Search is not available for this dataset
text
string | meta
dict |
---|---|
{- Name: Bowornmet (Ben) Hudson
-- define the source language from the paper
-}
open import Preliminaries
open import Preorder-withmax
module Proofs where
-- define the source language from the paper
-- we want to focus on arrow, cross, and nat types
data Tp : Set where
unit : Tp
nat : Tp
susp : Tp → Tp
_->s_ : Tp → Tp → Tp
_×s_ : Tp → Tp → Tp
data Cost : Set where
0c : Cost
1c : Cost
_+c_ : Cost → Cost → Cost
data Equals0c : Cost → Set where
Eq0-0c : Equals0c 0c
Eq0-+c : ∀ {c c'} → Equals0c c → Equals0c c' → Equals0c (c +c c')
-- represent a context as a list of types
Ctx = List Tp
-- de Bruijn indices (for free variables)
data _∈_ : Tp → Ctx → Set where
i0 : ∀ {Γ τ}
→ τ ∈ (τ :: Γ)
iS : ∀ {Γ τ τ1}
→ τ ∈ Γ
→ τ ∈ (τ1 :: Γ)
data _|-_ : Ctx → Tp → Set where
unit : ∀ {Γ}
→ Γ |- unit
var : ∀ {Γ τ}
→ τ ∈ Γ
→ Γ |- τ
z : ∀ {Γ}
→ Γ |- nat
suc : ∀ {Γ}
→ (e : Γ |- nat)
→ Γ |- nat
rec : ∀ {Γ τ}
→ Γ |- nat
→ Γ |- τ
→ (nat :: (susp τ :: Γ)) |- τ
→ Γ |- τ
lam : ∀ {Γ τ ρ}
→ (ρ :: Γ) |- τ
→ Γ |- (ρ ->s τ)
app : ∀ {Γ τ1 τ2}
→ Γ |- (τ2 ->s τ1)
→ Γ |- τ2
→ Γ |- τ1
prod : ∀ {Γ τ1 τ2}
→ Γ |- τ1
→ Γ |- τ2
→ Γ |- (τ1 ×s τ2)
l-proj : ∀ {Γ τ1 τ2}
→ Γ |- (τ1 ×s τ2)
→ Γ |- τ1
r-proj : ∀ {Γ τ1 τ2}
→ Γ |- (τ1 ×s τ2)
→ Γ |- τ2
-- include split, delay/susp/force instead of usual elim rules for products
delay : ∀ {Γ τ}
→ Γ |- τ
→ Γ |- susp τ
force : ∀ {Γ τ}
→ Γ |- susp τ
→ Γ |- τ
split : ∀ {Γ τ τ1 τ2}
→ Γ |- (τ1 ×s τ2)
→ (τ1 :: (τ2 :: Γ)) |- τ
→ Γ |- τ
------weakening and substitution lemmas
-- renaming function
rctx : Ctx → Ctx → Set
rctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → τ ∈ Γ
-- re: transferring variables in contexts
lem1 : ∀ {Γ Γ' τ} → rctx Γ Γ' → rctx (τ :: Γ) (τ :: Γ')
lem1 d i0 = i0
lem1 d (iS x) = iS (d x)
-- renaming lemma
ren : ∀ {Γ Γ' τ} → Γ' |- τ → rctx Γ Γ' → Γ |- τ
ren unit d = unit
ren (var x) d = var (d x)
ren z d = z
ren (suc e) d = suc (ren e d)
ren (rec e e0 e1) d = rec (ren e d) (ren e0 d) (ren e1 (lem1 (lem1 d)))
ren (lam e) d = lam (ren e (lem1 d))
ren (app e1 e2) d = app (ren e1 d) (ren e2 d)
ren (prod e1 e2) d = prod (ren e1 d) (ren e2 d)
ren (l-proj e) d = l-proj (ren e d)
ren (r-proj e) d = r-proj (ren e d)
ren (delay e) d = delay (ren e d)
ren (force e) d = force (ren e d)
ren (split e e1) d = split (ren e d) (ren e1 (lem1 (lem1 d)))
-- substitution
sctx : Ctx → Ctx → Set
sctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → Γ |- τ
-- weakening a context
wkn : ∀ {Γ τ1 τ2} → Γ |- τ2 → (τ1 :: Γ) |- τ2
wkn e = ren e iS
-- weakening also works with substitution
wkn-s : ∀ {Γ τ1 Γ'} → sctx Γ Γ' → sctx (τ1 :: Γ) Γ'
wkn-s d = λ f → wkn (d f)
wkn-r : ∀ {Γ τ1 Γ'} → rctx Γ Γ' → rctx (τ1 :: Γ) Γ'
wkn-r d = λ x → iS (d x)
-- lem2 (need a lemma for subst like we did for renaming)
lem2 : ∀ {Γ Γ' τ} → sctx Γ Γ' → sctx (τ :: Γ) (τ :: Γ')
lem2 d i0 = var i0
lem2 d (iS i) = wkn (d i)
-- another substitution lemma
lem3 : ∀ {Γ τ} → Γ |- τ → sctx Γ (τ :: Γ)
lem3 e i0 = e
lem3 e (iS i) = var i
lem3' : ∀ {Γ Γ' τ} → sctx Γ Γ' → Γ |- τ → sctx Γ (τ :: Γ')
lem3' Θ e i0 = e
lem3' Θ e (iS i) = Θ i
-- one final lemma needed for the last stepping rule. Thank you Professor Licata!
lem4 : ∀ {Γ τ1 τ2} → Γ |- τ1 → Γ |- τ2 → sctx Γ (τ1 :: (τ2 :: Γ))
lem4 e1 e2 i0 = e1
lem4 e1 e2 (iS i0) = e2
lem4 e1 e2 (iS (iS i)) = var i
lem4' : ∀ {Γ Γ' τ1 τ2} → sctx Γ Γ' → Γ |- τ1 → Γ |- τ2 → sctx Γ (τ1 :: (τ2 :: Γ'))
lem4' Θ a b i0 = a
lem4' Θ a b (iS i0) = b
lem4' Θ a b (iS (iS i)) = Θ i
lem5 : ∀ {Γ τ1 τ2} → Γ |- (τ1 ×s τ2) → sctx Γ ((τ1 ×s τ2) :: (τ1 :: (τ2 :: Γ)))
lem5 e i0 = e
lem5 e (iS i0) = l-proj e
lem5 e (iS (iS i0)) = r-proj e
lem5 e (iS (iS (iS i))) = var i
-- the 'real' substitution lemma (if (x : τ') :: Γ |- (e : τ) and Γ |- (e : τ') , then Γ |- e[x -> e'] : τ)
subst : ∀ {Γ Γ' τ} → sctx Γ Γ' → Γ' |- τ → Γ |- τ
subst d unit = unit
subst d (var x) = d x
subst d z = z
subst d (suc x) = suc (subst d x)
subst d (rec e e0 e1) = rec (subst d e) (subst d e0) (subst (lem2 (lem2 d)) e1)
subst d (lam e) = lam (subst (lem2 d) e)
subst d (app e1 e2) = app (subst d e1) (subst d e2)
subst d (prod e1 e2) = prod (subst d e1) (subst d e2)
subst d (l-proj e) = l-proj (subst d e)
subst d (r-proj e) = r-proj (subst d e)
subst d (delay e) = delay (subst d e)
subst d (force e) = force (subst d e)
subst d (split e e1) = split (subst d e) (subst (lem2 (lem2 d)) e1)
subst-compose : ∀ {Γ Γ' τ τ1} (Θ : sctx Γ Γ') (v : Γ |- τ) (e : (τ :: Γ' |- τ1) )
→ subst (lem3 v) (subst (lem2 Θ) e) == subst (lem3' Θ v) e
subst-compose Θ unit e = {!!}
subst-compose Θ (var x) e = {!!}
subst-compose Θ z e = {!!}
subst-compose Θ (suc v) e = {!!}
subst-compose Θ (rec v v₁ v₂) e = {!!}
subst-compose Θ (lam v) e = {!!}
subst-compose Θ (app v v₁) e = {!!}
subst-compose Θ (prod v v₁) e = {!!}
subst-compose Θ (l-proj v) e = {!!}
subst-compose Θ (r-proj v) e = {!!}
subst-compose Θ (delay v) e = {!!}
subst-compose Θ (force v) e = {!!}
subst-compose Θ (split v v₁) e = {!!}
|
{
"alphanum_fraction": 0.4715149295,
"avg_line_length": 28.7315789474,
"ext": "agda",
"hexsha": "276659ce3a96e78db37c7f8a71da0d82c534e231",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "benhuds/Agda",
"max_forks_repo_path": "complexity-drafts/Proofs.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e",
"max_issues_repo_issues_event_max_datetime": "2020-05-12T00:32:45.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-03-23T08:39:04.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "benhuds/Agda",
"max_issues_repo_path": "complexity-drafts/Proofs.agda",
"max_line_length": 109,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "benhuds/Agda",
"max_stars_repo_path": "complexity-drafts/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2019-08-08T12:27:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-04-26T20:22:22.000Z",
"num_tokens": 2332,
"size": 5459
}
|
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommSemiring.Instances.UpperNat where
{-
based on:
https://github.com/DavidJaz/Cohesion/blob/master/UpperNaturals.agda
and the slides here (for arithmetic operation):
https://felix-cherubini.de/myers-slides-II.pdf
-}
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Functions.Logic
open import Cubical.Functions.Embedding
open import Cubical.Algebra.CommMonoid
open import Cubical.Algebra.OrderedCommMonoid
open import Cubical.Algebra.OrderedCommMonoid.PropCompletion
open import Cubical.Algebra.OrderedCommMonoid.Instances
open import Cubical.Algebra.CommSemiring
open import Cubical.Data.Nat using (ℕ; ·-distribˡ)
open import Cubical.Data.Nat.Order
open import Cubical.Data.Empty hiding (⊥)
open import Cubical.Data.Sigma
open import Cubical.HITs.Truncation
open import Cubical.HITs.PropositionalTruncation as PT
private
variable
ℓ : Level
{- The Upper Naturals
An upper natural is an upward closed proposition on natural numbers.
The interpretation is that an upper natural is a natural ``defined by its upper bounds'', in the
sense that for the proposition N holding of a natural n means that n is an upper bound of N.
The important bit about upper naturals is that they satisfy the well-ordering principle,
constructively (no proof of that is given here).
Example Application:
The degree of a polynomial P=∑_{i=0}^{n} aᵢ · Xⁱ may be defined as an upper natural:
deg(P) :≡ (λ n → all non-zero indices have index smaller n)
Or: deg(∑_{i=0}^{n} aᵢ · Xⁱ) = λ (k : ℕ) → ∀ (k+1 ≤ i ≤ n) aᵢ≡0
This works even if a constructive definition of polynomial is used.
However the upper naturals are a bit too unconstraint and do not even form a semiring,
since they include 'infinity' elements like the proposition that is always false.
This is different for the subtype of *bounded* upper naturals ℕ↑b.
-}
module ConstructionUnbounded where
ℕ↑-+ = PropCompletion ℕ≤+
ℕ↑-· = PropCompletion ℕ≤·
open OrderedCommMonoidStr (snd ℕ↑-+)
hiding (_≤_; MonotoneL; MonotoneR)
renaming (·Assoc to +Assoc; ·Comm to +Comm; ·IdR to +Rid;
_·_ to _+_; ε to 0↑)
open OrderedCommMonoidStr (snd ℕ≤·)
using (MonotoneL; MonotoneR)
open OrderedCommMonoidStr (snd ℕ≤+)
hiding (_≤_)
renaming (_·_ to _+ℕ_;
MonotoneL to +MonotoneL; MonotoneR to +MonotoneR;
·Comm to ℕ+Comm)
open OrderedCommMonoidStr ⦃...⦄
using (_·_ ; ·Assoc ; ·Comm )
renaming (·IdR to ·Rid)
private
instance
_ : OrderedCommMonoidStr _ _
_ = snd ℕ↑-·
_ : OrderedCommMonoidStr _ _
_ = snd ℕ≤·
ℕ↑ : Type₁
ℕ↑ = fst ℕ↑-+
open PropCompletion ℓ-zero ℕ≤+
using (typeAt; pathFromImplications)
open <-Reasoning using (_≤⟨_⟩_)
+LDist· : (x y z : ℕ↑) →
x · (y + z) ≡ (x · y) + (x · z)
+LDist· x y z =
pathFromImplications
(x · (y + z)) ((x · y) + (x · z))
(⇒) ⇐
where
⇒ : (n : ℕ) → typeAt n (x · (y + z)) → typeAt n ((x · y) + (x · z))
⇒ n = PT.rec
isPropPropTrunc
λ {((a , b) , xa , (y+zb , a·b≤n)) →
PT.rec
isPropPropTrunc
(λ {((a' , b') , ya' , (zb' , a'+b'≤b))
→ ∣ ((a · a') , (a · b')) ,
∣ (a , a') , (xa , (ya' , ≤-refl)) ∣₁ ,
(∣ (a , b') , (xa , (zb' , ≤-refl)) ∣₁ ,
subst (_≤ n) (sym (·-distribˡ a a' b'))
(≤-trans (MonotoneL {z = a} a'+b'≤b) a·b≤n)) ∣₁ })
y+zb}
⇐ : (n : ℕ) → _
⇐ n =
PT.rec
isPropPropTrunc
λ {((a , b) , x·ya , (x·zb , a+b≤n))
→ PT.rec
isPropPropTrunc
(λ {((a' , b') , a'x , (b'y , a'·b'≤a))
→ PT.rec
isPropPropTrunc
(λ {((a″ , b″) , a″x , (zb″ , a″·b″≤b))
→ ∣ ≤CaseInduction {n = a'} {m = a″}
(λ a'≤a″ →
(a' , (b' +ℕ b″)) , a'x ,
(∣ (b' , b″) , (b'y , (zb″ , ≤-refl)) ∣₁ ,
(a' · (b' +ℕ b″) ≤⟨ subst
(_≤ (a' · b') +ℕ (a' · b″))
(·-distribˡ a' b' b″) ≤-refl ⟩
(a' · b') +ℕ (a' · b″) ≤⟨ +MonotoneR a'·b'≤a ⟩
a +ℕ (a' · b″) ≤⟨ +MonotoneL
(≤-trans (MonotoneR a'≤a″) a″·b″≤b) ⟩
a+b≤n ))
)
(λ a″≤a' →
(a″ , (b' +ℕ b″)) , (a″x ,
(∣ (b' , b″) , (b'y , (zb″ , ≤-refl)) ∣₁ ,
((a″ · (b' +ℕ b″)) ≤⟨ subst
(_≤ (a″ · b') +ℕ (a″ · b″))
(·-distribˡ a″ b' b″) ≤-refl ⟩
(a″ · b') +ℕ (a″ · b″) ≤⟨ +MonotoneR
((a″ · b') ≤⟨ MonotoneR a″≤a' ⟩ a'·b'≤a) ⟩
a +ℕ (a″ · b″) ≤⟨ +MonotoneL a″·b″≤b ⟩
a+b≤n)))
)
∣₁})
x·zb})
x·ya}
module ConstructionBounded where
ℕ↑-+b = BoundedPropCompletion ℕ≤+
ℕ↑-·b = BoundedPropCompletion ℕ≤·
open OrderedCommMonoidStr (snd ℕ≤+)
renaming (_·_ to _+ℕ_; ·IdR to +IdR; ·Comm to ℕ+Comm)
open OrderedCommMonoidStr (snd ℕ↑-+b)
renaming (_·_ to _+_; ε to 0↑)
open OrderedCommMonoidStr (snd ℕ↑-·b)
using (_·_)
open PropCompletion ℓ-zero ℕ≤+
using (typeAt; pathFromImplications)
ℕ↑b : Type₁
ℕ↑b = fst ℕ↑-+b
AnnihilL : (x : ℕ↑b) → 0↑ · x ≡ 0↑
AnnihilL x =
Σ≡Prop (λ s → PropCompletion.isPropIsBounded ℓ-zero ℕ≤+ s)
(pathFromImplications (fst (0↑ · x)) (fst 0↑) (⇒) ⇐)
where
⇒ : (n : ℕ) → typeAt n (fst (0↑ · x)) → typeAt n (fst 0↑)
⇒ n _ = n , ℕ+Comm n 0
⇐ : (n : ℕ) → typeAt n (fst 0↑) → typeAt n (fst (0↑ · x))
⇐ n _ =
PT.rec
isPropPropTrunc
(λ {(m , mIsUpperBound) → ∣ (0 , m) , ((0 , refl) , (mIsUpperBound , n , +IdR n)) ∣₁})
(snd x)
asCommSemiring : CommSemiring (ℓ-suc ℓ-zero)
fst asCommSemiring = ℕ↑b
CommSemiringStr.0r (snd asCommSemiring) = 0↑
CommSemiringStr.1r (snd asCommSemiring) = OrderedCommMonoidStr.ε (snd ℕ↑-·b)
CommSemiringStr._+_ (snd asCommSemiring) = _+_
CommSemiringStr._·_ (snd asCommSemiring) = _·_
IsCommSemiring.+IsCommMonoid (CommSemiringStr.isCommSemiring (snd asCommSemiring)) =
OrderedCommMonoidStr.isCommMonoid (snd ℕ↑-+b)
IsCommSemiring.·IsCommMonoid (CommSemiringStr.isCommSemiring (snd asCommSemiring)) =
OrderedCommMonoidStr.isCommMonoid (snd ℕ↑-·b)
IsCommSemiring.·LDist+ (CommSemiringStr.isCommSemiring (snd asCommSemiring)) =
λ x y z → Σ≡Prop (λ s → PropCompletion.isPropIsBounded ℓ-zero ℕ≤+ s)
(ConstructionUnbounded.+LDist· (fst x) (fst y) (fst z))
IsCommSemiring.AnnihilL (CommSemiringStr.isCommSemiring (snd asCommSemiring)) = AnnihilL
|
{
"alphanum_fraction": 0.5100652884,
"avg_line_length": 36.396039604,
"ext": "agda",
"hexsha": "701e300676df6463f3d2e80d7174d3da302c1539",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommSemiring/Instances/UpperNat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommSemiring/Instances/UpperNat.agda",
"max_line_length": 99,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommSemiring/Instances/UpperNat.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2497,
"size": 7352
}
|
{-# OPTIONS --without-K #-}
open import HoTT
{- Proof that if [A] and [B] are two propositions, then so is [A * B]. -}
module homotopy.PropJoinProp
{i} (A : Type i) {pA : (a a' : A) → a == a'}
{j} (B : Type j) {pB : (b b' : B) → b == b'} where
{-
We first prove that [left a == y] for all [a : A] and [y : A * B].
For that we will need the coherence condition [coh1] below.
-}
eq-left : (a : A) (y : A * B) → left a == y
eq-left = EqLeft.f module M where
coh1 : {b' : B} {a a' : A} (p : a == a')
→ ap left p ∙ glue (a' , b') == glue (a , b') :> (left a == right b' :> A * B)
coh1 idp = idp
module EqLeft (a : A) =
PushoutElim (λ a' → ap left (pA a a'))
(λ b' → glue (a , b'))
(λ {(a' , b') → ↓-cst=idf-in (coh1 (pA a a'))})
open M
{-
Now we prove that [right b == y] for all [b : B] and [y : A * B].
We will again need some coherence condition [coh2].
-}
eq-right : (b : B) (y : A * B) → right b == y
eq-right = EqRight.f module M' where
coh2 : {a' : A} {b b' : B} (p : b == b')
→ ! (glue (a' , b)) ∙ glue (a' , b') == ap right p :> (right b == right b' :> A * B)
coh2 idp = !-inv-l (glue _)
module EqRight (b : B) =
PushoutElim (λ a' → ! (glue (a' , b)))
(λ b' → ap right (pB b b'))
(λ {(a' , b') → ↓-cst=idf-in (coh2 (pB b b'))})
open M'
{-
Then we prove the missing cases.
For the cases [x == left a'] and [x == right b'] we will need the coherence
conditions [coh3] and [coh4].
For the last case, we need a "2-dimensional" coherence condition [coh²],
relating [coh1], [coh2], [coh3] and [coh4].
-}
eq : (x y : A * B) → x == y
eq = Pushout-elim eq-left eq-right
(λ {(a , b) → ↓-cst→app-in (Pushout-elim (λ a' → ↓-idf=cst-in (coh3 (pA a a')))
(λ b' → ↓-idf=cst-in (coh4 (pB b b')))
(λ {(a' , b') → ↓-idf=cst-in=↓ (↓-=-in
(coh3 (pA a a') ◃ apd (λ x → glue (a , b) ∙' eq-right b x) (glue (a' , b'))
=⟨ apd∙' (λ x → glue (a , b)) (eq-right b) (glue (a' , b')) |in-ctx (λ u → coh3 (pA a a') ◃ u) ⟩
coh3 (pA a a') ◃ (apd (λ x → glue (a , b)) (glue (a' , b')) ∙'2ᵈ apd (eq-right b) (glue (a' , b')))
=⟨ EqRight.glue-β b (a' , b') |in-ctx (λ u → coh3 (pA a a') ◃ (apd (λ x → glue (a , b)) (glue (a' , b')) ∙'2ᵈ u)) ⟩
coh3 (pA a a') ◃ (apd (λ x → glue (a , b)) (glue (a' , b')) ∙'2ᵈ ↓-cst=idf-in {p = glue _} {u = ! (glue _)} (coh2 (pB b b')))
=⟨ coh² (pA a a') (pB b b') ⟩
↓-cst=idf-in (coh1 (pA a a')) ▹ coh4 (pB b b')
=⟨ ! (EqLeft.glue-β a (a' , b')) |in-ctx (λ u → u ▹ coh4 (pB b b')) ⟩
apd (eq-left a) (glue (a' , b')) ▹ coh4 (pB b b') ∎))}))})
where
coh3 : {b : B} {a a' : A} (p : a == a')
→ ap left p == (glue (a , b) ∙' ! (glue (a' , b))) :> (left a == left a' :> A * B)
coh3 idp = ! (!-inv-r (glue _)) ∙ ∙=∙' (glue _) (! (glue _))
coh4 : {a : A} {b b' : B} (p : b == b')
→ glue (a , b') == (glue (a , b) ∙' ap right p) :> (left a == right b' :> A * B)
coh4 idp = idp
{- Should go to lib.types.Paths -}
↓-idf=cst-in=↓ : ∀ {i} {A : Type i} {a a' : A} {p : a == a'} {a0 a0' : A} {p0 : a0 == a0'} {f : (a : A) → a0 == a} {g : (a : A) → a0' == a}
{q : f a == p0 ∙' g a } {r : f a' == p0 ∙' g a'}
→ q == r [ (λ a → f a == p0 ∙' g a) ↓ p ]
→ ↓-idf=cst-in q == ↓-idf=cst-in r [ (λ a → f a == g a [ (λ x → x == a) ↓ p0 ]) ↓ p ]
↓-idf=cst-in=↓ {p = idp} {p0 = idp} idp = idp
abstract
coh² : {a a' : A} {b b' : B} (p : a == a') (q : b == b')
→ coh3 {b = b} p ◃ (apd (λ x → glue (a , b)) (glue (a' , b')) ∙'2ᵈ ↓-cst=idf-in {p = glue (a' , b')} {u = ! (glue (a' , b))} (coh2 q))
== ↓-cst=idf-in (coh1 p) ▹ coh4 q
coh² idp idp = aux (glue _) where
abstract
aux : {x y : A * B} (p : x == y) →
(! (!-inv-r p) ∙ ∙=∙' p (! p))
◃
(apd (λ x → p) p ∙'2ᵈ ↓-cst=idf-in {p = p} {u = ! p} (!-inv-l p))
== ↓-cst=idf-in idp ▹ idp
aux idp = idp
|
{
"alphanum_fraction": 0.420440485,
"avg_line_length": 39.2330097087,
"ext": "agda",
"hexsha": "b429cda01739dad9dbb0c58dcb7cd23865cf6255",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "homotopy/PropJoinProp.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "homotopy/PropJoinProp.agda",
"max_line_length": 141,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda",
"max_stars_repo_path": "homotopy/PropJoinProp.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z",
"num_tokens": 1793,
"size": 4041
}
|
module Issue448 where
postulate
Unit : Set
unit : Unit
D : Set → Set
d : (A : Set) → A → D A
record R : Set₁ where
field F : Set
r : _
r = record { F = Unit }
postulate
D′ : R.F r → D (R.F r) → Set
d′ : ∀ f τ → D′ f (d _ τ)
data D″ (f : Unit) : D′ f (d Unit unit) → Set where
d″ : ∀ (x : Unit) → D″ _ (d′ f unit)
-- An internal error has occurred. Please report this as a bug.
-- Location of the error: src/full/Agda/TypeChecking/MetaVars.hs:583
|
{
"alphanum_fraction": 0.5769230769,
"avg_line_length": 18.72,
"ext": "agda",
"hexsha": "ae423f5d48ff2b70d3f0ddd5e2b1696b7d99cfbb",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue448.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue448.agda",
"max_line_length": 68,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue448.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 171,
"size": 468
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Names used in the reflection machinery
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Reflection.Name where
open import Data.List.Base
import Data.Product.Properties as Prodₚ
import Data.Word.Properties as Wₚ
open import Function
open import Relation.Nullary.Decidable using (map′)
open import Relation.Binary
import Relation.Binary.Construct.On as On
open import Relation.Binary.PropositionalEquality
----------------------------------------------------------------------
-- Re-export built-ins
open import Agda.Builtin.Reflection public
using (Name) renaming (primQNameToWord64s to toWords)
open import Agda.Builtin.Reflection.Properties public
renaming (primQNameToWord64sInjective to toWords-injective)
----------------------------------------------------------------------
-- More definitions
----------------------------------------------------------------------
Names : Set
Names = List Name
----------------------------------------------------------------------
-- Decidable equality for names
----------------------------------------------------------------------
_≈_ : Rel Name _
_≈_ = _≡_ on toWords
infix 4 _≈?_ _≟_
_≈?_ : Decidable _≈_
_≈?_ = On.decidable toWords _≡_ (Prodₚ.≡-dec Wₚ._≟_ Wₚ._≟_)
_≟_ : DecidableEquality Name
m ≟ n = map′ (toWords-injective _ _) (cong toWords) (m ≈? n)
|
{
"alphanum_fraction": 0.5013404826,
"avg_line_length": 29.84,
"ext": "agda",
"hexsha": "26b579ea411fbc6ce6541b56ccdf93dbd856c8e8",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Reflection/Name.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Reflection/Name.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Reflection/Name.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 307,
"size": 1492
}
|
import Agda.Builtin.FromNat as FromNat -- not opened
open import Agda.Builtin.Nat
-- Since fromNat is not in scope unqualified this should work without
-- a Number instance for Nat.
x : Nat
x = 0
-- Renaming fromNat should not make a difference
open FromNat renaming (fromNat to fromℕ)
open import Agda.Builtin.Unit
data MyNat : Set where
mkNat : Nat → MyNat
instance
numMyNat : Number MyNat
numMyNat .Number.Constraint _ = ⊤
numMyNat .fromℕ n = mkNat n
y : MyNat
y = 1
|
{
"alphanum_fraction": 0.7355371901,
"avg_line_length": 20.1666666667,
"ext": "agda",
"hexsha": "7ef5a96f594444ac0d5c53f8f4b987dbe00688cb",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue4925.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue4925.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue4925.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 149,
"size": 484
}
|
-- Andreas, 2020-06-23, issue #4773
-- reported by gallais, originally reported on mailing list by mechvel
-- Regression in 2.5.1:
-- import directives applied to modules no longer warn
-- when private names are mentioned
-- {-# OPTIONS -v scope:40 #-}
module _ where
-- MWE:
-------
module M where
private
X = Set
Y = Set
Z = Set
module N = M using (X) renaming (Y to Y') hiding (Z)
-- EXPECTED: warning about X, Y, Z
-- Extended original example, using 'open M args'
-------------------------------------------------
module A (X : Set₁) where
Y = X
module B (X : Set₁) where
open A X using (Y)
private Z = Set
open B Set renaming (Y to Y') renaming (Z to Z')
-- EXPECTED: warning about Y, Z
-- Y' is not in scope
-- test = Y'
|
{
"alphanum_fraction": 0.594488189,
"avg_line_length": 18.5853658537,
"ext": "agda",
"hexsha": "8532cec5346f543f9ef4addf6aab45ab7b3045f5",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue4773.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue4773.agda",
"max_line_length": 70,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue4773.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 220,
"size": 762
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties satisfied by strict partial orders
------------------------------------------------------------------------
open import Relation.Binary
module Relation.Binary.Properties.StrictTotalOrder
{s₁ s₂ s₃} (STO : StrictTotalOrder s₁ s₂ s₃)
where
open Relation.Binary.StrictTotalOrder STO
import Relation.Binary.StrictToNonStrict as Conv
open Conv _≈_ _<_
import Relation.Binary.Properties.StrictPartialOrder as SPO
open import Relation.Binary.Consequences
------------------------------------------------------------------------
-- Strict total orders can be converted to decidable total orders
decTotalOrder : DecTotalOrder _ _ _
decTotalOrder = record
{ isDecTotalOrder = record
{ isTotalOrder = record
{ isPartialOrder = SPO.isPartialOrder strictPartialOrder
; total = total compare
}
; _≟_ = _≟_
; _≤?_ = decidable' compare
}
}
open DecTotalOrder decTotalOrder public
|
{
"alphanum_fraction": 0.5832540438,
"avg_line_length": 30.0285714286,
"ext": "agda",
"hexsha": "7d7a83616f66003b325ba0d6acb619374e12b46c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Properties/StrictTotalOrder.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Properties/StrictTotalOrder.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Properties/StrictTotalOrder.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 218,
"size": 1051
}
|
open import Nat
open import Prelude
open import core
module lemmas-progress-checks where
-- boxed values don't have an instruction transition
boxedval-not-trans : ∀{d d'} → d boxedval → d →> d' → ⊥
boxedval-not-trans (BVVal VConst) ()
boxedval-not-trans (BVVal VLam) ()
boxedval-not-trans (BVArrCast x bv) (ITCastID) = x refl
boxedval-not-trans (BVHoleCast () bv) (ITCastID)
boxedval-not-trans (BVHoleCast () bv) (ITCastSucceed x₁)
boxedval-not-trans (BVHoleCast GHole bv) (ITGround (MGArr x)) = x refl
boxedval-not-trans (BVHoleCast x a) (ITExpand ())
boxedval-not-trans (BVHoleCast x x₁) (ITCastFail x₂ () x₄)
-- indets don't have an instruction transition
indet-not-trans : ∀{d d'} → d indet → d →> d' → ⊥
indet-not-trans IEHole ()
indet-not-trans (INEHole x) ()
indet-not-trans (IAp x₁ () x₂) (ITLam)
indet-not-trans (IAp x (ICastArr x₁ ind) x₂) (ITApCast ) = x _ _ _ _ _ refl
indet-not-trans (ICastArr x ind) (ITCastID) = x refl
indet-not-trans (ICastGroundHole () ind) (ITCastID)
indet-not-trans (ICastGroundHole x ind) (ITCastSucceed ())
indet-not-trans (ICastGroundHole GHole ind) (ITGround (MGArr x)) = x refl
indet-not-trans (ICastHoleGround x ind ()) (ITCastID)
indet-not-trans (ICastHoleGround x ind x₁) (ITCastSucceed x₂) = x _ _ refl
indet-not-trans (ICastHoleGround x ind GHole) (ITExpand (MGArr x₂)) = x₂ refl
indet-not-trans (ICastGroundHole x a) (ITExpand ())
indet-not-trans (ICastHoleGround x a x₁) (ITGround ())
indet-not-trans (ICastGroundHole x x₁) (ITCastFail x₂ () x₄)
indet-not-trans (ICastHoleGround x x₁ x₂) (ITCastFail x₃ x₄ x₅) = x _ _ refl
indet-not-trans (IFailedCast x x₁ x₂ x₃) ()
-- finals don't have an instruction transition
final-not-trans : ∀{d d'} → d final → d →> d' → ⊥
final-not-trans (FBoxedVal x) = boxedval-not-trans x
final-not-trans (FIndet x) = indet-not-trans x
-- finals cast from a ground are still final
final-gnd-cast : ∀{ d τ } → d final → τ ground → (d ⟨ τ ⇒ ⦇-⦈ ⟩) final
final-gnd-cast (FBoxedVal x) gnd = FBoxedVal (BVHoleCast gnd x)
final-gnd-cast (FIndet x) gnd = FIndet (ICastGroundHole gnd x)
-- if an expression results from filling a hole in an evaluation context,
-- the hole-filler must have been final
final-sub-final : ∀{d ε x} → d final → d == ε ⟦ x ⟧ → x final
final-sub-final x FHOuter = x
final-sub-final (FBoxedVal (BVVal ())) (FHAp1 eps)
final-sub-final (FBoxedVal (BVVal ())) (FHAp2 eps)
final-sub-final (FBoxedVal (BVVal ())) (FHNEHole eps)
final-sub-final (FBoxedVal (BVVal ())) (FHCast eps)
final-sub-final (FBoxedVal (BVVal ())) (FHFailedCast y)
final-sub-final (FBoxedVal (BVArrCast x₁ x₂)) (FHCast eps) = final-sub-final (FBoxedVal x₂) eps
final-sub-final (FBoxedVal (BVHoleCast x₁ x₂)) (FHCast eps) = final-sub-final (FBoxedVal x₂) eps
final-sub-final (FIndet (IAp x₁ x₂ x₃)) (FHAp1 eps) = final-sub-final (FIndet x₂) eps
final-sub-final (FIndet (IAp x₁ x₂ x₃)) (FHAp2 eps) = final-sub-final x₃ eps
final-sub-final (FIndet (INEHole x₁)) (FHNEHole eps) = final-sub-final x₁ eps
final-sub-final (FIndet (ICastArr x₁ x₂)) (FHCast eps) = final-sub-final (FIndet x₂) eps
final-sub-final (FIndet (ICastGroundHole x₁ x₂)) (FHCast eps) = final-sub-final (FIndet x₂) eps
final-sub-final (FIndet (ICastHoleGround x₁ x₂ x₃)) (FHCast eps) = final-sub-final (FIndet x₂) eps
final-sub-final (FIndet (IFailedCast x₁ x₂ x₃ x₄)) (FHFailedCast y) = final-sub-final x₁ y
final-sub-not-trans : ∀{d d' d'' ε} → d final → d == ε ⟦ d' ⟧ → d' →> d'' → ⊥
final-sub-not-trans f sub step = final-not-trans (final-sub-final f sub) step
|
{
"alphanum_fraction": 0.6830146855,
"avg_line_length": 53.8656716418,
"ext": "agda",
"hexsha": "ed72a4d3658363e4bc6fadf09ac46f0e5cb59088",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_forks_repo_path": "lemmas-progress-checks.agda",
"max_issues_count": 54,
"max_issues_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_issues_repo_issues_event_max_datetime": "2018-11-29T16:32:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-29T20:53:34.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_issues_repo_path": "lemmas-progress-checks.agda",
"max_line_length": 100,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_stars_repo_path": "lemmas-progress-checks.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-19T02:50:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-03-12T14:32:03.000Z",
"num_tokens": 1326,
"size": 3609
}
|
module UnderscoresAsDataParam where
data List (A : Set) : Set where
nil : List _
cons : A -> List A -> List _
|
{
"alphanum_fraction": 0.6551724138,
"avg_line_length": 19.3333333333,
"ext": "agda",
"hexsha": "d40bfb1d05345696afb9ba414466d1f4ea847fb2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/UnderscoresAsDataParam.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/UnderscoresAsDataParam.agda",
"max_line_length": 35,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/UnderscoresAsDataParam.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 36,
"size": 116
}
|
module PartialOrder where
open import Prelude
record PartialOrder (A : Set) : Set1 where
field
_==_ : A -> A -> Set
_≤_ : A -> A -> Set
==-def : forall {x y} -> (x == y) ⇐⇒ (x ≤ y) ∧ (y ≤ x)
≤-refl : forall {x} -> x ≤ x
≤-trans : forall {x y z} -> x ≤ y -> y ≤ z -> x ≤ z
module POrder {A : Set}(ord : PartialOrder A) where
private module POrd = PartialOrder ord
open POrd public
infix 60 _≤_ _==_
Monotone : (A -> A) -> Set
Monotone f = forall {x y} -> x ≤ y -> f x ≤ f y
Antitone : (A -> A) -> Set
Antitone f = forall {x y} -> x ≤ y -> f y ≤ f x
≤-antisym : forall {x y} -> x ≤ y -> y ≤ x -> x == y
≤-antisym p q = snd ==-def (p , q)
==≤-L : forall {x y} -> x == y -> x ≤ y
==≤-L x=y = fst (fst ==-def x=y)
==≤-R : forall {x y} -> x == y -> y ≤ x
==≤-R x=y = snd (fst ==-def x=y)
==-refl : forall {x} -> x == x
==-refl = ≤-antisym ≤-refl ≤-refl
==-sym : forall {x y} -> x == y -> y == x
==-sym xy = snd ==-def (swap (fst ==-def xy))
==-trans : forall {x y z} -> x == y -> y == z -> x == z
==-trans xy yz = ≤-antisym
(≤-trans x≤y y≤z)
(≤-trans z≤y y≤x)
where
x≤y = ==≤-L xy
y≤z = ==≤-L yz
y≤x = ==≤-R xy
z≤y = ==≤-R yz
Dual : PartialOrder A
Dual = record
{ _==_ = _==_
; _≤_ = \x y -> y ≤ x
; ==-def = (swap ∘ fst ==-def , snd ==-def ∘ swap)
; ≤-refl = ≤-refl
; ≤-trans = \yx zy -> ≤-trans zy yx
}
|
{
"alphanum_fraction": 0.4208776596,
"avg_line_length": 25.0666666667,
"ext": "agda",
"hexsha": "50f3c8c37e924e2c4b0e373478c3d99e84a1a60d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/lattice/PartialOrder.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/lattice/PartialOrder.agda",
"max_line_length": 59,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/outdated-and-incorrect/lattice/PartialOrder.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 646,
"size": 1504
}
|
------------------------------------------------------------------------
-- Type checing of polymorphic and iso-recursive lambda terms
------------------------------------------------------------------------
module SystemF.TypeCheck where
open import Data.Fin using (Fin; suc; zero; pred)
open import Data.Nat as Nat using (ℕ; _+_)
open import Data.Product
open import Data.Vec using (_∷_; []; lookup)
open import Function hiding (typeOf)
open import Relation.Nullary
open import Relation.Nullary.Negation
open import Relation.Binary using (Decidable)
open import Relation.Binary.PropositionalEquality hiding ([_])
open ≡-Reasoning
open import SystemF.Type
open import SystemF.Term
open import SystemF.WtTerm
open TypeSubst using () renaming (_[/_] to _[/tp_])
open CtxSubst using () renaming (weaken to weakenCtx)
------------------------------------------------------------------------
-- Decision procedures for equality of variable names and types
-- This module contains two decision procedures for type checking:
--
-- * the function typeOf synthesizes a type a for a given (untyped)
-- term t and typing environment Γ, if possible;
--
-- * the function check_⊢_∈_ checks whether a given triple Γ, t, a is
-- in the well-typedness relation.
--
-- The two functions correspond to a synthetic resp. analytic view of
-- type-checking. Both produce evidence in the form of a typing
-- derivation if type checking succeeds or a proof that no such
-- derivation exists otherwise.
infix 4 _≟n_ _≡tp_ _≟_
-- Equal successors have equal predecessors.
≡suc : ∀ {n} {x y : Fin n} → suc x ≡ suc y → x ≡ y
≡suc refl = refl
-- A decision procedure for equality of variable names.
_≟n_ : ∀ {n} → Decidable {A = Fin n} _≡_
zero ≟n zero = yes refl
suc x ≟n suc y with x ≟n y
... | yes x≡y = yes (cong suc x≡y)
... | no x≢y = no (x≢y ∘ ≡suc)
zero ≟n suc y = no λ()
suc x ≟n zero = no λ()
-- A shorthand for (syntactic) type equality.
_≡tp_ : ∀ {n} → Type n → Type n → Set
a ≡tp b = a ≡ b
-- Equal type variables have equal names.
≡var : ∀ {n} {x y : Fin n} → var x ≡tp var y → x ≡ y
≡var refl = refl
-- Equal function types have equal domains.
≡dom→ : ∀ {n} {a a′ b b′ : Type n} → a →' b ≡tp a′ →' b′ → a ≡ a′
≡dom→ refl = refl
-- Equal function types have equal codomains.
≡cod→ : ∀ {n} {a a′ b b′ : Type n} → a →' b ≡tp a′ →' b′ → b ≡ b′
≡cod→ refl = refl
-- Equal univeral types have equal bodies.
≡∀ : ∀ {n} {a a′ : Type (1 + n)} → ∀' a ≡tp ∀' a′ → a ≡ a′
≡∀ refl = refl
-- Equal recursive types have equal bodies.
≡μ : ∀ {n} {a a′ : Type (1 + n)} → μ a ≡tp μ a′ → a ≡ a′
≡μ refl = refl
-- A decision procedure for (syntactic) type equality
_≟_ : ∀ {n} → Decidable {A = Type n} _≡_
var x ≟ var y with x ≟n y
var x ≟ var .x | yes refl = yes refl
var x ≟ var y | no x≢y = no (x≢y ∘ ≡var)
var _ ≟ _ →' _ = no λ()
var _ ≟ ∀' _ = no λ()
var _ ≟ μ _ = no λ()
a →' b ≟ var x = no λ()
a →' b ≟ a′ →' b′ with a ≟ a′ | b ≟ b′
a →' b ≟ .a →' .b | yes refl | yes refl = yes refl
a →' b ≟ a′ →' b′ | yes _ | no b≢b′ = no (b≢b′ ∘ ≡cod→)
a →' b ≟ a′ →' b′ | no a≢a′ | _ = no (a≢a′ ∘ ≡dom→)
a →' b ≟ ∀' _ = no λ()
a →' b ≟ μ _ = no λ()
∀' _ ≟ var _ = no λ()
∀' _ ≟ _ →' _ = no λ()
∀' a ≟ ∀' a′ with a ≟ a′
∀' a ≟ ∀' .a | yes refl = yes refl
∀' a ≟ ∀' a′ | no a≢a′ = no (a≢a′ ∘ ≡∀)
∀' _ ≟ μ _ = no λ()
μ _ ≟ var _ = no λ()
μ _ ≟ _ →' _ = no λ()
μ _ ≟ ∀' _ = no λ()
μ a ≟ μ a′ with a ≟ a′
μ a ≟ μ .a | yes refl = yes refl
μ a ≟ μ a′ | no a≢a′ = no (a≢a′ ∘ ≡μ)
------------------------------------------------------------------------
-- Inversion and functionality of the well-typedness relation
-- Inversion of type application typing.
Λ-inversion : ∀ {m n} {Γ : Ctx m n} {t a} →
Γ ⊢ Λ t ∈ a → ∃ λ a′ → (a ≡ ∀' a′) × (weakenCtx Γ ⊢ t ∈ a′)
Λ-inversion {a = ∀' a′} (Λ t∈a) = a′ , (refl , t∈a)
-- Inversion of term application typing.
λ'-inversion : ∀ {m n} {Γ : Ctx m n} {t a a→b} →
Γ ⊢ λ' a t ∈ a→b → ∃ λ b → (a→b ≡ a →' b) × (a ∷ Γ ⊢ t ∈ b)
λ'-inversion {a→b = a →' b} (λ' .a t∈b) = b , (refl , t∈b)
-- Inversion of recursive term typing.
μ-inversion : ∀ {m n} {Γ : Ctx m n} {t a a′} →
Γ ⊢ μ a t ∈ a′ → (a ≡ a′) × (a ∷ Γ ⊢ t ∈ a)
μ-inversion (μ a t∈b) = refl , t∈b
-- Inversion of type application.
[]-inversion : ∀ {m n} {Γ : Ctx m n} {t b a[/b]} → Γ ⊢ t [ b ] ∈ a[/b] →
∃ λ a → (a[/b] ≡ a [/tp b ]) × (Γ ⊢ t ∈ ∀' a)
[]-inversion (_[_] {a = a} t∈∀a b) = a , (refl , t∈∀a)
-- Inversion of term application.
·-inversion : ∀ {m n} {Γ : Ctx m n} {s t b} → Γ ⊢ s · t ∈ b →
∃ λ a → (Γ ⊢ s ∈ a →' b) × (Γ ⊢ t ∈ a)
·-inversion (_·_ {a = a} s∈a→b t∈a) = a , (s∈a→b , t∈a)
-- Inversion of recursive type folding.
fold-inversion : ∀ {m n} {Γ : Ctx m n} {t a μa} → Γ ⊢ fold a t ∈ μa →
(μa ≡ μ a) × (Γ ⊢ t ∈ a [/tp μ a ])
fold-inversion (fold a t∈a[/μa]) = refl , t∈a[/μa]
-- Inversion of recursive type unfolding.
unfold-inversion : ∀ {m n} {Γ : Ctx m n} {t a a[/μa]} →
Γ ⊢ unfold a t ∈ a[/μa] →
(a[/μa] ≡ a [/tp μ a ]) × (Γ ⊢ t ∈ μ a)
unfold-inversion (unfold a t∈μa) = refl , t∈μa
-- The relation _⊢_∈_ is functional in its last argument.
functional : ∀ {m n} {Γ : Ctx m n} {t a a′} → Γ ⊢ t ∈ a → Γ ⊢ t ∈ a′ → a ≡ a′
functional (var x) (var .x) = refl
functional (Λ t∈a) (Λ t∈a′) = cong ∀' (functional t∈a t∈a′)
functional (λ' a t∈b) (λ' .a t∈b′) = cong (_→'_ a) (functional t∈b t∈b′)
functional (μ a t∈a) (μ .a t∈a′) = functional t∈a t∈a′
functional (t∈∀a [ b ]) (t∈∀a′ [ .b ]) =
cong (λ{ (∀' a) → a [/tp b ] ; a → a }) (functional t∈∀a t∈∀a′)
functional (s∈a→b · _) (s∈a→b′ · _) =
cong (λ{ (a →' b) → b ; a → a }) (functional s∈a→b s∈a→b′)
functional (fold a t∈) (fold .a t∈′) = refl
functional (unfold a t∈) (unfold .a t∈′) = refl
-- A variant of functionality.
functional′ : ∀ {m n} {Γ : Ctx m n} {t a a′} → Γ ⊢ t ∈ a → a ≢ a′ → Γ ⊢ t ∉ a′
functional′ t∈a = contraposition (functional t∈a)
------------------------------------------------------------------------
-- Type checking
infix 5 check_⊢_∈_
-- A predicate for typable terms
HasType : ∀ {m n} → Ctx m n → Term m n → Set
HasType Γ t = ∃ λ a → Γ ⊢ t ∈ a
-- Type checking viewed as a decision procedure for the existence of
-- typings (i.e. type synthesis). Note that together with
-- functionality, this proves that the well-typedness relation is a
-- decidable partial function.
typeOf : ∀ {m n} (Γ : Ctx m n) t → Dec (HasType Γ t)
typeOf Γ (var x) = yes (lookup Γ x , var x)
typeOf Γ (Λ t) with typeOf (weakenCtx Γ) t
... | yes (a , t∈a) = yes (∀' a , Λ t∈a)
... | no ∄a = no (∄a ∘ map id proj₂ ∘ Λ-inversion ∘ proj₂)
typeOf Γ (λ' a t) with typeOf (a ∷ Γ) t
... | yes (b , t∈b) = yes (a →' b , λ' a t∈b)
... | no ∄b = no (∄b ∘ map id proj₂ ∘ λ'-inversion ∘ proj₂)
typeOf Γ (μ a t) with typeOf (a ∷ Γ) t
typeOf Γ (μ a t) | yes ( a′ , t∈a′) with a′ ≟ a
typeOf Γ (μ a t) | yes (.a , t∈a′) | yes refl = yes (a , μ a t∈a′)
... | no a′≢a = no (a′≢a ∘ functional t∈a′ ∘ proj₂ ∘ μ-inversion ∘ proj₂)
typeOf Γ (μ a t) | no ∄a′ =
no (∄a′ ∘ map id (uncurry ⊢substTp ∘ μ-inversion))
typeOf Γ (t [ b ]) with typeOf Γ t
typeOf Γ (t [ b ]) | yes (var _ , t∈x ) =
no ((functional′ t∈x λ()) ∘ proj₂ ∘ proj₂ ∘ []-inversion ∘ proj₂)
typeOf Γ (t [ b ]) | yes (_ →' _ , t∈a→b ) =
no ((functional′ t∈a→b λ()) ∘ proj₂ ∘ proj₂ ∘ []-inversion ∘ proj₂)
typeOf Γ (t [ b ]) | yes (∀' a , t∈∀a ) = yes (a [/tp b ] , t∈∀a [ b ])
typeOf Γ (t [ b ]) | yes (μ _ , t∈μa ) =
no ((functional′ t∈μa λ()) ∘ proj₂ ∘ proj₂ ∘ []-inversion ∘ proj₂)
typeOf Γ (t [ b ]) | no ∄a = no (∄a ∘ map ∀' proj₂ ∘ []-inversion ∘ proj₂)
typeOf Γ (s · t) with typeOf Γ s | typeOf Γ t
typeOf Γ (s · t) | yes (var _ , s∈x ) | _ =
no ((functional′ s∈x λ()) ∘ proj₁ ∘ proj₂ ∘ ·-inversion ∘ proj₂)
typeOf Γ (s · t) | yes (a →' b , s∈a→b) | yes ( a′ , t∈a) with a′ ≟ a
typeOf Γ (s · t) | yes (a →' b , s∈a→b) | yes (.a , t∈a) | yes refl =
yes (b , s∈a→b · t∈a)
typeOf Γ (s · t) | yes (a →' b , s∈a→b) | yes ( a′ , t∈a) | no a′≢a =
no (a′≢a ∘ helper)
where
helper : HasType Γ (s · t) → a′ ≡ a
helper (b , s·t∈b) with ·-inversion s·t∈b
... | c , s∈c→b , t∈c = begin
a′ ≡⟨ functional t∈a t∈c ⟩
c ≡⟨ ≡dom→ (functional s∈c→b s∈a→b) ⟩
a ∎
typeOf Γ (s · t) | yes (a →' b , s∈a→b) | no ∄a′ =
no (∄a′ ∘ map id proj₂ ∘ ·-inversion ∘ proj₂)
typeOf Γ (s · t) | yes (∀' _ , s∈∀a ) | _ =
no ((functional′ s∈∀a λ()) ∘ proj₁ ∘ proj₂ ∘ ·-inversion ∘ proj₂)
typeOf Γ (s · t) | yes (μ _ , s∈μa ) | _ =
no ((functional′ s∈μa λ()) ∘ proj₁ ∘ proj₂ ∘ ·-inversion ∘ proj₂)
typeOf Γ (s · t) | no ∄a | _ = no (∄a ∘ helper)
where
helper : HasType Γ (s · t) → HasType Γ s
helper (b , s·t∈b) with ·-inversion s·t∈b
... | a , s∈a→b , _ = a →' b , s∈a→b
typeOf Γ (fold a t) with typeOf Γ t
typeOf Γ (fold a t) | yes (a′ , t∈a′) with a′ ≟ a [/tp μ a ]
typeOf Γ (fold a t) | yes (._ , t∈a′) | yes refl = yes (μ a , fold a t∈a′)
typeOf Γ (fold a t) | yes (a′ , t∈a′) | no a′≢a[/μa] =
no (a′≢a[/μa] ∘ functional t∈a′ ∘ proj₂ ∘ fold-inversion ∘ proj₂)
typeOf Γ (fold a t) | no ∄a′ =
no (∄a′ ∘ map (const (a [/tp μ a ])) id ∘ fold-inversion ∘ proj₂)
typeOf Γ (unfold a t) with typeOf Γ t
typeOf Γ (unfold a t) | yes (a′ , t∈a′) with a′ ≟ μ a
typeOf Γ (unfold a t) | yes (._ , t∈a′) | yes refl =
yes (a [/tp μ a ] , unfold a t∈a′)
typeOf Γ (unfold a t) | yes (a′ , t∈a′) | no a′≢μa =
no (a′≢μa ∘ functional t∈a′ ∘ proj₂ ∘ unfold-inversion ∘ proj₂)
typeOf Γ (unfold a t) | no ∄a′ =
no (∄a′ ∘ map (const (μ a)) id ∘ unfold-inversion ∘ proj₂)
-- Type checking as a decision procedure for the well-typedness
-- relation.
check_⊢_∈_ : ∀ {m n} (Γ : Ctx m n) t a → Dec (Γ ⊢ t ∈ a)
check Γ ⊢ t ∈ a with typeOf Γ t
check Γ ⊢ t ∈ a | yes ( a′ , t∈a′) with a′ ≟ a
check Γ ⊢ t ∈ a | yes (.a , t∈a ) | yes refl = yes t∈a
check Γ ⊢ t ∈ a | yes ( a′ , t∈a′) | no a′≢a = no (a′≢a ∘ functional t∈a′)
check Γ ⊢ t ∈ a | no ∄a′ = no (∄a′ ∘ helper)
where
helper : ∀ {m n} {Γ : Ctx m n} {t a} → Γ ⊢ t ∈ a → HasType Γ t
helper {a = a} t∈a = a , t∈a
------------------------------------------------------------------------
-- Some simple test cases
private
module TpOp = TypeOperators
module TmOp = TermOperators
module WtOp = WtTermOperators
-- Test: synthesize the type of the polymorphic identity.
test-typeOf-id : typeOf [] (TmOp.id {n = 0}) ≡ yes (TpOp.id , WtOp.id)
test-typeOf-id = refl
-- Test: check the type of the polymorphic identity.
test-check-id : check [] ⊢ TmOp.id {n = 0} ∈ TpOp.id ≡ yes WtOp.id
test-check-id = refl
-- Using the agda2-mode one can also run the above decision procedures
-- interactively in GNU/Emacs by typing C-x C-n <expression>.
-- E.g. typing
--
-- C-x C-n typeOf [] (Λ (λ' (var zero) (var zero)))
--
-- should return
--
-- yes (∀' (var zero →' var zero) , Λ (λ' (var zero) (var zero)))
------------------------------------------------------------------------
-- Uniqueness of typing derivations
-- There is at most one typing derivation for each triple Γ, t, a.
-- I.e. if there is an x : Γ ⊢ t ∈ a, it is unique.
unique : ∀ {m n} {Γ : Ctx m n} {t a} (t∈a t∈a′ : Γ ⊢ t ∈ a) → t∈a ≡ t∈a′
unique (var x) (var .x) = refl
unique (Λ t∈a) (Λ t∈a′) = cong Λ (unique t∈a t∈a′)
unique (λ' a t∈a) (λ' .a t∈a′) = cong (λ' a) (unique t∈a t∈a′)
unique (μ a t∈a) (μ .a t∈a′) = cong (μ a) (unique t∈a t∈a′)
unique {Γ = Γ} {t [ b ]} (_[_] {a = a } t∈a .b) t∈a′[b] = helper t∈a′[b] refl
where
helper : ∀ {a′[/b]} (t∈a′[b] : Γ ⊢ t [ b ] ∈ a′[/b])
(a[/b]≡a′[/b] : a [/tp b ] ≡ a′[/b]) →
⊢substTp a[/b]≡a′[/b] (t∈a [ b ]) ≡ t∈a′[b]
helper (_[_] {a = a′} t∈a′ .b) _ with functional t∈a t∈a′
helper (t∈a′ [ .b ]) refl | refl = cong _ (unique t∈a t∈a′)
unique (_·_ {a = a} s∈a→b t∈a) (_·_ {a = a′} s∈a′→b t∈a′) with
functional s∈a→b s∈a′→b
unique (s∈a→b · t∈a) (s∈a′→b · t∈a′) | refl =
cong₂ _·_ (unique s∈a→b s∈a′→b) (unique t∈a t∈a′)
unique (fold a t∈a) (fold .a t∈a′) = cong (fold a) (unique t∈a t∈a′)
unique (unfold a t∈a) (unfold .a t∈a′) = cong (unfold a) (unique t∈a t∈a′)
|
{
"alphanum_fraction": 0.4981911729,
"avg_line_length": 40.3863636364,
"ext": "agda",
"hexsha": "feb38aee497bfeec68e0479d71271cc3c98132e6",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-07-06T23:12:48.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-05-29T12:24:46.000Z",
"max_forks_repo_head_hexsha": "ea262cf7714cdb762643f10275c568596f57cd1d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "sstucki/system-f-agda",
"max_forks_repo_path": "src/SystemF/TypeCheck.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "ea262cf7714cdb762643f10275c568596f57cd1d",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T19:23:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-05-30T06:43:04.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "sstucki/system-f-agda",
"max_issues_repo_path": "src/SystemF/TypeCheck.agda",
"max_line_length": 78,
"max_stars_count": 68,
"max_stars_repo_head_hexsha": "ea262cf7714cdb762643f10275c568596f57cd1d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "sstucki/system-f-agda",
"max_stars_repo_path": "src/SystemF/TypeCheck.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-01T01:25:16.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-26T13:12:56.000Z",
"num_tokens": 5341,
"size": 12439
}
|
{-# OPTIONS --without-K --safe #-}
open import Polynomial.Parameters
open import Algebra
module Polynomial.NormalForm.Operations
{a ℓ}
(coeffs : RawCoeff a ℓ)
where
open import Polynomial.Exponentiation (RawCoeff.coeffs coeffs)
open import Data.Nat as ℕ using (ℕ; suc; zero; compare)
open import Data.Nat.Properties using (z≤′n)
open import Data.List using (_∷_; [])
open import Data.Fin using (Fin)
open import Data.Product using (_,_; map₁)
open import Induction.WellFounded using (Acc; acc)
open import Induction.Nat using (<′-wellFounded)
open import Polynomial.NormalForm.InjectionIndex
open import Polynomial.NormalForm.Definition coeffs
open import Polynomial.NormalForm.Construction coeffs
open RawCoeff coeffs
----------------------------------------------------------------------
-- Addition
----------------------------------------------------------------------
-- The reason the following code is so verbose is termination
-- checking. For instance, in the third case for ⊞-coeffs, we call a
-- helper function. Instead, you could conceivably use a with-block
-- (on ℕ.compare p q):
--
-- ⊞-coeffs ((x , p) ∷ xs) ((y , q) ∷ ys) with (ℕ.compare p q)
-- ... | ℕ.less p k = (x , p) ∷ ⊞-coeffs xs ((y , k) ∷ ys)
-- ... | ℕ.equal p = (fst~ x ⊞ fst~ y , p) ∷↓ ⊞-coeffs xs ys
-- ... | ℕ.greater q k = (y , q) ∷ ⊞-coeffs ((x , k) ∷ xs) ys
--
-- However, because the first and third recursive calls each rewrap
-- a list that was already pattern-matched on, the recursive call
-- does not strictly decrease the size of its argument.
--
-- Interestingly, if --without-K is turned off, we don't need the
-- helper function ⊞-coeffs; we could pattern match on _⊞_ directly.
--
-- _⊞_ {zero} (lift x) (lift y) = lift (x + y)
-- _⊞_ {suc n} [] ys = ys
-- _⊞_ {suc n} (x ∷ xs) [] = x ∷ xs
-- _⊞_ {suc n} ((x , p) ∷ xs) ((y , q) ∷ ys) =
-- ⊞-zip (ℕ.compare p q) x xs y ys
mutual
infixl 6 _⊞_
_⊞_ : ∀ {n} → Poly n → Poly n → Poly n
(xs Π i≤n) ⊞ (ys Π j≤n) = ⊞-match (inj-compare i≤n j≤n) xs ys
⊞-match : ∀ {i j n}
→ {i≤n : i ≤′ n}
→ {j≤n : j ≤′ n}
→ InjectionOrdering i≤n j≤n
→ FlatPoly i
→ FlatPoly j
→ Poly n
⊞-match (inj-eq i&j≤n) (Κ x) (Κ y) = Κ (x + y) Π i&j≤n
⊞-match (inj-eq i&j≤n) (Σ (x Δ i & xs)) (Σ (y Δ j & ys)) = ⊞-zip (compare i j) x xs y ys Π↓ i&j≤n
⊞-match (inj-lt i≤j-1 j≤n) xs (Σ ys) = ⊞-inj i≤j-1 xs ys Π↓ j≤n
⊞-match (inj-gt i≤n j≤i-1) (Σ xs) ys = ⊞-inj j≤i-1 ys xs Π↓ i≤n
⊞-inj : ∀ {i k}
→ (i ≤′ k)
→ FlatPoly i
→ Coeff k +
→ Coeff k *
⊞-inj i≤k xs (y Π j≤k ≠0 Δ zero & ys) = ⊞-match (inj-compare j≤k i≤k) y xs Δ zero ∷↓ ys
⊞-inj i≤k xs (y Δ suc j & ys) = xs Π i≤k Δ zero ∷↓ ∹ y Δ j & ys
⊞-coeffs : ∀ {n} → Coeff n * → Coeff n * → Coeff n *
⊞-coeffs (∹ x Δ i & xs) ys = ⊞-zip-r x i xs ys
⊞-coeffs [] ys = ys
⊞-zip : ∀ {p q n}
→ ℕ.Ordering p q
→ NonZero n
→ Coeff n *
→ NonZero n
→ Coeff n *
→ Coeff n *
⊞-zip (ℕ.less i k) x xs y ys = (∹ x Δ i & ⊞-zip-r y k ys xs)
⊞-zip (ℕ.greater j k) x xs y ys = (∹ y Δ j & ⊞-zip-r x k xs ys)
⊞-zip (ℕ.equal i ) x xs y ys = (x .poly ⊞ y .poly) Δ i ∷↓ ⊞-coeffs xs ys
⊞-zip-r : ∀ {n} → NonZero n → ℕ → Coeff n * → Coeff n * → Coeff n *
⊞-zip-r x i xs [] = ∹ x Δ i & xs
⊞-zip-r x i xs (∹ y Δ j & ys) = ⊞-zip (compare i j) x xs y ys
{-# INLINE ⊞-zip #-}
----------------------------------------------------------------------
-- Negation
----------------------------------------------------------------------
-- recurse on acc directly
-- https://github.com/agda/agda/issues/3190#issuecomment-416900716
⊟-step : ∀ {n} → Acc _<′_ n → Poly n → Poly n
⊟-step (acc wf) (Κ x Π i≤n) = Κ (- x) Π i≤n
⊟-step (acc wf) (Σ xs Π i≤n) = poly-map (⊟-step (wf _ i≤n)) xs Π↓ i≤n
⊟_ : ∀ {n} → Poly n → Poly n
⊟_ = ⊟-step (<′-wellFounded _)
{-# INLINE ⊟_ #-}
----------------------------------------------------------------------
-- Multiplication
----------------------------------------------------------------------
mutual
⊠-step′ : ∀ {n} → Acc _<′_ n → Poly n → Poly n → Poly n
⊠-step′ a (x Π i≤n) = ⊠-step a x i≤n
⊠-step : ∀ {i n} → Acc _<′_ n → FlatPoly i → i ≤′ n → Poly n → Poly n
⊠-step a (Κ x) _ = ⊠-Κ a x
⊠-step a (Σ xs) = ⊠-Σ a xs
⊠-Κ : ∀ {n} → Acc _<′_ n → Carrier → Poly n → Poly n
⊠-Κ (acc _ ) x (Κ y Π i≤n) = Κ (x * y) Π i≤n
⊠-Κ (acc wf) x (Σ xs Π i≤n) = ⊠-Κ-inj (wf _ i≤n) x xs Π↓ i≤n
⊠-Σ : ∀ {i n} → Acc _<′_ n → Coeff i + → i <′ n → Poly n → Poly n
⊠-Σ (acc wf) xs i≤n (Σ ys Π j≤n) = ⊠-match (acc wf) (inj-compare i≤n j≤n) xs ys
⊠-Σ (acc wf) xs i≤n (Κ y Π _) = ⊠-Κ-inj (wf _ i≤n) y xs Π↓ i≤n
⊠-Κ-inj : ∀ {i} → Acc _<′_ i → Carrier → Coeff i + → Coeff i *
⊠-Κ-inj a x xs = poly-map (⊠-Κ a x) (xs)
⊠-Σ-inj : ∀ {i k}
→ Acc _<′_ k
→ i <′ k
→ Coeff i +
→ Poly k
→ Poly k
⊠-Σ-inj (acc wf) i≤k x (Σ y Π j≤k) = ⊠-match (acc wf) (inj-compare i≤k j≤k) x y
⊠-Σ-inj (acc wf) i≤k x (Κ y Π j≤k) = ⊠-Κ-inj (wf _ i≤k) y x Π↓ i≤k
⊠-match : ∀ {i j n}
→ Acc _<′_ n
→ {i≤n : i <′ n}
→ {j≤n : j <′ n}
→ InjectionOrdering i≤n j≤n
→ Coeff i +
→ Coeff j +
→ Poly n
⊠-match (acc wf) (inj-eq i&j≤n) xs ys = ⊠-coeffs (wf _ i&j≤n) xs ys Π↓ i&j≤n
⊠-match (acc wf) (inj-lt i≤j-1 j≤n) xs ys = poly-map (⊠-Σ-inj (wf _ j≤n) i≤j-1 xs) (ys) Π↓ j≤n
⊠-match (acc wf) (inj-gt i≤n j≤i-1) xs ys = poly-map (⊠-Σ-inj (wf _ i≤n) j≤i-1 ys) (xs) Π↓ i≤n
⊠-coeffs : ∀ {n} → Acc _<′_ n → Coeff n + → Coeff n + → Coeff n *
⊠-coeffs a xs (y ≠0 Δ j & []) = poly-map (⊠-step′ a y) xs ⍓* j
⊠-coeffs a xs (y ≠0 Δ j & ∹ ys) = para (⊠-cons a y ys) xs ⍓* j
⊠-cons : ∀ {n}
→ Acc _<′_ n
→ Poly n
→ Coeff n +
→ Fold n
-- ⊠-cons a y [] (x Π j≤n , xs) = ⊠-step a x j≤n y , xs
⊠-cons a y ys (x Π j≤n , xs) =
⊠-step a x j≤n y , ⊞-coeffs (poly-map (⊠-step a x j≤n) ys) xs
{-# INLINE ⊠-Κ #-}
{-# INLINE ⊠-coeffs #-}
{-# INLINE ⊠-cons #-}
infixl 7 _⊠_
_⊠_ : ∀ {n} → Poly n → Poly n → Poly n
_⊠_ = ⊠-step′ (<′-wellFounded _)
{-# INLINE _⊠_ #-}
----------------------------------------------------------------------
-- Constants and Variables
----------------------------------------------------------------------
-- The constant polynomial
κ : ∀ {n} → Carrier → Poly n
κ x = Κ x Π z≤′n
{-# INLINE κ #-}
-- A variable
ι : ∀ {n} → Fin n → Poly n
ι i = (κ 1# Δ 1 ∷↓ []) Π↓ Fin⇒≤ i
{-# INLINE ι #-}
----------------------------------------------------------------------
-- Exponentiation
----------------------------------------------------------------------
-- We try very hard to never do things like multiply by 1
-- unnecessarily. That's what all the weirdness here is for.
⊡-mult : ∀ {n} → ℕ → Poly n → Poly n
⊡-mult zero xs = xs
⊡-mult (suc n) xs = ⊡-mult n xs ⊠ xs
_⊡_+1 : ∀ {n} → Poly n → ℕ → Poly n
(Κ x Π i≤n) ⊡ i +1 = Κ (x ^ i +1) Π i≤n
(Σ (x Δ j & []) Π i≤n) ⊡ i +1 = x .poly ⊡ i +1 Δ (j ℕ.+ i ℕ.* j) ∷↓ [] Π↓ i≤n
xs@(Σ (_ & ∹ _) Π i≤n) ⊡ i +1 = ⊡-mult i xs
infixr 8 _⊡_
_⊡_ : ∀ {n} → Poly n → ℕ → Poly n
_ ⊡ zero = κ 1#
xs ⊡ suc i = xs ⊡ i +1
{-# INLINE _⊡_ #-}
|
{
"alphanum_fraction": 0.4533625531,
"avg_line_length": 34.9330143541,
"ext": "agda",
"hexsha": "61772bc413c7b74f5e0ea4f665fd819ff5fed90b",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-20T07:07:11.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-04-16T02:23:16.000Z",
"max_forks_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mckeankylej/agda-ring-solver",
"max_forks_repo_path": "src/Polynomial/NormalForm/Operations.agda",
"max_issues_count": 5,
"max_issues_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T01:55:42.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-17T20:48:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mckeankylej/agda-ring-solver",
"max_issues_repo_path": "src/Polynomial/NormalForm/Operations.agda",
"max_line_length": 103,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mckeankylej/agda-ring-solver",
"max_stars_repo_path": "src/Polynomial/NormalForm/Operations.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-15T00:57:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-25T16:40:52.000Z",
"num_tokens": 3104,
"size": 7301
}
|
{-
Constructing List ErrorPart from format strings. Supported formats
%s : String
%d : Nat
%t : Term
%n : Name
%e : List ErrorPart
Examples at the bottom.
-}
module Tactic.Reflection.Printf where
open import Prelude
open import Prelude.Variables
open import Builtin.Reflection
private
data Format (A : Set) : Set where
fmtLit : A → Format A
fmtStr : Format A
fmtNat : Format A
fmtTerm : Format A
fmtName : Format A
fmtErrs : Format A
instance
FunctorFormat : Functor Format
FunctorFormat .fmap f (fmtLit x) = fmtLit (f x)
FunctorFormat .fmap f fmtStr = fmtStr
FunctorFormat .fmap f fmtNat = fmtNat
FunctorFormat .fmap f fmtTerm = fmtTerm
FunctorFormat .fmap f fmtName = fmtName
FunctorFormat .fmap f fmtErrs = fmtErrs
parseFormat : String → List (Format String)
parseFormat = map (fmap packString) ∘ parse ∘ unpackString
where
cons : Char → List (Format (List Char)) → List (Format (List Char))
cons c (fmtLit cs ∷ fs) = fmtLit (c ∷ cs) ∷ fs
cons c fs = fmtLit [ c ] ∷ fs
parse : List Char → List (Format (List Char))
parse ('%' ∷ 's' ∷ fmt) = fmtStr ∷ parse fmt
parse ('%' ∷ 'd' ∷ fmt) = fmtNat ∷ parse fmt
parse ('%' ∷ 't' ∷ fmt) = fmtTerm ∷ parse fmt
parse ('%' ∷ 'n' ∷ fmt) = fmtName ∷ parse fmt
parse ('%' ∷ 'e' ∷ fmt) = fmtErrs ∷ parse fmt
parse ('%' ∷ '%' ∷ fmt) = cons '%' (parse fmt)
parse (c ∷ fmt) = cons c (parse fmt)
parse [] = []
FormatErrorType : List (Format String) → Set ℓ → Set ℓ
FormatErrorType [] Res = Res
FormatErrorType (fmtLit _ ∷ fs) Res = FormatErrorType fs Res
FormatErrorType (fmtStr ∷ fs) Res = String → FormatErrorType fs Res
FormatErrorType (fmtNat ∷ fs) Res = Nat → FormatErrorType fs Res
FormatErrorType (fmtTerm ∷ fs) Res = Term → FormatErrorType fs Res
FormatErrorType (fmtName ∷ fs) Res = Name → FormatErrorType fs Res
FormatErrorType (fmtErrs ∷ fs) Res = List ErrorPart → FormatErrorType fs Res
-- Exported for library writers
formatError : (List ErrorPart → A) → (fmt : String) → FormatErrorType (parseFormat fmt) A
formatError {A = A} k = format [] ∘ parseFormat
where
format : List ErrorPart → (fmt : List (Format String)) → FormatErrorType fmt A
format acc [] = k (reverse acc)
format acc (fmtLit s ∷ fmt) = format (strErr s ∷ acc) fmt
format acc (fmtStr ∷ fmt) s = format (strErr s ∷ acc) fmt
format acc (fmtNat ∷ fmt) n = format (strErr (show n) ∷ acc) fmt
format acc (fmtTerm ∷ fmt) t = format (termErr t ∷ acc) fmt
format acc (fmtName ∷ fmt) x = format (nameErr x ∷ acc) fmt
format acc (fmtErrs ∷ fmt) e = format (reverse e ++ acc) fmt
-- Public API --
errorPartsFmt : (fmt : String) → FormatErrorType (parseFormat fmt) (List ErrorPart)
errorPartsFmt = formatError id
typeErrorFmt : (fmt : String) → FormatErrorType (parseFormat fmt) (TC A)
typeErrorFmt = formatError typeError
debugPrintFmt : String → Nat → (fmt : String) → FormatErrorType (parseFormat fmt) (TC ⊤)
debugPrintFmt tag lvl = formatError (debugPrint tag lvl)
-- Examples --
private
_ : Name → Term → List ErrorPart
_ = errorPartsFmt "%n : %t"
_ : Name → Nat → Nat → TC A
_ = typeErrorFmt "%n applied to %d arguments, expected %d"
_ : Term → String → TC ⊤
_ = debugPrintFmt "tactic.foo" 10 "solving %t with %s"
|
{
"alphanum_fraction": 0.627994228,
"avg_line_length": 34.3069306931,
"ext": "agda",
"hexsha": "5ba7cf8863a8f3380f34dc90d033bef2c4dd90d7",
"lang": "Agda",
"max_forks_count": 24,
"max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z",
"max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "L-TChen/agda-prelude",
"max_forks_repo_path": "src/Tactic/Reflection/Printf.agda",
"max_issues_count": 59,
"max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "L-TChen/agda-prelude",
"max_issues_repo_path": "src/Tactic/Reflection/Printf.agda",
"max_line_length": 89,
"max_stars_count": 111,
"max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "L-TChen/agda-prelude",
"max_stars_repo_path": "src/Tactic/Reflection/Printf.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z",
"num_tokens": 1085,
"size": 3465
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Bundles for homogeneous binary relations
------------------------------------------------------------------------
-- The contents of this module should be accessed via `Relation.Binary`.
{-# OPTIONS --without-K --safe #-}
module Relation.Binary.Bundles where
open import Level
open import Relation.Nullary using (¬_)
open import Relation.Binary.Core
open import Relation.Binary.Definitions
open import Relation.Binary.Structures
------------------------------------------------------------------------
-- Setoids
------------------------------------------------------------------------
record PartialSetoid a ℓ : Set (suc (a ⊔ ℓ)) where
field
Carrier : Set a
_≈_ : Rel Carrier ℓ
isPartialEquivalence : IsPartialEquivalence _≈_
open IsPartialEquivalence isPartialEquivalence public
_≉_ : Rel Carrier _
x ≉ y = ¬ (x ≈ y)
record Setoid c ℓ : Set (suc (c ⊔ ℓ)) where
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
isEquivalence : IsEquivalence _≈_
open IsEquivalence isEquivalence public
partialSetoid : PartialSetoid c ℓ
partialSetoid = record
{ isPartialEquivalence = isPartialEquivalence
}
open PartialSetoid partialSetoid public using (_≉_)
record DecSetoid c ℓ : Set (suc (c ⊔ ℓ)) where
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
isDecEquivalence : IsDecEquivalence _≈_
open IsDecEquivalence isDecEquivalence public
setoid : Setoid c ℓ
setoid = record
{ isEquivalence = isEquivalence
}
open Setoid setoid public using (partialSetoid; _≉_)
------------------------------------------------------------------------
-- Preorders
------------------------------------------------------------------------
record Preorder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _∼_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ₁ -- The underlying equality.
_∼_ : Rel Carrier ℓ₂ -- The relation.
isPreorder : IsPreorder _≈_ _∼_
open IsPreorder isPreorder public
hiding (module Eq)
module Eq where
setoid : Setoid c ℓ₁
setoid = record
{ isEquivalence = isEquivalence
}
open Setoid setoid public
------------------------------------------------------------------------
-- Partial orders
------------------------------------------------------------------------
record Poset c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _≤_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ₁
_≤_ : Rel Carrier ℓ₂
isPartialOrder : IsPartialOrder _≈_ _≤_
open IsPartialOrder isPartialOrder public
hiding (module Eq)
preorder : Preorder c ℓ₁ ℓ₂
preorder = record
{ isPreorder = isPreorder
}
open Preorder preorder public
using (module Eq)
record DecPoset c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _≤_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ₁
_≤_ : Rel Carrier ℓ₂
isDecPartialOrder : IsDecPartialOrder _≈_ _≤_
private
module DPO = IsDecPartialOrder isDecPartialOrder
open DPO public hiding (module Eq)
poset : Poset c ℓ₁ ℓ₂
poset = record
{ isPartialOrder = isPartialOrder
}
open Poset poset public
using (preorder)
module Eq where
decSetoid : DecSetoid c ℓ₁
decSetoid = record
{ isDecEquivalence = DPO.Eq.isDecEquivalence
}
open DecSetoid decSetoid public
record StrictPartialOrder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _<_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ₁
_<_ : Rel Carrier ℓ₂
isStrictPartialOrder : IsStrictPartialOrder _≈_ _<_
open IsStrictPartialOrder isStrictPartialOrder public
hiding (module Eq)
module Eq where
setoid : Setoid c ℓ₁
setoid = record
{ isEquivalence = isEquivalence
}
open Setoid setoid public
record DecStrictPartialOrder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _<_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ₁
_<_ : Rel Carrier ℓ₂
isDecStrictPartialOrder : IsDecStrictPartialOrder _≈_ _<_
private
module DSPO = IsDecStrictPartialOrder isDecStrictPartialOrder
open DSPO public hiding (module Eq)
strictPartialOrder : StrictPartialOrder c ℓ₁ ℓ₂
strictPartialOrder = record
{ isStrictPartialOrder = isStrictPartialOrder
}
module Eq where
decSetoid : DecSetoid c ℓ₁
decSetoid = record
{ isDecEquivalence = DSPO.Eq.isDecEquivalence
}
open DecSetoid decSetoid public
------------------------------------------------------------------------
-- Total orders
------------------------------------------------------------------------
record TotalOrder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _≤_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ₁
_≤_ : Rel Carrier ℓ₂
isTotalOrder : IsTotalOrder _≈_ _≤_
open IsTotalOrder isTotalOrder public
hiding (module Eq)
poset : Poset c ℓ₁ ℓ₂
poset = record
{ isPartialOrder = isPartialOrder
}
open Poset poset public
using (module Eq; preorder)
record DecTotalOrder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _≤_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ₁
_≤_ : Rel Carrier ℓ₂
isDecTotalOrder : IsDecTotalOrder _≈_ _≤_
private
module DTO = IsDecTotalOrder isDecTotalOrder
open DTO public hiding (module Eq)
totalOrder : TotalOrder c ℓ₁ ℓ₂
totalOrder = record
{ isTotalOrder = isTotalOrder
}
open TotalOrder totalOrder public using (poset; preorder)
decPoset : DecPoset c ℓ₁ ℓ₂
decPoset = record
{ isDecPartialOrder = isDecPartialOrder
}
open DecPoset decPoset public using (module Eq)
-- Note that these orders are decidable. The current implementation
-- of `Trichotomous` subsumes irreflexivity and asymmetry. Any reasonable
-- definition capturing these three properties implies decidability
-- as `Trichotomous` necessarily separates out the equality case.
record StrictTotalOrder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _<_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ₁
_<_ : Rel Carrier ℓ₂
isStrictTotalOrder : IsStrictTotalOrder _≈_ _<_
open IsStrictTotalOrder isStrictTotalOrder public
hiding (module Eq)
strictPartialOrder : StrictPartialOrder c ℓ₁ ℓ₂
strictPartialOrder = record
{ isStrictPartialOrder = isStrictPartialOrder
}
open StrictPartialOrder strictPartialOrder public
using (module Eq)
decSetoid : DecSetoid c ℓ₁
decSetoid = record
{ isDecEquivalence = isDecEquivalence
}
{-# WARNING_ON_USAGE decSetoid
"Warning: decSetoid was deprecated in v1.3.
Please use Eq.decSetoid instead."
#-}
|
{
"alphanum_fraction": 0.586328899,
"avg_line_length": 25.6945454545,
"ext": "agda",
"hexsha": "136980fe558d0dc65061016063fc98aee879ece2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Bundles.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Bundles.agda",
"max_line_length": 73,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Bundles.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 2027,
"size": 7066
}
|
------------------------------------------------------------------------
-- Indexed containers
------------------------------------------------------------------------
-- Some parts are based on "Indexed containers" by Altenkirch, Ghani,
-- Hancock, McBride and Morris (JFP, 2015).
{-# OPTIONS --sized-types #-}
module Indexed-container where
open import Equality.Propositional
open import Logical-equivalence using (_⇔_)
open import Prelude
open import Prelude.Size
open import Bijection equality-with-J as Bijection using (_↔_)
import Equivalence equality-with-J as Eq
open import Function-universe equality-with-J hiding (id; _∘_)
open import H-level.Closure equality-with-J
open import Surjection equality-with-J using (_↠_)
open import Univalence-axiom equality-with-J
open import Relation
------------------------------------------------------------------------
-- Containers
-- Doubly indexed containers.
record Container {ℓ} (I O : Type ℓ) : Type (lsuc ℓ) where
constructor _◁_
field
Shape : Rel ℓ O
Position : ∀ {o} → Shape o → Rel ℓ I
-- Interpretation of containers.
⟦_⟧ : ∀ {ℓ₁ ℓ₂} {I O : Type ℓ₁} →
Container I O → Rel ℓ₂ I → Rel (ℓ₁ ⊔ ℓ₂) O
⟦ S ◁ P ⟧ A = λ o → ∃ λ (s : S o) → P s ⊆ A
-- A map function.
map : ∀ {ℓ₁ ℓ₂ ℓ₃} {I O : Type ℓ₁} (C : Container I O)
{A : Rel ℓ₂ I} {B : Rel ℓ₃ I} →
A ⊆ B → ⟦ C ⟧ A ⊆ ⟦ C ⟧ B
map _ f (s , g) = (s , f ∘ g)
-- Functor laws.
map-id : ∀ {ℓ₁ ℓ₂} {I O : Type ℓ₁} {C : Container I O} {A : Rel ℓ₂ I} →
_≡_ {A = ⟦ C ⟧ A ⊆ _} (map C id) id
map-id = refl
map-∘ : ∀ {ℓ₁ ℓ₂ ℓ₃ ℓ₄} {I O : Type ℓ₁} {C : Container I O}
{D : Rel ℓ₂ I} {E : Rel ℓ₃ I} {F : Rel ℓ₄ I}
(f : E ⊆ F) (g : D ⊆ E) →
_≡_ {A = ⟦ C ⟧ D ⊆ _} (map C (f ∘ g)) (map C f ∘ map C g)
map-∘ _ _ = refl
-- A preservation lemma.
⟦⟧-cong : ∀ {k ℓ₁ ℓ₂ ℓ₃} {I O : Type ℓ₁} →
Extensionality? k ℓ₁ (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃) →
(C : Container I O) {A : Rel ℓ₂ I} {B : Rel ℓ₃ I} →
(∀ {i} → A i ↝[ k ] B i) →
(∀ {o} → ⟦ C ⟧ A o ↝[ k ] ⟦ C ⟧ B o)
⟦⟧-cong ext (S ◁ P) {A} {B} A↝B {o} =
(∃ λ (s : S o) → P s ⊆ A) ↝⟨ (∃-cong λ _ → ⊆-congʳ ext A↝B) ⟩□
(∃ λ (s : S o) → P s ⊆ B) □
-- The shapes of a container are in pointwise bijective correspondence
-- with the interpretation of the container applied to the constant
-- function yielding the unit type.
--
-- (This lemma was suggested to me by an anonymous reviewer of another
-- paper.)
Shape↔⟦⟧⊤ : ∀ {ℓ} {I O : Type ℓ} (C : Container I O) {o} →
Container.Shape C o ↔ ⟦ C ⟧ (λ _ → ⊤) o
Shape↔⟦⟧⊤ C {o} =
Shape C o ↝⟨ inverse $ drop-⊤-right (λ _ → →-right-zero) ⟩
(∃ λ (s : Shape C o) → ∃ (Position C s) → ⊤) ↝⟨ ∃-cong (λ _ → currying) ⟩
(∃ λ (s : Shape C o) → ∀ i → Position C s i → ⊤) ↝⟨ ∃-cong (λ _ → inverse Bijection.implicit-Π↔Π) ⟩□
(∃ λ (s : Shape C o) → Position C s ⊆ (λ _ → ⊤)) □
where
open Container
------------------------------------------------------------------------
-- Least fixpoints
mutual
-- The least fixpoint of an indexed "endocontainer", expressed using
-- sized types.
μ : ∀ {ℓ} {X : Type ℓ} → Container X X → Size → Rel ℓ X
μ C i = ⟦ C ⟧ (μ′ C i)
data μ′ {ℓ} {X : Type ℓ}
(C : Container X X) (i : Size) (x : X) : Type ℓ where
⟨_⟩ : {j : Size< i} → μ C j x → μ′ C i x
-- The least fixpoint μ C ∞ is pointwise logically equivalent to
-- μ′ C ∞.
μ⇔μ′ :
∀ {ℓ} {X : Type ℓ} {C : Container X X} {x : X} →
μ C ∞ x ⇔ μ′ C ∞ x
μ⇔μ′ = record
{ to = ⟨_⟩
; from = λ { ⟨ x ⟩ → x }
}
-- The least fixpoint is a post-fixpoint.
μ-out :
∀ {ℓ} {X : Type ℓ} {C : Container X X} →
μ C ∞ ⊆ ⟦ C ⟧ (μ C ∞)
μ-out {C = C} = map C (_⇔_.from μ⇔μ′)
-- The least fixpoint is a pre-fixpoint.
μ-in :
∀ {ℓ} {X : Type ℓ} {C : Container X X} →
⟦ C ⟧ (μ C ∞) ⊆ μ C ∞
μ-in {C = C} = map C (_⇔_.to μ⇔μ′)
-- The least fixpoint is smaller than or equal to every
-- pre-fixpoint.
fold :
∀ {ℓ₁ ℓ₂} {X : Type ℓ₁} (C : Container X X) {A : Rel ℓ₂ X} →
⟦ C ⟧ A ⊆ A →
∀ {i} → μ C i ⊆ A
fold C f a = f (map C (λ { ⟨ a ⟩ → fold C f a }) a)
------------------------------------------------------------------------
-- Greatest fixpoints
mutual
-- The greatest fixpoint of an indexed "endocontainer", expressed
-- using sized types.
ν : ∀ {ℓ} {X : Type ℓ} → Container X X → Size → Rel ℓ X
ν C i = ⟦ C ⟧ (ν′ C i)
record ν′ {ℓ} {X : Type ℓ}
(C : Container X X) (i : Size) (x : X) : Type ℓ where
coinductive
field
force : {j : Size< i} → ν C j x
open ν′ public
-- The greatest fixpoint ν C ∞ is pointwise logically equivalent to
-- ν′ C ∞.
ν⇔ν′ :
∀ {ℓ} {X : Type ℓ} {C : Container X X} {x : X} →
ν C ∞ x ⇔ ν′ C ∞ x
ν⇔ν′ = record
{ to = λ { x .force → x }
; from = λ x → force x
}
-- The greatest fixpoint ν C ∞ is a post-fixpoint.
ν-out :
∀ {ℓ} {X : Type ℓ} {i} {j : Size< i} (C : Container X X) →
ν C i ⊆ ⟦ C ⟧ (ν C j)
ν-out C = map C (λ x → force x)
private
ν-out-∞ :
∀ {ℓ} {X : Type ℓ} (C : Container X X) →
ν C ∞ ⊆ ⟦ C ⟧ (ν C ∞)
ν-out-∞ = ν-out
-- The greatest fixpoint is a pre-fixpoint.
ν-in :
∀ {ℓ} {X : Type ℓ} {i} (C : Container X X) →
⟦ C ⟧ (ν C i) ⊆ ν C i
ν-in C = map C (λ x → λ { .force → x })
-- The greatest fixpoint is greater than or equal to every
-- post-fixpoint.
unfold :
∀ {ℓ₁ ℓ₂} {X : Type ℓ₁} {A : Rel ℓ₂ X} {i} (C : Container X X) →
A ⊆ ⟦ C ⟧ A → A ⊆ ν C i
unfold C f = map C (λ a → λ { .force → unfold C f a }) ∘ f
-- A generalisation of unfold with more sized types.
sized-unfold :
∀ {ℓ₁ ℓ₂} {X : Type ℓ₁} (C : Container X X) (A : Size → Rel ℓ₂ X) →
(∀ {i} {j : Size< i} → A i ⊆ ⟦ C ⟧ (A j)) →
∀ {i} {j : Size< i} → A i ⊆ ν C j
sized-unfold C A f =
map C (λ a → λ { .force → sized-unfold C A f a }) ∘ f
------------------------------------------------------------------------
-- Bisimilarity
-- A container corresponding to bisimilarity for a given container.
Bisimilarity :
∀ {ℓ} {X : Type ℓ} {C : Container X X} →
let P = ∃ λ x → ν C ∞ x × ν C ∞ x in
Container P P
Bisimilarity {C = C} =
(λ { (_ , (s₁ , _) , (s₂ , _)) → s₁ ≡ s₂ })
◁
(λ { {o = _ , (s₁ , f₁) , (s₂ , f₂)} eq (x , x₁ , x₂) →
∃ λ (p : Container.Position C s₁ x) →
x₁ ≡ force (f₁ p)
×
x₂ ≡ force (f₂ (subst (λ s → Container.Position C s x) eq p)) })
-- Bisimilarity for ν.
ν-bisimilar :
∀ {ℓ} {X : Type ℓ} {C : Container X X} {x} →
Size → Rel₂ ℓ (ν C ∞ x)
ν-bisimilar i p = ν Bisimilarity i (_ , p)
ν′-bisimilar :
∀ {ℓ} {X : Type ℓ} {C : Container X X} {x} →
Size → Rel₂ ℓ (ν′ C ∞ x)
ν′-bisimilar i (x , y) = ν′ Bisimilarity i (_ , force x , force y)
-- Lifts a family of binary relations from X to ⟦ C ⟧ X.
⟦_⟧₂ :
∀ {ℓ₁ ℓ₂} {I O : Type ℓ₁} {A : Rel ℓ₂ I} (C : Container I O) →
(∀ {i} → Rel₂ ℓ₁ (A i)) →
∀ {o} → Rel₂ ℓ₁ (⟦ C ⟧ A o)
⟦ C ⟧₂ R ((s , f) , (t , g)) =
∃ λ (eq : s ≡ t) →
∀ {o} (p : Position C s o) →
R (f p , g (subst (λ s → Position C s o) eq p))
where
open Container
-- An alternative characterisation of bisimilarity.
ν-bisimilar↔ :
∀ {k ℓ} {X : Type ℓ} {C : Container X X} {x i} →
Extensionality? k ℓ ℓ →
(x y : ν C ∞ x) →
ν-bisimilar i (x , y) ↝[ k ] ⟦ C ⟧₂ (ν′-bisimilar i) (x , y)
ν-bisimilar↔ {C = C} {i = i} ext (s₁ , f₁) (s₂ , f₂) =
ν-bisimilar i ((s₁ , f₁) , (s₂ , f₂)) ↔⟨⟩
(∃ λ (eq : s₁ ≡ s₂) →
∀ {x} →
(∃ λ (p : Position C s₁ (proj₁ x)) →
proj₁ (proj₂ x) ≡ force (f₁ p) ×
proj₂ (proj₂ x) ≡
force (f₂ (subst (λ s → Position C s (proj₁ x)) eq p))) →
ν′ Bisimilarity i x) ↝⟨ ∃-cong lemma ⟩
(∃ λ (eq : s₁ ≡ s₂) →
∀ {x} (p : Position C s₁ x) →
ν′-bisimilar i (f₁ p , f₂ (subst (λ s → Position C s x) eq p))) ↔⟨⟩
⟦ C ⟧₂ (ν′-bisimilar i) ((s₁ , f₁) , (s₂ , f₂)) □
where
open Container
lemma = λ eq →
(∀ {x} →
(∃ λ (p : Position C s₁ (proj₁ x)) →
proj₁ (proj₂ x) ≡ force (f₁ p) ×
proj₂ (proj₂ x) ≡
force (f₂ (subst (λ s → Position C s (proj₁ x)) eq p))) →
ν′ Bisimilarity i x) ↔⟨ Bijection.implicit-Π↔Π ⟩
(∀ x →
(∃ λ (p : Position C s₁ (proj₁ x)) →
proj₁ (proj₂ x) ≡ force (f₁ p) ×
proj₂ (proj₂ x) ≡
force (f₂ (subst (λ s → Position C s (proj₁ x)) eq p))) →
ν′ Bisimilarity i x) ↝⟨ (∀-cong ext λ _ → from-isomorphism currying) ⟩
(∀ x (p : Position C s₁ (proj₁ x)) →
proj₁ (proj₂ x) ≡ force (f₁ p) ×
proj₂ (proj₂ x) ≡
force (f₂ (subst (λ s → Position C s (proj₁ x)) eq p)) →
ν′ Bisimilarity i x) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → from-isomorphism currying) ⟩
(∀ x (p : Position C s₁ (proj₁ x)) →
proj₁ (proj₂ x) ≡ force (f₁ p) →
proj₂ (proj₂ x) ≡
force (f₂ (subst (λ s → Position C s (proj₁ x)) eq p)) →
ν′ Bisimilarity i x) ↔⟨ currying ⟩
(∀ x yz (p : Position C s₁ x) →
proj₁ yz ≡ force (f₁ p) →
proj₂ yz ≡ force (f₂ (subst (λ s → Position C s x) eq p)) →
ν′ Bisimilarity i (x , yz)) ↝⟨ (∀-cong ext λ _ → from-isomorphism Π-comm) ⟩
(∀ x (p : Position C s₁ x) yz →
proj₁ yz ≡ force (f₁ p) →
proj₂ yz ≡ force (f₂ (subst (λ s → Position C s x) eq p)) →
ν′ Bisimilarity i (x , yz)) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → from-isomorphism currying) ⟩
(∀ x (p : Position C s₁ x) y z →
y ≡ force (f₁ p) →
z ≡ force (f₂ (subst (λ s → Position C s x) eq p)) →
ν′ Bisimilarity i (x , y , z)) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ →
from-isomorphism Π-comm) ⟩
(∀ x (p : Position C s₁ x) →
∀ y → y ≡ force (f₁ p) →
∀ z → z ≡ force (f₂ (subst (λ s → Position C s x) eq p)) →
ν′ Bisimilarity i (x , y , z)) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ →
from-isomorphism $ inverse currying) ⟩
(∀ x (p : Position C s₁ x) →
(y : ∃ λ y → y ≡ force (f₁ p)) →
∀ z → z ≡ force (f₂ (subst (λ s → Position C s x) eq p)) →
ν′ Bisimilarity i (x , proj₁ y , z)) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → drop-⊤-left-Π ext (
_⇔_.to contractible⇔↔⊤ $ singleton-contractible _)) ⟩
(∀ x (p : Position C s₁ x) →
∀ z → z ≡ force (f₂ (subst (λ s → Position C s x) eq p)) →
ν′ Bisimilarity i (x , force (f₁ p) , z)) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ →
from-isomorphism $ inverse currying) ⟩
(∀ x (p : Position C s₁ x) →
(z : ∃ λ z → z ≡ force (f₂ (subst (λ s → Position C s x) eq p))) →
ν′ Bisimilarity i (x , force (f₁ p) , proj₁ z)) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → drop-⊤-left-Π ext (
_⇔_.to contractible⇔↔⊤ $ singleton-contractible _)) ⟩
(∀ x (p : Position C s₁ x) →
ν′ Bisimilarity i
(x , force (f₁ p)
, force (f₂ (subst (λ s → Position C s x) eq p)))) ↔⟨ inverse $ Bijection.implicit-Π↔Π ⟩
(∀ {x} (p : Position C s₁ x) →
ν′ Bisimilarity i
(x , force (f₁ p)
, force (f₂ (subst (λ s → Position C s x) eq p)))) ↔⟨⟩
(∀ {x} (p : Position C s₁ x) →
ν′-bisimilar i (f₁ p , f₂ (subst (λ s → Position C s x) eq p))) □
module Bisimilarity
{ℓ} {X : Type ℓ} {C : Container X X} {x i}
(x y : ν C ∞ x)
where
-- A "constructor".
⟨_,_,_,_⟩ :
(eq : proj₁ x ≡ proj₁ y) →
(∀ {o} (p : Container.Position C (proj₁ x) o) →
ν′-bisimilar i
( proj₂ x p
, proj₂ y (subst (λ s → Container.Position C s o) eq p)
)) →
ν-bisimilar i (x , y)
⟨_,_,_,_⟩ = curry $ _⇔_.from (ν-bisimilar↔ _ x y)
-- A "projection".
split : ν-bisimilar i (x , y) → ⟦ C ⟧₂ (ν′-bisimilar i) (x , y)
split = ν-bisimilar↔ _ x y
-- Bisimilarity is reflexive.
reflexive-ν :
∀ {ℓ} {X : Type ℓ} {C : Container X X} {x} (x : ν C ∞ x) {i} →
ν-bisimilar i (x , x)
reflexive-ν x =
Bisimilarity.⟨ x , x , refl
, (λ { p .force → reflexive-ν (force (proj₂ x p)) })
⟩
-- Bisimilarity is symmetric.
symmetric-ν :
∀ {ℓ} {X : Type ℓ} {C : Container X X} {x} (x y : ν C ∞ x) {i} →
ν-bisimilar i (x , y) → ν-bisimilar i (y , x)
symmetric-ν x y bisim with Bisimilarity.split x y bisim
... | refl , bisim′ =
Bisimilarity.⟨ y , x , refl
, (λ { p .force →
symmetric-ν (force (proj₂ x p))
(force (proj₂ y p))
(force (bisim′ p)) })
⟩
-- Bisimilarity is transitive.
transitive-ν :
∀ {ℓ} {X : Type ℓ} {C : Container X X} {x} (x y z : ν C ∞ x) {i} →
ν-bisimilar i (x , y) → ν-bisimilar i (y , z) →
ν-bisimilar i (x , z)
transitive-ν x y z bisim₁ bisim₂ with Bisimilarity.split x y bisim₁
| Bisimilarity.split y z bisim₂
... | refl , bisim₁′ | refl , bisim₂′ =
Bisimilarity.⟨ x
, z
, refl
, (λ { p .force →
transitive-ν
(force (proj₂ x p))
(force (proj₂ y p))
(force (proj₂ z p))
(force (bisim₁′ p))
(force (bisim₂′ p)) })
⟩
-- Extensionality for ν′ C: bisimilarity implies equality.
--
-- Note that I have not, at the time of writing, determined whether
-- this is a consistent assumption. Uses of this and similar
-- assumptions are tracked using the type system.
ν′-extensionality : ∀ {ℓ} {X : Type ℓ} → Container X X → Type ℓ
ν′-extensionality C =
∀ {x} {y z : ν′ C ∞ x} → ν′-bisimilar ∞ (y , z) → y ≡ z
-- The formulation of extensionality given above for ν′ can be used to
-- derive a form of extensionality for ν (in the presence of
-- extensionality for functions).
ν-extensionality :
∀ {ℓ} {X : Type ℓ} {C : Container X X} →
Extensionality ℓ ℓ →
ν′-extensionality C →
∀ {x} {y z : ν C ∞ x} → ν-bisimilar ∞ (y , z) → y ≡ z
ν-extensionality {C = C} ext ν′-ext
{y = y@(s , f₁)} {z = z@(.s , f₂)} bisim@(refl , _) =
$⟨ (λ _ → proj₂ $ Bisimilarity.split y z bisim) ⟩
(∀ x (p : Position C s x) → ν′-bisimilar ∞ (f₁ p , f₂ p)) ↝⟨ (ν′-ext ∘_) ∘_ ⟩
(∀ x (p : Position C s x) → f₁ p ≡ f₂ p) ↝⟨ implicit-extensionality ext ∘ (apply-ext ext ∘_) ⟩
(λ {_} → f₁) ≡ f₂ ↝⟨ cong (s ,_) ⟩□
y ≡ z □
where
open Container
------------------------------------------------------------------------
-- More properties related to ν and ν′
-- The greatest fixpoint is a fixpoint in a different sense
-- (assuming two kinds of extensionality and univalence).
ν-fixpoint :
∀ {ℓ} →
Extensionality ℓ (lsuc ℓ) →
Univalence ℓ →
{X : Type ℓ} (C : Container X X) →
ν′-extensionality C →
ν C ∞ ≡ ⟦ C ⟧ (ν C ∞)
ν-fixpoint ext univ C ν′-ext =
ν C ∞ ≡⟨⟩
⟦ C ⟧ (ν′ C ∞) ≡⟨ cong ⟦ C ⟧ (apply-ext ext λ _ → ≃⇒≡ univ (Eq.↔⇒≃ ν′↔ν)) ⟩
⟦ C ⟧ (ν C ∞) ∎
where
ν′↔ν : ∀ {x} → ν′ C ∞ x ↔ ν C ∞ x
ν′↔ν = record
{ surjection = record
{ logical-equivalence = record
{ to = λ x → force x
; from = λ x → record { force = x }
}
; right-inverse-of = λ _ → refl
}
; left-inverse-of = λ x →
ν′-ext (record { force = reflexive-ν (force x) })
}
-- The unfold function makes a certain diagram commute.
unfold-commute :
∀ {ℓ₁ ℓ₂} {X : Type ℓ₁} (C : Container X X) {A : Rel ℓ₂ X}
(f : A ⊆ ⟦ C ⟧ A) →
∀ {i x} (a : A x) →
ν-bisimilar i
( unfold C f a
, ν-in C (map C (unfold C f) (f a))
)
unfold-commute C f a =
Bisimilarity.⟨ unfold C f a
, ν-in C (map C (unfold C f) (f a))
, refl
, (λ { p .force →
reflexive-ν (unfold C f (proj₂ (f a) p)) })
⟩
-- A uniqueness property for unfold.
unfold-unique :
∀ {ℓ₁ ℓ₂} {X : Type ℓ₁} (C : Container X X) {A : Rel ℓ₂ X}
(f : A ⊆ ⟦ C ⟧ A) (u : A ⊆ ν C ∞) {i} →
(∀ {x} (a : A x) →
ν-bisimilar i (u a , ν-in C (map C u (f a)))) →
∀ {x} (a : A x) → ν-bisimilar i (u a , unfold C f a)
unfold-unique C f u bisim a
with Bisimilarity.split (u a) (ν-in C (map C u (f a))) (bisim a)
... | eq , bisim′ =
Bisimilarity.⟨ u a
, unfold C f a
, eq
, (λ { p .force →
let p′ = subst (λ s → Container.Position C s _)
eq p in
transitive-ν
(force (proj₂ (u a) p))
(force (proj₂ (ν-in C (map C u (f a))) p′))
(force (proj₂ (unfold C f a) p′))
(force (bisim′ p))
(unfold-unique C f u bisim _) })
⟩
------------------------------------------------------------------------
-- An alternative definition of greatest fixpoints
-- The greatest fixpoint of an indexed "endocontainer" (parametrised
-- by a universe level).
gfp : ∀ {ℓ₁} ℓ₂ {X : Type ℓ₁} → Container X X → Rel (lsuc (ℓ₁ ⊔ ℓ₂)) X
gfp {ℓ₁} ℓ₂ {X} C x = ∃ λ (R : Rel (ℓ₁ ⊔ ℓ₂) X) → R ⊆ ⟦ C ⟧ R × R x
-- The greatest fixpoint is greater than or equal to every
-- sufficiently small post-fixpoint.
gfp-unfold :
∀ {ℓ₁ ℓ₂} ℓ₃ {X : Type ℓ₁} {C : Container X X} {A : Rel ℓ₂ X} →
A ⊆ ⟦ C ⟧ A →
A ⊆ gfp (ℓ₂ ⊔ ℓ₃) C
gfp-unfold {ℓ₁} ℓ₃ {C = C} {A} f a =
↑ (ℓ₁ ⊔ ℓ₃) ∘ A , map C lift ∘ f ∘ lower , lift a
-- The greatest fixpoint is a post-fixpoint.
gfp-out : ∀ {ℓ₁} ℓ₂ {X : Type ℓ₁} {C : Container X X} →
gfp ℓ₂ C ⊆ ⟦ C ⟧ (gfp ℓ₂ C)
gfp-out ℓ₂ {C = C} (R , R⊆CR , Ri) =
map C (λ Ri → R , (λ {_} → R⊆CR) , Ri) (R⊆CR Ri)
-- It is possible to use gfp-unfold ℓ₂ R⊆CR as the second argument
-- to map above. However, the extra lifting would break the proof
-- gfp⊆ν∘ν⊆gfp given below.
-- The first definition of greatest fixpoints is contained in the
-- second one.
ν⊆gfp : ∀ {ℓ₁} ℓ₂ {X : Type ℓ₁} {C : Container X X} →
ν C ∞ ⊆ gfp ℓ₂ C
ν⊆gfp ℓ₂ = gfp-unfold ℓ₂ (ν-out {i = ∞} _)
-- The second definition of greatest fixpoints is contained in the
-- first one.
gfp⊆ν : ∀ {ℓ₁} ℓ₂ {X : Type ℓ₁} {C : Container X X} {i} →
gfp ℓ₂ C ⊆ ν C i
gfp⊆ν ℓ₂ = unfold _ (gfp-out ℓ₂)
-- Thus the two definitions of greatest fixpoints are pointwise
-- logically equivalent.
gfp⇔ν : ∀ {ℓ₁} ℓ₂ {X : Type ℓ₁} {C : Container X X} {i} →
gfp ℓ₂ C i ⇔ ν C ∞ i
gfp⇔ν ℓ₂ = record
{ to = gfp⊆ν ℓ₂
; from = ν⊆gfp ℓ₂
}
-- The function gfp⊆ν is a left inverse of ν⊆gfp (up to pointwise
-- bisimilarity).
gfp⊆ν∘ν⊆gfp :
∀ {ℓ₁} ℓ₂ {X : Type ℓ₁} {C : Container X X} {x} (x : ν C ∞ x) {i} →
ν-bisimilar i (gfp⊆ν ℓ₂ (ν⊆gfp ℓ₂ x) , x)
gfp⊆ν∘ν⊆gfp ℓ₂ {C = C} x =
_⇔_.from (ν-bisimilar↔ _ (gfp⊆ν ℓ₂ (ν⊆gfp ℓ₂ x)) x)
( refl
, (λ { p .force → gfp⊆ν∘ν⊆gfp ℓ₂ (force (proj₂ x p)) })
)
-- There is a split surjection from the second definition of greatest
-- fixpoints to the first one (assuming two kinds of extensionality).
gfp↠ν :
∀ {ℓ₁} →
Extensionality ℓ₁ ℓ₁ →
∀ ℓ₂ {X : Type ℓ₁} {C : Container X X} →
ν′-extensionality C →
∀ {x} → gfp ℓ₂ C x ↠ ν C ∞ x
gfp↠ν ext ℓ₂ ν′-ext = record
{ logical-equivalence = gfp⇔ν ℓ₂
; right-inverse-of = λ x →
ν-extensionality ext ν′-ext (gfp⊆ν∘ν⊆gfp ℓ₂ x)
}
-- The larger versions of gfp are logically equivalent to the smallest
-- one.
larger⇔smallest :
∀ {ℓ₁} ℓ₂ {X : Type ℓ₁} {C : Container X X} {x} →
gfp ℓ₂ C x ⇔ gfp lzero C x
larger⇔smallest ℓ₂ {C = C} {x} =
gfp ℓ₂ C x ↝⟨ gfp⇔ν ℓ₂ ⟩
ν C ∞ x ↝⟨ inverse $ gfp⇔ν lzero ⟩□
gfp lzero C x □
|
{
"alphanum_fraction": 0.4694699612,
"avg_line_length": 33.1008130081,
"ext": "agda",
"hexsha": "946339f0e350cb0dce3c3073ec8629f9263936d8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/up-to",
"max_forks_repo_path": "src/Indexed-container.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/up-to",
"max_issues_repo_path": "src/Indexed-container.agda",
"max_line_length": 140,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/up-to",
"max_stars_repo_path": "src/Indexed-container.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 7922,
"size": 20357
}
|
module Utilities.ExistsSyntax where
open import Level using (Level ; _⊔_)
open import Data.Product using (Σ)
variable
a b : Level
A : Set a
B : Set b
∃-syntax : (A : Set a) → (A → Set b) → Set (a ⊔ b)
∃-syntax = Σ
syntax ∃-syntax A (λ x → B) = ∃ x ∶ A • B
|
{
"alphanum_fraction": 0.5939849624,
"avg_line_length": 17.7333333333,
"ext": "agda",
"hexsha": "29e036e6086afaf8a3bfa714b25c3f4ddb02c530",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f6a6845a54aed7ecc6841ff5ad89643b553cbd77",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "armkeh/agda-computability",
"max_forks_repo_path": "src/Utilities/ExistsSyntax.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f6a6845a54aed7ecc6841ff5ad89643b553cbd77",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "armkeh/agda-computability",
"max_issues_repo_path": "src/Utilities/ExistsSyntax.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f6a6845a54aed7ecc6841ff5ad89643b553cbd77",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "armkeh/agda-computability",
"max_stars_repo_path": "src/Utilities/ExistsSyntax.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 103,
"size": 266
}
|
------------------------------------------------------------------------
-- An example showing how Container.Tree-sort can be used
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Equality
module Container.Tree-sort.Example
{c⁺} (eq : ∀ {a p} → Equality-with-J a p c⁺) where
open Derived-definitions-and-properties eq
open import Prelude using (ℕ; zero; suc; Bool; true; false)
open import Container eq
open import Container.List eq
-- Comparison function for natural numbers.
_≤_ : ℕ → ℕ → Bool
zero ≤ _ = true
suc _ ≤ zero = false
suc m ≤ suc n = m ≤ n
open import Container.Tree-sort eq _≤_
-- The sort function seems to return an ordered list.
ordered : sort (3 ∷ 1 ∷ 2 ∷ []) ≡ 1 ∷ 2 ∷ 3 ∷ []
ordered = refl _
-- The sort function definitely returns a list which is bag equivalent
-- to the input. This property can be used to establish bag
-- equivalences between concrete lists.
a-bag-equivalence : 1 ∷ 2 ∷ 3 ∷ [] ≈-bag 3 ∷ 1 ∷ 2 ∷ []
a-bag-equivalence = sort≈ (3 ∷ 1 ∷ 2 ∷ [])
|
{
"alphanum_fraction": 0.5762081784,
"avg_line_length": 27.5897435897,
"ext": "agda",
"hexsha": "e15721478d5fcd3e363c1dc66688ff8801da419d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Container/Tree-sort/Example.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Container/Tree-sort/Example.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Container/Tree-sort/Example.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 292,
"size": 1076
}
|
------------------------------------------------------------------------
-- Inversion of (sub)typing in Fω with interval kinds
------------------------------------------------------------------------
{-# OPTIONS --safe --without-K #-}
module FOmegaInt.Typing.Inversion where
open import Data.Product using (_,_; proj₁; proj₂; _×_; map)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Relation.Nullary using (¬_)
open import FOmegaInt.Syntax
open import FOmegaInt.Typing
open import FOmegaInt.Typing.Validity
open import FOmegaInt.Kinding.Declarative.Normalization
open import FOmegaInt.Kinding.Canonical.Equivalence
using (sound-<:; sound-<∷; complete-<∷; complete-<:-⋯)
import FOmegaInt.Kinding.Canonical.Inversion as CanInv
open Syntax
open TermCtx hiding (map)
open Typing
open Substitution using (_[_]; weaken)
open WfCtxOps using (lookup-tp)
open TypedSubstitution
open TypedNarrowing
------------------------------------------------------------------------
-- Generation/inversion of typing.
infix 4 _⊢Tm-gen_∈_
-- The possible types of a term (i.e. the possible results of
-- generating/inverting _⊢Tp_∈_).
data _⊢Tm-gen_∈_ {n} (Γ : Ctx n) : Term n → Term n → Set where
∈-var : ∀ {a b} x → Γ ctx → lookup Γ x ≡ tp a → Γ ⊢ a <: b ∈ * →
Γ ⊢Tm-gen var x ∈ b
∈-∀-i : ∀ {k a b c} → Γ ⊢ k kd → kd k ∷ Γ ⊢Tm a ∈ b → Γ ⊢ Π k b <: c ∈ * →
Γ ⊢Tm-gen Λ k a ∈ c
∈-→-i : ∀ {a b c d} → Γ ⊢Tp a ∈ * → tp a ∷ Γ ⊢Tm b ∈ weaken c →
Γ ⊢ a ⇒ c <: d ∈ * → Γ ⊢Tm-gen ƛ a b ∈ d
∈-∀-e : ∀ {a b k c d} → Γ ⊢Tm a ∈ Π k c → Γ ⊢Tp b ∈ k → Γ ⊢ c [ b ] <: d ∈ * →
Γ ⊢Tm-gen a ⊡ b ∈ d
∈-→-e : ∀ {a b c d e} → Γ ⊢Tm a ∈ c ⇒ d → Γ ⊢Tm b ∈ c → Γ ⊢ d <: e ∈ * →
Γ ⊢Tm-gen a · b ∈ e
-- Generation/inversion of typing.
Tm∈-gen : ∀ {n} {Γ : Ctx n} {a b} → Γ ⊢Tm a ∈ b → Γ ⊢Tm-gen a ∈ b
Tm∈-gen (∈-var x Γ-ctx Γ[x]≡kd-a) =
∈-var x Γ-ctx Γ[x]≡kd-a (<:-refl (Tm∈-valid (∈-var x Γ-ctx Γ[x]≡kd-a)))
Tm∈-gen (∈-∀-i k-kd a∈b) =
∈-∀-i k-kd a∈b (<:-refl (Tm∈-valid (∈-∀-i k-kd a∈b)))
Tm∈-gen (∈-→-i a∈* b∈c c∈*) =
∈-→-i a∈* b∈c (<:-refl (Tm∈-valid (∈-→-i a∈* b∈c c∈*)))
Tm∈-gen (∈-∀-e a∈∀kc b∈k) =
∈-∀-e a∈∀kc b∈k (<:-refl (Tm∈-valid (∈-∀-e a∈∀kc b∈k)))
Tm∈-gen (∈-→-e a∈c⇒d b∈c) =
∈-→-e a∈c⇒d b∈c (<:-refl (Tm∈-valid (∈-→-e a∈c⇒d b∈c)))
Tm∈-gen (∈-⇑ a∈b b<:c) with Tm∈-gen a∈b
Tm∈-gen (∈-⇑ x∈b c<:d) | ∈-var x Γ-ctx Γ[x]≡kd-a a<:b =
∈-var x Γ-ctx Γ[x]≡kd-a (<:-trans a<:b c<:d)
Tm∈-gen (∈-⇑ Λka∈b b<:c) | ∈-∀-i k-kd a∈d ∀kd<:b =
∈-∀-i k-kd a∈d (<:-trans ∀kd<:b b<:c)
Tm∈-gen (∈-⇑ ƛab∈c c<:d) | ∈-→-i a∈* b∈c a⇒c<:d =
∈-→-i a∈* b∈c (<:-trans a⇒c<:d c<:d)
Tm∈-gen (∈-⇑ a·b∈e e<:f) | ∈-∀-e a∈Πcd b∈c d[b]<:e =
∈-∀-e a∈Πcd b∈c (<:-trans d[b]<:e e<:f)
Tm∈-gen (∈-⇑ a·b∈e e<:f) | ∈-→-e a∈c⇒d b∈c d<:e =
∈-→-e a∈c⇒d b∈c (<:-trans d<:e e<:f)
------------------------------------------------------------------------
-- Inversion of subtyping (in the empty context).
-- NOTE. The following two lemmas only hold in the empty context
-- because we can not invert instances of the interval projection
-- rules (<:-⟨| and (<:-|⟩) in arbitrary contexts. This is because
-- instances of these rules can reflect arbitrary subtyping
-- assumptions into the subtyping relation. Consider, e.g.
--
-- Γ, X :: ⊤..⊥ ctx Γ(X) = ⊥..⊤
-- ------------------------------- (∈-var)
-- Γ, X :: ⊤..⊥ ⊢ X :: ⊤..⊥
-- -------------------------- (<:-⟨|, <:-|⟩)
-- Γ, X :: ⊤..⊥ ⊢ ⊤ <: X <: ⊥
--
-- Which allows us to prove that ⊤ <: ⊥ using (<:-trans) under the
-- assumption (X : ⊤..⊥). On the other hand, it is impossible to give
-- a transitivity-free proof of ⊤ <: ⊥. In general, it is therefore
-- impossible to invert subtyping statements in non-empty contexts,
-- i.e. one cannot prove lemmas like (<:-→-inv) or (<:-∀-inv) below
-- for arbitrary contexts.
<:-∀-inv : ∀ {k₁ k₂ : Kind Term 0} {a₁ a₂} → [] ⊢ Π k₁ a₁ <: Π k₂ a₂ ∈ * →
[] ⊢ k₂ <∷ k₁ × kd k₂ ∷ [] ⊢ a₁ <: a₂ ∈ *
<:-∀-inv ∀k₁a₁<:∀k₂a₂∈* =
let nf-∀k₁a₁<:nf-∀k₂a₂ = complete-<:-⋯ ∀k₁a₁<:∀k₂a₂∈*
nf-k₂<∷nf-k₁ , nf-a₁<:nf-a₂ = CanInv.<:-∀-inv nf-∀k₁a₁<:nf-∀k₂a₂
∀k₁a₁∈* , ∀k₂a₂∈* = <:-valid ∀k₁a₁<:∀k₂a₂∈*
k₁≅nf-k₁∈* , a₁≃nf-a₁∈* = Tp∈-∀-≃-⌞⌟-nf ∀k₁a₁∈*
k₂≅nf-k₂∈* , a₂≃nf-a₂∈* = Tp∈-∀-≃-⌞⌟-nf ∀k₂a₂∈*
k₂<∷nf-k₂∈* = ≅⇒<∷ k₂≅nf-k₂∈*
k₂<∷k₁ = <∷-trans (<∷-trans k₂<∷nf-k₂∈* (sound-<∷ nf-k₂<∷nf-k₁))
(≅⇒<∷ (≅-sym k₁≅nf-k₁∈*))
in k₂<∷k₁ ,
<:-trans (<:-trans (⇓-<: k₂<∷k₁ (≃⇒<: a₁≃nf-a₁∈*))
(⇓-<: k₂<∷nf-k₂∈* (sound-<: nf-a₁<:nf-a₂)))
(≃⇒<: (≃-sym a₂≃nf-a₂∈*))
<:-→-inv : ∀ {a₁ a₂ b₁ b₂ : Term 0} → [] ⊢ a₁ ⇒ b₁ <: a₂ ⇒ b₂ ∈ * →
[] ⊢ a₂ <: a₁ ∈ * × [] ⊢ b₁ <: b₂ ∈ *
<:-→-inv a₁⇒b₁<:a₂⇒b₂∈* =
let nf-a₁⇒b₁<:nf-a₂⇒b₂ = complete-<:-⋯ a₁⇒b₁<:a₂⇒b₂∈*
nf-a₂<:nf-a₁ , nf-b₁<:nf-b₂ = CanInv.<:-→-inv nf-a₁⇒b₁<:nf-a₂⇒b₂
a₁⇒b₁∈* , a₂⇒b₂∈* = <:-valid a₁⇒b₁<:a₂⇒b₂∈*
a₁≃nf-a₁∈* , b₁≃nf-b₁∈* = Tp∈-→-≃-⌞⌟-nf a₁⇒b₁∈*
a₂≃nf-a₂∈* , b₂≃nf-b₂∈* = Tp∈-→-≃-⌞⌟-nf a₂⇒b₂∈*
in <:-trans (<:-trans (≃⇒<: a₂≃nf-a₂∈*) (sound-<: nf-a₂<:nf-a₁))
(≃⇒<: (≃-sym a₁≃nf-a₁∈*)) ,
<:-trans (<:-trans (≃⇒<: b₁≃nf-b₁∈*) (sound-<: nf-b₁<:nf-b₂))
(≃⇒<: (≃-sym b₂≃nf-b₂∈*))
-- ⊤ is not a subtype of ⊥.
⊤-≮:-⊥ : ∀ {a : Term 0} → ¬ [] ⊢ ⊤ <: ⊥ ∈ *
⊤-≮:-⊥ ⊤<:⊥ with CanInv.⊤-<:-max (complete-<:-⋯ ⊤<:⊥)
⊤-≮:-⊥ ⊤<:⊥ | ()
-- Arrows are not canonical subtypes of universals and vice-versa.
⇒-≮:-Π : ∀ {a₁ b₁ : Term 0} {k₂ a₂} → ¬ [] ⊢ a₁ ⇒ b₁ <: Π k₂ a₂ ∈ *
⇒-≮:-Π a₁⇒b₁<:∀k₂a₂∈* = CanInv.⇒-≮:-Π (complete-<:-⋯ a₁⇒b₁<:∀k₂a₂∈*)
Π-≮:-⇒ : ∀ {k₁ a₁} {a₂ b₂ : Term 0} → ¬ [] ⊢ Π k₁ a₁ <: a₂ ⇒ b₂ ∈ *
Π-≮:-⇒ ∀k₁a₁<:a₂⇒b₂∈* = CanInv.Π-≮:-⇒ (complete-<:-⋯ ∀k₁a₁<:a₂⇒b₂∈*)
|
{
"alphanum_fraction": 0.4546545517,
"avg_line_length": 42.268115942,
"ext": "agda",
"hexsha": "dc3f0d4782fc14c1cd3b9eb176646641c903aee7",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-05-14T10:25:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-05-13T22:29:48.000Z",
"max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Blaisorblade/f-omega-int-agda",
"max_forks_repo_path": "src/FOmegaInt/Typing/Inversion.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T08:54:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-05-14T08:09:40.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Blaisorblade/f-omega-int-agda",
"max_issues_repo_path": "src/FOmegaInt/Typing/Inversion.agda",
"max_line_length": 80,
"max_stars_count": 12,
"max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Blaisorblade/f-omega-int-agda",
"max_stars_repo_path": "src/FOmegaInt/Typing/Inversion.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-27T05:53:06.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-06-13T16:05:35.000Z",
"num_tokens": 3035,
"size": 5833
}
|
{-# OPTIONS --safe #-}
module Cubical.Data.FinSet.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Equiv
open import Cubical.HITs.PropositionalTruncation
open import Cubical.Data.Nat
open import Cubical.Data.Fin
open import Cubical.Data.Sigma
private
variable
ℓ : Level
A : Type ℓ
isFinSet : Type ℓ → Type ℓ
isFinSet A = ∃[ n ∈ ℕ ] A ≃ Fin n
-- finite sets are sets
isFinSet→isSet : isFinSet A → isSet A
isFinSet→isSet = rec isPropIsSet (λ (_ , p) → isOfHLevelRespectEquiv 2 (invEquiv p) isSetFin)
isPropIsFinSet : isProp (isFinSet A)
isPropIsFinSet = isPropPropTrunc
-- the type of finite sets
FinSet : (ℓ : Level) → Type (ℓ-suc ℓ)
FinSet ℓ = TypeWithStr _ isFinSet
|
{
"alphanum_fraction": 0.7496886675,
"avg_line_length": 22.9428571429,
"ext": "agda",
"hexsha": "b1911f03ede20f1d722200af93f23c93056bae8d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Seanpm2001-web/cubical",
"max_forks_repo_path": "Cubical/Data/FinSet/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Seanpm2001-web/cubical",
"max_issues_repo_path": "Cubical/Data/FinSet/Base.agda",
"max_line_length": 93,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "FernandoLarrain/cubical",
"max_stars_repo_path": "Cubical/Data/FinSet/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z",
"num_tokens": 267,
"size": 803
}
|
open import Haskell.Prim
open import Agda.Builtin.Nat
data _≤_ : Nat → Nat → Set where
instance
zero-≤ : ∀ {n} → zero ≤ n
suc-≤ : ∀ {m n} → @0 {{m ≤ n}} → suc m ≤ suc n
data Tree {l u : Nat} : Set where
Leaf : @0 {{l ≤ u}} → Tree {l} {u}
Node : (x : Nat) → Tree {l} {x} → Tree {x} {u} → Tree {l} {u}
{-# COMPILE AGDA2HS Tree #-}
|
{
"alphanum_fraction": 0.5100864553,
"avg_line_length": 26.6923076923,
"ext": "agda",
"hexsha": "7baa4280264d9399d5410d0c7bde34d00507cd42",
"lang": "Agda",
"max_forks_count": 18,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z",
"max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "seanpm2001/agda2hs",
"max_forks_repo_path": "test/Tree.agda",
"max_issues_count": 63,
"max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "seanpm2001/agda2hs",
"max_issues_repo_path": "test/Tree.agda",
"max_line_length": 64,
"max_stars_count": 55,
"max_stars_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda2hs",
"max_stars_repo_path": "test/Tree.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z",
"num_tokens": 145,
"size": 347
}
|
module Serializer.Bool where
open import Data.Bool
open import Data.Fin hiding (_+_)
open import Data.Nat
open import Relation.Binary
open import Relation.Binary.EqReasoning
open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; cong ; setoid )
import Relation.Binary.Indexed as I
open import Function.Equality using (_⟶_ ; _⟨$⟩_ ; Π )
open import Function.LeftInverse hiding (_∘_)
open import Function.Injection
open import Function.Surjection
open import Function.Bijection
open import Serializer
fromBool : Bool -> Fin 2
fromBool true = zero
fromBool false = suc zero
toBool : Fin 2 -> Bool
toBool zero = true
toBool (suc x) = false
bool-cong : Setoid._≈_ (setoid Bool) I.=[ fromBool ]⇒ Setoid._≈_ (setoid (Fin 2))
bool-cong refl = refl
bool-cong-inv : Setoid._≈_ (setoid (Fin 2)) I.=[ toBool ]⇒ Setoid._≈_ (setoid (Bool))
bool-cong-inv refl = refl
from-bool-preserves-eq : setoid Bool ⟶ setoid (Fin 2)
from-bool-preserves-eq = record { _⟨$⟩_ = fromBool ; cong = bool-cong }
from-bool-injective : Injective from-bool-preserves-eq
from-bool-injective {true} {true} refl = refl
from-bool-injective {true} {false} ()
from-bool-injective {false} {true} ()
from-bool-injective {false} {false} refl = refl
bool-preserves-eq-inv : setoid (Fin 2) ⟶ setoid Bool
bool-preserves-eq-inv = record { _⟨$⟩_ = toBool ; cong = bool-cong-inv }
bool-inv : bool-preserves-eq-inv RightInverseOf from-bool-preserves-eq
bool-inv zero = refl
bool-inv (suc zero) = refl
bool-inv (suc (suc ()))
from-bool-surjective : Surjective from-bool-preserves-eq
from-bool-surjective = record { from = bool-preserves-eq-inv ; right-inverse-of = bool-inv }
bool-bijection : Bijection (setoid Bool) (setoid (Fin 2))
bool-bijection = record { to = from-bool-preserves-eq ; bijective = record { injective = from-bool-injective ; surjective = from-bool-surjective } }
instance
serializerBool : Serializer Bool
serializerBool = record {
size = 2 ;
from = fromBool ;
to = toBool ;
bijection = bool-bijection }
|
{
"alphanum_fraction": 0.7224146462,
"avg_line_length": 32.5967741935,
"ext": "agda",
"hexsha": "1505715a7081aee3983857d16cb01e8b98e03f6a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cb95986b772b7a01195619be5e8e590f2429c759",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mathijsb/generic-in-agda",
"max_forks_repo_path": "Serializer/Bool.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cb95986b772b7a01195619be5e8e590f2429c759",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mathijsb/generic-in-agda",
"max_issues_repo_path": "Serializer/Bool.agda",
"max_line_length": 149,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "cb95986b772b7a01195619be5e8e590f2429c759",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mathijsb/generic-in-agda",
"max_stars_repo_path": "Serializer/Bool.agda",
"max_stars_repo_stars_event_max_datetime": "2016-08-04T16:05:24.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-09T09:59:27.000Z",
"num_tokens": 617,
"size": 2021
}
|
module Fail.QualifiedRecordProjections where
record Test (a : Set) : Set where
field
one : a
{-# COMPILE AGDA2HS Test #-}
|
{
"alphanum_fraction": 0.6923076923,
"avg_line_length": 16.25,
"ext": "agda",
"hexsha": "709999a1c4d3102d81910816315bcc38f47cafd5",
"lang": "Agda",
"max_forks_count": 18,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z",
"max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "seanpm2001/agda2hs",
"max_forks_repo_path": "test/Fail/QualifiedRecordProjections.agda",
"max_issues_count": 63,
"max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "seanpm2001/agda2hs",
"max_issues_repo_path": "test/Fail/QualifiedRecordProjections.agda",
"max_line_length": 44,
"max_stars_count": 55,
"max_stars_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dxts/agda2hs",
"max_stars_repo_path": "test/Fail/QualifiedRecordProjections.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z",
"num_tokens": 37,
"size": 130
}
|
{-# OPTIONS --instance-search-depth=10 #-}
module _ where
module _
{A : Set}
(B₁ : A → Set)
(B₂ : A → Set)
(f : A → A)
where
type = ∀ {x : A} → B₁ x → B₂ (f x)
record Class : Set where field method : type
method : {{_ : Class}} → type
method {{I}} = Class.method I
id : ∀ {A : Set} → A → A
id x = x
Ext : {A : Set} (B : A → Set) → A → Set
Ext B x = B x → B x
postulate
Foo : Set
instance
_ : {A : Set}
{B : A → Set}
{{_ : Class (Ext B) (Ext B) id}}
→ Class (Ext B) (Ext (λ _ → Foo)) id
module _
{A : Set}
(B : A → Set)
{{_ : Class (Ext B) (Ext B) id}}
{y}
(R : B y → Set)
where
postulate
_ : let Point = λ (f : B y → B y) → ∀ x → R (f x) in
Class Point Point (method (Ext _) (Ext _) id)
|
{
"alphanum_fraction": 0.4689922481,
"avg_line_length": 17.2,
"ext": "agda",
"hexsha": "84ffc212ba7577478d83f21dad31232b7175fcc0",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2690.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2690.agda",
"max_line_length": 56,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2690.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 300,
"size": 774
}
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Rings.Definition
open import Rings.Ideals.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Rings.Ideals.Maximal.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} {c : _} {pred : A → Set c} (i : Ideal R pred) where
record MaximalIdeal {d : _} : Set (a ⊔ b ⊔ c ⊔ lsuc d) where
field
notContained : A
notContainedIsNotContained : (pred notContained) → False
isMaximal : {bigger : A → Set d} → Ideal R bigger → ({a : A} → pred a → bigger a) → (Sg A (λ a → bigger a && (pred a → False))) → ({a : A} → bigger a)
|
{
"alphanum_fraction": 0.6305555556,
"avg_line_length": 42.3529411765,
"ext": "agda",
"hexsha": "4567c7809cbb6b449476ee5883c95f7b7bfbcafa",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Rings/Ideals/Maximal/Definition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Rings/Ideals/Maximal/Definition.agda",
"max_line_length": 178,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Rings/Ideals/Maximal/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 249,
"size": 720
}
|
module Utilities.VecSplit where
-- Standard libraries imports ----------------------------------------
open import Data.Nat using (ℕ ; _+_)
open import Data.Vec using (Vec ; _++_)
open import Relation.Binary.PropositionalEquality
using (_≡_)
open import Relation.Binary.HeterogeneousEquality
using (_≅_)
----------------------------------------------------------------------
record Split {A : Set} {n : ℕ} (xs : Vec A n) : Set where
field
{m₁} {m₂} : ℕ
n≡m₁+m₂ : n ≡ m₁ + m₂
ys : Vec A m₁
zs : Vec A m₂
xs≅ys++zs : xs ≅ ys ++ zs
|
{
"alphanum_fraction": 0.5161290323,
"avg_line_length": 27.9,
"ext": "agda",
"hexsha": "de0ff2a4d2084e6696abca917f71bb941368b53a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f6a6845a54aed7ecc6841ff5ad89643b553cbd77",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "armkeh/agda-computability",
"max_forks_repo_path": "src/Utilities/VecSplit.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f6a6845a54aed7ecc6841ff5ad89643b553cbd77",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "armkeh/agda-computability",
"max_issues_repo_path": "src/Utilities/VecSplit.agda",
"max_line_length": 70,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f6a6845a54aed7ecc6841ff5ad89643b553cbd77",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "armkeh/agda-computability",
"max_stars_repo_path": "src/Utilities/VecSplit.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 158,
"size": 558
}
|
{-# OPTIONS --allow-unsolved-metas #-}
module x05-842Isomorphism-hc where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; cong; cong-app; sym; subst) -- added last
open Eq.≡-Reasoning
open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _^_)
open import Data.Nat.Properties using (+-comm; +-suc; +-identityʳ) -- added last
------------------------------------------------------------------------------
open import x02-842Induction-hc-2 hiding (+-suc; +-identityʳ)
------------------------------------------------------------------------------
-- Function composition.
_∘_ : ∀ {A B C : Set} → (B → C) → (A → B) → (A → C)
(g ∘ f) x = g (f x)
_∘′_ : ∀ {A B C : Set} → (B → C) → (A → B) → (A → C)
g ∘′ f = λ x → g (f x)
------------------------------------------------------------------------------
-- EXTENSIONALITY
postulate
extensionality : ∀ {A B : Set} {f g : A → B}
→ (∀ (x : A) → f x ≡ g x)
-----------------------
→ f ≡ g
-- def of + that matches on right
_+′_ : ℕ → ℕ → ℕ
m +′ zero = m
m +′ suc n = suc (m +′ n)
same-app : ∀ (m n : ℕ) → m +′ n ≡ m + n
same-app m zero -- (m +′ zero) ≡ m + zero
-- m ≡ m + zero
rewrite +-identityʳ m -- m ≡ m
= refl
same-app m (suc n) -- (m +′ suc n) ≡ m + suc n
-- suc (m +′ n) ≡ m + suc n
rewrite
+-suc m n -- suc (m +′ n) ≡ suc (m + n)
| same-app m n -- suc (m + n) ≡ suc (m + n)
= refl
-- requires extensionality
+′-same-as-+ : _+′_ ≡ _+_
+′-same-as-+ = extensionality λ m → extensionality λ n → same-app m n
------------------------------------------------------------------------------
-- ISOMORPHISM
infix 0 _≃_
record _≃_ (A B : Set) : Set where
constructor mk-≃ -- added, not in PLFA
field
to : A → B
from : B → A
from∘to : ∀ (x : A) → from (to x) ≡ x
to∘from : ∀ (y : B) → to (from y) ≡ y
open _≃_
-- RECORD def equivalent to DATA def and functions:
data _≃′_ (A B : Set): Set where
mk-≃′ : ∀ (to : A → B) →
∀ (from : B → A) →
∀ (from∘to : (∀ (x : A) → from (to x) ≡ x)) →
∀ (to∘from : (∀ (y : B) → to (from y) ≡ y)) →
A ≃′ B
to′ : ∀ {A B : Set} → (A ≃′ B) → (A → B)
to′ (mk-≃′ f g g∘f f∘g) = f
from′ : ∀ {A B : Set} → (A ≃′ B) → (B → A)
from′ (mk-≃′ f g g∘f f∘g) = g
from∘to′ : ∀ {A B : Set} → (A≃B : A ≃′ B)
→ (∀ (x : A)
→ from′ A≃B (to′ A≃B x) ≡ x)
from∘to′ (mk-≃′ f g g∘f f∘g) = g∘f
to∘from′ : ∀ {A B : Set} → (A≃B : A ≃′ B)
→ (∀ (y : B)
→ to′ A≃B (from′ A≃B y) ≡ y)
to∘from′ (mk-≃′ f g g∘f f∘g) = f∘g
-- End of equivalent formulation (records are faster!)
------------------------------------------------------------------------------
-- PROPERTIES OF ISOMORPHISM : AN EQUIVALENCE RELATION (i.e., reflexive, symmetric and transitive)
-- reflexive
≃-refl : ∀ {A : Set}
-----
→ A ≃ A
-- in empty hole, split on result, get COPATTERNS (not in PLFA)
to ≃-refl x = x
from ≃-refl x = x
from∘to ≃-refl x = refl
to∘from ≃-refl x = refl
-- symmetric
≃-sym : ∀ {A B : Set}
→ A ≃ B
-----
→ B ≃ A
to (≃-sym A≃B) = from A≃B
from (≃-sym A≃B) = to A≃B
from∘to (≃-sym A≃B) = to∘from A≃B
to∘from (≃-sym A≃B) = from∘to A≃B
-- transitive
≃-trans : ∀ {A B C : Set}
→ A ≃ B
→ B ≃ C
-----
→ A ≃ C
to (≃-trans A≃B B≃C) = to B≃C ∘ to A≃B
from (≃-trans A≃B B≃C) = from A≃B ∘ from B≃C
from∘to (≃-trans A≃B B≃C) x rewrite from∘to B≃C (to A≃B x) = from∘to A≃B x
to∘from (≃-trans A≃B B≃C) x rewrite to∘from A≃B (from B≃C x) = to∘from B≃C x
-- syntax for isomorphic equational reasoning
module ≃-Reasoning where
infix 1 ≃-begin_
infixr 2 _≃⟨_⟩_
infix 3 _≃-∎
≃-begin_ : ∀ {A B : Set}
→ A ≃ B
-----
→ A ≃ B
≃-begin A≃B = A≃B
_≃⟨_⟩_ : ∀ (A : Set) {B C : Set}
→ A ≃ B
→ B ≃ C
-----
→ A ≃ C
A ≃⟨ A≃B ⟩ B≃C = ≃-trans A≃B B≃C
_≃-∎ : ∀ (A : Set)
-----
→ A ≃ A
A ≃-∎ = ≃-refl
open ≃-Reasoning
------------------------------------------------------------------------------
-- EMBEDDING (weaker than isomorphism)
infix 0 _≲_
record _≲_ (A B : Set) : Set where
field
to : A → B
from : B → A
from∘to : ∀ (x : A) → from (to x) ≡ x
open _≲_
≲-refl : ∀ {A : Set} → A ≲ A
to ≲-refl x = x
from ≲-refl x = x
from∘to ≲-refl x = refl
≲-trans : ∀ {A B C : Set} → A ≲ B → B ≲ C → A ≲ C
to (≲-trans A≲B B≲C) = to B≲C ∘ to A≲B
from (≲-trans A≲B B≲C) = from A≲B ∘ from B≲C
from∘to (≲-trans A≲B B≲C) x rewrite from∘to B≲C (to A≲B x) = from∘to A≲B x
≲-antisym : ∀ {A B : Set}
→ (A≲B : A ≲ B)
→ (B≲A : B ≲ A)
→ (to A≲B ≡ from B≲A)
→ (from A≲B ≡ to B≲A)
-------------------
→ A ≃ B
to (≲-antisym A≲B B≲A to≡from from≡to) = to A≲B
from (≲-antisym A≲B B≲A to≡from from≡to) = from A≲B
from∘to (≲-antisym A≲B B≲A to≡from from≡to) x = from∘to A≲B x
to∘from (≲-antisym A≲B B≲A to≡from from≡to) y
rewrite from≡to | to≡from = from∘to B≲A y
-- equational reasoning for embedding
module ≲-Reasoning where
infix 1 ≲-begin_
infixr 2 _≲⟨_⟩_
infix 3 _≲-∎
≲-begin_ : ∀ {A B : Set}
→ A ≲ B
-----
→ A ≲ B
≲-begin A≲B = A≲B
_≲⟨_⟩_ : ∀ (A : Set) {B C : Set}
→ A ≲ B
→ B ≲ C
-----
→ A ≲ C
A ≲⟨ A≲B ⟩ B≲C = ≲-trans A≲B B≲C
_≲-∎ : ∀ (A : Set)
-----
→ A ≲ A
A ≲-∎ = ≲-refl
open ≲-Reasoning
------------------------------------------------------------------------------
-- isomorphism implies embedding
≃-implies-≲ : ∀ {A B : Set}
→ A ≃ B
-----
→ A ≲ B
to (≃-implies-≲ a≃b) = to a≃b
from (≃-implies-≲ a≃b) = from a≃b
from∘to (≃-implies-≲ a≃b) = from∘to a≃b
------------------------------------------------------------------------------
-- PROPOSITIONAL EQUIVALENCE (weaker than embedding) - aka IFF
-- an equivalence relation
record _⇔_ (A B : Set) : Set where
field
to : A → B
from : B → A
open _⇔_ -- added
⇔-refl : ∀ {A : Set}
-----
→ A ⇔ A
_⇔_.to ⇔-refl x = x
_⇔_.from ⇔-refl x = x
⇔-sym : ∀ {A B : Set}
→ A ⇔ B
-----
→ B ⇔ A
_⇔_.to (⇔-sym A⇔B) = from A⇔B
_⇔_.from (⇔-sym A⇔B) = to A⇔B
⇔-trans : ∀ {A B C : Set}
→ A ⇔ B
→ B ⇔ C
-----
→ A ⇔ C
to (⇔-trans A⇔B B⇔C) = to B⇔C ∘ to A⇔B
from (⇔-trans A⇔B B⇔C) = from A⇔B ∘ from B⇔C
{-
------------------------------------------------------------------------------
-- 842 extended exercise: Canonical bitstrings.
-- Modified and extended from Bin-predicates exercise in PLFA Relations.
cannot prove
∀ {n : Bin-ℕ} → tob (fromb n) ≡ n
because of possibility of leading zeroes in Bin-ℕ value (e.g., 'bits x0 x0 x1')
It s true for Bin-ℕ without leading zeroes
-}
-- Predicate that states:
-- value of type One n is evidence that n has a leading one.
data One : Bin-ℕ → Set where
[bitsx1] : One (bits x1)
_[x0] : ∀ {b : Bin-ℕ} → One b → One (b x0)
_[x1] : ∀ {b : Bin-ℕ} → One b → One (b x1)
-- proof that 'bits x1 x0 x0' has leading one
_ : One (bits x1 x0 x0)
_ = [bitsx1] [x0] [x0]
-- There is no value of type One (bits x0 x0 x1).
-- Can't state and prove yet, because negation not covered until Connectives chapter.
-- Canonical binary representation is either zero or has a leading one.
data Can : Bin-ℕ → Set where
[zero] : Can bits
[pos] : ∀ {b : Bin-ℕ} → One b → Can b
_ : Can bits
_ = [zero]
_ : Can (bits x1 x0)
_ = [pos] ([bitsx1] [x0])
-- PLFA Relations Bin-predicates exercise gives three properties of canonicity.
-- First : increment of a canonical number is canonical.
-- Most of the work is done in the following lemma.
-- IncCanOne : increment of a canonical number has a leading one.
one-inc : ∀ {b : Bin-ℕ} → Can b → One (inc b)
one-inc [zero] = [bitsx1] -- note: 'n' is bound to 'bits'
one-inc ([pos] [bitsx1]) = [bitsx1] [x0]
one-inc ([pos] (b [x0])) = b [x1]
one-inc ([pos] (b [x1])) = one-inc ([pos] b) [x0]
-- OneInc : 1st canonicity property is now a corollary.
can-inc : ∀ {b : Bin-ℕ} → Can b → Can (inc b)
can-inc cb = [pos] (one-inc cb)
-- CanToB : 2nd canonicity property : converting unary to binary produces a canonical number.
to-can : ∀ (n : ℕ) → Can (tob n)
to-can zero = [zero]
to-can (suc n) = can-inc (to-can n)
-- OneDblbX0 : relates binary double to the x0 constructor, for numbers with a leading one.
dblb-x0 : ∀ {b : Bin-ℕ} → One b → dblb b ≡ b x0
dblb-x0 [bitsx1] = refl
dblb-x0 (on [x0]) rewrite dblb-x0 on = refl
dblb-x0 (on [x1]) rewrite dblb-x0 on = refl
dblb-x1 : ∀ {b : Bin-ℕ} → One b → inc (dblb b) ≡ b x1
dblb-x1 [bitsx1] = refl
dblb-x1 (on [x0]) -- inc (dblb (b x0)) ≡ ((b x0) x1)
-- (dblb b x1) ≡ ((b x0) x1)
rewrite sym (dblb-x0 on) -- (dblb b x1) ≡ (dblb b x1)
= refl
dblb-x1 (on [x1]) -- inc (dblb (b x1)) ≡ ((b x1) x1)
-- (inc (dblb b) x1) ≡ ((b x1) x1)
rewrite dblb-x1 on -- ((b x1) x1) ≡ ((b x1) x1)
= refl
-- To prove 3rd property, use lemmas from 842Induction
-- 'one-to∘from' below and some new ones you define.
one-bits-to-nat : ∀ {b : Bin-ℕ} → One b → ℕ
one-bits-to-nat {b} _ = fromb b
one-to∘from : ∀ {b : Bin-ℕ} → One b → tob (fromb b) ≡ b
one-to∘from [bitsx1] = refl
one-to∘from {b} (on [x0]) -- tob (fromb (b x0)) ≡ (b x0)
-- tob (dbl (fromb b )) ≡ (b x0)
rewrite
sym (dblb-x0 on) -- tob (dbl (fromb b )) ≡ dblb b
| to∘dbl (one-bits-to-nat on) -- dblb (tob (fromb b₁)) ≡ dblb b₁
| one-to∘from on -- dblb lhs ≡ dblb lhs
= refl
one-to∘from {b} (on [x1]) -- tob (fromb (b₁ x1)) ≡ (b₁ x1)
-- inc (tob (dbl (fromb b₁))) ≡ (b₁ x1)
rewrite
to∘dbl (one-bits-to-nat on) -- inc (dblb (tob (fromb b₁))) ≡ (b₁ x1)
| one-to∘from on -- inc (dblb lhs) ≡ (lhs x1)
| dblb-x1 on -- (lhs x1) ≡ (lhs x1)
= refl
-- 3rd canonicity property :
-- converting a canonical number from binary and back to unary produces the same number.
-- CanToFrom
can-to∘from : ∀ {b : Bin-ℕ} → Can b → tob (fromb b) ≡ b
can-to∘from [zero] = refl
can-to∘from ([pos] b) = one-to∘from b
-- Proofs of positivity are unique.
one-unique : ∀ {b : Bin-ℕ} → (ox oy : One b) → ox ≡ oy
one-unique [bitsx1] [bitsx1] = refl
one-unique (ox [x0]) (oy [x0])
with one-unique ox oy
... | refl = refl
one-unique (ox [x1]) (oy [x1])
with one-unique ox oy
... | refl = refl
-- Proofs of canonicity are unique.
can-unique : ∀ {b : Bin-ℕ} → (cx cy : Can b) → cx ≡ cy
can-unique [zero] [zero] = refl
can-unique ([pos] ox) ([pos] oy)
with one-unique ox oy
... | refl = refl
------------------------------------------------------------------------------
-- There is NOT an isomorphism between ℕ (unary) and canonical binary representations.
-- Because Can is not a set, but a family of sets, it does not fit into framework for isomorphism.
-- It is possible to roll all the values into one set which is isomorphic to ℕ.
-- A CanR VALUE wraps a Bin-ℕ and proof it has a canonical representation.
data CanR : Set where
wrap : ∀ (b : Bin-ℕ) → Can b → CanR
-- IsoNCanR : Prove an isomorphism between ℕ and CanR.
iso-ℕ-CanR : ℕ ≃ CanR
to iso-ℕ-CanR n = wrap (tob n) (to-can n) -- -- Goal: CanR; n : ℕ
from iso-ℕ-CanR (wrap b cb) = fromb b -- Goal: ℕ; cb : Can b, b : Bin-ℕ
-- Constraints
-- fromb (tob n) = ?0 (b = (tob n)) (cb = (to-can n)) : ℕ
from∘to iso-ℕ-CanR n = from∘tob n -- Goal: fromb (tob n) ≡ n; n : ℕ
to∘from iso-ℕ-CanR (wrap b cb) -- Goal: to iso-ℕ-CanR (from iso-ℕ-CanR (wrap b cb)) ≡ wrap b cb
-- Goal: wrap (tob (fromb b)) (to-can (fromb b)) ≡ wrap b cb
-- cb : Can b, b : Bin-ℕ
with to-can (fromb b) | can-to∘from cb
... | tcfb | ctfcb -- Goal: wrap (tob (fromb b)) tcfb ≡ wrap b cb
-- ctfcb : tob (fromb b) ≡ b, tcfb : Can (tob (fromb b))
rewrite
ctfcb -- Goal: wrap b tcfb ≡ wrap b cb
| can-unique cb tcfb -- Goal: wrap b tcfb ≡ wrap b tcfb
= refl
------------------------------------------------------------------------------
-- BIJECTIVE BINARY NUMBERING -- TODO
-- Isomorphism between ℕ and some binary encoding (without awkward non-canonical values).
-- Via using digits 1 and 2 (instead of 0 and 1) where the multiplier/base is still 2.
-- e.g., <empty>, 1, 2, 11, 12, 21, 22, 111, ...
data Bij-ℕ : Set where
bits : Bij-ℕ
_x1 : Bij-ℕ → Bij-ℕ
_x2 : Bij-ℕ → Bij-ℕ
--------------------------------------------------
incBij-ℕ : Bij-ℕ → Bij-ℕ
incBij-ℕ bits = bits x1
incBij-ℕ (bj x1) = bj x2
incBij-ℕ (bj x2) = (incBij-ℕ bj) x1
_ : incBij-ℕ bits ≡ bits x1
_ = refl
_ : incBij-ℕ (bits x1) ≡ bits x2
_ = refl
_ : incBij-ℕ (bits x2) ≡ bits x1 x1
_ = refl
_ : incBij-ℕ (bits x1 x1) ≡ bits x1 x2
_ = refl
_ : incBij-ℕ (bits x1 x2) ≡ bits x2 x1
_ = refl
_ : incBij-ℕ (bits x2 x1) ≡ bits x2 x2
_ = refl
_ : incBij-ℕ (bits x2 x2) ≡ bits x1 x1 x1
_ = refl
--------------------------------------------------
toBij-ℕ : ℕ → Bij-ℕ
toBij-ℕ zero = bits
toBij-ℕ (suc n) = incBij-ℕ (toBij-ℕ n)
_ : toBij-ℕ 0 ≡ bits
_ = refl
_ : toBij-ℕ 1 ≡ bits x1
_ = refl
_ : toBij-ℕ 2 ≡ bits x2
_ = refl
_ : toBij-ℕ 3 ≡ bits x1 x1
_ = refl
_ : toBij-ℕ 4 ≡ bits x1 x2
_ = refl
_ : toBij-ℕ 5 ≡ bits x2 x1
_ = refl
_ : toBij-ℕ 6 ≡ bits x2 x2
_ = refl
_ : toBij-ℕ 7 ≡ bits x1 x1 x1
_ = refl
_ : toBij-ℕ 8 ≡ bits x1 x1 x2
_ = refl
_ : toBij-ℕ 9 ≡ bits x1 x2 x1
_ = refl
_ : toBij-ℕ 10 ≡ bits x1 x2 x2
_ = refl
_ : toBij-ℕ 11 ≡ bits x2 x1 x1
_ = refl
_ : toBij-ℕ 12 ≡ bits x2 x1 x2
_ = refl
_ : toBij-ℕ 14 ≡ bits x2 x2 x2
_ = refl
_ : toBij-ℕ 16 ≡ bits x1 x1 x1 x2
_ = refl
_ : toBij-ℕ 18 ≡ bits x1 x1 x2 x2
_ = refl
_ : toBij-ℕ 20 ≡ bits x1 x2 x1 x2
_ = refl
-------------------------
_ : toBij-ℕ 0 ≡ bits
_ = refl
_ : toBij-ℕ 0 ≡ bits
_ = refl
-------------------------
_ : toBij-ℕ 1 ≡ bits x1
_ = refl
_ : toBij-ℕ 2 ≡ bits x2
_ = refl
-------------------------
_ : toBij-ℕ 2 ≡ bits x2
_ = refl
_ : toBij-ℕ 4 ≡ bits x1 x2
_ = refl
-------------------------
_ : toBij-ℕ 3 ≡ bits x1 x1
_ = refl
_ : toBij-ℕ 6 ≡ bits x2 x2
_ = refl
-------------------------
_ : toBij-ℕ 4 ≡ bits x1 x2
_ = refl
_ : toBij-ℕ 8 ≡ bits x1 x1 x2
_ = refl
-------------------------
_ : toBij-ℕ 5 ≡ bits x2 x1
_ = refl
_ : toBij-ℕ 10 ≡ bits x1 x2 x2
_ = refl
-------------------------
_ : toBij-ℕ 6 ≡ bits x2 x2
_ = refl
_ : toBij-ℕ 12 ≡ bits x2 x1 x2
_ = refl
-------------------------
_ : toBij-ℕ 7 ≡ bits x1 x1 x1
_ = refl
_ : toBij-ℕ 14 ≡ bits x2 x2 x2
_ = refl
-------------------------
_ : toBij-ℕ 8 ≡ bits x1 x1 x2
_ = refl
_ : toBij-ℕ 16 ≡ bits x1 x1 x1 x2
_ = refl
-------------------------
_ : toBij-ℕ 9 ≡ bits x1 x2 x1
_ = refl
_ : toBij-ℕ 18 ≡ bits x1 x1 x2 x2
_ = refl
-------------------------
_ : toBij-ℕ 10 ≡ bits x1 x2 x2
_ = refl
_ : toBij-ℕ 20 ≡ bits x1 x2 x1 x2
_ = refl
-------------------------
--------------------------------------------------
fromBij-ℕ : Bij-ℕ → ℕ
fromBij-ℕ bj = fbj bj 0
where
fbj : Bij-ℕ → ℕ → ℕ
fbj bits _ = zero
fbj (bj x1) n = (1 * (2 ^ n)) + fbj bj (n + 1)
fbj (bj x2) n = (2 * (2 ^ n)) + fbj bj (n + 1)
_ : fromBij-ℕ (bits) ≡ 0
_ = refl
_ : fromBij-ℕ (bits x1) ≡ 1
_ = refl
_ : fromBij-ℕ (bits x2) ≡ 2
_ = refl
_ : fromBij-ℕ (bits x1 x1) ≡ 3
_ = refl
_ : fromBij-ℕ (bits x1 x2) ≡ 4
_ = refl
_ : fromBij-ℕ (bits x2 x1) ≡ 5
_ = refl
_ : fromBij-ℕ (bits x2 x2) ≡ 6
_ = refl
_ : fromBij-ℕ (bits x1 x1 x1) ≡ 7
_ = refl
_ : fromBij-ℕ (bits x1 x1 x2) ≡ 8
_ = refl
_ : fromBij-ℕ (bits x1 x2 x1) ≡ 9
_ = refl
_ : fromBij-ℕ (bits x1 x2 x2) ≡ 10
_ = refl
_ : fromBij-ℕ (bits x1 x2 x1 x2) ≡ 20
_ = refl
--------------------------------------------------
doubleBij-ℕ : Bij-ℕ → Bij-ℕ
doubleBij-ℕ bits = bits
doubleBij-ℕ (bj x1) = {!!}
doubleBij-ℕ (bj x2) = {!!}
--------------------------------------------------
xxx : ∀ {n : ℕ} → fromBij-ℕ (toBij-ℕ n) ≡ n
xxx {zero} = refl
xxx {suc n} = {! !}
--------------------------------------------------
-- Prove the isomorphism between ℕ and Bij-ℕ.
-- Largely follows outline of above.
iso-ℕ-Bij-ℕ : ℕ ≃ Bij-ℕ
to iso-ℕ-Bij-ℕ n = toBij-ℕ n
from iso-ℕ-Bij-ℕ bjn = fromBij-ℕ bjn
from∘to iso-ℕ-Bij-ℕ n = {!!}
to∘from iso-ℕ-Bij-ℕ bjn = {!!}
|
{
"alphanum_fraction": 0.4582630446,
"avg_line_length": 28.8924369748,
"ext": "agda",
"hexsha": "3c919c1e0edac9d92ac0442de79f018e11ee5323",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x05-842Isomorphism-hc.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x05-842Isomorphism-hc.agda",
"max_line_length": 109,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x05-842Isomorphism-hc.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 7121,
"size": 17191
}
|
module 010-false-true where
-- In Agda, types are theorems, and instances of types are proofs. The
-- simplest theorem is the theorem which has no proof, and is useful
-- to represent any contradictory situation. We declare False as an
-- algebraic data type without constructors. If "False" has no
-- constructors, then it also has no instances, and thereby perfectly
-- serves our purpose. Note that what we call here "False" is also
-- sometimes also called bottom and is denoted by ⊥.
data False : Set where
-- The next simplest theorem is the trivial theorem which is always
-- true. We declare it as an algebraic data type "True", with one
-- constructor named "trivial".
data True : Set where
trivial : True
|
{
"alphanum_fraction": 0.7506925208,
"avg_line_length": 38,
"ext": "agda",
"hexsha": "16614eee8cbdc71d71e5accfe0a94b010beb8d36",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mcmtroffaes/agda-proofs",
"max_forks_repo_path": "010-false-true.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mcmtroffaes/agda-proofs",
"max_issues_repo_path": "010-false-true.agda",
"max_line_length": 70,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mcmtroffaes/agda-proofs",
"max_stars_repo_path": "010-false-true.agda",
"max_stars_repo_stars_event_max_datetime": "2016-08-17T16:15:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-09T22:51:55.000Z",
"num_tokens": 172,
"size": 722
}
|
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.ZCohomology.Groups.KleinBottle where
open import Cubical.ZCohomology.Base
open import Cubical.ZCohomology.GroupStructure
open import Cubical.ZCohomology.Properties
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.Function
open import Cubical.Foundations.GroupoidLaws
open import Cubical.HITs.SetTruncation renaming (rec to sRec ; rec2 to pRec2 ; elim to sElim ; elim2 to sElim2 ; map to sMap)
open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec ; ∣_∣ to ∣_∣₁)
open import Cubical.HITs.Truncation renaming (elim to trElim ; rec to trRec ; elim2 to trElim2)
open import Cubical.Data.Nat hiding (+-assoc)
open import Cubical.Algebra.Group renaming (Int to IntGroup ; Bool to BoolGroup ; Unit to UnitGroup)
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.Transport
open import Cubical.ZCohomology.Groups.Unit
open import Cubical.ZCohomology.Groups.Sn
open import Cubical.Data.Sigma
open import Cubical.Foundations.Isomorphism
open import Cubical.HITs.S1
open import Cubical.HITs.Sn
open import Cubical.Foundations.Equiv
open import Cubical.Homotopy.Connected
open import Cubical.Data.Empty renaming (rec to ⊥-rec)
open import Cubical.Data.Bool
open import Cubical.Data.Int renaming (+-comm to +-commℤ ; _+_ to _+ℤ_)
open import Cubical.HITs.KleinBottle
open import Cubical.Data.Empty
open import Cubical.Foundations.Path
open import Cubical.Homotopy.Loopspace
open IsGroupHom
open Iso
characFunSpace𝕂² : ∀ {ℓ} (A : Type ℓ) →
Iso (KleinBottle → A)
(Σ[ x ∈ A ] Σ[ p ∈ x ≡ x ] Σ[ q ∈ x ≡ x ] p ∙∙ q ∙∙ p ≡ q)
fun (characFunSpace𝕂² A) f =
(f point) ,
((cong f line1) ,
(cong f line2 ,
fst (Square≃doubleComp
(cong f line2) (cong f line2)
(sym (cong f line1)) (cong f line1))
(λ i j → f (square i j))))
inv (characFunSpace𝕂² A) (x , p , q , sq) point = x
inv (characFunSpace𝕂² A) (x , p , q , sq) (line1 i) = p i
inv (characFunSpace𝕂² A) (x , p , q , sq) (line2 i) = q i
inv (characFunSpace𝕂² A) (x , p , q , sq) (square i j) =
invEq (Square≃doubleComp q q (sym p) p) sq i j
rightInv (characFunSpace𝕂² A) (x , (p , (q , sq))) =
ΣPathP (refl , (ΣPathP (refl , (ΣPathP (refl , secEq (Square≃doubleComp q q (sym p) p) sq)))))
leftInv (characFunSpace𝕂² A) f _ point = f point
leftInv (characFunSpace𝕂² A) f _ (line1 i) = f (line1 i)
leftInv (characFunSpace𝕂² A) f _ (line2 i) = f (line2 i)
leftInv (characFunSpace𝕂² A) f z (square i j) =
retEq (Square≃doubleComp
(cong f line2) (cong f line2)
(sym (cong f line1)) (cong f line1))
(λ i j → f (square i j)) z i j
private
movePathLem : ∀ {ℓ} {A : Type ℓ} {x : A} (p q : x ≡ x) → isComm∙ (A , x)
→ (p ∙∙ q ∙∙ p ≡ q) ≡ ((p ∙ p) ∙ q ≡ q)
movePathLem p q comm =
cong (_≡ q) (doubleCompPath-elim' p q p ∙∙ cong (p ∙_) (comm q p) ∙∙ assoc _ _ _)
movePathLem2 : ∀ {ℓ} {A : Type ℓ} {x : A} (p q : x ≡ x)
→ (((p ∙ p) ∙ q) ∙ sym q ≡ q ∙ sym q) ≡ (p ∙ p ≡ refl)
movePathLem2 p q =
cong₂ _≡_ (sym (assoc (p ∙ p) q (sym q)) ∙∙ cong ((p ∙ p) ∙_) (rCancel q) ∙∙ sym (rUnit (p ∙ p)))
(rCancel q)
movePathIso : ∀ {ℓ} {A : Type ℓ} {x : A} (p q : x ≡ x) → isComm∙ (A , x)
→ Iso (p ∙∙ q ∙∙ p ≡ q) (p ∙ p ≡ refl)
movePathIso {x = x} p q comm =
compIso (pathToIso (movePathLem p q comm))
(compIso (helper (p ∙ p))
(pathToIso (movePathLem2 p q)))
where
helper : (p : x ≡ x) → Iso (p ∙ q ≡ q) ((p ∙ q) ∙ sym q ≡ q ∙ sym q)
helper p = congIso (equivToIso (_ , compPathr-isEquiv (sym q)))
------ H¹(𝕂²) ≅ 0 --------------
H⁰-𝕂² : GroupIso (coHomGr 0 KleinBottle) IntGroup
fun (fst H⁰-𝕂²) = sRec isSetInt λ f → f point
inv (fst H⁰-𝕂²) x = ∣ (λ _ → x) ∣₂
rightInv (fst H⁰-𝕂²) _ = refl
leftInv (fst H⁰-𝕂²) =
sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ f → cong ∣_∣₂ (funExt (λ {point → refl
; (line1 i) j → isSetInt (f point) (f point) refl (cong f line1) j i
; (line2 i) j → isSetInt (f point) (f point) refl (cong f line2) j i
; (square i j) z → helper f i j z}))
where
helper : (f : KleinBottle → Int)
→ Cube (λ j z → isSetInt (f point) (f point) refl (cong f line2) z j)
(λ j z → isSetInt (f point) (f point) refl (cong f line2) z j)
(λ i z → isSetInt (f point) (f point) refl (cong f line1) z (~ i))
(λ i z → isSetInt (f point) (f point) refl (cong f line1) z i)
refl
λ i j → f (square i j)
helper f = isGroupoid→isGroupoid' (isOfHLevelSuc 2 isSetInt) _ _ _ _ _ _
snd H⁰-𝕂² =
makeIsGroupHom (sElim2 (λ _ _ → isOfHLevelPath 2 isSetInt _ _) λ _ _ → refl)
------ H¹(𝕂¹) ≅ ℤ ------------
{-
Step one :
H¹(𝕂²) := ∥ 𝕂² → K₁ ∥₂
≡ ∥ Σ[ x ∈ K₁ ] Σ[ p ∈ x ≡ x ] Σ[ q ∈ x ≡ x ] (p ∙∙ q ∙∙ p ≡ q) ∥₂ (characFunSpace𝕂²)
≡ ∥ Σ[ x ∈ K₁ ] Σ[ p ∈ x ≡ x ] Σ[ q ∈ x ≡ x ] p ∙ p ≡ refl ∥₂ (movePathIso, using commutativity of ΩK₂)
≡ ∥ Σ[ x ∈ K₁ ] (x ≡ x) ∥₂ (p ∙ p ≡ refl forces p ≡ refl. Also, p ∙ p ≡ refl is an hProp)
-}
nilpotent→≡0 : (x : Int) → x +ℤ x ≡ 0 → x ≡ 0
nilpotent→≡0 (pos zero) p = refl
nilpotent→≡0 (pos (suc n)) p =
⊥-rec (negsucNotpos _ _
(sym (cong (_- 1) (cong sucInt (sym (helper2 n)) ∙ p))))
where
helper2 : (n : ℕ) → pos (suc n) +pos n ≡ pos (suc (n + n))
helper2 zero = refl
helper2 (suc n) = cong sucInt (sym (sucInt+pos n (pos (suc n))))
∙∙ cong (sucInt ∘ sucInt) (helper2 n)
∙∙ cong (pos ∘ suc ∘ suc) (sym (+-suc n n))
nilpotent→≡0 (negsuc n) p = ⊥-rec (negsucNotpos _ _ (helper2 n p))
where
helper2 : (n : ℕ) → (negsuc n +negsuc n) ≡ pos 0 → negsuc n ≡ pos (suc n)
helper2 n p = cong (negsuc n +ℤ_) (sym (helper3 n))
∙ +-assoc (negsuc n) (negsuc n) (pos (suc n))
∙∙ cong (_+ℤ (pos (suc n))) p
∙∙ cong sucInt (+-commℤ (pos 0) (pos n))
where
helper3 : (n : ℕ) → negsuc n +pos (suc n) ≡ 0
helper3 zero = refl
helper3 (suc n) = cong sucInt (sucInt+pos n (negsuc (suc n))) ∙ helper3 n
nilpotent→≡refl : (x : coHomK 1) (p : x ≡ x) → p ∙ p ≡ refl → p ≡ refl
nilpotent→≡refl =
trElim (λ _ → isGroupoidΠ2 λ _ _ → isOfHLevelPlus {n = 1} 2 (isOfHLevelTrunc 3 _ _ _ _))
(toPropElim (λ _ → isPropΠ2 λ _ _ → isOfHLevelTrunc 3 _ _ _ _)
λ p pId → sym (rightInv (Iso-Kn-ΩKn+1 0) p)
∙∙ cong (Kn→ΩKn+1 0) (nilpotent→≡0 (ΩKn+1→Kn 0 p)
(sym (ΩKn+1→Kn-hom 0 p p)
∙ cong (ΩKn+1→Kn 0) pId))
∙∙ Kn→ΩKn+10ₖ 0)
Iso-H¹-𝕂²₁ : Iso (Σ[ x ∈ coHomK 1 ] Σ[ p ∈ x ≡ x ] Σ[ q ∈ x ≡ x ] p ∙ p ≡ refl)
(Σ[ x ∈ coHomK 1 ] x ≡ x)
fun Iso-H¹-𝕂²₁ (x , (_ , (q , _))) = x , q
inv Iso-H¹-𝕂²₁ (x , q) = x , (refl , (q , (sym (rUnit refl))))
rightInv Iso-H¹-𝕂²₁ _ = refl
leftInv Iso-H¹-𝕂²₁ (x , (p , (q , P))) =
ΣPathP (refl ,
(ΣPathP (sym (nilpotent→≡refl x p P)
, toPathP (Σ≡Prop (λ _ → isOfHLevelTrunc 3 _ _ _ _)
(transportRefl q)))))
{- But this is precisely the type (minus set-truncation) of H¹(S¹) -}
Iso-H¹-𝕂²₂ : Iso (Σ[ x ∈ coHomK 1 ] x ≡ x) (S¹ → coHomK 1)
Iso-H¹-𝕂²₂ = invIso IsoFunSpaceS¹
H¹-𝕂²≅ℤ : GroupIso (coHomGr 1 KleinBottle) IntGroup
H¹-𝕂²≅ℤ = compGroupIso theGroupIso (Hⁿ-Sⁿ≅ℤ 0)
where
theIso : Iso (coHom 1 KleinBottle) (coHom 1 S¹)
theIso =
setTruncIso (
compIso (characFunSpace𝕂² (coHomK 1))
(compIso
(Σ-cong-iso-snd (λ x → Σ-cong-iso-snd
λ p → Σ-cong-iso-snd
λ q → movePathIso p q (isCommΩK-based 1 x)))
(compIso Iso-H¹-𝕂²₁
Iso-H¹-𝕂²₂)))
is-hom : IsGroupHom (coHomGr 1 KleinBottle .snd) (fun theIso) (coHomGr 1 S¹ .snd)
is-hom =
makeIsGroupHom
(sElim2 (λ _ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ f g → cong ∣_∣₂ (funExt λ {base → refl ; (loop i) → refl}))
theGroupIso : GroupIso (coHomGr 1 KleinBottle) (coHomGr 1 S¹)
theGroupIso = (theIso , is-hom)
------ H²(𝕂²) ≅ ℤ/2ℤ (represented here by BoolGroup) -------
-- It suffices to show that H²(Klein) is equivalent to Bool as types
{-
Step one :
H²(𝕂²) := ∥ 𝕂² → K₂ ∥₂
≡ ∥ Σ[ x ∈ K₂ ] Σ[ p ∈ x ≡ x ] Σ[ q ∈ x ≡ x ] (p ∙∙ q ∙∙ p ≡ q) ∥₂ (characFunSpace𝕂²)
≡ ∥ Σ[ x ∈ K₂ ] Σ[ p ∈ x ≡ x ] Σ[ q ∈ x ≡ x ] p ∙ p ≡ refl ∥₂ (movePathIso, using commutativity of ΩK₂)
≡ ∥ Σ[ p ∈ x ≡ x ] p ∙ p ≡ refl ∥₂ (connectedness of K₂)
-}
Iso-H²-𝕂²₁ : Iso ∥ Σ[ x ∈ coHomK 2 ] Σ[ p ∈ x ≡ x ] Σ[ q ∈ x ≡ x ] p ∙ p ≡ refl ∥₂
∥ Σ[ p ∈ 0ₖ 2 ≡ 0ₖ 2 ] p ∙ p ≡ refl ∥₂
fun Iso-H²-𝕂²₁ =
sRec setTruncIsSet
(uncurry (trElim (λ _ → is2GroupoidΠ λ _ → isOfHLevelPlus {n = 2} 2 setTruncIsSet)
(sphereElim _ (λ _ → isSetΠ λ _ → setTruncIsSet)
λ y → ∣ fst y , snd (snd y) ∣₂)))
inv Iso-H²-𝕂²₁ =
sMap λ p → (0ₖ 2) , ((fst p) , (refl , (snd p)))
rightInv Iso-H²-𝕂²₁ =
sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ p → refl
leftInv Iso-H²-𝕂²₁ =
sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
(uncurry (trElim (λ _ → is2GroupoidΠ λ _ → isOfHLevelPlus {n = 1} 3 (setTruncIsSet _ _))
(sphereToPropElim _
(λ _ → isPropΠ λ _ → setTruncIsSet _ _)
λ {(p , (q , sq))
→ trRec (setTruncIsSet _ _)
(λ qid → cong ∣_∣₂ (ΣPathP (refl , (ΣPathP (refl , (ΣPathP (sym qid , refl)))))))
(fun (PathIdTruncIso _)
(isContr→isProp (isConnectedPathKn 1 (0ₖ 2) (0ₖ 2)) ∣ q ∣ ∣ refl ∣))})))
{- Step two : ∥ Σ[ p ∈ x ≡ x ] p ∙ p ≡ refl ∥₂ ≡ ∥ Σ[ x ∈ K₁ ] x + x ≡ 0 ∥₂ -}
Iso-H²-𝕂²₂ : Iso ∥ (Σ[ p ∈ 0ₖ 2 ≡ 0ₖ 2 ] p ∙ p ≡ refl) ∥₂ ∥ Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 ∥₂
Iso-H²-𝕂²₂ = setTruncIso (Σ-cong-iso {B' = λ x → x +ₖ x ≡ 0ₖ 1} (invIso (Iso-Kn-ΩKn+1 1))
λ p → compIso (congIso (invIso (Iso-Kn-ΩKn+1 1)))
(pathToIso λ i → ΩKn+1→Kn-hom 1 p p i ≡ 0ₖ 1))
{- Step three :
∥ Σ[ x ∈ K₁ ] x + x ≡ 0 ∥₂ ≡ Bool
We begin by defining the a map Σ[ x ∈ K₁ ] x + x ≡ 0 → Bool. For a point
(0 , p) we map it to true if winding(p) is even and false if winding(p) is odd.
We also have to show that this map respects the loop
-}
ΣKₙNilpot→Bool : Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 → Bool
ΣKₙNilpot→Bool = uncurry (trElim (λ _ → isGroupoidΠ λ _ → isOfHLevelSuc 2 isSetBool)
λ {base p → isEven (ΩKn+1→Kn 0 p)
; (loop i) p → hcomp (λ k → λ { (i = i0) → respectsLoop p k
; (i = i1) → isEven (ΩKn+1→Kn 0 p)})
(isEven (ΩKn+1→Kn 0 (transp (λ j → ∣ (loop ∙ loop) (i ∨ j) ∣ ≡ 0ₖ 1) i
p)))})
where
isEven-2 : (x : Int) → isEven (-2 +ℤ x) ≡ isEven x
isEven-2 (pos zero) = refl
isEven-2 (pos (suc zero)) = refl
isEven-2 (pos (suc (suc n))) =
cong isEven (cong sucInt (sucInt+pos _ _)
∙∙ sucInt+pos _ _
∙∙ +-commℤ 0 (pos n))
∙ lossy n
where
lossy : (n : ℕ) → isEven (pos n) ≡ isEven (pos n)
lossy n = refl
isEven-2 (negsuc zero) = refl
isEven-2 (negsuc (suc n)) =
cong isEven (predInt+negsuc n _
∙ +-commℤ -3 (negsuc n))
∙ lossy2 n
where
lossy2 : (n : ℕ) → isEven (negsuc (suc (suc (suc n)))) ≡ isEven (pos n)
lossy2 n = refl
respectsLoop : (p : 0ₖ 1 ≡ 0ₖ 1)
→ isEven (ΩKn+1→Kn 0 (transport (λ i → ∣ (loop ∙ loop) i ∣ ≡ 0ₖ 1) p))
≡ isEven (ΩKn+1→Kn 0 p)
respectsLoop p =
cong isEven (cong (ΩKn+1→Kn 0) (cong (transport (λ i → ∣ (loop ∙ loop) i ∣ ≡ 0ₖ 1))
(lUnit p)))
∙∙ cong isEven (cong (ΩKn+1→Kn 0)
λ j → transp (λ i → ∣ (loop ∙ loop) (i ∨ j) ∣ ≡ 0ₖ 1) j
((λ i → ∣ (loop ∙ loop) (~ i ∧ j) ∣) ∙ p))
∙∙ cong isEven (ΩKn+1→Kn-hom 0 (sym (cong ∣_∣ (loop ∙ loop))) p)
∙ isEven-2 (ΩKn+1→Kn 0 p)
{-
We show that for any x : Int we have ∣ (0ₖ 1 , Kn→ΩKn+1 0 x) ∣₂ ≡ ∣ (0ₖ 1 , refl) ∣₂ when x is even
and ∣ (0ₖ 1 , Kn→ΩKn+1 0 x) ∣₂ ≡ ∣ (0ₖ 1 , cong ∣_∣ loop) ∣₂ when x is odd
This is done by induction on x. For the inductive step we define a multiplication _*_ on ∥ Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 ∥₂
which is just ∣ (0 , p) ∣₂ * ∣ (0 , q) ∣₂ ≡ ∣ (0 , p ∙ q) ∣₂ when x is 0
-}
private
_*_ : ∥ Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 ∥₂ → ∥ Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 ∥₂ → ∥ Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 ∥₂
_*_ = sRec (isSetΠ (λ _ → setTruncIsSet)) λ a → sRec setTruncIsSet λ b → *' (fst a) (fst b) (snd a) (snd b)
where
*' : (x y : coHomK 1) (p : x +ₖ x ≡ 0ₖ 1) (q : y +ₖ y ≡ 0ₖ 1) → ∥ Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 ∥₂
*' =
trElim2 (λ _ _ → isGroupoidΠ2 λ _ _ → isOfHLevelSuc 2 setTruncIsSet)
(wedgeconFun _ _
(λ _ _ → isSetΠ2 λ _ _ → setTruncIsSet)
(λ x p q → ∣ ∣ x ∣ , cong₂ _+ₖ_ p q ∣₂)
(λ y p q → ∣ ∣ y ∣ , sym (rUnitₖ 1 (∣ y ∣ +ₖ ∣ y ∣)) ∙ cong₂ _+ₖ_ p q ∣₂)
(funExt λ p → funExt λ q → cong ∣_∣₂ (ΣPathP (refl , (sym (lUnit _))))))
*=∙ : (p q : 0ₖ 1 ≡ 0ₖ 1) → ∣ 0ₖ 1 , p ∣₂ * ∣ 0ₖ 1 , q ∣₂ ≡ ∣ 0ₖ 1 , p ∙ q ∣₂
*=∙ p q = cong ∣_∣₂ (ΣPathP (refl , sym (∙≡+₁ p q)))
isEvenNegsuc : (n : ℕ) → isEven (pos (suc n)) ≡ true → isEven (negsuc n) ≡ true
isEvenNegsuc zero p = ⊥-rec (true≢false (sym p))
isEvenNegsuc (suc n) p = p
¬isEvenNegSuc : (n : ℕ) → isEven (pos (suc n)) ≡ false → isEven (negsuc n) ≡ false
¬isEvenNegSuc zero p = refl
¬isEvenNegSuc (suc n) p = p
evenCharac : (x : Int) → isEven x ≡ true
→ Path ∥ Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 ∥₂
∣ (0ₖ 1 , Kn→ΩKn+1 0 x) ∣₂
∣ (0ₖ 1 , refl) ∣₂
evenCharac (pos zero) isisEven i = ∣ (0ₖ 1) , (rUnit refl (~ i)) ∣₂
evenCharac (pos (suc zero)) isisEven = ⊥-rec (true≢false (sym isisEven))
evenCharac (pos (suc (suc zero))) isisEven =
cong ∣_∣₂ ((λ i → 0ₖ 1 , rUnit (cong ∣_∣ ((lUnit loop (~ i)) ∙ loop)) (~ i))
∙ (ΣPathP (cong ∣_∣ loop , λ i j → ∣ (loop ∙ loop) (i ∨ j) ∣)))
evenCharac (pos (suc (suc (suc n)))) isisEven =
(λ i → ∣ 0ₖ 1 , Kn→ΩKn+1-hom 0 (pos (suc n)) 2 i ∣₂)
∙∙ sym (*=∙ (Kn→ΩKn+1 0 (pos (suc n))) (Kn→ΩKn+1 0 (pos 2)))
∙∙ (cong₂ _*_ (evenCharac (pos (suc n)) isisEven) (evenCharac 2 refl))
evenCharac (negsuc zero) isisEven = ⊥-rec (true≢false (sym isisEven))
evenCharac (negsuc (suc zero)) isisEven =
cong ∣_∣₂ ((λ i → 0ₖ 1
, λ i₁ → hfill (doubleComp-faces (λ i₂ → ∣ base ∣) (λ _ → ∣ base ∣) i₁)
(inS ∣ compPath≡compPath' (sym loop) (sym loop) i i₁ ∣) (~ i))
∙ ΣPathP ((cong ∣_∣ (sym loop)) , λ i j → ∣ (sym loop ∙' sym loop) (i ∨ j) ∣))
evenCharac (negsuc (suc (suc n))) isisEven =
cong ∣_∣₂ (λ i → 0ₖ 1 , Kn→ΩKn+1-hom 0 (negsuc n) -2 i)
∙∙ sym (*=∙ (Kn→ΩKn+1 0 (negsuc n)) (Kn→ΩKn+1 0 -2))
∙∙ cong₂ _*_ (evenCharac (negsuc n) (isEvenNegsuc n isisEven)) (evenCharac -2 refl)
oddCharac : (x : Int) → isEven x ≡ false
→ Path ∥ Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 ∥₂
∣ (0ₖ 1 , Kn→ΩKn+1 0 x) ∣₂
∣ (0ₖ 1 , cong ∣_∣ loop) ∣₂
oddCharac (pos zero) isOdd = ⊥-rec (true≢false isOdd)
oddCharac (pos (suc zero)) isOdd i =
∣ (0ₖ 1 , λ j → hfill (doubleComp-faces (λ i₂ → ∣ base ∣) (λ _ → ∣ base ∣) j)
(inS ∣ lUnit loop (~ i) j ∣) (~ i)) ∣₂
oddCharac (pos (suc (suc n))) isOdd =
(λ i → ∣ 0ₖ 1 , Kn→ΩKn+1-hom 0 (pos n) 2 i ∣₂)
∙∙ sym (*=∙ (Kn→ΩKn+1 0 (pos n)) (Kn→ΩKn+1 0 2))
∙∙ cong₂ _*_ (oddCharac (pos n) isOdd) (evenCharac 2 refl)
oddCharac (negsuc zero) isOdd =
cong ∣_∣₂ ((λ i → 0ₖ 1 , rUnit (sym (cong ∣_∣ loop)) (~ i))
∙ ΣPathP (cong ∣_∣ (sym loop) , λ i j → ∣ hcomp (λ k → λ { (i = i0) → loop (~ j ∧ k)
; (i = i1) → loop j
; (j = i1) → base})
(loop (j ∨ ~ i)) ∣))
oddCharac (negsuc (suc zero)) isOdd = ⊥-rec (true≢false isOdd)
oddCharac (negsuc (suc (suc n))) isOdd =
cong ∣_∣₂ (λ i → 0ₖ 1 , Kn→ΩKn+1-hom 0 (negsuc n) -2 i)
∙∙ sym (*=∙ (Kn→ΩKn+1 0 (negsuc n)) (Kn→ΩKn+1 0 -2))
∙∙ cong₂ _*_ (oddCharac (negsuc n) (¬isEvenNegSuc n isOdd)) (evenCharac (negsuc 1) refl)
{- We now have all we need to establish the Iso -}
Bool→ΣKₙNilpot : Bool → ∥ Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 ∥₂
Bool→ΣKₙNilpot false = ∣ 0ₖ 1 , cong ∣_∣ loop ∣₂
Bool→ΣKₙNilpot true = ∣ 0ₖ 1 , refl ∣₂
testIso : Iso ∥ Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 ∥₂ Bool
fun testIso = sRec isSetBool ΣKₙNilpot→Bool
inv testIso = Bool→ΣKₙNilpot
rightInv testIso false = refl
rightInv testIso true = refl
leftInv testIso =
sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
(uncurry (trElim
(λ _ → isGroupoidΠ λ _ → isOfHLevelPlus {n = 1} 2 (setTruncIsSet _ _))
(toPropElim (λ _ → isPropΠ (λ _ → setTruncIsSet _ _))
(λ p → path p (isEven (ΩKn+1→Kn 0 p)) refl))))
where
path : (p : 0ₖ 1 ≡ 0ₖ 1) (b : Bool) → (isEven (ΩKn+1→Kn 0 p) ≡ b)
→ Bool→ΣKₙNilpot (ΣKₙNilpot→Bool (∣ base ∣ , p)) ≡ ∣ ∣ base ∣ , p ∣₂
path p false q =
(cong Bool→ΣKₙNilpot q)
∙∙ sym (oddCharac (ΩKn+1→Kn 0 p) q)
∙∙ cong ∣_∣₂ λ i → 0ₖ 1 , rightInv (Iso-Kn-ΩKn+1 0) p i
path p true q =
cong Bool→ΣKₙNilpot q
∙∙ sym (evenCharac (ΩKn+1→Kn 0 p) q)
∙∙ cong ∣_∣₂ λ i → 0ₖ 1 , rightInv (Iso-Kn-ΩKn+1 0) p i
H²-𝕂²≅Bool : GroupIso (coHomGr 2 KleinBottle) BoolGroup
H²-𝕂²≅Bool = invGroupIso (≅Bool theIso)
where
theIso : Iso _ _
theIso =
compIso (setTruncIso
(compIso (characFunSpace𝕂² (coHomK 2))
(Σ-cong-iso-snd
λ x → Σ-cong-iso-snd
λ p → Σ-cong-iso-snd
λ q → (movePathIso p q (isCommΩK-based 2 x)))))
(compIso Iso-H²-𝕂²₁
(compIso
Iso-H²-𝕂²₂
testIso))
------ Hⁿ(𝕂²) ≅ 0 , n ≥ 3 ------
isContrHⁿ-𝕂² : (n : ℕ) → isContr (coHom (3 + n) KleinBottle)
isContrHⁿ-𝕂² n =
isOfHLevelRetractFromIso 0
(setTruncIso (characFunSpace𝕂² (coHomK _)))
isContrΣ-help
where
helper : (x : coHomK (3 + n))(p : x ≡ x) → (refl ≡ p) → (q : x ≡ x) → (refl ≡ q)
→ (P : p ∙∙ q ∙∙ p ≡ q)
→ Path ∥ (Σ[ x ∈ coHomK (3 + n) ] Σ[ p ∈ x ≡ x ] Σ[ q ∈ x ≡ x ] p ∙∙ q ∙∙ p ≡ q) ∥₂
∣ x , p , q , P ∣₂
∣ 0ₖ _ , refl , refl , sym (rUnit refl) ∣₂
helper =
trElim (λ _ → isProp→isOfHLevelSuc (4 + n) (isPropΠ4 λ _ _ _ _ → isPropΠ λ _ → setTruncIsSet _ _))
(sphereToPropElim _ (λ _ → isPropΠ4 λ _ _ _ _ → isPropΠ λ _ → setTruncIsSet _ _)
λ p → J (λ p _ → (q : 0ₖ _ ≡ 0ₖ _) → (refl ≡ q)
→ (P : p ∙∙ q ∙∙ p ≡ q)
→ Path ∥ (Σ[ x ∈ coHomK (3 + n) ] Σ[ p ∈ x ≡ x ] Σ[ q ∈ x ≡ x ] p ∙∙ q ∙∙ p ≡ q) ∥₂
∣ 0ₖ _ , p , q , P ∣₂
∣ 0ₖ _ , refl , refl , sym (rUnit refl) ∣₂)
λ q → J (λ q _ → (P : refl ∙∙ q ∙∙ refl ≡ q)
→ Path ∥ (Σ[ x ∈ coHomK (3 + n) ] Σ[ p ∈ x ≡ x ] Σ[ q ∈ x ≡ x ] p ∙∙ q ∙∙ p ≡ q) ∥₂
∣ 0ₖ _ , refl , q , P ∣₂
∣ 0ₖ _ , refl , refl , sym (rUnit refl) ∣₂)
λ P → trRec (isProp→isOfHLevelSuc n (setTruncIsSet _ _))
(λ P≡rUnitrefl i → ∣ 0ₖ (3 + n) , refl , refl , P≡rUnitrefl i ∣₂)
(fun (PathIdTruncIso _)
(isContr→isProp (isConnectedPath _ (isConnectedPathKn (2 + n) _ _)
(refl ∙∙ refl ∙∙ refl) refl)
∣ P ∣ ∣ sym (rUnit refl) ∣)))
isContrΣ-help : isContr ∥ (Σ[ x ∈ coHomK (3 + n) ] Σ[ p ∈ x ≡ x ] Σ[ q ∈ x ≡ x ] p ∙∙ q ∙∙ p ≡ q) ∥₂
fst isContrΣ-help = ∣ 0ₖ _ , refl , refl , sym (rUnit refl) ∣₂
snd isContrΣ-help =
sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ {(x , p , q , P)
→ trRec (isProp→isOfHLevelSuc (suc n) (setTruncIsSet _ _))
(λ pId → trRec (isProp→isOfHLevelSuc (suc n) (setTruncIsSet _ _))
(λ qId → sym (helper x p pId q qId P))
(fun (PathIdTruncIso (2 + n))
(isContr→isProp (isConnectedPathKn (2 + n) _ _) ∣ refl ∣ ∣ q ∣)))
(fun (PathIdTruncIso (2 + n))
(isContr→isProp (isConnectedPathKn (2 + n) _ _) ∣ refl ∣ ∣ p ∣))}
Hⁿ⁺³-𝕂²≅0 : (n : ℕ) → GroupIso (coHomGr (3 + n) KleinBottle) UnitGroup
Hⁿ⁺³-𝕂²≅0 n = contrGroupIsoUnit (isContrHⁿ-𝕂² n)
|
{
"alphanum_fraction": 0.5052897669,
"avg_line_length": 46.9494505495,
"ext": "agda",
"hexsha": "8b9da05a701dd7e75f911e0d16fa84453396b849",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-03-12T20:08:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-03-12T20:08:45.000Z",
"max_forks_repo_head_hexsha": "ce8fe04f9c5d2c9faf8690885c1b702434626621",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "LuuBluum/cubical",
"max_forks_repo_path": "Cubical/ZCohomology/Groups/KleinBottle.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ce8fe04f9c5d2c9faf8690885c1b702434626621",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "LuuBluum/cubical",
"max_issues_repo_path": "Cubical/ZCohomology/Groups/KleinBottle.agda",
"max_line_length": 141,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ce8fe04f9c5d2c9faf8690885c1b702434626621",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "LuuBluum/cubical",
"max_stars_repo_path": "Cubical/ZCohomology/Groups/KleinBottle.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 9306,
"size": 21362
}
|
{-# OPTIONS --cubical #-}
module Cubical.Codata.Everything where
open import Cubical.Codata.EverythingSafe public
--- Modules making assumptions that might be incompatible with other
-- flags or make use of potentially unsafe features.
-- Assumes --guardedness
open import Cubical.Codata.Stream public
open import Cubical.Codata.Conat public
open import Cubical.Codata.M public
-- Also uses {-# TERMINATING #-}.
open import Cubical.Codata.M.Bisimilarity public
|
{
"alphanum_fraction": 0.7803837953,
"avg_line_length": 24.6842105263,
"ext": "agda",
"hexsha": "2802bb300bb5d3c72bb766de22713f09daf70071",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/Codata/Everything.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/Codata/Everything.agda",
"max_line_length": 68,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/Codata/Everything.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 107,
"size": 469
}
|
{-# OPTIONS --safe #-}
module Cubical.Categories.Instances.Poset where
open import Cubical.Foundations.Prelude
open import Cubical.Relation.Binary.Poset
open import Cubical.Categories.Category
open Category
private
variable
ℓ ℓ' : Level
module _ (P : Poset ℓ ℓ') where
open PosetStr (snd P)
PosetCategory : Category ℓ ℓ'
ob PosetCategory = fst P
Hom[_,_] PosetCategory = _≤_
id PosetCategory = is-refl _
_⋆_ PosetCategory = is-trans _ _ _
⋆IdL PosetCategory _ = is-prop-valued _ _ _ _
⋆IdR PosetCategory _ = is-prop-valued _ _ _ _
⋆Assoc PosetCategory _ _ _ = is-prop-valued _ _ _ _
isSetHom PosetCategory = isProp→isSet (is-prop-valued _ _)
|
{
"alphanum_fraction": 0.6717241379,
"avg_line_length": 25,
"ext": "agda",
"hexsha": "720326e9b81345656579f53e104e0c0c25e42acb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Seanpm2001-web/cubical",
"max_forks_repo_path": "Cubical/Categories/Instances/Poset.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Seanpm2001-web/cubical",
"max_issues_repo_path": "Cubical/Categories/Instances/Poset.agda",
"max_line_length": 64,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "FernandoLarrain/cubical",
"max_stars_repo_path": "Cubical/Categories/Instances/Poset.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z",
"num_tokens": 226,
"size": 725
}
|
open import FRP.JS.Bool using ( Bool ; true ; false )
module FRP.JS.Maybe where
-- Data.Maybe doesn't have bindings for JavaScript, so we define Maybe here.
-- We'd like to use JavaScript's built-in null as the
-- representation of nothing, and use x as the representation of just
-- x. Unfortunately this doens't work for nested Maybes, as it
-- identifies nothing and just nothing at type Maybe Maybe A, which in
-- turn breaks parametericity. Instead, we link to a JS library which
-- provides functions box and unbox such that box(x) !== null,
-- unbox(box(x)) === x, and if x !== box^n (null) then x ==
-- box(x). Note that for never-null types (e.g. String), values
-- of type Maybe T are either null or values of type T, which
-- corresponds to the JavaScript idiom (for example, a lookup in an
-- array of strings can be translated to native array lookup).
data Maybe {α} (A : Set α) : Set α where
just : (a : A) → Maybe A
nothing : Maybe A
{-# COMPILED_JS Maybe function(x,v) {
if (x === null) { return v.nothing(); }
else { return v.just(require("agda.box").unbox(x)); }
} #-}
{-# COMPILED_JS just require("agda.box").box #-}
{-# COMPILED_JS nothing null #-}
_≟[_]_ : ∀ {α β A B} → Maybe {α} A → (A → B → Bool) → Maybe {β} B → Bool
just a ≟[ p ] just b = p a b
just a ≟[ p ] nothing = false
nothing ≟[ p ] just b = false
nothing ≟[ p ] nothing = true
|
{
"alphanum_fraction": 0.6606367583,
"avg_line_length": 39.4857142857,
"ext": "agda",
"hexsha": "722e756ba8aa966dd3352de7f62df70a19e12d2d",
"lang": "Agda",
"max_forks_count": 7,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z",
"max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_forks_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_forks_repo_name": "agda/agda-frp-js",
"max_forks_repo_path": "src/agda/FRP/JS/Maybe.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_issues_repo_name": "agda/agda-frp-js",
"max_issues_repo_path": "src/agda/FRP/JS/Maybe.agda",
"max_line_length": 76,
"max_stars_count": 63,
"max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_stars_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_stars_repo_name": "agda/agda-frp-js",
"max_stars_repo_path": "src/agda/FRP/JS/Maybe.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z",
"num_tokens": 403,
"size": 1382
}
|
{-# OPTIONS --without-K --exact-split --safe #-}
open import Fragment.Algebra.Signature
module Fragment.Algebra.Homomorphism.Base (Σ : Signature) where
open import Fragment.Algebra.Algebra Σ
open import Fragment.Algebra.Homomorphism.Definitions Σ
open import Fragment.Setoid.Morphism as Morphism
hiding (id; ∣_∣; ∣_∣-cong)
open import Level using (Level; _⊔_)
open import Function using (_∘_; _$_)
open import Data.Vec using (map)
open import Data.Vec.Properties using (map-id; map-∘)
import Data.Vec.Relation.Binary.Equality.Setoid as VecSetoid
open import Relation.Binary using (IsEquivalence)
import Relation.Binary.Reasoning.Setoid as Reasoning
private
variable
a b c ℓ₁ ℓ₂ ℓ₃ : Level
module _
(A : Algebra {a} {ℓ₁})
(B : Algebra {b} {ℓ₂})
where
infixr 1 _⟿_
record _⟿_ : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
∣_∣⃗ : ∥ A ∥/≈ ↝ ∥ B ∥/≈
∣_∣-hom : Homomorphic A B (Morphism.∣_∣ ∣_∣⃗)
∣_∣ : ∥ A ∥ → ∥ B ∥
∣_∣ = Morphism.∣_∣ ∣_∣⃗
∣_∣-cong : Congruent ≈[ A ] ≈[ B ] ∣_∣
∣_∣-cong = Morphism.∣_∣-cong ∣_∣⃗
open _⟿_ public
module _ {A : Algebra {a} {ℓ₁}} where
private
∣id∣-hom : Homomorphic A A (λ x → x)
∣id∣-hom {n} f xs = A ⟦ f ⟧-cong $ reflexive (map-id xs)
where open VecSetoid ∥ A ∥/≈
open IsEquivalence (≋-isEquivalence n) using (reflexive)
id : A ⟿ A
id = record { ∣_∣⃗ = Morphism.id
; ∣_∣-hom = ∣id∣-hom
}
module _
{A : Algebra {a} {ℓ₁}}
{B : Algebra {b} {ℓ₂}}
{C : Algebra {c} {ℓ₃}}
(g : B ⟿ C)
(f : A ⟿ B)
where
private
⊙-hom : Homomorphic A C (∣ g ∣ ∘ ∣ f ∣)
⊙-hom {n} op xs = begin
C ⟦ op ⟧ (map (∣ g ∣ ∘ ∣ f ∣) xs)
≈⟨ C ⟦ op ⟧-cong $ reflexive (map-∘ ∣ g ∣ ∣ f ∣ xs) ⟩
C ⟦ op ⟧ (map ∣ g ∣ (map ∣ f ∣ xs))
≈⟨ ∣ g ∣-hom op (map ∣ f ∣ xs) ⟩
∣ g ∣ (B ⟦ op ⟧ (map ∣ f ∣ xs))
≈⟨ ∣ g ∣-cong (∣ f ∣-hom op xs) ⟩
∣ g ∣ (∣ f ∣ (A ⟦ op ⟧ xs))
∎
where open Reasoning ∥ C ∥/≈
open VecSetoid ∥ C ∥/≈
open IsEquivalence (≋-isEquivalence n) using (reflexive)
infixr 9 _⊙_
_⊙_ : A ⟿ C
_⊙_ = record { ∣_∣⃗ = ∣ g ∣⃗ · ∣ f ∣⃗
; ∣_∣-hom = ⊙-hom
}
|
{
"alphanum_fraction": 0.5261496844,
"avg_line_length": 24.3736263736,
"ext": "agda",
"hexsha": "c2cc4054120f1a9238d97be66f19a7ea26582e8d",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z",
"max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "yallop/agda-fragment",
"max_forks_repo_path": "src/Fragment/Algebra/Homomorphism/Base.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "yallop/agda-fragment",
"max_issues_repo_path": "src/Fragment/Algebra/Homomorphism/Base.agda",
"max_line_length": 68,
"max_stars_count": 18,
"max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yallop/agda-fragment",
"max_stars_repo_path": "src/Fragment/Algebra/Homomorphism/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z",
"num_tokens": 997,
"size": 2218
}
|
module CategoryTheory.CartesianStrength where
open import CategoryTheory.Categories
open import CategoryTheory.Functor
open import CategoryTheory.BCCCs.Cartesian
open import CategoryTheory.Monad
open import CategoryTheory.Comonad
-- Type class for Cartesian functors
record CartesianFunctor {n}
{ℂ : Category n} {𝔻 : Category n} (Fn : Functor ℂ 𝔻)
(ℂ-cart : Cartesian ℂ) (𝔻-cart : Cartesian 𝔻) : Set (lsuc n) where
private module ℂ = Category ℂ
private module 𝔻 = Category 𝔻
open Category 𝔻
open Functor Fn renaming (omap to F)
open Cartesian ℂ-cart renaming
( ⊤ to ⊤ᶜ ; _⊗_ to _⊗ᶜ_ ; _*_ to _*ᶜ_ ; assoc-right to αᶜ
; unit-left to λᶜ ; unit-right to ρᶜ)
open Cartesian 𝔻-cart renaming
( ⊤ to ⊤ᵈ ; _⊗_ to _⊗ᵈ_ ; _*_ to _*ᵈ_; assoc-right to αᵈ
; unit-left to λᵈ ; unit-right to ρᵈ)
field
-- | Data
-- F preserves terminal objects (0-ary products)
u : ⊤ᵈ ~> F ⊤ᶜ
-- F preserves binary products
m : ∀(A B : ℂ.obj) -> F A ⊗ᵈ F B ~> F (A ⊗ᶜ B)
-- | Laws
-- Naturality conditions
m-nat₁ : ∀{A B C : ℂ.obj} (f : A ℂ.~> B)
-> fmap (f *ᶜ ℂ.id) ∘ m A C ≈ m B C ∘ fmap f *ᵈ id
m-nat₂ : ∀{A B C : ℂ.obj} (f : A ℂ.~> B)
-> fmap (ℂ.id *ᶜ f) ∘ m C A ≈ m C B ∘ id *ᵈ fmap f
-- Monoid laws
associative : ∀{A B C : ℂ.obj} ->
m A (B ⊗ᶜ C) ∘ (id *ᵈ m B C) ∘ αᵈ
≈ fmap αᶜ ∘ m (A ⊗ᶜ B) C ∘ (m A B *ᵈ id)
unital-right : ∀{A : ℂ.obj} ->
fmap ρᶜ ∘ m A ⊤ᶜ ∘ (id *ᵈ u) ≈ ρᵈ
unital-left : ∀{B : ℂ.obj} ->
fmap λᶜ ∘ m ⊤ᶜ B ∘ (u *ᵈ id) ≈ λᵈ
-- Canonical distribution morphism
m⁻¹ : ∀(A B : ℂ.obj) -> F (A ⊗ᶜ B) ~> F A ⊗ᵈ F B
m⁻¹ A B = Cartesian.⟨_,_⟩ 𝔻-cart (fmap (Cartesian.π₁ ℂ-cart))
(fmap (Cartesian.π₂ ℂ-cart))
-- Type class for Cartesian comonads
record CartesianComonad {n}
{ℂ : Category n} (C : Comonad ℂ)
(ℂ-cart : Cartesian ℂ) : Set (lsuc n) where
open Category ℂ
open Comonad C
open Functor W renaming (omap to F)
open Cartesian ℂ-cart
field
-- Cartesian comonads are Cartesian functors
cart-fun : CartesianFunctor W ℂ-cart ℂ-cart
open CartesianFunctor cart-fun
field
-- | Laws
u-ε : u ∘ ε.at ⊤ ≈ id
u-δ : δ.at ⊤ ∘ u ≈ fmap u ∘ u
m-ε : ∀{A B : obj} -> ε.at (A ⊗ B) ∘ m A B ≈ ε.at A * ε.at B
m-δ : ∀{A B : obj} -> fmap (m A B) ∘ m (F A) (F B) ∘ δ.at A * δ.at B
≈ δ.at (A ⊗ B) ∘ m A B
-- Type class for W-strong monads (for a Cartesian comonad W)
record WStrongMonad {n}
{ℂ : Category n} (ℂ-cart : Cartesian ℂ) {Co : Comonad ℂ}
(Mo : Monad ℂ) (W-cart-com : CartesianComonad Co ℂ-cart)
: Set (lsuc n) where
open Category ℂ
open Comonad Co
open Monad Mo
open Functor W renaming (omap to C ; fmap to C-f)
open Functor T renaming (omap to M ; fmap to M-f)
open Cartesian ℂ-cart
open CartesianComonad W-cart-com
open CartesianFunctor cart-fun
λᶜ : ∀(A : obj) -> C ⊤ ⊗ A ~> A
λᶜ _ = π₂
αᶜ : ∀(A B D : obj) -> (C (A ⊗ B) ⊗ D) ~> (C A ⊗ (C B ⊗ D))
αᶜ A B D = assoc-right ∘ m⁻¹ A B * id
field
-- C-tensorial strength
st : ∀(A B : obj) -> C A ⊗ M B ~> M (C A ⊗ B)
-- | Laws
-- Naturality conditions
st-nat₁ : ∀{A B D : obj} (f : A ~> B)
-> M-f (C-f f * id) ∘ st A D ≈ st B D ∘ C-f f * id
st-nat₂ : ∀{A B D : obj} (f : A ~> B)
-> M-f (id * f) ∘ st D A ≈ st D B ∘ id * M-f f
-- Strength and left unit
st-λ : ∀{A} -> M-f (λᶜ A) ∘ st ⊤ A ≈ λᶜ (M A)
-- Strength and associativity
st-α : ∀{A B D} -> st A (C B ⊗ D) ∘ id * st B D ∘ αᶜ A B (M D)
≈ M-f (αᶜ A B D) ∘ st (A ⊗ B) D
-- Strength and unit
st-η : ∀{A B} -> st A B ∘ id * η.at B ≈ η.at (C A ⊗ B)
-- Strength and multiplication
st-μ : ∀{A B} -> μ.at (C A ⊗ B) ∘ M-f (st A B) ∘ st A (M B)
≈ st A B ∘ (id * μ.at B)
|
{
"alphanum_fraction": 0.4967446347,
"avg_line_length": 36.0608695652,
"ext": "agda",
"hexsha": "bcf8514786260562a5279e61c5f18cc08f5dc585",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DimaSamoz/temporal-type-systems",
"max_forks_repo_path": "src/CategoryTheory/CartesianStrength.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DimaSamoz/temporal-type-systems",
"max_issues_repo_path": "src/CategoryTheory/CartesianStrength.agda",
"max_line_length": 76,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DimaSamoz/temporal-type-systems",
"max_stars_repo_path": "src/CategoryTheory/CartesianStrength.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z",
"num_tokens": 1641,
"size": 4147
}
|
module Example where
open import Agda.Builtin.Nat
open import Agda.Builtin.List
open import Agda.Builtin.Equality
downFrom : Nat → List Nat
downFrom zero = []
downFrom (suc n) = n ∷ downFrom n
sum-rec : List Nat → Nat
sum-rec [] = 0
sum-rec (x ∷ xs) = x + sum-rec xs
sum-acc : Nat → List Nat → Nat
sum-acc z [] = z
sum-acc z (x ∷ xs) = sum-acc (z + x) xs
sum-acc! : Nat → List Nat → Nat
sum-acc! z [] = z
sum-acc! 0 (x ∷ xs) = sum-acc! x xs
sum-acc! z (x ∷ xs) = sum-acc! (z + x) xs
n = 10000
bench-rec = sum-rec (downFrom n)
bench-acc = sum-acc 0 (downFrom n)
bench-acc! = sum-acc! 0 (downFrom n)
|
{
"alphanum_fraction": 0.6112903226,
"avg_line_length": 21.3793103448,
"ext": "agda",
"hexsha": "bc77c726792e2f99c61f38da9f5fc19b2852c338",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-01-25T06:10:26.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-02-05T18:49:17.000Z",
"max_forks_repo_head_hexsha": "cf0043a64d2913ad19a58f2b4bcc075138bb911f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "L-TChen/agda-bench",
"max_forks_repo_path": "examples/Example.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "cf0043a64d2913ad19a58f2b4bcc075138bb911f",
"max_issues_repo_issues_event_max_datetime": "2021-02-09T05:59:42.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-02-05T18:44:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "L-TChen/agda-bench",
"max_issues_repo_path": "examples/Example.agda",
"max_line_length": 41,
"max_stars_count": 13,
"max_stars_repo_head_hexsha": "cf0043a64d2913ad19a58f2b4bcc075138bb911f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "L-TChen/agda-bench",
"max_stars_repo_path": "examples/Example.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-22T10:57:58.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-18T10:31:12.000Z",
"num_tokens": 245,
"size": 620
}
|
{-# OPTIONS --universe-polymorphism #-}
module Categories.Agda.ISetoids.Cocomplete where
open import Level
open import Relation.Binary using (Setoid; module Setoid; Preorder; module Preorder; Rel; _=[_]⇒_)
open import Data.Product using (Σ; _,_)
-- import Relation.Binary.EqReasoning as EqReasoning
open import Categories.Support.Equivalence using (module I→R-Wrapper; setoid-i→r) renaming (Setoid to ISetoid; module Setoid to ISetoid)
open import Categories.Support.SetoidFunctions using (module _⟶_)
open import Categories.Support.PropositionalEquality
import Categories.Support.ZigZag as ZigZag
open import Categories.Category
open import Categories.Functor
open import Categories.Agda
open import Categories.Colimit
open import Categories.Object.Initial
open import Categories.Cocones
open import Categories.Cocone
open import Categories.Agda.ISetoids.Cocomplete.Helpers
open I→R-Wrapper
ISetoidsCocomplete : ∀ {o ℓ e c ℓ′} → Cocomplete o ℓ e (ISetoids (c ⊔ ding (o ⊔ ℓ ⊔ e)) (c ⊔ ℓ′ ⊔ ding (o ⊔ ℓ ⊔ e)))
ISetoidsCocomplete {o} {ℓ} {e} {c} {cℓ} = record { colimit = colimit }
where
c′ = c ⊔ ding (o ⊔ ℓ ⊔ e)
ℓ′ = c ⊔ cℓ ⊔ ding (o ⊔ ℓ ⊔ e)
C = ISetoids c′ ℓ′
colimit : ∀ {J : Category o ℓ e} (F : Functor J C) → Colimit F
colimit {J} F = record { initial = my-initial-cocone }
where
module J = Category J
open Functor F
open ISetoid
open _⟶_
open ColimitCocone {c = c} {cℓ} {J} F
.my-!-unique : (A : Cocone F) (φ : CoconeMorphism ⊥ A) (x : vertex-carrier) → (_≈_ (Cocone.N A) (CoconeMorphism.f (! {A}) ⟨$⟩ x) (CoconeMorphism.f φ ⟨$⟩ x))
my-!-unique A φ (X , x) = sym (Cocone.N A) (CoconeMorphism.commute φ (refl (F₀ X)))
my-initial-cocone : Initial (Cocones F)
my-initial-cocone = record
{ ⊥ = ⊥
; ! = !
; !-unique = λ {A} φ {x} {y} x≡y → trans (Cocone.N A) (my-!-unique A φ x) (cong (CoconeMorphism.f φ) x≡y)
}
|
{
"alphanum_fraction": 0.6728134879,
"avg_line_length": 38.7346938776,
"ext": "agda",
"hexsha": "91263a27bb2560a38acf5727f2dbf77208d79570",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Agda/ISetoids/Cocomplete.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Agda/ISetoids/Cocomplete.agda",
"max_line_length": 160,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Agda/ISetoids/Cocomplete.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 655,
"size": 1898
}
|
{-# OPTIONS --without-K #-}
module distinct where
open import Type
open import Type.Identities
open import Algebra.FunctionProperties.Eq
renaming (Injective to is-injective)
open import Function.NP
open import Function.Extensionality
open import Data.Fin.NP using (Fin; Fin▹ℕ; _==_)
open import Data.Vec.NP
open import Data.Vec.Properties
open import Data.Product renaming (proj₁ to fst; proj₂ to snd) hiding (map)
open import Data.Zero
open import Data.One
open import Data.Two hiding (_==_)
open import Data.Sum hiding (map)
open import Data.Nat.NP hiding (_==_)
open import Data.Nat.Properties
import Data.List as L
import Data.List.Properties as LP
open L using (List; []; _∷_)
open import Relation.Binary.PropositionalEquality.NP
open import HoTT
open Equivalences
--open import Explore.Fin
is-distinct : {A : Set}{n : ℕ} → Vec A n → Set
is-distinct {n = n} v = is-injective (_‼_ v)
-- is-distinct {n = n} v = {p q : Fin n}(e : v ‼ p ≡ v ‼ q) → p ≡ q
Distinct : (A : Set)(n : ℕ) → Set
Distinct A n = Σ (Vec A n) is-distinct
Injection : (A B : Set) → Set
Injection A B = Σ (A → B) is-injective
Auto : (A : Set) → Set
Auto A = Injection A A
Perm : (n : ℕ) → Set
Perm n = Distinct (Fin n) n
module _ {n} {{_ : FunExt}} where
Perm→Auto : Perm n → Auto (Fin n)
Perm→Auto (v , v-dist) = _‼_ v , v-dist
tabulate-dist : (f : Fin n → Fin n) (f-inj : Injective f) → is-distinct
tabulate-dist f f-inj e = f-inj (! lookup∘tabulate f _ ∙ e ∙ lookup∘tabulate f _)
Auto→Perm : Auto (Fin n) → Perm n
Auto→Perm (f , f-inj)
= tabulate f , λ e → f-inj (! lookup∘tabulate f _ ∙ e ∙ lookup∘tabulate f _)
Goal: tr is-injective (λ= (lookup∘tabulate f))
(snd (Auto→Perm (f , f-inj)))
≡ f-inj
Perm→Auto→Perm : ∀ a → Perm→Auto (Auto→Perm a) ≡ a
Perm→Auto→Perm (f , f-inj) = pair= (λ= (lookup∘tabulate f)) {!!}
Auto→Perm→Auto : ∀ π → Auto→Perm (Perm→Auto π) ≡ π
Auto→Perm→Auto (v , v-dist) = pair= (tabulate∘lookup v) {!!}
Perm≃Auto : Perm n ≃ Auto (Fin n)
Perm≃Auto = equiv Perm→Auto Auto→Perm Perm→Auto→Perm Auto→Perm→Auto
Arr : (n : ℕ) → Set
Arr n = Vec (Fin n) n
Sum : Set → Set
Sum A = (A → ℕ) → ℕ
Prod = Sum
postulate
sumFin : (n : ℕ) → Sum (Fin n)
prodFin : (n : ℕ) → Prod (Fin n)
-- sumVec : (A : Set)(n : ℕ) (f : Vec A n → ℕ) → ℕ
sumArr : (n : ℕ) → Sum (Arr n)
prodFinEq : {n : ℕ}(x y : Fin n) → Prod (x ≡ y)
distinctℕ : (n : ℕ) → (sumArr n λ v →
prodFin n λ p →
prodFin n λ q →
prodFinEq p q λ e →
𝟚▹ℕ (p == q)) ≡ {!!}
distinctℕ = {!!}
{-
ℕ< : ℕ → Set
ℕ< n = Σ ℕ λ x → x < n
sum< : (n : ℕ) (f : ℕ< n → ℕ) → ℕ
sum< n f = {!!}
prod< : (n : ℕ) (f : ℕ< n → ℕ) → ℕ
prod< n f = {!!}
{-
foo : ∀ n a x → sumFin n λ i → a i * x ^ i
foo = ?
bar : ∀ n a x → sumFin n λ i → a i * x ^ i
bar = ?
-}
baz : ∀ n (u : ℕ< n → ℕ) → (sum< n λ { (i , p) → prod< i (λ { (j , q) → u (j , <-trans q p) }) }) ≡ {!!}
baz = {!!}
module _ n (u : ℕ< n → Set) {{_ : UA}} {{_ : FunExt}} where
open ≡-Reasoning
Baz : _ ≡ _
Baz = (Σ (ℕ< n) λ { (i , p) → Π (ℕ< i) λ { (j , q) → u (j , <-trans q p) } })
≡⟨ ! Σ-assoc ⟩
(Σ ℕ λ i → Σ (i < n) λ p → Π (ℕ< i) λ { (j , q) → u (j , <-trans q p) })
≡⟨ Σ=′ ℕ (λ i → Σ=′ (i < n) λ p → ΠΣ-curry) ⟩
(Σ ℕ λ i → Σ (i < n) λ p → Π ℕ λ j → Π (j < i) λ q → u (j , <-trans q p))
∎
module DataVersion (A : ★) where
open import Data.Tree.Binary
data T : BinTree A → ★ where
empty : T empty
_⊕_ : ∀ {t u} → (𝟙 ⊎ T t × T u) → T (fork t u)
module TypeVersion where
ε = 𝟙
_⊕_ : ★ → ★ → ★
_⊕_ = λ u z → ε ⊎ u × z
module ListVersion where
open L
open ≡-Reasoning
map-∘ = LP.map-compose
sum-lin : ∀ k xs → sum (map (_*_ k) xs) ≡ k * sum xs
sum-lin k [] = ℕ°.*-comm 0 k
sum-lin k (x ∷ xs) = k * x + sum (map (_*_ k) xs)
≡⟨ ap (_+_ (k * x)) (sum-lin k xs) ⟩
k * x + k * sum xs
≡⟨ ! fst ℕ°.distrib k x (sum xs) ⟩
k * (x + sum xs)
∎
lemma : ∀ x xss → sum (map product (map (_∷_ x) xss)) ≡ x * sum (map product xss)
lemma x xss = sum (map product (map (_∷_ x) xss))
≡⟨ ap sum (! map-∘ xss) ⟩
sum (map (product ∘ _∷_ x) xss)
≡⟨by-definition⟩
sum (map (_*_ x ∘ product) xss)
≡⟨ ap sum (map-∘ xss) ⟩
sum (map (_*_ x) (map product xss))
≡⟨ sum-lin x (map product xss) ⟩
x * sum (map product xss)
∎
ε = 1
_⊕_ = λ u z → ε + u * z
t3 = ∀ xs → sum (map product (inits xs)) ≡ foldr _⊕_ ε xs
t4 : t3
t4 [] = refl
t4 (x ∷ xs) = ap suc (lemma x (inits xs) ∙ ap (_*_ x) (t4 xs))
-- -}
-- -}
-- -}
-- -}
-- -}
|
{
"alphanum_fraction": 0.4904510362,
"avg_line_length": 29.2976190476,
"ext": "agda",
"hexsha": "24274591ddb7256af1fae1206fe0af13c47a059f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "crypto-agda/explore",
"max_forks_repo_path": "experiments/distinct.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "crypto-agda/explore",
"max_issues_repo_path": "experiments/distinct.agda",
"max_line_length": 104,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "crypto-agda/explore",
"max_stars_repo_path": "experiments/distinct.agda",
"max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z",
"num_tokens": 1895,
"size": 4922
}
|
unquoteDef x = ?
|
{
"alphanum_fraction": 0.6470588235,
"avg_line_length": 8.5,
"ext": "agda",
"hexsha": "3faa37d347ba6c50d182a3919f1d3d98d886fab4",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1389.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1389.agda",
"max_line_length": 16,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1389.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 6,
"size": 17
}
|
module Helper.Fin where
open import Data.Fin hiding (_+_)
open import Data.Nat
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
open import Relation.Nullary.Negation
------------------------------------------------------------------------
-- Fin magic
------------------------------------------------------------------------
+₁ : (x y : ℕ) (i : Fin x) -> Fin (x + y)
+₁ zero y ()
+₁ (suc x) y zero = zero
+₁ (suc x) y (suc i) = suc (+₁ x y i)
+₂ : (x y : ℕ) (j : Fin y) -> Fin (x + y)
+₂ zero y j = j
+₂ (suc x) y j = suc (+₂ x y j)
data Fin+ (x y : ℕ) : Fin (x + y) -> Set where
is+₁ : (i : Fin x) -> Fin+ x y (+₁ x y i)
is+₂ : (j : Fin y) -> Fin+ x y (+₂ x y j)
⨁ : (x y : ℕ) (i : Fin (x + y)) -> Fin+ x y i
⨁ zero y i = is+₂ i
⨁ (suc x) y zero = is+₁ zero
⨁ (suc x) y (suc i) with ⨁ x y i
⨁ (suc x) y (suc ._) | is+₁ i = is+₁ (suc i)
⨁ (suc x) y (suc ._) | is+₂ j = is+₂ j
[_,_] : {X : Set} {x y : ℕ} (l : Fin x -> X) (r : Fin y -> X) -> {s : Fin (x + y)} -> Fin+ x y s -> X
[_,_] l r {._} (is+₁ i) = l i
[_,_] l r {._} (is+₂ j) = r j
{-
[_,_] : {X : Set} {x y : ℕ} (l : Fin x -> X) (r : Fin y -> X) -> (s : Fin (x + y)) -> X
[_,_] {X} {x} {y} l r s with ⨁ x y s
[_,_] l r ._ | is+₁ i = l i
[_,_] l r ._ | is+₂ j = r j
-}
× : (x y : ℕ) (i : Fin x) (j : Fin y) -> Fin (x * y)
× zero _ () _
× (suc x) y zero j = +₁ y (x * y) j
× (suc x) y (suc i) j = +₂ y (x * y) (× x y i j)
data Fin* (x y : ℕ) : Fin (x * y) -> Set where
is× : (i : Fin x) (j : Fin y) -> Fin* x y (× x y i j)
⨂ : (x y : ℕ) (i : Fin (x * y)) -> Fin* x y i
⨂ zero y ()
⨂ (suc x) y i with ⨁ y (x * y) i
⨂ (suc x) y ._ | is+₁ i = is× zero i
⨂ (suc x) y ._ | is+₂ j with ⨂ x y j
⨂ (suc x) y ._ | is+₂ ._ | is× i j = is× (suc i) j
------------------------------------------------------------------------
-- Fin lemma's
------------------------------------------------------------------------
suc-eq : {n : ℕ} {x x₁ : Fin n} -> ((Data.Fin.suc x) ≡ (Data.Fin.suc x₁)) -> (x ≡ x₁)
suc-eq refl = refl
+-eq : {n n₁ : ℕ} {x x₁ : Fin n} -> (m : Fin n₁) -> ((m Data.Fin.+ x) ≡ (m Data.Fin.+ x₁)) -> (x ≡ x₁)
+-eq zero p = p
+-eq (suc m) p = +-eq m (suc-eq p)
+-eq₁ : {n n₁ : ℕ} {x x₁ : Fin n} -> (+₁ n n₁ x ≡ +₁ n n₁ x₁) -> (x ≡ x₁)
+-eq₁ {x = zero} {x₁ = zero} p = refl
+-eq₁ {x = zero} {suc x₁} ()
+-eq₁ {x = suc x} {zero} ()
+-eq₁ {x = suc x} {x₁ = suc x₁} p with +-eq (fromℕ 1) p
... | p1 with +-eq₁ p1
... | p2 = cong suc p2
+-eq₂ : {n n₁ : ℕ} {x x₁ : Fin n₁} -> (+₂ n n₁ x ≡ +₂ n n₁ x₁) -> (x ≡ x₁)
+-eq₂ {zero} refl = refl
+-eq₂ {suc n} {suc n₁} {zero} {zero} refl = refl
+-eq₂ {suc n} {suc n₁} {zero} {suc x₁} p with suc-eq p
... | p1 = +-eq₂ {n} {suc n₁} p1
+-eq₂ {suc n} {suc n₁} {suc x} {zero} p with suc-eq p
... | p1 = +-eq₂ {n} {suc n₁} p1
+-eq₂ {suc n} {suc n₁} {suc x} {suc x₁} p with suc-eq p
... | p1 = +-eq₂ {n} {suc n₁} p1
¬+-eq₁ : {n m : ℕ} {x : Fin n} {y : Fin m} -> ¬( (+₁ n m) x ≡ (+₂ n m) y)
¬+-eq₁ {zero} {zero} {()}
¬+-eq₁ {zero} {suc m} {()}
¬+-eq₁ {suc n} {zero} {y = ()}
¬+-eq₁ {suc n} {suc m} {zero} ()
¬+-eq₁ {suc n} {suc m} {suc x} {zero} with ¬+-eq₁ {n} {suc m} {x} {zero}
... | p1 = contraposition suc-eq p1
¬+-eq₁ {suc n} {suc m} {suc x} {suc y} with ¬+-eq₁ {n} {suc m} {x} {suc y}
... | p1 = contraposition suc-eq p1
¬+-eq₂ : {n m : ℕ} {x : Fin n} {y : Fin m} -> ¬( (+₂ n m) y ≡ (+₁ n m) x)
¬+-eq₂ {zero} {zero} {()} x₁
¬+-eq₂ {zero} {suc m} {()} x₁
¬+-eq₂ {suc n} {zero} {zero} ()
¬+-eq₂ {suc n} {zero} {suc x} {()}
¬+-eq₂ {suc n} {suc m} {zero} {zero} ()
¬+-eq₂ {suc n} {suc m} {zero} {suc y} ()
¬+-eq₂ {suc n} {suc m} {suc x} {zero} with ¬+-eq₂ {n} {suc m} {x} {zero}
... | p1 = contraposition suc-eq p1
¬+-eq₂ {suc n} {suc m} {suc x} {suc y} = contraposition suc-eq (¬+-eq₂ {n} {suc m} {x} {suc y})
×-equal₁ : ∀ {n m : ℕ} {x₁ x₂ : Fin n} {y₁ y₂ : Fin m} -> (× n m x₁ y₁) ≡ (× n m x₂ y₂) -> (y₁ ≡ y₂)
×-equal₁ {zero} {x₁ = ()} x
×-equal₁ {suc n} {zero} {y₁ = ()} x
×-equal₁ {suc n} {suc m} {zero} {zero} p = +-eq₁ p
×-equal₁ {suc n} {suc m} {zero} {suc x₂} {zero} ()
×-equal₁ {suc n} {suc m} {zero} {suc x₂} {suc y₁} p with suc-eq p
... | p1 with ¬+-eq₁ {m} {(n * suc m)} p1
×-equal₁ {suc n} {suc m} {zero} {suc x₂} {suc y₁} p | p1 | ()
×-equal₁ {suc n} {suc m} {suc x₁} {zero} {zero} {zero} p = refl
×-equal₁ {suc n} {suc m} {suc x₁} {zero} {zero} {suc y₂} p with suc-eq p
... | p1 with ¬+-eq₂ p1
×-equal₁ {suc n} {suc m} {suc x₁} {zero} {zero} {suc y₂} p | p1 | ()
×-equal₁ {suc n} {suc m} {suc x₁} {zero} {suc y₁} {zero} ()
×-equal₁ {suc n} {suc m} {suc x₁} {zero} {suc y₁} {suc y₂} p with suc-eq p
... | p1 with ¬+-eq₂ p1
×-equal₁ {suc n} {suc m} {suc x₁} {zero} {suc y₁} {suc y₂} p | p1 | ()
×-equal₁ {suc n} {suc m} {suc x₁} {suc x₂} p with suc-eq p
... | p2 with +-eq₂ {suc m} {(n * suc m)} p
... | p3 = ×-equal₁ {n} {suc m} p3
×-equal₂ : ∀ {n m : ℕ} {x₁ x₂ : Fin n} {y₁ y₂ : Fin m} -> (× n m x₁ y₁) ≡ (× n m x₂ y₂) -> (x₁ ≡ x₂)
×-equal₂ {zero} {x₁ = ()} x
×-equal₂ {suc n} {zero} {y₁ = ()} x
×-equal₂ {suc n} {suc m} {zero} {zero} x = refl
×-equal₂ {suc n} {suc m} {zero} {suc x₂} {zero} {zero} ()
×-equal₂ {suc n} {suc m} {zero} {suc x₂} {zero} {suc y₂} ()
×-equal₂ {suc n} {suc m} {zero} {suc x₂} {suc y₁} {zero} p with suc-eq p
... | p1 with ¬+-eq₁ p1
×-equal₂ {suc n} {suc m} {zero} {suc x₂} {suc y₁} {zero} p | p1 | ()
×-equal₂ {suc n} {suc m} {zero} {suc x₂} {suc y₁} {suc y₂} p with suc-eq p
... | p1 with ¬+-eq₁ p1
×-equal₂ {suc n} {suc m} {zero} {suc x₂} {suc y₁} {suc y₂} p | p1 | ()
×-equal₂ {suc n} {suc m} {suc x₁} {zero} {y₂ = zero} ()
×-equal₂ {suc n} {suc m} {suc x₁} {zero} {zero} {suc y₂} p with suc-eq p
... | p1 with ¬+-eq₂ p1
×-equal₂ {suc n} {suc m} {suc x₁} {zero} {zero} {suc y₂} p | p1 | ()
×-equal₂ {suc n} {suc m} {suc x₁} {zero} {suc y₁} {suc y₂} p with suc-eq p
... | p1 with ¬+-eq₂ p1
×-equal₂ {suc n} {suc m} {suc x₁} {zero} {suc y₁} {suc y₂} p | p1 | ()
×-equal₂ {suc n} {suc m} {suc x₁} {suc x₂} p with suc-eq p
... | p1 with +-eq₂ {m} {(n * suc m)} p1
... | p2 with ×-equal₂ {n} {suc m} p2
... | p3 = cong suc p3
|
{
"alphanum_fraction": 0.4580634446,
"avg_line_length": 39.6118421053,
"ext": "agda",
"hexsha": "ca93689d17690a9bc79ba18543f81833c0259019",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cb95986b772b7a01195619be5e8e590f2429c759",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mathijsb/generic-in-agda",
"max_forks_repo_path": "Helper/Fin.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cb95986b772b7a01195619be5e8e590f2429c759",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mathijsb/generic-in-agda",
"max_issues_repo_path": "Helper/Fin.agda",
"max_line_length": 102,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "cb95986b772b7a01195619be5e8e590f2429c759",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mathijsb/generic-in-agda",
"max_stars_repo_path": "Helper/Fin.agda",
"max_stars_repo_stars_event_max_datetime": "2016-08-04T16:05:24.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-09T09:59:27.000Z",
"num_tokens": 3021,
"size": 6021
}
|
{-
Copyright 2019 Lisandra Silva
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-}
open import Prelude
open import Data.Fin hiding (_≟_; _<_; _+_; pred; _≤_; lift)
open import Data.List
open import Data.List.Properties
open import Relation.Nullary.Negation using (contradiction ; contraposition)
open import StateMachineModel
module Examples.ProducerConsumer2
(Message : Set) -- Message type
where
-----------------------------------------------------------------------------
-- SPECIFICATION
-----------------------------------------------------------------------------
record State : Set where
field
produced : List Message
consumed : List Message
open State
data MyEvent : Set where
produce : Message → MyEvent
consume : Message → MyEvent
data MyEnabled : MyEvent → State → Set where
prodEnabled : ∀ {st : State} {msg} -- always enabled
→ MyEnabled (produce msg) st
consEnabled : ∀ {st : State} {msg}
→ (cons<prod : length (consumed st) < length (produced st) )
→ msg ≡ lookup (produced st) (fromℕ≤ cons<prod)
→ MyEnabled (consume msg) st
MyAction : ∀ {preState : State} {event : MyEvent}
→ MyEnabled event preState
→ State
MyAction {preSt} {produce m} enabled = record preSt
{ produced = produced preSt ++ [ m ]
}
MyAction {preSt} {consume m} enabled = record preSt
{ consumed = consumed preSt ++ [ m ]
}
initialState : State
initialState = record
{ produced = []
; consumed = []
}
MyStateMachine : StateMachine State MyEvent
MyStateMachine = record
{ initial = λ st → produced st ≡ [] × consumed st ≡ []
; enabled = MyEnabled
; action = MyAction
}
MyEventSet : EventSet {Event = MyEvent}
MyEventSet (produce m) = ⊥
MyEventSet (consume m) = ⊤
data MyWeakFairness : EventSet → Set where
wf : MyWeakFairness MyEventSet
MySystem : System State MyEvent
MySystem = record
{ stateMachine = MyStateMachine
; weakFairness = MyWeakFairness
}
-----------------------------------------------------------------------------
-- PROOFS
-----------------------------------------------------------------------------
open LeadsTo State MyEvent MySystem
myWFR : ∀ {n} → Z → State → Set
myWFR {n} d st = d + length (consumed st) ≡ n × n ≤ length (produced st)
length-suc : ∀ {x : Message} l → length (l ++ [ x ]) ≡ 1 + length l
length-suc {x} l rewrite length-++ l {[ x ]} | +-comm (length l) 1 = refl
<⇒≤-l : ∀ {n} (m : Message) (l : List Message)
→ length l < n
→ length (l ++ [ m ]) ≤ n
<⇒≤-l m l l<n rewrite length-suc {m} l = l<n
suc-+-l : ∀ {w} (m : Message) (l : List Message)
→ w + length (l ++ m ∷ []) ≡ suc (w + length l)
suc-+-l {w} m l rewrite length-suc {m} l = +-suc w (length l)
inv-cons≤prod : Invariant
MyStateMachine
λ state → length (consumed state) ≤ length (produced state)
inv-cons≤prod (init (refl , refl)) = z≤n
inv-cons≤prod (step {st} {produce m} rs enEv)
rewrite length-suc {m} (produced st)
= ≤-step (inv-cons≤prod rs)
inv-cons≤prod (step {st} {consume m} rs (consEnabled c<p x₁))
= <⇒≤-l m (consumed st) c<p
--subst (_≤ length (produced st)) (sym (length-suc {m} (consumed st))) c<p
m≤n⇒m≡n⊎m<n : ∀ {m n} → m ≤ n → m < n ⊎ m ≡ n
m≤n⇒m≡n⊎m<n {0} {0} z≤n = inj₂ refl
m≤n⇒m≡n⊎m<n {0} {suc n} x = inj₁ (s≤s z≤n)
m≤n⇒m≡n⊎m<n {suc m} {suc n} (s≤s x)
with m≤n⇒m≡n⊎m<n x
... | inj₁ m<n = inj₁ (s≤s m<n)
... | inj₂ refl = inj₂ refl
[Q∪Fx] : ∀ {st : State} {n}
→ length (produced st) ≡ n
→ length (consumed st) ≤ n
→ length (consumed st) ≡ n ⊎ ∃[ x ] myWFR {n} x st
[Q∪Fx] {st} {n} refl cons≤n
with m≤n⇒m≡n⊎m<n cons≤n
... | inj₂ cons≡n = inj₁ cons≡n
... | inj₁ cons<n = inj₂ ( n ∸ length (consumed st) , m∸n+n≡m cons≤n , ≤-refl )
wfr-l++ : ∀ {m : Message} {n} l
→ n < length l
→ length (l ++ [ m ]) ∸ 1 ∸ n + n ≡ length l
× length l ≤ length (l ++ [ m ])
wfr-l++ {m} {n} l n<l rewrite length-suc {m} l
= (m∸n+n≡m (<⇒≤ n<l)) , ≤-step ≤-refl
{- [P]l-t[Q∪Fx] : ∀ {n}
→ λ preSt → length (produced preSt) ≡ n
× length (consumed preSt) < n
l-t
(λ posSt → length (consumed posSt) ≡ n) ∪ [∃ x ∶ myWFR {n} x ]
-}
[P]l-t[Q∪Fx] : ∀ {n}
→ (_≡ n) ∘ length ∘ produced ∩ (_< n) ∘ length ∘ consumed
l-t
(_≡ n) ∘ length ∘ consumed ∪ [∃ x ∶ myWFR {n} x ]
[P]l-t[Q∪Fx] =
viaEvSet
MyEventSet
wf
( λ { (consume m) evSet
→ hoare λ { {st} (p≡n , c<p) enEv → let state = MyAction {st} enEv
cons = consumed st
c≤p = <⇒≤-l m cons c<p
in [Q∪Fx] {state} p≡n c≤p }
}
)
(λ { (produce m) x
→ hoare λ { {st} (refl , c<p) enEv
→ let l = length (produced st ++ [ m ]) ∸ 1
c = length (consumed st)
in inj₂ (inj₂ ( l ∸ c , wfr-l++ (produced st) c<p))}
; (consume x₁) ⊥ → ⊥-elim (⊥ tt)
}
)
λ { {state} rs (refl , c<p)
→ consume (lookup (produced state) (fromℕ≤ c<p))
, tt
, (consEnabled c<p refl) }
m+n<o⇒n<o : ∀ {l} w m → w + m < l → m < l
m+n<o⇒n<o w m w+m<l rewrite sym (+-suc w m) = m+n≤o⇒n≤o w w+m<l
mono-l++ : ∀ {n} (m : Message) l → n ≤ length l → n ≤ length (l ++ [ m ])
mono-l++ m l n<l rewrite length-suc {m} l = ≤-step n<l
{-[Fw]l-t[Q∪Fx] : ∀ {w n}
→ myWFR {n} w
l-t
(λ posSt → length (consumed posSt) ≡ n)
∪ [∃ x ⇒ _< w ∶ myWFR {n} x ]
-}
[Fw]l-t[Q∪Fx] : ∀ {n} w
→ myWFR {n} w
l-t
(_≡ n) ∘ length ∘ consumed ∪ [∃ x ⇒ _< w ∶ myWFR {n} x ]
[Fw]l-t[Q∪Fx] 0 = viaInv λ { rs (c≡n , c<p) → inj₁ c≡n }
[Fw]l-t[Q∪Fx] (suc w) =
viaEvSet
MyEventSet
wf
(λ { (consume m) ⊤ → hoare λ { {st} (refl , c<p) (consEnabled cons<prod x)
→ inj₂ (w , ≤-refl , suc-+-l m (consumed st) , c<p)}
}
)
(λ { (produce m) ⊥ → hoare λ { {st} (c≡n , n≤p) enEv
→ inj₁ (c≡n , mono-l++ m (produced st) n≤p) }
; (consume m) ⊥ → ⊥-elim (⊥ tt)
}
)
λ { {st} rs (refl , n<p) → let c<l = m+n<o⇒n<o w (length (consumed st)) n<p
in consume (lookup (produced st) (fromℕ≤ c<l))
, tt
, (consEnabled c<l refl) }
{-P2-l-t-Q : ∀ {n}
→ λ preSt → length (produced preSt) ≡ n
× length (consumed preSt) < n
l-t
λ posSt → length (consumed posSt) ≡ n
-}
cons<n-l-t-cons≡n : ∀ {n}
→ (_≡ n) ∘ length ∘ produced ∩ (_< n) ∘ length ∘ consumed
l-t
(_≡ n) ∘ length ∘ consumed
cons<n-l-t-cons≡n = viaWFR myWFR [P]l-t[Q∪Fx] [Fw]l-t[Q∪Fx]
P⊆P1∪P2 : ∀ {m n : ℕ} {ℓ} { P : Set ℓ } → P × m ≤ n → P × m ≡ n ⊎ P × m < n
P⊆P1∪P2 {m} {n} (p , m≤n)
with m ≟ n
... | yes prf = inj₁ (p , prf)
... | no imp = inj₂ (p , (≤∧≢⇒< m≤n imp))
{-c≢n-l-t-c<n : ∀ {n} → ( λ preSt → length (produced preSt) ≡ n
× length (consumed preSt) ≢ n )
l-t
( λ posSt → length (produced posSt) ≡ n
× length (consumed posSt) < n )
-}
p≡n-l-t-c≤n : ∀ {n}
→ (_≡ n) ∘ length ∘ produced
l-t
(_≡ n) ∘ length ∘ produced ∩ (_≤ n) ∘ length ∘ consumed
p≡n-l-t-c≤n = viaInv (λ { {st} rs refl → refl , (inv-cons≤prod rs) })
progressOnLength : ∀ n
→ (_≡ n) ∘ length ∘ produced
l-t
(_≡ n) ∘ length ∘ consumed
progressOnLength n =
viaTrans
p≡n-l-t-c≤n
(viaDisj
(λ { {st} (p≡n , c≤n) → P⊆P1∪P2 (p≡n , c≤n) })
(viaInv (λ { {st} rs (_ , c≡n) → c≡n }))
cons<n-l-t-cons≡n )
lookup-++ : ∀ {n} {m : Message} l₁ l₂
→ (finl₁ : n < length l₁) → (finl₂ : n < length l₂)
→ (fin++ : n < length (l₂ ++ [ m ]))
→ lookup l₁ (fromℕ≤ finl₁) ≡ lookup l₂ (fromℕ≤ finl₂)
→ lookup l₁ (fromℕ≤ finl₁) ≡ lookup (l₂ ++ [ m ]) (fromℕ≤ fin++)
lookup-++ {zero} (x ∷ l₁) (x₁ ∷ l₂) finl₁ finl₂ fin++ ll₁≡ll₂ = ll₁≡ll₂
lookup-++ {suc n} (x ∷ l₁) (x₁ ∷ l₂) finl₁ finl₂ fin++ ll₁≡ll₂
= lookup-++ l₁ l₂ (≤-pred finl₁) (≤-pred finl₂) (≤-pred fin++) ll₁≡ll₂
n≤l++⇒n≤l⊎n≡l : ∀ {m : Message} {n} l
→ n ≤ length (l ++ [ m ])
→ n ≤ length l ⊎ n ≡ 1 + length l
n≤l++⇒n≤l⊎n≡l {m} l n≤l++ rewrite length-suc {m} l
with m≤n⇒m≡n⊎m<n n≤l++
... | inj₁ 1+n≤1+l = inj₁ (≤-pred 1+n≤1+l)
... | inj₂ n≡1+l = inj₂ n≡1+l
lookup-length : ∀ {m : Message} l
→ (prf : length l < length (l ++ [ m ]))
→ lookup (l ++ [ m ]) (fromℕ≤ prf) ≡ m
lookup-length [] prf = refl
lookup-length (x ∷ l) prf = lookup-length l (≤-pred prf)
<-refl-l : ∀ {m : Message} l → length l < length (l ++ [ m ])
<-refl-l [] = s≤s z≤n
<-refl-l (x ∷ l) = s≤s (<-refl-l l)
lookup-c≡lookup-p : ∀ {n}
→ Invariant
MyStateMachine
λ st → (prfC : n < length (consumed st))
→ (prfP : n < length (produced st))
→ lookup (consumed st) (fromℕ≤ prfC)
≡ lookup (produced st) (fromℕ≤ prfP)
lookup-c≡lookup-p {n} (init (refl , refl)) () ()
lookup-c≡lookup-p {n} (step {st} {produce x} rs enEv) prfC prfP
= let c<p = <-transˡ prfC (inv-cons≤prod rs)
in lookup-++
(consumed st) (produced st)
prfC c<p prfP
(lookup-c≡lookup-p rs prfC c<p)
lookup-c≡lookup-p {n} (step {st} {consume m} rs enEv) prfC prfP
with enEv
... | consEnabled cons<prod m≡lookup
with n≤l++⇒n≤l⊎n≡l (consumed st) prfC
... | inj₁ n<c = sym (lookup-++
(produced st) (consumed st)
prfP n<c prfC
(sym (lookup-c≡lookup-p rs n<c prfP)))
... | inj₂ refl = trans
(lookup-length (consumed st) (<-refl-l (consumed st)))
m≡lookup
-- TODO : Generalize all functions about lists
take-n-l++ : ∀ {n} (l₁ l₂ : List Message)
→ n ≤ length l₁
→ take n l₁ ≡ take n (l₁ ++ l₂)
take-n-l++ {zero} l₁ l₂ n≤l₁ = refl
take-n-l++ {suc n} (x ∷ l₁) l₂ n≤l₁
rewrite take-n-l++ l₁ l₂ (≤-pred n≤l₁) = refl
l₁≡l₂ : ∀ {m₁ m₂ : Message} {l₁ l₂}
→ m₁ ∷ l₁ ≡ m₂ ∷ l₂
→ m₁ ≡ m₂ × l₁ ≡ l₂
l₁≡l₂ refl = refl , refl
m₁≡m∧l₁≡l₂₂⇒l≡l : ∀ {m₁ m₂ : Message} {l₁ l₂}
→ m₁ ≡ m₂
→ l₁ ≡ l₂
→ m₁ ∷ l₁ ≡ m₂ ∷ l₂
m₁≡m∧l₁≡l₂₂⇒l≡l refl refl = refl
taken×lookup : ∀ {m : Message} l₁ l₂
→ (prf : length l₁ < length l₂)
→ l₁ ≡ take (length l₁) l₂
→ m ≡ lookup l₂ (fromℕ≤ prf)
→ l₁ ++ [ m ] ≡ take (suc (length l₁)) l₂
taken×lookup [] (x₂ ∷ l₂) l₁<l₂ l₁≡take refl = refl
taken×lookup (x₂ ∷ l₁) (x₃ ∷ l₂) l₁<l₂ l₁≡tk m≡lkp
rewrite taken×lookup l₁ l₂ (≤-pred l₁<l₂) (proj₂ (l₁≡l₂ l₁≡tk)) m≡lkp
= m₁≡m∧l₁≡l₂₂⇒l≡l (proj₁ (l₁≡l₂ l₁≡tk)) refl
take1+l≡takel++m : ∀ {m : Message} {n} l
→ n ≡ 1 + length l
→ take n (l ++ [ m ]) ≡ l ++ [ m ]
take1+l≡takel++m [] refl = refl
take1+l≡takel++m {m} (x₁ ∷ l) refl
rewrite take1+l≡takel++m {m} l refl = refl
take-length≡l : ∀ (l : List Message) → take (length l) l ≡ l
take-length≡l [] = refl
take-length≡l (x ∷ l) rewrite take-length≡l l = refl
[c]-prefix-[p] : ∀ {n}
→ Invariant
MyStateMachine
λ st → n ≤ length (consumed st)
→ take n (consumed st) ≡ take n (produced st)
[c]-prefix-[p] {n} (init (refl , refl)) n<lc = refl
[c]-prefix-[p] {n} (step {st} {produce m} rs enEv) n<lc
= trans
([c]-prefix-[p] rs n<lc)
(take-n-l++ (produced st) ([ m ]) (≤-trans n<lc (inv-cons≤prod rs)))
[c]-prefix-[p] {n} (step {st} {consume m} rs enEv) n≤c++
with enEv
... | consEnabled cons<prod m≡lookup
with n≤l++⇒n≤l⊎n≡l (consumed st) n≤c++
... | inj₁ n≤c = trans
(sym (take-n-l++ (consumed st) [ m ] n≤c))
([c]-prefix-[p] rs n≤c)
... | inj₂ refl = let tc≡tp = [c]-prefix-[p] rs ≤-refl
in trans
(take1+l≡takel++m (consumed st) refl)
(taken×lookup
(consumed st) (produced st) cons<prod
(trans (sym (take-length≡l (consumed st))) tc≡tp)
m≡lookup)
take-presrv-prfix : ∀ {l₁ l₂} {m : Message}
→ take (length l₂) l₁ ≡ l₂
→ take (length l₂) (l₁ ++ [ m ]) ≡ l₂
take-presrv-prfix {[]} {[]} {m} tl₁≡l₂ = refl
take-presrv-prfix {m₁ ∷ l₁} {[]} {m} tl₁≡l₂ = refl
take-presrv-prfix {m₁ ∷ l₁} {m₂ ∷ l₂} {m} tl₁≡l₂
with l₁≡l₂ tl₁≡l₂
... | m₁≡m₂ , tll₁≡l₂
with take-presrv-prfix {m = m} tll₁≡l₂
... | tl₁+m≡l₂ = m₁≡m∧l₁≡l₂₂⇒l≡l m₁≡m₂ tl₁+m≡l₂
stable-produced : ∀ {msgs}
→ Stable MyStateMachine
λ st → take (length msgs) (produced st) ≡ msgs
stable-produced {msgs} {st} {produce m} enEv tkp≡m = take-presrv-prfix tkp≡m
stable-produced {msgs} {st} {consume x₁} enEv tkp≡m = tkp≡m
aux : ∀ {n m} {l₁ l₂ : List Message}
→ n ≡ m
→ take n l₁ ≡ take n l₂
→ take n l₁ ≡ take m l₂
aux refl prf = prf
lc≡lm-l-t-c≡m : ∀ {msgs}
→ (λ preSt → length (consumed preSt) ≡ length msgs
× take (length msgs) (produced preSt) ≡ msgs )
l-t
λ posSt → consumed posSt ≡ msgs
lc≡lm-l-t-c≡m {msgs} =
viaInv
(λ { {st} rs (lc≡lm , tp≡msgs)
→ trans
(trans
(sym (take-length≡l (consumed st)))
(aux lc≡lm ([c]-prefix-[p] rs ≤-refl)))
tp≡msgs })
msgsPrefixProd : ∀ {msgs} → (λ st → produced st ≡ msgs)
l-t
(λ st → length (produced st) ≡ length msgs
× take (length msgs) (produced st) ≡ msgs)
msgsPrefixProd = viaInv (λ { {st} rs refl → refl , take-length≡l (produced st) })
progress : ∀ {msgs} → (_≡ msgs) ∘ produced l-t (_≡ msgs) ∘ consumed
progress {msgs} = viaStable
stable-produced
msgsPrefixProd
(progressOnLength (length msgs))
lc≡lm-l-t-c≡m
{-
Another way of proving without the viaStable rule
progressOnLength' : ∀ {msgs} → (λ st₁ → length (produced st₁) ≡ length msgs
× take (length msgs) (produced st₁) ≡ msgs)
l-t
λ st₂ → length (consumed st₂) ≡ length msgs
× take (length msgs) (produced st₂) ≡ msgs
progress : ∀ {msgs} → (_≡ msgs) ∘ produced l-t (_≡ msgs) ∘ consumed
progress {msgs} =
viaTrans
(viaInv inv-prodPrefix)
(viaTrans
progressOnLength'
lc≡lm-l-t-c≡m)
-}
|
{
"alphanum_fraction": 0.4450565725,
"avg_line_length": 33.2958579882,
"ext": "agda",
"hexsha": "e61471dbdef301aeb809ff75cd86e0e76b68f95f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "391e148f391dc2d246249193788a0d203285b38e",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "lisandrasilva/agda-liveness",
"max_forks_repo_path": "src/Examples/ProducerConsumer2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "391e148f391dc2d246249193788a0d203285b38e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "lisandrasilva/agda-liveness",
"max_issues_repo_path": "src/Examples/ProducerConsumer2.agda",
"max_line_length": 83,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "391e148f391dc2d246249193788a0d203285b38e",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "lisandrasilva/agda-liveness",
"max_stars_repo_path": "src/Examples/ProducerConsumer2.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5996,
"size": 16881
}
|
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.NType2
-- [Subtype] is defined in lib.NType.
module lib.types.Subtype where
infix 40 _⊆_
_⊆_ : ∀ {i j₁ j₂} {A : Type i} → SubtypeProp A j₁ → SubtypeProp A j₂
→ Type (lmax i (lmax j₁ j₂))
P₁ ⊆ P₂ = ∀ a → SubtypeProp.prop P₁ a → SubtypeProp.prop P₂ a
infix 80 _∘sub_
_∘sub_ : ∀ {i j k} {A : Type i} {B : Type j}
→ SubtypeProp B k → (A → B) → SubtypeProp A k
P ∘sub f = SubtypeProp.prop P ∘ f , level where
abstract level = SubtypeProp.level P ∘ f
Subtype-has-dec-eq : ∀ {i j} {A : Type i} (subProp : SubtypeProp A j)
→ has-dec-eq A → has-dec-eq (Subtype subProp)
Subtype-has-dec-eq subProp dec s₁ s₂ with dec (fst s₁) (fst s₂)
... | inl s₁=s₂ = inl (Subtype=-out subProp s₁=s₂)
... | inr s₁≠s₂ = inr λ s₁=s₂ → s₁≠s₂ (ap fst s₁=s₂)
{- Dependent paths in a Σ-type -}
module _ {i j k} {A : Type i} {B : A → Type j} (subB : (a : A) → SubtypeProp (B a) k)
where
↓-Subtype-in : {x x' : A} {p : x == x'} {r : B x} {r' : B x'}
{s : SubtypeProp.prop (subB x) r} {s' : SubtypeProp.prop (subB x') r'}
(q : r == r' [ B ↓ p ])
→ (r , s) == (r' , s') [ (λ x → Subtype (subB x)) ↓ p ]
↓-Subtype-in {p = idp} q = Subtype=-out (subB _) q
|
{
"alphanum_fraction": 0.5787337662,
"avg_line_length": 34.2222222222,
"ext": "agda",
"hexsha": "481d5fcd1c2f16d33315733e64a7e24992088dd5",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/Subtype.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/Subtype.agda",
"max_line_length": 85,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/Subtype.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 525,
"size": 1232
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Foundations.Pointed.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Sigma
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Structure using (typ) public
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Isomorphism
private
variable
ℓ ℓ' : Level
Pointed : (ℓ : Level) → Type (ℓ-suc ℓ)
Pointed ℓ = TypeWithStr ℓ (λ x → x)
pt : ∀ {ℓ} (A∙ : Pointed ℓ) → typ A∙
pt = str
Pointed₀ = Pointed ℓ-zero
{- Pointed functions -}
_→∙_ : ∀{ℓ ℓ'} → (A : Pointed ℓ) (B : Pointed ℓ') → Type (ℓ-max ℓ ℓ')
_→∙_ A B = Σ[ f ∈ (typ A → typ B) ] f (pt A) ≡ pt B
_→∙_∙ : ∀{ℓ ℓ'} → (A : Pointed ℓ) (B : Pointed ℓ') → Pointed (ℓ-max ℓ ℓ')
A →∙ B ∙ = (A →∙ B) , (λ x → pt B) , refl
idfun∙ : ∀ {ℓ} (A : Pointed ℓ) → A →∙ A
idfun∙ A = (λ x → x) , refl
-- Pointed equivalences
_≃∙_ : (A : Pointed ℓ) (B : Pointed ℓ') → Type (ℓ-max ℓ ℓ')
A ≃∙ B = Σ[ (f , p) ∈ A →∙ B ] isEquiv f
≃∙→≃ : {A : Pointed ℓ} {B : Pointed ℓ'}
(f : A ≃∙ B)
→ typ A ≃ typ B
≃∙→≃ f = fst (fst f) , snd f
idEquiv∙ : (A : Pointed ℓ) → A ≃∙ A
idEquiv∙ (A , ⋆) =
(idfun∙ (A , ⋆)) ,
record { equiv-proof = λ a → p a }
where
module _ (a : A) where
p : isContr (Σ[ a' ∈ A ] a' ≡ a)
p = isContrRespectEquiv (Σ-cong-equiv-snd (λ a₁ → isoToEquiv (iso sym sym (λ _ → refl) λ _ → refl))) (isContrSingl a)
{- HIT allowing for pattern matching on pointed types -}
data Pointer {ℓ} (A : Pointed ℓ) : Type ℓ where
pt₀ : Pointer A
⌊_⌋ : typ A → Pointer A
id : ⌊ pt A ⌋ ≡ pt₀
IsoPointedPointer : ∀ {ℓ} {A : Pointed ℓ} → Iso (typ A) (Pointer A)
Iso.fun IsoPointedPointer = ⌊_⌋
Iso.inv (IsoPointedPointer {A = A}) pt₀ = pt A
Iso.inv IsoPointedPointer ⌊ x ⌋ = x
Iso.inv (IsoPointedPointer {A = A}) (id i) = pt A
Iso.rightInv IsoPointedPointer pt₀ = id
Iso.rightInv IsoPointedPointer ⌊ x ⌋ = refl
Iso.rightInv IsoPointedPointer (id i) j = id (i ∧ j)
Iso.leftInv IsoPointedPointer x = refl
|
{
"alphanum_fraction": 0.6162086633,
"avg_line_length": 30.2394366197,
"ext": "agda",
"hexsha": "13b0d37c1110068e13511c1edabc1d246612df36",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Schippmunk/cubical",
"max_forks_repo_path": "Cubical/Foundations/Pointed/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Schippmunk/cubical",
"max_issues_repo_path": "Cubical/Foundations/Pointed/Base.agda",
"max_line_length": 125,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Schippmunk/cubical",
"max_stars_repo_path": "Cubical/Foundations/Pointed/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 893,
"size": 2147
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category using (Category; module Commutation)
open import Categories.Category.Monoidal.Core using (Monoidal)
open import Categories.Category.Monoidal.Symmetric using (Symmetric)
-- Extra identities that hold only for symmetric monoidal categories.
module Categories.Category.Monoidal.Interchange.Symmetric
{o ℓ e} {C : Category o ℓ e} {M : Monoidal C} (S : Symmetric M) where
open import Data.Product using (_,_)
import Categories.Category.Construction.Core C as Core
import Categories.Category.Monoidal.Braided.Properties as BraidedProps
open import Categories.Category.Monoidal.Interchange using (HasInterchange)
import Categories.Category.Monoidal.Interchange.Braided as BraidedInterchange
using (module swapInner; swapInner-braiding)
import Categories.Category.Monoidal.Reasoning M as MonoidalReasoning
import Categories.Category.Monoidal.Utilities M as MonoidalUtilities
open import Categories.Category.Product using (_⁂_; assocˡ)
open import Categories.Functor using (_∘F_)
open import Categories.NaturalTransformation.NaturalIsomorphism
using (_≃_; niHelper)
open import Categories.Morphism.IsoEquiv C using (to-unique)
open import Categories.Morphism.Reasoning C
using (elim-center; pushˡ; pullʳ; cancelInner; switch-fromtoˡ)
open Category C using (Obj; _⇒_; _∘_; id; sym-assoc; ∘-resp-≈ʳ; module Equiv)
open Commutation C
open MonoidalReasoning
open MonoidalUtilities using (_⊗ᵢ_)
open Symmetric S renaming (associator to α; braided to B)
open BraidedInterchange B
open Core.Shorthands -- for idᵢ, _∘ᵢ_, ...
open MonoidalUtilities.Shorthands -- for λ⇒, ρ⇒, α⇒, ...
open BraidedProps.Shorthands B -- for σ⇒, ...
private
variable
W W₁ W₂ X X₁ X₂ Y Y₁ Y₂ Z Z₁ Z₂ : Obj
f g h i : X ⇒ Y
private
i⇒ = swapInner.from
i⇐ = swapInner.to
swapInner-commutative : [ (X₁ ⊗₀ X₂) ⊗₀ (Y₁ ⊗₀ Y₂) ⇒
(X₁ ⊗₀ X₂) ⊗₀ (Y₁ ⊗₀ Y₂) ]⟨
i⇒ ⇒⟨ (X₁ ⊗₀ Y₁) ⊗₀ (X₂ ⊗₀ Y₂) ⟩
i⇒
≈ id
⟩
swapInner-commutative = begin
i⇒ ∘ i⇒ ≈⟨ pullʳ (cancelInner α.isoʳ) ⟩
α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ≈˘⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩
α⇐ ∘ id ⊗₁ ((α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ (∘-resp-≈ʳ sym-assoc ○ α[σ⊗1]α⁻¹.isoʳ) ⟩∘⟨refl ⟩
α⇐ ∘ id ⊗₁ id ∘ α⇒ ≈⟨ elim-center ⊗.identity ○ α.isoˡ ⟩
id ∎
where module α[σ⊗1]α⁻¹ = _≅_ (α ∘ᵢ braided-iso ⊗ᵢ idᵢ ∘ᵢ α ⁻¹) using (isoʳ)
swapInner-iso : (W ⊗₀ X) ⊗₀ (Y ⊗₀ Z) ≅ (W ⊗₀ Y) ⊗₀ (X ⊗₀ Z)
swapInner-iso = record
{ from = i⇒
; to = i⇒
; iso = record
{ isoˡ = swapInner-commutative
; isoʳ = swapInner-commutative
}
}
swapInner-selfInverse : [ (X₁ ⊗₀ X₂) ⊗₀ (Y₁ ⊗₀ Y₂) ⇒
(X₁ ⊗₀ Y₁) ⊗₀ (X₂ ⊗₀ Y₂) ]⟨
i⇒
≈ i⇐
⟩
swapInner-selfInverse =
to-unique (iso swapInner-iso) swapInner.iso Equiv.refl
swapInner-braiding′ : [ (W ⊗₀ X) ⊗₀ (Y ⊗₀ Z) ⇒ (Y ⊗₀ W) ⊗₀ (Z ⊗₀ X) ]⟨
i⇒ ⇒⟨ (W ⊗₀ Y) ⊗₀ (X ⊗₀ Z) ⟩
σ⇒ ⊗₁ σ⇒
≈ σ⇒ ⇒⟨ (Y ⊗₀ Z) ⊗₀ (W ⊗₀ X) ⟩
i⇒
⟩
swapInner-braiding′ = switch-fromtoˡ swapInner-iso swapInner-braiding
|
{
"alphanum_fraction": 0.5656678801,
"avg_line_length": 41.0459770115,
"ext": "agda",
"hexsha": "134da1111ee7ed224badfe210ecd18a0d9b9d7fb",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Monoidal/Interchange/Symmetric.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Monoidal/Interchange/Symmetric.agda",
"max_line_length": 138,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Monoidal/Interchange/Symmetric.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 1311,
"size": 3571
}
|
-- This code is based on https://github.com/agda/agda-stdlib/pull/800/files
{-# OPTIONS --without-K --safe #-}
module Experiment.Categories.Solver.Category.Reflection where
open import Data.Nat
open import Data.List
open import Data.Maybe using (Maybe; nothing; just; maybe)
open import Data.Product
open import Data.Bool
open import Function using (_⟨_⟩_)
open import Agda.Builtin.Reflection as Builtin
open import Categories.Category
open import Experiment.Categories.Solver.Category hiding (solve)
_==_ = Builtin.primQNameEquality
{-# INLINE _==_ #-}
_>>=_ = bindTC
{-# INLINE _>>=_ #-}
infixr 5 _⟨∷⟩_ _⟅∷⟆_
pattern _⟨∷⟩_ x xs = arg (arg-info visible relevant) x ∷ xs
pattern _⟅∷⟆_ x xs = arg (arg-info hidden relevant) x ∷ xs
infixr 5 _⋯⟅∷⟆_
_⋯⟅∷⟆_ : ℕ → List (Arg Term) → List (Arg Term)
zero ⋯⟅∷⟆ xs = xs
suc i ⋯⟅∷⟆ xs = unknown ⟅∷⟆ i ⋯⟅∷⟆ xs
{-# INLINE _⋯⟅∷⟆_ #-}
getName : Term → Maybe Name
getName (con c args) = just c
getName (def f args) = just f
getName _ = nothing
getArgs : Term → Maybe (Term × Term)
getArgs (def _ xs) = go xs
where
go : List (Arg Term) → Maybe (Term × Term)
go (x ⟨∷⟩ y ⟨∷⟩ []) = just (x , y)
go (x ∷ xs) = go xs
go _ = nothing
getArgs _ = nothing
record CategoryNames : Set where
field
is-∘ : Name → Bool
is-id : Name → Bool
findCategoryNames : Term → TC CategoryNames
findCategoryNames cat = do
∘-name ← normalise (quote Category._∘_ ⟨ def ⟩ 2 ⋯⟅∷⟆ cat ⟨∷⟩ [])
id-name ← normalise (quote Category.id ⟨ def ⟩ 2 ⋯⟅∷⟆ cat ⟨∷⟩ [])
returnTC record
{ is-∘ = buildMatcher (quote Category._∘_) (getName ∘-name)
; is-id = buildMatcher (quote Category.id) (getName id-name)
}
where
buildMatcher : Name → Maybe Name → Name → Bool
buildMatcher n = maybe (λ m x → n == x ∨ m == x) (n ==_)
:id′ : Term
:id′ = quote :id ⟨ con ⟩ []
∥_∥′ : Term → Term
∥_∥′ t = quote ∥_∥ ⟨ con ⟩ (t ⟨∷⟩ [])
module _ (names : CategoryNames) where
open CategoryNames names
:∘′ : List (Arg Term) → Term
E′ : Term → Term
:∘′ (x ⟨∷⟩ y ⟨∷⟩ []) = quote _:∘_ ⟨ con ⟩ E′ x ⟨∷⟩ E′ y ⟨∷⟩ []
:∘′ (x ∷ xs) = :∘′ xs
:∘′ _ = unknown
E′ t@(def n xs) = if is-∘ n
then :∘′ xs
else if is-id n
then :id′
else ∥ t ∥′
E′ t@(con n xs) = if is-∘ n
then :∘′ xs
else if is-id n
then :id′
else ∥ t ∥′
E′ t = ∥ t ∥′
constructSoln : Term → CategoryNames → Term → Term → Term
constructSoln cat names lhs rhs =
quote Category.Equiv.trans ⟨ def ⟩ 2 ⋯⟅∷⟆ cat ⟨∷⟩
(quote Category.Equiv.sym ⟨ def ⟩ 2 ⋯⟅∷⟆ cat ⟨∷⟩
(quote ⟦e⟧N≈⟦e⟧ ⟨ def ⟩ 2 ⋯⟅∷⟆ cat ⟨∷⟩ E′ names lhs ⟨∷⟩ []) ⟨∷⟩ [])
⟨∷⟩
(quote ⟦e⟧N≈⟦e⟧ ⟨ def ⟩ 2 ⋯⟅∷⟆ cat ⟨∷⟩ E′ names rhs ⟨∷⟩ []) ⟨∷⟩
[]
macro
solve : Term → Term → TC _
solve cat = λ hole → do
hole′ ← inferType hole >>= normalise
names ← findCategoryNames cat
just (lhs , rhs) ← returnTC (getArgs hole′)
where nothing → typeError (termErr hole′ ∷ [])
let soln = constructSoln cat names lhs rhs
unify hole soln
-- Example
module _ {o l e} (C : Category o l e) where
open Category C
_ : ∀ {A B C D} {f : A ⇒ B} {g : B ⇒ C} {h : C ⇒ D} →
(h ∘ id ∘ g) ∘ f ≈ id ∘ h ∘ (g ∘ f ∘ id)
_ = solve C
_ : ∀ {A} {f g h i j : A ⇒ A} →
id ∘ (f ∘ id ∘ g) ∘ id ∘ (h ∘ id ∘ i) ∘ id ∘ j ≈ f ∘ (g ∘ h) ∘ (i ∘ j)
_ = solve C
|
{
"alphanum_fraction": 0.5556220096,
"avg_line_length": 27.1869918699,
"ext": "agda",
"hexsha": "e3c9de6f5373dd08e8ac80d84b55b29d88cce862",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "Experiment/Categories/Solver/Category/Reflection.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "Experiment/Categories/Solver/Category/Reflection.agda",
"max_line_length": 76,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "Experiment/Categories/Solver/Category/Reflection.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 1348,
"size": 3344
}
|
-- Basic intuitionistic propositional calculus, without ∨ or ⊥.
-- Hilbert-style formalisation of closed syntax.
-- Nested terms.
module BasicIPC.Syntax.ClosedHilbert where
open import BasicIPC.Syntax.Common public
-- Derivations.
infix 3 ⊢_
data ⊢_ : Ty → Set where
app : ∀ {A B} → ⊢ A ▻ B → ⊢ A → ⊢ B
ci : ∀ {A} → ⊢ A ▻ A
ck : ∀ {A B} → ⊢ A ▻ B ▻ A
cs : ∀ {A B C} → ⊢ (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C
cpair : ∀ {A B} → ⊢ A ▻ B ▻ A ∧ B
cfst : ∀ {A B} → ⊢ A ∧ B ▻ A
csnd : ∀ {A B} → ⊢ A ∧ B ▻ B
unit : ⊢ ⊤
infix 3 ⊢⋆_
⊢⋆_ : Cx Ty → Set
⊢⋆ ∅ = 𝟙
⊢⋆ Ξ , A = ⊢⋆ Ξ × ⊢ A
-- Cut and multicut.
cut : ∀ {A B} → ⊢ A → ⊢ A ▻ B → ⊢ B
cut t u = app u t
multicut : ∀ {Ξ A} → ⊢⋆ Ξ → ⊢ Ξ ▻⋯▻ A → ⊢ A
multicut {∅} ∙ u = u
multicut {Ξ , B} (ts , t) u = app (multicut ts u) t
-- Contraction.
ccont : ∀ {A B} → ⊢ (A ▻ A ▻ B) ▻ A ▻ B
ccont = app (app cs cs) (app ck ci)
cont : ∀ {A B} → ⊢ A ▻ A ▻ B → ⊢ A ▻ B
cont t = app ccont t
-- Exchange, or Schönfinkel’s C combinator.
cexch : ∀ {A B C} → ⊢ (A ▻ B ▻ C) ▻ B ▻ A ▻ C
cexch = app (app cs (app (app cs (app ck cs))
(app (app cs (app ck ck)) cs)))
(app ck ck)
exch : ∀ {A B C} → ⊢ A ▻ B ▻ C → ⊢ B ▻ A ▻ C
exch t = app cexch t
-- Composition, or Schönfinkel’s B combinator.
ccomp : ∀ {A B C} → ⊢ (B ▻ C) ▻ (A ▻ B) ▻ A ▻ C
ccomp = app (app cs (app ck cs)) ck
comp : ∀ {A B C} → ⊢ B ▻ C → ⊢ A ▻ B → ⊢ A ▻ C
comp t u = app (app ccomp t) u
-- Useful theorems in functional form.
pair : ∀ {A B} → ⊢ A → ⊢ B → ⊢ A ∧ B
pair t u = app (app cpair t) u
fst : ∀ {A B} → ⊢ A ∧ B → ⊢ A
fst t = app cfst t
snd : ∀ {A B} → ⊢ A ∧ B → ⊢ B
snd t = app csnd t
-- Convertibility.
data _⋙_ : ∀ {A} → ⊢ A → ⊢ A → Set where
refl⋙ : ∀ {A} → {t : ⊢ A}
→ t ⋙ t
trans⋙ : ∀ {A} → {t t′ t″ : ⊢ A}
→ t ⋙ t′ → t′ ⋙ t″
→ t ⋙ t″
sym⋙ : ∀ {A} → {t t′ : ⊢ A}
→ t ⋙ t′
→ t′ ⋙ t
congapp⋙ : ∀ {A B} → {t t′ : ⊢ A ▻ B} → {u u′ : ⊢ A}
→ t ⋙ t′ → u ⋙ u′
→ app t u ⋙ app t′ u′
congi⋙ : ∀ {A} → {t t′ : ⊢ A}
→ t ⋙ t′
→ app ci t ⋙ app ci t′
congk⋙ : ∀ {A B} → {t t′ : ⊢ A} → {u u′ : ⊢ B}
→ t ⋙ t′ → u ⋙ u′
→ app (app ck t) u ⋙ app (app ck t′) u′
congs⋙ : ∀ {A B C} → {t t′ : ⊢ A ▻ B ▻ C} → {u u′ : ⊢ A ▻ B} → {v v′ : ⊢ A}
→ t ⋙ t′ → u ⋙ u′ → v ⋙ v′
→ app (app (app cs t) u) v ⋙ app (app (app cs t′) u′) v′
congpair⋙ : ∀ {A B} → {t t′ : ⊢ A} → {u u′ : ⊢ B}
→ t ⋙ t′ → u ⋙ u′
→ app (app cpair t) u ⋙ app (app cpair t′) u′
congfst⋙ : ∀ {A B} → {t t′ : ⊢ A ∧ B}
→ t ⋙ t′
→ app cfst t ⋙ app cfst t′
congsnd⋙ : ∀ {A B} → {t t′ : ⊢ A ∧ B}
→ t ⋙ t′
→ app csnd t ⋙ app csnd t′
-- TODO: Verify this.
beta▻ₖ⋙ : ∀ {A B} → {t : ⊢ A} → {u : ⊢ B}
→ app (app ck t) u ⋙ t
-- TODO: Verify this.
beta▻ₛ⋙ : ∀ {A B C} → {t : ⊢ A ▻ B ▻ C} → {u : ⊢ A ▻ B} → {v : ⊢ A}
→ app (app (app cs t) u) v ⋙ app (app t v) (app u v)
-- TODO: What about eta for ▻?
beta∧₁⋙ : ∀ {A B} → {t : ⊢ A} → {u : ⊢ B}
→ app cfst (app (app cpair t) u) ⋙ t
beta∧₂⋙ : ∀ {A B} → {t : ⊢ A} → {u : ⊢ B}
→ app csnd (app (app cpair t) u) ⋙ u
eta∧⋙ : ∀ {A B} → {t : ⊢ A ∧ B}
→ t ⋙ app (app cpair (app cfst t)) (app csnd t)
eta⊤⋙ : ∀ {t : ⊢ ⊤} → t ⋙ unit
|
{
"alphanum_fraction": 0.3520299145,
"avg_line_length": 26.3661971831,
"ext": "agda",
"hexsha": "4c4a643ae3f3ef72593d4bc2a6f7d72a6a6eeffe",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/hilbert-gentzen",
"max_forks_repo_path": "BasicIPC/Syntax/ClosedHilbert.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/hilbert-gentzen",
"max_issues_repo_path": "BasicIPC/Syntax/ClosedHilbert.agda",
"max_line_length": 81,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/hilbert-gentzen",
"max_stars_repo_path": "BasicIPC/Syntax/ClosedHilbert.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z",
"num_tokens": 1740,
"size": 3744
}
|
{-# OPTIONS --without-K #-}
module algebra.monoid.core where
open import level
open import algebra.semigroup
open import equality.core
open import sum
record IsMonoid {i} (M : Set i) : Set i where
field
instance sgrp : IsSemigroup M
open IsSemigroup sgrp public
field
e : M
lunit : (x : M) → e * x ≡ x
runit : (x : M) → x * e ≡ x
Monoid : ∀ i → Set (lsuc i)
Monoid i = Σ (Set i) IsMonoid
|
{
"alphanum_fraction": 0.6361445783,
"avg_line_length": 19.7619047619,
"ext": "agda",
"hexsha": "af2323e90725f2a075d41f50b9971fddf4e1e8cd",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/algebra/monoid/core.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/algebra/monoid/core.agda",
"max_line_length": 45,
"max_stars_count": 20,
"max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pcapriotti/agda-base",
"max_stars_repo_path": "src/algebra/monoid/core.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z",
"num_tokens": 141,
"size": 415
}
|
module Nats.Add.Assoc where
open import Equality
open import Nats
open import Function
------------------------------------------------------------------------
-- internal stuffs
private
a+/b+c/=/a+b/+c : ∀ a b c → a + b + c ≡ a + (b + c)
a+/b+c/=/a+b/+c zero b c = refl
a+/b+c/=/a+b/+c (suc a) b c = cong suc $ a+/b+c/=/a+b/+c a b c
------------------------------------------------------------------------
-- public aliases
nat-add-assoc : ∀ a b c → a + b + c ≡ a + (b + c)
nat-add-assoc = a+/b+c/=/a+b/+c
|
{
"alphanum_fraction": 0.3881453155,
"avg_line_length": 23.7727272727,
"ext": "agda",
"hexsha": "1bcdde20205ceafbcfc62c9537988f47d2de6403",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "ice1k/Theorems",
"max_forks_repo_path": "src/Nats/Add/Assoc.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "ice1k/Theorems",
"max_issues_repo_path": "src/Nats/Add/Assoc.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "ice1k/Theorems",
"max_stars_repo_path": "src/Nats/Add/Assoc.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z",
"num_tokens": 162,
"size": 523
}
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import Optics.All
open import LibraBFT.Prelude
open import LibraBFT.Lemmas
open import LibraBFT.Base.KVMap
open import LibraBFT.Base.PKCS
open import LibraBFT.Hash
open import LibraBFT.Impl.Base.Types
open import LibraBFT.Impl.Consensus.Types
open import LibraBFT.Impl.Util.Crypto
open import LibraBFT.Impl.Handle sha256 sha256-cr
open import LibraBFT.Concrete.System.Parameters
open EpochConfig
open import LibraBFT.Yasm.Yasm (ℓ+1 0ℓ) EpochConfig epochId authorsN ConcSysParms NodeId-PK-OK
-- This module contains placeholders for the future analog of the
-- corresponding VotesOnce property. Defining the implementation
-- obligation and proving that it is an invariant of an implementation
-- is a substantial undertaking. We are working first on proving the
-- simpler VotesOnce property to settle down the structural aspects
-- before tackling the harder semantic issues.
module LibraBFT.Concrete.Properties.LockedRound where
-- TODO-3: define the implementation obligation
ImplObligation₁ : Set
ImplObligation₁ = Unit
-- Next, we prove that given the necessary obligations,
module Proof
(sps-corr : StepPeerState-AllValidParts)
(Impl-LR1 : ImplObligation₁)
where
-- Any reachable state satisfies the LR rule for any epoch in the system.
module _ {e}(st : SystemState e)(r : ReachableSystemState st)(eid : Fin e) where
-- Bring in 'unwind', 'ext-unforgeability' and friends
open Structural sps-corr
-- Bring in IntSystemState
open import LibraBFT.Concrete.System sps-corr
open PerState st r
open PerEpoch eid
open import LibraBFT.Concrete.Obligations.LockedRound 𝓔 (ConcreteVoteEvidence 𝓔) as LR
postulate -- TODO-3: prove it
lrr : LR.Type IntSystemState
|
{
"alphanum_fraction": 0.7746478873,
"avg_line_length": 40.5714285714,
"ext": "agda",
"hexsha": "d13d7c7dc90158a38568a0580d31c881b32f3d28",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "haroldcarr/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Concrete/Properties/LockedRound.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "haroldcarr/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Concrete/Properties/LockedRound.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "haroldcarr/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Concrete/Properties/LockedRound.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 537,
"size": 1988
}
|
{-# OPTIONS --without-K #-}
data D : Set where
@0 c : D
data P : D → Set where
d : P c
|
{
"alphanum_fraction": 0.5161290323,
"avg_line_length": 11.625,
"ext": "agda",
"hexsha": "b2fc507b2a3eaf45ace0fc0cc8e9d754facd6e32",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Fail/Issue5920b.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Fail/Issue5920b.agda",
"max_line_length": 27,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Fail/Issue5920b.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 33,
"size": 93
}
|
------------------------------------------------------------------------
-- Unary relations
------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- Adapted from the Agda standard library.
module Common.Relation.Unary where
infix 4 _∈_ _⊆_
------------------------------------------------------------------------
-- Unary relations
Pred : Set → Set₁
Pred A = A → Set
_∈_ : ∀ {A} → A → Pred A → Set
x ∈ P = P x
-- P ⊆ Q means that P is a subset of Q.
_⊆_ : ∀ {A} → Pred A → Pred A → Set
P ⊆ Q = ∀ {x} → x ∈ P → x ∈ Q
|
{
"alphanum_fraction": 0.3697478992,
"avg_line_length": 26.4444444444,
"ext": "agda",
"hexsha": "4560accfd883dac3e48135414b498543f23008ee",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/Common/Relation/Unary.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/Common/Relation/Unary.agda",
"max_line_length": 72,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/Common/Relation/Unary.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 169,
"size": 714
}
|
open import Prelude
open import Nat
module contexts where
-- variables are named with naturals in ė. therefore we represent
-- contexts as functions from names for variables (nats) to possible
-- bindings.
_ctx : Set → Set
A ctx = Nat → Maybe A
-- convenient shorthand for the (unique up to fun. ext.) empty context
∅ : {A : Set} → A ctx
∅ _ = None
infixr 100 ■_
-- the domain of a context is those naturals which cuase it to emit some τ
dom : {A : Set} → A ctx → Nat → Set
dom {A} Γ x = Σ[ τ ∈ A ] (Γ x == Some τ)
-- membership, or presence, in a context
_∈_ : {A : Set} (p : Nat × A) → (Γ : A ctx) → Set
(x , y) ∈ Γ = (Γ x) == Some y
-- this packages up an appeal to context memebership into a form that
-- lets us retain more information
ctxindirect : {A : Set} (Γ : A ctx) (n : Nat) → Σ[ a ∈ A ] (Γ n == Some a) + (Γ n == None)
ctxindirect Γ n with Γ n
ctxindirect Γ n | Some x = Inl (x , refl)
ctxindirect Γ n | None = Inr refl
-- apartness for contexts
_#_ : {A : Set} (n : Nat) → (Γ : A ctx) → Set
x # Γ = (Γ x) == None
-- disjoint contexts are those which share no mappings
_##_ : {A : Set} → A ctx → A ctx → Set
_##_ {A} Γ Γ' = ((n : Nat) → dom Γ n → n # Γ') × ((n : Nat) → dom Γ' n → n # Γ)
-- contexts give at most one binding for each variable
ctxunicity : {A : Set} → {Γ : A ctx} {n : Nat} {t t' : A} →
(n , t) ∈ Γ →
(n , t') ∈ Γ →
t == t'
ctxunicity {n = n} p q with natEQ n n
ctxunicity p q | Inl refl = someinj (! p · q)
ctxunicity _ _ | Inr x≠x = abort (x≠x refl)
-- warning: this is union, but it assumes WITHOUT CHECKING that the
-- domains are disjoint. this is inherently asymmetric, and that's
-- reflected throughout the development that follows
_∪_ : {A : Set} → A ctx → A ctx → A ctx
(C1 ∪ C2) x with C1 x
(C1 ∪ C2) x | Some x₁ = Some x₁
(C1 ∪ C2) x | None = C2 x
-- the singleton context
■_ : {A : Set} → (Nat × A) → A ctx
(■ (x , a)) y with natEQ x y
(■ (x , a)) .x | Inl refl = Some a
... | Inr _ = None
-- context extension
-- Note that if x is not apart from Γ, this relies on the asymmetry
-- of union to set Γ x = t.
_,,_ : {A : Set} → A ctx → (Nat × A) → A ctx
(Γ ,, (x , t)) = (■ (x , t)) ∪ Γ
infixl 10 _,,_
extend-empty : {A : Set} (x : Nat) (t : A) →
∅ ,, (x , t) == ■ (x , t)
extend-empty x t = funext eq
where
eq : (y : Nat) → (∅ ,, (x , t)) y == (■ (x , t)) y
eq y with natEQ x y
... | Inl refl = refl
... | Inr x≠y = refl
-- used below in proof of ∪ commutativity and associativity
lem-dom-union1 : {A : Set} {C1 C2 : A ctx} {x : Nat} →
C1 ## C2 →
dom C1 x →
(C1 ∪ C2) x == C1 x
lem-dom-union1 {A} {C1} {C2} {x} (d1 , d2) D with C1 x
lem-dom-union1 (d1 , d2) D | Some x₁ = refl
lem-dom-union1 (d1 , d2) D | None = abort (somenotnone (! (π2 D)))
lem-dom-union2 : {A : Set} {C1 C2 : A ctx} {x : Nat} →
C1 ## C2 →
dom C1 x →
(C2 ∪ C1) x == C1 x
lem-dom-union2 {A} {C1} {C2} {x} (d1 , d2) D with ctxindirect C2 x
lem-dom-union2 {A} {C1} {C2} {x} (d1 , d2) D | Inl x₁ = abort (somenotnone (! (π2 x₁) · d1 x D ))
lem-dom-union2 {A} {C1} {C2} {x} (d1 , d2) D | Inr x₁ with C2 x
lem-dom-union2 (d1 , d2) D | Inr x₂ | Some x₁ = abort (somenotnone x₂)
lem-dom-union2 (d1 , d2) D | Inr x₁ | None = refl
-- if the contexts in question are disjoint, then union is commutative
∪comm : {A : Set} → (C1 C2 : A ctx) → C1 ## C2 → (C1 ∪ C2) == (C2 ∪ C1)
∪comm C1 C2 (d1 , d2)= funext guts
where
lem-apart-union1 : {A : Set} (C1 C2 : A ctx) (x : Nat) → x # C1 → x # C2 → x # (C1 ∪ C2)
lem-apart-union1 C1 C2 x apt1 apt2 with C1 x
lem-apart-union1 C1 C2 x apt1 apt2 | Some x₁ = abort (somenotnone apt1)
lem-apart-union1 C1 C2 x apt1 apt2 | None = apt2
lem-apart-union2 : {A : Set} (C1 C2 : A ctx) (x : Nat) → x # C1 → x # C2 → x # (C2 ∪ C1)
lem-apart-union2 C1 C2 x apt1 apt2 with C2 x
lem-apart-union2 C1 C2 x apt1 apt2 | Some x₁ = abort (somenotnone apt2)
lem-apart-union2 C1 C2 x apt1 apt2 | None = apt1
guts : (x : Nat) → (C1 ∪ C2) x == (C2 ∪ C1) x
guts x with ctxindirect C1 x | ctxindirect C2 x
guts x | Inl (π1 , π2) | Inl (π3 , π4) = abort (somenotnone (! π4 · d1 x (π1 , π2)))
guts x | Inl x₁ | Inr x₂ = tr (λ qq → qq == (C2 ∪ C1) x) (! (lem-dom-union1 (d1 , d2) x₁)) (tr (λ qq → C1 x == qq) (! (lem-dom-union2 (d1 , d2) x₁)) refl)
guts x | Inr x₁ | Inl x₂ = tr (λ qq → (C1 ∪ C2) x == qq) (! (lem-dom-union1 (d2 , d1) x₂)) (tr (λ qq → qq == C2 x) (! (lem-dom-union2 (d2 , d1) x₂)) refl)
guts x | Inr x₁ | Inr x₂ = tr (λ qq → qq == (C2 ∪ C1) x) (! (lem-apart-union1 C1 C2 x x₁ x₂)) (tr (λ qq → None == qq) (! (lem-apart-union2 C1 C2 x x₁ x₂)) refl)
-- an element in the left of a union is in the union
x∈∪l : {A : Set} → (Γ Γ' : A ctx) (n : Nat) (x : A) → (n , x) ∈ Γ → (n , x) ∈ (Γ ∪ Γ')
x∈∪l Γ Γ' n x xin with Γ n
x∈∪l Γ Γ' n x₁ xin | Some x = xin
x∈∪l Γ Γ' n x () | None
-- an element in the right of a union is in the union as long as it is not in the left;
-- this asymmetry reflects the asymmetry in the definition of union
x∈∪r : {A : Set} → (Γ Γ' : A ctx) (n : Nat) (x : A) →
(n , x) ∈ Γ' →
n # Γ →
(n , x) ∈ (Γ ∪ Γ')
x∈∪r Γ Γ' n x nx∈ apt with Γ n
... | None = nx∈
-- an element is in the context formed with just itself
x∈■ : {A : Set} (n : Nat) (a : A) → (n , a) ∈ (■ (n , a))
x∈■ n a with natEQ n n
x∈■ n a | Inl refl = refl
x∈■ n a | Inr x = abort (x refl)
-- if an index is in the domain of a singleton context, it's the only
-- index in the context
lem-dom-eq : {A : Set} {y : A} {n m : Nat} →
dom (■ (m , y)) n →
n == m
lem-dom-eq {n = n} {m = m} (π1 , π2) with natEQ m n
lem-dom-eq (π1 , π2) | Inl refl = refl
lem-dom-eq (π1 , π2) | Inr x = abort (somenotnone (! π2))
-- a singleton context formed with an index apart from a context is
-- disjoint from that context
lem-apart-sing-disj : {A : Set} {n : Nat} {a : A} {Γ : A ctx} →
n # Γ →
(■ (n , a)) ## Γ
lem-apart-sing-disj {A} {n} {a} {Γ} apt = asd1 , asd2
where
asd1 : (n₁ : Nat) → dom (■ (n , a)) n₁ → n₁ # Γ
asd1 m d with lem-dom-eq d
asd1 .n d | refl = apt
asd2 : (n₁ : Nat) → dom Γ n₁ → n₁ # (■ (n , a))
asd2 m (π1 , π2) with natEQ n m
asd2 .n (π1 , π2) | Inl refl = abort (somenotnone (! π2 · apt ))
asd2 m (π1 , π2) | Inr x = refl
-- the only index of a singleton context is in its domain
lem-domsingle : {A : Set} (p : Nat) (q : A) → dom (■ (p , q)) p
lem-domsingle p q with natEQ p p
lem-domsingle p q | Inl refl = q , refl
lem-domsingle p q | Inr x₁ = abort (x₁ refl)
-- dual of above
lem-disj-sing-apart : {A : Set} {n : Nat} {a : A} {Γ : A ctx} →
(■ (n , a)) ## Γ →
n # Γ
lem-disj-sing-apart {A} {n} {a} {Γ} (d1 , d2) = d1 n (lem-domsingle n a)
-- the singleton context can only produce one non-none result
lem-insingeq : {A : Set} {x x' : Nat} {τ τ' : A} →
(■ (x , τ)) x' == Some τ' →
τ == τ'
lem-insingeq {A} {x} {x'} {τ} {τ'} eq with lem-dom-eq (τ' , eq)
lem-insingeq {A} {x} {.x} {τ} {τ'} eq | refl with natEQ x x
lem-insingeq refl | refl | Inl refl = refl
lem-insingeq eq | refl | Inr x₁ = abort (somenotnone (! eq))
-- if an index doesn't appear in a context, and the union of that context
-- with a singleton does produce a result, it must have come from the singleton
lem-apart-union-eq : {A : Set} {Γ : A ctx} {x x' : Nat} {τ τ' : A} →
x' # Γ →
(Γ ∪ ■ (x , τ)) x' == Some τ' →
τ == τ'
lem-apart-union-eq {A} {Γ} {x} {x'} {τ} {τ'} apart eq with Γ x'
lem-apart-union-eq apart eq | Some x = abort (somenotnone apart)
lem-apart-union-eq apart eq | None = lem-insingeq eq
-- if an index not in a singleton context produces a result from that
-- singleton unioned with another context, the result must have come from
-- the other context
lem-neq-union-eq : {A : Set} {Γ : A ctx} {x x' : Nat} {τ τ' : A} →
x' ≠ x →
(Γ ∪ ■ (x , τ)) x' == Some τ' →
Γ x' == Some τ'
lem-neq-union-eq {A} {Γ} {x} {x'} {τ} {τ'} neq eq with Γ x'
lem-neq-union-eq neq eq | Some x = eq
lem-neq-union-eq {A} {Γ} {x} {x'} {τ} {τ'} neq eq | None with natEQ x x'
lem-neq-union-eq neq eq | None | Inl x₁ = abort ((flip neq) x₁)
lem-neq-union-eq neq eq | None | Inr x₁ = abort (somenotnone (! eq))
-- extending a context with a new index produces the result paired with
-- that index.
ctx-top : {A : Set} →
(Γ : A ctx) (n : Nat) (a : A) →
(n # Γ) →
(n , a) ∈ (Γ ,, (n , a))
ctx-top Γ n a apt with natEQ n n
... | Inl refl = refl
... | Inr n≠n = abort (n≠n refl)
-- if a union of a singleton and a ctx produces no result, the argument
-- index must be apart from the ctx and disequal to the index of the
-- singleton
lem-union-none : {A : Set} {Γ : A ctx} {a : A} {x x' : Nat}
→ (Γ ∪ ■ (x , a)) x' == None
→ (x ≠ x') × (x' # Γ)
lem-union-none {A} {Γ} {a} {x} {x'} emp with ctxindirect Γ x'
lem-union-none {A} {Γ} {a} {x} {x'} emp | Inl (π1 , π2) with Γ x'
lem-union-none emp | Inl (π1 , π2) | Some x = abort (somenotnone emp)
lem-union-none {A} {Γ} {a} {x} {x'} emp | Inl (π1 , π2) | None with natEQ x x'
lem-union-none emp | Inl (π1 , π2) | None | Inl x₁ = abort (somenotnone (! π2))
lem-union-none emp | Inl (π1 , π2) | None | Inr x₁ = x₁ , refl
lem-union-none {A} {Γ} {a} {x} {x'} emp | Inr y with Γ x'
lem-union-none emp | Inr y | Some x = abort (somenotnone emp)
lem-union-none {A} {Γ} {a} {x} {x'} emp | Inr y | None with natEQ x x'
lem-union-none emp | Inr y | None | Inl refl = abort (somenotnone emp)
lem-union-none emp | Inr y | None | Inr x₁ = x₁ , refl
--- lemmas building up to a proof of associativity of ∪
ctxignore1 : {A : Set} (x : Nat) (C1 C2 : A ctx) → x # C1 → (C1 ∪ C2) x == C2 x
ctxignore1 x C1 C2 apt with ctxindirect C1 x
ctxignore1 x C1 C2 apt | Inl x₁ = abort (somenotnone (! (π2 x₁) · apt))
ctxignore1 x C1 C2 apt | Inr x₁ with C1 x
ctxignore1 x C1 C2 apt | Inr x₂ | Some x₁ = abort (somenotnone (x₂))
ctxignore1 x C1 C2 apt | Inr x₁ | None = refl
ctxignore2 : {A : Set} (x : Nat) (C1 C2 : A ctx) → x # C2 → (C1 ∪ C2) x == C1 x
ctxignore2 x C1 C2 apt with ctxindirect C2 x
ctxignore2 x C1 C2 apt | Inl x₁ = abort (somenotnone (! (π2 x₁) · apt))
ctxignore2 x C1 C2 apt | Inr x₁ with C1 x
ctxignore2 x C1 C2 apt | Inr x₂ | Some x₁ = refl
ctxignore2 x C1 C2 apt | Inr x₁ | None = x₁
ctxcollapse1 : {A : Set} → (C1 C2 C3 : A ctx) (x : Nat) →
(x # C3) →
(C2 ∪ C3) x == C2 x →
(C1 ∪ (C2 ∪ C3)) x == (C1 ∪ C2) x
ctxcollapse1 C1 C2 C3 x apt eq with C2 x
ctxcollapse1 C1 C2 C3 x apt eq | Some x₁ with C1 x
ctxcollapse1 C1 C2 C3 x apt eq | Some x₂ | Some x₁ = refl
ctxcollapse1 C1 C2 C3 x apt eq | Some x₁ | None with C2 x
ctxcollapse1 C1 C2 C3 x apt eq | Some x₂ | None | Some x₁ = refl
ctxcollapse1 C1 C2 C3 x apt eq | Some x₁ | None | None = apt
ctxcollapse1 C1 C2 C3 x apt eq | None with C1 x
ctxcollapse1 C1 C2 C3 x apt eq | None | Some x₁ = refl
ctxcollapse1 C1 C2 C3 x apt eq | None | None with C2 x
ctxcollapse1 C1 C2 C3 x apt eq | None | None | Some x₁ = refl
ctxcollapse1 C1 C2 C3 x apt eq | None | None | None = eq
ctxcollapse2 : {A : Set} → (C1 C2 C3 : A ctx) (x : Nat) →
(x # C2) →
(C2 ∪ C3) x == C3 x →
(C1 ∪ (C2 ∪ C3)) x == (C1 ∪ C3) x
ctxcollapse2 C1 C2 C3 x apt eq with C1 x
ctxcollapse2 C1 C2 C3 x apt eq | Some x₁ = refl
ctxcollapse2 C1 C2 C3 x apt eq | None with C2 x
ctxcollapse2 C1 C2 C3 x apt eq | None | Some x₁ = eq
ctxcollapse2 C1 C2 C3 x apt eq | None | None = refl
ctxcollapse3 : {A : Set} → (C1 C2 C3 : A ctx) (x : Nat) →
(x # C2) →
((C1 ∪ C2) ∪ C3) x == (C1 ∪ C3) x
ctxcollapse3 C1 C2 C3 x apt with C1 x
ctxcollapse3 C1 C2 C3 x apt | Some x₁ = refl
ctxcollapse3 C1 C2 C3 x apt | None with C2 x
ctxcollapse3 C1 C2 C3 x apt | None | Some x₁ = abort (somenotnone apt)
ctxcollapse3 C1 C2 C3 x apt | None | None = refl
∪assoc : {A : Set} (C1 C2 C3 : A ctx) → (C2 ## C3) → (C1 ∪ C2) ∪ C3 == C1 ∪ (C2 ∪ C3)
∪assoc C1 C2 C3 (d1 , d2) = funext guts
where
case2 : (x : Nat) → x # C3 → dom C2 x → ((C1 ∪ C2) ∪ C3) x == (C1 ∪ (C2 ∪ C3)) x
case2 x apt dom = (ctxignore2 x (C1 ∪ C2) C3 apt) ·
! (ctxcollapse1 C1 C2 C3 x apt (lem-dom-union1 (d1 , d2) dom))
case34 : (x : Nat) → x # C2 → ((C1 ∪ C2) ∪ C3) x == (C1 ∪ (C2 ∪ C3)) x
case34 x apt = ctxcollapse3 C1 C2 C3 x apt ·
! (ctxcollapse2 C1 C2 C3 x apt (ctxignore1 x C2 C3 apt))
guts : (x : Nat) → ((C1 ∪ C2) ∪ C3) x == (C1 ∪ (C2 ∪ C3)) x
guts x with ctxindirect C2 x | ctxindirect C3 x
guts x | Inl (π1 , π2) | Inl (π3 , π4) = abort (somenotnone (! π4 · d1 x (π1 , π2)))
guts x | Inl x₁ | Inr x₂ = case2 x x₂ x₁
guts x | Inr x₁ | Inl x₂ = case34 x x₁
guts x | Inr x₁ | Inr x₂ = case34 x x₁
-- if x is apart from either part of a union, the answer comes from the other one
lem-dom-union-apt1 : {A : Set} {Δ1 Δ2 : A ctx} {x : Nat} {y : A} → x # Δ1 → ((Δ1 ∪ Δ2) x == Some y) → (Δ2 x == Some y)
lem-dom-union-apt1 {A} {Δ1} {Δ2} {x} {y} apt xin with Δ1 x
lem-dom-union-apt1 apt xin | Some x₁ = abort (somenotnone apt)
lem-dom-union-apt1 apt xin | None = xin
lem-dom-union-apt2 : {A : Set} {Δ1 Δ2 : A ctx} {x : Nat} {y : A} → x # Δ2 → ((Δ1 ∪ Δ2) x == Some y) → (Δ1 x == Some y)
lem-dom-union-apt2 {A} {Δ1} {Δ2} {x} {y} apt xin with Δ1 x
lem-dom-union-apt2 apt xin | Some x₁ = xin
lem-dom-union-apt2 apt xin | None = abort (somenotnone (! xin · apt))
-- if x is in the union , it is in one of the parts
lem-dom-union : {A : Set} {Δ1 Δ2 : A ctx} {x : Nat} {y : A} → (x , y) ∈ (Δ1 ∪ Δ2) → ((x , y) ∈ Δ1) + ((x , y) ∈ Δ2)
lem-dom-union {Δ1 = Δ1} {Δ2 = Δ2} {x = x} ∈∪ with Δ1 x
... | Some x₁ = Inl ∈∪
... | None = Inr ∈∪
update : {A : Set} (Γ : A ctx) (x : Nat) (τ1 τ2 : A) → Γ ,, (x , τ1) ,, (x , τ2) == Γ ,, (x , τ2)
update Γ x τ1 τ2 = funext eq
where
eq : (y : Nat) → (Γ ,, (x , τ1) ,, (x , τ2)) y == (Γ ,, (x , τ2)) y
eq y with natEQ x y
... | Inl refl = refl
... | Inr x≠y with natEQ x y
... | Inl refl = abort (x≠y refl)
... | Inr x≠y' = refl
|
{
"alphanum_fraction": 0.5153398572,
"avg_line_length": 45.0119047619,
"ext": "agda",
"hexsha": "8d53ee4eb72d006fb1379ef5acce353fb2c30209",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-agda",
"max_forks_repo_path": "contexts.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-agda",
"max_issues_repo_path": "contexts.agda",
"max_line_length": 166,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-agda",
"max_stars_repo_path": "contexts.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6152,
"size": 15124
}
|
{-# OPTIONS --cubical --safe #-}
open import Algebra
module Algebra.Construct.OrderedMonoid {ℓ} (monoid : Monoid ℓ) where
open import Prelude
open import Relation.Binary
open import Path.Reasoning
open Monoid monoid
infix 4 _≤_ _≥_ _<_ _>_
_≤_ : 𝑆 → 𝑆 → Type ℓ
x ≤ y = ∃ z × (y ≡ x ∙ z)
_<_ : 𝑆 → 𝑆 → Type ℓ
x < y = ∃ z × (z ≢ ε) × (y ≡ x ∙ z)
_>_ = flip _<_
_≥_ = flip _≤_
≤-refl : Reflexive _≤_
≤-refl = ε , sym (∙ε _)
≤-trans : Transitive _≤_
≤-trans {x} {y} {z} (k₁ , y≡x∙k₁) (k₂ , z≡y∙k₂) = k₁ ∙ k₂ ,_ $
z ≡⟨ z≡y∙k₂ ⟩
y ∙ k₂ ≡⟨ cong (_∙ k₂) y≡x∙k₁ ⟩
(x ∙ k₁) ∙ k₂ ≡⟨ assoc x k₁ k₂ ⟩
x ∙ (k₁ ∙ k₂) ∎
ε≤x : ∀ x → ε ≤ x
ε≤x x = x , sym (ε∙ x)
∙-cong : ∀ x {y z} → y ≤ z → x ∙ y ≤ x ∙ z
∙-cong x (k , z≡y∙k) = k , cong (x ∙_) z≡y∙k ; sym (assoc x _ k)
-- Trichotomous : Type _
-- Trichotomous = (x y : 𝑆) → Tri _<_ _≡_ _>_ x y
|
{
"alphanum_fraction": 0.5153301887,
"avg_line_length": 20.6829268293,
"ext": "agda",
"hexsha": "086b3d2deaec1087a76e4e52a6f1461ea7886468",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Algebra/Construct/OrderedMonoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Algebra/Construct/OrderedMonoid.agda",
"max_line_length": 68,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Algebra/Construct/OrderedMonoid.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 470,
"size": 848
}
|
{-# OPTIONS --without-K #-}
open import lib.Basics
module lib.types.Empty where
⊥ = Empty
⊥-elim : ∀ {i} {A : ⊥ → Type i} → ((x : ⊥) → A x)
⊥-elim = Empty-elim
Empty-rec : ∀ {i} {A : Type i} → (Empty → A)
Empty-rec = Empty-elim
⊥-rec : ∀ {i} {A : Type i} → (⊥ → A)
⊥-rec = Empty-rec
Empty-is-prop : is-prop Empty
Empty-is-prop = Empty-elim
⊥-is-prop : is-prop ⊥
⊥-is-prop = Empty-is-prop
|
{
"alphanum_fraction": 0.5580808081,
"avg_line_length": 17.2173913043,
"ext": "agda",
"hexsha": "3f8f1534b1b0059942b4105c5fe509afad3c1903",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "sattlerc/HoTT-Agda",
"max_forks_repo_path": "lib/types/Empty.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "sattlerc/HoTT-Agda",
"max_issues_repo_path": "lib/types/Empty.agda",
"max_line_length": 49,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "sattlerc/HoTT-Agda",
"max_stars_repo_path": "lib/types/Empty.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 162,
"size": 396
}
|
module UnequalSorts where
data One : Set where one : One
data One' : Set1 where one' : One'
err : One
err = one'
|
{
"alphanum_fraction": 0.6554621849,
"avg_line_length": 11.9,
"ext": "agda",
"hexsha": "310dff09c69121a8929557ecdbb3d472c1e5fa27",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/UnequalSorts.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/UnequalSorts.agda",
"max_line_length": 34,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/UnequalSorts.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 39,
"size": 119
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
open import Categories.Functor.Bifunctor
module Categories.Diagram.Wedge {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′}
(F : Bifunctor (Category.op C) C D) where
private
module C = Category C
module D = Category D
open D
open HomReasoning
variable
A : Obj
open import Level
open import Categories.Functor hiding (id)
open import Categories.Functor.Construction.Constant
open import Categories.NaturalTransformation.Dinatural
open Functor F
record Wedge : Set (levelOfTerm F) where
field
E : Obj
dinatural : DinaturalTransformation (const E) F
module dinatural = DinaturalTransformation dinatural
Wedge-∘ : (W : Wedge) → A ⇒ Wedge.E W → Wedge
Wedge-∘ {A = A} W f = record
{ E = A
; dinatural = extranaturalʳ (λ X → dinatural.α X ∘ f)
(sym-assoc ○ ∘-resp-≈ˡ (extranatural-commʳ dinatural) ○ assoc)
}
where open Wedge W
record Wedge-Morphism (W₁ W₂ : Wedge) : Set (levelOfTerm F) where
private
module W₁ = Wedge W₁
module W₂ = Wedge W₂
open DinaturalTransformation
field
u : W₁.E ⇒ W₂.E
commute : ∀ {C} → W₂.dinatural.α C ∘ u ≈ W₁.dinatural.α C
Wedge-id : ∀ {W} → Wedge-Morphism W W
Wedge-id {W} = record { u = D.id ; commute = D.identityʳ }
Wedge-Morphism-∘ : {A B C : Wedge} → Wedge-Morphism B C → Wedge-Morphism A B → Wedge-Morphism A C
Wedge-Morphism-∘ M N = record { u = u M ∘ u N ; commute = sym-assoc ○ (∘-resp-≈ˡ (commute M) ○ commute N) }
where
open Wedge-Morphism
open HomReasoning
|
{
"alphanum_fraction": 0.6547619048,
"avg_line_length": 28,
"ext": "agda",
"hexsha": "d28a452b7fcd39d84fa0b603f140c27dce27abb7",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Diagram/Wedge.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Diagram/Wedge.agda",
"max_line_length": 108,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Diagram/Wedge.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 545,
"size": 1596
}
|
-- Andreas, 2016-10-11, AIM XXIV, issue #2248
-- COMPILED_TYPE should only work on postulates
data Unit : Set where
unit : Unit
postulate
IO : Set → Set
{-# BUILTIN IO IO #-}
{-# COMPILE GHC IO = type IO #-}
abstract
IO' : Set → Set
IO' A = A
doNothing : IO' Unit
doNothing = unit
{-# COMPILE GHC IO' = type IO #-}
postulate
toIO : {A : Set} → IO' A → IO A
{-# COMPILE GHC toIO = \ _ x -> x #-}
main : IO Unit
main = toIO doNothing
|
{
"alphanum_fraction": 0.6,
"avg_line_length": 15.6896551724,
"ext": "agda",
"hexsha": "ecbdc6366e70c1bd009387178b10a61c046f1075",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "802a28aa8374f15fe9d011ceb80317fdb1ec0949",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Blaisorblade/Agda",
"max_forks_repo_path": "test/Fail/Issue2248_COMPILED_TYPE.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "802a28aa8374f15fe9d011ceb80317fdb1ec0949",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "Blaisorblade/Agda",
"max_issues_repo_path": "test/Fail/Issue2248_COMPILED_TYPE.agda",
"max_line_length": 47,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "802a28aa8374f15fe9d011ceb80317fdb1ec0949",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "Blaisorblade/Agda",
"max_stars_repo_path": "test/Fail/Issue2248_COMPILED_TYPE.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 154,
"size": 455
}
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Numbers.Naturals.Naturals
open import Numbers.Naturals.EuclideanAlgorithm
open import Semirings.Definition
open import Orders.Total.Definition
module Numbers.Modulo.ModuloFunction where
open TotalOrder ℕTotalOrder
private
notBigger : (a : ℕ) {n : ℕ} → succ a +N n ≡ a → False
notBigger (succ a) {n} pr = notBigger a {n} (succInjective pr)
notBigger' : (a : ℕ) {n : ℕ} → succ a +N n ≡ n → False
notBigger' (succ a) {succ n} pr rewrite Semiring.commutative ℕSemiring a (succ n) | Semiring.commutative ℕSemiring n a = notBigger' _ (succInjective pr)
mod : (n : ℕ) → .(pr : 0 <N n) → (a : ℕ) → ℕ
mod (succ n) 0<n a = divisionAlgResult.rem (divisionAlg (succ n) a)
abstract
modIsMod : {n : ℕ} → .(pr : 0 <N n) → (a : ℕ) → a <N n → mod n pr a ≡ a
modIsMod {succ n} 0<n a a<n with divisionAlg (succ n) a
modIsMod {succ n} 0<n a a<n | record { quot = zero ; rem = rem ; pr = pr ; remIsSmall = remIsSmall ; quotSmall = quotSmall } rewrite multiplicationNIsCommutative n 0 = pr
modIsMod {succ n} 0<n a (le x proof) | record { quot = succ quot ; rem = rem ; pr = pr ; remIsSmall = inl rem<sn ; quotSmall = quotSmall } = exFalso (notBigger a v)
where
t : ((succ (a +N x)) *N succ quot) +N rem ≡ a
t rewrite Semiring.commutative ℕSemiring a x = transitivity (applyEquality (λ i → (i *N succ quot) +N rem) proof) pr
u : (succ quot *N succ (a +N x)) +N rem ≡ a
u = transitivity (applyEquality (_+N rem) (multiplicationNIsCommutative (succ quot) _)) t
v : succ a +N ((x +N quot *N succ (a +N x)) +N rem) ≡ a
v = transitivity (applyEquality succ (transitivity (Semiring.+Associative ℕSemiring a _ rem) (applyEquality (_+N rem) (Semiring.+Associative ℕSemiring a x _)))) u
mod<N : {n : ℕ} → .(pr : 0 <N n) → (a : ℕ) → (mod n pr a) <N n
mod<N {succ n} pr a with divisionAlg (succ n) a
mod<N {succ n} 0<n a | record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = inl x ; quotSmall = quotSmall } = x
modIdempotent : {n : ℕ} → .(pr : 0 <N n) → (a : ℕ) → mod n pr (mod n pr a) ≡ mod n pr a
modIdempotent 0<n a = modIsMod 0<n (mod _ 0<n a) (mod<N 0<n a)
modAnd+n : {n : ℕ} → .(pr : 0 <N n) → (a : ℕ) → mod n pr (n +N a) ≡ mod n pr a
modAnd+n {succ n} 0<sn a with divisionAlg (succ n) (succ n +N a)
modAnd+n {succ n} 0<sn a | record { quot = 0 ; rem = rem ; pr = pr ; remIsSmall = inl remIsSmall ; quotSmall = inl q } rewrite multiplicationNIsCommutative n 0 | pr = exFalso (notBigger (succ n) (transitivity (applyEquality succ (transitivity (applyEquality succ (Semiring.+Associative ℕSemiring n a _)) (Semiring.commutative ℕSemiring (succ (n +N a)) _))) (_<N_.proof remIsSmall)))
modAnd+n {succ n} 0<sn a | record { quot = succ quot ; rem = rem ; pr = pr ; remIsSmall = inl remIsSmall ; quotSmall = inl q } = modIsUnique (record { quot = quot ; rem = rem ; pr = t ; remIsSmall = inl remIsSmall ; quotSmall = inl q }) (divisionAlg (succ n) a)
where
g : succ n +N ((quot *N succ n) +N rem) ≡ succ n +N a
g = transitivity (Semiring.+Associative ℕSemiring (succ n) _ rem) (transitivity (applyEquality (_+N rem) (multiplicationNIsCommutative (succ quot) _)) pr)
h : (quot *N succ n) +N rem ≡ a
h = canSubtractFromEqualityLeft g
t : (succ n *N quot) +N rem ≡ a
t = transitivity (applyEquality (_+N rem) (multiplicationNIsCommutative (succ n) quot)) h
modExtracts : {n : ℕ} → .(pr : 0 <N n) → (a b : ℕ) → mod n pr (a +N b) ≡ mod n pr (mod n pr a +N mod n pr b)
modExtracts {succ n} 0<sn a b with divisionAlg (succ n) a
modExtracts {succ n} 0<sn a b | record { quot = sn/a ; rem = sn%a ; pr = prA ; remIsSmall = remIsSmallA ; quotSmall = quotSmallA } with divisionAlg (succ n) b
modExtracts {succ n} 0<sn a b | record { quot = sn/a ; rem = sn%a ; pr = prA ; remIsSmall = remIsSmallA ; quotSmall = quotSmallA } | record { quot = sn/b ; rem = sn%b ; pr = prB ; remIsSmall = remIsSmallB ; quotSmall = quotSmallB } with divisionAlg (succ n) (a +N b)
modExtracts {succ n} 0<sn a b | record { quot = sn/a ; rem = sn%a ; pr = prA ; remIsSmall = remIsSmallA ; quotSmall = quotSmallA } | record { quot = sn/b ; rem = sn%b ; pr = prB ; remIsSmall = remIsSmallB ; quotSmall = quotSmallB } | record { quot = sn/a+b ; rem = sn%a+b ; pr = prA+B ; remIsSmall = remIsSmallA+B ; quotSmall = quotSmallA+B } with divisionAlg (succ n) (sn%a +N sn%b)
modExtracts {succ n} 0<sn a b | record { quot = sn/a ; rem = sn%a ; pr = prA ; remIsSmall = inl sn%a<sn ; quotSmall = inl _ } | record { quot = sn/b ; rem = sn%b ; pr = prB ; remIsSmall = inl sn%b<sn ; quotSmall = inl _ } | record { quot = sn/a+b ; rem = sn%a+b ; pr = prA+B ; remIsSmall = inl sn%a+b<sn ; quotSmall = inl _ } | record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = inl remIsSmall ; quotSmall = inl _ } = equalityCommutative whoa
where
t : ((succ n *N sn/a) +N sn%a) +N ((succ n *N sn/b) +N sn%b) ≡ a +N b
t = +NWellDefined prA prB
t' : (succ n *N (sn/a +N sn/b)) +N (sn%a +N sn%b) ≡ a +N b
t' = transitivity (transitivity (Semiring.+Associative ℕSemiring (succ n *N (sn/a +N sn/b)) sn%a sn%b) (transitivity (applyEquality (_+N sn%b) (transitivity (transitivity (applyEquality (_+N sn%a) (transitivity (applyEquality (succ n *N_) (Semiring.commutative ℕSemiring sn/a sn/b)) (Semiring.+DistributesOver* ℕSemiring (succ n) sn/b sn/a))) (equalityCommutative (Semiring.+Associative ℕSemiring (succ n *N sn/b) (succ n *N sn/a) sn%a))) (Semiring.commutative ℕSemiring (succ n *N sn/b) ((succ n *N sn/a) +N sn%a)))) (equalityCommutative (Semiring.+Associative ℕSemiring ((succ n *N sn/a) +N sn%a) (succ n *N sn/b) sn%b)))) t
thing : ((succ n) *N quot) +N rem ≡ sn%a +N sn%b
thing = pr
t'' : (succ n *N ((sn/a +N sn/b) +N quot)) +N rem ≡ a +N b
t'' rewrite Semiring.+DistributesOver* ℕSemiring (succ n) (sn/a +N sn/b) quot | equalityCommutative (Semiring.+Associative ℕSemiring (succ n *N (sn/a +N sn/b)) (succ n *N quot) rem) | thing = t'
whoa : rem ≡ sn%a+b
whoa = modUniqueLemma _ _ remIsSmall sn%a+b<sn (transitivity t'' (equalityCommutative prA+B))
modAddition : {n : ℕ} → .(pr : 0 <N n) → {a b : ℕ} → (a <N n) → (b <N n) → (a +N b ≡ mod n pr (a +N b)) || (a +N b ≡ n +N mod n pr (a +N b))
modAddition {succ n} 0<sn {a} {b} a<n b<n with divisionAlg (succ n) (a +N b)
modAddition {succ n} 0<sn {a} {b} a<n b<n | record { quot = zero ; rem = rem ; pr = pr ; remIsSmall = inl rem<sn ; quotSmall = inl _ } = inl (equalityCommutative (transitivity (applyEquality (_+N rem) (multiplicationNIsCommutative 0 n)) pr))
modAddition {succ n} 0<sn {a} {b} a<n b<n | record { quot = succ zero ; rem = rem ; pr = pr ; remIsSmall = inl rem<sn ; quotSmall = inl _ } = inr (transitivity (equalityCommutative pr) (applyEquality (λ i → succ i +N rem) (transitivity (multiplicationNIsCommutative n 1) (Semiring.sumZeroRight ℕSemiring n))))
modAddition {succ n} 0<sn {a} {b} (le x prA) (le y prB) | record { quot = succ (succ quot) ; rem = 0 ; pr = pr ; remIsSmall = inl rem<sn ; quotSmall = inl _ } rewrite Semiring.sumZeroRight ℕSemiring (succ n *N succ (succ quot)) | multiplicationNIsCommutative (succ n) (succ (succ quot)) = exFalso (notBigger' ((x +N succ y) +N (quot *N succ n)) u)
where
t : ((succ x +N a) +N succ (y +N b)) +N (quot *N succ n) ≡ a +N b
t = transitivity (transitivity (applyEquality (_+N quot *N succ n) (+NWellDefined prA prB)) (equalityCommutative (Semiring.+Associative ℕSemiring (succ n) (succ n) (quot *N succ n)))) pr
u : ((succ x +N succ y) +N (quot *N succ n)) +N (a +N b) ≡ a +N b
u rewrite Semiring.commutative ℕSemiring ((x +N succ y) +N quot *N succ n) (a +N b) | Semiring.+Associative ℕSemiring (succ a +N b) (x +N succ y) (quot *N succ n) = transitivity (applyEquality (λ i → succ i +N quot *N succ n) (transitivity (Semiring.commutative ℕSemiring (a +N b) _) (transitivity (equalityCommutative (Semiring.+Associative ℕSemiring x (succ y) _)) (transitivity (applyEquality (x +N_) (transitivity (Semiring.+Associative ℕSemiring (succ y) a b) (transitivity (applyEquality (_+N b) (Semiring.commutative ℕSemiring _ a)) (equalityCommutative (Semiring.+Associative ℕSemiring a (succ y) b))))) (Semiring.+Associative ℕSemiring x a _))))) t
modAddition {succ n} 0<sn {a} {b} a<n b<n | record { quot = succ (succ quot) ; rem = succ rem ; pr = pr ; remIsSmall = inl rem<sn ; quotSmall = inl _ } = exFalso (irreflexive (<Transitive u t))
where
t : (succ n *N succ (succ quot) +N succ rem) <N succ n +N succ n
t = identityOfIndiscernablesLeft _<N_ (addStrongInequalities a<n b<n) (equalityCommutative pr)
lemm : {a c d : ℕ} → (a +N a) <N (a *N succ (succ c)) +N succ d
lemm {a} {c} {d} = le (a *N c +N d) f
where
f : succ ((a *N c +N d) +N (a +N a)) ≡ a *N succ (succ c) +N succ d
f rewrite multiplicationNIsCommutative a (succ (succ c)) | Semiring.+Associative ℕSemiring a a (c *N a) | multiplicationNIsCommutative c a | Semiring.commutative ℕSemiring (a *N c +N d) (a +N a) | Semiring.+Associative ℕSemiring (a +N a) (a *N c) d | Semiring.commutative ℕSemiring ((a +N a) +N a *N c) (succ d) = applyEquality succ (Semiring.commutative ℕSemiring _ d)
u : (succ n +N succ n) <N (succ n *N succ (succ quot) +N succ rem)
u = lemm {succ n}
modN : {n : ℕ} → .(0<n : 0 <N n) → mod n 0<n n ≡ 0
modN {succ n} 0<n = modIsUnique (divisionAlg (succ n) (succ n)) record { quot = 1 ; rem = zero ; pr = ans ; remIsSmall = inl (le n (Semiring.sumZeroRight ℕSemiring (succ n))) ; quotSmall = inl (le n (Semiring.sumZeroRight ℕSemiring (succ n))) }
where
ans : succ (n *N 1 +N 0) ≡ succ n
ans rewrite multiplicationNIsCommutative n 1 | Semiring.sumZeroRight ℕSemiring n | Semiring.sumZeroRight ℕSemiring n = refl
|
{
"alphanum_fraction": 0.6344292053,
"avg_line_length": 97.2156862745,
"ext": "agda",
"hexsha": "85c817de037e614bf1448c8e893794c5287066c0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Numbers/Modulo/ModuloFunction.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Numbers/Modulo/ModuloFunction.agda",
"max_line_length": 663,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Numbers/Modulo/ModuloFunction.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 3655,
"size": 9916
}
|
-- 2011-09-15 by Nisse
-- {-# OPTIONS -v tc.lhs.unify:15 #-}
module Issue292-17 where
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
record Σ (A : Set) (B : A → Set) : Set where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
open Σ
postulate
I : Set
U : I → Set
El : ∀ {i} → U i → Set
mutual
infixl 5 _▻_
data Ctxt : Set where
_▻_ : (Γ : Ctxt) (σ : Type Γ) → Ctxt
Type : Ctxt → Set
Type Γ = Σ I (λ i → Env Γ → U i)
Env : Ctxt → Set
Env (Γ ▻ σ) = Σ (Env Γ) λ γ → El (proj₂ σ γ)
postulate
Γ : Ctxt
σ : Type Γ
data D : Type (Γ ▻ σ) → Set where
d : (τ : Type Γ) → D (proj₁ τ , λ γ → proj₂ τ (proj₁ γ))
record [D] : Set where
constructor [d]
field
τ : Type (Γ ▻ σ)
x : D τ
Foo : {τ₁ τ₂ : Type Γ} →
[d] (proj₁ τ₁ , λ γ → proj₂ τ₁ (proj₁ γ)) (d τ₁) ≡
[d] (proj₁ τ₂ , λ γ → proj₂ τ₂ (proj₁ γ)) (d τ₂) →
Set₁
Foo refl = Set
|
{
"alphanum_fraction": 0.5098684211,
"avg_line_length": 17.5384615385,
"ext": "agda",
"hexsha": "39c2a0f1de8bc4c184a47475c0076a4870c4ad89",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue292-17.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue292-17.agda",
"max_line_length": 58,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue292-17.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 409,
"size": 912
}
|
{-# OPTIONS --safe --cubical #-}
module Prelude where
open import Level public
open import Data.Sigma public
open import Function.Fiber public
open import Data.Empty public
open import Data.Unit public
open import Data.Nat public
using (ℕ; suc; zero)
open import Data.Bool public
using (Bool; true; false; bool; if_then_else_; T; _and_; _or_; not)
open import Data.Maybe public
using (Maybe; just; nothing)
open import HITs.PropositionalTruncation public
using (∥_∥; ∣_∣)
open import Function.Surjective public
using (Surjective; SplitSurjective; _↠!_; _↠_)
open import Data.Pi public
open import Function.Isomorphism public
open import Path public
open import Function public
open import Relation.Nullary.Decidable public
open import Relation.Nullary.Discrete public using (Discrete)
open import Relation.Nullary.Discrete.Properties public using (Discrete→isSet)
open import HLevels public
open import Data.Sum public
open import Equiv public
open import Data.Lift public
open import Function.Biconditional public
open import Relation.Unary public
open import Strict public
open import Instance public
|
{
"alphanum_fraction": 0.802690583,
"avg_line_length": 31.8571428571,
"ext": "agda",
"hexsha": "a9bd7aaf182d1eedd90a06d7854d83d7a6dd35f1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Prelude.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Prelude.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Prelude.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 275,
"size": 1115
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Various forms of induction for natural numbers
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Nat.Induction where
open import Function
open import Data.Nat.Base
open import Data.Nat.Properties using (≤⇒≤′)
open import Data.Product
open import Data.Unit
open import Induction
open import Induction.WellFounded as WF
open import Level using (Lift)
open import Relation.Binary.PropositionalEquality
open import Relation.Unary
------------------------------------------------------------------------
-- Re-export accessability
open WF public using (Acc; acc)
------------------------------------------------------------------------
-- Ordinary induction
Rec : ∀ ℓ → RecStruct ℕ ℓ ℓ
Rec ℓ P zero = Lift ℓ ⊤
Rec ℓ P (suc n) = P n
recBuilder : ∀ {ℓ} → RecursorBuilder (Rec ℓ)
recBuilder P f zero = _
recBuilder P f (suc n) = f n (recBuilder P f n)
rec : ∀ {ℓ} → Recursor (Rec ℓ)
rec = build recBuilder
------------------------------------------------------------------------
-- Complete induction
CRec : ∀ ℓ → RecStruct ℕ ℓ ℓ
CRec ℓ P zero = Lift ℓ ⊤
CRec ℓ P (suc n) = P n × CRec ℓ P n
cRecBuilder : ∀ {ℓ} → RecursorBuilder (CRec ℓ)
cRecBuilder P f zero = _
cRecBuilder P f (suc n) = f n ih , ih
where ih = cRecBuilder P f n
cRec : ∀ {ℓ} → Recursor (CRec ℓ)
cRec = build cRecBuilder
------------------------------------------------------------------------
-- Complete induction based on _<′_
<′-Rec : ∀ {ℓ} → RecStruct ℕ ℓ ℓ
<′-Rec = WfRec _<′_
mutual
<′-wellFounded : WellFounded _<′_
<′-wellFounded n = acc (<′-wellFounded′ n)
<′-wellFounded′ : ∀ n → <′-Rec (Acc _<′_) n
<′-wellFounded′ (suc n) .n ≤′-refl = <′-wellFounded n
<′-wellFounded′ (suc n) m (≤′-step m<n) = <′-wellFounded′ n m m<n
module _ {ℓ} where
open WF.All <′-wellFounded ℓ public
renaming ( wfRecBuilder to <′-recBuilder
; wfRec to <′-rec
)
hiding (wfRec-builder)
------------------------------------------------------------------------
-- Complete induction based on _<_
<-Rec : ∀ {ℓ} → RecStruct ℕ ℓ ℓ
<-Rec = WfRec _<_
<-wellFounded : WellFounded _<_
<-wellFounded = Subrelation.wellFounded ≤⇒≤′ <′-wellFounded
module _ {ℓ} where
open WF.All <-wellFounded ℓ public
renaming ( wfRecBuilder to <-recBuilder
; wfRec to <-rec
)
hiding (wfRec-builder)
------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 0.15
rec-builder = recBuilder
{-# WARNING_ON_USAGE rec-builder
"Warning: rec-builder was deprecated in v0.15.
Please use recBuilder instead."
#-}
cRec-builder = cRecBuilder
{-# WARNING_ON_USAGE cRec-builder
"Warning: cRec-builder was deprecated in v0.15.
Please use cRecBuilder instead."
#-}
<′-rec-builder = <′-recBuilder
{-# WARNING_ON_USAGE <′-rec-builder
"Warning: <′-rec-builder was deprecated in v0.15.
Please use <′-recBuilder instead."
#-}
<-rec-builder = <-recBuilder
{-# WARNING_ON_USAGE <-rec-builder
"Warning: <-rec-builder was deprecated in v0.15.
Please use <-recBuilder instead."
#-}
<′-well-founded = <′-wellFounded
{-# WARNING_ON_USAGE <′-well-founded
"Warning: <′-well-founded was deprecated in v0.15.
Please use <′-wellFounded instead."
#-}
<′-well-founded′ = <′-wellFounded′
{-# WARNING_ON_USAGE <′-well-founded′
"Warning: <′-well-founded′ was deprecated in v0.15.
Please use <′-wellFounded′ instead."
#-}
<-well-founded = <-wellFounded
{-# WARNING_ON_USAGE <-well-founded
"Warning: <-well-founded was deprecated in v0.15.
Please use <-wellFounded instead."
#-}
|
{
"alphanum_fraction": 0.5547015117,
"avg_line_length": 28.2826086957,
"ext": "agda",
"hexsha": "e597ae9ca9a5235fc70a2bb98f9e86cbfa887636",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Nat/Induction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Nat/Induction.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Nat/Induction.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1060,
"size": 3903
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
import Categories.Category.Monoidal as M
-- Properties of Monoidal Categories
module Categories.Category.Monoidal.Properties
{o ℓ e} {C : Category o ℓ e} (MC : M.Monoidal C) where
open import Data.Product using (_,_; Σ; uncurry′)
open Category C
open M.Monoidal MC
open import Categories.Category.Monoidal.Utilities MC
import Categories.Category.Monoidal.Reasoning as MonR
open import Categories.Category.Construction.Core C
open import Categories.Category.Product using (Product)
open import Categories.Functor using (Functor)
open import Categories.Functor.Bifunctor
open import Categories.Functor.Properties
open import Categories.Category.Groupoid using (IsGroupoid)
open import Categories.Morphism C
open import Categories.Morphism.IsoEquiv C using (_≃_; ⌞_⌟)
open import Categories.Morphism.Isomorphism C
import Categories.Morphism.Reasoning as MR
open import Categories.NaturalTransformation.NaturalIsomorphism.Properties
using (push-eq)
private
module C = Category C
variable
A B : Obj
⊗-iso : Bifunctor Core Core Core
⊗-iso = record
{ F₀ = uncurry′ _⊗₀_
; F₁ = λ where (f , g) → f ⊗ᵢ g
; identity = refl⊗refl≃refl
; homomorphism = ⌞ homomorphism ⌟
; F-resp-≈ = λ where (⌞ eq₁ ⌟ , ⌞ eq₂ ⌟) → ⌞ F-resp-≈ (eq₁ , eq₂) ⌟
}
where open Functor ⊗
open _≃_
_⊗ᵢ- : Obj → Functor Core Core
X ⊗ᵢ- = appˡ ⊗-iso X
-⊗ᵢ_ : Obj → Functor Core Core
-⊗ᵢ X = appʳ ⊗-iso X
-- Coherence laws due to Mac Lane (1963) the were subsequently proven
-- admissible by Max Kelly (1964). See
-- https://ncatlab.org/nlab/show/monoidal+category#other_coherence_conditions
-- for more details.
module Kelly's where
open Functor
open IsGroupoid.Commutation Core-isGroupoid
private
assoc′ = IsGroupoid.assoc Core-isGroupoid
variable
f f′ g h h′ i i′ j k : A ≅ B
module _ {X Y : Obj} where
open IsGroupoid.HomReasoning Core-isGroupoid
-- TS: following three isos commute
ua : unit ⊗₀ (unit ⊗₀ X) ⊗₀ Y ≅ unit ⊗₀ unit ⊗₀ X ⊗₀ Y
ua = ≅.refl ⊗ᵢ associator
u[λY] : unit ⊗₀ (unit ⊗₀ X) ⊗₀ Y ≅ unit ⊗₀ X ⊗₀ Y
u[λY] = ≅.refl ⊗ᵢ unitorˡ ⊗ᵢ ≅.refl
uλ : unit ⊗₀ unit ⊗₀ X ⊗₀ Y ≅ unit ⊗₀ X ⊗₀ Y
uλ = ≅.refl ⊗ᵢ unitorˡ
-- setups
perimeter : [ ((unit ⊗₀ unit) ⊗₀ X) ⊗₀ Y ⇒ unit ⊗₀ X ⊗₀ Y ]⟨
(unitorʳ ⊗ᵢ ≅.refl) ⊗ᵢ ≅.refl ⇒⟨ (unit ⊗₀ X) ⊗₀ Y ⟩
associator
≈ associator ⇒⟨ (unit ⊗₀ unit) ⊗₀ X ⊗₀ Y ⟩
associator ⇒⟨ unit ⊗₀ unit ⊗₀ X ⊗₀ Y ⟩
uλ
⟩
perimeter = ⟺ (glue◃◽′ triangle-iso
(sym (lift-square′ (Equiv.trans assoc-commute-from
(∘-resp-≈ˡ (F-resp-≈ ⊗ (Equiv.refl , identity ⊗)))))))
where open MR Core
[uλ]Y : (unit ⊗₀ (unit ⊗₀ X)) ⊗₀ Y ≅ (unit ⊗₀ X) ⊗₀ Y
[uλ]Y = (≅.refl ⊗ᵢ unitorˡ) ⊗ᵢ ≅.refl
aY : ((unit ⊗₀ unit) ⊗₀ X) ⊗₀ Y ≅ (unit ⊗₀ unit ⊗₀ X) ⊗₀ Y
aY = associator ⊗ᵢ ≅.refl
[ρX]Y : ((unit ⊗₀ unit) ⊗₀ X) ⊗₀ Y ≅ (unit ⊗₀ X) ⊗₀ Y
[ρX]Y = (unitorʳ ⊗ᵢ ≅.refl) ⊗ᵢ ≅.refl
tri : [uλ]Y ∘ᵢ aY ≃ [ρX]Y
tri = lift-triangle′ ([ appʳ ⊗ Y ]-resp-∘ triangle)
sq : associator ∘ᵢ [uλ]Y ≃ u[λY] ∘ᵢ associator
sq = lift-square′ assoc-commute-from
-- proofs
perimeter′ : [ ((unit ⊗₀ unit) ⊗₀ X) ⊗₀ Y ⇒ unit ⊗₀ X ⊗₀ Y ]⟨
(unitorʳ ⊗ᵢ ≅.refl) ⊗ᵢ ≅.refl ⇒⟨ (unit ⊗₀ X) ⊗₀ Y ⟩
associator
≈ aY ⇒⟨ (unit ⊗₀ (unit ⊗₀ X)) ⊗₀ Y ⟩
associator ⇒⟨ unit ⊗₀ (unit ⊗₀ X) ⊗₀ Y ⟩
ua ⇒⟨ unit ⊗₀ unit ⊗₀ X ⊗₀ Y ⟩
uλ
⟩
perimeter′ = begin
associator ∘ᵢ (unitorʳ ⊗ᵢ ≅.refl) ⊗ᵢ ≅.refl ≈⟨ perimeter ⟩
uλ ∘ᵢ associator ∘ᵢ associator ≈˘⟨ refl⟩∘⟨ pentagon-iso ⟩
uλ ∘ᵢ ua ∘ᵢ associator ∘ᵢ aY ∎
top-face : uλ ∘ᵢ ua ≃ u[λY]
top-face = elim-triangleˡ′ (sym perimeter′) (glue◽◃ (sym sq) tri)
where open MR Core
coherence-iso₁ : [ (unit ⊗₀ X) ⊗₀ Y ⇒ X ⊗₀ Y ]⟨
associator ⇒⟨ unit ⊗₀ X ⊗₀ Y ⟩
unitorˡ
≈ unitorˡ ⊗ᵢ ≅.refl
⟩
coherence-iso₁ = triangle-prism top-face square₁ square₂ square₃
where square₁ : [ unit ⊗₀ X ⊗₀ Y ⇒ unit ⊗₀ X ⊗₀ Y ]⟨
≅.sym unitorˡ ∘ᵢ unitorˡ
≈ ≅.refl ⊗ᵢ unitorˡ ∘ᵢ ≅.sym unitorˡ
⟩
square₁ = lift-square′ unitorˡ-commute-to
square₂ : [ (unit ⊗₀ X) ⊗₀ Y ⇒ unit ⊗₀ unit ⊗₀ X ⊗₀ Y ]⟨
≅.sym unitorˡ ∘ᵢ associator
≈ ≅.refl ⊗ᵢ associator ∘ᵢ ≅.sym unitorˡ
⟩
square₂ = lift-square′ unitorˡ-commute-to
square₃ : [ (unit ⊗₀ X) ⊗₀ Y ⇒ unit ⊗₀ X ⊗₀ Y ]⟨
≅.sym unitorˡ ∘ᵢ unitorˡ ⊗ᵢ ≅.refl
≈ ≅.refl ⊗ᵢ unitorˡ ⊗ᵢ ≅.refl ∘ᵢ ≅.sym unitorˡ
⟩
square₃ = lift-square′ unitorˡ-commute-to
coherence₁ : unitorˡ.from ∘ associator.from ≈ unitorˡ.from {X} ⊗₁ C.id {Y}
coherence₁ = project-triangle coherence-iso₁
-- another coherence property
-- TS : the following three commute
ρu : ((X ⊗₀ Y) ⊗₀ unit) ⊗₀ unit ≅ (X ⊗₀ Y) ⊗₀ unit
ρu = unitorʳ ⊗ᵢ ≅.refl
au : ((X ⊗₀ Y) ⊗₀ unit) ⊗₀ unit ≅ (X ⊗₀ Y ⊗₀ unit) ⊗₀ unit
au = associator ⊗ᵢ ≅.refl
[Xρ]u : (X ⊗₀ Y ⊗₀ unit) ⊗₀ unit ≅ (X ⊗₀ Y) ⊗₀ unit
[Xρ]u = (≅.refl ⊗ᵢ unitorʳ) ⊗ᵢ ≅.refl
perimeter″ : [ ((X ⊗₀ Y) ⊗₀ unit) ⊗₀ unit ⇒ X ⊗₀ Y ⊗₀ unit ]⟨
associator ⇒⟨ (X ⊗₀ Y) ⊗₀ unit ⊗₀ unit ⟩
associator ⇒⟨ X ⊗₀ Y ⊗₀ unit ⊗₀ unit ⟩
≅.refl ⊗ᵢ ≅.refl ⊗ᵢ unitorˡ
≈ ρu ⇒⟨ (X ⊗₀ Y) ⊗₀ unit ⟩
associator
⟩
perimeter″ = glue▹◽ triangle-iso (sym (lift-square′
(Equiv.trans (∘-resp-≈ʳ (F-resp-≈ ⊗ (Equiv.sym (identity ⊗) , Equiv.refl)))
assoc-commute-from)))
where open MR Core
perimeter‴ : [ ((X ⊗₀ Y) ⊗₀ unit) ⊗₀ unit ⇒ X ⊗₀ Y ⊗₀ unit ]⟨
associator ⊗ᵢ ≅.refl ⇒⟨ (X ⊗₀ (Y ⊗₀ unit)) ⊗₀ unit ⟩
(associator ⇒⟨ X ⊗₀ (Y ⊗₀ unit) ⊗₀ unit ⟩
≅.refl ⊗ᵢ associator ⇒⟨ X ⊗₀ Y ⊗₀ unit ⊗₀ unit ⟩
≅.refl ⊗ᵢ ≅.refl ⊗ᵢ unitorˡ)
≈ ρu ⇒⟨ (X ⊗₀ Y) ⊗₀ unit ⟩
associator
⟩
perimeter‴ = let α = associator in let λλ = unitorˡ in begin
(≅.refl ⊗ᵢ ≅.refl ⊗ᵢ λλ ∘ᵢ ≅.refl ⊗ᵢ α ∘ᵢ α) ∘ᵢ α ⊗ᵢ ≅.refl ≈⟨ assoc′ ⟩
≅.refl ⊗ᵢ ≅.refl ⊗ᵢ λλ ∘ᵢ (≅.refl ⊗ᵢ α ∘ᵢ α) ∘ᵢ α ⊗ᵢ ≅.refl ≈⟨ refl⟩∘⟨ assoc′ ⟩
≅.refl ⊗ᵢ ≅.refl ⊗ᵢ λλ ∘ᵢ ≅.refl ⊗ᵢ α ∘ᵢ α ∘ᵢ α ⊗ᵢ ≅.refl ≈⟨ refl⟩∘⟨ pentagon-iso ⟩
≅.refl ⊗ᵢ ≅.refl ⊗ᵢ λλ ∘ᵢ α ∘ᵢ α ≈⟨ perimeter″ ⟩
α ∘ᵢ ρu ∎
top-face′ : [Xρ]u ∘ᵢ au ≃ ρu
top-face′ = cut-squareʳ perimeter‴ (sym (glue◃◽′ tri′ (sym (lift-square′ assoc-commute-from))))
where open MR Core
tri′ : [ X ⊗₀ (Y ⊗₀ unit) ⊗₀ unit ⇒ X ⊗₀ Y ⊗₀ unit ]⟨
(≅.refl ⊗ᵢ ≅.refl ⊗ᵢ unitorˡ ∘ᵢ ≅.refl ⊗ᵢ associator)
≈ ≅.refl ⊗ᵢ unitorʳ ⊗ᵢ ≅.refl
⟩
tri′ = lift-triangle′ ([ X ⊗- ]-resp-∘ triangle)
coherence-iso₂ : [ (X ⊗₀ Y) ⊗₀ unit ⇒ X ⊗₀ Y ]⟨
≅.refl ⊗ᵢ unitorʳ ∘ᵢ associator
≈ unitorʳ
⟩
coherence-iso₂ = triangle-prism top-face′ square₁ square₂ (lift-square′ unitorʳ-commute-to)
where square₁ : [ X ⊗₀ Y ⊗₀ unit ⇒ (X ⊗₀ Y) ⊗₀ unit ]⟨
≅.sym unitorʳ ∘ᵢ ≅.refl ⊗ᵢ unitorʳ
≈ (≅.refl ⊗ᵢ unitorʳ) ⊗ᵢ ≅.refl ∘ᵢ ≅.sym unitorʳ
⟩
square₁ = lift-square′ unitorʳ-commute-to
square₂ : [ (X ⊗₀ Y) ⊗₀ unit ⇒ (X ⊗₀ Y ⊗₀ unit) ⊗₀ unit ]⟨
≅.sym unitorʳ ∘ᵢ associator
≈ associator ⊗ᵢ ≅.refl ∘ᵢ ≅.sym unitorʳ
⟩
square₂ = lift-square′ unitorʳ-commute-to
coherence₂ : C.id {X} ⊗₁ unitorʳ.from {Y} ∘ associator.from ≈ unitorʳ.from
coherence₂ = project-triangle coherence-iso₂
-- A third coherence condition (Lemma 2.3)
coherence₃ : unitorˡ.from {unit} ≈ unitorʳ.from
coherence₃ = push-eq unitorˡ-naturalIsomorphism (begin
C.id ⊗₁ unitorˡ.from
≈˘⟨ cancelʳ associator.isoʳ ⟩
(C.id ⊗₁ unitorˡ.from ∘ associator.from) ∘ associator.to
≈⟨ triangle ⟩∘⟨refl ⟩
unitorʳ.from ⊗₁ C.id ∘ associator.to
≈⟨ unitor-coherenceʳ ⟩∘⟨refl ⟩
unitorʳ.from ∘ associator.to
≈˘⟨ coherence₂ ⟩∘⟨refl ⟩
(C.id ⊗₁ unitorʳ.from ∘ associator.from) ∘ associator.to
≈⟨ cancelʳ associator.isoʳ ⟩
C.id ⊗₁ unitorʳ.from
∎)
where
open MR C hiding (push-eq)
open C.HomReasoning
coherence-iso₃ : [ unit ⊗₀ unit ⇒ unit ]⟨ unitorˡ ≈ unitorʳ ⟩
coherence-iso₃ = ⌞ coherence₃ ⌟
open Kelly's using (coherence₁; coherence-iso₁; coherence₂; coherence-iso₂) public
|
{
"alphanum_fraction": 0.4962523423,
"avg_line_length": 38.7338709677,
"ext": "agda",
"hexsha": "5dbd772d77df95623614db502e50e993228cb027",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Monoidal/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Monoidal/Properties.agda",
"max_line_length": 115,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Monoidal/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3890,
"size": 9606
}
|
module NoSuchBuiltinName where
postulate X : Set
{-# BUILTIN FOOBAR X #-}
|
{
"alphanum_fraction": 0.7142857143,
"avg_line_length": 11,
"ext": "agda",
"hexsha": "ca620217e738d7e9e74d3e77159d8b86f8ba3e50",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/NoSuchBuiltinName.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/NoSuchBuiltinName.agda",
"max_line_length": 30,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/NoSuchBuiltinName.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 21,
"size": 77
}
|
-- Andreas, 2020-06-24, issue #4775 reported by JakobBruenker
-- Non-record patterns in lets and lambdas lead to internal error
-- {-# OPTIONS -v tc.term.lambda:30 #-}
-- {-# OPTIONS -v tc.lhs:15 #-}
-- {-# OPTIONS -v tc.term.let.pattern:30 #-}
-- -- {-# OPTIONS -v tc.term.let.pattern:80 #-}
open import Agda.Builtin.Nat
open import Agda.Builtin.Sigma
data IsSuc : Nat → Set where
isSuc : ∀ y → IsSuc (suc y)
test : Σ Nat IsSuc → Set
test = λ (y1 , isSuc y2) → Nat
-- ERROR NOW:
-- Expected record pattern
-- when checking the let binding y1 , isSuc y2 = .patternInTele0
-- (Talks about desugaring; could still be improved.)
|
{
"alphanum_fraction": 0.667192429,
"avg_line_length": 27.5652173913,
"ext": "agda",
"hexsha": "81daabece9589ba94537f39ae19e808691a85489",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue4775.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue4775.agda",
"max_line_length": 65,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue4775.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 199,
"size": 634
}
|
-- This file defines the Euclidean Domain structure.
{-# OPTIONS --without-K --safe #-}
module EuclideanDomain where
-- We comply to the definition format in stdlib, i.e. define an
-- IsSomething predicate then define the bundle.
open import Relation.Binary using (Rel; Setoid; IsEquivalence)
module Structures
{a ℓ} {A : Set a} -- The underlying set
(_≈_ : Rel A ℓ) -- The underlying equality relation
where
open import Algebra.Structures _≈_
open import Algebra.Core
open import Algebra.Definitions _≈_
import Algebra.Consequences.Setoid as Consequences
open import Data.Product using (_,_; proj₁; proj₂)
open import Level using (_⊔_)
open import Data.Nat using (ℕ ; _<_)
open import Data.Product using (∃ ; _×_)
open import Relation.Nullary using (¬_)
-- We only require leftcancellative since we have required the
-- domain to be commutative. An Euclidean domain is a commutative
-- domain with a div, mod, and rank function satisfy euc-eq and
-- euc-rank.
record IsEuclideanDomain
(+ * : Op₂ A) (- : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ) where
field
isCommutativeRing : IsCommutativeRing + * - 0# 1#
*-alc : AlmostLeftCancellative 0# *
div : ∀ (n d : A) -> ¬ d ≈ 0# -> A
mod : ∀ (n d : A) -> ¬ d ≈ 0# -> A
rank : A → ℕ
euc-eq : ∀ (n d : A) -> (n0 : ¬ d ≈ 0#) ->
let r = mod n d n0 in let q = div n d n0 in
n ≈ + r (* q d)
euc-rank : ∀ (n d : A) -> (n0 : ¬ d ≈ 0#) ->
let r = mod n d n0 in let q = div n d n0 in
rank r < rank d
module Bundles where
open Structures
open import Algebra.Core
open import Algebra.Structures
open import Relation.Binary
open import Function.Base
import Relation.Nullary as N
open import Level
record EuclideanDomainBundle c ℓ : Set (suc (c ⊔ ℓ)) where
infix 8 -_
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
-_ : Op₁ Carrier
0# : Carrier
1# : Carrier
isEuclideanDomain : IsEuclideanDomain _≈_ _+_ _*_ -_ 0# 1#
open IsEuclideanDomain isEuclideanDomain public
|
{
"alphanum_fraction": 0.5606247431,
"avg_line_length": 33.3287671233,
"ext": "agda",
"hexsha": "7c8fc7167b9f7de8de6de4fd41a4580244548b5f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "onestruggler/EucDomain",
"max_forks_repo_path": "EuclideanDomain.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "onestruggler/EucDomain",
"max_issues_repo_path": "EuclideanDomain.agda",
"max_line_length": 70,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "onestruggler/EucDomain",
"max_stars_repo_path": "EuclideanDomain.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 716,
"size": 2433
}
|
------------------------------------------------------------------------
-- Some results related to an LTS from Section 6.2.5 of "Enhancements
-- of the bisimulation proof method" by Pous and Sangiorgi,
-- implemented using the coinductive definition of bisimilarity
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
open import Prelude
module Bisimilarity.6-2-5 {Name : Type} where
open import Equality.Propositional
open import Logical-equivalence using (_⇔_)
open import Prelude.Size
open import Function-universe equality-with-J hiding (id; _∘_)
import Bisimilarity.Equational-reasoning-instances
open import Equational-reasoning
open import Indexed-container using (⟦_⟧)
open import Labelled-transition-system.6-2-5 Name
open import Relation
open import Bisimilarity 6-2-5
open import Bisimilarity.Up-to 6-2-5
-- Some simple lemmas. The first two are stated by Pous and Sangiorgi,
-- and the third one is a generalisation of a result stated by Pous
-- and Sangiorgi.
op·∅ : ∀ {a} → op (a · ∅) ∼ ∅
op·∅ {a} = ⟨ lr , (λ ()) ⟩
where
lr : ∀ {P′ μ} →
op (a · ∅) [ μ ]⟶ P′ →
∃ λ Q′ → ∅ [ μ ]⟶ Q′ × P′ ∼′ Q′
lr (op action ())
op··∅ : ∀ {a} → op (a · a · ∅) ∼ a · ∅
op··∅ {a} = ⟨ lr , rl ⟩
where
lr : ∀ {P′ μ b} →
op (a · b · ∅) [ μ ]⟶ P′ →
∃ λ Q′ → b · ∅ [ μ ]⟶ Q′ × P′ ∼′ Q′
lr (op action action) = _ , action , reflexive
rl : ∀ {Q′ μ} →
a · ∅ [ μ ]⟶ Q′ →
∃ λ P′ → op (a · a · ∅) [ μ ]⟶ P′ × P′ ∼′ Q′
rl action = _ , op action action , reflexive
a≁b·c : ∀ {a b c} → ¬ (a · ∅ ∼ b · c · ∅)
a≁b·c a∼b·c with right-to-left a∼b·c action
... | .∅ , action , ∅∼a with right-to-left (force ∅∼a) action
... | _ , () , _
-- Pous and Sangiorgi note that every context preserves bisimilarity.
-- One can prove that a ·_ preserves bisimilarity in a size-preserving
-- way.
·-cong : ∀ {i a P Q} → [ i ] P ∼ Q → [ i ] a · P ∼ a · Q
·-cong {i} {a} P∼Q =
⟨ lr P∼Q
, Σ-map id (Σ-map id symmetric) ∘ lr (symmetric P∼Q)
⟩
where
lr : ∀ {P P′ Q μ} →
[ i ] P ∼ Q → a · P [ μ ]⟶ P′ →
∃ λ Q′ → a · Q [ μ ]⟶ Q′ × [ i ] P′ ∼′ Q′
lr P∼Q action = _ , action , convert P∼Q
-- The operator op also preserves bisimilarity, but this lemma is not
-- claimed to be size-preserving.
op-cong : ∀ {i} {j : Size< i} {P Q} →
[ i ] P ∼ Q → [ j ] op P ∼ op Q
op-cong {i} {j} P∼Q =
⟨ lr P∼Q
, Σ-map id (Σ-map id symmetric) ∘ lr (symmetric P∼Q)
⟩
where
lr : ∀ {P P′ Q μ} →
[ i ] P ∼ Q → op P [ μ ]⟶ P′ →
∃ λ Q′ → op Q [ μ ]⟶ Q′ × [ j ] P′ ∼′ Q′
lr P∼Q (op P⟶P′ P′⟶P″) =
let Q′ , Q⟶Q′ , P′∼Q′ = left-to-right P∼Q P⟶P′
Q″ , Q′⟶Q″ , P″∼Q″ = left-to-right (force P′∼Q′) P′⟶P″
in Q″ , op Q⟶Q′ Q′⟶Q″ , P″∼Q″
-- Let us assume that the Name type is inhabited. In that case op-cong
-- /cannot/ preserve the size of its argument.
--
-- The proof is based on an argument presented by Pous and Sangiorgi.
op-cong-cannot-preserve-size :
Name →
¬ (∀ {i P Q} → [ i ] P ∼ Q → [ i ] op P ∼ op Q)
op-cong-cannot-preserve-size a op-cong = a≁b·c a∼a·a
where
op-cong′ : ∀ {i P Q} → [ i ] P ∼′ Q → [ i ] op P ∼′ op Q
force (op-cong′ P∼′Q) = op-cong (force P∼′Q)
a∼a·a : ∀ {i} → [ i ] a · ∅ ∼ a · a · ∅
a∼a·a {i} = ⟨ lr , rl ⟩
where
a∼′a·a : ∀ {i} → [ i ] a · ∅ ∼′ a · a · ∅
force a∼′a·a = a∼a·a
lemma =
∅ ∼⟨ symmetric op·∅ ⟩
op (a · ∅) ∼⟨ op-cong′ (a∼′a·a {i = i}) ⟩
op (a · a · ∅) ∼⟨ op··∅ ⟩■
a · ∅
lr : ∀ {P′ μ} →
a · ∅ [ μ ]⟶ P′ →
∃ λ Q′ → a · a · ∅ [ μ ]⟶ Q′ × [ i ] P′ ∼′ Q′
lr action = a · ∅ , action , lemma
rl : ∀ {Q′ μ} →
a · a · ∅ [ μ ]⟶ Q′ →
∃ λ P′ → a · ∅ [ μ ]⟶ P′ × [ i ] P′ ∼′ Q′
rl action = ∅ , action , lemma
-- Up to context (for monadic contexts).
Up-to-context : Trans₂ (# 0) Proc
Up-to-context R (P , Q) =
∃ λ (C : Context 1) →
∃ λ P′ →
∃ λ Q′ →
P ≡ C [ (λ _ → P′) ]
×
Q ≡ C [ (λ _ → Q′) ]
×
R (P′ , Q′)
-- Up to context is monotone.
up-to-context-monotone : Monotone Up-to-context
up-to-context-monotone R⊆S =
Σ-map id $ Σ-map id $ Σ-map id $ Σ-map id $ Σ-map id R⊆S
-- Up to bisimilarity and context.
Up-to-bisimilarity-and-context : Trans₂ (# 0) Proc
Up-to-bisimilarity-and-context =
Up-to-bisimilarity ∘ Up-to-context
-- Up to bisimilarity and context is monotone.
up-to-bisimilarity-and-context-monotone :
Monotone Up-to-bisimilarity-and-context
up-to-bisimilarity-and-context-monotone =
up-to-bisimilarity-monotone ∘ up-to-context-monotone
-- Up to bisimilarity and context is not sound (assuming that Name is
-- inhabited).
--
-- This result is due to Pous and Sangiorgi.
¬-up-to-bisimilarity-and-context :
Name →
¬ Up-to-technique Up-to-bisimilarity-and-context
¬-up-to-bisimilarity-and-context a =
Up-to-technique Up-to-bisimilarity-and-context ↝⟨ _$ R⊆ ⟩
R ⊆ Bisimilarity ∞ ↝⟨ R⊈∼ ⟩□
⊥ □
where
data R : Rel₂ (# 0) Proc where
base : R (a · ∅ , a · a · ∅)
lemma : Up-to-bisimilarity-and-context R (∅ , a · ∅)
lemma =
op (a · ∅) ,
symmetric op·∅ ,
op (a · a · ∅) ,
(op (hole fzero) , a · ∅ , a · a · ∅ , refl , refl , base) ,
op··∅
R⊆ : R ⊆ ⟦ StepC ⟧ (Up-to-bisimilarity-and-context R)
R⊆ base =
⟨ (λ { action → a · ∅ , action , lemma })
, (λ { action → ∅ , action , lemma })
⟩
R⊈∼ : ¬ R ⊆ Bisimilarity ∞
R⊈∼ =
R ⊆ Bisimilarity ∞ ↝⟨ (λ R⊆∼ → R⊆∼ base) ⟩
a · ∅ ∼ a · a · ∅ ↝⟨ a≁b·c ⟩□
⊥ □
-- The last result above can be used to give another proof showing
-- that op-cong cannot preserve the size of its argument (assuming
-- that Name is inhabited).
op-cong-cannot-preserve-size′ :
Name →
¬ (∀ {i P Q} → [ i ] P ∼ Q → [ i ] op P ∼ op Q)
op-cong-cannot-preserve-size′ a =
(∀ {i P Q} → [ i ] P ∼ Q → [ i ] op P ∼ op Q) ↝⟨ (λ op-cong C P∼Q → []-cong op-cong C (λ _ → P∼Q)) ⟩
(∀ {i P Q} (C : Context 1) → [ i ] P ∼ Q →
[ i ] C [ (λ _ → P) ] ∼ C [ (λ _ → Q) ]) ↝⟨ (λ []-cong → λ where
{x = P , Q} (_ , P∼C[R₁] , _ ,
(C , R₁ , R₂ , refl , refl , R₁∼R₂) , C[R₂]∼Q) →
P ∼⟨ P∼C[R₁] ⟩
C [ (λ _ → R₁) ] ∼⟨ []-cong C R₁∼R₂ ⟩
C [ (λ _ → R₂) ] ∼⟨ C[R₂]∼Q ⟩■
Q) ⟩
(∀ {i} → Up-to-bisimilarity-and-context (Bisimilarity i) ⊆
Bisimilarity i) ↝⟨ _⇔_.from (monotone→⇔ up-to-bisimilarity-and-context-monotone) ⟩
Size-preserving Up-to-bisimilarity-and-context ↝⟨ size-preserving→up-to ⟩
Up-to-technique Up-to-bisimilarity-and-context ↝⟨ ¬-up-to-bisimilarity-and-context a ⟩□
⊥ □
where
[]-cong :
(∀ {i P Q} → [ i ] P ∼ Q → [ i ] op P ∼ op Q) →
∀ {i n Ps Qs}
(C : Context n) → (∀ x → [ i ] Ps x ∼ Qs x) →
[ i ] C [ Ps ] ∼ C [ Qs ]
[]-cong op-cong (hole x) Ps∼Qs = Ps∼Qs x
[]-cong op-cong (op C) Ps∼Qs = op-cong ([]-cong op-cong C Ps∼Qs)
[]-cong op-cong (a · C) Ps∼Qs = ·-cong ([]-cong op-cong C Ps∼Qs)
[]-cong op-cong ∅ Ps∼Qs = reflexive
|
{
"alphanum_fraction": 0.463356974,
"avg_line_length": 32.961038961,
"ext": "agda",
"hexsha": "229635ced01e9962eed274e0f6685ff47c754d92",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/up-to",
"max_forks_repo_path": "src/Bisimilarity/6-2-5.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/up-to",
"max_issues_repo_path": "src/Bisimilarity/6-2-5.agda",
"max_line_length": 129,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/up-to",
"max_stars_repo_path": "src/Bisimilarity/6-2-5.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3003,
"size": 7614
}
|
open import Relation.Binary.Core
module SelectSort.Everything {A : Set}
(_≤_ : A → A → Set)
(tot≤ : Total _≤_)
(trans≤ : Transitive _≤_) where
open import SelectSort.Correctness.Order _≤_ tot≤ trans≤
open import SelectSort.Correctness.Permutation _≤_ tot≤
|
{
"alphanum_fraction": 0.608974359,
"avg_line_length": 31.2,
"ext": "agda",
"hexsha": "d2a8da0c3408cf13ac2a52ff654850b48836ae6c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/SelectSort/Everything.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/SelectSort/Everything.agda",
"max_line_length": 56,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/SelectSort/Everything.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 91,
"size": 312
}
|
------------------------------------------------------------------------
-- Trees
------------------------------------------------------------------------
-- This example is based on one in Wadler's "A prettier printer".
{-# OPTIONS --guardedness #-}
module Examples.Tree where
open import Codata.Musical.Notation
open import Data.List
open import Data.List.NonEmpty as List⁺
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Examples.Identifier
import Grammar.Infinite
import Pretty
open import Renderer
open import Utilities
data Tree : Set where
node : Identifier → List Tree → Tree
module _ where
open Grammar.Infinite
mutual
tree : Grammar Tree
tree = node <$> identifier-w ⊛ brackets
brackets : Grammar (List Tree)
brackets = return []
∣ List⁺.toList <$> (symbol′ "[" ⊛> ♯ trees <⊛ symbol′ "]")
trees : Grammar (List⁺ Tree)
trees = _∷_ <$> tree ⊛ commas-and-trees
commas-and-trees : Grammar (List Tree)
commas-and-trees = (symbol′ "," ⊛> tree) ⋆
open Pretty
-- Wadler presents two pretty-printers for trees in his final code
-- listing (§11.7). I've included corresponding, but not quite
-- identical, implementations here.
--
-- (One of Wadler's implementations is buggy: recursive calls to
-- showTree/showTrees should most likely have referred to
-- showTree'/showTrees'. The code below is intended to match a
-- corrected version of Wadler's.)
module Printer₁ where
mutual
tree-printer : Pretty-printer tree
tree-printer (node s ts) =
group (<$> identifier-w-printer s ⊛
nest (List⁺.length s) (brackets-printer ts))
brackets-printer : Pretty-printer brackets
brackets-printer [] = left nil
brackets-printer (t ∷ ts) =
right (<$> (symbol ⊛> nest 1 (trees-printer (t ∷ ts)) <⊛ symbol))
trees-printer : Pretty-printer trees
trees-printer (t ∷ ts) =
<$> tree-printer t ⊛ commas-and-trees-printer ts
commas-and-trees-printer : Pretty-printer commas-and-trees
commas-and-trees-printer [] = nil-⋆
commas-and-trees-printer (t ∷ ts) =
cons-⋆ (symbol-line ⊛> tree-printer t)
(commas-and-trees-printer ts)
module Printer₂ where
mutual
tree-printer : Pretty-printer tree
tree-printer (node s ts) =
<$> identifier-w-printer s ⊛ brackets-printer ts
brackets-printer : Pretty-printer brackets
brackets-printer [] = left nil
brackets-printer (t ∷ ts) =
right (<$> bracket 7 (trees-printer (t ∷ ts)))
trees-printer : Pretty-printer trees
trees-printer (t ∷ ts) =
<$> tree-printer t ⊛ commas-and-trees-printer ts
commas-and-trees-printer : Pretty-printer commas-and-trees
commas-and-trees-printer [] = nil-⋆
commas-and-trees-printer (t ∷ ts) =
cons-⋆ (symbol-line ⊛> tree-printer t)
(commas-and-trees-printer ts)
t : Tree
t = node (str⁺ "aaa")
(node (str⁺ "bbbbb")
(node (str⁺ "ccc") [] ∷
node (str⁺ "dd") [] ∷
[]) ∷
node (str⁺ "eee") [] ∷
node (str⁺ "ffff")
(node (str⁺ "gg") [] ∷
node (str⁺ "hhh") [] ∷
node (str⁺ "ii") [] ∷
[]) ∷
[])
test₁ : render 0 (Printer₁.tree-printer t) ≡
"aaa[bbbbb[ccc,\n dd],\n eee,\n ffff[gg,\n hhh,\n ii]]"
test₁ = refl
test₂ : render 30 (Printer₁.tree-printer t) ≡
"aaa[bbbbb[ccc, dd],\n eee,\n ffff[gg, hhh, ii]]"
test₂ = refl
test₃ : render 0 (Printer₂.tree-printer t) ≡
"aaa[\n bbbbb[\n ccc,\n dd\n ],\n eee,\n ffff[\n gg,\n hhh,\n ii\n ]\n]"
test₃ = refl
test₄ : render 80 (Printer₂.tree-printer t) ≡
"aaa[ bbbbb[ ccc, dd ], eee, ffff[ gg, hhh, ii ] ]"
test₄ = refl
|
{
"alphanum_fraction": 0.5826730058,
"avg_line_length": 28.9007633588,
"ext": "agda",
"hexsha": "c38a6a8cb11bc8ed5f566dcb7f2cf7a6d99105a4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/pretty",
"max_forks_repo_path": "Examples/Tree.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/pretty",
"max_issues_repo_path": "Examples/Tree.agda",
"max_line_length": 100,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/pretty",
"max_stars_repo_path": "Examples/Tree.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1127,
"size": 3786
}
|
open import Agda.Primitive
open import Agda.Builtin.Equality renaming (_≡_ to _==_) --(( If I want to rename the built-in equality ))
-- What follows is an attempt to formalize multicategories. For this purpose, we also need to define lists, since the source of a multimap in a multicategory is a list.
-- For the moment, I do not try to prove that the lists an the associated concatenation form a monoid (because I do not know if this is useful or not).
module MultiCategories where
-- ** Function extensionality **
postulate
funext : ∀ {X : Set} {Y : X → Set} {f g : ∀ (x : X) → (Y x)} → (∀ (x : X) → ((f x) == (g x))) → (f == g)
-- ** Lists **
-- We first define lists
data List {l : Level} (A : Set l) : Set l where
[] : List A
_::_ : A → List A → List A
infixr 30 _::_
open List
-- We define equality on lists, that extends the built-in equality (since for the moment, we dont need other definitions of equality → but maybe we could do something more general by asking the "equality" as a parameter ?)
data _≡ᴸ_ {l : Level} {A : Set l} : (u v : List {l} A) → Set (lsuc l) where
eq-nil : [] ≡ᴸ []
eq-cons : ∀ (x y : A) (su sv : List A) → (x == y) → (su ≡ᴸ sv) → ( (x :: su) ≡ᴸ (y :: sv))
-- We define the mapping of lists
list-map : ∀ {l : Level} {A B : Set l} → (f : A → B) → List A → List B
list-map f [] = []
list-map f (x :: u) = ((f x) :: (list-map f u))
-- We define the concatenation of lists
_++_ : ∀ {l}{A : Set l} → List A → List A → List A
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)
-- We define a fold function
fold : ∀ {l : Level} {A B : Set l} → (A → B → B) → B → List A → B
fold _⊗_ e [] = e
fold _⊗_ e (x :: xs) = x ⊗ (fold _⊗_ e xs)
-- We define a flatten function
flatten : ∀ {l : Level} {A : Set l} → (u : List ( List A)) → (List A)
flatten [] = []
flatten (x :: xs) = x ++ (flatten xs)
-- (I wanted to do this with the above fold function, which would be more elegant, but I don't know why, I miserably failed at it - must be tired)
-- We define a function that takes a list of functions and a list of arguments and apply the functions point to point
list-apply : ∀ {l : Level} {A B : Set l} → (list-f : List (A → B)) → (list-arg : List A) → List B
list-apply [] [] = []
list-apply (f :: fs) [] = []
list-apply [] (x :: xs) = []
list-apply (f :: fs) (x :: xs) = (f x) :: (list-apply fs xs)
-- The two cases in the middle should be forbidden, but I don't know how to do this
-- ** Multicategories **
-- -- We first define the multimaps on a set
-- data Multimap {l : Level} {O : Setl l} : Set l where
-- map : ()
record MultiCategory {l : Level} : Set (lsuc l) where
field
-- Objects and maps
object : Set l
multimap : Set l
sources : ∀ (m : multimap) → List object
target : ∀ (m : multimap) → object
-- Composition and associated equations / conditions
_∘_ : ∀ (f : multimap) → (list : List multimap) → multimap
plug : ∀ {g : multimap} → {f : multimap} → {list : List multimap} → {g == (f ∘ list)} → (sources f) ≡ᴸ (list-map target list)
dom-comp : ∀ {f : multimap} → {list : List multimap} → ((flatten (list-map sources list)) ≡ᴸ (sources (f ∘ list)))
comp-codom : ∀ (f : multimap) → (list : List multimap) → (target f == target (f ∘ list))
-- Identities and associated equations / conditions
id : ∀ (o : object) → multimap
id-dom-codom : ∀ (o : object) → (sources (id o) == o :: [] )
id-codom : ∀ (o : object) → (target (id o) == o)
id-left : ∀ {o : object} {f : multimap} → {f == id o} → (list : List multimap) → ( (f ∘ list) == f)
id-rigth : ∀ {f : multimap} {list : List multimap} → {list ≡ᴸ (list-map id (sources f))} → ((f ∘ list) == f)
-- Associativity
assoc : ∀ {f : multimap} {list-g : List multimap} {list-h : List (List multimap)} → (f ∘ (list-apply (list-map _∘_ list-g) list-h)) == ( (f ∘ list-g) ∘ (flatten list-h))
open MultiCategory
-- List over a list
data ListOver {l : Level} {A : Set l} (B : A → Set l) : List A → Set l where
[[]] : ListOver B []
_:::_ : ∀ {x xs} → (y : B x) → (ys : ListOver B xs) → ListOver B (x :: xs)
infixr 25 _:::_
over-map : ∀ {l : Level} {A : Set l} {B : A → Set l} {xs} {C : Set l} → (∀ {x} → B x → C) → ListOver B xs → List C
over-map f [[]] = []
over-map f (y ::: ys) = f y :: over-map f ys
over-over-map : ∀ {l : Level} {A : Set l} {B : A → Set l} {xs} {C : A → Set l} → (∀ {x} → B x → C x) → ListOver B xs → ListOver C xs
over-over-map f [[]] = [[]]
over-over-map f (y ::: ys) = f y ::: over-over-map f ys
over-lift : ∀ {l : Level} {A : Set l} (list : List A) → ListOver (λ x → A) list
over-lift [] = [[]]
over-lift (y :: ys) = y ::: (over-lift ys)
over-flatten : ∀ {l : Level} {A B : Set l} {list : List A} (list-ov : ListOver (λ x → List B) list) → List B
over-flatten [[]] = []
over-flatten (x ::: xs) = x ++ (over-flatten xs)
-- Dependent sum
record Σ {l} (A : Set l) (B : A → Set l) : Set l where
constructor ⟨_,_⟩
field
π₁ : A
π₂ : B π₁
open Σ
-- Shortcuts to map the projections on lists when the dependent sum is a "product"
list-π₁ : ∀ {l : Level} {A : Set l} {B} (list : List ( Σ {l} A B)) → List A
list-π₁ list = list-map π₁ list
list-π₂ : ∀ {l : Level} {A C : Set l} (list : List ( Σ {l} A ( λ x → C))) → List C
list-π₂ list = list-map π₂ list
-- A more dependent attempt at multicategories
record MultiCategory2 {l : Level} : Set (lsuc l) where
field
object : Set l
multimap : List object → object → Set l
𝟙 : ∀ {x} → multimap (x :: []) x
_•_ : ∀ {ys x} → multimap ys x → ∀ (gs : ListOver (λ y → Σ (List object) (λ zs → multimap zs y)) ys) →
multimap (flatten (over-map π₁ gs)) x
-- Another attempt to define multimaps, "putting the dependance elsewhere"
_●_ : ∀ {x : object} {ys : List (Σ (List object) (λ x → object))} → multimap (list-π₂ ys) x → ListOver (λ y → multimap (π₁ y) (π₂ y)) ys → multimap (flatten (list-π₁ ys)) x
-- here complications start
-- 𝟙-left : ∀ {ys x} → (f : multimap ys x) → 𝟙 • (⟨ ys , f ⟩ ::: [[]]) == f
-- 𝟙-right : ∀ {ys x} → (f : multimap ys x) → f • (over-over-map ? (over-lift ys)) == f
--(ListOver ( λ y → ⟨ x ::: [[]] , 𝟙 ⟩ ) ys) == f
-- Attempt with the alternative composition
𝟙-left-● : ∀ {x ys} → (f : multimap ys x) → 𝟙 ● (f ::: [[]]) == f -- Here it seems that we have a lemma to prove to say that ys = (ys ++ flatten (list-map π₁ [])). Do we do it locally or would it be useful to have a more genral lemma ?
-- Here I tried to fix 𝟙-left and to define 𝟙-right, but I did not manage to do it, it both cases. Maybe we should revise the definition of _•_ ?
-- Agda seems to struggle with the fact that thnigs that should be equal are not equal by definition (conversion/reduction problems). Maybe there are some lemmas to prove here.
-- Also, I do not understand why we use the "over-map" : it would feel more natural to me if, once we lift a list to a dependent one, and use dependant lists, we only use dependeant lists, that's why I defined over-lift and over-over-map. (I also defined an "over-flatten" but don't know if it's useful)
|
{
"alphanum_fraction": 0.5673525377,
"avg_line_length": 48.2781456954,
"ext": "agda",
"hexsha": "efeb175ca824876233bf98b933f03ef3d3ba58f5",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z",
"max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/formaltt",
"max_forks_repo_path": "src/Experimental/MultiCategories.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/formaltt",
"max_issues_repo_path": "src/Experimental/MultiCategories.agda",
"max_line_length": 303,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cilinder/formaltt",
"max_stars_repo_path": "src/Experimental/MultiCategories.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z",
"num_tokens": 2512,
"size": 7290
}
|
module NotLinearPat where
data Nat : Set where
zero : Nat
succ : Nat -> Nat
bad : Nat -> Nat -> Nat
bad x x = zero
bad x y = succ zero
|
{
"alphanum_fraction": 0.6267605634,
"avg_line_length": 12.9090909091,
"ext": "agda",
"hexsha": "8172146b67775af45dd30910214a63930d16a20a",
"lang": "Agda",
"max_forks_count": 5,
"max_forks_repo_forks_event_max_datetime": "2021-08-16T07:47:36.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-30T00:17:04.000Z",
"max_forks_repo_head_hexsha": "4a674eddcc8950f37fcc723b26f81d5164b05f08",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andreasabel/miniagda",
"max_forks_repo_path": "examples/NotLinearPat.agda",
"max_issues_count": 7,
"max_issues_repo_head_hexsha": "4a674eddcc8950f37fcc723b26f81d5164b05f08",
"max_issues_repo_issues_event_max_datetime": "2020-03-17T08:09:01.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-12-16T15:48:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andreasabel/miniagda",
"max_issues_repo_path": "examples/NotLinearPat.agda",
"max_line_length": 25,
"max_stars_count": 85,
"max_stars_repo_head_hexsha": "4a674eddcc8950f37fcc723b26f81d5164b05f08",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andreasabel/miniagda",
"max_stars_repo_path": "examples/NotLinearPat.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-12T16:54:56.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-16T15:53:24.000Z",
"num_tokens": 45,
"size": 142
}
|
------------------------------------------------------------------------
-- agda-misc
-- All modules
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module AgdaMiscEverything where
------------------------------------------------------------------------
-- Algorithms
-- Insertion sort
import Algorithms.List.Sort.Insertion
import Algorithms.List.Sort.Insertion.Properties
-- Quicksort
import Algorithms.List.Sort.Quick
import Algorithms.List.Sort.Quick.Properties
------------------------------------------------------------------------
-- Constructive mathematics
-- Definitions of Axioms that are nonconstructive
import Constructive.Axiom
import Constructive.Axiom.Properties
import Constructive.Axiom.Properties.Base
import Constructive.Axiom.Properties.Base.Lemma
import Constructive.Axiom.Properties.Bool
import Constructive.Axiom.Properties.Transport
-- Alternative proof of LLPO => MP∨
import Constructive.Axiom.Properties.Alternative
-- Combinators for reasoning
import Constructive.Combinators
import Constructive.Common
-- Searchable set
import Constructive.Searchable
-- Experiment
-- Category theory
import Experiment.Categories.Solver.Category
import Experiment.Categories.Solver.Category.Example
import Experiment.Categories.Solver.Category.Cartesian
import Experiment.Categories.Solver.Category.Cartesian.Example
import Experiment.Categories.Solver.Functor
import Experiment.Categories.Solver.Functor.Example
import Experiment.Categories.Solver.MultiFunctor
import Experiment.Categories.Solver.MultiFunctor.Example
------------------------------------------------------------------------
-- Formal language
import Math.FormalLanguage
------------------------------------------------------------------------
-- Googology
import Math.Googology.Function
import Math.Googology.Function.Properties
------------------------------------------------------------------------
-- Number theory
-- Fibonacci number
import Math.NumberTheory.Fibonacci.Generic
import Math.NumberTheory.Fibonacci.Nat
import Math.NumberTheory.Fibonacci.Nat.Properties
-- Summation
import Math.NumberTheory.Summation.Generic
import Math.NumberTheory.Summation.Generic.Properties
import Math.NumberTheory.Summation.Nat
import Math.NumberTheory.Summation.Nat.Properties
-- Product
import Math.NumberTheory.Product.Generic
import Math.NumberTheory.Product.Generic.Properties
import Math.NumberTheory.Product.Nat
import Math.NumberTheory.Product.Nat.Properties
------------------------------------------------------------------------
-- Type theory
-- Natural number
import TypeTheory.Nat.Operations
import TypeTheory.Nat.Properties
import TypeTheory.Nat.Instance
-- Homotopy Type Theory
import TypeTheory.HoTT.Base
import TypeTheory.HoTT.Data.Empty.Properties
import TypeTheory.HoTT.Data.Sum.Properties
import TypeTheory.HoTT.Function.Properties
import TypeTheory.HoTT.Relation.Nullary.Negation.Properties
-- Identity type
import TypeTheory.Identity
|
{
"alphanum_fraction": 0.6717055537,
"avg_line_length": 23.053030303,
"ext": "agda",
"hexsha": "5998309b4ff1b739b700fb6625265b5e05f29721",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "AgdaMiscEverything.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "AgdaMiscEverything.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "AgdaMiscEverything.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 536,
"size": 3043
}
|
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommAlgebra.Ideal where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Powerset
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.Ideal renaming (IdealsIn to IdealsInCommRing;
makeIdeal to makeIdealCommRing)
open import Cubical.Algebra.CommAlgebra
private
variable
ℓ : Level
module _ {R : CommRing ℓ} (A : CommAlgebra R ℓ) where
IdealsIn : Type _
IdealsIn = IdealsInCommRing (CommAlgebra→CommRing A)
open CommAlgebraStr (snd A)
makeIdeal : (I : fst A → hProp ℓ)
→ (+-closed : {x y : fst A} → x ∈ I → y ∈ I → (x + y) ∈ I)
→ (0-closed : 0a ∈ I)
→ (·-closedLeft : {x : fst A} → (r : fst A) → x ∈ I → r · x ∈ I)
→ IdealsIn
makeIdeal = makeIdealCommRing {R = CommAlgebra→CommRing A}
|
{
"alphanum_fraction": 0.624602333,
"avg_line_length": 33.6785714286,
"ext": "agda",
"hexsha": "8176c3c7a9fe31cc03b29339a56d734f65677968",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "howsiyu/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommAlgebra/Ideal.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "howsiyu/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommAlgebra/Ideal.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "howsiyu/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommAlgebra/Ideal.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 282,
"size": 943
}
|
-- Copyright: (c) 2016 Ertugrul Söylemez
-- License: BSD3
-- Maintainer: Ertugrul Söylemez <[email protected]>
module Algebra.Group.Monoid where
open import Algebra.Category
open import Algebra.Group.Semigroup
open import Core
-- A monoid is a semigroup with an identity element.
record IsMonoid {a r} (S : Semigroup {a} {r}) : Set (a ⊔ r) where
open Semigroup S
field
id : A
left-id : ∀ x → id ⋄ x ≈ x
right-id : ∀ x → x ⋄ id ≈ x
category : Category
category =
record {
semigroupoid = semigroupoid;
id = id;
left-id = left-id;
right-id = right-id
}
open Category category public
using (id-unique; Iso)
record Monoid {a r} : Set (lsuc (a ⊔ r)) where
field
semigroup : Semigroup {a} {r}
isMonoid : IsMonoid semigroup
open Semigroup semigroup public
open IsMonoid isMonoid public
-- A monoid morphism is a function that maps the elements of one monoid
-- to another while preserving the compositional structure as well as
-- identity.
record MonoidMorphism
{ma mr na nr}
(M : Monoid {ma} {mr})
(N : Monoid {na} {nr})
: Set (ma ⊔ mr ⊔ na ⊔ nr)
where
private
module M = Monoid M
module N = Monoid N
field semigroupMorphism : SemigroupMorphism M.semigroup N.semigroup
open SemigroupMorphism semigroupMorphism public
field
id-preserving : map M.id N.≈ N.id
functor : Functor M.category N.category
functor =
record {
semifunctor = semifunctor;
id-preserving = id-preserving
}
open Functor functor public
using (Iso-preserving)
-- An equivalence relation on monoid morphisms that considers monoid
-- morphisms to be equal iff they map every element in the domain to the
-- same element in the codomain.
MonoidMorphismEq :
∀ {ma mr na nr}
{M : Monoid {ma} {mr}} {N : Monoid {na} {nr}}
→ Equiv (MonoidMorphism M N)
MonoidMorphismEq {N = N} =
record {
_≈_ = λ F G →
let module F = MonoidMorphism F
module G = MonoidMorphism G
in ∀ x → F.map x ≈ G.map x;
refl = λ _ → refl;
sym = λ x≈y x → sym (x≈y x);
trans = λ x≈y y≈z x → trans (x≈y x) (y≈z x)
}
where
module N = Monoid N
open Equiv N.Eq
-- Category of monoids.
Monoids : ∀ {a r} → Category
Monoids {a} {r} =
record {
semigroupoid = record {
Ob = Monoid {a} {r};
Hom = MonoidMorphism;
Eq = MonoidMorphismEq;
_∘_ = _∘_;
∘-cong = λ {_} {_} {_} {f1} {f2} {g1} {g2} → ∘-cong {f1 = f1} {f2} {g1} {g2};
assoc = assoc
};
id = id;
left-id = left-id;
right-id = right-id
}
where
open module MyEquiv {M : Monoid} {N : Monoid} = Equiv (MonoidMorphismEq {M = M} {N})
id : ∀ {M} → MonoidMorphism M M
id {M} =
record {
semigroupMorphism = record {
map = Sets.id;
map-cong = Sets.id;
⋄-preserving = λ x y → M.refl
};
id-preserving = M.refl
}
where
module M = Monoid M
_∘_ : ∀ {M N O} → MonoidMorphism N O → MonoidMorphism M N → MonoidMorphism M O
_∘_ {M} {N} {O} f g =
record {
semigroupMorphism = f.semigroupMorphism Semigroups.∘ g.semigroupMorphism;
id-preserving =
O.begin
f.map (g.map M.id) O.≈[ f.map-cong g.id-preserving ]
f.map N.id O.≈[ f.id-preserving ]
O.id
O.qed
}
where
module f = MonoidMorphism f
module g = MonoidMorphism g
module M = Monoid M
module N = Monoid N
module O = Monoid O
∘-cong :
∀ {M N O}
{f1 f2 : MonoidMorphism N O}
{g1 g2 : MonoidMorphism M N}
→ f1 ≈ f2
→ g1 ≈ g2
→ f1 ∘ g1 ≈ f2 ∘ g2
∘-cong {O = O} {f1} {f2} {g1} {g2} f1≈f2 g1≈g2 x =
O.begin
f1.map (g1.map x) O.≈[ f1.map-cong (g1≈g2 x) ]
f1.map (g2.map x) O.≈[ f1≈f2 (g2.map x) ]
f2.map (g2.map x)
O.qed
where
module O = Monoid O
module f1 = MonoidMorphism f1
module f2 = MonoidMorphism f2
module g1 = MonoidMorphism g1
module g2 = MonoidMorphism g2
assoc :
∀ {M N O P}
(f : MonoidMorphism O P)
(g : MonoidMorphism N O)
(h : MonoidMorphism M N)
→ (f ∘ g) ∘ h ≈ f ∘ (g ∘ h)
assoc {P = P} _ _ _ _ = P.refl
where
module P = Monoid P
left-id : ∀ {M N} (f : MonoidMorphism M N) → id ∘ f ≈ f
left-id {N = N} _ _ = N.refl
where
module N = Monoid N
right-id : ∀ {M N} (f : MonoidMorphism M N) → f ∘ id ≈ f
right-id {N = N} _ _ = N.refl
where
module N = Monoid N
|
{
"alphanum_fraction": 0.571460177,
"avg_line_length": 23.2989690722,
"ext": "agda",
"hexsha": "46dedee4474f766cde5d6ae894ca49644208275b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "esoeylemez/agda-simple",
"max_forks_repo_path": "Algebra/Group/Monoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "esoeylemez/agda-simple",
"max_issues_repo_path": "Algebra/Group/Monoid.agda",
"max_line_length": 86,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "esoeylemez/agda-simple",
"max_stars_repo_path": "Algebra/Group/Monoid.agda",
"max_stars_repo_stars_event_max_datetime": "2019-10-07T17:36:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-07T17:36:42.000Z",
"num_tokens": 1628,
"size": 4520
}
|
open import Agda.Primitive
open import Semigroup
module Monoid where
record Σ {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
Σ-syntax : ∀ {a b} (A : Set a) → (A → Set b) → Set (a ⊔ b)
Σ-syntax = Σ
syntax Σ-syntax A (λ x → B) = Σ[ x ∈ A ] B
_×_ : ∀ {a b} (A : Set a) (B : Set b) → Set (a ⊔ b)
A × B = Σ[ x ∈ A ] B
record Monoid {A : Set} (_∙_ : A → A → A) (ε : A) : Set where
field
semigroup : Semigroup _∙_
identity : (∀ x → ε ∙ x ≡ x) × (∀ x → x ∙ ε ≡ x)
|
{
"alphanum_fraction": 0.4832451499,
"avg_line_length": 23.625,
"ext": "agda",
"hexsha": "862d933cc9ea62dbfd272f756bd252c2d5b8bfb5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "382fcfae193079783621fc5cf54b6588e22ef759",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "cantsin/agda-experiments",
"max_forks_repo_path": "Monoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "382fcfae193079783621fc5cf54b6588e22ef759",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "cantsin/agda-experiments",
"max_issues_repo_path": "Monoid.agda",
"max_line_length": 64,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "382fcfae193079783621fc5cf54b6588e22ef759",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "cantsin/agda-experiments",
"max_stars_repo_path": "Monoid.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 245,
"size": 567
}
|
{-# OPTIONS --cubical-compatible --rewriting --confluence-check #-}
open import Issue1719.Common
open import Issue1719.Spans
open import Issue1719.Pushouts
module _ {d : Span} {l} {P : Pushout d → Set l}
(left* : (a : Span.A d) → P (left a))
(right* : (b : Span.B d) → P (right b))
(glue* : (c : Span.C d) → left* (Span.f d c) == right* (Span.g d c) [ P ↓ glue c ]) where
test : (a : Span.A d) → Pushout-elim {P = P} left* right* glue* (left a) ↦ left* a
test a = idr
|
{
"alphanum_fraction": 0.5933609959,
"avg_line_length": 32.1333333333,
"ext": "agda",
"hexsha": "aaabbf1358b9c5a1d28f78084bdec6f02ee43dd3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Succeed/Issue1719.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Succeed/Issue1719.agda",
"max_line_length": 91,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Succeed/Issue1719.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 177,
"size": 482
}
|
-- Andreas, 2017-05-17, issue #2574 reported by G. Allais
-- This module is intentionally without name.
module _ where
private
postulate A : Set
|
{
"alphanum_fraction": 0.7266666667,
"avg_line_length": 16.6666666667,
"ext": "agda",
"hexsha": "e356fcd2bc39acd4ba07aa52eaad39ec3861bf75",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue2574Import.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue2574Import.agda",
"max_line_length": 57,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue2574Import.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 43,
"size": 150
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Instantiates the ring solver with two copies of the same ring with
-- decidable equality
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Algebra.Solver.Ring.AlmostCommutativeRing
open import Relation.Binary
open import Relation.Binary.Consequences using (dec⟶weaklyDec)
module Algebra.Solver.Ring.Simple
{r₁ r₂} (R : AlmostCommutativeRing r₁ r₂)
(_≟_ : Decidable (AlmostCommutativeRing._≈_ R))
where
open AlmostCommutativeRing R
import Algebra.Solver.Ring as RS
open RS rawRing R (-raw-almostCommutative⟶ R) (dec⟶weaklyDec _≟_) public
|
{
"alphanum_fraction": 0.5965147453,
"avg_line_length": 33.9090909091,
"ext": "agda",
"hexsha": "cbda26e3165bb31bc38a08ca87d23206509b5683",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Solver/Ring/Simple.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Solver/Ring/Simple.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Solver/Ring/Simple.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 171,
"size": 746
}
|
import Lvl
open import Structure.Operator.Vector
open import Structure.Setoid
open import Type
module Structure.Operator.Vector.Subspaces.DirectSum
{ℓᵥ ℓₛ ℓᵥₑ ℓₛₑ}
{V : Type{ℓᵥ}} ⦃ equiv-V : Equiv{ℓᵥₑ}(V) ⦄
{S : Type{ℓₛ}} ⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄
{_+ᵥ_ : V → V → V}
{_⋅ₛᵥ_ : S → V → V}
{_+ₛ_ _⋅ₛ_ : S → S → S}
⦃ vectorSpace : VectorSpace(_+ᵥ_)(_⋅ₛᵥ_)(_+ₛ_)(_⋅ₛ_) ⦄
where
open VectorSpace(vectorSpace)
open import Data.Tuple as Tuple using (_,_)
open import Logic.Propositional
open import Logic.Predicate
import Lvl
open import Sets.ExtensionalPredicateSet as PredSet using (PredSet ; _∈_ ; [∋]-binaryRelator)
open import Structure.Container.SetLike using (SetElement)
private open module SetLikeFunctionProperties{ℓ} = Structure.Container.SetLike.FunctionProperties{C = PredSet{ℓ}(V)}{E = V}(_∈_)
open import Structure.Operator
open import Structure.Operator.Proofs.Util
open import Structure.Operator.Properties
open import Structure.Operator.Vector
open import Structure.Operator.Vector.Subspace ⦃ vectorSpace = vectorSpace ⦄
open import Syntax.Transitivity
private variable ℓ ℓ₁ ℓ₂ ℓₗ : Lvl.Level
module _ where
module _ where
-- TODO: This operator can also be constructed for vector spaces, not just subspaces
_+ˢᵘᵇ_ : SubspaceObject{ℓ₁} → SubspaceObject{ℓ₂} → SubspaceObject
([∃]-intro V₁ ⦃ p₁ ⦄) +ˢᵘᵇ ([∃]-intro V₂ ⦃ p₂ ⦄) = [∃]-intro (PredSet.map₂(_+ᵥ_) V₁ V₂) ⦃ p ⦄ where
p : Subspace(PredSet.map₂(_+ᵥ_) V₁ V₂)
∃.witness (Structure.Container.SetLike.FunctionProperties._closed-under₂_.proof (Subspace.add-closure p) ([∃]-intro(a₁ , a₂)) ([∃]-intro(b₁ , b₂))) = ((a₁ +ᵥ b₁) , (a₂ +ᵥ b₂))
∃.proof (Structure.Container.SetLike.FunctionProperties._closed-under₂_.proof (Subspace.add-closure p) {a}{b} ([∃]-intro ([∧]-intro a₁ a₂) ⦃ [∧]-intro ([∧]-intro a₁V₁ a₂V₂) a₁a₂a ⦄) ([∃]-intro (b₁ , b₂) ⦃ [∧]-intro ([∧]-intro b₁V₁ b₂V₂) b₁b₂b ⦄)) = [∧]-intro ([∧]-intro l₁ l₂) r where
l₁ : (a₁ +ᵥ b₁) ∈ V₁
l₁ = (V₁ closureUnder₂(_+ᵥ_)) a₁V₁ b₁V₁
l₂ : (a₂ +ᵥ b₂) ∈ V₂
l₂ = (V₂ closureUnder₂(_+ᵥ_)) a₂V₂ b₂V₂
r : (a₁ +ᵥ b₁) +ᵥ (a₂ +ᵥ b₂) ≡ a +ᵥ b
r =
(a₁ +ᵥ b₁) +ᵥ (a₂ +ᵥ b₂) 🝖[ _≡_ ]-[ One.associate-commute4-c {_▫_ = _+ᵥ_} ⦃ op = [+ᵥ]-binary-operator ⦄ ⦃ assoc = [+ᵥ]-associativity ⦄ ⦃ comm = [+ᵥ]-commutativity ⦄ ] -- TODO: Why are the instances not inferred?
(a₁ +ᵥ a₂) +ᵥ (b₁ +ᵥ b₂) 🝖[ _≡_ ]-[ congruence₂(_+ᵥ_) ⦃ [+ᵥ]-binary-operator ⦄ a₁a₂a b₁b₂b ]
a +ᵥ b 🝖-end
∃.witness (Structure.Container.SetLike.FunctionProperties._closed-under₁_.proof (Subspace.mul-closure p {s}) ([∃]-intro(v₁ , v₂))) = ((s ⋅ₛᵥ v₁) , (s ⋅ₛᵥ v₂))
∃.proof (Structure.Container.SetLike.FunctionProperties._closed-under₁_.proof (Subspace.mul-closure p {s}) {v} ([∃]-intro(v₁ , v₂) ⦃ [∧]-intro ([∧]-intro v₁V₁ v₂V₂) v₁v₂v ⦄)) = [∧]-intro ([∧]-intro l₁ l₂) r where
l₁ : (s ⋅ₛᵥ v₁) ∈ V₁
l₁ = (V₁ closureUnder₁(s ⋅ₛᵥ_)) v₁V₁
l₂ : (s ⋅ₛᵥ v₂) ∈ V₂
l₂ = (V₂ closureUnder₁(s ⋅ₛᵥ_)) v₂V₂
r : (s ⋅ₛᵥ v₁) +ᵥ (s ⋅ₛᵥ v₂) ≡ (s ⋅ₛᵥ v)
r =
(s ⋅ₛᵥ v₁) +ᵥ (s ⋅ₛᵥ v₂) 🝖[ _≡_ ]-[ distributivityₗ(_⋅ₛᵥ_)(_+ᵥ_) ]-sym
s ⋅ₛᵥ (v₁ +ᵥ v₂) 🝖[ _≡_ ]-[ congruence₂ᵣ(_⋅ₛᵥ_)(s) v₁v₂v ]
s ⋅ₛᵥ v 🝖-end
-- TODO: Formulate
-- [⊕ˢᵘᵇ]-span-vectorSpace : (V₁ ⊕ V₂ ⊕ … ≡ₛ 𝐔) ↔ (∀{v₁}{v₂}{…} → (v₁ ∈ V₁) → (v₂ ∈ V₂) → … → (v₁ + v₂ + … ≡ 𝟎ᵥ) → ((v₁ ≡ 𝟎ᵥ) ∧ (v₂ ≡ 𝟎ᵥ) ∧ …))
-- [⊕ˢᵘᵇ]-span-existence-finite-space : Finite → ∃(\{(V₁ , V₂ , …) → V₁ ⊕ V₂ ⊕ … ≡ₛ 𝐔}) -- TODO: Just take the "standard" "axis aligned" subspaces
|
{
"alphanum_fraction": 0.601650619,
"avg_line_length": 55.0757575758,
"ext": "agda",
"hexsha": "283ed7e05f05afbd25496e60aaab6560815f4514",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Operator/Vector/Subspaces/DirectSum.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Operator/Vector/Subspaces/DirectSum.agda",
"max_line_length": 290,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Operator/Vector/Subspaces/DirectSum.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1726,
"size": 3635
}
|
-- {-# OPTIONS -v tc.with:100 #-}
module Issue818 where
data ⊤ : Set where
tt : ⊤
Foo : {x : ⊤} → Set₁
Foo with tt
Foo {x = _} | tt = Set
-- Panic: wrong number of arguments in with clause: given 1, expected
-- 0
-- when checking that the clause
-- Foo with tt
-- Foo {x = _} | tt = Set
-- has type {⊤} → Set₁
-- The code above type-checks using Agda 2.3.0.1, but not with Agda
-- 2.3.2.
-- Andreas, 2013-03-08: same error thrown by
-- foo : ⊤ → Set₁
-- foo with tt
-- foo x | tt = Set
-- Implicit arguments are no longer eagerly introduced (see release notes
-- for 2.3.2, text for issue 679).
-- Should now throw a proper error message (not a panic).
|
{
"alphanum_fraction": 0.6304675716,
"avg_line_length": 21.3870967742,
"ext": "agda",
"hexsha": "bbc909d42bcd764bea0b73bc516c552dd5644760",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/Issue818.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/Issue818.agda",
"max_line_length": 73,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/fail/Issue818.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 225,
"size": 663
}
|
open import Algebra.Apartness using (HeytingField)
module Data.Real.Abstract.Structures {c ℓ₁ ℓ₂} (f : HeytingField c ℓ₁ ℓ₂) where
open HeytingField f
open import Relation.Binary using (Rel; IsStrictTotalOrder)
open import Level using (_⊔_)
open import Data.Product using (_×_; ∃-syntax)
import Data.Nat as ℕ
open ℕ using (ℕ; zero; suc)
record IsOrderedHeytingField
{r} (_<_ : Rel Carrier r) : Set (c ⊔ ℓ₁ ⊔ r)
where
field
isStrictTotalOrder : IsStrictTotalOrder _≈_ _<_
ordered : ∀ a b c → a < b → (a + c) < (b + c) × (c + a) < (c + b)
_ℕ*_ : ℕ → Carrier → Carrier
zero ℕ* x = 1#
suc n ℕ* x = x * (n ℕ* x)
record IsArchimedanHeytingField
{r} (_<_ : Rel Carrier r) : Set (c ⊔ ℓ₁ ⊔ r)
where
field
dense : ∀ a b → a < b → ∃[ c ] (a < c) × (c < b)
archimedan : ∀ a b → 0# < a → 0# < b → ∃[ n ] (b < (n ℕ* a))
|
{
"alphanum_fraction": 0.6002358491,
"avg_line_length": 24.9411764706,
"ext": "agda",
"hexsha": "f45defd4d933f9af13c5106893649f46c95e1c75",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a193aeebf1326f960975b19d3e31b46fddbbfaa2",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "cspollard/reals",
"max_forks_repo_path": "src/Data/Real/Abstract/Structures.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a193aeebf1326f960975b19d3e31b46fddbbfaa2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "cspollard/reals",
"max_issues_repo_path": "src/Data/Real/Abstract/Structures.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a193aeebf1326f960975b19d3e31b46fddbbfaa2",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "cspollard/reals",
"max_stars_repo_path": "src/Data/Real/Abstract/Structures.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 327,
"size": 848
}
|
-- Proof of: ∀ (x : ND ℕ) → always (even (double (eo x))) ≡ tt
module even-double-eo where
open import bool
open import nat
open import eq
open import nat-thms
open import nondet
open import nondet-thms
open import functions
----------------------------------------------------------------------
-- A definition of double with addition.
double : ℕ → ℕ
double x = x + x
-- even is a deterministic predicate:
even : ℕ → 𝔹
even zero = tt
even (suc 0) = ff
even (suc (suc x)) = even x
-- eo yields an even and odd number close to the input value:
eo : ℕ → ND ℕ
eo n = Val n ?? Val (suc n)
-- auxiliary property for x+x instead of double:
even-x+x : (x : ℕ) → even (x + x) ≡ tt
even-x+x zero = refl
even-x+x (suc x) rewrite +suc x x | even-x+x x = refl
-- (even (double x)) is always true:
even-double-is-true : ∀ (x : ℕ) → even (double x) ≡ tt
even-double-is-true x rewrite even-x+x x = refl
-- Proof of main result:
even-double-eo-true : (n : ℕ) → always ((even ∘ double) $* (eo n)) ≡ tt
even-double-eo-true n = always-$* (even ∘ double) (eo n) even-double-is-true
-- Alternative statement and proof:
double-eo-satisfy-even : ∀ (n : ℕ) → (double $* (eo n)) satisfy even ≡ tt
double-eo-satisfy-even n
rewrite even-double-is-true n | +suc n n | even-double-is-true n = refl
----------------------------------------------------------------------
|
{
"alphanum_fraction": 0.582717873,
"avg_line_length": 27.6326530612,
"ext": "agda",
"hexsha": "c6929b0908a0beb9ce9d1b3248bf3416c93cc671",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b7cfdda11cdadeba882b6b72d75448acd8b0a294",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "mihanus/curry-agda",
"max_forks_repo_path": "nondet/even-double-eo.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b7cfdda11cdadeba882b6b72d75448acd8b0a294",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "mihanus/curry-agda",
"max_issues_repo_path": "nondet/even-double-eo.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b7cfdda11cdadeba882b6b72d75448acd8b0a294",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "mihanus/curry-agda",
"max_stars_repo_path": "nondet/even-double-eo.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 403,
"size": 1354
}
|
{-# OPTIONS --without-K --safe #-}
open import Polynomial.Parameters
module Polynomial.Solver
{c r₁ r₂ r₃}
(homo : Homomorphism c r₁ r₂ r₃)
where
open import Data.Vec as Vec using (Vec)
open import Polynomial.Expr public
open import Algebra.Solver.Ring.AlmostCommutativeRing
open Homomorphism homo
open Eval homo
open import Polynomial.NormalForm.Definition coeffs
using (Poly)
open import Polynomial.NormalForm.Operations coeffs
using (_⊞_; _⊠_; ⊟_; _⊡_; κ; ι)
norm : ∀ {n} → Expr Raw.Carrier n → Poly n
norm (Κ x) = κ x
norm (Ι x) = ι x
norm (x ⊕ y) = norm x ⊞ norm y
norm (x ⊗ y) = norm x ⊠ norm y
norm (x ⊛ i) = norm x ⊡ i
norm (⊝ x) = ⊟ norm x
open import Polynomial.NormalForm.Semantics homo
renaming (⟦_⟧ to ⟦_⟧ₚ)
⟦_⇓⟧ : ∀ {n} → Expr Raw.Carrier n → Vec Carrier n → Carrier
⟦ x ⇓⟧ = ⟦ norm x ⟧ₚ
import Polynomial.Homomorphism homo
as Hom
open import Function
correct : ∀ {n} (e : Expr Raw.Carrier n) ρ → ⟦ e ⇓⟧ ρ ≈ ⟦ e ⟧ ρ
correct (Κ x) ρ = Hom.κ-hom x ρ
correct (Ι x) ρ = Hom.ι-hom x ρ
correct (x ⊕ y) ρ = Hom.⊞-hom (norm x) (norm y) ρ ⟨ trans ⟩ (correct x ρ ⟨ +-cong ⟩ correct y ρ)
correct (x ⊗ y) ρ = Hom.⊠-hom (norm x) (norm y) ρ ⟨ trans ⟩ (correct x ρ ⟨ *-cong ⟩ correct y ρ)
correct (x ⊛ i) ρ = Hom.⊡-hom (norm x) i ρ ⟨ trans ⟩ (Hom.pow-cong i (correct x ρ))
correct (⊝ x) ρ = Hom.⊟-hom (norm x) ρ ⟨ trans ⟩ -‿cong (correct x ρ)
open import Relation.Binary.Reflection setoid Ι ⟦_⟧ ⟦_⇓⟧ correct public
|
{
"alphanum_fraction": 0.6441973593,
"avg_line_length": 29.3673469388,
"ext": "agda",
"hexsha": "c4220bb2e136ab908e74eabb68f0d84935413f9b",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-20T07:07:11.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-04-16T02:23:16.000Z",
"max_forks_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mckeankylej/agda-ring-solver",
"max_forks_repo_path": "src/Polynomial/Solver.agda",
"max_issues_count": 5,
"max_issues_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T01:55:42.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-17T20:48:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mckeankylej/agda-ring-solver",
"max_issues_repo_path": "src/Polynomial/Solver.agda",
"max_line_length": 96,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mckeankylej/agda-ring-solver",
"max_stars_repo_path": "src/Polynomial/Solver.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-15T00:57:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-25T16:40:52.000Z",
"num_tokens": 589,
"size": 1439
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use
-- Data.Product.Relation.Binary.Pointwise.Dependent directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Product.Relation.Pointwise.Dependent where
open import Data.Product.Relation.Binary.Pointwise.Dependent public
|
{
"alphanum_fraction": 0.520361991,
"avg_line_length": 34,
"ext": "agda",
"hexsha": "450566909771eff9909c3ccac7963b524b21d92d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Relation/Pointwise/Dependent.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Relation/Pointwise/Dependent.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Relation/Pointwise/Dependent.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 69,
"size": 442
}
|
module WellScopedTerms where
open import Library
open import Categories
open import Functors
open import Categories.Sets
open import Functors.Fin hiding (lift)
open import RMonads
open import Relation.Binary.HeterogeneousEquality
open Cat
open Fun
data Tm : ℕ → Set where
var : ∀{n} → Fin n → Tm n
lam : ∀{n} → Tm (suc n) → Tm n
app : ∀{n} → Tm n → Tm n → Tm n
Ren : ℕ → ℕ → Set
Ren m n = Fin m → Fin n
-- Weakening a renaming (to push it under a lambda)
wk : ∀{m n} → Ren m n → Ren (suc m) (suc n)
wk f zero = zero
wk f (suc i) = suc (f i)
-- Performing a renaming on an expression
ren : ∀{m n} → Ren m n → Tm m → Tm n
ren f (var i) = var (f i)
ren f (app t u) = app (ren f t) (ren f u)
ren f (lam t) = lam (ren (wk f) t)
-- Identity renaming
renId : ∀{n} → Ren n n
renId = id
-- Composition of renamings
renComp : ∀{m n o} → Ren n o → Ren m n → Ren m o
renComp f g = f ∘ g
-- we prove that wk is an endofunctor
wkid : ∀{n}(i : Fin (suc n)) → wk renId i ≅ id i
wkid zero = refl
wkid (suc i) = refl
wkcomp : ∀{m n o}(f : Ren n o)(g : Ren m n)(i : Fin (suc m)) →
wk (renComp f g) i ≅ renComp (wk f) (wk g) i
wkcomp f g zero = refl
wkcomp f g (suc i) = refl
-- we prove that renamings is a functor
renid : ∀{n}(t : Tm n) → ren renId t ≅ t
renid (var i) = refl
renid (app t u) = cong₂ app (renid t) (renid u)
renid (lam t) =
proof
lam (ren (wk renId) t)
≅⟨ cong (λ f → lam (ren f t)) (ext wkid) ⟩
lam (ren renId t)
≅⟨ cong lam (renid t) ⟩
lam t
∎
rencomp : ∀{m n o}(f : Ren n o)(g : Ren m n)(t : Tm m) →
ren (renComp f g) t ≅ ren f (ren g t)
rencomp f g (var i) = refl
rencomp f g (app t u) = cong₂ app (rencomp f g t) (rencomp f g u)
rencomp f g (lam t) =
proof
lam (ren (wk (renComp f g)) t)
≅⟨ cong (λ f → lam (ren f t)) (ext (wkcomp f g)) ⟩
lam (ren (renComp (wk f) (wk g)) t)
≅⟨ cong lam (rencomp (wk f) (wk g) t) ⟩
lam (ren (wk f) (ren (wk g) t))
∎
-- Substitutions
Sub : ℕ → ℕ → Set
Sub m n = Fin m → Tm n
-- Weaken a substitution to push it under a lambda
lift : ∀{m n} → Sub m n → Sub (suc m) (suc n)
lift f zero = var zero
lift f (suc i) = ren suc (f i)
-- Perform substitution on an expression
sub : ∀{m n} → Sub m n → Tm m → Tm n
sub f (var i) = f i
sub f (app t u) = app (sub f t) (sub f u)
sub f (lam t) = lam (sub (lift f) t)
-- Identity substitution
subId : ∀{n} → Sub n n
subId = var
-- Composition of substitutions
subComp : ∀{m n o} → Sub n o → Sub m n → Sub m o
subComp f g = sub f ∘ g
-- lift is an endofunctor on substitutions and sub is a functor, we
-- need some auxilary lemmas for the composition cases
-- the conditions for identity are easy
liftid : ∀{n}(i : Fin (suc n)) → lift subId i ≅ subId i
liftid zero = refl
liftid (suc i) = refl
subid : ∀{n}(t : Tm n) → sub subId t ≅ id t
subid (var i) = refl
subid (app t u) =
proof
app (sub subId t) (sub subId u)
≅⟨ cong₂ app (subid t) (subid u) ⟩
app t u
∎
subid (lam t) =
proof
lam (sub (lift subId) t)
≅⟨ cong lam (cong (λ f → sub f t) (ext liftid)) ⟩
lam (sub subId t)
≅⟨ cong lam (subid t) ⟩
lam t
∎
-- for composition of subs (subcomp) and lifts (liftcomp) we need two
-- lemmas about how renaming and subs interact for these two lemmas we
-- need two lemmas about how lift and wk interact.
liftwk : ∀{m n o}(f : Sub n o)(g : Ren m n)(i : Fin (suc m)) →
(lift f ∘ wk g) i ≅ lift (f ∘ g) i
liftwk f g zero = refl
liftwk f g (suc i) = refl
subren : ∀{m n o}(f : Sub n o)(g : Ren m n)(t : Tm m) →
(sub f ∘ ren g) t ≅ sub (f ∘ g) t
subren f g (var i) = refl
subren f g (app t u) =
proof
app (sub f (ren g t)) (sub f (ren g u))
≅⟨ cong₂ app (subren f g t) (subren f g u) ⟩
app (sub (f ∘ g) t) (sub (f ∘ g) u)
∎
subren f g (lam t) =
proof
lam (sub (lift f) (ren (wk g) t))
≅⟨ cong lam (subren (lift f) (wk g) t) ⟩
lam (sub (lift f ∘ wk g) t)
≅⟨ cong lam (cong (λ f₁ → sub f₁ t) (ext (liftwk f g))) ⟩
lam (sub (lift (f ∘ g)) t)
∎
renwklift : ∀{m n o}(f : Ren n o)(g : Sub m n)(i : Fin (suc m)) →
(ren (wk f) ∘ lift g) i ≅ lift (ren f ∘ g) i
renwklift f g zero = refl
renwklift f g (suc i) =
proof
ren (wk f) (ren suc (g i))
≅⟨ sym (rencomp (wk f) suc (g i)) ⟩
ren (wk f ∘ suc) (g i)
≡⟨⟩
ren (suc ∘ f) (g i)
≅⟨ rencomp suc f (g i) ⟩
ren suc (ren f (g i))
∎
rensub : ∀{m n o}(f : Ren n o)(g : Sub m n)(t : Tm m) →
(ren f ∘ sub g) t ≅ sub (ren f ∘ g) t
rensub f g (var i) = refl
rensub f g (app t u) =
proof
app (ren f (sub g t)) (ren f (sub g u))
≅⟨ cong₂ app (rensub f g t) (rensub f g u) ⟩
app (sub (ren f ∘ g) t) (sub (ren f ∘ g) u)
∎
rensub f g (lam t) =
proof
lam (ren (wk f) (sub (lift g) t))
≅⟨ cong lam (rensub (wk f) (lift g) t) ⟩
lam (sub (ren (wk f) ∘ (lift g)) t)
≅⟨ cong (λ f → lam (sub f t)) (ext (renwklift f g)) ⟩
lam (sub (lift (ren f ∘ g)) t)
∎
liftcomp : ∀{m n o}(f : Sub n o)(g : Sub m n)(i : Fin (suc m)) →
lift (subComp f g) i ≅ subComp (lift f) (lift g) i
liftcomp f g zero = refl
liftcomp f g (suc i) =
proof
ren suc (sub f (g i))
≅⟨ rensub suc f (g i) ⟩
sub (ren suc ∘ f) (g i)
≅⟨ sym (subren (lift f) suc (g i)) ⟩
sub (lift f) (ren suc (g i))
∎
subcomp : ∀{m n o}(f : Sub n o)(g : Sub m n)(t : Tm m) →
sub (subComp f g) t ≅ (sub f ∘ sub g) t
subcomp f g (var i) = refl
subcomp f g (app t u) =
proof
app (sub (subComp f g) t) (sub (subComp f g) u)
≅⟨ cong₂ app (subcomp f g t) (subcomp f g u) ⟩
app (sub f (sub g t)) (sub f (sub g u))
∎
subcomp f g (lam t) =
proof
lam (sub (lift (subComp f g)) t)
≅⟨ cong (λ f → lam (sub f t)) (ext (liftcomp f g)) ⟩
lam (sub (subComp (lift f)(lift g)) t)
≅⟨ cong lam (subcomp (lift f) (lift g) t) ⟩
lam (sub (lift f) (sub (lift g) t))
∎
TmRMonad : RMonad FinF
TmRMonad = record {
T = Tm;
η = var;
bind = sub;
law1 = ext subid;
law2 = refl;
law3 = ext (subcomp _ _)}
-- module
open import RMonads.Modules
-- any functor is a relative monad over itself (including FinF)
FinMonad : RMonad FinF
FinMonad = trivRM FinF
-- TM is module for Fin Monad This is not exactly the same as the
TmModFin : Mod FinMonad
TmModFin = mod Tm ren (ext renid) (ext (rencomp _ _))
-- in fact, any suitable functor is a module over FinMonad
FModFin' : (F : Fun Nats Sets) → Mod FinMonad
FModFin' F = ModF (\ h → h , refl) id F
|
{
"alphanum_fraction": 0.5562093527,
"avg_line_length": 25.9357429719,
"ext": "agda",
"hexsha": "d518da91052747bdea51fd2ec3eabd569e662381",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jmchapman/Relative-Monads",
"max_forks_repo_path": "WellScopedTerms.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jmchapman/Relative-Monads",
"max_issues_repo_path": "WellScopedTerms.agda",
"max_line_length": 70,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jmchapman/Relative-Monads",
"max_stars_repo_path": "WellScopedTerms.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z",
"num_tokens": 2727,
"size": 6458
}
|
{-# OPTIONS --rewriting #-}
{-# OPTIONS --confluence-check #-}
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Rewrite
record R : Set where
eta-equality
constructor c
R' = R
postulate
D : Set
d : D
f : R' → D -- = R → D
x : R
r : f x ≡ d
{-# REWRITE r #-}
-- SUCCEEDS:
_ : f c ≡ d
_ = refl
-- FAILS:
_ : f x ≡ d
_ = refl -- (*)
cong : (y : R') → x ≡ y → f x ≡ f y
cong _ refl = refl
-- SUCCEEDS:
_ : f x ≡ f c
_ = cong c refl
-- FAILS:
_ : f x ≡ f c
_ = refl -- = cong c refl
|
{
"alphanum_fraction": 0.5313092979,
"avg_line_length": 13.175,
"ext": "agda",
"hexsha": "ac1197f7f158a086db003326ff992ff7f2bf1382",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Succeed/Issue4382.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue4382.agda",
"max_line_length": 41,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue4382.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 207,
"size": 527
}
|
------------------------------------------------------------------------
-- "Lenses" defined using bijections
------------------------------------------------------------------------
{-# OPTIONS --cubical --safe #-}
import Equality.Path as P
module Lens.Non-dependent.Bijection
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq
open import Prelude
open import Bijection equality-with-J using (_↔_)
open import Equality.Path.Isomorphisms eq hiding (univ)
open import Equivalence equality-with-J as Eq using (_≃_)
open import Function-universe equality-with-J as F
open import H-level equality-with-J
open import H-level.Closure equality-with-J
open import H-level.Truncation.Propositional eq
open import Surjection equality-with-J using (_↠_)
open import Univalence-axiom equality-with-J
open import Lens.Non-dependent eq
import Lens.Non-dependent.Higher eq as Higher
import Lens.Non-dependent.Traditional eq as Traditional
private
variable
a b : Level
-- A "naive" definition of lenses using a bijection.
--
-- This definition is not in general isomorphic to Higher.Lens A B,
-- not even if A and B are sets (consider the case in which A and B
-- are empty; see ¬Higher-lens↠Lens below).
Lens : Set a → Set b → Set (lsuc (a ⊔ b))
Lens {a = a} {b = b} A B =
∃ λ (R : Set (a ⊔ b)) → A ↔ (R × B)
instance
-- The lenses defined above have getters and setters.
has-getter-and-setter :
Has-getter-and-setter (Lens {a = a} {b = b})
has-getter-and-setter = record
{ get = λ (_ , bij) a → proj₂ (_↔_.to bij a)
; set = λ (_ , bij) a b → _↔_.from bij (proj₁ (_↔_.to bij a) , b)
}
-- Lens ⊥ ⊥ is isomorphic to Set something.
Lens-⊥-⊥↔Set :
Lens (⊥ {ℓ = a}) (⊥ {ℓ = b}) ↔ Set (a ⊔ b)
Lens-⊥-⊥↔Set =
Lens ⊥ ⊥ ↔⟨ (∃-cong λ _ → Eq.↔↔≃ ext (mono₁ 1 ⊥-propositional)) ⟩
(∃ λ R → ⊥ ≃ (R × ⊥)) ↔⟨ (∃-cong λ _ → Eq.≃-preserves-bijections ext F.id ×-right-zero) ⟩
(∃ λ R → ⊥ ≃ ⊥₀) ↔⟨ (∃-cong λ _ → ≃⊥≃¬ ext) ⟩
(∃ λ R → ¬ ⊥) ↔⟨ drop-⊤-right (λ _ → ¬⊥↔⊤ {k = bijection} ext) ⟩□
Set _ □
-- There is a split surjection from Lens A B to Higher.Lens A B
-- (assuming univalence).
Lens↠Higher-lens :
{A : Set a} {B : Set b} →
Univalence (a ⊔ b) →
Lens A B ↠ Higher.Lens A B
Lens↠Higher-lens {A = A} {B} univ = record
{ logical-equivalence = record
{ to = λ { (R , A↔R×B) → Higher.isomorphism-to-lens A↔R×B }
; from = λ { l → R l , _≃_.bijection (equiv l) }
}
; right-inverse-of = λ { l →
_↔_.from (Higher.equality-characterisation₂ univ)
( (R l × ∥ B ∥ ↔⟨ drop-⊤-right (λ r → inhabited⇒∥∥↔⊤ (inhabited l r)) ⟩□
R l □)
, λ _ → refl _
) }
}
where
open Higher.Lens
-- However, there is in general no split surjection in the other
-- direction, not even for sets (assuming univalence).
¬Higher-lens↠Lens :
Univalence (a ⊔ b) →
¬ ({A : Set a} {B : Set b} →
Is-set A → Is-set B →
Higher.Lens A B ↠ Lens A B)
¬Higher-lens↠Lens univ surj =
⊥-elim (subst F.id ⊤≡⊥ _)
where
⊥-is-set : ∀ {ℓ} → Is-set (⊥ {ℓ = ℓ})
⊥-is-set = mono₁ 1 ⊥-propositional
⊤↠Set =
⊤ ↔⟨ inverse $ Higher.lens-from-⊥↔⊤ univ ⟩
Higher.Lens ⊥ ⊥ ↝⟨ surj ⊥-is-set ⊥-is-set ⟩
Lens ⊥ ⊥ ↔⟨ Lens-⊥-⊥↔Set ⟩□
Set _ □
⊤≡⊥ : ↑ _ ⊤ ≡ ⊥
⊤≡⊥ =
↑ _ ⊤ ≡⟨ sym $ right-inverse-of _ ⟩
to (from (↑ _ ⊤)) ≡⟨⟩
to (from ⊥) ≡⟨ right-inverse-of _ ⟩∎
⊥ ∎
where
open _↠_ ⊤↠Set
-- The split surjection Lens↠Higher-lens preserves getters and
-- setters.
Lens↠Higher-lens-preserves-getters-and-setters :
{A : Set a} {B : Set b}
(univ : Univalence (a ⊔ b)) →
Preserves-getters-and-setters-⇔ A B
(_↠_.logical-equivalence (Lens↠Higher-lens univ))
Lens↠Higher-lens-preserves-getters-and-setters univ =
(λ _ → refl _ , refl _)
, (λ _ → refl _ , refl _)
|
{
"alphanum_fraction": 0.5570995452,
"avg_line_length": 30.921875,
"ext": "agda",
"hexsha": "441f9fca32ab031c44c4d9129fc9ffc6cc9b31a8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Saizan/dependent-lenses",
"max_forks_repo_path": "src/Lens/Non-dependent/Bijection.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Saizan/dependent-lenses",
"max_issues_repo_path": "src/Lens/Non-dependent/Bijection.agda",
"max_line_length": 92,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Saizan/dependent-lenses",
"max_stars_repo_path": "src/Lens/Non-dependent/Bijection.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1465,
"size": 3958
}
|
module STLCRef.Semantics where
-- This file contains the definitional interpreter for STLC+Ref
-- described in Section 3 of the paper.
open import Agda.Primitive
open import Data.Unit
open import Data.Nat hiding (_⊔_ ; _^_)
open import Data.Integer hiding (_⊔_)
open import Data.List
open import Data.List.Properties.Extra
open import Data.List.All.Properties.Extra
open import Data.List.Membership.Propositional
open import Data.List.Relation.Unary.Any
open import Data.List.Relation.Unary.All as All
open import Data.List.Prefix
open import Data.Product
open import Data.Maybe hiding (_>>=_)
open import Function
open import Common.Weakening
------------
-- SYNTAX --
------------
-- These definitions correspond to Section 3.1, except we have
-- included numbers (integers) and integer operations in the language.
data Ty : Set
Ctx = List Ty
data Ty where
_⇒_ : (a b : Ty) → Ty
unit : Ty
int : Ty
ref : Ty -> Ty
data Expr (Γ : List Ty) : Ty → Set where
unit : Expr Γ unit
var : ∀ {t} → t ∈ Γ → Expr Γ t
ƛ : ∀ {a b} → Expr (a ∷ Γ) b → Expr Γ (a ⇒ b)
_·_ : ∀ {a b} → Expr Γ (a ⇒ b) → Expr Γ a → Expr Γ b
num : ℤ → Expr Γ int
iop : (ℤ → ℤ → ℤ) → (l r : Expr Γ int) → Expr Γ int
ifz : ∀ {t} → Expr Γ int → Expr Γ t → Expr Γ t → Expr Γ t
ref : ∀ {t} → Expr Γ t → Expr Γ (ref t)
!_ : ∀ {t} → Expr Γ (ref t) → Expr Γ t
_≔_ : ∀ {t} → Expr Γ (ref t) → Expr Γ t → Expr Γ unit
-----------------------
-- STORES AND VALUES --
-----------------------
StoreTy = List Ty
mutual
data Val : Ty → (Σ : StoreTy) → Set where
loc : ∀ {Σ t} → t ∈ Σ → Val (ref t) Σ
unit : ∀ {Σ} → Val unit Σ
⟨_,_⟩ : ∀ {Σ Γ a b} → Expr (a ∷ Γ) b → Env Γ Σ → Val (a ⇒ b) Σ
num : ∀ {Σ} → ℤ → Val int Σ
Env : (Γ : Ctx)(Σ : StoreTy) → Set
Env Γ Σ = All (λ t → Val t Σ) Γ
Store : (Σ : StoreTy) → Set
Store Σ = All (λ t → Val t Σ) Σ
-- The `lookup-store` function is defined in terms of the `lookup`
-- function from `Data.List.All` in the Agda Standard Library.
lookup-store : ∀ {Σ t} → t ∈ Σ → Store Σ → Val t Σ
lookup-store x μ = All.lookup μ x
-- The `update-store` function is defined in terms of the update
-- function for the `All` type: `_All[_]≔'_` from the Standard Library
-- extension (contained in the `lib/*` folder of this artifact).
update-store : ∀ {Σ t} → t ∈ Σ → Val t Σ → Store Σ → Store Σ
update-store ptr v μ = μ All.[ ptr ]≔ v
-----------
-- MONAD --
-----------
-- These definitions correspond to Section 3.3.
M : ∀ {i}(Γ : Ctx) → (p : StoreTy → Set i) → (Σ : StoreTy) → Set i
M Γ p Σ = Env Γ Σ → Store Σ → Maybe (∃ λ Σ' → Store Σ' × p Σ' × Σ ⊑ Σ')
mutual
weaken-val : ∀ {a}{Σ Σ' : StoreTy} → Σ ⊑ Σ' → Val a Σ → Val a Σ'
weaken-val ext unit = unit
weaken-val ext (loc l) = loc (∈-⊒ l ext)
weaken-val ext ⟨ e , E ⟩ = ⟨ e , weaken-env ext E ⟩
weaken-val ext (num z) = num z
weaken-env : ∀ {Γ}{Σ Σ' : StoreTy} → Σ ⊑ Σ' → Env Γ Σ → Env Γ Σ'
weaken-env ext (v ∷ vs) = weaken-val ext v ∷ weaken-env ext vs
weaken-env ext [] = []
-- The definition below asserts that values can be weakened, by adding
-- an instance argument of `Weakenable (Val t)`.
--
-- Here, `Weakenable` is defined as in the paper Section 3.4; see
-- `Common.Weakening` in this artifact.
instance
weaken-val' : ∀ {t} → Weakenable (Val t)
weaken-val' = record { wk = weaken-val }
return : ∀ {Σ Γ}{p : List Ty → Set} → p Σ → M Γ p Σ
return x E μ = just (_ , μ , x , ⊑-refl)
_>>=_ : ∀ {Σ Γ}{p q : StoreTy → Set} →
(f : M Γ p Σ) → (g : ∀ {Σ'} → p Σ' → M Γ q Σ') → M Γ q Σ
(f >>= c) E μ = case (f E μ) of λ{
nothing → nothing ;
(just (_ , μ' , x , ext)) → case (c x (weaken-env ext E) μ') of λ{
nothing → nothing ;
(just (_ , μ'' , y , ext')) → just (_ , μ'' , y , ext ⊚ ext')
}}
getEnv : ∀ {Σ Γ} → M Γ (Env Γ) Σ
getEnv E = return E E
usingEnv : ∀ {Σ Γ Γ'}{p : List Ty → Set} → Env Γ Σ → M Γ p Σ → M Γ' p Σ
usingEnv E f _ = f E
timeout : ∀ {Σ Γ}{p : List Ty → Set} → M Γ p Σ
timeout _ _ = nothing
store : ∀ {Σ t Γ} → Val t Σ → M Γ (Val (ref t)) Σ
store {Σ} {t} v _ μ
= let ext = ∷ʳ-⊒ t Σ
v' = loc (∈-∷ʳ Σ t)
μ' = (All.map (weaken-val ext) μ) all-∷ʳ (weaken-val ext v)
in just (_ , μ' , v' , ext)
deref : ∀ {Σ Γ t} → t ∈ Σ → M Γ (Val t) Σ
deref x E μ = return (All.lookup μ x) E μ
update : ∀ {Σ Γ t} → t ∈ Σ → Val t Σ → M Γ (λ _ → ⊤) Σ
update x v E μ = return tt E (update-store x v μ)
weaken : ∀ {i}{p : List Ty → Set i}⦃ w : Weakenable p ⦄ → ∀ {Σ Σ'} → Σ ⊑ Σ' → p Σ → p Σ'
weaken ⦃ w ⦄ ext v = Weakenable.wk w ext v
--------------------------------
-- STRONG MONADIC INTERPRETER --
--------------------------------
-- These definitions correspond to Section 3.4.
--
-- The definition of `_^_` below is defined in terms of the `_⊗_`
-- type, which is defined in `Common.Weakening` in this artifact.
_^_ : ∀ {Σ Γ}{p q : StoreTy → Set} → ⦃ w : Weakenable q ⦄ → M Γ p Σ → q Σ → M Γ (p ⊗ q) Σ
(f ^ x) E μ = case (f E μ) of λ {
nothing → nothing ;
(just (Σ , μ' , y , ext)) → just (Σ , μ' , (y , weaken ext x) , ext) }
eval : ℕ → ∀ {Σ Γ t} → Expr Γ t → M Γ (Val t) Σ
eval zero _ =
timeout
eval (suc k) unit =
return unit
eval (suc k) (var x) =
getEnv >>= λ E →
return (All.lookup E x)
eval (suc k) (ƛ e) =
getEnv >>= λ E →
return ⟨ e , E ⟩
eval (suc k) (l · r) =
eval k l >>= λ{ ⟨ e , E ⟩ →
(eval k r ^ E) >>= λ{ (v , E) →
usingEnv (v ∷ E) (eval k e) }}
eval (suc k) (num x) =
return (num x)
eval (suc k) (iop f l r) =
eval k l >>= λ{ (num vₗ) →
eval k r >>= λ{ (num vᵣ) →
return (num (f vₗ vᵣ)) }}
eval (suc k) (ifz c t e) =
eval k c >>= λ{ (num z) →
case z of λ{ (+ zero) →
eval k t
; _ →
eval k e }}
eval (suc k) (ref e) =
eval k e >>= λ v →
store v
eval (suc k) (! e) =
eval k e >>= λ{ (loc l) →
deref l }
eval (suc k) (r ≔ e) =
eval k r >>= λ{ (loc l) →
(eval k e ^ l) >>= λ{ (v , l) →
update l v >>= λ _ →
return unit }}
|
{
"alphanum_fraction": 0.5277823851,
"avg_line_length": 29.5539215686,
"ext": "agda",
"hexsha": "d65c794a1b64626984615d7f0229d9529d077f11",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "metaborg/mj.agda",
"max_forks_repo_path": "src/STLCRef/Semantics.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "metaborg/mj.agda",
"max_issues_repo_path": "src/STLCRef/Semantics.agda",
"max_line_length": 90,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "metaborg/mj.agda",
"max_stars_repo_path": "src/STLCRef/Semantics.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z",
"num_tokens": 2349,
"size": 6029
}
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import Setoids.Setoids
open import Functions.Definition
open import Groups.Definition
open import Sets.EquivalenceRelations
open import Groups.Homomorphisms.Definition
module Groups.Homomorphisms.Examples where
identityHom : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+A_ : A → A → A} (G : Group S _+A_) → GroupHom G G id
GroupHom.groupHom (identityHom {S = S} G) = Equivalence.reflexive (Setoid.eq S)
GroupHom.wellDefined (identityHom G) = id
|
{
"alphanum_fraction": 0.7297830375,
"avg_line_length": 36.2142857143,
"ext": "agda",
"hexsha": "71fb1fe2c81b8c5dcafc731ce8a6a6a5c3bfa3b8",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Groups/Homomorphisms/Examples.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Groups/Homomorphisms/Examples.agda",
"max_line_length": 114,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Groups/Homomorphisms/Examples.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 155,
"size": 507
}
|
module RMonads.Restriction where
open import Library
open import Categories
open import Functors
open import Naturals
open import Monads
open import RMonads
open Cat
open Fun
restrictM : ∀{a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}}(J : Fun C D) →
Monad D → RMonad J
restrictM J M = record {
T = T ∘ OMap J;
η = η;
bind = bind;
law1 = law1;
law2 = law2;
law3 = law3}
where open Monad M
open import Monads.MonadMorphs
open import RMonads.RMonadMorphs
restrictMM : ∀{a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}}{M M' : Monad D}
(J : Fun C D) → MonadMorph M M' →
RMonadMorph (restrictM J M) (restrictM J M')
restrictMM J MM = record {
morph = λ{X} → morph {OMap J X};
lawη = lawη;
lawbind = lawbind}
where open MonadMorph MM
open import Adjunctions
open import RAdjunctions
restrictA : ∀{a b c d e f}{C : Cat {a}{b}}{D : Cat {c}{d}}{E : Cat {e}{f}}
(J : Fun C D) → Adj D E → RAdj J E
restrictA J A = record{
L = L ○ J;
R = R;
left = left;
right = right;
lawa = lawa;
lawb = lawb;
natleft = natleft ∘ HMap J;
natright = natright ∘ HMap J}
where open Adj A
|
{
"alphanum_fraction": 0.5794785534,
"avg_line_length": 23.78,
"ext": "agda",
"hexsha": "ea822d01db394524a904b9463dd4fc60d88dd27a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jmchapman/Relative-Monads",
"max_forks_repo_path": "RMonads/Restriction.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jmchapman/Relative-Monads",
"max_issues_repo_path": "RMonads/Restriction.agda",
"max_line_length": 74,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jmchapman/Relative-Monads",
"max_stars_repo_path": "RMonads/Restriction.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z",
"num_tokens": 434,
"size": 1189
}
|
------------------------------------------------------------------------
-- Pure type systems (PTS)
------------------------------------------------------------------------
-- This file contains some core definitions which are reexported by
-- Pts.Typing
module Pts.Core where
open import Data.Fin.Substitution.Typed
open import Data.Product using (∃)
import Pts.Syntax
-- Instances of pure type systems.
record PTS : Set₁ where
-- The following predicates represent the set of sorts, axioms and
-- rules, respectively.
field
Sort : Set -- sorts
Axiom : Sort → Sort → Set -- axioms
Rule : Sort → Sort → Sort → Set -- rules
-- Convenience aliases of modules in Pts.Syntax.
module Syntax = Pts.Syntax.Syntax Sort
module Substitution = Pts.Syntax.Substitution Sort
module Ctx = Pts.Syntax.Ctx Sort
open Syntax
open Ctx
-- Abstract well-formed typing contexts.
module WfCtx (_⊢_∈_ : Typing Term Term Term) where
-- Well-formedness of terms/types.
_⊢_wf : Wf Term
Γ ⊢ a wf = ∃ λ s → Γ ⊢ a ∈ sort s
-- FIXME: the following definition should not be necessary.
--
-- Instead, it should be sufficient to directly open the module
-- WellFormedContext like so:
--
-- open WellFormedContext _⊢_wf public
--
-- but there is currently a bug that prevents us from doing so.
-- See https://github.com/agda/agda/issues/2901
_wf : ∀ {n} → Ctx n → Set
_wf = WellFormedContext._wf _⊢_wf
open WellFormedContext _⊢_wf public hiding (_wf)
|
{
"alphanum_fraction": 0.5879396985,
"avg_line_length": 29.4814814815,
"ext": "agda",
"hexsha": "27aa86a7c3c7acb640c8f708a27eb7c09de2dd90",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-08-11T23:28:33.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-08-20T10:29:44.000Z",
"max_forks_repo_head_hexsha": "d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "asr/pts-agda",
"max_forks_repo_path": "src/Pts/Core.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43",
"max_issues_repo_issues_event_max_datetime": "2017-08-21T16:01:50.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-08-21T14:48:09.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "asr/pts-agda",
"max_issues_repo_path": "src/Pts/Core.agda",
"max_line_length": 72,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "asr/pts-agda",
"max_stars_repo_path": "src/Pts/Core.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-31T10:47:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-05-13T12:11:10.000Z",
"num_tokens": 404,
"size": 1592
}
|
-- Andreas, 2016-02-09, issue reported by Anton Setzer
-- {-# OPTIONS -v tc.conv.infer:30 -v tc.deftype:30 #-}
{-# OPTIONS --allow-unsolved-metas #-}
data ⊥ : Set where
data MaybeSet : Set₁ where
nothing : MaybeSet
just : Set → MaybeSet
-- not injective
FromJust : MaybeSet → Set
FromJust nothing = ⊥
FromJust (just A) = A
R0 : ⊥ → Set
R0 ()
data C1 (A : Set) : Set where
c1 : ⊥ → C1 A
-- R1 is projection-like
R1 : (A : Set) → C1 A → Set
R1 A (c1 c) = R0 c
-- R1 A (c1 ()) -- no int. err.
record Iface : Set₁ where
field
Command : Set
Response : Command → Set
I1 : (A : Set) → Iface
Iface.Command (I1 A) = C1 A
Iface.Response (I1 A) = R1 A
-- Iface.Response (I1 A) (c1 c) = R0 c -- no int.err.
-- I1 A = record { Command = C1 A; Response = R1 A } -- no. int. err
postulate
IO : Iface → Set
data C2 (s : MaybeSet) : Set₁ where
c2 : (FromJust s → IO (I1 (FromJust s))) → C2 s
data IOˢ : MaybeSet → Set₁ where
do : {s : MaybeSet} (c : C2 s) → IOˢ s
postulate
bla : Set → ⊥ → IO (I1 ⊥)
test : IOˢ nothing
test = do (c2 (bla {!!}))
|
{
"alphanum_fraction": 0.5849582173,
"avg_line_length": 20.320754717,
"ext": "agda",
"hexsha": "2793605da3c3cedb90a9830653b5d543c90be2aa",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Succeed/Issue1825.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Succeed/Issue1825.agda",
"max_line_length": 68,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/Issue1825.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 425,
"size": 1077
}
|
{-# OPTIONS --universe-polymorphism #-}
module Categories.Cocones where
open import Level
open import Categories.Category
open import Categories.Functor hiding (_∘_; _≡_; equiv; id; assoc; identityˡ; identityʳ; ∘-resp-≡)
open import Categories.Cocone
record CoconeMorphism {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {J : Category o′ ℓ′ e′} {F : Functor J C} (c₁ c₂ : Cocone F) : Set (ℓ ⊔ e ⊔ o′ ⊔ ℓ′) where
module c₁ = Cocone c₁
module c₂ = Cocone c₂
module C = Category C
module J = Category J
open C
field
f : C [ c₁.N , c₂.N ]
.commute : ∀ {X} → f ∘ c₁.ψ X ≡ c₂.ψ X
Cocones : ∀ {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {J : Category o′ ℓ′ e′} (F : Functor J C) → Category (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′) (ℓ ⊔ e ⊔ o′ ⊔ ℓ′) e
Cocones {C = C} F = record
{ Obj = Obj′
; _⇒_ = Hom′
; _≡_ = _≡′_
; _∘_ = _∘′_
; id = record { f = id; commute = identityˡ }
; assoc = assoc
; identityˡ = identityˡ
; identityʳ = identityʳ
; equiv = record
{ refl = Equiv.refl
; sym = Equiv.sym
; trans = Equiv.trans
}
; ∘-resp-≡ = ∘-resp-≡
}
where
open Category C
open Cocone
open CoconeMorphism
open Functor F
infixr 9 _∘′_
infix 4 _≡′_
Obj′ = Cocone F
Hom′ : Obj′ → Obj′ → Set _
Hom′ = CoconeMorphism
_≡′_ : ∀ {A B} → Hom′ A B → Hom′ A B → Set _
F ≡′ G = f F ≡ f G
_∘′_ : ∀ {A B C} → Hom′ B C → Hom′ A B → Hom′ A C
_∘′_ {A} {B} {C} F G = record
{ f = f F ∘ f G
; commute = commute′
}
where
.commute′ : ∀ {X} → (f F ∘ f G) ∘ ψ A X ≡ ψ C X
commute′ {X} =
begin
(f F ∘ f G) ∘ ψ A X
↓⟨ assoc ⟩
f F ∘ (f G ∘ ψ A X)
↓⟨ ∘-resp-≡ʳ (CoconeMorphism.commute G) ⟩
f F ∘ ψ B X
↓⟨ CoconeMorphism.commute F ⟩
ψ C X
∎
where
open HomReasoning
|
{
"alphanum_fraction": 0.5154867257,
"avg_line_length": 24.4324324324,
"ext": "agda",
"hexsha": "dd6842bd75db848e3b5471ccb0aff8815d7f1e20",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Cocones.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Cocones.agda",
"max_line_length": 152,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Cocones.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 799,
"size": 1808
}
|
open import Agda.Builtin.Bool
open import Agda.Builtin.Equality
record R : Set₁ where
field
fun : (A : Set) → A → Bool → A ≡ Bool → Bool
rule : ∀ x → fun Bool false x refl ≡ false
open R
test : R
fun test .Bool true true refl = true
fun test _ _ _ _ = false
rule test x = refl
|
{
"alphanum_fraction": 0.6237623762,
"avg_line_length": 21.6428571429,
"ext": "agda",
"hexsha": "a82eb4ec40fd9dcf4df684a530b4093eb08ba24d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2964.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2964.agda",
"max_line_length": 49,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2964.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 99,
"size": 303
}
|
module Data.Vec.Any.Membership.Properties where
open import Relation.Binary
open import Data.Vec
module SingleSetoid {a ℓ} (S : Setoid a ℓ) where
open Setoid S renaming (Carrier to A)
open import Data.Vec.Any
open import Data.Vec.Any.Membership S
open import Function using (flip)
open import Data.Vec.Equality using (module Equality)
open Equality S renaming (_≈_ to _≋_; trans to ≋-trans)
⊆-reflexive : ∀ {n m} {xs : Vec A n} {ys : Vec A m} →
xs ≋ ys → xs ⊆ ys
⊆-reflexive []-cong ()
⊆-reflexive (x₁≈x₂ ∷-cong eq) (here x≈x₁) = here (trans x≈x₁ x₁≈x₂)
⊆-reflexive (_ ∷-cong eq) (there p) = there (⊆-reflexive eq p)
∈′-resp-≈ : ∀ {x} → (x ≈_) Respects _≈_
∈′-resp-≈ = flip trans
∈′-resp-≋ : ∀ {n₁ n₂ x}{xs₁ : Vec A n₁}{xs₂ : Vec A n₂} →
xs₁ ≋ xs₂ → x ∈′ xs₁ → x ∈′ xs₂
∈′-resp-≋ {xs₁ = .[]} {.[]} []-cong ()
∈′-resp-≋ {xs₁ = .(_ ∷ _)} {.(_ ∷ _)} (x¹≈x² ∷-cong eq) (here x≈x₁) = here (trans x≈x₁ x¹≈x²)
∈′-resp-≋ {xs₁ = .(_ ∷ _)} {.(_ ∷ _)} (x¹≈x² ∷-cong eq) (there p) =
there (∈′-resp-≋ eq p)
open SingleSetoid public
module DoubleSetoid {a₁ a₂ ℓ₁ ℓ₂}
(S₁ : Setoid a₁ ℓ₁) (S₂ : Setoid a₂ ℓ₂) where
open import Data.Vec.Any.Properties
import Data.Vec.Any as Any
open import Data.Product hiding (map)
open Setoid S₁ renaming (Carrier to A₁; _≈_ to _≈₁_; refl to refl₁)
open Setoid S₂ renaming (Carrier to A₂; _≈_ to _≈₂_)
open import Data.Vec.Any.Membership S₁ renaming (_∈′_ to _∈′₁_) using (find′)
open import Data.Vec.Any.Membership S₂ renaming (_∈′_ to _∈′₂_) using ()
∈′-map⁺ : ∀ {n x}{xs : Vec A₁ n} {f} →
f Preserves _≈₁_ ⟶ _≈₂_ →
x ∈′₁ xs → f x ∈′₂ map f xs
∈′-map⁺ pres x∈′xs = map⁺ (Any.map pres x∈′xs)
∈′-map⁻ : ∀ {n y}{xs : Vec A₁ n} {f} → y ∈′₂ map f xs →
∃ λ x → x ∈′₁ xs × y ≈₂ f x
∈′-map⁻ y∈′map with find′ (map⁻ y∈′map)
... | _ , x∈xs , px = , x∈xs , px
open DoubleSetoid public
|
{
"alphanum_fraction": 0.5518444666,
"avg_line_length": 37.8490566038,
"ext": "agda",
"hexsha": "06a9091556abe6834f1c2e4853df7126003420e7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1a60f72b9ea1dd61845311ee97dc380aa542b874",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "tizmd/agda-vector-any",
"max_forks_repo_path": "src/Data/Vec/Any/Membership/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1a60f72b9ea1dd61845311ee97dc380aa542b874",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "tizmd/agda-vector-any",
"max_issues_repo_path": "src/Data/Vec/Any/Membership/Properties.agda",
"max_line_length": 97,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1a60f72b9ea1dd61845311ee97dc380aa542b874",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "tizmd/agda-vector-any",
"max_stars_repo_path": "src/Data/Vec/Any/Membership/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 851,
"size": 2006
}
|
open import MLib.Algebra.PropertyCode
open import MLib.Algebra.PropertyCode.Structures
module MLib.Matrix.Pow {c ℓ} (struct : Struct bimonoidCode c ℓ) where
open import MLib.Prelude
open import MLib.Matrix.Core
open import MLib.Matrix.Equality struct
open import MLib.Matrix.Mul struct
open import MLib.Matrix.Plus struct
open import MLib.Matrix.Bimonoid struct
open FunctionProperties
module _ {n} where
open import MLib.Algebra.Operations (matrixStruct n)
pow : Matrix S n n → ℕ → Matrix S n n
pow M zero = 1●
pow M (suc p) = M ⊗ pow M p
pstar : Matrix S n n → ℕ → Matrix S n n
pstar M zero = 0●
pstar M (suc p) = 1● ⊕ M ⊗ pstar M p
pstar′ : Matrix S n n → ℕ → Matrix S n n
pstar′ M p = ∑[ q < p ] pow M (Fin.toℕ q)
pstar′-unfold : ∀ {M : Matrix S n n} {p} → pstar′ M (suc p) ≈ 1● ⊕ M ⊗ pstar′ M p
pstar′-unfold {M} {p} =
begin
pstar′ M (suc p) ≡⟨⟩
pow M (Fin.toℕ (zero {p})) ⊕ ∑[ q < p ] pow M (Fin.toℕ (suc q)) ≡⟨⟩
1● ⊕ ∑[ q < p ] pow M (suc (Fin.toℕ q)) ≡⟨⟩
1● ⊕ ∑[ q < p ] (M ⊗ pow M (Fin.toℕ q)) ≈⟨ ⊕-cong refl (sym (sumDistribˡ ⦃ {!!} ⦄ {p} M _)) ⟩
1● ⊕ M ⊗ ∑[ q < p ] pow M (Fin.toℕ q) ≡⟨⟩
1● ⊕ M ⊗ pstar′ M p ∎
where open EqReasoning setoid
-- pstar-pstar′ : ∀ {M : Matrix S n n} {p} → pstar M p ≈ pstar′ M p
-- pstar-pstar′ {p = zero} _ _ = S.refl
-- pstar-pstar′ {M = M} {suc p} =
-- begin
-- ((1● ⊕ M) ⊗ pstar M p) ≈⟨ {!!} ⟩
-- pow M (Fin.toℕ (zero {p})) ⊕ (Table.foldr {n = p} _⊕_ 0● (tabulate (pow M ∘ Fin.toℕ ∘ suc))) ≡⟨⟩
-- pstar′ M (suc p) ∎
-- where open EqReasoning setoid
|
{
"alphanum_fraction": 0.5070185289,
"avg_line_length": 37.1041666667,
"ext": "agda",
"hexsha": "831e34795080f77adb1ec39322788dfad68db6f4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bch29/agda-matrices",
"max_forks_repo_path": "src/MLib/Matrix/Pow.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bch29/agda-matrices",
"max_issues_repo_path": "src/MLib/Matrix/Pow.agda",
"max_line_length": 124,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bch29/agda-matrices",
"max_stars_repo_path": "src/MLib/Matrix/Pow.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 706,
"size": 1781
}
|
------------------------------------------------------------------------------
-- Common stuff used by the gcd example
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.GCD.Total.Definitions where
open import FOTC.Base
open import FOTC.Data.Nat.Divisibility.By0
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.Type
------------------------------------------------------------------------------
-- Common divisor.
CD : D → D → D → Set
CD m n cd = cd ∣ m ∧ cd ∣ n
{-# ATP definition CD #-}
-- Divisible for any common divisor.
Divisible : D → D → D → Set
Divisible m n gcd = ∀ cd → N cd → CD m n cd → cd ∣ gcd
{-# ATP definition Divisible #-}
-- Greatest common divisor specification.
-- The gcd is a common divisor and the gcd is divided by any common
-- divisor, thefore the gcd is the greatest common divisor
-- according to the partial order _∣_.
gcdSpec : D → D → D → Set
gcdSpec m n gcd = CD m n gcd ∧ Divisible m n gcd
{-# ATP definition gcdSpec #-}
|
{
"alphanum_fraction": 0.5258333333,
"avg_line_length": 33.3333333333,
"ext": "agda",
"hexsha": "53cde532c9bf70e5406df44ebbdf4c3411740929",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/GCD/Total/Definitions.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/GCD/Total/Definitions.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/GCD/Total/Definitions.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 264,
"size": 1200
}
|
{-# OPTIONS --without-K #-}
open import HoTT
open import lib.cubical.elims.CubeMove
module lib.cubical.elims.CofWedge where
cof-wedge-path-rec : ∀ {i j k l}
{X : Ptd i} {Y : Ptd j} {C : Type k} {D : Type l}
{f : X ∨ Y → C} {d₁ d₂ : D}
→ (p : d₁ == d₂)
→ (q : C → d₁ == d₂)
→ ((x : fst X) → p == q (f (winl x)))
→ ((y : fst Y) → p == q (f (winr y)))
→ ((κ : Cofiber f) → d₁ == d₂)
cof-wedge-path-rec {X = X} {Y = Y} {f = f} base* cod* winl* winr* =
CofiberRec.f _
base*
cod*
(WedgeElim.f
winl*
(λ y → (winl* (snd X) ∙ ap (cod* ∘ f) wglue)
∙ ! (winr* (snd Y)) ∙ winr* y)
(↓-cst=app-from-square $ disc-to-square $ ! $
ap (λ w → (winl* (snd X) ∙ ap (cod* ∘ f) wglue) ∙ w)
(!-inv-l (winr* (snd Y)))
∙ ∙-unit-r _))
cof-wedge-path-elim : ∀ {i j k l}
{X : Ptd i} {Y : Ptd j} {C : Type k} {D : Type l}
{f : X ∨ Y → C} (g h : Cofiber f → D)
→ (p : g (cfbase _) == h (cfbase _))
→ (q : (c : C) → g (cfcod _ c) == h (cfcod _ c))
→ ((x : fst X) → Square p (ap g (cfglue _ (winl x)))
(ap h (cfglue _ (winl x))) (q (f (winl x))))
→ ((y : fst Y) → Square p (ap g (cfglue _ (winr y)))
(ap h (cfglue _ (winr y))) (q (f (winr y))))
→ ((κ : Cofiber f) → g κ == h κ)
cof-wedge-path-elim {X = X} {Y = Y} {f = f} g h base* cod* winl* winr* =
Cofiber-elim _
base*
cod*
(↓-='-from-square ∘ Wedge-elim
winl*
(λ y → fst fill ⊡h winr* y)
(cube-to-↓-square $
cube-right-from-front _ (winr* (snd Y)) (snd fill)))
where
fill : Σ (Square base* idp idp base*) (λ sq' →
Cube (winl* (snd X)) sq'
(natural-square (λ _ → base*) wglue)
(square-push-rb _ _ (natural-square (ap g ∘ cfglue _) wglue))
(square-push-rb _ _ (natural-square (ap h ∘ cfglue _) wglue))
(natural-square (cod* ∘ f) wglue ⊡h' !□h (winr* (snd Y))))
fill = fill-cube-right _ _ _ _ _
{- Note, only squares with constant endpoints. General case? -}
cof-wedge-square-elim : ∀ {i j k l}
{X : Ptd i} {Y : Ptd j} {C : Type k} {D : Type l}
{f : X ∨ Y → C} {d₀₀ d₀₁ d₁₀ d₁₁ : D}
(p₀₋ : (κ : Cofiber f) → d₀₀ == d₀₁)
(p₋₀ : (κ : Cofiber f) → d₀₀ == d₁₀)
(p₋₁ : (κ : Cofiber f) → d₀₁ == d₁₁)
(p₁₋ : (κ : Cofiber f) → d₁₀ == d₁₁)
→ (base* : Square (p₀₋ (cfbase _)) (p₋₀ (cfbase _))
(p₋₁ (cfbase _)) (p₁₋ (cfbase _)))
→ (cod* : (c : C) → Square (p₀₋ (cfcod _ c)) (p₋₀ (cfcod _ c))
(p₋₁ (cfcod _ c)) (p₁₋ (cfcod _ c)))
→ ((x : fst X) → Cube base* (cod* (f (winl x)))
(natural-square p₀₋ (cfglue _ (winl x)))
(natural-square p₋₀ (cfglue _ (winl x)))
(natural-square p₋₁ (cfglue _ (winl x)))
(natural-square p₁₋ (cfglue _ (winl x))))
→ ((y : fst Y) → Cube base* (cod* (f (winr y)))
(natural-square p₀₋ (cfglue _ (winr y)))
(natural-square p₋₀ (cfglue _ (winr y)))
(natural-square p₋₁ (cfglue _ (winr y)))
(natural-square p₁₋ (cfglue _ (winr y))))
→ ((κ : Cofiber f) → Square (p₀₋ κ) (p₋₀ κ) (p₋₁ κ) (p₁₋ κ))
cof-wedge-square-elim p₀₋ p₋₀ p₋₁ p₁₋ base* cod* winl* winr* =
disc-to-square ∘ cof-wedge-path-elim _ _
(square-to-disc base*)
(square-to-disc ∘ cod*)
(cube-to-disc-square ∘ winl*)
(cube-to-disc-square ∘ winr*)
|
{
"alphanum_fraction": 0.4730242053,
"avg_line_length": 38.9659090909,
"ext": "agda",
"hexsha": "34e53ea0ef51703a4acc35bf2906e2780fb499ad",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "danbornside/HoTT-Agda",
"max_forks_repo_path": "lib/cubical/elims/CofWedge.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "danbornside/HoTT-Agda",
"max_issues_repo_path": "lib/cubical/elims/CofWedge.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "danbornside/HoTT-Agda",
"max_stars_repo_path": "lib/cubical/elims/CofWedge.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1420,
"size": 3429
}
|
{-# OPTIONS --safe #-}
module Cubical.Categories.Functor.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Sigma
open import Cubical.Categories.Category
private
variable
ℓC ℓC' ℓD ℓD' : Level
record Functor (C : Category ℓC ℓC') (D : Category ℓD ℓD') :
Type (ℓ-max (ℓ-max ℓC ℓC') (ℓ-max ℓD ℓD')) where
no-eta-equality
open Category
field
F-ob : C .ob → D .ob
F-hom : {x y : C .ob} → C [ x , y ] → D [ F-ob x , F-ob y ]
F-id : {x : C .ob} → F-hom (C .id) ≡ D .id {x = F-ob x}
F-seq : {x y z : C .ob} (f : C [ x , y ]) (g : C [ y , z ])
→ F-hom (f ⋆⟨ C ⟩ g) ≡ (F-hom f) ⋆⟨ D ⟩ (F-hom g)
isFull = (x y : _) (F[f] : D [ F-ob x , F-ob y ]) → ∃[ f ∈ C [ x , y ] ] F-hom f ≡ F[f]
isFaithful = (x y : _) (f g : C [ x , y ]) → F-hom f ≡ F-hom g → f ≡ g
isEssentiallySurj = (d : D .ob) → Σ[ c ∈ C .ob ] CatIso D (F-ob c) d
F-square : {x y u v : C .ob}
{f : C [ x , y ]} {g : C [ x , u ]}
{h : C [ u , v ]} {k : C [ y , v ]}
→ f ⋆⟨ C ⟩ k ≡ g ⋆⟨ C ⟩ h
→ (F-hom f) ⋆⟨ D ⟩ (F-hom k) ≡ (F-hom g) ⋆⟨ D ⟩ (F-hom h)
F-square Csquare = sym (F-seq _ _) ∙∙ cong F-hom Csquare ∙∙ F-seq _ _
private
variable
ℓ ℓ' : Level
C D E : Category ℓ ℓ'
open Category
open Functor
Functor≡ : {F G : Functor C D}
→ (h : ∀ (c : ob C) → F-ob F c ≡ F-ob G c)
→ (∀ {c c' : ob C} (f : C [ c , c' ]) → PathP (λ i → D [ h c i , h c' i ]) (F-hom F f) (F-hom G f))
→ F ≡ G
F-ob (Functor≡ hOb hHom i) c = hOb c i
F-hom (Functor≡ hOb hHom i) f = hHom f i
F-id (Functor≡ {C = C} {D = D} {F = F} {G = G} hOb hHom i) =
isProp→PathP (λ j → isSetHom D (hHom (C .id) j) (D .id)) (F-id F) (F-id G) i
F-seq (Functor≡ {C = C} {D = D} {F = F} {G = G} hOb hHom i) f g =
isProp→PathP (λ j → isSetHom D (hHom (f ⋆⟨ C ⟩ g) j) ((hHom f j) ⋆⟨ D ⟩ (hHom g j))) (F-seq F f g) (F-seq G f g) i
-- Helpful notation
-- action on objects
infix 30 _⟅_⟆
_⟅_⟆ : (F : Functor C D)
→ C .ob
→ D .ob
_⟅_⟆ = F-ob
-- action on morphisms
infix 30 _⟪_⟫ -- same infix level as on objects since these will never be used in the same context
_⟪_⟫ : (F : Functor C D)
→ ∀ {x y}
→ C [ x , y ]
→ D [(F ⟅ x ⟆) , (F ⟅ y ⟆)]
_⟪_⟫ = F-hom
-- Functor constructions
𝟙⟨_⟩ : ∀ (C : Category ℓ ℓ') → Functor C C
𝟙⟨ C ⟩ .F-ob x = x
𝟙⟨ C ⟩ .F-hom f = f
𝟙⟨ C ⟩ .F-id = refl
𝟙⟨ C ⟩ .F-seq _ _ = refl
-- functor composition
funcComp : ∀ (G : Functor D E) (F : Functor C D) → Functor C E
(funcComp G F) .F-ob c = G ⟅ F ⟅ c ⟆ ⟆
(funcComp G F) .F-hom f = G ⟪ F ⟪ f ⟫ ⟫
(funcComp G F) .F-id = cong (G ⟪_⟫) (F .F-id) ∙ G .F-id
(funcComp G F) .F-seq f g = cong (G ⟪_⟫) (F .F-seq _ _) ∙ G .F-seq _ _
infixr 30 funcComp
syntax funcComp G F = G ∘F F
_^opF : Functor C D → Functor (C ^op) (D ^op)
(F ^opF) .F-ob = F .F-ob
(F ^opF) .F-hom = F .F-hom
(F ^opF) .F-id = F .F-id
(F ^opF) .F-seq f g = F .F-seq g f
|
{
"alphanum_fraction": 0.4805414552,
"avg_line_length": 29.2574257426,
"ext": "agda",
"hexsha": "161edd56a8b8402c3312c7a7ce364956159ce2e7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "howsiyu/cubical",
"max_forks_repo_path": "Cubical/Categories/Functor/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "howsiyu/cubical",
"max_issues_repo_path": "Cubical/Categories/Functor/Base.agda",
"max_line_length": 116,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "howsiyu/cubical",
"max_stars_repo_path": "Cubical/Categories/Functor/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1397,
"size": 2955
}
|
module STLC.Kovacs.PresheafRefinement where
open import STLC.Kovacs.Substitution public
open import STLC.Kovacs.Normalisation public
open import Category
--------------------------------------------------------------------------------
-- (Tyᴺ-idₑ)
idacc : ∀ {A Γ} → (a : Γ ⊩ A)
→ acc idₑ a ≡ a
idacc {⎵} M = idrenⁿᶠ M
idacc {A ⇒ B} f = fext¡ (fext! (λ η → f & lid○ η))
-- (Tyᴺ-∘ₑ)
acc○ : ∀ {A Γ Γ′ Γ″} → (η₁ : Γ″ ⊇ Γ′) (η₂ : Γ′ ⊇ Γ) (a : Γ ⊩ A)
→ acc (η₂ ○ η₁) a ≡ (acc η₁ ∘ acc η₂) a
acc○ {⎵} η₁ η₂ M = renⁿᶠ○ η₁ η₂ M
acc○ {A ⇒ B} η₁ η₂ f = fext¡ (fext! (λ η′ → f & assoc○ η′ η₁ η₂))
-- (Conᴺ-idₑ)
lid⬖ : ∀ {Γ Ξ} → (ρ : Γ ⊩⋆ Ξ)
→ ρ ⬖ idₑ ≡ ρ
lid⬖ ∅ = refl
lid⬖ (ρ , a) = _,_ & lid⬖ ρ
⊗ idacc a
-- (Conᴺ-∘ₑ)
comp⬖○ : ∀ {Γ Γ′ Γ″ Ξ} → (η₁ : Γ″ ⊇ Γ′) (η₂ : Γ′ ⊇ Γ) (ρ : Γ ⊩⋆ Ξ)
→ (ρ ⬖ η₂) ⬖ η₁ ≡ ρ ⬖ (η₂ ○ η₁)
comp⬖○ η₁ η₂ ∅ = refl
comp⬖○ η₁ η₂ (ρ , a) = _,_ & comp⬖○ η₁ η₂ ρ
⊗ (acc○ η₁ η₂ a ⁻¹)
-- (∈ᴺ-nat)
get⬖ : ∀ {Γ Γ′ Ξ A} → (η : Γ′ ⊇ Γ) (ρ : Γ ⊩⋆ Ξ) (i : Ξ ∋ A)
→ getᵥ (ρ ⬖ η) i ≡ (acc η ∘ getᵥ ρ) i
get⬖ η (ρ , a) zero = refl
get⬖ η (ρ , a) (suc i) = get⬖ η ρ i
--------------------------------------------------------------------------------
-- (Tyᴾ)
𝒰 : ∀ {A Γ} → Γ ⊩ A → Set
𝒰 {⎵} {Γ} M = ⊤
𝒰 {A ⇒ B} {Γ} f = ∀ {Γ′} → (η : Γ′ ⊇ Γ) {a : Γ′ ⊩ A} (u : 𝒰 a)
→ (∀ {Γ″} → (η′ : Γ″ ⊇ Γ′)
→ (f (η ○ η′) ∘ acc η′) a ≡
(acc η′ ∘ f η) a)
× 𝒰 (f η a)
-- (Tyᴾₑ)
acc𝒰 : ∀ {A Γ Γ′} → {a : Γ ⊩ A}
→ (η : Γ′ ⊇ Γ) → 𝒰 a
→ 𝒰 (acc η a)
acc𝒰 {⎵} {a = M} η tt = tt
acc𝒰 {A ⇒ B} {a = f} η u = λ η′ {a} u′ →
let
natf , u″ = u (η ○ η′) u′
in
(λ η″ → (λ η‴ → (f η‴ ∘ acc η″) a)
& (assoc○ η″ η′ η ⁻¹)
⦙ natf η″)
, u″
-- (Conᴾ ; ∙ ; _,_)
data 𝒰⋆ : ∀ {Γ Ξ} → Γ ⊩⋆ Ξ → Set where
∅ : ∀ {Γ} → 𝒰⋆ (∅ {Γ})
_,_ : ∀ {Γ Ξ A} → {ρ : Γ ⊩⋆ Ξ} {a : Γ ⊩ A}
→ (υ : 𝒰⋆ ρ) (u : 𝒰 a)
→ 𝒰⋆ (ρ , a)
-- (Conᴾₑ)
-- NOTE _⬖𝒰_ = acc𝒰⋆
_⬖𝒰_ : ∀ {Γ Γ′ Ξ} → {ρ : Γ ⊩⋆ Ξ}
→ 𝒰⋆ ρ → (η : Γ′ ⊇ Γ)
→ 𝒰⋆ (ρ ⬖ η)
∅ ⬖𝒰 η = ∅
(υ , u) ⬖𝒰 η = υ ⬖𝒰 η , acc𝒰 η u
--------------------------------------------------------------------------------
-- (∈ᴾ)
get𝒰 : ∀ {Γ Ξ A} → {ρ : Γ ⊩⋆ Ξ}
→ 𝒰⋆ ρ → (i : Ξ ∋ A)
→ 𝒰 (getᵥ ρ i)
get𝒰 (υ , u) zero = u
get𝒰 (υ , u) (suc i) = get𝒰 υ i
mutual
-- (Tmᴾ)
eval𝒰 : ∀ {Γ Ξ A} → {ρ : Γ ⊩⋆ Ξ}
→ 𝒰⋆ ρ → (M : Ξ ⊢ A)
→ 𝒰 (eval ρ M)
eval𝒰 {ρ = ρ} υ (𝓋 i) = get𝒰 υ i
eval𝒰 {ρ = ρ} υ (ƛ M) = λ η {a} u →
(λ η′ → (λ ρ′ → eval (ρ′ , acc η′ a) M)
& (comp⬖○ η′ η ρ ⁻¹)
⦙ eval⬖ η′ (υ ⬖𝒰 η , u) M)
, eval𝒰 (υ ⬖𝒰 η , u) M
eval𝒰 {ρ = ρ} υ (M ∙ N) = proj₂ (eval𝒰 υ M idₑ (eval𝒰 υ N))
-- (Tmᴺ-nat)
eval⬖ : ∀ {Γ Γ′ Ξ A} → {ρ : Γ ⊩⋆ Ξ}
→ (η : Γ′ ⊇ Γ) → 𝒰⋆ ρ → (M : Ξ ⊢ A)
→ eval (ρ ⬖ η) M ≡ (acc η ∘ eval ρ) M
eval⬖ {ρ = ρ} η υ (𝓋 i) = get⬖ η ρ i
eval⬖ {ρ = ρ} η υ (ƛ M) = fext¡ (fext! (λ η′ → fext! (λ a →
(λ ρ′ → eval ρ′ M)
& ((_, a) & comp⬖○ η′ η ρ))))
eval⬖ {ρ = ρ} η υ (M ∙ N) rewrite eval⬖ η υ M | eval⬖ η υ N
= (λ η′ → eval ρ M η′ (acc η (eval ρ N)))
& (rid○ η ⦙ lid○ η ⁻¹)
⦙ proj₁ (eval𝒰 υ M idₑ (eval𝒰 υ N)) η
mutual
-- (uᴾ)
reflect𝒰 : ∀ {A Γ} → (M : Γ ⊢ⁿᵉ A)
→ 𝒰 (reflect M)
reflect𝒰 {⎵} M = tt
reflect𝒰 {A ⇒ B} M = λ η {a} u →
(λ η′ → (λ M′ N′ → reflect (M′ ∙ N′))
& renⁿᵉ○ η′ η M
⊗ (natreify η′ a u)
⦙ natreflect η′ (renⁿᵉ η M ∙ reify a))
, reflect𝒰 (renⁿᵉ η M ∙ reify a)
-- (qᴺ-nat)
natreify : ∀ {A Γ Γ′} → (η : Γ′ ⊇ Γ) (a : Γ ⊩ A) → 𝒰 a
→ (reify ∘ acc η) a ≡ (renⁿᶠ η ∘ reify) a
natreify {⎵} η M u = refl
natreify {A ⇒ B} η f u =
let
natf , u′ = u (wkₑ idₑ) (reflect𝒰 0)
in
ƛ & ( reify & ( f & (wkₑ & ( rid○ η
⦙ lid○ η ⁻¹
))
⊗ natreflect (liftₑ η) 0
⦙ natf (liftₑ η)
)
⦙ natreify (liftₑ η) (f (wkₑ idₑ) (reflect 0)) u′
)
-- (uᴺ-nat)
natreflect : ∀ {A Γ Γ′} → (η : Γ′ ⊇ Γ) (M : Γ ⊢ⁿᵉ A)
→ (reflect ∘ renⁿᵉ η) M ≡ (acc η ∘ reflect) M
natreflect {⎵} η M = refl
natreflect {A ⇒ B} η M = fext¡ (fext! (λ η′ → fext! (λ a →
(λ M′ → reflect (M′ ∙ reify a))
& (renⁿᵉ○ η′ η M ⁻¹))))
-- (uᶜᴾ)
id𝒰 : ∀ {Γ} → 𝒰⋆ (idᵥ {Γ})
id𝒰 {∅} = ∅
id𝒰 {Γ , A} = id𝒰 ⬖𝒰 wkₑ idₑ , reflect𝒰 0
--------------------------------------------------------------------------------
-- (OPEᴺ)
_⬗_ : ∀ {Γ Ξ Ξ′} → Ξ′ ⊇ Ξ → Γ ⊩⋆ Ξ′ → Γ ⊩⋆ Ξ
done ⬗ ρ = ρ
wkₑ η ⬗ (ρ , a) = η ⬗ ρ
liftₑ η ⬗ (ρ , a) = η ⬗ ρ , a
-- (OPEᴺ-nat)
nat⬗ : ∀ {Γ Γ′ Ξ Ξ′} → (η₁ : Γ′ ⊇ Γ) (ρ : Γ ⊩⋆ Ξ′) (η₂ : Ξ′ ⊇ Ξ)
→ η₂ ⬗ (ρ ⬖ η₁) ≡ (η₂ ⬗ ρ) ⬖ η₁
nat⬗ η₁ ρ done = refl
nat⬗ η₁ (ρ , a) (wkₑ η₂) = nat⬗ η₁ ρ η₂
nat⬗ η₁ (ρ , a) (liftₑ η₂) = (_, acc η₁ a) & nat⬗ η₁ ρ η₂
-- (OPEᴺ-idₑ)
lid⬗ : ∀ {Γ Ξ} → (ρ : Γ ⊩⋆ Ξ)
→ idₑ ⬗ ρ ≡ ρ
lid⬗ ∅ = refl
lid⬗ (ρ , a) = (_, a) & lid⬗ ρ
--------------------------------------------------------------------------------
-- (∈ₑᴺ)
get⬗ : ∀ {Γ Ξ Ξ′ A} → (ρ : Γ ⊩⋆ Ξ′) (η : Ξ′ ⊇ Ξ) (i : Ξ ∋ A)
→ getᵥ (η ⬗ ρ) i ≡ (getᵥ ρ ∘ getₑ η) i
get⬗ ρ done i = refl
get⬗ (ρ , a) (wkₑ η) i = get⬗ ρ η i
get⬗ (ρ , a) (liftₑ η) zero = refl
get⬗ (ρ , a) (liftₑ η) (suc i) = get⬗ ρ η i
-- (Tmₑᴺ)
eval⬗ : ∀ {Γ Ξ Ξ′ A} → (ρ : Γ ⊩⋆ Ξ′) (η : Ξ′ ⊇ Ξ) (M : Ξ ⊢ A)
→ eval (η ⬗ ρ) M ≡ (eval ρ ∘ ren η) M
eval⬗ ρ η (𝓋 i) = get⬗ ρ η i
eval⬗ ρ η (ƛ M) = fext¡ (fext! (λ η′ → fext! (λ a →
(λ ρ′ → eval (ρ′ , a) M) & nat⬗ η′ ρ η ⁻¹
⦙ eval⬗ (ρ ⬖ η′ , a) (liftₑ η) M)))
eval⬗ ρ η (M ∙ N) rewrite eval⬗ ρ η M | eval⬗ ρ η N
= refl
--------------------------------------------------------------------------------
-- (Subᴺ)
-- NOTE: _◆_ = eval⋆
_◆_ : ∀ {Γ Ξ Φ} → Ξ ⊢⋆ Φ → Γ ⊩⋆ Ξ → Γ ⊩⋆ Φ
∅ ◆ ρ = ∅
(σ , M) ◆ ρ = σ ◆ ρ , eval ρ M
-- (Subᴺ-nat)
comp◆⬖ : ∀ {Γ Γ′ Ξ Φ} → {ρ : Γ ⊩⋆ Ξ}
→ (η : Γ′ ⊇ Γ) → 𝒰⋆ ρ → (σ : Ξ ⊢⋆ Φ)
→ (σ ◆ ρ) ⬖ η ≡ σ ◆ (ρ ⬖ η)
comp◆⬖ η υ ∅ = refl
comp◆⬖ η υ (σ , M) = _,_ & comp◆⬖ η υ σ
⊗ (eval⬖ η υ M ⁻¹)
-- (Subᴺ-ₛ∘ₑ)
comp◆⬗ : ∀ {Γ Ξ Ξ′ Φ} → (ρ : Γ ⊩⋆ Ξ′) (η : Ξ′ ⊇ Ξ) (σ : Ξ ⊢⋆ Φ)
→ (σ ◐ η) ◆ ρ ≡ σ ◆ (η ⬗ ρ)
comp◆⬗ ρ η ∅ = refl
comp◆⬗ ρ η (σ , M) = _,_ & comp◆⬗ ρ η σ
⊗ (eval⬗ ρ η M ⁻¹)
-- (∈ₛᴺ)
get◆ : ∀ {Γ Ξ Φ A} → (ρ : Γ ⊩⋆ Ξ) (σ : Ξ ⊢⋆ Φ) (i : Φ ∋ A)
→ getᵥ (σ ◆ ρ) i ≡ (eval ρ ∘ getₛ σ) i
get◆ ρ (σ , M) zero = refl
get◆ ρ (σ , M) (suc i) = get◆ ρ σ i
-- (Subᴺ-idₛ)
lid◆ : ∀ {Γ Ξ} → (ρ : Γ ⊩⋆ Ξ)
→ idₛ ◆ ρ ≡ ρ
lid◆ ∅ = refl
lid◆ (ρ , a) = (_, a) & ( comp◆⬗ (ρ , a) (wkₑ idₑ) idₛ
⦙ lid◆ (idₑ ⬗ ρ)
⦙ lid⬗ ρ
)
--------------------------------------------------------------------------------
accPsh : 𝒯 → Presheaf₀ 𝗢𝗣𝗘
accPsh A =
record
{ Fₓ = _⊩ A
; F = acc
; idF = fext! idacc
; F⋄ = λ η₁ η₂ → fext! (acc○ η₂ η₁)
}
flip⬖Psh : 𝒞 → Presheaf₀ 𝗢𝗣𝗘
flip⬖Psh Ξ =
record
{ Fₓ = _⊩⋆ Ξ
; F = flip _⬖_
; idF = fext! lid⬖
; F⋄ = λ η₁ η₂ → fext! (λ ρ → comp⬖○ η₂ η₁ ρ ⁻¹)
}
getᵥNT : ∀ {Ξ A} → (i : Ξ ∋ A)
→ NaturalTransformation (flip⬖Psh Ξ) (accPsh A)
getᵥNT i =
record
{ N = flip getᵥ i
; natN = λ η → fext! (λ ρ → get⬖ η ρ i)
}
-- TODO
-- evalNT : ∀ {Ξ A} → (M : Ξ ⊢ A)
-- → NaturalTransformation (flip⬖Psh Ξ) (accPsh A)
-- evalNT M =
-- record
-- { N = flip eval M
-- ; natN = λ η → fext! (λ ρ → eval⬖ {ρ = ρ} η {!!} M)
-- }
-- TODO
-- reifyNT : ∀ {A} → NaturalTransformation (accPsh A) (renⁿᶠPsh A)
-- reifyNT =
-- record
-- { N = reify
-- ; natN = λ η → fext! (λ a → natreify η a {!!})
-- }
reflectNT : ∀ {A} → NaturalTransformation (renⁿᵉPsh A) (accPsh A)
reflectNT =
record
{ N = reflect
; natN = λ η → fext! (λ M → natreflect η M)
}
--------------------------------------------------------------------------------
|
{
"alphanum_fraction": 0.2991278131,
"avg_line_length": 29.8617363344,
"ext": "agda",
"hexsha": "1e2c532eae2879425f07a0e4b1703d6863d2ff87",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/coquand-kovacs",
"max_forks_repo_path": "src/STLC/Kovacs/PresheafRefinement.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/coquand-kovacs",
"max_issues_repo_path": "src/STLC/Kovacs/PresheafRefinement.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/coquand-kovacs",
"max_stars_repo_path": "src/STLC/Kovacs/PresheafRefinement.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4709,
"size": 9287
}
|
------------------------------------------------------------------------
-- A combinator for running two (independent) computations in sequence
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
module Delay-monad.Sequential where
open import Equality.Propositional as Eq using (_≡_)
open import Prelude hiding (_+_)
open import Prelude.Size
open import Conat Eq.equality-with-J as Conat
using (zero; suc; force; _+_)
open import Delay-monad
open import Delay-monad.Bisimilarity
open import Delay-monad.Bisimilarity.Kind
open import Delay-monad.Monad
private
variable
a : Level
A B C : Type a
i : Size
k : Kind
f₁ f₂ : Delay (A → B) ∞
x x₁ x₂ y y₁ y₂ : Delay A ∞
f′ : Delay′ (A → B) ∞
x′ : Delay′ A ∞
h : A → B
z : A
------------------------------------------------------------------------
-- The _⊛_ operator
-- Sequential composition of computations.
infixl 6 _⊛_
_⊛_ : Delay (A → B) i → Delay A i → Delay B i
f ⊛ x = f >>=′ λ f → x >>=′ λ x → now (f x)
-- The number of later constructors in f ⊛ x is bisimilar to the sum
-- of the number of later constructors in f and the number of later
-- constructors in x.
steps-⊛∼steps-+-steps :
(f : Delay (A → B) ∞) →
Conat.[ i ] steps (f ⊛ x) ∼ steps f + steps x
steps-⊛∼steps-+-steps {x = now _} (now _) = zero
steps-⊛∼steps-+-steps {x = later _} (now _) = suc λ { .force → steps-⊛∼steps-+-steps (now _) }
steps-⊛∼steps-+-steps (later f) = suc λ { .force → steps-⊛∼steps-+-steps (f .force) }
-- A rearrangement lemma for _⊛_.
later-⊛∼⊛-later :
[ i ] later f′ ⊛ x′ .force ∼ f′ .force ⊛ later x′
later-⊛∼⊛-later = lemma _ Eq.refl
where
lemma :
∀ f → f′ .force ≡ f → [ i ] later f′ ⊛ x′ .force ∼ f ⊛ later x′
lemma {f′ = f′} {x′ = x′} (now f) eq = later λ { .force →
f′ .force ⊛ x′ .force ≡⟨ Eq.cong (_⊛ x′ .force) eq ⟩
now f ⊛ x′ .force ∎ }
lemma {f′ = f′} {x′ = x′} (later f) eq = later λ { .force →
f′ .force ⊛ x′ .force ≡⟨ Eq.cong (_⊛ x′ .force) eq ⟩
later f ⊛ x′ .force ∼⟨ later-⊛∼⊛-later ⟩∼
f .force ⊛ later x′ ∎ }
-- The _⊛_ operator preserves strong and weak bisimilarity and
-- expansion.
infixl 6 _⊛-cong_
_⊛-cong_ :
[ i ] f₁ ⟨ k ⟩ f₂ →
[ i ] x₁ ⟨ k ⟩ x₂ →
[ i ] f₁ ⊛ x₁ ⟨ k ⟩ f₂ ⊛ x₂
p ⊛-cong q = p >>=-cong λ _ → q >>=-cong λ _ → now
-- The _⊛_ operator is (kind of) commutative.
⊛-comm :
(f : Delay (A → B) ∞) (x : Delay A ∞) →
[ i ] f ⊛ x ∼ map′ (flip _$_) x ⊛ f
⊛-comm (now f) (now x) = reflexive _
⊛-comm (now f) (later x) = later λ { .force → ⊛-comm (now f) (x .force) }
⊛-comm (later f) (now x) = later λ { .force → ⊛-comm (f .force) (now x) }
⊛-comm (later f) (later x) = later λ { .force →
f .force ⊛ later x ∼⟨ symmetric later-⊛∼⊛-later ⟩
later f ⊛ x .force ∼⟨ ⊛-comm (later f) (x .force) ⟩∼
map′ (flip _$_) (x .force) ⊛ later f ∎ }
-- The function map′ can be expressed using _⊛_.
map∼now-⊛ : (x : Delay A ∞) → [ i ] map′ h x ∼ now h ⊛ x
map∼now-⊛ {h = h} x =
map′ h x ∼⟨ map∼>>=-now _ ⟩
(x >>=′ now ∘ h) ∼⟨⟩
(now h >>=′ λ h → x >>=′ now ∘ h) ∼⟨⟩
now h ⊛ x ∎
-- The applicative functor laws hold up to strong bisimilarity.
now-id-⊛ : [ i ] now id ⊛ x ∼ x
now-id-⊛ {x = now x} = now
now-id-⊛ {x = later x} = later λ { .force → now-id-⊛ }
now-∘-⊛-⊛-⊛ :
(f : Delay (B → C) ∞) (g : Delay (A → B) ∞) (x : Delay A ∞) →
[ i ] now (λ f → f ∘_) ⊛ f ⊛ g ⊛ x ∼ f ⊛ (g ⊛ x)
now-∘-⊛-⊛-⊛ (now _) (now _) (now _) = now
now-∘-⊛-⊛-⊛ (now _) (now _) (later x) = later λ { .force → now-∘-⊛-⊛-⊛ (now _) (now _) (x .force) }
now-∘-⊛-⊛-⊛ (now _) (later g) x = later λ { .force → now-∘-⊛-⊛-⊛ (now _) (g .force) x }
now-∘-⊛-⊛-⊛ (later f) g x = later λ { .force → now-∘-⊛-⊛-⊛ (f .force) g x }
now-⊛-now : [ i ] now h ⊛ now z ∼ now (h z)
now-⊛-now = now
⊛-now :
(f : Delay (A → B) ∞) →
[ i ] f ⊛ now z ∼ now (λ f → f z) ⊛ f
⊛-now (now f) = now
⊛-now (later f) = later λ { .force → ⊛-now (f .force) }
------------------------------------------------------------------------
-- The _∣_ operator
-- Sequential composition of computations.
infix 10 _∣_
_∣_ : Delay A i → Delay B i → Delay (A × B) i
x ∣ y = map′ _,_ x ⊛ y
-- The number of later constructors in x ∣ y is bisimilar to the sum
-- of the number of later constructors in x and the number of later
-- constructors in y.
steps-∣∼max-steps-steps :
Conat.[ i ] steps (x ∣ y) ∼ steps x + steps y
steps-∣∼max-steps-steps {x = x} {y = y} =
steps (x ∣ y) Conat.∼⟨ Conat.reflexive-∼ _ ⟩
steps (map′ _,_ x ⊛ y) Conat.∼⟨ steps-⊛∼steps-+-steps (map′ _,_ x) ⟩
steps (map′ _,_ x) + steps y Conat.∼⟨ steps-map′ x Conat.+-cong Conat.reflexive-∼ _ ⟩∎
steps x + steps y ∎∼
-- The _∣_ operator preserves strong and weak bisimilarity and
-- expansion.
infix 10 _∣-cong_
_∣-cong_ :
[ i ] x₁ ⟨ k ⟩ x₂ →
[ i ] y₁ ⟨ k ⟩ y₂ →
[ i ] x₁ ∣ y₁ ⟨ k ⟩ x₂ ∣ y₂
p ∣-cong q = map-cong _,_ p ⊛-cong q
-- The _∣_ operator is commutative (up to swapping of results).
∣-comm : [ i ] x ∣ y ∼ map′ swap (y ∣ x)
∣-comm {x = x} {y = y} =
x ∣ y ∼⟨⟩
map′ _,_ x ⊛ y ∼⟨ ⊛-comm (map′ _,_ x) y ⟩
map′ (flip _$_) y ⊛ map′ _,_ x ∼⟨ map∼now-⊛ y ⊛-cong map∼now-⊛ x ⟩
now (flip _$_) ⊛ y ⊛ (now _,_ ⊛ x) ∼⟨ symmetric (now-∘-⊛-⊛-⊛ (now _ ⊛ y) (now _) x) ⟩
now (λ f → f ∘_) ⊛ (now (flip _$_) ⊛ y) ⊛ now _,_ ⊛ x ∼⟨ symmetric (now-∘-⊛-⊛-⊛ (now _) (now _) y) ⊛-cong (now _ ∎) ⊛-cong (x ∎) ⟩
now _∘_ ⊛ now (λ f → f ∘_) ⊛ now (flip _$_) ⊛ y ⊛ now _,_ ⊛ x ∼⟨⟩
now (λ x f y → f y x) ⊛ y ⊛ now _,_ ⊛ x ∼⟨ ⊛-now (now (λ x f y → f y x) ⊛ y) ⊛-cong (x ∎) ⟩
now (_$ _,_) ⊛ (now (λ x f y → f y x) ⊛ y) ⊛ x ∼⟨ symmetric (now-∘-⊛-⊛-⊛ (now _) (now _) y) ⊛-cong (x ∎) ⟩
now _∘_ ⊛ now (_$ _,_) ⊛ now (λ x f y → f y x) ⊛ y ⊛ x ∼⟨⟩
now (curry swap) ⊛ y ⊛ x ∼⟨⟩
now _∘_ ⊛ now (swap ∘_) ⊛ now _,_ ⊛ y ⊛ x ∼⟨ now-∘-⊛-⊛-⊛ (now _) (now _) y ⊛-cong (x ∎) ⟩
now (swap ∘_) ⊛ (now _,_ ⊛ y) ⊛ x ∼⟨ (now _ ∎) ⊛-cong symmetric (map∼now-⊛ y) ⊛-cong (x ∎) ⟩
now (swap ∘_) ⊛ map′ _,_ y ⊛ x ∼⟨⟩
now _∘_ ⊛ now swap ⊛ map′ _,_ y ⊛ x ∼⟨ now-∘-⊛-⊛-⊛ (now _) (map′ _,_ y) x ⟩
now swap ⊛ (map′ _,_ y ⊛ x) ∼⟨ symmetric (map∼now-⊛ _) ⟩
map′ swap (map′ _,_ y ⊛ x) ∼⟨⟩
map′ swap (y ∣ x) ∎
-- The _∣_ operator can be expressed using other functions.
∣-∼ : [ i ] x ∣ y ∼ (x >>=′ λ x → y >>=′ λ y → now (x , y))
∣-∼ {x = x} {y = y} =
(map′ _,_ x >>=′ λ f → y >>=′ λ y → now (f y)) ∼⟨ (map∼>>=-now x >>=-cong λ _ → _ ∎) ⟩
((x >>=′ λ x → now (x ,_)) >>=′ λ f → y >>=′ λ y → now (f y)) ∼⟨ symmetric $ associativity′ x (λ x → now (x ,_)) (λ f → y >>=′ λ y → now (f y)) ⟩
(x >>=′ λ x → now (x ,_) >>=′ λ f → y >>=′ λ y → now (f y)) ∼⟨⟩
(x >>=′ λ x → y >>=′ λ y → now (x , y)) ∎
|
{
"alphanum_fraction": 0.4291020029,
"avg_line_length": 39.4712041885,
"ext": "agda",
"hexsha": "8cdda2dc6013c33d0a700cb59e055c73be482cf8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/delay-monad",
"max_forks_repo_path": "src/Delay-monad/Sequential.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/delay-monad",
"max_issues_repo_path": "src/Delay-monad/Sequential.agda",
"max_line_length": 148,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/delay-monad",
"max_stars_repo_path": "src/Delay-monad/Sequential.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3206,
"size": 7539
}
|
{-# OPTIONS --universe-polymorphism --guardedness #-}
-- {-# OPTIONS --verbose tc.constr.findInScope:15 #-}
-- {-# OPTIONS --verbose tc.meta.eta:20 #-}
-- {-# OPTIONS --verbose tc.conv.term:20 #-}
-- {-# OPTIONS --verbose tc.meta.assign:70 #-}
-- {-# OPTIONS --verbose tc.eta.rec:70 #-}
-- {-# OPTIONS --verbose tc.sig.inst:30 #-}
module InstanceArguments.11-monads where
open import Effect.Monad using (RawMonad; module RawMonad)
open import Effect.Monad.Indexed using (RawIMonad; module RawIMonad)
--open import Effect.Applicative.Indexed using ()
-- identityMonad often makes monadic code ambiguous.
--open import Effect.Monad.Identity using (IdentityMonad)
open import Effect.Monad.Partiality using (_⊥; now; isNow; never; run_for_steps) renaming (monad to partialityMonad)
open import Effect.Monad.State using (StateMonad)
open import Effect.Applicative.Indexed using (IFun)
open import Function using (_$_)
open import Function.Reasoning
open import Level using (zero; Level)
--open import Data.Unit hiding (_≟_)
open import Data.Bool using (if_then_else_)
open import Data.Nat using (ℕ; _≟_; _+_; suc; _*_)
open import Relation.Nullary.Decidable using (⌊_⌋)
open import Data.List using (List; _∷_; []; [_]; null)
open import Data.List.Effectful using () renaming (monad to listMonad)
--open import Data.Product
module RawMonadExt {li f} {I : Set li} {M : IFun I f} (m : RawIMonad M) where
-- _>>=_ : ∀ {i j k A B} → M i j A → (A → M j k B) → M i k B
-- _>>=_ {i} {j} {k} {A} {B} = RawIMonad._>>=_ {li} {f} {I} {M} m {i} {j} {k} {A} {B}
instance i⊥ = partialityMonad
iList = listMonad
stateMonad = StateMonad ℕ
nToList : ℕ → List ℕ
nToList 0 = [ 0 ]
nToList (suc n) = n ∷ nToList n
test′ : ℕ → (List ℕ) ⊥
test′ k = let open RawMonad partialityMonad
in do x ← return (k ∷ k + 1 ∷ [])
return x
test2′ : ℕ → (List ℕ) ⊥
test2′ k = let open RawMonad partialityMonad
open RawMonad listMonad using () renaming (_>>=_ to _l>>=_)
in do x ← return [ k ]
if ⌊ k ≟ 4 ⌋ then return (x l>>= nToList) else never
open RawMonad {{...}}
open RawMonadExt {{...}}
test1 : ℕ → ℕ ⊥
test1 k = do x ← return k
if ⌊ x ≟ 4 ⌋ then return 10 else never
test2 : ℕ → (List ℕ) ⊥
test2 k = do x ← return [ k ]
if ⌊ k ≟ 4 ⌋ then return ((x ∶ List ℕ) >>= nToList) else never
test' : ℕ → (List ℕ) ⊥
test' k = do x ← return (k ∷ k + 1 ∷ [])
if null x then never else return (x >>= nToList)
test3 : List ℕ
test3 = do x ← 1 ∷ 2 ∷ 3 ∷ []
return $ x + 1
|
{
"alphanum_fraction": 0.6216951788,
"avg_line_length": 36.2253521127,
"ext": "agda",
"hexsha": "f0e0318269a906a0b098c31dd7190825733c4a14",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/LibSucceed/InstanceArguments/11-monads.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/LibSucceed/InstanceArguments/11-monads.agda",
"max_line_length": 116,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/LibSucceed/InstanceArguments/11-monads.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 826,
"size": 2572
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.