Search is not available for this dataset
text
string
meta
dict
{- Some basic utilities for reflection -} {-# OPTIONS --cubical --no-exact-split --safe #-} module Cubical.Reflection.Base where open import Cubical.Foundations.Prelude open import Cubical.Data.List.Base open import Cubical.Data.Nat.Base import Agda.Builtin.Reflection as R open import Agda.Builtin.String _>>=_ = R.bindTC _<|>_ = R.catchTC _$_ : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → (A → B) → A → B f $ a = f a _>>_ : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → R.TC A → R.TC B → R.TC B f >> g = f >>= λ _ → g infixl 4 _>>=_ _>>_ _<|>_ infixr 3 _$_ liftTC : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → (A → B) → R.TC A → R.TC B liftTC f ta = ta >>= λ a → R.returnTC (f a) v : ℕ → R.Term v n = R.var n [] pattern varg t = R.arg (R.arg-info R.visible R.relevant) t pattern harg t = R.arg (R.arg-info R.hidden R.relevant) t pattern _v∷_ a l = varg a ∷ l pattern _h∷_ a l = harg a ∷ l infixr 5 _v∷_ _h∷_ vlam : String → R.Term → R.Term vlam str t = R.lam R.visible (R.abs str t) newMeta = R.checkType R.unknown
{ "alphanum_fraction": 0.6067193676, "avg_line_length": 22, "ext": "agda", "hexsha": "9ddda9890fdda58b8f025a9c7e8679ffb6b2523e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/Reflection/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/Reflection/Base.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/Reflection/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 401, "size": 1012 }
-- Andreas, 2013-11-08 module Issue532 where module M (A : Set) where postulate ax : A P : A → Set record R (A : Set) : Set where open M A public field f : P ax open R -- Error WAS: -- Not a valid let-declaration -- when scope checking let open M A public in (f : P ax) → Set₀ S : {A : Set} → R A → Set S r = P r (ax r) -- Works now.
{ "alphanum_fraction": 0.5865921788, "avg_line_length": 15.5652173913, "ext": "agda", "hexsha": "a476d45e00971f186441be897904b193def06d76", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue532.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue532.agda", "max_line_length": 63, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue532.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 129, "size": 358 }
{-# OPTIONS --type-in-type #-} -- yes, there will be some cheating in this lecture module Lec4Done where open import Lec1Done open import Lec2Done open import Lec3Done -- the identity functor (the identity action on objects and arrows) ID : {C : Category} -> C => C ID = id~> where open Category CATEGORY -- composition of functors (composition of actions on objects and arrows) _>F>_ : {C D E : Category} -> (C => D) -> (D => E) -> (C => E) F >F> G = F >~> G where open Category CATEGORY -- EXAMPLES data Maybe (X : Set) : Set where yes : (x : X) -> Maybe X no : Maybe X maybe : {X Y : Set} -> (X -> Y) -> Maybe X -> Maybe Y maybe f (yes x) = yes (f x) maybe f no = no MAYBE : SET => SET MAYBE = record { F-Obj = Maybe ; F-map = maybe ; F-map-id~> = extensionality \ { (yes x) -> refl (yes x) ; no -> refl no } ; F-map->~> = \ f g -> extensionality \ { (yes x) -> refl (yes (g (f x))) ; no -> refl no } } module MAYBE-CAT where open Category SET open _=>_ MAYBE joinMaybe : {X : Set} -> Maybe (Maybe X) -> Maybe X joinMaybe no = no -- goes wrong sooner joinMaybe (yes mx) = mx -- maybe goes wrong later MAYBE-CAT : Category MAYBE-CAT = record { Obj = Set ; _~>_ = \ S T -> S -> Maybe T ; id~> = yes ; _>~>_ = \ f g -> f >~> maybe g >~> joinMaybe ; law-id~>>~> = \ f -> extensionality \ x -> help1 (f x) ; law->~>id~> = \ f -> extensionality \ x -> help2 (f x) ; law->~>>~> = \ f g h -> extensionality \ x -> help3 g h (f x) } where help1 : {T : Set} (w : Maybe T) -> joinMaybe (yes w) == w help1 mx = refl mx help2 : {T : Set} (w : Maybe T) -> joinMaybe (maybe yes w) == w help2 (yes x) = refl (yes x) help2 no = refl no help3 : {R S T : Set} (g : R -> Maybe S) (h : S -> Maybe T) (w : Maybe R) -> joinMaybe (maybe h (joinMaybe (maybe g w))) == joinMaybe (maybe (\ x -> joinMaybe (maybe h (g x))) w) help3 g h (yes x) with g x help3 g h (yes x) | yes y = refl (h y) help3 g h (yes x) | no = refl no help3 g h no = refl no module NATURAL-TRANSFORMATION {C D : Category} where open Category open _=>_ record _~~>_ (F G : C => D) : Set where field -- one operation xform : {X : Obj C} -> _~>_ D (F-Obj F X) (F-Obj G X) -- one law xform-natural : {X Y : Obj C}(f : _~>_ C X Y) -> _>~>_ D (F-map F f) (xform {Y}) == _>~>_ D (xform {X}) (F-map G f) module MAYBE-GADGETS where open NATURAL-TRANSFORMATION {SET}{SET} open Category SET open _=>_ MAYBE open _~~>_ unitMaybe : ID ~~> MAYBE unitMaybe = record { xform = yes ; xform-natural = \ f -> refl (f >~> yes) } multMaybe : (MAYBE >F> MAYBE) ~~> MAYBE multMaybe = record { xform = MAYBE-CAT.joinMaybe ; xform-natural = \ f -> extensionality \ { (yes (yes x)) -> refl (yes (f x)) ; (yes no) -> refl no ; no -> refl no } } law1 : {X : Set} -> (xform unitMaybe >~> xform multMaybe) == id~> {Maybe X} law1 = extensionality \ { (yes x) -> refl (yes x) ; no -> refl no } law2 : {X : Set} -> (F-map (xform unitMaybe) >~> xform multMaybe) == id~> {Maybe X} law2 = extensionality \ { (yes x) -> refl (yes x) ; no -> refl no } law3 : {X : Set} -> (xform multMaybe >~> xform multMaybe) == (F-map (xform multMaybe) >~> xform multMaybe {X}) law3 = extensionality \ { (yes (yes mx)) -> refl mx ; (yes no) -> refl no ; no -> refl no } MAYBE-CAT2 : Category MAYBE-CAT2 = record { Obj = Set ; _~>_ = \ S T -> S -> Maybe T ; id~> = xform unitMaybe ; _>~>_ = \ f g -> f >~> F-map g >~> xform multMaybe ; law-id~>>~> = \ f -> xform unitMaybe >~> F-map f >~> xform multMaybe =< law->~>>~> (xform unitMaybe) (F-map f) (xform multMaybe) ]= (xform unitMaybe >~> F-map f) >~> xform multMaybe =< refl (_>~> xform multMaybe) =$= xform-natural unitMaybe f ]= (f >~> xform unitMaybe) >~> xform multMaybe =[ law->~>>~> f (xform unitMaybe) (xform multMaybe) >= f >~> (xform unitMaybe >~> xform multMaybe) =[ refl (f >~>_) =$= law1 >= f >~> id~> =[ law->~>id~> f >= f [QED] ; law->~>id~> = \ f -> f >~> (F-map (xform unitMaybe) >~> xform multMaybe) =[ refl (f >~>_) =$= law2 >= f >~> id~> =[ law->~>id~> f >= f [QED] ; law->~>>~> = \ f g h -> (f >~> (F-map g >~> xform multMaybe)) >~> (F-map h >~> xform multMaybe) =[ law->~>>~> f (F-map g >~> xform multMaybe) (F-map h >~> xform multMaybe) >= f >~> (F-map g >~> xform multMaybe) >~> (F-map h >~> xform multMaybe) =[ refl (f >~>_) =$= ( (F-map g >~> xform multMaybe) >~> (F-map h >~> xform multMaybe) =[ law->~>>~> (F-map g) (xform multMaybe) (F-map h >~> xform multMaybe) >= F-map g >~> (xform multMaybe >~> (F-map h >~> xform multMaybe)) =[ refl (F-map g >~>_) =$= ( xform multMaybe >~> (F-map h >~> xform multMaybe) =< law->~>>~> (xform multMaybe) (F-map h) (xform multMaybe) ]= (xform multMaybe >~> F-map h) >~> xform multMaybe =< refl (_>~> xform multMaybe) =$= xform-natural multMaybe h ]= (F-map (F-map h) >~> xform multMaybe) >~> xform multMaybe =[ law->~>>~> (F-map (F-map h)) (xform multMaybe) (xform multMaybe) >= F-map (F-map h) >~> (xform multMaybe >~> xform multMaybe) =[ refl (F-map (F-map h) >~>_) =$= law3 >= F-map (F-map h) >~> (F-map (xform multMaybe) >~> xform multMaybe) =< law->~>>~> (F-map (F-map h)) (F-map (xform multMaybe)) (xform multMaybe) ]= (F-map (F-map h) >~> F-map (xform multMaybe)) >~> xform multMaybe =< refl (_>~> xform multMaybe) =$= F-map->~> (F-map h) (xform multMaybe) ]= (F-map (F-map h >~> xform multMaybe) >~> xform multMaybe) [QED] ) >= F-map g >~> (F-map (F-map h >~> xform multMaybe) >~> xform multMaybe) =< law->~>>~> (F-map g) (F-map (F-map h >~> xform multMaybe)) (xform multMaybe) ]= (F-map g >~> F-map (F-map h >~> xform multMaybe)) >~> xform multMaybe =< refl (_>~> xform multMaybe) =$= F-map->~> g (F-map h >~> xform multMaybe) ]= (F-map (g >~> F-map h >~> xform multMaybe) >~> xform multMaybe) [QED] ) >= (f >~> F-map (g >~> F-map h >~> xform multMaybe) >~> xform multMaybe) [QED] } module MONAD {C : Category}(M : C => C) where open NATURAL-TRANSFORMATION {C}{C} open Category C open _=>_ M open _~~>_ record Monad : Set where field unit : ID ~~> M mult : (M >F> M) ~~> M unitMult : {X : Obj} -> (xform unit >~> xform mult) == id~> {F-Obj X} multUnit : {X : Obj} -> (F-map (xform unit) >~> xform mult) == id~> {F-Obj X} multMult : {X : Obj} -> (xform mult >~> xform mult) == (F-map (xform mult) >~> xform mult {X}) KLEISLI : Category KLEISLI = record { Obj = Obj ; _~>_ = \ S T -> S ~> F-Obj T ; id~> = xform unit ; _>~>_ = \ f g -> f >~> F-map g >~> xform mult ; law-id~>>~> = \ f -> xform unit >~> F-map f >~> xform mult =< law->~>>~> (xform unit) (F-map f) (xform mult) ]= (xform unit >~> F-map f) >~> xform mult =< refl (_>~> xform mult) =$= xform-natural unit f ]= (f >~> xform unit) >~> xform mult =[ law->~>>~> f (xform unit) (xform mult) >= f >~> (xform unit >~> xform mult) =[ refl (f >~>_) =$= unitMult >= f >~> id~> =[ law->~>id~> f >= f [QED] ; law->~>id~> = \ f -> f >~> (F-map (xform unit) >~> xform mult) =[ refl (f >~>_) =$= multUnit >= f >~> id~> =[ law->~>id~> f >= f [QED] ; law->~>>~> = \ f g h -> (f >~> (F-map g >~> xform mult)) >~> (F-map h >~> xform mult) =[ law->~>>~> f (F-map g >~> xform mult) (F-map h >~> xform mult) >= f >~> (F-map g >~> xform mult) >~> (F-map h >~> xform mult) =[ refl (f >~>_) =$= ( (F-map g >~> xform mult) >~> (F-map h >~> xform mult) =[ law->~>>~> (F-map g) (xform mult) (F-map h >~> xform mult) >= F-map g >~> (xform mult >~> (F-map h >~> xform mult)) =[ refl (F-map g >~>_) =$= ( xform mult >~> (F-map h >~> xform mult) =< law->~>>~> (xform mult) (F-map h) (xform mult) ]= (xform mult >~> F-map h) >~> xform mult =< refl (_>~> xform mult) =$= xform-natural mult h ]= (F-map (F-map h) >~> xform mult) >~> xform mult =[ law->~>>~> (F-map (F-map h)) (xform mult) (xform mult) >= F-map (F-map h) >~> (xform mult >~> xform mult) =[ refl (F-map (F-map h) >~>_) =$= multMult >= F-map (F-map h) >~> (F-map (xform mult) >~> xform mult) =< law->~>>~> (F-map (F-map h)) (F-map (xform mult)) (xform mult) ]= (F-map (F-map h) >~> F-map (xform mult)) >~> xform mult =< refl (_>~> xform mult) =$= F-map->~> (F-map h) (xform mult) ]= (F-map (F-map h >~> xform mult) >~> xform mult) [QED] ) >= F-map g >~> (F-map (F-map h >~> xform mult) >~> xform mult) =< law->~>>~> (F-map g) (F-map (F-map h >~> xform mult)) (xform mult) ]= (F-map g >~> F-map (F-map h >~> xform mult)) >~> xform mult =< refl (_>~> xform mult) =$= F-map->~> g (F-map h >~> xform mult) ]= (F-map (g >~> F-map h >~> xform mult) >~> xform mult) [QED] ) >= (f >~> F-map (g >~> F-map h >~> xform mult) >~> xform mult) [QED] } data List (X : Set) : Set where [] : List X _,-_ : (x : X)(xs : List X) -> List X list : {X Y : Set} -> (X -> Y) -> List X -> List Y list f [] = [] list f (x ,- xs) = f x ,- list f xs LIST : SET => SET LIST = record { F-Obj = List ; F-map = list ; F-map-id~> = extensionality listId ; F-map->~> = \ f g -> extensionality (listCp f g) } where open Category SET listId : {T : Set}(xs : List T) -> list id xs == xs listId [] = refl [] listId (x ,- xs) = refl (_,-_ x) =$= listId xs listCp : {R S T : Set} (f : R -> S) (g : S -> T) (xs : List R) → list (f >~> g) xs == (list f >~> list g) xs listCp f g [] = refl [] listCp f g (x ,- xs) = refl (_,-_ (g (f x))) =$= listCp f g xs data Two : Set where tt ff : Two data BitProcess (X : Set) : Set where -- in what way is X used? stop : (x : X) -> BitProcess X -- stop with value x send : (b : Two)(k : BitProcess X) -> BitProcess X -- send b, continue as k recv : (kt kf : BitProcess X) -> BitProcess X -- receive bit, continue as -- kt if tt, kf if ff bpRun : forall {X} -> BitProcess X -- a process to run -> List Two -- a list of bits waiting to be input -> List Two -- the list of bits output * Maybe -- and, if we don't run out of input ( X -- the resulting value * List Two -- and the unused input ) bpRun (stop x) bs = [] , yes (x , bs) bpRun (send b k) bs with bpRun k bs bpRun (send b k) bs | os , yes (x , is) = (b ,- os) , yes (x , is) bpRun (send b k) bs | os , no = os , no bpRun (recv kt kf) [] = [] , no bpRun (recv kt kf) (tt ,- bs) = bpRun kt bs bpRun (recv kt kf) (ff ,- bs) = bpRun kf bs bitProcess : {X Y : Set} -> (X -> Y) -> BitProcess X -> BitProcess Y bitProcess f (stop x) = stop (f x) bitProcess f (send b k) = send b (bitProcess f k) bitProcess f (recv kt kf) = recv (bitProcess f kt) (bitProcess f kf) BITPROCESS : SET => SET -- actions on *values* lift to processes BITPROCESS = record { F-Obj = BitProcess ; F-map = bitProcess ; F-map-id~> = extensionality helpId ; F-map->~> = \ f g -> extensionality (helpCp f g) } where open Category SET helpId : {T : Set} (p : BitProcess T) -> bitProcess id p == p helpId (stop x) = refl (stop x) helpId (send b k) rewrite helpId k = refl (send b k) helpId (recv kt kf) rewrite helpId kt | helpId kf = refl (recv kt kf) helpCp : {R S T : Set} (f : R -> S)(g : S -> T) (p : BitProcess R) → bitProcess (f >~> g) p == (bitProcess f >~> bitProcess g) p helpCp f g (stop x) = refl (stop (g (f x))) helpCp f g (send b k) rewrite helpCp f g k = refl (send b (bitProcess g (bitProcess f k))) helpCp f g (recv kt kf) rewrite helpCp f g kt | helpCp f g kf = refl (recv (bitProcess g (bitProcess f kt)) (bitProcess g (bitProcess f kf)))
{ "alphanum_fraction": 0.469807313, "avg_line_length": 42.7987012987, "ext": "agda", "hexsha": "60373ac375aac2835c9fccb532b70b156c2be061", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec4Done.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec4Done.agda", "max_line_length": 100, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec4Done.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 4666, "size": 13182 }
data Bool : Set where true false : Bool {-# BUILTIN BOOL Bool #-} {-# BUILTIN TRUE true #-} {-# BUILTIN FALSE true #-} -- hmm, no
{ "alphanum_fraction": 0.5925925926, "avg_line_length": 16.875, "ext": "agda", "hexsha": "33b76c431b0118997af8d9c9511fc95623399faf", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/BuiltinTrueFalseDistinct.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/BuiltinTrueFalseDistinct.agda", "max_line_length": 38, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/BuiltinTrueFalseDistinct.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 38, "size": 135 }
-- WARNING: This file was generated automatically by Vehicle -- and should not be modified manually! -- Metadata -- - Agda version: 2.6.2 -- - AISEC version: 0.1.0.1 -- - Time generated: ??? {-# OPTIONS --allow-exec #-} open import Vehicle open import Vehicle.Data.Tensor open import Data.Product open import Data.Sum open import Data.Integer as ℤ using (ℤ) open import Data.Rational as ℚ using (ℚ) open import Data.Fin as Fin using (Fin; #_) open import Data.List open import Relation.Binary.PropositionalEquality open import Relation.Nullary module acasXu-temp-output where InputVector : Set InputVector = Tensor ℚ (5 ∷ []) distanceToIntruder : ∀ {_x0 : Set} {{_x1 : HasNatLits _x0}} → _x0 distanceToIntruder = 0 angleToIntruder : ∀ {_x4 : Set} {{_x5 : HasNatLits _x4}} → _x4 angleToIntruder = 1 intruderHeading : ∀ {_x8 : Set} {{_x9 : HasNatLits _x8}} → _x8 intruderHeading = 2 speed : ∀ {_x12 : Set} {{_x13 : HasNatLits _x12}} → _x12 speed = 3 intruderSpeed : ∀ {_x16 : Set} {{_x17 : HasNatLits _x16}} → _x16 intruderSpeed = 4 OutputVector : Set OutputVector = Tensor ℚ (5 ∷ []) clearOfConflict : ∀ {_x20 : Set} {{_x21 : HasNatLits _x20}} → _x20 clearOfConflict = 0 weakLeft : ∀ {_x24 : Set} {{_x25 : HasNatLits _x24}} → _x24 weakLeft = 1 weakRight : ∀ {_x28 : Set} {{_x29 : HasNatLits _x28}} → _x28 weakRight = 2 strongLeft : ∀ {_x32 : Set} {{_x33 : HasNatLits _x32}} → _x32 strongLeft = 3 strongRight : ∀ {_x36 : Set} {{_x37 : HasNatLits _x36}} → _x36 strongRight = 4 postulate acasXu : InputVector → OutputVector pi : ℚ pi = ℤ.+ 392699 ℚ./ 125000 Advises : Fin 5 → (InputVector → Set) Advises i x = ∀ (j : Fin 5) → i ≢ j → acasXu x i ℚ.< acasXu x j IntruderDistantAndSlower : InputVector → Set IntruderDistantAndSlower x = x distanceToIntruder ℚ.≥ ℤ.+ 55947691 ℚ./ 1000 × (x speed ℚ.≥ ℤ.+ 1145 ℚ./ 1 × x intruderSpeed ℚ.≤ ℤ.+ 60 ℚ./ 1) abstract property1 : ∀ (x : Tensor ℚ (5 ∷ [])) → IntruderDistantAndSlower x → acasXu x clearOfConflict ℚ.≤ ℤ.+ 1500 ℚ./ 1 property1 = checkSpecification record { proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp" } abstract property2 : ∀ (x : Tensor ℚ (5 ∷ [])) → IntruderDistantAndSlower x → ∃ λ (j : Fin 5) → acasXu x j ℚ.> acasXu x clearOfConflict property2 = checkSpecification record { proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp" } DirectlyAhead : InputVector → Set DirectlyAhead x = (ℤ.+ 1500 ℚ./ 1 ℚ.≤ x distanceToIntruder × x distanceToIntruder ℚ.≤ ℤ.+ 1800 ℚ./ 1) × (ℚ.- (ℤ.+ 3 ℚ./ 50) ℚ.≤ x angleToIntruder × x angleToIntruder ℚ.≤ ℤ.+ 3 ℚ./ 50) MovingTowards : InputVector → Set MovingTowards x = x intruderHeading ℚ.≥ ℤ.+ 31 ℚ./ 10 × (x speed ℚ.≥ ℤ.+ 980 ℚ./ 1 × x intruderSpeed ℚ.≥ ℤ.+ 960 ℚ./ 1) abstract property3 : ∀ (x : Tensor ℚ (5 ∷ [])) → DirectlyAhead x × MovingTowards x → ¬ Advises clearOfConflict x property3 = checkSpecification record { proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp" } MovingAway : InputVector → Set MovingAway x = x intruderHeading ≡ ℤ.+ 0 ℚ./ 1 × (ℤ.+ 1000 ℚ./ 1 ℚ.≤ x speed × (ℤ.+ 700 ℚ./ 1 ℚ.≤ x intruderSpeed × x intruderSpeed ℚ.≤ ℤ.+ 800 ℚ./ 1)) abstract property4 : ∀ (x : Tensor ℚ (5 ∷ [])) → DirectlyAhead x × MovingAway x → ¬ Advises clearOfConflict x property4 = checkSpecification record { proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp" } NearAndApproachingFromLeft : InputVector → Set NearAndApproachingFromLeft x = (ℤ.+ 250 ℚ./ 1 ℚ.≤ x distanceToIntruder × x distanceToIntruder ℚ.≤ ℤ.+ 400 ℚ./ 1) × ((ℤ.+ 1 ℚ./ 5 ℚ.≤ x angleToIntruder × x angleToIntruder ℚ.≤ ℤ.+ 2 ℚ./ 5) × ((ℚ.- pi ℚ.≤ x intruderHeading × x intruderHeading ℚ.≤ ℚ.- pi ℚ.+ ℤ.+ 1 ℚ./ 200) × ((ℤ.+ 100 ℚ./ 1 ℚ.≤ x speed × x speed ℚ.≤ ℤ.+ 400 ℚ./ 1) × (ℤ.+ 0 ℚ./ 1 ℚ.≤ x intruderSpeed × x intruderSpeed ℚ.≤ ℤ.+ 400 ℚ./ 1)))) abstract property5 : ∀ (x : Tensor ℚ (5 ∷ [])) → NearAndApproachingFromLeft x → Advises strongRight x property5 = checkSpecification record { proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp" } IntruderFarAway : InputVector → Set IntruderFarAway x = (ℤ.+ 12000 ℚ./ 1 ℚ.≤ x distanceToIntruder × x distanceToIntruder ℚ.≤ ℤ.+ 62000 ℚ./ 1) × ((ℚ.- pi ℚ.≤ x angleToIntruder × x angleToIntruder ℚ.≤ ℚ.- (ℤ.+ 7 ℚ./ 10) ⊎ ℤ.+ 7 ℚ./ 10 ℚ.≤ x angleToIntruder × x angleToIntruder ℚ.≤ pi) × ((ℚ.- pi ℚ.≤ x intruderHeading × x intruderHeading ℚ.≤ ℚ.- pi ℚ.+ ℤ.+ 1 ℚ./ 200) × ((ℤ.+ 100 ℚ./ 1 ℚ.≤ x speed × x speed ℚ.≤ ℤ.+ 1200 ℚ./ 1) × (ℤ.+ 0 ℚ./ 1 ℚ.≤ x intruderSpeed × x intruderSpeed ℚ.≤ ℤ.+ 1200 ℚ./ 1)))) abstract property6 : ∀ (x : Tensor ℚ (5 ∷ [])) → IntruderFarAway x → Advises clearOfConflict x property6 = checkSpecification record { proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp" } LargeVerticalSeparation : InputVector → Set LargeVerticalSeparation x = (ℤ.+ 0 ℚ./ 1 ℚ.≤ x distanceToIntruder × x distanceToIntruder ℚ.≤ ℤ.+ 60760 ℚ./ 1) × ((ℚ.- pi ℚ.≤ x angleToIntruder × x angleToIntruder ℚ.≤ pi) × ((ℚ.- pi ℚ.≤ x intruderHeading × x intruderHeading ℚ.≤ pi) × ((ℤ.+ 100 ℚ./ 1 ℚ.≤ x speed × x speed ℚ.≤ ℤ.+ 1200 ℚ./ 1) × (ℤ.+ 0 ℚ./ 1 ℚ.≤ x intruderSpeed × x intruderSpeed ℚ.≤ ℤ.+ 1200 ℚ./ 1)))) abstract property7 : ∀ (x : Tensor ℚ (5 ∷ [])) → LargeVerticalSeparation x → ¬ Advises strongLeft x × ¬ Advises strongRight x property7 = checkSpecification record { proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp" } LargeVerticalSeparationAndPreviousWeakLeft : InputVector → Set LargeVerticalSeparationAndPreviousWeakLeft x = (ℤ.+ 0 ℚ./ 1 ℚ.≤ x distanceToIntruder × x distanceToIntruder ℚ.≤ ℤ.+ 60760 ℚ./ 1) × ((ℚ.- pi ℚ.≤ x angleToIntruder × x angleToIntruder ℚ.≤ ℚ.- (ℤ.+ 3 ℚ./ 4) ℚ.* pi) × ((ℚ.- (ℤ.+ 1 ℚ./ 10) ℚ.≤ x intruderHeading × x intruderHeading ℚ.≤ ℤ.+ 1 ℚ./ 10) × ((ℤ.+ 600 ℚ./ 1 ℚ.≤ x speed × x speed ℚ.≤ ℤ.+ 1200 ℚ./ 1) × (ℤ.+ 600 ℚ./ 1 ℚ.≤ x intruderSpeed × x intruderSpeed ℚ.≤ ℤ.+ 1200 ℚ./ 1)))) abstract property8 : ∀ (x : Tensor ℚ (5 ∷ [])) → LargeVerticalSeparationAndPreviousWeakLeft x → Advises clearOfConflict x ⊎ Advises weakLeft x property8 = checkSpecification record { proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp" } PreviousWeakRightAndNearbyIntruder : InputVector → Set PreviousWeakRightAndNearbyIntruder x = (ℤ.+ 2000 ℚ./ 1 ℚ.≤ x distanceToIntruder × x distanceToIntruder ℚ.≤ ℤ.+ 7000 ℚ./ 1) × ((ℚ.- (ℤ.+ 2 ℚ./ 5) ℚ.≤ x angleToIntruder × x angleToIntruder ℚ.≤ ℚ.- (ℤ.+ 7 ℚ./ 50)) × ((ℚ.- pi ℚ.≤ x intruderHeading × x intruderHeading ℚ.≤ ℚ.- pi ℚ.+ ℤ.+ 1 ℚ./ 100) × ((ℤ.+ 100 ℚ./ 1 ℚ.≤ x speed × x speed ℚ.≤ ℤ.+ 150 ℚ./ 1) × (ℤ.+ 0 ℚ./ 1 ℚ.≤ x intruderSpeed × x intruderSpeed ℚ.≤ ℤ.+ 150 ℚ./ 1)))) abstract property9 : ∀ (x : Tensor ℚ (5 ∷ [])) → PreviousWeakRightAndNearbyIntruder x → Advises strongLeft x property9 = checkSpecification record { proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp" } IntruderFarAway2 : InputVector → Set IntruderFarAway2 x = (ℤ.+ 36000 ℚ./ 1 ℚ.≤ x distanceToIntruder × x distanceToIntruder ℚ.≤ ℤ.+ 60760 ℚ./ 1) × ((ℤ.+ 7 ℚ./ 10 ℚ.≤ x angleToIntruder × x angleToIntruder ℚ.≤ pi) × ((ℚ.- pi ℚ.≤ x intruderHeading × x intruderHeading ℚ.≤ ℚ.- pi ℚ.+ ℤ.+ 1 ℚ./ 100) × ((ℤ.+ 900 ℚ./ 1 ℚ.≤ x speed × x speed ℚ.≤ ℤ.+ 1200 ℚ./ 1) × (ℤ.+ 600 ℚ./ 1 ℚ.≤ x intruderSpeed × x intruderSpeed ℚ.≤ ℤ.+ 1200 ℚ./ 1)))) abstract property10 : ∀ (x : Tensor ℚ (5 ∷ [])) → IntruderFarAway2 x → Advises clearOfConflict x property10 = checkSpecification record { proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp" }
{ "alphanum_fraction": 0.6557008852, "avg_line_length": 48.8322580645, "ext": "agda", "hexsha": "f6f885b8f36dff0de4e6bd3324bd479aa5fb29c9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vehicle-lang/vehicle", "max_forks_repo_path": "test/Test/Compile/Golden/acasXu/acasXu-output.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0", "max_issues_repo_issues_event_max_datetime": "2022-03-31T20:49:39.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-07T14:09:13.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "vehicle-lang/vehicle", "max_issues_repo_path": "test/Test/Compile/Golden/acasXu/acasXu-output.agda", "max_line_length": 465, "max_stars_count": 9, "max_stars_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "vehicle-lang/vehicle", "max_stars_repo_path": "test/Test/Compile/Golden/acasXu/acasXu-output.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-17T18:51:05.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-10T12:56:42.000Z", "num_tokens": 3171, "size": 7569 }
------------------------------------------------------------------------------ -- Colist properties ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Data.Colist.PropertiesI where open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.Colist ------------------------------------------------------------------------------ -- Because a greatest post-fixed point is a fixed-point, then the -- Colist predicate is also a pre-fixed point of the functional -- ColistF, i.e. -- -- ColistF Colist ≤ Colist (see FOTC.Data.Colist.Type). Colist-in : ∀ {xs} → xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ Colist xs') → Colist xs Colist-in h = Colist-coind A h' h where A : D → Set A xs = xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ Colist xs') h' : ∀ {xs} → A xs → xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs') h' (inj₁ xs≡[]) = inj₁ xs≡[] h' (inj₂ (x' , xs' , prf , Clxs')) = inj₂ (x' , xs' , prf , Colist-out Clxs')
{ "alphanum_fraction": 0.4268808115, "avg_line_length": 34.7941176471, "ext": "agda", "hexsha": "fe030373c9764985d9b1d4ee2832a47d62f98303", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Data/Colist/PropertiesI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Data/Colist/PropertiesI.agda", "max_line_length": 79, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Data/Colist/PropertiesI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 348, "size": 1183 }
module _ where open import Agda.Builtin.Nat open import Agda.Builtin.Equality module M (n : Nat) (m : Nat) where foo : n ≡ 0 → Nat foo refl = 0 module M' where bar : Nat bar = m bad : Nat bad = M'.bar -- internal error Monad.Signature:882
{ "alphanum_fraction": 0.6194029851, "avg_line_length": 15.7647058824, "ext": "agda", "hexsha": "88a038043e9f9f2507e6120c6042a5efe205bfdd", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2897b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2897b.agda", "max_line_length": 52, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2897b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 91, "size": 268 }
module OldBasicILP.Syntax.Translation where open import Common.Context public import OldBasicILP.Syntax.ClosedHilbertSequential as CHS import OldBasicILP.Syntax.ClosedHilbert as CH -- Translation from closed Hilbert-style sequential to closed Hilbert-style. mutual chsᵀ→chᵀ : CHS.Ty → CH.Ty chsᵀ→chᵀ (CHS.α P) = CH.α P chsᵀ→chᵀ (A CHS.▻ B) = chsᵀ→chᵀ A CH.▻ chsᵀ→chᵀ B chsᵀ→chᵀ (p CHS.⦂ A) = chsᴾ→chᴾ p CH.⦂ chsᵀ→chᵀ A chsᵀ→chᵀ (A CHS.∧ B) = chsᵀ→chᵀ A CH.∧ chsᵀ→chᵀ B chsᵀ→chᵀ CHS.⊤ = CH.⊤ chsᴾ→chᴾ : ∀ {Ξ A} → CHS.Proof Ξ A → CH.Proof (chsᵀ→chᵀ A) chsᴾ→chᴾ CHS.[ d ] = CH.[ chsᴰ→ch d top ] chsᴰ→ch : ∀ {Ξ A} → CHS.⊢ᴰ Ξ → A ∈ Ξ → CH.⊢ (chsᵀ→chᵀ A) chsᴰ→ch (CHS.mp i j d) top = CH.app (chsᴰ→ch d i) (chsᴰ→ch d j) chsᴰ→ch (CHS.ci d) top = CH.ci chsᴰ→ch (CHS.ck d) top = CH.ck chsᴰ→ch (CHS.cs d) top = CH.cs chsᴰ→ch (CHS.nec `d d) top = CH.box (chsᴰ→ch `d top) chsᴰ→ch (CHS.cdist {Ξ} {A} {B} {`Ξ₁} {`Ξ₂} {`d₁} {`d₂} d) top = oops {A} {B} {`Ξ₁} {`Ξ₂} {`d₁} {`d₂} chsᴰ→ch (CHS.cup d) top = CH.cup chsᴰ→ch (CHS.cdown d) top = CH.cdown chsᴰ→ch (CHS.cpair d) top = CH.cpair chsᴰ→ch (CHS.cfst d) top = CH.cfst chsᴰ→ch (CHS.csnd d) top = CH.csnd chsᴰ→ch (CHS.unit d) top = CH.unit chsᴰ→ch (CHS.mp i j d) (pop k) = chsᴰ→ch d k chsᴰ→ch (CHS.ci d) (pop k) = chsᴰ→ch d k chsᴰ→ch (CHS.ck d) (pop k) = chsᴰ→ch d k chsᴰ→ch (CHS.cs d) (pop k) = chsᴰ→ch d k chsᴰ→ch (CHS.nec `d d) (pop k) = chsᴰ→ch d k chsᴰ→ch (CHS.cdist d) (pop k) = chsᴰ→ch d k chsᴰ→ch (CHS.cup d) (pop k) = chsᴰ→ch d k chsᴰ→ch (CHS.cdown d) (pop k) = chsᴰ→ch d k chsᴰ→ch (CHS.cpair d) (pop k) = chsᴰ→ch d k chsᴰ→ch (CHS.cfst d) (pop k) = chsᴰ→ch d k chsᴰ→ch (CHS.csnd d) (pop k) = chsᴰ→ch d k chsᴰ→ch (CHS.unit d) (pop k) = chsᴰ→ch d k -- FIXME: I can’t even postulate this. -- postulate -- ᴬlem₁ : ∀ {Ξ₁ Ξ₂ A B} {d₁ : CHS.⊢ᴰ Ξ₁ , A CHS.▻ B} {d₂ : CHS.⊢ᴰ Ξ₂ , A} -- → chsᴰ→ch (CHS.appᴰ d₁ d₂) ≡ CH.app (chsᴰ→ch d₁ top) (chsᴰ→ch d₂ top) postulate oops : ∀ {A B Ξ₁ Ξ₂} {d₁ : CHS.⊢ᴰ Ξ₁ , A CHS.▻ B} {d₂ : CHS.⊢ᴰ Ξ₂ , A} → CH.⊢ chsᴾ→chᴾ CHS.[ d₁ ] CH.⦂ (chsᵀ→chᵀ A CH.▻ chsᵀ→chᵀ B) CH.▻ chsᴾ→chᴾ CHS.[ d₂ ] CH.⦂ chsᵀ→chᵀ A CH.▻ chsᴾ→chᴾ CHS.[ CHS.appᴰ d₁ d₂ ] CH.⦂ chsᵀ→chᵀ B chs→ch : ∀ {A} → CHS.⊢ A → CH.⊢ (chsᵀ→chᵀ A) chs→ch (Ξ , d) = chsᴰ→ch d top -- Translation from closed Hilbert-style to closed Hilbert-style sequential. mutual chᵀ→chsᵀ : CH.Ty → CHS.Ty chᵀ→chsᵀ (CH.α P) = CHS.α P chᵀ→chsᵀ (A CH.▻ B) = chᵀ→chsᵀ A CHS.▻ chᵀ→chsᵀ B chᵀ→chsᵀ (p CH.⦂ A) with chᴾ→chsᴾ p chᵀ→chsᵀ (p CH.⦂ A) | (Ξ , p′) = p′ CHS.⦂ chᵀ→chsᵀ A chᵀ→chsᵀ (A CH.∧ B) = chᵀ→chsᵀ A CHS.∧ chᵀ→chsᵀ B chᵀ→chsᵀ CH.⊤ = CHS.⊤ chᴾ→chsᴾ : ∀ {A} → CH.Proof A → ∃ (λ Ξ → CHS.Proof Ξ (chᵀ→chsᵀ A)) chᴾ→chsᴾ CH.[ d ] with ch→chs d chᴾ→chsᴾ CH.[ d ] | (Ξ , d′) = Ξ , CHS.[ d′ ] ch→chs : ∀ {A} → CH.⊢ A → CHS.⊢ (chᵀ→chsᵀ A) ch→chs (CH.app d₁ d₂) = CHS.app (ch→chs d₁) (ch→chs d₂) ch→chs CH.ci = ∅ , CHS.ci CHS.nil ch→chs CH.ck = ∅ , CHS.ck CHS.nil ch→chs CH.cs = ∅ , CHS.cs CHS.nil ch→chs (CH.box d) = CHS.box (ch→chs d) ch→chs CH.cdist = ∅ , CHS.cdist CHS.nil ch→chs CH.cup = ∅ , CHS.cup CHS.nil ch→chs CH.cdown = ∅ , CHS.cdown CHS.nil ch→chs CH.cpair = ∅ , CHS.cpair CHS.nil ch→chs CH.cfst = ∅ , CHS.cfst CHS.nil ch→chs CH.csnd = ∅ , CHS.csnd CHS.nil ch→chs CH.unit = ∅ , CHS.unit CHS.nil
{ "alphanum_fraction": 0.5410063942, "avg_line_length": 39.5274725275, "ext": "agda", "hexsha": "8c9042120d5e23658e1b4cdc565441d80bf66ffc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "OldBasicILP/Syntax/Translation.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "OldBasicILP/Syntax/Translation.agda", "max_line_length": 102, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "OldBasicILP/Syntax/Translation.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 2136, "size": 3597 }
-- No top-level module f : Set₁ f = Set
{ "alphanum_fraction": 0.5952380952, "avg_line_length": 7, "ext": "agda", "hexsha": "86d8d9b6a990c6823ad01412b496783f03567e5f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue953.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue953.agda", "max_line_length": 22, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue953.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 16, "size": 42 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use -- Data.Vec.Relation.Binary.Equality.Setoid directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Data.Vec.Relation.Equality.Setoid {a ℓ} (S : Setoid a ℓ) where open import Data.Vec.Relation.Binary.Equality.Setoid S public
{ "alphanum_fraction": 0.5105485232, "avg_line_length": 29.625, "ext": "agda", "hexsha": "5299d434f1f90a7129bb14942e06583063272c00", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Equality/Setoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Equality/Setoid.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Equality/Setoid.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 91, "size": 474 }
useful-lemma : ∀ {a} {A : Set a} → A useful-lemma = useful-lemma
{ "alphanum_fraction": 0.6153846154, "avg_line_length": 21.6666666667, "ext": "agda", "hexsha": "90b20d7a53a39629d003e17cdaea2f1a64e43811", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Fail/Safe-flag-only-scope-checking-2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Fail/Safe-flag-only-scope-checking-2.agda", "max_line_length": 36, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Fail/Safe-flag-only-scope-checking-2.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 27, "size": 65 }
------------------------------------------------------------------------ -- Very stable booleans ------------------------------------------------------------------------ {-# OPTIONS --cubical --safe #-} -- The module is parametrised by a notion of equality. The higher -- constructor of the HIT defining the very stable booleans uses path -- equality, but the supplied notion of equality is used for other -- things. import Equality.Path as P module Bool.Very-stable {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq hiding (elim) import Equality.Path.Univalence as PU open import Prelude as Bool hiding (true; false) open import Bijection equality-with-J using (_↔_) import Bijection P.equality-with-J as PB open import Equality.Decision-procedures equality-with-J open import Equality.Path.Isomorphisms eq open import Equality.Path.Isomorphisms.Univalence eq open import Equivalence equality-with-J as Eq using (_≃_) open import Erased.Cubical eq as Erased import Erased.Cubical P.equality-with-paths as PE open import Function-universe equality-with-J hiding (_∘_) open import Injection equality-with-J using (Injective) private variable a p : Level A : Type a P : A → Type p b f r r-[] t : A ------------------------------------------------------------------------ -- Very stable booleans -- Very stable booleans. -- -- This type uses a construction due to Thierry Coquand and Fabian -- Ruch. I think this construction is a variant of a construction due -- to Rijke, Shulman and Spitters (see "Modalities in Homotopy Type -- Theory"). data B̃ool : Type where true false : B̃ool stable : Erased B̃ool → B̃ool stable-[]ᴾ : (b : B̃ool) → stable [ b ] P.≡ b -- The constructor stable is a left inverse of [_]. stable-[] : (b : B̃ool) → stable [ b ] ≡ b stable-[] = _↔_.from ≡↔≡ ∘ stable-[]ᴾ -- B̃ool is very stable. Very-stable-B̃ool : Very-stable B̃ool Very-stable-B̃ool = Stable→Left-inverse→Very-stable stable stable-[] ------------------------------------------------------------------------ -- Eliminators -- A dependent eliminator, expressed using paths. elimᴾ : (P : B̃ool → Type p) → P true → P false → (r : ∀ b → Erased (P (erased b)) → P (stable b)) → (∀ b (p : P b) → P.[ (λ i → P (stable-[]ᴾ b i)) ] r [ b ] [ p ] ≡ p) → ∀ b → P b elimᴾ P t f r r-[] = λ where true → t false → f (stable b) → r b [ elimᴾ P t f r r-[] (erased b) ] (stable-[]ᴾ b i) → r-[] b (elimᴾ P t f r r-[] b) i -- A non-dependent eliminator, expressed using paths. recᴾ : A → A → (r : Erased B̃ool → Erased A → A) → (∀ b p → r [ b ] [ p ] P.≡ p) → B̃ool → A recᴾ = elimᴾ _ -- A dependent eliminator, expressed using equality. elim : (P : B̃ool → Type p) → P true → P false → (r : ∀ b → Erased (P (erased b)) → P (stable b)) → (∀ b (p : P b) → subst P (stable-[] b) (r [ b ] [ p ]) ≡ p) → ∀ b → P b elim P t f r r-[] = elimᴾ P t f r (λ b p → subst≡→[]≡ (r-[] b p)) -- A "computation" rule. elim-stable-[] : dcong (elim P t f r r-[]) (stable-[] b) ≡ r-[] b (elim P t f r r-[] b) elim-stable-[] = dcong-subst≡→[]≡ (refl _) -- A non-dependent eliminator, expressed using equality. rec : A → A → (r : Erased B̃ool → Erased A → A) → (∀ b p → r [ b ] [ p ] ≡ p) → B̃ool → A rec t f r r-[] = recᴾ t f r (λ b p → _↔_.to ≡↔≡ (r-[] b p)) -- A "computation" rule. rec-stable-[] : cong (rec t f r r-[]) (stable-[] b) ≡ r-[] b (rec t f r r-[] b) rec-stable-[] = cong-≡↔≡ (refl _) -- A dependent eliminator that can be used when eliminating into very -- stable type families. elim-Very-stable : (P : B̃ool → Type p) → P true → P false → (∀ b → Very-stable (P b)) → ∀ b → P b elim-Very-stable P t f s = elim P t f (λ b → Erased (P (erased b)) ↝⟨ Erased.map (subst P ( erased b ≡⟨ sym $ stable-[] (erased b) ⟩∎ stable b ∎)) ⟩ Erased (P (stable b)) ↝⟨ Very-stable→Stable 0 (s (stable b)) ⟩□ P (stable b) □) (λ b p → Very-stable→Stable 1 (Very-stable→Very-stable-≡ 0 (s b)) _ _ [ subst P (stable-[] b) (_≃_.from Eq.⟨ _ , s (stable [ b ]) ⟩ [ subst P (sym $ stable-[] b) p ]) ≡⟨ cong (subst P (stable-[] b)) $ sym $ _≃_.left-inverse-unique Eq.⟨ _ , s (stable [ b ]) ⟩ erased refl _ ⟩ subst P (stable-[] b) (erased [ subst P (sym $ stable-[] b) p ]) ≡⟨⟩ subst P (stable-[] b) (subst P (sym $ stable-[] b) p) ≡⟨ subst-subst-sym _ _ _ ⟩∎ p ∎ ]) -- A non-dependent eliminator that can be used when eliminating into -- very stable type families. rec-Very-stable : A → A → Very-stable A → B̃ool → A rec-Very-stable t f s = elim-Very-stable _ t f (λ _ → s) ------------------------------------------------------------------------ -- Some properties private module Dummy where -- A function mapping very stable booleans to types: true is mapped -- to the unit type and false to the empty type. private T̃′ : B̃ool → Σ Type Very-stable T̃′ = rec-Very-stable (⊤ , Very-stable-⊤) (⊥ , Very-stable-⊥) (Very-stable-∃-Very-stable ext univ) T̃ : B̃ool → Type T̃ = proj₁ ∘ T̃′ -- Some computation rules that hold by definition. _ : T̃ true ≡ ⊤ _ = refl _ _ : T̃ false ≡ ⊥ _ = refl _ -- The output of T̃ is very stable. Very-stable-T̃ : ∀ b → Very-stable (T̃ b) Very-stable-T̃ = proj₂ ∘ T̃′ -- The values true and false are not equal. true≢false : true ≢ false true≢false = true ≡ false ↝⟨ cong T̃ ⟩ T̃ true ≡ T̃ false ↔⟨⟩ ⊤ ≡ ⊥ ↝⟨ (λ eq → ≡⇒↝ _ eq _) ⟩□ ⊥ □ module Alternative-T̃ where -- A direct implementation of T̃. private T̃′ : B̃ool → Σ Type PE.Very-stable T̃ : B̃ool → Type T̃ b = proj₁ (T̃′ b) Very-stable-T̃ : ∀ b → PE.Very-stable (T̃ b) Very-stable-T̃ b = proj₂ (T̃′ b) T̃′ true = ⊤ , PE.Very-stable-⊤ T̃′ false = ⊥ , PE.Very-stable-⊥ T̃′ (stable [ b ]) = PE.Erased (T̃ b) , PE.Very-stable-Erased T̃′ (stable-[]ᴾ b i) = lemma₁ i , lemma₂ i where lemma₁ : PE.Erased (T̃ b) P.≡ T̃ b lemma₁ = PU.≃⇒≡ (PE.Very-stable→Stable 0 (Very-stable-T̃ b)) lemma₂ : P.[ (λ i → PE.Very-stable (lemma₁ i)) ] PE.Very-stable-Erased ≡ Very-stable-T̃ b lemma₂ = P.heterogeneous-irrelevance₀ (PE.Very-stable-propositional P.ext) -- Some computation rules that hold by definition. _ : T̃ true ≡ ⊤ _ = refl _ _ : T̃ false ≡ ⊥ _ = refl _ _ : T̃ (stable [ b ]) ≡ PE.Erased (T̃ b) _ = refl _ open Dummy public -- A function from booleans to very stable booleans. from-Bool : Bool → B̃ool from-Bool = if_then true else false -- The function from-Bool is injective. -- -- This lemma was suggested by Mike Shulman. from-Bool-injective : Injective from-Bool from-Bool-injective {x = Bool.true} {y = Bool.true} = λ _ → refl _ from-Bool-injective {x = Bool.true} {y = Bool.false} = ⊥-elim ∘ true≢false from-Bool-injective {x = Bool.false} {y = Bool.true} = ⊥-elim ∘ true≢false ∘ sym from-Bool-injective {x = Bool.false} {y = Bool.false} = λ _ → refl _ -- B̃ool is equivalent to Erased Bool. -- -- This lemma was suggested by Mike Shulman. B̃ool≃Erased-Bool : B̃ool ≃ Erased Bool B̃ool≃Erased-Bool = Eq.↔⇒≃ (record { surjection = record { logical-equivalence = record { to = to ; from = from } ; right-inverse-of = λ b → Very-stable→Stable 0 (Very-stable→Very-stable-≡ 0 Very-stable-Erased _ _) [ to (from b) ≡⟨⟩ to (stable [ from-Bool (erased b) ]) ≡⟨ cong to (stable-[] _) ⟩ to (from-Bool (erased b)) ≡⟨ lemma (erased b) ⟩ [ erased b ] ≡⟨⟩ b ∎ ] } ; left-inverse-of = elim-Very-stable _ (stable-[] true) (stable-[] false) (λ _ → Very-stable→Very-stable-≡ 0 Very-stable-B̃ool _ _) }) where to = rec-Very-stable [ Bool.true ] [ Bool.false ] Very-stable-Erased from = stable ∘ Erased.map from-Bool lemma : ∀ b → to (from-Bool b) ≡ [ b ] lemma Bool.true = refl _ lemma Bool.false = refl _ ------------------------------------------------------------------------ -- An example private -- At the time of writing it is unclear if there is a reasonable way -- to compile very stable booleans. The constructors true and false -- are distinct, and it is reasonable to think that a compiler will -- compile them in different ways. Now consider the following two -- very stable booleans: b₁ : B̃ool b₁ = stable [ true ] b₂ : B̃ool b₂ = stable [ false ] -- The first one is equal to true, and the second one is equal to -- false: _ : b₁ ≡ true _ = stable-[] true _ : b₂ ≡ false _ = stable-[] false -- However, unlike the constructors true and false, b₁ and b₂ should -- be compiled in the same way, because the argument to [_] is -- erased. -- One question, raised by Andrea Vezzosi, is whether it is possible -- to write a program that gives /observably/ different results -- (after erasure) for true and false. If this is the case, then the -- erasure mechanism is not well-behaved.
{ "alphanum_fraction": 0.5397970924, "avg_line_length": 28.4553571429, "ext": "agda", "hexsha": "cdfd63ed2c03a5d44b97eeff4ecf7ea8650a13b0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Bool/Very-stable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Bool/Very-stable.agda", "max_line_length": 136, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Bool/Very-stable.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 3225, "size": 9561 }
import Nat open Nat using (Nat) module TopLevelImport (n : Nat) where it : Nat it = n
{ "alphanum_fraction": 0.6354166667, "avg_line_length": 9.6, "ext": "agda", "hexsha": "7fc17e269db9e3785bec1916d3808226a5f41c2e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/TopLevelImport.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/TopLevelImport.agda", "max_line_length": 37, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/TopLevelImport.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 32, "size": 96 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.Equiv.Reasoning where open import Cubical.Foundations.Prelude using (refl; sym) open import Cubical.Relation.Binary -- Properties of equivalence ≃-reflexive : Reflexive _≃_ ≃-reflexive = ?
{ "alphanum_fraction": 0.7527675277, "avg_line_length": 22.5833333333, "ext": "agda", "hexsha": "11825a6e1946841094f5cc455b3c1e7bfef55b17", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Foundations/Equiv/Reasoning.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Foundations/Equiv/Reasoning.agda", "max_line_length": 57, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Foundations/Equiv/Reasoning.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 77, "size": 271 }
------------------------------------------------------------------------ -- Context extensions with the leftmost element in the outermost -- position ------------------------------------------------------------------------ open import Data.Universe.Indexed module deBruijn.Context.Extension.Left {i u e} (Uni : IndexedUniverse i u e) where import deBruijn.Context.Basics as Basics import deBruijn.Context.Extension.Right as Right open import Function open import Level using (_⊔_) open import Relation.Binary.PropositionalEquality as P using (_≡_) open Basics Uni open Right Uni open P.≡-Reasoning ------------------------------------------------------------------------ -- Context extensions along with various operations making use of them -- Context extensions. infixr 5 _◅_ data Ctxt₊ (Γ : Ctxt) : Set (i ⊔ u ⊔ e) where ε : Ctxt₊ Γ _◅_ : (σ : Type Γ) (Γ₊ : Ctxt₊ (Γ ▻ σ)) → Ctxt₊ Γ -- A synonym. ε₊[_] : (Γ : Ctxt) → Ctxt₊ Γ ε₊[ _ ] = ε -- Appends a context extension to a context. infixl 5 _++₊_ _++₊_ : (Γ : Ctxt) → Ctxt₊ Γ → Ctxt Γ ++₊ ε = Γ Γ ++₊ (σ ◅ Γ₊) = Γ ▻ σ ++₊ Γ₊ -- The following operations append a context extension to a context -- extension. infixl 5 _₊++₊_ _⁺++₊_ _₊++₊_ : ∀ {Γ} Γ₊ → Ctxt₊ (Γ ++₊ Γ₊) → Ctxt₊ Γ ε ₊++₊ Γ₊₊ = Γ₊₊ (σ ◅ Γ₊) ₊++₊ Γ₊₊ = σ ◅ (Γ₊ ₊++₊ Γ₊₊) _⁺++₊_ : ∀ {Γ} Γ⁺ → Ctxt₊ (Γ ++⁺ Γ⁺) → Ctxt₊ Γ ε ⁺++₊ Γ₊ = Γ₊ Γ⁺ ▻ σ ⁺++₊ Γ₊ = Γ⁺ ⁺++₊ (σ ◅ Γ₊) -- Application of context morphisms to context extensions. infixl 8 _/̂₊_ _/̂₊_ : ∀ {Γ Δ} → Ctxt₊ Γ → Γ ⇨̂ Δ → Ctxt₊ Δ ε /̂₊ ρ̂ = ε (σ ◅ Γ₊) /̂₊ ρ̂ = σ /̂ ρ̂ ◅ Γ₊ /̂₊ ρ̂ ↑̂ -- N-ary lifting of context morphisms. infixl 10 _↑̂₊_ _↑̂₊_ : ∀ {Γ Δ} (ρ̂ : Γ ⇨̂ Δ) Γ₊ → Γ ++₊ Γ₊ ⇨̂ Δ ++₊ Γ₊ /̂₊ ρ̂ ρ̂ ↑̂₊ ε = ρ̂ ρ̂ ↑̂₊ (σ ◅ Γ₊) = ρ̂ ↑̂ ↑̂₊ Γ₊ -- N-ary weakening. ŵk₊ : ∀ {Γ} Γ₊ → Γ ⇨̂ Γ ++₊ Γ₊ ŵk₊ ε = îd ŵk₊ (σ ◅ Γ₊) = ŵk[ σ ] ∘̂ ŵk₊ Γ₊ ------------------------------------------------------------------------ -- Equality -- Equality of context extensions. record [Ctxt₊] : Set (i ⊔ u ⊔ e) where constructor [_] field {Γ} : Ctxt Γ₊ : Ctxt₊ Γ infix 4 _≅-Ctxt₊_ _≅-Ctxt₊_ : ∀ {Γ₁} (Γ₊₁ : Ctxt₊ Γ₁) {Γ₂} (Γ₊₂ : Ctxt₊ Γ₂) → Set _ Γ₊₁ ≅-Ctxt₊ Γ₊₂ = _≡_ {A = [Ctxt₊]} [ Γ₊₁ ] [ Γ₊₂ ] ≅-Ctxt₊-⇒-≡ : ∀ {Γ} {Γ₊₁ Γ₊₂ : Ctxt₊ Γ} → Γ₊₁ ≅-Ctxt₊ Γ₊₂ → Γ₊₁ ≡ Γ₊₂ ≅-Ctxt₊-⇒-≡ P.refl = P.refl -- Certain uses of substitutivity can be removed. drop-subst-Ctxt₊ : ∀ {a} {A : Set a} {x₁ x₂} (f : A → Ctxt) {Γ₊} (x₁≡x₂ : x₁ ≡ x₂) → P.subst (λ x → Ctxt₊ (f x)) x₁≡x₂ Γ₊ ≅-Ctxt₊ Γ₊ drop-subst-Ctxt₊ f P.refl = P.refl ------------------------------------------------------------------------ -- Some congruences ε₊-cong : ∀ {Γ₁ Γ₂} → Γ₁ ≅-Ctxt Γ₂ → ε₊[ Γ₁ ] ≅-Ctxt₊ ε₊[ Γ₂ ] ε₊-cong P.refl = P.refl ◅-cong : ∀ {Γ₁ σ₁} {Γ₊₁ : Ctxt₊ (Γ₁ ▻ σ₁)} {Γ₂ σ₂} {Γ₊₂ : Ctxt₊ (Γ₂ ▻ σ₂)} → Γ₊₁ ≅-Ctxt₊ Γ₊₂ → σ₁ ◅ Γ₊₁ ≅-Ctxt₊ σ₂ ◅ Γ₊₂ ◅-cong P.refl = P.refl ++₊-cong : ∀ {Γ₁} {Γ₊₁ : Ctxt₊ Γ₁} {Γ₂} {Γ₊₂ : Ctxt₊ Γ₂} → Γ₊₁ ≅-Ctxt₊ Γ₊₂ → Γ₁ ++₊ Γ₊₁ ≅-Ctxt Γ₂ ++₊ Γ₊₂ ++₊-cong P.refl = P.refl ₊++₊-cong : ∀ {Γ₁ Γ₊₁} {Γ₊₊₁ : Ctxt₊ (Γ₁ ++₊ Γ₊₁)} {Γ₂ Γ₊₂} {Γ₊₊₂ : Ctxt₊ (Γ₂ ++₊ Γ₊₂)} → Γ₊₁ ≅-Ctxt₊ Γ₊₂ → Γ₊₊₁ ≅-Ctxt₊ Γ₊₊₂ → Γ₊₁ ₊++₊ Γ₊₊₁ ≅-Ctxt₊ Γ₊₂ ₊++₊ Γ₊₊₂ ₊++₊-cong P.refl P.refl = P.refl ⁺++₊-cong : ∀ {Γ₁ Γ⁺₁} {Γ₊₁ : Ctxt₊ (Γ₁ ++⁺ Γ⁺₁)} {Γ₂ Γ⁺₂} {Γ₊₂ : Ctxt₊ (Γ₂ ++⁺ Γ⁺₂)} → Γ⁺₁ ≅-Ctxt⁺ Γ⁺₂ → Γ₊₁ ≅-Ctxt₊ Γ₊₂ → Γ⁺₁ ⁺++₊ Γ₊₁ ≅-Ctxt₊ Γ⁺₂ ⁺++₊ Γ₊₂ ⁺++₊-cong P.refl P.refl = P.refl /̂₊-cong : ∀ {Γ₁ Δ₁} {Γ₊₁ : Ctxt₊ Γ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {Γ₂ Δ₂} {Γ₊₂ : Ctxt₊ Γ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} → Γ₊₁ ≅-Ctxt₊ Γ₊₂ → ρ̂₁ ≅-⇨̂ ρ̂₂ → Γ₊₁ /̂₊ ρ̂₁ ≅-Ctxt₊ Γ₊₂ /̂₊ ρ̂₂ /̂₊-cong P.refl P.refl = P.refl ↑̂₊-cong : ∀ {Γ₁ Δ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {Γ₊₁ : Ctxt₊ Γ₁} {Γ₂ Δ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {Γ₊₂ : Ctxt₊ Γ₂} → ρ̂₁ ≅-⇨̂ ρ̂₂ → Γ₊₁ ≅-Ctxt₊ Γ₊₂ → ρ̂₁ ↑̂₊ Γ₊₁ ≅-⇨̂ ρ̂₂ ↑̂₊ Γ₊₂ ↑̂₊-cong P.refl P.refl = P.refl ŵk₊-cong : ∀ {Γ₁} {Γ₊₁ : Ctxt₊ Γ₁} {Γ₂} {Γ₊₂ : Ctxt₊ Γ₂} → Γ₊₁ ≅-Ctxt₊ Γ₊₂ → ŵk₊ Γ₊₁ ≅-⇨̂ ŵk₊ Γ₊₂ ŵk₊-cong P.refl = P.refl ------------------------------------------------------------------------ -- Some properties abstract -- Γ ++₊_ has at most one right identity. private ++₊-right-identity-unique′ : ∀ {Γ} Γ⁺ Γ₊ → Γ ≅-Ctxt Γ ++⁺ Γ⁺ ++₊ Γ₊ → Γ₊ ≅-Ctxt₊ ε₊[ Γ ++⁺ Γ⁺ ] ++₊-right-identity-unique′ Γ⁺ ε _ = P.refl ++₊-right-identity-unique′ Γ⁺ (σ ◅ Γ₊) eq with ++₊-right-identity-unique′ (Γ⁺ ▻ σ) Γ₊ eq ++₊-right-identity-unique′ Γ⁺ (σ ◅ .ε) eq | P.refl with ++⁺-right-identity-unique (Γ⁺ ▻ σ) eq ... | () ++₊-right-identity-unique : ∀ {Γ} Γ₊ → Γ ≅-Ctxt Γ ++₊ Γ₊ → Γ₊ ≅-Ctxt₊ ε₊[ Γ ] ++₊-right-identity-unique Γ₊ = ++₊-right-identity-unique′ ε Γ₊ -- Γ ++₊_ is left cancellative. private cancel-++₊-left′ : ∀ {Γ} Γ⁺₁ Γ₊₁ Γ⁺₂ Γ₊₂ → Γ ++⁺ Γ⁺₁ ++₊ Γ₊₁ ≅-Ctxt Γ ++⁺ Γ⁺₂ ++₊ Γ₊₂ → Γ⁺₁ ⁺++₊ Γ₊₁ ≅-Ctxt₊ Γ⁺₂ ⁺++₊ Γ₊₂ cancel-++₊-left′ Γ⁺₁ ε Γ⁺₂ ε eq = ⁺++₊-cong (cancel-++⁺-left Γ⁺₁ Γ⁺₂ eq) (ε₊-cong eq) cancel-++₊-left′ Γ⁺₁ (σ₁ ◅ Γ₊₁) Γ⁺₂ (σ₂ ◅ Γ₊₂) eq = cancel-++₊-left′ (Γ⁺₁ ▻ σ₁) Γ₊₁ (Γ⁺₂ ▻ σ₂) Γ₊₂ eq cancel-++₊-left′ Γ⁺₁ ε Γ⁺₂ (σ₂ ◅ Γ₊₂) eq = cancel-++₊-left′ Γ⁺₁ ε (Γ⁺₂ ▻ σ₂) Γ₊₂ eq cancel-++₊-left′ Γ⁺₁ (σ₁ ◅ Γ₊₁) Γ⁺₂ ε eq = cancel-++₊-left′ (Γ⁺₁ ▻ σ₁) Γ₊₁ Γ⁺₂ ε eq cancel-++₊-left : ∀ {Γ} (Γ₊₁ Γ₊₂ : Ctxt₊ Γ) → Γ ++₊ Γ₊₁ ≅-Ctxt Γ ++₊ Γ₊₂ → Γ₊₁ ≅-Ctxt₊ Γ₊₂ cancel-++₊-left Γ₊₁ Γ₊₂ = cancel-++₊-left′ ε Γ₊₁ ε Γ₊₂ -- _++₊_/_₊++₊_ are associative. ++₊-++₊ : ∀ {Γ} Γ₊ Γ₊₊ → Γ ++₊ Γ₊ ++₊ Γ₊₊ ≅-Ctxt Γ ++₊ (Γ₊ ₊++₊ Γ₊₊) ++₊-++₊ ε Γ₊₊ = P.refl ++₊-++₊ (σ ◅ Γ₊) Γ₊₊ = ++₊-++₊ Γ₊ Γ₊₊ -- The identity substitution has no effect. /̂₊-îd : ∀ {Γ} (Γ₊ : Ctxt₊ Γ) → Γ₊ /̂₊ îd ≅-Ctxt₊ Γ₊ /̂₊-îd ε = P.refl /̂₊-îd (σ ◅ Γ₊) = ◅-cong (/̂₊-îd Γ₊) -- The n-ary lifting of the identity substitution is the identity -- substitution. îd-↑̂₊ : ∀ {Γ} (Γ₊ : Ctxt₊ Γ) → îd ↑̂₊ Γ₊ ≅-⇨̂ îd[ Γ ++₊ Γ₊ ] îd-↑̂₊ ε = P.refl îd-↑̂₊ (σ ◅ Γ₊) = begin [ îd ↑̂ ↑̂₊ Γ₊ ] ≡⟨ P.refl ⟩ [ îd ↑̂₊ Γ₊ ] ≡⟨ îd-↑̂₊ Γ₊ ⟩ [ îd ] ∎ -- The identity substitution has no effect even if lifted. /̂-îd-↑̂₊ : ∀ {Γ} Γ₊ (σ : Type (Γ ++₊ Γ₊)) → σ /̂ îd ↑̂₊ Γ₊ ≅-Type σ /̂-îd-↑̂₊ Γ₊ σ = begin [ σ /̂ îd ↑̂₊ Γ₊ ] ≡⟨ /̂-cong (P.refl {x = [ σ ]}) (îd-↑̂₊ Γ₊) ⟩ [ σ /̂ îd ] ≡⟨ P.refl ⟩ [ σ ] ∎ -- Applying two substitutions is equivalent to applying their -- composition. /̂₊-∘̂ : ∀ {Γ Δ Ε} Γ₊ (ρ̂₁ : Γ ⇨̂ Δ) (ρ̂₂ : Δ ⇨̂ Ε) → Γ₊ /̂₊ ρ̂₁ ∘̂ ρ̂₂ ≅-Ctxt₊ Γ₊ /̂₊ ρ̂₁ /̂₊ ρ̂₂ /̂₊-∘̂ ε ρ̂₁ ρ̂₂ = P.refl /̂₊-∘̂ (σ ◅ Γ₊) ρ̂₁ ρ̂₂ = ◅-cong (/̂₊-∘̂ Γ₊ (ρ̂₁ ↑̂) (ρ̂₂ ↑̂)) -- _↑̂₊_ distributes over _∘̂_. ∘̂-↑̂₊ : ∀ {Γ Δ Ε} (ρ̂₁ : Γ ⇨̂ Δ) (ρ̂₂ : Δ ⇨̂ Ε) Γ₊ → (ρ̂₁ ∘̂ ρ̂₂) ↑̂₊ Γ₊ ≅-⇨̂ ρ̂₁ ↑̂₊ Γ₊ ∘̂ ρ̂₂ ↑̂₊ (Γ₊ /̂₊ ρ̂₁) ∘̂-↑̂₊ ρ̂₁ ρ̂₂ ε = P.refl ∘̂-↑̂₊ ρ̂₁ ρ̂₂ (σ ◅ Γ₊) = begin [ (ρ̂₁ ∘̂ ρ̂₂) ↑̂ ↑̂₊ Γ₊ ] ≡⟨ P.refl ⟩ [ (ρ̂₁ ↑̂ ∘̂ ρ̂₂ ↑̂) ↑̂₊ Γ₊ ] ≡⟨ ∘̂-↑̂₊ (ρ̂₁ ↑̂) (ρ̂₂ ↑̂) Γ₊ ⟩ [ (ρ̂₁ ↑̂ ↑̂₊ Γ₊) ∘̂ (ρ̂₂ ↑̂ ↑̂₊ (Γ₊ /̂₊ ρ̂₁ ↑̂)) ] ∎ -- A corollary. /̂-↑̂₊-/̂-ŵk-↑̂₊ : ∀ {Γ Δ} σ (ρ̂ : Γ ⇨̂ Δ) (Γ₊ : Ctxt₊ Γ) τ → τ /̂ ρ̂ ↑̂₊ Γ₊ /̂ ŵk[ σ /̂ ρ̂ ] ↑̂₊ (Γ₊ /̂₊ ρ̂) ≅-Type τ /̂ ŵk[ σ ] ↑̂₊ Γ₊ /̂ ρ̂ ↑̂ ↑̂₊ (Γ₊ /̂₊ ŵk) /̂-↑̂₊-/̂-ŵk-↑̂₊ σ ρ̂ Γ₊ τ = /̂-cong (P.refl {x = [ τ ]}) (begin [ ρ̂ ↑̂₊ Γ₊ ∘̂ ŵk ↑̂₊ (Γ₊ /̂₊ ρ̂) ] ≡⟨ P.sym $ ∘̂-↑̂₊ ρ̂ ŵk Γ₊ ⟩ [ (ρ̂ ∘̂ ŵk) ↑̂₊ Γ₊ ] ≡⟨ P.refl ⟩ [ (ŵk[ σ ] ∘̂ ρ̂ ↑̂) ↑̂₊ Γ₊ ] ≡⟨ ∘̂-↑̂₊ ŵk[ σ ] (ρ̂ ↑̂) Γ₊ ⟩ [ ŵk[ σ ] ↑̂₊ Γ₊ ∘̂ ρ̂ ↑̂ ↑̂₊ (Γ₊ /̂₊ ŵk) ] ∎) -- ŵk₊ commutes (modulo lifting) with arbitrary context morphisms. ∘̂-ŵk₊ : ∀ {Γ Δ} (ρ̂ : Γ ⇨̂ Δ) Γ₊ → ρ̂ ∘̂ ŵk₊ (Γ₊ /̂₊ ρ̂) ≅-⇨̂ ŵk₊ Γ₊ ∘̂ ρ̂ ↑̂₊ Γ₊ ∘̂-ŵk₊ ρ̂ ε = P.refl ∘̂-ŵk₊ ρ̂ (σ ◅ Γ₊) = begin [ ρ̂ ∘̂ ŵk ∘̂ ŵk₊ (Γ₊ /̂₊ ρ̂ ↑̂) ] ≡⟨ P.refl ⟩ [ ŵk[ σ ] ∘̂ ρ̂ ↑̂ ∘̂ ŵk₊ (Γ₊ /̂₊ ρ̂ ↑̂) ] ≡⟨ ∘̂-cong (P.refl {x = [ ŵk ]}) (∘̂-ŵk₊ (ρ̂ ↑̂) Γ₊) ⟩ [ ŵk ∘̂ ŵk₊ Γ₊ ∘̂ ρ̂ ↑̂ ↑̂₊ Γ₊ ] ∎ -- ŵk₊ is homomorphic with respect to _₊++₊_/_∘̂_. ŵk₊-₊++₊ : ∀ {Γ} (Γ₊ : Ctxt₊ Γ) (Γ₊₊ : Ctxt₊ (Γ ++₊ Γ₊)) → ŵk₊ (Γ₊ ₊++₊ Γ₊₊) ≅-⇨̂ ŵk₊ Γ₊ ∘̂ ŵk₊ Γ₊₊ ŵk₊-₊++₊ ε Γ₊₊ = P.refl ŵk₊-₊++₊ (σ ◅ Γ₊) Γ₊₊ = ∘̂-cong (P.refl {x = [ ŵk ]}) (ŵk₊-₊++₊ Γ₊ Γ₊₊) -- Two n-ary liftings can be merged into one. ↑̂₊-₊++₊ : ∀ {Γ Δ} (ρ̂ : Γ ⇨̂ Δ) Γ₊ Γ₊₊ → ρ̂ ↑̂₊ (Γ₊ ₊++₊ Γ₊₊) ≅-⇨̂ ρ̂ ↑̂₊ Γ₊ ↑̂₊ Γ₊₊ ↑̂₊-₊++₊ ρ̂ ε Γ₊₊ = P.refl ↑̂₊-₊++₊ ρ̂ (σ ◅ Γ₊) Γ₊₊ = ↑̂₊-₊++₊ (ρ̂ ↑̂) Γ₊ Γ₊₊ -- _/̂₊_ distributes over _₊++₊_ (sort of). ++₊-₊++₊-/̂₊ : ∀ {Γ Δ} (ρ̂ : Γ ⇨̂ Δ) Γ₊ Γ₊₊ → Δ ++₊ (Γ₊ ₊++₊ Γ₊₊) /̂₊ ρ̂ ≅-Ctxt Δ ++₊ Γ₊ /̂₊ ρ̂ ++₊ Γ₊₊ /̂₊ ρ̂ ↑̂₊ Γ₊ ++₊-₊++₊-/̂₊ ρ̂ ε Γ₊₊ = P.refl ++₊-₊++₊-/̂₊ {Δ = Δ} ρ̂ (σ ◅ Γ₊) Γ₊₊ = ++₊-₊++₊-/̂₊ (ρ̂ ↑̂) Γ₊ Γ₊₊
{ "alphanum_fraction": 0.3661956522, "avg_line_length": 33.2129963899, "ext": "agda", "hexsha": "987ade6696c5d622d2b3bf964d873fd8b26ecc65", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/dependently-typed-syntax", "max_forks_repo_path": "deBruijn/Context/Extension/Left.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/dependently-typed-syntax", "max_issues_repo_path": "deBruijn/Context/Extension/Left.agda", "max_line_length": 107, "max_stars_count": 5, "max_stars_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/dependently-typed-syntax", "max_stars_repo_path": "deBruijn/Context/Extension/Left.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-08T22:51:36.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T12:14:44.000Z", "num_tokens": 5900, "size": 9200 }
{- Macros (autoDesc, AutoStructure, AutoEquivStr, autoUnivalentStr) for automatically generating structure definitions. For example: autoDesc (λ (X : Type₀) → X → X × ℕ) ↦ recvar (var , constant ℕ) We prefer to use the constant structure whenever possible, e.g., [autoDesc (λ (X : Type₀) → ℕ → ℕ)] is [constant (ℕ → ℕ)] rather than [param ℕ (constant ℕ)]. Writing [auto* (λ X → ⋯)] doesn't seem to work, but [auto* (λ (X : Type ℓ) → ⋯)] does. -} {-# OPTIONS --cubical --no-exact-split --safe #-} module Cubical.Structures.Auto where open import Cubical.Foundations.Prelude open import Cubical.Data.Sigma open import Cubical.Data.Nat open import Cubical.Data.List open import Cubical.Data.Bool open import Cubical.Data.Maybe open import Cubical.Structures.Macro as Macro import Agda.Builtin.Reflection as R -- Magic number private FUEL = 10000 -- Mark part of a structure definition as functorial abstract Funct[_] : ∀ {ℓ} → Type ℓ → Type ℓ Funct[ A ] = A -- Some reflection utilities private _>>=_ = R.bindTC _<|>_ = R.catchTC _>>_ : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → R.TC A → R.TC B → R.TC B f >> g = f >>= λ _ → g infixl 4 _>>=_ _>>_ _<|>_ varg : ∀ {ℓ} {A : Type ℓ} → A → R.Arg A varg = R.arg (R.arg-info R.visible R.relevant) tLevel = R.def (quote Level) [] tType : R.Term → R.Term tType ℓ = R.def (quote Type) [ varg ℓ ] tFuncDesc : R.Term → R.Term tFuncDesc ℓ = R.def (quote FuncDesc) [ varg ℓ ] tDesc : R.Term → R.Term tDesc ℓ = R.def (quote Desc) [ varg ℓ ] func : (ℓ ℓ' : Level) → Type (ℓ-suc (ℓ-max ℓ ℓ')) func ℓ ℓ' = Type ℓ → Type ℓ' tStruct : R.Term → R.Term → R.Term tStruct ℓ ℓ' = R.def (quote func) (varg ℓ ∷ varg ℓ' ∷ []) newMeta = R.checkType R.unknown -- We try to build a descriptor by unifying the provided structure with combinators we're aware of. We -- redefine the structure combinators as the *Shape terms below so that we don't depend on the specific way -- these are defined in other files (order of implicit arguments and so on); the syntactic analysis that goes -- on here means that we would get mysterious errors if those changed. private constantShape : ∀ {ℓ'} (ℓ : Level) (A : Type ℓ') → (Type ℓ → Type ℓ') constantShape _ A _ = A pointedShape : (ℓ : Level) → Type ℓ → Type ℓ pointedShape _ X = X joinShape : ∀ {ℓ₀ ℓ₁} (ℓ : Level) → (Type ℓ → Type ℓ₀) → (Type ℓ → Type ℓ₁) → Type ℓ → Type (ℓ-max ℓ₀ ℓ₁) joinShape _ A₀ A₁ X = A₀ X × A₁ X paramShape : ∀ {ℓ₀ ℓ'} (ℓ : Level) → Type ℓ' → (Type ℓ → Type ℓ₀) → Type ℓ → Type (ℓ-max ℓ' ℓ₀) paramShape _ A A₀ X = A → A₀ X recvarShape : ∀ {ℓ₀} (ℓ : Level) → (Type ℓ → Type ℓ₀) → Type ℓ → Type (ℓ-max ℓ ℓ₀) recvarShape _ A₀ X = X → A₀ X maybeShape : ∀ {ℓ₀} (ℓ : Level) → (Type ℓ → Type ℓ₀) → Type ℓ → Type ℓ₀ maybeShape _ A₀ X = Maybe (A₀ X) functorialShape : ∀ {ℓ₀} (ℓ : Level) → (Type ℓ → Type ℓ₀) → Type ℓ → Type ℓ₀ functorialShape _ A₀ X = Funct[ A₀ X ] private -- Build functorial structure descriptor from a function [t : Type ℓ → Type ℓ'] buildFuncDesc : ℕ → R.Term → R.Term → R.Term → R.TC R.Term buildFuncDesc zero ℓ ℓ' t = R.typeError (R.strErr "Ran out of fuel! at \n" ∷ R.termErr t ∷ []) buildFuncDesc (suc fuel) ℓ ℓ' t = tryConstant t <|> tryPointed t <|> tryJoin t <|> tryParam t <|> tryMaybe t <|> R.typeError (R.strErr "Can't automatically generate a functorial structure for\n" ∷ R.termErr t ∷ []) where tryConstant : R.Term → R.TC R.Term tryConstant t = newMeta (tType ℓ') >>= λ A → R.unify t (R.def (quote constantShape) (varg ℓ ∷ varg A ∷ [])) >> R.returnTC (R.con (quote FuncDesc.constant) (varg A ∷ [])) tryPointed : R.Term → R.TC R.Term tryPointed t = R.unify t (R.def (quote pointedShape) (varg ℓ ∷ [])) >> R.returnTC (R.con (quote FuncDesc.var) []) tryParam : R.Term → R.TC R.Term tryParam t = newMeta (tType R.unknown) >>= λ A → newMeta tLevel >>= λ ℓ₀ → newMeta (tStruct ℓ ℓ₀) >>= λ A₀ → R.unify t (R.def (quote paramShape) (varg ℓ ∷ varg A ∷ varg A₀ ∷ [])) >> buildFuncDesc fuel ℓ ℓ₀ A₀ >>= λ d₀ → R.returnTC (R.con (quote FuncDesc.param) (varg A ∷ varg d₀ ∷ [])) tryJoin : R.Term → R.TC R.Term tryJoin t = newMeta tLevel >>= λ ℓ₀ → newMeta tLevel >>= λ ℓ₁ → newMeta (tStruct ℓ ℓ₀) >>= λ A₀ → newMeta (tStruct ℓ ℓ₁) >>= λ A₁ → R.unify t (R.def (quote joinShape) (varg ℓ ∷ varg A₀ ∷ varg A₁ ∷ [])) >> buildFuncDesc fuel ℓ ℓ₀ A₀ >>= λ d₀ → buildFuncDesc fuel ℓ ℓ₁ A₁ >>= λ d₁ → R.returnTC (R.con (quote FuncDesc._,_) (varg d₀ ∷ varg d₁ ∷ [])) tryMaybe : R.Term → R.TC R.Term tryMaybe t = newMeta tLevel >>= λ ℓ₀ → newMeta (tStruct ℓ ℓ₀) >>= λ A₀ → R.unify t (R.def (quote maybeShape) (varg ℓ ∷ varg A₀ ∷ [])) >> buildFuncDesc fuel ℓ ℓ₀ A₀ >>= λ d₀ → R.returnTC (R.con (quote FuncDesc.maybe) (varg d₀ ∷ [])) autoFuncDesc' : R.Term → R.Term → R.TC Unit autoFuncDesc' t hole = R.inferType hole >>= λ H → newMeta tLevel >>= λ ℓ → newMeta tLevel >>= λ ℓ' → R.unify (tFuncDesc ℓ) H >> R.checkType t (tStruct ℓ ℓ') >> buildFuncDesc FUEL ℓ ℓ' t >>= R.unify hole -- Build structure descriptor from a function [t : Type ℓ → Type ℓ'] buildDesc : ℕ → R.Term → R.Term → R.Term → R.TC R.Term buildDesc zero ℓ ℓ' t = R.typeError (R.strErr "Ran out of fuel! at \n" ∷ R.termErr t ∷ []) buildDesc (suc fuel) ℓ ℓ' t = tryConstant t <|> tryPointed t <|> tryJoin t <|> tryParam t <|> tryRecvar t <|> tryMaybe t <|> tryFunct t <|> R.typeError (R.strErr "Can't automatically generate a structure for\n" ∷ R.termErr t ∷ []) where tryConstant : R.Term → R.TC R.Term tryConstant t = newMeta (tType ℓ') >>= λ A → R.unify t (R.def (quote constantShape) (varg ℓ ∷ varg A ∷ [])) >> R.returnTC (R.con (quote Desc.constant) (varg A ∷ [])) tryPointed : R.Term → R.TC R.Term tryPointed t = R.unify t (R.def (quote pointedShape) (varg ℓ ∷ [])) >> R.returnTC (R.con (quote Desc.var) []) tryJoin : R.Term → R.TC R.Term tryJoin t = newMeta tLevel >>= λ ℓ₀ → newMeta tLevel >>= λ ℓ₁ → newMeta (tStruct ℓ ℓ₀) >>= λ A₀ → newMeta (tStruct ℓ ℓ₁) >>= λ A₁ → R.unify t (R.def (quote joinShape) (varg ℓ ∷ varg A₀ ∷ varg A₁ ∷ [])) >> buildDesc fuel ℓ ℓ₀ A₀ >>= λ d₀ → buildDesc fuel ℓ ℓ₁ A₁ >>= λ d₁ → R.returnTC (R.con (quote Desc._,_) (varg d₀ ∷ varg d₁ ∷ [])) tryParam : R.Term → R.TC R.Term tryParam t = newMeta (tType R.unknown) >>= λ A → newMeta tLevel >>= λ ℓ₀ → newMeta (tStruct ℓ ℓ₀) >>= λ A₀ → R.unify t (R.def (quote paramShape) (varg ℓ ∷ varg A ∷ varg A₀ ∷ [])) >> buildDesc fuel ℓ ℓ₀ A₀ >>= λ d₀ → R.returnTC (R.con (quote Desc.param) (varg A ∷ varg d₀ ∷ [])) tryRecvar : R.Term → R.TC R.Term tryRecvar t = newMeta tLevel >>= λ ℓ₀ → newMeta (tStruct ℓ ℓ₀) >>= λ A₀ → R.unify t (R.def (quote recvarShape) (varg ℓ ∷ varg A₀ ∷ [])) >> buildDesc fuel ℓ ℓ₀ A₀ >>= λ d₀ → R.returnTC (R.con (quote Desc.recvar) (varg d₀ ∷ [])) tryMaybe : R.Term → R.TC R.Term tryMaybe t = newMeta tLevel >>= λ ℓ₀ → newMeta (tStruct ℓ ℓ₀) >>= λ A₀ → R.unify t (R.def (quote maybeShape) (varg ℓ ∷ varg A₀ ∷ [])) >> buildDesc fuel ℓ ℓ₀ A₀ >>= λ d₀ → R.returnTC (R.con (quote Desc.maybe) (varg d₀ ∷ [])) tryFunct : R.Term → R.TC R.Term tryFunct t = newMeta (tStruct ℓ ℓ') >>= λ A₀ → R.unify t (R.def (quote functorialShape) (varg ℓ ∷ varg A₀ ∷ [])) >> buildFuncDesc fuel ℓ ℓ' A₀ >>= λ d₀ → R.returnTC (R.con (quote Desc.functorial) (varg d₀ ∷ [])) autoDesc' : R.Term → R.Term → R.TC Unit autoDesc' t hole = R.inferType hole >>= λ H → newMeta tLevel >>= λ ℓ → newMeta tLevel >>= λ ℓ' → R.unify (tDesc ℓ) H >> R.checkType t (tStruct ℓ ℓ') >> buildDesc FUEL ℓ ℓ' t >>= R.unify hole macro -- (Type ℓ → Type ℓ₁) → FuncDesc ℓ autoFuncDesc : R.Term → R.Term → R.TC Unit autoFuncDesc = autoFuncDesc' -- (S : Type ℓ → Type ℓ₁) → ∀ {X Y} → (X → Y) → (S X → S Y) autoFuncAction : R.Term → R.Term → R.TC Unit autoFuncAction t hole = newMeta (tFuncDesc R.unknown) >>= λ d → R.unify hole (R.def (quote funcMacroAction) [ varg d ]) >> autoFuncDesc' t d -- (S : Type ℓ → Type ℓ₁) → ∀ {X} s → autoFuncAction S (idfun X) s ≡ s autoFuncId : R.Term → R.Term → R.TC Unit autoFuncId t hole = newMeta (tFuncDesc R.unknown) >>= λ d → R.unify hole (R.def (quote funcMacroId) [ varg d ]) >> autoFuncDesc' t d -- (S : Type ℓ → Type ℓ₁) → Desc ℓ autoDesc : R.Term → R.Term → R.TC Unit autoDesc = autoDesc' -- (S : Type ℓ → Type ℓ₁) → (Type ℓ → Type ℓ₁) -- Removes Funct[_] annotations AutoStructure : R.Term → R.Term → R.TC Unit AutoStructure t hole = newMeta (tDesc R.unknown) >>= λ d → R.unify hole (R.def (quote MacroStructure) [ varg d ]) >> autoDesc' t d -- (S : Type ℓ → Type ℓ₁) → StrIso (AutoStructure S) _ AutoEquivStr : R.Term → R.Term → R.TC Unit AutoEquivStr t hole = newMeta (tDesc R.unknown) >>= λ d → R.unify hole (R.def (quote MacroEquivStr) [ varg d ]) >> autoDesc' t d -- (S : Type ℓ → Type ℓ₁) → SNS (AutoStructure S) (AutoEquivStr S) autoUnivalentStr : R.Term → R.Term → R.TC Unit autoUnivalentStr t hole = newMeta (tDesc R.unknown) >>= λ d → R.unify hole (R.def (quote MacroUnivalentStr) [ varg d ]) >> autoDesc' t d
{ "alphanum_fraction": 0.5884696017, "avg_line_length": 35.0735294118, "ext": "agda", "hexsha": "f8ca83cc70d9c66d6e67c9b97836adcc9adca3a4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "RobertHarper/cubical", "max_forks_repo_path": "Cubical/Structures/Auto.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "RobertHarper/cubical", "max_issues_repo_path": "Cubical/Structures/Auto.agda", "max_line_length": 116, "max_stars_count": null, "max_stars_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "RobertHarper/cubical", "max_stars_repo_path": "Cubical/Structures/Auto.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3570, "size": 9540 }
module Preliminaries where open import Agda.Primitive using (Level) renaming (lzero to lZ; lsuc to lS; _⊔_ to lmax) -- ---------------------------------------------------------------------- -- functions _o_ : {A B C : Set} → (B → C) → (A → B) → A → C g o f = \ x → g (f x) infixr 10 _o_ -- ---------------------------------------------------------------------- -- identity type data _==_ {l : Level} {A : Set l} (M : A) : A → Set l where Refl : M == M Id : {l : Level} {A : Set l} (M : A) → A → Set l Id M N = M == N {-# BUILTIN EQUALITY _==_ #-} {-# BUILTIN REFL Refl #-} transport : {l1 : Level} {l2 : Level} {A : Set l1} (B : A → Set l2) {a1 a2 : A} → a1 == a2 → (B a1 → B a2) transport B Refl = λ x → x ! : {l : Level} {A : Set l} {M N : A} → M == N → N == M ! Refl = Refl _∘_ : {l : Level} {A : Set l} {M N P : A} → N == P → M == N → M == P β ∘ Refl = β ap : {l1 l2 : Level} {A : Set l1} {B : Set l2} {M N : A} (f : A → B) → M == N → (f M) == (f N) ap f Refl = Refl ap2 : {l1 l2 l3 : Level} {A : Set l1} {B : Set l2} {C : Set l3} {M N : A} {M' N' : B} (f : A -> B -> C) -> M == N -> M' == N' -> (f M M') == (f N N') ap2 f Refl Refl = Refl ap3 : {l1 l2 l3 l4 : Level} {A : Set l1} {B : Set l2} {C : Set l3} {D : Set l4} {M N : A} {M' N' : B} {M'' N'' : C} (f : A → B → C → D) → M == N → M' == N' → M'' == N'' → (f M M' M'') == (f N N' N'') ap3 f Refl Refl Refl = Refl postulate -- function extensionality λ= : {l1 l2 : Level} {A : Set l1} {B : A -> Set l2} {f g : (x : A) -> B x} -> ((x : A) -> (f x) == (g x)) -> f == g -- function extensionality for implicit functions λ=i : {l1 l2 : Level} {A : Set l1} {B : A -> Set l2} {f g : {x : A} -> B x} -> ((x : A) -> (f {x}) == (g {x})) -> _==_ {_}{ {x : A} → B x } f g private primitive primTrustMe : {l : Level} {A : Set l} {x y : A} -> x == y infixr 9 _==_ infix 2 _∎ infixr 2 _=⟨_⟩_ _=⟨_⟩_ : {l : Level} {A : Set l} (x : A) {y z : A} → x == y → y == z → x == z _ =⟨ p1 ⟩ p2 = (p2 ∘ p1) _∎ : {l : Level} {A : Set l} (x : A) → x == x _∎ _ = Refl -- ---------------------------------------------------------------------- -- product types record Unit : Set where constructor <> record Σ {l1 l2 : Level} {A : Set l1} (B : A -> Set l2) : Set (lmax l1 l2) where constructor _,_ field fst : A snd : B fst open Σ public infixr 0 _,_ _×_ : {l1 l2 : Level} → Set l1 -> Set l2 -> Set (lmax l1 l2) A × B = Σ (\ (_ : A) -> B) infixr 10 _×_ -- ---------------------------------------------------------------------- -- booleans data Bool : Set where True : Bool False : Bool {-# COMPILED_DATA Bool Bool True False #-} {-# BUILTIN BOOL Bool #-} {-# BUILTIN TRUE True #-} {-# BUILTIN FALSE False #-} -- ---------------------------------------------------------------------- -- order data Order : Set where Less : Order Equal : Order Greater : Order -- ---------------------------------------------------------------------- -- sums data Void : Set where abort : {A : Set} → Void → A abort () data Either (A B : Set) : Set where Inl : A → Either A B Inr : B → Either A B DecEq : Set → Set DecEq A = (x y : A) → Either (x == y) (x == y → Void) -- ---------------------------------------------------------------------- -- natural numbers module Nat where data Nat : Set where Z : Nat S : Nat -> Nat -- let's you use numerals for Nat {-# BUILTIN NATURAL Nat #-} _+_ : Nat → Nat → Nat Z + n = n (S m) + n = S (m + n) max : Nat → Nat → Nat max Z n = n max m Z = m max (S m) (S n) = S (max m n) equal : Nat → Nat → Bool equal Z Z = True equal Z (S _) = False equal (S _) Z = False equal (S m) (S n) = equal m n compare : Nat → Nat → Order compare Z Z = Equal compare Z (S m) = Less compare (S n) Z = Greater compare (S n) (S m) = compare n m open Nat public using (Nat ; Z ; S) -- ---------------------------------------------------------------------- -- monad module Monad where record Monad : Set1 where field T : Set → Set return : ∀ {A} → A → T A _>>=_ : ∀ {A B} → T A → (A → T B) -> T B -- ---------------------------------------------------------------------- -- options module Maybe where data Maybe {l : Level} (A : Set l) : Set l where Some : A → Maybe A None : Maybe A Monad : Monad.Monad Monad = record { T = Maybe; return = Some; _>>=_ = (λ {None _ → None; (Some v) f → f v}) } open Maybe public using (Maybe;Some;None) -- ---------------------------------------------------------------------- -- lists module List where data List {l : Level} (A : Set l) : Set l where [] : List A _::_ : A -> List A -> List A {-# COMPILED_DATA List [] [] (:) #-} {-# BUILTIN LIST List #-} {-# BUILTIN NIL [] #-} {-# BUILTIN CONS _::_ #-} infixr 99 _::_ _++_ : {A : Set} → List A → List A → List A [] ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) infixr 10 _++_ map : {l1 l2 : Level} {A : Set l1} {B : Set l2} → (A → B) → List A → List B map f [] = [] map f (x :: xs) = f x :: map f xs map-id : {l : Level} {A : Set l} (l : List A) → map (\ (x : A) → x) l == l map-id [] = Refl map-id (x :: l) with map (\ x -> x) l | map-id l ... | ._ | Refl = Refl ++-assoc : ∀ {A} (l1 l2 l3 : List A) → (l1 ++ l2) ++ l3 == l1 ++ (l2 ++ l3) ++-assoc [] l2 l3 = Refl ++-assoc (x :: xs) l2 l3 = ap (_::_ x) (++-assoc xs l2 l3) open List public using (List ; [] ; _::_) -- ---------------------------------------------------------------------- -- characters module Char where postulate {- Agda Primitive -} Char : Set {-# BUILTIN CHAR Char #-} {-# COMPILED_TYPE Char Char #-} private primitive primCharToNat : Char → Nat primCharEquality : Char → Char → Bool toNat : Char → Nat toNat = primCharToNat equalb : Char -> Char -> Bool equalb = primCharEquality -- need to go outside the real language a little to give the primitives good types, -- but from the outside this should be safe equal : DecEq Char equal x y with equalb x y ... | True = Inl primTrustMe ... | False = Inr canthappen where postulate canthappen : _ open Char public using (Char) -- ---------------------------------------------------------------------- -- vectors module Vector where data Vec (A : Set) : Nat → Set where [] : Vec A 0 _::_ : ∀ {n} → A → Vec A n → Vec A (S n) infixr 99 _::_ Vec-elim : {A : Set} (P : {n : Nat} → Vec A n → Set) → (P []) → ({n : Nat} (x : A) (xs : Vec A n) → P xs → P (x :: xs)) → {n : Nat} (v : Vec A n) → P v Vec-elim P n c [] = n Vec-elim P n c (y :: ys) = c y ys (Vec-elim P n c ys) fromList : {A : Set} → List A → Σ \n → Vec A n fromList [] = _ , [] fromList (x :: xs) = _ , x :: snd (fromList xs) toList : {A : Set} {n : Nat} → Vec A n → List A toList [] = [] toList (x :: xs) = x :: (toList xs) toList' : {A : Set} → (Σ \ n → Vec A n) → List A toList' (._ , []) = [] toList' (._ , (x :: xs)) = x :: (toList' (_ , xs)) -- ---------------------------------------------------------------------- -- strings module String where postulate {- Agda Primitive -} String : Set {-# BUILTIN STRING String #-} {-# COMPILED_TYPE String String #-} private primitive primStringToList : String -> List Char primStringFromList : List Char -> String primStringAppend : String -> String -> String primStringEquality : String -> String -> Bool equal : String -> String -> Bool equal = primStringEquality toList = primStringToList fromList = primStringFromList append = primStringAppend toVec : String -> Σ \ m → Vector.Vec Char m toVec = Vector.fromList o toList
{ "alphanum_fraction": 0.4207902736, "avg_line_length": 26.4469453376, "ext": "agda", "hexsha": "4ae5066f215b86f79ea967bd0ee01c6a391ebb3d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "benhuds/Agda", "max_forks_repo_path": "complexity-drafts/Preliminaries.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_issues_repo_issues_event_max_datetime": "2020-05-12T00:32:45.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-23T08:39:04.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "benhuds/Agda", "max_issues_repo_path": "complexity-drafts/Preliminaries.agda", "max_line_length": 151, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "benhuds/Agda", "max_stars_repo_path": "complexity-drafts/Preliminaries.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-08T12:27:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-04-26T20:22:22.000Z", "num_tokens": 2753, "size": 8225 }
------------------------------------------------------------------------ -- Operators ------------------------------------------------------------------------ module Mixfix.Operator where open import Data.Nat using (ℕ; zero; suc; _+_) open import Data.Vec using (Vec) open import Data.Product using (∃; ∃₂; _,_) open import Data.Maybe using (Maybe; just; nothing) open import Data.String using (String) open import Relation.Nullary using (Dec; yes; no) open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Mixfix.Fixity -- Name parts. NamePart : Set NamePart = String -- Operators. The parameter arity is the internal arity of the -- operator, i.e. the number of arguments taken between the first and -- last name parts. record Operator (fix : Fixity) (arity : ℕ) : Set where field nameParts : Vec NamePart (1 + arity) open Operator public -- Predicate filtering out operators of the given fixity and -- associativity. hasFixity : ∀ fix → ∃₂ Operator → Maybe (∃ (Operator fix)) hasFixity fix (fix' , op) with fix ≟ fix' hasFixity fix (.fix , op) | yes refl = just op hasFixity fix (fix' , op) | _ = nothing
{ "alphanum_fraction": 0.6265164645, "avg_line_length": 30.3684210526, "ext": "agda", "hexsha": "f06193f3dc84f5d187a64274d807c0b99c99c1d0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "Mixfix/Operator.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z", "max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "Mixfix/Operator.agda", "max_line_length": 72, "max_stars_count": 7, "max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yurrriq/parser-combinators", "max_stars_repo_path": "Mixfix/Operator.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z", "num_tokens": 275, "size": 1154 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Decision procedures for finite sets and subsets of finite sets ------------------------------------------------------------------------ module Data.Fin.Dec where open import Function import Data.Bool as Bool open import Data.Nat hiding (_<_) open import Data.Vec hiding (_∈_) open import Data.Vec.Equality as VecEq using () renaming (module PropositionalEquality to PropVecEq) open import Data.Fin open import Data.Fin.Subset open import Data.Fin.Subset.Properties open import Data.Product as Prod open import Data.Empty open import Function import Function.Equivalence as Eq open import Relation.Binary as B import Relation.Binary.HeterogeneousEquality as H open import Relation.Nullary import Relation.Nullary.Decidable as Dec open import Relation.Unary as U using (Pred) infix 4 _∈?_ _∈?_ : ∀ {n} x (p : Subset n) → Dec (x ∈ p) zero ∈? inside ∷ p = yes here zero ∈? outside ∷ p = no λ() suc n ∈? s ∷ p with n ∈? p ... | yes n∈p = yes (there n∈p) ... | no n∉p = no (n∉p ∘ drop-there) private restrictP : ∀ {p n} → (Fin (suc n) → Set p) → (Fin n → Set p) restrictP P f = P (suc f) restrict : ∀ {p n} {P : Fin (suc n) → Set p} → U.Decidable P → U.Decidable (restrictP P) restrict dec f = dec (suc f) any? : ∀ {n} {P : Fin n → Set} → U.Decidable P → Dec (∃ P) any? {zero} dec = no λ { (() , _) } any? {suc n} {P} dec with dec zero | any? (restrict dec) ... | yes p | _ = yes (_ , p) ... | _ | yes (_ , p') = yes (_ , p') ... | no ¬p | no ¬p' = no helper where helper : ∄ P helper (zero , p) = ¬p p helper (suc f , p') = ¬p' (_ , p') nonempty? : ∀ {n} (p : Subset n) → Dec (Nonempty p) nonempty? p = any? (λ x → x ∈? p) private restrict∈ : ∀ {p q n} (P : Fin (suc n) → Set p) {Q : Fin (suc n) → Set q} → (∀ {f} → Q f → Dec (P f)) → (∀ {f} → restrictP Q f → Dec (restrictP P f)) restrict∈ _ dec {f} Qf = dec {suc f} Qf decFinSubset : ∀ {p q n} {P : Fin n → Set p} {Q : Fin n → Set q} → U.Decidable Q → (∀ {f} → Q f → Dec (P f)) → Dec (∀ {f} → Q f → P f) decFinSubset {n = zero} _ _ = yes λ{} decFinSubset {n = suc n} {P} {Q} decQ decP = helper where helper : Dec (∀ {f} → Q f → P f) helper with decFinSubset (restrict decQ) (restrict∈ P decP) helper | no ¬q⟶p = no (λ q⟶p → ¬q⟶p (λ {f} q → q⟶p {suc f} q)) helper | yes q⟶p with decQ zero helper | yes q⟶p | yes q₀ with decP q₀ helper | yes q⟶p | yes q₀ | no ¬p₀ = no (λ q⟶p → ¬p₀ (q⟶p {zero} q₀)) helper | yes q⟶p | yes q₀ | yes p₀ = yes (λ {_} → hlpr _) where hlpr : ∀ f → Q f → P f hlpr zero _ = p₀ hlpr (suc f) qf = q⟶p qf helper | yes q⟶p | no ¬q₀ = yes (λ {_} → hlpr _) where hlpr : ∀ f → Q f → P f hlpr zero q₀ = ⊥-elim (¬q₀ q₀) hlpr (suc f) qf = q⟶p qf all∈? : ∀ {n p} {P : Fin n → Set p} {q} → (∀ {f} → f ∈ q → Dec (P f)) → Dec (∀ {f} → f ∈ q → P f) all∈? {q = q} dec = decFinSubset (λ f → f ∈? q) dec all? : ∀ {n p} {P : Fin n → Set p} → U.Decidable P → Dec (∀ f → P f) all? dec with all∈? {q = ⊤} (λ {f} _ → dec f) ... | yes ∀p = yes (λ f → ∀p ∈⊤) ... | no ¬∀p = no (λ ∀p → ¬∀p (λ {f} _ → ∀p f)) decLift : ∀ {n} {P : Fin n → Set} → U.Decidable P → U.Decidable (Lift P) decLift dec p = all∈? (λ {x} _ → dec x) private restrictSP : ∀ {n} → Side → (Subset (suc n) → Set) → (Subset n → Set) restrictSP s P p = P (s ∷ p) restrictS : ∀ {n} {P : Subset (suc n) → Set} → (s : Side) → U.Decidable P → U.Decidable (restrictSP s P) restrictS s dec p = dec (s ∷ p) anySubset? : ∀ {n} {P : Subset n → Set} → U.Decidable P → Dec (∃ P) anySubset? {zero} {P} dec with dec [] ... | yes P[] = yes (_ , P[]) ... | no ¬P[] = no helper where helper : ∄ P helper ([] , P[]) = ¬P[] P[] anySubset? {suc n} {P} dec with anySubset? (restrictS inside dec) | anySubset? (restrictS outside dec) ... | yes (_ , Pp) | _ = yes (_ , Pp) ... | _ | yes (_ , Pp) = yes (_ , Pp) ... | no ¬Pp | no ¬Pp' = no helper where helper : ∄ P helper (inside ∷ p , Pp) = ¬Pp (_ , Pp) helper (outside ∷ p , Pp') = ¬Pp' (_ , Pp') -- If a decidable predicate P over a finite set is sometimes false, -- then we can find the smallest value for which this is the case. ¬∀⟶∃¬-smallest : ∀ n {p} (P : Fin n → Set p) → U.Decidable P → ¬ (∀ i → P i) → ∃ λ i → ¬ P i × ((j : Fin′ i) → P (inject j)) ¬∀⟶∃¬-smallest zero P dec ¬∀iPi = ⊥-elim (¬∀iPi (λ())) ¬∀⟶∃¬-smallest (suc n) P dec ¬∀iPi with dec zero ¬∀⟶∃¬-smallest (suc n) P dec ¬∀iPi | no ¬P0 = (zero , ¬P0 , λ ()) ¬∀⟶∃¬-smallest (suc n) P dec ¬∀iPi | yes P0 = Prod.map suc (Prod.map id extend′) $ ¬∀⟶∃¬-smallest n (λ n → P (suc n)) (dec ∘ suc) (¬∀iPi ∘ extend) where extend : (∀ i → P (suc i)) → (∀ i → P i) extend ∀iP[1+i] zero = P0 extend ∀iP[1+i] (suc i) = ∀iP[1+i] i extend′ : ∀ {i : Fin n} → ((j : Fin′ i) → P (suc (inject j))) → ((j : Fin′ (suc i)) → P (inject j)) extend′ g zero = P0 extend′ g (suc j) = g j -- Decision procedure for _⊆_ (obtained via the natural lattice -- order). infix 4 _⊆?_ _⊆?_ : ∀ {n} → B.Decidable (_⊆_ {n = n}) p₁ ⊆? p₂ = Dec.map (Eq.sym NaturalPoset.orders-equivalent) $ Dec.map′ PropVecEq.to-≡ PropVecEq.from-≡ $ VecEq.DecidableEquality._≟_ Bool.decSetoid p₁ (p₁ ∩ p₂)
{ "alphanum_fraction": 0.4967239242, "avg_line_length": 33.6130952381, "ext": "agda", "hexsha": "6318eb8125d5a8e627b952e597e4ea9bac5419c6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/Fin/Dec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/Fin/Dec.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/Fin/Dec.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 2174, "size": 5647 }
open import Silica open import HeapProperties open import Data.List.Membership.DecSetoid ≡-decSetoid open import Data.List.Relation.Unary.Any open TypeEnvContext ------------ Lemmas -------------- -- If an expression is well-typed in Δ, then all locations in the expression are in Δ. locationsInExprAreInContext : ∀ {Δ Δ' e T fl} → ∀ {l : IndirectRef} → Δ ⊢ e ⦂ T ⊣ Δ' → FreeLocations e fl → l ∈ fl ---------------- → ∃[ T' ] ((StaticEnv.locEnv Δ) ∋ l ⦂ T') -- fl is empty, so l is in fl leads to a contradiction. locationsInExprAreInContext (varTy x spl) varFL () -- l is related to e, so therefore we can point to where l is in Δ. locationsInExprAreInContext (locTy {Δ = Δ''} {T₁ = T₁} l spl) (locFL l) (here refl) = ⟨ T₁ , Z ⟩ locationsInExprAreInContext (locTy {Δ = Δ''} {T₁} l spl) (locFL l) (there ()) locationsInExprAreInContext (objTy o spl) objValFL () locationsInExprAreInContext (boolTy b) boolFL () locationsInExprAreInContext ty voidFL () -- TODO: relax progress a little per statement of Theorem 5.1. data Progress : Expr → Set where step : ∀ (Σ Σ' : RuntimeEnv) → ∀ (e e' : Expr) → (Σ , e ⟶ Σ' , e') ------------- → Progress e done : ∀ {e : Value} --------- → Progress (valExpr e) progress : ∀ {e T Δ Δ'} → ∀ (Σ : RuntimeEnv) → Closed e → Σ & Δ ok → Δ ⊢ e ⦂ T ⊣ Δ' --------------- → Progress e progress Σ (closed (simpleExpr (var x)) ()) consis (varTy x split) -- Contradiction: var x has free variables, but we assumed e was closed. -- TODO: Refactor these cases to avoid duplication! progress Σ cl consis@(ok {Σ} _ _ _ _ _) ty@(locTy l voidSplit) = let locationExistsInContext = locationsInExprAreInContext ty (locFL l) (here refl) lInDelta = proj₂ locationExistsInContext heapLookupResult = voidLookup consis lInDelta in step Σ Σ (simpleExpr (loc l)) (valExpr voidVal) (SElookup ty heapLookupResult) progress Σ cl consis@(ok {Σ} _ _ _ _ _) ty@(locTy l booleanSplit) = let locationExistsInContext = locationsInExprAreInContext ty (locFL l) (here refl) lInDelta = proj₂ locationExistsInContext heapLookupResult = boolLookup consis lInDelta in step Σ Σ (simpleExpr (loc l)) (valExpr (boolVal (proj₁ heapLookupResult))) (SElookup ty (proj₂ heapLookupResult)) progress Σ cl consis@(ok {Σ} _ _ _ _ _) ty@(locTy l (unownedSplit _ _ _ _)) = let locationExistsInContext = locationsInExprAreInContext ty (locFL l) (here refl) lInDelta = proj₂ locationExistsInContext heapLookupResult = locLookup consis lInDelta heapLookupFound = proj₁ (proj₂ heapLookupResult) o = proj₁ heapLookupResult in step Σ Σ (simpleExpr (loc l)) (valExpr (objVal o)) (SElookup ty heapLookupFound) progress Σ cl consis@(ok {Σ} _ _ _ _ _) ty@(locTy l (shared-shared-shared _)) = let locationExistsInContext = locationsInExprAreInContext ty (locFL l) (here refl) lInDelta = proj₂ locationExistsInContext heapLookupResult = locLookup consis lInDelta heapLookupFound = proj₁ (proj₂ heapLookupResult) o = proj₁ heapLookupResult in step Σ Σ (simpleExpr (loc l)) (valExpr (objVal o)) (SElookup ty heapLookupFound) progress Σ cl consis@(ok {Σ} _ _ _ _ _) ty@(locTy l (owned-shared _)) = let locationExistsInContext = locationsInExprAreInContext ty (locFL l) (here refl) lInDelta = proj₂ locationExistsInContext heapLookupResult = locLookup consis lInDelta heapLookupFound = proj₁ (proj₂ heapLookupResult) o = proj₁ heapLookupResult in step Σ Σ (simpleExpr (loc l)) (valExpr (objVal o)) (SElookup ty heapLookupFound) progress Σ cl consis@(ok {Σ} _ _ _ _ _) ty@(locTy l (states-shared _)) = let locationExistsInContext = locationsInExprAreInContext ty (locFL l) (here refl) lInDelta = proj₂ locationExistsInContext heapLookupResult = locLookup consis lInDelta heapLookupFound = proj₁ (proj₂ heapLookupResult) o = proj₁ heapLookupResult in step Σ Σ (simpleExpr (loc l)) (valExpr (objVal o)) (SElookup ty heapLookupFound) progress Σ cl consis (objTy o split) = done progress Σ cl consis (boolTy b) = done progress Σ cl consis (voidTy) = done progress Σ cl consis (assertTyₗ {s₁ = s} {l = l} tcEq subset) = step Σ Σ (assertₗ l s) (valExpr voidVal) (SEassertₗ {Σ} l s) progress Σ cl consis (assertTyₓ {s₁ = s} {x = x} tcEq subset) = step Σ Σ (assertₓ x s) (valExpr voidVal) (SEassertₓ {Σ} x s) progress Σ cl consis (newTy {Γ} {Δ} {Δ'} {Δ''} {states} {C} {st} {x₁} {x₂} stOK x₁Ty x₂Ty CInΓ refl) = let oFresh = ObjectRefContext.fresh (RuntimeEnv.μ Σ) o = proj₁ oFresh μ' = (RuntimeEnv.μ Σ) ObjectRefContext., o ⦂ record { contractName = C ; stateName = st ; x₁ = x₁ ; x₂ = x₂ } Σ' = record Σ {μ = μ'} in step Σ Σ' (new C st x₁ x₂) (valExpr (objVal o)) (SEnew (proj₁ (proj₂ oFresh)) refl refl)
{ "alphanum_fraction": 0.6430399685, "avg_line_length": 43.4102564103, "ext": "agda", "hexsha": "16c8d797415dd915e297d76e34181ed30d2f888c", "lang": "Agda", "max_forks_count": 11, "max_forks_repo_forks_event_max_datetime": "2021-06-09T18:40:19.000Z", "max_forks_repo_forks_event_min_datetime": "2018-05-24T08:20:52.000Z", "max_forks_repo_head_hexsha": "bda0fac3aadfbce2eacdb89095d100125fa4fdd6", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "ivoysey/Obsidian", "max_forks_repo_path": "formalization/progress.agda", "max_issues_count": 259, "max_issues_repo_head_hexsha": "bda0fac3aadfbce2eacdb89095d100125fa4fdd6", "max_issues_repo_issues_event_max_datetime": "2022-03-29T18:20:05.000Z", "max_issues_repo_issues_event_min_datetime": "2017-08-18T19:50:41.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "ivoysey/Obsidian", "max_issues_repo_path": "formalization/progress.agda", "max_line_length": 139, "max_stars_count": 79, "max_stars_repo_head_hexsha": "bda0fac3aadfbce2eacdb89095d100125fa4fdd6", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "ivoysey/Obsidian", "max_stars_repo_path": "formalization/progress.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-27T10:34:28.000Z", "max_stars_repo_stars_event_min_datetime": "2017-08-19T16:24:10.000Z", "num_tokens": 1614, "size": 5079 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Indexed binary relations ------------------------------------------------------------------------ -- This file contains some core definitions which are reexported by -- Relation.Binary.Indexed. module Relation.Binary.Indexed.Core where open import Function open import Level import Relation.Binary.Core as B import Relation.Binary.Core as P ------------------------------------------------------------------------ -- Indexed binary relations -- Heterogeneous. REL : ∀ {i₁ i₂ a₁ a₂} {I₁ : Set i₁} {I₂ : Set i₂} → (I₁ → Set a₁) → (I₂ → Set a₂) → (ℓ : Level) → Set _ REL A₁ A₂ ℓ = ∀ {i₁ i₂} → A₁ i₁ → A₂ i₂ → Set ℓ -- Homogeneous. Rel : ∀ {i a} {I : Set i} → (I → Set a) → (ℓ : Level) → Set _ Rel A ℓ = REL A A ℓ ------------------------------------------------------------------------ -- Simple properties of indexed binary relations -- Reflexivity. Reflexive : ∀ {i a ℓ} {I : Set i} (A : I → Set a) → Rel A ℓ → Set _ Reflexive _ _∼_ = ∀ {i} → B.Reflexive (_∼_ {i}) -- Symmetry. Symmetric : ∀ {i a ℓ} {I : Set i} (A : I → Set a) → Rel A ℓ → Set _ Symmetric _ _∼_ = ∀ {i j} → B.Sym (_∼_ {i} {j}) _∼_ -- Transitivity. Transitive : ∀ {i a ℓ} {I : Set i} (A : I → Set a) → Rel A ℓ → Set _ Transitive _ _∼_ = ∀ {i j k} → B.Trans _∼_ (_∼_ {j}) (_∼_ {i} {k}) ------------------------------------------------------------------------ -- Setoids record IsEquivalence {i a ℓ} {I : Set i} (A : I → Set a) (_≈_ : Rel A ℓ) : Set (i ⊔ a ⊔ ℓ) where field refl : Reflexive A _≈_ sym : Symmetric A _≈_ trans : Transitive A _≈_ reflexive : ∀ {i} → P._≡_ ⟨ B._⇒_ ⟩ _≈_ {i} reflexive P.refl = refl record Setoid {i} (I : Set i) c ℓ : Set (suc (i ⊔ c ⊔ ℓ)) where infix 4 _≈_ field Carrier : I → Set c _≈_ : Rel Carrier ℓ isEquivalence : IsEquivalence Carrier _≈_ open IsEquivalence isEquivalence public
{ "alphanum_fraction": 0.4720965309, "avg_line_length": 28.4142857143, "ext": "agda", "hexsha": "c6f133287b75234edcdb48eebe6fd6902f0405f4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Indexed/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Indexed/Core.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Indexed/Core.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 642, "size": 1989 }
{- Product of structures S and T: X ↦ S X × T X -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Structures.Relational.Product where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Structure open import Cubical.Foundations.RelationalStructure open import Cubical.Foundations.SIP open import Cubical.Foundations.Univalence open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation as Trunc open import Cubical.HITs.SetQuotients open import Cubical.Structures.Product private variable ℓ ℓ₁ ℓ₁' ℓ₁'' ℓ₂ ℓ₂' ℓ₂'' : Level -- Structured relations ProductRelStr : {S₁ : Type ℓ → Type ℓ₁} (ρ₁ : StrRel S₁ ℓ₁') {S₂ : Type ℓ → Type ℓ₂} (ρ₂ : StrRel S₂ ℓ₂') → StrRel (ProductStructure S₁ S₂) (ℓ-max ℓ₁' ℓ₂') ProductRelStr ρ₁ ρ₂ R (s₁ , s₂) (t₁ , t₂) = ρ₁ R s₁ t₁ × ρ₂ R s₂ t₂ productSuitableRel : {S₁ : Type ℓ → Type ℓ₁} {ρ₁ : StrRel S₁ ℓ₁'} {S₂ : Type ℓ → Type ℓ₂} {ρ₂ : StrRel S₂ ℓ₂'} → SuitableStrRel S₁ ρ₁ → SuitableStrRel S₂ ρ₂ → SuitableStrRel (ProductStructure S₁ S₂) (ProductRelStr ρ₁ ρ₂) productSuitableRel θ₁ θ₂ .quo (X , s₁ , s₂) R (r₁ , r₂) .fst .fst = θ₁ .quo (X , s₁) R r₁ .fst .fst , θ₂ .quo (X , s₂) R r₂ .fst .fst productSuitableRel θ₁ θ₂ .quo (X , s₁ , s₂) R (r₁ , r₂) .fst .snd = θ₁ .quo (X , s₁) R r₁ .fst .snd , θ₂ .quo (X , s₂) R r₂ .fst .snd productSuitableRel θ₁ θ₂ .quo (X , s₁ , s₂) R (r₁ , r₂) .snd ((q₁ , q₂) , (c₁ , c₂)) i .fst = θ₁ .quo (X , s₁) R r₁ .snd (q₁ , c₁) i .fst , θ₂ .quo (X , s₂) R r₂ .snd (q₂ , c₂) i .fst productSuitableRel θ₁ θ₂ .quo (X , s₁ , s₂) R (r₁ , r₂) .snd ((q₁ , q₂) , (c₁ , c₂)) i .snd = θ₁ .quo (X , s₁) R r₁ .snd (q₁ , c₁) i .snd , θ₂ .quo (X , s₂) R r₂ .snd (q₂ , c₂) i .snd productSuitableRel θ₁ θ₂ .symmetric R (r₁ , r₂) = θ₁ .symmetric R r₁ , θ₂ .symmetric R r₂ productSuitableRel θ₁ θ₂ .transitive R R' (r₁ , r₂) (r₁' , r₂') = θ₁ .transitive R R' r₁ r₁' , θ₂ .transitive R R' r₂ r₂' productSuitableRel θ₁ θ₂ .set setX = isSet× (θ₁ .set setX) (θ₂ .set setX) productSuitableRel θ₁ θ₂ .prop propR (s₁ , s₂) (t₁ , t₂) = isProp× (θ₁ .prop propR s₁ t₁) (θ₂ .prop propR s₂ t₂) productRelMatchesEquiv : {S₁ : Type ℓ → Type ℓ₁} (ρ₁ : StrRel S₁ ℓ₁') {ι₁ : StrEquiv S₁ ℓ₁''} {S₂ : Type ℓ → Type ℓ₂} (ρ₂ : StrRel S₂ ℓ₂') {ι₂ : StrEquiv S₂ ℓ₂''} → StrRelMatchesEquiv ρ₁ ι₁ → StrRelMatchesEquiv ρ₂ ι₂ → StrRelMatchesEquiv (ProductRelStr ρ₁ ρ₂) (ProductEquivStr ι₁ ι₂) productRelMatchesEquiv ρ₁ ρ₂ μ₁ μ₂ A B e = Σ-cong-equiv (μ₁ _ _ e) (λ _ → μ₂ _ _ e) productRelAction : {S₁ : Type ℓ → Type ℓ₁} {ρ₁ : StrRel S₁ ℓ₁'} (α₁ : StrRelAction ρ₁) {S₂ : Type ℓ → Type ℓ₂} {ρ₂ : StrRel S₂ ℓ₂'} (α₂ : StrRelAction ρ₂) → StrRelAction (ProductRelStr ρ₁ ρ₂) productRelAction α₁ α₂ .actStr f (s₁ , s₂) = α₁ .actStr f s₁ , α₂ .actStr f s₂ productRelAction α₁ α₂ .actStrId (s₁ , s₂) = ΣPathP (α₁ .actStrId s₁ , α₂ .actStrId s₂) productRelAction α₁ α₂ .actRel h _ _ (r₁ , r₂) = α₁ .actRel h _ _ r₁ , α₂ .actRel h _ _ r₂ productPositiveRel : {S₁ : Type ℓ → Type ℓ₁} {ρ₁ : StrRel S₁ ℓ₁'} {θ₁ : SuitableStrRel S₁ ρ₁} {S₂ : Type ℓ → Type ℓ₂} {ρ₂ : StrRel S₂ ℓ₂'} {θ₂ : SuitableStrRel S₂ ρ₂} → PositiveStrRel θ₁ → PositiveStrRel θ₂ → PositiveStrRel (productSuitableRel θ₁ θ₂) productPositiveRel σ₁ σ₂ .act = productRelAction (σ₁ .act) (σ₂ .act) productPositiveRel σ₁ σ₂ .reflexive (s₁ , s₂) = σ₁ .reflexive s₁ , σ₂ .reflexive s₂ productPositiveRel σ₁ σ₂ .detransitive R R' (rr'₁ , rr'₂) = Trunc.rec squash (λ {(s₁ , r₁ , r₁') → Trunc.rec squash (λ {(s₂ , r₂ , r₂') → ∣ (s₁ , s₂) , (r₁ , r₂) , (r₁' , r₂') ∣}) (σ₂ .detransitive R R' rr'₂)}) (σ₁ .detransitive R R' rr'₁) productPositiveRel {S₁ = S₁} {ρ₁} {θ₁} {S₂} {ρ₂} {θ₂} σ₁ σ₂ .quo {X} R = subst isEquiv (funExt (elimProp (λ _ → productSuitableRel θ₁ θ₂ .set squash/ _ _) (λ _ → refl))) (compEquiv (isoToEquiv isom) (Σ-cong-equiv (_ , σ₁ .quo R) (λ _ → _ , σ₂ .quo R)) .snd) where fwd : ProductStructure S₁ S₂ X / ProductRelStr ρ₁ ρ₂ (R .fst .fst) → (S₁ X / ρ₁ (R .fst .fst)) × (S₂ X / ρ₂ (R .fst .fst)) fwd [ s₁ , s₂ ] = [ s₁ ] , [ s₂ ] fwd (eq/ (s₁ , s₂) (t₁ , t₂) (r₁ , r₂) i) = eq/ s₁ t₁ r₁ i , eq/ s₂ t₂ r₂ i fwd (squash/ _ _ p q i j) = isSet× squash/ squash/ _ _ (cong fwd p) (cong fwd q) i j bwd[] : S₁ X → S₂ X / ρ₂ (R .fst .fst) → ProductStructure S₁ S₂ X / ProductRelStr ρ₁ ρ₂ (R .fst .fst) bwd[] s₁ [ s₂ ] = [ s₁ , s₂ ] bwd[] s₁ (eq/ s₂ t₂ r₂ i) = eq/ (s₁ , s₂) (s₁ , t₂) (posRelReflexive σ₁ R s₁ , r₂) i bwd[] s₁ (squash/ _ _ p q i j) = squash/ _ _ (λ j → bwd[] s₁ (p j)) (λ j → bwd[] s₁ (q j)) i j bwd : S₁ X / ρ₁ (R .fst .fst) → S₂ X / ρ₂ (R .fst .fst) → ProductStructure S₁ S₂ X / ProductRelStr ρ₁ ρ₂ (R .fst .fst) bwd [ s₁ ] u = bwd[] s₁ u bwd (eq/ s₁ t₁ r₁ i) u = path u i where path : ∀ u → bwd [ s₁ ] u ≡ bwd [ t₁ ] u path = elimProp (λ _ → squash/ _ _) (λ s₂ → eq/ (s₁ , s₂) (t₁ , s₂) (r₁ , posRelReflexive σ₂ R s₂)) bwd (squash/ _ _ p q i j) = isSetΠ (λ _ → squash/) _ _ (cong bwd p) (cong bwd q) i j open Iso isom : Iso _ _ isom .fun = fwd isom .inv = uncurry bwd isom .rightInv = uncurry (elimProp (λ _ → isPropΠ λ _ → isSet× squash/ squash/ _ _) (λ _ → elimProp (λ _ → isSet× squash/ squash/ _ _) (λ _ → refl))) isom .leftInv = elimProp (λ _ → squash/ _ _) (λ _ → refl) productRelMatchesTransp : {S₁ : Type ℓ → Type ℓ₁} (ρ₁ : StrRel S₁ ℓ₁') (α₁ : EquivAction S₁) {S₂ : Type ℓ → Type ℓ₂} (ρ₂ : StrRel S₂ ℓ₂') (α₂ : EquivAction S₂) → StrRelMatchesEquiv ρ₁ (EquivAction→StrEquiv α₁) → StrRelMatchesEquiv ρ₂ (EquivAction→StrEquiv α₂) → StrRelMatchesEquiv (ProductRelStr ρ₁ ρ₂) (EquivAction→StrEquiv (productEquivAction α₁ α₂)) productRelMatchesTransp _ _ _ _ μ₁ μ₂ _ _ e = compEquiv (Σ-cong-equiv (μ₁ _ _ e) (λ _ → μ₂ _ _ e)) ΣPath≃PathΣ
{ "alphanum_fraction": 0.6248749583, "avg_line_length": 42.5390070922, "ext": "agda", "hexsha": "df3b2ba8abfb7618fd1ae36a0aa713e382e997a1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Structures/Relational/Product.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Structures/Relational/Product.agda", "max_line_length": 103, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Structures/Relational/Product.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2710, "size": 5998 }
module List.Permutation.Pair (A : Set) where open import Data.List open import Data.Product data _≈_ : List A → List A × List A → Set where ≈[]r : (xs : List A) → xs ≈ (xs , []) ≈[]l : (xs : List A) → xs ≈ ([] , xs) ≈xr : {x : A}{xs ys zs : List A} → xs ≈ (ys , zs) → (x ∷ xs) ≈ (ys , x ∷ zs) ≈xl : {x : A}{xs ys zs : List A} → xs ≈ (ys , zs) → (x ∷ xs) ≈ (x ∷ ys , zs)
{ "alphanum_fraction": 0.3672654691, "avg_line_length": 27.8333333333, "ext": "agda", "hexsha": "54a67c695543aede14a88e0201cb0be7428f1c1f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/List/Permutation/Pair.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/List/Permutation/Pair.agda", "max_line_length": 47, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/List/Permutation/Pair.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 180, "size": 501 }
module Semantics where open import Data.Nat hiding (_⊔_; _⊓_) open import Data.Product open import Data.Sum open import Data.String using (String) open import Data.Unit hiding (_≟_) open import Data.Empty open import Relation.Nullary import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_;_≢_; refl) open Eq.≡-Reasoning open import Level hiding (_⊔_) renaming (zero to lzero; suc to lsuc) {- TODO: * subtyping of refinement types * union types * intersection types -} Id = String variable x y : Id ℓ : Level data Expr : Set where Nat : ℕ → Expr Var : Id → Expr Lam : Id → Expr → Expr App : Expr → Expr → Expr Pair : Expr → Expr → Expr Fst Snd : Expr → Expr Inl Inr : Expr → Expr Case : Expr → Id → Expr → Id → Expr → Expr data RawType : Set where Nat : RawType _⇒_ _⋆_ _⊹_ : RawType → RawType → RawType ss⇒tt : ∀ {S S₁ T T₁ : RawType} → (S ⇒ S₁) ≡ (T ⇒ T₁) → (S ≡ T × S₁ ≡ T₁) ss⇒tt refl = refl , refl ss⋆tt : ∀ {S S₁ T T₁ : RawType} → (S ⋆ S₁) ≡ (T ⋆ T₁) → (S ≡ T × S₁ ≡ T₁) ss⋆tt refl = refl , refl ss⊹tt : ∀ {S S₁ T T₁ : RawType} → (S ⊹ S₁) ≡ (T ⊹ T₁) → (S ≡ T × S₁ ≡ T₁) ss⊹tt refl = refl , refl data Type : Set₁ where Base : (P : ℕ → Set) → Type -- refinement Nat : Type _⇒_ : Type → Type → Type _⋆_ : Type → Type → Type _⊹_ : Type → Type → Type T-Nat = Base (λ n → ⊤) -- all natural numbers data ne : Type → Set where ne-base : ∀ {P} → (∃P : Σ ℕ P) → ne (Base P) ne-nat : ne Nat ne-⇒ : ∀ {S T} → ne S → ne T → ne (S ⇒ T) ne-⋆ : ∀ {S T} → ne S → ne T → ne (S ⋆ T) ne-⊹L : ∀ {S T} → ne S → ne (S ⊹ T) ne-⊹R : ∀ {S T} → ne T → ne (S ⊹ T) data Env (A : Set ℓ) : Set ℓ where · : Env A _,_⦂_ : Env A → (x : Id) → (a : A) → Env A ∥_∥ : Type → RawType ∥ Base P ∥ = Nat ∥ Nat ∥ = Nat ∥ S ⇒ S₁ ∥ = ∥ S ∥ ⇒ ∥ S₁ ∥ ∥ S ⋆ S₁ ∥ = ∥ S ∥ ⋆ ∥ S₁ ∥ ∥ S ⊹ S₁ ∥ = ∥ S ∥ ⊹ ∥ S₁ ∥ _∨_ : (P Q : ℕ → Set) → ℕ → Set P ∨ Q = λ n → P n ⊎ Q n _∧_ : (P Q : ℕ → Set) → ℕ → Set P ∧ Q = λ n → P n × Q n implies : ∀ {P Q : ℕ → Set} → (n : ℕ) → P n → (P n ⊎ Q n) implies n Pn = inj₁ Pn p*q->p : ∀ {P Q : ℕ → Set} → (n : ℕ) → (P n × Q n) → P n p*q->p n (Pn , Qn) = Pn _⊔_ _⊓_ : (S T : Type) {r : ∥ S ∥ ≡ ∥ T ∥} → Type (Base P ⊔ Base P₁) {refl} = Base (P ∨ P₁) (Base P ⊔ Nat) = Nat (Nat ⊔ Base P) = Nat (Nat ⊔ Nat) = Nat ((S ⇒ S₁) ⊔ (T ⇒ T₁)) {r} with ss⇒tt r ... | sss , ttt = (S ⊓ T){sss} ⇒ (S₁ ⊔ T₁){ttt} ((S ⋆ S₁) ⊔ (T ⋆ T₁)) {r} with ss⋆tt r ... | sss , ttt = (S ⊔ T){sss} ⋆ (S₁ ⊔ T₁){ttt} ((S ⊹ S₁) ⊔ (T ⊹ T₁)) {r} with ss⊹tt r ... | sss , ttt = (S ⊔ T){sss} ⊹ (S₁ ⊔ T₁){ttt} Base P ⊓ Base P₁ = Base (P ∧ P₁) Base P ⊓ Nat = Base P Nat ⊓ Base P = Base P Nat ⊓ Nat = Nat ((S ⇒ S₁) ⊓ (T ⇒ T₁)){r} with ss⇒tt r ... | sss , ttt = (S ⊔ T){sss} ⇒ (S₁ ⊓ T₁){ttt} ((S ⋆ S₁) ⊓ (T ⋆ T₁)){r} with ss⋆tt r ... | sss , ttt = (S ⊓ T){sss} ⋆ (S₁ ⊓ T₁){ttt} ((S ⊹ S₁) ⊓ (T ⊹ T₁)){r} with ss⊹tt r ... | sss , ttt = (S ⊓ T){sss} ⊹ (S₁ ⊓ T₁){ttt} variable S T U S′ T′ U′ U″ : Type Γ Γ₁ Γ₂ : Env Type L M N : Expr n : ℕ P : ℕ → Set data Split {A : Set ℓ} : Env A → Env A → Env A → Set ℓ where nil : Split · · · lft : ∀ {a : A}{Γ Γ₁ Γ₂ : Env A} → Split Γ Γ₁ Γ₂ → Split (Γ , x ⦂ a) (Γ₁ , x ⦂ a) Γ₂ rgt : ∀ {a : A}{Γ Γ₁ Γ₂ : Env A} → Split Γ Γ₁ Γ₂ → Split (Γ , x ⦂ a) Γ₁ (Γ₂ , x ⦂ a) data _⦂_∈_ {A : Set ℓ} : Id → A → Env A → Set ℓ where found : ∀ {a : A}{E : Env A} → x ⦂ a ∈ (E , x ⦂ a) there : ∀ {a a' : A}{E : Env A} → x ⦂ a ∈ E → -- x ≢ y → x ⦂ a ∈ (E , y ⦂ a') data _<:_ : Type → Type → Set where <:-refl : T <: T <:-base : (P Q : ℕ → Set) → (p→q : ∀ n → P n → Q n) → Base P <: Base Q <:-base-nat : Base P <: Nat <:-⇒ : S′ <: S → T <: T′ → (S ⇒ T) <: (S′ ⇒ T′) <:-⋆ : S <: S′ → T <: T′ → (S ⋆ T) <: (S′ ⋆ T′) <:-⊹ : S <: S′ → T <: T′ → (S ⊹ T) <: (S′ ⊹ T′) -- subtyping is compatible with raw types <:-raw : S <: T → ∥ S ∥ ≡ ∥ T ∥ <:-raw <:-refl = refl <:-raw (<:-base P Q p→q) = refl <:-raw <:-base-nat = refl <:-raw (<:-⇒ s<:t s<:t₁) = Eq.cong₂ _⇒_ (Eq.sym (<:-raw s<:t)) (<:-raw s<:t₁) <:-raw (<:-⋆ s<:t s<:t₁) = Eq.cong₂ _⋆_ (<:-raw s<:t) (<:-raw s<:t₁) <:-raw (<:-⊹ s<:t s<:t₁) = Eq.cong₂ _⊹_ (<:-raw s<:t) (<:-raw s<:t₁) <:-⊔ : ∀ S T → {c : ∥ S ∥ ≡ ∥ T ∥} → S <: (S ⊔ T){c} <:-⊓ : ∀ S T → {c : ∥ S ∥ ≡ ∥ T ∥} → (S ⊓ T){c} <: S <:-⊔ (Base P) (Base P₁) {refl} = <:-base P (P ∨ P₁) implies <:-⊔ (Base P) Nat = <:-base-nat <:-⊔ Nat (Base P) = <:-refl <:-⊔ Nat Nat = <:-refl <:-⊔ (S ⇒ S₁) (T ⇒ T₁) {c} with ss⇒tt c ... | c1 , c2 = <:-⇒ (<:-⊓ S T) (<:-⊔ S₁ T₁) <:-⊔ (S ⋆ S₁) (T ⋆ T₁) {c} with ss⋆tt c ... | c1 , c2 = <:-⋆ (<:-⊔ S T) (<:-⊔ S₁ T₁) <:-⊔ (S ⊹ S₁) (T ⊹ T₁) {c} with ss⊹tt c ... | c1 , c2 = <:-⊹ (<:-⊔ S T) (<:-⊔ S₁ T₁) <:-⊓ (Base P) (Base P₁) {refl} = <:-base (P ∧ P₁) P p*q->p <:-⊓ (Base P) Nat = <:-refl <:-⊓ Nat (Base P) = <:-base-nat <:-⊓ Nat Nat = <:-refl <:-⊓ (S ⇒ S₁) (T ⇒ T₁) {c} with ss⇒tt c ... | c1 , c2 = <:-⇒ (<:-⊔ S T) (<:-⊓ S₁ T₁) <:-⊓ (S ⋆ S₁) (T ⋆ T₁) {c} with ss⋆tt c ... | c1 , c2 = <:-⋆ (<:-⊓ S T) (<:-⊓ S₁ T₁) <:-⊓ (S ⊹ S₁) (T ⊹ T₁) {c} with ss⊹tt c ... | c1 , c2 = <:-⊹ (<:-⊓ S T) (<:-⊓ S₁ T₁) -- should be in terms of RawType for evaluation data _⊢_⦂_ : Env Type → Expr → Type → Set₁ where nat' : Γ ⊢ Nat n ⦂ Base (_≡_ n) var : (x∈ : x ⦂ T ∈ Γ) → -------------------- Γ ⊢ Var x ⦂ T lam : (Γ , x ⦂ S) ⊢ M ⦂ T → -------------------- Γ ⊢ Lam x M ⦂ (S ⇒ T) app : Γ ⊢ M ⦂ (S ⇒ T) → Γ ⊢ N ⦂ S → -------------------- Γ ⊢ App M N ⦂ T pair : Γ ⊢ M ⦂ S → Γ ⊢ N ⦂ T → -------------------- Γ ⊢ Pair M N ⦂ (S ⋆ T) pair-E1 : Γ ⊢ M ⦂ (S ⋆ T) → -------------------- Γ ⊢ Fst M ⦂ S pair-E2 : Γ ⊢ M ⦂ (S ⋆ T) → -------------------- Γ ⊢ Snd M ⦂ T sum-I1 : Γ ⊢ M ⦂ S → -------------------- Γ ⊢ Inl M ⦂ (S ⊹ T) sum-I2 : Γ ⊢ N ⦂ T → -------------------- Γ ⊢ Inl N ⦂ (S ⊹ T) sum-E : Γ ⊢ L ⦂ (S ⊹ T) → (Γ , x ⦂ S) ⊢ M ⦂ U → (Γ , y ⦂ T) ⊢ N ⦂ U → -------------------- Γ ⊢ Case L x M y N ⦂ U split-sym : Split Γ Γ₁ Γ₂ → Split Γ Γ₂ Γ₁ split-sym nil = nil split-sym (lft sp) = rgt (split-sym sp) split-sym (rgt sp) = lft (split-sym sp) weaken-∈ : Split Γ Γ₁ Γ₂ → x ⦂ T ∈ Γ₁ → x ⦂ T ∈ Γ weaken-∈ (lft sp) found = found weaken-∈ (rgt sp) found = there (weaken-∈ sp found) weaken-∈ (lft sp) (there x∈) = there (weaken-∈ sp x∈) weaken-∈ (rgt sp) (there x∈) = there (weaken-∈ sp (there x∈)) weaken : Split Γ Γ₁ Γ₂ → Γ₁ ⊢ M ⦂ T → Γ ⊢ M ⦂ T weaken sp (nat') = nat' weaken sp (var x∈) = var (weaken-∈ sp x∈) weaken sp (lam ⊢M) = lam (weaken (lft sp) ⊢M) weaken sp (app ⊢M ⊢N) = app (weaken sp ⊢M) (weaken sp ⊢N) weaken sp (pair ⊢M ⊢N) = pair (weaken sp ⊢M) (weaken sp ⊢N) weaken sp (pair-E1 ⊢M) = pair-E1 (weaken sp ⊢M) weaken sp (pair-E2 ⊢M) = pair-E2 (weaken sp ⊢M) weaken sp (sum-I1 ⊢M) = sum-I1 (weaken sp ⊢M) weaken sp (sum-I2 ⊢N) = sum-I2 (weaken sp ⊢N) weaken sp (sum-E ⊢L ⊢M ⊢N) = sum-E (weaken sp ⊢L) (weaken (lft sp) ⊢M) (weaken (lft sp) ⊢N) -- incorrectness typing P=n : ℕ → ℕ → Set P=n = λ n x → n ≡ x data _⊢_÷_ : Env Type → Expr → Type → Set₁ where nat' : -------------------- · ⊢ Nat n ÷ Base (_≡_ n) var1 : ( · , x ⦂ T) ⊢ Var x ÷ T {- var : x ⦂ T ∈ Γ → -------------------- Γ ⊢ Var x ÷ T -} lam : (· , x ⦂ S) ⊢ M ÷ T → -------------------- · ⊢ Lam x M ÷ (S ⇒ T) pair : Split Γ Γ₁ Γ₂ → Γ₁ ⊢ M ÷ S → Γ₂ ⊢ N ÷ T → -------------------- Γ ⊢ Pair M N ÷ (S ⋆ T) pair-E1 : Γ ⊢ M ÷ (S ⋆ T) → -------------------- Γ ⊢ Fst M ÷ S pair-E2 : Γ ⊢ M ÷ (S ⋆ T) → -------------------- Γ ⊢ Snd M ÷ T sum-E : Split Γ Γ₁ Γ₂ → Γ₁ ⊢ L ÷ (S ⊹ T) → (Γ₂ , x ⦂ S) ⊢ M ÷ U → (Γ₂ , y ⦂ T) ⊢ N ÷ U → -------------------- Γ ⊢ Case L x M y N ÷ U sum-E′ : ∀ {ru′=ru″} → Split Γ Γ₁ Γ₂ → Γ₁ ⊢ L ÷ (S ⊹ T) → (Γ₂ , x ⦂ S) ⊢ M ÷ U′ → (Γ₂ , y ⦂ T) ⊢ N ÷ U″ → U ≡ (U′ ⊔ U″){ru′=ru″} → -------------------- Γ ⊢ Case L x M y N ÷ U {- `sub` : Γ ⊢ M ÷ S → T <: S → -------------------- Γ ⊢ M ÷ T -} record _←_ (A B : Set) : Set where field func : A → B back : ∀ (b : B) → ∃ λ (a : A) → func a ≡ b open _←_ T⟦_⟧ : Type → Set T⟦ Base P ⟧ = Σ ℕ P T⟦ Nat ⟧ = ℕ T⟦ S ⇒ T ⟧ = T⟦ S ⟧ → T⟦ T ⟧ T⟦ S ⋆ T ⟧ = T⟦ S ⟧ × T⟦ T ⟧ T⟦ S ⊹ T ⟧ = T⟦ S ⟧ ⊎ T⟦ T ⟧ T'⟦_⟧ : Type → Set T'⟦ Base P ⟧ = Σ ℕ P T'⟦ Nat ⟧ = ℕ T'⟦ S ⇒ T ⟧ = T'⟦ S ⟧ ← T'⟦ T ⟧ T'⟦ S ⋆ T ⟧ = T'⟦ S ⟧ × T'⟦ T ⟧ T'⟦ S ⊹ T ⟧ = T'⟦ S ⟧ ⊎ T'⟦ T ⟧ E⟦_⟧ : Env Type → Env Set E⟦ · ⟧ = · E⟦ Γ , x ⦂ T ⟧ = E⟦ Γ ⟧ , x ⦂ T⟦ T ⟧ data iEnv : Env Set → Set where · : iEnv · _,_⦂_ : ∀ {E}{A} → iEnv E → (x : Id) → (a : A) → iEnv (E , x ⦂ A) lookup : (x ⦂ T ∈ Γ) → iEnv E⟦ Γ ⟧ → T⟦ T ⟧ lookup found (γ , _ ⦂ a) = a lookup (there x∈) (γ , _ ⦂ a) = lookup x∈ γ eval : Γ ⊢ M ⦂ T → iEnv E⟦ Γ ⟧ → T⟦ T ⟧ eval (nat'{n = n}) γ = n , refl eval (var x∈) γ = lookup x∈ γ eval (lam ⊢M) γ = λ s → eval ⊢M (γ , _ ⦂ s) eval (app ⊢M ⊢N) γ = eval ⊢M γ (eval ⊢N γ) eval (pair ⊢M ⊢N) γ = (eval ⊢M γ) , (eval ⊢N γ) eval (pair-E1 ⊢M) γ = proj₁ (eval ⊢M γ) eval (pair-E2 ⊢M) γ = proj₂ (eval ⊢M γ) eval (sum-I1 ⊢M) γ = inj₁ (eval ⊢M γ) eval (sum-I2 ⊢N) γ = inj₂ (eval ⊢N γ) eval (sum-E{S = S}{T = T}{U = U} ⊢L ⊢M ⊢N) γ = [ (λ s → eval ⊢M (γ , _ ⦂ s)) , (λ t → eval ⊢N (γ , _ ⦂ t)) ] (eval ⊢L γ) corr : Γ ⊢ M ÷ T → Γ ⊢ M ⦂ T corr (nat') = nat' corr var1 = var found -- corr (var x) = var x corr (lam ⊢M) = lam (corr ⊢M) corr (pair-E1 ÷M) = pair-E1 (corr ÷M) corr (pair-E2 ÷M) = pair-E2 (corr ÷M) corr (pair sp ÷M ÷N) = pair (weaken sp (corr ÷M)) (weaken (split-sym sp) (corr ÷N)) corr (sum-E sp ÷L ÷M ÷N) = sum-E (weaken sp (corr ÷L)) (weaken (lft (split-sym sp)) (corr ÷M)) (weaken (lft (split-sym sp)) (corr ÷N)) corr (sum-E′ sp ÷L ÷M ÷N U≡U′⊔U″) = sum-E (weaken sp (corr ÷L)) (weaken (lft (split-sym sp)) (corr {!!})) (weaken (lft (split-sym sp)) (corr {!!})) {- corr (`sub` ÷M T<S) = {!÷M!} -} -- pick one element of a type to demonstrate non-emptiness one : ∀ (T : Type) {net : ne T} → T⟦ T ⟧ one (Base P) {ne-base ∃P} = ∃P one Nat = zero one (T ⇒ T₁) {ne-⇒ ne-T ne-T₁} = λ x → one T₁ {ne-T₁} one (T ⋆ T₁) {ne-⋆ ne-T ne-T₁} = (one T {ne-T}) , (one T₁ {ne-T₁}) one (T ⊹ T₁) {ne-⊹L ne-T} = inj₁ (one T {ne-T}) one (T ⊹ T₁) {ne-⊹R ne-T₁} = inj₂ (one T₁ {ne-T₁}) {- not needed many : iEnv E⟦ Γ ⟧ many {·} = · many {Γ , x ⦂ T} = many , x ⦂ one T gen : (x∈ : x ⦂ T ∈ Γ) (t : T⟦ T ⟧) → iEnv E⟦ Γ ⟧ gen found t = many , _ ⦂ t gen (there x∈) t = (gen x∈ t) , _ ⦂ one {!!} lookup-gen : (x∈ : x ⦂ T ∈ Γ) (t : T⟦ T ⟧) → lookup x∈ (gen x∈ t) ≡ t lookup-gen found t = refl lookup-gen (there x∈) t = lookup-gen x∈ t -} open Eq.≡-Reasoning postulate ext : ∀ {A B : Set}{f g : A → B} → (∀ x → f x ≡ g x) → f ≡ g unsplit-env : Split Γ Γ₁ Γ₂ → iEnv E⟦ Γ₁ ⟧ → iEnv E⟦ Γ₂ ⟧ → iEnv E⟦ Γ ⟧ unsplit-env nil γ₁ γ₂ = · unsplit-env (lft sp) (γ₁ , _ ⦂ a) γ₂ = (unsplit-env sp γ₁ γ₂) , _ ⦂ a unsplit-env (rgt sp) γ₁ (γ₂ , _ ⦂ a) = (unsplit-env sp γ₁ γ₂) , _ ⦂ a unsplit-split : (sp : Split Γ Γ₁ Γ₂) (γ₁ : iEnv E⟦ Γ₁ ⟧) (γ₂ : iEnv E⟦ Γ₂ ⟧) → unsplit-env sp γ₁ γ₂ ≡ unsplit-env (split-sym sp) γ₂ γ₁ unsplit-split nil γ₁ γ₂ = refl unsplit-split (lft sp) (γ₁ , _ ⦂ a) γ₂ rewrite unsplit-split sp γ₁ γ₂ = refl unsplit-split (rgt sp) γ₁ (γ₂ , _ ⦂ a) rewrite unsplit-split sp γ₁ γ₂ = refl lookup-unsplit : (sp : Split Γ Γ₁ Γ₂) (γ₁ : iEnv E⟦ Γ₁ ⟧) (γ₂ : iEnv E⟦ Γ₂ ⟧) → (x∈ : x ⦂ T ∈ Γ₁) → lookup (weaken-∈ sp x∈) (unsplit-env sp γ₁ γ₂) ≡ lookup x∈ γ₁ lookup-unsplit (lft sp) (γ₁ , _ ⦂ a) γ₂ found = refl lookup-unsplit (rgt sp) γ₁ (γ₂ , _ ⦂ a) found = lookup-unsplit sp γ₁ γ₂ found lookup-unsplit (lft sp) (γ₁ , _ ⦂ a) γ₂ (there x∈) = lookup-unsplit sp γ₁ γ₂ x∈ lookup-unsplit (rgt sp) γ₁ (γ₂ , _ ⦂ a) (there x∈) = lookup-unsplit sp γ₁ γ₂ (there x∈) eval-unsplit : (sp : Split Γ Γ₁ Γ₂) (γ₁ : iEnv E⟦ Γ₁ ⟧) (γ₂ : iEnv E⟦ Γ₂ ⟧) → (⊢M : Γ₁ ⊢ M ⦂ T) → eval (weaken sp ⊢M) (unsplit-env sp γ₁ γ₂) ≡ eval ⊢M γ₁ eval-unsplit sp γ₁ γ₂ (nat')= refl eval-unsplit sp γ₁ γ₂ (var x∈) = lookup-unsplit sp γ₁ γ₂ x∈ eval-unsplit sp γ₁ γ₂ (lam ⊢M) = ext (λ s → eval-unsplit (lft sp) (γ₁ , _ ⦂ s) γ₂ ⊢M) eval-unsplit sp γ₁ γ₂ (app ⊢M ⊢M₁) rewrite eval-unsplit sp γ₁ γ₂ ⊢M | eval-unsplit sp γ₁ γ₂ ⊢M₁ = refl eval-unsplit sp γ₁ γ₂ (pair ⊢M ⊢M₁) rewrite eval-unsplit sp γ₁ γ₂ ⊢M | eval-unsplit sp γ₁ γ₂ ⊢M₁ = refl eval-unsplit sp γ₁ γ₂ (pair-E1 ⊢M) rewrite eval-unsplit sp γ₁ γ₂ ⊢M = refl eval-unsplit sp γ₁ γ₂ (pair-E2 ⊢M) rewrite eval-unsplit sp γ₁ γ₂ ⊢M = refl eval-unsplit sp γ₁ γ₂ (sum-I1 ⊢M) rewrite eval-unsplit sp γ₁ γ₂ ⊢M = refl eval-unsplit sp γ₁ γ₂ (sum-I2 ⊢N) rewrite eval-unsplit sp γ₁ γ₂ ⊢N = refl eval-unsplit sp γ₁ γ₂ (sum-E ⊢L ⊢M ⊢N) rewrite eval-unsplit sp γ₁ γ₂ ⊢L | ext (λ s → eval-unsplit (lft sp) (γ₁ , _ ⦂ s) γ₂ ⊢M) | ext (λ t → eval-unsplit (lft sp) (γ₁ , _ ⦂ t) γ₂ ⊢N) = refl -- soundness of the incorrectness rules lave : (÷M : Γ ⊢ M ÷ T) → ∀ (t : T⟦ T ⟧) → ∃ λ (γ : iEnv E⟦ Γ ⟧) → eval (corr ÷M) γ ≡ t lave nat' (n , refl) = · , refl lave var1 t = (· , _ ⦂ t) , refl -- lave (var x∈) t = (gen x∈ t) , lookup-gen x∈ t lave (lam{x = x}{S = S} ÷M) t = · , ext aux where aux : (s : T⟦ S ⟧) → eval (corr ÷M) (· , x ⦂ s) ≡ t s aux s with lave ÷M (t s) ... | (· , .x ⦂ a) , snd = {!!} -- impossible to complete! lave (pair-E1 ÷M) t with lave ÷M (t , one {!!}) ... | γ , ih = γ , Eq.cong proj₁ ih lave (pair-E2 ÷M) t with lave ÷M (one {!!} , t) ... | γ , ih = γ , Eq.cong proj₂ ih lave (pair sp ÷M ÷N) (s , t) with lave ÷M s | lave ÷N t ... | γ₁ , ih-M | γ₂ , ih-N = unsplit-env sp γ₁ γ₂ , Eq.cong₂ _,_ (Eq.trans (eval-unsplit sp γ₁ γ₂ (corr ÷M)) ih-M) (begin eval (weaken (split-sym sp) (corr ÷N)) (unsplit-env sp γ₁ γ₂) ≡⟨ Eq.cong (eval (weaken (split-sym sp) (corr ÷N))) (unsplit-split sp γ₁ γ₂) ⟩ eval (weaken (split-sym sp) (corr ÷N)) (unsplit-env (split-sym sp) γ₂ γ₁) ≡⟨ eval-unsplit (split-sym sp) γ₂ γ₁ (corr ÷N) ⟩ ih-N) -- works, but unsatisfactory! -- this proof uses only one branch of the case -- this choice is possible because both branches ÷M and ÷N have the same type -- in general, U could be the union of the types of ÷M and ÷N lave (sum-E{S = S}{T = T}{U = U} sp ÷L ÷M ÷N) u with lave ÷M u | lave ÷N u ... | (γ₁ , x ⦂ s) , ih-M | (γ₂ , y ⦂ t) , ih-N with lave ÷L (inj₁ s) ... | γ₀ , ih-L = unsplit-env sp γ₀ γ₁ , (begin [ (λ s₁ → eval (weaken (lft (split-sym sp)) (corr ÷M)) (unsplit-env sp γ₀ γ₁ , x ⦂ s₁)) , (λ t₁ → eval (weaken (lft (split-sym sp)) (corr ÷N)) (unsplit-env sp γ₀ γ₁ , y ⦂ t₁)) ] (eval (weaken sp (corr ÷L)) (unsplit-env sp γ₀ γ₁)) ≡⟨ Eq.cong [ (λ s₁ → eval (weaken (lft (split-sym sp)) (corr ÷M)) (unsplit-env sp γ₀ γ₁ , x ⦂ s₁)) , (λ t₁ → eval (weaken (lft (split-sym sp)) (corr ÷N)) (unsplit-env sp γ₀ γ₁ , y ⦂ t₁)) ] (eval-unsplit sp γ₀ γ₁ (corr ÷L)) ⟩ [ (λ s₁ → eval (weaken (lft (split-sym sp)) (corr ÷M)) (unsplit-env sp γ₀ γ₁ , x ⦂ s₁)) , (λ t₁ → eval (weaken (lft (split-sym sp)) (corr ÷N)) (unsplit-env sp γ₀ γ₁ , y ⦂ t₁)) ] (eval (corr ÷L) γ₀) ≡⟨ Eq.cong [ (λ s₁ → eval (weaken (lft (split-sym sp)) (corr ÷M)) (unsplit-env sp γ₀ γ₁ , x ⦂ s₁)) , (λ t₁ → eval (weaken (lft (split-sym sp)) (corr ÷N)) (unsplit-env sp γ₀ γ₁ , y ⦂ t₁)) ] ih-L ⟩ eval (weaken (lft (split-sym sp)) (corr ÷M)) (unsplit-env sp γ₀ γ₁ , x ⦂ s) ≡⟨ Eq.cong (λ γ → eval (weaken (lft (split-sym sp)) (corr ÷M)) (γ , x ⦂ s)) (unsplit-split sp γ₀ γ₁) ⟩ eval (weaken (lft (split-sym sp)) (corr ÷M)) (unsplit-env (split-sym sp) γ₁ γ₀ , x ⦂ s) ≡⟨⟩ eval (weaken (lft (split-sym sp)) (corr ÷M)) (unsplit-env (lft (split-sym sp)) (γ₁ , x ⦂ s) γ₀) ≡⟨ eval-unsplit (lft (split-sym sp)) (γ₁ , x ⦂ s) γ₀ (corr ÷M) ⟩ ih-M) lave (sum-E′{S = S}{T = T}{U = U} sp ÷L ÷M ÷N uuu) u = {!!}
{ "alphanum_fraction": 0.4612945346, "avg_line_length": 27.921875, "ext": "agda", "hexsha": "5720c74bc6858a81f071c9c652789a8dc46eb324", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "91a5ff5267089e6ed0d2f6d3998633ba1842b397", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "proglang/incorrectness", "max_forks_repo_path": "src/Semantics.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "91a5ff5267089e6ed0d2f6d3998633ba1842b397", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "proglang/incorrectness", "max_issues_repo_path": "src/Semantics.agda", "max_line_length": 135, "max_stars_count": 1, "max_stars_repo_head_hexsha": "91a5ff5267089e6ed0d2f6d3998633ba1842b397", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "proglang/incorrectness", "max_stars_repo_path": "src/Semantics.agda", "max_stars_repo_stars_event_max_datetime": "2020-06-17T19:13:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-06-17T19:13:13.000Z", "num_tokens": 7926, "size": 16083 }
module Oscar.Class.Associativity where open import Oscar.Class.Preservativity open import Oscar.Function open import Oscar.Level open import Oscar.Relation record Associativity {𝔞} {𝔄 : Set 𝔞} {𝔰} {_►_ : 𝔄 → 𝔄 → Set 𝔰} (_◅_ : ∀ {m n} → m ► n → ∀ {l} → m ⟨ l ►_ ⟩→ n) {ℓ} (_≤_ : ∀ {m n} → m ► n → m ► n → Set ℓ) : Set (𝔞 ⊔ 𝔰 ⊔ ℓ) where field associativity : ∀ {k l} (f : k ► l) {m} (g : l ► m) {n} (h : m ► n) → (h ◅ (g ◅ f)) ≤ ((h ◅ g) ◅ f) instance `preservativity : ∀ {l} {m} {n} {w : m ► n} → Preservativity (λ ⋆ → _◅_ ⋆) (λ ⋆ → _◅_ ⋆) _≤_ (m ⟨ l ►_ ⟩→ n ∋ w ◅_) id (m ⟨ l ►_ ⟩→ n ∋ w ◅_) Preservativity.preservativity `preservativity g f = associativity f g _ -- ⦃ `preservativity ⦄ : ∀ {l} {m} {n} {w : m ► n} → Preservativity (λ ⋆ → _◅_ ⋆) (λ ⋆ → _◅_ ⋆) _≤_ (m ⟨ l ►_ ⟩→ n ∋ w ◅_) id (m ⟨ l ►_ ⟩→ n ∋ w ◅_) open Associativity ⦃ … ⦄ public module _ where private postulate A : Set _⇒_ : A → A → Set _∙_ : ∀ {m n} → m ⇒ n → ∀ {l} → m ⟨ l ⇒_ ⟩→ n _≋_ : ∀ {m n} → m ⇒ n → m ⇒ n → Set instance _ : Associativity _∙_ _≋_ test-associativity₁ : ∀ {k l} (f : k ⇒ l) {m} (g : l ⇒ m) {n} (h : m ⇒ n) → (h ∙ (g ∙ f)) ≋ ((h ∙ g) ∙ f) test-associativity₁ = associativity {_◅_ = _∙_} test-associativity₂ : ∀ {k l} (f : k ⇒ l) {m} (g : l ⇒ m) {n} (h : m ⇒ n) → (h ∙ (g ∙ f)) ≋ ((h ∙ g) ∙ f) test-associativity₂ = associativity {_≤_ = _≋_} -- Associativity : ∀ -- {𝔞} {𝔄 : Set 𝔞} {𝔰} {_►_ : 𝔄 → 𝔄 → Set 𝔰} -- (_◅_ : ∀ {m n} → m ► n → ∀ {l} → m ⟨ l ►_ ⟩→ n) -- {ℓ} -- (_≤_ : ∀ {m n} → m ► n → m ► n → Set ℓ) -- → Set (𝔞 ⊔ 𝔰 ⊔ ℓ) -- Associativity {_►_ = _►_} _◅_ _≤_ = -- ∀ {l} {m} {n} {w : m ► n} → Preservativity (λ ⋆ → _◅_ ⋆) (λ ⋆ → _◅_ ⋆) _≤_ (m ⟨ l ►_ ⟩→ n ∋ w ◅_) id (m ⟨ l ►_ ⟩→ n ∋ w ◅_) -- -- record Associativity -- -- {𝔞} {𝔄 : Set 𝔞} {𝔰} {_►_ : 𝔄 → 𝔄 → Set 𝔰} -- -- (_◅_ : ∀ {m n} → m ► n → ∀ {l} → m ⟨ l ►_ ⟩→ n) -- -- {𝔱} {▸ : 𝔄 → Set 𝔱} -- -- (_◃_ : ∀ {m n} → m ► n → m ⟨ ▸ ⟩→ n) -- -- {ℓ} -- -- (_≤_ : ∀ {n} → ▸ n → ▸ n → Set ℓ) -- -- : Set (𝔞 ⊔ 𝔰 ⊔ 𝔱 ⊔ ℓ) where -- -- field -- -- associativity : ∀ {l} (f : ▸ l) {m} (g : l ► m) {n} (h : m ► n) → (h ◃ (g ◃ f)) ≤ ((h ◅ g) ◃ f) -- -- open Associativity ⦃ … ⦄ public -- -- -- record Associativity -- -- -- {𝔞} {𝔄 : Set 𝔞} {𝔰} {_►_ : 𝔄 → 𝔄 → Set 𝔰} -- -- -- (_▻_ : ∀ {l m n} → l ► m → m ⟨ _► n ⟩→ l) -- -- -- {ℓ} -- -- -- (_≤_ : ∀ {m n} → m ► n → m ► n → Set ℓ) -- -- -- : Set (𝔞 ⊔ 𝔰 ⊔ ℓ) where -- -- -- field -- -- -- ⦃ `preservativity ⦄ : ∀ l m n w → Preservativity (_▻_ {l = l} {m = m} {n = n}) (_▻_ {l = l}) _≤_ (w ▻_) id (w ▻_) -- -- -- -- ⦃ `preservativity ⦄ : ∀ n l w → Preservativity (λ ⋆ → _◅_ {n = n} ⋆) (λ ⋆ → _◅_ {l = l} ⋆) _≤_ (_◅ w) id (w ◅_) -- -- -- -- record Associativity -- -- -- -- {𝔞} {𝔄 : Set 𝔞} {𝔰} {_►_ : 𝔄 → 𝔄 → Set 𝔰} -- -- -- -- (_◅_ : ∀ {l m n} → m ► n → m ⟨ l ►_ ⟩→ n) -- -- -- -- {ℓ} -- -- -- -- (_≤_ : ∀ {m n} → m ► n → m ► n → Set ℓ) -- -- -- -- : Set (𝔞 ⊔ 𝔰 ⊔ ℓ) where -- -- -- -- field -- -- -- -- ⦃ `preservativity ⦄ : ∀ l n w → Preservativity (flip (_◅_ {l = l} {n = n})) (flip _◅_) _≤_ (w ◅_) id (_◅ w) -- -- -- -- -- ⦃ `preservativity ⦄ : ∀ n l w → Preservativity (λ ⋆ → _◅_ {n = n} ⋆) (λ ⋆ → _◅_ {l = l} ⋆) _≤_ (_◅ w) id (w ◅_) -- -- -- -- -- record Associativity -- -- -- -- -- {𝔞} {𝔄 : Set 𝔞} {𝔰} {_►_ : 𝔄 → 𝔄 → Set 𝔰} -- -- -- -- -- (_◅_ : ∀ {m n} → m ► n → ∀ {l} → m ⟨ l ►_ ⟩→ n) -- -- -- -- -- {ℓ} -- -- -- -- -- (_≤_ : ∀ {m n} → m ► n → m ► n → Set ℓ) -- -- -- -- -- : Set (𝔞 ⊔ 𝔰 ⊔ ℓ) where -- -- -- -- -- field -- -- -- -- -- ⦃ `preservativity ⦄ : ∀ n l w → Preservativity (λ ⋆ → _◅_ {n = n} ⋆) (λ ⋆ → _◅_ ⋆ {l = l}) _≤_ (_◅ w) id (w ◅_) -- -- -- -- -- -- associativity : ∀ {k l} (f : k ► l) {m} (g : l ► m) {n} (h : m ► n) → (h ◅ (g ◅ f)) ≤ ((h ◅ g) ◅ f) -- -- -- -- -- -- record Associativity -- -- -- -- -- -- {a} {A : Set a} {b} {B : A → Set b} {c} {C : (x : A) → B x → Set c} -- -- -- -- -- -- (_◅_ : ∀ {m n} → m ► n → ∀ {l} → m ⟨ l ►_ ⟩→ n) -- -- -- -- -- -- {ℓ} -- -- -- -- -- -- (_≤_ : ∀ {m n} → m ► n → m ► n → Set ℓ) -- -- -- -- -- -- : Set (𝔞 ⊔ 𝔰 ⊔ ℓ) where -- -- -- -- -- -- field -- -- -- -- -- -- ⦃ `preservativity ⦄ : Preservativity -- -- -- -- -- -- associativity : ∀ {k l} (f : k ► l) {m} (g : l ► m) {n} (h : m ► n) → (h ◅ (g ◅ f)) ≤ ((h ◅ g) ◅ f) -- -- -- -- -- -- open Associativity ⦃ … ⦄ public -- -- -- -- -- -- -- record Associativity -- -- -- -- -- -- -- {𝔞} {𝔄 : Set 𝔞} {𝔰} {_►_ : 𝔄 → 𝔄 → Set 𝔰} -- -- -- -- -- -- -- (_◅_ : ∀ {m n} → m ► n → ∀ {l} → m ⟨ l ►_ ⟩→ n) -- -- -- -- -- -- -- {ℓ} -- -- -- -- -- -- -- (_≤_ : ∀ {m n} → m ► n → m ► n → Set ℓ) -- -- -- -- -- -- -- : Set (𝔞 ⊔ 𝔰 ⊔ ℓ) where -- -- -- -- -- -- -- field -- -- -- -- -- -- -- associativity : ∀ {k l} (f : k ► l) {m} (g : l ► m) {n} (h : m ► n) → (h ◅ (g ◅ f)) ≤ ((h ◅ g) ◅ f) -- -- -- -- -- -- -- open Associativity ⦃ … ⦄ public -- -- -- -- -- -- -- -- record Associativity -- -- -- -- -- -- -- -- {𝔞} {𝔄 : Set 𝔞} {𝔰} {_►_ : 𝔄 → 𝔄 → Set 𝔰} -- -- -- -- -- -- -- -- (_◅_ : ∀ {m n} → m ► n → ∀ {l} → m ⟨ l ►_ ⟩→ n) -- -- -- -- -- -- -- -- {𝔱} {▸ : 𝔄 → Set 𝔱} -- -- -- -- -- -- -- -- (_◃_ : ∀ {m n} → m ► n → m ⟨ ▸ ⟩→ n) -- -- -- -- -- -- -- -- {ℓ} -- -- -- -- -- -- -- -- (_≤_ : ∀ {n} → ▸ n → ▸ n → Set ℓ) -- -- -- -- -- -- -- -- : Set (𝔞 ⊔ 𝔰 ⊔ 𝔱 ⊔ ℓ) where -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- associativity : ∀ {l} (f : ▸ l) {m} (g : l ► m) {n} (h : m ► n) → (h ◃ (g ◃ f)) ≤ ((h ◅ g) ◃ f) -- -- -- -- -- -- -- -- open Associativity ⦃ … ⦄ public -- -- -- -- -- -- -- -- association : ∀ -- -- -- -- -- -- -- -- {𝔞} {𝔄 : Set 𝔞} {𝔰} {_►_ : 𝔄 → 𝔄 → Set 𝔰} -- -- -- -- -- -- -- -- (_◅_ : ∀ {m n} → m ► n → ∀ {l} → m ⟨ l ►_ ⟩→ n) -- -- -- -- -- -- -- -- {𝔱} {▸ : 𝔄 → Set 𝔱} -- -- -- -- -- -- -- -- {_◃_ : ∀ {m n} → m ► n → m ⟨ ▸ ⟩→ n} -- -- -- -- -- -- -- -- {ℓ} -- -- -- -- -- -- -- -- (_≤_ : ∀ {n} → ▸ n → ▸ n → Set ℓ) -- -- -- -- -- -- -- -- ⦃ _ : Associativity _◅_ _◃_ _≤_ ⦄ -- -- -- -- -- -- -- -- → ∀ {l} (f : ▸ l) {m} (g : l ► m) {n} (h : m ► n) → (h ◃ (g ◃ f)) ≤ ((h ◅ g) ◃ f) -- -- -- -- -- -- -- -- association _◅_ _≤_ = associativity {_◅_ = _◅_} {_≤_ = _≤_}
{ "alphanum_fraction": 0.3202103921, "avg_line_length": 44.1830985915, "ext": "agda", "hexsha": "aadef82ca380d1e0a71552acd99edc8d9c7820c0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Class/Associativity.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Class/Associativity.agda", "max_line_length": 152, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Class/Associativity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3234, "size": 6274 }
{-# OPTIONS --safe #-} module Cubical.ZCohomology.Groups.Connected where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.HLevels open import Cubical.Data.Nat open import Cubical.Data.Int renaming (_+_ to _+ℤ_; +Comm to +ℤ-comm ; +Assoc to +ℤ-assoc) open import Cubical.Data.Sigma hiding (_×_) open import Cubical.HITs.SetTruncation as ST open import Cubical.HITs.PropositionalTruncation as PT open import Cubical.HITs.Truncation as T open import Cubical.HITs.Nullification open import Cubical.Algebra.Group open import Cubical.Algebra.Group.Instances.Int open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Homotopy.Connected open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.Groups.Unit private H⁰-connected-type : ∀ {ℓ} {A : Type ℓ} (a : A) → isConnected 2 A → Iso (coHom 0 A) ℤ Iso.fun (H⁰-connected-type a con) = ST.rec isSetℤ λ f → f a Iso.inv (H⁰-connected-type a con) b = ∣ (λ x → b) ∣₂ Iso.rightInv (H⁰-connected-type a con) b = refl Iso.leftInv (H⁰-connected-type a con) = ST.elim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _) λ f → cong ∣_∣₂ (funExt λ x → T.rec₊ (isSetℤ _ _) (cong f) (isConnectedPath 1 con a x .fst)) open IsGroupHom open Iso H⁰-connected : ∀ {ℓ} {A : Type ℓ} (a : A) → ((x : A) → ∥ a ≡ x ∥₁) → GroupIso (coHomGr 0 A) ℤGroup fun (fst (H⁰-connected a con)) = ST.rec isSetℤ (λ f → f a) inv (fst (H⁰-connected a con)) b = ∣ (λ _ → b) ∣₂ rightInv (fst (H⁰-connected a con)) _ = refl leftInv (fst (H⁰-connected a con)) = ST.elim (λ _ → isProp→isSet (isSetSetTrunc _ _)) (λ f → cong ∣_∣₂ (funExt λ x → PT.rec (isSetℤ _ _) (cong f) (con x))) snd (H⁰-connected a con) = makeIsGroupHom (ST.elim2 (λ _ _ → isProp→isSet (isSetℤ _ _)) λ x y → refl)
{ "alphanum_fraction": 0.7162977867, "avg_line_length": 39.76, "ext": "agda", "hexsha": "ce474bb0da2de8085462fa525ad3336aebd1bcf2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/ZCohomology/Groups/Connected.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/ZCohomology/Groups/Connected.agda", "max_line_length": 103, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/ZCohomology/Groups/Connected.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 698, "size": 1988 }
module Primitive where
{ "alphanum_fraction": 0.8333333333, "avg_line_length": 8, "ext": "agda", "hexsha": "0d20e214e3f50e3ca0ee50bafaa67ca47f1416e6", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/Alonzo/Primitive.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/Alonzo/Primitive.agda", "max_line_length": 22, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/Alonzo/Primitive.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 4, "size": 24 }
-- Andreas, 2011-10-02 {-# OPTIONS --show-implicit #-} module Issue483a where data _≡_ {A : Set}(a : A) : A → Set where refl : a ≡ a data Empty : Set where postulate A : Set abort : .Empty → A abort () test : let X : .Set1 → A X = _ in (x : Empty) → X Set ≡ abort x test x = refl -- this should fail with message like -- -- Cannot instantiate the metavariable _16 to abort x since it -- contains the variable x which is not in scope of the metavariable -- when checking that the expression refl has type _16 _ ≡ abort x -- -- a solution like X = λ _ → abort x : Set1 → A -- would be invalid even though x is irrelevant, because there is no -- term of type Set1 → A
{ "alphanum_fraction": 0.6431654676, "avg_line_length": 23.9655172414, "ext": "agda", "hexsha": "b27510f5e96f3cbb9cf2ffaf59babc7b75c16159", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue483a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue483a.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue483a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 209, "size": 695 }
postulate A : Set F : { x : A } → Set G : ⦃ x : A ⦄ → Set
{ "alphanum_fraction": 0.3846153846, "avg_line_length": 10.8333333333, "ext": "agda", "hexsha": "34352758cb73b4581ec6e5d13f2e43e40dc42f7e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue1268.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue1268.agda", "max_line_length": 21, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue1268.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 35, "size": 65 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Structures.NAryOp where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.SIP open import Cubical.Functions.FunExtEquiv open import Cubical.Data.Nat open import Cubical.Data.Vec module _ {ℓ₁ ℓ₂ : Level} where NAryFunStructure : (n : ℕ) (S : Type ℓ₁ → Type ℓ₂) → Type ℓ₁ → Type (nAryLevel ℓ₁ ℓ₂ n) NAryFunStructure n S X = nAryOp n X (S X) -- iso for n-ary functions NAryFunEquivStr : (n : ℕ) {S : Type ℓ₁ → Type ℓ₂} {ℓ₃ : Level} (ι : StrEquiv S ℓ₃) → StrEquiv (NAryFunStructure n S) (ℓ-max ℓ₁ ℓ₃) NAryFunEquivStr n ι (X , fX) (Y , fY) e = (xs : Vec X n) → ι (X , fX $ⁿ xs) (Y , fY $ⁿ map (equivFun e) xs) e nAryFunUnivalentStr : {S : Type ℓ₁ → Type ℓ₂} (n : ℕ) {ℓ₃ : Level} (ι : StrEquiv S ℓ₃) (θ : UnivalentStr S ι) → UnivalentStr (NAryFunStructure n S) (NAryFunEquivStr n ι) nAryFunUnivalentStr n ι θ = SNS→UnivalentStr (NAryFunEquivStr n ι) λ fX fY → compEquiv (equivPi λ xs → UnivalentStr→SNS _ ι θ _ _) (nAryFunExtEquiv n fX fY) module _ {ℓ₁ ℓ₂ : Level} where -- unary UnaryFunEquivStr : {S : Type ℓ₁ → Type ℓ₂} {ℓ₃ : Level} (ι : StrEquiv S ℓ₃) → StrEquiv (NAryFunStructure 1 S) (ℓ-max ℓ₁ ℓ₃) UnaryFunEquivStr ι (A , f) (B , g) e = (x : A) → ι (A , f x) (B , g (equivFun e x)) e unaryFunUnivalentStr : {S : Type ℓ₁ → Type ℓ₂} {ℓ₃ : Level} (ι : StrEquiv S ℓ₃) (θ : UnivalentStr S ι) → UnivalentStr (NAryFunStructure 1 S) (UnaryFunEquivStr ι) unaryFunUnivalentStr ι θ = SNS→UnivalentStr (UnaryFunEquivStr ι) λ fX fY → compEquiv (equivPi λ _ → UnivalentStr→SNS _ ι θ _ _) funExtEquiv -- binary BinaryFunEquivStr : {S : Type ℓ₁ → Type ℓ₂} {ℓ₃ : Level} (ι : StrEquiv S ℓ₃) → StrEquiv (NAryFunStructure 2 S) (ℓ-max ℓ₁ ℓ₃) BinaryFunEquivStr ι (A , f) (B , g) e = (x y : A) → ι (A , f x y) (B , g (equivFun e x) (equivFun e y)) e binaryFunUnivalentStr : {S : Type ℓ₁ → Type ℓ₂} {ℓ₃ : Level} (ι : StrEquiv S ℓ₃) (θ : UnivalentStr S ι) → UnivalentStr (NAryFunStructure 2 S) (BinaryFunEquivStr ι) binaryFunUnivalentStr ι θ = SNS→UnivalentStr (BinaryFunEquivStr ι) λ fX fY → compEquiv (equivPi λ _ → equivPi λ _ → UnivalentStr→SNS _ ι θ _ _) funExt₂Equiv
{ "alphanum_fraction": 0.6529136538, "avg_line_length": 38.5409836066, "ext": "agda", "hexsha": "47b23058761925c77ddf2c43e57a7f441d072c50", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "RobertHarper/cubical", "max_forks_repo_path": "Cubical/Structures/NAryOp.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "RobertHarper/cubical", "max_issues_repo_path": "Cubical/Structures/NAryOp.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "RobertHarper/cubical", "max_stars_repo_path": "Cubical/Structures/NAryOp.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1011, "size": 2351 }
{-# OPTIONS --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.ShapeView {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped as U open import Definition.Typed open import Definition.Typed.Weakening open import Definition.Typed.Properties open import Definition.LogicalRelation open import Definition.LogicalRelation.Properties.Escape open import Definition.LogicalRelation.Properties.Reflexivity open import Tools.Product open import Tools.Empty using (⊥; ⊥-elim) import Tools.PropositionalEquality as PE import Data.Fin as Fin import Data.Nat as Nat -- Type for maybe embeddings of reducible types data MaybeEmb (l : TypeLevel) (⊩⟨_⟩ : TypeLevel → Set) : Set where noemb : ⊩⟨ l ⟩ → MaybeEmb l ⊩⟨_⟩ emb : ∀ {l′} → l′ <∞ l → MaybeEmb l′ ⊩⟨_⟩ → MaybeEmb l ⊩⟨_⟩ -- Specific reducible types with possible embedding _⊩⟨_⟩U_^_ : (Γ : Con Term) (l : TypeLevel) (A : Term) (ll : TypeLevel) → Set Γ ⊩⟨ l ⟩U A ^ ll = MaybeEmb l (λ l′ → Γ ⊩′⟨ l′ ⟩U A ^ ll) _⊩⟨_⟩ℕ_ : (Γ : Con Term) (l : TypeLevel) (A : Term) → Set Γ ⊩⟨ l ⟩ℕ A = MaybeEmb l (λ l′ → Γ ⊩ℕ A) _⊩⟨_⟩Empty_^_ : (Γ : Con Term) (l : TypeLevel) (A : Term) (ll : Level) → Set Γ ⊩⟨ l ⟩Empty A ^ ll = MaybeEmb l (λ l′ → Γ ⊩Empty A ^ ll) _⊩⟨_⟩ne_^[_,_] : (Γ : Con Term) (l : TypeLevel) (A : Term) (r : Relevance) (ll : Level) → Set Γ ⊩⟨ l ⟩ne A ^[ r , ll ] = MaybeEmb l (λ l′ → Γ ⊩ne A ^[ r , ll ]) _⊩⟨_⟩Π_^[_,_] : (Γ : Con Term) (l : TypeLevel) (A : Term) → Relevance → Level → Set Γ ⊩⟨ l ⟩Π A ^[ r , lΠ ] = MaybeEmb l (λ l′ → Γ ⊩′⟨ l′ ⟩Π A ^[ r , lΠ ]) _⊩⟨_⟩∃_^_ : (Γ : Con Term) (l : TypeLevel) (A : Term) (ll : Level) → Set Γ ⊩⟨ l ⟩∃ A ^ ll = MaybeEmb l (λ l′ → Γ ⊩′⟨ l′ ⟩∃ A ^ ll) -- Construct a general reducible type from a specific U-intr : ∀ {l Γ A ll } → (UA : Γ ⊩⟨ l ⟩U A ^ ll) → Γ ⊩⟨ l ⟩ A ^ [ ! , ll ] U-intr (noemb UA) = Uᵣ UA U-intr {l = ι ¹} (emb emb< x) = emb emb< (U-intr x) U-intr {l = ∞} (emb ∞< x) = emb ∞< (U-intr x) ℕ-intr : ∀ {l A Γ} → Γ ⊩⟨ l ⟩ℕ A → Γ ⊩⟨ l ⟩ A ^ [ ! , ι ⁰ ] ℕ-intr (noemb x) = ℕᵣ x ℕ-intr {l = ι ¹} (emb emb< x) = emb emb< (ℕ-intr x) ℕ-intr {l = ∞} (emb ∞< x) = emb ∞< (ℕ-intr x) Empty-intr : ∀ {l A Γ ll} → Γ ⊩⟨ l ⟩Empty A ^ ll → Γ ⊩⟨ l ⟩ A ^ [ % , ι ll ] Empty-intr (noemb x) = Emptyᵣ x Empty-intr {l = ι ¹} (emb emb< x) = emb emb< (Empty-intr x) Empty-intr {l = ∞} (emb ∞< x) = emb ∞< (Empty-intr x) ne-intr : ∀ {l A Γ r ll} → Γ ⊩⟨ l ⟩ne A ^[ r , ll ] → Γ ⊩⟨ l ⟩ A ^ [ r , ι ll ] ne-intr (noemb x) = ne x ne-intr {l = ι ¹} (emb emb< x) = emb emb< (ne-intr x) ne-intr {l = ∞} (emb ∞< x) = emb ∞< (ne-intr x) Π-intr : ∀ {l A Γ r ll} → Γ ⊩⟨ l ⟩Π A ^[ r , ll ] → Γ ⊩⟨ l ⟩ A ^ [ r , ι ll ] Π-intr (noemb x) = Πᵣ x Π-intr {l = ι ¹} (emb emb< x) = emb emb< (Π-intr x) Π-intr {l = ∞} (emb ∞< x) = emb ∞< (Π-intr x) ∃-intr : ∀ {l A Γ ll} → Γ ⊩⟨ l ⟩∃ A ^ ll → Γ ⊩⟨ l ⟩ A ^ [ % , ι ll ] ∃-intr (noemb x) = ∃ᵣ x ∃-intr {l = ι ¹} (emb emb< x) = emb emb< (∃-intr x) ∃-intr {l = ∞} (emb ∞< x) = emb ∞< (∃-intr x) -- Construct a specific reducible type from a general with some criterion U-elim′ : ∀ {l Γ A r l′ ll} → Γ ⊢ A ⇒* Univ r l′ ^ [ ! , ll ] → Γ ⊩⟨ l ⟩ A ^ [ ! , ll ] → Γ ⊩⟨ l ⟩U A ^ ll U-elim′ D (Uᵣ′ A ll r l l< e D') = noemb (Uᵣ r l l< e D') U-elim′ D (ℕᵣ D') = ⊥-elim (U≢ℕ (whrDet* (D , Uₙ) (red D' , ℕₙ))) U-elim′ D (ne′ K D' neK K≡K) = ⊥-elim (U≢ne neK (whrDet* (D , Uₙ) (red D' , ne neK))) U-elim′ D (Πᵣ′ rF lF lG _ _ F G D' ⊢F ⊢G A≡A [F] [G] G-ext) = ⊥-elim (U≢Π (whrDet* (D , Uₙ) (red D' , Πₙ))) U-elim′ {ι ¹} D (emb emb< x) with U-elim′ D x U-elim′ {ι ¹} D (emb emb< x) | noemb x₁ = emb emb< (noemb x₁) U-elim′ {ι ¹} D (emb emb< x) | emb () x₁ U-elim′ {∞} D (emb ∞< x) with U-elim′ D x U-elim′ {∞} D (emb ∞< x) | noemb x₁ = emb ∞< (noemb x₁) U-elim′ {∞} D (emb ∞< x) | emb <l x₁ = emb {l′ = ι ¹} ∞< (emb <l x₁) U-elim : ∀ {l Γ r l′ ll′} → Γ ⊩⟨ l ⟩ Univ r l′ ^ [ ! , ll′ ] → Γ ⊩⟨ l ⟩U Univ r l′ ^ ll′ U-elim [U] = U-elim′ (id (escape [U])) [U] ℕ-elim′ : ∀ {l A Γ ll} → Γ ⊢ A ⇒* ℕ ^ [ ! , ll ] → Γ ⊩⟨ l ⟩ A ^ [ ! , ll ] → Γ ⊩⟨ l ⟩ℕ A ℕ-elim′ D (Uᵣ′ _ _ _ _ l< PE.refl [[ _ , _ , d ]]) = ⊥-elim (U≢ℕ (whrDet* (d , Uₙ) (D , ℕₙ))) ℕ-elim′ D (ℕᵣ D′) = noemb D′ ℕ-elim′ D (ne′ K D′ neK K≡K) = ⊥-elim (ℕ≢ne neK (whrDet* (D , ℕₙ) (red D′ , ne neK))) ℕ-elim′ D (Πᵣ′ rF lF lG _ _ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) = ⊥-elim (ℕ≢Π (whrDet* (D , ℕₙ) (red D′ , Πₙ))) ℕ-elim′ {ι ¹} D (emb emb< x) with ℕ-elim′ D x ℕ-elim′ {ι ¹} D (emb emb< x) | noemb x₁ = emb emb< (noemb x₁) ℕ-elim′ {ι ¹} D (emb emb< x) | emb () x₁ ℕ-elim′ {∞} D (emb ∞< x) with ℕ-elim′ D x ℕ-elim′ {∞} D (emb ∞< x) | noemb x₁ = emb ∞< (noemb x₁) ℕ-elim′ {∞} D (emb ∞< x) | emb <l x₁ = emb {l′ = ι ¹} ∞< (emb <l x₁) ℕ-elim : ∀ {Γ l ll } → Γ ⊩⟨ l ⟩ ℕ ^ [ ! , ll ] → Γ ⊩⟨ l ⟩ℕ ℕ ℕ-elim [ℕ] = ℕ-elim′ (id (escape [ℕ])) [ℕ] Empty-elim′ : ∀ {l A ll Γ} → Γ ⊢ A ⇒* Empty ll ^ [ % , ι ll ] → Γ ⊩⟨ l ⟩ A ^ [ % , ι ll ] → Γ ⊩⟨ l ⟩Empty A ^ ll Empty-elim′ D (Emptyᵣ D′) = noemb D′ Empty-elim′ D (ne′ K D′ neK K≡K) = ⊥-elim (Empty≢ne neK (whrDet* (D , Emptyₙ) (red D′ , ne neK))) Empty-elim′ D (Πᵣ′ rF lF lG _ _ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) = ⊥-elim (Empty≢Π (whrDet* (D , Emptyₙ) (red D′ , Πₙ))) Empty-elim′ D (∃ᵣ′ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) = ⊥-elim (Empty≢∃ (whrDet* (D , Emptyₙ) (red D′ , ∃ₙ))) Empty-elim′ {ι ¹} D (emb emb< x) with Empty-elim′ D x Empty-elim′ {ι ¹} D (emb emb< x) | noemb x₁ = emb emb< (noemb x₁) Empty-elim′ {ι ¹} D (emb emb< x) | emb () x₁ Empty-elim′ {∞} D (emb ∞< x) with Empty-elim′ D x Empty-elim′ {∞} D (emb ∞< x) | noemb x₁ = emb ∞< (noemb x₁) Empty-elim′ {∞} D (emb ∞< x) | emb <l x₁ = emb {l′ = ι ¹} ∞< (emb <l x₁) Empty-elim : ∀ {Γ l ll } → Γ ⊩⟨ l ⟩ Empty ll ^ [ % , ι ll ] → Γ ⊩⟨ l ⟩Empty Empty ll ^ ll Empty-elim [Empty] = Empty-elim′ (id (escape [Empty])) [Empty] ne-elim′ : ∀ {l A Γ K r ll ll'} → Γ ⊢ A ⇒* K ^ [ r , ι ll ] → Neutral K → Γ ⊩⟨ l ⟩ A ^ [ r , ll' ] → ι ll PE.≡ ll' → Γ ⊩⟨ l ⟩ne A ^[ r , ll ] ne-elim′ D neK (Uᵣ′ _ _ _ _ l< PE.refl [[ _ , _ , d ]]) e = ⊥-elim (U≢ne neK (whrDet* (d , Uₙ) (D , ne neK))) ne-elim′ D neK (ℕᵣ D′) e = ⊥-elim (ℕ≢ne neK (whrDet* (red D′ , ℕₙ) (D , ne neK))) ne-elim′ D neK (ne (ne K D′ neK′ K≡K)) PE.refl = noemb (ne K D′ neK′ K≡K) ne-elim′ D neK (Πᵣ′ rF lF lG _ _ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) e = ⊥-elim (Π≢ne neK (whrDet* (red D′ , Πₙ) (D , ne neK))) ne-elim′ D neK (∃ᵣ′ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) e = ⊥-elim (∃≢ne neK (whrDet* (red D′ , ∃ₙ) (D , ne neK))) ne-elim′ D neK (Emptyᵣ D′) e = ⊥-elim (Empty≢ne neK (whrDet* (red D′ , Emptyₙ) (D , ne neK))) ne-elim′ {ι ¹} D neK (emb emb< x) e with ne-elim′ D neK x e ne-elim′ {ι ¹} D neK (emb emb< x) e | noemb x₁ = emb emb< (noemb x₁) ne-elim′ {ι ¹} D neK (emb emb< x) e | emb () x₁ ne-elim′ {∞} D neK (emb ∞< x) e with ne-elim′ D neK x e ne-elim′ {∞} D _ (emb ∞< x) e | noemb x₁ = emb ∞< (noemb x₁) ne-elim′ {∞} D _ (emb ∞< x) e | emb <l x₁ = emb {l′ = ι ¹} ∞< (emb <l x₁) ne-elim : ∀ {Γ l K r ll} → Neutral K → Γ ⊩⟨ l ⟩ K ^ [ r , ι ll ] → Γ ⊩⟨ l ⟩ne K ^[ r , ll ] ne-elim neK [K] = ne-elim′ (id (escape [K])) neK [K] PE.refl Π-elim′ : ∀ {l A Γ F G rF lF lG r lΠ} → Γ ⊢ A ⇒* Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ r , ι lΠ ] → Γ ⊩⟨ l ⟩ A ^ [ r , ι lΠ ] → Γ ⊩⟨ l ⟩Π A ^[ r , lΠ ] Π-elim′ D (Uᵣ′ _ _ _ _ l< X [[ _ , _ , d ]]) = ⊥-elim (U≢Π (whrDet* (d , Uₙ) (D , Πₙ))) Π-elim′ D (ℕᵣ D′) = ⊥-elim (ℕ≢Π (whrDet* (red D′ , ℕₙ) (D , Πₙ))) Π-elim′ D (Emptyᵣ D′) = ⊥-elim (Empty≢Π (whrDet* (red D′ , Emptyₙ) (D , Πₙ))) Π-elim′ D (ne′ K D′ neK K≡K) = ⊥-elim (Π≢ne neK (whrDet* (D , Πₙ) (red D′ , ne neK))) Π-elim′ D (Πᵣ′ rF lF lG lF≤ lG≤ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) = noemb (Πᵣ rF lF lG lF≤ lG≤ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) Π-elim′ D (∃ᵣ′ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) = ⊥-elim (Π≢∃ (whrDet* (D , Πₙ) (red D′ , ∃ₙ))) Π-elim′ {ι ¹} D (emb emb< x) with Π-elim′ D x Π-elim′ {ι ¹} D (emb emb< x) | noemb x₁ = emb emb< (noemb x₁) Π-elim′ {ι ¹} D (emb emb< x) | emb () x₁ Π-elim′ {∞} D (emb ∞< x) with Π-elim′ D x Π-elim′ {∞} D (emb ∞< x) | noemb x₁ = emb ∞< (noemb x₁) Π-elim′ {∞} D (emb ∞< x) | emb <l x₁ = emb {l′ = ι ¹} ∞< (emb <l x₁) Π-elim : ∀ {Γ F G rF lF lG r lΠ l} → Γ ⊩⟨ l ⟩ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ r , ι lΠ ] → Γ ⊩⟨ l ⟩Π Π F ^ rF ° lF ▹ G ° lG ° lΠ ^[ r , lΠ ] Π-elim [Π] = Π-elim′ (id (escape [Π])) [Π] ∃-elim′ : ∀ {l A Γ F G ll} → Γ ⊢ A ⇒* ∃ F ▹ G ^ [ % , ι ll ] → Γ ⊩⟨ l ⟩ A ^ [ % , ι ll ] → Γ ⊩⟨ l ⟩∃ A ^ ll ∃-elim′ D (Emptyᵣ D′) = ⊥-elim (Empty≢∃ (whrDet* (red D′ , Emptyₙ) (D , ∃ₙ))) ∃-elim′ D (ne′ K D′ neK K≡K) = ⊥-elim (∃≢ne neK (whrDet* (D , ∃ₙ) (red D′ , ne neK))) ∃-elim′ D (Πᵣ′ rF lF lG _ _ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) = ⊥-elim (Π≢∃ (whrDet* (red D′ , Πₙ) (D , ∃ₙ))) ∃-elim′ D (∃ᵣ′ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) = noemb (∃ᵣ F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) ∃-elim′ {ι ¹} D (emb emb< x) with ∃-elim′ D x ∃-elim′ {ι ¹} D (emb emb< x) | noemb x₁ = emb emb< (noemb x₁) ∃-elim′ {ι ¹} D (emb emb< x) | emb () x₁ ∃-elim′ {∞} D (emb ∞< x) with ∃-elim′ D x ∃-elim′ {∞} D (emb ∞< x) | noemb x₁ = emb ∞< (noemb x₁) ∃-elim′ {∞} D (emb ∞< x) | emb <l x₁ = emb {l′ = ι ¹} ∞< (emb <l x₁) ∃-elim : ∀ {Γ F G l ll} → Γ ⊩⟨ l ⟩ ∃ F ▹ G ^ [ % , ι ll ] → Γ ⊩⟨ l ⟩∃ (∃ F ▹ G) ^ ll ∃-elim [∃] = ∃-elim′ (id (escape [∃])) [∃] -- Extract a type and a level from a maybe embedding extractMaybeEmb : ∀ {l ⊩⟨_⟩} → MaybeEmb l ⊩⟨_⟩ → ∃ λ l′ → ⊩⟨ l′ ⟩ extractMaybeEmb (noemb x) = _ , x extractMaybeEmb (emb <l x) = extractMaybeEmb x -- A view for constructor equality of types where embeddings are ignored data ShapeView Γ : ∀ l l′ A B r r' (p : Γ ⊩⟨ l ⟩ A ^ r) (q : Γ ⊩⟨ l′ ⟩ B ^ r') → Set where Uᵥ : ∀ {A B l l′ ll ll′} UA UB → ShapeView Γ l l′ A B [ ! , ll ] [ ! , ll′ ] (Uᵣ UA) (Uᵣ UB) ℕᵥ : ∀ {A B l l′} ℕA ℕB → ShapeView Γ l l′ A B [ ! , ι ⁰ ] [ ! , ι ⁰ ] (ℕᵣ ℕA) (ℕᵣ ℕB) Emptyᵥ : ∀ {A B l l′ ll ll'} EmptyA EmptyB → ShapeView Γ l l′ A B [ % , ι ll ] [ % , ι ll' ] (Emptyᵣ EmptyA) (Emptyᵣ EmptyB) ne : ∀ {A B l l′ r lr r' lr'} neA neB → ShapeView Γ l l′ A B [ r , ι lr ] [ r' , ι lr' ] (ne neA) (ne neB) Πᵥ : ∀ {A B l l′ r r' lΠ lΠ' } ΠA ΠB → ShapeView Γ l l′ A B [ r , ι lΠ ] [ r' , ι lΠ' ] (Πᵣ ΠA) (Πᵣ ΠB) ∃ᵥ : ∀ {A B l l′ ll ll'} ∃A ∃B → ShapeView Γ l l′ A B [ % , ι ll ] [ % , ι ll' ] (∃ᵣ ∃A) (∃ᵣ ∃B) emb⁰¹ : ∀ {A B r r' l p q} → ShapeView Γ (ι ⁰) l A B r r' p q → ShapeView Γ (ι ¹) l A B r r' (emb emb< p) q emb¹⁰ : ∀ {A B r r' l p q} → ShapeView Γ l (ι ⁰) A B r r' p q → ShapeView Γ l (ι ¹) A B r r' p (emb emb< q) emb¹∞ : ∀ {A B r r' l p q} → ShapeView Γ (ι ¹) l A B r r' p q → ShapeView Γ ∞ l A B r r' (emb ∞< p) q emb∞¹ : ∀ {A B r r' l p q} → ShapeView Γ l (ι ¹) A B r r' p q → ShapeView Γ l ∞ A B r r' p (emb ∞< q) -- Construct a shape view from an equality goodCases : ∀ {l l′ Γ A B r r'} ([A] : Γ ⊩⟨ l ⟩ A ^ r) ([B] : Γ ⊩⟨ l′ ⟩ B ^ r') → Γ ⊩⟨ l ⟩ A ≡ B ^ r / [A] → ShapeView Γ l l′ A B r r' [A] [B] goodCases (Uᵣ UA) (Uᵣ UB) A≡B = Uᵥ UA UB goodCases (Uᵣ′ _ _ _ _ _ _ ⊢Γ) (ℕᵣ D) D' = ⊥-elim (U≢ℕ (whrDet* (D' , Uₙ) (red D , ℕₙ))) goodCases (Uᵣ′ _ _ _ _ _ _ ⊢Γ) (Emptyᵣ D) D' = ⊥-elim (U≢Empty (whrDet* (D' , Uₙ) (red D , Emptyₙ))) goodCases (Uᵣ′ _ _ _ _ _ _ ⊢Γ) (ne′ K D neK K≡K) D' = ⊥-elim (U≢ne neK (whrDet* (D' , Uₙ) (red D , ne neK))) goodCases (Uᵣ′ _ _ _ _ _ _ ⊢Γ) (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) D' = ⊥-elim (U≢Π (whrDet* (D' , Uₙ) (red D , Πₙ))) goodCases (Uᵣ′ _ _ _ _ _ _ ⊢Γ) (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) D' = ⊥-elim (U≢∃ (whrDet* (D' , Uₙ) (red D , ∃ₙ))) goodCases (ℕᵣ D) (Uᵣ′ _ _ _ _ _ _ D') A≡B = ⊥-elim (U≢ℕ (whrDet* (red D' , Uₙ) (A≡B , ℕₙ))) goodCases (ℕᵣ _) (Emptyᵣ D') D = ⊥-elim (ℕ≢Empty (whrDet* (D , ℕₙ) (red D' , Emptyₙ))) goodCases (ℕᵣ ℕA) (ℕᵣ ℕB) A≡B = ℕᵥ ℕA ℕB goodCases (ℕᵣ D) (ne′ K D₁ neK K≡K) A≡B = ⊥-elim (ℕ≢ne neK (whrDet* (A≡B , ℕₙ) (red D₁ , ne neK))) goodCases (ℕᵣ D) (Πᵣ′ rF lF lG _ _ F G D₁ ⊢F ⊢G A≡A [F] [G] G-ext) A≡B = ⊥-elim (ℕ≢Π (whrDet* (A≡B , ℕₙ) (red D₁ , Πₙ))) goodCases (ℕᵣ D) (∃ᵣ′ F G D₁ ⊢F ⊢G A≡A [F] [G] G-ext) A≡B = ⊥-elim (ℕ≢∃ (whrDet* (A≡B , ℕₙ) (red D₁ , ∃ₙ))) goodCases (Emptyᵣ D) (Uᵣ′ _ _ _ _ _ _ D') A≡B = ⊥-elim (U≢Empty (whrDet* (red D' , Uₙ) (A≡B , Emptyₙ))) goodCases (Emptyᵣ _) (ℕᵣ D') D = ⊥-elim (ℕ≢Empty (whrDet* (red D' , ℕₙ) (D , Emptyₙ))) goodCases (Emptyᵣ EmptyA) (Emptyᵣ EmptyB) A≡B = Emptyᵥ EmptyA EmptyB goodCases (Emptyᵣ D) (ne′ K D₁ neK K≡K) A≡B = ⊥-elim (Empty≢ne neK (whrDet* (A≡B , Emptyₙ) (red D₁ , ne neK))) goodCases (Emptyᵣ D) (Πᵣ′ rF lF lG _ _ F G D₁ ⊢F ⊢G A≡A [F] [G] G-ext) A≡B = ⊥-elim (Empty≢Π (whrDet* (A≡B , Emptyₙ) (red D₁ , Πₙ))) goodCases (Emptyᵣ D) (∃ᵣ′ F G D₁ ⊢F ⊢G A≡A [F] [G] G-ext) A≡B = ⊥-elim (Empty≢∃ (whrDet* (A≡B , Emptyₙ) (red D₁ , ∃ₙ))) goodCases (ne′ K D neK K≡K) (Uᵣ′ _ _ _ _ _ _ D') (ne₌ M D'' neM K≡M) = ⊥-elim (U≢ne neM (whrDet* (red D' , Uₙ) (red D'' , ne neM))) goodCases (ne′ K D neK K≡K) (ℕᵣ D₁) (ne₌ M D′ neM K≡M) = ⊥-elim (ℕ≢ne neM (whrDet* (red D₁ , ℕₙ) (red D′ , ne neM))) goodCases (ne′ K D neK K≡K) (Emptyᵣ D₁) (ne₌ M D′ neM K≡M) = ⊥-elim (Empty≢ne neM (whrDet* (red D₁ , Emptyₙ) (red D′ , ne neM))) goodCases (ne neA) (ne neB) A≡B = ne neA neB goodCases (ne′ K D neK K≡K) (Πᵣ′ rF lF lG _ _ F G D₁ ⊢F ⊢G A≡A [F] [G] G-ext) (ne₌ M D′ neM K≡M) = ⊥-elim (Π≢ne neM (whrDet* (red D₁ , Πₙ) (red D′ , ne neM))) goodCases (ne′ K D neK K≡K) (∃ᵣ′ F G D₁ ⊢F ⊢G A≡A [F] [G] G-ext) (ne₌ M D′ neM K≡M) = ⊥-elim (∃≢ne neM (whrDet* (red D₁ , ∃ₙ) (red D′ , ne neM))) goodCases (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Uᵣ′ _ _ _ _ _ _ D') (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) = ⊥-elim (U≢Π (whrDet* (red D' , Uₙ) (D′ , Πₙ))) goodCases (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (ℕᵣ D₁) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) = ⊥-elim (ℕ≢Π (whrDet* (red D₁ , ℕₙ) (D′ , Πₙ))) goodCases (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Emptyᵣ D₁) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) = ⊥-elim (Empty≢Π (whrDet* (red D₁ , Emptyₙ) (D′ , Πₙ))) goodCases (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (ne′ K D₁ neK K≡K) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) = ⊥-elim (Π≢ne neK (whrDet* (D′ , Πₙ) (red D₁ , ne neK))) goodCases (Πᵣ ΠA) (Πᵣ ΠB) A≡B = Πᵥ ΠA ΠB goodCases (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (∃ᵣ′ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) = ⊥-elim (Π≢∃ (whrDet* (D′ , Πₙ) (red D₁ , ∃ₙ))) goodCases (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Uᵣ′ _ _ _ _ _ _ D') (∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) = ⊥-elim (U≢∃ (whrDet* (red D' , Uₙ) (D′ , ∃ₙ))) goodCases (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (ℕᵣ D₁) (∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) = ⊥-elim (ℕ≢∃ (whrDet* (red D₁ , ℕₙ) (D′ , ∃ₙ))) goodCases (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Emptyᵣ D₁) (∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) = ⊥-elim (Empty≢∃ (whrDet* (red D₁ , Emptyₙ) (D′ , ∃ₙ))) goodCases (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (ne′ K D₁ neK K≡K) (∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) = ⊥-elim (∃≢ne neK (whrDet* (D′ , ∃ₙ) (red D₁ , ne neK))) goodCases (∃ᵣ′ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁) (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) = ⊥-elim (Π≢∃ (whrDet* (red D , Πₙ) (D′ , ∃ₙ))) goodCases (∃ᵣ ∃A) (∃ᵣ ∃B) A≡B = ∃ᵥ ∃A ∃B goodCases {l} {ι ¹} [A] (emb emb< x) A≡B = emb¹⁰ (goodCases {l} {ι ⁰} [A] x A≡B) goodCases {l} {∞} [A] (emb ∞< x) A≡B = emb∞¹ (goodCases {l} {ι ¹} [A] x A≡B) goodCases {ι ¹} {l} (emb emb< x) [B] A≡B = emb⁰¹ (goodCases {ι ⁰} {l} x [B] A≡B) goodCases {∞} {l} (emb ∞< x) [B] A≡B = emb¹∞ (goodCases {ι ¹} {l} x [B] A≡B) -- Construct an shape view between two derivations of the same type goodCasesRefl : ∀ {l l′ Γ A r r'} ([A] : Γ ⊩⟨ l ⟩ A ^ r) ([A′] : Γ ⊩⟨ l′ ⟩ A ^ r') → ShapeView Γ l l′ A A r r' [A] [A′] goodCasesRefl [A] [A′] = goodCases [A] [A′] (reflEq [A]) -- A view for constructor equality between three types data ShapeView₃ Γ : ∀ l l′ l″ A B C r1 r2 r3 (p : Γ ⊩⟨ l ⟩ A ^ r1) (q : Γ ⊩⟨ l′ ⟩ B ^ r2) (r : Γ ⊩⟨ l″ ⟩ C ^ r3) → Set where Uᵥ : ∀ {A B C l l′ l″ ll ll′ ll″ } UA UB UC → ShapeView₃ Γ l l′ l″ A B C [ ! , ll ] [ ! , ll′ ] [ ! , ll″ ] (Uᵣ UA) (Uᵣ UB) (Uᵣ UC) ℕᵥ : ∀ {A B C l l′ l″} ℕA ℕB ℕC → ShapeView₃ Γ l l′ l″ A B C [ ! , ι ⁰ ] [ ! , ι ⁰ ] [ ! , ι ⁰ ] (ℕᵣ ℕA) (ℕᵣ ℕB) (ℕᵣ ℕC) Emptyᵥ : ∀ {A B C l l′ l″ ll ll′ ll″} EmptyA EmptyB EmptyC → ShapeView₃ Γ l l′ l″ A B C [ % , ι ll ] [ % , ι ll′ ] [ % , ι ll″ ] (Emptyᵣ EmptyA) (Emptyᵣ EmptyB) (Emptyᵣ EmptyC) ne : ∀ {A B C r1 r2 r3 l1 l2 l3 l l′ l″} neA neB neC → ShapeView₃ Γ l l′ l″ A B C [ r1 , ι l1 ] [ r2 , ι l2 ] [ r3 , ι l3 ] (ne neA) (ne neB) (ne neC) Πᵥ : ∀ {A B C r1 r2 r3 lΠ1 lΠ2 lΠ3 l l′ l″} ΠA ΠB ΠC → ShapeView₃ Γ l l′ l″ A B C [ r1 , ι lΠ1 ] [ r2 , ι lΠ2 ] [ r3 , ι lΠ3 ] (Πᵣ ΠA) (Πᵣ ΠB) (Πᵣ ΠC) ∃ᵥ : ∀ {A B C l l′ l″ ll ll' ll''} ΠA ΠB ΠC → ShapeView₃ Γ l l′ l″ A B C [ % , ι ll ] [ % , ι ll' ] [ % , ι ll'' ] (∃ᵣ ΠA) (∃ᵣ ΠB) (∃ᵣ ΠC) emb⁰¹¹ : ∀ {A B C l l′ r1 r2 r3 p q r} → ShapeView₃ Γ (ι ⁰) l l′ A B C r1 r2 r3 p q r → ShapeView₃ Γ (ι ¹) l l′ A B C r1 r2 r3 (emb emb< p) q r emb¹⁰¹ : ∀ {A B C l l′ r1 r2 r3 p q r} → ShapeView₃ Γ l (ι ⁰) l′ A B C r1 r2 r3 p q r → ShapeView₃ Γ l (ι ¹) l′ A B C r1 r2 r3 p (emb emb< q) r emb¹¹⁰ : ∀ {A B C l l′ r1 r2 r3 p q r} → ShapeView₃ Γ l l′ (ι ⁰) A B C r1 r2 r3 p q r → ShapeView₃ Γ l l′ (ι ¹) A B C r1 r2 r3 p q (emb emb< r) emb¹∞∞ : ∀ {A B C l l′ r1 r2 r3 p q r} → ShapeView₃ Γ (ι ¹) l l′ A B C r1 r2 r3 p q r → ShapeView₃ Γ ∞ l l′ A B C r1 r2 r3 (emb ∞< p) q r emb∞¹∞ : ∀ {A B C l l′ r1 r2 r3 p q r} → ShapeView₃ Γ l (ι ¹) l′ A B C r1 r2 r3 p q r → ShapeView₃ Γ l ∞ l′ A B C r1 r2 r3 p (emb ∞< q) r emb∞∞¹ : ∀ {A B C l l′ r1 r2 r3 p q r} → ShapeView₃ Γ l l′ (ι ¹) A B C r1 r2 r3 p q r → ShapeView₃ Γ l l′ ∞ A B C r1 r2 r3 p q (emb ∞< r) -- Combines two two-way views into a three-way view combine : ∀ {Γ l l′ l″ l‴ A B C r1 r2 r2' r3 [A] [B] [B]′ [C]} → ShapeView Γ l l′ A B r1 r2 [A] [B] → ShapeView Γ l″ l‴ B C r2' r3 [B]′ [C] → ShapeView₃ Γ l l′ l‴ A B C r1 r2 r3 [A] [B] [C] combine (Uᵥ UA UB) (Uᵥ UB' UC) = Uᵥ UA UB UC combine (Uᵥ UA (Uᵣ r l′ l< PE.refl D)) (ℕᵥ ℕA ℕB) = ⊥-elim (U≢ℕ (whrDet* (red D , Uₙ) (red ℕA , ℕₙ))) combine (Uᵥ UA (Uᵣ r l′ l< PE.refl D)) (Emptyᵥ EmptyA EmptyB) = ⊥-elim (U≢Empty (whrDet* (red D , Uₙ) (red EmptyA , Emptyₙ))) combine (Uᵥ UA (Uᵣ r l′ l< PE.refl D)) (ne (ne K D' neK K≡K) neB) = ⊥-elim (U≢ne neK (whrDet* (red D , Uₙ) (red D' , ne neK))) combine (Uᵥ UA (Uᵣ r l′ l< PE.refl D)) (Πᵥ (Πᵣ rF lF lG _ _ F G D' ⊢F ⊢G A≡A [F] [G] G-ext) ΠB) = ⊥-elim (U≢Π (whrDet* (red D , Uₙ) (red D' , Πₙ))) combine (Uᵥ UA (Uᵣ r l′ l< PE.refl D)) (∃ᵥ (∃ᵣ F G D' ⊢F ⊢G A≡A [F] [G] G-ext) ∃B) = ⊥-elim (U≢∃ (whrDet* (red D , Uₙ) (red D' , ∃ₙ))) combine (ℕᵥ ℕA ℕB) (Uᵥ (Uᵣ r l′ l< PE.refl D) UB) = ⊥-elim (U≢ℕ (whrDet* (red D , Uₙ) (red ℕB , ℕₙ))) combine (ℕᵥ ℕA ℕB) (Emptyᵥ EmptyA EmptyB) = ⊥-elim (ℕ≢Empty (whrDet* (red ℕB , ℕₙ) (red EmptyA , Emptyₙ))) combine (ℕᵥ ℕA₁ ℕB₁) (ℕᵥ ℕA ℕB) = ℕᵥ ℕA₁ ℕB₁ ℕB combine (ℕᵥ ℕA ℕB) (ne (ne K D neK K≡K) neB) = ⊥-elim (ℕ≢ne neK (whrDet* (red ℕB , ℕₙ) (red D , ne neK))) combine (ℕᵥ ℕA ℕB) (Πᵥ (Πᵣ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) ΠB) = ⊥-elim (ℕ≢Π (whrDet* (red ℕB , ℕₙ) (red D , Πₙ))) combine (ℕᵥ ℕA ℕB) (∃ᵥ (∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) ∃B) = ⊥-elim (ℕ≢∃ (whrDet* (red ℕB , ℕₙ) (red D , ∃ₙ))) combine (Emptyᵥ EmptyA EmptyB) (Uᵥ (Uᵣ r l′ l< PE.refl D) UB) = ⊥-elim (U≢Empty (whrDet* (red D , Uₙ) (red EmptyB , Emptyₙ))) combine (Emptyᵥ EmptyA EmptyB) (ℕᵥ ℕA ℕB) = ⊥-elim (Empty≢ℕ (whrDet* (red EmptyB , Emptyₙ) (red ℕA , ℕₙ))) combine (Emptyᵥ EmptyA₁ EmptyB₁) (Emptyᵥ EmptyA EmptyB) = Emptyᵥ EmptyA₁ EmptyB₁ EmptyB combine (Emptyᵥ EmptyA EmptyB) (ne (ne K D neK K≡K) neB) = ⊥-elim (Empty≢ne neK (whrDet* (red EmptyB , Emptyₙ) (red D , ne neK))) combine (Emptyᵥ EmptyA EmptyB) (Πᵥ (Πᵣ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) ΠB) = ⊥-elim (Empty≢Π (whrDet* (red EmptyB , Emptyₙ) (red D , Πₙ))) combine (Emptyᵥ EmptyA EmptyB) (∃ᵥ (∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) ∃B) = ⊥-elim (Empty≢∃ (whrDet* (red EmptyB , Emptyₙ) (red D , ∃ₙ))) combine (ne neA (ne K D' neK K≡K)) (Uᵥ (Uᵣ r l′ l< PE.refl D) UB) = ⊥-elim (U≢ne neK (whrDet* (red D , Uₙ) (red D' , ne neK))) combine (ne neA (ne K D neK K≡K)) (ℕᵥ ℕA ℕB) = ⊥-elim (ℕ≢ne neK (whrDet* (red ℕA , ℕₙ) (red D , ne neK))) combine (ne neA (ne K D neK K≡K)) (Emptyᵥ EmptyA EmptyB) = ⊥-elim (Empty≢ne neK (whrDet* (red EmptyA , Emptyₙ) (red D , ne neK))) combine (ne neA₁ neB₁) (ne neA neB) = ne neA₁ neB₁ neB combine (ne neA (ne K D₁ neK K≡K)) (Πᵥ (Πᵣ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) ΠB) = ⊥-elim (Π≢ne neK (whrDet* (red D , Πₙ) (red D₁ , ne neK))) combine (ne neA (ne K D₁ neK K≡K)) (∃ᵥ (∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) ∃B) = ⊥-elim (∃≢ne neK (whrDet* (red D , ∃ₙ) (red D₁ , ne neK))) combine (Πᵥ ΠA (Πᵣ rF lF lG _ _ F G D' ⊢F ⊢G A≡A [F] [G] G-ext)) (Uᵥ (Uᵣ r l′ l< PE.refl D) UB) = ⊥-elim (U≢Π (whrDet* (red D , Uₙ) (red D' , Πₙ))) combine (Πᵥ ΠA (Πᵣ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (ℕᵥ ℕA ℕB) = ⊥-elim (ℕ≢Π (whrDet* (red ℕA , ℕₙ) (red D , Πₙ))) combine (Πᵥ ΠA (Πᵣ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (Emptyᵥ EmptyA EmptyB) = ⊥-elim (Empty≢Π (whrDet* (red EmptyA , Emptyₙ) (red D , Πₙ))) combine (Πᵥ ΠA (Πᵣ rF lF lG _ _ F G D₁ ⊢F ⊢G A≡A [F] [G] G-ext)) (ne (ne K D neK K≡K) neB) = ⊥-elim (Π≢ne neK (whrDet* (red D₁ , Πₙ) (red D , ne neK))) combine (Πᵥ ΠA₁ ΠB₁) (Πᵥ ΠA ΠB) = Πᵥ ΠA₁ ΠB₁ ΠB combine (Πᵥ ΠA (Πᵣ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (∃ᵥ (∃ᵣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁) ∃B) = ⊥-elim (Π≢∃ (whrDet* (red D , Πₙ) (red D₁ , ∃ₙ))) combine (∃ᵥ ∃A (∃ᵣ F G D' ⊢F ⊢G A≡A [F] [G] G-ext)) (Uᵥ (Uᵣ r l′ l< PE.refl D) UB) = ⊥-elim (U≢∃ (whrDet* (red D , Uₙ) (red D' , ∃ₙ))) combine (∃ᵥ ∃A (∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (ℕᵥ ℕA ℕB) = ⊥-elim (ℕ≢∃ (whrDet* (red ℕA , ℕₙ) (red D , ∃ₙ))) combine (∃ᵥ ∃A (∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (Emptyᵥ EmptyA EmptyB) = ⊥-elim (Empty≢∃ (whrDet* (red EmptyA , Emptyₙ) (red D , ∃ₙ))) combine (∃ᵥ ∃A (∃ᵣ F G D₁ ⊢F ⊢G A≡A [F] [G] G-ext)) (ne (ne K D neK K≡K) neB) = ⊥-elim (∃≢ne neK (whrDet* (red D₁ , ∃ₙ) (red D , ne neK))) combine (∃ᵥ ΠA (∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (Πᵥ (Πᵣ rF₁ lF₁ lG₁ _ _ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁) ∃B) = ⊥-elim (Π≢∃ (whrDet* (red D₁ , Πₙ) (red D , ∃ₙ))) combine (∃ᵥ ∃A ∃B) (∃ᵥ ∃A₁ ∃B₁) = ∃ᵥ ∃A ∃B ∃B₁ combine (emb⁰¹ [AB]) [BC] = emb⁰¹¹ (combine [AB] [BC]) combine (emb¹⁰ [AB]) [BC] = emb¹⁰¹ (combine [AB] [BC]) combine [AB] (emb⁰¹ [BC]) = combine [AB] [BC] combine [AB] (emb¹⁰ [BC]) = emb¹¹⁰ (combine [AB] [BC]) combine (emb¹∞ [AB]) [BC] = emb¹∞∞ (combine [AB] [BC]) combine (emb∞¹ [AB]) [BC] = emb∞¹∞ (combine [AB] [BC]) combine [AB] (emb¹∞ [BC]) = combine [AB] [BC] combine [AB] (emb∞¹ [BC]) = emb∞∞¹ (combine [AB] [BC])
{ "alphanum_fraction": 0.4930072967, "avg_line_length": 53.5441860465, "ext": "agda", "hexsha": "fb29ad119fb915c1ed8587646d3834897111c9cc", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/ShapeView.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/ShapeView.agda", "max_line_length": 146, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/ShapeView.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 13386, "size": 23024 }
{- Smith Normal Form Referrences: Guillaume Cano, Cyril Cohen, Maxime Dénès, Anders Mörtberg, Vincent Siles, "Formalized linear algebra over Elementary Divisor Rings in Coq" (https://arxiv.org/abs/1601.07472) -} {-# OPTIONS --safe #-} module Cubical.Algebra.IntegerMatrix.Smith where open import Cubical.Algebra.IntegerMatrix.Smith.NormalForm public open import Cubical.Algebra.IntegerMatrix.Smith.Normalization public using (smith)
{ "alphanum_fraction": 0.7855530474, "avg_line_length": 27.6875, "ext": "agda", "hexsha": "e78674098b10eaea0529a93a5528a0a5333a64d6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/IntegerMatrix/Smith.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/IntegerMatrix/Smith.agda", "max_line_length": 82, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/IntegerMatrix/Smith.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 115, "size": 443 }
module API where open import Algebra open import Prelude empty : ∀ {A} -> Graph A empty = ε vertex : ∀ {A} -> A -> Graph A vertex = v overlay : ∀ {A} -> Graph A -> Graph A -> Graph A overlay = _+_ connect : ∀ {A} -> Graph A -> Graph A -> Graph A connect = _*_ edge : ∀ {A} -> A -> A -> Graph A edge x y = connect (vertex x) (vertex y) overlays : ∀ {A} -> List (Graph A) -> Graph A overlays = foldr overlay empty connects : ∀ {A} -> List (Graph A) -> Graph A connects = foldr connect empty vertices : ∀ {A} -> List A -> Graph A vertices = overlays ∘ map vertex edges : ∀ {A} -> List (A × A) -> Graph A edges = overlays ∘ map (uncurry edge) graph : ∀ {A} -> List A -> List (A × A) -> Graph A graph vs es = overlay (vertices vs) (edges es) foldg : ∀ {A} {B : Set} -> B -> (A -> B) -> (B -> B -> B) -> (B -> B -> B) -> Graph A -> B foldg {A} {B} e w o c = go where go : Graph A -> B go ε = e go (v x) = w x go (x + y) = o (go x) (go y) go (x * y) = c (go x) (go y) path : ∀ {A} -> List A -> Graph A path [] = empty path (x :: []) = vertex x path (x :: xs) = edges (zip (x :: xs) xs) circuit : ∀ {A} -> List A -> Graph A circuit [] = empty circuit (x :: xs) = path ([ x ] ++ xs ++ [ x ]) clique : ∀ {A} -> List A -> Graph A clique = connects ∘ map vertex biclique : ∀ {A} -> List A -> List A -> Graph A biclique xs ys = connect (vertices xs) (vertices ys) star : ∀ {A} -> A -> List A -> Graph A star x ys = connect (vertex x) (vertices ys)
{ "alphanum_fraction": 0.5048107761, "avg_line_length": 24.746031746, "ext": "agda", "hexsha": "a17b9a7a87cec917db0d69577a1a06507ac4e0fd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "01f5f9f53ea81f692215300744aa77e26d8bf332", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/alga", "max_forks_repo_path": "src/API.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "01f5f9f53ea81f692215300744aa77e26d8bf332", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/alga", "max_issues_repo_path": "src/API.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "01f5f9f53ea81f692215300744aa77e26d8bf332", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/alga", "max_stars_repo_path": "src/API.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 530, "size": 1559 }
{-# OPTIONS --without-K #-} module sets.list.properties where open import level open import equality.core open import sets.list.core module _ {i}{A : Set i} where data all {j}(P : A → Set j) : List A → Set (i ⊔ j) where mk-all : ∀ {x xs} → P x → all P xs → all P (x ∷ xs) data any {j}(P : A → Set j) : List A → Set (i ⊔ j) where hd-any : ∀ {x xs} → P x → any P (x ∷ xs) tl-any : ∀ {x xs} → any P xs → any P (x ∷ xs) elem : A → List A → Set i elem x = any (λ x' → x ≡ x')
{ "alphanum_fraction": 0.5373737374, "avg_line_length": 27.5, "ext": "agda", "hexsha": "e80a524abddfd57ad0d2b7fa1632b1125678f138", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/sets/list/properties.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/sets/list/properties.agda", "max_line_length": 58, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/sets/list/properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 185, "size": 495 }
import SOAS.Syntax.Signature as Sig open import SOAS.Families.Core -- Term syntax for a signature module SOAS.Syntax.Term {T : Set}(open Sig T) {O : Set}(S : Signature O) where open import SOAS.Syntax.Arguments {T} open import SOAS.Metatheory.Syntax {T} open import SOAS.Common open import SOAS.Context {T} open import SOAS.Variable open import SOAS.Construction.Structure open import SOAS.ContextMaps.Inductive open import SOAS.Abstract.Hom open import Categories.Object.Initial open import Data.List.Base using (List ; [] ; [_] ; _∷_) open import Data.Unit open Signature S private variable α β τ : T Γ Δ Π : Ctx module _ (𝔛 : Familyₛ) where open import SOAS.Metatheory.MetaAlgebra ⅀F 𝔛 -- Grammar of terms for a (⅀,𝔛)-meta-algebra data 𝕋 : Familyₛ where con : ⅀ 𝕋 τ Γ → 𝕋 τ Γ var : ℐ τ Γ → 𝕋 τ Γ mvar : 𝔛 τ Π → Sub 𝕋 Π Γ → 𝕋 τ Γ Tmᵃ : MetaAlg 𝕋 Tmᵃ = record { 𝑎𝑙𝑔 = con ; 𝑣𝑎𝑟 = var ; 𝑚𝑣𝑎𝑟 = λ 𝔪 ε → mvar 𝔪 (tabulate ε) } -- 𝕋 is the initial meta-algebra 𝕋:Init : Initial 𝕄etaAlgebras 𝕋:Init = record { ⊥ = 𝕋 ⋉ Tmᵃ ; ⊥-is-initial = record { ! = λ{ {𝒜 ⋉ 𝒜ᵃ} → (𝕤𝕖𝕞 𝒜ᵃ) ⋉ 𝕤𝕖𝕞ᵃ⇒ 𝒜ᵃ } ; !-unique = λ { {𝒜 ⋉ 𝒜ᵃ}(g ⋉ gᵃ⇒) {x = t} → 𝕤𝕖𝕞! 𝒜ᵃ gᵃ⇒ t } } } where module _ {𝒜 : Familyₛ}(𝒜ᵃ : MetaAlg 𝒜) where open MetaAlg 𝒜ᵃ 𝕤𝕖𝕞 : 𝕋 ⇾̣ 𝒜 𝔸 : (as : List (Ctx × T)) → Arg as 𝕋 Γ → Arg as 𝒜 Γ 𝔸 [] tt = tt 𝔸 (_ ∷ []) t = 𝕤𝕖𝕞 t 𝔸 (_ ∷ a ∷ as) (t , ts) = (𝕤𝕖𝕞 t , 𝔸 (a ∷ as) ts) 𝕊 : Sub 𝕋 Π Γ → Π ~[ 𝒜 ]↝ Γ 𝕊 (t ◂ σ) new = 𝕤𝕖𝕞 t 𝕊 (t ◂ σ) (old v) = 𝕊 σ v 𝕤𝕖𝕞 (con (o ⋮ a)) = 𝑎𝑙𝑔 (o ⋮ 𝔸 (Arity o) a) 𝕤𝕖𝕞 (var v) = 𝑣𝑎𝑟 v 𝕤𝕖𝕞 (mvar 𝔪 ε) = 𝑚𝑣𝑎𝑟 𝔪 (𝕊 ε) 𝕤𝕖𝕞ᵃ⇒ : MetaAlg⇒ Tmᵃ 𝒜ᵃ 𝕤𝕖𝕞 𝕤𝕖𝕞ᵃ⇒ = record { ⟨𝑎𝑙𝑔⟩ = λ{ {t = (o ⋮ a)} → cong (λ - → 𝑎𝑙𝑔 (o ⋮ -)) (𝔸-Arg₁ (Arity o) a) } ; ⟨𝑣𝑎𝑟⟩ = refl ; ⟨𝑚𝑣𝑎𝑟⟩ = λ{ {𝔪 = 𝔪}{ε} → cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-tab ε)) } } where 𝔸-Arg₁ : (as : List (Ctx × T))(a : Arg as 𝕋 Γ) → 𝔸 as a ≡ Arg₁ as 𝕤𝕖𝕞 a 𝔸-Arg₁ [] tt = refl 𝔸-Arg₁ (_ ∷ []) t = refl 𝔸-Arg₁ (_ ∷ a ∷ as) (t , ap) = cong (_ ,_) (𝔸-Arg₁ (a ∷ as) ap) 𝕊-tab : (ε : Π ~[ 𝕋 ]↝ Γ)(v : ℐ α Π) → 𝕊 (tabulate ε) v ≡ 𝕤𝕖𝕞 (ε v) 𝕊-tab ε new = refl 𝕊-tab ε (old v) = 𝕊-tab (ε ∘ old) v module _ {g : 𝕋 ⇾̣ 𝒜}(gᵃ⇒ : MetaAlg⇒ Tmᵃ 𝒜ᵃ g) where open MetaAlg⇒ gᵃ⇒ 𝕤𝕖𝕞! : (t : 𝕋 α Γ) → 𝕤𝕖𝕞 t ≡ g t 𝕊-ix : (ε : Sub 𝕋 Π Γ)(v : ℐ α Π) → 𝕊 ε v ≡ g (index ε v) 𝕊-ix (x ◂ ε) new = 𝕤𝕖𝕞! x 𝕊-ix (x ◂ ε) (old v) = 𝕊-ix ε v 𝔸-Arg₁ : (as : List (Ctx × T))(ar : Arg as 𝕋 Γ) → 𝔸 as ar ≡ Arg₁ as g ar 𝔸-Arg₁ [] tt = refl 𝔸-Arg₁ (_ ∷ []) t = 𝕤𝕖𝕞! t 𝔸-Arg₁ (_ ∷ a ∷ as) (t , ap) = cong₂ _,_ (𝕤𝕖𝕞! t) (𝔸-Arg₁ (a ∷ as) ap) 𝕤𝕖𝕞! (con (o ⋮ a)) rewrite 𝔸-Arg₁ (Arity o) a = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (var v) = sym ⟨𝑣𝑎𝑟⟩ 𝕤𝕖𝕞! (mvar 𝔪 ε) rewrite cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-ix ε)) = trans (sym ⟨𝑚𝑣𝑎𝑟⟩) (cong (g ∘ mvar 𝔪) (tab∘ix≈id ε)) -- Syntax instance for a term grammar 𝕋:Syn : Syntax 𝕋:Syn = record { ⅀F = ⅀F ; ⅀:CS = ⅀:CompatStr ; 𝕋:Init = 𝕋:Init ; mvarᵢ = mvar }
{ "alphanum_fraction": 0.4970414201, "avg_line_length": 28.9279279279, "ext": "agda", "hexsha": "529f2bfb77375a13c54104b7a879b8251ae5ef7e", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "SOAS/Syntax/Term.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "SOAS/Syntax/Term.agda", "max_line_length": 84, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "SOAS/Syntax/Term.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 1884, "size": 3211 }
module SingleSorted.Example where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl) open import Data.Product using (_×_; proj₁; proj₂; <_,_>; ∃; ∃-syntax; _,_) import Function using (_∘_) open import SingleSorted.AlgebraicTheory open import Categories.Category.Instance.Sets open import Categories.Category.Cartesian open import Agda.Primitive open import Categories.Category module Sets₀ where 𝒮 : Category (lsuc lzero) lzero lzero 𝒮 = Sets lzero open Sets₀ open Category 𝒮 -- Function extensionality postulate funext : ∀ {X : Set} {Y : X → Set} {f g : ∀ (x : X) → (Y x)} → (∀ (x : X) → ((f x) ≡ (g x))) → (f ≡ g) record singleton : Set where constructor ⋆ η-singleton : ∀ (x : singleton) → ⋆ ≡ x η-singleton ⋆ = refl prod-elem-structure : ∀ {A B : Set} {x : A × B} → ∃[ a ] ∃[ b ] (a , b) ≡ x prod-elem-structure {A} {B} {x} = proj₁ x Data.Product., (proj₂ x) , refl first-factor : ∀ {X A B : Obj} {f : X ⇒ A} {g : X ⇒ B} → proj₁ ∘ < f , g > ≡ f first-factor {X} {A} {B} {f} {g} = funext λ x → refl second-factor : ∀ {X A B : Obj} {f : X ⇒ A} {g : X ⇒ B} → proj₂ ∘ < f , g > ≡ g second-factor {X} {A} {B} {f} {g} = funext λ{ x → refl} unique-map-into-product : ∀ {X A B : Set} {h : X → A × B} {f : X → A} {g : X → B} {x : X} → (proj₁ ∘ h) x ≡ f x → (proj₂ ∘ h) x ≡ g x -------------------- → < f , g > x ≡ h x unique-map-into-product {X} {A} {B} {h} {f} {g} {x} eq1 eq2 rewrite first-factor {X} {A} {B} {f} {g} | second-factor {X} {A} {B} {f} {g} = {!!} cartesian-Sets : Cartesian 𝒮 cartesian-Sets = record { terminal = record { ⊤ = singleton ; ⊤-is-terminal = record { ! = λ{ x → ⋆} ; !-unique = λ{ f {x} → η-singleton (f x)} } } ; products = record { product = λ {A} {B} → record { A×B = A × B ; π₁ = proj₁ ; π₂ = proj₂ ; ⟨_,_⟩ = <_,_> ; project₁ = λ{ → refl} ; project₂ = λ{ → refl} ; unique = λ{ {X} {h} {f} {g} eq1 eq2 {x} → {!!}} } } }
{ "alphanum_fraction": 0.4501907588, "avg_line_length": 31.0394736842, "ext": "agda", "hexsha": "687f866287ff6ebc6b79297b3b40d6497bd5dce3", "lang": "Agda", "max_forks_count": 6, "max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z", "max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z", "max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejbauer/formaltt", "max_forks_repo_path": "src/SingleSorted/Example.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z", "max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejbauer/formaltt", "max_issues_repo_path": "src/SingleSorted/Example.agda", "max_line_length": 104, "max_stars_count": 21, "max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cilinder/formaltt", "max_stars_repo_path": "src/SingleSorted/Example.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z", "num_tokens": 796, "size": 2359 }
------------------------------------------------------------------------ -- The Agda standard library -- -- The Maybe type ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Maybe where open import Data.Empty using (⊥) open import Data.Unit using (⊤) open import Data.Bool.Base using (T) open import Data.Maybe.Relation.Unary.All open import Data.Maybe.Relation.Unary.Any open import Level using (Level) private variable a : Level A : Set a ------------------------------------------------------------------------ -- The base type and some operations open import Data.Maybe.Base public ------------------------------------------------------------------------ -- Using Any and All to define Is-just and Is-nothing Is-just : Maybe A → Set _ Is-just = Any (λ _ → ⊤) Is-nothing : Maybe A → Set _ Is-nothing = All (λ _ → ⊥) to-witness : ∀ {m : Maybe A} → Is-just m → A to-witness (just {x = p} _) = p to-witness-T : ∀ (m : Maybe A) → T (is-just m) → A to-witness-T (just p) _ = p
{ "alphanum_fraction": 0.478424015, "avg_line_length": 25.380952381, "ext": "agda", "hexsha": "54394a9e803001ada23c95fdb798f6b50de70280", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Maybe.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Maybe.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Maybe.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 247, "size": 1066 }
data Nat : Set where zero : Nat data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x subst : ∀ {A : Set} (P : A → Set) {x y} → x ≡ y → P x → P y subst P refl px = px postulate Eq : Set → Set mkEq : {A : Set} (x y : A) → x ≡ y _==_ : {A : Set} {{_ : Eq A}} (x y : A) → x ≡ y A : Set B : A → Set C : ∀ x → B x → Set case_of_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B case x of f = f x id : ∀ {a} (A : Set a) → A → A id A x = x eqTriple : {{_ : ∀ {x} {y : B x} → Eq (C x y)}} (a : A) (b : B a) (c : C a b) (a₁ : A) (b₁ : B a₁) (c : C a₁ b₁) → Nat eqTriple a b c a₁ b₁ c₁ = subst (λ a₂ → ∀ (b₂ : B a₂) (c₂ : _) → Nat) (mkEq a a₁) (λ b₂ c₂ → subst (λ b₃ → ∀ c₃ → Nat) (mkEq b b₂) (λ c₃ → case c == c₃ of λ eq → zero) c₂) b₁ c₁
{ "alphanum_fraction": 0.401937046, "avg_line_length": 24.2941176471, "ext": "agda", "hexsha": "34c94ecb491eab526bfa7148318d2e5fe3a05e9d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1231.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1231.agda", "max_line_length": 67, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1231.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 394, "size": 826 }
------------------------------------------------------------------------ -- The actual maximum stack size of the compiled program matches the -- maximum stack size of the instrumented source-level semantics ------------------------------------------------------------------------ open import Prelude import Lambda.Syntax module Lambda.Compiler-correctness.Sizes-match {Name : Type} (open Lambda.Syntax Name) (def : Name → Tm 1) where open import Equality.Propositional as E using (refl) open import Logical-equivalence using (_⇔_) open import Tactic.By.Propositional using (by) open import Prelude.Size open import Colist E.equality-with-J hiding (_++_; length) import Conat E.equality-with-J as Conat open import Function-universe E.equality-with-J hiding (id; _∘_) open import List E.equality-with-J using (_++_; length) open import Monad E.equality-with-J open import Nat E.equality-with-J open import Vec.Data E.equality-with-J open import Upper-bounds open import Lambda.Compiler def open import Lambda.Interpreter.Stack-sizes def as I open import Lambda.Delay-crash-trace as DCT using (Delay-crash-trace) open import Lambda.Virtual-machine.Instructions Name open import Lambda.Virtual-machine comp-name as VM private module C = Closure Code module T = Closure Tm open Delay-crash-trace using (tell) ------------------------------------------------------------------------ -- A lemma -- A rearrangement lemma for ⟦_⟧⁺. ⟦⟧-· : ∀ {A n} (t₁ t₂ : Tm n) {ρ} tc {k : T.Value → Delay-crash-trace (ℕ → ℕ) A ∞} → DCT.[ ∞ ] ⟦ t₁ · t₂ ⟧ ρ tc >>= k ∼ do v₁ ← ⟦ t₁ ⟧ ρ false v₂ ← ⟦ t₂ ⟧ ρ false [ pred , pred ] v₁ ∙ v₂ >>= k ⟦⟧-· t₁ t₂ {ρ} tc {k} = ⟦ t₁ · t₂ ⟧ ρ tc >>= k DCT.∼⟨⟩ (do v₁ ← ⟦ t₁ ⟧ ρ false v₂ ← ⟦ t₂ ⟧ ρ false [ pred , pred ] v₁ ∙ v₂) >>= k DCT.∼⟨ DCT.symmetric (DCT.associativity (⟦ t₁ ⟧ _ _) _ _) ⟩ (do v₁ ← ⟦ t₁ ⟧ ρ false (do v₂ ← ⟦ t₂ ⟧ ρ false [ pred , pred ] v₁ ∙ v₂) >>= k) DCT.∼⟨ ((⟦ t₁ ⟧ _ _ DCT.∎) DCT.>>=-cong λ _ → DCT.symmetric (DCT.associativity (⟦ t₂ ⟧ _ _) _ _)) ⟩ (do v₁ ← ⟦ t₁ ⟧ ρ false v₂ ← ⟦ t₂ ⟧ ρ false [ pred , pred ] v₁ ∙ v₂ >>= k) DCT.∎ ------------------------------------------------------------------------ -- Well-formed continuations and stacks -- A continuation is OK with respect to a certain state if the -- following property is satisfied. Cont-OK : Size → State → (T.Value → Delay-crash-trace (ℕ → ℕ) C.Value ∞) → Type Cont-OK i ⟨ c , s , ρ ⟩ k = ∀ v → [ i ] VM.stack-sizes ⟨ c , val (comp-val v) ∷ s , ρ ⟩ ≂ numbers (k v) (1 + length s) -- A workaround for what might be an Agda bug. castC : ∀ {i} {j : Size< i} {s k} → Cont-OK i s k → Cont-OK j s k castC {s = ⟨ _ , _ , _ ⟩} c-ok = cast-≂ ∘ c-ok -- If the In-tail-context parameter indicates that we are in a tail -- context, then the stack must have a certain shape, and it must be -- related to the continuation in a certain way. data Stack-OK (i : Size) (k : T.Value → Delay-crash-trace (ℕ → ℕ) C.Value ∞) : In-tail-context → Stack → Type where unrestricted : ∀ {s} → Stack-OK i k false s restricted : ∀ {s n} {c : Code n} {ρ : C.Env n} → (∀ v → [ i ] 2 + length s ∷′ VM.stack-sizes ⟨ c , val (comp-val v) ∷ s , ρ ⟩ ≂ numbers (k v) (2 + length s)) → Stack-OK i k true (ret c ρ ∷ s) -- Stacks that are OK in a tail context are OK in any context. any-OK : ∀ {tc i k s} → Stack-OK i k true s → Stack-OK i k tc s any-OK {false} = const unrestricted any-OK {true} = id ------------------------------------------------------------------------ -- The stack sizes match mutual -- Some lemmas making up the main part of the correctness result. ⟦⟧-correct : ∀ {i n} (t : Tm n) (ρ : T.Env n) {tc c s} {k : T.Value → Delay-crash-trace (ℕ → ℕ) C.Value ∞} → Stack-OK i k tc s → Cont-OK i ⟨ c , s , comp-env ρ ⟩ k → [ i ] VM.stack-sizes ⟨ comp tc t c , s , comp-env ρ ⟩ ≂ numbers (⟦ t ⟧ ρ tc >>= k) (length s) ⟦⟧-correct (var x) ρ {tc} {c} {s} {k} _ c-ok = VM.stack-sizes ⟨ var x ∷ c , s , comp-env ρ ⟩ ∼⟨ ∷∼∷′ ⟩≂ (length s ∷′ VM.stack-sizes ⟨ c , val (index (comp-env ρ) x) ∷ s , comp-env ρ ⟩) ≡⟨ by (comp-index ρ x) ⟩≂ (length s ∷′ VM.stack-sizes ⟨ c , val (comp-val (index ρ x)) ∷ s , comp-env ρ ⟩) ≂⟨ cons″-≂ (c-ok (index ρ x)) ⟩∼ (length s ∷′ numbers (k (index ρ x)) (1 + length s)) ∼⟨ symmetric-∼ ∷∼∷′ ⟩ numbers (⟦ var x ⟧ ρ tc >>= k) (length s) ∎ ⟦⟧-correct (lam t) ρ {tc} {c} {s} {k} _ c-ok = VM.stack-sizes ⟨ clo (comp-body t) ∷ c , s , comp-env ρ ⟩ ∼⟨ ∷∼∷′ ⟩≂ (length s ∷′ VM.stack-sizes ⟨ c , val (comp-val (T.lam t ρ)) ∷ s , comp-env ρ ⟩) ≂⟨ cons″-≂ (c-ok (T.lam t ρ)) ⟩∼ (length s ∷′ numbers (k (T.lam t ρ)) (1 + length s)) ∼⟨ symmetric-∼ ∷∼∷′ ⟩ numbers (⟦ lam t ⟧ ρ tc >>= k) (length s) ∎ ⟦⟧-correct (t₁ · t₂) ρ {tc} {c} {s} {k} _ c-ok = VM.stack-sizes ⟨ comp false t₁ (comp false t₂ (app ∷ c)) , s , comp-env ρ ⟩ ≂⟨ (⟦⟧-correct t₁ _ unrestricted λ v₁ → VM.stack-sizes ⟨ comp false t₂ (app ∷ c) , val (comp-val v₁) ∷ s , comp-env ρ ⟩ ≂⟨ (⟦⟧-correct t₂ _ unrestricted λ v₂ → VM.stack-sizes ⟨ app ∷ c , val (comp-val v₂) ∷ val (comp-val v₁) ∷ s , comp-env ρ ⟩ ≂⟨ ∙-correct v₁ v₂ c-ok ⟩∼ numbers ([ pred , pred ] v₁ ∙ v₂ >>= k) (2 + length s) ∎) ⟩∼ numbers (do v₂ ← ⟦ t₂ ⟧ ρ false [ pred , pred ] v₁ ∙ v₂ >>= k) (1 + length s) ∎) ⟩∼ numbers (do v₁ ← ⟦ t₁ ⟧ ρ false v₂ ← ⟦ t₂ ⟧ ρ false [ pred , pred ] v₁ ∙ v₂ >>= k) (length s) ∼⟨ symmetric-∼ (numbers-cong (⟦⟧-· t₁ t₂ tc)) ⟩ numbers (⟦ t₁ · t₂ ⟧ ρ tc >>= k) (length s) ∎ ⟦⟧-correct (call f t) ρ {false} {c} {s} {k} unrestricted c-ok = VM.stack-sizes ⟨ comp false t (cal f ∷ c) , s , comp-env ρ ⟩ ≂⟨ (⟦⟧-correct t _ unrestricted λ v → VM.stack-sizes ⟨ cal f ∷ c , val (comp-val v) ∷ s , comp-env ρ ⟩ ∼⟨ ∷∼∷′ ⟩≂ 1 + length s ∷′ VM.stack-sizes ⟨ comp-name f , ret c (comp-env ρ) ∷ s , comp-val v ∷ [] ⟩ ≂⟨ cons′-≂ (_⇔_.from ≂′⇔≂″ λ { .force → body-lemma (def f) [] (castC c-ok) }) ⟩∼ 1 + length s ∷′ numbers (⟦ def f ⟧ (v ∷ []) true >>= tell pred ∘ return >>= k) (1 + length s) ∼⟨ symmetric-∼ ∷∼∷′ ⟩ numbers ([ id , pred ] T.lam (def f) [] ∙ v >>= k) (1 + length s) ∎) ⟩∼ numbers (⟦ t ⟧ ρ false >>= λ v → [ id , pred ] T.lam (def f) [] ∙ v >>= k) (length s) ∼⟨ numbers-cong (DCT.associativity (⟦ t ⟧ _ _) _ _) ⟩ numbers ((⟦ t ⟧ ρ false >>= [ id , pred ] T.lam (def f) [] ∙_) >>= k) (length s) ∼⟨⟩ numbers (⟦ call f t ⟧ ρ false >>= k) (length s) ∎ ⟦⟧-correct {i} (call f t) ρ {true} {c} {ret c′ ρ′ ∷ s} {k} s-ok@(restricted c-ok) _ = VM.stack-sizes ⟨ comp false t (tcl f ∷ c) , ret c′ ρ′ ∷ s , comp-env ρ ⟩ ≂⟨ (⟦⟧-correct t _ unrestricted λ v → VM.stack-sizes ⟨ tcl f ∷ c , val (comp-val v) ∷ ret c′ ρ′ ∷ s , comp-env ρ ⟩ ∼⟨ ∷∼∷′ ⟩≂ 2 + length s ∷′ VM.stack-sizes ⟨ comp-name f , ret c′ ρ′ ∷ s , comp-val v ∷ [] ⟩ ≡⟨⟩≂ 2 + length s ∷′ VM.stack-sizes ⟨ comp-name f , ret c′ ρ′ ∷ s , comp-env (v ∷ []) ⟩ ≂⟨ cons′-≂ (_⇔_.from ≂′⇔≂″ λ { .force → ⟦⟧-correct (def f) (_ ∷ []) (restricted lemma) (λ v′ → VM.stack-sizes ⟨ ret ∷ [] , val (comp-val v′) ∷ ret c′ ρ′ ∷ s , comp-env (v ∷ []) ⟩ ∼⟨ ∷∼∷′ ⟩≂ 2 + length s ∷′ VM.stack-sizes ⟨ c′ , val (comp-val v′) ∷ s , ρ′ ⟩ ≂⟨ lemma v′ ⟩∼ numbers (tell id (k v′)) (2 + length s) ∎) }) ⟩∼ 2 + length s ∷′ numbers (⟦ def f ⟧ (v ∷ []) true >>= tell id ∘ k) (1 + length s) ∼⟨ (refl ∷ λ { .force → numbers-cong (DCT.associativity (⟦ def f ⟧ _ _) _ _) }) ⟩ 2 + length s ∷′ numbers (⟦ def f ⟧ (v ∷ []) true >>= tell id ∘ return >>= k) (1 + length s) ∼⟨ symmetric-∼ ∷∼∷′ ⟩ numbers ([ pred , id ] T.lam (def f) [] ∙ v >>= k) (2 + length s) ∎) ⟩∼ numbers (⟦ t ⟧ ρ false >>= λ v → [ pred , id ] T.lam (def f) [] ∙ v >>= k) (1 + length s) ∼⟨ numbers-cong (DCT.associativity (⟦ t ⟧ _ _) _ _) ⟩ numbers ((⟦ t ⟧ ρ false >>= [ pred , id ] T.lam (def f) [] ∙_) >>= k) (1 + length s) ∼⟨⟩ numbers (⟦ call f t ⟧ ρ true >>= k) (1 + length s) ∎ where lemma : {j : Size< i} → _ lemma = λ v′ → 2 + length s ∷′ VM.stack-sizes ⟨ c′ , val (comp-val v′) ∷ s , ρ′ ⟩ ≂⟨ consʳ-≂ (inj₁ (here ≤-refl)) (cast-≂ (c-ok v′)) ⟩∼ 2 + length s ∷′ numbers (k v′) (2 + length s) ∼⟨ symmetric-∼ ∷∼∷′ ⟩ numbers (tell id (k v′)) (2 + length s) ∎ ⟦⟧-correct (con b) ρ {tc} {c} {s} {k} _ c-ok = VM.stack-sizes ⟨ con b ∷ c , s , comp-env ρ ⟩ ∼⟨ ∷∼∷′ ⟩≂ (length s ∷′ VM.stack-sizes ⟨ c , val (comp-val (T.con b)) ∷ s , comp-env ρ ⟩) ≂⟨ cons″-≂ (c-ok (T.con b)) ⟩∼ (length s ∷′ numbers (k (T.con b)) (1 + length s)) ∼⟨ symmetric-∼ ∷∼∷′ ⟩ numbers (⟦ con b ⟧ ρ tc >>= k) (length s) ∎ ⟦⟧-correct (if t₁ t₂ t₃) ρ {tc} {c} {s} {k} s-ok c-ok = VM.stack-sizes ⟨ comp false t₁ (bra (comp tc t₂ []) (comp tc t₃ []) ∷ c) , s , comp-env ρ ⟩ ≂⟨ (⟦⟧-correct t₁ _ unrestricted λ v₁ → ⟦if⟧-correct v₁ t₂ t₃ s-ok c-ok) ⟩∼ numbers (⟦ t₁ ⟧ ρ false >>= λ v₁ → ⟦if⟧ v₁ t₂ t₃ ρ tc >>= k) (length s) ∼⟨ numbers-cong (DCT.associativity (⟦ t₁ ⟧ _ _) _ _) ⟩ numbers ((⟦ t₁ ⟧ ρ false >>= λ v₁ → ⟦if⟧ v₁ t₂ t₃ ρ tc) >>= k) (length s) ∎ body-lemma : ∀ {i n n′} (t : Tm (1 + n)) ρ {ρ′ : C.Env n′} {c s v} {k : T.Value → Delay-crash-trace (ℕ → ℕ) C.Value ∞} → Cont-OK i ⟨ c , s , ρ′ ⟩ k → [ i ] VM.stack-sizes ⟨ comp-body t , ret c ρ′ ∷ s , comp-val v ∷ comp-env ρ ⟩ ≂ numbers (⟦ t ⟧ (v ∷ ρ) true >>= tell pred ∘ return >>= k) (1 + length s) body-lemma t ρ {ρ′} {c} {s} {v} {k} c-ok = VM.stack-sizes ⟨ comp-body t , ret c ρ′ ∷ s , comp-val v ∷ comp-env ρ ⟩ ≡⟨⟩≂ VM.stack-sizes ⟨ comp-body t , ret c ρ′ ∷ s , comp-env (v ∷ ρ) ⟩ ≂⟨ (⟦⟧-correct t (_ ∷ _) (any-OK (restricted lemma)) λ v′ → VM.stack-sizes ⟨ ret ∷ [] , val (comp-val v′) ∷ ret c ρ′ ∷ s , comp-env (v ∷ ρ) ⟩ ∼⟨ ∷∼∷′ ⟩≂ 2 + length s ∷′ VM.stack-sizes ⟨ c , val (comp-val v′) ∷ s , ρ′ ⟩ ≂⟨ lemma v′ ⟩∼ numbers (tell pred (k v′)) (2 + length s) ∎) ⟩∼ numbers (⟦ t ⟧ (v ∷ ρ) true >>= tell pred ∘ k) (1 + length s) ∼⟨ numbers-cong (DCT.associativity (⟦ t ⟧ _ _) _ _) ⟩ numbers (⟦ t ⟧ (v ∷ ρ) true >>= tell pred ∘ return >>= k) (1 + length s) ∎ where lemma = λ v′ → 2 + length s ∷′ VM.stack-sizes ⟨ c , val (comp-val v′) ∷ s , ρ′ ⟩ ≂⟨ cons″-≂ (c-ok v′) ⟩∼ 2 + length s ∷′ numbers (k v′) (1 + length s) ∼⟨ symmetric-∼ ∷∼∷′ ⟩ numbers (tell pred (k v′)) (2 + length s) ∎ ∙-correct : ∀ {i n} v₁ v₂ {ρ : C.Env n} {c s} {k : T.Value → Delay-crash-trace (ℕ → ℕ) C.Value ∞} → Cont-OK i ⟨ c , s , ρ ⟩ k → [ i ] VM.stack-sizes ⟨ app ∷ c , val (comp-val v₂) ∷ val (comp-val v₁) ∷ s , ρ ⟩ ≂ numbers ([ pred , pred ] v₁ ∙ v₂ >>= k) (2 + length s) ∙-correct (T.lam t₁ ρ₁) v₂ {ρ} {c} {s} {k} c-ok = VM.stack-sizes ⟨ app ∷ c , val (comp-val v₂) ∷ val (comp-val (T.lam t₁ ρ₁)) ∷ s , ρ ⟩ ∼⟨ ∷∼∷′ ⟩≂ 2 + length s ∷′ VM.stack-sizes ⟨ comp-body t₁ , ret c ρ ∷ s , comp-val v₂ ∷ comp-env ρ₁ ⟩ ≂⟨ cons′-≂ (_⇔_.from ≂′⇔≂″ λ { .force → body-lemma t₁ _ (castC c-ok) }) ⟩∼ 2 + length s ∷′ numbers (⟦ t₁ ⟧ (v₂ ∷ ρ₁) true >>= tell pred ∘ return >>= k) (1 + length s) ∼⟨ symmetric-∼ ∷∼∷′ ⟩ numbers ([ pred , pred ] T.lam t₁ ρ₁ ∙ v₂ >>= k) (2 + length s) ∎ ∙-correct (T.con b) v₂ {ρ} {c} {s} {k} _ = VM.stack-sizes ⟨ app ∷ c , val (comp-val v₂) ∷ val (C.con b) ∷ s , ρ ⟩ ∼⟨ ∷∼∷′ ⟩≂ 2 + length s ∷′ [] ∼⟨ symmetric-∼ ∷∼∷′ ⟩≂ numbers ([ pred , pred ] T.con b ∙ v₂ >>= k) (2 + length s) □≂ ⟦if⟧-correct : ∀ {i n} v₁ t₂ t₃ {ρ : T.Env n} {tc c s} {k : T.Value → Delay-crash-trace (ℕ → ℕ) C.Value ∞} → Stack-OK i k tc s → Cont-OK i ⟨ c , s , comp-env ρ ⟩ k → [ i ] VM.stack-sizes ⟨ bra (comp tc t₂ []) (comp tc t₃ []) ∷ c , val (comp-val v₁) ∷ s , comp-env ρ ⟩ ≂ numbers (⟦if⟧ v₁ t₂ t₃ ρ tc >>= k) (1 + length s) ⟦if⟧-correct (T.lam t₁ ρ₁) t₂ t₃ {ρ} {tc} {c} {s} {k} _ _ = VM.stack-sizes ⟨ bra (comp tc t₂ []) (comp tc t₃ []) ∷ c , val (comp-val (T.lam t₁ ρ₁)) ∷ s , comp-env ρ ⟩ ∼⟨ ∷∼∷′ ⟩≂ 1 + length s ∷′ [] ∼⟨ symmetric-∼ ∷∼∷′ ⟩≂ numbers (⟦if⟧ (T.lam t₁ ρ₁) t₂ t₃ ρ tc >>= k) (1 + length s) □≂ ⟦if⟧-correct (T.con true) t₂ t₃ {ρ} {tc} {c} {s} {k} s-ok c-ok = VM.stack-sizes ⟨ bra (comp tc t₂ []) (comp tc t₃ []) ∷ c , val (comp-val (T.con true)) ∷ s , comp-env ρ ⟩ ∼⟨ ∷∼∷′ ⟩≂ 1 + length s ∷′ VM.stack-sizes ⟨ comp tc t₂ [] ++ c , s , comp-env ρ ⟩ ≡⟨ by (comp-++ _ t₂) ⟩≂ 1 + length s ∷′ VM.stack-sizes ⟨ comp tc t₂ c , s , comp-env ρ ⟩ ≂⟨ cons″-≂ (⟦⟧-correct t₂ _ s-ok c-ok) ⟩∼ 1 + length s ∷′ numbers (⟦ t₂ ⟧ ρ tc >>= k) (length s) ∼⟨ symmetric-∼ ∷∼∷′ ⟩ numbers (⟦if⟧ (T.con true) t₂ t₃ ρ tc >>= k) (1 + length s) ∎ ⟦if⟧-correct (T.con false) t₂ t₃ {ρ} {tc} {c} {s} {k} s-ok c-ok = VM.stack-sizes ⟨ bra (comp tc t₂ []) (comp tc t₃ []) ∷ c , val (comp-val (T.con false)) ∷ s , comp-env ρ ⟩ ∼⟨ ∷∼∷′ ⟩≂ 1 + length s ∷′ VM.stack-sizes ⟨ comp tc t₃ [] ++ c , s , comp-env ρ ⟩ ≡⟨ by (comp-++ _ t₃) ⟩≂ 1 + length s ∷′ VM.stack-sizes ⟨ comp tc t₃ c , s , comp-env ρ ⟩ ≂⟨ cons″-≂ (⟦⟧-correct t₃ _ s-ok c-ok) ⟩∼ 1 + length s ∷′ numbers (⟦ t₃ ⟧ ρ tc >>= k) (length s) ∼⟨ symmetric-∼ ∷∼∷′ ⟩ numbers (⟦if⟧ (T.con false) t₂ t₃ ρ tc >>= k) (1 + length s) ∎ -- The virtual machine and the interpreter produce related lists of -- stack sizes. -- -- (However, the traces are not necessarily bisimilar, see -- Lambda.Interpreter.Stack-sizes.Counterexample.stack-sizes-not-bisimilar.) stack-sizes-related : (t : Tm 0) → [ ∞ ] VM.stack-sizes ⟨ comp₀ t , [] , [] ⟩ ≂ I.stack-sizes t stack-sizes-related t = VM.stack-sizes ⟨ comp false t [] , [] , [] ⟩ ≂⟨ ⟦⟧-correct t [] unrestricted (λ _ → cons″-≂ (_ □≂)) ⟩∼ numbers (comp-val ⟨$⟩ ⟦ t ⟧ [] false) 0 ∼⟨ scanl-cong (DCT.trace-⟨$⟩ _) ⟩ numbers (⟦ t ⟧ [] false) 0 ∼⟨⟩ I.stack-sizes t ∎ -- The maximum stack sizes match. maximum-stack-sizes-match : ∀ (t : Tm 0) {i v} → LUB (I.stack-sizes t) i → LUB (VM.stack-sizes ⟨ comp₀ t , [] , [] ⟩) v → Conat.[ ∞ ] i ∼ v maximum-stack-sizes-match t {i} {v} i-lub = LUB (VM.stack-sizes ⟨ comp₀ t , [] , [] ⟩) v ↝⟨ LUB-≂ (stack-sizes-related t) ⟩ LUB (I.stack-sizes t) v ↝⟨ lub-unique i-lub ⟩□ Conat.[ ∞ ] i ∼ v □
{ "alphanum_fraction": 0.3842607484, "avg_line_length": 40.7292576419, "ext": "agda", "hexsha": "ddf87bfd4e0a0859d616fe5a6a11f21dcba14841", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/definitional-interpreters", "max_forks_repo_path": "src/Lambda/Compiler-correctness/Sizes-match.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/definitional-interpreters", "max_issues_repo_path": "src/Lambda/Compiler-correctness/Sizes-match.agda", "max_line_length": 143, "max_stars_count": null, "max_stars_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/definitional-interpreters", "max_stars_repo_path": "src/Lambda/Compiler-correctness/Sizes-match.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6526, "size": 18654 }
{-# OPTIONS --without-K #-} open import Equivalence module PathStructure.Id.Ap {a b} {A : Set a} {B : Set b} (f : A → B) (qi : qinv f) where open import Functoriality open import GroupoidStructure open import Homotopy open import PathOperations open import Types private g = π₁ qi α = π₁ (π₂ qi) β = π₂ (π₂ qi) split-path : {a a′ : A} → a ≡ a′ → f a ≡ f a′ split-path = ap f merge-path : {a a′ : A} → f a ≡ f a′ → a ≡ a′ merge-path p = β _ ⁻¹ · ap g p · β _ F : (b b′ : B) (p : b ≡ b′) → Set _ F b b′ p = ap f (β (g b) ⁻¹ · ap g (ap (f ∘ g) p) · β (g b′)) ≡ ap (f ∘ g) p F-lemma : ∀ b → F b b refl F-lemma b = ap (ap f) ( ap (λ y → β (g b) ⁻¹ · y) (id·p _) · p⁻¹·p (β (g b)) ) ap-β-lem : ∀ a → ap (g ∘ f) (β a) ≡ β (g (f a)) ap-β-lem a = p·id _ ⁻¹ · ap (λ y → ap (g ∘ f) (β a) · y) (p·p⁻¹ (β a) ⁻¹) · p·q·r (ap (g ∘ f) (β a)) (β a) (β a ⁻¹) · ap (λ y → y · β a ⁻¹) (naturality _ _ β (β a) ⁻¹) · ap (λ y → (β (g (f a)) · y) · β a ⁻¹) (ap-id _) · p·q·r (β (g (f a))) (β a) (β a ⁻¹) ⁻¹ · ap (λ y → β (g (f a)) · y) (p·p⁻¹ (β a)) · p·id _ add-right : ∀ {a} {A : Set a} {a₁ a₂ a₃ : B} (p q : a₁ ≡ a₂) (r : a₂ ≡ a₃) → (p ≡ q) ≡ (p · r ≡ q · r) add-right {a₁ = a₁} p q r = J (λ a₂ _ r → (p q : a₁ ≡ a₂) → (p ≡ q) ≡ (p · r ≡ q · r)) (λ _ p q → tr (λ x → (p ≡ q) ≡ (p · refl ≡ x)) (p·id q ⁻¹) (tr (λ x → (p ≡ q) ≡ (x ≡ q)) (p·id p ⁻¹) refl)) _ _ r p q add-left : ∀ {a} {A : Set a} {a₁ a₂ a₃ : B} (p q : a₂ ≡ a₃) (r : a₁ ≡ a₂) → (p ≡ q) ≡ (r · p ≡ r · q) add-left {a₃ = a₃} p q r = J (λ _ a₂ r → (p q : a₂ ≡ a₃) → (p ≡ q) ≡ (r · p ≡ r · q)) (λ _ p q → tr (λ x → (p ≡ q) ≡ (refl · p ≡ x)) (id·p q ⁻¹) (tr (λ x → (p ≡ q) ≡ (x ≡ q)) (id·p p ⁻¹) refl)) _ _ r p q F-tr : ∀ a a′ (q : f a ≡ f a′) → F (f a) (f a′) q ≡ (ap f (β a ⁻¹ · ap g q · β a′) ≡ q) F-tr a a′ q = ( add-left {A = A} (ap f (β a ⁻¹ · ap g q · β a′)) q (α (f a)) · add-right {A = A} (α (f a) · ap f (β a ⁻¹ · ap g q · β a′)) (α (f a) · q) (α (f a′) ⁻¹) · ap (λ x → (α (f a) · ap f (β a ⁻¹ · ap g q · β a′)) · α (f a′) ⁻¹ ≡ x) ( ap (λ y → (α (f a) · y) · α (f a′) ⁻¹) (ap-id _ ⁻¹) · ap (λ y → y · α (f a′) ⁻¹) (naturality _ _ α q) · p·q·r (ap (f ∘ g) q) (α (f a′)) (α (f a′) ⁻¹) ⁻¹ · ap (λ y → ap (f ∘ g) q · y) (p·p⁻¹ (α (f a′))) · p·id _ ) · ap (λ x → x ≡ ap (f ∘ g) q) ( ap (λ y → (α (f a) · y) · α (f a′) ⁻¹) (ap-id _ ⁻¹) · ap (λ y → y · α (f a′) ⁻¹) (naturality _ _ α (ap f (β a ⁻¹ · ap g q · β a′))) · p·q·r (ap (f ∘ g) (ap f (β a ⁻¹ · ap g q · β a′))) (α (f a′)) (α (f a′) ⁻¹) ⁻¹ · ap (λ y → ap (f ∘ g) (ap f (β a ⁻¹ · ap g q · β a′)) · y) (p·p⁻¹ (α (f a′))) · p·id _ · ap-∘ f g (ap f (β a ⁻¹ · ap g q · β a′)) · ap (ap f) ( ap-∘ g f (β a ⁻¹ · ap g q · β a′) ⁻¹ · ap· (g ∘ f) (β a ⁻¹) (ap g q · β a′) · ap (λ y → ap (g ∘ f) (β a ⁻¹) · y) (ap· (g ∘ f) (ap g q) (β a′)) · ap (λ y → y · ap (g ∘ f) (ap g q) · ap (g ∘ f) (β a′)) (ap⁻¹ (g ∘ f) (β a)) · ap (λ y → y ⁻¹ · ap (g ∘ f) (ap g q) · ap (g ∘ f) (β a′)) (ap-β-lem a) · ap (λ y → β (g (f a)) ⁻¹ · ap (g ∘ f) (ap g q) · y) (ap-β-lem a′) · ap (λ y → β (g (f a)) ⁻¹ · y · β (g (f a′))) ( ap-∘ g f (ap g q) · ap (ap g) (ap-∘ f g q ⁻¹) ) ) ) ) ⁻¹ proof-F : {a a′ : A} → split-path ∘ merge-path {a} {a′} ∼ id proof-F p = tr id (F-tr _ _ p) (J F F-lemma _ _ p) -- Copied from HoTT book, theorem 2.11.1. proof-direct : {a a′ : A} → split-path ∘ merge-path {a} {a′} ∼ id proof-direct {a} {a′} p = ap (ap f) (p·q·r (β a ⁻¹) (ap g p) (β a′)) · id·p _ ⁻¹ · ap (λ y → y · ap f ((β a ⁻¹ · ap g p) · β a′)) (p⁻¹·p (α (f a)) ⁻¹) · p·q·r (α (f a) ⁻¹) (α (f a)) (ap f ((β a ⁻¹ · ap g p) · β a′)) ⁻¹ · ap (λ y → α (f a) ⁻¹ · α (f a) · y) (ap-id _ ⁻¹) · ap (λ y → α (f a) ⁻¹ · y) (naturality _ _ α (ap f ((β a ⁻¹ · ap g p) · β a′))) · ap (λ y → α (f a) ⁻¹ · y · α (f a′)) ( ap-∘ f g (ap f ((β a ⁻¹ · ap g p) · β a′)) · ap (ap f) ( ap-∘ g f ((β a ⁻¹ · ap g p) · β a′) ⁻¹ · p·id _ ⁻¹ · ap (λ y → ap (g ∘ f) ((β a ⁻¹ · ap g p) · β a′) · y) (p·p⁻¹ (β a′) ⁻¹) · p·q·r (ap (g ∘ f) ((β a ⁻¹ · ap g p) · β a′)) (β a′) (β a′ ⁻¹) · ap (λ y → y · β a′ ⁻¹) ( naturality _ _ β ((β a ⁻¹ · ap g p) · β a′) ⁻¹ · ap (λ y → β a · y) (ap-id _) ) · ap (λ y → y · β a′ ⁻¹) (p·q·r (β a) (β a ⁻¹ · ap g p) (β a′)) · p·q·r (β a · β a ⁻¹ · ap g p) (β a′) (β a′ ⁻¹) ⁻¹ · ap (λ y → (β a · β a ⁻¹ · ap g p) · y) (p·p⁻¹ (β a′)) · p·id _ · p·q·r (β a) (β a ⁻¹) (ap g p) · ap (λ y → y · ap g p) (p·p⁻¹ (β a)) · id·p _ ) · ap-∘ f g p ⁻¹ ) · ap (λ y → α (f a) ⁻¹ · y) (naturality _ _ α p ⁻¹) · p·q·r (α (f a) ⁻¹) (α (f a)) (ap id p) · ap (λ y → y · ap id p) (p⁻¹·p (α (f a))) · ap-id _ split-merge-eq : {a a′ : A} → (a ≡ a′) ≃ (f a ≡ f a′) split-merge-eq = split-path , (merge-path , proof-F) , (merge-path , J (λ _ _ p → merge-path (split-path p) ≡ p) (λ _ → p⁻¹·p (β _)) _ _)
{ "alphanum_fraction": 0.3626373626, "avg_line_length": 29.8103448276, "ext": "agda", "hexsha": "2ba75d29ce3be2701e7ad00be01fbfc47342abe7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vituscze/HoTT-lectures", "max_forks_repo_path": "src/PathStructure/Id/Ap.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "vituscze/HoTT-lectures", "max_issues_repo_path": "src/PathStructure/Id/Ap.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "vituscze/HoTT-lectures", "max_stars_repo_path": "src/PathStructure/Id/Ap.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2799, "size": 5187 }
{-# OPTIONS --without-K #-} open import Types open import Paths open import HLevel open import Equivalences open import Univalence module Funext {i} {A : Set i} where -- Naive non dependent function extensionality module FunextNonDep {j} {B : Set j} {f g : A → B} (h : (x : A) → f x ≡ g x) where private equiv-comp : {B C : Set j} (f : B ≃ C) → is-equiv (λ (g : A → B) → (λ x → f ☆ (g x))) equiv-comp f = equiv-induction (λ {B} f → is-equiv (λ (g : A → B) → (λ x → f ☆ (g x)))) (λ A' y → id-is-equiv (A → A') y) f free-path-space-B : Set j free-path-space-B = Σ B (λ x → Σ B (λ y → x ≡ y)) d : A → free-path-space-B d x = (f x , (f x , refl)) e : A → free-path-space-B e x = (f x , (g x , h x)) abstract π₁-is-equiv : is-equiv (λ (y : free-path-space-B) → π₁ y) π₁-is-equiv = iso-is-eq π₁ (λ z → (z , (z , refl))) (λ _ → refl) (λ x' → Σ-eq refl (Σ-eq (π₂ (π₂ x')) (trans-cst≡id (π₂ (π₂ x')) refl))) comp-π₁-is-equiv : is-equiv (λ (f : A → free-path-space-B) → (λ x → π₁ (f x))) comp-π₁-is-equiv = equiv-comp ((λ (y : free-path-space-B) → π₁ y), π₁-is-equiv) d≡e : d ≡ e d≡e = equiv-is-inj (_ , comp-π₁-is-equiv) _ _ refl funext-nondep : f ≡ g funext-nondep = ap (λ f' x → π₁ (π₂ (f' x))) d≡e open FunextNonDep -- Weak function extensionality (a product of contractible types is -- contractible) module WeakFunext {j} {P : A → Set j} (e : (x : A) → is-contr (P x)) where P-is-unit : P ≡ (λ x → unit) P-is-unit = funext-nondep (λ x → eq-to-path (contr-equiv-unit (e x))) abstract weak-funext : is-contr (Π A P) weak-funext = transport (λ Q → is-contr (Π A Q)) (! P-is-unit) ((λ x → tt) , (λ y → funext-nondep (λ x → refl))) open WeakFunext -- Naive dependent function extensionality module FunextDep {j} {P : A → Set j} {f g : Π A P} (h : (x : A) → f x ≡ g x) where Q : A → Set j Q x = Σ (P x) (λ y → y ≡ f x) abstract Q-is-contr : (x : A) → is-contr (Q x) Q-is-contr x = pathto-is-contr (f x) ΠAQ-is-contr : is-contr (Π A Q) ΠAQ-is-contr = weak-funext Q-is-contr Q-f : Π A Q Q-f x = (f x , refl) Q-g : Π A Q Q-g x = (g x , ! (h x)) abstract Q-f≡Q-g : Q-f ≡ Q-g Q-f≡Q-g = contr-has-all-paths ΠAQ-is-contr Q-f Q-g funext-p : f ≡ g funext-p = ap (λ u x → π₁ (u x)) Q-f≡Q-g open FunextDep happly : ∀ {j} {P : A → Set j} {f g : Π A P} (p : f ≡ g) → ((x : A) → f x ≡ g x) happly p x = ap (λ u → u x) p -- Strong function extensionality module StrongFunextDep {j} {P : A → Set j} where abstract funext-refl : (f : Π A P) → funext-p (λ x → refl {a = f x}) ≡ refl funext-refl f = ap (ap (λ u x → π₁ (u x))) (contr-has-all-paths (≡-is-truncated _ (ΠAQ-is-contr (λ x → refl))) (Q-f≡Q-g (λ x → refl)) refl) abstract funext-happly-p : {f g : Π A P} (p : f ≡ g) → funext-p (happly p) ≡ p funext-happly-p {f} refl = funext-refl f abstract happly-path : {f : Π A P} {u v : (x : A) → Q (λ x → refl {a = f x}) x} (p : u ≡ v) (x : A) → happly (ap (λ u x → π₁ (u x)) p) x ≡ π₂ (u x) ∘ ! (π₂ (v x)) happly-path {u = u} refl x = ! (opposite-right-inverse (π₂ (u x))) abstract happly-funext-p : {f g : Π A P} (h : (x : A) → f x ≡ g x) → happly (funext-p h) ≡ h happly-funext-p h = funext-p (λ x → happly-path (Q-f≡Q-g h) x ∘ opposite-opposite (h x)) happly-is-equiv : {f g : Π A P} → is-equiv (happly {f = f} {g = g}) happly-is-equiv = iso-is-eq _ funext-p happly-funext-p funext-happly-p funext-is-equiv-p : {f g : Π A P} → is-equiv (funext-p {f = f} {g = g}) funext-is-equiv-p = iso-is-eq _ happly funext-happly-p happly-funext-p open StrongFunextDep -- We only export the following module _ {j} {P : A → Set j} {f g : Π A P} where abstract funext : (h : (x : A) → f x ≡ g x) → f ≡ g funext = FunextDep.funext-p funext-happly : (p : f ≡ g) → funext (happly p) ≡ p funext-happly p = funext-happly-p p happly-funext : (h : (x : A) → f x ≡ g x) → happly (funext h) ≡ h happly-funext h = happly-funext-p h funext-is-equiv : is-equiv funext funext-is-equiv = StrongFunextDep.funext-is-equiv-p funext-equiv : ((x : A) → f x ≡ g x) ≃ (f ≡ g) funext-equiv = (funext , funext-is-equiv) happly-equiv : (f ≡ g) ≃ ((x : A) → f x ≡ g x) happly-equiv = (happly , happly-is-equiv)
{ "alphanum_fraction": 0.5052563828, "avg_line_length": 28.950310559, "ext": "agda", "hexsha": "c2ebcad471e69e51349f3f46199957f39c549ccc", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "old/Funext.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "old/Funext.agda", "max_line_length": 80, "max_stars_count": 294, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "old/Funext.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 1806, "size": 4661 }
{-# OPTIONS --without-K #-} module sets.core where open import equality.core module _ {i}{A : Set i} (_<_ : A → A → Set i) where data Ordering (x y : A) : Set i where lt : x < y → Ordering x y eq : x ≡ y → Ordering x y gt : y < x → Ordering x y
{ "alphanum_fraction": 0.5481481481, "avg_line_length": 22.5, "ext": "agda", "hexsha": "6a75561cf17404a2663973158e0a6ac43fd1a0f8", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/sets/core.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/sets/core.agda", "max_line_length": 39, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/sets/core.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 87, "size": 270 }
{-# OPTIONS --cubical --no-import-sorts --postfix-projections --safe #-} module Cubical.Categories.Presheaf where open import Cubical.Categories.Presheaf.Base public open import Cubical.Categories.Presheaf.Properties public open import Cubical.Categories.Presheaf.KanExtension public
{ "alphanum_fraction": 0.8153310105, "avg_line_length": 31.8888888889, "ext": "agda", "hexsha": "3eb65d6f9526c690b4ee5fcde7d44c43a34668bf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/Categories/Presheaf.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/Categories/Presheaf.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/Categories/Presheaf.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 67, "size": 287 }
open import Agda.Builtin.Reflection open import Agda.Builtin.Unit macro @0 m : @0 Set → Term → TC ⊤ m A B = bindTC (quoteTC A) λ A → unify A B F : @0 Set → Set F A = m A
{ "alphanum_fraction": 0.6, "avg_line_length": 14.2307692308, "ext": "agda", "hexsha": "f29ba5546e83c258371ec5cbdde1247e8f2262ed", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Fail/ErasedMacro2.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Fail/ErasedMacro2.agda", "max_line_length": 35, "max_stars_count": 1, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Fail/ErasedMacro2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:25:14.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:25:14.000Z", "num_tokens": 69, "size": 185 }
-- Andreas, 2016-10-03, issue #2233 -- Positivity check should return the same result when change -- all involved definitions from non-abstract to abstract. abstract data Functor : Set where Id : Functor _·_ : Functor → Set → Set Id · A = A data ν (F : Functor) : Set where inn : F · ν F → ν F -- Should positivity check ok.
{ "alphanum_fraction": 0.6608695652, "avg_line_length": 21.5625, "ext": "agda", "hexsha": "aeb4300e27762caa9693b65d2772c004dfa597a7", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2233.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2233.agda", "max_line_length": 61, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2233.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 100, "size": 345 }
open import WarningOnImport.Impo C = A
{ "alphanum_fraction": 0.775, "avg_line_length": 10, "ext": "agda", "hexsha": "1d76f8089a1a15ebc78ebfd5c77a31b78f357420", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/WarningOnImport.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/WarningOnImport.agda", "max_line_length": 32, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/WarningOnImport.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 12, "size": 40 }
module Data.List.Properties.Extra {a}{A : Set a} where open import Data.Nat open import Data.Fin hiding (_<_) open import Data.List open import Data.Product hiding (map) open import Data.Fin using (fromℕ≤; zero; suc) open import Data.List.Relation.Unary.All hiding (map; lookup; _[_]≔_) open import Data.List.Relation.Unary.Any hiding (map; lookup) open import Data.List.Membership.Propositional open import Data.List.Relation.Binary.Pointwise hiding (refl; map) open import Relation.Binary.PropositionalEquality ∈-∷ʳ : ∀ (l : List A)(x : A) → x ∈ (l ∷ʳ x) ∈-∷ʳ [] x = here refl ∈-∷ʳ (x ∷ l) y = there (∈-∷ʳ l y) infixl 10 _[_]≔_ _[_]≔_ : (l : List A) → Fin (length l) → A → List A [] [ () ]≔ x (x ∷ xs) [ zero ]≔ x' = x' ∷ xs (x ∷ xs) [ suc i ]≔ y = x ∷ xs [ i ]≔ y infixl 10 _[_]≔'_ _[_]≔'_ : ∀ {x} → (l : List A) → x ∈ l → A → List A [] [ () ]≔' y (x ∷ l) [ here px ]≔' y = y ∷ l (x ∷ l) [ there px ]≔' y = x ∷ (l [ px ]≔' y) ≔'-[]= : ∀ {x}{l : List A} (p : x ∈ l) → ∀ {y} → y ∈ (l [ p ]≔' y) ≔'-[]= (here px) = here refl ≔'-[]= (there p) = there (≔'-[]= p) drop-prefix : ∀ (l m : List A) → drop (length l) (l ++ m) ≡ m drop-prefix [] m = refl drop-prefix (x ∷ l) m = drop-prefix l m
{ "alphanum_fraction": 0.559832636, "avg_line_length": 31.4473684211, "ext": "agda", "hexsha": "33efbb571ef208aa882e5a8e6f0a96c15e57f7ec", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/Data/List/Properties/Extra.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/Data/List/Properties/Extra.agda", "max_line_length": 69, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/Data/List/Properties/Extra.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 498, "size": 1195 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Cofiber open import lib.types.Sigma open import lib.types.Wedge module lib.types.Smash {i j} (X : Ptd i) (Y : Ptd j) where module ∨In× = WedgeRec {X = X} {Y = Y} (λ x → (x , pt Y)) (λ y → (pt X , y)) idp ∨-in-× = ∨In×.f ∨-⊙in-× : X ⊙∨ Y ⊙→ X ⊙× Y ∨-⊙in-× = (∨In×.f , idp) ⊙Smash : Ptd (lmax i j) ⊙Smash = ⊙Cofiber ∨-⊙in-× Smash = de⊙ ⊙Smash _∧_ = Smash _⊙∧_ = ⊙Smash
{ "alphanum_fraction": 0.5584415584, "avg_line_length": 18.48, "ext": "agda", "hexsha": "1ee1475dc2e3885f09093d4ca7b6189f3bbf5140", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Smash.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Smash.agda", "max_line_length": 58, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Smash.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 230, "size": 462 }
{-# OPTIONS --universe-polymorphism #-} module Categories.GlobularSet where open import Level open import Data.Unit open import Categories.Support.PropositionalEquality open import Categories.Category open import Categories.Globe open import Categories.Functor open import Categories.Presheaf open import Categories.Agda record GlobularSet (o : Level) : Set (suc o) where field presheaf : Presheaf Globe (Sets o) Trivial : GlobularSet zero Trivial = record { presheaf = record { F₀ = λ x → ⊤ ; F₁ = λ x y → y ; identity = ≣-refl ; homomorphism = ≣-refl ; F-resp-≡ = λ x → ≣-refl } } zeroCell : ∀ {ℓ} → GlobularSet ℓ → Set ℓ zeroCell G = Functor.F₀ (GlobularSet.presheaf G) 0 {- lift : ∀ {ℓ} → (G : GlobularSet ℓ) → (A : Set ℓ) → (f g : zeroCell G → A) → GlobularSet ℓ lift {ℓ} G A f g = record { presheaf = record { F₀ = F₀′ ; F₁ = F₁′ ; identity = ≣-refl ; homomorphism = {!!} ; F-resp-≡ = F-resp-≡′ } } where open GlobularSet G open Functor presheaf F₀′ : ℕ → Set ℓ F₀′ zero = A F₀′ (suc n) = F₀ n F₁′ : ∀ {A B} → GlobeHom B A → F₀′ A → F₀′ B F₁′ I a = a F₁′ {suc zero} (σ Z<Sn) a = f a F₁′ {suc (suc m)} (σ Z<Sn) a = F₁′ {suc m} (σ Z<Sn) {!!} F₁′ (σ (raise< n<m)) a = {!!} F₁′ (τ n<m) a = {!!} F-resp-≡′ : ∀ {A B} {F G : GlobeHom B A} → F ≣ G → {x : F₀′ A} → F₁′ F x ≣ F₁′ G x F-resp-≡′ ≣-refl = ≣-refl {- objs : ∀ {ℓ} → (A : Set ℓ) → ℕ → Set ℓ objs A zero = A objs A (suc n) = Σ (objs A n) (λ x → Σ (objs A n) (λ y → x ≣ y)) base : ∀ {n} {ℓ} {A : Set ℓ} → objs A n → A base {zero} o = o base {suc n} (s , t , s≡t) = base {n} s homs : ∀ {A B} {ℓ} (Q : Set ℓ) → GlobeHom B A → objs Q A → objs Q B homs Q I o = o homs {suc n} Q (σ Z<Sn) (s , t , s≡t) = base {n} s homs Q (σ (raise< n<m)) (s , .s , ≣-refl) = homs Q (σ n<m) s , homs Q (σ n<m) s , ≣-refl homs {suc n} Q (τ Z<Sn) (s , t , s≡t) = base {n} t homs Q (τ (raise< n<m)) (s , .s , ≣-refl) = homs Q (τ n<m) s , homs Q (τ n<m) s , ≣-refl Equality : ∀ {ℓ} (A : Set ℓ) → GlobularSet ℓ Equality A = record { presheaf = record { F₀ = objs A ; F₁ = homs A ; identity = ≣-refl ; homomorphism = λ {_} {_} {_} {f} {g} → homomorphism {f = f} {g} ; F-resp-≡ = F-resp-≡ } } where homomorphism : {X Y Z : ℕ} {f : GlobeHom Y X} {g : GlobeHom Z Y} {x : objs A X} → homs A (f ⊚ g) x ≣ homs A g (homs A f x) homomorphism {f = I} = ≣-refl homomorphism {f = σ n<m} {I} = ≣-refl homomorphism {f = σ n<m} {σ n<m'} = {!!} homomorphism {f = σ n<m} {τ n<m'} = {!!} homomorphism {f = τ n<m} {I} = ≣-refl homomorphism {f = τ n<m} {σ n<m'} = {!!} homomorphism {f = τ n<m} {τ n<m'} = {!!} F-resp-≡ : {A' B : ℕ} {F G : GlobeHom B A'} → F ≣ G → {x : objs A A'} → _ F-resp-≡ ≣-refl = ≣-refl -} -}
{ "alphanum_fraction": 0.5220984549, "avg_line_length": 27.5544554455, "ext": "agda", "hexsha": "42c10e5615e1f9681222eb207d37a07bb01a93cc", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/GlobularSet.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/GlobularSet.agda", "max_line_length": 124, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/GlobularSet.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 1283, "size": 2783 }
{-# OPTIONS --warning ShadowingInTelescope #-} postulate _ : (A A : Set) → Set
{ "alphanum_fraction": 0.6341463415, "avg_line_length": 16.4, "ext": "agda", "hexsha": "b3d39fb7d9aec9800701f1b17133c7a4c70f08d4", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue3989.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue3989.agda", "max_line_length": 46, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue3989.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 25, "size": 82 }
module BasicIS4.Metatheory.Gentzen-BasicKripkeAlechina where open import BasicIS4.Syntax.Gentzen public open import BasicIS4.Semantics.BasicKripkeAlechina public -- Soundness with respect to all models, or evaluation. mutual eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A eval (var i) γ = lookup i γ eval (lam t) γ = λ ξ a → eval t (mono⊩⋆ ξ γ , a) eval (app {A} {B} t u) γ = _⟪$⟫_ {A} {B} (eval t γ) (eval u γ) eval (multibox ts u) γ = λ ξ ζ → eval u (thing ts γ ξ ζ) eval (down {A} t) γ = ⟪↓⟫ {A} (eval t γ) eval (pair t u) γ = eval t γ , eval u γ eval (fst t) γ = π₁ (eval t γ) eval (snd t) γ = π₂ (eval t γ) eval unit γ = ∙ -- TODO: What is this? thing : ∀ {{_ : Model}} {Δ Γ} {w : World} → Γ ⊢⋆ □⋆ Δ → w ⊩⋆ Γ → ∀ {w′} → w ≤ w′ → ∀ {v′} → w′ R v′ → v′ ⊩⋆ □⋆ Δ thing {∅} ∙ γ ξ ζ = ∙ thing {Δ , B} (ts , t) γ ξ ζ = thing ts γ ξ ζ , λ ξ′ ζ′ → let _ , (ξ″ , ζ″) = R⨾≤→≤⨾R (_ , (ζ , ξ′)) in eval t γ (trans≤ ξ ξ″) (transR ζ″ ζ′) eval⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ Ξ → Γ ⊨⋆ Ξ eval⋆ {∅} ∙ γ = ∙ eval⋆ {Ξ , A} (ts , t) γ = eval⋆ ts γ , eval t γ -- TODO: Correctness of evaluation with respect to conversion.
{ "alphanum_fraction": 0.4632237872, "avg_line_length": 36.5142857143, "ext": "agda", "hexsha": "cc5608e3d9a2dc26c91a2ede3160e0c26b523f2c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "BasicIS4/Metatheory/Gentzen-BasicKripkeAlechina.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "BasicIS4/Metatheory/Gentzen-BasicKripkeAlechina.agda", "max_line_length": 80, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "BasicIS4/Metatheory/Gentzen-BasicKripkeAlechina.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 566, "size": 1278 }
------------------------------------------------------------------------ -- Some defined parsers ------------------------------------------------------------------------ -- Note that the fixpoint combinator ensures that _⋆ can be defined -- without any need for library grammars (c.f. -- RecursiveDescent.Inductive.Lib). However, use of the fixpoint -- combinator can lead to code which is hard to understand, and should -- be kept at a minimum. -- This module also provides an example of a parser for which the -- Index cannot be inferred. module RecursiveDescent.InductiveWithFix.Lib where open import RecursiveDescent.Index open import RecursiveDescent.InductiveWithFix open import Utilities open import Data.Nat hiding (_≟_) import Data.Vec as V; open V using (Vec) import Data.Vec1 as V₁; open V₁ using (Vec₁) import Data.List as L ; open L using (List) open import Relation.Nullary open import Data.Product.Record open import Data.Product renaming (_,_ to pair) open import Data.Bool hiding (_≟_) open import Data.Function open import Data.Maybe open import Data.Unit hiding (_≟_) ------------------------------------------------------------------------ -- Applicative functor parsers -- We could get these for free with better library support. infixl 50 _⊛_ _<⊛_ _⊛>_ _<$>_ _<$_ _⊛_ : forall {tok nt i₁ i₂ r₁ r₂} -> Parser tok nt i₁ (r₁ -> r₂) -> Parser tok nt i₂ r₁ -> Parser tok nt _ r₂ p₁ ⊛ p₂ = p₁ >>= \f -> p₂ >>= \x -> return (f x) _<$>_ : forall {tok nt i r₁ r₂} -> (r₁ -> r₂) -> Parser tok nt i r₁ -> Parser tok nt _ r₂ f <$> x = return f ⊛ x _<⊛_ : forall {tok nt i₁ i₂ r₁ r₂} -> Parser tok nt i₁ r₁ -> Parser tok nt i₂ r₂ -> Parser tok nt _ r₁ x <⊛ y = const <$> x ⊛ y _⊛>_ : forall {tok nt i₁ i₂ r₁ r₂} -> Parser tok nt i₁ r₁ -> Parser tok nt i₂ r₂ -> Parser tok nt _ r₂ x ⊛> y = flip const <$> x ⊛ y _<$_ : forall {tok nt i r₁ r₂} -> r₁ -> Parser tok nt i r₂ -> Parser tok nt _ r₁ x <$ y = const x <$> y ------------------------------------------------------------------------ -- Parsing sequences infix 55 _⋆ _+ _⋆ : forall {tok nt c r} -> Parser tok nt (false , c) r -> Parser tok nt _ (List r) p ⋆ = fix (return L.[] ∣ L._∷_ <$> lift p ⊛ ! fresh) _+ : forall {tok nt c r} -> Parser tok nt (false , c) r -> Parser tok nt _ (List r) p + = L._∷_ <$> p ⊛ p ⋆ chain₁ : forall {tok nt c₁ i₂ r} -> Assoc -> Parser tok nt (false , c₁) r -> Parser tok nt i₂ (r -> r -> r) -> Parser tok nt _ r chain₁ a p op = chain₁-combine a <$> (pair <$> p ⊛ op) ⋆ ⊛ p chain : forall {tok nt c₁ i₂ r} -> Assoc -> Parser tok nt (false , c₁) r -> Parser tok nt i₂ (r -> r -> r) -> r -> Parser tok nt _ r chain a p op x = return x ∣ chain₁ a p op -- Note that the resulting index here cannot be inferred... private exactly'-corners : Corners -> ℕ -> Corners exactly'-corners c zero = _ exactly'-corners c (suc n) = _ exactly' : forall {tok nt c r} n -> Parser tok nt (false , c) r -> Parser tok nt (false , exactly'-corners c n) (Vec r (suc n)) exactly' zero p = V.[_] <$> p exactly' (suc n) p = V._∷_ <$> p ⊛ exactly' n p -- ...so we might as well generalise the function a little. -- exactly n p parses n occurrences of p. exactly-index : Index -> ℕ -> Index exactly-index i zero = _ exactly-index i (suc n) = _ exactly : forall {tok nt i r} n -> Parser tok nt i r -> Parser tok nt (exactly-index i n) (Vec r n) exactly zero p = return V.[] exactly (suc n) p = V._∷_ <$> p ⊛ exactly n p -- A function with a similar type: sequence : forall {tok nt i r n} -> Vec₁ (Parser tok nt i r) n -> Parser tok nt (exactly-index i n) (Vec r n) sequence V₁.[] = return V.[] sequence (V₁._∷_ p ps) = V._∷_ <$> p ⊛ sequence ps ------------------------------------------------------------------------ -- sat and friends sat : forall {tok nt r} -> (tok -> Maybe r) -> Parser tok nt (0I ·I 1I) r sat {tok} {nt} {r} p = symbol !>>= \c -> ok (p c) where okIndex : Maybe r -> Index okIndex nothing = _ okIndex (just _) = _ ok : (x : Maybe r) -> Parser tok nt (okIndex x) r ok nothing = fail ok (just x) = return x sat' : forall {tok nt} -> (tok -> Bool) -> Parser tok nt _ ⊤ sat' p = sat (boolToMaybe ∘ p) any : forall {tok nt} -> Parser tok nt _ tok any = sat just ------------------------------------------------------------------------ -- Some parsers which require a decidable token equality open import Relation.Binary module Token (D : DecSetoid) where open DecSetoid D using (_≟_) renaming (carrier to tok) open import Data.Vec1 -- Parsing a given token (or, really, a given equivalence class of -- tokens). sym : forall {nt} -> tok -> Parser tok nt _ tok sym c = sat p where p : tok -> Maybe tok p x with c ≟ x ... | yes _ = just x ... | no _ = nothing -- Parsing a sequence of tokens. string : forall {nt n} -> Vec tok n -> Parser tok nt _ (Vec tok n) string cs = sequence (map₀₁ sym cs) ------------------------------------------------------------------------ -- Character parsers import Data.Char as C open C using (Char; _==_) open Token C.decSetoid digit : forall {nt} -> Parser Char nt _ ℕ digit = 0 <$ sym '0' ∣ 1 <$ sym '1' ∣ 2 <$ sym '2' ∣ 3 <$ sym '3' ∣ 4 <$ sym '4' ∣ 5 <$ sym '5' ∣ 6 <$ sym '6' ∣ 7 <$ sym '7' ∣ 8 <$ sym '8' ∣ 9 <$ sym '9' number : forall {nt} -> Parser Char nt _ ℕ number = toNum <$> digit + where toNum = L.foldr (\n x -> 10 * x + n) 0 ∘ L.reverse -- whitespace recognises an incomplete but useful list of whitespace -- characters. whitespace : forall {nt} -> Parser Char nt _ ⊤ whitespace = sat' isSpace where isSpace = \c -> (c == ' ') ∨ (c == '\t') ∨ (c == '\n') ∨ (c == '\r')
{ "alphanum_fraction": 0.5321070234, "avg_line_length": 28.2075471698, "ext": "agda", "hexsha": "59045dfe6dcea80e5ae093880090ac94356c9e58", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "misc/RecursiveDescent/InductiveWithFix/Lib.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z", "max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "misc/RecursiveDescent/InductiveWithFix/Lib.agda", "max_line_length": 72, "max_stars_count": 7, "max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yurrriq/parser-combinators", "max_stars_repo_path": "misc/RecursiveDescent/InductiveWithFix/Lib.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z", "num_tokens": 1811, "size": 5980 }
module RecordConstructors (Parameter : Set) where -- Note that the fixity declaration has to be given outside of the -- record definition. infix 6 _⟨_⟩_ record R (X : Set) (Y : Set) : Set₁ where constructor _⟨_⟩_ field {A} : Set f : A → X {B} D {E} : Set g : B → Y → E postulate A : Set r : R A A r = f ⟨ A ⟩ λ (_ : A) → f where f : A → A f x = x data _≡_ {A : Set₁} (x : A) : A → Set where refl : x ≡ x lemma : r ≡ record {} lemma = refl -- Record constructors can be overloaded. record R′ : Set₁ where constructor _⟨_⟩_ field T₁ T₂ T₃ : Set data D : Set where _⟨_⟩_ : D r′ : R′ r′ = A ⟨ A ⟩ A d : D d = _⟨_⟩_
{ "alphanum_fraction": 0.5387994143, "avg_line_length": 15.1777777778, "ext": "agda", "hexsha": "b2c9934d0533c216c15231834c1ee81986b10c8e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/RecordConstructors.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/RecordConstructors.agda", "max_line_length": 66, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/RecordConstructors.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 270, "size": 683 }
module Relator.Equals.Proofs.Equivalence where open import Functional import Lvl open import Lang.Instance open import Logic.Propositional open import Logic open import Relator.Equals open import Structure.Setoid using (Equiv) renaming (_≡_ to _≡ₛ_) open import Structure.Function open import Structure.Operator open import Structure.Relator open import Structure.Relator.Equivalence import Structure.Relator.Names as Names open import Structure.Relator.Properties open import Structure.Type.Identity open import Structure.Type.Identity.Proofs open import Type -- TODO: Consider using Structure.Type.Identity instead of these proofs module One {ℓ} {T : Type{ℓ}} where instance [≡]-reflexivity : Reflexivity (_≡_ {T = T}) [≡]-reflexivity = intro [≡]-intro instance [≡]-identity-eliminator : ∀{ℓₚ} → IdentityEliminator{ℓₚ = ℓₚ}(_≡_ {T = T}) IdentityEliminator.elim [≡]-identity-eliminator _ proof {x = x}{y = .x} [≡]-intro = proof{x} instance [≡]-symmetry : Symmetry (_≡_ {T = T}) [≡]-symmetry = identity-eliminator-to-symmetry instance [≡]-transitivity : Transitivity (_≡_ {T = T}) [≡]-transitivity = identity-eliminator-to-transitivity instance [≡]-equivalence : Equivalence (_≡_ {T = T}) [≡]-equivalence = intro [≡]-to-equivalence : ∀{ℓₗ}{x y : T} → (x ≡ y) → ⦃ equiv-T : Equiv{ℓₗ}(T) ⦄ → (_≡ₛ_ ⦃ equiv-T ⦄ x y) [≡]-to-equivalence([≡]-intro) = reflexivity(_≡ₛ_) [≡]-equiv : Equiv{ℓ}(T) Equiv._≡_ [≡]-equiv = _≡_ Equiv.equivalence [≡]-equiv = [≡]-equivalence -- Equality is a subrelation to every reflexive relation. -- One interpretation of this is that identity is the smallest reflexive relation when a relation is interpreted as a set of tuples and size is the cardinality of the set. instance [≡]-sub-of-reflexive : ∀{ℓₗ}{_▫_ : T → T → Stmt{ℓₗ}} → ⦃ _ : Reflexivity(_▫_) ⦄ → ((_≡_) ⊆₂ (_▫_)) _⊆₂_.proof [≡]-sub-of-reflexive [≡]-intro = reflexivity(_) -- Replaces occurrences of an element in a function [≡]-substitutionᵣ : ∀{ℓ₂}{x y} → (x ≡ y) → ∀{f : T → Type{ℓ₂}} → f(x) → f(y) [≡]-substitutionᵣ [≡]-intro p = p -- TODO: Express in terms of sub-of-reflexive which is transport so that functors are automatically something -- Replaces occurrences of an element in a function [≡]-substitutionₗ : ∀{ℓ₂}{x y} → (x ≡ y) → ∀{f : T → Type{ℓ₂}} → f(y) → f(x) [≡]-substitutionₗ [≡]-intro p = p [≡]-substitution : ∀{ℓ₂}{x y} → (x ≡ y) → ∀{f : T → Type{ℓ₂}} → (f(x) ↔ f(y)) [≡]-substitution eq = [↔]-intro ([≡]-substitutionₗ eq) ([≡]-substitutionᵣ eq) [≡]-unary-relator : ∀{ℓ₂}{P : T → Stmt{ℓ₂}} → UnaryRelator ⦃ [≡]-equiv ⦄ (P) UnaryRelator.substitution([≡]-unary-relator {P = P}) xy = [≡]-substitutionᵣ xy {P} [≡]-binary-relator : ∀{ℓ₂}{P : T → T → Stmt{ℓ₂}} → BinaryRelator ⦃ [≡]-equiv ⦄ ⦃ [≡]-equiv ⦄ (P) BinaryRelator.substitution [≡]-binary-relator [≡]-intro [≡]-intro = id open One public module Two {ℓ₁}{A : Type{ℓ₁}} {ℓ₂}{B : Type{ℓ₂}} where -- Applies a function to each side of the equality (TODO: Remove this and use Function everywhere instead) [≡]-with : (f : A → B) → ∀{x y : A} → (x ≡ y) → (f(x) ≡ f(y)) [≡]-with f [≡]-intro = [≡]-intro [≡]-function : ∀{f} → Function ⦃ [≡]-equiv ⦄ ⦃ [≡]-equiv ⦄ (f) Function.congruence([≡]-function {f}) eq = [≡]-with(f) eq [≡]-to-function : ∀{ℓₗ} → ⦃ equiv-B : Equiv{ℓₗ}(B) ⦄ → ∀{f : A → B} → Function ⦃ [≡]-equiv ⦄ ⦃ equiv-B ⦄ (f) Function.congruence ([≡]-to-function) [≡]-intro = reflexivity(_≡ₛ_) open Two public module Three {ℓ₁}{A : Type{ℓ₁}} {ℓ₂}{B : Type{ℓ₂}} {ℓ₃}{C : Type{ℓ₃}} where -- Applies an operation to each side of the equality (TODO: Make this an instance of BinaryOperator instead) [≡]-with-op : (_▫_ : A → B → C) → {a₁ a₂ : A}{b₁ b₂ : B} → (a₁ ≡ a₂) → (b₁ ≡ b₂) → ((a₁ ▫ b₁) ≡ (a₂ ▫ b₂)) [≡]-with-op (_▫_) [≡]-intro [≡]-intro = [≡]-intro -- [≡]-with-op-[_] (_▫_) {a₁}{a₂} {b₁}{b₂} (a₁≡a₂) (b₁≡b₂) = -- [≡]-elimᵣ (b₁≡b₂) {\x → (a₁ ▫ b₁) ≡ (a₂ ▫ x)} ([≡]-with(x ↦ (x ▫ b₁)) (a₁≡a₂)) [≡]-binary-operator : ∀{_▫_} → BinaryOperator ⦃ [≡]-equiv ⦄ ⦃ [≡]-equiv ⦄ ⦃ [≡]-equiv ⦄ (_▫_) BinaryOperator.congruence([≡]-binary-operator {_▫_}) aeq beq = [≡]-with-op(_▫_) aeq beq open Three public module Four {ℓ₁}{A : Type{ℓ₁}} {ℓ₂}{B : Type{ℓ₂}} {ℓ₃}{C : Type{ℓ₃}} {ℓ₄}{D : Type{ℓ₄}} where [≡]-trinary-operator : ∀{_▫_▫_ : A → B → C → D} → TrinaryOperator ⦃ [≡]-equiv ⦄ ⦃ [≡]-equiv ⦄ ⦃ [≡]-equiv ⦄ ⦃ [≡]-equiv ⦄ (_▫_▫_) TrinaryOperator.congruence([≡]-trinary-operator {_▫_▫_}) [≡]-intro [≡]-intro [≡]-intro = [≡]-intro open Four public
{ "alphanum_fraction": 0.6071193144, "avg_line_length": 45.0594059406, "ext": "agda", "hexsha": "44bb83a172a9d1fde4e04498ea07993acec2b6d4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Relator/Equals/Proofs/Equivalence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Relator/Equals/Proofs/Equivalence.agda", "max_line_length": 173, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Relator/Equals/Proofs/Equivalence.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1913, "size": 4551 }
{-# OPTIONS -v tc.lhs:50 #-} {-# OPTIONS -v tc.coverage:50 #-} open import Agda.Builtin.String test : String → String test x@"foo" = "bar" test x = x
{ "alphanum_fraction": 0.6012658228, "avg_line_length": 17.5555555556, "ext": "agda", "hexsha": "25d064f9d226e5d05f4b09243e41b8ace56da532", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue4211.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue4211.agda", "max_line_length": 33, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue4211.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 49, "size": 158 }
{-# OPTIONS --universe-polymorphism #-} module Issue204 where open import Issue204.Dependency postulate ℓ : Level r : R ℓ d : D ℓ open R r open M d
{ "alphanum_fraction": 0.6772151899, "avg_line_length": 11.2857142857, "ext": "agda", "hexsha": "4a1badb9162f5d08724331487633a56c6540c3e7", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue204.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue204.agda", "max_line_length": 39, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue204.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 51, "size": 158 }
-- Andreas, 2014-09-09 mutual {-# NON_TERMINATING #-} f : Set f = g {-# TERMINATING #-} g : Set g = f -- Expected error: -- In a mutual block, either all functions must have the same (or no) -- termination checking pragma.
{ "alphanum_fraction": 0.6218487395, "avg_line_length": 15.8666666667, "ext": "agda", "hexsha": "b8e1076722f00a1737b0314f2f18540cf01e9f4f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/IncompatibleTerminationPragmas.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/IncompatibleTerminationPragmas.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/IncompatibleTerminationPragmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 73, "size": 238 }
import Either open import Boolean module Logic where id : ∀ { A : Set } → A → A id x = x Rel : Set → Set₁ Rel X = X → X → Set Decidable : ∀ { X } → Rel X → Set Decidable R = ∀ x y → Either (R x y) (¬ (R x y)) where open Either modusPonens : { P Q : Set } → ( P → Q ) → P → Q modusPonens = id
{ "alphanum_fraction": 0.5205047319, "avg_line_length": 17.6111111111, "ext": "agda", "hexsha": "22d3c1804af3a060be5bfa4dbefbbdd9e3377708", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "382fcfae193079783621fc5cf54b6588e22ef759", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "cantsin/agda-experiments", "max_forks_repo_path": "Logic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "382fcfae193079783621fc5cf54b6588e22ef759", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "cantsin/agda-experiments", "max_issues_repo_path": "Logic.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "382fcfae193079783621fc5cf54b6588e22ef759", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "cantsin/agda-experiments", "max_stars_repo_path": "Logic.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 123, "size": 317 }
module Data.Tuple where import Lvl open import Type open import Syntax.Function infixr 200 _⨯_ _,_ private variable ℓ ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Lvl.Level private variable A B C A₁ A₂ B₁ B₂ : Type{ℓ} -- Definition of a 2-tuple record _⨯_ (A : Type{ℓ₁}) (B : Type{ℓ₂}) : Type{ℓ₁ Lvl.⊔ ℓ₂} where constructor _,_ field left : A right : B open _⨯_ public elim : ∀{P : (A ⨯ B) → Type{ℓ}} → ((a : A) → (b : B) → P(a , b)) → ((p : (A ⨯ B)) → P(p)) elim f(a , b) = f a b map : (A₁ → A₂) → (B₁ → B₂) → (A₁ ⨯ B₁) → (A₂ ⨯ B₂) map f g (x , y) = (f(x) , g(y)) -- Curries a function taking a 2-tuple, transforming it to a function returning a function instead curry : ((A ⨯ B) → C) → (A → B → C) curry f x y = f(x , y) -- Uncurries a function taking a function, transforming it to a function taking a 2-tuple instead uncurry : (A → B → C) → ((A ⨯ B) → C) uncurry = elim mapLeft : (A₁ → A₂) → (A₁ ⨯ B) → (A₂ ⨯ B) mapLeft f = map f (x ↦ x) mapRight : let _ = A in (B₁ → B₂) → (A ⨯ B₁) → (A ⨯ B₂) mapRight f = map (x ↦ x) f associateLeft : (A ⨯ (B ⨯ C)) → ((A ⨯ B) ⨯ C) associateLeft (x , (y , z)) = ((x , y) , z) associateRight : ((A ⨯ B) ⨯ C) → (A ⨯ (B ⨯ C)) associateRight ((x , y) , z) = (x , (y , z)) -- Swaps the left and right elements of a 2-tuple swap : (A ⨯ B) → (B ⨯ A) swap(x , y) = (y , x) repeat : A → (A ⨯ A) repeat x = (x , x)
{ "alphanum_fraction": 0.5412639405, "avg_line_length": 25.8653846154, "ext": "agda", "hexsha": "5fea516e2bf5fd069af1ab4d36e6e88241ff60a4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/Tuple.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/Tuple.agda", "max_line_length": 98, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/Tuple.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 613, "size": 1345 }
------------------------------------------------------------------------ -- Experiments with Pure Type Systems (PTS) ------------------------------------------------------------------------ -- Author: Sandro Stucki -- Copyright (c) 2015 EPFL -- The code in this directory contains a (partial) Agda formalization -- of Pure Type Systems (PTS). -- -- The code makes heavy use of the Agda standard library, which is -- freely available from -- -- https://github.com/agda/agda-stdlib/ -- -- The code has been tested using Agda 2.5.3 and version 0.14 of the -- Agda standard library. module README where ------------------------------------------------------------------------ -- Modules related to pure type systems (PTS) -- Syntax of (untyped) terms along with support for substitutions. open import Pts.Syntax -- Variants of β-reduction/equivalence and properties thereof. open import Pts.Reduction.Cbv open import Pts.Reduction.Full open import Pts.Reduction.Parallel -- Typing of terms, substitution lemmas and a proofs of type soundess -- (preservation/subject reduction and progress). open import Pts.Core open import Pts.Typing open import Pts.Typing.Progress ------------------------------------------------------------------------ -- Modules containing generic functionality -- Extra lemmas that are derivable in the substitution framework of -- the Agda standard library, as well as support for substitutions -- lifted to relations and typed substitutions. open import Data.Fin.Substitution.ExtraLemmas open import Data.Fin.Substitution.Relation open import Data.Fin.Substitution.Typed -- Symmetric and equivalence closures of binary relations. open import Relation.Binary.SymmetricClosure open import Relation.Binary.EquivalenceClosure -- Support for generic reduction relations. open import Relation.Binary.Reduction
{ "alphanum_fraction": 0.6597826087, "avg_line_length": 32.8571428571, "ext": "agda", "hexsha": "8654492307cf903ed8ee89987c16d79ea8b667da", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-08-11T23:28:33.000Z", "max_forks_repo_forks_event_min_datetime": "2017-08-20T10:29:44.000Z", "max_forks_repo_head_hexsha": "d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "asr/pts-agda", "max_forks_repo_path": "src/README.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43", "max_issues_repo_issues_event_max_datetime": "2017-08-21T16:01:50.000Z", "max_issues_repo_issues_event_min_datetime": "2017-08-21T14:48:09.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "asr/pts-agda", "max_issues_repo_path": "src/README.agda", "max_line_length": 72, "max_stars_count": 21, "max_stars_repo_head_hexsha": "d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "asr/pts-agda", "max_stars_repo_path": "src/README.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-31T10:47:57.000Z", "max_stars_repo_stars_event_min_datetime": "2016-05-13T12:11:10.000Z", "num_tokens": 368, "size": 1840 }
-- {-# OPTIONS -v tc.meta:50 #-} -- Andreas 2012-03-27, record pattern unification module Issue376 where import Common.Level open import Common.Equality open import Common.Irrelevance record Sigma (A : Set)(B : A -> Set) : Set where constructor _,_ field fst : A snd : B fst open Sigma public record Unit : Set where constructor unit bla1 : (A : Set) (a : A) -> let X : Unit -> A X = _ in X unit ≡ a bla1 A a = refl bla2 : (A : Set)(B : A -> Set) -> let X : Sigma A B -> Sigma A B X = _ in (x : A)(y : B x) -> X (x , y) ≡ (x , y) bla2 A B x y = refl -- _55 A B (x , y) := (x , y) -- irrelevant records bla3 : (A : Set)(B : A -> Set) -> let X : .(z : Sigma A B) -> (C : .(Sigma A B) -> Set) -> (.(z : Sigma A B) -> C z) -> C z X = _ in (x : A)(y : B x)(C : .(Sigma A B) -> Set)(k : .(z : Sigma A B) -> C z) -> X (x , y) C k ≡ k (x , y) bla3 A B x y C k = refl -- nested irrelevance bla4 : (A : Set) -> let A' = Squash (Squash A) in let X : .(z : A') -> (C : .A' -> Set) -> (.(z : A') -> C z) -> C z X = _ in (a : A)(C : .A' -> Set)(k : .(z : A') -> C z) -> X (squash (squash a)) C k ≡ k (squash (squash a)) bla4 A a C k = refl -- projected bound var bla5 : (A : Set) (B : A -> Set) -> let X : (x : A) (y : B x) -> Sigma A B X = _ in (z : Sigma A B) -> X (fst z) (snd z) ≡ z bla5 A B z = refl -- projected bound var bla6 : (A : Set) (B : A -> Set) -> let X : A -> A X = _ in (z : Sigma A B) -> X (fst z) ≡ fst z bla6 A B z = refl
{ "alphanum_fraction": 0.480731548, "avg_line_length": 24.6935483871, "ext": "agda", "hexsha": "3e8ea42b45c8a88d52c4b887fdb916f99eb1df3d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "hborum/agda", "max_forks_repo_path": "test/Succeed/Issue376.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Succeed/Issue376.agda", "max_line_length": 91, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Succeed/Issue376.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 623, "size": 1531 }
{-# OPTIONS --cubical --safe #-} module Cubical.Structures.Group where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.Foundations.SIP renaming (SNS-PathP to SNS) open import Cubical.Structures.NAryOp open import Cubical.Structures.Semigroup hiding (⟨_⟩) open import Cubical.Structures.Monoid hiding (⟨_⟩) private variable ℓ ℓ' : Level raw-group-structure : Type ℓ → Type ℓ raw-group-structure = raw-semigroup-structure raw-group-is-SNS : SNS {ℓ} raw-group-structure _ raw-group-is-SNS = raw-semigroup-is-SNS -- The neutral element and the inverse function will be derived from the -- axioms, instead of being defined in the raw-group-structure in order -- to have that isomorphisms between groups are equivalences that preserves -- multiplication (so we don't have to show that they also preserve inversion -- and neutral element, although they will preserve them). group-axioms : (G : Type ℓ) → raw-group-structure G → Type ℓ group-axioms G _·_ = i × ii where i = semigroup-axioms G _·_ ii = Σ[ e ∈ G ] ((x : G) → (x · e ≡ x) × (e · x ≡ x)) × ((x : G) → Σ[ x' ∈ G ] (x · x' ≡ e) × (x' · x ≡ e)) group-structure : Type ℓ → Type ℓ group-structure = add-to-structure raw-group-structure group-axioms Group : Type (ℓ-suc ℓ) Group {ℓ} = TypeWithStr ℓ group-structure -- Extracting components of a group ⟨_⟩ : Group {ℓ} → Type ℓ ⟨ G , _ ⟩ = G group-operation : (G : Group {ℓ}) → ⟨ G ⟩ → ⟨ G ⟩ → ⟨ G ⟩ group-operation (_ , f , _) = f module group-operation-syntax where group-operation-syntax : (G : Group {ℓ}) → ⟨ G ⟩ → ⟨ G ⟩ → ⟨ G ⟩ group-operation-syntax = group-operation infixr 20 group-operation-syntax syntax group-operation-syntax G x y = x ·⟨ G ⟩ y open group-operation-syntax group-is-set : (G : Group {ℓ}) → isSet ⟨ G ⟩ group-is-set (_ , _ , (P , _) , _) = P group-assoc : (G : Group {ℓ}) → (x y z : ⟨ G ⟩) → (x ·⟨ G ⟩ (y ·⟨ G ⟩ z)) ≡ ((x ·⟨ G ⟩ y) ·⟨ G ⟩ z) group-assoc (_ , _ , (_ , P) , _) = P -- Defining identity group-id : (G : Group {ℓ}) → ⟨ G ⟩ group-id (_ , _ , _ , P) = fst P group-rid : (G : Group {ℓ}) → (x : ⟨ G ⟩) → x ·⟨ G ⟩ (group-id G) ≡ x group-rid (_ , _ , _ , P) x = fst ((fst (snd P)) x) group-lid : (G : Group {ℓ}) → (x : ⟨ G ⟩) → (group-id G) ·⟨ G ⟩ x ≡ x group-lid (_ , _ , _ , P) x = snd ((fst (snd P)) x) -- Defining the inverse function group-inv : (G : Group {ℓ}) → ⟨ G ⟩ → ⟨ G ⟩ group-inv (_ , _ , _ , P) x = fst ((snd (snd P)) x) group-rinv : (G : Group {ℓ}) → (x : ⟨ G ⟩) → x ·⟨ G ⟩ (group-inv G x) ≡ group-id G group-rinv (_ , _ , _ , P) x = fst (snd ((snd (snd P)) x)) group-linv : (G : Group {ℓ}) → (x : ⟨ G ⟩) → (group-inv G x) ·⟨ G ⟩ x ≡ group-id G group-linv (_ , _ , _ , P) x = snd (snd ((snd (snd P)) x)) -- Iso for groups are those for monoids group-iso : StrIso group-structure ℓ group-iso = add-to-iso (nAryFunIso 2) group-axioms -- Group axioms isProp group-axioms-isProp : (X : Type ℓ) → (s : raw-group-structure X) → isProp (group-axioms X s) group-axioms-isProp X s t = η t where 𝒢 : Group 𝒢 = X , s , t is-identity : X → Type _ is-identity e = (x : X) → (x ·⟨ 𝒢 ⟩ e ≡ x) × (e ·⟨ 𝒢 ⟩ x ≡ x) α : (e : X) → isProp (is-identity e) α e = isPropΠ (λ _ → isPropΣ (group-is-set 𝒢 _ _) (λ _ → group-is-set 𝒢 _ _)) β : (e : X) → is-identity e → isProp ((x : X) → Σ[ x' ∈ X ] (x ·⟨ 𝒢 ⟩ x' ≡ e) × (x' ·⟨ 𝒢 ⟩ x ≡ e)) β e is-identity-e = isPropΠ λ { x (x' , _ , P) (x'' , Q , _) → ΣProp≡ (λ _ → isPropΣ (group-is-set 𝒢 _ _) λ _ → group-is-set 𝒢 _ _) (inv-lemma ℳ x x' x'' P Q) } where ℳ : Monoid ℳ = ⟨ 𝒢 ⟩ , (e , group-operation 𝒢) , group-is-set 𝒢 , group-assoc 𝒢 , (λ x → fst (is-identity-e x)) , (λ x → snd (is-identity-e x)) γ : isProp (Σ[ e ∈ X ] ((x : X) → (x ·⟨ 𝒢 ⟩ e ≡ x) × (e ·⟨ 𝒢 ⟩ x ≡ x)) × ((x : X) → Σ[ x' ∈ X ] (x ·⟨ 𝒢 ⟩ x' ≡ e) × (x' ·⟨ 𝒢 ⟩ x ≡ e))) γ (e , P , _) (e' , Q , _) = ΣProp≡ (λ e → isPropΣ (α e) λ is-identity-e → β e is-identity-e) (e ≡⟨ sym (fst (Q e)) ⟩ e ·⟨ 𝒢 ⟩ e' ≡⟨ snd (P e') ⟩ e' ∎) η : isProp (group-axioms X s) η = isPropΣ (semigroup-axiom-isProp X s) λ _ → γ -- Group paths equivalent to equality group-is-SNS : SNS {ℓ} group-structure group-iso group-is-SNS = add-axioms-SNS _ group-axioms-isProp (nAryFunSNS 2) GroupPath : (M N : Group {ℓ}) → (M ≃[ group-iso ] N) ≃ (M ≡ N) GroupPath = SIP group-is-SNS -- Group ·syntax module group-·syntax (G : Group {ℓ}) where infixr 18 _·_ _·_ : ⟨ G ⟩ → ⟨ G ⟩ → ⟨ G ⟩ _·_ = group-operation G ₁ : ⟨ G ⟩ ₁ = group-id G infix 19 _⁻¹ _⁻¹ : ⟨ G ⟩ → ⟨ G ⟩ _⁻¹ = group-inv G
{ "alphanum_fraction": 0.5339493773, "avg_line_length": 30.9192546584, "ext": "agda", "hexsha": "5c22ea7be41263a48e673706fdaaa40ce9935f58", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmester0/cubical", "max_forks_repo_path": "Cubical/Structures/Group.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmester0/cubical", "max_issues_repo_path": "Cubical/Structures/Group.agda", "max_line_length": 114, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmester0/cubical", "max_stars_repo_path": "Cubical/Structures/Group.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z", "max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z", "num_tokens": 1918, "size": 4978 }
module Text.Greek.SBLGNT.Eph where open import Data.List open import Text.Greek.Bible open import Text.Greek.Script open import Text.Greek.Script.Unicode ΠΡΟΣ-ΕΦΕΣΙΟΥΣ : List (Word) ΠΡΟΣ-ΕΦΕΣΙΟΥΣ = word (Π ∷ α ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Eph.1.1" ∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "Eph.1.1" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.1.1" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Eph.1.1" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Eph.1.1" ∷ word (θ ∷ ε ∷ ∙λ ∷ ή ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Eph.1.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Eph.1.1" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.1.1" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Eph.1.1" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.1.1" ∷ word (ο ∷ ὖ ∷ σ ∷ ι ∷ ν ∷ []) "Eph.1.1" ∷ word (ἐ ∷ ν ∷ []) "Eph.1.1" ∷ word (Ἐ ∷ φ ∷ έ ∷ σ ∷ ῳ ∷ []) "Eph.1.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.1.1" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.1.1" ∷ word (ἐ ∷ ν ∷ []) "Eph.1.1" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Eph.1.1" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Eph.1.1" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "Eph.1.2" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Eph.1.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.1.2" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "Eph.1.2" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Eph.1.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Eph.1.2" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Eph.1.2" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.1.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.1.2" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Eph.1.2" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Eph.1.2" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.1.2" ∷ word (Ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ η ∷ τ ∷ ὸ ∷ ς ∷ []) "Eph.1.3" ∷ word (ὁ ∷ []) "Eph.1.3" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Eph.1.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.1.3" ∷ word (π ∷ α ∷ τ ∷ ὴ ∷ ρ ∷ []) "Eph.1.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.1.3" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Eph.1.3" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.1.3" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Eph.1.3" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.1.3" ∷ word (ὁ ∷ []) "Eph.1.3" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Eph.1.3" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Eph.1.3" ∷ word (ἐ ∷ ν ∷ []) "Eph.1.3" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "Eph.1.3" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ ᾳ ∷ []) "Eph.1.3" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ῇ ∷ []) "Eph.1.3" ∷ word (ἐ ∷ ν ∷ []) "Eph.1.3" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.1.3" ∷ word (ἐ ∷ π ∷ ο ∷ υ ∷ ρ ∷ α ∷ ν ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Eph.1.3" ∷ word (ἐ ∷ ν ∷ []) "Eph.1.3" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Eph.1.3" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Eph.1.4" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ έ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Eph.1.4" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Eph.1.4" ∷ word (ἐ ∷ ν ∷ []) "Eph.1.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Eph.1.4" ∷ word (π ∷ ρ ∷ ὸ ∷ []) "Eph.1.4" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Eph.1.4" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "Eph.1.4" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Eph.1.4" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Eph.1.4" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Eph.1.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.1.4" ∷ word (ἀ ∷ μ ∷ ώ ∷ μ ∷ ο ∷ υ ∷ ς ∷ []) "Eph.1.4" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Eph.1.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.1.4" ∷ word (ἐ ∷ ν ∷ []) "Eph.1.4" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ ῃ ∷ []) "Eph.1.4" ∷ word (π ∷ ρ ∷ ο ∷ ο ∷ ρ ∷ ί ∷ σ ∷ α ∷ ς ∷ []) "Eph.1.5" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Eph.1.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.1.5" ∷ word (υ ∷ ἱ ∷ ο ∷ θ ∷ ε ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Eph.1.5" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Eph.1.5" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Eph.1.5" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.1.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.1.5" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Eph.1.5" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Eph.1.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.1.5" ∷ word (ε ∷ ὐ ∷ δ ∷ ο ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Eph.1.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.1.5" ∷ word (θ ∷ ε ∷ ∙λ ∷ ή ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Eph.1.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.1.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.1.6" ∷ word (ἔ ∷ π ∷ α ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Eph.1.6" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "Eph.1.6" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.1.6" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ο ∷ ς ∷ []) "Eph.1.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.1.6" ∷ word (ἧ ∷ ς ∷ []) "Eph.1.6" ∷ word (ἐ ∷ χ ∷ α ∷ ρ ∷ ί ∷ τ ∷ ω ∷ σ ∷ ε ∷ ν ∷ []) "Eph.1.6" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Eph.1.6" ∷ word (ἐ ∷ ν ∷ []) "Eph.1.6" ∷ word (τ ∷ ῷ ∷ []) "Eph.1.6" ∷ word (ἠ ∷ γ ∷ α ∷ π ∷ η ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Eph.1.6" ∷ word (ἐ ∷ ν ∷ []) "Eph.1.7" ∷ word (ᾧ ∷ []) "Eph.1.7" ∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Eph.1.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.1.7" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ τ ∷ ρ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Eph.1.7" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Eph.1.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.1.7" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Eph.1.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.1.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.1.7" ∷ word (ἄ ∷ φ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Eph.1.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Eph.1.7" ∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ τ ∷ ω ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Eph.1.7" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Eph.1.7" ∷ word (τ ∷ ὸ ∷ []) "Eph.1.7" ∷ word (π ∷ ∙λ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ς ∷ []) "Eph.1.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.1.7" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ο ∷ ς ∷ []) "Eph.1.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.1.7" ∷ word (ἧ ∷ ς ∷ []) "Eph.1.8" ∷ word (ἐ ∷ π ∷ ε ∷ ρ ∷ ί ∷ σ ∷ σ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Eph.1.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.1.8" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Eph.1.8" ∷ word (ἐ ∷ ν ∷ []) "Eph.1.8" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "Eph.1.8" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ ᾳ ∷ []) "Eph.1.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.1.8" ∷ word (φ ∷ ρ ∷ ο ∷ ν ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Eph.1.8" ∷ word (γ ∷ ν ∷ ω ∷ ρ ∷ ί ∷ σ ∷ α ∷ ς ∷ []) "Eph.1.9" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Eph.1.9" ∷ word (τ ∷ ὸ ∷ []) "Eph.1.9" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Eph.1.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.1.9" ∷ word (θ ∷ ε ∷ ∙λ ∷ ή ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Eph.1.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.1.9" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Eph.1.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.1.9" ∷ word (ε ∷ ὐ ∷ δ ∷ ο ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Eph.1.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.1.9" ∷ word (ἣ ∷ ν ∷ []) "Eph.1.9" ∷ word (π ∷ ρ ∷ ο ∷ έ ∷ θ ∷ ε ∷ τ ∷ ο ∷ []) "Eph.1.9" ∷ word (ἐ ∷ ν ∷ []) "Eph.1.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Eph.1.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.1.10" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "Eph.1.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.1.10" ∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Eph.1.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Eph.1.10" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ῶ ∷ ν ∷ []) "Eph.1.10" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ α ∷ ι ∷ ώ ∷ σ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Eph.1.10" ∷ word (τ ∷ ὰ ∷ []) "Eph.1.10" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Eph.1.10" ∷ word (ἐ ∷ ν ∷ []) "Eph.1.10" ∷ word (τ ∷ ῷ ∷ []) "Eph.1.10" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Eph.1.10" ∷ word (τ ∷ ὰ ∷ []) "Eph.1.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Eph.1.10" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.1.10" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.1.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.1.10" ∷ word (τ ∷ ὰ ∷ []) "Eph.1.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Eph.1.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.1.10" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Eph.1.10" ∷ word (ἐ ∷ ν ∷ []) "Eph.1.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Eph.1.10" ∷ word (ἐ ∷ ν ∷ []) "Eph.1.11" ∷ word (ᾧ ∷ []) "Eph.1.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.1.11" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ η ∷ ρ ∷ ώ ∷ θ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "Eph.1.11" ∷ word (π ∷ ρ ∷ ο ∷ ο ∷ ρ ∷ ι ∷ σ ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Eph.1.11" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Eph.1.11" ∷ word (π ∷ ρ ∷ ό ∷ θ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Eph.1.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.1.11" ∷ word (τ ∷ ὰ ∷ []) "Eph.1.11" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Eph.1.11" ∷ word (ἐ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Eph.1.11" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Eph.1.11" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.1.11" ∷ word (β ∷ ο ∷ υ ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Eph.1.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.1.11" ∷ word (θ ∷ ε ∷ ∙λ ∷ ή ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Eph.1.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.1.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.1.12" ∷ word (τ ∷ ὸ ∷ []) "Eph.1.12" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Eph.1.12" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Eph.1.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.1.12" ∷ word (ἔ ∷ π ∷ α ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Eph.1.12" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "Eph.1.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.1.12" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Eph.1.12" ∷ word (π ∷ ρ ∷ ο ∷ η ∷ ∙λ ∷ π ∷ ι ∷ κ ∷ ό ∷ τ ∷ α ∷ ς ∷ []) "Eph.1.12" ∷ word (ἐ ∷ ν ∷ []) "Eph.1.12" ∷ word (τ ∷ ῷ ∷ []) "Eph.1.12" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Eph.1.12" ∷ word (ἐ ∷ ν ∷ []) "Eph.1.13" ∷ word (ᾧ ∷ []) "Eph.1.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.1.13" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Eph.1.13" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Eph.1.13" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Eph.1.13" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Eph.1.13" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.1.13" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Eph.1.13" ∷ word (τ ∷ ὸ ∷ []) "Eph.1.13" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Eph.1.13" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.1.13" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "Eph.1.13" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.1.13" ∷ word (ἐ ∷ ν ∷ []) "Eph.1.13" ∷ word (ᾧ ∷ []) "Eph.1.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.1.13" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Eph.1.13" ∷ word (ἐ ∷ σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ί ∷ σ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Eph.1.13" ∷ word (τ ∷ ῷ ∷ []) "Eph.1.13" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Eph.1.13" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.1.13" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Eph.1.13" ∷ word (τ ∷ ῷ ∷ []) "Eph.1.13" ∷ word (ἁ ∷ γ ∷ ί ∷ ῳ ∷ []) "Eph.1.13" ∷ word (ὅ ∷ []) "Eph.1.14" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Eph.1.14" ∷ word (ἀ ∷ ρ ∷ ρ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "Eph.1.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.1.14" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Eph.1.14" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.1.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.1.14" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ τ ∷ ρ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Eph.1.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.1.14" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Eph.1.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.1.14" ∷ word (ἔ ∷ π ∷ α ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Eph.1.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.1.14" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "Eph.1.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.1.14" ∷ word (Δ ∷ ι ∷ ὰ ∷ []) "Eph.1.15" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Eph.1.15" ∷ word (κ ∷ ἀ ∷ γ ∷ ώ ∷ []) "Eph.1.15" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Eph.1.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.1.15" ∷ word (κ ∷ α ∷ θ ∷ []) "Eph.1.15" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Eph.1.15" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Eph.1.15" ∷ word (ἐ ∷ ν ∷ []) "Eph.1.15" ∷ word (τ ∷ ῷ ∷ []) "Eph.1.15" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Eph.1.15" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Eph.1.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.1.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.1.15" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "Eph.1.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.1.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.1.15" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Eph.1.15" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Eph.1.15" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Eph.1.15" ∷ word (ο ∷ ὐ ∷ []) "Eph.1.16" ∷ word (π ∷ α ∷ ύ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Eph.1.16" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῶ ∷ ν ∷ []) "Eph.1.16" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Eph.1.16" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.1.16" ∷ word (μ ∷ ν ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Eph.1.16" ∷ word (π ∷ ο ∷ ι ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Eph.1.16" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Eph.1.16" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Eph.1.16" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ῶ ∷ ν ∷ []) "Eph.1.16" ∷ word (μ ∷ ο ∷ υ ∷ []) "Eph.1.16" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Eph.1.17" ∷ word (ὁ ∷ []) "Eph.1.17" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Eph.1.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.1.17" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Eph.1.17" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.1.17" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Eph.1.17" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.1.17" ∷ word (ὁ ∷ []) "Eph.1.17" ∷ word (π ∷ α ∷ τ ∷ ὴ ∷ ρ ∷ []) "Eph.1.17" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.1.17" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "Eph.1.17" ∷ word (δ ∷ ώ ∷ ῃ ∷ []) "Eph.1.17" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Eph.1.17" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Eph.1.17" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ς ∷ []) "Eph.1.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.1.17" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ ∙λ ∷ ύ ∷ ψ ∷ ε ∷ ω ∷ ς ∷ []) "Eph.1.17" ∷ word (ἐ ∷ ν ∷ []) "Eph.1.17" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Eph.1.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.1.17" ∷ word (π ∷ ε ∷ φ ∷ ω ∷ τ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Eph.1.18" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Eph.1.18" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Eph.1.18" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.1.18" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Eph.1.18" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.1.18" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.1.18" ∷ word (τ ∷ ὸ ∷ []) "Eph.1.18" ∷ word (ε ∷ ἰ ∷ δ ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "Eph.1.18" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Eph.1.18" ∷ word (τ ∷ ί ∷ ς ∷ []) "Eph.1.18" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Eph.1.18" ∷ word (ἡ ∷ []) "Eph.1.18" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ὶ ∷ ς ∷ []) "Eph.1.18" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.1.18" ∷ word (κ ∷ ∙λ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Eph.1.18" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.1.18" ∷ word (τ ∷ ί ∷ ς ∷ []) "Eph.1.18" ∷ word (ὁ ∷ []) "Eph.1.18" ∷ word (π ∷ ∙λ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ς ∷ []) "Eph.1.18" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.1.18" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "Eph.1.18" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.1.18" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Eph.1.18" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.1.18" ∷ word (ἐ ∷ ν ∷ []) "Eph.1.18" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.1.18" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Eph.1.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.1.19" ∷ word (τ ∷ ί ∷ []) "Eph.1.19" ∷ word (τ ∷ ὸ ∷ []) "Eph.1.19" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Eph.1.19" ∷ word (μ ∷ έ ∷ γ ∷ ε ∷ θ ∷ ο ∷ ς ∷ []) "Eph.1.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.1.19" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "Eph.1.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.1.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.1.19" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Eph.1.19" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Eph.1.19" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Eph.1.19" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Eph.1.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.1.19" ∷ word (ἐ ∷ ν ∷ έ ∷ ρ ∷ γ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Eph.1.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.1.19" ∷ word (κ ∷ ρ ∷ ά ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Eph.1.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.1.19" ∷ word (ἰ ∷ σ ∷ χ ∷ ύ ∷ ο ∷ ς ∷ []) "Eph.1.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.1.19" ∷ word (ἣ ∷ ν ∷ []) "Eph.1.20" ∷ word (ἐ ∷ ν ∷ ή ∷ ρ ∷ γ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Eph.1.20" ∷ word (ἐ ∷ ν ∷ []) "Eph.1.20" ∷ word (τ ∷ ῷ ∷ []) "Eph.1.20" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Eph.1.20" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ α ∷ ς ∷ []) "Eph.1.20" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Eph.1.20" ∷ word (ἐ ∷ κ ∷ []) "Eph.1.20" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Eph.1.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.1.20" ∷ word (κ ∷ α ∷ θ ∷ ί ∷ σ ∷ α ∷ ς ∷ []) "Eph.1.20" ∷ word (ἐ ∷ ν ∷ []) "Eph.1.20" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ᾷ ∷ []) "Eph.1.20" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.1.20" ∷ word (ἐ ∷ ν ∷ []) "Eph.1.20" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.1.20" ∷ word (ἐ ∷ π ∷ ο ∷ υ ∷ ρ ∷ α ∷ ν ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Eph.1.20" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ ά ∷ ν ∷ ω ∷ []) "Eph.1.21" ∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "Eph.1.21" ∷ word (ἀ ∷ ρ ∷ χ ∷ ῆ ∷ ς ∷ []) "Eph.1.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.1.21" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Eph.1.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.1.21" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "Eph.1.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.1.21" ∷ word (κ ∷ υ ∷ ρ ∷ ι ∷ ό ∷ τ ∷ η ∷ τ ∷ ο ∷ ς ∷ []) "Eph.1.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.1.21" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "Eph.1.21" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Eph.1.21" ∷ word (ὀ ∷ ν ∷ ο ∷ μ ∷ α ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Eph.1.21" ∷ word (ο ∷ ὐ ∷ []) "Eph.1.21" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Eph.1.21" ∷ word (ἐ ∷ ν ∷ []) "Eph.1.21" ∷ word (τ ∷ ῷ ∷ []) "Eph.1.21" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ ι ∷ []) "Eph.1.21" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Eph.1.21" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Eph.1.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.1.21" ∷ word (ἐ ∷ ν ∷ []) "Eph.1.21" ∷ word (τ ∷ ῷ ∷ []) "Eph.1.21" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Eph.1.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.1.22" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Eph.1.22" ∷ word (ὑ ∷ π ∷ έ ∷ τ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Eph.1.22" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Eph.1.22" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Eph.1.22" ∷ word (π ∷ ό ∷ δ ∷ α ∷ ς ∷ []) "Eph.1.22" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.1.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.1.22" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Eph.1.22" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Eph.1.22" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Eph.1.22" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Eph.1.22" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Eph.1.22" ∷ word (τ ∷ ῇ ∷ []) "Eph.1.22" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "Eph.1.22" ∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "Eph.1.23" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Eph.1.23" ∷ word (τ ∷ ὸ ∷ []) "Eph.1.23" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "Eph.1.23" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.1.23" ∷ word (τ ∷ ὸ ∷ []) "Eph.1.23" ∷ word (π ∷ ∙λ ∷ ή ∷ ρ ∷ ω ∷ μ ∷ α ∷ []) "Eph.1.23" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.1.23" ∷ word (τ ∷ ὰ ∷ []) "Eph.1.23" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Eph.1.23" ∷ word (ἐ ∷ ν ∷ []) "Eph.1.23" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Eph.1.23" ∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Eph.1.23" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Eph.2.1" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Eph.2.1" ∷ word (ὄ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Eph.2.1" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Eph.2.1" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.2.1" ∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ τ ∷ ώ ∷ μ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Eph.2.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.2.1" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Eph.2.1" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Eph.2.1" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.2.1" ∷ word (ἐ ∷ ν ∷ []) "Eph.2.2" ∷ word (α ∷ ἷ ∷ ς ∷ []) "Eph.2.2" ∷ word (π ∷ ο ∷ τ ∷ ε ∷ []) "Eph.2.2" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ε ∷ π ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Eph.2.2" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Eph.2.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Eph.2.2" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ []) "Eph.2.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.2.2" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "Eph.2.2" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Eph.2.2" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Eph.2.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Eph.2.2" ∷ word (ἄ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Eph.2.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.2.2" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Eph.2.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.2.2" ∷ word (ἀ ∷ έ ∷ ρ ∷ ο ∷ ς ∷ []) "Eph.2.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.2.2" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Eph.2.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.2.2" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "Eph.2.2" ∷ word (ἐ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Eph.2.2" ∷ word (ἐ ∷ ν ∷ []) "Eph.2.2" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.2.2" ∷ word (υ ∷ ἱ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.2.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.2.2" ∷ word (ἀ ∷ π ∷ ε ∷ ι ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Eph.2.2" ∷ word (ἐ ∷ ν ∷ []) "Eph.2.3" ∷ word (ο ∷ ἷ ∷ ς ∷ []) "Eph.2.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.2.3" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Eph.2.3" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Eph.2.3" ∷ word (ἀ ∷ ν ∷ ε ∷ σ ∷ τ ∷ ρ ∷ ά ∷ φ ∷ η ∷ μ ∷ έ ∷ ν ∷ []) "Eph.2.3" ∷ word (π ∷ ο ∷ τ ∷ ε ∷ []) "Eph.2.3" ∷ word (ἐ ∷ ν ∷ []) "Eph.2.3" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Eph.2.3" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Eph.2.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.2.3" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὸ ∷ ς ∷ []) "Eph.2.3" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.2.3" ∷ word (π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Eph.2.3" ∷ word (τ ∷ ὰ ∷ []) "Eph.2.3" ∷ word (θ ∷ ε ∷ ∙λ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Eph.2.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.2.3" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὸ ∷ ς ∷ []) "Eph.2.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.2.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Eph.2.3" ∷ word (δ ∷ ι ∷ α ∷ ν ∷ ο ∷ ι ∷ ῶ ∷ ν ∷ []) "Eph.2.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.2.3" ∷ word (ἤ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Eph.2.3" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Eph.2.3" ∷ word (φ ∷ ύ ∷ σ ∷ ε ∷ ι ∷ []) "Eph.2.3" ∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "Eph.2.3" ∷ word (ὡ ∷ ς ∷ []) "Eph.2.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.2.3" ∷ word (ο ∷ ἱ ∷ []) "Eph.2.3" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ί ∷ []) "Eph.2.3" ∷ word (ὁ ∷ []) "Eph.2.4" ∷ word (δ ∷ ὲ ∷ []) "Eph.2.4" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Eph.2.4" ∷ word (π ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ ι ∷ ο ∷ ς ∷ []) "Eph.2.4" ∷ word (ὢ ∷ ν ∷ []) "Eph.2.4" ∷ word (ἐ ∷ ν ∷ []) "Eph.2.4" ∷ word (ἐ ∷ ∙λ ∷ έ ∷ ε ∷ ι ∷ []) "Eph.2.4" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Eph.2.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.2.4" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Eph.2.4" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "Eph.2.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.2.4" ∷ word (ἣ ∷ ν ∷ []) "Eph.2.4" ∷ word (ἠ ∷ γ ∷ ά ∷ π ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Eph.2.4" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Eph.2.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.2.5" ∷ word (ὄ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Eph.2.5" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Eph.2.5" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Eph.2.5" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.2.5" ∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ τ ∷ ώ ∷ μ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Eph.2.5" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ζ ∷ ω ∷ ο ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Eph.2.5" ∷ word (τ ∷ ῷ ∷ []) "Eph.2.5" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Eph.2.5" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ί ∷ []) "Eph.2.5" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "Eph.2.5" ∷ word (σ ∷ ε ∷ σ ∷ ῳ ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Eph.2.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.2.6" ∷ word (σ ∷ υ ∷ ν ∷ ή ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ ν ∷ []) "Eph.2.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.2.6" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ κ ∷ ά ∷ θ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Eph.2.6" ∷ word (ἐ ∷ ν ∷ []) "Eph.2.6" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.2.6" ∷ word (ἐ ∷ π ∷ ο ∷ υ ∷ ρ ∷ α ∷ ν ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Eph.2.6" ∷ word (ἐ ∷ ν ∷ []) "Eph.2.6" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Eph.2.6" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Eph.2.6" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Eph.2.7" ∷ word (ἐ ∷ ν ∷ δ ∷ ε ∷ ί ∷ ξ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Eph.2.7" ∷ word (ἐ ∷ ν ∷ []) "Eph.2.7" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.2.7" ∷ word (α ∷ ἰ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Eph.2.7" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.2.7" ∷ word (ἐ ∷ π ∷ ε ∷ ρ ∷ χ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Eph.2.7" ∷ word (τ ∷ ὸ ∷ []) "Eph.2.7" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Eph.2.7" ∷ word (π ∷ ∙λ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ς ∷ []) "Eph.2.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.2.7" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ο ∷ ς ∷ []) "Eph.2.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.2.7" ∷ word (ἐ ∷ ν ∷ []) "Eph.2.7" ∷ word (χ ∷ ρ ∷ η ∷ σ ∷ τ ∷ ό ∷ τ ∷ η ∷ τ ∷ ι ∷ []) "Eph.2.7" ∷ word (ἐ ∷ φ ∷ []) "Eph.2.7" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Eph.2.7" ∷ word (ἐ ∷ ν ∷ []) "Eph.2.7" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Eph.2.7" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Eph.2.7" ∷ word (τ ∷ ῇ ∷ []) "Eph.2.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Eph.2.8" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ί ∷ []) "Eph.2.8" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "Eph.2.8" ∷ word (σ ∷ ε ∷ σ ∷ ῳ ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Eph.2.8" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Eph.2.8" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Eph.2.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.2.8" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Eph.2.8" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Eph.2.8" ∷ word (ἐ ∷ ξ ∷ []) "Eph.2.8" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.2.8" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Eph.2.8" ∷ word (τ ∷ ὸ ∷ []) "Eph.2.8" ∷ word (δ ∷ ῶ ∷ ρ ∷ ο ∷ ν ∷ []) "Eph.2.8" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Eph.2.9" ∷ word (ἐ ∷ ξ ∷ []) "Eph.2.9" ∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Eph.2.9" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Eph.2.9" ∷ word (μ ∷ ή ∷ []) "Eph.2.9" ∷ word (τ ∷ ι ∷ ς ∷ []) "Eph.2.9" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ή ∷ σ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Eph.2.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.2.10" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Eph.2.10" ∷ word (ἐ ∷ σ ∷ μ ∷ ε ∷ ν ∷ []) "Eph.2.10" ∷ word (π ∷ ο ∷ ί ∷ η ∷ μ ∷ α ∷ []) "Eph.2.10" ∷ word (κ ∷ τ ∷ ι ∷ σ ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Eph.2.10" ∷ word (ἐ ∷ ν ∷ []) "Eph.2.10" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Eph.2.10" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Eph.2.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Eph.2.10" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "Eph.2.10" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.2.10" ∷ word (ο ∷ ἷ ∷ ς ∷ []) "Eph.2.10" ∷ word (π ∷ ρ ∷ ο ∷ η ∷ τ ∷ ο ∷ ί ∷ μ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Eph.2.10" ∷ word (ὁ ∷ []) "Eph.2.10" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Eph.2.10" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Eph.2.10" ∷ word (ἐ ∷ ν ∷ []) "Eph.2.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.2.10" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ή ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Eph.2.10" ∷ word (Δ ∷ ι ∷ ὸ ∷ []) "Eph.2.11" ∷ word (μ ∷ ν ∷ η ∷ μ ∷ ο ∷ ν ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Eph.2.11" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Eph.2.11" ∷ word (π ∷ ο ∷ τ ∷ ὲ ∷ []) "Eph.2.11" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Eph.2.11" ∷ word (τ ∷ ὰ ∷ []) "Eph.2.11" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Eph.2.11" ∷ word (ἐ ∷ ν ∷ []) "Eph.2.11" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ί ∷ []) "Eph.2.11" ∷ word (ο ∷ ἱ ∷ []) "Eph.2.11" ∷ word (∙λ ∷ ε ∷ γ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Eph.2.11" ∷ word (ἀ ∷ κ ∷ ρ ∷ ο ∷ β ∷ υ ∷ σ ∷ τ ∷ ί ∷ α ∷ []) "Eph.2.11" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Eph.2.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.2.11" ∷ word (∙λ ∷ ε ∷ γ ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Eph.2.11" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ο ∷ μ ∷ ῆ ∷ ς ∷ []) "Eph.2.11" ∷ word (ἐ ∷ ν ∷ []) "Eph.2.11" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὶ ∷ []) "Eph.2.11" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ο ∷ π ∷ ο ∷ ι ∷ ή ∷ τ ∷ ο ∷ υ ∷ []) "Eph.2.11" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Eph.2.12" ∷ word (ἦ ∷ τ ∷ ε ∷ []) "Eph.2.12" ∷ word (τ ∷ ῷ ∷ []) "Eph.2.12" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ῷ ∷ []) "Eph.2.12" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ῳ ∷ []) "Eph.2.12" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "Eph.2.12" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.2.12" ∷ word (ἀ ∷ π ∷ η ∷ ∙λ ∷ ∙λ ∷ ο ∷ τ ∷ ρ ∷ ι ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Eph.2.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.2.12" ∷ word (π ∷ ο ∷ ∙λ ∷ ι ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Eph.2.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.2.12" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ὴ ∷ ∙λ ∷ []) "Eph.2.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.2.12" ∷ word (ξ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Eph.2.12" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Eph.2.12" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ η ∷ κ ∷ ῶ ∷ ν ∷ []) "Eph.2.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.2.12" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Eph.2.12" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ α ∷ []) "Eph.2.12" ∷ word (μ ∷ ὴ ∷ []) "Eph.2.12" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Eph.2.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.2.12" ∷ word (ἄ ∷ θ ∷ ε ∷ ο ∷ ι ∷ []) "Eph.2.12" ∷ word (ἐ ∷ ν ∷ []) "Eph.2.12" ∷ word (τ ∷ ῷ ∷ []) "Eph.2.12" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ῳ ∷ []) "Eph.2.12" ∷ word (ν ∷ υ ∷ ν ∷ ὶ ∷ []) "Eph.2.13" ∷ word (δ ∷ ὲ ∷ []) "Eph.2.13" ∷ word (ἐ ∷ ν ∷ []) "Eph.2.13" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Eph.2.13" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Eph.2.13" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Eph.2.13" ∷ word (ο ∷ ἵ ∷ []) "Eph.2.13" ∷ word (π ∷ ο ∷ τ ∷ ε ∷ []) "Eph.2.13" ∷ word (ὄ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Eph.2.13" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ὰ ∷ ν ∷ []) "Eph.2.13" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Eph.2.13" ∷ word (ἐ ∷ γ ∷ γ ∷ ὺ ∷ ς ∷ []) "Eph.2.13" ∷ word (ἐ ∷ ν ∷ []) "Eph.2.13" ∷ word (τ ∷ ῷ ∷ []) "Eph.2.13" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Eph.2.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.2.13" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.2.13" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Eph.2.14" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Eph.2.14" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Eph.2.14" ∷ word (ἡ ∷ []) "Eph.2.14" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "Eph.2.14" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.2.14" ∷ word (ὁ ∷ []) "Eph.2.14" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Eph.2.14" ∷ word (τ ∷ ὰ ∷ []) "Eph.2.14" ∷ word (ἀ ∷ μ ∷ φ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ α ∷ []) "Eph.2.14" ∷ word (ἓ ∷ ν ∷ []) "Eph.2.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.2.14" ∷ word (τ ∷ ὸ ∷ []) "Eph.2.14" ∷ word (μ ∷ ε ∷ σ ∷ ό ∷ τ ∷ ο ∷ ι ∷ χ ∷ ο ∷ ν ∷ []) "Eph.2.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.2.14" ∷ word (φ ∷ ρ ∷ α ∷ γ ∷ μ ∷ ο ∷ ῦ ∷ []) "Eph.2.14" ∷ word (∙λ ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Eph.2.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.2.14" ∷ word (ἔ ∷ χ ∷ θ ∷ ρ ∷ α ∷ ν ∷ []) "Eph.2.14" ∷ word (ἐ ∷ ν ∷ []) "Eph.2.14" ∷ word (τ ∷ ῇ ∷ []) "Eph.2.14" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὶ ∷ []) "Eph.2.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.2.14" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Eph.2.15" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Eph.2.15" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Eph.2.15" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Eph.2.15" ∷ word (ἐ ∷ ν ∷ []) "Eph.2.15" ∷ word (δ ∷ ό ∷ γ ∷ μ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Eph.2.15" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ γ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Eph.2.15" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Eph.2.15" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Eph.2.15" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Eph.2.15" ∷ word (κ ∷ τ ∷ ί ∷ σ ∷ ῃ ∷ []) "Eph.2.15" ∷ word (ἐ ∷ ν ∷ []) "Eph.2.15" ∷ word (α ∷ ὑ ∷ τ ∷ ῷ ∷ []) "Eph.2.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.2.15" ∷ word (ἕ ∷ ν ∷ α ∷ []) "Eph.2.15" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὸ ∷ ν ∷ []) "Eph.2.15" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Eph.2.15" ∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ ν ∷ []) "Eph.2.15" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ν ∷ []) "Eph.2.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.2.16" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ∙λ ∷ ά ∷ ξ ∷ ῃ ∷ []) "Eph.2.16" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Eph.2.16" ∷ word (ἀ ∷ μ ∷ φ ∷ ο ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "Eph.2.16" ∷ word (ἐ ∷ ν ∷ []) "Eph.2.16" ∷ word (ἑ ∷ ν ∷ ὶ ∷ []) "Eph.2.16" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Eph.2.16" ∷ word (τ ∷ ῷ ∷ []) "Eph.2.16" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Eph.2.16" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Eph.2.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.2.16" ∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Eph.2.16" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ί ∷ ν ∷ α ∷ ς ∷ []) "Eph.2.16" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.2.16" ∷ word (ἔ ∷ χ ∷ θ ∷ ρ ∷ α ∷ ν ∷ []) "Eph.2.16" ∷ word (ἐ ∷ ν ∷ []) "Eph.2.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Eph.2.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.2.17" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Eph.2.17" ∷ word (ε ∷ ὐ ∷ η ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Eph.2.17" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ν ∷ []) "Eph.2.17" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Eph.2.17" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.2.17" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ὰ ∷ ν ∷ []) "Eph.2.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.2.17" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ν ∷ []) "Eph.2.17" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.2.17" ∷ word (ἐ ∷ γ ∷ γ ∷ ύ ∷ ς ∷ []) "Eph.2.17" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Eph.2.18" ∷ word (δ ∷ ι ∷ []) "Eph.2.18" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.2.18" ∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Eph.2.18" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.2.18" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ α ∷ γ ∷ ω ∷ γ ∷ ὴ ∷ ν ∷ []) "Eph.2.18" ∷ word (ο ∷ ἱ ∷ []) "Eph.2.18" ∷ word (ἀ ∷ μ ∷ φ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Eph.2.18" ∷ word (ἐ ∷ ν ∷ []) "Eph.2.18" ∷ word (ἑ ∷ ν ∷ ὶ ∷ []) "Eph.2.18" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Eph.2.18" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Eph.2.18" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Eph.2.18" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Eph.2.18" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "Eph.2.19" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Eph.2.19" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Eph.2.19" ∷ word (ἐ ∷ σ ∷ τ ∷ ὲ ∷ []) "Eph.2.19" ∷ word (ξ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Eph.2.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.2.19" ∷ word (π ∷ ά ∷ ρ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ι ∷ []) "Eph.2.19" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Eph.2.19" ∷ word (ἐ ∷ σ ∷ τ ∷ ὲ ∷ []) "Eph.2.19" ∷ word (σ ∷ υ ∷ μ ∷ π ∷ ο ∷ ∙λ ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Eph.2.19" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Eph.2.19" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Eph.2.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.2.19" ∷ word (ο ∷ ἰ ∷ κ ∷ ε ∷ ῖ ∷ ο ∷ ι ∷ []) "Eph.2.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.2.19" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Eph.2.19" ∷ word (ἐ ∷ π ∷ ο ∷ ι ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ η ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Eph.2.20" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Eph.2.20" ∷ word (τ ∷ ῷ ∷ []) "Eph.2.20" ∷ word (θ ∷ ε ∷ μ ∷ ε ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "Eph.2.20" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Eph.2.20" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ό ∷ ∙λ ∷ ω ∷ ν ∷ []) "Eph.2.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.2.20" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Eph.2.20" ∷ word (ὄ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Eph.2.20" ∷ word (ἀ ∷ κ ∷ ρ ∷ ο ∷ γ ∷ ω ∷ ν ∷ ι ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "Eph.2.20" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.2.20" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.2.20" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Eph.2.20" ∷ word (ἐ ∷ ν ∷ []) "Eph.2.21" ∷ word (ᾧ ∷ []) "Eph.2.21" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "Eph.2.21" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ὴ ∷ []) "Eph.2.21" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ ρ ∷ μ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Eph.2.21" ∷ word (α ∷ ὔ ∷ ξ ∷ ε ∷ ι ∷ []) "Eph.2.21" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.2.21" ∷ word (ν ∷ α ∷ ὸ ∷ ν ∷ []) "Eph.2.21" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ν ∷ []) "Eph.2.21" ∷ word (ἐ ∷ ν ∷ []) "Eph.2.21" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Eph.2.21" ∷ word (ἐ ∷ ν ∷ []) "Eph.2.22" ∷ word (ᾧ ∷ []) "Eph.2.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.2.22" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Eph.2.22" ∷ word (σ ∷ υ ∷ ν ∷ ο ∷ ι ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "Eph.2.22" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.2.22" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ η ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Eph.2.22" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.2.22" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Eph.2.22" ∷ word (ἐ ∷ ν ∷ []) "Eph.2.22" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Eph.2.22" ∷ word (Τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Eph.3.1" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "Eph.3.1" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Eph.3.1" ∷ word (Π ∷ α ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Eph.3.1" ∷ word (ὁ ∷ []) "Eph.3.1" ∷ word (δ ∷ έ ∷ σ ∷ μ ∷ ι ∷ ο ∷ ς ∷ []) "Eph.3.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.3.1" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.3.1" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Eph.3.1" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Eph.3.1" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.3.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Eph.3.1" ∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Eph.3.1" ∷ word (ε ∷ ἴ ∷ []) "Eph.3.2" ∷ word (γ ∷ ε ∷ []) "Eph.3.2" ∷ word (ἠ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Eph.3.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.3.2" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "Eph.3.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.3.2" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ο ∷ ς ∷ []) "Eph.3.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.3.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Eph.3.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.3.2" ∷ word (δ ∷ ο ∷ θ ∷ ε ∷ ί ∷ σ ∷ η ∷ ς ∷ []) "Eph.3.2" ∷ word (μ ∷ ο ∷ ι ∷ []) "Eph.3.2" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.3.2" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Eph.3.2" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Eph.3.3" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ά ∷ ∙λ ∷ υ ∷ ψ ∷ ι ∷ ν ∷ []) "Eph.3.3" ∷ word (ἐ ∷ γ ∷ ν ∷ ω ∷ ρ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Eph.3.3" ∷ word (μ ∷ ο ∷ ι ∷ []) "Eph.3.3" ∷ word (τ ∷ ὸ ∷ []) "Eph.3.3" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Eph.3.3" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Eph.3.3" ∷ word (π ∷ ρ ∷ ο ∷ έ ∷ γ ∷ ρ ∷ α ∷ ψ ∷ α ∷ []) "Eph.3.3" ∷ word (ἐ ∷ ν ∷ []) "Eph.3.3" ∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ῳ ∷ []) "Eph.3.3" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Eph.3.4" ∷ word (ὃ ∷ []) "Eph.3.4" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Eph.3.4" ∷ word (ἀ ∷ ν ∷ α ∷ γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Eph.3.4" ∷ word (ν ∷ ο ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Eph.3.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.3.4" ∷ word (σ ∷ ύ ∷ ν ∷ ε ∷ σ ∷ ί ∷ ν ∷ []) "Eph.3.4" ∷ word (μ ∷ ο ∷ υ ∷ []) "Eph.3.4" ∷ word (ἐ ∷ ν ∷ []) "Eph.3.4" ∷ word (τ ∷ ῷ ∷ []) "Eph.3.4" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Eph.3.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.3.4" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.3.4" ∷ word (ὃ ∷ []) "Eph.3.5" ∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Eph.3.5" ∷ word (γ ∷ ε ∷ ν ∷ ε ∷ α ∷ ῖ ∷ ς ∷ []) "Eph.3.5" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Eph.3.5" ∷ word (ἐ ∷ γ ∷ ν ∷ ω ∷ ρ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Eph.3.5" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.3.5" ∷ word (υ ∷ ἱ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.3.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Eph.3.5" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Eph.3.5" ∷ word (ὡ ∷ ς ∷ []) "Eph.3.5" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "Eph.3.5" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ α ∷ ∙λ ∷ ύ ∷ φ ∷ θ ∷ η ∷ []) "Eph.3.5" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.3.5" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Eph.3.5" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ό ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Eph.3.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.3.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.3.5" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "Eph.3.5" ∷ word (ἐ ∷ ν ∷ []) "Eph.3.5" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Eph.3.5" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Eph.3.6" ∷ word (τ ∷ ὰ ∷ []) "Eph.3.6" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Eph.3.6" ∷ word (σ ∷ υ ∷ γ ∷ κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ό ∷ μ ∷ α ∷ []) "Eph.3.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.3.6" ∷ word (σ ∷ ύ ∷ σ ∷ σ ∷ ω ∷ μ ∷ α ∷ []) "Eph.3.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.3.6" ∷ word (σ ∷ υ ∷ μ ∷ μ ∷ έ ∷ τ ∷ ο ∷ χ ∷ α ∷ []) "Eph.3.6" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.3.6" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Eph.3.6" ∷ word (ἐ ∷ ν ∷ []) "Eph.3.6" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Eph.3.6" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Eph.3.6" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Eph.3.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.3.6" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Eph.3.6" ∷ word (ο ∷ ὗ ∷ []) "Eph.3.7" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ ν ∷ []) "Eph.3.7" ∷ word (δ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ ο ∷ ς ∷ []) "Eph.3.7" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Eph.3.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.3.7" ∷ word (δ ∷ ω ∷ ρ ∷ ε ∷ ὰ ∷ ν ∷ []) "Eph.3.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.3.7" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ο ∷ ς ∷ []) "Eph.3.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.3.7" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Eph.3.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.3.7" ∷ word (δ ∷ ο ∷ θ ∷ ε ∷ ί ∷ σ ∷ η ∷ ς ∷ []) "Eph.3.7" ∷ word (μ ∷ ο ∷ ι ∷ []) "Eph.3.7" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Eph.3.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.3.7" ∷ word (ἐ ∷ ν ∷ έ ∷ ρ ∷ γ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Eph.3.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.3.7" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "Eph.3.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.3.7" ∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "Eph.3.8" ∷ word (τ ∷ ῷ ∷ []) "Eph.3.8" ∷ word (ἐ ∷ ∙λ ∷ α ∷ χ ∷ ι ∷ σ ∷ τ ∷ ο ∷ τ ∷ έ ∷ ρ ∷ ῳ ∷ []) "Eph.3.8" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Eph.3.8" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Eph.3.8" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Eph.3.8" ∷ word (ἡ ∷ []) "Eph.3.8" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "Eph.3.8" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Eph.3.8" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.3.8" ∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Eph.3.8" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ σ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Eph.3.8" ∷ word (τ ∷ ὸ ∷ []) "Eph.3.8" ∷ word (ἀ ∷ ν ∷ ε ∷ ξ ∷ ι ∷ χ ∷ ν ∷ ί ∷ α ∷ σ ∷ τ ∷ ο ∷ ν ∷ []) "Eph.3.8" ∷ word (π ∷ ∙λ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ς ∷ []) "Eph.3.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.3.8" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.3.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.3.9" ∷ word (φ ∷ ω ∷ τ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Eph.3.9" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Eph.3.9" ∷ word (τ ∷ ί ∷ ς ∷ []) "Eph.3.9" ∷ word (ἡ ∷ []) "Eph.3.9" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ί ∷ α ∷ []) "Eph.3.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.3.9" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Eph.3.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.3.9" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ε ∷ κ ∷ ρ ∷ υ ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Eph.3.9" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Eph.3.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Eph.3.9" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Eph.3.9" ∷ word (ἐ ∷ ν ∷ []) "Eph.3.9" ∷ word (τ ∷ ῷ ∷ []) "Eph.3.9" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Eph.3.9" ∷ word (τ ∷ ῷ ∷ []) "Eph.3.9" ∷ word (τ ∷ ὰ ∷ []) "Eph.3.9" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Eph.3.9" ∷ word (κ ∷ τ ∷ ί ∷ σ ∷ α ∷ ν ∷ τ ∷ ι ∷ []) "Eph.3.9" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Eph.3.10" ∷ word (γ ∷ ν ∷ ω ∷ ρ ∷ ι ∷ σ ∷ θ ∷ ῇ ∷ []) "Eph.3.10" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "Eph.3.10" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Eph.3.10" ∷ word (ἀ ∷ ρ ∷ χ ∷ α ∷ ῖ ∷ ς ∷ []) "Eph.3.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.3.10" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Eph.3.10" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Eph.3.10" ∷ word (ἐ ∷ ν ∷ []) "Eph.3.10" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.3.10" ∷ word (ἐ ∷ π ∷ ο ∷ υ ∷ ρ ∷ α ∷ ν ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Eph.3.10" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Eph.3.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.3.10" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Eph.3.10" ∷ word (ἡ ∷ []) "Eph.3.10" ∷ word (π ∷ ο ∷ ∙λ ∷ υ ∷ π ∷ ο ∷ ί ∷ κ ∷ ι ∷ ∙λ ∷ ο ∷ ς ∷ []) "Eph.3.10" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ []) "Eph.3.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.3.10" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Eph.3.10" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Eph.3.11" ∷ word (π ∷ ρ ∷ ό ∷ θ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Eph.3.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Eph.3.11" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Eph.3.11" ∷ word (ἣ ∷ ν ∷ []) "Eph.3.11" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Eph.3.11" ∷ word (ἐ ∷ ν ∷ []) "Eph.3.11" ∷ word (τ ∷ ῷ ∷ []) "Eph.3.11" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Eph.3.11" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Eph.3.11" ∷ word (τ ∷ ῷ ∷ []) "Eph.3.11" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Eph.3.11" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.3.11" ∷ word (ἐ ∷ ν ∷ []) "Eph.3.12" ∷ word (ᾧ ∷ []) "Eph.3.12" ∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Eph.3.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.3.12" ∷ word (π ∷ α ∷ ρ ∷ ρ ∷ η ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Eph.3.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.3.12" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ α ∷ γ ∷ ω ∷ γ ∷ ὴ ∷ ν ∷ []) "Eph.3.12" ∷ word (ἐ ∷ ν ∷ []) "Eph.3.12" ∷ word (π ∷ ε ∷ π ∷ ο ∷ ι ∷ θ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Eph.3.12" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Eph.3.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.3.12" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Eph.3.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.3.12" ∷ word (δ ∷ ι ∷ ὸ ∷ []) "Eph.3.13" ∷ word (α ∷ ἰ ∷ τ ∷ ο ∷ ῦ ∷ μ ∷ α ∷ ι ∷ []) "Eph.3.13" ∷ word (μ ∷ ὴ ∷ []) "Eph.3.13" ∷ word (ἐ ∷ γ ∷ κ ∷ α ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ []) "Eph.3.13" ∷ word (ἐ ∷ ν ∷ []) "Eph.3.13" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Eph.3.13" ∷ word (θ ∷ ∙λ ∷ ί ∷ ψ ∷ ε ∷ σ ∷ ί ∷ ν ∷ []) "Eph.3.13" ∷ word (μ ∷ ο ∷ υ ∷ []) "Eph.3.13" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Eph.3.13" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.3.13" ∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "Eph.3.13" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Eph.3.13" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "Eph.3.13" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.3.13" ∷ word (Τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Eph.3.14" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "Eph.3.14" ∷ word (κ ∷ ά ∷ μ ∷ π ∷ τ ∷ ω ∷ []) "Eph.3.14" ∷ word (τ ∷ ὰ ∷ []) "Eph.3.14" ∷ word (γ ∷ ό ∷ ν ∷ α ∷ τ ∷ ά ∷ []) "Eph.3.14" ∷ word (μ ∷ ο ∷ υ ∷ []) "Eph.3.14" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Eph.3.14" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Eph.3.14" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Eph.3.14" ∷ word (ἐ ∷ ξ ∷ []) "Eph.3.15" ∷ word (ο ∷ ὗ ∷ []) "Eph.3.15" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "Eph.3.15" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ι ∷ ὰ ∷ []) "Eph.3.15" ∷ word (ἐ ∷ ν ∷ []) "Eph.3.15" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.3.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.3.15" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Eph.3.15" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Eph.3.15" ∷ word (ὀ ∷ ν ∷ ο ∷ μ ∷ ά ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Eph.3.15" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Eph.3.16" ∷ word (δ ∷ ῷ ∷ []) "Eph.3.16" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Eph.3.16" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Eph.3.16" ∷ word (τ ∷ ὸ ∷ []) "Eph.3.16" ∷ word (π ∷ ∙λ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ς ∷ []) "Eph.3.16" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.3.16" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "Eph.3.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.3.16" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ []) "Eph.3.16" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ α ∷ ι ∷ ω ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Eph.3.16" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Eph.3.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.3.16" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Eph.3.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.3.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.3.16" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Eph.3.16" ∷ word (ἔ ∷ σ ∷ ω ∷ []) "Eph.3.16" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Eph.3.16" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Eph.3.17" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Eph.3.17" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "Eph.3.17" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Eph.3.17" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.3.17" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Eph.3.17" ∷ word (ἐ ∷ ν ∷ []) "Eph.3.17" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Eph.3.17" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Eph.3.17" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.3.17" ∷ word (ἐ ∷ ν ∷ []) "Eph.3.17" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ ῃ ∷ []) "Eph.3.17" ∷ word (ἐ ∷ ρ ∷ ρ ∷ ι ∷ ζ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Eph.3.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.3.17" ∷ word (τ ∷ ε ∷ θ ∷ ε ∷ μ ∷ ε ∷ ∙λ ∷ ι ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Eph.3.17" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Eph.3.18" ∷ word (ἐ ∷ ξ ∷ ι ∷ σ ∷ χ ∷ ύ ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "Eph.3.18" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ α ∷ β ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Eph.3.18" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "Eph.3.18" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Eph.3.18" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.3.18" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Eph.3.18" ∷ word (τ ∷ ί ∷ []) "Eph.3.18" ∷ word (τ ∷ ὸ ∷ []) "Eph.3.18" ∷ word (π ∷ ∙λ ∷ ά ∷ τ ∷ ο ∷ ς ∷ []) "Eph.3.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.3.18" ∷ word (μ ∷ ῆ ∷ κ ∷ ο ∷ ς ∷ []) "Eph.3.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.3.18" ∷ word (ὕ ∷ ψ ∷ ο ∷ ς ∷ []) "Eph.3.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.3.18" ∷ word (β ∷ ά ∷ θ ∷ ο ∷ ς ∷ []) "Eph.3.18" ∷ word (γ ∷ ν ∷ ῶ ∷ ν ∷ α ∷ ί ∷ []) "Eph.3.19" ∷ word (τ ∷ ε ∷ []) "Eph.3.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.3.19" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Eph.3.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.3.19" ∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Eph.3.19" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "Eph.3.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.3.19" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.3.19" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Eph.3.19" ∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ω ∷ θ ∷ ῆ ∷ τ ∷ ε ∷ []) "Eph.3.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.3.19" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Eph.3.19" ∷ word (τ ∷ ὸ ∷ []) "Eph.3.19" ∷ word (π ∷ ∙λ ∷ ή ∷ ρ ∷ ω ∷ μ ∷ α ∷ []) "Eph.3.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.3.19" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Eph.3.19" ∷ word (Τ ∷ ῷ ∷ []) "Eph.3.20" ∷ word (δ ∷ ὲ ∷ []) "Eph.3.20" ∷ word (δ ∷ υ ∷ ν ∷ α ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Eph.3.20" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Eph.3.20" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Eph.3.20" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Eph.3.20" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ ε ∷ κ ∷ π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ο ∷ ῦ ∷ []) "Eph.3.20" ∷ word (ὧ ∷ ν ∷ []) "Eph.3.20" ∷ word (α ∷ ἰ ∷ τ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Eph.3.20" ∷ word (ἢ ∷ []) "Eph.3.20" ∷ word (ν ∷ ο ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "Eph.3.20" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Eph.3.20" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.3.20" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Eph.3.20" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.3.20" ∷ word (ἐ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Eph.3.20" ∷ word (ἐ ∷ ν ∷ []) "Eph.3.20" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Eph.3.20" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Eph.3.21" ∷ word (ἡ ∷ []) "Eph.3.21" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "Eph.3.21" ∷ word (ἐ ∷ ν ∷ []) "Eph.3.21" ∷ word (τ ∷ ῇ ∷ []) "Eph.3.21" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "Eph.3.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.3.21" ∷ word (ἐ ∷ ν ∷ []) "Eph.3.21" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Eph.3.21" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Eph.3.21" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.3.21" ∷ word (π ∷ ά ∷ σ ∷ α ∷ ς ∷ []) "Eph.3.21" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Eph.3.21" ∷ word (γ ∷ ε ∷ ν ∷ ε ∷ ὰ ∷ ς ∷ []) "Eph.3.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.3.21" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Eph.3.21" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Eph.3.21" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Eph.3.21" ∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Eph.3.21" ∷ word (Π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "Eph.4.1" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Eph.4.1" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Eph.4.1" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Eph.4.1" ∷ word (ὁ ∷ []) "Eph.4.1" ∷ word (δ ∷ έ ∷ σ ∷ μ ∷ ι ∷ ο ∷ ς ∷ []) "Eph.4.1" ∷ word (ἐ ∷ ν ∷ []) "Eph.4.1" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Eph.4.1" ∷ word (ἀ ∷ ξ ∷ ί ∷ ω ∷ ς ∷ []) "Eph.4.1" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Eph.4.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.4.1" ∷ word (κ ∷ ∙λ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Eph.4.1" ∷ word (ἧ ∷ ς ∷ []) "Eph.4.1" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Eph.4.1" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Eph.4.2" ∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "Eph.4.2" ∷ word (τ ∷ α ∷ π ∷ ε ∷ ι ∷ ν ∷ ο ∷ φ ∷ ρ ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "Eph.4.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.4.2" ∷ word (π ∷ ρ ∷ α ∷ ΰ ∷ τ ∷ η ∷ τ ∷ ο ∷ ς ∷ []) "Eph.4.2" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Eph.4.2" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ο ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Eph.4.2" ∷ word (ἀ ∷ ν ∷ ε ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Eph.4.2" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ω ∷ ν ∷ []) "Eph.4.2" ∷ word (ἐ ∷ ν ∷ []) "Eph.4.2" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ ῃ ∷ []) "Eph.4.2" ∷ word (σ ∷ π ∷ ο ∷ υ ∷ δ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Eph.4.3" ∷ word (τ ∷ η ∷ ρ ∷ ε ∷ ῖ ∷ ν ∷ []) "Eph.4.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.4.3" ∷ word (ἑ ∷ ν ∷ ό ∷ τ ∷ η ∷ τ ∷ α ∷ []) "Eph.4.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.4.3" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Eph.4.3" ∷ word (ἐ ∷ ν ∷ []) "Eph.4.3" ∷ word (τ ∷ ῷ ∷ []) "Eph.4.3" ∷ word (σ ∷ υ ∷ ν ∷ δ ∷ έ ∷ σ ∷ μ ∷ ῳ ∷ []) "Eph.4.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.4.3" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ς ∷ []) "Eph.4.3" ∷ word (ἓ ∷ ν ∷ []) "Eph.4.4" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "Eph.4.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.4.4" ∷ word (ἓ ∷ ν ∷ []) "Eph.4.4" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Eph.4.4" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Eph.4.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.4.4" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Eph.4.4" ∷ word (ἐ ∷ ν ∷ []) "Eph.4.4" ∷ word (μ ∷ ι ∷ ᾷ ∷ []) "Eph.4.4" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ ι ∷ []) "Eph.4.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.4.4" ∷ word (κ ∷ ∙λ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Eph.4.4" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.4.4" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Eph.4.5" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Eph.4.5" ∷ word (μ ∷ ί ∷ α ∷ []) "Eph.4.5" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "Eph.4.5" ∷ word (ἓ ∷ ν ∷ []) "Eph.4.5" ∷ word (β ∷ ά ∷ π ∷ τ ∷ ι ∷ σ ∷ μ ∷ α ∷ []) "Eph.4.5" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Eph.4.6" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Eph.4.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.4.6" ∷ word (π ∷ α ∷ τ ∷ ὴ ∷ ρ ∷ []) "Eph.4.6" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Eph.4.6" ∷ word (ὁ ∷ []) "Eph.4.6" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Eph.4.6" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Eph.4.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.4.6" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Eph.4.6" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Eph.4.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.4.6" ∷ word (ἐ ∷ ν ∷ []) "Eph.4.6" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Eph.4.6" ∷ word (Ἑ ∷ ν ∷ ὶ ∷ []) "Eph.4.7" ∷ word (δ ∷ ὲ ∷ []) "Eph.4.7" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "Eph.4.7" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.4.7" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Eph.4.7" ∷ word (ἡ ∷ []) "Eph.4.7" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "Eph.4.7" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Eph.4.7" ∷ word (τ ∷ ὸ ∷ []) "Eph.4.7" ∷ word (μ ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Eph.4.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.4.7" ∷ word (δ ∷ ω ∷ ρ ∷ ε ∷ ᾶ ∷ ς ∷ []) "Eph.4.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.4.7" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.4.7" ∷ word (δ ∷ ι ∷ ὸ ∷ []) "Eph.4.8" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Eph.4.8" ∷ word (Ἀ ∷ ν ∷ α ∷ β ∷ ὰ ∷ ς ∷ []) "Eph.4.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.4.8" ∷ word (ὕ ∷ ψ ∷ ο ∷ ς ∷ []) "Eph.4.8" ∷ word (ᾐ ∷ χ ∷ μ ∷ α ∷ ∙λ ∷ ώ ∷ τ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Eph.4.8" ∷ word (α ∷ ἰ ∷ χ ∷ μ ∷ α ∷ ∙λ ∷ ω ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Eph.4.8" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Eph.4.8" ∷ word (δ ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Eph.4.8" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.4.8" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "Eph.4.8" ∷ word (τ ∷ ὸ ∷ []) "Eph.4.9" ∷ word (δ ∷ ὲ ∷ []) "Eph.4.9" ∷ word (Ἀ ∷ ν ∷ έ ∷ β ∷ η ∷ []) "Eph.4.9" ∷ word (τ ∷ ί ∷ []) "Eph.4.9" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Eph.4.9" ∷ word (ε ∷ ἰ ∷ []) "Eph.4.9" ∷ word (μ ∷ ὴ ∷ []) "Eph.4.9" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Eph.4.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.4.9" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ β ∷ η ∷ []) "Eph.4.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.4.9" ∷ word (τ ∷ ὰ ∷ []) "Eph.4.9" ∷ word (κ ∷ α ∷ τ ∷ ώ ∷ τ ∷ ε ∷ ρ ∷ α ∷ []) "Eph.4.9" ∷ word (μ ∷ έ ∷ ρ ∷ η ∷ []) "Eph.4.9" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.4.9" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Eph.4.9" ∷ word (ὁ ∷ []) "Eph.4.10" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ὰ ∷ ς ∷ []) "Eph.4.10" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ς ∷ []) "Eph.4.10" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Eph.4.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.4.10" ∷ word (ὁ ∷ []) "Eph.4.10" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ ὰ ∷ ς ∷ []) "Eph.4.10" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ ά ∷ ν ∷ ω ∷ []) "Eph.4.10" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Eph.4.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Eph.4.10" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῶ ∷ ν ∷ []) "Eph.4.10" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Eph.4.10" ∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ώ ∷ σ ∷ ῃ ∷ []) "Eph.4.10" ∷ word (τ ∷ ὰ ∷ []) "Eph.4.10" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Eph.4.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.4.11" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Eph.4.11" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Eph.4.11" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Eph.4.11" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Eph.4.11" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ό ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Eph.4.11" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Eph.4.11" ∷ word (δ ∷ ὲ ∷ []) "Eph.4.11" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ α ∷ ς ∷ []) "Eph.4.11" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Eph.4.11" ∷ word (δ ∷ ὲ ∷ []) "Eph.4.11" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ι ∷ σ ∷ τ ∷ ά ∷ ς ∷ []) "Eph.4.11" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Eph.4.11" ∷ word (δ ∷ ὲ ∷ []) "Eph.4.11" ∷ word (π ∷ ο ∷ ι ∷ μ ∷ έ ∷ ν ∷ α ∷ ς ∷ []) "Eph.4.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.4.11" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Eph.4.11" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Eph.4.12" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Eph.4.12" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ τ ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ν ∷ []) "Eph.4.12" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Eph.4.12" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Eph.4.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.4.12" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "Eph.4.12" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "Eph.4.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.4.12" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ὴ ∷ ν ∷ []) "Eph.4.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.4.12" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Eph.4.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.4.12" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.4.12" ∷ word (μ ∷ έ ∷ χ ∷ ρ ∷ ι ∷ []) "Eph.4.13" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ν ∷ τ ∷ ή ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Eph.4.13" ∷ word (ο ∷ ἱ ∷ []) "Eph.4.13" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Eph.4.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.4.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.4.13" ∷ word (ἑ ∷ ν ∷ ό ∷ τ ∷ η ∷ τ ∷ α ∷ []) "Eph.4.13" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.4.13" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Eph.4.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.4.13" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.4.13" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Eph.4.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.4.13" ∷ word (υ ∷ ἱ ∷ ο ∷ ῦ ∷ []) "Eph.4.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.4.13" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Eph.4.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.4.13" ∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "Eph.4.13" ∷ word (τ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ ο ∷ ν ∷ []) "Eph.4.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.4.13" ∷ word (μ ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Eph.4.13" ∷ word (ἡ ∷ ∙λ ∷ ι ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "Eph.4.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.4.13" ∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Eph.4.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.4.13" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.4.13" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Eph.4.14" ∷ word (μ ∷ η ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Eph.4.14" ∷ word (ὦ ∷ μ ∷ ε ∷ ν ∷ []) "Eph.4.14" ∷ word (ν ∷ ή ∷ π ∷ ι ∷ ο ∷ ι ∷ []) "Eph.4.14" ∷ word (κ ∷ ∙λ ∷ υ ∷ δ ∷ ω ∷ ν ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Eph.4.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.4.14" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ φ ∷ ε ∷ ρ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Eph.4.14" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "Eph.4.14" ∷ word (ἀ ∷ ν ∷ έ ∷ μ ∷ ῳ ∷ []) "Eph.4.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.4.14" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Eph.4.14" ∷ word (ἐ ∷ ν ∷ []) "Eph.4.14" ∷ word (τ ∷ ῇ ∷ []) "Eph.4.14" ∷ word (κ ∷ υ ∷ β ∷ ε ∷ ί ∷ ᾳ ∷ []) "Eph.4.14" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Eph.4.14" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Eph.4.14" ∷ word (ἐ ∷ ν ∷ []) "Eph.4.14" ∷ word (π ∷ α ∷ ν ∷ ο ∷ υ ∷ ρ ∷ γ ∷ ί ∷ ᾳ ∷ []) "Eph.4.14" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Eph.4.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.4.14" ∷ word (μ ∷ ε ∷ θ ∷ ο ∷ δ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Eph.4.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.4.14" ∷ word (π ∷ ∙λ ∷ ά ∷ ν ∷ η ∷ ς ∷ []) "Eph.4.14" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Eph.4.15" ∷ word (δ ∷ ὲ ∷ []) "Eph.4.15" ∷ word (ἐ ∷ ν ∷ []) "Eph.4.15" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ ῃ ∷ []) "Eph.4.15" ∷ word (α ∷ ὐ ∷ ξ ∷ ή ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Eph.4.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.4.15" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Eph.4.15" ∷ word (τ ∷ ὰ ∷ []) "Eph.4.15" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Eph.4.15" ∷ word (ὅ ∷ ς ∷ []) "Eph.4.15" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Eph.4.15" ∷ word (ἡ ∷ []) "Eph.4.15" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ή ∷ []) "Eph.4.15" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "Eph.4.15" ∷ word (ἐ ∷ ξ ∷ []) "Eph.4.16" ∷ word (ο ∷ ὗ ∷ []) "Eph.4.16" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Eph.4.16" ∷ word (τ ∷ ὸ ∷ []) "Eph.4.16" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "Eph.4.16" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ ρ ∷ μ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Eph.4.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.4.16" ∷ word (σ ∷ υ ∷ μ ∷ β ∷ ι ∷ β ∷ α ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Eph.4.16" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Eph.4.16" ∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "Eph.4.16" ∷ word (ἁ ∷ φ ∷ ῆ ∷ ς ∷ []) "Eph.4.16" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.4.16" ∷ word (ἐ ∷ π ∷ ι ∷ χ ∷ ο ∷ ρ ∷ η ∷ γ ∷ ί ∷ α ∷ ς ∷ []) "Eph.4.16" ∷ word (κ ∷ α ∷ τ ∷ []) "Eph.4.16" ∷ word (ἐ ∷ ν ∷ έ ∷ ρ ∷ γ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Eph.4.16" ∷ word (ἐ ∷ ν ∷ []) "Eph.4.16" ∷ word (μ ∷ έ ∷ τ ∷ ρ ∷ ῳ ∷ []) "Eph.4.16" ∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "Eph.4.16" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ο ∷ υ ∷ []) "Eph.4.16" ∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "Eph.4.16" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.4.16" ∷ word (α ∷ ὔ ∷ ξ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "Eph.4.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.4.16" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Eph.4.16" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Eph.4.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.4.16" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ὴ ∷ ν ∷ []) "Eph.4.16" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.4.16" ∷ word (ἐ ∷ ν ∷ []) "Eph.4.16" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ ῃ ∷ []) "Eph.4.16" ∷ word (Τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Eph.4.17" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Eph.4.17" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Eph.4.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.4.17" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Eph.4.17" ∷ word (ἐ ∷ ν ∷ []) "Eph.4.17" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Eph.4.17" ∷ word (μ ∷ η ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Eph.4.17" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Eph.4.17" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "Eph.4.17" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Eph.4.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.4.17" ∷ word (τ ∷ ὰ ∷ []) "Eph.4.17" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Eph.4.17" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ε ∷ ῖ ∷ []) "Eph.4.17" ∷ word (ἐ ∷ ν ∷ []) "Eph.4.17" ∷ word (μ ∷ α ∷ τ ∷ α ∷ ι ∷ ό ∷ τ ∷ η ∷ τ ∷ ι ∷ []) "Eph.4.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.4.17" ∷ word (ν ∷ ο ∷ ὸ ∷ ς ∷ []) "Eph.4.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Eph.4.17" ∷ word (ἐ ∷ σ ∷ κ ∷ ο ∷ τ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Eph.4.18" ∷ word (τ ∷ ῇ ∷ []) "Eph.4.18" ∷ word (δ ∷ ι ∷ α ∷ ν ∷ ο ∷ ί ∷ ᾳ ∷ []) "Eph.4.18" ∷ word (ὄ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Eph.4.18" ∷ word (ἀ ∷ π ∷ η ∷ ∙λ ∷ ∙λ ∷ ο ∷ τ ∷ ρ ∷ ι ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Eph.4.18" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.4.18" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Eph.4.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.4.18" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Eph.4.18" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Eph.4.18" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.4.18" ∷ word (ἄ ∷ γ ∷ ν ∷ ο ∷ ι ∷ α ∷ ν ∷ []) "Eph.4.18" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.4.18" ∷ word (ο ∷ ὖ ∷ σ ∷ α ∷ ν ∷ []) "Eph.4.18" ∷ word (ἐ ∷ ν ∷ []) "Eph.4.18" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.4.18" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Eph.4.18" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.4.18" ∷ word (π ∷ ώ ∷ ρ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Eph.4.18" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.4.18" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Eph.4.18" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Eph.4.18" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Eph.4.19" ∷ word (ἀ ∷ π ∷ η ∷ ∙λ ∷ γ ∷ η ∷ κ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "Eph.4.19" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Eph.4.19" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ δ ∷ ω ∷ κ ∷ α ∷ ν ∷ []) "Eph.4.19" ∷ word (τ ∷ ῇ ∷ []) "Eph.4.19" ∷ word (ἀ ∷ σ ∷ ε ∷ ∙λ ∷ γ ∷ ε ∷ ί ∷ ᾳ ∷ []) "Eph.4.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.4.19" ∷ word (ἐ ∷ ρ ∷ γ ∷ α ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Eph.4.19" ∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ α ∷ ρ ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Eph.4.19" ∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "Eph.4.19" ∷ word (ἐ ∷ ν ∷ []) "Eph.4.19" ∷ word (π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ ε ∷ ξ ∷ ί ∷ ᾳ ∷ []) "Eph.4.19" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Eph.4.20" ∷ word (δ ∷ ὲ ∷ []) "Eph.4.20" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Eph.4.20" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Eph.4.20" ∷ word (ἐ ∷ μ ∷ ά ∷ θ ∷ ε ∷ τ ∷ ε ∷ []) "Eph.4.20" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Eph.4.20" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ν ∷ []) "Eph.4.20" ∷ word (ε ∷ ἴ ∷ []) "Eph.4.21" ∷ word (γ ∷ ε ∷ []) "Eph.4.21" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Eph.4.21" ∷ word (ἠ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Eph.4.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.4.21" ∷ word (ἐ ∷ ν ∷ []) "Eph.4.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Eph.4.21" ∷ word (ἐ ∷ δ ∷ ι ∷ δ ∷ ά ∷ χ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Eph.4.21" ∷ word (κ ∷ α ∷ θ ∷ ώ ∷ ς ∷ []) "Eph.4.21" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Eph.4.21" ∷ word (ἀ ∷ ∙λ ∷ ή ∷ θ ∷ ε ∷ ι ∷ α ∷ []) "Eph.4.21" ∷ word (ἐ ∷ ν ∷ []) "Eph.4.21" ∷ word (τ ∷ ῷ ∷ []) "Eph.4.21" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Eph.4.21" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Eph.4.22" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Eph.4.22" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Eph.4.22" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.4.22" ∷ word (π ∷ ρ ∷ ο ∷ τ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Eph.4.22" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ρ ∷ ο ∷ φ ∷ ὴ ∷ ν ∷ []) "Eph.4.22" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Eph.4.22" ∷ word (π ∷ α ∷ ∙λ ∷ α ∷ ι ∷ ὸ ∷ ν ∷ []) "Eph.4.22" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Eph.4.22" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Eph.4.22" ∷ word (φ ∷ θ ∷ ε ∷ ι ∷ ρ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Eph.4.22" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Eph.4.22" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Eph.4.22" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Eph.4.22" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.4.22" ∷ word (ἀ ∷ π ∷ ά ∷ τ ∷ η ∷ ς ∷ []) "Eph.4.22" ∷ word (ἀ ∷ ν ∷ α ∷ ν ∷ ε ∷ ο ∷ ῦ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Eph.4.23" ∷ word (δ ∷ ὲ ∷ []) "Eph.4.23" ∷ word (τ ∷ ῷ ∷ []) "Eph.4.23" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Eph.4.23" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.4.23" ∷ word (ν ∷ ο ∷ ὸ ∷ ς ∷ []) "Eph.4.23" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.4.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.4.24" ∷ word (ἐ ∷ ν ∷ δ ∷ ύ ∷ σ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Eph.4.24" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Eph.4.24" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὸ ∷ ν ∷ []) "Eph.4.24" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Eph.4.24" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Eph.4.24" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Eph.4.24" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Eph.4.24" ∷ word (κ ∷ τ ∷ ι ∷ σ ∷ θ ∷ έ ∷ ν ∷ τ ∷ α ∷ []) "Eph.4.24" ∷ word (ἐ ∷ ν ∷ []) "Eph.4.24" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ ῃ ∷ []) "Eph.4.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.4.24" ∷ word (ὁ ∷ σ ∷ ι ∷ ό ∷ τ ∷ η ∷ τ ∷ ι ∷ []) "Eph.4.24" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.4.24" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Eph.4.24" ∷ word (Δ ∷ ι ∷ ὸ ∷ []) "Eph.4.25" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ έ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Eph.4.25" ∷ word (τ ∷ ὸ ∷ []) "Eph.4.25" ∷ word (ψ ∷ ε ∷ ῦ ∷ δ ∷ ο ∷ ς ∷ []) "Eph.4.25" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Eph.4.25" ∷ word (ἀ ∷ ∙λ ∷ ή ∷ θ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Eph.4.25" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Eph.4.25" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Eph.4.25" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.4.25" ∷ word (π ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ο ∷ ν ∷ []) "Eph.4.25" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.4.25" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Eph.4.25" ∷ word (ἐ ∷ σ ∷ μ ∷ ὲ ∷ ν ∷ []) "Eph.4.25" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ω ∷ ν ∷ []) "Eph.4.25" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "Eph.4.25" ∷ word (ὀ ∷ ρ ∷ γ ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Eph.4.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.4.26" ∷ word (μ ∷ ὴ ∷ []) "Eph.4.26" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ά ∷ ν ∷ ε ∷ τ ∷ ε ∷ []) "Eph.4.26" ∷ word (ὁ ∷ []) "Eph.4.26" ∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Eph.4.26" ∷ word (μ ∷ ὴ ∷ []) "Eph.4.26" ∷ word (ἐ ∷ π ∷ ι ∷ δ ∷ υ ∷ έ ∷ τ ∷ ω ∷ []) "Eph.4.26" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Eph.4.26" ∷ word (π ∷ α ∷ ρ ∷ ο ∷ ρ ∷ γ ∷ ι ∷ σ ∷ μ ∷ ῷ ∷ []) "Eph.4.26" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.4.26" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "Eph.4.27" ∷ word (δ ∷ ί ∷ δ ∷ ο ∷ τ ∷ ε ∷ []) "Eph.4.27" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Eph.4.27" ∷ word (τ ∷ ῷ ∷ []) "Eph.4.27" ∷ word (δ ∷ ι ∷ α ∷ β ∷ ό ∷ ∙λ ∷ ῳ ∷ []) "Eph.4.27" ∷ word (ὁ ∷ []) "Eph.4.28" ∷ word (κ ∷ ∙λ ∷ έ ∷ π ∷ τ ∷ ω ∷ ν ∷ []) "Eph.4.28" ∷ word (μ ∷ η ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Eph.4.28" ∷ word (κ ∷ ∙λ ∷ ε ∷ π ∷ τ ∷ έ ∷ τ ∷ ω ∷ []) "Eph.4.28" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Eph.4.28" ∷ word (δ ∷ ὲ ∷ []) "Eph.4.28" ∷ word (κ ∷ ο ∷ π ∷ ι ∷ ά ∷ τ ∷ ω ∷ []) "Eph.4.28" ∷ word (ἐ ∷ ρ ∷ γ ∷ α ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Eph.4.28" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Eph.4.28" ∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Eph.4.28" ∷ word (χ ∷ ε ∷ ρ ∷ σ ∷ ὶ ∷ ν ∷ []) "Eph.4.28" ∷ word (τ ∷ ὸ ∷ []) "Eph.4.28" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ό ∷ ν ∷ []) "Eph.4.28" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Eph.4.28" ∷ word (ἔ ∷ χ ∷ ῃ ∷ []) "Eph.4.28" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ δ ∷ ι ∷ δ ∷ ό ∷ ν ∷ α ∷ ι ∷ []) "Eph.4.28" ∷ word (τ ∷ ῷ ∷ []) "Eph.4.28" ∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Eph.4.28" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Eph.4.28" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Eph.4.29" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "Eph.4.29" ∷ word (σ ∷ α ∷ π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Eph.4.29" ∷ word (ἐ ∷ κ ∷ []) "Eph.4.29" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.4.29" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Eph.4.29" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.4.29" ∷ word (μ ∷ ὴ ∷ []) "Eph.4.29" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "Eph.4.29" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Eph.4.29" ∷ word (ε ∷ ἴ ∷ []) "Eph.4.29" ∷ word (τ ∷ ι ∷ ς ∷ []) "Eph.4.29" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ὸ ∷ ς ∷ []) "Eph.4.29" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Eph.4.29" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ὴ ∷ ν ∷ []) "Eph.4.29" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.4.29" ∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Eph.4.29" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Eph.4.29" ∷ word (δ ∷ ῷ ∷ []) "Eph.4.29" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "Eph.4.29" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.4.29" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Eph.4.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.4.30" ∷ word (μ ∷ ὴ ∷ []) "Eph.4.30" ∷ word (∙λ ∷ υ ∷ π ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Eph.4.30" ∷ word (τ ∷ ὸ ∷ []) "Eph.4.30" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Eph.4.30" ∷ word (τ ∷ ὸ ∷ []) "Eph.4.30" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ν ∷ []) "Eph.4.30" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.4.30" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Eph.4.30" ∷ word (ἐ ∷ ν ∷ []) "Eph.4.30" ∷ word (ᾧ ∷ []) "Eph.4.30" ∷ word (ἐ ∷ σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ί ∷ σ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Eph.4.30" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.4.30" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Eph.4.30" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ υ ∷ τ ∷ ρ ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Eph.4.30" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "Eph.4.31" ∷ word (π ∷ ι ∷ κ ∷ ρ ∷ ί ∷ α ∷ []) "Eph.4.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.4.31" ∷ word (θ ∷ υ ∷ μ ∷ ὸ ∷ ς ∷ []) "Eph.4.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.4.31" ∷ word (ὀ ∷ ρ ∷ γ ∷ ὴ ∷ []) "Eph.4.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.4.31" ∷ word (κ ∷ ρ ∷ α ∷ υ ∷ γ ∷ ὴ ∷ []) "Eph.4.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.4.31" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ []) "Eph.4.31" ∷ word (ἀ ∷ ρ ∷ θ ∷ ή ∷ τ ∷ ω ∷ []) "Eph.4.31" ∷ word (ἀ ∷ φ ∷ []) "Eph.4.31" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.4.31" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "Eph.4.31" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "Eph.4.31" ∷ word (κ ∷ α ∷ κ ∷ ί ∷ ᾳ ∷ []) "Eph.4.31" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Eph.4.32" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.4.32" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Eph.4.32" ∷ word (χ ∷ ρ ∷ η ∷ σ ∷ τ ∷ ο ∷ ί ∷ []) "Eph.4.32" ∷ word (ε ∷ ὔ ∷ σ ∷ π ∷ ∙λ ∷ α ∷ γ ∷ χ ∷ ν ∷ ο ∷ ι ∷ []) "Eph.4.32" ∷ word (χ ∷ α ∷ ρ ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Eph.4.32" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.4.32" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Eph.4.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.4.32" ∷ word (ὁ ∷ []) "Eph.4.32" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Eph.4.32" ∷ word (ἐ ∷ ν ∷ []) "Eph.4.32" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Eph.4.32" ∷ word (ἐ ∷ χ ∷ α ∷ ρ ∷ ί ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Eph.4.32" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Eph.4.32" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Eph.5.1" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Eph.5.1" ∷ word (μ ∷ ι ∷ μ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Eph.5.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.5.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Eph.5.1" ∷ word (ὡ ∷ ς ∷ []) "Eph.5.1" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Eph.5.1" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ά ∷ []) "Eph.5.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.2" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Eph.5.2" ∷ word (ἐ ∷ ν ∷ []) "Eph.5.2" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ ῃ ∷ []) "Eph.5.2" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Eph.5.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.2" ∷ word (ὁ ∷ []) "Eph.5.2" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Eph.5.2" ∷ word (ἠ ∷ γ ∷ ά ∷ π ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Eph.5.2" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Eph.5.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.2" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Eph.5.2" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Eph.5.2" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Eph.5.2" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.5.2" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ φ ∷ ο ∷ ρ ∷ ὰ ∷ ν ∷ []) "Eph.5.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.2" ∷ word (θ ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Eph.5.2" ∷ word (τ ∷ ῷ ∷ []) "Eph.5.2" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Eph.5.2" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.5.2" ∷ word (ὀ ∷ σ ∷ μ ∷ ὴ ∷ ν ∷ []) "Eph.5.2" ∷ word (ε ∷ ὐ ∷ ω ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Eph.5.2" ∷ word (Π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ []) "Eph.5.3" ∷ word (δ ∷ ὲ ∷ []) "Eph.5.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.3" ∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ α ∷ ρ ∷ σ ∷ ί ∷ α ∷ []) "Eph.5.3" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "Eph.5.3" ∷ word (ἢ ∷ []) "Eph.5.3" ∷ word (π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ ε ∷ ξ ∷ ί ∷ α ∷ []) "Eph.5.3" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "Eph.5.3" ∷ word (ὀ ∷ ν ∷ ο ∷ μ ∷ α ∷ ζ ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "Eph.5.3" ∷ word (ἐ ∷ ν ∷ []) "Eph.5.3" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Eph.5.3" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Eph.5.3" ∷ word (π ∷ ρ ∷ έ ∷ π ∷ ε ∷ ι ∷ []) "Eph.5.3" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Eph.5.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.4" ∷ word (α ∷ ἰ ∷ σ ∷ χ ∷ ρ ∷ ό ∷ τ ∷ η ∷ ς ∷ []) "Eph.5.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.4" ∷ word (μ ∷ ω ∷ ρ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ []) "Eph.5.4" ∷ word (ἢ ∷ []) "Eph.5.4" ∷ word (ε ∷ ὐ ∷ τ ∷ ρ ∷ α ∷ π ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ []) "Eph.5.4" ∷ word (ἃ ∷ []) "Eph.5.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Eph.5.4" ∷ word (ἀ ∷ ν ∷ ῆ ∷ κ ∷ ε ∷ ν ∷ []) "Eph.5.4" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Eph.5.4" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Eph.5.4" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ί ∷ α ∷ []) "Eph.5.4" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Eph.5.5" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Eph.5.5" ∷ word (ἴ ∷ σ ∷ τ ∷ ε ∷ []) "Eph.5.5" ∷ word (γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Eph.5.5" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Eph.5.5" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Eph.5.5" ∷ word (π ∷ ό ∷ ρ ∷ ν ∷ ο ∷ ς ∷ []) "Eph.5.5" ∷ word (ἢ ∷ []) "Eph.5.5" ∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ς ∷ []) "Eph.5.5" ∷ word (ἢ ∷ []) "Eph.5.5" ∷ word (π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ έ ∷ κ ∷ τ ∷ η ∷ ς ∷ []) "Eph.5.5" ∷ word (ὅ ∷ []) "Eph.5.5" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Eph.5.5" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ο ∷ ∙λ ∷ ά ∷ τ ∷ ρ ∷ η ∷ ς ∷ []) "Eph.5.5" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Eph.5.5" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Eph.5.5" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "Eph.5.5" ∷ word (ἐ ∷ ν ∷ []) "Eph.5.5" ∷ word (τ ∷ ῇ ∷ []) "Eph.5.5" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ ᾳ ∷ []) "Eph.5.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.5.5" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.5.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.5" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Eph.5.5" ∷ word (Μ ∷ η ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Eph.5.6" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Eph.5.6" ∷ word (ἀ ∷ π ∷ α ∷ τ ∷ ά ∷ τ ∷ ω ∷ []) "Eph.5.6" ∷ word (κ ∷ ε ∷ ν ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.5.6" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "Eph.5.6" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Eph.5.6" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Eph.5.6" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Eph.5.6" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Eph.5.6" ∷ word (ἡ ∷ []) "Eph.5.6" ∷ word (ὀ ∷ ρ ∷ γ ∷ ὴ ∷ []) "Eph.5.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.5.6" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Eph.5.6" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Eph.5.6" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Eph.5.6" ∷ word (υ ∷ ἱ ∷ ο ∷ ὺ ∷ ς ∷ []) "Eph.5.6" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.5.6" ∷ word (ἀ ∷ π ∷ ε ∷ ι ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Eph.5.6" ∷ word (μ ∷ ὴ ∷ []) "Eph.5.7" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Eph.5.7" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Eph.5.7" ∷ word (σ ∷ υ ∷ μ ∷ μ ∷ έ ∷ τ ∷ ο ∷ χ ∷ ο ∷ ι ∷ []) "Eph.5.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Eph.5.7" ∷ word (ἦ ∷ τ ∷ ε ∷ []) "Eph.5.8" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Eph.5.8" ∷ word (π ∷ ο ∷ τ ∷ ε ∷ []) "Eph.5.8" ∷ word (σ ∷ κ ∷ ό ∷ τ ∷ ο ∷ ς ∷ []) "Eph.5.8" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "Eph.5.8" ∷ word (δ ∷ ὲ ∷ []) "Eph.5.8" ∷ word (φ ∷ ῶ ∷ ς ∷ []) "Eph.5.8" ∷ word (ἐ ∷ ν ∷ []) "Eph.5.8" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Eph.5.8" ∷ word (ὡ ∷ ς ∷ []) "Eph.5.8" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Eph.5.8" ∷ word (φ ∷ ω ∷ τ ∷ ὸ ∷ ς ∷ []) "Eph.5.8" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Eph.5.8" ∷ word (ὁ ∷ []) "Eph.5.9" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Eph.5.9" ∷ word (κ ∷ α ∷ ρ ∷ π ∷ ὸ ∷ ς ∷ []) "Eph.5.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.5.9" ∷ word (φ ∷ ω ∷ τ ∷ ὸ ∷ ς ∷ []) "Eph.5.9" ∷ word (ἐ ∷ ν ∷ []) "Eph.5.9" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "Eph.5.9" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ω ∷ σ ∷ ύ ∷ ν ∷ ῃ ∷ []) "Eph.5.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.9" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ ῃ ∷ []) "Eph.5.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.9" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ ᾳ ∷ []) "Eph.5.9" ∷ word (δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Eph.5.10" ∷ word (τ ∷ ί ∷ []) "Eph.5.10" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Eph.5.10" ∷ word (ε ∷ ὐ ∷ ά ∷ ρ ∷ ε ∷ σ ∷ τ ∷ ο ∷ ν ∷ []) "Eph.5.10" ∷ word (τ ∷ ῷ ∷ []) "Eph.5.10" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Eph.5.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.11" ∷ word (μ ∷ ὴ ∷ []) "Eph.5.11" ∷ word (σ ∷ υ ∷ γ ∷ κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Eph.5.11" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.5.11" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "Eph.5.11" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.5.11" ∷ word (ἀ ∷ κ ∷ ά ∷ ρ ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "Eph.5.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.5.11" ∷ word (σ ∷ κ ∷ ό ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Eph.5.11" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Eph.5.11" ∷ word (δ ∷ ὲ ∷ []) "Eph.5.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.11" ∷ word (ἐ ∷ ∙λ ∷ έ ∷ γ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Eph.5.11" ∷ word (τ ∷ ὰ ∷ []) "Eph.5.12" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Eph.5.12" ∷ word (κ ∷ ρ ∷ υ ∷ φ ∷ ῇ ∷ []) "Eph.5.12" ∷ word (γ ∷ ι ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ []) "Eph.5.12" ∷ word (ὑ ∷ π ∷ []) "Eph.5.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Eph.5.12" ∷ word (α ∷ ἰ ∷ σ ∷ χ ∷ ρ ∷ ό ∷ ν ∷ []) "Eph.5.12" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Eph.5.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.12" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Eph.5.12" ∷ word (τ ∷ ὰ ∷ []) "Eph.5.13" ∷ word (δ ∷ ὲ ∷ []) "Eph.5.13" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Eph.5.13" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ γ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ []) "Eph.5.13" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Eph.5.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.5.13" ∷ word (φ ∷ ω ∷ τ ∷ ὸ ∷ ς ∷ []) "Eph.5.13" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ο ∷ ῦ ∷ τ ∷ α ∷ ι ∷ []) "Eph.5.13" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Eph.5.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Eph.5.14" ∷ word (τ ∷ ὸ ∷ []) "Eph.5.14" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Eph.5.14" ∷ word (φ ∷ ῶ ∷ ς ∷ []) "Eph.5.14" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Eph.5.14" ∷ word (δ ∷ ι ∷ ὸ ∷ []) "Eph.5.14" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Eph.5.14" ∷ word (Ἔ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ []) "Eph.5.14" ∷ word (ὁ ∷ []) "Eph.5.14" ∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ω ∷ ν ∷ []) "Eph.5.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.14" ∷ word (ἀ ∷ ν ∷ ά ∷ σ ∷ τ ∷ α ∷ []) "Eph.5.14" ∷ word (ἐ ∷ κ ∷ []) "Eph.5.14" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Eph.5.14" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Eph.5.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.14" ∷ word (ἐ ∷ π ∷ ι ∷ φ ∷ α ∷ ύ ∷ σ ∷ ε ∷ ι ∷ []) "Eph.5.14" ∷ word (σ ∷ ο ∷ ι ∷ []) "Eph.5.14" ∷ word (ὁ ∷ []) "Eph.5.14" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "Eph.5.14" ∷ word (Β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Eph.5.15" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Eph.5.15" ∷ word (ἀ ∷ κ ∷ ρ ∷ ι ∷ β ∷ ῶ ∷ ς ∷ []) "Eph.5.15" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Eph.5.15" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Eph.5.15" ∷ word (μ ∷ ὴ ∷ []) "Eph.5.15" ∷ word (ὡ ∷ ς ∷ []) "Eph.5.15" ∷ word (ἄ ∷ σ ∷ ο ∷ φ ∷ ο ∷ ι ∷ []) "Eph.5.15" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Eph.5.15" ∷ word (ὡ ∷ ς ∷ []) "Eph.5.15" ∷ word (σ ∷ ο ∷ φ ∷ ο ∷ ί ∷ []) "Eph.5.15" ∷ word (ἐ ∷ ξ ∷ α ∷ γ ∷ ο ∷ ρ ∷ α ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Eph.5.16" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Eph.5.16" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ό ∷ ν ∷ []) "Eph.5.16" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Eph.5.16" ∷ word (α ∷ ἱ ∷ []) "Eph.5.16" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ []) "Eph.5.16" ∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ α ∷ ί ∷ []) "Eph.5.16" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Eph.5.16" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Eph.5.17" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Eph.5.17" ∷ word (μ ∷ ὴ ∷ []) "Eph.5.17" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Eph.5.17" ∷ word (ἄ ∷ φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ς ∷ []) "Eph.5.17" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Eph.5.17" ∷ word (σ ∷ υ ∷ ν ∷ ί ∷ ε ∷ τ ∷ ε ∷ []) "Eph.5.17" ∷ word (τ ∷ ί ∷ []) "Eph.5.17" ∷ word (τ ∷ ὸ ∷ []) "Eph.5.17" ∷ word (θ ∷ έ ∷ ∙λ ∷ η ∷ μ ∷ α ∷ []) "Eph.5.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.5.17" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Eph.5.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.18" ∷ word (μ ∷ ὴ ∷ []) "Eph.5.18" ∷ word (μ ∷ ε ∷ θ ∷ ύ ∷ σ ∷ κ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Eph.5.18" ∷ word (ο ∷ ἴ ∷ ν ∷ ῳ ∷ []) "Eph.5.18" ∷ word (ἐ ∷ ν ∷ []) "Eph.5.18" ∷ word (ᾧ ∷ []) "Eph.5.18" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Eph.5.18" ∷ word (ἀ ∷ σ ∷ ω ∷ τ ∷ ί ∷ α ∷ []) "Eph.5.18" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Eph.5.18" ∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ θ ∷ ε ∷ []) "Eph.5.18" ∷ word (ἐ ∷ ν ∷ []) "Eph.5.18" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Eph.5.18" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Eph.5.19" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.5.19" ∷ word (ψ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.5.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.19" ∷ word (ὕ ∷ μ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Eph.5.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.19" ∷ word (ᾠ ∷ δ ∷ α ∷ ῖ ∷ ς ∷ []) "Eph.5.19" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ α ∷ ῖ ∷ ς ∷ []) "Eph.5.19" ∷ word (ᾄ ∷ δ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Eph.5.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.19" ∷ word (ψ ∷ ά ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Eph.5.19" ∷ word (τ ∷ ῇ ∷ []) "Eph.5.19" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ ᾳ ∷ []) "Eph.5.19" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.5.19" ∷ word (τ ∷ ῷ ∷ []) "Eph.5.19" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Eph.5.19" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Eph.5.20" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "Eph.5.20" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Eph.5.20" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Eph.5.20" ∷ word (ἐ ∷ ν ∷ []) "Eph.5.20" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Eph.5.20" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.5.20" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Eph.5.20" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.5.20" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Eph.5.20" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.5.20" ∷ word (τ ∷ ῷ ∷ []) "Eph.5.20" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Eph.5.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.20" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ί ∷ []) "Eph.5.20" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ α ∷ σ ∷ σ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Eph.5.21" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Eph.5.21" ∷ word (ἐ ∷ ν ∷ []) "Eph.5.21" ∷ word (φ ∷ ό ∷ β ∷ ῳ ∷ []) "Eph.5.21" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.5.21" ∷ word (Α ∷ ἱ ∷ []) "Eph.5.22" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ ε ∷ ς ∷ []) "Eph.5.22" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.5.22" ∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Eph.5.22" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ά ∷ σ ∷ ι ∷ ν ∷ []) "Eph.5.22" ∷ word (ὡ ∷ ς ∷ []) "Eph.5.22" ∷ word (τ ∷ ῷ ∷ []) "Eph.5.22" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Eph.5.22" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Eph.5.23" ∷ word (ἀ ∷ ν ∷ ή ∷ ρ ∷ []) "Eph.5.23" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Eph.5.23" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ []) "Eph.5.23" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.5.23" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "Eph.5.23" ∷ word (ὡ ∷ ς ∷ []) "Eph.5.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.23" ∷ word (ὁ ∷ []) "Eph.5.23" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Eph.5.23" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ []) "Eph.5.23" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.5.23" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Eph.5.23" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Eph.5.23" ∷ word (σ ∷ ω ∷ τ ∷ ὴ ∷ ρ ∷ []) "Eph.5.23" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.5.23" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Eph.5.23" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Eph.5.24" ∷ word (ὡ ∷ ς ∷ []) "Eph.5.24" ∷ word (ἡ ∷ []) "Eph.5.24" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ []) "Eph.5.24" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ ά ∷ σ ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Eph.5.24" ∷ word (τ ∷ ῷ ∷ []) "Eph.5.24" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Eph.5.24" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Eph.5.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.24" ∷ word (α ∷ ἱ ∷ []) "Eph.5.24" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ ε ∷ ς ∷ []) "Eph.5.24" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.5.24" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ά ∷ σ ∷ ι ∷ ν ∷ []) "Eph.5.24" ∷ word (ἐ ∷ ν ∷ []) "Eph.5.24" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ί ∷ []) "Eph.5.24" ∷ word (Ο ∷ ἱ ∷ []) "Eph.5.25" ∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ ε ∷ ς ∷ []) "Eph.5.25" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ᾶ ∷ τ ∷ ε ∷ []) "Eph.5.25" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Eph.5.25" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ ς ∷ []) "Eph.5.25" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Eph.5.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.25" ∷ word (ὁ ∷ []) "Eph.5.25" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Eph.5.25" ∷ word (ἠ ∷ γ ∷ ά ∷ π ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Eph.5.25" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.5.25" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Eph.5.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.25" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Eph.5.25" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Eph.5.25" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Eph.5.25" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Eph.5.25" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Eph.5.26" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Eph.5.26" ∷ word (ἁ ∷ γ ∷ ι ∷ ά ∷ σ ∷ ῃ ∷ []) "Eph.5.26" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ί ∷ σ ∷ α ∷ ς ∷ []) "Eph.5.26" ∷ word (τ ∷ ῷ ∷ []) "Eph.5.26" ∷ word (∙λ ∷ ο ∷ υ ∷ τ ∷ ρ ∷ ῷ ∷ []) "Eph.5.26" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.5.26" ∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Eph.5.26" ∷ word (ἐ ∷ ν ∷ []) "Eph.5.26" ∷ word (ῥ ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Eph.5.26" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Eph.5.27" ∷ word (π ∷ α ∷ ρ ∷ α ∷ σ ∷ τ ∷ ή ∷ σ ∷ ῃ ∷ []) "Eph.5.27" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Eph.5.27" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῷ ∷ []) "Eph.5.27" ∷ word (ἔ ∷ ν ∷ δ ∷ ο ∷ ξ ∷ ο ∷ ν ∷ []) "Eph.5.27" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.5.27" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Eph.5.27" ∷ word (μ ∷ ὴ ∷ []) "Eph.5.27" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Eph.5.27" ∷ word (σ ∷ π ∷ ί ∷ ∙λ ∷ ο ∷ ν ∷ []) "Eph.5.27" ∷ word (ἢ ∷ []) "Eph.5.27" ∷ word (ῥ ∷ υ ∷ τ ∷ ί ∷ δ ∷ α ∷ []) "Eph.5.27" ∷ word (ἤ ∷ []) "Eph.5.27" ∷ word (τ ∷ ι ∷ []) "Eph.5.27" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Eph.5.27" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Eph.5.27" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Eph.5.27" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Eph.5.27" ∷ word (ᾖ ∷ []) "Eph.5.27" ∷ word (ἁ ∷ γ ∷ ί ∷ α ∷ []) "Eph.5.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.27" ∷ word (ἄ ∷ μ ∷ ω ∷ μ ∷ ο ∷ ς ∷ []) "Eph.5.27" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Eph.5.28" ∷ word (ὀ ∷ φ ∷ ε ∷ ί ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Eph.5.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.28" ∷ word (ο ∷ ἱ ∷ []) "Eph.5.28" ∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ ε ∷ ς ∷ []) "Eph.5.28" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ᾶ ∷ ν ∷ []) "Eph.5.28" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Eph.5.28" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Eph.5.28" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ ς ∷ []) "Eph.5.28" ∷ word (ὡ ∷ ς ∷ []) "Eph.5.28" ∷ word (τ ∷ ὰ ∷ []) "Eph.5.28" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Eph.5.28" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Eph.5.28" ∷ word (ὁ ∷ []) "Eph.5.28" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ῶ ∷ ν ∷ []) "Eph.5.28" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.5.28" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.5.28" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Eph.5.28" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Eph.5.28" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ᾷ ∷ []) "Eph.5.28" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Eph.5.29" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Eph.5.29" ∷ word (π ∷ ο ∷ τ ∷ ε ∷ []) "Eph.5.29" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.5.29" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.5.29" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "Eph.5.29" ∷ word (ἐ ∷ μ ∷ ί ∷ σ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Eph.5.29" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Eph.5.29" ∷ word (ἐ ∷ κ ∷ τ ∷ ρ ∷ έ ∷ φ ∷ ε ∷ ι ∷ []) "Eph.5.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.29" ∷ word (θ ∷ ά ∷ ∙λ ∷ π ∷ ε ∷ ι ∷ []) "Eph.5.29" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Eph.5.29" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Eph.5.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.29" ∷ word (ὁ ∷ []) "Eph.5.29" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Eph.5.29" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.5.29" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Eph.5.29" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Eph.5.30" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "Eph.5.30" ∷ word (ἐ ∷ σ ∷ μ ∷ ὲ ∷ ν ∷ []) "Eph.5.30" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.5.30" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Eph.5.30" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.5.30" ∷ word (ἀ ∷ ν ∷ τ ∷ ὶ ∷ []) "Eph.5.31" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Eph.5.31" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ε ∷ ί ∷ ψ ∷ ε ∷ ι ∷ []) "Eph.5.31" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Eph.5.31" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Eph.5.31" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Eph.5.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.31" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.5.31" ∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Eph.5.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.31" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ ο ∷ ∙λ ∷ ∙λ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Eph.5.31" ∷ word (τ ∷ ῇ ∷ []) "Eph.5.31" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὶ ∷ []) "Eph.5.31" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.5.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.31" ∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Eph.5.31" ∷ word (ο ∷ ἱ ∷ []) "Eph.5.31" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Eph.5.31" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.5.31" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "Eph.5.31" ∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Eph.5.31" ∷ word (τ ∷ ὸ ∷ []) "Eph.5.32" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Eph.5.32" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Eph.5.32" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Eph.5.32" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Eph.5.32" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Eph.5.32" ∷ word (δ ∷ ὲ ∷ []) "Eph.5.32" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Eph.5.32" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.5.32" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "Eph.5.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.32" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.5.32" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.5.32" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Eph.5.32" ∷ word (π ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Eph.5.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.5.33" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Eph.5.33" ∷ word (ο ∷ ἱ ∷ []) "Eph.5.33" ∷ word (κ ∷ α ∷ θ ∷ []) "Eph.5.33" ∷ word (ἕ ∷ ν ∷ α ∷ []) "Eph.5.33" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Eph.5.33" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.5.33" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.5.33" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Eph.5.33" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Eph.5.33" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ά ∷ τ ∷ ω ∷ []) "Eph.5.33" ∷ word (ὡ ∷ ς ∷ []) "Eph.5.33" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ό ∷ ν ∷ []) "Eph.5.33" ∷ word (ἡ ∷ []) "Eph.5.33" ∷ word (δ ∷ ὲ ∷ []) "Eph.5.33" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Eph.5.33" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Eph.5.33" ∷ word (φ ∷ ο ∷ β ∷ ῆ ∷ τ ∷ α ∷ ι ∷ []) "Eph.5.33" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Eph.5.33" ∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "Eph.5.33" ∷ word (Τ ∷ ὰ ∷ []) "Eph.6.1" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Eph.6.1" ∷ word (ὑ ∷ π ∷ α ∷ κ ∷ ο ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Eph.6.1" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.6.1" ∷ word (γ ∷ ο ∷ ν ∷ ε ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Eph.6.1" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.6.1" ∷ word (ἐ ∷ ν ∷ []) "Eph.6.1" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Eph.6.1" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Eph.6.1" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Eph.6.1" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Eph.6.1" ∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Eph.6.1" ∷ word (τ ∷ ί ∷ μ ∷ α ∷ []) "Eph.6.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Eph.6.2" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Eph.6.2" ∷ word (σ ∷ ο ∷ υ ∷ []) "Eph.6.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.6.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.6.2" ∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Eph.6.2" ∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "Eph.6.2" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Eph.6.2" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ []) "Eph.6.2" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ []) "Eph.6.2" ∷ word (ἐ ∷ ν ∷ []) "Eph.6.2" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ᾳ ∷ []) "Eph.6.2" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Eph.6.3" ∷ word (ε ∷ ὖ ∷ []) "Eph.6.3" ∷ word (σ ∷ ο ∷ ι ∷ []) "Eph.6.3" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Eph.6.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.6.3" ∷ word (ἔ ∷ σ ∷ ῃ ∷ []) "Eph.6.3" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ο ∷ χ ∷ ρ ∷ ό ∷ ν ∷ ι ∷ ο ∷ ς ∷ []) "Eph.6.3" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Eph.6.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.6.3" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Eph.6.3" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Eph.6.4" ∷ word (ο ∷ ἱ ∷ []) "Eph.6.4" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ ε ∷ ς ∷ []) "Eph.6.4" ∷ word (μ ∷ ὴ ∷ []) "Eph.6.4" ∷ word (π ∷ α ∷ ρ ∷ ο ∷ ρ ∷ γ ∷ ί ∷ ζ ∷ ε ∷ τ ∷ ε ∷ []) "Eph.6.4" ∷ word (τ ∷ ὰ ∷ []) "Eph.6.4" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Eph.6.4" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.6.4" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Eph.6.4" ∷ word (ἐ ∷ κ ∷ τ ∷ ρ ∷ έ ∷ φ ∷ ε ∷ τ ∷ ε ∷ []) "Eph.6.4" ∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Eph.6.4" ∷ word (ἐ ∷ ν ∷ []) "Eph.6.4" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ε ∷ ί ∷ ᾳ ∷ []) "Eph.6.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.6.4" ∷ word (ν ∷ ο ∷ υ ∷ θ ∷ ε ∷ σ ∷ ί ∷ ᾳ ∷ []) "Eph.6.4" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Eph.6.4" ∷ word (Ο ∷ ἱ ∷ []) "Eph.6.5" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Eph.6.5" ∷ word (ὑ ∷ π ∷ α ∷ κ ∷ ο ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Eph.6.5" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.6.5" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Eph.6.5" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "Eph.6.5" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Eph.6.5" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Eph.6.5" ∷ word (φ ∷ ό ∷ β ∷ ο ∷ υ ∷ []) "Eph.6.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.6.5" ∷ word (τ ∷ ρ ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Eph.6.5" ∷ word (ἐ ∷ ν ∷ []) "Eph.6.5" ∷ word (ἁ ∷ π ∷ ∙λ ∷ ό ∷ τ ∷ η ∷ τ ∷ ι ∷ []) "Eph.6.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.6.5" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Eph.6.5" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.6.5" ∷ word (ὡ ∷ ς ∷ []) "Eph.6.5" ∷ word (τ ∷ ῷ ∷ []) "Eph.6.5" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Eph.6.5" ∷ word (μ ∷ ὴ ∷ []) "Eph.6.6" ∷ word (κ ∷ α ∷ τ ∷ []) "Eph.6.6" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ δ ∷ ο ∷ υ ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Eph.6.6" ∷ word (ὡ ∷ ς ∷ []) "Eph.6.6" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ά ∷ ρ ∷ ε ∷ σ ∷ κ ∷ ο ∷ ι ∷ []) "Eph.6.6" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Eph.6.6" ∷ word (ὡ ∷ ς ∷ []) "Eph.6.6" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Eph.6.6" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.6.6" ∷ word (π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Eph.6.6" ∷ word (τ ∷ ὸ ∷ []) "Eph.6.6" ∷ word (θ ∷ έ ∷ ∙λ ∷ η ∷ μ ∷ α ∷ []) "Eph.6.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.6.6" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Eph.6.6" ∷ word (ἐ ∷ κ ∷ []) "Eph.6.6" ∷ word (ψ ∷ υ ∷ χ ∷ ῆ ∷ ς ∷ []) "Eph.6.6" ∷ word (μ ∷ ε ∷ τ ∷ []) "Eph.6.7" ∷ word (ε ∷ ὐ ∷ ν ∷ ο ∷ ί ∷ α ∷ ς ∷ []) "Eph.6.7" ∷ word (δ ∷ ο ∷ υ ∷ ∙λ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Eph.6.7" ∷ word (ὡ ∷ ς ∷ []) "Eph.6.7" ∷ word (τ ∷ ῷ ∷ []) "Eph.6.7" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Eph.6.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.6.7" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Eph.6.7" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "Eph.6.7" ∷ word (ε ∷ ἰ ∷ δ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "Eph.6.8" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Eph.6.8" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Eph.6.8" ∷ word (ὃ ∷ []) "Eph.6.8" ∷ word (ἂ ∷ ν ∷ []) "Eph.6.8" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ῃ ∷ []) "Eph.6.8" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ό ∷ ν ∷ []) "Eph.6.8" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Eph.6.8" ∷ word (κ ∷ ο ∷ μ ∷ ί ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Eph.6.8" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Eph.6.8" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Eph.6.8" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "Eph.6.8" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Eph.6.8" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "Eph.6.8" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ θ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Eph.6.8" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Eph.6.9" ∷ word (ο ∷ ἱ ∷ []) "Eph.6.9" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ι ∷ []) "Eph.6.9" ∷ word (τ ∷ ὰ ∷ []) "Eph.6.9" ∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Eph.6.9" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Eph.6.9" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Eph.6.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Eph.6.9" ∷ word (ἀ ∷ ν ∷ ι ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Eph.6.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.6.9" ∷ word (ἀ ∷ π ∷ ε ∷ ι ∷ ∙λ ∷ ή ∷ ν ∷ []) "Eph.6.9" ∷ word (ε ∷ ἰ ∷ δ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "Eph.6.9" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Eph.6.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.6.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Eph.6.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.6.9" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.6.9" ∷ word (ὁ ∷ []) "Eph.6.9" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ό ∷ ς ∷ []) "Eph.6.9" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Eph.6.9" ∷ word (ἐ ∷ ν ∷ []) "Eph.6.9" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.6.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.6.9" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ω ∷ π ∷ ο ∷ ∙λ ∷ η ∷ μ ∷ ψ ∷ ί ∷ α ∷ []) "Eph.6.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Eph.6.9" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Eph.6.9" ∷ word (π ∷ α ∷ ρ ∷ []) "Eph.6.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Eph.6.9" ∷ word (Τ ∷ ο ∷ ῦ ∷ []) "Eph.6.10" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ῦ ∷ []) "Eph.6.10" ∷ word (ἐ ∷ ν ∷ δ ∷ υ ∷ ν ∷ α ∷ μ ∷ ο ∷ ῦ ∷ σ ∷ θ ∷ ε ∷ []) "Eph.6.10" ∷ word (ἐ ∷ ν ∷ []) "Eph.6.10" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Eph.6.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.6.10" ∷ word (ἐ ∷ ν ∷ []) "Eph.6.10" ∷ word (τ ∷ ῷ ∷ []) "Eph.6.10" ∷ word (κ ∷ ρ ∷ ά ∷ τ ∷ ε ∷ ι ∷ []) "Eph.6.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.6.10" ∷ word (ἰ ∷ σ ∷ χ ∷ ύ ∷ ο ∷ ς ∷ []) "Eph.6.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.6.10" ∷ word (ἐ ∷ ν ∷ δ ∷ ύ ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Eph.6.11" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.6.11" ∷ word (π ∷ α ∷ ν ∷ ο ∷ π ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Eph.6.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.6.11" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Eph.6.11" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Eph.6.11" ∷ word (τ ∷ ὸ ∷ []) "Eph.6.11" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Eph.6.11" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Eph.6.11" ∷ word (σ ∷ τ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Eph.6.11" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Eph.6.11" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Eph.6.11" ∷ word (μ ∷ ε ∷ θ ∷ ο ∷ δ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Eph.6.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.6.11" ∷ word (δ ∷ ι ∷ α ∷ β ∷ ό ∷ ∙λ ∷ ο ∷ υ ∷ []) "Eph.6.11" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Eph.6.12" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Eph.6.12" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Eph.6.12" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Eph.6.12" ∷ word (ἡ ∷ []) "Eph.6.12" ∷ word (π ∷ ά ∷ ∙λ ∷ η ∷ []) "Eph.6.12" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Eph.6.12" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Eph.6.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.6.12" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "Eph.6.12" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Eph.6.12" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Eph.6.12" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Eph.6.12" ∷ word (ἀ ∷ ρ ∷ χ ∷ ά ∷ ς ∷ []) "Eph.6.12" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Eph.6.12" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Eph.6.12" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Eph.6.12" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Eph.6.12" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Eph.6.12" ∷ word (κ ∷ ο ∷ σ ∷ μ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ο ∷ ρ ∷ α ∷ ς ∷ []) "Eph.6.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.6.12" ∷ word (σ ∷ κ ∷ ό ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Eph.6.12" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Eph.6.12" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Eph.6.12" ∷ word (τ ∷ ὰ ∷ []) "Eph.6.12" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ὰ ∷ []) "Eph.6.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.6.12" ∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "Eph.6.12" ∷ word (ἐ ∷ ν ∷ []) "Eph.6.12" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.6.12" ∷ word (ἐ ∷ π ∷ ο ∷ υ ∷ ρ ∷ α ∷ ν ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Eph.6.12" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Eph.6.13" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Eph.6.13" ∷ word (ἀ ∷ ν ∷ α ∷ ∙λ ∷ ά ∷ β ∷ ε ∷ τ ∷ ε ∷ []) "Eph.6.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.6.13" ∷ word (π ∷ α ∷ ν ∷ ο ∷ π ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Eph.6.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.6.13" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Eph.6.13" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Eph.6.13" ∷ word (δ ∷ υ ∷ ν ∷ η ∷ θ ∷ ῆ ∷ τ ∷ ε ∷ []) "Eph.6.13" ∷ word (ἀ ∷ ν ∷ τ ∷ ι ∷ σ ∷ τ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Eph.6.13" ∷ word (ἐ ∷ ν ∷ []) "Eph.6.13" ∷ word (τ ∷ ῇ ∷ []) "Eph.6.13" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "Eph.6.13" ∷ word (τ ∷ ῇ ∷ []) "Eph.6.13" ∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ᾷ ∷ []) "Eph.6.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.6.13" ∷ word (ἅ ∷ π ∷ α ∷ ν ∷ τ ∷ α ∷ []) "Eph.6.13" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ ρ ∷ γ ∷ α ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Eph.6.13" ∷ word (σ ∷ τ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Eph.6.13" ∷ word (σ ∷ τ ∷ ῆ ∷ τ ∷ ε ∷ []) "Eph.6.14" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Eph.6.14" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ζ ∷ ω ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Eph.6.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.6.14" ∷ word (ὀ ∷ σ ∷ φ ∷ ὺ ∷ ν ∷ []) "Eph.6.14" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.6.14" ∷ word (ἐ ∷ ν ∷ []) "Eph.6.14" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ ᾳ ∷ []) "Eph.6.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.6.14" ∷ word (ἐ ∷ ν ∷ δ ∷ υ ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Eph.6.14" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Eph.6.14" ∷ word (θ ∷ ώ ∷ ρ ∷ α ∷ κ ∷ α ∷ []) "Eph.6.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.6.14" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "Eph.6.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.6.15" ∷ word (ὑ ∷ π ∷ ο ∷ δ ∷ η ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Eph.6.15" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Eph.6.15" ∷ word (π ∷ ό ∷ δ ∷ α ∷ ς ∷ []) "Eph.6.15" ∷ word (ἐ ∷ ν ∷ []) "Eph.6.15" ∷ word (ἑ ∷ τ ∷ ο ∷ ι ∷ μ ∷ α ∷ σ ∷ ί ∷ ᾳ ∷ []) "Eph.6.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.6.15" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Eph.6.15" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.6.15" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ς ∷ []) "Eph.6.15" ∷ word (ἐ ∷ ν ∷ []) "Eph.6.16" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Eph.6.16" ∷ word (ἀ ∷ ν ∷ α ∷ ∙λ ∷ α ∷ β ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Eph.6.16" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Eph.6.16" ∷ word (θ ∷ υ ∷ ρ ∷ ε ∷ ὸ ∷ ν ∷ []) "Eph.6.16" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Eph.6.16" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Eph.6.16" ∷ word (ἐ ∷ ν ∷ []) "Eph.6.16" ∷ word (ᾧ ∷ []) "Eph.6.16" ∷ word (δ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Eph.6.16" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Eph.6.16" ∷ word (τ ∷ ὰ ∷ []) "Eph.6.16" ∷ word (β ∷ έ ∷ ∙λ ∷ η ∷ []) "Eph.6.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.6.16" ∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ο ∷ ῦ ∷ []) "Eph.6.16" ∷ word (π ∷ ε ∷ π ∷ υ ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Eph.6.16" ∷ word (σ ∷ β ∷ έ ∷ σ ∷ α ∷ ι ∷ []) "Eph.6.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.6.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.6.17" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ν ∷ []) "Eph.6.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.6.17" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Eph.6.17" ∷ word (δ ∷ έ ∷ ξ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Eph.6.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.6.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Eph.6.17" ∷ word (μ ∷ ά ∷ χ ∷ α ∷ ι ∷ ρ ∷ α ∷ ν ∷ []) "Eph.6.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.6.17" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Eph.6.17" ∷ word (ὅ ∷ []) "Eph.6.17" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Eph.6.17" ∷ word (ῥ ∷ ῆ ∷ μ ∷ α ∷ []) "Eph.6.17" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Eph.6.17" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Eph.6.18" ∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "Eph.6.18" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ῆ ∷ ς ∷ []) "Eph.6.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.6.18" ∷ word (δ ∷ ε ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Eph.6.18" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Eph.6.18" ∷ word (ἐ ∷ ν ∷ []) "Eph.6.18" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "Eph.6.18" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ῷ ∷ []) "Eph.6.18" ∷ word (ἐ ∷ ν ∷ []) "Eph.6.18" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Eph.6.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.6.18" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.6.18" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Eph.6.18" ∷ word (ἀ ∷ γ ∷ ρ ∷ υ ∷ π ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Eph.6.18" ∷ word (ἐ ∷ ν ∷ []) "Eph.6.18" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "Eph.6.18" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ρ ∷ τ ∷ ε ∷ ρ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Eph.6.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.6.18" ∷ word (δ ∷ ε ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Eph.6.18" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Eph.6.18" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Eph.6.18" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Eph.6.18" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Eph.6.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.6.19" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Eph.6.19" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Eph.6.19" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Eph.6.19" ∷ word (μ ∷ ο ∷ ι ∷ []) "Eph.6.19" ∷ word (δ ∷ ο ∷ θ ∷ ῇ ∷ []) "Eph.6.19" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "Eph.6.19" ∷ word (ἐ ∷ ν ∷ []) "Eph.6.19" ∷ word (ἀ ∷ ν ∷ ο ∷ ί ∷ ξ ∷ ε ∷ ι ∷ []) "Eph.6.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.6.19" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ό ∷ ς ∷ []) "Eph.6.19" ∷ word (μ ∷ ο ∷ υ ∷ []) "Eph.6.19" ∷ word (ἐ ∷ ν ∷ []) "Eph.6.19" ∷ word (π ∷ α ∷ ρ ∷ ρ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "Eph.6.19" ∷ word (γ ∷ ν ∷ ω ∷ ρ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Eph.6.19" ∷ word (τ ∷ ὸ ∷ []) "Eph.6.19" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Eph.6.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Eph.6.19" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Eph.6.19" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Eph.6.20" ∷ word (ο ∷ ὗ ∷ []) "Eph.6.20" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ε ∷ ύ ∷ ω ∷ []) "Eph.6.20" ∷ word (ἐ ∷ ν ∷ []) "Eph.6.20" ∷ word (ἁ ∷ ∙λ ∷ ύ ∷ σ ∷ ε ∷ ι ∷ []) "Eph.6.20" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Eph.6.20" ∷ word (ἐ ∷ ν ∷ []) "Eph.6.20" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Eph.6.20" ∷ word (π ∷ α ∷ ρ ∷ ρ ∷ η ∷ σ ∷ ι ∷ ά ∷ σ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "Eph.6.20" ∷ word (ὡ ∷ ς ∷ []) "Eph.6.20" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "Eph.6.20" ∷ word (μ ∷ ε ∷ []) "Eph.6.20" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Eph.6.20" ∷ word (Ἵ ∷ ν ∷ α ∷ []) "Eph.6.21" ∷ word (δ ∷ ὲ ∷ []) "Eph.6.21" ∷ word (ε ∷ ἰ ∷ δ ∷ ῆ ∷ τ ∷ ε ∷ []) "Eph.6.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.6.21" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Eph.6.21" ∷ word (τ ∷ ὰ ∷ []) "Eph.6.21" ∷ word (κ ∷ α ∷ τ ∷ []) "Eph.6.21" ∷ word (ἐ ∷ μ ∷ έ ∷ []) "Eph.6.21" ∷ word (τ ∷ ί ∷ []) "Eph.6.21" ∷ word (π ∷ ρ ∷ ά ∷ σ ∷ σ ∷ ω ∷ []) "Eph.6.21" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Eph.6.21" ∷ word (γ ∷ ν ∷ ω ∷ ρ ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "Eph.6.21" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Eph.6.21" ∷ word (Τ ∷ υ ∷ χ ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "Eph.6.21" ∷ word (ὁ ∷ []) "Eph.6.21" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ὸ ∷ ς ∷ []) "Eph.6.21" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "Eph.6.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.6.21" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Eph.6.21" ∷ word (δ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ ο ∷ ς ∷ []) "Eph.6.21" ∷ word (ἐ ∷ ν ∷ []) "Eph.6.21" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Eph.6.21" ∷ word (ὃ ∷ ν ∷ []) "Eph.6.22" ∷ word (ἔ ∷ π ∷ ε ∷ μ ∷ ψ ∷ α ∷ []) "Eph.6.22" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Eph.6.22" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Eph.6.22" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Eph.6.22" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Eph.6.22" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Eph.6.22" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Eph.6.22" ∷ word (γ ∷ ν ∷ ῶ ∷ τ ∷ ε ∷ []) "Eph.6.22" ∷ word (τ ∷ ὰ ∷ []) "Eph.6.22" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Eph.6.22" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.6.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.6.22" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ έ ∷ σ ∷ ῃ ∷ []) "Eph.6.22" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Eph.6.22" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Eph.6.22" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.6.22" ∷ word (Ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "Eph.6.23" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.6.23" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ῖ ∷ ς ∷ []) "Eph.6.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.6.23" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "Eph.6.23" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Eph.6.23" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Eph.6.23" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Eph.6.23" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Eph.6.23" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Eph.6.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Eph.6.23" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Eph.6.23" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Eph.6.23" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Eph.6.23" ∷ word (ἡ ∷ []) "Eph.6.24" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "Eph.6.24" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Eph.6.24" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Eph.6.24" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Eph.6.24" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ώ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Eph.6.24" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Eph.6.24" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Eph.6.24" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Eph.6.24" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Eph.6.24" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "Eph.6.24" ∷ word (ἐ ∷ ν ∷ []) "Eph.6.24" ∷ word (ἀ ∷ φ ∷ θ ∷ α ∷ ρ ∷ σ ∷ ί ∷ ᾳ ∷ []) "Eph.6.24" ∷ []
{ "alphanum_fraction": 0.3287338865, "avg_line_length": 44.492789452, "ext": "agda", "hexsha": "eeffeb5be12ff7f2085e96331ac8cc67fcb81382", "lang": "Agda", "max_forks_count": 5, "max_forks_repo_forks_event_max_datetime": "2017-06-11T11:25:09.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-27T22:34:13.000Z", "max_forks_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "scott-fleischman/GreekGrammar", "max_forks_repo_path": "agda/Text/Greek/SBLGNT/Eph.agda", "max_issues_count": 13, "max_issues_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_issues_repo_issues_event_max_datetime": "2020-09-07T11:58:38.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-28T20:04:08.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "scott-fleischman/GreekGrammar", "max_issues_repo_path": "agda/Text/Greek/SBLGNT/Eph.agda", "max_line_length": 93, "max_stars_count": 44, "max_stars_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "scott-fleischman/GreekGrammar", "max_stars_repo_path": "agda/Text/Greek/SBLGNT/Eph.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-06T15:41:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-29T14:48:51.000Z", "num_tokens": 78774, "size": 107984 }
{-# OPTIONS --safe #-} module Cubical.Algebra.Lattice.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Structures.Axioms open import Cubical.Structures.Auto open import Cubical.Structures.Macro open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.CommMonoid open import Cubical.Algebra.Semilattice open import Cubical.Algebra.Lattice.Base open import Cubical.Relation.Binary.Poset private variable ℓ : Level module LatticeTheory (L' : Lattice ℓ) where private L = fst L' open LatticeStr (snd L') 0lLeftAnnihilates∧l : ∀ (x : L) → 0l ∧l x ≡ 0l 0lLeftAnnihilates∧l x = 0l ∧l x ≡⟨ cong (0l ∧l_) (sym (∨lLid _)) ⟩ 0l ∧l (0l ∨l x) ≡⟨ ∧lAbsorb∨l _ _ ⟩ 0l ∎ 0lRightAnnihilates∧l : ∀ (x : L) → x ∧l 0l ≡ 0l 0lRightAnnihilates∧l _ = ∧lComm _ _ ∙ 0lLeftAnnihilates∧l _ 1lLeftAnnihilates∨l : ∀ (x : L) → 1l ∨l x ≡ 1l 1lLeftAnnihilates∨l x = 1l ∨l x ≡⟨ cong (1l ∨l_) (sym (∧lLid _)) ⟩ 1l ∨l (1l ∧l x) ≡⟨ ∨lAbsorb∧l _ _ ⟩ 1l ∎ 1lRightAnnihilates∨l : ∀ (x : L) → x ∨l 1l ≡ 1l 1lRightAnnihilates∨l _ = ∨lComm _ _ ∙ 1lLeftAnnihilates∨l _ module Order (L' : Lattice ℓ) where private L = fst L' open LatticeStr (snd L') open JoinSemilattice (Lattice→JoinSemilattice L') renaming (_≤_ to _≤j_ ; IndPoset to JoinPoset) open MeetSemilattice (Lattice→MeetSemilattice L') renaming (_≤_ to _≤m_ ; IndPoset to MeetPoset) ≤j→≤m : ∀ x y → x ≤j y → x ≤m y ≤j→≤m x y x∨ly≡y = x ∧l y ≡⟨ cong (x ∧l_) (sym x∨ly≡y) ⟩ x ∧l (x ∨l y) ≡⟨ ∧lAbsorb∨l _ _ ⟩ x ∎ ≤m→≤j : ∀ x y → x ≤m y → x ≤j y ≤m→≤j x y x∧ly≡x = x ∨l y ≡⟨ ∨lComm _ _ ⟩ y ∨l x ≡⟨ cong (y ∨l_) (sym x∧ly≡x) ⟩ y ∨l (x ∧l y) ≡⟨ cong (y ∨l_) (∧lComm _ _) ⟩ y ∨l (y ∧l x) ≡⟨ ∨lAbsorb∧l _ _ ⟩ y ∎ ≤Equiv : ∀ (x y : L) → (x ≤j y) ≃ (x ≤m y) ≤Equiv x y = propBiimpl→Equiv (isSetLattice L' _ _) (isSetLattice L' _ _) (≤j→≤m x y) (≤m→≤j x y) IndPosetPath : JoinPoset ≡ MeetPoset IndPosetPath = PosetPath _ _ .fst ((idEquiv _) , isposetequiv ≤Equiv ) -- transport inequalities from ≤m to ≤j ∧lIsMinJoin : ∀ x y z → z ≤j x → z ≤j y → z ≤j x ∧l y ∧lIsMinJoin _ _ _ z≤jx z≤jy = ≤m→≤j _ _ (∧lIsMin _ _ _ (≤j→≤m _ _ z≤jx) (≤j→≤m _ _ z≤jy)) ∧≤LCancelJoin : ∀ x y → x ∧l y ≤j y ∧≤LCancelJoin x y = ≤m→≤j _ _ (∧≤LCancel x y) module _ {L M : Lattice ℓ} (φ ψ : LatticeHom L M) where open LatticeStr ⦃...⦄ open IsLatticeHom private instance _ = L _ = M _ = snd L _ = snd M LatticeHom≡f : fst φ ≡ fst ψ → φ ≡ ψ LatticeHom≡f = Σ≡Prop λ f → isPropIsLatticeHom _ f _
{ "alphanum_fraction": 0.5994840374, "avg_line_length": 32.3020833333, "ext": "agda", "hexsha": "35c3e04559f18f4f9c2cf0bfb0d9f62dec81a580", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/Algebra/Lattice/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/Algebra/Lattice/Properties.agda", "max_line_length": 98, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Algebra/Lattice/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z", "num_tokens": 1305, "size": 3101 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Cosets open import Groups.Homomorphisms.Definition open import Rings.Homomorphisms.Definition open import Groups.Lemmas open import Groups.Definition open import Setoids.Setoids open import Setoids.Functions.Lemmas open import Rings.Definition open import Sets.EquivalenceRelations open import Rings.Ideals.Definition open import Fields.Fields open import Fields.Lemmas open import Rings.Cosets open import Rings.Ideals.Maximal.Definition open import Rings.Ideals.Lemmas open import Rings.Ideals.Prime.Definition open import Rings.IntegralDomains.Definition open import Rings.Ideals.Prime.Lemmas open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Rings.Ideals.Maximal.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} {c : _} {pred : A → Set c} (i : Ideal R pred) where open Ring R open Group additiveGroup open Setoid S open Equivalence eq idealMaximalImpliesQuotientField : ({d : Level} → MaximalIdeal i {d}) → Field (cosetRing R i) Field.allInvertible (idealMaximalImpliesQuotientField max) cosetA cosetA!=0 = ans' , ans'' where gen : Ideal (cosetRing R i) (generatedIdealPred (cosetRing R i) cosetA) gen = generatedIdeal (cosetRing R i) cosetA inv : Ideal R (inverseImagePred {S = S} {T = cosetSetoid additiveGroup (Ideal.isSubgroup i)} (GroupHom.wellDefined (RingHom.groupHom (cosetRingHom R i))) (Ideal.isSubset gen)) inv = inverseImageIsIdeal (cosetRing R i) (cosetRingHom R i) gen containsOnce : {a : A} → (Ideal.predicate i a) → (Ideal.predicate inv a) containsOnce {x} ix = x , ((x , Ideal.closedUnderPlus i (Ideal.closedUnderInverse i ix) (Ideal.isSubset i *Commutative (Ideal.accumulatesTimes i ix))) ,, Ideal.isSubset i (symmetric invLeft) (Ideal.containsIdentity i)) notInI : A notInI = cosetA notInIIsInInv : Ideal.predicate inv notInI notInIIsInInv = cosetA , ((1R , Ideal.isSubset i {0R} (symmetric (transitive (+WellDefined reflexive (transitive *Commutative identIsIdent)) (invLeft {cosetA}))) (Ideal.containsIdentity i)) ,, Ideal.isSubset i (symmetric invLeft) (Ideal.containsIdentity i)) notInIPr : (Ideal.predicate i notInI) → False notInIPr iInI = cosetA!=0 (Ideal.isSubset i (transitive (symmetric identLeft) (+WellDefined (symmetric (invIdent additiveGroup)) reflexive)) iInI) ans : {a : A} → Ideal.predicate inv a ans = MaximalIdeal.isMaximal max inv containsOnce (notInI , (notInIIsInInv ,, notInIPr)) ans' : A ans' with ans {1R} ... | _ , ((b , _) ,, _) = b ans'' : pred (inverse (Ring.1R (cosetRing R i)) + (ans' * cosetA)) ans'' with ans {1R} ans'' | a , ((b , predCAb-a) ,, pred1-a) = Ideal.isSubset i (transitive (+WellDefined (invContravariant additiveGroup) reflexive) (transitive +Associative (+WellDefined (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invLeft) identRight)) *Commutative))) (Ideal.closedUnderPlus i (Ideal.closedUnderInverse i pred1-a) predCAb-a) Field.nontrivial (idealMaximalImpliesQuotientField max) 1=0 = MaximalIdeal.notContainedIsNotContained max (Ideal.isSubset i (identIsIdent {MaximalIdeal.notContained (max {lzero})}) (Ideal.accumulatesTimes i p)) where have : pred (inverse 1R) have = Ideal.isSubset i identRight 1=0 p : pred 1R p = Ideal.isSubset i (invTwice additiveGroup 1R) (Ideal.closedUnderInverse i have) quotientFieldImpliesIdealMaximal : Field (cosetRing R i) → ({d : _} → MaximalIdeal i {d}) MaximalIdeal.notContained (quotientFieldImpliesIdealMaximal f) = Ring.1R (cosetRing R i) MaximalIdeal.notContainedIsNotContained (quotientFieldImpliesIdealMaximal f) p1R = Field.nontrivial f (memberDividesImpliesMember R i p1R ((inverse 1R + 0R) , identIsIdent)) MaximalIdeal.isMaximal (quotientFieldImpliesIdealMaximal f) {bigger} biggerIdeal contained (a , (biggerA ,, notPredA)) = Ideal.isSubset biggerIdeal identIsIdent (Ideal.accumulatesTimes biggerIdeal v) where inv : Sg A (λ t → pred (inverse 1R + (t * a))) inv = Field.allInvertible f a λ r → notPredA (translate' R i r) r : A r = underlying inv s : pred (inverse 1R + (r * a)) s with inv ... | _ , p = p t : bigger (inverse 1R + (r * a)) t = contained s u : bigger (inverse (r * a)) u = Ideal.closedUnderInverse biggerIdeal (Ideal.isSubset biggerIdeal *Commutative (Ideal.accumulatesTimes biggerIdeal biggerA)) v : bigger 1R v = Ideal.isSubset biggerIdeal (invTwice additiveGroup 1R) (Ideal.closedUnderInverse biggerIdeal (Ideal.isSubset biggerIdeal (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invRight) identRight)) (Ideal.closedUnderPlus biggerIdeal t u))) idealMaximalImpliesIdealPrime : ({d : _} → MaximalIdeal i {d}) → PrimeIdeal i idealMaximalImpliesIdealPrime max = quotientIntDomImpliesIdealPrime i (fieldIsIntDom (idealMaximalImpliesQuotientField max)) maximalIdealWellDefined : {d : _} {pred2 : A → Set d} (i2 : Ideal R pred2) → ({x : A} → pred x → pred2 x) → ({x : A} → pred2 x → pred x) → {e : _} → MaximalIdeal i {e} → MaximalIdeal i2 {e} MaximalIdeal.notContained (maximalIdealWellDefined i2 pToP2 p2ToP record { notContained = notContained ; notContainedIsNotContained = notContainedIsNotContained ; isMaximal = isMaximal }) = notContained MaximalIdeal.notContainedIsNotContained (maximalIdealWellDefined i2 pToP2 p2ToP record { notContained = notContained ; notContainedIsNotContained = notContainedIsNotContained ; isMaximal = isMaximal }) p2Not = notContainedIsNotContained (p2ToP p2Not) MaximalIdeal.isMaximal (maximalIdealWellDefined i2 pToP2 p2ToP record { notContained = notContained ; notContainedIsNotContained = notContainedIsNotContained ; isMaximal = isMaximal }) {biggerPred} bigger pred2InBigger (r , (biggerPredR ,, notP2r)) {x} = isMaximal bigger (λ p → pred2InBigger (pToP2 p)) (r , (biggerPredR ,, λ p → notP2r (pToP2 p)))
{ "alphanum_fraction": 0.7403926833, "avg_line_length": 66.9550561798, "ext": "agda", "hexsha": "f55c2691bbe9bbcf906fe9eb43e314f1d6d2ac5f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/Ideals/Maximal/Lemmas.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/Ideals/Maximal/Lemmas.agda", "max_line_length": 356, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/Ideals/Maximal/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 1843, "size": 5959 }
open import Agda.Builtin.Bool open import Agda.Builtin.Char open import Agda.Builtin.Nat open import Agda.Builtin.Equality char : Char → Set char 'A' with 'O' char _ | _ = Char char _ = Char lit : Nat → Set lit 5 with 0 lit _ | _ = Nat lit _ = Nat con : Nat → Set con zero with zero con _ | _ = Nat con (suc x) with zero con _ | _ = Nat record R : Set where coinductive -- disallow matching field f : Bool n : Nat data P (r : R) : Nat → Set where fTrue : R.f r ≡ true → P r zero nSuc : P r (suc (R.n r)) data Q : (b : Bool) (n : Nat) → Set where true! : Q true zero suc! : ∀{b n} → Q b (suc n) test : (r : R) {n : Nat} (p : P r n) → Q (R.f r) n test r nSuc = suc! test r (fTrue p) with R.f r test _ (fTrue ()) | false test _ _ | true = true! -- underscore instead of (isTrue _) -- -- Note that `with` first and then splitting on p does not work: -- -- foo : (r : R) {n : Nat} (p : P r n) → Q (R.f r) n -- foo r p with R.f r -- foo r (fTrue x) | false = {!x!} -- cannot split on x -- foo r (fTrue _) | true = true! -- foo r nSuc | _ = suc!
{ "alphanum_fraction": 0.5573476703, "avg_line_length": 23.25, "ext": "agda", "hexsha": "33c981cd9c5f08d6b2db443479cb728144a04bcb", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2363.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2363.agda", "max_line_length": 69, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2363.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 417, "size": 1116 }
open import Agda.Builtin.List open import Agda.Builtin.Reflection macro print : (Set → Set) → Term → TC _ print t _ = bindTC (quoteTC t) λ t → typeError (termErr t ∷ []) -- Prints λ { X → X }. Test₁ : Set Test₁ = {!print (λ { X → X })!} module _ (A : Set) where -- Prints λ { A₁ X → X }. Test₂ : Set Test₂ = {!print (λ { X → X })!} -- Prints λ { B₁ X → X } B. Test₃ : Set → Set Test₃ B = {!print (λ { X → X })!} module _ (A : Set) where -- Prints λ { A₁ X → A₁ }. Note that A is not mentioned at all. Test₄ : Set Test₄ = {!print (λ { X → A })!} -- Prints λ { B₁ X → A } B. Test₅ : Set → Set Test₅ B = {!print (λ { X → A })!}
{ "alphanum_fraction": 0.5102639296, "avg_line_length": 17.4871794872, "ext": "agda", "hexsha": "67e93ac1bbc5e0728b074416fe48a717aca39bf4", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue2618.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue2618.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue2618.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 259, "size": 682 }
{-# OPTIONS --cubical --no-import-sorts --allow-unsolved-metas #-} module Number.Instances.QuoInt where open import Cubical.Foundations.Everything hiding (⋆) renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Cubical.Foundations.Logic renaming (inl to inlᵖ; inr to inrᵖ) open import Cubical.Relation.Nullary.Base renaming (¬_ to ¬ᵗ_) open import Cubical.Relation.Binary.Base open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_) open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_) open import Cubical.Data.Sigma open import Cubical.Data.Bool as Bool using (Bool; not; true; false) open import Cubical.Data.Empty renaming (elim to ⊥-elim; ⊥ to ⊥⊥) -- `⊥` and `elim` open import Cubical.Foundations.Logic renaming (¬_ to ¬ᵖ_; inl to inlᵖ; inr to inrᵖ) open import Function.Base using (it; _∋_; _$_) open import Cubical.Foundations.Isomorphism open import Cubical.HITs.PropositionalTruncation --.Properties open import Utils using (!_; !!_) open import MoreLogic.Reasoning open import MoreLogic.Definitions open import MoreLogic.Properties open import MorePropAlgebra.Definitions hiding (_≤''_) open import MorePropAlgebra.Structures open import MorePropAlgebra.Bundles open import MorePropAlgebra.Consequences open import Number.Structures2 open import Number.Bundles2 open import Cubical.Data.Nat.Literals open import Cubical.Data.Nat using (suc; zero; ℕ; HasFromNat) open import Number.Prelude.Nat using (¬-<ⁿ-zero; +ⁿ-comm; ¬suc<ⁿ0; _+ⁿ_; _·ⁿ_; ·ⁿ-reflects-≡ˡ') open import Number.Instances.QuoIntFromInt public open import Cubical.HITs.Ints.QuoInt as QuoInt using ( ℤ ; HasFromNat ; _+_ ; Int≡ℤ ; signed ; posneg ; ℤ→Int ; sucℤ ; predℤ ; sign ; abs ; pos ; neg ; +-comm ; +-assoc ; sucℤ-+ʳ ; sucℤ-+ˡ ; spos ; sneg ; *-pos-suc ; negate-invol ) renaming ( isSetℤ to is-set ; _*_ to _·_ ; -_ to infixl 6 -_ ; *-comm to ·-comm ) open IsLinearlyOrderedCommRing is-LinearlyOrderedCommRing using ( _-_ ; <-irrefl ; <-trans ; +-<-ext ; +-rinv ; +-identity ; ·-identity ; _≤_ ; ·-preserves-< ; <-tricho ; <-asym ; _#_ ; +-inverse ; ·-assoc ) 0<1 : [ 0 < 1 ] 0<1 = 0 , refl -- TODO: import these properties from somewhere else +-reflects-< : ∀ x y z → [ (x + z < y + z) ⇒ ( x < y ) ] +-preserves-< : ∀ x y z → [ ( x < y ) ⇒ (x + z < y + z) ] +-creates-< : ∀ x y z → [ ( x < y ) ⇔ (x + z < y + z) ] +-preserves-< a b x = snd ( ( a < b ) ⇒ᵖ⟨ transport (λ i → [ sym (fst (+-identity a)) i < sym (fst (+-identity b)) i ]) ⟩ ( a + 0 < b + 0 ) ⇒ᵖ⟨ transport (λ i → [ a + sym (+-rinv x) i < b + sym (+-rinv x) i ]) ⟩ ( a + (x - x) < b + (x - x)) ⇒ᵖ⟨ transport (λ i → [ +-assoc a x (- x) i < +-assoc b x (- x) i ]) ⟩ ((a + x) - x < (b + x) - x ) ⇒ᵖ⟨ +-<-ext (a + x) (- x) (b + x) (- x) ⟩ ((a + x < b + x) ⊔ (- x < - x)) ⇒ᵖ⟨ (λ q → case q as (a + x < b + x) ⊔ (- x < - x) ⇒ a + x < b + x of λ { (inl a+x<b+x) → a+x<b+x -- somehow ⊥-elim needs a hint in the next line ; (inr -x<-x ) → ⊥-elim {A = λ _ → [ a + x < b + x ]} (<-irrefl (- x) -x<-x) }) ⟩ a + x < b + x ◼ᵖ) +-reflects-< x y z = snd ( x + z < y + z ⇒ᵖ⟨ +-preserves-< (x + z) (y + z) (- z) ⟩ (x + z) - z < (y + z) - z ⇒ᵖ⟨ transport (λ i → [ +-assoc x z (- z) (~ i) < +-assoc y z (- z) (~ i) ]) ⟩ x + (z - z) < y + (z - z) ⇒ᵖ⟨ transport (λ i → [ x + +-rinv z i < y + +-rinv z i ]) ⟩ x + 0 < y + 0 ⇒ᵖ⟨ transport (λ i → [ fst (+-identity x) i < fst (+-identity y) i ]) ⟩ x < y ◼ᵖ) +-creates-< x y z .fst = +-preserves-< x y z +-creates-< x y z .snd = +-reflects-< x y z suc-creates-< : ∀ x y → [ (x < y) ⇔ (sucℤ x < sucℤ y) ] suc-creates-< x y .fst p = substₚ (λ p → sucℤ x < p) (∣ +-comm y (pos 1) ∣) $ substₚ (λ p → p < y + pos 1) (∣ +-comm x (pos 1) ∣) (+-preserves-< x y (pos 1) p) suc-creates-< x y .snd p = +-reflects-< x y (pos 1) $ substₚ (λ p → p < y + pos 1) (∣ +-comm (pos 1) x ∣) $ substₚ (λ p → sucℤ x < p) (∣ +-comm (pos 1) y ∣) p ·-creates-< : ∀ a b x → [ 0 < x ] → [ (a < b) ⇔ ((a · x) < (b · x)) ] ·-creates-< a b x p .fst q = ·-preserves-< a b x p q ·-creates-< a b x p .snd q = ·-reflects-< a b x p q ·-creates-<ˡ : ∀ a b x → [ 0 < x ] → [ (a < b) ⇔ ((x · a) < (x · b)) ] ·-creates-<ˡ a b x p .fst q = transport (λ i → [ ·-comm a x i < ·-comm b x i ]) $ ·-preserves-< a b x p q ·-creates-<ˡ a b x p .snd q = ·-reflects-< a b x p (transport (λ i → [ ·-comm x a i < ·-comm x b i ]) q) ·-creates-<-≡ : ∀ a b x → [ 0 < x ] → (a < b) ≡ ((a · x) < (b · x)) ·-creates-<-≡ a b x p = ⇔toPath' (·-creates-< a b x p) ·-creates-<ˡ-≡ : ∀ a b x → [ 0 < x ] → (a < b) ≡ ((x · a) < (x · b)) ·-creates-<ˡ-≡ a b x p = ⇔toPath' (·-creates-<ˡ a b x p) +-creates-≤ : ∀ a b x → [ (a ≤ b) ⇔ ((a + x) ≤ (b + x)) ] +-creates-≤ a b x = {! !} ·-creates-≤ : ∀ a b x → [ 0 ≤ x ] → [ (a ≤ b) ⇔ ((a · x) ≤ (b · x)) ] ·-creates-≤ a b x 0≤x .fst p = {! !} ·-creates-≤ a b x 0≤x .snd p = {! !} ·-creates-≤-≡ : ∀ a b x → [ 0 ≤ x ] → (a ≤ b) ≡ ((a · x) ≤ (b · x)) ·-creates-≤-≡ a b x 0≤x = uncurry ⇔toPath $ ·-creates-≤ a b x 0≤x ≤-dicho : ∀ x y → [ (x ≤ y) ⊔ (y ≤ x) ] ≤-dicho x y with <-tricho x y ... | inl (inl x<y) = inlᵖ $ <-asym x y x<y ... | inl (inr y<x) = inrᵖ $ <-asym y x y<x ... | inr x≡y = inlᵖ $ subst (λ p → [ ¬(p < x) ]) x≡y (<-irrefl x) ℤlattice : Lattice {ℓ-zero} {ℓ-zero} ℤlattice = record { LinearlyOrderedCommRing bundle renaming (≤-Lattice to is-Lattice) } open import MorePropAlgebra.Properties.Lattice ℤlattice open OnSet is-set hiding (+-min-distribʳ; ·-min-distribʳ; +-max-distribʳ; ·-max-distribʳ) ≤-min-+ : ∀ a b c w → [ w ≤ (a + c) ] → [ w ≤ (b + c) ] → [ w ≤ (min a b + c) ] ≤-max-+ : ∀ a b c w → [ (a + c) ≤ w ] → [ (b + c) ≤ w ] → [ (max a b + c) ≤ w ] ≤-min-· : ∀ a b c w → [ w ≤ (a · c) ] → [ w ≤ (b · c) ] → [ w ≤ (min a b · c) ] ≤-max-· : ∀ a b c w → [ (a · c) ≤ w ] → [ (b · c) ≤ w ] → [ (max a b · c) ≤ w ] ≤-min-+ = OnType.≤-dicho⇒+.≤-min-+ _+_ ≤-dicho ≤-max-+ = OnType.≤-dicho⇒+.≤-max-+ _+_ ≤-dicho ≤-min-· = OnType.≤-dicho⇒·.≤-min-· _·_ ≤-dicho ≤-max-· = OnType.≤-dicho⇒·.≤-max-· _·_ ≤-dicho +-min-distribʳ : ∀ x y z → (min x y + z) ≡ min (x + z) (y + z) ·-min-distribʳ : ∀ x y z → [ 0 ≤ z ] → (min x y · z) ≡ min (x · z) (y · z) +-max-distribʳ : ∀ x y z → (max x y + z) ≡ max (x + z) (y + z) ·-max-distribʳ : ∀ x y z → [ 0 ≤ z ] → (max x y · z) ≡ max (x · z) (y · z) +-min-distribˡ : ∀ x y z → (z + min x y) ≡ min (z + x) (z + y) ·-min-distribˡ : ∀ x y z → [ 0 ≤ z ] → (z · min x y) ≡ min (z · x) (z · y) +-max-distribˡ : ∀ x y z → (z + max x y) ≡ max (z + x) (z + y) ·-max-distribˡ : ∀ x y z → [ 0 ≤ z ] → (z · max x y) ≡ max (z · x) (z · y) +-min-distribʳ = OnSet.+-min-distribʳ is-set _+_ +-creates-≤ ≤-min-+ ·-min-distribʳ = OnSet.·-min-distribʳ is-set 0 _·_ ·-creates-≤ ≤-min-· +-max-distribʳ = OnSet.+-max-distribʳ is-set _+_ +-creates-≤ ≤-max-+ ·-max-distribʳ = OnSet.·-max-distribʳ is-set 0 _·_ ·-creates-≤ ≤-max-· +-min-distribˡ x y z = +-comm z (min x y) ∙ +-min-distribʳ x y z ∙ (λ i → min (+-comm x z i) (+-comm y z i)) ·-min-distribˡ x y z p = ·-comm z (min x y) ∙ ·-min-distribʳ x y z p ∙ (λ i → min (·-comm x z i) (·-comm y z i)) +-max-distribˡ x y z = +-comm z (max x y) ∙ +-max-distribʳ x y z ∙ (λ i → max (+-comm x z i) (+-comm y z i)) ·-max-distribˡ x y z p = ·-comm z (max x y) ∙ ·-max-distribʳ x y z p ∙ (λ i → max (·-comm x z i) (·-comm y z i)) pos<pos[suc] : ∀ x → [ pos x < pos (suc x) ] pos<pos[suc] 0 = 0<1 pos<pos[suc] (suc x) = suc-creates-< (pos x) (pos (suc x)) .fst (pos<pos[suc] x) 0<ᶻpos[suc] : ∀ x → [ 0 < pos (suc x) ] 0<ᶻpos[suc] 0 = 0<1 0<ᶻpos[suc] (suc x) = <-trans 0 (pos (suc x)) (pos (suc (suc x))) (0<ᶻpos[suc] x) (suc-creates-< (pos x) (pos (suc x)) .fst (pos<pos[suc] x)) ·-nullifiesˡ : ∀(x : ℤ) → 0 · x ≡ 0 ·-nullifiesˡ (pos zero) = refl ·-nullifiesˡ (neg zero) = refl ·-nullifiesˡ (posneg i) = refl ·-nullifiesˡ (pos (suc n)) = refl ·-nullifiesˡ (neg (suc n)) = sym posneg ·-nullifiesʳ : ∀(x : ℤ) → x · 0 ≡ 0 ·-nullifiesʳ x = ·-comm x 0 ∙ ·-nullifiesˡ x ·-preserves-0< : ∀ a b → [ 0 < a ] → [ 0 < b ] → [ 0 < a · b ] ·-preserves-0< a b p q = subst (λ p → [ p < a · b ]) (·-nullifiesˡ b) (·-preserves-< 0 a b q p) private term : ∀ b x → Type ℓ-zero term b x = [ ((pos 0 < x) ⇒ (pos 0 < b)) ⊓ ((pos 0 < b) ⇒ (pos 0 < x)) ] ·-reflects-<ˡ : (x y z : ℤ) → [ pos 0 < z ] → [ z · x < z · y ] → [ x < y ] ·-reflects-<ˡ x y z p q = ·-reflects-< x y z p (transport (λ i → [ ·-comm z x i < ·-comm z y i ]) q) -flips-<0 : ∀ x → [ (x < 0) ⇔ (0 < (- x)) ] -flips-<0 (signed spos zero) = (λ x → x) , (λ x → x) -flips-<0 (signed sneg zero) = (λ x → x) , (λ x → x) -flips-<0 (ℤ.posneg i) = (λ x → x) , (λ x → x) -flips-<0 (signed spos (suc n)) .fst p = ¬-<ⁿ-zero p -flips-<0 (signed sneg (suc n)) .fst tt = n , +ⁿ-comm n 1 -flips-<0 (signed sneg (suc n)) .snd p = tt -- NOTE: this could be a path, if we make `+-creates-<` into a path -flips-< : ∀ x y → [ x < y ] → [ - y < - x ] -flips-< x y p = ( ( x < y ) ⇒ᵖ⟨ +-creates-< x y (- y) .fst ⟩ ( x - y < y - y) ⇒ᵖ⟨ transport (λ i → [ +-comm x (- y) i < +-rinv y i ]) ⟩ ( (- y) + x < 0 ) ⇒ᵖ⟨ +-creates-< ((- y) + x) 0 (- x) .fst ⟩ (((- y) + x) - x < 0 - x) ⇒ᵖ⟨ transport (λ i → [ +-assoc (- y) x (- x) (~ i) < +-identity (- x) .snd i ]) ⟩ ( (- y) + (x - x) < - x ) ⇒ᵖ⟨ transport (λ i → [ (- y) + +-rinv x i < - x ]) ⟩ ( (- y) + 0 < - x ) ⇒ᵖ⟨ transport (λ i → [ +-identity (- y) .fst i < - x ]) ⟩ ( - y < - x ) ◼ᵖ) .snd p -flips-<-⇔ : ∀ x y → [ (x < y) ⇔ (- y < - x) ] -flips-<-⇔ x y .fst = -flips-< x y -flips-<-⇔ x y .snd p = transport (λ i → [ negate-invol x i < negate-invol y i ]) $ -flips-< (- y) (- x) p -flips-<-≡ : ∀ x y → (x < y) ≡ (- y < - x) -flips-<-≡ x y = ⇔toPath' (-flips-<-⇔ x y) -identity-· : ∀ a → (- 1) · a ≡ - a -identity-· (pos zero) j = posneg (~ i0 ∨ ~ j) -identity-· (neg zero) j = posneg (~ i1 ∨ ~ j) -identity-· (posneg i) j = posneg (~ i ∨ ~ j) -identity-· (pos (suc n)) i = neg (suc (+ⁿ-comm n 0 i)) -identity-· (neg (suc n)) i = pos (suc (+ⁿ-comm n 0 i)) -distˡ : ∀ a b → -(a · b) ≡ (- a) · b -distˡ a b = -(a · b) ≡⟨ sym $ -identity-· (a · b) ⟩ (- 1) · (a · b) ≡⟨ ·-assoc (- 1) a b ⟩ ((- 1) · a) · b ≡⟨ (λ i → -identity-· a i · b) ⟩ (- a) · b ∎ private lem : ∀ z → [ z < 0 ] → [ 0 < - z ] lem z p = subst (λ p → [ p < - z ]) (sym posneg) $ -flips-< z 0 p ·-creates-<-flippedˡ-≡ : (x y z : ℤ) → [ z < 0 ] → (z · x < z · y) ≡ (y < x) ·-creates-<-flippedˡ-≡ x y z p = z · x < z · y ≡⟨ -flips-<-≡ (z · x) (z · y) ⟩ - (z · y) < - (z · x) ≡⟨ (λ i → -distˡ z y i < -distˡ z x i) ⟩ (- z) · y < (- z) · x ≡⟨ sym $ ·-creates-<ˡ-≡ y x (- z) (lem z p) ⟩ y < x ∎ ·-creates-<-flippedʳ-≡ : (x y z : ℤ) → [ z < 0 ] → (x · z < y · z) ≡ (y < x) ·-creates-<-flippedʳ-≡ x y z p = (λ i → ·-comm x z i < ·-comm y z i) ∙ ·-creates-<-flippedˡ-≡ x y z p ·-reflects-<-flippedˡ : (x y z : ℤ) → [ z < 0 ] → [ z · x < z · y ] → [ y < x ] ·-reflects-<-flippedˡ x y z p q = pathTo⇒ (·-creates-<-flippedˡ-≡ x y z p) q -- (z · x < z · y ⇒ᵖ⟨ -flips-< (z · x) (z · y) ⟩ -- - (z · y) < - (z · x) ⇒ᵖ⟨ transport (λ i → [ -distˡ z y i < -distˡ z x i ]) ⟩ -- (- z) · y < (- z) · x ⇒ᵖ⟨ ·-creates-<ˡ y x (- z) (lem z p) .snd ⟩ -- y < x ◼ᵖ) .snd q ·-reflects-<-flippedʳ : (x y z : ℤ) → [ z < 0 ] → [ x · z < y · z ] → [ y < x ] ·-reflects-<-flippedʳ x y z p q = ·-reflects-<-flippedˡ x y z p (transport (λ i → [ ·-comm x z i < ·-comm y z i ]) q) -- ·-preserves-<-flippedˡ : (x y z : ℤ) → [ z < 0 ] → [ x < y ] → [ z · y < z · x ] -- ·-preserves-<-flippedˡ x y z p q = {! !} ·-reflects-0< : ∀ a b → [ 0 < a · b ] → [ ((0 < a) ⇔ (0 < b)) ⊓ ((a < 0) ⇔ (b < 0)) ] ·-reflects-0< a b p .fst .fst q = ·-reflects-<ˡ 0 b a q (transport (λ i → [ ·-nullifiesʳ a (~ i) < a · b ]) p) ·-reflects-0< a b p .fst .snd q = ·-reflects-< 0 a b q (transport (λ i → [ ·-nullifiesˡ b (~ i) < a · b ]) p) ·-reflects-0< a b p .snd .fst q = ·-reflects-<-flippedˡ 0 b a q (transport (λ i → [ ·-nullifiesʳ a (~ i) < a · b ]) p) ·-reflects-0< a b p .snd .snd q = ·-reflects-<-flippedʳ 0 a b q (transport (λ i → [ ·-nullifiesˡ b (~ i) < a · b ]) p) #-dicho : ∀ x → [ x # 0 ] ⊎ (x ≡ 0) #-dicho x = <-tricho x 0 ⊕-identityʳ : ∀ s → (s Bool.⊕ spos) ≡ s ⊕-identityʳ spos = refl ⊕-identityʳ sneg = refl ·-preserves-signˡ : ∀ x y → [ 0 < y ] → sign (x · y) ≡ sign x ·-preserves-signˡ x (signed spos zero) p = ⊥-elim {A = λ _ → sign (x · ℤ.posneg i0) ≡ sign x} (¬-<ⁿ-zero p) ·-preserves-signˡ x (signed sneg zero) p = ⊥-elim {A = λ _ → sign (x · ℤ.posneg i1) ≡ sign x} (¬-<ⁿ-zero p) ·-preserves-signˡ x (ℤ.posneg i) p = ⊥-elim {A = λ _ → sign (x · ℤ.posneg i ) ≡ sign x} (¬-<ⁿ-zero p) ·-preserves-signˡ (signed spos zero) (signed spos (suc n)) p = refl ·-preserves-signˡ (signed sneg zero) (signed spos (suc n)) p = refl ·-preserves-signˡ (ℤ.posneg i) (signed spos (suc n)) p = refl ·-preserves-signˡ (signed s (suc n₁)) (signed spos (suc n)) p = ⊕-identityʳ s #⇒≢ : ∀ x → [ x # 0 ] → ¬ᵗ(0 ≡ x) #⇒≢ x (inl p) q = <-irrefl 0 $ subst (λ p → [ p < pos 0 ]) (sym q) p #⇒≢ x (inr p) q = <-irrefl 0 $ subst (λ p → [ pos 0 < p ]) (sym q) p <-split-pos : ∀ z → [ 0 < z ] → Σ[ n ∈ ℕ ] z ≡ pos (suc n) <-split-pos (pos zero) p = ⊥-elim {A = λ _ → Σ[ n ∈ ℕ ] posneg i0 ≡ pos (suc n)} (<-irrefl 0 p) <-split-pos (neg zero) p = ⊥-elim {A = λ _ → Σ[ n ∈ ℕ ] posneg i1 ≡ pos (suc n)} (<-irrefl 0 p) <-split-pos (posneg i) p = ⊥-elim {A = λ _ → Σ[ n ∈ ℕ ] posneg i ≡ pos (suc n)} (<-irrefl 0 p) <-split-pos (pos (suc n)) p = n , refl <-split-neg : ∀ z → [ z < 0 ] → Σ[ n ∈ ℕ ] z ≡ neg (suc n) <-split-neg (pos zero) p = ⊥-elim {A = λ _ → Σ[ n ∈ ℕ ] posneg i0 ≡ neg (suc n)} (<-irrefl 0 p) <-split-neg (neg zero) p = ⊥-elim {A = λ _ → Σ[ n ∈ ℕ ] posneg i1 ≡ neg (suc n)} (<-irrefl 0 p) <-split-neg (posneg i) p = ⊥-elim {A = λ _ → Σ[ n ∈ ℕ ] posneg i ≡ neg (suc n)} (<-irrefl 0 p) <-split-neg (pos (suc m)) p = ⊥-elim {A = λ _ → Σ[ n ∈ ℕ ] pos (suc m) ≡ neg (suc n)} (¬suc<ⁿ0 m p) <-split-neg (neg (suc m)) p = m , refl #-split-abs : ∀ a → [ a # 0 ] → Σ[ x ∈ _ ] (abs a ≡ suc (abs x)) #-split-abs a (inl a<0) with <-split-neg a a<0; ... | (n , p) = neg n , λ i → abs (p i) #-split-abs a (inr 0<a) with <-split-pos a 0<a; ... | (n , p) = pos n , λ i → abs (p i) -- this is QuoInt.signed-zero signed0≡0 : ∀ s → signed s 0 ≡ 0 signed0≡0 spos = refl signed0≡0 sneg i = posneg (~ i) ·-sucIntʳ⁺ : ∀ m n → m · pos (suc n) ≡ m + m · pos n ·-sucIntʳ⁺ m n = ·-comm m (pos (suc n)) ∙ *-pos-suc n m ∙ (λ i → m + ·-comm (pos n) m i) signed-respects-+ : ∀ s a b → signed s (a +ⁿ b) ≡ signed s a + signed s b signed-respects-+ spos zero b = refl signed-respects-+ sneg zero b = refl signed-respects-+ spos (suc a) b i = sucℤ $ signed-respects-+ spos a b i signed-respects-+ sneg (suc a) b i = predℤ $ signed-respects-+ sneg a b i -- this is QuoInt.signed-inv sign-abs-identity : ∀ a → signed (sign a) (abs a) ≡ a sign-abs-identity (pos zero) j = posneg (i0 ∧ j) sign-abs-identity (neg zero) j = posneg (i1 ∧ j) sign-abs-identity (posneg i) j = posneg (i ∧ j) sign-abs-identity (pos (suc n)) = refl sign-abs-identity (neg (suc n)) = refl signed-reflects-≡₁ : ∀ s₁ s₂ n → signed s₁ (suc n) ≡ signed s₂ (suc n) → s₁ ≡ s₂ signed-reflects-≡₁ s₁ s₂ n p i = sign (p i) signed-reflects-≡₂ : ∀ s₁ s₂ a b → signed s₁ a ≡ signed s₂ b → a ≡ b signed-reflects-≡₂ s₁ s₂ a b p i = abs (p i) -abs : ∀ a → abs (- a) ≡ abs a -abs (signed s n) = refl -abs (posneg i) = refl -reflects-≡ : ∀ a b → - a ≡ - b → a ≡ b -reflects-≡ a b p = sym (negate-invol a) ∙ (λ i → - p i) ∙ negate-invol b abs-preserves-· : ∀ a b → abs (a · b) ≡ abs a ·ⁿ abs b abs-preserves-· a b = refl sign-abs-≡ : ∀ a b → sign a ≡ sign b → abs a ≡ abs b → a ≡ b sign-abs-≡ a b p q = transport (λ i → sign-abs-identity a i ≡ sign-abs-identity b i) λ i → signed (p i) (q i) 0<-sign : ∀ z → [ 0 < z ] → sign z ≡ spos 0<-sign z p i = sign $ <-split-pos z p .snd i <0-sign : ∀ z → [ z < 0 ] → sign z ≡ sneg <0-sign z p i = sign $ <-split-neg z p .snd i sign-pos : ∀ n → sign (pos n) ≡ spos sign-pos zero = refl sign-pos (suc n) = refl -- inj-*sm : l * suc m ≡ n * suc m → l ≡ n -- inj-*sm {zero} {m} {n} p = 0≡n*sm→0≡n p -- inj-*sm {l} {m} {zero} p = sym (0≡n*sm→0≡n (sym p)) -- inj-*sm {suc l} {m} {suc n} p = cong suc (inj-*sm (inj-m+ {m = suc m} p)) private lem1 : ∀ a x → sign a ≡ sign (signed (sign a) (abs a +ⁿ x ·ⁿ abs a)) lem1 (pos zero) x = sym $ sign-pos (x ·ⁿ 0) lem1 (neg zero) x = sym $ sign-pos (x ·ⁿ 0) lem1 (posneg i) x = sym $ sign-pos (x ·ⁿ 0) lem1 (pos (suc n)) x = refl lem1 (neg (suc n)) x = refl ·-reflects-≡ˡ⁺ : ∀ a b x → (pos (suc x)) · a ≡ (pos (suc x)) · b → a ≡ b ·-reflects-≡ˡ⁺ a b x p = sym (sign-abs-identity a) ∙ (λ i → signed (κ i) (γ i)) ∙ sign-abs-identity b where φ : suc x ·ⁿ abs a ≡ suc x ·ⁿ abs b φ = signed-reflects-≡₂ _ _ _ _ p γ : abs a ≡ abs b γ = ·ⁿ-reflects-≡ˡ' {x} {abs a} {abs b} φ κ = transport ( sign (signed (sign a) (suc x ·ⁿ abs a)) ≡ sign (signed (sign b) (suc x ·ⁿ abs b)) ≡⟨ (λ i → lem1 a x (~ i) ≡ lem1 b x (~ i)) ⟩ sign a ≡ sign b ∎) (λ i → sign (p i)) ·-reflects-≡ˡ⁻ : ∀ a b x → (neg (suc x)) · a ≡ (neg (suc x)) · b → a ≡ b ·-reflects-≡ˡ⁻ a b x p = sym (sign-abs-identity a) ∙ γ ∙ sign-abs-identity b where φ : suc x ·ⁿ abs a ≡ suc x ·ⁿ abs b φ = signed-reflects-≡₂ _ _ _ _ p κ : abs a ≡ abs b κ = ·ⁿ-reflects-≡ˡ' {x} {abs a} {abs b} φ γ : signed (sign a) (abs a) ≡ signed (sign b) (abs b) γ with #-dicho a ... | inl a#0 = -reflects-≡ _ _ (λ i → signed (θ i) (κ i)) where abstract c = #-split-abs a a#0 .fst q₁ : abs a ≡ suc (abs c) q₁ = #-split-abs a a#0 .snd q₂ : abs b ≡ suc (abs c) q₂ = sym κ ∙ q₁ θ : not (sign a) ≡ not (sign b) θ = signed-reflects-≡₁ _ _ _ (transport (λ i → signed (not (sign a)) (suc x ·ⁿ q₁ i) ≡ signed (not (sign b)) (suc x ·ⁿ q₂ i)) p) ... | inr a≡0 = cong₂ signed refl (λ i → abs (a≡0 i)) ∙ signed0≡0 (sign a) ∙ sym (signed0≡0 (sign b)) ∙ cong₂ signed refl ((λ i → abs (a≡0 (~ i))) ∙ κ) ·-reflects-≡ˡ : ∀ a b x → [ x # 0 ] → x · a ≡ x · b → a ≡ b ·-reflects-≡ˡ a b x (inl x<0) q = let (y , r) = <-split-neg x x<0 in ·-reflects-≡ˡ⁻ a b y (transport (λ i → r i · a ≡ r i · b) q) ·-reflects-≡ˡ a b x (inr 0<x) q = let (y , r) = <-split-pos x 0<x in ·-reflects-≡ˡ⁺ a b y (transport (λ i → r i · a ≡ r i · b) q) ·-reflects-≡ʳ : ∀ a b x → [ x # 0 ] → a · x ≡ b · x → a ≡ b ·-reflects-≡ʳ a b x p q = ·-reflects-≡ˡ a b x p (·-comm x a ∙ q ∙ ·-comm b x)
{ "alphanum_fraction": 0.4869864829, "avg_line_length": 45.3485576923, "ext": "agda", "hexsha": "4115eeacec7f0ee7f2ae44120d6b829a12ba9d7c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "agda/Number/Instances/QuoInt.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "agda/Number/Instances/QuoInt.agda", "max_line_length": 159, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "agda/Number/Instances/QuoInt.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 8930, "size": 18865 }
------------------------------------------------------------------------------ -- We do not know how erase a proof term in the translation ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module NotErasedProofTerm where postulate D : Set _≡_ : D → D → Set _≤_ : D → D → Set zero : D succ : D → D data N : D → Set where zN : N zero sN : ∀ {n} → N n → N (succ n) thm : ∀ n → N n → (∀ k → k ≤ k) → n ≡ n thm n Nn h = prf where -- The internal type of prf is -- ∀ (n : D) (Nn : N n) (h : ∀ k → k ≤ k) → ... -- Apia can erase the proof term Nn, but it cannot erase the proof -- term h. postulate prf : n ≡ n {-# ATP prove prf #-}
{ "alphanum_fraction": 0.4099660249, "avg_line_length": 25.2285714286, "ext": "agda", "hexsha": "094f1c6749140b92d60b6d16e61616d755eae31e", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Fail/Errors/NotErasedProofTerm.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Fail/Errors/NotErasedProofTerm.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Fail/Errors/NotErasedProofTerm.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 255, "size": 883 }
open import Nat open import Prelude open import core open import contexts open import lemmas-disjointness open import exchange open import lemmas-freshG -- this module contains all the proofs of different weakening structural -- properties that we use for the hypothetical judgements module weakening where mutual weaken-subst-Δ : ∀{Δ1 Δ2 Γ σ Γ'} → Δ1 ## Δ2 → Δ1 , Γ ⊢ σ :s: Γ' → (Δ1 ∪ Δ2) , Γ ⊢ σ :s: Γ' weaken-subst-Δ disj (STAId x) = STAId x weaken-subst-Δ disj (STASubst subst x) = STASubst (weaken-subst-Δ disj subst) (weaken-ta-Δ1 disj x) weaken-ta-Δ1 : ∀{Δ1 Δ2 Γ d τ} → Δ1 ## Δ2 → Δ1 , Γ ⊢ d :: τ → (Δ1 ∪ Δ2) , Γ ⊢ d :: τ weaken-ta-Δ1 disj TAConst = TAConst weaken-ta-Δ1 disj (TAVar x₁) = TAVar x₁ weaken-ta-Δ1 disj (TALam x₁ wt) = TALam x₁ (weaken-ta-Δ1 disj wt) weaken-ta-Δ1 disj (TAAp wt wt₁) = TAAp (weaken-ta-Δ1 disj wt) (weaken-ta-Δ1 disj wt₁) weaken-ta-Δ1 {Δ1} {Δ2} {Γ} disj (TAEHole {u = u} {Γ' = Γ'} x x₁) = TAEHole (x∈∪l Δ1 Δ2 u _ x ) (weaken-subst-Δ disj x₁) weaken-ta-Δ1 {Δ1} {Δ2} {Γ} disj (TANEHole {Γ' = Γ'} {u = u} x wt x₁) = TANEHole (x∈∪l Δ1 Δ2 u _ x) (weaken-ta-Δ1 disj wt) (weaken-subst-Δ disj x₁) weaken-ta-Δ1 disj (TACast wt x) = TACast (weaken-ta-Δ1 disj wt) x weaken-ta-Δ1 disj (TAFailedCast wt x x₁ x₂) = TAFailedCast (weaken-ta-Δ1 disj wt) x x₁ x₂ weaken-ta-Δ1 disj (TAFst wt) = TAFst (weaken-ta-Δ1 disj wt) weaken-ta-Δ1 disj (TASnd wt) = TASnd (weaken-ta-Δ1 disj wt) weaken-ta-Δ1 disj (TAPair wt wt₁) = TAPair (weaken-ta-Δ1 disj wt) (weaken-ta-Δ1 disj wt₁) -- this is a little bit of a time saver. since ∪ is commutative on -- disjoint contexts, and we need that premise anyway in both positions, -- there's no real reason to repeat the inductive argument above weaken-ta-Δ2 : ∀{Δ1 Δ2 Γ d τ} → Δ1 ## Δ2 → Δ2 , Γ ⊢ d :: τ → (Δ1 ∪ Δ2) , Γ ⊢ d :: τ weaken-ta-Δ2 {Δ1} {Δ2} {Γ} {d} {τ} disj D = tr (λ q → q , Γ ⊢ d :: τ) (∪comm Δ2 Δ1 (##-comm disj)) (weaken-ta-Δ1 (##-comm disj) D) -- note that these statements are somewhat stronger than usual. this is -- because we don't have implcit α-conversion. this reifies the -- often-silent on paper assumption that if you collide with a bound -- variable you can just α-convert it away and not worry. -- used in both cases below, so factored into a lemma to save repeated code lem-reassoc : {A : Set} {Γ Γ' : A ctx} {x : Nat} {τ : A} → (x # Γ') → (Γ ,, (x , τ)) ∪ Γ' == (Γ ∪ Γ') ,, (x , τ) lem-reassoc {A} {Γ} {Γ'} {x} {τ} apt with lem-apart-sing-disj apt ... | disj = (∪assoc Γ (■ (x , τ)) Γ' disj) · (ap1 (λ qq → Γ ∪ qq) (∪comm (■ (x , τ)) (Γ') disj) · ! (∪assoc Γ Γ' (■ (x , τ)) (##-comm disj))) -- first we prove a general form of weakening, that you can add any -- context Γ as long as it's fresh with respect to e mutual weaken-synth-∪ : ∀{e τ Γ Γ'} → freshΓ Γ' e → Γ ⊢ e => τ → (Γ ∪ Γ') ⊢ e => τ weaken-synth-∪ frsh SConst = SConst weaken-synth-∪ frsh (SAsc x) = SAsc (weaken-ana-∪ (freshΓ-asc frsh) x) weaken-synth-∪ {Γ = Γ} {Γ' = Γ'} frsh (SVar {x = x} x₁) = SVar (x∈∪l Γ Γ' x _ x₁) weaken-synth-∪ frsh (SAp x wt x₁ x₂) = SAp x (weaken-synth-∪ (freshΓ-ap1 frsh) wt) x₁ (weaken-ana-∪ (freshΓ-ap2 frsh) x₂) weaken-synth-∪ frsh SEHole = SEHole weaken-synth-∪ frsh (SNEHole x wt) = SNEHole x (weaken-synth-∪ (freshΓ-nehole frsh) wt) weaken-synth-∪ {Γ = Γ} {Γ' = Γ'} frsh (SLam {e = e} {τ2 = τ2} {x = x} x₁ wt) with ctxindirect Γ' x ... | Inl qq = abort (lem-fresh-lam2 (frsh x qq)) ... | Inr qq = SLam (apart-parts Γ Γ' x x₁ qq) (tr (λ qq → qq ⊢ e => τ2) (lem-reassoc {Γ = Γ} qq) (weaken-synth-∪ (freshΓ-lam2 frsh) wt)) weaken-synth-∪ frsh (SFst wt x) = SFst (weaken-synth-∪ (freshΓ-fst frsh) wt) x weaken-synth-∪ frsh (SSnd wt x) = SSnd (weaken-synth-∪ (freshΓ-snd frsh) wt) x weaken-synth-∪ frsh (SPair hd wt wt₁) = SPair hd (weaken-synth-∪ (freshΓ-pair1 frsh) wt) (weaken-synth-∪ (freshΓ-pair2 frsh) wt₁) weaken-ana-∪ : ∀{e τ Γ Γ'} → freshΓ Γ' e → Γ ⊢ e <= τ → (Γ ∪ Γ') ⊢ e <= τ weaken-ana-∪ frsh (ASubsume x x₁) = ASubsume (weaken-synth-∪ frsh x) x₁ weaken-ana-∪ {Γ = Γ} {Γ' = Γ'} frsh (ALam {e = e} {τ2 = τ2} {x = x} x₁ x₂ wt) with ctxindirect Γ' x ... | Inl qq = abort (lem-fresh-lam1 (frsh x qq)) ... | Inr qq = ALam (apart-parts Γ Γ' x x₁ qq) x₂ (tr (λ qq → qq ⊢ e <= τ2) (lem-reassoc {Γ = Γ} qq) (weaken-ana-∪ (freshΓ-lam1 frsh) wt)) -- it follows from this that if the term is closed, you can weaken with -- any context that's fresh in e weaken-synth-closed : ∀{e τ Γ} → freshΓ Γ e → ∅ ⊢ e => τ → Γ ⊢ e => τ weaken-synth-closed {e} {τ} {Γ} f wt = tr (λ qq → qq ⊢ e => τ) ∅∪1 (weaken-synth-∪ f wt) weaken-ana-closed : ∀{e τ Γ} → freshΓ Γ e → ∅ ⊢ e <= τ → Γ ⊢ e <= τ weaken-ana-closed {e} {τ} {Γ} f wt = tr (λ qq → qq ⊢ e <= τ) ∅∪1 (weaken-ana-∪ f wt) -- the very structural forms also follow from the union weakening, since -- ,, is defined by ∪ weaken-synth : ∀{ x Γ e τ τ'} → freshe x e → Γ ⊢ e => τ → (Γ ,, (x , τ')) ⊢ e => τ weaken-synth f wt = weaken-synth-∪ (fresh-freshΓ f) wt weaken-ana : ∀{x Γ e τ τ'} → freshe x e → Γ ⊢ e <= τ → (Γ ,, (x , τ')) ⊢ e <= τ weaken-ana f wt = weaken-ana-∪ (fresh-freshΓ f) wt mutual weaken-subst-Γ : ∀{ x Γ Δ σ Γ' τ} → envfresh x σ → Δ , Γ ⊢ σ :s: Γ' → Δ , (Γ ,, (x , τ)) ⊢ σ :s: Γ' weaken-subst-Γ {Γ = Γ} (EFId x₁) (STAId x₂) = STAId (λ x τ x₃ → x∈∪l Γ _ x τ (x₂ x τ x₃) ) weaken-subst-Γ {x = x} {Γ = Γ} (EFSubst x₁ efrsh x₂) (STASubst {y = y} {τ = τ'} subst x₃) = STASubst (exchange-subst-Γ {Γ = Γ} (flip x₂) (weaken-subst-Γ {Γ = Γ ,, (y , τ')} efrsh subst)) (weaken-ta x₁ x₃) weaken-ta : ∀{x Γ Δ d τ τ'} → fresh x d → Δ , Γ ⊢ d :: τ → Δ , Γ ,, (x , τ') ⊢ d :: τ weaken-ta _ TAConst = TAConst weaken-ta {x} {Γ} {_} {_} {τ} {τ'} (FVar x₂) (TAVar x₃) = TAVar (x∈∪l Γ (■ (x , τ')) _ _ x₃) weaken-ta {x = x} frsh (TALam {x = y} x₂ wt) with natEQ x y weaken-ta (FLam x₁ x₂) (TALam x₃ wt) | Inl refl = abort (x₁ refl) weaken-ta {Γ = Γ} {τ' = τ'} (FLam x₁ x₃) (TALam {x = y} x₄ wt) | Inr x₂ = TALam (apart-extend1 Γ (flip x₁) x₄) (exchange-ta-Γ {Γ = Γ} (flip x₁) (weaken-ta x₃ wt)) weaken-ta (FAp frsh frsh₁) (TAAp wt wt₁) = TAAp (weaken-ta frsh wt) (weaken-ta frsh₁ wt₁) weaken-ta (FHole x₁) (TAEHole x₂ x₃) = TAEHole x₂ (weaken-subst-Γ x₁ x₃) weaken-ta (FNEHole x₁ frsh) (TANEHole x₂ wt x₃) = TANEHole x₂ (weaken-ta frsh wt) (weaken-subst-Γ x₁ x₃) weaken-ta (FCast frsh) (TACast wt x₁) = TACast (weaken-ta frsh wt) x₁ weaken-ta (FFailedCast frsh) (TAFailedCast wt x₁ x₂ x₃) = TAFailedCast (weaken-ta frsh wt) x₁ x₂ x₃ weaken-ta (FFst frsh) (TAFst wt) = TAFst (weaken-ta frsh wt) weaken-ta (FSnd frsh) (TASnd wt) = TASnd (weaken-ta frsh wt) weaken-ta (FPair frsh frsh₁) (TAPair wt wt₁) = TAPair (weaken-ta frsh wt) (weaken-ta frsh₁ wt₁)
{ "alphanum_fraction": 0.5285265637, "avg_line_length": 56.6074074074, "ext": "agda", "hexsha": "5949acd28b8c81e2bb167c3e6d585f9a53914789", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-livelits-agda", "max_forks_repo_path": "weakening.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_issues_repo_issues_event_max_datetime": "2020-10-20T20:44:13.000Z", "max_issues_repo_issues_event_min_datetime": "2020-09-30T20:27:56.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazel-palette-agda", "max_issues_repo_path": "weakening.agda", "max_line_length": 166, "max_stars_count": 4, "max_stars_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazel-palette-agda", "max_stars_repo_path": "weakening.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-19T15:38:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-04T06:45:06.000Z", "num_tokens": 3189, "size": 7642 }
-- Bug: With abstraction depended on bound variable names! module Issue233 where postulate T : (Set → Set) → Set mkT : (F : Set → Set) → T F foo : T (λ A → A) foo with λ (B : Set) → B ... | F = mkT F
{ "alphanum_fraction": 0.5817307692, "avg_line_length": 18.9090909091, "ext": "agda", "hexsha": "46234d996829bb1cbeb77508e2daa9d771c273f4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue233.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue233.agda", "max_line_length": 58, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue233.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 74, "size": 208 }
open import Data.List using ( List ; [] ; _∷_ ) open import Data.Nat using ( ℕ ; zero ; suc ) open import Data.Maybe using ( Maybe ; just ; nothing ) open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ; subst ) open import Relation.Binary.PropositionalEquality.TrustMe using ( trustMe ) module AssocFree.Util where ≡-relevant : ∀ {α} {A : Set α} {a b : A} → .(a ≡ b) → (a ≡ b) ≡-relevant a≡b = trustMe δsubst₂ : ∀ {a b p} {A : Set a} {B : A → Set b} (P : ∀ a → B a → Set p) {x₁ x₂ y₁ y₂} → (x₁≡x₂ : x₁ ≡ x₂) → (subst B x₁≡x₂ y₁ ≡ y₂) → P x₁ y₁ → P x₂ y₂ δsubst₂ P refl refl p = p subst-natural : ∀ {α β γ} {A : Set α} {B : A → Set β} {C : A → Set γ} {a₁ a₂ : A} (p : a₁ ≡ a₂) (f : ∀ {a} → B a → C a) (b : B a₁) → subst C p (f b) ≡ f (subst B p b) subst-natural refl f b = refl lookup : ∀ {α} {A : Set α} → List A → ℕ → Maybe A lookup [] n = nothing lookup (a ∷ as) zero = just a lookup (a ∷ as) (suc n) = lookup as n
{ "alphanum_fraction": 0.5592173018, "avg_line_length": 38.84, "ext": "agda", "hexsha": "59b2767df25dd806f850080bc1f2c115de7af545", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:38:44.000Z", "max_forks_repo_forks_event_min_datetime": "2018-03-03T04:39:31.000Z", "max_forks_repo_head_hexsha": "08337fdb8375137a52cc9b3ade766305191b2394", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-assoc-free", "max_forks_repo_path": "src/AssocFree/Util.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "08337fdb8375137a52cc9b3ade766305191b2394", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-assoc-free", "max_issues_repo_path": "src/AssocFree/Util.agda", "max_line_length": 88, "max_stars_count": 3, "max_stars_repo_head_hexsha": "08337fdb8375137a52cc9b3ade766305191b2394", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-assoc-free", "max_stars_repo_path": "src/AssocFree/Util.agda", "max_stars_repo_stars_event_max_datetime": "2020-08-27T20:56:20.000Z", "max_stars_repo_stars_event_min_datetime": "2016-11-22T11:48:31.000Z", "num_tokens": 391, "size": 971 }
{-# OPTIONS --without-K #-} module Util.HoTT.Univalence.Axiom where open import Util.HoTT.Equiv open import Util.HoTT.Univalence.Statement open import Util.Prelude open import Util.Relation.Binary.PropositionalEquality using (Σ-≡⁻) private variable α β γ : Level A B C : Set α postulate univalence : ∀ {α} → Univalence α ≃→≡ : A ≃ B → A ≡ B ≃→≡ A≃B = univalence A≃B .proj₁ .proj₁ ≡→≃∘≃→≡ : (p : A ≃ B) → ≡→≃ (≃→≡ p) ≡ p ≡→≃∘≃→≡ p = univalence p .proj₁ .proj₂ ≃→≡∘≡→≃ : (p : A ≡ B) → ≃→≡ (≡→≃ p) ≡ p ≃→≡∘≡→≃ p = Σ-≡⁻ (univalence (≡→≃ p) .proj₂ (p , refl)) .proj₁ ≃→≡-≡→≃-coh : (p : A ≡ B) → subst (λ q → ≡→≃ q ≡ ≡→≃ p) (≃→≡∘≡→≃ p) (≡→≃∘≃→≡ (≡→≃ p)) ≡ refl ≃→≡-≡→≃-coh p = Σ-≡⁻ (univalence (≡→≃ p) .proj₂ (p , refl)) .proj₂ ≅→≡ : A ≅ B → A ≡ B ≅→≡ = ≃→≡ ∘ ≅→≃
{ "alphanum_fraction": 0.4955527319, "avg_line_length": 20.1794871795, "ext": "agda", "hexsha": "d75ea186fa6d51ad75395a40167112c498dc9e73", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/msc-thesis-code", "max_forks_repo_path": "src/Util/HoTT/Univalence/Axiom.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/msc-thesis-code", "max_issues_repo_path": "src/Util/HoTT/Univalence/Axiom.agda", "max_line_length": 68, "max_stars_count": 5, "max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/msc-thesis-code", "max_stars_repo_path": "src/Util/HoTT/Univalence/Axiom.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z", "num_tokens": 448, "size": 787 }
------------------------------------------------------------------------ -- The Agda standard library -- -- IO ------------------------------------------------------------------------ module IO where open import Coinduction open import Data.Unit open import Data.String open import Data.Colist open import Function import IO.Primitive as Prim open import Level ------------------------------------------------------------------------ -- The IO monad -- One cannot write "infinitely large" computations with the -- postulated IO monad in IO.Primitive without turning off the -- termination checker (or going via the FFI, or perhaps abusing -- something else). The following coinductive deep embedding is -- introduced to avoid this problem. Possible non-termination is -- isolated to the run function below. infixl 1 _>>=_ _>>_ data IO {a} (A : Set a) : Set (suc a) where lift : (m : Prim.IO A) → IO A return : (x : A) → IO A _>>=_ : {B : Set a} (m : ∞ (IO B)) (f : (x : B) → ∞ (IO A)) → IO A _>>_ : {B : Set a} (m₁ : ∞ (IO B)) (m₂ : ∞ (IO A)) → IO A {-# NON_TERMINATING #-} run : ∀ {a} {A : Set a} → IO A → Prim.IO A run (lift m) = m run (return x) = Prim.return x run (m >>= f) = Prim._>>=_ (run (♭ m )) λ x → run (♭ (f x)) run (m₁ >> m₂) = Prim._>>=_ (run (♭ m₁)) λ _ → run (♭ m₂) ------------------------------------------------------------------------ -- Utilities sequence : ∀ {a} {A : Set a} → Colist (IO A) → IO (Colist A) sequence [] = return [] sequence (c ∷ cs) = ♯ c >>= λ x → ♯ (♯ sequence (♭ cs) >>= λ xs → ♯ return (x ∷ ♯ xs)) -- The reason for not defining sequence′ in terms of sequence is -- efficiency (the unused results could cause unnecessary memory use). sequence′ : ∀ {a} {A : Set a} → Colist (IO A) → IO (Lift ⊤) sequence′ [] = return _ sequence′ (c ∷ cs) = ♯ c >> ♯ (♯ sequence′ (♭ cs) >> ♯ return _) mapM : ∀ {a b} {A : Set a} {B : Set b} → (A → IO B) → Colist A → IO (Colist B) mapM f = sequence ∘ map f mapM′ : {A B : Set} → (A → IO B) → Colist A → IO (Lift ⊤) mapM′ f = sequence′ ∘ map f ------------------------------------------------------------------------ -- Simple lazy IO -- Note that the functions below produce commands which, when -- executed, may raise exceptions. -- Note also that the semantics of these functions depends on the -- version of the Haskell base library. If the version is 4.2.0.0 (or -- later?), then the functions use the character encoding specified by -- the locale. For older versions of the library (going back to at -- least version 3) the functions use ISO-8859-1. getContents : IO Costring getContents = lift Prim.getContents readFile : String → IO Costring readFile f = lift (Prim.readFile f) -- Reads a finite file. Raises an exception if the file path refers to -- a non-physical file (like "/dev/zero"). readFiniteFile : String → IO String readFiniteFile f = lift (Prim.readFiniteFile f) writeFile∞ : String → Costring → IO ⊤ writeFile∞ f s = ♯ lift (Prim.writeFile f s) >> ♯ return _ writeFile : String → String → IO ⊤ writeFile f s = writeFile∞ f (toCostring s) appendFile∞ : String → Costring → IO ⊤ appendFile∞ f s = ♯ lift (Prim.appendFile f s) >> ♯ return _ appendFile : String → String → IO ⊤ appendFile f s = appendFile∞ f (toCostring s) putStr∞ : Costring → IO ⊤ putStr∞ s = ♯ lift (Prim.putStr s) >> ♯ return _ putStr : String → IO ⊤ putStr s = putStr∞ (toCostring s) putStrLn∞ : Costring → IO ⊤ putStrLn∞ s = ♯ lift (Prim.putStrLn s) >> ♯ return _ putStrLn : String → IO ⊤ putStrLn s = putStrLn∞ (toCostring s)
{ "alphanum_fraction": 0.551911087, "avg_line_length": 29.9918699187, "ext": "agda", "hexsha": "ebe0a45c719ae11d8b2fc3a9c71b2eee9156c5d4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/IO.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/IO.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/IO.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 1089, "size": 3689 }
-- {-# OPTIONS -v tc.cover.cover:10 -v tc.cover.splittree:100 -v tc.cover.strategy:100 -v tc.cc:100 #-} module Issue365 where {- Basic data types -} data Nat : Set where zero : Nat succ : Nat -> Nat data Fin : Nat -> Set where fzero : {n : Nat} -> Fin (succ n) fsucc : {n : Nat} -> Fin n -> Fin (succ n) data Vec (A : Set) : Nat -> Set where [] : Vec A zero _::_ : {n : Nat} -> A -> Vec A n -> Vec A (succ n) data _==_ {A : Set} (x : A) : A -> Set where refl : x == x {- Function composition -} _◦_ : {A : Set} {B : A -> Set} {C : (x : A) -> B x -> Set} (f : {x : A} (y : B x) -> C x y) (g : (x : A) -> B x) (x : A) -> C x (g x) (f ◦ g) x = f (g x) {- Indexing and tabulating -} _!_ : {n : Nat} {A : Set} -> Vec A n -> Fin n -> A [] ! () (x :: xs) ! fzero = x (x :: xs) ! (fsucc i) = xs ! i tabulate : {n : Nat} {A : Set} -> (Fin n -> A) -> Vec A n tabulate {zero} f = [] tabulate {succ n} f = f fzero :: tabulate (f ◦ fsucc) lem-tab-! : forall {A n} (xs : Vec A n) -> tabulate (_!_ xs) == xs lem-tab-! {A} {zero} [] = refl lem-tab-! {A} {succ n} (x :: xs) with tabulate (_!_ xs) | lem-tab-! xs lem-tab-! {A} {succ _} (x :: xs) | .xs | refl = refl
{ "alphanum_fraction": 0.487007544, "avg_line_length": 27.7441860465, "ext": "agda", "hexsha": "b63dc358bb1fda2da0ce38328d36d9851a5f866f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/succeed/Issue365.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/succeed/Issue365.agda", "max_line_length": 103, "max_stars_count": 1, "max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "np/agda-git-experiment", "max_stars_repo_path": "test/succeed/Issue365.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 476, "size": 1193 }
module Operator.Equals {ℓ} where import Lvl open import Data.Boolean open import Functional open import Relator.Equals{ℓ} open import Type{ℓ} -- Type class for run-time checking of equality record Equals(T : Type) : Type where infixl 100 _==_ field _==_ : T → T → Bool field ⦃ completeness ⦄ : ∀{a b : T} → (a ≡ b) → (a == b ≡ 𝑇) open Equals ⦃ ... ⦄ using (_==_) public
{ "alphanum_fraction": 0.6393861893, "avg_line_length": 23, "ext": "agda", "hexsha": "6d67b19348200d0693fec57abb2c5758408168e1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Operator/Equals.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Operator/Equals.agda", "max_line_length": 58, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Operator/Equals.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 133, "size": 391 }
open import Data.Product using ( ∃ ; _×_ ; _,_ ; proj₁ ; proj₂ ) open import Relation.Unary using ( _∈_ ) open import Web.Semantic.DL.TBox.Interp using ( Δ ; _⊨_≈_ ) renaming ( Interp to Interp′ ; emp to emp′ ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.Util using ( False ; id ) module Web.Semantic.DL.ABox.Interp where infixr 4 _,_ infixr 5 _*_ {- An interpretation of a signature Σ (made of concept and role names) over a set X of individuals consists of - a Signature interpreation I - a mapping from X do Δ I, the domain of interpretation of I Note: In RDF the members of X are sets of IRIs, BNodes or Literals, but IRIs can also refer to TBox elements. -} data Interp (Σ : Signature) (X : Set) : Set₁ where -- I is a full Interpreation (Interp') -- The function X → Δ {Σ} I interprets the variables in X _,_ : ∀ I → (X → Δ {Σ} I) → (Interp Σ X) -- extract the Signature Interpretation, forgetting the interpretation of variables ⌊_⌋ : ∀ {Σ X} → Interp Σ X → Interp′ Σ ⌊ I , i ⌋ = I -- return the individuals function for an interpretation ind : ∀ {Σ X} → (I : Interp Σ X) → X → Δ ⌊ I ⌋ ind (I , i) = i -- paired individuals function for an interpretation, useful for relations/roles ind² : ∀ {Σ X} → (I : Interp Σ X) → (X × X) → (Δ ⌊ I ⌋ × Δ ⌊ I ⌋) ind² I (x , y) = (ind I x , ind I y) -- why * ? _*_ : ∀ {Σ X Y} → (Y → X) → Interp Σ X → Interp Σ Y f * I = (⌊ I ⌋ , λ y → ind I (f y)) -- Empty interpretation emp : ∀ {Σ} → Interp Σ False emp = (emp′ , id) data Surjective {Σ X} (I : Interp Σ X) : Set where -- y is a variable i.e. y : X -- (ind I y), x : Δ -- all elements x of the domain Δ, have a variable y that it is an interpretation of surj : (∀ x → ∃ λ y → ⌊ I ⌋ ⊨ x ≈ ind I y) → (I ∈ Surjective) ind⁻¹ : ∀ {Σ X} {I : Interp Σ X} → (I ∈ Surjective) → (Δ ⌊ I ⌋ → X) ind⁻¹ (surj i) x = proj₁ (i x) surj✓ : ∀ {Σ X} {I : Interp Σ X} (I∈Surj : I ∈ Surjective) → ∀ x → (⌊ I ⌋ ⊨ x ≈ ind I (ind⁻¹ I∈Surj x)) surj✓ (surj i) x = proj₂ (i x)
{ "alphanum_fraction": 0.6049019608, "avg_line_length": 35.7894736842, "ext": "agda", "hexsha": "c0c7ea9ece6f74b8aff9c331f03d39add22916b9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-web-semantic", "max_forks_repo_path": "src/Web/Semantic/DL/ABox/Interp.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-web-semantic", "max_issues_repo_path": "src/Web/Semantic/DL/ABox/Interp.agda", "max_line_length": 103, "max_stars_count": 1, "max_stars_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bblfish/agda-web-semantic", "max_stars_repo_path": "src/Web/Semantic/DL/ABox/Interp.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-22T09:43:23.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-22T09:43:23.000Z", "num_tokens": 796, "size": 2040 }
{-# OPTIONS --cubical #-} module Cubical.Categories.Everything where import Cubical.Categories.Category import Cubical.Categories.Functor import Cubical.Categories.NaturalTransformation import Cubical.Categories.Presheaves import Cubical.Categories.Sets import Cubical.Categories.Type
{ "alphanum_fraction": 0.8531468531, "avg_line_length": 28.6, "ext": "agda", "hexsha": "bb7a7bbb36fd9fdf786cfacdd9fbd074ea1c36a8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "borsiemir/cubical", "max_forks_repo_path": "Cubical/Categories/Everything.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "borsiemir/cubical", "max_issues_repo_path": "Cubical/Categories/Everything.agda", "max_line_length": 47, "max_stars_count": null, "max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "borsiemir/cubical", "max_stars_repo_path": "Cubical/Categories/Everything.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 60, "size": 286 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Vectors defined by recursion ------------------------------------------------------------------------ -- What is the point of this module? The n-ary products below are intended -- to be used with a fixed n, in which case the nil constructor can be -- avoided: pairs are represented as pairs (x , y), not as triples -- (x , y , unit). -- Additionally, vectors defined by recursion enjoy η-rules. That is to say -- that two vectors of known length are definitionally equal whenever their -- elements are. {-# OPTIONS --without-K --safe #-} module Data.Vec.Recursive where open import Level using (Level; Lift; lift) open import Data.Nat.Base as Nat using (ℕ; zero; suc) open import Data.Empty open import Data.Fin.Base as Fin using (Fin; zero; suc) open import Data.Product as Prod using (_×_; _,_; proj₁; proj₂) open import Data.Sum.Base as Sum using (_⊎_) open import Data.Unit.Base open import Data.Vec.Base as Vec using (Vec; _∷_) open import Function open import Relation.Unary open import Agda.Builtin.Equality using (_≡_) private variable a b c p : Level A : Set a B : Set b C : Set c -- Types and patterns ------------------------------------------------------------------------ pattern 2+_ n = suc (suc n) infix 8 _^_ _^_ : Set a → ℕ → Set a A ^ 0 = Lift _ ⊤ A ^ 1 = A A ^ 2+ n = A × A ^ suc n pattern [] = lift tt infix 3 _∈[_]_ _∈[_]_ : {A : Set a} → A → ∀ n → A ^ n → Set a a ∈[ 0 ] as = Lift _ ⊥ a ∈[ 1 ] a′ = a ≡ a′ a ∈[ 2+ n ] a′ , as = a ≡ a′ ⊎ a ∈[ suc n ] as -- Basic operations ------------------------------------------------------------------------ cons : ∀ n → A → A ^ n → A ^ suc n cons 0 a _ = a cons (suc n) a as = a , as uncons : ∀ n → A ^ suc n → A × A ^ n uncons 0 a = a , lift tt uncons (suc n) (a , as) = a , as head : ∀ n → A ^ suc n → A head n as = proj₁ (uncons n as) tail : ∀ n → A ^ suc n → A ^ n tail n as = proj₂ (uncons n as) fromVec : ∀[ Vec A ⇒ (A ^_) ] fromVec = Vec.foldr (_ ^_) (cons _) _ toVec : Π[ (A ^_) ⇒ Vec A ] toVec 0 as = Vec.[] toVec (suc n) as = head n as ∷ toVec n (tail n as) lookup : ∀ {n} (k : Fin n) → A ^ n → A lookup zero = head _ lookup (suc {n} k) = lookup k ∘′ tail n replicate : ∀ n → A → A ^ n replicate n a = fromVec (Vec.replicate a) tabulate : ∀ n → (Fin n → A) → A ^ n tabulate n f = fromVec (Vec.tabulate f) append : ∀ m n → A ^ m → A ^ n → A ^ (m Nat.+ n) append 0 n xs ys = ys append 1 n x ys = cons n x ys append (2+ m) n (x , xs) ys = x , append (suc m) n xs ys splitAt : ∀ m n → A ^ (m Nat.+ n) → A ^ m × A ^ n splitAt 0 n xs = [] , xs splitAt (suc m) n xs = let (ys , zs) = splitAt m n (tail (m Nat.+ n) xs) in cons m (head (m Nat.+ n) xs) ys , zs -- Manipulating N-ary products ------------------------------------------------------------------------ map : (A → B) → ∀ n → A ^ n → B ^ n map f 0 as = lift tt map f 1 a = f a map f (2+ n) (a , as) = f a , map f (suc n) as ap : ∀ n → (A → B) ^ n → A ^ n → B ^ n ap 0 fs ts = [] ap 1 f t = f t ap (2+ n) (f , fs) (t , ts) = f t , ap (suc n) fs ts module _ {P : ℕ → Set p} where foldr : P 0 → (A → P 1) → (∀ n → A → P (suc n) → P (2+ n)) → ∀ n → A ^ n → P n foldr p0 p1 p2+ 0 as = p0 foldr p0 p1 p2+ 1 a = p1 a foldr p0 p1 p2+ (2+ n) (a , as) = p2+ n a (foldr p0 p1 p2+ (suc n) as) foldl : (P : ℕ → Set p) → P 0 → (A → P 1) → (∀ n → A → P (suc n) → P (2+ n)) → ∀ n → A ^ n → P n foldl P p0 p1 p2+ 0 as = p0 foldl P p0 p1 p2+ 1 a = p1 a foldl P p0 p1 p2+ (2+ n) (a , as) = let p1′ = p1 a in foldl (P ∘′ suc) p1′ (λ a → p2+ 0 a p1′) (p2+ ∘ suc) (suc n) as reverse : ∀ n → A ^ n → A ^ n reverse = foldl (_ ^_) [] id (λ n → _,_) zipWith : (A → B → C) → ∀ n → A ^ n → B ^ n → C ^ n zipWith f 0 as bs = [] zipWith f 1 a b = f a b zipWith f (2+ n) (a , as) (b , bs) = f a b , zipWith f (suc n) as bs unzipWith : (A → B × C) → ∀ n → A ^ n → B ^ n × C ^ n unzipWith f 0 as = [] , [] unzipWith f 1 a = f a unzipWith f (2+ n) (a , as) = Prod.zip _,_ _,_ (f a) (unzipWith f (suc n) as) zip : ∀ n → A ^ n → B ^ n → (A × B) ^ n zip = zipWith _,_ unzip : ∀ n → (A × B) ^ n → A ^ n × B ^ n unzip = unzipWith id
{ "alphanum_fraction": 0.4675324675, "avg_line_length": 29.7733333333, "ext": "agda", "hexsha": "50e4eccb1bbe32d4822f42a7c144f1e976f96b0a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Vec/Recursive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Vec/Recursive.agda", "max_line_length": 77, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Vec/Recursive.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1662, "size": 4466 }
open import Prelude open import RW.Utils.Monads -- Some Error monad utilities, a là Haskell. module RW.Utils.Error where open import Data.String open Monad {{...}} -- Error Typeclass record IsError {a}(A : Set a) : Set a where field showError : A → String open IsError {{...}} instance IsError-String : IsError String IsError-String = record { showError = λ s → s } -- Error Monad Err : ∀{a} → (E : Set a) ⦃ isErr : IsError E ⦄ → Set a → Set a Err e a = e ⊎ a throwError : ∀{a}{E A : Set a} ⦃ isErr : IsError E ⦄ → E → Err E A throwError = i1 catchError : ∀{a}{E A : Set a} ⦃ isErr : IsError E ⦄ → Err E A → (E → Err E A) → Err E A catchError (i2 a) _ = i2 a catchError (i1 e) f = f e instance MonadError : ∀{e}{E : Set e} ⦃ isErr : IsError E ⦄ → Monad (Err E) MonadError = record { return = i2 ; _>>=_ = λ { (i1 err) _ → i1 err ; (i2 x ) f → f x } } runErr : ∀{a}{E A : Set a} ⦃ isErr : IsError E ⦄ → Err E A → String ⊎ A runErr (i2 a) = i2 a runErr ⦃ s ⦄ (i1 e) = i1 (IsError.showError s e)
{ "alphanum_fraction": 0.5087866109, "avg_line_length": 23.9, "ext": "agda", "hexsha": "27d9644ffc8e8292800fba92fd5c950d651c79e6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "VictorCMiraldo/agda-rw", "max_forks_repo_path": "RW/Utils/Error.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2", "max_issues_repo_issues_event_max_datetime": "2015-05-28T14:48:03.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-06T15:03:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "VictorCMiraldo/agda-rw", "max_issues_repo_path": "RW/Utils/Error.agda", "max_line_length": 54, "max_stars_count": 16, "max_stars_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "VictorCMiraldo/agda-rw", "max_stars_repo_path": "RW/Utils/Error.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-24T17:38:20.000Z", "max_stars_repo_stars_event_min_datetime": "2015-02-09T15:43:38.000Z", "num_tokens": 429, "size": 1195 }
-- Andreas, 2018-04-10, issue #3581, reported by 3abc, test case by Andrea -- Regression in the termination checker introduced together -- with collecting function calls also in the type signatures -- (fix of #1556). open import Agda.Builtin.Bool open import Agda.Builtin.Nat I = Bool i0 = true i1 = false record PathP {l} (A : I → Set l) (x : A i0) (y : A i1) : Set l where field apply : ∀ i → A i open PathP _[_≡_] = PathP _≡_ : ∀ {l} {A : Set l} → A → A → Set l _≡_ {A = A} = PathP (\ _ → A) refl : ∀ {l} {A : Set l} {x : A} → x ≡ x refl {x = x} .apply _ = x cong' : ∀ {l ℓ'} {A : Set l}{B : A → Set ℓ'} (f : (a : A) → B a) {x y} (p : x ≡ y) → PathP (λ i → B (p .apply i)) (f (p .apply i0)) (f (p .apply i1)) cong' f p .apply = λ i → f (p .apply i) foo : Nat → Nat foo zero = zero foo (suc n) = Z .apply true .apply true where postulate Z : (\ _ → foo n ≡ foo n) [ (cong' foo (refl {x = n})) ≡ (\ { .apply i → cong' foo (refl {x = n}) .apply i }) ]
{ "alphanum_fraction": 0.5490797546, "avg_line_length": 25.7368421053, "ext": "agda", "hexsha": "c4db63e28d780134e9a5ca7d76d18bce09499159", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "hborum/agda", "max_forks_repo_path": "test/Succeed/Issue3581.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Succeed/Issue3581.agda", "max_line_length": 114, "max_stars_count": null, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Succeed/Issue3581.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 402, "size": 978 }
------------------------------------------------------------------------------ -- Testing Agda internal terms: @Var Nat Args@ when @Args = []@ ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module AgdaInternalTerms.VarEmptyArgumentsTerm where postulate D : Set postulate id : (P : D → Set)(x : D) → P x → P x {-# ATP prove id #-}
{ "alphanum_fraction": 0.4014869888, "avg_line_length": 33.625, "ext": "agda", "hexsha": "f0b05ab5dac6724b903ceb338d4cca83ee88090c", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Succeed/non-fol-theorems/AgdaInternalTerms/VarEmptyArgumentsTerm.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Succeed/non-fol-theorems/AgdaInternalTerms/VarEmptyArgumentsTerm.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Succeed/non-fol-theorems/AgdaInternalTerms/VarEmptyArgumentsTerm.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 98, "size": 538 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Groupoid where open import Level open import Categories.Category import Categories.Morphisms record Groupoid {o ℓ e} (C : Category o ℓ e) : Set (o ⊔ ℓ ⊔ e) where private module C = Category C open C using (_⇒_) open Categories.Morphisms C field _⁻¹ : ∀ {A B} → (A ⇒ B) → (B ⇒ A) iso : ∀ {A B} {f : A ⇒ B} → Iso f (f ⁻¹)
{ "alphanum_fraction": 0.6218905473, "avg_line_length": 21.1578947368, "ext": "agda", "hexsha": "52e1906671f277b53692999778a9726c57c661cb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Groupoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Groupoid.agda", "max_line_length": 68, "max_stars_count": 1, "max_stars_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "p-pavel/categories", "max_stars_repo_path": "Categories/Groupoid.agda", "max_stars_repo_stars_event_max_datetime": "2018-12-29T21:51:57.000Z", "max_stars_repo_stars_event_min_datetime": "2018-12-29T21:51:57.000Z", "num_tokens": 139, "size": 402 }
------------------------------------------------------------------------ -- Lemmas ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --exact-split #-} module Math.Combinatorics.ListFunction.Properties.Lemma where open import Data.List hiding (_∷ʳ_) import Data.List.Properties as Lₚ open import Data.List.Relation.Binary.Sublist.Propositional using (_⊆_; []; _∷_; _∷ʳ_) open import Data.Product as Prod using (proj₁; proj₂; _×_; _,_) open import Function open import Relation.Binary.PropositionalEquality module _ {a} {A : Set a} where []⊆xs : ∀ (xs : List A) → [] ⊆ xs []⊆xs [] = [] []⊆xs (x ∷ xs) = x ∷ʳ []⊆xs xs module _ {a b} {A : Set a} {B : Set b} where lemma₁ : ∀ (f : A → B) (x : A) (xss : List (List A)) → map (λ ys → f x ∷ ys) (map (map f) xss) ≡ map (map f) (map (λ ys → x ∷ ys) xss) lemma₁ f x xss = begin map (λ ys → f x ∷ ys) (map (map f) xss) ≡⟨ sym $ Lₚ.map-compose xss ⟩ map (λ ys → f x ∷ map f ys) xss ≡⟨ Lₚ.map-compose xss ⟩ map (map f) (map (λ ys → x ∷ ys) xss) ∎ where open ≡-Reasoning module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where proj₁-map₁ : ∀ (f : A → B) (t : A × C) → proj₁ (Prod.map₁ f t) ≡ f (Prod.proj₁ t) proj₁-map₁ _ _ = refl module _ {a b} {A : Set a} {B : Set b} where proj₁-map₂ : ∀ (f : B → B) (t : A × B) → proj₁ (Prod.map₂ f t) ≡ proj₁ t proj₁-map₂ _ _ = refl proj₁′ : A × B → A proj₁′ = proj₁
{ "alphanum_fraction": 0.5109289617, "avg_line_length": 36.6, "ext": "agda", "hexsha": "9b0cee2e607fe194262f6224f566c484649cd749", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9fafa35c940ff7b893a80120f6a1f22b0a3917b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-combinatorics", "max_forks_repo_path": "Math/Combinatorics/ListFunction/Properties/Lemma.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9fafa35c940ff7b893a80120f6a1f22b0a3917b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-combinatorics", "max_issues_repo_path": "Math/Combinatorics/ListFunction/Properties/Lemma.agda", "max_line_length": 86, "max_stars_count": 3, "max_stars_repo_head_hexsha": "9fafa35c940ff7b893a80120f6a1f22b0a3917b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-combinatorics", "max_stars_repo_path": "Math/Combinatorics/ListFunction/Properties/Lemma.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-25T07:25:27.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-25T08:24:15.000Z", "num_tokens": 545, "size": 1464 }
module _ where open import Agda.Builtin.Equality using (_≡_; refl) -- First example -- module M (A : Set) where record R : Set where data D : Set where open R (record {}) postulate x : A F : D → Set₁ F _ rewrite refl {x = x} = Set -- Second example -- record ⊤ : Set where no-eta-equality constructor tt data Box (A : Set) : Set where [_] : A → Box A Unit : Set Unit = Box ⊤ F : Unit → Set → Set F [ _ ] x = x G : {P : Unit → Set} → ((x : ⊤) → P [ x ]) → ((x : Unit) → P x) G f [ x ] = f x record R : Set₁ where no-eta-equality field f : (x : Unit) → Box (F x ⊤) data ⊥ : Set where r : R r = record { f = G [_] } open R r H : ⊥ → Set₁ H _ rewrite refl {x = tt} = Set
{ "alphanum_fraction": 0.5333333333, "avg_line_length": 13.5849056604, "ext": "agda", "hexsha": "2ef01610b7a43051e9815a6c4353005c28f9df86", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2727.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2727.agda", "max_line_length": 63, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2727.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 271, "size": 720 }
{-# OPTIONS --sized-types #-} open import FRP.JS.Bool using ( Bool ; true ; false ) renaming ( _≟_ to _≟b_ ) open import FRP.JS.Nat using ( ℕ ) open import FRP.JS.Float using ( ℝ ) renaming ( _≟_ to _≟n_ ) open import FRP.JS.String using ( String ) renaming ( _≟_ to _≟s_ ) open import FRP.JS.Array using ( Array ) renaming ( lookup? to alookup? ; _≟[_]_ to _≟a[_]_ ) open import FRP.JS.Object using ( Object ) renaming ( lookup? to olookup? ; _≟[_]_ to _≟o[_]_ ) open import FRP.JS.Maybe using ( Maybe ; just ; nothing ) open import FRP.JS.Size using ( Size ; ↑_ ) module FRP.JS.JSON where data JSON : {σ : Size} → Set where null : ∀ {σ} → JSON {σ} string : ∀ {σ} → String → JSON {σ} float : ∀ {σ} → ℝ → JSON {σ} bool : ∀ {σ} → Bool → JSON {σ} array : ∀ {σ} → Array (JSON {σ}) → JSON {↑ σ} object : ∀ {σ} → Object (JSON {σ}) → JSON {↑ σ} {-# COMPILED_JS JSON function(x,v) { if (x === null) { return v.null(null); } else if (x.constructor === String) { return v.string(null,x); } else if (x.constructor === Number) { return v.float(null,x); } else if (x.constructor === Boolean) { return v.bool(null,x); } else if (x.constructor === Array) { return v.array(null,x); } else { return v.object(null,x); } } #-} {-# COMPILED_JS null function() { return null; } #-} {-# COMPILED_JS string function() { return function(x) { return x; }; } #-} {-# COMPILED_JS float function() { return function(x) { return x; }; } #-} {-# COMPILED_JS bool function() { return function(x) { return x; }; } #-} {-# COMPILED_JS array function() { return function(x) { return x; }; } #-} {-# COMPILED_JS object function() { return function(x) { return x; }; } #-} postulate show : JSON → String parse : String → Maybe JSON {-# COMPILED_JS show JSON.stringify #-} {-# COMPILED_JS parse require("agda.box").handle(JSON.parse) #-} Key : Bool → Set Key true = String Key false = ℕ lookup? : ∀ {σ} → Maybe (JSON {↑ σ}) → ∀ {b} → Key b → Maybe (JSON {σ}) lookup? (just (object js)) {true} k = olookup? js k lookup? (just (array js)) {false} i = alookup? js i lookup? _ _ = nothing _≟_ : ∀ {σ τ} → JSON {σ} → JSON {τ} → Bool null ≟ null = true string s ≟ string t = s ≟s t float m ≟ float n = m ≟n n bool b ≟ bool c = b ≟b c array js ≟ array ks = js ≟a[ _≟_ ] ks object js ≟ object ks = js ≟o[ _≟_ ] ks _ ≟ _ = false
{ "alphanum_fraction": 0.5840634126, "avg_line_length": 39.2950819672, "ext": "agda", "hexsha": "d1a05e7286f8dded99ed5d957001f5a1e61ddaef", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z", "max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z", "max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_forks_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-frp-js", "max_forks_repo_path": "src/agda/FRP/JS/JSON.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-frp-js", "max_issues_repo_path": "src/agda/FRP/JS/JSON.agda", "max_line_length": 95, "max_stars_count": 63, "max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_stars_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-frp-js", "max_stars_repo_path": "src/agda/FRP/JS/JSON.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z", "num_tokens": 798, "size": 2397 }
-- Testing the version option on a file with errors. -- -- N.B. It is necessary to change the Issue1244a.out file when using -- different versions of Agda. foo : Set → Set foo a = b
{ "alphanum_fraction": 0.7049180328, "avg_line_length": 22.875, "ext": "agda", "hexsha": "33baf6f88b68016e09fd0726b3ae02dfab7500f4", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue1244a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue1244a.agda", "max_line_length": 68, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue1244a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 49, "size": 183 }
module Luau.Addr where open import Agda.Builtin.Bool using (true; false) open import Agda.Builtin.Equality using (_≡_) open import Agda.Builtin.Nat using (Nat; _==_) open import Agda.Builtin.String using (String) open import Agda.Builtin.TrustMe using (primTrustMe) open import Properties.Dec using (Dec; yes; no) open import Properties.Equality using (_≢_) Addr : Set Addr = Nat _≡ᴬ_ : (a b : Addr) → Dec (a ≡ b) a ≡ᴬ b with a == b a ≡ᴬ b | false = no p where postulate p : (a ≢ b) a ≡ᴬ b | true = yes primTrustMe
{ "alphanum_fraction": 0.7071290944, "avg_line_length": 27.3157894737, "ext": "agda", "hexsha": "b6f989f571dfcfe5e232d03750acbc7824ded5b8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "XanderYZZ/luau", "max_forks_repo_path": "prototyping/Luau/Addr.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "XanderYZZ/luau", "max_issues_repo_path": "prototyping/Luau/Addr.agda", "max_line_length": 52, "max_stars_count": 1, "max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "TheGreatSageEqualToHeaven/luau", "max_stars_repo_path": "prototyping/Luau/Addr.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z", "num_tokens": 176, "size": 519 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Construction.Presheaves where -- The Category of Presheaves over a Category C, i.e. -- the Functor Category [ C.op , Setoids ] -- Again, the levels are made explicit to show the generality and constraints. -- CoPreasheaves are defined here as well, for convenience -- The main reson to name them is that some things (like CoYoneda) -- look more natural/symmetric then. open import Level open import Categories.Category open import Categories.Category.Construction.Functors open import Categories.Category.Instance.Setoids using (Setoids) Presheaves′ : ∀ o′ ℓ′ {o ℓ e : Level} → Category o ℓ e → Category (o ⊔ ℓ ⊔ e ⊔ suc (o′ ⊔ ℓ′)) (o ⊔ ℓ ⊔ o′ ⊔ ℓ′) (o ⊔ o′ ⊔ ℓ′) Presheaves′ o′ ℓ′ C = Functors (Category.op C) (Setoids o′ ℓ′) Presheaves : ∀ {o ℓ e o′ ℓ′ : Level} → Category o ℓ e → Category (o ⊔ ℓ ⊔ e ⊔ suc (o′ ⊔ ℓ′)) (o ⊔ ℓ ⊔ o′ ⊔ ℓ′) (o ⊔ o′ ⊔ ℓ′) Presheaves {o} {ℓ} {e} {o′} {ℓ′} C = Presheaves′ o′ ℓ′ C CoPresheaves′ : ∀ o′ ℓ′ {o ℓ e : Level} → Category o ℓ e → Category (o ⊔ ℓ ⊔ e ⊔ suc (o′ ⊔ ℓ′)) (o ⊔ ℓ ⊔ o′ ⊔ ℓ′) (o ⊔ o′ ⊔ ℓ′) CoPresheaves′ o′ ℓ′ C = Functors C (Setoids o′ ℓ′) CoPresheaves : ∀ {o ℓ e o′ ℓ′ : Level} → Category o ℓ e → Category (o ⊔ ℓ ⊔ e ⊔ suc (o′ ⊔ ℓ′)) (o ⊔ ℓ ⊔ o′ ⊔ ℓ′) (o ⊔ o′ ⊔ ℓ′) CoPresheaves {o} {ℓ} {e} {o′} {ℓ′} C = CoPresheaves′ o′ ℓ′ C
{ "alphanum_fraction": 0.6100443131, "avg_line_length": 41.0303030303, "ext": "agda", "hexsha": "46afb7589c5d0bd05da8edae481e35603a6c5582", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Construction/Presheaves.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Construction/Presheaves.agda", "max_line_length": 78, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Construction/Presheaves.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 568, "size": 1354 }
module Monads.MonadMorphs where open import Library open import Functors open import Categories open import Monads open Fun open Monad record MonadMorph {a b}{C : Cat {a}{b}}(M M' : Monad C) : Set (a ⊔ b) where constructor monadmorph open Cat C field morph : ∀ {X} → Hom (T M X) (T M' X) lawη : ∀ {X} → comp morph (η M {X}) ≅ η M' {X} lawbind : ∀ {X Y}{k : Hom X (T M Y)} → comp (morph {Y}) (bind M k) ≅ comp (bind M' (comp (morph {Y}) k)) (morph {X})
{ "alphanum_fraction": 0.521978022, "avg_line_length": 26, "ext": "agda", "hexsha": "0ebb5769b22605b000fb8613c7dd9932bb11c827", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "Monads/MonadMorphs.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "Monads/MonadMorphs.agda", "max_line_length": 75, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "Monads/MonadMorphs.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 185, "size": 546 }
-- Occurs check when unifying indices in patterns module OccursCheck where data Nat : Set where zero : Nat suc : Nat -> Nat data _==_ {A : Set}(x : A) : A -> Set where refl : x == x f : {n : Nat} -> n == suc n -> Nat f refl = zero
{ "alphanum_fraction": 0.5843621399, "avg_line_length": 16.2, "ext": "agda", "hexsha": "4902c4dc7b412e52f71e228b950766363978ea07", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/OccursCheck.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/OccursCheck.agda", "max_line_length": 49, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/OccursCheck.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 83, "size": 243 }
{-# OPTIONS --cubical --no-import-sorts #-} open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Function.Base using (_∋_) import Cubical.Algebra.Group as Std -- import Cubical.Structures.Group.Properties open import MorePropAlgebra.Bundles module MorePropAlgebra.Properties.Group {ℓ} (assumptions : Group {ℓ}) where open Group assumptions renaming (Carrier to G) import MorePropAlgebra.Properties.Monoid module Monoid'Properties = MorePropAlgebra.Properties.Monoid (record { Group assumptions }) -- how does this even work without renaming? module Monoid' = Monoid (record { Group assumptions }) ( Monoid') = Monoid ∋ (record { Group assumptions }) stdIsGroup : Std.IsGroup 0g _+_ (-_) stdIsGroup .Std.IsGroup.isMonoid = Monoid'Properties.stdIsMonoid stdIsGroup .Std.IsGroup.inverse = is-inverse stdGroup : Std.Group {ℓ} stdGroup = record { Group assumptions ; isGroup = stdIsGroup } module GroupLemmas' = Std.GroupLemmas stdGroup -- module GroupLemmas (G : Group {ℓ}) where -- open Group G public -- abstract -- simplL : (a : Carrier) {b c : Carrier} → a + b ≡ a + c → b ≡ c -- simplR : {a b : Carrier} (c : Carrier) → a + c ≡ b + c → a ≡ b -- invInvo : (a : Carrier) → - (- a) ≡ a -- invId : - 0g ≡ 0g -- idUniqueL : {e : Carrier} (x : Carrier) → e + x ≡ x → e ≡ 0g -- idUniqueR : (x : Carrier) {e : Carrier} → x + e ≡ x → e ≡ 0g -- invUniqueL : {g h : Carrier} → g + h ≡ 0g → g ≡ - h -- invUniqueR : {g h : Carrier} → g + h ≡ 0g → h ≡ - g -- invDistr : (a b : Carrier) → - (a + b) ≡ - b - a -- private -- simplR = GroupLemmas.simplR G abstract invUniqueL : {g h : G} → g + h ≡ 0g → g ≡ - h invUniqueL {g} {h} p = GroupLemmas'.simplR h (p ∙ sym (is-invl h)) -- ported from `Algebra.Properties.Group` private right-helper : ∀ x y → y ≡ - x + (x + y) right-helper x y = ( y ≡⟨ sym (snd (is-identity y)) ⟩ 0g + y ≡⟨ cong₂ _+_ (sym (snd (is-inverse x))) refl ⟩ ((- x) + x) + y ≡⟨ sym (is-assoc (- x) x y) ⟩ (- x) + (x + y) ∎) -- alternative: -- follows from uniqueness of - -- (a + -a) ≡ 0 -- ∃! b . a + b = 0 -- show that a is an additive inverse of - a then it must be THE additive inverse of - a and has to be called - - a which is a by uniqueness -involutive : ∀ x → - - x ≡ x -involutive x = ( (- (- x)) ≡⟨ sym (fst (is-identity _)) ⟩ (- (- x)) + 0g ≡⟨ cong₂ _+_ refl (sym (snd (is-inverse _))) ⟩ (- (- x)) + (- x + x) ≡⟨ sym (right-helper (- x) x) ⟩ x ∎)
{ "alphanum_fraction": 0.5589992532, "avg_line_length": 39.9701492537, "ext": "agda", "hexsha": "1e1d3ac31ffed8cfe39f198c7bfbb81363dc8ba2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "agda/MorePropAlgebra/Properties/Group.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "agda/MorePropAlgebra/Properties/Group.agda", "max_line_length": 144, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "agda/MorePropAlgebra/Properties/Group.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 936, "size": 2678 }
module BSTree {A : Set}(_≤_ : A → A → Set) where open import BTree {A} data _⊴*_ : A → BTree → Set where gelf : {x : A} → x ⊴* leaf gend : {x y : A}{l r : BTree} → x ≤ y → x ⊴* l → x ⊴* (node y l r) data _*⊴_ : BTree → A → Set where lelf : {x : A} → leaf *⊴ x lend : {x y : A}{l r : BTree} → y ≤ x → r *⊴ x → (node y l r) *⊴ x data BSTree : BTree → Set where slf : BSTree leaf snd : {x : A}{l r : BTree} → BSTree l → BSTree r → l *⊴ x → x ⊴* r → BSTree (node x l r)
{ "alphanum_fraction": 0.3172690763, "avg_line_length": 23.34375, "ext": "agda", "hexsha": "adfe6d5f21762f6d5f167f86afc7fbcc08f6f754", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/BSTree.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/BSTree.agda", "max_line_length": 49, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/BSTree.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 258, "size": 747 }
module Issue1252 where data Bool : Set where true false : Bool {-# COMPILED_DATA Bool Bool True False #-} foo : Bool → Bool foo true = false foo false = true {-# COMPILED_EXPORT foo foohs #-}
{ "alphanum_fraction": 0.6884422111, "avg_line_length": 15.3076923077, "ext": "agda", "hexsha": "8d093ce08a72a778c6d99b432c25042aaab3c511", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Compiler/simple/Issue1252.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Compiler/simple/Issue1252.agda", "max_line_length": 42, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Compiler/simple/Issue1252.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 55, "size": 199 }
module Hello where open import IO using (run; putStrLn) import IO.Primitive as Prim using (IO) open import Data.Nat using (ℕ) import Data.Nat.Show as Nat using (show) open import Data.Unit using (⊤) -- This is no upper case 't' open import Data.String using (_++_) age : ℕ age = 28 main : Prim.IO ⊤ main = run (putStrLn ("Hello World! I'm " ++ Nat.show age))
{ "alphanum_fraction": 0.6923076923, "avg_line_length": 21.4117647059, "ext": "agda", "hexsha": "ab65cfe1b0c08c3140a4bd3cf90592468840048f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "112a706f266941d6ec8cb107d18476f9d7ffbbc6", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "neosimsim/merkdas", "max_forks_repo_path": "hello-agda/src/Hello.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "112a706f266941d6ec8cb107d18476f9d7ffbbc6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "neosimsim/merkdas", "max_issues_repo_path": "hello-agda/src/Hello.agda", "max_line_length": 60, "max_stars_count": 1, "max_stars_repo_head_hexsha": "112a706f266941d6ec8cb107d18476f9d7ffbbc6", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "neosimsim/merkdas", "max_stars_repo_path": "hello-agda/src/Hello.agda", "max_stars_repo_stars_event_max_datetime": "2020-05-26T08:08:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-26T08:08:13.000Z", "num_tokens": 106, "size": 364 }
-- Based on an example due to Thorsten Altenkirch. See "Recursion with -- boxes", http://sneezy.cs.nott.ac.uk/fplunch/weblog/?p=104. module SubjectReduction where open import Common.Coinduction Eq : {A : Set} → A → A → Set1 Eq {A} x y = (P : A → Set) → P x → P y refl : ∀ {A} (x : A) → Eq x x refl x P Px = Px data Stream : Set where tick : ∞ Stream → Stream ticks : Stream ticks = tick (♯ ticks) l₁ : Eq ticks (tick _) -- Eq ticks (tick (♯ ticks)) l₁ = refl ticks l₂ : ∀ {s t} → Eq s t → Eq (tick (♯ s)) (tick (♯ t)) l₂ eq = λ P Px → eq (λ s → P (tick (♯ s))) Px Goal : Set1 Goal = Eq (tick (♯ ticks)) (tick (♯ tick (♯ ticks))) _∶_ : (A : Set1) → A → A _ ∶ x = x l₃ : Goal l₃ = ((_ → Eq (tick (♯ ticks)) (tick (♯ tick (♯ ticks)))) ∶ l₂) l₁ -- If l₃ is accepted, then it evaluates to λ P Px → Px, but the -- following code is not accepted: -- l₃′ : Goal -- l₃′ = λ P Px → Px
{ "alphanum_fraction": 0.5685393258, "avg_line_length": 22.25, "ext": "agda", "hexsha": "258f51c04c4dfdb69bc80a914faea1987370e203", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Fail/SubjectReduction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Fail/SubjectReduction.agda", "max_line_length": 70, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Fail/SubjectReduction.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 355, "size": 890 }
module Data.List.Decidable where import Lvl open import Data.Boolean import Data.Boolean.Operators open Data.Boolean.Operators.Programming open import Data.Tuple open import Data.List open import Data.List.Functions open import Data.List.Equiv open import Functional open import Logic.Propositional open import Logic.Propositional.Theorems open import Structure.Operator open import Structure.Relator.Properties open import Structure.Setoid open import Type open import Type.Properties.Decidable open import Type.Properties.Decidable.Proofs private variable ℓ ℓₑ ℓₑₗ : Lvl.Level private variable T : Type{ℓ} module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ ⦃ equiv-list : Equiv{ℓₑₗ}(List(T)) ⦄ ⦃ ext : Extensionality(equiv-list) ⦄ {_≡?_ : T → T → Bool} where instance [≡]-decider : ⦃ dec : Decider(2)(_≡_ {T = T})(_≡?_) ⦄ → Decider(2)(_≡_ {T = List(T)})(satisfiesAll₂(_≡?_) (const 𝐹) (const 𝐹)) [≡]-decider {x = ∅} {∅} = true (reflexivity(_≡_)) [≡]-decider {x = ∅} {y ⊰ ys} = false [∅][⊰]-unequal [≡]-decider {x = x ⊰ xs} {∅} = false ([∅][⊰]-unequal ∘ symmetry(_≡_)) [≡]-decider {x = x ⊰ xs} {y ⊰ ys} = step{f = id} (true ∘ uncurry (congruence₂(_⊰_))) (false ∘ contrapositiveᵣ [⊰]-generalized-cancellation) (tuple-decider ⦃ dec-Q = [≡]-decider {x = xs} {ys} ⦄)
{ "alphanum_fraction": 0.6513899324, "avg_line_length": 35.972972973, "ext": "agda", "hexsha": "c61204c8cca67a37f9a5539a74e4c1230f96feea", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/List/Decidable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/List/Decidable.agda", "max_line_length": 197, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/List/Decidable.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 499, "size": 1331 }
module Structure.Type.Identity.Proofs where import Lvl open import Functional using (_→ᶠ_ ; id ; _on₂_ ; swap ; _$_ ; apply) open import Logic open import Logic.Propositional open import Logic.Propositional.Proofs.Structures open import Structure.Function open import Structure.Setoid using (Equiv ; intro) renaming (_≡_ to _≡ₛ_) open import Structure.Relator.Equivalence import Structure.Relator.Names as Names open import Structure.Relator.Properties open import Structure.Relator.Properties.Proofs open import Structure.Relator open import Structure.Type.Identity open import Syntax.Function open import Type private variable ℓ ℓ₁ ℓ₂ ℓₑ₁ ℓₑ₂ ℓₑ ℓₘₑ ℓₚ ℓₒ : Lvl.Level private variable T A B : Type{ℓ} private variable x y : T private variable Id _≡_ _▫_ : T → T → Stmt{ℓ} module _ {_≡_ : Type{ℓ} → Type{ℓ} → Stmt{ℓₑ}} ⦃ minRefl : MinimalReflexiveRelation{ℓₚ = ℓ}(_≡_) ⦄ where minimal-reflection-coercion : ((_≡_) ⊆₂ (_→ᶠ_)) minimal-reflection-coercion = minRefl{_→ᶠ_} module _ {_≡_ : A → A → Stmt{ℓₑ₁}} ⦃ minRefl : MinimalReflexiveRelation{ℓₚ = ℓₑ₂}(_≡_) ⦄ {_▫_ : B → B → Stmt{ℓₑ₂}} ⦃ op-refl : Reflexivity(_▫_) ⦄ {f : A → B} where minimal-reflection-transport : (_≡_) ⊆₂ ((_▫_) on₂ f) minimal-reflection-transport = intro (sub₂(_≡_)((_▫_) on₂ f) ⦃ minRefl ⦃ on₂-reflexivity ⦄ ⦄) module _ ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ ⦃ minRefl : MinimalReflexiveRelation{ℓₚ = ℓₑ₂}(Equiv._≡_ equiv-A) ⦄ where minimal-reflection-to-function : ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ {f : A → B} → Function ⦃ equiv-A ⦄ ⦃ equiv-B ⦄ (f) minimal-reflection-to-function {f = f} = intro (sub₂(Equiv._≡_ equiv-A)((_≡ₛ_) on₂ f) ⦃ minimal-reflection-transport ⦄) module _ ⦃ equiv-T : Equiv{ℓₑ}(T) ⦄ ⦃ minRefl : MinimalReflexiveRelation{ℓₚ = ℓ}(Equiv._≡_ equiv-T) ⦄ where minimal-reflection-to-relator : ∀{P : T → Stmt{ℓ}} → UnaryRelator(P) minimal-reflection-to-relator {P = P} = intro (sub₂(Equiv._≡_ equiv-T)((_→ᶠ_) on₂ P) ⦃ minimal-reflection-transport ⦄) module _ ⦃ minRefl : MinimalReflexiveRelation(_≡_) ⦄ where minimal-reflection-to-flipped-transitivityᵣ : Names.FlippedTransitivityᵣ(_≡_) minimal-reflection-to-flipped-transitivityᵣ {z = z} = sub₂(_≡_)((_→ᶠ_) on₂ (_≡ z)) ⦃ minimal-reflection-transport ⦄ module _ ⦃ refl : Reflexivity(_≡_) ⦄ ⦃ minRefl : MinimalReflexiveRelation(_≡_) ⦄ where minimal-reflection-to-symmetry : Symmetry(_≡_) Symmetry.proof minimal-reflection-to-symmetry = sub₂(_≡_)(swap(_≡_)) ⦃ minRefl ⦃ swap-reflexivity ⦄ ⦄ minimal-reflection-to-transitivity : Transitivity(_≡_) Transitivity.proof minimal-reflection-to-transitivity xy yz = minimal-reflection-to-flipped-transitivityᵣ (symmetry(_≡_) ⦃ minimal-reflection-to-symmetry ⦄ xy) yz minimal-reflection-to-equivalence : Equivalence(_≡_) Equivalence.reflexivity minimal-reflection-to-equivalence = refl Equivalence.symmetry minimal-reflection-to-equivalence = minimal-reflection-to-symmetry Equivalence.transitivity minimal-reflection-to-equivalence = minimal-reflection-to-transitivity module _ ⦃ refl-Id : Reflexivity(Id) ⦄ ⦃ identElim : IdentityEliminator{ℓₚ = ℓₚ}(Id) ⦄ where identity-eliminator-to-reflexive-subrelation : MinimalReflexiveRelation(Id) identity-eliminator-to-reflexive-subrelation {_▫_ = _▫_} = intro(idElim(Id) (\{x y} _ → (x ▫ y)) (reflexivity(_▫_))) module _ ⦃ refl : Reflexivity(Id) ⦄ ⦃ identElim : IdentityEliminator(Id) ⦄ where identity-eliminator-to-symmetry : Symmetry(Id) identity-eliminator-to-symmetry = minimal-reflection-to-symmetry ⦃ minRefl = identity-eliminator-to-reflexive-subrelation ⦄ identity-eliminator-to-flipped-transitivityᵣ : Names.FlippedTransitivityᵣ(Id) identity-eliminator-to-flipped-transitivityᵣ = minimal-reflection-to-flipped-transitivityᵣ ⦃ minRefl = identity-eliminator-to-reflexive-subrelation ⦄ identity-eliminator-to-transitivity : Transitivity(Id) identity-eliminator-to-transitivity = minimal-reflection-to-transitivity ⦃ minRefl = identity-eliminator-to-reflexive-subrelation ⦄ identity-eliminator-to-equivalence : Equivalence(Id) Equivalence.reflexivity identity-eliminator-to-equivalence = refl Equivalence.symmetry identity-eliminator-to-equivalence = identity-eliminator-to-symmetry Equivalence.transitivity identity-eliminator-to-equivalence = identity-eliminator-to-transitivity
{ "alphanum_fraction": 0.7426641826, "avg_line_length": 54.3544303797, "ext": "agda", "hexsha": "fe7a504b36aad76f4114814af09523fd49203c78", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Type/Identity/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Type/Identity/Proofs.agda", "max_line_length": 164, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Type/Identity/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1495, "size": 4294 }
-- Andreas, 2020-03-18, issue #4520, reported by Dylan Ede. -- -- Make the error message concerning ambiguous names -- in BUILTIN declarations more precise. open import Agda.Primitive open import Agda.Builtin.FromNat open import Agda.Builtin.Nat renaming (Nat to ℕ) private variable ℓ ℓ' : Level record FromNat (A : Set ℓ) : Set (lsuc ℓ) where field Constraint : ℕ → Set ℓ fromNat : (n : ℕ) ⦃ _ : Constraint n ⦄ → A open FromNat ⦃ ... ⦄ public using (fromNat) {-# BUILTIN FROMNAT fromNat #-} -- ERROR WAS: -- The argument to BUILTIN FROMNAT must be an unambiguous defined name -- when scope checking the declaration -- {-# BUILTIN FROMNAT fromNat #-} -- NEW ERROR: -- Name fromNat is ambiguous -- when scope checking the declaration -- {-# BUILTIN FROMNAT fromNat #-}
{ "alphanum_fraction": 0.6909547739, "avg_line_length": 25.6774193548, "ext": "agda", "hexsha": "860852fa3a795a5654677a92056dd5ffa10dcc3f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue4520.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue4520.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue4520.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 235, "size": 796 }
{-# OPTIONS --experimental-irrelevance #-} open import Agda.Builtin.Bool open import Agda.Builtin.Equality data Box (A : Set) : ..(x : A) → Set where c : (x : A) → Box A x unbox : {A : Set} → .(x : A) → Box A x → A unbox a (c b) = b .b : Bool b = true b' : Bool b' = unbox b (c _)
{ "alphanum_fraction": 0.5659722222, "avg_line_length": 16.9411764706, "ext": "agda", "hexsha": "687f64c3fb1d14dc99f4fbc70159206e4f185245", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2758.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2758.agda", "max_line_length": 42, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2758.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 112, "size": 288 }