≡B B≡C = transEqT S A≡B B≡C
transEqT (emb¹⁰¹ S) A≡B B≡C = transEqT S A≡B B≡C
transEqT (emb¹¹⁰ S) A≡B B≡C = transEqT S A≡B B≡C
transEqT (emb¹∞∞ S) A≡B B≡C = transEqT S A≡B B≡C
transEqT (emb∞¹∞ S) A≡B B≡C = transEqT S A≡B B≡C
transEqT (emb∞∞¹ S) A≡B B≡C = transEqT S A≡B B≡C
-- Transitivty of type equality.
transEq : ∀ {Γ A B C r l l′ l″}
([A] : Γ ⊩⟨ l ⟩ A ^ r) ([B] : Γ ⊩⟨ l′ ⟩ B ^ r) ([C] : Γ ⊩⟨ l″ ⟩ C ^ r)
→ Γ ⊩⟨ l ⟩ A ≡ B ^ r / [A]
→ Γ ⊩⟨ l′ ⟩ B ≡ C ^ r / [B]
→ Γ ⊩⟨ l ⟩ A ≡ C ^ r / [A]
transEq [A] [B] [C] A≡B B≡C =
transEqT (combine (goodCases [A] [B] A≡B) (goodCases [B] [C] B≡C)) A≡B B≡C
-- Transitivity of type equality with some propositonally equal types.
transEq′ : ∀ {Γ A B B′ C C′ r r' r'' ll ll' ll'' l l′ l″} → B PE.≡ B′ → C PE.≡ C′ → r PE.≡ r' → r' PE.≡ r'' → ll PE.≡ ll' → ll' PE.≡ ll''
→ ([A] : Γ ⊩⟨ l ⟩ A ^ [ r , ll ]) ([B] : Γ ⊩⟨ l′ ⟩ B ^ [ r' , ll' ]) ([C] : Γ ⊩⟨ l″ ⟩ C ^ [ r'' , ll'' ])
→ Γ ⊩⟨ l ⟩ A ≡ B′ ^ [ r , ll ] / [A]
→ Γ ⊩⟨ l′ ⟩ B ≡ C′ ^ [ r' , ll' ] / [B]
→ Γ ⊩⟨ l ⟩ A ≡ C ^ [ r , ll ] / [A]
transEq′ PE.refl PE.refl PE.refl PE.refl PE.refl PE.refl [A] [B] [C] A≡B B≡C = transEq [A] [B] [C] A≡B B≡C
transEqTermNe : ∀ {Γ n n′ n″ A r}
→ Γ ⊩neNf n ≡ n′ ∷ A ^ r
→ Γ ⊩neNf n′ ≡ n″ ∷ A ^ r
→ Γ ⊩neNf n ≡ n″ ∷ A ^ r
transEqTermNe (neNfₜ₌ neK neM k≡m) (neNfₜ₌ neK₁ neM₁ k≡m₁) =
neNfₜ₌ neK neM₁ (~-trans k≡m k≡m₁)
mutual
transEqTermℕ : ∀ {Γ n n′ n″}
→ Γ ⊩ℕ n ≡ n′ ∷ℕ
→ Γ ⊩ℕ n′ ≡ n″ ∷ℕ
→ Γ ⊩ℕ n ≡ n″ ∷ℕ
transEqTermℕ (ℕₜ₌ k k′ d d′ t≡u prop)
(ℕₜ₌ k₁ k″ d₁ d″ t≡u₁ prop₁) =
let k₁Whnf = naturalWhnf (proj₁ (split prop₁))
k′Whnf = naturalWhnf (proj₂ (split prop))
k₁≡k′ = whrDet*Term (redₜ d₁ , k₁Whnf) (redₜ d′ , k′Whnf)
prop′ = PE.subst (λ x → [Natural]-prop _ x _) k₁≡k′ prop₁
in ℕₜ₌ k k″ d d″ (≅ₜ-trans t≡u (PE.subst (λ x → _ ⊢ x ≅ _ ∷ _ ^ _) k₁≡k′ t≡u₁))
(transNatural-prop prop prop′)
transNatural-prop : ∀ {Γ k k′ k″}
→ [Natural]-prop Γ k k′
→ [Natural]-prop Γ k′ k″
→ [Natural]-prop Γ k k″
transNatural-prop (sucᵣ x) (sucᵣ x₁) = sucᵣ (transEqTermℕ x x₁)
transNatural-prop (sucᵣ x) (ne (neNfₜ₌ () neM k≡m))
transNatural-prop zeroᵣ prop₁ = prop₁
transNatural-prop prop zeroᵣ = prop
transNatural-prop (ne (neNfₜ₌ neK () k≡m)) (sucᵣ x₃)
transNatural-prop (ne [k≡k′]) (ne [k′≡k″]) =
ne (transEqTermNe [k≡k′] [k′≡k″])
-- Empty
transEmpty-prop : ∀ {Γ k k′ k″ l}
→ [Empty]-prop Γ k k′ l
→ [Empty]-prop Γ k′ k″ l
→ [Empty]-prop Γ k k″ l
transEmpty-prop (ne a b) (ne c d) = ne a d
transEqTermEmpty : ∀ {Γ n n′ n″ l}
→ Γ ⊩Empty n ≡ n′ ∷Empty^ l
→ Γ ⊩Empty n′ ≡ n″ ∷Empty^ l
→ Γ ⊩Empty n ≡ n″ ∷Empty^ l
transEqTermEmpty (Emptyₜ₌ (ne a b)) (Emptyₜ₌ (ne c d)) = Emptyₜ₌ (ne a d)
-- Transitivity of term equality.
transEqTerm⁰ : ∀ {Γ A t u v r}
([A] : Γ ⊩⟨ ι ⁰ ⟩ A ^ r)
→ Γ ⊩⟨ ι ⁰ ⟩ t ≡ u ∷ A ^ r / [A]
→ Γ ⊩⟨ ι ⁰ ⟩ u ≡ v ∷ A ^ r / [A]
→ Γ ⊩⟨ ι ⁰ ⟩ t ≡ v ∷ A ^ r / [A]
transEqTerm⁰ (ℕᵣ D) [t≡u] [u≡v] = transEqTermℕ [t≡u] [u≡v]
transEqTerm⁰ (Emptyᵣ D) [t≡u] [u≡v] = transEqTermEmpty [t≡u] [u≡v]
transEqTerm⁰ {r = [ ! , l ]} (ne′ K D neK K≡K) (neₜ₌ k m d d′ (neNfₜ₌ neK₁ neM k≡m))
(neₜ₌ k₁ m₁ d₁ d″ (neNfₜ₌ neK₂ neM₁ k≡m₁)) =
let k₁≡m = whrDet*Term (redₜ d₁ , ne neK₂) (redₜ d′ , ne neM)
in neₜ₌ k m₁ d d″
(neNfₜ₌ neK₁ neM₁
(~-trans k≡m (PE.subst (λ x → _ ⊢ x ~ _ ∷ _ ^ _) k₁≡m k≡m₁)))
transEqTerm⁰ {r = [ % , l ]} (ne′ K D neK K≡K) (neₜ₌ d d′)
(neₜ₌ d₁ d″) = neₜ₌ d d″
transEqTerm⁰ {r = [ ! , l ]} (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Πₜ₌ f g d d′ funcF funcG f≡g [f] [g] [f≡g])
(Πₜ₌ f₁ g₁ d₁ d₁′ funcF₁ funcG₁ f≡g₁ [f]₁ [g]₁ [f≡g]₁)
rewrite whrDet*Term (redₜ d′ , functionWhnf funcG)
(redₜ d₁ , functionWhnf funcF₁) =
Πₜ₌ f g₁ d d₁′ funcF funcG₁ (≅ₜ-trans f≡g f≡g₁) [f] [g]₁
(λ ρ ⊢Δ [a] → transEqTerm⁰ ([G] ρ ⊢Δ [a])
([f≡g] ρ ⊢Δ [a])
([f≡g]₁ ρ ⊢Δ [a]))
transEqTerm⁰ {r = [ % , l ]} (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(d , d′)
(d₁ , d₁′) = d , d₁′
transEqTerm⁰ {r = [ % , l ]} (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(d , d′)
(d₁ , d₁′) = d , d₁′
transEqTerm¹ : ∀ {Γ A t u v r}
([A] : Γ ⊩⟨ ι ¹ ⟩ A ^ r)
→ Γ ⊩⟨ ι ¹ ⟩ t ≡ u ∷ A ^ r / [A]
→ Γ ⊩⟨ ι ¹ ⟩ u ≡ v ∷ A ^ r / [A]
→ Γ ⊩⟨ ι ¹ ⟩ t ≡ v ∷ A ^ r / [A]
transEqTerm¹ {Γ} {A} {t} {u} {v} {r} (Uᵣ (Uᵣ rU ⁰ l< eq d)) (Uₜ₌ [t] [u] A≡B [t≡u])
(Uₜ₌ [u]′ [v] B′≡C [u≡v]) =
let
ti = LogRel._⊩¹U_∷_^_/_.[t]
⊢Γ = wf (_⊢_:⇒*:_^_.⊢A d)
B≡B′ = whrDet*Term (_⊢_:⇒*:_∷_^_.d (LogRel._⊩¹U_∷_^_/_.d [u]) , typeWhnf (LogRel._⊩¹U_∷_^_/_.typeK [u]))
(_⊢_:⇒*:_∷_^_.d (LogRel._⊩¹U_∷_^_/_.d [u]′) , typeWhnf (LogRel._⊩¹U_∷_^_/_.typeK [u]′))
A≡C = ≅ₜ-trans (PE.subst (λ X → EqRelSet._⊢_≅_∷_^_ eqrel Γ (LogRel._⊩¹U_∷_^_/_.K [t]) X (Univ rU ⁰) ([ ! , ι ¹ ])) B≡B′ A≡B) B′≡C
[t≡v] = λ {ρ} {Δ} ([ρ] : ρ ∷ Δ ⊆ Γ) ⊢Δ →
transEq (ti [t] [ρ] ⊢Δ) (ti [u] [ρ] ⊢Δ) (ti [v] [ρ] ⊢Δ) ([t≡u] [ρ] ⊢Δ)
(irrelevanceEq (ti [u]′ [ρ] ⊢Δ) (ti [u] [ρ] ⊢Δ) ([u≡v] [ρ] ⊢Δ))
in
Uₜ₌ [t] [v] A≡C [t≡v]
transEqTerm¹ (ℕᵣ D) [t≡u] [u≡v] = transEqTermℕ [t≡u] [u≡v]
transEqTerm¹ (Emptyᵣ D) [t≡u] [u≡v] = transEqTermEmpty [t≡u] [u≡v]
transEqTerm¹ {r = [ ! , l ]} (ne′ K D neK K≡K) (neₜ₌ k m d d′ (neNfₜ₌ neK₁ neM k≡m))
(neₜ₌ k₁ m₁ d₁ d″ (neNfₜ₌ neK₂ neM₁ k≡m₁)) =
let k₁≡m = whrDet*Term (redₜ d₁ , ne neK₂) (redₜ d′ , ne neM)
in neₜ₌ k m₁ d d″
(neNfₜ₌ neK₁ neM₁
(~-trans k≡m (PE.subst (λ x → _ ⊢ x ~ _ ∷ _ ^ _) k₁≡m k≡m₁)))
transEqTerm¹ {r = [ % , l ]} (ne′ K D neK K≡K) (neₜ₌ d d′)
(neₜ₌ d₁ d″) = neₜ₌ d d″
transEqTerm¹ {r = [ ! , l ]} (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Πₜ₌ f g d d′ funcF funcG f≡g [f] [g] [f≡g])
(Πₜ₌ f₁ g₁ d₁ d₁′ funcF₁ funcG₁ f≡g₁ [f]₁ [g]₁ [f≡g]₁)
rewrite whrDet*Term (redₜ d′ , functionWhnf funcG)
(redₜ d₁ , functionWhnf funcF₁) =
Πₜ₌ f g₁ d d₁′ funcF funcG₁ (≅ₜ-trans f≡g f≡g₁) [f] [g]₁
(λ ρ ⊢Δ [a] → transEqTerm¹ ([G] ρ ⊢Δ [a])
([f≡g] ρ ⊢Δ [a])
([f≡g]₁ ρ ⊢Δ [a]))
transEqTerm¹ {r = [ % , l ]} (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(d , d′)
(d₁ , d₁′) = d , d₁′
transEqTerm¹ {r = [ % , l ]} (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(d , d′)
(d₁ , d₁′) = d , d₁′
transEqTerm¹ (emb l< [A]) [t≡u] [u≡v] = transEqTerm⁰ [A] [t≡u] [u≡v]
transEqTerm∞ : ∀ {Γ A t u v r}
([A] : Γ ⊩⟨ ∞ ⟩ A ^ r)
→ Γ ⊩⟨ ∞ ⟩ t ≡ u ∷ A ^ r / [A]
→ Γ ⊩⟨ ∞ ⟩ u ≡ v ∷ A ^ r / [A]
→ Γ ⊩⟨ ∞ ⟩ t ≡ v ∷ A ^ r / [A]
transEqTerm∞ {Γ} {A} {t} {u} {v} {r} (Uᵣ (Uᵣ rU ⁰ l< eq d)) (Uₜ₌ [t] [u] A≡B [t≡u])
(Uₜ₌ [u]′ [v] B′≡C [u≡v]) =
let
ti = LogRel._⊩¹U_∷_^_/_.[t]
⊢Γ = wf (_⊢_:⇒*:_^_.⊢A d)
B≡B′ = whrDet*Term (_⊢_:⇒*:_∷_^_.d (LogRel._⊩¹U_∷_^_/_.d [u]) , typeWhnf (LogRel._⊩¹U_∷_^_/_.typeK [u]))
(_⊢_:⇒*:_∷_^_.d (LogRel._⊩¹U_∷_^_/_.d [u]′) , typeWhnf (LogRel._⊩¹U_∷_^_/_.typeK [u]′))
A≡C = ≅ₜ-trans (PE.subst (λ X → EqRelSet._⊢_≅_∷_^_ eqrel Γ (LogRel._⊩¹U_∷_^_/_.K [t]) X (Univ rU ⁰) ([ ! , ι ¹ ])) B≡B′ A≡B) B′≡C
[t≡v] = λ {ρ} {Δ} ([ρ] : ρ ∷ Δ ⊆ Γ) ⊢Δ →
transEq (ti [t] [ρ] ⊢Δ) (ti [u] [ρ] ⊢Δ) (ti [v] [ρ] ⊢Δ) ([t≡u] [ρ] ⊢Δ)
(irrelevanceEq (ti [u]′ [ρ] ⊢Δ) (ti [u] [ρ] ⊢Δ) ([u≡v] [ρ] ⊢Δ))
in
Uₜ₌ [t] [v] A≡C [t≡v]
transEqTerm∞ {Γ} {A} {t} {u} {v} {r} (Uᵣ (Uᵣ rU ¹ l< eq d)) (Uₜ₌ [t] [u] A≡B [t≡u])
(Uₜ₌ [u]′ [v] B′≡C [u≡v]) =
let
ti = LogRel._⊩¹U_∷_^_/_.[t]
⊢Γ = wf (_⊢_:⇒*:_^_.⊢A d)
B≡B′ = whrDet*Term (_⊢_:⇒*:_∷_^_.d (LogRel._⊩¹U_∷_^_/_.d [u]) , typeWhnf (LogRel._⊩¹U_∷_^_/_.typeK [u]))
(_⊢_:⇒*:_∷_^_.d (LogRel._⊩¹U_∷_^_/_.d [u]′) , typeWhnf (LogRel._⊩¹U_∷_^_/_.typeK [u]′))
A≡C = ≅ₜ-trans (PE.subst (λ X → EqRelSet._⊢_≅_∷_^_ eqrel Γ (LogRel._⊩¹U_∷_^_/_.K [t]) X (Univ rU ¹) ([ ! , ∞ ])) B≡B′ A≡B) B′≡C
[t≡v] = λ {ρ} {Δ} ([ρ] : ρ ∷ Δ ⊆ Γ) ⊢Δ →
transEq (ti [t] [ρ] ⊢Δ) (ti [u] [ρ] ⊢Δ) (ti [v] [ρ] ⊢Δ) ([t≡u] [ρ] ⊢Δ)
(irrelevanceEq (ti [u]′ [ρ] ⊢Δ) (ti [u] [ρ] ⊢Δ) ([u≡v] [ρ] ⊢Δ))
in
Uₜ₌ [t] [v] A≡C [t≡v]
transEqTerm∞ (ℕᵣ D) [t≡u] [u≡v] = transEqTermℕ [t≡u] [u≡v]
transEqTerm∞ (Emptyᵣ D) [t≡u] [u≡v] = transEqTermEmpty [t≡u] [u≡v]
transEqTerm∞ {r = [ ! , l ]} (ne′ K D neK K≡K) (neₜ₌ k m d d′ (neNfₜ₌ neK₁ neM k≡m))
(neₜ₌ k₁ m₁ d₁ d″ (neNfₜ₌ neK₂ neM₁ k≡m₁)) =
let k₁≡m = whrDet*Term (redₜ d₁ , ne neK₂) (redₜ d′ , ne neM)
in neₜ₌ k m₁ d d″
(neNfₜ₌ neK₁ neM₁
(~-trans k≡m (PE.subst (λ x → _ ⊢ x ~ _ ∷ _ ^ _) k₁≡m k≡m₁)))
transEqTerm∞ {r = [ % , l ]} (ne′ K D neK K≡K) (neₜ₌ d d′)
(neₜ₌ d₁ d″) = neₜ₌ d d″
transEqTerm∞ {r = [ ! , l ]} (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Πₜ₌ f g d d′ funcF funcG f≡g [f] [g] [f≡g])
(Πₜ₌ f₁ g₁ d₁ d₁′ funcF₁ funcG₁ f≡g₁ [f]₁ [g]₁ [f≡g]₁)
rewrite whrDet*Term (redₜ d′ , functionWhnf funcG)
(redₜ d₁ , functionWhnf funcF₁) =
Πₜ₌ f g₁ d d₁′ funcF funcG₁ (≅ₜ-trans f≡g f≡g₁) [f] [g]₁
(λ ρ ⊢Δ [a] → transEqTerm∞ ([G] ρ ⊢Δ [a])
([f≡g] ρ ⊢Δ [a])
([f≡g]₁ ρ ⊢Δ [a]))
transEqTerm∞ {r = [ % , l ]} (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(d , d′)
(d₁ , d₁′) = d , d₁′
transEqTerm∞ {r = [ % , l ]} (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(d , d′)
(d₁ , d₁′) = d , d₁′
transEqTerm∞ (emb {l′ = ι ¹} l< [A]) [t≡u] [u≡v] = transEqTerm¹ [A] [t≡u] [u≡v]
transEqTerm : ∀ {l Γ A t u v r}
([A] : Γ ⊩⟨ l ⟩ A ^ r)
→ Γ ⊩⟨ l ⟩ t ≡ u ∷ A ^ r / [A]
→ Γ ⊩⟨ l ⟩ u ≡ v ∷ A ^ r / [A]
→ Γ ⊩⟨ l ⟩ t ≡ v ∷ A ^ r / [A]
transEqTerm {l = ι ⁰} = transEqTerm⁰
transEqTerm {l = ι ¹} = transEqTerm¹
transEqTerm {l = ∞} = transEqTerm∞
|
{
"alphanum_fraction": 0.4051377283,
"avg_line_length": 52.6793478261,
"ext": "agda",
"hexsha": "ce96cd8b783156fb05192e0619d8a5b7d38404ea",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Properties/Transitivity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Properties/Transitivity.agda",
"max_line_length": 201,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Properties/Transitivity.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 10737,
"size": 19386
}
|
{-# OPTIONS --without-K #-}
module function.isomorphism.core where
open import level using (_⊔_)
open import equality.core
open import equality.groupoid
open import equality.reasoning
open import function.core
open import function.overloading
open import sum
open import function.extensionality.core
open import overloading.core
-- isomorphisms
record _≅_ {i j}(X : Set i)(Y : Set j) : Set (i ⊔ j) where
constructor iso
field
to : X → Y
from : Y → X
iso₁ : (x : X) → from (to x) ≡ x
iso₂ : (y : Y) → to (from y) ≡ y
infix 5 _≅_
≅-struct-iso : ∀ {i j}{X : Set i}{Y : Set j}
→ (X ≅ Y)
≅ ( Σ (X → Y) λ f
→ Σ (Y → X) λ g
→ ((x : X) → g (f x) ≡ x)
× ((y : Y) → f (g y) ≡ y) )
≅-struct-iso = record
{ to = λ { (iso f g α β) → f , g , α , β }
; from = λ { (f , g , α , β) → iso f g α β }
; iso₁ = λ _ → refl
; iso₂ = λ _ → refl }
refl≅ : ∀ {i}{X : Set i} → X ≅ X
refl≅ = iso id id (λ _ → refl) (λ _ → refl)
≡⇒≅ : ∀ {i}{X Y : Set i} → X ≡ Y → X ≅ Y
≡⇒≅ refl = refl≅
sym≅ : ∀ {i j}{X : Set i}{Y : Set j} → X ≅ Y → Y ≅ X
sym≅ (iso f g H K) = iso g f K H
trans≅ : ∀ {i j k}{X : Set i}{Y : Set j}{Z : Set k}
→ X ≅ Y → Y ≅ Z → X ≅ Z
trans≅ {X = X}{Z = Z} (iso f g H K) (iso f' g' H' K') = record
{ to = f' ∘ f
; from = g ∘ g'
; iso₁ = iso₁
; iso₂ = iso₂ }
where
abstract
iso₁ : (x : X) → g (g' (f' (f x))) ≡ x
iso₁ x = ap g (H' (f x)) · H x
iso₂ : (z : Z) → f' (f (g (g' z))) ≡ z
iso₂ y = ap f' (K (g' y)) · K' y
_·≅_ : ∀ {i j k}{X : Set i}{Y : Set j}{Z : Set k}
→ X ≅ Y → Y ≅ Z → X ≅ Z
_·≅_ = trans≅
infixl 9 _·≅_
module ≅-Reasoning where
infix 4 _IsRelatedTo_
infix 2 _∎
infixr 2 _≅⟨_⟩_
infixr 2 _≡⟨_⟩_
infix 1 begin_
data _IsRelatedTo_ {i j}(x : Set i)(y : Set j) : Set (i ⊔ j) where
relTo : x ≅ y → x IsRelatedTo y
begin_ : ∀ {i j}{X : Set i}{Y : Set j} → X IsRelatedTo Y → X ≅ Y
begin relTo p = p
_≅⟨_⟩_ : ∀ {i j k} (X : Set i) {Y : Set j}{Z : Set k}
→ X ≅ Y → Y IsRelatedTo Z → X IsRelatedTo Z
_ ≅⟨ p ⟩ relTo q = relTo (trans≅ p q)
_≡⟨_⟩_ : ∀ {i j} (X : Set i) {Y : Set i} {Z : Set j}
→ X ≡ Y → Y IsRelatedTo Z → X IsRelatedTo Z
_ ≡⟨ p ⟩ relTo q = relTo (trans≅ (≡⇒≅ p) q)
_∎ : ∀ {i} (X : Set i) → X IsRelatedTo X
_∎ _ = relTo refl≅
injective : ∀ {i j}{X : Set i}{Y : Set j}
→ (f : X → Y) → Set _
injective f = ∀ {x x'} → f x ≡ f x' → x ≡ x'
retraction : ∀ {i j}{X : Set i}{Y : Set j}
→ (f : X → Y) → Set _
retraction {X = X}{Y = Y} f = (y : Y) → Σ X λ x → f x ≡ y
_↣_ : ∀ {i j} → Set i → Set j → Set _
A ↣ B = Σ (A → B) injective
-- composition of injections:
_∘i_ : ∀ {i j k}{A : Set i}{B : Set j}{C : Set k}
→ (B ↣ C) → (A ↣ B) → (A ↣ C)
(g , p) ∘i (f , q) = g ∘ f , q ∘ p
_↠_ : ∀ {i j} → Set i → Set j → Set _
A ↠ B = Σ (A → B) retraction
private
module properties {i j}{X : Set i}{Y : Set j} where
apply≅ : (X ≅ Y) → X → Y
apply≅ = _≅_.to
invert≅ : (X ≅ Y) → Y → X
invert≅ = _≅_.from
instance
iso-is-fun : Coercion (X ≅ Y) (X → Y)
iso-is-fun = record
{ coerce = _≅_.to }
iso-is-iso : Coercion (X ≅ Y) (X ≅ Y)
iso-is-iso = coerce-self _
inj-is-fun : Coercion (X ↣ Y) (X → Y)
inj-is-fun = record
{ coerce = proj₁ }
srj-is-fun : Coercion (X ↠ Y) (X → Y)
srj-is-fun = record
{ coerce = proj₁ }
private
module iso-methods {k}{Source : Set k}
⦃ c : Coercion Source (X ≅ Y) ⦄ where
private
module with-source (source : Source) where
private target = coerce c source
open _≅_ target public using ()
renaming (from to invert)
open with-source public
open iso-methods public
iso⇒inj : (iso : X ≅ Y) → injective (apply iso)
iso⇒inj f {x}{x'} q = (iso₁ x) ⁻¹ · ap from q · iso₁ x'
where
open _≅_ f
iso⇒retr : (iso : X ≅ Y) → retraction (apply iso)
iso⇒retr f y = from y , iso₂ y
where
open _≅_ f
inj+retr⇒iso : (f : X → Y) → injective f → retraction f → X ≅ Y
inj+retr⇒iso f inj-f retr-f = iso f g H K
where
g : Y → X
g y = proj₁ (retr-f y)
H : (x : X) → g (f x) ≡ x
H x = inj-f (proj₂ (retr-f (f x)))
K : (y : Y) → f (g y) ≡ y
K y = proj₂ (retr-f y)
open properties public
|
{
"alphanum_fraction": 0.4700564972,
"avg_line_length": 26.656626506,
"ext": "agda",
"hexsha": "6473dc10d7f3fe3f5adcf9282776a3897fd66623",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z",
"max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "HoTT/M-types",
"max_forks_repo_path": "function/isomorphism/core.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "HoTT/M-types",
"max_issues_repo_path": "function/isomorphism/core.agda",
"max_line_length": 68,
"max_stars_count": 27,
"max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "HoTT/M-types",
"max_stars_repo_path": "function/isomorphism/core.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z",
"num_tokens": 1893,
"size": 4425
}
|
{-# OPTIONS --without-K --safe #-}
open import Algebra.Structures.Bundles.Field
module Algebra.Linear.Morphism.Bundles
{k ℓᵏ} (K : Field k ℓᵏ)
where
open import Algebra.FunctionProperties as FP
open import Relation.Binary using (Rel; Setoid)
open import Level
import Algebra.Linear.Structures.Bundles as VS
open import Algebra.Linear.Morphism.VectorSpace K
open import Function.Equality as FunEq using (_⟶_; _⟨$⟩_; setoid)
module _
{a₁ ℓ₁} (From : VS.VectorSpace K a₁ ℓ₁)
{a₂ ℓ₂} (To : VS.VectorSpace K a₂ ℓ₂)
where
private
module F = VS.VectorSpace From
module T = VS.VectorSpace To
K' : Set k
K' = Field.Carrier K
open F using ()
renaming
( Carrier to A
; _≈_ to _≈₁_
; refl to ≈₁-refl
; sym to ≈₁-sym
; setoid to A-setoid
; _+_ to +₁
; _∙_ to ∙₁
)
open T using ()
renaming
( Carrier to B
; _≈_ to _≈₂_
; refl to ≈₂-refl
; sym to ≈₂-sym
; trans to ≈₂-trans
; setoid to B-setoid
; _+_ to +₂
; _∙_ to ∙₂
)
hom-setoid : ∀ {Carrier} -> (Carrier -> (A-setoid ⟶ B-setoid))
-> Setoid (suc (k ⊔ a₁ ⊔ a₂ ⊔ ℓ₁ ⊔ ℓ₂)) (a₁ ⊔ ℓ₁ ⊔ ℓ₂)
hom-setoid {Carrier} app = record
{ Carrier = Carrier
; _≈_ = λ f g → ∀ {x y} (r : x ≈₁ y) -> (app f ⟨$⟩ x) ≈₂ (app g ⟨$⟩ y)
; isEquivalence = record
{ refl = λ {f} -> FunEq.cong (app f)
; sym = λ r rₓ → ≈₂-sym (r (≈₁-sym rₓ))
; trans = λ r₁ r₂ rₓ → ≈₂-trans (r₁ ≈₁-refl) (r₂ rₓ)
}
}
open LinearDefinitions A B _≈₂_
record LinearMap : Set (suc (k ⊔ a₁ ⊔ a₂ ⊔ ℓ₁ ⊔ ℓ₂)) where
field
⟦_⟧ : Morphism
isLinearMap : IsLinearMap From To ⟦_⟧
infixr 25 _⟪$⟫_
_⟪$⟫_ : A -> B
_⟪$⟫_ = ⟦_⟧
open IsLinearMap isLinearMap public
linearMap-setoid : Setoid (suc (k ⊔ a₁ ⊔ a₂ ⊔ ℓ₁ ⊔ ℓ₂)) (a₁ ⊔ ℓ₁ ⊔ ℓ₂)
linearMap-setoid = hom-setoid {LinearMap} λ f → record
{ _⟨$⟩_ = λ x → f LinearMap.⟪$⟫ x
; cong = LinearMap.⟦⟧-cong f
}
record LinearIsomorphism : Set (suc (k ⊔ a₁ ⊔ a₂ ⊔ ℓ₁ ⊔ ℓ₂)) where
field
⟦_⟧ : Morphism
isLinearIsomorphism : IsLinearIsomorphism From To ⟦_⟧
open IsLinearIsomorphism isLinearIsomorphism public
linearMap : LinearMap
linearMap = record { ⟦_⟧ = ⟦_⟧ ; isLinearMap = isLinearMap }
open LinearMap linearMap public
using (_⟪$⟫_)
linearIsomorphism-setoid : Setoid (suc (k ⊔ a₁ ⊔ a₂ ⊔ ℓ₁ ⊔ ℓ₂)) (a₁ ⊔ ℓ₁ ⊔ ℓ₂)
linearIsomorphism-setoid = hom-setoid {LinearIsomorphism} λ f → record
{ _⟨$⟩_ = λ x -> f LinearIsomorphism.⟪$⟫ x
; cong = LinearIsomorphism.⟦⟧-cong f
}
module _ {a ℓ} (V : VS.VectorSpace K a ℓ) where
LinearEndomorphism : Set (suc (k ⊔ a ⊔ ℓ))
LinearEndomorphism = LinearMap V V
LinearAutomorphism : Set (suc (k ⊔ a ⊔ ℓ))
LinearAutomorphism = LinearIsomorphism V V
|
{
"alphanum_fraction": 0.5543296556,
"avg_line_length": 27.1909090909,
"ext": "agda",
"hexsha": "067630df9447bfd41a9358cb807979fd2c942d68",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "felko/linear-algebra",
"max_forks_repo_path": "src/Algebra/Linear/Morphism/Bundles.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "felko/linear-algebra",
"max_issues_repo_path": "src/Algebra/Linear/Morphism/Bundles.agda",
"max_line_length": 86,
"max_stars_count": 15,
"max_stars_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "felko/linear-algebra",
"max_stars_repo_path": "src/Algebra/Linear/Morphism/Bundles.agda",
"max_stars_repo_stars_event_max_datetime": "2020-12-30T06:18:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-02T14:11:00.000Z",
"num_tokens": 1151,
"size": 2991
}
|
open import Agda.Builtin.Unit
open import Agda.Builtin.List
open import Agda.Builtin.Nat
open import Agda.Builtin.Equality
open import Agda.Builtin.Reflection
open import Agda.Builtin.Sigma
macro
@0 trivial : Term → TC ⊤
trivial = unify (con (quote refl) [])
test : 42 ≡ 42
test = trivial
@0 m : Name → TC ⊤
m F = defineFun F
(clause
(( "A"
, arg (arg-info visible (modality relevant quantity-0))
(agda-sort (lit 0))) ∷
[])
(arg (arg-info visible (modality relevant quantity-0)) (var 0) ∷
[])
(var 0 []) ∷
[])
F : Set → Set
unquoteDef F = m F
|
{
"alphanum_fraction": 0.6227045075,
"avg_line_length": 20.6551724138,
"ext": "agda",
"hexsha": "9f5918de2475b5495f2a90d5601417037eaa2ec3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "Seanpm2001-Agda-lang/agda",
"max_forks_repo_path": "test/Succeed/ErasedMacro.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "Seanpm2001-Agda-lang/agda",
"max_issues_repo_path": "test/Succeed/ErasedMacro.agda",
"max_line_length": 69,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Succeed/ErasedMacro.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-05T00:25:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-05T00:25:14.000Z",
"num_tokens": 194,
"size": 599
}
|
open import Level using () renaming (_⊔_ to _⊔ˡ_)
open import Data.Product using (_,_; proj₁)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Relation.Nullary using (yes; no; ¬_)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Binary using (Reflexive; Symmetric; Transitive; Setoid; Tri)
open Tri
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_) renaming (refl to ≡-refl; sym to ≡-sym)
open import Algebra.Bundles using (RawRing)
open import AKS.Algebra.Bundles using (DecField)
module AKS.Polynomial.Base {c ℓ} (F : DecField c ℓ) where
open import Data.Unit using (⊤; tt)
open import Agda.Builtin.FromNat using (Number)
open import AKS.Nat using (ℕ; _∸_; _≤_; _<_; lte; pred) renaming (_+_ to _+ℕ_; _⊔_ to _⊔ℕ_)
open ℕ
open import AKS.Nat using (≢⇒¬≟; <-cmp; ≤-totalOrder; m<n⇒n∸m≢0)
open import AKS.Nat using (ℕ⁺; ⟅_⇓⟆; ⟅_⇑⟆)
open import AKS.Nat.WellFounded using (Acc; acc; <-well-founded)
open DecField F
using (0#; 1#; _+_; _*_; -_; _-_; _⁻¹; _/_; C/0)
renaming (Carrier to C)
open DecField F using (_≈_; _≈?_; setoid)
open Setoid setoid using (refl; sym; trans)
open DecField F
using (*-commutativeMonoid; 1#-nonzero; -1#-nonzero; _*-nonzero_; _/-nonzero_)
open import AKS.Exponentiation *-commutativeMonoid using (_^_; _^⁺_)
data Spine : Set (c ⊔ˡ ℓ) where
K : C/0 → Spine
_+x^_∙_ : C/0 → ℕ⁺ → Spine → Spine
data Polynomial : Set (c ⊔ˡ ℓ) where
0ᵖ : Polynomial
x^_∙_ : ℕ → Spine → Polynomial
⟦_⟧ˢ : Spine → C → C
⟦ K c ⟧ˢ x = proj₁ c
⟦ c +x^ n ∙ p ⟧ˢ x = proj₁ c + x ^⁺ n * ⟦ p ⟧ˢ x
⟦_⟧ : Polynomial → C → C
⟦ 0ᵖ ⟧ x = 0#
⟦ x^ n ∙ p ⟧ x = x ^ n * ⟦ p ⟧ˢ x
1ᵖ : Polynomial
1ᵖ = x^ 0 ∙ K 1#-nonzero
_+?_ : ∀ (k₁ k₂ : C/0) → (proj₁ k₁ + proj₁ k₂ ≈ 0#) ⊎ C/0
k₁ +? k₂ with proj₁ k₁ + proj₁ k₂ ≈? 0#
... | yes k₁+k₂≈0 = inj₁ k₁+k₂≈0
... | no k₁+k₂≉0 = inj₂ (proj₁ k₁ + proj₁ k₂ , k₁+k₂≉0)
+ᵖ-spine-≡-K : ℕ → C/0 → Spine → Polynomial
+ᵖ-spine-≡-K n c₁ (K c₂) with c₁ +? c₂
... | inj₁ _ = 0ᵖ
... | inj₂ c₁+c₂ = x^ n ∙ K c₁+c₂
+ᵖ-spine-≡-K n c₁ (c₂ +x^ i₂ ∙ q) with c₁ +? c₂
... | inj₁ _ = x^ (n +ℕ ⟅ i₂ ⇓⟆) ∙ q
... | inj₂ c₁+c₂ = x^ n ∙ (c₁+c₂ +x^ i₂ ∙ q)
+ᵖ-spine-≡ : ℕ → Spine → Spine → Polynomial
+ᵖ-spine-< : (n : ℕ) → Spine → (m : ℕ) → Spine → n < m → Polynomial
+ᵖ-spine : ℕ → Spine → ℕ → Spine → Polynomial
+ᵖ-spine-≡ n (K c₁) q = +ᵖ-spine-≡-K n c₁ q
+ᵖ-spine-≡ n (c₁ +x^ i₁ ∙ p) (K c₂) = +ᵖ-spine-≡-K n c₂ (c₁ +x^ i₁ ∙ p)
+ᵖ-spine-≡ n (c₁ +x^ i₁ ∙ p) (c₂ +x^ i₂ ∙ q) with c₁ +? c₂
... | inj₁ _ = +ᵖ-spine (n +ℕ ⟅ i₁ ⇓⟆) p (n +ℕ ⟅ i₂ ⇓⟆) q
... | inj₂ c₁+c₂ with +ᵖ-spine ⟅ i₁ ⇓⟆ p ⟅ i₂ ⇓⟆ q
... | 0ᵖ = x^ n ∙ K c₁+c₂
... | x^ zero ∙ r = +ᵖ-spine-≡-K n c₁+c₂ r
... | x^ suc n₃ ∙ r = x^ n ∙ (c₁+c₂ +x^ ⟅ suc n₃ ⇑⟆ ∙ r)
+ᵖ-spine-< n₁ (K c₁) n₂ q n₁<n₂ = x^ n₁ ∙ (c₁ +x^ ⟅ n₂ ∸ n₁ ⇑⟆ {≢⇒¬≟ (m<n⇒n∸m≢0 n₁<n₂)} ∙ q)
+ᵖ-spine-< n₁ (c₁ +x^ i₁ ∙ p) n₂ q n₁<n₂ with +ᵖ-spine ⟅ i₁ ⇓⟆ p (n₂ ∸ n₁) q
... | 0ᵖ = x^ n₁ ∙ K c₁
... | x^ zero ∙ r = +ᵖ-spine-≡-K n₁ c₁ r
... | x^ suc n₃ ∙ r = x^ n₁ ∙ (c₁ +x^ ⟅ suc n₃ ⇑⟆ ∙ r)
+ᵖ-spine n₁ p n₂ q with <-cmp n₁ n₂
... | tri< n₁<n₂ _ _ = +ᵖ-spine-< n₁ p n₂ q n₁<n₂
... | tri≈ _ n₁≡n₂ _ = +ᵖ-spine-≡ n₁ p q
... | tri> _ _ n₁>n₂ = +ᵖ-spine-< n₂ q n₁ p n₁>n₂
infixl 6 _+ᵖ_
_+ᵖ_ : Polynomial → Polynomial → Polynomial
0ᵖ +ᵖ q = q
(x^ n₁ ∙ p) +ᵖ 0ᵖ = x^ n₁ ∙ p
(x^ n₁ ∙ p) +ᵖ (x^ n₂ ∙ q) = +ᵖ-spine n₁ p n₂ q
_∙𝑋^_ : C/0 → ℕ → Polynomial
c ∙𝑋^ n = x^ n ∙ K c
𝑋^_ : ℕ → Polynomial
𝑋^ n = 1#-nonzero ∙𝑋^ n
𝑋 : Polynomial
𝑋 = 𝑋^ 1
𝐾 : C → Polynomial
𝐾 c with c ≈? 0#
... | yes _ = 0ᵖ
... | no c≉0 = (c , c≉0) ∙𝑋^ 0
∙ᵖ-spine : C/0 → Spine → Spine
∙ᵖ-spine c₁ (K c₂) = K (c₁ *-nonzero c₂)
∙ᵖ-spine c₁ (c₂ +x^ n ∙ p) = (c₁ *-nonzero c₂) +x^ n ∙ (∙ᵖ-spine c₁ p)
infixl 7 _∙ᵖ_
_∙ᵖ_ : C/0 → Polynomial → Polynomial
c ∙ᵖ 0ᵖ = 0ᵖ
c ∙ᵖ (x^ n ∙ p) = x^ n ∙ (∙ᵖ-spine c p)
*ᵖ-spine : ℕ → Spine → ℕ → Spine → Polynomial
*ᵖ-spine o₁ (K c₁) o₂ q = x^ (o₁ +ℕ o₂) ∙ (∙ᵖ-spine c₁ q)
*ᵖ-spine o₁ (c₁ +x^ n₁ ∙ p) o₂ (K c₂) = x^ (o₁ +ℕ o₂) ∙ (∙ᵖ-spine c₂ (c₁ +x^ n₁ ∙ p))
*ᵖ-spine o₁ (c₁ +x^ n₁ ∙ p) o₂ (c₂ +x^ n₂ ∙ q) =
x^ (o₁ +ℕ o₂) ∙ K (c₁ *-nonzero c₂) +ᵖ
c₁ ∙ᵖ x^ (o₁ +ℕ o₂ +ℕ ⟅ n₂ ⇓⟆) ∙ q +ᵖ
c₂ ∙ᵖ (x^ (o₁ +ℕ o₂ +ℕ ⟅ n₁ ⇓⟆) ∙ p) +ᵖ
*ᵖ-spine (o₁ +ℕ ⟅ n₁ ⇓⟆) p (o₂ +ℕ ⟅ n₂ ⇓⟆) q
-- (c₁ + x ^ n₁ * p[x]) * (c₂ + x ^ n₂ * q[x]) = (c₁ * c₂) + (c₁ * x ^ n₂ * q[x]) + (x ^ n₁ * p[x] * c₂) + (x ^ n₁ * p[x] * x ^ n₂ * q[x])
infixl 7 _*ᵖ_
_*ᵖ_ : Polynomial → Polynomial → Polynomial
0ᵖ *ᵖ q = 0ᵖ
(x^ n₁ ∙ p) *ᵖ 0ᵖ = 0ᵖ
(x^ n₁ ∙ p) *ᵖ (x^ n₂ ∙ q) = *ᵖ-spine n₁ p n₂ q
infix 6 -ᵖ_
-ᵖ_ : Polynomial → Polynomial
-ᵖ p = -1#-nonzero ∙ᵖ p
infixl 6 _-ᵖ_
_-ᵖ_ : Polynomial → Polynomial → Polynomial
p -ᵖ q = p +ᵖ (-ᵖ q)
data Polynomialⁱ : Set c where
0ⁱ : Polynomialⁱ
_+x∙_ : C → Polynomialⁱ → Polynomialⁱ
1ⁱ : Polynomialⁱ
1ⁱ = 1# +x∙ 0ⁱ
infixl 6 _+ⁱ_
_+ⁱ_ : Polynomialⁱ → Polynomialⁱ → Polynomialⁱ
0ⁱ +ⁱ q = q
(c₁ +x∙ p) +ⁱ 0ⁱ = c₁ +x∙ p
(c₁ +x∙ p) +ⁱ (c₂ +x∙ q) = (c₁ + c₂) +x∙ (p +ⁱ q)
infixl 7 _∙ⁱ_
_∙ⁱ_ : C → Polynomialⁱ → Polynomialⁱ
a ∙ⁱ 0ⁱ = 0ⁱ
a ∙ⁱ (c +x∙ p) = (a * c) +x∙ (a ∙ⁱ p)
infix 8 x∙_
x∙_ : Polynomialⁱ → Polynomialⁱ
x∙ p = 0# +x∙ p
infixl 7 _*ⁱ_
_*ⁱ_ : Polynomialⁱ → Polynomialⁱ → Polynomialⁱ
0ⁱ *ⁱ q = 0ⁱ
(c₁ +x∙ p) *ⁱ 0ⁱ = 0ⁱ
(c₁ +x∙ p) *ⁱ (c₂ +x∙ q) = (c₁ * c₂) +x∙ (c₁ ∙ⁱ q +ⁱ c₂ ∙ⁱ p +ⁱ x∙ (p *ⁱ q))
-ⁱ_ : Polynomialⁱ → Polynomialⁱ
-ⁱ p = (- 1#) ∙ⁱ p
infixl 6 _-ⁱ_
_-ⁱ_ : Polynomialⁱ → Polynomialⁱ → Polynomialⁱ
p -ⁱ q = p +ⁱ (-ⁱ q)
expandˢ : ℕ → Spine → Polynomialⁱ
expandˢ zero (K c) = proj₁ c +x∙ 0ⁱ
expandˢ zero (c +x^ n ∙ s) = proj₁ c +x∙ expandˢ (pred ⟅ n ⇓⟆) s
expandˢ (suc n) s = 0# +x∙ expandˢ n s
expand : Polynomial → Polynomialⁱ
expand 0ᵖ = 0ⁱ
expand (x^ n ∙ p) = expandˢ n p
constant : C → Polynomial
constant c with c ≈? 0#
... | yes _ = 0ᵖ
... | no c≉0 = (c , c≉0) ∙𝑋^ 0
simplify : Polynomialⁱ → Polynomial
simplify 0ⁱ = 0ᵖ
simplify (c₁ +x∙ p) with c₁ ≈? 0# | simplify p
... | yes _ | 0ᵖ = 0ᵖ
... | yes _ | x^ n ∙ q = x^ suc n ∙ q
... | no c₁≉0 | 0ᵖ = x^ 0 ∙ (K (c₁ , c₁≉0))
... | no c₁≉0 | x^ n ∙ q = x^ 0 ∙ ((c₁ , c₁≉0) +x^ ⟅ suc n ⇑⟆ ∙ q)
data _≈ˢ_ : Spine → Spine → Set (c ⊔ˡ ℓ) where
K≈ : ∀ {c₁ c₂} → proj₁ c₁ ≈ proj₁ c₂ → K c₁ ≈ˢ K c₂
+≈ : ∀ {c₁ c₂} {n₁ n₂} {p q} → proj₁ c₁ ≈ proj₁ c₂ → n₁ ≡ n₂ → p ≈ˢ q → (c₁ +x^ n₁ ∙ p) ≈ˢ (c₂ +x^ n₂ ∙ q)
infix 4 _≈ᵖ_
data _≈ᵖ_ : Polynomial → Polynomial → Set (c ⊔ˡ ℓ) where
0ᵖ≈ : 0ᵖ ≈ᵖ 0ᵖ
0ᵖ≉ : ∀ {o₁ o₂} {p q} → o₁ ≡ o₂ → p ≈ˢ q → x^ o₁ ∙ p ≈ᵖ x^ o₂ ∙ q
infix 4 _≉ᵖ_
_≉ᵖ_ : Polynomial → Polynomial → Set (c ⊔ˡ ℓ)
p ≉ᵖ q = ¬ (p ≈ᵖ q)
≈ᵖ-refl : Reflexive _≈ᵖ_
≈ᵖ-refl {0ᵖ} = 0ᵖ≈
≈ᵖ-refl {x^ n ∙ p} = 0ᵖ≉ ≡-refl ≈ˢ-refl
where
≈ˢ-refl : Reflexive _≈ˢ_
≈ˢ-refl {K c} = K≈ refl
≈ˢ-refl {c +x^ n ∙ p} = +≈ refl ≡-refl ≈ˢ-refl
≈ᵖ-sym : Symmetric _≈ᵖ_
≈ᵖ-sym {0ᵖ} {0ᵖ} 0ᵖ≈ = 0ᵖ≈
≈ᵖ-sym {x^ n ∙ p} {x^ n ∙ q} (0ᵖ≉ ≡-refl p≈ˢq) = 0ᵖ≉ ≡-refl (≈ˢ-sym p≈ˢq)
where
≈ˢ-sym : Symmetric _≈ˢ_
≈ˢ-sym {K c₁} {K c₂} (K≈ c₁≈c₂) = K≈ (sym c₁≈c₂)
≈ˢ-sym {c₁ +x^ n ∙ p} {c₂ +x^ n ∙ q} (+≈ c₁≈c₂ ≡-refl p≈ˢq) = +≈ (sym c₁≈c₂) ≡-refl (≈ˢ-sym p≈ˢq)
≈ᵖ-trans : Transitive _≈ᵖ_
≈ᵖ-trans {0ᵖ} {0ᵖ} {0ᵖ} 0ᵖ≈ 0ᵖ≈ = 0ᵖ≈
≈ᵖ-trans {_} {_} {_} (0ᵖ≉ ≡-refl p≈ˢq) (0ᵖ≉ ≡-refl q≈ˢr) = 0ᵖ≉ ≡-refl (≈ˢ-trans p≈ˢq q≈ˢr)
where
≈ˢ-trans : Transitive _≈ˢ_
≈ˢ-trans (K≈ c₁≈c₂) (K≈ c₂≈c₃) = K≈ (trans c₁≈c₂ c₂≈c₃)
≈ˢ-trans (+≈ c₁≈c₂ ≡-refl p≈ˢq) (+≈ c₂≈c₃ ≡-refl q≈ˢr) = +≈ (trans c₁≈c₂ c₂≈c₃) ≡-refl (≈ˢ-trans p≈ˢq q≈ˢr)
infix 4 _≈ⁱ_
data _≈ⁱ_ : Polynomialⁱ → Polynomialⁱ → Set (c ⊔ˡ ℓ) where
0≈0 : 0ⁱ ≈ⁱ 0ⁱ
0≈+ : ∀ {c} {p} → c ≈ 0# → 0ⁱ ≈ⁱ p → 0ⁱ ≈ⁱ c +x∙ p
+≈0 : ∀ {c} {p} → c ≈ 0# → 0ⁱ ≈ⁱ p → c +x∙ p ≈ⁱ 0ⁱ
+≈+ : ∀ {c₁ c₂} {p q} → c₁ ≈ c₂ → p ≈ⁱ q → c₁ +x∙ p ≈ⁱ c₂ +x∙ q
infix 4 _≉ⁱ_
_≉ⁱ_ : Polynomialⁱ → Polynomialⁱ → Set (c ⊔ˡ ℓ)
p ≉ⁱ q = ¬ (p ≈ⁱ q)
≈ⁱ-refl : Reflexive _≈ⁱ_
≈ⁱ-refl {0ⁱ} = 0≈0
≈ⁱ-refl {c +x∙ p} = +≈+ refl ≈ⁱ-refl
≈ⁱ-sym : Symmetric _≈ⁱ_
≈ⁱ-sym 0≈0 = 0≈0
≈ⁱ-sym (0≈+ c≈0 0≈p) = +≈0 c≈0 0≈p
≈ⁱ-sym (+≈0 c≈0 0≈p) = 0≈+ c≈0 0≈p
≈ⁱ-sym (+≈+ c₁≈c₂ p≈q) = +≈+ (sym c₁≈c₂) (≈ⁱ-sym p≈q)
≈ⁱ-trans : Transitive _≈ⁱ_
≈ⁱ-trans 0≈0 q = q
≈ⁱ-trans (0≈+ c₁≈0 0≈p) (+≈0 c₂≈0 0≈q) = 0≈0
≈ⁱ-trans (0≈+ c₁≈0 0≈p) (+≈+ c₁≈c₂ p≈q) = 0≈+ (trans (sym c₁≈c₂) c₁≈0) (≈ⁱ-trans 0≈p p≈q)
≈ⁱ-trans (+≈0 c₁≈0 0≈p) 0≈0 = +≈0 c₁≈0 0≈p
≈ⁱ-trans (+≈0 c₁≈0 0≈p) (0≈+ c₂≈0 0≈q) = +≈+ (trans c₁≈0 (sym c₂≈0)) (≈ⁱ-trans (≈ⁱ-sym 0≈p) 0≈q)
≈ⁱ-trans (+≈+ c₁≈c₂ p≈q) (+≈0 c₂≈0 0≈q) = +≈0 (trans c₁≈c₂ c₂≈0) (≈ⁱ-trans 0≈q (≈ⁱ-sym p≈q))
≈ⁱ-trans (+≈+ c₁≈c₂ p≈q) (+≈+ c₂≈c₃ q≈r) = +≈+ (trans c₁≈c₂ c₂≈c₃) (≈ⁱ-trans p≈q q≈r)
+ᵖ-*ᵖ-rawRing : RawRing (c ⊔ˡ ℓ) (c ⊔ˡ ℓ)
+ᵖ-*ᵖ-rawRing = record
{ Carrier = Polynomial
; _≈_ = _≈ᵖ_
; _+_ = _+ᵖ_
; _*_ = _*ᵖ_
; -_ = -ᵖ_
; 0# = 0ᵖ
; 1# = 1ᵖ
}
+ⁱ-*ⁱ-rawRing : RawRing c (c ⊔ˡ ℓ)
+ⁱ-*ⁱ-rawRing = record
{ Carrier = Polynomialⁱ
; _≈_ = _≈ⁱ_
; _+_ = _+ⁱ_
; _*_ = _*ⁱ_
; -_ = -ⁱ_
; 0# = 0ⁱ
; 1# = 1ⁱ
}
open import AKS.Extended ≤-totalOrder
using (module ≤ᵉ-Reasoning)
renaming
( Extended to Degree
; _≤ᵉ_ to _≤ᵈ_
; ≤ᵉ-refl to ≤ᵈ-refl
; ≤ᵉ-trans to ≤ᵈ-trans
)
public
open Degree public
open _≤ᵈ_ public
module ≤ᵈ-Reasoning where
open ≤ᵉ-Reasoning renaming (_∼⟨_⟩_ to _≤ᵈ⟨_⟩_; _∎ to _∎ᵈ; _≡⟨_⟩_ to _≡ᵈ⟨_⟩_) public
instance
Degree-number : Number Degree
Degree-number = record
{ Constraint = λ _ → ⊤
; fromNat = λ n → ⟨ n ⟩
}
infixl 5 _⊔ᵈ_
_⊔ᵈ_ : Degree → Degree → Degree
-∞ ⊔ᵈ d₂ = d₂
⟨ d₁ ⟩ ⊔ᵈ -∞ = ⟨ d₁ ⟩
⟨ d₁ ⟩ ⊔ᵈ ⟨ d₂ ⟩ = ⟨ d₁ ⊔ℕ d₂ ⟩
infixl 5 _+ᵈ_
_+ᵈ_ : Degree → Degree → Degree
-∞ +ᵈ d₂ = -∞
⟨ d₁ ⟩ +ᵈ -∞ = -∞
⟨ d₁ ⟩ +ᵈ ⟨ d₂ ⟩ = ⟨ d₁ +ℕ d₂ ⟩
degreeˢ : Spine → ℕ
degreeˢ (K c) = 0
degreeˢ (c +x^ n ∙ p) = ⟅ n ⇓⟆ +ℕ degreeˢ p
degree : Polynomial → Degree
degree 0ᵖ = -∞
degree (x^ n ∙ p) = ⟨ n +ℕ degreeˢ p ⟩
deg : ∀ p {p≉0 : p ≉ᵖ 0ᵖ} → ℕ
deg 0ᵖ {p≉0} = contradiction ≈ᵖ-refl p≉0
deg (x^ n ∙ p) {p≉0} = n +ℕ degreeˢ p
degreeⁱ : Polynomialⁱ → Degree
degreeⁱ 0ⁱ = -∞
degreeⁱ (c +x∙ p) with degreeⁱ p
... | ⟨ n ⟩ = ⟨ suc n ⟩
... | -∞ with c ≈? 0#
... | yes _ = -∞
... | no _ = 0
open import Data.String using (String; _++_)
open import Data.Nat.Show using () renaming (show to show-ℕ)
show-Polynomial : (C → String) → Polynomial → String
show-Polynomial show-c 0ᵖ = "0"
show-Polynomial show-c (x^ n ∙ p) = loop n p
where
loop : ℕ → Spine → String
loop zero (K c) = show-c (proj₁ c)
loop zero (c +x^ n ∙ p) = show-c (proj₁ c) ++ " + " ++ loop ⟅ n ⇓⟆ p
loop (suc n) (K c) = show-c (proj₁ c) ++ " * X^" ++ show-ℕ (suc n)
loop (suc n) (c +x^ m ∙ p) = show-c (proj₁ c) ++ " * X^" ++ show-ℕ (suc n) ++ " + " ++ loop (suc n +ℕ ⟅ m ⇓⟆) p
|
{
"alphanum_fraction": 0.5269032627,
"avg_line_length": 29.5267605634,
"ext": "agda",
"hexsha": "5283e54464aaa79d0fd12821d9cc1636ba986eca",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mckeankylej/thesis",
"max_forks_repo_path": "proofs/AKS/Polynomial/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mckeankylej/thesis",
"max_issues_repo_path": "proofs/AKS/Polynomial/Base.agda",
"max_line_length": 138,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mckeankylej/thesis",
"max_stars_repo_path": "proofs/AKS/Polynomial/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z",
"num_tokens": 6473,
"size": 10482
}
|
{-# OPTIONS --erased-cubical #-}
module SMain where
open import Data.List using (map)
open import Data.Nat using (_*_)
open import Data.Unit using (⊤)
open import Midi using (IO; exportTracks; track→htrack)
open import Soundness using (soundTracks)
open import Motif using (multiplier)
main : IO ⊤
main =
let ticksPerBeat = 4 * multiplier -- (1 = quarter notes; 4 = 16th notes)
file = "/Users/leo/Music/MusicTools/test.mid"
song = soundTracks
in exportTracks file ticksPerBeat (map track→htrack song)
|
{
"alphanum_fraction": 0.6824817518,
"avg_line_length": 27.4,
"ext": "agda",
"hexsha": "50e6cfcbbd00e73547194f0263511d43bff5a1d4",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-11-10T04:05:31.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-11-10T04:05:31.000Z",
"max_forks_repo_head_hexsha": "5d9a1bbfbe52f55acf33d960763dce0872689c2b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "halfaya/Music",
"max_forks_repo_path": "Soundness/agda/SMain.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5d9a1bbfbe52f55acf33d960763dce0872689c2b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "halfaya/Music",
"max_issues_repo_path": "Soundness/agda/SMain.agda",
"max_line_length": 74,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "5d9a1bbfbe52f55acf33d960763dce0872689c2b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "halfaya/Music",
"max_stars_repo_path": "Soundness/agda/SMain.agda",
"max_stars_repo_stars_event_max_datetime": "2020-11-10T04:05:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-11-10T04:05:28.000Z",
"num_tokens": 149,
"size": 548
}
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Connecting Parametric.Change.Term and Parametric.Change.Value.
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Denotation.Evaluation as Evaluation
import Parametric.Change.Type as ChangeType
import Parametric.Change.Term as ChangeTerm
import Parametric.Change.Value as ChangeValue
module Parametric.Change.Evaluation
{Base : Type.Structure}
{Const : Term.Structure Base}
(⟦_⟧Base : Value.Structure Base)
(⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base)
(ΔBase : ChangeType.Structure Base)
(apply-base : ChangeTerm.ApplyStructure Const ΔBase)
(diff-base : ChangeTerm.DiffStructure Const ΔBase)
(nil-base : ChangeTerm.NilStructure Const ΔBase)
(⟦apply-base⟧ : ChangeValue.ApplyStructure Const ⟦_⟧Base ΔBase)
(⟦diff-base⟧ : ChangeValue.DiffStructure Const ⟦_⟧Base ΔBase)
(⟦nil-base⟧ : ChangeValue.NilStructure Const ⟦_⟧Base ΔBase)
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const
open ChangeType.Structure Base ΔBase
open ChangeTerm.Structure Const ΔBase apply-base diff-base nil-base
open ChangeValue.Structure Const ⟦_⟧Base ΔBase ⟦apply-base⟧ ⟦diff-base⟧ ⟦nil-base⟧
open import Relation.Binary.PropositionalEquality
open import Base.Denotation.Notation
open import Postulate.Extensionality
-- Extension point 1: Relating ⊕ and its value on base types
ApplyStructure : Set
ApplyStructure = ∀ ι {Γ} →
{t : Term Γ (base ι)} {Δt : Term Γ (ΔType (base ι))} {ρ : ⟦ Γ ⟧} →
⟦ t ⟧ ρ ⟦⊕₍ base ι ₎⟧ ⟦ Δt ⟧ ρ ≡ ⟦ t ⊕₍ base ι ₎ Δt ⟧ ρ
-- Extension point 2: Relating ⊝ and its value on base types
DiffStructure : Set
DiffStructure = ∀ ι {Γ} →
{s : Term Γ (base ι)} {t : Term Γ (base ι)} {ρ : ⟦ Γ ⟧} →
⟦ s ⟧ ρ ⟦⊝₍ base ι ₎⟧ ⟦ t ⟧ ρ ≡ ⟦ s ⊝₍ base ι ₎ t ⟧ ρ
-- Extension point 3: Relating nil-term and its value on base types
NilStructure : Set
NilStructure = ∀ ι {Γ} →
{t : Term Γ (base ι)} {ρ : ⟦ Γ ⟧} →
⟦nil₍ base ι ₎⟧ (⟦ t ⟧ ρ) ≡ ⟦ onil₍ base ι ₎ t ⟧ ρ
module Structure
(meaning-⊕-base : ApplyStructure)
(meaning-⊝-base : DiffStructure)
(meaning-onil-base : NilStructure)
where
-- unique names with unambiguous types
-- to help type inference figure things out
private
module Disambiguation where
infixr 9 _⋆_
_⋆_ : Type → Context → Context
_⋆_ = _•_
-- We provide: Relating ⊕ and ⊝ and their values on arbitrary types.
meaning-⊕ : ∀ {τ Γ}
{t : Term Γ τ} {Δt : Term Γ (ΔType τ)} {ρ : ⟦ Γ ⟧} →
⟦ t ⟧ ρ ⟦⊕₍ τ ₎⟧ ⟦ Δt ⟧ ρ ≡ ⟦ t ⊕₍ τ ₎ Δt ⟧ ρ
meaning-⊝ : ∀ {τ Γ}
{s : Term Γ τ} {t : Term Γ τ} {ρ : ⟦ Γ ⟧} →
⟦ s ⟧ ρ ⟦⊝₍ τ ₎⟧ ⟦ t ⟧ ρ ≡ ⟦ s ⊝₍ τ ₎ t ⟧ ρ
meaning-onil : ∀ {τ Γ}
{t : Term Γ τ} {ρ : ⟦ Γ ⟧} →
⟦nil₍ τ ₎⟧ (⟦ t ⟧ ρ) ≡ ⟦ onil₍ τ ₎ t ⟧ ρ
meaning-⊕ {base ι} {Γ} {τ} {Δt} {ρ} = meaning-⊕-base ι {Γ} {τ} {Δt} {ρ}
meaning-⊕ {σ ⇒ τ} {Γ} {t} {Δt} {ρ} = ext (λ v →
let
Γ′ = σ ⋆ (σ ⇒ τ) ⋆ ΔType (σ ⇒ τ) ⋆ Γ
ρ′ : ⟦ Γ′ ⟧
ρ′ = v • (⟦ t ⟧ ρ) • (⟦ Δt ⟧ ρ) • ρ
x : Term Γ′ σ
x = var this
f : Term Γ′ (σ ⇒ τ)
f = var (that this)
Δf : Term Γ′ (ΔType (σ ⇒ τ))
Δf = var (that (that this))
y = app f x
Δy = app (app Δf x) (onil x)
in
begin
⟦ t ⟧ ρ v ⟦⊕₍ τ ₎⟧ ⟦ Δt ⟧ ρ v (⟦nil₍ σ ₎⟧ v)
≡⟨ cong (λ hole → ⟦ t ⟧ ρ v ⟦⊕₍ τ ₎⟧ ⟦ Δt ⟧ ρ v hole)
(meaning-onil {t = x} {ρ′}) ⟩
⟦ t ⟧ ρ v ⟦⊕₍ τ ₎⟧ ⟦ Δt ⟧ ρ v (⟦ onil x ⟧ ρ′)
≡⟨ meaning-⊕ {t = y} {Δt = Δy} {ρ′} ⟩
⟦ y ⊕₍ τ ₎ Δy ⟧ ρ′
∎)
where
open ≡-Reasoning
open Disambiguation
meaning-⊝ {base ι} {Γ} {s} {t} {ρ} = meaning-⊝-base ι {Γ} {s} {t} {ρ}
meaning-⊝ {σ ⇒ τ} {Γ} {s} {t} {ρ} =
ext (λ v → ext (λ Δv →
let
Γ′ = ΔType σ ⋆ σ ⋆ (σ ⇒ τ) ⋆ (σ ⇒ τ) ⋆ Γ
ρ′ : ⟦ Γ′ ⟧Context
ρ′ = Δv • v • ⟦ t ⟧Term ρ • ⟦ s ⟧Term ρ • ρ
Δx : Term Γ′ (ΔType σ)
Δx = var this
x : Term Γ′ σ
x = var (that this)
f : Term Γ′ (σ ⇒ τ)
f = var (that (that this))
g : Term Γ′ (σ ⇒ τ)
g = var (that (that (that this)))
y = app f x
y′ = app g (x ⊕₍ σ ₎ Δx)
in
begin
⟦ s ⟧ ρ (v ⟦⊕₍ σ ₎⟧ Δv) ⟦⊝₍ τ ₎⟧ ⟦ t ⟧ ρ v
≡⟨ cong (λ hole → ⟦ s ⟧ ρ hole ⟦⊝₍ τ ₎⟧ ⟦ t ⟧ ρ v)
(meaning-⊕ {t = x} {Δt = Δx} {ρ′}) ⟩
⟦ s ⟧ ρ (⟦ x ⊕₍ σ ₎ Δx ⟧ ρ′) ⟦⊝₍ τ ₎⟧ ⟦ t ⟧ ρ v
≡⟨ meaning-⊝ {s = y′} {y} {ρ′} ⟩
⟦ y′ ⊝ y ⟧ ρ′
∎))
where
open ≡-Reasoning
open Disambiguation
meaning-onil {base ι} {Γ} {t} {ρ} = meaning-onil-base ι {Γ} {t} {ρ}
meaning-onil {σ ⇒ τ} {Γ} {t} {ρ} = meaning-⊝ {σ ⇒ τ} {Γ} {t} {t} {ρ}
-- Ideally, this proof should simply be:
-- meaning-⊝ {σ ⇒ τ} {Γ} {t} {t} {ρ}
--
-- However, the types of the results don't match because using onil constructs
-- different environments.
|
{
"alphanum_fraction": 0.526553008,
"avg_line_length": 34.02,
"ext": "agda",
"hexsha": "7ce7098398db217176e93b7fcf98f7b9068cbe60",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Parametric/Change/Evaluation.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Parametric/Change/Evaluation.agda",
"max_line_length": 82,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Parametric/Change/Evaluation.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 2232,
"size": 5103
}
|
module TelescopingLet1 where
f : (let ★ = Set) (A : ★) → A → A
f A x = x
data X : ★ where
-- should fail, since ★ is not in global scope
|
{
"alphanum_fraction": 0.5971223022,
"avg_line_length": 17.375,
"ext": "agda",
"hexsha": "899418079a13b18401c3997dacc62e9e2a065077",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/TelescopingLet1.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/TelescopingLet1.agda",
"max_line_length": 46,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/TelescopingLet1.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 50,
"size": 139
}
|
-- Andreas, 2017-09-03, issue #2729.
-- Expect non-indexed or -primed variables when splitting.
-- {-# OPTIONS -v interaction.case:100 #-}
-- {-# OPTIONS -v tc.cover:40 #-}
data Size : Set where
↑ : Size → Size
data Nat : Size → Set where
zero : ∀ i → Nat (↑ i)
suc : ∀ i → Nat i → Nat (↑ i)
pred : ∀ i → Nat i → Nat i
pred i x = {!x!} -- C-c C-c
-- WRONG (agda-2.5.3):
-- pred .(↑ i₁) (zero i₁) = ?
-- pred .(↑ i₁) (suc i₁ x) = ?
-- EXPECTED (correct in agda-2.5.1.1):
-- pred .(↑ i) (zero i) = ?
-- pred .(↑ i) (suc i x) = ?
|
{
"alphanum_fraction": 0.5212569316,
"avg_line_length": 22.5416666667,
"ext": "agda",
"hexsha": "34d91d239f5cb6e1a752a915086835dca2f2e58c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue2729.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue2729.agda",
"max_line_length": 58,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue2729.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 213,
"size": 541
}
|
-- Andreas, 2017-07-29, issue #2644 reported by Christian Sattler
--
-- Silly mistake in expandRecordVar:
-- Substitution applied to ListTel instead of Telescope.
-- (Messed up the de Bruijn indices, garbage.)
-- This file should pass with lots of yellow.
{-# OPTIONS --allow-unsolved-metas #-}
-- {-# OPTIONS -v tc.meta.assign.proj:45 #-}
-- OLD:
-- {-# OPTIONS -v tc.cc:20 #-}
-- {-# OPTIONS -v tc.lhs:10 #-}
-- {-# OPTIONS -v tc.decl:10 #-}
-- {-# OPTIONS -v tc.ip:20 #-}
-- {-# OPTIONS -v tc.check.internal:20 #-}
-- {-# OPTIONS -v tc.meta.check:30 #-}
-- {-# OPTIONS -v tc:20 #-}
-- {-# OPTIONS -v tc.meta:50 #-}
-- {-# OPTIONS -v tc:45 #-}
-- {-# OPTIONS -v tc.term.exlam:100 -v tc:90 #-}
record Σ (A¹ : Set) (B¹ : A¹ → Set) : Set where
constructor pair
field
fst : A¹
snd : B¹ fst
open Σ
postulate
Path : (A² : Set) → A² → A² → Set
path : (A³ : Set) → Path _ _ _
record S : Set₁ where
constructor mkS
field
Aₛ : Set
Bₛ : (aₛ¹ : Aₛ) → Set
zₛ : (aₛ² : Aₛ) → Bₛ aₛ²
record T : Set₁ where
constructor mkT
field
A : Set
B : (a¹ : A) → Set
z : (a² : A) → B a²
s : (a³ : A) → B a³ → B a³
p : (a⁴ : A) (f : B a⁴) → Path _ f (s _ (z _))
-- passes without the matching
f₀ : S → T
f₀ X = record { A = Σ _ _
; B = λ b → Σ _ _ -- λ { (b₁ , b₂) → Σ _ _ }
; z = λ z₁ → pair (S.zₛ X _) _
; s = λ s₁ s₂ → _
; p = λ p₁ p₂ → path _
}
-- This was my final variant
module Final where
mutual
TA : S → Set
TA Z = Σ _ _
aux : (Y : S) → TA Y → Set
aux Y (pair b¹ b²) = Σ _ _ -- fails
fₐ : S → T
fₐ X = record { A = TA X
; B = aux X
; z = λ (z¹ : TA X) → pair (S.zₛ X _) _
; s = λ (s¹ : TA X) (s² : aux X s¹) → _
; p = λ (p¹ : TA X) (p² : aux X p¹) → path _
}
-- Intermediate
fₐᵤ : S → T
fₐᵤ X = record { A = TA
; B = aux
; z = λ (z₁ : TA) → pair (S.zₛ X _) _
; s = λ (s₁ : TA) (s₂ : aux s₁) → _
; p = λ (p₁ : TA) (p₂ : aux p₁) → path _
}
where
TA = Σ _ _
aux : TA → Set
-- (passes without the matching)
-- aux b = let b₁ = fst b; b₂ = snd b in {! Σ _ _ !} -- worked
aux (pair b₁ b₂) = Σ _ _ -- failed
-- Close to original
f : S → T
f X = record { A = Σ _ _
; B = λ { (pair b₁ b₂) → Σ _ _ }
; z = λ z₁ → pair (S.zₛ X _) _
; s = λ s₁ s₂ → _
; p = λ p₁ p₂ → path _
}
{- Hunted down the crash cause:
context before projection expansion
(X : S) (p¹ : TA X) (p² : aux X p¹)
meta args: [X, p¹, pair (S.zₛ X (_aₛ²_34 X p¹)) (?1 X p¹)]
trying to expand projected variable X
eta-expanding var X in terms ([X, p¹,
pair (S.zₛ X (_aₛ²_34 X p¹)) (?1 X p¹)],_8 (?2 X p¹ p²))
meta args: [mkS Aₛ(X) Bₛ(X) zₛ(X), p¹,
pair (zₛ(X) (_aₛ²_34 (mkS Aₛ(X) Bₛ(X) zₛ(X)) p¹))
(?1 (mkS Aₛ(X) Bₛ(X) zₛ(X)) p¹)]
context before projection expansion
(X : S) S
(p¹ : TA X) TA 0
(p² : aux X p¹) aux 1 0
context after projection expansion
(Aₛ(X) : Set)
(Bₛ(X) : Aₛ(X) → Set)
(zₛ(X) : (aₛ² : Aₛ(X)) → Bₛ(X) aₛ²)
(p¹ : TA (mkS Aₛ(X) Bₛ(X) zₛ(X))) -- This type is fine
(p² : aux Aₛ(X) (mkS Bₛ(X) zₛ(X) p¹)) -- This type is messed up!
-}
-- -}
-- -}
-- -}
-- -}
-- -}
|
{
"alphanum_fraction": 0.469005848,
"avg_line_length": 25.3333333333,
"ext": "agda",
"hexsha": "3080b7912925d0a54685396f7e5c32eac3e603b9",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2644.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2644.agda",
"max_line_length": 90,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2644.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 1376,
"size": 3420
}
|
-- Kapitel 1, Abschnitt D (Die Eigenschaften der Gleichheit)
module CombinatoryLogic.Equality where
open import Algebra.Definitions using (Congruent₂; LeftCongruent; RightCongruent)
open import Data.Vec using (Vec; []; _∷_; foldr₁; lookup)
open import Function using (_$_)
open import Relation.Binary using (IsEquivalence; Setoid)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import CombinatoryLogic.Semantics
open import CombinatoryLogic.Syntax
private
-- A lemma used in the proofs of Propositions 1 and 2.
lemma-CQXX : ∀ {X} → ⊢ C ∙ Q ∙ X ∙ X
lemma-CQXX {X} =
let s₁ = ⊢ Π ∙ (W ∙ (C ∙ Q)) [ ax Q ]
s₂ = ⊢ W ∙ (C ∙ Q) ∙ X [ Π s₁ ]
s₃ = ⊢ Q ∙ (W ∙ (C ∙ Q) ∙ X) ∙ (C ∙ Q ∙ X ∙ X) [ W ]
s₄ = ⊢ C ∙ Q ∙ X ∙ X [ Q₁ s₂ s₃ ]
in s₄
-- Satz 1
prop₁ : ∀ {X} → ⊢ Q ∙ X ∙ X
prop₁ {X} = s₆ where
s₄ = ⊢ C ∙ Q ∙ X ∙ X [ lemma-CQXX ]
s₅ = ⊢ Q ∙ (C ∙ Q ∙ X ∙ X) ∙ (Q ∙ X ∙ X) [ C ]
s₆ = ⊢ Q ∙ X ∙ X [ Q₁ s₄ s₅ ]
-- Satz 2
prop₂ : ∀ {X Y} → ⊢ Q ∙ X ∙ Y → ⊢ Q ∙ Y ∙ X
prop₂ {X} {Y} ⊢QXY = s₅ where
s₁ = ⊢ Q ∙ X ∙ Y [ ⊢QXY ]
-- NOTE: Curry's proof contains a mistake: CQXX should be CQXY.
s₂ = ⊢ Q ∙ (C ∙ Q ∙ X ∙ X) ∙ (C ∙ Q ∙ X ∙ Y) [ Q₂ {Z = C ∙ Q ∙ X} s₁ ]
s₃ = ⊢ C ∙ Q ∙ X ∙ X [ lemma-CQXX ]
-- NOTE: Curry's proof uses rule Q, but there is no such rule.
s₄ = ⊢ C ∙ Q ∙ X ∙ Y [ Q₁ s₃ s₂ ]
s₅ = ⊢ Q ∙ Y ∙ X [ Q₁ s₄ C ]
-- Satz 3
prop₃ : ∀ {X Y Z} → ⊢ Q ∙ X ∙ Y → ⊢ Q ∙ Y ∙ Z → ⊢ Q ∙ X ∙ Z
prop₃ {X} {Y} {Z} ⊢QXY ⊢QYZ = s₃ where
s₁ = ⊢ Q ∙ Y ∙ Z [ ⊢QYZ ]
s₂ = ⊢ Q ∙ (Q ∙ X ∙ Y) ∙ (Q ∙ X ∙ Z) [ Q₂ {Z = Q ∙ X} s₁ ]
s₃ = ⊢ Q ∙ X ∙ Z [ Q₁ ⊢QXY s₂ ]
-- Satz 4
prop₄ : ∀ {X Y Z} → ⊢ Q ∙ X ∙ Y → ⊢ Q ∙ (X ∙ Z) ∙ (Y ∙ Z)
prop₄ {X} {Y} {Z} Hp = s₅ where
p₁ = λ {X} → ⊢ Q ∙ (C ∙ (B ∙ (W ∙ K)) ∙ Z ∙ X) ∙ (B ∙ (W ∙ K) ∙ X ∙ Z) [ C ]
p₂ = λ {X} → ⊢ Q ∙ (B ∙ (W ∙ K) ∙ X ∙ Z) ∙ (W ∙ K ∙ (X ∙ Z)) [ B ]
p₃ = λ {X} → ⊢ Q ∙ (W ∙ K ∙ (X ∙ Z)) ∙ (K ∙ (X ∙ Z) ∙ (X ∙ Z)) [ W ]
p₄ = λ {X} → ⊢ Q ∙ (K ∙ (X ∙ Z) ∙ (X ∙ Z)) ∙ (X ∙ Z) [ K ]
p₅ = λ {X} → ⊢ Q ∙ (C ∙ (B ∙ (W ∙ K)) ∙ Z ∙ X) ∙ (X ∙ Z) [ prop₃ p₁ $ prop₃ p₂ $ prop₃ p₃ p₄ ]
s₁ = ⊢ Q ∙ (C ∙ (B ∙ (W ∙ K)) ∙ Z ∙ X) ∙ (C ∙ (B ∙ (W ∙ K)) ∙ Z ∙ Y) [ Q₂ Hp ]
s₂ = ⊢ Q ∙ (C ∙ (B ∙ (W ∙ K)) ∙ Z ∙ X) ∙ (X ∙ Z) [ p₅ ]
s₃ = ⊢ Q ∙ (C ∙ (B ∙ (W ∙ K)) ∙ Z ∙ Y) ∙ (Y ∙ Z) [ p₅ ]
s₄ = ⊢ Q ∙ (X ∙ Z) ∙ (C ∙ (B ∙ (W ∙ K)) ∙ Z ∙ X) [ prop₂ s₂ ]
s₅ = ⊢ Q ∙ (X ∙ Z) ∙ (Y ∙ Z) [ prop₃ s₄ $ prop₃ s₁ s₃ ]
-- Satz 5
prop₅ : ∀ {X Y} → X ≡ Y → ⊢ Q ∙ X ∙ Y
prop₅ {X} {Y} refl = prop₁
-- Satz 6 (first part)
isEquivalence : IsEquivalence _≈_
isEquivalence = record
{ refl = prop₁
; sym = prop₂
; trans = prop₃
}
setoid : Setoid _ _
setoid = record
{ Carrier = Combinator
; _≈_ = _≈_
; isEquivalence = isEquivalence
}
module Reasoning where
module ≈ = IsEquivalence isEquivalence
import Relation.Binary.Reasoning.Base.Single _≈_ ≈.refl ≈.trans as Base
open Base using (begin_; _∎) public
infixr 2 _≈⟨⟩_ step-≈ step-≈˘
_≈⟨⟩_ : ∀ x {y} → x Base.IsRelatedTo y → x Base.IsRelatedTo y
_ ≈⟨⟩ x≈y = x≈y
step-≈ = Base.step-∼
syntax step-≈ x y≈z x≈y = x ≈⟨ x≈y ⟩ y≈z
step-≈˘ : ∀ x {y z} → y Base.IsRelatedTo z → y ≈ x → x Base.IsRelatedTo z
step-≈˘ x y∼z y≈x = x ≈⟨ ≈.sym y≈x ⟩ y∼z
syntax step-≈˘ x y≈z y≈x = x ≈˘⟨ y≈x ⟩ y≈z
-- Satz 6 (second part)
cong : Congruent₂ _≈_ _∙_
cong {X} {X′} {Y} {Y′} ⊢X==X′ ⊢Y==Y′ = s₃ where
s₁ = ⊢ X ∙ Y == X ∙ Y′ [ Q₂ ⊢Y==Y′ ]
s₂ = ⊢ X ∙ Y′ == X′ ∙ Y′ [ prop₄ ⊢X==X′ ]
s₃ = ⊢ X ∙ Y == X′ ∙ Y′ [ prop₃ s₁ s₂ ]
-- congˡ and congʳ follow from cong, but are also just different names for
-- Q₂ and prop₄, respectively.
congˡ : LeftCongruent _≈_ _∙_
congˡ = Q₂
congʳ : RightCongruent _≈_ _∙_
congʳ = prop₄
-- TODO: Satz 7, 8
prop₉ : ∀ {X} → ⊢ I ∙ X == X
prop₉ {X} = begin
I ∙ X ≈⟨⟩
W ∙ K ∙ X ≈⟨ W ⟩
K ∙ X ∙ X ≈⟨ K ⟩
X ∎
where open Reasoning
-- Note after the proof of Satz 9.
S : Combinator
S = B ∙ (B ∙ W) ∙ (B ∙ B ∙ C)
prop-S : ∀ {X} {Y} {Z} → ⊢ S ∙ X ∙ Y ∙ Z == X ∙ Z ∙ (Y ∙ Z)
prop-S {X} {Y} {Z} = begin
S ∙ X ∙ Y ∙ Z ≈⟨⟩
B ∙ (B ∙ W) ∙ (B ∙ B ∙ C) ∙ X ∙ Y ∙ Z ≈⟨ congʳ $ congʳ B ⟩
B ∙ W ∙ (B ∙ B ∙ C ∙ X) ∙ Y ∙ Z ≈⟨ congʳ B ⟩
W ∙ (B ∙ B ∙ C ∙ X ∙ Y) ∙ Z ≈⟨ W ⟩
B ∙ B ∙ C ∙ X ∙ Y ∙ Z ∙ Z ≈⟨ congʳ $ congʳ $ congʳ B ⟩
B ∙ (C ∙ X) ∙ Y ∙ Z ∙ Z ≈⟨ congʳ B ⟩
C ∙ X ∙ (Y ∙ Z) ∙ Z ≈⟨ C ⟩
X ∙ Z ∙ (Y ∙ Z) ∎
where open Reasoning
-- TODO: ⊢ B == S(KS)K, ⊢ C == S(BBS)(KK), ⊢ W == SS(SK), ⊢ I == SKK
|
{
"alphanum_fraction": 0.4116116116,
"avg_line_length": 35.6785714286,
"ext": "agda",
"hexsha": "03a1c76dd9d39e1b86e9fc0b9ae05703171ba669",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "splintah/combinatory-logic",
"max_forks_repo_path": "CombinatoryLogic/Equality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "splintah/combinatory-logic",
"max_issues_repo_path": "CombinatoryLogic/Equality.agda",
"max_line_length": 111,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "splintah/combinatory-logic",
"max_stars_repo_path": "CombinatoryLogic/Equality.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T23:44:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-28T23:44:42.000Z",
"num_tokens": 2508,
"size": 4995
}
|
{-# OPTIONS --guardedness #-}
module Cubical.README where
------------------------------------------------------------------------
-- An experimental library for Cubical Agda
-----------------------------------------------------------------------
-- The library comes with a .agda-lib file, for use with the library
-- management system.
------------------------------------------------------------------------
-- Module hierarchy
------------------------------------------------------------------------
-- The core library for Cubical Agda.
-- It contains basic primitives, equivalences, glue types.
import Cubical.Core.Everything
-- The foundations for Cubical Agda.
-- The Prelude module is self-explanatory.
import Cubical.Foundations.Prelude
import Cubical.Foundations.Everything
-- Kinds and properties of functions
import Cubical.Functions.Everything
-- Data types and properties
import Cubical.Data.Everything
-- Higher-inductive types
import Cubical.HITs.Everything
-- Coinductive data types and properties
import Cubical.Codata.Everything
-- Papers
import Cubical.Papers.Everything
-- Properties and proofs about relations
import Cubical.Relation.Everything
-- Category theory
import Cubical.Categories.Everything
-- Homotopy theory
import Cubical.Homotopy.Everything
-- Properties and kinds of Modalities
import Cubical.Modalities.Everything
-- Various experiments using Cubical Agda
import Cubical.Experiments.Everything
-- Other modules (TODO: add descriptions)
import Cubical.Induction.Everything
import Cubical.Structures.Everything
-- general definition of cohomology
import Cubical.Cohomology.Everything
-- cohomology with constant Integer coefficients
import Cubical.ZCohomology.Everything
-- Algebra library (in development)
import Cubical.Algebra.Everything
-- Various talks
import Cubical.Talks.Everything
-- Reflection
import Cubical.Reflection.Everything
-- Displayed univalent graphs
import Cubical.Displayed.Everything
-- Syntax typeclasses
import Cubical.Syntax.Everything
|
{
"alphanum_fraction": 0.6930301532,
"avg_line_length": 25.6075949367,
"ext": "agda",
"hexsha": "1317f3eccb36f8324e73acc3e7cf64bd78d57a1a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "howsiyu/cubical",
"max_forks_repo_path": "Cubical/README.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "howsiyu/cubical",
"max_issues_repo_path": "Cubical/README.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "howsiyu/cubical",
"max_stars_repo_path": "Cubical/README.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 421,
"size": 2023
}
|
-- Andreas, 2017-04-26, issue #2554
-- Allow mutual sized types in successor style.
-- {-# OPTIONS -v tc.pos.args:100 #-}
-- {-# OPTIONS -v tc.pos:100 #-}
-- {-# OPTIONS -v tc.polarity:20 #-}
open import Agda.Builtin.Size
mutual
data C : Size → Set where
c : ∀{i} → D i → C (↑ i)
data D : Size → Set where
d : ∀{i} → C i → D (↑ i)
-- Test subtyping
test : ∀{i} {j : Size< i} → C j → C i
test x = x
-- Define a size-preserving function
mutual
f : ∀{i} → C i → C i
f (c y) = c (g y)
g : ∀{i} → D i → D i
g (d x) = d (f x)
|
{
"alphanum_fraction": 0.5208711434,
"avg_line_length": 17.21875,
"ext": "agda",
"hexsha": "163861fe4c4dc2c76fe65151d6843b18c3088a66",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2554-size-mutual.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2554-size-mutual.agda",
"max_line_length": 47,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2554-size-mutual.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 214,
"size": 551
}
|
open import OutsideIn.Prelude
open import OutsideIn.X
module OutsideIn.TopLevel(x : X) where
import OutsideIn.Expressions as E
open E(x)
open X(x)
data Program (ev : Set)(tv : Set) : Set where
end : Program ev tv
bind₁_,_ : ∀ {s} → Expression ev tv s → Program (Ⓢ ev) tv → Program ev tv
bind₂_·_∷_⇒_,_ : ∀ {s} → (n : ℕ) → Expression ev (tv ⨁ n) s
→ QConstraint (tv ⨁ n) → Type (tv ⨁ n)
→ Program (Ⓢ ev) tv → Program ev tv
|
{
"alphanum_fraction": 0.5723140496,
"avg_line_length": 34.5714285714,
"ext": "agda",
"hexsha": "0eb14ac353548178662986188b4124fbfa3bd01e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "liamoc/outside-in",
"max_forks_repo_path": "OutsideIn/TopLevel.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "liamoc/outside-in",
"max_issues_repo_path": "OutsideIn/TopLevel.agda",
"max_line_length": 77,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "liamoc/outside-in",
"max_stars_repo_path": "OutsideIn/TopLevel.agda",
"max_stars_repo_stars_event_max_datetime": "2020-11-19T14:30:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-14T05:22:15.000Z",
"num_tokens": 167,
"size": 484
}
|
module Fail.NonCopatternInstance where
record HasId (a : Set) : Set where
field id : a → a
open HasId ⦃ ... ⦄
{-# COMPILE AGDA2HS HasId class #-}
data Unit : Set where
MkUnit : Unit
{-# COMPILE AGDA2HS Unit #-}
instance
UnitHasId : HasId Unit
UnitHasId = record { id = λ x → x } -- NOT CORRECT
-- UnitHasId .id x = x -- CORRECT
{-# COMPILE AGDA2HS UnitHasId #-}
|
{
"alphanum_fraction": 0.6120906801,
"avg_line_length": 18.0454545455,
"ext": "agda",
"hexsha": "d5f31ff4cff874455cbdf9be906f9b26a32194eb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dxts/agda2hs",
"max_forks_repo_path": "test/Fail/NonCopatternInstance.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dxts/agda2hs",
"max_issues_repo_path": "test/Fail/NonCopatternInstance.agda",
"max_line_length": 54,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dxts/agda2hs",
"max_stars_repo_path": "test/Fail/NonCopatternInstance.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-25T09:41:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-05-25T09:41:34.000Z",
"num_tokens": 129,
"size": 397
}
|
-- Andreas, 2020-02-15, issue #4447
--
-- Positivity checker needs to see the constructor types
-- in the same way as the type checker has seen them.
--
-- Thus, we need to reduce types of constructors even
-- with definitions that have not yet been subjected to termination
-- checking, e.g. because they live in a mutual block with the data type.
-- {-# OPTIONS -v term:10 #-}
-- {-# OPTIONS -v tc.pos:10 #-}
-- {-# OPTIONS -v tc.data:10 #-}
data ⊥ : Set where
-- Mutual block:
data D : Set
D' = (D → ⊥) → D
data D where
abs : D'
-- Positivity checker needs to unfold D', otherwise it does not see
-- the correct occurrences of D.
-- From here, the road to absurdity is paved:
app : D → D → ⊥
app (abs f) = f
delta : D → ⊥
delta x = app x x
Omega : ⊥
Omega = delta (abs delta)
|
{
"alphanum_fraction": 0.6506329114,
"avg_line_length": 21.9444444444,
"ext": "agda",
"hexsha": "f87f3e66bdf66a64c98dc5d8861eef1cc961154b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Fail/Issue4447False.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue4447False.agda",
"max_line_length": 73,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue4447False.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 230,
"size": 790
}
|
module Acme.Data.Fin where
open import Acme.Type
open import Acme.Data.Nat as ℕ using (ℕ)
Fin : Elt ℕ → Type
Fin = ℕ.induction (λ _ → Type) base (λ _ → step)
where
base : Type
base _ = false
step : Type → Type
step ih [] = false
step ih (c ∷ cs) = c == 'Z' && isNil cs
|| c == 'S' && ih cs
zero : ∀ {n} → Elt (Fin (ℕ.suc n))
zero {n} = Fin (ℕ.suc n) ∋ "Z"
suc : ∀ {n} → Elt (Fin n) → Elt (Fin (ℕ.suc n))
suc [ k ] = [ 'S' ∷ k ]
sub : ∀ n str → str ∈ Fin n → str ∈ ℕ
sub = ℕ.induction
(λ n → ∀ str → str ∈ Fin n → str ∈ ℕ)
(λ _ ())
step
where
step : ∀ n → (∀ str → str ∈ Fin n → str ∈ ℕ) →
(∀ str → str ∈ Fin (ℕ.suc n) → str ∈ ℕ)
step n ih (c ∷ cs) isFin = checkZ (c ≟ 'Z') cs {{isFin}} where
checkS : ∀ {b} → Reflects c 'S' b → ∀ cs →
{{IsTrue (b && Fin n cs)}} →
(c ∷ cs) ∈ ℕ
checkS true cs {{isFin}} = ih cs isFin
checkZ : ∀ {b} → Reflects c 'Z' b → ∀ cs →
{{IsTrue (b && isNil cs || c == 'S' && Fin n cs)}} →
(c ∷ cs) ∈ ℕ
checkZ true [] = _
checkZ false cs = checkS (c ≟ 'S') cs
cast : ∀ {n} → Elt (Fin n) → Elt ℕ
cast {n} p .value = p .value
cast {n} p .check = sub n (p .value) (p .check)
|
{
"alphanum_fraction": 0.4546178344,
"avg_line_length": 24.6274509804,
"ext": "agda",
"hexsha": "76888b9b522af53da29308a74fb81d97909145cd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9e83fe708271b4437ae4e259175397d96d10aaf6",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "gallais/STRINaGda",
"max_forks_repo_path": "src/Acme/Data/Fin.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9e83fe708271b4437ae4e259175397d96d10aaf6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "gallais/STRINaGda",
"max_issues_repo_path": "src/Acme/Data/Fin.agda",
"max_line_length": 65,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "9e83fe708271b4437ae4e259175397d96d10aaf6",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "gallais/STRINaGda",
"max_stars_repo_path": "src/Acme/Data/Fin.agda",
"max_stars_repo_stars_event_max_datetime": "2021-04-01T20:56:37.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-02-14T22:26:17.000Z",
"num_tokens": 496,
"size": 1256
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Instance.PointedSets where
-- Category of Pointed Sets
open import Level
open import Relation.Binary
open import Function using (_∘′_; _$_) renaming (id to idf)
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; refl)
open import Data.Product
open import Categories.Category
open import Categories.Category.Instance.Sets
open import Categories.Functor using (Functor)
PointedSets : ∀ o → Category (suc o) o o
PointedSets o = record
{ Obj = Σ (Set o) idf
; _⇒_ = λ c d → Σ (proj₁ c → proj₁ d) (λ f → f (proj₂ c) ≡ proj₂ d)
; _≈_ = λ f g → ∀ x → proj₁ f x ≡ proj₁ g x
; id = idf , refl
; _∘_ = λ { (f , f-pres-pt) (g , g-pres-pt) → f ∘′ g , ≡.trans (≡.cong f g-pres-pt) f-pres-pt}
; assoc = λ _ → refl
; sym-assoc = λ _ → refl
; identityˡ = λ _ → refl
; identityʳ = λ _ → refl
; identity² = λ _ → refl
; equiv = record { refl = λ _ → refl ; sym = λ pf x → ≡.sym $ pf x ; trans = λ i≡j j≡k x → ≡.trans (i≡j x) (j≡k x) }
; ∘-resp-≈ = λ {_} {_} {_} {_} {h} {g} f≡h g≡i x → ≡.trans (f≡h (proj₁ g x)) (≡.cong (proj₁ h) $ g≡i x)
}
Underlying : {o : Level} → Functor (PointedSets o) (Sets o)
Underlying = record
{ F₀ = proj₁
; F₁ = proj₁
; identity = refl
; homomorphism = refl
; F-resp-≈ = λ f≈g {x} → f≈g x
}
|
{
"alphanum_fraction": 0.5722501797,
"avg_line_length": 34.775,
"ext": "agda",
"hexsha": "bc66570a57ea866509b7163462373ece6732fd44",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Instance/PointedSets.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Instance/PointedSets.agda",
"max_line_length": 122,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Instance/PointedSets.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 531,
"size": 1391
}
|
{-# OPTIONS --without-K --rewriting --termination-depth=2 #-}
open import HoTT
open import cw.CW
open import cw.examples.Sphere
module cw.examples.Torus where
⊤-has-dec-eq : has-dec-eq ⊤
⊤-has-dec-eq unit unit = inl idp
⊤-is-set : is-set ⊤
⊤-is-set = dec-eq-is-set ⊤-has-dec-eq
cw-torus-skel : Skeleton {lzero} (S (S 0))
CWTorus : Type₀
CWTorus = ⟦ cw-torus-skel ⟧
α₁ : Bool → S⁰ → ⊤
α₁ _ _ = unit
X₁ = attached-skeleton (⊤ , ⊤-is-set) (Bool , Bool-is-set) α₁
α₂ : ⊤ → S¹ → (Attached α₁)
α₂ unit = Pushout-rec ψ ψ (cst idp)
where
ψ : ⊤ → Attached α₁
ψ unit = PushoutGeneric.from-cc (inl unit)
X₂ = attached-skeleton X₁ (⊤ , ⊤-is-set) α₂
cw-torus-skel = X₂
|
{
"alphanum_fraction": 0.6290322581,
"avg_line_length": 18.4324324324,
"ext": "agda",
"hexsha": "8e6af8922636c53e740be4023a5bf03b3bbd1069",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "01bbd8841f9b9b25666b91e65b196d8f472b9978",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "maxdore/hott-morse",
"max_forks_repo_path": "theorems/cw/examples/Torus.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "01bbd8841f9b9b25666b91e65b196d8f472b9978",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "maxdore/hott-morse",
"max_issues_repo_path": "theorems/cw/examples/Torus.agda",
"max_line_length": 61,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "01bbd8841f9b9b25666b91e65b196d8f472b9978",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "maxdore/hott-morse",
"max_stars_repo_path": "theorems/cw/examples/Torus.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 284,
"size": 682
}
|
{-# OPTIONS --without-K #-}
module equality.reasoning where
open import equality.core
module ≡-Reasoning {i} {X : Set i} where
infix 4 _IsRelatedTo_
infix 2 _∎
infixr 2 _≡⟨_⟩_
infix 1 begin_
-- This seemingly unnecessary type is used to make it possible to
-- infer arguments even if the underlying equality evaluates.
data _IsRelatedTo_ (x y : X) : Set i where
relTo : x ≡ y → x IsRelatedTo y
begin_ : ∀ {x y} → x IsRelatedTo y → x ≡ y
begin relTo p = p
_≡⟨_⟩_ : ∀ x {y z} → x ≡ y → y IsRelatedTo z → x IsRelatedTo z
_ ≡⟨ p ⟩ relTo q = relTo (p · q)
_∎ : ∀ x → x IsRelatedTo x
_∎ _ = relTo refl
|
{
"alphanum_fraction": 0.6289308176,
"avg_line_length": 24.4615384615,
"ext": "agda",
"hexsha": "2b9cf9cb14075781e0330ad98ce3f86c1e4bf0b9",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z",
"max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "HoTT/M-types",
"max_forks_repo_path": "equality/reasoning.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "HoTT/M-types",
"max_issues_repo_path": "equality/reasoning.agda",
"max_line_length": 67,
"max_stars_count": 27,
"max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "HoTT/M-types",
"max_stars_repo_path": "equality/reasoning.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z",
"num_tokens": 238,
"size": 636
}
|
{-# OPTIONS --allow-unsolved-metas #-}
{-
The moral of the story is best told by comparing RegularVsConstructedMoreSimpler and RegularVsConstructed-EnhancedReg:
* aliased type constructors can lose information about their dependencies, leading to some inconvenience when using a function which takes those dependencies implicitly
* expressing those constructors as records (instead of as aliases) averts the above inconvenience
* the loss of information happens when the resultant type is made from projections on the dependencies, where only a proper subset of all the possible projections are used
TODO: what if instead of projections, we use a function? (try one that's abstract, and one that case splits on arguments)
- see ProjectedMorality ... so far it looks like it doesn't matter --- not sure why
TODO: what if the argument type (the one that's losing information) were data instead of record?
- see DataMorality ... weirdness!
-}
module AgdaFeaturePitfallInstanceResolution where
record Symmetry {B : Set₁} (_∼_ : B → B → Set) : Set₁ where
field symmetry : ∀ {x y} → x ∼ y → y ∼ x
Property : Set → Set₁
Property A = A → Set
Extension : {A : Set} → Property A → Set
Extension P = ∀ f → P f
postulate PropertyEquivalence : ∀ {P : Set} → Property P → Property P → Set
record Regular : Set where
no-eta-equality
infixr 5 _,_
record Σ (𝔒 : Set₁) (𝔓 : 𝔒 → Set) : Set₁ where
constructor _,_
field
π₀ : 𝔒
π₁ : 𝔓 π₀
open Σ public
ExtensionProperty : ∀ (𝔒 : Set) → Set₁
ExtensionProperty 𝔒 = Σ (Property 𝔒) Extension
_≈_ : {𝔒 : Set} → ExtensionProperty 𝔒 → ExtensionProperty 𝔒 → Set
_≈_ P Q = PropertyEquivalence (π₀ P) (π₀ Q)
record Instance : Set where
no-eta-equality
postulate instance _ : ∀ {𝔒 : Set} → Symmetry (_≈_ {𝔒 = 𝔒})
open Symmetry ⦃ … ⦄
module Test {𝔒 : Set} where
test1-fails : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test1-fails P≈Q = symmetry P≈Q
test2-works : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test2-works {P} {Q} P≈Q = symmetry {x = P} {y = Q} P≈Q
test3-fails : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test3-fails {P} {Q} P≈Q = symmetry {x = _ , _} {y = _ , _} P≈Q
test4-works : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test4-works {P} {Q} P≈Q = symmetry {x = _ , π₁ P} {y = _ , π₁ Q} P≈Q
record Function : Set where
no-eta-equality
postulate symmetry : ∀ {𝔒} {x y : ExtensionProperty 𝔒} → x ≈ y → y ≈ x
-- normalises to : {𝔒 : Set} {x y : Σ (𝔒 → Set) (λ P → (f : 𝔒) → P f)} → PropertyEquivalence (π₀ x) (π₀ y) → PropertyEquivalence (π₀ y) (π₀ x)
module Test {𝔒 : Set} where
test1-fails : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test1-fails P≈Q = symmetry P≈Q
test2-works : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test2-works {P} {Q} P≈Q = symmetry {x = P} {y = Q} P≈Q
test3-fails : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test3-fails {P} {Q} P≈Q = symmetry {x = _ , _} {y = _ , _} P≈Q
test4-works : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test4-works {P} {Q} P≈Q = symmetry {x = _ , π₁ P} {y = _ , π₁ Q} P≈Q
record Revamped : Set where
no-eta-equality
record ExtensionProperty (𝔒 : Set) : Set₁ where
constructor _,_
field
π₀ : Property 𝔒
π₁ : Extension π₀
open ExtensionProperty
_≈_ : {𝔒 : Set} → ExtensionProperty 𝔒 → ExtensionProperty 𝔒 → Set
_≈_ P Q = PropertyEquivalence (π₀ P) (π₀ Q)
record Instance : Set where
no-eta-equality
postulate instance _ : ∀ {𝔒 : Set} → Symmetry (_≈_ {𝔒 = 𝔒})
open Symmetry ⦃ … ⦄
module Test {𝔒 : Set} where
test1-fails : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test1-fails P≈Q = symmetry P≈Q
test2-works : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test2-works {P} {Q} P≈Q = symmetry {x = P} {y = Q} P≈Q
test3-fails : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test3-fails {P} {Q} P≈Q = symmetry {x = _ , _} {y = _ , _} P≈Q
test4-works : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test4-works {P} {Q} P≈Q = symmetry {x = _ , π₁ P} {y = _ , π₁ Q} P≈Q
record Function : Set where
no-eta-equality
postulate symmetry : ∀ {𝔒} {x y : ExtensionProperty 𝔒} → x ≈ y → y ≈ x
-- normalises to : ∀ {𝔒} {x y : ExtensionProperty 𝔒} → PropertyEquivalence (π₀ x) (π₀ y) → PropertyEquivalence (π₀ y) (π₀ x)
module Test {𝔒 : Set} where
test1-fails : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test1-fails P≈Q = symmetry P≈Q
test2-works : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test2-works {P} {Q} P≈Q = symmetry {x = P} {y = Q} P≈Q
test3-fails : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test3-fails {P} {Q} P≈Q = symmetry {x = _ , _} {y = _ , _} P≈Q
test4-works : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test4-works {P} {Q} P≈Q = symmetry {x = _ , π₁ P} {y = _ , π₁ Q} P≈Q
record PostulatedExtensionProperty : Set where
no-eta-equality
postulate
ExtensionProperty : Set → Set₁
π₀ : {𝔒 : Set} → ExtensionProperty 𝔒 → Property 𝔒
π₁ : {𝔒 : Set} → (P : ExtensionProperty 𝔒) → Extension (π₀ P)
_,_ : {𝔒 : Set} → (π₀ : Property 𝔒) → Extension π₀ → ExtensionProperty 𝔒
_≈_ : {𝔒 : Set} → ExtensionProperty 𝔒 → ExtensionProperty 𝔒 → Set
_≈_ P Q = PropertyEquivalence (π₀ P) (π₀ Q)
record Instance : Set where
no-eta-equality
postulate instance _ : ∀ {𝔒 : Set} → Symmetry (_≈_ {𝔒 = 𝔒})
open Symmetry ⦃ … ⦄
module Test {𝔒 : Set} where
test1-works : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test1-works P≈Q = symmetry P≈Q
test2-works : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test2-works {P} {Q} P≈Q = symmetry {x = P} {y = Q} P≈Q
test3-inexpressible : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test3-inexpressible {P} {Q} P≈Q = {!!} -- symmetry {x = _ , _} {y = _ , _} P≈Q
test4-inexpressible : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test4-inexpressible {P} {Q} P≈Q = {!!} -- symmetry {x = _ , π₁ P} {y = _ , π₁ Q} P≈Q
record Function : Set where
no-eta-equality
postulate symmetry : ∀ {𝔒} {x y : ExtensionProperty 𝔒} → x ≈ y → y ≈ x
-- normalises to : ∀ {𝔒} {x y : ExtensionProperty 𝔒} → PropertyEquivalence (π₀ x) (π₀ y) → PropertyEquivalence (π₀ y) (π₀ x)
module Test {𝔒 : Set} where
test1-works : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test1-works P≈Q = symmetry P≈Q
test2-works : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test2-works {P} {Q} P≈Q = symmetry {x = P} {y = Q} P≈Q
test3-inexpressible : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test3-inexpressible {P} {Q} P≈Q = {!!} -- symmetry {x = _ , _} {y = _ , _} P≈Q
test4-inexpressible : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test4-inexpressible {P} {Q} P≈Q = {!!} -- symmetry {x = _ , π₁ P} {y = _ , π₁ Q} P≈Q
record Constructed : Set where
no-eta-equality
infixr 5 _,_
record Σ (𝔒 : Set₁) (𝔓 : 𝔒 → Set) : Set₁ where
constructor _,_
field
π₀ : 𝔒
π₁ : 𝔓 π₀
open Σ public
ExtensionProperty : Set → Set₁
ExtensionProperty 𝔒 = Σ (Property 𝔒) Extension
record _≈_ {𝔒 : Set} (P Q : ExtensionProperty 𝔒) : Set where
constructor ∁
field
π₀ : PropertyEquivalence (π₀ P) (π₀ Q)
record Instance : Set where
no-eta-equality
postulate instance _ : {𝔒 : Set} → Symmetry (_≈_ {𝔒 = 𝔒})
open Symmetry ⦃ … ⦄
module Test {𝔒 : Set} where
test1-works : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test1-works P≈Q = symmetry P≈Q
test2-works : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test2-works {P} {Q} P≈Q = symmetry {x = P} {y = Q} P≈Q
test3-works : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test3-works {P} {Q} P≈Q = symmetry {x = _ , _} {y = _ , _} P≈Q
test4-works : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test4-works {P} {Q} P≈Q = symmetry {x = _ , π₁ P} {y = _ , π₁ Q} P≈Q
record Function : Set where
no-eta-equality
postulate symmetry : ∀ {𝔒} {x y : ExtensionProperty 𝔒} → x ≈ y → y ≈ x
-- normalises to : {𝔒 : Set} {x y : Σ (𝔒 → Set) (λ P → (f : 𝔒) → P f)} → x ≈ y → y ≈ x
module Test {𝔒 : Set} where
test1-works : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test1-works P≈Q = symmetry P≈Q
test2-works : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test2-works {P} {Q} P≈Q = symmetry {x = P} {y = Q} P≈Q
test3-works : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test3-works {P} {Q} P≈Q = symmetry {x = _ , _} {y = _ , _} P≈Q
test4-works : {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test4-works {P} {Q} P≈Q = symmetry {x = _ , π₁ P} {y = _ , π₁ Q} P≈Q
record RegularVsConstructed : Set where
no-eta-equality
infixr 5 _,_
record Σ (𝔒 : Set₁) (𝔓 : 𝔒 → Set) : Set₁ where
constructor _,_
field
π₀ : 𝔒
π₁ : 𝔓 π₀
open Σ public
ExtensionProperty : Set → Set₁
ExtensionProperty 𝔒 = Σ (Property 𝔒) Extension
record _≈R_ {𝔒 : Set} (P Q : ExtensionProperty 𝔒) : Set where
constructor ∁
field
π₀ : PropertyEquivalence (π₀ P) (π₀ Q)
_≈F_ : {𝔒 : Set} → ExtensionProperty 𝔒 → ExtensionProperty 𝔒 → Set
_≈F_ P Q = PropertyEquivalence (π₀ P) (π₀ Q)
record Instance : Set where
no-eta-equality
postulate instance _ : {𝔒 : Set} → Symmetry (_≈R_ {𝔒 = 𝔒})
postulate instance _ : {𝔒 : Set} → Symmetry (_≈F_ {𝔒 = 𝔒})
open Symmetry ⦃ … ⦄
module Test {𝔒 : Set} where
test1-worksR : {P Q : ExtensionProperty 𝔒} → P ≈R Q → Q ≈R P
test1-worksR P≈Q = symmetry P≈Q
test2-worksR : {P Q : ExtensionProperty 𝔒} → P ≈R Q → Q ≈R P
test2-worksR {P} {Q} P≈Q = symmetry {x = P} {y = Q} P≈Q
test3-worksR : {P Q : ExtensionProperty 𝔒} → P ≈R Q → Q ≈R P
test3-worksR {P} {Q} P≈Q = symmetry {x = _ , _} {y = _ , _} P≈Q
test4-worksR : {P Q : ExtensionProperty 𝔒} → P ≈R Q → Q ≈R P
test4-worksR {P} {Q} P≈Q = symmetry {x = _ , π₁ P} {y = _ , π₁ Q} P≈Q
test1-failsF : {P Q : ExtensionProperty 𝔒} → P ≈F Q → Q ≈F P
test1-failsF P≈Q = symmetry P≈Q
test2-worksF : {P Q : ExtensionProperty 𝔒} → P ≈F Q → Q ≈F P
test2-worksF {P} {Q} P≈Q = symmetry {x = P} {y = Q} P≈Q
test3-failsF : {P Q : ExtensionProperty 𝔒} → P ≈F Q → Q ≈F P
test3-failsF {P} {Q} P≈Q = symmetry {x = _ , _} {y = _ , _} P≈Q
test4-worksF : {P Q : ExtensionProperty 𝔒} → P ≈F Q → Q ≈F P
test4-worksF {P} {Q} P≈Q = symmetry {x = _ , π₁ P} {y = _ , π₁ Q} P≈Q
record Function : Set where
no-eta-equality
postulate symmetryR : ∀ {𝔒} {x y : ExtensionProperty 𝔒} → x ≈R y → y ≈R x
postulate symmetryF : ∀ {𝔒} {x y : ExtensionProperty 𝔒} → x ≈F y → y ≈F x
module Test {𝔒 : Set} where
test1-worksR : {P Q : ExtensionProperty 𝔒} → P ≈R Q → Q ≈R P
test1-worksR P≈Q = symmetryR P≈Q
test2-worksR : {P Q : ExtensionProperty 𝔒} → P ≈R Q → Q ≈R P
test2-worksR {P} {Q} P≈Q = symmetryR {x = P} {y = Q} P≈Q
test3-worksR : {P Q : ExtensionProperty 𝔒} → P ≈R Q → Q ≈R P
test3-worksR {P} {Q} P≈Q = symmetryR {x = _ , _} {y = _ , _} P≈Q
test4-worksR : {P Q : ExtensionProperty 𝔒} → P ≈R Q → Q ≈R P
test4-worksR {P} {Q} P≈Q = symmetryR {x = _ , π₁ P} {y = _ , π₁ Q} P≈Q
test1-failsF : {P Q : ExtensionProperty 𝔒} → P ≈F Q → Q ≈F P
test1-failsF P≈Q = symmetryF P≈Q
test2-worksF : {P Q : ExtensionProperty 𝔒} → P ≈F Q → Q ≈F P
test2-worksF {P} {Q} P≈Q = symmetryF {x = P} {y = Q} P≈Q
test3-failsF : {P Q : ExtensionProperty 𝔒} → P ≈F Q → Q ≈F P
test3-failsF {P} {Q} P≈Q = symmetryF {x = _ , _} {y = _ , _} P≈Q
test4-worksF : {P Q : ExtensionProperty 𝔒} → P ≈F Q → Q ≈F P
test4-worksF {P} {Q} P≈Q = symmetryF {x = _ , π₁ P} {y = _ , π₁ Q} P≈Q
record RegularVsConstructedSimpler : Set where
no-eta-equality
infixr 5 _,_
record Σ (𝔒 : Set₁) (𝔓 : 𝔒 → Set) : Set₁ where
constructor _,_
field
π₀ : 𝔒
π₁ : 𝔓 π₀
open Σ public
postulate Prop : Set₁
postulate Ext : Prop → Set
postulate PropEq : Prop → Set
ExtProp : Set₁
ExtProp = Σ Prop Ext
record ≈C_ (P : ExtProp) : Set where
constructor ∁
field
π₀ : PropEq (π₀ P)
≈R_ : ExtProp → Set
≈R_ P = PropEq (π₀ P)
record Instance : Set where
no-eta-equality
record Class {B : Set₁} (∼_ : B → Set) : Set₁ where
field foo : ∀ {x} → ∼ x → Set
open Class ⦃ … ⦄
postulate instance _ : Class ≈C_
postulate instance _ : Class ≈R_
module Test where
test1-worksC : {P : ExtProp} → ≈C P → Set
test1-worksC P≈Q = foo P≈Q
test2-worksC : {P : ExtProp} → ≈C P → Set
test2-worksC {P} P≈Q = foo {x = P} P≈Q
test3-worksC : {P : ExtProp} → ≈C P → Set
test3-worksC {P} P≈Q = foo {x = _ , _} P≈Q
test4-worksC : {P : ExtProp} → ≈C P → Set
test4-worksC {P} P≈Q = foo {x = _ , π₁ P} P≈Q
test1-failsR : {P : ExtProp} → ≈R P → Set
test1-failsR P≈Q = foo P≈Q
test2-worksR : {P : ExtProp} → ≈R P → Set
test2-worksR {P} P≈Q = foo {x = P} P≈Q
test3-failsR : {P : ExtProp} → ≈R P → Set
test3-failsR {P} P≈Q = foo {x = _ , _} P≈Q
test4-worksR : {P : ExtProp} → ≈R P → Set
test4-worksR {P} P≈Q = foo {x = _ , π₁ P} P≈Q
record Function : Set where
no-eta-equality
postulate fooC : {x : ExtProp} → ≈C x → Set
postulate fooR : {x : ExtProp} → ≈R x → Set
module Test where
test1-worksC : {P : ExtProp} → ≈C P → Set
test1-worksC P≈Q = fooC P≈Q
test2-worksC : {P : ExtProp} → ≈C P → Set
test2-worksC {P} P≈Q = fooC {x = P} P≈Q
test3-worksC : {P : ExtProp} → ≈C P → Set
test3-worksC {P} P≈Q = fooC {x = _ , _} P≈Q
test4-worksC : {P : ExtProp} → ≈C P → Set
test4-worksC {P} P≈Q = fooC {x = _ , π₁ P} P≈Q
test1-failsR : {P : ExtProp} → ≈R P → Set
test1-failsR P≈Q = fooR P≈Q
test2-worksR : {P : ExtProp} → ≈R P → Set
test2-worksR {P} P≈Q = fooR {x = P} P≈Q
test3-failsR : {P : ExtProp} → ≈R P → Set
test3-failsR {P} P≈Q = fooR {x = _ , _} P≈Q
test4-worksR : {P : ExtProp} → ≈R P → Set
test4-worksR {P} P≈Q = fooR {x = _ , π₁ P} P≈Q
record RegularVsConstructedMoreSimpler : Set where
no-eta-equality
infixr 5 _,_
record Σ (𝔒 : Set₁) (𝔓 : 𝔒 → Set) : Set₁ where
constructor _,_
field
π₀ : 𝔒
π₁ : Set
open Σ
postulate Prop : Set₁
postulate Ext : Prop → Set
postulate PropEq : Prop → Set
ExtProp : Set₁
ExtProp = Σ Prop Ext
Reg : ExtProp → Set
Reg P = PropEq (π₀ P)
record Con (P : ExtProp) : Set where
constructor ∁
field
π₀ : Reg P
module Instance where
record Class {B : Set₁} (F : B → Set) : Set₁ where
field foo : ∀ {x} → F x → Set
open Class ⦃ … ⦄
postulate instance _ : Class Reg
postulate instance _ : Class Con
postulate instance _ : Class Ext
postulate instance _ : Class PropEq
test1-failsR : {P : ExtProp} → Reg P → Set
test1-failsR P≈Q = foo P≈Q
test2-worksR : {P : ExtProp} → Reg P → Set
test2-worksR {P} P≈Q = foo {x = P} P≈Q
test3-failsR : {P : ExtProp} → Reg P → Set
test3-failsR {P} P≈Q = foo {x = _ , _} P≈Q
test4-worksR : {P : ExtProp} → Reg P → Set
test4-worksR {P} P≈Q = foo {x = _ , π₁ P} P≈Q
test1-worksC : {P : ExtProp} → Con P → Set
test1-worksC P≈Q = foo P≈Q
test2-worksC : {P : ExtProp} → Con P → Set
test2-worksC {P} P≈Q = foo {x = P} P≈Q
test3-worksC : {P : ExtProp} → Con P → Set
test3-worksC {P} P≈Q = foo {x = _ , _} P≈Q
test4-worksC : {P : ExtProp} → Con P → Set
test4-worksC {P} P≈Q = foo {x = _ , π₁ P} P≈Q
module Function where
postulate fooR : {x : ExtProp} → Reg x → Set
postulate fooC : {x : ExtProp} → Con x → Set
test1-failsR : {P : ExtProp} → Reg P → Set
test1-failsR P≈Q = fooR P≈Q
test2-worksR : {P : ExtProp} → Reg P → Set
test2-worksR {P} P≈Q = fooR {x = P} P≈Q
test3-failsR : {P : ExtProp} → Reg P → Set
test3-failsR {P} P≈Q = fooR {x = _ , _} P≈Q
test4-worksR : {P : ExtProp} → Reg P → Set
test4-worksR {P} P≈Q = fooR {x = _ , π₁ P} P≈Q
test1-worksC : {P : ExtProp} → Con P → Set
test1-worksC P≈Q = fooC P≈Q
test2-worksC : {P : ExtProp} → Con P → Set
test2-worksC {P} P≈Q = fooC {x = P} P≈Q
test3-worksC : {P : ExtProp} → Con P → Set
test3-worksC {P} P≈Q = fooC {x = _ , _} P≈Q
test4-worksC : {P : ExtProp} → Con P → Set
test4-worksC {P} P≈Q = fooC {x = _ , π₁ P} P≈Q
module RegularVsConstructed-EnhancedReg where
infixr 5 _,_
record Σ (𝔒 : Set₁) (𝔓 : 𝔒 → Set) : Set₁ where
constructor _,_
field
π₀ : 𝔒
π₁ : Set
open Σ
postulate Prop : Set₁
postulate Ext : Prop → Set
postulate PropEq : Prop → Set → Set
ExtProp : Set₁
ExtProp = Σ Prop Ext
Reg : ExtProp → Set
Reg P = PropEq (π₀ P) (π₁ P)
record Con (P : ExtProp) : Set where
constructor ∁
field
π₀ : Reg P
module Instance where
record Class {B : Set₁} (F : B → Set) : Set₁ where
field foo : ∀ {x} → F x → Set
open Class ⦃ … ⦄
postulate instance _ : Class Reg
postulate instance _ : Class Con
postulate instance _ : Class Ext
test1-failsR : {P : ExtProp} → Reg P → Set
test1-failsR P≈Q = foo P≈Q
test2-worksR : {P : ExtProp} → Reg P → Set
test2-worksR {P} P≈Q = foo {x = P} P≈Q
test3-failsR : {P : ExtProp} → Reg P → Set
test3-failsR {P} P≈Q = foo {x = _ , _} P≈Q
test4-worksR : {P : ExtProp} → Reg P → Set
test4-worksR {P} P≈Q = foo {x = _ , π₁ P} P≈Q
test1-worksC : {P : ExtProp} → Con P → Set
test1-worksC P≈Q = foo P≈Q
test2-worksC : {P : ExtProp} → Con P → Set
test2-worksC {P} P≈Q = foo {x = P} P≈Q
test3-worksC : {P : ExtProp} → Con P → Set
test3-worksC {P} P≈Q = foo {x = _ , _} P≈Q
test4-worksC : {P : ExtProp} → Con P → Set
test4-worksC {P} P≈Q = foo {x = _ , π₁ P} P≈Q
module Function where
postulate fooR : {x : ExtProp} → Reg x → Set
postulate fooC : {x : ExtProp} → Con x → Set
test1-failsR : {P : ExtProp} → Reg P → Set
test1-failsR P≈Q = fooR P≈Q
test2-worksR : {P : ExtProp} → Reg P → Set
test2-worksR {P} P≈Q = fooR {x = P} P≈Q
test3-failsR : {P : ExtProp} → Reg P → Set
test3-failsR {P} P≈Q = fooR {x = _ , _} P≈Q
test4-worksR : {P : ExtProp} → Reg P → Set
test4-worksR {P} P≈Q = fooR {x = _ , π₁ P} P≈Q
test1-worksC : {P : ExtProp} → Con P → Set
test1-worksC P≈Q = fooC P≈Q
test2-worksC : {P : ExtProp} → Con P → Set
test2-worksC {P} P≈Q = fooC {x = P} P≈Q
test3-worksC : {P : ExtProp} → Con P → Set
test3-worksC {P} P≈Q = fooC {x = _ , _} P≈Q
test4-worksC : {P : ExtProp} → Con P → Set
test4-worksC {P} P≈Q = fooC {x = _ , π₁ P} P≈Q
record ProjectedMorality : Set where
no-eta-equality
infixr 5 _,_
record Σ (𝔒 : Set₁) (𝔓 : 𝔒 → Set) : Set₁ where
constructor _,_
field
π₀ : 𝔒
π₁ : Set
open Σ
postulate Prop : Set₁
postulate Ext : Prop → Set
postulate PropEq : Prop → Set
Reg : Σ Prop Ext → Set
Reg P = PropEq (π₀ P)
postulate bar : ∀ {𝔒 : Set₁} → 𝔒 → 𝔒
postulate qux : ∀ {𝔒} {𝔓 : 𝔒 → Set} → Σ 𝔒 𝔓 → Σ 𝔒 𝔓
postulate fake-π₀ : ∀ {𝔒} {𝔓 : 𝔒 → Set} → Σ 𝔒 𝔓 → 𝔒
abstract
abstracted-π₀ : ∀ {𝔒} {𝔓 : 𝔒 → Set} → Σ 𝔒 𝔓 → 𝔒
abstracted-π₀ x = π₀ x
Reg-using-abstracted-projection : Σ Prop Ext → Set
Reg-using-abstracted-projection (P0 , P1) = PropEq (abstracted-π₀ {𝔒 = Prop} {𝔓 = Ext} (P0 , P1))
Reg-using-q : Σ Prop Ext → Set
Reg-using-q x = PropEq (π₀ (qux x))
Reg-using-fake-π₀ : Σ Prop Ext → Set
Reg-using-fake-π₀ x = PropEq (fake-π₀ x)
record Con (P : Σ Prop Ext) : Set where
constructor ∁
field
π₀ : Reg P
record Con-using-abstracted-projection (P : Σ Prop Ext) : Set where
constructor ∁
field
π₀ : Reg-using-abstracted-projection P
record Con-using-q (P : Σ Prop Ext) : Set where
constructor ∁
field
π₀ : Reg-using-q P
record Con-using-fake-π₀ (P : Σ Prop Ext) : Set where
constructor ∁
field
π₀ : Reg-using-fake-π₀ P
record Class {B : Set₁} (F : B → Set) : Set₁ where
field foo : ∀ {x} → F x → Set
open Class ⦃ … ⦄
postulate instance _ : Class Reg
postulate instance _ : Class Reg-using-abstracted-projection
postulate instance _ : Class Reg-using-q
postulate instance _ : Class Reg-using-fake-π₀
postulate instance _ : Class Con
postulate instance _ : Class Con-using-abstracted-projection
postulate instance _ : Class Con-using-q
postulate instance _ : Class Con-using-fake-π₀
test1-failsR : ∀ {P} → Reg P → Set
test1-failsR = foo
test1-failsRap : ∀ {P} → Reg-using-abstracted-projection P → Set
test1-failsRap = foo
test1-failsRq : ∀ {P} → Reg-using-q P → Set
test1-failsRq = foo
test1-failsRf : ∀ {P} → Reg-using-fake-π₀ P → Set
test1-failsRf = foo
test1-worksC : ∀ {P} → Con P → Set
test1-worksC = foo
test1-worksCap : ∀ {P} → Con-using-abstracted-projection P → Set
test1-worksCap = foo
test1-worksCq : ∀ {P} → Con-using-q P → Set
test1-worksCq = foo
test1-worksCf : ∀ {P} → Con-using-fake-π₀ P → Set
test1-worksCf = foo
record DataMorality : Set where
no-eta-equality
module _ (𝔒 : Set₁) (𝔓 : 𝔒 → Set) where
data Σ : Set₁ where
_,_ : 𝔒 → Set → Σ
module _ {𝔒 : Set₁} {𝔓 : 𝔒 → Set} where
dπ₀ : Σ _ 𝔓 → 𝔒
dπ₀ (x , _) = x
dπ₁ : Σ _ 𝔓 → Set
dπ₁ (_ , y) = y
postulate Prop : Set₁
postulate Ext : Prop → Set
postulate PropEq : Prop → Set
Reg : Σ Prop Ext → Set
Reg P = PropEq (dπ₀ P)
postulate bar : ∀ {𝔒 : Set₁} → 𝔒 → 𝔒
postulate qux : ∀ {𝔒} {𝔓 : 𝔒 → Set} → Σ 𝔒 𝔓 → Σ 𝔒 𝔓
postulate fake-π₀ : ∀ {𝔒} {𝔓 : 𝔒 → Set} → Σ 𝔒 𝔓 → 𝔒
abstract
abstracted-π₀ : ∀ {𝔒} {𝔓 : 𝔒 → Set} → Σ 𝔒 𝔓 → 𝔒
abstracted-π₀ x = dπ₀ x
Reg-using-abstracted-projection : Σ Prop Ext → Set
Reg-using-abstracted-projection (P0 , P1) = PropEq (abstracted-π₀ {𝔒 = Prop} {𝔓 = Ext} (P0 , P1))
Reg-using-q : Σ Prop Ext → Set
Reg-using-q x = PropEq (dπ₀ (qux x))
Reg-using-fake-π₀ : Σ Prop Ext → Set
Reg-using-fake-π₀ x = PropEq (fake-π₀ x)
record Con (P : Σ Prop Ext) : Set where
constructor ∁
field
π₀ : Reg P
record Con-using-abstracted-projection (P : Σ Prop Ext) : Set where
constructor ∁
field
π₀ : Reg-using-abstracted-projection P
record Con-using-q (P : Σ Prop Ext) : Set where
constructor ∁
field
π₀ : Reg-using-q P
record Con-using-fake-π₀ (P : Σ Prop Ext) : Set where
constructor ∁
field
π₀ : Reg-using-fake-π₀ P
record Class {B : Set₁} (F : B → Set) : Set₁ where
field foo : ∀ {x} → F x → Set
open Class ⦃ … ⦄
postulate instance _ : Class Reg
postulate instance _ : Class Reg-using-abstracted-projection
postulate instance _ : Class Reg-using-q
postulate instance _ : Class Reg-using-fake-π₀
postulate instance _ : Class Con
postulate instance _ : Class Con-using-abstracted-projection
postulate instance _ : Class Con-using-q
postulate instance _ : Class Con-using-fake-π₀
test1-failsR : ∀ {P} → Reg P → Set
test1-failsR = foo
test1-failsRap : ∀ {P} → Reg-using-abstracted-projection P → Set
test1-failsRap = foo -- woah, it actually works. why?
test1-failsRq : ∀ {P} → Reg-using-q P → Set
test1-failsRq = foo -- NB this doesn't fail if instance of Class Reg is excluded
test1-failsRf : ∀ {P} → Reg-using-fake-π₀ P → Set
test1-failsRf = foo -- NB this doesn't fail if instance of Class Reg is excluded
test1-worksC : ∀ {P} → Con P → Set
test1-worksC = foo
test1-worksCap : ∀ {P} → Con-using-abstracted-projection P → Set
test1-worksCap = foo
test1-worksCq : ∀ {P} → Con-using-q P → Set
test1-worksCq = foo
test1-worksCf : ∀ {P} → Con-using-fake-π₀ P → Set
test1-worksCf = foo
module RevampedSimpleFailure where
record ExtensionProperty (𝔒 : Set) : Set₁ where
field
π₀ : Property 𝔒
π₁ : Extension π₀
open ExtensionProperty
_≈_ : {𝔒 : Set} → ExtensionProperty 𝔒 → ExtensionProperty 𝔒 → Set
_≈_ P Q = PropertyEquivalence (π₀ P) (π₀ Q)
postulate symmetry : ∀ {𝔒} {x y : ExtensionProperty 𝔒} → x ≈ y → y ≈ x
-- normalises to : ∀ {𝔒} {x y : ExtensionProperty 𝔒} → PropertyEquivalence (π₀ x) (π₀ y) → PropertyEquivalence (π₀ y) (π₀ x)
test-fails : {𝔒 : Set} {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test-fails P≈Q = symmetry P≈Q
module PostulatedExtensionPropertySimpleSuccess where
postulate
ExtensionProperty : Set → Set₁
π₀ : {𝔒 : Set} → ExtensionProperty 𝔒 → Property 𝔒
_≈_ : {𝔒 : Set} → ExtensionProperty 𝔒 → ExtensionProperty 𝔒 → Set
_≈_ P Q = PropertyEquivalence (π₀ P) (π₀ Q)
postulate symmetry : ∀ {𝔒} {x y : ExtensionProperty 𝔒} → x ≈ y → y ≈ x
-- normalises to : ∀ {𝔒} {x y : ExtensionProperty 𝔒} → PropertyEquivalence (π₀ {𝔒} x) (π₀ {𝔒} y) → PropertyEquivalence (π₀ {𝔒} y) (π₀ {𝔒} x)
test-works : {𝔒 : Set} {P Q : ExtensionProperty 𝔒} → P ≈ Q → Q ≈ P
test-works P≈Q = symmetry P≈Q
module RevampedVerySimpleFailure where
-- was PropertyEquivalence : ∀ {P : Set} → Property P → Property P → Set
postulate _∼_ : Set → Set → Set
record ExtensionProperty : Set₁ where
field
π₀ : Set -- was Property 𝔒
π₁ : Set -- was Extension π₀
open ExtensionProperty
postulate symmetry : ∀ {x y : ExtensionProperty} → π₀ x ∼ π₀ y → π₀ y ∼ π₀ x
postulate x y : ExtensionProperty
test-fails : π₀ x ∼ π₀ y → π₀ y ∼ π₀ x
test-fails = symmetry
module PostulatedExtensionPropertyVerySimpleSuccess where
postulate _∼_ : Set → Set → Set
postulate
ExtensionProperty : Set₁
π₀ : ExtensionProperty → Set
postulate symmetry : ∀ {x y : ExtensionProperty} → π₀ x ∼ π₀ y → π₀ y ∼ π₀ x
postulate x y : ExtensionProperty
test-works : π₀ x ∼ π₀ y → π₀ y ∼ π₀ x
test-works P≈Q = symmetry P≈Q
module RevampedEvenSimplerFailure where
-- was _∼_, which was PropertyEquivalence
postulate F : Set → Set
record ExtensionProperty : Set₁ where
field
π₀ : Set
π₁ : Set
open ExtensionProperty
postulate symmetry : ∀ {x : ExtensionProperty} → F (π₀ x) → Set
postulate x : ExtensionProperty
postulate Fpx : F (π₀ x)
test-fails1 : Set
test-fails1 = symmetry Fpx
test-fails2 : Set
test-fails2 = symmetry {x = record { π₀ = π₀ x ; π₁ = _}} Fpx
test-works-arbitrarily : Set
test-works-arbitrarily = symmetry {x = record { π₀ = π₀ x ; π₁ = F (F (π₁ x)) }} Fpx
module PostulatedExtensionPropertyEvenSimplerSuccess where
postulate F : Set → Set
postulate
ExtensionProperty : Set₁
π₀ : ExtensionProperty → Set
postulate symmetry : ∀ {x : ExtensionProperty} → F (π₀ x) → Set
postulate x : ExtensionProperty
postulate Fpx : F (π₀ x)
test-works1 : Set
test-works1 = symmetry Fpx
test-works2 : Set
test-works2 = symmetry {x = x} Fpx
module RevampedEvenSimplerFailureClassified where
postulate F : Set → Set
record ExtensionProperty : Set₁ where
field
π₀ : Set
π₁ : Set
open ExtensionProperty
record Symmetry' (R : Set → Set) : Set₁ where
field symmetry : ∀ {x : ExtensionProperty} → R (π₀ x) → Set
open Symmetry' ⦃ … ⦄
postulate instance _ : Symmetry' F
postulate x : ExtensionProperty
postulate Fpx : F (π₀ x)
test-fails1 : Set
test-fails1 = symmetry Fpx
test-fails2 : Set
test-fails2 = symmetry {x = record { π₀ = π₀ x ; π₁ = _}} Fpx
test-works-arbitrarily : Set
test-works-arbitrarily = symmetry {x = record { π₀ = π₀ x ; π₁ = F (F (π₁ x)) }} Fpx
module PostulatedExtensionPropertyEvenSimplerSuccessClassified where
postulate F : Set → Set
postulate
ExtensionProperty : Set₁
π₀ : ExtensionProperty → Set
record Symmetry' (R : Set → Set) : Set₁ where
field symmetry : ∀ {x : ExtensionProperty} → R (π₀ x) → Set
open Symmetry' ⦃ … ⦄
postulate instance _ : Symmetry' F
postulate x : ExtensionProperty
postulate Fpx : F (π₀ x)
test-works1 : Set
test-works1 = symmetry Fpx
test-works2 : Set
test-works2 = symmetry {x = x} Fpx
module RevampedVsPostulated where
record R : Set₁ where
field
f1 : Set
f2 : Set
open R
postulate fooR : ∀ {x : R} → f1 x → Set
postulate r : R
postulate f1r : f1 r
test-fails1 : Set
test-fails1 = fooR f1r
postulate
S : Set₁
g1 : S → Set
postulate fooS : ∀ {x : S} → g1 x → Set
postulate s : S
postulate g1s : g1 s
test-works1 : Set
test-works1 = fooS g1s
|
{
"alphanum_fraction": 0.5851517695,
"avg_line_length": 28.6533066132,
"ext": "agda",
"hexsha": "03d89ebde2ae6216930409c5aa8c7f0e2bdd2a26",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/AgdaFeaturePitfallInstanceResolution.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/AgdaFeaturePitfallInstanceResolution.agda",
"max_line_length": 173,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/AgdaFeaturePitfallInstanceResolution.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 11612,
"size": 28596
}
|
{-# OPTIONS --without-K --safe #-}
-- Properties of F<:⁻
--
-- This file shows several structural properties of F<:⁻, including weakening,
-- narrowing and transitivity. They are not used anywhere, but just serve as a
-- reference to compare the complexity with the corresponding proofs of D<:.
module FsubMinus2 where
open import Data.List as List
open import Data.Nat
open import Data.Maybe as Maybe
open import Data.Product
open import Data.Sum
open import Function
open import Data.Empty renaming (⊥ to False)
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality as ≡
open import Data.Nat.Properties as ℕₚ
open import Data.Maybe.Properties as Maybeₚ
open import Utils
open import FsubMinus
open import Data.List.Properties as Listₚ
open import Induction.Nat
open FsubMinus.FsubMinus
infixl 7 _⇑
Γ-⇑ : Env → Ftyp → Ftyp
Γ-⇑ Γ = _↑ length Γ
_⇑ : Env → Env
[] ⇑ = []
(T ∷ Γ) ⇑ = Γ-⇑ Γ T ∷ Γ ⇑
↑-↑-comm : ∀ T m n → m ≤ n → T ↑ m ↑ suc n ≡ T ↑ n ↑ m
↑-↑-comm ⊤ m n m≤n = refl
↑-↑-comm (var x) m n m≤n with n ≤? x
... | yes n≤x
rewrite ≤?-yes $ ≤-step $ ≤-trans m≤n n≤x
| ≤?-yes $ ≤-trans m≤n n≤x
| ≤?-yes n≤x = refl
... | no x<n with m ≤? x
... | yes m≤x rewrite proj₂ $ ≤?-no x<n = refl
... | no x<m with suc n ≤? x
... | yes 1+n≤x = ⊥-elim $ x<m (≤-trans (≤-step m≤n) 1+n≤x)
... | no x<1+n = refl
↑-↑-comm (Π<: S ∙ U) m n m≤n
rewrite ↑-↑-comm S m n m≤n
| ↑-↑-comm U (suc m) (suc n) (s≤s m≤n) = refl
<:∈-weakening-≤ : ∀ {x T Γ} →
x <: T ∈ Γ →
∀ Γ₁ Γ₂ T′ →
Γ ≡ Γ₁ ‣ Γ₂ →
length Γ₂ ≤ x →
suc x <: Γ-⇑ Γ₂ T ∈ Γ₁ ‣ T′ ! ‣ Γ₂ ⇑
<:∈-weakening-≤ hd Γ₁ [] T′ refl l≤x = tl hd
<:∈-weakening-≤ hd Γ₁ (_ ∷ Γ₂) T′ eq ()
<:∈-weakening-≤ (tl <:∈) Γ₁ [] T′ refl l≤x = tl (tl <:∈)
<:∈-weakening-≤ (tl {T = T} <:∈) Γ₁ (_ ∷ Γ₂) T′ refl (s≤s l≤x)
rewrite ↑-↑-comm T 0 (length Γ₂) z≤n = tl $ <:∈-weakening-≤ <:∈ Γ₁ Γ₂ T′ refl l≤x
<:∈-weakening-> : ∀ {x T Γ} →
x <: T ∈ Γ →
∀ Γ₁ Γ₂ T′ →
Γ ≡ Γ₁ ‣ Γ₂ →
length Γ₂ > x →
x <: Γ-⇑ Γ₂ T ∈ Γ₁ ‣ T′ ! ‣ Γ₂ ⇑
<:∈-weakening-> hd Γ₁ [] T′ eq ()
<:∈-weakening-> hd Γ₁ (T ∷ Γ₂) T′ refl l>x
rewrite ↑-↑-comm T 0 (length Γ₂) z≤n = hd
<:∈-weakening-> (tl <:∈) Γ₁ [] T′ eq ()
<:∈-weakening-> (tl {T = T} <:∈) Γ₁ (_ ∷ Γ₂) T′ refl (s≤s l>x)
rewrite ↑-↑-comm T 0 (length Γ₂) z≤n = tl $ <:∈-weakening-> <:∈ Γ₁ Γ₂ T′ refl l>x
<:∈-weakening : ∀ {x T Γ} →
x <: T ∈ Γ →
∀ Γ₁ Γ₂ T′ →
Γ ≡ Γ₁ ‣ Γ₂ →
↑-idx x (length Γ₂) <: Γ-⇑ Γ₂ T ∈ Γ₁ ‣ T′ ! ‣ Γ₂ ⇑
<:∈-weakening {x} <:∈ Γ₁ Γ₂ T′ eq with length Γ₂ ≤? x
... | yes p = <:∈-weakening-≤ <:∈ Γ₁ Γ₂ T′ eq p
... | no ¬p = <:∈-weakening-> <:∈ Γ₁ Γ₂ T′ eq (≰⇒> ¬p)
<:-weakening-gen : ∀ {Γ S U} →
Γ ⊢F S <: U →
∀ Γ₁ Γ₂ T →
Γ ≡ Γ₁ ‣ Γ₂ →
Γ₁ ‣ T ! ‣ Γ₂ ⇑ ⊢F Γ-⇑ Γ₂ S <: Γ-⇑ Γ₂ U
<:-weakening-gen ftop Γ₁ Γ₂ T eq = ftop
<:-weakening-gen (fvrefl {_} {x}) Γ₁ Γ₂ T eq
rewrite ↑-var x (length Γ₂) = fvrefl
<:-weakening-gen (fbinds {_} {x} T∈Γ D) Γ₁ Γ₂ T eq
rewrite ↑-var x (length Γ₂) = fbinds (<:∈-weakening T∈Γ Γ₁ Γ₂ T eq)
(<:-weakening-gen D Γ₁ Γ₂ T eq)
<:-weakening-gen (fall {S₂ = S₂} Dp Db) Γ₁ Γ₂ T eq
= fall (<:-weakening-gen Dp Γ₁ Γ₂ T eq)
(<:-weakening-gen Db Γ₁ (Γ₂ ‣ S₂ !) T (cong (S₂ ∷_) eq))
<:-weakening : ∀ {S U} Γ₁ Γ₂ T →
Γ₁ ‣ Γ₂ ⊢F S <: U →
Γ₁ ‣ T ! ‣ Γ₂ ⇑ ⊢F Γ-⇑ Γ₂ S <: Γ-⇑ Γ₂ U
<:-weakening _ _ T D = <:-weakening-gen D _ _ T refl
<:-weakening-hd : ∀ {Γ S U} T →
Γ ⊢F S <: U →
Γ ‣ T ! ⊢F S ↑ 0 <: U ↑ 0
<:-weakening-hd T D = <:-weakening _ [] T D
<:-weakening′ : ∀ {Γ S U} Γ′ →
Γ ⊢F S <: U →
Γ ‣ Γ′ ⊢F repeat (length Γ′) (_↑ 0) S <: repeat (length Γ′) (_↑ 0) U
<:-weakening′ [] D = D
<:-weakening′ (T ∷ Γ′) D = <:-weakening-hd T $ <:-weakening′ Γ′ D
<:-refl : ∀ Γ T → Γ ⊢F T <: T
<:-refl Γ ⊤ = ftop
<:-refl Γ (var x) = fvrefl
<:-refl Γ (Π<: S ∙ U) = fall (<:-refl Γ S) (<:-refl (S ∷ Γ) U)
module TransProof where
open ≤-Reasoning
<:∈-find : ∀ {x T Γ} →
x <: T ∈ Γ →
∀ T₁ T₂ Γ₁ Γ₂ →
Γ ≡ Γ₁ ‣ T₁ ! ‣ Γ₂ →
x ≢ length Γ₂ × x <: T ∈ Γ₁ ‣ T₂ ! ‣ Γ₂ ⊎
x ≡ length Γ₂ × T ≡ repeat (suc (length Γ₂)) (_↑ 0) T₁ ×
x <: repeat (suc (length Γ₂)) (_↑ 0) T₂ ∈ Γ₁ ‣ T₂ ! ‣ Γ₂
<:∈-find hd T₁ T₂ Γ₁ [] refl = inj₂ (refl , refl , hd)
<:∈-find hd T₁ T₂ Γ₁ (_ ∷ Γ₂) refl = inj₁ ((λ ()) , hd)
<:∈-find (tl <:∈) T₁ T₂ Γ₁ [] refl = inj₁ ((λ ()) , tl <:∈)
<:∈-find (tl <:∈) T₁ T₂ Γ₁ (_ ∷ Γ₂) refl with <:∈-find <:∈ T₁ T₂ Γ₁ Γ₂ refl
... | inj₁ (n≢l , r) = inj₁ ((λ n≡l → n≢l (suc-injective n≡l)) , tl r)
... | inj₂ (n≡l , e , r) = inj₂ (cong suc n≡l , cong (_↑ 0) e , tl r)
infix 4 _≺:[_]_
data _≺:[_]_ : Env → ℕ → Env → Set where
≺[_,_] : ∀ {Γ U} S → Γ ⊢F S <: U → Γ ‣ S ! ≺:[ 0 ] Γ ‣ U !
_∷_ : ∀ {Γ₁ n Γ₂} T → Γ₁ ≺:[ n ] Γ₂ → Γ₁ ‣ T ! ≺:[ suc n ] Γ₂ ‣ T !
<:∈-find′ : ∀ {x T Γ Γ′ n} →
x <: T ∈ Γ →
Γ′ ≺:[ n ] Γ →
x ≡ n × (∃ λ T′ → n <: T′ ∈ Γ′ × Γ′ ⊢F T′ <: T) ⊎ x ≢ n × x <: T ∈ Γ′
<:∈-find′ hd ≺[ T′ , T′<:T ] = inj₁ (refl , T′ ↑ 0 , hd , <:-weakening-hd T′ T′<:T)
<:∈-find′ hd (T ∷ Γ′≺:Γ) = inj₂ ((λ ()) , hd)
<:∈-find′ (tl T∈Γ) ≺[ T′ , T′<:T ] = inj₂ ((λ ()) , tl T∈Γ)
<:∈-find′ (tl T∈Γ) (S ∷ Γ′≺:Γ) with <:∈-find′ T∈Γ Γ′≺:Γ
... | inj₁ (x≡n , T′ , T′∈Γ′ , T′<:T) = inj₁ (cong suc x≡n , T′ ↑ 0 , tl T′∈Γ′ , <:-weakening-hd S T′<:T)
... | inj₂ (x≢n , T∈Γ′) = inj₂ (x≢n ∘ suc-injective , tl T∈Γ′)
trans-on : Ftyp → Set
trans-on T = ∀ {Γ S U} → Γ ⊢F S <: T → Γ ⊢F T <: U → Γ ⊢F S <: U
narrow-on : Ftyp → Set
narrow-on T = ∀ {Γ Γ′ n S U} →
Γ ⊢F S <: U →
Γ′ ≺:[ n ] Γ →
n <: T ∈ Γ →
Γ′ ⊢F S <: U
<:-trans-rec : ∀ T → (∀ T′ → Ftyp-measure T′ < Ftyp-measure T → trans-on T′ × narrow-on T′) → trans-on T
<:-trans-rec ⊤ rec S<:T ftop = S<:T
<:-trans-rec (var x) rec S<:T ftop = ftop
<:-trans-rec (var x) rec S<:T fvrefl = S<:T
<:-trans-rec (var x) rec fvrefl (fbinds T∈Γ T<:U) = fbinds T∈Γ T<:U
<:-trans-rec (var x) rec (fbinds S∈Γ S<:T) (fbinds T∈Γ T<:U) = fbinds S∈Γ (<:-trans-rec (var x) rec S<:T (fbinds T∈Γ T<:U))
<:-trans-rec (Π<: S ∙ U) rec S<:T ftop = ftop
<:-trans-rec (Π<: S ∙ U) rec (fbinds S∈Γ S<:T) (fall Db Dp) = fbinds S∈Γ (<:-trans-rec (Π<: S ∙ U) rec S<:T (fall Db Dp))
<:-trans-rec (Π<: S ∙ U) rec (fall Dp₁ Db₁) (fall Dp₂ Db₂) = fall (<:-trans-rec S (λ T′ T′<:S → rec T′ (≤-stepsʳ _ T′<:S)) Dp₂ Dp₁)
(<:-trans-rec U
(λ T′ T′<U → rec T′ (≤-trans T′<U (≤-stepsˡ _ ≤-refl)))
(proj₂ (rec (S ↑ 0) S↑0<SU) Db₁ ≺[ _ , Dp₂ ] hd)
Db₂)
where S↑0<SU : Ftyp-measure (S ↑ 0) < Ftyp-measure S + Ftyp-measure U
S↑0<SU = begin-strict
Ftyp-measure (S ↑ 0) ≡⟨ Ftyp-measure-↑ S 0 ⟩
Ftyp-measure S <⟨ ≤-refl ⟩
1 + Ftyp-measure S ≡⟨ sym (+-comm _ 1) ⟩
Ftyp-measure S + 1 ≤⟨ +-monoʳ-≤ _ (Ftyp-measure≥1 U) ⟩
Ftyp-measure S + Ftyp-measure U ∎
<:-narrowing-rec : ∀ T → (∀ T′ → Ftyp-measure T′ ≤ Ftyp-measure T → trans-on T′) → narrow-on T
<:-narrowing-rec T trans ftop Γ′≺:Γ T∈Γ = ftop
<:-narrowing-rec T trans fvrefl Γ′≺:Γ T∈Γ = fvrefl
<:-narrowing-rec T trans (fbinds S∈Γ S<:U) Γ′≺:Γ T∈Γ with <:∈-find′ S∈Γ Γ′≺:Γ
... | inj₁ (refl , T′ , T′∈Γ′ , T′<:T)
rewrite <:∈-func S∈Γ T∈Γ = fbinds T′∈Γ′ (trans T ≤-refl
T′<:T
(<:-narrowing-rec T trans S<:U Γ′≺:Γ T∈Γ))
... | inj₂ (x≢n , T′∈Γ′) = fbinds T′∈Γ′ (<:-narrowing-rec T trans S<:U Γ′≺:Γ T∈Γ)
<:-narrowing-rec T trans (fall Dp Db) Γ′≺:Γ T∈Γ = fall (<:-narrowing-rec T trans Dp Γ′≺:Γ T∈Γ)
(<:-narrowing-rec (T ↑ 0)
(λ T′ → trans T′ ∘ T′≤T T′)
Db (_ ∷ Γ′≺:Γ) (tl T∈Γ))
where T′≤T : ∀ T′ → Ftyp-measure T′ ≤ Ftyp-measure (T ↑ 0) → Ftyp-measure T′ ≤ Ftyp-measure T
T′≤T T′ T′≤T↑0 = begin
Ftyp-measure T′ ≤⟨ T′≤T↑0 ⟩
Ftyp-measure (T ↑ 0) ≡⟨ Ftyp-measure-↑ T 0 ⟩
Ftyp-measure T ∎
<:-trans-narrow : ∀ T → trans-on T × narrow-on T
<:-trans-narrow = wfRec (λ T → trans-on T × narrow-on T)
λ T rec →
<:-trans-rec T rec ,
<:-narrowing-rec T λ T′ T′≤T →
<:-trans-rec T′ λ T″ T″<T′ →
rec T″ (≤-trans T″<T′ T′≤T)
where open Measure <-wellFounded Ftyp-measure
<:-trans : ∀ {T} → trans-on T
<:-trans {T} = proj₁ $ <:-trans-narrow T
<:-narrow : ∀ {T} → narrow-on T
<:-narrow {T} = proj₂ $ <:-trans-narrow T
<:-weakening-size-gen : ∀ {Γ S U} →
(S<:U : Γ ⊢F S <: U) →
∀ Γ₁ Γ₂ T →
(eq : Γ ≡ Γ₁ ‣ Γ₂) →
F-measure S<:U ≡ F-measure (<:-weakening-gen S<:U Γ₁ Γ₂ T eq)
<:-weakening-size-gen ftop Γ₁ Γ₂ T eq = refl
<:-weakening-size-gen (fvrefl {_} {x}) Γ₁ Γ₂ T eq
rewrite ↑-var x (length Γ₂) = refl
<:-weakening-size-gen (fbinds {_} {x} S∈Γ D) Γ₁ Γ₂ T eq
rewrite ↑-var x (length Γ₂) = cong suc (<:-weakening-size-gen D Γ₁ Γ₂ T eq)
<:-weakening-size-gen (fall {S₂ = S} Dp Db) Γ₁ Γ₂ T eq
= cong suc (cong₂ _+_ (<:-weakening-size-gen Dp Γ₁ Γ₂ T eq)
(<:-weakening-size-gen Db Γ₁ (S ∷ Γ₂) T (cong (S ∷_) eq)))
open TransProof using (<:-trans ; <:-narrow) public
|
{
"alphanum_fraction": 0.4067515219,
"avg_line_length": 45.3640167364,
"ext": "agda",
"hexsha": "7de53751ac548ca2a3930e7dc3c0a08ed43a2172",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "48214a55ebb484fd06307df4320813d4a002535b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "HuStmpHrrr/popl20-artifact",
"max_forks_repo_path": "agda/FsubMinus2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "48214a55ebb484fd06307df4320813d4a002535b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "HuStmpHrrr/popl20-artifact",
"max_issues_repo_path": "agda/FsubMinus2.agda",
"max_line_length": 139,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "48214a55ebb484fd06307df4320813d4a002535b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "HuStmpHrrr/popl20-artifact",
"max_stars_repo_path": "agda/FsubMinus2.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-23T08:40:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-09-23T08:40:28.000Z",
"num_tokens": 4437,
"size": 10842
}
|
module Categories where
infix 10 _≡_
data _≡_ {A : Set}(a : A) : {B : Set} -> B -> Set where
refl : a ≡ a
trans : forall {A B C}{a : A}{b : B}{c : C} -> a ≡ b -> b ≡ c -> a ≡ c
trans refl p = p
sym : forall {A B}{a : A}{b : B} -> a ≡ b -> b ≡ a
sym refl = refl
resp : forall {A}{B : A -> Set}{a a' : A} ->
(f : (a : A) -> B a) -> a ≡ a' -> f a ≡ f a'
resp f refl = refl
record Cat : Set1 where
field Obj : Set
Hom : Obj -> Obj -> Set
id : forall X -> Hom X X
_○_ : forall {X Y Z} -> Hom Y Z -> Hom X Y -> Hom X Z
idl : forall {X Y}{f : Hom X Y} -> id Y ○ f ≡ f
idr : forall {X Y}{f : Hom X Y} -> f ○ id X ≡ f
assoc : forall {W X Y Z}{f : Hom W X}{g : Hom X Y}{h : Hom Y Z} ->
(h ○ g) ○ f ≡ h ○ (g ○ f)
open Cat
record Functor (C D : Cat) : Set where
field Fun : Obj C -> Obj D
map : forall {X Y} -> (Hom C X Y) -> Hom D (Fun X) (Fun Y)
mapid : forall {X} -> map (id C X) ≡ id D (Fun X)
map○ : forall {X Y Z}{f : Hom C X Y}{g : Hom C Y Z} ->
map (_○_ C g f) ≡ _○_ D (map g) (map f)
open Functor
idF : forall C -> Functor C C
idF C = record {Fun = \x -> x; map = \x -> x; mapid = refl; map○ = refl}
_•_ : forall {C D E} -> Functor D E -> Functor C D -> Functor C E
F • G = record {Fun = \X -> Fun F (Fun G X);
map = \f -> map F (map G f);
mapid = trans (resp (\x -> map F x) (mapid G)) (mapid F);
map○ = trans (resp (\x -> map F x) (map○ G)) (map○ F)}
record Nat {C D : Cat} (F G : Functor C D) : Set where
field η : (X : Obj C) -> Hom D (Fun F X) (Fun G X)
law : {X Y : Obj C}{f : Hom C X Y} ->
_○_ D (η Y) (map F f) ≡ _○_ D (map G f) (η X)
open Nat
_▪_ : forall {C D : Cat}{F G H : Functor C D} -> Nat G H -> Nat F G -> Nat F H
_▪_ {D = D} A B =
record {
η = \X -> _○_ D (η A X) (η B X);
law = \{X}{Y} ->
trans (assoc D)
(trans (resp (\f -> _○_ D (η A Y) f) (law B))
(trans (sym (assoc D))
(trans (resp (\g -> _○_ D g (η B X)) (law A))
(assoc D))))
}
|
{
"alphanum_fraction": 0.4258660508,
"avg_line_length": 32.3134328358,
"ext": "agda",
"hexsha": "f18de87e3d1869c31286a47b71bedd959822be98",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/agda",
"max_forks_repo_path": "benchmark/categories/Categories.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/agda",
"max_issues_repo_path": "benchmark/categories/Categories.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "benchmark/categories/Categories.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 847,
"size": 2165
}
|
------------------------------------------------------------------------
-- Pointers to results from the paper
------------------------------------------------------------------------
-- Note that this is a version of the code that does not quite match
-- the description in the paper. See README for some discussion of the
-- changes.
{-# OPTIONS --cubical --sized-types #-}
module README.Pointers-to-results-from-the-paper where
-- Library code.
import Delay-monad
import Delay-monad.Bisimilarity
import Delay-monad.Bisimilarity.Alternative
import Delay-monad.Monad
import Delay-monad.Partial-order
import Delay-monad.Termination
import Equality.Propositional as Equality
import Interval
import H-level.Truncation.Propositional as Truncation
import Quotient
import Univalence-axiom
-- Code from this development.
import Delay-monad.Alternative
import Delay-monad.Alternative.Equivalence
import Delay-monad.Alternative.Partial-order
import Delay-monad.Alternative.Termination
import Delay-monad.Alternative.Weak-bisimilarity
import Lifting
import Partiality-algebra
import Partiality-algebra.Category
import Partiality-algebra.Eliminators
import Partiality-algebra.Fixpoints
import Partiality-algebra.Pi
import Partiality-monad.Coinductive.Alternative
import Partiality-monad.Inductive as Partiality-monad
import Partiality-monad.Inductive.Alternative-order as Alternative-order
import Partiality-monad.Inductive.Eliminators
import Partiality-monad.Inductive.Fixpoints
import Partiality-monad.Inductive.Monad as Monad
import Partiality-monad.Inductive.Monad.Adjunction as Adjunction
import Partiality-monad.Equivalence
import README.Lambda
import Search
------------------------------------------------------------------------
-- Section 2
-- Note that most of the following definitions are taken from a
-- library.
-- Extensionality for functions.
Extensionality = Equality.Extensionality
ext = Interval.ext
-- Strong bisimilarity implies equality for the delay monad.
Delay-ext = Delay-monad.Bisimilarity.Extensionality
-- The property of being a set.
Is-set = Equality.Is-set
-- The property of being a proposition.
Is-proposition = Equality.Is-proposition
-- Propositional extensionality.
Propositional-extensionality =
Univalence-axiom.Propositional-extensionality
-- The univalence axiom.
Univalence = Univalence-axiom.Univalence
-- Quotient types.
import Quotient
-- Countable choice.
Countable-choice = Truncation.Axiom-of-countable-choice
------------------------------------------------------------------------
-- Section 3.1
-- Definition 1: Partiality algebras and partiality algebra morphisms.
-- The function η is called now and ⊥ is called never.
Partiality-algebra = Partiality-algebra.Partiality-algebra
Morphism = Partiality-algebra.Morphism
-- An identity morphism.
id = Partiality-algebra.id
-- Composition of morphisms.
_∘_ = Partiality-algebra._∘_
-- Partiality algebras form a category.
category = Partiality-algebra.Category.category
-- The partiality monad, defined as a QIIT. (The proof α is called
-- antisymmetry.)
_⊥ = Partiality-monad._⊥
-- A partiality algebra for the partiality monad.
partiality-monad = Partiality-monad.partiality-algebra
-- Initiality.
Initial = Partiality-algebra.Eliminators.Initial
-- Theorem 2.
Induction-principle =
Partiality-algebra.Eliminators.Elimination-principle
universality-to-induction =
Partiality-algebra.Eliminators.∀initiality→∀eliminators
induction-to-universality =
Partiality-algebra.Eliminators.∀eliminators→∀initiality
-- The partiality monad's induction principle.
induction-principle = Partiality-monad.eliminators
-- A proof that shows that A ⊥ is a set without making use of the
-- set-truncation "constructor".
T-is-set = Partiality-algebra.Partiality-algebra-with.T-is-set
-- Lemma 3.
lemma-3 = Partiality-monad.Inductive.Eliminators.⊥-rec-⊥
------------------------------------------------------------------------
-- Section 3.2
-- Definition 4: The category ω-CPO of pointed ω-cpos.
ω-CPO = Adjunction.ω-CPPO
ω-cpo = Adjunction.ω-cppo
-- The forgetful functor U from ω-CPO (and in fact Part_A for any A)
-- to SET.
U = Adjunction.Forget
-- The functor F from SET to ω-CPO.
F = Adjunction.Partial
-- Theorem 5.
theorem-5 = Adjunction.Partial⊣Forget
-- Corollary 6.
corollary-6 = Adjunction.Partiality-monad
-- A direct construction of a monad structure on _⊥.
μ = Monad.join
module Monad-laws = Monad.Monad-laws
------------------------------------------------------------------------
-- Section 3.3
-- Lemma 7. For the second part the code uses a propositional
-- truncation that is not present in the paper: the result proved in
-- the code is more general, and works even if the type "A" is not a
-- set.
lemma-7-part-1 = Alternative-order.now⊑never≃⊥
lemma-7-part-2 = Alternative-order.now⊑now≃∥≡∥
lemma-7-part-3 = Alternative-order.now⊑⨆≃∥∃now⊑∥
-- Corollary 8. For the second part the code uses a propositional
-- truncation that is not present in the paper: the result proved in
-- the code is more general, and works even if the type "A" is not a
-- set.
corollary-8-part-1 = Alternative-order.now⊑→⇓
corollary-8-part-2 = Alternative-order.now≡now≃∥≡∥
corollary-8-part-3 = Alternative-order.now≢never
-- The order is flat.
flat-order = Alternative-order.flat-order
------------------------------------------------------------------------
-- Section 4, not including Sections 4.1 and 4.2
-- Definition 9: The delay monad and weak bisimilarity. The definition
-- of _↓_ is superficially different from the one in the paper. The
-- first definition of weak bisimilarity, _∼D_, is different from the
-- one in the paper, but is logically equivalent to the second one,
-- _∼D′_, which is closer to the paper's definition.
Delay = Delay-monad.Delay
_↓D_ = Delay-monad.Termination._⇓_
_∼D_ = Delay-monad.Bisimilarity._≈_
_∼D′_ = Delay-monad.Bisimilarity.Alternative._≈₂_
∼D⇔∼D′ = Delay-monad.Partial-order.≈⇔≈₂
-- The delay monad is a monad.
Delay-monad = Delay-monad.Monad.delay-monad
-- The relation _↓D_ is pointwise propositional (when the type "A" is
-- a set).
↓D-propositional = Delay-monad.Termination.Terminates-propositional
-- The relation _∼D′_ is pointwise propositional (when the type "A" is
-- a set).
∼D′-propositional =
Delay-monad.Bisimilarity.Alternative.≈₂-propositional
-- _∼D_ is an equivalence relation.
∼D-reflexive = Delay-monad.Bisimilarity.reflexive
∼D-symmetric = Delay-monad.Bisimilarity.symmetric
∼D-transitive = Delay-monad.Bisimilarity.transitive-≈
------------------------------------------------------------------------
-- Section 4.1
-- The predicate is-mon.
is-mon = Delay-monad.Alternative.Increasing
-- Monotone sequences.
Seq = Delay-monad.Alternative.Delay
-- Lemma 10.
lemma-10 = Delay-monad.Alternative.Equivalence.Delay↔Delay
-- The relation ↓_Seq.
_↓-Seq_ = Delay-monad.Alternative.Termination._⇓_
-- This relation is pointwise logically equivalent to a
-- propositionally truncated variant (when the type "A" is a set).
↓-Seq⇔∥↓-Seq∥ = Delay-monad.Alternative.Termination.⇓⇔∥⇓∥
-- The relation ⊑_Seq.
_⊑-Seq_ = Delay-monad.Alternative.Partial-order._∥⊑∥_
-- This relation is pointwise propositional.
⊑-Seq-propositional =
Delay-monad.Alternative.Partial-order.∥⊑∥-propositional
-- The relation ∼_Seq.
_∼-Seq_ = Delay-monad.Alternative.Weak-bisimilarity._≈_
-- This relation is pointwise propositional.
≈-Seq-propositional =
Delay-monad.Alternative.Weak-bisimilarity.≈-propositional
-- Lemma 11.
lemma-11 = Partiality-monad.Coinductive.Alternative.⊥↔⊥
------------------------------------------------------------------------
-- Section 4.2
-- The function w.
w = Partiality-monad.Equivalence.Delay→⊥
-- Lemma 12.
w-monotone = Partiality-monad.Equivalence.Delay→⊥-mono
w̃ = Partiality-monad.Equivalence.⊥→⊥
-- Lemma 13.
lemma-13 = Partiality-monad.Equivalence.⊥→⊥-injective
-- Lemma 14.
lemma-14 = Partiality-monad.Equivalence.Delay→⊥-surjective
-- The function w̃ is surjective.
w̃-surjective = Partiality-monad.Equivalence.⊥→⊥-surjective
-- Theorem 15.
theorem-15-part-1 = Partiality-monad.Equivalence.⊥→⊥-equiv
theorem-15-part-2 = Partiality-monad.Equivalence.⊥≃⊥′
theorem-15-part-3 = Partiality-monad.Equivalence.⊥≃⊥
------------------------------------------------------------------------
-- Section 5.1
-- A fixpoint combinator.
fix = Partiality-algebra.Fixpoints.fix
-- If the argument is ω-continuous, then the result is a least fixed
-- point.
fixed-point = Partiality-algebra.Fixpoints.fix-is-fixpoint-combinator
least = Partiality-algebra.Fixpoints.fix-is-least
-- A kind of dependent function space with a type as the domain and a
-- family of partiality algebras as the codomain. The result is a
-- partiality algebra.
Π = Partiality-algebra.Pi.Π
-- The search function.
module The-search-function = Search.Direct
------------------------------------------------------------------------
-- Section 5.3
-- Operational semantics.
module Operational-semantics = README.Lambda
------------------------------------------------------------------------
-- Section 6
-- A quotient inductive-inductive definition of the lifting
-- construction on ω-cpos. (This construction is based on a suggestion
-- from Paolo Capriotti.)
module Lifting-construction = Lifting
|
{
"alphanum_fraction": 0.6890166028,
"avg_line_length": 26.6931818182,
"ext": "agda",
"hexsha": "ae4d2cff8ba9109740d8cacdd6766bfffc9281aa",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/partiality-monad",
"max_forks_repo_path": "README/Pointers-to-results-from-the-paper.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/partiality-monad",
"max_issues_repo_path": "README/Pointers-to-results-from-the-paper.agda",
"max_line_length": 72,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/partiality-monad",
"max_stars_repo_path": "README/Pointers-to-results-from-the-paper.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z",
"num_tokens": 2549,
"size": 9396
}
|
module Cats.Category.Cones where
open import Relation.Binary using (Rel ; IsEquivalence ; _Preserves₂_⟶_⟶_)
open import Level using (_⊔_)
open import Cats.Category.Base
open import Cats.Functor using (Functor) renaming (_∘_ to _∘F_)
open import Cats.Util.Conv
import Relation.Binary.PropositionalEquality as ≡
import Cats.Category.Constructions.Iso as Iso
import Cats.Util.Function as Fun
module _ {lo la l≈ lo′ la′ l≈′}
{J : Category lo la l≈}
{Z : Category lo′ la′ l≈′}
(D : Functor J Z)
where
infixr 9 _∘_
infixr 4 _≈_
private
module Z = Category Z
module J = Category J
module D = Functor D
-- We could define cones in terms of wedges (and limits in terms of ends).
record Cone : Set (lo ⊔ la ⊔ la′ ⊔ lo′ ⊔ l≈′) where
field
Apex : Z.Obj
arr : ∀ j → Apex Z.⇒ D.fobj j
commute : ∀ {i j} (α : i J.⇒ j) → arr j Z.≈ D.fmap α Z.∘ arr i
instance
HasObj-Cone : HasObj Cone lo′ la′ l≈′
HasObj-Cone = record { Cat = Z ; _ᴼ = Cone.Apex }
Obj = Cone
record _⇒_ (A B : Obj) : Set (lo ⊔ la′ ⊔ l≈′) where
private
module A = Cone A ; module B = Cone B
field
θ : A.Apex Z.⇒ B.Apex
commute : ∀ j → B.arr j Z.∘ θ Z.≈ A.arr j
instance
HasArrow-⇒ : ∀ {A B} → HasArrow (A ⇒ B) lo′ la′ l≈′
HasArrow-⇒ = record { Cat = Z ; _⃗ = _⇒_.θ }
_≈_ : ∀ {A B} → Rel (A ⇒ B) l≈′
_≈_ = Z._≈_ Fun.on _⇒_.θ
equiv : ∀ {A B} → IsEquivalence (_≈_ {A} {B})
equiv = Fun.on-isEquivalence _⇒_.θ Z.equiv
id : ∀ {A} → A ⇒ A
id = record
{ θ = Z.id
; commute = λ j → Z.id-r
}
_∘_ : ∀ {A B C} → B ⇒ C → A ⇒ B → A ⇒ C
_∘_ {A} {B} {C} f g = record
{ θ = f ⃗ Z.∘ g ⃗
; commute = λ j →
begin
arr C j Z.∘ f ⃗ Z.∘ g ⃗
≈⟨ Z.unassoc ⟩
(arr C j Z.∘ f ⃗) Z.∘ g ⃗
≈⟨ Z.∘-resp-l (commute f j) ⟩
arr B j Z.∘ g ⃗
≈⟨ commute g j ⟩
arr A j
∎
}
where
open Cone using (arr)
open _⇒_ using (commute)
open Z.≈-Reasoning
Cones : Category (lo ⊔ la ⊔ lo′ ⊔ la′ ⊔ l≈′) (lo ⊔ la′ ⊔ l≈′) l≈′
Cones = record
{ Obj = Obj
; _⇒_ = _⇒_
; _≈_ = _≈_
; id = id
; _∘_ = _∘_
; equiv = equiv
; ∘-resp = Z.∘-resp
; id-r = Z.id-r
; id-l = Z.id-l
; assoc = Z.assoc
}
open Iso.Build Cones using (_≅_)
open Iso.Build Z using () renaming (_≅_ to _≅Z_)
cone-iso→obj-iso : ∀ {c d : Cone}
→ c ≅ d
→ c ᴼ ≅Z d ᴼ
cone-iso→obj-iso i = record
{ forth = forth i ⃗
; back = back i ⃗
; back-forth = back-forth i
; forth-back = forth-back i
}
where
open _≅_
apFunctor : ∀ {lo la l≈ lo′ la′ l≈′ lo″ la″ l≈″}
→ {Y : Category lo la l≈}
→ {Z : Category lo′ la′ l≈′}
→ (F : Functor Y Z)
→ {J : Category lo″ la″ l≈″}
→ {D : Functor J Y}
→ Cone D
→ Cone (F ∘F D)
apFunctor {Y = Y} {Z} F {J} {D} c = record
{ Apex = fobj F Apex
; arr = λ j → fmap F (arr j)
; commute = λ {i} {j} α → Z.≈.sym (
begin
fmap (F ∘F D) α Z.∘ fmap F (arr i)
≡⟨ ≡.refl ⟩
fmap F (fmap D α) Z.∘ fmap F (arr i)
≈⟨ fmap-∘ F ⟩
fmap F (fmap D α Y.∘ arr i)
≈⟨ fmap-resp F (Y.≈.sym (commute α)) ⟩
fmap F (arr j)
∎
)
}
where
module Y = Category Y
module Z = Category Z
open Cone c
open Z.≈-Reasoning
open Functor
|
{
"alphanum_fraction": 0.4879465582,
"avg_line_length": 21.9299363057,
"ext": "agda",
"hexsha": "561887bedc1a53b1b0be83b7444c62ddf41e0de1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alessio-b-zak/cats",
"max_forks_repo_path": "Cats/Category/Cones.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alessio-b-zak/cats",
"max_issues_repo_path": "Cats/Category/Cones.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alessio-b-zak/cats",
"max_stars_repo_path": "Cats/Category/Cones.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1437,
"size": 3443
}
|
{-# OPTIONS --without-K --safe #-}
module Dodo.Nullary.Disjoint where
-- Stdlib imports
open import Level using (Level)
open import Data.Product using (_×_)
open import Relation.Nullary using (¬_)
-- # Definitions
Disjoint : ∀ {a b : Level} (A : Set a) (B : Set b) → Set _
Disjoint A B = ¬ (A × B)
|
{
"alphanum_fraction": 0.6534653465,
"avg_line_length": 20.2,
"ext": "agda",
"hexsha": "d5bd06c7c5acc5f94ddac09ccd4fe67d5801f8db",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "sourcedennis/agda-dodo",
"max_forks_repo_path": "src/Dodo/Nullary/Disjoint.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "sourcedennis/agda-dodo",
"max_issues_repo_path": "src/Dodo/Nullary/Disjoint.agda",
"max_line_length": 58,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "sourcedennis/agda-dodo",
"max_stars_repo_path": "src/Dodo/Nullary/Disjoint.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 87,
"size": 303
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties related to Linked
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Unary.Linked.Properties where
open import Data.List hiding (any)
open import Data.List.Relation.Unary.AllPairs as AllPairs
using (AllPairs; []; _∷_)
open import Data.List.Relation.Unary.All using (All; []; _∷_)
open import Data.List.Relation.Unary.Linked as Linked
using (Linked; []; [-]; _∷_)
open import Data.Fin.Base using (Fin)
open import Data.Fin.Properties using (suc-injective)
open import Data.Nat.Base using (zero; suc; _<_; z≤n; s≤s)
open import Data.Nat.Properties using (≤-refl; ≤-pred; ≤-step)
open import Level using (Level)
open import Function using (_∘_; flip)
open import Relation.Binary using (Rel; Transitive; DecSetoid)
open import Relation.Binary.PropositionalEquality using (_≢_)
open import Relation.Unary using (Pred; Decidable)
open import Relation.Nullary using (yes; no)
private
variable
a b p ℓ : Level
A : Set a
B : Set b
------------------------------------------------------------------------
-- Relationship to other predicates
------------------------------------------------------------------------
module _ {R : Rel A ℓ} where
AllPairs⇒Linked : ∀ {xs} → AllPairs R xs → Linked R xs
AllPairs⇒Linked [] = []
AllPairs⇒Linked (px ∷ []) = [-]
AllPairs⇒Linked ((px ∷ _) ∷ py ∷ pxs) =
px ∷ (AllPairs⇒Linked (py ∷ pxs))
module _ {R : Rel A ℓ} (trans : Transitive R) where
Linked⇒All : ∀ {v x xs} → R v x →
Linked R (x ∷ xs) → All (R v) (x ∷ xs)
Linked⇒All Rvx [-] = Rvx ∷ []
Linked⇒All Rvx (Rxy ∷ Rxs) = Rvx ∷ Linked⇒All (trans Rvx Rxy) Rxs
Linked⇒AllPairs : ∀ {xs} → Linked R xs → AllPairs R xs
Linked⇒AllPairs [] = []
Linked⇒AllPairs [-] = [] ∷ []
Linked⇒AllPairs (Rxy ∷ Rxs) = Linked⇒All Rxy Rxs ∷ Linked⇒AllPairs Rxs
------------------------------------------------------------------------
-- Introduction (⁺) and elimination (⁻) rules for list operations
------------------------------------------------------------------------
-- map
module _ {R : Rel A ℓ} {f : B → A} where
map⁺ : ∀ {xs} → Linked (λ x y → R (f x) (f y)) xs →
Linked R (map f xs)
map⁺ [] = []
map⁺ [-] = [-]
map⁺ (Rxy ∷ Rxs) = Rxy ∷ map⁺ Rxs
------------------------------------------------------------------------
-- applyUpTo
module _ {R : Rel A ℓ} where
applyUpTo⁺₁ : ∀ f n → (∀ {i} → suc i < n → R (f i) (f (suc i))) →
Linked R (applyUpTo f n)
applyUpTo⁺₁ f zero Rf = []
applyUpTo⁺₁ f (suc zero) Rf = [-]
applyUpTo⁺₁ f (suc (suc n)) Rf =
Rf (s≤s (s≤s z≤n)) ∷ (applyUpTo⁺₁ (f ∘ suc) (suc n) (Rf ∘ s≤s))
applyUpTo⁺₂ : ∀ f n → (∀ i → R (f i) (f (suc i))) →
Linked R (applyUpTo f n)
applyUpTo⁺₂ f n Rf = applyUpTo⁺₁ f n (λ _ → Rf _)
------------------------------------------------------------------------
-- applyDownFrom
module _ {R : Rel A ℓ} where
applyDownFrom⁺₁ : ∀ f n → (∀ {i} → suc i < n → R (f (suc i)) (f i)) →
Linked R (applyDownFrom f n)
applyDownFrom⁺₁ f zero Rf = []
applyDownFrom⁺₁ f (suc zero) Rf = [-]
applyDownFrom⁺₁ f (suc (suc n)) Rf =
Rf ≤-refl ∷ applyDownFrom⁺₁ f (suc n) (Rf ∘ ≤-step)
applyDownFrom⁺₂ : ∀ f n → (∀ i → R (f (suc i)) (f i)) →
Linked R (applyDownFrom f n)
applyDownFrom⁺₂ f n Rf = applyDownFrom⁺₁ f n (λ _ → Rf _)
|
{
"alphanum_fraction": 0.4842801986,
"avg_line_length": 35.5490196078,
"ext": "agda",
"hexsha": "f90ad7b1ff5013f535f44608818385f985da2063",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/Linked/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/Linked/Properties.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/Linked/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1153,
"size": 3626
}
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import groups.Cokernel
{-
K
↑
╎ ψ₁
q[_] ╎ ψ₂
Coker ψ₂ ↞--- G ←------ L
↑ ↑
φ₁ ╎ ╎ inject
↑ ↑
H ↞------- Ker ψ₁
φ₂
Then, H ≃ᴳ Ker/Im.
-}
module groups.KernelImageUniqueFactorization {i j k l}
{G : Group i} {H : Group j} {K : Group k} {L : Group l}
(ψ₁ : G →ᴳ K) (ψ₂ : L →ᴳ G) (G-ab : is-abelian G)
(φ₁ : Ker ψ₁ →ᴳ H) (φ₁-is-surj : is-surjᴳ φ₁)
(φ₂ : H →ᴳ Coker ψ₂ G-ab) (φ₂-is-inj : is-injᴳ φ₂)
(φ-comm : ∀ ker → GroupHom.f (φ₂ ∘ᴳ φ₁) ker == q[ fst ker ])
where
private
module G = Group G
module H = Group H
module K = Group K
module L = Group L
module ψ₁ = GroupHom ψ₁
module ψ₂ = GroupHom ψ₂
module φ₁ = GroupHom φ₁
module φ₂ = GroupHom φ₂
φ₂' : H →ᴳ QuotGroup (im-npropᴳ ψ₂ G-ab)
φ₂' = GroupIso.f-hom (Coker-β ψ₂ G-ab) ∘ᴳ φ₂
abstract
φ₂'-is-inj : is-injᴳ φ₂'
φ₂'-is-inj = ∘-is-inj (–>-is-inj (GroupIso.f-equiv (Coker-β ψ₂ G-ab))) φ₂-is-inj
open import groups.PropQuotUniqueFactorization
(ker-propᴳ ψ₁) (im-npropᴳ ψ₂ G-ab) φ₁ φ₁-is-surj φ₂' φ₂'-is-inj φ-comm
open import groups.KernelImage ψ₁ ψ₂ G-ab
H-iso-Ker/Im : H ≃ᴳ Ker/Im
H-iso-Ker/Im = Ker/Im-β ⁻¹ᴳ ∘eᴳ H-iso-P/Q
|
{
"alphanum_fraction": 0.5276344878,
"avg_line_length": 26.0961538462,
"ext": "agda",
"hexsha": "266e4722edd6c75da566d63f74a1f0d3e555b2bf",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/groups/KernelImageUniqueFactorization.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/groups/KernelImageUniqueFactorization.agda",
"max_line_length": 86,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/groups/KernelImageUniqueFactorization.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 594,
"size": 1357
}
|
{-# OPTIONS --experimental-irrelevance #-}
--{-# OPTIONS -v tc.lhs.unify:65 -v tc.irr:50 #-}
open import Agda.Builtin.Bool
open import Agda.Builtin.Equality
data D : ..(b : Bool) → Set where
c : (b : Bool) → D b
test : ..(a : Bool) → D a → Bool
test a (c b) = b
data ⊥ : Set where
record ⊤ : Set where constructor tt
case_of_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B
case x of f = f x
-- Not so shape-irrelevant type!
T : ..(n : Bool) → Set
T n = case test n (c _) of λ where
true → ⊤
false → ⊥
data Foo : Set where
foo : .(b : Bool) → T b → Foo
bad : (b : ⊥) → foo true tt ≡ foo false b → ⊥
bad b _ = b
jackpot : ⊥
jackpot = bad _ refl
|
{
"alphanum_fraction": 0.5530973451,
"avg_line_length": 21.1875,
"ext": "agda",
"hexsha": "020d8cacb1e7094e770d77ee7a34616898b6bfd8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue2640.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue2640.agda",
"max_line_length": 60,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue2640.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 258,
"size": 678
}
|
module Numeral.Natural.Combinatorics where
open import Numeral.Natural
open import Numeral.Natural.Oper
-- Counting combinations.
-- `𝑐𝐶 n k` is the number of ways one can pick `k` number of distinct objects from a set of `n` number of distinct objects.
-- Equivalently, it is the number of `k`-sized subsets of an `n`-sized set.
-- Also called: Binomial coefficients
-- Formulated using sets:
-- 𝐶: Set → ℕ → Set
-- 𝐶 S k = {(K∊℘(S)). #K = k}
-- 𝑐𝐶(n) = #𝐶(𝕟(n))
𝑐𝐶 : ℕ → ℕ → ℕ
𝑐𝐶 _ 𝟎 = 𝐒 𝟎
𝑐𝐶 𝟎 (𝐒 k) = 𝟎
𝑐𝐶 (𝐒 n) (𝐒 k) = 𝑐𝐶 n k + 𝑐𝐶 n (𝐒 k)
-- Counting partial permutations.
-- `𝑐𝑃 n k` is the number of arrangements for a list of `n` number of distinct objects into `k` number of objects.
-- Equivalently, it is the number of injective functions (function equality by the standard function extensionality) of type `𝕟(k) → 𝕟(n)`.
-- Also called: Falling factorial
-- Formulated using sets:
-- 𝑃: Set → ℕ → Set
-- 𝑃 S k = {(π: 𝕟(k) → S). Injective(π)}
-- 𝑐𝑃(n) = #𝑃(𝕟(n))
𝑐𝑃 : ℕ → ℕ → ℕ
𝑐𝑃 _ 𝟎 = 𝐒 𝟎
𝑐𝑃 𝟎 (𝐒 k) = 𝟎
𝑐𝑃 (𝐒 n) (𝐒 k) = 𝑐𝑃 n k ⋅ (𝐒 n)
-- Counting derangements.
-- `𝑐𝐷(n)` is the number of permutations of a list of `n` number of distinct objects such that in every permutation, no object is permuted with itself.
-- Formulated using sets:
-- 𝐷: Set → Set
-- 𝐷(S) = {(π∊𝑃(S)). ∀(s∊S). π(s) ≠ s}
-- 𝑐𝐷(n) = #𝐷(𝕟(n))
𝑐𝐷 : ℕ → ℕ
𝑐𝐷(𝟎) = 𝐒 𝟎
𝑐𝐷(𝐒 𝟎) = 𝟎
𝑐𝐷(𝐒(𝐒 n)) = 𝐒(n) ⋅ (𝑐𝐷 (𝐒 n) + 𝑐𝐷 n)
-- Stirling numbers of the first kind.
stir₁ : ℕ → ℕ → ℕ
stir₁ 𝟎 𝟎 = 𝐒(𝟎)
stir₁ (𝐒(n)) 𝟎 = 𝟎
stir₁ 𝟎 (𝐒(k)) = 𝟎
stir₁ (𝐒(n)) (𝐒(k)) = (n ⋅ stir₁ n (𝐒(k))) + stir₁ n k
-- Stirling numbers of the second kind.
stir₂ : ℕ → ℕ → ℕ
stir₂ 𝟎 𝟎 = 𝐒(𝟎)
stir₂ (𝐒(n)) 𝟎 = 𝟎
stir₂ 𝟎 (𝐒(k)) = 𝟎
stir₂ (𝐒(n)) (𝐒(k)) = (𝐒(k) ⋅ stir₂ n (𝐒(k))) + stir₂ n k
-- Counting injective functions.
𝑐𝐼𝑛𝑗 : ℕ → ℕ → ℕ
𝑐𝐼𝑛𝑗 = 𝑐𝑃
-- Counting surjective functions.
𝑐𝑆𝑢𝑟𝑗 : ℕ → ℕ → ℕ
𝑐𝑆𝑢𝑟𝑗 a b = stir₂ a b ⋅ (b !)
|
{
"alphanum_fraction": 0.5805962607,
"avg_line_length": 30.921875,
"ext": "agda",
"hexsha": "52b33ebf1469336fa71f9d562cac132658ad6985",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Natural/Combinatorics.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Natural/Combinatorics.agda",
"max_line_length": 151,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Natural/Combinatorics.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1037,
"size": 1979
}
|
------------------------------------------------------------------------------
-- The LTC-PCF base
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
{-
LTC-PCF The logical framework (Agda)
* Logical constants * Curry-Howard isomorphism
* Equality * Identity type
* Term language and conversion rules * Postulates
* Inductively defined predicates * Inductive families
-}
module LTC-PCF.Base where
-- First-order logic with equality.
open import Common.FOL.FOL-Eq public
-- Common definitions.
open import Common.DefinitionsI public
infixl 7 _·_
infix 0 if_then_else_
------------------------------------------------------------------------------
-- The term language of LTC-PCF correspond to the PCF terms.
-- t ::= x
-- | t · t
-- | λ x.t
-- | fix x.t
-- | true | false | if
-- | zero | succ | pred | iszero
-- NB. We define the PCF terms as constants. After that, we will
-- define some function symbols based on these constants for
-- convenience in writing.
postulate
_·_ : D → D → D -- LTC-PCF application.
lam : (D → D) → D -- LTC-PCF λ-abstraction.
fix : (D → D) → D -- LTC-PCF fixed-point operator.
true false if : D -- LTC-PCF partial Booleans.
zero succ pred iszero : D -- LTC-PCF partial natural numbers.
------------------------------------------------------------------------------
-- Definitions
-- We define some function symbols for convenience in writing.
abstract
if_then_else_ : D → D → D → D
if b then t else t' = if · b · t · t'
succ₁ : D → D
succ₁ n = succ · n
pred₁ : D → D
pred₁ n = pred · n
iszero₁ : D → D
iszero₁ n = iszero · n
------------------------------------------------------------------------------
-- Conversion rules
-- The conversion relation _conv_ satifies (Aczel 1977. The strength
-- of Martin-Löf's intuitionistic type theory with one universe,
-- p. 8).
--
-- x conv y <=> FOTC ⊢ x ≡ y,
--
-- therefore, we introduce the conversion rules as non-logical axioms.
-- N.B. We write the conversion rules on the defined function symbols
-- instead of on the PCF constants.
-- Conversion rule for the λ-abstraction and the application.
postulate beta : ∀ f a → lam f · a ≡ f a
-- Conversion rule for the fixed-pointed operator.
postulate fix-eq : ∀ f → fix f ≡ f (fix f)
-- Conversion rules for Booleans.
postulate
-- if-true : ∀ t {t'} → if · true · t · t' ≡ t
-- if-false : ∀ {t} t' → if · false · t · t' ≡ t'
if-true : ∀ t {t'} → (if true then t else t') ≡ t
if-false : ∀ {t} t' → (if false then t else t') ≡ t'
-- Conversion rules for pred.
postulate
-- pred-0 : pred · zero ≡ zero
-- pred-S : ∀ d → pred · (succ · d) ≡ d
-- N.B. We don't need this equation in FOTC.
pred-0 : pred₁ zero ≡ zero
pred-S : ∀ n → pred₁ (succ₁ n) ≡ n
-- Conversion rules for iszero.
postulate
-- iszero-0 : iszero · zero ≡ true
-- iszero-S : ∀ d → iszero · (succ · d) ≡ false
iszero-0 : iszero₁ zero ≡ true
iszero-S : ∀ n → iszero₁ (succ₁ n) ≡ false
------------------------------------------------------------------------------
-- Discrimination rules
postulate
t≢f : true ≢ false
-- 0≢S : ∀ {d} → zero ≢ succ · d
0≢S : ∀ {n} → zero ≢ succ₁ n
|
{
"alphanum_fraction": 0.5027901786,
"avg_line_length": 30.3728813559,
"ext": "agda",
"hexsha": "09830f3db8af316531b6a46ee22e63c5cda6b0d3",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/LTC-PCF/Base.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/LTC-PCF/Base.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/LTC-PCF/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 961,
"size": 3584
}
|
open import Data.Product using ( proj₁ ; proj₂ )
open import Data.Sum using ( _⊎_ ; inj₁ ; inj₂ )
open import Relation.Binary.PropositionalEquality using ( refl )
open import Web.Semantic.DL.ABox.Interp using ( ⌊_⌋ ; ind ; _*_ )
open import Web.Semantic.DL.ABox.Interp.Morphism using ( _,_ )
open import Web.Semantic.DL.ABox.Model using
( _⊨a_ ; on-bnode ; bnodes ; _,_ ; ⊨a-resp-≲ )
open import Web.Semantic.DL.Category.Composition using ( _∙_ )
open import Web.Semantic.DL.Category.Properties.Composition.Lemmas using
( compose-left ; compose-right ; compose-resp-⊨a )
open import Web.Semantic.DL.Category.Properties.Tensor.Lemmas using
( tensor-up ; tensor-down ; tensor-resp-⊨a )
open import Web.Semantic.DL.Category.Object using ( Object ; IN ; fin )
open import Web.Semantic.DL.Category.Morphism using
( _⇒_ ; BN ; impl ; _⊑_ ; _≣_ ; _,_ )
open import Web.Semantic.DL.Category.Tensor using ( _⊗_ ; _⟨⊗⟩_ )
open import Web.Semantic.DL.Category.Unit using ( I )
open import Web.Semantic.DL.Category.Wiring using
( wires-≈ ; wires-≈⁻¹ ; symm )
open import Web.Semantic.DL.Signature using ( Signature )
open import Web.Semantic.DL.TBox using ( TBox )
open import Web.Semantic.DL.TBox.Interp using ( Δ ; _⊨_≈_ ; ≈-refl ; ≈-sym )
open import Web.Semantic.DL.TBox.Interp.Morphism using ( ≲-refl )
open import Web.Semantic.Util using
( _∘_ ; False ; ⊎-swap
; _⊕_⊕_ ; inode ; bnode ; enode ; left ; right ; up ; down )
module Web.Semantic.DL.Category.Properties.Tensor.SymmNatural
{Σ : Signature} {S T : TBox Σ} where
symm-natural : ∀ {A₁ A₂ B₁ B₂ : Object S T} (F₁ : A₁ ⇒ B₁) (F₂ : A₂ ⇒ B₂) →
((F₁ ⟨⊗⟩ F₂) ∙ symm B₁ B₂ ≣ symm A₁ A₂ ∙ (F₂ ⟨⊗⟩ F₁))
symm-natural {A₁} {A₂} {B₁} {B₂} F₁ F₂ = (LHS⊑RHS , RHS⊑LHS) where
LHS⊑RHS : (F₁ ⟨⊗⟩ F₂) ∙ symm B₁ B₂ ⊑ symm A₁ A₂ ∙ (F₂ ⟨⊗⟩ F₁)
LHS⊑RHS J J⊨STA J⊨LHS = (f , J⊨RHS) where
f : False ⊕ (IN A₂ ⊎ IN A₁) ⊕ (BN F₂ ⊎ BN F₁) → Δ ⌊ J ⌋
f (inode ())
f (bnode (inj₁ x)) = ind J (inode (inj₂ x))
f (bnode (inj₂ x)) = ind J (inode (inj₁ x))
f (enode (inj₁ v)) = ind J (bnode (inode (inj₂ v)))
f (enode (inj₂ v)) = ind J (bnode (inode (inj₁ v)))
lemma₀ : ∀ x →
⌊ J ⌋ ⊨ ind J (inode (⊎-swap x)) ≈ f (bnode x)
lemma₀ (inj₁ x) = ≈-refl ⌊ J ⌋
lemma₀ (inj₂ y) = ≈-refl ⌊ J ⌋
lemma₁ : ∀ x →
⌊ J ⌋ ⊨ ind J (left (up x)) ≈ on-bnode f (ind J) (right (down x))
lemma₁ (inode x) = ≈-refl ⌊ J ⌋
lemma₁ (bnode v) = ≈-refl ⌊ J ⌋
lemma₁ (enode y) = wires-≈ ⊎-swap (proj₂ (fin (B₂ ⊗ B₁)) (inj₂ y))
(compose-right (F₁ ⟨⊗⟩ F₂) (symm B₁ B₂) J J⊨LHS)
lemma₂ : ∀ x →
⌊ J ⌋ ⊨ ind J (left (down x)) ≈ on-bnode f (ind J) (right (up x))
lemma₂ (inode x) = ≈-refl ⌊ J ⌋
lemma₂ (bnode v) = ≈-refl ⌊ J ⌋
lemma₂ (enode y) = wires-≈ ⊎-swap (proj₂ (fin (B₂ ⊗ B₁)) (inj₁ y))
(compose-right (F₁ ⟨⊗⟩ F₂) (symm B₁ B₂) J J⊨LHS)
J⊨RHS : bnodes J f ⊨a impl (symm A₁ A₂ ∙ (F₂ ⟨⊗⟩ F₁))
J⊨RHS = compose-resp-⊨a (symm A₁ A₂) (F₂ ⟨⊗⟩ F₁) (bnodes J f)
(wires-≈⁻¹ ⊎-swap lemma₀ (proj₁ (fin (A₂ ⊗ A₁))))
(tensor-resp-⊨a F₂ F₁ (right * bnodes J f)
(⊨a-resp-≲ (≲-refl ⌊ J ⌋ , lemma₂) (impl F₂)
(tensor-down F₁ F₂ (left * J)
(compose-left (F₁ ⟨⊗⟩ F₂) (symm B₁ B₂) J J⊨LHS)))
(⊨a-resp-≲ (≲-refl ⌊ J ⌋ , lemma₁) (impl F₁)
(tensor-up F₁ F₂ (left * J)
(compose-left (F₁ ⟨⊗⟩ F₂) (symm B₁ B₂) J J⊨LHS))))
RHS⊑LHS : symm A₁ A₂ ∙ (F₂ ⟨⊗⟩ F₁) ⊑ (F₁ ⟨⊗⟩ F₂) ∙ symm B₁ B₂
RHS⊑LHS J J⊨STA J⊨RHS = (f , J⊨LHS) where
f : ((BN F₁ ⊎ BN F₂) ⊕ (IN B₁ ⊎ IN B₂) ⊕ False) → Δ ⌊ J ⌋
f (inode (inj₁ v)) = ind J (bnode (enode (inj₂ v)))
f (inode (inj₂ v)) = ind J (bnode (enode (inj₁ v)))
f (bnode (inj₁ y)) = ind J (enode (inj₂ y))
f (bnode (inj₂ y)) = ind J (enode (inj₁ y))
f (enode ())
lemma₀ : ∀ x → ⌊ J ⌋ ⊨ f (bnode (⊎-swap x)) ≈ ind J (enode x)
lemma₀ (inj₁ y) = ≈-refl ⌊ J ⌋
lemma₀ (inj₂ y) = ≈-refl ⌊ J ⌋
lemma₁ : ∀ x →
⌊ J ⌋ ⊨ ind J (right (down x)) ≈ on-bnode f (ind J) (left (up x))
lemma₁ (inode x) = ≈-sym ⌊ J ⌋
(wires-≈ ⊎-swap (proj₂ (fin (A₂ ⊗ A₁)) (inj₂ x))
(compose-left (symm A₁ A₂) (F₂ ⟨⊗⟩ F₁) J J⊨RHS))
lemma₁ (bnode v) = ≈-refl ⌊ J ⌋
lemma₁ (enode y) = ≈-refl ⌊ J ⌋
lemma₂ : ∀ x →
⌊ J ⌋ ⊨ ind J (right (up x)) ≈ on-bnode f (ind J) (left (down x))
lemma₂ (inode x) = ≈-sym ⌊ J ⌋
(wires-≈ ⊎-swap (proj₂ (fin (A₂ ⊗ A₁)) (inj₁ x))
(compose-left (symm A₁ A₂) (F₂ ⟨⊗⟩ F₁) J J⊨RHS))
lemma₂ (bnode v) = ≈-refl ⌊ J ⌋
lemma₂ (enode y) = ≈-refl ⌊ J ⌋
J⊨LHS : bnodes J f ⊨a impl ((F₁ ⟨⊗⟩ F₂) ∙ symm B₁ B₂)
J⊨LHS = compose-resp-⊨a (F₁ ⟨⊗⟩ F₂) (symm B₁ B₂) (bnodes J f)
(tensor-resp-⊨a F₁ F₂ (left * bnodes J f)
(⊨a-resp-≲ (≲-refl ⌊ J ⌋ , lemma₁) (impl F₁)
(tensor-down F₂ F₁ (right * J)
(compose-right (symm A₁ A₂) (F₂ ⟨⊗⟩ F₁) J J⊨RHS)))
(⊨a-resp-≲ (≲-refl ⌊ J ⌋ , lemma₂) (impl F₂)
(tensor-up F₂ F₁ (right * J)
(compose-right (symm A₁ A₂) (F₂ ⟨⊗⟩ F₁) J J⊨RHS))))
(wires-≈⁻¹ ⊎-swap lemma₀ (proj₁ (fin (B₂ ⊗ B₁))))
|
{
"alphanum_fraction": 0.5494505495,
"avg_line_length": 44.701754386,
"ext": "agda",
"hexsha": "fc2722e1c16622617635bf186fc33d7f23716c0c",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z",
"max_forks_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-web-semantic",
"max_forks_repo_path": "src/Web/Semantic/DL/Category/Properties/Tensor/SymmNatural.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-web-semantic",
"max_issues_repo_path": "src/Web/Semantic/DL/Category/Properties/Tensor/SymmNatural.agda",
"max_line_length": 76,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-web-semantic",
"max_stars_repo_path": "src/Web/Semantic/DL/Category/Properties/Tensor/SymmNatural.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z",
"num_tokens": 2456,
"size": 5096
}
|
-- Andreas, 2017-04-26
-- Allow more flexible size assignment.
module _ where
open import Agda.Builtin.Size
module ZeroZero where
data Nat : Size → Set where
zero : ∀{i} → Nat i -- does not have to be ↑ i
suc : ∀{i} → Nat i → Nat (↑ i)
mon : ∀{i}{j : Size< i} → Nat j → Nat i
mon x = x
minus : ∀{i} → Nat i → Nat ∞ → Nat i
minus x zero = x
minus zero (suc y) = zero
minus (suc x) (suc y) = minus x y
div : ∀{i} → Nat i → Nat ∞ → Nat i
div zero y = zero
div (suc x) y = suc (div (minus x y) y)
module DSuc where
-- Here, the upper least bound for the size is the number itself.
data Nat : Size → Set where
zero : ∀{i} → Nat i
suc : ∀{i} → Nat i → Nat (↑ i)
dsuc : ∀{i} → Nat i → Nat (↑ ↑ i)
-- Testing subtyping.
mon : ∀{i}{j : Size< i} → Nat j → Nat i
mon x = x
minus : ∀{i} → Nat i → Nat ∞ → Nat i
minus x zero = x
minus zero y = zero
minus (suc x) (suc y) = minus x y
minus (suc x) (dsuc y) = minus x (suc y)
minus (dsuc x) (suc y) = minus (suc x) y
minus (dsuc x) (dsuc y) = minus x y
div : ∀{i} → Nat i → Nat ∞ → Nat i
div zero y = zero
div (suc x) y = suc (div (minus x y) y)
div (dsuc x) y = suc (div (minus (suc x) y) y)
|
{
"alphanum_fraction": 0.5152701644,
"avg_line_length": 24.5576923077,
"ext": "agda",
"hexsha": "e579b51517dc3976b16b2f45bb3ff6bbd04f6b74",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2554-size-plus2.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2554-size-plus2.agda",
"max_line_length": 67,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2554-size-plus2.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 501,
"size": 1277
}
|
{-# OPTIONS --without-K #-}
open import HoTT
import homotopy.HopfConstruction
open import homotopy.CircleHSpace
open import homotopy.SuspensionJoin using () renaming (e to suspension-join)
import homotopy.JoinAssocCubical
module homotopy.Hopf where
module Hopf = homotopy.HopfConstruction S¹ S¹-connected S¹-hSpace
Hopf : S² → Type₀
Hopf = Hopf.H.f
Hopf-fiber : Hopf north == S¹
Hopf-fiber = idp
Hopf-total : Σ _ Hopf == S³
Hopf-total =
Σ _ Hopf =⟨ Hopf.theorem ⟩
S¹ * S¹ =⟨ ua (suspension-join S⁰) |in-ctx (λ u → u * S¹) ⟩
(S⁰ * S⁰) * S¹ =⟨ homotopy.JoinAssocCubical.*-assoc ⟩
S⁰ * (S⁰ * S¹) =⟨ ! (ua (suspension-join S¹)) |in-ctx (λ u → S⁰ * u) ⟩
S⁰ * S² =⟨ ! (ua (suspension-join S²)) ⟩
S³ ∎
|
{
"alphanum_fraction": 0.6548431105,
"avg_line_length": 27.1481481481,
"ext": "agda",
"hexsha": "cd790779eb58a648a91a6b927d4d0c62735139bb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/Hopf.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/Hopf.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/Hopf.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 303,
"size": 733
}
|
data Nat : Set where
zero : Nat
suc : Nat → Nat
{-# BUILTIN NATURAL Nat #-}
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
pred : Nat → Nat
pred zero = zero
pred (suc n) = n
{-# NON_TERMINATING #-}
loop : Nat → Nat
loop zero = zero
loop n = loop (pred n)
-- Non-terminating functions reduce when evaluated at top-level,
-- but not in a hole.
hole : Set
hole = {!!}
|
{
"alphanum_fraction": 0.6020671835,
"avg_line_length": 16.125,
"ext": "agda",
"hexsha": "78436ee5e704c4d8e68738bb981898ff760c9a63",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/NonTerminatingReduce.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/NonTerminatingReduce.agda",
"max_line_length": 64,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/NonTerminatingReduce.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 128,
"size": 387
}
|
module z01-fp-with-booleans where
open import bool
{-
data 𝔹 : Set where
tt : 𝔹
ff : 𝔹
˜_ : 𝔹 → 𝔹
˜ tt = ff
˜ ff = tt
if_then_else_ : ∀ {ℓ} {A : Set ℓ} → 𝔹 → A → A → A
if tt then t else f = t
if ff then t else f = f
-}
-- load / type-check file
-- C-c, C-l
-- check type of expression
-- C-c, C-d ; then prompt for expression
------------------------------------------------------------------------------
-- p 24 1.8 Exercises
z01-1-8-01a : 𝔹
z01-1-8-01a = tt && (ff xor ~ ff)
z01-1-8-01b : 𝔹
z01-1-8-01b = ~ tt && (ff imp ff)
z01-1-8-01c : 𝔹
z01-1-8-01c = if tt xor tt then ff else ff
-- 1-8-4
data day : Set where
mon : day
tue : day
wed : day
thu : day
fri : day
sat : day
sun : day
-- 1-8-5
nextday : day → day
nextday mon = tue
nextday tue = wed
nextday wed = thu
nextday thu = fri
nextday fri = sat
nextday sat = sun
nextday sun = mon
-- 1-8-6
data suit : Set where
hearts : suit
spades : suit
diamonds : suit
clubs : suit
-- 1-8-7
is-red : suit → 𝔹
is-red hearts = tt
is-red spades = ff
is-red diamonds = tt
is-red clubs = ff
|
{
"alphanum_fraction": 0.5467160037,
"avg_line_length": 15.2253521127,
"ext": "agda",
"hexsha": "f4b3bcb5738d582892999a0b1b9f35755bcc4624",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z01-fp-with-booleans.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z01-fp-with-booleans.agda",
"max_line_length": 78,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z01-fp-with-booleans.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 436,
"size": 1081
}
|
------------------------------------------------------------------------------
-- Propositional equality
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- This module is re-exported by (some) "base" modules.
module Common.FOL.Relation.Binary.PropositionalEquality where
open import Common.FOL.FOL using ( D )
infix 4 _≡_
------------------------------------------------------------------------------
-- The identity type on the universe of discourse.
data _≡_ (x : D) : D → Set where
refl : x ≡ x
-- Elimination rule.
subst : (A : D → Set) → ∀ {x y} → x ≡ y → A x → A y
subst A refl Ax = Ax
-- Identity properties
sym : ∀ {x y} → x ≡ y → y ≡ x
sym refl = refl
trans : ∀ {x y z} → x ≡ y → y ≡ z → x ≡ z
trans refl h = h
trans₂ : ∀ {w x y z} → w ≡ x → x ≡ y → y ≡ z → w ≡ z
trans₂ refl refl h = h
subst₂ : (A : D → D → Set) → ∀ {x x' y y'} →
x ≡ y → x' ≡ y' →
A x x' →
A y y'
subst₂ A refl refl Axs = Axs
subst₃ : (A : D → D → D → Set) → ∀ {x₁ x₂ x₃ y₁ y₂ y₃} →
x₁ ≡ y₁ → x₂ ≡ y₂ → x₃ ≡ y₃ →
A x₁ x₂ x₃ →
A y₁ y₂ y₃
subst₃ A refl refl refl Axs = Axs
subst₄ : (A : D → D → D → D → Set) → ∀ {x₁ x₂ x₃ x₄ y₁ y₂ y₃ y₄} →
x₁ ≡ y₁ → x₂ ≡ y₂ → x₃ ≡ y₃ → x₄ ≡ y₄ →
A x₁ x₂ x₃ x₄ →
A y₁ y₂ y₃ y₄
subst₄ A refl refl refl refl Axs = Axs
|
{
"alphanum_fraction": 0.4281967213,
"avg_line_length": 27.7272727273,
"ext": "agda",
"hexsha": "dc1da6ee49fe5d10a624dc6567741de258045539",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/Common/FOL/Relation/Binary/PropositionalEquality.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/Common/FOL/Relation/Binary/PropositionalEquality.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/Common/FOL/Relation/Binary/PropositionalEquality.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 532,
"size": 1525
}
|
-- Needs the --injective-type-constructors option enabled to type check.
module InjectiveTypeConstructors where
data D (A : Set) : Set where
data _==_ (A : Set) : Set → Set where
refl : A == A
injD : ∀ {A B} → D A == D B → A == B
injD refl = refl
|
{
"alphanum_fraction": 0.6388888889,
"avg_line_length": 22.9090909091,
"ext": "agda",
"hexsha": "0d3710b7bbaa3b91729a65eb25da57631e035a7d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/InjectiveTypeConstructors.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/InjectiveTypeConstructors.agda",
"max_line_length": 72,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/InjectiveTypeConstructors.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 84,
"size": 252
}
|
module Cats.Category.Product.Binary.Facts where
open import Cats.Category
open import Cats.Category.Product.Binary using (_×_)
open import Cats.Functor
open import Cats.Util.Logic.Constructive using (_∧_ ; _,_ ; ∧-eliml ; ∧-elimr)
module _ {lo la l≈ lo′ la′ l≈′}
{C : Category lo la l≈}
{D : Category lo′ la′ l≈′}
where
private
module C = Category C
module D = Category D
module × = Category (C × D)
open Category._≅_
iso-intro : ∀ {A A′ B B′} → A C.≅ A′ → B D.≅ B′ → (A , B) ×.≅ (A′ , B′)
iso-intro f g = record
{ forth = forth f , forth g
; back = back f , back g
; back-forth = back-forth f , back-forth g
; forth-back = forth-back f , forth-back g
}
iso-elim : ∀ {A A′ B B′} → (A , B) ×.≅ (A′ , B′) → A C.≅ A′ ∧ B D.≅ B′
iso-elim f
= record
{ forth = ∧-eliml (forth f)
; back = ∧-eliml (back f)
; back-forth = ∧-eliml (back-forth f)
; forth-back = ∧-eliml (forth-back f)
}
, record
{ forth = ∧-elimr (forth f)
; back = ∧-elimr (back f)
; back-forth = ∧-elimr (back-forth f)
; forth-back = ∧-elimr (forth-back f)
}
|
{
"alphanum_fraction": 0.5375323555,
"avg_line_length": 25.7555555556,
"ext": "agda",
"hexsha": "133546f0b464fc86c5aa69069e83402e1d71fbce",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alessio-b-zak/cats",
"max_forks_repo_path": "Cats/Category/Product/Binary/Facts.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alessio-b-zak/cats",
"max_issues_repo_path": "Cats/Category/Product/Binary/Facts.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alessio-b-zak/cats",
"max_stars_repo_path": "Cats/Category/Product/Binary/Facts.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 419,
"size": 1159
}
|
{- # --without-K # -}
open import Data.Unit
open import Data.Empty
open import Data.Nat
open import Data.Sum as Sum
open import Data.Product
open import Function
open import Relation.Binary.PropositionalEquality
open import Relation.Unary
open import Relation.Binary
open import Relation.Binary using (module IsEquivalence; Setoid; module Setoid)
open ≡-Reasoning
import Relation.Binary.HeterogeneousEquality as HE
open import Relation.Binary.HeterogeneousEquality using (_≅_; refl)
-- | Polynomials
data Poly : Set₁ where
_▹_ : (A : Set) (B : A → Set) → Poly
-- | Interpretation of polynomials as functor, object part.
⟦_⟧ : Poly → Set → Set
⟦ A ▹ B ⟧ X = Σ[ a ∈ A ] (B a → X)
-- | Interpretation of polynomials as functor, morphism part.
⟦_⟧₁ : (P : Poly) → ∀{X Y} → (X → Y) → (⟦ P ⟧ X → ⟦ P ⟧ Y)
⟦ A ▹ B ⟧₁ f (a , α) = (a , (λ x → f (α x)))
-- | Finite trees over the signature determined by P with one free variable.
data _* (P : Poly) : Set where
sup : ⟦ P ⟧ (P *) ⊎ ⊤ → P *
-- | Inverse of sup.
sup⁻¹ : ∀{P} → P * → ⟦ P ⟧ (P *) ⊎ ⊤
sup⁻¹ (sup x) = x
_extends_ : ∀{P} → P * → P * → Set
_extends_ {A ▹ B} (sup (inj₁ (a' , β))) (sup (inj₁ (a , α)))
= Σ[ e ∈ a' ≡ a ] (∀ (b : B a') → (β b) extends α (subst B e b))
sup (inj₂ _) extends sup (inj₁ _) = ⊥
sup (inj₁ x) extends sup (inj₂ _) = ⊤
sup (inj₂ _) extends sup (inj₂ _) = ⊥
PreApprox : Poly → Set
PreApprox P = ℕ → P *
converges : ∀{P} → PreApprox P → Set
converges u = ∀ n → u (1 + n) extends u n
non-empty : ∀{P} → P * → Set
non-empty (sup (inj₁ x)) = ⊤
non-empty (sup (inj₂ _)) = ⊥
root : ∀{A B} → (t : (A ▹ B) *) → non-empty t → A
root (sup (inj₁ x)) p = proj₁ x
root (sup (inj₂ y)) ()
branch : ∀{A B} → (t : (A ▹ B) *) → (p : non-empty t) → B (root t p) → (A ▹ B) *
branch (sup (inj₁ x)) p b = proj₂ x b
branch (sup (inj₂ y)) () b
_∞ : Poly → Set
P ∞ = Σ[ u ∈ PreApprox P ] (non-empty (u 0) × converges u)
-- | If u₀ is non-empty and u converges, then uₙ is non-empty for every n.
ne₀→all-ne : ∀{P} →
(u : PreApprox P) → non-empty (u 0) → converges u →
∀ n → non-empty (u n)
ne₀→all-ne u ne₀ conv zero = ne₀
ne₀→all-ne {A ▹ B} u ne₀ conv (suc n)
with u (suc n) | u n | conv n
... | sup (inj₁ x) | y | z = tt
... | sup (inj₂ x) | sup (inj₁ y) | ()
... | sup (inj₂ x) | sup (inj₂ y) | ()
-- | If t₂ extends t₁ and they are both non-empty, then they have the same
-- root labels.
ext→root≡ : ∀{A B} →
(t₁ t₂ : (A ▹ B) *)
(ne₁ : non-empty t₁)
(ne₂ : non-empty t₂)
(e : t₂ extends t₁) →
root t₁ ne₁ ≡ root t₂ ne₂
ext→root≡ (sup (inj₁ (a , α))) (sup (inj₁ (b , β))) ne₁ ne₂ e = sym (proj₁ e)
ext→root≡ (sup (inj₁ x)) (sup (inj₂ tt)) ne₁ () e
ext→root≡ (sup (inj₂ tt)) (sup (inj₁ y)) () ne₂ e
ext→root≡ (sup (inj₂ tt)) (sup (inj₂ tt)) ne₁ ne₂ ()
-- | The roots of the first two trees in a converging sequence have the same
-- label. This is used as base case in conv→suc-roots≡.
conv→roots-0-1≡ : ∀{A B} →
(u : PreApprox (A ▹ B))
(ne : non-empty (u 0))
(c : converges u) →
root (u 0) ne ≡ root (u 1) (ne₀→all-ne u ne c 1)
conv→roots-0-1≡ {A} {B} u ne c
= ext→root≡ (u 0) (u 1) ne (ne₀→all-ne u ne c 1) (c 0)
-- | The roots of two successive trees in a converging sequence have the same
-- label. We use this in the induction step in conv→roots≡.
conv→suc-roots≡ : ∀{A B} →
(u : PreApprox (A ▹ B))
(ne : non-empty (u 0))
(c : converges u) →
∀ n → root (u n) (ne₀→all-ne u ne c n)
≡ root (u (1 + n)) (ne₀→all-ne u ne c (1 + n))
conv→suc-roots≡ u ne c zero = conv→roots-0-1≡ u ne c
conv→suc-roots≡ u ne c (suc n)
= ext→root≡ (u (1 + n))
(u (2 + n))
(ne₀→all-ne u ne c (1 + n))
(ne₀→all-ne u ne c (2 + n))
(c (suc n))
-- | The root of any tree in a converging sequence has the same label as
-- the root of the first tree.
conv→roots≡ : ∀{A B} →
(u : PreApprox (A ▹ B))
(ne : non-empty (u 0))
(c : converges u) →
∀ n → root (u 0) ne ≡ root (u n) (ne₀→all-ne u ne c n)
conv→roots≡ u ne c zero = refl
conv→roots≡ u ne c (suc n)
= trans (conv→roots≡ u ne c n) (conv→suc-roots≡ u ne c n)
-- | All trees in a converging sequence have the same root label.
conv→all-roots≡ : ∀{A B} →
(u : PreApprox (A ▹ B))
(ne : non-empty (u 0))
(c : converges u) →
∀ n m → root (u n) (ne₀→all-ne u ne c n) ≡ root (u m) (ne₀→all-ne u ne c m)
conv→all-roots≡ u ne c n m =
begin
root (u n) (ne₀→all-ne u ne c n)
≡⟨ sym (conv→roots≡ u ne c n) ⟩
root (u 0) ne
≡⟨ conv→roots≡ u ne c m ⟩
root (u m) (ne₀→all-ne u ne c m)
∎
-- | If t₁ is non-empty and t₂ extends t₁, then all branches of t₂ are
-- non-empty. This shows that _extends_ defines a strict order.
conv+ne₀→ne-branch : ∀{A B} →
(t₁ t₂ : (A ▹ B)*)
(ne₁ : non-empty t₁)
(ne₂ : non-empty t₂)
(e : t₂ extends t₁) →
∀ b → non-empty (branch t₂ ne₂ b)
conv+ne₀→ne-branch (sup (inj₁ (a , α))) (sup (inj₁ (.a , β))) ne₁ ne₂ (refl , q) b
with α b | β b | q b
... | sup (inj₁ x) | sup (inj₁ y) | z = tt
... | sup (inj₁ x) | sup (inj₂ tt) | ()
... | sup (inj₂ tt) | sup (inj₁ y) | z = tt
... | sup (inj₂ tt) | sup (inj₂ tt) | ()
conv+ne₀→ne-branch (sup (inj₁ x)) (sup (inj₂ tt)) ne₁ () e b
conv+ne₀→ne-branch (sup (inj₂ tt)) t₂ () ne₂ e b
-- | If t₂ extends t₂, then all branches of t₂ extend the corresponding one
-- of t₁.
conv→branch-conv : ∀{A B} →
(t₁ t₂ : (A ▹ B)*)
(ne₁ : non-empty t₁)
(ne₂ : non-empty t₂)
(e : t₂ extends t₁) →
∀ b b' → b ≅ b' →
(branch t₂ ne₂ b) extends
(branch t₁ ne₁ b')
conv→branch-conv (sup (inj₁ (a'' , α)))
(sup (inj₁ (.a'' , β))) ne₁ ne₂ (refl , t) b .b refl = t b
conv→branch-conv (sup (inj₁ x)) (sup (inj₂ tt)) ne₁ () e b b' p
conv→branch-conv (sup (inj₂ tt)) (sup y) () ne₂ e b b' p
-- | Technical lemma:
-- The equality proofs for substitution by root equality are the same.
root-conv≡ : ∀ {A B} →
(u : PreApprox (A ▹ B))
(ne : non-empty (u 0))
(c : converges u) →
∀ b n → (subst B (conv→roots≡ u ne c (1 + n)) b)
≅ (subst B (conv→roots≡ u ne c n) b)
root-conv≡ {A} {B} u ne c b n =
HE.trans (HE.≡-subst-removable B (conv→roots≡ u ne c (1 + n)) b)
(HE.sym (HE.≡-subst-removable B (conv→roots≡ u ne c n) b))
-- | Coalgebra structure on P∞.
out : ∀{P} → P ∞ → ⟦ P ⟧ (P ∞)
out {A ▹ B} (u , ne , conv) = (a , α)
where
a : A
a = root (u 0) ne
u' : B a → PreApprox (A ▹ B)
u' b n = branch (u (1 + n))
(ne₀→all-ne u ne conv (1 + n))
(subst B (conv→roots≡ u ne conv (1 + n)) b)
ne' : (b : B a) → non-empty (u' b 0)
ne' b =
conv+ne₀→ne-branch (u 0) (u 1) ne
(ne₀→all-ne u ne conv 1)
(conv 0)
(subst B (conv→roots≡ u ne conv 1) b)
conv' : (b : B a) → converges (u' b)
conv' b n = conv→branch-conv (u (1 + n)) (u (2 + n))
(ne₀→all-ne u ne conv (1 + n))
(ne₀→all-ne u ne conv (2 + n))
(conv (1 + n))
(subst B (conv→roots≡ u ne conv (2 + n)) b)
(subst B (conv→roots≡ u ne conv (1 + n)) b)
(root-conv≡ u ne conv b (suc n))
α : B a → (A ▹ B) ∞
α b = (u' b , ne' b , conv' b)
-- | Get root label.
root∞ : ∀{A B} → (A ▹ B) ∞ → A
root∞ t = proj₁ (out t)
-- | Get branches below root.
branch∞ : ∀{A B} → (t : (A ▹ B) ∞) → B (root∞ t) → (A ▹ B) ∞
branch∞ t = proj₂ (out t)
-- | Corecursion principle for P∞.
corec : ∀{P} {C : Set} → (C → ⟦ P ⟧ C) → (C → P ∞)
corec {A ▹ B} {C} f c = (u , ne , conv)
where
u-aux : C → PreApprox (A ▹ B)
u-aux c zero =
let (a , α) = f c
in sup (inj₁ (a , (λ x → sup (inj₂ tt))))
u-aux c (suc n) =
let (a , α) = f c
in sup (inj₁ (a , (λ b → u-aux (α b) n)))
u : PreApprox (A ▹ B)
u = u-aux c
ne : non-empty (u 0)
ne = tt
conv-aux : (c : C) → converges (u-aux c)
conv-aux c zero = (refl , (λ b → tt))
conv-aux c (suc n) = (refl , (λ b → conv-aux (proj₂ (f c) b) n))
conv : converges u
conv = conv-aux c
|
{
"alphanum_fraction": 0.5097897027,
"avg_line_length": 33.3629032258,
"ext": "agda",
"hexsha": "c6dfc01b81fee1b3e92c9b0ee55169654a6c8928",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hbasold/Sandbox",
"max_forks_repo_path": "TypeTheory/Container/MTypeAsSeq.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hbasold/Sandbox",
"max_issues_repo_path": "TypeTheory/Container/MTypeAsSeq.agda",
"max_line_length": 82,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hbasold/Sandbox",
"max_stars_repo_path": "TypeTheory/Container/MTypeAsSeq.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3375,
"size": 8274
}
|
module Tactic.Nat.Auto where
open import Prelude
open import Builtin.Reflection
open import Tactic.Reflection.Quote
open import Tactic.Reflection
open import Tactic.Nat.NF
open import Tactic.Nat.Exp
open import Tactic.Nat.Reflect
open import Tactic.Nat.Auto.Lemmas
open Tactic.Nat.Reflect public using (cantProve; invalidGoal)
module _ {Atom : Set} {{_ : Eq Atom}} {{_ : Ord Atom}} where
liftNFEq : ∀ (e₁ : Exp Atom) e₂ ρ → ⟦ norm e₁ ⟧n ρ ≡ ⟦ norm e₂ ⟧n ρ → ⟦ e₁ ⟧e ρ ≡ ⟦ e₂ ⟧e ρ
liftNFEq e₁ e₂ ρ H = eraseEquality $
⟦ e₁ ⟧e ρ ≡⟨ sound e₁ ρ ⟩
⟦ norm e₁ ⟧n ρ ≡⟨ H ⟩
⟦ norm e₂ ⟧n ρ ≡⟨ sound e₂ ρ ⟩ʳ
⟦ e₂ ⟧e ρ ∎
unliftNFEq : ∀ (e₁ : Exp Atom) e₂ ρ → ⟦ e₁ ⟧e ρ ≡ ⟦ e₂ ⟧e ρ → ⟦ norm e₁ ⟧n ρ ≡ ⟦ norm e₂ ⟧n ρ
unliftNFEq e₁ e₂ ρ H =
⟦ norm e₁ ⟧n ρ ≡⟨ sound e₁ ρ ⟩ʳ
⟦ e₁ ⟧e ρ ≡⟨ H ⟩
⟦ e₂ ⟧e ρ ≡⟨ sound e₂ ρ ⟩
⟦ norm e₂ ⟧n ρ ∎
auto-proof : ∀ e₁ e₂ → norm e₁ ≡ norm e₂ → ∀ ρ → ⟦ e₁ ⟧e ρ ≡ ⟦ e₂ ⟧e ρ
auto-proof e₁ e₂ nfeq ρ = liftNFEq e₁ e₂ ρ (cong (λ n → ⟦ n ⟧n ρ) nfeq)
auto-tactic : Type → Tactic
auto-tactic t hole = do
just ((e₁ , e₂) , Γ) ← termToEq t
where nothing → unify hole $ failedProof (quote invalidGoal) t
prf ← newMeta!
unify hole (def₄ (quote auto-proof) (` e₁) (` e₂) prf (quotedEnv Γ))
unify prf (con₀ (quote refl)) <|> do
def (quote _≡_) (_ ∷ _ ∷ vArg lnf ∷ vArg rnf ∷ []) ← normalise =<< inferType prf
where sgoal → typeError $ strErr "Huh? This is a weird equality goal:" ∷ termErr sgoal ∷ []
typeError $ strErr "Normal forms are not equal:" ∷ termErr lnf ∷ strErr "≠" ∷ termErr rnf ∷ []
macro
auto : Tactic
auto = on-goal auto-tactic
|
{
"alphanum_fraction": 0.6021831413,
"avg_line_length": 34.3541666667,
"ext": "agda",
"hexsha": "b316f1849af1fe51c4a9f3e02237542556bb9532",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lclem/agda-prelude",
"max_forks_repo_path": "src/Tactic/Nat/Auto.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lclem/agda-prelude",
"max_issues_repo_path": "src/Tactic/Nat/Auto.agda",
"max_line_length": 98,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lclem/agda-prelude",
"max_stars_repo_path": "src/Tactic/Nat/Auto.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 734,
"size": 1649
}
|
import Lvl
open import Structure.Setoid
open import Type
module Automaton.TuringMachine where
open import Data.Boolean
import Data.Boolean.Operators
open Data.Boolean.Operators.Programming
open import Data.Either as Either using (_‖_)
open import Data.Either.Setoid
open import Data.Option as Option
open import Data.Option.Functions as Option
open import Data.Option.Setoid
open import Data.Tuple as Tuple using (_⨯_ ; _,_)
open import Data.Tuple.Equivalence
open import Data.List renaming (∅ to ε ; _⊰_ to _·_)
open import Data.List.Setoid
open import Functional
open import Logic
open import Relator.Equals.Proofs.Equivalence
open import Structure.Operator
open import Structure.Relator
open import Structure.Relator.Properties
open import Syntax.Transitivity
open import Type.Size.Finite
private variable ℓₚ ℓₛ ℓₐ ℓₑₛ ℓₑₐ : Lvl.Level
private variable Alphabet : Type{ℓₐ}
data Direction : Type{Lvl.𝟎} where
Backward : Direction
Stay : Direction
Forward : Direction
private instance _ = [≡]-equiv {T = Direction}
record Tape (Alphabet : Type{ℓₐ}) : Type{ℓₐ} where
coinductive
field
back : Tape(Alphabet)
current : Alphabet
front : Tape(Alphabet)
update : (Alphabet → Alphabet) → Tape(Alphabet)
back (update _) = back
current(update f) = f(current)
front (update _) = front
stepBackward : Tape(Alphabet) → Tape(Alphabet)
Tape.back (stepBackward t) = Tape.back(Tape.back t)
Tape.current(stepBackward t) = Tape.current(Tape.back t)
Tape.front (stepBackward t) = t
stepForward : Tape(Alphabet) → Tape(Alphabet)
Tape.back (stepForward t) = t
Tape.current(stepForward t) = Tape.current(Tape.front t)
Tape.front (stepForward t) = Tape.front(Tape.front t)
stepInDirection : Direction → Tape(Alphabet) → Tape(Alphabet)
stepInDirection Backward = stepBackward
stepInDirection Stay = id
stepInDirection Forward = stepForward
module _ ⦃ equiv-alphabet : Equiv{ℓₑₐ}(Alphabet) ⦄ where
step-inverseₗᵣ : ∀{t : Tape(Alphabet)} → (Tape.current(stepBackward(stepForward(t))) ≡ Tape.current(t))
step-inverseₗᵣ = reflexivity(_≡_ ⦃ equiv-alphabet ⦄)
step-inverseᵣₗ : ∀{t : Tape(Alphabet)} → (Tape.current(stepBackward(stepForward(t))) ≡ Tape.current(t))
step-inverseᵣₗ = reflexivity(_≡_ ⦃ equiv-alphabet ⦄)
module _
(State : Type{ℓₛ}) ⦃ equiv-state : Equiv{ℓₑₛ}(State) ⦄
(Alphabet : Type{ℓₐ}) ⦃ equiv-alphabet : Equiv{ℓₑₐ}(Alphabet) ⦄
where
private instance _ = [≡]-equiv {T = Bool}
-- Turing machine
-- `State` (Q) is the set of states.
-- `Alphabet` (Σ) is the set of symbols/the alphabet.
-- `transition` (δ) is the transition function.
-- `start` (q₀) is the start state.
-- `Final` (F) is the subset of State which are the final/accepting states.
record TuringMachine : Type{ℓₛ Lvl.⊔ ℓₑₐ Lvl.⊔ ℓₑₛ Lvl.⊔ ℓₐ Lvl.⊔ Lvl.𝐒(ℓₚ)} where
constructor turingMachine
field
⦃ State-finite ⦄ : Finite(State)
⦃ Alphabet-finite ⦄ : Finite(Alphabet)
transition : State → Option(Alphabet) → Option(State ⨯ Alphabet ⨯ Direction)
⦃ transition-binaryOperator ⦄ : BinaryOperator(transition)
start : State
Final : State → Type{ℓₚ}
⦃ Final-unaryRelator ⦄ : UnaryRelator(Final)
-- isFinal : State → Bool
-- TODO: Not sure what the best (most easy to use) formalization of a TM would be or if this is correct
Configuration = State ⨯ Tape(Option(Alphabet))
module Configuration where
step : TuringMachine{ℓₚ} → (Configuration → Option(Configuration))
step tm (s , t) = Option.map (\(ns , nx , dir) → (ns , stepInDirection dir (Tape.update t (Some ∘ const nx)))) (TuringMachine.transition tm s (Tape.current t))
|
{
"alphanum_fraction": 0.688029661,
"avg_line_length": 37.0196078431,
"ext": "agda",
"hexsha": "a31e03cba7320e25dc8148c84e78f7822764bd91",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Automaton/TuringMachine.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Automaton/TuringMachine.agda",
"max_line_length": 163,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Automaton/TuringMachine.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1177,
"size": 3776
}
|
module Data.QuadTree.LensProofs.Valid-LensBCD where
open import Haskell.Prelude renaming (zero to Z; suc to S)
open import Data.Lens.Lens
open import Data.Logic
open import Data.QuadTree.InternalAgda
open import Agda.Primitive
open import Data.Lens.Proofs.LensLaws
open import Data.Lens.Proofs.LensPostulates
open import Data.Lens.Proofs.LensComposition
open import Data.QuadTree.Implementation.QuadrantLenses
open import Data.QuadTree.Implementation.Definition
open import Data.QuadTree.Implementation.ValidTypes
open import Data.QuadTree.Implementation.SafeFunctions
open import Data.QuadTree.Implementation.PublicFunctions
open import Data.QuadTree.Implementation.DataLenses
-- The lens laws have been proven for LensA, and the proof is quite long.
-- The implementation of lens b/c/d is basically identical, so I won't bother to proof them for now
--- Lens laws for lensB
postulate
ValidLens-LensB-ViewSet :
{t : Set} {{eqT : Eq t}} {dep : Nat}
-> ViewSet (lensB {t} {dep})
ValidLens-LensB-SetView :
{t : Set} {{eqT : Eq t}} {dep : Nat}
-> SetView (lensB {t} {dep})
ValidLens-LensB-SetSet :
{t : Set} {{eqT : Eq t}} {dep : Nat}
-> SetSet (lensB {t} {dep})
ValidLens-LensB : {t : Set} {{eqT : Eq t}} {dep : Nat}
-> ValidLens (VQuadrant t {S dep}) (VQuadrant t {dep})
ValidLens-LensB {t} {dep} = CValidLens lensB (ValidLens-LensB-ViewSet) (ValidLens-LensB-SetView) (ValidLens-LensB-SetSet)
--- Lens laws for lensC
postulate
ValidLens-LensC-ViewSet :
{t : Set} {{eqT : Eq t}} {dep : Nat}
-> ViewSet (lensC {t} {dep})
ValidLens-LensC-SetView :
{t : Set} {{eqT : Eq t}} {dep : Nat}
-> SetView (lensC {t} {dep})
ValidLens-LensC-SetSet :
{t : Set} {{eqT : Eq t}} {dep : Nat}
-> SetSet (lensC {t} {dep})
ValidLens-LensC : {t : Set} {{eqT : Eq t}} {dep : Nat}
-> ValidLens (VQuadrant t {S dep}) (VQuadrant t {dep})
ValidLens-LensC {t} {dep} = CValidLens lensC (ValidLens-LensC-ViewSet) (ValidLens-LensC-SetView) (ValidLens-LensC-SetSet)
--- Lens laws for lensD
postulate
ValidLens-LensD-ViewSet :
{t : Set} {{eqT : Eq t}} {dep : Nat}
-> ViewSet (lensD {t} {dep})
ValidLens-LensD-SetView :
{t : Set} {{eqT : Eq t}} {dep : Nat}
-> SetView (lensD {t} {dep})
ValidLens-LensD-SetSet :
{t : Set} {{eqT : Eq t}} {dep : Nat}
-> SetSet (lensD {t} {dep})
ValidLens-LensD : {t : Set} {{eqT : Eq t}} {dep : Nat}
-> ValidLens (VQuadrant t {S dep}) (VQuadrant t {dep})
ValidLens-LensD {t} {dep} = CValidLens lensD (ValidLens-LensD-ViewSet) (ValidLens-LensD-SetView) (ValidLens-LensD-SetSet)
|
{
"alphanum_fraction": 0.6496649293,
"avg_line_length": 38.3714285714,
"ext": "agda",
"hexsha": "05bd61445ba0c858f51e763e3147c2b5897517a2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "JonathanBrouwer/research-project",
"max_forks_repo_path": "src/Data/QuadTree/LensProofs/Valid-LensBCD.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "JonathanBrouwer/research-project",
"max_issues_repo_path": "src/Data/QuadTree/LensProofs/Valid-LensBCD.agda",
"max_line_length": 121,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "JonathanBrouwer/research-project",
"max_stars_repo_path": "src/Data/QuadTree/LensProofs/Valid-LensBCD.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-25T09:10:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-05-25T09:10:20.000Z",
"num_tokens": 889,
"size": 2686
}
|
{-# OPTIONS --type-in-type #-}
module Bias where
open import AgdaPrelude
myFun : (a : Set) -> a -> a -> a -> a
myFun a x y z = x
--myApp1 = myFun _ Zero Zero (Nil Nat)
myApp2 = myFun _ (Nil Nat) Zero Zero
|
{
"alphanum_fraction": 0.6095238095,
"avg_line_length": 17.5,
"ext": "agda",
"hexsha": "2569f7965b3ebcc4f727b7861cd5e1fe68e02807",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "64a1b4c6632153d75cba540f7c91f40b49375e2f",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "JoeyEremondi/lambda-pi-constraint",
"max_forks_repo_path": "thesisExamples/Bias.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "64a1b4c6632153d75cba540f7c91f40b49375e2f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "JoeyEremondi/lambda-pi-constraint",
"max_issues_repo_path": "thesisExamples/Bias.agda",
"max_line_length": 38,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "64a1b4c6632153d75cba540f7c91f40b49375e2f",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "JoeyEremondi/lambda-pi-constraint",
"max_stars_repo_path": "thesisExamples/Bias.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-05T20:21:46.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-03-16T11:14:56.000Z",
"num_tokens": 73,
"size": 210
}
|
module Test2 where
open import MiniHoTT
A : Set
A = ℕ
-- a, b : A
{-
[ a, b ] : List A
[ a, b ] := inr ( a , ?)
-- inr ((a, inr ( b, inl(unit))
-}
T : {A : Set} → (X : Set) → Set
T {A} X = 𝟙 lzero + A × X -- This is an example of a polynomial functor.
data
List (A : Set)
: Set
where
[] : List A
cons : A → List A → List A
data Vec (A : Set) : ℕ → Set
where
nil : ∀ n → Vec A n
cons : ∀ n → A → Vec A n → Vec A (succ n)
data Fin : ℕ → Set
where
cero : ∀ {n} → Fin n
succ : ∀ {n} → Fin n → Fin (succ n)
at : ∀ {n : ℕ} {A : Set}
→ Vec A (succ n)
→ Fin (succ n)
→ A
at v n = {! !}
go' : ∀ {n} {A : Set}
→ (Fin 0n → A) → Fin n → Vec A n
go' pick cero = nil _
go' pick (succ n) = cons {! !} (pick {! n !})
(go' {! pick !} {! !})
record
Algebra
(A : Set)
(T : Set → Set)
: Set (lsuc lzero)
where
constructor algebra
field
X : Set
μ : T X → X
-- Objects: (X, μ)
-- morphisms f : (X, μ) --> (Y, ν)
-- this is given by α : X → Y, that makes the diagram commutes.
-- Initial object: Object (X, μ) + initiallity condition:
-- Any other (Y, ν), there exists unique α : X → Y such that...
list-is-an-algebra : (A : Set) → Algebra A (λ X → 𝟙 lzero + A × X)
list-is-an-algebra A =
algebra (List A) λ { (inl x) → []
; (inr (a , xs)) → cons a xs
}
-- where (T X -> X) is the type of list with elements of type A.
-- elements? is TA a set?
-- Yes, assuming A is a set. Let's find that.
list-of-nats-is-set
: A is-set
→ isSet (T A)
list-of-nats-is-set A-is-set
= +-set
(prop-is-set 𝟙-is-prop)
(∑-set
A-is-set
λ _ → A-is-set)
-- T(X) = 1+X + (X ×X) a
|
{
"alphanum_fraction": 0.4397463002,
"avg_line_length": 20.3440860215,
"ext": "agda",
"hexsha": "66b84c6c7dec8d8d9c2c7d27167368305d2ebb55",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-04-26T15:16:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-26T15:16:01.000Z",
"max_forks_repo_head_hexsha": "9e81415f0276ee42b4a57816c1dcd3aaa6d9ea60",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "jonaprieto/mini-hott",
"max_forks_repo_path": "src/Test2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9e81415f0276ee42b4a57816c1dcd3aaa6d9ea60",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "jonaprieto/mini-hott",
"max_issues_repo_path": "src/Test2.agda",
"max_line_length": 75,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "9e81415f0276ee42b4a57816c1dcd3aaa6d9ea60",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "jonaprieto/mini-hott",
"max_stars_repo_path": "src/Test2.agda",
"max_stars_repo_stars_event_max_datetime": "2019-08-17T10:28:06.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-05-12T14:19:04.000Z",
"num_tokens": 694,
"size": 1892
}
|
open import Level
open import Ordinals
open import logic
open import Relation.Nullary
module LEMC {n : Level } (O : Ordinals {n} ) (p∨¬p : ( p : Set n) → p ∨ ( ¬ p )) where
open import zf
open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ )
open import Relation.Binary.PropositionalEquality
open import Data.Nat.Properties
open import Data.Empty
open import Relation.Binary
open import Relation.Binary.Core
open import nat
import OD
open inOrdinal O
open OD O
open OD.OD
open OD._==_
open ODAxiom odAxiom
import OrdUtil
import ODUtil
open Ordinals.Ordinals O
open Ordinals.IsOrdinals isOrdinal
open Ordinals.IsNext isNext
open OrdUtil O
open ODUtil O
open import zfc
open HOD
open _⊆_
decp : ( p : Set n ) → Dec p -- assuming axiom of choice
decp p with p∨¬p p
decp p | case1 x = yes x
decp p | case2 x = no x
∋-p : (A x : HOD ) → Dec ( A ∋ x )
∋-p A x with p∨¬p ( A ∋ x) -- LEM
∋-p A x | case1 t = yes t
∋-p A x | case2 t = no (λ x → t x)
double-neg-eilm : {A : Set n} → ¬ ¬ A → A -- we don't have this in intutionistic logic
double-neg-eilm {A} notnot with decp A -- assuming axiom of choice
... | yes p = p
... | no ¬p = ⊥-elim ( notnot ¬p )
power→⊆ : ( A t : HOD) → Power A ∋ t → t ⊆ A
power→⊆ A t PA∋t = record { incl = λ {x} t∋x → double-neg-eilm (λ not → t1 t∋x (λ x → not x) ) } where
t1 : {x : HOD } → t ∋ x → ¬ ¬ (A ∋ x)
t1 = power→ A t PA∋t
--- With assuption of HOD is ordered, p ∨ ( ¬ p ) <=> axiom of choice
---
record choiced ( X : Ordinal ) : Set n where
field
a-choice : Ordinal
is-in : odef (* X) a-choice
open choiced
-- ∋→d : ( a : HOD ) { x : HOD } → * (& a) ∋ x → X ∋ * (a-choice (choice-func X not))
-- ∋→d a lt = subst₂ (λ j k → odef j k) *iso (sym &iso) lt
oo∋ : { a : HOD} { x : Ordinal } → odef (* (& a)) x → a ∋ * x
oo∋ lt = subst₂ (λ j k → odef j k) *iso (sym &iso) lt
∋oo : { a : HOD} { x : Ordinal } → a ∋ * x → odef (* (& a)) x
∋oo lt = subst₂ (λ j k → odef j k ) (sym *iso) &iso lt
OD→ZFC : ZFC
OD→ZFC = record {
ZFSet = HOD
; _∋_ = _∋_
; _≈_ = _=h=_
; ∅ = od∅
; Select = Select
; isZFC = isZFC
} where
-- infixr 200 _∈_
-- infixr 230 _∩_ _∪_
isZFC : IsZFC (HOD ) _∋_ _=h=_ od∅ Select
isZFC = record {
choice-func = λ A {X} not A∋X → * (a-choice (choice-func X not) );
choice = λ A {X} A∋X not → oo∋ (is-in (choice-func X not))
} where
--
-- the axiom choice from LEM and OD ordering
--
choice-func : (X : HOD ) → ¬ ( X =h= od∅ ) → choiced (& X)
choice-func X not = have_to_find where
ψ : ( ox : Ordinal ) → Set n
ψ ox = (( x : Ordinal ) → x o< ox → ( ¬ odef X x )) ∨ choiced (& X)
lemma-ord : ( ox : Ordinal ) → ψ ox
lemma-ord ox = TransFinite0 {ψ} induction ox where
∀-imply-or : {A : Ordinal → Set n } {B : Set n }
→ ((x : Ordinal ) → A x ∨ B) → ((x : Ordinal ) → A x) ∨ B
∀-imply-or {A} {B} ∀AB with p∨¬p ((x : Ordinal ) → A x) -- LEM
∀-imply-or {A} {B} ∀AB | case1 t = case1 t
∀-imply-or {A} {B} ∀AB | case2 x = case2 (lemma (λ not → x not )) where
lemma : ¬ ((x : Ordinal ) → A x) → B
lemma not with p∨¬p B
lemma not | case1 b = b
lemma not | case2 ¬b = ⊥-elim (not (λ x → dont-orb (∀AB x) ¬b ))
induction : (x : Ordinal) → ((y : Ordinal) → y o< x → ψ y) → ψ x
induction x prev with ∋-p X ( * x)
... | yes p = case2 ( record { a-choice = x ; is-in = ∋oo p } )
... | no ¬p = lemma where
lemma1 : (y : Ordinal) → (y o< x → odef X y → ⊥) ∨ choiced (& X)
lemma1 y with ∋-p X (* y)
lemma1 y | yes y<X = case2 ( record { a-choice = y ; is-in = ∋oo y<X } )
lemma1 y | no ¬y<X = case1 ( λ lt y<X → ¬y<X (d→∋ X y<X) )
lemma : ((y : Ordinal) → y o< x → odef X y → ⊥) ∨ choiced (& X)
lemma = ∀-imply-or lemma1
odef→o< : {X : HOD } → {x : Ordinal } → odef X x → x o< & X
odef→o< {X} {x} lt = o<-subst {_} {_} {x} {& X} ( c<→o< ( subst₂ (λ j k → odef j k ) (sym *iso) (sym &iso) lt )) &iso &iso
have_to_find : choiced (& X)
have_to_find = dont-or (lemma-ord (& X )) ¬¬X∋x where
¬¬X∋x : ¬ ((x : Ordinal) → x o< (& X) → odef X x → ⊥)
¬¬X∋x nn = not record {
eq→ = λ {x} lt → ⊥-elim (nn x (odef→o< lt) lt)
; eq← = λ {x} lt → ⊥-elim ( ¬x<0 lt )
}
--
-- axiom regurality from ε-induction (using axiom of choice above)
--
-- from https://math.stackexchange.com/questions/2973777/is-it-possible-to-prove-regularity-with-transfinite-induction-only
--
-- FIXME : don't use HOD make this level n, so we can remove ε-induction1
record Minimal (x : HOD) : Set (suc n) where
field
min : HOD
x∋min : x ∋ min
min-empty : (y : HOD ) → ¬ ( min ∋ y) ∧ (x ∋ y)
open Minimal
open _∧_
induction : {x : HOD} → ({y : HOD} → x ∋ y → (u : HOD ) → (u∋x : u ∋ y) → Minimal u )
→ (u : HOD ) → (u∋x : u ∋ x) → Minimal u
induction {x} prev u u∋x with p∨¬p ((y : Ordinal ) → ¬ (odef x y) ∧ (odef u y))
... | case1 P =
record { min = x
; x∋min = u∋x
; min-empty = λ y → P (& y)
}
... | case2 NP = min2 where
p : HOD
p = record { od = record { def = λ y1 → odef x y1 ∧ odef u y1 } ; odmax = omin (odmax x) (odmax u) ; <odmax = lemma } where
lemma : {y : Ordinal} → OD.def (od x) y ∧ OD.def (od u) y → y o< omin (odmax x) (odmax u)
lemma {y} lt = min1 (<odmax x (proj1 lt)) (<odmax u (proj2 lt))
np : ¬ (p =h= od∅)
np p∅ = NP (λ y p∋y → ∅< {p} {_} (d→∋ p p∋y) p∅ )
y1choice : choiced (& p)
y1choice = choice-func p np
y1 : HOD
y1 = * (a-choice y1choice)
y1prop : (x ∋ y1) ∧ (u ∋ y1)
y1prop = oo∋ (is-in y1choice)
min2 : Minimal u
min2 = prev (proj1 y1prop) u (proj2 y1prop)
Min2 : (x : HOD) → (u : HOD ) → (u∋x : u ∋ x) → Minimal u
Min2 x u u∋x = (ε-induction {λ y → (u : HOD ) → (u∋x : u ∋ y) → Minimal u } induction x u u∋x )
cx : {x : HOD} → ¬ (x =h= od∅ ) → choiced (& x )
cx {x} nx = choice-func x nx
minimal : (x : HOD ) → ¬ (x =h= od∅ ) → HOD
minimal x ne = min (Min2 (* (a-choice (cx {x} ne) )) x ( oo∋ (is-in (cx ne))) )
x∋minimal : (x : HOD ) → ( ne : ¬ (x =h= od∅ ) ) → odef x ( & ( minimal x ne ) )
x∋minimal x ne = x∋min (Min2 (* (a-choice (cx {x} ne) )) x ( oo∋ (is-in (cx ne))) )
minimal-1 : (x : HOD ) → ( ne : ¬ (x =h= od∅ ) ) → (y : HOD ) → ¬ ( odef (minimal x ne) (& y)) ∧ (odef x (& y) )
minimal-1 x ne y = min-empty (Min2 (* (a-choice (cx ne) )) x ( oo∋ (is-in (cx ne)))) y
|
{
"alphanum_fraction": 0.443647949,
"avg_line_length": 42.0837988827,
"ext": "agda",
"hexsha": "9a6b5619b57344013d4ef5b4e533a41b009cfbe8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/zf-in-agda",
"max_forks_repo_path": "src/LEMC.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/zf-in-agda",
"max_issues_repo_path": "src/LEMC.agda",
"max_line_length": 143,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/zf-in-agda",
"max_stars_repo_path": "src/LEMC.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-10T13:27:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-02T13:46:23.000Z",
"num_tokens": 2771,
"size": 7533
}
|
module Data.QuadTree.Implementation.Definition where
open import Haskell.Prelude renaming (zero to Z; suc to S)
open import Data.Lens.Lens
open import Data.Logic
{-# FOREIGN AGDA2HS
{-# LANGUAGE Safe #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE Rank2Types #-}
import Data.Nat
import Data.Lens.Lens
import Data.Logic
#-}
---- Quadrants
-- A quadrant is either a leaf or a node with 4 sub-quadrants
data Quadrant (t : Set) : Set where
Leaf : t -> Quadrant t
Node : Quadrant t -> Quadrant t -> Quadrant t -> Quadrant t -> Quadrant t
{-# COMPILE AGDA2HS Quadrant deriving (Show, Eq) #-}
---- QuadTree
-- A quadtree is the width/height + the root quadrant
data QuadTree (t : Set) : Set where
Wrapper : (Nat × Nat) -> Quadrant t -> QuadTree t
{-# COMPILE AGDA2HS QuadTree deriving (Show, Eq) #-}
|
{
"alphanum_fraction": 0.6957605985,
"avg_line_length": 26.7333333333,
"ext": "agda",
"hexsha": "4eb7557ff8d48e1259ee18b8934313c181c144a8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "JonathanBrouwer/research-project",
"max_forks_repo_path": "src/Data/QuadTree/Implementation/Definition.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "JonathanBrouwer/research-project",
"max_issues_repo_path": "src/Data/QuadTree/Implementation/Definition.agda",
"max_line_length": 75,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "JonathanBrouwer/research-project",
"max_stars_repo_path": "src/Data/QuadTree/Implementation/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-25T09:10:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-05-25T09:10:20.000Z",
"num_tokens": 224,
"size": 802
}
|
{-# OPTIONS --type-in-type #-}
open import Data.Unit
open import Data.Product hiding ( curry ; uncurry )
open import Data.List hiding ( concat )
open import Data.String
open import Relation.Binary.PropositionalEquality
open import Function
module GenericElim.Desc where
----------------------------------------------------------------------
Label : Set
Label = String
Enum : Set
Enum = List Label
data Tag : Enum → Set where
here : ∀{l E} → Tag (l ∷ E)
there : ∀{l E} → Tag E → Tag (l ∷ E)
Branches : (E : Enum) (P : Tag E → Set) → Set
Branches [] P = ⊤
Branches (l ∷ E) P = P here × Branches E (λ t → P (there t))
case : {E : Enum} (P : Tag E → Set) (cs : Branches E P) (t : Tag E) → P t
case P (c , cs) here = c
case P (c , cs) (there t) = case (λ t → P (there t)) cs t
UncurriedBranches : (E : Enum) (P : Tag E → Set) (X : Set)
→ Set
UncurriedBranches E P X = Branches E P → X
CurriedBranches : (E : Enum) (P : Tag E → Set) (X : Set)
→ Set
CurriedBranches [] P X = X
CurriedBranches (l ∷ E) P X = P here → CurriedBranches E (λ t → P (there t)) X
curryBranches : {E : Enum} {P : Tag E → Set} {X : Set}
→ UncurriedBranches E P X → CurriedBranches E P X
curryBranches {[]} f = f tt
curryBranches {l ∷ E} f = λ c → curryBranches (λ cs → f (c , cs))
uncurryBranches : {E : Enum} {P : Tag E → Set} {X : Set}
→ CurriedBranches E P X → UncurriedBranches E P X
uncurryBranches {[]} x tt = x
uncurryBranches {l ∷ E} f (c , cs) = uncurryBranches (f c) cs
----------------------------------------------------------------------
data Desc (I : Set) : Set₁ where
End : (i : I) → Desc I
Rec : (i : I) (D : Desc I) → Desc I
Arg : (A : Set) (B : A → Desc I) → Desc I
ISet : Set → Set₁
ISet I = I → Set
El : {I : Set} (D : Desc I) → ISet I → ISet I
El (End j) X i = j ≡ i
El (Rec j D) X i = X j × El D X i
El (Arg A B) X i = Σ A (λ a → El (B a) X i)
Hyps : {I : Set} (D : Desc I) (X : ISet I) (P : (i : I) → X i → Set) (i : I) (xs : El D X i) → Set
Hyps (End j) X P i q = ⊤
Hyps (Rec j D) X P i (x , xs) = P j x × Hyps D X P i xs
Hyps (Arg A B) X P i (a , b) = Hyps (B a) X P i b
----------------------------------------------------------------------
BranchesD : (I : Set) (E : Enum) → Set
BranchesD I E = Branches E (λ _ → Desc I)
caseD : {I : Set} {E : Enum} (cs : BranchesD I E) (t : Tag E) → Desc I
caseD = case (λ _ → Desc _)
----------------------------------------------------------------------
UncurriedEl : {I : Set} (D : Desc I) (X : ISet I) → Set
UncurriedEl D X = ∀{i} → El D X i → X i
CurriedEl : {I : Set} (D : Desc I) (X : ISet I) → Set
CurriedEl (End i) X = X i
CurriedEl (Rec i D) X = (x : X i) → CurriedEl D X
CurriedEl (Arg A B) X = (a : A) → CurriedEl (B a) X
CurriedEl' : {I : Set} (D : Desc I) (X : ISet I) (i : I) → Set
CurriedEl' (End j) X i = j ≡ i → X i
CurriedEl' (Rec j D) X i = (x : X j) → CurriedEl' D X i
CurriedEl' (Arg A B) X i = (a : A) → CurriedEl' (B a) X i
curryEl : {I : Set} (D : Desc I) (X : ISet I)
→ UncurriedEl D X → CurriedEl D X
curryEl (End i) X cn = cn refl
curryEl (Rec i D) X cn = λ x → curryEl D X (λ xs → cn (x , xs))
curryEl (Arg A B) X cn = λ a → curryEl (B a) X (λ xs → cn (a , xs))
uncurryEl : {I : Set} (D : Desc I) (X : ISet I)
→ CurriedEl D X → UncurriedEl D X
uncurryEl (End i) X cn refl = cn
uncurryEl (Rec i D) X cn (x , xs) = uncurryEl D X (cn x) xs
uncurryEl (Arg A B) X cn (a , xs) = uncurryEl (B a) X (cn a) xs
----------------------------------------------------------------------
UncurriedHyps : {I : Set} (D : Desc I) (X : ISet I)
(P : (i : I) → X i → Set)
(cn : UncurriedEl D X)
→ Set
UncurriedHyps D X P cn =
∀ i (xs : El D X i) (ihs : Hyps D X P i xs) → P i (cn xs)
CurriedHyps : {I : Set} (D : Desc I) (X : ISet I)
(P : (i : I) → X i → Set)
(cn : UncurriedEl D X)
→ Set
CurriedHyps (End i) X P cn =
P i (cn refl)
CurriedHyps (Rec i D) X P cn =
(x : X i) → P i x → CurriedHyps D X P (λ xs → cn (x , xs))
CurriedHyps (Arg A B) X P cn =
(a : A) → CurriedHyps (B a) X P (λ xs → cn (a , xs))
CurriedHyps' : {I : Set} (D : Desc I) (X : ISet I)
(P : (i : I) → X i → Set)
(i : I)
(cn : El D X i → X i)
→ Set
CurriedHyps' (End j) X P i cn = (q : j ≡ i) → P i (cn q)
CurriedHyps' (Rec j D) X P i cn =
(x : X j) → P j x → CurriedHyps' D X P i (λ xs → cn (x , xs))
CurriedHyps' (Arg A B) X P i cn =
(a : A) → CurriedHyps' (B a) X P i (λ xs → cn (a , xs))
curryHyps : {I : Set} (D : Desc I) (X : ISet I)
(P : (i : I) → X i → Set)
(cn : UncurriedEl D X)
→ UncurriedHyps D X P cn
→ CurriedHyps D X P cn
curryHyps (End i) X P cn pf =
pf i refl tt
curryHyps (Rec i D) X P cn pf =
λ x ih → curryHyps D X P (λ xs → cn (x , xs)) (λ i xs ihs → pf i (x , xs) (ih , ihs))
curryHyps (Arg A B) X P cn pf =
λ a → curryHyps (B a) X P (λ xs → cn (a , xs)) (λ i xs ihs → pf i (a , xs) ihs)
uncurryHyps : {I : Set} (D : Desc I) (X : ISet I)
(P : (i : I) → X i → Set)
(cn : UncurriedEl D X)
→ CurriedHyps D X P cn
→ UncurriedHyps D X P cn
uncurryHyps (End .i) X P cn pf i refl tt =
pf
uncurryHyps (Rec j D) X P cn pf i (x , xs) (ih , ihs) =
uncurryHyps D X P (λ ys → cn (x , ys)) (pf x ih) i xs ihs
uncurryHyps (Arg A B) X P cn pf i (a , xs) ihs =
uncurryHyps (B a) X P (λ ys → cn (a , ys)) (pf a) i xs ihs
----------------------------------------------------------------------
data μ {I : Set} (D : Desc I) : ISet I where
init : UncurriedEl D (μ D)
inj : {I : Set} (D : Desc I) → CurriedEl D (μ D)
inj D = curryEl D (μ D) init
----------------------------------------------------------------------
ind :
{I : Set}
(D : Desc I)
(P : (i : I) → μ D i → Set)
(α : UncurriedHyps D (μ D) P init)
(i : I)
(x : μ D i)
→ P i x
hyps :
{I : Set}
(D₁ : Desc I)
(P : (i : I) → μ D₁ i → Set)
(α : UncurriedHyps D₁ (μ D₁) P init)
(D₂ : Desc I)
(i : I)
(xs : El D₂ (μ D₁) i)
→ Hyps D₂ (μ D₁) P i xs
ind D P α i (init xs) = α i xs (hyps D P α D i xs)
hyps D P α (End j) i q = tt
hyps D P α (Rec j A) i (x , xs) = ind D P α j x , hyps D P α A i xs
hyps D P α (Arg A B) i (a , b) = hyps D P α (B a) i b
----------------------------------------------------------------------
indCurried : {I : Set} (D : Desc I)
(P : (i : I) → μ D i → Set)
(f : CurriedHyps D (μ D) P init)
(i : I)
(x : μ D i)
→ P i x
indCurried D P f i x = ind D P (uncurryHyps D (μ D) P init f) i x
Summer : {I : Set} (E : Enum) (C : Tag E → Desc I)
→ let D = Arg (Tag E) C in
(X : ISet I) (cn : UncurriedEl D X)
(P : (i : I) → X i → Set)
→ Tag E → Set
Summer E C X cn P t =
let D = Arg (Tag E) C in
CurriedHyps (C t) X P (λ xs → cn (t , xs))
SumCurriedHyps : {I : Set} (E : Enum) (C : Tag E → Desc I)
→ let D = Arg (Tag E) C in
(P : (i : I) → μ D i → Set)
→ Tag E → Set
SumCurriedHyps E C P t =
let D = Arg (Tag E) C in
Summer E C (μ D) init P t
elimUncurried : {I : Set} (E : Enum) (C : Tag E → Desc I)
→ let D = Arg (Tag E) C in
(P : (i : I) → μ D i → Set)
→ Branches E (SumCurriedHyps E C P)
→ (i : I) (x : μ D i) → P i x
elimUncurried E C P cs i x =
let D = Arg (Tag E) C in
indCurried D P
(case (SumCurriedHyps E C P) cs)
i x
elim : {I : Set} (E : Enum) (C : Tag E → Desc I)
→ let D = Arg (Tag E) C in
(P : (i : I) → μ D i → Set)
→ CurriedBranches E
(SumCurriedHyps E C P)
((i : I) (x : μ D i) → P i x)
elim E C P = curryBranches (elimUncurried E C P)
----------------------------------------------------------------------
Soundness : Set₁
Soundness = {I : Set} (E : Enum) (C : Tag E → Desc I)
→ let D = Arg (Tag E) C in
(P : (i : I) → μ D i → Set)
(cs : Branches E (SumCurriedHyps E C P))
(i : I) (x : μ D i)
→ ∃ λ α
→ elimUncurried E C P cs i x ≡ ind D P α i x
sound : Soundness
sound E C P cs i x =
let D = Arg (Tag E) C in
(uncurryHyps D (μ D) P init (case (SumCurriedHyps E C P) cs)) , refl
Completeness : Set₁
Completeness = {I : Set} (E : Enum) (C : Tag E → Desc I)
→ let D = Arg (Tag E) C in
(P : (i : I) → μ D i → Set)
(α : UncurriedHyps D (μ D) P init)
(i : I) (x : μ D i)
→ ∃ λ cs
→ ind D P α i x ≡ elimUncurried E C P cs i x
uncurryHypsIdent : {I : Set} (D : Desc I) (X : ISet I)
(P : (i : I) → X i → Set)
(cn : UncurriedEl D X)
(α : UncurriedHyps D X P cn)
(i : I) (xs : El D X i) (ihs : Hyps D X P i xs)
→ α i xs ihs ≡ uncurryHyps D X P cn (curryHyps D X P cn α) i xs ihs
uncurryHypsIdent (End .i) X P cn α i refl tt = refl
uncurryHypsIdent (Rec j D) X P cn α i (x , xs) (p , ps) =
uncurryHypsIdent D X P (λ xs → cn (x , xs)) (λ k ys rs → α k (x , ys) (p , rs)) i xs ps
uncurryHypsIdent (Arg A B) X P cn α i (a , xs) ps =
uncurryHypsIdent (B a) X P (λ xs → cn (a , xs)) (λ j ys → α j (a , ys)) i xs ps
postulate
ext3 : {A : Set} {B : A → Set} {C : (a : A) → B a → Set} {Z : (a : A) (b : B a) → C a b → Set}
(f g : (a : A) (b : B a) (c : C a b) → Z a b c)
→ ((a : A) (b : B a) (c : C a b) → f a b c ≡ g a b c)
→ f ≡ g
toBranches : {I : Set} (E : Enum) (C : Tag E → Desc I)
→ let D = Arg (Tag E) C in
(X : ISet I) (cn : UncurriedEl D X)
(P : (i : I) → X i → Set)
(α : UncurriedHyps D X P cn)
→ Branches E (Summer E C X cn P)
toBranches [] C X cn P α = tt
toBranches (l ∷ E) C X cn P α =
curryHyps (C here) X P (λ xs → cn (here , xs)) (λ i xs → α i (here , xs))
, toBranches E (λ t → C (there t)) X
(λ xs → cn (there (proj₁ xs) , proj₂ xs))
P (λ i xs ih → α i (there (proj₁ xs) , proj₂ xs) ih)
ToBranches : {I : Set} {E : Enum} (C : Tag E → Desc I)
→ let D = Arg (Tag E) C in
(X : ISet I) (cn : UncurriedEl D X)
(P : (i : I) → X i → Set)
(α : UncurriedHyps D X P cn)
(t : Tag E)
→ let β = toBranches E C X cn P α in
case (Summer E C X cn P) β t ≡ curryHyps D X P cn α t
ToBranches C X cn P α here = refl
ToBranches C X cn P α (there t)
with ToBranches (λ t → C (there t)) X
(λ xs → cn (there (proj₁ xs) , proj₂ xs))
P (λ i xs ih → α i (there (proj₁ xs) , proj₂ xs) ih) t
... | ih rewrite ih = refl
completeα : {I : Set} (E : Enum) (C : Tag E → Desc I)
→ let D = Arg (Tag E) C in
(P : (i : I) → μ D i → Set)
(α : UncurriedHyps D (μ D) P init)
(i : I) (xs : El D (μ D) i) (ihs : Hyps D (μ D) P i xs)
→ let β = toBranches E C (μ D) init P α in
α i xs ihs ≡ uncurryHyps D (μ D) P init (case (SumCurriedHyps E C P) β) i xs ihs
completeα E C P α i (t , xs) ihs
with ToBranches C (μ D) init P α t where D = Arg (Tag E) C
... | q rewrite q = uncurryHypsIdent D (μ D) P init α i (t , xs) ihs where D = Arg (Tag E) C
complete' : {I : Set} (E : Enum) (C : Tag E → Desc I)
→ let D = Arg (Tag E) C in
(P : (i : I) → μ D i → Set)
(α : UncurriedHyps D (μ D) P init)
(i : I) (x : μ D i)
→ let β = toBranches E C (μ D) init P α in
ind D P α i x ≡ elimUncurried E C P β i x
complete' E C P α i (init (t , xs)) = cong
(λ f → ind D P f i (init (t , xs)))
(ext3 α
(uncurryHyps D (μ D) P init (case (SumCurriedHyps E C P) β))
(completeα E C P α))
where
D = Arg (Tag E) C
β = toBranches E C (μ D) init P α
complete : Completeness
complete E C P α i x =
let D = Arg (Tag E) C in
toBranches E C (μ D) init P α
, complete' E C P α i x
----------------------------------------------------------------------
ℕE : Enum
ℕE = "zero" ∷ "suc" ∷ []
VecE : Enum
VecE = "nil" ∷ "cons" ∷ []
ℕT : Set
ℕT = Tag ℕE
VecT : Set
VecT = Tag VecE
zeroT : ℕT
zeroT = here
sucT : ℕT
sucT = there here
nilT : VecT
nilT = here
consT : VecT
consT = there here
ℕC : ℕT → Desc ⊤
ℕC = caseD $
End tt
, Rec tt (End tt)
, tt
ℕD : Desc ⊤
ℕD = Arg ℕT ℕC
ℕ : ⊤ → Set
ℕ = μ ℕD
zero : ℕ tt
zero = init (zeroT , refl)
suc : ℕ tt → ℕ tt
suc n = init (sucT , n , refl)
VecC : (A : Set) → VecT → Desc (ℕ tt)
VecC A = caseD $
End zero
, Arg (ℕ tt) (λ n → Arg A λ _ → Rec n (End (suc n)))
, tt
nilD : (A : Set) → Desc (ℕ tt)
nilD A = End zero
consD : (A : Set) → Desc (ℕ tt)
consD A = Arg (ℕ tt) (λ n → Arg A (λ _ → Rec n (End (suc n))))
VecD : (A : Set) → Desc (ℕ tt)
VecD A = Arg VecT (VecC A)
Vec : (A : Set) → ℕ tt → Set
Vec A = μ (VecD A)
NilEl : (A : Set) (n : ℕ tt) → Set
NilEl A n = El (nilD A) (Vec A) n
ConsEl : (A : Set) → ℕ tt → Set
ConsEl A n = El (consD A) (Vec A) n
VecEl : (A : Set) → ℕ tt → Set
VecEl A n = El (VecD A) (Vec A) n
NilHyps : (A : Set) (P : (n : ℕ tt) → Vec A n → Set) (n : ℕ tt) (xs : NilEl A n) → Set
NilHyps A P n xs = Hyps (nilD A) (Vec A) P n xs
ConsHyps : (A : Set) (P : (n : ℕ tt) → Vec A n → Set) (n : ℕ tt) (xs : ConsEl A n) → Set
ConsHyps A P n xs = Hyps (consD A) (Vec A) P n xs
VecHyps : (A : Set) (P : (n : ℕ tt) → Vec A n → Set) (n : ℕ tt) (xs : VecEl A n) → Set
VecHyps A P n xs = Hyps (VecD A) (Vec A) P n xs
ConsUncurriedHyps : (A : Set)
(P : (n : ℕ tt) → Vec A n → Set)
(cn : UncurriedEl (consD A) (Vec A)) → Set
ConsUncurriedHyps A P cn = UncurriedHyps (consD A) (Vec A) P cn
nil : (A : Set) → Vec A zero
nil A = init (nilT , refl)
cons : (A : Set) (n : ℕ tt) (x : A) (xs : Vec A n) → Vec A (suc n)
cons A n x xs = init (consT , n , x , xs , refl)
nil2 : (A : Set) → Vec A zero
nil2 A = inj (VecD A) nilT
cons2 : (A : Set) (n : ℕ tt) (x : A) (xs : Vec A n) → Vec A (suc n)
cons2 A = inj (VecD A) consT
----------------------------------------------------------------------
module Induction where
add : ℕ tt → ℕ tt → ℕ tt
add = ind ℕD (λ _ _ → ℕ tt → ℕ tt)
(λ u t,c → case
(λ t → (c : El (ℕC t) ℕ u)
(ih : Hyps ℕD ℕ (λ u n → ℕ u → ℕ u) u (t , c))
→ ℕ u → ℕ u
)
( (λ q ih n → n)
, (λ m,q ih,tt n → suc (proj₁ ih,tt n))
, tt
)
(proj₁ t,c)
(proj₂ t,c)
)
tt
mult : ℕ tt → ℕ tt → ℕ tt
mult = ind ℕD (λ _ _ → ℕ tt → ℕ tt)
(λ u t,c → case
(λ t → (c : El (ℕC t) ℕ u)
(ih : Hyps ℕD ℕ (λ u n → ℕ u → ℕ u) u (t , c))
→ ℕ u → ℕ u
)
( (λ q ih n → zero)
, (λ m,q ih,tt n → add n (proj₁ ih,tt n))
, tt
)
(proj₁ t,c)
(proj₂ t,c)
)
tt
append : (A : Set) (m : ℕ tt) (xs : Vec A m) (n : ℕ tt) (ys : Vec A n) → Vec A (add m n)
append A = ind (VecD A) (λ m xs → (n : ℕ tt) (ys : Vec A n) → Vec A (add m n))
(λ m t,c → case
(λ t → (c : El (VecC A t) (Vec A) m)
(ih : Hyps (VecD A) (Vec A) (λ m xs → (n : ℕ tt) (ys : Vec A n) → Vec A (add m n)) m (t , c))
(n : ℕ tt) (ys : Vec A n) → Vec A (add m n)
)
( (λ q ih n ys → subst (λ m → Vec A (add m n)) q ys)
, (λ m',x,xs,q ih,tt n ys →
let m' = proj₁ m',x,xs,q
x = proj₁ (proj₂ m',x,xs,q)
q = proj₂ (proj₂ (proj₂ m',x,xs,q))
ih = proj₁ ih,tt
in
subst (λ m → Vec A (add m n)) q (cons A (add m' n) x (ih n ys))
)
, tt
)
(proj₁ t,c)
(proj₂ t,c)
)
Concat : (A : Set) (m n : ℕ tt) (xss : Vec (Vec A m) n) → Set
Concat A m n xss = Vec A (mult n m)
ConsBranch : (A : Set) (m : ℕ tt)
→ Set
ConsBranch A m = UncurriedHyps (consD (Vec A m)) (Vec (Vec A m)) (Concat A m)
(λ xs → init (consT , xs))
ConsElimBranch : (A : Set) (m : ℕ tt)
→ Set
ConsElimBranch A m = CurriedHyps (consD (Vec A m)) (Vec (Vec A m)) (Concat A m)
(λ xs → init (consT , xs))
ElimBranch : (t : VecT) (A : Set) (m : ℕ tt)
→ Set
ElimBranch t A m = SumCurriedHyps VecE (VecC (Vec A m)) (Concat A m) t
nilBranch : (A : Set) (m n : ℕ tt)
(xss : NilEl (Vec A m) n)
(ihs : NilHyps (Vec A m) (Concat A m) n xss)
→ Vec A (mult n m)
nilBranch A m n q u = subst
(λ n → Vec A (mult n m))
q (nil A)
consBranch : (A : Set) (m : ℕ tt) → ConsBranch A m
consBranch A m n n',xs,xss,q ih,u =
let n' = proj₁ n',xs,xss,q
xs = proj₁ (proj₂ n',xs,xss,q)
q = proj₂ (proj₂ (proj₂ n',xs,xss,q))
ih = proj₁ ih,u
in subst
(λ n → Vec A (mult n m))
q (append A m xs (mult n' m) ih)
ConcatConvoy : (A : Set) (m n : ℕ tt) (t : VecT) → Set
ConcatConvoy A m n t =
(xss : El (VecC (Vec A m) t) (Vec (Vec A m)) n)
(ihs : VecHyps (Vec A m) (Concat A m) n (t , xss))
→ Vec A (mult n m)
concatα : (A : Set) (m n : ℕ tt)
(xss : VecEl (Vec A m) n)
(ihs : VecHyps (Vec A m) (Concat A m) n xss)
→ Vec A (mult n m)
concatα A m n xss = case (ConcatConvoy A m n)
(nilBranch A m n , consBranch A m n , tt)
(proj₁ xss)
(proj₂ xss)
concat : (A : Set) (m n : ℕ tt) (xss : Vec (Vec A m) n) → Concat A m n xss
concat A m = ind
(VecD (Vec A m))
(Concat A m)
(concatα A m)
----------------------------------------------------------------------
module GenericElim where
add : ℕ tt → ℕ tt → ℕ tt
add = elim ℕE ℕC _
(λ n → n)
(λ m ih n → suc (ih n))
tt
mult : ℕ tt → ℕ tt → ℕ tt
mult = elim ℕE ℕC _
(λ n → zero)
(λ m ih n → add n (ih n))
tt
append : (A : Set) (m : ℕ tt) (xs : Vec A m) (n : ℕ tt) (ys : Vec A n) → Vec A (add m n)
append A = elim VecE (VecC A) (λ m xs → (n : ℕ tt) (ys : Vec A n) → Vec A (add m n))
(λ n ys → ys)
(λ m x xs ih n ys → cons A (add m n) x (ih n ys))
concat : (A : Set) (m n : ℕ tt) (xss : Vec (Vec A m) n) → Vec A (mult n m)
concat A m = elim VecE (VecC (Vec A m)) (λ n xss → Vec A (mult n m))
(nil A)
(λ n xs xss ih → append A m xs (mult n m) ih)
----------------------------------------------------------------------
|
{
"alphanum_fraction": 0.4855755333,
"avg_line_length": 29.7199312715,
"ext": "agda",
"hexsha": "a160e08b22d4041f49aecbd6ced76f02cf860dda",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:31:22.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-02T08:56:15.000Z",
"max_forks_repo_head_hexsha": "832383d7adf37aa2364213fb0aeb67e9f61a248f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/generic-elim",
"max_forks_repo_path": "src/GenericElim/Desc.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "832383d7adf37aa2364213fb0aeb67e9f61a248f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/generic-elim",
"max_issues_repo_path": "src/GenericElim/Desc.agda",
"max_line_length": 106,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "832383d7adf37aa2364213fb0aeb67e9f61a248f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/generic-elim",
"max_stars_repo_path": "src/GenericElim/Desc.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-09T08:46:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-02T14:05:20.000Z",
"num_tokens": 7211,
"size": 17297
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Bounded vectors (inefficient, concrete implementation)
------------------------------------------------------------------------
-- Vectors of a specified maximum length.
{-# OPTIONS --without-K --safe #-}
module Data.BoundedVec.Inefficient where
open import Data.Nat.Base
open import Data.List.Base
------------------------------------------------------------------------
-- The type
infixr 5 _∷_
data BoundedVec {a} (A : Set a) : ℕ → Set a where
[] : ∀ {n} → BoundedVec A n
_∷_ : ∀ {n} (x : A) (xs : BoundedVec A n) → BoundedVec A (suc n)
------------------------------------------------------------------------
-- Increasing the bound
-- Note that this operation is linear in the length of the list.
↑ : ∀ {a n} {A : Set a} → BoundedVec A n → BoundedVec A (suc n)
↑ [] = []
↑ (x ∷ xs) = x ∷ ↑ xs
------------------------------------------------------------------------
-- Conversions
fromList : ∀ {a} {A : Set a} → (xs : List A) → BoundedVec A (length xs)
fromList [] = []
fromList (x ∷ xs) = x ∷ fromList xs
toList : ∀ {a n} {A : Set a} → BoundedVec A n → List A
toList [] = []
toList (x ∷ xs) = x ∷ toList xs
|
{
"alphanum_fraction": 0.4248210024,
"avg_line_length": 28.5681818182,
"ext": "agda",
"hexsha": "3292e48e365de48e5d373bbb0f44127d2b434a97",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/BoundedVec/Inefficient.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/BoundedVec/Inefficient.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/BoundedVec/Inefficient.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 316,
"size": 1257
}
|
{-# OPTIONS --rewriting --prop #-}
open import common hiding (_===_)
{- Syntax of term- and type-expressions, using de Bruijn indices -}
variable
{n} {m} {k} : ℕ
data Expr : SyntaxSort → ℕ → Set
TyExpr = Expr Ty
TmExpr = Expr Tm
data Expr where
uu : {n : ℕ} → TyExpr n
el : {n : ℕ} (v : TmExpr n) → TyExpr n
pi : {n : ℕ} (A : TyExpr n) (B : TyExpr (suc n)) → TyExpr n
var : {n : ℕ} (x : VarPos n) → TmExpr n
lam : {n : ℕ} (A : TyExpr n) (B : TyExpr (suc n)) (u : TmExpr (suc n)) → TmExpr n
app : {n : ℕ} (A : TyExpr n) (B : TyExpr (suc n)) (f : TmExpr n) (a : TmExpr n) → TmExpr n
data Ctx : ℕ → Set where
◇ : Ctx 0
_,_ : {n : ℕ} (Γ : Ctx n) (A : TyExpr n) → Ctx (suc n)
{- The four different forms of (pre)judgments. -}
data Judgment : Set where
_⊢_ : {n : ℕ} (Γ : Ctx n) → TyExpr n → Judgment
_⊢_:>_ : {n : ℕ} (Γ : Ctx n) → TmExpr n → TyExpr n → Judgment
_⊢_==_ : {n : ℕ} (Γ : Ctx n) → TyExpr n → TyExpr n → Judgment
_⊢_==_:>_ : {n : ℕ} (Γ : Ctx n) → TmExpr n → TmExpr n → TyExpr n → Judgment
-- weakenV : {n : ℕ} (p : WeakPos n) → VarPos n → VarPos (suc n)
-- weakenV last x = prev x
-- weakenV (prev p) last = last
-- weakenV (prev p) (prev x) = prev (weakenV p x)
weaken : {n : ℕ} {k : SyntaxSort} (p : WeakPos n) → Expr k n → Expr k (suc n)
weaken p uu = uu
weaken p (el v) = el (weaken p v)
weaken p (pi A B) = pi (weaken p A) (weaken (prev p) B)
weaken p (var x) = var (weakenV p x)
weaken p (lam A B u) = lam (weaken p A) (weaken (prev p) B) (weaken (prev p) u)
weaken p (app A B f a) = app (weaken p A) (weaken (prev p) B) (weaken p f) (weaken p a)
-- data Mor (n m : ℕ) : ℕ → Set where
-- ◇ : Mor n m 0
-- _,_ : {k : ℕ} (δ : Mor n m k) (u : TmExpr (n + m)) → Mor n m (suc k)
-- weakenMor : Mor n m k → Mor n (suc m) k
-- weakenMor ◇ = ◇
-- weakenMor (δ , u) = (weakenMor δ , weaken last u)
-- weakenMor+ : Mor n m k → Mor n (suc m) (suc k)
-- weakenMor+ δ = weakenMor δ , var last
data Mor (m : ℕ) : ℕ → Set where
◇ : Mor m 0
_,_ : {k : ℕ} (δ : Mor m k) (u : TmExpr m) → Mor m (suc k)
weakenMor : Mor m k → Mor (suc m) k
weakenMor ◇ = ◇
weakenMor (δ , u) = (weakenMor δ , weaken last u)
weakenMor+ : Mor m k → Mor (suc m) (suc k)
weakenMor+ δ = weakenMor δ , var last
weakV : {n m : ℕ} → VarPos n → VarPos (n + m)
weakV {m = zero} x = x
weakV {m = suc m} x = prev (weakV x)
infix 30 _[_]
-- _[_] : {p : SyntaxSort} (A : Expr p (n + k)) (δ : Mor n m k) → Expr p (n + m)
_[_] : {p : SyntaxSort} (A : Expr p k) (δ : Mor m k) → Expr p m
uu [ δ ] = uu
el v [ δ ] = el (v [ δ ])
pi A B [ δ ] = pi (A [ δ ]) (B [ weakenMor+ δ ])
var last [ δ , u ] = u
var (prev x) [ δ , u ] = var x [ δ ]
lam A B u [ δ ] = lam (A [ δ ]) (B [ weakenMor+ δ ]) (u [ weakenMor+ δ ])
app A B f a [ δ ] = app (A [ δ ]) (B [ weakenMor+ δ ]) (f [ δ ]) (a [ δ ])
idMor : Mor n n
idMor {zero} = ◇
idMor {suc n} = (weakenMor idMor , var last)
subst : {n : ℕ} {k : SyntaxSort} → Expr k (suc n) → TmExpr n → Expr k n
subst e a = e [ idMor , a ]
get : {n : ℕ} → VarPos n → Ctx n → TyExpr n
get last (Γ , A) = weaken last A
get (prev k) (Γ , A) = weaken last (get k Γ)
{- Derivability of judgments, the typing rules of the type theory -}
data Derivable : Judgment → Prop where
-- Variable rules
Var : {n : ℕ} {Γ : Ctx n} (k : VarPos n)
→ Derivable (Γ ⊢ get k Γ)
→ Derivable (Γ ⊢ var k :> get k Γ)
-- Symmetry and transitivity for types
TyRefl : {n : ℕ} {Γ : Ctx n} {A : TyExpr n}
→ Derivable (Γ ⊢ A) → Derivable (Γ ⊢ A == A)
TySymm : {n : ℕ} {Γ : Ctx n} {A B : TyExpr n}
→ Derivable (Γ ⊢ A == B) → Derivable (Γ ⊢ B == A)
TyTran : {n : ℕ} {Γ : Ctx n} {A B C : TyExpr n}
→ Derivable (Γ ⊢ A == B)→ Derivable (Γ ⊢ B == C) → Derivable (Γ ⊢ A == C)
-- Symmetry and transitivity for terms
TmRefl : {n : ℕ} {Γ : Ctx n} {A : TyExpr n} {u : TmExpr n}
→ Derivable (Γ ⊢ u :> A) → Derivable (Γ ⊢ u == u :> A)
TmSymm : {n : ℕ} {Γ : Ctx n} {u v : TmExpr n} {A : TyExpr n}
→ Derivable (Γ ⊢ u == v :> A) → Derivable (Γ ⊢ v == u :> A)
TmTran : {n : ℕ} {Γ : Ctx n} {u v w : TmExpr n} {A : TyExpr n}
→ Derivable (Γ ⊢ u == v :> A)→ Derivable (Γ ⊢ v == w :> A) → Derivable (Γ ⊢ u == w :> A)
-- Conversion rules
Conv : {n : ℕ} {Γ : Ctx n} {u : TmExpr n} {A B : TyExpr n}
→ Derivable (Γ ⊢ u :> A) → Derivable (Γ ⊢ A == B) → Derivable (Γ ⊢ u :> B)
ConvEq : {n : ℕ} {Γ : Ctx n} {u u' : TmExpr n} {A B : TyExpr n}
→ Derivable (Γ ⊢ u == u' :> A) → Derivable (Γ ⊢ A == B) → Derivable (Γ ⊢ u == u' :> B)
-- Rules for UU
UU : {n : ℕ} {Γ : Ctx n}
→ Derivable (Γ ⊢ uu)
UUCong : {n : ℕ} {Γ : Ctx n}
→ Derivable (Γ ⊢ uu == uu)
-- Rules for El
El : {n : ℕ} {Γ : Ctx n} {v : TmExpr n}
→ Derivable (Γ ⊢ v :> uu) → Derivable (Γ ⊢ el v)
ElCong : {n : ℕ} {Γ : Ctx n} {v v' : TmExpr n}
→ {- Derivable (Γ ⊢ v :> uu) → Derivable (Γ ⊢ v' :> uu) → -} Derivable (Γ ⊢ v == v' :> uu) → Derivable (Γ ⊢ el v == el v')
-- Rules for Pi
Pi : {n : ℕ} {Γ : Ctx n} {A : TyExpr n} {B : TyExpr (suc n)}
→ Derivable (Γ ⊢ A) → Derivable ((Γ , A) ⊢ B) → Derivable (Γ ⊢ pi A B)
PiCong : {n : ℕ} {Γ : Ctx n} {A A' : TyExpr n} {B B' : TyExpr (suc n)}
→ {- Derivable (Γ ⊢ A) → Derivable (Γ ⊢ A') → -} Derivable (Γ ⊢ A == A') → {- Derivable ((Γ , A) ⊢ B) → Derivable ((Γ , A') ⊢ B') → -} Derivable ((Γ , A) ⊢ B == B') → Derivable (Γ ⊢ pi A B == pi A' B')
-- Rules for lambda
Lam : {n : ℕ} {Γ : Ctx n} {A : TyExpr n} {B : TyExpr (suc n)} {u : TmExpr (suc n)}
→ Derivable (Γ ⊢ A) → Derivable ((Γ , A) ⊢ B) → Derivable ((Γ , A) ⊢ u :> B)
→ Derivable (Γ ⊢ lam A B u :> pi A B)
LamCong : {n : ℕ} {Γ : Ctx n} {A A' : TyExpr n} {B B' : TyExpr (suc n)} {u u' : TmExpr (suc n)}
→ {- Derivable (Γ ⊢ A) → Derivable (Γ ⊢ A') → -} Derivable (Γ ⊢ A == A')
→ {- Derivable ((Γ , A) ⊢ B) → Derivable ((Γ , A') ⊢ B') → -} Derivable ((Γ , A) ⊢ B == B')
→ {- Derivable ((Γ , A) ⊢ u :> B) → Derivable ((Γ , A') ⊢ u' :> B') → -} Derivable ((Γ , A) ⊢ u == u' :> B)
→ Derivable (Γ ⊢ lam A B u == lam A' B' u' :> pi A B)
-- Rules for app
App : {n : ℕ} {Γ : Ctx n} {A : TyExpr n} {B : TyExpr (suc n)} {f a : TmExpr n}
→ Derivable (Γ ⊢ A) → Derivable ((Γ , A) ⊢ B) → Derivable (Γ ⊢ f :> pi A B) → Derivable (Γ ⊢ a :> A)
→ Derivable (Γ ⊢ app A B f a :> subst B a)
AppCong : {n : ℕ} {Γ : Ctx n} {A A' : TyExpr n} {B B' : TyExpr (suc n)} {f f' a a' : TmExpr n}
→ {- Derivable (Γ ⊢ A) → Derivable (Γ ⊢ A') → -} Derivable (Γ ⊢ A == A')
→ {- Derivable ((Γ , A) ⊢ B) → Derivable ((Γ , A') ⊢ B') → -} Derivable ((Γ , A) ⊢ B == B')
→ {- Derivable (Γ ⊢ f :> pi A B) → Derivable (Γ ⊢ f' :> pi A' B') → -} Derivable (Γ ⊢ f == f' :> pi A B)
→ {- Derivable (Γ ⊢ a :> A) → Derivable (Γ ⊢ a' :> A') → -} Derivable (Γ ⊢ a == a' :> A)
→ Derivable (Γ ⊢ app A B f a == app A' B' f' a' :> subst B a)
-- Equality rules
BetaPi : {n : ℕ} {Γ : Ctx n} {A : TyExpr n} {B : TyExpr (suc n)} {u : TmExpr (suc n)} {a : TmExpr n}
→ Derivable (Γ ⊢ A) → Derivable ((Γ , A) ⊢ B) → Derivable ((Γ , A) ⊢ u :> B) → Derivable (Γ ⊢ a :> A)
→ Derivable (Γ ⊢ app A B (lam A B u) a == subst u a :> subst B a)
EtaPi : {n : ℕ} {Γ : Ctx n} {A : TyExpr n} {B : TyExpr (suc n)} {f : TmExpr n}
→ Derivable (Γ ⊢ A) → Derivable ((Γ , A) ⊢ B) → Derivable (Γ ⊢ f :> pi A B)
→ Derivable (Γ ⊢ f == lam A B (app (weaken last A) (weaken (prev last) B) (weaken last f) (var last)) :> pi A B)
data DepCtx (n : ℕ) : ℕ → Set where
◇ : DepCtx n 0
_,_ : {m : ℕ} → DepCtx n m → TyExpr (n + m) → DepCtx n (suc m)
_++_ : {n m : ℕ} → Ctx n → DepCtx n m → Ctx (n + m)
Γ ++ ◇ = Γ
Γ ++ (Δ , A) = (Γ ++ Δ) , A
infixl 30 _++_
_-WeakPos_ : (n : ℕ) → WeakPos n → ℕ
n -WeakPos last = n
suc n -WeakPos prev k = n -WeakPos k
weakenCtx : (k : WeakPos n) (Γ : Ctx n) (T : TyExpr (n -WeakPos k)) → Ctx (suc n)
weakenCtx last Γ T = Γ , T
weakenCtx (prev k) (Γ , A) T = weakenCtx k Γ T , weaken k A
-- data _⊢_===_ (Γ : Ctx n) : DepCtx n m → DepCtx n m → Prop where
-- tt : Γ ⊢ ◇ === ◇
-- _,_ : {Δ Δ' : DepCtx n m} {A A' : TyExpr (n + m)} → (Γ ⊢ Δ === Δ') → Derivable ((Γ ++ Δ) ⊢ A == A') → Γ ⊢ (Δ , A) === (Δ' , A')
-- data _⊢_∷>_⇒_ (Γ : Ctx n) : Mor n m k → DepCtx n m → DepCtx n k → Prop where
-- tt : {Δ : DepCtx n m} → Γ ⊢ ◇ ∷> Δ ⇒ ◇
-- _,_ : {Δ : DepCtx n m} {Δ' : DepCtx n k} {δ : Mor n m k} {u : TmExpr (n + m)} {A : TyExpr (n + k)}
-- → Γ ⊢ δ ∷> Δ ⇒ Δ'
-- → Derivable (Γ ++ Δ ⊢ u :> (A [ δ ]))
-- → Γ ⊢ (δ , u) ∷> Δ ⇒ (Δ' , A)
-- WeakTy : {k : WeakPos n} {Γ : Ctx n} {T : TyExpr (n -WeakPos k)} {A : TyExpr n}
-- → Derivable (Γ ⊢ A) → Derivable (weakenCtx k Γ T ⊢ weaken k A)
-- WeakTy= : {k : WeakPos n} {Γ : Ctx n} {T : TyExpr (n -WeakPos k)} {A B : TyExpr n}
-- → Derivable (Γ ⊢ A == B) → Derivable (weakenCtx k Γ T ⊢ weaken k A == weaken k B)
-- WeakTm : {k : WeakPos n} {Γ : Ctx n} {T : TyExpr (n -WeakPos k)} {u : TmExpr n} {A : TyExpr n}
-- → Derivable (Γ ⊢ u :> A) → Derivable (weakenCtx k Γ T ⊢ weaken k u :> weaken k A)
-- WeakTm= : {k : WeakPos n} {Γ : Ctx n} {T : TyExpr (n -WeakPos k)} {u v : TmExpr n} {A : TyExpr n}
-- → Derivable (Γ ⊢ u == v :> A) → Derivable (weakenCtx k Γ T ⊢ weaken k u == weaken k v :> weaken k A)
-- WeakTy UU = UU
-- WeakTy (El dv) = El (WeakTm dv)
-- WeakTy (Pi dA dB) = Pi (WeakTy dA) (WeakTy dB)
-- WeakTy= (TyRefl dA) = TyRefl (WeakTy dA)
-- WeakTy= (TySymm dA=) = TySymm (WeakTy= dA=)
-- WeakTy= (TyTran dA= dB=) = TyTran (WeakTy= dA=) (WeakTy= dB=)
-- WeakTy= UUCong = UUCong
-- WeakTy= (ElCong dv dv' dv=) = ElCong (WeakTm dv) (WeakTm dv') (WeakTm= dv=)
-- WeakTy= (PiCong dA dA' dA= dB dB' dB=) = PiCong (WeakTy dA) (WeakTy dA') (WeakTy= dA=) (WeakTy dB) (WeakTy dB') (WeakTy= dB=)
-- WeakTm (Var k dA) = Conv (Var (weakenV _ k) {!!}) {!!}
-- WeakTm (Conv du dA=) = Conv (WeakTm du) (WeakTy= dA=)
-- WeakTm (Lam dA dB du) = Lam (WeakTy dA) (WeakTy dB) (WeakTm du)
-- WeakTm (App dA dB df da) = Conv (App (WeakTy dA) (WeakTy dB) (WeakTm df) (WeakTm da)) {!!}
-- WeakTm= (TmRefl du) = TmRefl (WeakTm du)
-- WeakTm= (TmSymm du=) = TmSymm (WeakTm= du=)
-- WeakTm= (TmTran du= dv=) = TmTran (WeakTm= du=) (WeakTm= dv=)
-- WeakTm= (ConvEq du= dA=) = ConvEq (WeakTm= du=) (WeakTy= dA=)
-- WeakTm= (LamCong dA dA' dA= dB dB' dB= du du' du=) = LamCong (WeakTy dA) (WeakTy dA') (WeakTy= dA=) (WeakTy dB) (WeakTy dB') (WeakTy= dB=) (WeakTm du) (WeakTm du') (WeakTm= du=)
-- WeakTm= (AppCong dA dA' dA= dB dB' dB= df df' df= da da' da=) = ConvEq (AppCong (WeakTy dA) (WeakTy dA') (WeakTy= dA=) (WeakTy dB) (WeakTy dB') (WeakTy= dB=) (WeakTm df) (WeakTm df') (WeakTm= df=) (WeakTm da) (WeakTm da') (WeakTm= da=)) {!!}
-- WeakTm= (BetaPi dA dB du da) = ConvEq (TmTran (BetaPi (WeakTy dA) (WeakTy dB) (WeakTm du) (WeakTm da)) {!!}) {!!}
-- WeakMor : {Γ : Ctx n} {Δ : DepCtx n m} {Δ' : DepCtx n k} {T : TyExpr (n + m)} {δ : Mor n m k} → Γ ⊢ δ ∷> Δ ⇒ Δ' → Γ ⊢ weakenMor δ ∷> (Δ , T) ⇒ Δ'
-- WeakMor tt = tt
-- WeakMor (dδ , du) = WeakMor dδ , Conv (WeakTm du) {!!}
-- SubstTy : {Γ : Ctx n} {Δ : DepCtx n m} {Δ' : DepCtx n k} {A : TyExpr (n + k)} {δ : Mor n m k}
-- → Derivable (Γ ++ Δ' ⊢ A) → Γ ⊢ δ ∷> Δ ⇒ Δ' → Derivable (Γ ++ Δ ⊢ A [ δ ])
-- SubstTy= : {Γ : Ctx n} {Δ : DepCtx n m} {Δ' : DepCtx n k} {A A' : TyExpr (n + k)} {δ : Mor n m k}
-- → Derivable (Γ ++ Δ' ⊢ A) → Derivable (Γ ++ Δ' ⊢ A == A') → Γ ⊢ δ ∷> Δ ⇒ Δ' → Derivable (Γ ++ Δ ⊢ A [ δ ] == A' [ δ ])
-- SubstTm : {Γ : Ctx n} {Δ : DepCtx n m} {Δ' : DepCtx n k} {u : TmExpr (n + k)} {A : TyExpr (n + k)} {δ : Mor n m k}
-- → Derivable (Γ ++ Δ' ⊢ u :> A) → Γ ⊢ δ ∷> Δ ⇒ Δ' → Derivable (Γ ++ Δ ⊢ u [ δ ] :> A [ δ ])
-- SubstTm= : {Γ : Ctx n} {Δ : DepCtx n m} {Δ' : DepCtx n k} {u u' : TmExpr (n + k)} {A : TyExpr (n + k)} {δ : Mor n m k}
-- → Derivable (Γ ++ Δ' ⊢ u == u' :> A) → Γ ⊢ δ ∷> Δ ⇒ Δ' → Derivable (Γ ++ Δ ⊢ u [ δ ] == u' [ δ ] :> A [ δ ])
-- WeakMor+ : {Γ : Ctx n} {Δ : DepCtx n m} {Δ' : DepCtx n k} {A : TyExpr (n + k)} {δ : Mor n m k} → Derivable (Γ ++ Δ' ⊢ A) → Γ ⊢ δ ∷> Δ ⇒ Δ' → Γ ⊢ weakenMor+ δ ∷> (Δ , A [ δ ]) ⇒ (Δ' , A)
-- WeakMor+ dA dδ = WeakMor dδ , Conv (Var last (WeakTy (SubstTy dA dδ))) {!syntx!}
-- TyEqTy1 : {Γ : Ctx n} {A B : TyExpr n} → Derivable (Γ ⊢ A == B) → Derivable (Γ ⊢ A)
-- TyEqTy2 : {Γ : Ctx n} {A B : TyExpr n} → Derivable (Γ ⊢ A == B) → Derivable (Γ ⊢ B)
-- TmEqTm1 : {Γ : Ctx n} {u u' : TmExpr n} {A : TyExpr n} → Derivable (Γ ⊢ u == u' :> A) → Derivable (Γ ⊢ u :> A)
-- TmEqTm2 : {Γ : Ctx n} {u u' : TmExpr n} {A : TyExpr n} → Derivable (Γ ⊢ u == u' :> A) → Derivable (Γ ⊢ u' :> A)
-- SubstTy UU dδ = UU
-- SubstTy (El dv) dδ = El (SubstTm dv dδ)
-- SubstTy (Pi dA dB) dδ = Pi (SubstTy dA dδ) (SubstTy dB (WeakMor+ dA dδ))
-- -- SubstTy= _ (TyRefl dA) dδ = TyRefl (SubstTy dA dδ)
-- -- SubstTy= dA (TySymm dA=) dδ = TySymm (SubstTy= {!!} dA= dδ)
-- -- SubstTy= dA (TyTran dA= dB=) dδ = TyTran (SubstTy= dA dA= dδ) (SubstTy= {!!} dB= dδ)
-- -- SubstTy= dA UUCong dδ = UUCong
-- -- SubstTy= dA (ElCong dv=) dδ = ElCong (SubstTm= dv= dδ)
-- -- SubstTy= {Γ = Γ} (Pi dA dB) (PiCong dA= dB=) dδ = PiCong (SubstTy= dA dA= dδ) (SubstTy= dB dB= (WeakMor+ dA dδ))
-- -- SubstTm (Var k du) dδ = {!!}
-- -- SubstTm (Conv du dA=) dδ = Conv (SubstTm du dδ) (SubstTy= dA= dδ)
-- -- SubstTm (Lam dA dB du) dδ = Lam (SubstTy dA dδ) (SubstTy dB (WeakMor+ dA dδ)) (SubstTm du (WeakMor+ dA dδ))
-- -- SubstTm (App dA dB df da) dδ = Conv (App (SubstTy dA dδ) (SubstTy dB (WeakMor+ dA dδ)) (SubstTm df dδ) (SubstTm da dδ)) {!!}
-- -- SubstTm= (TmRefl du) dδ = TmRefl (SubstTm du dδ)
-- -- SubstTm= (TmSymm du=) dδ = TmSymm (SubstTm= du= dδ)
-- -- SubstTm= (TmTran du= dv=) dδ = TmTran (SubstTm= du= dδ) (SubstTm= dv= dδ)
-- -- SubstTm= (ConvEq du= dA=) dδ = ConvEq (SubstTm= du= dδ) (SubstTy= dA= dδ)
-- -- SubstTm= (LamCong dA= dB= du=) dδ = LamCong (SubstTy= dA= dδ) (SubstTy= dB= (WeakMor+ {!TyEqTy1 dA=!} dδ)) (SubstTm= du= (WeakMor+ {!TyEqTy1 dA=!} dδ))
-- -- SubstTm= (AppCong dA= dB= df= da=) dδ = ConvEq (AppCong (SubstTy= dA= dδ) (SubstTy= dB= (WeakMor+ {!TyEqTy1 dA=!} dδ)) (SubstTm= df= dδ) (SubstTm= da= dδ)) {!stx!}
-- -- SubstTm= (BetaPi dA dB du da) dδ = ConvEq (TmTran (BetaPi (SubstTy dA dδ) (SubstTy dB (WeakMor+ dA dδ)) (SubstTm du (WeakMor+ dA dδ)) (SubstTm da dδ)) {!!}) {!!}
-- -- ConvTy : {n m : ℕ} {Γ : Ctx n} {Δ Δ' : DepCtx n m} {A : TyExpr (n + m)} → Derivable ((Γ ++ Δ) ⊢ A) → (Γ ⊢ Δ === Δ') → Derivable ((Γ ++ Δ') ⊢ A)
-- -- ConvTy= : {n m : ℕ} {Γ : Ctx n} {Δ Δ' : DepCtx n m} {A A' : TyExpr (n + m)} → Derivable ((Γ ++ Δ) ⊢ A == A') → (Γ ⊢ Δ === Δ') → Derivable ((Γ ++ Δ') ⊢ A == A')
-- -- ConvTm : {n m : ℕ} {Γ : Ctx n} {Δ Δ' : DepCtx n m} {A : TyExpr (n + m)} {u : TmExpr (n + m)} → Derivable ((Γ ++ Δ) ⊢ u :> A) → (Γ ⊢ Δ === Δ') → Derivable ((Γ ++ Δ') ⊢ u :> A)
-- -- ConvTm= : {n m : ℕ} {Γ : Ctx n} {Δ Δ' : DepCtx n m} {A : TyExpr (n + m)} {u u' : TmExpr (n + m)} → Derivable ((Γ ++ Δ) ⊢ u == u' :> A) → (Γ ⊢ Δ === Δ') → Derivable ((Γ ++ Δ') ⊢ u == u' :> A)
-- -- ConvTy UU dΔ= = UU
-- -- ConvTy (El dv) dΔ= = El (ConvTm dv dΔ=)
-- -- ConvTy (Pi dA dB) dΔ= = Pi (ConvTy dA dΔ=) (ConvTy dB (dΔ= , TyRefl dA))
-- -- ConvTy= (TyRefl dA) dΔ= = TyRefl (ConvTy dA dΔ=)
-- -- ConvTy= (TySymm dA=) dΔ= = TySymm (ConvTy= dA= dΔ=)
-- -- ConvTy= (TyTran dA= dB=) dΔ= = TyTran (ConvTy= dA= dΔ=) (ConvTy= dB= dΔ=)
-- -- ConvTy= UUCong dΔ= = UUCong
-- -- ConvTy= (ElCong dv=) dΔ= = ElCong (ConvTm= dv= dΔ=)
-- -- ConvTy= (PiCong dA= dB=) dΔ= = PiCong (ConvTy= dA= dΔ=) (ConvTy= dB= (dΔ= , {!ok!}))
-- -- ConvTm (Var k du) dΔ= = Conv (Var k (ConvTy {!TODO!} dΔ=)) {!TODO!}
-- -- ConvTm (Conv du dA=) dΔ= = Conv (ConvTm du dΔ=) (ConvTy= dA= dΔ=)
-- -- ConvTm (Lam dA dB du) dΔ= = Lam (ConvTy dA dΔ=) (ConvTy dB (dΔ= , TyRefl dA)) (ConvTm du (dΔ= , TyRefl dA))
-- -- ConvTm (App dA dB df da) dΔ= = App (ConvTy dA dΔ=) (ConvTy dB (dΔ= , TyRefl dA)) (ConvTm df dΔ=) (ConvTm da dΔ=)
-- -- ConvTm= (TmRefl du) dΔ= = TmRefl (ConvTm du dΔ=)
-- -- ConvTm= (TmSymm du=) dΔ= = TmSymm (ConvTm= du= dΔ=)
-- -- ConvTm= (TmTran du= dv=) dΔ= = TmTran (ConvTm= du= dΔ=) (ConvTm= dv= dΔ=)
-- -- ConvTm= (ConvEq du= dA=) dΔ= = ConvEq (ConvTm= du= dΔ=) (ConvTy= dA= dΔ=)
-- -- ConvTm= (LamCong dA= dB= du=) dΔ= = LamCong (ConvTy= dA= dΔ=) (ConvTy= dB= (dΔ= , {!ok!})) (ConvTm= du= (dΔ= , {!ok!}))
-- -- ConvTm= (AppCong dA= dB= df= da=) dΔ= = AppCong (ConvTy= dA= dΔ=) (ConvTy= dB= (dΔ= , {!ok!})) (ConvTm= df= dΔ=) (ConvTm= da= dΔ=)
-- -- ConvTm= (BetaPi dA dB du da) dΔ= = BetaPi (ConvTy dA dΔ=) (ConvTy dB (dΔ= , TyRefl dA)) (ConvTm du (dΔ= , TyRefl dA)) (ConvTm da dΔ=)
-- -- TyEqTy1 (TyRefl dA) = dA
-- -- TyEqTy1 (TySymm dA=) = TyEqTy2 dA=
-- -- TyEqTy1 (TyTran dA= dB=) = TyEqTy1 dA=
-- -- TyEqTy1 UUCong = UU
-- -- TyEqTy1 (ElCong du=) = El (TmEqTm1 du=)
-- -- TyEqTy1 (PiCong dA= dB=) = Pi (TyEqTy1 dA=) (TyEqTy1 dB=)
-- -- TyEqTy2 (TyRefl dA) = dA
-- -- TyEqTy2 (TySymm dA=) = TyEqTy1 dA=
-- -- TyEqTy2 (TyTran dA= dB=) = TyEqTy2 dB=
-- -- TyEqTy2 UUCong = UU
-- -- TyEqTy2 (ElCong du=) = El (TmEqTm2 du=)
-- -- TyEqTy2 (PiCong dA= dB=) = Pi (TyEqTy2 dA=) (ConvTy (TyEqTy2 dB=) (tt , dA=))
-- -- TmEqTm1 (TmRefl du) = du
-- -- TmEqTm1 (TmSymm du=) = TmEqTm2 du=
-- -- TmEqTm1 (TmTran du= dv=) = TmEqTm1 du=
-- -- TmEqTm1 (ConvEq du= dA=) = Conv (TmEqTm1 du=) dA=
-- -- TmEqTm1 (LamCong dA= dB= du=) = Lam (TyEqTy1 dA=) (TyEqTy1 dB=) (TmEqTm1 du=)
-- -- TmEqTm1 (AppCong dA= dB= df= da=) = App (TyEqTy1 dA=) (TyEqTy1 dB=) (TmEqTm1 df=) (TmEqTm1 da=)
-- -- TmEqTm1 (BetaPi dA dB du da) = App dA dB (Lam dA dB du) da
-- -- TmEqTm2 (TmRefl du) = du
-- -- TmEqTm2 (TmSymm du=) = TmEqTm1 du=
-- -- TmEqTm2 (TmTran du= dv=) = TmEqTm2 dv=
-- -- TmEqTm2 (ConvEq du= dA=) = Conv (TmEqTm2 du=) dA=
-- -- TmEqTm2 (LamCong dA= dB= du=) = Conv (Lam (TyEqTy2 dA=) (ConvTy (TyEqTy2 dB=) (tt , dA=)) (ConvTm (Conv (TmEqTm2 du=) dB=) (tt , dA=))) (PiCong (TySymm dA=) (ConvTy= (TySymm dB=) (tt , dA=)))
-- -- TmEqTm2 (AppCong dA= dB= df= da=) = Conv (App (TyEqTy2 dA=) (ConvTy (TyEqTy2 dB=) (tt , dA=)) (Conv (TmEqTm2 df=) (PiCong dA= dB=)) (Conv (TmEqTm2 da=) dA=)) {!TySymm (SubstTy= dB= (tt , {!da=!}))!}
-- -- TmEqTm2 (BetaPi dA dB du da) = {!SubstTm du (tt , {!da!})!}
|
{
"alphanum_fraction": 0.5132905084,
"avg_line_length": 52.1907514451,
"ext": "agda",
"hexsha": "c6c09eddb61be1d168c07159c1598d6a7aedd269",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f9bfefd0a70ae5bdc3906829ee1165c731882bca",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "guillaumebrunerie/general-type-theories",
"max_forks_repo_path": "traditional.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f9bfefd0a70ae5bdc3906829ee1165c731882bca",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "guillaumebrunerie/general-type-theories",
"max_issues_repo_path": "traditional.agda",
"max_line_length": 244,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f9bfefd0a70ae5bdc3906829ee1165c731882bca",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "guillaumebrunerie/general-type-theories",
"max_stars_repo_path": "traditional.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 8816,
"size": 18058
}
|
{-# OPTIONS --universe-polymorphism #-}
module TrustMe where
open import Common.Equality
postulate
A : Set
x : A
eq : x ≡ x
eq = primTrustMe
evaluates-to-refl : sym (sym eq) ≡ eq
evaluates-to-refl = refl
|
{
"alphanum_fraction": 0.6807511737,
"avg_line_length": 13.3125,
"ext": "agda",
"hexsha": "cd667cd6e22dc66726c2c85ca7bb8823e6fdf365",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/TrustMe.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/TrustMe.agda",
"max_line_length": 39,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/TrustMe.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 69,
"size": 213
}
|
-- Eta contraction didn't consider hiding when contracting,
-- leading to the following module not type checking.
module Issue259 where
postulate
A : Set
B : A → Set
foo : (∀ x → B x) → A
q : ∀ {x} → B x
foo′ : (∀ {x} → B x) → A
bar : A
bar = foo (λ y → q {y})
Baz : B bar → Set → Set
Baz b C with C
Baz b C | _ = C
-- In fact you're not allowed to eta contract hidden lambdas at all.
bar′ : A
bar′ = foo′ (λ {y} → q {y})
Baz′ : B bar′ → Set → Set
Baz′ b C with C
Baz′ b C | _ = C
|
{
"alphanum_fraction": 0.5621301775,
"avg_line_length": 18.7777777778,
"ext": "agda",
"hexsha": "ed6332e1b31ebcfb43c86d4e4dad168b2900ea7a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue259.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue259.agda",
"max_line_length": 68,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue259.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 193,
"size": 507
}
|
module Issue728 where
open import Common.MAlonzo using () renaming (main to mainDefault)
main = mainDefault
|
{
"alphanum_fraction": 0.7909090909,
"avg_line_length": 18.3333333333,
"ext": "agda",
"hexsha": "493e2cba0be269698d572da0c3c252928240805e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Compiler/simple/Issue728.agda",
"max_issues_count": 16,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-09-08T13:47:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-08T00:32:04.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Compiler/simple/Issue728.agda",
"max_line_length": 66,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Compiler/simple/Issue728.agda",
"max_stars_repo_stars_event_max_datetime": "2018-11-06T16:38:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-11-05T22:13:36.000Z",
"num_tokens": 26,
"size": 110
}
|
-- Andreas, 2020-09-09, issue #4880
-- Make sure that duplicate hiding info is an error.
module _ (A B : Set) where
postulate
_ : { { A } } → B
-- Expected: ERROR or WARNING
-- For instance:
-- {A} cannot appear by itself. It needs to be the argument to a
-- function expecting an implicit argument.
-- when scope checking {A}
|
{
"alphanum_fraction": 0.6777108434,
"avg_line_length": 23.7142857143,
"ext": "agda",
"hexsha": "f4d9c1d9d88caf50c75adbfd6f5261bd8fa0d021",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Fail/Issue4880.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue4880.agda",
"max_line_length": 64,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue4880.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 94,
"size": 332
}
|
{-# OPTIONS --universe-polymorphism #-}
open import Level hiding (suc; zero)
open import Categories.Category
module Categories.Power {o ℓ e : Level} (C : Category o ℓ e) where
open import Function using () renaming (id to idf)
open import Data.Nat using (ℕ; _+_; zero; suc; _≤?_)
open import Data.Product using (_,_)
open import Data.Fin using (Fin; inject+; raise; zero; suc; #_)
open import Data.Sum using (_⊎_; inj₁; inj₂; map) renaming ([_,_] to ⟦_,_⟧; [_,_]′ to ⟦_,_⟧′)
open import Function using (flip) renaming (_∘_ to _∙_)
open import Relation.Nullary.Decidable using (True)
open import Data.Vec.N-ary using (N-ary)
open import Categories.Bifunctor using (Bifunctor)
open import Categories.Functor using (Functor; module Functor)
module C = Category C
Exp : (I : Set) → Category o ℓ e
Exp I = record
{ Obj = I → C.Obj
; _⇒_ = λ x y → (i : I) → C [ x i , y i ]
; _≡_ = λ f g → (i : I) → C [ f i ≡ g i ]
; _∘_ = λ f g i → C [ f i ∘ g i ]
; id = λ {x} i → C.id
; assoc = λ {A} {B} {C'} {D} {f} {g} {h} i → C.assoc
; identityˡ = λ {A} {B} {f} i → C.identityˡ
; identityʳ = λ {A} {B} {f} i → C.identityʳ
; equiv = record
{ refl = λ {x} i → C.Equiv.refl
; sym = λ f i → C.Equiv.sym (f i)
; trans = λ f g i → C.Equiv.trans (f i) (g i)
}
; ∘-resp-≡ = λ f≡g h≡i x → C.∘-resp-≡ (f≡g x) (h≡i x)
}
Power : (n : ℕ) → Category o ℓ e
Power n = Exp (Fin n)
Powerfunctor′ : (D : Category o ℓ e) (I : Set) → Set (e ⊔ ℓ ⊔ o)
Powerfunctor′ D I = Functor (Exp I) D
Powerfunctor : (D : Category o ℓ e) (n : ℕ) → Set (e ⊔ ℓ ⊔ o)
Powerfunctor D n = Powerfunctor′ D (Fin n)
Powerendo′ : (I : Set) → Set (e ⊔ ℓ ⊔ o)
Powerendo′ I = Powerfunctor′ C I
Powerendo : (n : ℕ) → Set (e ⊔ ℓ ⊔ o)
Powerendo n = Powerfunctor C n
Hyperendo : (n m : ℕ) → Set (e ⊔ ℓ ⊔ o)
Hyperendo n m = Functor (Power n) (Power m)
Hyperendo′ : (I J : Set) → Set (e ⊔ ℓ ⊔ o)
Hyperendo′ I J = Functor (Exp I) (Exp J)
_par_ : ∀ {I I′ J J′} (F : Hyperendo′ I I′) (G : Hyperendo′ J J′) → Hyperendo′ (I ⊎ J) (I′ ⊎ J′)
F par G = record
{ F₀ = λ xs → ⟦ F.F₀ (xs ∙ inj₁) , G.F₀ (xs ∙ inj₂) ⟧′
; F₁ = λ {A B} fs → ⟦ F.F₁ (fs ∙ inj₁) , G.F₁ (fs ∙ inj₂) ⟧
; identity = λ {A} → ⟦ F.identity , G.identity ⟧
; homomorphism = λ {A B C fs gs} → ⟦ F.homomorphism , G.homomorphism ⟧
; F-resp-≡ = λ {A B fs gs} fs≡gs → ⟦ F.F-resp-≡ (fs≡gs ∙ inj₁) , G.F-resp-≡ (fs≡gs ∙ inj₂) ⟧
}
where
private module F = Functor F
private module G = Functor G
flattenP : ∀ {D : Category o ℓ e} {n m} (F : Powerfunctor′ D (Fin n ⊎ Fin m)) → Powerfunctor′ D (Fin (n + m))
flattenP {n = n} {m = m} F = record
{ F₀ = λ As → F.F₀ (As ∙ pack)
; F₁ = λ {As Bs} fs → F.F₁ (fs ∙ pack)
; identity = λ {As} → F.identity
; homomorphism = λ {As Bs Cs fs gs} → F.homomorphism
; F-resp-≡ = λ {As Bs fs gs} fs≡gs → F.F-resp-≡ (fs≡gs ∙ pack)
}
where
private module F = Functor F
pack = ⟦ inject+ m , raise n ⟧′
flattenHʳ : ∀ {I} {n m} (F : Hyperendo′ I (Fin n ⊎ Fin m)) → Hyperendo′ I (Fin (n + m))
flattenHʳ {n = n} {m} F = record
{ F₀ = λ As → F.F₀ As ∙ chops n
; F₁ = λ {As Bs} fs → F.F₁ fs ∙ chops n
; identity = F.identity ∙ chops n
; homomorphism = F.homomorphism ∙ chops n
; F-resp-≡ = λ fs≡gs → F.F-resp-≡ fs≡gs ∙ chops n
}
where
private module F = Functor F
chops : (n : ℕ) → ∀ {m} (k : Fin (n + m)) → Fin n ⊎ Fin m
chops 0 k = inj₂ k
chops (suc n) zero = inj₁ zero
chops (suc n) (suc k) = map suc idf (chops n k)
flattenH : ∀ {n m n′ m′} (F : Hyperendo′ (Fin n ⊎ Fin m) (Fin n′ ⊎ Fin m′)) → Hyperendo (n + m) (n′ + m′)
flattenH = flattenHʳ ∙ flattenP
_∥_ : ∀ {n n′ m m′} (F : Hyperendo n n′) (G : Hyperendo m m′) → Hyperendo (n + m) (n′ + m′)
F ∥ G = flattenH (F par G)
reduce′ : ∀ (H : Bifunctor C C C) {I J} (F : Powerendo′ I) (G : Powerendo′ J) → Powerendo′ (I ⊎ J)
reduce′ H {I} {J} F G = record
{ F₀ = my-F₀
; F₁ = my-F₁
; identity = λ {As} → my-identity {As}
; homomorphism = λ {As Bs Cs fs gs} → my-homomorphism {fs = fs} {gs}
; F-resp-≡ = λ fs → H.F-resp-≡ (F.F-resp-≡ (fs ∙ inj₁) , G.F-resp-≡ (fs ∙ inj₂))
}
where
private module L = Category (Exp (I ⊎ J))
private module F = Functor F
private module G = Functor G
private module H = Functor H
open L using () renaming (_≡_ to _≡≡_; _∘_ to _∘∘_)
open C using (_≡_; _∘_)
my-F₀ = λ As → H.F₀ ((F.F₀ (As ∙ inj₁)) , (G.F₀ (As ∙ inj₂)))
my-F₁ : ∀ {As Bs} → L._⇒_ As Bs → C [ my-F₀ As , my-F₀ Bs ]
my-F₁ {As} {Bs} fs = H.F₁ (F.F₁ (fs ∙ inj₁) , G.F₁ (fs ∙ inj₂))
.my-identity : ∀ {As} → my-F₁ (L.id {As}) ≡ C.id
my-identity {As} = begin
H.F₁ (F.F₁ (λ i → C.id {As (inj₁ i)}) , G.F₁ (λ i → C.id {As (inj₂ i)}))
↓⟨ H.F-resp-≡ (F.identity , G.identity) ⟩
H.F₁ (C.id , C.id)
↓⟨ H.identity ⟩
C.id
∎
where
open C.HomReasoning
.my-homomorphism : ∀ {As Bs Cs} {fs : L._⇒_ As Bs} {gs : L._⇒_ Bs Cs} → my-F₁ (gs ∘∘ fs) ≡ (my-F₁ gs ∘ my-F₁ fs)
my-homomorphism {fs = fs} {gs} =
begin
my-F₁ (gs ∘∘ fs)
↓⟨ H.F-resp-≡ (F.homomorphism , G.homomorphism) ⟩
H.F₁ ((F.F₁ (gs ∙ inj₁) ∘ F.F₁ (fs ∙ inj₁)) , (G.F₁ (gs ∙ inj₂) ∘ G.F₁ (fs ∙ inj₂)))
↓⟨ H.homomorphism ⟩
my-F₁ gs ∘ my-F₁ fs
∎
where
open C.HomReasoning
reduce : ∀ (H : Bifunctor C C C) {n m} (F : Powerendo n) (G : Powerendo m) → Powerendo (n + m)
reduce H F G = flattenP (reduce′ H F G)
flattenP-assocʳ : ∀ {n₁ n₂ n₃} (F : Powerendo′ (Fin n₁ ⊎ (Fin n₂ ⊎ Fin n₃))) → Powerendo ((n₁ + n₂) + n₃)
flattenP-assocʳ {n₁} {n₂} {n₃} F = record
{ F₀ = λ As → F.F₀ (As ∙ pack)
; F₁ = λ {As Bs} fs → F.F₁ (fs ∙ pack)
; identity = λ {As} → F.identity
; homomorphism = λ {As Bs Cs fs gs} → F.homomorphism
; F-resp-≡ = λ {As Bs fs gs} fs≡gs → F.F-resp-≡ (fs≡gs ∙ pack)
}
where
module F = Functor F
pack = ⟦ inject+ n₃ ∙ inject+ n₂ , ⟦ inject+ n₃ ∙ raise n₁ , raise (n₁ + n₂) ⟧′ ⟧′
reduce2ʳ : ∀ (G : Bifunctor C C C) {n₁ n₂ n₃} (F₁ : Powerendo n₁) (F₂ : Powerendo n₂) (F₃ : Powerendo n₃) → Powerendo ((n₁ + n₂) + n₃)
reduce2ʳ G F₁ F₂ F₃ = flattenP-assocʳ (reduce′ G F₁ (reduce′ G F₂ F₃))
overlaps : ∀ {D E} (H : Bifunctor D D E) {I} (F G : Powerfunctor′ D I) → Powerfunctor′ E I
overlaps {D} {E} H {I} F G = record
{ F₀ = my-F₀
; F₁ = my-F₁
; identity = λ {As} → my-identity {As}
; homomorphism = λ {As Bs Cs fs gs} → my-homomorphism {fs = fs} {gs}
; F-resp-≡ = λ fs → H.F-resp-≡ (F.F-resp-≡ fs , G.F-resp-≡ fs)
}
where
private module L = Category (Exp I)
private module F = Functor F
private module G = Functor G
private module H = Functor H
private module D = Category D
private module E = Category E
open L using () renaming (_≡_ to _≡≡_; _∘_ to _∘∘_)
open E using (_≡_; _∘_)
open D using () renaming (_∘_ to _∘D_)
my-F₀ = λ As → H.F₀ (F.F₀ As , G.F₀ As)
my-F₁ : ∀ {As Bs} → (Exp I) [ As , Bs ] → E [ my-F₀ As , my-F₀ Bs ]
my-F₁ {As} {Bs} fs = H.F₁ (F.F₁ fs , G.F₁ fs)
.my-identity : ∀ {As} → my-F₁ (L.id {As}) ≡ E.id
my-identity {As} = begin
H.F₁ (F.F₁ (λ i → C.id {As i}) , G.F₁ (λ i → C.id {As i}))
↓⟨ H.F-resp-≡ (F.identity , G.identity) ⟩
H.F₁ (D.id , D.id)
↓⟨ H.identity ⟩
E.id
∎
where
open E.HomReasoning
.my-homomorphism : ∀ {As Bs Cs} {fs : (Exp I) [ As , Bs ]} {gs : (Exp I) [ Bs , Cs ]} → my-F₁ (gs ∘∘ fs) ≡ (my-F₁ gs ∘ my-F₁ fs)
my-homomorphism {fs = fs} {gs} =
begin
my-F₁ (gs ∘∘ fs)
↓⟨ H.F-resp-≡ (F.homomorphism , G.homomorphism) ⟩
H.F₁ ((F.F₁ gs ∘D F.F₁ fs) , (G.F₁ gs ∘D G.F₁ fs))
↓⟨ H.homomorphism ⟩
my-F₁ gs ∘ my-F₁ fs
∎
where
open E.HomReasoning
overlap2ʳ : ∀ (G : Bifunctor C C C) {n} (F₁ F₂ F₃ : Powerendo n) → Powerendo n
overlap2ʳ G F₁ F₂ F₃ = (overlaps {C} G F₁ (overlaps {C} G F₂ F₃))
select′ : ∀ {I} (i : I) → Powerendo′ I
select′ {I} i = record
{ F₀ = λ xs → xs i
; F₁ = λ fs → fs i
; identity = C.Equiv.refl
; homomorphism = C.Equiv.refl
; F-resp-≡ = λ eqs → eqs i
}
select : ∀ m {n} {m<n : True (suc m ≤? n)} → Powerendo n
select m {n} {m<n} = select′ (#_ m {n} {m<n})
triv : (n : ℕ) → Hyperendo n n
triv n = record
{ F₀ = λ x → x
; F₁ = λ x → x
; identity = λ _ → C.Equiv.refl
; homomorphism = λ _ → C.Equiv.refl
; F-resp-≡ = λ x → x
}
pad : ∀ (l r : ℕ) {n m} (F : Hyperendo n m) → Hyperendo ((l + n) + r) ((l + m) + r)
pad l r F = (triv l ∥ F) ∥ triv r
padˡ : ∀ (l : ℕ) {n m} (F : Hyperendo n m) → Hyperendo (l + n) (l + m)
padˡ l F = triv l ∥ F
padʳ : ∀ (r : ℕ) {n m} (F : Hyperendo n m) → Hyperendo (n + r) (m + r)
padʳ r F = F ∥ triv r
unary : (F : Functor C C) → Powerendo 1
unary F = record
{ F₀ = λ As → F.F₀ (As zero)
; F₁ = λ fs → F.F₁ (fs zero)
; identity = F.identity
; homomorphism = F.homomorphism
; F-resp-≡ = λ fs≡gs → F.F-resp-≡ (fs≡gs zero)
}
where
module F = Functor F
unaryH : (F : Functor C C) → Hyperendo 1 1
unaryH F = record
{ F₀ = λ As → F.F₀ ∙ As
; F₁ = λ fs → F.F₁ ∙ fs
; identity = λ _ → F.identity
; homomorphism = λ _ → F.homomorphism
; F-resp-≡ = λ fs≡gs → F.F-resp-≡ ∙ fs≡gs
}
where
module F = Functor F
nullary : (X : C.Obj) → Powerendo 0
nullary X = record
{ F₀ = λ _ → X
; F₁ = λ _ → C.id
; identity = C.Equiv.refl
; homomorphism = C.Equiv.sym C.identityˡ
; F-resp-≡ = λ _ → C.Equiv.refl
}
nullaryH : (X : C.Obj) → Hyperendo 0 1
nullaryH X = record
{ F₀ = λ _ _ → X
; F₁ = λ _ _ → C.id
; identity = λ _ → C.Equiv.refl
; homomorphism = λ _ → C.Equiv.sym C.identityˡ
; F-resp-≡ = λ _ _ → C.Equiv.refl
}
binary : (F : Bifunctor C C C) → Powerendo 2
binary F = record
{ F₀ = λ As → F.F₀ (As zero , As (suc zero))
; F₁ = λ fs → F.F₁ (fs zero , fs (suc zero))
; identity = F.identity
; homomorphism = F.homomorphism
; F-resp-≡ = λ fs≡gs → F.F-resp-≡ (fs≡gs zero , fs≡gs (suc zero))
}
where
module F = Functor F
binaryH : (F : Bifunctor C C C) → Hyperendo 2 1
binaryH F = record
{ F₀ = λ As _ → F.F₀ (As zero , As (suc zero))
; F₁ = λ fs _ → F.F₁ (fs zero , fs (suc zero))
; identity = λ _ → F.identity
; homomorphism = λ _ → F.homomorphism
; F-resp-≡ = λ fs≡gs _ → F.F-resp-≡ (fs≡gs zero , fs≡gs (suc zero))
}
where
module F = Functor F
hyp : ∀ {n} (F : Powerendo n) → Hyperendo n 1
hyp F = record
{ F₀ = λ As _ → F.F₀ As
; F₁ = λ fs _ → F.F₁ fs
; identity = λ _ → F.identity
; homomorphism = λ _ → F.homomorphism
; F-resp-≡ = λ fs≡gs _ → F.F-resp-≡ fs≡gs
}
where
module F = Functor F
private
curryⁿ : ∀ n {a b} {A : Set a} {B : Set b} → ((Fin n → A) → B) → N-ary n A B
curryⁿ zero f = f (λ ())
curryⁿ (suc n) {A = A} f = λ x → curryⁿ n (f ∙ addon x)
where
addon : A → (Fin n → A) → Fin (suc n) → A
addon x _ zero = x
addon _ g (suc i) = g i
plex′ : ∀ {J I} → (J → Powerendo′ I) → Hyperendo′ I J
plex′ Fs = record
{ F₀ = flip (Functor.F₀ ∙ Fs)
; F₁ = flip (λ j → Functor.F₁ (Fs j))
; identity = λ j → Functor.identity (Fs j)
; homomorphism = λ j → Functor.homomorphism (Fs j)
; F-resp-≡ = flip (λ j → Functor.F-resp-≡ (Fs j))
}
plex : ∀ {n} {I} → N-ary n (Powerendo′ I) (Hyperendo′ I (Fin n))
plex {n} = curryⁿ n plex′
widenˡ : ∀ (l : ℕ) {n} (F : Powerendo n) → Powerendo (l + n)
widenˡ l F = record
{ F₀ = λ As → F.F₀ (As ∙ pack)
; F₁ = λ {As Bs} fs → F.F₁ (fs ∙ pack)
; identity = λ {As} → F.identity
; homomorphism = λ {As Bs Cs fs gs} → F.homomorphism
; F-resp-≡ = λ {As Bs fs gs} fs≡gs → F.F-resp-≡ (fs≡gs ∙ pack)
}
where
private module F = Functor F
pack = raise l
widenʳ : ∀ (r : ℕ) {n} (F : Powerendo n) → Powerendo (n + r)
widenʳ r F = record
{ F₀ = λ As → F.F₀ (As ∙ pack)
; F₁ = λ {As Bs} fs → F.F₁ (fs ∙ pack)
; identity = λ {As} → F.identity
; homomorphism = λ {As Bs Cs fs gs} → F.homomorphism
; F-resp-≡ = λ {As Bs fs gs} fs≡gs → F.F-resp-≡ (fs≡gs ∙ pack)
}
where
private module F = Functor F
pack = inject+ r
|
{
"alphanum_fraction": 0.5332666333,
"avg_line_length": 33.691011236,
"ext": "agda",
"hexsha": "adf52c2e2aaacb9da67c6689b3fd0c3185bceaaf",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Power.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Power.agda",
"max_line_length": 134,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Power.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 5247,
"size": 11994
}
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Caching evaluation
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Syntax.MType as MType
import Parametric.Syntax.MTerm as MTerm
import Parametric.Denotation.Value as Value
import Parametric.Denotation.Evaluation as Evaluation
import Parametric.Denotation.MValue as MValue
import Parametric.Denotation.CachingMValue as CachingMValue
import Parametric.Denotation.MEvaluation as MEvaluation
module Parametric.Denotation.CachingMEvaluation
{Base : Type.Structure}
(Const : Term.Structure Base)
(⟦_⟧Base : Value.Structure Base)
(⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base)
(ValConst : MTerm.ValConstStructure Const)
(CompConst : MTerm.CompConstStructure Const)
(cbnToCompConst : MTerm.CbnToCompConstStructure Const CompConst)
(cbvToCompConst : MTerm.CbvToCompConstStructure Const CompConst)
-- I should really switch to records - can it get sillier than this? More
-- precisely, this is the kind of thing ML functors are designed to replace.
-- They have also subtyping --- not sure whether that's good or bad.
(⟦_⟧ValBase : MEvaluation.ValStructure Const ⟦_⟧Base ValConst CompConst cbnToCompConst cbvToCompConst)
(⟦_⟧CompBase : MEvaluation.CompStructure Const ⟦_⟧Base ValConst CompConst cbnToCompConst cbvToCompConst)
(ΔBase : CachingMValue.Structure Base ⟦_⟧Base)
where
open Type.Structure Base
open Term.Structure Base Const
open MType.Structure Base
open MTerm.Structure Const ValConst CompConst cbnToCompConst cbvToCompConst
open Value.Structure Base ⟦_⟧Base
open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const
open MValue.Structure Base ⟦_⟧Base
open CachingMValue.Structure Base ⟦_⟧Base ΔBase
open MEvaluation.Structure Const ⟦_⟧Base ValConst CompConst cbnToCompConst cbvToCompConst ⟦_⟧ValBase ⟦_⟧CompBase
open import Base.Denotation.Notation
-- Extension Point: Evaluation of constants.
ValStructure : Set
ValStructure = ∀ {τ} → ValConst τ → ⟦ τ ⟧ValTypeHidCache
CompStructure : Set
CompStructure = ∀ {τ} → CompConst τ → ⟦ τ ⟧CompTypeHidCache
module Structure
(⟦_⟧ValBaseTermCache : ValStructure)
(⟦_⟧CompBaseTermCache : CompStructure)
where
{-
-- Prototype here the type-correctness of a simple non-standard semantics.
-- This describes a simplified version of the transformation by Liu and
-- Tanenbaum, PEPM 1995 - but for now, instead of producing object language
-- terms, we produce host language terms to take advantage of the richer type
-- system of the host language (in particular, here we need the unit type,
-- product types and *existentials*).
--
-- As usual, we'll later switch to a real term transformation.
-}
open import Data.Product hiding (map)
open import Data.Unit
-- Defining a caching semantics for Term proves to be hard, requiring to
-- insert and remove caches where we apply constants.
-- Indeed, our plugin interface is not satisfactory for adding caching. CBPV can help us.
-- The solution is to distinguish among different kinds of constants. Some are
-- value constructors (and thus do not return caches), while others are
-- computation constructors (and thus should return caches). For products, I
-- believe we will only use positive/value products (i.e. pattern-match products),
-- not negative/computation products (i.e. projection products).
⟦_⟧CompTermCache : ∀ {τ Γ} → Comp Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧CompTypeHidCache
⟦_⟧ValTermCache : ∀ {τ Γ} → Val Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧ValTypeHidCache
⟦_⟧ValsTermCache : ∀ {Γ Σ} → Vals Γ Σ → ⟦ Γ ⟧ValCtxHidCache → ⟦ Σ ⟧ValCtxHidCache
open import Base.Denotation.Environment ValType ⟦_⟧ValTypeHidCache public
using ()
renaming (⟦_⟧Var to ⟦_⟧ValVarHidCache)
-- This says that the environment does not contain caches... sounds wrong!
-- Either we add extra variables for the caches, or we store computations in
-- the environment (but that does not make sense), or we store caches in
-- values, by acting not on F but on something else (U?).
-- Copy of ⟦_⟧Vals
⟦ ∅ ⟧ValsTermCache ρ = ∅
⟦ vt • valtms ⟧ValsTermCache ρ = ⟦ vt ⟧ValTermCache ρ • ⟦ valtms ⟧ValsTermCache ρ
-- I suspect the plan was to use extra variables; that's annoying to model in
-- Agda but easier in implementations.
⟦ vVar x ⟧ValTermCache ρ = ⟦ x ⟧ValVarHidCache ρ
⟦ vThunk x ⟧ValTermCache ρ = ⟦ x ⟧CompTermCache ρ
-- No caching, because the arguments are values, so evaluating them does not
-- produce intermediate results.
⟦ vConst c ⟧ValTermCache ρ = ⟦ c ⟧ValBaseTermCache
-- The only caching is done by the interpretation of the constant (because the
-- arguments are values so need no caching).
⟦_⟧CompTermCache (cConst c) ρ = ⟦ c ⟧CompBaseTermCache
-- Also, where are introduction forms for pairs and sums among values? With
-- them, we should see that we can interpret them without adding a cache.
-- Thunks keep seeming noops.
⟦_⟧CompTermCache (cForce x) ρ = ⟦ x ⟧ValTermCache ρ
-- The effect of F is a writer monad of cached values, where the monoid is
-- (isomorphic to) the free monoid over (∃ τ . τ), but we push the
-- existentials up when pairing things!
-- That's what we're interpreting computations in. In fact, one could use
-- monads directly, but that does not deal with arity satisfactorily.
⟦_⟧CompTermCache (cReturn v) ρ = vUnit , (⟦ v ⟧ValTermCache ρ , tt)
-- A function can invoke, in tail position, either a `cReturn` directly, or
-- invoke another function. In the latter case, we need to ensure that the
-- return value of the other function is not forwarded directly, but that
-- further intermediate results from the current function are also recorded.
--
-- At one time, `f1 into cReturn` did this correctly, but `f1` didn't, while
-- instead, they should be equivalent. In other words, we want `_into_` to
-- satisfy the monadic laws for bind.
{-
-- Here we'd have a problem with the original `_into_` constructor from CBPV, because it does
-- not require converting expressions to the "CBPV A-normal form".
--
-- If we tried supporting it, we could try to write something like:
⟦_⟧CompTermCache (v₁ into v₂) ρ =
-- Sequence commands and combine their caches.
{-
let (_ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ
(_ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ)
in , (r₂ , (c₁ ,′ c₂))
-}
-- However, the code above does not work, because we only guarantee that v₂ is
-- a computation, not that it's an F-computation - v₂ could also be function
-- type or a computation product.
-- Instead, we use a restricted CBPV, where these two possibilities are forbidden.
-- If you want to save something between different lambdas, you need to add an
-- F U to reflect that. (Double-check the papers which show how to encode
-- arity using CBPV, it seems that they should find the same problem ---
-- XXX they don't).
-}
-- But if we alter _into_ as described above, composing the caches works!
-- However, we should not forget we also need to save the new intermediate
-- result, that is the one produced by the first part of the let.
⟦_⟧CompTermCache (_into_ {σ} {τ} v₁ v₂) ρ =
let (τ₁ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ
(τ₂ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ)
in (τ₁ v× τ₂ v× σ) , (r₂ ,′ (c₁ ,′ c₂ ,′ r₁))
-- Note the compositionality and luck: we don't need to do anything at the
-- cReturn time, we just need the nested into to do their job, because as I
-- said intermediate results are a writer monad.
--
-- Q: But then, do we still need to do all the other stuff? IOW, do we still
-- need to forbid (λ x . y <- f args; g args') and replace it with (λ x . y <-
-- f args; z <- g args'; z)?
--
-- A: One thing we still need is using the monadic version of into for the
-- same reasons - which makes sense, since it has the type of monadic bind.
--
-- Maybe not: if we use a monad, which respects left and right identity, the
-- two above forms are equivalent. But what about associativity? We don't have
-- associativity with nested tuples in the middle. That's why the monad uses
-- lists! We can also use nested tuple, as long as in the into case we don't
-- do (a, b) but append a b (ahem, where?), which decomposes the first list
-- and prepends it to the second. To this end, we need to know the type of the
-- first element, or to ensure it's always a pair. XXX: We should just reuse
-- HList.
-- In abstractions, we should start collecting all variables...
-- Here, unlike in ⟦_⟧TermCache, we don't need to invent an empty cache,
-- that's moved into the handling of cReturn. This makes *the* difference for
-- nested lambdas, where we don't need to create caches multiple times!
⟦_⟧CompTermCache (cAbs v) ρ = λ x → ⟦ v ⟧CompTermCache (x • ρ)
-- Here we see that we are in a sort of A-normal form, because the argument is
-- a value (not quite ANF though, since values can be thunks - that is,
-- computations which haven't been run yet, I guess. Do we have an use for
-- that? That allows passing lambdas as arguments directly - which is fine,
-- because producing a closure indeed does not have intermediate results!).
⟦_⟧CompTermCache (cApp t v) ρ = ⟦ t ⟧CompTermCache ρ (⟦ v ⟧ValTermCache ρ)
⟦_⟧TermCacheCBV : ∀ {τ Γ} → Term Γ τ → ⟦ fromCBVCtx Γ ⟧ValCtxHidCache → ⟦ cbvToCompType τ ⟧CompTypeHidCache
⟦ t ⟧TermCacheCBV = ⟦ fromCBV t ⟧CompTermCache
module _ (ι : Base) where
Γ : ValContext
Γ = ∅
σ = B ι
τ = B ι
f : Comp Γ (σ ⇛ F τ)
f = cAbs (cReturn (vVar vThis))
bar : ⟦ σ ⇛ F τ ⟧CompTypeHidCache
bar = ⟦ f ⟧CompTermCache ∅
open import Relation.Binary.PropositionalEquality
bar≡ : bar ≡ (λ x → vUnit , x , tt)
bar≡ = refl
dbar : ⟦ σ ⇛ F τ ⟧ΔCompType
dbar = λ dx → vUnit , λ c₀ → (dx , c₀)
barbaz : ⟦ base ι ⟧Type → ⟦ ΔBase ι ⟧Type → ⟦ base ι ⟧Type × ⟦ ΔBase ι ⟧Type
barbaz x dx =
let
(τ₁ , y , c₁) = bar x
(τ₂ , dbar′) = dbar dx
(dy , c₂) = dbar′ c₁
in y , dy
module _ (f : ⟦ σ ⇛ F τ ⟧CompTypeHidCache) (df : ⟦ σ ⇛ F τ ⟧ΔCompType)
(proof : ∀ x dx → proj₁ (f x) ≡ proj₁ (df dx)) where
-- fdf₁ : ⟦ base ι ⟧Type → ⟦ ΔBase ι ⟧Type → ⟦ base ι ⟧Type × ⟦ ΔBase ι ⟧Type
-- fdf₁ x dx =
-- let
-- (τ₁ , y , c₁) = f x
-- (τ₂ , dbar′) = df dx
-- --(dy , c₂) = dbar′ c₁ -- fails, as it should be expected!
-- in y , dy
fdf : ⟦ base ι ⟧Type → ⟦ ΔBase ι ⟧Type → ⟦ base ι ⟧Type × ⟦ ΔBase ι ⟧Type
fdf x dx with proof x dx
... | p =
let
(τ₁ , y , c₁) = f x
(τ₂ , dbar′) = df dx
(dy , c₂) = dbar′ (subst ⟦_⟧ValTypeHidCache p c₁) --
in y , dy
|
{
"alphanum_fraction": 0.6730436367,
"avg_line_length": 43.3873517787,
"ext": "agda",
"hexsha": "aac35bab33c012bff6d87062a64506be1e0a99c2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Parametric/Denotation/CachingMEvaluation.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Parametric/Denotation/CachingMEvaluation.agda",
"max_line_length": 112,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Parametric/Denotation/CachingMEvaluation.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 3383,
"size": 10977
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Fancy display functions for List-based tables
--
-- The functions in this module assume some (unenforced) invariants.
-- If you cannot guarantee that your data respects these invariants,
-- you should instead use Text.Tabular.List.
------------------------------------------------------------------------
{-# OPTIONS --safe --without-K #-}
module Text.Tabular.Base where
open import Data.Bool.Base using (if_then_else_)
open import Data.Char.Base using (Char)
open import Data.List.Base as List
using (List; []; _∷_; _?∷_; _++_; _∷ʳ?_; null; map; intersperse)
open import Data.Maybe.Base as Maybe using (Maybe; nothing; just; maybe)
open import Data.Nat.Base
open import Data.String.Base as String
using (String; fromChar; unlines; replicate; length)
open import Function.Base
open import Agda.Builtin.Equality
open String
using ( Alignment
; Left
; Center
; Right
) public
record TabularLine : Set where
field
left : Maybe String
cont : Maybe Char
sep : String
right : Maybe String
open TabularLine
record TabularConfig : Set where
field
top : Maybe TabularLine
sep : Maybe TabularLine
row : TabularLine
bot : Maybe TabularLine
open TabularConfig
unicode : TabularConfig
unicode .top = just λ where
.left → just "┌"
.cont → just '─'
.sep → "┬"
.right → just "┐"
unicode .sep = just λ where
.left → just "├"
.cont → just '─'
.sep → "┼"
.right → just "┤"
unicode .row = λ where
.left → just "│"
.cont → nothing
.sep → "│"
.right → just "│"
unicode .bot = just λ where
.left → just "└"
.cont → just '─'
.sep → "┴"
.right → just "┘"
ascii : TabularConfig
ascii .top = just λ where
.left → just "+"
.cont → just '-'
.sep → "-"
.right → just "+"
ascii .sep = just λ where
.left → just "|"
.cont → just '-'
.sep → "+"
.right → just "|"
ascii .row = λ where
.left → just "|"
.cont → nothing
.sep → "|"
.right → just "|"
ascii .bot = just λ where
.left → just "+"
.cont → just '-'
.sep → "-"
.right → just "+"
compact : TabularConfig → TabularConfig
compact c = record c { sep = nothing }
private
dropBorder : TabularLine → TabularLine
dropBorder l = record l { left = nothing; right = nothing }
noBorder : TabularConfig → TabularConfig
noBorder c .top = nothing
noBorder c .sep = Maybe.map dropBorder (c .sep)
noBorder c .row = dropBorder (c .row)
noBorder c .bot = nothing
private
space : TabularLine → TabularLine
space l = let pad = maybe fromChar " " (l .cont) in λ where
.left → Maybe.map (String._++ pad) (l .left)
.cont → l .cont
.sep → pad String.++ l .sep String.++ pad
.right → Maybe.map (pad String.++_) (l .right)
addSpace : TabularConfig → TabularConfig
addSpace c .top = Maybe.map space (c .top)
addSpace c .sep = Maybe.map space (c .sep)
addSpace c .row = space (c .row)
addSpace c .bot = Maybe.map space (c .bot)
whitespace : TabularConfig
whitespace .top = nothing
whitespace .sep = nothing
whitespace .row = λ where
.left → nothing
.cont → nothing
.sep → " "
.right → nothing
whitespace .bot = nothing
-- /!\ Invariants:
-- * the table is presented as a list of rows
-- * header has the same length as each one of the rows
-- i.e. we have a rectangular table
-- * all of the strings in a given column have the same length
unsafeDisplay : TabularConfig → List (List String) → List String
unsafeDisplay _ [] = []
unsafeDisplay c (header ∷ rows) =
map String.concat $ th ++ (trs ∷ʳ? lbot) where
cellsOf : Maybe Char → List String → List String
cellsOf nothing = id
cellsOf (just c) = map (λ cell → replicate (length cell) c)
lineOf : TabularLine → List String → List String
lineOf l xs = l .left
?∷ intersperse (l .sep) (cellsOf (l .cont) xs)
∷ʳ? l .right
mlineOf : Maybe TabularLine → List String → Maybe (List String)
mlineOf l xs = Maybe.map (λ l → lineOf l xs) l
ltop : Maybe (List String)
lsep : Maybe (List String)
tr : List String → List String
lbot : Maybe (List String)
ltop = mlineOf (c. top) header
lsep = mlineOf (c. sep) header
tr = lineOf (c. row)
lbot = mlineOf (c. bot) header
th = ltop ?∷ tr header ∷ []
trs = if null rows then id else (maybe _∷_ id lsep)
$ maybe intersperse id lsep
$ map tr rows
|
{
"alphanum_fraction": 0.6131779471,
"avg_line_length": 26.5595238095,
"ext": "agda",
"hexsha": "52c10e931dc94459d132eda1454365a8a47ddb2a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Text/Tabular/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Text/Tabular/Base.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Text/Tabular/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1356,
"size": 4462
}
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import homotopy.elims.Lemmas
module homotopy.elims.SuspSmash {i j k} {X : Ptd i} {Y : Ptd j}
{P : Susp (X ∧ Y) → Type k}
(north* : P north) (south* : P south)
(smin* : (x : de⊙ X) (y : de⊙ Y) → north* == south* [ P ↓ merid (smin x y) ])
where
private
smbase*-template : ∀ {s} (p : smin (pt X) (pt Y) == s)
→ north* == south* [ P ↓ merid s ]
smbase*-template p = transport (λ κ → north* == south* [ P ↓ merid κ ])
p (smin* (pt X) (pt Y))
smbasel* = smbase*-template (smgluel (pt X))
smbaser* = smbase*-template (smgluer (pt Y))
-- note that [smin*] is adjusted.
coh* : (s : X ∧ Y) → north* == south* [ P ↓ merid s ]
coh* = Smash-elim
(λ x y → fst (fill-l x) ◃ fst (fill-r y) ◃ fst fill-base ◃ smin* x y)
smbasel* smbaser*
(λ x → ↓↓-from-squareover $
ap (λ p → fst (fill-l x) ◃ p ◃ fst fill-base ◃ smin* x (pt Y)) fill-r-β
∙h↓⊡ ap (fst (fill-l x) ◃_) (idp◃ _)
∙h↓⊡ snd (fill-l x))
(λ y → ↓↓-from-squareover $
ap (λ p → p ◃ fst (fill-r y) ◃ fst fill-base ◃ smin* (pt X) y) fill-l-β
∙h↓⊡ idp◃ _
∙h↓⊡ snd (fill-r y))
where
fill-template : ∀ {s₁ s₂} (p : s₁ == s₂)
(α : north* == south* [ P ↓ merid s₁ ])
(β : north* == south* [ P ↓ merid s₂ ])
→ Σ (north* == north*)
(λ q → SquareOver P (natural-square merid p)
(q ◃ α)
(↓-ap-in _ _ (apd (λ _ → north*) p))
(↓-ap-in _ _ (apd (λ _ → south*) p))
β)
fill-template p α β = fill-upper-left _ _ _ _ _
fill-base = fill-template (smgluel (pt X)) (smin* (pt X) (pt Y)) smbasel*
fill-l = λ x → fill-template (smgluel x) (fst fill-base ◃ smin* x (pt Y)) smbasel*
fill-l-β : fst (fill-l (pt X)) == idp
fill-l-β = ! $
fill-upper-left-unique _ _ _ _ _ idp (idp◃ _ ∙h↓⊡ snd fill-base)
fill-r = λ y → fill-template (smgluer y) (fst fill-base ◃ smin* (pt X) y) smbaser*
fill-r-β : fst (fill-r (pt Y)) == idp
fill-r-β = ! $
fill-upper-left-unique _ _ _ _ _ idp (idp◃ _ ∙h↓⊡ snd fill-base)
∙ ap (λ sp → fst (fill-template (snd sp)
(fst fill-base ◃ smin* (pt X) (pt Y))
(smbase*-template (snd sp))))
(contr-has-all-paths {{pathfrom-is-contr (smin (pt X) (pt Y))}}
(smbasel , smgluel (pt X))
(smbaser , smgluer (pt Y)))
SuspSmash-elim : Π (Susp (X ∧ Y)) P
SuspSmash-elim = Susp-elim north* south* coh*
|
{
"alphanum_fraction": 0.4890426759,
"avg_line_length": 40.0153846154,
"ext": "agda",
"hexsha": "d163bba88380f9e4dd3da1b0b59bc3047fc066a4",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/elims/SuspSmash.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/elims/SuspSmash.agda",
"max_line_length": 86,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/elims/SuspSmash.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 971,
"size": 2601
}
|
{-# OPTIONS --prop --show-irrelevant #-}
postulate
P : Prop
p : P
A : P → Set
f : {x : P} → A x
test : A p
test = f
|
{
"alphanum_fraction": 0.4920634921,
"avg_line_length": 11.4545454545,
"ext": "agda",
"hexsha": "894d9665d61f4bae1217764c09f8d3eb8656c390",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue4122-implicit.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue4122-implicit.agda",
"max_line_length": 40,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue4122-implicit.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 51,
"size": 126
}
|
-- Andreas, 2017-11-06, issue #2840 reported by wenkokke
Id : (F : Set → Set) → Set → Set
Id F = F
data D (A : Set) : Set where
c : Id _ A
-- WAS: internal error in positivity checker
-- EXPECTED: success, or
-- Failed to solve the following constraints:
-- [4] _F_2 A A = D A : Set
-- when checking the constructor c in the declaration of D
|
{
"alphanum_fraction": 0.6542857143,
"avg_line_length": 23.3333333333,
"ext": "agda",
"hexsha": "da02526337c8d29baa8e45271c10c5968a856550",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Fail/Issue2840.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Fail/Issue2840.agda",
"max_line_length": 58,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Fail/Issue2840.agda",
"max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z",
"num_tokens": 112,
"size": 350
}
|
{-# OPTIONS --without-K #-}
open import HoTT
open import cohomology.Exactness
open import cohomology.Theory
open import cohomology.CofiberSequence
module cohomology.LongExactSequence {i} (CT : CohomologyTheory i)
(n : ℤ) {X Y : Ptd i} (f : fst (X ⊙→ Y)) where
open CohomologyTheory CT
long-exact-diag : ExactDiag _ _
long-exact-diag =
C n (⊙Susp (⊙Cof f)) ⟨ CF-hom n (⊙susp-fmap (⊙cfcod f)) ⟩→
C n (⊙Susp Y) ⟨ CF-hom n (⊙susp-fmap f) ⟩→
C n (⊙Susp X) ⟨ CF-hom n ⊙ext-glue ⟩→
C n (⊙Cof f) ⟨ CF-hom n (⊙cfcod f) ⟩→
C n Y ⟨ CF-hom n f ⟩→
C n X ⊣|
long-exact-cofiber : ExactSeq long-exact-diag
long-exact-cofiber = transport
(λ {(_ , g , h , k) → ExactSeq $
_ ⟨ CF-hom n k ⟩→ _ ⟨ CF-hom n h ⟩→ _ ⟨ CF-hom n g ⟩→
_ ⟨ CF-hom n (⊙cfcod f) ⟩→ _ ⟨ CF-hom n f ⟩→ _ ⊣|})
(cofiber-sequence f)
(exact-build
(_ ⟨ CF-hom n (⊙cfcod⁴ f) ⟩→ _ ⟨ CF-hom n (⊙cfcod³ f) ⟩→
_ ⟨ CF-hom n (⊙cfcod² f) ⟩→ _ ⟨ CF-hom n (⊙cfcod f) ⟩→
_ ⟨ CF-hom n f ⟩→ _ ⊣|)
(C-exact n (⊙cfcod³ f)) (C-exact n (⊙cfcod² f))
(C-exact n (⊙cfcod f)) (C-exact n f))
|
{
"alphanum_fraction": 0.5164279697,
"avg_line_length": 34.9117647059,
"ext": "agda",
"hexsha": "78606999f20baec0239fcd032c87955596b9a064",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "danbornside/HoTT-Agda",
"max_forks_repo_path": "cohomology/LongExactSequence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "danbornside/HoTT-Agda",
"max_issues_repo_path": "cohomology/LongExactSequence.agda",
"max_line_length": 65,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "danbornside/HoTT-Agda",
"max_stars_repo_path": "cohomology/LongExactSequence.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 529,
"size": 1187
}
|
module UnSizedIO.IOObject where
open import Data.Product
open import UnSizedIO.Base
open import UnSizedIO.Object
-- An IO object is like a simple object,
-- but the method returns IO applied to the result type of a simple object
-- which means the method returns an IO program which when terminating
-- returns the result of the simple object
module _ (ioi : IOInterface) (let C = Command ioi) (let R = Response ioi)
(oi : Interface) (let M = Method oi) (let Rt = Result oi)
where
record IOObject : Set where
coinductive
field
method : (m : M) → IO ioi (Rt m × IOObject)
open IOObject public
|
{
"alphanum_fraction": 0.6920684292,
"avg_line_length": 26.7916666667,
"ext": "agda",
"hexsha": "96ad0aad3f0e312292fc732c7be4c3a38c6c76f8",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "src/UnSizedIO/IOObject.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "src/UnSizedIO/IOObject.agda",
"max_line_length": 80,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "src/UnSizedIO/IOObject.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 178,
"size": 643
}
|
{-# OPTIONS --copatterns #-}
open import Common.Size
open import Common.Prelude
open import Common.Product renaming (proj₁ to fst; proj₂ to snd)
record Stream (i : Size) (A : Set) : Set where
coinductive
field force : ∀{j : Size< i} → A × Stream j A
open Stream
head : ∀{i A} → Stream (↑ i) A → A
head s = fst (force s)
tail : ∀{i A} → Stream (↑ i) A → Stream i A
tail s = snd (force s)
smap : ∀{i A B} (f : A → B) → Stream i A → Stream i B
force (smap f s) with force s
... | a , as = f a , smap f as
scanl : ∀{i A B} (f : B → A → B) (b : B) (s : Stream i A) → Stream i B
force (scanl f b s) with force s
... | a , as = b , scanl f (f b a) as
_!_ : ∀{A} (s : Stream _ A) (n : Nat) → A
s ! zero = head s
s ! suc n = tail s ! n
_!!_ : ∀{A} (s : Stream _ A) (n : Nat) → A
s !! n with force s
_ !! zero | a , as = a
_ !! suc n | a , as = as !! n
nats : ∀{i} → Stream i Nat
force nats = 0 , smap suc nats
sums : Stream _ Nat
sums = scanl (_+_) 0 (tail nats)
main : IO Unit
main = printNat (sums ! 100)
-- Expected output, due to Gauss: 5050
|
{
"alphanum_fraction": 0.5620853081,
"avg_line_length": 23.9772727273,
"ext": "agda",
"hexsha": "0252795029122598c91b930a01b8f8e45df6f7fb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Compiler/simple/CopatternStreamSized.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Compiler/simple/CopatternStreamSized.agda",
"max_line_length": 70,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Compiler/simple/CopatternStreamSized.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 415,
"size": 1055
}
|
{-# OPTIONS --without-K --allow-unsolved-metas #-}
module Space where
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Nat using (ℕ; suc)
renaming (_+_ to _ℕ+_; _*_ to _ℕ*_; _⊔_ to _ℕ⊔_)
open import Data.Nat.Properties
open import Data.Integer as ℤ using (ℤ; +_; -[1+_]; ∣_∣; _+_; _⊔_; -_)
open import Data.Rational
using (ℚ)
renaming (1/_ to recip)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Product using (_×_; _,_; proj₁; proj₂)
open import Data.Maybe
open import Relation.Nullary using (¬_; yes; no)
open import Relation.Binary.PropositionalEquality
renaming ([_] to R[_])
using (_≡_; refl; sym; trans; cong; inspect)
open import Data.Unit using (⊤; tt)
open import Singleton
open import PiFrac
------------------------------------------------------------------------------
-- Space denotational semantics
-- for each type, we calculate its memory requirements which are two
-- numbers (m , z). The number m represents the amount of space needed
-- to store values of the type. The number z represents the effect of
-- the value on space when it is interpreted. Ex. a gc process needs m
-- bits to be stored but when run it releases z bits.
-- Number of points in type
card : (t : 𝕌) → ℕ
card 𝟘 = 0
card 𝟙 = 1
card (t₁ +ᵤ t₂) = card t₁ ℕ+ card t₂
card (t₁ ×ᵤ t₂) = card t₁ ℕ* card t₂
card ● t [ v ] = 1
card 𝟙/● t [ v ] = 1
-- If number of points is zero then it is impossible to find a value
-- of the type
0empty : {t : 𝕌} → card t ≡ 0 → (v : ⟦ t ⟧) → ⊥
0empty {𝟘} _ ()
0empty {𝟙} () tt
0empty {t₁ +ᵤ t₂} s (inj₁ v₁)
with card t₁ | card t₂ | inspect card t₁
0empty {t₁ +ᵤ t₂} refl (inj₁ v₁) | ℕ.zero | ℕ.zero | R[ s₁ ] =
0empty {t₁} s₁ v₁
0empty {t₁ +ᵤ t₂} s (inj₂ v₂)
with card t₁ | card t₂ | inspect card t₂
0empty {t₁ +ᵤ t₂} refl (inj₂ v₂) | ℕ.zero | ℕ.zero | R[ s₂ ] =
0empty {t₂} s₂ v₂
0empty {t₁ ×ᵤ t₂} s (v₁ , v₂)
with card t₁ | card t₂ | inspect card t₁ | inspect card t₂
0empty {t₁ ×ᵤ t₂} refl (v₁ , v₂) | ℕ.zero | _ | R[ s₁ ] | _ =
0empty {t₁} s₁ v₁
0empty {t₁ ×ᵤ t₂} s (v₁ , v₂) | ℕ.suc n₁ | ℕ.zero | R[ s₁ ] | R[ s₂ ] =
0empty {t₂} s₂ v₂
0empty {● t [ v ]} () (.v , refl)
0empty {𝟙/● t [ v ]} () f
-- Space effects
-- For a pointed type, even though we only have one value, that value
-- could be large and we need just as much space to store it as we
-- would need for any value of the given type. For a fractional type,
-- the effect is to de-allocate the space above.
space : (t : 𝕌) → {¬t≡0 : ¬ card t ≡ 0} → ℤ
space 𝟘 {0ne} = ⊥-elim (0ne refl)
space 𝟙 = + 0
space (t₁ +ᵤ t₂) {pne} with card t₁ | card t₂ | inspect card t₁ | inspect card t₂
... | 0 | 0 | R[ s₁ ] | R[ s₂ ] = ⊥-elim (pne refl)
... | 0 | suc n | R[ s₁ ] | R[ s₂ ] =
space t₂ {λ t2≡0 → ⊥-elim (pne (trans (sym s₂) t2≡0))}
... | suc m | 0 | R[ s₁ ] | R[ s₂ ] =
space t₁
{λ t1≡0 →
⊥-elim (pne (trans (sym (trans s₁ (sym (+-identityʳ (suc m))))) t1≡0))}
... | suc m | suc n | R[ s₁ ] | R[ s₂ ] =
+ 1 + (space t₁ {λ t1≡0 → ⊥-elim (1+n≢0 (trans (sym s₁) t1≡0))} ⊔
space t₂ {λ t2≡0 → ⊥-elim ((1+n≢0 (trans (sym s₂) t2≡0)))})
space (t₁ ×ᵤ t₂) {pne} with card t₁ | card t₂ | inspect card t₁ | inspect card t₂
... | 0 | 0 | R[ s₁ ] | R[ s₂ ] = ⊥-elim (pne refl)
... | 0 | suc n | R[ s₁ ] | R[ s₂ ] = ⊥-elim (pne refl)
... | suc m | 0 | R[ s₁ ] | R[ s₂ ] = ⊥-elim (pne (*-zeroʳ (suc m)))
... | suc m | suc n | R[ s₁ ] | R[ s₂ ] =
space t₁ {λ t1≡0 → ⊥-elim (1+n≢0 (trans (sym s₁) t1≡0))} +
space t₂ {λ t2≡0 → ⊥-elim (1+n≢0 (trans (sym s₂) t2≡0))}
space ● t [ v ] = space t {λ t≡0 → 0empty t≡0 v}
space 𝟙/● t [ v ] = - space t {λ t≡0 → 0empty t≡0 v}
-- TODO
-- Every combinator preserves space effects
card= : (t₁ t₂ : 𝕌) (C : t₁ ⟷ t₂) → (card t₁ ≡ card t₂)
card= .(𝟘 +ᵤ t₂) t₂ unite₊l = refl
card= t₁ .(𝟘 +ᵤ t₁) uniti₊l = refl
card= .(t₂ +ᵤ 𝟘) t₂ unite₊r rewrite +-identityʳ (card t₂) = refl
card= t₁ .(t₁ +ᵤ 𝟘) uniti₊r rewrite +-identityʳ (card t₁) = refl
card= (t₁ +ᵤ t₂) _ swap₊ rewrite +-comm (card t₁) (card t₂) = refl
card= (t₁ +ᵤ t₂ +ᵤ t₃) _ assocl₊ rewrite +-assoc (card t₁) (card t₂) (card t₃) = refl
card= ((t₁ +ᵤ t₂) +ᵤ t₃) _ assocr₊ rewrite +-assoc (card t₁) (card t₂) (card t₃) = refl
card= (𝟙 ×ᵤ t₂) t₂ unite⋆l rewrite +-identityʳ (card t₂) = refl
card= t₁ (𝟙 ×ᵤ t₁) uniti⋆l rewrite +-identityʳ (card t₁) = refl
card= (t₂ ×ᵤ 𝟙) t₂ unite⋆r rewrite *-identityʳ (card t₂) = refl
card= t₁ (t₁ ×ᵤ 𝟙) uniti⋆r rewrite *-identityʳ (card t₁) = refl
card= (t₁ ×ᵤ t₂) _ swap⋆ rewrite *-comm (card t₁) (card t₂) = refl
card= (t₁ ×ᵤ t₂ ×ᵤ t₃) _ assocl⋆ rewrite *-assoc (card t₁) (card t₂) (card t₃) = refl
card= ((t₁ ×ᵤ t₂) ×ᵤ t₃) _ assocr⋆ rewrite *-assoc (card t₁) (card t₂) (card t₃) = refl
card= .(𝟘 ×ᵤ _) .𝟘 absorbr = refl
card= (t ×ᵤ 𝟘) .𝟘 absorbl rewrite *-zeroʳ (card t) = refl
card= .𝟘 (t ×ᵤ 𝟘) factorzr rewrite *-zeroʳ (card t) = refl
card= .𝟘 .(𝟘 ×ᵤ _) factorzl = refl
card= ((t₁ +ᵤ t₂) ×ᵤ t₃) _ dist rewrite *-distribʳ-+ (card t₃) (card t₁) (card t₂) = refl
card= _ ((t₁ +ᵤ t₂) ×ᵤ t₃) factor rewrite *-distribʳ-+ (card t₃) (card t₁) (card t₂) = refl
card= (t₃ ×ᵤ (t₁ +ᵤ t₂)) _ distl rewrite *-distribˡ-+ (card t₃) (card t₁) (card t₂) = refl
card= _ (t₃ ×ᵤ (t₁ +ᵤ t₂)) factorl rewrite *-distribˡ-+ (card t₃) (card t₁) (card t₂) = refl
card= t₁ .t₁ id⟷ = refl
card= t₁ t₂ (c₁ ⊚ c₂) rewrite card= _ _ c₁ | card= _ _ c₂ = refl
card= (t₁ +ᵤ t₂) (t₃ +ᵤ t₄) (c₁ ⊕ c₂) rewrite card= _ _ c₁ | card= _ _ c₂ = refl
card= (t₁ ×ᵤ t₂) (t₃ ×ᵤ t₄) (c₁ ⊗ c₂) rewrite card= _ _ c₁ | card= _ _ c₂ = refl
card= .(● _ [ _ ]) .(● _ [ eval c _ ]) (lift c) = refl
card= .(● _ ×ᵤ _ [ _ , _ ]) .(● _ [ _ ] ×ᵤ ● _ [ _ ]) tensorl = refl
card= .(● _ [ _ ] ×ᵤ ● _ [ _ ]) .(● _ ×ᵤ _ [ _ , _ ]) tensorr = refl
card= .(● _ +ᵤ _ [ inj₁ _ ]) .(● _ [ _ ]) plusll = refl
card= .(● _ [ _ ]) .(● _ +ᵤ _ [ inj₁ _ ]) pluslr = refl
card= .(● _ +ᵤ _ [ inj₂ _ ]) .(● _ [ _ ]) plusrl = refl
card= .(● _ [ _ ]) .(● _ +ᵤ _ [ inj₂ _ ]) plusrr = refl
card= .(𝟙/● _ ×ᵤ _ [ _ , _ ]) .(𝟙/● _ [ _ ] ×ᵤ 𝟙/● _ [ _ ]) fracl = refl
card= .(𝟙/● _ [ _ ] ×ᵤ 𝟙/● _ [ _ ]) .(𝟙/● _ ×ᵤ _ [ _ , _ ]) fracr = refl
card= .𝟙 .(● _ [ v ] ×ᵤ 𝟙/● _ [ v ]) (η v) = refl
card= .(● _ [ v ] ×ᵤ 𝟙/● _ [ v ]) .𝟙 (ε v) = refl
card= .(● _ [ _ ]) .(● _ [ _ ]) (== c x) = refl
card= .(● (● t [ v ]) [ w ]) .(● t [ v ]) (ll {t} {v} {w}) = refl
space= : (t₁ t₂ : 𝕌) → (c : t₁ ⟷ t₂) → Set
space= t₁ t₂ c with card t₁ ≟ 0
space= t₁ t₂ c | yes _ = ⊤
space= t₁ t₂ c | no nz₁ = space t₁ {nz₁} ≡ space t₂ {λ nz₂ → nz₁ (trans (card= _ _ c) nz₂)}
space≡ : (t₁ t₂ : 𝕌) → (c : t₁ ⟷ t₂) → space= t₁ t₂ c
space≡ t₁ t₂ c with card t₁ ≟ 0
space≡ t₁ t₂ c | yes _ = tt
space≡ t₁ t₂ c | no nz₁ = {!!}
-- Groupoid interpretation ???? Groupoid for pointed 1/A is point and
-- (size A) loops on point labeled (= a1), (= a2), (= a3), etc.
------------------------------------------------------------------------------
|
{
"alphanum_fraction": 0.5509786737,
"avg_line_length": 44.1677419355,
"ext": "agda",
"hexsha": "61e723f4ec7113620ae0cab7f4e6d0b38279d442",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "fracGC/Space.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "fracGC/Space.agda",
"max_line_length": 93,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "fracGC/Space.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 3226,
"size": 6846
}
|
_∘_ : {A : Set} {B : A → Set} {C : {x : A} → B x → Set₁} →
(∀ {x} (y : B x) → C y) → (g : (x : A) → B x) →
((x : A) → C (g x))
f ∘ g = λ x → f (g x)
postulate
R : {A : Set₁} → A → A → Set₁
_≡_ : {A : Set₁} → A → A → Set₁
_≡_ = R
data D (A : Set) : Set where
c : A → D A
postulate
cong : {A B : Set₁} {x y : A} (f : A → B) → x ≡ y → f x ≡ f y
refl : {A : Set₁} {x : A} → x ≡ x
A : Set
P : D A → Set
p : (F : A → Set) → (P ∘ c) ≡ F → (P ∘ c) ≡ F
eq : P ≡ P
_ : p (P ∘ c) (cong (_∘ c) eq) ≡ p (P ∘ c) (cong (_∘ c) eq)
_ = cong (λ eq → p _ eq) (cong (cong (_∘ c)) refl)
|
{
"alphanum_fraction": 0.3565640194,
"avg_line_length": 23.7307692308,
"ext": "agda",
"hexsha": "fc2702ccdcbb96be565ab28315b1f637edb79df3",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Succeed/Issue4907.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue4907.agda",
"max_line_length": 64,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue4907.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 335,
"size": 617
}
|
--------------------------------------------------------------------------------
-- This is part of Agda Inference Systems
{-# OPTIONS --sized-types --guardedness #-}
open import Data.Product
open import Data.Vec
open import Data.Unit
open import Codata.Colist
open import Agda.Builtin.Equality
open import Size
open import Data.Nat
open import Data.Fin
open import Codata.Thunk
open import Relation.Unary using (_⊆_)
open import Examples.Colists.Auxiliary.Colist_member
open import is-lib.InfSys
module Examples.Colists.allPos where
U = Colist ℕ ∞
data allPosRN : Set where
allp-Λ allp-t : allPosRN
allP-Λ-r : FinMetaRule U
allP-Λ-r .Ctx = ⊤
allP-Λ-r .comp c =
[] ,
-----------------
[]
allP-t-r : FinMetaRule U
allP-t-r .Ctx = Σ[ (x , _) ∈ ℕ × Thunk (Colist ℕ) ∞ ] x Data.Nat.> 0
allP-t-r .comp ((x , xs) , _) =
xs .force ∷ [] ,
-----------------
x ∷ xs
allPosIS : IS U
allPosIS .Names = allPosRN
allPosIS .rules allp-Λ = from allP-Λ-r
allPosIS .rules allp-t = from allP-t-r
allPos : U → Set
allPos = CoInd⟦ allPosIS ⟧
allPosSpec : U → Set
allPosSpec xs = ∀{x} → x ∈ xs → x Data.Nat.> 0
allPosSound : allPos ⊆ allPosSpec
allPosSound {x ∷ xs} ap mem with ap .CoInd⟦_⟧.unfold
allPosSound {x ∷ xs} ap here | allp-t , ((.x , .xs) , x>0) , refl , prem = x>0
allPosSound {x ∷ xs} ap (there mem) | allp-t , ((.x , .xs) , _) , refl , prem = allPosSound (prem zero) mem
allPosSpecCons : ∀{xs} → allPosSpec xs → ISF[ allPosIS ] allPosSpec xs
allPosSpecCons {[]} _ = allp-Λ , (tt , (refl , λ ()))
allPosSpecCons {(x ∷ xs)} Sxs = allp-t , (((x , xs) , Sxs here) , (refl , λ {Fin.zero → λ mem → Sxs (there mem)}))
allPosComplete : allPosSpec ⊆ allPos
allPosComplete = coind[ allPosIS ] allPosSpec allPosSpecCons
{- allPos as Container -}
open import Data.Empty using (⊥)
open import Data.Container.Indexed
open import is-lib.InfSys.Container U
open ISCont
allPosCont : ISCont
allPosCont .Command [] = ⊤
allPosCont .Command (x ∷ xs) = x Data.Nat.> 0
allPosCont .Response {[]} tt = ⊥
allPosCont .Response {_ ∷ _} _ = Fin 1
allPosCont .next {_ ∷ xs} _ zero = xs .force
allPosC : U → Set
allPosC = ISCont.CoInd⟦ allPosCont ⟧
|
{
"alphanum_fraction": 0.6079749104,
"avg_line_length": 28.253164557,
"ext": "agda",
"hexsha": "cdcdd97c0bd11afccda13461add26ea8696a039a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b9043f99e4bf7211db4066a7a943401d127f0c8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "LcicC/inference-systems-agda",
"max_forks_repo_path": "Examples/Colists/allPos.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b9043f99e4bf7211db4066a7a943401d127f0c8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "LcicC/inference-systems-agda",
"max_issues_repo_path": "Examples/Colists/allPos.agda",
"max_line_length": 116,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "b9043f99e4bf7211db4066a7a943401d127f0c8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "LcicC/inference-systems-agda",
"max_stars_repo_path": "Examples/Colists/allPos.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-25T15:48:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-10T15:53:47.000Z",
"num_tokens": 794,
"size": 2232
}
|
module Cats.Bifunctor where
open import Data.Product using (_,_)
open import Level using (_⊔_)
open import Relation.Binary using (IsEquivalence ; _Preserves₂_⟶_⟶_)
open import Cats.Category
open import Cats.Category.Cat using (_∘_ ; ∘-resp ; _≈_ ; equiv)
open import Cats.Category.Cat.Facts.Product using (Swap ; hasBinaryProducts)
open import Cats.Category.Fun using (Fun ; Trans ; ≈-intro ; ≈-elim)
open import Cats.Category.Product.Binary using (_×_)
open import Cats.Category.Product.Binary.Facts using (iso-intro)
open import Cats.Functor using (Functor)
open import Cats.Trans.Iso using (NatIso)
open import Cats.Util.Simp using (simp!)
import Cats.Category.Constructions.Iso as Iso
import Cats.Category.Fun.Facts as Fun
open Functor
open Trans
open Iso.Build._≅_
module _ {lo la l≈ lo′ la′ l≈′ lo″ la″ l≈″} where
Bifunctor
: Category lo la l≈
→ Category lo′ la′ l≈′
→ Category lo″ la″ l≈″
→ Set (lo ⊔ la ⊔ l≈ ⊔ lo′ ⊔ la′ ⊔ l≈′ ⊔ lo″ ⊔ la″ ⊔ l≈″)
Bifunctor C D E = Functor (C × D) E
module _
{C : Category lo la l≈}
{D : Category lo′ la′ l≈′}
{E : Category lo″ la″ l≈″}
where
private
module C = Category C
module D = Category D
module E = Category E
biobj : Bifunctor C D E → C.Obj → D.Obj → E.Obj
biobj F c d = fobj F (c , d)
bimap
: (F : Bifunctor C D E)
→ ∀ {A B A′ B′}
→ (A C.⇒ B)
→ (A′ D.⇒ B′)
→ biobj F A A′ E.⇒ biobj F B B′
bimap F f g = fmap F (f , g)
Bifunctor→Functor₁ : Bifunctor C D E → C.Obj → Functor D E
Bifunctor→Functor₁ F x = record
{ fobj = λ d → fobj F (x , d)
; fmap = λ f → fmap F (C.id , f)
; fmap-resp = λ x≈y → fmap-resp F (C.≈.refl , x≈y)
; fmap-id = fmap-id F
; fmap-∘ = λ where
{f = f} {g} →
begin
fmap F (C.id , f) E.∘ fmap F (C.id , g)
≈⟨ fmap-∘ F ⟩
fmap F (C.id C.∘ C.id , f D.∘ g)
≈⟨ fmap-resp F (C.id-l , D.≈.refl) ⟩
fmap F (C.id , f D.∘ g)
∎
}
where
open E.≈-Reasoning
Bifunctor→Functor₁-resp : ∀ {F G x y}
→ F ≈ G
→ x C.≅ y
→ Bifunctor→Functor₁ F x ≈ Bifunctor→Functor₁ G y
Bifunctor→Functor₁-resp {F} {G} {x} {y}
record { iso = Fx≅Gx ; forth-natural = fnat } x≅y
= record
{ iso = λ {z} →
let open E.≅-Reasoning in
begin
fobj F (x , z)
≈⟨ Fx≅Gx ⟩
fobj G (x , z)
≈⟨ fobj-resp G (iso-intro x≅y D.≅.refl) ⟩
fobj G (y , z)
∎
; forth-natural = λ {c} {d} {f} →
let open E.≈-Reasoning in
triangle (fmap G (forth x≅y , f) E.∘ forth Fx≅Gx)
( begin
((E.id E.∘ fmap G (forth x≅y , D.id)) E.∘ forth Fx≅Gx) E.∘ fmap F (C.id , f)
≈⟨ simp! E ⟩
fmap G (forth x≅y , D.id) E.∘ forth Fx≅Gx E.∘ fmap F (C.id , f)
≈⟨ E.∘-resp-r fnat ⟩
fmap G (forth x≅y , D.id) E.∘ (fmap G (C.id , f) E.∘ forth Fx≅Gx)
≈⟨ simp! E ⟩
(fmap G (forth x≅y , D.id) E.∘ fmap G (C.id , f)) E.∘ forth Fx≅Gx
≈⟨ E.∘-resp-l (fmap-∘ G) ⟩
fmap G (forth x≅y C.∘ C.id , D.id D.∘ f) E.∘ forth Fx≅Gx
≈⟨ E.∘-resp-l (fmap-resp G (C.id-r , D.id-l)) ⟩
fmap G (forth x≅y , f) E.∘ forth Fx≅Gx
∎
)
( begin
fmap G (C.id , f) E.∘ (E.id E.∘ fmap G (forth x≅y , D.id)) E.∘ forth Fx≅Gx
≈⟨ E.∘-resp-r (E.∘-resp-l E.id-l) ⟩
fmap G (C.id , f) E.∘ fmap G (forth x≅y , D.id) E.∘ forth Fx≅Gx
≈⟨ simp! E ⟩
(fmap G (C.id , f) E.∘ fmap G (forth x≅y , D.id)) E.∘ forth Fx≅Gx
≈⟨ E.∘-resp-l (fmap-∘ G) ⟩
fmap G (C.id C.∘ forth x≅y , f D.∘ D.id) E.∘ forth Fx≅Gx
≈⟨ E.∘-resp-l (fmap-resp G (C.id-l , D.id-r)) ⟩
fmap G (forth x≅y , f) E.∘ forth Fx≅Gx
∎
)
}
transposeBifunctor₁ : Bifunctor C D E → Functor C (Fun D E)
transposeBifunctor₁ F = record
{ fobj = Bifunctor→Functor₁ F
; fmap = λ {a} {b} f → record
{ component = λ d → fmap F (f , D.id)
; natural = λ {a′} {b′} {g} →
begin
fmap F (f , D.id) E.∘ fmap (Bifunctor→Functor₁ F a) g
≈⟨ fmap-∘ F ⟩
fmap F (f C.∘ C.id , D.id D.∘ g)
≈⟨ fmap-resp F
( (C.≈.trans C.id-r (C.≈.sym C.id-l))
, D.≈.trans D.id-l (D.≈.sym D.id-r) ) ⟩
fmap F (C.id C.∘ f , g D.∘ D.id)
≈⟨ E.≈.sym (fmap-∘ F) ⟩
fmap (Bifunctor→Functor₁ F b) g E.∘ fmap F (f , D.id)
∎
}
; fmap-resp = λ x≈y → ≈-intro (fmap-resp F (x≈y , D.≈.refl))
; fmap-id = ≈-intro (fmap-id F)
; fmap-∘ = λ where
{f = f} {g} → ≈-intro (
begin
fmap F (f , D.id) E.∘ fmap F (g , D.id)
≈⟨ fmap-∘ F ⟩
fmap F (f C.∘ g , D.id D.∘ D.id)
≈⟨ fmap-resp F (C.≈.refl , D.id-l) ⟩
fmap F (f C.∘ g , D.id)
∎)
}
where
open E.≈-Reasoning
transposeBifunctor₁-resp : ∀ {F G}
→ F ≈ G
→ transposeBifunctor₁ F ≈ transposeBifunctor₁ G
transposeBifunctor₁-resp {F} {G} F≈G = record
{ iso = Fun.≈→≅ (Bifunctor→Functor₁-resp F≈G C.≅.refl)
; forth-natural = λ {c} {d} {f} → ≈-intro (
let open E.≈-Reasoning in
triangle (fmap G (f , D.id) E.∘ forth (iso F≈G))
( begin
((E.id E.∘ fmap G (C.id , D.id)) E.∘ forth (iso F≈G)) E.∘ fmap F (f , D.id)
≈⟨ E.∘-resp-l (E.≈.trans (E.∘-resp-l (E.≈.trans E.id-l (fmap-id G))) E.id-l) ⟩
forth (iso F≈G) E.∘ fmap F (f , D.id)
≈⟨ forth-natural F≈G ⟩
(fmap G (f , D.id) E.∘ forth (iso F≈G))
∎
)
( begin
fmap G (f , D.id) E.∘ (E.id E.∘ fmap G (C.id , D.id)) E.∘ forth (iso F≈G)
≈⟨ E.∘-resp-r (E.≈.trans (E.∘-resp-l (E.≈.trans E.id-l (fmap-id G))) E.id-l) ⟩
fmap G (f , D.id) E.∘ forth (iso F≈G)
∎
))
}
where
open E.≈-Reasoning
open NatIso using (iso ; forth-natural)
module _
{lo la l≈} {C : Category lo la l≈}
{lo′ la′ l≈′} {D : Category lo′ la′ l≈′}
{lo″ la″ l≈″} {E : Category lo″ la″ l≈″}
where
private
module C = Category C
module D = Category D
module E = Category E
Bifunctor→Functor₂ : Bifunctor C D E → D.Obj → Functor C E
Bifunctor→Functor₂ F x = Bifunctor→Functor₁ (F ∘ Swap) x
Bifunctor→Functor₂-resp : ∀ {F G x y}
→ F ≈ G
→ x D.≅ y
→ Bifunctor→Functor₂ F x ≈ Bifunctor→Functor₂ G y
Bifunctor→Functor₂-resp {F} {G} F≈G x≅y
= Bifunctor→Functor₁-resp {F = F ∘ Swap} {G = G ∘ Swap} (∘-resp F≈G refl) x≅y
where
open IsEquivalence equiv
transposeBifunctor₂ : Bifunctor C D E → Functor D (Fun C E)
transposeBifunctor₂ F = transposeBifunctor₁ (F ∘ Swap)
transposeBifunctor₂-resp : ∀ {F G}
→ F ≈ G → transposeBifunctor₂ F ≈ transposeBifunctor₂ G
transposeBifunctor₂-resp {F} {G} F≈G
= transposeBifunctor₁-resp {F = F ∘ Swap} {G = G ∘ Swap} (∘-resp F≈G refl)
where
open IsEquivalence equiv
|
{
"alphanum_fraction": 0.4645847176,
"avg_line_length": 33.296460177,
"ext": "agda",
"hexsha": "63a35ca97416c0f5ed48fcbf79659f9c74dd54e5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alessio-b-zak/cats",
"max_forks_repo_path": "Cats/Bifunctor.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alessio-b-zak/cats",
"max_issues_repo_path": "Cats/Bifunctor.agda",
"max_line_length": 92,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alessio-b-zak/cats",
"max_stars_repo_path": "Cats/Bifunctor.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3024,
"size": 7525
}
|
------------------------------------------------------------------------
-- Banker's queues (following Okasaki)
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Equality
module Queue.Bankers {c⁺} (eq : ∀ {a p} → Equality-with-J a p c⁺) where
open Derived-definitions-and-properties eq
open import Prelude
open import Bijection eq using (_↔_)
open import Erased.Without-box-cong eq as Erased hiding (map)
open import Function-universe eq hiding (id; _∘_)
open import List eq as L hiding (map)
open import Nat eq
open import Surjection eq using (_↠_)
open import Tactic.By.Parametrised eq
private
variable
a ℓ ℓ₁ ℓ₂ : Level
A B : Type a
p q x : A
f : A → B
b : Bool
xs : List A
------------------------------------------------------------------------
-- Queues
-- Queues.
--
-- Note that the invariant is erased.
record Queue (A : Type a) : Type a where
field
front rear : List A
length-front length-rear : ℕ
@0 length-invariant : length-rear ≤ length-front
@0 length-front≡ : length-front ≡ length front
@0 length-rear≡ : length-rear ≡ length rear
open Queue public
------------------------------------------------------------------------
-- Conversion functions
-- Converts queues to lists.
to-List : Queue A → List A
to-List q = q .front ++ reverse (q .rear)
-- Converts lists to queues.
from-List : List A → Queue A
from-List xs = record
{ front = xs
; rear = []
; length-front = length xs
; length-rear = 0
; length-invariant = zero≤ _
; length-front≡ = refl _
; length-rear≡ = refl _
}
-- The function from-List is a right inverse of to-List.
to-List-from-List : to-List (from-List xs) ≡ xs
to-List-from-List {xs = xs} =
xs ++ [] ≡⟨ ++-right-identity _ ⟩∎
xs ∎
------------------------------------------------------------------------
-- Queues with broken invariants
private
-- Queues where the invariant may have been broken (slightly).
record Almost-queue (A : Type a) : Type a where
field
front rear : List A
length-front length-rear : ℕ
@0 length-invariant : length-rear ≤ suc length-front
@0 length-front≡ : length-front ≡ length front
@0 length-rear≡ : length-rear ≡ length rear
open Almost-queue
-- Some conversion functions.
from-Almost-queue : Almost-queue A → List A
from-Almost-queue q = q .front ++ reverse (q .rear)
to-Almost-queue : Queue A → Almost-queue A
to-Almost-queue q = record
{ front = q .front
; rear = q .rear
; length-front = q .length-front
; length-rear = q .length-rear
; length-front≡ = q .length-front≡
; length-rear≡ = q .length-rear≡
; length-invariant = ≤-step (q .length-invariant)
}
-- Restores the invariant by rotating the queue, if necessary.
rotate′ :
(q : Almost-queue A) (b : Bool) →
@0 T b ↔ suc (q .length-front) ≡ q .length-rear →
Queue A
rotate′ q true _ = record
{ front = q .front ++ reverse (q .rear)
; rear = []
; length-front = q .length-front + q .length-rear
; length-rear = 0
; length-invariant = zero≤ _
; length-rear≡ = refl _
; length-front≡ =
⟨ q .length-front ⟩ + q .length-rear ≡⟨ ⟨by⟩ (q .length-front≡) ⟩
length (q .front) + ⟨ q .length-rear ⟩ ≡⟨ ⟨by⟩ (q .length-rear≡) ⟩
length (q .front) + ⟨ length (q .rear) ⟩ ≡⟨ ⟨by⟩ (length-reverse (q .rear)) ⟩
⟨ length (q .front) + length (reverse (q .rear)) ⟩ ≡⟨ ⟨by⟩ (length-++ (q .front)) ⟩∎
length (q .front ++ reverse (q .rear)) ∎
}
rotate′ q false 1+f≢r = record
{ front = q .front
; rear = q .rear
; length-front = q .length-front
; length-rear = q .length-rear
; length-front≡ = q .length-front≡
; length-rear≡ = q .length-rear≡
; length-invariant = case ≤→<⊎≡ (q .length-invariant) of λ @0 where
(inj₁ 1+r≤1+f) → suc≤suc⁻¹ 1+r≤1+f
(inj₂ r≡1+f) → ⊥-elim (_↔_.from 1+f≢r (sym r≡1+f))
}
rotate : Almost-queue A → Queue A
rotate q =
rotate′ q (suc (q .length-front) == q .length-rear) T[==]↔≡
to-List-rotate′ :
∀ b {p} → to-List (rotate′ q b p) ≡ from-Almost-queue q
to-List-rotate′ false = refl _
to-List-rotate′ {q = q} true =
(q .front ++ reverse (q .rear)) ++ [] ≡⟨ ++-right-identity _ ⟩∎
q .front ++ reverse (q .rear) ∎
to-List-rotate :
(q : Almost-queue A) → to-List (rotate q) ≡ from-Almost-queue q
to-List-rotate q =
to-List-rotate′ (suc (q .length-front) == q .length-rear)
------------------------------------------------------------------------
-- Queue operations
-- Enqueues an element.
enqueue : A → Queue A → Queue A
enqueue x q =
rotate (record (to-Almost-queue q)
{ rear = x ∷ q .rear
; length-rear = 1 + q .length-rear
; length-rear≡ = cong suc (q .length-rear≡)
; length-invariant = suc≤suc (q .length-invariant)
})
to-List-enqueue : ∀ q → to-List (enqueue x q) ≡ to-List q ++ x ∷ []
to-List-enqueue {x = x} q =
to-List (enqueue x q) ≡⟨ to-List-rotate (record
{ length-invariant = suc≤suc (q .length-invariant)
}) ⟩
q .front ++ ⟨ reverse (x ∷ q .rear) ⟩ ≡⟨ ⟨by⟩ (reverse-∷ (q .rear)) ⟩
q .front ++ (reverse (q .rear) ++ x ∷ []) ≡⟨ ++-associative (q .front) _ _ ⟩∎
(q .front ++ reverse (q .rear)) ++ x ∷ [] ∎
-- Dequeues an element, if possible.
dequeue : Queue A → Maybe (A × Queue A)
dequeue (record { front = [] }) = nothing
dequeue q@(record { front = x ∷ front
; length-front = suc length-front
}) =
just (x , rotate (record (to-Almost-queue q)
{ front = front
; length-front = length-front
; length-invariant = q .length-invariant
; length-front≡ = cancel-suc (q .length-front≡)
}))
dequeue {A = A}
q@(record { front = x ∷ front
; length-front = zero
}) = $⟨ [ q .length-front≡ ] ⟩
Erased (zero ≡ suc (length front)) ↝⟨ Erased.map 0≢+ ⟩
Erased ⊥ ↔⟨ Erased-⊥↔⊥ ⟩
⊥ ↝⟨ ⊥-elim ⟩□
Maybe (A × Queue A) □
to-List-dequeue :
(q : Queue A) →
⊎-map id (Σ-map id to-List) (dequeue q) ≡
_↔_.to List↔Maybe[×List] (to-List q)
to-List-dequeue (record { front = []; rear = [] }) = refl _
to-List-dequeue q@(record { front = []; rear = _ ∷ _ }) =
$⟨ [ q .length-invariant ] ⟩
Erased (q .length-rear ≤ q .length-front) ↝⟨ Erased.map (subst (_ ≤_) (q .length-front≡)) ⟩
Erased (q .length-rear ≤ 0) ↝⟨ Erased.map (subst (_≤ _) (q .length-rear≡)) ⟩
Erased (suc _ ≤ 0) ↝⟨ Erased.map (≮0 _) ⟩
Erased ⊥ ↔⟨ Erased-⊥↔⊥ ⟩
⊥ ↝⟨ ⊥-elim ⟩□
_ □
to-List-dequeue q@(record { front = x ∷ front
; length-front = suc length-front
}) =
cong (just ∘ (x ,_))
(to-List-rotate (record { length-invariant = q .length-invariant }))
to-List-dequeue q@(record { front = x ∷ front
; length-front = zero
}) = $⟨ [ q .length-front≡ ] ⟩
Erased (zero ≡ suc (length front)) ↝⟨ Erased.map 0≢+ ⟩
Erased ⊥ ↔⟨ Erased-⊥↔⊥ ⟩
⊥ ↝⟨ ⊥-elim ⟩□
_ □
-- The "inverse" of the dequeue operation.
dequeue⁻¹ : Maybe (A × Queue A) → Queue A
dequeue⁻¹ nothing = from-List []
dequeue⁻¹ (just (x , q)) = record q
{ front = x ∷ q .front
; length-front = suc (q .length-front)
; length-invariant = ≤-step (q .length-invariant)
; length-front≡ = cong suc (q .length-front≡)
}
to-List-dequeue⁻¹ :
(x : Maybe (A × Queue A)) →
to-List (dequeue⁻¹ x) ≡
_↔_.from List↔Maybe[×List] (⊎-map id (Σ-map id to-List) x)
to-List-dequeue⁻¹ nothing = refl _
to-List-dequeue⁻¹ (just _) = refl _
-- A map function.
map : (A → B) → Queue A → Queue B
map f q = record
{ front = L.map f (q .front)
; rear = L.map f (q .rear)
; length-front = q .length-front
; length-rear = q .length-rear
; length-invariant = q .length-invariant
; length-front≡ =
q .length-front ≡⟨ q .length-front≡ ⟩
⟨ length (q .front) ⟩ ≡⟨ ⟨by⟩ (length∘map _ (q .front)) ⟩∎
length (L.map f (q .front)) ∎
; length-rear≡ =
q .length-rear ≡⟨ q .length-rear≡ ⟩
⟨ length (q .rear) ⟩ ≡⟨ ⟨by⟩ (length∘map _ (q .rear)) ⟩∎
length (L.map f (q .rear)) ∎
}
to-List-map : ∀ q → to-List (map f q) ≡ L.map f (to-List q)
to-List-map {f = f} q =
L.map f (q .front) ++ ⟨ reverse (L.map f (q .rear)) ⟩ ≡⟨ ⟨by⟩ (map-reverse (q .rear)) ⟩
L.map f (q .front) ++ L.map f (reverse (q .rear)) ≡⟨ sym $ map-++ _ (q .front) _ ⟩∎
L.map f (q .front ++ reverse (q .rear)) ∎
|
{
"alphanum_fraction": 0.4812946616,
"avg_line_length": 34.4782608696,
"ext": "agda",
"hexsha": "09c856420b5b15acae1f69eb0c9841891bf9983d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Queue/Bankers.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Queue/Bankers.agda",
"max_line_length": 100,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Queue/Bankers.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 3064,
"size": 9516
}
|
open import Agda.Builtin.Reflection
open import Agda.Builtin.List
open import Agda.Builtin.Unit
data World : Set where
ww : World
test : Term → TC ⊤
test hole
= unify (con (quote ww) []) hole
HVet : Set₁
HVet = {@(tactic test) w : World} → Set
a : {HQ : HVet} → HQ → ⊤
a = _
|
{
"alphanum_fraction": 0.6501766784,
"avg_line_length": 16.6470588235,
"ext": "agda",
"hexsha": "72d809c604bc8cbfba4ac969d97b4a6e6c9c0bc8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue4170.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue4170.agda",
"max_line_length": 39,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue4170.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 97,
"size": 283
}
|
{-# OPTIONS --without-K --rewriting #-}
module JamesAll where
import JamesTwoMaps
import JamesFirstComposite
import JamesSecondComposite
import JamesContractibility
|
{
"alphanum_fraction": 0.8263473054,
"avg_line_length": 18.5555555556,
"ext": "agda",
"hexsha": "b93453a0e5ea45ff5e5e342df59709e18501e2ca",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "89fbc29473d2d1ed1a45c3c0e56288cdcf77050b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "guillaumebrunerie/JamesConstruction",
"max_forks_repo_path": "JamesAll.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "89fbc29473d2d1ed1a45c3c0e56288cdcf77050b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "guillaumebrunerie/JamesConstruction",
"max_issues_repo_path": "JamesAll.agda",
"max_line_length": 39,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "89fbc29473d2d1ed1a45c3c0e56288cdcf77050b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "guillaumebrunerie/JamesConstruction",
"max_stars_repo_path": "JamesAll.agda",
"max_stars_repo_stars_event_max_datetime": "2018-11-16T22:10:16.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-07T04:34:52.000Z",
"num_tokens": 34,
"size": 167
}
|
A : Set
A = ?
B : Set
B = ?
|
{
"alphanum_fraction": 0.3571428571,
"avg_line_length": 5.6,
"ext": "agda",
"hexsha": "5ead6bdd2f5349deb0d75395fb035f6d6e81a6d6",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue3082.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue3082.agda",
"max_line_length": 7,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue3082.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 14,
"size": 28
}
|
open import Level
open import Ordinals
module BAlgbra {n : Level } (O : Ordinals {n}) where
open import zf
open import logic
import OrdUtil
import OD
import ODUtil
import ODC
open import Relation.Nullary
open import Relation.Binary
open import Data.Empty
open import Relation.Binary
open import Relation.Binary.Core
open import Relation.Binary.PropositionalEquality
open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ; _+_ to _n+_ )
open inOrdinal O
open Ordinals.Ordinals O
open Ordinals.IsOrdinals isOrdinal
open Ordinals.IsNext isNext
open OrdUtil O
open ODUtil O
open OD O
open OD.OD
open ODAxiom odAxiom
open HOD
open _∧_
open _∨_
open Bool
--_∩_ : ( A B : HOD ) → HOD
--A ∩ B = record { od = record { def = λ x → odef A x ∧ odef B x } ;
-- odmax = omin (odmax A) (odmax B) ; <odmax = λ y → min1 (<odmax A (proj1 y)) (<odmax B (proj2 y)) }
_∪_ : ( A B : HOD ) → HOD
A ∪ B = record { od = record { def = λ x → odef A x ∨ odef B x } ;
odmax = omax (odmax A) (odmax B) ; <odmax = lemma } where
lemma : {y : Ordinal} → odef A y ∨ odef B y → y o< omax (odmax A) (odmax B)
lemma {y} (case1 a) = ordtrans (<odmax A a) (omax-x _ _)
lemma {y} (case2 b) = ordtrans (<odmax B b) (omax-y _ _)
_\_ : ( A B : HOD ) → HOD
A \ B = record { od = record { def = λ x → odef A x ∧ ( ¬ ( odef B x ) ) }; odmax = odmax A ; <odmax = λ y → <odmax A (proj1 y) }
∪-Union : { A B : HOD } → Union (A , B) ≡ ( A ∪ B )
∪-Union {A} {B} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where
lemma1 : {x : Ordinal} → odef (Union (A , B)) x → odef (A ∪ B) x
lemma1 {x} lt = lemma3 lt where
lemma4 : {y : Ordinal} → odef (A , B) y ∧ odef (* y) x → ¬ (¬ ( odef A x ∨ odef B x) )
lemma4 {y} z with proj1 z
lemma4 {y} z | case1 refl = double-neg (case1 ( subst (λ k → odef k x ) *iso (proj2 z)) )
lemma4 {y} z | case2 refl = double-neg (case2 ( subst (λ k → odef k x ) *iso (proj2 z)) )
lemma3 : (((u : Ordinal ) → ¬ odef (A , B) u ∧ odef (* u) x) → ⊥) → odef (A ∪ B) x
lemma3 not = ODC.double-neg-eilm O (FExists _ lemma4 not) -- choice
lemma2 : {x : Ordinal} → odef (A ∪ B) x → odef (Union (A , B)) x
lemma2 {x} (case1 A∋x) = subst (λ k → odef (Union (A , B)) k) &iso ( IsZF.union→ isZF (A , B) (* x) A
⟪ case1 refl , d→∋ A A∋x ⟫ )
lemma2 {x} (case2 B∋x) = subst (λ k → odef (Union (A , B)) k) &iso ( IsZF.union→ isZF (A , B) (* x) B
⟪ case2 refl , d→∋ B B∋x ⟫ )
∩-Select : { A B : HOD } → Select A ( λ x → ( A ∋ x ) ∧ ( B ∋ x ) ) ≡ ( A ∩ B )
∩-Select {A} {B} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where
lemma1 : {x : Ordinal} → odef (Select A (λ x₁ → (A ∋ x₁) ∧ (B ∋ x₁))) x → odef (A ∩ B) x
lemma1 {x} lt = ⟪ proj1 lt , subst (λ k → odef B k ) &iso (proj2 (proj2 lt)) ⟫
lemma2 : {x : Ordinal} → odef (A ∩ B) x → odef (Select A (λ x₁ → (A ∋ x₁) ∧ (B ∋ x₁))) x
lemma2 {x} lt = ⟪ proj1 lt , ⟪ d→∋ A (proj1 lt) , d→∋ B (proj2 lt) ⟫ ⟫
dist-ord : {p q r : HOD } → p ∩ ( q ∪ r ) ≡ ( p ∩ q ) ∪ ( p ∩ r )
dist-ord {p} {q} {r} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where
lemma1 : {x : Ordinal} → odef (p ∩ (q ∪ r)) x → odef ((p ∩ q) ∪ (p ∩ r)) x
lemma1 {x} lt with proj2 lt
lemma1 {x} lt | case1 q∋x = case1 ⟪ proj1 lt , q∋x ⟫
lemma1 {x} lt | case2 r∋x = case2 ⟪ proj1 lt , r∋x ⟫
lemma2 : {x : Ordinal} → odef ((p ∩ q) ∪ (p ∩ r)) x → odef (p ∩ (q ∪ r)) x
lemma2 {x} (case1 p∩q) = ⟪ proj1 p∩q , case1 (proj2 p∩q ) ⟫
lemma2 {x} (case2 p∩r) = ⟪ proj1 p∩r , case2 (proj2 p∩r ) ⟫
dist-ord2 : {p q r : HOD } → p ∪ ( q ∩ r ) ≡ ( p ∪ q ) ∩ ( p ∪ r )
dist-ord2 {p} {q} {r} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where
lemma1 : {x : Ordinal} → odef (p ∪ (q ∩ r)) x → odef ((p ∪ q) ∩ (p ∪ r)) x
lemma1 {x} (case1 cp) = ⟪ case1 cp , case1 cp ⟫
lemma1 {x} (case2 cqr) = ⟪ case2 (proj1 cqr) , case2 (proj2 cqr) ⟫
lemma2 : {x : Ordinal} → odef ((p ∪ q) ∩ (p ∪ r)) x → odef (p ∪ (q ∩ r)) x
lemma2 {x} lt with proj1 lt | proj2 lt
lemma2 {x} lt | case1 cp | _ = case1 cp
lemma2 {x} lt | _ | case1 cp = case1 cp
lemma2 {x} lt | case2 cq | case2 cr = case2 ⟪ cq , cr ⟫
record IsBooleanAlgebra ( L : Set n)
( b1 : L )
( b0 : L )
( -_ : L → L )
( _+_ : L → L → L )
( _x_ : L → L → L ) : Set (suc n) where
field
+-assoc : {a b c : L } → a + ( b + c ) ≡ (a + b) + c
x-assoc : {a b c : L } → a x ( b x c ) ≡ (a x b) x c
+-sym : {a b : L } → a + b ≡ b + a
-sym : {a b : L } → a x b ≡ b x a
+-aab : {a b : L } → a + ( a x b ) ≡ a
x-aab : {a b : L } → a x ( a + b ) ≡ a
+-dist : {a b c : L } → a + ( b x c ) ≡ ( a x b ) + ( a x c )
x-dist : {a b c : L } → a x ( b + c ) ≡ ( a + b ) x ( a + c )
a+0 : {a : L } → a + b0 ≡ a
ax1 : {a : L } → a x b1 ≡ a
a+-a1 : {a : L } → a + ( - a ) ≡ b1
ax-a0 : {a : L } → a x ( - a ) ≡ b0
record BooleanAlgebra ( L : Set n) : Set (suc n) where
field
b1 : L
b0 : L
-_ : L → L
_+_ : L → L → L
_x_ : L → L → L
isBooleanAlgebra : IsBooleanAlgebra L b1 b0 -_ _+_ _x_
|
{
"alphanum_fraction": 0.4854182655,
"avg_line_length": 42.3739837398,
"ext": "agda",
"hexsha": "5c1e8b0a845dd0c757c3b8f2ecea54b0103a1860",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/zf-in-agda",
"max_forks_repo_path": "src/BAlgbra.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/zf-in-agda",
"max_issues_repo_path": "src/BAlgbra.agda",
"max_line_length": 129,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/zf-in-agda",
"max_stars_repo_path": "src/BAlgbra.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-10T13:27:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-02T13:46:23.000Z",
"num_tokens": 2317,
"size": 5212
}
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import homotopy.CircleHSpace
open import homotopy.LoopSpaceCircle
import homotopy.Pi2HSusp as Pi2HSusp
open import homotopy.IterSuspensionStable
-- This summerizes all [πₙ Sⁿ]
module homotopy.PinSn where
πS-SphereS-iso-ℤ : ∀ n → πS n (⊙Sphere (S n)) ≃ᴳ ℤ-group
πS-SphereS-iso-ℤ 0 =
πS 0 ⊙S¹
≃ᴳ⟨ unTrunc-iso ΩS¹-group-structure ⟩
Ω^S-group 0 ⊙S¹
≃ᴳ⟨ ΩS¹-iso-ℤ ⟩
ℤ-group
≃ᴳ∎
πS-SphereS-iso-ℤ 1 =
πS 1 ⊙S²
≃ᴳ⟨ Pi2HSusp.π₂-Susp ⊙S¹-hSpace ⟩
πS 0 ⊙S¹
≃ᴳ⟨ πS-SphereS-iso-ℤ O ⟩
ℤ-group
≃ᴳ∎
πS-SphereS-iso-ℤ (S (S n)) =
πS (S (S n)) (⊙Sphere (S (S (S n))))
≃ᴳ⟨ Susp^StableSucc.stable
(S n) (S n) (≤-ap-S $ ≤-ap-S $ *2-increasing n)
(⊙Sphere (S (S n))) {{Sphere-conn (S (S n))}} ⟩
πS (S n) (⊙Sphere (S (S n)))
≃ᴳ⟨ πS-SphereS-iso-ℤ (S n) ⟩
ℤ-group
≃ᴳ∎
|
{
"alphanum_fraction": 0.5620280475,
"avg_line_length": 25.75,
"ext": "agda",
"hexsha": "81872d48aaf80327f201f61dea01370540aab656",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/PinSn.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/PinSn.agda",
"max_line_length": 58,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/PinSn.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 473,
"size": 927
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.